NOTE ON COFIBRATIONS II

ARNE STRØM

Introduction.

The present paper is a continuation of [7] and contains some results of a general topological nature concerning fibrations and cofibrations. Section 1 is devoted to the proof of a dual of theorem 1 of [7], while the second section contains a characterization of cofibrations and some immediate consequences of this result. Theorem 3 of [7] is strengthened and dualized in section 3, and in the last section we prove that the pull-back of a closed cofibration over a fibration is a cofibration and we prove a conjecture of Per Holm (see [2]), who has also made a number of valuable suggestions. After the work described here was completed Puppe has published his article [5], which slightly overlaps this one.

A few words about notation. The set Y^X of all continuous functions from X to Y is given the compact-open topology. Continuous maps $i: T \to X$ and $p: Y \to Z$ induce continuous maps $i^{\sharp}: Y^X \to Y^T$ and $p_{\sharp}: Y^X \to Z^X$ such that $i^{\sharp}(f) = fi$ and $p_{\sharp}(f) = pf$. We denote by I the closed unit interval [0,1] with the usual topology and boundary $\dot{I} = \{0,1\}$. For any space X continuous maps $i_0: X \to X \times I$, $\pi_0, \pi_1: X^I \to X$ are defined by $i_0(x) = (x,0)$, $\pi_0(f) = f(0)$, $\pi_1(f) = f(1)$. By $pr_1: X \times Y \to X$ and $pr_2: X \times Y \to Y$ we denote the projections. Further $a \wedge b$ denotes the smaller of two real numbers a and b. All maps considered will be continuous.

We shall have occasion to use the following theorem of "exponential correspondence".

EXP. For arbitrary spaces X, Y, and Z there is an injection (not necessarily continuous)

$$\vartheta: Y^{X \times Z} \to (Y^X)^Z$$

such that $[\vartheta(f)(z)](x) = f(x,z)$. If X is locally compact and regular, ϑ is a bijection.

See [3, V. 3] for a proof. The maps f and $f' = \vartheta(f)$ are called associate maps. An immediate consequence of EXP is that $i: A \to X$ is a cofibration if and only if every commutative diagram

Received April 14, 1967.

can be filled in with a commutativity preserving map $\overline{F}': X \to Y^I$.

1.

In [7] it was proved that all cofibrations are imbeddings. In the case of a fibration $p: E \to B$ it will not always be true that p(E) is a quotient space of E (see 2.4.8 of [6] for a counterexample), but we do have the following result.

Theorem 1. If $p: E \to B$ is a surjective fibration with a locally path connected base space B, then p is a quotient map.

PROOF. The proof is modelled on the proof of theorem 1 of [7]. Consider the subspace

$$\overline{B} = \{(e, \omega) \in E \times B^I \mid \omega(0) = p(e)\}$$

of $E \times B^I$ and define $\overline{p}: E^I \to \overline{B}$ by $\overline{p}(\omega) = (\omega(0), p\omega)$. It is well known that there exists a section λ of \overline{p} (cf. [4]). The map $\pi_1: E^I \to E$ also has a section $s: E \to E^I$ sending each point of E to the constant path at that point. Consequently \overline{p} and π_1 are quotient maps. We define a map $\pi: \overline{B} \to B$ by $\pi(e, \omega) = \omega(1)$ and so obtain a commutative diagram

Because π_1 and \overline{p} are quotient maps, p is a quotient map if and only if π is a quotient map. We shall prove that π is a quotient map.

Let A be a subset of B such that $\pi^{-1}(A)$ is open in \overline{B} and suppose that $b \in A$. If ω_b is the constant path at b and e is a point of $p^{-1}(b)$, then $(e, \omega_b) \in \pi^{-1}(A)$ and there exists an open set $W \subseteq B^I$ such that

$$(e,\omega_b) \in (e \times W) \cap \overline{B} \subseteq \pi^{-1}(A)$$
.

Because ω_b is a constant path it is easily seen that there exists an open set $U \subseteq B$ such that

$$\omega_b \in U^I \subset W$$
,

 U^I being regarded as a subspace of B^I . Now, b belongs to U, and because B is locally path connected the path component V of U containing b is open. If b' is an arbitrary point of V there exists a path ω in U such that $\omega(0) = b$ and $\omega(1) = b'$. Then

$$(e,\omega) \in (e \times W) \cap \bar{B} \subseteq \pi^{-1}(A)$$

and $b' = \pi(e, \omega) \in A$. Therefore $V \subseteq A$, and so b is an interior point of A. But b was an arbitrary point of A and consequently A is open.

2.

THEOREM 2. The pair (X,A) is cofibered if and only if $X \times 0 \cup A \times I$ is a retract of $X \times I$.

PROOF. If (X,A) is a cofibered pair the identity map

$$X \times 0 \cup A \times I \rightarrow X \times 0 \cup A \times I$$

extends to a retraction

$$r: X \times I \to X \times 0 \cup A \times I$$
.

Conversely, if such a retraction exists, then every continuous map

$$f: X \times 0 \cup A \times I \rightarrow Y$$

has a continuous extension

$$fr: X \times I \to Y$$
.

It remains to show that every function $f: X \times 0 \cup A \times I \to Y$ whose restrictions $f|X \times 0$ and $f|A \times I$ are continuous is itself continuous. This is an immediate consequence of the following lemma (which is trivial if A is closed).

LEMMA 3. If (X,A) is a pair such that $X \times 0 \cup A \times I$ is a retract of $X \times I$, then a subset C of $X \times 0 \cup A \times I$ is open in $X \times 0 \cup A \times I$ if and only if $C \cap X \times 0$ and $C \cap A \times I$ are open in $X \times 0$ and $A \times I$ respectively.

PROOF. The "only if"-part is obvious. To prove the "if"-part let $C \subset X \times 0 \cup A \times I$ be such that $C \cap X \times 0$ and $C \cap A \times I$ are open in $X \times 0$

and $A \times I$ respectively. It is then easily seen that C is the union of $C \cap (A \times \{0,1])$ (which is open in $X \times 0 \cup A \times I$) and the set

$$B = U \times 0 \cup \bigcup_{n=1}^{\infty} ((A \cap U_n) \times [0, 1/n)),$$

where U, U_1, U_2, \ldots are open subsets of X given by

$$U \,=\, \{x\in X \,\mid\, (x,0)\in C\}\,,$$

$$U_n \,=\, \bigcup\, \{V\mid V \text{ open in } X \text{ and } (V\cap A)\times [0,1/n\rangle \subseteq C\}\,.$$

Then $A \cap U = A \cap \bigcup_{n=1}^{\infty} U_n$ and if V is an open subset of X such that $V \cap A \subseteq U_n$, then $V \subseteq U_n$.

We prove $U \subset \bigcup_{n=1}^{\infty} U_n$. Suppose $x \in X - \bigcup_{n=1}^{\infty} U_n$. Then $x \in \overline{A}$. Let $t \in \{0,1]$. We then have

$$r(x,t) \in r(\overline{A} \times t) = A \times t$$
.

If r(x,t) belongs to some $U_n \times I$ there must exist open neighborhoods V and W of x and t respectively such that

$$r(V \times W) \subset U_n \times I$$
.

We should then have

$$(V \cap A) \times t = r((V \cap A) \times t) \subset U_n \times I$$
,

that is, $V \cap A \subseteq U_n$. But this, in turn, would imply $V \subseteq U_n$, and so

$$x \in U_n \subset \bigcup_{n=1}^{\infty} U_n$$
,

contrary to hypothesis.

Consequently

$$r(x,t) \in \left(A - \bigcup_{n=1}^{\infty} U_n\right) \times I = (A - U) \times I \subset (X - U) \times I$$

for each $t \in (0,1]$, and, since r is continuous and X - U is closed,

$$(x,0) = r(x,0) \in (X-U) \times I, \qquad x \in X-U,$$

which shows that $X - \bigcup_{n=1}^{\infty} U_n \subset X - U$, that is, $U \subset \bigcup_{n=1}^{\infty} U_n$. Let $V_n = U \cap U_n$, $n = 1, 2, \ldots$ Then each V_n is open in X, $U = \bigcup_{n=1}^{\infty} V_n$, $A \cap U_n = A \cap V_n$, and

$$B = (X \times 0 \cup A \times I) \cap \bigcup_{n=1}^{\infty} (V_n \times [0, 1/n))$$

is open in $X \times 0 \cup A \times I$. But then

$$C = B \cup (C \cap (A \times \langle 0, 1]))$$

is also open in $X \times 0 \cup A \times I$, and the lemma is proved.

If A is a subspace of a space X the mapping cylinder of the inclusion map $A \subseteq X$ may be identified with the subset $X \times 0 \cup A \times I$ of $X \times I$. Lemma 3 shows that if $X \times 0 \cup A \times I$ is a retract of $X \times I$, then the subspace topology inherited from $X \times I$ is identical with the mapping cylinder topology. These topologies are also identical if A is closed, even if no retraction of $X \times I$ to $X \times 0 \cup A \times I$ exists, but examples are easily constructed to show that they need not be identical for arbitrary pairs (X,A).

We can now prove

Lemma 4. The pair (X,A) is cofibered if and only if there exist a continuous function $\varphi \colon X \to I$ such that $A \subseteq \varphi^{-1}(0)$ and a homotopy $H \colon X \times I \to X$ such that

$$H(x,0) = x, \quad x \in X,$$

 $H(a,t) = a, \quad a \in A, t \in I.$

and such that $H(x,t) \in A$ whenever $t > \varphi(x)$.

If, in addition, A is a strong deformation retract of X we may assume that φ is everywhere less than 1.

PROOF. If there exists a retraction $r: X \times I \to X \times 0 \cup A \times I$ we may define φ and H as follows:

$$\begin{split} \varphi(x) &= \sup\nolimits_{t \in I} |t - p r_2 r(x,t)|, \quad x \in X \;, \\ H(x,t) &= p r_1 r(x,t), \qquad \qquad x \in X, \; t \in I \;. \end{split}$$

Conversely, given φ and H a retraction $r: X \times I \to X \times 0 \cup A \times I$ is defined by

$$r(x,t) = \begin{cases} (H(x,t),0), & t \leq \varphi(x), \\ (H(x,t),t-\varphi(x)), & t \geq \varphi(x). \end{cases}$$

Finally, given φ and H and a strong deformation retraction $D: X \times I \to X$ of X to A we may replace $\varphi(x)$ and H(x,t) by $\varphi'(x) = \frac{1}{2} \wedge \varphi(x)$ and $H'(x,t) = D(H(x,t), 2t \wedge 1)$.

Note that if $\varphi(x) < 1$, then $H(x, \varphi(x)) \in \overline{H(x \times \langle \varphi(x), 1])} \subset \overline{A}$. Thus, replacing H(x,t) by $\overline{H}(x,t) = H(x,t \wedge \varphi(x))$ we obtain

Corollary 5. If (X,A) is a cofibered pair, so is (X,\overline{A}) .

We use lemma 4 to prove

THEOREM 6. If (X,A) and (Y,B) are cofibered pairs with A closed in X, then the product pair

$$(X,A) \times (Y,B) = (X \times Y, X \times B \cup A \times Y)$$

is also cofibered. If, in addition, A (or B) is a strong deformation retract of X (or Y), then $X \times B \cup A \times Y$ is a strong deformation retract of $X \times Y$.

PROOF. Let $\varphi \colon X \to I$ and $H \colon X \times I \to X$ be as described in lemma 4 and let ψ and G be the corresponding maps for (Y,B). Define $\eta \colon X \times Y \to I$ and $F \colon X \times Y \times I \to X \times Y$ by

$$\eta(x,y) = \varphi(x) \wedge \psi(y) ,
F(x,y,t) = (H(x,t \wedge \psi(y)), G(y,t \wedge \varphi(x))) .$$

Then $X \times B \cup A \times Y \subseteq \eta^{-1}(0)$ and F(x,y,t) = (x,y) if t = 0 or $(x,y) \in X \times B \cup A \times Y$.

Because A is closed $H(x,\varphi(x)) \in A$ whenever $\varphi(x) < 1$. Now suppose that $t \in I$ and $t > \eta(x,y)$. Then either $\varphi(x) \le \psi(y)$ and $\varphi(x) < t$, in which case $t \land \psi(y) \ge \varphi(x)$ and $F(x,y,t) \in A \times Y$, or $\psi(y) < \varphi(x)$ and $\psi(y) < t$, so that $t \land \varphi(x) > \psi(y)$ and $F(x,y,t) \in X \times B$. This shows that $F(x,y,t) \in X \times B \cup A \times Y$ whenever $t > \eta(x,y)$, and it follows from lemma 4 that $(X \times Y, X \times B \cup A \times Y)$ is cofibered.

If A (or B) is a strong deformation retract of X (or Y), then we may assume that φ (or ψ) is everywhere less than 1. But then $\eta(x,y) < 1$ for all $(x,y) \in X \times Y$, and so $F(x,y,1) \in X \times B \cup A \times Y$, which shows that F is a strong deformation retraction of $X \times Y$ to $X \times B \cup A \times Y$.

See [5] for an example showing that $(X \times Y, X \times B \cup A \times Y)$ need not be cofibered if neither A nor B is closed.

In the way of a converse of theorem 6 we have

Theorem 7. Suppose that $A \subseteq X$, that there exists a continuous function $\varphi \colon X \to I$ with $A \subseteq \varphi^{-1}(0)$, and that there exists a point $x_0 \in X - A$ such that $\varphi(x_0) \neq 0$. Then if (Y,B) is a pair such that $(X \times Y, X \times B \cup A \times Y)$ is cofibered, (Y,B) itself is cofibered.

PROOF. Let $\eta: X \times Y \to I$ and $F: X \times Y \times I \to X \times Y$ be functions for $(X \times Y, X \times B \cup A \times Y)$ as described in lemma 4. We may obviously assume that $\varphi(x_0) = 1$, and the functions $G: Y \times I \to Y$ and $\psi: Y \to I$ defined by

$$\begin{split} G(y,t) &= p r_2 F(x_0,y,t) \;, \\ \psi(y) &= \max \left(\eta(x_0,y), 1 - \inf_{t \in I} \varphi \, p r_1 F(x_0,y,t) \right) \;, \end{split}$$

will then satisfy the conditions of lemma 4.

Note, in particular, that (X,A) is cofibered if and only if $(X \times I, X \times 0 \cup A \times I)$ is cofibered, and then $X \times 0 \cup A \times I$ is a strong deformation retract of $X \times I$.

3.

According to 1.4.10 and 1.4.11 of [6] a cofibration $i:A \subset X$ is a homotopy equivalence if and only if A is a strong deformation retract of X (the closedness restriction on A in [6] is unnecessary in our case in view of lemma 3). Correspondingly, a fibration $p:E \to B$ is a homotopy equivalence if and only if there exists a section $s:B \to E$ of p such that $sp \simeq 1_E$ (see 6.2 of [1]).

We shall strenghten theorem 3 of [7] and also prove its dual. But first a definition.

DEFINITION. If $i: A \to X$ and $p: E \to B$ are maps, a map pair $f = (f'', f'): i \to p$ is a pair of maps $f'': A \to E$ and $f': X \to B$ such that pf'' = f'i, that is, the diagram

commutes. A map $\bar{f}: X \to E$ defines a map pair

$$\varrho(\bar{f}) = (\bar{f}i, p\bar{f}): i \to p$$
.

 \bar{f} is called a *lifting* of the pair $\varrho(\bar{f})$.

THEOREM 8. Let $i: A \to X$ be a map such that i(A) is closed in X. The following are then equivalent.

- (i) Every map pair $f: i \rightarrow p$ with $p: E \rightarrow B$ a fibration has a lifting.
- (ii) i is a cofibration and a homotopy equivalence.

When (i) and (ii) hold the lifting \bar{f} of f is unique up to homotopy relative to i(A).

PROOF. (ii) \Rightarrow (i) and the uniqueness property are just theorem 3 of [7]. To prove that (i) \Rightarrow (ii) note that $\pi_0: Y^I \to Y$ is a fibration for any space Y (2.8.2 of [6]), and so $i: A \to X$ must be a cofibration, and we may assume that i is an inclusion map. Because $A \to *$ is a fibration (* de-

notes a one-point space), a retraction $r: X \to A$ is obtained as a lifting of the map pair

$$A \xrightarrow{1_A} A$$

$$i \cap \qquad \downarrow$$

$$X \xrightarrow{} * .$$

The map $p: X^I \to X \times X$ defined by $p(\omega) = (\omega(0), \omega(1))$ is also a fibration ([6], 2.8.3), and the map pair

$$\begin{array}{ccc}
A & \xrightarrow{f''} & X^I \\
i \cap & & \downarrow p \\
X & \xrightarrow{f'} & X \times X
\end{array}$$

with f''(a)(t) = a, f'(x) = (x, r(x)) has a lifting $\bar{f}: X \to X^I$ associate to a strong deformation retraction of X to A.

In a similar fashion we prove

THEOREM 9. For a map $p: E \rightarrow B$ the following are equivalent.

- (i) Every map pair $f: i \rightarrow p$ with $i: A \subseteq X$ a closed cofibration has a lifting.
 - (ii) p is a fibration and a homotopy equivalence.

When (i) and (ii) hold the lifting \bar{f} of f is unique up to fiber homotopy over p.

PROOF. (i) \Rightarrow (ii): Applying (i) to map pairs

$$\begin{array}{ccc}
X \times 0 & \longrightarrow E \\
 & & \downarrow p \\
X \times I & \longrightarrow B
\end{array}$$

we see that p must be fibration. The pair (B,\emptyset) is a cofibered pair, and a section $s: B \to E$ of p is obtained as a lifting of

138 ARNE STRØM

Finally, let $F: E \times I \to E$ be a lifting of the map pair

$$E \times I \xrightarrow{f''} E$$

$$\bigcap \qquad \qquad \downarrow p$$

$$E \times I \xrightarrow{f'} B$$

with f''(e,0) = sp(e), f''(e,1) = e, f'(e,t) = p(e). Then $F: sp \approx 1_E$.

(ii) \Rightarrow (i): We know that there exists a section s of p and a fiber homotopy $F: sp \underset{p}{\simeq} 1_E$. Let $A \subseteq X$ be a closed cofibration and consider the map pair

$$A \xrightarrow{f''} E$$

$$\bigcap \qquad \qquad \downarrow p$$

$$X \xrightarrow{f'} B .$$

Define $F'': X \times 0 \cup A \times I \to E$ and $F': X \times I \to B$ by F''(x, 0) = sf'(x), F''(a,t) = F(f''(a),t), and F'(x,t) = f'(x). The diagram

$$\begin{array}{ccc} X \times 0 \cup A \times I & \xrightarrow{F^{\prime\prime}} & E \\ & \cap & & \downarrow p \\ & X \times I & \xrightarrow{F^{\prime}} & B \end{array}$$

is then commutative and has a lifting $\overline{F}: X \times I \to E$ (theorem 4 of [7]). A lifting \overline{f} of (f'',f') is given by $\overline{f}(x) = \overline{F}(x,1)$. Finally, any lifting \overline{f} of (f'',f') is fiber homotopic to $sp\overline{f} = sf'$.

For maps $i:A\to X$ and $p:E\to B$ the set of map pairs $i\to p$ may be identified with the fibered product $E^A\times'B^X$ of the maps $i^\sharp\colon B^X\to B^A$ and $p_\sharp\colon E^A\to B^A$, and the function ϱ mentioned above is then a continuous map from E^X to $E^A\times'B^X$. We have the following analogue of 7.8.10 of [6].

Theorem 10. If $i: A \subset X$ is a closed cofibration with X locally compact and regular and $p: E \to B$ is a fibration, then $\varrho: E^X \to E^A \times' B^X$ is a fibration, and if i or p is a homotopy equivalence, so is ϱ .

Proof. Given a map pair

$$Y \xrightarrow{f'} E^{X}$$

$$i_{0} \downarrow \qquad \qquad \downarrow \varrho$$

$$Y \times I \xrightarrow{F'} E^{A} \times 'B^{X}$$

we shall prove the existence of a lifting $\overline{F}'\colon Y\times I\to E^X$. By EXP there exist maps $f\colon Y\times X\times 0\cup Y\times A\times I\to E$ and $F\colon Y\times X\times I\to B$ such that

$$f(y,x,0) = f'(y)(x) ,f(y,a,t) = [pr_1F'(y,t)](a) ,F(y,x,t) = [pr_2F'(y,t)](x) .$$

The diagram

$$\begin{array}{cccc} Y \times X \times 0 \cup Y \times A \times I & \xrightarrow{f} & E \\ & & & \downarrow p \\ & & & & \downarrow p \\ & & & & & \downarrow p \end{array}$$

$$Y \times X \times I \xrightarrow{\qquad \qquad \qquad } B$$

is then commutative. By theorem 6 $(Y \times X, Y \times A) = (Y, \emptyset) \times (X, A)$ is a cofibered pair, and since $Y \times A$ is closed in $Y \times X$ theorem 4 of [7] gives us a lifting $\overline{F}: Y \times X \times I \to E$ of (f, F). The associate map $\overline{F}': Y \times I \to E^X$ is then a lifting of (f', F').

Now, suppose that i or p is a homotopy equivalence and let $C \subset Z$ be a closed cofibration. Every map pair

$$\begin{array}{ccc} C & \longrightarrow E^X \\ & & \downarrow \varrho \\ Z & \longrightarrow E^A \times 'B^X \end{array}$$

corresponds to a map pair

(2)
$$Z \times A \cup C \times X \longrightarrow E \\ \downarrow p \\ Z \times X \longrightarrow B$$

(EXP again), and theorem 6 together with theorem 8 or 9 gives a lifting $Z \times X \to E$ of (2). The associate map $Z \to E^X$ is then a lifting of (1). Consequently ϱ is a homotopy equivalence.

The following theorem is related to theorem 10 in very much the same way as theorem 7 is to theorem 6.

THEOREM 11. Let (X,A) be a topological pair and $p: E \to B$ a map. Suppose that $\varrho: E^X \to E^A \times 'B^X$ is a fibration and that there exist a continuous function $\varphi: X \to I$ and a point $x_0 \in X$ such that $A \subseteq \varphi^{-1}(0)$ and $\varphi(x_0) \neq 0$. Then $p: E \to B$ is a fibration.

PROOF. We may assume $\varphi(x_0) = 1$. In order to establish the existence of a lifting of the map pair

we define $g: Y \to E^X$ and $G: Y \times I \to E^A \times B^X$ by

$$g(y)(x) = f(y)$$
,
 $[pr_1G(y,t)](a) = f(y)$,
 $[pr_2G(y,t)](x) = F(y,t \wedge \varphi(x))$.

We thus obtain a map pair (g,G): $i_0 \to \varrho$, and since ϱ is a fibration (g,G) has a lifting $\overline{G} \colon Y \times I \to E^X$. The map $\overline{F} \colon Y \times I \to E$ defined by $\overline{F}(y,t) = \overline{G}(y,t)(x_0)$ is then a lifting of (f,F).

If we put (X,A) = (I,0) it follows that, in the notation used in the proof of theorem 1, $p: E \to B$ is a fibration if and only if $\overline{p}: E^I \to \overline{B} \approx E^0 \times 'B^I$ is a fibration, and then \overline{p} is a homotopy equivalence, which implies that the lifting function $\lambda \colon \overline{B} \to E^I$ for p is unique up to fiber homotopy over \overline{p} (cf. [4]), corresponding to the fact that the retraction $X \times I \to X \times 0 \cup A \times I$ for a cofibration $A \subseteq X$ is unique up to homotopy relative to $X \times 0 \cup A \times I$.

It is well known (and an easy consequence of theorem 10) that if X is locally compact and regular and $p: E \to B$ is a fibration, then $p_{\sharp} \colon E^X \to B^X$ is also a fibration. Conversely, it follows from theorem 11 (with $A = \emptyset$) that, if X is non-empty and $p_{\sharp} \colon E^X \to B^X$ is a fibration, then $p: E \to B$ is also a fibration.

4.

Consider the following situation. The pair (B,A) is cofibered, and $p: E \to B$ is a map. We denote $p^{-1}(A)$ by $E \mid A$. In general it need not be true that $(E,E \mid A)$ is cofibered, but we do have

THEOREM 12. If (B,A) is a cofibered pair with A closed and $p: E \to B$ is a fibration, then (E,E|A) is a cofibered pair.

PROOF. Let $\varphi: B \to I$ and $H: B \times I \to B$ be as given by lemma 4. Since p is a fibration there exists a homotopy $\overline{H}: E \times I \to E$ making commutative the diagram

$$E \xrightarrow{I_E} E$$

$$i_0 \downarrow \xrightarrow{\overline{H}} \downarrow p$$

$$E \times I \xrightarrow{H(p \times 1_I)} B$$

Define $\tilde{H}: E \times I \to E$ by $\tilde{H}(e,t) = \overline{H}(e,t \wedge \varphi p(e))$. \tilde{H} and φp then satisfy the requirements of lemma 4, which completes the proof.

Finally we prove

Theorem 13. Suppose that (B,A) is a cofibered pair with A closed, that $p: E \to B$ is a fibration, and that there exists a section s of p. Suppose further that there exist a continuous function $\psi: E \to I$ such that $E' = s(B) = \psi^{-1}(0)$ and a fiber deformation $D: E \times I \to E$ relative to E' such that $D(\psi^{-1}([0,1])) \times 1) \subseteq E'$.

Then $(E, E' \cup E | A)$ is a cofibered pair.

PROOF. As before, let $\varphi: B \to I$ and $H: B \times I \to B$ be as described in lemma 4. Replacing D(e,t), if necessary, by

$$D'(e,t) = \begin{cases} D(e,t/\psi(e)), & t < \psi(e) \\ D(e,1), & t \ge \psi(e) \end{cases},$$

it follows that we may assume $D(e,t) \in E'$ whenever $t > \psi(e)$. (E,E') is obviously a cofibered pair, and by theorem 4 of [7] there exists a homotopy $\overline{H}: E \times I \to E$ such that $\overline{H}(e,0) = e$, $p\overline{H}(e,t) = H(p(e),t)$, and $\overline{H}(s(b),t) = sH(b,t)$ for $e \in E$, $b \in B$, and $t \in I$. Define $\eta: E \to I$ and $G: E \times I \to E$ by

$$\begin{split} \eta(e) &= \psi(e) \land \varphi p(e) \;, \\ G(e,t) &= \overline{H} \big(D\big(e,t \land \varphi p(e)\big), \, t \land \eta(e) \big) \;. \end{split}$$

Then $\eta^{-1}(0) = E' \cup E \mid A$ and G(e, t) = e if t = 0 or $e \in E' \cup E \mid A$. If $t > \eta(e)$, then either $\psi(e) \ge \varphi p(e)$ and

$$pG(e,t) = p\overline{H}(D(e,\varphi p(e)), \varphi p(e))$$

$$= H(pD(e,\varphi p(e)), \varphi p(e))$$

$$= H(p(e), \varphi p(e)) \in A,$$

so that $G(e,t) \in E \mid A$, or $\varphi p(e) > \psi(e)$, in which case

$$G(e,t) = \overline{H} ig(D(e,t \wedge \varphi p(e)), \psi(e) ig) \in \overline{H}(E' \times I) = E'$$
 .

Thus, $G(e,t) \in E' \cup E \mid A$ whenever $t > \eta(e)$, and by lemma 4 $(E, E' \cup E \mid A)$ is cofibered.

REFERENCES

- 1. A. Dold, Partitions of unity in the theory of fibrations, Ann. of Math. 78 (1963), 223-255.
- 2. P. Holm, Microbundles and S-duality, Acta Math. 118 (1967), 271-296.
- 3. S.-T. Hu, Elements of general topology, San Francisco, 1964.
- W. Hurewicz, On the concept of fiber space, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 956-961.
- D. Puppe, Bemerkungen über die Erweiterung von Homotopien, Arch. Math. 18 (1967), 81–88.
- 6. E. H. Spanier, Algebraic topology, New York, 1966.
- 7. A. Strøm, Note on cofibrations, Math. Scand. 19 (1966), 11-14.

UNIVERSITY OF OSLO, NORWAY