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ABSTRACT

A decomposition is given of the S—-type of the classifying spaces of the
classical groups. This decomposition is in terms of Thom spaces and by means
of it cobordism groups are embedded into the stable homotopy of classifying
spaces. This is used to show that each of the classical cobordism theories,
and also complex K-theory, is obtainable as a localisation of the stable
homotopy ring of a classifying space. Similar decompositions are given for
classical groups over E&. The new construction of cobordism generalises
immediately to define the algebraic cobordism of any ring. The familiar prop-
erties of cobordism are described in terms of the new formulation. Also the

(p-adic) algebraic cobordism is computed for several Eﬁq—algebras and schemes.
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PROLOGUE

Each of the four parts of this paper has its own introduction, In this
prologue I wish, therefore, to describe the global mathematical and philoso-
phical theme which will be pursued in this paper.

We seek simultaneously to satisfy the following motivating demands.

(i) To find invariants for use in algebraic geometry which are at least as
powerful as (and related to) Quillen K-theory.

(ii) To achieve (i) within the framework of stable homotopy theory.

(iii) To achieve (i) by a method which recogniseably generalises classical
cobordism theories.

A few remarks on (i)-(iii) are in order. Recall first that the Chow
ring of a smooth variety A*(X) may be obtained from algebraic K-theory as
the sheaf cohomology g Hgar(x;gﬂ) [Q4]. This recommends K-theory and its
more powerful relatives as a source of suitable invariants to study. Secondly
the computational machinery available in stable homotopy theory is superior
to that of ordinary homotopy theory, whence (ii). Also in the topologists'
natural area of geometry - manifold theory - cobordism theories have been
very important invariants, whence (iii).

Let us for the moment restrict attention to a commutative ring A, rather
than the general form of (i). One way in which to satisfy (i) and (ii) in
this case is to look at ﬂi(BGLA+)(g:ni(BGLA)) since this ring contains the

K-theory of A, & KiA’ as a summand. However ﬂi(BGLA) will be too difficult
O<d

to compute in general. Therefore in practice we will localise it, while
attempting to achieve (iii).
Here then is the main result, extracted from Part I and Part II. We

state it in terms of localisation.

()
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If Y is a homotopy commutative and associative H-space then the set of
stable homotopy classes

75,7 = o (J"x,1)
0<n

is a graded, commutative ring which is a ﬁi(Y)—module. Let

S 0o
B e nz(EP ) c ng(BU), B' ¢ ﬂi(BSp) and 1 € ﬂi(BO) be generators.

Theorem
If dim X < » then there are ring isomorphisms
* * -1

(a) {z X,Bsp}[l/B'] N MSp (X) [u4,u4 ]

_1]

() (J"X,BU} [1/B] o MUX(X) [u,,u)

() {7°x,ue”} [1/B] » KU*(X)

_l]

*
and (d) {) X,BO}[1/n] v MO*(X) lu»u]

where uy is a shift operator of dimension 1i.

This result indicates our approach to accomplishing (iii). Namely, in
Part II and Part IV, we define p-adic algebraic cobordism by means of local-

isations of Wi(BGLA+);), where (_); denotes p-completions. The definitions

make sense for any scheme over Spec qu and the above theorem enables us to
make some computations.

In fact our result above has some new things to say about classical
cobordism theory. For example for unitary cobordism we obtain new construc-
tions of the Adams operations and Adams idempotents in MU-theory and a new-
proof of the Conner-Floyd theorem (see Part II) . A spectral sequence derived
in Part I, §1 when applied to the fibration sequence of infinite loopspaces

y3-

JSp ~ BSp BSp > BJSp

yields a new homology-type spectral sequence of Z X Z/4-bigraded algebras

(note the bi-grading!)

(vi)
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BD = H (BISps m (NSB3 Z(,))) = . (Sp: ).

There is a similar spectral sequence for MU-theory. In the text we make no
use of there spectral sequences since they are, as far as I can see, of
limited computational use for MU- or MSp-theory.

I have now sketched the philosophy and ideas that are at stake. I sug-
gest that the reader browse through the introduction to Parts I -~ IV ard
through the list of contents in order to obtain quickly an overall picture.

During the three years of writing and re-writing this paper I have been
helped by discussions and correspondence with many people. 1In particular I
wish to thank Frank Adams, David Cox, Eric Friedlander, Ian Hambleton,
Gerhard Harder, Stanley Kochman, Ib Madsen, Peter May and Jorgen Tornehave.
Also I thank the team of referees for their helpful suggestions and the
University of Western Ontario for financial support. Finally, for typing

the various versions of this paper, Charine Haist and Janet Williams deserve

my deepest thanks.

(vii)
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ALGEBRAIC COBORDISM AND K-THEORY

Victor P. Snaith®
PART I: COBORDISM AND THE STABLE HOMOTOPY OF CLASSIFYING SPACES

§1. INTRODUCTION

Homologically the space BU appears to have each BU(n) as a summand. BSp
behaves in a similar fashion and so does BO and BSO when suitably localised.
I show in section 4 that these splittings are actually realised geometrically
in the stable category. This splitting can be used to embed, for example,
n*(MU) in ni(BU). These "exotic" elements are used in section 6 to compute

n?(BU(n)) for j < 10, modulo odd torsion.

Now let me describe the results of Part I in more detail. The reference

numbers refer to those used in the body of the .text in Part I.

Let Gn = U(n), Sp(n), 0(2n) or SO(2n+1) then BG_ is filtered by

[

. n
{BGn, n=1}. If Hn c Gn is the subgroup ZnJU(l), b Sp(1), EHJO(Z) or NT

n
the Becker-Gottlieb transfer [B-Gl] is a map T : BGn > QBHn. In section 2 the

following result is proved:
2.1: Theorem. The Becker-Gottlieb transfer gives a filtered map 7:BG_ ~ QBH_.

This amounts to showing that certain transfers fit together. This is accom-
plished by some generally applicable tricks with smooth fibre bundles (Propo-
sitions 2.2-2.4). In Examples 2.5-2.8 and 2.10-2.15 this trick is applied
to a number of examples by means of which homology calculations are made in
section 3 to prove the following result. When Gn = U(n), Sp(n) or 0(2n) there
is a fibring of infinite loop maps

G

5]

F > QBGl > BG00 .

3.2: Theorem. (i) There are equivalences of H-spaces

QBU(1)

le

BU x FU

QBSp(1) BSp x F

|e

Sp
Received by the Editor March 7, 1977, and in revised form February 26, 1979.

*
Partially supported by the National Research Council of Canada.
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2 VICTOR P. SNAITH

(ii) There is a homotopy equivalence

QBO(2) ~ BO x F .

As a corollary we obtain (Corollary 3.6.1) that the Becker-Gottlieb solu-

tion of the unitary Adams conjecture is an H-map. This is not so in the case
of the orthogonal Adams conjecture. In fact in §7 we evaluate the deviation

from additivity of the transfer 7 : BO - QBO(2) and hence the deviation from

additivity of the Becker-Gottlieb solution of the real Adams conjecture.

From [Sn 1] we know that QBG1 splits as a wedge in the stable category.
This splitting must split BU, BSp and BO. Using the homology calculations of

section 3 it is shown in section 4 that BG  splits into a wedge of factors
BG
n

BGn-— 1

4,2: Theorem. In the stable category there are equivalences
BU ~» v MU(k)
1<k

v MSp(k)
Ik

BSp

e

BO(2k)

BO V T Ay
<k BO(2k - 2)

e

1

BSO(2k+1)

and BSO BSO(2k - 1)

(at odd primes).

le

A\
1<k

Theorem 4.2 implies that the stable homotopy classes {X,BU}, for a finite
dimensional X, has part of the unitary cobordism of X as a summand. In sec-

tion 5 we identify an embedding of this factor by means of the following result.

5.1: Theorem. If dim X < 4n there is an isomorphism

) BU R 2k
2 (@) .{x, ——Bu(n_l)} nrﬁlk MU“F ()

defined by QU(n)(f) = Hf*(cé). ¢U(n) is an epimorphism when dim X = 4n+1.

The classes of ci are defined in section 5 and the analogous result for
MSp*(X) is proved in Theorem 5.2. The analogous result for MO*(X) is proved
in [Part III, §3].

In addition to being a ni(S°)—module ni(BU) has a "tensor product" pair-
ing and a "Whitney sum'" pairing. This rich structure facilitates the genera-

tion of elements. By way of illustration
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ALGEBRAIC COBORDISM AND K-THEORY 3

m i(BU)
Todd torsion) is computed in section 6

in dimensions < 10.

In §8 we will obtain stable decompositions of BGLTF and BOT 4 (suitably
localised) which are analogous to those of Theorem 4.2. The S-type of BOIF3 is
particularly interesting because it is the same as the S-type of imJ, a factor
in the space SG. SG is the l-component of QS°®. Hence ﬂi(BOE&) maps injective-
ly to ni(SG) and thence to ﬂ*(SG) N ﬂi. This is explained in Part III where

an infinity of homotopy elements in ﬂi(BOEé)(z) are constructed.

Finally I would like to express my gratitude to the algebraic topologists
of Purdue University and of the Centro de Investigacion del I.P.N. for their

hospitality shown to me during the preparation of Part I of this paper.

The paper would not get off the ground without the all-important technical
results of section 2.2-2.3 relating the transfer of vector fields. The tech~
nique was first used in this form by Brumfiel-Madsen, whose work has now ap-
peared [B-M]. Becker used some particular cases of the technique in [Be].

The presentation in section 2 is my version of an outline given by Ib Madsen

in a Chicago lecture in August 1975.

The material in Part I dates from late 1975. I am deeply indebted to
Peter May and Ib Madsen for their comments and suggestions concerning the ob-

scurity of my earlier expositions of the material in Part I.

§2: COMPUTATIONS WITH THE TRANSFER
Let F and Y be G-spaces where the action of G on Y is free. Set
E=Y xF and X = % and let m:E - X be induced by left projection. Suppose
G
F~>E~+>X
is a differentiable fibre bundle in which Y is the limit of compact G-spaces
and F has the equivariant homotopy type of a compact G-manifold. From this
data we are entitled by [B-Gl; B-G2; C-G] to an S-map t(m):X - E called the
transfer. t(m) is equivalent (by taking adjoints) to a map t(m):X - Q(E)
oo n.n . U(n)

where Q(E) = Q T E = 1lim Q@ £ E. For example if F =

n I_|U(1)

n
m

F ~> BZHJU(I) —25 BU(n)

the fibring

yields
T(ﬂn):BU(n) -> Q(BZnJU(l)).

Here ZnJU(l) is the canonical wreath product which is the normalizer of the

maximal torus of diagonal matrices. The main result of this section concerns
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4 VICTOR P. SNAITH

the coherence of {T(ﬂn); n 2 1} in the above fibring and in several similar

fibrings involving the classical groups.

When F is a smooth manifold (not necessarily compact) which admits a
G-embedding into a finite dimensional G-module the results of [B-G2] assure us
that we may use the construction of [B-Gl] to obtain the transfer without

ambiguity.

2.1: Theorem. Let G be one of the Lie groups U(n), Sp(n), 0(2n) or SO(2n+1).
Let Hn be the subgroup ZnJU(l)’ szSp(l)’ ZnJO(Z) or NT" respectively. Then
the following diagram is homotopy commutative.

e )
BG —— % L QBH
I |
BG ,, —— QBH
nt+l T (ﬂn+l) n+1

Here the vertical maps are induced by inclusions of subgroups while T(nn) is
the transfer associated with
G

_n

H
n

- BH -+ BG .
n n

NT® is the normalizer of the standard maximal torus in SO(2n + 1).

This result establishes a filtered S-map BGO° > BHw. However the filtered
S-type of BH°° was the subject of the decomposition theorem of [Sn 1]. Here I
am using terms such as S-map, S-type, etc. in the sense of the Adams stable
homotopy category [Ad 1, Part III]. That is, a space (for example, QBHw) is
considered as an object in the Adams category by means of its suspension spec-

trum. This usage is consistent with that of [Sn 1].

In section 4 I will combine these results to obtain a decomposition of
the S-type of BG_. Theorem 2.1 is established according to the following pro-
gramme. Proposition 2.2 gives a result which enables one to reinterpret a
transfer map with the aid of an equivariant vector field on the fibre. Then
Proposition 2.4 gives a general construction, due to Samelson and outlined to
me by Ib Madsen, of equivariant vector fields on homogeneous spaces. Proposi-
tions 2.2 and 2.4 are then applied to several examples, including those re-

ferred to in Theorem 2.1.

2.2: Proposition. Let F »> Y *a F = EA—E*%-= X be a differentiable fibre
bundle as described above in which 3F = ¢. Let F. be a G-submanifold of F

1
with equivariant tubular neighbourhood N. Suppose that p is an equivariant

vector field on F which, on 3N, is homotopic through nowhere zero vector fields

to an outward normal and satisfies |p(x)| = 1 for x ¢ N.
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ALGEBRAIC COBORDISM AND K-THEORY 5

Then the following diagram is homotopy commutative.

X Q(1)

\\:?;;\\\ﬂ

1
Here t(1') is the transfer for Fl > Y XG Fl—E—ex and Q(i) is induced by

QY *. Fp)

Q(E)

the inclusion i:F1 c F.

Proof: In [B-G 2, §5.3] it is shown that the homotopy class of the transfer
is invariant under fibre homotopy equivalence. Consider the fibre bundle

" 1
N-»>Y XG N‘ﬂ—?X. This is fibre homotopy equivalent to F, > Y X _F —E—'X.

1 G 1
Hence the composition

x 00, o x, W) > Q(®)

is homotopic to Q(i) e t(m'). I will show that t(m) is homotopic to this

composition.

The transfer is defined as follows. Take an equivariant embedding F ¢ V
into a finite dimensional G-module. Let N1 be the normal bundle. 1If & is a
vector bundle let Th(&) denote its Thom space. If y:Th(V) - Th(Nl) is the

Pontrjagin-Thom map then we have a map
Th(V)—laTh(Nl)—i%Th(Nl ® TF)

where TF is the tangent bundle and i is induced by the inclusion
Nl < N1 ® TF v F x V. The transfer is obtained by taking the product of this
G-map

+
Th(V) - Th(N1 ® TF) = F A Th(V)
with the identity map of Y, dividing out by the G-action and then stabilizing.
Details are to be found in [B-G 1; Section 3].
Now define for 0 < s <1

igtTh(N)) > Th(N; & TF)
by

iS(V) =

(1-s 1p(x) ) (v,sp(x)) if Isp(x)| <1

otherwise

where v belongs to the fibre of Nl at x. This homotopy takes i

il °oy. However, if p were an outward normal on ON then i

0 oy = 1ioy to

1 oy would be the

map used in [B-G 1, section 2.8] to define t(7n"). Therefore, up to homotopy,

our map is t(n").
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6 VICTOR P. SNAITH

2.2.1: Remark. Let me describe an example, commonly occurrent, satisfying

the hypotheses of Proposition 2.2. We are considering the fibring F > Y x F
G

=z 5 %—= X. Here I remind the reader that F is a differential manifold hav-

ing the homotopy type of a compact manifold. Also F is G-embeddable into a
finite dimensional G-module. Now let p be a G-equivariant vector field F

which is non-generate on its singular set, F Suppose, in addition, that F

1
is connected and that G acts transitively on F

1 0f course we assume G actsl
isometrically with respect to the Riemannian metric on F. Now choose a very
small ¢ > 0 and consider N = {f ¢ F| |p(f)| < e}. Since p is non-degenerate
at f0 € Fl by choosing ¢ small enough we may ensure that on 9N near fO p has a
non-zero component in the direction normal to 9N. The transitive action of G
allows us to translate the picture near fO all over Fl. From this we see that,

for sufficiently small ¢ > 0, N is an equivariant tubular neighbourhood of Fl

in F and at each point of 9N p has a non-zero normal component. The connecti-

vity of F. assures us that if p has an outward normal component on oN near f

1
it has an outward normal component at each point of 9N. If this is the case

0

then p on 3N is homotopic to an outward normal field, through non-zero vector

fields, by linearly shrinking the tangential component to zero.

Now let G be a compact Lie group with Lie algebra G. TFor v ¢ G define a
vector field, ¢V, on G as follows. For z € G let r, and lz denote respectively

right and left transformation by z. Then
¢,(2) = (Or)) (v) ¢ T G.

Here Drz is the derivative of . The following result is straight forward
and will be left to the reader. It suffices to treat the case G = GLn(C)
which requires only the very basic information which is to be found in [Ad 2,

Chapter 4; Mi 1, section 1].

2.3: Lemma. (i) If w ¢ G is in the centralizer of exp v € G then

D(Rw)(¢v(2)) = ¢,(wz) « TG -
(ii) If w € G is any element then

D(rx)(¢v(2)) = ¢V(zw) «eT, G.

2.4: Proposition. Let G be a compact Lie group and let H be a closed subgroup.
Let 0 # v ¢ G. There exists a vector field, p,» on % with the following pro-
perties.

(i) pv(gH) =0 if and only if g—l(exp v)g € H.

(i1) If w ¢ C(exp v), the centralizer of exp v,
then
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ALGERRAIC COBORDISM AND K-THEORY 7

D(Qw)(pv(gﬂ)) = pv(ng) for all cosets gH.

Proof: ey is induced from ¢v of Lemma 2.3 by taking quotients by the right

H-action. It is a very basic computation to show that
. . -1
¢v(g) € TH if and only if g (exp v)g € H.

The reader is again referred to [Ad 2, Chapter 4; Mi 1, section 1] for the
basic information required in this coﬁputation. Hence pv(gH) = 0 if and only

if g—l(exp v)g € H.

The remainder of this section will be devoted to the applications of

Propositions 2.2 and 2.4 which will be needed later.

2.5: Example. Take G = U(n), H = Zn J U(1) and v € U(n) such that

(x#y). Then C(w) = U(n-1) x U(1l). Also if g_lwg € Zn J U(1) there exists
0 € Zn such that d—lg_lwgc € . Hence gaTno_ g_ is a maximal torus contain-
ing w. We know from [Ad 2, p. 97] that the identity component of C(w) equals
the union of all maximal tori containing w. Hence there is b ¢ U(n-1) x U(1)

satisfying goTc ‘g * = bT"b L. Therefore g ¢ (U(n-1) x vz J U(l). Con-

versely all such g are singular. Therefore oy is a (left) U(n-1) x U(1)-
U(n)
i Uu(1)

equivariant vector field on whose singular set is equivariantly

U(n-1)

homeomorphic to .
b u(l)

n-1
2.6: Example. Similar to Example 2.5 is the case when G = Sp(n) and

H = Zn J Sp(1). We obtain an Sp(n-1) x Sp(l)-equivariant vector field on

Sp(n) whose singular set is equivariantly homeomorphic to Sp(n-1) .
Zn Sp(1) Zn—l Sp(1)

2.7: Example. Take G = 0(2n), H = Zn f 0(2) and choose v € 0(2n) such that

I2n—2
W= exp V= cos 6 -sin O (6 # nm .

sin 6 cos ©
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8 VICTOR P. SNAITH

Then C(w) = 0(2n-2) x SO0(2). 1If g_lwg € Zn f 0(2) there exists x € Zn c Zn

J 0(2) such that x_lg_lng € 0(2)n n S0(2n). Now choose y € 0(2)n such that

*1
%2
-1 -1 - ..
y X g WgXy = .
o
n
where
cos 0, -sin 6,
i i
o, =
1 sin 0, cos O,
i
or
1 0
o, =
* 0 -1

1

Hence there exists o € I 0 such that 0—1y_1x_1g_ wgxyo € S0(2)". Arguing as

2
in Example 2.5

gxy050(2) %0 Ty kTl = zso(2)2 7t

for some z ¢ 0(2n-2) x S0(2). The normalizer of SO(2)n in 0(2n) is Zn‘[O(Z).

Hence z_lgxy € Zn f 0(2) and
g e (0(2n-2) x so(2))(>:n j 0(2))22n(2n J 0(2)) =1,

say. Conversely if g ¢ U we may write g = abc where a € 0(2n-2) x 0(2),

b e ZZn and ¢ e ZN f 0(2) implies

b Lub ¢ E J 0(2) or b ' € T f 0(2)

where

Ton-2
w' = cos 6 sin © .

-sin 6 cos ©

It is easy to see that this can only happen if b € I X z Hence

2n-2 2°
g € (0(2n-2) ><SO(2))Zn f 0(2). Therefore 0, is an 0(2n-2) X S0(2)-equivariant
0(2n)
Zn f 0(2)
0(2n-2)

L1 f 0(2)

field on whose singular set is equivariantly homeomorphic to
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ALGEBRAIC COBORDISM AND K-THEORY 9

2.8: Example. Similar to Example 2.7 is the case G = S0(2n+1) and H = NT®
the normalizer of SO(2)n in G. We obtain an SO(2n-1) x S0(2)-equivariant

vector field on §9£2%?ll-whose singular set is equivariantly homeomorphic to
S0(2n-1) NT

Nt
2.9: Proof of Theorem 2.1.G In Examples 2.5-2.8 Gn_l—equévariant vector

n-1

Hn—l

n
is natural for pullbacks [B-G 1, Section 3.2]. Consider the pullback diagram

. The transfer

fields were constructed on ﬁg»with singular sets equal to

G
_n
H
/ n\
< G
EC, % 53 E6 s w
n-1 n n n
L
Tl'n 'lTrl
BG ., ———— > BG

By naturality T(ﬂn)o j is homotopic to the composition Q(j') o T(ﬂ;). The vec-
tor fields of Examples 2.5-2.8 have connected singular sets which are acted

transitively upon by Gn— The fields are well-known to be non-degenerate in

1

the sense of the discussion in Section 2.2.1. 1In Proposition 2.2 we may take

N to be the neighbourhood of Hn—l consisting of points x where ]pv(x)] < ¢ for
n-1

suitably small ¢ > 0. Since N is a level surface for Ipv(x)] oy is a normal
vector which is an outward normal near the identity coset. Hence, by Proposi-

tion 2.2 and Section 2.2.1, T(ﬂ;) is homotopic to Q(i) o T(wn_l) where

G
Gn—l n

> EG x
€h-1 Hno1 n

n-1 n
is induced by the inclusion of the singular set of the vector field.

The remaining examples of equivariant vector fields which are collected
in this section will be used in Part II and in Sections 3-4 where we determine
the filtered S-types of BU, BSp, BO and BSO and factorise QBU(1), QBSp(1l) and
QBO(2).
2.10: Example. Take G = SO(2n+1), H = NT® and choose v e SO(2n+ 1) such that
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10 VICTOR P. SNAITH

. n
W =exp Vv = .

Q
n

e T
1
with 12 # oy # aj € SO(2) if i # j. Then C(w) = ™, Arguing as in Example 2.7
we find that g_lwg ¢ NT" if and only if g € NT". Therefore oy is a Tn—equivari—

ant vector field whose singular set is a point.
The next example is a cautionary one. It is included to show that not
every o_ constructed by means of Proposition 2.4 can be used in Proposition 2.2.

When the singular set is disconnected p, may not be an outward normal to its

tubular neighbourhood.

2.11: Example. Take G = GLG(HO ~ 0(2n) and H = Zn J GL2<E0.E Zn J 0(2).

Choose Vv € GLZn(HU such that w = exp v is a diagonal matrix with distinct

entries. Then C(w) = GLl(R)zn. If g_lwg € Zn J GLZ(HO then there exists
n

X € I_c Zn J GLz(HU such that X_lg_lng € GLZ(R)D. Having distinct real

eigenvalues this matrix is diagonalizeable and there exists y e GL2(]R.)n such

1

that y x-lg—lngy € GLl(IR)Zn. This must be a permutation of w so there is

z € ZZn such that gxyz ¢ C(w). Hence

g € (Zzn I GL]_(]R))Zn J GLZ(]R) .

Conversely all such g are singular. Thus there is an O(l)zn—equivariant vector

GL, (R)
field, pys on 2n whose singular set is equivariantly homeomorphic to
¥ |GL, (R)
5 n 2
Zn Caution is required in applying Proposition 2.2 when n # 1 since oy is
ZnJZZ ZZn
not the outward normal at each point of a tubular neighbourhood of .
GL, (R) In) 2
Since the Euler characteristic of ——————— is one, the Poincare-Hopf theorem
L IGL (R)
n 2
[Mi 1, p. 35] implies that the sum of the indices of oy at the singular points
z
of Zn is equal to one.
I |Z
nj 2

2.11.1: Remark. In order that I may later make use of Example 2.11 in con-

junction with Proposition 2.2 and section 2.2.1, I must give some explanation
of the tricky technical points and how they are overcome. Example 2.11 will be
used in sections 3.7-3.8 to make a homology computation similar to that of

[B-M]. In [B-M] this sort of computation is made using algebraic subgroups of
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ALGEBRAIC COBORDISM AND K-THEORY 11

the general linear groups in order to consider only fibrings with compact mani-
folds as fibre. As explained in section 2.2.1 this is not necessary for the
following reason. In [B-G 2] two equivalent constructions of the transfer are
given for smooth fibrings of the type we are considering. The S-duality defi-
nition clearly requires only data up to fibre homotopy equivalence. However
the proof of the equivalence of the two definitions, in the smooth case [B-G 2],
requires only that the fibre be G-equivariantly embeddable in Euclidean space.
When G is a finite group this can be accomplished for non-compact, smooth mani-

folds such as those occurring in Example 2.11.

The above discussion would permit us to apply arguments like that of
Proposition 2.2 and section 2.9 using vector fields, L which are homotopic to
outward normals on their singular set. However there is one case when we can
drop the normality condition. Namely if the singular set is a finite set with
trivial G-action. In this case it is possible to obtain formulae for restric-
tions of transfers but not solely in terms of other transfers. The individual
indices of o, at the points of the singular set enter into the formula, (see

section 3.7).

2.12: Example. Take G = U(2n), H = Zn J U(1l) and choose v-e U(n) such that

W =expvVv = (X1 # XZ)'
2'n

Then C(w) = U(n) x U(n). Arguing as in Example 2.5 we find that g—lwge ZnJ U(1)
if and only if

g e (U(n) x U(n))Z2n JU(I) .

Thus oy is a U(n) x U(n)-equivariant vector field on__HSZEl__ whose singular
z JU(I)
2n
U(n) 2
set is equivariantly homeomorphic to [—F— .
EnJU(l)

The following example is similar to Example 2.12.

2.13: Example. Take G = Sp(n) and H = ZZn J Sp(l). Then there is an
Sp(n)

Sp(n) x Sp(n)-equivariant vector field on whose singular set is
222n Sp(1)
equivariantly homeomorphic to Sp(@2n) .
ZZHJSP(I)

2.14: Example. Take G = U(n) and H = ZHJU(l). Choose v € U(n) such that
W = exp v is a diagonal matrix with distinct entries. Arguing as in Example
2.5 we find that oy is a Tn—equivariant vector field on U(n)/Zn U(1l) whose

singular set is a point.
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12 VICTOR P. SNAITH

The following example is similar to Example 2.13.

2.15: Example. Take G = Sp(n) and H = an Sp(1l). Then there exists a -
equivariant vector field, pv, on _Sp(m) whose singular set is a point. Here
z JSp(l)
n

Tn is the canonical maximal torus of Sp(n).

§3. FACTORIZATIONS OF QBU(1), QBO(2) AND QBSp(l)

A map X -+ Y into an infinite loopspace, Y, extends to an infinite loop map
0000
QX=QZLX~>Y.

This extension is unique up to homotopy. Detailswill be given in section 3.4.

Hence there are infinite loopspace fibrings

Iy Ay
Fy, — — QBU(1) — BU
3o Ao
F, — QBO(2) — BO

3 A
Fep 5P, gBSp(1)—E> BSp

in which AU’ XO and ASp extend the canonical maps. For example, AU extends the

map which classifies the reduced Hopf bundle in ﬁﬁ(BU(l)).
By Theorem 2.1 the transfer yields maps

T.. ¢ BU —QBU(1)

U
T ¢ BO — QBO(2) and
Tsp : BSp— QBSp(l)

in the manner explained in section 3.4.

The main result of this section is the following:
3.2: Theorem. (i) Ty and Tsp are H-maps.
(ii) The compositions AUO Ty Aoo T and Aspo Tg, are homo-

topy equivalences.

(iii) j0 + TO:F0 x BO - QBO(2) is a homotopy equivalence.

(iv) iy + TU:FU x BU - QBU(1l) and Jsp x BSp - QBSp(1)

are equivalences of H-spaces.

+ :
TSp FSp

Remark. In (iii) the equivalence is not an equivalence of H-spaces. However
T deviates from an H-map in a very subtle manner. This topic is taken up in
[Sn2 and in §7].

J. C. Becker [Be] and G. B. Segal [Se] have proved parts of Theorem 3.2,

by different arguments.

3.3: Sketch of Proof. In the notation of Theorem 2.1, part (i) is a matter of

evaluating
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ALGEBRAIC COBORDISM AND K-THEORY 13

T(n2n)

BG_ x BG_ > BG, > QBH, .

This is accomplished in Proposition 3.6 with the aid of Proposition 2.2 and
Examples 2.12 and 2.13. Parts (iii) and (iv) follow immediately from part (ii).
There are several cases to be considered in (ii). The spaces QBU(1), QBO(2)
and QBSp(l) are homologically like BH  for H_ chosen appropriately from Theorem

2.1. If in homology (AG )* = (“w)* it is easy to show that AG ° T, ié a homo-
o I~

logy isomorphism. In Proposition 3.9 this is shown to be true for most of the

cases. The remaining case is BO mod 2. In Proposition 3.7 and Corollary 3.8

we analyze the restriction of Aoo T to BO(l)2n in mod 2 homology. The proof

of Theorem 3.2 is given in section 3.10.

3.4: QX. Let us recall a few facts about QX. [Ma 1] is a suitable reference

for further details.

If X is a nice space (a CW complex which is compactly generated, for
example) then QX = 275X may be considered as a filtered space. To be precise
there exist filtered spaces [Ba; Ma 1] which are homotopy equivalent to QX. I

will use the filtered spaces, C_ X, of [Ma 1, section 6]. The filtered space

X=FCXce+ee cFCXcF
® n e n+

1 C®X C eee C CWX

1
is equipped with a map
ot CwX -+ QX
which is homotopy equivalence for connected X [Ma 1, section 6.3]. There exist
maps
it EI_x. X >FCX

n n I
n

[Ma 1, sections 2.4 and 4.8] such that a_° in is the restriction of the struc-
ture map d: QQX > QX of the free functor Q. For details the reader is referred

to [Ma 1, section 5] or [Ma 2, Chapter II, section 1].

Note that il : X > FlcmX is a homeomorphism and the composite
i1
X—3F.CXcCX
1l ©

corresponds to the "suspension'" map I : X - QX.

Also i |E x X T =1
n-1
If Y is an infinite loopspace and f':X + Y is a map then there is an in-
finite loop map f:QX - Y such that f|X = f'., f is unique up to homotopy and
equal to the composite dOQ(f') where d:QY -~ Y is the structure map of the in-

finite loopspace Y [Ma 1; Ma 2 ibid.].
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14 VICTOR P. SNAITH

By definition the restriction of f to EZn x. X" is equal to the image

z

. 1 n
of x? —BXel, x —i—% Y under the Kahn-Priddy transfer [K-P] associated with the
covering ) Gl EZn X Xn.

z
n
By Theorem 2.1 the transfers
r(nn): BGn -> Q(BHn)

fit together to give
t(r_) : BG_ ~ Q(BH_) .

When G_ = U, O or Sp we may form the composition

(m_) Qi) q

(3.5) T : BG — Q(BHm) _— QQBG1 —_— QBGl.

I
—
e
3
=

Here i
)

3.6: Proposition. If G_ = U or Sp then T is an H-map.

G

©

Proof: Let m: QBG% > QBG1 be the H-space addition. If we can show that the

diagram

BG x BG —> BG
2n

R S

m
QBG, x QBG, —— QBG;

is a homotopy commutative then the result will follow. This involvesa liml

argument. By Theorem 3.2 (ii), (which is proved independently of part (i))

QBGl =F X BG where F has finite homotopy groups. Hence in the Milnor

G G

[ ©

exact sequence [Mi 2] the liml—term is

L 1.2 1 2 ~
lim [ZBGn, QBG1] ~ 11? [Z(BGn), BG_ ] = 0.
n
Thus

[BG, x BG,, QBG,] » lim[BG“ x BG_, QBG,] .

Now consider (T(nzn)lBGi). Example 2.12 and 2.13 together with Proposi-

tion 2.2 assures that (TG IBGn) is equal to the composite

' . d °Q(i )
2 T 2 2n
BG. —— Q(BH)) - QBH, ——"— QBC, .

The argument is an application of the "vector field trick' used in section 2.9

and elaborated upon in sections 2.2-2.2.1. Here t' is the transfer associ-

ated with BHﬁ > BGi and j is induced by the inclusion of Hi in H

section 5.6] jo 1' is equal to the composition

) T(nn)z g
BG, —— (QBH_) N . QBH, .
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The following commutative diagram now yields the result.

, t)? ) o
BG. —— " (QBH_) —1 . gBH

. (2 .
1Q(1n) Jact,
(QaBe;)? — qage

ldz ld

2 m
(QBG)” — QBG,

3.6.1: Corollary. The Becker-Gottlieb solution to the complex Adams conjec-

ture
BU -+ G/U

is an H-map. (Compare this with Lemma 7.2.)

Proof: The Becker-Gottlieb solution to the Adams conjecture, as presented in

[Be], is equal to a composite of the form

T
BU —% qBu(1) —X%, qa/u -3 o/u.

Here o: BU(1l) » G/U is Adams' solution to the Adams conjecture for U(1l)-bundles

[Ad 5]. Since Q(a) and d are H-maps the result follows from Proposition 3.6.

Now let h: BO(l)2n -+ BO(2n) and k: BO(l)2n -> BZn I 0(2) be the natural maps.

For g € L

7 denote by kg the composite

po(1) 2™ —9(8) , po(1y2n K, BE_ J 0(2) - QBz_ f 0(2)
where o(g) is conjugation by g.

3.7: Proposition. The composition

T(m )
B0(1) 2™ -2 Bo(2n) — 2 QBI_ J 0(2)

is equal to ZgI(g)kg. The sum, taken in the group [BO(l)zn, QBZn f (2)] ~
{BO(l)zn, BZn [ 0(2)}, is taken over a set of coset representatives of

Zzn/ Zn J 22. I(g) is the index at an J . of the vector field, P, in

2
Example 2.11.

Z2n

]

I propose to proceed as if applying Proposition 2.2, in the situation de-

Proof: 1In Example 2.11 0(1)2n acts trivially on the singular set

scribed in section 2.2.1, to this vector field. It is non-degenerate at its

singular set (Fl in the notation of sections 2.2-2.2.1). However Fl is dis-
2n . . A .

connected and the 0(1l)  -action is not transitive. Nevertheless we obtain, by

the argument of Proposition 2.2, a homotopy commutative diagram.
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16 VICTOR P. SNAITH

Bo(1) 2™ —D 5 5o(2n)

3| [RER
z:2n
— Q(BI J 0(2)).
£z
nJ 2

However, as pointed out in Example 2.11 and section 2.11.1, t' is not the trans-

Q|Bo(1) 2 x

fer in the sense of [B-G 1]. If 1' were the transfer it would be a sum of a
number of copies of the adjoint of the identity map. Nevertheless t' is still

the sum of a number of maps, one for each point in the singular set. By defi-
nition of the index of o, at an J 22 [Mi 1, p. 32] the map at an { 22 is I(g)

times the adjoint of the identity map, I ock. The map

2n Z2n
Q|BO(1) X = > Q(an f 0(2))
z IZ
n) 2
c . . . . 0(2n) S
is induced by the inclusion of the singular set into —F—— . Hence it is
> fo(z)
n

clear that BO(l)zn X an J ZZ is mapped in by means of the conjugate by g of
the canonical map, I ° k.

3.8: Corollary. The maps A oh and h: BO(l)2n - BO induce the same maps

0° "o
in homology.

Proof: Consider the following commutative diagram.

2n h o o
Bo(1)2™ -2 Bo(an) —2— qBo(2) —2— BO

wl T

QBZn I 0(2) QQBO(2) ———— QBO .

Qi) Q)

We will apply Proposition 3.7 to this diagram in order to evaluate Aoo T,°h in

0
homology. Firstly we need some notation.

Let m = [Zzn: Zn J 22[ and let B1oevs 8y be the coset representatives in

the statement of Proposition 3.7. Let hi: BO(l)2n ~ BO(2n) be the conjugate of
h by g Also denote by hi the composition of hi with the natural map into BO.
Then (hi)* = h*: H*(BO(l)zn) > H*(BO) for 1 £ i £ m; since the inner automor-

phisms induce the identity.

If I(gi) =1 let X4t BO - BO be the identity map. If I(gi) = -1 let
Xgt BO - BO be the inverse map of the H-space, BO.
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ALGEBRAIC COBORDISM AND K-THEORY 17

The maps d, Q(in) and Q(AO) are H-maps. Therefore Proposition 3.7 implies
that
d°Q0) ° Q) e t(n ) oh

is homotopic to the composition BO(l)2r1 —é4 (BO(l)Zn)m > BO™ > BO of the dia-

gonal followed firstly by TiXg© hi and then by the iterated H-space addition.

Suppose x € H*(BO(l)zn) satisfies A*(x) = le R eee B X Then, from our

diagram,

(}\Oo ‘[0 ° h)*(x) = Z(Xl o hl)*(xl) oo (Xm0 hm)*(xm)

1]

E(xp) g (%)) v (X)) ()

It

(T xg)8hy (hy (D).
i=1

However, to complete the proof, we observe that

m
T y.loa~1. :B0—2»B0™ - BO.
. 1 — "BO
i=1
For it is a sum in the group [BO,BO] of t copies of lBO and s copies of (—lBO)
where s + t = I I(g) = 1, as explained in Example 2.11.
g

3.9: Proposition. In the notation of Theorem 2.1, let Gn = U(n), Sp(n) or
0(2n). Let R be a torsion free commutative ring. 1If H*(BGm;R) has no torsion

then
ioo Gm
BHoo QBG1 ‘BGw

and 7 induce the same map in H*(—;R). Here :'L°° is the map which was introduced
in section 3.4.

Proof: By definition AG ° in: BZn J G1 -> BGOc is the Kahn-Priddy transfer,
er(8e m), [K-P] of “

" 6
BGl X BHn—l — BGl — BG_
with respect tothe covering BGl xBHn_l—+BHn. Here © is the canonical map con-

sidered as representing a class in reduced K-theory. Hence 6§ = E - dim E where
E is either the Hopf bundle over BU(l) and BSp(l) or the canonical 2-plane over
BO(2). Here dim E refers to the complex, quaternionic or real dimension of E,

as appropriate.

The Kahn-Priddy transfer is additive [K-P, section 1.8]. Hence in homo-

logy (AG o in)* is the Pontrjagin quotient of tr(E), by tr(dim E),. Explicitly

in homology this has the following meaning. Let y : BG00 -> BGW be the inverse

map of the H-space, BG . Suppose that the diagonal on x ¢ ﬁ*(BHn) is given by
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18 VICTOR P. SNAITH

A*(x) = le 8 X,

Then
(AG o in)*(x) = Ztr(E)*(xl)x*tr(dim E)*(xz).

o

Hence the result will follow if tr(dim E)* kills
" a
Hy (BE_ f G)) = H (BH ).

dim E is a trivial bundle over BGl' Therefore, by the naturality properties of

the Kahn-Priddy transfer [K-P]

tr(dim E) : BZn J Gl ~> BG_

factors through the map BZn J G, ~ BZn induced by the homomorphism G, - {1}.

1 1

In fact tr(dim E) is equal to the composite of BEn J G, > BZn with the canoni-

1
cal map BX_ - BG_ - BG .
n n o

A%
Since Zn is a finite group H*(BZn;R) is torsion. Therefore the composite
3 N N N
tr(dim E)* : H*(BZn Gl;R) -> H*(BZH;R) - H*(BGw;R)

is zero. Finally it is shown in [Ma 2, chapter VIII, Proposition 1.1; see also
™
K-P] that tr(E) is equal to the composite BHrl -, BGn ~+~ BG . Therefore AGO in

Y

equals L in homology and the result follows by letting n tend to infinity.

3.10: Proof of Theorem 3.2. I proved (i) in Proposition 3.6. Given (ii) it

is immediate from the homotopy exact sequences of (3.1) that the sum of e and

o

jG is a homotopy equivalence. Also jG is an infinite loop may so that
fee] o)

G + jG is an H-map if T is. BG_ is simple so, to prove (ii), it suffices
(o]

[ [

by the universal coefficient theorem [Sp, p. 246] and a theorem of J. H. C.
Whitehead [Sp, p. 399] to show the following.

(a) A, o

v° U and XSpo TSp induce integral homology isomorphisms and

0
and 2/2.

(b) Aoo T, induces isomorphisms in homology with coefficients in Z[%]

Now, with any coefficients, (nn)*o T(nn)* is multiplication by the Euler
G
characteristic ¥ ﬁg = 1 we obtain (ﬂn)*O T(ﬂn)* = 1. Hence by Proposition 3.9
n

(A, o7 =1 on H*(BU;Z),H*(BSp;Z) and H*(BO;Z[%]). The remaining case fol-

G G ) s

[ )

lows from Corollary 3.8 since (k)*: H*(BO(l)w;Z/2) - H*(BO;Z/Z) is onto.
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ALGEBRAIC COBORDISM AND K-THEORY 19

§4, STABLE DECOMPOSITICNS OF BU, BSp, BO AND BSO

Let F CwX be as in section 3.4. In [Sn 1] stable equivalences

k
F C.X
and Ftcmx
P T O Tl

are constructed. These equivalences fit together coherently. Details are

F CX
given below in section 4.5. However %r——g—i is homeomorphic [Ma 1, Proposition

n-1"o
2.6 (ii)] to an equivariant half-smash product. Suffice it to say this space
is a quotient of E x X" where E is a contractible space with a free Zn—action.
Then Zn

BZ_ J U(1) = E x Bu(D)"

z
n

and

_ N n-1
BL_ 4 J U(l) = E . BU(L) " .

n-1

The inclusion of the first n-1 factors BU(l)n—l > BU(l)n induces a map
B, [ U(1) > BE_ f U(1)

which is homotopic to the canonical map. The quotient map

n FnCmBU(l)
E x BUQl) > ————F7+
5 Fn_lcmBU(l)
n
sends an—l J U(1) to a point. This map and its quaternionic and real analogues

induce the following homeomorphisms}

F_C_BU(1) i anfu(l)

F___C_BU(L)

n-1 an_lJU(l)

F CmBSp(l) BZ [Sp(l)
F - C BSp(L) = (4.1
n-1"w""P BZn_lJSp(l)

and
FnCmBO(Z) B BEEJO(Z)

F _,C.BO(2)

an_lf0(2)

In the notation of Theorem 2.1 let Gn = U(n), Sp(n) or 0(2n). Define stable

maps
BG

v ¢ BG_ » vV t

G n

n t<n t-1

by means of the following composition
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20 VICTOR P. SNAITH

where y = Vv 7 _.
The first result of this section is the following which is proved in
section 4.6.

4.2: Theorem.
(i) 1If Gn = U(n) or Sp(n) then

vG : BGn > Vv
n t<n t-1

is a stable equivalence for 1 < n < =,

BO(2t)

¢ B0(20) > Y B0(2t-2)

(ii) v
0(2n) <
is a stable equivalence for 1 < n < «,

(iii) For Gn = U(n), Sp(n) or 0(2n)

VG BGn_1 N vG
n n-1

The other result of this section gives stable equivalences in the opposite

direction and includes the case BO(= BSO) at odd primes.
By Theorem 2.1 the transfer induces stable maps

BG BH
n n
BG_ .  BH
n-1 n-1

T(nn)

Here Gn and Hn are as in Theorem 2.1. Hence if Gn = U(n), Sp(n) or 0(2n) we
have a stable map
BG

t
u : V= > BG00
Gn t<n BGt—l
given by the composition
BG B |G B i AG
t $ t) 1 n n o
\% — Vv — F C BG, — QBG, — BG_ .
g<n 201 t<n BE G noel 1 “
- - t-1j 1
Here § = Vv T(vt). Also the normalizer NT" c S0(2n + 1) lies in
t<n

Zn f 0(2) x 0(1) < 0(2n + 1). Thus we have a map

n BI JO(Z)
n

BNT an_ljo(Z)

Define a stable map
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ALGEBRAIC COBORDISM AND K-THEORY 21

BSO(2n+1)

u Y -+ BO
+ -
SO(2n+1) t<n BSO(2n-1)
by means of the composition
t BX JO(Z) B i A
+
v %g%%%%:%%~—fia v ‘Jﬂigzj s v —t& B, F_C_BO(2) — QBO(2) —9, 5o.
t<n t<n BNT t<n th_l‘(O(Z)
Again § = V T(ﬂt).
t<n
4.3: Theorem. (i) 1f Gn = U(n) or Sp(n)
BG
u HEY —> BG
o 1t BOep %
is a stable equivalence.
L BO(2t)
(ii) p, ¢ VvV ===~ = BO
0 1<t BO(2t-2)
is a stable equivalence.
e . BSO(2t+1)
(D g * Y Bso(ze-1) T PO

is a stable equivalence at odd primes.

4.4. Theorems 4.2 and 4.3 will be proved according to the following programme.
We wish to show that a number of maps induceisomorphisms in homology. These
maps are compositions. Part of these compositions are the stable maps oy and
Bk. In section 4.5 we recall the salient facts about o and Bk’ namely how

they behave with respect to the filtration. These facts together with the homo-
logy information, which was garnered in section 3, about the other maps in the

composition will be used in sections 4.6 and 4.7 to prove the theorems. In

section 8, a decomposition theorem for BGLEA and BOEB is proved.

4.,5: Properties of oy and Bk. Recall [Ma 1, section 6] there are filtered

spaces, CnX’ equipped with maps

c x » o"s"x
n
and satisfying C_X = lim CnX as a filtered space. In [Sn 1, Theorem 1.1] expli-
n
cit stable equivalences FtCnX
a,(n) : FCX>» V —m——
k k™n t<k Ft_lch
were constructed. These stable equivalences enjoy the following properties:
(a) ak(n) v uk+1(n)|FkCnX [Sn 1, section 3.2]
(b) The composition of ak(n) with the collapsing map onto the factor
FkCnX
is homotopic to the canonical collapsing map
Fk—lcnx
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22 VICTOR P. SNAITH

chnx
chnx - T CX [Sn 1, section 3.2]
k-1"n
(c) a = 1im ak(n) exists and is a stable equivalence

n [Sn 1, section 3.6].

Take the stable equivalence Bk to be a homotopy inverse of a The Bk may

K
be chosen so that

| L T CX T Pk

and I shall assume this done.

4.6: Proof of Theorem 4.2. (iii) The coherence of the vG follows from the
n
coherence of the uk(n) (section 4.5(a)) and of the transfer, T(ﬂn) (Theorem

2.1).
For the rest we have, by a theorem of J. H. C. Whitehead [Sp, p. 399], to

show that Vg induces isomorphisms in homology.
(1) Sugpose that Ve . is a stable equivalence and commence induction

with n = 1. Consider thencomposition
e BG, BG_
BG — —ITG—_}EG—

t<n t-1 n-1
By 4.5(b) this is stably homotopic to the composite
BG. anjcl o1 BG

BG_ - > >
n BG
n-1 BZn—lJGl n-1

where t' and 7' are induced by T(nn) and L respectively. However (cf. section

3.10) ™ T(nn) induces the identity in homology by [B-G 1, Theorem 2.4]. Also

BG
BGn > 3G _is onto in homology with kernel given by the image of H*(BGn—l)'
n-1
Therefore by induction on n, it is clear that Ve induces a homology isomorphism.
n

(ii) This case is similar to case (i).

4.7: Proof of Theorem 4.3. The proof is very similar to that of Theorem 4.2.

The basic ingredients are Proposition 3.9 and Theorem 3.2(ii) for BO at p = 2.

Details are left to the reader.

§5. CONNECTIONS WITH COBORDISM

In Theorems 4.2 and 4.3 I showed that BU and BSp are stably equivalent to
a wedge of Thom spaces. The stable maps of X into a Thom space, MU(n) or MSp(n),
are related to the cobordism of X (unitary or symplectic respectively). Suit-

able references for the cobordism material of this section are [Ad 1; St 1].
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ALGEBRAIC COBORDISM AND K-THEORY 23

We will work in Adams category of CW spectra [Ad 1; p. 146). Let

2n BU ' 4n BSp . . .
c' € MU &ER;:ES} and pn e MSp {BSp(n—l) be cobordism classes which restrict

=)

to the Conner-Floyd classes
e, € MUzn(BU) and P € MSpan(BSp)

respectively. Let {X,Y} denote stable maps of degree zero from X to Y. The
main results of this section are the following:

BU

5.1: Theorem. Define ¢U(n): {X, Eﬁ?EiIY

}+ 1 Mu?*(x) by
n<k
d (n)(f) = T f*(c').
U n<k k
Then @U(n) is an isomorphism if dim X < 4n and is a surjection of

dim X = 4n + 1.

5.2 Theorem. Define &_ (n) : (X, —BSp > 1 MSpAk(x) by
—_ Sp BSp(n-1)
n<k
o, (m)(f) = T £*(p)).
Sp n<k k

Then @Sp(n) is an isomorphism if dim X < 8n + 2 and is a surjection if

dim X = 8n + 3.

5.3: Sketch of Proof. Theorems 5.1 and 5.2 will be proved by appealing to

Theorems 4.2 and 4.3. The role of the Thom spaces

BU(n)
BU(n-1) ~ MU(™)

and

BSp(n)
BSp(n-1) 2 MSp(n)

makes it clear that Theorems 4.2 and 4.3 have, as a corollary, an isomorphism
of the desired type. In section 5.7 we verify by means of the facts collected
in section 4.5 that the isomorphisms are equal modulo the skeletal filtration

to @U(n) and ¢, (n). This verification is very simple.

Sp

5.4: Remark. Theorems 5.1 and 5.2 might, of course, be proved by computing

(Ck)* : H*(BU) - H*(MU) (k =2 1)

and
(pk)* : H,(BSp) ~ H, (MSp).

Here BU and BSp are the suspension spectra of BU and BSp respectively and the
homology groups refer to homology of spectra [Ad 1, p. 196]. This is not diffi-
cult and I leave it as an exercise to the interested reader to accomplish this.
In fact (Ck)* is computed in section 6.14 in order to relate the Boardman-
Hurewicz maps

T, (BU) > H,(BU)
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24 VICTOR P. SNAITH

and
T, (M0) > H, (MD) .

Firstly, for completeness, here are two observations which are required in

order to prove Theorems 5.1 and 5.2.

5.5: Lemma. Let
€ 22MU(n) > MU(n+ 1)

5 5 MSp(n) - MSp(n+ 1)

be the structure maps of the MU- and MSp-spectra respectively. Then € is a

(4n+ 3)-equivalence and Gn is an (8n+ 7)-equivalence.

5.6: Corollary. (i) The canonical map e: {X,MU(n)} ~ MUzn(X) is an isomor-
phism if dim X £ 4n and is a surjection if dim X = 4n+ 1.
(ii) The canonical map §: {X,MSp(n)} ~ MSpAn(X) is an isomor-
phism if dim X £ 8n+ 2 and is a surjection if

dim X = 8n+ 3.

Proof. (i) By Lemma 5.5 and [Sp, pp. 399-405] (en)*: [ZmX,ZmMU(n)]
[ZmX,Em_ZMU(n+l)] is an isomorphism if dim X < 4n and is an epimorphism if

dim X = 4n + 1. Hence, taking limits, e: {X,MU(n)} - lim [szX,MU(n+m)]
m
= MUzn(X) is an isomorphism if dim X < 4n and an epimorphism if dim X = 4n+ 1.

Case (ii) is similar to case (i).

5.7: Proof of Theorems 5.1 and 5.2. The argument is the same in both cases so

I will deal with the unitary case.
From Theorem 4.2 and Corollary 5.6 we know that
{r stemp 2 o 1 oo} = 1w ¢
n<k n<k
is an isomorphism if dim X < 4n and an epimorphism if dim X < 4n + 1. If MU2k
classifies MUZk(_) then (5.8) is induced by a stable (4n+ 1)-equivalence
BU T M

Y o > .
BU(n-1) n<k 2k

The homomorphism (5.8) assigns f*(y) to a stable class, f. Any map which in

homology induces Y would give a (4n+ 1)-equivalence. I will show that this is

true for T ¢'. Since BU »

n<k
to show that the natural transformation

BU . . . . . .
BU(n-1) is stably a split surjection it suffices

2k

(X,BU} = {X, v MU(K)} = 1 MU“F(X) (5.9)

1<k 1<k

corresponds to a class y' < 1 MUZk(BU) which coincides in homology with
1<k
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ALGEBRAIC COBORDISM AND K-THEORY 25

I c¢,. To do this it suffices to show that

y' = I ¢, (mod MU*(BU).I)
1<k

where I = (x € MU*(point); deg x < 0). I will show by induction on n that this

is true for y' restricted to BU(n). The result then follows by taking limits.

From section 4.5(b) we see that if n = 1 the stable equivalence of Theorem 4.3

is the identity BU(1) - MU(1) ~ BU(1). 1In general section 4.5(b) tells us that

the stable equivalence BU(n) - Vv  MU(k) is given by c, on the wedge factor
1<k<n
MU(n). However

ker MUK (BU)) » MUZK(BU(n-1)))

is in MU*(BU(n)).I if k < n and so the induction step is complete.

§6. APPLICATION TO 75 (BU(n))
15 (BU(n))

This section presents a calculation of -
P t (odd torsion)

for j £ 10. Only the

essential ingredients of the calculation are given here (section 6.14-6.16).
The method, which is very simple, is explained in section 6.8. In addition to
the results of this section the prerequisites for the reproduction of the cal-
culation are the results of [Mo, section 6; T, pp. 189-190] and a large sheet
of paper.

In fact (with an even larger sheet of paper!) one can perform these calcu-
lations without the use of the results of [Mo]. This is because of the inter-
relation of the ﬂi(MU(n)) which actually force the behaviour of the spectral
sequences of (6.9) when X = MU(n) for all n (n = 1 is the case of [Mo]) in
dimensions <19. For details of this sort of calculation the reader is referred

to [K-Sn] in which ni(MSp(n)) and ﬂi(BSp(n)) are calculated for * <26.
The main result of this section is the following:

6.1: Theorem. The canonical map BU(n) - BU embeds ﬂi(BU(n)) as a direct
summand of ﬂi(BU) forn > 1.

If S S
m (BU(n)) i (BU(n-1))

(odd torsion) il(odd torsion)

3 Aj(n)

then Aj(n) is given by Tables 6.2-6.6 below when j < 10.
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26 VICTOR P. SNAITH

6.2: Table for Aj&kl'
3 _Aj_ll generators
2 Z X
4 z w2
5 zZ/2 vox
6 z x*3
7 Z/2 v
8 Z e z/2 o Vo
9 Z/8 ogox
10 Z X*S
6.3: Table for Ajggl.
i éjggl gener;tors
4 Z X
6 Z x(x*z) = a
2.9 11
8 Z® 7 (x*7)7, ar,
9 Z/2 W
10 Z®Z®Z/2 2a22+alla12,x*3x*2, new
6.4: Table for Ajggl.
i éjggg gener;tors
6 Z X
8 Z (x*z)x2
10 78 Z x(x*z)z, Xa),
6.5: Table for Ajgil.
éjgﬁl gener:tors
8 Z X
10 Z (X*Z)x3
6.6: Table for Ajgil.
i éjgél genergtors
10 Z X

6.7: Explanation of Tables 6.2-6.6. In the range j < 10 Aj(n) =0 forn 26
and the tables display only the non-zero groups in this range. The generators
arise in the following manner. All the displayed groups are summands in ﬂi(BU).

ﬂi(BU) is a module over stable homotopy of spheres, by means of composition,

and for
S,.0 S
a e m(s), b e m (BU)
a ob denotes the composition product. Also BU has two structure maps BU XBU > BU
coming from sum and tensor product in K-theory. For ajsa, € ﬂi(BU)
a,*a, denotes "tensor product"

172
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ALGEBRAIC COBORDISM AND K-THEORY 27

and a,a, denotes '"Whitney sum'. The notation for elements in WE(SO) is taken
from [T, pp. 189-190]. The element x € ﬂg(CPm) is the inclusion of CPl = SZ.
By Theorem 5.1 wi(BU(n)) contains elements from MU*(point) which account for

. i ffici
the presence of a3, and ayy Here aij € ﬂ2(i+j—1)(MU) is the coefficient

in the formal group law for complex cobordism in the notation of [Ad 1, p. 40].

My calculations end rather arbitrarily at j = 10. The input for the cal-
culations, as will be explained below, is knowledge of Wi(CPw) and ni(S°).
Given this information through a range it is relatively simple to compute
ni(BU(n)) for a comparable range. My computations wetre motivated by the specu-
lation that ni(So) and wi(CPw) might generate ni(BU) under composition, Whitney
sum and tensor product. However this is not so, even in the range j < 10. The
reader, equipped with the techniques of this section and the computations of

[Ad 1, Part II, section 12] can soon verify that a € Wi(BU(n)) (n = 3) is not

12
generated in this manner.

6.8: Method of Calculation. For a space X consider the spectral sequence of

ni(So)—modules

2 o S, .0 S
E = H (X;7 (S =>q X (6.9)
p.q p( H q( )) p+q( )
(d_: EX  ~ EF ). The associated filtration is
r p,q p-r,qtr-1
S
= C s e =
© = Fg e Foe “ P © B T me®
where
© =_F_m_,i<_
m, k-m Fm—l,k
The spectral sequence was studied for X = cp” in [Mo] (note that my E;p q would
be E; pHq in the notation of [Mo]). When X = BU the following properties hold:
b
(i) The products al*a2 and a;a, (see section 6.7) operate in the spec-

tral sequence in such a way that the differentials are derivations.
(ii) By Theorem 4.2 the spectral sequence is additively the direct sum
of the spectral sequences for MU(n); n = 1. Therefore the differ-
entials respect the splitting.
(iii) n*(MU) = MU*(point) is known [Ad 1, Part II]. By Theorem 5.1 we

have isomorphisms

& _(n)
U 0
4n-2¢ __ BU = 23, .
{S B0 (a-D) > il MU™~ (point)
j=e-n

(e = 0 or 1). A stable homotopy class on the left converges in the
spectral sequence (6.9) to its image under the Hurewicz map H. The

Boardman-Hurewicz map is an injection

B : 7, (MU0) > H (MU).
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Hence we can discover the permanent cycles which represent elements

of ﬂ*(MU) by means of the commutative diagram

0] 0 .
An_ZE,BU} SN il MUZJ(point)
€

Lo

H, (BU) (3g)s= (T ),
K

{s

n
JB (6.10)
> H, (M0)

Using (i)-(iii) and the determination of the spectral sequence when X= cp”
[Mo, section 6] all the remaining differentials, dr’ r < 8, may easily be ob-

tained in total degree < 11 when X = BU. Then Theorem 6.1 follows immediately.

The remainder of this section is devoted to the computation of (@U)* in
(6.10) (see sections 6.14 and 6.15) and to the identification of cycles repre-
senting cobordism classes (see Proposition 6.16). Section 6.17 contains an

illustrative example.

6.11: Notation. Recall H*(BU) = 2[81,82,...] (deg Bj = 2j) [Ad 1, p. 49,
Lemma 4.3] and H*(MU) = Z[bl’bz""] (deg bj = 2j) [Ad 1, Part II, section 6].

I ayy € My(iag-1

then B(aij) € H*(MU) is computed in [Ad 1, Part II, section 6]. The inductive

)(MU) is the coefficient in the formal group law [Ad 1, p. 40]

formula is
- |1+3 _ s t
B(aij) [ i ] bi+j-l i i B(ast)bibj . (6.12)

In (6.12) the sum is over 1 < s £ i, 1 <t < jand s+ t # i+ j. Also
i
b =Zb, ...b where I k,=2z-1

(summed over all partitions (kl’kz"")) and bO = 1. The first few examples are

B(all) = 2b1

B(a;,) = 3b, - 2?

B(ay,) = 4by = 8b;b, + 4b) (6.13)
B(a22) = 6b - 6b 1Pyt Zbi

B(a,,) = 10b, - 3 - i + 14b2b, 16b, b,

6.14: Lemma. For C € MUZk(BU)

4By g+ By 41) € Hy(gye g OD)

t
(i= £ 1i,) is equal to b, ...b, if k = t and zero otherwise.
=1 J Y1 Tt
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Proof. In terms of the slant product [Ad 1, p. 229] (ck)*(a) = ck\a. By defi-

nition bi = Cl\Bi+l by [Ad 1, p. 51, Lemma 4.5]. Bil+l"' Bit+l originates in
H,((CB)%). The image of c, in MU"(CP™)") is zero if k > £. If k < t this
image is the sum of the translates of C?k Q l®t_k under the action of the per-
mutation group Zt. Now
Ok _ . 8t-k B
(e @1 )\Bil+l"' Bit+l - (°1\811+1)"' (I\Bit+1)

by [Ad 1, p. 229, Proposition 9.1] and (l\Bi) = 0. Thus the expression is zero
unless t = k and by definition (cl\8j+l) = bj so the result follows.

6.15: Corollary.

(@), ¢ B (BO) > H (MO)

is given by

(0, (B, vi-ev By o) =b, ...b, .
U 1l+1 1t+l i i
0 2j 4n BU
6.16: Proposition. Let z ¢ T MU J(point)_g {S , 56?5:13} satisfy
j=-n
_ BU
H(z) =y ¢ HAn&iiﬁ;ajq' Let
0
4n+2 _BU 25, .
z) € {S , BU(n)} 2>'H MU™ (point)
j=-n
and
in+s _BU 0 23
2, € {S , Eﬁz;y} v '~H MU~ (point)
j=-n-1

be the elements corresponding to z. Then

2
H(zl) =8,y and H(z)) = 8]y .

BU
BU(n)
mials of weight greater than n.)

(Here H*{—————} is identified with the subgroup of H, (BU) generated by mono-

Proof. We have (®U)*(Hzl) = Bz with H(zl) ¢ H

BU _
(@U)*(y) = Bz for y e Hén{BU(n—l)}' Hence Bly = H(zl) by Corollary 6.15.

—Jﬂl~} However

4n+2[BU(n) )

Similarly Biy = H(ZZ)'

in the

6.17: TIllustrative Examples. x € ﬂi(BU(l)) is represented by Bl € E; 0
b
spectral sequence. By [Mo, section 3] x"‘2 is represented by 252 so 28182

represents (xfz)x € nz(BU(Z)). However

S|_BU -2 . 0 ) B
Tr6[15%11(1)] & MU”“(point) x MU (point) = Z & Z.
The first summand is generated by ajy and Ball = 2b1, by (6.13). Hence
2 2
= o o
Ha 1) = 28,8 € E6,0 and aj; = (x*7)x.
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Now consider

a

12

€ MU_4(point) c {88, Bﬁ}&)} .

2

Since Ba = 3b2 - 2b1, by (6.13),

12
B 2 BU
H(ajp) = 3p38) — 28, < Hy [BU(I)J
converges to 33351 - 23;. Also a12 is in ng(BU(Z)). By Proposition
S . 2 2
€ T (BU(3)) is represented by 36381 - 28261.

and al2

6.16 xa;,

§7: NON-ADDITIVITY OF t: BO - QBO(2)
The Becker-Gottlieb solution of the real Adams conjecture, as presented in

[Be]l, is equal to a composite of the form

T
8o — qBo(2) 295 g¢6/0) - /0 (7.1)

Here T is the transfer of Theorem 3.2, a: BO(2) - G/O is Adams' solution to
the Adams conjecture for 0(2)-bundles [Ad 5] and d is the structure map of the
infinite loopspace G/O. Although Q(a) and d are H-maps the composite (7.1) is
not. This is seen by means of the following argument, which is due to Ib
Madsen.

7.2: Lemma. The composite of (7.1) is not an H-map at the prime two.

Proof. A solution of the Adams conjecture induces, in the manner described in

[M-S-T; Sn 2], a diagram of 2-local spaces and maps

SO ———1——4 SG

w\ ' (7.3)

(JO)

factorising the J-homomorphism, J: SO - SG. Here (JO)o is the base-point com-
ponent of JO = fibre (¢3— 1: BO - BO). If (7.1) were an H-map then (7.3) would
be a diagram of H-maps. In the notation of [Mad 1; Mad 2] we have Bockstein

. 2
spectral sequences with E -terms as follows:

2
E“(S0) g:A(uluz,u3u4,...) s

EZ(SO) 2] P(bg,bz

2 (J0) D)

e

2
where H*((JO)O,Z/Z) g:A(ul,uz,...) 2] Pgbl,bz,...). Also d2(b2) = uju,. If SG
is the identity component of G then (Ql = i-th Dyer-Lashof operation)
2 , 2.2 . 2.2
ET(SG) g:A\uluz) ® P(Q°Q7[11*[-3]) @ ... with d2(Q Q7 [11*[-3]) = uu,

Hence p induces u, in mod 2 homology which satisfies

u*(bg) = Q2Q2[l]*[—3] which is indecomposable.
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ALGEBRAIC COBORDISM AND K-THEORY 31

In this section I will give a description of the deviation from additivity
of T This gives a description of the deviation from additivity of (7.1).

Define the deviation from additivity of 7. as y: BO x BO - QBO(2) in the homotopy

0
commutative diagram

BO x BO —————J5-——4 BO x BO x BO x BO

mll J T X T Xy

QBO(2) x QBO(2) x QBO(2)

BO
T\ /2
QBO(2)

Here my and m, come from the H-space multiplication and A(x,y) = (X,¥,%X,¥).
The map y may be explicitly described in terms of the geometry of the ortho-

gonal groups. The result takes the following form. Let
Xn = 0(4n) /H(2n) where H(m) = Zm J 0(2) < 0(2m).
Also write P(2n) for O0(n) x O(n). If E is a free, contractible 0(4n)-space set

Yn =E >(P(lm)xn

7.5: Theorem. Let y: BO x BO -+ QBO(2) be the deviation from additivity of the
transfer Tt BO - QBO(2). Then, associated with the canonical fibring
Xn > Yn - BP(4n), there is a transfer-like map, described in §7.9,

¢n: BP(4n) ~ QYn such that vy restricted to BP(4n) = BO(2n) x BO(2n) is homo-
¢

topic to a composite BP(4n) —, QYn —jl% QBO(2). Here P(4n), Xn and Yn are the

spaces introduced above and h is the map described in §7.10.

In Theorem 7.5 it would be preferable to have a description of y in terms
of genuine transfer maps. In principle this is possible from the description
of ¢n given in §7.9. This would be accomplished using the technique explained
in §2. However this would involve a lengthy analysis of the double coset spaces

of the symmetric groups (cf. §7.12) which would be out of place here.
Here is the answer when n = 1.

7.6: Theorem., Let y be as in Theorem 7.5. Then the restriction of y to
BP(4) = BO(2) x BO(2) is given by a composition of the following form, whose
ingredients are described in §7.12,
2 72 2
BO(2)” ——> (QBI, J Z,) —£5 qB0(2).

Here 22 J 22 is a subgroup of 0(2) and T is the transfer associated with

BZZ f 22 - BO(2).
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Theorems 7.5 and 7.6 will be proved in §7.10 and §7.12. Firstly we will

need the following result.

7.7: Proposition. There is a non-degenerate, left P(4n)-equivariant vector
field p, on Xn which is zero precisely on

P(an)ZanH(Zn)/H(Zn) = An’ say.

Here Z4n c 0(4n) permutes the standard basis of IRan.
Proof: Let v ¢ 0(4n), the Lie algebra of 0(4n), satisfy exp(v) = w where
XIZn 0
w =
0 uI2n

with 0 < A,u distinct. When applied to v the construction described in §2.4

gives p. The details are entirely similar to those of Example 2.7.
We also have the following observation.

7.8: Lemma. Let An be as in Proposition 7.7. The subset P(4n)H(2n)/H(2n) of
An is homeomorphic to (O(2n)/H(n))2. Using this homeomorphism An may be

written as a disjoint union An = Cn u (O(Zn)/H(n))z.

7.9: Definition of ¢n. Let p be the vector field of Proposition 7.7 scaled
down if necessary so that |p(x)| < 1 for all x € Xn' Choose a finite dimen-
sional 0(4n)-module, V, together with an equivariant embedding of Xn in V. Let
v be an equivariant normal bundle of this embedding. Choose as follows N to be
a P(4n)-invariant neighbourhood of An in Xn' Let N be a disjoint union of
equivariant tubular neighbourhoods of the components of An in Xn' Suppose o

and N satisfy ]p(X)[ =1 if x ¢ N (this is just another scaling up).

Let Th(_) denote a Thom space and let p: Th(V) » Th(v) be the Pontrjagin-

Thom map. If T is the tangent bundle of Xn define

q: Th(V) > TH(v @ 7;) » Th(X x V)

by
0 if ué¢ v ,
q(u) = ® ifuev,x¢N,,
1

Ij—TBYETT (u,p(x)) if u e Vs X € N2 .

Here N = Nl U N2 and Nl is the tubular neighbourhood of (O(Zn)/H(n))2 in Xn.

Now let Et be the t-fold join of O(4n) with itself and set Bt = Et/P(An).

Set E = ltmiEt then BP(4n) = ltm Bt' Applying the Becker-Gottlieb umkehr con-
struction [B-G 1] to the map 1

XP(Zm)(qo p) yields a stable map from Bt to

Et XP(An)Xn' Set Yn(t) = Et xP(An)xn and Yn = E XP(An)Xn' This stable map is
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ALGEBRAIC COBORDISM AND K~THEORY 33

equivalent to a map Bt 9’QYn(t) and up to homotopy this map is independent
of the choices made. Letting t - « we obtain an element of‘&%m [Bt’QYn]' Let
¢n: BP (4n) +>QYn be any map restricting to this element. In fact there is
essentially one choice for our purposes. From the Milnor exact sequence there
may be several choices for ¢ and any two choices differ by an element in
11m [ZBP (4n), QY ]. However we are going to consider ¢n as part of a composite
map BP(4n) +-QBO(2). By §3.2 and the argument of §3.6 (proof) a map BP(4n) -

QBO(2) is determined by its restrictions to the finite complexes, Bt'

7.10: Proof of Theorem 7.5. This will be just a sketch. The computation is

very similar to those of §2.2.
By naturality of the transfer we have a homotopy commutative diagram of
transfers [B-G 1; B-G 2]
w(r")

BP(4n) ——— Q¥

kl lQ(j) (7.11)

BO(4n) ———— QBH(2n)
T(ﬂz )
n
Here k is the natural map and j is induced by passing from P(4n) to 0(4n)
orbits. The restriction of T BO - QBO(2) to BP(4n) is a composite of the
form

T(ﬂzn)ok Q(i 2n)
BP (4n) ——22 5 QBH(2n) ——22" QQBO(2) % QBO(2)

in which T(n )o k is as in (7.11). Details, in particular the definition of
1 BH - QBO(2), are given in §3.4. Using the vector field of Proposition

7 7, the technique of §2.9 permits us to express t(w') of (7.11) as a composite

BP(4n) (D, Q(E xP(An)N) > QY

in which t(r") is the transfer associated with

N > E x N - BP(4n)

P(4n)

and the second map is induced by the inclusion of N (defined in §7.9) into Xn'
However [B-G 2] the transfer t(n'") is the sum (in the H-space structure on
QYn) of the transfers associated with the components of N. That is, each
P(4n)-invariant component defines a fibring over BP(4n) and hence a transfer
map. Recall from §7.9 that N = N1 U N2 where Nl is a tubular neighbourhood of
(O(Zn)/H(n))2 while N2 is a neighbourhood of Cn' The transfer associated with
Nl’ BP(4n) - Q(E XP(4 ) l ) > QY - QBH(2n),
is homotopic (cf. §3.6) to

), when composed with Q(E XP(4 ) l

T(nm )

BP(4n) = BO(2n)2 —— 5 (QBH(n))2 » QBH(2n) .
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34 VICTOR P. SNAITH

Chasing diagrams like that of §3.6 easily implies that Nl's contribution to the

restriction (TlBP(4n)) is homotopic to the sum (in the H-space structure on
QBO(2)) (t|BP(4n)) e m, + (t[BP(4n)) o m, where m : BP(4n) = BO(2n)” > BO(2n) is

the i-th projection. Hence N, contributes the "additive'" part of (T{BP(An))

1

and N2 contributes the deviation from additivity. However the transfer associ-

ated with

n

N, > E x _ 5 BP(4n)

2 P(4n)N2
when composed with Q(EXP(4n)N2) —>>QYn is precisely ¢n. The map h: QYn - QBO(2)
is defined as the composite

Ql,) d
QY_ ~ QBH(2n) ——>"— QQBO(2) —=> QBO(2).

7.12: Proof of Theorem 7.6. In the notation of Theorem 7.5 we have to evalu-

ate ho ¢l. Let I be the subgroup of 0(2) generated by

o[2
Y = [_g é ] e S0(2) and § = { 2 é J e 0(2) .
Let G = kernel(det: (EZJZZ)Z + Z/2 where "det" is the usual determinant homo-

morphism. It is straightforward to show that C, is homeomorphic as a P(4)-

1
space to P(4)/G. The homeomorphism can be chosen to carry the inclusion C, < X

1 1
into a map A: P(4)/G - 0(4)/H(2) defined by A((a,b)G) = aboH(2) where

OH OO
[eNe NN
[eNeN N
HOOO

Now, by the argument of §2.9, the composite

4 Qi) q
BP(4) — Q¥ » QBH(1) —— QQBO(2) —=QB0(2)

is homotopic to the composite

Qi) i

©(m) » QBH(1) ——— QQBO(2) —— QBO(2)

Q"

BP(4) » QBG

where 1(7m) is the transfer map of the canonical fibring

C = BG —% BP(4)

17 B
and \' is given by

1x A

BG = Ex P(4)/G — Ex 0(4)/H(1) = BH(1).

P(4) 0(4)
However the transfer is transitive on fibrings. For example, m above is the

composite 9
"1 2 (1) 2
BG —— (BZZJZZ) ——— BO(2)" = BP(4)

in which each map is induced by a group inclusion, so t(w) is the "composite"
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ALGEBRAIC COBORDISM AND K-THEORY 35

of T(ﬂg) and T(ﬂl). Also T(ﬂg) is the "product", T(WZ)Z, so that 1(m) equals
the following composite.

T("2)2 2 m 2
BO(2) ———> (QBZJZZ) - Q(B(ZZEJZ) )

Qt(r)))

QQBG d —>:QBG .

Here m is the H-space sum of the two canonical maps QBZZJZZ - Q(B(ZZJZZ)Z) and

d is the structure map of the infinite loopspace QBG (cf. §3.4). Setting

T = T(ﬂz) and g = d oQ(il) o Q(A') od oQ(T(Trl)) om completes the proof.

§8. STABLE DECOMPOSITIONS OF BGLEA AND BOE&

8.1. Throughout this section let IFq denote the field with q elements. GLnEA
is the linear group of invertible n Xn matrices with entries in F . In addi-

m
tion let Om denote the orthogonal group of the quadratic form I Xi over F3.
i=1

Firstly we are going to decompose the S-type of (BOF For this purpose

3)(2).
everything will be 2-local and all cohomology and homology will be taken with

mod 2 coefficients. Let Zn O2 denote the wreath product of the permutation

group, Zn’ with 02. Hence Zn O2

sits inside O2n in a canonical way as the sub-
group obtained by "exploding' matrices consisting of 2 x2 diagonal blocks. We

note that 02 ;:ZZJEZ has generators

satisfying 82 =I=vy, ByB =y

Let H, denote mod 2 singular homology. The object of this section is to

establish the following technical result, used in the proof of Theorem 8.2.1.

8.1.1: Theorem. Let

RN o
m .ZnJOZ > 02n and 1 .O2 - ZHJOZ

be the canonical inclusions. Let T : BO n - BZn 0, be the S-map which is the

2 2
transfer [B-Gl; K-P] associated with Bm. Then the following diagram commutes

n B(WOi)*
H, (B0,) —————>H, (B0, )

B(i)* l Ty

H*(BZHJOZ)
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36 VICTOR P. SNAITH

Theorem 8.1.1 will be proved by appealing to the well-known Double Coset

formula.

8.1.2: Proposition (Double Coset formula) [E-C; Fe]. Let j:H > G and k:K > G

be inclusions of finite groups. Let T, :H*(BG) - H*(BH) denote the homology
transfer.
Then
T, o B(K), = Zo, (8.1.3)

where og is the composition of the transfer
-1
Ty :H*(BK) - H*(B(K n gHg 7))
with the map induced by

-1 -1 g Qe
K n gHg c gHg — H

The sum is taken of double coset representatives of

Theorem 8.1.1 is (8.1.3) with the right hand expression replaced by ;-
In a series of lemmas it will be shown below that all the other terms in the
sum vanish in the context of Theorem 1.1.

n

8.1.4: Lemma. Suppose H is a proper subgroup of 02

of index greater than two.

Then there exists H' such that H & H' & 0;.

Proof: Consider the projections

¢ :H c 02"1 x 0, > 02'1 and ¥:H o;"l x 0,0, .
By induction on n we may assume both ¢ and ¥ are onto for each factorisation
n n-1

O2 ;:02 x 02. Hence |ker ¢| = 1 or 2.
Case (a): iker ¢| = 1. In this case V¥ 0¢_l induces a well-defined homomorphism
A :02—1 > 02 identifying H as the subgroup |(x,A(x))]|x e 02—1 Taking
1 #ze¢ Z(OZ)’ the center of O2 we may set H' = <H, (1,z)>.
Case (b): |ker ¢| = 2. Here ¥ °¢—l induces A :On_1 Y . Here

: : 2 2/ker ¢

Since ¥ is onto

Thus X has

Ker ¢ = H n ((1) x 02) is considered as a subgroup of O
Ker ¢ @ O

9
which implies ker ¢ = <Y2> = Z(OZ) the center of O

n Z/2 x Z/2. Hence H = ((x,y) € 02-1

9
XOZIA(X) = m(y)) where m

2
2/Z(02)

is the natural projection. Let det denote determinant or its induced map
+ Z/2. Set H' = ker ((a,b) » det A(a) det b) c O;_l X 02. H c H'

range O

%2/2.(0,)
since (x,y) € H is sent to det A(x). det n(y) = (det )\(x))2 = 1.
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8.1.5: Lemma. If G is a subgroup of index two in Oi then the associated trans-
fer
Y n v
T, t H, (BO,) ~ H, (BG)

is zero.

Proof: Recall that H, means mod 2 homology. Observe firstly that the homomor-
phisms from O2 to Z/2 are precisely the trivial map, the determinant, which has
kernel <y> % Z/4, and the map with kernel <B,By2> v Z/2 x Z/2. Call these maps
hl’ h2, h3, respectively. Then G is the kernal of a map of the form

a b n-a-b
h; xh, xh
02 x Ob N On—b—a 1 2 3

> n_>
2 2 2 > (2/2) z/2

in which the last map is multiplication. By the product formula for transfers
[B-G2] we may assume a = o. From [F-P] we know that H*(BOE) has a basis con-
sisting of classes in the image of induced homomorphisms associated with inclu-

sions of the form (Z/Z)2n + 0. Applying the Double Coset formula (Proposition

2
8.1.2) to this situation shows that it suffices to show that the transfer
2 2 -1
1, B (B(Z/2)) > H (B((2/2)™" n gGg ) (8.1.6)

is zero. If b # o (Z/Z)2n n gGg_1 is a proper subgroup of (Z/2)2n since no

Z/2 x Z/2 < 0, is in the kernel of the determinant. Hence (8.1.6) is zero

2
since composition with the injection

H,(B((2/2) ™™ 1 geg™) ~H,(B(2/2)"™

is multiplication by an even integer. This argument disposes of (8.1.6) in all
cases except b = o and (Z/Z)2n = (ker h3)n. In this case (8.1.6) is the iden-
tity map. However, in the double coset formula for the evaluation of
T
Hy(B(ker h)™) » H,(BO)) —2, 1, (80) (8.1.7)
(8.1.6) appears with multiplicity equal to the number of coset representatives
g in

o2 such that (ker h3)n c gGg_l

2
(ker h3)“\ /G

However, G is normal so either no such g exist or exactly two and in either

case the contribution to the double coset formula is zero.

8.1.8: Proof of Theorem 8.1.1. Consider the double coset formula (8.1.3) for

evaluating T

% o B(m oi)*. Each term ¢ for which
g

1 4 On

n -
O2 n anJOZg 2

contributes zero. This follows from Lemmas 8.1.4 and 8.1.5 together with the

transitivity of the transfer [B-G2]. It remains to show that there is only one
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double coset for which 02 c anJOZgnl. We do this by induction on n. Suppose

that

-1.n

g 02g c ZnJO2 and set

w o= . where Yy is the

>
I

2 x 2 matrix given at the beginning of the section and I is the 2 x 2 identity.
The eigenvalues of y are *V-1 in ifé, the algebraic closure of Eé. The only
other element in O2 with these eigenvalues is Y3 = ByB. Hence there exists

o € ZHJO2 such that o—lg_lwgo = w. Direct calculation shows that goe 02n—2 ><02.
Hence g may be taken to lie in 02n—2 x {1}. The induction now proceeds by re-
placing w in the above analysis by the matrices

v
v

having k y's and n-k I's.

8.2. The main result of this section concerns the S-type (stable homotopy type)

of BO, TF
n

where O T
2 m

3 is the finite orthogonal group introduced in §8.1.

8.2.1: Theorem: For each 1 < n £ «» there exists a 2-local S-equivalence

3

$ 1BOy Fy > v B0y T3

2n" 3
1<k=<n BOZk—ZEB
Proof: Firstly suppose n is finite. Let T : BOZnEé - BZnJOZEE be the S-map
given by the transfer of Theorem 8.1.1. As explained in §§3.4, 4 there are
maps
d_: anJ02E3 ~+ QBO,TF,
(QW = 1im Q"z™w) together with homeomorphisms
m
1m(dn) BZnJOZEB

) =
1 an_l‘[ozlp3

1m(dn_
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Also by [Sn 1] there are compatible S-equivalences

im(dk)
u o:im(d ) » V —
n " leken I y)
im(d )
such that the summand of u_ with range 1——‘—ll—— is the canonical collapsing map.
n 1m(dn_l)
Set ¢n equal to the composite
u_ od Bz |O0,TF
T n n k) 273
BOzan3 — BZHJOZIF3 v

1<ks<n sz_ljozmé

BO,., IF
B — 2 3 (8.2.2)

1<ksn 202k-2T3
in which the last map is induced by the canonical inclusion of ZkJOZEE in
OZkEE' To show that this composite is a 2-local equivalence it suffices, by a
theorem of J. H. C. Whitehead [Sp, p. 399] and the universal coefficient
theorems [Sp, p. 283], to show that ¢n induces an isomorphic in mod 2 singular

homology. From [F-P] we know that the canonical map

n
B021F3 > B02n1F

is onto in mod 2 homology. The S-map above

3

BO,, F
BX JO IF, - BZ JO F, ~» v 2k 3
03 n23 jaken BO2k-2T3
BOzle
lands in the factor v 3o T. for £ < n ([Sn 1] or §4). The summand
1<k<g 2k-2"3
BOZQIF3
with range —————— 1is the canonical map. Hence, by Theorem 8.1.1 we see by
B0yp-2T3

induction on £ that ¢n is a mod 2 homology isomorphism. Finally we must do the
case n = », If the transfers, 1, were compatible as n varies we could proceed
as in §4. However I do not know this to be the case. Instead consider a co-

. Let P be the subset of
3 Y,n

S-maps f : XY -> BZH{OZEE such that the induced map in mod 2 homology

final family {Xy} of finite subcomplexes of BOZnE

He(X) > H*(anjozmg) > H, (B0, T,)

is equal to that induced by the inclusion of X . By Theorem 8.1.1 P is non-
b

empty. PY n is also finite since BZHJ021F3 has finite homotopy groups. Set

Qy,n equal to the image of Py,n in {Xy, BT OZEE} (where {_, } denotes S-

homotopy classes). The inverse limit of compact sets is non-empty so choosing

an element of ii: Qv,n yields
b
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T e 1¢m {XY, Bsz02m3} v {BO,TF,, BZOJO

Define ¢_ by the composition (8.2.2) (n=«) using this v instead of the trans-

ZEB}'

fer. The homology argument used above for ¢n now shows that ¢_ is a 2-local

s—equivalence.

We close this section with a stable decomposition theorem for BGLEA. Let
q be a prime power, let & be a prime not dividing q. Denote by r the order of

q in the units (Z/2)*.

8.2.3: Theorem. Let &, q and r be as above. Then, localised at £, there

exists a stable equivalence

BGL, . TF
0% ST VE— L W

9 71k B (k-1ymTq
r if 2 # 2 or £ = 2 and q = 1(4)
Here M is defined by M =
2 otherwise
Proof: The proof, being similar to that of Theorem 8.2.1, will only be
sketched. From [Q, p. 574] we obtain the following facts about Sylow %-subgroups

of GLnEﬁ' If 2 # 2 or £ = 2 and q = 1(4) the wreath product ZmJGLrEﬁ con-

tains a Sylow 2-subgroup of GLmrEﬁ' If 2 =2 and q = 3(4) Zm GL Ea contains

2
a Sylow 2-subgroup of GLZmEA'
Consider the canonical maps

BGL, TF +-BGLE*
M q q
+
where BGL]F(1 is the space described in [H-S; Q]. These maps extend to infinite

loopmaps (cf. section 3)

+
A(TF ) : QBGL FF - BGLTF .
(q Q M q q

The facts about Sylow subgroups and the argument of [H-S, Theorem 3.1] imply

that, at the prime %, there exist maps T(EA) splitting X(Eﬁ). That is

)\(]Fq) ° ‘r(]Fq) ~ lBGLlFZ .

+
Since BGLEA - BGL]F(l induces a homology isomorphism we see that BGL]F(1 and

BGLBﬁ; are stably equivalent. Hence we may form S-maps

o(TF )
BGLF ——3— QBGL TF
q l M q
; BZkJGLME o BGL, \ IF
BGL T
1<k BZk_lJ‘GLM]Fq 1<k (k=1)M" g

Here the second map is the stable equivalence of [Sn 1] when we identify
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F, C,BOL,TF o BZkJGLMIF
F, C BCL T
k-1 M q BZk_lJGLMIFq

as in section 4.1. The third map is induced by inclusion of subgroups. The
proof may now be completed by arguments similar to those used in sections 4.6

and 8.2.1.
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PART II: A NEW REPRESENTATION OF UNITARY AND SYMPLECTIC COBORDISM

§0. INTRODUCTION

In part I (Theorems 5.1 and 5.2) we saw that large slices of MUZ*(X) and
MSpA*(X) may be constructed solely in terms of the classifying spaces BU and
BSp. That partial description was sufficient for our purpose at the time. In
Part II I will give a sharper presentation of this connection between K-theory
(via BU or BSp) and cobordism. I will show how, from KU- or KSp-theory to con-
struct a spectrum, AU or ASp, whose associated cohomology theory is (total)

unitary or symplectic cobordism.

Let me now describe in more detail the results of Part II. The reference

numbers refer to those used in the body of the text in Part II.

The Whitney sum of the Bott class with the identity of BU induces a map

24BU > ZZBU. Using this we may define a ring (see section 2)

AUC(X) = lim{z?N

N

X, BU} .

The homomorphism @U of [Part I, Theorem 5.1] induces a natural ring homomorphism

2%
ch AU (X) > MUT (X).
2%

Theorem 2.1. If dim X < « then ¢U 1 AU (X) ;-MU (X).

There is an analogous result for MSpA*(X) [Part II, Theorem 2.2]. The
proof of Theorem 2.2 is sketched in section 2.3. Essentially [Part I, Theorem
5.1] tells us oy is onto. To prove &,
sis of the S-map ZABU - ZzBU on each stable summand MU(k) in BU [Part I,

is injective requires a detailed analy-

Theorem 4.2]. This analysis is accomplished in section 1.

Using the map ¢ :ZABU > EZBU and its symplectic analogue spectra AU and

ASp may be constructed. For example AU = ZZBU and the structure map is given

2k
by €.

Theorem 3.1. AU and ASp are commutative ring spectra.

These results may be generalised by replacing BU by BUA, representing space
for KU°(_3;A). The resulting spectrum is AUA. Some KUA-operations induce AUA
operations in the obvious manner.

k
v

Theorem 4.2, If %- : BUN »> BUA is defined (wk = an Adams operation) it in-

duces a ring homomorphism

42
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ALGEBRAIC COBORDISM AND K-THEORY 43

vk . Aunx () ~ AUA*()

which corresponds under ¢ to the Adams operation in MUA*(_).

U

Also the Adams idempotent E. : BUR(d) - BUR(d) [Ad 3, p. 89] induces a ring

1
homomorphism.

Theorem 5.1. The Adams idempotent E_ : BUR(d) - BUR(d) induces an idempotent

1
ring homomorphism

e(d) : AUR(d)*( ) » AUR(d)*().

Under @U, e(d) corresponds with the Adams idempotent in MUR(d)*( ).

"

Also if p = 1(d) is a prime then e(d) induces

e(d) :AUi;(_) > AUi;(_)
satisfying a
[e(@) ()19 = mv Ip.

~

Here the product runs over d-th roots of unity in Zp.

The K-theory operation of complexification, c : BSp + BU, induces a com-

plexification homomorphism of a rather unexpected type.

Theorem 6.1. Complexification c : BSp > BU induces a natural ring homomorphism

1L,

c: ASp°(X) ~» AU°(X)[1-—0¢11

Here a.. € AU°(S°) satisfies ¢ _(a,.,) = a,. € MUZ(S°).

11 U 11 11
In MU-theory one has the Landweber-Novikov operations Sy* In AU-theory
one would expect an operation corresponding to the total Landweber-Novikov

operation, Easa
Theorem 7.1. The '"super-total" Conner-Floyd class
¢ =5 tKUP(R) > M () v AU ()
induces a natural ring homomorphism
S : AU*(X) - AU*(X)

which corresponds under ¢ to Zasa, the total Landweber-Novikov operation.

U
Having seen the connections between KU-theory and AU-theory which are

listed above the following result will come as no surprise to the reader.

In §8 the classical Pontrjagin-Thom construction for stably almost complex
manifolds is given in terms of AU-theory. In fact, two equivalent descriptions
are given with a view to generalising in Part IV the construction to the case

of a smooth algebraic embedding.

In §9, as an application of AU-theory, we prove two theorems about the

stable homotopy of CcP”. The first (Theorem 9.1.1) shows how to construct KU°(X)
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44 VICTOR P. SNAITH

as a limit of stable homotopy groups of the form
KU°(X) ~ lim {22Nx, cp”}
N
The second (Theorem 9.1.2) states that any torsion element y ¢ ﬂi(CPm) is
annihilated by iterated product with x € WZ(CPw), the generator. The product

=
referred to comes from the H-space multiplication on CP .

That completes the list of the main results in Part II. In consideration
of the reader I have postponed until Part III the general construction which
generalizes the construction AU and ASp. Also in Part III the representation

of MO* is given. This material is described in the introduction to Part III.

§1. HOMOLOGY AND THE STABLE DECOMPOSITION OF QtZtBU(l)

In [Sn 1] I constructed a stable decomposition of the space QtZtX for
connected X and t > 1. Details will be given when they are needed (section
1.3). The decomposition has the following form. QtZtX is homotopy equivalent
to a space CtX[Ma 1] which has a filtration {FnCtX; n > 1}. The decomposition
theorem asserts an equivalence in the stable category [Ad 1] of the form

n F.C X

k't
FCX= Vv _—
nt k=1 Fk-lctx

(1.1

Here a stable equivalence between spaces means an equivalence in the Adams
stable category between their suspension spectra. In this section I will prove

the following:
1.2: Theorem. For 1 £ i < n let a; € ﬁ*(BU(l);Z).

Then for all t 2 1 and 1 < m < n the stable map

n Fk

BU(L)™ > F C_BU(1) » Vv N
n’t ol Fp_iCBUD T F

CtBU(l) FmCtBU(l)
CtBU(l)

m-1
induces in homology a homomorphism which annihilates ay @ ¢+ B a

Here the first map in the composite is induced by the n-fold H-space sum
of the suspension map BU(1) - EtQtBU(l). The second map is (1.1) and the third

is projection onto the m-th wedge factor.

This will be proved in section 1.4. We must first recall the decomposi-

tion (1.1).

1.3: The Stable Decomposition. The technicalities of [Sn 1] may be rather

forbidding so I will give the reader a choice. We need the following basic
fact about the S-map of [Sn 1, §3.1].
X" > FCX~
nt

F C X
m

_mt
F 10X
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ALGEBRAIC COBORDISM AND K-THEORY 45

Basic Fact. Suppose 1 <m <n and Y ¢ X is a subspace which does not contain
the base-point, * ¢ X. Then the composition of ¥ ¢ X" with the above S-map is
equal to the track-group sum of a finite number of maps, each of which factors

through a projection of the form "> y".

In §1.4 we prove Theorem 1.2 by applying the Basic Fact when X = cp” and Y
is a copy of CPN. The S-map in question being exhibited below as (1.4.1).

The reader may now skip to §1.4 for the proof of Theorem 1.2. Alterna-
tively for the reader who is interested in examining the details of the S-
decomposition of [Sn 1] more closely I will include the details necessary to

pass from [Sn 1] to the establishment of the BASIC FACT.

Let i denote the unit n-cube and Jn its interior. An (open) little n-cube
is a linear embedding, f, of J" in J" with parallel axes. Thus
f=f x +ee x f where f, : J > J is a linear function f,(t) = (y.-x.)t + x,

1 n i i i i i
with 0 < X, <y; < 1. Let Cn(j) be the set of j-tuples of little n-cubes whose
images are pairwise disjoint. Denote by Dn(j) the set of j-tuples of little
n-cubes without the disjoint image condition. Hence Cn(j) c Dn(j) (j > 0) and

Dn(O) = Cn(O) is a point.

Let Y be a space with closed subspace A containing the basepoint, *.

Define CnY and Dn(Y,A) as follows. Form the disjoint union
= ; 3
Zn UjZO Dn(J) x
and let ¥ be the equivalence relation on Zn generated by
i *
(1) (<cl,..., SRS SEREETID FURTLN IR FRERE ym)

n
N (<cl,..., Ciq2Ci41r e Cp” Yyseres Yy 1Vi10 oo ym)
and

.. n

(11) (<C19--'a Cm> yl’,-'-’ Ym) N (<Co,(1)5"') Cc(m)> yo_(l)s---9 yo(m))

for o ¢ Zm’ the symmetric group on m letters. Set CnY

= {[<c1,..., e yl...ym] € Zn/% such that <cl,..., c > € Cn(m)}

and Dn(Y,A) = {[<cl,..., ey Yyseees ym] € Zn/% such that if

Y. s5+...5 ¥, are all the coordinates not in A then <c, ,..., c, >
i i i i
1 k 1 k
e C (k)}.
n
These spaces may be topologised [Sn 1]. From [Ma 1] we know that, for
reasonable Y,Ct ~ QtZtY. The filtration referred to in Theorem 1.2 is the

following. FnCtY consists of all points [<cl,..., ey Yyseees ym] with m < n.
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46 VICTOR P. SNAITH

Now I will describe the ingredients of the construction of (1.1). Firstly
suppose given a continuous function u: BU(1) - [0,1] such that u‘l(O) =%,

Then the following special is a case of a result proved in [Sn 1].

1.3.1: Proposition [Sn 1, Theorem 3.1]. Let £ :FanBU(l) -+ Y be a map such

that f(F C BU(1)) = * and f(<c,,..., cm> X

1 xm) € A if and only if

IERERD

N | B

m-1

min u(xi) <
i

Then there is a family of stable maps

Gk: FkCnBU(l) -~ Y/A (k =2 n)

such that leFk_lCnBU(l) G -1 and Gm is the composite of f with the collaps-

k
ing map Y > Y/A.

Henceforth write F_ for F C BU(1).
m m n

Proposition 1.3.1 is applied to Fm - Fm/Fm =Y with u and A chosen so

-1
that Y/A ~ Y. Then (1.1) is the sum of the stable maps obtained in this manner.

Hence I must recall now the proof of Proposition 1.3.1. Fn is constructed from

F .
n-1
Maps ¢n: Ct(n) -> an(p).
n
wn :Ct(n) x BU(1) »—Dgn(p)
(p = n!/m!(n-m)!)
and Wn :FnCtBU(l) > Dt(Fm/Fm-l’A)

are constructed. There is a stable map

F F
D, ————Fm,A > F“‘ A
m-1 m-1

called evaluation, eval, and Fn = eval Wn. All we need to know about ¢n and wn

is that wn(<c . cn> Xl) is independent of x - X if u(xi) =1 for

100" 100"
1 <1i < n. There is a formula for Wn in terms of Wn—l’ ¢n and Wn' Consulting

the formula [Sn 1, p. 582] we see that if u(xi) =1 for 1 £ i < n then

?n(<cl,..., Cp> Kpseees xn) = (c,f(zl),..., f(zp))

1]

(p n!/m!(n-m)!) (1.3.2)

Here c € Ct(p) is fixed. The element z; € Ct(m) X BU(l)m/m is of the form
' .
[<dl,..., dm> yl,..., ym] where the di s are suitably chose subset of

{cl,..., cn} and the yi's are the corresponding subset of {x.,..., xn}.

l’

1.4: Proof of Theorem 1.2. For some large N we can find a copy of CPN in

cp” = BU(1l) such that * ¢ CPN and such that there exist classes a; € ﬁ*(CPN;Z)
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ALGEBRAIC COBORDISM AND K-THEORY 47

mapping to a; e ﬁ*(BU(l);Z). Since * ¢ CPN we may assume (by modifying the
function u: BU(1) - [0,1] if necessary) that CPN c u_l(l).
TERERT I

s C 7€ Ct(n). We are trying to compute the

The map (CPN)n > BU(l)n > FnCtBU(l) sends (x . Xn) to [<c

10
Xisenes xn] for some fixed ASERRE
effect in homology of the stable map

N.n Wn Fm eval Fm Fm
(cp) > Fn ———-’Dt F , A > F A~ 7 (1.4.1)
m-1 m-1

From (1.3.2) and the related discussion in section 1.3 (xl,..., Xn) € (CPN)n

F
m
b
Fm—l

goes to [c,f(zl),..., f(zp)] in Dt Al.

Composition with evaluation sends the map which sends (xl,..., Xn) to
[c,f(zl),..., f(zp)] to the sum (in the sense of track-group addition) of the

stable maps

N.n Fm F
g, (cPHY » || [a 2
i F —
m-1 m-1

given by gi(xl,..., Xn) = f(zi) (1 <1 < p). Recall z; = (<d1,..., dm>
m .
Yiseees ym) € Ct(m) x BU(1) where {yl,..., ym} is a subset of {xl,..., xn} and

<d , d > is fixed. Therefore g, factors through the projection
m i

100
(CPN)n —>~(CPN)m which picks out y y Hence (g.),(a, 8 **+ 8 o ) = 0. The
1°""m’ i7*%° 71 n
P
stable map of Theorem 1.2 maps a; B o B a to .E (gi)*(al ® -+ 8 an) = 0 and

the result follows. -1

§2. AU°(X), ASp°(X) AND COBORDISM

Let B :82 > BU and B' :S4 - BSp be generators of ﬂz(BU) and nA(BSp)

respectively. The Whitney sum of B with the identity map of BU induces a map
Z4BU > ZZBU. Similarly the sum of B' with the identity induces €' :E6BSP
> ZZBSp. Details are given in section 2.3 below. Using € and ¢' we may define

groups (actually rings, see section 3)

AU°(X) = lim {ZZNX,BU}

and N

ASp°(X)

1im (2N, BSp).
N

Here {Y,Z} denotes morphisms of degree zero from the space Y to the space Z in
the Adams stable category [Ad 1, Part III]. The limits are taken over the homo-

morphisms

E4 2N+2

N X,ZZBU} — {z

2N+2

{z"7%,BU} = {I X,BU}
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48 VICTOR P. SNAITH

and
A

GN+4, 4 € LN+4

{ZQNX,BSp} = {2 X,Z BSp} —, {z X,BSp}.

Let ¢y € MUZk(BU) and Py € MSp4k(BSp) be the Conner-Floyd classes [Ad 1,

p. 9]. Define

o {ZZNX,BU} » 1 MUzk(ZZNX) ~ MUZk‘ZN(x)
u 1<k 1<k
and
dg :{ZANX,BSp} > T MSpAk(ZANX) N MSpAk_AN(X)
P 1<k 1<k
by the formulae
¢ (£) = 1T f*(c)
u 1<k k'’
bo (£) = T £*(p,).
Sp 1<k K

The main results of this section are the following:

2.1: Theorem. ¢u induces a well-defined natural homomorphism
2 20
¢u: AU°(X) » lim, T MU' (X) = MU
N 2=-N

(%)

which is an isomorphism when X is a finite dimensional CW complex.

2.2: Theorem. ¢Sp induces a well-defined natural homomorphism

w *
bt ASPO(X) > lim, T Msp*t(x) = Msp** (%)
P N g=-N

which is an isomorphism when X is a finite dimensional CW complex.

2.3: Explanation and Sketch of Proof. Firstly I must define the maps ¢ and €'.

It will suffice to define e since €' is constructed analogously. The Whitney
sum of B with lBU gives ,

B & lBU: S™ x BU - BU.
2

It is well-known that Z(S2 x BU) = £S” v IBU v Z3BU (for example see [Sn 3]).

If we suspend once more the inclusion of ZABU = ZSZ A IBU into 22(82 x BU) may
be represented by the Hopf construction [Hu]

£52 A 2BU = 1(s?*BU) —Bs 5(z(s? x BU)).

Set ¢ = ZZ(B (2 lBU) o fH. There are several ways of including EABU into
ZZ(S2 x BU). I have chosen the Hopf construction because it has associativity
properties which I will need in section 3 where AU°(X) is discussed in terms of

a ring spectrum, AU.

Now let me explain why ¢u is well-defined. I wish to establish a commuta-

tive diagram of the following form.
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ALGEBRAIC COBORDISM AND K-THEORY 49

o
%, 0} —%— 1 2N (x)
1<k
le# li (2.4)
[0
22y gy 0, a2 2N2

1<k

Here i is the canonical inclusion. Suppose f € {ZZNX,BU} then the stable map
e#(f) is the composite

2

N (ZZNX) tH 2 2N, Bé&f

— S” x L7 X — BU.

Hence e#(f)*(ck) (ZH)*(B*Bf)*(Ck)

k
(ZH) *( E B*(cl) 8 f*(c,_,))

2=0
2k .2
* *
B*(c;) 8 f*(c, ;) e MUT(S

]

A ZZNX).

Note that(ZH)*(B*(cO) 2] f*(ck)) 0. However B*(cl) is just the suspension
class so that B*(cl) 2] f*(ck_l) € MUZk(S2 A ZZNX) corresponds under suspension

2k-2

to f5(c, ) « M2 2x™X). This establishes (2.4).

In [Part I, Theorem 4.2] it is shown that there exist stable equivalences
v_:BU(n) » v MU(k)
n 1<k<n
such that vn|BU(n—l) % v _q- Details are given in section 2.7 below. Hence
{Y,BU} = T {Y,MU(k)} (2.5)
1<k
and it was shown in [Part I, Theorem 5.1] that if dim Y < 4n then ¢ maps the

*
summand 1 {Y,MU(k)} isomorphically to the summand I MUZk(Y) in MU™ (Y).
n<k n<k

Setting Y = ZZNX in (2.5) and considering the limit over N it is straightforward
to see that @u is surjective. Under the stable map € :ZZBU -+ BU the wedge fac-

tor ZZMU(n) maps to v MU(k) and composition with the projection onto
1<k<n+l 2
MU(n+1) is essentially the canonical map I"MU(n) - MU(n+l) from the unitary

Thom spectrum [Ad 1, p. 135]. That is, up to an automorphism in the S-cate-
gary, ZZMU(n) - MU(n+1), is the canonical map. This fact is a consequence of
the property [Part I, §4.5(b)] of the stable decomposition maps constructed in
[Part I, §4]. Hence if the stable map € :ZZBU(n) + BU(n+l) were merely the
sum of these pseudo-Thom-spectrum maps
v zzmu(k) > v MU(k+1)

1<k<n 1<k<n

we would be finished. This is because in the limit process by which AU°(X) is

2N

defined each element of {Z” X,MU(k)} would eventually be mapped into a summand
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50 VICTOR P. SNAITH

of the form {EZMX, Eﬁ%%%ij} with 4t < 2M + dim X on which ¢u is injective by
[Part I, Theorem 5.1]. Hence to prove Theorem 2.1 we consider the difference,
6n, between the stable map ¢ :ZZBU + BU and the wedge-sum of the pseudo-Thom-
spectrum maps mentioned above. In Proposition 2.9 it is shown that

6n: ZZBU(n) - BU(n+1l) may be chosen to send the double suspension of the 2t-
skeleton into the (2t-2)-skeleton. In the limiting process which defines AU°(X)
this implies that any class in {ZzMX,MU(k)} is mapped eventually into a summand

of {22M+25X,BU} on which ¢u is injective. Therefore @u must be injective.

The proof of Theorem 2.1 is accomplished in a series of results according
to the following programme. In Lemma 2.7 the stable equivalence vy is computed
in homology. This is used in Corollary 2.8 to show that 6n is zero in homology.
Using this Gn is compressed a little in Proposition 2.9. The proof of Theorem

2.1 is completed in section 2.11.

Section 2.12 contains an outline of the proof of Theorem 2.2 which is en-

tirely analogous to the proof of Theorem 2.1.

2.6. Firstly we need to know what the stable equivalence v of section 2.3 in-
duces in homology. Recall [Ad 1, p. 47] that if Bi € HZi(BU(l);Z) is a genera-

tor then H (BU;Z) is equal to the polynomial algebra, Z[Bl,B ..]. The homol-

27"

ogy of BU(n) has as a basis those monomials Bi @ <+ B Bi with t < n. Under
1 t

the collapsing map BU(n) - MU(n) the homology of MU(n) has as a basis the mono-

mials of the form B, @ <<+ 8 B, .
ll 1n

2.7: Lemma. In terms of the homology generators of section 2.6 the stable
equivalence of section 2.3

v_:BU(n) » Vv MU(k)
n 1<k<n

satisfies (v )*(S. ® c++ @B, )=B, B8+++0 B, (1L <t<n).
n i i i i
1 t 1 t

Proof. Since vn]BU(n-l) = v we may proceed by induction on t and therefore

n-1
assume that t = n. The stable map v, is equal to a composite of the form

w(m )

BU(n) ——— BT JU(l) + F_QBU(1)
n
n
FkQBU(l) ) y BZk U(l)
1<k<n Fk-lQBU(l) 1<k<n BZk_IJU(l)
v BU (k)
1<k<n BU(k-1)
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oo oo
Here QBU(1) = Q T BU(1). T(ﬂn) is the transfer of the canonical map

T : BT JU(I) -+ BU(n) and the stable equivalence is the subject of [Sn 1,
n
Theorem 3.2]. Details are given in [Part I, section 4]. The class

B, B ¢« @Q Bi is in the image of the map H*(BTn;Z) %-H*(BU(n); Z) induced by
1 n
the inclusion of the canonical maximal torus. In [Part I, section 4.6} it is

shown that the component of (vn)*(Bi Q «0¢ 8 Bi ) in H*(MU(n);Z) is just
1 n
B, ©® «+- 8 B, . Therefore we have to show that (v ),(B. 8 :-+ 8 8. ) has zero
i i n i i
1 n 1 n
component in H*(MU(n);Z) for 1 £ m < n.

However there is acommutative diagram of stable maps

BT" > BU(n)
JT(WH)
BZ JU(l)
n
in which BT" - BZ JU(I) is induced by the canonical inclusion of ™ in the
n
wreath product I jU(l). This diagram is established by the technique of [Part
n
I, section 2; B-M]. [Part I, Example 2.14] produces a Tn—equivariant vector
field, p_, on _jHSQ__} and identifies the singular set of p_as a point. Then
v v
ZDJU(I)

[Part I, Proposition 2.2 and section 2.2.1] together with the argument of [Part
I, section 2.9] establishes the diagram. The result now follows from Part II,

Theorem 2.2 with t = «,

2.8: Corollary. By means of the stable equivalences vy of Lemma 2.7 consider
the stable map € :ZZBU - BU of section 2.3 as inducing
e: v MU » v MU(K) for 1<n<e
1<k<n 1<k<n+l
Let Yj equal the composite

22U > v oEPMU(k) == v Mu(k) > MUGGHD) .
1<k=<n 1<k<n+1

This map is the one discussed in §2.3 above, and up to S-automorphism is equal
to the canonical Thom spectrum map. Then the stable map 6n =g - 'le, induces
the zero map in reduced homology and in MU,. ”

Here the first and last maps in Yj are the canonical inclusion and projec-

tion respectively.

Proof. We will treat only the homology case, the MU, case is similar. In terms

of the homology generators described in section 2.6
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2

(B8 1 ),:H(s° x BU) » H,(BU)

BU

sends 0 @ B, B *++ B R, to R, 8RR, B *++ 8B, . Here o e H (SZ) is a genera-
i 1j 1 i 1j 2
tor. Hence €, does the same. Therefore, by Lemma 2.7, the Yj are the only

components of € which are non-zero in homology and the result follows at once.

2.9: Proposition. Let BU(n)m be the m-skeleton of BU(n). Then for any n,

m > 1 there is a stable map
61+ 5°BU(n) + BU(n+1)
such that (1) Gé v dn’ the S-map of Corollary 2,8, and

2

.. ' .

(ii) Gn maps I BU(n)2m into BU(n+l)2m_2.

Proof. Although the map € of Corollary 2.8 maps ZZBU(n) (considered as a wedge
n

of double suspensions of Thom spaces) to BU(n+l) the map 6n =g - I Y maps
j= =19

ZZBU(n) into the stable summand BU(n) of BU(n+l). BU(n) has only even dimen-

2
sional cells. By cellular approximation [Sp], we may assume Gn sends I BU(n)2m

to BU(n+1) By the Hurewicz isomorphism [Sp]

2m+2 "

(BU(n+1) BU(n+l)2m) ~ (BU(n+1) BU(n+l)2m).

Hy 2 2mt2 Tomt2 2mt2"

By naturality of the Hurewicz homomorphlsm and the fact that (5 ) = 0 in homo-
logy 5 on each top cell of T BU(n) om MaY be deformed (relatlve to the boundary)
intozBU(n+l)2m. Hence 6n on I BU(n)zzm may be deformed into BU(n+l)2m relative
to I BU(n)Zm—Z' This gives 6; on I BU(n)zm homotopic to dn and by homotopy
extension 6; may be extended to a cellular map, 6;, on ZZBU(n) which is homo-
topic to 6 . Consider 6" :ZzBU(n) - BU(n+1) . It induces zero on homology.
Therefore, by the previous argument we may flnd 6""22BU(n)2m > BU(n+l)2m such

that 6"'N 6" and 6"'sends X BU(n+l) into BU(n+1) By homotopy exten-—

m-2 2m-2"
sion we may extend Gg'to obtain a cellular stable map on ZZBU(n) which is homo-
t i to §
opic to 6

Consider the following homotopy commutative diagram of S-maps in which the

rows are cofibrations.

£2BU (n) > ZZBU(n)zm >

2m-2

s g™ An,m) |& (2.9.1)
n n

BU(n+1) > BU(n+l)2m >vVv S

2m-2

If, in diagram (2.9.1), A(n,m) is stably trivial then we are finished.

Therefore if we are working at odd primes we are done since all stable maps

v S2m+2 > Vv SZm are of order two [T].

B8 a
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Now we tackle the prime two. This will be done in §2.10 in a series of

steps.

§2.10.1. Let us begin by giving names to the spaces we will need. Consider

BT" = (BSl)n in the stable category as a wedge sum

Here wj is the wedge sum of all these smash products BSl A see A BSl (j copies)

1in . .
when the product (BS™) is written as sums of smash products of its factors.

We have canonical S-maps

a(j,n) :Wj - BU(n)

given by composing the inclusion Wj c BT" with the map induced by the inclusion

of the maximal torus into U(n).
2.10.2: Lemma. For 1 < j < n the S-map
2 2
" 2 .
6n oL a(j,n) : I (Wj)2m > BU(n+l)2m
is nullhomotopic.

Proof. From [Part I, Example 2.14] and the techniques of [Part I, §2] we see
that the transfer " : BU > QBU(1), restricted via BT" - BU(n) - BU, is homo-

topic to the canonical map BT® - anJU(l) -+ QBU(1l). Hence, examining the S-map,

vU(n)’ which splits BU(n) [Part I, §4] we see that the S-map

zzwj —2030) 5 3 2y(n) —E» BU(ntl)
(e as in §2.8 above) is homotopic to the composite

220 = sZaw, cBst aw, cw,  —2UHLHD) | ppi)
j J h| j+l

n

But, in the notation of §2.8, this is Yj restricted to zzwj and Gn =g - I Yj
j=1

so 6n is trivial when restricted to zzwj. Now carefully following the obstruc-

tion argument of §2.9 gives that the deformation 6;' oa(j,n) of 6n o a(j,n)

can be deformed to the constant map within the required skeleton.

2

2.10.3: Lemma. Let 0 # n € ni(S°) and let pB :ZZBU(n)2m > SBrn+2 be induced by
the right-hand map in the top row of (2.9.1). Then there exists j such that qu

detects the composite

2 P
2 L (a(j,n)) 2 B 2m+2 n 2m+1
I (WJ.)zm b BU(n)zm —_— S8 — S .
Proof. qu is non-zero on the mapping cone of n[T]. Since pB is injective in
mod 2 cohomology it follows thatSq2 is non-zero on the mapping cone of n o ps.
However the track-group sum of the map Zz(a(j,n)) detects the mod 2 cohomology
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of EZBU(n)2m so one of the composites n. o p,_ o Zz(a(j,n)) (1 £ j £ n) must be

detected by qu.

B

2.10.4: Completion of the Proof of Proposition 2.9. Suppose that for some

ao,Bo there is a non-trivial composition

iv
s(a ,8) :SZm+2 cv S2m+2 _§__4 v SZm N SZm .
o’ o B B o

o B a %
This composition must be stably homotopic to n2 € HZ(SO). We will show that
6(&0,80) cannot be non-trivial by use of a well-known argument, due to Adem,
[T, p. 84, Example 3] by which one shows n2 # 0. Choose j as in Lemma 2.10.3

for B = 80. Consider the composite

22(w') A s2m+2 n SZm+l n SZm
j’2m B o
o o
in which A = pB o Zz(a(j,n)). This composite is homotopic to 6;'0 Zza(j,n)
o
which is trivial by Lemma 2.10.2. Hence we may form the space

2m 2mt2 2
B = (Sa Ve )ucCczt: (wj)2m.
on
Since quis non-trivial in S2m U e2m+2 and also detects the S-map of Lemma

a
on

2.10.3 we see that SqZSq is non-trivial on the integral class generating

2 3
H m(B;Z/Z). However, this is impossible by the Adem relation SqZqu = Sq Sql
because Sql is zero on integral classes.

This completes the proof.

2.11: Proof of Theorem 2.1. 1In section 2.3 I explained why QU was well-
defined.

*
Also any class in MU2 (X) is contained in

1w = 1 ke

22T-M k>T

for some T, M satisfying 4T > 2M + dim X. By [Part I, Theorem 5.1] ¢u restricted

2 BU )
to the summand {Z MX, mj

I MUZk(ZZMX) if 4T > 2M + dim X. Hence @u is surjective.
T<k

of {ZZMX,BU} is an isomorphism onto

Now let f e {X,BU} represent F ¢ AU°(X) which satisfies @u(F) = 0. For
some n,t we may assume that f originates in {X,BU(n)Zt} o8 {X’MU(k)Zt}'

Suppose f = ka where fk € {X’MU(k)2t}' The computation o? éorollary 2.8 shows
that each Sn induces zero in MU*-theory. Here Gn is the S-map of Corollary 2.8.
From this it is easy to see that ®U(fk) = 0 for each k, because ®U(fk)s'MU2k(X).
This is because ¢U is given by applying e* (= ; Y? by Corollary 2.8) to the

canonical classes in & MUzk(MU(Zk)) and‘y§ picks out precisely fj hence we may

assume f = f .
n
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Also, by induction, we shall suppose for all Y that @u(f) = 0 implies
= 0 whenever

f e {Y,MU(m)zs}

satisfies either (i) s < t, or
(ii) dim Y - 4m < dim X - 4n.
Now consider the passage of f e {X, MU(n) } in the limit defining AU°(X).
The image of f, (F) € {Z X,BU} is equal to

BU |

2
(s )#(f) (Y ) (f) 0) € {Z X,BU(n)} & {Z X,MU(n+1)} & { X, EER;;ETI .

This direct sum expression for e#(f) uses the fact, mentioned earlier, that
6n really maps I BU(n) 1nto BU(n) and not into BU(n+l). By Proposition 2.9

(én)#(f) originates in {I X,BU(n) } which means it goes by (i) to zero in

2t-2
the direct limit. Also (yn)#(f) goes to zero in the limit by (ii) since

dim 22X - 4n - 4 < dim X - 4n.

This completes the induction step. To start the induction we observe that
{Y,BU(m)O} is trivial while @U is injective on {Y,MU(m)} when dim Y < 4m, by
[Part I, Theorem 5.1].

2.12: Proof of Theorem 2.2. The symplectic case is entirely analogous to the

unitary one. Therefore details will be left to the reader. The obstruction
theory analogous to Proposition 2.9 is simpler and the argument permits the de-

formation of Gn: Z4BSp(n)4m - BSp(n+l1) into BSp(n+l) since the obstruc-

4+ 4m-4
tions to such a deformation lie in the 4-stem which is zero rather than the

2-stem as they did in the unitary case.

§3. THE SPECTRA AU AND ASp
In this section two commutative ring spectra, AU and ASp, are defined

(section 3.2) and the following result is proved.

3.1: Theorem. There exist commutative ring spectra, AU and ASp, defined in

section 3.2 and satisfying the following conditions.2

Let AU*(X) and ASp*(X) be the generalised cohomology algebras correspond-
ing to these spectra.
Then (a) AU°(X) and ASp°(X) are naturally isomorphic when dim X < « to
the groups of Theorems 2.1 and 2.2.
(b) The natural homomorihims @u: AU°(X) ~ MUZ*(X) and
¢Sp : ASp° (X) ~ MSp4 (X) of Theorems 2.1 and 2.2 are ring homo-
morphisms which are isomorphisms when dim X < «,
For details of spectra the reader is referred to [Ad 1, p. 131 et seq.]
and, of course, to [W]. 1In Proposition 3.6 the homology algebras of these

spectra are computed.
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2 2
. PPN = > .
3.2: Definition. Let AUZk b BUzand let (k 2 1) €: ¢ AU2k - AU2k+2

map of section 2.3. Let n :S4 - L'BU = AU4 be given by n = LB where Be ﬂz(BU)

be the

is as in section 2.3. This data defines the spectrum AU with unit.
.. - A .
Similarly let ASp4k _42 BSp8(k > 1), let ¢': % ASp4k > A8p4k+4 be as in
section 2.3 and let n' = % B':S - ASp8 where B' ¢ ﬂa(BSp) is as in section

2.3. This data defines the spectrum Asp with unit n'.

I will now define pairings AU A AU - AU and ASp A ASp - ASp. It suffices
[cf. Ad 1, p. 158; W] to define maps
m: AU2p A AU2q -> AU2p+2q
and

v,
m .ASp4p A ASPAq —>-ASp4p+4q

satisfying certain properties which will be stated when they are needed.

The map m is defined as follows. AU2p A AU2q is equal to Sz;NgU;ESZIABU
which is homeomorphic, by switching the first two factors, to BU A ©"(S™ A BU).
If IH is the Hopf map of section 2.3 we have an inclusion
1 A TH:BU A 22(52 A BU) > BU A ZZ(S2 x BU). Switching factors again we have
BU A 22(82 x BU) g_Zz(BU A (82 x BU)) which includes, by the Hopf map again,
into ZZ(BU X 52 x BU). m is defined as the composition of the maps I have just

described with the double suspension of 1BU ® B & lBU: BU x 52 x BU - BU.
The definition of m' is entirely analogous to that of m.

3.3: Remark. Note that in the definition of m the first copy of S2 in

2
S™ x BU x S2 x BU seems to have a privileged role. However, up to homotopy, we
might equally well have used the second S2 factor since the switching map on

2 2
S A S” is homotopic to the identity.

3.4: Proof of Theorem 3.1. I will describe only the proof of the unitary case,

leaving the analogous symplectic case to the reader.
Firstly AU is clearly a spectrum and therefore defines cohomology groups
[Ad 1, p. 196]

P . 2k-j. 2
AU (X) = 1;m [T X’AUZk] = l;m [% X,Z°BU]J .

If j = 0 and dim X < « this 1limit could equally well be taken over stable homo-

topy classes so that stabilisation induces a natural isomorphism lim [ZZkX,ZzBU]

2k k

;.1im {z X,ZZBU}, the group on the right is AU°(X) as defined in section 2.

—_—

k
In order to show that AU is a commutative ring spectrum with unit I must

verify the homotopy commutativity of the following diagrams.
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(i) pairing

2 eAl
A —L = A
z AUZp AU2q AU2p+2 AU2q

AU, 42q+42

2
q) __Z.__m_;EZAU

2
A
z (AU2p AU2

2pt+2q

Here A is the canonical homeomorphism.

(ii) associativity

AU, A AU, A AU, —=2B, Ay A AU

2p 2q 2r 2p 2q+2r

LnAl [

AU, —2— 5 AU

AU2p+2q " 2r 2p+2q+2r

(iii) commutativity

Here T is the switching map.

(iv) unit

SZASZAAUP'\ISZ‘AAU AL, AU A AU

1ae| |

———————
AU2p+2 AU2p+4

All these diagrams are easy to verify. One uses the associativity and commuta-
tivity of the Whitney sum BU x BU - BU, the associativity of the Hopf construc-

tion and Remark 3.3. Therefore I will omit the details.

By the naturality properties of the product it suffices, in order to com-

plete the proof, to show
2%
QU(F) 8 ®U(G) = @u(F AG) e MUT (X AY)

where F ¢ AU°(X) and G € AU°(Y). Let o € MUZ(SZ) be the suspension class, so
that the suspension isomorphism is multiplication by o. Let ¢u(_)2 denote the

component of @u in MUZC(_). Suppose that F and G are represented by

f e [ZZkX,ZzBU] and g € [EZQY,ZZBU] respectively. Then @u(F)2t € MU2t

(X)
2t+2k

corresponds to f*(c Ct+k—1) e MU (ZZkX) while <I>u(G)ZS corresponds to
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*
g*(o @ Cs+2—l

n MU2v+2k+2(22kX A ZZQY) under the map

) L d i
) Similarly @u(F A G)2v corresponds to the image of o ® Cotkto—1

g2Kg A 5Py L0825y 4 p2py

¢///;;::/ ®B®1_ )

22 (BU x S2 x BU) BU BU > ZZBU.

Here the unnamed map is the composition of the Hopf maps described in section

2.2. It is easy to compute that this image is

v+k+2 -2
* *
T f%(oc © Cv+k+2—2—p) ® g*%(oc ® cp)
p=0
v+k-2
= b o (F) .83 (G),. .
j=-p+1 u 2v=-2j u 23

Now letting &, k + » we obtain @u(F AG) = @u(F) ® Qu(G).

3.5: H,(AU;Z) and H*(ASp;Z). Let H* denote integral singular homology. Then

by definition the homology groups of AU and ASp are

H.(AU) = lim H, (AU, )
and ) T dTR K
Hj(ASp) = lim Hj+4k(ASp4k)
respectively.

Let X ¢ HZ(CPw) and x' ¢ HA(HPm) be generators. Define Bj € sz(CPm) and
"¢ H, (H") b
BJ 43 y

k k 1 if j = k
' ' = =
<Bj’ . <Bj’ x {0 otherwise .

By means of the canonical map cp” = BU(1) -~ BU Bj defines a class Bj € sz(BU)
i
\]
%
3.6: Proposition. As algebras
-1
H, (AU) ~ Z[Bly Sl s 82, 83, .

. . . . ' .
H2j+2(AU2) which in turn defines Bj € sz(AU). Similarly Bj defines a class

€ th(ASp).

and

1o

H,(aSp) ~ Z[B1, (B]) ~, By, By, -..]

Proof. I will prove the unitary result and omit the details of the analogous

symplectic case.

There are two products in evidence, one in H*(BU) and one in H*(AU).
H*(BU).E Z[Bl,Bz,...], is explained in section 2.6 and in this algebra the pro-
duct of a and b will be denoted by ab. If a,b ¢ H,(AU) their product will be

denoted by a * b. Identify Hj(AUZk) with Hj—Z(BU) by means of the suspension

isomorphism. Consider the map
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m : AU A AU, > AU

2k 2 2k+2
defined in section 3.2. If a ® b ¢ Hs+2(AU2k) 8 Ht+2(AU2) g_HS(BU) (3] Ht(BU)
then m*(a ® b) corresponds to Blab € Hs+t+2(BU) Q_HS t+4(AU2k+22)' This is

because the image of the suspension class under B: S - BU is Sl. From the

diagram (iv) of section 3.4 we see that €4 :Hj(ZzAUZk) - Hj(AU ) corresponds

2k+2

to multiplication by Bl on H, 4(BU) Q_Hj(ZZAU ). Hence the limit Hj(AU)

j- 2k
is formed from a sequence of injections and is therefore, as an additive group,
1 i f i .
equal to the union of the images of the Hj+2k(AU2k) ~ Hj+2k—2(BU)

In this limit H*(AUZ) is a subalgebra isomorphic to 2[81,82,...] H*(BU).
i % b =
For the product of a ¢ HS+2(AU2) and b ¢ Ht+2(AU2) is a * b Blab e H (AUA)

(AU2) € Hs+t(BU)'

stt+4
which is the image of ab ¢ H

stt+2
To complete the proof it suffices to show that for k > 1 and an element
£1 %2 *n
z = Bl BZ ...Bn € HS(BU) Y HS+2(AU2k) < Hs+2—2k(AU) is in the algebra

-1
Z[Bl,ﬁl ,62,83,...]. There are three cases

€ €
case (a): If e, = 1 then z is the image under ¢, of B 2 .8 "
1 * 2 n
e H_(AU, ,) ~ H__,(BU).
51—2 €, €,
. = * gt L
case (b): 1If €y > 2 then z Bl z' where z Bl 52 ...Bn
€ Hs—Z(AUZk—Z) N Hs-A(BU)'
. = * X eee k * - i
case (c): If € 0 then Bl Bl Bl z (k-1 copies of Bl)
€ €
"o 2 n _ -1 k-1 o »
equals z'" = 82 ...Bn € H*(AUZ) so that z = (B1 ) z".

§4: ADAMS OPERATIONS IN AU-THEORY

In this section and in sections 5-7 several well-known phenomena in cobor-
dism will be described in terms of AU- and ASp-theory. 1In this section I will
show how the Adams operations in K-theory give rise to natural endomorphisms of
the graded ring AU*(_). Under the isomorphism, @u, of section 2 these opera-
tions will be essentially the Adams operations in cobordism theory [No]. This

relationship is made precise in the proof of Corollary 4.3.

Let KU°(_ ;M) denote K-theory with coefficients in a ring with identity A.
This functor is represented by the H-space BUA. By tradition BUZ is simply
written BU. The Adams operations

wk : KU®(_;A) - KU° (M)

(k € A) are well-known natural ring homomorphisms [Ad 4; At 2] which are in-

duced by H-maps wk: BUA » BUA. The values of k for which wk is defined depend
. k

on A. For example, if Z < A then ¢k exists for all k € Z, if A = Z/p then ¢
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exists if (k,p) = 1 [Mau] and if A = ip(the p-adics) then ¢k exists for all
ke zp [At - T].
The results of section 3 go through with coefficients in A. That is, if

we define
and ) = 1im (22 3x,BuA}
n

by analogy with the definition of AUJ(X). There is a natural ring homomorphism

(when A = 2p or A c Q).

2%

cpu : AUAC(X) > MUAT (X) (4.1)

which is an isomorphism if dim X < «., This follows from Theorem 3.1 when
M . oM o oM 2% M 2% M
X = S since AUA°(S ) = AU°(S) ® A and MUA" (S) = MU” (S') ® A. For general

A the reader follows by induction on dim X. Details will be left to the reader.
The main result of this section is the following:

4.2: Theorem. Suppose that the Adams operation wk : BUAN >~ BUA is defined and

% e A. Then wk induces, in a manner described in section 4.4, a natural graded
ring homomorphism

v AuA* () > AUA*( )
such that
(a) Wkwﬂ _ wkl
. 2% 2N . k -1,
(b) The endomorphism of MUA” (S” ) given by ¢u<>W °©u is equal to mul-

tiplication by kN_t

on MUAZt(SZN) (t € Z). Here @u is the homomor-
phism of Theorem 3.1 with coefficients in A as in (4.1).
(c) Let w e AUA°(CPT) satisfy @u(w) = cl(y) € MUAZ(CPT) where y is the
Hopf bundle and cs(y) is the s-th Conner-Floyd class of y. Then
C.Fé% € MUAZ*(CPT).
j Uk

In section 5 a general construction is given of natural ring homomorphisms

k
QU(W w)) = lg

out of AU°(_) which would suffice to construct Wk. However in this section I
will give a self-contained treatment of Wk from a slightly different viewpoint

which is better suited to the computations we will need.

The operations Wk will be constructed in section 4.4 and the proof of
Theorem 4.2 will be given in section 4.10. Before embarking on the project

let us recover the cobordism Adams operations.

4.3: Corollary. Under the condition of Theorem 4.2 there exist natural homo-

morphisms of graded rings Wk : MUA*(_) ~» MUA*(_) such that
kgt _ ke

(a) VY oV
(b) Wk :MUAZC(SZN) - MUAZt(SZN) equals multiplication by kN_

(c) 1If cl(y) € MUAZ(CPm) is the first Conner-Floyd class of the Hopf
bundle y then Wk(cl(y)) = %:cl(yk) € MUAZ(CPw).

t
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ALGEBRAIC COBORDISM AND K-THEORY 61

Proof. Since AUAn(_) g_AUAn+2(_) in a natural manner we may identify these
groups and consider AUA°( ) & AUAl(_) as a Z/2-graded, multiplicative cohomology
theory. Then @u induces a ring homomorphism @u TAUAC() ® AUAl(_) > MUA*( )
which is an isomorphism for finite dimensional spaces. If dim X < « and
X € MUAn(X) define Wk(x) € MUn(X) as the image of x under the composite

k-1

n ®u<)w o d kil 0
MUAT(X) © MUA*(X) ———2 5 MUA* (X)) —2 MUAT(X)

where L is the projection onto dimension n. The point here is that

¢u<)Wk<>®;l(x) e @ MUAS(X), since a natural ring homomorphism satisfying
s=n
(a) = (c) of Theorem 4.2 cannot decrease dimension, but there may be nonzero

components in dimension s with s > n. In order to produce a graded homomorphism
it is necessary to neglect these components in dimension s with s > n. Since

¢u owk«>®;l is a natural ring homomorphism then so is Wk. Wk is extended to
complexes of arbitrary dimension by a standard limit argument an example of
which is sketched in [Ad 1, p. 10]. Parts (a) and (b) are immediate from parts

(a) and (b) of Theorem 4.2 and part (c) follows from the equation

k
y | _1 k 2, @
cl[](] = cl(y ) € MUL“(CP ) .
. k . 1 . 1k
4.4: Construction of ¥ . Since %€ A there exists an H-map Ek =X :

BUA = BUA. On ﬁZ(BU ) voA, Wk is multiplication by k so gk is the identity.

Hence we have a homotopy commutative diagram.

2 B®1loin

S” x BUA —————— BUA
1, x aki Jak (4.5)

S2 x BUA W" BUA
BUA

The following diagram also homotopy commutes

s sun -2 12(s? « BUn)

4 2
z gkl 12 (lSz x Ek) (4.6)

tun 28, £2(s? x BUn)

where IH is the map described in section 2.3. Combining the double suspension

of (4.5) with (4.6) we obtain a homotopy commutative diagram.

4 _ 2 € _ 2
L BUA = L AUA2N AUA2N+2 = L BU

z“gkl J zzgk 4.7

£2AUA . —£5 Aun

2 2N+2
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From (4.7) it is clear that composition with Zzgk induces a natural graded,
additive endomorphism of AUA*(_) which will be denoted by Wk.

%* *
4.8: The Spectrum for MUA2 (). Now let us discuss MUA2 () and the map

* *
@u tAUAC () ~ MUA2 () in terms of a spectrum EUA such that EUA°( ) = MU2 Q.

EUA will be a wedge of suspensions of the Thom spectrum MUA. The object of the
discussion is to provide sufficient information so that we can describe in

AUA-theory canonical classes in MUA-theory and its homology.

. = v > . _ .
Define EUA2k . MUA2n (k 1) where MU/\2n is the 2n-th space in the
MUA-spectrum. Let e:ZZEUAZk > EUA2k+2 be defined as the wedge sum of the Thom
2
spectrum maps I MUA2n d MUA2n+2. Then
. 2
EUA°(X) = l;m [T MX,EUAZM]
v Lim, @ [27M%, 00 )
M 1<n n
~o1im @ MunZR ()
M 1-M<k
2%
AMUAT (X)) .

Inside EUAZk sits MUA2k thereby giving a canonical copy of the spectrum MUA as

a subspectrum of EUA. The natural transformation
*
@u: AUA° () ~ MUA2 Q)
is induced by a map of spectra AUA -+ EUA.

Now let us describe the canonical element w € AUA°(CPw) whose restriction
to CPT is featured in Theorem 4.2(c). There is a canonical map CPw = BU(1) -~
BU - BUA whose double suspension w' € [ZZCPW,AUAZ] gives a class w € AUA ° (CPT) .
Now the composite ®
[ZZCP“,AUAZ] + AUA® (CP®) —> EUA® (CP")

, 2k+2

sends w' to I (w')*(ci) where Cp € MU (AUAZ) is the image of the k-th
<
Conner—FloydlEEass, Cps under the suspension isomorphism. However (W')*(ci)

is zero for k > 1. Hence ®u(w) is represented by the composite

220p” —£5 Mu(2) 2 MUA, < EUA,

where MU(2) = MUZA, ¢ is the Thom spectrum map and p is induced by the coeffi-
cient homomorphism Z - A. This composite represents the same class as that
represented by cp” v MU(1) £, MUA2 c EUA2. Hence ¢u(w) is equal to the canoni-
cal element cl(y) € MUAZ(CPw).

Next we turn to the induced homomorphism (@u)* :H*(AUA) - H*(EUA). Let
Bj € sz(CPm) denote the element of section 3.5. From [Ad 1, p. 51, Lemma 4.5]

we know that if
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then by = ep () (Byyy) e Hy; (MU

H, (MUA) ~ [by,b,,...] (by = 1).

1’ 0

Hence

-1
Hy (BUM) & ACu,u” by by,ee)

where u € H_Z(EUA) is represented by 1 € HO(MUAZ) c HO(EUAZ)'
4.9: Lemma. In terms of the generators described in sections 3.5 and 4.8

(0), : H (AUA) > H, (EUA)
is given by
-1
(8)4(8]) = u
and

-1 i
(00, (8,87) = b (G=D.

j=1
Proof. From Proposition 3.6 case (c) we see that 811 € H_Z(AUA) is represented
by 1 € Ho(BU) n H2(AUA4). Since this class is carried by £2cp” » £2BUA = AUL,

the analysis of w in section 4.8 shows that (@u)*(ﬁll) is represented by
e*(l) € HZ(MUAA) c HZ(EUAA)

where s* H, (MUA ) - H (MUA ) is induced by the Thom spectrum map Therefore
(@u)*(B ) is represented by 1 e H, (MUA ) < H, (EUA ) and (@ ) % (3 ) = u.

Also Bj € sz(BUA) ~H (AUA ) represents the product B *B A compu-

2+2
tation similar to the analysis of (Qu) (B ) shows that (@ ) (8 B}l) is repre-

sented by (cl(y))*(Bj) € sz(MUAz) c sz(EUA ). Hence (@u) (BjB ) = bj—l'

4.10: Proof of Theorem 4.2. Firstly we show that Wk is multiplicative. It

suffices by naturality to show that if f ¢ AUA®°(X) and g ¢ AUA°(Y) then

Wk(fg) = wk(f)wk(g) € AUN°(X A Y).

Recall from section 3.2 that m: AUA2p A AUAzq —>-AUA2p+2q is equal to a composi-
tion of the form
2 2 2 2
S® A BUA A ST A BUA -~ Z7(BUA x S™ x BUA)
el @B& 1, )
BUA BUA
ZZBU .

Since Ek : BUAN > BUA is an H-map which induces the identity on nz(BUA) we have

Eo gy @ B & 1gy) o (g & B & gy )0 (8 x lsz < B (4.11)
Since
s2 A BUA A 52 A BUA > $2(BUA x 82 x BUA)
2
1.,A8 A1l A E °(g, x 1 X g ) (4.12)
2 Mo k[ k2 TR
82 A BUA A 52 A BUA ZZ(BUA X 82 x BUA)
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is homotopy commutative we may combine the double suspension of (4.11) with
(4.12) to yield

2 2 2
Dgemume (BTg A BTE) 1 AUA, A AUA, > AUR, Lo

. . . k . o .
which at once implies that ¥ is multiplicative.

Part (a) is clear since the same identity is true for Adams operations in

K-theory.
On HZZ(BUA)’ Wi is multiplication by kg and (Ek)* is multiplication by
kg—l. Hence on H*(AUA) (Wk)*(sl) = kl_lBQ. Therefore by Lemma 4.9
j .
k“b if x = b
k -1 _ j j
@ ¥ e s o = _
u if x = u.

However from [14] we know that MU*(SZN) is torsion free. Therefore the Boardman-
SZN)

ZM]

Hurewicz homomorphism h :EU°(SZN) - H*(EU) is an injection. If x ¢ MUZt(
c EU°(SZN) it is represented by an element of [SZN+2M,MU(M+t)] c [SZN+2M,EU
for some M. Hence h(x) e HZN(EU) 13 represented by a class of H2N+2M(MU(M+t)).
This element must be of the form pu where p is a polynomial in bl’b

g3 of
k -1 N-t .
degree 2N - 2t. Hence (@u oy 0®u )*(h(x)) =k h(x). This proves part (b)
when A = Z. Part (b) in general follows from the facts that Wk is in general
constructed from Wk with k integral and that MUAZt(SZN) consists of integral
classes.
It remains to prove part (c). From the discussion of the canonical ele-
ment w € AUA°(CPm) in section 4.8 and the definition of @u we have at once that
* S
o (W) = 1 (%, ) *e)) e mn® (z2cr”)
u k k
1<k
where ci € MUA2K+2(22BU) and w' are as in section 4.8. However (zzg w')*(ci)

Ky ok, % K
€ MUA2k+2(22CPw) corresponds under suspension to Ck[%;} = {E—ilgi (ck)

2k Gl k
e MUA" (CP ) and the result follows.

§5. IDEMPOTENTS

This section studies idempotents in AU-theory and hence in MU-theory. In
Proposition 5.3 a general construction is given which associates to an exponen-
tial natural transformation from K-theory to another theory, h*, a natural ring
homomorphism from AU-theory to h*. The homomorphisms ®u of section 2 and Wk of
section 4 may be obtained from this construction (see Examples 5.4.3 and
5.4.3(a)). This construction yields an idempotent e(d) : AUA*(_) - AUA*(_) and
an endomorphism q(d) : AUA*(_) - AUA*(_) for suitable A (Theorem 5.1 and Propo-
sition 5.5). €(d) induces in MU-theory the idempotent of Adams [Ad 3, p. 107]
while q(d) induces the idempotent of Quillen [Ad 1, p. 105].
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Some natural endomorphisms of AU-theory may be constructed entirely from
K-theory, for example Wk of section 4, others may not. q(d) is an example of
the latter kind. I think it is important to remark what can be accomplished in
cobordism by use of AU-theory and without prior knowledge of ﬂ*(MU) or the use
of Adams spectral sequences since analogous arguments may then be possible for
ASp-theory. For example the KO*-theory (= KS;—4—theory) Adams operations will
yield Wk operations in ASp-theory. For idempotents the situation is as follows.
Adams constructs e€(d) by use of the Hattori-Stong theorem [Ad-L; Ha; St 2]
which in turn has been proved by appealing to the structure of ﬂ*(MU) or by use
of Adams spectral sequences. The AU-theory construction, which also immediately
relates e€(d) to the Wk's, requires only the K-theory idempotent E, of Adams as

1
input. The construction of El requires only easy number theory and easy K-theory
[Ad 3, pp. 84-89]--and ingenuity! The formula relating €(d) to the Adams opera-
tions was originally due to Idar Hansen.

The main result of this section is the following:

5.1: Theorem. Let d > 1 be an integer and let R(d) be the ring of fractions
a/b such that b contains no prime p with p = 1(d). Then the idempotent of
Adams [Ad 3, p. 89]

El : BUR(d) - BUR(d)

induces a natural idempotent ring homomorphism

€(d) : AUR(dA)* () = AUR(A)*()

such that
(i) if p = 1(d) is a prime then e€(d) induces
€(d) : AUZ*( ) ~ AUZ*
(Y] p(_) p(_)
satisfying
d d o, R
[e(@) (D)1 = 1 ¥ I(f) ¢ AVZ°(X)

j=1 P

(f € AUZ® (X))
P
(ii) if dim X < = then the composite

e : MUR(d)™(X) > MUR(d)*(X)
-1

¢u o g(d) °¢u

MUR(d)* (x) —BEds Mur ()™ (x)

is equal to the idempotent of Adams [Ad 3, p. 107]. Also with p-adic
coefficients as in (i) e satisfies

a .
e®)d = 1 v
3=1
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52
(f ¢ MUZZ™(X)).
P o, a,
Here o o, € Zp are distinct d-th roots of unity and ¥ J, y J

seees
denotelAdams oierations as in section 4.
Proof. I will assume that the reader is familiar with the constructions of
E, : BUR(d) + BUR(d) [Ad 3, pp. 84-89].
The existence of e€(d) is given by Example 5.4.2(b) or by imitation of the
construction of wk in section 4. The second viewpoint shows that e(d) is idem-
potent since it is given by composition with ZzEl :ZZBUR(d) = AUR(d)ZN->AUR(d)2N

and E, oE. v E

1 1 1’
It is immediate from the definition of El that
(E)), : Hy (BUR(d)3Q) ~+ H, (BUR(d);Q)
satisfies
xn n=kd+1, k>0
(B, (x)

0 otherwise
where X € Hzn(BUR(d);Q) is primitive. Arguing as in section 4.10 we see that

e(d), ¢ H, (EUR(d);Q) » H, (EUR(d);Q)
is given by

s uy ~n-= kd, k 2 0
e(d), Wy ) =

0 otherwise
where v, € Hzn(EUR(d);Q) is a primitive polynomial in (bi;i > 1). This esta-

blishes the first half of (ii) since the idempotent of Adams is characterised

by this behaviour on H (MUR(d);Q) < H, (EUR(d);Q).

Now we relate e(d) to the Adams operations. Clearly the formula in part
(ii) is implied by that in part (i) and Corollary 4.3. From the formula of
Adams [Ad 3, p. 89] we have
d 1 % . .
g — vy J:BUZ - BUZ . (5.2)
o, oo P p

E, =
j=1 7]

1

Let f be represented by f ¢ {ZZMX,(AUip)ZM}. Then (e(d)(f))d is represented

by a composition of the form

Z2de diag ZZMX A eee A ZZMX

/f/\---/\f

~ . 8 « N
ZZBUZp A see A ZZBUZp 1, ZZ(BUZp X S2 X ese X 82 X BUZP)

/ZZ(El X ls2 X eee X El)

£2(BUZ  x ev) —> $2BUZ_ = (AUZ.)
p g P P

2 2Md
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Here 'diag" is induced by the diagonal map, g, is a composition of Hopf maps as
in section 2.3, &) is induced by the iterated Whitney sum and there are d

copies of X and of BUZp in each of the displayed products. However by (5.2) we
may replace EZ(El x 1 9 X *++) in this composition by Zz(Ea x1 2 X eee X Eu ),

S 4 1 S d

a,
the resulting composition represents I V¥ J(f). This completes the proof.
j=1

5.3: Proposition. Let a :KUA®°( ) - h*(_ ) be a natural transformation into a
multiplicative cohomology theory h* satisfying
(i) For f,g ¢ KUA(X)
a(f +g) = a(fa(g) € h*(X)
and (ii) 4if B KUA°(SZ) is the Bott class then the projection of a(B) into
reduced h*-theory is equal to o ¢ hz(Sz) where o is the image of

1 € h°(8°) under the suspension isomorphism.

Then o induces a natural ring homomorphism a T AUA°( ) » h*( ). If
F ¢ AUA®°(X) is represented by f ¢ {ZZNX,AUAZN} then

G(F) = £%(o © o) ¢ h*(Z2N%) v h¥ 2N (x)

where o is considered as an element of h*(BUA).

Proof. Firstly we must check that o is well-defined. F is represented by

£ e (2°N%,22BUA} which is sent to £%(0 @ o) e h*(z2NX) & h* 2N
IN+2

(X). However F

may be considered as being represented by e,(f) e {Z X,ZZBUA} where

€ :ZZAU_A2N > AUA2N+2 is described in section 2.3. This second representative
is sent to

0@ F%(B*(a) ® a) = 0 8 £%(c 8 o) e h* 2z 2N 2y,

Fortunately these two elements are equal when translated to h*_ZN(X) and 4 is
well-defined.
~A L PR . 2N 2 2MY
Now we show o is multiplicative. Suppose f ¢ {Z“ X,Z°BUA} and g ¢ {I R
ZZBU} represent F ¢ AUA°(X) and G ¢ AUA®°(Y) respectively. Then fg is repre-

sented by
P2y Ay s Myoa 2Py £28, 22500 A 52B0n

(/Z‘(l/

gup * B 1gpn) 2

2 x BUA) > L BU.

ZZ(BUA x S

Hence a(fg) = (FAg)*(c 8 a ® B%(a) 8 a) = £%(c ® a) 8 g*(c 8 a) = a(f)a(g).

.= ° o . 2N, .
5.4.1: Example. Define v :KUA®°(X) » AUA°(X) = lim {Z X’AUAZM} by sending

N
2 2 2 - 0 ral 2% 2 .
f:X > BUA to 2°f: 27X > Z"BUA = AUA,. Clearly v(B) e AUA°(S™) ~ MUA" (S7) is

2
the suspension class in MUAz(SZ). Set v(f) = 1 + v(f).
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Then vV is an exponential map. Suppose g € KUA°(Y) is represented by

g:Y > BUA then V(f+g) is represented by a composite of the form

2
2 I el )
N X
Zz(x X Y) e, ZZ(BUA x BUA) — BU_ BU°, ZZBU/\ = AUA2 (1)

However T)(f)s(g) is represented by a composite of the form

2 2 2

X A Y > ZzBuA A Z°BUA
g' (11)
2
I7(1 éB®1__,)
A A
EZ(BUA x g2 x BUA) BU 50, ZZBUA = AUAA.

Here g' is a Hopf map as described in section 2.3. It is easy to see that if

ﬂX and ﬂY are the projections X * X X Y >~ Y then (I) represents

V(E)V(8) + V(fomy) + V(g emy) .
Hence
VE+g) =1+ 9+ g
1+ () + v(g) + v(H)v(g)
v(E)v(g)

1]

Applying Proposition 5.3 to v yields the identity map of AUA®(D).

. - _ 2k
5.4.2: Example. Applying Proposition 5.3 to v = <0 + ¢y + <, + eee € 0ngU ),

the total Conner-Floyd class, yields the homomorphism @u of Theorem 3.1.

In fact we may conmstruct a homomorphism AUA®( ) - h*(_ ) in this way for any
cohomology theory, h*, which has a "total Chern class" for complex bundles with
coefficients in A (cf. [2, p. 55]). For h* = KU* this is the Conner-Floyd
homomorphism [C-F].

The important property of the Conner-Floyd homomorphism is that it induces
an isomorphism

MU*(_) & Z > KU*()
T*MU

of Z/2-graded rings [C-F] from which incidentally the Hattori-Stong theorem

follows as a (quite difficult) corollary by an argument of G. Wolff [Wol].

The methods of AU-theory do give a new proof of the unitary Conner-Floyd
theorem. Furthermore, the Conner-Floyd theorem together with AU-theory lead
to a rather startling description of BU. This application is given in Part II,
section 9. See Remark 9.2.9(b) for the proof of the Conner-Floyd theorem.
Incidentally the real/symplectic Conner-Floyd homomorphism is obtainable
usp™ () + ko)

by a similar method using ASp-theory. Details are left to the reader.

5.4.3: Example. If §:KUA®°( ) - KUA®°( ) is a natural additive homomorphism

which is the identity on KUA°(SZ) then Proposition 5.3 may be applied to
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o =vod. Here v is as in Example 5.4.1.

k
(a) If § = %: = gk then & = Wk.
(b) If s = E, the idempotent of Adams [Ad 3, p. 89] in KUR(d)°( ) then

a = e(d), the idempotent of Theorem 5.1.

5.4.4: Example. Notice from the splitting principle that a natural exponen-

tial map a : KUA®°( ) - MUA*(_) determines and is determined by a(y-1) € MUA*(CPw)
where y is the Hopf bundle over cp” (cf. [Ad 1, p. 52, Lemma 4.6]).

If x € MUZ(CPm) is the canonical class them MUA*(CPw) = ﬂ*(MUA)[[X]].

Following [Ad 1, p. 108] define
d

mog x = log x - Ly log(a,x) (a>1)
d . i
j=1
where Upse-es G4 are distinct complex d-th roots of unity and
i .
log x = I [§P J x1+l € MUQ*(CP ).
=0 (D)

Hence mog x = x + (higher terms) and B*(mog x) equals the suspension class in
MUQZ(SZ). In fact [Ad 1, pp. 108-109]
mog x ¢ MUZEE12*(CR™) v Avzi1® (cP®).
Thus by Proposition 3 mog x determines a natural ring homomorphism
a(@) : AUZ[EI* () > avzE1* ).

5.5: Proposition. Let q(d) be the endomorphism of AUZ[%]*(_) constructed in
Example 5.4.4. Suppose dim X < o,
Then the composite, also called q(d),

M2 [P (%) © MyZIEI* ()
-1
¢ °a(d) e °,
wz (1% (x) 220wz )
is the idempotent of Quillen [Ad 1, Theorem 15.1, p. 105].

Proof. Quillen's idempotent is characterised by the fact that it is a ring homo-
morphism which sends x ¢ MUZ[%]Z(CPM) to mog x. Hence it is equal to the
composite

-1
® oq(d) o9d
wz[F17x) « mwz i —2 s Mz (3% () .

§6. THE COMPLEXIFICATION HOMOMORPHISM
The complexification homomorphism MSp*(_) - MU*(_) is well-known. By
analogy it is reasonable to demand a natural ring homomorphism from ASp°(X) to

AU® (X) and to expect that it should be induced by the natural H-map c : BSp - BU.
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Unfortunately the obvious map {ZanX,BSp} -> {ZanX,BU}, induced by ¢, is not com-
patible with the limits whereby ASp°(X) and AU°(X) are formed. However a homo-

morphism of approximately the right type is available.

Unfortunately the H-map h : BU -+ BSp given by symplectification does not
induce a homomorphism AU*(_) - ASp*(_). This is because AU is constructed
using a generator of WZ(BU) while ASp uses a generator of na(BSp) which cannot
be expressed in terms of the image of nz(BU) since ﬂz(BSp) = 0. Therefore h
induces only the trivial map from the AU-spectrum to the ASp-spectrum. This
remark will become clearer when the reader has seen below the sort of compati-
bility conditions that c : BSp >~ BU satisfies, which make for an interesting

homomorphism from ASp*(_) to AU*( ).

6.1: Theorem. The complexification H-map c : BSp > BU induces a natural ring
homomorphtsm

-1

c:ASp°(X) » AU°(X)[(1 - o ].

11)
o o . . = 2 o . .

Here ayq € AU®(S°) satisfies @u(all) a;g where aj; € MU“(S°) is the coeffi

cient of X ] X, in the formal group law for MU-theory in the notation of

[Ad. 1, p. 40].

6.2: Remark. The proof of Theorem 6.1 is straightforward and will be given in
section 6.5. One proceeds to analyse how the maps induced by c : BSp » BU fail

to be compatible. Doing this one finds in the diagram

13%%%,Bspr —=» {(z*x, BSp)

lc# lc#

{zl‘kx,BU} - {24k+4X,BU}
that one route is (l-all) times the other. Hence (1-—all)_Jc#, for suitable

j, will be compatible.

The localisation is not a serious restriction. For if we were mapping not

* fee)
into AU°(X) MU2 (X) but into I MUZk(X) the element (1-—a11) would be a

unit already. k=—e

6.3: Some Elements in US(BU) Here I will use the notation of [Part I, sec-

tion 6]. By suspension the Bott map Bem (BU) ylelds X e (BU) The direct
sum on BU induces a product in m, (BU) for whlch x2 e (BU) wlll denote the

square of x. Also the tensor product on BU induces a product on T, (BU) for

which the square of x is written x*X ¢ LA (BU) In [Part I, Section 6] I
ks (BU) s
showed-————————————— N~ Z & Z but the method in fact shows that =, (BU) v~ Z@&Z
(odd torsion) — 4 o

generated by x2 and x*x. The Hurewicz map
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S
h: ”4<BU) > HA(BU)

satisfies h(xz) = Si, h(x*x) = 282 [Part I, section 6]. € nz(MU) is re-

a1

presentable by an S-map a,, : S > MU(1l). Using the S-equivalence between BU

11

and VvV MU(k) [Part I] a;, may be considered as an element of ni(BU). This ele-
1<k

ment is x * x.

6.4: Lemma. The generator B' ¢ w4(BSp), suitably chosen, satisfies
2 S
" = — x*
c#(B ) X X*X € n4(BU).

Proof. Using the injectivity of the Hurewicz homomorphism on ni(BU) as de-
scribed in Section 6.3 it suffices to show that the Hurewicz image of c#(B') is
Bi - 282 € HA(BU). This follows from the computations of [Ad 1, pp. 93-98]

since x2 hits Bi and x *x hits 282.

This

4
6.5: Proof of Theorem 6.1. Let AQN = AU4N and § = gog: L A4N - A4n+4.

spectrum will suffice to define AU-theory (cf. section 3). Assigning to
g € {EAkX,ASp4k} the composition (240) °og e {ZAkX,A4k} defines an additive homo-

morphism

4k

: {2z } = AU°(X).

Oy

X’ASPAk} - 1im {ZM&X,AZ‘k
k

The element g above represents the same element in ASp°(X) as the composite

4
g': 24k+4x e, 24(54 A BSp)

e///”/;;://// (6.6)

ZA(S4 x BSp) ——77————‘—~———* ZQBSp = ASp4k+4-
1
I (B'® lBSp)

Now let us compute ¢k+l(g'). By Lemma 6.4 and the fact that ¢ is an H-map we
have a commutative diagram of S-maps.

bog
LBl )

2 (s* x Bsp) P £ *Bsp
sta L O ghe 6.7)
S
£ (s*  BU) 48U

):l‘((x2 -xX * x) QIBU)

Notice the x2 in (6.7) is equal to the S-map

SZASZ—>SZXS2 B@&B BU,

a composition in which the first map is a Hopf map (cf. section 2.3).

Combining (6.6) and (6.7) we see that ¢k+1(g') is represented by a compo-

site of the form
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4. 4
Z41<+4X T (Ecog)

4 4 4
— % (S ABU):ZAak

4 2
I ((xT-x*x) &1, )
Z41<+4X BU’ , zZ‘BU oA

4K+4 °

This is clearly the product of ¢k(g) with the class of X2 - X * X ¢ {SA,AU4}
in AU°(S°). The element X represents 1 ¢ AU°(S°). The map x * x is repre-

sented by an S-map x * X ¢ wi(BU(l)) c {84,AU4}. Hence ¢u(x * x) = cl(x* X)
€ MUZ(SA) N nz(MU). From its Hurewicz image, Zbl € HZ(MU), it is clear from

3 * = " = - -
section 6.3 that ¢u(x X) ajq. Thus ¢k+l(g ) (1 all)¢k(g) and the homo
morphisms (k > 0)

Lk+h -1

g = @m0y oyt ETIRASP ) > AP0 T o )T

are compatible. They induce an additive homomorphism

¢ 1 ASp°(X) + AU°(X)[(1 - all)_l].

+
Next we show that ¢ is multiplicative. Let f ¢ {Z4M 4X,ZABSp} and g ¢ {24N+4Y
ZABSp}. Then c(fg) is represented by (1-—0L11)_N_M_1 times a composite of the

s

form
+
Z4M+4X A EAN 4Y _j;ﬁii’ ZQBSP A ZABSP

4
3 (l,. ®B'@1__ )
s (Bsp x s* x BSp) BSp BSp”, +4Bsp
Z4c
2*BU = A
AN+LMHS

From (6.7) it is easy to see that this composition is homotopic to (1-a11)

times the product of 4
24M+4 T cof 4

X———— 31 BU = A4M+4
with 4
4N+4 T cog 4,
z Y % BU = A4N+4'

Hence ¢M+l(f)¢N+l(g) = (lA—all)¢M+N+2(fg) and c(fg) = c(f)c(g).

§7. LANDWEBER-NOVIKOV OPERATIONS AND THE THOM ISOMORPHISM

In this section the Landweber-Novikov operations [Ad 1, p. 12; La] will be
described in terms of AU-theory. All the results of this section have symplec-
tic analogues. The statement and method of proof of the symplectic results
will be left to the reader. In AU-theory it is most natural to construct the
total Landweber-Novikov operation, S. This operation will be the subject of
Theorem 7.1. The Thom isomorphism in AU-theory, which appears in the statement
of Theorem 7.1, is proved in Proposition 7.2. In Remark 7.4 a brief sketch is
given of the manner in which S may be decomposed into the sum of classical

Landweber-Novikov operations.
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Throughout this section all spaces will be finite dimensional.

7.1: Theorem. For each finitely non-zero sequence o = (al,az,...) of positive
integers let c, € MU2|QI(BU) denote the a-th Conner-Floyd class [Ad 1, p. 9].
Here [a] = Za,.
i
i
Then

*
C=Zc,: KU° (X) > M2 (X) ~ AU°(X),
a

the "super-total Conner-Floyd class'", induces a natural, stable ring homomor-
phism
S : AU*(X) - AU*(X)

satisfying the following properties.
(i) If we AU°(CPN) is the canonical element described in section 4.8
i ° N
S(w) = I w € AU°(CP) (N > 0).
i>1
(ii) Suppose that E is a complex vector bundle of dimension n over X and

consider the following diagram.

£G° (Th(E)) —>» AU° (Th(E))
AP N

AU° (X) AU° (X)

Then A™1(S(A(1))) = C(E).
Here Th(E) is the Thom space of E and A is the Thom isomorphism (Proposi-

tion 7.2).

7.2: Proposition. (See also Part II, Section 8.) Let m:E > X be a complex
vector bundle of dimension n. Let X be compact.

¢ AU°(Th(E)), such that A =2 AE' and

There is a Thom class, A EOE ' E

E
At AU°(X) - AU°(Th(E))

given by A(x) = w*(x)XE is an isomorphism.
Furthermore if n = 1 and SE : Th(E) - BU is the K-theory Thom class of E
2

then AE is represented by I BE € [ZzTh(E),AUz].

Proof. We know that MU-theory has a Thom class. This (up to multiplication
by a unit) will serve as an AU-theory Thom class. The universal Thom class for
MU(n) is represented by the S-map inclusion of

£2MU(n) < £2BU = AU,

given by [Part I, Theorem 4.2]. When n = 1 the method of [Part I, section 2],
for evaluating restrictions of the transfer, show that the inclusion of

BU(1) ~ MU(1l) is the canonical map.
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In fact, of course, we could show directly that BE gives a Thom class for
line bundles as follows.

By a Mayer-Vietoris argument it suffices to consider the class E = X X C.
In this case BE is the Bott class B, or rather the composition

Th(X x T) = X+ A S2 - S2 2, BU.

Hence if f ¢ {ZZkX,BU} represents F ¢ AU°(X) then W*(f)XE is represented by

2k+2

5#(f) e {z X,BU} = {ZZk(Th(X x T)),BU}

where ¢ :ZZAU2k -> AU2k+2 is the AU-spectrum map. This clearly gives an isomor-

phism.

7.3: Proof of Theorem 7.1. The super-total Conner-Floyd class is exponential

[Ad 1, p. 9] and C(w) = I w'. Therefore we may apply Proposition 5.3 to ob-
i>0

tain C and set S = C.

To prove (i) recall that w is represented by w' = Zz(y-—l) :ZZCPN - ZZBU

*
AU.. Hence ¢u(S(w)) corresponds to (w')*(c 8 C) € MU2 (ZZCPN) where

2
€ MUZ(SZ) is the suspension class. Therefore by [Ad 1, p. 9] @u(S(w))
= I ¢ (w) Hence S(w) = I wl.
i»1 izl

Part (ii) follows from part (i) by the splitting principle which implies
that it is sufficient to consider the Hopf line bundle, y, over CP”. However
in this case the Thom class is w € AU°(MU(l)). Here we have identified cP”
and MU(1). The Thom isomorphism is multiplication by w. Therefore
(w_l) T Wt

i1
= Iw

i=0

C(y).

sy

7.4: Remark. The operation S may be decomposed into the sum of additive oper-

ations. Observe that for o = (al .) we may define

0o

2k 2%

ty {z"7X,BU} > MU (X)

by

2}al-2k

£ () = £*(c ) « MU2|“|(22kx) MU (X)

in such a way that the following diagram commutes

€
{z x BU} —— —t 2k+2x,BU}

\ / (7.5)

MU2|a|—2k(X)

Here B = o + (1,0,0,0,...). It is not difficult to construct the operations

Licensed to Univ of Rochester. Prepared on Tue Jan 12 07:38:01 EST 2021for download from IP 128.151.13.58.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



ALGEBRAIC COBORDISM AND K-THEORY 75

(Sa) of [Ad 1, p. 12] from diagrams like (7.5) and Theorem 7.1. This task will

be left to the reader.

§8. STABLY ALMOST COMPLEX MANIFOLDS
In this section the classical association
{ bordism classes of stably \ - { homotopy of the }
i almost complex manifolds MU-spectrum
will be described in terms of AU-theory. For details of unitary bordism and
cobordism see [St 1, p. 41].

This association can be made in two ways. The first is the classical geo-
metrical construction of Pontrjagin-Thom and the second uses the cohomological
products and the existence of AU-theory Thom classes. Both will be given below
and their equivalence established.

The second construction leads to a general cohomological homomorphism which
is potentially useful in algebraic geometry to study embeddings which have nor-
mal bundles but do not embed algebraically in Euclidean space.

Recall [St 1, Chapter II] that if M2n is a closed stably almost complex

2n c m2n+2k

manifold then, to a suitable embedding i : M , there is associated a

Pontrjagin-Thom map

:SZn+2k

P(i) - Th(v) . (8.1)

In (8.1) v is the normal bundle of i and Th(v) is its Thom space. Incidentally,
by Atiyah's Duality Theorem [St 1, p. 37] P(i) is S-dual to

M u (point) = M+ + 8° = {#1},
the map which sends M to (-1) and the disjoint point to (+1).

8.2: Definition. Define An € AU°(MU(n)) to be the element represented by the
S-map

MU(n) < BU
given by the stable splitting of [Part I, Theorem 4.2(i)].

N BU(k) whose

The normal bundle v (mentioned above) is classified by M
"Thomification" is a map

o(v) : Th(v) » MU(k) .

Using the above notation the first result of this section is as follows:-

8.3: Theorem. Let M2n be a closed stably almost complex manifold. The asso-

ciation

2n 2n+2k

{300 > 00" = P *o(W*A € AU(S ) & AU°(S®)

defines a bijection
{unitary bordism classes} «— ﬂO(AU).

Proof. It suffices to check that our association, L}, corresponds with that
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given by the Pontrjagin-Thom theorem for unitary bordism [St 1, Chapter II]

when we identify AU°(S°) with Qﬂzs(MU) by means of Theorem 2.1.
s

The isomorphism N

o :AU°(S®) = lim {s2V,BU} — MU
u N

2% (s°)

is given by taking the induced map in MU-theory of a representative S-map,

S2N - BU, and pulling back the total Conner-Floyd class, I Cy- Therefore we
<
must show for the S-map, 1=2

An :MU(n) < BU

*
that A*( T CQ) € MU2 (MU(n)) is equal to the canonical Thom class which lies in
1<

MUzn(MU(n)). To do this it suffices to compute A; or equivalently
(A ) £ MU, (MU(n)) > MU, (BU) .

However MUZ*(BU) is a polynomial ring over m,,(MU). For details see [Ad 1,

*
Part II]. The calculations are entirely anaiogous to those in integral homo-

logy (cf. Part II, §2). 1In particular there is a natural (algebraic) identifi-
cation of MUZ*(MU(n)) with a n2*(MU)—submodule of MUZ*(BU). By the MU -homology
calculation of [Part II, §2.8] we see that (An)* is equal to the natural alge-

braic identification mentioned above. However the dual of thenatural identifi-
cation is well-known (by definition--see [Ad 1, Part III]) to send I cy to the

1<2
required Thom class in MUZH(MU(n)).

8.4: Remark. In Part III we will introduce AO-theory. It is to MO*(_) as
AU-theory is to MUZ*(_). It is straight-forward to describe unoriented bordism
classes of manifolds in terms of AO-theory in a manner similar to that of §8.3.
One uses Thom's identification of MO*(_) [Th] together with the results of [Part
III, §582-3]. Details will be left to the interested reader.

8.5: The Af Homomorphism of an Embedding, f : X > Y. The following construc-

tion will apply to a homology theory with a Thom isomorphism for complex vec-

tor bundles.

Let f :x2n N Y2n+2k

by a smooth embedding of stably almost complex mani-
folds having a stably complex normal bundle, v(f). If % and Ty are the tan-
gent bundles there is an exact sequence of vector bundles over X

0 -~ Tx -> f*TY > v(f) » 0.

There is a Thom class
A(v(£)) < AT®(Th(v(£))

constructed by pulling back Ak e AU°(MU(k)) by the "Thomification', Th(v(f))

-+ MU(k), of the classifying map of v(f). We may form the homomorphism

(A (EN)\_] : AUo (Th(v(£))) > AU, (X) (8.5.1)
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which is called the AU-theory homology Thom homomorphism. Here AU, is the

zero—-th homology group associated to the AU-spectrum. If
A :Th(w(f)) > Th(v(f)) A X

is defined by A(») = (base point) and A(e) = eA x for when e belongs to the

fibre of v(f) over x ¢ X then
[Aw(E)\a]l = AV (E)N\A,(a) € AUL(X)
where (_\_) is the slant product described in [Ad 1, Part III].

8.5.2: Lemma. The Thom homomorphism of (8.5.1) is an isomorphism.

Proof. This is a famous isomorphism for MU,,-theory and the classical Thom

2%
class. However when AU,(_) is identified with MUZ*(_) Theorem 8.3 tells us
that (up to multiplication by a unit in HZ*(MU)) the Thom class A(v(f)) agrees

with the classical one.

8.5.3: Definition. There is a also a Kronecker product homomorphism
AU (Th(v(£))) ~+ mo(AU) defined by sending x to <A(v(f)),x> = A(V(£))\xe 1, (AU)
[Ad 1, Part III].

Combining this homomorphism with the inverse of (8.5.1) we obtain a homo-

morphism

Af : AU, (X) = 7m,(AU). (8.5.4)
8.6: The Relation Between Af and the Pontrjagin-Thom Construction. Suppose
in §8.5 that Y = En+k then the bundle exact sequence becomes

k

o+rx+x><mn+ S v(f) » 0.

Each of these bundles has an AU-theory Thom class and a Thom isomorphism. They

are related by the following commutative diagram

KU, (Th(ty) A Th(¥(E))) v AU. (Th(x x T
AEND) | » J’o
TX : > ;
AU, (Th(v(£))) —TKTGTETYKZT* AU, (X)

in which ¢ is the suspension isomorphism. There is a fundamental class
[X] € AU, (X) such that
Ma\o M K] = P() e D, (Th(u(D)) (8.6.1)

where P(f) is the image of the Pontrjagin-Thom map of (8.1) under the Boardman-
Hurewicz homomorphism. Formula (8.6.1) follows from the discussion of duality
given in [Ad 1, p. 246, et seq.] and Atiyah's Duality Theorem which tells us
that an S-duality

u :S2n+2k > Th(v(f)) A X
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is given by U (V) = P(£) (V) A m(V) where 7 :Vv(f) > X is the projection of the
normal bundle. Thus (8.6.1) gives the following formula for {in} of Theorem
8.3.

{in} = P(f)*o(v(f))*Ak, by definition
= <A(D), P()>
= <AEE), AEEN 1M .

8.6.2: Corollary. With the notation of §§8.3-8.6 above

(x?" - A eIM] e mo(AD) .

§9. A NEW IDENTITY FOR BU

§9.1. In this section a new construction of BU will be given. It is an appli-
cation of the previous results of Part II. Also there are applications to the
stable homotopy of CP” (Theorem 9.1.2).

I have written this section in terms of spaces (infinite loopspaces)
rather than spectra in order to emphasis the familiar space, BU, rather than
the more metaphysical spectrum, BU.

Z x BU is the classifying space for unitary K-theory. It is an infinite

loopspace (henceforth "infinite loop-" will be abbreviated to "Qm—") because of

Bott periodicity, which exhibits a homotopy equivalence.
Z x BU QZ(Z x BU)

where QZY is the second loopspace of Y. A homotopy equivalence of the Bott
periodicity type is a rather primitive manner in which to express an Q" -struc-
ture, but it is all the more tractible for that reason.

To an Qm—space is associated a spectrum and vice versa. The Bott spectrum

for unitary K-theory takes the form

BU, =2 x3BU (kz20)

with structure maps €ox :22§§2k +-292k+2 induced by the map S2 x (Z % BU; -+ 7
x BU which classifies the tensor product of the reduced Hopf bundle on S~ with
the universal bundle of virtual dimension zero on Z x BU.

For background material on Qw—spaces and spectra the reader is referred
to [Ma 1; Ma 2] and [Ad 1] respectively. In particular [Ma 2, Ch. VIII, §2]
and [Ad 1, p. 134] deal with K-theory.

Now we introduce another spectrum with evident Bott periodicity. It is
constructed in a similar manner to AU of §3.

Let X be an H-space and let x ¢ nz(X). Form

X + 1X :S2 x X > X

the "sum" of x with the identity of X. The Hopf construction applied to this
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map and suspended once gives a map

€ :ZAX -> ZZX.

There is an associated spectrum, X(x), given by

X(),, = I°X (k > 1)
and structure maps ¢ :Ezé(x) -> K(X)2k+2' Den.te by P(X) the associated Qm—spacg
which is defined by
P(X) = __JE 11 2n+2k22kX

where the limit is taken over composition with €. Manifestly QZP(X) = P(X)
thereby giving an o -structure to P(X).

In this section I will prove the following result, which is proved in
§9.2.

9.1.1: Theorem. There is an equivalence of Qm—spaces

n
P(TP") — Z x BU.

Here TP~ = K(Z,2) and x generates WZ(me).

Now let x.__:n?(EPm) > n§+2(EPm) be the homomorphism of stable homotopy

groups induced by "adding" x e 7 (EPm) by means of the H-space sum. Since

m P(mP )) = lim x> @),
k

j+2k

where the limit is taken over (x._), we also have the following result which is
proved in §9.2.

9.1.2: Theorem. If y ¢ wi(EPm) is a torsion element then

0 = xky € ﬂs (™)

m+2k
for some k.

Now observe that Theorem 9.1.1 is related to Brauer lifting [Q2; To].
Theorem 9.1.1 expressed BGLT(vBU) as a functor of BC*(QEPw) where A* denotes
the units in a ring A. Let p and q be distinct primes and let (_); denote
p-completion [B-K]. Then, from [Q2], we have

+
BU ~ (BGL]Fq) (9.1.3)

where T is the algebraic closure of Eﬁ and (_ ) denotes Quillen's '"plus"
construction [Wa]. Also
P7)" ~ (BF*)2
@)~ BFH;
Combining these facts with the p-complete version of Theorem 9.1.2 yields
an Qm—equivalence of the following form
P, ((BTF*)") v(BGLTF')" (9.1.4)
ap — 9P

(where P,(X) denotes the base-point component of P(X)). In (9.1.4) the left-
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hand space is formed using the element of ﬁz((BE*) ) Zp which is the image
of xem (EP ). In terms of (9.1.4) the Q —equlvalence of (9.1.3) may be in-
duced from any embedding E: c T*.

Thus theorem 9.1.1 gives a particularly simple viewpoint on the Brauer
lifting map of (9.1.3) and of its Qm—space properties, which were first studied
in [To] where it is shown that the Brauer lifting is an Qm—map. My methods, as
given here, do not give independent proofs of the results of [To]. This could,
however, be readily accomplished with the aid of more Qw-technology.

More importantly, I believe, the equivalence of (9.1.4) suggests one might
attempt to study the algebraic K-theory of a commutative ring, A, by construct-
ing maps

BoLat > P(BA*;y)

where P(BA*;y) is constructed in a manner analogous to P(X) with BA* replacing
X and y € ﬂl(BA*) replacing x ¢ nZ(X). However one's expectation of success

should not be too high as thefollowing example shows!

9.1.5: Proposition. If 0 # n ¢ nl(BZ/Z) then P(BZ/2;n) is contractible.

Proof. Write P for P(BZ/2;n). Then P N~ QP so it suffices to show nl(P) =

However (P) is the direct limit of
s - (n..) S (n..) S

see > 1 (RP ) —> 7
n
. . 3 S © .
which is zero because 0 = n~ € n3(I&’) [Li].

Finally I would like to express my gratitude to Dan S. Kahn, who showed
enough interest to ask me what P(CPm) really was. Theorem 9.1.1 solves his
problem presented to the problem session of the A.M. Soc. Summer Institute at
Stanford in 1976.

§9.2. Theorems 9.1.1 and 9.1.2 will be proved by means of unitary cobordism,
* *

MU2 [Ad 1, Part II]. The following description of MU2 is a rephrasing of

Theorem 2.1 of Part II.

9.2.1: Proposition. As in §9.1 construct P(BUQ) where x ¢ WZ(BUQ) is a gen-

erator and BU0 is BU together with the H-space structure induced from Whitney
sum of vector bundles.

Then if Y is a finite dimensional CW complex there is a natural isomor-
phism (of rings in fact).

n
o1y, pau® ] = w? @)

9.2.2: Proof of Theorem 9.1.2. Let y ¢ n (GP ) be a torsion element. Let

e': 4BU - ZZBU be the structure map of the spectrum associated with P(BU )

(cf. §9.1). Let ¢ :Z4¢P > I GP be associated with P(EP ). If det :BUe + ¢cp”

is the H-map induced by the determinant then
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€ o24(det) v Zz(det) og!
This is because the diagram

2 o *®ly® o

S™ x BU —— BU

1 x det l i det

2 x P ——— "
X+ lEPw

is homotopy commutative. However there is a canonical map i :(IIPO0 > BUQ such

% 3
that 1 ~ (det) ci. Since MU2 (SJ) is torsion free [Ad 1, Part II] there exists
an integer, k, such that

k. S @
0 = (8#) (1#(}’)) € T’J+2k(BU )
N
Hence 0= (det)#(e#) 1#(y)
= (e"det,i,(y)
t Y
k
= (s#) )

k S ©
=Xye "j+2k(mp ).
9.2.2. Now we construct an Qm-map
e
P(TP ) - Z x BU.
To do this it suffies to define a stable natural transformation

Tp”} > KU° () (9.2.3)

: lim .

4

where the limit is taken over composition with € :Z tp” > 22

TP” of §9.1. Here
"stable" means that F commutes with the periodicity isomorphisms induced by
QZP(EPm) ~ P(TP”) and QZ(Z x BU) ~ Z x BU. Also {_,_} denotes stable homotopy
classes of maps [Ad 1, Part III] and the functors of (9.2.3) are defined on the
pointed CW category.

Let X € KU°(¢Pw) ~ Z[[x]] be the class of the reduced Hopf bundle. Let
y € ;jg;{zan,EPm} be represented by

n
g Z2n+2kX R ZZkEPw.

Let B ¢ KU°(SZ) be the Bott class. Then ka € KU°(22kEPm) and we may define

2nt+2k

F(y) = g*(850) ¢ kU°(x X) ~ KU°®(X)

where the last isomorphism (Bott periodicity) is the inverse of multiplication

+
by g™ k. Suppose we choose a different representative for y of the form

8

2% m
Z2n+2k+22X I’ g Z2k+22 € Z2k+2!L—2m

TP Tp”

Then F(y) will be given by
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B—n—k—Q G g)*( *)m(6£+k m )

However x + 1EPOo :82 X um -> me induces

° o 2 )
KU°(TP ) » KU°(S™ x TP )
sending x to B ® 1 + 1 ® x + B ® x so that e*(x) = Bx. Hence the second repre-

sentative of F(y) becomes

R O R O R e N B RS PICAI A5

= g (ex (8%))

8 Kgx (gFx)

so that F(y) is well-defined. Similarly the periodicity diagram commutes.

lim (22%%, 007} —F s kU°(X)

n

l v (Bo_) (9.2.4)

s 2n,.2 w F__ . 2
1im {z°"(zX),CP"} —— KU°(Z°X)
ol

In (9.2.4) the left-hand isomorphism is the obvious (i.e., tautological) one.

Now let P(BU$) be as in Proposition 9.2.1. We may define an Qm—map
P(BUQ) -+ Z x BU in a similar manner. Let Yl € KU°(BU0) be the i-th y-operation
[Ad 5] and set

det = 5 v exve@® vozrylyd, .00,
120
Define

5 {z _,BU ® 5 kue Q) (9.2.5)
by sending the class of g :22“+2kx > ZZkBU9 to B_n—kg*(Bkdet) e KU°(X). Notice

that det is represented by the composite

® B det X

BUY =55 rp” 24 7 x BU

where x ¢ KU°(CP") is the reduced Hopf bundle and B det is induced by the

determinant det : U(n) - U(1l) = Sl. Therefore we immediately obtain the follow-

ing result.
9.2.6: Lemma. The diagram

1im {22%,80%)
n G

A

(B det)# KU® (X)
. 2n ©
lim {Z"X,TP }

n
commutes.
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9.2.7: Proposition. Suppose that X is a finite dimensional CW complex. Then

there is a commutative diagram

v}
in (377%,50%) v 1x,2(0%)] S w0
n
N

KU° (X)

in which H is the Conner-Floyd homomorphism [C-F] and @ is the isomorphism of
Proposition 9.2.1.
Proof. Recall [Ad 1, Part I] that KU, (BU) = Z[bl’bz"'] and KU°® (BU)
= Z[[yl,yz,...]] where the yl are characterised by
. _J
. 1 if 2z b1

<z,y)> =

0 if z is any other monomial.
The isomorphism, ﬂ—l, is induced by S-maps [Part II, §2]
hn : MU(n) - BU(n) - BU

using the fact that MUzn(X) g_{ZZtX,MU(n4-t)} if dim X < 4n + 2t. The {bn}
have the following property. Let L BU(n) > BU(n)/BU(n-1) ~ MU(n) be the
canonical map. Then

(h_om),(b, ...b, ) =b, ...b,
n n ll ln 1 n

where KU,(BU(n)) is considered to be the subgroup of KU,(BU) generated by mono-
mials of weight <n. Now let En + BU(n) be the universal n-plane bundle and let

An e KU°(MU(n)) be its Thom class. The restriction of An to BU(n) is
* _ iji _.n N °
m () =Z(-DTATE) =y (E -n) e KU°(BU(n))
where A' is the i-th exterior power and n is the trivial n-plane. Notice that

n
ng : KU°(MU(n)) > KU°(BU(n)) is injective.

By the above discussion we have

b, ...b, , (hoom)*( T yD> = <h em ), (b, ...b, ), T yi»
ll ln n n i=0 n n ll ln 120
= <b, b, , I yo>
1 n i>0
1 if bl = bi = eee = b_ = bl
1 2 *n

0 otherwise

=<b, ...b. , T A>
1 n i

However the Conner-Floyd map is obtained by pulling back the class

z Ai € ® KU°(MU(i)) so that H,f§ is equal to the homomorphism obtained by pulling
i i
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back the class & yl € KU°(BU®). However [Ad 5] I yl is equal to the class
i i20

det ¢ KU°(BU®) of §9.2.5 by means of which G was defined.

9.2.8: Proof of Theorem 9.1.1. We must show that

F :nj(P(me)) ~ 1im {827y 5 xve(sh)
n

is an isomorvhism. Bv a result of J. H. C. Whitehead this will ensure that the
base-point components of P(CP”) and Z x BU are homotopy equivalent. Since F
induces an Qm—map P(TP”) > Z x BU and since both spaces have "Bott periodicity"
it follows that the map is a homotopy equivalence.

By the Conner-Floyd theorem [C-F] and §§9.2.6, 9.2.7 we know that F is
onto because H is onto in §9.2.7. By Theorem 9.1.2 we know that ﬂj(P(um)) is
torsion free. Thus we are finished if

rank(r, (2(€27)) = { . 3 sven,

. B 20 o o .
since nj(BU) = Z or 0. However Wj+2n+22(z TP ) 8 @ Hj+2n(mP ;@) from which

it is easily seen that

. 2n_j o _ 1 if j even
lim {rs’, P } 8 Q@ = { 0 if j odd

since ¢, :Hj(ZZEPm;Q) > Hj+2(me;Q) is an isomorphism.

9.2.9: Remarks. (a) An alternative method to determine ﬂj(P(me)) ® Q in

§9.2.8 is the following. Write P(EPw) = lim QZHQEP where QX = lim QkEkX. The
n

Barratt-Priddy-Quillen theorem provides models for QX [Ba; B-E; Ma 1]. These
show that QEP°° is rationally equivalent to SPWEPM, the infinite symmetric pro-

duct of TP”. By [D-T] sP”tp” is rationally equivalent to 1 K(Q,2m) from
o m>1
which it is easy to show the rational type of Po(LP ) is the same as that of BU,

namely I K(@,2m).
m>1

(b) Consider the computative diagram

KU° (X) — {X,TP"} —— 1lim {22 %,0p"}
—_—

N
1 I F
[X,BU] —— [X,QCF"] ——— KU°(X)
U U
in which AU OTU = 1 by Part I, §3.2. This shows F, G and the Conner-Floyd map

H (see §9.2.7) are all split epimorphisms. This easily implies the Conner-

Floyd theorem as mentioned in §5.4.2.
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PART III: UNORIENTED COBORDISM, ALGEBRAIC COBORDISM AND THE X(b)-SPECTRUM

§0. INTRODUCTION

Part III consists of various generalisations of and elaborations upon the
material of Parts I and II. In Part II, I constructed spectra, AU and ASp
from the H-spaces BU and BSp respectively together with some of their homotopy
groups. This process is easy to generalise to the following result. (The

reference numbers refer to those used in the body of the text in Part III.)

Theorem 1.1. Let X be a homotopy commutative, homotopy associative H-space.
Suppose b ¢ ni(X) is a stable homotopy element.

Then to this data there is associated a (periodic) commutative ring spec-—
trum, X(T), which is described below in section 1.2.

AU and ASp are respectively of the form BU(B) and BSp(B') (see Example
1.4.1).

If X = BGLR+, Quillen's space associated with an arbitrary ring, R, we

obtain from Theorem 1.1 the algebraic cobordism of R associated with

E_g_gfgggggl. The rest of §1 consists of some elementary remarks and computa-
tions. Of most interest perhaps are §§1.9, 1.10, and 1.13. The first tells
us that many algebraic cobordism spectra associated with a finite field are
trivial. The other two will enable us to compute p-adic algebraic cobordism
of projective schemes in Part IV.

In Parts I and II we studied ﬂi(BU) and MU-theory. We do the same for
MO-theory.

From the calculations of [Th] we have:

BO(2k)

EETEE:ET and a product of

Theorem 2.1. There is a (4k-2)-equivalence between
K(Z/2,n)'s.
As a corollary of Theorem 2.1 and [Part I, Theorem 4.2] we obtain the

following result.

Theorem 2.2. There are decompositions n?(BO(Zk)) = n?(BO(Zk-Z)) - Bj(k) for
all j,k. If j < 4k - 2 then Bj(k) contains the direct sum of Bj(k) copies of
zZ/2. (Bj(k) is defined in section 2.2.)

Take X = BO and T = {generator of wl(BO)} in Theorem 1.1 gives a cohomology
theory, AO*, which is periodic of period one. In Corollary 1.6 this is shown
to be a Z/2-module. The following result shows that this module structure is

hardly surprising.

85
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Theorem 3.1. There is a natural ring homomorphism

@O : AO° (W) > MO* (W)

which is an isomorphism when dim W < ©», 1In Theorems 4.1 and 4.2 results for
+
BOIF, are proved which are analogous to Theorems 2.1 and 2.2. The importance

3

of these results lies in the fact that Bomg' is 2-locally the image of J (see
the problems at end of Part IV for the connection with ni(S°)).

In §5 we consider the algebraic cobordism of Z, AZ*, and prove:
Theorem 5.1.1, There is a homomorphism
T : AZ° (X) » MO*(X)

which is onto if dim X < « but not generally injective.

§1. THE SPECTRUM X(b)

It is high time that I gave the general construction which has been the
motivation for all this work. This construction will generalise Part II, §3.
It will be the topic of §§1.1-1.3. Having defined the spectrum, X(b), I will
give several examples in §1.4. The rest of the section contains a series of
results related to the examples. For instance in §1.9 it is shown that many of
the algebraic cobordism theories associated with a finite field are trivial. 1In
§1.10-1.12 we give three basic computational results which will be needed in

Part IV.

1.1: Theorem. Let X be a homotopy associative, homotopy commutative H-space.
Suppose that b € NS(X). Then to this data there is associated a (periodic)

commutative ring spectrum, X(b), which is described in §1.2 below.

1.2: Construction of X(b). Let be HS(X) be the given stable homotopy element.

Find the smallest t 2 0 such that b may be realised as a map

(t+1)N R thX )

b:S
Then ZNb will be the unit of X(b). Set M = (1+t)N. Now for the spectrum.
Put X(b)kN = ZMX for k = 1

and define structure maps

N
) X(b)kN - X(b)(k+l)N
by means of the composition
N
I'(bx1))
N A N ) ———FS N Nxxx)
H'
N, .M-N m N .M-N

T N x xx) B 2N M N xxy By 2k
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LGEBRAIC COBORDISM AND K-THEORY 87

-N

Here H is a Hopf construction, H' is the composition of ZN(ZM XxX) >

M-N
ZN(Z XA X) with a Hopf construction, m is induced by the H-space product and
n is the canonical quotient map.

The data (e :ZNX(b)kN - X(b) k 2 1) defines a spectrum in the sense

(k+1)N°
of [Ad 1, Part III]. The product is induced by a pairing

X(b)kN A X(b)QN - X(b)(k+2)N

given by the compositions of the following form.

b I zM'N(zN(XA sMa X))

e//////;;;//’
z (1X$I)61X) M-N,_.N,_M-N

M EN x < sMxx)) > NN M Ny

Y

t
NN eEVe . ) = k.

Here the first map is a Hopf construction, the second is induced by the 'pro-

duct" of b :SM > ZM—NX with two copies of lX’ the third map is the t-fold iter-

ate of € using up ZN's one at a time starting from the right. All the identi-

b a b+c

+
fications of the type Sa AsC=s5%as use merely associativity of the

smash product, no factors are permuted.

1.3: Proof of Theorem 1.1. In the proof of [Part II, Theorem 3.1] replace
ZZBU and B by ZMX and b respectively. The proofs are then essentially the same.

1.4: Examples.
1.4.1. We have already met the following examples in Part II, sections 2-3.

(a) X BU, b = B;
(b) X = BSp b = B'

1.4.2. In section 3 the true identity of the following example will be deter-

]

mined.

Take X = BO and b = n where 0 # n ¢ nl(BO). We will write AO for the
X(T) of this example.
1.4.3. Let R be any ring with unit and set X = BGLR+. Details of BGLR+ may be
found in [H-S; Wa]. The cohomology theory associated with BGLR+(b) will be

called the algebraic cobordism of R associated with b.

In general these algebraic cobordism groups will be difficult to compute.
However the following examples deserve special comment by virtue of the fact
that we can say something about the resulting algebraic cobordism theories
(see §1.9 and §5).

(a) R = Fq, the field with q elements and b ¢ WN(BGLFZ) = KN(Eq). We

will write AEA(b) for the resulting spectrum in this example.
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88 VICTOR P. SNAITH

(b) R = Z, the integers and b = nys the generator of ﬂl(BGLZ+)==K ZnZ/2.

1
We will write AZ for the resulting spectrum in this example.

1.4.4. (a) One could replace BGLR+ in §1.4.3 by Karoubi's spaces BOER+

(¢ = #1) [K]. The resulting cohomology theories are probably very subtle in-
variants of R. (b) Also one could replace BGLR+ by one of its localisations
in the sense of [Bou], [B-K] or Su]. For example, p-finite completion X (de-
noted by X; and called H*(_;Z/p) localisation in [Bou]) puts different homotopy
elements at our disposal. BGKE:'(EA is the algebraic closure of Eﬁ) has only
non-trivial homotopy groups in odd dimensions. In fact the calculations of [Q]
yield ﬂi(BGLEEZ) = Kiiiq = { ;%* i jz:n,

q
Here R* denotes the units in a ring, R. Now let p be a prime not dividing q.
From [Bou] or [B-K] we see that the p-finite completion has homotopy groups
0 i odd,

~

ﬂi((BGﬁﬁ:)A) W
P Zp (the p-adics) for i even.

Furthermore, the Brauer lifting map of [Q] gives an H-space equivalence

(BGLF ¥) " n BU" .

9P — P

If b € ﬂz((BGﬁi5:); correiponds to 1 € ip we may form the spec-~
trum X(b) where X = (BGLﬂiq)g. This spectrum corresponds Eg*i?e periodic coho-
mology theory which is MUZ%* in each even dimension and MUZ in each odd
dimension. This is seen by identifying the spectrum with BU;(b) and following
the proof of Part II, §2.1 with the cells of BU replaced by the p-adic cells of
BU;. Here MUQp means MU-theory with 2p coefficients [Ad I, Part III].

1.4.5. (a) X = CP™(= K(Z,2)) and b nz(cpm), a generator. By Part II,

§9.1.1 the resulting spectrum, CPw(b), is periodic, unitary K-theory.

(b) Let X = BEE:, the classiiying space of the units in iﬁq' If p is a
prime not dividing q then X; ~ (CP );. Hence if b ¢ WZ(XEZ N Zp corresponds to
one then X;(b) is the periodic spectrum associated with KUZP, K~theory with
p-adic coefficients. For X (b) corresponds to the infinite loopspace

— % ©
P((BE‘q);) ~v P((CP );). As in Part II, §9 we may construct a map
o A~
G:P((CP )") » BU (= BUZ ).
C )p p( b
By Part II, §9 this is an H*(_;Z/p) isomorphism because

H*(P((CP“)Q);Z/p) H* (P(CP") ;2/p)

e

le

and H*(BU;;Z/p) H*(BU;Z/p) .

Thus G is a homotopy equivalence since both spaces are p-finitely complete

(i.e., H*(_;Z/p)-local).
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ALGEBRAIC COBORDISM AND K-THEORY 89

(c) If X = BA* for any EEL:?lgebra, A, then we may set b equalﬁf: the
image of the element b ¢ ﬂz((Bﬂ?q);) of §1.4.5(b) under the map ﬂz((Bﬂ?q);) ->
HZ(X;). The fesulting X;(b) spectrum is an analogue of topological K:fheory
(or rather KUZp) which is natural in the sense that a map Al > A2 of Eﬁ-algebras

induces a map of ring spectra (BAi);(b) > (BA;);(b).

1.4.6: The Most Important Example.3 (a) This example generalises §1.4.4(b).

If C is a category with exact sequences [Q3; Q4] we may form Quillen's category
QC and take the H-space given by the base point component (Q,-) of the loop-
space of its classifying space 2,BQC = XC’ say. For example, if V is a scheme
we may take C = P(V) the category of vector bundles over V (= locally free
sheaves of 0

y

+
Zariski site) of exact sequences. If V = Spec A then XC ~ BGLA  for this

example [Q3; Q4], so this example generalises §1.4.4(b). Note that
KoV x XP(V) = QBQR(V) for any scheme V.

-modules of finite rank) equipped with the usual notion (for the

One might, of course, replace exactness on the Zariski site for exactness
on the étale site. The Q-category construction works equally well for any site
on V but we will prefer to pursue variants of XP(V)’ introduced above, because

for this example we can make some computations, which will be found in Part IV.

(b) Suppose then that V - Speci@q is an ifq—scheme. Let p be a prime
not dividing q and let (_)g denote p-finite completion as in §1.4.4(b). We

have a map of homotopy commutative, homotopy associative H-spaces

—+
(BGLT ) * = (Xg(s;:ecﬁq)]; > {’i(v)}p

and consequently the element b ¢ ﬂz((BGﬂﬁ;);) of §1.4.4(b) yields, under the
induced homomorphism, bv € nz((XE(V));)L_ Furthermore bV is natural with re-
spect to morphisms of schemes over Spec}fq. Forming the spectrum (%E(V));(bv)
gives a contravariant functor from Specimq schemes to cohomology theories.
This is a '"'generalised sheaf cohomology theory'" in the sense of [Br-G]. We
will denote this spectrum by AquN (notice that it also depends on the once
for all choices of b and p). If W is a space we will write (AEA,V)*(W) and
(AIFq,V)*(W)for the associated cohomology and homology of W.

Agiﬁl is called the p-adic algebraic cobordism spectrum of the scheme V.

In Part IV we will identify the homotopy of this spectrum for projective
bundle schemes, Severi-Brauer schemes andshow how Mayer-Vietoris decompositions
of V and devissage and localisation techniques in algebraic K-theory can be

qV) ’
(c) Example 1.4.6(b) works equally well over the complex field. If

used to compute ﬂ*(AiE

V > Spec T is a scheme then, as in §1.4.6(b), we obtain

+. ~
(BGLT )p»*(XEKV)

)p -
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Even though GLT has the discrete topology (so the left hand space is much big-
ger than BU”) the inclusion of Z/poo c Sl c GLlE induces (BZ/pw)g a—(BGLE+)£

BZ/p )~ ~ (TP, H btain b -
and (BZ/p )p A ( )p ence we may obtain b, ¢ TrZ(Xl;(V))p in a natural manner
and construct the spectra AEV after the manner of §1.4.6(b).

Now I would like to make some elementary observations concerning the fore-

going examples.

1.5: Lemma. If multiplication by v ¢ Z annihilates the element of b ¢ WE(X)
then multiplication by v annihilates x(b)I (W) for all spaces W and all integers
9.

Proof. We use the notation of section 1.2. If O :SN -+ X is the trivial S-map

then the composite S-map

N
T (081,)
ZNQyX)—E*ZNGN><X)—————JL+ZNX

is trivial. Suppose that
j . KkN-j
¢ e XMW l;m 2w, x3

is represented by the S-map g :ZkN—JW > X. The vg is represented by

VQN®®lg)oHogg

e#(Vg)

ZN(Vb (] 1X) oHo ZNg

e

ZN(OQ lX) oHo ZNg

le

0

1.6: Corollary. In the notation of 1.4.2/3 both (a) AOJ(W), and (b) AZj(w)
are annihilated by multiplicationby two for all j and W.

(In fact in section 3 we will see that we knew 1.6(a) already!)

1.7: H,(A0;Z/2) and H,(AZ;Z/2). The generator of Hj(RPw;Z/Z) defines a class
in Hj+l(AOl;Z/2) and thence a class

u, ¢ H,(A03;Z/2).

] J

Since 0(1) = GL,Z there is a commutative diagram of natural maps

1

BCL,Z = RP” = BO(1)

| |

BCLZ' —2— BO  BCLR.
Therefore the generator of Hj(RPm;Z/Z) defines a class

Vj € Hj(AZ;Z/Z)
satisfying i*(vj) = uj.
Computations like those of [Part II, section 3.6] yield the following

result.
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1.8: Proposition. In the notation of section 1.7
-1
(a) H,(A03Z/2) Z/Z[ul,ul ,uz,;i., un,...];
(b) H (AZ;Z/2) ~ H*(BGLZ;Z/Z)[V1 ]; and

1S

(¢) i :BGLZ+ - BO induces a homomorphism of spectra i : AZ > AO such that
i, :H (AZ;Z/2) ~ H,(A0;Z/2)
is onto. In fact i*(vj) = uj.
1.9: Proposition. In examples 1.4.3(a) for all spaces W and integers j
5 h|
AIFq(T) (W) = 0.

Proof. From [Q] we know that any element b e KN(IFq) has zero square. .

This squaring operation is the one induced by the H-space product on BGLIF

("Whitney sum'"). Hence all iterated products of b must be zero in ﬂi(BGLEﬁ).
Now arguing as in Lemma 1.5 we see that the 2-fold iterate of the structure

map, €, is stably trivial. Hence the spectrum is trivial.

1.10: Theorem. Suppose, in §1.2, that X = Xl X X2 is a product of H-spaces

and b ¢ W;(X) is in the summand ng(Xl). Then

(a) Xl(b) is a summand in X(b).

(b) 1In fact X(b) is equal to the spectrum Xl(b)A (X;) where X; is the
union of X2 with a disjoint point, *.

(c) From (b) we may identify T, (X(b)) with Xl(b)*(Xz), the unreduced

Xl(b)—homology of X Then the product on 1U$X(b)) induced by the ring spec-

2t
trum becomes the produced induced by the H-space structure of XZ‘

Proof. (a) This is clear since the X(b) construction is natural for H-maps
which preserve b and the maps X, < X, x X, » X, fall into this category.

1 1 2 1
(b) Stably X, x X, v X, Vv (Xl AXZ) v X, so for S-homotopy classes we may

1 2 1
write
{—’Xl x Xz} = Al(_) ® AZ(—) & A3(_) (1.10.1)
where Ai(_) = {_,Xi) (i =1,2)
and A3(_) = {_Jxl AXZ}.

The structure map of (X1 XXZ)(b) is given by multiplication by b
N
e = (0. 2 { X x X,0 > {T7_X % Xyt

We must investigate (b._ ) in terms of the decomposition (1.10.1). Clearly if
X € Al(_) = A1 then b(xl,0,0) = (bxl,0,0) by (a). Also the Hopf, H, construc-

tion has the property that the S-map

H m
Xl A X2 — Xl X X2 — Xl A X2

is the identity where n(yl,yz) =y, AV, and H is trivial when composed with
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either projection Xl X X2 - Xi' From the definition of € given in §1.2 it

follows that
£4(0,0,x9) = (0,0,(c » 1Xz)(x3))
where € A lX is the smash product of lX

2 2
Similarly one sees that e#(O,xz,O) = (0,0,0). Hence when we form the limit

with the structure map, e, of Xl(b)'

over successive compositions with ey we obtain an isomorphism
. kN kN kN
lim (Al(Z ) 8 A2(Z ) 8 A3(Z D))

v lim A (ZkN ) ® lim A (ZkN )
i A
where the first limit is over composition with €, the structure map of Xl(b)’
and the second limit is over composition with € A lX .

2

In terms of spectra this means that (Xl X XZ)(b) equals the sum of Xl<b)
and Xl(b) A Xy, which establishes part (b).
(c) We must check the various products of elements represented al,ai € Al
e A

3 in the splitting (1.10.1). By (a) the product a,a! corresponds

]
and ag,a 131

3
to the product in W*(Xl(b)).

Suppose that a, is represented by

1
. GkN+j kN kN
a; : S > I Xl > I (Xl X XZ)
and ag is represented by
. QAN+HL N H, AN
az:s > 3 (xl/\xz)—oz (xlxxz).

The product a;ag is, by definition represented by an S-map of the form

SkN+J A SSLN+1

(X) x X) x X))

Z(k—HL)N

(mX x 1, )

where H' is a Hopf construction and my :Xl X Xl > Xl is the H-space product.

Projecting to Xl we see that a has a zero component in the Al(_)—component

a
173
of (1.10.1) while the A3(_)—component represents is precisely the product of

ay with a; under the v*(Xl(b))—module structure of Xl(b)*(Xz).
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Similar is the verification that a3aé is the product in Xl(b)*(Xz) of a,

[] . .

and as under the map induced by the product mX2 .X2 X X2 > X2. Here one uses

the fact that me X my is used in §1.2 to define the product on the spectrum
1 2

(Xl x XZ)(b)’ Details will be left to the reader.

1.11: Corollary. Suppose that X is a homotopy commutative homotopy associa-

tive H-space. Let b e wN(X) and let A : X > X be the diagonal map. Then
n*(Xn(A#(b))) is isomorphic to the m,(X(b))-algebra X(b)*(Xn—l). (Note that b

is not a stable homotopy element in this example.)
Proof. Consider the map A X0 > X0 given by

)\(Xl, RS Xn)= (xl,mx(xz, X(xl)) PR mX(Xn’X(xl)))

where My is the H-space product and x : X - X is the homotopy inverse. X is an
H-space equivalence and it sends A*(b) to the image of b under the inclusion of
the first factor. Hence Xn(A*(b)) is equivalent to (Xl X XZ)(b) as in §1.10

1 =X and X2 = Xn_l and the result follows from §1.10(c).

with X
1.12. Suppose now that F —~>E "5 B is a fibration of H-spaces and H-maps.
Let b ¢ WS(F) and form the spectra F(b) and E(i#(b)). The map i induces a

homomorphism of ring spectra.
i:F() » E(i#(b)) (1.12.1)

In §1.10 we studied this situation for the trivial fibring E = F x B.
Since our spectra are constructed using stable homotopy, which does not behave
well with respect to fibrations, the best we can hope for is a spectral sequence

by means of which to study (1.12.1).

1.13: Theorem. Let F —>E —»B and b « ﬂ;(F) be as in §1.12. Then there

exists a (strongly convergent) spectral sequence with the following properties:
. 2 _ _ . .
(i) Ep q” Hp(B, nq(F(b))) > wp+q(E(1#(b))), where the homology is

3

. . . . . r
taken with simple coefficients, (dr 'Ep,q > Ep—r,q+r—l)'

(ii) The associated filtration on w*(E(i#(b))) has the form

0=F_1’SCFO,SCF1’SC---ch’Sc---
where U Fp,S = ﬂS(E(l#(b))),
P
© r
and F s/F N E o ~ 1lim E o
P, p1,s P, S-P T > P,S-p

Proof. Let Bn be the n-skeleton of B and filter E by {n_l(Bn)}. Applying
stable homotopy to this filtration we obtain, by [Sw, Ch. 15], a strongly con-

vergent spectral sequence
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2 S S N
D =H (B, F = E). 1.13.1
b.q p( nq( )) = ﬂp+q( ) ( )

By making the multiplication m:B x B » B cellular we may assume that the mul-

tiplication on E factors as {m:E_x E > E }. Hence, as Fc E, we obtain a
n m n+m 0

family of compatible maps

me(i x 1) : F x En > En'

Hence multiplication bg i#(b) on ni(E) induces a mapsof spectral sequences in
(1.13.1) which sends Dp,q to Dp,q+N by multiplying ﬂq(F) by b. Now form the
direct limit of the spectral sequence (1.13.1) under successive iterates of the
above map. Since }éﬁ;is exact we obtain a spectral sequence which evidently
satisfies (i). Also, because the filtration associated with (1.13.1) is trivial
in negative dimensions the resulting filtration on ﬂ*(E(i#(b))) will be trivial

in negative dimensions. Furthermore, because direct limits and unions commute,

© r
v F equals 7 _(E(i,(b))). Similarly F N ~ 1lim D
= = =10 -
5 Pss s # P’S/Fp—l,s Dp,s—p o7 P»S-p
implies the analogous result for E. . Hence (ii) is established which means

P,s-p
([C-E] Ch. 15; [Sw] Ch. 15) that the spectral sequence converges strongly.

§2. THE STABLE HOMOTOPY OF BO

The objective of this section is to prove the following result.

2.1: Theorem. For suitable integers, d(%), there is a (4k-2)-equivalence

between
2k-1 am) 2k

and I K(z/2,2k-1+h) x I K(Z/2,2k+L)
h=0 2=0

BO(2k) a(2).

BO(2k-2)

The d(2) are defined in section 2.6. K(Z/2,n) is the usual Eilenberg-Maclane
space.

The proof of Theorem 2.1 is essentially due to R. Thom [Th, section 6].
However, for completeness, I will give it in full in a series of steps (sec-
tions 2.4-2.9). As a corollary of [Part I, Theorem 4.2(ii)] and Theorem 2.1

we will obtain the following result. It will be proved in section 2.10.
2.2: Theorem. There is a decomposition of stable homotopy groups
n§<Bo(zk)) 3 WJS,(BO(Zk—Z)) @ B, (k)

for all k,j. If j < 4k - 2 then Bj(k) contains the direct sum of Sj(k) copies
of Z/2 where Bj(k) is given by

0 if j <2k -1
Bj(k) = 1 if j =2k -1
d(j-2k+1)+d(j-2k) if 2k €3 <4k - 3

Furthermore the generators of the Z/2's above support the cohomology classes

XZ and Yi defined in section 2.6.
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Here d(n) is the integer of Theorem 2.1.

Remark. Of course, one may be able to generate further elements of ﬁi(BO) from
the "basic" elements which the above result provides by means of the tensor
product pairing (cf. Part I, section 6). I do not propose to undertake a de-
tailed calculation of that process here.

For the rest of this section H* will mean mod 2 singular cohomology.

Firstly we must get our notation straight.

2.3: Stiefel-Whitney classes and the ordering. H*(BO(1)) ~ Z/2[t] where

deg t = 1. Hence

H*(BO(1)2) v 2/2[t ..., ty,]

2k

where deg ts =1 and tg belongs to the s-th factor.
Let h :BO(l)2k

w, € HV(BO(Zk)) is the v-th Stiefel-Whitney class then h*(wv) is equal to the

-+ BO(2k) be the natural map then h* is injective. If

v-th elementary symmetric function in t

H*(BO(2K)) v 2/2[w,,..

1reees oy
. WZk] embeds, via h*, as the algebra of symmetric
polynomials.

. . BO(2k) . . .
Kl——— =
We may identify H [BO(Z]—Z)) with the ideal <W2]-l’w2 > in H*(BO(2k)).

Hence we may also interpret this ideal as symmetric polynomials in tl,..., t2k'
Henceforth we will make such identifications without further mention.
€ €
1f t& =t 1... t 2k is a monomial denote by
- 1 2k
€

orb(t™) € Z/Z[tl,..., tZk] (2.3.1)
the sum of all distinct translations of £$~under the symmetric group, ZZk'
Hence orb(EFD may be interpresented as an element of H*(BO(2k)).

For il > 12 > eee > in >0
jlzjzz---zjmzo

we write WoWL e WL WL WL e W (2.3.2)

172 *n J1 32 Im
if and only if for some s > 0O

T T T T g g T g gy 7 Je+1 e
The monomial ordering is defined by (2.3.2). An expression of the form
w eee w + (lower monomials)x (2.3.3)
u u

1 s

will mean a polynomial expression in which LA wu is strictly higher in
1 s
the monomial ordering of (2.3.2) than any monomial in the bracket.
. . . . BO(2k)
2.4 . . * | =
4 Lemma. With the conventions of section 2.3 in H [BO(Zk—Z)]
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SqU(WZk) =w +e» w w, + (lower monomials)w

2
Uy u, 2k k
and
U _ . .
Sq (WZk—l) = wul .o WurWZk—l + (lower monomlals)WZk_l (mod ideal <w2k>).
Here U = (ul,..., ur) satisfies Zuj < 2k-1 and U is an admissible sequence of

integers [E-S] and SqU is the corresponding iteration of Steenrod operations.

Proof. By Wu's formula [M-St; Th,p. 37]
s
4 ok = You¥s

while quw + (s-l)ws_lwZk so we may start an induction on r.

2k-1 = Yor-1%s

First consider SqU(WZk)' By induction and the Cartan formula

U _ .
Sq (w2k) = 0<;;u kangq (wu2 vee wur + (lower monomials))
- 1

The term when a = uy is clearly of the desired form since SqO = Identity. Now

if j < u, then by the Wu formula quwj contains Wb's only for b < 2j < 2u2.
Since U is admissible 2u2 < uy so expanding the expression
u_ -a

1
e + i
kaaSq (wu2 wur (lower monomials))

w

with 0 < a < Uy by means of the Cartan formula we see that it contains no

terms involving wj for j 2 ug. Hence this expression is of the form
w2k(lower monomials)

and the induction is complete.

The same argument establishes the second formula since the ideal <w_, > is

2k
invariant under the action of the Steenrod algebra.
. j [_BO(2k) . . - U
2.5: Corollary. In H [BO(Zk—Z) with j < 4k - 2 the elements Sq oYY and

SqUw2k are linearly independent as U ranges through admissible sequences.

U v _ . . : .
Proof. If ZAUSq Lo + Zquq Vool = 0 consider the highest monomial appearing
Reducing the linear relation modulo <w2k> and

appealing to Proposition 2.4 we see that the highest monomial comes from only

in the expression ZquqVWZk_l.

one term whose coefficient, M must therefore be zero. By induction on the
monomial ordering all the L, are zero. A similar induction shows that all the

AU are zero also.

2.6: Dyadism. Here we recall R. Thom's terminology concerning dyadic vari-
ables, non-dyadic partitions and dyadic ordering of monomials.

First let d(h) be the number of non-dyadic partitions of h. That is, the

number of unordered sets of positive integers (al,..., aS) such that Zai = h
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and no a; is of the form 2™ - 1.

Now let t be the variables introduced in section 2.3. If

1 by
p(tl,..., t2k) is a polynomial we call t a dyadic variable of p(tl,...) if it

appears in each monomial with exponent zero or a power of two. If tn is dyadic

in p(tl,...) it is dyadic in Sqr(p(tl,...)).
Now we define the dyadic ordering of monomials in tl""’ t2k' Let
€ €
€ _ 1 2k
et ety Set
u(Es) = (number of non-dyadic variables in Eg)
and

V(E?) = (the total degree of the non-dyadic variables in E?).
We say x = E? > Eg =y if and only if
either u(x) > u(y) or u(x) = u(y) and v(x) < v(y).

For all h < 2k - 1 form

h a,+1 ar+1
X = orb(ty cee BB e By )
where w = (al,..., ar) runs through non-dyadic partitions of h. Also for
2 < 2k, form
Y- orb(tb i tbs+lt t, )
w 1 s s+1 "' T2k

where w = (b bs) runs through non-dyadic partitions of £. Orb () was

oo
defined in section 2.3.1.

h HZk—l+h[ BO(2k) ] q Yi . H2k+2[ BO(2k) ).

Hence X e BO(2k-2) BO(2k-2)
Finall onsider the following set of elements in H* _BOC2k)
inally cons g BO(2k-2) | °
U,
m 1 m-1 h,h U
Xw’ Sq Xw yeees Sq th,..., Sq Vouo1 (2.6.1)
and
n 1,n-1 VQ 2 A%
Yw’ Sq Ym yeees SqQ Y ,..., Sq VoL (2.6.2)

In (2.6.1) m is any integer such that m < 2k - 1, Uh

runs through the set of d(h) non-dyadic

runs through admissible

sequences of degree m - h while wy

partitions of h. In (2.6.2) n is any integer such that n < 2k, V, runs through

3

admissible sequences of degree n - ¢ while w, runs through non-dyadic partitions

L
of 2.

I.h I,2
2.7: Lemma. Let w = (ul,..., ur). Let Sq Xm and Sq Yw be elements of (2.6.1)

and (2.6.2) respectively. Then, in the dyadic ordering

o,+1 ar+l I
(1) orb(tl v tr Sq (tr+1 cee tZk)) contains the maximal monomials
2
of SqIYw,
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o,+1 ar+l T

and (ii) orb(tl cee t Sq )) contains the maximal

ey o T

monomials of SqIXS which are not in the ideal <w2k>.

Proof. Let us start with (i).
As we remarked in section 2.6 if tn is dyadic in a polynomial p it is
dyadic in SqI(p). This is because

r, m m, mtr
S t.) = t, .
(@) = Dy

From this observation SqI(t t,,) is totally dyadic and hence if x

r+1 °°° T2k
is a monomial in SqIYz then u(x) < r. There are only two ways to achieve u(x)
w

= r. Clearly any monomial in the expression displayed in (i) has u-value equal

to r. This term has monomials whose v-value is r + &. The other way is to

obtain monomials from the expansion of SqIYL of the form

a a+1 a a
1 1 r+1 2k
[Ssq (tl ) ...1[Sq (tr+l) ... Sq (t2k)]
r
in which £ a, > 0 and in which the first bracket contributes a non-dyadic
1

monomial. The v-value for such a monomial is
L a, +1z2 (us + 1) >r+ 2.
i J s

Hence the assertion (i) is proved.

The proof of (ii) is similar, all the equationsbeing taken modulo <w2k>.

2.8: Proposition. The elements of degree j in (2.6.1) and (2.6.2) form a
linearly independent subset of
Hj[ﬁg—(()é—ilf—%)) if § < 4k - 2.
Proof. I will give a proof, using Lemma 2.7, which will show that the elements
of (2.6.2) are linearly independent and that the elements of (2.6.1) are lin-
early independent modulo the ideal TR Since the (2.6.2) elements are in
My > the result follows.
First suppose a relation exists
0 = X chqIAYi.
Asw, L
There can be no linear dependence relations A = B if the monomials of maximal
dyadic order in A are strictly dyadically bigger than all monomials in B.
Hence the only possible relations are between SqIY's with the same maximal
occurring u-values and v-values. That is, u=r and v = r + £, by the proof of
Lemma 2.7. However for fixed £ the maximal terms in SqIYQ for different w are

all distinct as w varies. Hence the only possible relation is of the form

I
_ 2
0= ZCASq XYw
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for fixed w,%. But in this expression the dyadically maximal terms, by
Lemma 2.7, are orb(z) where

o+l o _+1 I
r

- 1 A
z = i c tl - tr (Sq (tr+l . t2k))
= (t:ct1+l A D SqI}‘(t to, ).
1 N A r+1 """ T2k
o, +1 ar+l
However if orb(z) = 0 then z = 0 but since (t1 e tr ) # 0 we obtain a

contradiction to the linear independence of the set

IA
CERCANIY

which is proved as in Lemma 2.4. Hence CA = 0 for all X.

Now repeat the proof modulo <w,, > using Lemma 2.7 (ii) to obtain the

2k

linear independence of the SqIXZ's modulo <w,, >.

2k
2.9: Proof of Theorem 2.1. The product of the cohomology classes XZ and Yi

gives a map from E%%éé%%i into the product of Eilenberg-Maclane spaces in the

statement of Theorem 2.1. In dimensions less than 4k - 2 [Ser] tells us that
a basis for the mod 2 cohomology of this product is given by the images of the
fundamental classes under admissible SqI operations. Hence, to demonstrate an

equivalence at the prime 2, we must check that the elements of (2.6.1) and
(2.6.2) generate H*(Eg%§%%%7 in dimensions < 4k - 2. Let c(t) gqual the num-
ber of dyadic partitions of t. Since the only indecomposable Sq1 are those
with i = 2™ for some m [E-S, p. 10] c(t) equals the number of admissible SqI

of degree t. Hence the elements of (2.6.1) and (2.6.2) are a basis for a vec-

t+2k-1{ BO(2k)
BO(2k-2)

td(h)c(t-h) + £d(2)c(t-1-2). The first sum is the number of partitions of t

h 2

since each partition splits uniquely into a dyadic and a non-dyadic part. The

tor subspace of H which has dimension (if t < 2k - 1)

second sum is the number of partitions of t - 1. The result is clearly equal

t+2k-1[ BO(2k)

to dim H EBIEE:ET . At other primes both spaces are trivial in these

dimensions so the map is a (4k - 2)-equivalence.

2.10: Proof of Theorem 2.2. The decomposition of n?(BO(Zk)) follows from
[Part I, Theorem 4.2(ii)]. The fundamental classes of the product of Eilen-
berg-Maclane spaces of Theorem 2.1 provide the direct sums of Z/2's in

BO (2k) . .. .
j[BO(Zk—Z) . Since these are detected by cohomology they are non-trivial in

S{ BO(2k) .. .
j{ﬁB?EEiii]' By an argument similar to that of [Part II, Lemma 2.7], which
is given in section 3, the S-map
BO(2k)
Bo+ v ———
1<k BO(2k-2)
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sends each mod 2 homology class to "itself'". Here we interpret homology

BO(2k) . .
B0 (25-2) as elements of H (BO) as we did for cohomology 1ﬁ

section 2.3. Hence the fundamental classes support the classes Yi and Xw

classes of H

because of the choice of (4k-2)-equivalence given in section 2.9.

§3. UNORLENTED COBORDISM

In this section I wish to identify AO-theory in much the same way as I
computed AU- and ASp~theory in [Part II, sections 1/2].

If (Xz) are the elements of (2.6.1) then Uk = HXZ may be interpreted as

2k-1{ BO(2k) h
BOC2k-2) | * Here the classes Xw run through the set ex-

an element of MO
hibited in (2.6.1). Then by means of [Part I, Theorem 4.2] this class may be
"lifted" to Uk € MOZk_l(BO). There is an obvious choice of "lifting'" since
MO* is just a sum of copies of H*(_;Z/2), namely the one used in the cohomology
identifications of section 2.3. When we compute (vO(Zn))* in section 3.4 we
will see that these two "liftings" are the same. Similarly if (Yi) are the

elements of (2.6.2) Vk = HYi defines a class (see §3.10)

Vk € MOZk(BO).

The main result of this section is the following.

3.1: Theorem. Let F ¢ AO°(W) be represented by f ¢ [EN+lW,ZBO]. Then
(@ (1 u +v) e 1 M7 @ M0 (M) defines an element
k k
k=1 k>1

@O(F) ¢ MO*(W).
(b) QO : AO° (W) - MO*(W) = 1im_ I MOk(w) is a ring homomorphism, and
N -N<k

(c) @O is an isomorphism when dim W < =,

Theorem 3.1 will be proved in section 3.9. The programme of proof is
analogous to that sketched in [Part II, section 2.3] in the unitary case. I
suggest the reader consult that sketch before becoming embroiled in the tech-
nical details which follow., Briefly we wish to take the AO-theory structure
map and analyse its square, ZZ(ZZBO) *’ZZBO, in terms of the splitting [Part I,
Theorem 4.2]. 1In terms of this splitting we want to show that this map is
stably the sum of maps 22[22 E%%é%%%;} +~22 E%é%%%%l

decreases the "BO-skeletal filtration'. So we split the map stably into two

(1L £ k) plus a map which

pieces and apply obstruction theory to compress the "skeletal filtration' of

the unwanted piece.

Firstly we must analyse in homology the splitting given by [Part I,
Theorem 4.2].

The next result is the real analogue of [Part II, section 1].

3.2: Proposition. Consider the composition of S-maps
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o FtCmBO(Z)

n
t<n Ft—lchO(z)

Bo(1)2“ k, anJO(Z) > FnCwBO(Z)

—
FSCWBO(Z)

F__,C_B0(2)

(Here we are using the notation of [Part I, Proposition 3.7 and section 4].)
If s < n this composite is the track-group sum of maps Byseres 8y each of
which factors through one of the canonical projections from BO(l) onto a

copy of BO(l)

Proof. In the proof of [Part II, Theorem 1.2] given in [Part II, section 1.4]
replace BU(1l) by BO(2). The proof then shows that
FSCwBO(Z)

F__,CB0(2)

is the sum of maps which factor through projections B0(2)n *—BO(Z)S. Now re-

n
BO(2) " -~ BZHJO(Z) >

strict to BO(l)2n via the natural map.

3.3: (BO (BO3;Z/2). Let uj € Hj(BO;Z/Z) denote the image of the generator of
Hj(BO(l);Z/Z) (j 2 1). Then

H*(BO;Z/Z) = Z/2[u1,u2,...] (cf. section 1.8).

H,(BO(2k);Z/2) may be identified with the subspace spanned by monomials of
BO(2k)
*{BO(2k- 2) 3
subspace spanned by monomials of weight (2k-1) or 2k. With these conventions

weight < 2k. 1In this subspace H Z/Z]nmy be identified with the

we have the following result.
3.4: Proposition. Let v : BO(2n) >~ Vv _BOC2%) be the S-equivalence of
e 0(2n) 1<0<n BO(242-2)
[Part I, Theorem 4.2]. In the notation of section 3.3
(v @ e+ 8u ) =u 8- 8u

O(2n))*(u ) . ) )

for all 1 < p < n.

Proof. Since v )|B0(2n—2) Ny we may take p = 2n-1 or 2n. The

0(2n 0(2n-2)

stable map vO(Zn) is a composite of the form (in the notation of [Part I,

section 4])
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102 VICTOR P. SNAITH

T(nn)
BO(2n) BZHJO(Z) > FnCm(BO(Z)
]
n
FtCmBO(Z)
V ———= v
1<t<n Ft—lcho(z) 1<ts<n th_l 0(2)
/Tt
t
BO(2t)
1<t<n BO(2t-2)
The class u, 8 e¢s @ u, = h*(x, @ ee¢ ® X, ) where 0 # x ¢
i i i i s
1 P 1 o)

HS(BO(l);Z/Z) and h is the natural map (cf. [Part I, Proposition 3.7]). The

part of the composite v which has domain BZH{O(Z) and range

0(2n)

BZ__,|0(2)

just the canonical collapse by property (b) of [Part I, section 4.5]. From

[Part I, Proposition 3.7]

T(nn) oh =132 I(g)kg where I(g) = *1
g
and kg is the conjugate of k by the permutation of BO(l)2n induced by g. Hence
BO(2n)

the part of v oh with range

BO(2n-2)

. 2n
0(2n) is equal to I I(g)hg where h:BO(1)

g
-+ BO(2n) is the natural map and hg is the conjugate by g of the composite

B0o(1)%® -1 Bo(2n) » E%%éﬁ%%i

in which the second map is the canonical collapse. In mod 2 homology

(hg)* = h*. Also we have ¥ I(g) = 1. Therefore the proof of [Part I, Proposi-

tion 3.6] shows that g

(ZI(g)hg*)(xi @ +ee ®x, ) =h,(x, 8---0x )

1 P 1 P
=u Q +++ 8 u,
1 n
. BO(2n) . BO(2k)
That deals with the factor BO(2n-2) ° However the maps into factors BO(2k-2)

(k < n) induced by v oh are sums of maps which factor through projection

0(2n) 2n 2k

maps, by Proposition 3.2. These projections BO(1l) - BO(1) (k < n) annihi-
late x, @ +++ 8 x, when p = 2n-1 or 2n. Hence the only non-zero component of

i, 1p
(vO(Zn) oh)*(xi @ «++ B X ) is h*(xi B «++ B Xy ) and the proof is complete.
1 P 1 P

3.5: Corollary. Let ¢ :ZZBO - BO be the structure map of the AO-spectrum
(Example 1.4.2). By means of the stable decomposition of [Part I, Theorem 4.2]
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consider the S-map, (S¢) oe, as inducing

L, g2 B0 BO(2¢)
T 1<t<n BO(2t-2) 1<t<n+l BO(2t-2)

Let Aj equal the composite (j < n)

S S, L ey,
J 1<ts<n 1<t<ntl
BO(23+2)
BO(2j)
n
Set My S €n ” % A, then 1 induces zero in reduced homology with rational
3=1

coefficients or with Z/q coefficients for any prime q.

Proof. With coefficients in Z/2 the result follows at once (cf. [Part II,

Corollary 2.8]) from Proposition 3.4 and the fact that

u, ® u, ® u, O s+« B u, ifp=3j
(Apuley @-vou ) =4 1 b0 )

1 P 0 if p # 3

With coefficient in Z/q for odd q or with rational coefficients the result is
proved by a computation which is essentially the same as the unitary case

[Part II, Corollary 2.8].

3.6: Some notation and remarks relating to the proof of Proposition 3.8.

We are now to prove the real analogue of [Part II, Proposition 2.9]. It

will be convenient to give names to pieces of the map we wish to deform.

First notice that u_ has range v §%%§%§%T since the part of € mapping
n 1<ts<n
into 29&22121,-5 A Define
BO(2n) nt CoHm
. . <2 _B0(27) BO(2%)
1y (350 I 300379y Y B0(2e-2)
to be that summand of u_ with this range and domain. For non-triviality we
. o ) 2 _BO(2t) o
must have 2 < j < n. For pu_ restricts to u_ on v L ——>—>+ which is
n s BO(2t-2)
1<t<s
stably ZZBO(Zs) and p_ maps ZZBO(Zs) into BO(2s).
BO?Zj) 2n n
= . i Y, i -
Now set Gj 50(23-2) Write BO(1) stably as Vv Yu where 5 is ob

j=1
tained as follows. BO(l)2n splits as the wedge of gq-fold smash products of

copies of BO(1l) (1 < q < 2n). Yj is the union of all the q-fold smash products
where q = 2j or 2j-1.

3.7: Proposition. In the notation of §3.6 with £ < j < n the following compo-

site S-map is trivial.
2 w (3,9

zzyj c £2(80(1)%™) > 5%80(2n) - 3 6, ———s

x
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104 VICTOR P. SNAITH

(Here the nameless maps are the natural ones.)

Proof. Consider the following commutative diagram consisting of S-maps from

Part I §4 and from §3.6 above

n
ZzY. c ZZBO(l)2n - 22B0(2n) NV G > G
Vo6 > Gy
t=1
€ w350
i, n+l
Yo I po1)?™? SBon+2) v v G
J k=1
T
F,C,B0(2) ", AG‘/
Fz_lchO(Z) 2

In this diagram T is the S-map of Proposition 3.2 (with n replaced by n+1).
Hence T is a sum of S-maps, 85 and each 8 factors through a projection of the
form 7 :BO(l)2n+2 -+ BO(l)ZZ. The result follows from the fact that = oij+l is

trivial (i is the inclusion of Yj+1 in the diagram).

j+l
. A BO(23)
3.8: Proposition. Let (G, be the m-skelet f = ——="
( J)m skeleton o Gj BO(ZJ—Z) . Then for
any n,m = 1 there is an S-map u;(j,z) :ZZGj -> Gl such that

(i) ué(j,l) Y un(j,l), the S-map of section 3.6.

(1) (3, maps 2°(6,), to (6) .
Proof. The proof follows the ideas of Part II, §2.9 but the obstruction theory
is more subtle. Firstly we observe that all possibly zero obstructions are
two primary. This is because un(j,R) is constructed by taking a summand (using
the stable splittings of BO(2k)) of the S-map 22(B0(2n))+ BO(2n+2) given by the
Hopf map on

st x st x Bo(2n) X021, 50(1) x BO(2n) + BO(20+2)

and 2n = 0 € nl(BO(l)) (cf. 81.5). Hence by the mod 2 part of Proposition 3.5
and the argument of Part II, 52.9 we find 1" homotopic to un(j,l) and fitting

into the following diagram on the m-skeleton of G,.
J

EZ(G')m_l 9’22(G,)m-+v Sm+2

o
J U" l U" J' ulll (3.8.1)

m+1
(Gl)m - (Gl)m+l > ; Sa

In (3.8.1) the rows are cofibrations.
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We must show that p' is trivial. If not then quwill detect p"' in

H*(C(u'"' );2/2) where C(f) means the mapping cone of f. Here "detect'" means qu

. m+1
is non-zero on H (C(u'"");Z/2). Now consider the S-map Yj +~Gj introduced in

§3.6. It induces

2(v.)
. _S_J_m_ > v g™l
o
z (Yj)m—l o

Since H*(C(u'"");Z/2) » H*(C(g);Z/2) is injectivequwould detect g if it de-
tected u"'. However, by Proposition 3.7, un(j,l) is trivial on Zij if 2<j<n
and it is easy to compress the nullhomotopy to give a nullhomotopy of g. There-
for ¢ is trivial.

As in Part II, §2.9 we perform the above argument on consecutive skeleta

and then extend to an S-map to get u(lv) l.un(j,l) fitting into the following
diagram.
2 2 m+2
R CR A OIS
]-1(1V) u(1V)l u(v) (3.8.2)
(G,)

m
2'm-1 (Gl)m > ; SY

In (3.8.2) the rows are cofibrations.

)

In (3.8.2) we must show that p is trivial. I intend to do this by
means of a well-known argument due to Adem [T, p. 84, Example 3] by which one
shows that nz € ﬁg(S°) is non-trivial for 0 # n € ﬂi(S°). First consider the

composite

)
g' i 1i(r) i) o+ ST T,y gt
j’m j’m B Y
B Y
The argument used above to show that the S-map, g, was trivial may be used to

show that g' ~ 0. Suppose for 80 and Yo the S-map

is non-trivial. Hence it is n2 where 0 # n ¢ ﬂi(so). Thus we have a composi-

tion
$2(v.) - %2 0, gl n, gm (3.8.3)
jm B Yo
Q
which is trivial. However 1 is non-trivial and detected by qu in its mapping

mt2

cone. Also ZZ(Yj)m +-SB LN Sm+l is non-trivial because qu takes the inte-
0

gral class which is supported by Sm+l and maps it non-trivially. Since (3.8.3)
is trivial we may attach to the mapping cone C(n) the cone on ZZ(Yj)m. We

obtain
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106 VICTOR P. SNAITH

m

Yo

~ k2 2
L= (S U e ) ucC: (Yj)m

where CZZ(YJ.)m is the cone on ZZ(Yj)m. Since qu detects n and the composite

of the first two maps in (3.8.3) we see that if u € Hm(L;Z/Z) is the integral

2

class carried by S? then 0 # SqZSq u € Hm+4(L;Z/2). However Sqlu = 0 since

0
1
Sq~ is the Bockstein and annihilates integral classes. Therefore the Adem
relation [E-S, p. 2] SqZqu = Sq3Sql shows that 0 = SqZquu and we have con-
tradicted the equation u(v) = n2 so u(v) = 0. Therefore u(lv) is compressible
to send Zz(Gj)m into (Gj)m—l and u;(j,k) is obtained by extending the compressed

map to the whole of & Gj'

3.9: Proof of Theorem 3.1. If dim W < » we have

AO°(W) = Lim [z 1W,£BO] ~ lim {z W, BO}.

N N
Also if dim W < 4n-2 then the map induced by 1II (Uk + Vk)
k>n
BO 2
¢ :{w,—_}—» I MO (W)
0 BO(2n-2) 022n-1

is an isomorphism. This is proved like [Part I, Theorem 5.1] using Theorem 2.1
and the identification of MO-theory [T] in terms of mod 2 cohomology (see Re-
mark 3.10 for a sketch of Thom's identification of MO-theory). Hence ®0 is a
split surjection, by the argument of [Part II, Theorem 2.1].

QO is, of course, well-defined and since kI>Il(Uk + Vk) is an exponential
map

KO° () » MO*( )

®0 is a ring homomorphism. For analogous arguments in the unitary case see
[Part II, section 2.3 and 5.3].

It remains to show that ¢0 is injective. Here the proof is entirely
analogous to that of [Part II, Proposition 2.11] using Proposition 3.8 to re-

place [Part II, Proposition 2.9]. Details are left to the reader.

3.10: Remark. Let H* denote mod 2 cohomology. If MO(t) is the orthogonal

Thom space then MO(2k-1) = B0(2k-1) and we have a natural map MO(2k-1) -

BO(2k-2)

BO(2k) h « [(BO(2K) ] )
EBYEE:ET' The classes Xw e H [EB?EE:ET )of (2.6.1) pull back to give classes
X: ¢ H*(MO(2k-1)). We obtain a map

Wi T XD o Mo(2k-1) o1 K(z/2, 2k-1+h) 4 (M)
h,w h

where h,w run through the set of indices used in (2.6.1) and d(h) is as in

§2.6. This map is a (4k-2)-equivalence. Similarly there is a collapsing
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ALGEBRAIC COBORDISM AND K-THEORY 107

Bg?giﬁ;) + MO(2k) and unique classes Yi e H*(MO(2k)) which pull back to the
classes Yw of (2.6.2). These maps yield a 4k-equivalence
d(e
Ve YR MO(2K) - T R(zZ/2,2k+2) 3 (Y
k w
L,w 2
Since MOJ(W) = lim [Zn—JW, MO(n)] the maps UL,VL (which. are compatible with lim
n n

here) identify MOJ(W) with products of mod 2 cohomology groups of W when
dim W < =,

§4. ON THE S-TYPE OF imJ

In this section the S-type of the "image of J" is studied. All spaces
will be 2-localised and all homology and cohomology will be taken with coeffi-

cients in Z/2. For my purposes the "image of J" will be the space JO(2) of

[F-P]. It is defined by an infinite loopspace fibring

3
J0(2) »Bo —¥=Ls Bso

3
where { is the Adams operation. In [F-P] it is shown that BODf; ~ JO(2).

+
Here () 1is Quillen's construction [Wa] and OnEB is the finite orthogonal
group of Part I, §8. Thus JO(2) and BOEE have the same (2 local) S-type. In

B0, Ty

BO2k-2T3
ing these summands we will construct stable homotopy elements in ni(JO(Z)).

Part I, §8 we stably split BOEé into summands of the form By study-

Since ﬁi(JO(Z)) maps to the stable stem, ﬂi(S°), these homotopy elements may
prove useful (see the problems at the end of Part IV). The resulting elements
in ﬂi(S°) almost certainly include Mahawald's highly significant new family
[Mah].

BOzn(E3)

4.1: Theorem. There is a 2-local (4n-3)-equivalence between ——————
- T B05n-2(F3)

and

a product of Eilenberg-Maclane spaces

I K(z/2,2n + ¢ - ¢ + 5)d(Pe(n-g-e,J)

€’g9q’J
The product is taken over € = 0 or 1, ¢ 2 0 and 2 - € + J < 2n-3. Also d(&)
equals the number of partitions £ = Zai of the form 0 < a; # 2™ - 1 while

t
e(t,J) equals the number of partitions of the form J + t = I (ki4-1) with
i=1
0 < ku # kv if u # v. Furthermore e(t,J) and d(%) are defined to be zero if
t <0 or & < 0 respectively and d(0) = 1 = e(0,0).
As an immediate corollary of Theorem 4.1 and Part I, §8 we have the follow-

ing result.
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108 VICTOR P. SNAITH

4.,2: Theorem. There is a decomposition of stable homotopy groups (2-localised)

ﬂ?(BO F ﬂ?(BO ® C,(n)
i 2n h| A

P2 ¥ m-2%3 (2)

for all j,n. If j < 4n-2 then Cj(n) contains the direct sum of Yj(n) copies of

Z/2 where Yj(n) is given by
0 if j<2n -1

Y.(n) = I d(2)e(2n-q-¢,J) if
J €,2,q,J
2n-1 £ j < 4n-3

Here j = 2n + & - ¢ + J. Also the sum over €,%,q,J and the functions d( ),
e(_,_) are as in Theorem 3.1.
Each Z/2-summand is detected and distinguished by its Hurewicz image in

the manner described in §4.14.

4.3: Generators for H*(Bomal. Let us now recall the mod 2 homology of the

spaces BOanB. In [F-P] the mod 2 homology of BOE& is described. To be pre-
cise [F-P] treats an infinite loopspace denoted by FOBOEE which is the
zero-component of QB( v BOHEE). There is a homotopy commutative diagram of
maps. n20
—_— BOn]F3 _— B0n+1IF3 ——) v
%[
(=*[=nl) (-*[-n-1]) (4.4
1"<,BOIF3

in which (_*[-n]) is the map which sends Bonms into the n-component by the
natural map [F-P] and then translates to the zero-component. (4.4) gives a
map

BOTF, = lim BOn]F -+ T',BOTF

3 (4.5)
n

3 3

which induces an isomorphism in homology. By means of (4.5) we may determine
the image of H*(Boznmé) (mod 2 coefficients) in H*(BOEE). Let Ta and Tb be
the copies of Z/2 x Z/2 defined by
_ 0 1 _ 0 -1
Ta_<Al_{l 0]’ AZ_{—l 0}>cozm3 and

T

_ (1 0 (10, _ 2
b <Bl_[0 1]’ B2_[0—1J>-(01E3) < 0,Fy

Let o # x; € Hi(RP ) = Hi(BZ/Z) and set vi,j € Hi+j (BOZEE)’ v, € Hi(Bolmg)
equal to the images of xi Q xj € Hi+j(Ta) and x; € Hi(BOlEE) respectively.
Then set w, o€ Hi(BOEB) and vy € Hi(BOEB) equal to the images of vi,o and A
respectively. Put Fn = im(H*(BoanE) -> H*(BOEE)) then from [F-?, Theorem 3.1

and Proposition 3.11]
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~
[e)}

Proposition. Fn is spanned by monomials of the form

iyi cee Yy W, ...w, with s+ t < 2n.
12 s J1 Jt

y

Here the products are formed in the Pontrjagin ring of FOBOIE‘3.

4.7: Proposition. Fn has a basis consisting of the monomials of Proposition

4,6 such that 1 < jl < j2 < eee < jt'
Proof. Let x: H*(B0]F3) > H*(BOIF3) be induced by the H-space inverse on
l"oBO]F3. Then if i

u, = aio x(wa) Yia € Hi(BO]F3) .

[F-P, Theorem 3.2] assures us that there is an isomorphism of algebras

H*(BOIFB) N P(yl,yz,... ) ® E(ul,uz,... ).
) 2 2
Now X(wa) =w + p(wl,. ces wa—-l) for some polynomial p. Hence w; =y +

q(wl,.. sy Wi g5 Yiseees yi—l) for some polynomial q and the monomials cited
above do span Fn. However since

U =Wy + vy + r(wl,.. s Wi g Yiseres yi-l) (4.8)
it is easy to show linear independence by induction on the number of and degree

of ui's occurring in a monomial.

BO, T
n

4.9: Corollary. H, ﬁz—é— is isomorphic to the Z/2-vector space with
2n-2"3

basis consisting of monomials
V. eee V. W, W, ... W,
1 s 1 Je
such that s+t = 2n-1 or 2n and 1 < j1 < j2 < eee < jt' Considered as a sub-

space of H*(BO]F3) the action of the dual Steenrod algebra is induced by
k _ k _
(Sa), 0y ) = (v, and  (Sa) 0w ) = () w .

The diagonal is induced by
¥(yy) = i Y, 8 Y .o

Y(w,) =L w_ 8w, .
i Q @ i-a

BO, T¥

2n_ 3

B0, 2T

inclusion in homology sends a monomial to "itself".

Proof. By Part I, §8.2.1 is a summand in the S-type of BO]F3 and the

BO2 IF3
4.10: H*|—=2-—2| as an A-module. Let A be the mod 2 Steenrod algebra. We

B0)n-2T3
wish to recognise the A-module above and this will be accomplished by compari-

son with H*(SO) and H*(BO). There is a fibring [F-P]
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S0 -+ BO(1F3)+ > BO

such that H*(BO) = P(yl,yz,... ) and H*(SO) = E(ul,u ) where u; maps to uy

g3 ee
and yi to §i' Let si € Hi(Boma) be the image of the i-th Stiefel-Whitney class.

Then s; is characterised by [cf. Ad 1, p. 49]
i
<8;> ¥1> T 1 and <8, X> = 0

for all other monomials Yyoeee wj . We have Wu's formula [M-St, p. 94]

t
k _ k-m k-m
Sq (sm) = s, sp + ( 1 ) Sio1 Smaltce + ( 1 ) Stk (4.11)
BO2
Now let Sk(n) be the subspace of H, ﬁET_IL- with basis consisting of monomials
2n-2
V. e V. W, ... W, (j, < j, < +s+3 k+t = 2n or 2n-1). Then
i, i, 3 ie 1 2
BO2
H,|—2 | =95 (n) and the action of the dual Steenrod operations respects
*1BOpa| kK

this decomposition. In fact Sk(n) together with its (qu)*—action is isomor-
phic to
H,(MO(k)) & W(k)

where W(k) c H*(SO) is the vector space spanned by monomials of weight 2n-k or
2n-k-1 in the {ui}. To obtain the dual A-module structure on

® S (n)*
Kk k

we must dualise. However although the {yi} have the same diagonal as the {§i}
the {ui} are primitive while the {wi} are not. The relationship between uss
v, and vy is given in (4.8). Nevertheless the A-module structure is equal
"modulo filtration" to that in H*(BO) @ H*(SO). To make this precise let

X ¢ Sk(n)* denote the dual of a monomial x with respect to the monomial basis

I
described above. The assignment of v e wj to Yy oee uj establishes an
1 t 1 t
additive embedding of & Sk(n)* in H*(BO) ® H*(SO). Note that
k
— — T -k T
Vi Yy @w, ...w, =y, ...w, . Denote by Sq (yi ... W, ) the ele-
1 51 I Je M1 Je 1 Je
ment which maps to qu(yi . uj ) e H*(BO) @ H*(SO). That is, §qk is a fake
1 t
k = k k ~ .
Sq . Now Sq = Sq on elements of the forms Vi e Yy and wj. Also a simple
calculation shows that L {/‘\\
1 — AT A ~ I k
V W, ...Ww, =y W, ...w, +Ly w (4.12)
J1 It Skt Je ok

where I = (il,...) and k = (kl,..., kq) with q < t. By induction on t using

equations (4.12) and the relations
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~ N

R, I R I
Sq (y) = (Sq), ()
R /R\ . /SZ,\
Sq (W) = Sq,(w.), Sq(d,) = Sq,(u,
f x(Ws), Sq(u, Qg J)
N N N
and u, ... u, =wu, ... u, we obtain the following result.
i ie 3 i,

4.13: Lemma. In the notation of the above discussion

— T~ —

k, I =k, I
Sq (y W Wy ) - Sq (y W, eed)
1 t 1/\

is in the subspace spanned by elements of the form yI W ooeee Wl with q < t.
1 q

4.14: Proof of Theorem 4.1. Let z be indeterminates and if zI is a

12%g0 e

120 zk write orb(zI) for the symmetric polynomial which is the
If

I . .
sum of the translates of 2z~ under the action of the symmetric group, I

monomial in z
i k’

p(sl,..., sk) is a polynomial in the s; € H (BOEB) of §3.10 write p(sl,..J

= orb(zI) if the substitution s; = oi(zl,zz,...) (0i = i-th elementary symmetric

function) makes these expressions equal. With this convention consider the

BO2 FB
elements of H¥* ﬁ—
2n-2"3
orb(za1+l zaz-‘-l zar+1 z cee 2) 8 6"‘TTT\E (4.15)
1 2 tt %r r+l q jl jt

where q < 2n, (al,..., ar) is a partition of h = & a; < q with no a, of the

form 2" - 1, t=2n-qor 2n-q-1, 1 < ji < j, < eee < jt and h+q+1Z ji <

2
4n - 3.
I claim that in dimensions < 4n-3 the elements SqI(x) where I runs through
BOZnE3
admissible sequences and x runs through (4.15) give a basis for H¥ B0 F_[°
2n-2""3

The argument is essentially due to R. Thom and an elaboration of it is given in
Part III, §2.

Firstly it suffices to show that the SqI(x) are linearly independent.
This is because, from the discussion of §4.10, there is an additive isomorphism

Sk(n)* v H*(MO(k)) 8 W(k) c H*(MO(k)) ® H*(SO) and the counting procedure of

Part III, §2.9 shows that I dim Sk(n)* equal the number of-SqI(x)'s. Now let
a1+l k T
a = orb(z ... z)and b=w, ...w, and let x =a 8 b. Then
1 q ig i¢
Jl
Sqt(x) = Sq¥(a) 8 b + I Sq°(a) 8 Sq° (b). (4.16)

However by (4.11) SqI(a) modulo the ideal generated by Sq+l’sq+ ,... 1s given

by the same formula as SqI(a) in H*(MG(q)) when we replace CH by the i-th
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\

' -
Stiefel-Whitney class. Also, by Lemma 4.13 SqJ (b) is congruent to SqJ (b)

module the subspace spanned by Wi e Wy with v < t. Define a filtration on
1 v

& Sk(n)* by considering & Sk(n)* as a subgroup of H*(BO) ® H*(SO), as in §4.10,
k k

and filtring H*(BO) by the ideals <8458 ..> and filtring H*(SO) by the

i+1’°
dual-weight filtration used in Lemma 4.13. Under this filtration the A-module

action on a 8 b € H*(MO(k)) & W(k) g:Sk(n)* agrees with that on
H*(MO(k)) ® H*(S0)

modulo lower filtration. Under this latter action the SqI(x) are known to be

linearly independent in dimensions < 4n-3 by the argument of Part III, §2.

4.17: Remark. In order to illustrate how Theorem 4.2 works in low dimensions
I have included below a table of the first few homotopy elements whose exist-

ence is asserted. The elements are in n?(BOE‘ The table works as fol-

P (2)"
lows. The parameters j,%,e,J,q and n of Theorem 4.2 are displayed together

with a cohomology element in HJ(BOE3; Z/2) which pairs non-trivially with the
Hurewicz image of the asserted stable homotopy element in n?. The cohomology

elements are those of §4.14.

TABLE OF ELEMENTS

3
orb(:lzzz3)
orb(zlzz) 3] w1
orb(z.,) ®© ﬁr;\

1 13
orb(zlzz) ] Wg
5

orb(zlzzz3z4z

orb(zlzzz3z4) Q® w

J 2 € J q n supporting class
1 0 1 0 0 1 v,

1 0 1 0 1 1 orb(zl)

3 0 1 0 3 2 orb(zlzzz3)

3 0 1 0 2 2 orb(z,z,) © W,
4 0 0 0 4 2 orb(zlzzz3z4)

4 0 0 0 3 2 orb(zlzzza) ?/ﬁ}
4 0 1 1 1 2 orb(zl) ] wle
4 0 1 1 2 2 orb(zlzz) ] wg
5 0 0 1 3 2 Orb(leZZB) ?/zg
5 0 0 1 2 2 orb(zlzz) ® wlw2
5 2 1 0 3 2

5 2 1 0 2 2

5 0 1 2 1 2

5 0 1 2 2 2

5 0 1 0 5 3

5 0 1 0 4 3

1
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§5. ON THE ALGEBRAIC COBORDISM OF Z
The main result of this section is as follows:

5.1.1: Theorem. Let X be a CW complex. Set

MO*(X) = lim T MON(X),
N -Nsk

the total unoriented cobordism of X. Then there is a natural ring homomorphism

T : AZ°(X) - MO*(X)
such that

(a) T is surjective if dim X < «», and
(b) T is not injective if X is the n-sphere for any n 2= 0.

Here AZ* is the algebraic cobordism cohomology theory of Z as defined in
§1.4.3(b).

Sketch of Proof. The homomorphism T is induced by a genus in the MO-theory of

BGLZ' induced from Thom's genus on BO by means of the canonical map BGLZ+ - BO.
The spaces in the AZ-spectrum are all equal to ZZBGLZ+, the double suspension
of BGLZ+. Therefore in order to show T is onto one must construct S-maps from
X to BGLZ+. This is accomplished by constructing an S-map from BOEé to BGLZ+
and then appealing to the results of Part I, §8 on the decomposition of the 2-
local S-type of BOE&.

To show that T is not an isomorphism we construct an exponential homomor-
phism

vy ¢ [X,BGLZ+] -+ AZ°(X)

and prove that when X = S3 there is an element i e ﬂ3(BGLZ+) ~ Z/48 such that
04 v 3(i) e Ker T.
S

The section is arranged as follows. In §5.2 AZ-theory is recalled and the
homomorphism T of Theorem 5.1.1 is defined. Also in §5.2 the real analogue,
AO-theory, is recalled. In §5.3 are derived the facts about the homology of
the AZ- and AO-spectrum which will be needed. In §5.4 the map v, from the
algebraic K-theory of Z to the algebraic cobordism of Z is defined. It is
shown to be non-trivial on Ki(Z) when i = 1, 2 or 3. In §5.5 more elements of
AZ°(X) are constructed when dim X < . Finally Thecrem 5.1.1 is proved in
§5.5.9.

Throughout the section Hy and H* will denote mod 2 singular homology and

cohomology respectively.

5.2: AZ-theory and the Thom Genus.

2.1, Let GLnA be the general linear group with entries in A. If GLA = U
0<n
GLnA the inclusion Z ¢ R induces a map between classifying spaces

BGLZ -» BGLR v BO, where 0 is the infinite orthogonal group. This map factors
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as BGLZ—19 BGLZ+ RN BO. Here j is the canonical map associated with Quillen's
"plus" construction (cf. [H-S; Wal]). We will require to know that r is a map
of H-spaces.

Let X = BGLZ+ or BO and let 0 # 11 ¢ wl(X) ~ Z/2. The H-space sum of n
with lX, the identity map of X, gives a map n + lX :Sl x X + X. The suspension
of the Hopf construction applied to n + 1X yields € :Z3X »-ZZX. Similarly a

Hopf construction applied to n + 1X +n + 1X :Sl X X X Sl x X >~ X yields a map
m: ZZX A ZZX »—ZZX. In §1.4.3 the spectrum AZ is defined by setting

AZk = ZZBGLZ+ (k 2 2)

with structure map ¢ :ZAZk > Azk+l' The map m :AZk A AZ2 +-AZk+l makes this

. . R . . . 2
spectrum into a commutative, associative ring spectrum with unit u = I"n:

83 - ZZBGLZ+ = AZ3. In §1.4.2 AO is defined to be the spectrum obtained by
replacing BGLZ+ by BO in the above construction. The map, r, introduced above
induces a map of ring spectra r : AZ -~ AO.

The Thom genus is an element (see §3.9)

Ue T MOk(BO),
0<k

satisfying h*(U) = U 8 U where h: BO x BO » BO is the H-space multiplication
associated with Whitney sum. As explained in §3.10 the Thom space, MO(k), is
2k-equivalent to a product of K(Z/2,m)'s. Hence MO-theory is a product of
suitable suspensions of H*-theory. Therefore, as explained in §3, the natural
class in MOk(MO(k)) can be "lifted" into MOk(BO). This can be done in such a
way as to give the total genus, U. Also if Q0 # n € ﬂl(BO) then n*(U) = 1 + ¢
where 0 € MOl(Sl) is the suspension class. Now we define the homomorphism T
of Theorems 1.1. If

x ¢ AZ°(X) = lim [2°X, 2°BGLZT]
N

2

+
is represented by £ : 27X > £°BCLZ

define: T(x) = sn(f*(o2 ® r*U)) ¢ MO*(X) where

*.
s 1 MO 0 NR) 5 MO (X)

is the suspension isomorphism, 02 € MOZ(SZ) is the suspension class, U is the
Thom genus and r*, f* are the induced maps of r, f. T(x) is independent of the

choice of f (cf. Part II, §3.4).
5.2.2: Remark. We may define a ring homomorphism

T' : AO° (X) ~> MO*(X)
by the above construction in which r*U is replaced by U. 1In fact by Part III,
§3.1, T' is an isomorphism when dim X < «. Evidently we have for any X a com-

mutative diagram
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AZ° (X) —=— A0°(X)

T\\\‘ r//?v (5.2.3)

MO* (X)

§5.3: H,(AZ) and H,(BGLZ).

5.3.1. Since GLlZ = Ol’ the first orthogonal group, we obtain a homotopy com-
mutative diagram of natural maps
o
BGLlZ =RP = BOl

by o

BGLZ — BO

If 0 # uj € Hj(RPw) let Vj € Hj(BGLZ+) be the image of uj then r*(vj) = uj

€ Hj(B). Let F be the fibre of the map, r, introduced in §5.2.1.
5.3.2: Proposition. There are algebra isomorphisms
(i) H*(BO) ;:Z/Z[ul,ugi...]
(i) H,(A0) n Hy(B0) [u]']
(ii1) H,(BGLZ")n H,(F) @ H,(BO)
. + -1
(iv) H,(AZ) ~ H, (BGLZ) [vl ]

Proof. (i) is well-known while (ii) and (iv) are proved in §1.8. To demon-
strate (iii) we prove the dual statement by showing that the Serre spectral

sequence
+
Ei’q - uP(80) & nI(F) => uP*(soLz")

collapses. It is a spectral sequence of Hopf algebras. Since r, is onto the
+s,q-s+1
edge homomorphism, r*, is injective. Suppose dS :Eg’q > Ez ?

s <t and for s = t, p+ q < n. Then for x ¢ EE’H'P dt(x) must be primitive.

is zero for

Thus dt(x) = a ® 1 with a primitive. This means that r*(a) = 0. Hence dt(x)

= 0 and, by induction, the spectral sequence collapses.

5.3.3: Corollary. H3(BGLZ+) ~ Hy(F) @ Hy(BO).

Proof. From [L-Sz;Mi 4] we know ni(F) =0 for i = 0, 1 and 2 while n3(F) A Z/48.
The result now follows from Propositions 5.2.2(iii) by means of the Hurewicz

and universal coefficient theorems.

§5.4: v:K, (2) > Az°(sh).

5.4.1. If xe [X, BGLZ+] then sz € [ZZX, AZZ] represents an element v(x) - 1
€ AZ°(X). Since multiplication in the spectrum AZ is induced by the H-space
multiplication on BGLZ+ it follows that v(xty) = v(x)v(y). In particular when
X = Si we have, by definition, Ki(Z) = [Si,BGLZ+] and we obtain an exponential
map

ViR (2) > Az°(s1) (5.4.2)
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5.4.3: Proposition. The map v of (5.4.2) is non-zero on Ki(Z) v Z/2 when

i=1o0r 2, When i =3 K3(Z) is generated by an element y of order 48 [L-Sz]
which satisfies
0 # v(y) € Ker T and 2v(y) =

Here T is the homomorphism of Theorem 5.1.1.

Proof. From [Mi 4, Ch. 10] we know that if n generates Kl(Z) then n2 generates
KZ(Z)' The Hurewicz images of n € wl(BO) and nz € nz(BO) are both non~zero in

H*(BO). Hence, by Proposition 5.3.2 (i) and (ii), the map

Ky (2) > aze(s) > a0°(sh) < u, (20)
is non-zero when i = 1 or 2. Here r is as in §5.2.1 and H is the Hurewicz
homomorphism.

Since n3(BO) = 0 the generator, y, must factor through F, the fibre of r.
Since F is 2-connected y is detected in Z/2 n H (F) and hence in H (BGLZ ) by
Corollary 5.3.3. By Proposition 5.3.2 (iii) and (iv) we see that v(y) is
detected by its Hurewicz image in H3(éz). However Tv(y) = T'(r(v(y))) by

(5.2.3) and rov factors through

ry :Ki(Z) -> ni(BO) so Tv(y) = 0 since ﬂ3(BO) = 0.
§5.5: More elements in AZ°(X).
5.5.1. Let Onﬁé (1 < n £ ») denote the subgroup of GLHES (Eg is the three
n
element field) which preserve the form g Xi. Let anozﬁé denote the wreath
i=1

product generated by 'diagonal" 2 x2 blocks and the symmetric group, Zn, which
permutes the blocks. Similarly Zn O2 is a subgroup of OZn’ the real orthogonal
group. Write 0E5 and O for the infinite orthogonal groups Omﬁé and 0_ re-
spectively.

5.5.2: Proposition. After 2-localisation there exists an S-map 0 : BOE6-+
Bzmjozmé such that, if Gn: BOZEn-+ BOEé is the natural map, (fo 3§ ) is equal

3
to the homomorphism induced on H, by the inclusion of OZIFg cz 02E3

Proof. This is an elaboration of part of the proof in Part I, §8.2.1.

Let Qn :BOZnEE

> BZnJOZIFB be the S-map given by the transfer associated
. . | .
with the canonical map 1 : BZ JOZEE - BOznmé. By Part I, 88.1.1 (@n °5n)* is

. v os s n
the canonical map on H,, where én is induced by 02E3 c anozﬁb. Now choose a

cofinal family, (XY(n)), of finite subcomplexes of BOznmé. Let
Py(n) c {Xy(n), BZnJOZIFB}
be the subset of S-maps, f, such that

"y ogn -1 -
fo dn (X (n)) BI J 2]F3
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induces on H, the same homomorphism as the canonical map, 6;. Here 6;:

117

B021F3 a—BOZnES is induced by the natural group inclusion. Let QY(n) be the

image of PY(n) in {XY(n), B Ozﬁé}. Now QY(n) is finite and non-empty. The

inverse limit of compact, non-empty sets is non-empty. So we may choose an

element 3
g e inr? {x (@), BZwJOZ]F3} x {BOTF 4, Bszozl%} .

5.5.3. From [F-P, §3] we know that BO, IF, - BOIF, embeds H*(BOZnEB) as a

2n" 3 3

summand in H*(BOEE) . The analogous result is true for BO2n and BO. Conse-
quently we may identify
(
0| s and w | o
*
BOZn—ZEE Bozn_l
(n 2 1) with subgroups of H*(BOEE) and H, (BO) respectively. Thus we may speak,
BO
for example, of a map BO » Vv iiyil—- sending an H, -class to "itself"
1<k 7 2k-2

From Part I, §8§4, 8 we have the following result.

5.5.4: Proposition. (i) There exists a 2-local S-equivalence

BO,, TF
2k 3
‘Y.BOIFB > Vv B0

1<k 2k-2 IF3
(ii) There exists an S-equivalence

BO

A:BO » v %-—2—15—

1<k 2k~-2

(iii) On H, the induced homomorphisms ¥, and Ay send an element to

in the sense of §5.5.3.

3 -1 0 0 -1

"itself".

5.5.5. The group OZE‘ is generated by { 0 1 } and [ 10 ] . Therefore we

we have inclusions 02E3 c GLZZ c GLZH{ which induces a diagram

BO ]F -——) BGLZ

N\

Let QX = lim QnZnX, this is the free infinite loopspace generated by X.
n

(5.5.6)

BGLZ+

and BO are infinite loopspaces [Ma 2, Wa]. The diagram (5.5.6) induces a dia-

gram of infinite loop maps

Q + QBCL,Z - QBO,

N

BGLZ -5 B0
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There are structure maps (n 2 1), compatible as n varies
1n : BZrJOZIF3 - QBOZIF3

and
i anJo2 > QBO,

such that i1 and jl are the natural "suspension”" maps. Further details may be

found in Part I, §3.5.

5.5.8: Proposition. The composition of maps and S-maps

m 3 g Ay, +
Bo“" —=s B0, F, —» By |0, F, —>—— BGLZ —> BO
1 2n" 3 w|V2%3

induces the canonical homomorphism on H,. Here % is induced by the inclusion

of the diagonal matrices.

Proof. By definition r °A3 od, is the Kahn-Priddy transfer, tr(r °il Oﬂl) [K-P]
of (cf. Part I, §3.9; setting Nk = ZHJOZEB)

™
1 rok
= —— B
BNl x BNn_l-—-—+ B02]]F3 B21J02E3 0

with respect to the covering BNl X BNn—l > BZnJOZEE' Here ™ is the first pro-

jection k, r as in (5.5.6). Now r ok [BO, TF_,BO] = 1?6(B021F3) representes E -

273
dim E where E is the universal real 2-plane bundle on BOZE‘ The Kahn-Priddy

3
transfer is additive [K-P, §1.8]. Thus (r °Xg Oin)* is the Pontrjagin quotient

of tr(E), by tr(dim E),. dim E is a trivial bundle over B02E3. Therefore, by

the naturality property of the transfer [K-P], tr(E) factors through the map

2n
BZn 02E€ 3 + {1}. Thus BOl - BEn 0

when composed with tr(dim E). However, if x € H*(Boln) then, by Proposition

- an induced by OZE‘ 2E3 becomes trivial
5.5.2, (@ o1),(x) equals the image of x under the map induced by the natural
map mentioned above. Hence, the previous discussion shows that tr(dim E), is

trivial on such elements. Thus,
2
(Torgedon), = tr(E)y oyt Hy(BOT) > H,(80) .

Finally it can be shown as in [Ma 2, Ch. VIII, 1.1] that tr(E) is represented

by the canonical map

BEHJOZIF3 *—BOZn - BO

induced by the inclusions ZnJOZEE c ZHJO2 c O2n'

5.5.9: Proof of Theorem 5.1.1. Let X be a finite dimensional CW complex.

BO
Then MO*(X) is generated by elements of the following form (see §3). ga—gk— is
2k-2

(4k-3)-equivalent to a product of K(Z/2,m)'s. Thus we may with ease construct
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BO
homotopy classes, f :ZNX +-—~J§£~, when N + dim X < 4k - 3. Composing f with

B0y-2
an inverse, X—l, of the S-map A of Proposition 5.5.4(ii) gives x' ¢ {ZNX,BO}
and hence x' € AO°(X). MO*(X) is generated by the elements, T'(X), constructed

in this manner, where T' is as in (5.2.3).

B0k T3
However, in §4 it is shown that 0. T, is (4k-3)-equivalent to a pro-
2k-2"3 BO

duct of K(Z/2,m)'s which contains the (4k-3)-skeleton of ———
Yy BO
BO2k 2k-2
skeleton of a factor. Hence we may identify H,|z=——| as a summand of
BO, TF j|BO

2k-2 BO,. TF
3
H 2k 3 for j < 4k - 3. With this understanding choose g:ZNX )
BOyk-2%3

3 |B0k-2T3
which has the "same" induced map as f on H,.

as the (4k-3)-

Now compose g with X3 Oim o @ Ow_l, where w—l is an inverse to ¥ of Propo-
sition 5.5.4(i) and the other maps are as in Proposition 5.5.8. This yields
y € AZ°(X) represented by y' ¢ {ZNX, BGLZ+}. By Propositions 5.5.4(iii), 5.5.8
and the construction of y we see that r#(y') € {ZNX,BO} induces on H, the same
homomorphism as x. Hence Ty = T'(r(y)) = T'x since a class in MO*(X) is de-
tected by H,.

To prove that T is not one-one when X = s™ it suffices, by periodicity, to
treat the case X = S3. The element, i, constructed in Proposition 5.4.3 pro-

vides a non-zero element in Ker T to complete the proof.
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PART IV: ALGEBRAIC COBORDISM AND GEOMETRY

§0. EPILOGUE
The final part of this paper takes up the problem of computing the p-adic

algebraic cobordism groups, n*(fég ), which were introduced in Part III,

X7,V
§1.4.6 for schemes over Spec Eﬁ. In §3 the algebraic cobordism of projective
bundles and Severi-Brauer schemes are computed. Also if A is a regular Eﬁq—
algebra the algebraic cobordism of Spec A[t,t—l] is determined. Here are a few

sample results.

3.3: Corollary. If A is a commutative ifq—algebra

n*(@q’rz) v AT o A)*(§<BGLA+)£>)'
_ 0 i odd
240 Corollany. "iQEEq’I%%q)l-l MUz*((BU;)r;ip) i even.
3.10: Corollary. ni(@q,[&—lﬁ L0 % Mgy ( U352)-
q

Also a spectral sequence is constructed (in §3.12) to analyse the algebraic
cobordism in a Mayer-Victoris situation for a regular scheme.

Furthermore to the algebraic cobordism of Spec A there corresponds an
analogue of topological K-theory and a surjective homomorphism (§3.15) from
cobordism to "'K-theory' analogous to the homomorphism of [C-F]. This homomorphism
is used in §3.16 to detect elements in the algebraic cobordism of Spec K[t,t—l]
- A - (©.

These results and more, together with a discussion of other computational
techniques such as devissage and reduction by resolution (§3.17) are in §3.
This establishes p-adic algebraic cobordism as a "generalised pre-sheaf coho-
mology theory" in the sense of [Br-G] which unfortunately is not pseudo-flasque
(see §3.13) as algebraic K'-theory is but which nevertheless seems to yield
interesting invariants of the geometry. However, in order to attempt to make
a case in favour of the use of generalisations of cobordism invariants in
algebraic geometry I have included §1 and §2. In 81 a problem about algebraic
vector bundles over number fields is examined using unitary K-theory (although
cobordism would serve as well) on the étale site. This is intended to empha-
size the suitability of generalised cohomology theories (especially K-theory

and cobordism) applied to étale homotopy types for treatment of geometrical
120
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problems. The reader may then enquire: Why do we need more than classical
generalised cohomology of étale homotopy types to get invariants of the geo-
metry? In §2 I have tried to put forward some reasons by examining the gen-
eralisation of the unitary Pontrjagin-Thom construction which one obtains from
the étale site and by showing in two examples how feeble it can be.

How convincingly §§1, 2 put forward my point of view is a matter of
opinion. For better or worse the discussion is elaborated in the introductions
to those sections.

In §4 are described the homomorphisms which connect the p-adic algebraic
cobordism of an iﬁq—algebra, the topological K-theory of classifying spaces of
a subgroup of the group of units and Quillen's K-theory. These homomorphisms
are computed in several examples and in these examples the recovery of Quillen

K-theory from the other theories is discussed. In.§5 are collected a set of
problems relating to this paper.

§1. ALGEBRAIC VECTOR BUNDLES OVER NUMBER FIELDS

In this section we use unitary cobordism of the etale site to discuss a
question of Atiyah [A-M, p. 2]. This discussion is probably obvious to geo-
meters. However it is brief and the object is to add weight to the idea that
one can usefully apply generalised cohomology--particular K-theory (or equally
well cobordism theory, see Remark 1.8(iii))--to the étale site of a variety.
Having made the point for K-theory and cobordism I will, in the next section,
emphasise the limitations--taking the Pontrjagin-Thom construction as my test
case--of being contented with applying some classical cobordism theory to a
site. Potentially more useful are the p-adic algebraic cobordism theories
which are discussed in §3. Now to work.

In [A-M, p. 2] the following question is attributed to M. F. Atiyah. Let
L/K be an extension of algebraic number fields with K a (fixed) subfield of
the complex numbers, T. Let V be a variety (i.e., an irreducible, separated
scheme of finite type) defined over K. Let E be an algebraic vector bundle

over V8 L. Let c:L - T be an embedding of L/K. Then ¢ will induce a complex
K
vector bundle, Ec, over the topological space Vcl = (Ve
K
complex variety with the classical topology. Note that Vva has the homotopy

o’ the associated

type of a finite CW complex.
Let K(X) denote the unitary K-group. K(X) is the set of homotopy classes
[X,Z x BU].

1.1: Problem. How does [EC] € K(ch), the class of the bundle EC, depend on

c:L > T?

y
1.2. If n = dim E we may equivalently study the dependence. of [E°] -ne K(VC ),

%
the reduced K-group of VC

.

L

Licensed to Univ of Rochester. Prepared on Tue Jan 12 07:38:01 EST 2021for download from IP 128.151.13.58.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



122 VICTOR P. SNAITH

In fact let us set y(E,c) = [EC] -n e %(VCR) then the aim of this section

will be to discuss the related question:-

1.3: Problem. For 1 < i < n how does yl(y(E,c)) € ﬁ(VCE) depend upon c:L~+T?
Here yl is the i-th y-operation [At 2].

c c
1.4: Geometrical Comparison of E 1 and E 2. Let ¢

106" L - T be embeddings
which agree on K. Also let a € Gal(L/K) be a Galois automorphism of T such
that o °cy = ¢y Form the projective bundle TP(E) = Proj (SE) -+ X. There is a
canonical Hopf line bundle, H, over P(E) [At 2]. Suppose that H 8 T is a very

Ci
ample line bundle then there is associated to H a morphism [Har, p. 150, §7.1]
€i Ci N
f ":PE )~ Pm for some integer N such that
c c
i i N N w
: = P
(f )ck P(E )c£ - (Pm)cz tp c T

classifies the topological line bundle

c; ey
H )cl > P(E )cz'

We have a commutative diagram of morphisms induced by a.

C
1 £l
) — P

d
P(E

(1.5)

Suppose that V 8 T is normal. Then every variety in (1.5) is normal.

However if X is a no%mal complex variety then the finite completion, X;z, is
(up to homotopy) a functor of the étale site of X. This is Sullivan's domesti-
cation of the Artin-Grothendieck comparison theorem[Su, esp. p. 42]. Let BU"
denote the finite completion of BU and write ﬁ(w;i) = [W, BU"] for the Z-K~
theory of W. Then Q(X;L;i) N k(Xcl;z) via a natural isomorphism and the above
discussion derives from (1.5) the following commutative diagram upon applying

K(-32).
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c. *
1 ) g N. 5
R(P(E ) y5 D) —Ct g@r"; 2)
a* a*
I 3
2
c (£ 7))
R(P(E 2)CJL; 7y e—C2 RV, 2) (1.6)
é?b 8 T) ;2
2 o )
a*
wWEE%ﬁH
c, Cc.

Now for i = 1,2, R(P(E 1)C2;2) ® 2 = K(P(E 1.3 ), by definition,

5 v rr n-r
;=K(Vcl;2)[ti]//(rzo('l) vy (E,e ey

where n = dim E and Yr(y(E,ci)) also denotes the image of this element under
the canonical map j1 :k(_) > E(_;i).
1.7: Theorem. In the notation of §1.3/4
. . . {\/
W 3, K@ ) > Ry

cz;i) is injective.

N
(ii) If x € E(EPN) is the reduced Hopf bundle and &(jl(x)) = 3 bsxs
s=1
R n ra r N _
(b € Z) then I (1) a*(y (y(E,c)))[ T b ts]n T is divisible by
s 2 s 1
r=0 s=1
n rr n-r o v 5
rEO(-l) Y (y(E,cl))t1 in K(V_,32) = R(V_,32) & Z.

Proof. Part (i) is true when Vcl is replaced by any finite CW complex. This
is an easy manipulation of the rationalisation-completion fibre square of BU
[Sul.
v
Part (i) guarantees that K(ch) equations are faithfully captured in
k(vcl;z).

Part (ii) now follows by chasing the diagram (1.6).

1.8: Remark. (i) Theorem 1.7 implies that to answer Problems 1.1, 1.3 we
must understand o* e Aut(%(VCz;i)). This is the difficult part because o is
not induced by a continuous map. However a* is natural for morphisms of normal
K-varieties, although this naturality differs from the usual sort of naturality
which one has in mind when discussing K-theory operations (see [At 2]).

(ii) A phenomenon related to §1.1 was discovered in [Ser 2]. Let p be a
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- P s
prime and let Y c PE 1 be the solutions of % X, = 0. Then Y is a Z/p-space
i
by means of cyclic permutation of coordinates. If E is a variety we may form

the fibring

EP - vx EP » Y/(Z/p) = X.
Z/p
Choosing p suitably and choosing E to be a suitable elliptic curve Serre [Ser 2]
gave two embeddings dl’dZ :K > T of the number field K such that the fundamen-
tal groups of ((¥x Ep) Q ) (i = 1,2) were not isomorphic. Hence one would
z/lp 4, ©

have expected pathological behaviour in §1.1 when V = X, Of course the funda-
mental groups of Serre's examples are infinite, because their profinite com-
pletions are isomorphic. However in [Ab] non-homotopic equivalent, conjugate

varieties are given which have finite (hence equal) fundamental groups.

(iii) Equivalently to §1.7 one might study Problems 1.1, 1.3 by studying
2%

. * o N
a¥ : MU2 (VCR;Z) > MU (ch;z). For y(E,c) may be obtained as the image of the
first Conner-Floyd class of EC, cl(E,c) € MUZ(VCQ), under the Conner-Floyd

homomorphism [C-F] and cl(E,c) is obtained from (1.5) by

n
MU (B(ES) ) v MUX(V_ ) [t] [z (-1 _(E,0)t" "
cy = cL r
r=0
where t is the class of (f & m)cl in MUZ.
‘31C €1 ‘1 N
(iv) IfHQ T -PP(E ~) is ample then there is a morphism f ":P(E ) —>Pm
c
L n
which classifies (H @ T) for some n > 1. Using the resulting diagrams analo-

c
1 .
gous to (1.5) and (1.6) relations between yJ(y(E,ci)) (i = 1,2) may be obtained

by the method of §§.3-1.7. Details are left to the interested reader.

§2. THE ANALOGUE OF THE PONTRJAGIN-THOM CONSTRUCTION AND THE ETALE SITE
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