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Preface

The present book contains fourteen expository contributions on various topics
connected to Number Theory, or Arithmetics, and its relationships to Theoreti-
cal Physics. The first part is mathematically oriented; it deals mostly with ellip-
tic curves, modular forms, zeta functions, Galois theory, Riemann surfaces, and
p-adic analysis. The second part reports on matters with more direct physical
interest, such as periodic and quasiperiodic lattices, or classical and quantum
dynamical systems.

The contribution of each author represents a short self-contained course on
a specific subject. With very few prerequisites, the reader is offered a didactic
exposition, which follows the author’s original viewpoints, and often incorpo-
rates the most recent developments. As we shall explain below, there are strong
relationships between the different chapters, even though every single contri-
bution can be read independently of the others.

This volume originates in a meeting entitled Number Theory and Physics,
which took place at the Centre de Physique, Les Houches (Haute-Savoie,
France), on March 7 — 16, 1989. The aim of this interdisciplinary meeting was
to gather physicists and mathematicians, and to give to members of both com-
munities the opportunity of exchanging ideas, and to benefit from each other’s
specific knowledge, in the area of Number Theory, and of its applications to
the physical sciences. Physicists have been given, mostly through the program
of lectures, an exposition of some of the basic methods and results of Num-
ber Theory which are the most actively used in their branch. Mathematicians
have discovered in the seminars novel domains of Physics, where methods and
results related to Arithmetics have been useful in the recent years.

The variety and abundance of the material presented during lectures and
seminars led to the decision of editing two separate volumes, both published
by Springer Verlag. The first book, entitled Number Theory and Physics,
edited by J.M. Luck, P. Moussa, and M. Waldschmidt (Springer Proceedings
in Physics, vol. 47, 1990), contained the proceedings of the seminars, gath-
ered into five parts: (I) Conformally Invariant Field Theories, Integrability,
Quantum Groups; (II) Quasicrystals and Related Geometrical Structures; (III)
Spectral Problems, Automata and Substitutions; (IV) Dynamical and Stochas-
tic Systems; (V) Further Arithmetical Problems, and Their Relationship to
Physics.

The present volume contains a completed and extended version of the
lectures given at the meeting.
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The central subject of Arithmetics is the study of the properties of rational
integers. Deep results on this subject require the introduction of other sets. A
first example is the ring of Gaussian integers

Z[i] = {a +1b;(a,b) € Z*},

related to the representation of integers as sums of two squares of integers.
This ring has a rich arithmetic and analytic structure; it arises in this volume
in many different guises: in chapter 1 in connection with quadratic forms, in
chapters 2 and 3 as the group of periods of an elliptic function, in chapter 6
as a ring of integers of an algebraic number field, in chapter 7 it gives rise to a
complex torus, in chapter 10 it is used as the main example of a lattice.

A second example is the field C of complex numbers which enables one to
use methods from complex analysis. Analytic means have proved to be efficient
in number theory; the most celebrated example is Riemann’s zeta function,
which provides information on the distribution of prime numbers.

There is a zeta function associated with the ring Z[:]; it is constructed
in chapter 1 by Cartier, in connection with quadratic forms, and also defined
in chapter 6 by Stark, as the simplest case of the (Dedekind) zeta function
of a number field. Other examples of Dirichlet series show up in this book: in
chapter 1, Hurwitz zeta functions, in chapter 3, the Hasse-Weil zeta function
of an elliptic curve, in chapter 4, the Hecke L-series attached to a modular
form, in chapter 6, the Artin L-functions attached to a character; there are
even p-adic L-functions in chapter 9. The mode-locking problem in chapter 13
involves another type of zeta function, which in some cases reduces to a ratio
of two Riemann zeta functions.

Lattices, tori, and theta functions are also met in several chapters. The
simplest lattice is Z in R. The quotient is the circle (one-dimensional torus),
which is studied in chapter 14. Lattices are intimately connected with elliptic
curves and Abelian varieties (chapters 1, 2, 3, 5); they play an important role in
Minkowski’s geometry of numbers (chapter 10) and in Dirichlet’s unit theorem
(chapter 6). They arise naturally from the study of periodic problems, but their
role extends to the study of quasiperiodic phenomena, especially in quasicrys-
tallography (chapter 11). They deserve a chapter for their own (chapter 10).
Theta functions were used by Jacobi to study sums of four squares of rational
integers. They can be found in chapters 1, 2, 3, 5 and 10.

Let us now give a brief description of the content of each chapter.

In chapter 1 Cartier investigates properties of the Riemann’s zeta function,
with emphasis on its functional equation, by means of Fourier transformation,
Poisson summation formula and Mellin transform. He also decomposes the zeta
function attached to Z[i] into a product of the Riemann zeta function and a
Dirichlet L-series with a character. This chapter includes exercises, which refer
to more advanced results.

The set Z[i] is the simplest example of a lattice in the complex plane.
When L is a general lattice in C, the quotient group C/L can be given the
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structure of an algebraic Abelian group, which means that it is an algebraic
variety, and that the group law is defined by algebraic equations.

If L is a lattice in higher dimension (a discrete subgroup of C*) the quo-
tient C*/L is not always an algebraic variety. Riemann gave necessary and
sufficient conditions for the existence of a projective embedding of this torus
as an Abelian variety. In this case theta functions give a complex parametriza-
tion. The correspondence between Riemann surfaces (see chapter 7), algebraic
curves, and Jacobian varieties is explained by Bost in chapter 2. He surveys var-
ious definitions of Riemann surfaces, characterizes those defined over the field
of algebraic numbers, discusses the notion of divisors and holomorphic bundles,
including a detailed proof of the Riemann-Roch theorem. Various constructions
of the Jacobian are presented, leading to the general theory of Abelian varieties.
This thorough presentation can be viewed as an introduction to arithmetic va-
rieties and Diophantine geometry.

Coming back to the one-dimensional case, a possible definition of an elliptic
curve (chapter 3) is the quotient of C by a lattice L. The case L = Z[¢] is rather
special: the elliptic curve has non trivial endomorphisms. It is called of complex
multiplication (CM) type. We are not so far from down-to-earth arithmetic
questions; Cohen mentions a connection between the curve y? = z3 —36z (which
is ‘an equation’ of our elliptic curve) and the congruent number problem of
finding right angle triangles with rational sides and given area. One is interested
in the rational (or integral) solutions of such an equation. One method is to
compute the number of solutions ‘modulo p’ for all prime numbers p. The
collection of this data is recorded in an analytic function, which is another
type of Dirichlet series, namely the L-function of the elliptic curve. According
to Birch and Swinnerton-Dyer, this function contains (at least conjecturally) a
large amount of arithmetic information.

Once the situation for a single elliptic curve is understood, one may wonder
what happens if the lattice is varied. One thus comes across modular problems.
A change of basis of a lattice involves an element of the modular group SLy(Z),
acting on the upper half plane. Once more analytic methods are relevant: one
introduces holomorphic forms in the upper half plane, which satisfy a functional
equation relating f(r) to f((ar + b)/(ct + d)). The modular invariant j(7),
the discriminant function A, Eisenstein series satisfy such a property. Taking
sublattices induces transformations on these modular forms which are called
Hecke operators. These operators act linearly on a vector space of modular
forms; they have eigenvectors, and the collection of eigenvalues is included
in a Dirichlet series, which is Hecke’s L-series. An interesting special case is
connected with the A function: the coeflicient of ¢™ in the Fourier expansion
is Ramanujan’s 7 function. In chapter 4 Zagier completes this introduction to
modular forms by explaining the Eichler-Selberg trace formula which relates
the trace of Hecke operators with the Kronecker-Hurwitz class number (which
counts equivalence classes of binary quadratic forms with given discriminant).

In chapter 5 Gergondey also considers families of elliptic curves. He starts
with the function



viil Preface

a(z | 1) = 3 Hr(nat /o)

neZ

which is a solution of the heat equation. For fixed 7, this is an example of a theta
function with respect to the lattice Z + Zt; quotients of such theta functions
give a parametrization of points on an elliptic curve. For fixed z, the variable
7 parametrizes lattices; but the so-called ‘theta-constant’ J3(7) = 93(0 | 7)
is not a modular function: it is not invariant under isomorphisms of elliptic
curves. The solution which is proposed is to change the notion of isomorphism
by adding extra structures (it will be harder for two objects to be isomorphic:
the situation will be rigidified). Moduli spaces thus obtained are nicer than
without decoration.

Stark discusses in chapter 6 classical algebraic number theory. With al-
most no prerequisite one is taught almost the whole subject, including class
field theory! He starts with Galois theory of algebraic extensions (with explicit
examples: all subfields of Q(i,2'/) are displayed; another example involves a
Jacobian of a curve of genus 2). He studies the ring of integers of an algebraic
number field by means of divisor theory, avoiding abstract algebraic considera-
tions. The Dedekind zeta function of a number field is introduced, with its func-
tional equation, and its decomposition into a product of L-functions. Dirichlet
class number formula proves once again the efficiency of analytic methods. The
Cebotarev density theorem (which generalizes Dirichlet’s theorem on primes in
an arithmetic progression) is also included.

We mentioned that the quotient C/Z[i] has the structure of an algebraic
variety. This is a Riemann surface, and a meromorphic function on this surface
is just an elliptic function. More generally, to a plane algebraic curve is associ-
ated such a surface, and coverings of curves give rise to extensions of function
fields. Therefore Galois theory applies, as described by Reyssat in chapter 7. A
useful way of computing the genus of a curve is the Riemann-Hurwitz formula.
An application is mentioned to the inverse Galois problem: is it true that each
finite group is the Galois group of an algebraic extension of Q ?

The quotient of the upper half plane by the modular group I'(7) is a curve
of genus 3 with a group of 168 automorphisms; this curve is connected with a
tessellation of the unit disc by hyperbolic triangles. By comparing Figure 12
of chapter 2, or Figure 14 of chapter 7, with the illustration of the front cover,
the reader will realize easily that M.C. Escher’s ‘Angels and Demons’ has been
chosen for scientific reasons!, and not because the meeting gathered Physicists
and Mathematicians.

There is still a third type of Galois correspondence, in the theory of linear
differential equations. This is explained in chapter 8 by Beukers (who could

! If one forgets about the difference between angels and demons, the group of hy-
perbolic isometries preserving the picture is generated by the (hyperbolic) mirror
symmetries in the sides of a triangle with angles 7/2, 7/4, 7/6. If one really wants
to distinguish between angels and demons, one has to take a basic triangle which
is twice as big, with angles /2, 7/6, /6. Such groups are examples of Fuchsian
groups associated with ternary quadratic forms, or quaternion algebras.
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not attend the meeting). While the classical Galois theory deals with relations
between the roots of an algebraic equations, differential Galois theory deals
with algebraic relations between solutions of differential equations. Algebraic
extensions of fields are now replaced by Picard-Vessiot extensions of differen-
tial fields. Kolchin’s theorem provides a solution to the analytic problem which
corresponds to solving algebraic equations with radicals. Another type of alge-
braic groups occurs here: the linear ones. Beukers also gives examples related
to hypergeometric functions.

Analytic methods usually involve the field of complex numbers: C is the
algebraic closure of R, and R is the completion of QQ for the usual absolute value.
But Q has other absolute values, and ultrametric analysis is also a powerful
tool. This is the object of chapter 9 by Christol. There is a large family of p-adic
functions: exponential, logarithm, zeta and gamma functions, etc. Connections
between the ring of adelic numbers Z and the Parisi matrices are pointed out.

Chapter 10, by Marjorie Senechal, deals with lattice geometry, a vast sub-
ject at the border between mathematics and physics, with applications ranging
from integer quadratic forms to crystallography. The topics of Voronoi poly-
topes, root lattices and their Coxeter diagrams, and sphere packings, are cov-
ered in a more detailed fashion.

The next chapter is devoted to quasiperiodic lattices and tilings, which
model the quasicrystalline phases, discovered experimentally in 1984. Katz uses
the description of quasiperiodic sets of points as cuts of periodic objects in a
higher-dimensional space. These objects are periodic arrays of ‘atomic surfaces’,
which are placed at the vertices of a regular lattice. Several aspects of quasicrys-
tallography are considered within this framework, including the Fourier trans-
form and Patterson analysis, considerations about symmetry (point groups,
self-similarity), and the possibility of growing a perfect quasiperiodic lattice
from local ‘matching rules’.

The last three chapters involve concepts and results related to the theory of
dynamical systems, in a broad sense, namely, the study of temporal evolution,
according to the laws of either classical or quantum mechanics.

In chapter 12, Bellissard presents an overview of the consequences of al-
gebraic topology, and especially K-theory, on the spectra of Hamiltonian or
evolution operators in quantum mechanics. The main topic is the gap labelling
problem. Several applications are discussed, including the propagation of elec-
trons on a lattice in a strong magnetic field, the excitation spectra of qua-
sicrystals, and various one-dimensional spectral problems, in connection with
sequences generated by automata or substitutions.

Cvitanovié deals with circle maps in chapter 13. These provide examples
of classical dynamical systems which are both simple enough to allow for a de-
tailed and comprehensive study, and complex enough to exhibit the many fea-
tures referred to as ‘chaos’. The mathematical framework of this field involves
approximation theory for irrational numbers (continued fraction expansions,
Farey series).

The last chapter is devoted to yet a different aspect of dynamical systems,
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known as ‘small divisor problems’. This name originates in the occurrence of
small divisors in the calculations of the stability of a periodic orbit of a Hamilto-
nian dynamical system under small perturbations. Yoccoz reviews the progress
made in the understanding of the behavior of periodic orbits throughout this
century, starting with the pioneering works by Poincaré and Denjoy.

Let us finally emphasize that the title of this book reveals our conviction
that number-theoretical concepts are becoming more and more fruitful in many
areas of the natural sciences, as witnessed by the success of the meeting during
which part of the material of this book has been presented.

Saclay and Paris, May 1992.
M. Wealdschmadt, P. Moussa, J.M. Luck, C. Itzykson

We take advantage of this opportunity to thank again Prof. N. Boccara, the
Director of the Centre de Physique, for having welcomed the meeting on the premises
of the Les Houches School, with its unique atmosphere, in a charming mountainous
setting, amongst ski slopes (see ‘Quasicrystals: The View from Les Houches’, by M.
Senechal and J. Taylor, The Mathematical Intelligencer, vol. 12, pp. 54—64, 1990).

The Scientific Committee which organized Number Theory and Physics was com-
posed of: J. Bellissard (Theoretical Physics, Toulouse), C. Godréche (Solid State
Physics, Saclay), C. Itzykson (Theoretical Physics, Saclay), J.M. Luck (Theoreti-
cal Physics, Saclay), M. Mendés France (Mathematics, Bordeaux), P. Moussa (The-
oretical Physics, Saclay), E. Reyssat (Mathematics, Caen), and M. Waldschmidt
(Mathematics, Paris). The organizers have been assisted by an International Ad-
visory Committee, composed of Profs. M. Berry (Physics, Bristol, Great-Britain), P.
Cvitanovié (Physics, Copenhagen, Denmark), M. Dekking (Mathematics, Delft, The
Netherlands), and G. Turchetti (Physics, Bologna, Italy).

The following institutions are most gratefully acknowledged for their generous fi-
nancial support to the meeting: the Département Mathématiques et Physique de Base
of the Centre National de la Recherche Scientifique; the Institut de Recherche Fon-
damentale of the Commissariat & I’Energie Atomique; the Direction des Recherches,
Etudes et Techniques de la Délégation Générale pour I’Armement (under contract
number 88/1474); the French Ministére de ’Education Nationale; the French Min-
istere des Affaires Etrangéres; and the Commission of the European Communities.
The regretted absence of support from NATO finally turned out to allow a more
flexible organization.
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Chapter 1

An Introduction to Zeta Functions

by Pierre Cartier

Table of Contents

Introduction

1. Riemann’s zeta function
1.1. Definition
1.2. Bernoulli polynomials
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1.4. Analytic continuation of the zeta function
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.3. Transformation properties of theta functions
4. Mellin transforms : general theory
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Some examples of Mellin transforms

Functional equation of Dirichlet series
Application to quadratic forms
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Notations : N set of integers 0,1,2,---, Z set of rational integers 0,41, +2,+3,---,
R set of real numbers, C set of complex numbers, Re z and Im z real and imaginary
part of a complex number z. 0 is counted as a positive number. We say strictly
positive for a positive number different from 0. We use the standard notation f(z) =
O(g(x)) for ¢ near xp to mean that there exists a constant C' > 0 such that
|f(z)] < Clg(z)] for all « in a neighborhood of zj.
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Introduction

In this Chapter, we aim at giving an elementary introduction to some functions
which were found useful in number theory. The most famous is Riemann’s zeta
function defined as follows

oo

(1) ()= n=Tla-p"

n=1

(where p runs over all prime numbers). This function provided the key towards
a proof of the prime number distribution : as it was conjectured by Gauss and
Legendre before 1830 and proved by Hadamard and de La Vallée Poussin in
1898, the number w(z) of primes p such that p < z is asymptotic to z/log z.

Around 1740 Euler, in a amazing achievement, was able to calculate the
sums of the series ((2r) = Y oo, n~?" for r = 1,2,.... In particular he found
the following results

oo fos}
s 7T2 4 7.(.4
E n = — s E n = —,
6 90
n=1 n=1

In general ((2r)/x?" is a rational number, closely connected to the Bernoulli
numbers. These numbers B, are defined by their generating series

(2) % coth §=1+ZBmzm/m!.

m=2

Euler knew both the series expansion and the product formula for ((s) given
in (1). These definitions make sense in the half-plane Re s > 1 but at the
time of Euler there was little justification for considering ((s) beyond this
natural domain of existence. This fact didn’t prevent Euler from considering
€(0),¢(—1),... and one of his most striking results may be expressed as follows

(3) B, =-m{(l-m) for m=23,....

Around 1850, Riemann clarified the meaning of the analytic continuation and
used immediately this new tool in the case of {(s), thus vindicating the previous
formula.

In Section 1, we give a very elementary exposition of the theory of ((s)
which should be accessible to any reader with a working knowledge of infinites-
imal calculus and of the basic facts connected with Fourier series. It is truly
Eulerian mathematics. We perform the analytic continuation of ((s) by us-
ing Euler-MacLaurin summation formula. The method is elementary and very
direct and extends to various generalizations of ((s), namely Hurwitz zeta
function ((s,v) and the Dirichlet L-series L(x,s) associated to the Dirichlet
characters. We prove all the above mentioned results. While mentioning the
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functional equation for {(s), we refrain from proving it at this stage, and we
postpone such a proof to Section 3.

In Section 2, we explain the geometric and number theoretical facts con-
nected with Gaussian integers. The theory of these numbers, of great intrinsic
beauty, is also important in the plane crystallography; it provides one of the test
examples for the methods of Geometry of Numbers, and similar considerations
play a very important role in the theory of elliptic functions.

We are primarily interested in the corresponding zeta function
(4) Zy(s) = Z'(m* +n*)™"

the summation being extended over all pairs (m, n) of integers (of both signs).
The dash over X indicates that the pair m = n = 0 has to be excluded. Of
particular importance is the factorization

(5) Z4(s) = 4((s)L(s)
where ((s) is Riemann’s zeta function, the other factor being defined by
(6) L(s)=177-3"°4+5"°—--.

This very compact formula contains the main results obtained by Fermat and
Jacobi about the representation of an integer as a sum of two squares.

The quadratic form m? + n? is intimately connected with the Gaussian
integers of the form m + n¢, where ¢ = —1 and m, n are ordinary integers. We
give all necessary details in this case and just give hints about a very parallel
case, namely the quadratic form m? + mn 4 n? and the corresponding numbers
m + nj where j is a cubic root of unity (5% = 1). It was left to Dirichlet
(around 1840) to extend these results to the general binary quadratic form
am?®+bmn+cn?, after arithmetical investigations by Gauss. The corresponding
zeta functions are of the form 3 (am?+bmn+cn?)~* and can be generalized
in two different directions: ’

a) Epstein’s zeta functions are associated with quadratic forms in any

number of variables Ei’j a;;m;m;.
b) Dedekind’s zeta functions are associated with fields of algebraic numbers

and form the subject of Stark lectures in this volume.

In Section 3, we introduce two powerful analytical tools : Poisson sum-
mation formule and Mellin transformation. Both are classical and have been
extensively used in analytic number theory. In such a subject, it’s difficult to
innovate, but we believe that the method used for the analytic continuation
of Mellin transforms is not completely orthodox. It relies on Hadamard finite
parts and one of its main advantages is the ease with which one uncovers the
structure of poles of the extended functions. We prove the functional equation
by one of the classical methods, namely the one connected with theta series.
These series provide one of the most efficient tools in all sectors of analytic



4 Chapter 1. An Introduction to Zeta Functions

number theory. In the oral lectures we gave more emphasis to them, especially
in the multidimensional case. They would deserve a more thorough treatment
than the one offered in this Chapter. Our regret is somewhat alleviated by the
existence of many wonderful textbooks, among which we give a special mention
to Bellman (Bellman 1961) and Mumford (Mumford 1983).

Warning : The so-called ‘exercises’ are an integral part of this Chapter. Much
information has been given there is a more sketchy form than in the main text,
and is necessary for a complete understanding of the theory.

1. Riemann’s zeta function

1.1. Definition

We consider at first the values of ((s) for complex numbers in the half-plane
defined by Re s > 1. We can use the convergent series, where n runs over all
strictly positive integers

(1.1) ()= n7",
n=1
or an infinite product extended over all prime numbers

(12) =Tl

—8 *
» p

To prove the convergence of the series (1.1), one can compare it with the integral
floo z~°dz, which converges exactly when Re s > 1. According to classical
results, the convergence of the product (1.2) is equivalent to that of the series
> 2P° where p runs over the prime numbers. This last series can be written
as oo €qn~°, where &, is 1 or 0 depending on the fact that n is a prime or
not. The convergence is implied by that of the series (1.1). To show that the
series y oo n~° defines the same function of s as the product [L(A-p~),

expand every term in the product as a geometric series
o0

(1.3) 1=p™) =1+ apn
n=1

with ap , = p™™°. The product of these series, for p running over all primes, is
a sum of all terms of the form

(1'4) Apy,ny1Qpayng ** " Opy,ng

where p1, ..., px are prime numbers in increasing order p; < pa < -+ < pg and
where ny, ..., ny are integers equal to 1,2,. ... The product (1.4) is nothing else
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than N7° where N is equal to p}* - pp*. According to the unique decompo-
sition of a number as a product of primes, every power N~¢ with N equal to
1,2,..., occurs exactly once in the development of the product Hp(l —-p~%)~L
This proves the equivalence of the definitions (1.1) and (1.2).

We want now to prove the following result :

The function ((s) eztends to a meromorphic function in the complez plane
C, where the only singularity is a pole of order 1 for s = 1, with residue equal

to 1 (in other terms ((s) — s—if extends to an entire function).

Our proof is an elementary one based on Bernoulli numbers, Bernoulli poly-
nomials and Euler-MacLaurin summation formula. It’s one proof among many
known ones.

1.2. Bernoulli polynomials

We use the following generating series for Bernoulli polynomials
(1.5) Z B, (z)z"/n! = ze"* [(e* — 1).
n=0

The n-th Bernoulli number is the constant term of the n-th Bernoulli polyno-
mial, namely

(1.6) B, = B,(0).

These numbers are given by the following generating series

(1.7) > Bpz/nl=z/(eF —1).
n=0

Here are some simple consequences. It is obvious that the function

z +z_z e*/? 4 e=%/2
e —1 2 2 i/ e/2
is an even function. Hence we get B; = —1/2, while B,, is 0 for any odd number
n > 3.

A variant of Cauchy’s rule for multiplying power series is obtained as
follows. The product of the two exponential generating series

oo

(1.8) I'(z)=)_ cnz"/n!

n=0

and

(1.9) A(z) = dyz"/n!
n=0
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is given by
(1.10) I(2)A(z) =) en2"/n!
n=0

where the rule for the coefficients is

(111) €np = E (Z) Cn—kdk-
k=0

An interesting case occurs when A(z) = e*#, that is d,, = ™. We have there
(1.12) I(2)e™ =Y Cu(z)2"/n!
n=0

where the polynomials Co(z), C1(z), ... are derived from the constants cg, ¢, . . .
by means of the definition

(1.13) Ch(z) = i (Z) c;_kxk.

k=0

The function G(z,z) = I'(z)e® is completely characterized by the following
two properties

(1.14) %G(w,z) =z G(z,z)

(1.15) G(0,2) = I'(z).

These properties can be translated as the following characterization of the
polynomials Cp(z), where n = 0,1,2,...

(1.16) dii—cn(x) =n Cr_1(x),

(1.17) C(0) = cn.

The case n = 0 of formula (1.16) has to be interpreted as dCy/dz = 0, that is
Co(z) is the constant ¢o; by induction on n, it follows that Cy(z) is a polynomial
of degree n in z.

Let us specialize these results. If we assume that the Bernoulli numbers
are already known, the Bernoulli polynomials are characterized by the following
formulas (for n =0,1,2,...)

(1.18) %Bn(:&) =n B,_1(z),

(1.19) B,(0) = B,.
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Note also the generating series
(1.20) f: B,(z)z" /n! =€"% - f: B,.z"/n!
n=0 n=0
and the explicit formula
(1.21) B, (z) = ; (Z) B, _pz*.
k=0

The series 8(2) = Y. oo Bnz"/n! is in fact characterized by the relation

n=0

e*B(z) — B(z) = z. Using (1.5), this amounts to

(1.22) > {Ba(1) = Ba(0)}2"/n! = 2

that is
(1.23) B,(1) = B,(0) for n > 2,
(1.24) B;(1) = B1(0) + 1.

More explicitly, we get the inductive formula

(1.25) Z(m:l)Bk:O for m > 1

k=0

with initial condition By = 1. This enables us to calculate easily the following
table:

Bs = +1/6 By =—1/30
By =-1/30 Byo =+5/66
Bg = +1/42 B, = —691/2730.
Recall that By = —1/2 and B; = By = B; = --- = 0. A more extended

table is given by Serre (Serre 1970, page 147), but notice that our Bay is denoted
by (—=1)¥*! By in Serre’s book.

Exercise 1 : (symbolic method). If a function f(z) can be developed as a power
series f(z) = Y o, anz™, one defines symbolically f(B) as thesum Y o anBn
(the power B™ is interpreted as the n-th Bernoulli number B,). With this
convention, express the definition of Bernoulli numbers by e?* = z/(e* ~ 1),
or else e(B+1)2 = ¢B# 1 » The recurrence equation (1.25) can be written as
B"™ = (B 4+ 1)" for n > 2, and the definition of Bernoulli polynomials can be
expressed by B,(z) = (z + B)"™.

Exercise 2 : Generalize formulas (1.23) and (1.24) as follows

B,(z +1)=B.(2) + nz™ ! for n=1,2,....
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Derive the summation formula

Brt1(N +1)— Bpa

el n+1

Exercise 3 : Plot the graphs of the functions Bp(z) in the range 0 < z < 3,
1<n<4.

1.3. Euler-MacLaurin summation formula

Let us consider a real valued function f(z) defined in an interval a < z < b
whose end points a and b are integers; assume that f(z) is n times continuously
differentiable for some integer n > 1. Any real number t can be written uniquely
in the form ¢t = m + 6 where m is an integer and 0 < 8 < 1; we call m the
integer part of ¢ and denote it by [¢].

We denote by B,(z) the function of a real variable z which is periodic,
with period 1, and coincides with B,(z) in the fundamental interval [0, 1[.
Explicitly, we get

(1.26) Bo(z) = Bu(z — [z]).
It is clear that Bo(z) = 1 and that

- 1
(1.27) Bi(z)=z —[z] - 3
Hence the function B;(z) admits discontinuities at the integral values of z, with
a jump equal to —1 (see fig. 1). For n > 2, the function B,(z) is continuous.
Exercise 4 : Plot the graphs of the functions B,(z) in the range 0 < z < 3,
2<n<4.
According to formula (1.18), the function B, (z) admits derivatives of any order
k < n — 2, which are continuous functions given by
(1.28) BP @) =n(n—1)---(n — k+ 1)Bo_i(z).
The derivative of order n — 1 of By(z) is equal to n! By(z) with a jump for
every integral value of z. One more derivation gives

oA —

(1.29) T Ba(e) =nl(1- Y bz - k)

kEZ

using Dirac é-functions.

We state now Euler-MacLaurin summation formula

S ' B f ) (k-1)
> £ = [ fe) ds+ 3 {40 - 40 @)
(1.30) r=e ) k=1

n—1 b
¢ [ B @) da
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Fig. 1. Graph of function Bi(z).

Proof. A) Any integral over the interval [a, b] splits as a sum of b — a integrals,
each one extended over an interval [r,r + 1] for r = a,a + 1,...,b — 1. The
above formula is an immediate consequence of a similar formula for each of
these subintervals, and this fact enables us to reduce the proof to the case of
an interval of length b — a equal to 1. Replacing the integration variable z by
y + a where y runs over [0,1] reduces therefore the proof to the case a = 0,
b=1.

B) In this last case, we have to prove the formula
' ~ Bi f k- (k=1)
F0) = | f(e) de + Y ZE{ V() - 4D (0)}
0 k=1

" (_—173?— f Ba(2)f ™ () de

We begin with the case n = 1, which reads as follows

(1.31)

132) £ / @) de -+ B(f() = £O) + [ Ba(a) df(o)

But an integration by part gives

| 5@ #@) = Bi) £12) | / #(z) dB; (x)
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and since By(z) =z — %, we get

/01 By(z) df(z) = %{f(l) +f(0)}_Al f(z) da.

Formula (1.32) follows since By is equal to —1/2. To make the induction from
n to n + 1 in formula (1.31), we transform in a similar way the last integral
by integration by part. Since the derivative of Bpii(z)/(n + 1)! is equal to
B,(z)/nl, we get

= [ 5@ 19w o = =l / dBuia(x) 7(2)

) () £ [ ( w

/ Basa(2) df™)(x)

T (n+1) ( + 1!
1\l n ol
:‘(<n—1+)1>‘!3n+1{f<">(1) f<"><o>} (( 31) / Buti(z) f")(z) da.

But, let us remark that for n > 1, Bp41 is 0 if n is even, and that (—1)"*! is
1 if n is odd; we can drop therefore the sign (—1)"*! in front of B,;. This
calculation establishes the equality

(___13;;/0 Bu(z) () dz = (f:_+11)!{f(n)(1) )

+ (fl_—:)ln)"/o‘ Bn+1($) f(n+1)($) dz

and this formula provides us with the inductive step from n to n+ 1 in (1.31).
O

Exercise 5 : Let g(z) be any primitive function of f(z). If we let n go to infinity
in Euler-MacLaurin formula, we get

S f0) = {al x>+§jg<k>(x ] Tt

according to the symbolic method of exercise 1, we can write

b—1
(1.33) > f(r) = g(b+ B) - g(a+ B)

or even more boldly

b+ B
(1.34) Z f(r) = / f(z) de.

The particular case b — a = 1 can also be written as
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(1.35) g'(z)=g(z+B+1)—g(z + B).

Exercise 6 : Let us denote by D the derivation operator. In operator form,
Taylor’s formula is expressed as

(1.36) g(z +1) = (¢Pg)(a).

If we use the generating series 8(z) = Y- ; Bnz™ /n! for the Bernoulli numbers,
we can write

(1.37) g9(z + B) = (B(D)g)(x).
The operator form of formula (1.35) is therefore
D = (P - 1)8(D)

and this agrees with formula (1.7) which reads as §(z) = z/(e* — 1).

Exercise 7 : Using the fact that B; = —1/2 and that By = 0 for odd %, & > 3,
transform Euler-MacLaurin formula as follows

. ’ - kBk (k—1) (k—1)
. 3 = [ 5@ i DD - )
| (-1

+ n!

b
/ B.(z) f™(z) dz .

According to the symbolic method of exercise 5, derive the formulas

(1.39) > f(r):/ @) dm:/ f(z — B)dx

-B
and

(1.40) ¢'(2) = g(z — B) — g(a = B-1).

1.4. Analytic continuation of the zeta function

We consider a complex number s and two integers n > 1, N > 2. We use
Euler-MacLaurin formula in the case

and derive the relation
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ﬁ’: L _1-N' 14N
P | 2

(1.41) +inS(S+1)"'(S+k—2)(1-—N_"—k'H)/k!
k=2

(s+1) s+n—1)/ n(z) 2777 "dx.

We consider first the case Re s > 1 where the series Y oo, r™* converges with
sum ((s). If we let N go to infinity in the previous formula, we get

((s) = ;_1_—1+% + ZBkS(S +1)---(s+k—-2)/k!
(1.42) k=2

———lTs(s +1)--(s+n— 1)/ B,(z) 27° "dz.
n! 1

All these formulas, for n = 1,2, - - -, are valid in the said half-plane. In particular,
for n = 1, we get

(1.43) ¢(s) = / (z —[z] — );17'3_1 dz.

The fundamental remark is that the function B, (z) is periodic, namely we
have B,(z + 1) = By(z), hence it remains bounded over the whole interval
[1,+400[. Hence the integral

/ Fn(m)w_s"" dz
1

will converge provided that Re s > 1 —n. It follows that the right-hand side of
formula (1.42) defines a function (n(s) holomorphic in the half-plane defined
by Re s > 1 — n. Since the derivative of En(m) is equal to n?n_l(:v), an
integration by part shows that (,(s) and (,+1(s) agree on their common domain
Re s > 1—n. It follows that there exists in the complez plane C ¢ meromorphic
function ((s) whose only singularity is a pole of order 1 at s = 1, which is given
in the half-plane Re s > 1 — n by the formula (1.42). In particular, formula
(1.43) is valid whenever Re s > 0.

Exercise 8 : Using formulas (1.41) and (1.42) show that, for fixed s and for N
going to infinity, the quantity

(1.44) EJ(N)=1""42""4-- -+ N~* —((s)
has an asymptotic expansion

N'=* N=* B, ., Bni1
st 7 "'"(n+)

s(s+1)---(s+n—-1)N~°7" —
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Let us truncate these series after the last term which doesn’t tend to 0 with
1/N (make this precise!). Then one gets, for every complex number s # 1,

C(s) = lim {17° 427" 4+ 4+ N7° — E(N)}

where E.(N) is the truncated series.

Exercise 9 : Using our symbolic notations, transform the previous formulas as
follows

(1.45) E(N) = (N - B)'™*/(1-s)

(1.46) ((s)=1—-(1-B)'*/(1 - 3s).

1.5. Some special values of the zeta function

Letting n = 2 in formula (1.42), we get the following representation for {(s) in
the half-plane Re s > —1

(147) ()= ot 5t ase+ 1) [ Baleemrtd
. s)=—gtst s 35 1 2(z)z z.
We get immediately
1
(1.48) C(O)Z_E'
More generally, let m > 1 be an integer and put s = —m,n = m + 2 in
formula (1.42). The coefficient of the integral is equal to the value for s = —m
of the product s(s+1)--- (s +m)(s +m + 1), hence vanishes. Similarly, in the
summation over k, the term with £k = m + 2 vanishes for s = —m. Hence we
get
m-+1
1 1 m(m—1)---(m—k+2)
1.4 —m)=———— = — S (=1)F .
(L49)  Com) == S = 3 (VB -

We know that By is 0 if k is odd and k > 2. We can therefore replace (—1)* By
by By in the preceding formula, hence

m+1
(1.50) ~(m+1)¢(-m) =) _ (m:1>3k.
k=0

Taking into account the recurrence formula (1.25) for the Bernoulli numbers,
we conclude

(1.51) ((=m) =
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Distinguishing the cases where m is even or odd, we can conclude :

((=2r)=0
(1.52) { (=2 1) = —Bar/2r

for r = 1,2,.... We include a short table

1 1 1 1
C(O) = —5 ) C(—l) = —ﬁ 5 C(—3)= m s C(—5) = “ﬁ

((=2)=((-4) =¢(-6)="--=0.

Exercise 10 : Fix an integer m > 1. Using notations as in exercise 8, show that
the asymptotic expansion of E_,,(N) has finitely many terms, and deduce the
equality

1m 42" 4 ...+ N™ =((—m) + E_,,(N).

Here E_,,(N) is a polynomial in N, written symbolically
E_m(N)=(N—-B)™"/(m +1).

Using exercise 2, prove that the constant term of the polynomial E_,,(N) is
equal to —((—m) and give a new proof for formula (1.51).

Using the Fourier series expansions for the periodic functions B,(z), we
shall compute ((2),¢(4),{(6),.... Let us introduce the Fourier coefficients

1
(1.53) c(n,m):/0 Fn(:c)e_z"imz dz.

These can be computed using Euler-MacLaurin summation formula (1.30) for
the case a = 0,b =1, f(z) = e~2™'™% We get in this way

(1.54) 1= /01 e 2™ o 4 (=1)" "} (=2mim)"c(n, m)/n!

and derive easily the following values

(1.55) { ¢(n,0) =0

c(n,m) = —nl2mim)™™ for m #0.

For n > 2, the series Zm;éo m™" converges absolutely, hence the Fourier series

for B,(z) is absolutely convergent, and we get

(1.56) B.(z) = —n!(2mi)™ Z m—ne2Time
m#0

(here z is any real number, n any integer such that n > 2). The special case
z = 0 reads as follows
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(1.57) By = —nl(2m)™ Y m™"
m#0
for n = 2,3,.... The sum of the series is obviously 0 if n is odd, and we prove

again that B,, is 0 for n odd, n > 3. In case n = 2r is even we get
(1.58) ¢(2r) = (=1)""' By, 2%771 227 /(2r)L.

Since ¢(2r) is the sum of the series 1727 + 2727 4 ... with positive summands,
we get ((2r) > 0, hence we prove again that the sign of Bz, is equal to (—1)""!;
hence B; > 0,B4 < 0,Bg¢ > 0,.... We give a short table, using the values given
above (see end of Section 1.2) for the Bernoulli numbers :

n? nt m
@)=7%, (D=5, ) =5
" 210 691r?
® =5 0=gs5 0 P =Gsszen

Comparing formulas (1.52) and (1.58), we may remark (after Euler)
(1.59) C(1=2r) = (=1)" 272 x727(2r — 1)! ¢(2r)

for r = 1,2,.... The functional equation for {(s), to be established later, is a
generalization of this relation connecting ((s) and ¢(1—s) for a complex number
3. Moreover, we noticed that the function ¢(s) vanishes for s = —2, -4, —6,...;
these zeroes are dubbed ‘trivial zeroes’. After Riemann, everyone expects that
the other zeroes of {(s) are on the critical line Re s = —;— Despite overwhelming
numerical evidence, no mathematical proof is in sight.

Exercise 11 : Using formula (1.43), deduce

lim {¢(e) — ——}=1- / T(@— g da

8§ —

and by evaluating the integral conclude that {(s) — g—l—f tends, for s going to
1, to the Euler constant

1 1 1
v = lim (I+§+---+N—log N).

N—o0

Exercise 12 : Using formula (1.43), deduce

¢(0) = —1- /1 Tl - 2t da

and by evaluating the integral prove that ('(0) is equal to —3log 27 (Hint :
use Stirling’s formula).

Exercise 13 : Since (’(s) is given by the series
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- i(log n)-n”*
n=1

in the half-plane Re s > 1, one may interpret the previous result as assert-
ing that a ‘renormalized sum’ for the divergent series > - log n is equal
to %log 2w, or that /27 is the renormalized value for the divergent product

H;’ozl n. Shorthand : oo! = /2.

Exercise 14 : From formula (1.58) infer the relation 72 = lim c¢,, where ¢, is
=0

given by
¢r = r(r —1/2)|Bar—2/Bar|.

Here is a short list of values
c2=15,¢c3=105, c4 =10, ¢5 =99, ¢ =9.877, ...

to be completed using Serre’s table (Serre 1970, page 147). Remember 7% =
9.8696 - - -.

Exercise 15 : Calculate 7 with an accuracy of 10 digits using formula 710 =
93555.¢(10).

Exercise 16 : Show how to deduce from each other the following formulas

(%) B, = -nl(2m)™ Y m™",

m#0
o0 N
_ 2 _ 2y ;
(*x *) 7 cotg 7rz-—1/z+Z:l2z/(z —-n )—-]\}E’nc>o _ZNl/(z—n),
(* * *) sin Tz = 7z H(l——z2/n2).
n=1

Euler gave a direct proof of formula (* * x) thereby providing another proof of
the formula (1.58) giving ((2r).

Exercise 17 : a) Fix a complex number z # 0 and develop into a Fourier series
the function e®# for £ running over the real interval ]0, 1[. The result is

eZ? 1 2mimz

e
(+) ez—l_;+zz—27rim
mz#£0

where the series must be summed symmetrically
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b) By letting z go to 0, deduce the relation

for 0<z<1

(* *) —;——x:

(symmetrical summation). This is the limiting case n = 1 in formula (1.56).

¢) Expanding both sides of formula (*) as power series in z, give a new
proof of formula (1.56).

d) Using classical results about Fourier series, evaluate the half-sum of the
limiting values for z = 0 and z = 1 in formula (*) and deduce the formula

-+o00
z -1
(* * %) coth 3= 2 Z (z — 2mim)

m=—o0o

(symmetrical sunmation). Compare with the formulas in exercise 16.

1.6. Hurwitz zeta function

This is the function defined by the series

[eo}

(1.60) ((s,0) =Y (n+v)"°

n=0

for v > 0. Like the series for ((s), it converges absolutely for Re s > 1. In this
half-plane, we get the obvious relations

(1.61) ((s) =((s,1)
(1.62) ¢(s,v4+1)=((s,v) —v™".
We now get the following generalization of formula (1.41) by specializing the
Euler-MacLaurin summation formula to the case f(z) = (z +v)™%, a = 0,
b= N:

N-1 1—s __ 1—s -8 _ —s

Z (r+v)™° = Y S(v_t ) +2 (U2+ )

r=0

s

(163)  +3 Brs(s+1)---(s+k—2) (07" — (v + N)~*~F+1) k!
k=2

N
_% 3(S+1)-..(5+n—1)/0 Pn(w)(.’t-l-v)_s_" dz.

If we let N go to +oo, we get the following representation in the convergence
half-plane Re s > 1
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1—s —s n
C(qu)::_1+%+ZBk 8(3+1)...(S+k_2)v—'s—k—f-l/k!
(1.64) k=2

—% (s 1) (s+n— 1)/000§n(x)($ +v)7°7" da.

Arguing like in Section 1.4, we conclude that for every real number v > 0,
there exists a function s — ((s,v) meromorphic in the complez plane C whose
only singularity is a pole of order 1 at s = 1, which is given by formula (1.64)
in the half-plane Re s > 1 —n (for n = 1,2,3,...). In particular, for n = 1, we
get the following representation in the half-plane Re s > 0

1—s

o v7* *° 1 R
(1.65) ¢(s,v) = P + 5 s/o (z —[z] 5)(:1: +v) dz
and the representation
1.6 A A S +1)/°°§( )z +v)"*2 d
(1. )C(s,v)-—s_l 5 5 5 (s | a(z)(z+v x

in the half-plane Re s > —1.

From these formulas, one derives

1
(1.67) ¢(0,v) = 5~ v
More generally, the formula
__ Bmji(v) _
(1.68) ¢(—m,v) = — o for m=0,1,...

follows easily from (1.64). We leave to the reader the derivation of the following
formulas

(1:69) tim {¢(6,0) = 27} = ~I'O)/TW)

(1.70) ¢'(0,v) =log I'(v) — % log(27)

where ('(s,v) is the derivative of ((s,v) w.r.t. s. As in exercise 13, this last
formula can be interpreted as follows :

the ‘renormalized product’ H(n +v) s equal to % .

n=0

. — 1 . . . . - 1 —
The particular case v = 5 is worth mentioning : since F(E)— VT, we see

that the ‘renormalized product’ [ (n + %) is equal to v/2.

Exercise 18 : a) Deduce from formula (1.64) the asymptotic expansion
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1-s

(*) C(S,U) ~ ;J_ 7 + v2 +ZB’C S(S +1)...(3+k_2)v—3—k+1/k!
k>2

for fixed s and v a real number tending to +o0.

b) Using the functional equation
((s,v) = ((s,v+1)=0v""°
and the previous asymptotic expansion, show that ((s,v) can be calculated as

follows

N

— 1 -s _E'YUN
(+ +) ((s,v) = Jim_ {;}(n + )7 = By (N +v)}
where E!(w) represents the series
wl™  w™*  Bys _, B,
-T2 T2 Y T T

s{s+1)---(s+n—1)w™ 7" —...

truncated after the last term which doesn’t tend to 0 for w — +oo [compare
with exercise 8).

c) Let s be a complex number different from 0,—1,—2,.... Show that
n(v) = {(s,v) is the unique function of a variable v > 0 satisfying the functional
equation

(% %) n(v) —nlv+1)=v""

and admitting of an asymptotic expansion

(% * * *) n(v) ~ ch vk
k>0

for v tending to +oo, with nonzero exponents sy tending to +oo with k. [Hint :
replace n(v) by its asymptotic expansion in the functional equation (***) and
show that n(v) and ((s,v) have the same asymptotic expansion for v — +o0;
then repeat the reasoning in b) to show that n(v) is given by the right-hand
side of formula (* *)].

d) Prove the formulas (1.67) to (1.70) by a similar reasoning, using differ-
ence equations satisfied by the left-hand side in these formulas.

1.7. Dirichlet L-series

A generalization of Riemann’s zeta function is obtained as follows : let f > 1
be any integer and {6(n)} a sequence of numbers, periodic with period f

(1.71) (n+ f)=6(n) forninZ.

We define the series
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(1.72) L(8,5) =Y 6(n)n".

Since the sequence {8(n)} is periodic, it is bounded and the above series con-
verges for Re s > 1. The relation with Hurwitz zeta function is obtained as
follows

M-
gk

L(6,s) = Bla+mflla+mf)®

2
i
-
3
1l
1)

qu!?‘s

(a) Z(a +mf)~’

(a)f Z(m+ )

iS]
Il
-

Il P”ﬁ“

and finally

f
(1.73) L(05) = [7* 3 6(a) (s, )

From the analytic properties of the function ((s,v), it follows that the function
L(8,s) — %, where © 1s the mean value

N—oo

.1 1<
(1.74) O = lim N(a(1)+--.+9(zv))=?;9(a)

extends to a holomorphic function in the complez plane C. In particular, if the
mean value @ 13 0, then L(0,s) itself extends to an entire function.

For the special values of L(8, s) we note the following

(1.75) L(6,—m) = —

a
m-l-laz1 m+1(?)

for m =0,1,.... If the mean value @ is 0, we derive from (1.69) the value

(1.76) Z 11:’((;1//;‘

The most interesting case occurs with Dirichlet characters. Such a charac-
ter is a function x(n) of an integer n which fulfills the following assumptions

a) periodicity : x(n + f) = x(n)
b) multiplicativity : x(mn) = x(m)x(n) if m and n are prime to f

c) degeneracy : x(n) =0 if n and f have a common divisor d > 1.
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The integer f is called the conductor of x. The principal character 5 of con-
ductor f is given by

_ 1 if nisprimetof
(1.77) ef(n) = { 0 otherwise .

The mean value of €5 is ¢(f)/f where ¢(f) is the number of integers n prime
to f between 1 and f. A standard argument shows that the mean value of any
character x # €y is 0.

Any number N prime to f can be written as a product py'* - - - pp* where
the primes py,...,px don’t divide f. Moreover we have

X(N)NT2 = x(p1)™ py ™ - x(pe)™ pp™*°

in this case for any character x of conductor f. By repeating the argument in
Section 1.1, one proves the following result :

For any character x of conductor f, one has

(1.78) L(x,s) = Hl—_zl—_—

oif (P)p

where the product is extended over the primes p which don’t divide f.

In particular, one gets

(1.79) Lies,s) =¢(s) [J(a=p7")

pif

for the principal character e5. Hence L(ey,s) eztends as a meromorphic func-
tion in the complez plane, the only singularity being a simple pole at s = 1, with
residue lef(l—p‘l) = @(f)/f. For any nonprincipal character x of conductor
f, the function L(x,s) defined in the half-plane Re s > 1 eztends to an entire
function. The special values are given by

Bm+1
1.80 L(x,—m) = — 2
(1.80) (x,-m) = = mtt,
form =0,1,2,... where the x-Bernoulli numbers By, , are defined as follows
/ a
(181) Bm,x = fm—l Z X(G)Bm(?)
a=1

Exercise 19 : Derive the following generating series

o0
E{:] x(a)e®*

Exercise 20 : Prove the identity
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F-1
+ s
(+) > (s —5)=£2¢(s0)
a=0
for every integer f > 1. Using formulas (1.67) and (1.68) derive the relation
1 v+a
(x %) Bu(v)= ") Bm(—}‘—) (m 2 0)
a=0

for the Bernoulli polynomials B,,(v). Using formula (1.70) derive the multipli-
cation formula of Gauss and Legendre

(% %) EF(”}"‘) - e T ),

2. Gaussian integers

2.1. A modicum of plane crystallography

We consider an Euclidean plane, with Cartesian coordinates z,y. The corre-
sponding complex coordinate is z = z +yi, and enables one to identify complex
numbers with points in the plane. The distance between two points z and 2’ is
therefore the modulus |z — 2'|.

Given two complex numbers wy ,wq, both nonzero, whose ratio wq /wy is not
real, we denote by A the set of complex numbers of the form z = myw; +maws
where m1, my runs over the set Z2 of pairs of integers (of either sign). We shall
say that A is the lattice with basis (wi,wz2). A given lattice A has infinitely
many bases, given by

wy = awy + bwo
wh = cwy + dws

(2.1)

where (wy,w;) is a fixed basis and a,b,¢,d are integers such that ad — bc =
+1. It’s a standard practice to consider only positive bases, that is to assume
that wq /w1 = 7 has a positive imaginary part; this condition amounts to the
inequality

(22) i(wzwl - lez) > 0.

This being assumed, the formula (2.1) defines a positive basis (w},ws) if and
only if ad — be = 1.

In this Section, we shall study the following lattices :
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a) The Gauss lattice A4 (see fig. 2) is the lattice with basis w; = 1,wy = .
Its elements are the Gaussian integers of the form z = m+ni, with m, n integral.
Like every lattice, A4 is a commutative group w.r.t. the addition, namely

(m+ni))+(p+q¢) = (m+p)+(n+q)
(2:3) { —(m + ni) = —m+ (—n)i .

° ° b . .
. . ol . .
.
77/ >
. — -~—
RL Y .
-in
[ J ® "3 [ ] [}
1
. . 3 . °

Fig. 2. The Gaussian lattice A4 (the square C' is hashed).

But, more specifically, A4 is closed under multiplication
(m +ni)(p + i) = (mp — ng) + (mq + np)i

and the unit 1 belongs to A4. Hence Ay is a subring of the ring C of complex
numbers, indeed the smallest subring containing i. We express this property
by saying that A4 is the ring obtained by adjoining i to the ring Z of integers,
and we denote it by Z[:].

b) Let us consider the cube root of unity

S

(2.4) j o ermifs _% n

From the identity j2 + j + 1 = 0, one deduces
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(2:5) (m +nj)(p + ¢j) = (mp — ng) + (mgq + np — nq)j.

Hence the lattice Ag with basis (1, ) is the ring Z[j] obtained by adjunction of
7 to Z (see fig.3).

A

Fig. 3. The lattice As.

The lattice A4 defines a tessellation of the plane into equal squares. The
fundamental square C consists of the complex numbers z = = + yi: with the
condition |z| < 7, |y| < 4. The origin 0 is the center of the square C, its vertices
are the numbers (1 417)/2, and the length of the sizes is equal to 1. For every
point w in A4, denote by C\, the square deduced from C by the translation
moving 0 to the point w : the squares C,, form the aforementioned tessellation
of the plane. Notice also the following characterization of C,, :

z belongs to C,, if and only if |z — w| < |z — W'
for every point w' in the lattice Ay.
Let us denote by T(A4) the group of translations of the plane of the form

tw(2) = z + w for w running over A4. The square C' is a fundamental domain
for the group T(A4) (or for the lattice A4) namely :
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- the plane is the union of the squares C,, = t,(C) obtained from C by
the translations t,, in T(A4);

- for ¢, and ¢, distinct (that is for w # w'), the squares t,(C) and t.(C)
are disjoint or share at most a part of their boundary.

A scaling transformetion in the plane is a transformation of the form
ha(z) = Az, where A is a fixed nonzero complex number. Such a transfor-
mation transforms the lattice A4 with basis (1,¢) into the lattice AAy with
basis (A, A7). A fundamental domain for the lattice AA4 is the square AC with
vertices (A + Az)/2.

The scaling transformation h; maps z-+y? into —y+x1; it is a rotation 7/,
around 0 of angle 7/2 in the positive direction (counterclockwise). The relation
i(m+ni) = —n+ mi implies that the lattice A4, hence also every scaled lattice
A = Ay is invariant under the rotation ;.

We prove the converse :

Any lattice A in the plane which is invariant under the rotation ry /o 1s one
of the lattices AAy4.

Proof. a) Since A is a discrete subset of the plane, every disc D(0, R) of center 0
and finite radius R contains only finitely many points in A. Hence there exists
an element A # 0 in A whose length is minimal among the nonzero elements of
A.

b) Consider the lattice A’ = A7!A. It contains 1 and is stable under the
rotation h; = r,/;. Hence it contains ¢ = r,/,(1) and the lattice A4 with basis
(1,7) is contained in A'. By definition of A, any element u # 0 in A’ satisfies
the relation |u| > 1.

¢) Since C is a fundamental domain for the lattice A4, any point p in A’
is of the form g = w + v where w belongs to A4 (hence to A’) and v belongs
to C. Hence v belongs to A' N C. Assume that v # 0. Since v belongs to A’
we get |v] > 1 by b). Since v belongs to C we can write v = z + yi, with
[z] < %, ly| < %, hence

lv| = (22 +y?)'? <1/V2 < 1.
Contradiction! Hence we get v = 0, that is u = w belongs to Ay.
d) We have proved the equality A’ = Ay, hence
A=A = Ay

O

The lattice A¢ shares similar properties, which are established in the same
way as above.

For every w in A¢ denote by H,, the set of points in the plane which are
closer to w than to any other point in Ag¢, namely

z€H, & |z~w| <|z—W'| for every w'in As.



26 Chapter 1. An Introduction to Zeta Functions

The sets H,, are regular hexagons and form a tessellation of the plane. The
hexagon H,, is derived by the translation ¢, from the hexagon H = Hy, which
is therefore a fundamental domain for the lattice Ag.

Put ¢ = e™/3 = % + 4 i. We get (? = 7, hence the 6-th roots of unity are
enumerated as

17( = —j27C2 :j7<3 = —17C4 :j27C5 = _j'

The scaling transformation A« is the rotation ri, 3 around the origin. Since
the numbers (* belong to the ring A¢ = Z[j], the rotation /3 generate a cyclic
group Cs of order 6 of rotations leaving the lattice Ag invariant. Similarly, the
rotation r./, generates a cyclic group Cy4 of order 4 of rotations leaving the

lattice A4 invariant.
The hexagon H is centered at 0, and its vertices are the points

(2.6) ugp = %(ck +¢HY for 0< k<5

In particular, we get u; = iv/3/3 hence |u;| = 1/v/3, and the vertices of H
lie on the circle of center 0 and radius 1/4/3. We conclude |z| < 1/+/3 < 1 for
every point z in the fundamental domain H for the lattice Ag.

We can repeat the proof given above for A4 and conclude :

Any lattice A which 1s invariant under the group Cg of rotations of angle
kn/3 around the origin is of the form A = AAg for some nonzero complex
number A.

Exercise 1 : Let A be a lattice. Then any rotation around 0 leaving A invariant
belongs to Cy or Cg. In particular, there is no place for five-fold symmetry in
crystallography, but see the Chapters on quasi-crystals in this book! [Hint : any
rotation rg of angle 6 is a linear transformation in the plane considered as a
real vector space. In the basis (1,7) the matrix of r4 is

cos § —sin 6
sin 8 cos 6 ’

In a basis (wy,w2) of the lattice A, the rotation ry is expressed by a matrix

(¢ 4)

where a, b, ¢, d are integers. Computing the trace, we see that 2cos § = a + d
is an integer, . ..]

As a consequence :

a) The group of rotations leaving invariant the lattice A4 (and hence the
scaled lattices AAy) is Cy.

b) Similar statement for Ag and Cs.

¢) If alattice A is not a scaled lattice A4 or AAg, then its group of rotations
is the group C> consisting of the transformations z — z (identity) and z +— —z
(symmetry w.r.t. 0).
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2.2. Divisibility of Gaussian integers

In the ring Z[i] of Gaussian integers, we define the notion of divisibility in the
obvious way :

Let z and z' be nonzero Gaussian integers. One says that z divides 2', or
that 2' is @ multiple of z (notation z|2') if there ezists an element u in Z[i] such
that z' = uz, that is if 2'/z is & Gaussian integer.

It is obvious that z divides z; if z divides 2z’ and z' divides z", then z
divides 2"”. An important feature is the following : it may be that z divides 2’
and at the same time 2’ divides z. Indeed call a Gaussian integer u a unit if 1/u
is also a Gaussian integer. Then the previous circumstance holds if and only if
Z'/z is a unit.

Here is a fundamental result :

The units of the ring Z[1] of Gaussian integers are the 4-th roots of unity
11,42 = =1, = —.

For the proof we use the norm N(z) = |z|* of a complex number z = = + y1,
that is

N(2) =2z =2 +¢*

where 7 denotes the complex conjugate of z. If z = m+ni is a Gaussian integer,
its norm is the positive integer m?+n?. If z is a unit in Z[¢], there exists another
Gaussian integer z' with zz' = 1, hence

N(z)-N(z')=1.

Since both N(z) and N(z') are positive integers, we get N(z) = 1, that is
m? 4+ n? = 1. There are obviously four possibilities

m=0 n=1 z=1
m=20 n=-1 z=—1
m=1 n=>0 z=1
m=—-1 n=20 z=-1.

Exercise 2 : The units of the ring Z of ordinary integers are 1, 1.

Exercise 3 : The units of the ring Z[j] are the 6-th roots of unity 1, —1, 5, —7,
3% =i

Exercise 4 : Give an a priori proof of the following fact : a unit in the ring Z[:]
is any complex number u such that the scaling transformation hy(z) = uz be

a rotation mapping the lattice A4 = Z[7] into itself.

Exercise 5 : Same as exercise 4 for the lattice Ag.

Let us interpret the main geometrical result of Section 2.1 in terms of
divisibility. Given any Gaussian integer z, consider the set of its multiples uz,
where u runs over Z[i]. Geometrically speaking, it is the lattice zAy; from the
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number-theoretic point of view, it is an ideal of Z[i], that is a subgroup of Z[{]
(for the addition), stable under multiplication by any element in Z[z]. The set of
multiples of z (including 0) is the principal ideal generated by z, to be denoted
by (z). For instance, the ideal (0) consists of 0 only, it is called the zero ideal.

Let us state the main properties of ideals in Z[z] :

a) Every nonzero ideal in Z[i] is ¢ principal ideal. Namely, let I be such
an ideal. From a geometrical point of view, it is a nonzero subgroup of A,
stable under the rotation r/, mapping z into ¢z. This property precludes the
case where I is the set of multiples nw of a fixed Gaussian integer w, with n
running over Z. By the elementary divisor theorem, there exists a basis (wy,w2)
for the lattice A4 and integers di > 1,d2 > 1 such that I be a lattice with basis
(diw1,dzwz). Since I is a lattice, and it is invariant under the rotation r,/q, it
is of the form zA4 by our geometrical results, hence I = (z) as stated.

b) Let z and z' be nonzero Gaussian integers. Then z divides 2' if and only
if the principal ideal (2) contains the principal ideal (z') : obvious.

c) Two principal ideals (z) and (2') are equal if and only if 2’ /= 1is a unit
in the ring Z[i] : follows from b).

d) A principal ideal (2) is equal to the ideal (1) = Z[i] if and only if z is a
unit : follows from c).

It is possible to refine statement a). Let I be a nonzero ideal in Z[i]; any
Gaussian integer z such that I = (z) is called a generator of I. If z is such a
generator, there are exactly 4 generators for I namely z, —z,¢z and —¢z since
there are 4 units 1, —1,, —. Moreover, any element in [ is of the form z' = uz

with a Gaussian integer u and we have N(z') = N(u)N(z) as well as the
following classification

N(u)=0 of u=0
(2.7 Nu)=1 of u s a unit
N(u) >1 otherwise .

Hence the generators of I are the elements of minimal norm in the set I* of
nonzero elements of I.
Exercise 6 : Extend the previous results to the ring Z[j].

Exercise 7 : Let I be an ideal in Z[¢] and z a generator of I. Prove the equality
N(z) = (Z[i] : I). More generally, if A is any lattice invariant by the rotation
/2, the lattice 24 is contained in A, and the index (A : z4) is equal to the
norm N(z) for any nonzero Gaussian integer z.

Exercise 8 : Same as exercise 7 for the ring Z[j].
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2.3. Gaussian primes and factorization

The definition of Gaussian primes is complicated by the existence of units. In
the standard arithmetic of integers, the units in the ring Z are 1,—1, every
nonzero ideal [ is principal, with two generators n, —n, where n may be taken
strictly positive. Let a # 0 be an integer. The following two properties are
equivalent :

1

a) the number a 1s of the form £p, where p is @ prime’ number;

b) the number a is not a unit, and for every factorization a = bc, either b
or ¢ 18 a unit in Z.

This suggests the following definition : ¢ Gaussian prime s any Gaussian
integer @ # 0 which is not a unit (in Z[i]) and such that for every factorization
@ = A\ into Gaussian integers, then either A or X' is a unit (in Z[7]).

The product of a Gaussian prime by a unit is again a Gaussian prime.
Hence the property of a Gaussian integer @ to be prime depends only on the
ideal I = (w) and the above definition can be reformulated as follows?

w 1s prime if and only if the ideal I = (w) is different from Z[3], and I
and Z[i] are the only ideals in Z[i] containing I.

As a preliminary step towards the factorization of Gaussian integers into
Gaussian primes, we establish two lemmas :

(1.) Lemma. (Bezout identity) : Let w be ¢ Gaussian prime and z ¢ Gaussian
integer. If z 1s not divisible by w, there exist two Gaussian integers u,v such
that

(2.8) uz +vw = 1.

Remark : If 2 is divisible by w, every combination uz + vw is divisible by @
and this forbids the relation (2.8).

Proof. The linear combinations uz + vw, where u,v run independently over
Z[i], form an ideal J in Z[¢] (check it!). Since 0 - z + vw belongs to J, the ideal
J contains the ideal (w) = I. Since z = 1 -z + 0 - w belongs to J, but not to
I, the above definition of Gaussian primes leaves open the possibility J = Z[i]
only. Hence 1 belongs to J, and that means equality (2.8) holds for suitable
Gaussian integers u, v. a

(2.) Lemma. (Gauss’ lemma) : Let w be a Gaussian integer. Assume that @
is netther 0 nor a unit in Z[i|. Then w is a Gaussian prime if and only if 1t
satisfies the following criterion :

! In modern times, it was agreed that 1 is not a prime number.
% In the standard algebraic terminology this amounts to saying that the ideal I = (w)
is mazimal.
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(G) Whenever w divides a product of two Gaussian integers, it divides one
of them.

Proof. Suppose first that (G) holds and consider a factorization w = A)' into
Gaussian integers. Since w divides w = AX, it divides A or A’ according to
(G). Assume w divides A; since A divides w = A)', the number X' = w/\is a
unit in Z[¢]. Similarly, if w divides X, then A = w/X' is a unit. Hence w is a
Gaussian prime.

Conversely, assume w is a Gaussian prime. We have to prove that if w
doesn’t divide the Gaussian integers z and 2', it doesn’t divide zz'. According
to Bezout identity, there exist Gaussian integers u,v,u’, v’ such that

l=uz4vw=u'2 +v'w.

Multiplying out, we get
l=wuv 2z +v"w

with v" = uzv’ + uv'2'v + vo'w. According to the remark after lemma 1, this
precludes zz' from being a multiple of . O

[In customary parlance, an ideal p in a commutative ring is called primeif 1 ¢ p
and the relations a ¢ p,b ¢ p imply ab ¢ p. An ideal m is called mazimal if
1 ¢ m and every ideal containing m, but not 1, is equal to m. It’s a general
property that every maximal ideal is prime. The converse property (that every
nonzero prime ideal is maximal) is true only in special rings like the rings Z[7]
or Z[j], in general in rings in which every ideal is a principal ideal. The content
of lemma 2 is that @ is a Gaussian prime if and only if the ideal (w) in Z[{] is
prime.]

If w is a Gaussian prime, then uw is also a prime when v runs over the
units 1,7, —1, —7 of Z[i]. We call @ a normalized Gaussian prime in case w is
of the form m + ni, with m > 0 and n > 0. Then every Gaussian prime can be
written, in a unique way, as a product uw where u is a unit and w a normalized
Gaussian prime.

(1) Theorem. (Gauss) : Let z be @ nonzero Gaussian integer.
a) The number z admits the factorization uw;---wyn where u i3 @ unit

and wy,...,wN are normalized Gaussian primes.
b) If = = w'w|---why, is another factorization of the same kind, then
u=u',N = N' and the sequence (w},...,wh) differs from (wy,...,wN) by

a permutation.

Proof. Existence : If z is a unit or a Gaussian prime, we’re done! Otherwise,
we argue by induction on the norm N(z) of z, an integer n > 2. Since z is not
a Gaussian prime, nor a unit, there exists a decomposition z = z'2" where 2’
and z" are not units. Hence we get

N(z) =N(Z")N(z"), N(z')>1, N(z")>1
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and it follows
N(z') < N(z), N(z") < N(z).

By the induction assumption we may find decompositions
Z=v'wl @y, = w

of the sought-for type. Multiplying out we get the required decomposition for

z = 2'2" since u = u'u" is a unit. O

Proof. Uniqueness : Suppose given two decompositions

z=uwy - wN , 2z =uw@] T
Without loss of generality, assume N < N'. Since the Gaussian prime w)
divides z = uw; ---wy and does not divide the unit u, it divides one of the
factors wy,...,wn (lemma 2). For instance assume @] divides w;. Since both
@, w} are normalized Gaussian primes, this implies @w; = w}]. We are done if
N' = 1. Otherwise after simplifying we get

! ! !
Uy - WN = U Ty - - TWH

and continuing the previous argument, we may assume that, after a permuta-
tion of factors if necessary, we have

! ! ! 1
W1 =Wyy...,WN =Wy , U=UTWN4y " WN'-

If N = N', we derive u = «' from these equalities and we are done. If N < N/,
by simplifying we get

u=u'wyy o
and the Gaussian prime w'y, would divide the unit . But a divisor of a unit is

a unit and a Gaussian prime is not a unit. Hence the case N < N' is impossible.
0O

We can express the decomposition theorem in a more invariant way. Let us
denote by P the set of normalized Gaussian primes. If z is a nonzero Gaussian
integer and w a Gaussian prime, the number w appears the same number of
times, to be denoted ord(z), in any decomposition of the type z = uw; - - - wy.
We can therefore write the decomposition into Gaussian primes as follows :

(2.9) z=u H w°r= () (y is a unit).
weP

Notice that ords(z) is a positive integer for every w and that these integers
are 0 except for finitely many @’s in P.

In terms of ideals, the map w — (w) establishes a bijection between P
and the set of prime ideals in Z[¢]. The number ords(z) depends only on the
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prime ideal p = (@) and can be denoted ordy(z). Formula (2.9) can be written
as follows

(2.10) (2) = [[ o
p

where the product extends over the prime ideals p. In this form, the factor-
ization theorem was generalized by Kummer (around 1840) to all algebraic
numbers.

Exercise 9 : Extend the results of Section 2.3 to the elements of Z[j].

10i ¥ o X o o o X o X o e e X

5i . X . x . x . x . ) . . .

X
X
X
Y

Fig. 4. Gaussian primes
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2.4. Classification of Gaussian primes

Once it is proved that every ideal in the ring Z[¢] is principal, the arguments
leading to the factorization theorem parallel closely the classical ones for ordi-
nary integers and primes. The only difference is that extra care is needed to
handle units.

The problem is now to classify the Gaussian primes. The figure 4 displays
the Gaussian primes of the form @ = a + b with 0 <a < 13,0 <5 <13.

(3.) Lemma. Any Gaussian prime divides an ordinary prime.

Proof. Let w be a Gaussian prime. The number 1 is not a multiple of w other-
wise @ would be a unit. There exist ordinary integers n > 1 which are multiple
of @, namely N(w) = w-@. Let p be the smallest among the ordinary integers
n > 1 which are multiple of @ in Z[i]. For any factorization p = a - b with
1 <a<p1<b< p, the Gaussian prime w doesn’t divide a and b by the
minimality property of p. By Gauss’ lemma this contradicts the fact that w
divides p = ab. Hence p is an ordinary prime. O

To classify the Gaussian primes, we have therefore to factorize in Z[i] the
ordinary primes. Let p be such a prime. From a decomposition

p=uwy- - WN
we get

p) = N(w)--- N(wn)
(2.11) { N(w )il for ])—1 ( ]},\7

There are therefore three possibilities :

1) One has p = uw? where u is a unit, @ is a normalized Gaussian prime
and N(w) = p. We say p is ramified in Z[i].

2) One has p = uww' where u is a unit, w and @’ are normalized Gaussian
primes with

w#w , N(w)=N(=z')=p.
We say p is split in Z[¢].
3) The number p is a normalized Gaussian prime : for every factorization
p = A\ into Gaussian integers, either A or X' is a unit in Z{z]. We say p is inert
in Z[z).
Exercise 10 : Extend the previous discussion to the ring Z[j].

The following theorem explains how to categorize the ordinary primes as
ramified, split and inert.

(2) Theorem. (Gauss) : a) The only ramified prime is 2.
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b) The split primes are the primes of the form p = 4r + 1 (with an integer
r>1)

¢) The inert primes are the primes of the form p = 4r + 3 (with an integer
r>1)

With the standard notation ¢ = b mod. m meaning (a—b)/m is an integer,
the split primes satisfy p = 1 mod. 4 and the inert primes satisfy p = 3 mod. 4.

Table 1 : Primes p < 100

Ramified 2

Split 5 13, 17, 29, 37, 41, 53, 61, 73,
89, 97

Inert 3, 7, 11, 19, 23, 31, 43, 47, 59,

67, 71, 79, 83

Table 2 : Decomposition of primes < 100

2 =12412 29=52422 61=62+452
5 =22412 37=624+12 73=82432
13=32422 41=52442 89=8245°
17=424+1%2 53=724922 97=9% 442

Proof. The prime 2 is ramified according to the formulas
2= —4(1+4)?* , N(1+i)=2.

The prime number p is ramified or split if and only if there exists a Gaussian
integer w with p = N(w). Putting w = m + ni, this relation amounts to
p =m? + n?%. According to the relations

(25)2 =45 |, (2s+1)Y =4(s*+3s)+1

any square is congruent to 0 or 1 mod. 4. Hence the sum of two squares is
congruent to 0 =0+4+0,1 =14+ 0o0r 2 =141 mod. 4, hence never to 3 mod. 4.
It follows that every prime p = 3 mod. 4 is inert. We know already that 2 is
ramified. Hence it remains to prove that

any prime number p =1 mod. 4 is split in Z]].
According to Fermat ‘small theorem’; every integer a not divisible by p

satisfies the congruence

(2.12) a?'=1 mod. p.

Moreover, there exists a primitive root modulo p, namely an integer « not
divisible by p such that any integer a not divisible by p is congruent mod. p to
some power of a. In other words, consider the powers
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and the remainders of the division by p

ﬂla‘ .. 7ﬁp—27ﬂp-1

(B; is the remainder of the division of a’~! by p). Then the previous numbers
form a permutation of the numbers

1,2,...,p—1.

By assumption r = (p — 1)/4 is an integer. Choose a primitive root «
modulo p and put @ = a”. Then a? — 1 = o(P~1/2 _1 is not divisible by p, but
a* —1 = oP7! — 1 is divisible by p. Since (a? + 1)(a? — 1) = a* — 1, it follows
from the ordinary Gauss lemma that p divides a® + 1. Hence, we found integers
a, b with the following properties

a’®+1=pb
(2.13) { a is not divisible by p .

We introduce now the lattice A with basis (p,a — ¢). It follows from the
formulas

i-p=a-p-p-(a—1i)
(2.14) { i-(a—t)=b-p—a-(a—1)
that the lattice A is stable by multiplication by ¢, that is by the rotation ry ;.
Otherwise stated, A is an ideal in the ring Z[i], we have

p 2] C AC Z[i]

and it is easy to check that A is distinct from both p- Z[¢] and Z[i]. Since every
ideal is principal, we may choose a generator @ of A. Then @ is a Gaussian
integer and since p belongs to the ideal A = (w), there is another Gaussian
integer @' such that p = w - w’. Since the ideals (p) = p- Z[i],(w) = 4 and
(1) = Z[7] are distinct, @ is not a unit, nor @' = p/w is. We get

N(w)>1, N(@')>1, N(@)N(w') = N(p) = p°
and from this it follows
N(w) = N(=') =p.
We have found a Gaussian integer w = a+bi, with norm p, that is p = w-%.
It remains to show that @ is a Gaussian prime and that T/w is not a unit
a) w is a Gaussian prime : namely, for any factorization w = A\ into
Gaussian integers, we get

N(A)N(\') = N(w) = p.

Since p is a prime, either N(A) = 1 and A is a unit, or N(A') =1 and M is a
unit. Hence w is a Gaussian prime.
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b) We have o = a + bi, @ = a — bi, and the units are 1,—1,7, —i. H T /w
is a unit, then by inspection we are left with the following cases

a=0,b=0,a=b, a=-b.

Then p = a?+b% is a square, or twice a square which contradicts the assumption
that p is a prime different from 2. a

From the previous proof, one obtains an explicit description of the factor-
izations :

a) The four numbers +1 + ¢ are the Gaussian primes of norm 2, they
generate the same ideal.

b) For every prime p = 3 mod. 4, there are four Gaussian primes with
norm p2, namely p, —p, ip, —ip.

¢) For every prime p = 1 mod. 4, there exists a decomposition p = a* 4+ b?
as sum of two squares. We may assume 0 < a < b, and there are eight Gaussian
primes of norm p, namely

a+bt, ilat+bi), —(a+b), —t(a+bi)
b+ai, i(b+ai), —(b+ai), —i(b+ ai).

Geometrically, we have eight points in the square lattice A4 at a distance ,/p
of the origin, namely (+a, +b) and (£b, +a).

Exercise 11 : Describe the prime numbers in the ring Z[j] [Hint : 3 is ramified,
any p = 1 mod. 3 is split, any p = 2 mod. 3 is inert.]

2.5. Sums of squares

Fermat considered the following problem :

Represent, if possible, an integer n > 1 as a sum of two squares
n=a’+ b2,

It amounts to represent n as the norm of some Gaussian integer w = a + bi.
Using the factorization theorem established in Section 2.3, we can write w as
a product uw; - - - wy, hence

(2.15) a® +b® = N(a+b) = N(wy)-- N(wn).

According to the results in Section 2.4, the norm of a Gaussian prime wj is
equal to 2, to a prime number p = 1 mod. 4, or to the square of a prime number
p = 3 mod. 4. The following criterion, due to Fermat, follows immediately:

An integer n > 1 i3 a sum of two squares if and only if every prime divisor
of n congruent to 3 mod. 4 appears with an even exponent in the prime factor
decomposition of n.
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A similar problem pertaining to the sum of three squares was mentioned
by Bachet and solved by Gauss in the form

‘Demonstravi num. = A+ A+ A’

Here is the meaning : @ triangular number is a number of the form (see fig. 5.)

1
FEFR LR
1 4
3=1+2 | B
6=1+2+3 10=1+2+3+4 j

Fig. 5. The triangular numbers.

Gauss’ theorem is the possibility of representing any integer n > 1 in the form
a*+a W 4+b F4c
2 2 2

Otherwise stated, every number of the form 8n + 3 is the sum of three odd
squares.

n =

Let us mention also Lagrange’s theorem :
Any integer n > 1 is a sum of four squares.

In order to give a quantitative meaning to similar results, one introduces the
following definition. Let k,n be integers with k£ > 1,n > 0. The number r(n)
denotes the number of solutions of the equation

(2.16) i+ +zi=n
where 1, ...,z are integers (of either sign). Hence Lagrange’s theorem states
(2.17) re(n) >0 for k>4,n>0.

It is convenient to introduce generating series in the form of theta functions.
Put

(2.18) 8(g) =Y ¢ =1+2¢+2¢" +28° +---.
reZ
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The radius of convergence of this series is obviously 1. Moreover, we get
(2.19) (q)* Z ri(n
according to the following calculation
S Yot S

ay as ay

3 gte
arax

o0
>, 2

n=0 af-f—----}—ai:n

=Y r(n)g"

8(q)*

i

oo
Hence the series . r(n)q™ converges for |q| < 1. More precisely an easy
n=0
geometric argument about volumes shows that ry(n) < Cj n*/2) where the
constant C}, is independent of n.

Fermat’s theorem about sums of two squares and Lagrange’s theorem
about sums of four squares were given a quantitative form by Jacobi in 1828,
namely

(2.20) 6(¢)* =1+4 Z ﬂn;;—l
(2.21) 0(q)* —1+8Zl_q

(sum extended over the integers m not divisible by 4). We shall give in the next
Section a proof of formula (2.20) depending on Gaussian methods. Jacobi’s
proofs of the above mentioned formulas were purely analytical.

2.6. The zeta function of Z]

Besides the generating series

o0

8(q)* Z (n)g" = Y guitte,
o

we shall consider the following Dirichlet series
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(2.22) Sri(p)n™ = 3 (a2 4+ ad)7
n=1 a-ag
The summation Y.' extends over all systems (a1,. .., ax) of k integers, except
ay-ap
for a; = --- = ax = 0. In particular, we get
(2.23) Zy(s) =Y (a® + *)°
a,b

the summation being extended over the pairs (a, b) # (0,0) in Z2.

Using the notions connected with Gaussian integers, we get the alternative
form

(2.24) Zy(s) =Y _ N(z)7°,
z#0

where the sum is extended over the nonzero Gaussian integers. According to
the factorization theorem for Gaussian integers, nonzero Gaussian integers are
parametrized by units u and family of positive integers m(w) according to the
formula

(2.25) z=u H w™®)
wEP
(here P is the set of normalized Gaussian primes). We then have
(2.26) N(z) =[] N(@=)™=.
weP

Repeating the proof given in Section 1.1 for Riemann’s zeta function we get

(2.27) Z4y(s) =4 H (1+ N(w)™ + N(w)™2* +--)
w€P
hence
1
(228) Z4(3) = 4 —___5_
};[P 1-N(w)

(notice that there are 4 units in Z[¢]!).

Taking into account the three categories of primes according to their de-
composition law in Z[7], we get the following factors in the product expansion
(2.28) :

a) the Gaussian prime 1 + ¢ of norm 2 gives a factor (1 —27°)7!;

b) for every prime p = 1 mod. 4, there exists two normalized Gaussian
primes of norm p, hence a factor (1 — p~*)~%;
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c) for every prime p = 3 mod. 4, p itself is a Gaussian prime, of norm p?,
hence a factor

Q-p) T =1-p )7 0+p)7
If we recall the definition of ((s) as the infinite product [] (1—p~*)~? extended
over all primes p, we get !
(2.29) Z4(s) = 4¢(s)L(s).
The function L(s) is given as a product

1 1
(230) L(S) = H 1 _pl—s H 1 +p"—3
pll

pl

where p' (resp. p'') runs over all prime numbers congruent to 1 (resp. 3) modulo

4.

One defines a character of conductor 4 as follows

0 if n iseven
(2.31) xa(n) = { (=1)*D/2 if 0 s odd.
We can rewrite formula (2.30) as follows
1
2.32 L(s) = -
(2:32) (=11 1 - xa(p)p~*

P

Otherwise stated, L(s) is the Dirichlet L-series corresponding to the character
X4 (cf. Section 1.7). We can therefore write

(233) L(s) :Z X4(n)n_3 =1"°"—-3°457°—-7"54...

n=1
the series converging for Re s > 1. According to formula (2.29) we have there-
fore

(2.34) Zy(s) =417 427 437+ )17 =37 +57° — ).

Multiplying out these two series, and remembering that r2(n) is the coefficient
of n™* in the series Z4(s), we get

(2.35) ra(n) =4 Y (-)* D2 for n >1,

n=jk
where the summation extends over j > 1 and k¥ > 1 odd. This formula can be
transformed as follows. Firstly, if we denote by d4(n) the number of divisors k

of n such that k¥ = 1 mod. 4 and similarly d_(n) for divisors with ¥ = 3 mod. 4,
we get
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(2.36) ro(n) = 4(d4(n) — d—(n)) for n > 1.
Moreover, we get

Sormet =4 Y (-HEVE Y gt

n=1 k odd

- q
-4 Z (1) 1)/2_1___

k odd -1

(2.37)

Finally we get Jacobi’s formula

r 2r+1

(2.38) 8(q)* = 1+ Z ray(n)g" =1 +4 Z e 1) T

To conclude, we describe the corresponding results for the ring Z[j]. By
definition we have

(2.39) Zy(s) =Y  N(2)™*
z#0
where the sum is extended over the nonzero elements in Z[j]. Since the norm
of a — bj is equal to a® + ab + b?, we get
(2.40) Z3(s) = Y'(a® +ab+40%)*
a,b

(summation over pairs of integers a,b excluding a = b = 0). There are 6 units
in Z[j] and using the decomposition laws of prime numbers in Z[j] we get

(2.41) Z3(s) = 6¢(s)L(xs,s)

where the character x3 of conductor 3 is defined as follows

0 if n = 0 mod. 3
(2.42) xs(n)=< 1 i#f n=1mod 3
—-1 if n=-1mod. 3.

More explicitly

(2.43) L(xs,s) = Z {Br+1)"" - (3r+2)7"}.

The number of representations of an integer n > 1 by the quadratic form
a® + ab + b* is equal to 6(64(n) — 6_(n)) where 6;(n) (resp. 6—(n)) is the
number of divisors of n which are congruent to 1 (resp. —1) modulo 3. For the
theta series we get

3n+1 © 3n+-2

(2.44) Z qa2+ab+b =1+6 Z 1 g3ntl Z Tg_q—:h?ﬁ

a,b n=0
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3. Functional equation

3.1. A short account of Fourier transformation

We first recall Fejer’s fundamental theorem about Fourier series. Let f(z) be
a function of a real variable, assumed to be bounded, measurable and periodic
with period 1, namely

(3.1) fa+1) = (o).
The Fourier coefficients are defined by

1
(3.2) Cn :/ f(z) e72™n® dg
0
for any integer n in Z. The partial sums of the Fourier series are the following
N .
(3.3) on(z) = Z cp €2,
n=—N

Let zo be any real number such that the function f(z) admits left and
right limiting values

(3.4) flzo £0) = lir(I]I flzo L e).
e—Uy
Then Fejer’s formula is the following

f(l’0+0)+f($0 —0) — lim 00(10)+"'+0’N(I0>
2 N—>oo N +1 ’

(3.5)

A simplification occurs when f(z) is continuous at z = =zo, and the partial
sums on(zg) converge ; we have then

(36) f(wo) =¢o + io:{cn e2minzo +cn 6—27rinzo}‘

n=1
The most favorable case occurs when f(z) is a continuous function and the

oo
series Y |cy| is finite. Then the function is represented by the absolutely
n=—oo
convergent Fourier series

[e}

(3.7) flz) = Z Cn €277

n=—0o0

Consider now a function F(z) of a real variable which is continuous and
(absolutely) integrable, namely the integral

+o0
(3.8) | F = / |F(2)) do

—0Q
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is finite. The Fourier transform is normalized as follows
(3.9) F(u) = F(z) e 2™ dg;

—0o0

it’s a continuous function of u. Assuming that Fis integrable, namely

+oo
/ |F(u)| du < oo,
—o0
Fourier inversion formula holds

+oo .
(3.10) F(z) = / F(u) e*™* du;

—Oo0

43

that is the Fourier transform of F(u) is f(—z). Notice that the integration ker-
nel is e~2™%% i (3.9) and e*2™*% in (3.10) ; putting the 27 in the exponential
gives the most symmetrical form of the inversion formula. Here is a short table

of Fourier transforms :

Table 3 : Fourier transforms

Function Transform
F(z) F(u)
F(z +a) e2miau f(y,)
2™ B(g) F(u—0b)
F(t™'z) It| F(tu)
F'(z) 2miu F(u)
z F(z) = F'(v)
e~l?l (Re ¢ > 0) 2¢/(c? + 4n?u?)
e—mc2 e—7ru2

In the previous table, F'(z) is the derivative of F(z) and F'(u) that of

f‘(u) We give now a few details about the last two examples.

a) For F(z) = e°I*l we get
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F(u) ___/ e—c|z| e—2mu:’: dr

—o0

=(0°°+/_°oo)...

o oo
:/ e—(C+27l’i")Idw+/ e—(c—21riu)zd$

0 0
1 1 2c

:c+27riu c—2miu %+ 4n2y?’

We used the elementary identity

> 1
/ e Pidr = ~
0 P

where the integral converges absolutely when Re p > 0 ; this is why we need
the assumption Re ¢ > 0.

b) For F(z) = e~ we want F(u) = e=™ | that is

+OO 2 H 2
(3.11) / e~ TE e TIMITY dp — 7Y,
hate ]
This relation amounts to
+o0 s
(3.11b1s) / e mEH) gy = 1.
—0o0

The proof is given in two steps :

e For u = 0 we need the relation

+o0 R
(3.12) / e~ dg = 1.

— o0

Call I the previous integral. Then calculate I? and go to polar coordinates ;
this standard trick runs as follows :

+oo 2 +oo 2
I’ :/ e” " d:c/ e” ™ dy

=/ e~ ) gy dy

R2
oo 2w
= rdr/ ™™ df [t=r cosf, y=r sind]
0 0
© 2
:/ 2r r e dr
0
= —nr? 2
= e ™" d(nwr*)
0
:/ e Vdv=1 [v = 7r?].
0
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Moreover I is the integral of a positive function, hence I > 0 and since I = 1,
we get I = 1 as required.

e Put H(z,u) = e~™(@+iw)* Then the following differential equation holds

2 H(z,u)=1 2 H(z,u) = —2ni(z + tu) H(z,u).

Ou Oz
Integrating w.r.t. z, we get
8 +o0 +oo 5
3 ) H(z,u)dz —/—Oo 30 H(z,u)dz
. [T 0H(z,u)
=i Feta
=i H(z,u) 2212 = 0.

It follows that the integral fj;o H(z,u)dz is independent of u, but for u =
0, it’s equal to fj;o H(z,0)dz = fj’:oo e~ ™" dz, hence to 1 by the previous
calculation. Finally we get

+00
H(z,u)dz =1,

-0

that is the sought-for relation (3.11b1s).

3.2. Poisson summation formula

Let F(z) and ﬁ(u) be a pair of Fourier transforms. Poisson summation formula
reads as follows :

(3.13) Y F(n)=Y F(m).

n€Z meZ

Since F(z + v) and €2™¥* Fi(u) form another pair of Fourier transforms for
any real v, substitution of this pair into Poisson summation formula gives the
identity

(3.14) Y F(n+v)= Y F(m)e™m,

n€Z meZ

Conversely, putting v = 0 in this formula, we recover (3.13). The proof is now
obvious :
a) Put G(v) =3 F(n + v). If this series converges absolutely and uni-
nez
formly in v, then G(v) is a continuous function of v.
b) Obviously, one has G(v) = G(v + 1). The Fourier coefficients of G(v)

are given as follows
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1
/ G(’U) e—27rimv dv
0
l .
Z/ F(n +v) e 2™m? gy
0

Cm

It

n€z
n+1 .
= Z / F(z) eimme qg [z =n+ ]
neZv "
+w . o~
= F(z) eTImmE gy — F(m).

c) If the series ). |cm| converges, then we can represent G(v) by its
meZ

Fourier series Y. ¢, €2™™? = Y~ F(m) €>™™”, and we are done !
meZ mezZ

From the previous proof, it follows that formula (3.14) holds whenever the
left-hand side converges absolutely and uniformly in v, and moreover the sum

> |ﬁ (m)| is finite. Under these assumptions, Poisson summation formula
meEZ
(3.13) holds also.

A further generalization is obtained by using formula (3.14) for the pair

of Fourier transforms F(t™'z), |t|F(tu), namely

(3.15) S F(u+n/t)y=)_ |t| F(mt) &m(m0*.

n€Z meEZ

If we let t tend to 0, every term v + n/t for n # 0 tends to £oo ; hence if F'is
small enough at infinity, the limit of the left-hand side in (3.15) is F'(v). The
right-hand side is a Riemann sum corresponding to the subdivision of the real
line into the intervals [mt, mt + t[ of length ¢. For ¢ going to 0, the right-hand
side approximates an integral, and in the limit we get

+oo .
(3.16) F(v) = / Flu) 2™ d,

— 00

that is Fourier inversion formula. The various steps in this derivation are jus-
tified for instance if F(z) admits two continuous derivatives and vanishes off a
finite interval.

Exercise 1 : Prove the following symmetrical generalization of Poisson summa-
tion formula :

(%) ZF(”+”) e~ Tiw(2n+v) _ Z ﬁ(m+w) Tiv(@m+w)
neZ mEZ
for v and w real.

We give now a simple application of Poisson summation formula. Let us
consider a complex constant ¢ with Re ¢ > 0 and the pair of Fourier transforms
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—¢€i > C
—————————— ‘.-" — e m— e - m—— e — — -
-1
Fig. 6. The contour ' of integration.
= 2c
F(z)=el2l | F(u)= .
(2) W)= S

One gets the identity

> 2 > 2c
3.17 1+2 T = - 42 _
( ) + ;e c + mzzzl c? 4+ 4nZm?

which one easily rearranges as

c > 1
3.18 th - =2 B —
( ) €0 2 m;m c—2mm

(symmetrical summation). By the change of variable ¢ = 274z one gets

oo

1
(3.19) T cotg Tz = Z
S z—m

47

(symmetrical summation). The above derivation works for z in the lower half-
plane Im z < 0, but both sides in formula (3.19) representing odd functions of

z, this identity remains true for every non real complex number z.

Exercise 2 : a) Suppose that the function F(z) extends to a function of a
complex variable holomorphic in some strip —e < Im = < €. Using Cauchy

residue theorem, give conditions of validity for the formula

(%) QWiZF(n) :/ 7 cotg mz F(z)dz

nez ¢

where the contour of integration C is depicted in figure 6.
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%

7 -plane

- 1%1

Fig. 7. Domain of values for 7.

b) Use the expansion
—mi — 2wy o e2mMmE Im oz >0
T 2miYy oo eTIMME Im 2 < ()

to transform the right-hand side of formula (*) as follows :

—ie' o0 ie' 400
/Wcotg wz F(z)dz = (/ _/ )
C —ie!' —o0 te! —o0

+00 ®©  too . _
= 27rz'/ F(z)dz + 2m: Z / F(z)(e7?mm® 4 2™™*) dg
m=1"Y ">

—o0

T cotg mz = {

=2m Yy F(m).
meZ
¢) In conclusion, Poisson summation formula follows from Euler’s identity
(3.19) for functions extending as holomorphic functions in a strip |Im z| < .

3.3. Transformation properties of theta functions

We mentioned already (see Section 2.5) the theta series
6(q) =1+2¢+2¢" +2¢° +---.

It is convergent for |g| < 1. We shall use instead a complex variable 7 in the
upper half-plane I'm 7 > 0 connected to g by the relation ¢ = ¢™". Notice
that e™” = ™" holds if and only if 7' — 7 is an even integer, hence we can if
necessary normalize 7 by —1 < Re 7 < 1 to insure uniqueness of a number 7
associated to a given q (see fig. 7).
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We introduce a two-variable theta function

(3.20) B3(zlr) =Y g™ u”

ne€Z

with ¢ = ™7, u = 2™, that is

03(Z|7') — Z ewi(n2r+2nz)
(321) n€Z

=1+ 2q cos 27z + 2¢* cos 4nz +2¢° cos 6wz + -

Here 7 and z are both complex numbers and 7 is subjected to the restriction
Im 1t >0.

The fundamental transformation formula is

(3.22) b3(z|7) = \/L_ e 03(

z 1)
i A

T

The square root of —i7 is the branch that takes the value 1 for 7 = 7, holomor-
phic in the (simply-connected) upper half-plane. To prove this, start from the
integral (3.11) and make the change of variable (z,u) — (zv/%,u/+\/t) for some
real number ¢ > 0. We get

(3 23) /+oo —ntz? —2mizu d 1 —ru?/t
. e e T =—ce¢ ,
oo Vi

that is, we have a pair of Fourier transforms
~ 1 2
F(z)=e™" | Fu)=— e ™/t
(@) P ==

If we specialize Poisson summation formula (3.14) to this case we get

(3.24) Ze—”t(“+”)2 Z —mm? [t 2mimy

n€Z mEZ

The relation (3.22), written in full, reads as follows

in2 ; 1 2 .2 -
(325) Zew:n T+2minz _ . e ™2 /T Z e(—7r1m +21rzmz)/r‘
n€EZ VT meEZL
Hence (3.24) is the particular case 7 = it, z = itv of (3.25). It follows that (3.22)
is true when 7 is purely imaginary and the general case follows by analytic

continuation.

We shall use the particular case z = 0 of the transformation formula (3.22).
Since 8(q) = 63(0|7) for ¢ = €™ we get
1

(3.26) 6(e™7) = Newrs 6(e=™/™) for Im T >0.
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Exercise 3 : Write the previous relation as
1
(%) Z L Z emmm (t>0).
n€Z \/E meEZ
—c?t/arn

Multiplying both sides by e
to recover formula (3.18).

and integrating over ¢ in ]0, +o0o[ show how

3.4. Mellin transforms : general theory

We consider a function f(z) of a positive real variable. Its Mellin transform is
given by

(3.27) M@yzlwﬂﬂxklm.

Let us assume that there exist two real constants a and b such that a < b and
that f(z) = O(z™*) for z close to 0 and f(z) = O(z~%) for = very large. Then
the previous integral converges for s in the strip ¢ < Re s < b and M(s) is a
holomorphic function in this strip. The following inversion formula is known :
assume that there exists a constant C' > 0 such that

+o0
(3.28) / \M(o +it)] dt < C
for a < ¢ < b. Then
1 ogtro0 B
(3.29) fz) = %/ﬂ_iw M(s) 27° ds

for a < o < b. By the change of variable z = e~ where u runs from —oo to
+00, we express M(s) as a Laplace transform

4+ o0
(3.30) M(s) = / e " F(u) du
where F(u) = f(e™™) is of the order O(e"*) for u near +oo and of the order

O(e*?) for u near —co. The inversion formula (3.29) is therefore reduced to the
classical inversion formula for Laplace transforms

1 o+i00 e
(3.31) F(u) = %/; M(s) e*’ ds.

—100
In turn, this formula is a consequence of Fourier inversion formula (3.10).

We want to generalize the Mellin transform to cases where M(s) extends
to a meromorphic function in the complex plane C. Assume that f(z) admits
of asymptotic expansions
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(3.32) flz) ~ ch zg*  for £ —0
k=0
(3.33) flz) ~ Z dy 27 for z — 400

where the real exponents satisfy the assumptions

(3.34) <ty <ipg < --- hm i = 400,
k—o0

(3.35) Jo>J1>g2 > lim j, = —oo.
£—o0

We split M(s) as a sum of two integrals M(s) = Mi(s) + M, (s) where

(3.36) M (s) / flz) z* ™ dz , Msy(s / f(z) 2571 da.

The integral M;(s) converges absolutely for Re s > —ig. Moreover by definition
of an asymptotic expansion, we can write

K-1

(3.37) flz) = Z ck T + ri(zT)

k=0

with a remainder rx(z) of order O(z'¥ ) for z close to 0. The formula

1
/ r(z) 27! dz

gives an analytic continuation in the domain Re s > —ig. Since K is arbitrary
and i g tends to +o0o with K, we conclude that M (s) extends to a meromorphic
function in C with simple poles at —ig, —2;, —i2 -+ - and a residue equal to ¢
at s = —1g.

(3.38) Mi(s) = Z

k=

s+z

We can treat the integral M>(s) in a similar way or reduce it to the previous
case by a change of variable :

(3.39) My(s) = /0 1 f(%) =1 da.

The conclusion is : M3(s) extends to a meromorphic function in C, with simple
poles at —jg, —J1, —J2,- - - and a residue equal to —dg at s = —j,.

The sum of M;(s) and Ms(s) is therefore a meromorphic function M(s)
with two series of poles located at (see fig. 8)

—i0>-i1>—i2>"'
o< =i < ~ja <o
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-ip -1y -ip

Fig. 8. Poles of M(s).

We continue to write M(s) as an integral fooo f(z) z*~! dz which can be un-
derstood as follows : in the case of convergence, let g(z) be a primitive function
of f(z) 2*~!

(3.40) dg(z) = f(z) =°7' dz.

Then one gets
(3.41) / f(z) z°7 ' dz = lim g(z) — lin}) g(z)
0 r— 00 —

by the fundamental theorem of calculus. In the general case (assuming s is not
a pole of the function M(s)), the primitive function g(z) admits an asymptotic
expansion

(3.42) g(z) ~ Zc’k z*  for z mnear 0.

oo
k=0

By derivating term by term we should obtain the asymptotic expansion derived

from (3.32)

o0

(3.43) fz) 2871 ~ ch gstie—l,

k=0

Hence everything is completely determined in (3.42) except for the constant
term, corresponding to an exponent ¢} equal to 0, depending on the choice of
the primitive g(z). This constant term is called the finite part of g(z) at z = 0,
to be denoted

B g(z).

Then the generalized integral is defined by

(3.44) Awﬂ@w“Hh=£§Mﬂ—£§ﬂﬂ
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where the finite part at £ = oo is defined in analogy with the finite part at
z=0.

The integral [;° f(z) z°7 dz converges in the usual sense for s in the
strip 190 < Re s < jp, which is non empty only if 75 < jo. But notice that the
generalized integral [~ ®(z) z°~! dz is identically 0 if $(z) is a finite linear
combination of monomials 2. By subtracting a suitable &(z) from f(z) we can
achieve the relation 2 < jo, hence providing a strip where the Mellin transform
is defined in the usual way.

3.5. Some examples of Mellin transforms

The gamma function is defined by the following Mellin integral

o0
(3.45) I'(s) :/ e % 2° ! dz.
0
We have the convergent power series expansion
(o o]
(3.46) e =Y (=1)* z*/k!  for z near 0
k=0

and e™® ~ 0 for z near infinity, meaning e* = O(z ™) for every integer N.

According to the general theory, I'(s) is a meromorphic function in C, with
simple poles at
0,-1,-2,

and a residue equal to (—1)¥/k! for s = —k. The functional equation I'(s+1) =
s I'(s) is obtained from the generalized integration by part principle

(8.47) /000 u(z)v'(z) dz :IF=1:’o u(z) v(z)— f’zlz u(z) v(:c)—/ooo u'(z) v(z) dz,

by putting u(z) = z°, v(z) = e~ *.
We consider now a general Dirichlet series of the form

o

(3.48) L(s) = Z cn n”C.

n=1

A linear change of variable is admissible in our generalized integrals

(3.49) /0 ” #(as) do = /0 " o(z) da

a

(a real positive). From the definition of I'(s) we get

(3.50) / e 271 dz = a™° I'(s).
0

It follows that
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(8.51) I'(s) L(s) = Z /°° T sl dg.

If integrating term by term is legitimate for s in a suitable half-plane Re s > o,
then we get

(3.52) L(s) = ﬁ/ooo F(z) 2" de

with

(3.53) F(z)=) cace
n=1

If F(z) admits of suitable asymptotic expansions for z = 0 and z = oo, then
interpreting (3.52) as a generalized Mellin transform, we get the analytic con-
o0
tinuation of the series Y ¢, n™*° to a meromorphic function in C.
n=1
We illustrate this principle in the case of ((s), that is ¢, = 1 for n =
1,2,.... In this case

o7 1
.54 F = = .
(3.54) (@) = Ze T l-e T et -1

According to the definition (1.7) of Bernoulli numbers, we get an asymptotic
expansion near 0

o0

1 Biy1 4
1 kg;l(k+1)! ’

while e 1_ T~ 0 for z near co. Hence ((s) is a meromorphic function given by

(3.55)

(5.56) (=g [
' S—F(s) o e*—1 -
The structure of poles is as follows :
- for F(s) §=0,-1,-2,... residue (—1)*/k!at s = —k
. Bk+1 _
—forf0 d:c s=1,0,— 2...res1due(k+1)!ats— k.

It follows that the poles cancel except for s = 1. Hence the result :
((s) extends to a meromorphic function in the plane C, the only pole 1is
s = 1, with residue 1. For k =0,—-1,... we get

(3.57) -k = (-1 22

Using the properties
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Blz——’B3:B5:---=O

we easily transform the previous relation as follows

=3 » (-2 =¢(~4)=

Bz B4 BG

(1) = C(_S):—T ; C(—5):——6—,...

Suppose now that 0(1), 6(2), ... is a periodic sequence of coeflicients
(3.58) On+f)=0n) for n>1
for some fixed period f > 1 (see Section 1.7). We consider the Dirichlet L-series
(3.59) L(8,s) =) 6(n) n™".
n=1
By specializing formula (3.52), we get an integral representation

(3.60) L(g,s) = 3)/ O(z) z°7! dx

with
(3.61) O(z) = > _8(n) e

Using the periodicity of the coefficients 8(n), we transform @(z) as follows

O(z) :Z 3" b(a+myg) eletmDz

a=1 m=0

f o
- Ze(a) e~ 0% Z 6—mfz
a=1 m=0
hence
Xl 6(a) e
(3.62) O(z) = 7] .

For ¢ = 0, the numerator takes the value ) 6(a), while in the denominator
a=1

e/ — 1 has a series expansion fx + 1?22 + ... It follows that, for z near 0,

O(z) has an asymptotic expansion with leading term @/z where

f
)" 6(a).

a=1

(3.63)

~,|»~
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More precisely, using the definition of Bernoulli polynomials

ePYy

_inJr_l(P)k

(3:64) -1 & Gkt

with the substitution y = fz, p = L?_a together with the symmetry property

for Bernoulli polynomials

(3.65) Bi(1—p) = (=1)* Bi(p),

we get the following asymptotic expansion

1)k+1 Bk+1 P
(3.66) + Z CE

with the definition

f

(3.67) Bumpo=f""Y #(a) Bm(%)_

a=1
According to the general theory, the Mellin transform
(3.68) My(s) :/ O(z) =571 dz

0

extends to a meromorphic function in C, with a simple pole at s = 1 with
residue @ as well as a sequence of simple poles at s = 0,—1,—2,. ., the residue
at s = —k being equal to (—1)¥T!By416/(k + 1)!. Dividing by I'(s) with

simple poles at s = 0,—1,—2,... and a residue equal to (—1)F/k! at s = —F,
we conclude that

L(6,5) = My(s)/I'(s) extends to a meromorphic function in C, with a
single pole at s = 1, residue equal to O and the special values

—Bii1
. 6, k)= ————.
(3.69) L(6,—k) = — T

f
In the special case where @ = 0, that is Y, 6(a) =0, then L(, s) is an entire
a=1
function.

Hurwitz zeta function can be treated in the same spirit. Namely, we start
from

(3.70) (n4+v)™° I'(s) = / e~=(n ) g1 gy,

0

The series

(3.71) ((s0)=) (ntv)~*
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which converges in the half-plane Re s > 1 extends to a meromorphic function
in C given as a Mellin transform

(3.72) ((s,v) = 3)/ — =1 dr.

Using formulas (3.64) and (3.65) we get the power series expansion

—zv z(1—v) 1 e (_1)k+1 B ( )
€ € 4 k+1(v k
St z

l—e =  er—1 = (k+ 1)
The Mellin transform
(3.73) M(s,v) = / L
’ o l—e?
is meromorphic with simple poles at s = 1,0,—1,.... Since ((s,v) is equal to

M(s,v)/I'(s), the poles of I'(s) cancel those of M(s,v) except the one at s = 1,
and we get the result :

{(s,v) 18 @ meromorphic function in C, with a single pole at s = 1, residue
equal to 1, and the special values

Bk+1(v).

(3.74) ((=kv) = -0

From this result, the properties of the Dirichlet series L(6, s) can be recovered
using formula (1.73), namely

(3.75) L(6,s) = f~ 29 C(s

3.6. Functional equation of Dirichlet series

To express the functional equation of ((s), one introduces after Riemann the
following meromorphic function

— a2 p(2
(3.76) €(s) = F(Z)C(s).
Then the functional equation reads as follows
(3.77) £(s) = (1~ 5).

This formula has some important consequences. For instance, we know that
¢(s) is meromorphic in the half-plane Re s > 0 with a single pole at s = 1 with
residue 1. Since I'(s) is holomorphic in the same half-plane, the only singularity
of £(s) in the half-plane Re s > 0 is a simple pole at s = 1 with residue
7~1/2. (1)1 = 1. By the functional equation, in the half-plane Re s < 1
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obtained from the previous one by the symmetry exchanging s and 1 — s, the
only singularity of £(s) is a simple pole at s = 0, with residue —1. Hence, the
function =(s) = s(s — 1) £(s) is an entire function satisfying the symmetry
Z(s) = Z(1 — s). The function I'(3) having poles at s = -2, —4,-6,..., and
£(s) being regular at these points, the poles are cancelled by zeroes of ((s)
hence, we recover the result

(-2) = (-4 = =0.

The gamma function satisfies two classical identities

Complement formula : I'(s) I'(1 —3s) = —
sinms

S

Duplication formula : I (—) r (5 + 1) =xl/2 2173 P(s) .

2 2
Hence the functional equation (3.77) can be written as follows
(3.78) C(1—s)=2""%77° I'(s) cos g - ¢(s).

For the proof of the functional equation, we start from the transformation
formula for theta functions (see exercise 3)

1
_ 412 -
(3.79) o) = t @(t)
for the series
T 2 2 2
(3.80) Ot)= Y e™i=1+42) ™
n=-—oo n=1

Take the Mellin transform. From our conventions, one gets that the Mellin
transform of the constant 1 is 0. Moreover one gets

/ e~ 197l gt = 170 72 I(s),
0
Summing over n, we deduce
1 o
3 / O(t) t*7 1 dt = 77° I'(s) ((2s) = £(2s) .
0
Moreover by changing ¢ into (1/t) we get
1 > 1 1 e
- t_1/2 Z) 451 - = / —-1/2—s
: /0 9(t> di=g | ¢ O(t) dt
1

(1]

From the functional equation (3.79) we conclude
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£(25) = £(1 - 25).

There is nothing mysterious about e~%" and theta functions as shown by

the following exercise, inspired by Tate’s thesis (see Cassels and Frohlich 1967).

Exercise 4 : a) Let S(R) be the class of infinitely differentiable functions F(z)
such that 2?(£)?F(z) be bounded in z for all integers p > 0 and ¢ > 0. The

Fourier transform F(u) of a function F(z) in S(R) is also in S(R) and the
Poisson summation formula holds, namely

(%) > F(tn) =t Y F(t™' m)
ne€z meEZ

for any real ¢ # 0.

b) Taking the Mellin transform of both sides of formula (%), derive the
relation

+o0 too |
(* *) Q(s)/ F(t) [t~ dt = ¢(1 - s) F(u) |u|™* du.

— o0 hade ]

c) Derive the formula

+o0 +oo
o) W [ Pl du= [ R ar
—o0 —o0
where W(s) = 2(2r)™* I'(s) cos Z* [Hint : insert the convergence factor e ~¢I*l in
the first integral, replace ﬁ(u) by its definition as an integral (3.9), interchange
the integrations and use the extension of formula (3.50) to complex numbers a
with Re a > 0. At the end let € tend to 0.]

d) Derive the functional equation (1 — s) = W(s) {(s) as well as the
relation W(s) W(1 — s) = 1. As a corollary rederive the complement formula.

We extend now the functional equation to L-series. As before, consider a
sequence of numbers 6(n) (for n in Z) with period f, that is 8(n + f) = 6(n).
We distinguish two cases :

a) Even case : §(n) = 6(—n). Because of the periodicity, it suffices to check
the equality 6(a) = 8(f —a) for 1 < a < f — 1. Then we set

(3.81) &(6,5) = (/)2 T(3) L(6,9)

b) 0dd case : (n) = —6(—n) or 6(a) = —8(f —a) for 1 <a < f—1 and
6(0) = 0. We set

s+1 (s+1

(3.82) §6,5) = (F/m)T I(*5=) L)

Moreover we define the finite Fourier transform 8 of 6 by
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f-1
(383) é\(m) — f—1/2 Ze(n) 627rimn/f'

n=0

The functional equation then reads as follows
(3.84) £(6,1—5) =¢£(6,s).

More specifically, assume that x is a Dirichlet character with conductor f,
primative in the following sense : there cannot exist a proper divisor f; of f
and a character x; of conductor fi such that x(n) = x1(n) for n prime to f.
By a group theoretic argument, it can be shown that ¥ is given by

(3.85) X(n) = W(x) x(n)

(x(n) imaginary conjugate of x(n)). The constant W(x) is obtained by putting
n =1 ; it is a so-called Gaussian sum

f—1
(3.86) W(x) =7 x(a) ¢

a=1

with (; = €2™/f. Then the functional equation reads as follows
(3.87) §(X:1—5) =W(x)™" &(x,9)-

By using twice this equation one derives the identity

(3.88) W(x) W(T) = 1.

When yx is the unit character of conductor 1, that is x(n) = 1 for all n > 1,
then x =%, W(x) =1 and &(x, s) = £(s) hence equation (3.87) reduces to the

f
functional equation (1 —s) = £(s). Otherwise, we get f > 1and >, x(n) =0,
a=1

hence both £(x, s) and £(X,1 — s) are entire functions of s.

We shall not give the proof of the functional equation (3.84) (but see the
following exercise). When 6 is even, it can be deduced from the transformation
law (3.22) for theta functions.

Exercise 5 : a) Consider the following series
(* (ol w) = 3 (4 0)* e2mins
n=0

which converges absolutely for Re s > 1 and Im w > 0 (no restriction on the
complex number v). For w = 0, this sum reduces to ((s,v). Define the analytic
continuation by the methods of this Section.

b) Establish Lerch’s transformation formula
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C(slv,w) =i e 2™% (27)" 1 (1 —s)
(%) X {e_"”/2 C(1 = s|w, —v) — '™/2 7Y ¢(1—sll—w,v)}.

[Hint : use formula (*) in exercise 1 for a suitable function F.]

¢) By specialization, derive the functional equation for Hurwitz zeta func-

tion
(o * %) ((s,v) = 2(2”)3_1 Ir'l-s) nzzzl n®! sin(27nv + g)

for 0 < v <1and Re s <0.

d) Derive the functional equation for L(8, s) using the following represen-
tation

f
(3 % % %) L(8,s) :f_SZO(a) C(Sv‘;z?)'

a=1

3.7. Application to quadratic forms

We shall revisit the zeta function connected with the Gaussian integers, namely

(3.89) Zy(s)=2" (m? 4+ n?)7s.

In Section 2.6, we established the factorization

(3.90) Z4(s) = 4((s) L(xa,$)

where x4 is the character of conductor 4 given by the table of values
x4(0)=0 , xa(1)=1, xa(2)=0, xs(3)=-1

We know that ((s) extends to a meromorphic function with a pole at s =

1, residue 1, and no other singularity and that L(x4, s) extends to an entire

function. Hence Z4(s) extends as a meromorphic function in C, whose only

singularity is a pole at s = 1 with residue 4L(x4,1). But L(x4, 1) is given by
1 1 m

the series 1 — % + 5 — 7 - - and Leibniz proved that it is equal to 7. Hence

T
(3.91) L(x4,1) = 1
and the residue of Z4(s) at s =1 1s equal to 7.

We derive now the functional equation for Z4(s). We could use the known
functional equations for ((s) and L(x4, s) but it is more expedient to use theta
functions. Indeed from the Mellin transform

(3.92) 7 I(s) (m? 4 %)™ = / e=mtm k) yo=1 gy
0
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one gets
(3.93) 77 T(s) Za(s) = / O)? t*1 dt
0

since

Ot = (L) = Y emmnen

m,n

[Reminder : the Mellin transform of the constant term 1 corresponding to
m =n =0 is 0]. We can now use the functional equation

o) =t @(%)2

and imitate the proof of the functional equation for ((s). As a result, the
function 77° I'(s) Z4(s) is invariant under the symmetry s «» 1 —s

(3.94) 773 I(s) Za(s) = 7* 1 I'(1 — 8) Zy(1 - s).

Since w~*/2 I'(£) ((s) is also invariant under the symmetry s < 1 — s, and
since Z4(s) = 4¢(s) L(x4,s), it follows that

I'(s) /2

Fay T 0 Llxas )

)
is invariant under s «+» 1—s. Using the duplication formula we get the functional
equation

(3.95) €(x4,8) = &(xa,1—8)
where
(3.96) €(xa,8) = (%)%i F(S ; 1) L(x4,9)

(notice that y4 is an odd character!) It would be easy to calculate directly that
W(xas) is 1, hence (3.95) follows from the general functional equation (3.87).
But this direct derivation of (3.95) is typical of the use of analytic methods to
produce an arithmetical result like W(x4) = 1.

Exercise 6 : a) Calculate the values L(x4,—m) for m = 0,1,2,... and using the
functional equation (3.95) derive the values L(x4,m) for m > 3, m odd (notice
that L(x4, —m) = 0 for m odd, m > 1).

b) Using the functional equation (3.94) show that Z4(—m) = 0 for m =
1,2,3,.... No information can be obtained about the values Z,4(2), Z4(3),....

Exercise 7 : a) Derive a functional equation for the zeta function Z3(s) =
Elmyn(m2 + mn + n?)~° using the factorization Z3(s) = 6((s) L(xs,s)-

b) Show that 77 I'(s) Zs(s) is the Mellin transform of the theta function
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2 2
93(t) — Z e—wt(m +mn+n )

m,n

Working backwards, derive a functional equation for O3(t) from the functional
equation for Z3(s).

c¢) Show that Z3(s) vanishes for s = —1,—2,.... Calculate Z3(0) and the
residue of Z3(s) at s = 1.
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My aim in these notes is to give an introduction to the theory of Abelian
varieties.

At many places, I will not give detailed proofs, but I will try to discuss the
‘concrete’ origins of the theory. Therefore I will spend most of these lectures
explaining basic results about Riemann surfaces and algebraic curves and about
the Abelian varieties which are associated to them, the Jacobian varieties.

The content of these notes is quite classical: most of it is known since
the beginning of the century. We follow a rather geometrical and analytical ap-
proach to the subject, in order to stay ‘as concrete as possible’; the arithmetical
aspects will only be mentioned at the very end of the lectures. I have tried to
use a language familiar to theoretical physicists: the only prerequisites are some
familiarity with the basic facts concerning holomorphic functions, differential
forms and manifolds.
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Introduction

0.1. In order to motivate the definition of Abelian varieties, let us recall the
geometric interpretation of the theory of elliptic functions in terms of elliptic
curves.

Let §H = {r € C|Im 7 > 0} denote the Poincaré upper half-plane. For
any 7 € 9, = Z + 7Z is a lattice in C. An elliptic function with respect
to Iy is a meromorphic function on C which is I';-periodic. The elliptic curve
associated to I’y is the quotient F, = C/I';. It is a compact Riemann surface,
and elliptic functions with respect to I'; can be identified with meromorphic
functions on FE,.

Elliptic curves satisfy the following properties (cf. [Coh], [Ge], [Z]):
i) Any elliptic curve E; may be holomorphically embedded in the complex

projective plane P?C. Indeed, if p denotes the Weierstrass function associated
with the lattice I';, defined by

‘ 1 1
(0.1) p(z) = = + [ —2],
Z{o} (z=7)2? ~

vely

then the couple of elliptic functions (p, ') defines an embedding of E,\{0} in
C?, which extends to an embedding i : E,. — P?C. Moreover, it follows from
the differential equation satisfied by the p-function that i(E,) is an algebraic
curve of equation

(0.2) y? =4z’ — go(7)z — g3(7)

where

(0.3) g(r)=60 Y 47t
~er, —{o}

and

(0.4) gs(r) =140 Y 7°
~er, —{0}

In fact the study of elliptic functions associated to I'; is nothing else than
function theory on the cubic curve defined by (0.2).

ii) Two elliptic curves E, and Ep (7,7 € £) are isomorphic as Riemann
surfaces, or equivalently, as algebraic curves iff there exists

= (0 4)

, ar +b
=5.-1:= .
7 et +d

in SL(2,Z) such that
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Hence the quotient space $)/SL(2,Z) can be identified with the set of isomor-
phism classes of elliptic curves, the so-called moduli space of elliptic curves,
M, and any modular function may be seen as the assignment of a complex
number to any (isomorphism class of) elliptic curve(s). More generally, mod-
ular forms of weight 2k on §) (with respect to some congruence subgroup of
SL(2,Z)) may be interpreted as holomorphic differentials of weight k¥ on some
covering of M. One of the basic recipes to construct modular forms is to form
theta series. The basic example of such series is

+o0
(0.5) O(z,7) = Z exp(min®7 + 27minz)

n=—0oo

defined for any (z,7) € C x 9.

0.2. Abelian varieties are higher dimensional generalizations of elliptic curves:
a complex manifold A of dimension ¢ is an Abelian variety! if it is isomorphic
to a complex torus of the form C9 /(Z9 + 279), where {2 is a matrix in Siegel’s
upper half-space £y, i.e., a complex square matrix of size ¢ which is symmetric
and whose imaginary part Im 2 := (Im Qij)lfi»jﬁg is positive (i.e., such that
v € RI\{0} = v -Im 2 -v>0).

An Abelian variety is thus a complex torus of a special kind. Indeed the
condition on a lattice in C9 to be of the form Z9 + 279, after a complex linear
transformation, is non-trivial (count the parameters describing the space of
these lattices and the space of all lattices in C9!). We will see that this condition
implies that the complex manifold A = C9/(Z9 + 2Z9) can be embedded as
an algebraic subvariety of some projective space PVC. However, this is not
possible for an arbitrary complex torus.

Thus, Abelian varieties are higher dimensional generalizations of elliptic
curves for which the analogue of i) holds. The assertions in ii) also generalize
in higher dimensions: if 2, 2' € §,, the two Abelian varieties C? /(Z9 + 2Z9)
and CY/(Z9 + (2'Z9) are isomorphic iff there exists v € Sp(2¢,Z) such that
2 = ~ - 2. Here Sp(2¢,Z) denotes the group of symplectic integral 2g x 2¢
matrices, i.e., matrices of the form

(A B
’Y_C.D7

where A, B,C, D are matrices’ in My(Z) , such that

! We are cheating a little at this point: what we are defining here are the complex
manifolds underlying principally polarized Abelian varieties.
? For any ring A, we denote the ring of square matrices of size g with entries in A
1 0
by M4(A). The unit matrix ) € My(A) is denoted I,.
0 1
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A-'B=B-'A
C-'D=D-*'C
A-'D-B-'C =1,

This group acts on £, by
v-2:=(A2+ B)(C2+ D)™

The quotient $),/Sp(2g,Z) may be identified with a moduli space of Abelian
varieties, and there is a theory of modular forms on £);, which generalizes the
theory of modular forms on §) = §);. Such modular forms may be constructed
by means of theta series in several variables, which generalize (0.5).

Modular forms on §) have striking arithmetic applications (see [Coh] and
[Z]). Similarly, modular forms on ), have been used by Siegel to prove deep
results on quadratic forms over number fields.

0.3. The purpose of these lectures is to explain how Abelian varieties were in-
troduced in the mathematical world. The story goes back to the last century,
when the work of Abel, Jacobi and their followers (Gopel, Rosenhain, Her-
mite, Weierstrass, Riemann . ..) led to the great discovery that to any complez
algebraic curve X (= compact Riemann surface) of genus g is associated an
Abelian variety J(X) of complez dimension g, the so-called Jacobian variety of
X, in which X may be embedded, and that function theory on X is made much
simpler if one uses this embedding. In the following pages, we try to present
their results.

Since the beginning of this century, Abelian varieties have been studied
for their own sake, and have been the subject of an impressive amount of
work which involves analytic and algebraic geometry, arithmetics, automor-
phic forms, representation theory,... and which, like Siegel’s theory alluded
to above, often establishes deep interactions between these domains of math-
ematics. However, as examplified by the recent proof by Faltings of Mordell’s
conjecture, Abelian varieties are still a key tool to understand, not only function
theory on Riemann surfaces, but also the geometric and arithmetic properties
of algebraic curves, thanks to constructions which go back to Abel and Jacobi.

These notes cover slightly different topics than the oral conferences, where the
content of §1.5, §B.7 to B.9, Appendix C, §I1.4 and §I11.6 was not discussed. On the
other hand, a lecture providing an introduction to Arakelov geometry was given and is
not reproduced here. I would like to thank Norbert A’Campo and the mathematicians
of the ‘Mathematisches Institut der Universitat Basel’ for discussions on the topics
of §1.5 and Marc-Henri Dehon and Patrick Gérard for remarks on the content of
Appendix C. Finally, I am very grateful to Melle Cécile Gourgues for the great skill
and patience with which she typed these notes.
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I. Compact Riemann surfaces and algebraic curves

The first part of these lectures is devoted to a discussion of basic facts con-
cerning Riemann surfaces. It is intended mainly to provide a large supply of
compact Riemann surfaces and to introduce some notations and definitions
which will be needed later. More technical results, concerning the topology of
compact Riemann surfaces and holomorphic line bundles are presented in three
appendices to this Section.

More precisely, Sections 1.1 to 1.4 provide a short survey of the theory
of Riemann surfaces. The reader is expected to read them without any serious
difficulty, as we include (almost) no proof (see the ‘bibliographical comments’ at
the end of this Chapter for references to the relevant literature). The content
of §1.1, 1.2, 1.4.1 and 1.4.2 is specially important for the sequel. Section 1.3,
concerning uniformization and classification of Riemann surfaces, is not strictly
needed for understanding the rest of these notes. We included it because it
contains a most remarkable classification theorem which provides an ‘overview’
of all Riemann surfaces. Section 1.5, whose content is not used later in these
notes, can be skipped at first reading; however, it presents a recent and striking
result which illustrates the various concepts introduced so far. Appendix A
contains some basic results concerning the topology of surfaces (without proof).
Appendix B contains more technical results about holomorphic line bundles on
Riemann surfaces. At first reading, the reader should browse through §B.1 to
B.5 and return only later to a more detailed study of this Appendix. Appendix
C contains proofs of the results in Appendix B, which avoid any explicit use of
sheaf cohomology and which we think to be simpler than in the usual treatments
of analysis on compact Riemann surface found in modern literature.

I.1. Basic definitions

A Riemann surface is defined as a complex manifold of complex dimension 1,
that is, roughly speaking, a topological space in which a neighbourhood of any
point looks like the complex plane.

More precisely, this definition means that a Riemann surface X is a Haus-
dorft space X such that, for any point P of X, we are given an open neigh-
bourhood {2 of P and a homeomorphism

p: N —-e2)cC

from {2 to an open domain in C. These homeomorphisms satisfy the following
consistency condition: let Py, P, be any two points of X such that the associated
neighbourhoods 21, £2, overlap; then ¢ 0y ! is holomorphic on w2 (821 N 122).

Such a pair (12,¢) is called a holomorphic chart on X and the map ¢ is
called a local coordinate at P. More generally, if f is any holomorphic function
defined on a neighbourhood of z = ¢(P), such that f'(z) # 0, then fo¢ defines
the same complex structure on a neighbourhood of P as ¢ and is also a local
coordinate at P.
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Clearly, any open domain in C defines a Riemann surface. The simplest
compact Riemann surface is the Riemann sphere or projective line

P!C = CU {oo}.

Topologically, it is the one point compactification of C, i.e., a sphere. Its holo-
morphic structure is defined by the charts (U, ¢), (V,9) given by

U=PC- {0} =C; ¢(2)==z
and
V=PIC-{0} =C*U{oc}; ¢(z) =271 if 2 # co; ¥(c0) =0.

The standard notions from the theory of functions of a complex variable
may be transferred from the complex plane to Riemann surfaces:
- a complex valued function v defined on an open set U C X is holomorphic
iff for any P € U and any local coordinate ¢ at P, o ™! is holomorphic near
z = p(P). Moreover, 1 has a zero of order n at P iff )0 ™! has a zero of order
n at z.
- in the same way, one defines meromorphic functions on Riemann surfaces and
the order of a pole of a meromorphic function.
- a continuous map f : Y — X between two Riemann surfaces is holomorphic
if, for any holomorphic chart ¢ : 2 — C in X, the map 9o f: f~1(2) - C
is holomorphic. Such a map is called an tsomorphism of Riemann surfaces, or
a biholomorphic map, when it is a homeomorphism and its inverse is holomor-
phic. Any meromorphic function on a Riemann surface X may be seen as a
holomorphic function from X to PIC.

1.2. Four constructions of Riemann surfaces
1.2.1. Conformal structures.

Let X be a C*™ real surface.

Let g be any C> Riemannian metric on X. A classical theorem* says
that, locally on X, the metric ¢ s conformally flat, i.e., that X may be covered
by charts U, such that there are C™ local coordinates (z,y) on U in terms of
which g takes the form

g = Mda® +dy?)

where )\ is a C* function from U to RY.

Furthermore, suppose that X is oriented. Permuting ¢ and y if necessary,
we can suppose that the charts (U;z,y) are compatible with the given orienta-
tion. Then the complex valued charts (U, z + ty) are such that the coordinate

3 4.e., a C* manifold of dimension 2.

* Due to Gauss when X and g are real analytic and to Korn and Lichtenstein in the
C* case ; cf. [Ch] for a simple proof.
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changes between them are oriented and conformal diffeomorphisms, i.e., bi-
holomorphic transformations. Hence these charts define a structure of complex
manifold on X (of complex dimension 1).

e

Fig. 1. A compact Riemann surface two thousand years before Euclid (Cycladic art,
2400-2200 b.c., Athens National Museum).

Moreover, for any function x4 € C®°(X,R%) the Riemannian metric ug
clearly defines the same holomorphic structure on X as g.

Thus we see that the data of an orientation and of @ conformal class of C™
metrics on X determines a structure of Riemann surface on X. Furthermore,
one easily checks that one gets in that way a one to one correspondence:

(12.1) { holomorphic structures }e__) { (conformal class of metrics }

on X compatible with . .
its O structure on X, orientation on X)

A nice feature of this construction is that it immediately provides a large supply
of Riemann surfaces: any oriented surface embedded in a Riemannian manifold
(e.g., in the ‘physical’ Euclidean three space R® as in fig. 1) gives a Riemann
surface !

The correspondence (I1.2.1) shows that the study of Riemann surfaces may
be seen as the study of conformally invariant properties of two-dimensional
Riemannian manifolds. That is the reason why Riemann surfaces occur in recent
topics of theoretical physics such as string theory or conformal field theory.
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bt} Wat) "‘_3__‘3‘2_9 Q2g.2

Fig. 2. The real points of the curve 3* = H29+2(x - aj).

i=1

I.2.2. Algebraic curves.

Historically, the theory of Riemann surfaces arose from the study of alge-
braic functions and of their integrals. The Riemann surfaces occurring in this
study are Riemann surfaces attached to algebraic curves, which are defined by
the vanishing of a family of complex polynomials.

Here is the simplest example of an algebraic curve: let P € C[X,Y] be an
irreducible (non-constant) polynomial; then

Cp= {(IL‘,y) eC | P(l‘,y) =0 and (g;(may)a g—i(:ﬂ,y))# (070)}

is a one-dimensional complex submanifold of C?; hence it is a Riemann surface.

Examples. Here are three examples of increasing order of complexity.
i) Let P(X,Y) = X? —Y?3. Then

Cr={ew) e (OO} =},

The parametrization z = t* | y = ¢ shows that Cp is isomorphic (as a Riemann
surface) to the pointed complex plane C*.

ii) Let Q(X) € C[X] be a polynomial with simple roots. Then P(X,Y) :=
Y? — Q(X) is irreducible and

cr={e) e 147 = )}
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“15;7 % "‘29.1‘;;7 2g+2
<
0) [ 273 ®agal ®2g42
=7 - =
S
4
b)
c)

Fig. 3. a) Two separate copies of C, each with g + 1 cuts. b) The upper copy has
been turned upside down and the sides of the cuts have been glued according to the
arrows. ¢) The surface made compact by adding one point at infinity on each sheet.

is a Riemann surface (observe that P(z,y) = 0 = (g-)%(x,y), %(w,y)):
(—=Q'(z),2y) # 0 since Q has only simple roots).
Suppose Q(X) is of even degree, say
2g9+2

QX) = [T (X -a).

=1

Figure 2 depicts the set Cp N R? of real points of Cp when the roots a; are
real. The whole curve Cp appears as a two-sheeted covering of C, ramified at
ai,. .., %942, via the map (z,y) +— z. Topologically, Cp can be described as
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two copies of the complex plane suitably sewn along cuts between «; and as,
a3 and ay,...,azg4+1 and aggyz; this proves that Cp has the topology of a
compact surface of genus g with two points deleted (see figure 3; ¢f. Appendix
A for the definition of the genus).

ii1) Let P(z,y) = X"+ Y" —1 (n € N*). Then Cp is the ‘affine Fermat

curve’:
Cp= {(z,y) eC |z +y" = 1}.

The reader may enjoy proving that, topologically, Cp is a compact surface of
genus 2(n — 1)(n — 2) with n points deleted.

1.2.3. Quotients of Riemann surfaces.

A third way to get Riemann surfaces is to construct them as quotients
under group actions of some other Riemann surfaces.

For instance, an elliptic curve E. = C/(Z + 7Z) is the quotient of the
complex plane by the action by translation of the lattice Z + 7Z.

In general, one can prove the following theorem:

Theorem 1.2.1. Let X be a Riemann surface and let I' be a discrete group acting
on X such that:

i) for any v € I', the map z — -z from X to itself is holomorphic (hence
an 1somorphism of Riemann surfaces);

i) the action of I' on X is proper: if (zn)n>1 18 a sequence in X and
(Yn)n>1 18 @ sequence in I' such that the z,’s belong to a compact subset of X
and the v,’s are pairwise distinct, then v - zn, goes to infinity in X 5 when
n goes to infinity.

Then the quotient space X/I' possesses a natural structure of Riemann
surface, characterized by the following property:

Let 1 : X — X/I' denote the canonical map. For any open subset U
of X/T', #=1(U) is an open subset of X ¢ and a function f : U — C is
holomorphic iff fom: 7 (U) — C 1s holomorphic.

Observe that according to ii), X/I" is a nice Hausdorff space. Moreover,
when I' acts freely on X, i.e., when for any v € I' — {e} the automorphism
z +— 7+ z has no fixed point, this theorem is a simple formal consequence of the
definition of a Riemann surface, and still holds if ‘Riemann surface’ is replaced
by ‘n-dimensional C* (or complex) manifold’. The point is that, contrary to
what occurs with quotients of manifolds of dimension > 1 7, even if some

% 4.e., for any compact subset K of X, vz, ¢ K for n large enough.

® This is the definition of open subsets in X/T.

" For instance the quotient of €* by the action of the involution (z1,22) +—
(=21, —22) is isomorphic with the cone zy = 2% in C* (put z = z},y = 3,2 =
x122), which is not smooth at (0,0,0).
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v € I' — {e} acts with fixed points, X/I" is a smooth Riemann surface: there is
no ‘quotient singularity’ in the world of Riemann surfaces.

Examples. 1) Let X be the unit disc D = {z € C | |z] < 1} and let I" be
the group Z, of n-th roots of unity, acting by multiplication on C. Then the
I-invariant function on D z +— z™ induces an isomorphism

D/Z,~ D.

This example shows how a quotient X/I" may be smooth even when some
elements in I'\{e} have fixed points. In fact it is the ‘generic’ example of this
phenomenon: under the hypothesis of Theorem 1.2.1, for any point P € X, its
stabilizer in I', namely

I'p={yel|y -P=P},
is a finite cyclic group Zn,, and there exists a chart (U, z) of X such that
PeU=zP)=0,z(U) =D,
yelp=~-U=U,
vyeI\I'p=~v-UNnU =10

and such that, read in this chart, the action of I'p on U is the action of n-th
roots of unity on D. Then in X/I', the open set n(U) may be identified with
U/Ip, i.e., with D/Z, ~ D (see, for instance, [GN], §1.5.(3)).

il) The group Z acts on C by translation and this action clearly satisfies
the conditions i) and ii) above. The Z-periodic function exp(2niz) induces an

isomorphism

C/lZ ~C.

ii1) An action of the group

PSL(2,R) = {(‘z Z) € My(R) | ad — be = 1}/{.{5}

on the upper half plane § is defined by

a b _az+b
c d) T & +d’
Thus any subgroup I' of PSL(2,R) acts on £, and clearly this action satisfies

condition 1) in Theorem 1.2.1. Moreover, if we let PSO(2) = SO(2)/{+1;}, we
have a homeomorphism

SL(2,R)/SO(2) = PSL(2, R)/PSO(2)=> $
lg] =g,

and, since PSO(2) is compact, this easily implies that any discrete subgroup
I' of PSL(2,R) satisfies condition ii) in Theorem I.2.1. Finally, to any discrete
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subgroup I' of PSL(2,R) is attached a Riemann surface $)/I". Any such I is
called a Fuchsian group.

A simple way to get discrete subgroups of PSL(2,R) is to take subgroups
of PSL(2,Z) := [SL(2,R)NM>(Z)]/{%I2}. The quotients of ) by some of these
subgroups are closely related to elliptic modular functions. For instance, the
modular function j, defined in terms of g, and g3 (¢f. (0.3) and (0.4)) by the
formula

N g2(7)°
) =128 e g

induces an isomorphism
j:9H/PSL(2,Z) 5C
[r] = 3(7).

Consider now the congruence subgroup

F@)z{(i2)ESMZZﬂaEdzlmMQJECEOmwl}Hib}

It acts freely on $) and there is an isomorphism
H/1'(2) ~C—-{0,1}
induced by the function A : § — C — {0,1} defined by
4
+oo n mwin?r
)\(T) _ 9(7’/2’7')4 _ (En.—_—oo(—l) € )
- 0(0’7)4 B ( +oo e1rin21-)4

which is modular with respect to I'(2). (The function § was defined in (0.5).
Note that the j function also may be expressed in terms of 6; in fact we have

(A2 =X 41)°
Yo

ki

j =256

1.2.4. Analytic continuation.

Finally we should mention, at least because of its historical importance, a
last way to construct Riemann surfaces: analytic continuation.
Consider a point z¢ in C and a germ of holomorphic function at zg, i.e.,

a series
o0
fo(z) = Z z—xo)"

with a positive radius of convergence. The Riemann surface of f is ‘the largest
connected Riemann surface unramified over C on which the germ f may be
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extended as a holomorphic function’. We now describe a formal construction
of this Riemann surface.

Consider the set O of pairs (z, f) where  is a point of C and f is a germ
of holomorphic function at =, and consider the map

m: O —C

(z,f) =z
There exists a unique structure of (highly non-connected) Riemann surface on
O which satisfies the following conditions: for any (z, f) € O, if the radius of
convergence of f is R and if, for any z' €D, (R) (the open disc of center z and

radius R), f;» denotes the Taylor series of f at z', the map

D.(R) - O

g - (zlafz’)

o
is a biholomorphic map from D, (R) onto its image. This Riemann surface

structure on O makes the map 7 a holomorphic map, which indeed is locally
biholomorphic (z.e., unramified). Moreover, the map

F: O -C
(z,f) = f(z)

is easily seen to be holomorphic.

The Riemann surface X of the germ of holomorphic function fy is now
defined as the connected component of (zg, fo) in O. By construction, X is a
Riemann surface which ‘lies over C’; indeed the map

m: X - C

is unramified. Moreover the holomorphic function F' extends the germ f, which
can be seen as a germ of holomorphic function on a neighbourhood of (z, f) in
X (identified with a neighbourhood of z in C by ).

The link between this construction of the analytic continuation and its
more classical description is made by the following observation: a germ (&', f')
belongs to X iff there exists a finite sequence (z;, fi), 0 <7 < N, of germs such
that (zo, fo) = (¢, f), (zn, fn) = (2, f') and such that the open discs of con-
vergence of f;_; and f; intersect and f; and f;_; coincide on this intersection.

A well known example of Riemann surface obtained by this construction
is the ‘Riemann surface of the logarithm’, obtained by applying the preceding

construction to
(xaf) = <1,Z(_1)n+1 (—2—%1—)Z> .

n=1
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The associated Riemann surface X is an unramified covering of C*, with an
infinite number of sheets. It is biholomorphic with C via the map

C— X

el —nz
T (ez,;r-l—z:(—l)"+1 < (z—ez)"> .
n
n=1

Another example of analytic continuation is provided by algebraic func-

tions. Assume f is a germ of algebraic function, i.e., that there exists a non-zero
polynomial P € C[X,Y] such that

P(a', f(2')) =0

for any 2' in a neighbourhood of z. The polynomial P may be supposed irre-
ducible and then the map

X-C
p=(z,f) = (n(p), F(p)) = (z, f(z))

establishes an isomorphism between X and the open subset of C'p (¢f. §1.2.2)
obtained by deleting from Cp the finite set of points at which the first projection
(#1,22) = 21 is ramified (this is equivalent to 25 (21,22) = 0).

1.3. Classification of Riemann surfaces

A deep theorem of the theory of Riemann surfaces asserts that any connected
Riemann surface may be obtained as a quotient from P!C, C, or $). More
precisely, we have the following classification:

Theorem 1.3.1. The class of connected Riemann surfaces may be partitioned
into three subclasses:
e Elliptic Riemann surfaces: these are the Riemann surfaces isomorphic to
the Riemann sphere PXC. They are characterized as the connected Riemann
surfaces X such that there is a non-constant holomorphic map P'C — X.

In particular, if X = P'C in Theorem L2.1, then I' is finite and X/I" ~
PIC.
e Parabolic Riemann surfaces: these are the Riemann surfaces isomorphic ei-
ther to C, or to C* or to an elliptic® curve E, = C/(Z + 7Z),7 € $. They
are characterized as the connected Riemann surfaces X which are not elliptic
and such that there is a non-constant holomorphic map from C to X, or as
the surfaces 1somorphic to o quotient of the complex plane C by a group action
satisfying the hypotheses of Theorem I1.2.1, or as the surfaces isomorphic to a
quotient of the complex plane by the action by translation of a discrete subgroup

of C.

8 At this point, the terminology appears quite awful: an elliptic curve is a parabolic
Riemann surface. It is unfortunately well established.
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Among the parabolic Riemann surfaces, C is characterized, up to isomor-

phism, as simply connected and non-compact, C* as non-simply connected and
non-compact, and the elliptic curves E-, as compact. Furthermore, two elliptic
curves E. and E. are isomorphic as Riemann surfaces iff 7 and 7' have the
same class in H/PSL(2,Z), i.e., iff 5(7) = j(7).
o Hyperbolic Riemann surfaces: these are the Riemann surfaces isomorphic
to a quotient $3/I", where I' is a discrete subgroup of PSL(2,R) acting freely
on . They are characterized as the connected Riemann surfaces X such that
there is no non-constant holomorphic map from C to X. Furthermore, two such
surfaces /1" and H/I" are isomorphic iff there exists g € PSL(2,R) such that
I'=gl'g™1.

This ‘trichotomy’ may be rephrased in terms of universal coverings:

If X is a connected Riemann surface and if X denotes its universal covering
(cf. [Rey]), then:

- X s elliptic iff X ~ P'C (and then in fact X ~ P'C)

- X is parabolic iff X ~ C

- X is hyperbolic iff X ~ 9.

In particular, the classification above asserts that any simply connected
Riemann surface is isomorphic either to PC, or to C, or to §). This statement
is known as the uniformization theorem and is the main point in the proof of
Theorem A.3.1.

The division in three classes of connected Riemann surfaces may be un-
derstood in terms of conformal structures:

Theorem 1.3.2. A connected Riemann surface is elliptic (resp. parabolic, resp.
hyperbolic) iff it may be equipped with a complete Riemannian metric defining
its conformal structure whose Gaussian curvature 1s +1 (resp. 0, resp. —1).

The ‘ounly if’” part in Theorem 1.3.2 is easily checked as follows:

e An elliptic Riemann surface is isomorphic to the Riemann sphere PIC =
CuU {00}, which clearly possesses a conformal metric of curvature 1. Explicitly,
we can take )

ds® = —————4le| .

(1+z[?)?
e The flat metric on C
ds? = |dz|?

is translation invariant. Hence it defines a complete metric of zero curvature
on any parabolic Riemann surface X = C/I" (I" discrete subgroup of C).
e The Poincaré metric
|d=|?
(Im 2)?

on %) is a complete Riemannian metric of curvature —1, which is preserved by
the action of PSL(2,R) on §). Hence it defines a complete metric of curvature

ds? =
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—1 on any Riemann surface of the form $)/I", where I' is a discrete subgroup
of PSL(2,R) acting freely on §, i.e., on any hyperbolic Riemann surface.

Recall that, equipped with this metric, £ is a model of hyperbolic two-
dimensional non-Euclidean geometry (cf. [Cr]). In this model, the geodesics
are represented by the semi-circles centered on the real axis and by the lines
orthogonal to it. The group of direct isometries of the hyperbolic plane coincides
with PSL(2,R) acting on $) by homographic transformations.

=) S

Fig. 4. Half plane and disc models of hyperbolic geometry.

It is often useful to use a variant of this model (cf. figure 4): we have a
holomorphic diffeomorphism between §) and the unit disc

D={weC||w <1}

which associate to z € §) the point w = ﬁ—i € D. Transported on D by this
diffeomorphism, the Poincaré metric becomes
4|dw|?

T

The geodesics in this ‘disc model’ are the diameters and the arcs of circles
orthogonal to the boundary circle D = {w € C | |w| = 1}, and the group of
direct isometries of the hyperbolic plane coincide with

PSU(1,1) := {(‘; g) :(a,b) €T, [af? = B = 1}/{iI2}

acting on D by homographic transformations.
Exercise: An element ¢ = (gi;)1<i j<2 of SL(2,R) — {+,} (resp. of SU(1,1) —
{£1;}) acts without fixed point on ) (resp. on D) iff its trace tr g := g11 + g2
has modulus > 2.

The uniformization theorem is one of the achievements of the mathematics
in the last century. Its proof leaded to the development of rigorous methods
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in the study of elliptic differential equations and in potential theory, as well as
in algebraic and differential topology. Uniformization establishes a fascinating
interaction between these topics, the study of Riemann surfaces and hyperbolic
geometry, which, still now, is far from being completely explored. Concerning
this circle of ideas, we cannot refrain to quote the enthusiastic evocation of
uniformization in the foreword of the first ‘modern’ book on Riemann surfaces,

published by Hermann Weyl in 1913 ([Wey 1]):
. Die letzten Abschnitte endlich (§19-21) sind der von Klein und

Poincaré in kuhnem Riff entworfenen, von Koebe in jingster Zeit auf
ein breites Fundament gestellten Theorie der Uniformisierung gewsd-
met. Wir betreten damit den Tempel, in welchem die Gottheit (wenn
ich dieses Bildes mich bedienen darf) aus der irdischen Haft ihrer
Einzelverwirklichungen sich selber zurickgegeben wird: in dem Symbol
des zweidimensionalen Nicht-Euklidischen Kristalls wird das Urbild
der Riemannschen Flichen selbst, (soweit dies mdéglich ist) rein und
befreit von allen Verdunklungen und Zufilligkeiten, erschaubar®. ..

1.4. Compact Riemann surfaces

I.4.1. Compact Riemann surfaces with punctures.

We have just discussed the link between the construction of Riemann sur-
faces as quotients, and the construction from conformal structures. The inter-
play between these constructions and the construction from algebraic curves
appears more clearly when one deals with compact Riemann surfaces.

In order to explain it, let us introduce a definition: we will call compact
Riemann surface with punctures any Riemann surface X such that there exists
an open subset U C X such that:

(P1) there exists a biholomorphic map from U onto a disjoint finite union
of punctured discs {0 < |z| < 1};

(P2) X — U is compact.

One easily checks that for any such X, one gets a new Riemann surface
X by gluing X and a dlSJOlnt finite union of discs {|z| < 1} along the open set
U (see figure 5). Clearly, X is compact and contains X, and X — X is finite.
Moreover, X is characterized by these properties and is therefore well defined.

It is useful to observe that if X' is a finite subset of a Riemann surface X,
X is a compact Riemann surface with punctures iff X — X' is such, and that,
when this is true, X may be identified with X-5.

® ... Finally the last Sections (§19-21) are devoted to the wuniformization theory,

which was sketched by Klein and Poincaré in an audacious breakthrough and was
recently put on a firmer basis by Kcebe. Thus we get into the temple where the
divinity (if I am allowed to use this image) is restored to itself, from the earthy jail
of its particular realization: through the two dimensional non-Fuclidean crystal,
the archetype of the Riemann surface may be contemplated, pure and liberated
from any obscurity or contingency (as far as it is possible). ..
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Fig.5. A compact Riemann surface with punctures.

Example. Let F be a finite subset of P1C, and let 7 : X — P!C — F be an
unramified covering of finite degree. Then X is a compact Riemann surface
with punctures. Indeed, if we choose, for each z € F', a neighbourhood D, of =
in P1C disjoint from F — {z} and such that the D,’s are pairwise disjoint and
biholomorphic to open discs, then the open subset of X

U zng YD, — {z})

of X clearly satisfies condition (P2), and satisfies condition (P1) as well, because
any unramified covering of finite degree of a punctured disc is (biholomorphic
to) a disjoint union of punctured discs (see [Rey]). Thus one gets a compact
Riemann surface X. Moreover, the covering m : X — PI!C — F extends to a
holomorphic map

#:X o PIC,

which may be ramified over 771(F).

Exercise: Prove the following extension of the preceding example: let f : X — Y
be a holomorphic map between Riemann surfaces which is proper and non
constant on any connected component of X and whose ramification set is finite.
If Y is a compact Riemann surface with punctures, then X also is a compact
Riemann surface with punctures.

1.4.2. Algebraic curves and their normalizations.

Let P € C[X,Y] be an irreducible polynomial, and let Cp be, as in §1.2.2,
the set of smooth points of the curve of equation P(z,y) = 0. Let us assume
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that P ¢ C[X] (i.e., that Cp is not a line parallel to the Y-axis) and let n be
the degree of Y in P(X,Y’). Then

Fy ={z € C| P(z,Y) has degree < n or has a multiple root }

is a finite subset of C. Indeed, it may be defined by the vanishing of the discrim-
inant of P(z,Y) as a polynomial in Y, and this discriminant is a polynomial
function of « which does not vanishes identically, according to the hypothesis
on P.

=

Fig. 6. The compact Riemann surface with punctures associated with an algebraic
plane curve.

Let X := {(z,y) € Cp |z ¢ Fy}, F := Fy U {oo}, and let
: X - C-F=PC-F
(z,y) — z.
Then 7 is an unramified covering of degree n, and we are in the situation of the

example in the preceding paragraph (see figure 6). Therefore X is a compact

Riemann surface with punctures and we get a compact Riemann surface X and
a holomorphic map 7 : X — P'C which extends =.

As X C Cp and X — Cp is finite (it is included in (Fo x C)N{P(z,y) = 0}
which is finite since P is irreducible and belongs to C{X,Y ]~ C[X]) we see that
Cp itself is a compact Riemann surface with punctures, and that the map

7:Cp—C
(z,y) ~

extends to a holomorphic map
T (TP =X - PIC.

The compact Riemann surface C p is a compact Riemann surface canonically
associated to the algebraic curve {P(z,y) = 0}. Moreover, one may prove that
it is connected, as a consequence of the irreducibility of P.



84 Chapter 2. Compact Riemann Surfaces, Jacobians and Abelian Varieties

Examples. Consider again the examples of §1.2.2. The reader can check that:

-if P(X,Y) = X% — Y3, then Cp is isomorphic to P'C;

-if P(X,Y)=Y? - H?i'lm(X — «;), where the a;’s are pairwise distinct,
then Cp is a compact surface of genus g¢; compact Riemann surfaces constructed
in this way are called hyperelliptic Riemann surfaces;

i P(X,)Y)=Y? - H?i'{'l(X — a;), where the a;’s are pairwise distinct,
then C p is also a hyperelliptic Riemann surface of genus g;

<if P(X,Y)=X"+Y" — 1, then Cp may be identified with the ‘Fermat
curve’, defined as the curve in P2C of homogeneous equation X7 + X7 = X7.

1

It is a compact surface of genus 5(n — 1)(n — 2).

In fact, by this construction, we can recover all compact connected Rie-
mann surfaces:

Theorem 1.4.2. Let M be a compact connected Riemann surface.

1) There ezists @ non-constant holomorphic map

f: M - PC.

(i.e., @ non-constant meromorphic function on M ).

2) For any such f, there exists an irreducible polynomial P € C[X,Y] and
an isomorphism M ~ Cp such that, Cp and M being identified through this
wsomorphism, f coincides with 7.

The assertion that on any compact Riemann surface, there is a non-
constant meromorphic function is the difficult and important point in Theorem
1.4.2. Let us emphasize that this property is special to one-dimensional com-
pact complex manifolds. (On a compact complex surface, i.e., on a compact
two dimensional complex manifold, there may be no non-constant meromorphic
function; cf. §1I1.2). This type of existence theorem goes back to Riemann, who
gave a non-rigorous construction, based on the Dirichlet principle, of harmonic
functions with prescribed singularities on ramified coverings of P'C. Theorem
1.4.2 was proved rigorously by methods closely related with the ones developed
to prove the uniformization theorem, and, at the same time as this last theo-
rem, has been at the origin of many developments in analysis around the term
of last century.

Until now, we have considered only plane algebraic curves. To get a better
understanding of the correspondence between compact Riemann surfaces and
algebraic curves, it is important to deal with a more general notion of algebraic
curves. This leads us to introduce a few definitions:

e an algebraic subvariety of complex dimension d of the affine space CV
(resp. of the projective space PNC) is a subset V of CV (resp. of PNC) such
that:

1) there exists a finite family of polynomials (resp. of homogeneous poly-
nomials) Py,..., Py in C[X,...,XnN] (resp. in C[Xo,X1,...,Xn]) such that,
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for any (z1,...,2n5) € CV (tesp. for any (2o : ... : zn) € PNC), we have
(.’El,...,(EN)GV@P](wl,...,.’EN)Z...=Pk(1'1,...,.'11N)=0
(resp.:
(1.4.1) (zo:...:2n) EV & Pi(20,...,2N) =...= Pg(z0,...,2N) :0);

ii) the subset Vieg of V, formed by the points P of V which possess an
open neighbourhood §2 in CV (resp. in PNC) such that V N £ is a complex
submanifold of {2, is connected and of complex dimension d (by construction
Vieg 1s an open subset!® of V and a submanifold of CV (resp. of PVC)).

e an affine or projective algebraic variety V is said to be smooth if Vieg = V;
then it is a complex submanifold of CN or PY.

e an affine (resp. projective) algebraic curve is an affine (resp. projective)
algebraic variety of dimension one.

Let V be any affine or projective algebraic curve. One may show that
V — Vieg s finite and that Vieg 45 @ compact Riemann surface with punctures
(the proof is a generalization of the proof for Cp: one shows that the linear
projection from Vieg to a ‘generic’ line, restricted to the complement of a finite
set of ramification points, is a proper finite unramified covering). Therefore we
may consider the compact connected Riemann surface ‘Zeg. In the projective
case, the identity map from Vg to itself extends to a holomorphic map from
\/;}eg to V(c PMC). The Riemann surface V,eg is called the normalization of
V, and has been obtained from V by ‘resolving its singularities’ (the singular
points of V are the points in V — V,eg). In the affine case—say V' C C¥ —the
closure V of V in PNC is an algebraic curve in PVC, and YA/mg is nothing else
than the normalization of V. To summarize, to any complez algebraic curve is
canonically associated a compact connected Riemann surface.

Examples: i) Let P € C[X,Y] an irreducible polynomial of degree n (> 0).
Then
V = {(z,y) € C* | P(z,y) = 0}

is an algebraic curve in C?, its closure V in P2C is the set of zeroes in P2C of
the homogenized polynomial
> ap (X1 X2
P(X(),XI,X2) = XO P (X—O, '5(—0) 3
and the normalization of V coincides with C p.
ii) Any smooth projective algebraic curve—e.g., the Fermat curve in P2C,
of equation X' + X7 = X['—is its own normalization.

iii) Let us give examples of smooth algebraic curves in P3C which are not
contained in any projective plane of P3C.

% In fact, one may prove that if V satisfies i), then Ve, is dense in V, and has only
a finite number of connected components.
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For instance we can take the image of the embedding

PIC — P3C
201 212 : o3)

(zo:z1) — (ad:2%z):xia?: o}

the so-called twisted cubic in P3C. It is an algebraic curve in P3C as it may be
defined by the equations:

XoX3 —X1X2=0
X2 -X1X3=0
X? — XoX; =0.

A more sophisticated example is, for any T € §), the image of the holomorphic
map

¢r:C/(Z + 1Z) -P3C
[2] = (600(22,7) : 601(22,7) : 610(22,7) : 611(22,7))

defined by the theta functions ‘with characteristics’

+oco
0;i(z,7) = Z exp [mi(n +1/2)*1 + 2mi(n + 1/2)(2 +3/2)].

n=-—oo

One may prove that ¢, is an embedding and, using Riemann’s quadratic re-
lations between theta functions, that its image is defined by the quadratic
equations (cf. [Mu4], I, p. 11-23):

900(0)2Xg = 901(0)2X12 + 610(0)2X22
B00(0)2X2 = 816(0)2 X2 — 6o (0)2X2.

A good reason to look at algebraic curves in higher dimensional projective
spaces is that a general compact connected Riemann surface of genus ¢ > 2
cannot be realized as a smooth algebraic curve in P2C. Indeed, the genus of such
a Riemann surface is 3(n — 1)(n — 2) where n is the degree of the irreducible
homogeneous polynomial in C[Xy, X1, X2] which defines it, and clearly, not all
positive integers are of this form. Moreover, no hyperelliptic Riemann surface
of genus g > 2 can be embedded in P2C. However, we have the following refined
version of the existence theorem 1.4.2.; 1):

Theorem 1.4.3. For any compact connected Riemann surface X, there is a holo-
morphic embedding

¢: X - P3C.

The crucial point now is that the image of such an embedding is an al-
gebraic curve in P3C (observe the analogy with Theorem I1.4.2. 2)). This is a
(rather easy) special case of the following celebrated theorem of Chow:
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Theorem 1.4.4. Any compact connected complez submanifold of PNC is an al-
gebraic subvariety of PNC.

An important avatar of the ‘algebraic character’ of complex projective
manifolds expressed by Chow’s theorem is the fact that, on algebraic curves,
‘meromorphic functions coincide with rational functions’. More precisely, we
have:

Theorem 1.4.5. 1) Let P be any irreducible polynomial in C[X,Y]. For any
meromorphic function f on ép, there ezist R € C(X,Y) and a finite subset F
of Cp such that R is defined and coincides with f on Cp — F'.

2) Let X be a compact connected Riemann surface embedded in PNC. For
any meromorphic function f on X, there exist homogeneous polynomials P,Q
of the same degree in C[Xy,...,Xn] and ¢ finite subset F of X such that, for
any (zg:...:zN)EX — F,

P(.’Eo,...,x]\])

Q(zo,...,zN)#0 and f(mo:"‘:x"):Q(:vo... zn)’

Exercise: Prove assertion 2) of Theorem 1.4.5 when N = 1 and X = P!C;
in other words, prove that any meromorphic function on P!C is a rational
function. (Hint: use Appendix B.1.7).

Exercise: Prove that if C is the hyperelliptic Riemann surface Cp defined by
P(X,Y)=Y2-[[¥?(X — ), and if z and y are the meromorphic functions
on C defined by the coordinates, then any meromorphic function on C may
be written in a unique way as f = R(z) + S(z)y, where R and S are rational
functions (Hint: consider the involution on X which exchanges the two sheets

of the covering z : C — PC and use the result of the preceding exercise).

1.4.3. Compact Riemann surfaces and uniformization.

Restricted to compact connected Riemann surfaces, the partition of Rie-
mann surfaces discussed in §1.3 involves only their topology: a compact con-
nected Riemann surface of genus g is elliptic (resp. parabolic, resp. hyperbolic)
iff g = 0 (resp. ¢ = 1, resp. ¢ > 2). More precisely, uniformization theory
tells us that the compact connected Riemann surfaces of genus 0 and 1 are, up
to isomorphism, the Riemann sphere P1C and the elliptic curves C/(Z + 7Z),
T € 5, and reduces the classification of compact connected Riemann surfaces
of genus > 2 to the classification of discrete subgroups I" of PSL(2,R) acting
freely on §) such that £)/I" is compact (¢f. Theorem 1.3.1). One easily checks
that, for any discrete subgroup I" of PSL(2, R), this last condition is equivalent
to the existence of a compact subset K C § such that

=U v-K
9 7€F7 1,
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or to the compactness of PSL(2,R)/I". A discrete subgroup of PSL(2, R) which
satisfies these conditions is said to be cocompact.

Moreover, any discrete subgroup I'" of PSL(2, R) may be shown to possess
a subgroup I" of finite index which acts freely on £ (¢f. [Sel]), and I'" is easily
shown to be cocompact iff I is.

To summarize, from the point of view of uniformization theory, construct-
ing compact Riemann surfaces of genus > 2 is essentially equivalent to con-
structing discrete cocompact subgroups of PSL(2,R).

=)
%"\
AN
e g

\ ’ ’ "’»'
Y
005

2

Fig. 7. The fundamental domain Dp.

It is possible to exhibit explicit examples of such subgroups, thanks to
an arithmetic construction which goes back to Poincaré, based on the use of
quaternion algebra (c¢f. [Ei], [Shi],[Vi]). Concretely, if p is any prime number
and if n is any positive integer which is not a quadratic residue modulo p !,
then the set I'(n, p) of (classes modulo {£I;} of) matrices of the form

zo+z1y/n T2/p+ x3/0D
T2./P — T3/ND To — T14/n ’

where z¢,z1,Z2, %3 are integers such that

z%—nmf—-pmg—}—npxg:l ,
is a discrete cocompact subgroup of PSL(2,R). Furthermore, if p = 1 (mod 4),
then I'(n,p) acts freely on $.
Another construction of discrete cocompact subgroups of PSL(2, R), which
goes back to Poincaré and Klein, is based on hyperbolic geometry. It relies on
the fact that PSL(2,R) is the group of direct isometries of § equipped with

11 4., if there is no integer ¢ such that £* = n modp.
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the Poincaré metric and that, accordingly, such a subgroup may be seen as a
‘discrete group of motion in the hyperbolic plane’. We now describe briefly this
construction.

i

|
|
|
i
I
|
$
1

T

-1 -1/2 0 1
Fig. 8. A fundamental domain for PSL(2,Z).

Remember that any lattice A in the Euclidean space R" possesses a Dirich-
let fundamental domain D,, defined as

Ds=n RY | d(z,0) < d(z,7)},
A 76A{ze | d(z,0) < d(z,7)}

where d denotes the Euclidean distance in RY (¢f. [Sen]). Similarly, for any
discrete subgroup I' of PSL(2,R) acting freely on §) and to any base point
zg € 5, we can attach the following subset of £

Dr=n {zefjld(z,mo)<d(x,'y.zo)},
vel

where now d denotes the distance in the hyperbolic plane $) 12 (see figure 7).
The subset D may be called a fundamental domain for the action of I' on 5.
Indeed it enjoys the following properties:

(FD1) Dr is a connected open subset of H;

(FD2) the subsets v - Dp, v € I', are pairwise disjoints;

(FD3) 7gp v-Dpr =#%.

Moreover Dy is a convex polygon in the following sense:

- for any pair of points (A4, B) in Dr, the geodesic segment between A and
B lies entirely in Dp;

- the boundary dDr of Dy is locally a piecewise geodesic curve.

Observe that a discrete subgroup I' of PSL(2,R) may have a fundamen-
tal domain D which satisfies all the preceding conditions but which is not

12 {.e., the geodesic distance associated to the Poincaré metric. The reader may prove

that it is given by d(z1,2:) = 2 sinh ™! (_l_l—__zi__)

24/Im z1-Im 25



90 Chapter 2. Compact Riemann Surfaces, Jacobians and Abelian Varieties

obtained by the Dirichlet construction. It is the case of the well known funda-
mental domain of PSL(2,Z) depicted on figure 8.

Fig. 9. The generators y¢ associated with the sides of Dp.

Let us return to the Dirichlet fundamental domain Dp. One easily checks
that I" is cocompact in PSL(2,R) iff Dr is compact, which we will assume from
now om.

Then Dr is a convex hyperbolic polygon, with a finite number of vertices,
which belong to £). Moreover, as explained on figure 9, to any side C of Dr is
attached the unique element y¢ € I' — {I} such that C is a common side of
Dr and v¢ - Dp. Then we clearly have:

(P1) For any side C of Dr, 751 - C 1s a side of Dp. Furthermore, 0D
may be oriented as the boundary of Dr, and ¢ #s an orientation reversing
map from C to y¢o - C.

(P2) If C' = 45" - C, then yor =75

Moreover, the y¢'’s generate I'. Indeed the set of polygons {v- Dr,vy € I'}
is a hyperbolic tiling of §) (see [Rey], figure 14, and the front cover of this book).
Therefore, for any v € I', there exists a sequence vo - Dr = Dp,y1-Dr,...,vn-
Dp = ~- Dr of ‘tiles’ such that v;4+; - Dr and 4; - Dr have a common side.
Then Pyz-jrllfyi - Dr and Dr have a common side. Therefore 7;11 ~; 1s one of the
~v¢'s and 7 is a product of vy¢’s.

For any vertex P of D, we now define:

- its ‘successor’ o P) = 751 - P, where C is the side of D which starts at
P;

- the ‘cycle’ C(P) as the (finite) subset {o™(P)}nen of the set of vertices
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1.
c

1\ Ci‘]

Fig. 10. The conditions (P3) and (P4).

of Dp13;
- the angle 8p of D at the vertex P.
Then, for any vertex P of D, we have, as shown on figure 10:
- the ‘cycle condition’

(P3) > bg=2n

QEC(P)

18 satisfied;
~if C(P) = {P,a(P),...,o*(P)} (k > 1) and if C; is the side of Dr
starting at o*(P), then

(P4) Yoo YCy ve, = 1.
(Observe that

2 In more concrete terms, if we glue every side C' of Dr to y¢ - C using vc, then a
vertex P of Dy is glued exactly with the elements of C(P).
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P =4%P)
= ¢ - o(P)
= v¢vc, - 0%(P)
= Y¢,70, Ve, 0H(P)
= YC,VCy YOk - gk+1(p)
= YeovCy e, - (P)

and that I" acts freely on §).
Poincaré’s theorem is the following converse to this construction:

Theorem 1.4.6. Let D be any hyperbolic polygon in 9, i.e., any connected open
subset of 9, whose closure D is compact in $ and whose boundary ODr is a
closed piecewise geodesic curve. Suppose that to any side C of D is attached
an element y¢ € PSL(2,R) — {I} such that the conditions (P1) and (P2) are
satisfied. (This means essentially that the sides of D may be grouped in pairs
of sides of the same length). Then the definitions of o(P), C(P) and 8p still
make sense, and if the condition (P3) is satisfied the v¢’s generate a cocompact
discrete subgroup I' of PSL(2,R) which acts freely on §) and possesses D as
fundamental domain (i.e., D satisfies the same conditions (FD1-3) as Dr).

Moreover, the relations (P4) are satisfied and, together with (P2), provide
a presentation of I.

As a matter a fact, Theorem 1.4.6 allows to construct easily many cocom-

pact discrete subgroups of PSL(2, R).
Exercise. Prove that for any g > 2 there exists r € ]0, 1] such that the convex
hyperbolic polygon D, with vertices r elf?k, 1 < k < 4g, (in the disc model)
has all its angles equal to 5"3. Prove that one may choose elements v¢’s such
that the conditions in Theorem 1.4.6 are satisfied. (Hint: use §A.2.3 and figure
23.)

The construction of compact Riemann surfaces from cocompact discrete
subgroups of PSL(2, R) possesses an important extension. A discrete subgroup
I' of PSL(2,R) is said to be of finite covolume when the area in the Poincaré
metric of the fundamental domain Dy of I' is finite:

/ dz dy
2 < 00.
Dr Y

This condition is equivalent to the existence of a Lebesgue measurable subset

FE of $ such that
/dx dy
3 < oo
E Y

' E={y-z;vyel,z€e E}=%.

and
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For instance PSL(2,Z) satisfies this condition. Indeed if E is the fundamental
domain of PSL(2,Z) depicted on figure 8 and if

E'={z€ E|Imz <1}

and
E"={z€ E|Imz > 1}

8-

dr dy dz dy > dy
T R BV P <V T v < 00
y21 !

This easily implies that any subgroup of finite index in PSL(2, Z) also has finite
covolume.

then clearly

and

Theorem 1.4.7. For any discrete subgroup I' of finite covolume in PSL(2,R),
the Riemann surface $/I" is a compact Riemann surface with punctures.

When I' = PSL(2, Z), this is clear from the isomorphism
J:9/PSL(2,Z)~C,

since C = P!C — {o0} is a compact Riemann surfaces with punctures. When I’
is a subgroup of finite index in PSL(2,7Z), this follows from the fact that the
holomorphic map
H/I' — H/PSL(2,Z)

is a ramified covering of finite degree, with a finite set of ramification points,
since the map j : § — C =~ $/PSL(2,Z) is ramified only over two points. For
a general I', theorem 1.4.7 is due to Siegel ([Siel]) and may be proved using
hyperbolic geometry in $.

Finally, for any I" with finite covolume, we get a compact Riemann surface

f)//\[' . The surfaces obtained by this construction, where I" is a congruence
subgroup of PSL(2,Z), i.e., when there exists N € N* such that I" contains

I'(N) := {(z Z) €SL(2,Z)|a=d=1mod N ; bECEOmOdN},
are called modular curves. The points in the finite set 53//\[' — $/T are called
the cusps of H/I.

1.4.4. Klein’s quartic.

In the preceding Subsections, we discussed two very different descriptions
of compact Riemann surfaces: any of them may be obtained either as an alge-
braic curve, or by a quotient construction involving a lattice in C or a cocom-
pact or finite covolume subgroup in PSL(2, R). This double-faced aspect of one



94 Chapter 2. Compact Riemann Surfaces, Jacobians and Abelian Varieties

same class of mathematical objects is all the more remarkable that the explicit
transition from one approach to the other is never trivial. For instance, for com-
pact Riemann surfaces of genus one, this transition amounts to the theory of
elliptic functions. In this Section, we briefly discuss a completely explicit exam-
ple of compact Riemann surface, due to Klein ([K11]), which provides another
illustration of this circle of ideas.

Fig. 11. The real points of X*Y + Y?Z + Z*X = 0, according to Klein ([KI1]).

Klein studies the modular curve 5’377—' (7), which nowadays is usually de-
noted X(7), and obtains the following results:
o The congruence subgroup I'(7) is clearly a normal subgroup of PSL(2,Z),
and the quotient group G = PSL(2,Z)/I'(7) is isomorphic to PSL(2,Z/7Z), a
group with 168 elements. The group G acts on £/I'(7), hence on X(7). In fact
the holomorphic map

j:X(7) - P'C

which extends the map

T 9/I(7) - 5/PSL(2;Z)§<C
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Hauptfigur.
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der Kanten:
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11 2
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Fig. 12. Klein’s ‘Hauptfigur’ ([Kl1]) : A fundamental domain for I'.

by sending the cusps of X(7) to oo is a Galois covering with Galois group G.
The map j is ramified only over co, 0 and 1728. The set A = 7‘1(00) (resp.

B = 7_1(0), resp. C = 7‘1(1728)) has cardinality 24 (resp. 56, resp. 84) and

the ramification order of J at each point of this set is 7 (resp. 3, resp. 2). As 7

has degree 168, this implies by the Riemann-Hurwitz formula (cf. [Rey]) that

the genus of X(7) is 3.

e Klein proves that there exists a projective embedding

¢ X(7) = P*C
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such that ¢(X (7)) is the quartic curve of homogeneous equation
(1.4.2) XY +YZ+2°X =0

(see figure 11 for Klein’s picture of the real points of (1.4.2)). This embedding ¢
is defined in terms of holomorphic differential forms on X(7) or, what amounts
to the same, in terms of modular forms of weight 2 with respect to I'(7). The
ramification points A (resp. B) are sent by ¢ on the inflection points of the
quartic (1.4.2) (resp. on the contact points of its double tangents). As asserted
in Theorem 1.4.5., 2), the meromorphic function 7 may be written as a rational
function of the homogeneous coordinates X, Y, Z of the projective embedding
. Klein determines explicitly such a function. Namely, if

QX,Y,Z2)= XY +Y3Z + Z°X,

8%Q a%Q 9?
5X? 8X9Y 0XoZ

_ 1 52 52 52 _ 2v2 72 5 5 5
VXY, Z)= | 2% 829 29 |=5XV 2 - (XY +Y'Z+2°X),

e 29 29
8Z0X  8ZaY o7
and
3*Q 3’Q ?*Q 8V
X2 9X9Y 0XoZ 86X
%Q 8°Q ’Q  av
1|{aYyaox Y2 8YdZ @ 14 14 14
C(X,Y,Z)=§ , . . =XMypyMypzity .
22Q 82Q 82Q av
8Z6X  8ZdY 872 8z
oy v v 0
58X oY 87
then
~_c?
] = —ﬁ o @.

e Klein describes the uniformization of X (7). The inverse image j ~*(P'R) of
the real axis divides X(7) in 2 x 168 = 336 pieces which, in the hyperbolic
metric on X(7), are geodesic triangles with angles 7, T and I (these angles
correspond to points in A, B and C, respectively). Therefore the cocompact
Fuchsian group I" such that X (7) ~ /I possesses a fundamental domain built
from 336 such hyperbolic triangles. Figure 12 reproduces Klein’s ‘Hauptfigur’
which depicts such a fundamental domain in the disc model of the hyperbolic
plane (the shaded triangles are the inverse images by ; of the upper half sphere

Imz > 0 in P!C).

This detailed investigation of X(7) played an important role in the early
history of uniformization. Klein’s curve X(7) was indeed the first compact
Riemann surface of genus > 1 for which the uniformization theorem was known

(see [K12], p.136).
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A remarkable feature of Klein’s curve is that it is isomorphic to an algebraic
curve defined by a polynomial equation with rational coefficients. The link
between this ‘arithmetic’ property and the ‘geometric’ construction of X(7) is
clarified by some recents work, initiated by a theorem of Belyi ([By]) which we
discuss in the next Section.

1.5. Equilateral triangulations and algebraic curves defined over
number fields

To conclude the first part of these notes, we describe a recent result which gives
an ‘arithmetic’ counterpart to the various constructions of compact Riemann
surfaces described in the preceding Section.

1.5.1. Euclidean triangulations of surfaces.

The construction of Riemann surfaces using conformal structures admits
the following variant. Let X be an oriented compact connected C* real surface
and let T be a C*° triangulation of X (see figure 13). A Euclidean structure on
T is the data of a flat Riemannian metric on every triangle A of 7 such that:

1) equipped with this metric, A is isometric with a triangle (in the usual
sense) in the Euclidean plane R

i1) on any edge E of 7, the metrics induced on E by the two triangles
which contain E coincide.

A C®° triangulation equipped with a Euclidean structure is called a Fuclidean
triangulation. An equilateral triangulation is a Euclidean triangulation whose
all triangles are equilateral.

-7
‘h;a‘i‘éﬁiy

o)

Fig.13. A (' triangulation of a Riemann surface.

Let Vi be the set of vertices of a Euclidean triangulation 7 of X and let Er
be the union of the edges of 7. It is easily checked that the flat Riemannian
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metric in X — Er given by the Euclidean structure of 7 extends to a flat
C*> Riemannian metric on X — V7 and that, near a vertex of 7, this metric
has at worst a conical singularity (see figure 14). This implies that X ~ V7
equipped with the holomorphic structure defined by the conformal class of this
metric is a compact Riemann surface with punctures (the key point of the
proof is pictorially explained on figure 15). In other words, the holomorphic
structure on X — Vir extends to a holomorphic structure on X. To summarize,
a Euclidean triangulation of X defines a holomorphic structure on X, hence a
compact connected Riemann surface.

A

\ isometric

Fig. 14. The singularities of the metric defined through a Euclidean triangulation are
conical.

Conversely, the holomorphic structure of any compact connected Riemann
surface M may be recovered (up to isomorphism) from some Euclidean trian-
gulation T of M:

o This is true if M = P'C, using for instance the tetrahedral subdivision
of PIC (see figure 16; the Riemann surface obtained from this Euclidean tri-
angulation is isomorphic to P}C because it is compact and simply connected;
¢f. §1.3). Moreover, if a1,...,a, are given points in P!C, we can assume, by
refining the triangulation T, that ay,...,a, are vertices of 7T (see figure 17).

e If M is any compact connected Riemann surface, there exists a ramified
covering 7 : M — PIC (cf. Theorem 1.4.2). If T is a C* triangulation of P!C
such that V7 contains the ramification points of 7, then there exists a unique
C°° triangulation 7’ of M such that Vr = n7Y(Vr) and Ep» = 7Y E7). If

(e} o

A is any open triangle of 7, 7~ (A) is a disjoint union A; U-+-U A, of open

triangles of T'. Moreover, there is a unique Euclidean structure on 7' such
(e} el

that the maps m :A;>A are isometries. Finally, the Euclidean triangulation

T' defines the original holomorphic structure on M. Indeed, it defines this
holomorphic structure on M — V1, since 7 : M — V7 — PIC — V7 is locally
isometric, hence conformal.

1.5.2. Characterization of Riemann surfaces defined over Q.

Let Q be the field of algebraic numbers, i.e., of complex numbers which
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conformal

e27r|a

T

aeﬂ-\’: S 1

Fig. 15. A punctured cone is conformally equivalent to a punctured disc.

are roots of non-zero polynomials with rational coefficients. We will say that a
compact connected Riemann surface M may be defined over Q or equivalently,
that M may be defined over a number field, if M is isomorphic to the Riemann
surface Cp associated with an irreducible polynomial P in Q[X,Y]. Moreover,
for any compact connected Riemann surface M, a holomorphic map 7 : M —
P!C will be called a Bely: map if it is non-constant and unramified outside
#1({0,1,00}).

The next theorem shows that the Riemann surfaces defined over @ have
remarkable characterizations from the various points of view on compact Rie-
mann surfaces presented in preceding Sections.

Theorem 1.5.2. For any compact connected Riemann surface M, the following
conditions are equivalent:

i) M may be defined over Q;

i) there exists a Belyi map m : M — P'C;

t13) M 1s wsomorphic to X where X is a finite unramified covering of P*C—
{0,1,00};

w) M 1s 1somorphic to .?')//71 where I' i3 a subgroup of finite inder in
PSL(2,Z);,

v) the holomorphic structure of M may be defined by an equilateral trian-
gulation.
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conformal
~~

Nt

Fig. 16. The Riemann surface P'C can be obtained through a Euclidean triangula-
tion.

The equivalence ii) < iii) is clear.
The implication iii) = iv) follows from the isomorphism (cf. §1.2.3)

$/T(2) ~ P'C — {0,1, 00}

and from the fact that, since I'(2) acts properly and freely on $ (cf. §1.2.3),
which is simply connected, any finite unramified covering of £/I'(2) is isomor-
phic to a covering

/T — H/I(2)

where I' is a subgroup of finite index in I'(2). The implication iv) = ii) follows
from the fact that the map p defined by the following diagram, where the
‘horizontal’ map associates PSL(2,Z)- z to I' - z (¢f. §1.2.3),

H/T — H/PSL(2,Z)

P\, /1728715
C

is a proper map, which is unramified on p~(C\{0,1}) since 17287 1;: § — C
is ramified only over 0 and 1. Thus p extends to a Belyi map from f)//\F to P1C.
(See [Ser], p.71).

The implication iii) = 1) is a consequence of general results concerning the
fields of definition of algebraic varieties and of their coverings (for instance, it
is a consequence of the rationality criterion in [Wei 1]).

The most surprising fact in the theorem is the implicationi) = ii). It is due
to Belyi (¢f. [Be]) and is proved as follows: by the very definition of a Riemann
surface defined over Q, there exists a holomorphic map 7 : X — P!C ramified
only over points in QU{oo}. By composing 7 with polynomials with coefficients
in Q, it is possible to decrease the maximal degree’* of these ramification
values and ultimately to get a holomorphic map 7 : X — P!C ramified only
over S C QU {oo}. By composing ¢ with some homographic transformation of

'* By degree, we mean the degree over Q of algebraic numbers.
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PIC, we may assume that S contains {0,1,0c0}. At this point, Belyi observes
that, for any A, B € Z* such that A+ B # 0, the map

PAB PIC — PIC
(A+ B)4+8 LA

AABB (1'"2)37

Z

Fig.17. A refinement of the subdivision shown in Figure 16.

is ramified at four points (0,1, 00 and 'A%F) but has only three ramification
values (0,1 and o). If A, B are chosen such that ﬁ € S -{0,1,00}, then
4B o is ramified only over {0,1,00} Un(S —{0,1, 00, A—f—g}). As this set has
a smaller cardinality than S, a simple decreasing induction on the cardinality
of S proves the existence of a Belyi map.

The equivalence ii) < v) is due to Shabat and Voevodsky ([SV1]) and is
related to earlier work of Grothendieck (see [Gro] and [SV2]). The implication
il) = v) follows from the construction of Euclidean triangulations from maps
to PIC given in the preceding paragraph: if 7 : M — PC is a Belyi map and if
T is an equilateral triangulation of P!C such that V7 D {0,1,00} !5, then the
Euclidean triangulation 7' obtained by ‘pulling-back’ 7 on M is an equilateral
triangulation of M. To prove v) = ii), one uses the fact that for any equilateral
triangle A in C, there exists a unique map fa : A — P!C, holomorphic on a
neighbourhood of A in C such that, restricted to any of the six triangles of the
barycentric subdivision of A, 84 is a conformal diffeomorphism onto one of the
two hemispheres of P!C bounded by RU {oco} (see figure 18) and such that S
send the vertices (resp. the midpoints of the edges, resp. the center) of A to 0
(resp. 1, resp. o0). One easily checks that, if 7 is any equilateral triangulation
of M, the map 7 : M — P!C which coincide with 4 over any triangle A of 7
(via the identification of the oriented equilateral triangle A with an equilateral
triangle in C) is well defined and holomorphic and is a Belyi map.

15 Quch a T exists since by a suitable homographic transformation, any triple of dis-
tinct points of PXC - in particular three vertices of a given equilateral triangulation
- may be sent to (0,1, 00).
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Fig. 18. The map Sa.

Exercise: Prove the existence of a:

i) by using the p function associated to I' = Z + e™/37;

ii) by considering the elliptic curve E = C/I" and its quotient by [z] —
[—2);

iii) by considering the Euclidean ‘triangulation’ of the 2-sphere built from
two congruent 30°-60°-90°-triangles glued along corresponding sides;

iv) by using the Schwarz-Christoffel formula for conformal mappings.

Exercise: Prove that an equilateral triangulation of Klein’s quartic (¢f. §1.4.3)

may be defined by ‘declaring equilateral’ the 336 triangles of Klein’s ‘Haupt-
figur’ (figure 12).

Appendix A. The homology of oriented closed surfaces

A.1. The homology group H:(X;Z)

The first homology group H;(X;Z) of a topological space X is the Abelian
group defined by the following generators and relations:
any loop con X, i.e., any continuous map ¢ : R/Z — X defines a generator
[c] of H1(X;Z);
if ¢ and ¢’ are two homotopic loops, i.e., if there exists a continuous map
h:[0,1] x R/Z — X such that h(0,t) = ¢(t) and h(1,t) = c'(¢) for any
t € R/Z, then we impose the relation [¢] = [¢] (see figure 19);
if ¢; and ¢; are two loops on X such that ¢;(0) = ¢2(0) and if ¢ is the loop
defined by
c(t) =c1(2t) if te[0,1/2]
c(t)=c(2t —1) if te[l/2,1],
then we impose the relation [c] = [¢1] + [c2] (see figure 20).
When X is arcwise connected, then for any zq € X, every element of

Hy(X;Z) is the class [¢] of a loop ¢ : R/Z — X, such that ¢(0) = z, and the

map which associates its class [¢] in H;(X,Z) to the homotopy class of such a
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—>—— ¢cand ¢’
—»— t—=h{x,t)

Fig. 19. Homotopy of loops.

loop ¢ defines an isomorphism between the Abelianization!® of the fundamental
group 7m1(X;zo) and H1(X;Z).

If X is a connected differentiable manifold, any element in H;(X;Z) may
be represented by a C* loop, i.e., by a C* map ¢ : R/Z — X. Furthermore,
if n is any closed C*® 1-form over X, the integral fol ¢*n of n along ¢ depends
only on the class of ¢ in Hy(X;Z). Moreover, it vanishes when 7 is an exact
form and, consequently, depends only on the class of 7 in the first de Rham
cohomology group of X with real coeflicients, namely

Hpp(X;R)
:= {closed real C*° 1-forms on X }/{exact real C* 1-forms on X}.
Hence, for any (v,a) € H1(X;Z) x HLp(X; R), we can define f7 a as the value

of fol ¢*n for any smooth loop ¢ representing v and for any closed C*° 1-form
n representing «. In that way, one defines a bilinear map

/ :Hi(X;Z)x Hpr(X;R) — R.

Similarly, using complex 1-forms instead of real 1-forms, one defines the first
de Rham cohomology group of X with complex coefficients H},z(X; C), which
may be identified with the complexification of H} 5 (X;R), and one may extend
this pairing to a pairing

/ :Hi(X;Z)x Hpp(X;C) — C.

16 i e., the quotient by its commutator subgroup.
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A.2. The homology of oriented closed surfaces

Suppose now that X is an oriented closed surface, i.e., an oriented compact
connected C'> manifold of dimension 2 (e.g. a compact connected Riemann
surface!). In the next Sections we will use the following facts concerning the
homology and the cohomology of X.

Cy

-
+
]
-

P=¢,{0)=¢c,(0)=c(0)

Fig. 20. Addition of homology classes.

A.2.1. There exists an integer g > 0 such that
Hi(X;Z)~ 7%

and
HLp(X;R) ~ R?9,

This integer is called the genus of X and completely classifies oriented closed
surfaces, in the following sense: two such surfaces are diffeomorphic iff they
have the same genus. Moreover, for any integer g > 0, there exists an oriented
closed surface g of genus X: when g = 0, we can take X = §? or X = PIC;
when ¢ = 1, we can take as X the torus R?/Z? or any complex elliptic curve;
when g > 2, we can take as X a ‘sphere with g handles’ or the hyperelliptic
Riemann surface defined as the compactification of the algebraic curve

where P is a polynomial of degree 2¢g + 1 or 2¢ + 2 with distinct roots (cf.
§1.4.2).

A.2.2. The pairing

/ CH(X;Z)x Hhr(X;R)— R
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is a ‘perfect duality’ in the following sense: for any basis (y1,...,724) Of
Hy(X,Z), there exists a dual basis (wi,...,wsy) of Hr(X) such that, for

any t,7 =1,...,2¢
/ wj =6,']'.
¥

A.2.3. For any two classes 71,72 in Hy(X;Z), one can find representatives ¢y, ¢y
which are C'® loops on X which satisfy the following conditions:

a1 (R/Z)N ca(R/Z) is finite;

for any P € ¢1(R/Z)Ncy(R/Z), there exist a unique t; € R/Z and a unique

t2 € R/Z such that

c1(t1) = co(t2) = P,

and the couple of vectors (&2 (t1), 9 (t5)) is a basis of the tangent space

of X at P.

If this basis is (resp. is not) compatible with the given orientation on X,
we set

e(P) = +1 (resp. &(P)=-1)

(see figure 21).

One may prove that the integer

>, &P
Pgey (]R/Z)ﬁcz (R/Z)

depends only on the classes v; and 7;. It is called the intersection number of
1, and 77, and is denoted vy #~2.

Fig. 21. Sign conventions for the intersections of loops.

The intersection product
Hl(X,Z) X HI(X,Z) —7Z
(11,72) = n#n

so defined is bilinear and antisymmetric. Moreover, H;(X;Z) possesses bases
which are symplectic with respect to this intersection product, i.e., bases
(a1,...,a4,b1,...,by) such that for any 7,7 = 1,...,¢:
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aiFta; =0 5 bi#b; =0 ; a;#b; = 6;;.
see figure 22).
g

A.2.4. For any symplectic basis (a1,...,aq4,b1,...,by) of Hi(X;Z) and any
P € X, one can find loops A,,..., Ay, By,...,By over X which represent the
homology classes a1, ...,aq4, b1,..., by and such that:

the maps A;, B; : [0,1] — X are C™ and the vectors 2 (T) and 2 (7')

do not vanish for = € [0, 1].

A;(0) = Bi{(0) = Pforany:=1,...,g; the maps 4;, B; : [0, 1[— X are in-

jective and the images A,(]0,1]), ..., A4(]0,1]), B1 (10,10),..., By(Jo, 1[) are
pairwise disjoint; the 4¢ vectors aA (0),..., =5+(0), aB‘ ),..., —(0),
%(1), e 6; (1), @L(l) . a—Bt(l) are pairwise non—colhnear.

Fig. 22. A symplectic basis of H1(X;Z).

(See figure 23, a)-b)). Moreover, if the loops A1,..., A4y, B1,..., B, satisfy all
these conditions, then the complement D in X of their images is diffeomorphic
with an open disc. More precisely, if A is a 4¢-gon in the plane, there exists a
regular C*® map!” ¢ : A — X such that:

¢ is surjective, p(A) C D and ¢ :A— D is a diffeomorphism (here 5

denotes the interior of A, which is diffeomorphic to an open disc);
the restriction of ¢ to any edge of A coincides, modulo an affine identi-
fication between [0,1] and this edge, with one of the maps A;, B;. (This
implies that ¢ ~1(P) is the set of vertices of A.) In that way, each of the
maps A;, B; is recovered twice, and these maps occur in the way depicted
on figure 23 c).
Roughly speaking, this means that one recovers X by gluing the sides of a 4g-
gon according to the prescription of figure 23 c¢). Figure 24 tries to show why
the gluing of four consecutives sides of the 4g-gon provides a handle.
Such a data (A,) is called a canonical dissection of X, to which the
symplectic basis (a1,...,a4,b1,...,by) is said to be associated.

17 This means that there exists an open neighbourhood U of A in the plane and an
extension @ : U — X of ¢ which is a local C*° diffeomorphism.
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a)

S\

b)

B2 A,
Ay B,
B, Al
c)
A; By
Ba Al
A3 81

Fig. 23. A canonical dissection of X.

A.2.5. For any symplectic basis (a1,...,a4,b1,...,by) of Hi(X;Z) and for any
two closed 1-forms 1 and n' on X, we have:

Jonr =2 (L o= [ )



108 Chapter 2. Compact Riemann Surfaces, Jacobians and Abelian Varieties

Aj

K

B

Aj

Bj

Fig. 24. Gluing four consecutives sides of the 4¢g-gon provides a handle.

This lemma is a simple consequence of the compatibility between the de Rham
isomorphism and the Poincaré duality for the (co-)homology of X . Let us sketch
an elementary proof. The symplectic basis (a1,...,a4,b1,...,by) of H(X;Z)
is associated to some canonical dissection of X (cf. figure 23 and figure 25):
X is obtained from a 4g-gon A with sides A1, By, 4, By, ..., Ay, By, A}, By
by identifying A; with A} vie the map ¢;, and B; with B! via the map ¢,
(z = 1,...,9); after this identification A; and A, (resp. B; and B}) give a;
(resp. bi). The forms n and 1’ may be identified with forms on A and the
integrals over X (resp. a;, b;) may be computed over D (resp. 4;, B;).

Over A, which is simply connected, there exists a function f such that
df = n. Then we have for any ¢ € A; and for any y € B; (see figure 25)

(A.2.1) fopiz) — f(z) = /b'( )df = /b n

and

(A.2.2) f(y)—fodn(y)=/ df=/a -

ai(y) i

Now we get
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/Xn/\n’=/D?7/\n':/Ddf-77’=/Dd(f-n’)

= f-n'  (Stokes formula)
dp

g
!
> f,
i=1 JA+Bi-4,-B]

Fig. 25. Proof of equations (A.2.1) and (A.2.2).

and according to (A.2.1) and (A.2.2), we have

/Ai—A:»fn,:/A,-(f—fow)nlz—/bin'/a‘"'
/B,._Béfn':/Bi(f—fowi)n':/ain./bin,7

which proves the required identity.

and

Appendix B. Holomorphic line bundles on compact
Riemann surfaces

B.1. C*° and holomorphic line bundles

This first Section presents a series of definitions, without motivations. These
should be provided by the next two Sections.

B.1.1. Let X be a C* manifold. Recall that a C* (complez) line bundle L
on X consists of a family {£;};ex of one-dimensional complex vector spaces
parametrized by X, ‘which depend on z in a C* way’. A section s of £ over a
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subset E C X is a map which attaches a vector s(z) € £, to any point = € E.
When s(z) # 0 for any = € E, the section s is said to be a frame over E.

A rigorous way to define the C'**-structure of the line bundle £ is to give
a covering U of X by open sets and to give, for any U € U, a frame sy over U
in such a way that the transition functions

Yvu vnvV — (C*,
defined on the non-empty pairwise intersections of open sets in ¢/ by the relation
(B.1.1) sv(z) = evu(z) su(e),

are C'*° functions. Then an arbitrary section s of £ over an open subset 2 of
X is C (resp. continuous) if, for any U € U, the function

fu:UnNnNR—-C

defined by
s(z) = fu(z) su(z)

is C*° (resp. continuous).

The set of C™ (resp. continuous) sections of £ over §2 will be denoted C*=(42; L)
(resp. C°(§2; £)). It is clearly a vector space. Moreover the pointwise product
f - s of afunction f € C*(§2;C) and of a section s € C*(U; L) clearly belongs
to C(U; L).

Two C* structures on L coincide, by definition, if they have the same C'>
sections. If V is another open covering of X, a family {tv}vey of frames of £
on the open sets in V defines the same C'* structure on £ as (U, {sv}tveu) iff
the ty’s are C™ sections of L. A C'* frame of £ on an open subset {2 is also
called a trivialization of £ on §2. For instance, the sy’s are trivializations of L.

B.1.2. Observe that the transition functions satisfy the following cocycle con-
ditron: if U, V and W are open sets in V with a non-empty intersection, then

(B.1.2) pwu =pwv-pvu on UNVNW.

Conversely, any family (¢uv ) of functions, oy € C*°(UNV; C*), parametrized
by the pairs (U, V') of open sets in U with a non-empty intersection, arises from a
C line bundle £ on X, provided these functions satisfy the cocycle condition.
Indeed, starting from such a family (pyv ) we may define a line bundle £ on X
and sections sy on U, U € U, as follows: for any = € X, let

U, ={U el , zeU}

define £, as the one-dimensional complex vector space obtained as the quotient
of U, x C by the equivalence relation ~ such that

(UN) ~ (V,p) & p=vuv(z)A,
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and define sy by sy(z) = [(U,1)]. Then the sy’s satisfy the relations (B.1.1)
by construction. Therefore £ is a C* line bundle and (¢yv) is the associated
family of transition functions.

B.1.3. A C* morphism ¢ from a C* line bundle £ on X to another line bundle
L' on X is the data, for every x € X, of a linear map

Uz): L, — L,
such that for any open subset U of X and any s € C®(U; L), the section
£-s:x > 4(z)- s(x)

of L' on U is C*. If U is an open covering of X and if (sy)veu and (sy)veu
are families of C'*° frames of £ and L' over the open sets in U/, then we may
define functions Ly € C*®(U; C), U € U, by the relations

(B.1.3) £-sy =Ly -sy.

Moreover, if (pyv) and (@) are the transition functions attached to (sy)
and (sf;), we have

(B.1.4) wvu Lu =Lv ¢yy on UNV.

Conversely, for any family (Ly)veu, of functions Ly € C®(U;C), satisfying
(B.1.4), there exists a unique C'*™° morphism £ from £ to £' such that (B.1.3)
holds.

Morphisms of line bundles clearly may be composed. A C* morphism
£: L — L'is called an isomorphism if, for any z € X, the map ¢(z) is an
isomorphism; this is equivalent to the non-vanishing of the Li’s defined in
(B.1.3) or to the existence of a C'> morphism of line bundles from L' to £
inverse of £. Continuous morphisms and isomorphisms between line bundles
are similarly defined.

B.1.4. The trivial line bundle over X is the line bundle such that £, = C for
any ¢ € X and whose C'® structure is defined by & = {X}, sx = 1. Its (C*™)
sections may be identified with (C'*°) C-valued functions. There is an obvious
notion of restriction of a C'* line bundle on X to an open subset {2 of X.
A C® line bundle £ on X is said to be trivial on 2 if its restriction to §2 is
isomorphic to the trivial line bundle over £2. This is easily seen to be equivalent
to the existence of a trivialization of £ on f2.

B.1.5. If L and L' are two one-dimensional complex vector spaces and if v € L
and v' € L', we will write v - v’ instead of v ® v’ for their tensor product, which
is an element of the one-dimensional vector space L@ L'. If v € L — {0}, we
will denote v~! the linear form on L taking the value 1 on v; it is an element
of the one-dimensional vector space L*.

The tensor product L ® L' of two C'™ line bundles £ and L' over X is
the C* line bundle over X such that (£ ® £'), = £; ® £}, and whose C*
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structure is such that, for any open subset £2 of X, any s € C*(§2; L) and any
s' € C>(2; L"), the section

s-8 1z s(z)-$'(z)

of L L' over 2 is C*®. The ezternal tensor product L L' is the C* line
bundle over X x X such that (£ [X] £')(z,y) = £ ® L}, and whose C structure
is such that, for any two open subsets {2 and ' of X, any s € C*(£2; £) and
s e C®(L2; L"), the section

sX]s": (2,9) = s(z) - '(y)

of L [X] L' over 2 x £2' is C*°. The dual line bundle L* is the C* line bundle
over X such that (£*); = (£;)* and whose C'* structure is such that, for any
open subset 2 of X and any C* frame s € C®(§2; L), the section

sTliz e s(z)™!

of L* over 2 is C®°.

B.1.6. When X is a Riemann surface (or more generally, a complex manifold of
any dimension), we can define holomorphic line bundles over X and extend to
them all the preceding statements by simply replacing ‘C*®’ by ‘holomorphic’
whenever it occurs.

Clearly, if £ is a holomorphic bundle over a Riemann surface X, it is
automatically a C° line bundle over X considered as a C'* surface. Conversely,
if M is a C* line bundle on X, the data of a structure of holomorphic line
bundle on M compatible with its C'*° structure is essentially equivalent to the
data of an open covering U of X and of C* frames sy over U for every U € U
such that, for any two intersecting U and V' in U, pyy defined by (B.1.1) is
holomorphicon U NV.

Observe also that the notion of meromorphic function extends easily to
sections of holomorphic line bundles: a section of a holomorphic line bundle £ is
called meromorphic if, locally, it can be written as the product of a holomorphic
frame of £ by a meromorphic function.

B.1.7. A major difference between the C* and the holomorphic situations
regards the existence of global sections. For any C* line bundle £ on a C*
manifold X, the space C*®(X; £) of its global C*° sections is ‘very large’. Indeed,
if s1s a C* frame of £ on an open set U in X and if p is any C* function
on X which vanishes outside a compact subset of U, then we define a global
section p - s € C*(X; L) by setting

(b-5)e)= pla)-s(e) ¥ zeU
= 0 if z¢U.

Il

On the contrary, if £ is a holomorphic line bundle over a Riemann surface X
the space of holomorphic sections of £ over X, usually denoted H°(X; £), may



J. -B. Bost 113

be ‘very small’. For instance, suppose that £ is the trivial holomorphic bundle O
over a compact connected Riemann surface X. Then the space H*(X;O) is the
space of constant C-valued functions on X, hence isomorphic to C. Indeed, an
element f of H°(X; ) is nothing else than a holomorphic function from X to
C. By compactness of X, |f| assumes a maximum value at some point P of X.
The maximum modulus principle shows that f is constant on a neighbourhood
of P, hence, by analytic continuation, on X which is connected.

B.1.8. A C'* Hermitian metric || || on a C'* line bundle £ over a C*® manifold
X is the data for any z € X of a Hermitian norm || || on £, such that, for any
open subset U of X and any s € C*®(U; L), the function

s l: = =1l s(2) 1%,

from U to Ry, is C*°.
A C° Hermitian metric on a holomorphic line bundle is a C'*° Hermitian
metric on the underlying C* line bundle.

B.1.9. Let X be a C* manifold of dimension n.
We will denote A% the C'° line bundle of complex differential forms of
degree n over X. By definition, for any z € X

AN =A"Tx,®rC
and the C'> sections of A% are the C* complex differential forms of degree
n. The line bundle A% may also be defined as follows: let {(U,v%v)}veu be a

family of C'*° coordinate charts on X such that ¢ is a covering of X; for any
intersecting U and U’ in U, denote

Yu = (zi)i<i<n and Py = (2))1<i<n

and

!
(B.1.5) puru = det <%> ;
92; ) 1<i,j<n

the function gy belongs to C(UNU*;R*) and the py:y’s satisfy the cocycle
condition (B.1.2) and are easily checked to define the line bundle A%.

Finally, we will denote | A |x the C'* line bundle of complez densities
over X. It is defined as the C'*° line bundle associated to the transition func-
tions |pyy|, which are the absolute values of the transition functions (B.1.5)
defining A%. If X is oriented, then | A |x may be identified with A% (indeed,
we may assume that the (U,v4y)’s are oriented charts; then |[puv| = pury).
More generally, a local choice of orientation on X determines locally an iden-
tification between A% and | A |x and two different choices of orientation give
rise to opposite identifications. Recall that, if X is oriented, for any compactly
supported continuous section w of A%, the integral [, w makes sense. These
observations show that for any compactly supported continuous section w of

| A |x, the integral [y w makes sense, without any orientation assumption on
X.
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B.2. Holomorphic and meromorphic differential forms

B.2.1. Let X be a Riemann surface.

Let a be a complex C*° 1-form defined on an open subset U of X. For any
holomorphic coordinate chart (£2, z), §2 C U there exist C*° functions ¢ and 3
on {2, such that

a=pdz+¢ dz

on 2. The functions ¢ and ¢ are uniquely defined by this equation. Moreover,
if we let
al® = @ dz and V) = dz,

the forms o(*9 and a(®!) are easily shown not to depend on the choice of the
local holomorphic coordinate z and therefore to be C'* forms defined globally
on U. The form a1 (resp. a{®1) is called the (1,0)-part (resp. (0,1)-part) of
a. The 1-form a is called a form of type (1,0) (resp. a form of type (0,1)) iff
its (0,1)-part (resp. its (1,0)-part) vanishes, i.e., iff locally it may be written

a=pdz
(resp. a = ¢ dz).
These definitions may be interpreted as follows in terms of line bundles.
Let T'x be the holomorphic tangent bundle of X. It is the holomorphic line

bundle defined as follows: let {(U, zu)}ueu be a family of holomorphic charts
on X such that U is a covering of X; for any intersecting U and V in U, define

dzy ]

Yvu = dzy '

it is a non-vanishing holomorphic function on U N V. The ¢pyy’s satisfy the
cocycle condition (B.1.2) and T is the associated holomorphic line bundle.
Using a local holomorphic coordinate z, a section s of Tx may be written
locally

§ = f(z)ga;

and 1s C* or holomorphic iff f is.
Let wx be the dual line bundle Tk of Tx. It is a holomorphic line bundle
on X which can be defined by the transition functions

U T

Using a local holomorphic coordinate z, a section s of wx may be written locally
s = f(z) dz

and is C* or holomorphic iff f is. The C* sections of wx may be identified
with the C* forms of type (1,0). A holomorphic (resp. meromorphic) section
of wx on an open subset {2 of X is called a holomorphic (resp. meromorphic)
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differential on X. The vector space H°(X;wx) of holomorphic differentials on
X is denoted £2'(X).

Let @wx be the ‘complex conjugate’ of the line bundle wx. It is the C'™
line bundle on X defined by the transition functions

_ (42w
VU = dzy )’

Using a local holomorphic coordinate z, a section s of Wwx may be written
locally
s= f(z) dz

and is C*° iff f is. The C'*° sections of @ x may be identified with the C* forms
of type (0,1). Complex conjugation transforms C'* sections of wyx into C'™
sections of Wx. The sections of Wx which are complex conjugate of holomorphic
differentials on X are called antiholomorphic differentials. Their vector space
will be denoted £21(X).

The following statement may be proved by a simple local computation
using the Cauchy-Riemann equations and will be left as an exercise to the

reader (see also infra (B.7.1)).

Proposition B.2.1. For any Riemann surface X, a C* section of wx (resp. of
wx ) over X belongs to 21 (X) (resp. 2Y(X)) 1ff, considered as a C> complex

1-form over X, it 18 closed.

Observe that there exists a canonical isomorphism of C'* line bundles
(B.2.1) wx Qwx /\rj’(

which, locally, sends dz ® dZ to dz A dZ.

Finally, the data of a Hermitian metric || || on Wx is equivalent to the data
of a Riemannian metric ds*> on X compatible with its holomorphic structure
(cf. §1.2.1). Namely, for any local holomorphic coordinate z = z + iy on X, ds?
and || || are determined by each other via the relation

ds® =|| dz |72 (dz® + dy®) .

The volume form p associated to ds? is then given by

(B.2.2) §= % | dz ||? - dz A dz .

B.2.2. From now on, we restrict our attention to holomorphic and meromorphic
differentials over compact connected Riemann surfaces. We start with a few
examples.

Examples. i) There is no non-zero element in £2* (P1C). Indeed let « € 2}(P1C).
There is an entire function f(z)
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flz) =) an 2"
n=0

such that, over C
a = f(z) dz.

Since « is holomorphic on a neighbourhood of co in PIC, the differential

1 1 _ = ~n—=2
f (;)d(;) ——nzz:oanz dz

is holomorphic near 0. This clearly implies that all the coefficients a, vanish.
i) Let X = C/(Z + 7Z) be an elliptic curve. Then dz is a non-vanishing

holomorphic differential on X. Therefore wx is a trivial holomorphic line bundle

on X, and 2'(X) is a one-dimensional vector space generated by dz (cf. §B.1.7).
iii) Let C be the hyperelliptic Riemann surface defined by the polynomial

29+2
PX,Y)=Y*- [[ (X —a)
=1

where the «;’s are pairwise distinct complex numbers (¢f. §1.4.2). The coor-
dinates X and Y defines meromorphic functions z and y on C. The wvector
space 21 (C) has dimension g, and the following holomorphic differentials build
a basis of 21 (C): A
'z
)

Indeed, near the points at infinity of C, % may be used as local coordinate and

wi = 1=1,...,g.

% ~ =+ (_15)9+1; near the points (a;,0), y may be used as local coordinate and
z — a; ~ Ay?; near any other point of C, r may be used as local coordinate
and y does not vanish. This immediately implies that the w;, 1 <1 < g, are
holomorphic differential forms on C and that w; = & has a zero of order g — 1
at the two points at infinity and does not vanish elsewhere on C. Therefore any
a € 21(C) may be written

o = f w1

where f is a meromorphic function on C which is holomorphic everywhere
except at the points at infinity where the orders of its poles are at most g — 1.
On the other hand, the function f may be written

f=R(z)+ S(z)y

where R and S belong to C(X) (cf. §1.4.2, Exercise). Since f is holomorphic
at finite distance, R and S must be polynomials. It is now easy to deduce that
S = 0 and that R is a polynomial of degree at most ¢ — 1 by examining the
local behaviour of a near the points at infinity.

iv) Let F be an irreducible homogeneous polynomial of degree d > 3 in
C[Xqo, X1, X2] such that the algebraic curve X in P2C of equation
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F(Xo,Xl,X2) == 0

is smooth (e.g. F(Xo,X1,X2) = X + X¢ ~ Xg, ¢f. §1.4.2). The coordinates
(Xo,X1,X32) define meromorphic functlons T = % and y = % on X. Ele-
mentary computations show that, for any polynomlal Pin C[X, ,X?,] of degree

< d — 3, the meromorphic dlfferentlal form on X

o) = (& (10) Papir = (o ta) Ploi

is holomorphic. Moreover, it may be proved that the map P — «(P) is an
isomorphism from the space of polynomials of degree < d—3 in C[X;, X3] onto
2N (X).

More generally, if X is the normalization of an algebraic curve, it is always
possible to describe 21 (X) in terms of the algebraic data defining this curve.

v) Let I" be a cocompact discrete group in PSL(2,R), acting freely on $
and let X = §/I". Then 2!(X) may be identified with the modular forms of
weight two with respect to I' (¢f. [Z]).

B.2.3. Let (U, z) be a holomorphic coordinate chart on a Riemann surface and
let P e U.If w=f dzis a holomorphic differential on U — {P}, its residue at
P is defined as the coefficient of (z — z(P))™! in the Laurent series expansion
of ¥ in term of (z — z(P)). It is noted Resp w and is also the integral

1

T w
2m 8D

where D is a small disc in U which contains P (this expression shows that
Resp w is independent on the choice of the local coordinate z).

Proposition B.2.2. For any meromorphic differential w on a compact Riemann

surface X, we have
E Res, w =0.
z€X

(This sum is finite since the set of poles of w is finite.)

Indeed, let {P;}1<;<n be the poles of w and let {D;}1<;<n be a family
N

of disjoint discs on X such that D; 3 P;. Consider U = X — _U1 Dj;. It is a
j=

N
surface with boundary, bounded by .Ul 0D;. Moreover, restricted to U, w is a
j=

holomorphic differential, hence a closed C*° 1-form. Therefore we have:

Z Res, w = ZResP w

z€X
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_iL/
- - 27'('2 aDJ
1

—

[

= - — w
27 Jau
1
= —— [ dw (Stokes formula)
2m Jy

=0.

Consider now a meromorphic function f on a Riemann surface X and
a point P of X such that f is not constant on a neighbourhood of X (if X
is connected and non-constant, this holds for any P € X). Let (U,z) be a
holomorphic chart on X such that P € U and z(P) = 0. The multiplicity with
which f takes the value f(P) at P is the positive integer n defined by the
following conditions:
- if f(P) # oo, there exists a € C* such that, forz € U

f(z) = f(P) + az(z)" + O (2(x)"*)
-if f(P) = oo, there exists a € C* such that, for z € U
f(@) = az(z) ™™ 4+ O (2(z)"*).

For any A € C, the meromorphic differential form (f —A)~!df is holomorphic at
Piff f(P) ¢ {\, oo} and has a simple pole with residue n (resp. —n)if f(P) = A
(resp. f(P) = o). Therefore Proposition B.2.2 applied to (f — A\)~'df implies:

Proposition B.2.3. For any non-constant meromorphic function f on a com-
pact connected Riemann surface X, the number (counted with multiplicities) of
preimages under f of an element a € PIC is independent on a.

This number is easily seen to be the degree of f (c¢f. [Mil]).

In the sequel, we will use the following consequence of Proposition B.2.3:

Corollary B.2.4. If on a connected compact Riemann surfoce X there exists a
meromorphic function f which has ezactly one pole and if this pole is simple,
then f establishes an isomorphism from X onto P!C.

B.2.4. We end this Section with a remarkable result - a special case of Hodge
decomposition:

Theorem B.2.5. For any (connected) compact Riemann surface X, the map
i: 2Y(X)® NY(X)— Hhp(X;C)
a®f = [a+p]

18 an isomorphism.
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(Observe that « + § is a closed complex 1-form on X by Proposition B.2.1
and has a well defined class in the de Rham cohomology group H},z(X; C); cf.
8A.1.)

We will prove Theorem B.2.5 in §C.5. It has the following consequence:

Corollary B.2.6. If X is a connected compact Riemann surface of genus g, then
the complez vector space 2'(X) has dimension g.

When X is the Riemann sphere or a hyperelliptic Riemann surface, the
corollary follows from the explicit description of £2!(X) given above combined
with the determination of their genus (¢f. Figure 3 and Examples in §1.2.2 and
§1.4.2). In general, it shows that dim $2'(X) which a priori depends on the
holomorphic structure of X is in fact a topological invariant of X. Conversely,
when X is realized as an algebraic curve, Corollary B.2.6 provides an algebraic
interpretation of the genus of X.

B.3. Divisors and holomorphic line bundles on Riemann surfaces

One of the most important questions in the theory of Riemann surfaces is the
existence of meromorphic functions on a given Riemann surface with prescribed
zeros and poles.

For instance, consider a compact connected Riemann surface X. We have
seen that there exist non-constant meromorphic functions on X (¢f. Theorem
1.4.2); more precisely, according to Theorem 1.4.3. 2), there are enough mero-
morphic functions on X to separate the points of X and even to provide a
projective embedding of X. On the other hand, any holomorphic function on
X is constant (see Section B.1.7). A natural question is then the following:

Let Py, ..., Py be distinct points on X and let my,...,my be positive inte-
gers. Is there any non-constant meromorphic function on X which 1is holomor-
phic on X —{Py,..., Pr} and whose pole at P; has order at most m;'® for any
i=1,...,k?

A variant of this question is to consider some other points @1,..., Q¢ on
X and positive integers ni,...,ne and to ask for meromorphic functions on
X which satisfy the preceding conditions and moreover have a zero of order at
least n; at Q;.

Observe that if X is a plane algebraic curve and the P;’s are points at
infinity on X, by Theorem 1.4.5, this essentially amounts to finding a polyno-
mial P(X,Y") which satisfies some growth conditions at co and with zeroes of
order n; at Q; (1 <7 < £). Geometrically, it is equivalent to find another plane
algebraic curve of bounded degree, which meets X at (); with a multiplicity at
least n; (1 <4 < ¥) and has a suitable behaviour at infinity.

'8 By definition, this condition is satisfied by any meromorphic function holomorphic
at P;.
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In this Section, we explain how such questions may be translated into
questions concerning the existence of holomorphic sections of some holomorphic
line bundles on X.

Let X be a compact Riemann surface. A divisor on X is an element of
the free Abelian group whose generators are the points of X. In other words,
a divisor on X is a finite formal sum

of (distinct) points P; of X, affected with multiplicities n; € Z. Such a divisor
is called effective if all the n;’s are non-negative. More generally, for any two
divisors Dy and D, on X, one writes Dy > D2 when D — D, is effective. The
multiplicity np(D) of a point P of X in D is n; if P = P; and is 0 if P is not
one of the P;’s. The finite subset |D| of X formed by the points P € X such
that np(D) # 0 is called the support of D. The group of divisors on X will be
denoted by Div(X).

Let us now explain how a divisor is attached to any non-zero meromorphic
section of a holomorphic line bundle on X.

Let X be any Riemann surface. For any P € X and any non-zero mero-
morphic function defined on an open neighbourhood of P in X, the valuation
of f at P is the integer vp(f) defined as follows:

-if f is holomorphic at P and has a zero of order n at P, then vp(f) = n;

-if f has a pole of order n > 0 at P, then vp(f) = —n.

Clearly, we have:

i) vp(f) = 0 iff f is holomorphic and does not vanish at P
i1) if f and ¢ are non-zero meromorphic functions on a neighbourhood of

P, then

(B.3.1) vp(fg) = ve(f) +vp(g).
and
(B.3.2) vp(f7) = —vp(f).

Let £ be a holomorphic line bundie on X. Consider a point P € X and a holo-
morphic trivialization ¢ of £ over an open neighbourhood of P. The preceding
properties show that, if s is any non-zero meromorphic section of £ on an open
neighbourhood V' of P and if we define a meromorphic function f on U NV by

s = ft,

then vp(f) does not depend on ¢. This integer is called the valuation of s at
P, and is denoted by vp(s). When £ is the trivial line bundle, this definition is
clearly consistent with the preceding one. Moreover, the propertiesi) and ii) are
still true if now f and ¢ are non-zero meromorphic sections of two holomorphic
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line bundles £ and M; then fg is a section on £ ® M and f~! is a section of
Lx.

From now on, suppose that X is compact and connected. Then, if s is any
non-zero meromorphic section of £ on X, the points of X such that vp(s) #0
are isolated, hence form a finite set. Thus, we can define the divisor of s as

divs = Z vp(s)P;

PeX

this sum is indeed a finite sum. Observe that divs is effective iff s is holomorphic.

Consider now the ‘set’ E of pairs (£,s) where £ is a holomorphic line
bundle on X and s is a non-zero meromorphic section of £ on X, and let
us say that two such pairs (£, s) and (M, t) are isomorphic iff there exists a
holomorphic isomorphism ¢ : £ = M such that

p-s=1.

This isomorphism relation, which we will denote by ~, clearly is an equivalence
relation on E.

The following Proposition makes precise the link between holomorphic line
bundles and divisors on X provided by divisors of meromorphic sections.

Proposition B.3.1. If two pairs (L£,s) and (M,t) in E are isomorphic, then
divs = divt. Moreover the map
div: E/ ~ — Div(X)
[(L,s)] — divs

18 a bijection.

Clearly, (£, s) ~ (M,t) iff t- s~ is a non-vanishing holomorphic section of
M @ L*. This holds iff div(¢ - s™!) = 0 and, according to (B.3.1) and (B.3.2),
this is equivalent to divt = divs. This proves the first assertion of proposition
(B.3.1) and the injectivity of div.

Let us now prove its surjectivity. Let

k
D= Z n;: P;
i=1

be a divisor on X, where the P;’s are distinct. For each i, let us choose a local
variable z; at P; and a small enough ¢; > 0, such that the discs

D; ={M € X ; zi(M) is defined and |z;(M)| < ¢;}

are pairwise disjoint subsets of X. Let £ be the line bundle defined by the
covering {U; }o<i<k, where
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Up=X —{P1,..., P}
Ui=D; if i=1,...,k,

and by the transition functions

n;
PUU; = %5

defined for ¢ = 1,...,k on the intersections!®

UoNU; ={M € X;z(M) is defined and 0 < |z;(M)] < &;}.

Then £ is trivial on X — {Py,..., Px} by construction. Moreover, the constant
function 1, seen as an element of H 0(X {P1,...,Px}; L), defines a meromor-
phic section s of £ over X, holomorphic and non- vamshlng on X — {P1 . Pr,
and, by definition of the valuatlon vp;, we have for any i = 1,... k:

vp(s) = vp,(Pu,u;) = N
This shows that )
divs = » niPi=D
=1
and finally we get
D = div[(£, s)].

By the injectivity of div, the pair (£, s) we have just defined is well defined, up
to isomorphism, by this last relation. It is often denoted by (O(D),10(p))-

Observe that, again by the injectivity of div, for any holomorphic line
bundle £ on X and for any non-zero meromorphic section s of L over X, we
have an 1somorphism of holomorphic line bundles

(B.3.3) L ~ O(divs).

The reader will check easily that, for any D € Div(X) and any open subset
U C X, the trivialization of O(D) on X — |D| defines an isomorphism

(B.3.4) HY(U;0(D)) ~ {f € M(U) | VP € U,vp(f) > —mp(D)}.
In particular
(B.3.5) H°(X;0(D)) ~ {f € M(X) | div(f) > - D},

and the space of meromorphic functions considered at the beginning of this
Section is nothing else than H° (X (@ (21_1 miP; — E] 1 n]QJ))

Observe finally that the tensor product provides a commutative group law
on E/ ~, defined by

9 Observe that (i < j and Ui NU; #0) = (i =0 and j > 1). Thus we only need to
consider the k transition functions attached to the intersections UyNU7, ..., UpNU;
Moreover, since 1 < 7 < k = U; N U; N Uy = 0, no cocycle condition needs to be
checked.
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[(£,8)] + (M, )] = (£ & M, st)],

and that div is then an isomorphism of groups. In particular, for any two
divisors D; and D3 on X, we have isomorphisms

B.4. The degree of a line bundle

In this Section, we discuss how the classification of C'* line bundles over a
closed oriented surface may be realized by means of a single numerical invariant,
the degree.

Consider a C*° line bundle £ over an oriented C'* surface X, P a point
of X and s a continuous section of £ over a neighbourhood of P which does
not vanish on U — {P}. Let us choose a trivialization of £ on a neighourhood
V of P and let I' be a small closed contour in U NV which goes once around
P, anticlockwise under the orientation of X. Using this trivialization, the re-
striction of s to I' may be identified with a continuous map I' — C*, and the
winding number of this map is easily seen not to depend on the choices of the
trivialization and of I'. It is called the indez of s at P and is denoted Indps.
It is non-zero only if s(P) = 0. See figure 26 for examples where X = C and £
is T'x, the holomorphic tangent bundle.

Proposition -Definition B.4.1. Let X be a closed oriented surface (cf. Appendiz
A) and let £ be a C™ line bundle over X. There exist (infinitely many) sections
s € C™(X; L) which vanish only on a finite subset of X and the integer

Z Indps

PeXx

s(P)=0
associated to any such section is independent of s. It is called the degree of L
and is denoted degx L.

By definition, the trivial line bundle has degree 0 and two isomorphic C'*®
line bundles have the same degree. If £; and £, are two C* line bundles and
if 37 and s are sections of £; and L, with finite sets F] and F3 of zeros, then
81 ® s2 1s a section of L1 ® L2 which vanishes only on F} U F; and for any P,
we have

Indps; ® s, = Indps; + Indpss.

This implies that
(B.4.1) degx L1 ® Lo = degx Ly + degx Lo.
This identity applied to £; = £ and £y = £* shows that
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(B.4.2) degx L* = —degx L.

The following proposition explains the significance of the degree of '™ line
bundles over a closed surface.

Proposition B.4.2. Let X be an oriented closed surface and L1 and L, be two
C> line bundles over X. The following three conditions are equivalent:

1) L1 and Ly are isomorphic as topological line bundles; (i.e., there exists
a continuous isomorphism from £; to £;.)

w) L1 and Lo are tsomorphic as C™ line bundles; (i.e., there exists a C™
isomorphism from £; to £2.)

i) degx £1 = degy Lo,

W

Index -1 Index 1 Index 1

Index 2 Index 3

Fig. 26. The index of some vector fields.

According to (B.4.1), the Z-valued map deg y, defined on the set of isomor-
phism classes of C'*® line bundles over X, is in fact an isomorphism of Abelian
groups, when the set of isomorphism classes of C™ line bundles over X is
equipped with the structure of Abelian group defined by the tensor product?’.

In the sequel, we will consider the degrees only of holomorphic line bundles
over a compact connected Riemann surface.

2% The only non-trivial point in the verification of the group axioms is the existence
of an inverse to the class of a line bundle £: it is given by the class of L£*, since
L* ® L is isomorphic to the trivial bundle.
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If X is such a Riemann surface, we may for instance consider the integers
degywx and degxTx. According to (B.4.2), we have

(B.4.3) degywx = —degx T'x,

and according to the Poincaré-Hopf formula, degxTx may be expressed in
terms of the genus g of X:

(B.4.4) degxTx =2 —2g.

Finally, the degree of the line bundle associated to some divisor on X is
easily computed:
Proposition B.4.3. Let D = E?zl n;P; be a divisor on a compact connected

Riemann surface. Then the degree of the line bundle O(D) is Zle n;.

Indeed consider the section 1p(p) of O(D) whose divisor is D and choose

a C'*° Hermitian metric || || on O(D). An elementary computation shows that
lo(p)
1=
I+ {[ low) |

is a C* section of O(D) which vanishes exactly on |D| and whose index at
P ¢ |D| is the multiplicity of P in D.
d
We will call degree of the divisor D the degree > n; of line bundle O(D).
=1
Exercise. Use (B.4.3), (B.4.4) and Proposition B.4.3 to compute the genus of
the Fermat curve (cf. §1.4.2).

Together with the isomorphism (B.3.3), Proposition B.4.3 has the following
immediate consequence:

Corollary B.4.4. A holomorphic line bundle on a compact connected Riemann

surface X whose degree is negative has no non-zero holomorphic section over

X.

B.5. The operators 0 and 9,

Let U be an open subset of C. For any function f € C*°(U;C), one defines

of . _1(0f(z+iy)  .Of(z+iy)
£($+zy)—2< Oz e Oy )

and

(B.5.1) of = % - dz;

thus, 0f is an element of C°(U; Ly ).
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The operator 0 so defined clearly satisfies the Leibniz formula

(B.5.2) O(fr-f2)=fi-8f2+3f1 - fa

Moreover Of vanishes iff f satisfies the Cauchy-Riemann equation
of  .of
az- + Z‘é‘y— = 0,

i.e., iff f is holomorphic. These remarks show that
(B.5.3) O(h-f)=h-8f if his holomorphic.

Let now ¢ : U — V be a holomorphic map between two open subsets of C.
A direct computation based on the Cauchy-Riemann equation satisfied by ¢
shows that, for any f € C>*(V;C), we have

(B.5.4) A(f op)=¢*(f).

This implies that the differential operator d may be defined on the C'™ functions
over any Riemann surface, in such a way that (B.5.1) holds locally for any
holomorphic coordinate z. A direct intrinsic definition of df is simply:

of = dft®y.

Clearly the relations (B.5.2) and (B.5.3) are still true on any Riemann surface,
as well as the characterization of holomorphic functions as the C'* functions f
such that 8f = 0.

Consider now a holomorphic line bundle £ on a Riemann surface X. Let U
be an open set in X such that, over U, £ possesses a holomorphic trivialization
t (in other words, ¢ is a non-vanishing holomorphic section of £ over U). Then
any s € C*(U, L) may be written s = ft where f € C*°(U;C) and the relation
(B.5.3) easily implies that the element df -t of C*°(U; L @G x ) does not depend
on the choice of t. This shows that there exists a unique first order differential
operator acting on the section of £ with values in the sections of L wWx which
sends s to Of - t for any such U,s,t and f. It is called the J-operator with
coefficients in £ and denoted by J,.

By construction of 0, for any s € C>(U; L), we have

Ors=0 & s is holomorphic on U.
In particular H°(X; L) is the kernel of
0. :C®°(X;L) » C®(X; LQTx).
The cokernel of this map, i.e., the quotient vector space

Co(X; L ®Wx)/0c(C™(X; L)),
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is called the first Dolbeault cohomology group of L and is denoted by H(X; L)
(H°(X; L) is also called the zero-th cohomology group of L).

Contrary to H%(X; £), the significance of the group H*(X; L) is not very
intuitive e priori. The various theorems stated in the next Sections should make
clear its great usefulness. Let us only say that it will appear as a vector space
‘measuring the obstructions to build holomorphic sections of £ over X’.

Suppose now that £ and wx are equipped with C*° Hermitian metrics
Il llz and || ||wx - These metrics determine a C'* Hermitian metric on £ ® Wx,
such that

I €@a |l comx=£lc - Il @ llox
for any £ € Lp and any o € wx p, and a positive 2-form ¢ on X given by
(B.2.2). Using p, || - || and || ||y , we can define on C*°(X; £) and on C*®(X; L®

©wx) some L? Hermitian norms || ||z2: for any s € C®(X;L) and any t €
Co(X;LRTx),

s |22 /X | s(z) |12 u(z)
[ 1@ 1 ute).
X

These L? structures on C*°(X; £) and C*(X; L&T x ) allow to define the adjoint
O+ of O¢ by the identity

(k2 F3%

(Ocs,t) = (s,0cxt)

where (, ) denote the scalar products associated with the Hermitian norms

I 2.

This being set, it is possible to give a heuristic interpretation of H(X; L)
which may be appealing to some mathematical physicists: formally, H'(X; L)
may be identified with the kernel of 52 - the ‘zero-modes of the adjoint of 82’ in
the language of physicists. Indeed, in the finite dimensional case, if T : E — F
is a linear map between two finite dimensional vector spaces E and F endowed
with Hermitian scalar products, then the kernel of the adjoint T* of T, defined
by

(Tz,y) = (z,T"y)

for any (z,y) € E x F, is isomorphic with coker T := F/T(E), via the map

ker T* — coker T
y = [yl

B.6. The finiteness theorem

The following theorem is a most basic fact concerning holomorphic sections of
holomorphic line bundles on a compact Riemann surface.
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Theorem B.6.1 (Finiteness Theorem). Let X be a compact Riemann surface
and let L be a holomorphic line bundle on X. The Dolbeault cohomology groups
HY(X;L) and HY(X;L) are finite dimensional vector spaces.

To show the significance of the finite dimensionality of H*(X; L), let us
prove the following

Proposition B.6.2. Let us keep the notations of Theorem B.6.1. For any P € X,
there ezists a meromorphic section s of L which is holomorphic on X — {P}
and which has a pole at P of order at least 1 and at most 1 +dimH(X; L).

Consider a local holomorphic coordinate z at P, a non-vanishing holo-
morphic section ¢ of £ on an open neighbourhood U of P and a function
p € C*(X;C) such that p = 1 near P and such that p vanishes outside a com-
pact subset of U. For any positive integer i, the section 9p - 27t (resp. pz~*t)
of LR wx (resp. of L) over U — {P} extended by zero defines an element of
CR(X;LRWx) (resp. of C*(X — {P}, L)). Moreover, on X — {P}, we have

(B.6.1) Br(pz""t) =8p- 27t

Linear algebra shows that, if d = dimH'(X; L), there exists (A1,..., a41) €
C%*1 — {0} such that the class of

d+1 ]
o= Z XiOp - 27t
=1
in HY(X; L) vanishes. Then there exists 3 € C°°(X; £) such that
(B.6.2) a=0.8,
and, according to (B.6.1) and (B.6.2),

d+1

s = Z)\,-pz‘it ~ B
=1

is an element of C*°(X — {P}, L) such that d¢s = 0. Thus s is holomorphic on
X — {P} and its ‘polar part’ at P is

d+1

Z/\,'Z_it
=1

which is non-zero and of order at most d + 1 by construction.
Observe that, according to (B.3.3), Proposition B.6.2 implies the following

Corollary B.6.3. Any holomorphic line bundle £ on a compact connected Rie-
mann surface X i3 isomorphic, as @ holomorphic line bundle, to the line bundle
O(D) associated to some divisor D on X.
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Observe also that, applied to the trivial line bundle O, Proposition B.6.2
shows that for any P € X there ezists a non-constant meromorphic function
f on X which is holomorphic on X — {P} and has a pole of order at most
1+ dimH!(X;O) at P. In particular, this prove that meromorphic functions
separate the points of X (compare with Theorem 1.4.3).

B.7. H'(X; L) and polar parts of meromorphic sections

The construction used to prove Proposition B.6.2 may be extended to provide
an alternative description of the cohomology group H!(X; £) in terms of mero-
morphic sections of £ and of their ‘polar parts’ (hence a purely ‘holomorphic’
description). To do this we need to introduce a few notations:

e M(X; L) will denote the vector space of meromorphic sections of £ over
X;

o for any @ € X, P(z; L) is defined as the quotient of the set M(z; L) of
pairs (U, s), where U is an open neighbourhood of z in X and s is meromorphic
section of £ on U, by the equivalence relation v defined by

(U,s) ~ (V,t) & t — s is holomorphic at z.

The space P(z; L) is the space of ‘polar parts at z” of meromorphic sections of
L. Indeed, if ¢ is a non-vanishing holomorphic section of £ on a neighbourhood
of z and if z is a local coordinate at z such that z(z) = 0, then one defines an
isomorphism between the vector space of polynomials in 27! without constant
term and P(z; L) by sending Zle a;z~" to the class of Z?:l a;z7't.

e P(X; L) will denote the subspace of [[ ¢ x P(z;£) defined by the con-
dition

(pz)rex € P(X;L) & p;y # 0 only for a finite set of z's.

¢ P; will denote the linear map from M(X; L) to P(X; L) which associates
to a meromorphic section s of £ over X the element (p; )zex of P(X; L), where
Pz 1s the class of s in P(z; L£). (In other words P(s) is the family of ‘polar parts’
of s.)

Consider now (p;)zex € P(X; L) and let

Choose for each 1 = 1,...,n a meromorphic section f; on some neighbourhood
U; of P; whose class in P(P;; L) is pp, and a function p; € C*°(X;C) such that
pi = 1 near P; and sgch that p; vanishes outside some compact subset of U;.
Then, the section f; - 9p; of LR wx over U; — {P;} extended by zero defines an

element of C*°(X; £ ® wx). One easily checks that the class of Z?:l fi -5,0,- in
H'(X; L) only depends on the class of (p;)sex in

cokerPe := P(X; L)/ P (M(X;L)).

(This space is called the space of repartition classes of X). In that way, one
defines a linear map
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I : cokerPg — H'(X; L)

px rex] [Z fi- 6P:I

Theorem B.7.1. The kernel of Pg is H*(X; L). The map I is an isomorphism
from the cokernel of P¢ onto HY(X; L).

The first assertion is clear. The second one means that H'(X; L) ‘measures
the obstruction’ to finding meromorphic sections of £ with prescribed polar
parts. See §C.4 for a proof.

Observe that, when £ = wx, C®(X; L) is a subspace of the space of C™®
complex 1-forms over X, C=(X; L ® Wx) may be identified with the space of
C> complex 2-forms over X (cf. (B.2.1)), and up to a sign, J is nothing else
than the exterior differential d acting from 1-forms to 2-forms (indeed, in local
coordinates we have

(B.7.1) d(fdz)=df ndz
— 30D gz
because 0f A dz = 0, since dz A dz = 0). In particular, the image of 9. is

formed by exact two forms and their integral over X vanishes. This shows that
the following map is well defined:

Res: HY(X;wx) — C
1

[a]'—’% Xa

The insertion of the factor (27i)~! as well as the notation Res are explained
by the following result, which we leave as an exercise.

Lemma B.7.2. For any (a;)zex € P(X;wx), we have

Reso P, ([(az)sex]) Z Res;a;.
z€eX

(In this equality [(a;)zex] denotes the class of (a; )zex in cokerP; and Res,a,
the residue at « of any meromorphic differential representing a;).

B.8. Serre duality

An important complement to the Finiteness Theorem B.6.1 is the Serre duality
Theorem. To formulate it, we need a few preliminaries.
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The Leibniz rule (B.5.2) generalizes immediately as follows: for any two
holomorphic line bundles £, and £; on X, and for any f; € C*®(X;L,) and
any f2 € C®(X;L;), then

(B8.1) Oc,0c,(f1-f2) = fi- O, fa+0c, f1- o (€CP(X5L1® Ly QWx)).
In particular, if fi € HO(X, £1), we have
Ac,00,(fi - f2) = f1-0c, fo
This shows that the bilinear map
HY(X;L1) x C¥(X; L3 @Fx) — C(X; L1 ® L3 © Fx)
(foa2) = fi-ao
yields a quotient map
HO(X;L1) x HY(X; L£2) — H'(X; L1 ® L2)
(B.8.2) (f1,lo2]) = f1 - [az] :=[f1 - @a].

We can now state:

Theorem B.8.1 (Serre duality). Let X be a compact Riemann surface and let
L be a holomorphic line bundle on X. The bilinear map

() HY(X;L* @wx) x HY(X;£) - C
obtained by composing the product (B.8.2)
HY (X L* Qux) x HI(X; L) = HY(X;L* @ L Qwx) ~ H' (X;w,)
with the map Res is a perfect pairing®!.

Observe that, by the definitions of Res and of the product (B.8.2), for any
s€ H(X;L) and @ € C®(X; L* Qwx ® Dx), we have

(s.fol) = 55 [ s

where sa is a section of L& L* Qwx Q®wx, identified with (A27*X)¢. Theorem
B.8.1 asserts that this pairing defines an isomorphism

HY(X;L)~ H'(X;L* Qux)*
and implies that
(B.8.3) dimHAY(X; L) = dimH°(X; L* @ wx).
2! Recall that, if E and F are two finite dimensional vector spaces, a bilinear map

(1) : Ex F — Cis called a perfect pairing when the map (E — F*,z — (z,-)),
or equivalently the map (F — E*, y — (-,y)), is bijective.
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Corollary B.8.2. Let X be a compact connected Riemann surface of genus g.
1) There exzists a canonical isomorphism

HY (X;0)~ H'(X;wx)* = 21(X)*.
In particular
(B.8.4) dim HY(X;0) =g .

Moreover the map L
2M(X) - HY(X;0)

deduced from the inclusion Q1(X) — C®(X;Tx) is an isomorphism. In other
words o _
C®(X;wx)=(X)@ 0 C®(X;C).
2) The map
Res: H!(X;wx) — C

18 an tsomorphism.

The first assertion in 1) (resp. the assertion 2)) follows from Theorem B.8.1
applied to £ = O (resp. £ = wx). The equality (B.8.4) is then a consequence
of Corollary (B.2.6). The last assertion in 1) is implied by the equality of
dimensions o

dim 21(X) = dim 2'(X)* = dim H'(X; 0)
and by the injectivity of the map £21(X) — H(X; ), which follows from the
identity
— 1 —
(B.18) = 57 [ BnB <0
for any 8 € 21(X).
Exercise: Deduce from Corollary B.2.4, Proposition B.6.2, and (B.8.4) that any
compact connected Riemann surface of genus 0 is biholomorphic to PC.

Exercise: Use the Serre duality to prove that the heuristic interpretation of
HY(X; L) given at the end of §B.5 is indeed correct.

B.9. Riemann-Roch theorem

Recall that, for any two vector spaces E and F, a linear map T : E — F'is
said to have an indez if the kernel ker T' and the cokernel coker T := F/T(E)
of T are finite dimensional vector spaces. The indez of T is then defined as the
integer

ind T' = dim kerT — dim coker T

(compare [Bel] §1.4).
According to the very definition of the cohomology groups H°(X; L) and
H(X; L), the Finiteness Theorem B.6.1 precisely asserts that the operator
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9 :C®(X;L) - C®(X; L®Dx)
has an index. Its index, namely
dim kerd, — dim cokerd, = dim H°(X; £) — dim H'(X; L),

is given by the famous Riemann-Roch theorem:

Theorem B.9.1. Let X be a compact connected Riemann surface of genus g and
let L be a holomorphic line bundle on X. Then:

(B.9.1) dimH°(X; L) — dimHY(X;L£) =1 — g + degx L.

Corollary B.9.2 (Riemann’s inequality). Let D = Zﬁ;l niP; be a divisor on X.
Then

k
(B.9.2) dim{f € M(X) |[divf > -D} >1-g+ Y n

=1

This follows immediately from (B.9.1) applied to £ = O(D) and from
(B.3.5) and Proposition (B.4.3). Observe that Corollary B.9.2 is an existence
statement concerning meromorphic functions with prescribed zeroes and poles,
which answers the question discussed at the beginning of §B.3. Indeed (B.9.2)
implies that if Zle n; > g, there exists a non-constant meromorphic function
f on X such that divf > —D.

Classically, Riemann-Roch formula (B.9.1) is combined with the equality
(B.8.3) and is written as

(B.9.3) dmHAY(X; L) — dmH(X;L* @uwx) =1 — g + degx L.
Observe that, applied to £ = wx, this equality becomes
g—1=1-—g+degxL

since dimH®(X;wx) = ¢g and dimH%(X;0) = 1 (¢f. Corollary B.2.6 and
§B.1.7). This shows that the degree of wx 1s 2g — 2 as mentioned above (see
(B.4.3) and (B.4.4)).

Consequently, if degyx £ > 2¢g — 2, then degx L* Qwx < 0 and H°(X; L* @
wx) = 0 (by (B.4.1), (B.4.2) and Corollary B.4.4) hence H'(X;L) = 0 (by
(B.8.3)) and Riemann-Roch formula reads

(B.9.4) dimH°(X;L) =1~ g + degy L.

Of course, this equality has an interpretation in terms of divisors, analogous to
(B.9.2).

At this point of our discussion, the proof of Riemann-Roch Theorem is not
difficult. Since any holomorphic line bundle over X is isomorphic to the line
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bundle O(D) associated to some divisor D, a simple induction shows that to
prove (B.9.1), we only need to prove that:

i) (B.9.1) is true for £ = O;

ii) for any holomorphic line bundle over X, (B.9.1) is true for £ = N iff
(B.9.1) is true for £L = N ® O(—P).

However the validity of (B.9.1) rewritten as (B.9.3) is clear when £ = O,
since dim H°(X;0) =1 and dimH°(X;wx) = g. As for ii), since

degx N ® O(—P) = degxN +degxO(—P) = degxN -1,
it amounts to proving that
dmH°(X;N ® O(=P))—dim H'(X; N ® O(-P)) + 1
= dimH*(X; N) — dimH(X; N)
that is, according to Theorem B.7.1,
(B.9.5) indPrgpo(_p) + 1 = indPz.

The proof of (B.9.5) will be based on the following lemma of linear algebra,

which we leave as an exercise?®?.

LemmaB.9.3. Let E, F and G be vector spaces and letu: E — F andv: F — G
be linear maps with index. Thenvou : E — G 13 a linear map with index and

ind vou =ind u + ind v.

Observe that the meromorphic (resp. holomorphic) sections of N'Q O(—P)
over an open subset U C X may be identified with the meromorphic sections
of N over U (resp. with the holomorphic sections of A" over U which vanish at
P if P € U). These identifications provide linear bijections

& M(X;N ®@0(=P)) 5 M(X;N)

and
M(z; N @ O(—P)) S M(z; N)
and linear maps
P(z; N @ O(—P)) = P(z;N)

and

&' P(X; N ®@ O(-P)) — P(X;N).

The following properties of #° and ¢! are easily checked:
e the following diagram

22 We will use Lemma B.9.3 only when « is an isomorphism or when v is onto and
dim ker v = 1. In these two cases, the proof of Lemma B.9.3 is very simple.



J. -B. Bost 135

Pygo(-p)

MXN®O(-P)) ———5 P(X;N ®O(-P))
(B.9.6) L e Lo
M(X;N) — P(X;N)

is commutative (i.e., ' 0 Pxrgo(—p) = Pn o 8%).
e &' is onto and the kernel of ¢! is generated by the class of (pz)zex,
where p, = 0 if # # P and pp has a simple pole at P. In particular ind ¢! = 1.
Thus the four maps which occur in (B.9.6) are maps with index and Lemma
B.9.3 shows that

indPygo(-p) +1 = ind Pygo(-p) +ind !
=ind &' o Prrgo(—p)
= ind Py o @°
= ind Py + ind &°
= ind Py,

as was to be proved.

Finally, let us give a consequence of the results of this Appendix which
will play a key role in the construction of the Jacobian embedding of compact
Riemann surfaces.

Proposition B.9.4. Let X be a compact connected Riemann surface of genus
g > 1. Then for any P € X, there ezists w € 2'(X) such that w(P) # 0.

Assume the contrary. Then the injection
H'(X;wx ® O(=P)) = {s € H'(X;wx),| s(P) =0} — H*(X;wx)
is a bijection and since
degy wx @ O(—P) =degywx — 1,
Riemann-Roch formula (B.9.1) and Corollary B.8.2, 2) show that
dim H'(X;wx ® O(=P)) = dim H'(X;wx)+1= 2.

Therefore, by Serre duality dim H°(X;O(P)) = 2 and there exists a non-
constant meromorphic function on X, whose only pole is P, and is a simple
pole. By Corollary B.2.4, this implies that X is isomorphic to PC, hence has
genus 0.
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Appendix C. Analysis on compact Riemann surfaces

This appendix is devoted to the proofs of the Finiteness Theorem B.6.1, of the
Serre duality Theorem B.8.1, of Theorem B.7.1 (isomorphism between H! and
repartition classes) and of Theorem B.2.5 (Hodge decomposition).

C.1. Regularizing operators

Let £1 and £2 be two C line bundles on a compact manifold X. Let k €
CR(X x X; L3 (L3 ® | A|x)) and f € C®(X;Ly). Forany z € X, y —
k(z,y)f(y) is a C* section of L1,z ® | A |x, and the integral

(C11) K@= [ _ HEnfw

is a well defined element of £; ,. Moreover, the section K f of £; over X so
defined is C'*°. (This is clear by the elementary differentiability properties of
integrals depending on a parameter when f is supported by a chart on which
L5 is trivial. In general, partitions of unity reduce to this case). The section k
is easily seen to be uniquely determined by the operator

K :C®(X;Ly) — CP(X; L2)

and is called its kernel. The linear maps associated in this way to kernels in
C®(X x X; L2 (L3 ® | A|x)) are called the regularizing operators from
C>®(X;Ly) to C°(X; Ls).

A special class of regularizing operators are the regularizing operators of
finite rank, which are defined by kernels k given by finite sums

N
(C.1.2) k(z,y) = Z ei(z)¥i(y),

where p; € C®(X; L1) and ¥; € C¥(X;L3 @ | A|x), and have the form

fHé(/X%bi-f)w-

The Finiteness Theorem B.6.1 and the Serre duality Theorem B.8.1 are
simple consequences of the following two propositions:

Proposition C.1.1. Let £ be o C line bundle on a compact manifold X and
let
K :C®(X;L) - C®(X; L)
be a reqularizing operator. Then:
i) Id+ K is an operator with indezx from C®(X; L) to itself.
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i1) For any linear map A : C®(X; L) — C such that Ao (Id+K) = 0, there
ezists £ € C°(X; L* ® | A |x) such that, for any f € C*(X; L),

\f) = [ Hf(e)e

Proposition C.1.2. For any holomorphic line bundle L over a compact Riemann
surface X, there exrists a linear map

P:C®(X;LQwx) — C®(X; L)
and regularizing operators

K, :C®(X;L) = C=(X; L)

and
Ky :C®¥(X;LRwx) - C*(X;LQWx)
such that
Pod, =Id+K,
and

dco P =1d+K,.

Proposition C.1.1 is a variant of Fredholm’s theory. The operator P, whose
existence is asserted in Proposition C.1.2, is traditionally called, after Hilbert,
a parametriz of Og.

Proof of Theorems B.6.1 and B.8.1 (taking Propositions C.1.1 and C.1.2 for
granted):
e ker 9 is clearly contained in

ker Pody = ker(Id +Ky).

This space is finite dimensional according to Proposition C.1.1 i), applied to
K. Hence H°(X; L) is finite dimensional.
e 0. (C®(X; L)) clearly contains

Do P(C¥(X;L@@x)) = (Id+K;) (C(X; L ® Tx)).

This space has finite codimension in C*°(X; £ ® Wx) according to Proposition
C.1.1 i) applied to K = K. Hence the same is true for dz (C®(X; L)), i.e.,
HY(X; L) is finite dimensional.

This proves Theorem B.6.1.

e Consider an element A in H'(X;£)* i.e., a linear map

A CP(XL® wyx)—C
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which vanishes on the image of O¢. Then )\ vanishes on the image of dcoP =
Id + K. Therefore, according to Proposition C.1.1 ii) applied to K = K3, there
exists £ € C®(X; (L ®Wx)* ® | A|x) such that, for any f € C®°(X;L R wx)

(C.13) \H = [ ),
z€X
The section ¢ may be seen as a C™ section of L* Q@ wx. Indeed,
(LOwx) @A x> L QWX ®|A|x

and
U ® A |x 2wx,

since (¢f. §B.1.9 and (B.2.1))
!/\le'/\gg ~wx ®Wx.

The relation (C.1.3) uniquely determines ¢, and the map A + ¢ so defined is
an isomorphism from H'(X;L£)* onto the subspace of C®(X; L ® @x) formed
by the sections ¢ such that

Vsel®X;L), / £-0s=0.
X
This subspace is nothing else than H(X; £*®wx ), as follows from the following

Lemma C.1.3. For any s € C*°(X; L) and any £ € C¥(X; L* Qwx), we have

/5-5532—/—50@%( £-s.
X X

Indeed
/XE-EL s+ /ch*éwa l-s5= /X_g(f-s) (¢f. (B.8.1))
= /;(d(ﬁ - 8) (¢f. (B.7.1))

=0 {Stokes formula).

This proves Theorem B.8.1, since the bijection

HY(X;L*Qux) — HY(X;L)*
£— A

coincides (up to a factor 271) with the linear map H°(X; £*Quwx ) — HY(X; L)*
defined by the bilinear pairing (-, -}, which therefore is non-degenerate.
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C.2. Fredholm’s theory

This Section is devoted to the proof of Proposition C.1.1. We will indicate the
main lines of the proof and leave (easy) details to the reader.

We begin with a few observations:

o If K; and K, are two regularizing operators from C®(X; L) to itself,
with kernel k; and kg, then K; o K3 is a regularizing operator, whose kernel is

(C.2.1) kyx ke (z,y) — /ex ki(z, 2)k2(z,y).

In particular, if K or K> is a regularizing operator of finite rank, then 7 0 K
is also such an operator.

o Choose C* Hermitian metrics || ||z and || |||, on the line bundles £
and | A |x. By duality and tensor product, these metrics define a Hermitian
metric || - || on £ [X] (£L* ® | A|x). Using || ||, we can define a norm || || on the
space C%(X x X; L [X] (L* ® | Alx)) of continuous kernels as

Il = sup | k(z,y) || -
(z,y)EXxX

Equipped with this norm, C°(X x X; L [X] (£* ® | A |x)) is a Banach space.
Moreover, one easily checks that the composition of kernels (C.2.1) is still well
defined for continuous kernels and that the following estimate holds, for any
two continuous kernels ki and kj:

(C.2.2) ey * k2l < Mkl k-l

where M 1is the integral over X of the density u defined locally on X by

lday A --- A dan|
|d:t1 A ANdxy, ”ll\lx )

IL =
l
The proof of Proposition C.1.1 is based on three preliminary lemmas.
Lemma C.2.1. The kernels defining the reqularizing operators of finite rank (i.e.,
the kernels of the form (C.1.2)) are dense in C°(X x X, L [X] (L* ® | A |x))
equipped with the norm || ||.
Using partitions of unity, charts and local trivializations of £, this follows

from the fact that, if D; and D; are two (closed) balls in R™, any C'* function
on Dy x D, may be uniformly approximated by functions of the form

N
(z,y) — Z fi(z)gi(y)
=1

where f; € C*°(Dy) and g; € C*°(D;). This fact may be deduced, for instance,
from the existence of uniform polynomial approximations.
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Lemma C.2.2. Let K : C®(X; L) — C>®(X; L) be a regularizing operator whose
kernel k satisfies

(C.2.3) Bl < o

Then Id +K s invertible and there exists a regularizing operator
L:C®(X;L) - C®(X;L)
such that (Id+K)™! =Id+L.

Let us define
kp=4k=*---xk (n factors).

Then it follows from (C.2.2) that
Mlkn]l < (MIE[)"

and from (C.2.3) that

> lkall < +oo.

n=1
Therefore -

0= "(-1)" kn

n=1

is a well defined element of C%(X x X;L (L* ® | Alx)). Moreover, the

continuity of the composition product * with respect to the norm || || (¢f.
(C.2.2)) implies that

(C.2.4) Etlxk=k+ Y (1) koxk
n=1
= - (_1)n kn
n=1
= 4

and similarly that

(C.2.5) k+kxl=—2

Inserting (C.2.4) in (C.2.5), we get:
0=—k+kxk+k+xlxk.

On the other hand, the formula

br k(o) = | Kz, )z, 22)k(z, 1)
(21,72)€X XX

shows that &k * £ % k is C'*°. Therefore, £ is C.
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If L denotes the operator of kernel £, the relations (C.2.4) and (C.2.5) are
equivalent to

K+L+LK=0 and K+L+KL=0

that 1s to
(Id+L)(Id+K) = (Id+K)(Id+L) =1d.

This proves Lemma C.2.2.

Lemima C.2.3. Proposition C.1.1 is true when K 13 a regularizing operator of
finite rank.

Indeed, if p; € C®(X;L) and ¢; € C¥(X;L* Q@ | A |x), 1 =1,...,N, are
N
such that the kernel of K is (z,y) =3 wi(z)ii(y), then

=1
ker(Id+K) = {f €C®(X;L) | f = —Kf}

is contained in the vector space spanned by the ¢;’s, and (Id +K) (C™(X; L))
contains ker K and a fortior: the subspace of C*(X; £) defined by the vanishing
of the linear forms

f*—>/X¢i'f , t=1,...,N.

This clearly shows that Id + K has an index. Moreover, if a linear form A :
C>®(X; L) — C vanishes on the image of Id +K, then

Mf)= — Ao K(f)
N
“;/\(%‘)/X?ﬁrf

[

N
C==" Aepi)vs.
=1

where

Finally, we can prove Proposition C.1.1.

Let K : C*°(X;L) — C®(X; L) be a regularizing operator. According to
Lemma C.2.1, we can write K = K; + K> where K} is regularizing of finite rank
and where || K: || < 77. Then Lemma C.2.2 shows the existence of a regularizing
operator L such that

(Id+K;)™ ! =Id+L.

Now we get:
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Id+K = (Id+ K, + K2)(Id+L)(Id + K;)
(C.2.6) = (Id+ K3 + K2 L)(Id + K4).

According to Lemma C.2.3 applied to Ky + K3 L, which is regularizing of finite
rank,

ker(Id +K) = (Id +K1)_1 (ker(Id+ K, + K, L))
is therefore finite dimensional and
im(Id +K) = im(Id + K> + K, L)

has finite codimension in C*°(X;L). Finally, if A is a linear form such that
Ao (Id+K) =0, then (C.2.6) shows that

and, again by Lemma C.2.3, A is of the required form.

C.3. A parametrix for 0,

This Section is devoted to the proof of Proposition C.1.2. OQur proof is based on
the fact that an ‘inverse’ of 0 acting on C'* functions with compact supports
on C may be given by an explicit formula:

Lemma C.3.1. i) For any ¢ € C®°(C) and any z € C, we have

dz' =
p(z) = /;'ec i —2) A Op(2").

i) For any o € CX(C;w¢) and any z € C, we have

0=0([ . ).

These integrals make sense since 1 is integrable near 0. Moreover, if we make
z :

the change of variables 2" = 2' — z and if we write o(z) = ¢(z)dz, we obtain
that these integrals are C'* as functions of z and that i) and i) are equivalent.

Let us provei). We can assume that z = 0, by replacing by w — ¢(z+w).
Thus we only have to prove that

dz =
C.3.1 0) = .
(C.3.1) o0)= [ 517
Let D. be the disc in C of center 0 and radius €. On C — D,, we have
d (cp 22%;) = dp A :‘2%%’2 (dz_z 18 closed)

—a_cpf\%; (84,9/\dz:?£dz/\dz:0>.
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Therefore, Stokes formula gives:

= dz dz
(C3.2) /é—Ds e A 2miz _/6Ds ¥ oz

(the minus sign comes from the fact that the boundary of C— D, is the boundary
of D, with reversed orientation). The relation (C.3.1) follows from (C.3.2) by
taking the limit ¢ — 0.

Lemma C.3.1 ii), has the following straightforward consequence, which will
be of use later:

Lemma C.3.2. Let L be a holomorphic line bundle over a Riemann surface X.
For any P € X and any C™ section t of L ® Wx over an open neighbourhood
U of P in X, there ezists s € C°(X; L) such that

5[, s=t
on a neighbourhood of P in U.
The next lemma shows that a kernel on X x X which has the same singu-

larity near the diagonal Ax := {(z, ),z € X} as the kernel dz'/2ni(z — 2') of
Lemma C.3.1 provides the required parametrix.

Lemma C.3.3. Let p be an element of C°(X x X — Ax; L [X] (L*Qwx)) which
satisfies the following condition: for any x € X, there exists a local holomorphic

coordinate z and a holomorphic trivialization t of L defined on a neighbourhood
U of z such that the section of L [X] (L* Qwx) over U x U — Ay defined by

1 t[x]t7ldz

(z1,72) = p(z1,2) — omi z(za) — 2(71)

extends to ¢ C° section over U x U.
Then, for any f € C®(X;L) and any z € X, the integral

Pf(z) = / _ HE0fw)

18 convergent and defines a C™ section Pf of L over X.
Moreover, the section ky (resp. ko) of

LX](L"Qwx @Dx) =L [X] (L QA [x)
(resp. of
(Lowx) X (L @wx)~ (Lowx) X (£L®Dx)" @A |x))

over X x X — Ax defined as the image of £ by ~Or+guy (resp. by Oc) acting
on the second (resp. on the first) variable extends to a C™ section over X x X.

If
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K, :C®(X;L) - C=(X; L)

(resp.
Ky :C¥(X;LQwx) » C®(X; LRDx))

denotes the regularizing operator with kernel ky (resp. ks), then we have
Pod, =1d+K,;

and
dco P =1d+K,.

In particular, P is a parametriz of 0.

The assertions concerning the smoothness of ¢; and ¢, near the diagonal
immediately follow from the hypothesis on p, since

0 1 g 1

- = == =0.
071 z1—2z9 07y 21 — 22

Consider an element ¢ in C*(X; £ @ Wx). The relation
9c(Po) =0+ K, (o)

follows from the hypothesis on p and from Lemma C.3.1, ii) if f has sufficiently
small support. Partitions of unity reduce the general case to this one. The
relation

P@c f)=Ff+EKf

for f € C*(X;L) is proved in the same way by using Lemma C.3.1, i) and
Lemma C.1.3.
Finally, to prove Proposition C.1.2, it is enough to prove the existence of

pEC®(X x X — Ax; L[] (L* ® wy))

satisfying the hypotheses of Lemma C.3.3.

Let ((Us, 2:));<i<n be a family of holomorphic charts on X which cover X
and such that, over each U;, £ possesses a non vanishing holomorphic section
t;. Choose functions ¢; € C°(X;C) such that p; vanishes outside a compact
subset of U; x U; and such that

N
Z%‘ =1
i=1

on a neighbourhood of Ax in X x X 2*, and define sections o; € C®(X x X —
Ax; LR (L* Qwx)) by

23 In other words, (cpl, ey @iy PN, L — Zf\;l ga,:) is a partition of unity associated
to the covering (Ur x Uh,..., Ui x Ui,...,Un X Un,X x X - Ax) of X x X.
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ti t‘_le,‘ . ) .
zi(z1) — zi(z2) if (z1,22) € U; x U;

=S 0 if ($1,$2)¢Ui x U;.

iz, 20) = T}ri pi(zy,z2)

N

Then p =) o, satisfies the hypotheses of Lemma C.3.3. This follows from the
=1

fact that the section of £ [X] (£* @wx) over (U; x U;)N(U; x U;) — Ax defined

by

ti [x] 171 dz; tj X7 dz;
zi(z1) — zi(z2)  zj(z1) — 2i(w2)
extends to a C* (in fact holomorphic) section over (U; x U;) N (U; x Uj), as

a consequence of the following elementary lemma, the proof of which we leave
to the reader:

(Zt],l'z) Lans

Lemma C.3.4. Let U and V be two open subsets of C, let ¢ : U — V be a
biholomorphic map and let £ be a non-vanishing holomorphic function on U.
Then the holomoarphic function on U x U — Ay

1 Ue)l(z2) " ' (22)
T1 — 22 ¢(21) = ¢(22)

(.’El,:Cg) (=g

extends holomorphically over U x U.

C.4. Proof of Theorem B.7.1

The fact that I is well defined and injective follows from easy computations.
For instance, let us sketch a proof of the injectivity. With the notations of the
definition of I, if

ifi -Op; = Ot
=1

for some t € C*°(X; L), then the expression Y, p;f; —t defines an element f
i=1
of C®(X— {Py,...,Pa}; L) on which 8, vanishes - hence f is holomorphic on
X —{P1,...,P,} - and which has the same singularity at P; as f;. Therefore,
f is an element of M(X, £) whose image by P¢ is (pz)zex.
The proof of the surjectivity of Iz is based on the following fact: let P be
any point of X; then, if n s a large enough positive integer

(C4.1) H'(X;£®O(nP)) = 0.
Indeed (C.4.1) holds as soon as

n>2¢g—2—degy L,
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as follows from Serre duality Theorem B.8.1, from the relation
degx (LR@O(nP)) ®uwx) =29 —2—n—degx L,

and from Corollary B.4.4.

Consider now an element s of C*°(X; LQWx ). It may be seen as an element
of C*(X; L ® O(nP) ® @x ). Therefore, according to (C.4.1), there exists t €
C®(X; L® O(nP)) such that

s =0,go(mp) t-
On X — {P}, t may be seen as a C* section of £ such that
(C.4.2) s=0ct.

On the other hand, Lemma C.3.2 shows that there exists an open neighbour-
hood U of P in X and u € C*®(X; L) such that, on U

(C.4.3) s=0c u.

Let p be an element of C*°(X; C) such that p = 1 on a neighbourhood of P and
p vanishes outside a compact subset of U. From (C.4.2) and (C.4.3) it follows
that, on X — {P},

s=0p-(t—u)+0dclpu+(1—p)t]

and that t — u defines a meromorphic section of £ over U. Therefore the class
of s in H(X;L) coincides with the image by I of the class of the element

(pz)sex € [[ P(z; L) defined by:
z€X

pe=0 if =z#P,
pp=1t—u.

This proves the surjectivity of I..

C.5. The operator 99

In this Section, we show how the methods used in §C.1-3 to prove Theorems
B.6.1 (Finiteness) and B.8.1 (Serre duality) also allow to prove very easily
the basic properties of the Laplace operator on a compact connected Riemann
surface X, in particular that its image is the space of functions whose integral
on X vanishes. The reason for including these results is their importance in the
classical approach to the analysis on compact Riemann surfaces. We will use
them only to give another proof of Lemma C.5.4, which is implied by Corollary
B.8.2, 1).

Let X be any Riemann surface. We define, for any f € C*°(X;C) and any

a€C®(X;mx):
of = (df)™”
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and

Oo := da.

Therefore, for any f € C°(X;C)
df = 8f + Bf
wd e a(f)
= —d(0f) (since d(df)=0)
= —0.,0f (since 8,y =d on C®(X;wx);cf. §B.7).

The following identities, true for any f € C*°(X;C) and any o € C®(X;wx),
are also easily checked:

9f=0f and da =0 a.
The operator _
09 :C=(X;C) — C™(X;A?)
is compatible with holomorphic changes of variables (compare (B.5.4)) and has
the following expression in terms of a local holomorphic coordinate z = « + ¢y:

_ i (0% D¢

More generally, if X is endowed with a C*° Riemannian metric compatible
with its complex structure (¢f. §1.2.1) and if A and dA respectively denote the
(positive) Laplace operator and the area 2-form associated with this metric, we
have

(C.5.1) 80 = —;—Ago dA.

This identity shows that a function ¢ is harmonic with respect to this Rie-
mannian metric (i.e., Ap = 0) iff 93y = 0. In particular, the harmonicity of
a function depends only on the complex structure of X. The identity (C.5.1)
proves the conformal invariance of the Dirichlet functional, namely

1 _
—/ E-AcpdA:—i/ B - 00p.
2 Jx X

Our proof of Hodge decomposition (Theorem B.2.5) will be based on the
following result:

Proposition C.5.1. Let X be a compact connected Riemann surface. The kernel
of the operator

88 : C=(X;C) — C>®(X;N%)
i3 the subspace of dimension 1 of C*°(X;C) formed by the constant functions.
Its image is the subspace of codimension 1 in C®(X; A% ) formed by the 2-forms
o such that [, o0 =0.
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Thanks to the identity (C.5.1), this proposition may be seen as a statement
concerning the Laplace operator acting on C>°(X; C): it asserts that the kernel
(resp. the image) of A is the space of constant functions (resp. the subspace of
C>®(X;C) formed by the functions ¢ such that fX ¢ dA =0).

The fact that a function ¢ € C®(X;C) such that 8¢ = 0 is constant
follows for instance from the following expressions for the Dirichlet functional:

—i/@@&pzi/&p/\%
=1 / 3y A By,
which are easily deduced by integration by part and which show that the Dirich-
let functional is positive unless d¢ = dp = 0, i.e., unless ¢ is constant.

To determine the image of 9, we begin by proving the following prelimi-
nary result:

Lemma C.5.2. The image of 9 : C°(X;C) — C®(X; A% ) is a subspace of finite
codimension in C*°(X;A%). Moreover, any linear form X\ : C®(X;7\%) — C
which vanishes on this subspace may be written

A:a»—»/f-a
X

This lemma is a consequence of the existence of a parametrix P for 00,
i.e., of a linear map

for some £ € C*(X;C).

P:C®(X;A%) — C=(X;C)

such that
P0dd—1d:C®(X;C) — C™(X;C)

and

800 P —1d: C®(X;N)) — C°(X;N)

are regularizing operators (use Proposition C.1.1 as in the proof of Theorems
B.6.1 and B.8.1in §C.1). In §C.3, a parametrix for 0, was constructed starting
from the ‘local parametrix’ dzg/27i(z2 — 21). Similarly, a parametrix for 99 is

easily constructed from the ‘local parametrix’ —s=log|z; — 2;|?. Indeed, we
have:

2me

Lemma C.5.3. 1)For any ¢ € C®°(C;C) with compact support and any z € C,
we have

__i_ _ 12 ah !
olz) = —5 /MC log|z — #/[* 0B ("),

i1) For any o € C*°(C; AL) with compact support and any z € C, we have
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o(z) = 90 [—-1—/ log |z — 2'|? o(2')] .
z'eC

271

This lemma, which may be easily deduced from Lemma C.3.1 by integration by
part, is a reformulation of the well known fact that the fundamental solution
of the operator aa—; + % is ;- log /2 + y2.

We leave the details of the construction of the parametrix P to the reader,
who will have no difficulty to establish statements concerning 00 analogous
(but simpler) to Lemma C.3.3 and Lemma C.3.4.

Let us complete the proof of Proposition C.5.1. According to Lemma C.5.2,
the image of 89 is the intersection of the kernels of the linear forms A on
C>(X; A% ) which may be written as

/\:ar—>/€-a
X

for some £ € C*°(X;C) and which satisfy the condition

Aodd =0.

/E-agoz:/ 90t - a,
X X

which is easily proved by two integrations by parts, and the fact that the
kernel of 89 is the space of constant functions show that these linear forms are
proportional to a — [ x @ Therefore, the image of 00 is the kernel of the linear
form a — fX a, as was to be proved.

The following consequence of Proposition C.5.1 is known as Weyl’s lemma:

The identity

Lemma C.5.4. For any 8 € C*(X;wx), there ezists f € C®(X;C) such that
B — Of s a closed form.

Indeed, by Stokes formula

[ as=o

Therefore, according to Proposition C.5.1, there exists f € C*°(X; C) such that

00f = dB.
Then we get _ _
d(B—0f) = dB — dof
= dB — 00f
= 0.

Finally we can prove Theorem B.2.5:



150 Chapter 2. Compact Riemann Surfaces, Jacobians and Abelian Varieties

e The map 1 is injective: Consider w € 2'(X) and w' € 2'(X) such that
w @ w' belong to ker:. By definition of Hhz(X; C), there exists f € C®°(X;C)
such that

w+w =df.
This implies
(C.5.2) w=0f
(C.5.3) w' = of
and _ B
00f = 0w = 0.

According to Proposition C.5.1, it follows that f is constant. Then (C.5.2) and
(C.5.3) show that w =0 and w' = 0.

e The map 1 is surjective: Let a be a closed C*° complex 1-form on X.
According to Lemma C.5.4 there exists f € C%°(X;C) such that o(®!) — 3f is
closed. Then o' = a — df is a closed 1-form on X which has the same class in
H}HRr(X;C) as a. Moreover

o/ 0D = (0D _ 5y

and
o/ 19 _ o — o(10)

are closed forms of type (0,1) and (1,0), hence antiholomorphic and holo-
morphic (cf. Proposition B.2.1). Therefore o/(1:9) @ /(1) is an element of
”m (X) & £21(X) which ¢ sends to the cohomology class of a.

I1. The Jacobian variety of a compact Riemann surface

11.1. The inversion problem—or the Jacobian according to Jacobi
I1.1.1. The inversion problem for hyperelliptic integrals.

In this Section, we try to explain how mathematicians of the beginning
of the XIX-th century were led to consider what we call now Abelian varieties
through the study of Abelian integrals, i.e., of integrals of algebraic functions.

First recall how elliptic functions arise naturally from the study of elliptic
integrals. The simplest of these elliptic integrals are the integrals of the form

dz
v/ P(z)

where P is a polynomial of degree 3 or 4 with simple roots (a so-called elliptic
integral of the first kind). This integral can be written as | i‘lyﬁ, the integral of

(IL1.1)

the algebraic differential form dz/y on the algebraic curve E of equation
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y? = P(z).

After a projective transformation of the coordinates z and y, we can suppose
that P takes the form
P(z) = 42® — g2z — g3.

As P has simple roots, there exists 7 in the upper half plane §) such that g; =
g2(7) and g3 = g3(7). Hence, if p denotes the Weierstrass function associated
with 7 (¢f. [Cohl]), the curve E possesses the parametrization

=250
y=¢'(2) z€C/(Z+72).

Using this parametrization, we get immediately

dz

— =z+4ec.

In other words, the elliptic function p is an inverse of the (multivalued) function

t d
t— fto —Pj:z)'

In fact, one of the major contributions of Abel to the theory of ‘Abelian
integrals’ is the following principle:
To study elliptic integrals

J. v

as functions of t, look at the inverse function.

Observe that, from this point of view, the double periodicity of the Weier-

strass p function reflects the fact that the integral ftto \/%f(—; is multivalued.
z

This comes from the double valued character of the square root 1/ P(z) and
from the non vanishing of the periods of the differential form —%£—, i.e., of the

VP()’

integrals
/ dz
r /P(z)’

where I' is a closed curve in C (or rather in E).

If instead of a polynomial P of degree 3 or 4, we start with a polynomial

_ _ 2 . . dz . .

P of degree 2, say P(x) = 1—z? the integral (II.1.1) is | irret and its inverse
is the sine function. Thus the addition formula for sine

sin(a + b) =sinacos b + cosasinb

=sina\/1 —sin’b+ \/1 — sin? asinb,

which may also be written

arcsin A + arcsin B = arcsin (A\/l — B2 ++/1- A2B) ,



152 Chapter 2. Compact Riemann Surfaces, Jacobians and Abelian Varieties

appears as an equality of integrals of algebraic differential forms

Ay B . F(AB) 4.
+ = —,
/0 Vv1—z2 /0 V1—z2 /0 V1 —z2

where F' is the algebraic function

(I1.1.2)

F(A,B) = AV1-B? ++/1— A’B.

The identity (I1.1.2) may be proved directly, by elementary change of vari-
ables in the integrals. The elliptic integral (I1.1.1) satisfies an analogous addi-
tion formula, discovered by Fagnano and Euler in the middle of the eighteenth
century and proved by an elementary (but clever) change of variables:

B dr G(A,B) dz

/ ,/P(x Plo) Jo Ple)
G(A,B) = <VP(A VP(B)>2—A—B.

(I1.1.3)

where

This identity may be interpreted as an addition formula for the function p:

(21)~€3(Z2))

(I11.1.4) p(z1 +22) = 'ji ( o(z1) (z2) —p(21) — p(22).

Incidentally, using
(9'(2))* =4 (p(2))° — g2 p(2) — g3,

this relation is easily seen to be equivalent to the more symmetric one:

1 p(z1) ¢'(z1)
(I1.1.5) 1 p(z2) 9'(22)|=0 if z14+20+23€Z+7Z.

1 p(z) p'(23)

Observe also that, starting from some local determination of the function
 as the inverse of an Abelian integral of the first kind, the addition formula
may be used to extend g to the whole complex plane.

Abel and Jacobi not only considered elliptic integrals, but more gener-

ally, hyperelliptic integrals, i.e., integrals of the form f\/z—)dx where R is

a polynomial or a rational function, and P is polynomial with simple roots.

The expression w = \/—t)—dw defines a meromorphic differential form on the
I
Riemann surface C'p defined by the equation

y* = P(z)

which extends to a meromorphic differential form on the associated compact
Riemann surface Cp, whose genusis ¢ = [-d;—l] —1 (cf. §1.4.2). The differential
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w is holomorphic (i.e., has no pole) on Cpiff Ris polynomial of degree at most
g — 1 (cf. §B.2.2). Hence the differential forms

' lde z ldx .
w; = = 1=1,...,¢9

Yy P(z)

and their integrals [ \/;;(—)dm are the natural generalizations of the differential

form 42 and of the elliptic integral of the first kind considered above.

To extend the construction of elliptic functions by inversion of elliptic
integrals, one would attempt to invert the multivalued functions

/ ' R(z)dz

t—

o/ P(z)

where R is a polynomial of degree < g — 1. However, as soon as the degree of
P is > 5, the group of periods

R(z)dx
, I closed curve on C
{/r VP }

is dense in C (at least for a generic polynomial R(z) of degree ¢ — 1). So you
cannot get simple functions by inversion of a hyperelliptic integral.
This was discovered by Jacobi. However, he went further than this negative
statement, and discovered that the ‘good’ inversion problem is the following:
Invert the function (t1,...t5) — (I1,...,1I;) of g points of Cp with values
m C9 grven by

o dg v dg
o VP(z) to VP(z)
I = “opitldy N +/t9 ' ldz
’ to \/P("L‘) to

A /tg 29 1dz
e .
to P(z) to P(x)

For simplicity, assume, as Jacobi did (c¢f. infra Figure 29), that d = 6.
Then the inversion problem is to solve the system

t1 ta

dz
\/P(x P(z)

/tl zdz +/t2 zdz -3
o +/P(z) o +/P(z)
There are ambiguities in the definitions of these integrals:

e the square root 1/ P(z) has two determinations; this difficulty is solved
by looking at #; and f, as points on the Riemann surface Cp;
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dx

\V P(z)
zdzr

(resp. fF m), where v denote a closed loop on Cp. This leads to introduce

dz zdz 2
A:{(/F \/}Taj),/F\/W),FclosedlooponCp}CC.

Then A is a lattice in C? (see Proposition I1.1.1 below) and the multivalued
map (t1,t2) — (a, B) defines an analytic map

o o (resp. ) is well defined only up to the addition of the periods fF

CPXCP-%(Cz/A

which to a pair of points (¢;,t2) on the Riemann surface associates the class
of (a, 3) in the complex torus C? /A. Clearly (¢1,%2) and (#2,t1) have the same
image under this map. Hence this map may be seen as a map defined on the
symmetric product

Sym2Cp = Cp X Cp/ ~

where ~ is the equivalence relation which identifies (t1,t;) and (t5,¢;). Jacobi’s
great result on the inversion problem is that the map

J : Sym,Cp — C? /A

we have just defined, is onto and generically one to one.

The complex torus C?/A of dimension 2 is called the Jacobian of the
hyperelliptic curve Cp of genus 2. In the following Sections, we extend the
construction of the Jacobian to compact connected Riemann surfaces of arbi-
trary genus, and we prove the preceding statement concerning A and J in this
generalized context.

I1.1.2. The Jacobian and the inversion problem for general compact Riemann
surfaces.

In this Section, X denotes a compact connected Riemann surface of genus g.
The natural generalization of the family (%) cic of differentials on
1<i<yg

the hyperelliptic curve Cp considered above is a basis (w;)1<i<g of the space
2'(X) of holomorphic 1-forms on X. The natural generalization of the group
A of periods of Cp is the following subgroup of C9:

A= {(Lw,-)KK , 7eH1(X;Z)}.

Observe that the g-uple <f7 w,-) is the set of coordinates in the basis dual
1<i<g
to (w1,...,wy) of the complex linear form
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/ L ONX) - C
v

s

This leads to a more intrinsic (i.e., independent on the choice of a basis in

2'(X)) definition of A, which appears as a subgroup of £2!(X)*:

Proposition -Definition II.1.1. The period map
p: Hi(X;2)— 2Y(X)*

e
[

is injective and its image 1s a lattice A in 21(X)* (considered as a real vector
space).

This lattice is called the period lattice of X and the g-dimensional complez
torus £21(X)*/A is called the Jacobian variety of X and is denoted Jac(X).

(Recall that a lattice in a real vector space V of dimension d is the Abelian
group, isomorphic to Z¢, generated by a basis of V; see [Sen]).

Examples: i) If X = P!C, 2'(X) = {0} and Jac(X) is reduced to one point.

ii) Let X be the elliptic curve C/(Z +7Z). Then £2*(X) is a one-dimensional
vector space, generated by the non-vanishing holomorphic differential dz, and
the induced isomorphism

272X - C
A —  A(dz)
is easily seen to map the lattice A onto Z + 7Z. Therefore X and Jac(X) are

isomorphic Riemann surfaces.

Let HLx(X;R) be the first de Rham cohomology group of X with real
coefficients (c¢f. §A.1) and let H},z(X;R)" denote the space of real linear forms
on H} p(X;R). Proposition II.1.1 is a consequence of the fact that, according
to A.2.2, the map

P H(XGZ) - Hha(X;R)"

v |
[

injectively embeds H;(X;Z) as a lattice in Hhp(X;R), combined with the
Hodge decomposition (¢f. Theorem B.2.5):

(11.1.6) 2Y(X)® 2U(X) S HLR(X;C)
a®pfr— [a+pl.

Indeed, the isomorphism (I1.1.6) induces an isomorphism of real vector spaces



156 Chapter 2. Compact Riemann Surfaces, Jacobians and Abelian Varieties
j (X)) S Hpg(X;R)
o [a+al,
and one easily checks that the map
j': (X)) — Hpg(X;R)"
A Xoj 14 X057t

also is an isomorphism of real vector spaces and that j' o p = p'.

In order to state the generalization to general compact Riemann surfaces
of the results of Jacobi alluded to above, we need to introduce a few preliminary
definitions.

For any positive integer n, Sym, X will denote the symmetric product of
n copies of X, i.e., the quotient of X™ by the action of the symmetric group
S, defined by

g - (zl,...,xi,...,mn) = (x,—l(l),...,z,_l(i),...,x,-l(")).

This quotient has a natural structure of n dimensional complex manifold (with-
out singularity!) characterized by a property similar to the property introduced
in Theorem I.2.1 (replace X by X™ and I" by S;,). For instance, if ¢ = 2, Sym, X
is clearly a complex manifold outside the diagonal Ax = {[z,z],z € X} and,
near a point [(P, P)] of Ax, local holomorphic coordinates are given by

o1([Pr, Po]) = 2(P1) + 2(P2)

a2([P1, P]) = 2(P1)z(Py),

where z denotes a local holomorphic coordinate on a neighbourhood of P in
X. This proof may be extended to arbitrary values of n by using elementary
symmetric functions of the coordinates.

Let Py € X. For any P € X and any path L from P to P on X, the linear

form on 2'(X)
/:wH/w
L L

has a class in Jac(X) = £2*(X)*/A which depends only on P and P,. Indeed,

if L' is another such path, we have

JoomJe=

where v denotes the closed path L' — L. The element of Jac(X) so defined will

be denoted
P

w w

Py
or Jp,(P). In other words, if 2'(X)* is identified with C? by the choice of a
basis (w,...,wy) of 21(X), we have
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P
(IL.1.6) Jp,(P) = (/ w,-) mod A.
Po Jacigg

Finally, we define
Jp, : Sym X — Jac (X)

[(Pi,..., P — ZJPO(P,-).

Jacobi’s results on the inversion problem extend to arbitrary compact Riemann
surfaces, as shown by the following theorem, which is the main result of the
second part of these notes.

Theorem 11.1.2. Assume that the genus g of X 1s at least 1.

1) The map Jp, : X — Jac(X) is a holomorphic embedding, called the
Jacobian embedding.

2) The map Jp, : Sym, X — Jac(X) is a birational holomorphic map**.

The problem of understanding the map Jp, is what is now called the
inversion problem. It has been the subject of many works during the nineteenth
century and was, in a sense, solved in general by Riemann in his paper [Ril]
of 1857 where he showed how theta functions on Jac(X) allow to construct the
inverse of the map Jp, (cf. infra §111.5). However, many questions related to
the map Jp, and its geometry are still unsolved and the inversion problem is
still at the origin of difficult and interesting problems (see e.g. [Ke2]).

Observe that when X is an elliptic curve C/(Z + 7Z) and Py, = 0, the
maps Jp, and Jp, are nothing else than the identity map from X to Jac(X),
canonically identified with X. Therefore, in that case, Theorem I1.1.2 is clear.
As a matter of fact, the case g = 1 of Theorem I1.1.2 shows that any compact
connected Riemann surface X of genus 1 is isomorphic with §2*(X)*/A, hence
to an elliptic curve C/(Z + 7Z) (choose an oriented basis (wy,w2) of A and let

T = 22),

Now let us come to the proof of Theorem I1.1.2.

The holomorphy of Jp, is clear on formula (I1.1.6). The holomorphy of
Jp, is a consequence of the holomorphy of Jp, and of the definition of the
holomorphic structure on Sym, X as a quotient structure.

Let us prove the following lemma:

Lemma II.1.3. 1) Jp, is an immersion (i.e., for any P € X, the differential

DJp,(P): TpX — Ty, (py Jac(X)

** Recall (¢f. Appendix D) that it means that Jp, is holomorphic, surjective and
generically one-to-one; more precisely, there exists closed analytic subsets F' (resp.

F") of codimension > 1 (resp. > 2) in Sym X (resp. in Jac(X)) such that Jp, (F) =
F' and Jp, maps Sym,X — F biholomorphically onto Jac(X) — F".
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i3 injective ).
2) There exists Q = [(Py,...,Py)] in Sym X such that the differential

DJPO (Q) : TQ SymgX — TQ Jac(X)
18 bijective.

Indeed, the tangent space to Jac(X) = 2'(X)*/A at any point may be
identified with £1(X)* and the injectivity of DJp,(P) is equivalent to the
surjectivity of its transpose

tDJPO(P) : QI(X) — (TPX)* X wx,p.

But the definition of Jp, (see (II.1.6)) shows that this map is the evaluation
at P of holomorphic differentials on X, which is known to be surjective when
g > 1 (¢f. Proposition B.9.4).

If the points P, ..., P, are pairwise distinct, then ¢) possesses a neighbour-
hood in Sym, X which may be identified with a neighbourhood of (P4, ..., Py)
in X9. Therefore Tg Sym,X may be identified with Tp, X & --- ® Tp, X. The
bijectivity of DJp,(Q) is equivalent to the bijectivity of its transpose

‘DIp,(Q) : 21 (X) - wx.p, @ Dwx p,.
But this map is easily seen to be the evaluation map
w i (w(Pr),...,w(Py)).

As 2'(X) has dimension g, the existence of pairwise distinct points Pi,..., P,
such that this map is bijective follows from elementary linear algebra.

Thanks to Lemma I1.1.3, a), it will clearly be enough to show that Jp,
is injective to complete the proof of Theorem I1.1.2, 1). On the other hand,
since Sym,X and Jac(X) are compact connected complex manifolds of the
same dimension ¢, Lemma I1.1.3, b) implies that Jp, is onto and that, to prove
that Jp, is birational, we only have to show that the preimage ,_’7;01(33) of any
z € Jac(X) is connected (cf. Appendix D). The next two Sections are devoted
to a further study of the Jacobian variety Jac(X) which will allow us to prove
the injectivity of Jp, and the connectedness of the fibers Jp, !(z), and therefore
to complete the proof of Theorem I1.1.2.

I1.2. The classification of holomorphic line bundles—or the
Jacobian for field theory physicists

In this Section, we study the set of isomorphism classes of holomorphic line
bundles over a compact Riemann surface X - the so-called Picard group of X.
We follow an approach in the spirit of gauge theory, which makes the Jacobian
Jac(X) appear naturally as parametrizing the set of isomorphism classes of
topologically trivial holomorphic line bundles on X. In the next Section, we
will use this interpretation of Jac(X) to complete the proof of Theorem II.1.2.
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I1.2.1. O-connections and holomorphic structures on complex line bundles.
Let £ be a C* complex line bundle on X. We define a 0-connection on £
as a linear map .
V:C®X;L) - C®(X;0x ®L)
such that, for any f € C°(X,C) and any s € C*(X; L), the following equality
holds:

(I1.2.1) V(fs) = fVs+0f - s.

The set of &-connections on £ will be denoted Cg.

A O-connection V is easily seen to be a differential operator of first order
which locally, after the choice of a local holomorphic trivialization of £, takes
the form

Vs =8s+ As

for some local section A of wy. (This could have been taken as deﬁnition)._
If ¥ belongs to Cr and ¢ € C®°(X; C*), we can define another element V¥
of Cz by setting

(11.2.2) V(s) = o™ V(ps).
One immediately checks that, for any ¢1, p2 € C®(X; C*), we have
(v@ol)‘m S vAsi

In other words, formula (I1.2.2) defines an action on C of the (infinite dimen-
sional) group G := C®(X;C*).

Observe now that the d-operator
9:C®(X;C) - C™(X;wx)

is a O-connection on the trivial line bundle X x C. In that case, condition
(I1.2.1) is nothing else than Leibniz rule for 8. More generally, if £ is any
holomorphic line bundle on X whose C* underlying line bundle is £, the J-
operator —8_5 associated with £ (see §B.5) is a d-connection on £. Indeed, to
check the validity of (I1.2.1) for V = 55, we can work locally on X; then we
are reduced to the case of the trivial holomorphic bundle and of V = 9. In fact
(I1.2.1) is then nothing else than Leibniz rule (B.8.1) for £; = O and £; = L.
Moreover, the 0-connection 55 allows to recover the holomorphic structure on
L: a section s € C*°(X; L) is holomorphic on an open set U C X iff 0z s = 0
on U.

The following theorem asserts that this construction is essentially the only
way to get O-connections on L.

Theorem IL.2.1. Let £ be a complez C*™° line bundle on X.
1) The map which associates the O-connection Oc to any holomorphic line
bundle £ over X whose underlying C* line bundle 1s L establishes a bijection
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between the set of holomorphic structures on £ and the set Cr of O-connections
on L.

2) The holomorphic line bundles £, and L, on X associated to two 0-
connections Vi and V3 in Cp are isomorphic (as holomorphic line bundles) iff
there exists @ € G such that . .

V, = VY.

As an immediate consequence, we obtain:

Corollary 11.2.2. The quotient space Cr /G gets identified to the set of (holomor-
phic) 1somorphism classes of holomorphic line bundles whose underlying C*°
line bundles are isomorphic to L by the map which sends the class in Cc/G of
a O-connection V to the class of the holomorphic structure on L defined by V.

Let us prove Theorem I1.2.1. As the O-operator 9. allows to recover the
local holomorphic sections of £, the map in 1) is clearly injective. Its surjectivity
will follow from the following

Lemma I1.2.3. Let V be a O-connection on L. For any P € X, there ezists a
C*® non-vanishing section o of L on an open neighbourhood U of P such that

Vs=0.

Indeed, this lemma provides an open covering {U; }icsr of X and non-vanishing
sections o; € C=(U;; L), © € I, such that

Vo; =0 on U;,
which therefore satisfy
5(0']—-—1 coi)=0 on U;N U;.

According to §B.1.6, there exists a unique holomorphic structure £ on £ such
that o; is a holomorphic section of £ over U;. If s is a local U™ section of L,
say over an open subset of {2 of U;, we have

s = fo;
for some f € C*(£2;C). Thus, over {2, we get
dc s = 0c(foi)
=0f -0; (since o is a holomorphic section of £)
=V(f-0;) (since Vo; = 0)
= Vs.

This shows that

Dl
Il
<
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To prove Lemma II1.2.3, choose a non-vanishing section ¢ of £ over an open
neighbourhood V of P and let A = Vf. Then for any open neighbourhood U
of P contained in V and any f € C*°(U;C), we have on U:

(11.2.3) V(f-t)=0f t+ fA.

According to Lemma C.3.2 (applied to the trivial line bundle), we can find such
a neighbourhood U and a function ¢ € C*(U;C) such that, on U:

Op = —t"1. A

Then (I1.2.3) shows that

oc=¢c¥ t

satisfies the conditions required in Lemma I1.2.3.

The proof of assertion 2) in Theorem II.2.1 is very simple and will be left
as an exercise.

As emphasized in Corollary I1.2.2, Theorem I1.2.1 shows that the set of
isomorphism classes of holomorphic line bundles over X, which, as C* line
bundles, are isomorphic with £, may be identified with Cz/G. On the other
hand, when X is compact and connected, C* line bundles on X are completely
classified by their degree (cf. Proposition B.4.2). Therefore, if L4 is a C*
line bundle of degree d on X, then the set Picg(X) of isomorphism classes of
holomorphic line bundles of degree d over X may be identified with C,/G.

11.2.2. The classification of topologically trivial holomorphic line bundles on a
compact Riemann surface.

We now suppose that £ is the trivial line bundle X x C and we write C
instead of C,.

One easily checks that C is the space of differential operators V 4 defined
by
Vaf :=0f + Af

where A is an arbitrary element in C*°(X;@x). Thus C may be identified with
C>®(X;wx). For any A € C*(X;wx) and any ¢ € C®(X;C*), we have

(Va)? = Var

where
A¥ = A4 o7 Fp.

Therefore, the quotient C/G of C under the action of the group G = C*°(X;C*)
may be identified with the quotient of C*°(X;&x) by the subgroup

R(X) = {¢-Bp , ¢ € C=(X;C)}.

All what precedes holds for any Riemann surface. When X is compact and
connected, we have an explicit description of the quotient C/G:
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Theorem I1.2.4. Assume that X 1s a compact connected Riemann surface. Let
21(X) be the space of antiholomorphic differential forms on X (cf. §B.2.1), let

A= {<WH/VW> € NM(X)*; 7€H1(X;Z)}

be the ‘lattice of periods’ in 21(X)* and let Jac(X) = 2 (X)* /A be the Jaco-
bian of X. Consider the maps

o (X)) — 24(X)*/A
and L
g:M(X)—-C/G
such that o(A) is the class in 2*(X)*/A of the linear form

J(A): (X)) = C

wrH — [ wAA
e X
and B(A) is the class in C/G of V 4.

Then there exists a unique map
I:Jac(X)—C/G
such that the following diagram commutes

21(X)
a/ N\ B

Jac(X) = 2Y(X)* /4 L ¢/

Moreover it 1s a bijection.

According to Corollary I11.2.2, the quotient C/G may be identified with the
set of isomorphism classes of holomorphic line bundles over X, which, as C'*°
line bundles, are trivial. As explained in Proposition B.4.2, these are exactly the
topologically trivial holomorphic line bundles, or the holomorphic line bundles
of degree zero. Therefore Theorem I1.2.4 shows that the map I establishes a bi-
jection between the Jacobian variety of X and the set of isomorphism classes of
topologically trivial line bundles over X. Thus we get an alternative description
of the Jacobian of X, in the spirit of gauge field theory.

For later use, it is important to notice that when we compose the bijection

i1 : Pico(X) ~C/G
described at the end of §I1.2.1 and the bijection

ip=1"1:C/G = Jac(X)
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we obtain a bijection

i3 041 : Pico(X) > Jac(X)

which is an isomorphism of Abelian groups, when the complex torus Jac(X) is
seen as an Abelian group and when Pico(X) is endowed with the group struc-
ture defined by the tensor product of line bundles (the sum of the isomorphism
classes of two holomorphic line bundles over X is defined as the isomorphism
class of their tensor product). This group Pice(X) is called the Picard group
(of degree 0) of X. Indeed, we have:

Lemma I1.2.5. Let V4 and Var be two O-connections on the trivial bundle
L =X xC. Let L' and L" be the holomorphic line bundles defined by these
0-connections. Then the tensor product L' ® L" is a holomorphic line bundle
which still has the trivial line bundle £ as underlying C*°-line bundle, and the
8-operator on L' @ L" is V arq an.

Lemma I1.2.5 is a straightforward consequence of the Leibniz rule for &-
operators (see (B.8.1)).

The next two subsections are devoted to the proof of Theorem 11.2.4. This
proof is rather technical and should be skipped at first reading.

I1.2.3. C/G as a quotient of 21(X).

We have seen that C/G may be identified with the quotient C*°(X;wx )/R(X).
For any ¢ € C*(X;C), we have:

O =ev.0e?.
Therefore R(X) contains 8 C*°(X;C). On the other hand, we know that
C®(X;wx) = 2Y(X) B3 C(X;C)

(¢f. Corollary B.8.2., 1)).
These two facts imply

Lemma IL.2.6. The map (X)) - C®°(X;0x)/R(X) induced by the inclusion
NM(X) = C®(X;wx) s onto.

We are now going to describe its kernel. To do this, we will use the following
auxiliary result, the proof of which we leave to the reader as an exercise:

Lemma IL.2.7. For any C™ complez 1-form w on X, the following two condi-
tions are equivalent:

i) there ezists f € C°(X;C*) such that w = f~1 - df;

i) dw = 0 and, for any v € Hi(X;Z), f*rw € 2miZ.

(Hint: to prove the implication ii) = i), choose a base point Py in X and
consider the multivalued function P+ [ IZ w and its exponential).
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Let us now consider the subgroup
U(1) = {z €C| |2l = 1}

of the multiplicative group C*. A map f € C>*(X;U(1)) is called harmonic if
any local determination log f of the logarithm of f is harmonic (¢.e., satisfies
the equation 89 log f = 0; cf. §C.5).

LemmaIl.2.8. For any f € C=(X;U(1)) the following two conditions are equiv-
alent: o
i) f71-0f € M(X);

i) f is harmonic.
Indeed 1) is satisfied iff Dlog f € 21(X), i.e., iff locally 8dlog f = 0.

Lemma I1.2.9. Let a € TZT(X) The following three conditions are equivalent:
t) there ezists a (harmonic) function f € C®(X;U(1)) such that a =
f—l . 5](; _
i1) there ezists g € C°(X;C*) such that a = g~ - dg;
i) for any v € H1(X;Z), fv(a — @) € 2miZ.
Moreover, if g satisfies 11), then |g| is constant and f = |g|~1g satifies 1).

If f satisfies i), then f = f~! and

a=f -0f=f-0f'=—f"1.0f.

Therefore

flidf=a—a

and iii) follows from Lemma I1.2.7. Conversely, if iii) is satisfied, Lemma I1.2.7
shows the existence of fo € C*(X;C*) such that

a—a=f;"-dfs.
We have
|fol ™ - d| fol = dlog|fo|
= Re dlog fo
= Re(a — @)
=0.

Therefore |fo| is constant, and f := |fo|™! - fo belongs to C>°(X;U(1)) and
satisfies

a—a=f1.df

and a fortiori i).
If ¢ satisfies ii), then

=g ' 0g=—g"" 9g+]|g|"*0lg|*;
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therefore,
9|2 - dloglg|* =a+g ' 0g =@ ~a+g7 - dg

is a closed form and log |g|? is harmonic (cf. §C.5), hence constant (cf. Propo-
sition C.5.1). This clearly implies that f = |g|™! - ¢ satisfies i). Finally, 1)
obviously implies ii).

The subgroup of £21(X) satisfying the conditions in Lemma I1.2.9 will
be denoted H;(X;Z)*. It is clearly the kernel of the map in Lemma I1.2.6.
Therefore we have proved the following:

Proposition I1.2.10. There ezists a unique map
2(X)/H(X;Z)t > /g

which sends the class in 21(X)/Hy(X;Z)* of A € Q(X) to the class in C/G
of V4, and this map is a bijection.

In other words, any O-connection in C is in the same G-orbit as a O-
connection V 4 = 8+ A, where A is antiholomorphic, and any two d-connections
V4 and V4 of this form are in the same G-orbit iff there exists a harmonic
@ € C®(X;U(1)) such that V4 = V5.

An important fact which may be deduced from Proposition 11.2.10 is that
C/G is naturally a complex torus of dimension g. This follows from the next
lemma, which is established in the same way as Proposition I1.1.1 (using A.2.2
and Theorem B.2.5) and whose detailed proof will be left to the reader:

Lemma IL.2.11. H,(X;Z)* is a lattice in 21(X). Moreover, the map
¢ : Hi(X;Z)* - Hom(H,(X;Z),Z)
1 —

18 an isomorphism of Abelian groups.

I1.2.4. Completion of the proof of Theorem I1.2.4.

Consider the linear map
7 2U(X) - 2YX)*
which sends A € 21(X) to the C-linear form on £2'(X)*

. 1
](A).ar—)Q—ﬁ/;(a/\A.

It is a Clinear isomorphism (this follows, for instance, from the fact that
(w1,w3) — i [y w1 AWy is a Hermitian scalar product on 21(X)).
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Theorem I1.2.4 follows immediately from Proposition I1.2.10 together with
the following

Proposition 11.2.12. The isomorphism j maps Hy(X;Z)1 onto the period lattice
A.

Observe that Propositions I1.1.1 and I1.2.12 provide another proof of
Lemma I1.2.11.
Let ¥ be the map

H(X;Z)— Hom(H,(X;Z),Z)
which sends v € Hq(X;Z) to the group morphism
(7)1 =

defined using the intersection number # of homology classes (cf. A.2.3). The
map ¢ is an isomorphism, as follows for instance from the existence of sym-
plectic bases (¢f. A.2.3).

Consider now the following diagram

Hi(X;Z)* 5 Hom(H((X;Z),Z) «— Hy(X;Z)
(11.2.4) ! Lr
21(X) SN LX)

(the isomorphism ¢ is defined in Lemma I1.2.11 and the period map p in Propo-
sition I1.1.1). As A is defined as the image of p, Proposition I1.2.12 follows from
the commutativity of (I1.2.4), which amounts to the following: let v € H;(X;Z);
if A€ 21(X) is such that for any v' € H,(X;Z)

1

b1 =
(11.25) = 5 [ (4=,
then, for any o € 2'(X)
1
(11.2.6) /oz =— | ahNA
~ 2m fx

Clearly, it is enough to check it for 4 belonging to some basis of H;(X;Z).
We may even suppose that + is the first element a; of a symplectic basis
(aty...,a4,b1,...,by). Then, according to (I1.2.5), we have

(I1.2.7) —1—/(A—Z):0 G=1....9)

21
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and
(I1.2.8) 27”/(A A ) = 61;.

On the other hand, since @ A A = 0, we have

1 1 —
— A=_— AN(A—A4),
2me Xa/\ 2me Xa ( )

and if we apply A.2.5, we get

ZF@ aNA= Z{/ 27”/( —A)———/(A A)- /}

If we insert (I1.2.7) and (I1.2.8) in this equality, we get (I11.2.6).

I1.3. Abel’s theorem and the algebraic description of the Jacobian

In the previous Section, we interpreted the Jacobian Jac(X) of a compact con-
nected Riemann surface X as the space of isomorphism classes of holomorphic
line bundles of degree zero over X. This was derived using a description of these
line bundles in terms of J-connections. On the other hand, we saw in Appendix
B that holomorphic line bundles over X could be described in terms of divisors
on X (¢f §B.4 and Corollary B.6.3). Combining the two approaches provides
another interpretation of the Jacobian, which we explain in this Section and
which will allow us to complete the proof of Theorem I1.1.2.

I1.3.1. Isomorphism classes of holomorphic line bundles and divisors.

The subgroup of Div(X) formed by the divisors of non-zero meromorphic
function on X will be denoted R(X). Two divisors Dy and D, in Div(X) such
that Dy — Dy € R(X) are said to be linearly equivalent.

Proposition II.3.1.

1) Any two divisors Dy and Dy on X are linearly equivalent iff the holo-
morphic line bundles O(D1) and O(Dz) are isomorphic.

2) The quotient group Div(X)/R(X) is isomorphic with the group of iso-
morphic classes of line bundles over X, via the map which associates the iso-
morphism class of the line bundle O(D) to the linear equivalence class of a
divisor D over X.

To prove 1), observe that O(D;) and O(D;) are isomorphic iff O(D;) ®
O(D,)* is isomorphic with the trivial line bundle O. As O(D;) ® O(D;)* ~
O(Dy — D) (¢f. (B.3.6)), we are reduced to prove that a divisor D lies in R(X)
iff O(D) is isomorphic with O. This follows from the fact that a non-vanishing
section of O(D) is exactly a non-zero meromorphic function f on X such that

div(f~!) = D (compare (B.3.5)).
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The assertion 2) follows immediately from 1) and from the fact that any
holomorphic line bundle over X is isomorphic to the line bundle associated to
some divisor (¢f. Corollary B.6.3).

For any d € Z, we will denote Divg(X) the set of divisors of degree d
on X. Proposition I1.3.1, 1) and the definition of the degree imply that R(X)
is included in Divo(X) (this is also a consequence of Proposition B.2.1, ap-
plied to the meromorphic differentials f~* - df, f € M(X)*). The isomorphism
of Proposition I1.3.1, 2) identifies the image Divg(X)/R(X) of Divy(X) in
Div(X)/R(X) with the set Picg(X) of isomorphism classes of holomorphic line
bundles of degree d over X.

If we compose the isomorphism
i3 : Dive(X)/R(X) ~ Pico(X),
provided by Proposition 11.3.1, 2), and the isomorphisms
i1 : Picg(X) ~ C/G
and
ip =I"':C/G ~ Jac(X)
described in §I1.2.1 and I1.2.2, we get an isomorphism

(I1.3.1) i2 011 0143 : Dive(X)/R(X) ~ Jac(X).

The existence of such an isomorphism provides an algebraic description of the
Jacobian Jac(X). Indeed, if X is realized as an algebraic curve (cf. §1.4.2)
then M(X) may be identified with the field of restrictions to X of rational
functions defined on the ambient space (cf. Theorem 1.4.5). Therefore R(X)
and consequently the group Divo(X)/R(X) may be defined in terms of purely
algebraic objects, whereas the definition of Jac(X'), involving the periods of X,
was transcendental.

11.3.2. Abel’s Theorem.

We now give an explicit formula for the isomorphism (I1.3.1). It is the
content of the following theorem, which is known as Abel’s Theorem:

Theorem I1.3.2. Let D =) Q;— Y. P; be any divisor of degree zero on X and,

=1 =1
fori=1,...,r, let L; be an oriented path from P; to Q;.
The vmage by 13011 of the tsomorphism class of the holomorphic line bundle
O(D) is the class in 21 (X)*/A of the linear form
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Observe that if we replace the paths L; by other paths L!, this linear form
is modified by the addition of the ‘periods’ of the cycle Z (L — L;), which

belong to A. Therefore its class in Jac(X') does not depend on the choice of the
L;’s. More precisely, it is easily seen to depend only on D. It will be denoted
J(D).

The proof of Theorem I1.3.2 is based on the following two lemmas, which
we leave to the reader (the first is a simple consequence of the definitions; the
second is an exercise in integration by parts).

Lemma I1.3.3. Let L be any holomorphic line bundle of degree zero over X. If
5 € C®(X; L) has no zero on X, then L is isomorphic to the holomorphic line
bundle defined by the O-connection V 4 where

A=s"1.9,s.

Lemma I1.3.4. Let ¢ > 0 and denote
D.={zeC||z|<e}.

If w is a holomorphic 1-form defined on a neighbourhood of D. in C, if z;,
22 € D, and if L 18 a path from z to z2 in D., then the following equality
holds

(I11.3.2) / log ITA = 27ri/ w
4D, Z— %2 L

(in the left hand side of (I1.3.2), 8D, is oriented counterclockwise, as usual,
and log £=Z- denotes any determination of the logarithm of £=£. continuous
along 6D ).

The correspondence between tensor products of holomorphic line bundles,
addition of divisors and addition of the ‘gauge field’ (Lemma II.2.5) shows that,
to prove Theorem I1.3.2, we can consider only the case r = 1, i.e., divisors D
of the form @ — P. Moreover, an easy connexity argument shows that we can
assume that there exists a holomorphic coordinate chart (U,z) on X and € > 0
such that

2(U) =
and such that U contains P and @ (see figure 27).
Consider the following meromorphic function on U:
z —z(P)
z—2(Q)

It may be seen as a non-vanishing holomorphic section of O(Q — P) on U.
Choose &' €]0,¢[ such that U’ := z71(D) contains P and Q. There exists a

S =
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Q-P= (Q-R)+-+(Py-P) + (R -P)

Fig. 27. Decomposition of divisors.

holomorphic determination log so of the logarithm of sy which is defined over
U — U'. Choose also a function ¢ € C*°(U;C) such that

(I1.3.3) =1 on U’
and
(I1.3.4) o =0 on a neighbourhood of X —U.

Then define a function s on X as follows:

s =8 on U’
s =exp(c-logsg) on U-U'
s =1 on X —U.

This function is C* and does not vanish on X — {P, @}, and is meromorphic
on U’ and defines a C'°° non-vanishing section of O(P — @) over X. Therefore,
according to Lemma I1.3.3, the image by ¢; of the isomorphism class of O(Q—P)
is the class in C/G of

A=s"1 -EO(Q_p) S.

By construction of s, we have

(IL.3.5) A=0 on U'UX-T)

(I1.3.6) = 9(0 -logsy) on U-U".

By definition, i, sends the class of A to the class in Jac(X) of the linear form
on £2'(X) whose value on w is (27i)™! [, w A A. Now we get
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o fyw A L [ _wAB(o-logso) (cf.(11.3.5) and (IL3.6))

271

= —5= [y_u d(o-logso-w) (since w is a holomorphic
differential)

—%; fa(U—U’) o-logso-w (by Stokes formula)

= 5= [slogse - w (c¢f.(11.3.3) and (I1.3.4))
According to Lemma I1.3.4, this expression equals [ ,, w for any path from P to
Q in U'. This completes the proof of Theorem I1.3.2.

In order to give a reformulation of Abel’s Theorem, let us introduce a few
notations. Let Py be any base point in X and let

Jp, : X — Jac(X)
be the associated Jacobian embedding (cf. §II.1; in fact we do not have yet

N
proved that Jp, is an embedding). For any divisor D =3 n; Q; on X, let us

=1
define

N
Tp(D) = ni Jp,(Qi)
=1

where, in the right hand side, the sum is computed in the Abelian group Jac(X).
The maps

(11.3.7) Jp, : Divg(X) — Jac(X)

depend on the base point Py in a very simple way: for any other base point
P} € X and any D € Divy(X), we have

Tpy(D) = Jp,(D) - dJp,(F}).

In particular, the map Jp, : Divo(X) — Jac(X) does not depend on Py and is
easily seen to coincide with the map J introduced just after the statement of
Abel’s Theorem.

The following assertions are direct consequences of Proposition 11.3.1 and
Theorem I1.3.2, and constitute the classical version of Abel’s theorem:

Corollary I1.3.5. Let d € Z. Any two divisors Dy and Dy in Divg(X) are linearly
equivalent iff
JPO(Dl) = JPO(D2)'

Moreover the map

Jp, : Divg(X)/R(X) — Jac(X)
[D] — Jr,(D)

18 a bijection, which coincides with iy 01; 013 when d = 0.
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11.3.3. Completion of the proof of Theorem II.1.2.

Suppose now that X is a compact connected Riemann surface of genus
g > 1. To complete the proof of Theorem I1.1.2] we still need to prove the
following facts (cf. §I1.1.2):

i) the map Jp, : X — Jac(X) is injective;
ii) for any z € Jac(X), the inverse image of z by

Jp, : Symy, X — Jac(X)

is connected.
To prove i), observe that if P and @ are points of X such that Jp (P) =
Jp,(@), then, according to Corollary I1.3.5, there exists f € M(X)* such that

divf=Q—P.

When X is not isomorphic with P1C, hence when g > 1, this is impossible
unless Q = P (¢f. Corollary B.2.4).

To prove ii), observe that Sym, X may be seen as a subset of Div,(X),
namely the subset of effective divisors. Indeed the g-uple (Py,...,P;) up to
permutation may be identified with the divisor P; + - .- 4+ P;. Then the map
Jp, is nothing else than the restriction of Jp, : Divg(X) — Jac(X). Therefore
Corollary I1.3.5 shows that if Dy € Sym, X is such that Jp,(Do) = z, then
Ip, 1(2) is the set of divisors D' € Sym, X such that the holomorphic line
bundles O(D) and O(Dy) are isomorphic. The assertion ii) is now a particular
case of the following general facts, which hold for any holomorphic line bundle
L of degree d > 0 on a compact connected Riemann surface X:

e For any D € Divy(X), the following conditions are equivalent:

1) D is effective and the holomorphic line bundles O(D) and £ are isomorphic;
ii) there exists s € H%(X; L) — {0} such that div(s) = D.

This follows immediately from the basic facts concerning divisors of line
bundles (¢f. §B.3).

e The map s ~— divs from H°(X;L) — {0} to the symmetric product
Sym,; X (identified with effective divisors of degree d) is continuous. This follows
easily from the compactness of Sym,; X.

e Therefore, the set of divisors D which satisfy the condition i) above is
connected, as the image of the connected set H°(X; L) — {0} by a continuous
map?5.

Exercise Use Riemann-Roch Theorem (c.f. §B.9) to show that any holomorphic
line bundle £ on X of degree g (resp. of degree 0) is isomorphic to a line
bundle of the form O(>°7_, P;) (resp. O(3.7_, P; — gF,)). Combine this fact
and Theorem I1.3.2 to get another proof of the surjectivity of Jp,.

25 More precisely, this set is easily seen to be isomorphic with the projective space
PH(X;L) = (H°(X;L) ~ {0})/C*. In particular, the fibers of the map Jp, are

projective spaces (which, generically, are reduced to one point).
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I1.4. A historical digression.

The discussion of the preceding paragraph uses various modern concepts such as
‘holomorphic line bundles’, ‘gauge groups’, etc .... However, the main theorem
asserting that the Jacobi map is essentially one to one may be formulated
without these modern concepts and was indeed proved by Jacobi without them
(at least for hyperelliptic curves). It may be of some interest to sketch the
original approach of Abel to Abel’s Theorem, which is quite simple and elegant,
and which has been somewhat forgotten?®, contrary to the contribution of
Riemann and his followers whose an account along the original lines may be
found in modern textbooks.

To describe Abel’s formulation, let us go back to the theory of elliptic
integrals as it was developed at the end of the XVIII-th century. A general
elliptic integral is an integral of the form

(IL.4.1) /zi%ﬁ

where R is a rational function and P is a polynomial of degree 3 or 4. The
basic example of such an integral—from which it derives its name—is the arc
length on an ellipse: if we represent the ellipse

parametrically by z = asin8 and y = bcos 8, then the arc length is given by

/ Va? cos? 6 + b2 sin® 6d6 = / aV/1 — k2 sin® 640

where k = /1 — b?/a? is the eccentricity of the ellipse (we assume a > b).
Setting z = sin 8, the integral becomes

1— k2 2
dz
V(1 —22)(1 — k222)
which indeed has the form (11.4.1).

As a function of z, an elliptic integral cannot be expressed in terms of ele-
mentary functions. However, it satisfies an addition formula, which generalizes

(I1.1.3):

dt + W(z,y)

(I1.4.2) / ’ R]gt(t / \/TJ(T \/_

where z is a rational function of z,y, /P(z) and /P(y), and where W is the
sum of a rational function of z,y,/P(z) and /P(y) and of the logarithm

26 See [Grl] for a noteworthy counterexample to this last statement.
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of such a function (according to (II.1.3), when R(t) is constant, W is also
constant).

In his work, Abel considers, instead of /P(z), any ‘algebraic function’
y(z) of z, defined implicitly by an irreducible polynomial equation?”

(I1.4.3) x(z,y) =0,

and, instead of an elliptic integral, a general ‘Abelian integral’

b= | " ft y(t)dt |

where f is any rational function of two variables. Moreover, instead of the
sum of two elliptic integrals which occurs in the addition formula (I11.4.2), he
considers the sum (z1)+--- +9¥(zm) of the values of the Abelian integrals at
a finite number of points z1,..., 2.

In modern terms, the polynomial equation (I1.4.3) defines an algebraic
curve, hence by normalization a compact Riemann surface; the rational function
f determines a meromorphic differential

w= f(.t,y)d.f

on X, and ¢(z) is the multivalued function obtained by integration of w along
paths on X — X where ¥ denotes the finite set of points of X where w is not
holomorphic (observe that even considered as a function of (z,y) € X, ¢ is
multivalued; indeed, for any two points A, B in X — X to define the integral
ff w, one needs to choose a path from A to B in X — X' and the value of the
integral depends, in general, of the homology class of this path).

The key idea of Abel is to consider an auxiliary relation

(1144) 6(:[1 ywala"‘ﬂa’") = 0’

defined by a polynomial 6 in (z,y) which depends rationally on parameters
(a1,...,ar), and to study the sum

b= (M) + o+ (M)

when M, ..., My, are the intersections®® of the curves defined by x(z,y) = 0
and by (I11.4.4).
Using the modern terminology, we can introduce the divisor on X

D(ay,...,ar) = f:Mi.
=1

In general, it depends on (ay,...,a,). However, its class modulo linear equiv-

alence is independent on (a1,...,a,). Indeed, at least for generic values of
! ! .

(al,...,al.,a1,...,a.), we have:

2" We follow Abel’s own notations.
28 Possibly counted with some multiplicities.
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D(aj,...,a.) — D(ay,...,a,) = divg
where ¢ is the meromorphic function on X defined by the rational function

0(z,y,al,...,a,)

T

0(z,y,a1,...,ar)

Abel’s version of Abel’s theorem is the statement that v is a linear combination
of a rational function of (ai,...,a,) and of the logarithms of such rational
functions.

Let us sketch Abel’s proof?®:

o Let n be the degree of x(z,y) in the variable y, and let us denote by
y1(2), ..., yn(z) the nroots of x(z,y) = 0, considered as an equation in y. With-

out loss of generality, we may suppose that 8 is a polynomial in z,y,ay,...,a,.
Then
n
p(z,a1,...,a.) = HG(r,yi(x),al, ey Q)
i=1
is easily seen to be a polynomial in z,a4,...,ar. In fact p is nothing else than

the resultant deduced from x(z,y) and (z,y) by elimination of y. The relation
(I11.4.5) p(z,a1,...,a;,) =0
characterizes the z’s for which there exists y such that

x(z,y) =0 and 8(z,y,a1,...,a,) = 0.

Moreover, if « satisfies (11.4.5), there exists a unique y such that this system is
satisfied, which is given by a rational expression

y=@(z,a1,.-.,0,)

of z and ay,...,a,.

¢ The resultant p may be factorized as p = Fp - F, where Fj is the largest
factor of p which does not involve the variable z. The relation F(z,ay,...,a,) =
0 defines z as an algebraic function of ai,...,a,, with several determinations
Tl Tm (M = degree of F'in z). Let

Yj = So(mj:alv"'var)

be the corresponding values of y.
e To prove Abel’s theorem, it is enough to prove that the differential

" v
d'U = Z %— dai
=1 '

29 The following argument implicitly assumes some hypotheses of genericity on the
choice of coordinates and on 6.
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of v considered as a function of (ay,...,a,) has coefficients Gv/0a; which are
rational functions of (ai,. .., a,) (this is clear when r = 1; see e.g. [Grl], pp.328-
329, for the general case).

By definition of v, we have the identity

(11.4.6) dv =Y f(zj,y;)dz;,
j=1
where z; and y; are seen as function of (ai,...,a,). The differentials dz; may

be computed by differentiation of the relation
F(zj,a1,...,a;)=0.

Indeed, if we denote

—~ OF
0F(zj,a1,...,0a;) = 2. 9a, (ziya1,...,ar)da;
and
F'(zj,a1,...,a;) = %i— (zj,a1,...,ar)
we get
-
and

oy - f(‘rjv99(‘7“'j7a17---,ar)) ]
flzj,y;)de; = Filz; a0 o) OF(zj,a1,...,4.).

Inserting these relations in (I1.4.6), we get the identity
dv = ZQi(xl, ey T, ALy - A )da;
=1

for some rational functions Q; of (z1,...,%Zm,a1,...,a,) which clearly are sym-
metric in the z;’s. As these are the solutions of F(z,as,...,a,) = 0, any ra-
tional symmetric function of the z;’s is a rational function of the a;’s. Finally,
we obtain that

dv = ZRi(al, ...y ar)da;
=1

where the R;’s are rational functions, as was to be proved.

Abel also looks for conditions on w which imply that v is constant. He
proves that it is the case when

ﬂ%w=(%9qﬂmw
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where g(z,y) is a polynomial which satisfies a degree condition and some lin-
ear relations, which depend only on the polynomial x (and not on 8). These
conditions define a vector space of forms w, of finite dimension 4. This vec-
tor space contains the space £2'(X) of holomorphic differential forms on X3°.
Consequently, if we apply Abel’s results to the forms w € £2'(X), we recover
that, for any 6, the image of D(ay,...,a,) by the Jacobian embedding is inde-
pendent of (ai,...,ar): this is essentially equivalent to the fact that the Jacobi
map (I1.3.7) is well defined on divisors modulo linear equivalence (cf. Corollary
11.3.5).

In Abel’s work, the genus of X appears in the following guise. Abel re-
marks that we can choose arbitrary r points P;,...,P. on X and that, in
general, when 6 depends linearly on (ay,...,a,), there exists a unique value of
(a1,...,ar) such that P;,..., P occur in the divisor D(ay,...,a,). If we de-
note by @Q1,...,Qm—r the other points occurring in D(ay, ..., a,), this implies
that one can associate to any r points Py,...,Pr a finite set Q1,...,Qm—r of
m —r points which depend algebraically on Py,..., P, in such a way that a sum
of r Abelian integrals y_|_, fg w 18 equal to the sum — Yy =" g)i wofm-—r
Abelian integrals, up to some algebraic function.

Abel proves that, for an arbitrary r, one may choose € such that m —r
assumes a minimal value: this minimal value is independent of r, and defines
an invariant p of the algebraic curve x(z,y) = 0. This numerical invariant p
is nothing else than the genus of X. The correspondence between Sym, X and
Sym, X which associates (Q1,... ,Qp) to (Pr,...,Pr) is indeed given by the
inverse image of 0 by the following map

Sym, X x Sym,X —Jac(X)
T P
(Prse s Pr) (@, @p)) = 3 Tru(P) + 3 Tro(Qs).

These results of Abel are contained in his great work, Mémoire sur une
propriété générale d’une classe trés étendue de fonctions transcendantes ([A3]),
which was presented at the Académie des Sciences de Paris in 1826 but was
published only in 1841, after the death of Abel (1829) and even after the pub-
lication of the first edition of his collected works. Before 1841, only two short
notes on this work had been published by Abel. They contain some of his re-
sults in the hyperelliptic case ([Al]), and the statement of Abel’s theorem in
his general form, with a sketch of proof ([A2]; see figure 28).

The work of Abel served as a foundation to the work of Jacobi on the
‘inversion problem’ for hyperelliptic integrals. We have seen that the Euler
addition formula allows to extend the inverse function of an elliptic integral
of the first kind, which is first only locally defined, to a holomorphic function

30 In general we can have v > g(= dim 2'(X)): some differential w ‘of the third
kind’ on X, t.e., some meromorphic differential forms whose residue at any point
of X vanishes, may give rise to constant functions v; see [Ho] pp.74 and 95 for a
discussion and references on this point.
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Fig. 28. Abel’s original proof of ‘Abel’s Theorem’ ([A2]).
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defined on the whole complex plane. Around 1832, Jacobi discovered how Abel’s
theorem can be similarly used to ‘invert’ Abelian integrals.

First, in [J1], Jacobi derived from Abel’s theorem an addition formula for
hyperelliptic Abelian integrals. He proceeded as follows, in the case of Abelian
integrals associated with hyperelliptic curves of genus 2, given by an equation

(11.4.7) y* = P(z),

where P is a polynomial of degree 5 or 6. He introduced the two functions

(11.4.8) o(z) = /Oz dPt(t)

and

(11.4.9) p1(z) = /01 \/t%

Abel’s theorem shows that, for any z,z’,y and ', the system of two equations
with unknown a and b

@(a) + () = p(2) + (y) + »(z') + o (y")

p1(a) +¢1(0) = p1(x) + 01(y) + ¢1(z") + @1(y")

has solutions which may be expressed algebraically in terms of z,y,z’ and y'.
Now, if one sets

u=p(@)+ely)  v=pz)+eily)

and
u' =)+ oY) v =ei(d’)+er(y)

the preceding relations may be written
u+u' = p(a) +¢(b)
v+v' = pi(a) +¢i1(b).
Therefore if we express z and y in terms of v and v, namely
z = Mu,v), y = AM(u,v),

then we have:
z' = Mu',v"), y' =M (u,v"),
and
a=MNu+u v+, b= A (u+u,v+0).
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400 32. G. G. J. Jacobi, considerationes generales de tr dentibus Abelianis.

Theorema.
,», Designante X functionem integram rationalem ordinis quinti

paut sexti, ponatur
* dx *xrdx

.V = D (), TR = D, (x);
»&int porro
r= Ay, v), y=A(,v)
pfunctiones tales argumentorum u, v, ut simul sit:
@ (x) + Q(y) = u, <Dx('t)+<pl(}.) =1
sgaudebunt functiones illae
My, v), AN(s,v)
swproprictate ei simili, quae de functionibus trigonometricis et ellipticis
,sin elementis proponitur, ut functiones illae argumentorum binominum
u4u'y, v4 0V
»algebraice exhibeantur per functiones, guae ad singula rormine
uy, v; uy v
ppertinent ; sive ut functiones
Aatu,v4v), A@wHu, v4v)
,algebraice exhibeantur per functiones
A(uv)y A,
Ay v)y A&, V00

Fig. 29. Jacobi’s original work on the inversion of hyperelliptic integrals [J1].

In this way, Jacobi proved that the functions A(u+u',v+v") and A (u+u',v+0")
are algebraic functions of Mu,v), A1(u,v), A(w',v") and A\ (v',v') (see figure 29).

In modern terms, this algebraic addition formula is nothing else than the
addition law on the Jacobian of the curve X defined by (I1.4.7) expressed on
S$2X (which is ‘almost’ isomorphic to Jac(X); ¢f. Theorem I11.1.2, 2)).

Two years later, in 1834 (see [J2]), Jacobi came back to the study of the
functions (I1.4.8) and (11.4.9), met the problem of their multivaluedness, and
discovered that A and \; admit four periods (in C?). As a function of one
complex variable cannot have more than two independent periods®!, he was
led to discover that the inversion problem, to be well posed, had to involve
functions of several complex variables.

The inversion problem, for hyperelliptic Abelian integrals of genus 2, as
posed by Jacobi, is to construct periodic entire functions on C? with values in
Sym, X (or rather in a variety birational to Sym,X) which would define an
inverse of the J map.

This problem was solved by Gopel and Rosenhain in 1847, who introduced
for this purpose theta functions of two variables. The generalized problem con-
cerning hyperelliptic curves of arbitrary genus was solved by Weierstrass, in

3 It may be interesting to note that the basic fact that a discrete subgroup of R?
contains at most two rationally independent vectors was proven for the first time
in this paper.
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papers published from 1848 to 1856. These works motivated the study of theta
functions of several variables, which were successfully used by Riemann in his
great paper of 1857, Theorie der Abel’schen Functionen ([Ril]), to give a so-
lution of the inversion problem for an arbitrary algebraic curve. In the next
Section, we try to explain Riemann’s discoveries.

Appendix D. The surjectivity of some holomorphic maps

In §I1.1.2, we used the following fact:
Let f: X =Y be a holomorphic map between compact connected complez
manifolds of the same dimension. If there 1s a point zo € X such that the

differential of f at
Df(:CQ) : Tva g Tf(zo)Y

18 an 1somorphism, then f is onto.

Let us give a short proof of this statement, based on the elementary proper-
ties of the degree of C* maps between compact manifolds of the same dimension
(cf. [Mil]).

As complex manifolds, X and Y are naturally oriented, and, since f is
holomorphic, for any « € X such that Df(z) is bijective, Df(z) is orientation
preserving. This shows that, for any regular value y € Y, the degree of f is the
cardinality of f~1(y).

If ¢y € X is such that Df(z¢) is bijective, then by the implicit function
theorem, there exists an open neighbourhood U (resp. V) of zq (resp. of f(zg))
in X (resp. Y) such that f maps bijectively and biholomorphically U onto V.
The non-empty open subset V' contains a regular value of f, whose inverse
image is clearly non-empty and f has positive degree, hence is onto.

Suppose now that, moreover, all the sets f~1(y), y € Y, are connected.
Then f is of degree one; indeed, for any regular value y of f, f~1(y) is a
connected finite set, i.e., a one point set. Hence there exists open dense subsets
UCX and V CY such that f sends biholomorphically U onto V. In fact, it
is possible to show that one can find U and V satisfying these conditions and
such that X — U is an analytic subset®? of X of codimension > 1 and Y =V
an analytic subset of ¥ of codimension > 2 (see for instance [Mu3], §3B). Such
a map f is called a birational holomorphic map.

32 {e., a subset of X defined locally by the vanishing of a finite family of holomorphic

functions.
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I1I. Abelian varieties

II1.1. Riemann bilinear relations

I11.1.1. Integrals of products of closed 1-forms over a compact Riemann surface.

In the preceding Section, we associated to any compact connected Riemann
surface X of genus g a complex torus Jac(X) of complex dimension g, the
Jacobian of X. This complex torus can be described as the quotient £2*(X)*/A
where 2!(X)* is the vector space dual to the space of holomorphic differentials
on X and where A is the period lattice of X, defined as the image of the
njection

(IIL.1.1) p: Hi(X,Z) - 2Y(X)*
v (w e /w)

In this Section and the following one, we will show that, as a lattice in the
complex vector space 2'(X)*, A has very special properties. This will be a
consequence of the following observations:

o for any w,w' € N (X),

(I11.1.2) / wAw' =0, (since w Aw' = 0)
X
e for any w € 2Y(X) — {0},
(IIL.1.3) z/ WAT >0,
be

together with the following lemma which was proved in A.2.5:

Lemma ITL.1.1. Let X be any oriented compact connected differentiable surface
of genus g > 1. For any symplectic basis (ai,...,aq4,b1,...,b0y) of H1(X;Z)
and for any two closed 1-forms n and n' on X, we have:

(II1.1.4) /Xn/\n':g(/;in-/bin'-—/ain'-/bin).

I11.1.2. Riemann bilinear relations.

Consider now a basis (wi,...,wy) of £'(X) and a symplectic basis
(a1,...,a4,b1,...,by) of Hi(X;Z).

Let P be the matrix of (p(ai),...,p(ag),p(b1),...,p(by)) in the basis of
2 (X)* dual to (wy,...,w,). In other words

M = (A,B),
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where A and B are the matrices in M,(C) defined by

Aijz/ Wy and BUZ/ Ws.
a; b;

J

We can now state:

Theorem II1.1.2. 1) The matriz A s invertible.
2) The matriz 2 = A™'B 1s symmetric and its imaginary part Im 2 :=
(Im $2i5)1<i,j<g 18 @ positive®® matriz.

These conditions on the matrix (A, B) are known as Riemann bilinear
relations (but were known long before Riemann in many special cases, e.g.,
when X is hyperelliptic) and the subset §); of M (C) defined by the conditions

'N=0 and ImN>0

is called nowadays the Stegel upper half space. When ¢ = 1, it is nothing else
than the Poincaré upper half plane:

H1=H={reC|Im7 >0}

The matrix §2 in Theorem III.1.2 is easily seen to be independent of the
basis (w1, ...,wy) of £1(X). It is known as the period matriz of the Riemann
surface X associated to the symplectic basis (a1, ..., a4,b1,...,by) of H1(X;Z).
This matrix 2 may be obtained from (a1,...,a4,b1,...,b,) using the following
recipe: according to Theorem II1.1.2. 1), there exists a unique basis (w1, ...,wy)
of the space $21(X) of holomorphic one forms on X such that

(111.1.7) / wi = bij;

then we have

(III.1.8) 2;; = / Wi
bj

If X is the elliptic curve C/(Z + 7Z) and if we choose as symplectic basis
of H1(X;Z) the pair (a,b), where a (resp. b) is the class of the map from R/Z
to X which sends [t] € R/Z to [t] € X (resp. [rt] € X), then the condition
(I11.1.7) reduces to fa w1 = 1, implies that w; = dz, and (II1.1.8) shows that {2
coincides with 7.

Observe that when £2'(X)* is identified with C? by using the basis dual
to the basis (wi,...,w,y) defined by (IIL.1.7), then A appears as the lattice
Z9 + 279, and Jac(X) may be seen as the complex torus C? /(Z9 + 279).

Let us prove Theorem II1.1.2.

Let A = (Ag,...,A¢) € €7 be such that

3 4., for any v € R - {0}, v - Im 2 -v > 0.
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g
Z i Ai; = 0. (1<5<9)

=1

Consider the holomorphic differential form

g
w= E i w;.
i=1

According to the definition of A, we have

‘sza (1<j<g)

This implies that
./wzo (1<j<q)

and according to Lemma II1.1.1, we get

/w/\U:O.
X

Therefore w = 0 (¢f. (II1.1.3)) and Ay = --- = Ay = 0. This proves the assertion
1} in Theorem III.1.2.

To prove 2), we use the basis (wy,...,wy) of 21(X) defined by (IIL.1.7).
Then, if we apply (II1.1.4) to n = w; and n' = w; we get £2;; = £2;;. If we apply
(IIL1.4) ton = Y], viw; and n' = 7, with v € RI — {0}, we get

tv~ImQ-v:£/n/\ﬁ>0.
2 Jx

This proof of Theorem II1.1.2, based on Lemma III.1.1, is essentially the
original proof given by Riemann in 1857 in the Sections 20 and 21 of his paper
on Abelian functions ([Ril]; see figure 30).

Exercise: Let X be the hyperelliptic Riemann surface defined by the equation
v =28 — 1.

Figure 31 ‘shows’ X as a two-sheeted covering of the ‘z-plane’, ramified over
0 and ¢, 0 < i < 4, where (5 = €>™/5: the surface X may be realized by
gluing two copies of P!C along the three segments [0, 1], [(s, (3] and [¢3,¢4). A
symplectic basis (a1, az, b1, b2) of H1(X;Z) is also shown; the parts of the loops
in full line are on one sheet; the dotted parts are on the other one.

Prove the preceding assertions and compute the period matrix 2 of X
associated to (a1, az, by, b2).

Hint: Consider the automorphism T of order 5 of X defined by

T(z,y) = (G, y)
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Fig. 31. The Riemann surface of va% — x.

and the basis (w1,ws) = (df, %) of 2*(X). Express (a;,az,b;,by) in terms

of (a1, T(a1), T*(ay), T*(a1)), and use the relation

/ w:/ (T w,
Tia; ay

which is true for any w € 2'(X), to compute the periods of w; and w; along
ai,as,b; and by in terms of fal w; and fal w3.

_( ¢ <§+1)
”—<<§+1 ¢-c)

Answer:

ITI.1.3. The action of the symplectic group.

Before we proceed further, let us describe how {2 is transformed when
changing the symplectic basis (a1,...,a4,b01,...,by). (Any general result on
period matrices must be invariant under these transformations!)

Recall that Sp(2¢,Z) denotes the group of symplectic matrices of size 2g
with integer coefficients, i.e., of matrices M € My4(Z) such that

t i 0 Ig i . 0 Ig
(II1.1.9) M (_Ig g)M=(1 ()

If one writes
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A B
(I11.1.10) M= (C D),

with A, B,C, D in M,(Z) this condition is easily seen to be equivalent to
A-'B=B-'A, C-'D=D-'C , A-'D-B-'C=1,.

The condition (II1.1.9) means exactly that M preserves the standard symplectic
form on Z29. This implies that, given any ‘reference’ symplectic basis v =
(71,...,72¢) of Hi(X;Z), one gets a bijection

Sp(2g,7Z) = {symplectic bases of Hy(X;Z)}

by associating the basis v- M := (Z?il M,-j’)/i) e to M = (M;j)i<i j<zg €
1<5<2yg -

Sp(2g,Z). Using this parametrization of symplectic bases, we can easily com-
pute the period matrix §2' associated to a symplectic basis ¥’ = - M in terms of
the period matrix {2 associated to 7: using the block decomposition (I1I1.1.10),
one gets

(IIL.1.11) 2 = (DR +'B)('CN +14)".

The independence of the Riemann bilinear relations on the choice of a sym-
plectic basis in H1(X;Z) comes from the existence of an action of Sp(2g,Z)*

on $)4 given by the following formula: for any M = (é 1B;> € Sp(2¢,Z) and
any 2 € g,

(1I1.1.12) M-02=(AR+B)(C2+ D).

This action generalizes the action of SL(2,Z) on § considered in Section I.

Exercise: Check that det(C'f2 + D) # 0, that v - 2 € $, and that if M’ is
another element of Sp(2¢,Z), M' - (M - 2) = (M'M) - 2.
Indeed, the relation (II1.1.4) may be written

Q=M 2,

—_— tD tB
w-(e 3

is easily checked to belong to Sp(2¢,Z).

where

3* In fact of Sp(2¢,R).
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II1.2. Complex Abelian varieties

Let us emphasize that the lattices Z9 4 279 attached to matrices §2 € £, are
of a special kind, as soon as g > 1. This can be seen by the following dimension
counting argument3®. Consider the space £, parametrizing the lattices in a
g-dimensional complex vector space, t.¢e., the space of pairs (V, A) where V is
a complex vector space of dimension g and A is a lattice in V, modulo the
equivalence relation ~ defined by:

(V,A) ~ (V'  A") & there exists an isomorphism of complex vector spaces

u:V 5 V' such that u(A) = A".

This space £, can also be described as the space of lattices 4 in C¢ modulo the
natural action of GLy4(C). Now GL4(C) has complex dimension g2, the space
of lattices in C? has complex dimension 2¢? (since they are defined, up to some
discrete ambiguity, by 2¢ vectors in €7), and the isotropy in GL4(C) of any
such lattice is discrete. Hence the complex dimension of £, is 2¢? — g% = ¢2. On
the other hand the pairs (C?,Z9 + 2Z9) with 2 € §), form in £, a subspace of
complex dimension % g(g+1), since £, is an open subset of symmetric matrices
in My(C). If g > 1, we have ¢°> > £g(g + 1), and a ‘generic’ (E, A4) is not
equivalent to a pair (C9,Z9 + 2Z9) with 2 € §,.

The complex tori CY/(Z? + 2Z9) defined by these special lattices have
striking properties from the point of view of complex geometry. For instance,
we have:

Theorem II1.2.1. Let V be a complex vector space of dimension g and let A be
a lattice in V. The following two conditions are equivalent:

i) the complez torus V/A can be embedded, as o complex manifold, in a
complez projective space PN(C);

1t) there exists a basis (e1,...,e5) of V (as a complex vector space) and
a basis (A1,...,Aaq) of A such that the matriz of (A1,...,Azg) with respect to
(e1,...,€eq) takes the form (As, 12) where £2 € $, and

61 0 - 0
As = 0 é; 0|, withé; €eZ, §;>0.

Many famous mathematicians of the last century contributed to this the-
orem (at least Hermite, Weierstrass, Riemann, Frobenius, Poincaré) and, in its
final form, it is due to Lefschetz. Condition ii) is known as Riemann condition.

3% We present this argument in an informal way; however it can easily be made
rigorous.
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Using elementary linear algebra, one may show that it can be reformulated in
the following more intrinsic way:

1)’ there ezists a Hermitian form H : V xV — C which is positive definite
(i.e., H(u,u) > 0 for allu € V—{0}) and such that E = Im H is integer valued
on A (ie., E(A,A2) € Z, for all \y, A2 € A).

Such a form H is called a non-degenerate Riemann form on V/A, or a
polarization of V/A.

A complex torus V/A satisfying the equivalent conditions i), ii), or ii)’ is
called an Abelian variety. The Riemann bilinear relations show that the Jaco-
bian Jac(X) of a compact connected Riemann surface satisfies the condition
ii), hence is an Abelian variety.

One can also check that a Jacobian satisfies condition ii)’: by definition,
Jac(X) is the quotient V/A where V = 2'(X)* and A is H;(X;Z), embedded
in 2(X)* by the period map p (cf. (II1.1.1)). The dual space £2'(X)* may be
identified with the space £21(X) of antiholomorphic differentials on X by the
map

21(X) - 21(X)
a— (we / aAw).
X
Then a non-degenerate Riemann form on Jac(X) is given by
H:2U(X)x 2Y(X)—C
(a, B) — 22'/ aAlp.
X

Indeed, H is clearly positive definite and the restriction of its imaginary part
Im H to H{(X;Z) is the intersection product (¢f. Appendix A)

# H(X;Z)x Hi(X;Z)— Z

(this is again a consequence of A.2.5, like Proposition I1.2.12 or Theorem
I11.1.2).

An Abelian variety V/A equipped with a Riemann form H is called a
polarized Abelian variety. When H is such that the alternating form

EF=ImH : AxA—>7Z

is unimodular®®, then H is called a principal polarization and (E/A, H) is said
to be a principally polarized Abelian variety.

Elementary linear algebra shows that an Abelian variety V/A possesses
a principal polarization iff condition ii) of Theorem II1.2.1 is satisfied by the

36 This means that there exists a basis (71,...,724) of the lattice A such that
det(E(vi,vi))i<ij<2g = 1, or, equivalently, that there exists a basis (a1,...,ay,
bi,...,by) of A such that for any i, = 1,...,9, E(ai,a;) = E(bi,bj) = 0 and
E(ai,bj) = 6ij.
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quantities §; = ..+ = §; = 1 and that any principally polarized Abelian variety
(V/A,H) of dimension g is isomorphic to a complex torus CY/(Z9 + 2Z9)
equipped with the Riemann form

(II1.2.1) H:C — Ry

v - (Im2)7 -5,

for some {2 € £,.

Of course, examples of principally polarized Abelian varieties are provided
by Jacobians of compact Riemann surfaces.

Observe that, when ¢ = 1, the Riemann condition is fulfilled by any lattice
Ain C. In that case, the existence of a projective embedding of the elliptic curve
C/ A is a particular case of the existence of projective embeddings for compact
Riemann surfaces. In fact, explicit embeddings of C/A may be given, by using
the p function or the theta functions associated to A (¢f. §0.1 and §1.4.2).

In the next Section, we sketch a proof of the implication i) = ii)’ in The-
orem II1.2.1. Then we introduce theta functions (in several variables) and we
explain how they provide projective embeddings of Abelian varieties of any
dimension, which generalize the embeddings of elliptic curves we have just
mentioned, and therefore allow to prove the implication ii) = 1).

I11.3. The necessity of Riemann condition

In order to prove the implication 1) => 11)’ in Theorem II1.2.1, we need some
basic facts concerning the Kahler geometry of the complex projective space
PNC.

First, recall that a Riemannian metric on a complex manifold M is said to
be Hermitian if, in local holomorphic coordinates (z!,...,2") it takes the form

n
ds® = Z gkg(z)dzkdgl,
k=1
with
gre(z) = gex(2)-
The matrix (gre(2));<j <y 18 then the matrix of a Hermitian form. To such
a Hermitian metric is associated the differential form of degree two®” w on M

defined locally by
w = 2—2- Z gk[(z)dzk A dZL.
T k=1
The fact that (gxe(2)); < ¢<n 15 the matrix of a Hermitian form implies that

w 18 positive, t.c., its restriction to any Riemann surface C holomorphically

37 More precisely, of type (1,1): it is a sum of terms, each of them involves ‘only one
dz and one dz’.



J.-B. Bost 191

embedded in M is a positive volume form on C. Conversely, any positive 2-
form of type (1,1) on M is associated to some Hermitian Riemannian metric
on M.

Consider now the complex projective space PVYC. The unitary group U(N +
1) acts on CNV*1, hence on

PNC = (CV*! — {0})/C".

There exists a unique Riemannian metric on PYC which is Hermitian and
U(N + 1)-invariant and which coincides with the usual Hermitian metric on
CN ~ T(I:OLN:O)]P’NC. This metric may also be defined by giving the associated

2-form w; explicitly, in terms of homogeneous coordinates (z, ..., zx) on PVC,
it is:

. N — N N
[13.1)  we - |20 @i NdZ Do Fdai N g 2005

N 2
2r | Eizolail? (T, I=402)

P N
= 2—7r(9810g (; |2i|2> .

The last equality shows that w is a closed form.

The 2-form w is often called the Fubini-Study 2-form on PNC, and the
associated Hermitian metric, the Fubini-Study metric. Hermitian metrics which,
like the Fubini-Study metric, have closed associated 2-forms, are known as
Kihler metrics.

One easily checks that, if PC is any complex projective line in PVC, then

/ w=1.
P C

As w is closed and any oriented closed (real) surface in PYC is homologous
to an integral multiple of PC (see for instance [Gre], Theorem (19.21)), this
implies that for any closed (real) surface S in PNC, one has

(I11.3.2) /w €.
S

Consider now a complex torus 7' = V/A embedded in PVC. Then w re-
stricted to T is clearly a closed positive (1,1)-form such that for any oriented
closed surface S C T, (111.3.2) holds.

The existence of such a 2-form on T entails condition ii)’. Indeed, the form
w on T defined as w averaged by translation on T' (z.e., as the zero-th Fourier
coefficient of w) is by construction a positive translation invariant (1, 1)-form on
T; moreover it satisfies the same condition (II1.3.1) as w, since, for any oriented
closed surface S in T, all the translated surfaces S + 2, ¢ € T, are homologous
and, consequently, the integrals [o, w and their average [(& are equal to
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fsw. The Hermitian metric on T' associated to & is translation invariant and
corresponds to a Hermitian form A on V. A simple computation shows that,
when S is a two-dimensional torus (RA + Ru)/(ZA+ Zy), A, p € A, condition
(I11.3.2) amounts to the fact that

ImH(\ p) € 7Z.

This shows that 771 H is a Riemann form for V/A.

II1.4. Theta functions

We now come to the existence of projective embeddings for complex tori which
possess a Riemann form (i.¢e., to the implication ii) = 1) in Theorem I1.2.1). To
make things simpler, we will discuss the case of principally polarized Abelian
varieties C9 /(Z9 + 279), §2 € $Hg (the general case where, in condition ii), the
8;’s may be different of 1, is only notationally more complicated).

To get a projective embedding of such an Abelian variety A = C¢/(Z9 +
Z79), one needs to produce meromorphic functions on A. A way to achieve
this is to construct entire functions on C9, which are periodic with respect to
the lattice Z9 + 2Z9, up to some common factor of automorphy. Then the
quotients of two of these entire functions will define a meromorphic function
on A.

This procedure is well known when ¢ = 1: elliptic functions may be writ-
ten as quotients of theta series, which are entire functions ‘almost periodic’
with respect to a lattice in C (c¢f. [Coh], [Ge], [Z]). As a matter of fact, the
construction of theta series generalizes to higher ¢’s. The simplest of them is
the Riemann theta function, defined for any (z,$2) € €9 x £, as

(I11.4.1) 8(z,2) = > exp(wi'n-2-n+2mi'n- z)
nezs

(compare with (0.5)). Observe that the series in (II1.4.1) converges because
Im 2 > 0: Riemann bilinear relations are exactly the appropriate conditions
which allow to form theta-series associated to period matrices. This is one of
Riemann’s great discoveries published in [Ril].

A simple computation shows that 8 is indeed periodic up to some factor
of automorphy: for any (m, z,2) € Z9 x C? x H,, we get that

(I11.4.2) 8(z +m,2) = 6(z,2)
and

(I11.4.3) 8z + 2-m, Q) =MDz ),
where

a(m,z,02) = —mi'm - Q-m~2ni'm - 2.
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The functional equations (I111.4.2) and (I11.4.3) satisfied by § may be generalized
as follows. For any integer ¢ > 1, we can define the theta functions of weight
£ associated to §2 € H, as the entire functions f : C¢ — C such that, for any
(m, z) € Z9 x €9, the following identities hold:

(111.4.4) [z +m) = f(z)

(I11.4.5) fz + 2 -m) = etmaDg(5),

The vector space formed by these functions will be denoted by R{’.
A slight generalization of the Riemann theta function is given by the theta
functions with characteristics 0[2], defined for any (a,b) € Q9 x Q9 by

8[3](z, 02) = Z exp[ril(n+a) - 2-(n+a)+ 2 (n +a) - (2 + b)]
nezs
=exp[ri'a- 2-a+2mita - (2 +0)]0(z + 2-a+b,02).

We can now state:

Proposition IIL.4.1.. For any 2 € H, and any £ > 1, RY is a vector space of
dimension £9, which admits as bases

(z — g[a({"] (Ez,fﬂ)) 0€ {0, t—1)e

or

(z = g[b‘;l](z,g—lﬂ)) befo,...,0~1}9

Theorem II1.4.2. For any £2 € H, and any £ > 3, if (f1,..., fes) 15 a basis of
Rf, then the functions f;, ¢ =1,...,49, have no common zero in C? and define
an embedding

/(29 + RZ9) -P¥~'C
[z] = (f1(z) 1 - fes (2)).

Observe that the ‘periodicity relations’ (II1.4.4) and (II1.4.5) show that, for any
z € €9, the point (fi(2) : -+ : fra(z)) in P¥~1C depends only on the class [z]
of z in C7 /(Z9 + 2Z9).

Proposition I11.4.1 may be proved by expanding the elements of Rf in
Fourier series (this is possible because of (II1.4.4)) and by expressing condition
(I11.4.5) as a condition on their Fourier coefficients. The proof of Theorem
I11.4.2, the so-called Lefschetz Embedding Theorem is more involved, but still
elementary. (See for instance [Mul], §1.3, [GrH], pp. 317-324 or [Rob2]). Let us
only explain why, as soon as £ > 2, the functions of Rj’ have no common zero:
one immediately checks that, if a1,...,ap € C? are such that
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(I11.4.6) a; =0,

=1

then
)

fay,ar 12— HG(Z —a;)
=1
is an element of Rf; as 0 is not identically zero, for any z¢o € €9 and any £ > 2,
there exist ay,...,ay satisfying (II1.4.6) and such that z9 — ay,...,29 — as are
not zeros of 8; then f,, . 4, is an element of Rf which does not vanish at zg.

I11.5. Riemann’s theorem

In this Section, we go back to the inversion problem for Abelian integrals and we
describe how, according to Riemann, it can be ‘solved’ by using theta functions.

Let X be a compact connected Riemann surface of genus ¢ > 1, let
(a1,...,ag,b1,...,by) be a symplectic basis of Hi(X;Z), and let (w1,...,wy)
and §2 be the basis of 2*(X) and the period matrix attached to this symplec-
tic basis (¢f. (II1.1.7) and (II1.1.8)). The Jacobian variety Jac(X) of X is then
identified with the complex torus C? /(Z9 + 2Z9).

Furthermore, let us choose a base point My in X. This choice allows us to
define Jacobi maps

J: X — Jac(X),
and
Jr : Symp X — Jac(X)
by setting
M M
J(M) = / &= / wj mod (Z9 + 2779),
Mo Mo /<<y
and

Je(My+ -+ My) = J(My) + - + J(Mg)

(compare §I1.1 and §11.3.2).
Observe that the ‘periodicity’ relations (111.4.2) and (II1.4.3) satisfied by
8 imply the following facts:
e the hypersurface
{z€C |6(z,02) = 0}

is invariant under translation by the lattice Z9 4+ £2Z9; hence it defines a hy-
persurface @ in Jac(X);
o for any u € CY and any P € X, the vanishing of

(I11.5.1) 9 <u ~ / ’ 3, 9)
M,
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does not depend on the path form My to P chosen to compute f]so &J; moreover,
the order of vanishing at P of this function is also well defined.
We can now state Riemann’s theorem:

Theorem IIL.5.1. 1) There ezists A € Jac(X) such that the hypersurface Oy +
A coincides with Jy,—1(Sym,_; X). This hypersurface will be called the theta
divisor, and denoted by ©.

2) For a generic z € (9,

[2] = J(X) = {[] = J(P), P € X}

is not contained in ©. If [2] satisfies this condition, J;l([z]) consists of a unique
element Py + -+ + Py in Sym, X. The points Py,..., Py are the points P of X
such that

(111.5.2) ] - J(P)C O,

each of them counted with a multiplicity equal to the order of vanishing of
P
P—O|lz-A- @, 821 .
Mo

Roughly speaking, the second half of this theorem asserts that J'([z])
18 obtained by intersecting X, embedded by J in Jac(X), with the hypersurface
[2] - O.

If 7 € 9 and if X is the elliptic curve C/(Z + 7Z), equipped with the
usual symplectic basis (g, b) (¢f. §1I1.1.2) and with the base point My = 0, then
the Jacobian Jac(X) coincides with X, and J is nothing else than the identity
map. Then @ = {0} (since any empty sum is zero), and 2) is obvious, while 1)
asserts that 6(z,7), as a function of 7, has only one zero, A, modulo Z + 7Z.

In fact, one has
[1 + 7'] '
2

When g = 2, J;—1(Sym,_; X)) = J(X), and 1) shows that X is isomorphic with
Oq. This shows that the knowledge of Jac(X), as ¢ principally polarized Abelian
variety, allows us to recover the isomorphism class of the Riemann surface X.
As a matter of fact, this statement is true for Riemann surfaces of any genus
and is known as Torelli’s theorem.

The general philosophy examplified by Riemann’s theorem is that, by using
theta functions on their Jacobians, one can give constructive proofs of various
results on compact connected Riemann surfaces. For instance, Riemann’s the-
orem gives a constructive solution of the inversion problem. Here is another
illustration of this principle:
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Proposition I11.5.2. Let e € C9 be such that 6(e, 2) = 0 and O(e+ [ &, 2) # 0.

For any dimsor D = Ele n; P; on X linearly equivalent to zero, one defines
a meromorphic function p on X such that D = div(yp) by setting

k P i
¢(P)=i1;116(6+/a~ w,()) .

(See [Mud], I, §1.3 for a proof).

In the next paragraphs, we sketch a proof of Riemann’s theorem. This
will illustrate the relations between theta functions and complex hypersurfaces
on Abelian varieties. (For a detailed proof we refer to [Mu4] I, §I1.3, [GrH]
pp. 338-340, or [ACGH], §L.5; see also [Kel] and [ACGH], VI for a remarkable
extension due to Kempf).

To the Riemann form (II1.2.1) on A = C¢/(Z9 + NZ9) is attached the
following 2-form: ‘

w= % Z Y,‘jdz,‘/\dfj
1<4,5<9
where

Y = (Im2)~ L

It is a translation invariant form, which is Poincaré dual to ©. In other words,
w is cohomologous to the current®® §g of integration along © defined by the

equality:
/ bo Na = / o
A o

for any (2g—2)-form on A. This follows for instance from the identity of currents
1 =
.5. — b = —001 6
(111.5.3) w— bo zm_aa og || 81°,

where

_ g o2
90 := ”2_::1 55 77, dzi A dZ;

and where
1617 (z +iy) == e7>" ¥V ¥|0(z + iy, 2)[?

depends only on the class of ¢ + iy in A. The identity (IIL.5.3) is a refinement
of the observation that log || 8 || is a function on A, which is C*™ on A — @ and
has a logarithmic singularity along @*°, and whose Laplacian

38 Recall that a current is a differential form whose coefficients are distributions. Here
6o i1s a 2-form whose coeflicients are distributions.

39 i.e., locally of the form log|)\| 4+ ¢, where ¢ is C* and where A = 0 is a local
holomorphic equation for 8.
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9 5?2 H?
ateg 101= -3 (g + g7 ) s
is constant on A — O.

Conversely, consider any complex hypersurface H in A. Applying a Green’s
kernel to dy produces a Green function f for H, i.e., a function on A, C* or
A — H, with logarithmic singularities along H and whose Laplacian is constant
onA—H.

Then 00f is easily seen to be the sum of a multiple Ady of the integration
current along H and of a C*> 2-form ¢ on A. Moreover, on A — H, we have:

Ao = AJOf = B0ASf =0,

since Af is constant on A — H. This implies that Ao = 0 on A and therefore
that o is a translation invariant 2-form. Let ¢ := —2mA~! f and ¢’ := —\"10.
Then we have:

i, 009 =o' — by .
271

In particular ¢’ is the translation invariant 2-form Poincaré dual to H.
Suppose now that ¢’ = w, i.e., that H and w are Poincaré dual, or, equiv-
alently, that H and © are homologous hypersurfaces in A. Then the function

§g:C -C
z4iy— glz +iy)+2rty - Y -y
40

is pluriharmonic*” on the complement of the inverse image H of H in C? and
has a logarithmic singularity along H. Indeed we have

1 =
%669——617.

Using these facts, one shows easily that there exists an entire function ¢ : C7 —
C, vanishing to first order on H, such that
g =loglpl*

(see [P]). The periodicity of g with respect to Z9 + 279 implies that o also is
periodic, up to some automorphy factor, and finally using Proposition I11.4.1
with £ = 1, that ¢ has the form

p(z) =X0(z—a,2) (AeC'ael)

This shows that
H = {[],¢(z) = 0}
coincides with @ + [a].

%0 4 e., its image by 89 vanishes or, equivalently, its restriction to any complex line is

harmonic.
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This reduces the proof of Theorem II1.5.1, 1) to the purely topological
statement that w and @ := Jy_;(Sym,_, X') are Poincaré dual, which may be
proved by a direct computation in de Rham cohomology.

Let us add that constructions similar to that of ¢ allow to prove that any
complez hypersurface on A may be defined as the zero set of some theta function
(possibly more general than the ones introduced in the preceding Section).

Concerning the second half of Theorem II1.5.1, observe that if Py + .-+ +
Py € Sym X and [2] = Jy(P1 4 - + Py), then , forany i = 1,...,g,

[2] = J(P) = J,— (fl- PJ-) €0.

Therefore, the assertion to be shown follows from the fact that there are ex-
actly (taking care of multiplicities) ¢ points P € X satisfying (I1I11.5.2), i.e.,
that [z] — @ and J(X) meet in g points. As long as J(X) ¢ [2] — O, thisis a
purely topological statement which does not depend on [z] and may be proved
by a direct computation in de Rham cohomology. Indeed, the number of in-
tersections, counted with multiplicities, of two closed oriented subvarieties of
complementary dimensions in a closed (oriented) variety is invariant by defor-
mation and may be computed as the integral of the products of the Poincaré
dual de Rham cohomology classes.

I1I1.6. Abelian varieties and algebraic geometry

In the preceding pages, we have described some of the basic facts about Jaco-
bians and Abelian varieties. All of these were known at the turn of the century.
In this last Section, we would like to give some hints on more recent develop-
ments.

I11.6.1. Picard and Albanese varieties.

In this Section, we explain how the construction which attaches its Jaco-
bian variety to a compact Riemann surface may be extended to higher dimen-
sional complex manifolds.

Let us begin by a few preliminaries on complex tori.

_ Consider A a lattice in a finite dimensional real vector space V. Denote by
V the dual of V seen as a real vector space, i.e., the real vector space of real
linear forms on V. It contains the dual lattice A* of A, defined by

AeA* & (Veed, Mz) €Z).

The real torus ¥ /A* is called the dual torus of the real torus V/A.
Suppose now that V is in fact a complex vector space. Then V/A is a

complex torus. Furthermore, v may also be equipped with a complex structure,
defined by the equality:

(iN)(z) = ~(iz)



J. -B. Bost 199

for any (z,A) € V x V. Thus 17//1* also appears as a complex torus, still called
the dual torus of the complex torus V/A.

Exercise: Prove that the dual of the dual of a real (resp. complex) torus is
canonically isomorphic to itself.

Suppose now that V/A is an Abelian variety. Then the dual torus 17/ A*
is also an Abelian variety, called the dual Abelian variety of V/A. Indeed, if we
denote by V* the dual of V seen as a complex vector space (¢.e., the complex
vector space of C-linear forms with complex values on V') and by V" the con-
jugate space (i.e., the complex vector space of C-antilinear forms with complex
values on V'), then any real linear form A € v may be written uniquely as

A=pu+7

for some y € V*, and the isomorphism
L

so defined is C-linear. Accordingly, if H is a polarization on V/A and if A :
V — V" is defined by

h(v) 1w +— —;—.H(v,w),

then ioh: V — V is a C-linear isomorphism. Moreover, for any z,y € A, we
have

(10 h(z))(y) = 2Re(h(z)(y)) = ImH(z,y) € Z.

Therefore i o h(A) is a subgroup of A*, of finite index since i o A is injective.
This shows that a multiple of the Hermitian scalar product

H .V xVo>cC

defined by
H*(i0h(v),i0h(w)) = H(v,w)

is a polarization on 17//1*.

One easily checks that, in general, V/A and 17/ A* are not isomorphic as
complex manifolds, but, if H is a principal polarization, then i0h(A) = A* and
the morphism from V/A onto v /A* defined by 70 A is an isomorphism between
the polarized varieties (V/A, H) and (V/A*, H*).

In Section II, we have seen an instance of this isomorphism between prin-
cipally polarized dual Abelian varieties. Indeed, we considered a compact con-
nected Riemann surface X and we attached to it the lattice A = H(X;Z), em-
bedded in the dual of holomorphic 1-forms on X,V = £2'(X)*. The Jacobian of
X was defined as the complex torus V/ A, and was shown to be isomorphic with
the space Pico(X) of isomorphism classes of holomorphic line bundles on X.
This last space was first identified with the complex torus £21(X Y H(X;Z)*
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which is nothing else than V/A* ~ V" /i~1(A*). Then it was shown to be iso-
morphic with Jac(X), by an argument which is indeed closely related to the
argument of the last paragraph. (Compare the proof of Proposition 11.2.12 and
the proof of Theorem I1.1.2, which provides a principal polarization on Jac(X)).

Up to the existence of principal polarizations, these constructions may be
extended to higher dimensional projective varieties.

Let M be a compact complex manifold of complex dimension d, embedded
in the projective space PYC (by Chow’s theorem, such an M is in fact an
algebraic subvariety of PNVC). Define £2'(M) as the space of holomorphic 1-
forms on M, i.e., of complex 1-forms on M, which, in any local holomorphic
coordinates (z1,...,24), may be written

d
Zfi(z)dziv

where the f;’s are holomorphic functions. One can show that any such form is
closed and that £2'(M) is a finite dimensional vector space. Moreover, the first
de Rham cohomology group of M, namely

HIDR(M§ (C)

={closed complex C*° 1-forms on M}/{exact complex C* 1-forms on M},
possesses a Hodge decomposition, which generalizes Theorem B.2.5: the map
21 (M) @& 05(M) — Hh(M;C)
a®pf ot p

is an isomorphism.
This implies that any v € H1(M;Z) defines a linear form

o)

on 2'(M), and that the set {f. ; v € Hi(M;Z)} of these linear forms is a
lattice in 2*(M)*, which, abusively, we will still denote Hy(M;Z).

According to our preliminary observations on complex tori, to this lattice
A=H{(M;Z)in V = 2'(M)* are naturally attached two complex tori, dual
to each other, the Albanese variety

Alb(M) = QY(M)*/H\(M;Z) = V/A
and the Picard variety
Pico(M) = V/A* ~ V' /i~Y(A*) = QU (M)/H\(M;Z)*

where H;(M;Z)* is defined by
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aEHl(M;Z)J‘@V’yEHl(M;Z), /(a-I-H)EZ.

5

These complex tori are Abelian varieties. To get a polarization on Pico(M),
consider w the restriction to M of the Fubini-Study 2-form on PNC (cf. §111.3)
and define, for any («, 3) € 2*(M)

H(a,B8) = Qi/ME/\ﬂ/\wd_l.

When d > 1, this polarization is not necessarily principal, and the Albanese
and Picard varieties of M are Abelian varieties dual to each other, but possibly
not isomorphic. They have the following algebro-geometric interpretations:

e One may prove that the Picard variety Pico(M) still parametrizes the
isomorphism classes of holomorphic line bundles on M which are topologically
trivial.

e For any two points P, in M and any path L from P to @ in M, the

class in 2'(X)*/H1(X;Z) of
Q
wH/ w
P

depends only on (P, Q). Therefore, for any base point P, € M, we define a
holomorphic map
Jj M — Alb(M),

: P
j(P)=<wr——>/ w) mod Hy(X;Z).

by setting

Py

This map generalizes the Jacobian embedding (but is not always an embedding,
e.g. when 2'(X) = 0).

If M is an Abelian variety Vy/Ap, then 2'(M) (resp. 21(M)*, resp.
Hy(M;Z)) is canonically isomorphic with Vj* (resp. V{, resp. Ag); hence
Alb(M) = M, and, if Py =0, the map j : M — Alb(M) is the identity.

More generally, any holomorphic map f : M — A with values in a complex
torus may be factorized through j: there exists a unique holomorphic map
f : Alb(M) — A such that the following diagram commute

M L AlbM)

FNLF
A

A general Abelian variety A is not the Jacobian of a curve (cf. §II1.6.3).
However it is the Albanese or Picard variety of some smooth projective variety:
according to the preceding discussion, it is its own Albanese variety, and the
Picard variety of the dual Abelian variety. This may seem a little tautological.
It is reassuring to know that, according to a theorem of Lefschetz, any Abelian
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variety is (isomorphic to) the Albanese variety of some smooth two-dimensional
projective variety.

I11.6.2. Abelian varieties as projective algebraic varieties.

We have seen in Theorem II1.2.1 that Abelian varieties are complex mani-
folds which can be embedded in a complex projective space PVC. Then Chow’s
theorem (Theorem 1.4.4) shows that they may be considered as algebraic subva-
rieties of PVC. As a matter of fact, a further consequence of Chow’s theorem is
that a complex Abelian variety may be defined as a projective variety A C PNC
equipped with a structure of Abelian group

AxA— A
(z,y) —~z+y

which makes A an algebraic group, that is, roughly speaking, such that the
homogeneous coordinates of z+y (resp. of —z) are given by rational expressions
in the homogeneous coordinates of z and y (resp. of z).

This algebraic definition leads to some refinements of the notion of Abelian
variety. Let indeed K be any subfield of C (e.g. Q or Q). An algebraic subvariety
V C PVNC is said to be defined over K if it may be defined by polynomial
equations with coefficients in K (cf. § 1.4.2; this definition is compatible with
the definition of § 1.5.2: if M is a compact connected Riemann surface, M may
be defined over Q iff it may be embedded in some projective space PNC as
an algebraic curve defined over Q). An Abelian variety A C PVC is said to be
defined over K if it is defined over K as an algebraic variety, if the zero element
of A has homogeneous coordinates in K, and if the addition and subtraction
laws on A are given by rational expressions with coeflicients in K. Furthermore,
this algebraic definition of Abelian varieties may be extended to any field K,
not necessarily included in C, for example to finite fields.

Example: As in § 0.1, consider 7 € §), E; the elliptic curve (=one-dimensional
Abelian variety) C/(Z + 7Z), p the Weierstrass function associated with the
lattice Z + 77 and 7 : E, — P2C, the embedding defined by (g, p'). Embedded
in P2C by i, E, appears as the algebraic curve of affine equation

y? =423 ~ g2(m)z — g3(7),

where ¢g2(7) and g3(7) are defined by some Eisenstein series (¢f. (0.3) and (0.4)).
Moreover its zero element is the ‘point at infinity’ (0: 0 : 1) and the group law
on F. is given by the following rules:

o —(z,y) = (2, ~y);

oif (2',y") # (z,—vy), let

_ ¥ -y : oo
m= L=V (@) £ (o)
_ 1222 gy

= TToy o it (2',y') = (2,9)
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then
(z,y) + (2"sy") = (=", y")
where
2
.1'” — mT — - xl
and

y' =m(z—2")—y=m(a' —2") -y

This follows from the identity p(—z) = p(z) and from the addition law for p
(cf. (I1.1.4)). See figure 32 for a geometric interpretation of these operations
(compare with (II.1.5)).

/

)

m,. mz\

Fig. 32. The group operations on the elliptic curve y* = (z — &1 )(z — z2)(z — z3).

These formulae prove that E., embedded in P2C by i, is an Abelian variety
defined over any subfield K of C which contains g,(7) and g3(7).

It is possible to develop the theory of Jacobians and Abelian varieties by
purely algebraic means. (This is due initially to Weil, Chow, Matsusaka and
Igusa). For instance, if X is a smooth projective algebraic curve, then Jac(X)
may be constructed directly as a projective algebraic variety, without using
any transcendental tool, such as complex analysis and theta functions. The
starting point of these constructions is the algebraic description of the Jacobian
we discussed in §11.3.1. Using these algebraic techniques, one may prove that,
if X is defined over K, of genus g, then Jac(X) embedded in P¥~'C, ¢ > 3
by means of theta functions (¢f. Theorem I11.4.2) is an Abelian variety defined
over K. That type of result is crucial for the study of algebraic curves over
number fields or over finite fields.
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I11.6.3. Modular forms and moduli spaces of Abelian varieties.

Two polarized Abelian varieties (V/A, H) and (V'/A’, H') are said to be
isomorphic iff there is a C-linear isomorphism

p: VISV
such that ¢(A) = A’ and such that, for any (z,y) € V?,

H'(¢(z), ¢(y)) = H(z,y).

We have seen that any principally polarized Abelian variety is isomorphic
to some complex torus C9 /(Z9+ 2Z9), 12 € §,, equipped with the polarization

CxC-C
(x7 y) -z (Im‘Q)_l Y.

Moreover, one can check that the principally polarized Abelian varieties asso-
ciated to two matrices §2 and {2’ in $),; are isomorphic iff 2 and 2 belong to
the same orbit under the action of Sp(2¢,Z) on $, described in §III.1. In other
words, the quotient space £,/Sp(2¢,Z) may be identified with the space A,
of isomorphic classes of principally polarized Abelian varieties. This space is
often called the moduli space of principally polarized Abelian varieties.

The discrete group Sp(2¢,Z) acts holomorphically and properly on $,.
This implies that the quotient £4/Sp(2g,Z) is naturally endowed with a struc-
ture of complex analytic space (i.e., roughly speaking, of complex manifold
with singularities; the singularities come from the existence of points in £,
fixed by the action of some elements of Sp(2g;Z) — {I;,} and are not really
serious). It happens that this complex analytic space possesses a holomorphic
embedding

i: Ay, — PY(Q)
in some complex projective space, and that its image :(.Ay) is a quasi-projective
algebraic variety, i.e., the difference X — Y of a projective algebraic variety X
and of a projective algebraic variety YV included in X. The ‘algebraicity’ of
Ay is closely related to the ‘algebraicity’ of Abelian varieties discussed in the
preceding paragraph.

From a transcendental point of view, the most direct way to define a
projective embedding of A, is to use modular forms. Suppose ¢ > 2. For any
subgroup I of finite index in Sp(2¢,Z) and any integer k¥ > 0, a modular form
of weight k with respect to I' on $), is by definition a holomorphic function
f: %, — Csuch that*! for any

A B
(6 5)er

*! When g = 1, one must require an additional growth condition; cf. [Z].

we have
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f((AR 4+ B)(CN + D)™!) =det(C2 + D)* - f(2).
If I is the congruence subgroup I, of Sp(2¢,Z) defined by

vy eI, &y=1L, (modn)

then f is said to be a modular form of level n.

The quotient spaces ), /I, I a finite index subgroup in Sp(2g, Z), are cov-
erings of A, which parametrize principally polarized Abelian varieties equipped
with some additional structure. For instance £),/I, parametrizes principally
polarized Abelian varieties equipped with a basis of the subgroup of n-torsion
points.

We can now state:

Theorem II1.6.1. Let I" be a subgroup of finite index in Sp(2¢,Z). For any
integer k > 0, the space [, k] of modular forms of weight k with respect to I is
finite dimensional. If k 1s large enough, the elements of [I, k] have no common
zero, and, for any basis (f1,...,fn) of [[,k], the map

9,/ —PNIC
[z] = (fr(2) - fn(2)

is an embedding of H,/I", whose image 1s a quasi-projective algebraic subvariety
of PN-IC.

As in the case ¢ = 1, one may construct modular forms in g variables
starting from theta series. For instance one may prove that, as a function of
€ %H,, 6(0,2)? 1s @ modular form of weight 1 and level 4. This is essentially
equivalent to the following functional equation:

8(0, —271)? = det (%) - 6(0, 2)2

(¢f. [C], §3.3 and [Z], §1.C when g = 1). More generally, we have:

Theorem I11.6.2. Any homogencous polynomsial of degree 2d in the ‘Thetanull-
werte’ 9[‘;](0, 1), (a,b) € Q9 x Q9, is a modular form of weight d with respect
to some congruence subgroup I.

Conversely for any finite indez subgroup I' of Sp(2¢g,Z) any modular form
with respect to I' may be obtained as the quotient of two homogeneous polyno-
mials in the ‘Thetanullwerte’.

Taken together, Theorems II1.6.1 and III.6.2 show that the ‘Thetanull-
werte’ provide projective embeddings of the moduli spaces §),/I". Thus they
provide a far reaching generalization of the example, due to Klein, discussed in
§1.4.4, where we described an embedding of $,/I'(7) in P?C.

With the notion of moduli space of Abelian varieties at hand, we can say
a few words on the relation between Jacobians and general Abelian varieties.
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If ¢ = 1, any ¢g-dimensional Abelian variety is isomorphic to a Jacobian
(since it may be identified with its own Jacobian!). However, for ¢ > 0, it is
not the case. Indeed, consider the set M, of isomorphism classes of compact
connected Riemann surfaces of genus g. This set—the so-called moduli space
of smooth curves of genus g—Iis somewhat similar to A,: it is endowed with
a natural structure of complex space, with only mild singularities, and may
be embedded in some projective space PNC as a quasi-projective subvariety.
Moreover the (complex) dimension of My is 3¢ — 3 (if ¢ > 2) and one defines
a holomorphic (in fact algebraic) map

JiMy— A

by sending the isomorphism class of a compact connected Riemann surface
of genus ¢ to the isomorphism class of its Jacobian (observe that by Torelli’s
Theorem - ¢f. §IIL5 - the map j is injective). As the dimension of A, is 1g(g+1),
this shows that the set j(M,) of g-dimensional Jacobians is nowhere dense in
Ay when %g(g +1) > 3g — 3, i.e., when g > 4.

The problem of describing explicitly j(M,), i.e., of characterizing the
Abelian varieties which are Jacobians, is known as the Schottky problem. It
has been much studied for one century and has known great progresses during
the last ten years (cf. [Be], [D], [vG], [AD]).

On the other hand, we should mention that, for any Abelian variety A,
there exists a Jacobian J such that A is a quotient of J (t.e., such that there
exists a surjective holomorphic map ¢ : J — A). In fact, if A is a g-dimensional
Abelian variety embedded in PVC, we can take as J the Jacobian of the smooth
curve obtained by intersecting A by a linear subspace of PNC of codimension
g — 1 in general position (see [Mi2], §10). This fact was classically used to prove
general statements concerning Abelian varieties ‘by reduction to Jacobians’.

Epilogue: Arithmetics on algebraic curves and Abelian
varieties

The notions introduced in the last Sections allow us to state some results in
‘arithmetic geometry’, where the study of algebraic curves and Abelian varieties
finally mixes with arithmetics.

If V is a projective algebraic variety defined over a subfield K of C, it
makes sense to consider the set V(K) of points in V' which are rational over K,
i.e., which have homogeneous coordinates in K. When V is an Abelian variety
defined over K, the set of rational points V(L) clearly is a subgroup of the
group V.

The following theorems are two of the most remarkable results in arith-
metic geometry.
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Theorem . Let A be any Abelian variety defined over a number field*? K. The
group of rational points A(K') is finitely generated.

Theorem . Let X be any smooth algebraic projective curve, of genus > 2, defined
over a number field K. The set of rational points X (K) s finite.

The first of these theorems is due to Mordell ([Mol], 1922) for elliptic
curves and to Weil ([Weil], 1928) in general*’. In the case of elliptic curves,
with the notations of the example of §IIL.6.2, it asserts that if g2(7) and ¢3(7)
belong to K, there exists a finite family of points of E. with coordinates in K
such that any such point may be obtained from this finite family by iteration
of the constructions depicted on figure 32.

The second theorem is due to Faltings ([Fa], 1983). Faltings’ original proof,
as well as subsequent proofs due to Masser, Wiistholz, Vojta, Faltings and
Bombieri, use in a crucial way the interrelation between algebraic curves and
Abelian varieties which was the subject of these lectures.

Bibliographical comments.

The literature on Riemann surfaces, algebraic curves, Jacobians, and
Abelian varieties, is incredibly vast. We do not attempt at giving any sort
of complete bibliography, but we simply list various sources where the reader
may find more details on the topics touched in these notes.

A few general comments may be appropriate before we indicate the refer-
ences concerning particular topics.

Reading original papers is still one of the best ways to a serious understand-
ing of the topics discussed here. The collected papers of Abel ([A4]), Jacobi
([J4]), Riemann ([Ri2]) are still fascinating. Papers by Weierstrass, Dedekind,
Weber, Frobenius, Hurwitz, Klein, Poincaré or Lefschetz, are written in a more
contemporary style and may be more readable now. Houzel’s paper ([Ho]) is
very helpful to penetrate the developments of the studies on Abelian integrals
till Riemann’s time.

The first ‘modern’ book on Riemann surfaces is by Weyl ([Wey 1, 2]). It
remains one of the best books on the subject. The book ‘Curves and their
Jacobians’ by Mumford ([Mu2]) presents a highly readable overview on many
developments of the topics discussed in these notes, and ought to be consulted
by readers who want to go further. The book [ACGH], and the papers [Ros],
[Mi1], [Mi2] should be very useful at a more advanced level.

2 4 e., an extension of Q generated by a finite family of algebraic numbers.

*3 In fact, in [Weil], Weil considers only Jacobians. But this easily implies the general
case.
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Reference list by sections.

Introduction

- Elliptic functions and elliptic curves:
- Modular forms of one variable: [Shi],
- See also references in [Coh], [Ge], [Z]
§ 1.1-2

- General books on Riemann surfaces: [CGV], [Dy], [Fo], [FK], [GN], [Gu], [Sp], [Sie2]
§ 1.3

- Uniformization: [Wey1-2], [FK], [Sie2], [Sp]

§ 1.4.2

- Basic facts of algebraic geometry: [Abh], [Ko], [Mu3], [Sha]

[- A]lg[ebralc curves: [Abh] %ACGH] [BK], Cl] [Coo] [EC] [Fu], [Gr2], [GrH] Chap.2,
L2

§ 4.3

- Fuchsian groups and quaternions algebras: [Ei], [Shi], [Vi]

- Poincaré’s theorem for fundamental polygons: [Mas]

- Siegel’s theorem on fundamental polygons: [Siel]

§ 1.5

- Equilateral triangulations and Belyi’s theorem: [By], [Gro], [SV1-2]

Appendix A

- Homology: [Gre]

- Topology and classification of surfaces: [H], [SeiT)

§ TL.1

- Abel’s theorem and inversion of Abel’s integrals: [Grl], [Kel]

§ TI1.2-3, TT1.1

- Jacobians of complex curves: [ACGH], [GrH] Chap.2, [Ke3], [Mi2], [Mu2], [Mu4]
L1L, [Sie?]

§ TIT.2—4

- Abelian varieties and theta functions: [GrH] Chap.2, [I], [Ked], [Mul], [Rob2], [Ros],
[Sie2] III, [Sw], [Wei3]

§TIL5

ZB]m], [Coh], [Ge], [HC], [Jo], [L1], [Rob1]

- Riemann surfaces and theta functions: [ACGH], [Fay], [GrH] Chap.2, [Mu4] LII
$TIL.6.2
- Abelian varieties as projective algebraic varieties: [Mul], [Mill]
$I11.6.3
- Modular forms on S’Jg Fr], [I], [Mu4] LII, [Sie2] III
- Schottky problem: [AD [Be], [D], [VG]
Epilogue Arithmetics on algebraic curves and Abelian varieties:
- Original papers: [Mo], [Weil], [Fa]
- Mordell-Weyl theorem: [Mil}, [Mo2], [Mul], [Ser]
- Mordell conjecture (= Faltmgs theorem): [Bo], [
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Chapter 3

Elliptic Curves

by Henri Cohen

1. Elliptic Curves

1.1 Elliptic Integrals and Elliptic Functions

The aim of this Chapter is to give a brief survey of results, essentially with-
out proofs, about elliptic curves, class groups and complex multiplication. No
previous knowledge of these subjects is required. Some excellent references are
listed in the bibliography. The basic general reference books are (Borevitch
and Shafarevitch 1966), (Shimura 1971A), (Silverman 1986). In addition the
algorithms and tables in (Birch and Kuyk 1975) are invaluable.

Historically, the word elliptic (in the modern sense) came from the theory
of elliptic integrals, which occur in many problems, for example in the compu-
tation of the length of an arc of an ellipse (whence the name), or in physical
problems such as the movement of a pendulum. Such integrals are of the form

/R(:c,y) dz,

where R(z,y) is a rational function in z and y, and y? is a polynomial in z
of degree 3 or 4 having no multiple root. It is not our purpose here to explain
the theory of these integrals (for this see e.g. Whittaker and Watson 1927,
ch. XXII). However they have served as a motivation for the theory of elliptic
functions, developed in particular by Abel, Jacobi and Weierstrafl.

Elliptic functions can be defined as inverse functions of elliptic integrals,
but the main property that interests us here is that these functions f(z) are
doubly periodic. More precisely we have:

(1.1.1) Definition. An elliptic function is & meromorphic function f(z) on the
whole complex plane, which 13 doubly periodic, t.e. such that there exist complex
numbers wy and wy such that wi/wy ¢ R and f(z + wy) = f(z +w2) = f(2).

If
L = {mw; + nwy|m,n € Z}
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is the lattice generated by w; and ws, it is clear that f is elliptic if and only
if f(zx +w) = f(z) for all z € C and all w € L. The lattice L is called
the period lattice of f. Furthermore it is clear that every element of C is
equivalent modulo a translation by an element of L to a unique element of
the set F' = {zw; + yws, 0 < z,y < 1}. Such a set will be called a fundamental
domain for C/L.

Standard residue calculations show immediately the following properties:

(1.1.2) Theorem. Let f(z) be an elliptic function with period lattice L, let {z;}
be the set of zeros and poles of f in a fundamental domain for C/L, and n; be
the order of f at z; (n; > 0 when z; s a zero, n; <0 of z; 13 a pole). Then

1. The sum of the residues of f in a fundamental domain is equal to 0.

2. Y ,ni = 0, in other words f has as many zeros as poles (counted with
multiplicity).

8. If f is non-constant, counting multiplicity, f must have at least 2 poles
(and hence 2 zeros) in a fundamental domain.

4. Yo, nizi € L. This makes sense since z; is defined modulo L.

Note that the existence of non-constant elliptic functions is not a prior:
evident from definition 1.1.1. In fact, we have the following general theorem,
due to Abel and Jacobi:

(1.1.3) Theorem. Assume that z; and n; satisfy the above properties. Then there
ezists an elliptic function f with zeros and poles at z; of order n;.

The simplest construction of non-constant elliptic functions is due to
Weierstrafl. One defines

1 1 1
w05+ 3 (erar )
w€eL\{0}

and one easily checks that this is an absolutely convergent series which defines
an elliptic function with a double pole at 0. Using the fact that non-constant
elliptic functions must have poles, it is then a simple matter to check that if

we define . .
g2 = 60 Z = and g3 =140 Z 5
weL\{0} weL\{0}

then p(z) satisfies the following differential equation:
P =40 — gap — gs.

In more geometric terms, one can say that the map

2 (p(2) 1 9'(2) : 1)
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from C to the projective complex plane gives an isomorphism between the torus
C/L and the projective algebraic curve y?t = 4z3 — gozt? — g3, This is in fact
a special case of a general theorem of Riemann which states that all compact
Riemann surfaces are algebraic. Note that it is easy to prove that the field
of elliptic functions is generated by p and p' subject to the above algebraic
relation.

Since C/L is non-singular, the corresponding algebraic curve must also be
non-singular, and this is equivalent to saying that the discriminant

A = g3 — 27g3

of the cubic polynomial is non-zero. This leads directly to the definition of
elliptic curves.

1.2 Elliptic Curves over a Field

From the preceding Section, we see that there are at least two ways to generalize
the above concepts to an arbitrary field: we could define an elliptic curve as a
curve of genus 1 or as a non-singular cubic. Luckily, the Riemann-Roch theorem
shows that these two definitions are equivalent, hence we set:

(1.2.1) Definition. Let K be a field. An elliptic curve over K s a non-singular
projective cubic curve together with a point with coordinates in K.

Up to suitable change of coordinates, it is a simple matter to check that
such a curve can always be given by an equation of the following (affine) type:

y2 +aizy +azy = z2 + azz? + aqz + as,

the point defined over K being the (unique) point at infinity.

This equation is not unique. However, over certain number fields K such
as Q, it can be shown that there exists an equation which is minimal, in a well
defined sense. We will call it the minimal Weierstrafl equation of the curve. Note
that it does not necessarily exist for any number field K. For example, one can
show (see Silverman 1986, page 226) that the elliptic curve y* = z* 4 125 has
no minimal Weierstraf} equation over the field Q(+/—10).

(1.2.2) Theorem. An elliptic curve over C has the form C/L where L 1is
a lattice. In other words, if g2 and g3 are any complex numbers such that
g5 — 27g2 # 0, then there exist wy and wy with Im (w1/wz) > 0 and g, =

60 3" (. mys(0,0) (M1 + nw2) ™, g5 = 14037 0 ) 0y (Mwn + nwy) 78

A fundamental property of elliptic curves is that they are commutative
algebraic groups. This is true over any base field. Over C this follows immedi-
ately from theorem 1.2.2. The group law is then simply the quotient group law
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of C by L. On the other hand, it is not difficult to prove the addition theorem
for the Weierstrafl p function, given by:

ol —pen) + § (SEHZEE) it £

" 2
_2@(21) + % (%) , if 21 = 2.

plz1 +22) =

From this and the isomorphism given by the map z — (p(z), p'(2)), one obtains
immediately:

(1.2.3) Proposition. Let y? = 42 — gox — g3 be the equation of an elliptic curve.
The zero element for the group law is the point at infinity (0 : 1: 0). The inverse
of a point (z1,y1) is the point (z1,—y1) t.e. the symmetric point with respect to
the real azis. Finally, if Py = (21,y1) and Py = (x2,y2) are two non-opposite
points on the curve, their sum Py = (x3,y3) 18 given by the following formulas.
Set

n=-y if Py # Py;

1 — T2’

m = 2
12z — 32 . _
—éy_l_, ZfP] = P2.
Then
T3 = —T1 — T2 +m2/4, ys = —y1 —m(zs — 1).

It is easy to see that this theorem enables us to define an addition law
on an elliptic curve over any base field of characteristic zero, and in fact of
characteristic different from 2 and 3. Furthermore, it can be checked that this
law is indeed a group law.

One can more generally define such a law over any field, in the following
way.

(1.2.4) Proposition. Let

y2 +aizy + azy = z3 + a2.732 + agx + ag

be the equation of an elliptic curve defined over an arbitrary base field. Define
the zero element as the point at infinity (0: 1 :0), the opposite of a point (z1,y1)
as the point (z1,—y1 — a1x1 — a3). Finally, if Py = (z1,y1) and Py = (z2,y2)
are two non-opposite points on the curve, define their sum Py = (z3,y3) by the
following. Set

—Y : .
}%’?7{22‘7 if Pr # Py,

32} + 20371 tag —aryn _
" 2y1 +aizy a3 , fP=D,

and put
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T3 =—x1 — 23 —azs+m(m+a1), ys=—y1 —as—arzs +m(z; — z3).

Then these formulas define an (algebraic) Abelian group law on the curve.

The only non-trivial thing to check in this theorem is the associativity of
the law. This can most easily be seen by interpreting the group law in terms
of divisors, but we will not do this here.

The geometric interpretation of the formulas above is the following. Let
P; and P; be points on the (projective) curve. The line D from P; to P, (the
tangent to the curve if P, = P,) intersects the curve at a third point R, say.
Then if O is the point at infinity on the curve, the sum of P; and P, is the
third point of intersection with the curve of the line from O to R. One checks
easily that this leads to the above formulas.

1.3 Points on Elliptic Curves

Consider an abstract equation y* 4+ a1zy + asy = z® + asz? + asz + ag, where
the coeficients a; are in Z. One can consider this as a curve over any field K
in the following manner. If K has characteristic zero, it contains an isomorphic
copy of Z so the a; can be considered as elements of K. If K has positive
characteristic p, by reduction mod p one can consider the a; as elements of the
finite field Fp, hence of K which contains an isomorphic copy. (Note that even
if the initial curve was non-singular, the reduction mod p could be singular).
We shall consider successively the case where K = R, K = Q, K = F,, where
q is a power of p.

1.3.1 Elliptic curves over R. In the case where the characteristic is different
from 2 and 3, the general equation can be reduced to the following Weierstrafl
form:

y2 = g3 + aqz + ag.

(We could put a 4 in front of the z® as in the equation for the p function, but
this introduces unnecessary constant factors in the formulas). The discriminant
of the cubic polynomial is —(4a3 + 27a2), however the y? must be taken into
account, and general considerations show that we must take

A = —16(4a3 + 27a?)

as definition of the discriminant of the elliptic curve.
Several cases can occur. Let Q(z) = 2® + a4z + a¢ and A as given above.

1. A < 0. Then the equation Q(z) = 0 has only one real root, and the graph
of the curve has only one connected component.

2. A > 0. Then the equation Q(z) = 0 has three distinct real roots, and the
graph of the curve has two connected components: a non-compact one,
which is the component of the zero element of the curve (i.e. the point at
infinity), and a compact one, oval shaped.
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From the geometric construction of the group law, one sees that the roots
of Q(x) = 0 are exactly the points of order 2 on the curve (the points of
order 3 correspond to the inflexion points).

3. A =0. The curve is not any more an elliptic curve, since it now has a sin-
gular point. This case subdivides into three subcases. Since the polynomial
Q(z) has at least a double root, write

Qz) = (z —a)*(z = b).

Note that 2a + b = 0.

a) a > b. Then the curve has a unique connected component, which has a
double point at z = a. The tangents at the double point have distinct
real slopes.

b) a < b. Then the curve has two connected components: a non-compact
one, and the single point of coordinates (a,0). In fact this point is again
a double point, but with distinct complez tangents.

¢) @ =b. (In this case a = b = 0 since 2a + b = 0). Then the curve has a
cusp at z = 0, i.e. the tangents at the singular point are the same.

(The figures corresponding to these 5 cases and subcases can easily be
hand drawn, or can be found in (Silverman 1986 page 47-48).)

In case 3, one says that the curve is a degenerate elliptic curve. One easily
checks that the group law still exists, but on the curve minus the singular point.
This leads to the following terminology: in cases 3a and 3b, the group law is
isomorphic to a form of the group law of the multiplicative algebraic group Gy, .
Hence they are called cases of multiplicative degeneracy. More precisely, 3a is
called split multiplicative, 3b is non-split multiplicative. For analogous reasons,
case 3c is called additive degeneracy. These notions can be used, not only for
R, but for any base field K. In that case, the condition a > b is replaced by
a — b is a (non-zero) square in K.

1.3.2 Elliptic curves over Q. From a number theorist’s point of view, this is of
course the most interesting base field. The situation in this case and in the case
of more general number fields is much more difficult to study. The first basic
theorem, due to Mordell (Mordell 1922) and later generalized by Weil (Weil
1930) to the case of number fields and of Abelian varieties, is as follows:

(1.3.1) Theorem. Let E be an elliptic curve over Q. The group of points of E
with coordinates in Q (denoted naturally E(Q)) is a finitely generated Abelian
group. In other words,

E(Q) - E(Q)tors & Zr,
where T i3 a non-negative integer called the rank of the curve, and E(Q)iors 18

the torsion subgroup of E(Q), which is a finite Abelian group.

The torsion subgroup of a given elliptic curve is easy to compute. On the
other hand the study of possible torsion subgroups for elliptic curves over Q)
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is a very difficult problem, solved only in 1977 by Mazur (1977 and 1978). His
theorem is as follows:

(1.3.2) Theorem. Let E be an elliptic curve over Q. Then the torsion subgroup
E(Q)iors of E can be isomorphic only to one of the 15 following groups:

Z/mZ for1<m <10or m =12,

Z[2Zx Z[2mZ for1<m <4.

In particular, its cardinality 13 at most 16.

Note that all of the 15 groups above do occur for an infinite number of
non-isomorphic elliptic curves and also that the corresponding theorem over a
number field other than Q is not known, although it is conjectured to be true
(with more possibilities for the groups of course).

The other quantity which occurs in Mordell’s theorem is the rank r, and is
a much more difficult number to compute, even for an individual curve. There is
no known mathematically proven algorithm to compute r. Even the apparently
simpler question of deciding whether r is zero or not (or equivalently whether
the curve has a finite or an infinite number of rational points) is still not solved.
This is the subject of active research, and we will come back in more detail to
this question in Section 3.

Let us give an example of a down to earth application of the above defini-
tion. Consider the curve

y? =23 — 36z.

It is easy to show that the only torsion points are the points of order 1 or
2, i.e. the point at infinity and the three points (0,0),(6,0),(—6,0). But the
point (—2,8) is also on the curve. Hence this point is not of finite order, so
the curve has an infinite number of points, a fact which is not a prior: evident.
This curve is in fact closely related to the so-called congruent number problem,
and the statement that we have just made means in that context that there
exists an infinite number of non-equivalent right angled triangles with all three
sides rational and area equal to 6, the simplest one (corresponding to the point
(—2,8)) being the well known (3,4,5) Pythagorean triangle.

As an exercise, the reader can check that the double of the point (-2,8)
is the point (%, 38—5), and that this corresponds to the right-angled triangle of
area 6 with sides (122, 5 1201). See (Koblitz 1984) for the (almost) complete
story on the congruent number problem.

1.3.3 Elliptic curves over a finite field. To study curves (or more general al-
gebraic objects) over Q, it is very useful to study first the reduction of the
curve modulo primes. This leads naturally to elliptic curves over F,, and more
generally over an arbitrary finite field F,;, where ¢ is a power of p. Note that
when one reduces an elliptic curve mod p, the resulting curve over F, may be
singular, hence not any more an elliptic curve. Such p are called primes of bad
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reduction, and are finite in number since they must divide the discriminant of
the curve. According to the terminology introduced in Section 1.3.1, we will
say that the reduction mod p is (split or non-split) multiplicative or additive,
according to the type of degeneracy of the curve over F,. The main theorem
concerning elliptic curves over finite fields, due to Hasse, is as follows:

(1.3.3) Theorem. Let p be a prime, and E an elliptic curve over F,. Then there
exists an algebraic number oy such that
1. Ifq=p" then

|E(F)=gq¢+1-ap" —5"

a0, = p, or equivalently |ay,| = /p.

(1.3.4) Corollary. Under the same hypotheses, we have

|[E(Fp)|=p+1—ap, with|a,| < 2/p.

The numbers a, are very important and are (conjecturally) coefficients of
a modular form of weight 2. We will come back to this subject in Section 3.

2. Complex Multiplication and Class Numbers

In this Section, we will study maps between elliptic curves. We begin by the
case of curves over C.

2.1 Maps between Complex Elliptic Curves

Recall that a complex elliptic curve E has the form C/L where L is a lattice.
Let E = C/L and E' = C/L' be two elliptic curves. A map ¢ from E to E' is
by definition a holomorphic Z-linear map from F to E’. Since C is the universal
cover of E', ¢ lifts to a holomorphic Z-linear map f from C to C, and such
a map has the form f(z) = az for some non-zero complex number @, which
induces a map from E to E' iff aL C L'. Thus we have obtained:

(2.1.1) Proposition. Let E = C/L and E' = C/L' be two elliptic curves over

C. Then:

1. Eisisomorphic to E' if and only if L' = aL for a certain non-zero complex
number a.

2. The set of maps from E to E' can be identified with the set of complez

numbers a such that aL C L'. In particular, the set End(E) of endomorphisms

of E is a ming isomorphic to the set of « such that oL C L.
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In terms of the Weierstrafl equation of the curves, this theorem gives the
following. Recall that the equation of E (resp E') is y? = 423 — goz — g3 (resp.
y? = 42% — ghz — g}) where

g2 = 60 Z w™, g3 =140 Z w™s,

weL\{0} weL\{0}

and similarly for ¢4 and g¢§. Hence the first part of the theorem says that if
E ~ E' then there exists a such that

gy =a"*gs, gy =a %gs.

The converse is also clear from the Weierstrafl equation. Now, since E is a
non-singular curve, the discriminant g3 — 27¢2 is non-zero, so we can define

J(E) = 1728¢3 /(g5 — 2793),

and we obtain:

(2.1.2) Proposition. The function j(E) characterizes the isomorphism class of
E over C. More precisely, E ~ E' if and only if j(E) = j(E").

The quantity j(E) is called the modular invariant of the elliptic curve
E. The number 1728 = 123 will be explained later. Although we have been
working over C, proposition 2.1.2 is still valid over any algebraically closed
field of characteristic different from 2 and 3 (it is also valid in characteristic 2
or 3, for a slightly different definition of j(E)). On the other hand, it is false
if the field is not algebraically closed (consider for example y? = 42 — 4z and
y? = 42® + 4z over R).

(2.1.3) Remark. It is easy to construct an elliptic curve with a given modu-
lar invariant j. Since we have not given the definition otherwise, we give the
formulas when the characteristic is different from 2 and 3.

1. Ifj =0, one can take y? = z* — 1.

2. If j = 1728, one can take y? = 2% — z.

3. Otherwise, one sets ¢ = j/(j — 1728), and then one can take y? = z3 —
3cz+2c. (If one wants equations with a coefficient 4 in front of z*, multiply
by 4 and replace y by y/2.)

Now let E = C/L be an elliptic curve over C. Then as a Z-module, L can
be generated by two R-linearly independent complex numbers w; and w9, and
by suitably ordering them, we may assume that Im 7 > 0, where 7 = w; /ws.
Since multiplying a lattice by a non-zero complex number does not change the
isomorphism class of E, we have j(E) = j(E.), where E; = C/L, and L, is the
lattice generated by 1 and 7. By abuse of notation, we will write j(7) = j(E.).
This defines a complex function j on the upper half-plane $:
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H={reClm 7 >0}.

If a, b, c and d are integers such that ad — bc = 1 (i.e. if <Ccl z) € SLy(Z)),

then the lattice generated by ar + b and ¢7 + d is equal to L,. This implies the
modular invariance of j(7):

(2.1.4) Theorem. For any (Z 2) € SLy(Z), we have
. (ar +b .
() =i

In particular, j(7) is periodic of period 1. Hence it has a Fourier expansion,
and one can prove the following theorem:

(2.1.5) Theorem. There exist positive integers c, such that, if we set ¢ = e¥™7,

we have for all complex 7 with Im 7 > 0:

. 1
Jir)=—-+4+T744+ Z cng".
q n>1

Thus, the factor 1728 used in the definition of ;7 has been put to avoid
denominators in the Fourier expansion of j(7), and more precisely to have a
residue equal to 1 at infinity (the local variable at infinity being taken to be
q). These theorems show that j is a meromorphic function on the compact-
ification (obtained by adding a point at infinity) of the quotient £/SL2(Z),
which is isomorphic as a Riemann surface to the Riemann sphere S$2. Under
this isomorphism, we have:

(2.1.6) Proposition. The function j is a one-to-one mapping from the sphere
S? onto the projective complez plane P1(C). In other words, j(7) takes once
and only once every possible value (including infinity) on $/SLa(Z).

This proposition is obtained essentially by combining remark 2.1.3 (sur-
jectivity) with proposition 2.1.1 (injectivity).

Since the field of meromorphic functions on the sphere is the field of ratio-
nal functions, we deduce that the field of modular functions, i.e. meromorphic
functions invariant under SLy(Z), is the field of rational functions in j. In par-
ticular, modular functions which are holomorphic outside the point at infinity
of the Riemann sphere are simply polynomials in j. Finally, if we want to have
such a function which is one to one as in theorem 2.1.5, the only possibilities
are linear polynomials aj + . Now the constant 1728 has been chosen so that
the residue at infinity is equal to one. If we want to keep this property, we
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must have @ = 1. This leaves only the possibility j 4+ b for a function having
essentially the same properties as j. In other words, the only freedom that we
really have in the choice of the modular function j is the constant term 744 in
its Fourier expansion.

Although it is a minor point, I would like to say that the normalization of j
with constant term 744 is not the correct one for several reasons. The ‘correct’
constant should be 24, so the ‘correct’ 7 function should in fact be j — 720.
Maybe the most natural reason is as follows: there exists a rapidly convergent
series due to Rademacher for the Fourier coefficients ¢, of j. For n = 0, this
series gives 24, not 744. Other good reasons are due to Atkin and to Zagier
(unpublished).

2.2 Isogenies

We now come back to the case of elliptic curves over an arbitrary field.

(2.2.1) Definition. Let E and E' be two elliptic curves defined over a field K.
An isogeny from E to E' is a map of algebraic curves from E to E' sending the
zero element of E to the zero element of E'. The curves are said to be isogenous
if there exists a mon-constant 1sogeny from E to E'.

The following theorem summarizes the main properties of non-constant
isogenies:

2.2.2) Theorem. Let ¢ be a non-constant isogeny from E to E'. Then:
( geny

1. ¢ i3 a surjective map.

2. ¢ is a finite map, in other words the fiber over any point of E' is constant
and finite.

3. ¢ preserves the group laws of the elliptic curves (note that this was not
required in the definition), i.e. 1t is ¢ map of algebraic groups.

From these properties, one can see that ¢ induces an injective map from
the corresponding function field of E' to that of E (over some algebraic closure
of the base field). The degree of the corresponding field extensions is finite and
called the degree of ¢.

(2.2.3) Remark. If the above extension of fields is separable, for example if
the base field has characteristic zero, then the degree of ¢ is also equal to the
cardinality of a fiber, i.e. to the cardinality of its kernel ¢~1(0).

(2.2.4) Theorem. Let E be an elliptic curve over ¢ field K, and let m be a
positive integer. Then the map [m] (multiplication by m) is an endomorphism
of E with the following properties:

1. deglm] = m?.



H. Cohen 223

2. If E[m] denotes the kernel of [m] in some algebraic closure of K, i.e. the
group of points of order dividing m, and if the characteristic of K is prime
to m (or if it 1is equal to 0), then we have

E[m] ~ (Z/mZ) x (Z ]mZ).

Another important point concerning isogenies is the following;:

(2.2.5) Theorem. There exists a unique 1sogeny gZ) called the dual isogeny, such
that

$o¢=lm,
where m 1s the degree of ¢. In addition, we also have
¢ 0 é = [m]I7

where [m]’ denotes multiplication by m on E'.
The following result also holds:

(2.2.6) Theorem. Let E be an elliptic curve and @ a finite subgroup of E. Then
there exists an elliptic curve E' and an isogeny ¢ from E to E' whose kernel

s equal to §. The elliptic curve E' is well defined up to isomorphism and is
denoted E[P.

We end this Section by giving a slightly less trivial example of an isogeny:
Let E and E' be two elliptic curves over a field of characteristic different from
2, given by the equations

y? =23+ az? + b and y? = 23 — 2a2? + (a® — 4b)z,
where we assume that b and a? — 4b are both non-zero. Then the map ¢ from

E to E' given by
2 2
y* y(z® —b
¢(‘T7y) = <;33 ( 22 )>

is an isogeny of degree 2 with kernel {0, (0,0)}.

2.3 Complex Multiplication

Let E be an elliptic curve. To make life simpler, we will assume that the base
field has characteristic zero. We have seen that the maps [m] are elements of
End(E). Usually, they are the only ones, and since they are distinct, End(E) ~
Z. However it can happen that End(F) is larger.

(2.3.1) Definition. We say that E has complez multiplication if End(E) contains
elements other than [m], i.e. if as a ring it is strictly larger than 7Z.
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The theory of complex multiplication is vast, and we can just give a short
glimpse at its contents. The first result is as follows:

(2.3.2) Proposition. Let E be an elliptic curve defined over a field of characteris-
tic zero, and assume that E has complez multiplication. Then the ring End(E)
18 an order in an imaginary quadratic field, v.e. has the form Z + Zt where
7 18 @ complex number with positive imaginary part and which 1s an algebraic
integer of degree 2 (that is, satisfies an equation of the form

2 —s74+n =0,

with s and n in Z and s* —4n < 0).

Proof. We shall give the proof in the case where the base field is C. Then
E ~ C/L for a certain lattice L, and we know that End(E) is canonically
isomorphic to the set of a such that aL C L. After division by one of the
generators of L, we can assume that L is generated by 1 and 7 for a certain
T € §, where we recall that §) is the upper half-plane. Then if « stabilizes L,
there must exist integers a, b, ¢ and d such that a = a+br, ar = c+dr. In

. . . b . .
other words, « is an eigenvalue of the matrix ((cl d) hence is an algebraic

integer of degree 2 (with s = a +d, n = ad — bc). Since a = a + br, this shows
that Q(7) = Q(a) is a fixed imaginary quadratic extension k of @, and hence
End(E) is (canonically isomorphic to) a subring of Z, the ring of integers of
k, and hence is an order in k if it is larger than Z.

(2.3.3) Example. The curves y? = z* — az all have complex multiplication by
Z[i] (map (z,y) to (—z,7y)). Similarly, the curves y? = z® + b all have complex
multiplication by Z[p], where p is a primitive cube root of unity (map (z,y) to
(pz,y)). For a less trivial example, one can check that the curve

y? =1® —(3/4)2* — 22— 1

has complex multiplication by Z[w], where w = @, multiplication by w
sending (z,y) to (u,v), where

orar)
U =w rz+a+
r—a

(i),

where we have set = 22 and b = —{%(3w —1) (I thank D. Bernardi for these
calculations).

The next theorem concerning complex multiplication is as follows:
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(2.3.4) Theorem. Let T be a quadratic algebraic number with positive imaginary
part. Then the elliptic curve E; = C/(Z + ZT) has complez multiplication by
an order in the quadratic field Q(7), and the j-invariant j(E.) = j(7) is an
algebraic integer.

Note that although the context (and the proof) of this theorem involves
elliptic curves, its statement is simply that a certain explicit function j(7) on
$ takes algebraic integer values at quadratic imaginary points.

(2.3.5) Example. Here are a few selected values of j.

H((1+v3)/2)=0
j(i) = 1728 = 123
J((14+4V7))/2) = —3375 = (—15)°
7(1v2) = 8000 = 20°
7((144v11))/2) = —32768 = (—32)°
7((1 4 iv/19))/2) = —884736 = (—96)°
7((1 +4V/43))/2) = —884736000 = (—960)°
7((1 +4v/67))/2) = —147197952000 = (—5280)°
7((1 +iV/163))/2) = —262537412640768000 = (—640320)°
§(3v/3) = 54000 = 2(30)?
7(2¢) = 287496 = (66)°
J((1 + 36v/3)/2) = —12288000 = —3(160)°
§(iV7) = 16581375 = (255)°
3((1+iv/15))/2) = (—191025 + 85995v/5)/2 = (1 + v/5)/2((75 — 27V/5)/2)3
i(1+1iv23))/2) =6 = o,
where § is the largest negative root of the cubic equation X°® + 3491750X2 —
5151296875X + 12771880859375 = 0, and « is the largest negative root of the

equation X3 + 155X? + 650X + 23375 = 0.
The reason for the special values chosen will become clear later.

An amusing consequence of the above results is the following. We know
that if ¢ = €2*™" then j(7) = 1/q + 744 + O(|g|). Hence when |g| is very small
(i.e. when the imaginary part of 7 is large), it can be expected that j(7) is well
approximated by 1/q+744. Taking the most striking example, this implies that
e™v183 should be close to an integer, and that (e"‘/ﬁ— 744)!'/3 should be even
closer. This is indeed what one finds:

V163 — 262537412640768743.99999999999925007259 . . .
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(e™V163 _ 744)'/3 = 640319.99999999999999999999999939031735 . . .

Note that by well known transcendence results, although these quantities are
very close to integers, they cannot be integers and they are in fact transcen-
dental numbers.

2.4 Class Numbers

To understand more precisely the statement of theorem 2.3.4, and the examples
given after it, it is necessary to define the concept of class number. This can
be done in full generality for any algebraic number field (see e.g. Borevitch-
Shafarevitch 1966), but we need it here only for imaginary quadratic fields,
and hence we can use the more explicit language of binary quadratic forms.
Let az® + bry + cy? be a binary quadratic form. We will always consider forms
which are positive definite (i.e. D = b* —4ac < 0 and a > 0), with integral
coeflicients, and primitive, that is such that the gcd of a, b and ¢ is equal
to 1. On the set of such forms of given discriminant D, we can define an

g) € SL2(Z) then we say that the form

a(az+ By)* +blaz+ By)(vz +8y) +c(yz +y)? is equivalent to az? + bry + cy?.

equivalence relation as follows: if (:

(2.4.1) Proposition. The set of equivalence classes defined above is finite, and
its cardinality is called the class number of D (or of the field Q(v/D) depending
on the contezt), and denoted h(D).

Proof. The simplest way to prove this (and to compute h(D) at the same time)
is to introduce the notion of reduced form. A form is reduced if || < a < ¢
and furthermore if one of the inequalities is an equality then in addition we
require b > 0. Then it is easy to show that in each equivalence class, there
exists a unique reduced form, hence h(D) is equal to the number of reduced
forms, which is finite since it follows from the definition that |b] < a < +/|D|/3.

From this proof, it is an easy exercise to compute k(D) for any reasonable
D. For example, if we denote by (a, b, ¢) the form az? + bzy + cy?, the reduced
forms of discriminant D = —23 are the forms (1,1,6), (2,1,3) and (2,-1,3)
hence h(—23) = 3. On the other hand, one checks that the only reduced form
of discriminant D = —163 is the form (1,1,41) hence h(—163) = 1.

Another, equivalent way, to get a hold on k(D) is to consider the quadratic
numbers associated to a binary quadratic form. The following lemma is easy
to prove:

(2.4.2) Lemma. Let 7 be a quadratic algebraic number with positive imaginary
part. Then there exists a unique (primitive, positive definite, binary quadratic
form) az? + bry + cy? such that T is a root of the equation aX? +bX +¢c =0
(the converse is trivial). Furthermore, the quadratic form is reduced if and only
if T belongs to the standard fundamental domain F of SLy(Z), i.e. such that
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— 1
f:{Teﬁ7|T'21a|ReTIS§}v

F itself being the subset of F where one excludes the points on the boundary
with positive real part.

The discriminant of the form corresponding to 7 will be called the discrim-
inant of 7. Note that it is a square multiple of the discriminant of the quadratic
field defined by 7, but does not have to be equal to it.

The link with complex multiplication is the following theorem, which is a
more precise version of theorem 2.3.4:

(2.4.3) Theorem. Let 7 € $) be a quadratic imaginary number, and let D be
its discriminant as just defined. Then j(7) is an algebraic integer of degree
ezactly equal to h(D). More precisely, the equation satisfied by j(7) over Z
is the equation [[(X — j(a)) = 0, where a runs over the quadratic numbers
associated to the reduced forms of discriminant D.

Note that j(7) is indeed a root of this polynomial, since any quadratic form
of discriminant D is equivalent to a reduced form, and since the j function
is SL2(Z)-invariant. The difficult part of this theorem is the fact that the
polynomial has integral coeflicients.

I can now explain the reason for the selection of j-values given in the
preceding Section. From theorem 2.4.3, we see that j(7) is rational (in fact
integral) if and only if h(D) = 1 (we assume of course that 7 is a quadratic
number). Now it is a deep theorem, due to Baker and Stark (1967), that there
exist only 13 values of D for which A(D) = 1. The first 9 correspond to field
discriminants, and are —3, —4, —7, —8, —11, —19, —43, —67 and —163. There
are 4 more corresponding to non-maximal orders: —12 and —27 (in the field
Q(v/=3)), —16 (in the field Q(/—4)), and —28 (in the field Q(v/=7)).

Although it is known since Siegel that h(D) tends to infinity with D, and
even as fast as |D|'/27¢ for any € > 0, this result is ineffective, and the explicit
determination of all D with a given class number is very difficult. I have just
stated that the class number 1 problem was only solved in 1967. The class
number 2 problem was solved jointly by Baker and Stark in 1969: D = —427 is
the largest discriminant (in absolute value) with class number 2. The general
problem was solved in principle by Goldfeld, Gross and Zagier in 1983, who
obtained an effective lower bound on h(D) (Gross-Zagier 1983). However, the
problem still needs some cleaning up, and to my knowledge, only class numbers
3 and 4 have been explicitly finished. The last remaining j-values in our little
table above are for D = —15 and D = —23, which are the first values for which
the class number is 2 and 3.

Let D be the discriminant of a maximal order (i.e. either D =1 (mod 4)
and is squarefree, or D = 0 (mod 4), D/4 = 20r3 (mod 4) and D/4 is
squarefree), and let 7 be a quadratic number of discriminant D < 0 (for example
7 = (D + vD)/2). Set K = Q(r) = Q(v/D). Then theorem 2.4.3 tells us
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that the field H = K(j(7)) obtained by adjoining j(r) to K is an algebraic
extension of degree h(D) (this is not strictly true: it tells us this for K = Q,
but the statement holds nonetheless). Now in fact much more is true. One
can define a group structure on binary quadratic forms called composition.
This corresponds in the language of ideals to multiplication of ideals. Then
for every D one has not only a class number, but a class group of cardinality
h(D). Then the field extension H/K possesses the following properties (see
(Shimura 1971A) for the relevant definitions, which would carry us too far
here): It is a Galois extension, with Abelian Galois group isomorphic to the class
group. Furthermore, it is unramified, and it is the maximal Abelian unramified
extension of K. By definition, such a field H is called the Hilbert class field of
K. One sees that in the case of imaginary quadratic fields, the Hilbert class field
can be obtained by adjoining a value of the j-function. This kind of construction
is lacking for other types of fields (except of course for Q).

A cursory glance at the table of j-values which we have given reveals many
other interesting aspects. For example, in most cases, it seems that j(7) is a
cube. Furthermore, it can be checked that no big prime factors occur in the
values of j(7) (or of its norm when it is not in Q). These properties are indeed
quite general, with some restrictions. For example, if D is not divisible by 3,
then up to multiplication by a unit, j(7) is a cube in H. One can also check
that j(r) — 1728 is a square if D = 1 (mod 4). Finally, not only the values
of j(7), but more generally the differences j(r1) — j(72) have only small prime
factors (the case of j(71) alone is recovered by taking 7, = p = (—1++/=3)/2).
All these properties are proved in (Gross-Zagier 1985).

2.5 Modular Equations

Another remarkable property of the j-function, which is not directly linked
to complex multiplication, but rather to the role that j plays as a modu-
lar invariant, is that the functions j(N7) for N integral (or more generally
rational) are algebraic functions of j(7). The minimal equation of the form
SN(j(7),5(NT)) = 0 satisfied by j(N) is called the modular equation of level
N. This result is not difficult to prove. We will prove it explicitly in the special
case N = 2. Set

P(X) = (X — (@)X ~ ()X —i(T51) = X* = ()X 4 (r)X —n(r).
I claim that the functions s, ¢t and n are polynomials in j. Since they are
clearly meromorphic, and in fact holomorphic outside infinity, from Section
2.1 we know that it is enough to prove that they are modular functions (i.e.
invariant under SL,(Z)). Since the action of SLy(Z) on §) is generated by
7— 741 and 7 — —1/7, it suffices to show the invariance of s, t and n under
these transformations, and this is easily done using the modular invariance of
j itself. This shows the existence of a cubic equation satisfied by j(27) over
the field C(j(7)). If one wants the equation explicitly, one must compute the
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first few coefficients of the Fourier expansion of s(7), #(7), and n(7), using the
Fourier expansion of j(7):

1
J(7T) = = + 744 + 198884q + 214937604° + 864299970¢° + - - -
q

The result is as follows:
s=j2—92%3.315 — 2°345%,
t =2%3.3152 4 3%5%40275 + 283756,
n= _j3 + 243453]'2 _ 283756]' + 2123959‘
This gives as modular polynomial of level 2 the polynomial
3y(X,Y)=X>4+Y3 - X?Y? 4 2%3.31(X?Y + XY?) - 2*3*5% (X% + Y?)
+3%5%4027XY + 28375%(X + V) — 212395,

As we can see from this example, the modular polynomials are symmetric in X
and Y, and they have many other remarkable properties linking them closely to
complex multiplication and class numbers, but we will not pursue this subject
further here. See for example (Herrmann 1975) and (P. Cohen 1984) for results
and more references on the polynomials @ .

3. Rank and L-functions

We have seen in theorem 1.3.1 that if F is an elliptic curve defined over Q,
then

E(Q) = E(Q)Lors EB ZT,

where E(Q)qors is a finite group which is easy to compute for a given curve, and r
is an integer called the rank. As has already been mentioned, r is very difficult
to compute, even for a given curve. Most questions here have a conjectural
answer, and very few are proved. In this short Chapter, we try to give some
indications on the status of the subject at this time (September 1989).

3.1 L-functions

3.1.1 The zeta function of a variety. After clearing out the denominators of the
coeflicients, we can assume that our curve has coefficients in Z. Now it is a
classical technique to look at the equation modulo primes p, and to gather this
information to obtain results on the equation over Q or over Z. This can in fact
be done in great generality for any smooth projective algebraic variety (and
more general objects if needed), and not only for elliptic curves. Although it
carries us away a little, I believe it worthwhile to do it in this context first. Let
V be a (smooth projective) variety of dimension d, defined by equations with
coeflicients in Z. For any prime p, we can consider the variety V, obtained by



230 Chapter 3. Elliptic Curves

reducing the coeflicients modulo p (it may of course not be smooth any more).
For any n > 1, let N,(p) be the number of points of V,, defined over the finite
field Fp» and consider the following formal power series in the variable T

Zy,(T) = exp(z Nn(p) —=T").
n>1

Then we have the following very deep theorem, first conjectured by Weil (and
proved by him for curves and Abelian varieties, see (Weil 1949)), and proved
completely by Deligne in 1974 (Deligne 1974):

(3.1.1) Theorem. Let V,, be a smooth projective variety of dimension d over Fp.
Then:

1. The series Z,(T) is a rational function of T, r.e. Z,(T) € Q(T).
There exists an integer e (called the Euler characteristic of V,), such that

Zy(1/(p"T)) = £p™/*T Z,(T).
8. The rational function Z,(T) factors as follows:

Py(T)- - Pppa(T)

%) = BB () Pon(T)’

where for all i, Pi(T) € Z[T], Po(T) = 1 =T, Pye(T) = 1 — p?T, and for
all other 1,
P(T) = [](1 = i) with |ay;| = p'/2
J

The first assertion had been proved a few years before Deligne by B. Dwork
using relatively elementary methods, but by far the hardest part in the proof
of this theorem is the very last assertion, that |a;;| = p*/2. This is called the
Riemann hypothesis for varieties over finite fields.

Now given all the local Z,(T'), we can form a global zeta function by setting
for s complex with Re s sufficiently large:

s) = H Zp(p™*).

This should be taken with a grain of salt, since there are some p (finite in
number) such that V}, is not smooth.

Very little is known about this general zeta function. It is believed (can
one say conjectured when so few cases have been closely examined?) that it
can be analytically continued to the whole complex plane to a meromorphic
function with a functional equation when the local factors at the bad primes
p are correctly chosen, and that it satisfies the Riemann hypothesis, i.e. that
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apart from ‘trivial’ zeros and poles, all the other zeros and poles lie on certain
vertical lines in the complex plane.

One recovers the ordinary Riemann zeta function by taking for V' the single
point 0. More generally, one can recover the Dedekind zeta function of a number
field by taking for V the 0-dimensional variety defined in the projective line by
P(X) = 0, where P is a monic polynomial with integer coefficients defining the
field over Q.

3.1.2 L-functions of elliptic curves. Let us now consider the special case where
V is an elliptic curve E. In that case, Hasse’s theorem 1.3.3 gives us all the
information we need about the number of points of E over a finite field. This
leads to the following corollary:

(3.1.2) Corollary. Let E be an elliptic curve over Q, and let p be a prime of
good reduction (i.e. such that E, is still smooth). Then

1—a,T + pT?

4 E) = Ty I = py

where ap is as in theorem 1.3.5.

In fact, Hasse’s theorem is simply the special case of the Weil conjectures
for elliptic curves (and can be proved quite simply, see e.g. Silverman 1986 pp
134-136).

Ignoring for the moment the question of bad primes, the general definition
of zeta functions gives us

(5= 5=t

where

L(E,s)=[](1 - app™ +p' 7)1,
P

The function L(E,s) will be called the Hasse-Weil L-function of the elliptic
curve E. To give a precise definition, we also need to define the local factors at
the bad primes p. This can be done, and finally leads to the following definition:

(3.1.3) Definition. Let E be an elliptic curve over Q, and let y? + ayzy +asy =
23+ apx? + a4z +ag be a minimal Weierstrafl equation for E (see 1.2.1). When
E has good reduction at p, define a, = p+1— N, where Ny is the number of
(projective) points of E over F,. If E has bad reduction, define

—1, of E has non-split multiplicative reduction at p;

1, if E has split multiplicative reduction at p;
o
0, if E has additive reduction at p.

Then we define the L-function of E as follows, for Re s > 3/2:
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1 1
L(Es) =[] I s

bad p 1= é(p)p_‘g good p

Note that in this definition it is crucial to take the minimal Weierstrafl
equation for E: taking another equation could increase the number of primes
of bad reduction, and hence change a finite number of local factors. On the
other hand, one can prove that L(E, s) depends only on the isogeny class of E.

By expanding the product, it is clear that L(E, s) is a Dirichlet series, i.e.
of the form ) ., ann™* (this of course is the case for all zeta functions of
varieties). We will set

fe(t) = Z ang”, where as usual ¢ = ™",
n>1

We can now state the first conjecture on L-functions of elliptic curves:

(3.1.4) Conjecture. The function L(E,s) can be analytically continued to the
whole complex plane to an entire function. Furthermore, there exists a positive
integer N, such that if we set

A(E,s) = N*/2(2x)™*I'(s)L(E, 5),
then we have the following functional equation:

A(E,2 - s) = +A(E,s).

In this case, the Riemann hypothesis states that apart from the trivial
zeros at non-positive integers, the zeros of L(E,s) all lie on the critical line
Res=1.

The number N occurring in conjecture 3.1.4 is a very important invariant
of the curve. It is called the conductor of E, and can be defined without refer-
ence to any conjecture. It suffices to say that it has the form []_p®?, where the
product is over primes of bad reduction, and for p > 3, e, = 1 if E has mul-
tiplicative reduction at p, e, = 2 if E has additive reduction, while for p < 3,
the recipe is more complicated (see Birch-Kuyk 1975).

3.1.3 The Taniyama-Weil Conjecture. Now a little acquaintance with modular
forms reveals that the conjectured form of the functional equation of L(E, s) is
the same as the functional equation for the Mellin transform of a modular form
Z Z) € SLy(Z),c=0 (mod N)}
(see (Zagier 1990) in this volume for all relevant definitions about modular
forms). Indeed, one can prove the following

of weight 2 over the group Ih(N) = {

(3.1.5) Theorem. Let f be a modular cusp form of weight 2 on the group Iy(N)

(equivalently fiqi is a differential of the first kind on Xo(N) = $H/IH(N)).
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Assume that f i3 a normalized eigenform of the Hecke operators. Then there
exists an elliptic curve E defined over Q such that f = fg, i.e. such that the
Mellin transform of f is equal to (21)~°I'(s)L(E,s) = N~*/2A(E, s).

Such a curve E is called a modular elliptic curve, and is a natural quotient
of the Jacobian of the curve Xo(N). Since analytic continuation and functional
equations are trivial consequences of the modular invariance of modular forms
we obtain:

(3.1.6) Corollary. Let E be a modular elliptic curve, and let f =37 -, anq™ be
the corresponding cusp form. Then conjecture 3.1.4 s true. In addition, it is
known from Atkin-Lehner theory that one must have f(—1/(N1)) = eN72f(7)
with €e = +1. Then the functional equation is

A(E,2—s)=—€eA(E,s).

(Please note the minus sign, which is a cause for many confusions and
mistakes in tables).

With theorem 3.1.5 in mind, it is natural to ask if the converse is true, i.e.
whether any elliptic curve over Q is modular. This conjecture was first set forth
by Taniyama. However, its full importance and plausibility was understood only
after Weil proved the following theorem, which we state only in a vague form
(the precise statement can be found e.g. in (Ogg 1969)):

(3.1.7) Theorem. Let f(7) = .-, anq™, and for all primitive Dirichlet char-
acters x of conductor m set -

L(f7X3s) = ZM(_”)U

ns
n>1

A(f, x> 8) = INm?|*/%(2m) " T(s)L(f, X, 5)-

Assume that these functions satisfy functional equations of the following form:

A(f’ X, 2 - 5) = w(X)A(f7 Yv '5)7

where w(x) has modulus one, and assume that as x varies, w(x) satisfies certain
compatibility conditions (this is where we are imprecise). Then f is a modular
form of weight 2 over I'o(N).

Because of this theorem, the above conjecture becomes much more plau-
sible. The Taniyama-Weil conjecture is thus as follows:

(3.1.8) Conjecture. Let E be an elliptic curve over Q, let L(E,s) =) o, ann™°
be its L-series, and fg(r) = ZnZl anq" the inverse Mellin transform of
(2m)™*I'(s)L(E,s). Then f is a cusp form of weight 2 on I3(N) which is an
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eigenfunction of the Hecke operators. Furthermore there ezists a morphism ¢
of curves from Xo(N) to E, defined over Q, such that the inverse image by ¢ of
the differential dz/(2y+ a1z +as) is the differential ¢(2i7) f(r)dr = c¢f(7)dq/q,

where ¢ 18 some constant.

Note that the constant ¢, called Manin’s constant, is conjectured to be
always equal to £1.

A curve satisfying the Taniyama-Weil conjecture has been called above a
modular elliptic curve. However since this may lead to some confusion with
modular curves (such as the curves Xo(N)) which are in general not ellip-
tic, they are called Weil curves (which incidentally seems a little unfair to
Taniyama).

This is certainly one of the most important conjectures in number theory.
It has been verified in many cases. For example, Shimura has proved (Shimura
1971B and 1971C), using Weil’s theorem 3.1.7, that it is true for all curves
with complex multiplication, which unfortunately form a very thin set of curves
among elliptic curves. It has also been verified for certain conductors. Moreover,
more recently, conjectures of an even more general character have emerged of
which the Taniyama-Weil conjecture is only a special case, for example the con-
jecture of Serre (Serre 1987) stating in rough terms that any odd 2-dimensional
representation of the Galois group Gal(Q/Q) over a finite field must come from
a modular form.

Another result, due to Ribet (1988, to appear), is that the Taniyama-
Weil conjecture implies the full strength of Fermat’s last ‘theorem’ (FLT): if
™ +y™ = z™ with z, y, z non-zero integers, then one must have n < 2. For me,
this is the first strong evidence that FLT is true. Since the work of Kummer
and successors, and even with the work of Faltings (who proved that for any
given n > 3 there are only finitely many coprime solutions), it seemed possible
that FLT could fail for some accidental reason. Ribet’s result makes this very
implausible. Indeed, before his result, the failure of FLT would have had essen-
tially no number-theoretic implications, while the failure of the Taniyama- Weil
conjecture would have major consequences for people working in the subject
(probably as much as if the Riemann hypothesis were false).

3.2 The Birch and Swinnerton-Dyer Conjecture

The other fundamental conjecture on elliptic curves was stated by Birch and
Swinnerton-Dyer after doing quite a lot of computer calculations on elliptic
curves (Birch-Swinnerton-Dyer 1963 and 1965). For the remaining of this para-
graph, we assume that we are dealing with a curve E defined over Q and satisfy-
ing conjecture 3.1.4, for example a curve with complex multiplication, or more
generally a Weil curve. (The initial computations of Birch and Swinnerton-Dyer
were done on curves with complex multiplication).

Recall that we defined in a purely algebraic way the rank of an elliptic
curve. A weak version of the Birch and Swinnerton-Dyer Conjecture (BSD) is
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that the rank is positive (i.e. E(Q) is infinite) if and only if L(E,1) = 0. This
is quite remarkable, and illustrates the fact that the function L(E,s) which is
obtained by putting together local data for every prime p, conjecturally gives
information on global data, i.e. on the rational points.

The precise statement of the Birch and Swinnerton-Dyer conjecture is as
follows:

(3.2.1) Conjecture. Let E be an elliptic curve over Q, and assume that con-
jecture 8.1.4 (analytic continuation essentially) is true for E. Then if r is the
rank of E, the function L(E,s) has a zero of order exactly r at s =1, and in
addition

lim(s — 1) "L(E, ) = 2II(E/Q)|R(E/Q)| E(Q@)ers| ™ [ .

P

where {2 1s a real period of E (obiained by computing a complete elliptic inte-
gral), R(E/Q) ts the so-called regulator of E, which is an r X r determinant
formed by pairing in a suitable way a basis of the non-torsion points, the prod-
uct 18 over the primes of bad reduction, ¢, are small easily computed integers,
and HI(E/Q) is the most mysterious object, called the Tate-Shafarevitch group
of E.

It would carry us much too far to explain in detail these quantities. How-
ever, it can be useful to give the corresponding result for the 0-dimensional
case. The following theorem is due to Dirichlet.

(3.2.2) Theorem. Let K be a number field, and let (x(s) be the Dedekind zeta
function of K. Recall that the group of units in K (algebraic integers whose
inverses are also algebraic integers) form a finitely generated Abelian group.
Call w the order of its torsion subgroup (this is simply the number of roots of
unity in K ), and let r be its rank (equal to r1 +ro — 1, where 1 and 2ry are
the number of real and complez embeddings of K ). Then at s = 0 the function
Ck(s) has a zero of order r, and one has:

lin%) s7Ck(s) = —|CUK)|R(K)w™?,
where CI(K) is the class group of K and R(K) its regulator.

This formula is very similar to the BSD formula, with the regulator and
torsion points playing the same role, and with the class group replaced by the
Tate-Shafarevitch group, the units of K being of course the analogues of the
rational points.

(3.2.3) Remark. If one assumes Taniyama-Weil, BSD and a certain Riemann
Hypothesis, one can give an algorithm to compute the rank of an elliptic curve.
See e.g. (Mestre 1981).
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Apart from numerous numerical verifications of BSD, few results have been
obtained on BSD, and all are very deep. For example, it is only since 1987 that
it has been proved by Rubin and Kolyvagin (Kolyvagin 1988, 1989) that III
is finite for certain elliptic curves. The first result on BSD was obtained by
Coates and Wiles (Coates-Wiles 1977) who showed that if E has complex mul-
tiplication and if E(Q) is infinite, then L(E,1) = 0. Further results have been
obtained, in particular by Gross-Zagier, Rubin and Kolyvagin (see Gross-Zagier
1983 and 1986, and Kolyvagin 1988 and 1989). For example, the following is

now known:

(3.2.4) Theorem. Let E be a Weil curve. Then

1. IfL(E,1)#0 thenr =0.
2. IfL(E,1)=0and L'(E,1)#0 thenr =1

Furthermore, in both these cases |I1I| is finite, and up to some trivial fac-
tors divides the conjectural |II| involved in BSD.

The present status of BSD is essentially that very little is known when the
rank is greater than or equal to 2.

Another conjecture about the rank is that it is unbounded. This seems
quite plausible. The present record is due to Mestre (Mestre 1982) who obtained
an elliptic curve of rank 14.
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1. A Supply of Modular Forms

The word ‘modular’ refers to the moduli space of complex curves (= Riemann
surfaces) of genus 1. Such a curve can be represented as C/A where A C C is
a lattice, two lattices A; and Ay giving rise to the same curve if A; = AA; for
some non-zero complex number A. (For properties of curves of genus 1, see the
lectures of Cohen and Bost/Cartier in this volume.) A modular function assigns
to each lattice A a complex number F(A) with F(A;) = F(Ay) if A, = AA;.
Since any lattice A = Zw;+Zw, is equivalent to a lattice of the form Z7+Z with
7 (= w1 /w2) a non-real complex number, the function F is completely specified
by the values f(r) = F(Zr + Z) with 7 in C\ R or even, since f(7) = f(—7),
with 7 in the complex upper half-plane $§ = { 7 € C | S(7) > 0}. The fact
that the lattice A is not changed by replacing the basis {w1,w2} by the new
basis aw; + bwg,cw; + dws (a,b,¢,d € Z, ad — be = %1) translates into the

. . b
modular invariance property f( ar _-:__ p
cT

to §) is equivalent to looking only at bases {w;,ws} which are oriented (i.e.
(w1 /we) > 0) and forces us to look only at matrices (‘Z s) with ad — bc = +1;
the group PSLy(Z) of such matrices will be denoted Iy and called the (full)
modular group. Thus a modular function can be thought of as a complex-valued
function on $ which is invariant under the action 7 — (a7 + b)/(c7 + d) of I}
on $). Usually we are interested only in functions which are also holomorphic
on §) (and satisfy a suitable growth condition at infinity) and will reserve the
term ‘modular function’ for these. The prototypical example is the modular
invariant j(7) = e72™" 4 744 4 196884€?™7 4 ... which will be defined below
(cf. Section B). However, it turns out that for many purposes the condition of
modular invariance is too restrictive. Instead, one must consider functions on
lattices which satisfy the identity F(A;) = \*F(A;) when Ay = AA; for some
integer k, called the weight. Again the function F' is completely determined by
its restriction f(7) to lattices of the form Z7+ Z with 7 in ), but now f must
satisfy the modular transformation property

) = f(7). Requiring that T always belong

ar + b
cr+d

(1) £ ) = (er + d)* f(7)

rather than the modular invariance property required before. The advantage of
allowing this more general transformation property is that now there are func-
tions satisfying it which are not only holomorphic in £, but also ‘holomorphic
at infinity’ in the sense that their absolute value is majorized by a polynomial in
max{1,3(7)"'}. This cannot happen for non-constant I'-invariant functions
by Liouville’s theorem (the function j(7) above, for instance, grows exponen-
tially as () tends to infinity). Holomorphic functions f : $ — C satisfying
(1) and the growth condition just given are called modular forms of weight &,
and the set of all such functions—clearly a vector space over C—is denoted by
My, or My(I1). The subspace of functions whose absolute value is majorized
by a multiple of S(7)7*/2 is denoted by S or Sx(I}), the space of cusp forms
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of weight k. It is a Hilbert space with respect to the Petersson scalar product
2 (o) = [[ Froamda (ges,
ﬁ/F1

where we have written 7 as v + tv and du for the SL(2,R)-invariant measure
v 2 dudv on 9.

The definition of modular forms which we have just given may not at first
look very natural. The importance of modular forms stems from the conjunction
of the following two facts:

(1) They arise naturally in a wide variety of contexts in mathematics and
physics and often encode the arithmetically interesting information about a
problem.

(ii) The space My, is finite-dimensional for each k.

The point is that if dim M} = d and we have more than d situations giving rise
to modular forms in Mp, then we automatically have a linear relation among
these functions and hence get ‘for free’ information—often highly non-trivial—
relating these different situations. The way the information is ‘encoded’ in the
modular forms is via the Fourier coefficients. From the property (1) applied
to the matrix (‘: 3) = ((1] i) we find that any modular form f(7) is invariant
under 7 — 7+ 1 and hence, since it is also holomorphic, has a Fourier expansion
as 3 a,e?™"". The growth conditions defining My and Sx as given above are
equivalent to the requirement that a, vanish for n < 0 or n < 0, respectively
(this is the form in which these growth conditions are usually stated). What
we meant by (i) above is that nature—both physical and mathematical—often
produces situations described by numbers which turn out to be the Fourier
coefficients of a modular form. These can be as disparate as multiplicities of
energy levels, numbers of vectors in a lattice of given length, sums over the
divisors of integers, special values of zeta functions, or numbers of solutions of
Diophantine equations. But the fact that all of these different objects land in
the little spaces M} forces the existence of relations among their coefficients.
In these notes we will give many illustrations of this type of phenomenon and
of the way in which modular forms are used. But to do this we first need to
have a supply of modular forms on hand to work with. In this first part a
number of constructions of modular forms will be given, the general theory
being developed at the same time in the context of these examples.

A Eisenstein series

The first construction is a very simple one, but already here the Fourier coef-
ficients will turn out to give interesting arithmetic functions. For k even and
greater than 2, define the Eisenstein series of weight k by

(3) Gi(r) = 27rz)k Z (m7 +n)
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where the sum is over all pairs of integers (m,n) except (0,0). (The reason
for the normalizing factor (k — 1)!/2(27%)*, which is not always included in
the definition, will become clear in a moment.) This transforms like a modular
form of weight k because replacing G (7) by (er+d) "*G( %ﬁ) simply replaces
(m,n) by (am + en,bm + dn) and hence permutes the terms of the sum. We
need the condition k > 2 to guarantee the absolute convergence of the sum (and
hence the validity of the argument just given) and the condition k even because
the series with k odd are identically zero (the terms (m,n) and (—m,—n)
cancel).

To see that Gy satisfies the growth condition defining My, and to have our
first example of an arithmetically interesting modular form, we must compute

the Fourier development. We begin with the Lipschitz formula

1 -2
Z — ( _T;))' Z k—1 21rzrz (k eZZQ’ ZEﬁ),

%
oy (z+n)

which is proved in Appendix A. Splitting the sum defining G into the terms
with m = 0 and the terms with m # 0, and using the evenness of k to restrict
to the terms with n positive in the first and m positive in the second case, we

find

S -1 1
Gilr) = (27rz g nE T mZ=1( (2mi)k Z 4 (m7 + n)k)
(=D*2(k — 1)' k-1,2
— k) + 1r11"m1'
AN,
SRR ; : (=D*/2(k=1)!
where ((s) = )  — is Riemann’s zeta function. The number —EF ¢ (k)
n=1"
is rational and in fact equals — Bk , where By denotes the kth Bernoulli number
ok
( = coeflicient of i in o ), it is also equal to 1 3¢(1—k), where the definition

of ((s) is extended to negatlve s by analytic continuation (for all of this, cf.
the lectures of Bost and Cartier). Putting this into the formula for G and
collecting for each n the terms with rm = n, we find finally

4)  Gi(r)= +Zak 1(n)g" ——<<1—k>+§jak-1<n>q",

k—1

where ok_1(n) denotes } ., v (sum over all positive divisors r of n) and

it a convention that will be used from

we have used the abbreviation ¢ = ¢
now on.

The right-hand side of (4) makes sense also for k¥ = 2 (B; is equal to )
and will be used to define a function G(7). It is not a modular form (indeed,

there can be no non-zero modular form f of weight 2 on the full modular group,
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since f(7)dr would be a meromorphic differential form on the Riemann surface
5/ U{oo} of genus 0 with a single pole of order < 1, contradicting the residue
theorem). However, its transformation properties under the modular group can
be easily determined using Hecke’s trick: Define a function G3 by

o =1 / 1
Galr) = 872 1{%(2 (mt +n)2|mr+n|€>'

m,n

The absolute convergence of the expression in parentheses for ¢ > 0 shows
that G3 transforms according to (1) (with & = 2), while applying the Poisson
summation formula to this expression first and then taking the limit € N\, 0
leads easily to the Fourier development G3(7) = Ga(7) + (8xv)™! (r = u +
iv as before). The fact that the non-holomorphic function G3 transforms like
a modular form of weight 2 then implies that the holomorphic function G
transforms according to

6 G = raram-2t (Chen).

Zﬁﬁ 4m

The beginnings of the Fourier developments of the first few G are given
by

Gz(T):_21_4+‘1+3q2+4q3+7q4+6q5+12q6+8q7+15q8+...
Ga(r) = 51—0 +q+9¢% +28¢° + T3¢* +126¢° +252¢° + - -

Ge(T) = _';ﬁ + g+ 33¢2 + 244¢° +1057¢* + - --

Gs(r) = Zéa + g+ 129¢% +2188¢% + - -
G10(7)=—'—2—éz+q+513q2+.-.

Gra(7) = 6%6+q+2049q2+---

1
Gia(T) = gt 8193 + - --

Note that the Fourier coefficients appearing are all rational numbers, a special
case of the phenomenon that M} in general is spanned by forms with rational
Fourier coefficients. It is this phenomenon which is responsible for the richness
of the arithmetic applications of the theory of modular forms.

B The discriminant function

Define a function A in § by

(6) Ay =qJa-¢)*  (ren g=m)
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Then

‘3’((:)) - £ (27ri7' +24 log(1— qr)>

r=1

. > rg"
= 27r2<1 - 242 — qr>
A R .
= —tsri( =54 (S 0)a") = ~48miGa(r),

n=1 r|n

The transformation formula (5) gives

1 A A'(T)Hz ¢
(er +d)? A(%) A7) er+d
or
d ar +b d
2 — ) =—1 d)'?).
2 1og A1) = Lrog(agryer +4))

Integrating, we deduce that A(%) equals a constant times (cr + d)2A(7).

Moreover, this constant must always be 1 since it is 1 for the special matrices
(‘Z s) = ((1) i) (compare Fourier developments!) and (‘Z 3) = ((1) _01) (take 7 =
i 1) and these matrices generate I'y. Thus A(7) satisfies equation (1) with
k = 12. Multiplying out the product in (6) gives the expansion

(7)  A(T) = q — 24¢% 4 252¢> — 1472¢* + 4830¢° — 6048¢°® + 8405¢" — - - -

in which only positive exponents of ¢ occur. Hence A is a cusp form of weight
12.

Using A, we can determine the space of modular forms of all weights.
Indeed, there can be no non-constant modular form of weight 0 (it would be
a non-constant holomorphic function on the compact Riemann surface /I3 U
{o0}), and it follows that there can be no non-zero modular form of negative
weight (if f had weight m < 0, then f'2Al™ would have weight 0 and a
Fourier expansion with no constant term). Also, My is empty for k odd (take
a=d=-1,b=c=01in (1)), as is M. For k even and greater than 2, we have
the direct sum decomposition My = (Gi) @ Sk, since the Eisenstein series Gy,
has non-vanishing constant term and therefore subtracting a suitable multiple
of it'from an arbitrary modular form of weight k¥ produces a form with zero
constant term. Finally, Si is isomorphic to My_12: given any cusp form f of
weight k, the quotient f/A transforms like a modular form of weight k — 12,
is holomorphic in §) (since the product expansion (6) shows that A does not
vanish there), and has a Fourier expansion with only nonnegative powers of g
(since f has an expansion starting with a strictly positive power of ¢ and A an
expansion starting with ¢!). It follows that M} has finite dimension given by

k| <0024681012 14 16 18 ... k ... k+12 ...
dmM,] 0 101111 2 1 2 2 ...d... d+1
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It also follows, since both G and A have rational coefficients, that My has
a basis consisting of forms with rational coeflicients, as claimed previously;
such a basis is for instance the set of monomials A'Gg_15 with 0 < [ <
(k —4)/12, together with the function A¥/12 if k is divisible by 12. We also get
the first examples of the phenomenon, stressed in the introduction to this part,
that non-trivial arithmetic identities can be obtained ‘for free’ from the finite-
dimensionality of Mj. Thus both GZ and Gg belong to the one-dimensional
space Mg, so they must be proportional; comparing the constant terms gives
the proportionality constant as 120 and hence the far from obvious identity

n—1

a7(n) = o3(n) 4+ 120 Z o3(m)os(n —m).

m=1

Similarly, (240G4)® — (504G6)? and A are both cusp forms of weight 12 and
hence must be proportional. (Cf. Cohen’s lectures for the interpretation of this
identity in terms of elliptic curves.) In fact, one deduces easily from what has
just been said that every modular form is (uniquely) expressible as a polynomial
in G4 and Gé.

Comparing the Fourier expansions of the first few G as given in the last
section and the dimensions of the first few M} as given above, we notice that
Sk, is empty exactly for those values of k for which the constant term — By, /2k
of Gy is the reciprocal of an integer (namely, for £ = 2, 4, 6, 8, 10 and 14).
This is not a coincidence: one knows for reasons going well beyond the scope of
these lectures that, if there are cusp forms of weight k, there must always be
congruences between some cusp form and the Eisenstein series of this weight.
If this congruence is modulo a prime p, then p must divide the numerator of
the constant term of Gy (since the constant term of the cusp form congruent
to Gy modulo p is zero). Conversely, for any prime p dividing the numerator
of the constant term of G, there is a congruence between G and some cusp
form. As an example, for £ = 12 the numerator of the constant term of Gy, is
the prime number 691 and we have the congruence G123 = A (mod 691) (e.g.
2049 = —24 (mod 691)) due to Ramanujan.

Finally, the existence of A allows us to define the function

(r) = (240G4)° _ (1 +240q + 2160¢% + --- )3
AT TTA T T 2 12520 +
= g7 + 744 + 196884q + 21493760¢> + - - -

and see (since G and A are modular forms of the same weight on I7) that
it is invariant under the action of I on §). Conversely, if ¢(7) is any modular
function on §) which grows at most exponentially as (r) — oo, then the
function f(7) = ¢(7)A(r)™ transforms like a modular form of weight 12m and
(if m is large enough) is bounded at infinity, so that f € Mis,; by what we
saw above, f is then a homogeneous polynomial of degree m in G3 and A, so
¢ = f/A™ is a polynomial of degree < m in j. This justifies calling j(7) ‘the’
modular invariant function.
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C Theta series

We will be fairly brief on this topic, despite its great importance and interest
for physicists, because it is treated in more detail in the lectures of Bost and
Cartier. The basic statement is that, given an r-dimensional lattice in which
the length squared of any vector is an integer, the multiplicities of these lengths
are the Fourier coeflicients of a modular form of weight 7. By choosing a basis
of the lattice, we can think of it as the standard lattice Z" C R"; the square-
of-the-length function then becomes a quadratic form @ on R” which assumes
integral values on Z", and the modular form in question is the theta series

Oq(r) =) ¢%).

TeZr

In general this will not be a modular form on the full modular group I7 =
PSLy(Z), but on a subgroup of finite index. As a first example, let r = 2 and
@ be the modular form Q(z1,z2) = 2% + 2%, so that the associated theta-series,
whose Fourier development begins

Oq(7) = 1 +4¢ + 4¢% + 0¢° + 4¢* +8¢° +0¢° +0¢" +4¢° + -+,

counts the number of representations of integers as sums of two squares. This
is a modular form of weight 1, not on Iy (for which, as we have seen, there
are no modular forms of odd weight), but on the subgroup I5(4) consisting of
matrices (‘; 3) with ¢ divisible by 4; specifically, we have

00 LE) = (-1)F (e + )a(7)

for all (¢ Z) € I'y(4). To prove this, one uses the Poisson summation formula
to prove that @g(—1/47) = —2i7O@g(7); together with the trivial invariance
property Og(7+1) = Og(7), this shows that O is a modular form of weight 1

with respect to the group generated by (g _0%) and ((1) i), which contains I'5(4)
as a subgroup of index 2.

More generally, if Q) : Z"™ — Z is any positive definite integer-valued qua-
dratic form in r variables, r even, then @¢g is a modular form of weight r/2
on some group Ip(N) = {(¢ 3) €It | ¢ =0 (mod N)} with some character x
(mod N), i.e.

OQ(aT + b) = x(d)(cr +d)"?O¢g(r)  for all (Z b € I(N).

et +d d )
The integer N, called the level of @, is determined as follows: write Q(z) =
1a' Az where A is an even symmetric rxr matrix (i.e., A = (ai;), aij = aj; € Z,
a;; € 2Z); then N is the smallest positive integer such that NA™! is again
even. The character y is given by x(d) = (%) (Kronecker symbol) with

D = (=1)"/? det A. For the form Q(z1,z2) = 2% + 22 above, we have A = ((2) g),
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N =4, x(d) = (—1)(d_1)/2. As a further example, the two quadratic forms
Q1(z1,22) = 22 + 2122 + 622 and Qa(z1,22) = 22% + z125 + 322 have level
N = 23 and character x(d) = (=22) = (); the sum Ogq, (1) +20q,(r) is an
Eisenstein series 3+2 - | (zdln x(d)) g™ of weight 1 and level 23 (this is a spe-
cial case of Gauss’s theorem on the total number of representations of a natural
number by all positive definite binary quadratic forms of a given discriminant),
and the difference @g, —@g, is two times the cusp form ¢ [[,2,(1—¢")(1—¢**"),
the 24th root of A(T)A(237).

If we want modular forms on the full modular group Iy = PSLy(Z), then
we must have N = 1 as the level of (); equivalently, the even symmetric matrix
A must be unimodular. This can happen only if the dimension r is divisible by
8 (for a proof using modular forms, cf. Section D of Part 2). In dimension 8
there is only one such quadratic form @ up to isomorphism (i.e., up to change
of base in Z?®), and @ is a multiple of the Eisenstein series G4. In dimension 16
there are two equivalence classes of forms @, in dimension 24 there are 24, and
in dimension 32 there are known to be more than 80 million classes. A theorem
of Siegel tells us that the sum of the theta-series attached to all the @ of a given
dimension r, each one weighted by a factor 1/|Aut(Q)|, is a certain multiple of
the Eisenstein series (/. Notice the applicability of the principle emphasized
in the introduction that the finite-dimensionality of the spaces M}, combined
with the existence of modular forms arising from arithmetic situations, gives
easy proofs of non-obvious arithmetic facts. For instance, the theta-series of the
unique form @ of dimension 8 must be 240G, (since it has weight 4 and starts
with 1), so that there are exactly 24003(n) vectors z € Z® with Q(z) = n for
each n € N; and the two forms of dimension 16 must have the same theta-series
(since dim My == 1 and both series start with 1), so they have the same number
(= 48007(n)) of vectors of length n for every n. This latter fact, as noticed by J.
Milnor, gives examples of non-isometric manifolds with the same spectrum for
the Laplace operator: just take the tori R!%/Z® with the flat metrics induced
by the two quadratic forms in question.

Finally, we can generalize theta series by including spherical functions. If
Q : Z" — Z is our quadratic form, then a homogeneous polynomial P(z) =
P(zy1,...,z,) is called spherical with respect to Q if AgP = 0, where Agq is
the Laplace operator for @ (i.e. Ag = Z]. B—By% in a coordinate system (y) for

which Q@ = Y y?, or Ag = 2(5‘2—1—,... ,5‘%:)/1_1(%,... ,a%r)’ in the original
coordinate system, where Q(z) = 1z'Az). If P is such a function, say of degree

v, then the generalized theta-series
Oq.p(r)= Y P(z)¢%”
TEL"
is a modular form of weight 7 + v (and of the same level and character as for
P =1), and is a cusp form if v > 0. As an example, let
o? g

' 2,2 | 4,
) + 322 P(zy,22) = 27 — 62723 + 23 ;
1 2

Qz1,22) =21 + 123, Ag =
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then %@Q‘p = q—4q%+0g%+16¢* —14¢° +- - - belongs to the space of cusp forms
of weight 5 and character (=%) on Ip(4), and since this space is 1-dimensional
it must be of the form

A(T)1/6A(27_)1/12A(4T)1/6 =gq H(l _ qn)2+2gcd(n,4)_

n=1

That P(z) here is the real part of (21 +iz2)* is no accident: in general, all spheri-
cal polynomials of degree v can be obtained as linear combinations of the special
spherical functions ((*Az)”, where ¢ € C" is isotropic (i.e., Q({) = %CtAC =0).
Still more generally, one can generalize theta series by adding congruence con-
ditions to the summation over x € Z" or, equivalently, by multiplying the
spherical function P(z) by some character or other periodic function of z. As
an example of a spherical theta series of a more general kind we mention Free-
man Dyson’s identity

1 2 1:2 22 1}2 z2
Ar)= Y (%é II G —xj)) gFi+aitaitei+ai) /10

(z1,...,25)EZ° 1<i<j<5
z1+-+z5=0
z;=t (mod 5)

for the discriminant function A of Section B.

D Eisenstein series of half-integral weight

In the last section, there was no reason to look only at quadratic forms in
an even number of variables. If we take the simplest possible quadratic form
Q(z1) = z2, then the associated theta-series

O(r) = q" =1+2¢+2¢* +2¢° +- -
n€Z

is the square-root of the first example in that section and as such satisfies the
transformation equation

(20 trrattr wperes
for a certain number € = €. 4 satisfying €* = 1 (e can be given explicitly in terms
of the Kronecker symbol (£)). We say that § is a modular form of weight 1.
More generally, we can define modular forms of any half-integral weight r + %
(r € N). A particularly convenient space of such forms, analogous to the space
M) of integral-weight modular forms on the full modular group, is the space
M., L introduced by W. Kohnen. It consists of all f satisfying the transforma-

tion law f( ‘;:ig) = (ec.a(cr + d)2)27L f(7) for all (¢ 3) € I'n(4) (equivalently,

f/6*1 should be I'y(4)-invariant) and having a Fourier expansion of the form
Yon>o @(n)g™ with a(n) = 0 whenever (—1)"n is congruent to 2 or 3 modulo
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4. For r > 2 this space contains an Eisenstein series Gr+% calculated by H.
Cohen. We do not give the definition and the calculation of the Fourier expan-
sion of these Eisenstein series, which are similar in principle but considerably
more complicated than in the integral weight case. Unlike the case of integral
weight, where the Fourier coefficients were elementary arithmetic functions, the
Fourier coefficients now turn out to be number-theoretical functions of consid-
erable interest. Specifically, we have

Gyy(r) = 3 H(r,n) ¢"

n=0
(=1)"n=0or 1 (mod 4)

where H(r,n) is a special value of some L-series, e.g. H(r,0) = ((1-2r) =
(where ((s) is the Riemann zeta-function and B, the mth Bernoulli number),
H(r,1) = ¢(1 —r), and more generally H(r,n) = La(1 —r) if the number
A = (=1)"n is equal to either 1 or the discriminant of a real or imaginary
quadratic field, where the L-series L 5(s) is defined as the analytic continuation
of the Dirichlet series Y oo (%)n_s. These numbers are known to be rational,
with a bounded denominator for a fixed value of r. The first few cases are

Gor(r) = th5 — 50— 154" — 30 — &* — B¢’ — 24" — 20" — ¢'° - 44" -
G3%(T):_%_% 3_%q4_1_7§_q7_3 6q11 74q12 16q15 323q16 .
G (1) =555 + dog+ gt 4+ 2¢° +11¢° + Z8Le° + 4642 + 584" - -

G5 (7)2_1:1‘_2_{_§q3+%q4+32q7+57q8+2?50 11+529q12+992q15 .

In each of these four cases, the space M, i is one-dimensional, generated by
Gry1;in general, M, 1 has the same dimension as Mo,

Just as the case of G2, the Fourier expansion of G,/ still makes sense
for r = 1, but the analytic function it defines is no longer a modular form.
Specifically, the function H(r,n) when r = 1 is equal to the Hurwitz-Kronecker
class number H(n), defined for n > 0 as the number of PSL,(Z)-equivalence
classes of binary quadratic forms of discriminant —n, each form being counted
with a multiplicity equal to 1 divided by the order of its stabilizer in PSLy(Z)
(this order is 2 for a single equivalence class of forms if n is 4 times a square,
3 for a single class i