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ABSTRACT 

A decomposition is given of the S-type of the classifying spaces of the 

classical groups. This decomposition is in terms of Thorn spaces and by means 

of it cobordism groups are embedded into the stable homotopy of classifying 

spaces. This is used to show that each of the classical cobordism theories, 

and also complex K-theory, is obtainable as a localisation of the stable 

homotopy ring of a classifying space. Similar decompositions are given for 

classical groups over 3F . The new construction of cobordism generalises 

immediately to define the algebraic cobordism of any ring. The familiar prop­

erties of cobordism are described in terms of the new formulation. Also the 

(p-adic) algebraic cobordism is computed for several IF -algebras and schemes. 
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PROLOGUE 

Each of the four parts of this paper has its own introduction. In this 

prologue I wish, therefore, to describe the global mathematical and philoso­

phical theme which will be pursued in this paper. 

We seek simultaneously to satisfy the following motivating demands. 

(i) To find invariants for use in algebraic geometry which are at least as 

powerful as (and related to) Quillen K-theory. 

(ii) To achieve (i) within the framework of stable homotopy theory. 

(iii) To achieve (i) by a method which recogniseably generalises classical 

cobordism theories. 

A few remarks on (i)-(iii) are in order. Recall first that the Chow 

ring of a smooth variety A*(X) may be obtained from algebraic K-theory as 

the sheaf cohomology # H (X;K ) [Q4]. This recommends K-theory and its 

more powerful relatives as a source of suitable invariants to study. Secondly 

the computational machinery available in stable homotopy theory is superior 

to that of ordinary homotopy theory, whence (ii). Also in the topologists* 

natural area of geometry - manifold theory - cobordism theories have been 

very important invariants, whence (iii). 

Let us for the moment restrict attention to a commutative ring A, rather 

than the general form of (i). One way in which to satisfy (i) and (ii) in 

S + S this case is to look at TT^(BGLA ) (̂  TT^(BGLA)) since this ring contains the 

K-theory of A, <& K.A, as a summand. However ir^(BGLA) will be too difficult 
0<i 1 

to compute in general. Therefore in practice we will localise it, while 

attempting to achieve (iii). 

Here then is the main result, extracted from Part It and Part HI. We 

state it in terms of localisation. 

(v) 
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If Y is a homotopy commutative and associative H-space then the set of 

stable homotopy classes 

{f X,Y} = © {JnX,Y} 
0<n 

is a graded, commutative ring which is a TT.(Y)-module . Let 

B e TT2((CP00) c TT 2(BU), BT € TT.(BSp) and n e TT (BO) be generators. 

Theorem 

If dim X < oo then there are ring isomorphisms 

( a ) { ] [*X,BSp}[ l /B f ] ^ M S p ( X ) [ u 4 , u ^ 1 ] 

(b) {f X,BU}[1/B] a, M U * ( X ) [ u 2 , u 2
1 ] 

( c ) {^*X,KP°°}[1/B] * KU*(X) 

and (d) {I X,BO}[l/n] ̂  MO*(X) [u-^u"1] 

where u. is a shift operator of dimension i. 

This result indicates our approach to accomplishing (iii). Namely, in 

Part HI and Part IV, we define p-adic algebraic cobordism by means of local­

isations of TT (BGLA )"), where ( )" denotes p-completions. The definitions 

* P — P 

make sense for any scheme over Spec IF and the above theorem enables us to 

make some computations. 

In fact our result above has some new things to say about classical 

cobordism theory. For example for unitary cobordism we obtain new construc­

tions of the Adams operations and Adams idempotents in MU-theory and a new-

proof of the Conner-Floyd theorem (see Part H) . A spectral sequence derived 

in Part HL, §1 when applied to the fibration sequence of infinite loopspaces 

*3-l JSp -> BSp BSp •> BJSp 

yields a new homology-type spectral sequence of Z x Z/4-bigraded algebras 

(note the bi-grading!) 

(vi) 
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Ep,q = H P ( B J S p ; V ^ ; Z ( 2 ) ) ) -* "p^tMSp; 0!). 

There is a similar spectral sequence for MIT-theory. In the text we make no 

use of there spectral sequences since they are, as far as I can see, of 

limited computational use for MU- or MSp-theory. 

I have now sketched the philosophy and ideas that are at stake. I sug­

gest that the reader browse through the introduction to Parts I - IV arid 

through the list of contents in order to obtain quickly an overall picture. 

During the three years of writing and re-writing this paper I have been 

helped by discussions and correspondence with many people. In particular I 

wish to thank Frank Adams, David Cox, Eric Friedlander, Ian Hambleton, 

Gerhard Harder, Stanley Kochman, lb Madsen, Peter May and Jorgen Tomehave. 

Also I thank the team of referees for their helpful suggestions and the 

University of Western Ontario for financial support. Finally, for typing 

the various versions of this paper, Charine Haist and Janet Williams deserve 

my deepest thanks. 

(vii) 
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ALGEBRAIC COBORDISM AND K-THEORY 

Victor P. Snaith* 

PART I: COBORDISM AND THE STABLE HOMOTOPY OF CLASSIFYING SPACES 

§ 1. INTRODUCTION 

Homologically the space BU appears to have each BU(n) as a summand. BSp 

behaves in a similar fashion and so does BO and BSO when suitably localised. 

I show in section 4 that these splittings are actually realised geometrically 

in the stable category. This splitting can be used to embed, for example, 

Tr^(MU) in TT^CBU) . These "exotic" elements are used in section 6 to compute 

7r.(BU(n)) for j < 10, modulo odd torsion. 

Now let me describe the results of Part I in more detail. The reference 

numbers refer to those used in the body of the text in Part I. 

Let G = U(n), Sp(n) , 0(2n) or S0(2n + 1) then BG^ is filtered by 

{BG ; n > 1}. If H c G is the subgroup £ n n n n U(l), I Sp(l), E 0(2) or NT n 

the Becker-Gottlieb transfer [B-Gl] is a map T : BG •> QBH . In section 2 the 
n n 

following result is proved: 

2.1: Theorem. The Becker-Gottlieb transfer gives a filtered map x:BG -> QBH . 
<=> r 00 ^ 00 

This amounts to showing that certain transfers fit together. This is accom­

plished by some generally applicable tricks with smooth fibre bundles (Propo­

sitions 2.2-2.4). In Examples 2.5-2.8 and 2.10-2.15 this trick is applied 

to a number of examples by means of which homology calculations are made in 

section 3 to prove the following result. When G = U(n), Sp(n) or 0(2n) there 

is a fibring of infinite loop maps 

F^ -> QBG- -> BG . G 1 °° 
00 

3.2: Theorem. (i) There are equivalences of H-spaces 

QBU(l) ̂  BU x F 
and U 

QBSp(l) a- BSp x F 
bp 

Received by the Editor March 7, 1977 > and in revised form February 26, 1979-

Partially supported by the National Research Council of Canada. 
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2 VICTOR P. SNAITH 

(ii) There is a homotopy equivalence 

QB0(2) ̂  BO x FQ . 

As a corollary we obtain (Corollary 3.6.1) that the Becker-Gottlieb solu­

tion of the unitary Adams conjecture is an H-map. This is not so in the case 

of the orthogonal Adams conjecture. In fact in §7 we evaluate the deviation 

from additivity of the transfer x : BO ->- QB0(2) and hence the deviation from 

additivity of the Becker-Gottlieb solution of the real Adams conjecture. 

From [Sn 1] we know that QBG_ splits as a wedge in the stable category. 

This splitting must split BU, BSp and BO. Using the homology calculations of 

section 3 it is shown in section 4 that BG^ splits into a wedge of factors 
BG 

BG • 
n - 1 

4 . 2 : Theorem. 

and 

I n t h e s t a b l e c a t e g o r y t 

BU ^ v MU(k) 
l < k 

BSp a, v MSp(k) 
l<k 

B0(2k) 
B 0 ± ±

V
<k B O ( 2 k - 2 ) 

_.Qn BS0(2k + l ) 
B S 0 ± ^ k BS0(2k-l) (at odd primes). 

Theorem 4.2 implies that the stable homotopy classes {X,BU}, for a finite 

dimensional X, has part of the unitary cobordism of X as a summand. In sec­

tion 5 we identify an embedding of this factor by means of the following result. 

5.1: Theorem. If dim X < 4n there is an isomorphism 

V n ) : {x> Wrrry} - ^ ™2k« 
defined by $ (n) (f) = IlfMc^). $TT(n) is a n epimorphism when dim X = 4n+l. 

The classes of c^ are defined in section 5 and the analogous result for 

MSp*(X) is proved in Theorem 5.2. The analogous result for MO*(X) is proved 

in [Part III, §3]. 

S S 

In addition to being a TT^(S°)-module TT^(BU) has a "tensor product" pair­

ing and a "Whitney sum" pairing. This rich structure facilitates the genera­

tion of elements. By way of illustration 
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ALGEBRAIC COBORDISM AND K-THEORY 3 

TT^(BU) 

(odd torsion) 
in dimensions < 10. 

is computed in section 6 

In §8 we will obtain stable decompositions of BGL3F and BOIF^ (suitably 
localised) which are analogous to those of Theorem 4.2. The S-type of BOIF^ is 
particularly interesting because it is the same as the S-type of imJ, a factor 
in the space SG. SG is the 1-component of QS°. Hence TT^(B0IF ) maps injective-
ly to TT^(SG) and thence to TT^(SG) ^ ir̂ . This is explained in Part III where 
an infinity of homotopy elements in TT^(B0IF ) ̂  are constructed. 

Finally I would like to express my gratitude to the algebraic topologists 
of Purdue University and of the Centro de Investigacion del I.P.N, for their 
hospitality shown to me during the preparation of Part I of this paper. 

The paper would not get off the ground without the all-important technical 
results of section 2.2-2.3 relating the transfer of vector fields. The tech­
nique was first used in this form by Brumfiel-Madsen, whose work has now ap­
peared [B-M] . Becker used some particular cases of the technique in [Be]. 
The presentation in section 2 is my version of an outline given by lb Madsen 
in a Chicago lecture in August 1975. 

The material in Part I dates from late 1975. I am deeply indebted to 
Peter May and lb Madsen for their comments and suggestions concerning the ob­
scurity of my earlier expositions of the material in Part I. 

§2: COMPUTATIONS WITH THE TRANSFER 
Let F and Y be G-spaces where the action of G on Y is free. Set 

Y E = Y x F and X = — and let TT:E -*- X be induced by left projection. Suppose 
G G 

F -> E -> X 

is a differentiable fibre bundle in which Y is the limit of compact G-spaces 
and F has the equivariant homotopy type of a compact G-manifold. From this 
data we are entitled by [B-Gl; B-G2; C-G] to an S-map T(TT) :X -> E called the 
transfer. T(IT) is equivalent (by taking adjoints) to a map T(TT) :X -> Q(E) 

P**^ v „ -, .4: w U(n) where Q(E) = 9, E E = lim Q E E. For example if F = 
E n U(l) 

the fibring 

BE n U(l)
 n->BU(n) 

yields 
|U(1)), T(TT ):BU(n) -> Q(BE n n 

Here E n U(l) is the canonical wreath product which is the normalizer of the 

maximal torus of diagonal matrices. The main result of this section concerns 
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4 VICTOR P. SNAITH 

the coherence of {T(«n- ) ; n ^ 1} in the above fibring and in several similar 
fibrings involving the classical groups. 

When F is a smooth manifold (not necessarily compact) which admits a 
G-embedding into a finite dimensional G-module the results of [B-G2] assure us 
that we may use the construction of [B-Gl] to obtain the transfer without 
ambiguity. 

2.1: Theorem. Let G be one of the Lie groups U(n) , Sp(n),0(2n) or S0(2n + 1). 

Let H be the subgroup £ 
n 

'spU), v u(D, zn 0(2) or NTn respectively. Then 
n 

the following diagram is homotopy commutative. 

T(TT ) 
BG - > QBH 

r i" • 
BG , 1 z r-> QBH ,. 
n+1 T(TT + 1) n+1 

Here the vertical maps are induced by inclusions of subgroups while T(TT ) is 
n 

the transfer associated with 
G 

n 
H n 

-> BH n -> BG n 

NT is the normalizer of the standard maximal torus in S0(2n + 1). 

This result establishes a filtered S-map BG -> BH . However the filtered 
00 CO 

S-type of BH was the subject of the decomposition theorem of [Sn 1]. Here I 
am using terms such as S-map, S-type, etc. in the sense of the Adams stable 
homotopy category [Ad 1, Part III]. That is, a space (for example, QBH ) is 

oo 

considered as an object in the Adams category by means of its suspension spec­
trum. This usage is consistent with that of [Sn 1]. 

In section 4 I will combine these results to obtain a decomposition of 
the S-type of BG . Theorem 2.1 is established according to the following pro-

oo 

gramme. Proposition 2.2 gives a result which enables one to reinterpret a 
transfer map with the aid of an equivariant vector field on the fibre. Then 
Proposition 2.4 gives a general construction, due to Samelson and outlined to 
me by lb Madsen, of equivariant vector fields on homogeneous spaces. Proposi­
tions 2.2 and 2.4 are then applied to several examples, including those re­
ferred to in Theorem 2.1. 

TT Y 2.2: Proposition. Let F + Y x F = E — » — = X be a differentiable fibre • - •k' *- G G 
bundle as described above in which 3F = <j>. Let F be a G-submanifold of F 
with equivariant tubular neighbourhood N. Suppose that p is an equivariant 
vector field on F which, on 9N, is homotopic through nowhere zero vector fields 
to an outward normal and satisfies |p(x)| = 1 for x ^ N. 
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ALGEBRAIC COBORDISM AND K-THEORY 5 

Then the following diagram is homotopy commutative. 

Q(Y X G F1) 

Q(i) 

Q(E) 

Here T(frf) is the transfer for F- -> Y x F »X and Q(i) is induced by 
1 G 1 

the inclusion i:F c F. 

Proof: In [B-G 2, §5.3] it is shown that the homotopy class of the transfer 

is invariant under fibre homotopy equivalence. Consider the fibre bundle 

N -> Y x N-G 'X. This is fibre homotopy equivalent to F_ Y X
G

 Fr X. 
Hence the composition 

X K } > Q(Y x N) -*• Q(E) G 

is homotopic to Q(i) °T(TT T). I will show that T(TT) is homotopic to this 

composition. 

The transfer is defined as follows. Take an equivariant embedding F c V 

into a finite dimensional G-module. Let N be the normal bundle. If £ is a 

vector bundle let Th(£) denote its Thorn space. If y:Th(V) -> Th(N ) is the 

Pontrjagin-Thom map then we have a map 

Th(V) -X. Th(N ) -i» T h O ^ 6 TF) 

where TF is the tangent bundle and i is induced by the inclusion 

N c N e TF ^ F x v. The transfer is obtained by taking the product of this 

G-map 

Th(V) -> Th(N $ TF) = F + A Th(V) 

with the identity map of Y, dividing out by the G-action and then stabilizing. 

Details are to be found in [B-G 1; Section 3]. 

Now define for 0 < s < 1 

i :Th(N1) -> Th(N 0 TF) s x J-
by 

is(v) 
(1-s P(x) ) (v,sp(x)) if |sp(x)I < 1 

otherwise 

where v belongs to the fibre of N at x. This homotopy takes i ° y = i ° y to 

i °y. However, if p were an outward normal on 9N then i- °y would be the 

map used in [B-G 1, section 2.8] to define T(TT") . Therefore, up to homotopy, 

our map is T(TT") . 
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6 VICTOR P. SNAITH 

2.2.1: Remark. Let me describe an example, commonly occurrent, satisfying 

the hypotheses of Proposition 2.2. We are considering the fibring F -> Y x F 
G 

7T Y 
= E -> — = X. Here I remind the reader that F is a differential manifold hav-G 
ing the homotopy type of a compact manifold. Also F is G-embeddable into a 

finite dimensional G-module. Now let p be a G-equivariant vector field F 

which is non-generate on its singular set, Fn. Suppose, in addition, that F 

is connected and that G acts transitively on F . Of course we assume G acts 

isometrically with respect to the Riemannian metric on F. Now choose a very 

small e > 0 and consider N = {f e F | |p(f)| ^ e}« Since p is non-degenerate 

at fn e F by choosing e small enough we may ensure that on 8N near f p has a 

non-zero component in the direction normal to 3N. The transitive action of G 

allows us to translate the picture near f all over F . From this we see that, 

for sufficiently small e > 0, N is an equivariant tubular neighbourhood of F 

in F and at each point of 9N p has a non-zero normal component. The connecti­

vity of F- assures us that if p has an outward normal component on 3N near f 

it has an outward normal component at each point of 9N. If this is the case 

then p on 9N is nomotopic to an outward normal field, through non-zero vector 

fields, by linearly shrinking the tangential component to zero. 

Now let G be a compact Lie group with Lie algebra G. For v £ G define a 

vector field, <b , on G as follows. For z e G let r and £ denote respectively rv z z r y 
right and left transformation by z. Then 

4>v(z) = (Drz)e(v) e TMJ . 

Here Dr is the derivative of r . The following result is straight forward 

and will be left to the reader. It suffices to treat the case G = GL (C) 
n 

which requires only the very basic information which is to be found in [Ad 2, 

Chapter 4; Mi 1, section 1]. 

2.3: Lemma. (i) If w e G is in the centralizer of exp v e G then 

DUw)(*v(z)) = *v(wz) e T w zG. 

(ii) If w £ G is any element then 
D(r )(cj> (z)) = <J> (zw) £ T G . x rv Tv zw 

2.4: Proposition. Let G be a compact Lie group and let H be a closed subgroup. 
Q 

Let 0 £ v £ G. There exists a vector field, p , on — with the following pro-
V n 

perties. 
(i) p (gH) = 0 if and only if g (exp v)g e H. 

(ii) If w £ C(exp v ) , the centralizer of exp v, 

then 
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ALGEBRAIC COBORDISM AND K-THEORY 7 

D(£ )(p (gH)) = p (wgH) for all cosets gH. w v v 

Proof: p is induced from <f> of Lemma 2.3 by taking quotients by the right 

H-action. It is a very basic computation to show that 

(J) (g) € TH if and only if g (exp v) g e H. 

The reader is again referred to [Ad 2, Chapter 4; Mi 1, section 1] for the 

basic information required in this computation. Hence p (gH) = 0 if and only 
-1 V 

if g (exp v)g € H. 

The remainder of this section will be devoted to the applications of 

Propositions 2.2 and 2.4 which will be needed later. 

2.5: Example. Take G = U(n) , H = E U(l) and v e (i(n) such that 

w = exp v = € T 

(x + y). Then C(w) = U(n - 1) x U(l) . Also if g ^ g 6 I U(l) there exists 

a e £ such that a g wga e T . Hence gaT a g is a maximal torus contain­

ing w. We know from [Ad 2, p. 97] that the identity component of C(w) equals 

the union of all maximal tori containing w. Hence there is b e U(n - 1) x U(l) 

„ • c • mH -1 -1 satisfying gaT a g bTnb 1. Therefore g £ (U(n - 1) x U(1))E I U(l). Con-
n ' 

versely all such g are singular. Therefore p is a (left) U(n - 1) x U(l)-

equivariant vector field on U(n) 

U(l) 
whose singular set is equivariantly 

homeomorphic to U(n-l) 

n-1 U(l) 

2.6: Example. Similar to Example 2.5 is the case when G = Sp(n) and 

n 

Sp(n) 

Sp(l). We obtain an Sp(n - 1) x Sp(l)-equivariant vector field on 

Sp(n-l) whose singular set is equivariantly homeomorphic to 
Sp(l) 

2.7: Example. Take G = 0(2n), H = I 0(2) and choose v e 0(2n) such that 

w = exp v 

2n-2 

cos 0 -sin 0 

sin 0 cos 0 

O + nTr) 
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VICTOR P . SNAITH 

Then C(w) = 0(2n - 2) x SO(2). If g wg £ I 0(2) there exists x £ £ c E 
n n 

0(2) such that x~ g" wgx e 0(2)n n S0(2n). Now choose y £ 0(2)n such that 

where 

-1 -1 -1 y x g wgxy = 

sin 0 , cos 0 . 

. 0 - 1 J 

Hence there exists a e £9 such that a y x g wgxya e SO(2) . Arguing as 
in Example 2.5 

gxyaS0(2)na \ \ 1 % 1 <* zS0(2)nz X 

for some z e 0(2n - 2) x 50(2). The normalizer of S0(2)n in 0(2n) is E 0(2), 

Hence z gxy e 1 0(2) and 

g e (0(2n-2) x S0(2))(Z 0(2))E. (E 2n n 0(2)) = U, 

say. Converse^ if g e U we may write g = abc where a e 0(2n - 2) x 0(2), 
r 
0(2) implies b e E0 and c e 2LT 2n N 

b wb e E 
where 

0(2) or b V b e En 0(2) 

2n-2 

cos t> s m 
-sin 0 cos 

It is easy to see that this can only happen if b e L x E . Hence 
r 

g e (0(2n-2) xS0(2))E 0(2). Therefore p is an 0(2n-2) x S0(2)-equivariant 

field on j — whose singular set is equivariantly homeomorphic to 
En [ 0(2) 

0(2n-2) 

^1 0(2) 
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ALGEBRAIC COBORDISM AND K-THEORY 9 

2.8: Example. Similar to Example 2.7 is the case G = S0(2n + 1) and H = NT 

the normalizer of S0(2)n in G. We obtain an S0(2n-1) x S0(2)-equivariant 

-. n j S0(2n+1) , . . , , 
vector field on whose singular set is equivariantly homeomorphic to 
S0(2n-1) 

NT11"1 

NT 

2.9: Proof of Theorem 2.1. In Examples 2.5-2.8 G ..-equivariant vector 
Gn Gn-1 fields were constructed on —— with singular sets equal to — . The transfer H n 

is natural for pullbacks [B-G 1, Section 3.2], 

G 

H n-1 
Consider the pullback diagram 

* BG 

By naturality T(IT ) o j is homotopic to the composition Q(jf) o TCTT1). The vec-n n 
tor fields of Examples 2.5-2.8 have connected singular sets which are acted 

transitively upon by G _.. The fields are well-known to be non-degenerate in 

the sense of the discussion in Section 2.2.1. In Proposition 2.2 we may take 

N to be the neighbourhood of n-1 

n-1 
consisting of points x where |p (x)| < e for 

suitably small e > 0. Since N is a level surface for |p (x) | p is a normal 

vector which is an outward normal near the identity coset. Hence, by Proposi­

tion 2.2 and Section 2.2.1, x(irT) is homotopic to Q(i) o x (TT n) where 
n n - 1 

i:BH n-1 

C G 

EGn*G 1 F T * E G n X G ,T-
n-1 n-1 n-1 n 

is induced by the inclusion of the singular set of the vector field. 

The remaining examples of equivariant vector fields which are collected 

in this section will be used in Part II and in Sections 3-4 where we determine 

the filtered S-types of BU, BSp, BO and BSO and factorise QBU(l), QBSp(l) and 

QB0(2). 

2.10: Example. Take G = S0(2n+1), H = NT n and choose v € S0(2n+1) such that 
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10 VICTOR P. SNAITH 

w = exp v € T 

with I + a. + a. e SO(2) if i + j. Then C(w) 
we find that g wg e NT if and only if g e NT 
ant vector field whose singular set is a point. 

r . Arguing as in Example 2.7 
Therefore p is a T -equivari-v 

The next example is a cautionary one. It is included to show that not 
every p constructed by means of Proposition 2.4 can be used in Proposition 2.2. 
When the singular set is disconnected p may not be an outward normal to its 
tubular neighbourhood. 

2.11: Example. Take G = GL0 (H) ̂  0(2n) and H = £ 
zn — r 

GL_(]R) <\, I I — n 0(2), 

Choose v e GL (R) such that w = exp v is a diagonal matrix with distinct 

entries. Then C(w) = GL (H) 2n If g wg e E GL (]R) then there exists 

X <£ E C I 
n n 

GL (]R) such that x g wgx e GL?(]R) . Having distinct real 

eigenvalues this matrix is diagonalizeable and there exists y e GL2(]R) such 
that y x g wgxy e GL.. (IR) . This must be a permutation of w so there is 
z e ln such that gxyz e C(w). Hence 

zn 
g e (Z 2n GLATR))Z 1 n GL2(IR) 

2n Conversely all such g are singular. Thus there is an 0(1) -equivariant vector 

field, p , on 
GL 2 n(m) 

GL 2(R) 
whose singular set is equivariantly homeomorphic to 

J2n 

"n\h ' 
Caution is required in applying Proposition 2.2 when n ^ 1 since p is 

^2n not the outward normal at each point of a tubular neighbourhood of 
GL2n(]R) 

Since the Euler characteristic of -. is one, the Poincare-Hopf theorem 
zn GL2(IR) 

[Mi 1, p. 35] implies that the sum of the indices of p at the singular points 
S2n of is equal to one. 

2.11.1: Remark. In order that I may later make use of Example 2.11 in con­
junction with Proposition 2.2 and section 2.2.1, I must give some explanation 
of the tricky technical points and how they are overcome. Example 2.11 will be 
used in sections 3.7-3.8 to make a homology computation similar to that of 
[B-M]. In [B-M] this sort of computation is made using algebraic subgroups of 
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ALGEBRAIC COBORDISM AND K-THEORY 11 

the general linear groups in order to consider only fibrings with compact mani­

folds as fibre. As explained in section 2.2.1 this is not necessary for the 

following reason. In [B-G 2] two equivalent constructions of the transfer are 

given for smooth fibrings of the type we are considering. The S-duality defi­

nition clearly requires only data up to fibre homotopy equivalence. However 

the proof of the equivalence of the two definitions, in the smooth case [B-G 2], 

requires only that the fibre be G-equivariantly embeddable in Euclidean space. 

When G is a finite group this can be accomplished for non-compact, smooth mani­

folds such as those occurring in Example 2.11. 

The above discussion would permit us to apply arguments like that of 

Proposition 2.2 and section 2.9 using vector fields, p , which are homotopic to 

outward normals on their singular set. However there is one case when we can 

drop the normality condition. Namely if the singular set is a finite set with 

trivial G-action. In this case it is possible to obtain formulae for restric­

tions of transfers but not solely in terms of other transfers. The individual 

indices of p at the points of the singular set enter into the formula, (see 

section 3.7). 

2.12: Example. Take G = U(2n), H £ I U(l) and choose v e M(n) such that n 

exp v 

x_I 1 n 

x0I 2 n 

(x1 ^ x2) 

-1 Then C(w) = U(n) x U(n). Arguing as in Example 2.5 we find that g wge £ 

if and only if 

U(l) 

g € (U(n) x U(n))E 2n U(l) . 

Thus p is a U(n) x U(n)-equivariant vector field on 

set is equivariantly homeomorphic to U(n) 

Zn|U(l) 

U(2n) 

E2Ju(l) 
whose singular 

The following example is similar to Example 2.12. 

2.13: Example. Take G = Sp(n) and H 

Sp(n) x Sp(n)-equivariant vector field on 

2n Sp(D. Then there is an 

equivariantly homeomorphic to Sp(2n) 

K\ Sp(l) 

Sp(n) 

E2nh ( 1 ) 
whose singular set is 

2.14: Example. Take G = U(n) and H = E U(l) . Choose v e ti(n) such that 

w = exp v is a diagonal matrix with distinct entries. Arguing as in Example 

2.5 we find that p is a T -equivariant vector field on U(n)/£ 

singular set is a point. 

U(l) whose 

Licensed to Univ of Rochester.  Prepared on Tue Jan 12 07:38:01 EST 2021for download from IP 128.151.13.58.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



12 VICTOR P. SNAITH 

The following example is similar to Example 2.13. 

Sp(l). Then there exists a Tn-2.15: Example. Take G = Sp(n) and H = E 

equivariant vector field, p , on i- whose singular set is a point. Here 
V Z n Sp(l) 

n T is the canonical maximal torus of Sp(n). 

§3. FACTORIZATIONS OF QBU(l), QB0(2) AND QBSp(l) 

A map X -> Y into an infinite loopspace, Y, extends to an infinite loop map 
00 00 

QX = n £ X -> Y . 

This extension is unique up to homotopy. Details will be given in section 3.4. 

Hence there are infinite loopspace fibrings 

"*U AU F **—» QBU(l) *—> BU 

j0 A0 F ^-* QB0(2) ^-* BO 

FQ —-^-* QBSp(l)—^-> BSp bp 

in which XTT, X_ and X0 extend the canonical maps. For example, XTT extends the 
U u bp U 

map which classifies the reduced Hopf bundle in KU(BU(1)). 

By Theorem 2.1 the transfer yields maps 

T : BU »QBU(1) 

T Q : BO >QB0(2) and 

x S p : BSp >QBSp(l) 

in the manner explained in section 3.4. 

The main result of this section is the following: 

3.2: Theorem. (i) x and T are H-maps. 

(ii) The compositions XTT ° xTT, X^ o T^ and X^ © T^ are homo-
U U 0 0 bp bp 

topy equivalences. 

(iii) j + Tn:F x BO -> QB0(2) is a homotopy equivalence. 

(iv) 3^ + T U : F U x BU -> QBU(l) and j g p + Tgp:FSp x BSp -> QBSp(l) 

are equivalences of H-spaces. 

Remark. In (iii) the equivalence is not an equivalence of H-spaces. However 

x deviates from an H-map in a very subtle manner. This topic is taken up in 

[Sn2 and in §7] . 

J. C. Becker [Be] and G. B. Segal [Se] have proved parts of Theorem 3.2, 

by different arguments. 

3.3: Sketch of Proof. In the notation of Theorem 2.1, part (i) is a matter of 

evaluating 
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ALGEBRAIC COBORDISM AND K-THEORY 13 

T(TT ) 
BG x BG > BGn ^—* 0BHo . 

n n 2n 2n 

This is accomplished in Proposition 3.6 with the aid of Proposition 2.2 and 

Examples 2.12 and 2.13. Parts (iii) and (iv) follow immediately from part (ii) . 

There are several cases to be considered in (ii). The spaces QBU(l), QB0(2) 

and QBSp(l) are homologically like BH for H chosen appropriately from Theorem 

2.1. If in homology (X_ ). = (TT ) . it is easy to show that A„ ° T_ is a homo-
(j x oo w G G 
CO 00 

logy isomorphism. In Proposition 3.9 this is shown to be true for most of the 

cases. The remaining case is BO mod 2. In Proposition 3.7 and Corollary 3.8 

we analyze the restriction of X o T to B0(1) in mod 2 homology. The proof 

of Theorem 3.2 is given in section 3.10. 

3.4: QX. Let us recall a few facts about QX. [Ma 1] is a suitable reference 

for further details. 
If X is a nice space (a CW complex which is compactly generated, for 

00 00 

example) then QX = ft £ X may be considered as a filtered space. To be precise 

there exist filtered spaces [Ba; Ma 1] which are homotopy equivalent to QX. I 

will use the filtered spaces, C X, of [Ma 1, section 6]. The filtered space 
X = F , C X c . . . c F C X c F , - C X c • • • c C X 

1 oo n °° n + 1 °° °° 

is equipped with a map 

a : C X -* QX 
00 00 

which is homotopy equivalence for connected X [Ma 1, section 6.3], There exist 

maps 

i : EI x Xn -> F C X 
n n £ n °° 

n 

[Ma 1, sections 2.4 and 4.8] such that a ° i is the restriction of the struc­

ture map d: QQX -> QX of the free functor Q. For details the reader is referred 

to [Ma 1, section 5] or [Ma 2, Chapter II, section 1]. 
Note that i : X •> F C X is a homeomorphism and the composite 

X ^ F,C X c C X 
X oo oo 

corresponds to the "suspension" map £ : X -*• QX. 

Also i |E n x x n _ 1 = i _ . 
n1 n-1 y n-1 

n-1 

If Y is an infinite loopspace and f':X -> Y is a map then there is an in­

finite loop map f:QX -> Y such that f|x = ff. f is unique up to homotopy and 

equal to the composite d Q(f') where d:QY -> Y is the structure map of the in­

finite loopspace Y [Ma 1; Ma 2 ibid.]. 
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14 VICTOR P. SNAITH 

By definition the restriction of f to EE x X is equal to the image 

of Xn prC>:] > X > Y under the Kahn-Priddy transfer [K-P] associated with the 
covering Xn -> El x X . n £ n 

By Theorem 2.1 the transfers 
T(TT ) : BG -* Q(BH ) n n n 

fit together to give 
T(TT ) : BG -* Q(BH ) . 

N Co' OO ^ V Oo' 

When G = U, 0 or Sp we may form the composition 

T(TT ) Q(i ) , 
(3.5) T G : BG^ ^-> Q(BHj ^-> QQBG1 — QBG1 . 

00 

Here i = lim i 
oo * n 

n 
3.6: Proposition. If G = U or Sp then x is an H-map. 

00 2 Proof: Let m : QBG1 ->- QBG.. be the H-space addition. If we can show that the 
diagram 

BG x BG » BG0 

9 n n 2n v l 1 ' 
QBG1 x QBG1 - ^ QBG1 

G 

is a homotopy commutative then the result will follow. This involves a lim 
argument. By Theorem 3.2 (ii), (which is proved independently of part (i)) 
QBG = F x BG where F has finite homotopy groups. Hence in the Milnor 

00 00 

exact sequence [Mi 2] the < lim -term is 

lim^EBG2, QBG, ] ̂  lim1 [Z (BG2) , BG ] = 0 . 4 n 1 — < n ' *> n n 
Thus 

[BG x BG , QBG, ] ̂  lim[BG x BG , QBG, ] . 
1 oo oo> ^ i J — < L

 n n' x 1 
n 

o 
Now consider (X(TT )|BG ). Example 2.12 and 2.13 together with Proposi­

tion 2.2 assures that (x |BG ) is equal to the composite 
00 

2 x' 2 i d °Q(i2n) 
BG — -—> Q(BH ) -J~* QBH0

 £iL-> QBG, . n n zn 1 
The argument is an application of the "vector field trick" used in section 2.9 
and elaborated upon in sections 2.2- 2.2.1. Here x1 is the transfer associ-

2 2 2 ated with BH -*- BG and i is induced by the inclusion of H in Hn . From [B-G 2, n n J n 2n 
section 5.6] j° T' is equal to the composition 

2 T(7Tn) 2 if BG > (QBH ) -^~> QBH0 . n n Zn 
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ALGEBRAIC COBORDISM AND K-THEORY 15 

The following commutative diagram now yields the result. 

2 T ( V 2 1' BG > (QBH ) —*—> QBH0 n n , Zn 

Q(in)-

(QQBG1)Z 

(QBG±y 

^ ( 12n> 
QQBG, 

-* QBG, 

3.6.1: Corollary. 
ture 

The Becker-Gottlieb solution to the complex Adams conjec-

BU -* G/U 
is an H-map. (Compare this with Lemma 7.2.) 

Proof: The Becker-Gottlieb solution to the Adams conjecture, as presented in 
[Be], is equal to a composite of the form 

BU —^-> QBU(l) Q ( a ) > QG/U -^-» G/U. 

Here a: BU(1) -> G/U is Adams1 solution to the Adams conjecture for U(l)-bundles 
[Ad 5]. Since Q(a) and d are H-maps the result follows from Proposition 3.6. 

Now let h: BO(l)2n -> B0(2n) and k: BO(l)2n + BE 0(2) be the natural maps. 
For g e E denote by k the composite 

BO(1)2n_^(£)_,BO(1)2n JL. 

where a(g) is conjugation by g. 

3.7: Proposition. The composition 

B0(l)2n -*U B0(2n) 

BE 

T(TT ) n 

0(2) QBE 0(2) 

* QBE 0(2) 

k2n is equal to E I(g)k . The sum, taken in the group [B0(1) , QBE (2)] i 

{B0(l)2n, BS 0(2)}, is taken over a set of coset representatives of 

zn n E . 1(g) is the index at gE E0 of the vector field, p , in 2 v 

Example 2.11. 
9 9 

Proof: In Example 2.11 0(1) acts trivially on the singular set >— . 

I propose to proceed as if applying Proposition 2.2, in the situation de­
scribed in section 2.2.1, to this vector field. It is non-degenerate at its 
singular set (F in the notation of sections 2.2-2.2.1). However F- is dis-
connected and the 0(1) -action is not transitive. Nevertheless we obtain, by 
the argument of Proposition 2.2, a homotopy commutative diagram. 
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16 VICTOR P. SNAITH 

BO(l) 

BO(l) 

T 

2n 

2n -» BO(2n) 

J2n 

Z n E 2 

Q(BE 

T(irn) 

0(2)). 

However, as pointed out in Example 2.11 and section 2.11.1, T' is not the trans­

fer in the sense of [B-G 1]. If T 1 were the transfer it would be a sum of a 

number of copies of the adjoint of the identity map. Nevertheless T T is still 

the sum of a number of maps, one for each point in the singular set. By defi­

nition of the index of p at gE 
v n 

E [Mi 1, p. 32] the map at gE £ 2 is 1(g) 

times the adjoint of the identity map, E °k. The map 

E„ 
B0(1) 2n 

J2n 

=~KJ 
QCBE^ 

is induced by the inclusion of the singular set into 

0(2)) 

0(2n) 

clear that B0(l) 2 n x gE 
n 

the canonical map, E ° k. 

g0(2) 
Hence it is 

E is mapped in by means of the conjugate by g of 

3.8: Corollary. The maps X o T O h and h: B0(1) 

in homology. 

2n BO induce the same maps 

Proof: Consider the following commutative diagram. 

B0(l) 2 n -^-* B0(2n) 5_4 QB0(2) -> BO 

T(TT ) n 

QBE 0(2) 
Q(in) 

QQB0(2) Q(XQ) 

d 

-* QBO . 

We will apply Proposition 3.7 to this diagram in order to evaluate Xn° xn° h in 

homology. Firstly we need some notation. 

Let m E0 : E 1 2n n E9| and let g1,..., g be the coset representatives in 

the statement of Proposition 3.7. Let h. : B0(1) 2n B0(2n) be the conjugate of 

h by g.. Also denote by h. the composition of h. with the natural map into BO. 
1 v2n\ X 

Then (h.), H. (B0(1) ) -> H. (BO) for 1 < i < m; since the inner automor­

phisms induce the identity. 

If I(g.) = 1 let x- * BO -* BO be the identity map. If I(g.) -1 let 

BO BO be the inverse map of the H-space, BO. 
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ALGEBRAIC COBORDISM AND K-THEORY 17 

that 

The maps d, Q(i ) and Q(X_) are H-maps. Therefore Proposition 3.7 implies n 0 

d o Q(Xn) o Q(i ) o T(7r ) o h 0 n n 

is homotopic to the composition B0(1) > (B0(1) ) -> BO -> BO of the dia­

gonal followed firstly by TT.X- ° h. and then by the iterated H-space addition. 

Suppose x € H.(B0(1) ) satisfies A.(x) = Ex.. £• ••• © x . Then, from our 

diagram, 

aQ • TQ o h),(X) = Z(H c h ^ ^ ) . . . ( y hm),(Xm) 

= 2 ( X l ) * V X l ) . . . (Xffi)*Vx
m> 

= ( n x1)*A*(h#(x)). 

i=l 

However, to complete the proof, we observe that 

i*' A ^ 1 ^ : BO -̂ -> B0 m -* BO. BU 

For it is a sum in the group [BO,BO] of t copies of 1 and s copies of (-1__.) 

where s + t = E 1(g) = 1, as explained in Example 2.11. 
g 

3.9: Proposition. In the notation of Theorem 2.1, let G = U(n), Sp(n) or 

0(2n). Let R be a torsion free commutative ring. If H.(BG ;R) has no torsion 
X 00 

then 

BH —^-> QBG- -̂* BG 
oo ^ 1 oo 

and TT^ induce the same map in H^(-;R) . Here i is the map which was introduced 

in section 3.4. 

Proof: By definition \„ ° i : BE G n n 
tr(6 o TT ) , [K-P] of 

G -> BG is the Kahn-Priddy transfer, 

î e BGn x BH n —± -* BG, » BG 1 n-1 1 °° 

with respect to the covering BG., x BH ., -> BH . Here 6 is the canonical map con-

1 n-1 n 

sidered as representing a class in reduced K-theory. Hence 9 = E - dim E where 

E is either the Hopf bundle over BU(1) and BSp(l) or the canonical 2-plane over 

B0(2). Here dim E refers to the complex, quaternionic or real dimension of E, 

as appropriate. 

The Kahn-Priddy transfer is additive [K-P, section 1.8]. Hence in homo­

logy (X_ o i ). is the Pontrjagin quotient of tr(E). by tr(dim E).. Explicitly 
(jr n * ?? 7C 
CO 

in homology this has the following meaning. Let x : B(^ -> BG be the inverse 

map of the H-space, BG . Suppose that the diagonal on x e H^CBH ) is given by 
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18 VICTOR P. SNAITH 

Then 

A^(x) = Zx 0 x2 

(XG ° V * ( x ) = Ztr(E)*(x1)x:fctr(dim E);Sf(x2)1 

Hence the result will follow if tr(dim E) kills 

H*(BZ Gx) = H^(BHn). 

dim E is a trivial bundle over BG . Therefore, by the naturality properties of 

the Kahn-Priddy transfer [K-P] 

tr(dim E) : BE G- -> BG 

factors through the map BE G -> BE induced by the homomorphism G •+ {1}. 

In fact tr(dim E) is equal to the composite of BE 

cal map BE -* BG -* BG . n n °° 

G- -> BE with the canoni-1 n 

Since E is a finite group H^(BE ;R) is torsion. Therefore the composite 

tr(dim E). : H. (BZ G-;R) -> H.(BE :R) -> H.(BG :R) 

is zero. Finally it is shown in [Ma 2, chapter VIII, Proposition 1.1; see also 

K-P] that tr(E) is equal to the composite BH -* BG -> BG . Therefore A0 o i n G n 

equals TT in homology and the result follows by letting n tend to infinity. 

3.10: Proof of Theorem 3.2. I proved (i) in Proposition 3.6. Given (ii) it 

is immediate from the homotopy exact sequences of (3.1) that the sum of x and 
G 
00 

j is a homotopy equivalence. Also j is an infinite loop may so that 
CJ Or 
00 00 

x + j is an H-map if xp is. BG^ is simple so, to prove (ii), it suffices 
00 00 00 

by the universal coefficient theorem [Sp, p. 246] and a theorem of J. H. C. 

Whitehead [Sp, p. 399] to show the following. 

(a) X o T and A ° x induce integral homology isomorphisms and 

(b) Ano T induces isomorphisms in homology with coefficients in Z[— ] 

and Z/2. 

Now, with any coefficients, (TT ). ° X(TT ). is multiplication by the Euler 
(P } n * n * 

characteristic x 1 we obtain (TT ). O T(TT ). = 1. Hence by Proposition 3.9 

(AQ o X G ) ^ = 1 on H^(BU;Z),H^(BSp;Z) and H^(BO;Z [-]) . The remaining case fol-
OO 00 

lows from Corollary 3.8 since (k)^ : H^(B0(l)°°;Z/2) •* H^(B0;Z/2) is onto. 
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ALGEBRAIC COBORDISM AND K-THEORY 19 

§4. STABLE DECOMPOSITIONS OF BU, BSp, BO AND BSO 

Let F, C X be as in section 3.4. In [Sn 1] stable equivalences 

a, : F, C X k k °° 

F C X t °° 

t<k V l C ~ X 

and 

t<k t-1 

F C X 

are constructed. These equivalences fit together coherently. Details are 
F C X n °° given below in section 4.5. However — - — is homeomorphic [Ma 1, Proposition r - C X n-1 » 

2.6 (ii)] to an equivariant half-smash product. Suffice it to say this space 

is a quotient of E x X where E is a contractible space with a free Z -action. 
Z n 

Then n 
BZ U(l) = E x BU(1) 

Z 

and 

BZ n-1 U(l) = E x BU(1) 
En-1 

n-1 

The inclusion of the first n-1 factors BU(1) •> BU(1) induces a map 

BZ L-1 U(l) -> BZ U(l) 

which is homotopic to the canonical map. The quotient map 

E x BU(1) 
Z 

F C BU(1) 
n °° F ,C BU(1) 
n-1 °° 

sends BZ n-1 U(l) to a point. This map and its quaternionic and real analogues 

induce the following homeomorphisms. 

F C BU(1) 
n oo 

£ J U 
BZ U(l) 

and 

F ,C BU(1) n - 1 °° 

F C BSp( l ) n oo 

F
n - l C ~ B S p ( 1 ) 

F C B0(2) 
n °° 

BZ . n-] 

BZ 

BZ , 
n - j 

BZ 
n 

Juci) 
Sp(l) 

Jsp(i) 
0(2) 

(4.1) 

F _C B0(2) 
n-1 °° 8 ^ 0 ( 2 ) 

In the notation of Theorem 2.1 let G = U(n), Sp(n) or 0(2n). Define stable 
n maps BG 
BG ^ BG _, t<n t-1 

by means of the following composition 
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20 VICTOR P. SNAITH 

T(TT ) r a BE C BG 

1 t<n BEt_1[G1 t<n B°t-1 
BG 2—* BE 
n n 

where y = v TT . 
t<n 

The first result of this section is the following which is proved in 
section 4.6. 

4.2: Theorem. 
(i) If G = U(n) or Sp(n) then 

BG 
v^ : BG -> v t 

G n BG_ . 
n t<n t-1 

is a stable equivalence for 1 < n < °°. 
(ii) v : B0(2n) + V J^igL. 

t<n 
is a stable equivalence for 1 < n < °°. 

(iii) For G = U(n), Sp(n) or 0(2n) 

VG n 
B Gn-l^ VG , n-1 

The other result of this section gives stable equivalences in the opposite 
direction and includes the case B0(= BSO) at odd primes. 

By Theorem 2.1 the transfer induces stable maps 

BG BH 
/ \ n n 

T(TT ) -n' BG - BH " n-1 n-1 
Here G and H are as in Theorem 2.1. Hence if G = U(n), Sp(n) or 0(2n) we n n n 
have a stable map 

BG 
^ = : B G - T ^ B G » 
n t<n t-1 

given by the composition 

= t - i | G i 

BG „ BE |C B i XG 
o t i n n °° 
u . v LL^L u_> F c B G — 1 1 ^ Q ^ B G t<n B G t - l t<n BE L n 

t - i j i 

Here 6 = v T(TT ) . A l so t h e n o r m a l i z e r NTn c S0(2n + 1) l i e s i n 
t<n 

E n 0(2) x 0(1) c 0(2n + 1). Thus we have a map 

BNTn BEn 0(2) 

BNT rn x BEn_1[o(2) 

Define a stable map 
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ALGEBRAIC COBORDISM AND K-THEORY 21 

. BSO(2n+l) 
ySO(2n+l) ' BSO(2n-l) t<n 

by means of the composition 

pt BItjO(2) 3„ i_ Ar v mm±^ v -** v - ^ ^ F c B O ( 2 ) ^ Q B O ( 2 ) _ o , B 0 . 
tsnBSO(2t-l) t S n B N T t - l t S n M fQ(2) W° 
Again 6 = v T(TT ) , 

t<n fc 

4.3: Theorem. (i) If G = U(n) or Sp(n) n 

BG 

00 l<t t-1 
is a stable equivalence. 

is a stable equivalence. 

,...N w BS0(2t+l) ^ 
(111) ^SO : ̂ t BSO(2t-l) " B° 

is a stable equivalence at odd primes. 

4.4. Theorems 4.2 and 4.3 will be proved according to the following programme. 
We wish to show that a number of maps induce Isomorphisms in homology. These 
maps are compositions. Part of these compositions are the stable maps OL and 
3,. In section 4.5 we recall the salient facts about OL and 3, , namely how 
they behave with respect to the filtration. These facts together with the homo­
logy information, which was garnered in section 3, about the other maps in the 
composition will be used in sections 4.6 and 4.7 to prove the theorems. In 
section 8, a decomposition theorem for BGL3F and BOIF^ is proved. 

4.5: Properties of OL and (3, . Recall [Ma 1, section 6] there are filtered 
spaces, C X, equipped with maps 

C X -> finSnX n 
and satisfying C X = lim C X as a filtered space. In [Sn 1, Theorem 1.1] expli-

n 
cit stable equivalences _ 

ak(n) : F ^ I - v ^ - ^ 
t<k t-1 n 

were constructed. These stable equivalences enjoy the following properties: 
(a) a (n) ̂  a (n)|F C X [Sn 1, section 3.2] 

K. K. i J- K. n 

(b) The composition of a,(n) with the collapsing map onto the factor 
F C X 

— pr~^ is homotopic to the canonical collapsing map 
k-1 n 
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22 VICTOR P. SNAITH 

W + F T T h [ S n l > a c t i o n 3.2] 
k-1 n 

(c) OL = lim a (n) exists and is a stable equivalence 

[Sn 1, section 3.6]. 

Take the stable equivalence 3 to be a homotopy inverse of a . The B may 

be chosen so that 
F C X 

i t °° 
6 v - a, 8 
k+11 ^ F_ C X - Pk I t^k t-1 °° 

and I shall assume this done. 

4.6: Proof of Theorem 4.2. (iii) The coherence of the v follows from the G n 
coherence of the OL (n) (section 4.5(a)) and of the transfer, T(TT ) (Theorem 

2.1). 

For the rest we have, by a theorem of J. H. C. Whitehead [Sp, p. 399], to 
show that v induces isomorphisms in homology. 

n 
(i) Suppose that v is a stable equivalence and commence induction 

n-1 
with n = 1. Consider the composition 

VG BG BG 

t<n t-1 n-1 

By 4.5(b) this is stably nomotopic to the composite 

BG f BZ G, , BG 
BG ' n T nj 1 u 

c i iGi n-lj 1 n-1 BE n G. n-1 

where T 1 and TT ' are induced by T(TT ) and TT respectively. However (cf. section 
n n 

3.10) TT © T(TT ) induces the identity in homology by [B-G 1, Theorem 2.4]. Also 
BG 

BG •> — is onto in homology with kernel given by the image of H. (BG ., ) . n BG - * n—1 n-1 
Therefore by induction on n, it is clear that v induces a homology isomorphism. G n 

(ii) This case is similar to case (i) . 

4.7: Proof of Theorem 4.3. The proof is very similar to that of Theorem 4.2. 

The basic ingredients are Proposition 3.9 and Theorem 3.2(ii) for BO at p = 2. 

Details are left to the reader. 

§5. CONNECTIONS WITH COBORDISM 

In Theorems 4.2 and 4.3 I showed that BU and BSp are stably equivalent to 

a wedge of Thorn spaces. The stable maps of X into a Thorn space, MU(n) or MSp(n), 

are related to the cobordism of X (unitary or symplectic respectively). Suit­

able references for the cobordism material of this section are [Ad 1; St 1]. 
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ALGEBRAIC COBORDISM AND K-THEORY 23 

We will work in Adams category of CW spectra [Ad 1; p. 146). Let 

c n e m fc^iyj and K e MSp 

to the Conner-Floyd classes 

BSp 
[BSp(n-l)J be cobordism classes which restrict 

c e MU2n(BU) and p e MSp4n(BSp) 

respectively. Let {X,Y} denote stable maps of degree zero from X to Y. The 

main results of this section are the following: 

5.1: Theorem. Define <J>(n) : ix, PTT/BU ., 1 •> n MU2k(X) by 
U ^ BU(n-l)J ^ k 

^(n)(f) = n f*(c£) . 
n<k 

Then $TT(n) is an isomorphism if dim X < 4n and is a surjection of 

dim X = 4n + 1. 

5.2: Theorem. Define <£> (n) : ix, B f P
 1N \ -> n MSp4k(x) by SP I BSp(n-l)J n^ k 

*s (n)(f) = n f*(P£). 
n<k 

Then $ (n) is an isomorphism if dim X < 8n + 2 and is a surjection if bp 
dim X = 8n + 3. 

5.3: Sketch of Proof. Theorems 5.1 and 5.2 will be proved by appealing to 

Theorems 4.2 and 4.3. The role of the Thorn spaces 

BU(n) __., . ^-^— i/ MU(n) BU(n-l) 
and 

makes it clear that Theorems 4.2 and 4.3 have, as a corollary, an isomorphism 

of the desired type. In section 5.7 we verify by means of the facts collected 

in section 4.5 that the isomorphisms are equal modulo the skeletal filtration 

to $TT(n) and $ (n) . This verification is very simple. 

5.4: Remark. Theorems 5.1 and 5.2 might, of course, be proved by computing 

(c k)* : H^(BU) -> H^(MU) (k > 1) 

and 
( p ^ : H^BSp) -> H^(MSp). 

Here BU and BSp are the suspension spectra of BU and BSp respectively and the 

homology groups refer to homology of spectra [Ad 1, p. 196]. This is not diffi­

cult and I leave it as an exercise to the interested reader to accomplish this. 

In fact (c,)^ is computed in section 6.14 in order to relate the Boardman-

Hurewicz maps 

7T. (BU) -> H. (BU) 
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24 VICTOR P. SNAITH 

and 
TT^(MU) -> H^(MU). 

Firstly, for completeness, here are two observations which are required in 
order to prove Theorems 5.1 and 5.2. 

5.5: Lemma. Let 
e : Z MU(n) -> MU(n+ 1) n 
6 : E 4 MSp(n) -> MSp(n+ 1) n 

be the structure maps of the MU- and MSp-spectra respectively. Then e is a 
n 

(4n+ 3)-equivalence and 6 is an (8n+ 7)-equivalence. 
5.6: Corollary. (i) The canonical map e: {X,MU(n)} -> MU (X) is an isomor­

phism if dim X < 4n and is a surjection if dim X = 4n+ 1. 
4n 

(ii) The canonical map 6 : {X,MSp(n)} -> MSp (X) is an isomor­
phism if dim X < 8n+ 2 and is a surjection if 
dim X = 8n + 3. 

Proof. (i) By Lemma 5.5 and [Sp, pp. 399-405] (e ). : [ft^^IUdi)] ~ n * 
[EX,£ MU(n+l)] is an isomorphism if dim X < 4n and is an epimorphism if 
dim X = 4n + 1. Hence, taking limits, e: {X,MU(n)} -» lip^ [E2mX,MU(n+m) ] 

= MU (X) is an isomorphism if dim X < 4n and an epimorphism if dim X = 4n + 1. 
Case (ii) is similar to case (i). 

5.7: Proof of Theorems 5.1 and 5.2. The argument is the same in both cases so 
I will deal with the unitary case. 

From Theorem 4.2 and Corollary 5.6 we know that 

X' BUST)"} - {X' n M H O O } " ^ n MJ2k(x) (5.8) 
^ ^ n<k ' n<k 

is an isomorphism if dim X < 4n and an epimorphism if dim X < 4n + 1. If MU?, 
2k classifies MU (_) then (5.8) is induced by a stable (4n + 1)-equivalence 

n<k: 

The homomorphism (5.8) assigns f*(y) to a stable class, f. Any map which in 
homology induces y* would give a (4n + 1)-equivalence. I will show that this is 

TUT true for II c.T . Since BU -* ̂ —7—rr- is stably a split surjection it suffices ,̂ k BU(n-l) J v J n<K. 
to show that the natural transformation 

{X,BU} = {X, v MU(k)} - ^ n MU (X) (5.9) 
l<k l<k 
2k corresponds to a class yT < II MU (BU) which coincides in homology with 

l<k 
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ALGEBRAIC COBORDISM AND K-THEORY 25 

II c, . To do this it suffices to show that 
i ! k l<k 

Yf = n c (mod MU*(BU).1) 
l<k k 

where I = (x e MU*(point); deg x < 0). I will show by induction on n that this 
is true for yT restricted to BU(n). The result then follows by taking limits. 
From section 4.5(b) we see that if n = 1 the stable equivalence of Theorem 4.3 
is the identity BU(1) -* MU(1) ̂  BU(1). In general section 4.5(b) tells us that 
the stable equivalence BU(n) ->• v MU(k) is given by c^ on the wedge factor 

MU(n). However 
l<k<n n 

?k ?k 

ker(MU (BU(n)) -> MU (BU(n-l) ) ) 

is in MU*(BU(n)).I if k < n and so the induction step is complete. 
§6. APPLICATION TO Tr^(BU(n)) 

^(BU(n)) 
This section presents a calculation of -,—T~ : r- for j ^ 10. Only the 

r (odd torsion) J J 

essential ingredients of the calculation are given here (section 6.14-6.16). 
The method, which is very simple, is explained in section 6.8. In addition to 
the results of this section the prerequisites for the reproduction of the cal­
culation are the results of [Mo, section 6; T, pp. 189-190] and a large sheet 
of paper. 

In fact (with an even larger sheet of paper!) one can perform these calcu­
lations without the use of the results of [Mo]. This is because of the inter-
relation of the 7r^(MU(n)) which actually force the behaviour of the spectral 
sequences of (6.9) when X = MU(n) for all n (n = 1 is the case of [Mo]) in 
dimensions <19. For details of this sort of calculation the reader is referred 

S S 
to [K-Sn] in which Ti^(MSp(n)) and Ti^(BSp(n)) are calculated for * <26. 

The main result of this section is the following: 
6.1: Theorem. The canonical map BU(n) -> BU embeds 7T^(BU(n)) as a direct 
summand of ^(BU) for n > 1. 

If s s 
7r.(BU(n)) ir.(BU(n-l)) 

, ,J, : r- ̂ - T ~ ^ : r $ A.(n) 
(odd torsion) — (odd torsion) j 

then A.(n) is given by Tables 6.2-6.6 below when j < 10. 
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26 VICTOR P. SNAITH 

6.2: Table for A.(l). 

2 

4 

5 

9 

10 

Z 

z 
Z/2 

Z 

Z/2 

z e z/2 
Z/8 

Z 

generators 

x 

V o x 

,3 x*^ 

v 

X* 

a o x 
__*5 

6.3: 

6.4: 

6.5: 

Table for A,(2), 

Table for A.(3), 

Table for A,(4). 

! 

4 

6 

8 

9 

10 

2 

6 

8 

10 

1 
8 

10 

A.(21 
Z 

Z 

z e z 
Z/2 

z $ z e z/2 

z 
z 

z e z 

z 

generators 
2 

x(x* ) = a 11 
a12 

3 2 
2 a22 + all al2' X" X* ' n ° W 

generators 
3 

2 2 (x*Z)xZ 

x ( x * V , ^ *12 

generators 
4 x 
2 3 

6.6: Table for A,(5), 

J. 
10 Z 

generators 
5 

6.7: Explanation of Tables 6.2-6.6. In the range j < 10 A.(n) = 0 for n ^ 6 

and the tables display only the non-zero groups in this range. The generators 

arise in the following manner. All the displayed groups are summands in ir^(BU). 

TTA(BU) is a module over stable homotopy of spheres, by means of composition, 

and for 

a e TT (S ) , b € TT^(BU) 

a °b denotes the composition product. Also BU has two structure maps BU XBU _ >BU 

coming from sum and tensor product in K-theory. For a ,a? e \(BU) 

a*a ? denotes "tensor product" 
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ALGEBRAIC COBORDISM AND K-THEORY 27 

and a.. a? denotes "Whitney sum". The notation for elements in ^ ( S ) is taken 
Q oo 1 2 

from [T, pp. 189-190]. The element x e TT (CP ) is the inclusion of CP = S . 
S By Theorem 5.1 -^(BtKn)) contains elements from MU*(point) which account for 

the presence of a , a and a ?. Here a., e TT , . (MU) is the coefficient 

in the formal group law for complex cobordism in the notation of [Ad 1, p. 40], 

My calculations end rather arbitrarily at j = 10. The input for the cal­

culations, as will be explained below, is knowledge of TT^(CP ) and TT^CS 0). 

Given this information through a range it is relatively simple to compute 

Tr^(BU(n)) for a comparable range. My computations were motivated by the specu­

lation that TT^CS ) and TT^CCP ) might generate TT^CBU) under composition, Whitney 

sum and tensor product. However this is not so, even in the range j < 10. The 

reader, equipped with the techniques of this section and the computations of 
S 

[Ad 1, Part II, section 12] can soon verify that a ? e ^(BUCn)) (n > 3) is not 

generated in this manner. 

6.8: Method of Calculation. For a space X consider the spectral sequence of 

TT^CS )-modules 

E 2 = H (X;TT S(S°)) =>TTS, (X) (6.9) 
p,q p q p+q 

r r (d : E -> E , _.) . The associated filtration is r P,q p-r,q+r-l 
Q 

(0) = F c F C F c • • • c F =TT (X) 
K-J - l , k 0 , k l , k k , k k W 

where 
F 1 

E°° =
 m » k 

m,k-m F .. . m - l , k 

oo TC 

The spectral sequence was studied for X = CP in [Mo] (note that my E would 
r ^P»Q 

be E in the notation of [Mo]). When X = BU the following properties hold: p,p+q 
(i) The products a *a and a-a (see section 6.7) operate in the spec­

tral sequence in such a way that the differentials are derivations. 

(ii) By Theorem 4.2 the spectral sequence is additively the direct sum 

of the spectral sequences for MU(n); n > 1. Therefore the differ­

entials respect the splitting. 

(iii) Tr^MU) = MU*(point) is known [Ad 1, Part II]. By Theorem 5.1 we 

have isomorphisms 

; j=e-n 

(e = 0 or 1). A stable homotopy class on the left converges in the 

spectral sequence (6.9) to its image under the Hurewicz map H. The 

Boardman-Hurewicz map is an injection 

B : TT^(MU) -+ H ^ M U ) . 
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{ s 4 n - : 
$ 0 

-£ ,BU} — S - * n MU2j ( p o i n t ) 
j = e -n 

|H IB 

H*<BU) ( O =(n c ) ) H* ( M U ) 

k 

Hence we can discover the permanent cycles which represent elements 

of TT. (MU) by means of the commutative diagram 

(6.10) 

Using (i)-(iii) and the determination of the spectral sequence when X= CP 

[Mo, section 6] all the remaining differentials, d , r < 8, may easily be ob­

tained in total degree < 11 when X = BU. Then Theorem 6.1 follows immediately. 

The remainder of this section is devoted to the computation of ($TT). in 
U * 

(6.10) (see sections 6.14 and 6.15) and to the identification of cycles repre­

senting cobordism classes (see Proposition 6.16). Section 6.17 contains an 

illustrative example. 

6.11: Notation. Recall H^(BU) = Z^,^,...] (deg $. = 2j) [Ad 1, p. 49, 

Lemma 4.3] and H^(MU) = Z[bn,b0,...] (deg b. = 2j) [Ad 1, Part II, section 6]. 

If a. . e TT9 .. ._-v (MU) is the coefficient in the formal group law [Ad 1, p. 40] 

then B(a..) e H^(MU) is computed in [Ad 1, Part II, section 6], The inductive 

formula is 
i + j I b . ^ - Z Z B(a ,)bSbt . (6.12) 

i+j-1 st I j 
J s t J 

B(.±j) -

In (6.12) the sum is over 1 < s < i, 1 < t < j and s + t ^ i + j. Also 

i 
b = E b, . . . b, where Z k. = z - i z k.. k. . i J 

1 l J=l 

(summed over all partitions (k-,k«,...)) and b n = 1. The first few examples are 

B(a u) = 2b1 

B(a12) = 3b2 - 2b^ 

B(a13) = 4b3 - 8b1b2 + 4b^ (6.13) 

B(a22) = 6b3 - 6bxb2 + 2bJ 

B(a23) = 10b4 - 3b2 - 4b^ + 14b^b2 - Ub^b 

2k 
6.14: Lemma. For ck e MU (BU) 

(ck),(6.i+1...6.t+1) , H2(.+t_k)(MU) 

t 
(i = Z i.) is equal to b. ... b. if k = t and zero otherwise. 

j-i J H xt 
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ALGEBRAIC COBORDISM AND K-THEORY 29 

Proof. In terms of the slant product [Ad 1, p. 229] (cv)^(a) = c,\a. By defi­

nition b. = c \3.,1 by [Ad 1, p. 51, Lemma 4.5]. 3. , -, . . . 3. , -, originates in 

oo t 2k °° t ^ t 

^((CP ) ). The image of c in MU (CP ) ) is zero if k > t. If k < t this 
8k 0t-k 

image is the sum of the translates of L ® 1 under the action of the per­
mutation group E . Now 

( c * • l 8 t - k ) \ B v l . . . B ± t + 1 - (Cl\Bli+1) ... (l\6.t+1) 

by [Ad 1, p. 229, Proposition 9.1] and (1\3.) = 0. Thus the expression is zero 

unless t = k and by definition (c \3.+1) = b. so the result follows. 

6.15: Corollary. 

is given by 

(<y* : H>V(BU) + H^(MU) 

( y * ( 3 v l . . . 3 v l ) = b v . . b v 

6.16: Proposition. Let z e II MU (point) ̂  IS , , --\\\ s a t i s fY 

BU • J H(Z) = y £ \ f a * Let 

and 

J j=-n-l 

be the elements corresponding to z. Then 

H( Z l ) = 3 -^ and H(z2) = 3^y . 

( H e r e H Jwfe is identified with the subgroup of H^(BU) generated by mono­

mials of weight greater than n.) 

BU Proof. We have ($TT).(Hz.) = Bz with H(zn) e H. ^ U * 1 1 4n+2 BU(n) However 

(V*(y) = Bz f ° r y e H4n Lufn-l) j' HenCe 3l y = H ( z l } by C o r o l l a r y 6'15-
2 

Similarly 3 y = H(z ). 

S 2 6.17: Illustrative Examples. x e IT (BU(1)) is represented by $-. € E in the 
L ^ 1 Z ,u 

spectral sequence. By [Mo, section 3] x* is represented by 239 so 23-, 39 
2 S represents (x* )x e TT. (BU(2)). However I b 

S 
*6 |BU(1) 

RTT I —2 0 
1 ^ MU (point) x MU (point) = Z 0 Z. 

The first summand is generated by a _ and Ba = 2b , by (6.13). Hence 

H ( a n ) = 23231 € E2
6 Q and a^ = (x*2)x. 
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30 VICTOR P. SNAITH 

Now consider 
a19 € MJ 4 (point) c {s8, B U 

12 VF ' \ * BU(1) 
? 

Since Ba12 = 3b - 2b1, by (6.13). 

H(a12) = 3a331 - 2g2 € Ĥ  BU ) 
BU(1) 

2 S and a1 converges to 3g03- - 23_. Also a-0 is in 770(611(2)). By Proposition LZ J 1 z iz o 

6.16 xa12 c TT 0̂ (BU(3)) is represented by 3 3 ^ - 2 3 ^ . 

§7: NON-ADDITIVITY OF T : BO + QB0(2) 
The Becker-Gottlieb solution of the real Adams conjecture, as presented in 

[Be], is equal to a composite of the form 

BO —^-> QB0(2) Q ( a ) > Q(G/0) - ^ G/0 (7.1) 

Here T is the transfer of Theorem 3.2, a: B0(2) ->- G/0 is Adams1 solution to 
the Adams conjecture for 0(2)-bundles [Ad 5] and d is the structure map of the 
infinite loopspace G/0. Although Q(a) and d are H-maps the composite (7.1) is 
not. This is seen by means of the following argument, which is due to lb 
Madsen. 
7.2: Lemma. The composite of (7.1) is not an H-map at the prime two. 

Proof. A solution of the Adams conjecture induces, in the manner described in 
[M-S-T; Sn 2], a diagram of 2-local spaces and maps 

SO * SG 
w\ y y (7.3) 

(J0)o 

factorising the J-homomorphism, J : SO ̂  SG. Here (JO) is the base-point com-
3 ° 

ponent of JO = fibre (if* - 1 : BO •* BO). If (7.1) were an H-map then (7.3) would 
be a diagram of H-maps. In the notation of [Mad 1; Mad 2] we have Bockstein 

2 spectral sequences with E -terms as follows: 

E2(S0) % A(U1U2,U3U4,...) 

E2(J0) ̂ E2(S0) 0 P(b2,b2,...) 

where H^((J0)Q;Z/2) ^ A ( U I > U 2 , . . .) 0 Pft^b , . . . ) . Alsod^b2) = uu 2 # If SG 
is the identity component of G then (Q = i-th Dyer-Lashof operation) 

E2(SG) ^ A ( U I U 2 ) 8 P(Q2Q2[l]*[-3]) 0 ... with d2(Q2Q2[l]*[-3]) = u ^ . 

Hence y induces ŷ  in mod 2 homology which satisfies 
2 2 2 ŷ (b ) = Q Q [l]*[-3] which is indecomposable. 
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In this section I will give a description of the deviation from additivity 

of T . This gives a description of the deviation from additivity of (7.1). 

Define the deviation from additivity of T as y: BO x BO -> QB0(2) in the homotopy 

commutative diagram 

BO x BO 

QB0(2) 

-̂  BO x BO x BO x BO 

T X T X y 

QB0(2) x QB0(2) x QB0(2) 

Here m and m come from the H-space multiplication and A(x,y) = (x,y,x,y). 

The map y may be explicitly described in terms of the geometry of the ortho­

gonal groups. The result takes the following form. Let 

X = 0(4n)/H(2n) where H(m) = I n m 0(2) c 0(2m). 

Also write P(2n) for 0(n) x 0(n). If E is a free, contractible 0(4n)-space set 

Y = E x x . n P(4n) n 

7.5: Theorem. Let y : BO x BO -> QB0(2) be the deviation from additivity of the 

transfer T„ BO QB0(2). Then, associated with the canonical fibring 

X -> Y -> BP(4n), there is a transfer-like map, described in §7.9, 

i> : BP(4n) -* QY such that y restricted to BP(4n) = B0(2n) x B0(2n) is homo-n n , 

topic to a composite BP(4n) -» QY •QB0(2). Here P(4n) , X and Y are the 
n n spaces introduced above and h is the map described in §7.10. 

In Theorem 7.5 it would be preferable to have a description of y in terms 

of genuine transfer maps. In principle this is possible from the description 

of (f> given in §7.9. This would be accomplished using the technique explained 

in §2. However this would involve a lengthy analysis of the double coset spaces 

of the symmetric groups (cf. §7.12) which would be out of place here. 

Here is the answer when n = 1. 

7.6: Theorem. Let y be as in Theorem 7.5. Then the restriction of y to 

BP(4) = BO(2) x B0(2) is given by a composition of the following form, whose 

ingredients are described in §7.12, 

-2 
BO(2)2 - L - * (QBE. E2) - ^ Q B 0 ( 2 ) , 

Here E 
c 

BE0 

E is a subgroup of 0(2) and T is the transfer associated with 

• B0(2). 
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32 VICTOR P. SNAITH 

Theorems 7.5 and 7.6 will be proved in §7.10 and §7.12. Firstly we will 

need the following result. 

7.7: Proposition. There is a non-degenerate, left P(4n)-equivariant vector 

field p, on X which is zero precisely on 

P(4n)I. H(2n)/H(2n) = A , say. 
4-n n 

4n Here E, c 0(4n) permutes the standard basis of IR 

Proof: Let v e 0(4n), the Lie algebra of 0(4n), satisfy exp(v) = w where 

XI 2n 

0 yi 2n 

with 0 < X,y distinct. When applied to v the construction described in §2.4 

gives p. The details are entirely similar to those of Example 2.7. 

We also have the following observation. 

7.8: Lemma. Let A be as in Proposition 7.7. The subset P(4n)H(2n)/H(2n) of 
n 2 A is homeomorphic to (0(2n)/H(n)) . Using this homeomorphism A may be n . n 

written as a disjoint union A = C u (0(2n)/H(n)) . 
n n 

7.9: Definition of Let p be the vector field of Proposition 7.7 scaled 
Li 

down if necessary so that |p(x)| < 1 for all x e X . Choose a finite dimen­

sional 0(4n)-module, V, together with an equivariant embedding of X in V. Let 
n 

v be an equivariant normal bundle of this embedding. Choose as follows N to be 

a P(4n)-invariant neighbourhood of A in X . Let N be a disjoint union of 

equivariant tubular neighbourhoods of the components of A in X . Suppose p 

and N satisfy |p(X)| = 1 if x i N (this is just another scaling up). 
Let Th(_) denote a Thorn space and let p : Th(V) -> Th(v) be the Pontrjagin-

Thom map. If T- is the tangent bundle of X define 

q : Th(V) -* TH(v 0 T±) ^ Th(X x V) 

by 

q(u) = 

if u t v 

if u £ v , x i N. 2 ' 

1- |p(x)| (U'P(X)) if U e V X £ N2 

Here N = N- u N0 and N- is the tubular neighbourhood of (0(2n)/H(n)) in X . 1 I 1 n 

Now let E be the t-fold join of 0(4n) with itself and set B = E /P(4n). t J t t 

Set E = lim>E then BP(4n) = lim B . Applying the Becker-Gottlieb umkehr con­

struction [B-G 1] to the map 1 x
v ( , N(q° p) yields a stable map from B to 

E^ x x . Set Y (t) = E^ x X and Y = E x X . This stable map is t P(4n) n n t P(4n) n n P(4n) n 
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ALGEBRAIC COBORDISM AND K-THEORY 33 

equivalent to a map B -* QY (t) and up to homotopy this map is independent 
of the choices made. Letting t ->• °° we obtain an element of lim [B ,QY ]. Let 

t t n 
(J> : BP(4n) -> QY be any map restricting to this element. In fact there is n n 
essentially one choice for our purposes. From the Milnor exact sequence there 
may be several choices for (f> and any two choices differ by an element in 
lim [ZBP(4n),QY ]. However we are going to consider <j> as part of a composite 
map BP(4n) -* QB0(2) . By §3.2 and the argument of §3.6 (proof) a map BP(4n) -> 
QB0(2) is determined by its restrictions to the finite complexes, B . 
7.10: Proof of Theorem 7.5. This will be just a sketch. The computation is 
very similar to those of §2.2. 

By naturality of the transfer we have a homotopy commutative diagram of 
transfers [B-G 1; B-G 2] 

rUT) BP(4n) n 7 T ; > QY n 
k Q(j) (7.11) 

B0(4n) T r-> QBH(2n) 
xU2n) 

Here k is the natural map and j is induced by passing from P(4n) to 0(4n) 
orbits. The restriction of xn : BO -*- QB0(2) to BP(4n) is a composite of the 
form 

T(TT? )ok Q ^ o J A 
BP(4n) — > QBH(2n) ^—* QQB0(2) - ^ QB0(2) 

in which T(TT0 ) o k is as in (7.11). Details, in particular the definition of 
zn 

i : BH -> QB0(2), are given in §3.4. Using the vector field of Proposition n n 
7.7, the technique of §2.9 permits us to express T(TTT) of (7.11) as a composite 

BP(4n) T(7T,,) > Q(E xp(4n)N) -> QYn 

in which T(TT") is the transfer associated with 

N •> E x N -> BP(4n) 

and the second map is induced by the inclusion of N (defined in §7.9) into X . 
However [B-G 2] the transfer T(TT") is the sum (in the H-space structure on 
QY ) of the transfers associated with the components of N. That is, each n 
P(4n)-invariant component defines a fibring over BP(4n) and hence a transfer 
map. Recall from §7.9 that N = N- u N where N- is a tubular neighbourhood of 
(0(2n)/H(n)) while N is a neighbourhood of C . The transfer associated with 
N x, BP(4n) •> Q(E x N ) , when composed with Q(E x N ) -> QY -* QBH(2n), 
is homotopic (cf. §3.6) to 

BP(4n) = B0(2n) > (QBH(n)) -> QBH(2n) . 
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34 VICTOR P. SNAITH 

Chasing diagrams like that of §3.6 easily implies that N- Ts contribution to the 

restriction (T|BP(4n)) is nomotopic to the sum (in the H-space structure on 

QB0(2)) (T|BP(4II)) O TT + (T|BP(4II)) ° TT where TT. : BP(4n) = B0(2n)' B0(2n) is 

the i-th projection. Hence N- contributes the "additive" part of (T|BP(4II)) 

and N„ contributes the deviation from additivity. However the transfer associ­

ated with 

N0 E XP(4n)N2 -> BP(4n) 

when composed with Q(Ex N ) -> QY is precisely $ . The map h : QY -> QB0(2) 
r(4nj z n n n 

is defined as the composite 
Q(i?n) H 

QY + QBH(2n) ^ — * QQB0(2) -2-» QB0(2) . 
n 

7.12: Proof of Theorem 7.6. In the notation of Theorem 7.5 we have to evalu­

ate h © Let I £ be the subgroup of 0(2) generated by 

Y = 

Let G = kernel(det: (I 

0 1 
1 0 

e SO(2) and 6 = 0 1 
1 0 € 0(2) . 

V Z/2 where "det" is the usual determinant homo-

mo rphism. It is straightforward to show that C is homeomorphic as a P(4)-

space toP(4)/G. The homeomorphism can be chosen to carry the inclusion C. c X 

into a map X: P(4)/G -* 0(4)/H(2) defined by X((a,b)G) = abaH(2) where 

0 1 0 0 
0 0 1 0 
1 0 0 0 
0 0 0 1 

Now, by the argument of §2.9, the composite 

+ 1 BP(4) QYi 
Q ( V d 

QBH(l) ±—> QQB0(2) -^QB0(2) 

is homotopic to the composite 

BP(4) T(7r) > QBG Q ( A > ) > QBH(l) ^—> QQB0(2) -^- QB0(2) 

where T(TT) is the transfer map of the canonical fibring 

Cl * EXP(4)C1 = B G BP(4) 

and X' is given by 

BG = Ex 
P(4) P(4)/G 

l x X > ExQ 0(4)/H(l) = BH(1). 

However the transfer is transitive on fibrings. For example, TT above is the 

composite 9 

T T 1 (• 2 (TT ) 
BG — ^ (BS E ) > B0(2) = BP(4) 

in which each map is induced by a group inclusion, so T(TT) is the "composite" 
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ALGEBRAIC COBORDISM AND K-THEORY 35 

2 2 2 
of T(TT ) and T(TT ). Also T(TT ) is the "product", T(TT ) , so that T(TT) equals 
the following composite. 

B0(2) 
T(TT2)" 

(QBE. ^ 2 ) 2 -iL»Q(B(E2Z ,)2) 

QCTC^)) 

QQBG -> QBG . 

Here m is the H-space sum of the two canonical maps QBE„ Z2 -> Q(B(Z2 Z2) ) and 

d is the structure map of the infinite loopspace QBG (cf. §3.4). Setting 

x = T(TT ) and g = d ° Q(i- ) ° Q(Xf) °d°Q(T(7r)) °m completes the proof. 

§8. STABLE DECOMPOSITIONS OF BGLIF AND B01Fo 
q 3 

8.1. Throughout this section let IF denote the field with q elements. GL IF 
q n q 

is the linear group of invertible n x n matrices with entries in F 
m q 

In addi­

tion let 0 denote the orthogonal group of the quadratic form Z X. over 3?. m ± = 1 i j 

Firstly we are going to decompose the S-type of (BOI? ) ... . For this purpose 

everything will be 2-local and all cohomology and homology will be taken with 

mod 2 coefficients. Let Z 0 denote the wreath product of the permutation 

0o sits inside 0o in a canonical way as the sub-
2 2n J 

group obtained by "exploding" matrices consisting of 2 x2 diagonal blocks. We 

group, Z , with 0o. Hence Z n z n 

note that 0 ^ Z Z? has generators 

satisfying 3 

0 1 
-1 0 

4 3 
I = y \ 3Y3 = Y • 

and 1 0 
0 -1 

Let Ĥ . denote mod 2 singular homology. The object of this section is to 

establish the following technical result, used in the proof of Theorem 8.2.1. 

.1.1: Theorem. Let 

7T : Z 0 o and i : 0" -> Z 2n 2 n 

be the canonical inclusions. Let T : B0_ -> BZ 
2n n 

0 be the S-map which is the 

transfer [B-Gl; K-P] associated with BTT . Then the following diagram commutes 

BCTToi)^ 
>H*(B°2n> 

H^(BZ °2> 
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36 VICTOR P. SNAITH 

Theorem 8.1.1 will be proved by appealing to the well-known Double Coset 
formula. 

8.1.2: Proposition (Double Coset formula) [E-C; Fe] . Let j :H -> G and k : K -> G 
be inclusions of finite groups. Let T^ : H^(BG) -> H^(BH) denote the homology 
transfer. 

Then 
T* °B(k)^ = Za (8.1.3) 

where a is the composition of the transfer 

x* : H^(BK) -> H^(B(K n gHg"1)) 

with the map induced by 

K n gHg"1 c gHg"1 g (-}g H . 

The sum is taken of double coset representatives of 

G 
\ / . 

K H 

Theorem 8.1.1 is (8.1.3) with the right hand expression replaced by a . 
In a series of lemmas it will be shown below that all the other terms in the 
sum vanish in the context of Theorem 1.1. 

8.1.4: Lemma. Suppose H is a proper subgroup of 0 ? of index greater than two. 
Then there exists H1 such that H £ H1 £ 0^. 

Proof: Consider the projections 

4 : H c O^"1 x 0 2 -> O*"1 and Y : H c O*"1 x ° 2 ̂  ° 2 ' 

By induction on n we may assume both <J> and ¥ are onto for each factorisation 

0^ ̂  °2_1 x °2' H e n c e |ker <J>| = 1 or 2. 

Case (a) : | ker <f> | = 1. In this case ¥ ° <f> induces a well-defined homomorphism 
X : 0 ->• 0 identifying H as the subgroup (x,A(x))|x e 0 . Taking 
1 ^ z € Z(0 2), the center of 0 we may set Hf = <H, (l,z)>. 

Case (b) : Iker <b I = 2 . Here ¥ ° d> induces X : 0^ ->- 0 o yi ,. Here ' "-J l z/ker <j> 
Ker (J> = H n ((1) x 0?) is considered as a subgroup of 0 ?. Since ¥ is onto 
Ker (J> <» 0 which implies ker <J> = <y > = Z(0~) the center of 0^. Thus X has 
range 0 2 / z ( Q ^ Z/2 x z/2. Hence H = ((x,y) e O*"1 * 02| A(x) = ir(y)) where TT 

is the natural projection. Let det denote determinant or its induced map 

°2/Z(0 ) ~* Z/2> S e t H? = k e r ((a'b) "* d e t A ( a ) d e t b ) c °2~1 X °2" H C H? 

2 since (x,y) e H is sent to det A(x). det 7r(y) = (det A(x)) = 1. 
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ALGEBRAIC COBORDISM AND K-THEORY 37 

2 
.1.5: Lemma. If G is a subgroup of index two in 0 then the associated trans-

o r n 

fer 

is zero. 

T^ rH^BO*) -> H^(BG) 

Proof: Recall that H^ means mod 2 homology. Observe firstly that the homomor-

phisms from 0~ to Z/2 are precisely the trivial map, the determinant, which has 

kernel <y> ^ Z/4, and the map with kernel <$,3y > ^ Z/2 x Z/2. Call these maps 

h , h?, h„, respectively. Then G is the kernal of a map of the form 

, a , b , n-a-b 

°2 * °2 * °2~b"a ~ i ^ " * (Z/2)n " Z/2 

in which the last map is multiplication. By the product formula for transfers 

[B-G2] we may assume a = o. From [F-P] we know that H^CBO ) has a basis con­

sisting of classes in the image of induced homomorphisms associated with inclu­

sions of the form (Z/2) -> 0 9. Applying the Double Coset formula (Proposition 

8.1.2) to this situation shows that it suffices to show that the transfer 

T* :ftA(B(Z/2)2n) + ft*(B((Z/2)2n n gGg-1)) (8.1.6) 

is zero. If b / o (Z/2) n gGg is a proper subgroup of (Z/2) since no 

Z/2 x Z/2 c 0 is in the kernel of the determinant. Hence (8.1.6) is zero 

since composition with the injection 

H^(B((Z/2)2n n gGg"3)) + H^(B(Z/2)2n) 

is multiplication by an even integer. This argument disposes of (8.1.6) in all 

cases except b = o and (Z/2) = (ker h~) . In this case (8.1.6) is the iden­

tity map. However, in the double coset formula for the evaluation of 

H*(B(ker h3)n) -> H^BO*) —^-* H^(BG) (8.1.7) 

(8.1.6) appears with multiplicity equal to the number of coset representatives 

g in 

0* such that (ker h ) n c gGg"1 . 
n , ,n\ Z/G (ker h ) 

However, G is normal so either no such g exist or exactly two and in either 

case the contribution to the double coset formula is zero. 

8.1.8: Proof of Theorem 8.1.1. Consider the double coset formula (8.1.3) for 

evaluating T. ° B(TT ° i). . Each term a for which 
* * g 

°2 " tfnK*"1 * °2 
contributes zero. This follows from Lemmas 8.1.4 and 8.1.5 together with the 

transitivity of the transfer [B-G2]. It remains to show that there is only one 
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38 VICTOR P. SNAITH 

double coset for which 0_ c g£ 
z n 

that 

o2g We do this by induction on n. Suppose 

*~l0> = Zn|°2 and set 

where y is the 

2 x 2 matrix given at the beginning of the section and I is the 2 x 2 identity. 

The eigenvalues of y are ±/-l in IF,., the algebraic closure of IF-. The only 
3 

other element in 0 ? with these eigenvalues is y = 3Y$. Hence there exists 

a e E 0 ? such that a g wga = w. Direct calculation shows that ga € 0 ? _ 9
X 0 9 * 

Hence g may be taken to lie in 0~ _ x {1}. The induction now proceeds by re­

placing w in the above analysis by the matrices 

having k yT s and n-k If s. 

8.2. The main result of this section concerns the S-type (stable homotopy type) 

of B0o 1F0 where 0 3F0 is the finite orthogonal group introduced in §8.1. zn J m J 

8.2.1: Theorem: For each 1 < n < °° there exists a 2-local S-equivalence 

4> : B 0 0 IF. Y n 2n 3 
v B°2kff3 

l*k*n B 0 2 k _ 2 F 3 

0 IF be the S-map Proof: Firstly suppose n is finite. Let T : BO IF ->- BE 

given by the transfer of Theorem 8.1.1. As explained in §§3.4, 4 there are 

maps 
d : BE n n °2*3 QB021F3 

(QW = lim 0, E w) together with homeomorphisms 

BE |oo3FQ 
nj 2 3 

im(d ) n 
im(d ) = n-I ^n-iK^a 

Licensed to Univ of Rochester.  Prepared on Tue Jan 12 07:38:01 EST 2021for download from IP 128.151.13.58.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



ALGEBRAIC COBORDISM AND K-THEORY 39 

Also by [Sn 1] there are compatible S-equivalences 

u : im(d ) n n 

im(d. ) 
v k_ 

_, , im(d, -) l<k<n k-1 
im(d ) 

such that the summand of u with range -—y-. r- is the canonical collapsing map. 
n im(d ; n - r 

Set <J> equal to the composite 

'Vs BZ °2*3 

y o d n n B \J 02 g3 
l i n BEk_Jo2F3 

B°2k*3 

l . L B°2k-23F3 
(8.2.2) 

in which the last map is induced by the canonical inclusion of 1 °2*3 i n 
0„, IF.. To show that this composite is a 2-local equivalence it suffices, by a 

theorem of J. H. C. Whitehead [Sp, p. 399] and the universal coefficient 

theorems [Sp, p. 283], to show that d> induces an isomorphic in mod 2 singular 
n 

homology. From [F-P] we know that the canonical map 

B 0 2 F 3 B°2n1F3 
is onto in mod 2 homology. The S-map above 

BE ° 2 F 3 BE ^ a l<k,n B 02k-2 ] F3 

lands in the factor v Vi 
l<k<£ B02k-21F3 

for % < n ([Sn 1] or §4). The summand 

B02£1F3 with range — =r~ is the canonical map. Hence, by Theorem 8.1.1 we see by 
B02£-21F3 

induction on £ that cf) is a mod 2 homology isomorphism. Finally we must do the 

case n = °°. If the transfers, T, were compatible as n varies we could proceed 

as in §4. However I do not know this to be the case. Instead consider a co-

final family {Xy} of finite subcomplexes of B0o 1F0. Let P be the subset of 
r 2n 3 y,n 

S-maps f : X BE Ô IF such that the induced map in mod 2 homology 

H. (X ) -* H. (BE 
* Y * r 

< W -H,(B02n]F3) 

is equal to that induced by the inclusion of X . By Theorem 8.1.1 P is non-
Y Y>n 

emp ty. P is also finite since BE Y,n n 0?1F„ has finite homotopy groups. Set 

Q equal to the image of P in {X , BE Y,n H & y,n y 0 IF } (where {__,__} denotes S-

homotopy classes). The inverse limit of compact sets is non-empty so choosing 

an element of lim Q yields 
4 Y,n 
Y,n 
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T e l i m {X , BE 0QIFQ} ^ {B003FQ, BE 2 3 = 2 3 « °2]F3} 

Define ({> by the composition (8.2.2) (n = °°) using this T instead of the trans­

fer. The homology argument used above for <J> now shows that <j> is a 2-local 

s-equivalence. 

We close this section with a stable decomposition theorem for BGLIF . Let 
q 

q be a prime power, let £ be a prime not dividing q. Denote by r the order of 

q in the units (Z/£)*. 

8.2.3: Theorem. Let £, q and r be as above. Then, localised at £, there 

exists a stable equivalence 

BGL3F 
B G L i / 

q ~ l,k B G L(k-l)M\ ' 

r if £ + 2 or £ = 2 and q = 1(4) 
Here M is defined by M = ) 

2 otherwise 

Proof: The proof, being similar to that of Theorem 8.2.1, will only be 

sketched. From [Q, p. 574] we obtain the following facts about Sylow £-subgroups 
of GL IF . If £ + 2 or £ = 2 and q = 1(4) the wreath product E n q m GL IF c o n -

r q 

t a i n s a Sylow £ - s u b g r o u p of GL IF . I f £ = 2 and q = 3 (4 ) E GL^IF c o n t a i n s J o r mrq n mj 2 q 
a Sylow 2 - s u b g r o u p of GL? IF . 

C o n s i d e r t h e c a n o n i c a l maps 

BGL^IF + BGLIF+ 

M q q 

where BGLIF i s t h e s p a c e d e s c r i b e d i n [H-S; Q ] . These maps e x t e n d t o i n f i n i t e 

loopmaps ( c f . s e c t i o n 3) 

X(3F ) : QBGLXJF •* BGL1F+ . q M q q 

The facts about Sylow subgroups and the argument of [H-S, Theorem 3.1] imply 

that, at the prime £, there exist maps T(1F ) splitting A (IF ). That is 
q q 

A(tf ) ° T ( ] F ) - l B G L f f + • 

+ q 

Since BGLIF -* BGLIF induces a homology isomorphism we see that BGLIF and 
+ q q q 

BGLIF are stably equivalent. Hence we may form S-maps 
x(IF ) 

BGLIF a - * QBGLJF 
q , M q 

i f 
BE, GL^IF BGL1W1F 

_SL_ ^ v
 m q 

l<k BE. J G L J F l<k BGL(k-l)M1Fq k-lj M q 

Here the second map is the stable equivalence of [Sn 1] when we identify 
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ALGEBRAIC COBORDISM AND K-THEORY 41 

F,_C_BGLW1F_ BE, GLW1F_ 
k °° M q . , k j M q 

V l ^ V q W ^ BE, J G L TF 
k - l j M q 

as in s ec t ion 4 . 1 . The t h i r d map i s induced by inc lus ion of subgroups. The 
proof may now be completed by arguments s imi l a r to those used in sec t ions 4.6 
and 8 . 2 . 1 . 
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PART II: A NEW REPRESENTATION OF UNITARY AND SYKPLECTIC COBORDISM 

§0. INTRODUCTION 
2* In part I (Theorems 5.1 and 5.2) we saw that large slices of MU (X) and 

4* MSp (X) may be constructed solely in terms of the classifying spaces BU and 

BSp. That partial description was sufficient for our purpose at the time. In 

Part II I will give a sharper presentation of this connection between K-theory 

(via BU or BSp) and cobordism. I will show how, from KU- or KSp-theory to con­

struct a spectrum, AU or ASp, whose associated cohomology theory is (total) 

unitary or symplectic cobordism. 

Let me now describe in more detail the results of Part II. The reference 

numbers refer to those used in the body of the text in Part II. 

The Whitney sum of the Bott class with the identity of BU induces a map 
4 2 
£ BU •> E BU. Using this we may define a ring (see section 2) 

2N 
AU°(X) = limjZ X, BU} . 

N 

The homomorphism $ of [Part I, Theorem 5.1] induces a natural ring homomorphism 

$ : AU°(X) + MU2*(X) . 

Theorem 2.1. If dim X < » then $ : AU°(X) ~ MU2*(X). 

4* There is an analogous result for MSp (X) [Part II, Theorem 2.2]. The 

proof of Theorem 2.2 is sketched in section 2.3. Essentially [Part I, Theorem 

5.1] tells us $ is onto. To prove <f> is infective requires a detailed analy­

sis of the S-map £ BU -> £ BU on each stable summand MU(k) in BU [Part I, 

Theorem 4.2]. This analysis is accomplished in section 1. 

4 2 Using the map e : E BU -> £ BU and its symplectic analogue spectra AU and 
2 

ASp may be constructed. For example AU9, = E BU and the structure map is given 

by e. 

Theorem 3.1. AU and ASp are commutative ring spectra. 

These results may be generalised by replacing BU by BUA, representing space 

for KU°(_;A). The resulting spectrum is AUA. Some KUA-operations induce AUA 

operations in the obvious manner. 

I k k 

Theorem 4.2. If — \\) : BUA ->- BUA is defined (ip = an Adams operation) it in­

duces a ring homomorphism 

42 
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ALGEBRAIC COBORDISM AND K-THEORY 43 

yk : AUA*(__) -* AUA*(_) 

which corresponds under $ to the Adams operation in MUA*(__). 

Also the Adams idempotent E : BUR(d) + BUR(d) [Ad 3, p. 89] induces a ring 

homomorphism. 

Theorem 5.1. The Adams idempotent E : BUR(d) ->• BUR(d) induces an idempotent 

ring homomorphism 

e(d) : AUR(d)*(_) •* AUR(d)*(_) . 

Under $ , e(d) corresponds with the Adams idempotent in MUR(d)*(__) . 

Also if p = 1(d) is a prime then e(d) induces 

satisfying 

e(d) : AUZ*( ) -> AUZ*( ) 
P — P — 
, a. 

[e(d)(f)]a = n V 3(f). 

Here the product runs over d-th roots of unity in Z . 
P 

The K-theory operation of complexification, c : BSp •> BU, induces a com-

plexification homomorphism of a rather unexpected type. 

Theorem 6.1. Complexification c : BSp -* BU induces a natural ring homomorphism 

c:ASp°(X) -> AU°(X)[l-a11]~1. 

Here a e AU°(S°) satisfies ^ ( c O = a e MU2(S°) . 

In MU-theory one has the Landweber-Novikov operations s . In AU-theory 

one would expect an operation corresponding to the total Landweber-Novikov 

operation, Z s . 
a a 

Theorem 7.1. The "super-total" Conner-Floyd class 

c = I c : KU°(X) + MU2*(X) ^ AU°(X) 
a a — 

induces a natural ring homomorphism 

S : AU*(X) -> AU*(X) 

which corresponds under $TT to S s , the total Landweber-Novikov operation. 
r U a a 

Having seen the connections between KU-theory and AU-theory which are 

listed above the following result will come as no surprise to the reader. 

In §8 the classical Pontrjagin-Thom construction for stably almost complex 

manifolds is given in terms of AU-theory. In fact, two equivalent descriptions 

are given with a view to generalising in Part IV the construction to the case 

of a smooth algebraic embedding. 

In §9, as an application of AU-theory, we prove two theorems about the 

stable homotopy of CP . The first (Theorem 9.1.1) shows how to construct KU°(X) 
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44 VICTOR P. SNAITH 

as a limit of stable homotopy groups of the form 
?N oo 

KU°(X) ̂ limjE X, CP } . 
N 

S °° The second (Theorem 9.1.2) states that any torsion element y £ TT^(CP ) is 
CO 

annihilated by iterated product with x € TT (CP ), the generator. The product 
CO 

referred to comes from the H-space multiplication on CP . 

That completes the list of the main results in Part II. In consideration 
of the reader I have postponed until Part III the general construction which 
generalizes the construction AU and ASp. Also in Part III the representation 
of MO* is given. This material is described in the introduction to Part III. 

§1. HOMOLOGY AND THE STABLE DECOMPOSITION OF ̂ tEtBU(l) 
In [Sn 1] I constructed a stable decomposition of the space tt £ X for 

connected X and t > 1. Details will be given when they are needed (section 
1.3). The decomposition has the following form. Q Z X is homotopy equivalent 
to a space C X[Ma 1] which has a filtration {F C X; n > 1}. The decomposition 
theorem asserts an equivalence in the stable category [Ad 1] of the form 

n F C X 
F C X = v k * (i.i) 
n C k=l \-l Ct X 

Here a stable equivalence between spaces means an equivalence in the Adams 
stable category between their suspension spectra. In this section I will prove 
the following: 

1.2: Theorem. For 1 < i < n let a. e H.(BU(1);Z). 

Then for all t > 1 and 1 < m < n the stable map 

BU(l)n -> F C BU(1) n t 

induces in homology a homomorphism which annihilates a.. 0 • • • 0 a . 

Here the first map in the composite is induced by the n-fold H-space sum 
of the suspension map BU(1) -> £ Q BU(1). The second map is (1.1) and the third 
is projection onto the m-th wedge factor. 

This will be proved in section 1.4. We must first recall the decomposi­
tion (1.1). 

1.3: The Stable Decomposition. The technicalities of [Sn 1] may be rather 
forbidding so I will give the reader a choice. We need the following basic 
fact about the S-map of [Sn 1, §3.1]. _ _ __ 

r C X 
Xn - F C X m ' 

n 

:=1 

F. C BU(1) F C B U ( l ) k t m t 
F, -C.BUCl) * Fm C BU(1) K.-1 t m-1 t 

n t F _,C X m-1 t 
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Basic Fact. Suppose 1 < m < n and Y c X is a subspace which does not contain 
the base-point, * e X. Then the composition of Y c X with the above S-map is 
equal to the track-group sum of a finite number of maps, each of which factors 
through a projection of the form Y -> Y . 

In §1.4 we prove Theorem 1.2 by applying the Basic Fact when X = CP and Y 
N is a copy of CP . The S-map in question being exhibited below as (1.4.1). 

The reader may now skip to §1.4 for the proof of Theorem 1.2. Alterna­
tively for the reader who is interested in examining the details of the S-
decomposition of [Sn 1] more closely I will include the details necessary to 
pass from [Sn 1] to the establishment of the BASIC FACT. 

Let I denote the unit n-cube and J its interior. An (open) little n-cube 
is a linear embedding, f, of J in J with parallel axes. Thus 
f = f x ••• x f where f. : J -> J is a linear function f.(t) = (y. -x.)t + x. 1 n i I ^ I I I 
with 0 < x. < y. < 1. Let C (i) be the set of j-tuples of little n-cubes whose 

l ;i n J J r 

images are pairwise disjoint. Denote by V (j) the set of j-tuples of little 
n-cubes without the disjoint image condition. Hence C (j) c V (j) (j > 0) and 
V (0) = C (0) is a point. n n 

Let Y be a space with closed subspace A containing the basepoint, *. 
Define C Y and D (Y,A) as follows. Form the disjoint union n n 

and let % be the equivalence relation on Z generated by 

( i ) ( < c i V y r - - - . y ± _ i . * . y 1 + i . - - - . ym) 

% (<cr..., c.^.c.^,..., cm> Yl,..., y^.y^,..., ym) 
and 

(ii) (<Cl,..., cm> y v . . . , ym) % (<ca(1))..., ca(m)> ya(1) ya(m)) 

for a e E , the symmetric group on m letters. Set C Y 

= {[<c1,..., c > yn...y ] € Z ,„ such that <c1,..., c > e C (m)} 1 m Jl Jm n/^ 1 m n 
and D (Y,A) = { [ < c , , . . . , c > y_ , . . . , y ] e Z /rXj such t h a t i f 

n 1 m Jl m n/<x, 

y. ,..., y. are all the coordinates not in A then <c. ,..., c. > i i i i xl k 1 \ 
€ C (k)}. 

n 
These spaces may be topologised [Sn 1]. From [Ma 1] we know that, for 

reasonable Y,C 2i ® % Y- T n e filtration referred to in Theorem 1.2 is the 
following. F C Y consists of all points [<c.,..., c > v.. , .. ., y ] with m < n. 

n t 1 m J1 ;m 
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46 VICTOR P. SNAITH 

Now I will describe the ingredients of the construction of (1.1). Firstly 
suppose given a continuous function u : BU(1) ->• [0,1] such that u (0) = *. 
Then the following special is a case of a result proved in [Sn 1]. 

1.3.1: Proposition [Sn 1, Theorem 3.1]. Let f : F C BU(1) -> Y be a map such 
e 1 » i_ m n r 

that f(F _C BU(1)) = * and f(<c.,. m-1 n 1 
min u(x.) < — . 
i 

-, c > x m 1 

Then there is a family of stable maps 

,, x ) € A if and only if m 

G. : F. C BU(1) -* Y/A k k n (k > n) 

such that Gt F. -C BU(1) ̂  G. _. and G is the composite of f with the collaps-k1 k-1 n — k-1 m r 

ing map Y -* Y/A. 
Henceforth write F for F C BU(1). m m n 
Proposition 1.3.1 is applied to F -> F /F -. = Y with u and A chosen so r m m m-1 

that Y/A^ Y« Then (1.1) is the sum of the stable maps obtained in this manner. 
Hence I must recall now the proof of Proposition 1.3.1. F is constructed from 

n-r 
Maps »n:Ct(n> - P q <P). n 

* n:C t(n) x BU(1)U + Vt (p) 
n 

(p = n!/m!(n-m)!) 

and V : F C BU(1) + D (F /F n ,A) n t m m-1' 

are constructed. There is a stable map 

F 
, A 

m-1 m-1 

called evaluation, eval, and F = eval ¥ . All we need to know about and I|J 

i s tha t ty (<c_, 
n 1 

., c > xn) is independent of x.,..., x if u(x.) = 1 for n 1 I n l 
1 < i < n. There is a formula for V in terms of ¥ , 9 <b and ¥ . Consulting 

n n-1 n n 

the formula [Sn 1, p. 582] we see that if u(x.) = 1 for 1 < i < n then 

Yn(<cr..., cn> x r..., xn) = (c,f(Z]L),..., f(z )) (p = n!/m!(n-m)!) (1.3.2) 

Here c e C (p) is fixed. The element z. e C (m) x BU(1) /^ is of the form 
[<cL,...s d > yn , . . ., y ] where the d.fs are suitably chose subset of 1 m Jl ^m I J 

{cn,..., c } and the y.'s are the corresponding subset of {x_,..., x }. I n i I n 
N 1.4: Proof of Theorem 1.2. For some large N we can find a copy of CP in 

oo N ^ N 
CP = BU(1) such that * i CP and such that there exist classes a. € H.(CP ;Z) 
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ALGEBRAIC COBORDISM AND K-THEORY 47 

mapping to a. e H (BU(1);Z). Since * i CP we may assume (by modifying the 
1 N -1 

function u : BU(1) -> [0,1] if necessary) that CP c u (1). 
The map (CPN)n -> BU(l)n -> F C BU(1) sends (xn , . . ., x ) to [<c. , . . ., c > 

n t I n I n 
x , . . . , x ] for some fixed <c-,..., c > e C (n). We are trying to compute the 
effect in homology of the stable map 

(CPV - F 
¥ 
-* D. 

m-1 
, A eval 

m-1 
A ^ 

m-1 
(1.4.1) 

NNn From (1.3.2) and the related discussion in section 1.3 (x.. , . . ., x ) e (CP ) 
m goes to [c,f(z1),..., f(z )] in D 
m-1 

Composition with evaluation sends the map which sends (xn,..., x ) to 
1 n 

[c,f(z ) , . . . , f(z )] to the sum (in the sense of track-group addition) of the 
stable maps 

g. : (CPV 
m-1 

A ^ - F m-1 
given by g.(x-,..., x ) = f(z.) (1 < i < p) . Recall z. = (<d_, , . . ., d > l 1 n l l 1 m 

y1 , . . . , y ) e C (m) x BU(1) where {y ,..., y } is a subset of {x ,..., x } and 

<d , . . ., d > is fixed. Therefore g. factors through the projection 

(CPN)n -* (CPN)m which picks out Y-i.-.y • Hence (gi)jfe(a 0 ••• 0 a ) = 0. The 

stable map of Theorem 1.2 maps a 
the result follows. 

0 a to I ( g , ) * ^ n . , 1 * 1 l-l 
a ) = 0 and n 

§2. AU°(X), ASp°(X) AND COBORDISM 
2 4 

Let B : S -> BU and B1 : S •> BSp be generators of TT (BU) and 7T4(BSp) 
respectively. The Whitney sum of B with the identity map of BU induces a map 
4 2 6 
E BU •> 1 BU. Similarly the sum of B1 with the identity induces e' : E BSP 

2 
-> E BSp. Details are given in section 2.3 below. Using e and eT we may define 
groups (actually rings, see section 3) 

?N 
AU°(X) = limjZ X,BU) 

and 
4N ASp°(X) = limjE X,BSp}. 

N 
Here {Y,Z} denotes morphisms of degree zero from the space Y to the space Z in 
the Adams stable category [Ad 1, Part III]. The limits are taken over the homo-
morphisms 

{Z2NX,BU} - {Z2N+2X,Z2BU} -^U {I2N+2X,BU} 
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48 VICTOR P. SNAITH 

and 
.4N „„ , r^4N+4„ ^ 4 _ , e# rr,4N+4„ {E X,BSp} = {E X,E BSp} —^-* {E X,BSp} 

Ml 

p . 9]. Define 

2k 4k 
Let c £ MU (BU) and p e MSp (BSp) be the Conner-Floyd classes [Ad 1, 

and 

J) : {E2NX,BU} -> n MU2k(E2NX) ^ n MU 2 k 2N(X) 
u l<k l<k 

J>Q : {E4NX,BSp} -> n MSp4k(E4NX) ^ n MSp4k 4N(X) 
b p l<k l<k 

by the formulae 

cj) (f) = n f*(c,), 
u i<k k 

• (f) = n f*(P,). 
b p i<k k 

The main results of this section are the following: 

2.1: Theorem. d> induces a well-defined natural homomorphism 
00 

<$> :AU°(X) •» lim^ n MU2il(X) =MU2*(X) 
U N £=-N 

which is an isomorphism when X is a finite dimensional CW complex. 

2.2: Theorem. <J> induces a well-defined natural homomorphism bp 
00 

41? 4* 
• : ASp°(X) -» limt n MSp (X) = MSp (X) 

P N £=-N 

which is an isomorphism when X is a finite dimensional CW complex. 

2.3: Explanation and Sketch of Proof. Firstly I must define the maps e and e \ 

It will suffice to define e since e1 is constructed analogously. The Whitney 

sum of B with 1^. gives BU 
B e U T T : S x BU -̂  BU. 

DU 
2 2 3 

It is well-known that E(S x BU) = ES v EBU v E BU (for example see [Sn 3]). 
4 2 2 2 

If we suspend once more the inclusion of E BU = ES A EBU into E (S x BU) may 
be represented by the Hopf construction [Hu] 

ES A EBU = E(S *BU) -^£L->E(E(S x BU)). 

2 4 
Set e = E (B 0 1̂ ..) ° EH. There are several ways of including E BU into 
2 2 E (S x BU). I have chosen the Hopf construction because it has associativity 

properties which I will need in section 3 where AU°(X) is discussed in terms of 

a ring spectrum, AU. 

Now let me explain why cj) is well-defined. I wish to establish a commuta­

tive diagram of the following form. 
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{Z2NX,BU} ^—> II MU 2 k 2N(X) 

£# 

l<k 

|i (2.4) 

{,2n+2 X ) B u } _ ^ n MU2k-2N-2(x) 

l<k 

2N Here i is the canonical inclusion. Suppose f e {E X,BU} then the stable map 

e„ (f) is the composite 

s2 A ( E 2 N X ) _ E I L , S 2 X Z 2 N X J B L U U B U -

Hence e„(f)*(c ) = (ZH)*(Bef)*(cJ 

k 
= (EH)*( E B*(cJ 0 f*(c, J ) 

£=0 K * 

= B*(C;L) 8 f*(cfc_1) £ MU2k(S2 A E 2 NX). 

Note that (EH)*(B*(c) 8 f*(c )) = 0. However B*(c ) is just the suspension 
2k 2 2N class so that B*(c-) 8 f*(c, -) e MU (S A E X) corresponds under suspension 

to f M c j ^ ) € MU2k"2(Z2NX) . This establishes (2.4). 

In [Part I, Theorem 4.2] it is shown that there exist stable equivalences 

v : BU(n) -> v MU(k) 
n l<k<n 

such that v iBU(n-l) ^ v ,. Details are given in section 2.7 below. Hence n' — n-1 

{Y,BU} = n {Y,MU(k)} (2.5) 

l<k 

and it was shown in [Part I, Theorem 5.1] that if dim Y < 4n then (J> maps the 

summand II {Y,MU(k)} isomorphically to the summand II MU (Y) in MU (Y) . 
n<k n<k 

2N Setting Y = Z X in (2.5) and considering the limit over N it is straightforward 
2 

to see that $ is surjective. Under the stable map e : £ BU -> BU the wedge fac­
tor E MU(n) maps to v MU(k) and composition with the projection onto 

l<k<n+l 
MU(n+l) is essentially the canonical map E MU(n) -> MU(n+l) from the unitary 
Thorn spectrum [Ad 1, p. 135]. That is, up to an automorphism in the S-cate-

2 
gary, E MU(n) -> MU(n+l), is the canonical map. This fact is a consequence of 

the property [Part I, §4.5(b)] of the stable decomposition maps constructed in 
2 

[Part I, §4]. Hence if the stable map e : E BU(n) -> BU(n+l) were merely the 

sum of these pseudo-Thom-spectrum maps 

v E2MU(k) -> v MU(k+l) 
l<k<n l<k<n 

we would be finished. This is because in the limit process by which AU°(X) is 
2N defined each element of {E X,MU(k)} would eventually be mapped into a summand 
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of the form <Y, X, ... v > with 4t < 2M + dim X on which <j> is injective by 

[Part I, Theorem 5.1]. Hence to prove Theorem 2.1 we consider the difference, 
2 6 , between the stable map e : S BU -> BU and the wedge-sum of the pseudo-Thom-n 

spectrum maps mentioned above. In Proposition 2.9 it is shown that 
2 

6 : £ BU(n) -> BU(n+l) may be chosen to send the double suspension of the 2t-

skeleton into the (2t-2)-skeleton. In the limiting process which defines AU°(X) 

this implies that any class in {£ X,MU(k)} is mapped eventually into a summand 

of {£ X.BU} on which d> is injective. Therefore <f> must be injective. 

u u 

The proof of Theorem 2.1 is accomplished in a series of results according 

to the following programme. In Lemma 2.7 the stable equivalence v is computed 
n 

in homology. This is used in Corollary 2.8 to show that 6 is zero in homology. 
n 

Using this 6 is compressed a little in Proposition 2.9. The proof of Theorem 

2.1 is completed in section 2.11. 

Section 2.12 contains an outline of the proof of Theorem 2.2 which is en­

tirely analogous to the proof of Theorem 2.1. 

2.6. Firstly we need to know what the stable equivalence v of section 2.3 in­

duces in homology. Recall [Ad 1, p. 47] that if B. e H?.(BU(1);Z) is a genera­

tor then H^(BU;Z) is equal to the polynomial algebra, Z[ft , $ , . . . ]. The homol­

ogy of BU(n) has as a basis those monomials B. ® ••• ® B. with t ^ n. Under 
Xl Xt 

the collapsing map BU(n) -> MU(n) the homology of MU(n) has as a basis the mono­
mials of the form B. ® ••• ® B. . 

1 n 
2.7: Lemma. In terms of the homology generators of section 2.6 the stable 
equivalence of section 2.3 

v : BU(n) -* v MU(k) 
n l<k<n 

satisfies (v ).(B. 0 ••• 0 B. ) = B. 8---0 B. (1 < t < n). 
n Xl \ \ \ 

Proof. Since v iBU(n-l) = v . we may proceed by induction on t and therefore n n-1 
assume that t = n. The stable map v is equal to a composite of the form 

T(TT ) 
BU(n) D—"BE |U(1) -> F QBU(l) 

1 n 

FkQBU(l) BEkJU(l) 

l^n Fk-1QBU(1) l ^ n BZ^JUU) 

v BU(k) 
l,k,n B U ^ - « ' 

Licensed to Univ of Rochester.  Prepared on Tue Jan 12 07:38:01 EST 2021for download from IP 128.151.13.58.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



ALGEBRAIC COBORDISM AND K-THEORY 51 

00 °° Here QBU(l) = ft E BU(1) . T(TT ) is the transfer of the canonical map n r 

T : BE 
n' 

3.2]. Details are given in [Part I, sec 
. 8 ••• 0 3. is in the image of the map H.(BTn;Z) -* H. (BU(n) ; Z) induced by 
1 n 

U(l) ->• BU(n) and the stable equivalence is the subject of [Sn 1, 

Theorem 3.2]. Details are given in [Part I, section 4]. The class 
^(BTn;Z) -* H^ 

the inclusion of the canonical maximal torus. In [Part I, section 4.6] it is 
shown that the component of(v).(3. 8 ••• 8 3. ) in H.(MU(n);Z) is just n * i - l * 1 n 
3. 8 ••• 0 3 . . Therefore we have to show tha t (v ) . ( $ . 8 ••• 0 3. ) has zero i 1 I n * I., I I n I n 

component in H^(MU(n);Z) for 1 < m < n. 

However there i s a commutative diagram of s t a b l e maps 

BTn •> BU(n) 
T(TT ) n 

BE 
n-' 

U(l) 

in which BT -> BE U(l) is induced by the canonical inclusion of T in the 

wreath product E U(l). This diagram is established by the technique of [Part 
rr 

I, section 2; B-M]. [Part I, Example 2.14] produces a T -equivariant vector 
field, p , on j , and identifies the singular set of p as a point. Then V EJ U ( 1 ) V 

[Part I, Proposition 2.2 and section 2.2.1] together with the argument of [Part 
I, section 2.9] establishes the diagram. The result now follows from Part II, 
Theorem 2.2 with t = °°. 
2.8: Corollary. By means of the stable equivalences v of Lemma 2.7 consider 
the stable map e : E BU -* BU of section 2.3 as inducing 

? 
e : v E MU(k) -> v MU(k) for 1 < n < °° . 

l<k<n l<k<n+l 
Let y• equal the composite 

E2MU(j) -> v E2MU(k) -£-> v MU(k) -> MU(j+l) . 
l<k<n l<k<n+l 

This map is the one discussed in §2.3 above, and up to S-automorphism is equal 
n 

to the canonical Thorn spectrum map. Then the stable map 6 = e - E y. induces 

the zero map in reduced homology and in MU>V. 

Here the first and last maps in y. are the canonical inclusion and projec­
tion respectively. 

Proof. We will treat only the homology case, the MU^ case is similar. In terms 
of the homology generators described in section 2.6 
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(B e 1BU)„ : H ^ S 2 x BU) -> H^(BU) 

? 
sends a 8 3. 0 ••• 0 3. to 6, 0 B. ® ••• 8 3. . Here a e Hn(S ) is a genera­ls l. 1 i. l. 2 

1 J 1 J 
tor. Hence e^ does the same. Therefore, by Lemma 2.7, the y. are the only 

components of e which are non-zero in homology and the result follows at once. 

2.9: Proposition. Let BU(n) be the m-skeleton of BU(n). Then for any n, 

m > 1 there is a stable map 

6' : E2BU(n) -> BU(n+l) n 

such that (i) 6f ^ 6 , the S-map of Corollary 2,8, and n — n 

(ii) 61 maps E2BU(n)0 into BU(n+l)0 0. n zm zm- z 
2 

Proof. Although the map e of Corollary 2.8 maps E BU(n) (considered as a wedge 
n 

of double suspensions of Thorn spaces) to BU(n+l) the map 6 = e - E y. maps 

2 J - l J 
E BU(n) into the stable summand BU(n) of BU(n+l). BU(n) has only even dimen-

2 
sional cells. By cellular approximation [Sp], we may assume 6 sends E BU(n)0 

n zm 
to BU(n+l)_ I0. By the Hurewicz isomorphism [Sp] zm-rz 

H2^2 ( B U ( n + 1 )2 mf2' B U ( n + 1 )2n, ) ^"2n, +2 ( B U ( n + 1 )2 m +2' B U ( n + 1 )2 m
) • 

By naturality of the Hurewicz homomorphism and the fact that (6 ) ^ = 0 in homo-
2 n 

logy 6 on each top cell of E BU(n)9 may be deformed (relative to the boundary) 
into BU(n+l)n • Hence 6 on E BU(n)0 may be deformed into BU(n+l)~ relative ~ zm n 9zm zm 
to E BU(n)r. 0 . This gives 6" on E BU(n)n homotopic to 6 and by homotopy zm-z n zm n 
extension 6" may be extended to a cellular map, 6", on E BU(n) which is homo-n 2 n 
topic to 6 . Consider 6" : E BU(n)n -> BU(n+l)r, . It induces zero on homology. n n zm zm ^ 
Therefore, by the previous argument we may find 6"' : E BU(n)? •> BU(n+l)9 such 

that 6UI^ 6" and 6'" sends E2BU(n+l)0 n into BU(n+l)0 0. By homotopy exten-n — n n zm-z zm-z 
sion we may extend 6,u to obtain a cellular stable map on E BU(n) which is homo-
topic to 6 . 

n 

Consider the following homotopy commutative diagram of S-maps in which the 

rows are cofibrations. 

E2BU(n)2m_2 -> £2BU(n)2m + v S 2 m + 2 

6in 
n 

B U ( n + 1 ) 2 m - 2 ^ B U ( n + 1 ) 2 m 

(2.9.1) 

If, in diagram (2 .9 .1), A(n,m) is stably trivial then we are finished. 

Therefore if we are working at odd primes we are done since all stable maps 

v S 2 m + 2 •+ v S 2 m are of order two [T] . 
3 * a a 
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Now we tackle the prime two. This will be done in §2.10 in a series of 

steps. 

§2.10.1. Let us begin by giving names to the spaces we will need. Consider 

BT = (BS ) in the stable category as a wedge sum 

BTn = v W. . 
l ^ n J 

Here W. is the wedge sum of all these smash products BS A ••• A BS (j copies) 
1 I n 

when the product (BS ) is written as sums of smash products of its factors. 

We have canonical S-maps 

a(j,n) : W. -> BU(n) 

given by composing the inclusion W. c BT with the map induced by the inclusion 

of the maximal torus into U(n). 

2.10.2: Lemma. For 1 < j < n the S-map 

6,M °Z2ot(j,n) : E2(W.) + BU(n+l)0 n J 2m 2m 

is nullhomotopic. 

Proof. From [Part I, Example 2.14] and the techniques of [Part I, §2] we see 

that the transfer T : BU -> QBU(l) , restricted via BTn -* BU(n) + BU, is homo-u r 
topic to the canonical map BTn -> BE U(l) -> QBU(l) . Hence, examining the S-map, 

nJ 
V,T/ \> which s p l i t s BU(n) [Part I , §4] we see tha t the S-map U(n; 

E
2

W < <*(j,n) > E2BU(n) - ^ BU(n+l) 

(e as in §2.8 above) is homotopic to the composite 

E2W. = S 2 A w. c BS1 A W. c W.(1 a(j+l?n+D > B U( n + 1) . 

2 But, in the notation of §2.8, this is Y. restricted to E W. and 6 = £ - E y. 
2

J J n J = I J 

so 6 is trivial when restricted to E W.. Now carefully following the obstruc-
n J 

tion argument of §2.9 gives that the deformation S m oa(j,n) of 6 ° a(j,n) 
n n 

can be deformed to the constant map within the required skeleton. 

2.10.3: Lemma. Let 0 + n e TT^(S°) and let pD : E2BU(n)0 •> s 2 m + 2 be induced by 
1 p zm p « 

the right-hand map in the top row of (2.9.1). Then there exists j such that Sq 

detects the composite 

j zm zm 3 
2 

Proof. Sq is non-zero on the mapping cone of n[T]» Since pD is injective in 
2 3 

mod 2 cohomology it follows that Sq is non-zero on the mapping cone of n ° pR. 2 However the track-group sum of the map E (a(j,n)) detects the mod 2 cohomology 
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2 2 
of I BU(n) so one of the composites n. ° p ° E (a(j,n)) (1 < j < n) must be 

2 detected by Sq . 

2.10.4: Completion of the Proof of Proposition 2.9. Suppose that for some 

a ,3 there is a non-trivial composition o o 

6(a ,6 ) : S 2 m + 2 c v S 2 m f 2 - ^ U v S 2 m - S 2 m . o o 3 0 3 a a o p a o 
2 S This composition must be stably nomotopic to n e TT~(S°) . We will show that 

6(a ,3 ) cannot be non-trivial by use of a well-known argument, due to Adem, 
o o ^ 

[T, p. 84, Example 3] by which one shows n ^ 0. Choose j as in Lemma 2.10.3 
for 3 = 3 . Consider the composite 

V 2 A T \ A . c2m+2 n c2m+l n _2m £ (W. ) * S • S * S 
1 2m 3 a 
J o o 

2 2 
in which A = p o E (a(j,n)). This composite is homotopic to 6f" ° E a(j,n) 

po n 

which is trivial by Lemma 2.10.2. Hence we may form the space 
B = (S2m v e 2 m f 2 ) u C Z2(W.), . a j zm o n 

Since Sq is non-trivial in S u e and also detects the S-map of Lemma 
2 2

 ao n 
2.10.3 we see that Sq Sq is non-trivial on the integral class generating 

H (B;Z/2). However, this is impossible by the Adem relation Sq Sq = Sq Sq 

because Sq is zero on integral classes. 

This completes the proof. 

2.11: Proof of Theorem 2.1. In section 2.3 I explained why $ was well-

defined. 
2* Also any class in MU (X) is contained in 

n M U 2 £ ( X ) = n Mu2k(E2Mx) 
£>T-M k>T 

for some T, M satisfying 4T > 2M + dim X. By [Part I, Theorem 5.1] (j> restricted 

to the summand 
/ , 2 M X ) B U I o f { z 2 M x 

,BU} i s an i somorph i sm o n t o 
2k 2M l BIKT-DJ 

n MU (E T ) i f 4T > 2M + dim X. Hence <S> i s s u r j e c t i v e . 
u T<k 

Now let f e {X,BU} represent F e AU°(X) which satisfies 0 (F) = 0 . For 
some n,t we may assume that f originates in {X,BU(n)9 } ̂  0 {X,MU(k)? }. 

k=l 
Suppose f = £f where f e {X,MU(k) }. The computation of Corollary 2.8 shows 
that each 6 induces zero in MU*-theory. Here 6 is the S-map of Corollary 2.8. 

n n 2k 
From this it is easy to see that $TT(f, ) = 0 for each k, because $TT(f, ) e MU (X) . 

U k U k 
This is because $ is given by applying e* (= E y* DY Corollary 2.8) to the 

2k j J 

canonical classes in # MU (MU(2k)) and y* picks out precisely f. hence we may 
assume f = f . n 
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Also, by induction, we shall suppose for all Y that $ (f) = 0 implies 

F = 0 whenever 

f e {Y,MU(m)2g} 

satisfies either (i) s < t, or 

(ii) dim Y - 4m < dim X - 4n. 

Now consider the passage of f e {X,MU(n)? } in the limit defining AU°(X). 
2 The image of f, e,, (F) e {I X,BU} is equal to 

((6n)#(f),(yn)#(f),0) e {E2X,BU(n)} $ {E2X,MU(n+l) } 0 |Z2X, ̂ f ^ y l . 

This direct sum expression for £jt(f) uses the fact, mentioned earlier, that 
2 

6 really maps £ BU(n) into BU(n) and not into BU(n+l). By Proposition 2.9 
n 2 
(6 )„(f) originates in {£ X,BU(n)_ 0} which means it goes by (i) to zero in 
n it It-1 

the direct limit. Also (y ),,(f) goes to zero in the limit by (ii) since 
~ n it 

dim £ X - 4n - 4 < dim X - 4n. 

This completes the induction step. To start the induction we observe that 

{Y,BU(m) } is trivial while $ is injective on (Y,MU(m)} when dim Y < 4m, by 

[Part I, Theorem 5.1]. 

2.12: Proof of Theorem 2.2. The symplectic case is entirely analogous to the 

unitary one. Therefore details will be left to the reader. The obstruction 

theory analogous to Proposition 2.9 is simpler and the argument permits the de-
4 

formation of 6 : £ BSp(n). -> BSp(n+l), ,, into BSp(n+l). , since the obstruc-
n 4m r 4m+4 4m-4 

tions to such a deformation lie in the 4-stem which is zero rather than the 

2-stem as they did in the unitary case. 

§3. THE SPECTRA AU AND ASp 

In this section two commutative ring spectra, AU and ASp, are defined 

(section 3.2) and the following result is proved. 

3.1: Theorem. There exist commutative ring spectra, AU and ASp, defined in 
2 

section 3.2 and satisfying the following conditions. 

Let AU*(X) and ASp*(X) be the generalised cohomology algebras correspond­

ing to these spectra. 

Then (a) AU° (X) and ASp°(X) are naturally isomorphic when dim X < °° to 

the groups of Theorems 2.1 and 2.2. 
2* (b) The natural homomorphims $ : AU°(X) -> MU (X) and 

4* U 
(J> : ASp°(X) -* MSp (X) of Theorems 2.1 and 2.2 are ring homo-bp 
morphisms which are isomorphisms when dim X < °°. 

For details of spectra the reader is referred to [Ad 1, p. 131 et seq.] 

and, of course, to [W]. In Proposition 3.6 the homology algebras of these 

spectra are computed. 
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3.2: Definition. Let AU01 = E2BU and let (k > 1) e : E2AU01 + AU01 lo be the 2k « 2k 2k+2 
map of section 2.3. Let n : S -* E BU = AU, be given by n = E B where Be TT (BU) 

is as in section 2.3. This data defines the spectrum AU with unit. 

4 4 
Similarly let ASp, = E BSp (k > 1), let e' : E ASp •> ASp be as in 

section 2.3 and let n* = E B' : S ->• ASp_ where B' e TT. (BSp) is as in section 
o 4 

2.3. This data defines the spectrum Asp with unit n1. 

I will now define pairings AU A AU -> AU and ASp A ASp ->- ASp. It suffices 

[cf. Ad 1, p. 158; W] to define maps 

m : AU 2 p A AU2q + AU 2 p + 2 q 

and 

m1 : ASp, A ASp, -> ASp, ,, r4p 4q 4p+4q 

satisfying certain properties which will be stated when they are needed. 

2 2 The map m is defined as follows. AUn A AU0 is equal to S A B U A S A BU 2p 2q 2 2 
which is homeomorphic, by switching the first two factors, to BU A E (S A BU) . 

If EH is the Hopf map of section 2.3 we have an inclusion 
2 2 2 2 

1 A EH : BU A E (S A BU) ->• BU A E (S x BU) . Switching factors again we have 
BU A E2(S2 x BU) 2L £2(fiU A (S2 x BU)) which includes, by the Hopf map again, 

2 2 into E (BU x s x BU). m is defined as the composition of the maps I have just 
2 

described with the double suspension of 1___ $ B $ 1 : BU x S x BU + BU. 
BU BU 

The definition of m' is entirely analogous to that of m. 

2 
3.3: Remark. Note that in the definition of m the first copy of S in 
2 2 S x BU x s x BU seems to have a privileged role. However, up to homotopy, we 

2 
might equally well have used the second S factor since the switching map on 
2 2 

S A S is homotopic to the identity. 

3.4: Proof of Theorem 3.1. I will describe only the proof of the unitary case, 

leaving the analogous symplectic case to the reader. 

Firstly AU is clearly a spectrum and therefore defines cohomology groups 

[Ad 1, p. 196] 

AUj(X) = limjE2k~jX,AU ] = lim> [E2k_jX,E2BU] . 
k k 

If j = 0 and dim X < °° this limit could equally well be taken over stable homo-
2k 2 topy classes so that stabilisation induces a natural isomorphism lim [E X,E BU] 

2k 2 k 

_. lim {E X,E BU}, the group on the right is AU°(X) as defined in section 2. 
* k 

In order to show that AU is a commutative ring spectrum with unit I must 
verify the homotopy commutativity of the following diagrams. 
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(*) pairing 

E2AU0 A AU0
 £ Al> A\] 2p 2q 2P+2 A f 2q 

2p+2q+2 

Here A is the canonical homeomorphism. 

(ii) associativity 

AIT A AIT A AIT l A m > A U 0 A A U 0 , 9 

2p 2q 2r 2p 2q+2r 
m A 1 

AU0 , 0 A ATT 2p+2q 2r -> AU 2p+2q+2r 

(iii) commutativity 

AU„ A ATT 2p 2q 

AU 

AU0 A ATT 2q 2p 

Here T is the switching map. 

(iv) unit 

S A S A AU0 % S A AU0 2p - 2p 

1 A e 

2p+2q 

n A i * AU, A AU0 4 2p 

S A AU 2p+2 -> AU 2p+4 

All these diagrams are easy to verify. One uses the associativity and commuta-

tivity of the Whitney sum BU x BU -> BU, the associativity of the Hopf construc­

tion and Remark 3.3. Therefore I will omit the details. 

By the naturality properties of the product it suffices, in order to com­

plete the proof, to show 

$ (F) 8 $ (G) u u (F A G) € MU2*(X A Y) 

2,„2v where F e AU°(X) and G e AU°(Y). Let a e MU (S ) be the suspension class, so 

that the suspension isomorphism is multiplication by a. Let $ (__) 9 denote the 
2t U 

component of $ in MU (_) . Suppose that F and G are represented by 
? k ? u 9 9 ? ?t 

f e [E X,Z BU] and g e [E Y,EZBU] respectively. Then $ (F) e MU (X) 
corresponds to f*(a 8 c ,, ,) e MU (E X) while $ (G)0 corresponds to 

t+k-1 u 2s 
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g*(a 0 c , .,) . Similarly $ (F A G)^ corresponds to the image of a 0 c ,, tn _, s+£-l u 2v v+k+£-l 
. >,2v+2k+2/ 2k ^2£v. , . 
in MU (E X A Z Y) under the map 

E 2 k X A l 2 £ Y _ l A ^ E 2 B U A Z 2 B U 

- Z 2 ( l » B © 1 ) 
Z 2 (BU x S 2 x BU) SS BU_, E 2 B D > 

Here the unnamed map is the composition of the Hopf maps described in section 

2.2. It is easy to compute that this image is 

v+k+£-2 
Z f*(a 0 c ) 0 g* (a ® c ) 

p=0 

v+k-2 
£ $ (F)0 9. 0 $ (G)_. . 
A,- u 2v-2i u 2i j=-£+l J J 

Now letting I, k -> <*> w e obtain $ (F A G) = $ (F) 8 $ (G) . 

u u u 

3.5: H^(AU;Z) and H^(ASp;Z). Let H?,c denote integral singular homology. Then 

by definition the homology groups of AU and ASp are 
H (AU) -lin^H (AH ) 

and k J 

H . (ASp) = iiSi.Hj+4k(ASp4k) 

respectively. 
2 oo l± oo oo 

Let x £ H (CP ) and x' e H (HP ) be generators. Define 3. e H .(CP ) and 
m J J 

3^ £ H4j(HP ) by 

(x1) > = <3., x > = < J . 
i 0 otherwise 

By means of the canonical map CP = BU(1) -> BU 3. defines a class 3. e H (BU) 

2L H ? - . O C ^ I U ) which in turn defines 3. £ H (AU). Similarly 3! defines a class 

3^ £ H4j(ASp). 

3.6: Proposition. As algebras 

H^(AU) 2L z l t v ^ 1 , 32, 33, ...] 
and 

H^(ASP) a. z[3{, cap"1 , 3^, 3^, . . . ] . 

Proof. I will prove the unitary result and omit the details of the analogous 

symplectic case. 

There are two products in evidence, one in H^(BU) and one in H^(AU). 

H.(BU) ^ Z[3n,30, . . • ], is explained in section 2.6 and in this algebra the pre * — 1 z 
duct of a and b will be denoted by ab. If a,b e H^AU) their product will be 

denoted by a * b. Identify H.(AU91) with H. 9(BU) by means of the suspension 

isomorphism. Consider the map 
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m : AU 2 k A AU2 + AU 2 k + 2 

defined in section 3.2. If a 8 b e H J 0(AU 0 1) 8 H l0(AU0) ^ H (BU) 8 H (BU) 
s+z zk t+z z — s t 

then m.(a 0 b) corresponds to 3-,ab e H (BU) ̂  H ..., , (AU01 ,O0) . This is * 1 s+t+z — s+t+4 ZK+Z£ 
because the image of the suspension class under B : S -* BU is 3-, • From the 

2 diagram (iv) of section 3.4 we see that e^ :H.(E AU01 ) -> H.(AU«, , 0) corresponds * j 2k j 2k+2 
to multiplication by $ on H. ,(BU) ̂ H.(I AU ) . Hence the limit H.(AU) 1 J 4 j zk 2 

is formed from a sequence of injections and is therefore, as an additive group, 

equal to the union of the images of the H (AU«, ) 2L H-4-OV_? ̂ B U ) * 

In this limit H^(AU ) is a subalgebra isomorphic to Z [$-, , 39, . • . ] H^(BU) . 

For the product of a e H l0(AU0) and b e H I O(AUj is a * b = 3-,ab e H L i7(AU,) 
s+z z t+z z 1 s+t+4 4 

which is the image of ab e H , lo(AU„) e H , (BU). 
s+t+2 2 s+t 

To complete the proof it suffices to show that for k > 1 and an element 

z = 3X 32 ... 3 n
n £ Hg(BU) ^ H s + 2 ( A U 2 k ) c Hs+2-2k(AU) i s i n t h e a l § e b r a 

Z[3-,>3-, ,3?,3o»•••]• There are three cases 
C2 £n case (a): If e = 1 then z is the image under e. of 30 ... 3 I * z n 

e H (AU9, 9) ^ H 9(BU). .c zk-z — s-z n £-.-2 e9 e 
case (b): If e > 2 then z = 3-, * z' where z' = 3n 30 ...3 n 

1 1 1 z n 

e H s - 2 ( A D 2 k - 2 > ^ H s - 4 ( B U ) -

case (c): If e = 0 then 3-. * 3 * • • • * 3 * z (k - 1 copies of 3-.) 

equals z" = 3 0
2 . . . 3 n e H.(AU0) so that z = (37"L)k~1 * z". z n * z 1 

§4: ADAMS OPERATIONS IN AU-THEORY 

In this section and in sections 5-7 several well-known phenomena in cobor-

dism will be described in terms of AU- and ASp-theory. In this section I will 

show how the Adams operations in K-theory give rise to natural endomorphisms of 

the graded ring AU*(__). Under the isomorphism, $ , of section 2 these opera­

tions will be essentially the Adams operations in cobordism theory [No]. This 

relationship is made precise in the proof of Corollary 4.3. 

Let KU°(_;A) denote K-theory with coefficients in a ring with identity A. 

This functor is represented by the H-space BUA. By tradition BUZ is simply 

written BU. The Adams operations 

i|jk : KU°(_;A) -* KU°(_;A) 

(k e A) are well-known natural ring homomorphisms [Ad 4; At 2] which are in-
k k 

duced by H-maps ty : BUA -> BUA. The values of k for which ip is defined depend 
k k 

on A. For example, if Z c A then \\> exists for all k e Z, if A = Z/p then i\i 
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exists if (k,p) = 1 [Mau] and if A = Z (the p-adics) then i> exists for all 

k e Z [At - T]. 
P 
The results of section 3 go through with coefficients in A. That is, if 

we define 

AUA^(X) = lim^E^'^X.BUA} 
n 

by analogy with the definition of AUJ(X). There is a natural ring homomorphism 

(when A = Z or A c j)), 

$ u : AUA°(X) -> MUA2*(X) (4.1) 

which is an isomorphism if dim X < °°. This follows from Theorem 3.1 when 
M M M 2* M ?* M 

X = S since AUA°(S ) = AU°(S ) 0 A and MUA (S ) = MU (S ) H . For general 

A the reader follows by induction on dim X. Details will be left to the reader. 

The main result of this section is the following: 

4.2: Theorem. Suppose that the Adams operation ty : BUA ->• BUA is defined and 
1 k 
— e A. Then I|J induces, in a manner described in section 4.4, a natural graded 

ring homomorphism 

such that 

Vk : AUA*(_) -* AUA*( ) 

(a) yM = ^ 
2* 2N k -1 

(b) The endomorphism of MUA (S ) given by $ ° ¥ ° $ is equal to mul-
N-t 2t 2N U U 

tiplication by k on MUA (S ) (t e Z). Here $ is the homomor­
phism of Theorem 3.1 with coefficients in A as in (4.1). 

(c) Let w e AUA°(CPT) satisfy $ (w) = c^y) e MUA2(CPT) where y is the 

Hopf bundle and c (y) is the s-th Conner-Floyd class of y. Then 

C k>» 
$ (yk(w)) = n C . P H e M U A 2 * ( C P T ) . 
U l<j J^ kJ 

In section 5 a general construction is given of natural ring homomorphisms 

out of AU°(_) which would suffice to construct ¥ . However in this section I 

will give a self-contained treatment of ¥ from a slightly different viewpoint 

which is better suited to the computations we will need. 
k The operations ¥ will be constructed in section 4.4 and the proof of 

Theorem 4.2 will be given in section 4.10. Before embarking on the project 

let us recover the cobordism Adams operations. 

4.3: Corollary. Under the condition of Theorem 4.2 there exist natural homo-

morphisms of graded rings m : MUA'C(__) -> MUA*(_) such that 

(a) yk o / = yk£ 

k ?f ?N 2f 2N N-t-
(b) Y : MUA (S ) -> MUA (S ) equals multiplication by k . 

2 oo 
(c) If c (y) e MUA (CP ) is the first Conner-Floyd class of the Hopf 

k 1 k 2 oo 
bundle y then Y (c^y)) = ̂ C ; L (y ) £ MUA (CP ). 
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Proof. Since AUA (_) ^ AUA (_) in a natural manner we may identify these 
groups and consider AUA°(_) $ AUA (_) as a Z/2-graded, multiplicative cohomology 
theory. Then $ induces a ring homomorphism $ : AUA°(_) $ AUA (_) •> MUA*(__) 
which is an isomorphism for finite dimensional spaces. If dim X < °° and 
x e MUA (X) define V (x) e MU (X) as the image of x under the composite 

o m 

MUA (X) c MQA*(X) -» MUA*(X) ^ MUA"(X) 

where i\ is the projection onto dimension n. The point here is that 
k n -1 s 

$ 0 ^ 0 $ (x) £ # MUA (X), since a natural ring homomorphism satisfying 
s>n 

(a) - (c) of Theorem 4.2 cannot decrease dimension, but there may be nonzero 
components in dimension s with s > n. In order to produce a graded homomorphism 
it is necessary to neglect these components in dimension s with s > n. Since 

k . k -1 k 
(j> o m o $ is a natural ring homomorphism then so is Y . 

¥"" is extended to 
complexes of arbitrary dimension by a standard limit argument an example of 
which is sketched in [Ad 1, p. 10]. Parts (a) and (b) are immediate from parts 
(a) and (b) of Theorem 4.2 and part (c) follows from the equation 

ciHr] = i c i ( y k ) £ M u i v 2 ( C p C O ) • 
4.4: Construction of ¥ 
BUA BUA. 

1 I k 
Since — e A there exists an H-map £ = — ¥ 
k On TT (BU ) ̂_ A, ¥ is multiplication by k so £ is the identity. 

Hence we have a homotopy commutative diagram 

Bel 
S x BUA BUA 

1 x £ 
s2 k 

* BUA 

Si. (4.5) 

S x BUA BUA 
BUA 

The following diagram also homotopy commutes 

4 
I BUA 

; \ 

E BUA 

-^ zV BUA) 

z 2 d V 
-^ zV BUA) 

(4.6) 

where ZH is the map described in section 2.3. Combining the double suspension 
of (4.5) with (4.6) we obtain a homotopy commutative diagram. 

e E BUA E2AUA 2N 

* \ 

AUA2N+2 " l h v 

(4.7) 

E2AUA 2N AUA 2N+2 
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2 
From (4.7) it is clear that composition with Z £ induces a natural graded, 

k additive endomorphism of AUA*(_) which will be denoted by ¥ . 

2* 2* 
4.8: The Spectrum for MUA (_). Now let us discuss MUA (_) and the map 

2^ ?& 

<£> : AUA°(_) + MUA (_) in terms of a spectrum EUA such that EUA°(_) = MU (_) . 

EUA will be a wedge of suspensions of the Thorn spectrum MUA. The object of the 

discussion is to provide sufficient information so that we can describe in 

AUA-theory canonical classes in MUA-theory and its homology. 
Define EUA01 = v MUA0 (k > 1) where MUA0 is the 2n-th space in the 

ZK .. ^ zn zn l<n 
MUA-spectrum. Let e: E2EUA -> EUA be defined as the wedge sum of the Thorn 

spectrum maps E MUA» -> MUA» l0. Then 2n 2n+2 

EUA°(X) = limjE2MX,EUA2M] 
M 

^lim 0 [E2MX,MUA0 ] 
M l<n 

2k 
^ lima e MUA (X) 

M 1-M<k 
2* 

^MUA (X). 

Inside EUA?, sits MUA?V thereby giving a canonical copy of the spectrum MUA as 

a subspectrum of EUA. The natural transformation 

$ : AUA°(_) •> MUA2*(_) 

is induced by a map of spectra AUA -»- EUA. 
00 

Now let us describe the canonical element w e AUA (CP ) whose restriction 
X oo 

to CP is featured in Theorem 4.2(c). There is a canonical map CP = BU(1) -> 

BU -> BUA whose double suspension w! e [E CP°°,AUA ] gives a class w e AUA ° (CP°°) . 

Now the composite 
[E2CP°°,AUA2] •> AUA°(CP°°) — ^ EUA° (CP°°) 

2k+2 sends w' to n (wf)*(c') where c' e MU (AUA ) is the image of the k-th 

Conner-Floyd class, c, , under the suspension isomorphism. However (w')*(c*) 

is zero for k > 1. Hence $ (w) is represented by the composite 

E2CP°° - ^ MU(2) -2-> MUA, c EUA. 
4 4 

where MU(2) = MUZ,, e is the Thorn spectrum map and p is induced by the coeffi­

cient homomorphism Z ->• A. This composite represents the same class as that 

represented by CP ^ MU(1) " > MUA c EUA . Hence $ (w) is equal to the canoni­

cal element c (y) e MUA (CP°°) . 

Next we turn to the induced homomorphism ($ )j!f : H^AUA) ->- H^EUA). Let 

3. £ H (CP ) denote the element of section 3.5. From [Ad 1, p. 51, Lemma 4.5] 

we know that if 
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b ± = c1(y)^(3i+1) € H2±(MUA) 
then 

H^(MUA) 2L [blfb2,...] (bQ = 1). 
Hence 

H^(EUA) 2L A(u,u"1,b1,b2,...) 

where u e H_2(EUA) is represented by 1 e H (MUA ) c H (EUA ) . 

4.9: Lemma. In terms of the generators described in sections 3.5 and 4. 

( O * : H^(AUA) •+ H^(EUA) 

is given by 

and 
<V* ( e i1 ) 

'Ŵl̂  = bj-l (J S 1}' 

Proof. From Proposition 3.6 case (c) we see that $ € H_9(AUA) is represented 
2 oo ? by 1 e H0(BU) ^ EL (AUA,) . Since this class is carried by Z CP •> Z BUA = AUA. — z 4 _ 4 

the analysis of w in section 4.8 shows that ($ )5jc(31 ) is represented by 

e*(D € H2(MUA4) c H2(EUA4) 

where e^ : H0(MUA ) -> H (MUA.) is induced by the Thorn spectrum map. Therefore 
(* )*(B"1) is represented by 1 e Ho(MUA0) c H0(EUAJ and (<D )^(37"L) = u. u * l Z Z u * 1 

Also 3. e H (BUA) ̂  H (AUA,) represents the product 3.*3~ . A compu-

tation similar to the analysis of ($ ).(3-, ) shows that (0 ).(3.3-, ) is repre-
u * 1 u * j I 

sented by ( c ^ y ) ) ^ . ) e H2.(MUA2) c H2. (EUA2) . Hence (0^(3.3" ) = b . _ r 

4.10; Proof of Theorem 4.2. Firstly we show that ¥ is multiplicative. It 

suffices by naturality to show that if f e AUA°(X) and g e AUA°(Y) then 

yk(fg) = ^(f) Yk(g) e AUA°(X A Y ) . 

R e c a l l from s e c t i o n 3 .2 t h a t m : AUA? A AUA ->- AUA i s e q u a l t o a co mp o s i ­

t i o n of t h e form 

S 2 A BUA A S 2 A BUA -> E2(BUA x S 2 x BUA) 

E2BU . 

S i n c e £, : BUA -»• BUA i s an H-map which i n d u c e s t h e i d e n t i t y on TT (BUA) we have 

V(1BUA * B * W ± (1BUA * B * W^k X \,2 X V " ( 4- 1 1 } 

S A BUA A S 2 A BUA -> E2(BUA x S 2 x BUA) 

S i n c e 

\ 2 A ^k A \2 A ^k E 2 ( ^ x i x r ) ( 4 . 1 2 ) 
k S z k ^ 

S 2 A BUA A S 2 A BUA •* E2(BUA x S 2 x BUA) 
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is homotopy commutative we may combine the double suspension of (4.11) with 

(4.12) to yield 

E V o m ^ m o ( £ V A Z2r ) : AUAQ A AUA„ + AUA_ ,0 k — k k 2p 2q 2p+2q 

which at once implies that V is multiplicative. 

Part (a) is clear since the same identity is true for Adams operations in 

K-theory. 
k £ 

On H (BUA), ^ is multiplication by k and (£,) % is multiplication by 
k£_1. Hence on H^(AUA) (¥k)^(3 ) = ^ " 1 3 £ . Therefore by Lemma 4.9 

V -1 fkJb' if x = b. 
(* o^ Ko$ X) (X) = J J 

u u * . . [u if x = u. 

2N However from [14] we know that MU*(S ) is torsion free. Therefore the Boardman-
2N 2t 2N 

Hurewicz homomorphism h : EU°(S ) -> Hj!c(EU) is an injection. If x e MU (S ) 

c EU°(S2N) it is represented by an element of [S2N+2M,MU(M+t)] c [S2N+2M,EU ] 

for some M. Hence h(x) e H? (EU) is represented by a class of H (MU(Mft)). 

This element must be of the form pu where p is a polynomial in b.. ,b , . . . of 

degree 2N-2t. Hence ($ <>y o $~ )^(h(x)) = k h(x) . This proves part (b) 
U U k 

when A = Z. Part (b) in general follows from the facts that ¥ is in general 

constructed from ¥ with k integral and that MUA (S ) consists of integral 

classes. 

It remains to prove part (c). From the discussion of the canonical ele­

ment w e AUA°(CP ) in section 4.8 and the definition of $ we have at once that 
* (^(w)) = n (Z2£ 0w')*(c') € MUA2*a2CP°°) 
U l<k k k 

2K+2 2 2 
where c* e MUA (E BU) and w* are as in section 4.8. However (E £ wf)*(c*) 

r k\ r k ^* 
01 4-0 0 IT I I U/ l \ I 

e MUA (E CP ) corresponds under suspension to c I—I = ' ^-1 
2k °° i J i 

£ MUA (CP ) and the result follows. 

(ck) 

§5. IDEMPOTENTS 

This section studies idempotents in AU-theory and hence in MU-theory. In 

Proposition 5.3a general construction is given which associates to an exponen­

tial natural transformation from K-theory to another theory, h*, a natural ring 

homomorphism from AU-theory to h*. The homomorphisms $ of section 2 and ¥ of 

section 4 may be obtained from this construction (see Examples 5.4.3 and 

5.4.3(a)). This construction yields an idempotent e(d) : AUA*(_) ->AUA*(_) and 

an endomorphism q(d) : AUA*(_) -* AUA*(_) for suitable A (Theorem 5.1 and Propo­

sition 5.5). e(d) induces in MU-theory the idempotent of Adams [Ad 3, p. 107] 

while q(d) induces the idempotent of Quillen [Ad 1, p. 105]. 
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Some natural endomorphisms of AU-theory may be constructed entirely from 

K-theory, for example ¥ of section 4, others may not. q(d) is an example of 

the latter kind. I think it is important to remark what can be accomplished in 

cobordism by use of AU-theory and without prior knowledge of IT (MU) or the use 

of Adams spectral sequences since analogous arguments may then be possible for 

ASp-theory. For example the KO*-theory (= KSp -theory) Adams operations will 

yield ¥ operations in ASp-theory. For idempotents the situation is as follows. 

Adams constructs e(d) by use of the Hattori-Stong theorem [Ad-L; Ha; St 2] 

which in turn has been proved by appealing to the structure of TT^(MU) or by use 

of Adams spectral sequences. The AU-theory construction, which also immediately 

relates e(d) to the ¥ ' s, requires only the K-theory idempotent E.. of Adams as 

input. The construction of E1 requires only easy number theory and easy K-theory 

[Ad 3, pp. 84-89]—and ingenuity! The formula relating e(d) to the Adams opera­

tions was originally due to Idar Hansen. 

The main result of this section is the following: 

5.1: Theorem. Let d > 1 be an integer and let R(d) be the ring of fractions 

a/b such that b contains no prime p with p = 1(d). Then the idempotent of 

Adams [Ad 3, p. 89] 

E± : BUR(d) -> BUR(d) 

induces a natural idempotent ring homomorphism 

e(d) : AUR(d)*(_) -> AUR(d)*(_) 
such that 

(i) if p = 1(d) is a prime then e(d) induces 

satisfying 

e(d) : AUZ*( ) -* AUZ*( ) p - p -

A d a . 
[e(d)(f)]d = n Y J(f) € AUZ°(X) 

j=l 

(f e AUZ°(X)) 
P 

(ii) if dim X < °° then the composite 

e : MUR(d)n(X) •> MUR(d)*(X) 

MUR(d)*(X) p r ° J >MUR(d)n(X) 

is equal to the idempotent of Adams [Ad 3, p. 107]. Also with p-adic 

coefficients as in (i) e satisfies 

A d 

e(f)d = n ¥J(f) 
j=l 
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(f 6 MUZ 2 n (X)) . p a . a . 
Here a , , , . . , a , e Z a r e d i s t i n c t d - t h r o o t s of u n i t y and \p J , V 1 d p 
denote Adams operations as in section 4. 

Proof. I will assume that the reader is familiar with the constructions of 

E : BUR(d) -> BUR(d) [Ad 3, pp. 84-89]. 

The existence of e(d) is given by Example 5.4.2(b) or by imitation of the 

construction of ty in section 4. The second viewpoint shows that e(d) is idem-
2 2 potent since it is given by composition with E E : E BUR(d) = AUR(d) ->AUR(d) 

and E o E ^ E . 

It is immediate from the definition of E that 

(E1)jB: : H^(BUR(d) ;Q) -> H^(BUR(d) ;Q) 

satisfies 
fx n = k d + l , k > 0 

(El>*(xn> = n 

[0 otherwise 

where x e H. (BUR(d);Q) is primitive. Arguing as in section 4.10 we see that n zn 

is given by 

e(d)a :H^(EUR(d);Q) -> H^(EUR(d) ;Q) 

fuSy n = kd, k > 0 
e(d),(uSyn) = 

[0 otherwise 

where y e H0 (EUR(d);Q) is a primitive polynomial in (b.;i > 1). This esta-n zn l 
blishes the first half of (ii) since the idempotent of Adams is characterised 

by this behaviour on H^(MUR(d);Q) c H^(EUR(d) ;Q) . 

Now we relate e(d) to the Adams operations. Clearly the formula in part 

(ii) is implied by that in part (i) and Corollary 4.3. From the formula of 

Adams [Ad 3, p. 89] we have 

.. d 1 a. 
E- = -j E — Y 3 : BUZ -> BUZ . (5.2) 
1 d . - a. p p 

3=1 J 

Let f be represented by f e {E )C,(AUZ ) }. Then (e(d)(f)) is represented 

by a composition of the form 

Z 2 M dX - ^ > I 2 MX A ... A Z 2 M X 

s' f A • • • A f 

E2BUZ A ••• A E BUZ • E (BUZ x S x ... x S x BUZ ) 
P P „ P P 

: ••• x E±) 

E2(BUZ x ...) > E2BUZ = (AUZ ) 0__.. 
P g 0 P P 2Md 
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Here "diag" is induced by the diagonal map, g is a composition of Hopf maps as 

in section 2.3, g9 is induced by the iterated Whitney sum and there are d 

copies of X and of BUZ in each of the displayed products. However by (5.2) we 
2 P 2 

may replace E (E x 1 x •••) in this composition by Z (̂  xl x ••• x £ ) 9 
1 SZ , al S^ ad 

d a. 
the resulting composition represents II ¥ (f) . This completes the proof. 

5.3: Proposition. Let a : KUA°(_) -> h*(__) be a natural transformation into a 

multiplicative cohomology theory h* satisfying 

(i) For f,g e KUA(X) 

a(f + g) = a(f)a(g) e h*(X) 
2 

and (ii) if B e KUA°(S ) is the Bott class then the projection of a(B) into 
2 2 reduced h*-theory is equal to a e h (S ) where a is the image of 

1 e h°(S°) under the suspension isomorphism. 

Then a induces a natural ring homomorphism a : AUA°(_) -> h*(__). If 

F e AUA°(X) is represented by f e {E2NX,AUA } then 

2N -2N 
a(F) = f*(a 0 a) e h*(E X) ̂  h* (X) 

where a is considered as an element of h*(BUA). 

Proof. Firstly we must check that a is well-defined. F is represented by 
2N 2 2N -2N 

f e {E X,E BUA} which is sent to f*(a 0 a) e h*(E X) ̂  h* (X). However F 
2N+2 2 may be considered as being represented by e^(f) e (E X,E BUA} where 

2 e : E AUA„>T -> AUA«„IO is described in section 2.3. This second representative 2N 2N+2 
is sent to 

+2 2N+? 
a 0 f*(B*(a) 0 a) = a 0 f*(a 0 a) e h* ( E X ) . 

-2N Fortunately these two elements are equal when translated to h* (X) and a is 

well-defined. 

Now we show a is multiplicative. Suppose f e {E X,E BUA} and g e {E Y, 
2 
E BU} represent F e AUA°(X) and G e AUA°(Y) respectively. Then fg is repre­
sented by 

Z 2 m 2 \ A Y „ I2MX A £2NY - ^ i U E 2 B U A A Z 2 B U A 

I2 (BUA x S2 xluA) ' ̂ U A ^ W , ^ 

Hence a(fg) = (f Ag)*(a 0 a 0 B*(a) 0 a) = f*(a 0 a) 0 g*(a 0 a) = a(f)a(g) . 

5.4.1: Example. Define v : KUA°(X) -> AUA°(X) = lim {E2NX,AUA } by sending 
N 

f : X -> BUA to E2f : E2X -> E2BUA = AUA . Clearly v(B) e AUA° (S2) ^ MUA2*(S2) is 
2 2 the suspension class in MUA (S ) . Set v(f) = 1 4- v(f) . 
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Then v is an exponential map. Suppose g e KUA°(Y) is represented by 

g : Y •> BUA then v(f+ g) is represented by a composite of the form 

2 

E 2
( x x Y ) Z (f X g ) > Z2(BUA x BUA) — ^—> £2BUA = AUA2 (I) 

However v(f)v(g) is represented by a composite of the form 

(ID 
E2X A E 2

Y ^ E2BUA A E2BUA 

2 

£2(BUA x s2 x B UA) 52^ B U ^ E 2 B u A = A u A ^ 
4 

Here g1 is a Hopf map as described in section 2.3. It is easy to see that if 

if and n are the projections X ^ X x Y •+ Y then (I) represents X I 

V(f)v(g) + V(f ° TTX) + V(g ° TTy) . 

Hence 

v(f + g) = 1 + v(f + g) 

= 1 + v(f) + v(g) + v(f)v(g) 

= v(f)v(g) . 

Applying Proposition 5.3 to v yields the identity map of AUA°(_) . 

2k 5.4.2: Example. Applying Proposition 5.3 to v = c„ + c + c + ••• £ n^v^ (—) > 

the total Conner-Floyd class, yields the homomorphism $ of Theorem 3.1. 

In fact we may construct a homomorphism AUA°(_) ->• h*(_) in this way for any 

cohomology theory, h*, which has a "total Chern class" for complex bundles with 

coefficients in A (cf. [2, p. 55]). For h* = KU* this is the Conner-Floyd 

homomorphism [C-F]. 

The important property of the Conner-Floyd homomorphism is that it induces 

an isomorphism 

MU*(_) 8 Z + KU*(_) 
7T*MU 

of Z/2-graded rings [C-F] from which incidentally the Hattori-Stong theorem 

follows as a (quite difficult) corollary by an argument of G. Wolff [Wol]. 

The methods of AU-theory do give a new proof of the unitary Conner-Floyd 

theorem. Furthermore, the Conner-Floyd theorem together with AU-theory lead 

to a rather startling description of BU. This application is given in Part II, 

section 9. See Remark 9.2.9(b) for the proof of the Conner-Floyd theorem. 

Incidentally the real/symplectic Conner-Floyd homomorphism is obtainable 

MSp (_) -> K0(_) 

by a similar method using ASp-theory. Details are left to the reader. 

5.4.3: Example. If 6 : KUA°(__) -> KUA°(_) is a natural additive homomorphism 
2 

which is the identity on KUA°(S ) then Proposition 5.3 may be applied to 
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a = v ° 6. Here v is as in Example 5.4.1. 
,k 

(a) If 6 = ̂  = C k then a = Y . 

(b) If 6 = E the idempotent of Adams [Ad 3, p. 89] in KUR(d)°(_) then 

a = e(d), the idempotent of Theorem 5.1. 

5.4.4: Example. Notice from the splitting principle that a natural exponen­

tial map a :KUA°(__) -> MUA*(__) determines and is determined by a (y - 1) e MUA-'CCP00) 

where y is the Hopf bundle over CP (cf. [Ad 1, p. 52, Lemma 4.6]). 

If x e MU (CP°°) is the canonical class them MUA*(CP°°) = ir^(MUA) [ [x] ] . 

Following [Ad 1, p. 108] define 

i d 

mog x = log x - — Z log(a.x) (d > 1) 

and where cu , . . . , a , are distinct complex d-th roots of unity 

log x = E j-C^ ] x 1 + 1 € MUQ*(CP°°). 
i>0 U ; 

Hence mog x = x + (higher terms) and B*(mog x) equals the suspension class in 

MUQ2(S2). In fact [Ad 1, pp. 108-109] 

mog x e MUZ[-|]2*(CP00) ̂  AUZ [-j] ° (CP°°) . 

Thus by Proposition 3 mog x determines a natural ring homomorphism 

q(d) : AUZ[i]*(_) + AUZ[i]*(_). 

5.5: Proposition. Let q(d) be the endomorphism of AUZ[—]*(_) constructed in 

Example 5.4.4. Suppose dim X < °°. 

Then the composite, also called q(d), 

MUZ[j]n(X) c MJZ[-j]*(X) 

$ o q(d) o $ 
u u 

.MUZ[-j]*(X) p r ° J > MUZ[-j]n(X) a a 

is the idempotent of Quillen [Ad 1, Theorem 15.1, p. 105]. 

Proof. Quillen1 s idempotent is characterised by the fact that it is a ring homo­

morphism \i 

composite 

1 2 °° morphism which sends x e MUZ[—] (CP ) to mog x. Hence it is equal to the 

-. n $ ° q(d) o $ 
MUZ[-^]n(X) c MUZ[^]*(X) — y—> MUZ[-j]*(X). 

§6. THE COMPLEXIFICATION HOMOMORPHISM 

The complexification homomorphism MSp*(_) -*• MU*(__) is well-known. By 

analogy it is reasonable to demand a natural ring homomorphism from ASp°(X) to 

AU°(X) and to expect that it should be induced by the natural H-map c : BSp -> BU. 
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Unfortunately the obvious map {Z nX,BSp} -* {Z nX,BU}, induced by c, is not com­
patible with the limits whereby ASp°(X) and AU°(X) are formed. However a homo-
morphism of approximately the right type is available. 

Unfortunately the H-map h : BU -»• BSp given by symplectification does not 
induce a homomorphism AU*(_) •* ASp*(_). This is because AU is constructed 
using a generator of TT (BU) while ASp uses a generator of TT,(BSp) which cannot 
be expressed in terms of the image of TT (BU) since Tr9(BSp) = 0. Therefore h 
induces only the trivial map from the AU-spectrum to the ASp-spectrum. This 
remark will become clearer when the reader has seen below the sort of compati­
bility conditions that c : BSp -> BU satisfies, which make for an interesting 
homomorphism from ASp*(_) to AU* (___). 

6.1: Theorem. The complexification H-map c : BSp -*- BU induces a natural ring 
homomorphism 

c : ASp° (X) -> AU° (X) [ (1 - o^)" 1] . 
2 

Here a11 e AU°(S°) satisfies $ (a J = a where a e MU (S°) is the coeffi­
cient of x- ® x„ in the formal group law for MU-theory in the notation of 
[Ad. 1, p. 40]. 

6.2: Remark. The proof of Theorem 6.1 is straightforward and will be given in 
section 6.5. One proceeds to analyse how the maps induced by c : BSp -> BU fail 
to be compatible. Doing this one finds in the diagram 

{E4kX,BSp} -^-» {Z4k+4X,BSp} 

C# C# 

{E4kX,BU} > {E4k+4X,BU} 
e ° e 

that one route is (1 - a ) times the other. Hence (1 - a ) c„, for suitable 
j, will be compatible. 

The localisation is not a serious restriction. For if we were mapping not 
2* °° 2k 

into AU°(X) % MU (X) but into II MU (X) the element (1 - a ) would be a 
k=—°° unit already. 

g 
6.3: Some Elements in T T ^ B U ) . Here I will use the notation of [Part I, sec-

g 
tion 6]. By suspension the Bott map B e TT9 (BU) yields x e TT 9(BU). The direct 

S 2 S 
sum on BU induces a product in TT^(BU) for which x e TT, (BU) will denote the 
square of x. Also the tensor product on BU induces a product on TT&(BU) for 
which the square of x is written x*x e TT.(BU). In [Part I, Section 6] I 

% ( B U ) s showed , ., : r- ^ Z # Z but the method in fact shows that TT. (BU) ^ Z 0 Z (odd torsion) — 4 — 
2 generated by x and x*x. The Hurewicz map 
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h : TK(BU) + H (BU) 

2 2 
satisfies h(x ) = 3 , h(x*x) = 23 [Part I, section 6]. a e TT„(MU) is re-
presentable by an S-map a : S -> MU(1) . Using the S-equivalence between BU 

and v MU(k) [Part I] & may be considered as an element of TT, (BU) . This ele-
l<k 1L * 

ment is x * x. 

6.4: Lemma. The generator Bf e TT (BSp) , suitably chosen, satisfies 

c#(B') = x2 - x*x € TT^(BU). 

s 
Proof. Using the injectivity of the Hurewicz homomorphism on TT . (BU) as de­

scribed in Section 6.3 it suffices to show that the Hurewicz image of c,,(BT) is 
2 " 

^1 ~ 2^2 € H A ( B U ) - This follows from the computations of [Ad 1, pp. 93-98] 
since x^ hits $ and x*x hits 2$ . 
6.5: Proof of Theorem 6.1. Let A,.. = AU/XT and 6 = e ° e : E A/>T -> A, ,. This -— 4N 4N 4N 4n+4 
spectrum will suffice to define AU-theory (cf. section 3). Assigning to 

g e {Z4kX 

morphism 

g e {E X,ASp } the composition (E c) o g e {E X,A, } defines an additive homo-

4k 4k 
<()k : {E X,ASp4k> -* J_im {Z ^K.9k } = AU°(X) . 

k 

The element g above represents the same element in ASp°(X) as the composite 

(6-6) 

Z4(S4 x BSp) — » Z4BSp = ASp . 
Z 4(B'»l B S p) 

Now let us compute <J> (gf). By Lemma 6.4 and the fact that c is an H-map we 

have a commutative diagram of S-maps. 

E V x BSp) l V * W • Asp 
E4(l , x c) E4c I (6.7) 

S 

4 4 4 
E (SH x BU) — 5 > E BU 

^ ( ( x - x * x ) i y 
2 

Notice the x in (6.7) is equal to the S-map 

s2 A S 2 + S2 x S 2 J L < y L B U ) 

a composition in which the first map is a Hopf map (cf. section 2.3). 

Combining (6.6) and (6.7) we see that <f>, .-.(g1) is represented by a compo­

site of the form 
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4 4 4k+4v E (Ecog) 4,4 , 4 Z X ^ ^ * E (S A BU) ̂  E V — 4k 

2 4 
This is clearly the product of <k(g) with the class of x - x * x € {S ,AU, } 
inAU°(S°). The element x represents 1 € AU°(S°). The map x * x is repre­
sented by an S-map x * x e TT,(BU(1)) C {S ,AU,}. Hence $ (x * x) = c (x * x) 
e MU (S ) ̂  TT^CMU). From its Hurewicz image, 2b.. € H (MU) , it is clear from 
section 6.3 that <j> (x * x) = a . Thus (j),+1(gf) = (1 - a-, -,) (j>, (g) and the homo-
morphisms (k > 0) 

-k 4k+4 -1 
Tk+1 = (1~all) \+l : {Z X'ASp4k+4} "* AU°(X)[(l-au) ] 

are compatible. They induce an additive homomorphism 

c:ASp°(X) + AU°(X)[(l-a11)"1]. 
4M+4 4 4N+4 

Next we show that c is multiplicative. Let f € {E X,E BSp} and g e {E Y, 
4 —N —M— X 
E BSp}. Then c(fg) is represented by (l-cu-,) times a composite of the 
form 

4 E BSp A E BSp 

;Vsp x S* x BSp) ^ V ' W , zSs P 

4 
E B U ~ A4N+4M+8 

From (6.7) it is easy to see that this composition is nomotopic to (1 - a-,-. ) 
times the product of . 

4M+4 7 c of 4 E X - ^ — ^ E BU = A 

with 
4M+4 

4N+4 E4c o g 4 = 
E Y Z *U A4N+4 

Hence <f>M+1(f ) <J>N+1(g) = (1 " anH M + N + 2( f§> and c<f§) = c(f)c(g). 

§7. LANDWEBER-NOVIKOV OPERATIONS AND THE THOM ISOMORPHISM 
In this section the Landweber-Novikov operations [Ad 1, p. 12; La] will be 

described in terms of AU-theory. All the results of this section have symplec­
tic analogues. The statement and method of proof of the symplectic results 
will be left to the reader. In AU-theory it is most natural to construct the 
total Landweber-Novikov operation, S. This operation will be the subject of 
Theorem 7.1. The Thorn isomorphism in AU-theory, which appears in the statement 
of Theorem 7.1, is proved in Proposition 7.2. In Remark 7.4 a brief sketch is 
given of the manner in which S may be decomposed into the sum of classical 
Landweber-Novikov operations. 
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Throughout this section all spaces will be finite dimensional. 

7.1: Theorem. For each finitely non-zero sequence a = (a ,a ,...) of positive 
2 01 

integers let c e MU ' '(BU) denote the a-th Conner-Floyd class [Ad 1, p. 9]. 
Here |a| = Ea . . 

i 
Then 

C = Ec : KU°(X) -> MU2*(X) ^ AU° (X) , 

a 

the "super-total Conner-Floyd class", induces a natural, stable ring homomor-

phism 

S : AU* (X) -> AU* (X) 

satisfying the following properties. 
N (i) If w € AU°(CP ) is the canonical element described in section 4.8 

S(w) = E w 1 € AU°(CPN) (N > 0). 
i>l 

(ii) Suppose that E is a complex vector bundle of dimension n over X and 

consider the following diagram. 

AU°(Th(E)) -^->AU°(Th(E)) 

X f 2L \ ] ^L 

AU°(X) AU°(X) 

Then X_1(S(X(1))) = C(E). 

Here Th(E) is the Thorn space of E and X is the Thorn isomorphism (Proposi­

tion 7.2) . 

7.2: Proposition. (See also Part II, Section 8.) Let ir : E -> X be a complex 

vector bundle of dimension n. Let X be compact. 

There is a Thorn class, A_ e AU°(Th(E)), such that X„.„f = A_A_f and 
ti Lnrri L t, 
X : AU°(X) -> AU°(Th(E)) 

given by X(x) = TT*(X)X is an isomorphism. 

Furthermore if n = 1 and 3_ : Th(E) -> BU is the K-theory Thorn class of E 
2 2 then X^ is represented by Z L e [E Th(E),AU0], 

Proof. We know that MU-theory has a Thorn class. This (up to multiplication 

by a unit) will serve as an AU-theory Thorn class. The universal Thorn class for 

MU(n) is represented by the S-map inclusion of 

E2MU(n) c E2BU = AU 

given by [Part I, Theorem 4.2]. When n = 1 the method of [Part I, section 2], 

for evaluating restrictions of the transfer, show that the inclusion of 

BU(1) ^i MU(1) is the canonical map. 
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In fact, of course, we could show directly that 3„ gives a Thorn class for 

line bundles as follows. 

By a Mayer-Vietoris argument it suffices to consider the class E = X x (C. 

In this case 3^ is the Bott class B, or rather the composition 

Th(X x (C) = X + A S2 •> S2 -5-> BU. 

2k Hence if f e {E X,BU} represents F e AU°(X) then ir*(f)X is represented by 

e#(f) e {E2k+2X,BU} = {E2k(Th(X x (C)),BU} 

2 
where e : E AU?, -*• AU«, ,„ is the AU-spectrum map. This clearly gives an isomor­
phism. 
7.3: Proof of Theorem 7.1. The super-total Conner-Floyd class is exponential 

[Ad 1, p. 9] and C(w) = E w . Therefore we may apply Proposition 5.3 to ob-
i>0 

tain C and set S = C. 

To prove (i) recall that w is represented by wT = E (y - 1) : E CP -* E BU 

= AU . Hence $ (S(w)) corresponds to (w')*(a 0 C) e MU2*(E2CPN) where 
2 2 U 

a € MU (S ) is the suspension class. Therefore by [Ad 1, p. 9] $ (S(w)) 

E $ (w) . Hence S(w) = E w . 
i>l U i>l 

Part (ii) follows from part (i) by the splitting principle which implies 
00 

that it is sufficient to consider the Hopf line bundle, y, over CP . However 
00 

in this case the Thorn class is w e AU°(MU(1)). Here we have identified CP 

and MU(1). The Thorn isomorphism is multiplication by w. Therefore 

X"1(S(A(1))) = (w"1) E w 1 

i>l 

= E w 
i>0 

= C(y). 

7.4: Remark. The operation S may be decomposed into the sum of additive oper­

ations. Observe that for a = (a-,a«,...) we may define 

by 
t : {E2kX,BU} -> MU2*(X) 

t (f) = f*(c ) € MU2'al(E2kX) ^MU 2' a' 2k(X) a a — 

in such a way that the following diagram commutes 

{E2kX,BU} - i - {E2k+2X,BU} 

<\ A 
MU2lal"2k(X) 

Here 3 = a + (1,0,0,0,...). It is not difficult to construct the operations 
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(S ) of [Ad 1, p. 12] from diagrams like (7.5) and Theorem 7.1. This task will 

be left to the reader. 

§8. STABLY ALMOST COMPLEX MANIFOLDS 

In this section the classical association 

j bordism classes of stably I J homotopy of the 

\ almost complex manifolds J \ MU-spectrum 

will be described in terms of AU-theory. For details of unitary bordism and 

cobordism see [St 1, p. 41], 

This association can be made in two ways. The first is the classical geo­

metrical construction of Pontrjagin-Thom and the second uses the cohomological 

products and the existence of AU-theory Thorn classes. Both will be given below 

and their equivalence established. 

The second construction leads to a general cohomological homomorphism which 

is potentially useful in algebraic geometry to study embeddings which have nor­

mal bundles but do not embed algebraically in Euclidean space. 

Recall [St 1, Chapter II] that if M is a closed stably almost complex 

manifold then, to a suitable embedding i : M c ]R , there is associated a 

Pontrjagin-Thom map 

P(i) : S 2 n + 2 k -> Th(v) . (8.1) 

In (8.1) v is the normal bundle of i and Th(v) is its Thorn space. Incidentally, 

by Ativan's Duality Theorem [St 1, p. 37] P(i) is S-dual to 

M u (point) = M + -> S° = {±1}, 

the map which sends M to (-1) and the disjoint point to (+1). 

8.2: Definition. Define A e AU°(MU(n)) to be the element represented by the 

S-map 

MU(n) c BU 

given by the stable splitting of [Part I, Theorem 4.2(i)]. 

The normal bundle v (mentioned above) is classified by M -> BU(k) whose 

"Thomification" is a map 

a(v) : Th(v) •> MU(k) . 

Using the above notation the first result of this section is as follows:-

8.3: Theorem. Let M be a closed stably almost complex manifold. The asso­

ciation 
{_} :M 2 n -> {M2n} = P(i)*a(v)*Ak e AU°(S2n+2k) ^AU°(S°) 

defines a bijection 

Proof. It suffices to check that our association, { }, corresponds with that 

{unitary bordism classes} «—* 7rn(AU), 
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given by the Pontrjagin-Thom theorem for unitary bordism [St 1, Chapter II] 

when we identify AU°(S°) with 6ftr (MU) by means of Theorem 2.1. 
g 

The isomorphism 

$ :AU°(S°) = lim {S2N,BU> -^-» MU2*(S°) 
U N 

is given by taking the induced map in MU-theory of a representative S-map, 
2N S •> BU, and pulling back the total Conner-Floyd class, E c0. Therefore we 

1<1 must show for the S-map, 

A : MU(n) c BU n 
2* 

that A*( E c.) e MU (MU(n)) is equal to the canonical Thorn class which lies in 

MU (MU(n)). To do this it suffices to compute A* or equivalently 

(An)^ : MU^(MU(n)) -> MU^(BU) . 

However MU9J5.(BU) is a polynomial ring over TT (MU) . For details see [Ad 1, 

Part II]. The calculations are entirely analogous to those in integral homo­

logy (cf. Part II, §2). In particular there is a natural (algebraic) identifi­

cation of MU (MU(n)) with a TT (MU)-submodule of MU ^(BU). By the MU^-homology 

calculation of [Part II, §2.8] we see that (A ). is equal to the natural alge-
n * 

braic identification mentioned above. However the dual of the natural identifi­

cation is well-known (by definition—see [Ad 1, Part III]) to send E c to the 
2n 1*^ 

required Thorn class in MU (MU(n)). 
8.4: Remark. In Part III we will introduce AO-theory. It is to M0*(__) as 

2* 
AU-theory is to MU (_). It is straight-forward to describe unoriented bordism 
classes of manifolds in terms of AO-theory in a manner similar to that of §8.3. 

One uses Thorn1 s identification of MO* (_) [Th] together with the results of [Part 

III, §§2-3], Details will be left to the interested reader. 

8.5: The Xf Homomorphism of an Embedding, f : X -> Y. The following construc­

tion will apply to a homology theory with a Thorn isomorphism for complex vec­

tor bundles. 

Let f : X •> Y by a smooth embedding of stably almost complex mani­

folds having a stably complex normal bundle, v(f). If T and T are the tan-
X i 

gent bundles there is an exact sequence of vector bundles over X 

0 •> x -> f*T + v(f) -> 0. 
X i 

There is a Thorn class 

A(v(f)) c AU°(Th(v(f)) 

constructed by pulling back A e AtT°(MU(k)) by the "Thomif ication", Th(v(f)) 

-> MU(k), of the classifying map of v(f). We may form the homomorphism 

[A(v(f))\J : AU0(Th(v(f))) + AU0(X) (8.5.1) 
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which is called the AU-theory homology Thorn homomorphism. Here AU0 is the 

zero-th homology group associated to the AU-spectrum. If 

A : Th(v(f)) + Th(v(f)) A X 

is defined by A(°°) = (base point) and A (e) = eA x for when e belongs to the 

fibre of v(f) over x e X then 

[A(v(f))\a] = A(v(f))\A^(a) e AU0(X) 

where (__\_) is the slant product described in [Ad 1, Part III]. 

8.5.2: Lemma. The Thorn homomorphism of (8.5.1) is an isomorphism. 

Proof. This is a famous isomorphism for MU9j5.-theory and the classical Thorn 

class. However when AU0( ) is identified with MU0. ( ) Theorem 8.3 tells us 
— z* — 

that (up to multiplication by a unit in IT ̂  (MU)) the Thorn class A(v(f)) agrees 

with the classical one. 

8.5.3: Definition. There is a also a Kronecker product homomorphism 

AU0(Th(v(f))) -* TT0(AU) defined by sending x to <A(v(f)),x> = A(v (f) )\x e TT0 (AU) 

[Ad 1, Part III]. 

Combining this homomorphism with the inverse of (8.5.1) we obtain a homo­

morphism 

X : AUo(X) + TT 0(AU). (8.5.4) 

8.6: The Relation Between Xf and the Pontrjagin-Thom Construction. Suppose 
n+k in §8.5 that Y = IE then the bundle exact sequence becomes 

n+k 
0 + T + X x (Eu + v(f) -> 0. 

X 
Each of these bundles has an AU-theory Thorn class and a Thorn isomorphism. They 

are related by the following commutative diagram 

~ ~-> n+k 
AU0(Th(xx) A Th(v(f))) ^AU0(Th(X x (Cn R) 

(A(xx)\_) a 

AU0(Th(v(f))) [A(v(f))\ ] ' Auo(X) 

in which a is the suspension isomorphism. There is a fundamental class 

[X] € AUo(X) such that 

A(Tx)\a_1[X] = P(f) e Su0(Th(v(f)) (8.6.1) 

where P(f) is the image of the Pontrjagin-Thom map of (8.1) under the Boardman-

Hurewicz homomorphism. Formula (8.6.1) follows from the discussion of duality 

given in [Ad 1, p. 246, et seq.] and AtiyahTs Duality Theorem which tells us 

that an S-duality 

y : s2n+2k _̂  T h ( v ( f ) ) A x 
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is given by u(v) = P(f)(v) A TT(V) where IT : v(f) •> X is the projection of the 

normal bundle. Thus (8.6.1) gives the following formula for {X } of Theorem 

8.3. 

{X2n} = P(f)*a(v(f))*A , by definition 

= <A(v(f)), P(f)> 

= <A(v(f))f [A(v(f))\_]"1[M]> . 

8.6.2: Corollary. With the notation of §§8.3-8.6 above 

{X2n} = Xf[M] € TT 0(AU). 

§9. A NEW IDENTITY FOR BU 

§9.1. In this section a new construction of BU will be given. It is an appli­

cation of the previous results of Part II. Also there are applications to the 
00 

stable homotopy of CP (Theorem 9.1.2). 

I have written this section in terms of spaces (infinite loopspaces) 

rather than spectra in order to emphasis the familiar space, BU, rather than 

the more metaphysical spectrum, BU. 

Z x BU is the classifying space for unitary K-theory. It is an infinite 

loopspace (henceforth "infinite loop-" will be abbreviated to "ft -") because of 

Bott periodicity, which exhibits a homotopy equivalence. 

Z x BU % ft2(Z x BU) 

2 
where ft Y is the second loopspace of Y. A homotopy equivalence of the Bott 

00 

periodicity type is a rather primitive manner in which to express an ft -struc­

ture, but it is all the more tractible for that reason. 
00 

To an ft -space is associated a spectrum and vice versa. The Bott spectrum 

for unitary K-theory takes the form 
BU = Z x BU (k > 0) 

2 2 

with structure maps e?, : Z BU -> BU induced by the map S x (Z x BU) -> Z 

x BU which classifies the tensor product of the reduced Hopf bundle on S with 

the universal bundle of virtual dimension zero on Z x BU. 

For background material on ft -spaces and spectra the reader is referred 

to [Ma 1; Ma 2] and [Ad 1] respectively. In particular [Ma 2, Ch. VIII, §2] 

and [Ad 1, p. 134] deal with K-theory. 

Now we introduce another spectrum with evident Bott periodicity. It is 

constructed in a similar manner to AU of §3. 

Let X be an H-space and let x e TT (X) . Form 
x + 1 : S 2 x x •* X X 

the "sum" of x with the identity of X. The Hopf construction applied to this 
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map and suspended once gives a map 

e : E4X -> Z2X . 

There is an associated spectrum, _X(x) , given by 

X(x) 2 k = E2X (k > 1) 

2 °° 
and s t r u c t u r e maps e : £ X.(x) "*" 2^(x) oi,+o • Dei^te by P(X) the assoc ia ted ft -space, 

which i s defined by 

P(X) = liiq. lim ^22n+2kE2kX 
n k 

2 where the limit is taken over composition with e. Manifestly ft P(X) = P(X) 
00 

thereby giving an ft -structure to P(X). 

In this section I will prove the following result, which is proved in 

§9.2. 
00 

9.1.1: Theorem. There is an equivalence of ft -spaces 
P((CP°°) - ^ Z x BU. 

OO 00 

Here (CP = K(Z,2) and x generates TT ((CP ). 

Now let x._ : IT . (CP ) -> TT 9 ((CP ) be the homomorphism of stable homotopy 
~* ^ CO 

groups induced by "adding" x e TT9((CP ) by means of the H-space sum. Since 

TT P«CP°°)) = lim TT'L2k(«CP°°) , 
J k J 

where the limit is taken over (x._), we also have the following result which is 

proved in §9.2. 

9.1.2: Theorem. If y e TT ((CP ) is a torsion element then 

0 = x^ £ W^ 
for some k. 

Now observe that Theorem 9.1.1 is related to Brauer lifting [Q2; To]. 

Theorem 9.1.1 expressed BGL(C(^BU) as a functor of B(C*(MCP ) where A* denotes 

the units in a ring A. Let p and q be distinct primes and let (_)* denote 

p-completion [B-K]. Then, from [Q2], we have 

BIT ^ (BGL¥q)A (9.1.3) 
_ P - P + 

where IF is the algebraic closure of IF and (_) denotes Quillenfs "plus" 
construction [Wa]. Also 

((CP°°)p 2L (B^*)p ' 

Combining these facts with the p-complete version of Theorem 9.1.2 yields 
00 

an ft -equivalence of the following form 

P0((B¥*r) <\,(3GL1FV (9.1.4) 
q P - q p 

(where PQ(X) denotes the base-point component of P(X)). In (9.1.4) the left-
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80 VICTOR P. SNAITH 

hand space is formed using the element of TT ((B1F*)") ^_ Z* which is the image 
CO CO ^ ^ ^ 

of x e 7T9((EP ). In terms of (9.1.4) the ft -equivalence of (9.1.3) may be in­

duced from any embedding IF* c (C*. 

Thus theorem 9.1.1 gives a particularly simple viewpoint on the Brauer 
CO 

lifting map of (9.1.3) and of its ft -space properties, which were first studied 
CO 

in [To] where it is shown that the Brauer lifting is an ft -map. My methods, as 

given here, do not give independent proofs of the results of [To]. This could, 
00 

however, be readily accomplished with the aid of more ft -technology. 

More importantly, I believe, the equivalence of (9.1.4) suggests one might 

attempt to study the algebraic K-theory of a commutative ring, A, by construct­

ing maps 

BGLA+ -> P(BA*;y) 

where P(BA*;y) is constructed in a manner analogous to P(X) with BA* replacing 

X and y e TT- (BA*) replacing x e TT (X) . However one's expectation of success 

should not be too high as thefollowing example shows! 
9.1.5: Proposition. If 0 + n e TT (BZ/2) then P(BZ/2;n) is contractible. 

Proof. Write P for P(BZ/2;n). Then P y_ ftP so it suffices to show TT (P) = 0. 

However IT (P) is the direct limit of 

• • • -* 7TS(3RP0°) = Z-> 7TS
|n (mP°°) ^ T T ^ d R P " ' ) "> - • 

n n+1 n+z 
3 S °° which is zero because 0 = n e Tr~(lRP ) [Li] . 

Finally I would like to express my gratitude to Dan S. Kahn, who showed 
CO 

enough interest to ask me what P(iCP ) really was. Theorem 9.1.1 solves his 

problem presented to the problem session of the A.M. Soc. Summer Institute at 

Stanford in 1976. 
§9.2. Theorems 9.1.1 and 9.1.2 will be proved by means of unitary cobordism, 

2* 2* 
MU [Ad 1, Part II]. The following description of MU is a rephrasing of 
Theorem 2.1 of Part II. 

9.2.1: Proposition. As in §9.1 construct P(BU ) where x e TT (BU ) is a gen-

erator and BU is BU together with the H-space structure induced from Whitney 

sum of vector bundles. 

Then if Y is a finite dimensional CW complex there is a natural isomor­

phism (of rings in fact) . 

0 : [Y, P(BUe)] -Z1>MU2*(Y) 

S °° 9.2.2: Proof of Theorem 9.1.2. Let y e TT . ((DP ) be a torsion element. Let 
A j» ? (ft (ft 

e' : Z BU •> E BU be the structure map of the spectrum associated with P(BU ) 
A oo 9 °° °° ©• °° 

(cf. §9.1). Let e : I (CP -> E (CP be associated with P(CP ) . If det : BU -> CP 
is the H-map induced by the determinant then 
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e o E4(det) ̂  Z2(det) o e' 
This is because the diagram 

s2 x BU» J l ! W L BU« 

1 x d e t d e t 

2 °° « 
S x (CP — » (DP 

X + V ° 
is homotopy commutative. However there is a canonical map i : CP -> BU such 
that 1 2L (det) o i. Sine 
an integer, k, such that 

2* i that 1 2L (det) ° *• Since MU (SJ) is torsion free [Ad 1, Part II] there exists 

0 = (e')k(i#(y)) € irj+2k(BU*) 

Hence 0 = (det)#(e^) i#(y) 

= (e#) (det#i#(y) 

= (e#)k(y) 

- X ^ € ^ k ^ ' 
00 

9.2.2. Now we construct an £2 -map 

P((CP°°) ̂  Z x BU. 

To do this it suffies to define a stable natural transformation 

F : lim {l2n_,<EP°°} -> KU° (_) (9.2.3) 
n 

4 oo 2 °° where the limit is taken over composition with e : Z (DP •> Z (CP of §9.1. Here 
"stable" means that F commutes with the periodicity isomorphisms induced by 
ft P(EP°°) ̂  P((CP°°) and Q, (Z x BU) ̂  Z x BU. Also {_,_} denotes stable homotopy 
classes of maps [Ad 1, Part III] and the functors of (9.2.3) are defined on the 
pointed CW category. 

Let x £ KU^EP00) ̂  Z[[x]] be the class of the reduced Hopf bundle. Let 
y € limr {I X,(CP } be represented by 

g : £2n+2kX - Z 2V°. 
2 k 2k oo 

Let 3 e KU°(S ) be the Bott class. Then 3 x e KU°(E CP ) and we may define 

F(y) = g*(Skx) e KU°(E2n+2kX) ^ KU°(X) 

where the last isomorphism (Bott periodicity) is the inverse of multiplication 
n+k by 3 . Suppose we choose a different representative for y of the form 

z2n+2k+2£x ZU
Bt z 2 k + 2 i ^ _ e ^ ,2k+2*-2mCp~ 

Then F(y) will be given by 
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82 VICTOR P . SNAITH 

3-n-k-l ^ ^ ^ m ^ + k - m ^ 

2 oo oo 
However x + 1 °° : S x (DP -> CP induces (CP 

oo 9 oo 

KU°((CP ) -> KU°(S x (CP ) 

sending x t o $ ® l + l ® x + $ ® x s o that e*(x) = $x. Hence the second repre­

sentative of F(y) becomes 

(I g)*3 (e*) (x) -n-1 A( Z
2 Ag)* ( 3

A(3 k
x)) 

~n~k~V(g*(3kx)) 
= 6 n V(3kx) 

so that F(y) is well-defined. Similarly the periodicity diagram commutes. 

lim {£2nX,{CP°°} >KU°(X) 

(3o_) 

l im {Z2na2X)^?°°} - ^ K U ° ( E 2 X ) 

(9.2.4) 

In (9.2.4) the left-hand isomorphism is the obvious (i.e., tautological) one. 

Now let P(BU ) be as in Proposition 9.2.1. We may define an fi -map 

P(BU ) -> Z x BU in a similar manner. Let y1 e KU° (BU ) be the i-th y-operation 

[Ad 5] and set 

det = I y1 e KU°(BU^) ̂  Zfty 1^ 2,...]]. 

Define 
i>0 

G : l i i i ^ {Z 2 n _ ,BU e } + KU°(_) 
n 

(9.2.5) 

, 2 ^ 

that det is represented by the composite 

by sending the class of g : 2 n+ X -> E^BU" to 3 " "g*(3"det) e KU°(X). Notice -n-k 

B ue B det, c p~ _ j ^ z x B U 

where x e KU° ((DP ) is the reduced Hopf bundle and B det is induced by the 

determinant det : U(n) -> U(l) = S . Therefore we immediately obtain the follow­

ing result. 

9.2.6: Lemma. The diagram 

lim {Z2nX,BU*}. 

(B det) KU° (X) 

lim {Z2nX,(CP }' 

commutes. 
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9.2.7: Proposition. Suppose that X is a finite dimensional CW complex. Then 

there is a commutative diagram 

Urn {Z2nX,BUe} 2L [X,P(BUe)] -=^MU2*(X) 
n ^ 

KU°(X) 

in which H is the Conner-Floyd homomorphism [C-F] and 0 is the isomorphism of 

Proposition 9.2.1. 

Proof. Recall [Ad 1, Part I] that KU0(BU) = Z[b ,b ...] and KU°(BU) 

= Z [ [y ,Y ,...]] where the y are characterised by 

( 1 if z = b:? 
<z,yJ> = X 

[ 0 if z is any other monomial . 

The isomorphism, 0 , is induced by S-maps [Part II, §2] 

h : MU(n) -> BU(n) -> BU n 

using the fact that MU2n(X) ^ {E2tX,MU(n+t) } if dim X < 4n + 2t. The {b } 
- n 

have the following property. Let IT : BU(n) -> BU(n)/BU(n - 1) ̂  MU(n) be the 
canonical map. Then 

(h o TT ) (b. ... b. ) = b. ... b. n n * i1 l i- I 1 n 1 n 

where KU0(BU(n)) is considered to be the subgroup of KU0(BU) generated by mono­

mials of weight <n. Now let E -> BU(n) be the universal n-plane bundle and let 

A e KU°(MU(n)) be its Thorn class. The restriction of A to BU(n) is n n 

/(A ) = Z(-1)V(E ) = yn(E -n) e KU°(BU(n)) n n n n — 

where A is the i-th exterior power and ri is the trivial n-plane. Notice that 

7r* : KU°(MU(n)) + KU°(BU(n)) is infective. 

By the above discussion we have 

<b. ...b. , (h o 77 )*( Z y1)> = <(h o TV ) (b. ...b. ), Z yX> i- l n n .. n n n * i- l .. n 1 n i>0 1 n i>0 

= <b . . . b , I yX> 
1 n i>0 

1 if b. = b. = ••• = b. = bn 
IT 1 0 1 1 1 2 n 

0 otherwise 

= <b. . . . b. , £ A.> . 
1^ 1 . 1 
1 n i 

However the Conner-Floyd map is obtained by pulling back the class 

Z A. e 9- KU°(MU(i)) so that Ho0 is equal to the homomorphism obtained by pulling 
i i 
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i ® i 
back the class £ y e KU°(BU ) . However [Ad 5] £ y is equal to the class 

i i>0 
det e KU°(BU ) of §9.2.5 by means of which G was defined. 
9.2.8: Proof of Theorem 9.1.1. We must show that 

F : TT . (P ((CP00) ) ̂ liin{S2n+:i
stPM} ->KU°(Sj) 

J n 
is an isomorphism. Bv a result of J. H. C. Whitehead this will ensure that the 

00 

base-point components of P((CP ) and Z x BU are homotopy equivalent. Since F 
induces an tt -map P((EP ) -> Z x BU and since both spaces have "Bott periodicity" 
it follows that the map is a homotopy equivalence. 

By the Conner-Floyd theorem [C-F] and §§9.2.6, 9.2.7 we know that F is 
onto because H is onto in §9.2.7. By Theorem 9.1.2 we know that TT . (P ((CP )) is 
torsion free. Thus we are finished if 

1 j even, rank(TT.(P(.(CP ))) = 
2 I 0 J odd 

9 £ 00 OO since TT . (BU) = Z or 0. However IT., 0 ^0„ (E (CP ) 8 (Q ̂  H., 0 ((CP ;Qj) from which 2 j+zn+z£ — j+zn 
it is easily seen that 

n v 

since e^ :H.(Z IP ;$) -> Hj;4_9((CP ;$) is an isomorphism. 

9.2.9: Remarks. (a) An alternative method to determine TT.(P({CP )) ® Q in 
§9.2.8 is the following. Write P ((CP°°) = lim^^QEP where QX = lim^ k£ kX. The 

n k * 
Barratt-Priddy-Quillen theorem provides models for QX [Ba; B-E; Ma 1]. These 

00 00 00 

show that Q(CP is rationally equivalent to SP (CP , the infinite symmetric pro-
00 _ ., OO 00 

duct of (CP . By ID-TJ SP (CP is rationally equivalent to n K((Q,2m) from 

which it is easy to show the rational type of P0(^P ) is the same as that of BU, 
namely £ K(.Q,2m) . 

m>l 

(b) Consider the computative diagram 

KU°(X) > {X,(CP°°} > lim. {E2NX,JCP°°} 

F 

[X,BU] • [X,Q(CP~] — • KU°(X) 
Tu Au 

in which X ° T = 1 by Part I, §3.2. This shows F, G and the Conner-Floyd map 
H (see §9.2.7) are all split epimorphisms. This easily implies the Conner-
Floyd theorem as mentioned in §5.4.2. 
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PART III: UNORIENTED COBORDISM, ALGEBRAIC COBORDISM AND THE X(b)-SPECTRUM 

§ 0. INTRODUCTION 

Part III consists of various generalisations of and elaborations upon the 

material of Parts I and II. In Part II, I constructed spectra, AU and ASp 

from the H-spaces BU and BSp respectively together with some of their homotopy 

groups. This process is easy to generalise to the following result. (The 

reference numbers refer to those used in the body of the text in Part III.) 

Theorem 1.1. Let X be a homotopy commutative, homotopy associative H-space. 

Suppose b € ^ O O is a stable homotopy element. 

Then to this data there is associated a (periodic) commutative ring spec­

trum, X(T), which is described below in section 1.2. 

AU and ASp are respectively of the form BU(B) and BSp(Bf) (see Example 

1.4.1). 

If X = BGLR , Quillets space associated with an arbitrary ring, R, we 

obtain from Theorem 1.1 the algebraic cobordism of R associated with 

b e TT^(BGLR) . The rest of §1 consists of some elementary remarks and computa­

tions. Of most interest perhaps are §§1.9, 1.10, and 1.13. The first tells 

us that many algebraic cobordism spectra associated with a finite field are 

trivial. The other two will enable us to compute p-adic algebraic cobordism 

of projective schemes in Part IV. 

In Parts I and II we studied TT^BU) and MU-theory. We do the same for 

MO-theory. 

From the calculations of [Th] we have: 

Theorem 2.1. There is a (4k-2)-equivalence between Rn/o^._o\ an<^ a product of 

K(Z/2,n)?s. 

As a corollary of Theorem 2.1 and [Part I, Theorem 4.2] we obtain the 

following result. 

S S 
Theorem 2.2. There are decompositions ir.(B0(2k)) = TT . (BO(2k-2)) $ B. (k) for 
all j,k. If j < 4k - 2 then B.(k) contains the direct sum of 3.(k) copies of 

Z/2. (B.(k) is defined in section 2.2.) 
J 

Take X = BO and T = {generator of TT..(B0)} in Theorem 1.1 gives a cohomology 

theory, AO*, which is periodic of period one. In Corollary 1.6 this is shown 

to be a Z/2-module. The following result shows that this module structure is 

hardly surprising. 

85 
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Theorem 3.1. There is a natural ring homomorphism 

<£> : AO°(W) + MO*(W) 

which is an isomorphism when dim W < °°. In Theorems 4.1 and 4.2 results for 

BOIF„ are proved which are analogous to Theorems 2.1 and 2.2. The importance 
J + 

of these results lies in the fact that BOIF^ is 2-locally the image of J (see 
S the problems at end of Part IV for the connection with TT (S°)). 

In §5 we consider the algebraic cobordism of Z, AZ*, and prove: 

Theorem 5.1.1. There is a homomorphism 

T : AZ°(X) -* MO*(X) 

which is onto if dim X < °° but not generally injective. 

§1. THE SPECTRUM X(b) 

It is high time that I gave the general construction which has been the 

motivation for all this work. This construction will generalise Part II, §3. 

It will be the topic of §§1.1-1.3. Having defined the spectrum, X(b), I will 

give several examples in §1.4. The rest of the section contains a series of 

results related to the examples. For instance in §1.9 it is shown that many of 

the algebraic cobordism theories associated with a finite field are trivial. In 

§1.10-1.12 we give three basic computational results which will be needed in 

Part IV. 

1.1: Theorem. Let X be a homotopy associative, homotopy commutative H-space. 

Suppose that b e ^ (X). Then to this data there is associated a (periodic) 

commutative ring spectrum, X(b), which is described in §1.2 below. 

1.2: Construction of X(b). Let be ^(X) be the given stable homotopy element. 

Find the smallest t > 0 such that b may be realised as a map 

b : S
( t + 1 > N + ZtNX . 

N Then £ b will be the unit of X(b) . Set M = (l+t)N. Now for the spectrum. 

Put X ( b )kN = ^ for k > 1 

and define structure maps 

£:I NX(b ) k N + X ( b ) ( k + 1 ) N 

by means of the composition 
N 

IN(A) -*U £N(SMxX) ' ^ ^ A r t x X ) 

T. (S x x x x ) 
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N M-N Here H is a Hopf construction, HT is the composition of E (I X x X) -*-
N M-N E (E X A X) with a Hopf construction, m is induced by the H-space product and 

n is the canonical quotient map. 
N The data (e : E X(b) -* X(b) . . ; k > 1) defines a spectrum in the sense 

of [Ad 1, Part III]. The product is induced by a pairing 

X ( b )kN A X(b)»T X(bW)N 
given by the compositions of the following form. 

A A A = LM-VN(XASMAX)) 

M-N 
M-N N M E ^ 1 x e b e i X ^ M-N N M-N l^ 1 E W ( X X S xx)) £ *_* EN W ( Z

W ( E M W
X)) 

E N(E N(...(E N(E MX)...)-^E MX . 

Here the first map is a Hopf construction, the second is induced by the "pro-
M M-N duct" of b : S •> E X with two copies of 1 , the third map is the t-fold iter-

N 
ate of e using up E Ts one at a time starting from the right. All the identi­
fications of the type S A S = S A S use merely associativity of the 
smash product, no factors are permuted. 

1.3: Proof of Theorem 1.1. In the proof of [Part II, Theorem 3.1] replace 

E BU and B by E X and b respectively. The proofs are then essentially the same. 

1.4: Examples. 

1.4.1. We have already met the following examples in Part II, sections 2-3. 

(a) X = BU, b = B; 

(b) X = BSp b = B' 

1.4.2. In section 3 the true identity of the following example will be deter­

mined. 

Take X = BO and b = n where 0 + n e TT (BO) . We will write AO for the 

X(T) of this example. 

1.4.3. Let R be any ring with unit and set X = BGLR . Details of BGLR may be 

found in [H-S; Wa]. The cohomology theory associated with BGLR (b) will be 

called the algebraic cobordism of R associated with b. 

In general these algebraic cobordism groups will be difficult to compute. 

However the following examples deserve special comment by virtue of the fact 

that we can say something about the resulting algebraic cobordism theories 

(see §1.9 and §5). 

(a) R = IF , the field with q elements and b e TT (BGL3F ) = ^ ^ )• W e 

will write AIF (b) for the resulting spectrum in this example. 
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(b) R = Z, the integers and b = n , the generator of ir (BGLZ ) =K Z^Z/2. 

We will write AZ for the resulting spectrum in this example. 

1.4.4. (a) One could replace BGLR in §1.4.3 by Karoubifs spaces BO R 

(e = ±1) [K]. The resulting cohomology theories are probably very subtle in­

variants of R. (b) Also one could replace BGLR by one of its localisations 

in the sense of [Bou], [B-K] or Su]. For example, p-finite completion X (de­

noted by X" and called H*(_;Z/p) localisation in [Bou]) puts different homotopy 
P l_ — 

elements at our disposal. BGL1F (IF is the algebraic closure of IF ) has only 
q q q 

non-trivial homotopy groups in odd dimensions. In fact the calculations of [Q] 

yield , 
*.(BGL¥+) =K.I J O 
l q l q — * 

IF i odd. q 

Here R* denotes the units in a ring, R. Now let p be a prime not dividing q. 

From [Bou] or [B-K] we see that the p-finite completion has homotopy groups 

ir±«BGL¥r) W ° 1 °dd' 
I Z (the p-adics) for i even. v P 

Furthermore, the Brauer lifting map of [Q] gives an H-space equivalence 

(BGLIF+) " ^ BU" . 
q p - p 

If b e TT0((BGL3F ) " corresponds to 1 e Z we may form the spec-
2 q p _ + P 

trum X(b) where X = (BGL3F ) " . This spectrum corresponds to the periodic coho-
A * V -2*+l 

mology theory which is MUZZ in each even dimension and MUZ in each odd 
P P 

dimension. This is seen by identifying the spectrum with BU"(b) and following 
the proof of Part II, §2.1 with the cells of BU replaced by the p-adic cells of 
BU". Here MUZ means MU-theory with Z coefficients [Ad I, Part III]. 

P P P 
1.4.5. (a) X = CP°°(= K(Z,2)) and b e 7T2(CP°°), a generator. By Part II, 

00 

§9.1.1 the resulting spectrum, CP (b), is periodic, unitary K-theory. 
— * — 

(b) Let X = B3F , the classifying space of the units in W . If p is a 

prime not dividing q then X" ^ (CP ) " . Hence if b e TT9(X") ^ Z corresponds to 

one then X"(b) is the periodic spectrum associated with KUZ , K-theory with 

p-adic coefficients. For X"(b) corresponds to the infinite loopspace 
P((B1F ) ") % P((CP°°)"). As in Part II, §9 we may construct a map q p - p 

G : P ( (CP°°) ") + BU " (= BUZ ) . 
P P P 

By Part II, §9 this is an H*(_;Z/p) isomorphism because 

H*(P((CP°°)p);Z/p) 2i H*(P(CP°°);Z/p) 

and H*(BU";Z/p) ^H*(BU;Z/p). 

Thus G is a homotopy equivalence since both spaces are p-finitely complete 

(i.e., H*(_;Z/p)-local). 
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(c) If X = BA* for any IF -algebra, A, then we may set b equal to the 
image of the element b e TT0((BIF ) A) of §1.4.5(b) under the map TT0((BIF ) ") -> 

I q p I q p 
7T9(X"). The resulting XA(b) spectrum is an analogue of topological K-theory 
(or rather KUZ ) which is natural in the sense that a map A -* A« of 3F -algebras 
induces a map of ring spectra (BA*) "(b) -> (BA*) "(b) . 
1.4.6: The Most Important Example.3 (a) This example generalises §1.4.4(b). 
If C is a category with exact sequences [Q3; Q4] we may form Quillen's category 
QC and take the H-space given by the base point component (̂ 0~) of the loop-
space of its classifying space ft0BQC = X̂ ,, say. For example, if V is a scheme 
we may take C = J?(V) the category of vector bundles over V (= locally free 
sheaves of £ -modules of finite rank) equipped with the usual notion (for the 
Zariski site) of exact sequences. If V = Spec A then X^ ^L BGLA for this 
example [Q3; Q4], so this example generalises §1.4.4(b). Note that 
K0V x Xp. v = fiBQP(V) for any scheme V. 

One might, of course, replace exactness on the Zariski site for exactness 
on the etale site. The Q-category construction works equally well for any site 
on V but we will prefer to pursue variants of X^ , . , introduced above, because 
for this example we can make some computations, which will be found in Part IV. 

(b) Suppose then that V -> Spec IF is an IF -scheme. Let p be a prime 
q q 

not dividing q and let (_) " denote p-finite completion as in §1.4.4(b). We 
have a map of homotopy commutative, homotopy associative H-spaces 

(BGL¥qV (X£(Spec¥q))p M W p 
and consequently the element b e TT9((BGLIF )" ) of §1.4.4(b) yields, under the 
induced homomorphism, b e IT ((X^ . . )"). Furthermore b is natural with re­
spect to morphisms of schemes over Spec IF . Forming the spectrum (X_. . )"(b ) 
gives a contravariant functor from Spec IF schemes to cohomology theories. 
This is a "generalised sheaf cohomology theory" in the sense of [Br-G]. We 
will denote this spectrum by A IF (notice that it also depends on the once 
for all choices of b and p). If W is a space we will write (AlF V)*(W) and 
(AlF v);!f(W)for the associated cohomology and homology of W. 

AlF is called the p-adic algebraic cobordism spectrum of the scheme V. 
qiV 

In Part IV we will identify the homotopy of this spectrum for projective 
bundle schemes, Severi-Brauer schemes and show how Mayer-Vietoris decompositions 
of V and devissage and localisation techniques in algebraic K-theory can be 
used to compute TT.(AIF TT) . * qv 

(c) Example 1.4.6(b) works equally well over the complex field. If 
V -> Spec C is a scheme then, as in §1.4.6(b), we obtain 

(BGL(E+)p+(X£(v))p. 
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Even though GL(C has the discrete topology (so the left hand space is much big-
00 1 °° -f" 

ger than BIT) the inclusion of Z/p c S c GL-E induces (BZ/p ) " -> (BGLiE ) A 

oo P oo P P 
and (BZ/p ) " ̂  ((DP ) ". Hence we may obtain bTT e TT 0(X_ / T T N)~ in a natural manner p — p V z PAV; p 
and construct the spectra A£ after the manner of §1.4.6(b). 

Now I would like to make some elementary observations concerning the fore­

going examples. 
g 

1.5: Lemma. If multiplication by v e Z annihilates the element of b e K„(X) 
then multiplication by v annihilates X(b)J(W) for all spaces W and all integers 

J-
N Proof. We use the notation of section 1.2. If 0 : S -> X is the trivial S-map 

then the composite S-map 

N 
N N H N N Z (00 1 ) „ 
E (S X) -*U A s ^ x X) £-* ENX 

is trivial. Suppose that 

G £ X(b)j(W) ^ lim {ZkN"jW,X} 

is represented by the S-map g : E JW -> X. The vg is represented by 

e # ( v g ) = v ( E N ( b e i x ) ) oH o ENg 

N N 
^ E ( v b e i ) oH o E g 

N N 
^ E ( O e i ) oH o E g 

a, 0 

1.6: Corollary. In the notation of 1.4.2/3 both (a) A0J(W), and (b) AZ^(W) 

are annihilated by multiplication by two for all j and W. 

(In fact in section 3 we will see that we knew 1.6(a) already!) 

1.7: H^(A0;Z/2) and HJU(AZ;Z/2) . The generator of H.(RP°°;Z/2) defines a class 

in H (AO ;Z/2) and thence a class 

u. e H.(A0;Z/2). 

Since 0(1) = GL-Z there is a commutative diagram of natural maps 

BGL Z = RP°° = B0(1) 

1 1 
BGLZ+ • BO <\, BGL1R . 

Therefore the generator of H.(RP ;Z/2) defines a class 

v. e H.(AZ;Z/2) 

satisfying i^(v.) = u.. 

Computations like those of [Part II, section 3.6] yield the following 

result. 
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1.8: Proposition. In the notation of section 1.7 

(a) H^(A0;Z/2) ̂  Z/2[u1,u^1,u2,..., u n , . . . ] ; 

(b) H^(AZ;Z/2) ^ H^(BGLZ;Z/2)[v"1]; and 
+ 

(c) i : BGLZ ->- BO induces a homomorphism of spectra i : AZ -> AO such that 

i* :H^(AZ;Z/2) -> H^(A0;Z/2) 

is onto. In fact i.(v.) = u.. 
* 3 3 

1.9: Proposition. In examples 1.4.3(a) for all spaces W and integers j 

AW (T)^(W) = 0. 
q 

Proof. From [Q] we know that any element b e ^ ( ^ ) n a s z e r o square. 

This squaring operation is the one induced by the H-space product on BGL]F 
S ^ ("Whitney sum"). Hence all iterated products of b must be zero in TT^BGLJF ). 

Now arguing as in Lemma 1.5 we see that the 2-fold iterate of the structure 

map, e, is stably trivial. Hence the spectrum is trivial. 

1.10: Theorem. Suppose, in §1.2, that X = X.. x x? is a product of H-spaces 
S S 

and b e TTN(X) is in the summand TT N(X 1). Then 
(a) X.. (b) is a summand in X(b) . 

+ + 
(b) In fact X(b) is equal to the spectrum X1(b) A (X~) where X? is the 

union of X~ with a disjoint point, *. 

(c) From (b) we may identify 7r^(X(b)) with XAb) ^(X^), the unreduced 

X1 (b)-homology of X~. Then the product on TT̂ (X(b)) induced by the ring spec­

trum becomes the produced induced by the H-space structure of X2. 

Proof. (a) This is clear since the X(b) construction is natural for H-maps 

which preserve b and the maps X.. c X, x X~ -* X1 fall into this category. 

(b) Stably X.. x X ? ̂  X1 v (X1 A X j V X 2 SO for S-homotopy classes we may 

write 

{_,X1 x X 2) = Ax(_) e A2(_) $ A3(_) (1.10.1) 

where A.(_) = {_,X.) (i = 1,2) 

and A3(_) = {_,X1 A X ^ . 

The structure map of (X, x X?)(b) is given by multiplication by b 

e# = (b._) : {_,X1 x X2> -> {EN_,X1 x X2>. 

We must investigate (b._) in terms of the jdecomposition (1.10.1). Clearly if 

x e A1(__) = A 1 then b(x ,0,0) = (bx ,0,0) by (a). Also the Hopf, H, construc­

tion has the property that the S-map 

X± A X2 -S-v xi x X 2 — ^ X A X 2 

is the identity where ir(y1 ,y~) = y-, A y and H is trivial when composed with 
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either projection X x X -> X. . From the definition of e given in §1.2 it 
follows that 

e#(0,0,x3) = (0,0, (e A ix )(x3)) 

where e A 1 is the smash product of 1 with the structure map, e, of Xn(b). X^ X~ 1 

Similarly one sees that e,,(0,x2,0) = (0,0,0). Hence when we form the limit 
over successive compositions with e «« we obtain an isomorphism 

lim (AJE^J e A (SkN_) e A.(IkN_)) 
k L 

2± lim A (EkN_) e lim A~(EkN_) 

where the first limit is over composition with e , the structure map of X.. (b) , 
and the second limit is over composition with e A 1 . 

x2 

In terms of spectra this means that (X.. x X~) (b) equals the sum of X-. (b) 
and X1(b) A X^, which establishes part (b). 

(c) We must check the various products of elements represented a..,a' e A-
and a~,a' e A~ in the splitting (1.10.1). By (a) the product a a' corresponds 
to the product in -^^(X^b)). 

Suppose that a., is represented by 

ax : S ^ + Zm
h + ZkN(Xl x x2) 

and a~ is represented by 

a3:S
ffl+i

 + J
a ( X 1 A X 2 ) ^ J

f f l ( X i a 2 ) . 

The product a., a~ is, by definition represented by an S-map of the form 
skN+j A s*N+i 

al A a3 

Zk\1 A ZS'N(X1 A x2) 

Z ( k +« N( X l x X l x X2) 

^ V x !X2) 
Z(k+^)N(Xl x x2) 

where H' is a Hopf construction and nu. : X- x X- ->• X- is the H-space product. 
Projecting to X1 we see that a-ia„ has a zero component in the A.. (_)-component 
of (1.10.1) while the AA_)-component represents is precisely the product of 
a~ with a., under the IT* (X.. (b) )-module structure of X1(b)vt(X2). 
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Similar is the verification that a~a* is the product in X-.(b)^(X9) of a~ 

and a' under the map induced by the product nu. : X~ x X~ -> X~. Here one uses 

the fact that H L x H L is used in §1.2 to define the product on the spectrum 

(X x X2)(b). Details will be left to the reader. 

1.11; Corollary. Suppose that X is a homotopy commutative homotopy associa­

tive H-space. Let b e TTN(X) and let A : X -> X be the diagonal map. Then 

7T*(Xn(A»(b))) is isomorphic to the Tr*(X(b)) -algebra X(b);!c(Xn"1) . (Note that b 

is not a stable homotopy element in this example.) 

Proof. Consider the map X : X ->- X given by 

A(x1,..., xn)= (X;L,mx(x2, x ^ ) ) ,..., mx(xn,x(x1))) 

where m„ is the H-space product and x : x "*" X is the homotopy inverse. A is an 

H-space equivalence and it sends A*(b) to the image of b under the inclusion of 

the first factor. Hence Xn(A*(b)) is equivalent to (X^ x X2)(b) as in §1.10 

with X-. = X and X^ = X and the result follows from §1.10(c). 
i IT 1.12. Suppose now that F > E > B is a fibration of H-spaces and H-maps. 

S 
Let b £ TTN(F) and form the spectra F(b) and E(i,,(b)). The map i induces a 

homomorphism of ring spectra. 

i :F(b) + E(i#(b)) (1.12.1) 

In §1.10 we studied this situation for the trivial fibring E = F x B. 

Since our spectra are constructed using stable homotopy, which does not behave 

well with respect to fibrations, the best we can hope for is a spectral sequence 

by means of which to study (1.12.1). 

1.13: Theorem. Let F —^-» E —^> B and b e TT (F) be as in §1.12. Then there 

exists a (strongly convergent) spectral sequence with the following properties: 

(i) E = H (B, TT (F(b))) => TT + (E(i„(b))), where the homology is 

taken with simple coefficients, (d : E -> E . .,) . • r p,q p-r,q+r-l 

(ii) The associated filtration on ir̂ CECi.* (b))) has the form 

0 = F - c F ^ c F- c ••• c F c ••• 
-1, s 0, s 1, s p, s 

where u F p s = ^ W 1 / / ^ ) ) > 

oo 2T 

and F ,„ ^ E ^ lim E 
p » s / V i , s = p - s - p = - r p , s-p 

Proof. Let B be the n-skeleton of B and filter E by {TT (B ) }. Applying 

stable homotopy to this filtration we obtain, by [Sw, Ch. 15], a strongly con­

vergent spectral sequence 

Licensed to Univ of Rochester.  Prepared on Tue Jan 12 07:38:01 EST 2021for download from IP 128.151.13.58.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



94 VICTOR P. SNAITH 

D* = H (B,AF)) => irJ.CE).1* (1.13.1) 
p,q p q p+q 

By making the multiplication m : B x B -> B cellular we may assume that the mul­

tiplication on E factors £ 

family of compatible maps 

tiplication on E factors a s { m : E x E -> E , } . Hence, as F <= E~ we obtain a r n m n+m ' 0 

m©(i x 1) : F x E -> E . n n 
g 

Hence multiplication by iji(b) on TT^(E) induces a map of spectral sequences in 
2 2 S 

(1.13.1) which sends D to D N by multiplying TT (F) by b. Now form the 

direct limit of the spectral sequence (1.13.1) under successive iterates of the 

above map. Since lim is exact we obtain a spectral sequence which evidently 

satisfies (i). Also, because the filtration associated with (1.13.1) is trivial 

in negative dimensions the resulting filtration on TT^Eti ,,(b))) will be trivial 

in negative dimensions. Furthermore, because direct limits and unions commute, 
00 •£ u F equals TT (E(i,,(b))). Similarly F ,_ ^ ^ ^ lim D p , s n s # ^ p,s/F - = D = * P>s-p s r' r' p-l,s P,s-p r 

oo 

implies the analogous result for E . Hence (ii) is established which means 
p,s-p 

([C-E] Ch. 15; [Sw] Ch. 15) that the spectral sequence converges strongly. 

§2. THE STABLE HOMOTOPY OF BO 

The objective of this section is to prove the following result. 

2.1: Theorem. For suitable integers, d(&), there is a (4k-2)-equivalence 

between 
2k-1 2k 

J f f ^ a n d n K(Z/2,2k-l+h)d(h) x n K(Z/2,2k+Jl)d(£)-B0(2k-2) h = Q lmQ 

The d(£) are defined in section 2.6. K(Z/2,n) is the usual Eilenberg-Maclane 

space. 

The proof of Theorem 2.1 is essentially due to R. Thorn [Th, section 6]. 

However, for completeness, I will give it in full in a series of steps (sec­

tions 2.4-2.9). As a corollary of [Part I, Theorem 4.2(ii)] and Theorem 2.1 

we will obtain the following result. It will be proved in section 2.10. 

2.2: Theorem. There is a decomposition of stable homotopy groups 

TTS(B0(2k)) ̂  irS(BO(2k-2)) e B.(k) 

for all k,j. If j < 4k - 2 then B.(k) contains the direct sum of 3.(k) copies 

of Z/2 where $-(k) is given by 

0 if j < 2k - 1 

BjOO = { 1 if j = 2k - 1 

d(j-2k+l)+d(j-2k) if 2k < j < 4k - 3 

Furthermore the generators of the Z/2Ts above support the cohomology classes 
h I X and Y defined in section 2.6. 
0) 0) 
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Here d(n) is the integer of Theorem 2.1. 
g 

Remark. Of course, one may be able to generate further elements of TT^(BO) from 

the "basic" elements which the above result provides by means of the tensor 

product pairing (cf. Part I, section 6). I do not propose to undertake a de­

tailed calculation of that process here. 

For the rest of this section H* will mean mod 2 singular cohomology. 

Firstly we must get our notation straight. 

2.3: Stiefel-Whitney classes and the ordering. H*(B0(1)) ^ Z/2[t] where 

deg t = 1. Hence 

H*(B0(1)ZK) 21 Z/2[t1,..., t2fc] 

where deg t = 1 and t belongs to the s-th factor. 
S 2k S 

Let h : B0(1) -> B0(2k) be the natural map then h* is injective. If 

w € H (BO(2k)) is the v-th Stiefel-Whitney class then h*(w ) is equal to the 

v-th elementary symmetric function in t ,..., t9, . 

H*(B0(2k)) y_ Z/2[W-,,..., W O I J embeds, via h*, as the algebra of symmetric 

polynomials. 
' B0(2k) We may identify H* with the ideal <w01 _ ,w0 > in H*(B0(2k)). BO(2k-2)l WXU11 u u c xucct" w2k-l'w2k 

Hence we may also interpret this ideal as symmetric polynomials in t.. , . . . , t0, . 

Henceforth we will make such identifications without further mention. 

e £1 e2k If _t— = t.. ... t9, is a monomial denote by 

orbU-) € Z/2[t1,..., t2k] (2.3.1) 

the sum of a l l d i s t i n c t t r a n s l a t i o n s of JL— under the symmetric group, Z . 

Hence orb(t—) may be i n t e rp r e sen t ed as an element of H*(B0(2k)). 

For i- > i 0 > ••• > i > 0 
1 2 n 

j 1 > j 0 > ••• > j > 0 
J l J 2 Jm 

we w r i t e w. w. ••• w. > w. w. ••• w. (2 .3 .2 ) 
1 2 n J 1 J 2 Jm 

if and only if for some s > 0 

h = h' *2 = j2 \ = js' V l " js+l-
The monomial ordering is defined by (2.3.2). An expression of the form 

w ••• w + (lower monomials)x (2.3.3) u.. u 1 s 

will mean a polynomial expression in which w ••• w is strictly higher in 
un u 1 s 

the monomial ordering of (2.3.2) than any monomial in the bracket. 

' B0(2k) 2.4: Lemma. With the conventions of section 2.3 in H* BO(2k-2) 
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96 VICTOR P. SNAITH 

Sq (w01 ) = w ••• w wnl + (lower monomials)w01 2k u, u 2k 2k 1 r 
and 

Sq (w«, ,) = w ••• w w
9u -i + (lower monomials) w^,.. (mod ideal <w«,>). 

1 r 
Here U = (u ,..., u ) satisfies Zu. < 2k-l and U is an admissible sequence of 

U ^ 
integers [E-S] and Sq is the corresponding iteration of Steenrod operations. 
Proof. By Wu's formula [M-St; Th,p. 37] 

SqSk = W2kWs 
s while Sq w„, 1 = w„, ^ + (s-l)w -iw9̂  so w e may start an induction on r. 

First consider Sq (w?,). By induction and the Cartan formula 

U Ul" a 
Sq (w ') = I w9,wSq (w ... w + (lower monomials)) ZK ._ ZR a u0 u 0<a<u 2 r 

The term when a = u.. is clearly of the desired form since Sq = Identity. Now 
if j < u„ then by the Wu formula Sq w. contains w, Ts only for b < 2j < 2u?. 
Since U is admissible 2u? < u.. so expanding the expression 

va 
w01 w Sq (w ... w + (lower monomials)) 2k a u0 u 2 r 

with 0 < a < U-. by means of the Cartan formula we see that it contains no 
terms involving w. for j > u1. Hence this expression is of the form 

w~, (lower monomials) 

and the induction is complete. 
The same argument establishes the second formula since the ideal <w«, > is 

invariant under the action of the Steenrod algebra. 

2.5: Corollary. In Ĥ  L ^ ^ L l with j < 4k - 2 the elements SqUw01 , and j- BO(2k-2) J 2k-l 
U Sq ŵ , are linearly independent as U ranges through admissible sequences. 

Proof. If EXTTSq ŵ , + £y Sq w«, _ = 0 consider the highest monomial appearing 

in the expression £y Sq w«, - . Reducing the linear relation modulo <w
91_> and 

appealing to Proposition 2.4 we see that the highest monomial comes from only 
one term whose coefficient, y , must therefore be zero. By induction on the 
monomial ordering all the y are zero. A similar induction shows that all the 
ATT are zero also. 

2.6: Dyadism. Here we recall R. Thorn's terminology concerning dyadic vari­
ables, non-dyadic partitions and dyadic ordering of monomials. 

First let d(h) be the number of non-dyadic partitions of h. That is, the 
number of unordered sets of positive integers (a..,..., a ) such that Ea. = h 
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and no a. is of the form 2 
1 

Now let t.. , , t01 be the variables introduced in section 2.3. If 2k 
p(t ,..., t«, ) is a polynomial we call t a dyadic variable of p(t^, ...) if it 

appears in each monomial with exponent zero or a power of two. If t is dyadic 

in p(t-,...) it is dyadic in Sq (p(t ,...)). 

Now we define the dyadic ordering of monomials in t.. , . <2k. Let 

e-h1 °2k 
L2k ' Set 

u(_t~) = (number of non-dyadic variables in _t—) 

and 
v(_t—) = (the total degree of the non-dyadic variables in _t—) . 

We say x = _t— > _t— = y if and only if 

either u(x) > u(y) or u(x) = u(y) and v(x) < v(y), 

For all h < 2k - 1 form 

,,h , / 1 X = orb(t-
03 1 

a +1 r 
r r+1 ^ k - i ) 

where OJ = (a ,..., a ) runs through non-dyadic partitions of h. Also for 

I < 2k, form 
b +1 b +1 

o r b ( t l . . . t / t s + 1 . . . t 2 k ) 03 ' " I 

where o) = (b1 ,. .. , b ) runs through non-dyadic partitions of I, Orb (_) was 

defined in section 2.3.1. 

, 2 k - l + h f B0(2k) 
Hence X e H 

, v £ TT2k+£f B0(2k) ] 
a n d Y0) £ H [BO(2k-2)J BO(2k-2) 

Finally consider the following set of elements in H* 

II 

B0(2k) 
(BO(2k-2)J 

Xm, SqV"1, 
0) 0) 

qn hh qnU ., Sq X^,..., Scl w2k_x (2.6.1) 

and 

vn _ lvn-l _ l^A Y , Sq Y ,. . . , Sq Y 
0) 03 

Sq w 2k* (2.6.2) 

In (2.6.1) m is any integer such that m < 2k - 1, IL runs through admissible 

sequences of degree m - h while 03, runs through the set of d(h) non-dyadic 

partitions of h. In (2.6.2) n is any integer such that n < 2k, V runs through 

admissible sequences of degree n - £ while 03. runs through non-dyadic partitions 

of l . 

2.7: Lemma. Let 03 = (a,,..., a ) . Let Sq X and Sq Y be elements of (2.6.1) 
1 r 03 03 

and (2.6.2) respectively. Then, in the dyadic ordering 
a +1 (i) orb(t 

ax+l 
t / SqI(t r+1 t«, )) contains the maximal monomials 

of Sq*?*, 
03* 
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a l + 1 a r + 1 I and (ii) orb(t1 ... t Sq (t ... t„, -)) contains the maximal 

monomials of Sq X which are not in the ideal <w~. >. 03 2k 

Proof. Let us start with (i). 

As we remarked in section 2.6 if t is dyadic in a polynomial p it is 

dyadic in Sq (p). This is because 

Sqr(t™) = (™)t^ r. 

From this observation Sq (t ... t«,) is totally dyadic and hence if x 

is a monomial in Sq Y then u(x) < r. There are only two ways to achieve u(x) 

= r. Clearly any monomial in the expression displayed in (i) has u-value equal 

to r. This term has monomials whose v-value is r + I. The other way is to 
I £ obtain monomials from the expansion of Sq Y of the form 

a &• +1 a a 
[Sq 1(t1

1 ) ...][Sq ^ ( t ^ ) ... Sq 2k(t2k)] 
r 

in which £ a. > 0 and in which the f i r s t b racke t con t r ibu te s a non-dyadic 
i J 

monomial. The v-value for such a monomial is 

E a. + I (a + 1) > r + £. 
3 s 

3 J s 
Hence the assertion (i) is proved. 

The proof of (ii) is similar, all the equations being taken modulo <w„ >. 

2.8: Proposition. The elements of degree j in (2.6.1) and (2.6.2) form a 

linearly independent subset of 

' B0(2k) H^ if j < 4k - 2. [BO(2k-2)j 

Proof. I will give a proof, using Lemma 2.7, which will show that the elements 

of (2.6.2) are linearly independent and that the elements of (2.6.1) are lin­

early independent modulo the ideal <w9V>. Since the (2.6.2) elements are in 

<won > the result follows. 2k 
First suppose a relation exists 

0 = £ c.Sq XY £. 
A,U), I 

There can be no linear dependence relations A = B if the monomials of maximal 

dyadic order in A are strictly dyadically bigger than all monomials in B. 

Hence the only possible relations are between Sq Y's with the same maximal 

occurring u-values and v-values. That is, u = r and v = r + £, by the proof of 
I I Lemma 2.7. However for fixed £ the maximal terms in Sq Y for different u) are 

all distinct as oo varies. Hence the only possible relation is of the form 

0 = Ec.Sq \ l 
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ALGEBRAIC COBORDISM AND K-THEORY 99 

for fixed u),£. But in this expression the dyadically maximal terms, by 

Lemma 2.7, are orb(z) where 

a +1 a +1 I 
z - E c tx ... t / (Sq A(t r + 1 ... t2k)) 

A 

a-,+1 I 
= (tx ...Ucxsq\tr+1 ... t 2 k). 

A 
ou+l a +1 

However if orb(z) = 0 then z = 0 but since (t ... t ) ̂  0 we obtain a 

contradiction to the linear independence of the set 

which is proved as in Lemma 2.4. Hence c = 0 for all X, 

A 
Now repeat the proof modulo <w9, > using Lemma 2.7 (ii) to obtain the 

T h 
linear independence of the Sq X 's modulo <w^ >. 

a) 2k 
h I 2.9: Proof of Theorem 2.1. The product of the cohomology classes X and Y 

B0(2k) w w 

gives a map from ,., .> into the product of Eilenberg-Maclane spaces in the 
statement of Theorem 2.1. In dimensions less than 4k - 2 [Ser] tells us that 
a basis for the mod 2 cohomology of this product is given by the images of the 
fundamental classes under admissible Sq operations. Hence, to demonstrate an 
equivalence at the prime 2, we must check that the elements of (2.6.1) and 

' in dimensions < 4k - 2. Let c(t) equal the num-

(2.6.2) generate **\jftfc$) 

tor subspace of H which has dimension (if t < 2k - 1) 

ber of dyadic partitions of t. Since the only indecomposable Sq are those 
wi th i = 2 for some m [E-S, p. 10] c(t) equals the number of admissible Sq 
of degree t. Hence the elements of (2.6.1) and (2.6.2) are a basis for a vec-

Tt+2k-lf BO(2k) 
[BO(2k-2)J 

Ed(h)c(t-h) + Id(&)c(t-l-j0 • The first sum is the number of partitions of t 
h % 
since each partition splits uniquely into a dyadic and a non-dyadic part. The 
second sum is the number of partitions of t - 1. The result is clearly equal 

' B0(2k) * , , . . - , . * _ ' At other primes both spaces are trivial in these ,. „t+2k-l 
to dim H -BO(2k-2)J 
dimensions so the map is a (4k - 2)-equivalence. 

g 
2.10: Proof of Theorem 2.2. The decomposition of ir. (B0(2k)) follows from 
[Part I, Theorem 4.2(ii)]. The fundamental classes of the product of Eilen­
berg-Maclane spaces of Theorem 2.1 provide the direct sums of Z/2*s in 

' Since these are detected by cohomology they are non-trivial in IT . 

3 

S 
IT . 
J 

B0(2k-2) 
BO (2k) l"Rhr"9V-"?̂  1 * ^ a n a r § u m e n t similar to that of [Part II, Lemma 2.7], which 

is given in section 3, the S-map 

B 0 _ „ B0(2k) 
BO(2k-2) 
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100 VICTOR P. SNAITH 

sends each mod 2 homology class to "itself". Here we interpret homology 
' BO(2k) * classes of H^ as elements of H^(BO) as we did for cohomology in BO(2k-2) 
Hence th 

because of the choice of (4k-2)-equivalence given in section 2.9 

I h 
section 2.3. Hence the fundamental classes support the classes Y and X 

§3. UNORIENTED C0B0RDISM 
In this section I wish to identify AO-theory in much the same way as I 

computed AU- and ASp-theory in [Part II, sections 1/2]. 
If (X ) are the elements of (2.6.1) then U = IIX may be interpreted as 

W * w^2k-lf BO (2k) 1 u U 1
k h a j ^ u ^ an element of MO L, /̂01—r-r- . Here the classes X run through the set ex-IBO(2k-2)J a) 

hibited in (2.6.1). Then by means of [Part I, Theorem 4.2] this class may be 
2k-l "lifted" to IL € M0 (B0) . There is an obvious choice of "lifting" since 

M0* is just a sum of copies of H*(_;Z/2), namely the one used in the cohomology 

0(2n); identifications of section 2.3. When we compute (vn/0 \ ) ^ in section 3.4 we 
LKzn; * 

will see that these two "liftings" are the same. Similarly if (Y ) are the 
I w 

elements of (2.6.2) V, = HY defines a class (see §3.10) 
k a) 

Vk e M0 K(B0). 

The main result of this section is the following. 

3.1: Theorem. Let F e. A0°(W) be represented by f € [E W,IB0]. Then 

(a) f*( n U +V ) e n M02k(ENW) e M O ^ ^ f A ) defines an element 
k>l k k k>l 

$ (F) £ M0*(W). 
(b) $ : A0°(W) -> M0*(W) = lin^ n M0 (W) is a ring homomorphism, and 

N -N<k 
(c) <i> is an isomorphism when dim W < <». 

Theorem 3.1 will be proved in section 3.9. The programme of proof is 
analogous to that sketched in [Part II, section 2.3] in the unitary case. I 
suggest the reader consult that sketch before becoming embroiled in the tech­
nical details which follow. Briefly we wish to take the AO-theory structure 

2 2 2 map and analyse its square, E (E BO) -> E BO, in terms of the splitting [Part I, 
Theorem 4.2], In terms of this splitting we want to show that this map is 
stably the sum of maps E .2 B0(2k) v2 BO(2k+2) ,, ^ , x , u . u 

BO(2k-2)j ' Z B0(2k) (1 - k ) P 1 U S a m a p w h l C h 

decreases the "BO-skeletal filtration". So we split the map stably into two 
pieces and apply obstruction theory to compress the "skeletal filtration" of 
the unwanted piece. 

Firstly we must analyse in homology the splitting given by [Part I, 
Theorem 4.2]. 

The next result is the real analogue of [Part II, section 1]. 

3.2: Proposition. Consider the composition of S-maps 
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ALGEBRAIC COBORDISM AND K-THEORY 101 

BO(l)2n - ^ BZ n 
a F C BO(2) 

0(2) -> F C BO(2) n w 

n * v ' F nC B0(2) 
t<n t-1 °° 

F C B0(2) 
S oo 

F nC B0(2) 
s-1 °° 

(Here we are using the notation of [Part I, Proposition 3.7 and section 4].) 
If s < n this composite is the track-group sum of maps g- ,. . ., g each of 
which factors through one of the canonical projections from B0(1) onto a 
copy of B0(l)2s. 

Proof. In the proof of [Part II, Theorem 1.2] given in [Part II, section 1.4] 
replace BU(1) by B0(2). The proof then shows that 

B0(2)n -> BE n 
F C B0(2) 
C CO 

0(2) • S F -C B0(2) 
s-1 °° 

is the sum of maps which factor through projections B0(2) -> B0(2) . Now re­
strict to B0(1) via the natural map. 

3.3: H^(B0;Z/2). Let u. e H.(B0;Z/2) denote the image of the generator of 
H.(B0(l);Z/2) (j > 1). Then 

H^(B0;Z/2) = Z/2[u ,u2,...] (cf. section 1.8). 

H^(B0(2k);Z/2) may be identified with the subspace spanned by monomials of 

» ^ ; Z / 2 may be identified with the |BO(2k-2) 
subspace spanned by monomials of weight (2k-l) or 2k. With these conventions 

weight < 2k. In this subspace H^ 
subspace spanned by monomials 
we have the following result. 

R O ( 9 !? ̂  
3.4: Proposition. Let v (t) . : B0(2n) -> v , . be the S-equivalence of 

IKzn; l<£<n bU^zl Z) 

[Part I, Theorem 4.2]. In the notation of section 3.3 

0(2n) * l, i i - l 
1 p i p 

for all 1 < p < n. 

Proof. Since v^/n N |BO(2n-2) ̂  v^/0 oN we may take p = 2n-l or 2n. The 0(2n) ' — 0(2n-2) 
stable map v (f> . is a composite of the form (in the notation of [Part I, 
section 4]) 
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102 VICTOR P. SNAITH 

T(TT ) 
BO(2n) — — - — BE n 0(2) -> F C (B0(2) n °° 

F C B0(2) BE 
t °° w t 

0(2) 

l<t<n Ft-lCcx>B0(2) l<t<n BEt_iJO(2) 

B0(2t) 
Istsn B ° ( 2 t " 2 ) 

The class u. Q ••• 0 u. = h.(x. 8 ••• 0 x. ) where 0 ̂  x e i- l * l- l s 1 p i p 

H (B0(l);Z/2) and h is the natural map (cf. [Part I, Proposition 3.7])>. The 

part of the composite vn^« v which has domain BE 

BEjO(2) 
0(2) and range 

B Sn-lj 0 ( 2 ) 

just the canonical collapse by property (b) of [Part I, section 4.5]. From 
[Part I, Proposition 3.7] 

T(TT ) oh = E I(g)k where 1(g) = ±1 
g 8 

and k is the conjugate of k by the permutation of B0(1) induced by g. Hence 
the part of v n, 0 s oh with range / 0 — r r is equal to E I(g)h where h:B0(l) 

\J\ZT1) DU\ZXI — Z) g 

-> B0(2n) is the natural map and h is the conjugate by g of the composite 

TJ./1>.2n _h T3„/0 v , B0(2n) B0(1) — B0(2n) - B O ( 2 n_ 2 ) 

in which the second map is the canonical collapse. In mod 2 homology 
(h )^ = h^. Also we have E 1(g) = 1. Therefore the proof of [Part I, Proposi-
tion 3.6] shows that 

(EI(g)h J(x. 0 ••• 0 x. ) = h.(x. 0 ••• 8 x. ) 
g X l X p Xl \ 

= u. 0 • • • 0 u 
1 n 

That deals with the factor -=-rrz rr- . However the maps into factors ^^/01—{rr 
B0(2n-2) B0(2k-2) 

(k < n) induced by vn,9 \ ° n a r e sums of maps which factor through projection 
maps, by Proposition 3.2. These projections B0(1) ->- B0(1) (k < n) annihi­
late x. 0 ••• 0 x. when p = 2n-l or 2n. Hence the only non-zero component of 
(vrt/0 x oh).(x. 0 ••• 0 x. ) is h.(x. 0 ••• 0 x. ) and the proof is complete. 
0(2n) * i-, i * i - l 

1 p 1 p 
2 3.5: Corollary. Let e : E BO -> BO be the structure map of the AO-spectrum 

(Example 1.4.2). By means of the stable decomposition of [Part I, Theorem 4.2] 
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ALGEBEAIC COBORDISM AND K-THEORY 103 

consider the S-map, (Ee) o £, as inducing 

. x/ v2 BO(2t) ^ v BO(2t) 

** * istsn B ° ( 2 t " 2 ) l,t<n+l B ° ( 2 t " 2 ) ' 

Let X. equal the composite (j < n) 

r2 B0(2.j) , 2 BO(2t) ( I E ) ° E . V BO(2t) 
BO(2j-2) ^ t a

E BO(2t-2) ^ ^ BO(2t-2) 

BO(2j+2) 
BO(2j) ' 

n 
Set u = e - £ A. then u induces zero in reduced homology with rational n n . _ j Mn &J 

J=l 
coefficients or with Z/q coefficients for any prime q. 

Proof. With coefficients in Z/2 the result follows at once (cf. [Part II, 

Corollary 2.8]) from Proposition 3.4 and the fact that 

f u @ u 0 u . 0 • • • 8 u. if p = j 
(X.)*(u. 8 • • • 0 u. ) = \ 1 1 1 Xp 

J xi XP I o if P * j 

With coefficient in Z/q for odd q or with rational coefficients the result is 

proved by a computation which is essentially the same as the unitary case 

[Part II, Corollary 2.8]. 

3.6: Some notation and remarks relating to the proof of Proposition 3.8. 

We are now to prove the real analogue of [Part II, Proposition 2.9]. It 

will be convenient to give names to pieces of the map we wish to deform. 
RO ( ? t" ̂  First notice that u has range v T^/O^ O\ since the part of e mapping n BO(2t-2) r n 

. ^ BO(2n+2) . . ^ .. 1- t" n 
xnto _.^/0 N is A . Define B0(2n) n 

u (1 O . S2 B0<2.J) B0(2iQ 
BO(2j-2) BO(2£-2) 

to be that summand of u with this range and domain. For non-triviality we 
J1 • .2 B0(2t) ,. , . 

must have I < i < n. For u restricts to u on v £ ~~,n^ o\ which is 
l<t<s B ° ( 2 t -2) 

2 2 
stably £ B0(2s) and u maps £ B0(2s) into B0(2s). 

Now set G. = n A / ^ , 3 L . Write B0(1) n stably as v Y where Y. is ob-3 BO(2j-2) J u j 
2n J 

tained as follows. B0(1) s p l i t s as the wedge of q-fold smash products of 

copies of B0(1) (1 < q < 2n). Y. i s the union of a l l the q-fold smash products 

where q = 2j or 2 j - l . 

3.7: Proposition. In the notation of §3.6 with I < j < n the following compo­

site S-map is trivial. 

Z2Y. c E2(B0(l)2n) +£2BO(2n) •> £2G. — > G.. 
J 3 ^ 
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104 VICTOR P. SNAITH 

(Here the nameless maps are the natural ones.) 

Proof. Consider the following commutative diagram consisting of S-maps from 

Part I §4 and from §3.6 above 

I2Y. 22B0(l)2n + £2BO(2n) ̂  v G 
t=l 

£ - A 
n n 

vn(j,J0 

1 ? ,? n+1 
Y. M

 J
c B0(1) ->BO(2n+2) * v fi 

^ + 1 • ~ k = l k 

F£-1 C~ B° ( 2 ) 

In this diagram T is the S-map of Proposition 3.2 (with n replaced by n + 1 ) . 
Hence T is a sum of S-maps, g. and each g. factors through a projection of the 
form TT : BO(l) 2 n + 2 + B0(1)2£. The result follows from the fact that TT O i.+i is 
trivial (i ,., is the inclusion of Y.,n in the diagram). 

j+1 J+l 

Then for 3.8: Proposition. Let (G.) be the m-skeleton of G = B Q ( ^ ) 
J m j B0(2j-2) 

2 
any n,m > 1 there is an S-map yf(j,£) : £ G. -> G„ such that 

(i) y^(j,£) ̂  y (j,&), the S-map of section 3.6. 

(ii) y'(j,iD maps I2 (G.) to (G.) .. n j m Jc m-1 
Proof. The proof follows the ideas of Part II, §2.9 but the obstruction theory 
is more subtle. Firstly we observe that all possibly zero obstructions are 
two primary. This is because y (j,£) is constructed by taking a summand (using 

n 2 
the stable splittings of B0(2k)) of the S-map L (B0(2n))-> BO(2n+2) given by the Hopf map on 

x S B0(2n) n X n X 1> B0(1) x B0(2n) + BO(2n+2) 

and 2n = 0 e TT (B0(1)) (cf. §1.5). Hence by the mod 2 part of Proposition 3.5 

and the argument of Part I I , §2.9 we find y" nomotopic to y (j,&) and f i t t i n g 

into the following diagram on the m-skeleton of G.. 

Z2(G.) - -> Z2(G.) +v S<f2 

j m-1 t 3 m 3 

(3.8.1) 

In (3.8.1) the rows are cofibrations. 

y" 

m (G, 

n" 
' 1 

) , -* v rm+i a 

y" f 

sm+l 
a 
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ALGEBRAIC COBORDISM AND K-THEORY 105 

We must show that y"f is trivial. If not then Sq will detect y"? in 

H*(C(u,M );Z/2) where C(f) means the mapping cone of f. Here "detect" means Sq2 

is non-zero on H (C(ym) ; Z/2) . Now consider the S-map Y ->• G. introduced in 
3 3 

§3.6. It induces 
(Y ) 

* <V»-i a a 

Since H*(C(y"f) ; Z/2) -> H*(C(g) ;Z/2) is infective Sq2 would detect g if it de-
2 

tected y"! . However, by Proposition 3.7, y (j,&) is trivial on £ Y. if I ^ j ̂  n 

and it is easy to compress the nullhomotopy to give a nullhomotopy of g. There­

for y"T is trivial. 

As in Part II, §2.9 we perform the above argument on consecutive skeleta 

then 

diagram. 

and then extend to an S-map to get y ^ y (j,&) fitting into the following 

S2(G.) - 22(G.) - v S™+2 
J m-1 j m B 

y(iv) y(iv) y(v) (3.8.2) 

m (GJ _ -> (G_) + v S^ 
£ m-1 £ m y 

Y 
In (3.8.2) the rows are cofibrations. 

In (3.8.2) we must show that y is trivial. I intend to do this by 

means of a well-known argument due to Adem [T, p. 84, Example 3] by which one 
2 S S 

shows that n € ir?(S°) is non-trivial for 0 ^ n e TT (S°) . First consider the 
composite 

g« : Z2(Y.) - E2(G.) - s f 2 ^ ^ v s " ; . 
3 m 3 m

 n P Y 

The argument used above to show that the S-map, g, was trivial may be used to 

show that g* ^L 0- Suppose for $n and y the S-map 

(v) sm+2 ^ sm 

2 S O 

is non-trivial. Hence it is n where 0 4 n e TT1 (S ) . Thus we have a composi­

tion 
E2(Y.) - S11*2 -£L» S m + 1 - 1 * S m (3.8.3) 

J m eQ Y 0 2 
which is trivial. However n is non-trivial and detected by Sq in its mapping 

cone. Also Z (Y.) -> S^ —^-> S is non-trivial because Sq takes the inte-
3 m BQ 

gral class which is supported by S and maps it non-trivially. Since (3.8.3) 
2 

is trivial we may attach to the mapping cone C(n) the cone on X (Y.) . We 

obtain 
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106 VICTOR P. SNAITH 

L = (Sm u e"*2) u CZ2(Y.) 
Y0 J m 

2 2 2 where CZ (Y.) is the cone on £ (Y.) . Since Sq detects n and the composite i m j m m of the first two maps in (3.8.3) we see that if u e H (L;Z/2) is the integral 

class carried by S then 0 ^ Sq Sq u e H (L;Z/2). However Sq u = 0 since 

i Y° 
Sq is the Bockstein and annihilates integral classes. Therefore the Adem 

2 2 3 1 2 2 
relation [E-S, p. 2] Sq Sq = Sq Sq shows that 0 = Sq Sq u and we have con-

(v) 2 (v) (iv) 
tradicted the equation y = n so y = 0 . Therefore y is compressible 

2 
to send £ (G.) into (G.) , and yT(i,£) is obtained by extending the compressed 

j m ^ j m-1 n J J & r 

map to the whole of I G.. 

3.9: Proof of Theorem 3.1. If dim W < » we have 

A0°(W) = lim^ [ZN+1W,EB0] ^ lin^{ZNW, BO}. 
N N r 

Also if dim W < 4n-2 then the map induced by II (U + V ) 
k>n 

^ ( w ' ^ ) ) % i i M o V ) 

is an isomorphism. This is proved like [Part I, Theorem 5.1] using Theorem 2.1 

and the identification of MO-theory [T] in terms of mod 2 cohomology (see Re­

mark 3.10 for a sketch of Thorn's identification of MO-theory). Hence $ is a 

split surjection, by the argument of [Part II, Theorem 2.1], 

$n is, of course, well-defined and since II (U + V, ) is an exponential 
U k>l k k 

map 
K0°(_) -> M0*(_) 

$ is a ring homomorphism. For analogous arguments in the unitary case see 

[Part II, section 2.3 and 5.3]. 

It remains to show that <!> is injective. Here the proof is entirely 

analogous to that of [Part II, Proposition 2.11] using Proposition 3.8 to re­

place [Part II, Proposition 2.9]. Details are left to the reader. 

3.10: Remark. Let H* denote mod 2 cohomology. If M0(t) is the orthogonal 

Thom space then M0(2k-1) = ... . and we have a natural map M0(2k-1) -> 

B0(2k) _, - vh „. 
B0(2k-2) ' ^ c l a S S 6 S Xu) e H * —757— j r \ of (2.6.1) pull back to give classes 

X e H*(M0(2k-l)). We obtain a map 
03 

irf : n Xh : M0(2k-1) -> n K(Z/2,2k-l+h)d(h) 

h,oo h 

where h,o) run through the set of indices used in (2.6.1) and d(h) is as in 

§2.6. This map is a (4k-2)-equivalence. Similarly there is a collapsing 
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ALGEBRAIC COBORDISM AND K-THEORY 107 

B ? l 2 k L -> MO(2k) and unique c las ses Y£ e H*(MO(2k)) which p u l i back to the 
BO(2k-2) u) 
c l a s ses Y of ( 2 . 6 . 2 ) . These maps y i e l d a 4k-equivalence 

0) 

V,1 : n Y£ : M0(2k) -+ n K(Z/2 ,2k+£) d ( £ ) . 

Since MO^(W) = lim^[En~JW, M0(n)] the maps U',V' (which are compatible with lim> 
n. n 

here) identify MOJ(W) with products of mod 2 cohomology groups of W when 
dim W < °°. 

§4. ON THE S-TYPE OF imj 

In this section the S-type of the "image of J" is studied. All spaces 

will be 2-localised and all homology and cohomology will be taken with coeffi­

cients in Z/2. For my purposes the "image of J" will be the space J0(2) of 

[F-P]. It is defined by an infinite loopspace fibring 

.3 
J0(2) •> BO y > BSO 

where ty i s the Adams opera t ion . In [F-P] i t i s shown tha t BOW ^ J 0 ( 2 ) . 
+ 

Here (_) i s Qu i l l en f s cons t ruc t ion [Wa] and 0 IF i s the f i n i t e orthogonal 

group of Pa r t I , §8. Thus JO(2) and B01F have the same (2 loca l ) S-type. In 

^ 2 ^ 3 P a r t I , §8 we s t ab ly s p l i t B0]FQ i n t o summands of the form — — . By study-
3 B02k-2*3 

ing these summands we will construct stable homotopy elements in TT^(J0(2)). 
S S 

Since TT^(J0(2)) maps to the stable stem, TT^(S°), these homotopy elements may 

prove useful (see the problems at the end of Part IV). The resulting elements 

in TT^O 
[Mah]. 

B02n(lF3) 
4.1: Theorem. There is a 2-local (4n-3)-equivalence between — ,_ >. and 

B02n-2(IF3) 

a product of Eilenberg-Maclane spaces 

n K(Z/2,2n + £ - e + J } <K*)e(2n-q-e , J) ̂  

e,£,q,J 

The product is taken over e = 0 or 1, q > 0 and I - e + J < 2n-3. Also d(£) 

equals the number of partitions I - Ea. of the form 0 < a. ̂  2 - 1 while 

t 
e(t,J) equals the number of partitions of the form J + t = E (k.+l) with 

i=l 1 

0 < k ^ k i f u ^ v . Furthermore e(t,J) and d(£) are defined to be zero if 

t < 0 or I < 0 respectively and d(0) = 1 = e(0,0). 

As an immediate corollary of Theorem 4.1 and Part I, § 8 we have the follow­

ing result. 

in T T ^ S 0 ) almost certainly include Mahawald's highly significant new family 
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108 VICTOR P. SNAITH 

4.2: Theorem. There is a decomposition of stable homotopy groups (2-localised) 

^ n 3 ^ (2) ^ ^(B02n-2ff3> (2) * CJ (n> 

for all j,n. If j < 4n-2 then C.(n) contains the direct sum of y.(n) copies of 

Z/2 where y.(n) is given by 

Y.(n) 

0 

E d(£)e(2n-q-e,J) 
e,£,q,J 

if j < 2n - 1 

if 

2n-l < j < 4n-3 

Here j = 2 n + £ - e + J . Also the sum over e,£,q,J and the functions d(_) . 

e(_,_) are as in Theorem 3.1. 

Each Z/2-summand is detected and distinguished by its Hurewicz image in 

the manner described in §4.14. 

4.3: Generators for H^(B03F^) . Let us now recall the mod 2 homology of the 

spaces BO IF . In [F-P] the mod 2 homology of B01F is described. To be pre­

cise [F-P] treats an infinite loopspace denoted by roB0]F which is the 

zero-component of ftB( u BO 1F0) . 
n>0 n 3 

maps. 

There is a homotopy commutative diagram of 

BO 

' 
rc 

n 3 

( - * [ - n ] ) 

B01Fo 

—> BO IF , * 
n+1 3 

^ ( - * [ - n - l ] ) (4.4) 

i n which (__*[-n]) i s t h e map which s e n d s BO IF~ i n t o t h e n-component by t h e 

n a t u r a l map [F-P] and t h e n t r a n s l a t e s t o t h e z e r o - c o m p o n e n t . ( 4 . 4 ) g i v e s a 

map 

B03Fo = l i m B O 1F0 3 » n 3 n 
roB03Fn (4.5) 

which induces an isomorphism in homology. By means of (4.5) we may determine 

F J . Le t T and T, 3 a b t h e image of H.(B0_ 1F0) (mod 2 c o e f f i c i e n t s ) i n H. (BOIF^) . Le t T and T, be 

t h e c o p i e s of Z/2 x Z/2 d e f i n e d by 

T = <A = [ ° 1 
a A l 1 0 A2 -

0 - 1 
-1 0 > c o2w3 and 

T b " < B 1 " 
-1 0 
0 1 

1 0 
0 - 1 > = ( 0 ^ 3 ) ' c o2w3 . 

Let o 4 x . € H.(RP ) = H ±(BZ/2) and s e t v . . e H ( B O ^ J , v . £ H.(B0 IF ) 

e q u a l t o t h e images of x . % x . € H (T ) and x . e H.(B0 IF„) r e s p e c t i v e l y . 

Then s e t w. e H.(B01Fo) and y . e H.(B0IF o ) e q u a l t o t h e images of v . and v . 1 1 3 y i 1 3 n ° 1 ,0 1 
r e s p e c t i v e l y . Pu t F = im(H. (B0o IF0) -> H. n * zn J * 
and P r o p o s i t i o n 3 . 1 1 ] 

H ^ B O I F J ) t h e n from [ F - P , Theorem 3 . 1 
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ALGEBRAIC COBORDISM AND K-THEORY 109 

4.6: Proposition. F is spanned by monomials of the form 

y. y. 
Xl X2 

y. w. w. with s + t < 2n. 

Here the products are formed in the Pontrjagin ring of roB01F„. 

4.7: Proposition. F has a basis consisting of the monomials of Proposition 
4.6 such that l < i _ < i _ < » * « < i . Jl J2 Jt 
Proof. Let x : H^(B01F ) ->• H^(B03F ) be induced by the H-space inverse on 
roB0]Fo. Then if 

_ l 
u. = 2 X(wfl) y, a e H (B03F ) . 
1 -. a. ±—3. X 3 a=0 

[F-P, Theorem 3.2] assures us that there is an isomorphism of algebras 
H^(B03F3) ^P(yry2,... ) 8 E ( y 2 , . . . ). 

2 2 Now x(w ) = w + p(w1}..., w n) for some polynomial p. Hence w. = y. + a a i a—J. l i 
q(wlS.. ., wjL_1, y1,.. . y._ ) for some polynomial q and the monomials cited 
above do span F . However since n 

u. 
I 

w. + y. +r( w r . . . , w._1( yi,..., y.^) (4.8) 

it is easy to show linear independence by induction on the number of and degree 
of u.fs occurring in a monomial. 

4^9: Corollary. H* |BQ ff 
[ 2n-2 3 

basis consisting of monomials 

B°2n*3 i s isomorphic to the Z/2-vector space with 

y . w. w. 
x s J l J2 

such t ha t s + t = 2n - 1 or 2n and 1 < j < j 2 < ••• 

w. 

Considered as a sub-

space of H^(B0]F~) the action of the dual Steenrod algebra is induced by 

The diagonal is induced by 

^(y.) = £ y ® y. 
'i Ja l-a 

a 
Y(w.) = £ w 0 w. I a i-a a 

BO 3F 
Proof. By Part I, §8.2.1 — — n Z, is a summand in the S-type of B0IFQ and the 

B°2n-2^3 ((
 3 

inclusion in homology sends a monomial to "itself". 

4.10: H*L^ *"" -̂  1 as an A-module. Let A be the mod 2 Steenrod algebra. We ,B0_ 3FJ V 2n-2 3) 
wish to recognise the A-module above and this will be accomplished by compari­
son with H*(S0) and H*(BO). There is a fibring [F-P] 
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110 VICTOR P. SNAITH 

SO -> BO(3F3) -> BO 

such that H^CBO) = P(y ,y ,... ) and H^CSO) = E(u ,u ,... ) where u. maps to u. 

and y. to y.. Let s. e H.(B03F ) be the image of the i-th Stiefel-Whitney class. 

Then s. is characterised by [cf. Ad 1, p. 49] 

<s ., y-> = 1 and <s . , x> = 0 
I 'l l 

for all other monomials y.,... w. . We have Wufs formula [M-St, p. 94] 

Sq (s ) = s, s + ( ) s. s . M m k m 1 k-1 m+1 
. ,k-nu 
+ ( 1 > SnH-k (4.11) 

Now let S (n) be the subspace of H^ 
BO 2n 
BO 2n-2 

with basis consisting of monomials 

y. ...y. w. ...w. (j < j < • • •; k + t = 2n or 2n - 1) . Then 
11 \ Jl 3t 

BO 2n 
BO 2n-2 

S (n) and the action of the dual Steenrod operations respects 

this decomposition. In fact S. (n) together with its (Sq ).-action is isomor-
k * 

phic to 
H^(M0(k)) 0 W(k) 

where W(k) c H^(SO) is the vector space spanned by monomials of weight 2n-k or 

2n-k-l in the {u.}. To obtain the dual A-module structure on 

<fr S, ( n ) * 
k k 

we must dualise. However although the {y.} have the same diagonal as the {y. } 

the {u.} are primitive while the {w.} are not. The relationship between u., 
l r I l 

w. and y. is given in (4.8). Nevertheless the A-module structure is equal 

"modulo filtration" to that in H*(B0) Q H*(S0). To make this precise let 

x £ S (n)* denote the dual of a monomial x with respect to the monomial basis 

described above. The assignment of y. ... w. to y. ... u. establishes an 

additive embedding of ® S, (n)* in H*(B0) 0 H*(S0). Note that 
k k 

yi, , .. y . Q w. i. . Denote by Sq (y. ... w. ) the ele-

k - k 
ment which maps to Sq (y. ... u. ) £ H*(B0) 8 H*(S0). That is, Sq is a fake 

=L1 Jt 
k - k k Sq . Now Sq = Sq on elements of the forms y. ... y. and w.. Also a simple 

11 11 J 
calculation shows that 

(4.12) 

where I = (i ,...) and k = (k , . . . , k ) with q < t. By induction on t using 

equations (4.12) and the relations 
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ALGEBRAIC COBORDISM AND K-THEORY 111 

X\ -— \ 
SqR(yX) = (Sq^.Cy1) 

SqR(w ) = SqR(w.), Sq^G.) = Sq„£(u.) 

and u. .. u. we obtain the following result. 

4*13: Lemma. In the notation of the above discussic 

is in the subspace spanned by elements of the form y w ... w. with q < t. 
i q 

4.14: Proof of Theorem 4.1. Let z ,z ,... be indeterminates and if z is a 
I monomial in z , .. ., z write orb(z ) for the symmetric polynomial which is the 

1 k I 
sum of the translates of z under the action of the symmetric group, E . If 
p(s ,..., s ) is a polynomial in the s. £ H (BOB?) of §3.10 write p(s ,...) 
= orb(z ) if the substitution s. = a.(z ,z~,. . .) (a. = i-th elementary symmetric 
function) makes these expressions equal. With this convention consider the 

elements of H* 
B0_ IF. 2n 3 

^ - 2 ^ 3 
a^l a2+l 

orb(z z2 (4.15) 

where q < 2n, (a ,..., a ) is a partition of h = I a, ^ q with no a. of the 
form 2 m - 1, t = 2n- q or 2n - q- 1, 1 £ j . < Jo < '" < Jt a n d h + q + E j . ̂  
4n-3. 

I claim that in dimensions < 4n-3 the elements Sq (x) where I runs through 

admissible sequences and x runs through (4.15) give a basis for H*-< 
B02n*3 

B02n-21F3 
The argument is essentially due to R. Thom and an elaboration of it is given in 
Part III, §2. 

Firstly it suffices to show that the Sq (x) are linearly independent. 
This is because, from the discussion of §4.10, there is an additive isomorphism 
S (n)* 2iH*(M0(k)) ® W(k) c H*(M0(k)) ® H*(S0) and the counting procedure of 

I Part III, §2.9 shows that E dim S (n)* equal the number of-Sq (x)fs. Now let 
a +1 k 1^^ 

a = orb(z_ ... z ) and b = w. ... w. and let x = a ® b. Then 

SqI(x) = SqI(a) 0 b + E SqJ(a) % SqJ (b), 

However by (4.11) Sq (a) modulo the ideal generated by S ,S q+1' q+2'" 

(4.16) 

. is given 

by the same formula as Sq (a) in H*(M0(q)) when we replace s. by the i-th 
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112 VICTOR P. SNAITH 

J1 - Jf 
Stiefel-Whitney class. Also, by Lemma 4.13 Sq (b) is congruent to Sq (b) 
modulo the subspace spanned by w ... w with v < t. Define a filtration on 

1 v 
# S (n)* by considering $ S, (n)* as a subgroup of H*(BO) 8 H*(SO) , as in §4.10, 
k k k k 

and filtring H*(B0) by the ideals <s.,s ,...> and filtring H*(S0) by the 
dual-weight filtration used in Lemma 4.13. Under this filtration the A-module 
action on a 8 b e H*(M0(k)) 8 W(k) ^ Si,(n)* agrees with that on 

H*(M0(k)) 0 H*(S0) 

modulo lower filtration. Under this latter action the Sq (x) are known to be 
linearly independent in dimensions ^ 4n-3 by the argument of Part III, §2. 

4.17: Remark. In order to illustrate how Theorem 4.2 works in low dimensions 
I have included below a table of the first few homotopy elements whose exist-
ence is asserted. The elements are in TT . (BOH? ) . . . The table works as fol­
lows. The parameters j,£,e,J,q and n of Theorem 4.2 are displayed together 
with a cohomology element in HJ(BOIF • Z/2) which pairs non-trivially with the 

S Hurewicz image of the asserted stable homotopy element in IT .. The cohomology 
elements are those of §4.14. 

TABLE OF ELEMENTS 

J_ 

l 
l 
3 
3 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 
5 

5 

A 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
2 
2 
0 
0 
0 
0 

e_ 
1 
1 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
1 
1 
1 
1 

J; 
0 
0 
0 
0 
0 
0 
I 
l 
l 
I 
0 
0 
2 
2 
0 
0 

£ 
0 
1 
3 
2 
4 
3 
1 
2 
3 
2 
3 
2 
1 
2 
5 
4 

n. 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 

supporting class 

"l 
orb(z1) 

orb(z1z2z3) 
orb(z z ) 0 w 
orb(z1z2z3z4) 

orb(z z z ) ® w 
orb(z ) 8 w w 
orb(z z ) ® w 2 

orb(z z z„) ® w 2 

orb(z z ) 8 w w 2 

orb(z^z2z3) 
orb(z:?z2) 8 w 
orb(z ) 8 w w^ 
orb(z z ) 8 w^ 
orb(z z2z^z^z5) 

orb(z z z z.) 8 w 
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§5. ON THE ALGEBRAIC COBORDISM OF Z 

The main result of this section is as follows: 

5.1.1: Theorem. Let X be a CW complex. Set 

MO*(X) = lim^ n MOk(X), 
N '-N<k 

the total unoriented cobordism of X. Then there is a natural ring homomorphism 

T : AZ°(X) -> MO*(X) 

such that 

(a) T is surjective if dim X < °° , and 

(b) T is not injective if X is the n-sphere for any n ^ 0. 

Here AZ* is the algebraic cobordism cohomology theory of Z as defined in 

§1.4.3(b). 

Sketch of Proof. The homomorphism T is induced by a genus in the MO-theory of 

BGLZ4" induced f rom ThornTs genus on BO by means of the canonical map BGLZ -> BO. 
2 + The spaces in the AZ-spectrum are all equal to E BGLZ , the double suspension 

of BGLZ . Therefore in order to show T is onto one must construct S-maps from 

X to BGLZ . This is accomplished by constructing an S-map from BOB? to BGLZ 

and then appealing to the results of Part I, §8 on the decomposition of the 2-

local S-type of BOW . 

To show that T is not an isomorphism we construct an exponential homomor­

phism 

v : [X,BGLZ+] -> AZ°(X) 

3 + 
and prove that when X = S there is an element i e Tr„(BGLZ ) ^ Z/48 such that 
0 4 v 3(i) e Ker T. 

S 
The section is arranged as follows. In §5.2 AZ-theory is recalled and the 

homomorphism T of Theorem 5.1.1 is defined. Also in §5.2 the real analogue, 

A0-theory, is recalled. In §5.3 are derived the facts about the homology of 

the AZ- and AO-spectrum which will be needed. In §5.4 the map v, from the 

algebraic K-theory of Z to the algebraic cobordism of Z is defined. It is 

shown to be non-trivial on K.(Z) when i = 1, 2 or 3. In §5.5 more elements of 

AZ°(X) are constructed when dim X < °°. Finally Theorem 5.1.1 is proved in 

§5.5.9. 

Throughout the section H* and H* will denote mod 2 singular homology and 

cohomology respectively. 

§5.2: AZ-theory and the Thorn Genus. 

5.2.1. Let GL A be the general linear group with entries in A. If GLA = u 
n 0<n 

GL A the inclusion Z c H induces a map between classifying spaces 

BGLZ -> BGLM ^ BO, where 0 is the infinite orthogonal group. This map factors 
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114 VICTOR P. SNAITH 

i + r as BGLZ-^-> BGLZ * BO. Here j is the canonical map associated with Quillenfs 
"plus" construction (cf. [H-S; Wa]). We will require to know that r is a map 
of H-spaces. 

Let X = BGLZ or BO and let 0 ± n e IT (X) ̂  Z/2. The H-space sum of n 
1 l 

with 1 , the identity map of X, gives a map n + 1 : S x x -> X. The suspension 
X X ~ ry 

of the Hopf construction applied to n + 1 yields e : E X -> £ X. Similarly a X 1 1 Hopf construction applied to n + 1 + n + 1 : S x x x S * X -> X yields a map 
9 9 9 X X 

m : E X A E X - ^ E X . In §1.4.3 the spectrum AZ is defined by setting 
AZ k = E2BGLZ+ (k > 2) 

with structure map e : EAZ, -> Azk+1- T n e m aP m : A \ A Az^ ~* kZ\r+l m a k e s t h i s 

spectrum into a commutative, associative ring spectrum with unit u = £ n : 
3 2 + S -* £ BGLZ = AZ3. In §1.4.2 AO is defined to be the spectrum obtained by 

replacing BGLZ by BO in the above construction. The map, r, introduced above 
induces a map of ring spectra r : AZ -> AO. 

The Thorn genus is an element (see §3.9) 

U € n MOk(BO). 
0<k 

satisfying h*(U) = U ® U where h : BO x BO -> BO is the H-space multiplication 
associated with Whitney sum. As explained in §3.10 the Thorn space, M0(k), is 
2k-equivalent to a product of K(Z/2,m)fs. Hence MO-theory is a product of 
suitable suspensions of H*-theory. Therefore, as explained in §3, the natural 

k k 
class in MO (M0(k)) can be "lifted" into MO (BO). This can be done in such a 
way as to give the total genus, U. Also if 0 ̂  n e TT.. (BO) then n*(U) = 1 + a 

1 1 where a e MO (S ) is the suspension class. Now we define the homomorphism T 
of Theorems 1.1. If 

x € AZ°(X) = lim [ENX, £2BGLZ+] 
N 

is represented by f : £nX •> £2BGLZ+ 

define: T(x) = s (f*(a2 0 r*U)) e M0*(X) where 

s : M0*4n(£nX) -> M0*(X) n 
2 2 2 is the suspension isomorphism, a e MO (S ) is the suspension class, U is the 

Thorn genus and r*, f* are the induced maps of r, f. T(x) is independent of the 
choice of f (cf. Part II, §3.4). 

5.2.2: Remark. We may define a ring homomorphism 

Tf : A0°(X) -> M0*(X) 
by the above construction in which r*U is replaced by U. In fact by Part III, 
§3.1, Tf is an isomorphism when dim X < °°. Evidently we have for any X a com­
mutative diagram 
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ALGEBRAIC COBORDISM AND K-THEORY 115 

AZ°(X) — > AO°(X) 
T \ ^ k / T ' (5.2.3) 

MO*(X) 

§5.3: H^CAZ) and Ĥ BGLZ"1") . 

5.3.1. Since GL-.Z = 0 , the first orthogonal group, we obtain a homotopy com­
mutative diagram of natural maps 

oo 

BGL..Z = RP = BO 

1 + r 1 
BGLZ > BO 

If 0 + u. € H.(RP°°) let v. £ H.(BGLZ+) be the image of u. then r^(v.) = u. 

e H.(B). Let F be the fibre of the map, r, introduced in §5.2.1. 

5.3.2: Proposition. There are algebra isomorphisms 

(i) H^(BO) ^ Z/2[u1,u2,...] 

(ii) H^(AO) % H^BOHu" 1] 

(iii) H^BGLZ4")^ H*(F) ® H^(BO) 

(iv) H^(AZ) ^ H^(BGLZ+) [v"1] 

Proof. (i) is well-known while (ii) and (iv) are proved in §1.8. To demon­

strate (iii) we prove the dual statement by showing that the Serre spectral 

sequence 

E P' q = HP(BO) 0 Hq(F) => HP+q(BGLZ+) 

collapses. It is a spectral sequence of Hopf algebras. Since r is onto the 

edge homomorphism, r*, is infective. Suppose d : E -> E is zero for 

s < t and for s = t , p + q < n . Then for x e EP>n~P d (x) must be primitive. 

Thus d (x) = a Q 1 with a primitive. This means that r*(a) = 0. Hence d (x) 

= 0 and, by induction, the spectral sequence collapses. 

5.3.3: Corollary. H (BGLZ+) a, H3(F) 0 H3(B0). 

Proof. From [L-Sz;Mi 4] we know TT^F) = 0 for i = 0, 1 and 2 while TT3(F) ^ Z/48. 

The result now follows from Propositions 5.2.2(iii) by means of the Hurewicz 

and universal coefficient theorems. 

§5.4: v : K.(Z) -> AZ°(SX). 
1 + 2 2 

5.4.1. If x e [X, BGLZ ] then Z x e [EX, AZ ] represents an element v(x) - 1 

e AZ°(X). Since multiplication in the spectrum AZ is induced by the H-space 

multiplication on BGLZ it follows that v(x+y) = v(x)v(y). In particular when 

X = S we have, by definition, K.(Z) = [S ,BGLZ ] and we obtain an exponential 

map 
v : K.(Z) -> AZ^S 1) (5.4.2) 
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5.4.3: Proposition. The map v of (5.4.2) is non-zero on K.(Z) ̂  Z/2 when 
i = 1 or 2. When i = 3 K^(Z) is generated by an element y of order 48 [L-Sz] 
which satisfies 

0 + v(y) e Ker T and 2v(y) = 0. 
Here T is the homomorphism of Theorem 5.1.1. 

Proof. From [Mi 4, Ch. 10] we know that if n generates K (Z) then n generates 
2 K2(Z). The Hurewicz images of n e TT (BO) and n e TT (BO) are both non-zero in 

H^BO). Hence, by Proposition 5.3.2 (i) and (ii) , the map 

K.(Z) - ^ A Z ^ S 1 ) - ^ A O ^ S 1 ) - ^ H (AO) 

is non-zero when i = 1 or 2. Here r is as in §5.2.1 and H is the Hurewicz 

homomorphism. 
Since -JTO(BO) = 0 the generator, y, must factor through F, the fibre of r. 

+ Since F is 2-connected y is detected in Z/2 ̂  H~(F) and hence in H3(BGLZ ) by 
Corollary 5.3.3. By Proposition 5.3.2 (iii) and (iv) we see that v(y) is 
detected by its Hurewicz image in H~(AZ). However Tv(y) = T'(r(v(y))) by 
(5.2.3) and r o V factors through 

r„ :K.(Z) -> TT.(BO) so Tv(y) = 0 since TT3(B0) = 0. 

§5.5: More elements in AZ°(X). 
5.5.1. Let 0 3F0 (1 < n < oo) denote the subgroup of GL 3F0 (]FQ is the three n j n -J J 

n 2 element field) which preserve the form E X.. Let E 
i - i 1 

0 IF~ denote the wreath 

product generated by "diagonal" 2x2 blocks and the symmetric group, E , which 
permutes the blocks. Similarly E 0. is a subgroup of 0 , the real orthogonal 
group. Write 0"IF~ and 0 for the infinite orthogonal groups O^W^ and 0^ re­
spectively. 
5.5.2: Proposition. After 2-localisation there exists an S-map 0 :B0]F<:.-> 

BE 0o]Fo such that, if 6 : B0oIF^+ B0]F~ is the natural map, (0 o 6 ) is equal °°j z J n ^ 3 ^ <• n ̂  
to the homomorphism induced on H^ by the inclusion of O2IF,. c E O?-^ * 

Proof. This is an elaboration of part of the proof in Part I, §8.2.1. 
Let 0 : B0o TB\ -> BE 0olFo be the S-map given by the transfer associated n 2n 3 nj I 3 

with the canonical map i : B E R 0 2 ^ 3 + B 02 n
] F3- B^ P a r t I» S8-1-1 ($n ° 6

n ) * is 

the canonical map on H^, where 6' is induced by O^JF^ c ^n r^^^V N ° W c h o o s e a 

cofinal family, (X (n)) , of finite subcomplexes of B0 K . Let 

Py(n) c {Xy(n), BEn 02]F3} 

be the subset of S-maps, f, such that 

6" : 6" 1(X (n)) + BE n n y n 0^3 
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ALGEBRAIC COBORDISM AND K-THEORY 117 

induces on H the same homomorphism as the canonical map, 61. Here 6" : 
n n n 

BO IF -> B0„ 3Fo is induced by the natural group inclusion. Let Q (n) be the 
image of P (n) in {X (n), Bzlo^lF}. Now Q (n) is finite and non-empty. The 
inverse limit of compact, non-empty sets is non-empty. So we may choose an 
element , . [ 

e (lim {X (n), ^iJiO^W^} ^ {BOE^, BZ Q 
Y,n 

02IF3} . 

5.5.3. From [F-P, §3] we know that B0o IF. -> B01Fo embeds HJ.(B0o IF J as a zn 3 3 * 2n 3 
summand in H^(BOIF3) . The analogous result is true for B02 and BO. Conse­
quently we may identify 

B 02n F3 
B02n-2]F3 

and 
BO 2n 
BO 2n-l 

(n ^ 1) with subgroups of H. (BOIF ) and H.(BO) respectively. Thus we may speak, 

for example, of a map BO -> v 
BO 2k 

l<k B°2k-2 
sending an H -class to "itself" 

From Part I, §§4, 8 we have the following result. 

5.5.4: Proposition. (i) There exists a 2-local S-equivalence 

V : BOIF, v VL 
l*k B°2k-21F3 

(ii) There exists an S-equivalence 

X : BO -> v 
BO 2k 

l,k B°2k-2 
(iii) On H. the induced homomorphisms ^ and X. send an element to "itself". 

in the sense of §5.5.3. 
0 1 and 1 0 

0 -1 5.5.5. The group 023F is generated by 
we have inclusions 0?B? c GL Z c GL^H which induces a diagram 

B02IF3 -^> BGLZ+ 

BO 

Therefore we 

(5.5.6) 

Let QX = lim 0, I X, this is the free infinite loopspace generated by X. BGLZ 
n 

and BO are infinite loopspaces [Ma 2, Wa]. The diagram (5.5.6) induces a dia­
gram of infinite loop maps 

QB02F -> QBGL2Z •> QB02 

(5.5.7) 

BGLZ -£-» BO 
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There are structure maps (n ^ 1), compatible as n varies 

i : BE 0_1F. n nj 2 J QB0 2F 3 

and 
j : BE Jn n QBO, 

such that i and j are the natural "suspension" maps. Further details may be 

found in Part I, §3.5. 

5.5.8: Proposition. The composition of maps and S-maps 

BO 2n B02nIF3 
0 BE 3 °° + r 021F3 > BGLZ i BO 

induces the canonical homomorphism on H.,.. Here I is induced by the inclusion 

of the diagonal matrices. 

Proof. By definition r o \ o ± is the Kahn-Priddy transfer, tr(r © i o ^ ) [K-P] 

of (cf. Part I, §3.9; setting N k = E n °2]F3) 

BN- x BN , 1 n-1 •+ B02nF3 = B ^ °2W3 
r ° k 

* BO 

BE 023F3. Here IT is the first pro-with respect to the covering BN x BN 

jection k, r as in (5.5.6). Now r ° k [B02F3>BO] = K O C B O ^ ) representes E -

dim E where E is the universal real 2-plane bundle on BO^IF^. The Kahn-Priddy 

transfer is additive [K-P, §1.8]. Thus (r o \ o ± ) ^ is the Pontrjagin quotient 

of tr(E)^ by tr(dim E)^. dim E is a trivial bundle over B02]Fv Therefore, by 

the naturality property of the transfer [K-P], tr(E) factors through the map 

BE °2IF3 "* B Z i n d u c e d bY °2]F3 ^ ^1^# T h u s B Ol 
2n BEv 

.2nN 
02]Fo becomes trivial 

when composed with tr(dim E). However, if x £ H^(B0 ) then, by Proposition 

5.5.2, (0 o £)*(*) equals the image of x under the map induced by the natural 

map mentioned above. Hence, the previous discussion shows that tr(dim E ) ^ is 

trivial on such elements. Thus, 

(r o x3 o 0 o O * = tr(E)* o j^ : H^(B0^n) -> H*(B0) . 

Finally it can be shown as in [Ma 2, Ch. VIII, 1.1] that tr(E) is represented 

by the canonical map 

BE °2 F3 BO 2n BO 

induced by the inclusions E 0olF_ c E J n \ I 3 n °2 C °2n-
5.5.9: Proof of Theorem 5.1.1. Let X be a finite dimensional CW complex 

BO 
Then M0*(X) is generated by elements of the following form (see §3). 2k 

BO 2k-2 
(4k-3)-equivalent to a product of K(Z/2,m)fs. Thus we may with ease construct 
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ALGEBRAIC COBORDISM AND K-THEORY 119 

N B°2k homotopy classes, f : I X -> — , when N + dim X < 4k - 3. Composing f with 
B02k-2 

-1 N 

an inverse, A , of the S-map X of Proposition 5.5.4(ii) gives xf e {l X,BO} 

and hence x1 e A0°(X). MO*(X) is generated by the elements, T'(X), constructed 

in this manner, where T1 is as in (5.2.3). 
However, in §4 it is shown that — =— is (4k-3)-equivalent to a pro-

B°2k-2 3 B0 2 k 

duct of K(Z/2,m)'s which contains the (4k-3)-skeleton of — as the (4k-3)-

H. 
J B02k-2]F3 

B02k 
B02k-2 

B02k-2 
as a summand of skeleton of a factor. Hence we may identify H. 

r B°2kff3 ] J ' „ _ -
for i < 4k - 3. With this understanding choose g:S X -> — ^— 

B02k-2IF3 

.N„ B°2k F3 

which has the "same" induced map as f on H^. 

Now compose g with X ° i^ ° 0 ° ip , where i> is an inverse to ip of Propo­

sition 5.5.4(i) and the other maps are as in Proposition 5.5.8. This yields 

y e AZ°(X) represented by y1 e {£NX, BGLZ+}. By Propositions 5.5.4(iii), 5.5.8 
N and the construction of y we see that r„(yf) e {£ X,BO} induces on H^ the same 

homomorphism as x. Hence Ty = Tf(r(y)) = Tfx since a class in MO*(X) is de­

tected by H^. 

To prove that T is not one-one when X = S it suffices, by periodicity, to 
3 

treat the case X = S . The element, i, constructed in Proposition 5.4.3 pro­
vides a non-zero element in Ker T to complete the proof. 
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PART IV: ALGEBRAIC COBORDISM AND GEOMETRY 

§0. EPILOGUE 

The final part of this paper takes up the problem of computing the p-adic 

algebraic cobordism groups, TTJ.(AIF ) , which were introduced in Part III, 

§1.4.6 for schemes over Spec IF . In §3 the algebraic cobordism of projective 

bundles and Severi-Brauer schemes are computed. Also if A is a regular IF -

algebra the algebraic cobordism of Spec A[t,t ] is determined. Here are a few 

sample results. 

3.3: Corollary. If A is a commutative W -algebra 

— — r + 
7T.(AF _r) ± (A3F _ .).(n(BGLA );) . * q,I>A - q, Spec A * 1 p 

_ f 0 i odd 
3.4: Corollary. IT . (AlF r ) % \ 

1 q , 1lF MU0.((BlT)r;Z ) i even. q I 2* p p 

3^L0: Corollary. ..(AF^ A _ ( 0 )) - MU^ +.( U«;Z»). 
IF 
q 

Also a spectral sequence is constructed (in §3.12) to analyse the algebraic 

cobordism in a Mayer-Victoris situation for a regular scheme. 

Furthermore to the algebraic cobordism of Spec A there corresponds an 

analogue of topological K-theory and a surjective homomorphism (§3.15) from 

cobordism to "K-theory" analogous to the homomorphism of [C-F]. This homomorphism 

is used in §3.16 to detect elements in the algebraic cobordism of Spec K[t,t ] 

- 4 - < o ) . 
These results and more, together with a discussion of other computational 

techniques such as devissage and reduction by resolution (§3.17) are in §3. 

This establishes p-adic algebraic cobordism as a "generalised pre-sheaf coho-

mology theory" in the sense of [Br-G] which unfortunately is not pseudo-flasque 

(see §3.13) as algebraic Kf-theory is but which nevertheless seems to yield 

interesting invariants of the geometry. However, in order to attempt to make 

a case in favour of the use of generalisations of cobordism invariants in 

algebraic geometry I have included §1 and §2. In §1 a problem about algebraic 

vector bundles over number fields is examined using unitary K-theory (although 

cobordism would serve as well) on the £tale site. This is intended to empha­

size the suitability of generalised cohomology theories (especially K-theory 

and cobordism) applied to etale homotopy types for treatment of geometrical 

120 
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ALGEBRAIC COBORDISM AND K-THEORY 121 

problems. The reader may then enquire: Why do we need more than classical 

generalised cohomology of e*tale homotopy types to get invariants of the geo­

metry? In §2 I have tried to put forward some reasons by examining the gen­

eralisation of the unitary Pontrjagin-Thom construction which one obtains from 

the e*tale site and by showing in two examples how feeble it can be. 

How convincingly §§1, 2 put forward my point of view is a matter of 

opinion. For better or worse the discussion is elaborated in the introductions 

to those sections. 

In §4 are described the homomorphisms which connect the p-adic algebraic 

cobordism of an IF -algebra, the topological K-theory of classifying spaces of 

a subgroup of the group of units and Quillen's K-theory. These homomorphisms 

are computed in several examples and in these examples the recovery of Quillen 

K-theory from the other theories is discussed. In ̂ 5 are collected a set of 
problems relating to this paper. 

§1. ALGEBRAIC VECTOR BUNDLES OVER NUMBER FIELDS 

In this section we use unitary cobordism of the etale site to discuss a 

question of Atiyah [A-M, p. 2]. This discussion is probably obvious to geo­

meters. However it is brief and the object is to add weight to the idea that 

one can usefully apply generalised cohomology—particular K-theory (or equally 

well cobordism theory, see Remark 1.8(iii))—to the e*tale site of a variety. 

Having made the point for K-theory and cobordism I will, in the next section, 

emphasise the limitations—taking the Pontrjagin-Thom construction as my test 

case—of being contented with applying some classical cobordism theory to a 

site. Potentially more useful are the p-adic algebraic cobordism theories 

which are discussed in §3. Now to work. 

In [A-M, p. 2] the following question is attributed to M. F. Atiyah. Let 

L/K be an extension of algebraic number fields with K a (fixed) subfield of 

the complex numbers, (C. Let V be a variety (i.e., an irreducible, separated 

scheme of finite type) defined over K. Let E be an algebraic vector bundle 

over V ® L. Let c : L -> C be an embedding of L/K. Then c will induce a complex 
K 

vector bundle, E , over the topological space V = (V ® (C) , the associated 

complex variety with the classical topology. Note that V has the homotopy 

type of a finite CW complex. 

Let K(X) denote the unitary K-group. K(X) is the set of homotopy classes 

[X,Z x BU]. 

1.1: Problem. How does [E ] e K(V ) , the class of the bundle E , depend on 

c : L -> JC? 

c ^ 1.2. If n = dim E we may equivalently study the dependence of [E ] -neK(V ) , 

the reduced K-group of V . 
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In fact let us set y(E,c) = [E ] - n e K(V ) then the aim of this section 
ex, 

will be to discuss the related question:-
i ^ 

1.3: Problem. For 1 < i < n how does y (y(E,c)) e K(V ) depend upon c:L->(C? 
Here y is the i-th y-operation [At 2]. 

cl c2 1.4: Geometrical Comparison of E and E Let c ,c9 : L -> E be embeddings 

which agree on K. Also let a € Gal((C/K) be a Galois automorphism of IE such 

that a o c, c9. Form the projective bundle IP(E) = Proj (SE) There is a 

canonical Hopf line bundle, H, over IP(E) [At 2]. Suppose that H 8 I is a very 
ci 

ample line bundle then there is associated to H a morphism [Har, p. 150, §7.1] 
ci ci N f : 1P(E ) -> W-, for some integer N such that 

classifies the topological line bundle 

c. 
(H X) c£ 

c. 
3P(E X) c£ 

We have a commutative diagram of morphisms induced by a. 

C 

* W 

* 3P" (1.5) 

Suppose that V S (C is normal. Then every variety in (1.5) is normal. 
K " 

However if X is a normal complex variety then the finite completion, X , is 

(up to homotopy) a functor of the e*tale site of X. This is Sullivan's domesti­

cation of the Artin-Grothendieck comparison theoremfSu, esp. p. 42]. Let BIT 

denote the finite completion of BU and write K(W;Z) = [W, BIT] for the Z-K-

theory of W. Then K(X~ ;Z) ̂  K(X ;Z) via a natural isomorphism and the above 

discussion derives from (1.5) the following commutative diagram upon applying 

K(-;Z). 
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ALGEBRAIC COBORDISM AND K-THEORY 123 

c (f 1) 
K(P(E 1 ) c £ ; Z) < — K((CPN; Z) 

c * 
2 

x (f ) 
K(3P(E 2) ; Z) * — K((CPN; Z) (1.6) 

K(V 8 E) ; Z) 
K C>6 

8l((V 8 (C) „; Z) 
cJl' 

Now for i = 1,2, K(3P(E X ) ; Z) 0 Z = K(]P(E X ) ; Z) , by definition, 
c£ c£' 

K(Vc£;2)[ti]/( ? (-DVCYCE^^)^" 
^r=0 

where n = dim E and y (y(E,c.)) also denotes the image of this element under 

the canonical map j : K(_) -> K(_;Z) . 

1.7; Theorem. In the notation of §1.3/4 

(i) J x : K ( V c £ ) -> K(V c £;Z) is injective. 

(ii) If x £ K((CPN) is the reduced Hopf bundle and a(j.. (x)) = I b x" 
s=l 

n N 
(b e Z) then I (-l)rS*(yr(y(E,c2)))[ I b t ^ ] n r is divisible by 

r=0 s=l S 
n 
2 ( - U V t y f E , ^ ) ) ^ in K(Vcĵ ;Z) = K(Vc£;Z) * Z. 

Proof. Part (i) is true when V is replaced by any finite CW complex. This 

is an easy manipulation of the rationalisation-completion fibre square of BU 

[Su]. 

Part (i) guarantees that K(V ) equations are faithfully captured in 

£(Vca;£). 
Part (ii) now follows by chasing the diagram (1.6). 

1.8: Remark. (i) Theorem 1.7 implies that to answer Problems 1.1, 1.3 we 

must understand a* e Aut(K(V ; Z ) ) . This is the difficult part because a is 

not induced by a continuous map. However a* is natural for morphisms of normal 

K-varieties, although this naturality differs from the usual sort of naturality 

which one has in mind when discussing K-theory operations (see [At 2 ] ) . 

(ii) A phenomenon related to §1.1 was discovered in [Ser 2 ] , Let p be a 
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prime and let Y c ]p£ be the solutions of E x. = 0. Then Y is a Z/p-space K . 1 
l 

by means of cyclic permutation of coordinates. If E is a variety we may form 

the fibring 

E P -> Yx E P -> Y/(Z/p) = X. 
Z/p 

Choosing p suitably and choosing E to be a suitable elliptic curve Serre [Ser 2] 
gave two embeddings cL ,d« : K -* E of the number field K such that the fundamen­
tal groups of ((Yx Ep) Q {E) (i = 1,2) were not isomorphic. Hence one would 

Z/p d±
 C 

have expected pathological behaviour in §1.1 when V = X. Of course the funda­

mental groups of Serre's examples are infinite, because their profinite com­

pletions are isomorphic. However in [Ab] non-homotopic equivalent, conjugate 

varieties are given which have finite (hence equal) fundamental groups. 

(iii) Equivalently to §1.7 one might study Problems 1.1, 1.3 by studying 
2* 2* 

a* : MU (V ;Z) -> MU (V p ; Z ) . For y(E,c) may be obtained as the image of the 

first Conner-Floyd class of E , c (E,c) e MU (V ) , under the Conner-Floyd 

homomorphism [C-F] and c1(E,c) is obtained from (1.5) by 

MU*(!>(EC)cr> ^MU*(V )[t] [ E (-l)rcr(E,c)tn~r 
lr=0 

2 
where t is the class of (f 8 (C) „ in MU . ci c c c c 

(iv) If H 8 (C -*3P(E ) is ample then there is a morphism f :I>(E ) -> W 
Cl 

which classifies (H Q (C) for some n > 1. Using the resulting diagrams analo-
c i 

gous to (1.5) and (1.6) relations between YJ(y(E,c.)) (i = 1,2) may be obtained 

by the method of §§1.3-1.7. Details are left to the interested reader. 

§2. THE ANALOGUE OF THE PONTRJAGIN-THOM CONSTRUCTION AND THE ETALE SITE 

In Part II, §8.5/6 I gave a purely (co-) homological description of a 
N homomorphism, \ , associated with an embedding f : X -> Y. When Y = (E X was 

seen to capture all the data of the Pontrjagin-Thom construction in unitary 

cobordism. The construction of X was only MU-cohomological properties of 

complex vector bundles (especially the Thorn isomorphism). The singular coho-

mology of the etale homotopy type of an algebraic vector bundle (and its "sphere 

bundle") often behaves in a manner similar to the singular cohomology of a 

complex vector bundle ([C;Cl;Fr 4]). As we shall see below this permits the 

definition in reasonable generality, of an analogous homomorphism, Af, asso­

ciated with a smooth algebraic embedding f : X ->- Y. \ is obtained from the 

MU-theory of the e"tale homotopy type of X, the normal vector bundle of f and 

its "normal sphere bundle". As we shall see in a couple of examples this 

invariant of f has one drawback. Namely its behaviour is so analogous to that 
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of the Pontrjagin-Thom construction for topological geometry that it is insen­
sitive to geometry whose interest is essentially algebraic. The foregoing 
discussion and that of §1 leads one to conclude, in my opinion, that one should 
search for a construction of algebraic cobordism invariants in algebraic geo­
metry by other methods than merely applying generalised cohomology theories to 
£tale homotopy types. In §3 we compute with one candidate—the p-adic alge­
braic cobordism of Part III, §1.4.6. 
2.2: Etale Homotopy Types. Let X be a variety over an algebraically closed 
field, K. Thus X is topological space together with a sheaf of local rings, 
0, which makes X into a reduced, separated scheme of finite type over K [EGA 

A. 
1, p. 215; Bor p. 21; Sh, p. 263]. 

A geometric point of a scheme, Y, over any field, F, is a morphism 
i- : y -> Y where y Y. This data is a pair (y,<j> ) where 

<f> : 0 -> F 
y y s 

is an F-algebra homomorphism of the local ring at y into F , the separable 
closure of F. Let m- be the kernel of the canonical extension of 6 

y y 
cj> : F ®_,0 -> F . Yy s F y s 

Then the local ring of the geometric point is the localisation (F 8 J ) 
which will be denoted by 0-. Let Q- be the (m-)-adic completion of 0-. 

y y y y 
Now suppose W is a smooth variety [Bor, pp. 65-72; Sh, pp. 72-79] and 

that f : Y -* W is a morphism. Then f is £tale if 
f * : O-T-r -* 0-Tr(y) y 

is an isomorphism at all geometric points, (y,(j> ) , of Y [SGA 4, Vol. 270, Ex­
pose VIII, p. 343; H-R, p. 84]. 

Now let us return to the variety X which is henceforth assumed to be 
smooth. The category of pointed (£tale) coverings of X, Cov(X), is described 
as follows. An object is a family of etale morphisms 

u = { \ : ux - x= V 
indexed by geometric points (x,<j> ) . Hence {IT (U )} is a covering of X by 
Zariski open sets. A morphism between two such objects (families) is defined 
in the obvious manner to be a collection of morphisms over X which respect 
geometric points. Form the Cech nerve of the covering (J. It is a simplicial 
set which we will denote by CM(X) [A-M, p. 96; R-H, p. 86]. If TT is the 

u ° 
connected component functor [A-M, pp. 111-116] set 

TT^X) = T T O ( C U ( X ) ) . 

We may define the notion of one covering, U! , refining another, (J. Hence we 
get an inverse system of simplical sets 
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(TT^CX)} 

indexed by the objects of Cov(X). This is a good category for inverse limits 

(i.e., pseudo-filtering [A-M, p. 148]). The etale homotopy type of X, de­

noted by X , is the inverse system of spaces 

{ | V X > I > 
where |__] denotes geometric realisation. Such an inverse system is called a 

pro-space. X is defined up to pro-homotopy. 

Following [B-K] or [Bou] we may form the p-finite completion (i.e., 

H*(_;Z/p) localisation) of the pr-qspace, X , to obtain the p-completed etale 

homotopy type X" . This is a pro-space of p-complete spaces. 

2.3: The Analogue of X for a Smooth Algebraic Embedding. Let f : X -> Y be a 

smooth embedding of K-varieties where K is algebraically closed and char K = q. 

Let p be a prime different from q and set h* equal to MU*(__;Z/p) , mod p unitary 

cobordism. Let h^ be the associated homology theory. 

Consider the normal bundle exact sequence [Sh, p. 275] 

0 + T -> f*x -> v(f) -> 0 X y 

which defines the normal bundle v(f) -> X of the embedding. The pro-map 

(v(f) - X)" -> X~ has relative cohomology groups 

h*(X~t,(v(f) - X)^) and H*(X;t,(v(f) - X K ^ Z / p ) 

defined by taking the direct limit of the relative cohomology of maps 

p(K, I/) : | Tr..(v(f) - X) | " ~> |TT..(X)|" induced by a morphism of pointed etale cover­

ings. Let us abbreviate these groups to h*(v(f)~ ) and H*(v(f)" ) . If v(f) 

is n-dimensional there is a Thorn isomorphism H*(X~ ;Z/p) ^ H* (v(f)~ ). (See 

[C], [C2] or [Fr4]). This isomorphism is given by multiplying by a Thorn class 

in H2n(v(f);t). 

Suppose now that there exists a Thorn class A(v(f)) e h (v(f)" ) giving 

rise to a Thorn isomorphism 

[A(v(f))._] : h*(x;t) •*• h*+2n(v(f)et) . (2.3.1) 

For example this will happen if H*(X" ) is concentrated in even dimensions. 

To see this consider the Atiyah-Hirzebruch spectral sequence for the mapping 

cone of the map p(U,l/) above. Taking the direct limit of these spectral 

sequences gives a spectral sequence (cf. Part III, §1.13) 

E^'t(v(f)) = HS(v(f);t; h11 (point)) => hS+t(v(f)^) . 

Since h (point) = 0 for t odd the spectral sequence is concentrated in even 

total degree and hence collapses. Thus there exists A(v(f)) e h (v(f)~ ) 

mapping to the Thorn class in H (v(f)~ ) under the orientation homomorphism 
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ALGEBRAIC COBORDISM AND K-THEORY 127 

h* -> H*. Now multiplication induces an isomorphism of spectral sequences 
s t s+2n t {E ' (X) -> E ' (v(f))} and hence an isomorphism in (2.3.1). This case will 

apply to all the examples which we consider. 
If we set h^(X" ) = lim h*(|n.XX)|~) and h^(v(f)" ) = lim h (cofibre 

et IT U et p(U,l/) 
p(U,l/)) then the slant product and Kronecker product induce homomorphisms of 
the following form (cf. Part II, §8.5). 

<A(v(f)),_> ^ (2.4) 

h*-2n ( p° i n t ) 

If [A(v(f))\_] is an isomorphism in (2.4) then we may define A as in the 
topological case (Part II, §8.6). 

Etale homology is not usually defined. This is because lim is not an 
exact functor so that the naive definition of h^(X" ) given here is generally 
not computable. For the same reason a Thom isomorphism for h*(X~ ) will not in 
general imply one for h^ in (2.4). However in the cases we will consider Xf 

is defined. I am told that the associated Steenrod homology theory to h* would 
automatically have homology isomorphism (dual to the h* Thom isomorphism) which 
could be used in (2.4) to ensure the definition of a homomorphism similar to 
\ . However, since I am trying to emphasise the short-comings of Af I am not 

concerned here to optimise the establishment of its general theory. 
2 3 2.5: Two Examples of X^. (a) Let f : IP + J? be the natural map. This map t 2 K 3 K 

is really defined over the integers IP -> IP . Consequently we may compare the 
h*- and h^-behaviour in (2.4) with that in the p-finite completion of the 

2 3 characteristic zero map V : W -> IP . This is accomplished by the method of 
[Fr2] and [Fr5] (where the method is applied in a semi-simplicial context; see 
also [Frl] and [Fr3,4]). Accordingly one finds an isomorphism carrying Af 

2 2 into X-. : h. ((IP-,) ~ ) -*• h.(point) if either A,, or Xr1 is defined. However ]P_ r * (L et * r r ~ \L 
and v(ff) are smooth (hence normal) so that the pre-space ( E O ~ consists of 

ry (Let 

spaces | ir..(TP_) |" having finite homotopy groups [Su, p. 42]. Hence the inverse 
system h^( | TT..(3P ) | *) satisfies the Mittag-Lef f ler condition (cf. [At 1]). 
Hence we may take the inverse limit of the homology Atiyah-Hirzebruch spectral 
sequences for | T\..{1P )|* to obtain a spectral sequence^ using h* = MUZ/p* 

*lft = 4 1 2 . ^ ( 1 ^ ) |- ht(point)) => hs+t(0E>2);t) . 
2 

However h (point) is just a finite sum of copies of Z/p so that E is the 
s -t 2 S , t 

dual vector space to E ' (^IP) > tne E9~term of the cohomology spectral sequence 
introduced in §2.3. Therefore E^ ̂  is concentrated in even degrees and the 

' 2 2 
spectral sequence collapses. As the E -term is isomorphic to Ĥ ((CP ;h^(point)) 
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2 2 
we conclude that h.( (I>) \ ) ^ MU. ((CP ;Z/p) which is a free IT, (MU;Z/p)-module 

(C et — * 2 2 — 
on generators 1 = $ ,3 ,$ with deg $. = 2i. If A e MU (CP ;Z/p) is the first 
Conner-Floyd class of the Hopf bundle then 3. is defined by 

<Ak [ i i f j = k, 
' j \0 otherwise 

Similarly we may compute h>l?(v(fT)^ ) ^ MU^(v(f) ;Z/p) and conclude that 
A f is defined and equal to the analogous homomorphism defined in the topolo­
gical setting as in Part II, §8.6. Notice that in the topological context 
[A(v(f * ))\__] is dual to the h*-cohomology Thorn isomorphism. Since the Thorn 

3 
space of the topological normal bundle of f is 1 it is an easy calculation 

9 
to show that the TT̂  (MU;Z/p)-module A , : MU^((CP ;Z/p) -> *n^(MU;Z/p) is given by 

A (R ) = i 1 if J = ° 
f v j \0 otherwise ' 

(b) Let f : 4 x f } •> w be given by 
is. K K 

f ( [ a0' al ] [ b0' bl ] ) = [a0b0'a0bl'alb0'albl] • 

As in (a) this may be compared with the zero characteristic case. One finds 

V ( I ^ x i£) e t) 2iMH,((I')2;Z/p) 

which is isomorphic to the free Tr^(MU;Z/p)-module on generators 1, a-,a9,a~ 
where deg a.. = deg a? = 2 and deg a,-= 4. One also finds 

X (a.) = 0 and X (1) = 1. 

2.6: Remark. In (a) and (b) the embedding f represents an algebraically 
significant divisor [Har] but Af does not distinguish f from an embedding with 
trivial normal bundle—because these embeddings (over (C) in the topological 
context are rather uninteresting. Topologically the embeddings which are best 
detected are into Euclidean space and such embeddings cannot be achieved 
algebraically. 

§3. SOME COMPUTATIONS IN p-ADIC ALGEBRAIC COBORDISM3 

Recall form Part III, §1.4.6(b) that AlF , the p-adic algebraic cobor-
dism spectrum of the IF -scheme V, gives a functor from schemes over Spec W 

q __ q 
to spectra. Here p is a fixed prime different from q and IT. (AlF ) is a 

* q?V Z -module because the spectrum is constructed from the p-completion (X^ / T T N)". p JgAV) p 
Using results of Quillen [Q3; Q4, G-Q] on the identity of Xp/y\ for certain 
V we will proceed to make some computations of TT^(A1F ). All schemes and 
morphisms will be over Spec IF . 

q 
3.1: Projective Bundles. Let PE = Proj(SE), the projective bundle associated 
to an algebraic vector bundle E -> V. Let f : PE ->- V be the projection. In [Q4] 
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ALGEBRAIC COBORDISM AND K-THEORY 129 

r 
it is shown that BQIL(PE) ̂  II BQ^(V) where f induces inclusion of the first 

1 
factor and r = dim E. Translation from the first to the i-th factor corres­
ponds to the action of £(-i) e K (PE) [Q4, §§4,8] on the algebraic K-theory of 

r 
PE. Hence X , , ^ IT X , , as H-spaces and similarly for p-completions. From 
Part III, §1.10 we obtain the following calculation. 
3.2: Projective Bundle Theorem. In §3.1 there is an algebra isomorphism 

**<Afq>PE> ^ (A¥q)V)/n < w ; > 
where the latter group is unreduced homology. 
3.3: Corollary. If A is a commutative IF -algebra 

— — r + 7^(A]F )± (AF - J * ( n ( B G L A K ) . * q , W^ ~ q, Spec A * ^ p 

3.4: Corollary. 
_ r 0 (i odd) 

77 . (AlF ) ̂  \ 
1 q,F^- MUZ ((BU^)r) (i even) . 

W
q ?2* P 

Proof. Set A = IF in §3.3 and recall from Part III, §1.4 that (BGLlFV" 2i Bir 
-2* q P 

in this case. By Part III, §1.4.4 AlF is the MUZ -spectrum. Hence the 
q p 

result follows from known results [Ad 1, Part II] from which one sees in fact 
that when i is even the answer is a very large polynomial ring. 
3.5: Proposition. If A is a, not necessarily commutative, IF -algebra there 
is an algebra isomorphism 

**(Af q ) ] pi) i ( A ¥ q ( S p e c A ) ( ( B G L A + ) ; ) . 

Proof. In [Q4, §8.3] it is shown that there are two natural maps hn,h..:/A -* IP 
whose "sum" is an equivalence of H-spaces 

((BGLA4")-)2 ^ > (Xp(]pI))p • (3.5.1) 

Under t h i s equivalence the c l a s s b e TT0((BGLIF )") (cf. Par t I I I , §1 .4 .6(b) ) 
I q p 

goes to (b,b) in the second homotopy group of the left side of (3.5.1). The 
result now follows from Part III, §1.11. 
3.6: Severi-Brauer Schemes. A morphism f : V -> S of schemes over Spec IF is a F q 
Severi-Brauer scheme of relative dimension r if V is locally isomorphic in the 

r-1 etale topology to 3Pq . By [Q4, §8.4] there is a vector bundle of rank r, 
J -> V, which restricts to 0(-l) on each geometric fibre. Let A be the sheaf 

of (non-commutative) ^-algebras g i v e n by 

A = f*(End„(J))°P 

where "op" denotes the opposite ring structure. Set A equal to the n-fold 
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130 VICTOR P. SNAITH 

tensor product A on S. A is an Azumaya algebra of rank r . In [Q4, §8.4] 

it is shown that when S is quasi-compact there is an H-space equivalence 

[l0
 ( ( B G L V + ) ; ^ ° W P - (3-6a) 

3.7: Severi-Brauer Scheme Theorem. If S is quasi-compact in §3.6 there is an 

algebra isomorphism 

VM q, V> ^ ̂ q j S p e c S ^ (BGLAnV ' 

Proof. In (3.6.1) the map i : (BGLIF ) A -> ( X ^ / T T N ) " is the canonical one on the 
q P 11(V) p 

factor corresponding to n = 0, i.e., the map induced by JF -> S = A . Let 

J = (jn> j-i » • • • > J i ) i-n terms of the left side of (3.6.1). Consider the 

H-space automorphism, k, of the left side of (3.6.1) which is given by "sub­

tracting" from the identity the map sending (x.,..., x _) to (x_,i.(xn),..., 
0 n-1 O i l 

i i (x _•,)) where i. is induced by S -> A.. The composition k ° j is homotopic 

to (j ,*,*,..., *) , the canonical map into the first factor. Consequently the 

spectrum A]F is isomorphic to one to which we may apply Part III, §1.10 

from which the computation follows. 

3.8: Example. If V is a complete, non-singular curve of genus zero over 

K = H°(V;g^) and having no rational point. Then [Q4, §8.4] V is a Severi-

Brauer scheme over K of relative dimension one and J is the unique indecompos­

able vector bundle over V of rank 2 and degree -2. In this example 
**<Afq>v> i <A¥q>SpecK),((BGLA+)») • (3-8.1) 

Next we have a localisation result. 

3.9: Theorem. If A is a regular IF -algebra then there are isomorphisms: 

(i) ir*(Alq> S p e c A [ t ] ) - 1 * **<Af q, S p e c A ) (°f algebras) induced by 

A -+ A[t]. 

(ii) ^ ^ q , S p e c A [ t , t - l ] ) ^ . ( A ¥ q , S p e c A > * ( ( B < ^ ( S P e c A » ; ) ' ( ° f 

77. (AW _ .)-modules) where BQP_( ) is the classifying space introduced in * q bpec A ./«_»i 
Part III, §1.4.6. 

Proof. Part (i) follows from the equivalence (the fundamental theorem for 

regular rings) BGLA ^ BGLA[t] established in [Q4, §6]. Also from [Q4, §6] 

one obtains a homotopy equivalence of spaces 

(BGLA[t,t-1]K *> (BGLA+K x (BQP.(Spec A)) * . p - P - P 

This is not an H-space equivalence so that the argument in Part III, §1.10 

yields only a TT, (AlF _ . )-module isomorphism. J > < ^ q? Spec A r 

3.10: Corollary. 

\(A^q,sPec¥q[t)t-l]) ^ ^ W V V 

Licensed to Univ of Rochester.  Prepared on Tue Jan 12 07:38:01 EST 2021for download from IP 128.151.13.58.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



ALGEBRAIC COBORDISM AND K-THEORY 131 

where U is the infinite special unitary group. 

Proof. Since (BGLIF4") * ^ BIT we have Q BQP(Spec"]F ) A ̂  BUA. Also BQP(Spec¥ ) 
q p - p o x - F q p - p ~ q 

is a connected space. Hence, taking classifying spaces of both sides will yield 

the universal covers (see e.g., [Ma 1]). That is, the universal cover of 

BQEXSpecIF ) " is BftBQE_(Spec IF K = BBlT = SlT. Since IT_, (BQP_(Spec IF ) ") 
q p q p p p i x - ^ q p 

= (K ¥ ) " a, Z it is now clear that BQP(SpecIF ) " ̂  (S1) * x SU~ ^ UA. The 
o q p = p = " q P - P P - P 

result now follows by combining the above discussion with Part III, §1.4.4(b). 

3.11: Remark. (i) The right hand side of §3.10 is additively isomorphic to 

the i-dimensional part of TT (MU;Z ) 0 E(v ,v~,...) where E(v ,v«,...) is an 
z p * 1 -J 1 -̂  

ZP 
exterior algebra on odd dimensional generators. This follows easily by a 
spectral sequence argument (cf. [Ad 1, Part II]. Recall that these spectra 

all have periodic homotopy and that the result depends only on i mod 2. 

(ii) Localisation in general. If R is an 3F -algebra and S c R is a 

multiplicative set of central non-zero divisors there is a fibration [Q5, 

p. 233], KQR x ( X £ ( S p e c R )) -> KoRs x (X £ ( S p e c ^ ) -> (BQH) (3.11.1) 

where H is the category of finitely generated R-modules, M, of projective 

dimension ^1 and M = 0. However (3.11.1) is not necessarily a fibration of 

H-spaces so that we cannot construct (as in Part III, §1.11) a spectral se-

quence to compute * * < * I q > S p e c (Rg)> from H^( (BQH)- * * ( M q > S p e c R»-

However if (3.11.1) is split then we may compute as in §3.10. 

3.12: Mayer-Vietoris Theorem. Let V = U u U9 where U. are Zariski opens and 

suppose V is regular ([Q4, §7.1]). Suppose also that K V -> K U $ K U is 

injective. Then there is a strongly convergent spectral sequence 

.2 
E H . « ^ ( U 1 n u 2 ) ) ; ' \ < ^ q , V » = > < A \ ) U 1

) * ( ( X P ( U 2 ) )
P
) 

(Note that the abutment is symmetrical in IL and U?.) 

Proof. In [Br-G, §3] it is shown that algebraic K-theory is pseudo-flasque. 
2 

This means that K Q V X X ^ - ^ ^ U . x x ^ - K ^ n i ^ ) x ^ R ̂  is a 

fibration. Since K V ^ K U1 fl> KU0 is injective the fibration property is o o 1 2 J 

preserved by taking base-point components—and also by completion. Hence 

° W p * (3i(u1))
P

 x ^(o2)>; * ^ n n / ; 
is a fibration. We obtain a spetral sequence from Part III, §1.11. However 

_ + 2 

the argument used in §3.7 shows that the "diagonal" (BGL3F )" -> IT (X^/TT * ) ~ 
q p i=1 X^i^ P 

is conjugate by an H-space equivalence to a map into the first factor (or into 

the second). Hence the abutment of the spectral sequence may be identified by 

Part III, §1.10. 
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3.12.1: Remark. The result of [Br-G, §3] referred to above makes no refer­

ence to the regularity condition yet claims the pseudo-flasque condition for 

the K-groups rather than for Quillen's K'-groups. In [Q4, §7.3] the Mayer-

Vietoris fibration is only proved for the spaces corresponding to K'-groups. 

The regularity assumption ensures that K! and K coincide [Q4, §7]. 

3.13: p-adic Algebraic Cobordism is not Pseudo-Flasque. In [Br-G] the notion 

of pseudo-flasqueness is defined for a generalised presheaf cohomology, like 

{AW TT; V -> Spec IF }. If V = U- u U„ is the union of two Zariski opens then q,V q 1 2 
being pseudo-flasque would imply an exact homotopy sequence of the following 

form. _ 
...-*• ^ . . - C A I F TT TT ) -* TT.(A1F T_) -> e TT.(A¥ TT ) ... 

1+1 q,UinU2' iv q,V' 1 l q,U_/ 

However if we set V = W~ and U- = U = /A— this would yield an exact se­ll 1 z lb 
q q 

quence, by §§3.4, 3.9 and 3.10, of the form 
2 

0 -> (MUZ )0J..1(U^) -> (MUZ )9*(BIT) --> e ir9.(MUZ ) -> (MUZ )9JU(lT) + 0. 
p ẑ -rl p p zx p -] Z'f p p z'v p 

All the groups are free TT0,(MUZ )-modules so applying ( ® Z ) yields an 
2" P "ir^CMUZ ) P 

exact sequence 2* p 
0 -> H ..(IT) -> H (BIT) -> Z e Z + H (IT) -> 0 odd p even p p p even p 

which is impossible since the Z -rank of the right hand group is countably 

infinite. 

3.14: Units, the Analogue of p-adic Topological K-theory and the Conner-Floyd 

Homomorphism. Suppose that A is a commutative 3F -algebra whose units are 

denoted by A*. We have an inclusion IF -> A* which induces (B3F*) ~ -> (BA*) ". 
q q p p 

As in Part III, §1.4.5(b) we use this map to form a spectrum (BA*)/V(b) where 

b is the image of b e TT9 ((BIF*)"). The determinant induces an H-map (preserv­

ing b e TT2) Det : (X_ ,Q .,r ^ (BGLA*V + (BA*) * P̂  (Spec A) p — p p 

which is split as a map of spaces. Consequently on homotopy and stable homo­

topy Det is surjective. Since 

77.(A¥ ) =lim4TrS,9 ((Xp^ A . D j q, Spec A > j+2n 1̂  (Spec A) p 

and Tr.((BA*)"(b)) = lim TTS_L9 ((BA*D 
J P ~^-+ J+2n p 

we obtain the following result—in view of Part III, §1.4.5(a),(b) and Part II, 

§9.1.1 this result is a generalisation of the Conner-Floyd theorem [C-F]. 

3.15: Generalised Conner-Floyd Theorem. In §3.14 Det induces a surjective 

ring homomorphism 

^ ^ c™^ A> + M(BA*r(b)) . * q, Spec A x p 
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ALGEBRAIC COBORDISM AND K-THEORY 133 

3.16: Application of Generalised Conner-Floyd Theorem. Let K be an IF -algebra 

without divisors of zero. Then for all i > 0, TT . (AlF _, „ r _ij has Z 
i q,SpecK[t,t Ĵ p 

as a quotient. 

Proof. Let L be the quotient field of K. Since L[t,t~ ]* = {xtm | c e L*, me Z} 

we have K[t,t_1]* ^ K* x Z and (BK[t,t"1]*)A ^ (BK*)" x (S1)* . Also K* re-
_ ~" _ P - P P _ _ 

tracts onto IF*, because if L is the separable closure of L then L* has IF* as 
a direct factor. Hence (BK*)" ^ (BIF*)" x Y for some Y. Arguing as in 

p — q p 

§3.9(ii) and Part III, §1.10 we have a homomorphism of 

TT,C((B¥*) "(b)) ^ TT^(KUZ )-modules 
Tr.((BK[t,t_1]*)"(b)) ^KU.(Y x (S 1)"; Z ) . 
l p - l P P 

The identification with the KUZ -spectrum comes from Part II, §1.4.5(c). Hence 

by §3.15, 

Det : TT.(A¥ _ v r _i ,) -> KU.(Y x (S1)"; Z ) i q,SpecK[t,t x] l p' p 

is onto and the result follows since the latter (unreduced) KUZ -group has Z 

as a quotient for all i > 0. 

3.17: Remark. From the foregoing examples it should be clear how to use 

Part II, §§1.4, 1.10, 1.11 to pass from a K-theory computational result to a 

result about p-adic algebraic cobordism. Consequently the techniques of 

devissage [Q4, §5] and reduction by resolution [Q4, §4] have their applica­

tions to computations in p-adic algebraic cobordism. However these applica­

tions are to specific examples and will not be examined here. In further 

papers I intend to examine some examples of the process of converting algebraic 

geometry phenomena into algebra through AlF -theory. 

§4. UNITS AND THE p-ADIC COBORDISM OF IF -ALGEBRAS AND THEIR QUILLEN K-THEORY 

Through this section A will be a commutative IF -algebra and p will be a 

prime different from the characteristic of IF . Also X" will denote the p-
q p 

completion of X, as in §3. 

If P(A) is the category of finitely generated projective A-modules (so 

that P(A) = Z(Spec A) of Part III, §1.4.6), then 
^BQP(A) ^ K A x BGLA+ [G-Q]. — o 

I wish now to relate the p-adic algebraic cobordism, TT , (• IF _ . ) , of §3 to 
6 q, Spec A 

the K.A = TT (BQP(A) ^ TT . (BGLA ) (i > 0) . 
Firstly we have the short exact sequence of [A-M, p. 183] 

0 -> Ext(Z/p*K.A) -* TT.((BGLA +K) -> Hom(Z/p°°,K._ A) -> 0 (4.1) 

where the left hand term may be identified with the p-adic completion of K.A. 

Hence I propose to concentrate for the moment on TT^((BGLA )") . This is a 

graded ring with the addition induced by direct sum of matrices and with the 
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product induced by tensor product [Sn 7, p. 71]. If b £ TT ((BGLIF )") is as 

in Part III, §1.4.4 then TT , ((BGLIF )") ^ Z [b] because of the equivalence ^ q p - p 
(BGLIF )~ ̂  BIT (= BUZ ) . Thus q p - p p 

TT. ( (BGLIF V M b " 1 ] = _lim TT. ((BGL¥~V) <± Z [b^'1] * q p > *+zn q p — p 

where the direct limit is taken over successive multiplication by b. If 

b e TT ( (BGLA )") also denotes the image of b we may hope to recover information 

about K.A by means of (4.1) and by studying 

limtTTt,[2n((BGLA+)^) ^ TT̂  ( (BGLA+) *) [b"1] . 
n P P 

Henceforth we will consider this localisation as a Z/2-graded ring and 

denote it by K.A. Explicitly for i = 0 or 1 K.A = lim TT . , 0 ((BGLA )"), the * l * l+zn p n r 

limit being taken over iterated products with b. 
— * 

4.2: Theorem. Let G. = A*/W where( ) * denotes units. A q _ 
(a) Then there is an epimorphism of Z/2-graded rings 

AA : TT. (A¥ 0 A) -> KUZ ((BG.D . A * q, Spec A p^ A'p' 

(b) There is a homomorphism of Z/2-graded rings 

Y A :KUZ^((BG A) P) + K,A . 

Both AA and Y. are natural with respect to IF -algebra homomorphisms. A A q 
Proof. (a) The determinant induces a (split surjective) map of H-spaces 

(BGLA+)~ -> (BA*)" . 
P P 

This map preserves the element b £ TT of Part III, §1.4.4. Hence a ring homo­

morphism is induced^ 

lr*(A¥q,SpecA) = ̂  ^ + 2 n ( ( B G L A + );> 

j AA 
n r 

t — * 

Being a direct limit of epimorphisms A' is onto also. However A* ^ IF x G , 

for we may map A to K, an algebraically closed field of finite characteristic, 

in such a way that IF c A injects. Then K* is the product of a divisible 
— * ^ 

torsion group, IF , and a divisible torsion free group so that projecting to 
IF' splits A*. Therefore 

3 — * 
(BA*K ^ (BIF ) ~ x (BGA)A ^ (CP )~ x (BGA)~ . 

p - q p A'P - ' P A y
P 

Combining Part III, §1.4.5(b) and §1.10 identifies the limit which is the range 
of A* as KUZ ((BG )") thereby constructing A as required. A p A p A 
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(b) Since (BGLA+)* is an infinite loopspace [Ma 2] [ ,(BGLA ) "] (and its 
p — P 

localisation by inverting b) is the zero-th group of a cohomology functor. 

However if m : (BA*)" x (BA*)" -* (BA*)" is the H-space product and if 
P P P 

x e [(BA*)", (BGLA+)"] 
P P 

is the canonical class, then 

m*(x) = x ® l + l ® x + x ® x . 

Also x restricted via b e TT0 ((BA*) ") is just b e irn((BGLA ) ") . Therefore 
1 P l P 

composition with x induces 
00 

x# : [_,(BA*)"] -> e [En(_), ( B G L A V H I T 1 ] = h*(_) , say . 

Also x„ is an exponential to which we may apply the version of Part II, §5.3 

in which KUA(__) is replaced by [_, (BA*)"] to obtain 

x : lim {Z2n( ),(BA*)"} -> h*( ) . 

IT " P 

Applying this map in the case of a sphere and identifying (as in (a)) 

lim^7K|?i ((BA*)") ^KUZ ((BG.)") -^-> *+2n p — p^ A p 

we obtain Y.. 
'A 

4.3: Examples fr7 
c z x e v e n 4.3.1. Let A = IF [t] then K.A ^ K.(IF ) = J P . ., by [Q4, Theorem 8]. q l = l q [0 l odd J 

— * 
However A* = IF so that GA is trivial and Y. takes the form 

q A TA 
^(KUZ p) _,K*(IF q[t]) i ^ ( I F q ) . 

which is an isomorphism by Part III, §§1.4.4/5. 

4.3.2. Let A = ¥ [t]/(tn), then K.(A) ±K. (IF ) in fact. However GA q l ~ l q A 
in this case is isomorphic to the kernel of the augmentation homomorphism 

— * 
A* -> IF , which is a q-group. Hence (BG.)" o> * and y is an isomorphism as in 

the previous example, because K^A and K^IF differ only in q-torsion. 

The details are left to the interested reader. 

In both 4.3.1 and 4.3.2 X is just the classical Conner-Floyd homomorphism 

TI-^MUZ ) + TT^OOJZ ) , by the p-adic version of Part II, §9.2.7. 

4.3.3. Let A = ¥ [t,t-1]. In this case [Q4, Theorem 8] K.(A) ^ K . ( ¥ ) B 
— —* q . I - I q 

K. _ (IF ) ^ IF (i > 0), and so K.(A) ^ Z for each i. The generator of l-l q - q l - p 
K.(A) with i even is the image of a generator of K.(IF ) under the inclusion 1 x Q ^ 
of IF into A. Loday has shown that the isomorphism K^. (A) —=± K. . . (IF ) is q 2i 2i-l q 
given by cup product with t e A* [G-Q, p. 237]. Hence the generator of K.(A) 

with i odd is represented by the generator of an odd dimensional homotopy group 
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of (BGLA4*)". However A* ̂  IF* x Z where Z is generated by t. Hence 
P ~ q 

TT..((BA*r) = Tr-CKCZ;!)̂ ) = Z 1 p 1 p p 
and K(Z,1)~ = (S )" is the classifying space of G . Also the split inclusion 

P _|_ P A 

(BA*)" -> (BGLA )" induces an isomorphism on fundamental groups so that K (A) 
is generated by TT ((BG )") = TT ((S^)"). The same conclusions apply to the 

zv P A 1 _ P 

generation of KUZ (BGA) = KUZ ((S )") so from Example 4.3.1 we deduce that 
P* A P* P 

YA is again an isomorphism. 
In this case, from §§3.9/3.10, we see that X takes the form of a composi­

tion 
MUZ (IT) + KUZ (IT,) -> KUZ ((S1)") 

P* P P* P P P 
in which the first map is the Conner-Floyd map and the second is induced by 
the determinant U -> S . 
4 . 3 . 4 . L e t TT be a f i n i t e a b e l i a n g roup of o r d e r p r ime t o q t h e n IF [TT], t h e 

q 

group r i n g of TT, i s a p r o d u c t of G a l o i s f i e l d s . T h i s i s s e e n by w r i t i n g 

TT = T T 1 X T r x » « - x 7 7 J a p r o d u c t of c y c l i c g r o u p s of p r ime power o r d e r so 
t h a t IF [TT] ^ IF [TT, ] 0 IF [TT0] 0 • • • and r e m a r k i n g t h a t IF [ t ] / ( t u - 1 ) i s a 

q - q i ^ q 2 q 
q 

product of Galois extensions of IF when u is a prime not equal to the charac-
_ N __ 

t e r i s t i c . Hence IF [TT] IT A. where A. i s a copy of IF . 
q i = 1 i i q 

L e t A = IF [TT] t h e n K.A 
q i 

N A 
e z 
i p 

, i odd. 
In this case G is the (N-l)-fold product of IF and y takes the form (as 

00 * 

(BA*)" ̂  (EP )") 
1 P ~ P N~l 

KUZ ( n (EP°V) +K A . 
P* i P * 

N . 
This is onto because the generators of K (A) = # Z are represented by the 

o 1 P 
generators of the K. (A.) which originate in TT0((BA*)~) ^ TT_(((CP )"). However 

o i z i p — z p 
N-l 

each of these elements factors through (KUZ ) ( II (CP ) ") . 
P o i p 

From §1.10 and §3 it is easy to see that A in this example takes the 

f ° r m . N-l . N-l . N-l 
MUZ ( n BUA) -> KUZ ( n BU~) -> KUZ ( n ((CP°V) 

P* 1 P P* i P P* ! P 

in which the first map is the Conner-Floyd homomorphism and the second is in-
oo 

duced by the determinant BU -> CP . 
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— 3 2 

4.3.5: Speculative Example. Let A = W [x,y]/(f) where f(x,y) = x - x - y . 

The K-theory of this ring is, I believe, unknown. However it is related to 

the K-theory of the elliptic curve (q odd) 
2 2 3 2 E = {[x,y,z] € IP— : zy = x - xz }. 
q 

If we excise fromE the closed point Z = (0,1,0) at infinity there is an exact 

sequence [Q4, §7.3.2] 

• • • -> K ,. (E - Z) -y K (W ) -> K (E) -> • • • . a+1 a q a 

Also E-Z = Spec A so that K^(E-Z) = K^(A). 

Since K (A) is unknown what about K.(A)? The previous examples suggest n * 
that 

yA:KUZ^((BGA)p) -> K*(A) 

is an isomorphism. For it is elementary to show that 0_ = G. so that y takes 

the form y : TT^(KUZ ) -> K^A. y. is clearly injective (by considering the map 

3F [x,y]/(f)-> HF given by sending y and x to zero). Hence the preceding 

examples suggest y is an isomorphism. Theorem 4.5 and Examples 4.6.1/4 then 

suggest that 
V V * Ki (^[^y]/^)) 

is an isomorphism on torsion of order prime to q. 

Incidentally attempts that I have made to compute the K-theory of the affine 
3 2 — 

cuspidal cubic (A = 3F [x,y]/(x -y )) suggest that in this case K^A and K̂ IF 
are isomorphic away from q-torsion and that y. is an isomorphism. 

4.4: Adams Operations and the Frobenius Map. Suppose now that A = B ® IF 
IF q 

+ q 
where B is a commutative IF -algebra. Write V = (BA*)" and W = (BGLA ) " . We 

q p P 

will now discuss how the Frobenius map <p : A -> A given by <J> (b ® A) = b 8 A 

induces an operation on the cohomology theory of which the zero-th group is 

lim [E (_) ,W] and hence on the homotopy groups K.A. However the operation 
n 

will be unstable in the sense that it does not commute with the evident iso­
morphism K.k ^ K.,9A. Therefore we must remember for i € 1L that 

K.A ^ lim [S 2 n + i,W]. 
n 
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138 VICTOR P. SNAITH 

The homomorphism cj) induces, via M -> (}>*M a natural transformation on the 

category of finitely generated projective A-modules. This induces an H-map 

d> : W -* W. When A = IF it is known [Q2] that W ^ BUZ and <j) coincides with 
q <i - p q _ 

t h e Adams o p e r a t i o n ij;q so t h a t <j> # ( b ) = qb e TT (W) f o r any A = B 0 IF . A l so 
qtf l IF ^ 

_ q 
if M is an A-module of the form M' 0 IF for some B-module, MT, then 

IF q 

q 

<J)*(M) = M. Hence we have a homotopy commutative diagram of natural maps and 

completion maps as follows. 
BGLB+ • BGLA+ 

4 ^ t * 
BGLA+ • W — 3 — • W 

Consequently the natural homomorphism induced by TT ° i 

p_ : [ ,BGLB+] ->lim [Z2n( ) ,w] 

satisfies 

(4.4.1) 

V P B = P B ' (4'4-2) 
There is a commutative diagram 

[X,W] 3 • [X,W] 

1 1 (4.4.3) 
[i2x,w] — > [i2x,w] 

(- 4> ) 
q q 

in which the vertical maps are those from the direct system—that is, multipli­

cation by b. This follows from the fact that <J> is a ring homomorphism so that 

b(*(x)) = ̂ (qb)* (x) = i <|> (bx) . 

Here — : W -* W i s a homotopy inverse to the equivalence given by m u l t i p l i c a t i o n 
by q. From (4 .4 .2) we obta in a r ing homomorphism 

$ : lim^ [Z2n(_),W] -* J L i m j E ^ O ^ ] (4 .4 .4) 
n n 

by composition with the maps •<— $ \. The verification is analogous to that of 

part II, §6.5. q 

Now consider the limit lim {Z (_),V} where, as in Theorem 4.2(a) the 
n 

limit is the one associated with the spectrum of Part III, §1.4.5(c). The 

Frobenius on A* induces 

<j> : V -> V 
q 

and the following diagram commutes. 
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ALGEBRAIC COBORDISM AND K-THEORY 139 

{ ,V} {_,V} 

(4.4.5) 

{EZ(_),V} 
(- $ ) 
q q 

-> {E Z(_),V}. 

lim {E2n(_),V} -> lim {E2n(_),V}. 

Here — is formed using the track addition and the diagram commutes because e„ 

is multiplication by b and <f> is a multiplicative homomorphism. We obtain a 

ring homomorphism analogous to (4.4.4) 

(4.4.6) 

Also for y e {E X,V} and x : V -> W as in Theorem 4.2(b) we have 

(4.4.7) 

and when n > 1 we need 

^2nT] 

( J _ 2 ( y ) ) * ( x ) = (-\ l ) ( y * ( x ) ) e [E2t lX,W] , 
q q 

When n = 0 this follows from the definition of d> and d> 
2n q q 

only note that the addition in [E X,W] can be defined by track addition or by 

the H-space sum on W so that dividing by q means the same on both sides of the 

above equation. 

The groups lim {E (__) ,V} and lim [E (_) ,W] are the zero-th groups of 
cohomology theories and $ -(Identity), $ -(Identity) extend* to natural 

transformations of cohomology theories. Therefore we may form the "fibre" 

cohomology theories. That is, there exist infinite loopspaces F$ and F$ 

together with homotopy exact sequences related by y as follows. 

-* 7T ( F $ ) -> l i m TT0 , (V) m q * 2n+m n 

7T ( F $ ) 
m q n 

n 

- " ^ V 2 n + m ( W ) 

Here y is as in §4.2 and the diagram commutes by virtue of (4.4.7). 

We are now ready to summarise the above discussion. 

4.5: Theorem.6 (a) In the notation of §§4.4.1/7 there is a commutative dia­

gram with exact rows in which broken-line triangle commutes for m > 1. 
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K (B) 
m 

TT ( F $ ) -> l i m TT0 ^ (W) — a > l i m TT0 , (W) -> TT0 , (F<2> ) . . . 
m q > zn+m > zn+m zm-1 q 

-> TT (F$ ) -> lim TT̂  (V) — g > lim. ir̂  (V) -> TT0 (F$ ) . . . m q * 2n+m » 2n+m 2m-1 q n n 

(KUZ ) ((BG.);) 
p m A p 

(b) If B is an augmented IF -algebra then 6 : A* •> A* .̂ F* x G. induces 
q q - q A 

a homomorphism <b : G. F Yq A A. In this case $ on (KUZ ) ((BG.)") is equal to the A q p m A p n 

composition of the Adams operation, i/> , with (B<j> ) ^ . 
Proof. Part (a) was established during the discussion. For example, the com­
mutative triangle of broken arrows results from (4.4.2). 

For part (b) we observe that (J) may be identified with the product of the 
Frobenius on IF* and d> on GA . Hence 4> will be, by Theorem 1.10, the composi-q Tq A q J 

tion of the map induced by B(j> : BG. BGA with the natural transformation of A 

.2n, (KUZ ) ( ) ̂  lim {£ ( ) , (BIF*)"} p o JJ-> - q p 

induced by <f> : IF* -> IF*. On (KUZ ) (S ) ^ Z this map is multiplication by q 
p q q p o = p 

s — 
since the generator of TT9((B1F*)A) is the image of b. However this class gen­
erates the ring TT U (KUZ ) so that ip4 on TT. (KUZ ) which is sufficient to 

ensure that the ring homomorphisms $ and \pH coincide as natural transforma­
tions . 
4.6: Examples. 
4.6.1. When B = IF it is the substance of [Q] that p' is an isomorphism on 

q jjn 
q 

p-torsion and of Part III, §1.4.5(c) that Y— is an isomorphism. 
q 

4.6.2. Let B = IF [t] or IF [t]/(tn). From §§4.3.1/2, 4.6.1 we see that pi is 
q q B 

an isomorphism on p-torsion. 
4.6.3. Let B = IF [t,t ] then GA ^ Z and i on G. is trivial. Hence applying 

q A = q A rr J ° 
Theorem 4.5(b) and §4.3.3 we obtain a diagram (e = 0 or 1) with exact rows. Vc^1^ ]) 

0 -> lim TT_ (W) ± Z - ^ ^-* Z 
> 2n+2m-e — p p 

Zm-e q 
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From the results of [Q] it is not difficult to show that p' is an ismorphism 
D 

on p-torsion in this example also. 
4.6.4. Let IT be a finite abelian group of order prime to q and let B = IF [TT] . 
Then B is a product of fields IF and p' is again an isomorphism on p-torsion. 

qd B 
To see this it suffices to consider the case B = IF J because both K.(_) and 

4 x 

the top row of the diagram of Theorem 4.5(a) are adaitive for finite products. 
Also, since y is onto in this example (by §4.3.4), we may compute $ from J 
which is given in terms of Adams operations. However there is a ring isomor­
phism , _ 
^ ^ d-1 

y : IF , 8 IF • $ IF 
qd IF q 0 q 

' 3 d_ 
with j-th component of y(a ® b) given by aq b (0 < i < d-1) . Hence on 0 IF the 

1 q 
Frobenius takes the form Therefore 

(xQ,..., xd_1) - (xd_1,x(),..., x d_ 2), 

d-1. 
lim TT0 ,0 (W) -» lim. TT0 ,0 (W) ̂  $ Z * 2n+2m • 2n+2m = _ p n n 0 

is given by 
(* -l)(y0>..., y ^ ) - (q-x^-XQ, q \ - x v . . . ) m m 

which is a monomorphism with cokernel isomorphism to Z /(q - 1)Z . Also 

0 = lim TT0 ,_ -. (W) in this case and again from the results of [Q] one sees * zn+zm-1 n 
that p' is an isomorphism on p-torsion. 
4.7: Remark. The object of examining the homomorphisms of Theorems 4.2 and 
4.5 in the foregoing examples is to substantiate a conjecture that for induced 
IF -algebras we may recover the torsion of the Quillen K-groups from the p-adic 
algebraic cobordism. See §5, Problems 11 and 12. 

§5. PROBLEMS 
Stable Homotopy Groups 
Problem 1. Part I, §§5-6, Part III, §2 and [K-Sn] elements were constructed 
g 

TT^(BG) for G = U, 0 or Sp. There exist several K-theory pairings induced by 
the K-theory product. For example, 

BO A 0 -> 0 
BSp A 0 •> Sp 
BO A Sp ̂  0 
BSp A Sp -> 0 

and BU A U -> U. 
s s s 

Detect the elements in TT^(O) , Tr>I?(Sp) and Tr̂ (U) which are obtained by pairing my 
elements with known elements. For example detect the pairing of an Arf 
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invariant one element in TT (0) with some of the newly constructed elements 
S ?r-2 

ini£(B0). 
Problem 2. In Part III, §4 some elements of order two were constructed in 
S S 

7T^(B0IF„). v ^ 7T;!c(JO(2)) .». . However the solution of the Adams conjecture 

[Q2; Su] implied that there is a split injection (2-localised) J0(2) -* SG. 

Since SG, . is an infinite loopspace its stable homotopy maps onto its homo-

topy be means of the Dyer-Lashof map d : QSG -> SG [Ma 1]. Hence we obtain a 

homomorphism (j > 1) 

TT̂  (B03F3)(2) -> ̂ ( S G ) ( 2 ) — i L > ^ ( S G ) ( 2 ) * 2
7 Tj ( S° ) * 

Detect in the stable stems the images of some of the elements constructed 

in Part III, §4. It is possible that the Hurewicz homomorphism 

TT.(SG ( 2 )) + H.(SG;Z/2) 

may detect some of these elements. (Originally Part III, §4 was motivated by 

the hope that the Arf invariant elements might arise this way—as far as I 

know that is still a possibility.) 

K-Theory 

Problem 3. In Part II, §9 a model for unitary K-theory was given 
o oo 

KU(X) ^ lim^Z X, (CP }. Consider the following S-map 
n 

8 f A g ® TT oo 
e : I HPTO -̂> BO A BSp -^-> BSp - ^ HP 

in which f e 7rft(B0) is the Bott class, ® is the KO-product and T\ is the 

collapsing map onto the MSp(l) summand in the stable splitting of BSp of Part I. 

Taking the limit over successive compositions with en we can form 

l i m {£ n X, HP°°}. T h i s g roup maps t o K0(X) ( c f . P a r t I , § 9 ) . I s t h i s a d e -
n 

s c r i p t i o n of K0(X) when dim X < °°? 

The Spectrum X(T) 

Problem 4. The homology mod 2 of B0]F* *L J 0( 2) looks like H5,c(S0) ® H^(BO). 

This suggests if we replace ]R by nF~ in Part III, §§1.4.2 and 3.1 we will 

obtain M0*(_A S 0 ) instead of MO* for the cohomology theory associated with 

B0IFq(n)• Prove this using the spectral sequence of Part III, §1.11 applied 

to the fibring J0(2) -> BO -* BSO. Can this be used to solve Problem 6 (cf. 

Part III, §5)? 
S + + 

Problem 5. Let x e TT . (BGLA ) then we have a map v :K.(A) -> TT . (BGLA (x)) given 

by setting v(f) - 1 equal to the element represented by the stable homotopy 

class of f : S 1 -> BGLA+ (cf. Part III, §5.4.1). Also v(f + g) = v(f)v(g) . In 

[Sn 6] or [Sn 7] we find K~Z/4 ^ Z/6. If x is taken as the generator of 
+ J 

K Z/4 ^ Z/2 and BGLZ/4 (x) is denoted by AZ/4 is K Z/4 + IT (AZ/4) non-trivial? 
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Problem 6. Since 2x = 0 in Problem 5 then TT.(AZ/4) is a Z/2-vector space. In 
Part III, §5 we found an epimorphism TT (AZ) -> MO*(S )• Does this epimorphism 
fact through reduction mod 4 TT (AZ) -* IT (AZ/4)? 
Algebraic Vector Bundles Over Number Fields 
Problem 7. In Part IV, §1 we saw how Atyiyahfs problem concerning algebraic 
vector bundles reduces to the study of Galois group actions of a € Gal(C/K), 

av:£(Vc£;Z)+£(Vc£;Z). 

a is a natural ring homomorphism as V varies over K-varieties. Can this 
naturality be used to determine the possible a ? 
p-adic Algebraic Cobordism 
Problem 8. In the notation of Part IV, §3 we have an exponential homomorphism 

v : K.(V) + TT.(A¥ „) 
l l q , V 

natural in the IF -scheme, V. This is constructed in a similar manner to v in 
q 

Part III, §5.4.1 as in Problem 5 using Xp, . + (X ( . )*. 
For i < 2 many K.V are known and for higher K-groups we have the results 

of [Q4]. Analyse v in some of these cases. 
Problem 9. In Part II, §§5-7 we saw how unitary K-theory operations induced 
cobordism operations. K.A is a X-ring and therefore has operations. If A is 
an IF -algebra these operations will induce operations on TT . (AlF „ A ) . q * q, Spec A 
What can be said about them in the examples of Part IV, §3? 
Classical Cobordism 
Problem 10. In Part II, §8 we saw one (very homotopy theoretic) method of 
describing the Pontrjagan-Thom construction in AU-theory. Give a direct geo­
metrical construction in terms of AU-theory. 
Quillen K-theory 
Problem 11. In Part IV, §4.5 is 

p' :K (B) -> TT.(F$ ) 
D l l q 

an isomorphism on p-torsion? For example, what about Example 4.3.6? 
Problem 12. In Part IV, §4.2 is the homomorphism 

yA : KUZ «BGA)p) - lin̂  4 + , ( (BGLA+);) 
n 

surjective for an IF -algebra, A? For instance, what about the test case, 
Example 4.3.6? 

In Problems 11 and 12 it may be possible that we should restrict to regu-
lar A. For example A = IF [x,y]/(x -y }—the coordinate ring of the affine 
cusp—has A* a- IF* but K A ^ Z e i F \ K I F . Notice however that this example — q o — q— o q 
is not conclusive since the K-groups differ by q-torsion only. In fact that is 
the only difference I have found in singular affine curves over IF and it is a 

difference which vanishes upon p-completion (p ̂  q). See, for example, the 
singular ring in Example 4.3.2. 
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FOOTNOTES 

3- BE |Gn 
1 _̂  nj 1 . r 

F C BGn n °° 1 n, j. F. Cohen has pointed out to me that the maps — „ „ p >• f — is not a 
Fn-1 C» B G1 BE J G -n-lj 1 

homeomorphism. In fact the range is not simply connected. This means that 
v~ is still defined and yields a stable equivalence, by the proof of 
G 
n 

Part I, Theorem 4.2. However y is not defined. This is simple to rectify. 
G 

In [C-M-T,2] is given a stable splitting of classifying spaces 
BE m 

B s k G i 

B\JGi 
The resulting (stable) inclusions of r — into BE 

J l - f 
l £k£n BE k _ x G± 

v 
B Z k - i G l 

Q- may be u sed i n 

the definition (p. 20) of y to replace 3 the proof then proceeds with G n m 
only minor changes. 

With reference to the stable splittings of [C-M-T,l] and its applica­
tions to my results see also footnote 2. 

The proof of Theorem 3.1 given here involves three ingredients. Firstly 
we have stably to split BU(n) and BSp(n) in a controlled manner, which 
uses the transfer map as developed in Part I and the stable splittings of 
QX developed in [Sn 1]. In addition we need the obstruction theory argu­
ments of Part II §§2.9, 2.10. However, since my first proofs (circa 1975/6) 
approaches to the transfer [Fe, Fe 2] and to stable splittings 
[C -M-T; C-M-T 1 & 2; K-Sa; Ma 3] have been developed which are more 
technological. For example the stable maps of loopspaces, which are used 
in [Sn 1 ] , become much easier to handle when one uses the right model for 
the loopspaces. This is done in [Sn 8 ] , 

If one uses the combinatorial geometry of the S-maps of [C-M-T 2] 
together with the double coset formula of [Fe; Fe 2] one can show—without 
any obstruction theory—that there are equivalences of ring spectra 

AU 2L V MU(k) and 
l<k 

ASp 2L V MSp(k) . 
l<k 
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This, of course, gives a very short proof of Part II, Theorems 2.1 and 

3.1. This proof will appear in [Sn 8] together with a simpler proof of 

Part II, Theorems 9.1.1/9.1.2. 

This remark applies to all the examples in which p-completion is used, 

namely Part III, §§1.4.4-1.4.6. 

It is not true that p-completion commutes with suspension so that in 

general if b e 7T0(X) then X" (b) will not be X(b) with Z -coefficients. 2 p p 
Although in the simple examples of Part III, §§1.4.4, 1.4.5 it seems to 

make little difference. However, in order to ensure that the p-adic 

algebraic cobordism theories are cohomology theories whose associated 

infinite loopspaces are p-complete (this is used for example in the sketch 

proof in §1.4.4) we must p-complete them again. This means forming 

P(X"(b)), in the notation of Part II, §9.1, and then completing again to 

obtain the infinite loopspace P(X~(b))". Hence p-adic algebraic cobordism 

shall mean the cohomology theory associated to the latter infinite 

loopspace. This convention applies in particular to the computations of 

Part IV, §3. 
2 

In order to use unreduced homology the spectral sequence [D- ] must be 

taken with respect to unreduced stable homotopy. If F and E are the dis­

joint unions of F and E with a point, , then the spectral sequence should 

read 

D* = H (B;̂ (F+)) => A(E +). p,q p q p+q 
S + 

In Part III, §1.13 set x = i#(b) e v (£) . We may make E into an H-space 

without unit by defining m, : E * E ^ E to be m : E X E -> E on E. X E a n d t o 

send all other points to °°. Let i denote an inclusion map and let S(_) 

denote the unreduced suspension. We have a homotopy commutative diagram 

1 X 1 S(ixi) 

(E+)*(E+) H ° p f S(E +xE +) — S(E+) 2L S E V S 1 

The above diagram ensures that the localisation of ^(E ) ^ ^(E) # ^(S ) 

by inverting x (using m to induce multiplication by x) is isomorphic toN 

T^(E)[1/X] = 7r;5r(E(x)) as defined in Part III, §1.2. 

This argument justifies the disappearance of the F and E in the spec­

tral sequence in the statement of Theorem 1.13. 

Licensed to Univ of Rochester.  Prepared on Tue Jan 12 07:38:01 EST 2021for download from IP 128.151.13.58.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



152 VICTOR P. SNAITH 

The argument given in Part IV, §4.2 blithely ignores Footnote #3. For this 

I apologise—and I hope it does not confuse the reader. The problem is as 

follows. 

In (a) the construction given on p. 134 yields 

A : p((Xp/s e c A ) A ) "*- P((BA*)*) where P(-) is as in Part II, §9.1. However 

in Footnote #3 we observed that p-adic algebraic cobordism should really be 

given by the homotopy groups of the p-completion of the domain space. Thus 

we must p-complete X.. The proof of §4.2(a) then applies to show 

TT*(P((BA*););) ^ K U Z ( ( B G A ) ; ) . 

* p p - p A p 

In (b) a similar remark must be added to the argument. Namely that, 

because P((BA*)~) has been replaced by P((BA*)~)~ we should redefine K.A 
P 2n + P p 

as follows. Form the space lim Q (BGLA ) A = K where the limit is taken 
n P 

over iterated products with b e TT9 and set /(.A = TT . ((K A)") instead of 
£. 1 1 A p 

,.(K A). 

Actually in the example of Part IV, §4.3 this alteration leaves K^A 

unchanged. 

Incidentally since writing this paper I have come to realise (influenced 

considerably by conversations with C. Soul£) that the "p-complete" 

approach to these algebraic cobordism spectra raises many difficulties 

because of the fact that p-completion and stable homotopy type do not 

commute. This may be overcome by considering algebraic cobordism spectra 

with coefficients in Z/p (m > 1). In this setting the results of Part IV, 

Theorem 4.2 become very nice. For example if p / 2 and A = IF with p 

dividing (q - 1) the mod p analogue of y is an isomorphism. 
it 
q 

This and related results will appear elsewhere. 

Part IV, §§4.4/4.5 require amendments similar to those detailed in Foot­

note 5. Details are left to the reader. However the changes do not 

affect Examples 4.6.1-4.6.4. 

Department of Mathematics 
The University of Western Ontario 
London, Ontario, Canada N6A 5B9 
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