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NOTE ON COFIBRATIONS IT

ARNE STROM

Introduction.

The present paper is a continuation of [7] and contains some results of
a general topological nature concerning fibrations and cofibrations. Sec-
tion 1 is devoted to the proof of a dual of theorem 1 of [7], while the sec-
ond section contains a characterization of cofibrations and some imme-
diate consequences of this result. Theorem 3 of [7] is strengthened and
dualized in section 3, and in the last section we prove that the pull-back
of a closed cofibration over a fibration is a cofibration and we prove a
conjecture of Per Holm (see [2]), who has also made a number of valuable
suggestions. After the work described here was completed Puppe has
published his article [5], which slightly overlaps this one.

A few words about notation. The set YX of all continuous functions
from X to Y is given the compact-open topology. Continuous maps
:7T—->X and p:Y - Z induce continuous maps #: ¥YX —» ¥7 and
py: YX —» ZX such that i*(f)=fi and p,(f)=pf. We denote by I the
closed unit interval [0,1] with the usual topology and boundary I=
{0,1}. For any space X continuous maps iy: X - X x I, g, 7;: XT - X
are defined by i4(x) = (x, 0), 7o(f) =f(0), 7y (f)=f(1). By pri: X xY - X
and pry: X x Y — Y we denote the projections. Further aab denotes the
smaller of two real numbers ¢ and b. All maps considered will be continu-
ous.

We shall have occasion to use the following theorem of ‘‘exponential
correspondence’’.

EXP. For arbitrary spaces X, Y, and Z there is an injection (not neces-

sarily continuous)
9. YXxZ . (YX)Z

such that [F(f)(z)](z)=f(x,2). If X is locally compact and regular, & is a
bijection.
See [3, V. 3] for a proof. The maps f and f'=9(f) are called associate

maps. An immediate consequence of EXP is that 2: 4 — X is a cofibra-
tion if and only if every commutative diagram
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FI

can be filled in with a commutativity preserving map F’: X - Y7,

In [7] it was proved that all cofibrations are imbeddings. In the case
of a fibration p: £ — B it will not always be true that p(E) is a quotient
space of I (see 2.4.8 of [6] for a counterexample), but we do have the
following result.

TrEOREM 1. If p: E — B is a surjective fibration with a locally path
connected base space B, then p is a quotient map.

Proor. The proof is modelled on the proof of theorem 1 of [7].
Consider the subspace

B = {(e,w) € Ex BT | »(0)=p(e)}

of B x Bl and define p: BT - B by P(w)=(w(0),pw). It is well known
that there exists a section 1 of p (cf. [4]). The map z,: ET — E also has
a section s: £ — BT sending each point of £ to the constant path at that
point. Consequently 7 and x; are quotient maps. We define a map
7: B - B by a(e,0)=w(1) and so obtain a commutative diagram

&
N~
+

5

3l
—
-

=

oo

JT

Because 7, and P are quotient maps, p is a quotient map if and only if
7 is a quotient map. We shall prove that = is a quotient map.

Let A be a subset of B such that z—1(4) is open in B and suppose that
be A. If w, is the constant path at b and e is a point of p~1(b), then
(e,mp,) € m1(A) and there exists an open set W < B! such that

(e,wp) € (ex W)nB < zn1(4).
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Because w, is a constant path it is easily seen that there exists an open
set U < B such that
w, € Ul < W,

UT being regarded as a subspace of BI. Now, b belongs to U, and because
B is locally path connected the path component V of U containing b is
open. If b" is an arbitrary point of V there exists a path w in U such
that w(0)=5 and w(1)=50'. Then

(e,w) € (ex W)n B < a1(4)

and b'=mn(e,w) € A. Therefore V<A, and so b is an interior point of 4.
But b was an arbitrary point of 4 and consequently A4 is open.

2.
THEOREM 2. The pair (X,A) is cofibered if and only if X x0UA x I
15 a retract of X x I.

Proor. If (X, A) is a cofibered pair the identity map
Xx0udxI->Xx0uAdxI
extends to a retraction
r: XxI >Xx0UAdxI.
Conversely, if such a retraction exists, then every continuous map
f: Xx0udxI—>Y

has a continuous extension

fri XxI->Y.

It remains to show that every function f: X xOuAd xI — Y whose re-
strictions f| X x 0 and f|A4 x I are continuous is itself continuous. This
is an immediate consequence of the following lemma (which is trivial if
A is closed).

Luvva 3. If (X, A) is a pair such that X x 0U A x I is a retract of X x 1,
then a subset C of X x0UAXI 18 open in X x 0U A x I if and only if
CnXx0and CnA xI are open in X x 0 and A x I respectively.

Proor. The “‘only if’-part is obvious. To prove the “if”’-part let
CcXx0uUAdxI be such that CNnX x0 and Cn4 x I are open in X x 0
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and A x I respectively. It is then easily seen that C is the union of
Cn (A x<{0,1]) (which is open in X x 0 U 4 x I) and the set

B=Ux0u G ((AnU,) x[0,1/n)),
n=1

where U,U,,U,,. .. are open subsets of X given by
U={xeX| (x,0)¢eC},
U,=U{V|Vopenin X and (VnA)x[0,1/n)=C}.

Then AnU=4nU;,_,U, and if V is an open subset of X such that
VnA<U,, then V<U,,.

We prove U< U, U,. Suppose xe X —U;_U,. Then x € 4. Let
t€¢0,1]. We then have

r(x,t)er(dxt) = Axt.

If 7(x,t) belongs to some U, x I there must exist open neighborhoods ¥
and W of x and ¢ respectively such that

(VxW)yc U,xI.
We should then have

(Vnd)xt = r((Vnd)xt) <« U,xI,
that is, VnA<U,. But this, in turn, would imply V< U,,, and so

o0
xcU, < UU,,
n=1

contrary to hypothesis.
Consequently

ra,1) € (A— U U”) «I = (A=U)xI < (X-U)xI
n=1
for each ¢ € {0,1], and, since r is continuous and X — U is closed,
(,0) = r(x,0) e (X-U)xI, =2eX-U,

which shows that XU, _,U,<X-U, that is, UcU,_,U,,.
Let V,=UnU,,n=1,2,.... Theneach V,isopenin X, U=U2)V,,
AnU,=AnV,, and ,

B=(Xxo0udxI)nlJ (V,x[0,1/n))
n=1

is open in X x 0 U A x I. But then
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C = Bu(Cn(4x(0,1]))
is also open in X x 0 U 4 x I, and the lemma is proved.

If A is a subspace of a space X the mapping cylinder of the inclusion
map 4<X may be identified with the subset X x0u 4 xTI of X x1I.
Lemma 3 shows that if X x0uU 4 x I is a retract of X x I, then the sub-
space topology inherited from X x I is identical with the mapping cy-
linder topology. These topologies are also identical if A4 is closed, even if
no retraction of X xI to X x0uU A4 x I exists, but examples are easily
constructed to show that they need not be identical for arbitrary pairs
(X,4).

We can now prove

Lemma 4. The pair (X, A) is cofibered if and only if there exist a con-
tinuous function ¢: X — I such that A < p=1(0) and a homotopy H: X x I —
X such that

Hx,0) =2, zeX,
H(a,) =a, acd,tel,

and such that H(xz,t) € A whenever t > @(x).
If, in addition, A is a strong deformation retract of X we may assume
that @ s everywhere less than 1.

Proor. If there exists a retraction r: X xI - Xx0U A4 xI we may
define ¢ and H as follows:

() = supy [t—prar(x,t)], zeX,
H(z,t) = pryr(z,t), zeX, tel.

Conversely, given ¢ and H a retraction r: X xI - Xx0udxI is
defined by
(H(z,1),0), t= (),
(H(x7t):t_¢(x))7 t;tp(x) .
Finally, given ¢ and H and a strong deformation retraction D: X x I —

X of X to 4 we may replace ¢(z) and H(z,t) by ¢'(x)=3irp(x) and
H'(x,t)=D(H(x,t),2tA1).

Note that if g(x)<1, then H(x,p(x)) € H(z x {p(z),1]) < A. Thus, re-
placing H(z,t) by H(z,t)=H(z,tAp(x)) we obtain

r(z,t) = {

CorOLLARY 5. If (X, A) is a cofibered pair, so is (X,A4).

We use lemma 4 to prove
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THEOREM 6. If (X,A4) and (Y,B) are cofibered pairs with A closed in X,
then the product pair

(X, 4)x(Y,B) = (XxY,XxBUAxY)

is also cofibered. If, in addition, A (or B) is a strong deformation retract
of X (or Y), then XxBUAXY is a strong deformation retract of X x Y.

Proor. Let ¢: X -~ I and H:X xI -~ X be as described in lemma 4
and let v and G be the corresponding maps for (Y,B). Define
n:XxY—>Tand F: XxYxI—->XxY by

n(,y) = @) Ayy),
F(z,y.t) = (H(z,tap(y), Oy,trp())) .

Then X x Bu A x Y <n~}(0) and F(z,y,t)=(x,y) if t=0 or (x,y) e X x BuU
Ax7Y.

Because 4 is closed H(x,p(x)) € A whenever ¢(z)<1. Now suppose
that t €l and ¢>n(x,y). Then either ¢(x) <y(y) and ¢(z)<t, in which
case tAp(y)Z@(x) and F(z,y,t)e Ax Y, or p(y)<e(x) and y(y)<t, so
that tAa@(x)>y(y) and F(x,y,t) e X x B. This shows that F(z,y,t) e
XxBuUAxY whenever t>(x,y), and it follows from lemma 4 that
(XxY,XxBuAdxY)is cofibered.

If A (or B) is a strong deformation retract of X (or Y), then we may
assume that ¢ (or y) is everywhere less than 1. But then #5(z,y) <1 for
all (x,y) e X x Y, andso F(x,y,1)e X x BU A x Y, which shows that F is
a strong deformation retraction of X x Y to X x BuAx Y.

See [5] for an example showing that (X x Y, X x Bu A x Y) need not
be cofibered if neither 4 nor B is closed.

In the way of a converse of theorem 6 we have

THEOREM 7. Suppose that A < X, that there exists a continuous function
¢: X - I with A<ep1(0), and that there exists a point xye X — A such
that @(xy) 0. Then if (Y,B) is a pair such that (X x Y, XxBUAx Y) s
cofibered, (Y, B) itself is cofibered.

ProoF. Let n: X xY —~T and F: Xx Y xI > XxY be functions for
(Xx Y, XxBuAxY) as described in lemma 4. We may obviously
assume that @(x,)=1, and the functions ¢: Y xI —~Y and y: Y - [
defined by

G(?/’t) = P"zF(xo,?l,t) ’
v(y) = max(n(zy,y), 1 —inf,; @pry F(24,9.1)) ,

will then satisfy the conditions of lemma 4.
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Note, in particular, that (X,A4) is cofibered if and only if (X x I,
X x0uU A xI)is cofibered, and then X x 0 U 4 x { is a strong deformation
retract of X x I.

3.

According to 1.4.10 and 1.4.11 of [6] a cofibration ¢: 4 < X is a homo-
topy equivalence if and only if 4 is a strong deformation retract of X
(the closedness restriction on A4 in [6] is unnecessary in our case in view
of lemma 3). Correspondingly, a fibration p: £ - B is a homotopy
equivalence if and only if there exists a section s: B — E of p such that
sp~1g (see 6.2 of [1]).

P

We shall strenghten theorem 3 of [7] and also prove its dual. But
first a definition.

DerintTioN. If i: 4 - X and p: £ -~ B are maps, a map pair f=
(f".f'):¢—p is a pair of maps f’: 4 -~ E and f': X —~ B such that
pf'" =f'i, that is, the diagram

fl/

A E
il 1?
¥ v
X - B
fl

commutes. A map f: X - E defines a map pair
olf) = (fipf): i—>p.
f is called a lifting of the pair o(f).

THEOREM 8. Let i: A — X be a map such that i(A4) is closed in X. The
following are then equivalent.

(i) Every map pair f:1 — p with p: E - B a fibration has a lifting.

(ii) ¢ 7s a cofibration and a homotopy equivalence.

When (i) and (ii) hold the lifting f of f is unique up to homotopy relative
to i(4).

ProoF. (ii) = (i) and the uniqueness property are just theorem 3 of
[7]. To prove that (i) = (ii) note that my: Y{ — Y is a fibration for any
space Y (2.8.2 of [6]), and so 7: A — X must be a cofibration, and we may
assume that 4 is an inclusion map. Because A — x is a fibration (* de-
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notes a one-point space), a retraction r: X — 4 is obtained as a lifting
of the map pair

IA
A A
in |
v
X s

The map p: X7 - X x X defined by p(w)=(w(0),w(1)) is also a fibra-
tion ([6], 2.8.3), and the map pair

2

A - X!
in E
X— XxX

fl
with f"(a)(t)=a, f'(x)=(z,r(x)) has a lifting f: X - X7 associate to a

strong deformation retraction of X to 4.

In a similar fashion we prove

THEOREM 9. For a map p: E — B the following are equivalent.

(i) Every map pair f:i— p with i: A<X a closed cofibration has o
lifting.

(ii) p ?s a fibration and a homotopy equivalence.

When (i) and (ii) hold the lifting f of f is unique up to fiber homotopy
over p.

Proor. (i) = (ii): Applying (i) to map pairs

Xx0 E
n lp
XxI]—» B

we see that p must be fibration. The pair (B,9) is a cofibered pair, and
a section s: B — E of p is obtained as a lifting of

g C E
N l?’
B - B

g
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Finally, let F': E x I — E be a lifting of the map pair

. f’l
ExlI E
| p
n v
Ex1I B
fl

with f"(e,0) =sp(e), f''(e,1)=e, f'(e,t)=p(e). Then F:sp~1y.
P

(ii) = (i): We know that there exists a section s of p and a fiber
homotopy F:sp~1y. Let A<X be a closed cofibration and consider
the map pair

fll
A ~E
n |7
b¢ B
fl

Define F'': Xx0UAxI—~E and F': XxI > B by F'(z,0)=sf'(z),
F(a,t)=F(f"(a),t), and F'(z,t)=f"(x). The diagram

FI'
Xxo0udxI - K
n |?
XxI— B
FI

is then commutative and has a lifting ¥: X x I - E (theorem 4 of [7]).
A lifting f of (f”,f’) is given by f(x)=F(x,1). Finally, any lifting f of
(f”,f’) is fiber homotopic to spf=sf".

For maps i: 4 - X and p: £ — B the set of map pairs 7 — p may be
identified with the fibered product E4 x'BX of the maps i¥: BX - B4
and py: B4 — B4, and the function ¢ mentioned above is then a continu-
ous map from EX to E4 x'BX. We have the following analogue of 7.8.10

of [6].

TEEOREM 10. If ¢: A<X 18 a closed cofibration with X locally compact
and regular and p: E — B is a fibration, then g: EX — E4 x'BX is a fibra-
tion, and if © or p 18 a homotopy equivalence, so is o.
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Proor. Given a map pair

Y EX
7:01 19
YxI E4x'BX

FI

we shall prove the existence of a lifting F': ¥ x I - EX. By EXP there
exist maps f: Y x X x0U Y xAxI -~ FE and F: Y x X xI - B such that

f(y,2,0) = f'(y)(=),

f(y’a" t) = [PHF'(?/: t)](a) ’

F(y,m,t) = [przF'(y,t)](x) .
The diagram

' f
YxXx0uYxAxI—F
n |»

YxXxI———->B
F

is then commutative. By theorem 6 (Y x X, Y x 4)=(Y,9)x (X,4) is a
cofibered pair, and since Y x 4 is closed in ¥ x X theorem 4 of [7] gives
us a lifting F: ¥ x X xI - E of (f,F). The associate map F': ¥ xI - EX
is then a lifting of (f', F’).

Now, suppose that ¢ or p is a homotopy equivalence and let C <Z be
a closed cofibration. Every map pair

0— L EX

(1 n N
Z——— E4x'BX
corresponds to a map pair

ZxAuOxX ——F
(2) N lp
ZxX—B

(EXP again), and theorem 6 together with theorem 8 or 9 gives a lifting
ZxX - E of (2). The associate map Z — EX is then a lifting of (1).
Consequently ¢ is a homotopy equivalence.
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The following theorem is related to theorem 10 in very much the same
way as theorem 7 is to theorem 6.

THEOREM 11. Let (X,A) be a topological pair and p: E -~ B a map.
Suppose that o: EX —~ B4 x ' BX is a fibration and that there exist a continu-
ous function ¢: X — 1 and a point xye X such that A<e-1(0) and
@(x9)+=0. Then p: E — B is a fibration.

Proor. We may assume ¢(z,)=1. In order to establish the existence
of a lifting of the map pair

f
Y—F
io' ‘lP

v
YxI - B
F

we define ¢: ¥ - EX and G: Y xI - E4x'BX by

9y)(x) = fly),
[prG(y,H))(a) = f(y),
[prG(y,t)](x) = F(y,tap(x)) .

We thus obtain a map pair (9,G): ¢, — g, and since p is a fibration (g, &)
has a lifting @: ¥ x I - EX. The map F: ¥ x I - E defined by F(y,t) =
G(y,t)(x,) is then a lifting of (f,F).

If we put (X, 4)=(Z,0) it follows that, in the notation used in the proof
of theorem 1, p: £ — B is a fibration if and only if 7: Ef -~ B~ E® x 'Bf
is a fibration, and then 7 is a homotopy equivalence, which implies
that the lifting function i: B — EZ for p is unique up to fiber homotopy
over P (cf. [4]), corresponding to the fact that the retraction X x1 —
X x0uUAxI for a cofibration 4 < X is unique up to homotopy relative
to Xx0uAdxl.

It is well known (and an easy consequence of theorem 10) that if X
is locally compact and regular and p: £ — B is a fibration, then
py: EX — BX is also a fibration. Conversely, it follows from theorem 11
(with 4 =0) that, if X is non-empty and p,: EX -~ BX is a fibration,
then p: K — B is also a fibration.

4.

Consider the following situation. The pair (B,4) is cofibered, and
p: B — B is a map. We denote p~1(4) by E|A. In general it need not
be true that (E,EF|4) is cofibered, but we do have
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THEOREM 12. If (B, A) is a cofibered pair with A closed and p: E -~ B
18 a fibration, then (E,E|A4) ts a cofibered pair.

Proor. Let ¢: B—~1 and H: BxI —~ B be as given by lemma 4.
Since p is a fibration there exists a homotopy H: E x I — E making
commutative the diagram

1y
E E
iol y J(p
Ex]——ouo s B
H(px1))

Define H: ExI —E by H(e,t)=H(e.tapp(e)). I and pp then satisfy
the requirements of lemma 4, which comvletes the proof.

Finally we prove

TarEOREM 13. Suppose that (B,A) is a cofibered pair with A closed,
that p: B — B is a fibration, and that there exists a section s of p. Suppose
Jurther that there exist a continuous function y: E — I such that B’ =s(B)=
p~1(0) and a fiber deformation D:ExI — E relative to K’ such that
D(y([0,1)) x 1) < .

Then (E,E'UE|A) is a cofibered pair.

Proor. As before, let ¢: B —~1 and H: BxI - B be as described in
lemma 4. Replacing D(e,t), if necessary, by

D(e,t[y(e)), t<wle)

e b, T izye)

it follows that we may assume D(e,f) € E' whenever ¢>y(e). (E,E’) is
obviously a cofibered pair, and by theorem 4 of [7] there exists a homo-
topy H: E x I — E such that H(e,0)=e, pH(e,t)=H(p(e),t), and H(s(b),?)
=gsH(b,t) for ec I/, be B, and t€I. Define n: E —~ 1 and G: ExI ~ E
by
n(e) = y(e) App(e),
Qe,t) = H(D(e, t A gpp(e)), t A(e)) .

Then 5-1(0)=E'UE|A and G(e,t)=e if t=0or ec E'UE|A. If t>7(e),
then either y(e) = pp(e) and
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pG(e,t) = pH(D(e,pp(e)), pple))
= H(pD(e,pple)), pp(e))
= H(p(e), pple)) € 4,

so that G(e,t) € B | A, or pp(e)>wp(e), in which case
Gle,t) = H(D(e, t A pple)), y(e)) € HE xI) = E' .

Thus, G(e,t) € E'UE | A whenever t>7(e), and by lemma 4 (E,E'VE|A)
is cofibered.
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