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Preface 

The present book contains fourteen expository contributions on various topics 
connected to Number Theory, or Arithmetics, and its relationships to Theoreti­
cal Physics. The first part is mathematically oriented; it deals mostly with ellip­
tic curves, modular forms, zeta functions, Galois theory, Riemann surfaces, and 
p-adic analysis. The second part reports on matters with more direct physical 
interest, such as periodic and quasiperiodic lattices, or classical and quantum 
dynamical systems. 

The contribution of each author represents a short self-contained course on 
a specific subject. With very few prerequisites, the reader is offered a didactic 
exposition, which follows the author's original viewpoints, and often incorpo­
rates the most recent developments. As we shall explain below, there are strong 
relationships between the different chapters, even though every single contri­
bution can be read independently of the others. 

This volume originates in a meeting entitled Number Theory and Physics, 
which took place at the Centre de Physique, Les Houches (Haute-Savoie, 
France), on March 7 - 16, 1989. The aim of this interdisciplinary meeting was 
to gather physicists and mathematicians, and to give to members of both com­
munities the opportunity of exchanging ideas, and to benefit from each other's 
specific knowledge, in the area of Number Theory, and of its applications to 
the physical sciences. Physicists have been given, mostly through the program 
of lectures, an exposition of some of the basic methods and results of Num­
ber Theory which are the most actively used in their branch. Mathematicians 
have discovered in the seminars novel domains of Physics, where methods and 
results related to Arithmetics have been useful in the recent years. 

The variety and abundance of the material presented during lectures and 
seminars led to the decision of editing two separate volumes, both published 
by Springer Verlag. The first book, entitled Number Theory and Physics, 
edited by J .M. Luck, P. Moussa, and M. Waldschmidt (Springer Proceedings 
in Physics, vol. 47, 1990), contained the proceedings of the seminars, gath­
ered into five parts: (I) Conformally Invariant Field Theories, Integrability, 
Quantum Groups; (II) Quasicrystals and Related Geometrical Structures; (III) 
Spectral Problems, Automata and Substitutions; (IV) Dynamical and Stochas­
tic Systems; (V) Further Arithmetical Problems, and Their Relationship to 
Physics. 

The present volume contains a completed and extended version of the 
lectures given at the meeting. 
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The central subject of Arithmetics is the study of the properties of rational 
integers. Deep results on this subject require the introduction of other sets. A 
first example is the ring of Gaussian integers 

Z[i] = {a +ib;(a,b) E Z2}, 

related to the representation of integers as sums of two squares of integers. 
This ring has a rich arithmetic and analytic structure; it arises in this volume 
in many different guises: in chapter 1 in connection with quadratic forms, in 
chapters 2 and 3 as the group of periods of an elliptic function, in chapter 6 
as a ring of integers of an algebraic number field, in chapter 7 it gives rise to a 
complex torus, in chapter 10 it is used as the main example of a lattice. 

A second example is the field C of complex numbers which enables one to 
use methods from complex analysis. Analytic means have proved to be efficient 
in number theory; the most celebrated example is Riemann's zeta function, 
which provides information on the distribution of prime numbers. 

There is a zeta function associated with the ring Z[i]; it is constructed 
in chapter 1 by Cartier, in connection with quadratic forms, and also defined 
in chapter 6 by Stark, as the simplest case of the (Dedekind) zeta function 
of a number field. Other examples of Dirichlet series show up in this book: in 
chapter 1, Hurwitz zeta functions, in chapter 3, the Hasse-Weil zeta function 
of an elliptic curve, in chapter 4, the Hecke L-series attached to a modular 
form, in chapter 6, the Artin L-functions attached to a character; there are 
even p-adic L-functions in chapter 9. The mode-locking problem in chapter 13 
involves another type of zeta function, which in some cases reduces to a ratio 
of two Riemann zeta functions. 

Lattices, tori, and theta functions are also met in several chapters. The 
simplest lattice is Z in JR. The quotient is the circle (one-dimensional torus), 
which is studied in chapter 14. Lattices are intimately connected with elliptic 
curves and Abelian varieties (chapters 1, 2, 3, 5); they play an important role in 
Minkowski's geometry of numbers (chapter 10) and in Dirichlet's unit theorem 
(chapter 6). They arise naturally from the study of periodic problems, but their 
role extends to the study of quasiperiodic phenomena, especially in quasicrys­
tallography (chapter 11). They deserve a chapter for their own (chapter 10). 
Theta functions were used by Jacobi to study sums of four squares of rational 
integers. They can be found in chapters 1, 2, 3, 5 and 10. 

Let us now give a brief description of the content of each chapter. 
In chapter 1 Cartier investigates properties of the Riemann's zeta function, 

with emphasis on its functional equation, by means of Fourier transformation, 
Poisson summation formula and Mellin transform. He also decomposes the zeta 
function attached to Z[i] into a product of the Riemann zeta function and a 
Dirichlet L-series with a character. This chapter includes exercises, which refer 
to more advanced results. 

The set Z [i] is the simplest example of a lattice in the complex plane. 
When L is a general lattice in C, the quotient group Cj L can be given the 
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structure of an algebraic Abelian group, which means that it is an algebraic 
variety, and that the group law is defined by algebraic equations. 

If L is a lattice in higher dimension (a discrete subgroup of en) the quo­
tient en / L is not always an algebraic variety. Riemann gave necessary and 
sufficient conditions for the existence of a projective embedding of this torus 
as an Abelian variety. In this case theta functions give a complex parametriza­
tion. The correspondence between Riemann surfaces (see chapter 7), algebraic 
curves, and Jacobian varieties is explained by Bost in chapter 2. He surveys var­
ious definitions of Riemann surfaces, characterizes those defined over the field 
of algebraic numbers, discusses the notion of divisors and holomorphic bundles, 
including a detailed proof of the Riemann-Roch theorem. Various constructions 
of the Jacobian are presented, leading to the general theory of Abelian varieties. 
This thorough presentation can be viewed as an introduction to arithmetic va­
rieties and Diophantine geometry. 

Coming back to the one-dimensional case, a possible definition of an elliptic 
curve (chapter 3) is the quotient of e by a lattice L. The case L = Z[i] is rather 
special: the elliptic curve has non trivial endomorphisms. It is called of complex 
multiplication (CM) type. We are not so far from down-to-earth arithmetic 
questions; Cohen mentions a connection between the curve y2 = x 3 -36x (which 
is 'an equation' of our elliptic curve) and the congruent number problem of 
finding right angle triangles with rational sides and given area. One is interested 
in the rational (or integral) solutions of such an equation. One method is to 
compute the number of solutions 'modulo p' for all prime numbers p. The 
collection of this data is recorded in an analytic function, which is another 
type of Dirichlet series, namely the L-function of the elliptic curve. According 
to Birch and Swinnerton-Dyer, this function contains (at least conjecturally) a 
large amount of arithmetic information. 

Once the situation for a single elliptic curve is understood, one may wonder 
what happens if the lattice is varied. One thus comes across modular problems. 
A change of basis of a lattice involves an element of the modular group SL2(Z), 
acting on the upper half plane. Once more analytic methods are relevant: one 
introduces holomorphic forms in the upper half plane, which satisfy a functional 
equation relating fer) to f((ar + b)/(cr + d)). The modular invariant j(r), 
the discriminant function .1, Eisenstein series satisfy such a property. Taking 
sublattices induces transformations on these modular forms which are called 
Hecke operators. These operators act linearly on a vector space of modular 
forms; they have eigenvectors, and the collection of eigenvalues is included 
in a Dirichlet series, which is Hecke's L-series. An interesting special case is 
connected with the .1 function: the coefficient of qn in the Fourier expansion 
is Ramanujan's r function. In chapter 4 Zagier completes this introduction to 
modular forms by explaining the Eichler-Selberg trace formula which relates 
the trace of Hecke operators with the Kronecker-Hurwitz class number (which 
counts equivalence classes of binary quadratic forms with given discriminant). 

In chapter 5 Gergondey also considers families of elliptic curves. He starts 
with the function 
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'I93(Z I r) = ,2::>2i1l"(nz+(n2 /2)r) 

nEZ 

which is a solution of the heat equation. For fixed r, this is an example of a theta 
function with respect to the lattice Z + Zr; quotients of such theta functions 
give a parametrization of points on an elliptic curve. For fixed z, the variable 
r parametrizes lattices; but the so-called 'theta-constant' 'I9 3(r) = '19 3 (0 I r) 
is not a modular function: it is not invariant under isomorphisms of elliptic 
curves. The solution which is proposed is to change the notion of isomorphism 
by adding extra structures (it will be harder for two objects to be isomorphic: 
the situation will be rigidified). Moduli spaces thus obtained are nicer than 
without decoration. 

Stark discusses in chapter 6 classical algebraic number theory. With al­
most no prerequisite one is taught almost the whole subject, including class 
field theory! He starts with Galois theory of algebraic extensions (with explicit 
examples: all subfields of Q( i, 21/ 4 ) are displayed; another example involves a 
Jacobian of a curve of genus 2). He studies the ring of integers of an algebraic 
number field by means of divisor theory, avoiding abstract algebraic considera­
tions. The Dedekind zeta function of a number field is introduced, with its func­
tional equation, and its decomposition into a product of L-functions. Dirichlet 
class number formula proves once again the efficiency of analytic methods. The 
Cebotarev density theorem (which generalizes Dirichlet's theorem on primes in 
an arithmetic progression) is also included. 

We mentioned that the quotient CjZ [i] has the structure of an algebraic 
variety. This is a Riemann surface, and a meromorphic function on this surface 
is just an elliptic function. More generally, to a plane algebraic curve is associ­
ated such a surface, and coverings of curves give rise to extensions of function 
fields. Therefore Galois theory applies, as described by Reyssat in chapter 7. A 
useful way of computing the genus of a curve is the Riemann-Hurwitz formula. 
An application is mentioned to the inverse Galois problem: is it true that each 
finite group is the Galois group of an algebraic extension of Q ? 

The quotient of the upper half plane by the modular group r(7) is a curve 
of genus 3 with a group of 168 automorphisms; this curve is connected with a 
tessellation of the unit disc by hyperbolic triangles. By comparing Figure 12 
of chapter 2, or Figure 14 of chapter 7, with the illustration of the front cover, 
the reader will realize easily that M.C. Escher's 'Angels and Demons' has been 
chosen for scientific reasons1 , and not because the meeting gathered Physicists 
and Mathematicians. 

There is still a third type of Galois correspondence, in the theory of linear 
differential equations. This is explained in chapter 8 by Beukers (who could 

1 If one forgets about the difference between angels and demons, the group of hy­
perbolic isometries preserving the picture is generated by the (hyperbolic) mirror 
symmetries in the sides of a triangle with angles 7r /2, 7r / 4, 7r /6. If one really wants 
to distinguish between angels and demons, one has to take a basic triangle which 
is twice as big, with angles 7r /2, 7r /6, 7r /6. Such groups are examples of Fuchsian 
groups associated with ternary quadratic forms, or quaternion algebras. 
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not attend the meeting). While the classical Galois theory deals with relations 
between the roots of an algebraic equations, differential Galois theory deals 
with algebraic relations between solutions of differential equations. Algebraic 
extensions of fields are now replaced by Picard-Vessiot extensions of differen­
tial fields. Kolchin's theorem provides a solution to the analytic problem which 
corresponds to solving algebraic equations with radicals. Another type of alge­
braic groups occurs here: the linear ones. Beukers also gives examples related 
to hypergeometric functions. 

Analytic methods usually involve the field of complex numbers: C is the 
algebraic closure of JR., and JR. is the completion of Q for the usual absolute value. 
But Q has other absolute values, and ultrametric analysis is also a powerful 
tool. This is the object of chapter 9 by Christol. There is a large family of p-adic 
functions: exponential, logarithm, zeta and gamma functions, etc. Connections 
between the ring of adelic numbers Z and the Parisi matrices are pointed out. 

Chapter 10, by Marjorie Senechal, deals with lattice geometry, a vast sub­
ject at the border between mathematics and physics, with applications ranging 
from integer quadratic forms to crystallography. The topics of Vorono! poly­
topes, root lattices and their Coxeter diagrams, and sphere packings, are cov­
ered in a more detailed fashion. 

The next chapter is devoted to quasiperiodic lattices and tilings, which 
model the quasicrystalline phases, discovered experimentally in 1984. Katz uses 
the description of quasiperiodic sets of points as cuts of periodic objects in a 
higher-dimensional space. These objects are periodic arrays of 'atomic surfaces', 
which are placed at the vertices of a regular lattice. Several aspects of quasicrys­
tallography are considered within this framework, including the Fourier trans­
form and Patterson analysis, considerations about symmetry (point groups, 
self-similarity), and the possibility of growing a perfect quasiperiodic lattice 
from local 'matching rules'. 

The last three chapters involve concepts and results related to the theory of 
dynamical systems, in a broad sense, namely, the study of temporal evolution, 
according to the laws of either classical or quantum mechanics. 

In chapter 12, Bellissard presents an overview of the consequences of al­
gebraic topology, and especially K-theory, on the spectra of Hamiltonian or 
evolution operators in quantum mechanics. The main topic is the gap labelling 
problem. Several applications are discussed, including the propagation of elec­
trons on a lattice in a strong magnetic field, the excitation spectra of qua­
sicrystals, and various one-dimensional spectral problems, in connection with 
sequences generated by automata or substitutions. 

Cvitanovic deals with circle maps in chapter 13. These provide examples 
of classical dynamical systems which are both simple enough to allow for a de­
tailed and comprehensive study, and complex enough to exhibit the many fea­
tures referred to as 'chaos'. The mathematical framework of this field involves 
approximation theory for irrational numbers (continued fraction expansions, 
Farey series). 

The last chapter is devoted to yet a different aspect of dynamical systems, 
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known as 'small divisor problems'. This name originates in the occurrence of 
small divisors in the calculations of the stability of a periodic orbit of a Hamilto­
nian dynamical system under small perturbations. Yoccoz reviews the progress 
made in the understanding of the behavior of periodic orbits throughout this 
century, starting with the pioneering works by Poincare and Denjoy. 

Let us finally emphasize that the title of this book reveals our conviction 
that number-theoretical concepts are becoming more and more fruitful in many 
areas of the natural sciences, as witnessed by the success of the meeting during 
which part of the material of this book has been presented. 
Saclay and Pari8, May 1992. 

M. Wald8chmidt, P. Mou88a, J.M. Luck, C. Itzybon 

We take advantage of this opportunity to thank again Prof. N. Boccara, the 
Director of the Centre de Physique, for having welcomed the meeting on the premises 
of the Les Houches School, with its unique atmosphere, in a charming mountainous 
setting, amongst ski slopes (see 'Quasicrystals: The View from Les Houches', by M. 
Senechal and J. Taylor, The Mathematical Intelligencer, vol. 12, pp. 54-64, 1990). 

The Scientific Committee which organized Number Theory and Physics was com­
posed of: J. Bellissard (Theoretical Physics, Toulouse), C. Godreche (Solid State 
Physics, Sa.clay), C. Itzykson (Theoretical Physics, Saclay), J.M. Luck (Theoreti­
cal Physics, Saclay), M. Mendes France (Mathematics, Bordeaux), P. Moussa (The­
oretical Physics, Saclay), E. Reyssat (Mathematics, Caen), and M. Waldschmidt 
(Mathematics, Paris). The organizers have been assisted by an International Ad­
visory Committee, composed of Profs. M. Berry (Physics, Bristol, Great-Britain), P. 
Cvitanovic (Physics, Copenhagen, Denmark), M. Dekking (Mathematics, Delft, The 
Netherlands), and G. Turchetti (Physics, Bologna, Italy). 

The following institutions are most gratefully acknowledged for their generous fi­
nancial support to the meeting: the Departement Mathematiques et Physique de Base 
of the Centre National de la Recherche Scientifiquej the Institut de Recherche Fon­
damentale of the Commissariat it I'Energie Atomiquej the Direction des Recherches, 
Etudes et Techniques de la Delegation Generale pour I'Armement (under contract 
number 88/1474)j the French Ministere de I'Education Nationalej the French Min­
istere des Affaires Etrangeresj and the Commission of the European Communities. 
The regretted absence of support from NATO finally turned out to allow a more 
flexible organization. 
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Chapter 1 

An Introduction to Zeta Functions 

by Pierre Cartier 

Table of Contents 

Introd uction 

1. Riemann's zeta function 
1.1. Definition 
1.2. Bernoulli polynomials 
1.3. Euler-MacLaurin summation formula 
1.4. Analytic continuation of the zeta function 
1.5. Some special values of the zeta function 
1.6. Hurwitz zeta function 
1. 7. Dirichlet L-series 

2. Gaussian integers 
2.1. A modicum of plane crystallography 
2.2. Divisibility of Gaussian integers 
2.3. Gaussian primes and factorization 
2.4. Classification of Gaussian primes 
2.,5. Sums of squares 
2.6. The zeta function of Z[i] 

3. Functional equation 
3.1. A short account of Fourier transformation 
3.2. Poisson summation formula 
3.3. Transformation properties of theta functions 
3.4. Mellin transforms: general theory 
3.5. Some examples of Mellin transforms 
3.6. Functional equation of Dirichlet series 
3.7. Application to quadratic forms 

Notations: N set of integers 0,1,2"", Z set of rational integers 0, ±1, ±2, ±3,"', 
lR. set of real numbers, <C set of complex numbers, Re z and 1m z real and imaginary 
part of a complex number z. 0 is counted as a positive number. We say strictly 
positive for a positive number different from O. We use the standard notation f( x) = 
o (g( x)) for x near Xo to mean that there exists a constant C > 0 such that 

If(x)1 ::; Clg(x)1 for all x in a neighborhood of Xo. 



2 Chapter 1. An Introduction to Zeta Functions 

Introduction 

In this Chapter, we aim at giving an elementary introduction to some functions 
which were found useful in number theory. The most famous is Riemann's zeta 
function defined as follows 

00 

(1) ((8) = L n-S = II(l- p-sr1 

n=l p 

(where p runs over all prime numbers). This function provided the key towards 
a proof of the prime number distribution: as it was conjectured by Gauss and 
Legendre before 1830 and proved by Hadamard and de La Vallee Poussin in 
1898, the number 7l"(x) of primes p such that p ~ x is asymptotic to x/log x. 

Around 1740 Euler, in a amazing achievement, was able to calculate the 
sums of the series ((2r) = l::::"=l n-2r for r = 1,2, .... In particular he found 
the following results 

00 2 L -2 7l" n =-
6 

n=l 

00 4 
'"""' -4 7l" L...J n = 90' .... 
n=l 

In general ((2r)j7l"2r is a rational number, closely connected to the Bernoulli 
numbers. These numbers Bm are defined by their generating series 

00 

(2) z z '"""' 2" coth 2" = 1 + L...J Bmzmjm!. 
m=2 

Euler knew both the series expansion and the product formula for ((8) given 
in (1). These definitions make sense in the half-plane Re s > 1 but at the 
time of Euler there was little justification for considering ((8) beyond this 
natural domain of existence. This fact didn't prevent Euler from considering 
((0), (( -1), ... and one of his most striking results may be expressed as follows 

(3) Bm = -m ((1 - m) for m=2,3, .... 

Around 1850, Riemann clarified the meaning of the analytic continuation and 
used immediately this new tool in the case of (( 8), thus vindicating the previous 
formula. 

In Section 1, we give a very elementary exposition of the theory of ((8) 
which should be accessible to any reader with a working knowledge of infinites­
imal calculus and of the basic facts connected with Fourier series. It is truly 
Eulerian mathematics. We perform the analytic continuation of ((8) by us­
ing Euler-MacLaurin summation formula. The method is elementary and very 
direct and extends to various generalizations of ((8), namely Hurwitz zeta 
function ((8,V) and the Dirichlet L-series L(X,8) associated to the Dirichlet 
characters. We prove all the above mentioned results. While mentioning the 
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functional equation for (( s), we refrain from proving it at this stage, and we 
postpone such a proof to Section 3. 

In Section 2, we explain the geometric and number theoretical facts con­
nected with Gaussian integers. The theory of these numbers, of great intrinsic 
beauty, is also important in the plane crystallography; it provides one of the test 
examples for the methods of Geometry of Numbers, and similar considerations 
playa very important role in the theory of elliptic functions. 

We are primarily interested in the corresponding zeta function 

(4) 

the summation being extended over all pairs (m, n) of integers (of both signs). 
The dash over E indicates that the pair m = n = 0 has to be excluded. Of 
particular importance is the factorization 

(5) Z4(S) = 4((s)L(s) 

where ((s) is Riemann's zeta function, the other factor being defined by 

(6) 

This very compact formula contains the main results obtained by Fermat and 
Jacobi about the representation of an integer as a sum of two squares. 

The quadratic form m 2 + n 2 is intimately connected with the Gaussian 
integers of the form m + ni, where i 2 = -1 and m, n are ordinary integers. We 
give all necessary details in this case and just give hints about a very parallel 
case, namely the quadratic form m 2 + mn + n 2 and the corresponding numbers 
m + nj where j is a cubic root of unity (p = 1). It was left to Dirichlet 
(around 1840) to extend these results to the general binary quadratic form 
am2 +bmn+cn2 , after arithmetical investigations by Gauss. The corresponding 
zeta functions are ofthe form E:" n(am2 +bmn+cn2 )-S and can be generalized 
in two different directions: ' 

a) Epstein's zeta functions are associated with quadratic forms in any 
number of variables Ei,j aijmimj. 

b) Dedekind's zeta functions are associated with fields of algebraic numbers 
and form the subject of Stark lectures in this volume. 

In Section 3, we introduce two powerful analytical tools : Poisson sum­
mation formula and Mellin transformation. Both are classical and have been 
extensively used in analytic number theory. In such a subject, it's difficult to 
innovate, but we believe that the method used for the analytic continuation 
of Mellin transforms is not completely orthodox. It relies on Hadamard finite 
parts and one of its main advantages is the ease with which one uncovers the 
structure of poles of the extended functions. We prove the functional equation 
by one of the classical methods, namely the one connected with theta series. 
These series provide one of the most efficient tools in all sectors of analytic 
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number theory. In the oral lectures we gave more emphasis to them, especially 
in the multidimensional case. They would deserve a more thorough treatment 
than the one offered in this Chapter. Our regret is somewhat alleviated by the 
existence of many wonderful textbooks, among which we give a special mention 
to Bellman (Bellman 1961) and Mumford (Mumford 1983). 

Warning: The so-called 'exercises' are an integral part of this Chapter. Much 
information has been given there is a more sketchy form than in the main text, 
and is necessary for a complete understanding of the theory. 

1. Riemann's zeta function 

1.1. Definition 

We consider at first the values of ((8) for complex numbers in the half-plane 
defined by Re 8 > 1. We can use the convergent series, where n runs over all 
strictly positive integers 

00 

(1.1) ((8) = L n-s , 

n=1 

or an infinite product extended over all prime numbers 

(1.2) 
1 

((8) = II . 1- p-s 
p 

To prove the convergence of the series (1.1), one can compare it with the integral 
It x-sdx, which converges exactly when Re 8 > 1. According to classical 
results, the convergence of the product (1.2) is equivalent to that of the series 
2:p P-s, where P runs over the prime numbers. This last series can be written 
as 2::'1 enn-s, where en is 1 or 0 depending on the fact that n is a prime or 
not. The convergence is implied by that of the series (1.1). To show that the 
series 2:::'=1 n-s defines the same function of 8 as the product I1p(1 _ p- S )-I, 
expand every term in the product as a geometric series 

00 

(1.3) (1 - p- s )-1 = 1 + L ap,n 

n=1 

with ap,n = p-ns . The product of these series, for p running over all primes, is 
a sum of all terms of the form 

(1.4) 

where PI, ... ,Pk are prime numbers in increasing order PI < P2 < ... < Pk and 
where nl, ... , nk are integers equal to 1,2, .... The product (1.4) is nothing else 
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than N-s where N is equal to p~' ... p~k. According to the unique decompo­
sition of a number as a product of primes, every power N-s with N equal to 
1,2, ... , occurs exactly once in the development of the product TIp(l _ p-s)-l. 
This proves the equivalence of the definitions (1.1) and (1.2). 

We want now to prove the following result: 

The function ((3) extends to a meromorphic function in the complex plane 
C, where the only singularity is a pole of order 1 for 3 = 1, with residue equal 

to 1 (in other terms ((3) - 3 ~ 1 extends to an entire function). 

Our proof is an elementary one based on Bernoulli numbers, Bernoulli poly­
nomials and Euler-MacLaurin summation formula. It's one proof among many 
known ones. 

1.2. Bernoulli polynomials 

We use the following generating series for Bernoulli polynomials 

00 

(1.5) L Bn(x)zn In! = ze xz /(e Z -1). 
n=O 

The n-th Bernoulli number is the constant term of the n-th Bernoulli polyno­
mial, namely 

(1.6) 

These numbers are given by the following generating series 

00 

(1. 7) LBnzn/n! = z/(e Z -1). 
n=O 

Here are some simple consequences. It is obvious that the function 

z z z ez / 2 + e- z / 2 

e Z - 1 + 2" = 2" ez/2 - e- z / 2 

is an even function. Hence we get Bl = -1/2, while Bn is 0 for any odd number 
n ~ 3. 

A variant of Cauchy's rule for multiplying power series is obtained as 
follows. The product of the two exponential generating series 

00 

(1.8) r(z) = LcnZn/n! 
n=O 

and 
00 

(1.9) .1(z) = L dnz n In! 
n=O 
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is given by 

00 

(1.10) r(z)Ll(z) = I>nzn In! 
n=O 

where the rule for the coefficients is 

(1.11) 

An interesting case occurs when Ll(z) = eXz , that is dn = xn. We have there 

00 

(1.12) r(z)eXZ = L Cn(x)zn In! 
n=O 

where the polynomials Co( x), C l (x), ... are derived from the constants Co, Cl, ... 
by means of the definition 

(1.13) 

The function G(x, z) = r(z)e XZ is completely characterized by the following 
two properties 

(1.14) 
a 

ax G(x, z) = z G(x, z) 

(1.15) G(O, z) = r(z). 

These properties can be translated as the following characterization of the 
polynomials Cn(x), where n = 0,1,2, ... 

(1.16) 

(1.17) 

The case n = 0 of formula (1.16) has to be interpreted as dColdx = 0, that is 
Co(x) is the constant Co; by induction on n, it follows that Cn(x) is a polynomial 
of degree n in x. 

Let us specialize these results. If we assume that the Bernoulli numbers 
are already known, the Bernoulli polynomials are characterized by the following 
formulas (for n = 0,1,2, ... ) 

(1.18) 

(1.19) 

d 
dx Bn(x) = n Bn-l(x), 

Bn(O) = Bn. 
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Note also the generating series 

00 00 

(1.20) 
n=O n=O 

and the explicit formula 

(1.21 ) 

The series (3(z) = "£':=0 Bnzn In! is in fact characterized by the relation 
eZ (3(z) - (3(z) = z. Using (1.5), this amounts to 

(1.22) 

that is 

(1.23) 

(1.24) 

00 

L {Bn(l) - Bn(O) }zn In! = z 
n=O 

Bn(l) = Bn(O) for n ~ 2, 

BI(l) = BI(O) + 1. 

More explicitly, we get the inductive formula 

(1.25) for m ~ 1 

with initial condition Bo = 1. This enables us to calculate easily the following 
table: 

B2 = +1/6 
B4 = -1/30 
B6 = +1/42 

Bs = -1/30 
BIO = +5/66 
B12 = -691/2730. 

Recall that BI = -1/2 and B3 = B5 = B7 = ... = o. A more extended 
table is given by Serre (Serre 1970, page 147), but notice that our B2k is denoted 
by (_1)k+1 Bk in Serre's book. 

Exercise 1 : (symbolic method). If a function f(x) can be developed as a power 
series f(x) = "£':=0 anxn, one defines symbolically feB) as the sum "£':=0 anBn 
(the power B n is interpreted as the n-th Bernoulli number Bn). With this 
convention, express the definition of Bernoulli numbers by eBz = z/(eZ - 1), 
or else e(B+l)z = eBz + z. The recurrence equation (1.25) can be written as 
Bn = (B + It for n ~ 2, and the definition of Bernoulli polynomials can be 
expressed by Bn( x) = (x + B)n. 

Exercise 2 : Generalize formulas (1.23) and (1.24) as follows 

B n(x+1)=Bn(x)+nx n- 1 for n=1,2, .... 
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Derive the summation formula 

1n +2n + ... +Nn = B n+1(N+1)-Bn+1 . 

n+1 

Exercise 3 : Plot the graphs of the functions Bn(x) in the range 0 ::; x ::; 3, 
1 ::; n ::; 4. 

1.3. Euler-MacLaurin summation formula 

Let us consider a real valued function f(x) defined in an interval a ::; x ::; b 
whose end points a and b are integers; assume that f( x) is n times continuously 
differentiable for some integer n 2: 1. Any real number t can be written uniquely 
in the form t = m + () where m is an integer and 0 ::; () < 1; we call m the 
integer part of t and denote it by [t]. 

We denote by B n (x) the function of a real variable x which is periodic, 
with period 1, and coincides with Bn(x) in the fundamental interval [0,1[. 
Explicitly, we get 

(1.26) 

It is clear that B 0 (x) = 1 and that 

(1.27) 
- 1 
B 1(x)=x-[x]-2' 

Hence the function B 1 (x) admits discontinuities at the integral values of x, with 
a jump equal to -1 (see fig. 1). For n ~ 2, the function B n (x) is continuous. 

Exercise 4 : Plot the graphs of the functions Bn(x) in the range 0 ::; x ::; 3, 
2 ::; n ::; 4. 

According to formula (1.18), the function Bn(x) admits derivatives of any order 
k ::; n - 2, which are continuous functions given by 

(1.28) 
.,.{k) -
Bn (x) = n(n -1)··· (n - k + l)Bn_k(x). 

The derivative of order n - 1 of Bn(x) is equal to n! B1(x) with a jump for 
every integral value of x. One more derivation gives 

dn 
dxn Bn(x) = n!(l- L8(x - k)) 

kEZ 

(1.29) 

using Dirac 8-functions. 

We state now Euler-MacLaurin summation formula 

(1.30) 

b-l b n 

Lf(r) = 1 f(x) dx + L ~~ {f(k-l)(b) - j<k-l)(a)} 
r=a a k=l 

( l)n-l fb 
+ - n! Ja Bn(x)f(n)(x) dx . 
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1/2 

x 

-1/2 

Fig.!. Gra.ph of function B1 (x). 

Proof. A) Any integral over the interval [a, b) splits as a sum of b - a integrals, 
each one extended over an interval [r, r + 1) for r = a, a + 1, ... , b - 1. The 
above formula is an immediate consequence of a similar formula for each of 
these subintervals, and this fact enables us to reduce the proof to the case of 
an interval of length b - a equal to 1. Replacing the integration variable x by 
y + a where y runs over [0,1) reduces therefore the proof to the case a = 0, 
b = 1. 

B) In this last case, we have to prove the formula 

(1.31) 

f(O) = 11 f(x) dx + ~ ~~ {f(k-1)(1) - f(k-l)(O)} 

+ (_1);-1 11 Bn(x)j(n)(x) dx . 
n. 0 

We begin with the case n = 1, which reads as follows 

(1.32) f(O) = 11 f(x) dx + B1U(1) - f(O)) + 11 B1(x) df(x). 

But an integration by part gives 
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and since B1(X) = x - t, we get 

11 1 11 
o B1(x) df(x) = 2{f(l) + f(O)}- 0 f(x) dx. 

Formula (1.32) follows since B1 is equal to -1/2. To make the induction from 
n to n + 1 in formula (1.31), we transform in a similar way the last integral 
by integration by part. Since the derivative of Bn+1(x)/(n + I)! is equal to 
Bn(x)/n!, we get 

(_I)n-1 11 Bn(x) f(n)(x) dx = (_I)n-1 11 dBn+1(X) f(n)(x) 
n! 0 (n+l)! 0 

_ (_I)n-1 ( ) (n)( IX=l (_I)n 11 ( (n)() 
- ( )' Bn+1 x f x) x=O + ( )' Bn+1 x) df x n+l. n+l. o 

= (_I)n+1 Bn+1{f(n)(I) _ f(n)(o)}+ (_I)n 11 BnH(x) j<nH)(x) dx. 
(n+l)! (n+l)! 0 

But, let us remark that for n ~ 1, Bn+1 is 0 if n is even, and that (_I)n+1 is 
1 if n is odd; we can drop therefore the sign (_I)nH in front of B nH . This 
calculation establishes the equality 

(_I)n-1 11 Bn(x) f(n)(x) dx = Bn+1 {f(n)(I) _ j<n)(o)} 
n! 0 (n+l)! 

(_I)n 11 B () f(n+1)( ) d 
+ (n + I)! 0 n+1 x x x 

and this formula provides us with the inductive step from n to n + 1 in (1.31). 
o 

Exercise 5 : Let g( x) be any primitive function of f( x). If we let n go to infinity 
in Euler-MacLaurin formula, we get 

b-1 = 
Lf(r) = {g(x) + Lg(k)(x) Bk/k!}I::~; 
r=a k=l 

according to the symbolic method of exercise 1, we can write 

b-1 

(1.33) Lf(r) =g(b+B)-g(a+B) 
r=a 

or even more boldly 

(1.34) 
b-1 HB 

L fer) = 1 f(x) dx. 
r=a a+B 

The particular case b - a = 1 can also be written as 
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(1.35) g'(x) = g(x + B + 1) - g(x + B). 

Exercise 6 : Let us denote by D the derivation operator. In operator form, 
Taylor's formula is expressed as 

(1.36) g(x + 1) = (eDg)(x). 

If we use the generating series j3( z) = 2:::"=0 Bnzn / n! for the Bernoulli numbers, 
we can write 

(1.37) g(x + B) = (j3(D)g)(x). 

The operator form of formula (1.35) is therefore 

D = (e D -l)j3(D) 

and this agrees with formula (1.7) which reads as j3(z) = z/(e Z -1). 

Exercise 7 : Using the fact that Bl = -1/2 and that Bk = 0 for odd k, k 2: 3, 
transform Euler-MacLaurin formula as follows 

(1.38) 

According to the symbolic method of exercise 5, derive the formulas 

(1.39) 
b b-B b 

L f(1") = 1 f(x) dx = 1 f(x - B)dx 
r=a+l a-B a 

and 

(1.40) g'(x) = g(x - B) - g(x - B-1). 

1.4. Analytic continuation of the zeta function 

We consider a complex number s and two integers n > 1, N > 2. We use 
Euler-MacLaurin formula in the case 

f(x)=x- S , a=l , b=N 

and derive the relation 
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(1.41 ) 

N 1 _ N 1-s 1 + N-s L r- s = 8 _ 1 + ----:2,----­
r=l 

n 

+ L Bk8(8 + 1)··· (8 + k - 2)(1 - N- s -k+l )/k! 
k=2 

-~8(8 + 1)··· (8 + n - 1) fN Bn(x) x-s-ndx. 
n. J1 

We consider first the case Re 8 > 1 where the series 2::1 r- s converges with 
sum (( 8). If we let N go to infinity in the previous formula, we get 

(1.42) 
{

II n 

((8) = -+- + " B k8(8 + 1)··· (8 + k - 2)/k! 
8-1 2 ~ 

k=2 

1 100
--,8(8 + 1)··· (8 + n -1) Bn(x) x-s-ndx. 

n. 1 

All these formulas, for n = 1,2,· .. , are valid in the said half-plane. In particular, 
for n = 1, we get 

(1.43) 1 1 100 1 -s-l ((8)=--+--8 (x-[x]--)x dx. 
8-1 2 1 2 

The fundamental remark is that the function Bn(x) is periodic, namely we 
have Bn(x + 1) = Bn(x), hence it remains bounded over the whole interval 
[1, +00[. Hence the integral 

will converge provided that Re 8 > 1 - n. It follows that the right-hand side of 
formula (1.42) defines a function (n(8) holomorphic in the half-plane defined 
by Re 8 > 1 - n. Since the derivative of Bn(x) is equal to nBn- 1(x), an 
integration by part shows that (n (8) and (n+1 (8) agree on their common domain 
Re 8 > 1- n. It follows that there exists in the complex plane C a meromorphic 
function ((8) whose only singularity is a pole of order 1 at 8 = 1, which is given 
in the half-plane Re 8 > 1 - n by the formula (1.42). In particular, formula 
(1.43) is valid whenever Re 8 > o. 
Exercise 8 : Using formulas (1.41) and (1.42) show that, for fixed 8 and for N 
going to infinity, the quantity 

(1.44) 

has an asymptotic expansion 

N 1-s N- s B B 
__ + ___ ~8N-1-s _ ... _ n+1 8(8+ 1) ... (8+n-1)N- s- n _ .... 
1-8 2 2 (n+1)! 
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Let us truncate these series after the last term which doesn't tend to 0 with 
l/N (make this precise!). Then one gets, for every complex number s =1= 1, 

(s) = lim {1- S + T S + ... + N- s - E~(N)} 
N-+oo 

where E~(N) is the truncated series. 

Exercise 9 : Using our symbolic notations, transform the previous formulas as 
follows 

(1.45) Es(N) = (N - B)l-s /(1 - s) 

(1.46) (s) = 1 - (1 - B)l-S /(1 - s). 

1.5. Some special values of the zeta function 

Letting n = 2 in formula (1.42), we get the following representation for (s) in 
the half-plane Re s > -1 

(1.47) 
1 1 1 1 /,00_ 

(s) = s _ 1 + 2 + 12 s - 2s(s + 1) 1 B 2 (x)x- S
-

2 dx. 

We get immediately 

(1.48) 

More generally, let m 2: 1 be an integer and put s = -m, n = m + 2 in 
formula (1.42). The coefficient of the integral is equal to the value for s = -m 
of the product s(s + 1)··· (s + m)(s + m + 1), hence vanishes. Similarly, in the 
summation over k, the term with k = m + 2 vanishes for s = -m. Hence we 
get 

(1.49) 
m+l () 

( -m) = __ 1_ + ! _ '" ( _1)k Bk _m-,-m_-_l-,-.---,. -,-:. (_m_-_k_+-,-2) 
m+l 2 ~ k!· 

k=2 

We know that Bk is 0 if k is odd and k 2: 2. We can therefore replace (_I)k Bk 
by Bk in the preceding formula, hence 

(1.50) 
m+l ( 1) 

-em + 1)( -m) = (; m: Bk. 

Taking into account the recurrence formula (1.25) for the Bernoulli numbers, 
we conclude 

(1.51 ) (-m) = _ Bm+l. 
m+l 
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Distinguishing the cases where m is even or odd, we can conclude: 

(1.52) { (( -2r) = 0 
(( -2r + 1) = -B2r/2r 

for r = 1,2, .... We include a short table 

1 1 1 1 
((0) = -"2 ' ((-1) = -12 ' ((-3) = 120 ' ((-5) = - 252 

(( -2) = ((-4) = ((-6) = ... = O. 

Exercise 10 : Fix an integer m 2: 1. Using notations as in exercise 8, show that 
the asymptotic expansion of E_m(N) has finitely many terms, and deduce the 
equality 

Here E_m(N) is a polynomial in N, written symbolically 

E_m(N) = (N - Br+1 /(m + 1). 

Using exercise 2, prove that the constant term of the polynomial E_m(N) is 
equal to -(( -m) and give a new prooffor formula (1.51). 

U sing the Fourier series expansions for the periodic functions B n (x), we 
shall compute ((2), (( 4), ((6), .... Let us introduce the Fourier coefficients 

(1.53) c(n,m) = 11 Bn(x)e-21l"imx dx. 

These can be computed using Euler-MacLaurin summation formula (1.30) for 
the case a = O,b = 1, f(x) = e-2 1l"imx. We get in this way 

(1.54) 

and derive easily the following values 

(1.55) { c(n,o) =0 
c( n, m) = -n!(27rim )-n for m -# o. 

For n 2: 2, the series 2:m#o m-n converges absolutely, hence the Fourier series 

for Bn(x) is absolutely convergent, and we get 

(1.56) Bn(x) = -n!(27ri)-n L m-ne21l"imx 
m#O 

(here x is any real number, n any integer such that n 2: 2). The special case 
x = 0 reads as follows 



(1.57) Bn = -n!(211'"i)-n L m-n 

m;eO 
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for n = 2,3, .... The sum of the series is obviously 0 if n is odd, and we prove 
again that Bn is 0 for n odd, n 2:: 3. In case n = 2r is even we get 

(1.58) ((2r) = (-lr-1 B 2r 22r- 1 11'"2r j(2r)!. 

Since ((2r) is the sum of the series 1-2r + 2-2r + ... with positive summands, 
we get ((2r) > 0, hence we prove again that the sign of B2r is equal to (-1 y-l j 
hence B2 > 0, B4 < 0, B6 > 0, .... We give a short table, using the values given 
above (see end of Section 1.2) for the Bernoulli numbers: 

11'"8 11'"10 69111'"12 

((8) = 9450 ' ((10) = 93555 ' ((12) = 638 512 875· 

Comparing formulas (1.52) and (1.58), we may remark (after Euler) 

(1.59) 

for r = 1,2, .... The functional equation for ((8), to be established later, is a 
generalization of this relation connecting (( 8) and ((1-8) for a complex number 
8. Moreover, we noticed that the function ((8) vanishes for 8 = -2, -4, -6, ... j 
these zeroes are dubbed 'trivial zeroes'. After Riemann, everyone expects that 
the other zeroes of ((8) are on the critical line Re 8 = ~. Despite overwhelming 
numerical evidence, no mathematical proof is in sight. 

Exercise 11 : Using formula (1.43), deduce 

1 lCX> lim {((8) - --I} = 1 - (x - [x))x- 2 dx 
8--+1 8 - 1 

and by evaluating the integral conclude that ((8) - 8 .: 1 tends, for 8 going to 
1, to the Euler constant 

'Y = lim (~+ ~ + ... + ~ - log N). 
N--+cx> 1 2 N 

Exercise 12 : Using formula (1.43), deduce 

('(0) = -1 - [cx> (x _ [xJ- ~ )x-1 dx 
11 2 

and by evaluating the integral prove that ('(0) is equal to -~ log 211'" (Hint: 
use Stirling's formula). 

Exercise 13 : Since ('(8) is given by the series 



16 Chapter 1. An Introduction to Zeta Functions 

00 

- ~)log n)· n- s 

n=1 

in the half-plane Re s > 1, one may interpret the previous result as assert­
ing that a 'renormalized sum' for the divergent series 2:::'=1log n is equal 
to ~ log 271", or that v'2ir is the renormalized value for the divergent product 

TI::'=1 n. Shorthand: oo! = v'2ir. 
Exercise 14 : From formula (1.58) infer the relation 71"2 = lim Cr , where Cr is 

r-+oo 

given by 

Here is a short list of values 

C2 = 15 , C3 = 10.5 , C4 = 10 , Cs = 9.9 , C6 = 9.877 , ... 

to be completed using Serre's table (Serre 1970, page 147). Remember 71"2 
9.8696·· .. 

Exercise 15 : Calculate 71" with an accuracy of 10 digits using formula 71"10 
93555.((10). 

Exercise 16 : Show how to deduce from each other the following formulas 

B - '(2 .)-n '""' -n n - -no 7I"t L...J m , 
m;o!O 

00 N 

71" cotg 7I"Z = l/z + '""'2z/(z2 - n2) = lim '""' l/(z - n), L...J N -+00 L...J 
n=1 n=-N 

00 

sm 7I"Z = 7I"Z II (1 - z2/n2). 
n=1 

Euler gave a direct proof of formula (* * *) thereby providing another proof of 
the formula (1.58) giving ((2r). 

Exercise 17 : a) Fix a complex number z # 0 and develop into a Fourier series 
the function eXZ for x running over the real intervaljO, 1[. The result is 

where the series must be summed symmetrically 

L=lim L· 
N-+oo 

m,cO Iml:::;N 
m,.O 
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b) By letting z go to 0, deduce the relation 

1 e211"imx 

x - " for 0 < x < 1 2" - - ~ 271"im 
m;60 

(symmetrical summation). This is the limiting case n = 1 in formula (1.56). 

c) Expanding both sides of formula (*) as power series in z, give a new 
proof of formula (1.56). 

d) Using classical results about Fourier series, evaluate the half-sum of the 
limiting values for x = 0 and x = 1 in formula (*) and deduce the formula 

+00 

coth ~ = 2 L (z - 271"im)-1 
m=-oo 

(symmetrical summation). Compare with the formulas in exercise 16. 

1.6. Hurwitz zeta function 

This is the function defined by the series 

00 

(1.60) ((s, v) = L(n + v)-a 
n=O 

for v > O. Like the series for ((s), it converges absolutely for Re s > 1. In this 
half-plane, we get the obvious relations 

(1.61) ((s) = ((s, 1) 

(1.62) ((s,v + 1) = ((s,v) - v-so 

We now get the following generalization of formula (1.41) by specializing the 
Euler-MacLaurin summation formula to the case f(x) = (x + v)-S, a = 0, 
b=N: 

N-I 1 1 L ( )-a v -a - (v + N) -a V-a - (v + N)-a 
r + V = + ----'----'-

s -1 2 
r=O 
n 

(1.63) + L Bk s(s + 1)··· (s + k - 2)(v-s-k+ 1 - (v + N)-a-kH )/kl 
k=2 

-~ s(s + 1)· .. (s + n - 1) [N Bn(x)(x + v)-a-n dx. 
n. 10 

If we let N go to +00, we get the following representation in the convergence 
half-plane Re s > 1 
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(1.64) 

l-s -s n 
((S,V) = :-1 + V2 + LBk s(s+I)···(s+k-2) v-s-k+ljk! 

k=2 

1 100
--, s(s + 1)··· (s + n -1) Bn(x)(x + v)-s-n dx. 

n. 0 

Arguing like in Section 1.4, we conclude that for every real number v > 0, 
there exists a function s I--t (( S, v) meromorphic in the complex plane C whose 
only singularity is a pole of order 1 at s = 1, which is given by formula (1.64) 
in the half-plane Re 8 > 1 - n (for n = 1,2,3, ... ). In particular, for n = 1, we 
get the following representation in the half-plane Re s > ° 
(1.65) ((s,v) = _v_ + ~ _ s (x - [x]- - )(x + v)-s-l dx 

l-s -s 100 1 

8-1 2 0 2 

and the representation 

v1- s v-s sv-s- 1 1 100 _ 

(1.66)((s,v)=s_I+T+ 12 -2 8(8+1) 0 B 2(x)(x+v)-s-2dx 

in the half-plane Re s > -1. 

From these formulas, one derives 

(1.67) 
1 

((O,v) = 2 - v. 

More generally, the formula 

(1.68) ((-m,v) = - B::~) for m = 0,1, ... 

follows easily from (1.64). We leave to the reader the derivation ofthe following 
formulas 

(1.69) lim {((8,V) __ I_} = -r'(v)jr(v) 
s-+l 8 - 1 

(1.70) 
1 

('(0, v) = log rev) - 2 log(27r) 

where ('(s,v) is the derivative of ((8,V) w.r.t. 8. As in exercise 13, this last 
formula can be interpreted as follows : 

the 'renormalized product' g (n + v) is equal to ~. 

The particular case v = ! is worth mentioning: since r(!)= .j7i, we see 

that the 'renormalized product' II::'=o( n + ~) is equal to \1"2. 
Exercise 18 : a) Deduce from formula (1.64) the asymptotic expansion 
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1-s -s 

((s, v) '" _v_ + ~ + " Bk s(s + 1)··· (s + k - 2)v-s -k+1 jk! 
s-l 2 ~ 

k~2 

for fixed s and v a real number tending to +00. 
b) Using the functional equation 

((s,v) - ((s,v + 1) = v-s 

and the previous asymptotic expansion, show that (( s, v) can be calculated as 
follows 

N 

((s, v) = J~oo {L(n + v)-S - E~(N + v)} 
n=O 

where E~( w) represents the series 

w1 - s w- S B s + 2 -s-1 -- -----w 
1- s 2 2 

Bn+1 ( 1) ( 1) -s-n -:------'---:-:-ss+ ... s+n- w - ... 
(n + I)! 

truncated after the last term which doesn't tend to 0 for w --t +00 [compare 
with exercise 8]. 

c) Let s be a complex number different from 0, -1, -2, .... Show that 
"l( v) = (( s, v) is the unique function of a variable v > 0 satisfying the functional 
equation 

"l(v) - "l(v + 1) = v- s 

and admitting of an asymptotic expansion 

"l(v) '" LCk v-Sk 
k~O 

for v tending to +00, with nonzero exponents Sk tending to +00 with k. [Hint: 
replace "l( v) by its asymptotic expansion in the functional equation (* * *) and 
show that "l( v) and (( s, v) have the same asymptotic expansion for v --t +00; 
then repeat the reasoning in b) to show that "l( v) is given by the right-hand 
side of formula (* * )]. 

d) Prove the formulas (1.67) to (1.70) by a similar reasoning, using differ­
ence equations satisfied by the left-hand side in these formulas. 

1.7. Dirichlet L-series 

A generalization of Riemann's zeta function is obtained as follows: let f ~ 1 
be any integer and {B( n)} a sequence of numbers, periodic with period f 

(1.71) B(n + f) = B(n) for n in Z. 

We define the series 
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00 

(1. 72) L(8,s) = L8(n)n-s. 
n=l 

Since the sequence {8( n)} is periodic, it is bounded and the above series con­
verges for Re s > 1. The relation with Hurwitz zeta function is obtained as 
follows 

f 00 

L(8,s) = L L 8(a + ml)(a + ml)-s 
a=l m=O 

f 00 

= L 8(a) L (a + ml)-s 
a=l m=O 

f 00 

= L 8(a)j-S I)m + 7)-S 
a=l m=O 

and finally 

f 
(1. 73) L(8,s) = j-SL8(a) ((s, 7). 

a=l 

From the analytic properties of the function (( s, v), it follows that the function 

L(8, s) - s ~ l' where e is the mean value 

(1.74) 
1 1 f 

e= lim -(8(1)+···+O(N))= - LO(a) 
N~oo N f a=l 

extends to a holomorphic function in the complex plane C. In particular, if the 
mean value e is 0, then L( 8, s) itself extends to an entire function. 

For the special values of L( (), s) we note the following 

(1. 75) 

for m = 0,1, .... If the mean value e is 0, we derive from (1.69) the value 

(1. 76) 
1 f r'(al I) 

L(O, 1) = -7 ~ O(a) rCal I) . 

The most interesting case occurs with Dirichlet characters. Such a charac-
ter is a function x( n) of an integer n which fulfills the following assumptions 

a) periodicity : x( n + I) = x( n) 

b) multiplicativity : x( mn) = x( m)x( n) if m and n are prime to j 

c) degeneracy: x( n) = 0 if nand j have a common divisor d > 1. 
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The integer f is called the conductor of X. The principal character cf of con­
ductor f is given by 

(1. 77) 
1 if n is prime to f 
o otherwise . 

The mean value of C f is cpU) / f where cpU) is the number of integers n prime 
to f between 1 and f. A standard argument shows that the mean value of any 
character X =I- C f is o. 

Any number N prime to f can be written as a product p~l ... p~k where 
the primes PI, ... ,Pk don't divide f. Moreover we have 

in this case for any character X of conductor f. By repeating the argument in 
Section 1.1, one proves the following result : 

For any character X of conductor f, one has 

(1. 78) 
1 

L(X,s) = II 1- () -8 

pf! X P P 

where the product is extended over the primes P which don't divide f. 
In particular, one gets 

(1. 79) L(cf,s) = (s) II(l- p- S ) 

plf 

for the principal character C f. Hence L( c f, s) extends as a meromorphic func­
tion in the complex plane, the only singularity being a simple pole at s = 1, with 
residue IIp1f(l- p-l) = cpU)/ f. For any nonprincipal character X of conductor 
f, the function L(X, s) defined in the half-plane Re s > 1 extends to an entire 
function. The special values are given by 

(1.80) L( -m) = _ Bm+l,x 
X, m+l ' 

for m = 0, 1,2, ... where the x-Bernoulli numbers Bm,x are defined as follows 

f 
(1.81) Bm,x = jm-l Lx(a)Bm(l). 

a=l 

Exercise 19 : Derive the following generating series 

00 "f () az L B m/ I _ L..a-l X a e 
m X z m. - Z f ' e z-l 

m=O 

Exercise 20 : Prove the identity 
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for every integer j ~ 1. Using formulas (1.67) and (1.68) derive the relation 

(m ~ 0) 

for the Bernoulli polynomials Bm(v). Using formula (1.70) derive the multipli­
cation formula of Gauss and Legendre 

f-I !! r (v; a) = (27r)~ j!-v rev). 

2. Gaussian integers 

2.1. A modicum of plane crystallography 

We consider an Euclidean plane, with Cartesian coordinates x, y. The corre­
sponding complex coordinate is z = x+yi, and enables one to identify complex 
numbers with points in the plane. The distance between two points z and z' is 
therefore the modulus Iz - z'l. 

Given two complex numbers WI, W2, both nonzero, whose ratio W2 / WI is not 
real, we denote by A the set of complex numbers of the form z = ml WI + m2W2 

where ml, m2 runs over the set Z2 of pairs of integers (of either sign). We shall 
say that A is the lattice with basis (WI, W2). A given lattice A has infinitely 
many bases, given by 

(2.1) { w~ = awl + lx..J2 

w~ = CWI + dJ..v2 

where (WI, W2) is a fixed basis and a, b, e, d are integers such that ad - be = 
±1. It's a standard practice to consider only positive bases, that is to assume 
that WdWI = T has a positive imaginary part; this condition amounts to the 
inequality 

(2.2) 

This being assumed, the formula (2.1) defines a positive basis (w~,w~) if and 
only if ad - be = 1. 

In this Section, we shall study the following lattices : 
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a) The Gauss lattice A4 (see fig. 2) is the lattice with basis WI = 1,w2 = i. 
Its elements are the Gaussian integers of the form z = m+ni, with m, n integral. 
Like every lattice, A4 is a commutative group w.r.t. the addition, namely 

(2.3) { (m + ni) + (p + qi) 
-(m + ni) 

y 

(m + p) + (n + q)i 
= -m+ (-n)i . 

I" I 

• • • • 

• • i • • 
i/2 

.2 ~ ~ 1 1 

-1/2 ~ ~ 1/2 

-i/2 

• • .3 • • 
1 

• • • • 

Fig. 2. The Gaussian lattice A4 (the square C is hashed). 

But, more specifically, A4 is closed under multiplication 

(m + ni)(p + qi) = (mp - nq) + (mq + np)i 

~ 

x 

and the unit 1 belongs to A4. Hence A4 is a subring of the ring C of complex 
numbers, indeed the smallest subring containing i. We express this property 
by saying that A4 is the ring obtained by adjoining i to the ring /E of integers, 
and we denote it by /E[i]. 

b) Let us consider the cube root of unity 

(2.4) j = e27ri / 3 = _~ + va i. 
2 2 

From the identity P + j + 1 = 0, one deduces 
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(2.5) (m + nj)(p + qj) = (mp - nq) + (mq + np - nq)j. 

Hence the lattice A6 with basis (l,j) is the ring Z[j] obtained by adjunction of 
j to Z (see fig.3). 

x 

Fig. 3. The lattice A6 • 

The lattice A4 defines a tessellation of the plane into equal squares. The 
fundamental square C consists of the complex numbers z = x + yi with the 
condition Ixl :s; !, Iyl :s; !. The origin 0 is the center ofthe square C, its vertices 
are the numbers (±l ± i)/2, and the length of the sizes is equal to 1. For every 
point w in A4 , denote by Cw the square deduced from C by the translation 
moving 0 to the point w : the squares Cw form the aforementioned tessellation 
of the plane. Notice also the following characterization of Cw : 

z belongs to Cw if and only if Iz - wi ~ Iz - w'l 
for every point w' in the lattice A4 . 

Let us denote by T(A4) the group of translations of the plane of the form 
tw(z) = z + w for w running over A4 • The square C is a fundamental domain 
for the group T(A4) (or for the lattice A4) namely: 
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- the plane is the union of the squares Cw = tw( C) obtained from C by 
the translations tw in T(A4)j 

- for tw and tw' distinct (that is for w =I w'), the squares tw(C) and twl(C) 
are disjoint or share at most a part of their boundary. 

A scaling transformation in the plane is a transformation of the form 
h;x(z) = AZ, where A is a fixed nonzero complex number. Such a transfor­
mation transforms the lattice A4 with basis (1, i) into the lattice AA4 with 
basis (A, Ai). A fundamental domain for the lattice AA4 is the square AC with 
vertices (±A ± Ai)/2. 

The scaling transformation hi maps x+yi into -y+xij it is a rotation r 7r/2 
around 0 of angle 7r /2 in the positive direction (counterclockwise). The relation 
i( m + ni) = -n + mi implies that the lattice A4 , hence also every scaled lattice 
A = AA4 is invariant under the rotation r 7r/2. 

We prove the converse : 

Any lattice A in the plane which is invariant under the rotation r 7r/2 is one 
of the lattices AA4 • 

Proof. a) Since A is a discrete subset ofthe plane, every disc D(O, R) of center 0 
and finite radius R contains only finitely many points in A. Hence there exists 
an element A =I 0 in A whose length is minimal among the nonzero elements of 
A. 

b) Consider the lattice A' = A -1 A. It contains 1 and is stable under the 
rotation hi = r 7r/2. Hence it contains i = r7r/2(1) and the lattice A4 with basis 
(1, i) is contained in A'. By definition of A, any element J-l =I 0 in A' satisfies 
the relation 1J-l1 ~ 1. 

c) Since C is a fundamental domain for the lattice A4 , any point J-l in A' 
is of the form J-l = w + II where w belongs to A4 (hence to A') and II belongs 
to C. Hence II belongs to A' n C. Assume that II =I O. Since II belongs to A' 
we get 1111 ~ 1 by b). Since II belongs to C we can write II = X + yi, with 
Ixl ::; !, Iyl ::; !, hence 

Contradiction! Hence we get II = 0, that is J-l = w belongs to A4 • 

d) We have proved the equality A' = A4 , hence 

A = AA' = AA4 • 

o 

The lattice A6 shares similar properties, which are established in the same 
way as above. 

For every w in A6 denote by H w the set of points in the plane which are 
closer to w than to any other point in A6 , namely 

Z E Hw ¢} Iz - wi ::; Iz - w'l for every w' in A6 • 
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The sets H w are regular hexagons and form a tessellation of the plane. The 
hexagon Hw is derived by the translation tw from the hexagon H = H Q , which 
is therefore a fundamental domain for the lattice A6 • 

Put (= e1ri / 3 = t + 1 i. We get (2 = j, hence the 6-th roots of unity are 
enumerated as 

1,( = _j2,(2 =j,C = _1,(4 =j2,(5 = -j. 

The scaling transformation h,k is the rotation rb/3 around the origin. Since 
the numbers (k belong to the ring A6 = Z[j], the rotation r 1r/3 generate a cyclic 
group C6 of order 6 of rotations leaving the lattice A6 invariant. Similarly, the 
rotation r1r/2 generates a cyclic group C4 of order 4 of rotations leaving the 
lattice A4 invariant. 

The hexagon H is centered at 0, and its vertices are the points 

(2.6) 

In particular, we get UI = iVS/3 hence lUll = l/VS, and the vertices of H 
lie on the circle of center 0 and radius 1/V3. We conclude Izl ::; 1/V3 < 1 for 
every point z in the fundamental domain H for the lattice A 6 • 

We can repeat the proof given above for A4 and conclude: 

Any lattice A which is invariant under the group C6 of rotations of angle 
k7r /3 around the origin is of the form A = '>'A6 for some nonzero complex 
number .>.. 
Exercise 1 : Let A be a lattice. Then any rotation around 0 leaving A invariant 
belongs to C4 or C6 • In particular, there is no place for five-fold symmetry in 
crystallography, but see the Chapters on quasi-crystals in this book! [Hint: any 
rotation r(J of angle () is a linear transformation in the plane considered as a 
real vector space. In the basis (1, i) the matrix of r(J is 

(
COS () - sin ()) 
sin () cos () . 

In a basis (WI, W2) of the lattice A, the rotation r(J is expressed by a matrix 

where a, b, c, d are integers. Computing the trace, we see that 2 cos () = a + d 
is an integer, ... J 

As a consequence : 

a) The group of rotations leaving invariant the lattice A4 (and hence the 
scaled lattices .>.A4) is C4. 

b) Similar statement for A6 and C6. 
c) If a lattice A is not a scaled lattice '>'A4 or .>.A6, then its group of rotations 

is the group C2 consisting of the transformations z 1-+ z (identity) and z 1-+ -z 
(symmetry w.r.t. 0). 
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2.2. Divisibility of Gaussian integers 

In the ring Z[i] of Gaussian integers, we define the notion of divisibility in the 
obvious way: 

Let z and z' be nonzero Gaussian integers. One says that z divides z', or 
that z' is a multiple of z (notation zlz') if there exists an element u in Z[i] such 
that z' = uz, that is if z' / z is a Gaussian integer. 

It is obvious that z divides Zj if Z divides z' and z' divides z", then z 
divides z". An important feature is the following: it may be that z divides z' 
and at the same time z' divides z. Indeed call a Gaussian integer u a unit if l/u 
is also a Gaussian integer. Then the previous circumstance holds if and only if 
z, / z is a unit. 

Here is a fundamental result : 

The units of the ring Z[i] of Gaussian integers are the 4-th roots of unity 

1,i,i2 = -1,i3 = -i. 

For the proof we use the norm N(z) = Izl2 of a complex number z = x + yi, 
that is 

where z denotes the complex conjugate of z. If z = m+ni is a Gaussian integer, 
its norm is the positive integer m2 +n2 • If z is a unit in Z[i], there exists another 
Gaussian integer z' with zz' = 1, hence 

N(z) . N(z') = 1. 

Since both N(z) and N(z') are positive integers, we get N(z) 
m 2 + n 2 = 1. There are obviously four possibilities 

{ 
m=O n=l z=t 
m=O n =-1 z =-t 
m= 1 n=O z=l 
m= -1 n=O z = -1. 

Exercise 2 : The units of the ring Z of ordinary integers are 1,-1. 

1, that IS 

Exercise 3 : The units of the ring Z[j] are the 6-th roots of unity 1, -1, j, -j, 
p,-p. 
Exercise 4 : Give an a priori proof of the following fact: a unit in the ring Z[i] 
is any complex number u such that the scaling transformation hu(z) = uz be 
a rotation mapping the lattice A4 = Z[i] into itself. 

Exercise 5 : Same as exercise 4 for the lattice A6 • 

Let us interpret the main geometrical result of Section 2.1 in terms of 
divisibility. Given any Gaussian integer z, consider the set of its multiples uz, 
where u runs over Z[i]. Geometrically speaking, it is the lattice ZA4j from the 
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number-theoretic point of view, it is an ideal of Z[i], that is a subgroup of Z[i] 
(for the addition), stable under multiplication by any element in Z[i]. The set of 
multiples of z (including 0) is the principal ideal generated by z, to be denoted 
by (z). For instance, the ideal (0) consists of 0 only, it is called the zero ideal. 

Let us state the main properties of ideals in Z[i] : 

a) Every nonzero ideal in Z[i] is a principal ideal. Namely, let I be such 
an ideal. From a geometrical point of view, it is a nonzero subgroup of A4 , 

stable under the rotation r 7r/2 mapping z into iz. This property precludes the 
case where I is the set of multiples nw of a fixed Gaussian integer w, with n 
running over Z. By the elementary divisor theorem, there exists a basis (WI, W2) 
for the lattice A4 and integers dl 2: 1, d2 2: 1 such that I be a lattice with basis 
(dl WI, d2W2). Since I is a lattice, and it is invariant under the rotation r 7r /2, it 
is of the form ZA4 by our geometrical results, hence I = (z) as stated. 

b) Let z and z' be nonzero Gaussian integers. Then z divides z' if and only 
if the principal ideal (z) contains the principal ideal (z') : obvious. 

c) Two principal ideals (z) and (z') are equal if and only if z' / z is a unit 
in the ring Z [i] : follows from b). 

d) A principal ideal (z) is equal to the ideal (1) = Z [i] if and only if z is a 
unit: follows from c). 

It is possible to refine statement a). Let I be a nonzero ideal in Z[i]; any 
Gaussian integer z such that I = (z) is called a generator of I. If z is such a 
generator, there are exactly 4 generators for I namely z, -z, iz and -iz since 
there are 4 units 1, -1, i, -i. Moreover, any element in I is of the form z' = uz 
with a Gaussian integer u and we have N(z') = N(u)N(z) as well as the 
following classification 

(2.7) { N(u)=O if u=O 
N( u) = 1 if u is a unit 
N( u) > 1 otherwise. 

Hence the generators of I are the elements of minimal norm in the set I* of 
nonzero elements of I. 

Exercise 6 : Extend the previous results to the ring ZU]. 
Exercise 7 : Let I be an ideal in Z[i] and z a generator of I. Prove the equality 
N(z) = (Z[i] : I). More generally, if A is any lattice invariant by the rotation 
r 7r/2, the lattice zA is contained in A, and the index (A : zA) is equal to the 
norm N(z) for any nonzero Gaussian integer z. 

Exercise 8 : Same as exercise 7 for the ring ZU]. 
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2.3. Gaussian primes and factorization 

The definition of Gaussian primes is complicated by the existence of units. In 
the standard arithmetic of integers, the units in the ring Z are 1, -1, every 
nonzero ideal I is principal, with two generators n, -n, where n may be taken 
strictly positive. Let a =f. 0 be an integer. The following two properties are 
equivalent : 

a) the number a is of the form ±p, where p is a prime1 number; 

b) the number a is not a unit, and for every factorization a = be, either b 
or e is a unit in Z. 

This suggests the following definition: a Gaussian prime is any Gaussian 
integer w =f. 0 which is not a unit (in Z[i]) and such that for every factorization 
w = >'N into Gaussian integers, then either>' or >.' is a unit (in Z[i]). 

The product of a Gaussian prime by a unit is again a Gaussian prime. 
Hence the property of a Gaussian integer w to be prime depends only on the 
ideal I = (w) and the above definition can be reformulated as follows2 

w is prime if and only if the ideal 1= (w) is different from Z[i], and I 
and Z[i] are the only ideals in Z[i] containing I. 

As a preliminary step towards the factorization of Gaussian integers into 
Gaussian primes, we establish two lemmas: 

(1.) Lemma. (Bezout identity) : Let w be a Gaussian prime and z a Gaussian 
integer. If z is not divisible by w, there exist two Gaussian integers u, v sueh 
that 

(2.8) uz + vw = 1. 

Remark: If z is divisible by w, every combination uz + vw is divisible by w 
and this forbids the relation (2.8). 

Proof. The linear combinations uz + vw, where u, v run independently over 
Z[i], form an ideal J in Z[i] (check it!). Since o· z + vw belongs to J, the ideal 
J contains the ideal (w) = I. Since z = 1 . z + 0 . w belongs to J, but not to 
I, the above definition of Gaussian primes leaves open the possibility J = Z[i] 
only. Hence 1 belongs to J, and that means equality (2.8) holds for suitable 
Gaussian integers u, v. D 

(2.) Lemma. (Gauss' lemma) : Let w be a Gaussian integer. Assume that w 
is neither 0 nor a unit in Z[i]. Then w is a Gaussian prime if and only if it 
satisfies the following criterion: 

1 In modern times, it was agreed that 1 is not a prime number. 
2 In the standard algebraic terminology this amounts to saying that the ideal I = (tv) 

is maximal. 
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(G) Whenever W divides a product of two Gaussian integers, it divides one 
of them. 

Proof. Suppose first that (G) holds and consider a factorization W = AN into 
Gaussian integers. Since w divides w = AA', it divides A or A' according to 
(G). Assume w divides A; since A divides w = AA', the number A' = wi A is a 
unit in /E[i]. Similarly, if w divides A', then A = wiN is a unit. Hence w is a 
Gaussian prime. 

Conversely, assume w is a Gaussian prime. We have to prove that if w 
doesn't divide the Gaussian integers z and z', it doesn't divide zz'. According 
to Bezout identity, there exist Gaussian integers u, v, u', v' such that 

1 = uz+vw = u'z' +v'w. 

Multiplying out, we get 
1 = uu' . zz' + v"w 

with v" = uzv' + u'z'v + vv'w. According to the remark after lemma 1, this 
precludes zz, from being a multiple of w. D 

[In customary parlance, an ideal p in a commutative ring is called prime if 1 f: P 
and the relations a f: p, b f: pimply ab f: p. An ideal m is called maximal if 
1 f: m and every ideal containing m, but not 1, is equal to m. It's a general 
property that every maximal ideal is prime. The converse property (that every 
nonzero prime ideal is maximal) is true only in special rings like the rings /E[i] 
or /E[j], in general in rings in which every ideal is a principal ideal. The content 
of lemma 2 is that w is a Gaussian prime if and only if the ideal (w) in /E [i] is 
prime.] 

If w is a Gaussian prime, then uw is also a prime when u runs over the 
units 1, i, -1, -i of /E [i]. We call w a normalized Gaussian prime in case w is 
of the form m + ni, with m > 0 and n 2 o. Then every Gaussian prime can be 
written, in a unique way, as a product uw where u is a unit and w a normalized 
Gaussian prime. 

(1) Theorem. (Gauss) : Let z be a nonzero Gaussian integer. 
a) The number z admits the factorization uWl ... WN where u is a unit 

and Wl, ... , WN are normalized Gaussian primes. 
b) If z = u' wi ... wN' is another factorization of the same kind, then 

u = u', N = N' and the sequence (wi, ... , wN') differs from (WI' ... ' WN) by 
a permutation. 

Proof. Existence : If z is a unit or a Gaussian prime, we're done! Otherwise, 
we argue by induction on the norm N(z) of z, an integer n 2 2. Since z is not 
a Gaussian prime, nor a unit, there exists a decomposition z = z' Zll where z' 
and Zll are not units. Hence we get 

N(z) = N(z')N(ZIl) , N(z') > 1 , N(ZIl) > 1 



P. Cartier 31 

and it follows 
N(z') < N(z) , N(z") < N(z). 

By the induction assumption we may find decompositions 

z' = u'w~ ... wN' , z" = u"w~··· W'Jv1l 

of the sought-for type. Multiplying out we get the required decomposition for 
z = z' z" since u = u'u" is a unit. 0 

Proof. Uniqueness: Suppose given two decompositions 

z = UWI·· ·WN , z = u'w~·· ·wN,. 

Without loss of generality, assume N :::; N'. Since the Gaussian prime w~ 
divides z = UWI ... WN and does not divide the unit u, it divides one of the 
factors WI, ... , W N (lemma 2). For instance assume w~ divides WI. Since both 
WI, W~ are normalized Gaussian primes, this implies WI = W~. We are done if 
N' = 1. Otherwise after simplifying we get 

and continuing the previous argument, we may assume that, after a permuta­
tion of factors if necessary, we have 

If N = N', we derive U = u' from these equalities and we are done. If N < N', 
by simplifying we get , , , 

U = U wN+I ···WN' 

and the Gaussian prime wN' would divide the unit u. But a divisor of a unit is 
a unit and a Gaussian prime is not a unit. Hence the case N < N' is impossible. 

o 

We can express the decomposition theorem in a more invariant way. Let us 
denote by P the set of normalized Gaussian primes. If z is a nonzero Gaussian 
integer and W a Gaussian prime, the number W appears the same number of 
times, to be denoted ordw(z), in any decomposition ofthe type z = UWI ... WN. 

We can therefore write the decomposition into Gaussian primes as follows: 

(2.9) z = U IT word",(z) (u is a unit). 

wEP 

Notice that ordw(z) is a positive integer for every wand that these integers 
are 0 except for finitely many w's in P. 

In terms of ideals, the map W I-t (w) establishes a bijection between P 
and the set of prime ideals in Z[i]. The number ordw(z) depends only on the 
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prime ideal p = (tv) and can be denoted ordp(z). Formula (2.9) can be written 
as follows 

(2.10) (z) = IIpordp(z) 

p 

where the product extends over the prime ideals p. In this form, the factor­
ization theorem was generalized by Kummer (around 1840) to all algebraic 
numbers. 

Exercise 9 : Extend the results of Section 2.3 to the elements of Z[j]. 

x X X X · 
X • • X 

X X • 
10i X X X X · X 

X X 

X X X · X 

X X X X · 
X X X 

5i X X X X 

X X X X 

X X X • 
X X X X · X 

X X X X X 

0 5 10 

Fig. 4. Gaussian primes 
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2.4. Classification of Gaussian primes 

Once it is proved that every ideal in the ring Z[i] is principal, the arguments 
leading to the factorization theorem parallel closely the classical ones for ordi­
nary integers and primes. The only difference is that extra care is needed to 
handle units. 

The problem is now to classify the Gaussian primes. The figure 4 displays 
the Gaussian primes of the form 'W = a + bi with 0 S a S 13,0 S b S 13. 

(3.) Lemma. Any Gaussian prime divides an ordinary prime. 

Proof. Let 'W be a Gaussian prime. The number 1 is not a multiple of 'W other­
wise'W would be a unit. There exist ordinary integers n ;::: 1 which are multiple 
of 'W, namely N ( 'W) = 'W . 'W. Let p be the smallest among the ordinary integers 
n ;::: 1 which are multiple of'W in Z[i]. For any factorization p = a . b with 
1 < a < p,1 < b < p, the Gaussian prime 'W doesn't divide a and b by the 
minimality property of p. By Gauss' lemma this contradicts the fact that 'W 
divides p = abo Hence p is an ordinary prime. D 

To classify the Gaussian primes, we have therefore to factorize in Z[i] the 
ordinary primes. Let p be such a prime. From a decomposition 

we get 

(2.11) { p2 = N(p) = N('WI)··· N('WN) 
N('Wj) >1 for j=I, ... ,N. 

There are therefore three possibilities: 

1) One has p = u'W2 where u is a unit, 'W is a normalized Gaussian prime 
and N('W) = p. We say p is ramified in Z[i]. 

2) One has p = u'W'W' where u is a unit, 'Wand 'W' are normalized Gaussian 
primes with 

'W =I- 'W' , N('W) = N('W') = p. 

We say p is split in Z[i]. 

3) The number p is a normalized Gaussian prime: for every factorization 
p = ).).' into Gaussian integers, either). or A' is a unit in Z[i]. We say p is inert 
in Z[i]. 

Exercise 10 : Extend the previous discussion to the ring Z[j]. 

The following theorem explains how to categorize the ordinary primes as 
ramified, split and inert. 

(2) Theorem. (Gauss) : a) The only ramified prime is 2. 
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b) The split primes are the primes of the form p = 4r + 1 (with an integer 
r ~ 1). 

c) The inert primes are the primes of the form p = 4r + 3 (with an integer 
r ~ 1). 

With the standard notation a == b mod. m meaning (a - b) / m is an integer, 
the split primes satisfy p == 1 mod. 4 and the inert primes satisfy p == 3 mod. 4. 

Table 1 : Primes p :S 100 

Ramified 2 
Split 

Inert 

5, 13, 17, 29, 37, 41, 53, 61, 
89, 97 
3, 7, 11, 19, 23, 31, 43, 47, 
67, 71, 79, 83 

Table 2 : Decomposition of primes :S 100 

2 =12+12 
5 = 22 + 12 
13 = 32 + 22 
17=42+12 

29 = 52 + 22 
37 = 62 + 12 
41 = 52 + 42 

53 = 72 + 22 

61 = 62 + 52 
73 = 82 + 32 
89 = 82 + 52 
97 = 92 +42 

Proof. The prime 2 is ramified according to the formulas 

2 = -i(l + i)2 , N(l + i) = 2. 

73, 

59, 

The prime number p is ramified or split if and only if there exists a Gaussian 
integer w with p = N(w). Putting w = m + ni, this relation amounts to 
p = m2 + n 2 . According to the relations 

(2S)2 = 4s2 , (2s + 1)2 = 4(S2 + s) + 1 

any square is congruent to 0 or 1 mod. 4. Hence the sum of two squares is 
congruent to 0 = 0 + 0, 1 = 1 + 0 or 2 = 1 + 1 mod. 4, hence never to 3 mod. 4. 
It follows that every prime p == 3 mod. 4 is inert. We know already that 2 is 
ramified. Hence it remains to prove that 

any prime number p == 1 mod. 4 is split in Z[i]. 

According to Fermat 'small theorem', every integer a not divisible by p 
satisfies the congruence 

(2.12) aP- 1 == 1 mod. p. 

Moreover, there exists a primitive root modulo p, namely an integer Q not 
divisible by p such that any integer a not divisible by p is congruent mod. p to 
some power of Q. In other words, consider the powers 
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and the remainders of the division by p 

~1, ... ,~p-2,~P-l 

(~j is the remainder of the division of a j - 1 by p). Then the previous numbers 
form a permutation of the numbers 

1,2, ... ,p-1. 

By assumption r = (p - 1)/4 is an integer. Choose a primitive root a 
modulo p and put a = aT. Then a2 -1 = a(p-l)/2 -1 is not divisible by p, but 
a4 - 1 = a P- 1 - 1 is divisible by p. Since (a2 + 1)(a2 - 1) = a4 - 1, it follows 
from the ordinary Gauss lemma that p divides a2 + 1. Hence, we found integers 
a, b with the following properties 

(2.13) { a2 + 1 = pb 
a is not divisible by p . 

We introduce now the lattice A with basis (p, a - i). It follows from the 
formulas 

(2.14) { i . p = a· p - p. (a - i) 
i· (a - i) = b· p - a· (a - i) 

that the lattice A is stable by multiplication by i, that is by the rotation r 7r/2. 
Otherwise stated, A is an ideal in the ring Z[iJ, we have 

p. Z[i] cAe Z[i] 

and it is easy to check that A is distinct from both p. Z[i] and Z[i]. Since every 
ideal is principal, we may choose a generator w of A. Then w is a Gaussian 
integer and since p belongs to the ideal A = (w), there is another Gaussian 
integer w' such that p = w . w'. Since the ideals (p) = p . Z [iJ, (w) = A and 
(1) = Z[i] are distinct, w is not a unit, nor w' = p/w is. We get 

N(w) > 1 , N(w') > 1 , N(w)N(w') = N(p) = p2 

and from this it follows 
N(w) = N(w') = p. 

We have found a Gaussian integer w = a+bi, with norm p, that is p = w·w. 
It remains to show that w is a Gaussian prime and that w / w is not a unit 

a) w is a Gaussian prime : namely, for any factorization w = AN into 
Gaussian integers, we get 

N(A)N(A') = N(w) = p. 

Since p is a prime, either N(A) = 1 and A is a unit, or N(N) = 1 and A' is a 
unit. Hence w is a Gaussian prime. 
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b) We have tv = a + bi, tv = a - bi, and the units are 1, -1, i, -i. If tv/tv 

is a unit, then by inspection we are left with the following cases 

a = 0 , b = 0 , a = b , a = -b. 

Then p = a2 + b2 is a square, or twice a square which contradicts the assumption 
that p is a prime different from 2. 0 

From the previous proof, one obtains an explicit description of the factor­
izations : 

a) The four numbers ±1 ± i are the Gaussian primes of norm 2, they 
generate the same ideal. 

b) For every prime p == 3 mod. 4, there are four Gaussian primes with 
norm p2, namely p, -p, ip, -ip. 

c) For every prime p == 1 mod. 4, there exists a decomposition p = a2 + b2 

as sum of two squares. We may assume 0 < a < b, and there are eight Gaussian 
primes of norm p, namely 

a + bi , i( a + bi) , -(a + bi) , -i( a + bi) 

b + ai , i(b + ai) , -(b + ai) , -i(b + ai). 

Geometrically, we have eight points in the square lattice A4 at a distance y'p 
of the origin, namely (±a, ±b) and (±b, ±a). 

Exercise 11 : Describe the prime numbers in the ring Z[j] [Hint: 3 is ramified, 
any p == 1 mod. 3 is split, any p == 2 mod. 3 is inert.] 

2.5. Sums of squares 

Fermat considered the following problem: 

Represent, if possible, an integer n 2': 1 as a sum of two squares 

n = a2 + b2 • 

It amounts to represent n as the norm of some Gaussian integer tv = a + bi. 
Using the factorization theorem established in Section 2.3, we can write tv as 
a product Utvl ... tv N, hence 

(2.15) a2 + b2 = N(a + bi) = N(tvd'" N(tvN). 

According to the results in Section 2.4, the norm of a Gaussian prime tv j is 
equal to 2, to a prime number p == 1 mod. 4, or to the square of a prime number 
p == 3 mod. 4. The following criterion, due to Fermat, follows immediately: 

An integer n 2': 1 is a sum of two squares if and only if every prime divisor 
of n congruent to 3 mod. 4 appears with an even exponent in the prime factor 
decomposition of n. 
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A similar problem pertaining to the sum of three squares was mentioned 
by Bachet and solved by Gauss in the form 

'Demonstravi num. = .:1 +.:1 + .:1'. 
Here is the meaning: a triangular number is a number of the form (see fig. 5.) 

3=1+2 

6=1+2+3 

a(a + 1) 
1 + 2 + ... + a = ----'------:-2---'-

D 

10:1+2+3+4 ~ 
Fig. 5. The triangular numbers. 

Gauss' theorem is the possibility of representing any integer n :::: 1 in the form 

a 2 + a b2 + b c2 + c 
n = -2- + -2- + -2-' 

Otherwise stated, every number of the form 8n + 3 is the sum of three odd 
squares. 

Let us mention also Lagrange's theorem: 

Any integer n :::: 1 is a sum of four squares. 

In order to give a quantitative meaning to similar results, one introduces the 
following definition. Let k, n be integers with k :::: 1, n :::: O. The number rk( n) 
denotes the number of solutions of the equation 

(2.16) xi + ... + x% = n 
where Xl, ... ,Xk are integers (of either sign). Hence Lagrange's theorem states 

(2.17) Tk(n) > 0 for k:::: 4, n:::: O. 

It is convenient to introduce generating series in the form of theta functions. 
Put 

(2.18) B(q) = L qr2 = 1 + 2q + 2q4 + 2l + .... 
rEZ 
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The radius of convergence of this series is obviously 1. Moreover, we get 

00 

(2.19) {}(q)k = L Tk(n)qn 
n=O 

according to the following calculation 

= L qa~+ ... +a~ 

at···ak 

00 

=L 
n=O a~+ .. +a~=n 

00 

00 

Hence the series E Tk(n)qn converges for Iql < 1. More precisely an easy 
n=O 

geometric argument about volumes shows that Tk( n) ::; Ck n(k/2) where the 
constant Ck is independent of n. 

Fermat's theorem about sums of two squares and Lagrange's theorem 
about sums of four squares were given a quantitative form by Jacobi in 1828, 
namely 

(2.20) 

(2.21 ) 

00 ( l)n 2n+l 
{}(q? = 1 + 4 '" - q 

~ 1- q2n+l 
n=O 

(sum extended over the integers m not divisible by 4). We shall give in the next 
Section a proof of formula (2.20) depending on Gaussian methods. Jacobi's 
proofs of the above mentioned formulas were purely analytical. 

2.6. The zeta function of Z[i] 

Besides the generating series 

00 

{}(q)k = L Tk(n)qn = L qa~+ .. +a~, 
n=O 

we shall consider the following Dirichlet series 
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(2.22) 

The summation 2::' extends over all systems (aI, ... , ak) of k integers, except 
at'··ak 

for a1 = ... = ak = O. In particular, we get 

(2.23) Z4(S) = 2::'(a2 + b2)-S 
a,b 

the summation being extended over the pairs (a,b) t= (0,0) in Z2. 

Using the notions connected with Gaussian integers, we get the alternative 
form 

(2.24) Z4(S) = L N(z)-S, 
z;eO 

where the sum is extended over the nonzero Gaussian integers. According to 
the factorization theorem for Gaussian integers, nonzero Gaussian integers are 
parametrized by units u and family of positive integers m( w) according to the 
formula 

(2.25) 

(here P is the set of normalized Gaussian primes). We then have 

(2.26) N(z) = II N(w)m(w). 
wEP 

Repeating the proof given in Section 1.1 for Riemann's zeta function we get 

(2.27) 

hence 

(2.28) 

Z4(S) = 4 II (1 + N(w)-S + N(w)-2s + ... ) 
wEP 

1 
Z4(S) = 4 II N() 1- w-S 

wEP 

(notice that there are 4 units in Z[i]!). 
Taking into account the three categories of primes according to their de­

composition law in Z[i], we get the following factors in the product expansion 
(2.28) : 

a) the Gaussian prime 1 + i of norm 2 gives a factor (1 - 2-s )-l j 

b) for every prime p == 1 mod. 4, there exists two normalized Gaussian 
primes of norm p, hence a factor (1 _ p-S)-2 j 
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c) for every prime p == 3 mod. 4, p itself is a Gaussian prime, of norm p2, 
hence a factor 

(1 _ p-2s)-1 = (1 _ p-S)-l(1 + p-S)-l. 

If we recall the definition of ((s) as the infinite product IT (l_p-S)-l extended 
p 

over all primes p, we get 

(2.29) Z4(S) = 4((s)L(s). 

The function L( s) is given as a product 

(2.30) L(s) - II 1 II 1 
- 1 - p'-s 1 + p"-s 

pi p" 

where p' (resp. p") runs over all prime numbers congruent to 1 (resp. 3) modulo 
4. 

One defines a character of conductor 4 as follows 

(2.31) X4(n) = { (_1)(~-1)/2 if n IS even 
if n is odd. 

We can rewrite formula (2.30) as follows 

(2.32) 

Otherwise stated, L( s) is the Dirichlet L-series corresponding to the character 
X4 (cf· Section 1.7). We can therefore write 

00 

(2.33) L(s) = L X4(n)n- S = 1-8 - 3-8 + 5-s - 7-s + ... 
n=l 

the series converging for Re s > 1. According to formula (2.29) we have there­
fore 

(2.34) 

Multiplying out these two series, and remembering that r2(n) is the coefficient 
of n-S in the series Z4(S), we get 

(2.35) r2(n) = 4 L (_I)(k-l)/2 for n ~ 1, 
n=jk 

where the summation extends over j ~ 1 and k ~ 1 odd. This formula can be 
transformed as follows. Firstly, if we denote by d+( n) the number of divisors k 
of n such that k == 1 mod. 4 and similarly d_(n) for divisors with k == 3 mod. 4, 
we get 
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(2.36) 

Moreover, we get 
00 00 

L r2(n)qn = 4 L (_I)(k-l)/2 L qjk 
n=l k odd j=l 

k 
- 4 L (_I)(k-l)/2_q -
- k odd 1- qk' 

(2.37) 

Finally we get Jacobi's formula 

(2.38) 
00 00 ( It 2rH 

B(q)2 = 1+ L r2(n)qn = 1 + 4 L ~ _ ;rH 
n=l r=O q 

To conclude, we describe the corresponding results for the ring Z(j]. By 
definition we have 

(2.39) Z3(S) = L N(z)-S 
z;<!O 

where the sum is extended over the nonzero elements in Z[j]. Since the norm 
of a - bj is equal to a2 + ab + b2 , we get 

(2.40) Z3(S) = Z::'(a2 +ab+b2)-S 
a,b 

(summation over pairs of integers a, b excluding a = b = 0). There are 6 units 
in Z[j] and using the decomposition laws of prime numbers in Z[j] we get 

(2.41) Z3(S) = 6(s)L(X3,S) 

where the character X3 of conductor 3 is defined as follows 

(2.42) 
if 
if X3(n) = { ~ 

-1 if 

n == 0 mod. 3 
n == 1 mod. 3 

n == -1 mod. 3. 

More explicitly 
00 

(2.43) L(X3,S) = L {(3r + 1)-S - (3r + 2)-S}. 
r=l 

The number of representations of an integer n ;::: 1 by the quadratic form 
a2 + ab + b2 is equal to 6(D+(n) - L(n)) where D+(n) (resp. L(n)) is the 
number of divisors of n which are congruent to 1 (resp. -1) modulo 3. For the 
theta series we get 

(2.44) 
2 2 00 3n+l 00 3n+2 

'" qa +abH = 1 + 6 '" q - 6 '" q . L.. L.. 1 _ q3nH L.. 1 _ q3n+2 
a,b n=O n=O 
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3. Functional equation 

3.1. A short account of Fourier transformation 

We first recall Fejer's fundamental theorem about Fourier series. Let f( x) be 
a function of a real variable, assumed to be bounded, measurable and periodic 
with period 1, namely 

(3.1) f(x + 1) = f(x). 

The Fourier coefficients are defined by 

(3.2) Cn = 11 f(x) e-2 11"inx dx 

for any integer n in Z. The partial sums of the Fourier series are the following 

N 

(3.3) O"N(X) = L en e 211"inx. 

n=-N 

Let Xo be any real number such that the function f( x) admits left and 
right limiting values 

(3.4) f(xo ± 0) = lim f(xo ± c:). 
e--+O+ 

Then Fejer's formula is the following 

(3.5) 
f(xo + 0) + f(xo - 0) 

2 
1. O"o(xo) + ... + O"N(XO) 
1m . 

N--+oo N + 1 

A simplification occurs when f( x) is continuous at x = Xo, and the partial 
sums O"N(XO) converge; we have then 

(3.6) 
00 

f( xo) = Co + L { en e2 11"inx o + C- n e -21I"inx o }. 

n=l 

The most favorable case occurs when f( x) is a continuous function and the 
00 

senes L: lenl is finite. Then the function is represented by the absolutely 
n=-oo 

convergent Fourier series 

00 

(3.7) f(x) = L en e211"inx 

n=-oo 

Consider now a function F( x) of a real variable which is continuous and 
(absolutely) integrable, namely the integral 

(3.8) 1+00 

II F Ih= -00 IF(x)1 dx 
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is finite. The Fourier transform is normalized as follows 

(3.9) 1+00 

F(u) = -00 F(x) e-21rixu dx; 

it's a continuous function of u. Assuming that F is integrable, namely 

1+00 

-00 IF(u)1 du < 00, 

Fourier inversion formula holds 

(3.10) 1+00 

F( x) = -00 F( u) e21riux du; 

that is the Fourier transform of F( u) is f( -x). Notice that the integration ker­
nel is e-21riux in (3.9) and e+21riux in (3.10) ; putting the 211" in the exponential 
gives the most symmetrical form of the inversion formula. Here is a short table 
of Fourier transforms : 

Table 3 : Fourier transforms 

Function Transform 

F(x) F(u) 

F(x + a) e21riau F( u) 

e21rixb F( x) F(u - b) 

F(rlx) ItIF(tu) 

F'(x) 211"iu F(u) 

x F(x) 2i1r F '(u) 

e-c1xl (Re c> 0) 2c/(c2 + 411"2u2 ) 

e-1rX2 e-1rU2 

In the previous table, F'(x) is the derivative of F(x) and F'(u) that of 
F( u). We give now a few details about the last two examples. 

a) For F(x) = e-c1xl we get 
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= 100 e-(c+21riu)Xdx + 100 e-(c-21riu)Xdx 

1 1 2c 
= c + 27riu + c - 27riu c2 + 47r2 U2 • 

We used the elementary identity 

[00 1 
10 e-PXdx = p 

where the integral converges absolutely when Re p > 0 ; this is why we need 
the assumption Re c > O. 

b) For F(x) = e-1rX2 , we want F(u) = e-1rU2 , that is 

(3.11) 

This relation amounts to 

(3.11bis) 

The proof is given in two steps: 

• For u = 0 we need the relation 

(3.12) 

Call [ the previous integral. Then calculate [2 and go to polar coordinates ; 
this standard trick runs as follows : 

[2 = [:00 e-1rX2 dx [:00 e-1ry2 dy 

= [ e-1r(x 2+y2)dx dy 
J.JR2 

= 100 
r dr 121r e -1rr2 dO [x = r coso, y = r sinO] 

= 100 
27r r e -1rr2 dr 

= 100 
e-1rr2 d(7rr2) 

= 100 
e-Vdv = 1 
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Moreover 1 is the integral of a positive function, hence 1 > 0 and since 12 = 1, 
we get 1 = 1 as required . 

• Put H(x, u) = e-1r(x+iu)2. Then the following differential equation holds 

:u H(x,u) = i ! H(x,u) = -27ri(x + iu) H(x,u). 

Integrating w.r.t. x, we get 

aa ]+00 H(x,u)dx =]+00 aa H(x,u)dx 
u -00 -00 u 

=i]+OOaH(X,U) dx 
-00 ax 

= i H(x,u) I~~=: = o. 

It follows that the integral f~:: H(x,u)dx is independent of u, but for u = 

0, it's equal to f~:: H(x, O)dx = f~:: e-1rX2 dx, hence to 1 by the previous 
calculation. Finally we get 

[:00 H(x,u)dx = 1, 

that is the sought-for relation (3.llbis). 

3.2. Poisson summation formula 

Let F( x) and F( u) be a pair of Fourier transforms. Poisson summation formula 
reads as follows : 

(3.13) LF(n) = L F(m). 
nEZ mEZ 

Since F( x + v) and e21rivu F( u) form another pair of Fourier transforms for 
any real v, substitution of this pair into Poisson summation formula gives the 
identity 

(3.14) 
nEZ mEZ 

Conversely, putting v = 0 in this formula, we recover (3.13). The proof is now 
obvious: 

a) Put G( v) = I: F( n + v). If this series converges absolutely and uni­
nEZ 

formly in v, then G( v) is a continuous function of v. 

b) Obviously, one has G( v) = G( v + 1). The Fourier coefficients of G( v) 
are given as follows 
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Cm = 11 G( v) e -2rrimv dv 

= L 11 F(n + v) e-2rrimv dv 
nEZ 0 

r+1 
= L 1n F(x) e-2rrimx dx 

nEZ n 

1+00 

= -00 F(x) e-2rrimx dx = F(m). 

[x = n + v] 

c) If the series L: ICm I converges, then we can represent G( v) by its 
mEZ 

Fourier series L: Cm e2rrimv = L: F( m) e2rrimv, and we are done! 
mEZ mEZ 

From the previous proof, it follows that formula (3.14) holds whenever the 
left-hand side converges absolutely and uniformly in v, and moreover the sum 

L: IF(m)1 is finite. Under these assumptions, Poisson summation formula 
mEZ 
(3.13) holds also. 

A further generalization is obtained by using formula (3.14) for the pair 
of Fourier transforms F(C1 x), ItIF(tu), namely 

(3.15) L F(v + nit) = L It I F(mt) e 2rri(mt)v. 

nEZ mEZ 

If we let t tend to 0, every term v + nit for n#-O tends to ±oo ; hence if F is 
small enough at infinity, the limit of the left-hand side in (3.15) is F(v). The 
right-hand side is a Riemann sum corresponding to the subdivision of the real 
line into the intervals [mt, mt + t[ of length t. For t going to 0, the right-hand 
side approximates an integral, and in the limit we get 

(3.16) 1+00 

F( v) = -00 F( u) e2rriuv du, 

that is Fourier inversion formula. The various steps in this derivation are jus­
tified for instance if F( x) admits two continuous derivatives and vanishes off a 
finite interval. 

Exercise 1 : Prove the following symmetrical generalization of Poisson summa­
tion formula : 

(*) L F(n + v) e- rriw(2n+v) = L F(m + w) erriv(2m+w) 

nEZ mEZ 

for v and w real. 

We give now a simple application of Poisson summation formula. Let us 
consider a complex constant C with Re C > ° and the pair of Fourier transforms 
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£i 

£'i 

- 3 -2 - 1 0 1 2 3 

-----------------------~£~i~----------~--------- C. 

- '::-£'i 

Fig. 6. The contour C of integration. 

F(x) = e-c1xl , F(u) = 2c . 
c2 + 411"2U 2 

One gets the identity 

(3.17) 

which one easily rearranges as 

(3.18) 
00 1 

coth ~ = 2 L c _ 211"im 
m=-CXl 

(symmetrical summation). By the change of variable c = 211"iz one gets 

(3.19) 
00 1 

11" cotg 1I"Z = '""" --
~ z-m 

m=-oo 

(symmetrical summation). The above derivation works for z in the lower half­
plane 1m z < 0, but both sides in formula (3.19) representing odd functions of 
z, this identity remains true for every non real complex number z. 

Exercise 2 : a) Suppose that the function F( x) extends to a function of a 
complex variable holomorphic in some strip -c < 1m x < c. Using Cauchy 
residue theorem, give conditions of validity for the formula 

211"i L F(n) = 111" cotg 1I"Z F(z)dz 
nEZ C 

where the contour of integration C is depicted in figure 6. 
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or -plane 

-I 0 

Fig. 7. Domain of values for T. 

b) Use the expansion 

{ 
-7ri - 27ri ,"",00 e2 71"imz 

L...-m=l 
7r cotg 7rZ = . . 00 . 

7rZ + 27rZ Lm=l e-271",mz 

Im Z > 0 

Im Z < 0 

to transform the right-hand side of formula (*) as follows: 

i 7r cotg (j -ie' +00 lie' +00) 
7rZ F(z)dz = . -. . .. 

-lei-ex> le'-oo 

= 27ri [:00 F(x)dx + 27ri f; [:00 F(x) (e- 271"imx + e271"imx)dx 

= 27ri L F(m). 
mEZ 

c) In conclusion, Poisson summation formula follows from Euler's identity 
(3.19) for functions extending as holomorphic functions in a strip lIm zl < c. 

3.3. Transformation properties of theta functions 

We mentioned already (see Section 2.5) the theta series 

O(q) = 1 + 2q + 2q4 + 2q9 + .... 
It is convergent for Iql < 1. We shall use instead a complex variable 7 in the 
upper half-plane Im 7 > 0 connected to q by the relation q = e7l"ir. Notice 
that e7l"ir = e7l"ir' holds if and only if 7' - 7 is an even integer, hence we can if 
necessary normalize 7 by -1 ~ Re 7 < 1 to insure uniqueness of a number 7 

associated to a given q (see fig. 7). 



We introduce a two-variable theta function 

(3.20) 03(zlr) = I: qn2 un 
nEZ 

with q = e1rir , u = e21riz , that is 

(3.21) 
03(zlr) = I: e1ri(n 2r+2nz) 

nEZ 
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=1 + 2q cos 27l"z + 2q4 cos 47l"z + 2l cos 67l"z + ... 
Here r and Z are both complex numbers and r is subjected to the restriction 
Im r > O. 

The fundamental transformation formula is 

(3.22) 03(zlr) = _1_. e-1riz2Ir 03(~1-~). 
J-zr r r 

The square root of -ir is the branch that takes the value 1 for r = i, holomor­
phic in the (simply-connected) upper half-plane. To prove this, start from the 
integral (3.11) and make the change of variable (x, u) I-t (xVi, u/Vi) for some 
real number t > o. We get 

(3.23) e-1rtx e-21r•xu dx = _ e-1rU It, 1+00 2· 1 2 

-00 Vi 
that is, we have a pair of Fourier transforms 

2 ~ 1 21 
F(x) = e-1rtx , F(u) = Vi e-1rU t. 

If we specialize Poisson summation formula (3.14) to this case we get 

(3.24) I: e-1rt(n+v)2 = ....!-. I: e-1rm2 It e21rimv. 

nEZ Vi mEZ 

The relation (3.22), written in full, reads as follows 

(3.25) 

Hence (3.24) is the particular case r = it, Z = itv of (3.25). It follows that (3.22) 
is true when r is purely imaginary and the general case follows by analytic 
continuation. 

We shall use the particular case z = 0 of the transformation formula (3.22). 
Since O(q) = 03(0Ir) for q = e1rir we get 

(3.26) O(e1rir ) = _1_._ O(e-1rilr) for Im r > O. 
v'-zr 
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Exercise 3 : Write the previous relation as 

(t > 0). 

Multiplying both sides by e-c2t/47r and integrating over t in ]0, +oo[ show how 
to recover formula (3.18). 

3.4. Mellin transforms: general theory 

We consider a function f( x) of a positive real variable. Its Mellin transform is 
given by 

(3.27) M(s) = 100 f(x) xs - 1 dx. 

Let us assume that there exist two real constants a and b such that a < b and 
that f(x) = O(x-a ) for x close to 0 and f(x) = O(x-b ) for x very large. Then 
the previous integral converges for s in the strip a < Re s < band M( s) is a 
holomorphic function in this strip. The following inversion formula is known: 
assume that there exists a constant C > 0 such that 

(3.28) 1+00 

-00 IM(O" + it)1 dt:S C 

for a < 0" < b. Then 

(3.29) 
1 10"+ioo 

f(x) = -. M(s) x- s ds 
271"z 0"-;00 

for a < 0" < b. By the change of variable x = e-U where u runs from -00 to 
+00, we express M( s) as a Laplace transform 

(3.30) 1+00 

M(s) = -00 e-US F(u) du 

where F( u) = f( e- U ) is of the order O( eua ) for u near +00 and of the order 
O( eub ) for u near -00. The inversion formula (3.29) is therefore reduced to the 
classical inversion formula for Laplace transforms 

(3.31 ) 
1 10"+ioo 

F(u) = -. M(s) eUs ds. 
271"z O"-ioo 

In turn, this formula is a consequence of Fourier inversion formula (3.10). 

We want to generalize the Mellin transform to cases where M( s) extends 
to a meromorphic function in the complex plane Co Assume that f( x) admits 
of asymptotic expansions 



00 

(3.32) f(x) '" I>k Xik for x ~ 0 
k=O 

00 

(3.33) f(x) '" Ldt xil for x ~ +00 
t=o 

where the real exponents satisfy the assumptions 

(3.34) io < i1 < i2 < ... 

(3.35) jo > j1 > jz > ... 

lim ik = +00, 
k--+oo 

lim jt = -00. 
t--+oo 
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We split M(s) as a sum of two integrals M(s) = M1(S) + M2(s) where 

(3.36) M1(S) = 11 f(x) x s - 1 dx , M2(S) = 100 
f(x) x s - 1 dx. 

The integral M1 (s) converges absolutely for Re s > -io. Moreover by definition 
of an asymptotic expansion, we can write 

K-1 

(3.37) f(x) = L Ck Xik + rK(x) 

with a remainder r K( x) of order O( xiK) for x close to O. The formula 

K-1 1 

M1(S) = " ~ + 1 rK(X) x s - 1 dx ~ s + Zk 0 
k=O 

(3.38) 

gives an analytic continuation in the domain Re s > -i K. Since K is arbitrary 
and i K tends to +00 with K, we conclude that M1 (s) extends to a meromorphic 
function in <C with simple poles at -io, -i1, -i2 ... and a residue equal to Ck 

at s = -i k • 

We can treat the integral M 2 ( s) in a similar way or reduce it to the previous 
case by a change of variable : 

(3.39) 

The conclusion is : M2 (s) extends to a meromorphic function in <C, with simple 
poles at -jo, -h, -jz,'" and a residue equal to -dt at s = -jt. 

The sum of M1(S) and M2(S) is therefore a meromorphic function M(s) 
with two series of poles located at (see fig. 8) 

- io > -i1 > -i2 > .. . 
- jo < -h < -12 < .. . 
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-io 
• • 

Fig. 8. Poles of M(s). 

• • 
-jz -h 

We continue to write M(s) as an integral 1000 f(x) xs - 1 dx which can be un­
derstood as follows: in the case of convergence, let g( x) be a primitive function 
of f(x) x s - 1 

(3.40) dg(x) = f(x) xs - 1 dx. 

Then one gets 

(3.41 ) fOO f(x) xs - 1 dx = lim g(x) - lim g(x) Jo x-+-oo x-+O 

by the fundamental theorem of calculus. In the general case (assuming s is not 
a pole ofthe function M(s )), the primitive function g(x) admits an asymptotic 
expansion 

00 

(3.42) g(x) '" L c~ xi~ for x near o. 
k=O 

By derivating term by term we should obtain the asymptotic expansion derived 
from (3.32) 

(3.43) 
00 

f(x) xs - 1 '" LCk xs+ik - 1 . 

k=O 

Hence everything is completely determined in (3.42) except for the constant 
term, corresponding to an exponent i~ equal to 0, depending on the choice of 
the primitive g( x). This constant term is called the finite part of g( x) at x = 0, 
to be denoted 

FP g(x). 
x=O 

Then the generalized integral is defined by 

(3.44 ) 100 
f(x) xs - 1 dx =!J:,g(x)- f!o g(x) 



P. Cartier .53 

where the finite part at x = 00 is defined in analogy with the finite part at 
x = o. 

The integral fooo f( x) xs - 1 dx converges in the usual sense for s in the 
strip io < Re s < jo, which is non empty only if io < jo. But notice that the 
generalized integral fooo p( x) xs - 1 dx is identically 0 if p( x) is a finite linear 
combination of monomials xC<. By subtracting a suitable p( x) from f( x) we can 
achieve the relation io < jo, hence providing a strip where the Mellin transform 
is defined in the usual way. 

3.5. Some examples of Mellin transforms 

The gamma function is defined by the following Mellin integral 

(3.45) res) = 100 
e- X xs - 1 dx. 

We have the convergent power series expansion 

00 

(3.46) e-X = ~) _1)k xk jk! for x near 0 
k=O 

and e- x '" 0 for x near infinity, meaning e- x = O(x-N ) for every integer N. 
According to the general theory, r( s) is a meromorphic function in C, with 
simple poles at 

0, -1, -2,··· 

and a residue equal to (_I)k jk! for s = -k. The functional equation r(s+ 1) = 
s r( s) is obtained from the generalized integration by part principle 

(3.47) 100 
u(x) v'(x) dx =~f, u(x) v(x)- f!o u(x) v(x)-l°° u'(x) vex) dx, 

by putting u(x) = xs, vex) = e- X • 

We consider now a general Dirichlet series of the form 

00 

(3.48) L(s) = Len n-S • 

n=l 

A linear change of variable is admissible in our generalized integrals 

(3.49) 100 1100 P(ax) dx = - p(x) dx 
o a 0 

(a real positive). From the definition of res) we get 

(3.50) 100 
e-ax x s - 1 dx = a-S res). 

It follows that 
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(3.51) res) L(s) = fc n l°O e- nx x·- I dx. 
n=O 0 

If integrating term by term is legitimate for 5 in a suitable half-plane Re 5 > (J, 

then we get 

(3.52) 1 100 

L(s) = res) 0 F(x) x·- I dx 

with 
00 

(3.53) F(x) = L Cn e-nx . 

n=1 

If F( x) admits of suitable asymptotic expansions for x = 0 and x = 00, then 
interpreting (3.52) as a generalized Mellin transform, we get the analytic con-

00 

tinuation of the series L: Cn n-' to a meromorphic function in C. 
n=1 

We illustrate this principle in the case of ((5), that is Cn = 1 for n 
1,2, .... In this case 

(3.54 ) 
e- x 

F(x) = ~ e-nx =--
L-- 1 - e- X 

00 

n=l 

1 

According to the definition (1.7) of Bernoulli numbers, we get an asymptotic 
expansion near 0 

(3.55) 

while ~1 '" 0 for x near 00. Hence ((5) is a meromorphic function given by 
e -

(3.56) 1 100 x·- I 

((5) = r( ) -x- dx. 
5 0 e - 1 

The structure of poles is as follows : 

- for res) 5 = 0, -1, -2,... residue (_I)k jk! at 5 =-k 

roo x·- I _ . Bk+1 _ 
- for Jo 7=1dx 5 - 1,0, -1, -2, ... resIdue (k + I)! at 5 - -k. 

It follows that the poles cancel except for 5 = 1. Hence the result : 
(( 5) extends to a meromorphic function in the plane C, the only pole zs 

5 = 1, with residue 1. For k = 0, -1, ... we get 

(3.57) 

U sing the properties 

(( -k) = (-ll Bk+l 
k+l 
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1 
Bl = - 2" ' B3 = B5 = ... = 0 

we easily transform the previous relation as follows 

((0) = -~ , ((-2) = ((-4) = ... = 0 

B2 B4 Bs 
((-1) = -2 ' ((-3) = -4 ' ((-5) = -6'''' 

Suppose now that 0(1),0(2), . .. is a periodic sequence of coefficients 

(3.58) O(n + 1) = O(n) for n;:::l 

for some fixed period f ;::: 1 (see Section 1. 7). We consider the Dirichlet L-series 
(Xl 

(3.59) L(O,s) = L O(n) n-s . 

n=l 

By specializing formula (3.52), we get an integral representation 

(3.60) L(O,s) = r~s) 1(Xl 8(x) xs - 1 dx 

with (Xl 

(3.61 ) 8(x) = L O(n) e-nx . 

n=l 

Using the periodicity of the coefficients B(n), we transform 8(x) as follows 

f (Xl 
8(x) = L L B(a + mJ) e-(a+mf)x 

a=l m=O 
f (Xl 

= L O(a) e-ax L e-mfx 

a=l m=O 

hence 

(3.62) 
L: f _ B(a) e(f-a)x 

8( x) = =a=-::c:l~ef-::'-x-'_'---l--

f 
For x = 0, the numerator takes the value L: O(a), while in the denominator 

a=l 

efx - 1 has a series expansion f x + ~ P x2 + .. '. It follows that, for x near 0, 
8( x) has an asymptotic expansion with leading term 8/ x where 

(3.63) 
f 

8 = 7 L O(a). 
a=l 
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More precisely, using the definition of Bernoulli polynomials 

(3.64) ~ _ ~ Bk+l(p) k 
eY - 1 - L- (k + I)! Y 

k=-l 

with the substitution y = jx, p = ? together with the symmetry property 

for Bernoulli polynomials 

(3.65) 

we get the following asymptotic expansion 

(3.66) 
(-) 00 ( )k+l (-)( ) = _ ,,-1 Bk+l,e k 

x + L- (k )' x x + 1 . 
k=O 

with the definition 

(3.67) 
f 

Bm,e = jm-l L 8(a) Bm (7). 
a=l 

According to the general theory, the Mellin transform 

(3.68) Me(s) = 100 
(-)(x) x·-1 dx 

extends to a meromorphic function in C, with a simple pole at s = 1 with 
residue (-) as well as a sequence of simple poles at s = 0, -1, -2, ... , the residue 
at s = -k being equal to (-l)k+lBk+l,e/Ck + I)!. Dividing by res) with 
simple poles at s = 0, -1, -2, ... and a residue equal to (_l)k /k! at s = -k, 
we conclude that 

L(8,s) = Me(s)/r(s) extends to a meromorphic function in C, with a 
single pole at s = 1, residue equal to (-) and the special values 

(3.69) L(8 -k) = -Bk+l,e. 
, k+1 

f 
In the special case where (-) = 0, that is L: 8(a) = 0, then L(8,s) is an entire 

a=l 
function. 

Hurwitz zeta function can be treated in the same spirit. Namely, we start 
from 

(3.70) 

The series 
00 

(3.71) ((s,v) = L (n+v)-' 
n=O 
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which converges in the half-plane Re s > 1 extends to a meromorphic function 
in C given as a Mellin transform 

(3.72) 1 100 e- XV 

((s,v) = r( ) x s - 1 dx. s 0 1 - e- X 

Using formulas (3.64) and (3.65) we get the power series expansion 

e- XV ex(l-v) 1 00 (_I)k+l Bk+l(V) k 

1 - e-X = eX - 1 = -; + L (k + 1 )! x • 
k=O 

The Mellin transform 

(3.73) M( s, v) = ['Xl e-x~ x s- 1 dx 
10 1- e X 

is meromorphic with simple poles at s = 1,0, -1, .... Since (( s, v) is equal to 
M(s, v)! r(s), the poles of r(s) cancel those of M(s, v) except the one at s = 1, 
and we get the result : 

((s, v) is a meromorphic function in C, with a single pole at s = 1, residue 
equal to 1, and the special values 

(3.74) 

From this result, the properties of the Dirichlet series L( 0, s) can be recovered 
using formula (1. 73), namely 

f 
(3.75) L(O,s) = j-S L O(a) ((s, 7). 

a=I 

3.6. Functional equation of Dirichlet series 

To express the functional equation of ((s), one introduces after Riemann the 
following meromorphic function 

(3.76) e(s) = 7r- s / 2 rG)((s). 

Then the functional equation reads as follows 

(3.77) e(s) = e(1- s). 

This formula has some important consequences. For instance, we know that 
(( s) is meromorphic in the half-plane Re s > 0 with a single pole at s = 1 with 
residue 1. Since r( s) is holomorphic in the same half-plane, the only singularity 
of e( s) in the half-plane Re s > 0 is a simple pole at s = 1 with residue 
7r-1/ 2 . r( ~) . 1 = 1. By the functional equation, in the half-plane Re s < 1 
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obtained from the previous one by the symmetry exchanging 8 and 1 - 8, the 
only singularity of ~(8) is a simple pole at 8 = 0, with residue -1. Hence, the 
function 5'(8) = 8(S - 1) ~(s) is an entire function satisfying the symmetry 
5'(s) = 5'(1 - s). The function r(n having poles at s = -2, -4, -6, ... , and 
~(s) being regular at these points, the poles are cancelled by zeroes of (s) 
hence, we recover the result 

( -2) = ( -4) = ... = o. 
The gamma function satisfies two classical identities 

Complement formula: 
7r 

res) r(l- s) = -.-
sln 7r s 

Duplication formula: rG) r(S;l) =7r l / 2 21- s r(s). 

Hence the functional equation (3.77) can be written as follows 

(3.78) (1- s) = 21- s 7r- s r(s) cos ~s . (s). 

For the proof of the functional equation, we start from the transformation 
formula for theta functions (see exercise 3) 

(3.79) 

for the series 

+00 
(3.80) B(t) = L 

n=-oo 

Take the Mellin transform. From our conventions, one gets that the Mellin 
transform of the constant 1 is O. Moreover one gets 

100 
e-11"n 2 t t s - 1 dt = 7r- S n-2s res). 

Summing over n, we deduce 

- B(t) t s - 1 dt = 7r- S res) (2s) = ~(2s) . 1 100 
2 0 

Moreover by changing t into (1ft) we get 

1 [00 1 1 [00 
2 10 C 1 / 2 BCt·) e-1 dt ="2 10 C 1 / 2 - s B(t) dt 

~ [OOt(!-S)-lB(t)dt=~(2(~_s)) 
2 10 2 

From the functional equation (3.79) we conclude 
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e(2s) = e(1- 2s). 

There is nothing mysterious about e- x2 and theta functions as shown by 
the following exercise, inspired by Tate's thesis (see Cassels and Frohlich 1967). 

Exercise 4 : a) Let S(JR.) be the class of infinitely differentiable functions F( x) 
such that x P ( lx)Q F( x) be bounded in x for all integers p ;::: 0 and q ;::: o. The 

Fourier transform F( u) of a function F( x) in S(JR.) is also in S(JR.) and the 
Poisson summation formula holds, namely 

L F(tn) = Itl-1 L F(t-1 m) 
nEZ mEZ 

for any real t =f. O. 

b) Taking the Mellin transform of both sides of formula (*), derive the 
relation 

c) Derive the formula 

J+= 1+= W(s) _= F(u) lul- S du = _= F(t) IW-1 dt 

where W(s) = 2(27r)-S r(s) cos ~s [Hint; insert the convergence factor e-elul in 

the first integral, replace F( u) by its definition as an integral (3.9), interchange 
the integrations and use the extension of formula (3.50) to complex numbers a 
with Re a > O. At the end let c tend to 0.] 

d) Derive the functional equation (( 1 - s) = W (s) (( s) as well as the 
relation W(s) W(1 - s) = 1. As a corollary rederive the complement formula. 

We extend now the functional equation to L-series. As before, consider a 
sequence of numbers B(n) (for n in Z) with period j, that is B(n + f) = B(n). 
We distinguish two cases: 

a) Even case; B( n) = B( -n). Because ofthe periodicity, it suffices to check 
the equality B(a) = B(J - a) for 1 ~ a ~ j - 1. Then we set 

(3.81) e(B,s) = (J/7r)S/2 rG) L(B,s). 

b) Odd case; B(n) = -B(-n) or B(a) = -B(J - a) for 1 ~ a ~ f -1 and 
B(O) = O. We set 

(3.82) s+l (S + 1) e(B,s) = (J/7r)---r r -2- L(B,s). 

Moreover we define the finite Fourier transform (j of B by 
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f-1 
(3.83) Bem) = 1-1/ 2 L B(n) e27rimn/f. 

n=O 

The functional equation then reads as follows 

(3.84) e(O, 1- s) = e(B, s). 

More specifically, assume that X is a Dirichlet character with conductor I, 
primitive in the following sense : there cannot exist a proper divisor II of 1 
and a character Xl of conductor II such that x(n) = X1(n) for n prime to I. 
By a group theoretic argument, it can be shown that X is given by 

(3.85) XCn) = W(X) x(n) 

(x(n) imaginary conjugate of x(n)). The constant W(X) is obtained by putting 
n = 1 ; it is a so-called Gaussian sum 

f-1 

(3.86) W(X) = r 1 / 2 L x(a) (J 
a=l 

with (f = e27ri / f. Then the functional equation reads as follows 

(3.87) e(x,l-s) = W(X)-l e(X,s). 

By using twice this equation one derives the identity 

(3.88) W(x) W(x) = 1. 

When X is the unit character of conductor 1, that is x(n) = 1 for all n ~ 1, 
then X = x, W(X) = 1 and e(x,s) = e(s) hence equation (3.87) reduces to the 

f 
functional equation e(1- s) = e( s). Otherwise, we get 1 > 1 and L: X( n) = 0, 

a=l 

hence both e(X, s) and e(X, 1 - s) are entire functions of s. 

We shall not give the proof of the functional equation (3.84) (but see the 
following exercise). When () is even, it can be deduced from the transformation 
law (3.22) for theta functions. 

Exercise 5 : a) Consider the following series 

00 

((slv, w) = L (n + v)-S e27rinw 

n=O 

which converges absolutely for Re s > 1 and Im w > 0 (no restriction on the 
complex number v). For w = 0, this sum reduces to (( s, v). Define the analytic 
continuation by the methods of this Section. 

b) Establish Lerch's transformation formula 
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(slv, w) = i e-27rivw (27rt-1 T(1- s) 

X {e-7ri8 / 2 (1_slw,_v)_e i7r8 /2 e27riv (l-sll-w,v)}. 

[Hint: use formula (*) in exercise 1 for a suitable function F.] 

c) By specialization, derive the functional equation for Hurwitz zeta func­
tion 

00 

( s, v) = 2(27r )8-1 T(l - s) L n8- 1 sin(27rnv + ~s) 
n=l 

for 0 < v ::::: 1 and Re s < O. 

d) Derive the functional equation for L( 0, s) using the following represen­
tation 

f 
L(O,s) =r8LO(a) (s,y)' 

a=l 

3.7. Application to quadratic forms 

We shall revisit the zeta function connected with the Gaussian integers, namely 

(3.89) Z4(S) =E' (m2 +n2)-8. 
m,n 

In Section 2.6, we established the factorization 

(3.90) 

where X4 is the character of conductor 4 given by the table of values 

We know that ( s) extends to a meromorphic function with a pole at s = 
1, residue 1, and no other singularity and that L(X4,S) extends to an entire 
function. Hence Z4( s) extends as a meromorphic function in C, whose only 
singularity is a pole at s = 1 with residue 4L(X4, 1). But L(X4, 1) is given by 
the series 1 - t + t - t ... and Leibniz proved that it is equal to ~. Hence 

(3.91 ) 

and the residue of Z4 (s) at s = 1 is equal to 7r. 

We derive now the functional equation for Z4(S). We could use the known 
functional equations for ( s) and L(X4, s) but it is more expedient to use theta 
functions. Indeed from the Mellin transform 

(3.92) 7r- s res) (m 2 + n2 )-S = 100 e-7rt(m 2+n 2) t s - 1 dt 
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one gets 

(3.93) 

SInce 

m m,n 

[Reminder : the Mellin transform of the constant term 1 corresponding to 
m = n = 0 is OJ. We can now use the functional equation 

and imitate the proof of the functional equation for ((s). As a result, the 
function 7r- S r( s) Z4( s) is invariant under the symmetry s f-7 1 - s 

(3.94) 

Since 7r- s / 2 r(~) ((s) is also invariant under the symmetry s f-7 1 - s, and 
since Z4(S) = 4((s) L(X4, s), it follows that 

res) -s/2 
r(~) 7r L(X4,S) 

is invariant under s f-7 l-s. Using the duplication formula we get the functional 
equation 

(3.95) 

where 

(3.96) 

(notice that X4 is an odd character!) It would be easy to calculate directly that 
W(X4) is 1, hence (3.95) follows from the general functional equation (3.87). 
But this direct derivation of (3.95) is typical of the use of analytic methods to 
produce an arithmetical result like W(X4) = 1. 

Exercise 6 : a) Calculate the values L(X4, -m) for m = 0,1,2, ... and using the 
functional equation (3.95) derive the values L(X4, m) for m ? 3, m odd (notice 
that L(X4, -m) = 0 for m odd, m ? 1). 

b) Using the functional equation (3.94) show that Z4(-m) = 0 for m = 
1,2,3, .... No information can be obtained about the values Z4(2), Z4(3), .... 

Exercise 7 : a) Derive a functional equation for the zeta function Z3(S) = 
I::",n(m2 + mn + n2 )-S using the factorization Z3(S) = 6((s) L(X3,S). 

b) Show that 7r- S r( s) Z3 (s) is the Mellin transform of the theta function 
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m,n 

Working backwards, derive a functional equation for 8 3(t) from the functional 
equation for Z3(S). 

c) Show that Z3 (s) vanishes for s = -1, - 2, . . .. Calculate Z3 (0) and the 
residue of Z3(S) at s = 1. 
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My aim in these notes is to give an introduction to the theory of Abelian 
varieties. 

At many places, I will not give detailed proofs, but I will try to discuss the 
'concrete' origins of the theory. Therefore I will spend most of these lectures 
explaining basic results about Riemann surfaces and algebraic curves and about 
the Abelian varieties which are associated to them, the Jacobian varieties. 

The content of these notes is quite classical: most of it is known since 
the beginning of the century. We follow a rather geometrical and analytical ap­
proach to the subject, in order to stay 'as concrete as possible'; the arithmetical 
aspects will only be mentioned at the very end of the lectures. I have tried to 
use a language familiar to theoretical physicists: the only prerequisites are some 
familiarity with the basic facts concerning holomorphic functions, differential 
forms and manifolds. 
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Introduction 
0.1. In order to motivate the definition of Abelian varieties, let us recall the 
geometric interpretation of the theory of elliptic functions in terms of elliptic 
curves. 

Let .fj = {T E C I 1m T > O} denote the Poincare upper half-plane. For 
any T E .fj, rr = Z + TZ is a lattice in C. An elliptic function with respect 
to rr is a meromorphic function on C which is rr-periodic. The elliptic curve 
associated to rr is the quotient Er = Cj rr. It is a compact Riemann surface, 
and elliptic functions with respect to rr can be identified with meromorphic 
functions on E r . 

Elliptic curves satisfy the following properties (cf. [Coh], [Ge], [Z]): 

i) Any elliptic curve Er may be holomorphically embedded in the complex 
projective plane 1P'2C. Indeed, if g:J denotes the Weierstrass function associated 
with the lattice rr, defined by 

(0.1) g:J(Z) = z12 + L [(Z ~ )2 - -;], 
")'Err-{O} , , 

then the couple of elliptic functions (g:J, g:J') defines an embedding of Er \ {O} in 
<e2, which extends to an embedding i : Er <.......+ 1P'2C. Moreover, it follows from 
the differential equation satisfied by the g:J-function that i(Er) is an algebraic 
curve of equation 

(0.2) y2 = 4x 3 - g2(T)X - g3(T) 

where 

(0.3) g2(T) = 60 L ,-4 
")'Err -{O} 

and 

(0.4) g3(T) = 140 L -6 , . 
")'Err-{O} 

In fact the study of elliptic functions associated to rr is nothing else than 
function theory on the cubic curve defined by (0.2). 

ii) Two elliptic curves Er and Er, (T, T' E .fj) are isomorphic as Riemann 
surfaces, or equivalently, as algebraic curves iff there exists 

in SL(2, Z) such that 
, aT + b 

T =,. T := --- . 
cT+d 
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Hence the quotient space n/8L(2,Z) can be identified with the set of isomor­
phism classes of elliptic curves, the so-called moduli space of elliptic curves, 
MI, and any modular function may be seen as the assignment of a complex 
number to any (isomorphism class of) elliptic curve(s). More generally, mod­
ular forms of weight 2k on n (with respect to some congruence subgroup of 
8L(2, Z)) may be interpreted as holomorphic differentials of weight k on some 
covering of M 1 . One ofthe basic recipes to construct modular forms is to form 
theta series. The basic example of such series is 

+00 
(0.5) O(z,r)= L exp(?Tin2 r+2?Tinz) 

n=-oo 

defined for any (z, r) E C x n. 
0.2. Abelian varieties are higher dimensional generalizations of elliptic curves: 
a complex manifold A of dimension g is an Abelian varietyl if it is isomorphic 
to a complex torus of the form C9 I(zg + ilZ g), where il is a matrix in Siegel's 
upper half-space ng, i.e., a complex square matrix of size g which is symmetric 
and whose imaginary part 1m il:= (1m ilij)lS,i,jS,g is positive (i.e., such that 
v E IRg\{O} ::::} tv· 1m il· v> 0). 

An Abelian variety is thus a complex torus of a special kind. Indeed the 
condition on a lattice in (:g to be of the form zg + ilZ g, after a complex linear 
transformation, is non-trivial (count the parameters describing the space of 
these lattices and the space of all lattices in C9 !). We will see that this condition 
implies that the complex manifold A = C9 I(zg + ilZg) can be embedded as 
an algebraic subvariety of some projective space IP'N c. However, this is not 
possible for an arbitrary complex torus. 

Thus, Abelian varieties are higher dimensional generalizations of elliptic 
curves for which the analogue of i) holds. The assertions in ii) also generalize 
in higher dimensions: if il, il' Eng, the two Abelian varieties C9 I(zg + ilZ g) 
and (:g I(zg + il'Zg) are isomorphic iff there exists 'Y E 8p(2g, Z) such that 
il' = 'Y • il. Here 8p(2g, Z) denotes the group of symplectic integral 2g x 2g 
matrices, i.e., matrices of the form 

where A, B, C, D are matrices2 in Mg(Z) , such that 

1 We are cheating a little at this point: what we are defining here are the complex 
manifolds underlying principally polarized Abelian varieties. 

2 For any ring A, we denote th(eotn~. of ~lq)uare matrices of size 9 with entries in A 

by Mg(A). The unit matrix E Mg(A) is denoted /g. 
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This group acts on f)g by 

A·tB=B·tA 
C·tD = D·tC 

A· tD - B· tc = 19 • 

'Y' fl := (Afl + B)(Cfl + D)-I. 

The quotient f)g jSp(2g, Z) may be identified with a moduli space of Abelian 
varieties, and there is a theory of modular forms on f)g, which generalizes the 
theory of modular forms on f) = f)1. Such modular forms may be constructed 
by means of theta series in several variables, which generalize (0.5). 

Modular forms on f) have striking arithmetic applications (see [eoh] and 
[Z]). Similarly, modular forms on f)g have been used by Siegel to prove deep 
results on quadratic forms over number fields. 

0.3. The purpose of these lectures is to explain how Abelian varieties were in­
troduced in the mathematical world. The story goes back to the last century, 
when the work of Abel, Jacobi and their followers (Gopel, Rosenhain, Her­
mite, Weierstrass, Riemann ... ) led to the great discovery that to any complex 
algebraic curve X (= compact Riemann surface) of genus 9 is associated an 
Abelian variety J(X) of complex dimension g, the so-called Jacobian variety of 
X, in which X may be embedded, and that function theory on X is made much 
simpler if one uses this embedding. In the following pages, we try to present 
their results. 

Since the beginning of this century, Abelian varieties have been studied 
for their own sake, and have been the subject of an impressive amount of 
work which involves analytic and algebraic geometry, arithmetics, automor­
phic forms, representation theory, ... and which, like Siegel's theory alluded 
to above, often establishes deep interactions between these domains of math­
ematics. However, as examplified by the recent proof by Faltings of Mordell's 
conjecture, Abelian varieties are still a key tool to understand, not only function 
theory on Riemann surfaces, but also the geometric and arithmetic properties 
of algebraic curves, thanks to constructions which go back to Abel and Jacobi. 

These notes cover slightly different topics than the oral conferences, where the 
content of §1.5, §B.7 to B.9, Appendix C, §I1.4 and §II1.6 was not discussed. On the 
other hand, a lecture providing an introduction to Arakelov geometry was given and is 
not reproduced here. I would like to thank Norbert A'Campo and the mathematicians 
of the 'Mathematisches Institut der Universitii.t Basel' for discussions on the topics 
of §1.5 and Marc-Henri Dehon and Patrick Gerard for remarks on the content of 
Appendix C. Finally, I am very grateful to Melle Cecile Gourgues for the great skill 
and patience with which she typed these notes. 
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I. Compact Riemann surfaces and algebraic curves 

The first part of these lectures is devoted to a discussion of basic facts con­
cerning Riemann surfaces. It is intended mainly to provide a large supply of 
compact Riemann surfaces and to introduce some notations and definitions 
which will be needed later. More technical results, concerning the topology of 
compact Riemann surfaces and holomorphic line bundles are presented in three 
appendices to this Section. 

More precisely, Sections 1.1 to 1.4 provide a short survey of the theory 
of Riemann surfaces. The reader is expected to read them without any serious 
difficulty, as we include (almost) no proof (see the 'bibliographical comments' at 
the end of this Chapter for references to the relevant literature). The content 
of §1.1, 1.2, 1.4.1 and 1.4.2 is specially important for the sequel. Section 1.3, 
concerning uniformization and classification of Riemann surfaces, is not strictly 
needed for understanding the rest of these notes. We included it because it 
contains a most remarkable classification theorem which provides an 'overview' 
of all Riemann surfaces. Section 1.5, whose content is not used later in these 
notes, can be skipped at first reading; however, it presents a recent and striking 
result which illustrates the various concepts introduced so far. Appendix A 
contains some basic results concerning the topology of surfaces (without proof). 
Appendix B contains more technical results about holomorphic line bundles on 
Riemann surfaces. At first reading, the reader should browse through §B.1 to 
B.5 and return only later to a more detailed study of this Appendix. Appendix 
C contains proofs of the results in Appendix B, which avoid any explicit use of 
sheaf cohomology and which we think to be simpler than in the usual treatments 
of analysis on compact Riemann surface found in modern literature. 

1.1. Basic definitions 

A Riemann surface is defined as a complex manifold of complex dimension 1, 
that is, roughly speaking, a topological space in which a neighbourhood of any 
point looks like the complex plane. 

More precisely, this definition means that a Riemann surface X is a Haus­
dorff space X such that, for any point P of X, we are given an open neigh­
bourhood Q of P and a homeomorphism 

<.p: Q -t <.p(Q) c C 

from Q to an open domain in C. These homeomorphisms satisfy the following 
consistency condition: let PI, P2 be any two points of X such that the associated 
neighbourhoods QI, Q2 overlap; then <.pI 0 <.p:;l is holomorphic on <.p2(QI n Q2). 

Such a pair (Q, <.p) is called a holomorphic chart on X and the map <.p is 
called a local coordinate at P. More generally, if I is any holomorphic function 
defined on a neighbourhood of z = <.p( P), such that I' (z) i- 0, then 10 <.p defines 
the same complex structure on a neighbourhood of Pas <.p and is also a local 
coordinate at P. 
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Clearly, any open domain in C defines a Riemann surface. The simplest 
compact Riemann surface is the Riemann sphere or projective line 

Topologically, it is the one point compactification of C, i.e., a sphere. Its holo­
morphic structure is defined by the charts (U, <p), (V,?j1) given by 

U = pIC - {(X)} = C ; <pC z) = z 

and 

V = pIC - {O} = C* u {(X)} ; ?j1(z) = z-I if z -=F 00 ; ?j1(00) = o. 

The standard notions from the theory of functions of a complex variable 
may be transferred from the complex plane to Riemann surfaces: 
- a complex valued function ?j1 defined on an open set U C X is holomorphic 
iff for any P E U and any local coordinate <p at P,?j1 0 <p-I is holomorphic near 
z = <pCP). Moreover,?j1 has a zero of order nat P iff?j1 o<p-I has a zero of order 
nat z. 
- in the same way, one defines meromorphic functions on Riemann surfaces and 
the order of a pole of a meromorphic function. 
- a continuous map f : Y --t X between two Riemann surfaces is holomorphic 
if, for any holomorphic chart <p : fl --t C in X, the map <p 0 f : f-I(fl) --t C 
is holomorphic. Such a map is called an isomorphism of Riemann surfaces, or 
a biholomorphic map, when it is a homeomorphism and its inverse is holomor­
phic. Any meromorphic function on a Riemann surface X may be seen as a 
holomorphic function from X to PIC. 

1.2. Four constructions of Riemann surfaces 

1.2.1. Conformal structures. 

Let X be a C= real surface3 • 

Let 9 be any C= Riemannian metric on X. A classical theorem4 says 
that, locally on X, the metric 9 is conformally fiat, i. e. J that X may be covered 
by charts U, such that there are C= local coordinates (x, y) on U in terms of 
which 9 takes the form 

where.A is a C= function from U to IR:+.. 
Furthermore, suppose that X is oriented. Permuting x and y if necessary, 

we can suppose that the charts (U; x, y) are compatible with the given orienta­
tion. Then the complex valued charts (U, x + iy) are such that the coordinate 

3 i.e., a Coo manifold of dimension 2. 
4 Due to Gauss when X and 9 are real analytic and to Korn and Lichtenstein in the 

Coo case; cf. [Ch] for a simple proof. 
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changes between them are oriented and conformal diffeomorphisms, i. e.} bi­
holomorphic transformations. Hence these charts define a structure of complex 
manifold on X (of complex dimension 1). 

Fig. 1. A compact Riemann surface two thousand years before Euclid (Cycladic art, 
2400- 2200 b.c., Athens National Museum). 

Moreover, for any function J-l E Coo(X, ~+) the Riemannian metric 119 
clearly defines the same holomorphic structure on X as 9. 

Thus we see that the data of an orientation and of a conformal class of COO 
metrics on X determines a structure of Riemann surface on X. Furthermore, 
one easily checks that one gets in that way a one to one correspondence: 

(I.2.1 ) { 
holomorphic structures} { . } 

X t 'bl 'th (conformal class of metrzcs on compa t e Wt f----t .. 

't COO t t on X, orzentatwn on X) 
t s s ruc ure 

A nice feature of this construction is that it immediately provides a large supply 
of Riemann surfaces: any oriented surface embedded in a Riemannian manifold 
(e.g.) in the 'physical' Euclidean three space ~3 as in fig. 1) gives a Riemann 
surface! 

The correspondence (I.2.1) shows that the study of Riemann surfaces may 
be seen as the study of conformally invariant properties of two-dimensional 
Riemannian manifolds. That is the reason why Riemann surfaces occur in recent 
topics of theoretical physics such as string theory or conformal field theory. 
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Fig~ 2. The real points of the curve y2 = IT!i2 (x - (ti). 

1.2.2. Algebraic curves. 

Historically, the theory of Riemann surfaces arose from the study of alge­
braic functions and of their integrals. The Riemann surfaces occurring in this 
study are Riemann surfaces attached to algebraic curves, which are defined by 
the vanishing of a family of complex polynomials. 

Here is the simplest example of an algebraic curve: let P E qx, Y] be an 
irreducible (non-constant) polynomial; then 

{ 
2 ( oP oP ) } Cp = (x,y) E C I P(x,y) = a and oX(x,y), oY(x,y) -I- (0,0) 

is a one-dimensional complex submanifold of C2; hence it is a Riemann surface. 

Examples. Here are three examples of increasing order of complexity. 
i) Let P(X, Y) = X 2 - y3. Then 

Cp = {(x, y) E C2 \{(0, a)} I x2 = y3 }. 

The parametrization x = t 3 , y = t 2 shows that C p is isomorphic (as a Riemann 
surface) to the pointed complex plane C*. 

ii) Let Q(X) E qX] be a polynomial with simple roots. Then P(X, Y) := 
y2 _ Q( X) is irreducible and 
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a) 

(\ 

b) 

~-~/ 
I 
I 

g.1 

(\ I 
I 

c) oe")o 
.' ,':, 

Fig. 3. a) Two separate copies of C, each with 9 + 1 cuts. b) The upper copy has 
been turned upside down and the sides of the cuts have been glued according to the 
arrows. c) The surface made compact by adding one point at infinity on each sheet. 

is a Riemann surface (observe that P(x,y) = 0 ::::} (g~(x,y), g~(x,y»)= 
( -Q' (x), 2y) f:. 0 since Q has only simple roots). 

Suppose Q(X) is of even degree, say 

29+2 

Q(X) = II (X - ai). 
;=1 

Figure 2 depicts the set Cp n ]R2 of real points of Cp when the roots ai are 
real. The whole curve C p appears as a two-sheeted covering of C, ramified at 
at, ... ,a29+2, via the map (x,y) 1-+ x. Topologically, Cp can be described as 
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two copies of the complex plane suitably sewn along cuts between 0'1 and 0'2, 

0'3 and 0'4, ... ,0'2g+1 and 0'2g+2; this proves that Cp has the topology of a 
compact surface of genus g with two points deleted (see figure 3; cf. Appendix 
A for the definition of the genus). 

iii) Let P(x,y) = xn + yn -1 (n E N*). Then Cp is the 'affine Fermat 
curve': 

The reader may enjoy proving that, topologically, Cp is a compact surface of 
genus t(n - l)(n - 2) with n points deleted. 

1.2.3. Quotients of Riemauu surfaces. 

A third way to get Riemann surfaces is to construct them as quotients 
under group actions of some other Riemann surfaces. 

For instance, an elliptic curve Er = C/(71 + T71) is the quotient of the 
complex plane by the action by translation of the lattice 7l + T71. 

In general, one can prove the following theorem: 

Theorem 1.2.1. Let X be a Riemann surface and let r be a discrete group acting 
on X such that: 

i) for any "i E r, the map x f--t "i' x from X to itself is holomorphic (hence 
an isomorphism of Riemann surfaces); 

ii) the action of r on X is proper: if (Zn)n:2:1 is a sequence in X and 
("in)n>1 is a sequence in r such that the zn's belong to a compact subset of X 
and the "in's are pairwise distinct, then "in . Zn goes to infinity in X 5 when 
n goes to infinity. 

Then the quotient space X/ r possesses a natural structure of Riemann 
surface, characterized by the following property: 

Let 7r : X -+ x/r denote the canonical map. For any open subset U 
of x/r, 7r-1(U) is an open subset of X 6 and a function f : U -+ C is 
holomorphic iff f 0 7r : 7r-1 (U) -+ C is holomorphic. 

Observe that according to ii), X/ r is a nice Hausdorff space. Moreover, 
when r acts freely on X, i. e., when for any I E r - {e} the automorphism 
Z f--t "i' Z has no fixed point, this theorem is a simple formal consequence of the 
definition of a Riemann surface, and still holds if 'Riemann surface' is replaced 
by 'n-dimensional Coo (or complex) manifold'. The point is that, contrary to 
what occurs with quotients of manifolds of dimension > 1 7, even if some 

5 i.e., for any compact subset J( of X, inXn t/:. J( for n large enough. 
6 This is the definition of open subsets in XI r. 
7 For instance the quotient of C2 by the action of the involution (Xl, X2) >-> 

(-Xl, -X2) is isomorphic with the cone xy = Z2 in ((;3 (put X = xi, y = x~, z = 
XIX2), which is not smooth at (0,0,0). 
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l' E r - { e} acts with fixed points, XI r is a smooth Riemann surface: there is 
no 'quotient singularity' in the world of Riemann surfaces. 

Examples. i) Let X be the unit disc D = {z E C I Izl < I} and let r be 
the group Zn of n-th roots of unity, acting by multiplication on C. Then the 
r-invariant function on D z f--+ zn induces an isomorphism 

DIZn ~ D. 

This example shows how a quotient XI r may be smooth even when some 
elements in r\ {e} have fixed points. In fact it is the 'generic' example of this 
phenomenon: under the hypothesis of Theorem 1.2.1, for any point P E X, its 
stabilizer in r, namely 

rp = bE r h . P = P}, 

is a finite cyclic group lEn' and there exists a chart (U, z) of X such that 

P E U,z(P) = O,z(U) = D, 

l' E rp :::} l' . U = U, 

l' E r\rp :::} l' . Un U = 0 

and such that, read in this chart, the action of rp on U is the action of n-th 
roots of unity on D. Then in XI r, the open set 7r(U) may be identified with 
ulrp, i.e., with DIZn ~ D (see, for instance, [GNJ, §L5.(3)). 

ii) The group Z acts on C by translation and this action clearly satisfies 
the conditions i) and ii) above. The IE-periodic function exp(27riz) induces an 
isomorphism 

C;Z ~ C*. 

iii) An action of the group 

on the upper half plane fj is defined by 

( a b). z = az + b . 
cd cz+d 

Thus any subgroup r of PSL(2, JR.) acts on fj, and clearly this action satisfies 
condition i) in Theorem 1.2.1. Moreover, if we let PSO(2) = SO(2)/{±lz}, we 
have a homeomorphism 

SL(2,JR.)/SO(2) = PSL(2,JR.)/PSO(2)-=t fj 

[g) f--+ 9 . i, 

and, since PSO(2) is compact, this easily implies that any discrete subgroup 
r of PSL(2, JR.) satisfies condition ii) in Theorem 1.2.1. Finally, to any discrete 
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subgroup r of PSL(2,JR) is attached a Riemann surface SJ/r. Any such r is 
called a Fuchsian group. 

A simple way to get discrete subgroups of PSL(2, JR) is to take subgroups 
ofPSL(2, Z) := [SL(2, JR)nM2(Z)]/{±I2 }. The quotients of SJ by some ofthese 
subgroups are closely related to elliptic modular functions. For instance, the 
modular function j, defined in terms of g2 and g3 (cf. (0.3) and (0.4)) by the 
formula 

induces an isomorphism 

i: SJ/PSL(2,Z) ~ C 

[r]1-? j(r). 

Consider now the congruence subgroup 

It acts freely on SJ and there is an isomorphism 

SJ/r(2) ~ C - {O, I} 

induced by the function .x : SJ ~ C - {O, I} defined by 

(2:~:'-00( _1)ne1l"in2T) 4 

(2:!:'-00 e7rin2T) 4 

.x( ) = 9( r /2, r )4 
r 9(0,r)4 

which is modular with respect to r(2). (The function 9 was defined in (0.5). 
Note that the j function also may be expressed in terms of 0; in fact we have 

1.2.4. Analytic continuatiou. 

Finally we should mention, at least because of its historical importance, a 
last way to construct Riemann surfaces: analytic continuation. 

Consider a point Xo in C and a germ of holomorphic function at xo, i.e., 
a senes 00 

fo(z) = L an(z - xo)n 
n=O 

with a positive radius of convergence. The Riemann surface of fo is 'the largest 
connected Riemann surface unramified over C on which the germ f may be 
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extended as a holomorphic function'. We now describe a formal construction 
of this Riemann surface. 

Consider the set 0 of pairs (x, I) where x is a point of C and f is a germ 
of holomorphic function at x, and consider the map 

11": 0 -+C 

(x,I) I-+X. 

There exists a unique structure of (highly non-connected) Riemann surface on 
o which satisfies the following conditions: for any (x, I) E 0, if the radius of 

o 

convergence of f is R and if, for any x' EDx (R) (the open disc of center x and 

radius R), fXI denotes the Taylor series of f at x', the map 

o 

Dx (R) -+ 0 

x' 1-+ (x', fXI) 

o 

is a biholomorphic map from Dx (R) onto its image. This Riemann surface 

structure on 0 makes the map 11" a holomorphic map, which indeed is locally 
biholomorphic (i.e., unramified). Moreover, the map 

F: 0 -+C 

(x,I) 1-+ f(x) 

is easily seen to be holomorphic. 
The Riemann surface X of the germ of holomorphic function fo is now 

defined as the connected component of (xo,Jo) in O. By construction, X is a 
Riemann surface which 'lies over C'j indeed the map 

is unramified. Moreover the holomorphic function F extends the germ f, which 
can be seen as a germ of holomorphic function on a neighbourhood of (x, I) in 
X (identified with a neighbourhood of x in C by 11"). 

The link between this construction of the analytic continuation and its 
more classical description is made by the following observation: a germ (x', !') 
belongs to X iff there exists a finite sequence (Xi, fi), 0 ::; i ::; N, of germs such 
that (xo,Jo) = (x,I), (XN,JN) = (x',!,) and such that the open discs of con­
vergence of /;-1 and /; intersect and fi and /;-1 coincide on this intersection. 

A well known example of Riemann surface obtained by this construction 
is the 'Riemann surface of the logarithm', obtained by applying the preceding 
construction to 
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The associated Riemann surface X is an unramified covering of C*, with an 
infinite number of sheets. It is biholomorphic with C via the map 

C-+X 

X f--+ (ex,x + ~(_l)n+1 e:
x 

(z - ext) . 

Another example of analytic continuation is provided by algebraic func­
tions. Assume f is a germ of algebraic function, i. e., that there exists a non-zero 
polynomial P E qx, Y] such that 

P(x', f(x')) = 0 

for any x' in a neighbourhood of x. The polynomial P may be supposed irre­
ducible and then the map 

X -+ C2 

P = (x,!) f--+ (7r(p),F(p)) = (x,f(x)) 

establishes an isomorphism between X and the open subset of C p (cf. §I.2.2) 
obtained by deleting from C p the finite set of points at which the first projection 
(ZI,Z2) f--+ ZI is ramified (this is equivalent to ~~(ZI,Z2) = 0). 

1.3. Classification of Riemann surfaces 

A deep theorem of the theory of Riemann surfaces asserts that any connected 
Riemann surface may be obtained as a quotient from piC, C, or 5). More 
precisely, we have the following classification: 

Theorem 1.3.1. The class of connected Riemann surfaces may be partitioned 
into three subclasses: 
• Elliptic Riemann surfaces: these are the Riemann surfaces isomorphic to 
the Riemann sphere PiC. They are characterized as the connected Riemann 
surfaces X such that there is a non-constant holomorphic map pIC -+ X. 

In particular, if X = pIC in Theorem 1.2.1, then r is finite and X/ r ~ 
piC. 
• Parabolic Riemann surfaces: these are the Riemann surfaces isomorphic ei­
ther to C, or to C* or to an ellipticS curve Er = C/(Z + TZ), T E 5). They 
are characterized as the connected Riemann surfaces X which are not elliptic 
and such that there is a non-constant holomorphic map from C to X, or as 
the surfaces isomorphic to a quotient of the complex plane C by a group action 
satisfying the hypotheses of Theorem 1.2.1, or as the surfaces isomorphic to a 
quotient of the complex plane by the action by translation of a discrete subgroup 
of C. 

8 At this point, the terminology appears quite awful: an elliptic curve is a parabolic 
Riemann surface. It is unfortunately well established. 
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Among the parabolic Riemann surfaces, C is characterized, up to isomor­
phism, as simply connected and non-compact, C* as non-simply connected and 
non-compact, and the elliptic curves E r , as compact. Furthermore, two elliptic 
curves Er and Er, are isomorphic as Riemann surfaces iff T and T' have the 
same class in S)/PSL(2,Z), i.e., iff jeT) = jeT'). 
• Hyperbolic Riemann surfaces: these are the Riemann surfaces isomorphic 
to a quotient S)/ r, where r is a discrete subgroup of PSL(2, IR) acting freely 
on S). They are characterized as the connected Riemann surfaces X such that 
there is no non-constant holomorphic map from C to X. Furthermore, two such 
surfaces S)/r and S)/r' are isomorphic iff there exists g E PSL(2,1R) such that 
r' = grg-I. 

This 'trichotomy' may be rephrased in terms of universal coverings: 
If X is a connected Riemann surface and if X denotes its universal covering 
(cf. [Rey]), then: 

· X is elliptic iff X ~ ]pIC (and then in fact X ~ ]PIC) 
· X is parabolic iff X ~ C 
· X is hyperbolic iff.Y ~ S). 
In particular, the classification above asserts that any simply connected 

Riemann surface is isomorphic either to ]pIC, or to C, or to S). This statement 
is known as the uniformization theorem and is the main point in the proof of 
Theorem A.3.1. 

The division in three classes of connected Riemann surfaces may be un­
derstood in terms of conformal structures: 

Theorem 1.3.2. A connected Riemann surface is elliptic (resp. parabolic, resp. 
hyperbolic) iff it may be equipped with a complete Riemannian metric defining 
its conformal structure whose Gaussian curvature is +1 (resp. 0, resp. -1). 

The 'only if' part in Theorem 1.3.2 is easily checked as follows: 
• An elliptic Riemann surface is isomorphic to the Riemann sphere ]PIC 
C U {oo}, which clearly possesses a conformal metric of curvature 1. Explicitly, 
we can take 

• The flat metric on C 

is translation invariant. Hence it defines a complete metric of zero curvature 
on any parabolic Riemann surface X = C/ r (r discrete subgroup of C). 
• The Poincare metric 

ds 2 = Idzl 2 

(Imz)2 

on S) is a complete Riemannian metric of curvature -1, which is preserved by 
the action of PSL(2, IR) on S). Hence it defines a complete metric of curvature 
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-Ion any Riemann surface of the form f) / r, where r is a discrete subgroup 
of PSL(2, lR.) acting freely on f), i. e., on any hyperbolic Riemann surface. 

Recall that, equipped with this metric, f) is a model of hyperbolic two­
dimensional non-Euclidean geometry (cf. [er)). In this model, the geodesics 
are represented by the semi-circles centered on the real axis and by the lines 
orthogonal to it. The group of direct isometries of the hyperbolic plane coincides 
with PSL(2, lR.) acting on f) by homographic transformations. 

o 

i - z W=-­
i+z -

Fig. 4. Half plane and disc models of hyperbolic geometry. 

It is often useful to use a variant of this model (cf. figure 4): we have a 
holomorphic diffeomorphism between f) and the unit disc 

D = {w E C Ilwl < I} 

which associate to z E f) the point w = :+; E D. Transported on D by this 
diffeomorphism, the Poincare metric becomes 

2 41dwl 2 

ds = (1 _ IwI2)2· 

The geodesics in this 'disc model' are the diameters and the arcs of circles 
orthogonal to the boundary circle aD = {w Eel Iw I = I}, and the group of 
direct isometries of the hyperbolic plane coincide with 

PSU(l,l):= { (~ !) ; (a,b) E C2 , lal2 -IW = I} /{±h} 

acting on D by homographic transformations. 

Exercise: An element 9 = (gijh5:i,j5,2 of SL(2,lR.) - {±I2 } (resp. of SU(l, 1)­
{±h}) acts without fixed point on f) (resp. on D) iff its trace tr 9 := gl1 + g22 

has modulus 2: 2. 

The uniformization theorem is one of the achievements of the mathematics 
in the last century. Its proof leaded to the development of rigorous methods 
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in the study of elliptic differential equations and in potential theory, as well as 
in algebraic and differential topology. Uniformization establishes a fascinating 
interaction between these topics, the study of Riemann surfaces and hyperbolic 
geometry, which, still now, is far from being completely explored. Concerning 
this circle of ideas, we cannot refrain to quote the enthusiastic evocation of 
uniformization in the foreword of the first 'modern' book on Riemann surfaces, 
published by Hermann Weyl in 1913 ([Wey 1]): 

... Die letzten Abschnitte Endlich (§19-21) sind der von Klein und 
Poincare in kiihnem Rift entworfenen, von Koebe in jiin9ster Zeit auf 
ein breites Fundament gestellten Theorie der U niformisierung gewid­
met. Wir betreten dam it den Tempel, in welchem die Gottheit (wenn 
ich dieses Bildes mich bedienen dar f) aus der irdischen Haft ihrer 
Einzelverwirklichungen sich selber zuriickgegeben wird: in dem Symbol 
des zweidimensionalen Nicht-Euklidischen Kristalls wird das Urbild 
der Riemannschen Fliichen selbst, (soweit dies moglich ist) rein und 
befreit von allen Verdunklungen und Zufiilligkeiten, erschauba.,J! ... 

104. Compact Riemann surfaces 

1.4.1. Compact Riemann surfaces with punctures. 

We have just discussed the link between the construction of Riemann sur­
faces as quotients, and the construction from conformal structures. The inter­
play between these constructions and the construction from algebraic curves 
appears more clearly when one deals with compact Riemann surfaces. 

In order to explain it, let us introduce a definition: we will call compact 
Riemann surface with punctures any Riemann surface X such that there exists 
an open subset U C X such that: 

(PI) there exists a biholomorphic map from U onto a disjoint finite union 
of punctured discs {O < Izl < I}; 

(P2) X - U is compact. 
One easily checks that for any such X, one gets a new Riemann surface 

J( by gluing X and a disjoint finite union of discs {Iz I < I} along the open set 
U (see figure 5). Clearly, X is compact and contains X, and X - X is finite. 
Moreover, X is characterized by these properties and is therefore well defined. 

It is useful to observe that if E is a finite subset of a Riemann surface X, 
X is a compact Riemann surface with punctures iff X - E is such, and that, 
when this is true, X may be identified with X---=-E. 

9 ••• Finally the last Sections (§19-21) are devoted to the uniJormization theory, 
which was sketched by Klein and Poincare in an audacious breakthrough and was 
recently put on a firmer basis by Krebe. Thus we get into the temple where the 
divinity (if I am allowed to use this image) is restored to itself, from the earthy jail 
of its particular realization: through the two dimensional non-Euclidean crystal, 
the archetype of the Riemann surface may be contemplated, pure and liberated 
from any obscurity or contingency (as far as it is possible). ·. 
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I • 

Fig. 5. A compact Riemann surface with punctures. 

Example. Let F be a finite subset of pIC, and let Jr : X -+ pIC - F be an 
unramified covering of finite degree. Then X is a compact Riemann surface 
with punctures. Indeed, if we choose, for each x E F, a neighbourhood Dx of x 
in pIC disjoint from F - {x} and such that the Dx's are pairwise disjoint and 
biholomorphic to open discs, then the open subset of X 

U = U Jr-I(D x - {x}) 
xEF 

of X clearly satisfies condition (P2), and satisfies condition (PI) as well, because 
any unramified covering of finite degree of a punctured disc is (biholomorphic 
to) a disjoint union of punctured discs (see [Rey]). Thus one gets a compact 
Riemann surface X. Moreover, the covering Jr : X -+ pIC - F extends to a 
holomorphic map 

ir : X -+ pIC, 

which may be ramified over Jr-I(F). 

Exercise: Prove the following extension of the preceding example: let f : X -+ Y 
be a holomorphic map between Riemann surfaces which is proper and non 
constant on any connected component of X and whose ramification set is finite. 
If Y is a compact Riemann surface with punctures, then X also is a compact 
Riemann surface with punctures. 

1.4.2. Algebraic curves and their normalizations. 

Let P E qx, Y] be an irreducible polynomial, and let Cp be, as in §1.2.2, 
the set of smooth points of the curve of equation P(x,y) = O. Let us assume 
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that P rt qXl (i.e., that Cp is not a line parallel to the Y-axis) and let n be 
the degree of Y in P(X, Y). Then 

Fo = {x Eel P(x, Y) has degree < n or has a multiple root} 

is a finite subset of C. Indeed, it may be defined by the vanishing of the discrim­
inant of P(x, Y) as a polynomial in Y, and this discriminant is a polynomial 
function of x which does not vanishes identically, according to the hypothesis 
on P. 

Fig. 6. The compact Riemann surface with punctures associated with an algebraic 
plane curve. 

Let X:= {(x,y) E C p I x rt Fo}, F:= Fo U {oo}, and let 

7r: X -+ C - Fo = ]p>lC - F 

(x,y) 1-+ x. 

Then 7r is an unramified covering of degree n, and we are in the situation of the 
example in the preceding paragraph (see figure 6). Therefore X is a compact 

Riemann surface with punctures and we get a compact Riemann surface X and 
a holomorphic map 7r : X -+ ]p>lC which extends 7r. 

As Xc Cp and X - Cp is finite (it is included in (Fo x q n {P(x, y) = O} 
which is finite since P is irreducible and belongs to qx, YJ - qX]) we see that 
Cp itself is a compact Riemann surface with punctures, and that the map 

7r: Cp -+ C 
(x, y) 1-+ X 

extends to a holomorphic map 
A ~ ~ 1 
7r : Cp = X -+ ]p> C. 

The compact Riemann surface C p is a compact Riemann surface canonically 
associated to the algebraic curve {P( x, y) = O}. Moreover, one may prove that 
it is connected, as a consequence of the irreducibility of P. 
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Examples. Consider again the examyles of §1.2.2. The reader can check that: 
· if P(X, Y) = X 2 - y 3 , then Cp is isomorphic to jpIC; 

· if P(X, Y) = y2 - II~;i2(X - ai), where the ai's are pairwise distinct, 
then C p is a compact surface of genus g; compact Riemann surfaces constructed 
in this way are called hyperelliptic Riemann surfaces; 

· if P(X, Y) = y2 - I1~!i\X - ai), where the ai's are pairwise distinct, 

then Cp is also a hyperelliptic Riemann surface of genus g; 
· if P(X, Y) = xn + yn - 1, then Cp may be identified with the 'Fermat 

curve', defined as the curve in jp2e of homogeneous equation Xr + X!j = Xo. 
It is a compact surface of genus ten - l)(n - 2). 

In fact, by this construction, we can recover all compact connected Rie­
mann surfaces: 

Theorem 1.4.2. Let M be a compact connected Riemann surface. 

1) There exists a non-constant holomorphic map 

(i.e., a non-constant meromorphic function on M). 
2) For any such j, there exists an irreducible polynomial P E qx, Y] and 
an isomorphism M ~ Cp such that, Cp and M being identified through this 
isomorphism, j coincides with 7r. 

The assertion that on any compact Riemann surface, there is a non­
constant meromorphic function is the difficult and important point in Theorem 
1.4.2. Let us emphasize that this property is special to one-dimensional com­
pact complex manifolds. (On a compact complex surface, i.e., on a compact 
two dimensional complex manifold, there may be no non-constant meromorphic 
function; cf. §III.2). This type of existence theorem goes back to Riemann, who 
gave a non-rigorous construction, based on the Dirichlet principle, of harmonic 
functions with prescribed singularities on ramified coverings of jpIc. Theorem 
1.4.2 was proved rigorously by methods closely related with the ones developed 
to prove the uniformization theorem, and, at the same time as this last theo­
rem, has been at the origin of many developments in analysis around the term 
of last century. 

Until now, we have considered only plane algebraic curves. To get a better 
understanding of the correspondence between compact Riemann surfaces and 
algebraic curves, it is important to deal with a more general notion of algebraic 
curves. This leads us to introduce a few definitions: 

• an algebraic subvariety of complex dimension d of the affine space eN 

(resp. of the projective space jpNC) is a subset V of eN (resp. of jpNC) such 
that: 

i) there exists a finite family of polynomials (resp. of homogeneous poly­
nomials) PI, ... ,Pk in qXI, ... ,XN] (resp. in qXO,XI, ... ,XN]) such that, 
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for any (Xl' ... ' XN) E eN (resp. for any (xo : ... : XN) E jp'Nq, we have 

(Xl, ... ,XN) E V {:} PI(XI, ... ,XN) = ... = Pk(XI, ... ,XN) = 0 

(resp. : 

(1.4.1) (xo: ... : X N) E V {:} PI (XO, ... ,X N) = ... = Pk( XO, . .. ,X N) = 0); 
ii) the subset Vreg of V, formed by the points P of V which possess an 

open neighbourhood Q in eN (resp. in jp'Nq such that V n Q is a complex 
submanifold of Q, is connected and of complex dimension d (by construction 
Vreg is an open subset lO of V and a sub manifold of eN (resp. of jp'Nq) . 

• an affine or projective algebraic variety V is said to be smooth if Vreg = V; 
then it is a complex submanifold of eN or jp'N . 

• an affine (resp. projective) algebraic curve is an affine (resp. projective) 
algebraic variety of dimension one. 

Let V be any affine or projective algebraic curve. One may show that 
V - Vreg is finite and that Vreg is a compact Riemann surface with punctures 
(the proof is a generalization of the proof for Cp: one shows that the linear 
projection from Vreg to a 'generic' line, restricted to the complement of a finite 
set of ramification points, is a proper finite unramified covering). Therefore we 
may consider the compact connected Riemann surface v"eg. In the projective 
case, the identity map from Vreg to itself extends to a holomorphic map from 
v"eg to V( C jp'Nq. The Riemann surface v"eg is called the normalization of 
V, and has been obtained from V by 'resolving its singularities' (the singular 
points of V are the points in V - Vreg). In the affine case-say V c eN -the 
closure V of V in jp'Ne is an algebraic curve in jp'Ne, and v"eg is nothing else 
than the normalization of V. To summarize, to any complex algebraic curve is 
canonically associated a compact connected Riemann surface. 

Examples: i) Let P E qx, Yj an irreducible polynomial of degree n (> 0). 
Then 

V = {(x,y) E e2 I P(x,y) = o} 
is an algebraic curve in <e2 , its closure V in jp'2e is the set of zeroes in jp'2e of 
the homogenized polynomial 

and the normalization of V coincides with Cpo 
ii) Any smooth projective algebraic curve-e.g., the Fermat curve in jp'2e, 

of equation Xi + XJj = Xo-is its own normalization. 
iii) Let us give examples of smooth algebraic curves in jp'3e which are not 

contained in any projective plane of jp'3c. 
10 In fact, one may prove that if V satisfies i), then Vreg is dense in V, and has only 

a finite number of connected components. 
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For instance we can take the image of the embedding 

the so-called twisted cubic in ]p'3C. It is an algebraic curve in ]p'3C as it may be 
defined by the equations: 

A more sophisticated example is, for any r E fj, the image of the holomorphic 
map 

'Pr : C/(Z + rZ) -t]p'3C 

[z]I-+(000(2z,r): 001(2z,r): 010(2z,r): 011(2z,r)) 

defined by the theta functions 'with characteristics' 

+00 
Oij(Z, r) = L exp [7ri(n + i/2)2 r + 27ri(n + i/2)(z + j /2)] . 

n=-oo 

One may prove that 'Pr is an embedding and, using Riemann's quadratic re­
lations between theta functions, that its image is defined by the quadratic 
equations (cf. [Mu4], I, p. 11-23): 

{ 
000(0)2 X6 = 001 (0)2 xi + 010(0? xi 

000 (0)2 Xi = 010 (0)2 Xi -001 (0)2 Xi· 
A good reason to look at algebraic curves in higher dimensional projective 

spaces is that a general compact connected Riemann surface of genus 9 ~ 2 
cannot be realized as a smooth algebraic curve in ]p'2C. Indeed, the genus of such 
a Riemann surface is ten - l)(n - 2) where n is the degree of the irreducible 
homogeneous polynomial in qxo, Xl, X 2 ] which defines it, and clearly, not all 
positive integers are of this form. Moreover, no hyperelliptic Riemann surface 
of genus g ~ 2 can be embedded in ]p'2C. However, we have the following refined 
version of the existence theorem I.4.2., 1): 

Theorem 1.4.3. For any compact connected Riemann surface X, there is a holo­
morphic embedding 

The crucial point now is that the image of such an embedding is an al­
gebraic curve in ]p'3C (observe the analogy with Theorem I.4.2. 2)). This is a 
(rather easy) special case of the following celebrated theorem of Chow: 
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Theorem 1.4.4. Any compact connected complex submanifold of pNC is an al­
gebraic subvariety of pNc. 

An important avatar of the 'algebraic character' of complex projective 
manifolds expressed by Chow's theorem is the fact that, on algebraic curves, 
'meromorphic functions coincide with rational functions'. More precisely, we 
have: 

Theorem 1.4.5. 1) Let P be any irreducible polynomial in qx, Y]. For any 

meromorphic function f on Cp, there exist R E <C(X, Y) and a finite subset F 
of Cp such that R is defined and coincides with f on Cp - F. 

2) Let X be a compact connected Riemann surface embedded in pNc. For 
any meromorphic function f on X, there exist homogeneous polynomials P, Q 
of the same degree in qxo, ... , XN] and a finite subset F of X such that, for 
any (xo : ... : XN) E X - F, 

( ) P(xo, ... ,XN) 
and f Xo : ••• : Xn = Q( ). 

Xo, •• · ,XN 

Exercise: Prove assertion 2) of Theorem 1.4.5 when N = 1 and X = pIC; 
in other words, prove that any meromorphic function on pIC is a rational 
function. (Hint: use Appendix B.1.7). 

Exercise: Prove that if C is the hyperelliptic Riemann surface Cp defined by 
P(X, Y) = y2 - rr~!i2(X - (ti), and if x and y are the meromorphic functions 
on C defined by the coordinates, then any meromorphic function on C may 
be written in a unique way as f = R(x) + S(x)y, where R and S are rational 
functions (Hint: consider the involution on X which exchanges the two sheets 
of the covering x : C -4 pIC and use the result of the preceding exercise). 

1.4.3. Compact Riemann surfaces and uniformization. 

Restricted to compact connected Riemann surfaces, the partition of Rie­
mann surfaces discussed in §I.3 involves only their topology: a compact con­
nected Riemann surface of genus g is elliptic (resp. parabolic, resp. hyperbolic) 
iff g = 0 (resp. g = 1, resp. g ~ 2). More precisely, uniformization theory 
tells us that the compact connected Riemann surfaces of genus 0 and 1 are, up 
to isomorphism, the Riemann sphere pIC and the elliptic curves C/(7l, + 77l,), 
7 E i), and reduces the classification of compact connected Riemann surfaces 
of genus ~ 2 to the classification of discrete subgroups r of PSL(2,lR.) acting 
freely on i) such that i)/ r is compact (cf. Theorem 1.3.1). One easily checks 
that, for any discrete subgroup r of PSL(2, lR.), this last condition is equivalent 
to the existence of a compact subset Kef) such that 

i) = U 'Y. K, 
'YEr 
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or to the compactness of PSL(2, JR.)/ r. A discrete subgroup of PSL(2, JR.) which 
satisfies these conditions is said to be cocompact. 

Moreover, any discrete subgroup r of PSL(2,JR.) may be shown to possess 
a subgroup r' of finite index which acts freely on .fj (cf. [Sel)) , and r' is easily 
shown to be cocompact iff r is. 

To summarize, from the point of view of uniformization theory, construct­
ing compact Riemann surfaces of genus 2: 2 is essentially equivalent to con­
structing discrete cocompact subgroups of PSL(2, JR.). 

Fig. 7. The fundamental domain Dr. 

It is possible to exhibit explicit examples of such subgroups, thanks to 
an arithmetic construction which goes back to Poincare, based on the use of 
quaternion algebra (cf. [Ei], [Shi],[Vi)). Concretely, if p is any prime number 
and if n is any positive integer which is not a quadratic residue modulo p 11, 

then the set re n, p) of e classes modulo {±I2 } of) matrices of the form 

( 
Xo + Xl Vn X2yP + X3 vnP ) 

X2yP - X3vnP Xo - Xl Vn ' 
where Xo, Xl, X2, X3 are integers such that 

x~ - nxi - px~ + npx~ = 1 , 

is a discrete cocompact subgroup of PSL(2, JR.). Furthermore, if p == 1 (mod 4), 
then r(n,p) acts freely on.fj. 

Another construction of discrete cocompact subgroups of PSL( 2, JR.), which 
goes back to Poincare and Klein, is based on hyperbolic geometry. It relies on 
the fact that PSL(2, JR.) is the group of direct isometries of .fj equipped with 

11 i.e., if there is no integer x such that x2 == n modp. 
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the Poincare metric and that, accordingly, such a subgroup may be seen as a 
'discrete group of motion in the hyperbolic plane'. We now describe briefly this 
construction. 

-1 -1/2 o 1/2 

Fig. 8. A fundamental domain for PSL(2,Z). 

Remember that any lattice A in the Euclidean space IR N possesses a Dirich­
let fundamental domain D A, defined as 

D A = n {x E IR N I d( x, 0) < d( x, , )} , 
'YEA 

where d denotes the Euclidean distance in IR N (cf. [Sen]). Similarly, for any 
discrete subgroup r of PSL(2, IR) acting freely on Sj and to any base point 
Xo E Sj, we can attach the following subset of Sj 

Dr = n {x E Sj I d(x,xo) < d(x,,' xo)}, 
'YEr 

where now d denotes the distance in the hyperbolic plane Sj 12 (see figure 7). 
The subset Dr may be called a fundamental domain for the action of r on Sj. 
Indeed it enjoys the following properties: 

(FDl) Dr is a connected open subset of Sj; 
(FD2) the subsets, . Dr, , E r, are pairwise disjoints; 

(FD3) U " Dr = Sj. 
'YEr 

Moreover Dr is a convex polygon in the following sense: 

. for any pair of points (A, B) in Dr, the geodesic segment between A and 
B lies entirely in Dr; 

. the boundary fJDr of Dr is locally a piecewise geodesic curve. 
Observe that a discrete subgroup r of PSL(2, IR) may have a fundamen­

tal domain Dr which satisfies all the preceding conditions but which is not 

12 i. e., the geodesic distance associated to the Poincare metric. The reader may prove 

that it is given by d(Zl,Z2) = 2 sinh- 1 (v'l z1- z 21 ). 
2 1m Zt·Im z2 
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obtained by the Dirichlet construction. It is the case of the well known funda­
mental domain of PSL(2, Z) depicted on figure 8. 

Fig. 9. The generators Ie associated with the sides of Dr. 

Let us return to the Dirichlet fundamental domain Dr. One easily checks 
that r is cocompact in PSL(2,lR.) iff Dr is compact, which we will assume from 
now on. 

Then Dr is a convex hyperbolic polygon, with a finite number of vertices, 
which belong to .f). Moreover, as explained on figure 9, to any side C of Dr is 
attached the unique element IC E r - {I} such that C is a common side of 
Dr and IC· Dr. Then we clearly have: 

(PI) For any side C of Dr, 101 • C is a side of Dr. Furthermore, aDr 
may be oriented as the boundary of Dr, and IC is an orientation reversing 
map from C to IC· C. 

(P2) If C' = 101 • C, then IC' = 101 . 

Moreover, the IC's generate r. Indeed the set of polygons b . Dr, I E r} 
is a hyperbolic tiling of.f) (see [Rey] , figure 14, and the front cover ofthis book). 
Therefore, for any I E r, there exists a sequence 10 . Dr = Dr, 11 . Dr, ... , In . 
Dr = '"'I. Dr of 'tiles' such that IH1 . Dr and '"'Ii • Dr have a common side. 
Then ,i+\'i . Dr and Dr have a common side. Therefore ,;:t\'i is one of the 
IC's and I is a product of IC's. 

For any vertex P of Dr, we now define: 
. its 'successor' a(P) = 101 . P, where C is the side of Dr which starts at 

p. , 
. the 'cycle' C(P) as the (finite) subset {an(P)}nEN of the set of vertices 
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of Dr13; 
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"Yeo 'YCt••· 'YCi_rCi 

'Yco 'YCt··· 'Yci_rDr 

Fig. 10. The conditions (P3) and (P4). 

· the angle 8 P of Drat the vertex P. 
Then, for any vertex P of Dr, we have, as shown on figure 10: 
· the 'cycle condition' 

(P3) 

is satisfied; 

L 8Q = 271" 
QEC(P) 

· ifC(P) = {P,a(P), ... ,ak(p)} (k> 1) and ifCj zs the side of Dr 
starting at ai(p), then 

(P4) ,Co 'C1 •• ·'Ck = I. 

(Observe that 

13 In more concrete terms, if we glue every side C of Dr to IC . C using IC' then a 
vertex P of Dr is glued exactly with the elements ofC(P). 
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P = UO(P) 

= ,C . u(P) 

= ,c,C, . u2(P) 

= ,Co,C, ... 'C._, . ui(P) 

= ,Co'C' ... ,Ck . uk+1(P) 

= ,Co'C, .. ',Ck . (P) 

and that r acts freely on .fj). 
Poincare's theorem is the following converse to this construction: 

Theorem 1.4.6. Let D be any hyperbolic polygon in .fj, i.e., any connected open 
subset of.fj, whose closure D is compact in .fj and whose boundary aDr is a 
closed piecewise geodesic curve. Suppose that to any side C of D is attached 
an element ,C E PSL(2, IR) - {I} such that the conditions (PI) and (P2) are 
satisfied. (This means essentially that the sides of D may be grouped in pairs 
of sides of the same length). Then the definitions of u(P), C(P) and Op still 
make sense, and if the condition (P3) is satisfied the ,c's generate a cocompact 
discrete subgroup r of PSL(2, IR) which acts freely on .fj and possesses D as 
fundamental domain (i.e., D satisfies the same conditions (FDI-3) as Dr). 

Moreover, the relations (P4) are satisfied and, together with (P2), provide 
a presentation of r. 

As a matter a fact, Theorem 1.4.6 allows to construct easily many cocom­
pact discrete subgroups of PSL(2, IR). 

Exercise. Prove that for any g ~ 2 there exists r E ]0, I[ such that the convex 
hyperbolic polygon Dg with vertices r e ~~k , I ~ k ~ 4g, (in the disc model) 
has all its angles equal to 2~' Prove that one may choose elements ,c's such 
that the conditions in Theorem 1.4.6 are satisfied. (Hint: use §A.2.3 and figure 
23.) 

The construction of compact Riemann surfaces from cocompact discrete 
subgroups of PSL(2, IR) possesses an important extension. A discrete subgroup 
r of PSL(2, IR) is said to be of finite covolume when the area in the Poincare 
metric of the fundamental domain Dr of r is finite: 

1 dx dy 
--2- < 00. 

Dr y 

This condition is equivalent to the existence of a Lebesgue measurable subset 
E of .fj such that 

and 

1 dx dy 
--<00 

E y2 

r· E:= b· Xi, E r,x E E} =.fj. 
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For instance PSL(2, Z) satisfies this condition. Indeed if E is the fundamental 
domain of PSL(2, Z) depicted on figure 8 and if 

and 

then clearly 

and 

E' = {z EEl Imz ::; I} 

E" = {z EEl Imz > I} 

1 dx dy 
--<00 

E' y2 

f dx dy J dx dy fOO dy 
J E" ~ = -I/2Sx$1/2 ~ = A y2 < 00. 

y>I 

This easily implies that any subgroup of finite index in PSL(2, Z) also has finite 
covolume. 

Theorem 1.4.7. For any discrete subgroup r of finite covolume in PSL(2, R), 
the Riemann surface f)/ r is a compact Riemann surface with punctures. 

When r = PSL(2, Z), this is clear from the isomorphism 

i: f)/PSL(2,Z) ~ C, 

since C = pIC - { oo} is a compact Riemann surfaces with punctures. When r 
is a subgroup of finite index in PSL(2, Z), this follows from the fact that the 
holomorphic map 

f)/ r -t f)/PSL(2, Z) 

is a ramified covering of finite degree, with a finite set of ramification points, 
since the map j : f) -t C ~ f)/PSL(2, Z) is ramified only over two points. For 
a general r, theorem I.4.7 is due to Siegel ([Siel]) and may be proved using 
hyperbolic geometry in f). 
____ Finally, for any r with finite covolume, we get a compact Riemann surface 

f)/ r. The surfaces obtained by this construction, where r is a congruence 
subgroup of PSL(2, Z), i. e., when there exists N E N* such that r contains 

r(N) := { (: ~) E SL(2, Z) I a == d == 1 mod N ; b == c == 0 mod N} , 

----are called m0!:3:!..ar curves. The points in the finite set f)/ r - f)/ r are called 

the cusps of f)/ r. 
1.4.4. Klein's quartic. 

In the preceding Subsections, we discussed two very different descriptions 
of compact Riemann surfaces: any of them may be obtained either as an alge­
braic curve, or by a quotient construction involving a lattice in C or a co com­
pact or finite covolume subgroup in PSL(2, R). This double-faced aspect of one 
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same class of mathematical objects is all the more remarkable that the explicit 
transition from one approach to the other is never trivial. For instance, for com­
pact Riemann surfaces of genus one, this transition amounts to the theory of 
elliptic functions. In this Section, we briefly discuss a completely explicit exam­
ple of compact Riemann surface, due to Klein ([KIl]), which provides another 
illustration of this circle of ideas. 

Fig. 11. The real points of X 3 Y + y3 Z + Z3 X = 0, according to Klein ([Kill). 

~ 

Klein studies the modular curve f:J/ T(7), which nowadays is usually de-
noted X(7), and obtains the following results: 
• The congruence subgroup T(7) is clearly a normal subgroup of PSL(2, Z), 
and the quotient group G = PSL(2,Z)/T(7) is isomorphic to PSL(2,Z/7Z), a 
group with 168 elements. The group G acts on f:J/ T(7), hence on X(7). In fact 
the holomorphic map 

which extends the map 

- j 
j : f:J/ T(7) --t f:J/PSL(2; Z) ~ <C 
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Fig. 12. Klein's 'Hauptfigur' ([Kill) : A fundamental domain for r. 

by sending the cusps of X(7) to 00 is a Galois covering with Galois group G. 
The map; is ramified only over 00, 0 and 1728. The set A = ;-1(00) (resp. 

B = ;-1(0), resp. C = ;-1(1728)) has cardinality 24 (resp. 56, resp. 84) and 
the ramification order of; at each point of this set is 7 (resp. 3, resp. 2). As; 
has degree 168, this implies by the Riemann-Hurwitz formula (cf. [Rey]) that 
the genus of X(7) is 3 . 
• Klein proves that there exists a projective embedding 
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such that <p(X(7)) is the quartic curve of homogeneous equation 

(1.4.2) 

(see figure 11 for Klein's picture ofthe real points of (1.4.2)). This embedding <p 
is defined in terms of holomorphic differential forms on X(7) or, what amounts 
to the same, in terms of modular forms of weight 2 with respect to r(7). The 
ramification points A (resp. B) are sent by <p on the inflection points of the 
quartic (1.4.2) (resp. on the contact points of its double tangents). As asserted 
in Theorem 1.4.5.,2), the meromorphic function] may be written as a rational 
function of the homogeneous coordinates X, Y, Z of the projective embedding 
<po Klein determines explicitly such a function. Namely, if 

Q(X, Y, Z) = X3y + y3 Z + Z3 X, 

~ ~ ~ aX2 axay axaz 
1 
~ ~ ~ = 5X2y2 Z2 _ (X5y + y5 Z + Z5 X), VeX, y, Z) = 54 ayax ay2 ayaz 

~ ~ ~ azax azay az 
and 

~ ~ ~ av 
ax axay axaz ax 

~ a2Q a2Q av 
1 ayax ay2 ayaz ay = XI4 + yI4 + ZI4 + ... , C(X,y,Z) ="9 
~ ~ ~ av 
azax 8Z8Y az az 

av av av 0 ax ay az 

then 
": C3 

J = - V7 0 <po 

• Klein describes the uniformization of X(7). The inverse image ]-I(]P>IR) of 
the real axis divides X(7) in 2 x 168 = 336 pieces which, in the hyperbolic 
metric on X(7), are geodesic triangles with angles f, f and ¥- (these angles 
correspond to points in A, B and C, respectively). Therefore the co compact 
Fuchsian group r such that X(7) ~ fJ/ r possesses a fundamental domain built 
from 336 such hyperbolic triangles. Figure 12 reproduces Klein's 'Hauptfigur' 
which depicts such a fundamental domain in the disc model of the hyperbolic 
plane (the shaded triangles are the inverse images by ] of the upper half sphere 
1m z ~ 0 in ]p>1C). 

This detailed investigation of X(7) played an important role in the early 
history of uniformization. Klein's curve X(7) was indeed the first compact 
Riemann surface of genus> 1 for which the uniformization theorem was known 
(see [Kl2J, p.136). 
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A remarkable feature of Klein's curve is that it is isomorphic to an algebraic 
curve defined by a polynomial equation with rational coefficients. The link 
between this 'arithmetic' property and the 'geometric' construction of X(7) is 
clarified by some recents work, initiated by a theorem of Belyi ([By)) which we 
discuss in the next Section. 

1.5. Equilateral triangulations and algebraic curves defined over 
number fields 

To conclude the first part of these notes, we describe a recent result which gives 
an 'arithmetic' counterpart to the various constructions of compact Riemann 
surfaces described in the preceding Section. 

1.5.1. Euclidean triangulations of surfaces. 

The construction of Riemann surfaces using conformal structures admits 
the following variant. Let X be an oriented compact connected Coo real surface 
and let T be a Coo triangulation of X (see figure 13). A Euclidean structure on 
T is the data of a flat Riemannian metric on every triangle L1 of T such that: 

i) equipped with this metric, L1 is isometric with a triangle (in the usual 
sense) in the Euclidean plane ]R2; 

ii) on any edge E of T, the metrics induced on E by the two triangles 
which contain E coincide. 
A Coo triangulation equipped with a Euclidean structure is called a Euclidean 
triangulation. An equilateral triangulation is a Euclidean triangulation whose 
all triangles are equilateral. 

Fig. 13. A Coo triangulation of a Riemann surface. 

Let V'T be the set of vertices of a Euclidean triangulation T of X and let ET 
be the union of the edges of T. It is easily checked that the flat Riemannian 
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metric in X - Er given by the Euclidean structure of T extends to a flat 
Coo Riemannian metric on X - Vr and that, near a vertex of T, this metric 
has at worst a conical singularity (see figure 14). This implies that X - Vr 
equipped with the holomorphic structure defined by the conformal class of this 
metric is a compact Riemann surface with punctures (the key point of the 
proof is pictorially explained on figure 15). In other words, the holomorphic 
structure on X - Vr extends to a holomorphic structure on X. To summarize, 
a Euclidean triangulation of X defines a holomorphic structure on X, hence a 
compact connected Riemann surface. 

isometric 

Fig. 14. The singularities of the metric defined through a Euclidean triangulation are 
conical. 

Conversely, the holomorphic structure of any compact connected Riemann 
surface M may be recovered (up to isomorphism) from some Euclidean trian­
gulation T of M: 

• This is true if M = ]p1C, using for instance the tetrahedral subdivision 
of ]pIC (see figure 16; the Riemann surface obtained from this Euclidean tri­
angulation is isomorphic to ]pIC because it is compact and simply connected; 
cf. §L3). Moreover, if al, . .. ,ar are given points in ]pIC, we can assume, by 
refining the triangulation T, that aI, ... ,ar are vertices of T (see figure 17) . 

• If M is any compact connected Riemann surface, there exists a ramified 
covering 7r : M --+ pIC (cf. Theorem 1.4.2). If T is a Coo triangulation of pIC 
such that Vr contains the ramification points of 7r, then there exists a unique 
Coo triangulation T' of M such that Vr' = 7r- I (Vr) and Er' = 7r- 1(Er). If 

o 0 0 0 

.1 is any open triangle of T, 7r-1(.1) is a disjoint union .11 U··· U .1r of open 

triangles of T'. Moreover, there is a unique Euclidean structure on T' such 
o 0 

that the maps 7r :.1i~.1 are isometries. Finally, the Euclidean triangulation 

T' defines the original holomorphic structure on M. Indeed, it defines this 
holomorphic structure on M - Vr', since 7r : M - Vr' --+ pIC - Vr is locally 
isometric, hence conformal. 

1.5.2. Characterization of Riemann surfaces defined over IQ. 
Let IQ be the field of algebraic numbers, i.e., of complex numbers which 
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conformal 

Fig. 15. A punctured cone is conformally equivalent to a punctured disc. 

are roots of non-zero polynomials with rational coefficients. We will say that a 
compact connected Riemann surface M may be defined over Q or equivalently, 
that M may be defined over a number field, if M is isomorphic to the Riemann 
surface Cp associated with an irreducible polynomial P in Q[X, YJ. Moreover, 
for any compact connected Riemann surface M, a holomorphic map 7r : M -+ 

pIC will be called a Belyi map if it is non-constant and unramified outside 
7r- I ({O,l,oo}). 

The next theorem shows that the Riemann surfaces defined over Q have 
remarkable characterizations from the various points of view on compact Rie­
mann surfaces presented in preceding Sections. 

Theorem 1.5.2. For any compact connected Riemann surface M, the following 
conditions are equivalent: 

i) M may be defined over Q; 
ii) there exists a Belyi map 7r : M -+ pIC; 
iii) M is isomorphic to X where X is a finite unramified covering of pIC-

{a, 1, oo}; __ 
iv) M is isomorphic to fJ/ r where r is a subgroup of finite index in 

PSL(2, Z); 
v) the holomorphic structure of M may be defined by an equilateral trian­

gulation. 



100 Chapter 2. Compact Riemann Surfaces, J acobians and Abelian Varieties 

conformal 
~ 

Fig. 16. The Riemann surface p 1C can be obtained through a Euclidean triangula­
tion. 

The equivalence ii) {:? iii) is clear. 
The implication iii) =} iv) follows from the isomorphism (cf. §I.2.3) 

fj/ T(2) ~ pIC - {a, 1, oo} 

and from the fact that, since T(2) acts properly and freely on fj (cf. §I.2.3), 
which is simply connected, any finite unramified covering of fj/ T(2) is isomor­
phic to a covering 

fj/ T -+ fj/ T(2) 

where T is a subgroup of finite index in T(2). The implication iv) =} ii) follows 
from the fact that the map p defined by the following diagram, where the 
'horizontal' map associates PSL(2, Z). z to T . z (cf. §I.2.3), 

fj/T 
p"-,. 

fj/PSL(2, Z) 
./ l728-1i 

is a proper map, which is unramified on p-l(C\ {a, I}) since 1728-1 j : fj -+ C 

is ramified only over ° and 1. Thus p extends to a Belyi map from iJfi' to pIc. 
(See [Ser], p.71). 

The implication iii) =} i) is a consequence of general results concerning the 
fields of definition of algebraic varieties and of their coverings (for instance, it 
is a consequence of the rationality criterion in [Wei 1]). 

The most surprising fact in the theorem is the implication i) =} ii). It is due 
to Belyi (cf. [Be)) and is proved as follows: by the very definition of a Riemann 
surface defined over Q, there exists a holomorphic map 7r : X -+ pIC ramified 
only over points in QU { 00 }. By composing 7r with polynomials with coefficients 
in Q, it is possible to decrease the maximal degree14 of these ramification 
values and ultimately to get a holomorphic map 7r : X -+ pIC ramified only 
over SeQ U {oo}. By composing cp with some homographic transformation of 

14 By degree, we mean the degree over Q of algebraic numbers. 
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p 1C, we may assume that S contains {O, 1, oo}. At this point, Belyi observes 
that, for any A, BE Z* such that A + B # 0, the map 

<P AB : p 1C -t p 1C 

(A+B)A+B A B 
zt-+ AABB Z (l-z) , 

Fig. 17. A refinement of the subdivision shown in Figure 16. 

is ramified at four points (0,1,00 and A~B) but has only three ramification 

values (0,1 and 00). If A, B are chosen such that A~B E S - {O, 1,00}, then 

<P AB 0 7r is ramified only over {O, 1, oo} U 7r(S - {O, 1,00, A~B})' As this set has 
a smaller cardinality than S, a simple decreasing induction on the cardinality 
of S proves the existence of a Belyi map. 

The equivalence ii) <=> v) is due to Shabat and Voevodsky ([SVl]) and is 
related to earlier work of Grothendieck (see [Gro] and [SV2]). The implication 
ii) => v) follows from the construction of Euclidean triangulations from maps 
to P 1C given in the preceding paragraph: if 7r : M -t ptC is a Belyi map and if 
7 is an equilateral triangulation of P1C such that VT :) {O, 1, oo} 15, then the 
Euclidean triangulation 7' obtained by 'pulling-back' 7 on M is an equilateral 
triangulation of M. To prove v) => ii), one uses the fact that for any equilateral 
triangle Ll in C, there exists a unique map flL1 : Ll -t P 1C, holomorphic on a 
neighbourhood of Ll in C such that, restricted to any of the six triangles of the 
barycentric subdivision of Ll, fl,tl is a conformal diffeomorphism onto one of the 
two hemispheres of P 1C bounded by lR.U {oo} (see figure 18) and such that flL1 
send the vertices (resp. the midpoints of the edges, resp. the center) of Ll to 0 
(resp. 1, resp. 00). One easily checks that, if 7 is any equilateral triangulation 
of M, the map 7r : M -t pIC which coincide with flL1 over any triangle Ll of 7 
( via the identification of the oriented equilateral triangle Ll with an equilateral 
triangle in q is well defined and holomorphic and is a Belyi map. 

15 Such a T exists since by a suitable homographic transformation, any triple of dis­
tinct points of pIC - in particular three vertices of a given equilateral triangulation 
- may be sent to (0,1,00). 
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-
:/::f ::!::: \:: :}:: ::::.: :::.:: :/: to: ::::::::.;:;; t. 
{:::;::::r::::::: :: (:::(:/:.: :: ::\ :{ 

o 

Fig. 18. The map f3~. 

Exercise: Prove the existence of (3.tl: 
i) by using the g:J function associated to r = Z + e1ri / 3 Z; 
ii) by considering the elliptic curve E = C/ r and its quotient by [z] f-+ 

[-z]; 
iii) by considering the Euclidean 'triangulation' of the 2-sphere built from 

two congruent 30o-600 -900 -triangles glued along corresponding sides; 
iv) by using the Schwarz-Christoffel formula for conformal mappings. 

Exercise: Prove that an equilateral triangulation of Klein's quartic (cf. §I.4.3) 
may be defined by 'declaring equilateral' the 336 triangles of Klein's 'Haupt­
figur ' (figure 12). 

Appendix A. The homology of oriented closed surfaces 

A.I. The homology group Hl(X;Z) 

The first homology group H 1 (X; Z) of a topological space X is the Abelian 
group defined by the following generators and relations: 

any loop c on X, i. e., any continuous map c : lR./Z -+ X, defines a generator 
[c] of H1(X; Z); 
if c and c' are two homotopic loops, i.e., if there exists a continuous map 
h : [0,1] x lR./Z -+ X such that h(O, t) = c(t) and h(l, t) = C/(t) for any 
t E lR./Z, then we impose the relation [c] = [C/] (see figure 19); 
if Cl and C2 are two loops on X such that Cl(O) = C2(0) and if c is the loop 
defined by 

c(t) = cl(2t) if t E [0,1/2J 

c(t) = c2(2t - 1) if t E [1/2,1]' 

then we impose the relation [cJ = [ell + [C2] (see figure 20). 
When X is arcwise connected, then for any Xo EX, every element of 

HI(X; Z) is the class [c] of a loop c: lR./Z -+ X, such that c(O) = Xo, and the 
map which associates its class [cJ in Hl(X, Z) to the homotopy class of such a 
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-+-- c and C' 

~ t-h(x,t) 

Fig. 19. Homotopy of loops. 

loop c defines an isomorphism between the Abelianization16 ofthe fundamental 
group 7l"l(X;XO) and H1(X;Z). 

If X is a connected differentiable manifold, any element in H1(X; Z) may 
be represented by a Coo loop, i.e., by a Coo map c : JR./Z --t X. Furthermore, 

if'TJ is any closed Coo I-form over X, the integral fol c*'TJ of'TJ along c depends 
only on the class of c in HI (X; Z). Moreover, it vanishes when 'TJ is an exact 
form and, consequently, depends only on the class of 'TJ in the first de Rham 
cohomology group of X with real coefficients, namely 

HbR(X; JR.) 

:= {closed real Coo I-forms on X} / {exact real Coo I-forms on X}. 

Hence, for any CI, 0:) E HI (X; Z) x Hlm(X; JR.), we can define Joy a as the value 

of J: c*'TJ for any smooth loop c representing I and for any closed Coo I-form 
'TJ representing 0:. In that way, one defines a bilinear map 

Similarly, using complex I-forms instead of real I-forms, one defines the first 
de Rham cohomology group of X with complex coefficients HbR(X; q, which 
may be identified with the complexification of Him (X ; JR.), and one may extend 
this pairing to a pairing 

16 i.e., the quotient by its commutator subgroup. 
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A.2. The homology of oriented closed surfaces 

Suppose now that X is an oriented closed surface, i.e., an oriented compact 
connected Coo manifold of dimension 2 (e.g. a compact connected Riemann 
surface!). In the next Sections we will use the following facts concerning the 
homology and the cohomology of X. 

Fig. 20. Addition of homology classes. 

A.2.1. There exists an integer 9 :::=: 0 such that 

HI(X; Z) ~ Z2g 

and 
H~)R(X; JR) ~ JR 2g. 

c 

This integer is called the genus of X and completely classifies oriented closed 
surfaces, in the following sense: two such surfaces are diffeomorphic iff they 
have the same genus. Moreover, for any integer 9 :::=: 0, there exists an oriented 
closed surface 9 of genus X: when 9 = 0, we can take X = §2 or X = ]pIC; 
when 9 = 1, we can take as X the torus JR2/Z2 or any complex elliptic curve; 
when 9 :::=: 2, we can take as X a 'sphere with 9 handles' or the hyperelliptic 
Riemann surface defined as the compactification of the algebraic curve 

y2 = P(x) 

where P is a polynomial of degree 2g + 1 or 2g + 2 with distinct roots (cf. 
§I.4.2). 

A.2.2. The pairing 
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is a 'perfect duality' in the following sense: for any basis ('n, .. ·, /2g) of 
H1(X, Z), there exists a dual basis (W1,'" ,W2g) of HbR(X) such that, for 
any i,j = 1, ... ,2g 

A.2.3. For any two classes /1, /2 in H1 (X; Z), one can find representatives C1, C2 
which are Coo loops on X which satisfy the following conditions: 

C1 (R.jZ) n C2(R.jZ) is finite; 
for any P E C1 (R.jZ) nC2(R.jZ), there exist a unique t1 E R.jZ and a unique 
t2 E R.jZ such that 

C1(t1) = C2(t2) = P, 

and the couple of vectors (~(t1)' ~(t2)) is a basis of the tangent space 
of X at P. 
If this basis is (resp. is not) compatible with the given orientation on X, 

we set 
c(P) = +1 (resp. c(P) = -1) 

(see figure 21). 
One may prove that the integer 

L c(P) 
PECl (lR/Z)nC2 (lR/Z) 

depends only on the classes /1 and /2. It is called the intersection number of 
11, and /2, and is denoted /1 #/2 . 

Fig. 21. Sign conventions for the intersections of loops. 

The intersection product 

H1(X;Z) X H1(XjZ) -t Z 

( /1 , ,2) f-t 11 #,2 

so defined is bilinear and antisymmetric. Moreover, H1(X;Z) possesses bases 
which are symplectic with respect to this intersection product, i.e., bases 
(a1,"" ag, b1, ... , bg) such that for any i,j = 1, ... ,g: 
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(see figure 22). 

A.2.4. For any symplectic basis (aI, ... ,ag,bI, ... ,bg) of HI(X;Z) and any 
P EX, one can find loops AI, . .. , Ag, BI, ... , Bg over X which represent the 
homology classes aI, ... , ag , bI , ... ,bg and such that: 

the maps A j, Bj : [0, 1] -+ X are Coo and the vectors a~i ( T) and a!i ( T) 
do not vanish for T E [0,1]. 
Aj(O) = Bj(O) = P for any i = 1, ... , g; the maps Aj, B j : [0,1[-+ X are in-
jective and the images Al (l0, 1[), ... ,Ag(]O, 1[), BI (]O, 1[), ... ,Bg(]O, 1[) are 

pairwise disjoint; the 4g vectors ~(O), ... , ~(a), ~(a), ... , ~(a), 
~(1) aA. (1) !llh..(1) ?!!.L(1) .. 11· at ' ... , ---at 'at ' ... , at are paIrWISe non-co Inear. 

Fig. 22. A symplectic basis of H1 (X;Z). 

(See figure 23, a)-b)). Moreover, if the loops AI, . .. ,Ag, HI, ... ,Bg satisfy all 
these conditions, then the complement D in X of their images is diffeomorphic 
with an open disc. More precisely, if L1 is a 4g-gon in the plane, there exists a 
regular Coo map17 c.p: L1 -+ X such that: 

o 0 0 

c.p is surjective, c.p(L1) C D and c.p :L1-+ D is a diffeomorphism (here L1 

denotes the interior of L1, which is diffeomorphic to an open disc); 
the restriction of c.p to any edge of ..1 coincides, modulo an affine identi­
fication between [a, 1] and this edge, with one of the maps Aj , B j • (This 
implies that c.p-I(P) is the set of vertices of ..1.) In that way, each of the 
maps Aj, Bj is recovered twice, and these maps occur in the way depicted 
on figure 23 c). 

Roughly speaking, this means that one recovers X by gluing the sides of a 4g­
gon according to the prescription of figure 23 c). Figure 24 tries to show why 
the gluing of four consecutives sides of the 4g-gon provides a handle. 

Such a data (L1, c.p) is called a canonical dissection of X, to which the 
symplectic basis (aI, ... , ag , bI , ... , bg ) is said to be associated. 

17 This means that there exists an open neighbourhood U of Ll in the plane and an 
extension <p: U -+ X of c.p which is a local Coo diffeomorphism. 
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a) 

b) 

c) 

Fig. 23. A canonical dissection of X 0 

A.2.S. For any symplectic basis (a1' 000, ag , b1, 000, bg ) of H1 (X; Z) and for any 
two closed I-forms"., and ".,' on X, we have: 

[ ".,/\".,' = t ( l "., 0 l".,' - l".,' 0 l".,) 0 

lx .=1 la, lb, la, lb, 
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t t 

Aj Aj 

Bj ~ 

Bj 

Bj 

Fig. 24. Gluing four consecutives sides of the 4g-gon provides a handle. 

This lemma is a simple consequence of the compatibility between the de Rham 
isomorphism and the Poincare duality for the (co- )homology of X. Let us sketch 
an elementary proof. The symplectic basis (aI, ... , ag , b1 , ... , bg ) of HI (X; Z) 
is associated to some canonical dissection of X (cf. figure 23 and figure 25): 
X is obtained from a 4g-gon ..1 with sides A!, B1 , AL BL ... , Ag , B g , A~, B~ 
by identifying Ai with A~ via the map 'Pi, and Bi with B: via the map 'l/Ji 
(i = 1, ... , g); after this identification Ai and A~ (resp. Bi and BD give aj 
(resp. bi). The forms." and .,,' may be identified with forms on ..1 and the 
integrals over X (resp. ai, bi) may be computed over D (resp. Ai, Bi). 

Over ..1, which is simply connected, there exists a function f such that 
df = .". Then we have for any x E Ai and for any y E Bi (see figure 25) 

(A.2.1) f°'Pj(x)-f(x) = [ df= [." 
lb;(x) lb; 

and 

(A.2.2) f(Y)-f O 'I/Jj(y)=l df =l.,,· 
a;(y) a; 

Now we get 
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Ix TJ 1\ r/ = l TJ 1\ TJ' = l df· TJ' = l d(f· TJ') 

D 

= f f· TJ' (Stokes formula) 
JaD 

= t ii+Bi-A:-B; fTJ', 

_ ---'P_i 1/1!-_------ --.." ..... >::::: '" ...... ~"""""""''''-... ~/ 

Fig. 25. Proof of equations (A.2.1) and (A.2.2). 

and according to (A.2.1) and (A.2.2), we have 

f fTJ' = f (f - f 0 !Pi)TJ' = -1 TJ·1 TJ' 
JAi-A~ JAi bi ai 

and 

Li_B/TJ' = Li (f - f 0 '¢i)TJ' = 1i TJ ·li TJ', 

which proves the required identity. 

Appendix B. Holomorphic line bundles on compact 
Riemann surfaces 

B.l. COO and holomorphic line bundles 

This first Section presents a series of definitions, without motivations. These 
should be provided by the next two Sections. 

B.l.l. Let X be a Coo manifold. Recall that a Coo (complex) line bundle £. 
on X consists of a family {£.x} xEX of one-dimensional complex vector spaces 
parametrized by X, 'which depend on x in a Coo way'. A section s of £. over a 
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subset E c X is a map which attaches a vector sex) E £.x to any point x E E. 
When sex) =f. a for any x E E, the section s is said to be a frame over E. 

A rigorous way to define the COO-structure of the line bundle £. is to give 
a covering U of X by open sets and to give, for any U E U, a frame Su over U 
in such a way that the transition functions 

cpvu : U n V -+ C* , 

defined on the non-empty pairwise intersections of open sets in U by the relation 

(B.l.l) sv(x) = cpvu(x) su(x), 

are Coo functions. Then an arbitrary section s of £. over an open subset Q of 
X is Coo (resp. continuous) if, for any U E U, the function 

fu: un Q -+ C* 

defined by 
sex) = fu(x) su(x) 

is Coo (resp. continuous). 
The set of Coo (resp. continuous) sections of £. over Q will be denoted COO( Q; £.) 
(resp. CO(Q; £.)). It is clearly a vector space. Moreover the pointwise product 
f· s of a function f E COO(Q; q and of a section s E COO(U; £.) clearly belongs 
to COO(U; £.). 

Two Coo structures on £. coincide, by definition, if they have the same Coo 
sections. If V is another open covering of X, a family {tv }VEV of frames of £. 
on the open sets in V defines the same Coo structure on £. as (U, {s u } U EU) iff 
the tv's are Coo sections of £.. A Coo frame of £. on an open subset Q is also 
called a trivialization of £. on Q. For instance, the su's are trivializations of £.. 

B.1.2. Observe that the transition functions satisfy the following cocycle con­
dition: if U, V and W are open sets in V with a non-empty intersection, then 

(B.l.2) cpwu = cpwv . cpvu on Un V n W. 

Conversely, any family (cpuv) offunctions, cpuv E COO(unv; C*), parametrized 
by the pairs (U, V) of open sets in U with a non-empty intersection, arises from a 
Coo line bundle £. on X, provided these functions satisfy the co cycle condition. 
Indeed, starting from such a family (cpuv) we may define a line bundle £. on X 
and sections Su on U, U E U, as follows: for any x EX, let 

Ux = {U E U , x E U}; 

define £.X as the one-dimensional complex vector space obtained as the quotient 
of Ux x Cby the equivalence relation", such that 

(U, A) '" (V, JL) {:} JL = cpuv( x )A, 
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and define su by su(x) = leU, 1)). Then the su's satisfy the relations (B.1.I) 
by construction. Therefore £ is a Coo line bundle and (cpuv) is the associated 
family of transition functions. 

B.1.3. A Coo morphism £ from a Coo line bundle £ on X to another line bundle 
£' on X is the data, for every x EX, of a linear map 

£(x): £x ---+ £~ 

such that for any open subset U of X and any s E COO(U; C), the section 

£ . s : x 1-+ £( x) . s( x) 

of £' on U is Coo. If U is an open covering of X and if (su )UEU and (s~ )UEU 

are families of Coo frames of £ and £' over the open sets in U, then we may 
define functions Lu E COO(U; q, U E U, by the relations 

(B.1.3) £ . Su = Lu . s~. 

Moreover, if (cpuv) and (cp~v) are the transition functions attached to (su) 
and (s~), we have 

(B.I.4) r.pvu Lu = Lv cp~u on U n V. 

Conversely, for any family (Lu )UEU, of functions Lu E COO(U; q, satisfying 
(B.1.4), there exists a unique Coo morphism £ from £ to £' such that (B.1.3) 
holds. 

Morphisms of line bundles clearly may be composed. A Coo morphism 
£ : £ ---+ C' is called an isomorphism if, for any x EX, the map €( x) is an 
isomorphism; this is equivalent to the non-vanishing of the Lu's defined in 
(B.1.3) or to the existence of a Coo morphism of line bundles from £' to £ 
inverse of £. Continuous morphisms and isomorphisms between line bundles 
are similarly defined. 

B.1.4. The trivial line bundle over X is the line bundle such that £x = C for 
any x E X and whose Coo structure is defined by U = {X}, Sx = 1. Its (COO) 
sections may be identified with (COO) C-valued functions. There is an obvious 
notion of restriction of a Coo line bundle on X to an open subset fl of X. 
A Coo line bundle £ on X is said to be trivial on fl if its restriction to fl is 
isomorphic to the trivial line bundle over fl. This is easily seen to be equivalent 
to the existence of a trivialization of £ on fl. 

B.1.5. If Land L' are two one-dimensional complex vector spaces and if vEL 
and v' E L', we will write v . v' instead of v 0 v' for their tensor product, which 
is an element of the one-dimensional vector space L 0 L'. If vEL - {O}, we 
will denote v-l the linear form on L taking the value 1 on v; it is an element 
of the one-dimensional vector space L * . 

The tensor product £ 0 £' of two Coo line bundles £ and £' over X is 
the Coo line bundle over X such that (£ 0 £')x = £x 0 £~ and whose Coo 
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structure is such that, for any open subset il of X, any s E Coo(ilj£) and any 
s' E COO(ilj £'), the section 

s· s' : x t-+ s(x) . s'(x) 

of £ 129 £' over il is Coo. The external tensor product £ [RI C' is the Coo line 
bundle over X x X such that (£ [RI£')(x,y) = £x 129£~ and whose Coo structure 
is such that, for any two open subsets il and il' of X, any s E Coo( ilj £) and 
s' E COO(il'jC'), the section 

s [8] s' : (x,y) t-+ s(x)· s'(y) 

of £ [8] £' over [l x il' is Coo. The dual line bundle £* is the Coo line bundle 
over X such that (£*)x = (£x)* and whose Coo structure is such that, for any 
open subset [l of X and any Coo frame s E COO(ilj£), the section 

s-l : x t-+ s(x)-l 

of £* over il is Coo. 

B.lo6. When X is a Riemann surface (or more generally, a complex manifold of 
any dimension), we can define holomorphic line bundles over X and extend to 
them all the preceding statements by simply replacing 'Coo, by 'holomorphic' 
whenever it occurs. 

Clearly, if £ is a holomorphic bundle over a Riemann surface X, it is 
automatically a Coo line bundle over X considered as a Coo surface. Conversely, 
if M is a Coo line bundle on X, the data of a structure of holomorphic line 
bundle on M compatible with its Coo structure is essentially equivalent to the 
data of an open covering U of X and of Coo frames Su over U for every U E U 
such that, for any two intersecting U and V in U, i.pUV defined by (B.l.I) is 
holomorphic on U n V. 

Observe also that the notion of meromorphic function extends easily to 
sections of holomorphic line bundles: a section of a holomorphic line bundle £ is 
called meromorphic if, locally, it can be written as the product of a holomorphic 
frame of £ by a meromorphic function. 

B.lo1. A major difference between the Coo and the holomorphic situations 
regards the existence of global sections. For any Coo line bundle £ on a Coo 
manifold X, the space COO(Xj £) of its global Coo sections is 'very large'. Indeed, 
if s is a Coo frame of £ on an open set U in X and if p is any Coo function 
on X which vanishes outside a compact subset of U, then we define a global 
section p. s E COO(X; £) by setting 

(p. s)(x) = p(x)· s(x) if x E U 
= 0 if x fI. U. 

On the contrary, if £ is a holomorphic line bundle over a Riemann surface X, 
the space of holomorphic sections of £ over X, usually denoted HO (X; C), may 
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be 'very small'. For instance, suppose that e is the trivial holomorphic bundle 0 
over a compact connected Riemann surface X. Then the space HO(X; 0) is the 
space 01 constant C-valued functions on X, hence isomorphic to C. Indeed, an 
element I of HO(X; 0) is nothing else than a holomorphic function from X to 
C. By compactness of X, III assumes a maximum value at some point P of X. 
The maximum modulus principle shows that I is constant on a neighbourhood 
of P, hence, by analytic continuation, on X which is connected. 

B.L8. A Coo Hermitian metric II lion a Coo line bundle e over a Coo manifold 
X is the data for any x E X of a Hermitian norm II lion ex such that, for any 
open subset U of X and any s E COO(U; e), the function 

II s II: x 1-+11 sex) 112, 

from U to ~+, is Coo. 
A Coo Hermitian metric on a holomorphic line bundle is a Coo Hermitian 

metric on the underlying Coo line bundle. 

B.LD. Let X be a Coo manifold of dimension n. 
We will denote /\ X the Coo line bundle of complex differential forms of 

degree n over X. By definition, for any x E X 

/\ 1 x = /\ n Tx* x ®IR C , , 

and the Coo sections of /\1 are the Coo complex differential forms of degree 
n. The line bundle /\1 may also be defined as follows: let {(U, 'l/Ju )}UEU be a 
family of Coo coordinate charts on X such that U is a covering of X; for any 
intersecting U and U' in U, denote 

'l/Ju = (xih:5i:5n and 'l/JUI = (XDl:5i:5n 

and 

(B.1.5) ( 8x~) 'PU'U = det 8 '. ; 
x) l:5i,j:5n 

the function 'PU'U belongs to COO(Unu*; JR*) and the 'PUIU'S satisfy the cocycle 
condition (B.1.2) and are easily checked to define the line bundle /\1. 

Finally, we will denote 1/\ Ix the Coo line bundle of complex densities 
over X. It is defined as the Coo line bundle associated to the transition func­
tions l'Puull, which are the absolute values of the transition functions (B.1.5) 
defining /\1. If X is oriented, then 1/\ Ix may be identified with /\1 (indeed, 
we may assume that the (U, 'l/Ju)'s are oriented charts; then l'Pulul = <PUIU). 
More generally, a local choice of orientation on X determines locally an iden­
tification between /\1 and 1/\ Ix and two different choices of orientation give 
rise to opposite identifications. Recall that, if X is oriented, for any compactly 
supported continuous section w of /\1, th~ integral J x w makes sense. These 
observations show that for any compactly supported continuous section w of 
1/\ Ix, the integral Jxw makes sense, without any orientation assumption on 
X. 
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B.2. Holomorphic and meromorphic differential forms 

B.2.1. Let X be a Riemann surface. 
Let a be a complex Coo I-form defined on an open subset U of X. For any 

holomorphic coordinate chart (Q, z), Q C U there exist Coo functions r.p and '!/J 
on Q, such that 

a = r.p dz + '!/J az 
on Q. The functions r.p and '!/J are uniquely defined by this equation. Moreover, 
if we let 

a(l,O) = r.p dz and a(O,l) = '!/J az, 

the forms a(l,O) and a(O,l) are easily shown not to depend on the choice of the 
local holomorphic coordinate z and therefore to be Coo forms defined globally 
on U. The form a(l,O) (resp. a(O,l)) is called the (1, O)-part (resp. (0, I)-part) of 
a. The I-form a is called a form of type (1,0) (resp. a form of type (0,1)) iff 
its (0, I)-part (resp. its (I,O)-part) vanishes, i.e., iff locally it may be written 

a = r.p dz 

(resp. a = '!/J az). 

These definitions may be interpreted as follows in terms of line bundles. 
Let Tx be the holomorphic tangent bundle of X. It is the holomorphic line 

bundle defined as follows: let {(U, Zu )}UEU be a family of holomorphic charts 
on X such that U is a covering of X j for any intersecting U and V in U, define 

dzu 
r.pVU = -- j 

dzv 

it is a non-vanishing holomorphic function on U n V. The r.pvu's satisfy the 
co cycle condition (B.1.2) and Tx is the associated holomorphic line bundle. 
Using a local holomorphic coordinate z, a section s of Tx may be written 
locally 

a 
s=!(z)az 

and is Coo or holomorphic iff J is. 
Let wx be the dual line bundle Tx of Tx. It is a holomorphic line bundle 

on X which can be defined by the transition functions 

dzv 
r.pVU=--

dzu. 

Using a local holomorphic coordinate z, a section s of wx may be written locally 

s=J(z)dz 

and is Coo or holomorphic iff J is. The Coo sections of w X may be identified 
with the Coo forms of type (1,0). A holomorphic (resp. meromorphic) section 
of w X on an open subset Q of X is called a holomorphic (resp. meromorphic) 



J. -B. Bast 115 

differential an X. The vector space HO (X j W x) of holomorphic differentials on 
X is denoted .al(X). 

Let wx be the 'complex conjugate' of the line bundle wx. It is the Coo 
line bundle on X defined by the transition functions 

( dZV ) 
r.pvu = dzu . 

Using a local holomorphic coordinate z, a section s of wx may be written 
locally 

s=f(z)az 

and is Coo iff f is. The Coo sections of w x may be identified with the Coo forms 
of type (0,1). Complex conjugation transforms Coo sections of Wx into Coo 
sections of w x. The sections of w x which are complex conjugate of holomorphic 
differentials on X are called antiholomorphic differentials. Their vector space 
will be denoted .a1(X). 

The following statement may be proved by a simple local computation 
using the Cauchy-Riemann equations and will be left as an exercise to the 
reader (see also infra (B.7.1)). 

Proposition B.2.1. For any Riemann surface X, a Coo section of wx (resp. of 
wx) over X belongs to .a1(X) (resp . .a1(X)) iff, considered as a Coo complex 
i-form over X, it is closed. 

Observe that there exists a canonical isomorphism of Coo line bundles 

(B.2.1) 

which, locally, sends dz ® d-z to dz /I. az. 
Finally, the data of a Hermitian metric II II on w X is equivalent to the data 

of a Riemannian metric ds2 on X compatible with its holomorphic structure 
(cf. §I.2.1). Namely, for any local holomorphic coordinate z = x + iy on X, ds 2 

and II II are determined by each other via the relation 

The volume form J.-L associated to ds 2 is then given by 

(B.2.2) J.-L = ~ II dz 112 . dz /I. dZ . 

B.2.2. From now on, we restrict our attention to holomorphic and meromorphic 
differentials over compact connected Riemann surfaces. We start with a few 
examples. 

Examples. i) There is no non-zero element in.a l (]P>IC). Indeed let a E .a1(]P>1C). 
There is an entire function f( z) 
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00 

fez) = Lan zn 
n=O 

such that, over C 
a = fez) dz. 

Since a is holomorphic on a neighbourhood of 00 in jp'IC, the differential 

is holomorphic near 0. This clearly implies that all the coefficients an vanish. 
ii) Let X = C/(7!.. + T7!..) be an elliptic curve. Then dz is a non-vanishing 

holomorphic differential on X. Therefore W x is a trivial holomorphic line bundle 
on X, and,nl (X) is a one-dimensional vector space generated by dz (cf. §B.1.7). 

iii) Let C be the hyperelliptic Riemann surface defined by the polynomial 

2g+2 

P(X, Y) = y2 - IT (X - ai) 
i=l 

where the ai's are pairwise distinct complex numbers (cf. §1.4.2). The coor­
dinates X and Y defines meromorphic functions x and y on C. The vector 
space ,nl (C) has dimension g, and the following holomorphic differentials build 
a basis of ,n1(C): 

Xi-Idx 
Wi=---

y 
i = 1, ... ,g. 

Indeed, near the points at infinity of C, ~ may be used as local coordinate and 

~ '" ± (~y+l; near the points (ai'O), Y may be used as local coordinate and 
x - ai '" >.y2; near any other point of C, x may be used as local coordinate 
and y does not vanish. This immediately implies that the Wi, 1 ::; i ::; g, are 
holomorphic differential forms on C and that WI = dyx has a zero of order 9 - 1 
at the two points at infinity and does not vanish elsewhere on C. Therefore any 
a E ,n1(C) may be written 

a = f WI 

where f is a meromorphic function on C which is holomorphic everywhere 
except at the points at infinity where the orders of its poles are at most 9 - 1. 
On the other hand, the function f may be written 

f = R(x) + S(x)y 

where Rand S belong to C(X) (cf. §1.4.2, Exercise). Since f is holomorphic 
at finite distance, Rand S must be polynomials. It is now easy to deduce that 
S = ° and that R is a polynomial of degree at most 9 - 1 by examining the 
local behaviour of a near the points at infinity. 

iv) Let F be an irreducible homogeneous polynomial of degree d ~ 3 in 
qxo, Xl, X 2 ] such that the algebraic curve X in jp'2C of equation 
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is smooth (e.g. F(XO,X1 ,X2 ) = xt + xt - xgj cf. §I.4.2). The coordinates 
(XO,X1 ,X2 ) define meromorphic functions x = §; and y = ~ on X. Ele­
mentary computations show that, for any polynomial P in qx1 , X 2 ] of degree 
::; d - 3, the meromorphic differential form on X 

( aF ) -1 ( aF ) -1 
a(P):= aX

2 
(I,x,y) P(x,y)dx = - aX

1 
(I,x,y) P(x,y)dy 

is holomorphic. Moreover, it may be proved that the map P 1-+ a(P) is an 
isomorphism from the space of polynomials of degree::; d - 3 in qX1 , X 2 ] onto 
Q1(X). 

More generally, if X is the normalization of an algebraic curve, it is always 
possible to describe Q1 (X) in terms of the algebraic data defining this curve. 

v) Let r be a cocompact discrete group in PSL(2,1R), acting freely on jj 
and let X = jj/ r. Then Q1(X) may be identified with the modular forms of 
weight two with respect to r (cf. [Z]). 

B.2.3. Let (U, z) be a holomorphic coordinate chart on a Riemann surface and 
let P E U. If w = f dz is a holomorphic differential on U - {P}, its residue at 
P is defined as the coefficient of (z - z(P))-l in the Laurent series expansion 
of'ljJ in term of (z - z(P)). It is noted Resp wand is also the integral 

1 1 - w 
27ri aD 

where D is a small disc in U which contains P (this expression shows that 
Resp w is independent on the choice of the local coordinate z). 

Proposition B.2.2. For any meromorphic differential w on a compact Riemann 
surface X, we have 

L Resx w = O. 
xEX 

(This sum is finite since the set of poles of w is finite.) 

Indeed, let {Pjh:::;j:::;N be the poles of wand let {Djh:::;j:::;N be a family 
N 

of disjoint discs on X such that D j :7 Pj . Consider U = X - U D j. It is a 
)=1 

N 
surface with boundary, bounded by .u aDj. Moreover, restricted to U, w is a 

)=1 

holomorphic differential, hence a closed C= I-form. Therefore we have: 

N 

L Resx w = LResPj w 
xEX j=l 
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(Stokes formula) 

Consider now a meromorphic function f on a Riemann surface X and 
a point P of X such that f is not constant on a neighbourhood of X (if X 
is connected and non-constant, this holds for any P E X). Let (U, z) be a 
holomorphic chart on X such that P E U and z(P) = O. The multiplicity with 
which f takes the value f(P) at P is the positive integer n defined by the 
following conditions: 
. if f(P) i= 00, there exists a E C* such that, for x E U 

f(x) = f(P) + az(xr + 0 (z(xr+l) 

. if f(P) = 00, there exists a E C* such that, for x E U 

f(x) = az(x)-n + 0 (z(x)-n+l) . 

For any ,\ E C, the meromorphic differential form (J - ,\) -1 df is holomorphic at 
P iff f(P) tf. {'\, oo} and has a simple pole with residue n (resp. -n) if f(P) = ,\ 
(resp. f(P) = (0). Therefore Proposition B.2.2 applied to (J - ,\)-ldf implies: 

Proposition B.2.3. For any non-constant meromorphic function f on a com­
pact connected Riemann surface X, the number (counted with multiplicities) of 
preimages under f of an element a E pIC is independent on a. 

This number is easily seen to be the degree of f (cf. [Mil]). 
In the sequel, we will use the following consequence of Proposition B.2.3: 

Corollary B.2.4. If on a connected compact Riemann surface X there exists a 
meromorphic function f which has exactly one pole and if this pole is simple, 
then f establishes an isomorphism from X onto PIC. 

B.2.4. We end this Section with a remarkable result - a special case of Hodge 
decomposition: 

Theorem B.2.5. For any (connected) compact Riemann surface X, the map 

z: .Ql(X) EEl .Ql(X) -+ HIJR(X;C) 

ex EEl f3 ~ [ex + f31 
is an isomorphism. 
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(Observe that a + f3 is a closed complex I-form on X by Proposition B.2.I 
and has a well defined class in the de Rham cohomology group H}JR(X; C); cf. 
§A.l.) 

We will prove Theorem B.2.5 in §C.5. It has the following consequence: 

Corollary B.2.6. If X is a connected compact Riemann surface of genus g, then 
the complex vector space ill (X) has dimension g. 

When X is the Riemann sphere or a hyperelliptic Riemann surface, the 
corollary follows from the explicit description of ill (X) given above combined 
with the determination of their genus (cf. Figure 3 and Examples in §1.2.2 and 
§1.4.2). In general, it shows that dim ill (X) which a priori depends on the 
holomorphic structure of X is in fact a topological invariant of X. Conversely, 
when X is realized as an algebraic curve, Corollary B.2.6 provides an algebraic 
interpretation of the genus of X. 

B.3. Divisors and holomorphic line bundles on Riemann surfaces 

One of the most important questions in the theory of Riemann surfaces is the 
existence of meromorphic functions on a given Riemann surface with prescribed 
zeros and poles. 

For instance, consider a compact connected Riemann surface X. We have 
seen that there exist non-constant meromorphic functions on X (cf. Theorem 
1.4.2); more precisely, according to Theorem 1.4.3. 2), there are enough mero­
morphic functions on X to separate the points of X and even to provide a 
projective embedding of X. On the other hand, any holomorphic function on 
X is constant (see Section B.1.7). A natural question is then the following: 

Let PI, ... ,Pk be distinct points on X and let ml, ... ,mk be positive inte­
gers. Is there any non-constant meromorphic function on X which is holomor­
phic on X - {PI, ... ,Pk} and whose pole at Pi has order at most mi l8 for any 
i = I, ... ,k? 

A variant of this question is to consider some other points QI, ... ,Ql on 
X and positive integers nl, ... , nl and to ask for meromorphic functions on 
X which satisfy the preceding conditions and moreover have a zero of order at 
least ni at Qi. 

Observe that if X is a plane algebraic curve and the Pi'S are points at 
infinity on X, by Theorem 1.4.5, this essentially amounts to finding a polyno­
mial P(X, Y) which satisfies some growth conditions at 00 and with zeroes of 
order ni at Qi (1 ::; i ::; f). Geometrically, it is equivalent to find another plane 
algebraic curve of bounded degree, which meets X at Qi with a multiplicity at 
least ni (1 ::; i ::; £) and has a suitable behaviour at infinity. 

18 By definition, this condition is satisfied by any meromorphic function holomorphic 
at Pi. 
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In this Section, we explain how such questions may be translated into 
questions concerning the existence of holomorphic sections of some holomorphic 
line bundles on X. 

Let X be a compact Riemann surface. A divisor on X is an element of 
the free Abelian group whose generators are the points of X. In other words, 
a divisor on X is a finite formal sum 

k 

D= LniPi 
i=l 

of (distinct) points Pi of X, affected with multiplicities ni E Z. Such a divisor 
is called effective if all the ni's are non-negative. More generally, for any two 
divisors D1 and D2 on X, one writes D1 2': D2 when D1 - D2 is effective. The 
multiplicity np(D) of a point P of X in D is ni if P = Pi and is 0 if P is not 
one of the Pi'S. The finite subset IDI of X formed by the points P E X such 
that np(D) -# 0 is called the support of D. The group of divisors on X will be 
denoted by Div(X). 

Let us now explain how a divisor is attached to any non-zero meromorphic 
section of a holomorphic line bundle on X. 

Let X be any Riemann surface. For any P E X and any non-zero mero­
morphic function defined on an open neighbourhood of P in X, the valuation 
of I at P is the integer v p(f) defined as follows: 

. if I is holomorphic at P and has a zero of order nat P, then vp(f) = nj 

. if I has a pole of order n > 0 at P, then vp(f) = -no 
Clearly, we have: 

i) vp(f) = 0 iff I is holomorphic and does not vanish at P 
ii) if I and g are non-zero meromorphic functions on a neighbourhood of 

P, then 

(B.3.1) vp(fg) = vp(f) + vp(g). 

and 

(B.3.2) vp(f-1) = -vp(f). 

Let £. be a holomorphic line bundle on X. Consider a point P E X and a holo­
morphic trivialization t of £. over an open neighbourhood of P. The preceding 
properties show that, if s is any non-zero meromorphic section of £. on an open 
neighbourhood V of P and if we define a meromorphic function I on U n V by 

s = It, 

then vp(f) does not depend on t. This integer is called the valuation of s at 
P, and is denoted by vp(s). When £. is the trivial line bundle, this definition is 
dearly consistent with the preceding one. Moreover, the properties i) and ii) are 
still true if now I and g are non-zero meromorphic sections of two holomorphic 
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line bundles £ and M; then fg is a section on £ (8) M and f- 1 is a section of 
£*. 

From now on, suppose that X is compact and connected. Then, if s is any 
non-zero meromorphic section of £ on X, the points of X such that v p( s) =I- 0 
are isolated, hence form a finite set. Thus, we can define the divisor of s as 

divs = L vp(s)P; 
PEX 

this sum is indeed a finite sum. Observe that divs is effective iff sis holomorphic. 
Consider now the 'set' E of pairs (£, s) where £ is a holomorphic line 

bundle on X and s is a non-zero meromorphic section of £ on X, and let 
us say that two such pairs (£,s) and (M,t) are isomorphic iff there exists a 
holomorphic isomorphism r.p : £ ~ M such that 

r.p. s = t. 

This isomorphism relation, which we will denote by"', clearly is an equivalence 
relation on E. 

The following Proposition makes precise the link between holomorphic line 
bundles and divisors on X provided by divisors of meromorphic sections. 

Proposition B.3.I. If two pairs (£,s) and (M,t) in E are isomorphic, then 
divs = divt. Moreover the map 

is a bijection. 

div : E / '" -+ Div( X) 

[(£,s)] 1-+ divs 

Clearly, (£, s) '" (M, t) iff t· s-1 is a non-vanishing holomorphic section of 
M (8) £*. This holds iff div(t· s-l) = 0 and, according to (B.3.1) and (B.3.2), 
this is equivalent to divt = divs. This proves the first assertion of proposition 
(B.3.1) and the injectivity of div. 

Let us now prove its surjectivity. Let 

k 

D= LnjPj 
i=1 

be a divisor on X, where the Pj'S are distinct. For each i, let us choose a local 
variable Zi at Pj and a small enough ej > 0, such that the discs 

Di = {M EX; zj(M) is defined and IZj(M)1 < ei} 

are pairwise disjoint subsets of X. Let £ be the line bundle defined by the 
covering {U;}o~i9' where 
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Uo = X - {PI, ... , Pd 
Ui = Di if i = I, ... ,k, 

and by the transition functions 

n­
<PUOUi = zi' 

defined for i = 1, ... ,k on the intersectionsl9 

Uo n Ui = {M E X; zj(M) is defined and 0 < IZi(M)1 < c;}. 

Then e is trivial on X - {PI, ... ,Pd by construction. Moreover, the constant 
function 1, seen as an element of HO (X - {PI, ... ,Pd; e), defines a meromor­
phic section s of e over X, holomorphic and non-vanishing on X -{PI"'" Pd, 
and, by definition of the valuation vP;, we have for any i = 1, ... ,k: 

This shows that 

and finally we get 

k 

divs = Ln;Pi = D 
i=l 

D = div[(e,s)]. 

By the injectivity of div, the pair (e, s) we have just defined is well defined, up 
to isomorphism, by this last relation. It is often denoted by (O(D), IO(D»)' 

Observe that, again by the injectivity of div, for any holomorphic line 
bundle e on X and for any non-zero meromorphic section s of.c over X 7 we 
have an isomorphism of holomorphic line bundles 

(B.3.3) e ~ O(divs). 

The reader will check easily that, for any D E Div(X) and any open subset 
U c X, the trivialization of OeD) on X -IDI defines an isomorphism 

(B.3.4) HO(U;O(D)) ~ {f E M(U) I VP E U,vp(f) 2: -mp(D)}. 

In particular 

(B.3.5) HO(X; OeD)) ~ {f E M(X) I dive!) 2: -D}, 

and the space of meromorphic functions considered at the beginning of this 

Section is nothing else than HO (X; 0 (2:::=1 mjFi - 2::~=1 njQj) ). 
Observe finally that the tensor product provides a commutative group law 

on E / rv, defined by 

19 Observe that (i < j and Ui n Uj i= 0) :::} (i = 0 and j 2: 1). Thus we only need to 
consider the k transition functions attached to the intersectIOns Uo n U1 , ••• , Uo n Uk. 
Moreover, since i < j < k :::} Ui n Uj n Uk = 0, no cocycle condition needs to be 
checked. 
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[(£,8)] + [(M, t)] = [(£ 0 M, 8t)], 

and that div is then an isomorphism of groups. In particular, for any two 
divisors Dl and D2 on X, we have isomorphisms 

(B.3.6) 

(B.3.7) 

OeD!) 0 O(D2 ) ~ O(DI + D2 ) 

O(DJ)* ~ O( -DJ). 

B.4. The degree of a line bundle 

In this Section, we discuss how the classification of Coo line bundles over a 
closed oriented surface may be realized by means of a single numerical invariant, 
the degree. 

Consider a Coo line bundle £ over an oriented Coo surface X, P a point 
of X and 8 a continuous section of £ over a neighbourhood of P which does 
not vanish on U - {Pl. Let us choose a trivialization of £ on a neigbourhood 
V of P and let r be a small closed contour in U n V which goes once around 
P, anticlockwise under the orientation of X. Using this trivialization, the re­
striction of 8 to r may be identified with a continuous map r -+ C* , and the 
winding number of this map is easily seen not to depend on the choices of the 
trivialization and of r. It is called the index of 8 at P and is denoted Indp8. 
It is non-zero only if 8(P) = o. See figure 26 for examples where X = C and £ 
is Tx, the holomorphic tangent bundle. 

Proposition -Definition B.4.1. Let X be a closed oriented surface (cf. Appendix 
A) and let £ be a Coo line bundle over X. There exist (infinitely many) sections 
8 E COO(Xj £) which vanish only on a finite subset of X and the integer 

L Indp8 
PEX 

s(P)=O 

associated to any such section is independent of 8. It is called the degree of £ 
and is denoted degx£. 

By definition, the trivial line bundle has degree 0 and two isomorphic Coo 
line bundles have the same degree. If £1 and £2 are two Coo line bundles and 
if 81 and 82 are sections of £1 and £2 with finite sets Fl and F2 of zeros, then 
81 082 is a section of £1 0 £2 which vanishes only on Fl U F2 and for any P, 
we have 

This implies that 

(B.4.1) 

This identity applied to £1 = £ and £2 = C* shows that 
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(B.4.2) degx£* = -degx£. 

The following proposition explains the significance of the degree of Coo line 
bundles over a closed surface. 

Proposition B.4.2. Let X be an oriented closed surface and £1 and £2 be two 
Coo line bundles over X. The following three conditions are equivalent: 

i) £1 and £2 are isomorphic as topological line bundles; (i.e., there exists 
a continuous isomorphism from £1 to £2.) 

ii).£l and £2 are isomorphic as Coo line bundles; (i. e., there exists a Coo 
isomorphism from £1 to £2.) 

iii) degx £1 = degx £2. 

Index -1 Index 1 Index 1 

Index 2 Index 3 

Fig. 26. The index of some vector fields. 

According to (B.4.1), the Z-valued map degx, defined on the set of isomor­
phism classes of Coo line bundles over X, is in fact an isomorphism of Abelian 
groups, when the set of isomorphism classes of Coo line bundles over X is 
equipped with the structure of Abelian group defined by the tensor product20 . 

In the sequel, we will consider the degrees only of holomorphic line bundles 
over a compact connected Riemann surface. 

20 The only non-trivial point in the verification of the group axioms is the existence 
of an inverse to the class of a line bundle .c: it is given by the class of .co, since 
.c* @ .c is isomorphic to the trivial bundle. 
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If X is such a Riemann surface, we may for instance consider the integers 
degxwx and degxTx. According to (BA.2), we have 

(BA.3) 

and according to the Poincare-Hopf formula, degxTx may be expressed in 
terms of the genus g of X: 

(BAA) degxTx = 2 - 2g. 

Finally, the degree of the line bundle associated to some divisor on X is 
easily computed: 

Proposition B.4.3. Let D = L:t=l niPj be a divisor on a compact connected 

Riemann surface. Then the degree of the line bundle OeD) is L:t=l ni. 

Indeed consider the section 10 (D) of OeD) whose divisor is D and choose 
a Coo Hermitian metric II lion OeD). An elementary computation shows that 

10 (D) s . - ---,-,---'--'---:-:-=-
.- 1+ 1I10 (D) 112 

is a Coo section of OeD) which vanishes exactly on IDI and whose index at 
P E IDI is the multiplicity of P in D. 

d 
We will call degree of the divisor D the degree L: nj of line bundle OeD). 

i=l 
Exercise. Use (BA.3), (BAA) and Proposition BA.3 to compute the genus of 
the Fermat curve (cf. §I.4.2). 

Together with the isomorphism (B.3.3), Proposition BA.3 has the following 
immediate consequence: 

Corollary B.4.4. A holomorphic line bundle on a compact connected Riemann 
surface X whose degree is negative has no non-zero holomorphic section over 
X. 

B.5. The operators a and ac 
Let U be an open subset of C. For any function f E Coo(U; C), one defines 

af ( .) _ ~ (af(x + iy) .af(x + iY)) 
Oz x + zy - 2 ax + Z ay 

and 

(B.5.1) - of 
af:= Oz· az; 

thus, af is an element ofCoo(U;wu). 
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The operator (j so defined clearly satisfies the Leibniz formula 

(B.5.2) 

Moreover 8f vanishes iff f satisfies the Cauchy-Riemann equation 

i.e., iff f is holomorphic. These remarks show that 

(B.5.3) 8( h . f) = h . 8 f if h is holomorphic. 

Let now 'f' : U -+ V be a holomorphic map between two open subsets of C. 
A direct computation based on the Cauchy-Riemann equation satisfied by 'f' 
shows that, for any f E Coo(V; q, we have 

(B.5.4) 

This implies that the differential operator 8 may be defined on the C= functions 
over any Riemann surface, in such a way that (B.5.1) holds locally for any 
holomorphic coordinate z. A direct intrinsic definition of 8f is simply: 

Clearly the relations (B.5.2) and (B.5.3) are still true on any Riemann surface, 
as well as the characterization of holomorphic functions as the Coo functions f 
such that 8 f = O. 

Consider now a holomorphic line bundle £ on a Riemann surface X. Let U 
be an open set in X such that, over U, £ possesses a holomorphic trivialization 
t (in other words, t is a non-vanishing holomorphic section of £ over U). Then 
any s E Coo(U, £) may be written s = ft where f E Coo(U; q and the relation 
(B.5.3) easily implies that the element 8f . t of Coo(U; £ C9wx) does not depend 
on the choice of t. This shows that there exists a unique first order differential 
operator acting on the section of £ with values in the sections of £ C9 w x which 
sends s to 8 f . t for any such U, s, t and f. It is called the 8-operator with 
coefficients in £ and denoted by 8c . 

By construction of 8c, for any s E Coo(U; C), we have 

a CS = 0 {:} s is holomorphic on U. 

In particular HO (X; £) is the kernel of 

The cokernel of this map, i. e., the quotient vector space 
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is called the first Dolbeault cohomology group of £ and is denoted by Hl(X; £) 
(HO(X; £) is also called the zero-th cohomology group of C). 

Contrary to HO(X; C), the significance of the group Hl(X; £) is not very 
intuitive a priori. The various theorems stated in the next Sections should make 
clear its great usefulness. Let us only say that it will appear as a vector space 
'measuring the obstructions to build holomorphic sections of £ over X'. 

Suppose now that £ and wx are equipped with Coo Hermitian metrics 
/I lie and II Ilwx. These metrics determine a Coo Hermitian metric on £ 0 w x, 
such that 

II e 0 a IIe@wx=11 e lie· /I a Ilwx 
for any e E £p and any a E wx,P, and a positive 2-form fL on X given by 
(B.2.2). Using fL, II . /Ie and /I/Iwx, we can define on Coo(X; £) and on Coo(X; £0 
wx) some L2 Hermitian norms II /lL2: for any 8 E Coo(X;£) and any t E 
Coo(X; £ 0 wx), 

11 8 1112:= i II 8(X) /1 2 fleX) 

II t 1112:= L II t(x) 112 fleX). 

These L2 structures on Coo(X; £) and Coo(X; £0wx) allow to define the adjoint 
[!ie. of 8 e by the identity 

(8 e8, t) = (8,8 e' t) 

where ( , ) denote the scalar products associated with the Hermitian norms 

II 11£2· 
This being set, it is possible to give a heuristic interpretation of Hl(X; £) 

which may be appealing to some mathematical physicists: formally, Hl(X; £) 
may be identified with the kernel of a~ - the 'zero-modes of the adjoint of a e' in 
the language of physicists. Indeed, in the finite dimensional case, if T : E --t F 
is a linear map between two finite dimensional vector spaces E and F endowed 
with Hermitian scalar products, then the kernel of the adjoint T* of T, defined 
by 

(Tx, y) = (x, T*y) 

for any (x, y) E E x F, is isomorphic with coker T := F/T(E), via the map 

ker T* --t coker T 

y I--t [y]. 

B.6. The finiteness theorem 

The following theorem is a most basic fact concerning holomorphic sections of 
holomorphic line bundles on a compact Riemann surface. 
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Theorem B.6.1 (Finiteness Theorem). Let X be a compact Riemann surface 
and let C be a holomorphic line bundle on X. The Dolbeault cohomology groups 
HO(X;C) and H1(X;C) are finite dimensional vector spaces. 

To show the significance of the finite dimensionality of H1(X; C), let us 
prove the following 

Proposition B.6.2. Let us keep the notations of Theorem B.6.1. For any P EX, 
there exists a meromorphic section s of C which is holomorphic on X - {P} 
and which has a pole at P of order at least 1 and at most 1 + dimH1(X; C). 

Consider a local holomorphic coordinate z at P, a non-vanishing holo­
morphic section t of C on an open neighbourhood U of P and a function 
p E COO(X; C) such that p == 1 near P and such that p vanishes outside a com­
pact subset of U. For any positive integer i, the section lip· z-it (resp. pz-it) 
of C ® wx (resp. of C) over U - {P} extended by zero defines an element of 
COO(X; C ® wx) (resp. of COO(X - {P}, C». Moreover, on X - {P}, we have 

(B.6.1) 

Linear algebra shows that, if d = dimH1(X; C), there exists (.AI, ... , .Ad+!) E 
Cd+1 - {O} such that the class of 

d+1 
a = L .Ailip . z-it 

i=l 

in Hl(X; £) vanishes. Then there exists (3 E COO(X; C) such that 

(B.6.2) a = lie (3 , 

and, according to (B.6.1) and (B.6.2), 

d+1 
S = L .Aipz-it - f3 

i=l 

is an element of COO(X - {P}, C) such that lies = o. Thus sis holomorphic on 
X - {P} and its 'polar part' at P is 

d+1 
L.Ai Z - it 

i=l 

which is non-zero and of order at most d + 1 by construction. 
Observe that, according to (B.3.3), Proposition B.6.2 implies the following 

Corollary B.6.3. Any holomorphic line bundle C on a compact connected Rie­
mann surface X is isomorphic, as a holomorphic line bundle, to the line bundle 
OeD) associated to some divisor D on X. 
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Observe also that, applied to the trivial line bundle 0, Proposition B.6.2 
shows that for any P E X there exists a non-constant meromorphic function 
f on X which is holomorphic on X - {P} and has a pole of order at most 
1 + dimHI(X; 0) at P. In particular, this prove that meromorphic functions 
separate the points of X (compare with Theorem 1.4.3). 

B.7. HI(X; C) and polar parts of meromorphic sections 

The construction used to prove Proposition B.6.2 may be extended to provide 
an alternative description ofthe cohomology group HI (X; C) in terms of mero­
morphic sections of C and of their 'polar parts' (hence a purely 'holomorphic' 
description). To do this we need to introduce a few notations: 

• M(X; C) will denote the vector space of meromorphic sections of Cover 
x-, 

• for any x EX, P( x; C) is defined as the quotient of the set M (x; C) of 
pairs (U, s), where U is an open neighbourhood of x in X and s is meromorphic 
section of C on U, by the equivalence relation v defined by 

(U, s) rv (V, t) ¢} t - s is holomorphic at x. 

The space P( x; C) is the space of 'polar parts at x' of meromorphic sections of 
C. Indeed, if t is a non-vanishing holomorphic section of C on a neighbourhood 
of x and if z is a local coordinate at x such that z( x) = 0, then one defines an 
isomorphism between the vector space of polynomials in z-I without constant 
term and P(x; C) by sending E:=I aiz-i to the class of E:=I aiz-it. 

• P(X; C) will denote the subspace of IlxEx P(x; C) defined by the con­
dition 

(Px)xEX E P(X; C) ¢} px :f. 0 only for a finite set of x's. 

• Pc will denote the linear map from M (X; C) to P( X; C) which associates 
to a meromorphic section s of C over X the element (Px)xEX of P(X; C), where 
Px is the class of sin P(x; C). (In other words Pc(s) is the family of 'polar parts' 
of s.) 

Consider now (Px)xEX E P(X; C) and let 

Choose for each i = 1, ... , n a meromorphic section Ii on some neighbourhood 
Ui of Pj whose class in P(Pj; C) is PPj and a function Pi E COO(X; q such that 
Pi == 1 near Pj and such that Pi vanishes outside some compact subset of Ui. 
Then, the section fi ·8Pi of C 0 w x over Ui - {Pd extended by zero defines an 
element of COO(X; C 0 wx). One easily checks that the class of E~=I Ii· 8Pi in 
HI(X; C) only depends on the class of (Px)xEX in 

cokerPc := P(X; C)/ Pc(M(X; C)). 

(This space is called the space of repartition classes of X). In that way, one 
defines a linear map 
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Ie.: cokerPc -+ Hl(X;£) 

[(Px)xEX]1--t [~J;. 8Pi]. 

Theorem B.7.I. The kernel of Pc is HO(X; C). The map Ie is an isomorphism 
from the cokernel of Pc onto Hl(X;£). 

The first assertion is clear. The second one means that Hl(X; £) 'measures 
the obstruction' to finding meromorphic sections of £ with prescribed polar 
parts. See §C.4 for a proof. 

Observe that, when £ = WX, COO(X;£) is a subspace of the space of Coo 
complex I-forms over X, COO(X; £ 0 wx) may be identified with the space of 
Coo complex 2-forms over X (cf. (B.2.I)), and up to a sign, 8c is nothing else 
than the exterior differential d acting from I-forms to 2-forms (indeed, in local 
coordinates we have 

(B.7.I) d(Jdz) = dj 1\ dz 
= 8j(0,1) 1\ dz 

because 8j 1\ dz = 0, since dz 1\ dz = 0). In particular, the image of 8c is 
formed by exact two forms and their integral over X vanishes. This shows that 
the following map is well defined: 

Res: Hl(X;wX) -+ C 

raj I--t ~ [ a. 
27rZ lx 

The insertion of the factor (27ri)-1 as well as the notation Res are explained 
by the following result, which we leave as an exercise. 

Lemma B.7.2. For any (ax)xEx E P(X;wx), we have 

Res 0 Pwx ([(ax)xEx]) = L Resxax. 
xEX 

(In this equality [(ax)xExJ denotes the class of (ax)xEx in cokerPc and Resxax 
the residue at x of any meromorphic differential representing ax). 

B.S. Serre duality 

An important complement to the Finiteness Theorem B.6.I is the Serre duality 
Theorem. To formulate it, we need a few preliminaries. 
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The Leibniz rule (B.5.2) generalizes immediately as follows: for any two 
holomorphic line bundles C1 and C2 on X, and for any II E COO(XiCd and 
any h E COO(Xi C2), then 

(B.8.I) 8C1 C9C 2(II . h) = II . 8c2 h + 8CJ1 . h (E COO(X; C1 @ C2 @wx)). 

In particular, if II E HO(X, Cd, we have 

8C1 <'i)c 2 (1I . h) = II ·8C2 h 

This shows that the bilinear map 

HO(X; Cd x COO(X; C2 @wx) -+ COO(X; C1 @ C2 @wx) 

(II, (2) f-+ II . a2 

yields a quotient map 

(B.8.2) 

HO(X;C1) x H1(XiC2) -+ H 1(X;C1 @C2) 

(II, [a2]) f-+ II . [a2J := [II . a2J. 

We can now state: 

Theorem B.8.! (Serre duality). Let X be a compact Riemann surface and let 
C be a holomorphic line bundle on X. The bilinear map 

obtained by composing the product (B.8.2) 

HO(X; C* @wx) X H1(X; C) -+ H1(X; C* @C @ wx) ~ H1(XiWx) 

with the map Res is a perfect pairing21 . 

Observe that, by the definitions of Res and of the product (B.8.2), for any 
s E HO(X;C) and a E COO(XiC* @wx @wx), we have 

(s, [a]) = ~ f sa, 
21l"Z Jx 

where sa is a section of C@C*@wx@wx, identified with (A2T* X)c. Theorem 
B.8.I asserts that this pairing defines an isomorphism 

and implies that 

(B.8.3) 

21 Recall that, if E and F are two finite dimensional vector spaces, a bilinear map 
(-,.): Ex F -> C is called a perfect pairing when the map (E -> F*,x ...... (x,.)), 
or equivalently the map (F -> E", y ...... (.,y)), is bijective. 
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Corollary B.S.2. Let X be a compact connected Riemann surface of genus g. 
1) There exists a canonical isomorphism 

In particular 

(B.8.4) dimHI(X; 0) = g . 

Moreover the map 
ill(X) -? HI(X; 0) 

deduced from the inclusion ill(X) '-t COO(X;wx) is an isomorphism. In other 
words 

COO(X; w x) = ill (X) EJj a COO(X; q. 
2) The map 

is an isomorphism. 

The first assertion in 1) (resp. the assertion 2)) follows from Theorem B.8.1 
applied to £. = 0 (resp. £. = wx). The equality (B.8.4) is then a consequence 
of Corollary (B.2.6). The last assertion in 1) is implied by the equality of 
dimensions 

and by the injectivity of the map ill (X) -? HI (X; 0), which follows from the 
identity 

for any (3 E ill(X). 

Exercise: Deduce from Corollary B.2.4, Proposition B.6.2, and (B.8.4) that any 
compact connected Riemann surface of genus 0 is biholomorphic to pIC. 

Exercise: Use the Serre duality to prove that the heuristic interpretation of 
HI(X;£,) given at the end of §B.5 is indeed correct. 

B.9. Riemann-Roch theorem 

Recall that, for any two vector spaces E and F, a linear map T : E -? F is 
said to have an index if the kernel ker T and the cokernel coker T := F jT( E) 
of T are finite dimensional vector spaces. The index of T is then defined as the 
integer 

ind T = dim ker T - dim coker T 

(compare [Bel] §1.4). 
According to the very definition of the cohomology groups HO(X; £.) and 

HI (X; C), the Finiteness Theorem B.6.1 precisely asserts that the operator 
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has an index. Its index, namely 

dim kera.c - dim cokera.c = dimHO(X; £) - dimH1(X; C), 

is given by the famous Riemann-Roch theorem: 

Theorem B.9.1. Let X be a compact connected Riemann surface of genus g and 
let £ be a holomorphic line bundle on X. Then: 

(B.9.I) 

Corollary B.9.2 (Riemann's inequality). Let D = 2:~=1 niPi be a divisor on X. 
Then 

k 

(B.9.2) dim{f E M(X) I div f ~ -D} ~ 1 - g + L ni· 
;=1 

This follows immediately from (B.9.I) applied to £ = OeD) and from 
(B.3.5) and Proposition (BA.3). Observe that Corollary B.9.2 is an existence 
statement concerning meromorphic functions with prescribed zeroes and poles, 
which answers the question discussed at the beginning of §B.3. Indeed (B.9.2) 
implies that if 2:7=1 ni > g, there exists a non-constant meromorphic function 
f on X such that divf ~ -D. 

Classically, Riemann-Roch formula (B.9.I) is combined with the equality 
(B.8.3) and is written as 

(B.9.3) 

Observe that, applied to £ = Wx, this equality becomes 

g - 1 = 1 - g + degx £ 

since dimHO(X; wx) = g and dimHO(X; 0) = 1 (cf. Corollary B.2.6 and 
§B.1.7). This shows that the degree of Wx is 2g - 2 as mentioned above (see 
(BA.3) and (BAA)). 

Consequently, if degx£ > 2g - 2, then degx£* 0wx < 0 and HO(X; £* 0 
wx) = 0 (by (B.4.I), (B.4.2) and Corollary B.4.4) hence H1(X;£) = 0 (by 
(B.8.3)) and Riemann-Roch formula reads 

(B.9A) 

Of course, this equality has an interpretation in terms of divisors, analogous to 
(B.9.2). 

At this point of our discussion, the proof of Riemann-Roch Theorem is not 
difficult. Since any holomorphic line bundle over X is isomorphic to the line 
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bundle OeD) associated to some divisor D, a simple induction shows that to 
prove (B.9.1), we only need to prove that: 

i) (B.9.1) is true for £. = 0; 

ii) for any holomorphic line bundle over X, (B.9.!) is true for £. = N iff 
(B.9.1) is true for £. = N Q9 O( -P). 

However the validity of (B.9.1) rewritten as (B.9.3) is clear when £. = 0, 
since dim HO(X; 0) = 1 and dimHO(X; wx) = g. As for ii), since 

it amounts to proving that 

dimHO(X;N Q9 O( -P»- dimHI(X;N Q9 O( -P» + 1 

= dimHO(X;N) - dimHI(X;N) 

that is, according to Theorem B.7.1, 

(B.9.5) indP.c00(-P) + 1 = indP.c. 

The proof of (B.9.5) will be based on the following lemma of linear algebra, 
which we leave as an exercise22 . 

Lemma B.9.3. Let E, F and G be vector spaces and let u : E --+ F and v : F --+ G 
be linear maps with index. Then v 0 u : E --+ G is a linear map with index and 

ind v 0 u = ind u + ind v. 

Observe that the meromorphic (resp. holomorphic) sections of N 1)9 O( - P) 
over an open subset U C X may be identified with the meromorphic sections 
of N over U (resp. with the holomorphic sections of N over U which vanish at 
P if P E U). These identifications provide linear bijections 

,pO : M(X;N Q9 O( -P» .:+ M(X;N) 

and 
M(x;N Q9 O( -P» .:+ M(x;N) 

and linear maps 
P(x;N Q9 O( -P» --+ P(x;N) 

and 
,pI : P(X;N Q9 O( -P» --+ P(X;N). 

The following properties of ,po and,pI are easily checked: 
• the following diagram 

22 We will use Lemma B.9.3 only when u is an isomorphism or when v is onto and 
dim ker v = 1. In these two cases, the proof of Lemma B.9.3 is very simple. 



J. -B. Bost 135 

M(XiN®O(-P)) 
PN00(-P) 

P(XiN ® O( -P» ) 

(B.9.6) 1 4>0 14>1 

M(X;N) 
PN 

P(X;N) ----+ 

is commutative (i.e., gJl 0 PN"00(-P) = PN" 0 gJO) . 

• gJl is onto and the kernel of gJl is generated by the class of (px )XEX, 
where Px = 0 if x =I- P and P P has a simple pole at P. In particular ind gJl = 1. 

Thus the four maps which occur in (B.9.6) are maps with index and Lemma 
B.9.3 shows that 

indPN00(-P) + 1 = ind PN"00(-P) + ind gJl 

= ind gJl 0 PN00( -P) 

as was to be proved. 

= ind PN" 0 gJO 

= ind PN + ind gJ0 

= ind PN", 

Finally, let us give a consequence of the results of this Appendix which 
will playa key role in the construction of the Jacobian embedding of compact 
Riemann surfaces. 

Proposition B.9.4. Let X be a compact connected Riemann surface of genus 
g 2: 1. Then for any P E X, there exists wE Ql(X) such that w(P) =I o. 

Assume the contrary. Then the injection 

is a bijection and since 

degx Wx ® O( -P) = degx Wx - 1, 

Riemann-Roch formula (B.9.I) and Corollary B.8.2, 2) show that 

dim Hl(X;WX®O(-P» = dim Hl(X;wx)+I= 2. 

Therefore, by Serre duality dim HO(Xi O(P» = 2 and there exists a non­
constant meromorphic function on X, whose only pole is P, and is a simple 
pole. By Corollary B.2.4, this implies that X is isomorphic to pIC, hence has 
genus o. 
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Appendix C. Analysis on compact Riemann surfaces 

This appendix is devoted to the proofs of the Finiteness Theorem B.6.1, of the 
Serre duality Theorem B.8.1, of Theorem B.7.1 (isomorphism between HI and 
repartition classes) and of Theorem B.2.5 (Hodge decomposition). 

C.l. Regularizing operators 

Let £1 and £2 be two Coo line bundles on a compact manifold X. Let k E 
Coo(X x X; £2 [RJ (£r 01/\ Ix)) and f E Coo(X;£I)' For any x E X, Y ~ 
k(x,y)f(y) is a Coo section of £1,x 01/\ lx, and the integral 

Kf(x) := 1 k(x,y)f(y) 
yEX 

(C.l.l) 

is a well defined element of £1,x. Moreover, the section K f of £1 over X so 
defined is Coo. (This is clear by the elementary differentiability properties of 
integrals depending on a parameter when f is supported by a chart on which 
£2 is trivial. In general, partitions of unity reduce to this case). The section k 
is easily seen to be uniquely determined by the operator 

K: Coo (X;£I) ---+ Coo(X;£2) 

and is called its kernel. The linear maps associated in this way to kernels in 
Coo(X x X; £2 [RJ (£r 0 1/\ Ix)) are called the regularizing operators from 
Coo(X; £1) to Coo(X; £2)' 

A special class of regularizing operators are the regularizing operators of 
finite rank, which are defined by kernels k given by finite sums 

N 

(C.1.2) k(x,y) = L'Pi(X).,p;(y), 
i=1 

where 'Pi E Coo(X;£I) and.,pi E Coo(X;£2 01/\ Ix), and have the form 

The Finiteness Theorem B.6.1 and the Serre duality Theorem B.8.1 are 
simple consequences of the following two propositions: 

Proposition C.l.l. Let £ be a Coo line bundle on a compact manifold X and 
let 

K: Coo(X;£) ---+ Coo(X;£) 

be a regularizing operator. Then: 
i) Id +K is an operator with index from Coo(X; £) to itself. 
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ii) For any linear map A : COO(Xj C) ~ <C such that A 0 (Id +K) = 0, there 
exists C E COO(XjC* 01 !I. Ix) such that, for any f E COO(XjC), 

AU) = Ix C(x)f(x)dx. 

Proposition C.1.2. For any holomorphic line bundle C over a compact Riemann 
surface X, there exists a linear map 

P : COO(Xj C 0 wx) ~ COO(Xj C) 

and regularizing operators 

and 

such that 

and 

Proposition C.l.I is a variant of Fredholm's theory. The operator P, whose 
existence is asserted in Proposition C.l.2, is traditionally called, after Hilbert, 
a parametrix of at:.. 
Proof of Theorems B.6.l and B.S.l (taking Propositions C.l.I and C.l.2 for 
granted): 

• ker at:. is clearly contained in 

This space is finite dimensional according to Proposition C.l.I i), applied to 
K 1 . Hence HO(XjC) is finite dimensional. 

• at:. (COO(Xj C)) clearly contains 

This space has finite codimension in COO( X; C 0 w x) according to Proposition 
C.l.I i) applied to K = K 2 • Hence the same is true for at:. (COO(X;C)), i.e., 
Hl(X; C) is finite dimensional. 

This proves Theorem B.6.l. 
• Consider an element A in Hl(X;C)* i.e., a linear map 
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which vanishes on the image of 7'ie .. Then A vanishes on the image of 8.c 0 p = 
Id +K2 • Therefore, according to Proposition C.l.1 ii) applied to K = K 2 , there 
exists P. E COO(X; (£ 0 wx)* 01/\ Ix) such that, for any f E COO(X; £ 0 wx) 

(C.l.3) AU) = ( P.(x)f(x). 
]xEX 

The section P. may be seen as a Coo section of £* 0 w x. Indeed, 

and 
Wx 01/\ Ix ':::!. wx, 

since (cf. §B.l.9 and (B.2.I)) 

1/\ Ix ':::!./\~ ':::!. Wx 0wx· 

The relation (C.l.3) uniquely determines P., and the map A r-+ P. so defined is 
an isomorphism from HI (X; £)* onto the subspace of COO( X; £ 0 w x) formed 
by the sections P. such that 

v s E COO(X;£) , L P.. 8s = O. 

This subspace is nothing else than HO (X; £* 0w x), as follows from the following 

Lemma C.1.3. For any s E COO(X; £) and any P. E COO(X; £* 0 wx), we have 

L P.. 8.c s = - L 8C.*0wx P.. s. 

Indeed 

LP.·8.c s + L8.c*0WXf.S= L8(f's) (cf·(B.8.I)) 

= Ix d(P'· s) (cf· (B.7.I)) 

= 0 (Stokes formula). 

This proves Theorem B.8.I, since the bijection 

HO(X;£* 0 wx) -+ HI(X;£)* 

f r-+ >. 

coincides (up to afador 27ri) with the linear map HO(X;£*0wx) -+ HI(X; £)* 
defined by the bilinear pairing (', .), which therefore is non-degenerate. 
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C.2. Fredholm's theory 

This Section is devoted to the proof of Proposition C.l.l. We will indicate the 
main lines of the proof and leave (easy) details to the reader. 

We begin with a few observations: 
• If K1 and K2 are two regularizing operators from COO(Xi C) to itself, 

with kernel k1 and k2' then K1 0 K2 is a regularizing operator, whose kernel is 

(C.2.I) 

In particular, if K1 or K2 is a regularizing operator of finite rank, then K 1oK2 
is also such an operator . 

• Choose Coo Hermitian metrics II 1I.e and II 1III\Ix on the line bundles C 
and 1/\ Ix. By duality and tensor product, these metrics define a Hermitian 
metric II . II on C [g] (C* 01/\ Ix). Using II II, we can define a norm 111111 on the 
space Co (X x Xi C [g] (C* 0 1/\ Ix)) of continuous kernels as 

IIIklll = sup II k(x,y) II· 
(x,y)EXXX 

Equipped with this norm, CO(X x Xi C [g] (C* 0 1/\ Ix)) is a Banach space. 
Moreover, one easily checks that the composition of kernels (C.2.I) is still well 
defined for continuous kernels and that the following estimate holds, for any 
two continuous kernels k1 and k2: 

(C.2.2) 

where M is the integral over X of the density I-' defined locally on X by 

Idx1 /\ ... /\ dXnl 
1-'- ~~~----~~~-- II dX1 /\ ... /\ dX n 1III\Ix . 

The proof of Proposition C.l.I is based on three preliminary lemmas. 

Lemma C.2.I. The kernels defining the regularizing operators of finite rank (i.e., 
the kernels of the form (C.l.2)) are dense in COO(X x X,C [g] (C* 01/\ Ix)) 
equipped with the norm III III. 

Using partitions of unity, charts and local trivializations of C, this follows 
from the fact that, if D1 and D2 are two (closed) balls in lR n, any Coo function 
on D1 x D2 may be uniformly approximated by functions of the form 

N 

(x, y) 1--+ L J;(x)gj(Y) 
j=l 

where Ji E COO(DI) and gj E COO(D2). This fact may be deduced, for instance, 
from the existence of uniform polynomial approximations. 
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Lemma C.2.2. Let K : COO(X; £) ~ COO(X; £) be a regularizing operator whose 
kernel k satisfies 

(C.2.3) 
1 

Illklll< M' 

Then Id +K is invertible and there exists a regularizing operator 

L: COO(X;£) ~ COO(X;£) 

such that (Id +K)-l = Id +L. 

Let us define 
kn = k * ... * k (n factors). 

Then it follows from (C.2.2) that 

Mlllknlll:::; (Mlllkilit 
and from (C.2.3) that 

00 

L III kn III < +00. 
n=l 

Therefore 
00 

n=l 
is a well defined element of Co (X x X; £ ~ (£* Q9 I 1\ I x )). Moreover, the 
continuity of the composition product * with respect to the norm III III (c/. 
(C.2.2)) implies that 

00 

(C.2.4) k +.e * k = k + 2) _l)n kn * k 
n=l 

00 

n=l 
-R 

and similarly that 

(C.2.5) 

Inserting (C.2.4) in (C.2.5), we get: 

.e = -k + k * k + k * .e * k . 

On the other hand, the formula 

k * R * k(x, y) = 1 k(x, zl)R(Zl' z2)k(Z2' zI} 
(Zl ,z2)EX xX 

Rhows t.hat k * .e * k is Coo. Therefore,e i~ Coo. 
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If L denotes the operator of kernel e, the relations (C.2.4) and (C.2.5) are 
equivalent to 

K+L+LK=O and K+L+KL=O 

that is to 
(Id + L )(Id + K) = (Id + K)(Id + L) = Id . 

This proves Lemma C.2.2. 

Lemma C.2.3. Proposition C.1.1 is true when K is a regularizing operator of 
finite rank. 

Indeed, if 'Pi E Coo(X; C) and "pi E Coo(X; c* ® 1/\ Ix), i = 1, ... ,N, are 
N 

such that the kernel of K is (x,y) I-t L: 'Pi(X)"pi(y), then 
i=1 

ker(Id+K) = {f E Coo(X; C) If = -Kf} 

is contained in the vector space spanned by the 'Pi'S, and (Id + K)( Coo(X; C)) 
contains ker K and a fortiori the subspace of COO (X ; C) defined by the vanishing 
of the linear forms 

f I-t L"pi. f , i = 1, ... , N. 

This clearly shows that Id + K has an index. Moreover, if a linear form A 
Coo (X; C) -? C vanishes on the image of Id + K, then 

A(J) = - A 0 K(J) 
N 

= -LA(CPi) f 1/Ji·j 
i=1 Jx 

Le. f 

where 
N 

e = - L A('Pi)"pi. 
;=1 

Finally, we can prove Proposition C.1.1. 
Let K : Coo(X; C) -? Coo(X; C) be a regularizing operator. According to 

Lemma C.2.1, we can write K = KI +K2 where K2 is regularizing of finite rank 
and where IIIKIIII < 1. Then Lemma C.2.2 shows the existence of a regularizing 
operator L such that 

Now we get: 
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Id+K = (Id+K1 +K2)(Id+L)(Id+KJ) 

(C.2.6) = (Id+K2 + K2L)(Id +KI). 

According to Lemma C.2.3 applied to K2 + K 2L, which is regularizing of finite 
rank, 

ker(Id +K) = (Id +K1)-1 (ker(Id+K2 + K2L)) 

is therefore finite dimensional and 

im(Id +K) = im(Id +K2 + K 2 L) 

has finite co dimension in COO(X; C). Finally, if ..\ is a linear form such that 
..\ 0 (Id + J() = 0, then (C.2.6) shows that 

..\ 0 (Id+K2 + K2L) = 0 

and, again by Lemma C.2.3, ..\ is of the required form. 

C.3. A parametrix for 8 c 

This Section is devoted to the proof of Proposition C.1.2. Our proof is based on 
the fact that an 'inverse' of 8 acting on Coo functions with compact supports 
on C may be given by an explicit formula: 

Lemma C.3.I. i) FOT any <.p E C;;"'(C) and any z E C, we have 

1 dz' 
<.p(z) = 2 .(' ) 1\ 8<.p(z'). 

_'EIC 1n z - z 

ii) FOT any 0' E C~(C;wc) and any z E C, we have 

O'(z) =8( [ 2 /~' ) 1\0'(z')). 
iZIEIC 1n '" - Z 

These integrals make sense since ~ is integrable near O. Moreover, if we make 
the change of variables z" = z' - z and if we write 0'( z) = <.p( z )dZ, we obtain 
that these integrals are Coo as functions of z and that i) and ii) are equivalent. 

Let us prove i). We can assume that z = 0, by replacing <.p by w ~ <.p(z+w). 
Thus we only have to prove that 

(C.3.I) 1 dz -
<.p(0) = -2. 1\ 8<.p. 

IC 7rZZ 

Let De be the disc in C of center 0 and radius c. On C - De, we have 

d ( dz)_ <.p 27rzZ - d<.p 1\ 2~~z 

= 8<.p 1\ 2~~Z 

(d: is closed) 

( 8<.p 1\ dz = ~ dz 1\ dz = 0) . 



J. -B. Bost 143 

Therefore, Stokes formula gives: 

(C.3.2) Oip /\ -- = - ip --1 - dz 1 dz 
C-D. 27riz aD. 27riz 

(the minus sign comes from the fact that the boundary of C-De is the boundary 
of De with reversed orientation). The relation (C.3.I) follows from (C.3.2) by 
taking the limit € ---? o. 

Lemma C.3.I ii), has the following straightforward consequence, which will 
be of use later: 

Lemma C.3.2. Let C be a holomorphic line bundle over a Riemann surface X. 
For any P E X and any C= section t of C 0 wx over an open neighbourhood 
U of P in X, there exists s E C=(X; C) such that 

llr.s=t 

on a neighbourhood of P in U. 

The next lemma shows that a kernel on X x X which has the same singu­
larity near the diagonal L1x := {(x, x), x E X} as the kernel dz' /27ri(z - z') of 
Lemma C.3.I provides the required parametrix. 

Lemma C.3.3. Let p be an element of C=(X x X - L1x; C @ (C* 0wx)) which 
satisfies the following condition: for any x EX, there exists a local holomorphic 
coordinate z and a holomorphic trivialization t of C defined on a neighbourhood 
U of x such that the section of C @ (C* 0 wx) over U x U - L1u defined by 

1 t@rldz 
(XI,X2) t-t p(XI,X2) - -2 . () () 

7rZ Z X2 - Z Xl 

extends to a Coo section over U xU. 
Then, for any f E C=(X;C) and any X E X, the integral 

Pf(x):= [ p(x,y)f(y) 
lYEx 

is convergent and defines a C= section P f of C over X. 
Moreover, the section kl (resp. k2 ) of 

C @ (C* 0wx 0wx) ~ C @ (C* 01/\ Ix) 

(resp. of 

(C 0 wx) @ (C* 0 wx) ~ (C 0 wx) [R] ((C 0 wx)* 01 /\ Ix)) 

over X x X - L1x defined as the image of.e by -lJc. 0 wx (resp. by Be) acting 
on the second (resp. on the first) variable extends to a C= section over X xX. 
If 



144 Chapter 2. Compact Riemann Surfaces, Jacobians and Abelian Varieties 

K1 : COO(X; C) -t COO(X; C) 

( resp. 

K2 : COO(X;C ®wx) -t COO(X;C ®wx)) 

denotes the regularizing operator with kernel k1 (resp. k2), then we have 

PolJc. = Id+K1 

and 

ae 0 P = Id+K2 • 

In particular, P is a parametrix of a e. 

The assertions concerning the smoothness of £1 and £2 near the diagonal 
immediately follow from the hypothesis on p, since 

() I _ () I -0 
() Z1 Z1 - Z2 - () Z2 Z1 - Z2 - . 

Consider an element 0' in COO(X; C ® wx). The relation 

ac(PO') = 0' + K2 (0') 

follows from the hypothesis on p and from Lemma C.3.I, ii) if f has sufficiently 
small support. Partitions of unity reduce the general case to this one. The 
relation 

p(aef)=f+Kd 
for f E COO(X; C) is proved in the same way by using Lemma C.3.I, i) and 
Lemma C.1.3. 

Finally, to prove Proposition C.1.2, it is enough to prove the existence of 

satisfying the hypotheses of Lemma C.3.3. 
Let ((Uj, Zi))1<j<N be a family of holomorphic charts on X which cover X 

and such that, over each Uj, C possesses a non vanishing holomorphic section 
ti. Choose functions <.pi E COO(X; q such that <.pi vanishes outside a compact 
subset of Ui x Ui and such that 

N 

L<.pj=I 
;=1 

on a neighbourhood of Llx in X x X 23, and define sections O'j E COO(X x X -
Llx ; C® (C* ® wx)) by 

23 In other words, ('PI, ... , 'Pi,. " , 'PN, 1 - 2:::':1 'Pi) is a partition of unity associated 
to the covering (U1 X U1 , • •• , Ui X Ui, .. . , UN X UN, X X X - ..1x ) of X X X. 



J. -B. Bost 14.5 

= 0 

N 
Then P = L (7i satisfies the hypotheses of Lemma C.3.3. This follows from the 

i=1 
fact that the section of C 0 (C* Q9wx) over (Ui x Ui) n (Uj x Uj) - L1x defined 
by 

tj 0 tj 1dz j 

Zj(xI) - Zj(X2) 

extends to a Coo (in fact holomorphic) section over (Ui x Ui) n (Uj x Uj), as 
a consequence of the following elementary lemma, the proof of which we leave 
to the reader: 

Lemma C.3.4. Let U and V be two open subsets of C, let cp : U -+ V be a 
biholomorphic map and let £ be a non-vanishing holomorphic function on U. 
Then the holomorphic function on U x U - L1u 

extends holomorphically over U xU. 

C.4. Proof of Theorem B.7.1 

£(xI)£(X2)-lcp'( X2) 
cp(xI) - CP(X2) 

The fact that Ie is well defined and injective follows from easy computations. 
For instance, let us sketch a proof of the injectivity. With the notations of the 
definition of Ie, if 

n 

Lfi .8pi =8t 
i=1 

n 

for some t E COO(X; C), then the expression L p;!i - t defines an element f 
i=1 

of COO(X - {PI, ... , Pn }; C) on which 8c vanishes - hence f is holomorphic on 
X - {PI, ... , Pn } - and which has the same singularity at Pi as k Therefore, 
f is an element of M(X,C) whose image by Pc is (PX)XEX. 

The proof of the surjectivity of Ie is based on the following fact: let P be 
any point of X; then, if n is a large enough positive integer 

(C.4.l) HI (X; C Q9 O(nP)) = o. 

Indeed (C.4.l) holds as soon as 

n > 2g - 2 - degx C, 
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as follows from Serre duality Theorem B.8.1, from the relation 

degx «C @ O(nP»* @wx) = 2g - 2 - n - degx C , 

and from Corollary B.4.4. 
Consider now an element s of Coo(X; C@wx). It may be seen as an element 

of Coo (X; C @ O(nP) @wx). Therefore, according to (C.4.1), there exists t E 
Coo(X; C@ O(nP» such that 

s = aOZ)O(nP) t. 

On X - {P}, t may be seen as a Coo section of C such that 

(C.4.2) s = at:, t. 

On the other hand, Lemma C.3.2 shows that there exists an open neighbour­
hood U of P in X and u E Coo(X;C) such that, on U 

(C.4.3) s = at:, u. 

Let p be an element of Coo(X; q such that p == 1 on a neighbourhood of P and 
p vanishes outside a compact subset of U. From (C.4.2) and (C.4.3) it follows 
that, on X - {P}, 

s = ap· (t - u) + adpu + (1 - p)t] 

and that t - u defines a meromorphic section of Cover U. Therefore the class 
of s in Hl (X; C) coincides with the image by It:, of the class of the element 

(Px)xEX E n P(x;.c) defined by: 
xEX 

Px = 0 if x =F P; 

pp = t - u. 

This proves the surjectivity of ft:,. 

C.5. The operator aa 
In this Section, we show how the methods used in §C.1-3 to prove Theorems 
B.6.1 (Finiteness) and B.8.1 (Serre duality) also allow to prove very easily 
the basic properties of the Laplace operator on a compact connected Riemann 
surface X, in particular that its image is the space of functions whose integral 
on X vanishes. The reason for including these results is their importance in the 
classical approach to the analysis on compact Riemann surfaces. We will use 
them only to give another proof of Lemma C.5.4, which is implied by Corollary 
B.8.2, 1). 

Let X be any Riemann surface. We define, for any f E Coo(X; q and any 
Q E Coo(X;wx): 

af := (df)(l,O) 
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and 
8a:= da. 

Therefore, for any f E Coo(X; C) 

and 
88f = d (8f) 

-d(8f) 
-8wx 8f 

df = 8f + 8f 

(since d(df) = 0) 
(since 8wx = d on Coo(X;wx);cf. §B.7). 

The following identities, true for any f E Coo(X;C) and any a E Coo(X;wx), 
are also easily checked: 

The operator 
88: Coo(X; C) -+ Coo(X; A2) 

is compatible with holomorphic changes of variables (compare (B.5.4)) and has 
the following expression in terms of a local holomorphic coordinate z = x + iy: 

More generally, if X is endowed with a Coo Riemannian metric compatible 
with its complex structure (cf. §1.2.1) and if Ll and dA respectively denote the 
(positive) Laplace operator and the area 2-form associated with this metric, we 
have 

(C.5.1) 
- z 

88rp = 2 Llrp dA. 

This identity shows that a function rp is harmonic with respect to this Rie­
mannian metric (i.e., Llrp = 0) iff 88rp = O. In particular, the harmonicity of 
a function depends only on the complex structure of X. The identity (C.5.1) 
proves the conformal invariance of the Dirichlet functional, namely 

~ Ix 'P' Llrp dA = -i Ix 'P' 88rp. 

Our proof of Hodge decomposition (Theorem B.2.5) will be based on the 
following result: 

Proposition C.5.I. Let X be a compact connected Riemann surface. The kernel 
of the operator 

88: Coo(X; C) -+ Coo(X; Ai) 

is the subspace of dimension 1 of Coo(X; C) formed by the constant functions. 
Its image is the subspace of codimension 1 in Coo(X; Ai) formed by the 2-forms 
17 such that Ix 17 = O. 
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Thanks to the identity (C.5.I), this proposition may be seen as a statement 
concerning the Laplace operator acting on Coo(X; C): it asserts that the kernel 
(resp. the image) of Ll is the space of constant functions (resp. the subspace of 
Coo(X; C) formed by the functions r.p such that Ix r.p dA = 0). 

The fact that a function r.p E Coo (X; C) such that 88r.p = 0 is constant 
follows for instance from the following expressions for the Dirichlet functional: 

-i J (j5 88r.p = i J 8r.p 1\ 8r.p 

= i J 8r.p 1\ 8r.p, 

which are easily deduced by integration by part and which show that the Dirich­
let functional is positive unless 8r.p = 8r.p = 0, i. e., unless r.p is constant. 

To determine the image of 88, we begin by proving the following prelimi­
nary result: 

Lemma C.5.2. The image of 88: Coo(X; C) --+ Coo(X; 1\3c) is a subspace of finite 
codimension in Coo(X; 1\3c). Moreover, any linear form A : Coo(X; 1\3c) --+ C 
which vanishes on this subspace may be written 

for some e E Coo(X; C). 

This lemma is a consequence of the existence of a parametrix P for 88, 
i.e., of a linear map 

such that 

and 

are regularizing operators (use Proposition C.l.I as in the proof of Theorems 
B.6.I and B.S.I in §C.I). In §C.3, a parametrix for 8e was constructed starting 
from the 'local parametrix' dz2/27ri(Z2 - zJ). Similarly, a parametrix for 88 is 
easily constructed from the 'local parametrix' - 2~i log IZI - z212. Indeed, we 
have: 

Lemma C.5.3. i)For any r.p E Coo(C; C) with compact support and any z E e, 
we have 

r.p(z) = -~ flog Iz - z'1 2 88r.p(z'). 
27rZ JzlEC 

ii) For any (J E Coo(e; At) with compact support and any z E e, we have 
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(T(Z) = aa [-~ flOg Iz - zl 12 (T(ZI)] . 
27l'Z z'EC 

This lemma, which may be easily deduced from Lemma C.3.1 by integration by 
part, is a reformulation of the well known fact that the fundamental solution 
f h 82 8 2 • 1 1 . / 2 2 o t e operator 8x 2 + 8y2 IS 211" og V x + y . 

We leave the details of the construction of the parametrix P to the reader, 
who will have no difficulty to establish statements concerning aa analogous 
(but simpler) to Lemma C.3.3 and Lemma C.3.4. 

Let us complete the proof of Proposition C.5.1. According to Lemma C.5.2, 
the image of aa is the intersection of the kernels of the linear forms >. on 
COO(X; A3c) which may be written as 

>.:af-t L£·a 
for some £ E COO(X; C) and which satisfy the condition 

The identity 

L £ . aaa = L aa£ . a, 

which is easily proved by two integrations by parts, and the fact that the 
kernel of aa is the space of constant functions show that these linear forms are 
proportional to a f-t I X a. Therefore, the image of aa is the kernel of the linear 
form a -t Ix a, as was to be proved. 

The following consequence of Proposition C.5.1 is known as Weyl's lemma: 

Lemma C.5.4. For any (3 E COO(X;wx), there exists f E COO(X;C) such that 
(3 - a f is a closed form. 

Indeed, by Stokes formula 

Therefore, according to Proposition C.5.1, there exists f E COO(X; C) such that 

Then we get 

aaf = d(3. 

d ((3 - a f) = d(3 - da f 
= d(3 - aaf 
= o. 

Finally we can prove Theorem B.2.5: 
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• The map i is injective: Consider wE .al(X) and w' E .al(X) such that 
wEB w' belong to ker i. By definition of H}JR(X; q, there exists j E Coo(X; q 
such that 

w +w' = df. 

This implies 

(C.5.2) w =8j 

(C.5.3) w' =8f 

and 
88f=8w=0. 

According to Proposition C.5.1, it follows that f is constant. Then (C.5.2) and 
(C.5.3) show that w = ° and w' = 0 . 

• The map i is surjective: Let a be a closed Coo complex I-form on X. 
According to Lemma C.5.4 there exists f E Coo(X; q such that a(O,l) - 8f is 
closed. Then a' = a - df is a closed I-form on X which has the same class in 
HbR(X; q as a. Moreover 

a,(O,l) = a(O,l) - 8f 

and 

are closed forms of type (0,1) and (1,0), hence antiholomorphic and holo­
morphic (ef. Proposition B.2.1). Therefore a'(l,O) EEl a'(O,l) is an element of 
.al(X) EB .al(X) which i sends to the cohomology class of a. 

II. The Jacobian variety of a compact Riemann surface 

ILL The inversion problem-or the Jacobian according to Jacobi 

n.l.l. The inversion problem for hyperelliptic integrals. 

In this Section, we try to explain how mathematicians of the beginning 
of the XIX-th century were led to consider what we call now Abelian varieties 
through the study of Abelian integrals, i.e., of integrals of algebraic functions. 

First recall how elliptic functions arise naturally from the study of elliptic 
integrals. The simplest of these elliptic integrals are the integrals of the form 

(11.1.1 ) J dx 

JP(x) 

where P is a polynomial of degree 3 or 4 with simple roots (a so-called elliptic 
integral of the first kind). This integral can be written as J d; , the integral of 
the algebraic differential form dx/y on the algebraic curve E of equation 
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y2 = P(x). 

After a projective transformation of the coordinates x and y, we can suppose 
that P takes the form 

P(x) = 4x3 - g2X - g3. 

As P has simple roots, there exists 7 in the upper half plane .fj such that g2 = 
g2( 7) and g3 = g3( 7). Hence, if p denotes the Weierstrass function associated 
with 7 (cf. [Coh]), the curve E possesses the parametrization 

{
X = p(z) 
y = p'(z) z E Cj(7/., + 77/.,). 

U sing this parametrization, we get immediately 

J d; = z +c. 

In other words, the elliptic function p is an inverse of the (multivalued) function 
tl-+t~ 

to VP(x)· 

In fact, one of the major contributions of Abel to the theory of 'Abelian 
integrals' is the following principle: 

To study elliptic integrals 

t dx 

lto VP(x) 

as functions of t, look at the inverse function. 
Observe that, from this point of view, the double periodicity of the Weier­

strass p function reflects the fact that the integral !'tt ~ is muItivalued. 
a y P(x) 

This comes from the double valued character of the square root V P( x) and 
from the non vanishing of the periods of the differential form ~, i.e., of the 

yP(x) 

integrals 
f dx 

lr VP(x)' 

where r is a closed curve in C (or rather in E). 
If instead of a polynomial P of degree 3 or 4, we start with a polynomial 

P of degree 2, say P(x) = l-x2 the integral (II.l.I) is J v:::'x 2 ' and its inverse 
is the sine function. Thus the addition formula for sine 

sine a + b) = sin a cos b + cos a sin b 

=sinaVI-sin2 b+ VI-sin2 asinb, 

which may also be written 

arc sin A + arc sin B = arc sin ( A V I - B2 + V I - A 2 B) , 
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appears as an equality of integrals of algebraic differential forms 

(II.1.2) 
(A dx 1B dx 1 F (A,B) dx 

ia ~+ a ~= a ~' 
where F is the algebraic function 

F(A, B) = A VI - B2 + J1=A2 B. 

The identity (11.1.2) may be proved directly, by elementary change of vari­
ables in the integrals. The elliptic integral (II.1.1) satisfies an analogous addi­
tion formula, discovered by Fagnano and Euler in the middle of the eighteenth 
century and proved by an elementary (but clever) change of variables: 

(II.1.3) 
{a A dx (B dx (G(A,B) dx 

ia VP(x) + ia JP(x) = ia JP(x) 

where 

G(.4,B) ~ ~ (~=~)' -A-B. 

This identity may be interpreted as an addition formula for the function r: 

(II. 1.4 ) 

Incidentally, using 

(r'(z)? = 4 (r(z))3 - 92 r(z) - 93, 

this relation is easily seen to be equivalent to the more symmetric one: 

(II.1.5) 
1 r(Zl) r'(Zl) 
1 r(Z2) r'(Z2) =0 if Zl+Z2+z3EZ+rZ. 
1 r(Z3) r'(Z3) 

Observe also that, starting from some local determination of the function 
r as the inverse of an Abelian integral of the first kind, the addition formula 
may be used to extend r to the whole complex plane. 

Abel and Jacobi not only considered elliptic integrals, but more gener­
ally, hyperelliptic integrals, i.e., integrals of the form J ~dx, where R is 

yP(x) 
a polynomial or a rational function, and P is polynomial with simple roots. 
The expression w = ~dx defines a meromorphic differential form on the 

yP(x) 

Riemann surface C P defined by the equation 

y2 = P(x) 

which extends to a meromorphic differential form on the associated compact 
Riemann surface Cp, whose genus is 9 = [4.fl] -1 (cf. §1.4.2). The differential 
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w is holomorphic ( i. e., has no pole) on C p iff R is polynomial of degree at most 
9 - 1 (cf. §B.2.2). Hence the differential forms 

Xi-ldx xi-ldx 
Wi = -y- = JP(x) i = 1, ... ,g 

and their integrals J bdx are the natural generalizations of the differential 
yP(x) 

form dyx and of the elliptic integral of the first kind considered above. 
To extend the construction of elliptic functions by inversion of elliptic 

integrals, one would attempt to invert the multivalued functions 

i t R(x)dx 
tl-+ 

to JP(x) 

where R is a polynomial of degree:::; 9 - 1. However, as soon as the degree of 
p is ~ 5, the group of periods 

{ [ ~ , r closed curve on cp} lr P(x) 

is dense in C (at least for a generic polynomial R( x) of degree 9 - 1). So you 
cannot get simple functions by inversion of a hyperelliptic integral. 

This was discovered by Jacobi. However, he went further than this negative 
statement, and discovered that the 'good' inversion problem is the following: 

Invert the function (tl' ... t g) 1-+ (II, ... , Ig) of 9 points of C p with values 
in cY given by 

itl dx it 9 dx 
II = to JP(x) + ... + to JP(x) 

[tl xi-ldx [t9 Xi-ldx 

Ii = lto JP(x) + ... + lto JP(x) 

itl xg-ldx it9 xg-1dx 
Ig = to JP(x) + ... + to JP(x)' 

For simplicity, assume, as Jacobi did (cf. infra Figure 29), that d = 6. 
Then the inversion problem is to solve the system 

l h dx lt2 dx ----::== + - 0: 
o JP(x) 0 JP(x)-

i tl xdx t2 xdx 

o JP(x) + lo JP(x) = (3 

There are ambiguities in the definitions of these integrals: 
• the square root J P( x) has two determinations; this difficulty is solved 

by looking at tl and t2 as points on the Riemann surface Cp; 
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• a (resp. (3) is well defined only up to the addition ofthe periods Ir ~ 
yP(x) 

(resp. Ir ~), where 1 denote a closed loop on Cpo This leads to introduce 
yP(x) 

A = {( [ k' [ ~),r closed loop on cp} C CC2 . 
ir P(x) ir P(x) 

Then A is a lattice in CC2 (see Proposition II.l.I below) and the multivalued 
map (t l ,t2 ) f-t (a, (3) defines an analytic map 

which to a pair of points (h, t2) on the Riemann surface associates the class 
of (a, (3) in the complex torus CC2 / A. Clearly (h, t2) and (t2' h) have the same 
image under this map. Hence this map may be seen as a map defined on the 
symmetric product 

where'" is the equivalence relation which identifies (tl , t2) and (t2' t l ). Jacobi's 
great result on the inversion problem is that the map 

we have just defined, is onto and generically one to one. 
The complex torus CC2 / A of dimension 2 is called the Jacobian of the 

hyperelliptic curve Cp of genus 2. In the following Sections, we extend the 
construction of the Jacobian to compact connected Riemann surfaces of arbi­
trary genus, and we prove the preceding statement concerning A and .J in this 
generalized context. 

11.1.2. The Jacobian and the inversion problem for general compact Riemann 
surfaces. 

In this Section, X denotes a compact connected Riemann surface of genus g. 

The natural generalization of the family (X'-ldX) of differentials on 
y l~i~g 

the hyperelliptic curve Cp considered above is a basis (wih~i~g of the space 
.a1(X) of holomorphic I-forms on X. The natural generalization of the group 
A of periods of C p is the following subgroup of 0: 

Observe that the g-uple (J Wi) is the set of coordinates in the basis dual 
'Y l~i~g 

to (WI, ... ,Wg) of the complex linear form 



i : Ql(X) ---+ C 

W~ iW. 
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This leads to a more intrinsic (i. e., independent on the choice of a basis in 
Ql(X)) definition of A, which appears as a subgroup of Ql(X)*: 

Proposition -Definition 11.1.1. The period map 

p: HI(XjZ) ---+ QI(X)* 

1~ i 
is injective and its image is a lattice A in QI (X)* (considered as a real vector 
space). 

This lattice is called the period lattice of X and the g-dimensional complex 
torus Ql(X)* / A is called the Jacobian variety of X and is denoted Jac(X). 

(Recall that a lattice in a real vector space V of dimension d is the Abelian 
group, isomorphic to Zd, generated by a basis of Vj see [Sen)). 

Examples: i) If X = pIC, QI(X) = {OJ and Jac(X) is reduced to one point. 
ii) Let X be the elliptic curve C/(Z +rZ). Then QI(X) is a one-dimensional 

vector space, generated by the non-vanishing holomorphic differential dz, and 
the induced isomorphism 

---+ C 
~ >.(dz) 

is easily seen to map the lattice A onto Z + rZ. Therefore X and Jac(X) are 
isomorphic Riemann surfaces. 

Let H1R(Xj 1R) be the first de Rham cohomology group of X with real 
coefficients (cf. §A.I) and let HbR(Xj 1R)" denote the space of real linear forms 
on H1R(Xj 1R). Proposition II.l.I is a consequence of the fact that, according 
to A.2.2, the map 

p' : HI(Xj Z) ---+ H1R(Xj 1R)" 

1~ i 
injectively embeds Hl(XjZ) as a lattice in H1R(X;IR), combined with the 
Hodge decomposition (cf Theorem B.2.5): 

(II.l.6) QI(X) EB QI(X) ~ H1R(XjC) 

a EB (3 ~ [a + (3]. 

Indeed, the isomorphism (II.l.6) induces an isomorphism of real vector spaces 
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j : Ql(X) ~ HbR(X;R) 

a f-+ [a+a], 

and one easily checks that the map 

j' : Ql(X)* -7 HbR(Xj R)V 

oX f-+ oX 0 r l + >: 0 r l 

also is an isomorphism of real vector spaces and that j 'Op = p'. 
In order to state the generalization to general compact Riemann surfaces 

of the results of Jacobi alluded to above, we need to introduce a few preliminary 
definitions. 

For any positive integer n, SymnX will denote the symmetric product of 
n copies of X, i.e., the quotient of xn by the action of the symmetric group 
Sn defined by 

This quotient has a natural structure of n dimensional complex manifold (with­
out singularity!) characterized by a property similar to the property introduced 
in Theorem 1.2.1 (replace X by xn and r by Sn). For instance, if 9 = 2, Sym2 X 
is clearly a complex manifold outside the diagonal Llx = {[x, x], x E X} and, 
near a point [(P,P)] of Llx, local holomorphic coordinates are given by 

0"1 ([PI, P2 ]) = z(Pl ) + z(P2 ) 

0"2 ([Pl, P2 ]) = z(Pl )Z(P2 ), 

where z denotes a local holomorphic coordinate on a neighbourhood of P in 
X. This proof may be extended to arbitrary values of n by using elementary 
symmetric functions of the coordinates. 

Let Po EX. For any P E X and any path L from Po to P on X, the linear 
form on Ql(X) 

has a class in Jac(X) = QI(X)* jA which depends only on P and Po. Indeed, 
if L' is another such path, we have 

(W-{W={W 
JL' JL J-y 

where'Y denotes the closed path L' - L. The element of Jac(X) so defined will 
be denoted 

W f-+ (p W 

Jpo 
or Jpo(P). In other words, if Ql(X)* is identified with CU by the choice of a 
basis (WI, ... ,Wg) of QI(X), we have 



(11.1.6) 

Finally, we define 
Jpo : SymgX --+ Jac (X) 

9 

[(P1 , .•. ,Pg)] f-+ LJpo(Pi). 
i=l 
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Jacobi's results on the inversion problem extend to arbitrary compact Riemann 
surfaces, as shown by the following theorem, which is the main result of the 
second part of these notes. 

Theorem 11.1.2. Assume that the genus g of X is at least 1. 
1) The map Jpo : X --+ Jac(X) is a holomorphic embedding, called the 

Jacobian embedding. 
2) The map Jpo : SymgX --+ Jac(X) is a birational holomorphic map24. 

The problem of understanding the map J Po is what is now called the 
inversion problem. It has been the subject of many works during the nineteenth 
century and was, in a sense, solved in general by Riemann in his paper [Ril] 
of 1857 where he showed how theta functions on Jac(X) allow to construct the 
inverse of the map Jpo (cf. infra §II1.5). However, many questions related to 
the map J Po and its geometry are still unsolved and the inversion problem is 
still at the origin of difficult and interesting problems (see e.g. [Ke2]). 

Observe that when X is an elliptic curve C/(Z + rZ) and Po = 0, the 
maps Jpo and Jpo are nothing else than the identity map from X to Jac(X), 
canonically identified with X. Therefore, in that case, Theorem 11.1.2 is clear. 
As a matter of fact, the case 9 = 1 of Theorem 11.1.2 shows that any compact 
connected Riemann surface X of genus 1 is isomorphic with ill (X)* / A, hence 
to an elliptic curve C/(Z + rZ) (choose an oriented basis (W1' W2) of A and let 
r= ~). 

"'1 
Now let us come to the proof of Theorem 11.1.2. 
The holomorphy of Jpo is clear on formula (11.1.6). The holomorphy of 

Jpo is a consequence of the holomorphyof Jpo and of the definition of the 
holomorphic structure on SymgX as a quotient structure. 

Let us prove the following lemma: 

Lemma 11.1.3. 1) Jpo is an immersion {i.e., for any P E X, the differential 

24 Recall (cf Appendix D) that it means that Jpo is holomorphic, surjective and 
generically one-to-one; more precisely, there exists closed analytic subsets F (resp. 
F') of co dimension 2: 1 (resp. 2: 2) in SymgX (resp. in Jac(X)) such that JPo(F) = 
F' and Jpo maps SymgX - F biholomorphically onto Jac(X) - F'. 
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is injective}. 
2} There exists Q = [(PI, ... , Pg)] in SymgX such that the differential 

DJPo(Q) : TQ SymgX ~ TQ Jac(X) 

is bijective. 

Indeed, the tangent space to J ac( X) = fll (X)* / A at any point may be 
identified with fll(X)* and the injectivity of DJpo(P) is equivalent to the 
surjectivity of its transpose 

tDJpo(P): fll(X) ~ (TpX)* ~ wx,p. 

But the definition of Jpo (see (11.1.6)) shows that this map is the evaluation 
at P of holomorphic differentials on X, which is known to be surjective when 
g :::=: 1 (ef. Proposition B.9.4). 

If the points PI, ... ,Pg are pairwise distinct, then Q possesses a neighbour­
hood in SymgX which may be identified with a neighbourhood of (PI, ... ,Pg) 
in xg. Therefore TQ SymgX may be identified with Tp1X EEl··· EEl TpgX. The 
bijectivity of DJPo(Q) is equivalent to the bijectivity of its transpose 

tDJPo(Q) : fll(X) ~ WX,Pl EEl··· EEl wx,Pg. 

But this map is easily seen to be the evaluation map 

W f-+ (w(Pt), ... ,w(Pg )). 

As fll (X) has dimension g, the existence of pairwise distinct points PI, ... , Pg 

such that this map is bijective follows from elementary linear algebra. 
Thanks to Lemma II.1.3, a), it will clearly be enough to show that Jpo 

is injective to complete the proof of Theorem II.l.2, 1). On the other hand, 
since SymgX and Jac(X) are compact connected complex manifolds of the 
same dimension g, Lemma II.l.3, b) implies that Jpo is onto and that, to prove 
that Jpo is birational, we only have to show that the preimage Jio1(x) of any 
x E Jac(X) is connected (ef. Appendix D). The next two Sections are devoted 
to a further study of the Jacobian variety Jac(X) which will allow us to prove 
the injectivity of J Po and the connectedness ofthe fibers Jio l (x), and therefore 
to complete the proof of Theorem 11.1.2. 

11.2. The classification of holomorphic line bundles-or the 
Jacobian for field theory physicists 

In this Section, we study the set of isomorphism classes of holomorphic line 
bundles over a compact Riemann surface X - the so-called Picard group of X. 
We follow an approach in the spirit of gauge theory, which makes the Jacobian 
Jac(X) appear naturally as parametrizing the set of isomorphism classes of 
topologically trivial holomorphic line bundles on X. In the next Section, we 
will use this interpretation of Jac(X) to complete the proof of Theorem 11.1.2. 
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11.2.1. a-connections and holomorphic structures on complex line bundles. 

Let C be a Coo complex line bundle on X. We define a a-connection on C 
as a linear map 

V' : COO(X; C) -+ COO(X;wx @C) 

such that, for any I E COO(X, C) and any s E COO(X; C), the following equality 
holds: 

(11.2.1 ) V'(fs) = IV's + al· s. 

The set of a-connections on C will be denoted Ce . 
A a-connection V' is easily seen to be a differential operator of first order 

which locally, after the choice of a local holomorphic trivialization of C, takes 
the form 

V's = as +As 

for some local section A of wx. (This could have been taken as definition). 
- -~ If V' belongs to Ce and'P E COO(X; C*), we can define another element V' 

of Ce by setting 

(II.2.2) V'~(s) = 'P-1 V'('Ps). 

One immediately checks that, for any 'PI, 'P2 E COO( X; C*), we have 

In other words, formula (11.2.2) defines an action on Ce of the (infinite dimen­
sional) group g:= COO(X;C*). 

Observe now that the a-operator 

a: COO(X;C) -+ COO(X;wx) 

is a a-connection on the trivial line bundle X x C. In that case, condition 
(II.2.1) is nothing else than Leibniz rule for a. More generally, if &. is any 
holomorphic line bundle on X whose Coo underlying line bundle is C, the a­
operator af:. associated with &. (see §B.5) is a a-connection on C. Indeed, to 
check the validity of (II.2.1) for V' = af:., we can work locally on X; then we 
are reduced to the case of the trivial holomorphic bundle and of V' = a. In fact 
(II.2.1) is then nothing else than Leibniz rule (B.S. 1) for C1 = 0 and C2 = &.. 
Moreover, the a-connection a f:. allows to recover the holomorphic structure on 
&.: a section s E COO(X; C) is holomorphic on an open set U C X iff ae s = 0 
on U. -

The following theorem asserts that this construction is essentially the only 
way to get a-connections on C. 

Theorem 11.2.1. Let C be a complex Coo line bundle on X. 
1) The map which associates the a-connection af:. to any holomorphic line 

bundle &. over X whose underlying Coo line bundle is C establishes a bijection 
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between the set of holomorphic structures on C and the set Cc of a-connections 
on C. 

2) The holomorphic line bundles &'1 and &'2 on X associated to two a­
connections V 1 and V 2 in Cc are isomorphic (as holomorphic line bundles) iff 
there exists i.p E 0 such that 

As an immediate consequence, we obtain: 

Corollary 11.2.2. The quotient space CclO gets identified to the set of (holomor­
phic) isomorphism classes of holomorphic line bundles whose underlying Coo 
line bundles are isomorphic to C by the map which sends the class in CclO of 
a a-connection V to the class of the holomorphic structure on C defined by V. 

Let us prove Theorem II.2.1. As the a-operator ac allows to recover the 
local holomorphic sections of &., the map in 1) is clearly i~ective. Its surjectivity 
will follow from the following 

Lemma 11.2.3. Let V be a a-connection on C. For any P E X, there exists a 
Coo non-vanishing section a of C on an open neighbourhood U of P such that 
V s = o. 

Indeed, this lemma provides an open covering {U;}iEI of X and non-vanishing 
sections ai E COO(Ui; C), i E I, such that 

Vai=O on Ui, 

which therefore satisfy 

- 1 8(aj . ai) = 0 on Ui n Uj. 

According to §B.1.6, there exists a unique holomorphic structure &. on C such 
that ai is a holomorphic section of Cover Ui. If s is a local Coo section of C, 
say over an open subset of D of Ui, we have 

for some j E COO(D; q. Thus, over D, we get 

a£ s = a£(fai) 

= aj·ai 

= V(f· ai) 

= Vs. 

This shows that 

(since a i is a holomorphic section of &.) 
(since Vai = 0) 
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To prove Lemma 11.2.3, choose a non-vanishing section t of I:. over an open 
neighbourhood V of P and let A = Vf. Then for any open neighbourhood U 
of P contained in V and any f E COO(U; q, we have on U: 

(II.2.3) V(f· t) = 8f· t + fA. 

According to Lemma C.3.2 (applied to the trivial line bundle), we can find such 
a neighbourhood U and a function 'P E COO(U; q such that, on U: 

Then (11.2.3) shows that 
a = e'f'· t 

satisfies the conditions required in Lemma II.2.3. 
The proof of assertion 2) in Theorem II.2.1 is very simple and will be left 

as an exerCIse. 
As emphasized in Corollary II.2.2, Theorem II.2.1 shows that the set of 

isomorphism classes of holomorphic line bundles over X, which, as Coo line 
bundles, are isomorphic with 1:., may be identified with CejQ. On the other 
hand, when X is compact and connected, Coo line bundles on X are completely 
classified by their degree (cf. Proposition B.4.2). Therefore, if I:.d is a Coo 
line bundle of degree d on X, then the set PiCd(X) of isomorphism classes of 
holomorphic line bundles of degree d over X may be identified with CedjQ. 

11.2.2. The classification of topologically trivial holomorphic line bundles on a 
compact Riemann surface. 

We now suppose that I:. is the trivial line bundle X x C and we write C 
instead of Ce. 

One easily checks that C is the space of differential operators V A defined 
by 

where A is an arbitrary element in COO(X;wx). Thus C may be identified with 
COO(X;wx). For any A E COO(X;wx) and any 'P E COO(X;C*), we have 

(VAt =VA'P 

where 
A'f' = A + 'P- I ·8'P. 

Therefore, the quotient C j Q of C under the action of the group Q = Coo (X; C* ) 
may be identified with the quotient ofCOO(X;wx) by the subgroup 

n(x) = {'P-1·a'P, 'P ECOO(X;C*)}. 

All what precedes holds for any Riemann surface. When X is compact and 
connected, we have an explicit description of the quotient CjQ: 
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Theorem 11.2.4. Assume that X is a compact connected Riemann surface. Let 
ill (X) be the space of antiholomorphic differential forms on X (cf. §B.2.1), let 

be the 'lattice of periods' in ill(X)* and let Jac(X) = ill(X)* / A be the Jaco­
bian of X. Consider the maps 

and 
(3 : ill(X) -+ C/O 

such that a(A) is the class in ill(X)* /A of the linear form 

and (3(A) is the class in C/O of V' A. 

Then there exists a unique map 

I: Jac(X) -+ C/O 

such that the following diagram commutes 

a,/ 

Jac(X) = ill (X)* / A 

Moreover it is a bijection. 

ill (X) 

I 
~ 

"-,.{3 

C/O. 

According to Corollary 11.2.2, the quotient C/O may be identified with the 
set of isomorphism classes of holomorphic line bundles over X, which, as Coo 
line bundles, are trivial. As explained in Proposition B.4.2, these are exactly the 
topologically trivial holomorphic line bundles, or the holomorphic line bundles 
of degree zero. Therefore Theorem 11.2.4 shows that the map I establishes a bi­
jection between the Jacobian variety of X and the set of isomorphism classes of 
topologically trivial line bundles over X. Thus we get an alternative description 
of the Jacobian of X, in the spirit of gauge field theory. 

For later use, it is important to notice that when we compose the bijection 

i l : Pico(X) ~ CjQ 

described at the end of §11.2.1 and the bijection 

i2 = rl : C/O ~ Jac(X) 
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we obtain a bijection 
i2 0 i l : Pico(X) ~ Jac(X) 

which is an isomorphism of Abelian groups, when the complex torus Jac(X) is 
seen as an Abelian group and when Pico(X) is endowed with the group struc­
ture defined by the tensor product of line bundles (the sum of the isomorphism 
classes of two holomorphic line bundles over X is defined as the isomorphism 
class of their tensor product). This group Pico(X) is called the Picard group 
(of degree 0) of X. Indeed, we have: 

Lemma 11.2.5. Let V' A' and V' A" be two a-connections on the trivial bundle 
£ = X x C. Let £' and £/1 be the holomorphic line bundles defined by these 
(j-connections. Then the tensor product £' ® £/1 is a holomorphic line bundle 
which still has the trivial line bundle £ as underlying Coo -line bundle, and the 
(j-operator on £' ® £/1 is V' A'+A". 

Lemma II.2.5 is a straightforward consequence of the Leibniz rule for (j­
operators (see (B.8.I». 

The next two subsections are devoted to the proof of Theorem II.2.4. This 
proof is rather technical and should be skipped at first reading. 

11.2.3. e;g as a quotient of f,P(X). 

We have seen that ejg may be identified with the quotient eoo(X; wx )jR(X). 
For any 'ljl E eoo(X; q, we have: 

(j'ljl = e-Tf; . (j eTf;. 

Therefore R(X) contains (j eoo(X; q. On the other hand, we know that 

eoo(X; wx) = aleX) EB (j eoo(x; q 
(cf. Corollary B.8.2., 1»). 

These two facts imply 

Lemma 11.2.6. The map aleX) -+ eoo(X;wx)jR(X) induced by the inclusion 
aleX) ~eoo(x;wx) is onto. 

We are now going to describe its kernel. To do this, we will use the following 
auxiliary result, the proof of which we leave to the reader as an exercise: 

Lemma 11.2.7. For any Coo complex 1-form w on X, the following two condi­
tions are equivalent: 

i) there exists IE eoo(X; C*) such that w = I-I. dI; 
ii) dw = 0 and, for any I E Hl(X; Z), J,w E 27l'iZ. 

(Hint: to prove the implication ii) ::::} i), choose a base point Po in X and 

consider the multivalued function P f-+ J~ wand its exponential). 
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Let us now consider the subgroup 

U(l) = {z E C Ilzl = I} 

of the multiplicative group C*. A map I E Coo(X; U(l)) is called harmonic if 
any local determination log I of the logarithm of I is harmonic (i. e., satisfies 
the equation 013 log I = 0; cf. §C.5). 

Lemma 11.2.8. For any IE COO (X; U(l)) the following two conditions are equiv­
alent: 

i} f- 1 ·af E ill(X); 
ii} f is harmonic. 

Indeed i) is satisfied iff Blogf E ill(X), i.e., iff locally oBlogf = O. 

Lemma 11.2.9. Let a E ill(X). The following three conditions are equivalent: 
i} there exists a (harmonic) function I E Coo(X; U(l)) such that a = 

f- 1 • Bf; 
ii} there exists 9 E Coo(X; C*) such that a = g-1 . Bg; 
iii} for any 'Y E Hl(X;Z), J.,/a -0) E 27l'iZ. 

Moreover, il 9 satisfies ii}, then Igl is constant and 1= Igl-1g satifies i}. 

If f satisfies i), then 7 = f- 1 and 

0= 7-1 .87 = f· of-1 = - r 1 . oj. 

Therefore 
r 1 ·df =a-o 

and iii) follows from Lemma 11.2.7. Conversely, if iii) is satisfied, Lemma II.2.7 
shows the existence of fo E Coo (X; C*) such that 

We have 

a - 0 = f~1 . dfo. 

Ifol-1 ·dlfol = dlogl/ol 

= Re dlog/o 

= Re(a -0) 

= O. 

Therefore 1/01 is constant, and f := Ifol-1 . 10 belongs to Coo(X;U(l)) and 
satisfies 

and a fortiori i). 
If 9 satisfies ii), then 

0= g-1 . Og = _g-1 . og + Igl-2 . 0lgl2 ; 
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therefore, 
Igl-2 . Olog Igl2 = Q + g-l{)g = Q - 0: + g-l . dg 

is a closed form and log Igl2 is harmonic (cf. §C.5), hence constant (c/. Propo­
sition C.5.1). This clearly implies that / = Igl-l . 9 satisfies i). Finally, i) 
obviously implies ii). 

The subgroup of aleX) satisfying the conditions in Lemma I1.2.9 will 
be denoted Hl(X;Z).L. It is clearly the kernel of the map in Lemma I1.2.6. 
Therefore we have proved the following: 

Proposition 11.2.10. There exists a unique map 

al(X)j HI (X; Z).L ~ Cj() 

which sends the class in al(X)jHl(X;Z).L of A E aleX) to the class in Cj9 
of "9" A, and this map is a bijection. 

In other words, any 8-connection in C is in the same 9-orbit as a 8-
connection "9" A = 8+ A, where A is antiholomorphic, and any two 8-connections 
"9" A and "9" A' of this form are in the same 9-orbit iff there exists a harmonic 

- -<p 
'P E COO(X; U(l» such that "9" A' = "9" A. 

An important fact which may be deduced from Proposition II.2.10 is that 
Cj9 is naturally a complex torus of dimension g. This follows from the next 
lemma, which is established in the same way as Proposition II. 1. 1 (using A.2.2 
and Theorem B.2.5) and whose detailed proof will be left to the reader: 

Lemma 11.2.11. Hl(X; Z).L is a lattice in aleX). Moreover, the map 

'P: Hl(X;Z).L ~ Hom(Hl(X;Z),Z) 

A 1--+ (,1--+ ~ j(A - A») 
27rZ I 

is an isomorphism of Abelian groups. 

11.2.4. Completion of the proof of Theorem 11.2.4. 

Consider the linear map 

j : aleX) ~ al(x)* 

which sends A E aleX) to the C-linear form on al(X)* 

j(A) : 0: 1--+ ~ [ 0:" A. 
27rZ Jx 

It is a C-linear isomorphism (this follows, for instance, from the fact that 
(Wl,W2) 1--+ iJxWl"t:ih is a Hermitian scalar product on al(X». 



166 Chapter 2. Compact Riemann Surfaces, Jacobians and Abelian Varieties 

Theorem 11.2.4 follows immediately from Proposition 11.2.10 together with 
the following 

Proposition 11.2.12. The isomorphism j maps HI (X; Z)l. onto the period lattice 
A. 

Observe that Propositions II.1.1 and II.2.12 provide another proof of 
Lemma 11.2.11. 

Let 'IjJ be the map 

which sends, E HI(X;Z) to the group morphism 

defined using the intersection number # of homology classes (cj. A.2.3). The 
map cp is an isomorphism, as follows for instance from the existence of sym­
plectic bases (cj. A.2.3). 

Consider now the following diagram 

--+ Hom(HI(X; Z),Z) t-- HI(X; Z) 

'" 
(II.2.4) 1 1 p 

j 
QI(X)* --+ QI(X) 

(the isomorphism cp is defined in Lemma 11.2.11 and the period map p in Propo­
sition 11.1.1). As A is defined as the image of p, Proposition II.2.12 follows from 
the commutativity of (11.2.4), which amounts to the following: let, E HI (X; Z); 
if A E QI(X) is such that for any,' E HI(X;Z) 

(11.2.5) , 1 1 -,#, = -2. (A - A), 
7l"Z -y' 

then, for any a E QI (X) 

(II.2.6) 1 a = -21 . [ a 1\ A. 
-y 7l"Z ix 

Clearly, it is enough to check it for, belonging to some basis of HI(X; Z). 
We may even suppose that , is the first element al of a symplectic basis 
(al, ... ,ag , bl , ... , bg ). Then, according to (II.2.5), we have 

(11.2.7) -. (A-A) =0 11-
27l"Z aj 

(j = 1, ... ,g) 
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and 

(II.2.8) 1 1 --, (A - A) = 01j. 
271'Z bj 

On the other hand, since a 1\ A = 0, we have 

1 j 1 j --, a 1\ A = -. a 1\ (A - A), 
2Jrl X 2Jrl X 

and if we apply A.2.5, we get 

~ f a 1\ A = t { fa. ~ f (A - A) - ~ f (A - A). fa}. 
2Jrl Jx ,Ja 2Jrl Jb 2Jrl Ja Jb 

)=1 J J J J 

If we insert (II.2.7) and (II.2.8) in this equality, we get (II.2.6). 

II.3. Abel's theorem and the algebraic description of the Jacobian 

In the previous Section, we interpreted the Jacobian Jac(X) of a compact con­
nected Riemann surface X as the space of isomorphism classes of holomorphic 
line bundles of degree zero over X. This was derived using a description of these 
line bundles in terms of a-connections. On the other hand, we saw in Appendix 
B that holomorphic line bundles over X could be described in terms of divisors 
on X (cf. §B.4 and Corollary B.6.3). Combining the two approaches provides 
another interpretation of the Jacobian, which we explain in this Section and 
which will allow us to complete the proof of Theorem II.1.2. 

11.3.1. Isomorphism classes of holomorphic line bundles and divisors. 

The subgroup of Div(X) formed by the divisors of non-zero meromorphic 
function on X will be denoted R(X). Two divisors D1 and D z in Div(X) such 
that D1 - D2 E R(X) are said to be linearly equivalent. 

Proposition 11.3.1. 
1) A ny two divisors D1 and D2 on X are linearly equivalent iff the holo­

morphic line bundles O(Dt) and O(D2) are isomorphic. 
2) The quotient group Div(X)/R(X) is isomorphic with the group of iso­

morphic classes of line bundles over X, via the map which associates the iso­
morphism class of the line bundle OeD) to the linear equivalence class of a 
divisor D over X. 

To prove 1), observe that O(Dt) and O(D2) are isomorphic iff O(Dt) ® 
O(D2)* is isomorphic with the trivial line bundle O. As O(Dt) ® O(D2)* ~ 
O(D1 -D2) (cf. (B.3.6)), we are reduced to prove that a divisor D lies in R(X) 
iff OeD) is isomorphic with O. This follows from the fact that a non-vanishing 
section of OeD) is exactly a non-zero meromorphic function f on X such that 
div(f-1) = D (compare (B.3.5)). 
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The assertion 2) follows immediately from 1) and from the fact that any 
holomorphic line bundle over X is isomorphic to the line bundle associated to 
some divisor (cf. Corollary B.6.3). 

For any d E Z, we will denote Di v d ( X) the set of divisors of degree d 
on X. Proposition II.3.I, 1) and the definition of the degree imply that R(X) 
is included in Divo(X) (this is also a consequence of Proposition B.2.I, ap­
plied to the meromorphic differentials f- 1 . df, f E M(X)*). The isomorphism 
of Proposition II.3.I, 2) identifies the image Divd(X)/R(X) of Divd(X) in 
Div(X)/ R(X) with the set Picd(X) of isomorphism classes of holomorphic line 
bundles of degree d over X. 

If we compose the isomorphism 

i3 : Divo(X)/ R(X) ~ Pico(X), 

provided by Proposition 11.3.1, 2), and the isomorphisms 

il : Pico(X) ~ C/g 

and 
i2 = rl : C/g ~ Jac(X) 

described in §II.2.I and II.2.2, we get an isomorphism 

(11.3.1 ) i2 0 il 0 i3 : Divo(X)j R(X) ~ Jac(X). 

The existence of such an isomorphism provides an algebraic description of the 
Jacobian Jac(X). Indeed, if X is realized as an algebraic curve (cf. §I.4.2) 
then M(X) may be identified with the field of restrictions to X of rational 
functions defined on the ambient space (cf. Theorem 1.4.5). Therefore R(X) 
and consequently the group Divo(X)/ R(X) may be defined in terms of purely 
algebraic objects, whereas the definition of Jac(X), involving the periods of X, 
was transcendental. 

11.3.2. Abel's Theorem. 

We now give an explicit formula for the isomorphism (II.3.1). It is the 
content of the following theorem, which is known as Abel's Theorem: 

r r 

Theorem 11.3.2. Let D = L: Qi- L: Pi be any divisor of degree zero on X and, 
i=1 i=l 

for i = 1, ... , r, let Li be an oriented path from Pi to Qi. 
The image by i2 Oil of the isomorphism class of the holomorphic line bundle 

OeD) is the class in [J1 (X)* j A of the linear form 
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Observe that if we replace the paths Li by other paths LL this linear form 
r 

is modified by the addition of the 'periods' of the cycle L: (Li - Li), which 
i=l 

belong to A. Therefore its class in Jac(X) does not depend on the choice of the 
L;'s. More precisely, it is easily seen to depend only on D. It will be denoted 
J(D). 

The proof of Theorem 11.3.2 is based on the following two lemmas, which 
we leave to the reader (the first is a simple consequence of the definitions; the 
second is an exercise in integration by parts). 

Lemma 11.3.3. Let C be any holomorphic line bundle of degree zero over X. If 
S E COO(X;C) has no zero on X, then C is isomorphic t{) the holomorphic line 
bundle defined by the a-connection V A where 

A = s-l . at:. s. 

Lemma 11.3.4. Let 6 > 0 and denote 

De = {z E C Ilzl < 6}. 

If w is a holomorphic i-form defined on a neighbourhood of De in C, if Zl, 

Z2 E De and if L is a path from Zl to Z2 in De, then the following equality 
holds 

(11.3.2) 1 Z - Zl 1 log -- . w = 27ri w 
aD. z - z2 L 

(in the left hand side of (11.3.2), oDe is oriented counterclockwise, as usual, 
and log Z-Zl denotes any determination of the logarithm of z-z, continuous 

Z-Z2 Z-Z2 

along oDe). 
The correspondence between tensor products of holomorphic line bundles, 

addition of divisors and addition of the 'gauge field' (Lemma 11.2.5) shows that, 
to prove Theorem 11.3.2, we can consider only the case r = 1, i.e., divisors D 
of the form Q - P. Moreover, an easy connexity argument shows that we can 
assume that there exists a holomorphic coordinate chart (U, z) on X and 6 > 0 
such that 

z(U) = De 

and such that U contains P and Q (see figure 27). 
Consider the following meromorphic function on U: 

z - z(P) 
So = z _ z(Q)" 

It may be seen as a non-vanishing holomorphic section of O(Q - P) on U. 
Choose 6' EjO,6[ such that U' := z-l(Del) contains P and Q. There exists a 
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Fig. 27. Decomposition of divisors. 

holomorphic determination log So of the logarithm of So which is defined over 
U - U'. Choose also a function 0' E COO(U; q such that 

(11.3.3) 0' = 1 on U' 

and 

(11.3.4 ) 0' = 0 on a neighbourhood of X - U. 

Then define a function s on X as follows: 

s 
s 
s 

= So 

= exp (0' ·logso) 
=1 

on U' 
on U - U' 
on X - U. 

This function is Coo and does not vanish on X - {P, Q}, and is meromorphic 
on U' and defines a Coo non-vanishing section of O(P - Q) over X. Therefore, 
according to Lemma 11.3.3, the image by i1 ofthe isomorphism class of O(Q-P) 
is the class in C / Q of 

-1 -
A = s . OO(Q-P) s. 

By construction of s, we have 

(11.3.5) A = 0 on U' U (X - U) 

(11.3.6) = 8( 0' . log so) on U-U'. 

By definition, i2 sends the class of A to the class in Jac(X) of the linear form 
on ill (X) whose value on w is (27ri)-1 Ix w 1\ A. Now we get 
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2~; Ix W· A = 2~i Iu-ul W /\ 8(a . log so) (cf.(II.3.5) and (11.3.6)) 

= - 2~; Iu-ul d( a . log So . w) (since w is a holomorphic 
differential) 

- 2~; Ia(u-ul) a . log So . w (by Stokes formula) 

2~; Iaullogso . w (cf.(II.3.3) and (II.3.4)) 

According to Lemma II.3.4, this expression equals IL w for any path from P to 
Q in U'. This completes the proof of Theorem II.3.2. 

In order to give a reformulation of Abel's Theorem, let us introduce a few 
notations. Let Po be any base point in X and let 

Jpo : X ~ Jac(X) 

be the associated Jacobian embedding (cf. §Il.l; in fact we do not have yet 
N 

proved that J Po is an embedding). For any divisor D = L:: n; Q; on X, let us 
;=1 

define 
N 

JPo(D) = L ni JPo(Q;) 
;=1 

where, in the right hand side, the sum is computed in the Abelian group Jac(X). 
The maps 

(II.3.7) 

depend on the base point Po in a very simple way: for any other base point 
PJ E X and any D E Divd(X), we have 

Jp~(D) = JPo(D) - dJpo(P~). 

In particular, the map Jpo : Divo(X) ~ Jac(X) does not depend on Po and is 
easily seen to coincide with the map J introduced just after the statement of 
Abel's Theorem. 

The following assertions are direct consequences of Proposition II.3.1 and 
Theorem II.3.2, and constitute the classical version of Abel's theorem: 

Corollary 11.3.5. Let dE Z. Any two divisors D1 and D2 in Div d(X) are linearly 
equivalent iff 

Moreover the map 

I po : Divd(X)jR(X) ~ Jac(X) 

[D] 1-+ JPo(D) 

is a bijection, which coincides with i2 0 i1 0 i3 when d = O. 
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11.3.3. Completion of the proof of Theorem 11.1.2. 
Suppose now that X is a compact connected Riemann surface of genus 

9 ~ 1. To complete the proof of Theorem II. 1.2, we still need to prove the 
following facts (cf. §I1.1.2): 

i) the map Jpo : X -+ Jac(X) is injective; 

ii) for any z E Jac(X), the inverse image of z by 

Jpo : Symg X -+ Jac(X) 

is connected. 
To prove i), observe that if P and Q are points of X such that Jpo(P) = 

JPo(Q), then, according to Corollary 11.3.5, there exists f E.M(X)* such that 

div f = Q - P. 

When X is not isomorphic with lP'IC, hence when g ~ 1, this is impossible 
unless Q = P (cf. Corollary B.2.4). 

To prove ii), observe that Symg X may be seen as a subset of Divg(X), 
namely the subset of effective divisors. Indeed the g-uple (PI' ... ' Pg ) up to 
permutation may be identified with the divisor PI + ... + Pg • Then the map 
Jpo is nothing else than the restriction of Jpo : Divg(X) -+ Jac(X). Therefore 
Corollary II.3.5 shows that if Do E SymgX is such that .JPo(Do) = z, then 
Jiol(z) is the set of divisors D' E Symg X such that the holomorphic line 
bundles O(D) and O(Do) are isomorphic. The assertion ii) is now a particular 
case of the following general facts, which hold for any holomorphic line bundle 
£ of degree d > 0 on a compact connected Riemann surface X: 

• For any D E Divd(X), the following conditions are equivalent: 
i) D is effective and the holomorphic line bundles O(D) and £ are isomorphic; 
ii) there exists s E HO(X;£) - {O} such that div(s) = D. 

This follows immediately from the basic facts concerning divisors of line 
bundles (cf. §B.3). 

• The map s 1-+ div s from HO (X; £) - {O} to the symmetric product 
Symd X (identified with effective divisors of degree d) is continuous. This follows 
easily from the compactness of Symd X. 

• Therefore, the set of divisors D which satisfy the condition i) above is 
connected, as the image of the connected set HO(X; £) - {O} by a continuous 
map25. 

Exercise Use Riemann-Roch Theorem (c.f. §B.9) to show that any holomorphic 
line bundle £ on X of degree g (resp. of degree 0) is isomorphic to a line 
bundle of the form O(L:f=1 Pi) (resp. O(L:f=1 Pi - gPo)). Combine this fact 
and Theorem II.3.2 to get another proof of the surjectivity of .J po. 

25 More precisely, this set is easily seen to be isomorphic with the projective space 
lP'HO(X;£) = (HO(X;£) - {O})jC*. In particular, the fibers of the map :Jpo are 
projective spaces (which, generically, are reduced to one point). 
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11.4. A historical digression. 

The discussion of the preceding paragraph uses various modern concepts such as 
'holomorphic line bundles', 'gauge groups', etc .... However, the main theorem 
asserting that the Jacobi map is essentially one to one may be formulated 
without these modern concepts and was indeed proved by Jacobi without them 
(at least for hyperelliptic curves). It may be of some interest to sketch the 
original approach of Abel to Abel's Theorem, which is quite simple and elegant, 
and which has been somewhat forgotten26 , contrary to the contribution of 
Riemann and his followers whose an account along the original lines may be 
found in modern textbooks. 

To describe Abel's formulation, let us go back to the theory of elliptic 
integrals as it was developed at the end of the XVlII-th century. A general 
elliptic integral is an integral of the form 

(II.4.l) r R(t) dt 
Ja y'P(t) 

where R is a rational function and P is a polynomial of degree 3 or 4. The 
basic example of such an integral-from which it derives its name--is the arc 
length on an ellipse: if we represent the ellipse 

x2 y2 
a2 + b2 = 1 

parametrically by x = a sin 0 and y = b cos 0, then the arc length is given by 

J y' a2 cos2 0 + b2 sin2 OdO = J ay'l - k2 sin2 OdO 

where k = ,,11 - b2 ja2 is the eccentricity of the ellipse (we assume a > b). 
Setting x = sin 0, the integral becomes 

a dx J 1- k 2x 2 

y'(1 -x2 )(1 - k2x 2 ) 

which indeed has the form (II.4.1). 
As a function of x, an elliptic integral cannot be expressed in terms of ele­

mentary functions. However, it satisfies an addition formula, which generalizes 
(II.1.3): 

(II.4.2) r R( t) dt r R( t) dt _ r R( t) dt W x 
Ja y'P(t) + Ja y'P(t) - Ja y'P(t) + (, y) 

where z is a rational function of x, y, y' P( x) and y' P(y ), and where W is the 
sum of a rational function of x,y,y'P(x) and y'P(y) and of the logarithm 

26 See [Grl] for a noteworthy counterexample to this last statement. 
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of such a function (according to (II.1.3), when R(t) is constant, W is also 
constant). 

In his work, Abel considers, instead of JP(x), any 'algebraic function' 
y( x) of x, defined implicitly by an irreducible polynomial equation27 

(II.4.3) x(x, y) = 0, 

and, instead of an elliptic integral, a general 'Abelian integral' 

1jJ(x) = l x 
J(t, y(t))dt , 

where J is any rational function of two variables. Moreover, instead of the 
sum of two elliptic integrals which occurs in the addition formula (11.4.2), he 
considers the sum 1jJ(xt) + ... + 1jJ(xm ) of the values of the Abelian integrals at 
a finite number of points XI, ... , x m . 

In modern terms, the polynomial equation (11.4.3) defines an algebraic 
curve, hence by normalization a compact Riemann surface; the rational function 
J determines a meromorphic differential 

w = J(x,y)dx 

on X, and 1jJ( x) is the multi valued function obtained by integration of w along 
paths on X - E, where E denotes the finite set of points of X where w is not 
holomorphic (observe that even considered as a function of (x, y) EX, 1jJ is 
multi valued; indeed, for any two points A, B in X - E to define the integral J: w, one needs to choose a path from A to B in X - E and the value of the 
integral depends, in general, of the homology class of this path). 

The key idea of Abel is to consider an auxiliary relation 

(II.4.4 ) 

defined by a polynomial () in (x, y) which depends rationally on parameters 
(a1' ... , a r ), and to study the sum 

when M1 , ... , Mm are the intersections28 of the curves defined by X(x, y) = 0 
and by (II.4.4). 

Using the modern terminology, we can introduce the divisor on X 

m 

D( a1 , ... , ar ) = 2:= M;. 
;=1 

In general, it depends on (a1, . .. ,ar ). However, its class modulo linear equiv-
alence is independent on (a1, ... , ar ). Indeed, at least for generic values of 
(a~, ... ,a~, a1, ... ,ar ), we have: 

27 We follow Abel's own notations. 
28 Possibly counted with some multiplicities. 
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D( a~ , ... , a~) - D( a1, ... , ar ) = divg 

where g is the meromorphic function on X defined by the rational function 

8(x,y,a~, ... ,a~) 
8(x,y,al, ... ,ar )· 

Abel's version of Abel's theorem is the statement that v is a linear combination 
of a rational function of (ai, ... , ar ) and of the logarithms of such rational 
functions. 

Let us sketch Abel's proof29: 
• Let n be the degree of x(x, y) in the variable y, and let us denote by 

Yl (x), . .. ,Yn(x) the n roots of x(x, y) = 0, considered as an equation in y. With­
out loss of generality, we may suppose that 8 is a polynomial in x, y, al, . .. ,ar . 

Then 
n 

p( x, al , ... , ar ) : = II 8( x, Yi (x), a1 , ... , ar ) 

i=l 

is easily seen to be a polynomial in x, al, . .. ,ar . In fact p is nothing else than 
the resultant deduced from X(x, y) and 8(x, y) by elimination of y. The relation 

(11.4.5) 

characterizes the x's for which there exists y such that 

x(x,y) = 0 and 8(x,y,al, ... ,ar ) = O. 

Moreover, if x satisfies (II.4.5), there exists a unique y such that this system is 
satisfied, which is given by a rational expression 

of x and ai, ... , a r • 

• The resultant p may be factorized as p = Fo . F, where Fo is the largest 
factor of p which does not involve the variable x. The relation F( x, al , ... , ar ) = 
o defines x as an algebraic function of a1, ... , a r , with several determinations 
Xl , •.• , X m (m = degree of F in x). Let 

be the corresponding values of y. 

• To prove Abel's theorem, it is enough to prove that the differential 

r [) 

dv = L II V dai 
i=1 va, 

29 The following argument implicitly assumes some hypotheses of genericity on the 
choice of coordinates and on (J. 
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of v considered as a function of (aI, ... , ar ) has coefficients ov /oai which are 
rationalfunctions of (aI, ... , a r ) (this is clear when r = 1; see e.g. [GrlJ, pp.328-
329, for the general case). 

By definition of v, we have the identity 

(II.4.6) 
m 

dv = L!(xj,Yj)dxj, 
j=l 

where x j and Yj are seen as function of (al,' .. , ar ). The differentials dx j may 
be computed by differentiation of the relation 

Indeed, if we denote 

and 

we get 

and 

Inserting these relations in (11.4.6), we get the identity 

r 

dv = L Qi(Xl"'" Xm,al,···, ar)dai 
i=l 

for some rational functions Q i of C Xl, ... , X m , al , ... , ar ) which clearly are sym­
metric in the xl's. As these are the solutions of F(x,al, ... ,ar) = 0, any ra­
tional symmetric function of the x j's is a rational function of the ai's. Finally, 
we obtain that 

r 

dv = L RiCal, ... ,ar)dai 
i=l 

where the Ri's are rational functions, as was to be proved. 

Abel also looks for conditions on w which imply that v is constant. He 
proves that it is the case when 

(OX)-l 
!(x,y)= oY g(x,y), 
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where g(x, y) is a polynomial which satisfies a degree condition and some lin­
ear relations, which depend only on the polynomial X (and not on 8). These 
conditions define a vector space of forms w, of finite dimension 'Y. This vec­
tor space contains the space Ql (X) of holomorphic differential forms on X 3o. 
Consequently, if we apply Abel's results to the forms w E Ql (X), we recover 
that, for any 8, the image of D(al, . .. ,ar ) by the Jacobian embedding is inde­
pendent of (aI, ... , ar ): this is essentially equivalent to the fact that the Jacobi 
map (11.3.7) is well defined on divisors modulo linear equivalence (cf. Corollary 
II.3.5). 

In Abel's work, the genus of X appears in the following guise. Abel re­
marks that we can choose arbitrary r points PI"'" Pr on X and that, in 
general, when 8 depends linearly on (aI, ... , ar ), there exists a unique value of 
(aI, ... ,ar) such that PI, ... ,Pr occur in the divisor D( aI, ... ,ar). If we de-
note by Ql, ... , Qm-r the other points occurring in D( aI, ... ,ar), this implies 
that one can associate to any r points PI, ... ,Pr a finite set QI, ... ,Qm-r of 
m - r points which depend algebraically on PI, ... ,Pr in such a way that a sum 

of r Abelian integrals L~=l JJ: w is equal to the sum - L;:~r J~i W of m - r 
Abelian integrals, up to some algebraic function. 

Abel proves that, for an arbitrary r, one may choose 8 such that m - r 
assumes a minimal value: this minimal value is independent of r, and defines 
an invariant p of the algebraic curve X(x, y) = O. This numerical invariant p 
is nothing else than the genus of X. The correspondence between SymrX and 
SympX which associates (Ql, ... ,Qp) to (Pt, ... ,Pr) is indeed given by the 
inverse image of 0 by the following map 

SymrX x SympX --+Jac(X) 
r p 

((PI"'" Pr ), (Ql,"" Qp)) 1--+ L Jpo(Pi) + L ]Po(Qi). 
;=1 ;=1 

These results of Abel are contained in his great work, Memoire sur une 
propriete generale d'une classe tres etendue de fonctions transcendantes ([A3]), 
which was presented at the Academie des Sciences de Paris in 1826 but was 
published only in 1841, after the death of Abel (1829) and even after the pub­
lication of the first edition of his collected works. Before 1841, only two short 
notes on this work had been published by Abel. They contain some of his re­
sults in the hyperelliptic case ([AI]), and the statement of Abel's theorem in 
his general form, with a sketch of proof ([A2); see figure 28). 

The work of Abel served as a foundation to the work of Jacobi on the 
'inversion problem' for hyperelliptic integrals. We have seen that the Euler 
addition formula allows to extend the inverse function of an elliptic integral 
of the first kind, which is first only locally defined, to a holomorphic function 

30 In general we can have 'Y > g( = dim .al(X)): some differential w 'of the third 
kind' on X, i. e., some meromorphic differential forms whose residue at any point 
of X vanishes, may give rise to constant functions V; see [Ho] pp.74 and 95 for a 
discussion and references on this point. 
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defined on the whole complex plane. Around 1832, Jacobi discovered how Abel's 
theorem can be similarly used to 'invert' Abelian integrals. 

First, in [J1J, Jacobi derived from Abel's theorem an addition formula for 
hyperelliptic Abelian integrals. He proceeded as follows, in the case of Abelian 
integrals associated with hyperelliptic curves of genus 2, given by an equation 

(1l.4.7) y2 = P(x), 

where P is a polynomial of degree 5 or 6. He introduced the two functions 

(1l.4.8) 

and 

(1l.4.g) 

l x dt 
'P(x) = 0 "';P(t) 

l x tdt 
'PI(X) = 0 "';P(t)' 

Abel's theorem shows that, for any x, x', y and y', the system of two equations 
with unknown a and b 

'P(a) + 'P(b) = 'PCx) + 'PCy) + 'PCx') + 'PCy') 

has solutions which may be expressed algebraically in terms of x, y, x' and y'. 
Now, if one sets 

and 

u' = 'PC x') + 'PCy') 

the preceding relations may be written 

u + u' = 'PCa) + 'PCb) 

v + v' = 'PICa) + 'PI(b). 

Therefore if we express x and y in terms of u and v, namely 

X=ACU,V), 

then we have: 

x' = A(U',V'), 

and 

a=ACu+u',V+V'), b = Al (u + u', v + v'). 
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400 32. C. G. J. Jacobi, cOlllid.ratioll.' g.ltfra'" d. tralt.Gfltd.lttw,.. .db,fia,,;,. 

Theorema, 
"Desilfnanle X funclionem inte(fram ralionalem ordinis 'Ill inti 

"aut _fezli, ponatur 

I.%dr J%rdr • VX = 1lI(~), • Y'X = cIl,(~); 
"sint porro 

:1& = ?I.(u, v), y = ?I.,(u, v) 
"jullctiolles tales arlfumentorum u, v, ut simlll sit: 

111(:1&) + llI(y) = u, 111,(:1&) + 1lI.()") = v, 
"Kaudebunt functiones Wae 

).(u, v), ".(u, v) 
"proprietate ei simili, '1uae de functioni6us IriKonometricis et ellipticis 
"in elementis proponitur, ut functiones iIlae arKumentorum hillominum 

u+ U', ,,+ v' 
.. alKebraice ezhibeantur per functiones, 'luae ad sinKula ];omillt: 

U, Vi u', v' 
"pertinent; sive ut junctiones 

,,(u + u', v + v'), 1t., (u + u', v + v') 
"alKebraice e:rh.iheantur per functiones 

h (II, v), ,,(u', v') 
", (u, v), ". (u', v')," 

Fig. 29. Jacobi's original work on the inversion of hyperelliptic integrals [J1). 

In this way, Jacobi proved that the functions A( u+u', v+v') and Al (u+u', v+v') 
are algebraic functions of A( u, v), Al (u, v), A( u', VI) and Al (u ' , VI) (see figure 29). 

In modern terms, this algebraic addition formula is nothing else than the 
addition law on the Jacobian of the curve X defined by (11.4.7) expressed on 
S2 X (which is 'almost' isomorphic to Jac(X); cf. Theorem 11.1.2, 2)). 

Two years later, in 1834 (see [J2]) , Jacobi came back to the study of the 
functions (11.4.8) and (11.4.9), met the problem of their multivaluedness, and 
discovered that A and Al admit four periods (in (2). As a function of one 
complex variable cannot have more than two independent periods31 , he was 
led to discover that the inversion problem, to be well posed, had to involve 
functions of several complex variables. 

The inversion problem, for hyperelliptic Abelian integrals of genus 2, as 
posed by Jacobi, is to construct periodic entire functions on C2 with values in 
Sym2X (or rather in a variety birational to Sym2X) which would define an 
inverse of the .J map. 

This problem was solved by Gopel and Rosenhain in 1847, who introduced 
for this purpose theta functions of two variables. The generalized problem con­
cerning hyperelliptic curves of arbitrary genus was solved by Weierstrass, in 

31 It may be interesting to note that the basic fact that a discrete subgroup of lR. 2 

contains at most two rationally independent vectors was proven for the first time 
in this paper. 
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papers published from 1848 to 1856. These works motivated the study of theta 
functions of several variables, which were successfully used by Riemann in his 
great paper of 1857, Theorie der Abel'schen Functionen ([Ri1]), to give a so­
lution of the inversion problem for an arbitrary algebraic curve. In the next 
Section, we try to explain Riemann's discoveries. 

Appendix D. The surjectivity of some holomorphic maps 

In §II.1.2, we used the following fact: 
Let f : X -+ Y be a holomorphic map between compact connected complex 

manifolds of the same dimension. If there is a point Xo E X such that the 
differential of f at Xo 

is an isomorphism, then f is onto. 
Let us give a short proof of this statement, based on the elementary proper­

ties of the degree of Coo maps between compact manifolds of the same dimension 
(cf. [Mil]). 

As complex manifolds, X and Y are naturally oriented, and, since f is 
holomorphic, for any x E X such that D f( x) is bijective, D f( x) is orientation 
preserving. This shows that, for any regular value y E Y, the degree of f is the 
cardinality of f-1(y). 

If Xo E X is such that D f( xo) is bijective, then by the implicit function 
theorem, there exists an open neighbourhood U (resp. V) of Xo (resp. of f( xo)) 
in X (resp. Y) such that f maps bijectively and biholomorphically U onto V. 
The non-empty open subset V contains a regular value of f, whose inverse 
image is clearly non-empty and f has positive degree, hence is onto. 

Suppose now that, moreover, all the sets f- 1(y), y E Y, are connected. 
Then f is of degree one; indeed, for any regular value y of f, f- 1 (y) is a 
connected finite set, i. e., a one point set. Hence there exists open dense subsets 
U C X and V C Y such that f sends biholomorphically U onto V. In fact, it 
is possible to show that one can find U and V satisfying these conditions and 
such that X - U is an analytic subset32 of X of codimension ~ 1 and Y - V 
an analytic subset of Y of co dimension ~ 2 (see for instance [Mu3], §3B). Such 
a map f is called a birational holomorphic map. 

32 i.e., a subset of X defined locally by the vanishing of a finite family of holomorphic 
functions. 
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III. Abelian varieties 

I1L1. Riemann bilinear relations 

111.1.1. Integrals ofprodncts of closed I-forms over a compact Riemann surface. 

In the preceding Section, we associated to any compact connected Riemann 
surface X of genus 9 a complex torus Jac(X) of complex dimension g, the 
Jacobian of X. This complex torus can be described as the quotient QI(X)* / A 
where QI (X)* is the vector space dual to the space of holomorphic differentials 
on X and where A is the period lattice of X, defined as the image of the 
injection 

(III. 1. I ) p: HI(X,Z) -+ QI(X)* 

,f-t (w f-t l w). 

In this Section and the following one, we will show that, as a lattice in the 
complex vector space QI (X)*, A has very special properties. This will be a 
consequence of the following observations: 

• for any w,w' E QI(X), 

(III.1.2) L w I\w' = 0, (since w 1\ w' = 0) 

• for any wE QI(X) - {O}, 

(111.1.3) iLWI\W>O, 

together with the following lemma which was proved in A.2.5: 

Lemma 111.1.1. Let X be any oriented compact connected differentiable surface 
of genus 9 ~ 1. For any symplectic basis (al, ... , ag , bl , ... , bg ) of HI (X; Z) 
and for any two closed I-forms", and",' on X, we have: 

(111.1.4) f ", 1\ ",' = t ( l ",. l",' - l",'. l",). 
lx .=1 la, lb, la, lb, 

111.1.2. Riemann bilinear relations. 

Consider now a basis (WI' ... ' wg ) of QI (X) and a symplectic basis 
(al, ... , ag, bl , ... , bg) of HI(X; Z). 

Let P be the matrix of (p(at), . .. ,p( ag ),p(bl ), . .. ,p(bg )) in the basis of 
QI(X)* dual to (WI, ... ,Wg). In other words 

M = (A,B), 
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where A and B are the matrices in Mg(C) defined by 

and Bij = r Wi. 
Jbj 

We can now state: 

Theorem 111.1.2. 1) The matrix A is invertible. 
2) The matrix [l = A-I B is symmetric and its imaginary part 1m [l := 

(I n) . .. 33 t' m Hij 1 "5,i,j"5,g zs a posztzve ma rzx. 

These conditions on the matrix (A, B) are known as Riemann bilinear 
relations (but were known long before Riemann in many special cases, e.g., 
when X is hyperelliptic) and the subset 5)g of Mg(C) defined by the conditions 

t [l = [l and 1m [l > 0 

is called nowadays the Siegel upper half space. When g = 1, it is nothing else 
than the Poincare upper half plane: 

5)1 = 5) = {T E C I 1m T > O}. 

The matrix [l in Theorem III.l.2 is easily seen to be independent of the 
basis (WI, ... ,Wg) of [ll(X). It is known as the period matrix of the Riemann 
surface X associated to the symplectic basis (aI, ... ,ag , bl , ... , bg ) of HI (X; Z). 
This matrix [l may be obtained from (aI, ... , ag, bl , ... , bg) using the following 
recipe: according to Theorem III. 1.2. 1), there exists a unique basis (WI, ... ,Wg) 
of the space [ll(X) of holomorphic one forms on X such that 

(III.1.7) 

then we have 

(III.1.8) 

If X is the elliptic curve C/(Z + TZ) and if we choose as symplectic basis 
of HI (X; Z) the pair (a, b), where a (resp. b) is the class of the map from lR/Z 
to X which sends [t] E lR/Z to [t] E X (resp. [Tt] E X), then the condition 
(III.1.7) reduces to fa WI = 1, implies that WI = dz, and (111.1.8) shows that [l 
coincides with T. 

Observe that when [ll(X)* is identified with 0 by using the basis dual 
to the basis (WI"'" W g) defined by (IILl. 7), then A appears as the lattice 
zg + [lzg, and Jac(X) may be seen as the complex torus 0 /(zg + [lzg). 

Let us prove Theorem 111.1.2. 
Let A = (AI, ... , Ag) EO be such that 

33 i.e., for any v E lR g - {O}, tv· 1m [2. v> O. 
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LAi Aij =0. 
i=1 

Consider the holomorphic differential form 

9 

w= LAi Wi· 

i=1 

According to the definition of A, we have 

This implies that 

r W = O. 
Jaj 

and according to Lemma 111.1.1, we get 

i wAw= O. 
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(1 ~ j ~ g) 

(lSojSog) 

(1 Soj So g) 

Therefore W = 0 (cf. (111.1.3)) and Al = ... = >.g = O. This proves the assertion 
1) in Theorem III. 1. 2. 

To prove 2), we use the basis (WI, ... ,Wg) of J!1(X) defined by (1II.1.7). 
Then, if we apply (111.1.4) to 'f/ = Wi and 'f/' = Wj we get J!ij = J!ji. If we apply 
(111.1.4) to 'f/ = L:f=1 ViWi and 'f/' = 'ij, with v E IR g - {O}, we get 

tv . 1m J! . v = i.. r 'f/ A'ij > O. 
2 Jx 

This proof of Theorem 111.1.2, based on Lemma 111.1.1, is essentially the 
original proof given by Riemann in 1857 in the Sections 20 and 21 of his paper 
on Abelian functions ([Rill; see figure 30). 

Exercise: Let X be the hyperelliptic Riemann surface defined by the equation 

Figure 31 'shows' X as a two-sheeted covering of the 'x-plane', ramified over 
o and (~, 0 So i So 4, where (5 = e2tri / 5 : the surface X may be realized by 
gluing two copies of pIC along the three segments [0,1], [(5, (lJ and [a, (tJ. A 
symplectic basis (aI, a2, b1, b2) of HI (X; Z) is also shown; the parts of the loops 
in full line are on one sheet; the dotted parts are on the other one. 

Prove the preceding assertions and compute the period matrix J! of X 
associated to (aI, a2, b1, b2). 

Hint: Consider the automorphism T of order 5 of X defined by 
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Fig. 31. The Riemann surface of J X 6 - x. 

and the basis (WI, W2) = (dyX, x~x) of QI (X). Express (aI, a2, bl , b2 ) in terms 

of (aI, T(ar), T2(ar), T 3(ar)), and use the relation 

which is true for any W E QI (X), to compute the periods of WI and W2 along 
al , a2, bl and b2 in terms of 1. WI and 1. W2· 

al al 

Answer: 
(~+ 1 ) a-a· 

111.1.3. The action of the symplectic group. 

Before we proceed further, let us describe how Q is transformed when 
changing the symplectic basis (al, ... ,ag,bl, ... ,bg). (Any general result on 
period matrices must be invariant under these transformations!) 

Recall that Sp(2g, Z) denotes the group of symplectic matrices of size 2g 
with integer coefficients, i.e., of matrices M E M2g(Z) such that 

(111.1.9) I g ). M = ( 0 o -Ig Ig) o . 

If one writes 
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(III. 1. 10) 

with A, B, C, D in Mg(Z) this condition is easily seen to be equivalent to 

A·tB=B·tA, C·tD=D·tC , A.tD-B·tC=Ig • 

The condition (IlL 1.9) means exactly that M preserves the standard symplectic 
form on Z29. This implies that, given any 'reference' symplectic basis, 
(,1, ... , ,2g) of H1 (X i Z), one gets a bijection 

Sp(2g,Z) ~ {symplectic bases of H1(XiZ)} 

by associating the basis" M := (~;!1 Mini) 1< '<2 to M = (Mij)1~i,j9g E 
_J_ 9 

Sp(2g, Z). Using this parametrization of symplectic bases, we can easily com-
pute the period matrix Q' associated to a symplectic basis,' = ,·M in terms of 
the period matrix Q associated to T using the block decomposition (Il1.1.10), 
one gets 

(III. 1. 11) 

The independence of the Riemann bilinear relations on the choice of a sym­
plectic basis in H1(XiZ) comes from the existence of an action ofSp(2g,Z)34 

on fJ g given by the following formula: for any M = (~ ~) E Sp(2g, Z) and 

any Q E fJ g ) 

(III.1.12) M· Q = (AQ + B)(CQ + D)-1. 

This action generalizes the action of SL(2, Z) on fJ considered in Section 1. 

Exercise: Check that det( C Q + D) #- 0, that, . Q E fJ g and that if M' is 
another element of Sp(2g, Z), M' . (M . Q) = (M'M) . Q. 

Indeed, the relation (II1.1.4) may be written 

Q'=M·Q, 

where 

M = (:~ :~) 
is easily checked to belong to Sp( 2g, Z). 

34 In fact of Sp(2g,lR.). 



188 Chapter 2. Compact Riemann Surfaces, Jacobians and Abelian Varieties 

111.2. Complex Abelian varieties 

Let us emphasize that the lattices zg + ilZ g attached to matrices il E S')g are 
of a special kind, as soon as 9 > 1. This can be seen by the following dimension 
counting argument 35 • Consider the space £g parametrizing the lattices in a 
g-dimensional complex vector space, i.e., the space of pairs (V, A) where V is 
a complex vector space of dimension 9 and A is a lattice in V, modulo the 
equivalence relation ~ defined by: 

(V, A) ~ (V', A') {::} there exists an isomorphism of complex vector spaces 

u : V ~ V' such that u(A) = A'. 

This space £g can also be described as the space of lattices A in Cg modulo the 
natural action of GLg(C). Now GLg(C) has complex dimension g2, the space 
of lattices in Cg has complex dimension 2g2 (since they are defined, up to some 
discrete ambiguity, by 2g vectors in Cg ), and the isotropy in GLg(C) of any 
such lattice is discrete. Hence the complex dimension of £g is 2g2 - g2 = g2. On 
the other hand the pairs (0, zg + ilZg) with il E S')g form in £g a subspace of 
complex dimension ~g(g + 1), since S')g is an open subset of symmetric matrices 
in Mg(C). If 9 > 1, we have g2 > ~g(g + 1), and a 'generic' (E,A) is not 
equivalent to a pair (Cg , zg + ilZ g) with il E S')g. 

The complex tori Cg I(zg + ilZg) defined by these special lattices have 
striking properties from the point of view of complex geometry. For instance, 
we have: 

Theorem 111.2.1. Let V be a complex vector space of dimension g and let A be 
a lattice in V. The following two conditions are equivalent: 

i) the complex torus V I A can be embedded, as a complex manifold, in a 
complex projective space ]pN(C); 

ii) there exists a basis (e1, ... , eg ) of V (as a complex vector space) and 
a basis (AI, .. . , A2g) of A such that the matrix of (AI, ... , A2g) with respect to 
(e1' ... , eg) takes the form (..:16, il) where il E S')g and 

o o 

..:16= 0 Oi o ,with Oi E Z , 0; > 0 . 

o o 

Many famous mathematicians of the last century contributed to this the­
orem (at least Hermite, Weierstrass, Riemann, Frobenius, Poincare) and, in its 
final form, it is due to Lefschetz. Condition ii) is known as Riemann condition. 

35 We present this argument in an informal way; however it can easily be made 
rigorous. 
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Using elementary linear algebra, one may show that it can be reformulated in 
the following more intrinsic way: 

ii)' there exists a Hermitian form H : V x V -+ C which is positive definite 
(i.e., H( u, u) > 0 for all u E V - {O}) and such that E = ImH is integer valued 
on A (i.e., Ep.l, A2) E Z, for all AI, A2 E A). 

Such a form H is called a non-degenerate Riemann form on V I A, or a 
polarization of VIA. 

A complex torus VIA satisfying the equivalent conditions i), ii), or ii)' is 
called an Abelian variety. The Riemann bilinear relations show that the J aco­
bian Jac(X) of a compact connected Riemann surface satisfies the condition 
ii), hence is an Abelian variety. 

One can also check that a Jacobian satisfies condition ii)': by definition, 
Jac(X) is the quotient VIA where V = ,QI(X)* and A is HI(XjZ), embedded 
in ,QI(X)* by the period map p (cf. (ULl.l)). The dual space ,QI(X)* may be 
identified with the space ,QI(X) of antiholomorphic differentials on X by the 
map 

,QI(X) -+ ,QI(X)* 

al-t(wl-t Lat\w). 
Then a non-degenerate Riemann form on Jac(X) is given by 

H: ,QI(X) x ,Ql(X) -+ C 

(a,;3) I-t 2i L Q t\;3. 
Indeed, H is clearly positive definite and the restriction of its imaginary part 
1m H to HI ( X j Z) is the intersection product (c f. Appendix A) 

(this is again a consequence of A.2.5, like Proposition II.2.12 or Theorem 
IILl.2). 

An Abelian variety V I A equipped with a Riemann form H is called a 
polarized Abelian variety. When H is such that the alternating form 

E = ImH : A x A -+ Z 

is unimodular36 , then H is called a principal polarization and (E I A, H) is said 
to be a principally polarized Abelian variety. 

Elementary linear algebra shows that an Abelian variety V I A possesses 
a principal polarization iff condition ii) of Theorem IIL2.1 is satisfied by the 

36 This means that there exists a basis (11, ... , 12g) of the lattice A such that 
det(ECli,li))19,i$2g = 1, or, equivalently, that there exists a basis (al, ... ,ag, 
b1 , ••• ,bg ) of A such that for any i,j = 1, ... ,g, E(a;,aj) = E(bi,bj) = 0 and 
E( ai, bj) = bij. 
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quantities 01 = ... = Og = 1 and that any principally polarized Abelian variety 
(V/A,H) of dimension 9 is isomorphic to a complex torus O/(zg + SlZg) 
equipped with the Riemann form 

(III.2.1 ) H: C9 -+ IR+ 
v I-t tv· (1m Sl)-l . ti, 

for some Sl E f) 9 • 

Of course, examples of principally polarized Abelian varieties are provided 
by J acobians of compact Riemann surfaces. 

Observe that, when 9 = 1, the Riemann condition is fulfilled by any lattice 
A in C. In that case, the existence of a projective embedding of the elliptic curve 
C/ A is a particular case of the existence of projective embeddings for compact 
Riemann surfaces. In fact, explicit embeddings of C/ A may be given, by using 
the g:J function or the theta functions associated to A (cf. §O.l and §1.4.2). 

In the next Section, we sketch a proof of the implication i) => ii)' in The­
orem III.2.1. Then we introduce theta functions (in several variables) and we 
explain how they provide projective embeddings of Abelian varieties of any 
dimension, which generalize the embeddings of elliptic curves we have just 
mentioned, and therefore allow to prove the implication ii) => i). 

111.3. The necessity of Riemann condition 

In order to prove the implication i) => ii)' in Theorem III.2.1, we need some 
basic facts concerning the Kahler geometry of the complex projective space 
]p>Nc. 

First, recall that a Riemannian metric on a complex manifold M is said to 
be Hermitian if, in local holomorphic coordinates (zl, ... , zn) it takes the form 

n 

ds2 = L gkl(Z)dzkazl , 
k,l=l 

with 
gkt(z) = gCk(Z). 

The matrix (gkC(z))l<k C<n is then the matrix of a Hermitian form. To such 
a Hermitian metric is-a~s~ciated the differential form of degree tw037 w on M 
defined locally by 

The fact that (gkC(z»l<k C<n is the matrix of a Hermitian form implies that 
w is positive, i. e., its restrIction to any Riemann surface C holomorphically 

37 More precisely, of type (1,1): it is a sum of terms, each of them involves 'only one 
dz and one llZ'. 
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embedded in M is a positive volume form on C. Conversely, any positive 2-
form of type (1,1) on M is associated to some Hermitian Riemannian metric 
onM. 

Consider now the complex projective space pNc, The unitary group U(N + 
1) acts on eN +l , hence on 

There exists a unique Riemannian metric on pNe which is Hermitian and 
U(N + I)-invariant and which coincides with the usual Hermitian metric on 
eN ~ T(l:O: ... :O)pNC, This metric may also be defined by giving the associated 
2-form W; explicitly, in terms of homogeneous coordinates (zo, ... , Z N) on pN e, 
it is: 

(III.3.I) _ i [2:[:0 dZ i 1\ dZi 2:[:0 Y;dz i 1\ 2:[:0 Zid:Zi] 
W - 271' 2:[:0IZiI2 - (2:[:0 IZil2 r 

= 2i7l' aalog (t, IZiI2) . 

The last equality shows that w is a closed form. 
The 2-form w is often called the Fubini-Study 2-form on pNe, and the 

associated Hermitian metric, the Fubini-Study metric. Hermitian metrics which, 
like the Fubini-Study metric, have closed associated 2-forms, are known as 
K iihler metrics. 

One easily checks that, if ple is any complex projective line in pNe, then 

f w = 1. 
JW1C 

As w is closed and any oriented closed (real) surface in pNe is homologous 
to an integral multiple of ple (see for instance [Gre], Theorem (19.21)), this 
implies that for any closed (real) surface Sin pNe, one has 

(III.3.2) is wE Z. 

Consider now a complex torus T = V / A embedded in pN C, Then w re­
stricted to T is clearly a closed positive (1, 1)-form such that for any oriented 
closed surface SeT, (III.3.2) holds. 

The existence of such a 2-form on T entails condition ii)'. Indeed, the form 
w on T defined as w averaged by translation on T (i. e., as the zero-th Fourier 
coefficient of w) is by construction a positive translation invariant (1, 1 )-form on 
T; moreover it satisfies the same condition (III.3.1) as w, since, for any oriented 
closed surface Sin T, all the translated surfaces S + x, x E T, are homologous 
and, consequently, the integrals Is+x w and their average Is ware equal to 
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fsW. The Hermitian metric on T associated to w is translation invariant and 
corresponds to a Hermitian form H on V. A simple computation shows that, 
when S is a two-dimensional torus (IRA + IR/-L)/(ZA+ Z/-L), A,/-L E A, condition 
(IlI.3.2) amounts to the fact that 

ImH(A,/-L) E 7I"Z. 

This shows that 71"-1 H is a Riemann form for VIA. 

111.4. Theta functions 

We now come to the existence of projective embeddings for complex tori which 
possess a Riemann form (i.e., to the implication ii) :::} i) in Theorem Il.2.1). To 
make things simpler, we will discuss the case of principally polarized Abelian 
varieties (:g /(zg + Qzg), Q E fJg (the general case where, in condition ii), the 
Oi'S may be different of 1, is only notationally more complicated). 

To get a projective embedding of such an Abelian variety A = CU /(zg + 
Qzg), one needs to produce meromorphic functions on A. A way to achieve 
this is to construct entire functions on (:g, which are periodic with respect to 
the lattice zg + Qzg, up to some common factor of automorphy. Then the 
quotients of two of these entire functions will define a meromorphic function 
on A. 

This procedure is well known when 9 = 1: elliptic functions may be writ­
ten as quotients of theta series, which are entire functions 'almost periodic' 
with respect to a lattice in (: (cf. [eoh], [Ge], [Z]). As a matter of fact, the 
construction of theta series generalizes to higher g's. The simplest of them is 
the Riemann theta function, defined for any (z, Q) E (:g x fJ g as 

(III.4.1 ) O(z, Q) = L exp(7I"itn· Q. n + 271"itn· z) 
nEZQ 

(compare with (0.5)). Observe that the series in (IIl.4.1) converges because 
1m Q > 0: Riemann bilinear relations are exactly the appropriate conditions 
which allow to form theta-series associated to period matrices. This is one of 
Riemann's great discoveries published in [Ri1]. 

A simple computation shows that 0 is indeed periodic up to some factor 
of automorphy: for any (m, z, Q) E zg x (:g x fJg, we get that 

(IlI.4.2) O(z + m, Q) = O(z, Q) 

and 

(III.4.3) B(z + Q. m, Q) = eCi(m,z,!J)B(z, Q), 

where 
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The functional equations (III.4.2) and (III.4.3) satisfied by 0 may be generalized 
as follows. For any integer e ~ 1, we can define the theta functions of weight 
e associated to Q E 5)g as the entire functions I : eg -+ e such that, for any 
(m, z) E zg x eg, the following identities hold: 

(III.4.4) I(z + m) = fez) 

(III.4.5) fez + Q. m) = la(m,z,n) fez). 

The vector space formed by these functions will be denoted by Rf. 
A slight generalization of the Riemann theta function is given by the theta 

functions with characteristics 0 [:J, defined for any (a, b) E Qg x Qg by 

o [:](z, Q) = L exp[7ri t (n + a) . Q. (n + a) + 27ri\n + a) . (z + b)) 
nEZO 

= exp[7rit a· Q. a + 27ri ta· (z + b))O(z + Q. a + b, Q). 

We can now state: 

Proposition 111.4.1.. For any Q E 5)g and any e ~ 1, Rf is a vector space of 
dimension £g, which admits as bases 

or 

Theorem 111.4.2. For any n E 5)g and any £ ~ 3, if (It, ... ,ft..) is a basis of 
Rf, then the functions Ii, i = 1, ... ,£g, have no common zero in eg and define 
an embedding 

eg I(zg + Qzg) -+lP't9 - l e 
[z)t-+(h(z) : ... h9(Z)). 

Observe that the 'periodicity relations' (III.4.4) and (III.4.5) show that, for any 
z E eg , the point (h(z) : ... : h9(Z)) in IP'l9-le depends only on the class [z] 
of z in (;9 I(zg + Qzg). 

Proposition II1.4.1 may be proved by expanding the elements of Rf in 
Fourier series (this is possible because of (III.4.4)) and by expressing condition 
(III.4.5) as a condition on their Fourier coefficients. The proof of Theorem 
III.4.2, the so-called Lefschetz Embedding Theorem is more involved, but still 
elementary. (See for instance [Mu1), §1.3, [GrH], pp. 317-324 or [Rob2]). Let us 
only explain why, as soon as e ~ 2, the functions of Rf have no common zero: 
one immediately checks that, if aI, ... ,at E eg are such that 
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(IlI.4.B) 

then 

( 

Lai=O, 
i=l 

( 

ial, ... ,al : z t-+ II O(z - ai) 
i=l 

is an element of Rf; as 0 is not identically zero, for any Zo E Cg and any e ~ 2, 
there exist al, ... ,at satisfying (IIl.4.B) and such that Zo - al, ... ,Zo - at are 
not zeros of 0; then ial, ... ,al is an element of Rf which does not vanish at zoo 

III.5. Riemann's theorem 

In this Section, we go back to the inversion problem for Abelian integrals and we 
describe how, according to Riemann, it can be 'solved' by using theta functions. 

Let X be a compact connected Riemann surface of genus 9 ~ 1, let 
(al,' .. ,ag, bl , ... ,bg) be a symplectic basis of Hl (X; Z), and let (Wl,"" wg) 
and Q be the basis of Ql(X) and the period matrix attached to this symplec­
tic basis (ef. (III.1.7) and (IlL1.8)). The Jacobian variety Jac(X) of X is then 
identified with the complex torus Cg I(zg + Qzg). 

Furthermore, let us choose a base point Mo in X. This choice allows us to 
define Jacobi maps 

J : X -+ Jac(X), 

and 

by setting 

J(M) = 1M W := (1M Wi) mod (zg + Qzg), 
Mo Mo l~i~g 

and 
Jk(Ml + ... + Mk) = J(Md + ... + J(Mk) 

(compare §II.1 and §Il.3.2). 
Observe that the 'periodicity' relations (IIl.4.2) and (IlL4.3) satisfied by 

o imply the following facts: 
• the hyper surface 

{z E Cg 10(z,Q) = O} 

is invariant under translation by the lattice zg + Qzg; hence it defines a hy­
persurface 8 0 in Jac(X); 

• for any u E cY and any P EX, the vanishing of 

(IlL5.1 ) 
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does not depend on the path form Mo to P chosen to compute J;';o Wi moreover, 
the order of vanishing at P of this function is also well defined. 

We can now state Riemann's theorem: 

Theorem 111.5.1. 1) There exists Ll E Jac(X) such that the hypersurface eo + 
Ll coincides with Jg- 1 (Sym9 _ 1 X). This hypersurface will be called the theta 
divisor, and denoted bye. 

2) For a generic z E (;g, 

[z]- J(X) := {[z]- J(P), P E X} 

is not contained in e. If[z] satisfies this condition, J;-I([z]) consists of a unique 
element PI + ... + Pg in SymgX. The points PI, . .. ,Pg are the points P of X 
such that 

(IIL5.2) [z]- J(P) c e, 

each of them counted with a multiplicity equal to the order of vanishing of 

Roughly speaking, the second half of this theorem asserts that J;-I([z]) 
is obtained by intersecting X, embedded by J in Jac(X), with the hypersurface 
[z]-e. 

If 7 E jJ and if X is the elliptic curve Cj(7/., + 77/.,), equipped with the 
usual symplectic basis (a, b) (cf. §IIL1.2) and with the base point Mo = 0, then 
the Jacobian Jac(X) coincides with X, and J is nothing else than the identity 
map. Then e = {O} (since any empty sum is zero), and 2) is obvious, while 1) 
asserts that 8( z, 7), as a function of 7, has only one zero, Ll, modulo 7/., + 77/.,. 

In fact, one has 

Ll - [.!..±.:.] - 2 . 

When g = 2, Jg- 1(Symg_1 X) = J(X), and 1) shows that X is isomorphic with 
eo. This shows that the knowledge of Jac(X), as a principally polarized Abelian 
variety, allows us to recover the isomorphism class of the Riemann surface X. 
As a matter of fact, this statement is true for Riemann surfaces of any genus 
and is known as Torelli's theorem. 

The general philosophy examplified by Riemann's theorem is that, by using 
theta functions on their Jacobians, one can give constructive proofs of various 
results on compact connected Riemann surfaces. For instance, Riemann's the­
orem gives a constructive solution of the inversion problem. Here is another 
illustration of this principle: 
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Proposition 111.5.2. Let e E cY be such that e(e, D) = 0 and e(e+ J~ w, D) t= O. 

For any divisor D = 2:::=1 nj Pi on X linearly equivalent to zero, one defines 
a meromorphic function tp on X such that D = dive tp) by setting 

(See [Mu4], I, §I.3 for a proof). 
In the next paragraphs, we sketch a proof of Riemann's theorem. This 

will illustrate the relations between theta functions and complex hypersurfaces 
on Abelian varieties. (For a detailed proof we refer to [Mu4] I, §II.3, [GrH] 
pp. 338-340, or [ACGH], §I.5; see also [Kel] and [ACGH], VI for a remarkable 
extension due to Kempf). 

To the Riemann form (III.2.1) on A = <eg I(zg + DZg) is attached the 
following 2-form: 

where 

w = ~ L Yijdz i /I. dZ j 

l:Si,j:Sg 

It is a translation invariant form, which is Poincare dual to 8. In other words, 
w is cohomologous to the current38 be of integration along 8 defined by the 
equality: 

J be /I. a = r a 
A le 

for any (2g-2)-form on A. This follows for instance from the identity of currents 

(III.5.3) 

where 

and where 

1 - 2 
W - be = -.8alog II e II , 

27l't 

9 

88:= L 
i,j=l 

II e 112 (x + iy) := e-21l"y.y.Yle(x + iy, D)12 

depends only on the class of x + iy in A. The identity (III.5.3) is a refinement 
of the observation that log II e II is a function on A, which is Coo on A - 8 and 
has a logarithmic singularity along 8 39 , and whose Laplacian 

38 Recall that a current is a differential form whose coefficients are distributions. Here 
be is a 2-form whose coefficients are distributions. 

39 i.e., locally of the form log I.AI + tp, where <p is Ceo and where .A = 0 is a local 
holomorphic equation for e. 
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U ({)2 82 ) 
Lllog II B 11= - L 8x2 + ~ log II B II 

.=1 • y. 

is constant on A - e. 
Conversely, consider any complex hypersurface H in A. Applying a Green's. 

kernel to OH produces a Green function! for H, i.e., a function on A, Coo or 
A - H, with logarithmic singularities along H and whose Laplacian is constant 
on A -H. 

Then 8'8! is easily seen to be the sum of a multiple >..0 H of the integration 
current along H and of a Coo 2-form a on A. Moreover, on A - H, we have: 

Lla = Ll8a! = 8aLl! = 0, 

since Ll! is constant on A-H. This implies that Lla = 0 on A and therefore 
that a is a translation invariant 2-form. Let g := -27ri>.. -I! and a' := ->.. -la. 
Then we have: 

1 - , 
-. 88g = a - OH . 
27rZ 

In particular a' is the translation invariant 2-form Poincare dual to H. 
Suppose now that a' = w, i.e., that H and ware Poincare dual, or, equiv­

alently, that H and e are homologous hypersurfaces in A. Then the function 

?i: CU -+ C 

x + iy ~ g(x + iy) + 27rty. Y . y 

is pluriharmonic4o on the complement of the inverse image ii of H in CU and 
has a logarithmic singularity along ii. Indeed we have 

1 -
27ri 88?i = -Ok 

Using these facts, one shows easily that there exists an entire function <p : cg -+ 

C, vanishing to first order on H, such that 

(see [Pl). The periodicity of g with respect to ZU + ilZu implies that <p also is 
periodic, up to some automorphy factor, and finally using Proposition III.4.1 
with e = 1, that <p has the form 

<p(z) = >..B(z - a, il) (>.. E C*,a E CU). 

This shows that 
H = {[z],<p(z) = O} 

coincides with eo + raj. 

40 i.e., its image by 88 vanishes or, equivalently, its restriction to any complex line is 
harmonic. 
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This reduces the proof of Theorem IIL5.1, 1) to the purely topological 
statement that w and e := Jg- 1 (Sym9 _ 1 X) are Poincare dual, which may be 
proved by a direct computation in de Rham cohomology. 

Let us add that constructions similar to that of <p allow to prove that any 
complex hypersurface on A may be defined as the zero set of some theta function 
(possibly more general than the ones introduced in the preceding Section). 

Concerning the second half of Theorem III.5.1, observe that if PI + ... + 
Pg E SymgX and [z] = Jg(P1 + . + Pg), then, for any i = 1, ... , g, 

[z] - J(Pi) = Jg- 1 C~i p j ) E e. 

Therefore, the assertion to be shown follows from the fact that there are ex­
actly (taking care of multiplicities) 9 points P E X satisfying (III.5.2), i.e., 
that [z] - e and J(X) meet in 9 points. As long as J(X) ct [z] - e, this is a 
purely topological statement which does not depend on [z] and may be proved 
by a direct computation in de Rham cohomology. Indeed, the number of in­
tersections, counted with multiplicities, of two closed oriented subvarieties of 
complementary dimensions in a closed (oriented) variety is invariant by defor­
mation and may be computed as the integral of the products of the Poincare 
dual de Rham cohomology classes. 

III.6. Abelian varieties and algebraic geometry 

In the preceding pages, we have described some of the basic facts about Jaco­
bians and Abelian varieties. All of these were known at the turn of the century. 
In this last Section, we would like to give some hints on more recent develop­
ments. 

111.6.1. Picard and Albanese varieties. 

In this Section, we explain how the construction which attaches its Jaco­
bian variety to a compact Riemann surface may be extended to higher dimen­
sional complex manifolds. 

Let us begin by a few preliminaries on complex tori. 
Consider A a lattice in a finite dimensional real vector space V. Denote by 

if the dual of V seen as a real vector space, i.e., the real vector space of real 
linear forms on V. It contains the dual lattice A* of A, defined by 

A E A* ¢? (Vx E A, A(X) E Z). 

The real torus if/A * is called the dual torus of the real torus V / A. 
Suppose now that V is in fact a complex vector space. Then V / A is a 

complex torus. Furthermore, if may also be equipped with a complex structure, 
defined by the equality: 

(iA)(x) = -A(ix) 
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for any (x, A) E V xV. Thus V I A * also appears as a complex torus, still called 
the dual torus of the complex torus VIA. 

Exercise: Prove that the dual of the dual of a real (resp. complex) torus is 
canonically isomorphic to itself. 

Suppose now that VI A is an Abelian variety. Then the dual torus V I A* 
is also an Abelian variety, called the dual Abelian variety of VIA. Indeed, if we 
denote by V* the dual of V seen as a complex vector space (i.e., the complex 
vector space of C-linear forms with complex values on V) and by V* the con­
jugate space (i. e., the complex vector space of C-antilinear forms with complex 
values on V), then any real linear form A E V may be written uniquely as 

for some J1 E V*, and the isomorphism 

so defined is C-linear. Accordingly, if H is a polarization on V I A and if h : 
V ~ V* is defined by 

z 
h(v) : w I--t -"2H(v,w), 

then i 0 h : V ~ V is a C-linear isomorphism. Moreover, for any x, yEA, we 
have 

(i 0 h(x))(y) = 2Re(h(x)(y)) = ImH(x, y) E Z. 

Therefore i 0 h(A) is a subgroup of A*, of finite index since i 0 h is injective. 
This shows that a multiple of the Hermitian scalar product 

H*: V x V ~ C 

defined by 
H*(i 0 h(v),i 0 hew)) = H(v,w) 

is a polarization on V I A * . 
One easily checks that, in general, V I A and V I A * are not isomorphic as 

complex manifolds, but, if H is a principal polarization, then i 0 h(A). = A* and 
the morphism from V I A onto V I A * defined by i 0 h is an isomorphism between 
the polarized varieties (VI A, H) and (V I A*, H*). 

In Section II, we have seen an instance of this isomorphism between prin­
cipally polarized dual Abelian varieties. Indeed, we considered a compact con­
nected Riemann surface X and we attached to it the lattice A = HI(X; Z), em­
bedded in the dual of hoI om orphic I-forms on X, V = QI(X)*. The Jacobian of 
X was defined as the complex torus V I A, and was shown to be isomorphic with 
the space Pico(X) of isomorphism classes of holomorphic line bundles on X. 
This last space was first identified with the complex torus QI(X)I HI (X; Z)·L, 
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which is nothing else than iT I A* ~ V* li-1(A*). Then it was shown to be iso­
morphic with Jac(X), by an argument which is indeed closely related to the 
argument of the last paragraph. (Compare the proof of Proposition II.2.I2 and 
the proof of Theorem II.1.2, which provides a principal polarization on Jac(X)). 

Up to the existence of principal polarizations, these constructions may be 
extended to higher dimensional projective varieties. 

Let M be a compact complex manifold of complex dimension d, embedded 
in the projective space IP'NC (by Chow's theorem, such an M is in fact an 
algebraic subvariety of IP'NC). Define Q1(M) as the space of holomorphic 1-
forms on M, i.e., of complex I-forms on M, which, in any local holomorphic 
coordinates (Zl,' .. ,Zd), may be written 

d 

Lfi(z)dz;, 
;=1 

where the J; 's are holomorphic functions. One can show that any such form is 
closed and that Q1 (M) is a finite dimensional vector space. Moreover, the first 
de Rham cohomology group of M, namely 

HiJR(M;C) 
={closed complex C= I-forms on M}/{exact complex C= I-forms on M}, 

possesses a Hodge decomposition, which generalizes Theorem B.2.5: the map 

is an isomorphism. 

Q1(M) EEl Q1(M) ---+ HiJR(M; C) 

a EEl f3 I--t [a + f3] 

This implies that any'Y E H1(M;Z) defines a linear form 

on Q1(M), and that the set U"Y ; 'Y E H1(M;Z)} of these linear forms is a 

lattice in Q1 (M)*, which, abusively, we will still denote H1 (M; Z). 
According to our preliminary observations on complex tori, to this lattice 

A = H1(M;Z) in V = Q1(M)* are naturally attached two complex tori, dual 
to each other, the Albanese variety 

Alb(M) = Q1(M)*IH1(M;Z) = VIA 

and the Picard variety 

Pico(M) = iT I A* 

where H1(M;Z).l.. is defined by 
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These complex tori are Abelian varieties. To get a polarization on Pico(M), 
consider w the restriction to M of the Fubini-Study 2-form on IP'N C (cf. §III.3) 
and define, for any (01, (3) E fll (M) 

H( 01, (3) = 2i 1M a 1\ (31\ w d- l • 

When d > 1, this polarization is not necessarily principal, and the Albanese 
and Picard varieties of M are Abelian varieties dual to each other, but possibly 
not isomorphic. They have the following algebro-geometric interpretations: 

• One may prove that the Picard variety Pico(M) still parametrizes the 
isomorphism classes of holomorphic line bundles on M which are topologically 
trivial . 

• For any two points P, Q in M and any path L from P to Q in M, the 
class in fll(X)* / Hl (X; Z) of 

W f-+ lQ w 

depends only on (P, Q). Therefore, for any base point Po E M, we define a 
holomorphic map 

j : M -+ Alb(M), 

by setting 

jCP) = (w f-+ 1: w) mod Hl(X;Z). 

This map generalizes the Jacobian embedding (but is not always an embedding, 
e.g. when fll(X) = O!). 

If M is an Abelian variety Vo / Ao, then fll (M) (resp. fll (M)*, resp. 
Hl(M;Z)) is canonically isomorphic with Vo* (resp. Va*, resp. Ao); hence 
Alb(M) ~ M, and, if Po = 0, the map j : M -+ Alb(M) is the identity. 

More generally, any holomorphic map 1 : M -+ A with values in a complex 
torus may be factorized through j: there exists a unique holomorphic map 
1: Alb(M) -+ A such that the following diagram commute 

M 
j 

----+ 

I~ 

Alb(M) 

11 
A 

A general Abelian variety A is not the Jacobian of a curve (cf. §III.6.3). 
However it is the Albanese or Picard variety of some smooth projective variety: 
according to the preceding discussion, it is its own Albanese variety, and the 
Picard variety of the dual Abelian variety. This may seem a little tautological. 
It is reassuring to know that, according to a theorem of Lefschetz, any Abelian 
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variety is (isomorphic to) the Albanese variety of some smooth two-dimensional 
projective variety. 

111.6.2. Abelian varieties as projective algebraic varieties. 

We have seen in Theorem II1.2.1 that Abelian varieties are complex mani­
folds which can be embedded in a complex projective space ]p>Nc. Then Chow's 
theorem (Theorem 1.4.4) shows that they may be considered as algebraic subva­
rieties of ]p>Nc. As a matter of fact, a further consequence of Chow's theorem is 
that a complex Abelian variety may be defined as a projective variety A C ]p>NC 

equipped with a structure of Abelian group 

which makes A an algebraic group, that is, roughly speaking, such that the 
homogeneous coordinates of x+y (resp. of -x) are given by rational expressions 
in the homogeneous coordinates of x and y (resp. of x). 

This algebraic definition leads to some refinements of the notion of Abelian 
variety. Let indeed K be any subfield of C (e.g. Q or Q). An algebraic subvariety 
V C ]p>NC is said to be defined over K if it may be defined by polynomial 
equations with coefficients in K (cf. § 1.4.2; this definition is compatible with 
the definition of § 1.5.2: if M is a compact connected Riemann surface, M may 
be defined over Q iff it may be embedded in some projective space ]p>NC as 
an algebraic curve defined over Q). An Abelian variety A C ]p>NC is said to be 
defined over K if it is defined over K as an algebraic variety, if the zero element 
of A has homogeneous coordinates in K, and if the addition and subtraction 
laws on A are given by rational expressions with coefficients in K. Furthermore, 
this algebraic definition of Abelian varieties may be extended to any field K, 
not necessarily included in C, for example to finite fields. 

Example: As in § 0.1, consider rES), Er the elliptic curve (=one-dimensional 
Abelian variety) C/(71 + r71), r the Weierstrass function associated with the 
lattice 7l + r71 and i : Er -t ]p>2C, the embedding defined by (r, r'). Embedded 
in ]p>2C by i, Er appears as the algebraic curve of affine equation 

y2 = 4x3 - g2(r)x - g3(r), 

where g2( r) and g3( r) are defined by some Eisenstein series (cf. (0.3) and (0.4)). 
Moreover its zero element is the 'point at infinity' (0 : 0 : 1) and the group law 
on Er is given by the following rules: 

• -(x, y) = (x, -y); 
• if (x',y') =I (x,-y), let 

, 
m= ;1 =; if (x',y') =I (x,y) 

12x2 - g2 
if (x',y') = (x,y); 2y 
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then 
(x, y) + (x', y') = (x", y") 

where 

"m2 , x = --x-x 
4 

and 

" (") (''')' y =mx-x -y=mx -x -yo 

This follows from the identity g:J( -z) = g:J(z) and from the addition law for g:J 

(cf. (11.1.4)). See figure 32 for a geometric interpretation of these operations 
(compare with (II.1.5)). 

Fig. 32. The group operations on the elliptic curve y2 = (x - Xl )(X - X2 )(X - X3). 

These formulae prove that En embedded in jp2e by i, is an Abelian variety 
defined over any subfield K of e which contains g2( T) and g3( T). 

It is possible to develop the theory of Jacobians and Abelian varieties by 
purely algebraic means. (This is due initially to Weil, Chow, Matsusaka and 
Igusa). For instance, if X is a smooth projective algebraic curve, then Jac(X) 
may be constructed directly as a projective algebraic variety, without using 
any transcendental tool, such as complex analysis and theta functions. The 
starting point of these constructions is the algebraic description of the Jacobian 
we discussed in §II.3.1. Using these algebraic techniques, one may prove that, 
if X is defined over K, of genus g, then Jac(X) embedded in jptg-Ie, e ~ 3 
by means of theta functions (cf. Theorem III.4.2) is an Abelian variety defined 
over K. That type of result is crucial for the study of algebraic curves over 
number fields or over finite fields. 
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111.6.3. Modular forms and moduli spaces of Abelian varieties. 

Two polarized Abelian varieties (V / A, H) and (V' / A', H') are said to be 
isomorphic iff there is a C-linear isomorphism 

'P : V -==t V' 

such that 'P(A) = A' and such that, for any (x,y) E V 2 , 

H'('P(X),'P(y)) = H(x,y). 

We have seen that any principally polarized Abelian variety is isomorphic 
to some complex torus cg /(zg + [lzg), [l E f)g, equipped with the polarization 

cg X cg ~ c 
(x, y) f-+ tX-. (Im[l)-l . y. 

Moreover, one can check that the principally polarized Abelian varieties asso­
ciated to two matrices [l and il' in f)g are isomorphic iff [l and il' belong to 
the same orbit under the action of Sp(2g, 71,) on f)g described in §III.1. In other 
words, the quotient space f)g/Sp(2g,Z) may be identified with the space Ag 
of isomorphic classes of principally polarized Abelian varieties. This space is 
often called the moduli space of principally polarized Abelian varieties. 

The discrete group Sp(2g, 71,) acts holomorphically and properly on f)g. 

This implies that the quotient f)g/Sp(2g, 71,) is naturally endowed with a struc­
ture of complex analytic space (i. e., roughly speaking, of complex manifold 
with singularities; the singularities come from the existence of points in f)g 
fixed by the action of some elements of Sp(2g; Z) - {I29} and are not really 
serious). It happens that this complex analytic space possesses a holomorphic 
embedding 

i: Ag ~ IP'N(C) 

in some complex projective space, and that its image i(Ag) is a quasi-projective 
algebraic variety, i. e., the difference X - Y of a projective algebraic variety X 
and of a projective algebraic variety Y included in X. The 'algebraicity' of 
Ag is closely related to the 'algebraicity' of Abelian varieties discussed in the 
preceding paragraph. 

From a transcendental point of view, the most direct way to define a 
projective embedding of Ag is to use modular forms. Suppose 9 ~ 2. For any 
subgroup r of finite index in Sp(2g, 71,) and any integer k ~ 0, a modular form 
of weight k with respect to r on f)g is by definition a holomorphic function 
f : f)g ~ C such that41 for any 

(~ ~) E r, 

we have 

41 When 9 = 1, one must require an additional growth condition; cf. [Z]. 
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f((AQ + B)(CQ + D)-I) = det(CQ + D)k. f(Q). 

If r is the congruence subgroup rn of Sp(2g, Z) defined by 

'Y E rn ¢:> 'Y == I 2g (mod n) 

then f is said to be a modular form of level n. 
The quotient spaces fJg/ r, r a finite index subgroup in Sp(2g, Z), are cov­

erings of Ag which parametrize principally polarized Abelian varieties equipped 
with some additional structure. For instance fJg/ rn parametrizes principally 
polarized Abelian varieties equipped with a basis of the subgroup of n-torsion 
points. 

We can now state: 

Theorem 111.6.1. Let r be a subgroup of finite index in Sp(2g, Z). For any 
integer k ~ 0, the space [r, k] of modular forms of weight k with respect to r is 
finite dimensional. If k is large enough, the elements of [r, k] have no common 
zero, and, for any basis (JI, ... ,fN) oj[r, kJ, the map 

fJg/ r --t IP'N- IC 

[x] f-t (JI(x) : ... : fN(x)) 

is an embedding of fJ g / r, whose image is a quasi-projective algebraic subvariety 
of IP'N-I(:. 

As in the case 9 = 1, one may construct modular forms in g variables 
starting from theta series. For instance one may prove that, as a function of 
Q E fJg, 0(0, Q)2 is a modular form of weight 1 and level 4. This is essentially 
equivalent to the following functional equation: 

0(0, _Q-I )2 = det (~) .8(0, Q? 

(cl [C], §3.3 and [Z], §1.C when 9 = 1). More generally, we have: 

Theorem 111.6.2. Any homogeneous polynomial of degree 2d in the 'Thetanull­
werte' 8 m (0, Q), (a, b) E Qg x Qg, is a modular form of weight d with respect 
to some congruence subgroup r. 

Conversely for any finite index subgroup r of Sp(2g, Z) any modular form 
with respect to r may be obtained as the quotient of two homogeneous polyno­
mials in the 'Thetanullwerte '. 

Taken together, Theorems III.6.1 and III.6.2 show that the 'Thetanull­
werte' provide projective embeddings of the moduli spaces fJg/ r. Thus they 
provide a far reaching generalization of the example, due to Klein, discussed in 
§I.4.4, where we described an embedding of fJI/ r(7) in 1P'2(:. 

With the notion of moduli space of Abelian varieties at hand, we can say 
a few words on the relation between Jacobians and general Abelian varieties. 
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If g = 1, any g-dimensional Abelian variety is isomorphic to a Jacobian 
(since it may be identified with its own Jacobian!). However, for g ~ 0, it is 
not the case. Indeed, consider the set M 9 of isomorphism classes of compact 
connected Riemann surfaces of genus g. This set-the so-called moduli space 
of smooth curves of genus g-is somewhat similar to Ag: it is endowed with 
a natural structure of complex space, with only mild singularities, and may 
be embedded in some projective space JP'NC as a quasi-projective subvariety. 
Moreover the (complex) dimension of Mg is 3g - 3 (if g ;?: 2) and one defines 
a holomorphic (in fact algebraic) map 

by sending the isomorphism class of a compact connected Riemann surface 
of genus g to the isomorphism class of its Jacobian (observe that by Torelli's 
Theorem - cf. §III.5 - the map j is injective). As the dimension of Ag is tg(g+ 1), 
this shows that the set j(Mg) of g-dimensional Jacobians is nowhere dense in 
Ag when tg(g + 1) > 3g - 3, i.e., when g ;?: 4. 

The problem of describing explicitly j(Mg), i.e., of characterizing the 
Abelian varieties which are Jacobians, is known as the Schottky problem. It 
has been much studied for one century and has known great progresses during 
the last ten years (cf. [Be), [D), [vG), [AD)). 

On the other hand, we should mention that, for any Abelian variety A, 
there exists a Jacobian J such that A is a quotient of J (i. e., such that there 
exists a surjective holomorphic map <p : J -+ A). In fact, if A is a g-dimensional 
A belian variety embedded in JP'N C, we can take as J the Jacobian of the smooth 
curve obtained by intersecting A by a linear subspace of JP'NC of codimension 
g -1 in general position (see [Mi2J, §10). This fact was classically used to prove 
general statements concerning Abelian varieties 'by reduction to Jacobians'. 

Epilogue: Arithmetics on algebraic curves and Abelian 
varieties 

The notions introduced in the last Sections allow us to state some results in 
'arithmetic geometry', where the study of algebraic curves and Abelian varieties 
finally mixes with arithmetics. 

If V is a projective algebraic variety defined over a subfield J( of C, it 
makes sense to consider the set V(K) of points in V which are rational over K, 
i.e., which have homogeneous coordinates in K. When V is an Abelian variety 
defined over K, the set of rational points V(K) clearly is a subgroup of the 
group V. 

The following theorems are two of the most remarkable results in arith­
metic geometry. 
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Theorem. Let A be any Abelian variety defined over a number field42 I<. The 
group of rational points A(I<) is finitely generated. 

Theorem. Let X be any smooth algebraic projective curve, of genus 2 2, defined 
over a number field I<. The set of rational points XCI<) is finite. 

The first of these theorems is due to Mordell ([Mol]' 1922) for elliptic 
curves and to Weil ([Weil], 1928) in general43 . In the case of elliptic curves, 
with the notations of the example of §III.6.2, it asserts that if g2( r) and g3( r) 
belong to I<, there exists a finite family of points of Er with coordinates in I< 
such that any such point may be obtained from this finite family by iteration 
of the constructions depicted on figure 32. 

The second theorem is due to Faltings ([Fa], 1983). Faltings' original proof, 
as well as subsequent proofs due to Masser, Wiistholz, Vojta, Faltings and 
Bombieri, use in a crucial way the interrelation between algebraic curves and 
Abelian varieties which was the subject of these lectures. 

Bibliographical comments. 

The literature on Riemann surfaces, algebraic curves, Jacobians, and 
Abelian varieties, is incredibly vast. We do not attempt at giving any sort 
of complete bibliography, but we simply list various sources where the reader 
may find more details on the topics touched in these notes. 

A few general comments may be appropriate before we indicate the refer­
ences concerning particular topics. 

Reading original papers is still one of the best ways to a serious understand­
ing of the topics discussed here. The collected papers of Abel ([A4]), Jacobi 
([J4]), Riemann ([Ri2]) are still fascinating. Papers by Weierstrass, Dedekind, 
Weber, Frobenius, Hurwitz, Klein, Poincare or Lefschetz, are written in a more 
contemporary style and may be more readable now. Houzel's paper ([Ho]) is 
very helpful to penetrate the developments of the studies on Abelian integrals 
till Riemann's time. 

The first 'modern' book on Riemann surfaces is by Weyl ([Wey 1, 2]). It 
remains one of the best books on the subject. The book 'Curves and their 
Jacobians' by Mumford ([Mu2]) presents a highly readable overview on many 
developments of the topics discussed in these notes, and ought to be consulted 
by readers who want to go further. The book [ACGH], and the papers [Ros] , 
[Mil], [Mi2] should be very useful at a more advanced level. 

42 i.e., an extension of Q generated by a finite family of algebraic numbers. 
43 In fact, in [Weill, Weil considers only Jacobians. But this easily implies the general 

case. 
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Reference list by sections. 
Introduction 
- Elliptic functions and elliptic curves: [Bm], [Coh], [Ge], [HC], [Jo], [Ll], [Robl] 
- Modular forms of one variable: [Shi], [Z] 
- See also references in [Coh], [Ge), [Z) 

§ 1.1-2 
- General books on Riemann surfaces: [CGV), [Dy), [Fo), [FK), [GN), [Gu), [Sp), [Sie2) 
§ 1.3 
- Uniformization: [Weyl-2) , [FK), [Sie2), [Sp) 

§ 1.4.2 
- Basic facts of algebraic !1;eometry: [Abh], [Ko), [Mu3), [Shal 
- Algebraic curves: [Abh], lACGHJ, [BK], {Cl] , [Coo], [ECl, [Fu], [Gr2], [GrH] Chap.2, 
[L2], [Wa] 
§ 1.4.3 
- Fuchsian groups and quaternions algebras: [Ei], [Shi], [Vi] 
- Poincare's theorem for fundamental polygons: [Mas] 
- Siegel's theorem on fundamental polygons: [Siel] 

§ 1.5 
- Equilateral triangulations and Belyi's theorem: [By], [Gro], [SVl-2) 

Appendix A 
- Homology: [Gre] 
- Topology and classification of surfaces: [H), [SeiT) 

§ 11.1 
- Abel's theorem and inversion of Abel's integrals: [Gr1), [Ke1] 

§ III. 2-3, 111.1 
- Jacobians of complex curves: [ACGH], [GrH) Chap.2, [Ke3], [Mi2), [Mu2), [Mu4) 

I,ll, [Sie2) 
§ 111.2-4 
- Abelian varieties and theta functions: [GrH) Chap.2, [I], [Ke4], [Mu1], [Rob2], [Ros), 
[Sie2) III, [Sw], [Wei3) 
§1I1.5 
- Riemann surfaces and theta functions: [ACGH], [Fay), [GrH] Chap.2, [Mu4) I,ll 

§III.6.2 
- Abelian varieties as projective algebraic varieties: [Mul], [Mill] 

§11I.6.3 
- Modular forms on S)g: [Fr], [I], [Mu4] I,ll, [Sie2] III 
- Schottky problem: [AD], [Be], [D], [vG] 

Epilogue Arithmetics on algebraic curves and Abelian varieties: 
- Original papers: [Mo], [Weill' [Fa] 
- Mordell-Weyl theorem: [Mil, [M02]' [Mu1]' [Ser] 
- Mordell conjecture (= Faltings theorem): [Bo), [Maz) 
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Chapter 3 

Elliptic Curves 

by Henri Cohen 

1. Elliptic Curves 

1.1 Elliptic Integrals and Elliptic Functions 

The aim of this Chapter is to give a brief survey of results, essentially with­
out proofs, about elliptic curves, class groups and complex multiplication. No 
previous knowledge of these subjects is required. Some excellent references are 
listed in the bibliography. The basic general reference books are (Borevitch 
and Shafarevitch 1966), (Shimura 1971A), (Silverman 1986). In addition the 
algorithms and tables in (Birch and Kuyk 1975) are invaluable. 

Historically, the word elliptic (in the modern sense) came from the theory 
of elliptic integrals, which occur in many problems, for example in the compu­
tation of the length of an arc of an ellipse (whence the name), or in physical 
problems such as the movement of a pendulum. Such integrals are of the form 

J R(x, y) dx, 

where R(x, y) is a rational function in x and y, and y2 is a polynomial in x 
of degree 3 or 4 having no multiple root. It is not our purpose here to explain 
the theory of these integrals (for this see e.g. Whittaker and Watson 1927, 
ch. XXII). However they have served as a motivation for the theory of elliptic 
functions, developed in particular by Abel, Jacobi and WeierstraB. 

Elliptic functions can be defined as inverse functions of elliptic integrals, 
but the main property that interests us here is that these functions f( x) are 
doubly periodic. More precisely we have: 

(1.1.1) Definition. An elliptic function is a meromorphic function f(x) on the 
whole complex plane, which is doubly periodic, i. e. such that there exist complex 
numbers WI and W2 such that WdW2 ~ IR and f(x +wd = f(x +W2) = f(x). 

If 
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is the lattice generated by WI and W2, it is clear that f is elliptic if and only 
if f( x + w) = f( x) for all x E C and all W E L. The lattice L is called 
the period lattice of f. Furthermore it is clear that every element of C is 
equivalent modulo a translation by an element of L to a unique element of 
the set F = {XWI + YW2, 0 ::::; x, Y < I}. Such a set will be called a fundamental 
domain for Cj L. 

Standard residue calculations show immediately the following properties: 

(1.1.2) Theorem. Let f( x) be an elliptic function with period lattice L, let {Zi} 
be the set of zeros and poles of f in a fundamental domain for C/ L, and ni be 
the order of f at Zi (ni > 0 when Zi is a zero, ni < 0 if Zi is a pole). Then 

1. The sum of the residues of f in a fundamental domain is equal to O. 
2. L:i ni = 0, in other words f has as many zeros as poles (counted with 

multiplicity). 
3. If f is non-constant, counting multiplicity, f must have at least 2 poles 

(and hence 2 zeros) in a fundamental domain. 
4. L:i nizi E L. This makes sense since Zi is defined modulo L. 

Note that the existence of non-constant elliptic functions is not a priori 
evident from definition 1.1.1. In fact, we have the following general theorem, 
due to Abel and Jacobi: 

(1.1.3) Theorem. Assume that Zi and ni satisfy the above properties. Then there 
exists an elliptic function f with zeros and poles at Zi of order ni. 

The simplest construction of non-constant elliptic functions IS due to 
Weierstrafi. One defines 

1 (1 1 ) 
p( z) = Z2 + L (z + w)2 - w2 ' 

wEL\{O} 

and one easily checks that this is an absolutely convergent series which defines 
an elliptic function with a double pole at O. Using the fact that non-constant 
elliptic functions must have poles, it is then a simple matter to check that if 
we define 

1 
g2 = 60 L 4 

W 
wEL\{O} 

and g3 = 140 
1 

L w6' 
wEL\{O} 

then p( z) satisfies the following differential equation: 

p,2 = 4p 3 - gzp - g3. 

In more geometric terms, one can say that the map 

Z I--t (p(z) : p'(z) : 1) 
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from C to the projective complex plane gives an isomorphism between the torus 
C/ L and the projective algebraic curve y 2t = 4x3 - g2xt2 - g3t3. This is in fact 
a special case of a general theorem of Riemann which states that all compact 
Riemann surfaces are algebraic. Note that it is easy to prove that the field 
of elliptic functions is generated by p and p' subject to the above algebraic 
relation. 

Since Cj L is non-singular, the corresponding algebraic curve must also be 
non-singular, and this is equivalent to saying that the discriminant 

of the cubic polynomial is non-zero. This leads directly to the definition of 
elliptic curves. 

1.2 Elliptic Curves over a Field 

From the preceding Section, we see that there are at least two ways to generalize 
the above concepts to an arbitrary field: we could define an elliptic curve as a 
curve of genus 1 or as a non-singular cubic. Luckily, the Riemann-Roch theorem 
shows that these two definitions are equivalent, hence we set: 

(1.2.1) Definition. Let K be a field. An elliptic curve over K is a non-singular 
projective cubic curve together with a point with coordinates in K. 

Up to suitable change of coordinates, it is a simple matter to check that 
such a curve can always be given by an equation of the following (affine) type: 

the point defined over K being the (unique) point at infinity. 
This equation is not unique. However, over certain number fields K such 

as Q, it can be shown that there exists an equation which is minimal, in a well 
defined sense. We will call it the minimal Weierstraf3 equation of the curve. Note 
that it does not necessarily exist for any number field K. For example, one can 
show (see Silverman 1986, page 226) that the elliptic curve y2 = x 3 + 125 has 
no minimal Weierstraf3 equation over the field Q(J-10). 

(1.2.2) Theorem. An elliptic curve over C has the form Cj L where L is 
a lattice. In other words, if g2 and g3 are any complex numbers such that 
g~ - 27g~ -=I 0, then there exist WI and W2 with 1m (WdW2) > 0 and g2 = 
60 L(m,n)#(o,O)(mwI + nW2)-4, g3 = 140 L(m,n)#(o,O)(mwI + nW2)-6. 

A fundamental property of elliptic curves is that they are commutative 
algebraic groups. This is true over any base field. Over C this follows immedi­
ately from theorem 1.2.2. The group law is then simply the quotient group law 
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of C by L. On the other hand, it is not difficult to prove the addition theorem 
for the WeierstraB ~ function, given by: 

From this and the isomorphism given by the map z ~ (~(z), ~'(z)), one obtains 
immediately: 

(1.2.3) Proposition. Let y2 = 4X3 - g2X - g3 be the equation of an elliptic curve. 
The zero element for the group law is the point at infinity (0 : 1 : 0). The inverse 
of a point (Xl, YI) is the point (Xl, -YI) i. e. the symmetric point with respect to 
the real axis. Finally, if PI = (Xl, YI) and P2 = (X2' Y2) are two non-opposite 
points on the curve, their sum P3 = (X3, Y3) is given by the following formulas. 
Set 

Then 

{ 
YI - Y2 
Xl - X2' 

m- 2 - 12x:i - g2 
YI ' 

if PI =1= P2; 

if PI = P2. 

It is easy to see that this theorem enables us to define an addition law 
on an elliptic curve over any base field of characteristic zero, and in fact of 
characteristic different from 2 and 3. Furthermore, it can be checked that this 
law is indeed a group law. 

One can more generally define such a law over any field, in the following 
way. 

(1.2.4) Proposition. Let 

be the equation of an elliptic curve defined over an arbitrary base field. Define 
the zero element as the point at infinity (0 : 1 : 0), the opposite of a point (Xl, yI) 
as the point (Xl, -YI - alxl - a3). Finally, if PI = (Xl, vI) and P2 = (X2' Y2) 
are two non-opposite points on the curve, define their sum P3 = (X3, Y3) by the 
following. Set 

and put 
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Then these formulas define an (algebraic) Abelian group law on the curve. 

The only non-trivial thing to check in this theorem is the associativity of 
the law. This can most easily be seen by interpreting the group law in terms 
of divisors, but we will not do this here. 

The geometric interpretation of the formulas above is the following. Let 
PI and P2 be points on the (projective) curve. The line D from PI to P2 (the 
tangent to the curve if PI = P2) intersects the curve at a third point R, say. 
Then if 0 is the point at infinity on the curve, the sum of PI and P2 is the 
third point of intersection with the curve of the line from 0 to R. One checks 
easily that this leads to the above formulas. 

1.3 Points on Elliptic Curves 

Consider an abstract equation y2 + aIXY + a3Y = x3 + a2x2 + a4x + a6, where 
the coefficients aj are in Z. One can consider this as a curve over any field K 
in the following manner. If K has characteristic zero, it contains an isomorphic 
copy of Z so the aj can be considered as elements of K. If K has positive 
characteristic p, by reduction mod p one can consider the aj as elements of the 
finite field IFp, hence of K which contains an isomorphic copy. (Note that even 
if the initial curve was non-singular, the reduction mod p could be singular). 
We shall consider successively the case where K = JR, K = IQ, K = IFq, where 
q is a power of p. 

1.3.1 Elliptic curves over JR. In the case where the characteristic is different 
from 2 and 3, the general equation can be reduced to the following WeierstraB 
form: 

y2 = x 3 + a4x + a6. 

(We could put a 4 in front of the x 3 as in the equation for the g:J function, but 
this introduces unnecessary constant factors in the formulas). The discriminant 
of the cubic polynomial is -(4a~ + 27a~), however the y2 must be taken into 
account, and general considerations show that we must take 

L1 = -16(4a! + 27a~) 
as definition of the discriminant of the elliptic curve. 

Several cases can occur. Let Q( x) = x3 + a4X + a6 and L1 as given above. 

1. L1 < o. Then the equation Q( x) = 0 has only one real root, and the graph 
of the curve has only one connected component. 

2. L1 > o. Then the equation Q( x) = 0 has three distinct real roots, and the 
graph of the curve has two connected components: a non-compact one, 
which is the component of the zero element of the curve (i.e. the point at 
infinity), and a compact one, oval shaped. 



H. Cohen 217 

From the geometric construction of the group law, one sees that the roots 
of Q( x) = 0 are exactly the points of order 2 on the curve (the points of 
order 3 correspond to the inflexion points). 

3. L1 = O. The curve is not any more an elliptic curve, since it now has a sin­
gular point. This case subdivides into three subcases. Since the polynomial 
Q( x) has at least a double root, write 

Q(x) = (x - a)2(x - b). 

Note that 2a + b = o. 
a) a> b. Then the curve has a unique connected component, which has a 

double point at x = a. The tangents at the double point have distinct 
real slopes. 

b) a < b. Then the curve has two connected components: a non-compact 
one, and the single point of coordinates (a, 0). In fact this point is again 
a double point, but with distinct complex tangents. 

c) a = b. (In this case a = b = 0 since 2a + b = 0). Then the curve has a 
cusp at x = 0, i.e. the tangents at the singular point are the same. 

(The figures corresponding to these 5 cases and sub cases can easily be 
hand drawn, or can be found in (Silverman 1986 page 47-48).) 

In case 3, one says that the curve is a degenerate elliptic curve. One easily 
checks that the group law still exists, but on the curve minus the singular point. 
This leads to the following terminology: in cases 3a and 3b, the group law is 
isomorphic to a form of the group law of the multiplicative algebraic group Gm . 

Hence they are called cases of multiplicative degeneracy. More precisely, 3a is 
called split multiplicative, 3b is non-split multiplicative. For analogous reasons, 
case 3c is called additive degeneracy. These notions can be used, not only for 
JR, but for any base field K. In that case, the condition a > b is replaced by 
a - b is a (noll-zero) square in K. 

1.3.2 Elliptic curves over Q. From a number theorist's point of view, this is of 
course the most interesting base field. The situation in this case and in the case 
of more general number fields is much more difficult to study. The first basic 
theorem, due to Mordell (Mordell 1922) and later generalized by Weil (Weil 
1930) to the case of number fields and of Abelian varieties, is as follows: 

(1.3.1) Theorem. Let E be an elliptic curve over Q. The group of points of E 
with coordinates in Q (denoted naturally E(Q)} is a finitely generated Abelian 
group. In other words, 

where r is a non-negative integer called the rank of the curve, and E(Q)tors zs 
the torsion subgroup of E(Q), which is a finite Abelian group. 

The torsion subgroup of a given elliptic curve is easy to compute. On the 
other hand the study of possible torsion subgroups for elliptic curves over Q 
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is a very difficult problem, solved only in 1977 by Mazur (1977 and 1978). His 
theorem is as follows: 

(1.3.2) Theorem. Let E be an elliptic curve over Q. Then the torsion subgroup 
E(Q)tors of E can be isomorphic only to one of the 15 following groups: 

7l../m7l.. for 1 :<:::: m :<:::: 10 or m = 12, 

7l../27l.. x 7l../2m7l.. for 1 :<:::: m :<:::: 4. 

In particular, its cardinality is at most 16. 

Note that all of the 15 groups above do occur for an infinite number of 
non-isomorphic elliptic curves and also that the corresponding theorem over a 
number field other than Q is not known, although it is conjectured to be true 
(with more possibilities for the groups of course). 

The other quantity which occurs in Mordell's theorem is the rank r, and is 
a much more difficult number to compute, even for an individual curve. There is 
no known mathematically proven algorithm to compute r. Even the apparently 
simpler question of deciding whether r is zero or not (or equivalently whether 
the curve has a finite or an infinite number of rational points) is still not solved. 
This is the subject of active research, and we will come back in more detail to 
this question in Section 3. 

Let us give an example of a down to earth application of the above defini­
tion. Consider the curve 

y2 = x 3 - 36x. 

It is easy to show that the only torsion points are the points of order 1 or 
2, i.e. the point at infinity and the three points (0,0), (6, 0), (-6,0). But the 
point (-2,8) is also on the curve. Hence this point is not of finite order, so 
the curve has an infinite number of points, a fact which is not a priori evident. 
This curve is in fact closely related to the so-called congruent number problem, 
and the statement that we have just made means in that context that there 
exists an infinite number of non-equivalent right angled triangles with all three 
sides rational and area equal to 6, the simplest one (corresponding to the point 
(-2,8)) being the well known (3,4,5) Pythagorean triangle. 

As an exercise, the reader can check that the double of the point (-2,8) 
is the point (245 , 385), and that this corresponds to the right-angled triangle of 
area 6 with sides e~o, 170' l~gl). See (Koblitz 1984) for the (almost) complete 
story on the congruent number problem. 

1.3.3 Elliptic curves over a finite field. To study curves (or more general al­
gebraic objects) over Q, it is very useful to study first the reduction of the 
curve modulo primes. This leads naturally to elliptic curves over IFp, and more 
generally over an arbitrary finite field IFq, where q is a power of p. Note that 
when one reduces an elliptic curve mod p, the resulting curve over IFp may be 
singular, hence not any more an elliptic curve. Such p are called primes of bad 
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reduction, and are finite in number since they must divide the discriminant of 
the curve. According to the terminology introduced in Section 1.3.1, we will 
say that the reduction mod p is (split or non-split) multiplicative or additive, 
according to the type of degeneracy of the curve over lFp • The main theorem 
concerning elliptic curves over finite fields, due to Hasse, is as follows: 

(1.3.3) Theorem. Let p be a prime, and E an elliptic curve over lFp • Then there 
exists an algebraic number a p such that 
1. If q = pn then 

2. 

(1.3.4) Corollary. Under the same hypotheses, we have 

The numbers ap are very important and are (conjecturally) coefficients of 
a modular form of weight 2. We will come back to this subject in Section 3. 

2. Complex Multiplication and Class Numbers 

In this Section, we will study maps between elliptic curves. We begin by the 
case of curves over <c. 

2.1 Maps between Complex Elliptic Curves 

Recall that a complex elliptic curve E has the form Cj L where L is a lattice. 
Let E = Cj Land E' = Cj L' be two elliptic curves. A map ¢J from E to E' is 
by definition a holomorphic Z-linear map from E to E'. Since C is the universal 
cover of E', ¢J lifts to a holomorphic Z-linear map f from C to C, and such 
a map has the form fez) = az for some non-zero complex number a, which 
induces a map from E to E' iff aL C L'. Thus we have obtained: 

(2.1.1) Proposition. Let E = Cj Land E' = Cj L' be two elliptic curves over 
<C. Then: 
1. E is isomorphic to E' if and only if L' = aL for a certain non-zero complex 

number a. 
2. The set of maps from E to E' can be identified with the set of complex 
numbers a such that aL C L'. In particular, the set End(E) of endomorphisms 
of E is a ring isomorphic to the set of a such that aL C L. 
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In terms of the Weierstrafi equation of the curves, this theorem gives the 
following. Recall that the equation of E (resp E') is y2 = 4x3 - g2X - g3 (resp. 
y2 = 4x3 - g~x - gD where 

wEL\{O} 

-4 
W , g3 = 140 L w-6 , 

wEL\{O} 

and similarly for g~ and g~. Hence the first part of the theorem says that if 
E ~ E' then there exists ex such that 

The converse is also clear from the Weierstrafi equation. Now, since E is a 
non-singular curve, the discriminant g~ - 27 g~ is non-zero, so we can define 

j(E) = 1728gV(g~ - 27gi), 

and we obtain: 

(2.1.2) Proposition. The function j(E) characterizes the isomorphism class of 
E over c. More precisely, E ~ E' if and only if j(E) = j(E'). 

The quantity j(E) is called the modular invariant of the elliptic curve 
E. The number 1728 = 123 will be explained later. Although we have been 
working over C, proposition 2.1.2 is still valid over any algebraically closed 
field of characteristic different from 2 and 3 (it is also valid in characteristic 2 
or 3, for a slightly different definition of j(E)). On the other hand, it is false 
if the field is not algebraically closed (consider for example y2 = 4x3 - 4x and 
y2 = 4x3 + 4x over JR.). 

(2.1.3) Remark. It is easy to construct an elliptic curve with a given modu­
lar invariant j. Since we have not given the definition otherwise, we give the 
formulas when the characteristic is different from 2 and 3. 

1. If j = 0, one can take y2 = x 3 - 1. 
2. If j = 1728, one can take y2 = x3 - X. 

3. Otherwise, one sets c = j /(j - 1728), and then one can take y2 = x 3 -

3cx+2c. (If one wants equations with a coefficient 4 in front of x 3 , multiply 
by 4 and replace y by y /2.) 

Now let E = C/ L be an elliptic curve over C. Then as a Z-module, L can 
be generated by two JR.-linearly independent complex numbers Wl and W2, and 
by suitably ordering them, we may assume that 1m T > 0, where T = WdW2' 

Since multiplying a lattice by a non-zero complex number does not change the 
isomorphism class of E, we have j (E) = j (Er ), where Er = C/ Lr and Lr is the 
lattice generated by 1 and T. By abuse of notation, we will write j (T) = j (Er ). 
This defines a complex function j on the upper half-plane jj: 
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iJ={TEC,Im T>O}. 

If a, b, c and d are integers such that ad - bc = 1 (i.e. if (: !) E SL2 (Z)), 

then the lattice generated by aT + band CT + d is equal to L r . This implies the 
modular invariance of j (T): 

(2.1.4) Theorem. For any (~ !) E SL2 (Z), we have 

. (aT + b) _ .( ) J --d -JT. 
CT+ 

In particular, j (T) is periodic of period 1. Hence it has a Fourier expansion, 
and one can prove the following theorem: 

(2.1.5) Theorem. There exist positive integers Cn such that, if we set q = e2i7rr , 

we have for all complex T with 1m T > 0: 

Thus, the factor 1728 used in the definition of j has been put to avoid 
denominators in the Fourier expansion of j(T), and more precisely to have a 
residue equal to 1 at infinity (the local variable at infinity being taken to be 
q). These theorems show that j is a meromorphic function on the compact­
ification (obtained by adding a point at infinity) of the quotient iJ! SL2(Z), 
which is isomorphic as a Riemann surface to the Riemann sphere S2. Under 
this isomorphism, we have: 

(2.1.6) Proposition. The function j is a one-to-one mapping from the sphere 
S2 onto the projective complex plane 1P1(C). In other words, j(T) takes once 
and only once every possible value {including infinity} on iJ! SL2(Z). 

This proposition is obtained essentially by combining remark 2.1.3 (sur­
jectivity) with proposition 2.1.1 (injectivity). 

Since the field of meromorphic functions on the sphere is the field of ratio­
nal functions, we deduce that the field of modular /unctions, i.e. meromorphic 
functions invariant under SL2 (Z), is the field ofrational functions in j. In par­
ticular, modular functions which are holomorphic outside the point at infinity 
of the Riemann sphere are simply polynomials in j. Finally, if we want to have 
such a function which is one to one as in theorem 2.1.5, the only possibilities 
are linear polynomials aj + b. Now the constant 1728 has been chosen so that 
the residue at infinity is equal to one. If we want to keep this property, we 
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must have a = 1. This leaves only the possibility j + b for a function having 
essentially the same properties as j. In other words, the only freedom that we 
really have in the choice of the modular function j is the constant term 744 in 
its Fourier expansion. 

Although it is a minor point, I would like to say that the normalization of j 
with constant term 744 is not the correct one for several reasons. The 'correct' 
constant should be 24, so the 'correct' j function should in fact be j - 720. 
Maybe the most natural reason is as follows: there exists a rapidly convergent 
series due to Rademacher for the Fourier coefficients en of j. For n = 0, this 
series gives 24, not 744. Other good reasons are due to Atkin and to Zagier 
( unpublished). 

2.2 Isogenies 

We now come back to the case of elliptic curves over an arbitrary field. 

(2.2.1) Definition. Let E and E' be two elliptic curves defined over a field K. 
An isogeny from E to E' is a map of algebraic curves from E to E' sending the 
zero element of E to the zero element of E'. The curves are said to be isogenous 
if there exists a non-constant isogeny from E to E'. 

The following theorem summarizes the main properties of non-constant 
isogenies: 

(2.2.2) Theorem. Let <p be a non-constant isogeny from E to E'. Then: 

1. <p is a surjective map. 
2. <p is a finite map, in other words the fiber over any point of E' is constant 

and finite. 
9. <p preserves the group laws of the elliptic curves (note that this was not 

required in the definition), i. e. it is a map of algebraic groups. 

From these properties, one can see that 4> induces an injective map from 
the corresponding function field of E' to that of E (over some algebraic closure 
of the base field). The degree of the corresponding field extensions is finite and 
called the degree of 4>. 

(2.2.3) Remark. If the above extension of fields is separable, for example if 
the base field has characteristic zero, then the degree of <p is also equal to the 
cardinality of a fiber, i.e. to the cardinality of its kernel 4>-1(0). 

(2.2.4) Theorem. Let E be an elliptic curve over a field K, and let m be a 
positive integer. Then the map [m] (multiplication by m) is an endomorphism 
of E with the following properties: 

1. deg[m] = m 2 • 
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2. If E[m] denotes the kernel of [m] in some algebraic closure of K, i. e. the 
group of points of order dividing m, and if the characteristic of K is prime 
to m (or if it is equal to 0), then we have 

E[m] ~ (7/.,fm7/.,) x (7/.,fm7/.,). 

Another important point concerning isogenies is the following: 

(2.2.5) Theorem. There exists a unique isogeny J called the dual isogeny, such 
that 

J 0 cP = [m], 

where m is the degree of cPo In addition, we also have 

cP 0 J = [m]', 

where [m]' denotes multiplication by m on E'. 

The following result also holds: 

(2.2.6) Theorem. Let E be an elliptic curve and P a finite subgroup of E. Then 
there exists an elliptic curve E' and an isogeny cP from E to E' whose kernel 
is equal to P. The elliptic curve E' is well defined up to isomorphism and is 
denoted Efp. 

We end this Section by giving a slightly less trivial example of an isogeny: 
Let E and E' be two elliptic curves over a field of characteristic different from 
2, given by the equations 

y2 = x 3 + ax2 + bx and y2 = x 3 _ 2ax2 + (a2 - 4b)x, 

where we assume that band a2 - 4b are both non-zero. Then the map cP from 
E to E' given by 

cP( ) = (y2 y( x2 - b)) 
x,y x 2 ' x 2 

is an isogeny of degree 2 with kernel {O,(O,O)}. 

2.3 Complex Multiplication 

Let E be an elliptic curve. To make life simpler, we will assume that the base 
field has characteristic zero. We have seen that the maps [m] are elements of 
End(E). Usually, they are the only ones, and since they are distinct, End(E) ~ 
7/.,. However it can happen that End(E) is larger. 

(2.3.1) Definition. We say that E has complex multiplication if End(E) contains 
elements other than [m], i. e. if as a ring it is strictly larger than 7/.,. 
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The theory of complex multiplication is vast, and we can just give a short 
glimpse at its contents. The first result is as follows: 

(2.3.2) Proposition. Let E be an elliptic curve defined over a field of characteris­
tic zero, and assume that E has complex multiplication. Then the ring End(E) 
is an order in an imaginary quadratic field, i. e. has the form Z + ZT where 
T is a complex number with positive imaginary part and which is an algebraic 
integer of degree 2 (that is, satisfies an equation of the form 

T2 - 8T + n = 0, 

with 8 and n in Z and 8 2 - 4n < 0). 

Proof. We shall give the proof in the case where the base field is C. Then 
E ~ CI L for a certain lattice L, and we know that End( E) is canonically 
isomorphic to the set of a such that aL C L. After division by one of the 
generators of L, we can assume that L is generated by 1 and T for a certain 
T E fj, where we recall that fj is the upper half-plane. Then if a stabilizes L, 
there must exist integers a, b, e and d such that a = a + bT, aT = e + dT. In 

other words, a is an eigenvalue of the matrix (; ~ ), hence is an algebraic 

integer of degree 2 (with 8 = a + d, n = ad - be). Since a = a + bT, this shows 
that Q( T) = Q( a) is a fixed imaginary quadratic extension k of Q, and hence 
End( E) is (canonically isomorphic to) a subring of Z k, the ring of integers of 
k, and hence is an order in k if it is larger than Z. 

(2.3.3) Example. The curves y2 = x 3 - ax all have complex multiplication by 
Z[i] (map (x, y) to (-x, iy». Similarly, the curves y2 = x3 + b all have complex 
multiplication by Z[p], where p is a primitive cube root of unity (map (x, y) to 
(px, y». For a less trivial example, one can check that the curve 

has complex multiplication by Z[w], where w = H0, multiplication by w 
sending (x,y) to (u,v), where 

u = w-2 (x + a + _b ) 
x-a 

-3 ( b) v = w y 1 - (x _ a)2 ' 

where we have set a = W~3 and b = - 176 (3w - 1) (I thank D. Bernardi for these 
calculations ). 

The next theorem concerning complex multiplication is as follows: 
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(2.3.4) Theorem. Let r be a quadratic algebraic number with positive imaginary 
part. Then the elliptic curve Er = C/(71 + 7lr) has complex multiplication by 
an order in the quadratic field Q(r), and the j-invariant jeEr) = j(r) is an 
algebraic integer. 

Note that although the context (and the proof) of this theorem involves 
elliptic curves, its statement is simply that a certain explicit function j ( r) on 
jj takes algebraic integer values at quadratic imaginary points. 

(2.3.5) Example. Here are a few selected values of j. 

j((1 + iv3)/2) = 0 

j(i) = 1728 = 123 

j((1 + iv7))/2) = -3375 = (-15)3 

j(iv'2) = 8000 = 203 

j((1 + iVil))/2) = -32768 = (-32)3 

j((1 + iV19))/2) = -884736 = (-96)3 

j((1 + iV43))/2) = -884736000 = (-960)3 

j((1 + iV67))/2) = -147197952000 = (-5280)3 

j((1 + iV163))/2) = -262537412640768000 = (-640320)3 

j(iv3) = 54000 = 2(30)3 

j(2i) = 287496 = (66)3 

j((1 + 3iv3)/2) = -12288000 = -3(160)3 

j(iv7) = 16581375 = (255)3 

j((1 + iV15))/2) = (-191025 + 85995V5)/2 = (1 + V5)/2((75 - 27V5)/2)3 

j((1 + iV23))/2) = () = (Y3, 

where () is the largest negative root of the cubic equation X 3 + 3491750X2 -

5151296875X + 12771880859375 = 0, and (Y is the largest negative root of the 
equation X 3 + 155X2 + 650X + 23375 = O. 

The reason for the special values chosen will become clear later. 

An amusing consequence of the above results is the following. We know 
that if q = e2irrr then j(r) = l/q + 744+ O(lql). Hence when Iql is very small 
(i.e. when the imaginary part of r is large), it can be expected that j (r) is well 
approximated by 1/ q + 744. Taking the most striking example, this implies that 
e rrV163 should be close to an integer, and that (e rrV163 - 744)1/3 should be even 
closer. This is indeed what one finds: 

errV163 = 262537412640768743.99999999999925007259 ... 
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(e~v'I63 - 744)1/3 = 640319.99999999999999999999999939031735 ... 

Note that by well known transcendence results, although these quantities are 
very close to integers, they cannot be integers and they are in fact transcen­
dental numbers. 

2.4 Class Numbers 

To understand more precisely the statement of theorem 2.3.4, and the examples 
given after it, it is necessary to define the concept of class number. This can 
be done in full generality for any algebraic number field (see e.g. Borevitch­
Shafarevitch 1966), but we need it here only for imaginary quadratic fields, 
and hence we can use the more explicit language of binary quadratic forms. 
Let ax2 + bxy + cy2 be a binary quadratic form. We will always consider forms 
which are positive definite (i.e. D = b2 - 4ac < 0 and a > 0), with integral 
coefficients, and primitive, that is such that the gcd of a, band c is equal 
to 1. On the set of such forms of given discriminant D, we can define an 

equivalence relation as follows: if (~ ~) E SL2 (7l,) then we say that the form 

a( ax + j3y? + b( ax + j3y)( "Ix + 8y) + c( "Ix + 8y)2 is equivalent to ax2 + bxy + cy2. 

(2.4.1) Proposition. The set of equivalence classes defined above is finite, and 
its cardinality is called the class number of D (or of the field tQ( VD) depending 
on the context), and denoted h(D). 

Proof. The simplest way to prove this (and to compute h( D) at the same time) 
is to introduce the notion of reduced form. A form is reduced if Ibl ::; a ::; c 
and furthermore if one of the inequalities is an equality then in addition we 
require b 2:: O. Then it is easy to show that in each equivalence class, there 
exists a unique reduced form, hence h(D) is equal to the number of reduced 
forms, which is finite since it follows from the definition that Ibl ::; a ::; JIDI/3. 

From this proof, it is an easy exercise to compute h(D) for any reasonable 
D. For example, if we denote by (a, b, c) the form ax2 + bxy + cy2, the reduced 
forms of discriminant D = -23 are the forms (1,1,6), (2,1,3) and (2,-1,3) 
hence h( -23) = 3. On the other hand, one checks that the only reduced form 
of discriminant D = -163 is the form (1,1,41) hence h( -163) = 1. 

Another, equivalent way, to get a hold on h(D) is to consider the quadratic 
numbers associated to a binary quadratic form. The following lemma is easy 
to prove: 

(2.4.2) Lemma. Let T be a quadratic algebraic number with positive imaginary 
part. Then there exists a unique (primitive, positive definite, binary quadratic 
form) ax2 + bxy + cy2 such that T is a root of the equation aX2 + bX + c = 0 
(the converse is trivial). Furthermore, the quadratic form is reduced if and only 
if T belongs to the standard fundamental domain :F of SL2(7l,), i.e. such that 
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- 1 
:F = {r E S), Irl ::::: 1, IRe rl ~ 2}' 

:F itself being the subset of :F where one excludes the points on the boundary 
with positive real part. 

The discriminant of the form corresponding to r will be called the discrim­
inant of r. Note that it is a square multiple of the discriminant of the quadratic 
field defined by r, but does not have to be equal to it. 

The link with complex multiplication is the following theorem, which is a 
more precise version of theorem 2.3.4: 

(2.4.3) Theorem. Let rES) be a quadratic imaginary number, and let D be 
its discriminant as just defined. Then j ( r) is an algebraic integer of degree 
exactly equal to h(D). More precisely, the equation satisfied by j(r) over Z 
is the equation rr(X - j(a)) = 0, where a runs over the quadratic numbers 
associated to the reduced forms of discriminant D. 

Note that j ( r ) is indeed a root of this polynomial, since any quadratic form 
of discriminant D is equivalent to a reduced form, and since the j function 
is SL2(Z)-invariant. The difficult part of this theorem is the fact that the 
polynomial has integral coefficients. 

I can now explain the reason for the selection of j-values given in the 
preceding Section. From theorem 2.4.3, we see that j ( r) is rational (in fact 
integral) if and only if h(D) = 1 (we assume of course that r is a quadratic 
number). Now it is a deep theorem, due to Baker and Stark (1967), that there 
exist only 13 values of D for which h(D) = 1. The first 9 correspond to field 
discriminants, and are -3, -4, -7, -8, -11, -19, -43, -67 and -163. There 
are 4 more corresponding to non-maximal orders: -12 and -27 (in the field 
Q( v'-3)), -16 (in the field Q( vC4)), and -28 (in the field Q( A)). 

Although it is known since Siegel that h(D) tends to infinity with D, and 
even as fast as IDI1!2-f for any E > 0, this result is ineffective, and the explicit 
determination of all D with a given class number is very difficult. I have just 
stated that the class number 1 problem was only solved in 1967. The class 
number 2 problem was solved jointly by Baker and Stark in 1969: D = -427 is 
the largest discriminant (in absolute value) with class number 2. The general 
problem was solved in principle by Goldfeld, Gross and Zagier in 1983, who 
obtained an effective lower bound on h(D) (Gross-Zagier 1983). However, the 
problem still needs some cleaning up, and to my knowledge, only class numbers 
3 and 4 have been explicitly finished. The last remaining j-values in our little 
table above are for D = -15 and D = -23, which are the first values for which 
the class number is 2 and 3. 

Let D be the discriminant of a maximal order (i.e. either D == 1 (mod 4) 
and is squarefree, or D == 0 (mod 4), D/4 == 2 or 3 (mod 4) and D/4 is 
squarefree), and let r be a quadratic number of discriminant D < 0 (for example 
r = (D + Vi5)/2). Set K = Q(r) = Q(Vi5). Then theorem 2.4.3 tells us 
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that the field H = K (j ( r)) obtained by adjoining j ( r) to K is an algebraic 
extension of degree h(D) (this is not strictly true: it tells us this for K = Q, 
but the statement holds nonetheless). Now in fact much more is true. One 
can define a group structure on binary quadratic forms called composition. 
This corresponds in the language of ideals to multiplication of ideals. Then 
for every D one has not only a class number, but a class group of cardinality 
h(D). Then the field extension H/K possesses the following properties (see 
(Shimura 1971A) for the relevant definitions, which would carry us too far 
here): It is a Galois extension, with Abelian Galois group isomorphic to the class 
group. Furthermore, it is unramified, and it is the maximal Abelian unramified 
extension of K. By definition, such a field H is called the Hilbert class field of 
K. One sees that in the case of imaginary quadratic fields, the Hilbert class field 
can be obtained by adjoining a value of the j -function. This kind of construction 
is lacking for other types of fields (except of course for Q). 

A cursory glance at the table of j-values which we have given reveals many 
other interesting aspects. For example, in most cases, it seems that j (r) is a 
cube. Furthermore, it can be checked that no big prime factors occur in the 
values of j(r) (or of its norm when it is not in Q). These properties are indeed 
quite general, with some restrictions. For example, if D is not divisible by 3, 
then up to multiplication by a unit, j(r) is a cube in H. One can also check 
that j(r) -1728 is a square if D == 1 (mod 4). Finally, not only the values 
of j(r), but more generally the differences j(rl) - j(r2) have only small prime 
factors (the case of j ( rl) alone is recovered by taking r2 = P = ( -1 + H) /2). 
All these properties are proved in (Gross-Zagier 1985). 

2.5 Modular Equations 

Another remarkable property of the j-function, which is not directly linked 
to complex multiplication, but rather to the role that j plays as a modu­
lar invariant, is that the functions j (N r) for N integral (or more generally 
rational) are algebraic functions of j(r). The minimal equation of the form 
iP N(j( r),j(Nr)) = 0 satisfied by j(Nr) is called the modular equation of level 
N. This result is not difficult to prove. We will prove it explicitly in the special 
case N = 2. Set 

P(X) = (X - j(2r))(X - j(~))(X - j(r; 1)) = X 3 - s(r)X2 +t(r)X - nCr). 

I claim that the functions s, t and n are polynomials in j. Since they are 
clearly meromorphic, and in fact holomorphic outside infinity, from Section 
2.1 we know that it is enough to prove that they are modular functions (i.e. 
invariant under SL2(Z)). Since the action of SL2(Z) on .fj is generated by 
r f-t r + 1, and r f-t -l/r, it suffices to show the invariance of s, t and n under 
these transformations, and this is easily done using the modular invariance of 
j itself. This shows the existence of a cubic equation satisfied by j (2r) over 
the field C(j ( r)). If one wants the equation explicitly, one must compute the 
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first few coefficients of the Fourier expansion of s( r), t( r), and n( r), using the 
Fourier expansion of j ( r ): 

1 
j(r) = - + 744 + 198884q + 21493760q2 + 864299970q3 + ... 

q 

The result is as follows: 

s = j2 _ 24 3 . 31j - 24 34 53 , 

t = 24 3 . 31j2 + 34 534027j + 28 37 56 , 

n = _j3 + 24 34 53j2 _ 2837 56 j + 2123959 • 

This gives as modular polynomial of level 2 the polynomial 

4i2(X, Y) = X 3 + y3 _ X2y2 + 24 3 . 31(X2y + XY2) _ 24 34 53(X2 + y2) 

+ 34 534027XY + 2837 56(X + Y) _ 21239 59 • 

As we can see from this example, the modular polynomials are symmetric in X 
and Y, and they have many other remarkable properties linking them closely to 
complex multiplication and class numbers, but we will not pursue this subject 
further here. See for example (Herrmann 1975) and (P. Cohen 1984) for results 
and more references on the polynomials 4i N . 

3. Rank and L-functions 

We have seen in theorem 1.3.1 that if E is an elliptic curve defined over Q, 
then 

where E(Q)tors is a finite group which is easy to compute for a given curve, and r 
is an integer called the rank. As has already been mentioned, r is very difficult 
to compute, even for a given curve. Most questions here have a conjectural 
answer, and very few are proved. In this short Chapter, we try to give some 
indications on the status of the subject at this time (September 1989). 

3.1 L-functions 
3.1.1 The zeta function of a variety. After clearing out the denominators of the 
coefficients, we can assume that our curve has coefficients in Z. Now it is a 
classical technique to look at the equation modulo primes p, and to gather this 
information to obtain results on the equation over Q or over Z. This can in fact 
be done in great generality for any smooth projective algebraic variety (and 
more general objects if needed), and not only for elliptic curves. Although it 
carries us away a little, I believe it worthwhile to do it in this context first. Let 
V be a (smooth projective) variety of dimension d, defined by equations with 
coefficients in Z. For any prime p, we can consider the variety Vp obtained by 
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reducing the coefficients modulo p (it may of course not be smooth any more). 
For any n ~ 1, let Nn(p) be the number of points of Vp defined over the finite 
field IFpn and consider the following formal power series in the variable T: 

Zp(T) = expeL N:P)Tn ). 
n~l 

Then we have the following very deep theorem, first conjectured by Weil (and 
proved by him for curves and Abelian varieties, see (Weil 1949)), and proved 
completely by Deligne in 1974 (Deligne 1974): 

(3.1.1) Theorem. Let Vp be a smooth projective variety of dimension dover IFp . 

Then: 

1. The series Zp(T) is a rational function ofT, i.e. Zp(T) E Q(T). 
2. There exists an integer e (called the Euler characteristic of Vp), such that 

3. The rational function Zp(T) factors as follows: 

P1(T)··· P2n- 1(T) 
Zp(T) = PO(T)P2(T) ... P2n(T) ' 

where for all i, Pi(T) E Z[T], poeT) = 1 - T, P2d(T) = 1 - pdT, and for 
all other i, 

Fj(T) = II (1 - QijT) with IQij I = pi/2. 
j 

The first assertion had been proved a few years before Deligne by B. Dwork 
using relatively elementary methods, but by far the hardest part in the proof 
of this theorem is the very last assertion, that laijl = pi/2. This is called the 
Riemann hypothesis for varieties over finite fields. 

Now given all the local Zp(T), we can form a global zeta function by setting 
for s complex with Re s sufficiently large: 

(V,s) = II Zp(p-S). 
p 

This should be taken with a grain of salt, since there are some p (finite in 
number) such that Vp is not smooth. 

Very little is known about this general zeta function. It is believed (can 
one say conjectured when so few cases have been closely examined?) that it 
can be analytically continued to the whole complex plane to a meromorphic 
function with a functional equation when the local factors at the bad primes 
p are correctly chosen, and that it satisfies the Riemann hypothesis, i.e. that 
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apart from 'trivial' zeros and poles, all the other zeros and poles lie on certain 
vertical lines in the complex plane. 

One recovers the ordinary Riemann zeta function by taking for V the single 
point O. More generally, one can recover the Dedekind zeta function of a number 
field by taking for V the O-dimensional variety defined in the projective line by 
P(X) = 0, where P is a monic polynomial with integer coefficients defining the 
field over Q. 

3.1.2 L-functions of elliptic curves. Let us now consider the special case where 
V is an elliptic curve E. In that case, Hasse's theorem 1.3.3 gives us all the 
information we need about the number of points of E over a finite field. This 
leads to the following corollary: 

(3.1.2) Corollary. Let E be an elliptic curve over Q, and let P be a przme of 
good reduction (i. e. such that Ep is still smooth). Then 

1-ap T+ pT2 
Zp(E) = (1 _ T)(l - pT)' 

where ap is as in theorem 1.3.S. 

In fact, Hasse's theorem is simply the special case of the Weil conjectures 
for elliptic curves (and can be proved quite simply, see e.g. Silverman 1986 pp 
134-136). 

Ignoring for the moment the question of bad primes, the general definition 
of zeta functions gives us 

where 

I"(E ) = (8)(8 -1) 
." ,s L(E,8) ' 

L(E, 8) = II (1- app-S + pl-2s)-1. 
p 

The function L(E, 8) will be called the Hasse-Weil L-function of the elliptic 
curve E. To give a precise definition, we also need to define the local factors at 
the bad primes p. This can be done, and finally leads to the following definition: 

(3.1.3) Definition. Let E be an elliptic curve over Q, and let y2 + alXY + a3Y = 
x3 + a2x2 + a4 X + a6 be a minimal Weierstrafl equation for E (see 1.2.1). When 
E has good reduction at p, define ap = p + 1 - Np where Np is the number of 
(projective) points of E over lFp . If E has bad reduction, define 

{
I, 

f(p) = -1, 
0, 

if E has split multiplicative reduction at Pi 
if E has non-split multiplicative reduction at Pi 
if E has additive reduction at p. 

Then we define the L-function of E as follows, for Re s > 3/2: 
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L(E s) - II 1 II 1 
,- 1- t(p)p-s 1- a p-s + pl-2s' 

bad p good p P 

Note that in this definition it is crucial to take the minimal WeierstraB 
equation for E: taking another equation could increase the number of primes 
of bad reduction, and hence change a finite number of local factors. On the 
other hand, one can prove that L( E, s) depends only on the isogeny class of E. 

By expanding the product, it is clear that L(E,s) is a Dirichlet series, i.e. 
of the form 'L:n>l ann-s (this of course is the case for all zeta functions of 
varieties). We will set 

f E( T) = L an qn , where as usual q = e2i7rT . 

n2':l 

We can now state the first conjecture on L-functions of elliptic curves: 

(3.1.4) Conjecture. The function L(E,s) can be analytically continued to the 
whole complex plane to an entire function. Furthermore, there exists a positive 
integer N, such that if we set 

A(E,s) = Ns/Z(27rrST(s)L(E,s), 

then we have the following functional equation: 

A(E,2 - s) = ±A(E,s). 

In this case, the Riemann hypothesis states that apart from the trivial 
zeros at non-positive integers, the zeros of L(E, s) all lie on the critical line 
Re s = 1. 

The number N occurring in conjecture 3.1.4 is a very important invariant 
of the curve. It is called the conductor of E, and can be defined without refer­
ence to any conjecture. It suffices to say that it has the form TIp pep, where the 
product is over primes of bad reduction, and for p > 3, ep = 1 if E has mul­
tiplicative reduction at p, ep = 2 if E has additive reduction, while for p ~ 3, 
the recipe is more complicated (see Birch-Kuyk 1975). 

3.1.3 The Taniyama-Well Conjecture. Now a little acquaintance with modular 
forms reveals that the conjectured form of the functional equation of L( E, s) is 
the same as the functional equation for the Mellin transform of a modular form 

of weight 2 over the group To(N) = { (~ ~) E SLz(Z),c == 0 (mod N)} 

(see (Zagier 1990) in this volume for all relevant definitions about modular 
forms). Indeed, one can prove the following 

(3.1.5) Theorem. Let f be a modular cusp form of weight 2 on the group To(N) 
(equivalently f~ is a differential of the first kind on Xo(N) = fJ/ To(N)). 



H. Cohen 233 

Assume that f is a normalized eigenform of the Hecke operators. Then there 
exists an elliptic curve E defined over Q such that f = fE, i.e. such that the 
Mellin transform of f is equal to (27r)-ST(s)L(E,s) = N-s/2 A(E,s). 

Such a curve E is called a modular elliptic curve, and is a natural quotient 
of the Jacobian of the curve Xo(N). Since analytic continuation and functional 
equations are trivial consequences of the modular invariance of modular forms 
we obtain: 

(3.1.6) Corollary. Let E be a modular elliptic curve, and let f = L:n>l anqn be 
the corresponding cusp form. Then conjecture 3.1.4 is true. In addZtion, it is 
known from Atkin-Lehner theory that one must have f( -lj(Nr» = fNr 2 fer) 
with f = ±1. Then the functional equation is 

A(E,2 - s) = -fA(E, s). 

(Please note the minus sign, which is a cause for many confusions and 
mistakes in tables). 

With theorem 3.1.5 in mind, it is natural to ask if the converse is true, i.e. 
whether any elliptic curve over Q is modular. This conjecture was first set forth 
by Taniyama. However, its full importance and plausibility was understood only 
after Weil proved the following theorem, which we state only in a vague form 
(the precise statement can be found e.g. in (Ogg 1969»: 

(3.1.7) Theorem. Let fer) = L:n>l anqn, and for all primitive Dirichlet char-
acters X of conductor m set -

L(f ) - '"' anx(n) ,X,s - L n S ' 

n2::1 

A(f,x,s) = INm2 IB / 2(27r)-ST(s)L(f,x,s). 

Assume that these functions satisfy functional equations of the following form: 

A(f, x, 2 - s) = w(X)A(f, x, s), 

where w(X) has modulus one, and assume that as X varies, w(X) satisfies certain 
compatibility conditions (this is where we are imprecise). Then f is a modular 
form of weight 2 over To(N). 

Because of this theorem, the above conjecture becomes much more plau­
sible. The Taniyama-Weil conjecture is thus as follows: 

(3.1.8) Conjecture. Let E be an elliptic curve over Q, let L(E, s) = L:n>l ann-s 

be itll L-lleriell, and fE(r) = I:n>l anqn the inverlle Mellin transform of 

(27r)-S r(s)L(E, s). Then f ill a CUllP form of weight 2 on To(N) which is an 
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eigenfunction of the Hecke operators. Furthermore there exists a morphism ¢ 
of curves from Xo(N) to E, defined over Q, such that the inverse image by ¢ of 
the differential dx /(2y + al x + a3) is the differential c(2i7r )f( T )dT = cf( T )dq/ q, 
where c is some constant. 

Note that the constant c, called Manin's constant, is conjectured to be 
always equal to ± 1. 

A curve satisfying the Taniyama-Weil conjecture has been called above a 
modular elliptic curve. However since this may lead to some confusion with 
modular curves (such as the curves Xo(N)) which are in general not ellip­
tic, they are called Wei I curves (which incidentally seems a little unfair to 
Taniyama). 

This is certainly one of the most important conjectures in number theory. 
It has been verified in many cases. For example, Shimura has proved (Shimura 
1971B and 1971C), using Weil's theorem 3.1.7, that it is true for all curves 
with complex multiplication, which unfortunately form a very thin set of curves 
among elliptic curves. It has also been verified for certain conductors. Moreover, 
more recently, conjectures of an even more general character have emerged of 
which the Taniyama-Weil conjecture is only a special case, for example the con­
jecture of Serre (Serre 1987) stating in rough terms that any odd 2-dimensional 
representation of the Galois group Gal(Q/Q) over a finite field must come from 
a modular form. 

Another result, due to Ribet (1988, to appear), is that the Taniyama­
Weil conjecture implies the full strength of Fermat's last 'theorem' (FLT): if 
xn +yn = zn with x, y, z non-zero integers, then one must have n:::; 2. For me, 
this is the first strong evidence that FLT is true. Since the work of Kummer 
and successors, and even with the work of Faltings (who proved that for any 
given n 2: 3 there are only finitely many coprime solutions), it seemed possible 
that FLT could fail for some accidental reason. Ribet's result makes this very 
implausible. Indeed, before his result, the failure of FLT would have had essen­
tially no number-theoretic implications, while the failure of the Taniyama-Weil 
conjecture would have major consequences for people working in the subject 
(probably as much as if the Riemann hypothesis were false). 

3.2 The Birch and Swinnerton-Dyer Conjecture 

The other fundamental conjecture on elliptic curves was stated by Birch and 
Swinnerton-Dyer after doing quite a lot of computer calculations on elliptic 
curves (Birch-Swinnerton-Dyer 1963 and 1965). For the remaining of this para­
graph, we assume that we are dealing with a curve E defined over Q and satisfy­
ing conjecture 3.1.4, for example a curve with complex multiplication, or more 
generally a Weil curve. (The initial computations of Birch and Swinnerton-Dyer 
were done on curves with complex multiplication). 

Recall that we defined in a purely algebraic way the rank of an elliptic 
curve. A weak version of the Birch and Swinnerton-Dyer Conjecture (BSD) is 
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that the rank is positive (i.e. E(Q) is infinite) if and only if L(E, 1) = O. This 
is quite remarkable, and illustrates the fact that the function L(E, s) which is 
obtained by putting together local data for every prime p, conjecturally gives 
information on global data, i.e. on the rational points. 

The precise statement of the Birch and Swinnerton-Dyer conjecture is as 
follows: 

(3.2.1) Conjecture. Let E be an elliptic curve over Q, and assume that con­
jecture 3.1.4 (analytic continuation essentially) is true for E. Then if r is the 
rank of E, the function L( E, s) has a zero of order exactly r at s = 1, and in 
addition 

limes - l)-r L(E, s) = QIIlI(EIQ)IR(EIQ)IE(Q)tors 1-2 II Cp , 
8-+1 

P 

where Q is a real period of E (obtained by computing a complete elliptic inte­
gral), R(E IQ) is the so-called regulator of E, which is an '(" x '(" determinant 
formed by pairing in a suitable way a basis of the non-torsion points, the prod­
uct is over the primes of bad reduction, cp are small easily computed integers, 
and IlI(E IQ) is the most mysterious object, called the Tate-Shafarevitch group 
ofE. 

It would carry us much too far to explain in detail these quantities. How­
ever, it can be useful to give the corresponding result for the O-dimensional 
case. The following theorem is due to Dirichlet. 

(3.2.2) Theorem. Let K be a number field, and let (K( s) be the Dedekind zeta 
function of K. Recall that the group of units in K (algebraic integers whose 
inverses are also algebraic integers) form a finitely generated Abelian group. 
Call w the order of its torsion subgroup (this is simply the number of roots of 
unity in K), and let r be its rank (equal to '("1 + r2 - 1, where '("1 and 2'("2 are 
the number of real and complex embeddings of K). Then at s = 0 the function 
(K( s) has a zero of order '(", and one has: 

where Cl(K) is the class group of K and R(K) its regulator. 

This formula is very similar to the BSD formula, with the regulator and 
torsion points playing the same role, and with the class group replaced by the 
Tate-Shafarevitch group, the units of K being of course the analogues of the 
rational points. 

(3.2.3) Remark. If one assumes Taniyama-Weil, BSD and a certain Riemann 
Hypothesis, one can give an algorithm to compute the rank of an elliptic curve. 
See e.g. (Mestre 1981). 
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Apart from numerous numerical verifications of BSD, few results have been 
obtained on BSD, and all are very deep. For example, it is only since 1987 that 
it has been proved by Rubin and Kolyvagin (Kolyvagin 1988, 1989) that III 
is finite for certain elliptic curves. The first result on BSD was obtained by 
Coates and Wiles (Coates-Wiles 1977) who showed that if E has complex mul­
tiplication and if E(Q) is infinite, then L(E, 1) = O. Further results have been 
obtained, in particular by Gross-Zagier, Rubin and Kolyvagin (see Gross-Zagier 
1983 and 1986, and Kolyvagin 1988 and 1989). For example, the following is 
now known: 

(3.2.4) Theorem. Let E be a Weil curve. Then 

1. If L(E, 1) =1= 0 then r = o. 
2. If L(E, 1) = 0 and L'(E, 1) =1= 0 then r = 1 

Furthermore, in both these cases I III I is finite, and up to some trivial fac­
tors divides the conjectural IIIII involved in BSD. 

The present status of BSD is essentially that very little is known when the 
rank is greater than or equal to 2. 

Another conjecture about the rank is that it is unbounded. This seems 
quite plausible. The present record is due to Mestre (Mestre 1982) who obtained 
an elliptic curve of rank 14. 
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1. A Supply of Modular Forms 

The word 'modular' refers to the moduli space of complex curves (= Riemann 
surfaces) of genus 1. Such a curve can be represented as C/ A where A C C is 
a lattice, two lattices Al and A2 giving rise to the same curve if A2 = AAI for 
some non-zero complex number A. (For properties of curves of genus 1, see the 
lectures of Cohen and Bost/Cartier in this volume.) A modular function assigns 
to each lattice A a complex number F(A) with F(AI) = F(A2) if A2 = AAI. 
Since any lattice A = ZWI +ZW2 is equivalent to a lattice of the form ZT+Z with 
T (= Wt/W2) a non-real complex number, the function F is completely specified 
by the values f( T) = F(ZT + Z) with T in C \ lR. or even, since f( T) = f( -T), 
with T in the complex upper half-plane S) = { T E C I !S(T) > OJ. The fact 
that the lattice A is not changed by replacing the basis {WI, W2} by the new 
basis aWl + bw2, CWI + dW2 (a, b, c, d E Z, ad - bc = ± 1) translates into the 

modular invariance property f( aT + db) = f( T). Requiring that T always belong 
CT+ 

to S) is equivalent to looking only at bases {WI, W2} which are oriented (i.e. 
!S(Wt/W2) > 0) and forces us to look only at matrices (~~) with ad - bc = +1; 
the group PSL2 (Z) of such matrices will be denoted rl and called the (full) 
modular group. Thus a modular function can be thought of as a complex-valued 
function on S) which is invariant under the action T f-t (aT + b) / (CT + d) of r l 
on S). Usually we are interested only in functions which are also holomorphic 
on S) (and satisfy a suitable growth condition at infinity) and will reserve the 
term 'modular function' for these. The prototypical example is the modular 
invariant j ( T) = e-27rir + 744 + 196884e27rir + ... which will be defined below 
(cf. Section B). However, it turns out that for many purposes the condition of 
modular invariance is too restrictive. Instead, one must consider functions on 
lattices which satisfy the identity F( AI) = A k F( A2) when A2 = AAI for some 
integer k, called the weight. Again the function F is completely determined by 
its restriction f( T) to lattices of the form ZT + Z with T in S), but now f must 
satisfy the modular transformation property 

(1) f(aT+db) = (CT + d)kf(T) 
CT+ 

rather than the modular invariance property required before. The advantage of 
allowing this more general transformation property is that now there are func­
tions satisfying it which are not only holomorphic in S), but also 'holomorphic 
at infinity' in the sense that their absolute value is majorized by a polynomial in 
max{l,!S(T)-I}. This cannot happen for non-constant r1-invariant functions 
by Liouville's theorem (the function j (T) above, for instance, grows exponen­
tially as !S( T) tends to infinity). Holomorphic functions f : S) --t C satisfying 
(1) and the growth condition just given are called modular forms of weight k, 
and the set of all such functions-clearly a vector space over C-is denoted by 
Mk or Mk(r1). The subspace of functions whose absolute value is majorized 
by a multiple of !S(T)-k/2 is denoted by Sk or Sk(rl ), the space of cusp forms 
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of weight k. It is a Hilbert space with respect to the Petersson scalar product 

(2) (f,g) = Jr [ v k f(T)g(T) dp. 
J SJ/ r 1 

where we have written T as u + iv and dp. for the SL(2, lR)-invariant measure 
v-2 du dv on .!J. 

The definition of modular forms which we have just given may not at first 
look very natural. The importance of modular forms stems from the conjunction 
of the following two facts: 

(i) They arise naturally in a wide variety of contexts in mathematics and 
physics and often encode the arithmetically interesting information about a 
problem. 

(ii) The space Mk is finite-dimensional for each k. 
The point is that if dim Mk = d and we have more than d situations giving rise 
to modular forms in Mk, then we automatically have a linear relation among 
these functions and hence get 'for free' information-often highly non-trivial­
relating these different situations. The way the information is 'encoded' in the 
modular forms is via the Fourier coefficients. From the property (1) applied 
to the matrix (~:) = (~~) we find that any modular form f( T) is invariant 
under T t-+ T + 1 and hence, since it is also holomorphic, has a Fourier expansion 
as L an e271"inr. The growth conditions defining Mk and Sk as given above are 
equivalent to the requirement that an vanish for n < 0 or n ::; 0, respectively 
(this is the form in which these growth conditions are usually stated). What 
we meant by (i) above is that nature-both physical and mathematical-often 
produces situations described by numbers which turn out to be the Fourier 
coefficients of a modular form. These can be as disparate as multiplicities of 
energy levels, numbers of vectors in a lattice of given length, sums over the 
divisors of integers, special values of zeta functions, or numbers of solutions of 
Diophantine equations. But the fact that all of these different objects land in 
the little spaces Mk forces the existence of relations among their coefficients. 
In these notes we will give many illustrations of this type of phenomenon and 
of the way in which modular forms are used. But to do this we first need to 
have a supply of modular forms on hand to work with. In this first part a 
number of constructions of modular forms will be given, the general theory 
being developed at the same time in the context of these examples. 

A Eisenstein series 

The first construction is a very simple one, but already here the Fourier coef­
ficients will turn out to give interesting arithmetic functions. For k even and 
greater than 2, define the Eisenstein series of weight k by 

(3) (k - I)! ,,' 1 
Gk(T) = 2(27l"i)k ~ (mT + n)k' 

m,n 
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where the sum is over all pairs of integers (m,n) except (0,0). (The reason 
for the normalizing factor (k - 1)!j2(27ri)k, which is not always included in 
the definition, will become clear in a moment.) This transforms like a modular 
form of weight k because replacing Gk( r) by (cr+d)-kGk( ~;$~) simply replaces 
(m, n) by (am + cn, bm + dn) and hence permutes the terms of the sum. We 
need the condition k > 2 to guarantee the absolute convergence of the sum (and 
hence the validity of the argument just given) and the condition k even because 
the series with k odd are identically zero (the terms (m, n) and (-m, -n) 
cancel). 

To see that Gk satisfies the growth condition defining Mk, and to have our 
first example of an arithmetically interesting modular form, we must compute 
the Fourier development. We begin with the Lipschitz formula 

L 1 (-27ri)k Loo k-l 2".irz = r e 
(z+n)k (k-1)! 

nEZ r=l 

(k E Z~2' z E SJ), 

which is proved in Appendix A. Splitting the sum defining Gk into the terms 
with m = ° and the terms with m =f. 0, and using the evenness of k to restrict 
to the terms with n positive in the first and m positive in the second case, we 
find 

00 1 k/2 

where (8) = E --; is Riemann's zeta function. The number (-1)(2".~~-1)!(k) 
n=l n 

is rational and in fact equals - ~;, where Bk denotes the kth Bernoulli number 
k 

( = coefficient of xkl in _x_); it is also equal to -21 (l-k), where the definition 
. eX -1 

of (8) is extended to negative 8 by analytic continuation (for all of this, cf. 
the lectures of Bost and Cartier). Putting this into the formula for Gk and 
collecting for each n the terms with rm = n, we find finally 

(4) Gk(r) = - :; + f (7k_l(n)qn = ~(1- k) + f (7k_l(n)qn, 
n=l n=l 

where (7k-l(n) denotes Erin rk- 1 (sum over all positive divisors r of n) and 

we have used the abbreviation q = e2".ir, a convention that will be used from 
now on. 

The right-hand side of (4) makes sense also for k = 2 (B2 is equal to ~) 
and will be used to define a function G2 (r). It is not a modular form (indeed, 
there can be no non-zero modular form f of weight 2 on the full modular group, 
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since f( r) dr would be a meromorphic differential form on the Riemann surface 
SJ/ r 1 U {oo} of genus 0 with a single pole of order:::; 1, contradicting the residue 
theorem). However, its transformation properties under the modular group can 
be easily determined using Hecke's trick: Define a function G~ by 

G* () -1 r ('" 1 ) 
2 r = 87r2 E~ L (mr + n)2lmr + nl' . 

m,n 

The absolute convergence of the expression in parentheses for E > 0 shows 
that G~ transforms according to (1) (with k = 2), while applying the Poisson 
summation formula to this expression first and then taking the limit E "" 0 
leads easily to the Fourier development G~(r) = G2(r) + (87rv)-1 (r = u + 
iv as before). The fact that the non-holomorphic function G~ transforms like 
a modular form of weight 2 then implies that the holomorphic function G2 

transforms according to 

(5) 

by 
The beginnings of the Fourier developments of the first few Gk are given 

1 
G 2( r) = - 24 + q + 3q2 + 4l + 7 q4 + 6q5 + 12q6 + 8q 7 + 15q8 + ... 

1 
G4( r) = 240 + q + 9q2 + 28q3 + 73q4 + 126q5 + 252q6 + ... 

1 23 4 
G 6 (r) = - 504 + q + 33q + 244q + 1057q + ... 

1 23 
G 8 (r) = -- + q + 129q + 2188q + ... 

480 
1 2 G1o(r) = -- +q+513q + ... 

264 

() 691 2 
G12 r = --- + q + 2049q + ... 

65520 
1 2 

G14(r) = -- + q + 8193q + ... 
24 

Note that the Fourier coefficients appearing are all rational numbers, a special 
case of the phenomenon that Mk in general is spanned by forms with rational 
Fourier coefficients. It is this phenomenon which is responsible for the richness 
of the arithmetic applications of the theory of modular forms. 

B The discriminant function 

Define a function Ll in SJ by 

00 

(6) L1( r) = q II (1 _ qr)24 

r=l 
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Then 

( 
00 rqr) 

= 27ri 1 - 24 2: ~ 
r=l q 

= -487ri ( - 214 + f (2: r) qn ) 
n=l rln 

The transformation formula (5) gives 

or 

1 Ll/( ar+b) 
cr+d 

(cr + d)2 Ll( ~;:~) 

Ll/(r) c 
--+12-­
Ll(r) cr + d 

d ar + b d 
-d (log Ll(--d)) = -d log(Ll(r)(cr + d)12). 

r cr+ r 

Integrating, we deduce that Ll( ~;:~) equals a constant times (cr + d)12 Ll( r). 
Moreover, this constant must always be 1 since it is 1 for the special matrices 
(::) = (~D (compare Fourier developments!) and (::) = (~-;/) (take r = 
i !) and these matrices generate r l . Thus Ll(r) satisfies equation (1) with 
k = 12. Multiplying out the product in (6) gives the expansion 

(7) Ll( r) = q - 24q2 + 252q3 - 1472q4 + 4830q5 - 6048q6 + 8405q 7 - .•• 

in which only positive exponents of q occur. Hence Ll is a cusp form of weight 
12. 

Using Ll, we can determine the space of modular forms of all weights. 
Indeed, there can be no non-constant modular form of weight 0 (it would be 
a non-constant holomorphic function on the compact Riemann surface 5)/ r l U 
{oo}), and it follows that there can be no non-zero modular form of negative 
weight (if f had weight m < 0, then p2 Lllml would have weight 0 and a 
Fourier expansion with no constant term). Also, Mk is empty for k odd (take 
a = d = -1, b = c = 0 in (1)), as is M 2 . For k even and greater than 2, we have 
the direct sum decomposition Mk = (Gk) Ef) Sk, since the Eisenstein series Gk 
has non-vanishing constant term and therefore subtracting a suitable multiple 
of it· from an arbitrary modular form of weight k produces a form with zero 
constant term. Finally, Sk is isomorphic to Mk-12: given any cusp form f of 
weight k, the quotient f / Ll transforms like a modular form of weight k - 12, 
is holomorphic in 5) (since the product expansion (6) shows that Ll does not 
vanish there), and has a Fourier expansion with only nonnegative powers of q 
(since f has an expansion starting with a strictly positive power of q and Ll an 
expansion starting with ql). It follows that Mk has finite dimension given by 

k < 0 0 2 4 6 8 10 12 14 16 18 k k + 12 
dim Mk 0 1 0 1 1 1 1 2 1 2 2 ... d ... d + 1 
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It also follows, since both Gk and Ll have rational coefficients, that Mk has 
a basis consisting of forms with rational coefficients, as claimed previously; 
such a basis is for instance the set of monomials LllGk_121 with 0 ::; 1 ::; 
(k - 4)/12, together with the function Llk/12 if k is divisible by 12. We also get 
the first examples of the phenomenon, stressed in the introduction to this part, 
that non-trivial arithmetic identities can be obtained 'for free' from the finite­
dimensionality of Mk. Thus both G~ and Gs belong to the one-dimensional 
space Ms, so they must be proportional; comparing the constant terms gives 
the proportionality constant as 120 and hence the far from obvious identity 

n-l 

0"7(n) = 0"3(n) + 120 L 0"3(m)0"3(n - m). 
m=l 

Similarly, (240G4)3 - (504G6)2 and Ll are both cusp forms of weight 12 and 
hence must be proportional. (Cf. Cohen's lectures for the interpretation of this 
identity in terms of elliptic curves.) In fact, one deduces easily from what has 
just been said that every modular form is (uniquely) expressible as a polynomial 
in G4 and G6 • 

Comparing the Fourier expansions of the first few Gk as given in the last 
section and the dimensions of the first few Mk as given above, we notice that 
Sk is empty exactly for those values of k for which the constant term -Bk/2k 
of Gk is the reciprocal of an integer (namely, for k = 2, 4, 6, 8, 10 and 14). 
This is not a coincidence: one knows for reasons going well beyond the scope of 
these lectures that, if there are cusp forms of weight k, there must always be 
congruences between some cusp form and the Eisenstein series of this weight. 
If this congruence is modulo a prime p, then p must divide the numerator of 
the constant term of G k (since the constant term of the cusp form congruent 
to G k modulo p is zero). Conversely, for any prime p dividing the numerator 
of the constant term of G k, there is a congruence between G k and some cusp 
form. As an example, for k = 12 the numerator of the constant term of G k is 
the prime number 691 and we have the congruence G12 == Ll (mod 691) (e.g. 
2049 == -24 (mod 691)) due to Ramanujan. 

Finally, the existence of Ll allows us to define the function 

j(r) = (240G4? = (1 + 240q + 2160q2 + ... )3 
Ll q - 24q2 + 252q3 + .. . 

= q-l + 744 + 196884q + 21493760q2 + ... 

and see (since G! and Ll are modular forms of the same weight on r 1 ) that 
it is invariant under the action of n on ij. Conversely, if rfl( r) is any modular 
function on ij which grows at most exponentially as ~(r) -t 00, then the 
function f( r) = rfl( r )Ll( r)m transforms like a modular form of weight 12m and 
(if m is large enough) is bounded at infinity, so that f E M 12m ; by what we 
saw above, f is then a homogeneous polynomial of degree m in G! and Ll, so 
rfl = f / Ll m is a polynomial of degree::; m in j. This justifies calling j (r) 'the' 
modular invariant function. 
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C Theta series 

We will be fairly brief on this topic, despite its great importance and interest 
for physicists, because it is treated in more detail in the lectures of Bost and 
Cartier. The basic statement is that, given an r-dimensionallattice in which 
the length squared of any vector is an integer, the multiplicities of these lengths 
are the Fourier coefficients of a modular form of weight ¥. By choosing a basis 
of the lattice, we can think of it as the standard lattice zr c ]Rr; the square­
of-the-Iength function then becomes a quadratic form Q on ]Rr which assumes 
integral values on zr, and the modular form in question is the theta series 

eQ(r) = L qQ(x). 
xEZ'" 

In general this will not be a modular form on the full modular group n 
PSL2(Z) , but on a subgroup of finite index. As a first example, let r = 2 and 
Q be the modular form Q( Xl, X2) = xi + X~, so that the associated theta-series, 
whose Fourier development begins 

counts the number of representations of integers as sums of two squares. This 
is a modular form of weight 1, not on rl (for which, as we have seen, there 
are no modular forms of odd weight), but on the subgroup ro(4) consisting of 
matrices (: ~) with c divisible by 4; specifically, we have 

( ar + b) d-l eQ -- = (-1)-2 (cr + d)eQ(r) 
cr+d 

for all (~:) E ro(4). To prove this, one uses the Poisson summation formula 
to prove that eQ(-1/4r) = -2ireQ(r); together with the trivial invariance 
property eQ( r + 1) = eQ( r), this shows that eQ is a modularform of weight 1 

with respect to the group generated by (~ -o!) and G ~), which contains roC 4) 
as a subgroup of index 2. 

More generally, if Q : zr --+ Z is any positive definite integer-valued qua­
dratic form in r variables, r even, then eQ is a modular form of weight r /2 
on some group ro(N) = {(~~) E r l I c == 0 (mod N)} with some character X 
(mod N), i.e. 

ab 
for all (c d) E ro(N). 

The integer N, called the level of Q, is determined as follows: write Q( x) = 
txtAx where A is an even symmetric rXr matrix (i.e., A = (aij), aij = aji E Z, 
ai; E 2Z); then N is the smallest positive integer such that N A -1 is again 
even. The character X is given by X( d) = (q) (Kronecker symbol) with 

D = (_lY/2 det A. For the form Q(Xl, X2) = xi +x~ above, we have A = (~~), 
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N = 4, Xed) =: (_1)(d-l)/2. As a further example, the two quadratic forms 
Ql(Xl,X2) = x:~ + XlX2 + 6x~ and Q2(Xl,X2) = 2xi + XlX2 + 3x~ have level 
N = 23 and character Xed) = (-;3) = (2d3)j the sum eQl(r) + 2eQ2 (r) is an 
Eisenstein series 3+ 2 L:~=l (L:dln X( d)) qn of weight 1 and level 23 (this is a spe­
cial case of Gauss's theorem on the total number of representations of a natural 
number by all positive definite binary quadratic forms of a given discriminant), 
and the difference eQl -eQ2 is two times the cusp form q n~=l (1_ qn)(1_q23n), 
the 24th root of Ll(r)Ll(23r). 

If we want modular forms on the full modular group n = PSL2 (Z) , then 
we must have N = 1 as the level of Qj equivalently, the even symmetric matrix 
A must be unimodular. This can happen only if the dimension r is divisible by 
8 (for a proof using modular forms, cf. Section D of Part 2). In dimension 8 
there is only one such quadratic form Q up to isomorphism (i.e., up to change 
of base in ZS), and eQ is a multiple ofthe Eisenstein series G4 • In dimension 16 
there are two equivalence classes of forms Q, in dimension 24 there are 24, and 
in dimension 32 there are known to be more than 80 million classes. A theorem 
of Siegel tells us that the sum of the theta-series attached to all the Q of a given 
dimension r, each one weighted by a factor l/IAut(Q)I, is a certain multiple of 
the Eisenstein series Gr/ 2 . Notice the applicability of the principle emphasized 
in the introduction that the finite-dimensionality of the spaces M k , combined 
with the existence of modular forms arising from arithmetic situations, gives 
easy proofs of non-obvious arithmetic facts. For instance, the theta-series of the 
unique form Q of dimension 8 must be 240G4 (since it has weight 4 and starts 
with 1), so that there are exactly 2400"3(n) vectors x E ZS with Q(x) = n for 
each n E Nj and the two forms of dimension 16 must have the same theta-series 
(since dimMs == 1 and both series start with 1), so they have the same number 
(= 4800"7 ( n)) of vectors oflength n for every n. This latter fact, as noticed by J. 
Milnor, gives examples of non-isometric manifolds with the same spectrum for 
the Laplace operator: just take the tori lR.16 /'1. l6 with the flat metrics induced 
by the two quadratic forms in question. 

Finally, we can generalize theta series by including spherical functions. If 
Q : Z r -+ Z is our quadratic form, then a homogeneous polynomial P( x) = 
P( Xl, ... ,xr ) is called spherical with respect to Q if LlQP = 0, where LlQ is 

the Laplace operator for Q (i.e. LlQ = L: j iir in a coordinate system (y) for 
J 

which Q = L: U], or LlQ = 2( a~l ' ... , a~r )A -1 (a~l ' ... , a~r)t in the original 
coordinate system, where Q(x) = !xt Ax). If P is such a function, say of degree 
v, then the generalized theta-series 

eQ,p(r) = L P(x)qQ(x) 
xE;{,r 

is a modular form of weight f + v (and of the same level and character as for 
P == 1), and is a cusp form if v > o. As an example, let 

( ) 2 2 82 82 ( ) 4 2 2 4 Q Xl, X2 = Xl + x2, LlQ = ~ 2 + ~ 2' P Xl, X2 = Xl - 6x l X2 + X2 j 
UX I UX 2 
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then teQ,P = q-4q2+0q3+I6q4-I4q5+ ... belongs to the space of cusp forms 
of weight 5 and character (-:4) on roC 4), and since this space is I-dimensional 
it must be of the form 

00 

Ll( 7 )1/6 .:1(27 )1/12 Ll( 47 )1/6 = q IT (1 _ qn )2+2 gcd(n,4). 

n=l 

That P( x) here is the real part of (Xl +iX2)4 is no accident: in general, all spheri­
cal polynomials of degree v can be obtained as linear combinations of the special 
spherical functions ((tAx)", where ( E cr is isotropic (i.e., Q( () = !(t A( = 0). 
Still more generally, one can generalize theta series by adding congruence con­
ditions to the summation over x E zr or, equivalently, by multiplying the 
spherical function P( x) by some character or other periodic function of x. As 
an example of a spherical theta series of a more general kind we mention Free­
man Dyson's identity 

Ll(7) = L (-21 IT (Xi - Xj)) q(x~+x~+x;+x!+X~)/10 
588 1<"<"<5 (Xl, ... ,x5)EZ _, J_ 

Xl+"··+X5=O 
xi::i (mod 5) 

for the discriminant function Ll of Section B. 

D Eisenstein series of half-integral weight 

In the last section, there was no reason to look only at quadratic forms in 
an even number of variables. If we take the simplest possible quadratic form 
Q( Xl) = xi, then the associated theta-series 

B( 7) = L qn2 = 1 + 2q + 2q4 + 2q9 + ... 
nEZ 

is the square-root of the first example in that section and as such satisfies the 
transformation equation 

for a certain number f = fc,d satisfying f4 = 1 (f can be given explicitly in terms 
of the Kronecker symbol (~)). We say that B is a modular form of weight !. 
More generally, we can define modular forms of any half-integral weight r + ! 
(r EN). A particularly convenient space of such forms, analogous to the space 
Mk of integral-weight modular forms on the full modular group, is the space 
Mr+t introduced by W. Kohnen. It consists of all / satisfying the transforma-

tion law f(~;t~) = (fc,d(C7 + d)t)2rH /(7) for all (~:) E ro(4) (equivalently, 
/ jB2r+1 should be roC 4)-invariant) and having a Fourier expansion ofthe form 
L::n20 a(n)qn with a(n) = 0 whenever (-IYn is congruent to 2 or 3 modulo 
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4. For r ;::: 2 this space contains an Eisenstein series G r +! calculated by H. 
Cohen. We do not give the definition and the calculation of the Fourier expan­
sion of these Eisenstein series, which are similar in principle but considerably 
more complicated than in the integral weight case. Unlike the case of integral 
weight, where the Fourier coefficients were elementary arithmetic functions, the 
Fourier coefficients now turn out to be number-theoretical functions of consid­
erable interest. Specifically, we have 

00 

n=O 
(-l)rn=:O or 1 (mod 4) 

H(r, n) qn 

where H(r, n) is a special value of some L-series, e.g. H(r,O) = ((1-2r) = - ~~ 
(where (( s) is the Riemann zeta-function and Em the mth Bernoulli number), 
H(r, 1) = ((1 - r), and more generally H(r, n) = LLl(1 - r) if the number 
L1 = (-1 r n is equal to either 1 or the discriminant of a real or imaginary 
quadratic field, where the L-series L Ll (s) is defined as the analytic continuation 
of the Dirichlet series L~=l ( ~ ) n -8. These numbers are known to be rational, 
with a bounded denominator for a fixed value of r. The first few cases are 

G () 1 1 7 4 3 5 8 25 9 2 12 2 13 55 16 4 17 
2! r = 120 - 12 q - 12q - 5 q - q - 12q - q - q - 12q - q .. . 

G3.!.(r) = -2~2 - ~q3 - ~q4 - 176q7 - 3q8 - 6qll _ 79412 _16q15 _ 323q16 .. . 
2 

G (r) = _1_ + _l_q + ill q4 + 2q5 + llq8 + 2161 q9 + 46q12 + 58q13 ... 
4.!. 240 120 120 120 

2 

G5.!.(r) = -1~2 + h 3 + ~q4 + 32q7 + 57q8 + 2~~Oqll + 5;9 q12 + 992q15 ... 
2 

In each of these four cases, the space Mr+l is one-dimensional, generated by 
2 

Gr+1 ; in general, Mr+l has the same dimension as M 2r . 
2 2 

Just as the case of G 2 , the Fourier expansion of G r +1 / 2 still makes sense 
for r = 1, but the analytic function it defines is no longer a modular form. 
Specifically, the function H(r, n) when r = 1 is equal to the Hurwitz-Kronecker 
class number H(n), defined for n > 0 as the number of PSL2 (Z)-equivalence 
classes of binary quadratic forms of discriminant -n, each form being counted 
with a multiplicity equal to 1 divided by the order of its stabilizer in PSL2 (Z) 
(this order is 2 for a single equivalence class of forms if n is 4 times a square, 
3 for a single class if n is 3 times a square, and 1 in all other cases). Thus the 
form G3 / 2 = Ln H(n)qn has a Fourier expansion beginning 

As with G2 we can use 'Heeke's trick' (cf. Section A) to define a function G;/2 
which is not holomorphic but transforms like a holomorphic modular form 
of weight 3/2. The Fourier expansion of this non-holomorphic modular form 
differs from that of G3 / 2 only at negative square exponents: 
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where v denotes the imaginary part of rand ,8(t) the function fIco x-3/ 2 e-xt dx, 
which can be expressed in terms of the error function. 

E New forms from old 

The words 'new' and 'old' here are not being used in their technical sense­
introduced in Part 2-but simply to refer to the various methods available for 
manufacturing modular forms out of previously constructed ones. 

The first and obvious method is multiplication: the product of a modular 
form of weight k and one of weight t is a modular form of weight k + t. Of 
course we have already used this many times, as when we compared G~ and 
Gs . We also found the structure of the graded ring M* = E9 Mk of all modular 
forms on the full modular group r1 : it is the free C-algebra on two generators 
G4 and G6 of weights 4 and 6. The modular forms on a subgroup r c r1 of 
finite index also form a ring. For instance, for r = Fo(2) this ring is the free 
C-algebra on two generators G~2) and G4 of weights 2 and 4, where 

(this is a modular form because G2 ( r )-2G2 (2r) can also be written as G2( r)-
2G2(2r), and Gi transforms like a modular form of weight 2 on r 1). In general, 
the graded ring of modular forms on r will not be a free algebra, but must be 
given by more than 2 generators and a certain number of relations; it will be 
free exactly when the Riemann surface 5)/ ru {cusps} has genus o. We also note 
that the ring of modular forms on r contains M*(n) = qG4 , G6 ] as a subring 
and hence can be considered as a module over this ring. As such, it is always free 
on n generators, where n is the index of r in n. For instance, every modular 
form of weight k on ro(2) can be uniquely written as A(r)G~2)(r)+B(r)G4(r)+ 
C(r)G4(2r) where A E Mk-2, B, C E Mk-4 (example: G~2)(r? = 112G4(r) + 
tG4(2r)). 

The next method is to apply to two known modular forms / and g of 
weights k and t H. Cohen's differential operator 

(8) 

where v is a nonnegative integer and ICI-'), gCI-') denote the /lth derivatives 
of I and g. As we will see in a moment, this is a modular form of weight 
k + 1 + 2v on the same group as / and g. For v = 0 we have Fo(f, g) = /g, 
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so the new method is a generalization of the previous one. For v = 1 we have 
F1(f,g) = 2~i[lf'g - kfg']; this operation is antisymmetric in f and g and 
satisfies the Jacobi identity, so that it makes M*-2 = E9 M n - 2 into a graded 

n 

Lie algebra. For v positive, Fv(f, g) has no constant term, so that Fv maps 
Mk@Mt to Sk+l+2v. The first non-trivial example is F1(G4 ,G6 ) = -315L1, 

which gives the formula 

r(n) -_ 50"3(n) + 70"5(n) n - 35 " 12 ~ (6a - 4b)0"3(a)0"5(b) 
a,b>O 

a+b=n 

for the coefficient r( n) of qn in L1. (Notice that this identity involves only 
integers; in general, it is clear that Fv maps functions with integral or rational 
Fourier coefficients to another such function.) As another example, observe that 
applying Fv to two theta series eQj associated to quadratic forms Qj : zrj -4 Z 
(j = 1,2) gives rise to a theta-series attached to the form Q1 E9 Q2 : z r ,+r2 -4 Z 
and a spherical polynomial of degree v. For instance, if B( r) = E qn2 is the 
basic theta-series of weight ~ on ro(4), then one checks easily that ~F2(B,B) 

is the function eQ,p = E X1,X2EZ(x1 - 6xix~ + x~)qX~+x~ discussed at the end 
of Section C. Thus the construction of modular forms via theta-series with 
spherical functions is a special case of the use of the differential operator Fv. 

We now sketch the proof that Fv maps modular forms to modular forms. 
H f is a modular form of weight k on some group r, then for (~:) E rand 
{l E Z~o the formula 

(9) 

is easily proved by induction on {l (to get from {l to {l + 1, just differentiate and 
multiply by (cr + d)2). These transformation formulas can be combined into 
the single statement that the generating function 

(10) 

satisfies 

(11) 

Writing down the same formula for a second modular form 9 of weight i, we 
find that the product 

i( r, X)fj( r, -X) 
00 (2 f 
~ (v + k -I~~V + i-I)! Fv(f,g)(r)XV 
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is multiplied by (CT + d)k+l when T and X are replaced by ~;t~ and (cr!d)2' 

and this proves the modular transformation property of Fv(f, g) for every v. 
Finally, we can get new modular forms from old ones by applying the 'slash 

operator' 

to an f of weight k on r, where 'Y = (: ~) is a 2 x 2 integral matrix which does 
not belong to r (if'Y E r, of course, then flk'Y = f by definition). This will in 
general be a modular form on some subgroup of r of finite index, but often by 
combining suitable combinations of images flk'Y we can obtain functions that 
transform like modular forms on r or even on a larger group. Important special 
cases are the operators 

(m EN), which map L: a( n )qn to L: a( n )qmn and to L: a( mn )qn, respectively. 
Both map forms of weight k on ro(N) to forms of the same weight on ro(mN); 
if m divides N, then Um even maps forms on ro(N) to forms on ro(N). Some­
times, applying U m can even reduce the level, which is always a good thing. For 
instance, if f = L:a(n)qn is a modular form of even weight k on ro(4), then 
Uz! = L: a(2n )qn is a modularform of weight k on ro(2), and if f has the addi­
tional property that a(n) = 0 whenever n == 2 (mod 4), then U4f = L: a(4n)qn 
even belongs to Mk = Mk(rt). Such f occur, for instance, when one multiplies 
(or applies the operator Fv to) two forms gl E Mrl +~, g2 E Mr2+~ with 
rl +'2 = k -1 (resp. 'I +'2 = k - 2v -1), since then 'I and '2 have opposite 
parity and consequently one of the g's contains only powers qn with n == 0 or 
1 (mod 4), the other only powers with n == 0 or 3 (mod 4). This situation will 
arise in Part 3 in the derivation of the Eichler-Selberg trace formula. 

Important operators which can be built up out of the Vm and Um are the 
Hecke operators, which are the subject of the next part. 

F Other sources of modular forms 

We have described the main analytic ways to produce modular forms on r 1 and 
its subgroups. Another method comes from algebraic geometry: certain power 
series L: a( n )qn whose coefficients a( n) are defined by counting the number of 
points of algebraic varieties over finite fields are known or conjectured to be 
modular forms. For example, the famous 'Taniyama-Weil conjecture' says that 
to any elliptic curve defined over Q there is associated a modular form L: a( n )qn 
of weight 2 on some group ro(N) with p + 1 - a(p) equal to the number of 
points of the elliptic curve over IFp for every prime number p. However, this 
cannot really be considered a way of constructing modular forms, since one 
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can usually only prove the modularity of the function in question if one has an 
independent, analytic construction. 

In a similar vein, one can get modular forms from algebraic number theory 
by looking at Fourier expansions l: a( n )qn whose associated Dirichlet series 
l: a( n)n -8 are zeta functions coming from number fields or their characters. 
For instance, a theorem of Deligne and Serre says that one can get all modular 
forms of weight 1 in this way from the Artin L-series of two-dimensional Galois 
representations with odd determinant satisfying Artin's conjecture (that the 
L-series is holomorphic). Again, however, the usual way of applying such a 
result is to construct the modular form independently and then deduce that 
the corresponding Artin L-series satisfies Artin's conjecture. 

In one situation the analytic, algebraic geometric, and number theoretic 
approaches come together. This is for the special class of modular forms called 
'CM' (complex multiplication) forms: analytically, these are the theta series 
eQ,p associated to a binary quadratic form Q and an arbitrary spherical func­
tion P on Z2; geometrically, they arise from elliptic curves having complex mul­
tiplication (i.e., non-trivial endomorphisms); and number theoretically, they are 
given by Fourier developments whose associated Dirichlet series are the L-series 
of algebraic Hecke grossencharacters over an imaginary quadratic field. An ex­
ample is the function" (x4 -6x2x2 +x4)qX~+X~ = q IToo (1_qn)2+2(n,4) 6Xl,X2EZ 1 1 2 2 n=l 
which occurred in Section C. The characteristic property of these CM forms 
is that they have highly lacunary Fourier developments. This is because bi­
nary quadratic forms represent only a thin subset of all integers (at most 
o (x j(log X )1/2) integers :s x). 

Finally, modular forms in one variable can be obtained by restricting in 
various ways different kinds of modular forms in more than one variable (J acobi, 
Hilbert, Siegel, ... ), these in turn being constructed by one of the methods of 
this part. The Jacobi forms will be discussed in Part 4. 



D. Zagier 253 

2. Heeke Theory 

The key to the rich internal structure of the theory of modular forms is the 
existence of a commutative algebra of operators Tn (n E N) acting on the 
space Mk of modular forms of weight k. The space Mk has a canonical basis of 
simultaneous eigenvectors of all the Tn; these special modular forms have the 
property that their Fourier coefficients a( n) are algebraic integers and satisfy 
the multiplicative property a( nm) = a( n )a( m) whenever nand m are relatively 
prime. In particular, their associated Dirichlet series 2: a( n)n -8 have Euler 
products; they also have analytic continuations to the whole complex plane and 
satisfy functional equations analogous to that of the Riemann zeta function. 
We will define the operators Tn in Section A and describe their eigenforms 
and the associated Dirichlet series in Sections Band C, respectively. The final 
section of this part describes the modifications of the theory for modular forms 
on subgroups of PSL2(71,). 

A Heeke operators 

At the beginning of Part 1 we introduced the notion of modular forms of higher 
weight by giving an isomorphism 

(1) 
F(A) f-7 fer) = F(71,r+ 71,), 

fer) f-7 F(A) = w:;k f(wI/W2) (A = 71,Wl + 71,W2, <;S(wI/w2) > 0) 

between functions f in the upper half-plane transforming like modular forms 
of weight k and functions F of lattices A C <C which are homogeneous of weight 
-k, F(AA) = A -k F(A). If we fix a positive integer n, then every lattice A has 
a finite number of sublattices A' of index n, and we have an operator Tn on 
functions of lattices which assigns to such a function F the new function 

(2) TnF(A) = n k- 1 L F(A') 
A'<;;;A 

[A:A']=n 

(the factor n k - 1 is introduced for convenience only). Clearly TnF is homoge­
neous of degree -k if F is, so we can transfer the operator to an operator Tn on 
functions in the upper half-plane which transform like modular forms of weight 
k. This operator is given explicitly by 

(3) 

and is called the nth Heeke operator in weight k; here M n denotes the set of 
2 x 2 integral matrices of determinant nand r 1 \Mn the finite set of orbits 
of Mn under left multiplication by elements of r 1 = PSL2(71,), Clearly this 
definition depends on k and we should more correctly write Tk(n)f or (the 
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standard notation) flkTn, but we will consider the weight as fixed and write 
simply Tnf for convenience. In terms of the slash operator 

ab h = (e d)' a,b,e,d E JR, ad - be > 0) 

introduced in Part IE, formula (3) can be expressed in the form 

Tnf( T) = n f-I L flklt. 

I-'Er, \M n 

From the fact that Ik is a group operation (i.e. fIJ,I'I2) = (Ilk 'Idlk '12 for ''(1, '12 
in G Lt (JR)), we see that Tnf is well-defined (changing the orbit representative 
It to 'lit with 'I E r I doesn't affect flklt because flk'l = f) and again transforms 
like a modular form of weight k on TI ((Tnf)lk'l = Tnf for 'I E TI because 
{It 'I I It E TI \Mn} is another set of representatives for TI \Mn). Of course, 
both of these properties are also obvious from the invariant definition (2) and 
the isomorphism (1). 

Formula (3) makes it clear that Tn preserves the property of being holo­
morphic. We now give a description of the action of Tn on Fourier expansions 
which shows that Tn also preserves the growth properties at infinity defining 
modular forms and cusp forms, respectively, and also that the various Hecke 
operators commute with one another. 

00 

Theorem 1. (i) If f( T) is a modular form with the Fourier expansion I: amqm 
m=O 

(q = e21rir ), then the Fourier expansion of Tnf is given by 

(4) Tnf(T) = f ( L dk- I a(ndr;)) qm, 
m=O dln,m 

where Ldln,m denotes a sum over the positive common divisors of nand m. 
In particular, Tnf is again a modular form, and is a cusp form if f is one. 
(ii) The H ecke operators in weight k satisfy the multiplication rule 

(5) TnTm = L dk- I Tnm / d2. 

dln,m 

In particular, TnTm = TmTn for all nand m and TnTm = Tnm if nand mare 
coprzme. 

Proof. If It = (: ~) is a matrix of determinant n with e ::f 0, then we can choose 

. a ' b' . a' a 
a matnx 'I = ( I dl) E P SL2(Z) wIth ----, = -, and '1-1 It then has the form 

C e e 
(~ :). Hence we can assume that the coset representatives in (3) have the form 

It = (~~) with ad = n, b E Z. A different choice 'I(~~) h E PSL2(Z)) of 

representative also has this form if and only if 'I = ±(~ ~) with r E Z, in which 
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case)' ( ~ ~) = ± (~ b~dr), so the choice of f-l is unique if we require a, d > 0 and 
o :S b < d. Hence 

d-l 

Tnf(r)=n k- 1 L Ld-kf(ar;b). 
a,d>O b=O 
ad=n 

Substituting into this the formula f = L: a( m) qm gives (4) after a short calcu­
lation. The second assertion of (i) follows from (4) because all of the exponents 
of q on the right-hand side are;:::: 0 and the constant term equals a(O)O"k_l(n) 
(O"k-l(n) as in Part lA), so vanishes if a(O) = o. The multiplication properties 
(5) follow from (4) by another easy computation. 0 

In the special caSe when n = p is prime, the formula for the action of Tn 
reduces to 

i.e., Tp = Up + pk-l Vp where Up and Vp are the operators defined in IE. (More 
generally, (4) says that Tn for any n is a linear combination of products U d Va 
with ad = n.) The multiplicative property (5) tells us that knowing the Tp 
is sufficient for knowing all Tn, since if n > 1 is divisible by a prime p then 
Tn = TnjpTp if p2 tn, Tn = TnjpTp - pk- 1Tnjp2 if p2ln. 

To end this section, We remark that formula (4), except for the constant 
term, makes Sense also for n = 0, the common divisors of 0 and m being simply 
the divisors of m. Thus the coefficient of qm on the right is just a(O)O"k-l (m) 
for each m > o. The constant term is formally a(O) L:~l dk- 1 = a(O)((1 - k), 

but in fact we take it to be }a(O)((1 - k) = -a(O) ~: . Thus we set 

00 

(6) (J = L a(m)qm E Mk); 
m=O 

in particular, To maps Mk to Mk and Tof = 0 if f is a cusp form. 

B Eigenforms 

We have seen that the Hecke operators Tn act as linear operators on the vector 
00 

space Mk. Suppose that f( r) = L: a( m) qm is an eigenvector of all the Tn, 
m=O 

l.e., 

(7) ('lin) 

for some complex numbers An. This certainly sometimes happens. For instance, 
if k = 4, 6, 8, 10 or 14 then the space Mk is I-dimensional, spanned by the 
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Eisenstein series G k of Part lA, so Tn G k is necessarily a multiple of G k for every 
n. (Actually, we will see in a moment that this is true even if dimMk > 1.) 
Similarly, if k = 12, 16, 18, 20, 22 or 26 then the space Sk of cusp forms of 
weight k is I-dimensional, and since Tn preserves Sk, any element of Sk satisfies 
(7). From (7) and (4) we obtain the identity 

(8) An a(m) = L dk- 1 a(;) 
dln,m 

by comparing the coefficients of qm on both sides of (7). In particular, Ana(I) = 
a(n) for all n. It follows that a(I) ¥- 0 if f is not identically zero, so we can 
normalize f by requiring that a(I) = 1. We call a modular form satisfying (7) 
and the extra condition a(I) = 1 a Hecke form (the term 'normalized Hecke 
eigenform' is commonly used in the literature). From what we have just said, 
it follows that a Hecke form has the property 

(9) An = a(n) ("In), 

i.e., the Fourier coefficients of f are equal to its eigenvalues under the Hecke 
operators. Equation (5) or (8) now implies the property 

(10) a(n)a(m) = L dk- 1 a(nd7) 
dln,m 

for the coefficients of a Hecke form. In particular, the sequence of Fourier coef­
ficients {a(n)} is multiplicative, i.e., a(I) = 1 and a(nm) = a(n)a(m) whenever 
nand m are coprime. In particular, a(p~l ... p?) = a(p~l ) ... a(p?) for distinct 
primes PI, ... ,PI, so the a( n) are determined if we know the values of a(pT) for 
all primes p. Moreover, (10) with n = pr, m = p gives the recursion 

(11) (r ~ 1) 

for the coefficients a(pr) for a fixed prime p, so it in fact is enough to know the 
a(p) (compare the remark following Theorem 1). 

Examples.!. The form Gk = - ~~ + f O'k_l(m)qm E Mk is a Hecke form 
m=1 

for all k ~ 4 with An = a(n) = O'k-l(n) for n > 0 and Ao = a(O) = - ~~ (cf. 
(6». In view of (4), to check this we need only check that the coefficients a( n) 
of Gk satisfy (10) if n or m > OJ this is immediate if n or m equals 0 and can 
be checked easily for n and m positive by reducing to the case of prime powers 
(for n = pll, O'k-l(n) equals 1 + pk-l + ... + pll(k-l), which can be summed 
as a geometric series) and using the obvious multiplicativity of the numbers 
O'k-l(n). 

2. The discriminant function ..1 of Part 1 belongs to the I-dimensional 
space S12 and has 1 as coefficient of ql, so it is a Hecke form. In particular, 
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(10) holds (with k = 12) for the coefficients a(n) of ..1, as we can cheek for 
small n using the coefficients given in (7) of Part 1: 

a(2)a(3) =-24x252 =-6048 = a(6) , a(2)2 = 576 =-1472+2048 = a(4)+211. 

This multiplicativity property of the coefficients of ..1 was noticed by Ramanu­
jan in 1916 and proved by Mordell a year later by the same argument as we 
have just given. 

The proof that ..1 is a simultaneous eigenform of the Tn used the property 
dim Sk = 1, which is false for k > 26. Nevertheless, there exist eigenforms in 
higher dimensions also; this is Heeke's great discovery. Indeed, we have: 

Theorem 2. The Heeke forms in Mk form a basis of Mk for every k. 

Proof. We have seen that Gk is an eigenform of all Tn. Conversely, any modular 
form with non-zero constant term which is an eigenform of all Tn (n ~ 0) is 
a multiple of Gk by virtue of equation (6) of Section A. In view of this and 
the decomposition Mk = (Gk) EEl Sk, it suffices to show that Sk is spanned by 
Heeke forms and that the Hecke forms in Sk are linearly independent. For this 
we use the Hilbert space structure on Sk introduced in the introduction of Part 
1 (eq. (2». One cheeks from the definition (3) that the Tn are self-adjoint with 
respect to this structure, i.e. (Tnf, g) = (f, Tng) for all f, g E Sk and n > O. 
(For n = 0, of course, Tn is the zero operator on Sk by equation (6).) Also, 
the Tn commute with one another, as we have seen. A well-known theorem of 
linear algebra then asserts that Sk is spanned by simultaneous eigenvectors of 
all the transformations Tn, and we have already seen that each such eigenform 
is uniquely expressible as a multiple of a Hecke form satisfying (10). Moreover, 
for a Hecke form we have 

a(n)(f,!) = (a(n)f,!) = (Anf,!) = (Tnf,!) 

= (f, Tn!) = (f, An!) = (f, a( n)!) = a( n) (f, !) 

by the self-adjointness of Tn and the sesquilinearity of the scalar product. 
Therefore the Fourier coefficients of f are real. If g = E b( n) qn is a second 
Hecke form in Sk, then the same computation shows that 

a(n) (f,g) = (Tnf,g) = (f,Tng) = b(n) (f,g) = b(n) (f,g) 

and hence that (f,g) = 0 if f f:. g. Thus the various Hecke forms in Sk are 
mutually orthogonal and a fortiori linearly independent. D 

We also have 

Theorem 3. The Fourier coefficients of a Heeke form f E Sk are real algebraic 
integers of degree :5 dimSk· 
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Proof. The space Sk is spanned by forms all of whose Fourier coefficients are 
integral (this follows easily from the discussion in Part 1, Section B). By formula 
(4), the lattice Lk of all such forms is mapped to itself by all Tn. Let h,· .. ,fd 
(d = dime Sk = rk;;:;Lk) be a basis for Lk over Z. Then the action of Tn with 
respect to this basis is given by a d x d matrix with coefficients in Z, so the 
eigenvalues of Tn are algebraic integers of degree:::; d. By (9), these eigenvalues 
are precisely the Fourier coefficients of the d Hecke forms in Sk. That the 
coefficients of Hecke forms are real was already checked in proving Theorem 
2. D 

From the proof of the theorem, we see that the trace of Tn (n > 0) acting 
on Mk or Sk is the trace of a (d + 1) x (d + 1) or d x d matrix with integral 
coefficients and hence is an integer. This trace is given in closed form by the 
Eichler-Selberg trace formula, which will be discussed in Part 3D. 

Example. The space S24 is 2-dimensional, spanned by 

,,1(r? = Oq + l- 48 q3 + 1080q4 + ... 

and 

(240G4(r))3 ,,1(r) = q + 696q2 + 162252 q3 + 12831808 q4 + ... 

If f E S24 is a Hecke form, then f must have the form (240G4)3,,1 + A,,12 for 
some A E <C, since the coefficient of ql must be 1. Hence its second and fourth 
coefficients are given by 

a(2) = 696 + A, a( 4) = 12831808 + 1080 A. 

The property a( 2)2 = a( 4) + 223 (n = m = 2 in (10)) now leads to the quadratic 
equation 

A2 + 312 A - 20736000 = 0 

for A. Hence any Hecke form in S24 must be one of the two functions 

Since Theorem 2 says that S24 must contain exactly two Hecke forms, hand 
h are indeed eigenvectors with respect to all the Tn. This means, for example, 
that we would have obtained the same quadratic equation for A if we had used 
the relation a(2)a(3) = a(6) instead of a(2)2 = a( 4) + 223 . The coefficients 
al (n ), a2 (n) of h and h are conjugate algebraic integers in the real quadratic 
field Q( J144169). 
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C L-series 

The natural reflex of a number-theorist confronted with a multiplicative func-
00 

tion n ~ a( n) is to form the Dirichlet series E a( n) n -s , the point being that 
n=l 

the multiplicative property implies that a(p~l ... p?) = a(p~l) ... a(p?) and 
hence that this Dirichlet series has an Euler product IT (E a(pr) p-rs). We 

p prime r~O 

therefore define the Hecke L-series of a modular form f( T) = E:=o a( m) qm E 
Mk by 

(12) L(f,s) = f a~":) 
m=l 

(notice that we have ignored a(O) in this definition; what else could we do?). 
Thus if f is a Hecke form we have an Euler product 

L(f,s) = II (1+ a(~) + a(;:) + ... ) 
p prime p p 

because the coefficients a(m) are multiplicative. But in fact we can go further, 
because the recursion (11) implies that for each prime p the generating function 
Ap(x) = Ea(pr)xr satisfies 

r=O 
00 00 

r=O r=l 

and hence that 

1 
A (x) - ----,-.,-------;---::-""7 

p - 1 - a(p)x + pk-l x2· 

Therefore, replacing x by p-s and multiplying over all primes p, we find finally 

1 
L(f, s) = II --------:--1 - a(p)p-s + pk-1-2s 

p 

Examples. 1. For f = G k we have 

(f E Mk a Hecke form). 
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(r+l)(k-l) _ 1 
a(pr) - 1 + pk-l + ... + pr(k-l) = p~~ __ _ 

- pk-l -1 ' 

<Xl p(r+l)(k-l) _ 1 r 1 

Ap(x) = ~ pk-l -1 x = (1- pk-lx)(1_ x) 

1 1 
L(Gk'S) = II 1- Uk-l (p)p-s + pk-1-2s = II (1- pk-l-S)(l_ p-s) 

p p 

= ((s - k + l)((s), 

where (( s) is the Riemann zeta function. (Of course, we could see this directly: 
dk - l 

the coefficient of n-S in ((s - k + l)((s) = I: (d )s is clearly Uk-len) for 
d,e~l e 

each n 2:: 1.) 
2. For f = Ll we have 

1 
L(Ll, s) = II 1- r(p)p-s + pll-2s' 

P 

where r( n), the Ramanujan tau-function, denotes the coefficient of qn in Llj 
this identity summarizes all the multiplicative properties of r( n) discovered by 
Ramanujan. 

Of course, the Hecke L-series would be of no interest if their definition 
were merely formal. However, these series converge in a half-plane and define 
functions with nice analytic properties, as we now show. 

Theorem 4. (i) The Fourier coefficients a(m) of a modular form of weight k 
satisfy the growth estimates 

(13) a(n) = O(nk- l ) a(n) = O(nt) 

Hence the L-series L(f, s) converges absolutely and locally uniformly in the 

half-plane lR( s) > k in any case and in the larger half-plane lR( s) > '.5.. + 1 if f 
2 

is a cusp form. 

(ii) L(f, s) has a meromorphic continuation to the whole complex plane. It 
is holomorphic everywhere if f is a cusp form and has exactly one singularity, 

a simple pole of residue (~2:i~~! a(O) at s = k, otherwise. The meromorphically 

extended function satisfies the functional equation 

(27r)-S r(s) L(f, s) = (-1)t(27r)S-k r(k - s)L(f, k - s). 

Proof. (i) Since the estimate a(n) = O(nk-l) is obvious for the Eisenstein 
series Gk (we have Uk-len) = n k - l " d-kH < n k - l ,,<Xl d- k+l < 2nk - l 

L..;dln L..;d=l 

because k > 2), and since every modular form of weight k is a combination 
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of Gk and a cusp form, we need only prove the second estimate in (13). If f 
is a cusp form then by definition we have If(r)1 < MV- k / 2 for some constant 
M > 0 and all r = u + iv E 5). On the other hand, for any n ~ 1 and v > 0 we 
have 

a(n) = 11 feu + iv) e-27rin(u+iv) duo 

Hence 
la(n)l:::; Mv-k/2e27rnv, 

and choosing v = lin gives the desired conclusion. (This argument, like most 
of the rest of this part, is due to Hecke.) 

(ii) This follows immediately from the 'functional equation principle' in 
Appendix B, since the function 

00 

<p(v) = f(iv) - a(O) = L a(n) e-27rnv (v> 0) 
n=l 

is exponentially small at infinity and satisfies the functional equation 

and its Mellin transform Jooo <p( v) vs- 1 dv equals (27r )-s r( s )L(J, s). 0 

The first estimate in (13) is clearly the best possible, but the second one 
k 1+ can be improved. The estimate a( n) = O( n 2" -.. f) for the Fourier coefficients of 

cusp forms on r1 was found by Rankin in 1939 as an application of the Rankin­
Selberg method explained in the next part. This was later improved to a(n) = 
O(n~-t+f) by Selberg as an application of Weil's estimates of Kloosterman 
sums. The estimate 

(14) 

conjectured by Ramanujan for f = Ll in 1916 and by Peters son in the general 
case, remained an open problem for many years. It was shown by Deligne in 
1969 to be a consequence of the Weil conjectures on the eigenvalues of the 
Frobenius operator in the l-adic cohomology of algebraic varieties in positive 
characteristic; 5 years later he proved the Weil conjectures, thus establishing 
(14). Using the form of the generating function Ap(x) given above, one sees 
that (14) is equivalent to 

(15) la(p)1 :::; 2p(k-1)/2 (p prime). 

In particular, for the Ramanujan tau-function r(n) (coefficient of qn in Ll) one 
has 

(16) (p prime). 
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The proof of (16) uses the full force of Grothendieck's work in algebraic ge­
ometry and its length, if written out from scratch, has been estimated at 2000 
pages; in his book on mathematics and physics, Manin cites this as a proba­
ble record for the ratio 'length of proof: length of statement' in the whole of 
mathematics. 

D Forms of higher level 

In most of these notes, we restrict attention to the full modular group n = 
PSL2 (Z) rather than subgroups because most aspects of the theory can be 
seen there. However, in the case of the theory of Hecke operators there are 
some important differences, which we now describe. We will restrict attention 
to the subgroups ro(N) = {(:~) E r 1 I C == 0 (mod N)} introduced in Part 
1. 

First of all, the definition of Tn must be modified. In formula (3) we must 
replace n by r = ro(N) and Mn by the set of integral matrices (:~) of 
determinant n satisfying c == 0 (mod N) and (a, N) = 1. Again the coset 
representatives of r\Mn can be chosen to be upper triangular, but the extra 
condition (a, N) = 1 means that we have fewer representatives than before 
if (n, N) > 1. In particular, for p a prime dividing N we have Tp = Up and 
Tpr = (TpY rather than Tp = Up + pk-l Vp and a 3-term recursion relation for 
{Tpr}. For general n, the operation of Tn is given by the same formula (4) as 
before but with the extra condition (d, N) = 1 added to the inner sum, and 
similarly for the multiplicativity relation (5). 

The other main difference with the case N = 1 comes from the existence 
of so-called 'old forms.' If N' is a proper divisor of N, then ro(N) is a subgroup 
of Fo(N') and every modular form fer) of weight k on ro(N') is a fortiori a 
modular form on Fo(N). More generally, f(Mr) is a modular form of weight k 
on ro(N) for each positive divisor M of NIN', since 

a b a bM , 
(c d) E Fo(N) =} (ciM d ) E ro(N) 

ar + b a( M r) + bM k 

=} f(M cr + d) = f(cIM)(Mr) + d) = (cr + d) f(Mr). 

The subspace of Mk(ro(N)) spanned by all forms f(Mr) with f E Mk(ro(N')), 
MN'IN, N' :I N, is called the space of old forms. (This definition must be mod­
ified slightly if k = 2 to include also the modular forms I:MIN cMGi(Mr) with 

CM E C, I:MIN M-1CM = 0, where Gi is the non-holomorphic Eisenstein series 
of weight 2 on n introduced in Part lA, as old forms, even though Gi itself 
is not in M2(rl).) Since the old forms can be considered by induction on N as 
already known, one is interested only in the 'rest' of Mk(ro(N)). The answer 
here is quite satisfactory: Mk(ro(N)) has a canonical splitting as the direct 
sum of the subspace Mk(ro(N))old of old forms and a certainly complemen­
tary space Mk(ro(N))new (for cusp forms, Sk(ro(N))new is just the orthogonal 
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complement of Sk(To(N))old with respect to the Peters son scalar product), and 
if we define a Heeke form of level N to be a form in Mk(To(N))new which is 
an eigenvector of Tn for all n prime to N and with a(l) = 1, then the Hecke 
forms are in fact eigenvectors of all the Tn, they form a basis of Mk(To(N)l'ew, 
and their Fourier coefficients are real algebraic integers as before. For the ,th 
Fourier coefficient (p prime) of a Hecke form in Sk(To(N))new we have the saH:.e 
estimate (15) as before if p f N, while the eigenvalue with respect to Tp when 
piN equals 0 if p21N and ±p(k-l)/2 otherwise. Finally, there is no overlapping 
between the new forms of different level or between the different lifts f( M r) of 
forms of the same level, so that we have a canonical direct sum decomposition 

Mk(To(N)) = EB {J(Mr) If E Mk(To(N')rw} 
MN'IN 

and a canonical basis of Mk(To(N)) consisting of the functions f(Mr) where 
MIN and f is a Hecke form of level dividing N/M. 

As already stated, the Fourier coefficients of Hecke forms of higher level 
are real algebraic integers, just as before. However, there is a difference with 
the case N = 1: For forms of level 1, Theorem 3 apparently always is sharp: 
in all cases which have been calculated, the number field generated by the 
Fourier coefficients of a Hecke cusp form of weight k has degree equal to the 
full dimension d of the space Sk, which is then spanned by a single form and 
its algebraic conjugates (d. the example k = 24 given above). For forms of 
higher level, there are in general further splittings. The general situation is that 
Sk(To(N))new splits as the sum of subspaces of some dimensions d1 , .•. ,dr 2': 1, 
each of which is spanned by some Heeke form, with Fourier coefficients in a 
totally real number field Ki of degree di over Q, and the algebraic conjugates 
of this form (i.e. the forms obtained by considering the various embeddings 
Ki ~ JR). In general the number r and the dimensions di are unknown; the 
known theory implies certain necessary splittings of Sk(ro(N))new, but there 
are often further splittings which we do not know how to predict. 

Examples. 1. k = 2, N = 11. Here dimMk(To(N)) = 2. As well as one old 
form, the Eisenstein series 

Gi(r) - llGi(llr) = 152 + f ( L d) qn 
n=l din 

llfd 

of weight 2, there is one new form 

with Fourier coefficients in Z. This form corresponds (as in the Taniyama-Weil 
conjecture mentioned in Part IF) to the elliptic curve y2 - Y = x 3 - x 2 , i.e., 
p - a(p) gives the number of solutions of y2 - y = x3 - x2 in integers modulo 
any prime p. 
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2. k = 2, N = 23. Again dimMk(Fo(N))old is I-dimensional, spanned 
by G2(T) - NG2(NT), but this time Mk(ro(N))new Sk(ro(N))new is 2-
dimensional, spanned by the Hecke form 

I-v5 2 r,; 3 1+V5 4 ( r,;) 5 5-V5 6 
iI=q- 2 q +v5q - 2 q -1-v5q --2- q + ... 

·h ffi· . Z ZI+V5 d h . £ WIt coe Clents m + 2 an t e conjugate orm 

1+V5 2 r,; 3 I-V5 4 r,; 5 
h=q- q -v5q - q -(I+v5)q 

2 2 

obtained by replacing V5 by -V5 everywhere in II. 

5+V5 6 --q + ... 
2 

3. k = 2, N = 37. Again dimMk(ro(N))old is spanned by G2(T) -
NG2(NT) and Mk(ro(N))new = Sk(ro(N))new is 2-dimensional, but this time 
the two Hecke forms of level N 

and 

both have coefficients in Zj they correspond to the elliptic curves y2 - Y = x 3 - x 
and y2 - Y = x 3 + x 2 - 3x + 1, respectively. 

4. k = 4, N = 13. Here dim Mk(ro(N))old is spanned by the two Eisenstein 
series G4 (T) and G4 (NT) and Mk(ro(N))new = Sk(ro(N))new is 3-dimensional, 
spanned by the forms 

f f 1 ± v'f7 2 5 =f 3v'f7 3 7 =f v'f7 4 
1, 2 = q + 2 q + 2 q - 2 q + ... 

with coefficients in the real quadratic field tQ( v'f7) and the form 

h = q - 5q2 - 7q3 + 17q4 - 7q5 + 35q6 - 13q7 - ... 

with coefficients in tQ. 

Finally, there are some differences between the L-series in level 1 and in 
higher level. First of all, the form of the Euler product for the L-series of a 
Hecke form must be modified slightly: it is now 

1 1 
L(j, s) = 111 _ a(p )p-s + pk-I-2s 111 _ a(p )p-S . 

pfN piN 

More important, L(j, s), although it converges absolutely in the same half­
plane as before and again has a meromorphic continuation with at most a 
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simple pole at s = k, in general does not have a functional equation for every 
f E Mk(ro(N)), because we no longer have the element (~~1) E r to force 

the symmetry of f( iv) with respect to v t-+ !. Instead, we have the Fricke 
v 

involution 
k k -1 

WN: fer) t-+ wNf(r) = N-"2 r- f(Nr) 

which acts on the space of modular forms of weight k on ro(N) because the 
element (~ ~1) of GLt(lR.) normalizes the group ro(N). This involution splits 
Mk(ro(N)) into the direct sum of two eigenspaces Mt(ro(N)), and if f belongs 
to Mt(To(N)) then 

(271")-' N·/2 r(s) L(f, s) = ±( _1)k/2 (27r)·-k N(k-.)/2 r(k - s) L(f, k - s). 

(For N = 1 we have WN == Id since (~ ~1) E ro(N) in this case, so M;; = 
{O} for all k, but for all other values of N the dimension of M:(ro(N)) is 
asymptotically! the dimension of Mk(ro(N)) as k -+ 00.) The involution 
WN preserves the space Mk(ro(N))new and commutes with all Hecke operators 
Tn there (whereas on the full space Mk(ro(N)) it commutes with Tn only 
for (n, N) = 1). In particular, each Hecke form of level N is an eigenvector 
of W N and therefore has an L-series satisfying a functional equation. In our 
example 3 above, for instance, the Eisenstein series G;( r) - 37G;(37r) and the 
cusp form 12 are anti-invariant under W37 and therefore have plus-signs in the 
functional equations of their L-series, while it is invariant under W37 and has an 
L-series with a minus sign in its functional equation. In particular, the L-series 
of it vanishes at s = 1, which is related by the famous Birch-Swinnerton-Dyer 
conjecture to the fact that the equation of the corresponding elliptic curve 
y2 _ Y = x 3 - x has an infinite number of rational solutions. 
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3. The Rankin-Selberg Method and its Applications 

The Rankin-Selberg convolution method is one of the most powerful tools in the 
theory of automorphic forms. In this part we explain two principal variants of 
it-one involving non-holomorphic Eisenstein series and one involving only the 
holomorphic Eisenstein series constructed in Part 1. We will also give several 
applications, the most important one being a proof of the formula of Eichler 
and Selberg for the traces of Heeke operators acting on spaces of holomorphic 
modular forms. The essential ingredients of the Rankin-Selberg method are 
various types of Eisenstein series, and we begin by studying the main properties 
of some of these. 

A Non-holomorphic Eisenstein series 

For r = u + i v E .fj and sEC define 

1 , 'S(r)S 
G(r,s)=-2~1 12 ' L..J mr + n S 

m,n 

(1) 

(sum over m,n E Z not both zero). The series converges absolutely and locally 
uniformly for ~(s) > 1 and defines a function which is rl-invariant in r for the 
same reason that G k in Part 1 was a modular form. As a sum of pure exponential 
functions, it is a holomorphic function of s in the same region, but, owing to 
the presence of v = 'S( r) and the absolute value signs, it is not holomorphic 
in r. The function G(r,s) is known in the literature under both the names 
'non-holomorphic Eisenstein series' and 'Epstein zeta function' (in general, the 
Epstein zeta function of a positive definite quadratic form Q in r variables is 
the Dirichlet series E'XE2:r Q(x)-S; if r = 2, then this equals 2s+1d- s / 2 G(r,s) 
where -d is the discriminant of Q and r the root of Q(z, 1) = 0 in the upper 
half plane). Its main properties, besides the r1-invariance, are summarized in 

Proposition. The function G( r, s) can be meromorphically extended to a func­
tion of s which is entire except for a simple pole of residue ~ (independent of 
r J) at s = 1. The function G*( r, s) = 7r- S r( s )G( r, s) is holomorphic except for 
simple poles of residue ~ and - ~ at s = 1 and s = 0, respectively, and satisfies 
the functional equation G* ( r, s) = G* ( r, 1 - s). 

Proof. We sketch two proofs of this. The first is analogous to Riemann's proof 
of the functional equation of ((s). For r = u + iv E .fj let Qr be the posi­
tive definite binary quadratic form Qr( m, n) = v-1lmr + nl 2 of discriminant 
-4 and Br(t) = Em,nEZ e-1rQr (m,n)t the associated theta series. The Mellin 
transformation formula (cf. Appendix B) implies 

1 ' -s 1100 

G*(r,s) = -res) L [7rQr(m,n)] = - (Br(t) -1)e-1 dt. 
220 

m,n 
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On the other hand, the Poisson summation formula (cf. Appendix A) implies 
that Br(i) = tBr(t), so the function rfJ(t) = HBr(t) -1) satisfies rfJ(r1) = 
- t + tt + trfJct)· The 'functional equation principle' formulated in Appendix 
B now gives the assertions of the theorem. 

The second proof, which requires more calculation, but also gives more 
information, is to compute the Fourier development of G( r, s). The computation 
is very similar to that for Gk in Part 1, so we can be brief. Splitting up the 
sum defining G( r, s) into the terms with m = ° and those with m i 0, and 
combining each summand with its negative, we find 

G(r,s) = ((2s)v' + v' t, (~oo Imr + nl- 2.) (r = u + iv). 

Substituting into this formula (3) of Appendix A, we find 

7r~ res _ !) 00 

G(r, s) = ((2s)v' + r 2 v1-. L m1- 2• 
(s) m=1 

27r' 1 ~ 1 1 2 . + res) v 2 L..J m 2 -'lrl'- 2 K._~(27rmlrlv) e ,,",mru, 
m>1 
r#O 

where K/I(t) is the K-Bessel function Jooo e-tcoshUcosh(vu)du. Hence 

G*(r, s) = (*(2s)v' + (*(2s -1)v1-' + 2v~ L a;_~(lnl)K._~(27rlnlv)e21!"inU, 
n#O 

where (*(s) denotes the meromorphicfunction 7r-./2r(s/2)((s) and a:(n) the 
arithmetic function Inl/l Ldln d- 2 /1. The analytic continuation properties of G* 
now follow from the facts that (*( s) is holomorphic except for simple poles 
of residue 1 and -1 at s = 1 and s = 0, respectively, that a:(n) is an entire 
function of v, and that K /I (t) is entire in v and exponentially small in t as 
t ~ 00, while the functional equation follows from the functional equations 
(*(1 - s) = (*(s) (cf. Appendix B), a~/I(n) = a:(n), and K_/l(t) = K/I(t). 0 

As an immediate consequence of the Fourier development of G* and the 
identity K!(t) = ..j7r/2te-t, we find 

2 

. ( 1/2) 7r 1 Loo 1 . hm G*(r,s)--- =-v--logv+C+2 _?R(e21!".mrr) 
...... 1 s -1 6 2 m 

m,r=l 
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where C = limS ....... 1«(*(S) - (s - 1)-1) is a certain constant (in fact given by 
!, - ! log 471", where, is Euler's constant) and Ll( T) the discriminant function 
of Part 1. This formula is called the Kronecker limit formula and has many 
applications in number theory. Together with the invariance of G( T, s) under 
PSL2(Z), it leads to another proof of the modular transformation property of 
Ll( T). 

B The Rankin-Selberg method (non-holomorphic case) and 
applications 

In this section we describe the 'unfolding method' invented by Rankin and Sel­
berg in their papers of 1939-40. Suppose that F( T) is a smooth T1-invariant 
function in the upper half-plane and tends to 0 rapidly (say, exponentially) as 
v = <;.r( T) --t 00. (In the original papers of Rankin and Selberg, F( T) was the 
function v12 1Ll( T )1 2 .) The T1-invariance of F implies in particular the periodic­
ity property F( T + 1) = F( T) and hence the existence of a Fourier development 
F( u + iv) = L:nEZ cn ( v )e21l'inu. We define the Rankin-Selberg transform of F 
as the Mellin transform (cf. Appendix B) of the constant term co( v) of F: 

(1) R(Fj s) = 100 co( v) v s - 2 dv 

(notice that there is a shift of s by 1 with respect to the usual definition of 
the Mellin transform). Since F( u + iv) is bounded for all v and very small as 
v --t 00, its constant term 

(2) co(v) = 11 F(u+iv)du 

also has these properties. Hence the integral in (1) converges absolutely for 
~(s) > 1 and defines a holomorphic function of s in that domain. 

Theorem. The function R( Fj s) can be meromorphically extended to a func­
tion of s and is holomorphic in the half-plane ~(s) > ! except for a sim­

ple pole of residue", = ~ fff)/n F(T)dp, at s = 1. The function R*(Fjs) = 

7I"-ST(s)(2s)R(Fj s) is holomorphic everywhere except for simple poles of 
residue ±i'" at s = 1 and s = 0 and R*(Fj s) = R*(Fj 1 - s). 

(Recall that dp, denotes the SL(2, 1R)-invariant volume measure v-2 du dv on 
fJ/ T1 and that the area of fJ/ T1 with respect to this measure is 71" /3j thus", is 
simply the average value of F in the upper half-plane.) 

Proof. We will show that (2s )R(Fj s) is equal to the Petersson scalar product 
of F with the non-holomorphic Eisenstein series of Section A: 

(3) (2s)R(Fjs) = Jr ( G(T,s)F(T)dp,. 
J f)/ r 1 
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The assertions of the theorem then follow immediately from the proposition in 
that section. 

To prove (3) we use the method called 'unfolding' (sometimes also referred 
to as the 'Rankin-Selberg trick'). Let roo denote the subgroup {± (~ ~) I n E Z} 
of r1 (the '00' in the notation refers to the fact that roo is the stabilizer in 
n of infinity). The left cosets of roo in r1 are in 1:1 correspondence with 
pairs of coprime integers (e, d), considered up to sign: multiplying a matrix 
(~ !) on the left by (~ ~) produces a new matrix with the same second row, 
and any two matrices with the same second row are related in this way. Also, 
~(,( r)) = v / ler + dl2 for, = (~ !) E r1 • Finally, any non-zero pair of integers 
(m, n) can be written uniquely as (re, rd) for some r > 0 and coprime e and d. 
Hence for ~(s) > 1 we have 

1 00 ~(r)S 
G(r,s) = 2 L L Ir(er +d)12s = ((2s) L ~(,(r)r· 

r=l c,d coprime "YEr 00 \r1 

Therefore, denoting by F a fundamental domain for the action of r1 on .f), and 
observing that the sum and integral are absolutely convergent and that both 
F and dl1 are r 1-invariant, we obtain 

Notice that we have spoiled the invariance of the original representation: both 
the fundamental domain and the set of coset representatives for roo \n must be 
chosen explicitly for the individual terms in what we have just written to make 
sense. Now comes the unfolding argument: the different translates ,F of the 
original fundamental domain are disjoint, and they fit together exactly to form 
a fundamental domain for the action of roo on .f) (here we ignore questions 
about the boundaries of the fundamental domains, since these form a set of 
measure zero and can be ignored.) Hence finally 

((2S)-1 Jr f G(r,s)F(r)dl1 = Jr f ~(r)S F(r)dl1. 
}fj/r1 }fj/roo 

Since the action of roo on .f) is given by u t--t U + 1, the right-hand side of 
this can be rewritten as Jooo (fo1 F( u + iv) du) vs - 2 dv, and in view of equation 
(2) this is equivalent to the assertion (3). A particularly pleasing aspect of 
the computation is that-unlike the usual situation in mathematics where a 
simplification at one level of a formula must be paid for by an increased com­
plexity somewhere else-the unfolding simultaneously permitted us to replace 
the complicated infinite sum defining the Eisenstein series by a single term 
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~( r)S and to replace the complicated domain of integration jj / r 1 by the much 
simpler jj/ roo and eventually just by (0,00). 0 

We now give some applications of the theorem. The first application is to 
the r 1-invariant function F(r) = v k lf(r)12, where f = Ea(n)qn is any cusp 
form in Sk (in the original papers of Rankin and Selberg, as already mentioned, 
f was the discriminant function of Part 1B, k = 12). We have 

00 00 
F(u + iv) = v k L L a(n)a(m) e27ri(n-m)u e-27r(n+m)v 

n=1 m=1 

and hence co(v) = v k E~=1 la(n)12 e-47rnv . Therefore 

Loo 2100 k res + k - 1) LOO la(n)12 R(F- s) = la(n)1 v e-47rnv v s - 2 dv = . 
, (47r)s+k-1 n s+ k- 1 

n=1 0 71=1 

This proves the meromorphic continuability and functional equation of the 
'Rankin zeta function' E la(n)l2n- s ; moreover, applying the statement about 
residues in the theorem and observing that K here is just 3/7r times the Peters­
son scalar product of f with itself, we find 

(4) 7r (k - 1)! (~ la(n)l2) 
(f, f) = 3" (47r)k Ress=1 ~ ns+k-1 . 

If f is a Hecke form, then the coefficients a(n) real and Ea(n)2 n-s-kH = 
((s) E a(n2)n-s -k+1 by an easy computation using the shape of the Euler 
product of the L-series of f, so this can be rewritten in the equivalent form 

(5) (ff)=~(k-1)! ~a(n2) 
, 3 (47r)k ~ n S 

n=1 s=k 

As a second application, we get a proof different from the usual one of the 
fact that the Riemann zeta function has no zeros on the line ~(s) = 1; this 
fact is one of the key steps in the classical proof of the prime number theorem. 
Indeed, suppose that ((l+ia) = 0 for some real number a (necessarily different 
from 0), and let F(r) be the function G(r, ~(1 + ia)). Since both ((2s) and 
(( 2s - 1) vanish at s = ~ (1 + ia) (use the functional equation of (!), the 
formula for the Fourier expansion of G( r, s) proved in the last section shows 
that F( r) is exponentially small as v -t 00 and has a constant term Co ( v) 
which vanishes identically. Therefore the Rankin-Selberg transform R( F; s) is 
zero for ~(s) large, and then by analytic continuation for all s. But we saw above 
that R(F;s) is the integral of F(r) against G(r,s), so taking s = ~(1- ia), 
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v 

Ca(v} - a .. - 1(ll., ll.} 

v'I' 

• () 12 ,",00 ()2 -41rnv FIg. 1. The constant term Co v = v L.....n=1 T n e . 

log" 
• 

G( T, s) = F( T ), we find that the integral of IF( T W over fJ/ rl is zero. This is 
impossible since F( r) is clearly not identically zero. 

Finally, we can re-interpret the statement of the Rankin-Selberg identity 
in more picturesque ways. Suppose that we knew that the constant term co( v) 
of F had an asymptotic expansion co( v) = COVAQ + C l VAl + C2V A2 + ... as v 
tends to O. Then breaking up the integral in the definition of R( F; s) into the 
part from 0 to 1 and the part from 1 to infinity, and observing that the second 
integral is convergent for all s, we would discover that R(F; s) has simple poles 
of residue Cj at s = 1 - Aj for each j and no other poles. Similarly, a term 
CvA(log v)m-l would correspond to an mth order pole of R(F; s) at 1- A. But 
the theorem tells us that R( F; s) has a simple pole of residue", at s = 1 and 
otherwise poles only at the values s = ~ p, where p is a non-trivial zero of the 
Riemann zeta function. It is thus reasonable to think, and presumably under 
suitable hypotheses possible to prove, that co( v) has an asymptotic expansion 
as v -+ 0 consisting of one constant term", and a sum of terms CpV I - p / 2 for 
the various zeros of (( s ). Assuming the Riemann hypothesis, these latter terms 
are of the form V 3 / 4 times an oscillatory function A cos( ~':S(p) log v + <,1» for 
some amplitude A and phase <,1>. Figure 1 illustrates this behavior for the con­
stant term vl2 I:r(n)2 e-41rnv ofvl2 1L1(r)12 ; the predicted oscillatory behavior 
is clearly visible, and a rough measurement of the period of the primary oscil­
lation leads to a rather accurate estimate of the imaginary part of the smallest 
non-trivial zero of (( s). In a related vein, we see that the difference between 
co(v) and the average value", of F for small v should be estimated by o(v!+<) 
ifthe Riemann hypothesis is true and by O(vt+<) unconditionally. Since co(v) 
is simply the average value of F( r) along the unique closed horocycle of length 
V-I in the Riemannian manifold fJ/rl, and since F is an essentially arbitrary 



272 Chapter 4. Introduction to Modular Forms 

function on this manifold, we can interpret this as a statement about the uni­
formity with which the closed horocycles on SJ/ n fill it up as their length tends 
to infinity. 

C The Rankin-Selberg method (holomorphic case) 

The calculations here are very similar to those of Section B, so we can be 
fairly brief. Let f( T) = 2:~=1 a( n )qn be a cusp form of weight k on rand 
geT) = 2:~=o b(n)qn a modular form of some smaller weight t. We assume for 
the moment that k - t > 2, so that there is a holomorphic Eisenstein series 
G k - 1 of weight k -t. Our object is to calculate the scalar product of f( T) with 
the product Gk-l(T)g(T). 

Ignoring convergence problems for the moment, we find (with h = k - t) 

(h - I)! 1 ~' 1 (h - I)! ~ 1 
Gh(T) = (27ri)h "2 L... (mT + n)h = (27ri)h ((h) L... (CT + d)h' 

m,n C ~)EToo \r, 
whence 

(27ri)h vk 
(h -l)!((h) f(T) Gh(T)g(T) 

vk L ICT + dl 2k (CT + d)k f(T)(cr + d)lg(r) 

C ~ )EToo \r, 
L 'S(-yr)k f(-yr )g(-yr ), 

,Eroo \r, 

and consequently 

(1) 

In other words, the scalar product of f and G h . g is up to a simple factor 
equal to the value at s = k - 1 of the convolution of the L-series of f and g. 
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The various steps in the calculation will be justified if ffroo\!) If(r)g(r)lvk dp. 
converges. Since fer) = O(V-k / 2 ) and g(r) = O(v- l ), this will certainly be the 
case if k > 21 + 2. 

We can generalize the computation just done by replacing the product 
Gh . 9 by the function FII(Gh,g) defined in Section E of Part 1, where now 
h + 1+ 2v = k. Here we find 

where in the last line we have used formula (9) of Part 1, E. The same argument 
as before now leads to 

( h + V-I) 
(27ri)h _ v 100 fl ~(d k-2 

(h -l)!((h) (J,FII(Gh,g» - (-27ri)" 0 10 f(r)g r) uv dv 

(2) _ (h + V-I) (k - 2)! ~ a(n) b(n) 
- v (47r )k-I L...J n k - Jl - 1 ' 

n=1 

the steps being justified this time if k > 21 + 2v + 2 or h > 1 + 2. Again 
the result is that the Peters son scalar product in question is proportional to a 
special value of the convolution of the L-series of f and g. 

D Application: The Eichler-Selberg trace formula 

Fix an even weight k > 0 and let 

denote the traces of the nth Hecke operator T( n) on the spaces of modular 
forms and cusp forms, respectively, of weight k. If we choose as a basis for Mk 
or Sk a Z-basis of the lattice of forms having integral Fourier coefficients (which 
we know we can do by the results of Part 1), then the matrix representing the 
action of T( n) with respect to this basis also has integral coefficients. Hence 
ten) and to(n) are integers. The splitting Mk = SkE!1(Gk) and the formula 
Tn(Gk) = O"k-l(n)Gk for k > 2 imply 

(1) (n ~ 1, k> 2). 
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Theorem. (Eichler, Selberg) Let H(N) (N ~ 0) be the Kronecker-Hurwitz class 
numbers defined in D of Part 1 and denote by Pk(t,n) the homogeneous poly­
nomial 

of degree ~ - 1 in t2 and n (thus P2(t,n) = 1, P4(t,n) = t2 - n, P6(t,n) = 
t4 - 3t2n + n2, etc.). Then 

1 1 
t k(n)=-"2 L Pk(t,n)H(4n-e)+"2L max{d,njd}k-l (k ~ 2), 

tEZ,t2 S;4n din 

t~(n) = -~ L Pk(t,n)H(4n - e) - ~ Lmin{d,njd}k-l (k ~ 4). 
tEZ,t2 S;4n din 

There is an analogous trace formula for forms of higher level (say, for the 
trace of T(n) on Mk(ro(N)) for nand N coprime), but the statement is more 
complicated and we omit it. 

The equivalence of the two formulas (for k > 2) follows from (1), since 

1 "2 L{min{d,njd}k-l +max{d,njd}k-l} 
din 

1 
= "2 L {dk- l + (njd)k-l} = O"k-l(n). 

din 

Note also that t2(n) = 0 and t~(n) = 0 for k E {2,4, 6, 8, 10, 14} and all n, 
since the spaces M2 and Sk are O-dimensional in these cases. Equating to zero 
the expressions for t2(n) and t~(n) given in the theorem gives two formulas of 
the form 

(2) H(4n)+2H(4n-1)+ ... = 0, -nH(4n)-2(n-1)H(4n-1)+ ... = 0, 

where the terms' ... ' involve only H( 4m) and H( 4m-1) with m < n. Together, 
these formulas give a rapid inductive method of computing all the Kronecker­
Hurwitz class numbers H(N). 

The importance of knowing to (n) is as follows. Let to ( T) = t~ ( T) = 

I:~=l t~(n )qn. Then to is itself a cusp form of weight k on r l and its images un­

der all Hecke operators (indeed, under T(nl), ... ,T(nd) for any {nj};~timSk 
for which the nlst, ... , ndth Fourier coefficients of forms in Sk are linearly 
independent) generate the space Sk. To see this, let Ji(T) = I:n>oai(n)qn 
(1 :::; i :::; d) be the Heeke forms in Sk. We know that they form a basis 
and that the action of T( n) on this basis is given by the diagonal matrix 
diag( al (n), ... ,ad( n)). Hence the trace to (n) equals al (n) + ... + ad( n) and t~ 
is just h + ... + Jd, which is indeed in Ski the linear independence of the Ji 
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and the fact that the matrix (ai(nj)h~i,j~d is invertible then imply that the d 
forms T(nj)(tO) = L,~=1 ai(nj)!; are linearly independent and hence span Sk 
as claimed. The formula for Tr(T( n)) thus gives an algorithm for obtaining all 
cusp forms of a given weight (and level). 

We now sketch a proof of the Eichler-Selberg trace formula. The basic 
tool we will use is the 'holomorphic version' of the Rankin-Selberg method 
proved in the last section, but applied in the case when the Eisenstein series 
Gh and the modular form 9 have half-integral weight. The basic identities (1) 
and (2) of Section C remain true in this context with slight modifications due 
to the fact that the functions G hand 9 are modular forms on To( 4) rather 
than PSL2(71). They can be simplified by using the operator U4 introduced in 
Section E of Part 1 and replacing Fv(Gh,g) by U4 (Fv(Gh,g)), which belongs 
to Mk(Tr) if 9 E Ml, h,l E 7l +~, k = h + 1 + 2v E 271 (cf. comments at the 
end of Part 1, E). In this situation, formula (2) of Section C still holds except 
for the values of the constant factors occurring. In particular, if h = l' + ~ with 

l' odd and we take for 9 the basic theta-series B( T) = 1 + 22:::;=1 qn2 of weight 
~ on To(4), then we find 
(3) 

~ a(n2 ) 
(j,U4 (Fv(GrH , B))) = Cv,r ~ (n 2 )k-v-1 (1' > 1 odd, v::::: 0, k = 1'+2v+1), 

where cv,r is an explicitly known constant depending only on l' and v. We 
want to apply this formula in the case l' = 1. Here the function G3 / 2 is not a 
modular form and must be replaced by the function G;/2 which was defined in 

Part 1D. The function U4 (Fv (G;/2' B)) is no longer holomorphic, but we can 
apply the 'holomorphic projection operator' (cf. Appendix C) to replace it by a 
holomorphic modular form without changing its Petersson scalar product with 
the holomorphic cusp form f. Moreover, for l' = 1 we have v = ~(k - l' - 1) = 
~ - 1 and hence 2( k - v-I) = k, so the right-hand side of (3) is proportional to 

2:: a~~2) I.=k and hence, by formula (5) of Section B, to (j, 1) if f is a normalized 
Hecke eigenform. Thus finally 

for all Hecke forms f E Sk, where Ck depends only on k (in fact, Ck = 

_2k-1(V~~)). But since to(T) is the sum of all such eigenforms, and since 
distinct eigenforms are orthogonal, we also have (j, to) = (j,1) for all Hecke 
forms. It follows that 

(4) 

for some constant c~. 
It remains only to compute the Fourier expansion of the function on the 

left of (4). We have 
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00 

G~(T) = L H(m)qm 
m=O 

and hence 

so 

= f= L i)-I)!' C -t) (~~ t )t211-21'(4n - tz)1' H(4n - e)qn 
n=O t2::;4n 1'=0 /-l /-l 

= -~Ck f L Pk(t,n)H(4n - e)qn 
n=O t2::;4n 

(recall that k = 2v+2). On the other hand, the difference of G;/2 and G3 / 2 is a 

linear combination of terms q- f2 with coefficients which are analytic functions 
of v = 'S(T). Hence the coefficient of qn in U4(FII ((},G;/2 - G3/2)) is a sum 

over all pairs (t, J) E 2;2 with t2 - P = 4n of a certain analytic function of 
v. Applying 7rhol means that this expression must be multiplied by vk-2e-47rnv 

and integrated from v = 0 to v = 00. The integral turns out to be elementary 
and one finds after a little calculation 

Adding this to the preceding formula, and comparing with (4), we find that 
the constant ck in (4) must be 0 and that we have obtained the result stated 
in the theorem. 
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4. Jacobi forms 

When we introduced modular forms, we started with functions F of lattices 
A C C invariant under rescaling A t-+ AA (A E C*); these corresponded via 
f( r) = F(Zr + Z) to modularfunctions. The quotient Cj A is an elliptic curve, 
so we can think of F (or 1) as functions of elliptic curves. It is natural to make 
them functions on elliptic curves as well, i.e., to consider functions P which 
depend both on A and on a variable z E CIA. The equations 

p(AA,h) = p(A,z), p(A,z +w) = p(A,z) (A E CX, wE A) 

correspond via 4>( r, z) = P(Zr + Z, z) to functions 4> on S) x C satisfying 

ar+ b z 
4>(cr + d' cr + d) = 4>(r,z), 

(1) 

We call a meromorphic function 4> on S) X C satisfying (1) a Jacobi function. 
However, there can clearly never be a holomorphic Jacobi function, since 

by Liouville's theorem a holomorphic function on C invariant under all trans­
formations z t-+ z + w (w E A) must be constant. Thus, just as the concept of 
modular function was too restrictive and had to be extended to the concept of 
modular forms of weight k, corresponding to functions on lattices transform­
ing under A t-+ AA with a scaling factor A -k, the concept of Jacobi functions 
must be extended by incorporating appropriate scaling factors into the defini­
tion. The right requirements, motivated by examples which will be presented 
in Section A, turn out to be 

(2) ..h(ar+b z ) ( d)k 2".NC. 2 ..h( ) 'f' --- --- = cr+ e~'f'rz 
cr+d'cr+d ' 

and 

(3) (.e,m E Z), 

where N is a certain integer. Finally, just as with modular forms, there must 
be a growth condition at infinity; it turns out that the right condition here is 
to require that 4> have a Fourier expansion of the form 

(4) 
00 

4>(r,z) = L L c(n,r)qn(r 
n=O rEZ 

r2~4Nn 

(again, the rather odd-looking condition r2 :::; 4Nn will be motivated by the 
examples). A function 4> : S) -t C satisfying the conditions (2), (3) and (4) will 
be called a Jacobi form of weight k and index N. 
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Surprisingly, in most of the occurrences of modular forms and functions 
in physics-in particular, those connected with theta functions and with Kac­
Moody algebras-it is actually Jacobi forms and functions which are involved. 
It is for this reason, and because the theory is not widely known, that we have 
devoted an entire part to these functions. 

A Examples of Jacobi forms 

The simplest theta series, namely the function 

O(r) = L qn2 = 1 + 2q + 2q4 + 2q9 + 
nEZ 

introduced at the beginning of Section 1D, is actually just the specialization to 
z = 0 ('Thetanullwert') of the two-variable function 

O(r, z) = L qn2(2n = 1 + ((2 +C2)q + ((4 +C4)q4 + ((6 +C6)q9 + ... , 
nEZ 

and similarly the transformation equation 

ar + b 1 

O(--d) = tc d (cr + d)'20(r) 
cr + ' 

is just the specialization to z = 0 of the more general transformation equation 

ar + b z 1 hicz 2 

O(--d' --d) = tc d (cr + d) '2 e CT+d O(r, z) 
cr + cr + ' 

It is also easily checked that () satisfies 

O( r, z + Rr + m) = e- 2 11'i(l2 T +2Cz) O( r, z) 

(just replace n by n +k: in the summation defining 0), so that O( r, z) is, with the 
obvious modifications in the definition given before, a Jacobi form of weight 
1/2 and index 1 on the group roC 4). The function O( r, z) is one of the classical 
Jacobi theta functions and this is the reason for the name 'Jacobi form.' 

Just as for the one-variable theta functions discussed in Part 1, if we want 
to get forms of integral weight and on the full modular group, rather than of 
weight 1/2 and on roC 4), we must start with quadratic forms in an even number 
of variables and whose associated matrix has determinant 1. If Q : Z2k --4 Z is 
a positive definite quadratic form in 2k variables given by an even symmetric 
unimodular matrix A (i.e. Q(x) = txtAx, aij E Z, taii E Z, det A = 1), then 
for each vector y E Z2k the theta-function 

(5) 8 Q ,y( r, z) = L qQ(x) (B(x,y) , 

xEZ2k 

where ( = e2 11'iz as before and B( x, y) = xt Ay is the bilinear form associated to 
Q, is a Jacobi form of weight k and index N = Q(y). The transformation law (2) 
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is proved using the Poisson summation formula as for the special case eQ( T) = 
eQ,o( T, 0) studied in Part 1; the transformation law (3) is proved directly from 
the expansion (5) by making the substitution X f-+ X + £y; and the form of the 
Fourier expansion required in (4) is clear from (5) and the Cauchy-Schwarz 
inequality B(x, y)2 ::; 4Q(x)Q(y). (This motivates the inequality r2 ::; 4Nn in 
(4), as promised.) 

The next example is that of Eisenstein series. The Eisenstein series of Part 
1 can be written as 

where I k is the slash operator introduced in IE and the summation is over 
the cosets of Too = {±(~~) In E Z} in Tl C PSL2 (Z) (cf. Part 3). In the 
Jacobi form context we must generalize the slash operator to a new operator 
Ik,N defined by 

() k hiNcz 2 (aT+b z ) 
</ilk N"Y (T, z) = (CT + d)- e-C'i"-Fd </i --d' --d 

' cr+ cr+ 
ab 

("Y = (c d) E Tl)' 

(</ilk,N[£' m])( T, z) = e27l'iN(£2r+2fz) </i( T, Z + £T + m) (£,m E Z) 

(so that </ilk,N"Y = </ilk,N[C, m] = </i if </i is a Jacobi form of weight k and index 
N). We then define an Eisenstein series 

Gk,N(T,Z)=((3-2k) L L((llk,N"Y)l k,N[£,O])(T,z) 
'YEr 00 \r, fEZ 

or more explicitly 

1 
Gk,N(T, z) = 2((3 - 2k) L 

c,d,fEZ 
(c,d)=l 

'N(02 () 21z CZ 2 ) e2 7l'1 < "fc,d r + CT+d - CT+d 

where "Yc,d for each pair of coprime integers c, d denotes an element of PSL2 (Z) 
with lower row (c d). The series is convergent for k > 2 and defines a Jacobi 
form of weight k and index N. Moreover, its Fourier expansion can be computed 
by a calculation analogous to, though somewhat harder than, the one given in 
lA. The result is that the Fourier coefficients are rational numbers of arithmetic 
interest, expressible in closed form in terms of the function H(r, n) introduced 
in Section D of Part 1 in connection with Eisenstein series of half-integral 
weight. In particular, for N = 1 the result is simply 

00 

Gk,l(T,Z)=L L H(k_l,4n_r2)e27l'i(nr+rz). 

n=O Irl::;v'4Ti' 

That the coefficient of qn(r depends only on 4n - r2 is not an accident: it is 
easily seen that the transformation equation (3) in the case N = 1 is equivalent 
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to the condition that the Fourier coefficient c( n, r) as defined in (4) depend only 
on 4n - r2 , while for general N (3) is equivalent to the requirement that c( n, r) 
depend only on 4n - r2 and on the residue of r modulo 2N. The fact that 
the coefficients of the Jacobi Eisenstein series were essentially the same as the 
coefficients of Eisenstein series in one variable but of half-integral weight is also 
not accidental: There is in fact an intimate connection between Jacobi forms 
and modular forms of half-integral weight, obtained by associating to the Jacobi 
form <p the collection of functions Ed Cp.(d) qd, f.L = 1,2, ... ,2N, where Cp.(d) 
is the common value of the c( n, r) with 4n - r2 = d and r == f.L (mod 2N); each 
of these 2N functions is a modular form of weight k - t with respect to some 
subgroup of r1 , and the entire 2N-tuple satisfies a transformation law with 
respect to the whole group H. However, we do not elaborate on this here. 

The beginnings of the Fourier expansions of the first few Jacobi Eisenstein 
series (of index 1) are 

G () 1 ( 1 (2 2 ( 1 2 (-1 1 (-2) 4,1 'I, Z = - 252 + - 252 - 9" - 2" - 9" - 252 q 

+ (_~(2 _ 176 ( _ 3 _ 176c1 _ ~C2) q2 

+ (_~(3 _ 3(2 _ 6( _ 794 _ 6C1 _ 3C2 _ ~C3) q3 + ... , 
G6 ,1(r,z) = -1;2 + (-1;2(2 + ~(+ ~ + ~C1 - 1;2C2) q 

+ (~(2 + 32( + 57 + 32C1 + ~C2) q2 + ... , 
Gs,l(r,z) = -112 + (-/2(2 - 134 ( - 621 - 134 (-1 - /2C2) q + .... 

To get more examples, we can combine these in various ways. In particular, 
the two functions 

(6) 
<P10,1(r, z) = 882 G6 (r) G4 ,1(r,z) + 220G4 (r) G6 ,1(r,z), 

<P12,l(r, z) = -840 Gs(r) G4 ,1(r, z) - 462 G6(r) G6,1(r, z) 

are Jacobi forms of index 1 and weights 10 and 12, respectively, and in fact 
are Jacobi cusp forms (i.e. n > 0, r2 < 4N n in (4)) with Fourier expansions 
starting 

<P10,1(r,z) = (( - 2 + C 1) q + (_2(2 -16( + 36 -16C1 - 2C2) l ... , 
<P12,1(r,z) = ((+1O+C1)q + (10(2-88(-132-88C1+10C2)q2 ... ; 

their ratio <P12,t/ <P1O,1 is -371"-2 times the Weierstrass p-function p(z; Zr + Z) 
from the theory of elliptic functions (cf. the lectures of Cohen and Bost/Cartier 
in this volume). 

Other important examples of Jacobi forms are obtained from the Fourier 
developments of Siegel modular forms on the symplectic group Sp(2, Z), but 
we cannot go into this here since we have not developed the theory of Siegel 
modular forms. 
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B Known results 

In this section we describe a few highlights from the theory of Jacobi forms. 

(i) If rP t 0 is a Jacobi form of weight k and index N, then it is easily seen 

by integrating d~ log rP around a fundamental parallelogram for C/(ZT + Z) 

that rP has exactly 2N zeros in this parallelogram (here we are considering T 

as fixed and rP as a function of z alone). In particular, rP cannot have a zero of 
multiplicity greater than 2N at the origin, so in the Taylor expansion 

the first 2N + 1 coefficients determine rP completely. On the other hand, one 
easily sees by differentiating (2) repeatedly with respect to z and then setting 
z equal to 0 that Xo is a modular form in T of weight k (this, of course, is 
obvious), Xl a modular form of weight k + 1, X2 - 27r~N X~ a modular form of 
weight k + 2, and more generally 

" (-27riN)P, (k + v - f-L - 2)! (p,) 
(7) ev(T)= ~ (k+v-2)!f-L! Xv-2p,(T) 

O~p,~v/2 

a modular form of weight k + v for every integer v 2: O. The fact that rP is 
determined by its first 2N + 1 Taylor coefficients means that we have an injective 
map from the space h,N of Jacobi forms of weight k and index N into the direct 
sum Mk EEl Mk+2 EEl .•. EEl Mk+2N if k is even or Mk+l EEl Mk+3 EEl ... Mk+2N-l 

if k is odd. In particular, Jk,N is finite dimensional, of dimension at most 
/2 kN + 0(N2). 

The function ev defined by (7) has the Fourier expansion 

where the c(n,r) are the coefficients defined by (4) and Pd,v(a,b) denotes the 
coefficient of XV in (1 - aX + bX2)-d. The fact that ev is a modular form is 

related to the heat equation operator 87riN :T - ::2' and also to the formula 

(11) of IE. 

(ii) The bigraded ring of all Jacobi forms (of all weights and indexes) is 
not finitely generated, since the forms obtained as polynomials in any finite 
collection would have a bounded ratio of k to N and there is an Eisenstein 
series Gk,1 for all k > 2. However, if we enlarge the space h,N to the space 
ik,N of 'weak Jacobi forms,' defined as functions rP : 1{ x C -+ C satisfying 
the properties (2)-(4) but with the condition '1'2 ::; 4Nn' dropped in (4), then 
the bigraded ring E9k,N ik,N is simply the ring of all polynomials in the four 
functions G4(T), G6(T), rPI0,I(T,Z)/Ll(T) and <P12,I(T,Z)/Ll(T) (with <PI0,1 and 
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¢>12,1 as in (6) and Ll as in 1B) of weight 4, 6, -2 and 0 and index 0, 0, 1 and 
1, respectively. In particular, Ll(T)N¢>(T,Z) is a polynomial in G4(T), G6(T), 
G4,1 (T, z) and G6,1 (T, z) for any Jacobi form ¢> of index N. 

(iii) There are no Jacobi forms of weight 1 on PSL2('L) , i.e., h,N = {O} 
for all N. 

(iv) One can define Hecke operators on the spaces Jk,N and compute 
their traces. These turn out to be related to the traces of Hecke operators 
on the spaces of ordinary modular forms of weight 2k - 2 and level N. Us­
ing these, one can construct lifting maps from h,N to a certain subspace 
9J't2k-2(N) C M2k-2(Fo(N)) which is canonically defined and invariant under 
all Hecke operators. Moreover, h,N turns out to be isomorphic to the subspace 
of forms in 9J't2k-2(N) whose Hecke L-series satisfy a functional equation with 

a minus sign, i.e., to the intersection of 9J't2k-2(N) with MJ;~r(ro(N)) (d. 
2D). 

(v) There is another kind of Jacobi form, called skew-holomorphic Jacobi 
forms, for which statements analogous to those in (iv) hold but with the iso­
morphism now between the space of skew-holomorphic Jacobi forms and the 
subspace of forms in 9J't2k-2 (N) having a plus sign in the functional equation of 
their L-series. By definition, a skew-holomorphic Jacobi form of weight k and 
index N is a function ¢> on 1i x <C which satisfies the transformation equations 
(2) and (3) but with (CT + d)k replaced by (cf + d)k-1IcT + dl in (2) and which 
has a Fourier expansion like the one in (4) but with the condition r2 ::; 4Nn 
replaced by r2 ~ 4Nn and with qnC multiplied by e- 7f(r 2 -4Nn)v/N (v = ~(T)). 
Such a function is again holomorphic in z, but the Cauchy-Riemann condition 

[)¢> 0 f h I h' . 1 d b h h . [)¢> 1 [)2 ¢> ~_ = 0 0 omorp y 10 T IS rep ace y t e eat equatIOn l'l = ----:--N ~ 2 . 
uT uT 87rZ uZ 
The Fourier expansion together with the transformation property (3) can be 
written uniformly in the holomorphic and non-holomorphic case as 

(8) , ¢>(T,Z)= 
r,.<lEZ 

r2::.<l (mod 4N) 

27fi(r:iV.<1 !R(r)+i r2:J.<11 '<S(r)+rz) 
C(Ll,r)e 

where C(Ll, r) depends only on Ll and on r (mod 4N) and vanishes for Ll > 0 
(holomorphic case) or Ll < 0 (non-holomorphic case). 

(vi) There are explicit constructions of Jacobi and skew-Jacobi forms in 
terms of binary quadratic forms, due to Skoruppa. For instance, if we define 
C(Ll, r) = L: sgn(a) , where the (finite) sum is over all binary quadratic forms 
[a, b, c] = ax2 + bxy + cy2 of discriminant b2 - 4ac = Ll with a == 0 (mod N), 
b == r (mod 4N) and ac < 0, then (8) defines a skew-holomorphic Jacobi form 
of weight 2 and index N. 
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Appendices 

The following appendices describe some analytic tools useful in the theory of 
modular forms. 

A The Poisson summation formula 

This is the identity 

(1) 

where r.p( x) is any continuous function on ~ which decreases rapidly (say, at 
least like Ixl-c with C > 1) as x -+ 00. The proof is simple: the growth condition 
on r.p ensures that the sum on the left-hand side converges absolutely and defines 
a continuous function p(x). Clearly p(x + 1) = p(x), so P has a Fourier ex­
pansion LrEzCre27rirx with Fourier coefficients Cr given by Jo1 p(x)e-211"irx dx. 
Substituting into this formula the definition of P, we find 

1 00 

Cr = J ( L r.p(x + n)e-211"ir(x+n)) dx 
o n=-oo 

00 n+l 00 

= L J r.p(x)e- 211"irx dx = J r.p(x)e- 211"irx dx, 
n=-oo n -00 

as claimed. If we write r.p( t) for the Fourier transform J~oo r.p( x)e -211"itx dx of 

r.p, then (1) can be written in the form :En r.p(x + n) = :Er r.p(r)e211"irx, where 
both summations are over Z. The special case x = 0 has the more symmetric 
form Ln r.p( n) = Lr r.p( r), which is actually no less general since replacing 
r.p( x) by r.p( x + a) replaces r.p( t) by r.p( t )e211"ita j it is in this form that the Poisson 
summation formula is often stated. 

As a first application, we take r.p(x) = (x + iy)-k, where y is a positive 
number and k an integer ~ 2. This gives the Lipschitz formula 

L 1 (-27l"i)k Loo k-l 211"irz = r e 
(z+n)k (k-1)! 

nEZ r=l 

which can also be proved by expanding the right hand side of Euler's identity 

as a geometric series in e211"iz and differentiating k - 1 times with respect to z. 
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As a second application, take r.p( x) e-7rax2 with a > O. Then rj;(t) 
1 2/ a-' e-7rt a, SO we get 

(2) (x E IR) 

(the formula is actually valid for all x E <C, as one sees by replacing r.p( x) 
by r.p(x + iy) with y E IR). This identity, and its generalizations to higher­
dimensional sums of Gaussian functions, is the basis of the theory of theta 
functions. 

Finally, if s is a complex number of real part greater than 1, then taking 
r.p(x) = Ix + iyl-S with y > 0 leads to the following non-holomorphic general­
ization of the Lipschitz formula: 

1 = . L + S = yl-s L kS/2(27r1'y)e27rZrX (z = x + iy E n, iR( s) > 1), 
nEZ Iz nl r=-= 

where ks(t) = J~= e-itx (x2 + l)-S dx. The function ks(t) can be expressed 
in terms of the gamma function T(s) and the K-Bessel function KII(t) = 
Jo= e-tcoshu cosh(vu)du (v E <C, t > 0) by 

{ 

27r! (l!l)S-! K 1 (Itl) if t ../.. 0 r(s) 2 s-, I , 
ks(t) = ~ 

7r~r(s-!) ·ft - 0 
r(s) 1 -

(cf. Appendix B), so, replacing s by 2s, we can rewrite the result as 

(3) 

1 

L Iz+nl2s 
nEZ 

7r!T(s-l) 27rS 1", 1 . 
r(S) 2 yl-2s + T(s) y2-S 611'ls-2 Ks_!(27rlrIY) e27rZrX 

r,eO 

(z = x +iy En, iR(s) > ~). 

This formula is used for computing the Fourier development of the non­
holomorphic Eisenstein series (Part 3A). 

B The gamma function and the Mellin transform 

The integral representation n! = Jo= tne-t dt is generalized by the definition of 
the gamma function 

(1) r(s) = 1= t s - 1 e-t dt (8 E <C, iR(s) > 0). 

Thus n! = r( n + 1) for n a nonnegative integer. Integration by parts gives the 
functional equation T( s + 1) = sr( s), generalizing the formula 



D. Zagier 285 

(n+1)!=(n+1)n! 

and also permitting one to define the r-function consistently for all sEC as a 
meromorphic function with polar part (-:r s~n at s = -n, n E Z~o. 

The integral (1) is a special case of the Mellin transform. Suppose that 
cjJ(t) (t > 0) is any function which decays rapidly at infinity (i.e., cjJ(t) = oCt-A) 
as t -+ 00 for every A E lR) and blows up at most polynomially at the origin 
(i.e., cjJ(t) = Oct-C) as t -+ 0 for some C E lR). Then the integral 

McjJ(s) = 100 
cjJ(t)e-1 dt 

converges absolutely and locally uniformly in the half-plane ~(s) > C and hence 
defines a holomorphic function of s in that region. The most frequent situa­
tion occurring in number theory is that cjJ(t) = 2:::'=1 cne-nt for some complex 
numbers {Cn}n>1 which grow at most polynomially in n. Such a function auto­
matically satisfies the growth conditions just specified, and using formula (1) 
(with t replaced by nt in the integral), we easily find that the Mellin transform 
McjJ(s) equals r(s)D(s), where D(s) = 2:::'=1 cnn- s is the Dirichlet series asso­
ciated to cjJ. Thus the Mellin transformation allows one to pass between Dirichlet 
series, which are of number-theoretical interest, and exponential series, which 
are analytically much easier to handle. 

Another useful principle is the following. Suppose that our function cjJ(t), 
still supposed to be small as t -+ 00, satisfies the functional equation 

J 

cjJ( ~) = L Aje'j + thcjJ(t) 
t . 

J=1 

(2) (t > 0), 

where h, Aj and Aj are complex numbers. Then, breaking up the integral 

defining McjJ(s) as f01 + fl°O and replacing t by r1 in the first term, we find for 
~(s) sufficiently large 

McjJ(s) = 100 (t Aje'·j + thcjJ(t») c s - 1 dt + 100 
cjJ(t)t S - 1 dt 

1 J=1 1 

J A- 100 dt = L _J_ + cjJ(t) (e + th- S ) -. 

j=1 S - Aj 1 t 

The second term is convergent for all s and is invariant under s 1--+ h - S. The 
first term is also invariant, since applying the functional equation (2) twice 
shows that for each j there is a jf with Ajl = h - Aj, Ai' = -Aj. Hence we 
have the 

Proposition. (Functional Equation Principle) If cjJ(t) (t > 0) is small at infinity 
and satisfies the functional equation (2) for some complex numbers h, Aj and 
>.. j, then the Mellin transform McjJ( s) has a meromorphic extension to all s 
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and is holomorphic everywhere except for simple poles of residue Aj at s = )..j 

(j = 1, ... ,J), and M</>(h - s) = M</>(s). 

This principle is used to establish most of the functional equations occur­
ring in number theory, the first application being the proof of the functional 
equation of ((s) given by Riemann in 1859 (take </>(t) = E::'=l e-7rn \ so that 
M</>(s) = 7r- S r(s)((2s) by what was said above and (2) holds with h = t, 
J = 2, )..1 = 0, )..2 = t, A2 = -AI = t by formula (2) of Appendix A). 

As a final application of the Mellin transform, we prove the formula for 
ks(t) stated in Appendix A. As we just saw, the function )..-8 ().. > 0) can be 
written as r(s)-l times the Mellin transform of e-At . Hence for a E IR we have 
ks(a) = r(s)-l M</>a(s) where 

</>a(t) = 100 e-iax e-(x2+1)t dx = Ee-t-a2/4t. 
-00 V t 

Hence 7r-t res )ks( a) = Iooo e-t- a2 /4t tS-~ dt. For a = 0 this equals res - t), 
1 

while for a > 0 it equals 2( ~ r- 2 Iooo e-acosh U cosh(s - t)u du, as one sees by 
substituting t = taeu. 

C Holomorphic projection 

We know that Sk has a scalar product (".) which is non-degenerate (since 
(I, f) > 0 for every I =I 0 in Sk). It follows that any linearfunctional L : Sk -+ 

C can be represented as I ~ (I, </>d for a unique cusp form </>L E Sk. 
N ow suppose that iP ; .fj -+ C is a function which is not necessarily holo­

morphic but transforms like a holomorphic modular form of weight k, and that 
iP( T) has reasonable (say, at most polynomial) growth in v = ~(T) as v -+ 00. 

Then the scalar product (I, iP) = I IfJ/ r 1 v k I( T )iP( T) dp, converges for every I 
in Sk, and since I ~ (I,If!) is linear, there exists a unique function </> E Sk 
satisfying (I, </» = (I, If!) for every I E Sk. Clearly </> = If! if If! is already in Sk, 
so that the operator 7rhol which assigns </> to If! is a projection from the infinite 
dimensional space of functions in j) transforming like modular forms of weight 
k to the finite dimensional subspace of holomorphic cusp forms. Our object is 
to derive a formula for the Fourier coefficients of 7rhol(If!). 

To do this, we introduce the Poincare series. For each integer mEN set 

e27rim'Y(r) ( aT + b a b ) 
Pm(T) = L (CT + d)k ,(T) = CT + d for, = (c d) , Fe ~)Eroo\n 

where the summatIOn is over left cosets of roo = {± G n, b E Z} in r 1 . The 
series converges absolutely if k > 2 and defines a cusp form of weight k. The 
same unfolding argument as in the Rankin-Selberg method (Part 3, B) shows 

00 

that for a form I = Ea(n)qn E Sk the Petersson scalar product (I,Pm) is 
1 

given by 



D. Zagier 287 

J1 - k dudv 
(J,Pm ) = f(T)Pm(T)V -2-

SJ/ r, v 

= Jr f f( T) e21rimr Vk du :v 
}SJ/r= v 

= 100 (1 1 feu + iv) e-21rimu dU) e-21rmvvk-2 dv 

= 100 (a(m)e- 21rmV ) e-21rmvvk-2 dv 

(k - 2)! 
= (47rm)k-1 a(m). 

In other words, (47rm)k-1 Pm(T)/(k - 2)! is the cusp form dual to the operator 
of taking the mth Fourier coefficient of a holomorphic cusp form. 

Now let I:nEZ cn( v )e21rinu denote the Fourier development of our function 
pC T) and I:~=1 cnqn that of its holomorphic projection to Sk. Then 

by the property of Pm just proved and the defining property of 7rhol(P). Un­
folding as before, we find 

(p,Pm) = 100 (11 p(u + iv)e-21rimu dU) e-21rmvvk-2 dv 

= 100 Cm(v)e-21rmvvk-2 dv 

provided that the interchange of summation and integration implicit in the first 
step is justified. This is certainly the case if the scalar product (p , Pm) remains 
convergent after replacing P by its absolute value and Pm by its majorant 
Pm(T) = I:r= \r, I(CT + d)-ke21rim-y(r) I. We have 

Pm(T) < le21rimrl + L L ICT + dl- k 

c;io (d,c)=l 

= e-21rmv + (tk) V- k/2 [G( T, ~) - ((k )vk/2], 

with G( T, ~) the non-holomorphic Eisenstein series introduced in A, Part 3. 

The estimate there shows that G(T,~) - ((k)v k/2 = O(v1- k/2) as v -> 00, so 

Pm(T) = O(v1 - k ). The convergence of ffSJ/F, IplPmvk- 2 dudv is thus assured 

if p( T) decays like O( V-f) as v -> 00 for some positive number E. Finally, we 
can weaken the condition p( T) = O( V-f) to p( T) = Co + O( V-f) (CO E q by the 
simple expedient of subtracting Co 1kk Gk (T) from <P(T) and observing that Gk 

is orthogonal to cusp forms by the same calculation as above with m = 0 (G k 
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is proportional to Po). We have thus proved the following result, first stated by 
J. Sturm under slightly different hypotheses: 

Lemma. (Holomorphic Projection Lemma) Let P : 5) -t C be a continuous 
function satisfying 

(1) '(i)' p(/,(T)) = (CT + d)kp(T) for all/, = (~~) E r1 and T E 5); and 
(2) '(ii) , P(T) = Co + O(v-<) as v = 8'(T) -t 00, 

for some integer k > 2 and numbers Co E C and E > O. Then the function 
00 ( )k-l 

¢(T) = 2: cnqn with Cn =4(:~2)! Jooo Cn(v)e-2rrnvvk-2 dv for n > 0 belongs 
n=O 

to Mk and satisfies (j,¢) = (j,p) for all f E Sk. 

As an example, take P = (G~)2, where G~ is the non-holomorphic Eisen­
stein series of weight 2 introduced in Part 1A. Using the Fourier expansion 
G~ = s!v + G2 = s!v - 214 + 2:~ 0"1 (n )qn given there, we find 

so that the hypotheses of the holomorphic projection lemma are satisfied with 
k = 4, Co = 5~6' E = 1 and cn(v) = (- 1120"1(n) + 2::-==\ O"l(m)O"l(n - m) + 
4!vO"l(n))e-2rrnv . The lemma then gives 2: cnqn E M4 with Cn = - 1120"1(n) + 
2::-==110"1 (m )0"1 en - m) + tnO"l en) for n 2: 1. Since 2:: cnqn E M4 = (G4 ), we 
must have Cn = 240c00"3(n) = 1520"3(n) for all n > 0, an identity that the reader 
can check for small values of n. 

Similarly, if f = 2:: anqn is a modular form of weight 1 2: 4, then P = fG~ 
satisfies the hypotheses of the lemma with k = 1 + 2, Co = - 214 ao and E = 1, 
and we find that 7rhol(jG~) = fG2 + 4'!ilf'+ E Ml+ 2. 

References 

We will not attempt to give a complete bibliography, but rather will indicate 
some places where the interested reader can learn in more detail about the 
theory of modular forms. 

Three short introductions to modular forms can be especially recom­
mended: 

(i) the little book Lectures on Modular Forms by R.e. Gunning (Princeton, 
Ann. of Math. Studies 48, 1962), which in 86 widely spaced pages describes the 
classical analytic theory and in particular the construction of Poincare series 
and theta series, 
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(ii) Chapter 7 of J-P. Serre's 'Cours d'Arithmetique' (Presses Universi­
taires de France 1970; English translation: Springer, GTM 7, 1973), which gives 
among other things a very clear introduction to the theory of Hecke operators 
and to the applications of theta series to the arithmetic of quadratic forms, and 

(iii) the survey article by A. Ogg in Modular Functions of One Variable. I 
(Springer, Lecture Notes 320, 1973), which treats some of the modern aspects 
of the theory and in particular the connection with elliptic curves. (The other 
volumes in this series, SLN 349, 350, 475, 601, and 627, describe many of the 
developments of the years 1970-76, when the subject experienced a renascence 
after a long period of dormancy.) 

Of the full-length books on the subject, the best introduction is probably 
Serge Lang's Introduction to Modular Forms (Springer, Grundlehren 222, 1976), 
which treats both the analytic and the algebraic aspects of theory. It also 
includes a detailed derivation of the trace formula for Heeke operators on the 
full modular group (this is in an appendix by me and unfortunately contains an 
error, corrected in the volume SLN 627 referred to above). Other texts include 
Ogg's Modular Forms and Dirichlet Series (Benjamin 1969), which gives in 
great detail the correspondence between modular forms and Dirichlet series 
having appropriate functional equations, as well as an excellent presentation of 
the theory of theta series with spherical polynomial coefficients, G. Shimura's 
Introduction to the Arithmetic Theory of Automorphic Functions (Princeton 
1971), which is more advanced and more heavily arithmetic than the other 
references discussed here, and the recent book Modular Forms by T. Miyake 
(Springer 1989), which contains a detailed derivation of the trace formula for 
the standard congruence subgroups of rl . Another good book that treats the 
connection with elliptic curves and also the theory of modular forms of half­
integral weight is N. Koblitz's Introduction to Elliptic Curves and Modular 
Forms (Springer, GTM 97,1984). Finally, anyone who really wants to learn the 
subject from the inside can do no better than to study Hecke's Mathematische 
Werke (Vandenhoeck 1959). 

We also mention some books on subjects closely related to the theory 
of modular forms: for a classically oriented account of the theory of modu­
lar functions, Rankin's Modular Forms and Functions (Cambridge 1977) or 
Schoeneberg's Elliptic Modular Functions: An Introduction (Springer, Grund­
lehren 203, 1974); for the theory of elliptic curves, Silverman's book The Arith­
metic of Elliptic curves ( Springer, GTM 106, 1986); for the modern point of 
view on modular forms in terms of the representation theory of GL(2) over 
the adeles of a number field, Gelbart's Automorphic Forms on Adele Groups 
(Princeton, Ann. of Math. Studies 83, 1975) or, to go further, Automorphic 
Forms, Representations, and L-Functions (AMS 1979). 

We now give in a little more detail sources for the specific subjects treated 
in these notes. 

Part 1. The basic definitions of modular forms and the construction of the 
Eisenstein series Gk and the discriminant function Ll are given in essentially 
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every introduction. Serre (op. cit.) gives a construction of Ll which is related to, 
but different from, the one given here: Instead of using the non-holomorphic 
modular form Gi, he uses G2 itself but analyzes the effect on the value of 
the non-absolutely convergent series E(mT + n)-2 of summing over m and n 
in different orders. This approach goes back to Eisenstein. The reader should 
beware of the fact that Serre normalizes the weight differently, so that, e.g., Ll 
has weight 6 instead of 12. The best treatment of theta series in the simplest 
case, namely when the underlying quadratic form is unimodular and there are 
no spherical coefficients, is also given in Serre's book, but for the general case 
one must go to Gunning's or (better) Ogg's book, as already mentioned. The 
Eisenstein series of half-integral weight are already a more specialized topic 
and are not to be found in any of the books mentioned so far. The construction 
of the Fourier coefficients of the particular Eisenstein series G r+! which we 
discuss (these are the simplest half-integral-weight series, but there are others) 
is due to H. Cohen (Math. Ann. 217, 1975), for r > 1, while the construction of 
the series G~ is contained in an article by Hirzebruch and myself (Inv. math. 

2 

36, 1976, pp. 91-96). The development of the general theory of modular forms 
of half-integral weight, and in particular the construction of a 'lifting map' 
from these forms to forms of integral weight, is given in famous papers by G. 
Shimura (Ann. of Math. 97, 1973 and in the above-mentioned Lecture Notes 
320); an elementary account of this theory is given in Koblitz's book cited 
above. Of the constructions described in Section E, the differential operator 
F" is constructed in the paper of H. Cohen just cited, but is in fact a special 
case of more general differential operators constructed by Rankin several years 
earlier, while the 'slash operators' and the operators Vm and Um are treated in 
any discussion of Hecke operators for congruence subgroups of SL(2, Z) and in 
particular in Chapter VII of Lang's book. Finally, the topics touched upon in 
Section F are discussed in a variety of places in the literature: the connection 
between modular forms of weight 2 and elliptic curves of weight 2 is discussed 
e.g. in Silverman's book or the Springer Lecture Notes 476 cited above; the 
theorem of Deligne and Serre appeared in Ann. Sc. Ec. Norm. Sup. 1974; and 
the theory of complex multiplication is discussed in Lang's book of the same 
name and in many other places. 

Part 2. As already mentioned, the clearest introduction to Hecke operators 
for the full modular group is the one in Serre's book, the L-series and their 
functional equations are the main topic of Ogg's Benjamin book. The theory 
in the higher level case was first worked out by Atkin and Lehner (Math. Ann. 
185, 1970) and is presented in detail in Chapters VII-VIII of Lang's textbook. 
Some tables of eigenforms for weight 2 are given in the Lecture Notes volume 
476 cited above. 

Part 3. The classical reference for the function G( T, s) and the Rankin-Selberg 
method is Rankin's original paper (Proc. Camb. Phil. Soc. 35, 1939). However, 
the main emphasis there is on analytic number theory and the derivation of the 
estimate a( n) = 0 ( n ~ -!) for the Fourier coefficients a( n) of a cusp form f of 
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weight k (specifically, L1 of weight 12). Expositions of the general method have 
been given by several authors, including the present one on several occasions 
(e.g. in two articles in Automorphic Forms, Representation Theory and Arith­
metic, Springer 1981, and in a paper in J. Fac. Sci. Tokyo 28, 1982; these also 
contain the applications mentioned in Section B). The proof of the Eichler­
Selberg trace formula sketched in Section D has not been presented before. 
Standard proofs can be found in the books of Lang and Miyake, as already 
mentioned, as well, of course, as in the original papers of Eichler and Selberg. 

Part 4. The theory of Jacobi forms was developed systematically in a book by 
M. Eichler and myself (Progress in Math.55, Birkhauser 1985); special exam­
ples, of course, had been known for a long time. The results described in (iii), 
(v) and (vi) of Section B are due to N.-P. Skoruppa (in particular, the construc­
tion mentioned in (vi) is to appear in Inv. math. 1990), while the trace formula 
and lifting maps mentioned under (iv) are joint work of Skoruppa and myself 
(J. reine angew. Math. 393, 1989, and Inv. math. 94, 1988). A survey of these 
and some other recent developments is given in Skoruppa's paper in the pro­
ceedings of the Conference on Automorphic Functions and their Applications, 
Khabarovsk 1988. 

Appendices. The material in Sections A and B is standard and can be found in 
many books on analysis or analytic number theory. The method of holomorphic 
projection was first given explicitly by J. Sturm (Bull. AMS 2, 1980); his proof 
is somewhat different from the one we give. 



Chapter 5 

Decorated Elliptic Curves: Modular Aspects 

by Robert Gergondey 

Summary 

Classical results concerning modular forms are interpreted by introducing mod­
uli spaces for elliptic curves endowed with 'gadgets' that can be transported 
by isomorphisms. From both the arithmetical and the geometrical viewpoint, 
these moduli spaces and the corresponding universal decorated elliptic curves 
are 'nicer' objects, on which the various constructions turn out to be more 
natural than in the 'bare' situation. 

Introduction 

By 'modulating' a mathematical object of a given type, we mean, roughly 
speaking, parametrizing its essential variations, up to isomorphisms. Locally, 
this amounts to studying deformations. Globally, one is led to construct a 
family of such objects, that is both exhaustive and, as far as possible, without 
redundances. The space which parametrizes the family is endowed with the 
relevant structures (topological, differential, analytic, algebraic, arithmetical, 
... , metric, Riemannian, Kahlerian, ... ). Such constructions are well-known, the 
classical paradigm being of course the case of genus-l Riemann surfaces or, in 
other words, that of complex structures on the two-dimensional torus 11.'2. As 
a matter of fact, the moduli of elliptic curves were introduced and studied in 
many ways. The fragrances of the 'garden of modular delights' have inebriated 
many a mathematician. 

This Chapter is definitely not devoted to the theory of the moduli of 
elliptic curves, which has been presented in many books and articles (see the 
bibliography), and from many different viewpoints. Our oral exposition, which 
this text will follow rather closely, only aimed at illustrating - in forty minutes 
- the interest of several aspects, namely (a) considering (quasi- )elliptic modular 
functions, i. e. dealing with the 'universal' elliptic curve, (b) enriching elliptic 
curves by 'decorations', (c) considering as well the COO and the lR-analytic 
cases, (d) studying the Eisenstein series with critical weight, and finally (e) 
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considering modular, and even elliptic modular, derivations. Although each 
of these themes would have deserved a longer development than these few 
pages, we hope that this brief survey will nevertheless be useful. Let us finally 
emphasize that we do not claim any originality. 

1. Hors-d'reuvre: Theta Functions 

The function 

(1.1) 83(7) = L eirrn2r 

nEZ 

is the simplest of the theta 'constants'. It is holomorphic on the Poincare upper 
half-plane S)1 = {Im7 > O}, and obviously periodic with period 2. The following 
functional equation 

(1.2) 

is one of the classical 'jewels' of Mathematics. This result can be proved in 
many ways, using either the Poisson formula, or residue calculus. The Mellin 
transform allows one to relate it to the functional equation obeyed by the 
Riemann function ((8) = Ln>l n-s. The interest of the approach sketched 
here lies both in its simplicity and its very general structure. 

The function 

(1.3) 
2 

83 (zJ7) = L e2irr(nz+ '2 r) 

nEZ 

is analytic on <C X SJl' For any fixed T E SJl, the function z I--> 83(zJT) is an 
entire function which obeys 

(1.4) 

and which has simple zeros, located at 

(1.5) (m + 1/2) + (n + 1/2)7 (m,n) E Z2. 

More generally, a function e analytic on en is called a theta function on en, 
with respect to a lattice L C en, if it obeys 

(1.6) 

where ¢(z, i) ib a function on en x L, affine in z. The function 83 is thus a theta 
function with respect to the lattice Z EEl Z7 C <C. 

Considering now 7 as a variable, one can verify the heat equation 
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Notice that 

(1.8) 

is an entire function with the same simple zeros as (Ja (zI7). 'Periodicity' (up to 
a factor, see 1.4), allows one to show that 

(1.9) 

whereas the heat equation (1. 7) implies that 9 assumes the form 

(1.10) g(7) = Kif 
The special value 7 = i fixes K = 1, yielding the transformation formula 

(1.11) 

Specializing this result for z = 0, one recovers the functional equation for the 
'constant' 83(7). 

Some minor modifications of this approach allow one to obtain transfor­
mation formulas for the twisted theta functions 

(1.12) 8x (zI7) = L x(n)eW(nz+'22 
T) 

nEZ 

where X : Z --t C is a primitive Dirichlet character mod N, that is 

x(nI} = x(n2) if nl == n2 (N) 
X(l) = 1 x(mn) = x(m)x(n) 

(1.13) x(n) =I- 0 iff (n,N) = 1 

One can thus show that the function 

(1.14) 

(where q = e2i7rT , and C2) is the Legendre-Jacobi symbol), obeys the very 
same functional equation as 83 (7), namely 

(1.15) 

Finally, the 'multi-dimensional' case of theta functions on (Cn, parametrized by 
the Siegel spaces nn, can also be dealt with in an analogous fashion. 
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2. The Elliptic Modular Viewpoint 

One of the underlying ideas of the previous Section, was the following: in a 
function such as (h ( T ), the variable T parametrizes lattices of 'periods' for 
functions such as 83 (zIT). The latter functions are thus related to the elliptic 
curves E[r] = C / Lr (in the C-analytic sense of toric Riemann surfaces with one 
distinguished point), where Lr is the lattice of C generated over Z by 1 and 
T. Any variation of T corresponds to a variation of the curve E[ r], so that 83 

can be thought of as a rule which associates a number with an elliptic curve. 
The usual parametrization of the family of all elliptic curves (up to C-analytic 
isomorphism) by the Poincare upper half-plane is complete, in the sense that 
any elliptic curve E is C-analytically isomorphic to at least one E[r]' Moreover, 
we know that E[r/] is C-analytically isomorphic to E[r] if and only if 

(2.1 ) 
, aT + b 

T =---
CT +d 

with 

We are therefore led to consider the quotient 

(2.2) 

as the moduli space, or 'universal parametrization', of elliptic curves. 
This moduli space is nevertheless not as pleasant as one would wish, 

namely 
9)11 is not a compact topological space. 
The analytic structure obtained as a quotient of that of S:l1 has singu­
larities, since the action of PSLz(Z) is not free: the curves E[yCIJ and 
E [-Hzv'=3] possess automorphisms which differ from ±Id (see Section 4). 

A function such as 83 is not a function on 9Jl:1 , since it is not invariant 
under the action of PSLz(Z). 

A customary way of surrounding these difficulties is the following. 
One uses a compactijication it la Alexandroffby adding one point at infinity 
w, which can be interpreted as corresponding to the singular degeneracy 
of elliptic curves (namely a curve with a good singularity, and a regular 
part which is a multiplicative group). This degeneracy is obtained when 
the lattice Lr degenerates into a rank-1 subgroup of C (see Section 5) 

(2.3) 

where S)l = S:ll U JPl(Q) is endowed with the standard action of PSLz(Z). 
For the analytic structure, w is a logarithmic singular point, or a cusp. 
The de-singularization is relatively easy in one dimension: one chooses 
new uniformizing variables in the neighbourhood of the singular points. 
The Riemann surface obtained in this way is C-analytically isomorphic to 
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the Riemann sphere pI(e) = ee, an explicit isomorphism being given by 
the modular function j. But we are still left with the multi-valuedness of 
the function (}3. 

As a matter of fact, such situations are generic when dealing with the mod­
uli of mathematical structures, and compactification and de-singularization are 
rarely so easy as in the case of VJ'tI . But a very fruitful way is open, namely 
to replace the modular problem under study by a rigidified problem, in which 
the objects, whose variations are to be parametrized, bear some additional 
structures chosen in an appropriate way. These superimposed structures, or 
decorations, which can be transported by isomorphism, will allow us to distin­
guish between isomorphic objects, and thus to break some symmetries in an 
artificial way. This is illustrated in figure 1, which shows how the distinction 
between formerly identified objects can de-singularize a modular problem. 

Fig. 1. The de-singularization 

The 'compactification' problem, understood in terms of adding good de­
generacies, will have to be interpreted in this rigidified context. 

Finally, the multi-valued functions on the initial space will eventually be 
interpreted as univalued functions on the new moduli space. Moreover, these 
functions can be described in a natural fashion in terms of decorated objects. 
One can then go back to the original problem by controlling how the values 
of the functions depend on the decorations, in agreement with the spirit of 
both the Galois theory of ambiguity, and of gauge theories. This point will 
be illustrated on the example of elliptic curves. But there is clearly no reason 
to limit ourselves neither to elliptic curves, nor in this case to the types of 
decorations described below. 
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3. Decorations of Elliptic Curves 

Let us start with the following 

Definition. An elliptic curve E defined on C is said to be (fully) decorated if it 
is endowed with 

a non-zero holomorphic 1-form 0 E [l1,O(E) 

a positively oriented basis [~~] of the Abelian group HI (E, Z) of oriented 

i-cycles, up to homology. Here positively oriented means that the intersection 
index i(-Y2, 11) = + 1. 

The above defined object will be denoted by { E; 0, [ ~~] }. 

Definition. A morphism ¢: {E;O, [~~]} -+ {E';O', [~i]} of decorated el-

liptic curves is a usual morphism ¢: E -+ E' such that 

¢*O' = 0 

(3.1) ¢*I,. = I~ I-l = 1,2, 

where ¢* is the inverse transport of differential forms, and ¢* zs the direct 
transport of singular chains. 

As a matter of fact, such a datum is entirely determined, up to isomor-

phism, by that of a positively oriented basis 1 [:~] 1 = b of the IR-vector space 

C, where positively oriented means W2 1\ WI > O. With the notation I [ ~~] = LQ 

for the lattice with basis 1 [:~] I, the correspondence is displayed in table 1, 

where dz stands, of course, for the (1,0) form defined by the (1,0) canonical 
form on C, and WI' is the (geodesic) I-cycle associated with w,.. 

If we denote by ~+ the set of positively oriented IR-bases of C, we realize 
that the correspondence described just above allows us to consider ~+ as the 
moduli space of decorated elliptic curves. This space is quite pleasant, in that 
it is a principal homogeneous space for the group GLt(lR) of real 2 x 2 matri­
ces with (strictly) positive determinant, which can thus be endowed with the 
structure of a real analytic manifold of dimension four. ~+ can in fact also be 
thought of as the open set of ((:2 defined by the condition W2 1\ WI > O. It is 
thus a complex analytic surface without singularities. 

It is then possible to consider the trivial fiber bundle C x ~+ on ~+, and 
to perform in each fiber C x {b} the quotient by the lattice lQ, thus obtaining 
the elliptic curve Eb. The union E'13+ = UbE'13+Eb is the quotient of ((: x ~+ by 
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a gentle equivalence relation, which allows one to endow E'13+ with the struc­
ture of a complex analytic manifold of dimension three, analytically fibered in 
(decorated) elliptic curves over ~+. We can thus refer to E'13+ as the 'univer­
sal' decorated elliptic curve, making no mention of decorations, for the sake of 
modesty. 

Table 1. Correspondence between elliptic curves and oriented bases 

Decorated elliptic 
curves up to 
isomorphism 

{E;a, [~~]} 

p 

{Cl[;r'[~:l} f----E -

Positively oriented 
lR. -bases of C 

I [~~: : ] I (P~~:dS) 

I [~~] I 
the last line is identical to the following 

b 

On an elliptic curve rc / L we define 
additive functions: meromorphic functions ¢J : rc f-+ rc U {oo} such that, 
for every I E L, ¢J( z + I) - ¢J( z) is independent of z E C. The case where 
¢J( z + I) = ¢J( z) is that of elliptic functions. Affine functions are said to be 
'trivial' additive functions. 
multiplicative functions: entire functions 8 : C f-+ C such that, for every 
IE L, (8(z + 1)/8(z)) is an exponential (i.e. an invertible entire function). 
Exponential functions are said to be 'trivial' multiplicative functions. 

The theta functions correspond to the case where the ratio 8( z + I) / 8( z) 
is the exponential of an affine function; the exponentials of quadratic functions 
are said to be trivial among theta functions. 

There exist, of course, twisted versions of these functions, associated with 
characters X : L f-+ C* of the lattice L. We may require e. g. ¢J( z + I) = X( 1)¢J( z). 
But we want to emphasize the generalization to lR.-analytic (or even only COO) 
functions over C, that behaves similarly with respect to translations of L. In 
particular we may consider the effect of complex conjugation, and thus the 
C-analytic mirror image of what has just been exposed. 

In the 'modular' case of the 'universal' elliptic curve E'13+, it will be useful 
to deal with an JR.-analytic structure, or with a mixed one: we will consider 
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~-analytic functions P : C X ~+ 1-+ C U {oo}, such that, for any b E ~+, the 
partial function z 1-+ p(zlb) is of one of the types listed above, with respect to 
Eb. 

(3.2) 

Taking the example of the Weierstrass functions, 

e(zlb) = _z-1 - L [(z _l)-1 + Z-1 + ZZ-2] 
IElk· 

is additive 'modular', 

(3.3) 

p(zlb) = z-2 + L [(z _1)-2 _Z-2] 
IElk· 

p'(zlb) = -2 L(z _1)-3 
IElk 

are elliptic 'modular', and 

(3.4) ( z2 Z-2) 
a(zlb) = z II.(I- zZ-I)exp zZ-1 + -2-

IElk 

is theta 'modular'. 
Consider now the more general functions 

(3.5) K;'t(zlb) = L x(l)(z -1)-s Cz - 7)-t 
IElk 

introduced by Kronecker, where X is a character of LQ, and (s, t) E <e2 obey 
s == t (IE) and Re(s+t) > 2. When X is trivial, these functions provide examples 
of 'modular' ~-analytic doubly periodic functions. When t = 0 (and thus s 
integer so that s > 2), elliptic 'modular' functions are recovered (essentially as 
derivatives of the Weierstrass p function). Let us mention the fascinating study 
of the behavior of K;'t when (s, t) goes to the critical zone {Re(s + t) = 2}. 

4. Getting Rid of some Decorations 

The decoration presented above can be either partially or totally dropped. This 
amounts to performing some identifications of indistinguishable objects, that 
we shall now to describe. 

4.1. One may neglect the I-form Q in {E; Q, [ ~~]} thus considering ellip­

tic curves endowed with a positively oriented basis of the free Abelian group 
HI (E, IE) of I-cycles up to homology, which will be called marked elliptic curves. 
Owing to the correspondence described in table 1, this amounts to identifying 

b = I [~~ ] I with b)" = I [~~~] I for)" E C*, since any two holomorphic I-forms 
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on E are proportional. The relevant correspondence for marked elliptic curves 
therefore reads 

(4.1 ) 

Marked elliptic 
curves up to 
isomorphism 

Positively oriented 
JR-bases b E !B+ up 

to similarity 

The set !B+ / <C* of the similarity classes of oriented bases is represented by 

the Poincare half-plane Sj = {T E <CIImT > O} 

( 4.2) 

The upper half-plane is thus a moduli space for marked elliptic curves. The 
point made in the previous Section also holds in the present situation, so that 
a 'universal' marked elliptic curve ESj can be defined. 

4.2. One may neglect the marking [~~], retaining just the I-form 0:, thus 

considering calibrated elliptic curves {E; o:}. This amounts to identifying b = 

I [~~] I and gb = I[:;::~]I, where g = (: !) E GLi(Z) = SL2 (Z), 

whence the following correspondence. 

(4.3) 
Calibrated elliptic 
curves {E; o:} up 
to isomorphism 

Lattices 
in <C 

Now the space £ = GLi(Z)\!B+ of the lattices in <C is a moduli space for 

calibrated elliptic curves, and there exists a 'universal' calibrated elliptic curve 

Ec· 

4.3. One may finally neglect both the calibration 0: and the marking [~~], 
thus recovering the original situation of bare elliptic curves. This amounts to 
identifying b with gb>.. for g E GLi(Z) and >.. E <C*: 

( 4.4) 
Elliptic curves up 
to isomorphism 

Lattices in <C up to 
similarity 
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The space VJt1 = GLt(Z)\~+ Ic* of lattices in C, up to similarities, is 
the usual moduli space of elliptic curves. The universal elliptic curve EVJt, lies 
above VJt1 . 

The relationships between the various situations described so far are sum­
marized by the diagram in table 2. 

Table 2. Relations between various kinds of elliptic curves 

Decorated elliptic 
curves up to 
isomorphism 

"8" 
Marked elliptic 

curves up to 
isomorphism 

Positively oriented 
JR-bases of C 

~+-------+d) 
Positively oriented 
JR-bases of C up to 

similarity 

~+ 

1 
£ 

Calibrated elliptic 
curves up to 
isomorphism 

Lattices in C 

"s" for "scale" 

"8" 

VJt1 

Elliptic curves up 
to isomorphism 

Lattices in C up to 
similarity 

"m" for "modularity" 

Remark. Both £ and VJt1 possess singularities for the quotient analytic struc­
tures, caused by the existence of lattices with non-trivial automorphisms, such 
as the square and the equilateral triangular lattices, shown on figure 2. These 
singularities are of a mild type, and one has learned how to deal with them. 
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Fig. 2. Square and equilateral lattices 

5. Degeneracies 

We will content ourselves with a brief description of the following situation: for 
any analytic family (EdtET of elliptic curves parametrized by T, the allowed 
degeneracies when t goes to a limit value to are the appearances of quadratic 
(nodal) singular points, as shown on figure 3. 

Fig. 3. Nodal singular point and vanishing cycle 

The singular curve Eto can be viewed as a Riemann sphere on which two 
points have been identified in some well-defined fashion, and the non-singular 
part is this sphere minus these two points, or a cylinder, or the plane minus 
one point. What really matters is the existence of a non-trivial I-cycle 1t which 
becomes homologically trivial (vanishing) at the limit 1t o' In order to imple­
ment this point on the periods j at, one must impose the behavior of the 

it 
calibrations at in the neighbourhood of to (the markings are locally rigid). In 
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terms of the periods 1 [ ~~::] I, one is facing either one of the following two cases 

(a) The periods WI,t and W2,t have finite, Q-dependent, not both vanishing 
limits WI,to and W2,to· 

(b) One of the periods becomes infinite, whereas the other one has a finite, 
non-vanishing limit. 
In both cases, the associated lattice in C (free Abelian rank-2 subgroup) 

degenerates into a free Abelian rank-1 subgroup. 
The quotient of C by this subgroup is isomorphic to the multiplicative 

group <C*. The singular point originates in the (metaphysically puzzling) iden­
tification of zero and infinity. Any loop around 0 (and 00) is a vanishing cycle, 
whereas any path between 0 and 00 is a non-vanishing cycle. 

One is thus led to employ enlarged moduli spaces {i}+, £, f), ~ of univer­
sal parametrizations for decorated, marked, calibrated, or bare elliptic curves, 
possibly degenerate. 

6. Some Decorated and Calibrated Elliptic Curves 

6.1 The standard curve 

For T E Sj, the Poincare half-plane, consider the positively oriented lR-basis 

br -_I [22i~.:] I· '" It generates the lattice Lr = ~, and provides the decorated 

curve 

(6.1 ) {C/ .d. [2i7rT]} Lr' z, 2· , Z7r 

We recall that 2i7rT (respectively 2i7r) is the image in C/ Lr of the oriented 
segment joining 0 to 2i7rT (respectively 2i7r). We will introduce the notation 

E[r] = C/ L r . We have thus obtained a canonical section Sj ~ IB+ of the 
surjective map IB+ 1--+ IB+ / C* = Sj. 

6.2 The 'Tate' curve 

Let q be a varying element of C*, and qr = e2ilTT a fixed element of C, with 
modulus less than 1, ImT > 0 , ReT E [0,1[ (notice that T and qr are in 

one-to-one correspondence). The decorated curve { E[ r] ; dz; [~]} can be 

presented in the equivalent form 

(6.2) 
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where 1'1 is the image in C / z of the arc t 1--+ e2i7l'rt, t E [0, 1 J of a logarithmic 
qr 

spiral, and 1'2 is the image of the unit circle, described in the direct sense. 
One goes from the standard curve to the Tate curve through the expo­

nential map z 1--+ eZ = q, under which the periods 2i7!'n disappear. We will use 
the notation E( qr) = C/ z. Notice that the marking jumps when qr crosses 

qr 
the cut along the segment [0, 1 J: the marked curve does not depend on qr in 
an analytic way, whereas the calibrated curve does. The interest of this 'Tate 
curve' lies mainly in the study of moduli near degeneracies (qr ---. 1). 

6.3 The 'Weierstrass' curve 

This is a canonical representative for calibrated curves. If L denotes a lattice 
in C, we define, with the usual normalization coefficients 

(6.3) 

g2(L) = 60 L [-4 L' = L - {O} 

tEL 

g3(L) = 140 L [-6 

tEL 

One has .1(L) = (g2(L))3 - 27(g3(L))Z i- 0, and the curve E(L) C ]P'2(C) with 
equation 

(6.4) 

is an elliptic curve with neutral element (0,1,0), and the I-form CXL 

holomorphic. 
Conversely, on any curve of equation 

(6.5) 

dx is 
y 

with g5 - 27 g~ i- 0, which is hence non-singular, hence elliptic, the holomorphic 

I-form cx = d: admits a lattice L of periods, such that we have g2(L) = g2 
and g3(L) = g3. We have thus exhibited a one-to-one correspondence between 

Weierstrass calibrated curves represented by {(y2t = 4x3 - g2 Xt2 - g3 t3 ); d:} 
and the lattices of C. One can therefore identify the space C of lattices in CZ 
and the complement in C of the curve g5 - 27 g~ = O. 
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7. Some Functions on the Set of Positively Oriented Bases 

In Section 3 we have emphasized the role of IR-analytic functions defined on 
C x ~+. We will now focus our attention onto the associated 'constants', i.e. 
the (IR- or C-) analytic functions defined on ~+. 

F : ~+ C 

(7.1) b = 1 [~~] 1 I F(b) = F (I [~~] D 

7.1 Effect of the scaling action: homogeneity 

Definition. The function F : ~+ t-t C is said to be homogeneous of weight 
(s,t) E C2 if F(b)") = )..-sJ,.-tF(b). 

Remark. This definition only makes sense for s == t (2Z). If F is C-analytic, 
only the weights (k, 0) with k E 2Z are possible. 

Example. Eisenstein series 
The Eisenstein series 

(7.2) Gs,t(b) = L: z-sT-t 
lEI!' 

is a function of weight (s, t) whenever it is defined, i. e. for s == t (2Z) and 
Re(s + t) > 2. For s = t, Epstein's zeta functions are recovered. The function 

8 

(7.3) G2,o(b) = L:L:'(mIWI +m2W2)-2 

has weight (2,0) (notice that this double series is not summable: one has to 
perform first a symmetric summation over m2, then a summation over ml, 
avoiding the term with (ml,m2) = (0,0)). The function 

(7.4) G; o(b) = lim G2+<,«b) 
, E-+O,e>O 

also has weight (2,0), and the function 

(7.5) 

has weight (1,1). Finally 

(7.6) V(b) = covolume of l.Q = W2 1\ WI = Im(w2wI) 

has weight (-1, -1). 
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7.2 Effect of the action of the modular group: modularity 

Definition. A function F : Ql+ -t C is said to be lattice-modular (abbreviated 
in l-modular) if it is GLt(Z)-invariant, i. e. if, for any 9 E GLt(Z), one has 
F(gb) = F(b). 

The I-modular functions on Ql+ thus define functions on the quotient space 
C = GLt(Z)\Ql+ of lattices. To any function F on Ql+, its composition with 

the canonical section st (see Section 6.1) st : .fj -t Ql+ associates a function f 
on .fj 

(7.7) 

When F is a homogeneous function of weight (s, t), it can be reconstructed 
from f by 

(7.8) 
2i7r 

where >. =­
W2 

Under these conditions, saying that the homogeneous function F of weight (s, t) 
is I-modular amounts to saying that f is such that 

(7.9) 

Such functions have to obey in particular 

f(r + 1) = f(r) 

(7.10) f (-~) = r'7'tf(r) 

and these conditions turn out to be sufficient. This is a good place to notice 
that functions such as 03 and Tf, mentioned in Section 1, do not fit yet in 
this framework. In order for them to do so, one would have to decorate the 
elliptic curves in a still better fashion. The first relation in eq. (7.10) suggests to 
represent f by Fourier-like expansions. In the simplest cases, these expansions 
read 

(7.11) f(r) = L anq~ = ¢J(qr) where qr = e2ill'r . 
n~no 

An especially interesting example of a qr expansion is that associated with Gk,O 

for k an even integer > 2: 
(7.12) 

/k(qr) = (k ~ I)! [((1- k) + 2 L O'k_l(n)Q;] where O'r(n) = L d T 
• 

n~l din 



R. Gergondey 307 

8. Periods of Second Kind 

We recall the definition of the p and ~ Weierstrass functions of z, for fixed 

b = 1 [ ~~ ] 1 E 2)+: 

(8.1 ) 

p(zlb) = z-2 + L [(z _l)-2 _[-2] 

lE[Q' 

~(zlb) = _z-1 - L [(z _1)-1 + [-1 + z[-2] 

IE[Q' 

Notice that d~ = p( z )dz. 
The periods wp, can be evaluated by wp, = f 0:, where 0: = dz is, up to 

'I" 
a factor, the unique holomorphic I-form invariant under the translations of lQ 
(form of first kind). 

The I-form f3 = d~ = pdz is meromorphic, and invariant under the trans­
lations of lQ. Its poles are double, situated on lQ, and without residues (form of 
second kind). Its periods can be defined unambiguously by 

(8.2) 

or else ~(z + wp,) = ~(z) + TIp, , f-l = 1,2. 

(8.3) 

The expression for ~ yields the "7P, immediately 

"71 = -WI G2 ,o (I [ ~~2 ] I) 
"72 = -W2 G2,O (I [~~] I) 

We notice once more that G2 ,o is not I-modular, we have indeed 

(8.4) 

from the Legendre relation "71W2 - "72Wl = 2i7r. 
It can then be shown that 

2i7r 

(8.5) c;,o (I [ ~:]I) ~ c," (I [ ~:]I) - ,~: V (I [ ~: ]1) 
is I-modular (but not IC-analytic!). However, G2 ,o possesses a qr-expansion 

(8.6) ";'2(qr) = -I~ + 2 L O'I(n)q~ 
n>1 

in agreement with the rk for k > 2, since (( -1) = - /2' 
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9. Vector Fields on ~+ and C 
9.0. The vector fields under consideration will be lR-analytic, and will therefore 
operate as differentiations on the algebra of lR-analytic functions on 93+ or C. 
(a) A vector field D on 93+ is said to be I-modular if it commutes with the 

action of GL2(Z) 

(9.1) D· Fg = (D . F)g where Fg(b) = F(gb) 

An I-modular field D on 93+ is thus in one-to-one correspondence with 
a vector field on C: the D-derivative D . F of an I-modular function is 
I-modular. 

(b) A vector field D on 93+ (or on C, if it is I-modular) is said to be ho­
mogeneous of weight (k,l) (with the usual restrictions) if it transforms 
a homogeneous function of weight (s, t) into a homogeneous function of 
weight (s + k, t + 1): 

(9.2) 

In order to describe these fields, we will work with co-ordinates WI, 411, W2, 
412, on 93+. We recall that the latter is the open set of C2 defined by the 
inequality (1j2i)(W2Wl - WlW2) > o. 

9.1 Euler vector fields. The field 

(9.3) 

is C-analytic, and its conjugate 

- a a 
E=Wl-+W2-

aWl aW2 
(9.4) 

is C-analytic. The fields E and E are I-modular, and homogeneous of weight 
(0,0). The condition that F is homogeneous of weight (s, t) reads 

(9.5) E·F= -sF E·F= -tF. 

9.2 Halphen-Fricke vector fields. The field 

a a 
H='TJl-+'TJ2-

aWl aW2 
(9.6) 

is C-analytic, and its conjugate 

(9.7) 
- {) {) 
H- - +-- 'TJl{)- 'TJ2a-WI W2 
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is C-analytic. The fields Hand H are I-modular, and homogeneous of respective 
weights (2,0) and (0,2). We have for instance 

(9.8) H· wJL = ° 
It turns out to be advantageous to express H in terms of qr-expansions. If 
<p = <p(qr) is the expansion of a C-analytic I-modular function F, homogeneous 
of weight (k, 0), a straightforward calculation shows that the expansion of H . F 
reads 

(9.9) H k . <p = qr dd</J + k,2<P 
qr 

Since the field H is I-modular, it allows one to differentiate the functions defined 
on C. The 'modular forms' are certain C-analytic functions on C, essentially 
those which admit a qr-expansion of the form L:n>O anq~. They constitute a 
well-known graded algebra, with the weight (k, 0) as-a grading. One starts with 
the graded algebra of polynomials in g2 (weight (4,0)) and g3 (weight (6,0)), 
and one makes the discriminant L1 = g~ - 27 g~ invertible. It is then easily 
realized, with the help of the qr-expansions, that 

(9.10) 

In other words, H operates on the algebra of modular forms as 

8 g~ 8 
H = 6g3 -8 + -3 -8 ' g2 g3 

(9.11) 

which can be applied to the discriminant itself, yielding 

(9.12) 

This implies that the qr-expansion 6 of L1 obeys 

(9.13) 

or else 

(9.14) 

and 

(9.15) 6 = Cqr II (1 - q~)24 . 
n~l 

The numerical prefactor C can be determined by means of the qr-expansions, 
namely 
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(9.16) b = qr II (1 - q;)24 
n;:::l 

a classical formula, which admits many alternative proofs. 

9.3 Well vector fields. Besides the E, (E), H, (H) fields, which are C- (C) 
analytic (notice that the Canalyticity can be expressed as E· F = H . F = 0), 
the following Weil field 

(9.17) 

is also very useful. It is I-modular and homogeneous of weight (2,0). Among 
other properties, one has W ·w,.. = ('n)V)w,.., W ·w,.. = 0, and, more important, 
W . V = 0 hence W 2 • w,.. = o. 
9.4 Relations between these fields. Even on purely dimensional grounds, one 
may suspect the existence of relations between the various vector fields. As a 
matter of fact, the essential relation, concerning the weight (2,0), 

(9.18) H + G;,oE + W = 0 , 

is nothing else but equation (8.5) in a disguised form. 
In order for our knowledge of modular differential operators to be more 

complete, we now introduce the Ramanujan differential equations. We recall 
the action of H on G4 ,o and G6,o 

H . G4 ,o = 14G6 ,o 

60 2 
(9.19) H· G6 ,o = 7G4,o . 

As far as Gi,o is concerned, an analogous formula holds, namely 

(9.20) H . G;,o = 5G4 ,o - (G;,o? . 

In order to prove the latter result, it is sufficient to notice that 

(9.21) 

is modular of weight (4,0). The values are identical for p, = 1 and p, = 2, as a 
consequence of the Legendre relation. This quantity is thus equal to G4 ,o, up 
to a factor easily determined: 

(9.22) 

In terms of qr-expansions, this result reads 

d,2 2 
(9.23) qr-d + 12'2 =,4 . 

qr 
as stated by Ramanujan. 
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10. Non-Conclusion 

The theme of this lecture has only been broached here, and it is rather arbitrary 
to stop at this point. Even if we restrict ourselves to the moduli of elliptic curves 
over C, we are far from having exhausted all the possible decorations, among 
which the level structures, defined in terms of the points of finite order (division 
of periods), of isogenies, etc. For instance, the Hecke operators have thus been 
left out (see the contribution of Zagier to this volume). Another important 
aspect has not been discussed (although we would have liked very much to 
do so), namely the arithmetical theory of moduli. The moduli spaces, which 
we have mostly studied from the viewpoint of the lR-analytic structure, can 
also be thought of as algebraic, defined on number rings which are 'close to' 
Z. This arithmetical rigidity explains why some particular integers are often 
encountered in the above formulas. There is also a geometrical approach to 
these structures of arithmetic (and Arakelov) modular manifolds. Finally, we 
have just mentioned, en passant, the question of critical points (s, t) with the 
condition Re(s + t) = 2. Very subtle ambiguities show up in the summation of 
the divergent Eisenstein series. One would like to see some decoration revealing 
a hidden 'quantum' symmetry which would govern those various summation 
procedures. 

Scruple and Acknowledgements. The terminology used above (in Section 3) is 
somewhat non-canonical. The expression 'marked Riemann surface' is used by 
Gunning in the above sense and seems to become standard. However, expres­
sions as 'decorated' and 'calibrated' are used here for convenience, and may 
be in conflict with other conventions (for instance 'calibrated geometries' of 
Thurston). In Section 7, we preferred 'lattice modular' in order to avoid pos­
sible confusions which could result from using 'latticial' or shortly 'modular'. 
We hope that the reader will not be puzzled by these appellations. 

This Chapter was initially intended to be an appendix to the chapters re­
lating the lectures by P. Cartier and J. B. Bost. However, Cartier's and Bost's 
contributions were available only very late, time was lacking to introduce the 
suitable adaptations required by the situation. Nevertheless, the arithmetic 
theory of elliptic functions and modular forms is also presented in the contri­
butions by Cohen and Zagier, so that the present 'little appendix' does not 
remain an orphan. It remains only for me to thank the organizers of such an 
'unforgettable' meeting, especially M. Waldschmidt, J. -M. Luck and P. Moussa 
for their friendly persistence and efficient help. 
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Chapter 6 

Galois Theory, Algebraic Number Theory, 
and Zeta Functions 

by Harold M. Stark 

1. Galois Theory 

1.1 Introduction 

The goal of these lectures is to explain the fundamentals of Galois theory and 
algebraic number theory and to get the reader to the point that he or she 
can make routine calculations. The following material has little in the way of 
prerequisites. Many examples will be given along the way and sometimes the 
examples will serve instead of formal proofs. In the last Section, we introduce 
the zeta functions of algebraic number fields. These functions can be factored 
into products of L-functions according to representations of Galois groups. Es­
pecially here, we will proceed by example. These lectures have been abstracted 
from my long promised forthcoming book [2]. A complete treatment of any 
of the topics here is somewhat beyond the length requirements of these lec­
tures although we will come surprisingly close in some instances. I would also 
recommend Hecke's book [1] which has been a classic for almost 70 years. 

1.2 Algebraic Extensions 

A field is a system of 'numbers' in which all the usual rules for arithmetic 
using +, -, x, + that we learned in grade school hold. Among these laws is the 
commutative law for multiplication, ab = ba; thus the quaternions don't give us 
a field. Examples include the complex numbers, C; the real numbers, JR.; and the 
rational numbers, Q. Fields containing Q are said to be of characteristic zero. 
All subfields of C are of characteristic zero. In these lectures, we will deal almost 
exclusively with fields of characteristic zero, and the most interesting fields, the 
'algebraic number fields', will be subfields of C. We suppose throughout that we 
are either in characteristic zero or are dealing with finite fields. Everything we 
say should be taken in this context. The reader who has not seen any of this 
before can safely think of subfields of C except where noted. Outside of a few 
brief moments, all examples will be concerned with fields of characteristic zero. 
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Galois theory concerns the relations between fields and certain bigger 
fields. Given a field k, there is a standard construction giving bigger fields. 
Suppose that x is not in k but is 'consistent' with the arithmetic of k. This 
means that x may be arithmetically combined with elements of k or itself and 
that the usual laws of arithmetic hold for these combinations. Almost always 
in these lectures k will be a subfield of C and x will be either a variable or a 
number in C. We define two extensions of k: 

k[x] = {polynomials in x with coefficients in k} , 

(the set of polynomials in x with coefficients in k) and 

k( x) = {rati~s of polynomials in x ~hose coefficients } 
are m k and whose denommators are non-zero 

In k[x], we always have the operations of +, -, x and in k(x) we have all four 
operations +, -, x, +. Thus k(x) is always a field. In the same manner, we can 
use more than one x. For example 

k[x, y] = k[x][y] 

consists of polynomials in x and y with coefficients in k and 

k(x,y) = k(x)(y) 

consists of ratios of polynomials in x and y with coefficients in k whose denom­
inators are non-zero. Again, k(x, y) is a field. In general, if a field J{ contains 
another field k, then we say that J{ is an extension field of k or sometimes just 
an extension of k. Thus k(x) and k(x,y) are both extensions of k. 

We now define algebraic extension fields. We say that a is algebraic over 
k if f(a) = 0 for some non-zero f(x) in k[x] where x is a variable. The field 
k( a) is called an algebraic extension of k. For example, C = IR( i) where i is a 
root of the equation x 2 + 1 = O. In this example C = IR[i] as well. Of all the 
polynomials f( x) which can be used for a, it is customary to take f of minimal 
degree. This is equivalent to saying that f(x) is irreducible in k[x]. If 

(1) f( ) m m-I x = amx + am-IX + ... + ao 

in k[x] is irreducible with am f:. 0 and f(a) = 0, we can divide through by am 
and thus assume that a satisfies an equation f( a) = 0 where f( x) is irreducible 
in k[x] and where am = 1. A polynomial in (1) with am = 1 is called a monic 
polynomial. We sometimes refer to the monic irreducible polynomial satisfied 
by a over k as the defining polynomial for a over k. The defining polynomial 
for a over k is unique since the difference of two such polynomials would give a 
polynomial equation for a of lower degree. If the defining polynomial for a over 
k is of degree m, we say that the degree of a over k is m and that J{ = k( a) is 
also of degree mover k. It is also common to say that m is the relative degree 
of J{ over k. The notation for this is 
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[K:k]=m. 

The degree of K = k( a) over k does not depend upon which a is used to 
give the field k( a) since for an algebraic a, 

k(a) = k[a] = k + ka + ka2 + ... + kam- 1 

is a vector space over k with basis 1, a, a2,· .. ,am-I. (We will show that k( a) = 
k[a] shortly.) Thus m serves as the dimension of this space and is independent 
of the choice of generator of the field. Since degrees are dimensions of vector 
spaces, we see that there is a multiplicative relation for degrees of successive 
extensions. If M in turn is an extension of K of degree n, then 

[M : k] = [M : K][K : k] . 

Indeed, if M = K(O) where 0 is of relative degree n over K, then 

M = K + KO + K02 + ... + KOn - 1 

= (k + ka + ka2 + ... + kam - 1 ) + (k + ka + ka2 + ... + ka m- 1 )O 

+ ... + (ka + ka2 + ... + kam - 1 )on-l , 

so that M is a vector space of dimension mn over k with basis elements 
{aiOj}o~i~m-l,O~j~n-l' The fact that k(a) = k[a] is due to the fact that 
the inverse of a non-zero algebraic number is an algebraic number and is in­
deed a polynomial in the original number. We show this for a. If a is defined 
as a zero of the polynomial f(x) in (1) , and we have already taken out all the 
spare factors of x so that ao I- 0, then a-I is given by 

More generally, all sums, differences, products and quotients of algebraic 
numbers are algebraic numbers. We illustrate the general proof by showing 
that V2 + J3 is algebraic. In general, if a is algebraic over k of degree 
m and f3 is algebraic over k of degree n, we begin with the column vector 

. . V2 (1) (a'f31)O~i~m-l,O~j~n-l of mn entries. Here we have the vector ~ . We 

multiply this vector by V2 + J3 and write the result as a rational matrix times 
the original vector: 

1 1 
o 0 
o 0 
3 2 

Thus V2 + J3 is an eigenvalue of the matrix 

D (~) 
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(0 1 1 0) 
200 1 
300 1 
032 0 

and so is algebraic since it is a root of the eigenvalue equation. This process 
does not always give the polynomial of minimal degree. For example, the same 
column vector can be used for v'2V3 = J6 which is of degree two even though 
the eigenvalue equation is of degree four. 

Let us explore this process further. Suppose that a is of degree m and that 
13 is in k( a). Since any element of k( a) is a unique linear combination of the 
numbers 1, a,' .. ,am - 1 with coefficients in k, we may write 

( ~ ) 13 = M(f3) ( ~ ) 

a m - 1 a m - 1 

where M(f3) is an m x m matrix with entries in k which is uniquely determined 
by 13 since the i-th row of this equation just expresses the number a i - 1 f3 of 
k( a) as a unique linear combination of the basis elements. Suppose that 131 and 
132 are in k( a). Then we have 

Because these matrices are unique, we get 

M(f31 + 132) = M(f31) + M(f32) . 

In like manner, we get 

In particular, these matrices commute under multiplication. 
The first row of M(f3) reconstructs 13 when multiplied by the column vector 

t(l, a, ... ,am - 1 ) (the 't' denotes the transpose). Therefore the correspondence 
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f3 --+ M(f3) gives an m x m matrix representation of the field k( a) with matrix 
entries in k. For example, for the extension C = JR.(i), we have 

The matrix M( x + iy) = ( x y) gives the standard 2 x 2 matrix represen-
-y x 

tation of the complex numbers over the reals. With somewhat more work, we 
could show directly from scratch that the collection of matrices {M(f3)} forms 
a field thereby showing that there is an extension field of k in which the equa­
tion f ( x) = 0 has a root. This would free us from thinking only of su bfields of 
complex numbers. 

Now we are ready to introduce the concept of conjugate algebraic numbers. 
Suppose that f(x) is an irreducible monic polynomial of degree n in k[x] and 
that f(a) = O. We factor f as 

n 

f(x) = II(x - a(i) . 
i=l 

(Our major examples come with k a subfield of Cj we may thus think of the 
factorization as taking place over C.) Then a is one of the a( i). The a( i) are 
called the algebraic conjugates of a over k. Just as a gives an extension K = 
k(a) of k, corresponding to the a(i) are the conjugate fields K(i) = k(a(i) of 
Kover k. If f3 in k(a) is given by 

n 

f3 = L bj a j - 1 , 

j=l 

with the bj in k, then we define the field conjugate f3(i) of f3 in K(i) by 

n 

f3(i) = L bj (a(i))j-1 . 

j=l 

The map f3 1--+ f3(i) gives an isomorphism between the fields K and K(i). This 
is easy to see since the matrix representation M(f3) for f3 depends only on the 
bj and the defining polynomial for a, but not on the zero of f(x) chosen to be 
a. Therefore all the K(i) are isomorphic to the field of matrices {M(f3)} and 
hence to each other. As an example, complex conjugation gives field conjugates 
of Cover JR. and we have 

( ~)(X-iY)= ( x y) ( ~) 
-z -y x -z 

with the same matrix ( x Y). Thus the familiar statement that the conju­
-y x 

gate of the sum (difference, product, quotient) of two complex numbers is the 
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sum (difference, product, quotient) of the conjugates of the two numbers is an 
illustration of the concept of conjugate fields. Note in the conjugation process 
that all elements of k are preserved. 

There is a potential confusion in the word 'conjugate' since we have both 
algebraic conjugates and field conjugates of numbers fJ. The confusion however 
is restricted to multiplicities: every field conjugate of fJ is an algebraic conjugate 
of fJ. This is clear because if g(x) is in k[x] and g(fJ) = 0, then g(fJ(i)) = 0 as 
well since 

1.3 Normal Extensions and Galois Groups 

Sometimes several of the a( i) are all in the same field. The case of most interest 
is the case where all the a( i) are in k( a) already. For instance, both i and -i are 
in C = !R(i). In the case that every a(i) is in k(a), we say that k(a) is a normal 
extension of k or that k( a) is normal over k. This is not always the case. An 
example where we do not have a normal extension is the field K = Q(21/ 3 ) over 
Q where we use the real cube root of 2. Thus every number in K is real and 
hence the other two conjugates of 21 / 3 (the complex cube roots of 2) cannot 
be in K and so K is not normal over Q. 

When K = k(a) is normal over k, the n conjugation maps fJ t-+ fJCi) are 
maps from K to K and so are automorphisms ofthe field Kover k (the 'over k' 
part of this means that every element of k is fixed by the automorphism). By the 
same argument as above, if f(x) is in k[x] and f(a) = 0 then an automorphism 
of Kover k takes a to a number which also satisfies the equation f( x) = O. Thus 
any automorphism of Kover k takes a to one of the a Ci). This determines the 
automorphism completely. Hence any automorphism of K which fixes k must 
be one of the n conjugation automorphisms. Thus the automorphisms of K 
over k form a group of order [K : k] which is called the Galois group of Kover 
k. For example, for C = !R(i), the identity and complex conjugation are the two 
elements in the Galois group of C/!R. ('C/!R' is pronounced, 'C over !R'.) For 
notational purposes, when K is normal over k, we will often write the Galois 
group of K/k as Gal(K/k) or even as G(K/k). 

In our examples, we will frequently encounter permutations. For example 
the cyclic permutation (j of four letters a, b, c, d given by 

is written as 

(j = (a, b, c, d) . 

We may write (j with any of the four letters first, 

(j = (a,b,c,d) = (b,c,d,a) = (c,d,a,b) = (d,a,b,c) 
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since all four of these describe the same permutation. It is often said that 
(a, b, c, d) is a four cycle. Any permutation on a finite number of letters can be 
resolved into cycles. For example, the permutation on five letters given by 

p : a 1-+ b, b 1-+ d, c 1-+ e, d 1-+ a, e 1-+ c 

is a combination of the three cycle (a, b, d) and (c, e). These cycles are said to 
be disjoint which means that they have no letters in common. We write the 
permutation p as the product of these disjoint cycles, 

p = (a, b, d)( c, e) = (c, e)( a, b, d) . 

Given a permutation, the way we do this is to pick one of the letters and then 
follow what the permutation does to it until we come back to the starting letter. 
For example, if we start with a, p takes a to b, b to d and then d to a giving 
the three cycle (a, b, d). If there are letters that have not yet been accounted 
for, then we pick one of them and repeat the process. In our example, we have 
not yet accounted for c. We see that p takes c to e and then e to c. This gives 
the two cycle (c, e). The order of writing these cycles doesn't matter since they 
are disjoint: when we perform the operations indicated by the various cycles, 
it does not matter which we perform first; the result will be p in either order. 
This independence of order is only true when the cycles are disjoint as we will 
see shortly. 

Among the cycles are the one cycles. These are rather special and are 
usually not even written. For example, the permutation T of the four letters 
a, b, c, d which just interchanges b and d, 

T : b 1-+ d 1-+ b, a 1-+ a, c 1-+ c , 

can be written as 
T = (a)(b,d)(c) . 

But the two one cycles (a) and (c) fix everything and we usually just write T 

as 
T = (b,d) . 

This means that b is taken to d and d is taken to b and everything else is left 
fixed. 

The two permutations a and T act on the same four letters, but they 
don't commute. Thus the notation aT = (a, b, c, d)( b, d) depends upon which 
permutation is performed first. Since I read from left to right, I will take aT to 
mean that a is first and T operates on the result. Thus for example 

aT = (a, d)( b, c) . 

We use the recipe above to find the cycle structure of aT: a takes a to b followed 
by T which takes b to d; a takes d to a and T takes a to a; a takes b to c and 
T takes c to C; a takes c to d and T takes d to b. In like manner, 
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Ta = (a, b)(c, d) . 

The permutations a and T generate an eight element permutation group 
called the dihedral group of order eight. Geometrically, these permutations 
consist of the eight ways that a square can be picked up and set exactly upon 
itself. 

b a DA 

C D 
c d 

The letters a, b, c, d are fixed in the plane and serve to describe what is 
done to the square by a given operation. For example, a represents a 900 

counterclockwise rotation of the square about its center and T turns the square 
over by rotating about the ac diagonal. In order to more easily keep track of 
successive operations, we will label the vertices of the square in its starting 
position by A, B, C, D. The labels will travel with the square while a, b, c, d 
remain fixed. 

As an illustration, we calculate aTa. First we apply a and then follow by 
T (flipping about the ac diagonal and not about the AC diagonal) as shown. 

b a b a b a 

D B C 0 B A D C B 
c d c d c d 

a a followed by T aT followed by a 

Note that the effect of aT upon the original square is that of (a,d)(b,c) which 
agrees with our permutation calculation above. A final 900 counterclockwise 
rotation gives aTa. The net result of all this is that aTa has the same effect 
upon the original position of the square as just T alone: 

aTa = (b, d) = T . 

We note that this is equivalent to 

-1 
Ta = aT, 

which is very useful in making calculations. The dihedral group will appear in 
several of the examples of this Section. 

Because Galois groups can be represented as permutation groups on the 
conjugates of field generators, if a and T are elements of G(K/k), the notation 
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aT will mean (J is performed first and T operates on the result. This in turn 
fixes our notation for a Galois group element acting on a number (the usual 
left-right difficulty). If (J is an element of G(K/k) and f3 is in K, we will write 
f3<7 (a minority will write this as f3 0 (J) for the image of f3 under (J. Thus, 

Example. We take the field K = IQ( \1'2, J3) over IQ. Let a = \1'2, b = -\1'2, 
c = J3 d = -J3. The field K contains all the conjugates of its two generators, 
\1'2 and J3. K also contains two intermediate fields, IQ( \1'2) and IQ( J3): 

K = IQ( \1'2, v'3) 

/ "" 
IQ( v'3) 

/ 

Now K is normal over the subfield IQ( \1'2). The Galois group is of order 2 and 
the nontrivial element takes v'3 to -v'3. Thus 

Gal(K/IQ(V2)) = {I, (c,d)}. 

In like manner, K is normal over IQ( V3). The non-trivial element takes \1'2 to 
-\1'2 and so 

Gal(K/IQ(V3)) = {I, (a,b)}. 

We now have three elements of the four element group (G(K/IQ). We find the 
fourth element by multiplication to be (a, b)( c, d) and so 

Gal(K/IQ) = {I, (a, b), (c, d), (a, b)(c, d)} . 

Note also that v'6 = \l'2v'3 is in K and so IQ( v'6) is a third intermediate 
quadratic field in K. The corresponding Galois group is 

Gal(K/IQ(V6)) = {I, (a,b)(c,d)} . 

This example can be reached another way also. Let 

e = V2 + V3, j = h - V3, g = -h + V3, h = -h - V3 . 

These are the four conjugates of h + v'3. For example, the element (c, d) of 
Gal(K /IQ) takes e to f. The numbers e,j, g, h are distinct and so e is a fourth 
degree algebraic number over IQ. Thus K = IQ( \1'2 + J3). The three elements 
of Gal(K/IQ) other than the identity can now be written as permutations on 
e,j,g,h: 
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and 

v3 f-+ -v3, V2 --- V2 corresponds to (e, f)(g, h) 

v3f-+ v3, V2----V2 corresponds to (e,g)(f,h) 

v3 f-+ -v3, V2 f-+ -V2 corresponds to (e,h)(f,g) 

Gal(K/IQ) = {I, (e,f)(g,h), (e,g)(f, h), (e,h)(f,g)}. 

Abstractly, this group is the same group as before, the elementary abelian (2,2) 
group, also sometimes called the Klein four group. However, as a permutation 
group, the permutation structure has changed. It is only as an abstract group 
that the Galois group has a unique meaning. 

1.4 The Fundamental Theorem of Galois Theory 

We remind the reader that we are assuming throughout that we are either in 
characteristic zero or are dealing with finite fields. Outside of these restrictions, 
Galois theory has a different flavor, best left to graduate algebra courses. All 
algebraic number fields are of characteristic zero. We state without proof the 
fundamental theorem from which all other results in this Subsection will easily 
follow. 

Theorem. Let K be a normal algebraic extension of k with Galois group G = 

Gal(K/k). There is a 1-1 correspondence between all the subgroups H of G 
and all the fields L between K and k such that if H corresponds to L, then 
H = Gal( K / L) and L is the set of all elements of K fixed by every element of 
H. 

Remark. We call L the fixed field of H, but it is very important to remember 
that this means every element of L is fixed. For example, every automorphism 
of H takes K to K, but the non-identity elements of H do not preserve K 
elementwise. The fixed field of {I} is K and the fixed field of G is k. 

The picture we draw looks like, 

K 

L G 

k 

Since H = Gal(K/L), we see that [K : L] = IHI, the order of H. Therefore, 
[L : k] = [K : kl/[K : L] = IGI/IHI. This says that if we split G up into 
cosets of H, then the number of cosets is [L : k]. As a simple illustration 
of the fundamental theorem, we may take K = IQ( /2, J3). We have seen 
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all the subgroups of G = Gal(K/Q) above and how they correspond to the 
intermediate fields. We take the fundamental theorem as fact and now derive 
some of its consequences. 

Theorem. Suppose that Ll corresponds to HI and L2 corresponds to H2 in the 
correspondence above. Then Ll ~ Lz if and only if HI C Hz. 

Proof. The Proof is easy. Suppose that Ll ~ L2. If h is an element of HI 
then h fixes every element of L1 . Since L2 is contained in L1 , h fixes every 
element of L2 also. Thus h is in H2. Therefore HI C Hz. Conversely, suppose 
that HI C H2. If f3 is in L2, then f3 is fixed by every element of H2. Since HI 
is contained in H2, f3 is fixed by every element of HI also. Thus f3 is in L1 . 

Therefore Ll ~ L2. 0 

The picture for this situation is 

K 

k 

The two extremes fit this pattern also. G = Gal( K / k) contains all the subgroups 
of G while k is contained in all the intermediate fields between K and k. Also 
{I} = Gal( K / K) is contained in all the subgroups of G and K contains all the 
intermediate fields. As an example of the applications, consider the situation, 

K 

I 
HI L1L2 H2 

/ "" Ll L2 

"" / 
Ll n Lz 

k 
The field LILz is by definition the field generated by the elements of Ll and 
Lz and is the smallest field containing Ll and L2. Thus Ll Lz corresponds to 
HI n Hz which is the biggest subgroup of G contained in both HI and Hz. In 
like manner, Ll n Lz is the biggest field contained in both Ll and Lz and so 
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corresponds to (H1 ,H2 ), the group generated by the elements of HI and H 2 , 

which is the smallest subgroup of G containing both HI and H 2 • 

Now let us work out a more interesting example of the fundamental theo­
rem. We take K = Q(21/4, i) 

K 

/ "" 
Q(i) 

/ 

which is a normal eighth degree extension of Q. Thus G = Gal( K / Q) is a group 
of order eight. We may present it as a permutation group on the conjugates of 
the generators. The four conjugates of 21/4 are 

a = 21/ 4 , b = i21 / 4 , e = _21 / 4 , d = _i21/ 4 • 

Once we know what an automorphism of K does to a and b, we know what it 
does to i = b/a and so we may present G as a permutation group on the four 
letters a, b, e, d. We build up G as before by first finding subgroups of G. We 
begin with K = Q(i)(21/4) which is an extension of Q(i) of degree four. The 
four conjugates of 21/4 over Q(i) are a, b, e, d and any element of Gal(K/Q(i)) 
is determined completely by knowing to which of a, b, e, d the element sends 
21/4. In particular, there is an element (J' of Gal(K/Q(i)) which sends 21/4 to 
i21/ 4 . In other words afT = b. It is easy to see what (J' does to b, e, and d. We 
have bfT = (ia)fT = i(afT ) since i is fixed by (J'. In other words, bfT = -a = e. In 
like manner, efT = d and dfT = a. Therefore (J' is represented by the four cycle, 
(J' = (a, b, e, d) and 

This gives us four elements of our group of order eight. As soon as we have a fifth 
element, we can generate the whole group. This is easy to get by considering 
K as a normal quadratic extension of Q(21/4), 

Thus there is an automorphism T of K/Q(21/ 4 ) which takes i to -i, but fixes 
all of Q(21/4). This automorphism is just complex conjugation since Q(21/4) 
is a real field. But now, since T fixes 21/4, it is clear that T preserves a and e 
while interchanging b and d, T = (b, d) and 

Gal(K/Q(21/4)) = {l,T} . 

Since T is not in the group generated by (J' (this is either because the permu­
tation (b, d) is clearly not a power of (J' or because T fixes 21/4, while the only 
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element of Gal(K/Q(i)) which fixes 21/ 4 is the identity and T is not the iden­
tity), we get another four elements from multiplying by To This gives us eight 
elements in all and thus we must now have all of G: 

The group G is in fact the dihedral group of order 8 introduced above. The 
dihedral group is rich in subgroups. G has 

One subgroup of order one: 

Five subgroups of order two: 

Three subgroups of order four: 

One subgroup of order eight: 

{I}, 

{I, a 2 } and four groups generated by 
the four flips about the axes and 
diagonals, 

{I, a, a2, a3} 
{I, T, a 2 , a 2T} 

{I, aT, a 2 , a 3T} , 

G. 

Each of these subgroups corresponds to a field. Besides the groups of orders 
one and eight which correspond to K and Q, the complete picture is 

Each of these can be easily verified. For example, since R = (i2 1 / 4 )(21 / 4 ) = 
ba and aT = (a, d) (b, c), we see that 

and so aT is in Gal(KjQ( H)). Likewise aT fixes (1 - i)21 / 4 = 21/ 4 - i21 / 4 

which is of degree two over Q( H) (square it and see). The first three quartic 
fields in the list above were easy enough to come by. But when we don't know 
them beforehand, the last two are most easily found by Galois theory. Let a 
be any number in K. From a, we construct numbers in K fixed by aT by 
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creating invariant combinations of conjugates of a such as a + aUT. Indeed, 
since (o"T)2 = 1, 

and so a + aUT is preserved. With a = 21 / 4 , we get the generator (1 - i)21/ 4 

of the fourth quartic field in the list. Not every a in K will give a generator of 
Q«1-i)21 / 4 ) in this way, and in some situations for other fields K, no analogue 
of a will work. We will explore this process of using Galois theory to describe 
the intermediate fields in a later example. 

1.5 Conjugate fields 

In the last example, not every field between K and Q was normal over Q. We 
now look at the conjugate fields more closely from the point of view of Galois 
theory. Suppose that K is a normal extension of k with Galois group G(Kjk). 
Let L be an intermediate field and suppose L corresponds to the subgroup H 
of G via the fundamental theorem so that H = G(Kj L). If 9 is in G, then Lg is 
one of the conjugate fields of L. Indeed, if L = k( a), then £9 = k( a g ). Further, 
the mapping from L to Lg depends only on the coset H 9 of H since for all 
h in H, a hg = ago As we run through the [G : H] cosets of H in G, we run 
through all the conjugates of a. This is because rr(x - a Hg ) is invariant under 
G and so is divisible by the defining polynomial of a; since the degrees are the 
same, this is the defining polynomial of a. Therefore the LHg run through all 
the conjugate fields of L. We see easily that LHg is fixed by g-l H g: 

(LHg)g-l Hg = (Lg)g-l Hg = Lgg- 1 Hg = LHg , 

and that Lg corresponds to the subgroup g-l H 9 of G via the fundamental 
theorem. The subgroup g-l H 9 of G is said to be conjugate to the subgroup H. 
Thus conjugate subgroups correspond to conjugate fields. 

This is an excellent point to introduce relative norms and traces. If f3 is in 
L, we define the relative norm of f3 from L to k to be the product of all the field 
conjugates of f3 over k, and the relative trace of f3 from L to k to be the sum of 
all the field conjugates of f3 over k. Up to a plus or minus sign these numbers 
are the constant and x n - 1 coefficients ofthe nth degree polynomial rr(x - f3 Hg ). 
Since the whole polynomial is invariant under G, all of the coefficients are in 
k. We write NL/k(f3) and trL/k(f3) for the relative norm and trace of f3. When 
k = Q, it is customary to just speak of the norm and trace of f3 and when the 
field L being dealt with is clear, just write N(f3) and tr(f3). 

In the case that L j k is normal, all the conjugate fields of L are the same 
and thus all the g-l H 9 must be the same as well: 

for all 9 inG. 

Alternatively, this condition may be stated as 

Hg=gH for all 9 in G . 
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In this form, the condition says in words that every right coset of H is a left 
coset also (and we don't even have to know which of Hg and gH is the right 
coset). Such a subgroup of G is called a normal subgroup of G. The converse 
is also true, if H is normal then all the conjugate fields LH 9 = L and so L 
is normal over k. Thus in the correspondence of the fundamental theorem, 
intermediate normal fields correspond precisely to the normal subgroups of G. 
We see further in the case that L / k is normal that G( L / k) = G / H, the quotient 
group of cosets Hg with the group structure (Hg1 )(Hg2) = H(glg2). The whole 
group G, and the identity subgroup {I} are always normal subgroups of G; they 
correspond to k / k which is always normal over k and K / k which is normal over 
k by hypothesis. 

In our last example, Q(21/4, i)/Q, some of the intermediate fields are nor­
mal over Q and some aren't. All three subgroups of order four are normal 
subgroups of G and correspond to the three quadratic fields Q( V2), Q( i) and 
Q( A) which are normal over Q. (Indeed, this gives a Galois theory version 
of the easy group theory fact that a subgroup of index two of a finite group 
G is a normal subgroup: it corresponds to a quadratic extension of the ground 
field and quadratic extensions are visibly always normal extensions. This is 
even a rigorous proof: every finite group is a Galois group for a relative normal 
algebraic extension of some ground field. This is because every group is a sub­
group of a symmetric group of permutations and the symmetric groups are all 
known to be Galois groups over Q. By the fundamental theorem, all subgroups 
of symmetric groups are relative Galois groups as well.) 

Of the five subgroups of G of order two, only one is normal. Namely the 
subgroup {I, (72} which corresponds to the intermediate field, Q( V2, i), which is 
also visibly normal over Q, since it contains all the conjugates of its generators, 
V2 and i. 

1.6 Finite Fields 

Our next example concerns finite field extensions. The ground field will be the 
finite field of p elements, IFp • One way this field arises is via congruences of 
integers modulo p. Two integers a and b are said to be congruent modulo p if 
a - b is divisible by p. The notation for this is 

a = b(modp) . 

The set of all integers congruent to a given integer a is called the congruence 
class of a (modp) or the residue class of a (modp). The reason for the terminol­
ogy 'residue class' is that if a is divided by p giving a quotient q and remainder 
(residue) r, a = pq+r, then a = r(modp). There are p possible remainders and 
so p residue classes (modp). Suppose we denote the residue class of a (modp) 
by ii. As Gauss discovered, the arithmetic of integers gives rise to arithmetic of 
residue classes via the rules, 
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the calculations can be done using any representatives of the residue classes 
and the resulting residue class will always be the same. In the case when p is a 
prime, arithmetic of residue classes gives us the finite field of p elements, lFp. 

Let k = IF p' Suppose that g( x ) is an irreducible polynomial in k [x] of degree 
f and that a zero 0: of g gives rise to an extension K = k(o:) of k. (We write 
0: to match the residue class notation here and in Section 2.) The vector space 
version of K, 

K=k+kO:+··.+k(o:)/-l, 

shows that K = lFq is a finite field of q = pI elements. As is well known, there 
is only one field of q elements. However, what this means is that two such fields 
are isomorphic and since conjugate fields are isomorphic, we do not instantly 
get the corollary that K / k is normal. However, this is the case and we will 
shortly prove it. 

We begin with an example. The polynomial x 2 + I is an irreducible poly­
nomial of degree two in lF3 [x]. Thus a zero z gives rise to the field lF9 of nine 
elements 

lF9 = {a + bZj£z,li E lF3}' 

This field is normal over lF3 since the conjugate -z of z is clearly in lF9. Thus 
there is a two element Galois group G(lF9 /lF3) whose non-identity element takes 
z to -z. But there is a more interesting way to describe this automorphism. In 
lF3 [x, y] we have the identities, 

Thus raising every element of lF9 to the third power provides an automorphism 
of lF9. This automorphism preserves lF3 since 0, 1,:2 cubed give 0, 1,:2 respec­
tively. (In fact there are no non-trivial automorphisms of the finite field of p 

elements since I must be preserved and every other element of the field is a sum 
of 1's and so must be preserved as well.) The polynomial equation x 3 - x = ° 
has at most three roots in lF3 (or any other field for that matter) and we have 
accounted for all three of them. Thus the map 13 1-+ (13)3 must be the non-trivial 
automorphism of G(lF9 /lF3). For example, 

(iY = (Z)2z = (-I)z = -z , 
as advertised. We will now show that this can be done in general for finite field 
extensions. 

Again let k = lFp be the finite field of p elements where p is a prime and 
let K be an extension of k of degree f so that K has q = pI elements. It is 
known that the non-zero elements of K form a cyclic group of order q - 1 under 
multiplication. Suppose that lJ is a generator of this group. Then K = k( lJ) also 
since every non-zero element of K is already a power of lJ and so is certainly in 
k(lJ). Furthermore, (lJ)q-l = I and q - 1 is the minimal positive such power of 
lJ giving 1. Therefore (lJ)q = lJ and for 1 < j < q, (lJ)i #- lJ. When K = k, this 
is a combination of the old Fermat theorem that aP == a (mod p) for all integers 
a and the existence of a 'primitive root (modp)'. 
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Now we are ready to find the automorphisms of K/k. We define a map u 
of K to k by 

u : 13 f-+ (13)P . 

Then u preserves every element of k and is an automorphism of K. The latter 
is because in a field of characteristic p, 

(x + y)P = xP + yP and 

are identities for variable x and y. The automorphism u is called the Frobenius 
automorphism of K/k. This automorphism is the basis of a whole series of 
automorphisms and maps in number theory and geometry all of which are also 
called Frobenius automorphisms and Frobenius maps and are of fundamental 
importance. We will meet Frobenius automorphisms of number fields in the 
next two Sections. 

The number (ii)p is a conjugate of ii, but is not ii itself. Indeed, by repeating 
the application of u, we get several distinct conjugates of ii, 

until we finally we get to 

again. Thus we have found f distinct conjugates of 8, all in K, and so K / k is 
normal. Further we have found all f automorphisms of K / k: 

G(K/k) = (u) 

is a cyclic group of order f generated by u. 

1.7 Jacobians in Genus Two 

We now give one last example of the applications of Galois theory. It is an 
example that is not well known among mathematicians either. We will use 
Galois theory to construct the function field for the Jacobian of a Riemann 
surface of genus two. (If the words are meaningless, don't worry; the essence of 
the example has nothing to do with the terminology.) Let x and y be variables 
related by an equation of the form, 

(2) y2=f(x), 

where f(x) is a polynomial in qx] without repeated roots. We thus get a 
quadratic field extension C( x, y) of C( x). Let us suppose in this example that 
f( x) is a quintic polynomial. In the language of complex variable theory, we 
are talking about a Riemann surface of genus two. In the language of algebraic 
geometry, we are talking about a hyperelliptic curve of genus two, this being 
the general case of curves of genus two. The word, 'hyperelliptic' is because 
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when f( x) is a polynomial of degree 3 or 4, we are dealing with a classical 
elliptic curve, and this terminology in turn is because the equation y2 = f( x) 
can be parameterized by elliptic functions in this case. Again, all the excess 
terminology will not actually appear in the example itself. 

A point P on the curve is given by its coordinates, (x, y) where x and y 
satisfy the equation (2). For genus two, the Jacobian of the curve essentially 
consists of unordered pairs of points PI, P2 on the curve. (Technically, there is a 
collapse: all pairs ofthe shape (x, y), (x, -y) correspond to just one point on the 
Jacobian. Because of this collapse, we are not dealing with a smooth version 
of the Jacobian. The collapse is able to take place because in two or more 
complex dimensions, a % limit can have an infinite number of limiting values 
according to how the limit point is approached. In our case, this happens along 
the so-called theta divisor.) Just as a meromorphic function on the curve is 
just an element of C( x, y), so we have meromorphic functions on the Jacobian. 
They are the elements of C( Xl, YI, X2, X2) which are symmetric in the points 
PI = (Xl, YI) and P2 = (X2' Y2) on the curve. The set of such elements is a field. 
This field is called the function field of the Jacobian. For our purposes here, we 
may take this as the definition. It is the goal of this example to describe this 
field. 

Let 
U = Xl + X2, V = XIX2, W = YI + Y2 . 

Clearly u, v and w are in the function field for the Jacobian. We claim that 
the function field for the Jacobian is C( u, v) (w) which is a quartic extension of 
C( u, v). The quartic extension part of this claim is easy to see. First, we have 

w 2 = y~ + y~ + 2YIY2 = f(xI) + f(X2) + 2YIY2 . 

But f( Xl) + f( X2) is a symmetric function of the two independent variables Xl 

and X2 and so is a polynomial in the two base symmetric functions in Xl and 
X2: Xl + X2 and XIX2. In other words f(xd + f(X2) is a polynomial in u and v. 
Thus YIY2 is in C(u,v)(w) and this explains why it wasn't needed in the list of 
generators. We now repeat the squaring: 

and again, f(xdf(X2) is also a polynomial in u and v. Thus we get a quartic 
equation for w over C( u, v). (The quartic equation is clearly irreducible. Given 
values for u and v we can determine Xl and X2 as an unordered pair, but Xl 

and X2 only determine ±YI and ±Y2 and thus there are four possible values for 
w which cannot be distinguished solely from the knowledge of Xl and X2, let 
alone from just u and v.) 

However, while we were easily able to see that YIY2 is in C(u,v)(w), it is 
not so obvious that every symmetric function of the coordinates of two points 
PI and P2 must be in C( u, v)( w). For example, it is not immediately clear how 
to write XIYI + X2Y2 in terms of u, v and w. We will use Galois theory to show 
how to do it. The roots of 
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are just Xl and X2. Thus, q Xl, X2) is a quadratic extension of q u, v). Again, 
this really is a quadratic extension of q u, v) itself; the knowledge of just u and 
v can not possibly tell us which of the two roots is which. Given Xl, a further 
quadratic extension gives us Yl and given X2, another quadratic extension gives 
us Y2. Thus we have the chain of fields, 

/ "" qXl + X2,XlX2)(Yl + Y2) 

qXl + X2, XlX2)(YlY2) 

/ 

The top field, q Xl, X2, Yl, Y2) is clearly a normal extension of q u, v) of 
degree 8 and once again, the Galois group 

will turn out to be the dihedral group of order 8. We will express the group 
as permutations on the six letters Xl, X2, Yl , -Yl, Y2, -Y2. Note that since 
-Yl = (-1 )Yl and -Y2 = (-1 )Y2, once we know the images of Yl and Y2 
under an element of G, we know what happens to -Yl and -Y2. We begin by 
finding the four elements of the group which fix qXl, X2). Besides the iden­
tity, there is clearly the element (Y2, -Y2) which comes from looking at the 
quadratic extension qXl, X2, Yl, Y2) = qXl' X2)(yt)(Y2) of qXl' X2)(yt}. Like­
wise, by looking at the quadratic extension q Xl, X2, Yl, Yz) = q Xl, Xz )(yz )(Yl) 
of q Xl, Xz )(Y2), we find the element (Yl, -Yl) in our Galois group. The prod­
uct of these two elements of order two gives the fourth desired element of G 
and we have 

We now have four elements of our total group, G. One more and we can 
find all eight by multiplication with these four. The remaining four elements 
don't fix the field qXl,XZ) elementwise. Thus the remaining four elements 
interchange Xl and X2; that is to say that they all have the two cycle (Xl, xz) 
in their cycle decomposition. Pick one of these four elements. Either Yl is sent 
to Yz, or Yl is sent to -Y2. By multiplication with (Yz, -Yz) if necessary, we 
can assume that our new element sends Yl to yz. It therefore also sends -Yl to 
-yz. Likewise, by multiplying through by (Yl, -Yl) if necessary, we can assume 
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that our new element sends Y2 to YI rather than -YI. Again, this results in -Y2 
being sent to -YI. Thus we see that (Xl, X2 )(YI , Y2)( -YI, -Y2) is in our whole 
Galois group. Therefore, the whole group contains the extra four elements, 

(Xl, X2)(YI, Y2)( -YI, -Y2) , 

(XI,X2)(YI,Y2)(-YI,-Y2)(YI,-YI) = (XI,X2)(YI,Y2,-YI,-Y2), 

(XI,X2)(YI,Y2)(-YI,-Y2)(Y2,-Y2) = (XI,X2)(YI,-Y2,-YI,Y2), 

(Xl, X2 )(YI , Y2)( -YI, -Y2 )(YI, -YI )(Y2, -Y2) = (Xl, X2 )(YI , -Y2 )(Y2, -yt) . 

Therefore, the whole group is given by G = G(C(XI,X2,YI,Y2)/C(U,V)), 
with the following eight elements, 

It is left to the reader to show that this is the dihedral group of order eight 
again. The dihedral group of order eight is the only one of the five groups of 
order eight which has exactly two elements of order four and no elements of 
order eight. 

The critical question for us is, what is the subgroup H of G fixing C( Xl + 
x2, XIX2)(YI + Y2) = C( u, v)( w)? The answer is that it is given by 

since clearly the element (Xl, X2 )(YI, Y2)( -YI, -Y2) of G fixes the generators 
Xl +X2, XIX2, YI +Y2 of C(u, v)(w). But now we are done. Any rational function 
of the coordinates of two points PI = (XI,yt) and P2 = (X2,Y2) which is 
symmetric when PI and P2 are interchanged is fixed by H and so belongs to 
C( u, v)( w). This was our original claim! 

For example, XIYI + X2Y2 is fixed by H and so is in C(u,v)(w). We now 
show how Galois theory helps us write XIYI + X2Y2 in a form which is visibly 
in C(u,v)(w). It is now convenient to give YIY2 a name. Let t = YIY2. The 
field C(u,v)(w) is a quadratic extension of C(u,v)(t). Indeed, we saw above 
that w 2 is in C( u, v)(t). Quadratic extensions are always normal extensions. 
The non-trivial element of G(C(u,v)(w)/ C(u,v)(t)) takes w to -w. Thus, if 
we write 

a = XIYI + X2Y2 = a + bw 

where a and b are in C( u, v)(t), then the non-trivial element of G(C( u, v)( w)/ 
C( u, v )( t)) takes a to a - bw. So, if we can find an expression for this in terms of 
Xl, X2, YI, Y2, we can find a and b. But, we can express G(C( u, v)( w )/C( u, v)( t)) 
in terms of elements of G. We already know the elements of 

It is easily checked that the group 
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consists of the four elements 

all of which visibly fix t. Either of the two elements not in H (the last two 
elements) take w to its conjugate over C(u,v)(t), namely -w. We apply one of 
these to a. The result will be the same in either case, since it depends only on 
the coset of H used. We will calculate both of these and see. When we apply 
(YI, -yd(Y2, -Y2) to a, we get 

xI(-yd + X2(-Y2) = -XIYI -X2Y2 = -a, 

while when we apply (Xl, X2 )(YI , -Y2 )(Y2, -YI) to a we get 

X2( -Y2) + XI( -YI) = -X2Y2 - XIYI = -a , 

the same result, as advertised. Thus we now have two equations for the two 
unknowns a and b: 

Thus a = 0 and 

(3) 

a+bw=XIYI+X2Y2, 

a - bw = -Xl YI - X2Y2 . 

We see that a = bw and that the four elements of G(C(XI' X2, YI, Y2)/C( u, v)(t)) 
listed above really do preserve b so that b is in C(u,v)(t). However, b is not 
visibly in C(u,v)(t); that is, it is not obvious how b may be written solely in 
terms of u, v, and t. 

To find the expression for b in terms of u, v and t, we now repeat what we 
just did. The field C(u,v)(t) is a quadratic extension of C(u,v) and again t2 
is in C( u, v) so that the non-trivial conjugate of t over C( u, v) is just -to We 
write 

b=c+dt 

where c and d are in C( u, v). Then the non-trivial conjugate of b over C( u, v) is 
just c - dt. We want the expression for this in terms of XI, X2, YI, Y2. But again, 
this is easy. It is found by applying any of the four elements of G which aren't 
in J. 

For instance, we may apply the element (Y2, -Y2) to b. When we do so, 
the result is, 

(4) Xl YI - X2Y2 = C _ dt . 
YI - Y2 

The result will be the same if we use any of the other three possible group 
elements. We now have our two equations (3) and (4) for the two unknowns in 
c and d. We thus get 
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and 
d = _1_ [XIYI + X2Y2 _ XIYI - X2Y2] 

2YIY2 YI + Y2 YI - Y2 

Both c and d are supposed to be in C( u, v) and indeed, the reader may check 
that they are both fixed by all of G. However, we still don't see that this is so. 
But now at last, we are in position to see it. We deal with c first. Since c is 
supposed to be in C( u, v), and since u and v are written solely in terms of Xl 

and X2, it must be that both YI and Y2 are not really present in c. Thus if we 
combine the terms, both YI and Y2 deserve to vanish from the expression, 

1 [XIYI + X2Y2 XIYI - X2Y2] c = - + --''-----=--
2 YI + Y2 YI - Y2 

= ~ [(XIYI + X2Y2)(YI - Y2) + (XIYI - X2Y2)(YI + Y2)] 
2 yf - y~ 

xIyf - X2Y~ 
yr - y~ 

xd(xd - x2f(X2) 

f(XI)-f(X2) 

Indeed, the YI and Y2 contributions have canceled and we are left with a sym­
metric rational function of Xl and X2 which must be a rational function of u 

and v. (If we were to actually try and write this in terms of u and v, it would 
probably pay to continue to the point that both the numerator and denom­
inator are symmetric in Xl and X2. This would be most easily accomplished 
by dividing the top and bottom by Xl - X2 which is a common factor and the 
resulting numerator and denominator are symmetric in Xl and X2 and so are 
polynomials in u and v.) The same thing may be done to d and we get, 

d= _1_ [XIYI +X2Y2 _ XIYI-X2Y2] 
2YIY2 YI + Y2 YI - Y2 

__ 1_ [(XIYI + X2Y2)(YI - Y2) - (XIYI - X2Y2)(YI + Y2)] 
- 2YIY2 yf - y~ 

X2 - Xl 

- yr - y~ 

Thus d- l turns out to be a polynomial in u and v. 
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2. Algebraic Number Theory 

2.1 Unique Factorization Theory 

An algebraic number is a root of an equation f( x) = 0 where f( x) is a non-zero 
polynomial in Q[x]. An algebraic extension of Q is called an algebraic number 
field. To do number theory, we now want to define algebraic integers. Naturally, 
we want the definition to accomplish certain things, if possible. First, and this 
is non-negotiable, we want the integers of a field K to form a ring: sums, 
differences and products of integers should be integers. Further, all ordinary 
integers should be algebraic integers so that we won't be confused. Also, the 
field should be the quotient field of this ring; in other words, every element of 
the field should be the quotient of two integers of the field just as every rational 
number is the ratio of two ordinary integers. Second, we would like there to be 
a unique factorization theory of integers in K. 

This is a good place to say what a unique factorization theory would entail. 
Among the integers of a field, there would be two distinguished sets of integers. 
First and foremost would be the primes. Second would be the units, which are 
those integers whose inverses are also integers. In Q, the units are ±l. Because 
of units, we have to refine what we ordinarily think of as unique factorization. 
For example, in Q, we may factor 20 completely as 

20 = (2)(2)(5) = (-1)(2)(-2)(5) = (2)( -2)( -5) , 

among other ways. All of these factorizations are really the same and are com­
plicated by the presence of units. We think of the primes 2 and -2 as essentially 
the same. The technical word for this is that the primes 2 and -2 are asso­
ciates. In general, two algebraic numbers are associates if one is a unit times 
the other. 

We will have a unique factorization theory for a field if every integer of 
the field factors uniquely into a product of units and primes up to associates 
and the order of the factors. If we have such a theory, we may pick from each 
class of associated primes a representative 7r. (This is the usual notation in 
the subject. We do our best to keep algebraic primes from appearing at the 
same time as 3.14159· .. , but failures have been known to occur.) If 7rl, 7r2,· .• 

run through a complete list of non-associated primes of K, then when we have 
unique factorization, every integer of K may be written uniquely in the form, 

(5) 

where the ai are ordinary non-negative integers all but finitely many of which 
are zero, and c; is a unit of K. For example, if our list of primes in Q were 
2, -3, -5,7,11, -13,···, then the factorization of 20 would be 20 = -1.22 . 

(-5). In Q, where we have positive and negative numbers and only two units, 
we usually take the positive member of each pair of associated primes as our 
representative. Since every number of K is supposed to be the quotient of two 
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integers, this means in turn that every number of K has a unique factorization 
in the form (5) where now the ai are allowed to be negative as well, but only 
finitely many are non-zero. The integers of K will be precisely those a with all 
the ai ~ O. 

When there is unique factorization of integers, we also have a concept of 
greatest common divisors. To explain this, it will be convenient to define the 
concept of divisibility in a more general manner than usual, even for Q. Suppose 
that a and 15 are algebraic numbers with 15 -# O. Once algebraic integers have 
been defined, we will say that 15 divides a (the notation is 81a) if a/8 is an 
integer. For example, 112 Ii, since the ratio is 3 which is an integer. Even in 
Q, this takes some getting used to, but we will see that it is very handy. As 
a simple example, if a is an algebraic number then the condition that 11a is 
equivalent to the condition that a be an integer and the condition that all 
is equivalent to the condition that a-I be an integer. Thus the units, which 
consist of those integers whose inverses are also integers, will be exactly those 
numbers which both are divisible by and divide l. 

When there is unique factorization, we can write the condition that I5la in 
terms of the factorizations of 15 and a into primes: if 

a=E 7r,' II a' , , 

are the factorizations of a and 8 into primes, with units E and 'TJ, then I5la if 
and only if di ::; ai for all i. Now we are ready to introduce greatest common 
divisors. The notation will be that (a, /3) denotes the greatest common divisor 
of the numbers a and /3. In Q, the words make us think of the largest number 
which divides the given numbers. This will not work in other fields where there 
often is no concept of largest, but greatest common divisors in Q have another 
property that we can use. The greatest common divisor is a common divisor 
divisible by all other common divisors. 

As an example, 

1 

6 

This is to say that ~ divides both ~ and ~ and that any rational number that 
divides both ~ and ~ divides ~. This is not instantly obvious until we think 
of the prime factorization of the numbers in question. When there is unique 
factorization, as there is in Q, we can easily see that there are greatest common 
divisors. In terms of the prime factorizations, 

( II ai II bi) - II min(ai,bi) E 7r i , 'TJ 7r; - 7r; . 

For example, 
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Of course, any unit times the right hand side would work just as well. When 
we are dealing with numbers, greatest common divisors are unique only up to 
associates. In Q, it has always been the convention to take the positive number 
of the pair of gcd's as the gcd. A special case arises often enough to be given 
a name. If (ex, (3) = 1, we say that ex and (3 are relatively prime. In Q, this 
is exactly the usual concept; the prime factorizations show that the only way 
that two numbers can have greatest common divisor 1 is that both are integers 
without common prime factors. 

2.2 Algebraic Integers 

We denote the classical integers of Q by Z. We will call these integers the 
rational integers because we are now ready to define algebraic integers. An 
algebraic integer is a zero of a monic polynomial in Z[x]. Recall that a monic 
polynomial in Z[x] is a polynomial of the shape 

(6) 

where each aj is in Z. This is a rather strange definition at first glance. There 
are two major facts about it that make it reasonable. 

The first fact about our definition is that the integers do form a ring; sums, 
differences and products of integers are integers. This is proved by exactly the 
argument that we used in the previous Section to show V2+V3 is algebraic. The 
new characteristic equation that we get by this technique is a monic polynomial 
in Z[x] when we start with algebraic integers. This was our non-negotiable 
first demand for a theory of integers. Note also that conjugates of integers are 
integers. 

The second fact has to do with what we hope algebraic numbers will do 
for us. We have said that we hope there will be a nice multiplicative theory 
including unique factorization into primes. If there is such a theory, then a 
root of an equation f(x) = 0 where f(x) in Z[x] is given by (6) must be an 
integer. The reason is as follows. Let ex be a root of f( x) = O. Every algebraic 
number will be the ratio of two 'integers' in a reasonable multiplicative theory: 
let ex = (3/, where (3 and , are 'integers'. If there is a unique factorization 
theory, then we may cancel out common 'prime' factors and so assume that (3 
and, are 'relatively prime'. From ,n f( ex) = 0, we get 

or 
(3n = -an_l(3n-1, - ... - ao,n . 

The right side is divisible by , and so , divides (3n. When there is unique 
factorization and (3 and, have no common 'prime' factors, the only way, can 
divide (3n is that, have no prime factors at all. Such a number is a 'unit', an 
integer whose inverse is also an integer. Thus ex = (3,-1 must be an integer. 
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Thus without our definition, there would be no hope for a unique factorization 
theory. 

Now, let K be an algebraic number field. Having at last defined integers, 
we will let OK be the ring of algebraic integers in K. When a lower case letter 
such as k is used for the field, we frequently find a lower case 0 used for the 
integers: Ok. For example, if K = IQ( v'd) where d is a square-free rational integer 
(no repeated prime factors) other than 1, then the integers of K are given by 

OK = Z[Vd] = {a + bv'd I a and b are in Z} when d 1= 1 (mod4) 

and 

[ 1 + v'd] 1 + v'd . OK = Z 2 = {a + b 2 I a and b are III Z} when d == 1 (mod4) . 

We now look into the question of whether the integers do everything for us 
that we desire. First, every number in K is the quotient of two integers of K as 
we had hoped. This is easy to see. If we clear the denominators of coefficients 
in a non-zero polynomial in lQ[x] with a zero a in K, we can put the equation 
for a in the form 

anan + an-1 a n- 1 + ... + ao = 0 , 

where the aj are in Z. When we multiply through by a:-1 , we get 

which shows that ana is an integer in K and a is the ratio of the two integers 
ana and an. 

In order to discuss factorization of integers in a number field K, we need 
to know the units of K. The structure of the group of units of a field was found 
by Dirichlet and this is a starting point. Suppose that K = IQ(B) is a degree 
n over IQ. Among the n conjugates of B, suppose that r1 conjugates are real 
and there are r2 complex conjugate pairs so that n = r1 + 2r2. We will order 
the n conjugates of B so that B(j) is real for 1 :::; j :::; rl while B(j+r2 ) = B(j) for 
rl :::; j :::; r1 + r2. We often say that the field K has r1 real conjugate fields and 
2r2 complex conjugate fields. It turns out that the subgroup of units of K of 
finite order is precisely the set of W-th roots of unity for some W. If r1 > 0, 
then W = 2 and ±1 are the only units of finite order. The units of infinite 
order are more interesting. The number r = r1 + r2 - 1 turns out to be the 
rank of the unit group. 

Theorem. There is a system of r units C1, ..• ,Cr of K such that every unit of 
K may be written uniquely in the form 

r 

C = W II c~i 
i=l 

where w is a W-th root of unity and the ai are in Z. 
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The set {Cl,···, cr} is called a system of fundamental units of K. Actu­
ally finding such a system is not always easy. These numbers and their first r 

conjugates go into a very messy determinant called the regulator of K. Let 

The regulator of K is the number 

if 1 S; j S; rl 

if j 2: rl + 1 . 

As horrible as it is, the regulator turns out to be independent of the system 
of fundamental units used and is one of the principal invariants of the field K. 
It will appear again in Section 3. The reader should be warned that there are 
four competing versions of the regulator in print. One alternate eliminates the 
numbers ej which just changes R by a power of 2. There are two other versions 
based on (r + 1) x (r + 1) determinants, but they are messier to write down. 
Again, they turn out to be simple rational multiples of R. 

When r = 0, we say that R = 1 by definition. There are two ways this 
can happen. One way is when rl = 1 and r2 = O. Here n = 1 and so K = Q. 
In this case W = 2 and ±1 give the units. The second way r = 1 is possible 
when rl = 0 and r2 = 1. In this case n = 2 and K is a complex quadratic 
field. Only two complex quadratic fields have roots of unity other than ±1. 
The field K = Q( A) contains the fourth roots of unity and W = 4. The field 
K = Q(.;=3) contains the sixth roots of unity and W = 6. 

When we have a real quadratic field (rl = 2, r2 = 0), then r = 1 and there 
are infinitely many units. They are all of the form ±c~ where a is in Z and Cl is 
a fundamental unit. There are four choices for Cl, namely ±c~l. Any of these 
together with ±1 also generates the unit group. Thanks to all the absolute 
value signs, the number R is the same for all four choices. It is customary in 
the literature to use the unique choice which is greater than one and call it 
the fundamental unit. For example when K = Q( J2), Cl = 1 + J2 while for 
K = Q( J5), Cl = (1 + J5)/2. 

We return to the question of factorization of algebraic integers and present 
two examples. First we take the field K = Q( i). For this field, the ring of integers 
IS 

DK = Z[i] = {a + bi I a and b are in Z} . 

In this case, we have unique factorization into integers. Unfortunately, even 
though there are many fields with unique factorization (and quite likely in­
finitely many, although, amazingly enough, this has not yet been proved), not 
every field has unique factorization of integers. The standard example is in 
Q( R). The integers here are 

Z[H] = {a + bHI a and b are in Z} . 

The units are just ±1. The factorization, 
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(7) 6 = 2 . 3 = (1 + H) . (1 - H) 
gives two fundamentally different factorizations of 6 into products of irreducible 
numbers. By a factorization into 'irreducible numbers', I mean that once we 
have factored 6 in either of the two ways, we can't factor any further except 
by introducing units and associates. These factorizations are really different; 
2 clearly divides the product on the right, the quotient being 3, but 2 does 
not divide either factor since neither (1 ± R)/2 are integers (they are not 
in the form for integers of IQ( R) given above). This is incompatible with 
unique factorization: if 2 doesn't factor into pieces, 2 would have to be a prime 
and with unique factorization, a prime that divides a product of two integers 
divides at least one of them. 

2.3 Divisor Theory 

This has been a rapid introduction to integers. One of the great discoveries of 
the previous century in number theory was the restoration of the seemingly lost 
unique factorization. There are several equivalent ways to do this. We will take 
a route which does not require any additional knowledge of the reader to get 
started. This route is called divisor theory. We will begin with an example in 
IQ that shows how we will repair the disaster in IQ( R) above. We will factor 
60 in two ways as 

60 = 4 . 15 = 6 . 10 . 

This is analogous to the factorization of 6 in (7) above. Neither of the numbers 4 
and 15 divides the numbers 6 and 10. In IQ where we have unique factorization, 
we will refine both factorizations of 60 further into a common factorization. 
Since 4 does not divide 10, it follows that some piece of 4 divides 6. Likewise, 
since 4 does not divide 6, it follows that some piece of 4 also divides 10. Thus 
it is natural to look at the two greatest common divisors, 

r = (4,6) and s = (4,10). 

Likewise, we are motivated to look at 

t = (15,6) and u = (15,10) . 

This leads us to the refined factorization, 

60 = (4,6)(4,10)(15,6)(15,10) = rstu . 

But rs = 4, tu = 15, rt = 6 and su = 10 and so this gives a further common 
refinement ot both factorizations of 60. Of course all this is easily checked 
since we can actually calculate all the greatest common divisors in the example 
but it is important to point out that we can arrive at the factorization, 60 = 
rstu, which is a common refinement of the original two factorizations without 
numerically calculating any of the greatest common divisors. Indeed all we need 
to know is that one of the two factorizations of 60 is into relatively prime pieces. 
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As this also turns out to be the case in (7) where 2 and 3 are relatively prime, we 
now show that 60 = rstu gives a common refinement of the two factorizations 
of 60 without calculating any of r, s, t or u. We noted that some piece of 4 
divides 6; the biggest such piece is by definition the greatest common divisor, 
r = (4,6). The rest of 4, namely 4/r, must show up in 10. Thus 4/r is a factor 
of s = (4,10). Putting this together, we see that 4lrs. In like manner, 151tu. 
Hence 60lrstu. We now show the reverse: rstul60; the result will be equality 
all along the line. Since 4 and 15 are relatively prime, the numbers r = (4,6) 
and t = (15,6) being pieces of 4 and 15 must be relatively prime. But when 
two relatively prime numbers such as rand t both divide a number such as 6, 
their product must divide the number as well. In other words, rt16. Again in 
like manner sullO. Therefore rtsul60 as advertised. 

We will now create greatest common divisors for algebraic numbers. This 
will enable us to do the same thing for the two factorizations of 6 in IQ( A) 
above as we just did for the two factorizations of 60 in IQ. Suppose that 
al,"', am are numbers in K, not all zero. The 'greatest common divisor' of 
aI, ... ,am is denoted by (al,' .. ,am), We will call this symbol a (fractional) 
divisor. At the moment, this is just a symbol; it is up to us to make wise defi­
nitions so that this symbol will behave as greatest common divisors ought. We 
say that the divisor (al,' .. , am) is generated by al,' .. ,am' German letters 
are usually used to denote these divisors. An important class of divisors are 
the principal (fractional) divisors, (a) of just one non-zero number. For divisors 
to behave like gcd's, we have to have a notion of divisibility. To begin with, 
ordinary greatest common divisors have the property that the greatest com­
mon divisor of several numbers divides any integral linear combination of those 
numbers. We make this the definition in number fields: if f3 is an D K-linear 
combination of the numbers al,"', am (not all zero) of K, say f3 = 2::::1 "Yiai 
where the Ii are in D K and a = (aI, ... ,am), then we will say that a divides 
f3 and write alf3. 

Now we come to one of the key definitions. Since anything that divides 
each of several numbers should divide their greatest common divisor, if a = 
(al,' .. ,am) and b = (f3, ... ,f3n), we will say that a divides b if a divides each 
f3j. In other words, we say that (al,' .. ,am) divides (f3l, ... ,f3n) if each f3j is 
an integral linear combination of the ai's. Thus, for example, (a) I (f3l, ... ,f3n) 
means alf3j for all j. Since greatest common divisors are supposed to be unique, 
we will go further and say that two divisors, a and b are equal if each divides 
the other, alb and bla. As an illustration, in IQ( A), we have 

(8) (2,1 + 0) = (2,1 - 0) 

since for example 

1- 0 = 1(2) + (-1)(1 + 0) 

and so the left side divides the right side and the other direction goes the same 
way (in fact it is the conjugate relation). 
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We have defined what it means for one divisor to be divisible by another. 
it clearly becomes desirable to be able to perform the 'division'. However, as 
always, before we can learn to divide, we must learn to multiply. 

In other words, the product is the divisor generated by the mn ai{J/s. 
Here is an example in Q: 

(2,12) . (24,60) = (2 . 24, 2 . 60, 12 . 24, 12 . 60) . 

It is clear that this must happen if we are to have a unique factorization theory. 
We see this by looking at the prime power factorization of both sides. For 
example in the relation above, the power of the prime 2 appearing in the first 
divisor (2,12) is 21 and in the second divisor (24,60) it is 22 while on the right 
side it is 21+2 which occurs in the 2·60 term with at least this many 2's in the 
other three terms. 

Theorem. Multiplication of divisors satisfies the following usual properties, 
i) ab = ba, 
ii) a(be) = (ab)e, 
iii) (l)a = a(l) = a, so that (1) serves as an identity. 

Proof. Let a = (al,··· ,am), b = ({Jl,··· ,(In), e = ('")'1, ... ,'Yr). 
Property i) represents the fact that both sides are ({ ai{Jj}). 
Property ii) is because both sides are ({ ai{Jjlk}), and property iii) is obvious. 

o 

For example, if ({J) is principal, then ({JaI,· .. ,(Jam) = (,8)( aI, ... ,am), 
a well known rule for greatest common divisors in the rational numbers. As an 
illustration, 

It can be shown that there are multiplicative inverses. Given a, there is a unique 
b such that ab = (1). Of course, we write b = a-I. This means that the divisors 
of K form a group under multiplication. This group I of all divisors has as a 
subgroup the group P of all principal divisors. The quotient group, I/ P is called 
the divisor class group and can be shown to be finite. The order of this group 
is called the class-number of the field K. It plays a major role in the subject, 
but we will not treat it further here, except to note that the property of every 
divisor being principal in a field is equivalent to saying that the class-number 
of the field is one. 

Now we have a multiplicative theory. What we still lack is the analog of 
integers for divisors so that we can begin to factorize them. In analogy to the 
fact that an algebraic number is an integer when it is divisible by 1, we make the 
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equivalent definition here. We say that a = (al,· .. ,am) is integral when (l)la. 
According to the definition of divisibility, this means that each ai is divisible 
by 1 which in this simple instance means that each ai is integral. Thus an 
equivalent definition is that a is integral when it has integral generators. We 
can now prove the natural alternate definition for divisibility. 

Theorem. For two fractional divisors a and b, alb if and only if ba-1 is integral. 

Proof. Let 

and set 
ba-1 = c = Cll,··· ,'Yr). 

First suppose that c is integral so that all the 'Yk are integral. Then from the 
relation b = ac, 

we see that each {3j is an integral linear combination of the ai'Yk and hence is 
an integral linear combination of the ai. Therefore alb. 

Now for the converse. Suppose that alb. We first show that if il = 
(81 , .•. ,os) is any other divisor, then aillbil. Since bil is generated by the ns 
numbers {3j8k, we have to show that each {3j8k is an integral linear combina­
tion of the generators of ail. But {3j is an integral linear combination of the ai 

and multiplying such a combination through by 15k, we find that {3j8k is the 
same integral linear combination of the numbers ai8k. Hence aillbil, as claimed. 
Now we take il = a-I. The result is that (1)lba-1 . But this says precisely that 
c is integral, as needed. Incidentally it is a consequence of the theorem just 
proved that alb if and only if aillbil. D 

Here is an example. Suppose that a and b are both integral and that 

ab=(l). 

Then (l)la because a is integral and al(l) because (1)a- 1 = b is integral. 
Therefore by definition, a = (1) and of course, b = (1) also. Thus there are 
no unit divisors other that (1) itself. This means that factorization into prime 
divisors will be free of the extra nuisance of units and associates. 

It is time to get the unique factorization statement. Unique factorization 
in the rational numbers flows from the fact that there exist greatest common 
divisors. We now show that divisors have greatest common divisors. 

Theorem. Suppose that a = (al,···, am), b = ({31,···, (3n) and let c 
(aI, ... , am, {31 , ... , (3n). Then c is the greatest common divisor of a and b. 

Proof. This is easy to see and requires just talking through the words. First 
c divides a and b since each ai and each {3j is clearly an integral linear com­
bination of all the ai and {3j (all but one coefficient zero and the remaining 
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coefficient one). Further, if () is a common divisor of a and b then all the ili and 
all the j3j are integral linear combinations of the generators of () and hence the 
generators of e are integral linear combinations of the generators of (). Thus () 
divides e also. This is practically magic! Needless to say, we write e = (a, b). 0 

Unique factorization now follows just as for Q. The basic result leading to 
unique factorization is 

Theorem. Suppose that a, b, e are integral divisors such that albe and (a, b) = 
(1). Then ale. 

Proof. This is because 

e = (l)e = (a, b)e = (ae, be) = aCe, bea-I) 

and by hypothesis, (e, bea-I ) is integral. Thus ea-I is integral and ale. 0 

In the special situation that (a, b) = (1), we say that a and b are relatively 
prime. As with numbers, this can only happen when a and b are integral without 
any common non-trivial integral factors. We define a prime divisor to be an 
integral divisor other than (1) which has no integral divisors other than itself 
and (1). 

Theorem. Suppose that '.}3 is a prime divisor which divides the product ab of 
two integral divisors. Then either'.}3 divides a or '.}3 divides b. 

Proof. Suppose that '.}3 does not divide a. Since by definition a prime divisor 
either divides another integral divisor or is relatively prime to it, it follows that 
(a, '.}3) = (1). Therefore by the previous theorem, '.}3lb. 0 

Without much further ado, we then get the unique factorization theorem 
for divisors which we just state for the record. 

Theorem. Every divisor a of K has a unique representation in the form 

where the '.}3j run through all the prime divisors of K and the aj are in Z with 
all but finitely many being zero. Further a is integral if and only if aj ~ 0 
for all j. 

Now we return to our example in Q( H), 

6 = 2 . 3 = (1 + H) . (1 - H) . 

Both sides can be refined to the factorization in terms of divisors, 

(6) = (2, 1 + V-5) . (2, 1 - V-5) . (3, 1 + V-5) . (3, 1 - V-5) , 
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where the product of the first and second divisors on the right gives (2), the 
third and fourth divisors on the right gives (3), the first and third divisors 
on the right multiply to (1 + A) and the second and fourth multiply to 
(1 - A). As we explained above when we factored 60 in Q, the fact that 
(2) and (3) are relatively prime makes this clear without having to check the 
multiplications, but it is good practice to do so. For example, 

(9) (2, 1 + 0) . (2, 1 - 0) = (4, 2 - 20,2 + 20,6) 
= (2)(2, 1 - 0, 1 + 0,3) 
= (2)(1) 

= 2. 

Since we have seen in (8) above that the two divisors on the left are in fact 
equal, this means that 

(10) (2) = (2, 1 + 0? . 
On the other hand, in Q( v'2), we clearly have 

(11) 

Thus we are lead to the very strange conclusion, 

(12) (2,1 + 0) = (v'2) ! 

How shall we give meaning to this? The answer is that both (10) and (11) 
hold in Q( yi=5, v'2) and hence by unique factorization (without units so that 
there are no ± problems), (12) must hold in this field as well. Thus the non­
principal divisor (2, 1 + A) in Q( yi=5) has become principal in Q( yi=5, v'2). 
In fact, since the class-number of Q(;=5) is 2, this carries with it the fact that 
every non-principal divisor of Q( ye:5) becomes principal in Q( ye:5, v'2) by 
pure group theory arguments. This is a general principle. For every field K, 
there is a bigger field L for which every divisor of K becomes principal in L. 
Unfortunately, it can happen that L has further divisors which are still non­
principal. 

We turn next to the concept of the norm of a divisor. Our definition will 
be the exact analog of the norm of a number being the product of its field 
conjugates. Since we now know how to talk about a divisor as being in more 
than one field, if K is of degree n over Q, we define 

n 

(13) M(a) = II a(i) , 
i=1 

where the product takes place in some larger field containing all the K( i). The 
result is a divisor of iQ, which is to say that the result has a system of generators 
all of which are in iQ. Therefore we may express the result in the form M( a) = N 
where N > 0 is unique. Because of this, it has become customary to simply 
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write N(a) = N. However, when we compute relative norms from one field to 
another, norms of divisors are divisors in the ground field and not numbers. In 
the case of a principal divisor (a), we see that 

N((a)) = (N(a)) 

and according to our convention, as a number of Q, this is the absolute value 
of N( a). We note from the definition that 

N(ab) = N(a)N(b) 

and that norms of integral divisors are integral divisors. 
The fact that N(a) is a divisor of Q is not obvious, but it is true. Since 

the product defining N( a) in (13) is invariant under Galois actions, we might 
think that we can conclude from this that the product must be a divisor of the 
ground field. This is not sufficient. Divisors can be preserved by every element 
of a Galois group without being definable in the ground field. For example, in 
I< = Q( A), the divisor (2, 1 + R) is preserved by G(I</Q) as may be 
seen in (8) above. Even principal divisors may sometimes have this annoying 
property; for instance in I<, the divisor (A) is preserved by G(I</Q). It can 
be shown without too much difficulty that if a divisor of a normal extension I< / k 
is preserved by all the elements of a Galois group G(I</k), then the [I< : k]th 
power of the divisor is a divisor of the ground field k. However we have no need 
for this rather esoteric fact in the rest of this paper. 

The next theorem allows us to show that N(a) is a divisor of Q. To prepare 
for it, we need a definition. Suppose that g(XI,···, xm) is a non-zero polyno­
mial in I< [Xl, ... , X m]. We define the content 8'(g) of 9 to be the divisor of I< 
generated by the coefficients of g. 

Theorem (Kronecker's Content Theorem). Suppose that gl, ... , gr are non-zero 
polynomials in I<[X1, ... , xm]. Then 8'(gl ... gr) = 8'(gt} ... 8'(gr). 

We will not give the proof although it is not too hard to show that the 
powers of every prime on both sides are the same. As a special case, let a = 
(a1' ... , am) be a divisor of I<. Let g(X1' ... ,xm ) be defined as the product of 
n = [I< : Ql conjugate polynomials, 

(14) 

Then according to Kronecker's content theorem and the definition of N( a), the 
content of g is just N( a). But 9 is a polynomial in Q[X1,···, xml by Galois 
theory since the factors giving g are permuted by any Galois action. Hence 9 
is invariant under Galois actions and so the coefficients of 9 are all in Q. 

Not only does the content theorem give us a proof that relative norms 
of divisors are defined in the ground field, it allows us to do the computation 
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in a reasonable manner. We illustrate by finding the norm of the divisor 0 = 
(2, 1 + R) of Q( yC"5). In equation (9) above, we actually calculated the 
norm by the definition. By the content theorem, the norm is the content of the 
polynomial, 

[2x + y(1 + H)][2x + y(1 - H)J = 4x2 + 4xy + 6y2 . 

Since (4,4,6) = (2), we see that N(o) = 2. As another illustration, let 0 = 
(3, 1 + R) in the same field. We have 

[3x + y(1 + H)][3x + y(1 - H)] = 9x2 + 6xy + 6y2 , 

and so N(o) = 3. 
We have said that the inverse of a divisor exists. The content theorem 

gives us a way of finding it. Again, let 0 = (01,···' Om) be a divisor of K. 
Then 01 Xl + ... + OmXm is one of the n factors of the polynomial g( Xl, ... , xm) 
defined in (14). Hence 

h( ) _ g(X1,···,Xm) 
X1,···,Xm -

0lX1 + ... + OmXm 

is a polynomial in K[X1,···, xmJ. Let b be the content of h(X1,···, Xm). Thus 
b is a divisor of K and by the content theorem, 

ob = (N) 

where N(o) = N.'Therefore, 0-1 = (N-1 )b. For example, 

(3,1 + H)-l = (3-1 )(3,1 _ H) = (1, 1 + ~) 

The content theorem also allows us to clear up several other loose ends. 

Theorem. Suppose that f( x) is a monic polynomial with algebraic integer coef­
ficients and that f(x) = g(x)h(x) where g(x) and hex) are monic polynomials. 
Then g( x) and h( x) have algebraic integer coefficients. 

Proof. Recall that any divisor divides its generators. Since f has integral coeffi­
cients, '-'S(J) has integral generators, one of which is 1 and so '-'S(J) is an integral 
divisor dividing 1. Hence '-'S(J) = (1). By the content theorem, 

'-'S(g )'-'S( h) = '-'S(J) = (1) . 

But '-'S(g) and '-'S( h) both have 1 as one of their generators and so '-'S(g) 11 and 
'-'S(h)I1. Therefore '-'S(g)-l and J(h)-l are integral. But their product is (1) and 
so each is (1). Thus 

'-'S(g) = '-'S(h) = (1) . 

But a divisor is integral only when all its generators are integral and hence 9 
and h have integral coefficients. 0 



348 Chapter 6. Galois Theory, Algebraic Numbers and Zeta Functions 

We defined algebraic integers as zeros of monic polynomials, whether irre­
ducible or not. One application of this last theorem is that the defining polyno­
mial of an algebraic integer over any number field already has algebraic integer 
coefficients. For instance, we can now say that a rational number which is also 
an algebraic integer is already a rational integer, fortunately for the termi­
nology. As another application, if f( x) is a monic polynomial with algebraic 
integer coefficients and a is a zero of f, then a is an algebraic integer. This 
is because we can write f(x) as a product of two monic polynomials, one of 
which is (x - a), and so a is an algebraic integer. This result is usually proved 
by looking at N(f(x)) which by Galois theory is a monic polynomial in Z[x] 
and also has a as a zero. The Galois theory proof is more general, but I rather 
like the proof based on the content theorem. 

We have introduced divisors as symbols with rather miraculous multi­
plicative properties. Especially in this paper it would be nice to have a physical 
model for divisors. Such a model is provided by ideals. If a = (al,' .. ,am) is 
a fractional divisor of K, we let the fractional ideal generated by al,' .. , am 
be the set of .0 K-linear combinations of the generators al,' .. , am. In other 
words, the fractional ideal generated by aI, ... ,am is the set of all numbers of 
K which are divisible by a. The ideal thus does not depend upon the generators 
of a which are used. There is a 1 - 1 correspondence between the set of divisors 
of K and the set of ideals of K. The notation (aI,"', am) is also used for 
the fractional ideal and German letters are usually used to denote it; only the 
words are changed. When the divisor a is integral, every element of the ideal 
is in .oK. In this case we have an integral ideal of K. This is precisely what 
algebra refers to as an ideal of the ring .oK, namely a subset of .0 K which is 
closed under addition and under multiplication by elements of D K (except that 
number theory doesn't allow the zero ideal). If I:JJ is the ideal corresponding to 
a prime divisor which we also denote by I:JJ, and a and f3 are integers such that 
af3 is in the ideal I:JJ, then the divisor I:JJ divides the product af3 and hence 
divides either a or f3. Therefore either a or f3 is in the ideall:JJ . In other words, 
in the language of algebra, I:JJ is a prime ideal. 

2.4 Prime Divisors 

In preparation for dealing with zeta functions, we must discuss the prime di­
visors of number fields in greater detail. Let K / k be an extension of number 
fields of relative degree n. Suppose that I:JJ is a prime divisor of K. We first show 
that there is a unique prime of k divisible by I:JJ. To see this, let n = NK/k(I:JJ). 
Considered as divisors of K, I:JJ divides n since I:JJ is one of the factors in the 
product defining the relative norm. On the other hand in k, n is an integral 
divisor which factors as a product of prime divisors. Unique factorization in 
K now says that I:JJ must divide one of the primes of k in the factorization of 
n. Let p be one such prime of k divisible by I:JJ. If p' is another such prime of 
k divisible by I:JJ then I:JJ would divide (p,pl) = (1) which is impossible. Thus 
there can't be another such prime of k and p is uniquely determined by I:JJ. As 
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an ideal, p consists exactly of those elements of k divisible by IiJ and so as an 
ideal, p = IiJn k. 

Now we are ready to find the relative norm. Since liJip, it follows that 
NK/k(liJ)iNK/k(P) = pn by definition of the relative norm and the fact that all 
conjugates of p over k are just p. Hence 

for some integer f in the range 1 ~ f ~ n. We call f the residue class degree 
ofliJ relative to K/k, or sometimes just the degree ofliJ relative to K/k. When 
the choice of k is clear, we can also refer to f as the relative residue class degree 
of 1iJ, or even just the relative degree of IiJ . When k = Q, we simply call f the 
degree of 1iJ. 

First degree primes are of particular importance in analytic treatments of 
the subject. Suppose that p is a prime of Q and that a is an integer in K such 
that N(a) is exactly divisible by p (i.e. p divides N(a) but p2 does not). Unique 
factorization in K shows that there is a single first degree prime IiJ of K above 
p which exactly divides a. Hence 

IiJ = (p, a) . 

All first degree primes arise in this manner. For example, N(l + A) = 6 
and so (3, 1 + A) is a first degree prime ideal of norm 3 in Q( A). In case 
N( a) = ±p, then IiJ = (a) is a principal first degree prime. For instance in 
Q(21/3), N(l + 21/3) = 3 and so 1 + 21/3 generates a principal first degree prime 
in Q(21 / 3 ) of norm 3. 

The reason for the terminology, 'residue class degree' becomes apparent 
when we look at congruences. If a and (3 are in .0 K, we say that a is congruent 
to (3 modulo IiJ and write 

a == (3(mod 1iJ) 

when IiJ divides the difference a - (3. The set of all integers of K congruent to 
a(mod 1iJ) is called a congruence class (mod 1iJ). The collection of all residue 
classes (mod 1iJ) forms a finite field of pI elements where it turns out that 
NK/Q(IiJ) = pl. Thus the residue class degree is just the degree of the extension 
of finite fields .0 K /1iJ over lFp . Likewise, the relative residue class degree is just 
the degree of the finite field extension .0 K /1iJ over Ok/po 

The picture we draw is 

K IlJ 

I 
k P 

and we say that IiJ is above p. If we now factor p in K, there will be a finite 
number of primes of K above p, say 1iJ1' ... ,llJr, where IlJ is one of the IiJj and 
we get a factorization, 
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r 

(15) p = TI~? . 
j=l 

We often say that p splits in K into r prime power pieces. If NK/k(~j) = pI;, 
then taking the norm of both sides gives, 

r 

pn = II pI;e; 

j=l 

It follows therefore that 
r 

(16) "LIiej = n. 
j=l 

An extreme case occurs when r = n. In this instance, we say that I' splits 
completely from k to K. Here we must have every ej = Ii = 1. 

All but finitely many I' have every ej = 1. These are the primes of k which 
do not ramify in K. The finitely many I' of k which have a factorization (15) in 
K with at least one ej > 1 ramify in K. Those ~ of K which appear in such a 
factorization (15) with e > 1 are ramified primes of K relative to k and the 
exponent e is called the ramification index of'lJ relative to k. As always, when 
k = Q, we drop the words, 'relative to k'. For example, by (10), 2 ramifies in 
Q(H). 

It is important to be able to determine the finitely many ramifying I' from 
k to K, if for no other reason than to avoid them since they are frequently the 
most difficult to deal with. It turns out that the primes of I' which ramify from 
k to K all divide the relative discriminant DK/k of K/k. This is an integral 
divisor (or if you wish, an ideal) of k which is a generalization of the concept 
of discriminants of polynomials. If K = k( a) where a is an integer and is a 
zero of a monic irreducible polynomial g(x) in odx], then DK/k always divides 
the discriminant of the polynomial g( x) and further, as divisors, the quotient 
is always a square. Often, but not always, there is an a such that DK/k is the 
divisor generated by the discriminant of the corresponding g( x). This happens 
exactly when DK = Okra]. When k = Q, we just refer to the discriminant 
D K of K and tradition thinks of the discriminant as a number with the same 
sign as the polynomial discriminant. If I' in k has the factorization (15) in K, 
then each ~j turns out to contribute at least pe;-l to DK/k so that overall, 

there is always at least a factor of p2)e;-1) in D K / k . If I' does not divide the 
ramification index ej, then the contribution pe;-l to DK/k is exact. However, 
if plej, then there is a contribution of at least pe;; however, the contribution 
can be greater. 

For example, for k = Q( H), the ring of integers is Z[A and Dk is 
the discriminant of the polynomial x 2 + 5. For the reader's information, the 
discriminant of a trinomial xn + bx + c turns out to be 
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Thus, Dk = -20, and the only ramifying primes are 2 and 5. Indeed, we have 
already seen that 

(2) = (2, 1 + V-5)2 and (5) = (V-5? . 

Note that (2) ramifies in k with ramification index 2 which is divisible by (2); 
hence there is a factor of at least 22 in Dk. Likewise, (5) ramifies in k with 
ramification index 2; hence there is a factor of exactly 51 in Dk. 

For K = Q( 21/3), the ring of integers is Z [21 /3] and D k is the discriminant 
of the polynomial x 3 - 2. In other words, Dk = -108. Therefore the only 
ramifying primes are 2 and 3. In fact, it is clear that 

and it is true, although not quite so clear, that 

(The quotient of the right side by the left is integral, as is easily seen by simply 
cubing 1 + 21 / 3 getting 3 + 3.21 / 3 + 3.22 / 3 ; the integral ratio has norm 1 and so 
is (1). Hence as divisors both sides are equal.) Again, we note that (2) ramifies 
in k with ramification index 3 which is not divisible by (2) and so there is a 
factor of exactly 22 in Dk. Likewise (3) ramifies in k with ramification index 3 
which is divisible by (3) and so there is a factor of at least 33 in D k . Therefore 
Dk has a factor of at least 108 and since the polynomial discriminant is already 
this low, dk = -108 as claimed. This verifies that the ring of integers of k really 
is Z[21/ 3]. 

If we do any sort of calculations with number fields, we have to be able to 
tell how primes split. To set up the general statement, let us take the example 
k = Q( a) where a = 21 / 3 . As we have noted, the ring of integers of k is 
Ok = Z[a]. Let g(x) = x3 - 2, one of whose zeros is a. We will find how the 
prime 5 splits in k. Suppose that p is one of the prime factors of 5 in k and 
that p is of degree f. Then the finite field Ok/P is just 1F5 (a) where a is the 
congruence class of a(mod p). Therefore a is a zero of an irreducible factor of 
g(x) = x3 - 2 in lF5 [x]. We check easily enough that g(x) has exactly one zero 
in 1F5 and hence factors completely into irreducible pieces over 1F5 [x] as 

(17) 

Thus a corresponds to one of the two irreducible polynomials on the right side 
and f is either 1 or 2. If a corresponds to the first factor, then p is of degree 1 
while if a corresponds to the second factor, then p is of degree 2. We will now 
show that each factor on the right actually corresponds to a prime factor of 5 
in k. 

We may interpret the factorization (17) as saying that the two polynomials 
x3 - 2 and (x - 3)( x2 + 3x + 9) differ by 5 times a polynomial in Z [x]. Therefore 
when we set x = a, we see that 
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51( 0: - 3)( 0:2 + 30: + 9). 

However, 5 does not divide either factor because we know the shape of all 
integers of k and neither ((0: - 3)/5) nor ((0:2 + 30: + 9)/5) are in this shape. 
(The numbers of k are uniquely expressible in the form Q + Qo: + Q0:2 and the 
integers are those numbers with coefficients in Z). In other words, there is a 
piece of 5 in 0: - 3 and another piece of 5 in 0:2 + 30: + 9. This leads us to the 
two divisors 

PI = (5, 0: - 3) and 

of 5. Slightly more work reveals that PI and P2 are prime divisors whose product 
is 5. Thus we have found that 5 splits in k as (5) = PIP2 with the prime factors 
of 5 corresponding to the irreducible factors of x3 - 2 in Fs [xl. 

This is perfectly general. Suppose that K = k( 0:) where 0: is an integer 
which is a zero of a monic irreducible polynomial g(x) of degree n. Suppose 
that P is a prime of k divisible by the prime ~ of K of relative degree f. 

K D K /~ = finite field of N(~) = N( p)f elements 

I 
k Ok/P = finite field of N(p) elements. 

Again, if fJ is in D K, we will denote the residue class of ,B(mod~) as fl. Suppose 
for the sake of discussion that DK/~ = ok/p(a). Then a satisfies a reduced 
equation, g( a) = 0 and so 9 has an irreducible factor of degree f in Ok /'p. As 
in our example, the factors correspond to the primes ~ dividing 'po 

Theorem. Suppose g( x) factors into irreducible pieces (mod p) as 

If the power of p in the polynomial discriminant of g( x) zs the same as the 
power of p in DK/k' then p factors in K as 

p = ~~1 ... ~~r 

where ~j is of relative degree deg(gj) and 

Three instances of this theorem should be pointed out. If p doesn't divide 
the discriminant of g(x) at all, then p doesn't divide DK/k either; we are dealing 
with a prime which doesn't ramify from k to K and the theorem applies with 
all ej = 1. A variant of this instance is when p exactly divides the discriminant 
of g. Since the polynomial discriminant differs from D K / k by a square factor, 
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it must be that p exactly divides DK/k as well. In this case, it must be that 
exactly one of the ej is 2 and all the remaining ej = 1. (Also, P will never be 
a prime above 2 in this instance, because then there would be a factor of at 
least p2 in D K / k .) An example of this is given by the irreducible polynomial 
g( x) = x3 - x-I in Z [x] whose discriminant is -23. If K is the cubic extension 
of Q generated by a zero of g(x), then DK must be -23 as well. We have the 
factorization 

x3 - x-I == (x - 3)(x - 10)2(mod23) , 

and so 23 splits in K as ~l~~ as promised. Note that 23 ramifies in K, but 
that only one of the two primes over 23 is.ramified. 

A second instance of the theorem is when g( x) is an Eisenstein polynomial 
with respect to p. This is a polynomial 

g(x) = xn + an_lxn- 1 + ... + ao 

in Ok[X] such that plaj for 0 ~ j ~ n-1 and p exactly divides ao. The Eisenstein 
irreducibility criterion says that such a polynomial is irreducible in k[x] as an 
added bonus. It can also be shown that the power of p in the discriminant of 
g(x) matches that in DK/k and so the theorem gives p = ~n, where ~ = (p, a). 

The third instance of the theorem is when we are lucky enough to know 
that OK = okra]. In this case, DK/k is (the divisor generated by) the polyno­
mial discriminant. Here, the theorem applies for all primes. For example, 

and 

gives the splitting of the ramifying primes 2 and 5 in Q( A) above. Note that 
x2 + 5 is an Eisenstein polynomial with respect to 5 and (x + 1)2 + 5 = x2 + 2x + 6 
is an Eisenstein polynomial with respect to 2. Likewise, 

x 3 - 2 == (x?(mod2) and 

gives the splitting of the ramifying primes 2 and 3 in Q(21/ 3) above. Here 
again, x3 - 2 is an Eisenstein polynomial with respect to 2 and (x - 1)3 - 2 = 
x3 - 3x2 + 3x - 3 is an Eisenstein polynomial with respect to 3. We repeat that 
in these two examples, the polynomial discriminants are the field discriminants. 

As a simple illustration that care is needed when the hypotheses of the 
theorem aren't satisfied, look at the factorization 

x2 + 3 == (x + 1?(mod2) 

which happens in spite of the fact that (2) is a second degree prime of Q( A). 
The catch is that the discriminant of the polynomial x2 + 3 is -12 while the 
discriminant of Q( A) is just -3. So this gives an example where the powers 
of the prime in the two discriminants aren't the same and the splitting of 
the prime doesn't match the factorization of the polynomial. Note also that 
(x + 1)2 + 3 = x2 + 2x + 4 is not an Eisenstein polynomial with respect to 2 
since 22 divides the constant term. 
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Beginning here and continuing into the next Section on zeta functions we 
will follow two number fields as examples. 

Example One: k = IQ( A). The discriminant here is -20; 2 and 5 are the 
ramifying primes. For the remaining primes of IQ, we have two possibilities. 

(i) (p) = 1'1\)2 with it = 12 = 1 from (16). For these primes p, the poly­
nomial x 2 + 5 factors mod p) into two linear factors. This is expressed in terms 
of the classical Legendre symbol by 

( ~5) = (-;0) = 1 
and is in essence the definition of the symbol. Since -5 and -20 are the same 
except for a factor of 4 which is a square, the two Legendre symbols are equal. 
We will see at the end of Section 3 that the -20 is often the better choice. 
Examples of such primes are p = 3,7,29,41. 

(ii) (p) = I' with f = 2. For these primes the polynomial x 2 + 5 does not 
factor (modp). In terms of the Legendre symbol, we write 

(~5) = (-;0) = -1. 

Examples of such primes are p = 11,13,17,19. 

Example Two: k = IQ( a) where a = 21/ 3 . The discriminant is -108. Only 2 and 
3 ramify in k. From (16), the unramifying primes now come in three possible 
varieties. 

(i) (p) = 1'11'21'3, it = 12 = h = 1. The prime p = 31 is the first of this 
variety. We have 

x3 - 2 == (x - 4)(x - 7)(x - 20)(mod31) , 

and so (31) = 1'11'21'3 where 

PI = (31, 0'- 4) , P2 = (31, 0'- 7) , 1'3 = (31, 0'- 20) . 

(ii) (p) = 1'11'2, !I = 1, fz = 2. The prime p = 5 is the smallest example. 
We factored (5) in k in our discussion of splitting above. 

(iii) (p) = p, f = 3. The first instance here is p = 7. x 3 - 2 is irreducible 
(mod 7) and we get 

p = (7, 0'3 - 2) = (7,0) = (7) . 
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2.5 Frobenius Automorphisms 

Let K/Q be a normal algebraic extension with Galois group G = G(K/Q) and 
suppose P is a prime of K lying over the prime p of Q with residue class degree 

f· 

r 
p 

Then all the conjugate divisors ~g of ~ are divisors of K and their norms all 
the same as the norm of P, 

N(~g) = II (\13gi = II (\13i = N(\13) = pI . 
g'EG g'EG 

Thus all the conjugate prime divisors of \13 have the same residue class de­
gree. Also, since pI is the product of all the \13g, the unique factorization 
theorem shows that the \13g account for all the prime divisors of p. Let 
\13 = \131, ~2' ..• ,\13r denote the distinct divisors of p among the ~g. Then 
we have a factorization of p in K, 

r 

(18) (p) = II \13;; 
j=l 

If we apply any g in G to this, we get 

r 

(19) (p) = II (\13~)e; 
j=l 

The unique factorization theorem says that the factorizations of pin (18) and 
(19) must be the same. By varying g, we see that all the ej must be equal. 
Thus in a normal extension, we have a factorization 

r 

(p) = II \13j , 
j=l 

where all the exponents are the same, all the ~j have the same residue class 
degree f and (16) simplifies to 

(20) n = efr. 

As an illustration of this, once Case ii) of Example Two occurs, as it does for 
p = 5, we see that the corresponding field is not normal over Q since !I =I- 12. 
In fact, the condition that for any given p all the fj related to primes above p 
are the same is a necessary and sufficient condition that a field be normal over 
Q. We will sketch an analytic proof in Section 3. 
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There is now an interesting series of subgroups of G related to IiJ of which 
we will say a little. The first such subgroup we introduce is the decomposition 
group of 1iJ, 

The decomposition group tells us how p splits. If we write G in terms of cosets 
of DG, 

G = UDGgj, 

then the distinct conjugate divisors to IiJ are just the divisors IiJj = IiJgj. There­
fore the index of the decomposition group DG in G is r, the number of primes 
of K into which p splits (decomposes). It now follows that the order of DG is 
ej, For unramified primes, this is just f. 

This reminds us of the finite field examples of Section 1 and we will now 
show that indeed DG acts on the finite field .ok/1iJ = lFq of q = pI elements. 
Indeed it is easy to see that the elements of DG give automorphisms of lFq /lFp. 
This is because if g is in DG and 

a == (3 (mod 1iJ) , 

then 

and since IiJg = 1iJ, 
a g == (3g (mod 1iJ) . 

In other words, elements of DG take congruence classes (mod 1iJ) to congruence 
classes (mod 1iJ). Therefore we get a homomorphism from DG into the Galois 
group G(lFq /lFp). It turns out that this map is onto. In particular there is an 
element of DG which maps onto the Frobenius automorphism in G(lFq /lFp). 
Naturally we call this element of DG the Frobenius automorphism also. In 
other words, there is an automorphism 

of G called the Frobenius automorphism such that 

(21) 

for all integers a in K. For unramified primes, DG is the cyclic group of order 
j generated by the Frobenius automorphism and is isomorphic to G(lFq /lFp). 
In this situation, the Frobenius automorphism 

is unique and is completely determined by the congruence (21). 
In general, since the map from DG to G(lFq /lFp) is onto, we have an iso­

morphism of G(lFq /lFp) with DG/IG where IG = IG(IiJ) is the set of elements 
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of DG which act as the identity in G(lFq /lFp). This is the set of 9 in DG such 
that 

a g == a (mod~) for all a in D K . 

The group IG is called the inertial group of~. We have seen that the groups 
DG/IG is G(lFq/lFp) and hence is the cyclic group of order f where f is the 
residue class degree of ~. Since DG has order ef, we see that IG has order 
e where e is the ramification index of ~. For the unramified primes ~ of K, 
IG consists just of the identity element and is harmless. However when dealing 
with ramified primes, there is a whole coset of Frobenius automorphisms in 
DG. We will not explore this unpleasant situation further in this exposition 
nor will we go further into the reasons for the names of DG and IG. The reader 
is referred to [2] for more information. 

We will need to know what the Frobenius automorphismsare for conjugate 
primes to ~. They will turn out to be conjugate elements in G. If 9 is in G, 
and we apply 9 to (21), we get, 

aug == (ag)p(mod~g) 

for all integers a in K. If we replace a by a g - 1 
, then for all a in ~ K, we have 

Therefore, 

u ( ~~) = g-1 U ( K ~ij) 9 , 

as claimed. The decomposition groups themselves now behave in the same way 

(22) 

Now suppose that k is a subfield of K with H = G(K/k). Further suppose 
that ~ is an unramified prime of K and let p be the prime of k divisible by ~. 
We let f(~) and f(p) be the residue class degrees of ~ and p respectively. We 
have the picture, 

(23) G 

K 

k 

I ij 

~ 

I 
p 

I 
p 

We may now introduce the decomposition group of ~ relative to k, 

Clearly, 
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DR =DanH. 

But DR is isomorphic to the group G(IFg/lFql) where q' = pl(P) = Nk/lQJ(p), 
and this is the cyclic group of order f(l,p/p) = f(l,p)/ f(p) generated by the 
Frobenius automorphism 

( K/k) a(l,p/p) = a T 
of H and is uniquely determined by the congruence 

for all Q in D K . 

But we also have, 

Q<T!(P) == QP!(P) == QN(p) (mod l,p) for all Q in D K . 

Hence we see that a(l,p/p) = al('+I) , 

Let us look at all this from the point of view of our two example fields. The 
field Q( A) is normal over Q. The Frobenius automorphism is the identity 
of the two element Galois group when we are dealing with a prime p which 
splits completely into two pieces (f = 1) and is complex conjugation when 
we are dealing with a prime p which remains prime in Q( A) (f = 2). The 
field k = Q(21 / 3 ) is much more interesting, since it is not normal over Q. Let 
K = Q(21 / 3 ,e21ri / 3 ) which is normal over Q of degree 6. We write, 

An automorphism of K is determined by its action on Q, f3 and , and thus 
G(K/Q) is the symmetric group on three letters: 

The splitting of primes from Q to K is governed by the behavior of Frobe­
nius automorphisms. Likewise the splitting of primes from k to K is governed 
by Frobenius automorphisms. The combined information should allow us to 
tell how primes split from Q to k. Let H = G(K/k) = {I, (f3,)} be the sub­
group of G fixing k. We will write T = (f3,); T is just complex conjugation. 
Suppose that l,p is an unramified prime of K which lies above the prime p of 
k which in turn lies above the prime p of Q as indicated in the diagram (23). 
Let a(l,p) be the Frobenius automorphism of l,p relative to Q and of a(l,p/p) 
be the Frobenius automorphism of l,p relative to k and suppose that a(l,p) is 
of order f(l,p) and a(l,p/p) is of order f(l,p/p). Then a(l,p/p) = a(l,p)/(P) where 
f(l,p) = f(l,p/p)f(p) as indicated above. We now look at the three conjugacy 
classes of G where the Frobenius automorphism a(l,p) may lie. 
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i) u('.J3') = 1. When the Frobenius automorphism is of order 1, there must 
be 6 distinct primes of K above p by (20) and so all 6 of the '.J3'g are distinct. 
In this case, u('.J3') is in H and so u('.J3'/p) = u('.J3') and there are two distinct 
primes of K above 1', '.J3' and '.J3'T. Further f('.J3'/p) = f('.J3') = 1 and I' is a first 
degree prime of k. When we put this all together, we see that the six first 
degree primes of K above p combine in pairs to give three first degree primes 
of k above p. The primes can thus be numbered so that the picture is, 

K 

k 

This is exactly the situation in Case i) of Example Two. Note that p not only 
splits completely in k, but also in K. We will see below that this is a general 
fact. 

ii) u('.J3') is in the conjugacy class {( 0,8), (0,), (,8,)} of elements of order 
two, one of which is T. By choosing '.J3' correctly among its conjugate primes, 
we may assume that u('.J3') = T. Here f = 2 and there are three second degree 
primes '.J3' = '.J3'1, '.J3'2, '.J3'3 above p. These primes behave differently with respect 
to k. We look at '.J3'first. Sinceu('.J3') = T isinH, we see that u('.J3'/p) = u('.J3') = T 

also. Therefore f('.J3'/p) = 2 and f(p) = 1. Thus the prime I' = PI of k is a first 
degree prime of k which doesn't split in Kj in K we have '.J3' = p. But the 
situation is different for the other two primes '.J3'2 and '.J3'3 where the Frobenius 
automorphisms work out to be the other two elements, (0,8) and (0,), of the 
conjugacy class. For these primes, u('.J3') is not in H, but u('.J3')2 = 1 is in H. 
Thus f('.J3'/p) = 1 and f(p) = 2. This says that there are two primes of K (i.e. 
both '.J3'2 and '.J3'3 since there are no other choices) of relative degree one over a 
single prime 1'2 of k which must be of degree two. 

K '.J3'1 '.J3'2 '.J3'3 

I 
"'" 

/ 
k PI 1'2 

I 
"'" 

/ 
Q p 

This corresponds precisely to the situation in Case ii) of Example Two. This 
is the most interesting case of all. 

iii) u('.J3') is in the conjugacy class {(o,8,),(o,,8)} of elements of order 
three. Thus f = 3 and there are two third degree primes of K above p. We 
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will denote them by \l3'1 and \l3'2. For one of these primes a(\l3') = (0/3,) and 
for the other a(\l3') = (0,/3). In each instance, a(\l3') and a(\l3')2 are not in H 
while a(\l3')3 = 1 is in H. Thus in each instance a(\l3' j p) = 1. Thus there are 
two primes of K (which must be \l3'1 and \l3'2) of relative degrees one above a 
single prime IJ of k which must be of degree three: 

K 

k 

I 
Q p 

This gives us Case iii) of Example Two. We complete our crash course on 
Frobenius automorphisms with one last example. This example will be used 
in the next Section to show that the zeta function of a field determines the 
minimal normal extension of the field over Q. 

Theorem. Suppose that p is a prime of Q which splits completely in each of 
two fields kl and k2. Then p splits completely in the composite field kl k2. As a 
consequence, if p splits completely in a field k, then p also splits completely in 
the minimal normal extension of Q containing k. 

Proof. Let k be a field in which p is unramified. This is the case by definition 
for a prime which splits completely. Suppose that K is a normal extension of 
Q containing k and let G = G(KjQ), H = G(Kjk). We will develop a group 
theoretical criterion for p to split completely in k. We will just do this for all p 
which don't ramify in K. (Since pis unramified in k by hypothesis, the criterion 
will actually hold for the finitely many remaining p once the ramification indices 
are put in.) Let \l3' be a prime of K above p and let Da = Da(\l3') be the 
corresponding decomposition group of order f where f is the degree of \l3'. 
Likewise, let IJ be a prime of k divisible by \l3'. Then IJ will be of first degree if 
and only if the decomposition group D H is also of order f. Thus IJ will be of 
first degree if and only if DH = Da. But this in turn happens if and only if 
Da is contained in H. Therefore p splits completely in k if and only if every 
Da(\l3'9) is in H. Let J be the subgroup of G generated by all the Da(\l3'9) as g 
runs through G. Our criterion is then that p splits completely in k if and only 
if J is contained in H. For the record, since Da(\l3'9) = g-1 Dag, we see that 
J is a normal subgroup of G. 

Now suppose that p splits completely in kl and k2 and that HI = G(Kjk1 ), 

H2 = G(Kjk2) are the corresponding Galois groups. Then J is contained in 
HI and in H2 and so J is contained in HI n H2. Therefore p splits completely 
in the corresponding fixed field, klk2 . If P splits completely in k, then p splits 
completely in all the conjugate fields k(i) and hence p splits completely in the 
composite fields of all the k(i) which is just the minimal normal extension of Q 
containing k, as desired. D 
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3. Zeta Functions and L-Functions 

3.1 Zeta Functions 

For a number field k, the zeta function of k is 

a 

where the sum is over all integral divisors of k. Often, (k (s) is referred to as 
the Dedekind zeta function. This sum converges for complex s with Re( s) > l. 
(Analytic number theory has evolved the strange tradition of writing s = u+it, 
but we will not do so in this paper because 17 is rather heavily used already.) 
When k =Q, 

00 

(Q(S) = ((s) = L n-s 

n=l 

is just the Riemann zeta function. Euler had already discovered that (( s) has 
an Euler product, 

p p 

For example, the product of the p = 2, 3 and 5 terms on the right gives the 
sum of all n -s such that all of the prime factors of n lie among 2, 3 and 5. As 
an illustration, the 1500- S terms arises from the products of the 2-2s , 3-S and 
5-3s terms. In the limit, the product over all p will pick up every n-S exactly 
once thanks to the unique factorization theorem. 

In like manner, the unique factorization theorem for divisors now gives us 
an Euler product for (k( s): 

We will say that the Euler p-factor of (k(S) is 

fi(l - N(p)-S)-l . 
pip 

The series defining (k(S) converges for Re(s) > 1, but the function (k(S) has 
an analytic continuation to the entire complex s-plane except for a first order 
pole at s = 1. The residue at s = 1 involves almost every field invariant we 
have introduced, 

2rl+r27rr2hR 
resS=l(k(S) = JiDT' w IDI 

where rl is the number of real conjugate fields of k, 2r2 is the number of 
complex conjugate fields of k, n is the degree of k, h is the class-number of k, 
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R is the regulator of k, W is the number of roots of unity in k and D is the 
discriminant of k. 

There is also a functional equation relating values at s to values at 1 - s. 
Let 

Then the functional equation for the Dedekind zeta function is, 

For instance, the functional equation relates the pole at s = 1 to an r-th order 
zero at s = 0, where r = rl + r2 - 1 is the rank of the unit group of k and we 
find, 

(24) 

For k = Q, this gives the value of the Riemann zeta function at s = 0, 

1 
((0) = -2 . 

The reader is referred to either [1] or [2] for more information on the analytic 
continuation and functional equation. 

When we take the logarithm of the Euler product for (k(S), we get 

(25) log (k( s) = - "L log(l - N(p) -8) = "L f ~ N(p )-ms . 
p p m=l 

This series also converges for Re(s) > 1, but we now have a logarithmic singu­
larityat s = 1. In fact, because (k(S) has a first order pole at s = 1, we see 
that 

log (k(S) -log (_1_) 
s-l 

is analytic at s = 1. We will say that log C~l) is the singularity of log(k( s) 

at s = 1. We now want to look closely at which terms on the right of (25) 
actually contribute to the singularity at s = 1. Of course, any finite number of 
terms don't contribute at all, but there are infinite classes of terms that don't 
contribute either. Indeed, since there are at most [k : Q] primes p in k above 
each rational prime p, and since Ep-2s converges for Re(s) > 1/2, we see that 
only the m = 1 terms in (25) matter. But further, even when m = 1, primes 
of second and higher degree don't contribute to the singularity for the same 
reason. Thus we have proved the 
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Theorem. The function 

2:' N(p)-S -log C ~ 1) , 
P 

where the sum is over all first degree primes of k, is analytic at s = 1. 

In other words, only the first degree primes of k contribute to the singu­
larity at s = 1 in (25). 

Definition. Let S be a set of primes of k such that 

lim L:PES N(p )-S = 15 . 
__ I + log (_~1) 

We will say that the primes of S have analytic density 15 among the primes of 
k. 

Except when 15 = 0, this may be phrased as the asymptotic statement, 

ass-+1+. 

The notation s -+ 1+ means that s approaches 1 through real values from 
above. Clearly 0 ~ 15 ~ 1. Again, only the first degree primes of S actually 
contribute to 15. The analytic density is the easiest of several types of densities 
that we could consider. The harder types actually count the elements of S 
versus the number of primes overall in some manner. When a harder way gives 
a density, it is the same as the analytic density. 

Several sets of primes of interest to us can be easily shown to have analytic 
densities. The next theorem gives one instance. 

Theorem. Suppose that K is a normal extension of Q of degree nK. The set of 
primes of Q which split completely in K has analytic density linK. 

Proof. We have seen that with the exception of finitely many ramified primes, 
the first degree primes of K come in batches of nK conjugate primes over 
rational primes of Q which split completely in K. Let S be the set of primes 
pin Q which split completely in K. Since the nK primes ~ of K above pall 
have p as their norm, we see from the last theorem that 

2: p-s '" ~ log (_1_) 
nK s-l 

pES 

ass-+1+. 

In other words, the primes of Q which split completely in K have analytic 
density linK. 0 

Let us look at this theorem from the point of view of our two example 
fields. In Example One, k = Q( A) is normal over Q of degree two. Therefore 
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the set of primes of Q which split completely in k has analytic density 1/2. 
Except for 2 and 5, the remaining primes of Q generate second degree primes 
in k. This set of primes of Q also has analytic density 1/2. 

Example Two is much more interesting here because k = Q(21 / 3 ) is not 
normal over Q. We recall that there are three ways that a prime other than 2 or 
3 can split in k. Let Bi denote the set of primes p of Q that split completely into 
three first degree primes of k, Bi; denote the set of those primes p of Q which 
split into two pieces in k, one first degree and one second degree and let Bi;; 
denote the remaining primes of Q which are those that simply generate third 
degree primes of k. Let K = k (e27ri/ 3 ) which is the minimal normal extension 
of Q containing k. Since [K : QJ = 6, 1/6 of the primes of Q split completely 
in K. But the primes of Q which split completely in K are exactly the primes 
of Bi. In other words, 1/6 of the primes of Q split completely in k. 

This is not enough to account for all the first degree primes of k. Each 
prime of Q that splits completely in k splits into 3 first degree prime pieces in 
k. Therefore, we have only accounted for 3/6 = 1/2 of the first degree primes 
of k. The primes of Bii must account for the rest. Indeed, since each prime p of 
Bi gives rise to three first degree primes of k above p and each prime p of Bi; 
gives rise to one first degree prime of k above p, we have 

where Ell means that we sum over the first degree unramified primes of k. We 
now see that since the primes of Bi have density 1/6, the primes of Bii must have 
density 1/2. In particular, there are primes of Q which don't split completely 
in k but which nevertheless have first degree primes of k above them. 

We have accounted for i +! = ~ ofthe primes of Q in Bi and Bi;. Therefore 
Biii has the remaining t ofthe primes of Q. Thus all three ofthe sets B j, Bij, and 
Bi;i have analytic densities. But more than that, the densities are related to the 
Galois group G(K/Q) . For a fixed prime p of Q, the Frobenius automorphisms 
O"('.JJ) of primes '.JJ of K which divide p run through a conjugacy class of G(K/Q). 
We saw in Subsection 2.5 that the primes of Bi all have O"('.JJ) = 1, which is 1/6 
of the elements of G. The primes of Bij all have O"('.JJ) in a conjugacy class of 
three elements; this conjugacy class consists of 1/2 of the elements of G(K/Q). 
The primes of Bi;; all have O"('.JJ) in a conjugacy class of two elements; this 
conjugacy class consists of 1/3 of the elements of G(K/Q). In other words, the 
primes of each of the three sets B;, Bii and Bi;; have a density which is the 
density of the corresponding conjugacy classes of Frobenius automorphisms in 
G(K/Q). This is a general theorem which goes by the name of the Chebotarev 
density theorem (a theorem with many spellings). We will show how to prove 
it in Subsection 3.3. For the moment, we just note that from the point of view 
of Frobenius automorphism, we found this same result in Example One. There 
are two conjugacy classes in G(k/Q) of one element each and each class arises 
as a Frobenius automorphism half the time. 
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An analog of Sii will arise in any non-normal extension k of IQ. There will 
always be infinitely many primes of IQ which don't split completely in k, but yet 
have first degree primes in k above them. The reason is the same; the primes 
of IQ which split completely in k have too Iowa density to account for all the 
first degree primes of k. When we factor anyone of these primes in k and see 
different residue class degrees for the prime factors, we will be able to conclude 
that k is not normal over IQ. 

The rest of this Section is devoted to proving that the zeta function of a 
field determines the minimal normal extension over IQ containing the field. The 
next result provides the key fact. 

Theorem. Let K be a normal extension of IQ and let M be another field such that 
with at most finitely many exceptions, any prime of IQ which splits completely 
in K also splits completely in M. Then M is contained in K. 

Proof. The proof is analytic. Let S be the set of primes of IQ which split com­
pletely in K, except that the potential finite number of such primes that don't 
split completely in M are to be excluded. Then S has analytic density linK 

where nK = [K : IQ). We saw in Subsection 2.5 that the primes of S split 
completely in KM. We write nKM = [KM : IQ) also. Since each prime of IQ 
in S splits into nKM first degree primes of KM, the analytic density of first 
degree primes of KM must be at least nKMlnK. But the maximum possible 
density is 1 and so, 

nKMlnK S 1 

Hence nkM S nK. Since K C KM, we now get nKM = nK. Therefore KM = 
K and so M is a subfield of K. 0 

Theorem. The zeta function of a field k determines the minimal normal exten­
sion of IQ containing k. 

Proof. The Euler product shows us which primes of IQ split completely in k 
and hence in the minimal normal extension K of IQ containing k. The analytic 
density of this set gives us the degree of K. By the last theorem, if M is a 
normal extension of IQ of the same degree as K and having the same primes of 
IQ splitting completely in M, then M = K. Thus K is uniquely determined by 
ekeS). 0 

Of course when we are just given ek( s) as an analytic function, actually 
finding the field guaranteed by the last theorem is another matter entirely. In 
principle it can be done, but not yet in any reasonable manner. There are a 
whole series of conjectures regarding special values of zeta and L-functions that 
can be interpreted as being related to this problem. We might also ask whether 
ekeS) determines k. The zeta function tells us the degree, the discriminant, the 
class-number times the regulator of the field; it determines the minimal normal 
extension of IQ containing the field and of course, it tells us the splitting of every 
prime in the field. Naturally conjugate fields have the same zeta function, but 
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it turns out that there are non-conjugate fields with the same zeta function! 
We will see how this can happen in Subsection 3.3. 

3.2 Representations and Characters of Finite Groups 

The zeta function of a field is like the atom of physics. In this and the next 
Section, we will show how to split it via group theory. We will do this by 
examining the individual Euler p-factors in the Euler product for a zeta function 
for primes which don't ramify. We begin by looking at the Euler p-factor in our 
two examples fields, Q( R) and Q(21 / 3 ). 

Example One, k = Q( R). There are two manners of factorization for 
the unramified primes p. Recall that one of the ways p can factor is that p splits 
into two pieces with 

(i) It = 12 = 1. The Euler p-factor is then (1 - p-S)-l(l - p-s)-l 
(1 - p-s)-2. We can write this in matrix form as 

(Whether the determinant or the inverse is taken first, the result is the same, 
but the equality is easiest to see if the determinant is first.) The other way that 
p can factor is that p remains prime with 

(ii) f = 2. The Euler p-factor is then (1- p-2s)-1 and in matrix form, this 
IS 

(1- p-2s)-1 = det [12 _ (~ _~) p-·r
1 

. 

Although this is the obvious choice of matrix, any similar matrix will do and 

we will find it more expedient to use the similar matrix (~ ~) : 

(1-p-2S)-I=det[I2-(~ ~)p-srl. 

The two matrices (~ ~) and (~ ~) form a group of order two, just as 

G(k/Q) gives a group of order two. To explore this further, we turn to our 
second example. 

Example Two, k = Q( 21/ 3 ). Here there are three ways an unramified prime 
can factor. The first way is that p splits completely into three prime divisors 
with 

(i) It = 12 = fa = 1. The Euler p-factor is then 

(I-p-T' = det [I, -0 ~ n p-f 
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Another way p can factor is into two pieces, one of first degree and one of 
second degree. Here we have 

(ii) /I = 1, h = 2. The Euler p-factor is (1 - p-S)-l(l - p-2s)-1. We will 
put this in matrix form as 

The eigenvalues of the three similar matrices here are 1, 1, -1 . Finally, p can 
simply remain prime in k with 

(iii) f = 3. The Euler p-factor is (1 - p-3s)-1. We write this in matrix 
form as 

(1 - p-")-' ~ de+ -0 ~ n p-f 
~de+-0 ~ Dp-f 

the eigenvalues of the two similar matrices here are the three cube roots of 
unity. 

Now, let us recall the Galois group related to Example 2. We write again, 

The field K = Q(a,e21ri / 3 ) = Q(a,,8,,) is normal over Q and we recall that 
G(K/Q) is the symmetric group on three letters: 

We can represent this group by matrices in various ways. The appropriate way 
here is as permutation matrices on three letters: if g is in G(K/Q), then we 
may write 

where M(g) is a permutation matrix of zeros and ones. In this way, the six 
elements of our group correspond to six 3 x 3 matrices: 
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1 (Ci{3, ) (Ci, (3) 
I I I 

(! 0 

D G 
1 n G 

0 n 1 0 0 
0 0 1 

( Ci(3) ( Ci,) (3,) 
I I I 

(26) (0 1 0) (0 0 1) (1 0 0) 10001 0 001 
001 100 010 

The map 9 -+ M(g) is a homomorphism of G(K/Q) to 3 x 3 matrices: for 9 
and h in G(K/Q), 

M(gh) (~) ~ m gh ~ M(g) (D h M(g)M(h) (~) 
and so M(gh) = M(g)M(h). The result is a three dimensional representation 
of the group G(K/Q). Representations that arise in this manner are called 
permutation representations. 

These six matrices are precisely the six matrices appearing in our expres­
sions for the Euler p-factor in Example Two. In each case for the Euler p-factor, 
we can choose the matrix up to conjugacy. There are three conjugacy classes in 
this group. The conjugacy class of the identity alone (three one cycles) corre­
sponds to an Euler p-factor with three first degree prime factors. The conjugacy 
class of elements of order two (one one cycle and one two cycle) corresponds 
to two factors, one first degree and one second degree. The conjugacy class of 
elements of elements of order three (one three cycle) corresponds to a single 
third degree prime. Further, we saw in Subsection 2.5 that these conjugacy 
classes are precisely the conjugacy classes of Frobenius automorphisms arising 
from primes which factor in the indicated manner. 

It turns out that we can define an interesting function using any repre­
sentation of G(K/Q). In order to prepare for this, it will be useful to recall 
the basic facts about representations of finite groups. Let G be a finite group. 
Suppose that p is a finite dimensional representation of G. As we have just 
indicated, this means that p provides a homomorphism from G into the non­
singular n x n matrices, where n is the dimension of the representation. We 
usually call n the degree of the representation. In particular, pCl) = In, the 
n x n identity matrix. The character of a representation p is given by 

x(g) = tr(p(g)) . 

We say that the degree of the character is n also and write deg(x) = n. Note 
that XCI) = tr(In) = deg(x). If h is another element of G, then 
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so that p(h-lgh) and p(g) are similar matrices. Thus their traces are the same, 

Hence a character is constant on conjugacy classes. A function on G which is 
constant on conjugacy classes is a class function. Characters are class functions; 
if C is a conjugacy class, we will sometimes write X( C) for the common value 
of X on the group elements in C. 

Suppose that there is a fixed matrix A which relates two n-dimensional 
representations PI and P2 of G in the following manner: 

PI(g) = A-Ip2(g)A for all gin G. 

We say that PI and P2 are equivalent representations of G. Since similar ma­
trices have the same trace, equivalent representations have the same character. 
Although far from obvious, the converse is also true. If two representations have 
the same character, then they are equivalent. If PI and P2 are representations 
of G with characters Xl and X2, then 

p(g) = (PIO(9) 0) 
P2(g) 

also gives a representation of G with character Xl + X2. We say that P is 
a reducible representation. We further say that any representation which is 
equivalent to a reducible representation is reducible. Any representation which 
is not reducible is irreducible. One irreducible representation is the trivial rep­
resentation given by p(g) = 1 for all 9 in G. The corresponding character, to 
be denoted here from now on as Xl, is identically one on G and is called the 
trivial character. 

Suppose that G has r conjugacy classes. There turn out to be exactly r 
inequivalent irreducible representations. This allows us to form the character 
table of G. This is a table of the values of the r irreducible characters on the r 
conjugacy classes. It is customary to list the trivial character first in the list of 
characters and the identity conjugacy class first in the list of conjugacy classes. 
For example, the character table for S3, the symmetric group on three letters 
from Example Two, is 

X2 

1 (a(3,) , (cq(3) (a(3) , (a,), ((3,) 

1 

1 

2 

1 

1 

-1 

1 

-1 

o 

The entries in the first column give the degrees of the various characters. For 
S3, the irreducible characters are of degrees 1,1 and 2. The charcter X~ is a 
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character ofthe order two quotient group S3/A3 where A3 = {I, (0:,8,), (o:,,8)} 
is the alternating group on three letters. The character X2 is a second degree 
character corresponding to the two dimensional representation arising from the 
six linear transformations of a plane which carry an equilateral triangle centered 
at the origin onto itself. 

The rows and columns of a character table satisfy orthogonality relations. 
For two irreducible characters X and X', the row orthogonality relations are, 

L X(g)X'(g) = {~GI 
gEG 

if X = X' 
if X =I- X' . 

For two conjugacy classes G and G' , the column orthogonality relations are, 

" (G) (G') = {IGI/IGI if G = G' 
L... X X 0 if G =I- G' . 

X 

Because of the orthogonality relations, we have a recipe for writing any class 
function on G as a linear combination of the irreducible characters of G. This 
is most easily set up in terms of the following inner product on class functions, 
if I(g) and I' (g) are two class functions then we set 

(f, f') = (f, f')G = I~I L I(g )1' (g) . 
gEG 

The row orthogonality relations for two irreducible characters X and X' are 
thus, 

( ') {I if X = X' 
x, X = 0 if X =I- X' . 

Suppose that I(g) is a class function. Then I can be written in the form, 

where the sum is over the irreducible characters X of G and our task is to find 
the coefficients ax. The row orthogonality relations show that 

(f, X') = L ax(X, X') = ax' . 
x 

Therefore we may write an arbitrary class function I as 

1= L(f,x)x. 
x 

In particular, a class function I is a character if and only if every (f, X) is a 
non-negative rational integer. 

We return to Example Two for an illustration. Again, set G = G(K/Q). 
We look at the third degree character X which corresponds to the permutation 
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representation of G given in (26) and which by taking traces has character 
values, 

x 3 o 1 

The inner products are 

and thus we have, 

x = Xl + X2 , 

as may be easily checked. Thus X splits into two irreducible pieces. 
We have seen that ek( s) is defined by a permutation representation with 

character X given above. From the splitting of X, we will find a splitting of ek(S). 
To do this in general, we have to be able to deal with the analogs of X and this 
will require us to find some sort of formula we can compute to get the values 
of X on G. As a first step, we show that the permutation representation we 
constructed on the three letters a, (3" corresponding to X may also be thought 
of as a permutation representation of G on the three cosets of H = G(K/k) = 
{I, ({3,)}. Indeed since H is the subgroup of G which fixes a, the three cosets 
of H take a to its three conjugates, a, {3 and ,. Thus we can label the cosets 
Hgo:, Hgf3 and Hg, so that the elements of the respective cosets applied to a 
give a, (3 and, respectively. But now, we may write 

( ~) = (::~:;) 
, aoHg, 

where a 0 g means a g • So we see that the elements of the group G applied to 
the column t(a,{3,,) act the same as the elements of G on the cosets of H. 

We can create a permutation representation for any finite group on the 
cosets of any subgroup in the same manner. Let G be a finite group and H a 
subgroup. Suppose that we split G up into cosets of Has G = Uj=l Hgj. Then 
we can create an m-th degree permutation representation of G on the cosets 
of H by defining a permutation matrix M(g) of zeros and ones for each g in G 
such that 

(27) 

We want to find a formula now for the character X which corresponds to this 
representation. Since X(g) is the number of ones on the main diagonal of M(g), 
we want to see how many ones there are on the diagonal. In the i-th row, there 



372 Chapter 6. Galois Theory, Algebraic Numbers and Zeta Functions 

will be a one on the diagonal if and only if Hgig = Hgi . This happens if and 
only if H g;gg-;1 = H and in turn, this occurs if and only if 9i9g-;1 is in H. 
Therefore, 

(28) 
m 

X(g) = L 1. 
i=l 

Di9D;l EH 

Many readers will now recognize the construction for Xi X is the character 
of G induced from the trivial character of H. In general, suppose that 'IjJ is a 
character of H. We extend the definition of 'IjJ to all of G by setting 'IjJ(g) = 0 
if 9 is not in H. The character 'IjJ* of G induced by 'IjJ of H is then defined to 
be given by 

m 

(29) 'IjJ*(g) = L 'IjJ(gi9g-;1) . 
i=1 

We also say that 'IjJ* is induced from H to G by 'IjJ. Another frequent notation is 

'IjJ* = Ind~'IjJ. 

When several groups are in use at the same time, this is a convenient notation 
for keeping track of them. 

There is another version of the formula (29) which does not depend on 
the choice of coset representatives. If h is in H, then hgigg-;1 h -1 and g;gg-;1 
are both in H or both not in H and they are conjugate by an element of H 
when they are both in H. Thus 1/J(hg;gg-;1h-1) = 1/J(g;gg-;1). This shows that 
'IjJ* does not depend upon the choice of coset representative. It also shows that 
we can sum over the whole coset and divide by the number of elements in the 
coset. This gives 

(30) *() 1" (, ,-1) 'IjJ 9 = -IHI L...J 'IjJ 9 gg . 
glEG 

Although the expression (29) is best for numerically computing the values of 
'IjJ*, because it has fewer terms, (30) is easier to use theoretically because the 
sum ranges over the whole group. For instance, in (30), we can replace g' in G 
by g,-1 and get an equivalent expression, 

(31) *() 1" (,-1 ,) 'IjJ 9 = -IHI L...J 'IjJ 9 gg 
glEG 

In the case that 'IjJ is the trivial character of H, we see that (28) and (29) 
agree so that X is induced from the trivial character of H as stated. While we 
constructed X as the character of a representation of G, it is not obvious that 
'IjJ* is a character for all 'IjJ. There is an analogous construction which gives a 
representation of G whose character is 'IjJ*, but we won't go into it here. There 
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is a theoretical way of seeing that 'ljJ* is a character which we will give because 
it also gives an efficient way of writing 'ljJ* in terms of the irreducible characters 
of G. This way is based on a fundamental calculational rule in character theory. 
To state it, we need one more definition. If X is a character of a group G and H 
is a subgroup of G, we define the restriction XIH of X to H by XIH(h) = X(h) 
for all h in H. This is a character of H (use the same representation restricted 
to H), but may not be irreducible on H even when X is irreducible on G. 

Theorem (The Frobenius Reciprocity Law). If X is a character of G and'ljJ is 
a character of a subgroup H of G, then 

Proof. We have 

('ljJ*,X)G = I~I L'ljJ*(g)x(g) 
gEG 

1 ""' 1 ""' 1-1 ,-= TOT 61HT 6 'ljJ(g gg )X(g) 
gEG glEG 

= IGI~HI L L'ljJ(g)X(glggl 1) 
g'EG gEG 

But 'ljJ(g) is by definition 0 unless 9 is in H and X is constant on conjugacy 
classes of G. Hence 

o 

The Frobenius reciprocity law makes it clear that 'ljJ* is a character since 
for every irreducible character X of G, ('ljJ*' X)G = ('ljJ, XIH) H is a non-negative 
integer as is required. 

We illustrate the reciprocity law with the groups corresponding to our two 
example fields. For the field k = Q( H) of Example One, G = G(k/Q) is a 
group with two elements, 1 and complex conjugation T. The character table is 

1 T 

XlII 

X~ 1-1 

If we take H = {I}, then on H, Xl and X~ both restrict to the trivial character 
'ljJl = 'ljJl(H). Therefore, 
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As a result, ~P;(1) = 2 and 'l/J;(r) = o. By just checking the traces, 'l/Jr is the 
character of the representation M(g) of G given by 

M(l) = (~ ~) , M(r) = (~ ~). 
which arose in looking at the Euler product for (k( s). This should be no surprise, 
since we now see that M(g) is exactly the permutation representation of G on 
its elements (i.e. on the cosets of H) and this is how we get induced trivial 
characters. 

For Example Two, take the group G = G(K/Q) of six elements again. 
Up to conjugation, there are three proper subgroups H of G. We will find the 
corresponding induced trivial characters 'l/JI (H)* for each. We list the three 
subgroups and the character values necessary to apply the reciprocity law: 

H = HI = {1} H = H2 = {1, (,8/,)} H = H3 = {1, (a(3/,), (a/,(3)} 

1 1 ((3/, ) 1 (a(3/, ) (a/, (3) 

'l/JI 1 'l/JI 1 1 'l/JI 1 1 1 

xIIH 1 xIIH 1 1 xIIH 1 1 1 

X~IH 1 X~IH 1 -1 X~IH 1 1 1 

x21H 2 x21H 2 0 x21H 2 -1 -1 

The reciprocity law yields the following induction formulas, 

For example, if H = H2 = {1, (3/,)} is the subgroup of two elements which fixes 
k, then we find the following inner products, 

This gives 'l/JI(H2)* = Xl + X2 which is what we found before. The result for HI 
illustrates a general fact for any finite group which we get from the Frobenius 
reciprocity law in the same manner: 

'l/Jl({l})* = Ldeg(x)x. 
x 

Incidentally, the value at g = 1 is the order of the group, and so setting g = 1 
gives the identity, 

IGI = L deg(x? . 
x 

The same result is also obtainable from the orthogonality relation of the first 
column with itself. 
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3.3 L-Functions 

We now introduce the general Artin L-function. Let K be a normal algebraic 
extension of the number field k. Suppose that p is a finite dimensional represen­
tation of G = G( K / k) with character X. The A rtin L-function corresponding 
to a character X of G( K / k) is given for Re( s) > 1 by 

L(s,X,K/k)" =" II det {I _ p [0- (I~k)] N(p)-'} -1 , 

P 

where "=" means that only the unramified I' are being given and where for 
each such 1', we pick a prime ~ of K above p. There are similar but messier 
expressions for the ramifying p. All identities that we give for L-functions will 
be exactly true and so we won't put quotation marks around the equal signs for 
these identities. However, the proofs will be incomplete because of the missing 
ramifying primes. 

If pis a prime of k which doesn't ramify in K, we will write G(p) for the 
conjugacy class in G of Frobenius automorphisms of primes in K above p. Since 
the various automorphisms in G(p) are conjugate, and determinants of similar 
matrices are the same, L( s, X, K / k) does not depend upon the choice of auto­
morphism in G(p). The explicit dependence on X is shown by the exponential 
form, 

The exponential form is proved by looking at the eigenvalues of p( 0-) in the 
same way that the result det( eA ) = etr(A) is proved for matrices. From the 
exponential form, we see that 

L(s,X + X',K/k) = L(s,X,K/k)L(s,X',K/k). 

We also see that when X = Xl is the trivial character, 

Artin conjectured that if X is an irreducible character other than Xl, then 
L( s, X, K / k) is an entire function of s, but this has not yet been proved in gen­
eral. This and the Riemann hypothesis are the two most fundamental analytic 
questions in the subject. It has been proved that every such L( s, X, K / k) has a 
meromorphic continuation to the entire complex s-plane with no zeros or poles 
for Re( s) 2:: 1. 

All we need to prove the Chebotarev density theorem is the fact that for 
an irreducible character X f:. Xl, (L( s, X, K / k) is continuable to s = 1 with 
neither a zero nor a pole at s = 1. We see from (32) that 
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(33) 10gL(s,X,K/k)" =" L f ~X [a (K/k)n] N(p)-ns 
p n=l 1.13 

As usual, the contribution for n 2': 2 is analytic at s = 1 and so for an irreducible 
character X of G(K/k), we get 

LX(G(p))N(p)-S 
p 

= {lOg (S~l) + an analytic function of s at s = 1 
an analytic function of s at s = 1 

if X = Xl 
if X =I- Xl 

Theorem (Chebotarev Density Theorem). Given a conjugacy class G of G, the 
set of primes of k such that G(p) = G has analytic density IGI/IGI. 
Proof. According to the orthogonality relations, 

L [L x(G(p))N(p)-S 1 x(G) = ~ :~:N(P)-S. 
x p C(p)=C 

On the other hand, we have just seen that all X =I- Xl contributions on the left 

side are analytic at s = 1 and that the X = Xl contribution has a log (S~l) 
singularity. Hence, 

L N(p)-S '" lQ.log (_1_) as S -4 1+ 
p IGI s-l 

C(p)=C 

and this proves the theorem. 0 

Corollary. Every element of G( K / k) is a Frobenius automorphism for infinitely 
many primes of K. 

We return to the field K of Example Two. We have already constructed a 
third degree character X which corresponds to the permutation representation 
of G = G(K/Q) on the cosets of H = G(K/k). We have also seen that X = 
Xl + X2· Therefore, 

Hence, we have factored (k( s) into two pieces by representation theory. The clue 
to another key property of L-functions comes if we remember that X = 'tjJI (H)*. 
We have two different versions of (k( s), one with respect to the trivial character 
'tjJl on H and the other with respect to the character X = 'tjJi on G, 
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This turns out to be true for all induced characters and is a fundamental result 
about Artin L-functions. 

Theorem. If K is a normal extension of Q and 'lj; is a character of a subgroup 
H = G(K/k) of G = G(K/Q), then 

L(s,'lj;*,K/Q) = L(s,'lj;,K/k). 

Remark. The theorem and its proof are true for any ground field and not just 
Q. However, the notation would be messier, and we would have to invent a 
third German 'p' as well! 

Proof. This theorem is the reason for much of the extensive development of 
Frobenius automorphisms in Section 2. The proof is still somewhat involved. 
We will take a single Euler p-factor in L( s, 'lj;*, K /Q) and show that it is the 
product over all p of k above p of the Euler p-factors in L( s, 'lj;, K / k). As always, 
we will not deal with the primes of Q which ramify in K. Let p be a prime of 
Q which doesn't ramify in K and let ~ be one of the primes of K above p. We 

write O"(~) = 0" (K~Q). The Euler p-factor of L(s,'lj;*,K/Q) is 

By (31), we have 

I: !'lj;*[O"(~)nlp-ns = I:! [_1 L 'lj;(g-lO"(~tg)l p-ns 
n n IHI n=l n=l gEG 

= I: ~ [I~I L 'lj; ((g-lO"(~)gt)l p-ns 
n=l gEG 

= f ~ [I~I L 'lj;(O"(~g)n)l p-ns. 
n=l gEG 

If f(~) is the common order of the O"(~g), then we know that as 9 runs 
through G, ~g runs f(~) times through the set of primes of k above p. Hence 

f ~'lj;*[O"(~tlp-ns = f ~ [f~) L:'lj;(O"(~t)l p-ns 
n=l n=l I I '+lIp 

= f~) L:I: !'lj;(O"(~t)p-ns. 
I I '+lIp n=l n 
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Each IlJ of K lies above a unique I' of k. We now take all the IlJ terms on the right 
for IlJlp and show that they lead to exactly the Euler p-factor in L( s, 1/;, K / k). 
Thus we wish to look at 

This is relatively easy since we have prepared the way in Subsection 2.5. The 
only n that contribute to the sum on the right are those n such that a(llJ)n is in 
H. These will all be multiples of the minimum such n and we saw in Subsection 
2.5 that the minimum such n is exactly f(p), the residue class degree of p. Also 

a(llJ)f(P) = a(llJ/p) = a (K~k) is the Frobenius automorphism with respect to 

K/k. Its order in H is f(llJ/p) where f(!f!) = f(p)f(!f!/p). This number also is 
independent of which !f! above I' is used. Hence, 

f(llJ) L f ~1/;(a(!f!t)p-ns = f(llJ) L f _I_1/; (a(llJ)f(p)m) p-f(p)ms 
IHI '+lIp n=l n IHI '+lIp m=l f(p)m 

= f(~p) L f ~1/; (a(llJ/p)m) N(p)-ms . 
I I '+lIp m=l m 

The a(!f!/p) for !f! above I' are all conjugate in H and so for each m, the 
1/;(a(llJ/p)m) are all the same. Further, the number of!f! above I' is exactly 
IHI/ f(!f!/p)· Therefore, if we just pick one particular !f! of K above 1', we have 

The exponential of this is the Euler p-factor of L(s, 1/;, K/k) as claimed and this 
proves the Theorem. 0 

For the field k = Q( A) of Example One, G = G(k/Q) is a group 
with two elements, 1 and complex conjugation T. We found characters and the 
character table in Subsection 3.2 as well as the induced trivial character from 
{I} to G. Therefore 

((S) = (lQ(s) = L(S,XI,k/Q) , 

(lQ(yCS) ( s) = L(s, Xl, k/Q)L(s, X;, k/Q) . 

We now extend Example One somewhat by looking at the field K = Q( A, 
..;=5) which contains k. As in Section 1 we write a = A, b = -A, c = 
A, d = -..;=5. The field K contains all the conjugates of its two generators, 
A and ..;=5 and so is a normal extension of Q of degree four. We find 

G = Gal(K/Q) = {I, (ab), (cd), (ab)(cd)} . 
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Since G is abelian, there are four conjugacy classes and four irreducible char­
acters, all of degree one. The character table is 

1 ( ab) (cd) (ab)(cd) 

Xl 1 1 1 1 

X~ 1 1 -1 -1 

X~ 1 -1 1 -1 

X~' 1 -1 -1 1 

There are three intermediate quadratic fields, Q( A) fixed by H' = {I, (ab)} , 
Q( A) fixed by H" = {I, (cd)}, and Q( V5) fixed by H"' = {I, (ab)( cd)}. 
Complex conjugation is (ab)(cd). If H is any of the three subgroups of G of 
order two, then H is a normal subgroup of G and 1/;1(H)* is the sum of the 
two irreducible characters of G which are identically one on H, i.e. which are 
characters of G / H. Therefore we find 

((s) = (O>Cs) = L(S,XI,K/Q) , 

(1Q(Y-5)(s) = L(s, XI,K/Q)L(s, X; , K/Q) , 

(1Q(r-I)(s) = L(S,XI,K/Q)L(s,X~,K/Q), 

(1Q(v's)(s) = L(S,XI,K/Q)L(s,X~',K/Q), 

(K( s) = L( S, Xl, K /Q)L( s, X~, K /Q)L( s, X~, K /Q)L( s, X~' ,K /Q) . 

The character X~ is a character of the quotient group G / H' = G( k /Q) and the 
corresponding L-function L(s, X;, K/Q) = L(s, X~, k/Q) as seen from the two 
versions of (k( s) which we have found. This too is a general fact about zeta 
functions corresponding to normal subgroups. 

For the field K = Q( 0', (3,,) of Example 2, there are four subfields up to 
conjugacy. These are the fields Q fixed by all of G, Q( H) fixed by H3 = 
{I, (0';3,), (O',;3)} , Q(21 / 3 ) fixed by H2 = {I, ((3,)}, and K fixed by HI = {I}. 
We have worked out the induced trivial characters in the last Section. We 
therefore find 

(34) 

((s) = (lQ(s) = L(S,XI,K/Q) , 

(1Q(yC3)(s) = L(S,XI,K/Q)L(s,X;,K/Q) , 

(1Q(21/3)(S) = L(S,XI,K/Q)L(s,X2,K/Q) , 

(K(S) = L(S,XI,K/Q)L(s,X~,K/Q)L(s,X2,K/Q)2. 

We close this Section by returning to the question as to whether the zeta 
function of a field k determines the field. We have seen that (k( s) determines the 
minimal normal extension K of Q containing k. Let G = G(K/Q) and let H = 
G(K / k). We now know that (k( s) = L( S, 1/;1 (H)* ,K /Q). Together with the fact 
that every element of G is a Frobenius automorphism, the exponential form of 
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L(S,7/JI(H)*,K/Q) shows us that (k(S) completely determines the character 
7/JI (H)*. Subgroups of G conjugate to H correspond to fields conjugate to k 
and give the same induced trivial character 7/JI (H)*. The problem thus boils 
down to the question as to whether there can be non-conjugate subgroups 
of G giving the same induced trivial character. For some groups, the answer 
to this is yes. The best known example comes from the symmetric group on 
six letters, S6 which is a Galois group for a field Kover Q. This group has 
an outer automorphism which changes the cycle structure of the elements of 
order three: elements of the type (abc) are interchanged with elements of the 
type (abc)(deJ). Conjugation preserves cycle structures. Thus the subgroups 
of order three generated by (abc) and by (abc)( de J) will not be conjugate but 
will have the same induced trivial character. The subfields of f{ fixed by these 
two subgroups will be non-conjugate fields with the same zeta function. 

3.4 The Reciprocity Law 

Prior to the introduction of Artin L-functions in 1923, the algebraic and an­
alytic study of relative abelian extensions (i.e. normal extensions with abelian 
Galois groups) was already very advanced. The subject was called class field 
theory because all such extensions turned out to correspond to congruence class 
groups in the ground field. There were also L-functions defined on these class 
groups and the zeta functions of the class fields were known to be the product 
of all the corresponding L-functions. In this Section, we will briefly introduce 
the congruence class groups and the corresponding L-functions. 

We begin with congruence class groups. Let k be a number field and f an 
integral divisor of k. We define congruences (mod f) just as we did for prime 
divisors. If a and ;3 are integers in k, we say that a is congruent to ;3(mod f) 
and write a == ;3(mod f) if f divides a - ;3. We will denote the congruence 
class of a(mod f) by a. Suppose that a == ;3(mod f). Anything that divides 
;3 and f divides a = ;3 + (a - (3) and so divides (a, f). Conversely anything 
that divides a and f divides ;3 and so divides (;3, f). Therefore (a, f) = (;3, f)· 
Thus we can talk about a congruence class a being relatively prime to f and 
write (a, f) = (1) if (a, f) = (1). Over Q, most elementary textbooks refer to 
these congruence classes as reduced residue classes (mod f). The reduced residue 
classes form a group under multiplication (mod f). This group is closely related 
to the congruence class groups of divisors that we wish to discuss. In all our 
examples, we will be able to describe the groups of divisors in terms of just 
these congruence classes, but in many fields, these congruence classes are not 
yet general enough due to sign problems with units. 

We will deal with the set l(f) of all fractional divisors which are ratios of 
integral divisors relatively prime to f. In other words, a fractional divisor is in 
l(f) if all of the prime divisors occurring in its factorization don't divide f. The 
difficulty in defining divisor classes (mod f) is that even a principal divisor has 
more than one generator and these generators may be in different congruence 
classes. It was also discovered that even over Q, sign conditions on the generator 
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of a divisor are also necessary to get all abelian extensions. The principal ray 
class P(f)(mod f) will be the set of all principal divisors (0/13) such that 0 

and 13 are relatively prime to f, 0 == j3(mod f), and 0/13 is totally positive. If 
k = Q( 0) and the conjugates of 0 are ordered so that 0(1), ... , o(rd are real 
while the remaining conjugates are complex, then we say that a number 0 in k 
is totally positive in k if o( i) > 0 for 1 SiS rl. Thus numbers of Q are totally 
positive when they are positive. On the other hand, in a complex quadratic 
field, any non-zero number is totally positive because rl = O. 

The quotient group GCf) = J(f)/ P(f) is called the ray class group (mod f). 
The elements of this group are the ray classes (mod f). Often, Pcf) is referred 
to as the narrow principal ray class (mod f) and then the quotient group G(f) 
is called the narrow ray class group (mod f). When f = (1), this group can 
still be bigger than the divisor class group of Section 2 because of the sign 
conditions on the principal class. G(l) is often called the narrow divisor class 
group to distinguish it from the wide class group which is just J / P. However, in 
complex quadratic fields where many of our examples will come from, there are 
no sign conditions. Here the narrow and wide groups are always the same and 
we can also describe all the principal ray classes in terms of congruence classes. 
Likewise in Q, every divisor is principal and has a unique positive generator, 
and so G(f) is isomorphic to the group ofreduced residue classes (mod f). 

We now define the L-functions corresponding to these groups. Suppose 
that X is a (first degree) character of the (abelian) group GCf). For an integral 
divisor a relatively prime to f, we define x(a) to be X of the ray class of a in 
GCf). If a and f aren't relatively prime we set x(a) = O. Our L-function is then 

L(8, X)" = "L x(a)N(a)-S , 
a 

where the sum is over the integral divisors of k. As usual, there is an Euler 
product, 

p p 

The reason for the" = " is that it is often convenient to alter the Euler ,,-factor 
for primes" dividing f. For instance, when X is the trivial character, the Euler 
,,-factor is (1- N(,,)-S)-1 for" not dividing f but is just 1 for "If. It is best to 
change the ,,-factor to being (1- N(" )-8)-1 for all " thereby getting (k( 8). This 
corresponds to f not being the 'smallest' modulus of definition for the trivial 
character. The smallest modulus of definition for a character X is called the 
conductor of the character and will be denoted by f x' For example, the trivial 
character has conductor (1). We will not go further into this problem here; we 
merely think of the L-functions as defined via the Euler product for" relatively 
prime to f and leave the remaining primes to textbooks. 

For non-trivial characters, these L-functions are known to be entire func­
tions which are non-zero for Re( 8) ~ 1. The logarithm is given by 



382 

(35) 

Chapter 6. Galois Theory, Algebraic Numbers and Zeta Functions 

00 1 
log L(s, X)" = "L L _X(p)nN(p)-ns 

n 
P n=l 

and as usual, the contribution for n ::::: 2 is analytic at s = 1. Thus 

P 

= {lOg (S~l) + an analytic function of s at s = 1 

an analytic function of s at s = 1 

if X = Xl 

if X -=I- Xl 

Theorem. The set of prime divisors in a given ray class of G(f) has analytic 
density 1jIG(f)I. 

Proof. In Q, this is Dirichlet's theorem on primes in progressions. The proof is 
exactly the same as for the Chebotarev density theorem. Once we have stated 
the reciprocity law, we will see that in fact this theorem is the Chebotarev 
density theorem in the case of abelian groups. D 

The general class groups which appear in this subject are quotient groups 
of G(f) by a subgroup H. Any (first degree) character X ofthe (abelian) quotient 
group G(f)j H may be thought of as a character of G(f) which is identically one 
on H. By 1923, it was known that corresponding to a group G = G(f)j H is a 
unique class field K with many interesting properties. First, K is an abelian 
extension of k whose Galois group is isomorphic to G. From our point of view 
the fundamental fact is that 

(K(S) = II L(s,X) 
x 

where the product is over all characters X of G = G(f)j H. The Euler product 
is therefore given by 

(36) (K(S)" =)) II(l- N(p)-f(P)s)-IGllf(P) 

ptJ 

where f(p) is the order of the class of p in G (i.e. the minimal power of the 
ray class of p which is in H). This may be proved from the induced character 
point of view of Subsection 3.3, but can also be proved by summing (35) over 
X and using the orthogonality relations to get the logarithm of (36) directly. 
The Euler product (36) allows us to guess that every prime divisor in a single 
class of G = G(f)1 H splits in K in the same way into IGII f pieces, each of 
relative degree f where f is the order of the class. This too was a known fact. 
In particular, up to a finite number of exceptions due to using the wrong f, the 
prime divisors in H are exactly the primes of k which split completely in K. 
This uniquely determines the field K by the same sort of density argument as 
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in Subsection 3.1. Finally, every abelian extension of k turns out to be a class 
field. 

In an abelian group, conjugacy classes consist of single elements. Therefore 
each p of k not dividing f determines a unique Frobenius automorphism (T(p) = 
(T('.J!) of G( K / k) which does not depend on the choice of '.J! in K above p. As 
we have just stated, it was already known that if p is any prime divisor of knot 
dividing f, then the relative degree of primes of K above p is the order of the 
class in G = G(f)/ H containing p. This must be the order of the corresponding 
Frobenius automorphism (T(p) of G(K/k). As we have also stated, it was even 
known that the Galois group G(K/k) is isomorphic to G(f)/H. However, it 
was not known or even conjectured that the groups are isomorphic because the 
Frobenius automorphism (T(p) which we get is the same element of G(K/k) for 
all p in the same congruence class. This conjecture was brought about by the 
introduction of the Artin L-functions which gave an apparently second way of 
factoring a zeta function of a class field. Since G( K / k) and G are isomorphic, 
we can think of a first degree character X as being a character of both groups. 
We then have two seemingly different L-functions corresponding to X given 
by (33) and (35). Artin conjectured that these L-functions aren't different at 
all for the reason that the Frobenius automorphism provides an isomorphism 
between G( K / k) and G(f) / H. He proved this conjecture four years later. The 
result is, 

Theorem (The Artin Reciprocity Law). If p is a prime of k relatively prime 
to f, then the Frobenius automorphism (T(p) of K corresponding to p depends 
only on the class of p in G(f)/ H and this correspondence between elements of 
G(K/k) and G(f)/H is an isomorphism. 

Remark. In any abelian group, the map g --+ g-l is an automorphism of the 
group and hence there is a second isomorphism between the two groups of the 
theorem. Frequently the reciprocity map is cited in print in this latter form. 

For the examples, one more fact about the class fields will be useful. It 
is the conductor-discriminant theorem due to Hasse which says among other 
things that the only ramifying primes from k to K are those dividing at least 
one of the fx. 

Theorem. If K is the class field corresponding to the ray class group G(f)/ H 
of k, then 

DK/k = II fx, 
x 

where the product is over all the characters of G(f) / H. Further, the smallest f 
is the least common multiple of the fx. 

We conclude this survey with several examples. First, we look at k = 
Q. Corresponding to the multiplicative group G( n) of reduced residue classes 
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(mod n) is a class field K determined by the fact that the primes which split 
completely in K are exactly those congruent to 1 (mod n). Let 

be a primitive n-th root of unity. Then K = lQ(w) is the cyclotomic field of 
n-th roots of unity. The Frobenius automorphism associated to a prime p takes 
w to wP by definition since wP really is conjugate to w in this case. Thus the 
Frobenius automorphism is the identity if and only if p == 1 (modn). In other 
words it is exactly the primes congruent to 1 (mod n) which split completely in 
IQ( w) and this shows that K = IQ( w) . Since wP only depends upon p (mod n), 
we also see the reciprocity law clearly holds here. Any abelian extension K' of 
IQ is a class field and so corresponds to a class group G( n) / H for some subgroup 
H of G( n). Any prime p == 1 (mod n) is in H automatically and so the primes 
of IQ which split completely in lQ(wn ) also split completely in K'. Therefore K' 
is a subfield of IQ( wn ). This is the Kronecker-Weber theorem that any abelian 
extension of IQ is a subfield of a cyclotomic field. (Of course, from the point of 
view of the presentation here, the real result is that every abelian extension of 
IQ is a class field, since the rest is easy.) 

If d is the discriminant of the quadratic field k = IQ( Vd), we have seen 
that the Legendre symbol 

Xd(p) = (~) 
tells us us how an odd prime p not dividing d splits in k. Quadratic extensions 
are always abelian extensions. Thus k is a class field over IQ and according to the 
conductor-discriminant theorem k corresponds to a ray class group (mod Id/). 
The reciprocity law says that Xd(P) is actually a congruence class character 
(mod Idl) of conductor 14 When thought of this way, Xd is often called a 
Kronecker symbol. A less precise way of interpreting this is to say that the 
splitting of primes in a quadratic field of discriminant d, is determined solely 
by the residue class of the prime (mod Idl). 

Take for instance the field IQ( A) = IQ( R) of discriminant -4. The 
group G( 4) of congruence classes (mod 4) is a group of order two. The character 
table is, 

m 1 3 

Xl(m) 1 1 

X-4(m) 1 -1 

where the second character must be X-4 because that is all that is available. 
We thus recover the ancient fact that -1 is a square modulo primes which are 
1 (mod4) and -1 is a non-square modulo primes which are 3 (mod 4). 

The next examples help to further explain the use of the words, 'reci­
procity law'. Again, we take IQ to be the ground field and look at the class 
field k = IQ( y'5) of discriminant 5. The group G(5) is of order 4 and the field k 
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corresponds to a quotient group G(5)j H where H is a subgroup of G(5) which 
also must be of order two. There is only one subgroup of order two, H = {'1, 4}. 
There can only be one non-trivial character on G(5)j H and so we have found 
the character X5: 

m 1 2 3 4 

X5(m) 1 -1 -1 1 

Notice that H is the subgroup of squares (mod5). Thus, X5(m) is also given 
by another Legendre symbol, 

X5(m) = (~) . 

Together, the two versions of X5 for primes pare 

(~) = (~) , 
which is nothing more than an instance of the quadratic reciprocity law. 

Given an odd prime q, we can get the general quadratic reciprocity law 
in the same way. There are two cases. When q == 1 (mod4), we look at the 
field k = Q(,;q) of discriminant q. Therefore, k is a class field corresponding to 
the group G(q)j H where H is a subgroup of G(q) of index 2. But G(q) is the 
multiplicative subgroup of the finite field IFq and is cyclic. Therefore, G(q) has 
a unique subgroup of index 2, namely the set of square classes (modq). This 

determines Xq uniquely as the Legendre symbol Xq(m) = (~). In other words 

we have 

(37) (~) = (~) (q == 1 (mod4)) . 

When q == 3 (mod 4), we look at the field k = IQ( R) of discriminant 
-q. Again k is a class field corresponding to the group G(q)j H where H is the 
subgroup of index 2 of square classes in G(q). Again G(q) is cyclic and X-q is 

uniquely determined as the Legendre symbol X _q( m) = (~). The result this 

time is 

(38) (~q) = (~) (q == 3 (mod4)) . 

Since we have already found ( ~1) = X-4(p) above, we may rephrase (37) and 

(38) in the more classical shape 

(!!.) = {- (~) 
q (~) 

if p == q == 3 (mod 4) 

otherwise. 
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This completes the quadratic reciprocity law. 
We return to the general quadratic field k = Q( Vd) of discriminant d. The 

zeta function of k factors as, 

Suppose that d < 0 so that k is complex quadratic. Since ((0) = -1/2, accord­
ing to (24), 

h 
L(O, Xd) = W/2 ' 

where h is the class-number of k and W is the number of roots of unity in k. 
Let us try this out for k = Q( A) where d = -4. We have 

L(s,X-4) = X_4(1) ·l- s + X-4(2)· T S + X-4(3)· 3- s + X_4(4)· 4- s + ... 

so that 

L(O, X-4) = (1) + (0) + (-1) + (0) + (1) + (0) + (-1) + (0) + ... 
'Clearly' this gives 

1 
L(O, X-4) = 2: . 

Since W = 4, we find that h = l. 
In fact for any d, 

Idl 
(39) L Xd(m) = 0, 

m=l 

by the orthogonality relations applied to the non-zero terms. This means that 
the sequence of partial sums for L(O, Xd) is periodic and hence the series is 
Cesaro summable: L(O, Xd) is the average of the partial sums, 

1 Idl M 

L(O,Xd) = Idf ~1 1=1 Xd(m) 

1 Idl 

= TdT ~l(ldl + 1- m)Xd(m). 

By (39), this simplifies to 

This gives Dirichlet's class-number formula for complex quadratic fields, 

(40) 
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The formula can be simplified further, but we will stop here. 
When k is real quadratic, we find from (24) that 

where h is the class-number of k and C1 is the fundamental unit of k. It is not 
hard to make sense of this product. For example, when d = 5, we see that 

[rrOO (5n + 2)(5n + 3)] 
h log(cd = log ( )( ) = log(1.618033989) , 

5n + 1 5n +4 
n=O 

approximately. There is an even better arangement of the product which allows 
us to make use of the infinite product expansion for the sine function, 

[ 2 00 (5n+2)(5n-2)] [27r/5 00 (1-~)] 
hlog(c1) = log I!! (5n + 1)(5n -1) = log 7r/5!! 1 _ ~ 

= I [sin(27r /5)] 
og sine 7r /5) . 

The same thing works for any real quadratic field. When d > 0, the characters 
Xd have the property that Xd( d - m) = Xd( m) for all m. As a result, we find 
that 

hlog(c1) = log [ rr sin C;I7r)-Xd(m)]. 
m-::,d/2 

This is Dirichlet's class-number formula for real quadratic fields. 
We finish by returning to our two examples. For Example One, the field 

k = Q( yC5) = Q( V-20) has discriminant -20 and so X-20 is a congruence 
class character of conductor 20. Since X-20 is defined by Legendre symbols, we 
see that 

(41) X-20(P) = (-:0) = (~4) (~) = X-4(p)X5(p). 

The group G(20) = {I, 3, 7, 9, 11, 13, 17, 19} is of order 8 and we have the four 
character values, 

m 1 3 7 9 11 13 17 19 

X1(m) 1 1 1 1 1 1 1 1 

X-4(m) 1 -1 -1 1 -1 1 1 -1 

X5(m) 1 -1 -1 1 1 -1 -1 1 

X-2o(m) 1 1 1 1 -1 -1 -1 -1 
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Thus k is the class field corresponding to the ray class group G(20)j H where 
H = {I, 3,7, 9}. As an aside, now that we have the character values, we see 
from Dirichlet's class-number formula (40) that the class-number of k is 

1 
h = - 20 (1 + 3 + 7 + 9 -11 - 13 - 17 -19) = 2 , 

as we stated in Section 2. 
The characters X-4 and Xs also give rise to characters (mod 20); they 

just have smaller conductors. Along with the trivial character Xl, we now have 
four characters of G(20). These four characters are identically one on the group 
H' = {I, 9} and so we have the four characters of the ray class group G(20)/ H'. 
Corresponding to this class group, there is a class field K which is a quartic 
extension of Q. The field K is characterized by the fact that p splits completely 
in K if and only if p is congruent to 1 or 9 (mod 20). Any such prime splits 
in k and also in Q( A) and so both of these fields are subfields of K. Hence 
we must have K = Q( R, A). According to the conductor-discriminant 
theorem, up to a ± sign, D K is 1 . 4 . 5 . 20 = 202 • The zeta functions for k and 
K are given by 

(42) 
(k(S) = ((s)L(S,X-20) ' 

(K(S) = ((s)L(S,X-20)L(s,X-4)L(s,Xs). 

We have seen the Artin L-function version of both of these when we dealt with 
Example One at the end of Subsection 3.3. 

We continue with Example One. The field K = k( A) is a quadratic 
extension of k and so is a class field over k. Since A is a zero of the polynomial 
x2 + 1 of discriminant -4, D K / k I4. But K = k(a) also where a = ¥ and 
a is a zero of the polynomial x 2 - x - 1 of discriminant 5. Thus D K / k I5 too. 
Hence DK/k divides (4,5) = (1). Therefore DK/k = (1). In particular, there 
are no ramified primes from k to K. Hence the conductor-discriminant theorem 
says that K corresponds to a ray class group of the form G( (1)) j H of order 2. 
But G((1)) is the divisor class group of k and is already of order two. Therefore 
H = P(l), the principal divisor class. The class field corresponding to 0/ P is 
called the Hilbert class field of k; K is the Hilbert class field of k. 

Besides the trivial character, there is another character 'Ij; of G((l)). This 
character takes the values 1 on principal divisors and -1 on the non-principal 
divisors. We also have 

(K(S) = (k(s)L(s,'Ij;) . 

The Artin L-function form of L(s,'Ij;) is a character of G(K/k) which can be 
induced to a second degree character of G(K/Q). From (42), we see that the 
result will be 

(43) L(s,'Ij;) = L(S,X-4)L(s,Xs). 

Let p be a prime of Q which splits in k. We know that the condition for 
this is that 
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(44) X-20(P) = X-4(p)X5(p) = 1 . 

We have seen that p is the product of two prime divisors in k and we even know 
how to find them: if we factor x 2 + 5 (mod p) as 

x2 + 5 == (x + a)(x - a) (modp) 

then (p) = PI P2 in k where 

PI = (p,a + V-S), 

The Euler p-factor in (43) is 

P2 = (p, -a + 0) = (p,a - 0) = PI . 

From (44), X -4 (p) and X5 (p) are both + 1 or both -1. Hence the same is true of 
1/'(PI) and 1/'(P2) and with the same values. But this is exactly what determines 
when PI and P2 are principal. We get the long known 

Theorem. A prime p splits completely in k if and only if 

p== 1,3,7,9(mod20). 

If p == 1,9 (mod 20) then p is the product of two principal divisors in k while if 
p == 3,7 (mod 20) then p is the product of two non-principal divisors in k. 

For example, the already discussed prime divisor (3,1 + 0) above 3 is 
non-principal, while the prime divisor P = (29,16 + 0) above 29 is principal. 
Indeed 29 = (3 + 20)(3 - 20) does split as the product of two principal 
divisors. The only question is, which of the two factors generates p? One way 
to tell without dividing is to note that anything in P is congruent to 0 (mod p). 
Hence both 29 and 16+0 are zero (modp). Thus, 0 == -16 == 13(modp) 
and as a result, 3 + 20 == 29 == 0 (modp). Therefore p = (3 + 20). 

We move on to Example Two. We set k2 = Q( 0). The field ]{ we have 
been considering is given by ]{ = k2 (0:) where 0: = 21 / 3 . ]{ is normal over Q 
and so over k2 as well. The Galois group G(]{ / k2 ) is cyclic of order 3 and so ]{ 
is a class field with respect to k2 . Since 0: is a zero of the polynomial x 3 - 2 of 
discriminant -108, we see that DK/k2 divides (108). Further, since (2) is prime 
in k2' x 3 -2 is an Eisenstein polynomial with respect to (2) in k2 and so 22 is the 
correct power of (2) in D K / k2 . However, the power of (0) in the polynomial 
discriminant is wrong and it turns out that DK/k2 = (36). [Translation of x 
by 1 leads to a polynomial which is not an Eisenstein polynomial because (3) 
is a square in k2 . Fortunately, the number () = (0: + 1)2/0 is a zero of the 
polynomial x3 +0x2+3x-0 of discriminant -144 which is an Eisenstein 
polynomial with respect to 0 in k2 • Therefore (0)4 is the correct power 
of (0) in D K / k2 ·J 

According to class field theory, k is the class field for a ray class group 
Gm/ H which is cyclic of order three. The two non-trivial characters of this 
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group are cubic characters and each is the square of the other. Hence each has 
the same conductor, as whenever one character is defined, its square is also. 
We take f to be this common conductor. The trivial character of course has 
conductor (1). Therefore by the conductor-discriminant theorem, (36) = 1· f· f. 
Unique factorization of divisors now gives us the conductor, 

f = (6) 

We look at congruences (mod6). Since every divisor of k2 is principal, this 
boils down to finding the reduced residue classes of numbers (mod 6) and then 
taking account of the units in k2. The set of integers of k2 is given by 

where 

o = {a + b>' I a, b in Z} 

>. = -3 + v'-3 
2 

is a zero of the polynomial x 2 + 3x + 3 of discriminant -3. Usually, the third 
root of unity, 

-1 + v'-3 w=>.+I= , 
2 

is used as a generator of the integers, but >. will be more useful since it is an 
associate of v'-3 in k2 and so in terms of divisors we have, 

(3) = (>.)2 . 

Since 
a + b>' _ a b >. 
-6--"6+"6 ' 

it follows that 6 divides an integer a+ b>' if and only if both a and b are divisible 
by 6. Therefore a system of representatives of the congruence classes of integers 
in 0 (mod 6) is given by 

{a + b>'1 0 ~ a ~ 5, 0 ~ b ~ 5} , 

as any integer of 0 is clearly congruent (mod 6) to exactly one of these. Hence 
there are 36 congruence classes (mod 6). It is a general fact for integral divisors 
f in number fields that there are N(f) congruence classes of integers (mod f) 
in the field. This is often taken as the definition of the norm for an integral 
divisor, but when this is done, the concepts of norms of fractional divisors and 
relative norms make much less sense. 

It turns out that 18 of 36 classes are relatively prime to 6. The general 
formula for the number ¢>(f) of reduced residue classes (mod f) in a field is 

¢>(f) = N(f) II (1 - N(p))-l . 
plf 
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(Over Q, this is the Euler </>-function.) In k2 there are two prime divisors of 
(6) of norms 4 and 3 and this gives us 18 reduced classes. In this particular 
case, we can easily verify that there are 18 reduced residue classes by actually 
finding them. We are interested in those classes which are relatively prime to 
both ,\ and 2, since these are the only primes dividing 6. A number a + b'\ will 
be relatively prime to ,\ if and only if 3 doesn't divide a. In addition a + b'\ 
will not be divisible by 2 and so will be relatively prime to 2 when not both of 
a and b are even. Exactly 18 of the 36 class representatives are left: a = 1 or 5 
with all 6 values of b, and a = 2 or 4 with b = 1,3,5. 

There are six units in k2, namely the six sixth roots of unity, ±1, ±w, ±w2 • 

It turns out that these units of k2 are incongruent (mod 6). In fact they are 
already incongruent (mod 2,\) as is easily checked. Therefore the principal ray 
class (mod 6) of k2 uses up 6 of the 18 reduced residue classes (mod 6). Thus 
the ray class group G(6) of k2 is of order 3. This means that K is the class field 
of k2 corresponding to G(6). The primes of k2 which split completely in K are 
those which lie in the principal ray class (mod 6). We will finish the algebraic 
side of this example by giving a nicer description of these primes. 

We need to look at the group structure of the 18 reduced residue classes 
(mod6). It is expedient to first look at integers of k2 (mod 2,\). There are 12 
congruence classes (mod 2,\) of which 6 are relatively prime to 2,\. Each of 
the 6 reduced residue classes (mod 2,\) splits further into 3 reduced residue 
classes (mod 6). Since all six units of k2 are incongruent (mod 2'\), the units 
give representatives of all the reduced residue classes (mod 2,\). Therefore every 
divisor of k2 which is relatively prime to 6 has a unique generator which is 
congruent to 1 (mod 2,\). The reduced residue class congruent to 1 (mod 2,\) 
splits into three reduced residue classes (mod 6) with representatives 1,1 + 
2'\, 1 + 4'\ and these three classes actually form a subgroup of the group of 18 
reduced residue classes which is isomorphic to G(6). 

The prime divisors (7r) of k2 which split completely from k2 to K are 
precisely those with one of the six generators == 1 (mod 6). Every second degree 
prime of k2 other than (2) satisfies this condition. For p -:f. 2, (p) is a second 
degree prime of k2 when p == 2 (mod 3) and thus when p == 5 (mod6). Therefore 
-p is a generator of (p) which is 1 (mod 6). This accounts for the half of the 
primes of Q which give three second degree primes of K. The interesting primes 
are the first degree primes. 

Theorem. Suppose that p is a prime of Q. Then p splits completely in K if and 
only if p is represented by the quadratic form 

Q(x,y) = x2 + 27y2 . 

Proof. Note that 2 and 3 aren't represented by Q(x, y). First suppose that p 
splits completely in K. Then p splits in k2 as p = (7r)Crr) and (7r) must split 
completely from k2 to K. Therefore, we may choose the generator 7r of (7r) so 
that 7r == 1 (mod6). In other words, we may assume that 7r is of the form 
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7r = X + 6y'\ . 

where in fact x == 1 (mod 6) as well. Hence 

(45) p = N"(7r) = x2 -18xy + 108y2 = (x - 9y)2 + 27y2 

is of the desired form. 
Conversely, suppose p is of the desired form. By changing variables, we 

may write 
p = N(x + 6y'\) = (x + 6y'\)(x + 6yA) . 

Let 7r = X + 6y'x, 1f = x + 6yA. Then p splits in k2 as (7r)(1f) and we wish to 
show that both (7r) and (1f) split completely from k2 to K. Since p is a prime 
other than 2 or 3, (45) makes it clear that neither 2 nor 3 divides x. Therefore 
x is relatively prime to 6 and so x == ±1 (mod 6). Thus one of ±(x + 6y,X) is 
congruent to 1 (mod 6) and generates (7r) and hence (7r) splits completely from 
k2 to K. Likewise (1f) splits completely in K. D 

To summarize a major part of what we have learned about Example Two, 
1/6 of the primes of Q split completely from Q to k = Q(21 / 3 ) and these are 
exactly the primes which can be written in the form p = x2 + 27y2. The first 
prime of this form is p = 31. Half the primes of Q split in k as the product of 
first and second degree prime factors; these are the primes p == 2 (mod 3). The 
remaining 1/3 of the primes of Q generate third degree primes of k. 

We close by looking at the L-functions for the cubic characters of G(6) 
in Example Two. For each integral divisor a relatively prime to 6, pick the 
generator congruent to 1 (mod2'x). We can then describe the three characters 
of G(6) from the table, 

1 1 + 2'x 1 + 4,\ 

1 1 

w 

This gives rise to three L-functions, with the trivial character giving (k2 (s). 
Hence 

(46) 

From the point of view of Artin L-functions, 1/J3 and ¢3 become characters 
of the order three subgroup G(K/k2) of G(K/Q). The induced characters are 

1/J; = ¢a * = X2 . 

Therefore the two L-functions are actually the same function, 
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This lets us check that the expressions for (K(S) in (34) and (46) agree. We also 
get a formula which was known to Dedekind and which was the first non-abelian 
precursor of Artin L-functions, 

We conclude by mentioning the tantalizing analytic determination of k from 
G(6), 

L'(O,1/J3) = _log(21/3 -1), 

which follows from (24) once we know that the class-number of k is one and 
that (21/ 3 - 1)-1 is the fundamental unit of k. 
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Chapter 7 

Galois Theory for Coverings 
and Riemann Surfaces 

by Eric Reyssat 

1. Coverings 

As part of algebraic number theory, Galois theory deals with greatest common 
divisors (gcd's, also called ideals) and their conjugates (Stark 1992). One studies 
how the automorphisms of a field K change a gcd, or a number, to a conjugate. 
The set of 'prime gcd's' of K may be viewed as a topological space, as is 
now classical in algebraic geometry. Without going into this, we mention it 
to motivate the fact that Galois theory may have a meaning in a topological 
context. And it does indeed, in the context of coverings. 

Here is one example of a covering (fig.l): 

x 

C~ B 

Fig. 1. 

More precisely and generally, let X, B be two curves, or surfaces, or general 
topological spaces. We put one above the other, which means that we choose a 
map X ~ B (see the down arrow in fig.l). Now there is a local condition for 



E. Reyssat 395 

our data (X, B, 11') to form a covering. The condition is that above each small 
piece U of B lay just copies of U ; more precisely, the map 11' : X -t B is a 
covering if B may be covered by open sets B = UUi such that 11'-1 (Ui) ~ Ui X Fi 
where each Fi is a non empty discrete topological space (think of it as being 
finite, or like Z, but not continuous). The space B is called the base space ofthe 
covering. Note that Fi is independent of i provided X is connected (it is not 
the disjoint union of several domains). In the following, we will always assume 
that X is a connected manifold (small pieces look like pieces of ~n, without 
any boundary point or singularities such as peaks or edges), and let F = Fi. 

The simplest example of covering is the so called trivial covering 

X=BxF. 

In this case, the local condition is even globally satisfied X is the disjoint 
union of copies of B (see fig.2) 

BxF 

B C~ S' 

Fig. 2. Trivial covering Fig. 3. Squaring the circle ! 

A less trivial example is given by fig .1. : the real line rolled up above the 
circle SI C C, the projection 11' being given by 11' : t f---+ e2i1rt (the number 11' is 
not the projection 11'!). In this case, the set F is Z. Another example is given 
by cutting the circle, turning one end once more and glueing it again (fig.3.). 

2 

This is described by the map 51 '=::: 51 from the unit circle onto itself, with 
the set F = {a, I}. 

The same construction works with the set of all non zero complex num-
.. Z f---+ z2 .. 

bers instead of the unit cIrcle, usmg the map C* ---t C*. ThIS IS harder to 
draw: think of cutting the complex plane along the positive real axis, turning 
it once and glueing it again without self intersection (this is not possible when 
embedded in the 3-space). The figure may be like fig.4. 
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{;" 

{;" 

Fig. 4. Fig. 5. Logarithmic slide 

Of course one can also complexify the exponential example by using the 
2i1rZ 

map C ~ e C* ,and get an infinite slide (see fig .5). Above 1 lie all the integers, 
and the set F is still IE. 

Given a covering X ~ B , there is above each point bE B a copy of F. 
This copy 7r-l(b) is called the fiber at b. One can think of its points as being 
conjugate to each other. For instance, the fiber at -1 for the above exponential 
example is the set {t + nnE IE} . The points t + n are conjugates. 

The degree of 7r is the cardinality of F (possibly infinite). One says that 
7r is finite or infinite according to its degree. If 7r is of degree n , it is called 
an n-sheeted covering. Hence the exponential gives an infinite covering and 
z 1-----+ z n is an n-sheeted covering. Note that we usually speak of the sheets of 
X although one cannot enumerate them globally (except for a trivial covering). 
For instance, on the covering of fig.5, one cannot say on which sheet lie the 
points 0 and 1 of C, but they definitely lie on different sheets. This is no more 
clear (nor interesting) for the points 1 and ~ whose projections on C* lie far 
apart. 

In the case of the complex exponential, C* is obtained as a quotient of C by 
a group IE. In general if a group a acts on a manifold X in a good way, then the 
natural map X --+ x/a is a covering (good means continuous - all x f---t gx 
are continuous - , properly discontinuous - each x has a neighbourhood Ux 

meeting only a finite number of conjugates gUx - , and free - gx i= x for 
9 i= 0). The fundamental theorem of Galois theory (see below) implies that all 
coverings of a manifold are of this form. 

For instance, a lattice A in C acts by translation and C --+ C/ A is an 
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infinite covering. The result of taking the quotient gives a torus (see fig.6 : 
identify the slanted lines then the horizontal ones): 

Fig. 6. 

The multiplication by n on C induces an n 2-sheeted covering CIA ----+ 

CI A; its fiber above x is 

if 
A = {mlwl + m2w2 

is the lattice generated by WI and W2. 

2. Galois Theory 

0::::: a, b ::::: n - I} 

Roughly speaking, Galois theory deals with the problem of passing from one 
sheet to another. More precisely, one tries to permute the sheets, using au­
tomorphisms : an automorphism of the covering 7r : X -t B is a bijective 
bicontinuous map 1> : X -t X preserving fibers: 7r 0 1> = 7r. 

4 
Example. The map z 1--+ iz is an automorphism of the covering C* ~ C* 
it doesn't change anything in the base. 

The automorphisms form a group AutB X transforming a point x E X into 
some conjugates of it like a lift going up and down. But the best lifts must be 
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able to lift us from any floor to any other one! This is the essential property of 
Galois fields, in which the automorphisms may transform any number (or gcd) 
to any conjugate of it ; this is why we shall say that a covering X -+ B is Galois 
if any point in X may be transformed to any conjugate by some automorphism: 
AutB X acts transitively on each fiber. In this case, the groupe G = AutB X 
is also called the Galois group of the covering. 

For instance : 
n 

II] The covering 81 ~ 51 is Galois since two points in a fiber differ only by 
an n-th root of unity w, and the map z r--+ wz is an automorphism. 
[]] Every 2-sheeted covering is Galois: The group of automorphisms is com­
posed of the identity map and the exchange of sheets. 

Now before stating the main theorem of Galois theory, we need the notion 
of a universal covering. 

Given a covering 7r : X -+ B, it is a trivial fact that any path drawn on 
the base B may be lifted to X : for any path 'Y on B from bo to b1 , and any 
point Xo of X above bo, there is a unique path r on X above 'Y starting from 
Xo (see fig.7). 

~~ • ". 1 

Fig. 7. 

Looking at paths is a way to construct the best covering of a manifold. 
First recall that the fundamental group 7r l(B) of B is the set of closed paths 
(that is having same origin and end) on B, up to continuous deformation. 

Example. In C* , one cannot transform continuously a path turning once around 
o into one which does not. One can only do it if the two paths turn the same 
(positive or negative) number of times around 0, so that 1f 1 (C*) = Z. 
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When one can contract any closed curve in X to a point (this means that 
7r 1 (X) = 0) then X is said to be simply connected. In the case of open sets of 
C, this simply means that there is no 'hole' in X. For instance, C and all discs 
are simply connected, but C* or a torus are not: the paths shown on fig.S are 
not contractible to a point. 

Fig.S. 

Theorem. Every (connected) manifold B has a covering 1r iJ -t B which 
is connected and simply connected. It has the 'universal' property of being a 
covering of any other covering p : X -t B of B in a natural way : there is a 
covering map q : iJ -t X making the following diagram commutative : 

X 
q 

/' 
iJ B 

In particular, this covering is essentially unique (two of them are isomorphic 
since each one is a covering of the other). 

The space iJ can be viewed as the set of all curves on B starting from a 
fixed point bo E B, up to continuous deformation. 

Definition. iJ is called the universal covering of B. 

Example. Since lR is simply connected, the covering lR -t S1 is the universal 
covering of the circle S1. In particular, it covers all the n-sheeted coverings 
S1 -t S1 given by the powers. 
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The heart of Galois theory for coverings lies in the following theorem, 
relating the automorphisms of B and the fundamental group 7r l(B). Note that 
there is a natural action of 7r l(B) on each fiber of the covering 7r : X ----t B 
since the lifting of a closed path on B to a covering x of B starts and ends at 
points of the same fiber. 

Theorem. (Fundamental theorem of Galois coverings) Let B be a connected 
manifold, and B its universal covering. Then: 
[JJ B is a Galois covering of B, and G = AutB(B) ~ 7r 1 (B). m The subgroups of G and the (connected) coverings of B are in natural 1-1 
correspondence, given as follows : To any subgroup H of G corresponds the 
natural covering B / H ----t B. Conversely, to a covering X ----t B corresponds 
the stabilizer H of any point Xo (or any fiber) in 7r 1 (B). This group H is also 
isomorphic to the fundamental group 7r 1 (X). m The covering B / H ----t B is Galois if and only if the subgroup H is normal 

in G. In this case there is an isomorphism AutB(B / H) ~ G / H. 

Remark. At this stage, the comparison with the algebraic theory (see Stark's 
1992; Section 1.4) shows clearly that the Galois theories for algebraic number 
fields and for topological coverings are but two different occurrences of one and 
the same concept. The analogue of the fundamental group 7r l(B) of some space 
B is the absolute Galois closure Gal(Q/Q). This group is far from being well 
understood and leads to interesting problems in number theory. 

Example. We have seen that 51 has Z as fundamental group and IR as universal 
covering with the map t I----t e2i7rt . Hence all coverings of 51 are given by 
subgroups of Z, which are the groups nZ (n 2: 0). For n = 0, the group 
H = {id} corresponds to the covering IR ----t 51 itself, and for n > 0 we get 

the cyclic covering Sl ~ S~, with Autsl 51 = Z/nZ. All coverings of 51 are 
Galois. 

For the same reason, the only coverings of the punctured unit disc 

D* = {z O<i z i<l}, 
2i7rZ 

are the universal covering h ~ e D* (where.\j is the Poincare upper half 
plane) and the cyclic coverings (which are Galois with cyclic Galois groups) 

z I----t zn 
D* ---+ D*· 

We will see more examples of coverings in the next Section. 

We end this Section by stating a basic property of universal coverings 
concerning the lifting of mappings: if Y is a simply connected manifold, and 
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f : Y ----t B is continuous, then f may be lifted to a map F : Y ----t iJ making 
the following diagram commutative: 

Moreover, if we choose any point y E Y, and any b E iJ above f(y) (that is 
p(b) = f(y)) then there is a unique map F : Y ----t iJ with the above property 
and satisfying F(y) = b. 

3. Riemann Surfaces 

3.1 Generalities 

A surface S is a space which can be covered by small discs looking like discs 
in IR2 or <C (see fig.9) : there are bicontinuous maps z : 1) ----t D(O, 1) from open 
sets 1) of S to the unit disc of C. 

Fig. 9. 

Such maps are called charts of S centered at z-I(O). Using a chart z, we 
can say that a function f : S ----t <C is analytic on 1) if f 0 z-l is. We can define 
in the same way the notion of a meromorphic function, a pole, the order of a 
zero or a pole, ... But to be consistent, these notions have to be independent of 
the choice of charts. For this, we cover S by charts with the property that on 
the overlapping of two discs, both meanings of analyticity are equal; such a set 
of consistent charts is called an analytic structure or a structure of a Riemann 
surface on S. It is not always possible to choose a Riemann surface structure on 
any S. The surface S has to be orient able for this; if S is compact, this is also 
sufficient, and if not it is still usually true (it is sufficient that S be orient able 



402 Chapter 7. Galois Theory for Coverings and Riemann Surfaces 

and triangulable). So each reasonable surface you can think of, except for the 
Klein bottle and the projective plane 1P'2(IR), has a Riemann surface structure. 

As an example, the quotient CIA of the complex plane by a lattice is a 
Riemann surface if one chooses the natural charts: we cover S by taking in C 
small discs with no two equivalent points (see fig.l0). 

Fig. 10. 

A meromorphic function on CIA is now a meromorphic function on C, 
periodic with respect to A (each point in A is a period). A classical example of 
this is the Weierstrass p-function : 

1 (1 1 ) 
p( z) = z2 + L (z - w)2 - w2 

A\O 

and its derivative p' (see Cohen 1990 for details) . 

In the case of Riemann surfaces, the classification of the possible univer­
sal coverings is very simple (at least the result is) since there are only three 
possibilities: 

Theorem. The universal covering X of a Riemann surface X is either C, or 
the projective line 1P'1(C), or the unit disc D which is also isomorphic to the 
Poincare upper half plane fj = {z E C; SJrnz > O}. 

In view of the fundamental theorem of Galois theory, every Riemann sur­
face X is isomorphic to the quotient XI G of its universal covering X by some 
group G of automorphisms of X, isomorphic to the fundamental group of X. 
One shows that this group acts with discrete orbits and without fixed points. 
But the automorphisms of the three surfaces mentioned in the above theorem 
are well known : 



Aut C = {z t---t az + b 

Aut IP,!(C) = PSL2 (C) 

= {z t---t az + b 
ez+d 

Aut.f) = PSL2 (IR). 
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a,bEC}, 

a, b, e, dEC, ad - be = I}, 

This allows to classify the Riemann surfaces X themselves, according to 
their universal covering: 

• 
• 

• 

x = 1P'1(C). In this case, X itself is isomorphic to 1P'1(C). 
X = C. Here G has to be a discrete group of translations, isomorphic 
to 0, Z or a lattice A, so that X is C or C/Z ~ C* or some torus C/ A. 
X = D. This is the case for all other Riemann surfaces. Each one 
corresponds to some subgroup of PSL2(IR) acting discretely and without 
fixed points on D. They are called Fuchsian groups. Three of these surfaces 
are of particular interest : they are the unit disc D itself, the punctured 
unit disc D* and the annuli Dr = {z E C ; 0 < Izl < r}. 

The seven Riemann surfaces just mentioned (the last one is in fact a class 
of Riemann surfaces parametrized by r) are the only ones corresponding to an 
Abelian group G. This means that they have an Abelian fundamental group 
7r 1 (X). Using the fundamental theorem, we see that all coverings of these seven 
(classes of) Riemann surfaces are Galois. 

Before leaving general Riemann surfaces, let us prove one more application 
of this theory of coverings, namely the little theorem of Picard: by the examples 
given above, it is easy to see that if a, b are two complex numbers, the universal 
covering of C\ { a, b} has to be D, so that any analytic function f : C --+ C\ { a, b} 
lifts to an entire function from C to the unit disc D. Hence, this lifting is entire 
and bounded (since D is bounded) so is constant by Liouville theorem. As a 
consequence, f is also constant, which proves the classical theorem of Picard: 
a non-constant entire function must take every complex value with at most one 
exception. 

3.2 Compact Riemann Surfaces 

We go back to compact Riemann surfaces. Topologically, any compact ori­
entable surface (recall that a Riemann surface is orient able ) is known to be 
homeomorphic to a 'sphere with 9 handles', which is also a torus with 9 holes 
(see fig.11). 

The fundamental group 7r1(X) of such a surface X is generated by 2g 
elements aI, ... , ag , b1 , ... ,bg with the single relation 

b -lb-l b -lb-1 1 al 1 all ... ag gag g = . 
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Fig.1l. 

One may represent aI, ... ,ag as 9 cycles on X each turning once around one 
hole, and bI , ... , bg as 9 cycles each passing through one hole. In particular 
1r 1 (X) is an Abelian group if and only if 9 :::; 1 ; in this case X is either pI 

or an elliptic curve, and all coverings of X are Galois. The number 9 is a very 
important topological invariant, called the genus of X. One way to compute it 
is to use any triangulation on X : if F, E, and V are the number of faces, edges 
and vertices of such a triangulation, the genus of X is given by the relation 

(1) 2 - 2g = V - E + F. 

Proposition. Verify using this formula that the Riemann sphere has genus 0 
and a torus has genus 1. 

Galois theory for Riemann surfaces requires the study of maps between 
Riemann surfaces. Let f : X --t Y be such a map. If z, t are two charts at 
Xo E X and Yo = f( xo) E Y, we say that f is analytic around Xo if the complex 
function to f is an analytic function of z in the usual sense: there is a converging 
power series satisfying 

00 

to f(x) = L anzn(x), 
no 

(note that no 2:: 1 since t is a chart at f( xo)). We say that f is a morphism if it 
is everywhere analytic. The first exponent no = exo (f) is called the ramification 
index of fat Xo, and f is said to be ramified at Xo, or Xo is a ramification point, 
if exo(f) > 1. 

Theorem. Let f : X --t Y be a non constant morphism between two compact 
Riemann surfaces. Then a) there are only a finite number of ramification points 
XI,···,Xk· b) f defines (by removing the 'bad' fibers) an n-sheeted covering 
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c) The number of points on each fiber 7r- I (y) (bad or not) is independent of 
the fiber (hence equals the number n of sheets), provided that we count the 
multiplicity as the ramification index: 

L ex(f) = n. 
xErr-l(y) 

We say in this case that f is a ramified covering, or a branched covering of 
degree n. 

The picture is given in fig.12. 

: f(xd 

Fig. 12. 

Remark. The terminology about coverings is somewhat dangerous. A branched 
covering is not a covering as defined earlier, unless there are no ramification 
points! 

Example. Given a complex elliptic curve E = Cj A, the Weierstrass 8:J function 
defines a ramified covering Z -+ 8:J(z) ofthe projective line pI by E of degree 2 : 
the elliptic curve E may be viewed as the set of points (8:J(z),8:J' (z)) in the 
projective plane p2, and to each value of 8:J( z) there usually correspond two 
points z and -z on E since the 8:J-function satisfies an equation of the form 
8:J ,2(z) = 48:J3(z) - a8:J(z) - b and one point when 8:J' = 0 or at 'infinity' (the 
point 0 E C/ A). 

We fix as above a morphism f : X -+ Y of compact Riemann surfaces. If 
we define X' = X \ {ramified fibers} and Y' = Y \ f ( {ramification points} ) , 
then every automorphism of X' preserving the fibers of 7r : X' -+ Y' extends 
to an automorphism of X preserving fibers. 
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We say that f : X -+ Y is a Galois (ramified) covering if the restriction 
f IX/: X' -+ Y' is a Galois covering. In this case, for every automorphism 
()' E AutYI X' = Auty X and every point Xo on X, the ramification indices 
e xo (f) and e"xo (f) are equal. 

Proof. We choose charts z on X and t on Y such that to f(x) = z(x)e"o. If 
u=(}'(x), then 

to feu) = to f (g-I(U)) 

= z (g-l(u)r"O 

but zg-l is a chart at uo. 

(since g-l E Auty X) 

o 

Example. Let's look at the map f : z 1-----+ z3 - 3z from X = pI to Y = pl. 
It induces a covering X' = <C \ {±I, ±2} -+ Y' = <C \ {±2} (see fig.I3). 

Fig. 13. 

Any automorphism ()' E Autxl Y' is analytic. As an analytic function, it 
has no essential singularity since it is injective, hence extends to a map pI -+ pI 
which is (almost everywhere) injective. Hence it is an automorphism of pl. But 
f is ramified at -1, and unramified at the point 2, which is in the same fiber. So 
there does not exist an automorphism g sending -Ion 2 (or a number near -1 
or a number near 2.). We conclude that this covering is not a Galois covering 
(compare with example two of Stark's lecture (Stark 1992». 

3.3 The Riemann-Hurwitz Formula 

Assume that f : X -+ Y is a non constant morphism of degree n. The Riemann­
Hurwitz formula will allow us to compute the genus of X in terms of the genus 
of Y and the ramification of f. To do this, we choose any triangulation on Y. 
By adding new vertices and edges, we may assume that the image by f of its 
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ramification points are vertices. Taking inverse images, we get a triangulation 
on X with Fx = nFy faces and Ex = nEy edges (since almost every point 
on Y has exactly n inverse images). The number of vertices on X is given by 
Vx = n Vy - 2::(ex - 1) since a point above y E Y has n - 2::!(x)=y(ex - 1) 
points above it. Computing the genus by the formula (1) given above finally 
shows 

Theorem. (Riemann-Hurwitz) Given a non constant morphism f : X -t Y of 
degree n between two compact Riemann surfaces, the genus gx of X and the 
genus gy of Yare related by the formula: 

2gx - 2 = n(2gy - 2) + L (ex(f) - 1). 
xEX 

Example. The covering z -t (~(z), ~'(z)) of pI by an elliptic curve E discussed 
above is of degree 2, and has four ramification points, necessarily of index 2. 
These are the four 2-torsion points on E (see Cohen 1990). This is consistent 
with the Riemann-Hurwitz formula which reads 

2.1 - 2 = 2(2.0 - 2) + 1 + 1 + 1 + 1 

An application of this is the estimation of the number of automorphisms of 
a Riemann surface X of genus at least 2. The automorphism group G = Aut X 
may be shown to be finite (using its action on the so-called Weiertrass points, 
and the existence theorem of Riemann-Roch - see Reyssat 1989). 

Let G = AutX. Then the quotient X/G is naturally endowed with a 
Riemann surface structure, and the map f : X -t X / G is a branched Galois 
covering of degree Card( G). All points of a fiber f- 1 (y) have the same ramifica­
tion index ey , and there are Card(G) of these points. This implies that the total 

e y 

ramification of the fiber is Card(G)(ey - 1) and the Riemann-Hurwitz formula 
e y 

gives 

2(gx -1) ~ CMd(G) {29X1G -2+ ~ (1- ,',) }. 

Now it is an exercise of elementary arithmetic to show that if, ~ 0 and ei ~ 2 

are integers such that the number t = 2, - 2 + 2: (1 - t) is positive, then 

t ~ 412. 

We summarize all this in the 

Theorem. (Hurwitz) Let X be a compact Riemann surface of genus g ~ 2. 
Then the group of automorphisms of X is a finite group with at most 84(g - 1) 
elements. 
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Remark. The equality t = 412 in the preceding inequality is attained in only one 
case, when ,= 0 and the set of ei 's is {2, 3, 7}. This case occurs for some curves: 
it is attained for the modular curve denoted by X(7) which is constructed by 
compactifying the quotient iJ/ r(7) of the Poincare upper half plane iJ by the 
modular group 

r(7) = { G!) E SL2(Z); G!) == G~) (mod 7)}. 
This curve has genus 3 and 168 automorphisms. It is linked to the beautiful 
tessellation of the unit disc by hyperbolic triangles with angles 7r /2, 7r /3, and 
7r/7. (see fig.14) 

Fig. 14. 

3.4 Curves and the Genus Formula 

We will also apply the Riemann-Hurwitz formula to the genus formula which 
gives the genus of a plane algebraic curve. For this we have first to study 
compact Riemann surfaces as function fields (which means in terms of poly­
nomials). For a compact Riemann surface X, we denote by M(X) the field 
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of meromorphic functions on X which are also the morphisms from X to pl. 
It's a non trivial fact that every Riemann surface (in particular the compact 
ones) carries non constant meromorphic functions, and the celebrated theorem 
of Riemann-Roch 'counts' them in the compact case. 

Theorem. (Siegel) If f is a non constant meromorphic function on a compact 
Riemann surface X, let n be its degree as a ramified covering of pl. Then the 
field M(X) is an algebraic extension of C(f) of degree n. 

This means that M(X) is the field C(f,g) generated by f and a second 
function g algebraically related to f by an irreducible polynomial equation 
P(f, g) = 0 of degree n. 

Example. For the elliptic curve E = Cj A, we know the parametrisation by 
Weierstrass functions gJ and gJ' which are related by an equation 

gJ' = 4gJ3 - g2gJ - g3. 

The theorem says that the field of all meromorphic functions on E is of degree 
2 on C(gJ) (since gJ has one double pole, the fiber above 00 has two points 
counting multiplicity, hence the degree of gJ is 2). But gJ' is not in this field 
C(gJ) (since it is an odd function and gJ is even), hence gJ' generates the field 
M(E) over C(gJ). We obtain finally that M(E) = C(gJ,gJ'): all meromorphic 
functions on E (they are also called elliptic functions associated with the lattice 
A) are rational functions of gJ and gJ'. 

By the above theorem, we see that to each compact Riemann surface X 
is associated (non uniquely!) a polynomial P. Conversely, for any complex 
irreducible polynomial P E qz,w] the set of points where P!(z,w) t= 0 or 
P:" (z, w) t= 0 is naturally a Riemann surface, and it gives a compact Riemann 
surface by adding a finite number of points. We see that to each compact 
Riemann surface X is associated its function field M(X), which in turn gives 
an algebraic plane curve of equation P(f, g) = 0, and from such a polynomial 
we construct a new Riemann surface Xp. It is a fact that Xp = X up to 
isomorphism. We thus close the loop. All this means that what can be stated 
in terms of compact Riemann surfaces (and morphisms between them) can 
also be stated in terms of function fields without loosing information, and 
conversely. The precise statement behind this idea is that there is an equivalence 
of categories between the compact Riemann surfaces and the function fields of 
one variable. As an example, let us state the following 

Theorem. Let f : X ---+ Y be a non constant morphism of compact Riemann 
surfaces. It induces by composition an embedding M(X) '--+ M(Y) so that we 
may speak of the extension M(Y)j M(X). Then f is a Galois covering if and 
only if the extension M(Y)j M(X) is Galois. This is also equivalent to the 
condition that the group of automorphisms Auty X (which is isomorphic to the 
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group AutM(y) M(X) of field automorphisms) has cardinality n = degree(f), 
which is also the degree of the extension M(Y)/ M(X). 

Now that we know that a compact Riemann surface 'is' also a curve Xp in 
the projective plane, we can state the genus formula. It can be shown that, by 
suitably choosing the functions f and g on X, the curve Xp can be constructed 
having only nodes as singularities: these are 'ordinary crossings' like on fig .15 
and not 'cusps' or even worse singularities like on fig .16. 

Fig.15. Fig.16. 

Theorem. If X is a plane curve of degree n in the projective plane jp'2 having 
only r nodes as singularities, then the associated Riemann surface is of genus 

(n-1)(n-2) 
g = 2 - r. 

To prove this, one applies the Riemann-Hurwitz formula to the morphism 

f : (f~g);=: ~1 of degree n (generically we see n points in each fiber). The 

ramification is given by the vanishing of the derivative f' giving the (n-l~(n-2) 
term, and the nodes giving the -r term (see Reyssat 1990). For instance, the 
well known Fermat curve of equation xn + yn = 1 is smooth (no singularity at 
all), hence is of genus (n-l~(n-2). 

Finally, coverings of Riemann surfaces also appear in the original defini­
tion of Riemann surfaces: we start with any power series L anzn at the origin. 
By analytic continuation, we can rewrite it at all the points of some domain 
of C that we take as large as possible. At some points the continuation is only 
possible if we use Puiseux series of the form E bn (z - zo) n / k. Then this set of 
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power and Puiseux series carries a Riemann surface structure, and (except for 
branch points where k ;::: 1) it is a covering of a part of Co Any Riemann surface 
is of this form (see Reyssat 1990). This theory appears in the study of mul­
tivalued analytic functions like solutions of differential equations, transformed 
by monodromy (Beukers 1990). 

4. Constructing Galois Extensions with given Galois 
Group 

We have seen how Galois theory may make sense for function fields of one 
variable as well as for number fields (see Stark 1992). Not only the theory has 
the same structure, but one can use one case to study the other. The geometric 
aspect of the function field case usually makes it easier, and gives information 
or intuition for the treatment of the algebraic case. One application of this 
connection is the problem of finding which finite groups occur as Galois group 
of number fields over Q. We start with qT) = M(jp'I). If tI, ... ,tk E jp'1, then 
the fundamental group 71"1 (jp'1 \ u{ t;}) is the group generated by k elements 
81, ... ,8k and the only relation 81 .. . 8k = 1. Since any finite group may be 
generated by k - 1 elements for some k, we can view it as a quotient of this 
fundamental group. By Galois theory, this means that any finite group G is 
the group of automorphisms of some covering X of jp'1 \ E for some finite 
set E, hence is the Galois group of some finite extension of qT) (since the 
automorphisms extend to jp'1). Then the procedure is to descend to Q(T) and 
then to Q itself. This is not an easy task and nobody knows how to make it 
work in full generality, but it does work for many groups (see Serre 1988). One 
difficulty in obtaining Galois groups over Q(T) from extensions of qT) lies in 
the fact that one must deal with extensions of Q(T) with ramification points 
which are not in Q, as shown by the following theorem of Debes-Fried (Debes 
and Fried 1990) : 

Theorem. Let G be a finite group. For G to be the Galois group of a regular 
extension Y of JR.(T) (that is Y n C = JR.) with only real ramification points, it 
is necessary and sufficient that G be generated by elements of order 2. 
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Chapter 8 

Differential Galois Theory 

by Frits Beukers 

1. Introduction 

Perhaps the easiest description of differential Galois theory is that it is about 
algebraic dependence relations between solutions of linear differential equa­
tions. To clarify this statement, let us consider three examples. First consider 
the differential equation 

(1.1) ( ) /I (1 7) I 11 z 1 - z Y + - - -z Y + --y = 0 
2 6 3600 

It is not at all obvious from its appearance that the solutions of Eq.(1.1) are 
algebraic functions over C(z). That is, any solution of (1.1) satisfies a polyno­
mial equation with coefficients in C( z) (As always, C( z) stands for the set of 
rational functions with complex coefficients). As a second example consider 

Again it may come as a surprise that any three independent solutions of (1.2) 
satisfy a homogeneous quadratic relation with coefficients in C (Beukers and 
Peters 1984). The third example is of a different kind. We know that the general 
solution of fzY + I· Y = g, I,g E C(z) reads 

Y = (J gexp(Jldz) + c) exp(- fl dz ). 

One might wonder whether or not the general solution of a second order linear 
differential equation can be written in a similar way, i.e. as a function involving 
only the coefficients of the differential equation, integrations and exponentia­
tions. It will turn out that the answer is in general 'no' (see Theorem 2.4.3). 
The main point to our present story is that phenomena and questions such as 
the ones above were at the origin of differential Galois theory. By the end of the 
19-th century such questions were studied by many people of whom we mention 
Halphen, (Fano 1900), (Picard 1898), (Vessiot 1892). One of the tools which 
slowly emerged was what we now call a differential Galois group. Here we give 
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an informal description of what a differential Galois group is. For the precise 
definitions we refer to Section 2.1. Consider a linear differential equation 

(1.3) Pn(z)/ry + ... + PI(Z)ay + po(z)y = 0, pi(Z) E C(z), 

where a = dj dz. Let YI, ... ,Yn be a basis of solutions and consider the field F 
obtained by adjoining to C(z) all functions aiYj (i = 0, ... ,n -1; j = 1, ... ,n). 
Notice that for any 9 = (gij) E GL( n, q (=invertible n X n matrices) the set of 
functions 2::;'=1 gijYj(i = 1, ... ,n) is again a basis of solutions. Let :r be the set 

( )[ (0) (0) (1) (n-I)] (aj ) ofallQECz Xl , ... ,Xn ,Xl , ... ,Xn suchthatQ ... , Yi, ... =0 
(we substituted aiYi for x~j»). The group 

will be called the differential Galois group of (1.1) and we shall denote it 
by Gala(FjC(z)). As we see, it respects all relations over C(z) which ex­
ist between the functions Yi and their derivatives and thus it plays a role 
as a kind of bookkeeping system of algebraic relations. In particular, if the 
ai Yi (j = 0, ... , n - 1; i = 1, ... , n) are algebraically independent over C( z), 
i.e. no Q's exist, we have Gala(FjC(z)) = GL(n, q and the differential Galois 
group is maximal. On the other extreme, it will turn out that Cala(FjC(z)) 
is finite if and only if all solutions of (1.1) are algebraic over C(z). In that 
case Gala(FjC(z)) is actually isomorphic to the ordinary Galois group of the 
corresponding finite extension of C(z). Moreover, it turns out that a differen­
tial Galois group is a linear algebraic group, the standard example of a Lie 
group over C (see Section 3 for more precise definitions). Unfortunately, the 
study of linear algebraic groups was only at a very primitive stage in the 19-
th century and could not be of any assistance. Nevertheless it did become 
clear that the differential Galois group is an important tool in algebraic de­
pendence questions. Then, at the beginning of the 20-th century the study of 
these questions became more or less obsolete. It might be interesting to phi­
losophize on the reasons for this silence. What matters for our story is that 
after preparatory work of (Ritt 1932), E.R.Kolchin published a paper in 1948 
which marks the birth of modern differential Galois theory (Kolchin 1948). In 
this paper, and other papers as well, Kolchin took up the work of the 19-th 
century mathematicians and addressed questions such as existence and unique­
ness of Picard-Vessiot extensions, and stressed the need for an approach which 
is entirely algebraic. Some years later r. Kaplansky (Kaplansky 1957) wrote a 
small booklet explaining the basics of the ideas of Ritt and Kolchin. For a quick 
and very pleasant introduction to differential Galois theory Kaplansky's book 
was practically the only reference up till now. In the meantime Kolchin had 
developed and generalized his ideas to a very large extent including systems 
of partial differential equations. This work culminated in two books (Kolchin 
1973), (Kolchin 1985). Unfortunately, these books are very hard to read for 
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a beginner. Remarkably enough, the development of differential Galois theory 
still remained in the hands of a small group of people until only a few years 
ago. It was then that Kolchin's ideas attracted attention from other fields of 
mathematics. One of the fields which could have benefited from differential 
Galois theory many years ago was transcendental number theory. Siegel (Siegel 
1929) discovered that there exists a large class of functions, satisfying linear 
differential equations, for which one can establish algebraic independence re­
sults of their values at certain points provided that the functions themselves 
are algebraically independent over C(z). The latter problem could have been 
approached via the determination of differential Galois groups. However, apart 
from a few remarks, the first papers in which this connection is made explicitly 
are (Kolchin 1968) and later (Beukers, Brownawell and Heckman 1988). Very 
recently, N. M. Katz (Katz 1990) wrote a book on exponential sums and dif­
ferential Galois theory, in which important parallels are drawn between l-adic 
representations of Gal(Q/Q) and differential Galois groups. Another such par­
allel can be drawn with the Mumford-Tate group of an Abelian variety. More 
generally, such parallels become clear if one views objects as differential equa­
tions, l-adic representations, etc. as examples of Tannakean categories (Deligne 
1987). However, in this article we shall not go that far but restrict ourselves to 
giving a basic introduction to Galois theory of ordinary differential equations 
with some applications. We shall introduce differential Galois groups and their 
basic properties in Section 2. We formulate definitions and theorems in a fairly 
general form using differential fields of characteristic zero and algebraically 
closed constant field. However, the reader who is not interested in such gener­
alities, is welcome to read C( z) or C( (z)) (that is the field of formal Laurent 
series in z) any time he or she meets the word differential field. The derivation 
a then becomes ordinary differentiation and the field of constants is C in this 
case. In Section 3 we provide some background on linear algebraic groups and 
refer to the existing literature for proofs and more general definitions. Finally, 
in Section 4 we illustrate techniques for the computation of differential Galois 
groups by computing them for the generalized hypergeometric equation in one 
variable. The mathematically inclined reader may regret the absence of proofs 
for the main theorems of differential Galois theory and other theorems as well. 
However, in this article we have not attempted to be complete, but only to 
give proofs at those places where we thought they might be instructive. For 
some easily accessible proofs of the main theorems we refer to (Levelt 1990) 
in combination with Kaplansky's book. Finally we mention the survey (Singer 
1989) and the book (Pommaret 1983). In the latter book the author takes up a 
theory for partial differential equations and gives some applications to physics, 
among which a claim for a new approach to gauge field theory. 
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2. Differential Fields and Their Galois Groups 

2.1 Basic notions 

The coefficients of our linear differential equation are chosen from a differential 
field. A differential field is a field F equipped with a map 8 : F --t F satis­
fying the rules 8U + g) = 8f + 8g and 8Ug) = f8g + g8r The map 8 is 
called a derivation and we use the notation (F, 8) for the differential field. The 
examples we shall mainly consider are (C(z), djdz) and (C((z)), djdz). Here, 
c((z)) stands for the (not necessarily converging) Laurent series in z, and djdz 
denotes ordinary differentiation with respect to z. A trivial and very uninter­
esting example is when F is any field and 8f = 0 for all f E F. The constant 
field of a differential field (F, 8) is the subfield consisting of all elements of F 
whose derivation is zero. Notation: CF or, if no confusion can arise, just C. 
In the remainder of this article we shall assume that the characteristic of C 
is 0, and that C is algebraically closed. For example, C = C. Two differential 
fields (Fl' 8d and (F2' Ch) are said to be differentially isomorphic ifthere exists 
a field isomorphism ¢> : Fl --t F2 such that ¢> 0 81 = 82 0 ¢>. The map ¢> is 
called a differential isomorphism. A differential isomorphism of a field to itself 
is called a differential automorphism. A differential field (:F, 8') is called a dif­
ferential extension of (F, 8) if F c :F and 8' restricted to F coincides with 8. 
Usually, 8' is again denoted by 8, and we shall adopt this habit. For example, 
(C((z)), djdz) is a differential extension of (C(z), djdz). Conversely, (F,8) is 
called a differential subfield of (:F, 8). Let Ul,"" Ur E :F. The smallest differ­
ential subfield of (:F, 8) containing F and the elements Ul, ... , U r is denoted 
by F < Ul, •.• , U r >. It is actually obtained by adjoining to F the elements 
Ul, ..• ,U r together with all their derivatives. Let (F, 8) be a differential field 
and consider the linear differential equation 

Usually, the solutions of (2.1.1) do not lie in F. So we look for differential 
extensions of (F, 8) containing the solutions. 

(2.1.1) Definition. A differential extension (:F,8) of (F, 8) such that 

z. C:F = CF, 
zz. :F contains n CF-linear independent solutions Yl, ... , Yn of Eq.(2.1.1) and 

:F = F < Yl,· .. ,Yn >, 

is called a Picard-Vessiot extension of Eq.(2.1.1). 

(2.1.2) Theorem. (Kolchin). Let (F,8) be a differential field. Assume, as we 
do throughout this article, that the characteristic of F is zero and that CF 
is algebraically closed. Then to any linear differential equation there exists a 
Picard- Vessiot extension. Moreover, this extension is unique up to differential 
isomorphism. 
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For a proof we refer to (Kolchin2 1948), (Kolchin 1973) or (Levelt 1990). 

(2.1.3) Remark. Note the similarity between a Picard-Vessiot extension of a 
linear differential equation and the splitting field of a polynomial. 

(2.1.4) Lemma. Let (F,8) be a differential field and Ul, ... ,Ur E F. Then 
Ul, ... , Ur are linearly dependent over CF if and only if the determinant 

vanishes. 

8r - l U r 

Proof. If Ul, ... , Ur are linearly dependent over CF then so are the columns 
of W( Ul, ... , u r ), hence this determinant vanishes. Suppose conversely that 
W( Ul, ... , u r) vanishes. By induction on r we shall prove that Ul, ... , Ur 
are linearly dependent over CF. First notice the identity W( VUl, . .. , vu r ) = 
vrW(Ul, ... , u r) for any v E F. In particular, if we take v = u;:-l (and assum­
ing U r i= 0), then 

W(Ul, ... ,Ur)/U~ = W(ul/u r, ... ,ur-l/ur,l) 

= (-lr- l W(8(ul/u r), ... , 8(ur-l/ur)). 

If r = 1, then our statement is obvious. Now suppose that r > 1. If U r = 0 
we have a linear dependence relation. So we assume U r i= o. The vanishing of 
W(Ul, ... ,ur) then implies the vanishing of W(8(ul/u r), ... ,8(ur-l/ur)). By 
induction hypothesis there exist al, a2, ... , ar-l E C F, not all zero, such that 
a l 8(ul/ur ) + ... + ar- l 8(ur-l/ur) = 0, hence atUl + ... + ar-lUr-l = arUr 
for some a r E C F, as asserted. 0 

(2.1.5) Remark. The determinant W( Ul, ... , ur ) is called the Wronskian deter­
minant of Ul, ... , U r . If Yl, ... , Yn is an independent set of solutions ofEq.(2.1.1) 
one easily verifies that 8W = -it W, where W = W(Yl, . .. , Yn). 

(2.1.6) Corollary. Let Yl, ... , Yn be a set of solutions of Eq.(2.1.1), linearly inde­
pendent over CF. Then any solution Y of Eq.(2.1.1) is a CF-linear combination 
of Yl, ... , Yn· In particular, the solutions of Eq.(2.1.1) form a linear vector space 
of dimension n over C F. 

Proof. Since Y, Yl, ... , Yn all satisfy the same linear differential equation of order 
n, we have W(y, Yl,.·., Yn) = o. Lemma 2.1.4 now implies that Y, Yl, ... , Yn 
are linearly dependent over C F, and our corollary follows. 0 
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2.2 Galois theory 

(2.2.1) Definition. Let (F,8) be a Picard- Vessiot extension of Eq.(2.1.1). The 
differential Galois group of Eq.(2.1.1) (or of F/F) is defined as the group of 
all differential automorphisms ¢ : F -+ F such that ¢f = f for all f E F. 
Notation: Gala(F / F). 

Let ¢ : F -+ F be an element of Gala( F / F). Let Y be any solution of 
Eq.(2.1.1). Since ¢ fixes F, we have 0 = ¢(Cy) = C(¢y). Hence ¢y is again a 
solution of Eq.(2.1.1). In other words, elements of Gala(F / F) act as CF-linear 
maps on the n-dimensional vector space V of solutions of Eq.(2.1.1). 

Conversely, it follows from the definitions that any linear map in GL(V) 
which respects all polynomial relations over F between the solutions of equation 
(2.1.1) and their derivatives, is an element of Gala(F/F). So we find, just like 
in the introduction, the following statement 

(2.2.2) Lemma. Let notations be as above, and let J be the set of polynomials 
[ (0) (0) (1) (n-I)] (i) Q E F Xl , ... ,Xn ,Xl , ... ,Xn such that Q ... ,8 Yi, ... = 0 (we 

have substituted 8i Yi for xii»). Then 

(2.2.3) Remark. The determinant of ¢ E Gala(F/F) can be read off from its 
action on W(YI, ... , Yn), since W( ¢Yl,· .. , ¢Yn) = det if>W(YI, . .. , Yn). 

We now state the principal theorems on differential Galois groups. Again, for 
their proofs we refer to (Kolchin1 1948) or (Kaplansky 1957). 

(2.2.4) Theorem. (Kolchin). The differential Galois group of a Picard- Vessiot 
extension is a linear algebraic group over the field of constants. Its dimension 
equals the transcendence degree of the Picard- Vessiot extension. 

The reader who is not familiar with algebraic groups might consult Section 3 
for a bare minimum of definitions, examples and results. The more ambitious 
reader might consult (Humphreys 1972 and 1975) or (Freudenthal and de Vries 
1969). 

The following result is known as the Galois correspondence for differential 
fields. 

(2.2.5) Theorem. (Kolchin). Let (F,8) be a Picard- Vessiot extension of (F, 8) 
with differential Galois group G = Gala(F / F). Then, 

z. If f E F is such that if> f = f for all <P E G, then f E F. 



F. Beukers 419 

u. Let H be an algebraic subgroup of G such that F = {J E FI</Jj = 
j for all </J E H}. Then G = H. 

m. There is a one-to-one correspondence between algebraic subgroups H of G 
and intermediate differential extensions M of F (i. e. F C M C F) given 
by 

H = Gala(F/M) M = {J E FI</Jj = j V</J E H} . 

tv. Under the correspondence given in iii) a normal algebraic subgroup H of 
G corresponds to a Picard- Vessiot extension M of F and conversely. In 
such a situation we have Gala(M/F) = G/H. 

Of particular interest among the subgroups of G is the connected component 
of the identity, GO (see Section 3). Its fixed field is an algebraic extension of 
F, since GO is a subgroup of finite index. A particular case is when G is finite. 
Then dim G is zero and, by Theorem 2.2.4, the extension F / F is algebraic. 
Clearly, the converse also holds. 

2.3 Examples 

In two of the examples below, we have considered differential equations over 
any differential field F. As we said before, the reader who does not like such 
generalities is welcome to substitute C(z) for F and C for CF , or any other 
familiar fields. 

(2.3.1) Example. 
ay = ay, a E F 

Let F be the Picard-Vessiot extension and u a non-trivial solution. Clearly, any 
element </J of G = Gala( F / F) acts as </J : u -+ AU for some A E C;. One easily 
checks that any algebraic subgroup of C; is either C; itself, or a finite cyclic 
subgroup of order m, say. In the latter case we see that </J: urn -+ urn for any 
</J E G. Hence urn E F and u is algebraic over F. 

(2.3.2) Example. 
ay=a, aEF, a#O 

This is obviously not a homogeneous equation, so instead we consider aa2 y = 
(aa)(ay). Letting u be a solution of ay = a, we easily see that 1, u form a basis 
of solutions of our homogeneous equation. Let F = F( u) be the Picard-Vessiot 
extension. Let </J E G = Gala(F / F). Then </Ju = au + 13 for some a,j3 E C F • 

Since a(</Ju) = a(au + 13) = aau = aa and a(</Ju) = </J(au) = </Ja = a we 
see that aa = a. Hence a = 1. Thus G is a subgroup of the additive group 

Ga = {( ~ ;) I A E CF}. One easily checks that an algebraic subgroup of Ga is 

either Ga itself or the trivial group. The latter case corresponds to u E F. Notice 
in particular, that if u ¢ F then G is one-dimensional and so, by Theorem 2.2.4, 
u is transcendental over F. 
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(2.3.3) Example. 

lId 
zy" + "2Y' - 4Y = 0 with (F,o) = (<C(z), d) 

A basis of solutions reads Yl = eVz , Y2 = e-vz . Hence the Picard-Vessiot 
extension is F = <C(.J z, eVZ ). Let ¢> E Gala(F I F). Then ¢>Yl = o.Yl + {3Y2, 
¢>Y2 = 'YYl + 8Y2 for certain a., {3, 'Y, 8 E e and 0.8 - {3'Y i- o. Moreover, Yl Y2 = 1. 
Hence ¢>(Yl )¢>(Y2) = 1, which immediately implies 1 = (o.Yl + {3Y2)( 'YYl + 8Y2) = 
o.'YY? + ({3'Y + (8)Yl Y2 + {38y~. Hence o.'Y = {38 = 0, {3'Y + 0.8 = 1. An easy 
computation now shows that 

(2.3.1) 

Since eVz is transcendental over <C(z), we have dim G=1. Moreover, via Galois 
correspondence, the sequence of fields <C( z) C <C(.J z) C F corresponds to the 
sequence of algebraic groups G :J G1 :J {I}, where G1 has index 2 in G. With 
all this information it is now a simple exercise to show that the inclusion sign in 
Eq.(2.3.1) is actually an equality sign. The connected component of the identity 

is precisely the group Gl, which equals {( ~ A~l ) I A E eX}. 

(2.3.4) Example. 

Y" + ~y' + Y = 0, with (F,o) = (<C(z), ~) 
This is the Bessel-equation of order o. A basis of solutions is formed by Jo(z) 
and Yo(z) = Jo(z)log z + fez), where fez) is some power series in z. Both 
Jo(z) and fez) have infinite radius of convergence. Let F be the Picard­
Vessiot extension and G its differential Galois group. One easily verifies that 
W(Jo, Yo) = liz E <C(z). Hence G C SL(2,C). Secondly, G acts irreducibly on 
the space of solutions. This can be seen as follows. Suppose G acts reducibly, 
that is, there exists a solution Y such that ¢> : Y -+ A(¢»Y for any ¢> E G. This 
means that y'ly is fixed under G, hence y'ly E <C(z). This is certainly not 
possible if Y contains logz. Hence we can take Y = Jo(z), and J~/Jo E <C(z). 
Again, this is impossible since Jo is known to have infinitely many zeros and 
J~/Jo would have infinitely many poles. So G acts irreducibly. Thirdly, Jo(z) 
is transcendental over <C( z) and Yo( z) is transcendental over <C( z, Jo (z)) for 
the very simple reason that logz is transcendental over the field of Laurent 
series in z. Hence the transcendence degree of F / <C( z) is at least two, im­
plying that dimG ~ 2. It is a nice exercise to verify that an algebraic group 
G C SL(2, C), acting irreducibly and of dimension ~ 2 is actually equal to 
SL(2, C). An alternative for the third argument is the following consideration. 
Let z describe a closed loop around the origin. After analytic continuation along 
this loop, we find that Jo -+ Jo and Yo -+ Yo + 27riJo. Hence G contains the 
element T = (~ 2~i). It is again a nice exercise to show that an algebraic group 
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G C SL(2,C), acting irreducibly and which contains 7, is precisely SL(2,C) 
itself. 

2.4 Applications 

(2.4.1) Theorem. Let F / F be a Picard- Vessiot extension corresponding to 
Eq.(2.1.1). Let V be its CF-vector space of solutions and G = Gala(F/F) 
the differential Galois group . Then the following statements are equivalent: 

z. There is a non-trivial linear subspace W C V which is stable under G. 
n. The operator £ factors as £1£2, where £1 and £2 are linear differential 

operators with coefficients in F and order strictly less than n. 

Moreover, yEW ¢:} £2Y = o. 
Proof. ii)=?i). Let W C V be the space of solutions of £2Y = O. Since 
o = <I>(£2Y) = £2(<I>y) for any <I> E G, the space W is clearly stable under 
G. i)=?ii). Let Vb . .. ,Vr be a basis of W. Consider the r-th order linear differ­
ential equation £2Y = W( V1, . .. ,Vr , y)/W( V1, . .. , vr ). Notice that the leading 
coefficient of £2 is 1 and the other coefficients are determinants in V1, ... , Vr 
and their derivatives divided by W( V1, ... ,Vr). It is easy to see that the coeffi­
cients of £2 are fixed under G hence, by Theorem 2.2.5(i), they lie in F. Notice 
that £2Vi = 0 for i = 1,2, ... , r. We also have £Vi = 0 for i = 1,2, ... , r. By 
division with remainder of differential operators we find £1 and £3 such that 
£ = £1£2 + £3, where £3 has order less than r, However, we have automati­
cally £3Vj = 0 for i = 1,2, ... ,T. Since Vb . .. ,Vr are linearly independent, this 
implies £3 = O. D 

We shall call Eq.(2.1.1) irreducible over F if £ does not factor over F. So 
Theorem 2.4.1 implies that Eq.(2.1.1) is irreducible if and only its differential 
Galois group acts irreducibly on the space of solutions. 

(2.4.2) Corollary. Let notations be as in the previous theorem. Then GO, the 
component of the identity in G, acts irreducibly on V if and only if £ does not 
factor over any finite extension of F. 

From ordinary Galois theory we know that the zeros of a polynomial P 
can be determined by repeatedly taking roots if and only if the Galois group 
of the splitting field of P is solvable. One of the nice applications of differen­
tial Galois theory is an analogue of this theorem for differential equations. 
A differential extension L of F is called a Liouville extension if there ex­
ists a chain of extensions F = Fo C F1 C F2 C ... C Fr = L such that 
Fi+1 = Fi < Ui > (i = 0, ... , r - 1), where Ui is a solution of an equation of 
the form ay = aiY or ay = ai, ai E Fi • In other words, Liouville extensions arise 
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by repeatedly solving first order differential equations (or, as some people say, 
by quadratures). From the next theorem it follows for example, that the Bessel 
equation of order zero (see Example 2.3.4) cannot be solved by quadratures. 

(2.4.3) Theorem. Let Cy = 0 be a linear differential equation over F and F / F 
its Picard- Vessiot extension. Then F is a Liouville extension if and only if 
Gale(F / F) is solvable in the sense of algebraic groups. 

Proof. Suppose L/ F is a Liouville extension. Then, via the differential Galois 
correspondence, the chain F = Fo C Fl C ... C Fr = L corresponds to the 
chain of algebraic subgroups Gale(F / F) = Go :::) G l :::) ... :::) Gn = {id}, and 
we have that Gi+l is normal in Gi for every i, 0 ~ i < r because Fi+d Fi is a 
Picard-Vessiot extension. According to Examples 2.3.1 and 2.3.2 the differential 
Galois group of Fi+d Fi is Abelian, hence G;/Gi+1 is Abelian. Thus we see that 
Gale(F / F) is solvable. Now suppose that G = Gale(F / F) is solvable. Then, by 
the Lie-Kolchin theorem, we can find a basis of solutions Ul,' .. ,Un of Cy = 0 
such that G acts on Ul, ... ,Un by upper triangular matrices. In other words, 
to every 9 E G there exist gij E CF such that 9 : Ui -t giiui + gi,i+lUi+1 + 
... + ginUn' In particular, G acts by multiplication with elements from CF on 
Un. Hence, BUn/Un is fixed under G and thus, BUn = aU n for some a E F. 
Put Vi = B(u;/un) (i = 1,2, ... ,n-1). Note that we can recover the Ui from 
the Vi by integration and multiplication by Un. Moreover, the group G acts 
on VI, .•. ,Vn-l again by upper triangular matrices. Hence we can repeat the 
argument and find that BVn-l = bVn-l for some b E F and G acts by upper 
triangular matrices on B( v;/vn-d (i = 1, ... ,n - 2). Repeating this argument 
n times we find the proof of our assertion. 0 

In what follows we shall often be interested in linear differential equations 
modulo some equivalence. 

(2.4.4) Definition. Two differential equations ClY = 0 and C2 y = 0 of order n 
are called equivalent over F if there exists a linear differential operator C such 
that CUI, ... ,Cun is a basis of solutions of C2Y = 0 whenever UI, ... ,Un is a 
basis of solutions of ClY = O. 

(2.4.5) Remark. It is not hard to show that if such an C exists, then there exists 
an inverse differential operator C' which maps bases of solutions of C2 Y = 0 
into bases of solutions of ClY = O. Namely, if we carry out a 'left' version of 
the Euclidean algorithm to C and Cl , we can find linear differential operators 
C', C3 over F such that C'C + C3 Cl = 1. Notice, that for any solution Y of 
C l Y = 0 we have C'Cy = y. Hence C' is the desired inverse. 
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2.5 Monodromy and local Galois groups 

In this part we shall make some comments on the case of differential equations 
over C(z), which is the most common one in mathematics and physics. For 
a proper understanding of this Subsection some knowledge of the concepts of 
monodromy, (ir )regular singularity, local exponents is desirable. Since this is 
not the place to introduce them, we refer to the introductory books (Poole 
1936) (Ince 1926) (Hille 1976). Let Cy = 0 be a linear differential equation over 
C( z ). Let Yl, ... , Yn be a basis of solutions around a regular point Zo. They 
are given by converging power series in z - Zo and can be continued analyti­
cally along any path avoiding the singularities of the differential equation. After 
analytic continuation along a closed loop r beginning and ending in Zo, the 
functions Yl, ... ,Yn undergo a linear substitution, called the monodromy substi­
tution corresponding to r. It is obvious that such a monodromy substitution is 
an element of the differential Galois group of the differential equation. Actually, 
for Fuchsian equations (having only regular singularities) more is true. 

(2.5.1) Theorem. Let Cy = 0 be a Fuchsian equation of order n over C(z) and 
M the group generated by the monodromy substitutions acting on the space of 
solutions. Let G be the differential Galois group of Cy = 0 and let M be the 
Zariski-closure of M in GL(n, C). Then G = M. 

Proof. First note that MeG and hence MeG. Thus it suffices to show that 
the field which is fixed by M is precisely C( z). However, this follows already 
from Riemann. Any function fez) of z, having trivial monodromy and such that 
at any Zo E CU { oo} there exists n E N such that (z - zo)n f( z) is bounded near 
Zo (denote z - Zo = 1 I z if Zo = 00) is necessarily rational. The boundedness 
follows from the fact that we have only regular singularities. 0 

From the fact that MeG one often obtains elements of G which deter­
mine the possibilities for G to a large extent. Consider Example 2.3.4 of the 
Bessel equation. There we had found the monodromy element T around z = o. 
Together with the fact that G acts irreducibly in this case, this already yielded 
8L(2, C) c G. An elegant way to study a differential equation over C(z) locally 
at a point Zo is to consider it as a differential equation over C«z - zo». Here, 
C( (z - Zo » denotes the field of (not necessarily converging) Laurent expansions 
in z - Zo, and we replace z - Zo by liz if Zo = 00. Let :F be the Picard-Vessiot 
extension of Cy = 0 considered as a linear differential equation over C(z), and 
let :F' be the smallest differential field containing both C( (z - zo» and :F. It is 
not hard to show that Gala(:F'/C«z - zo))) C Gala(:F IC(z». We note that :F' 
can only be strictly larger than C( (z - zo» if Zo is a singularity of Cy = O. So it 
makes sense to look only locally at singular points. The nice thing is, that for 
linear differential equations over C( (z - zo» there is a complete classification 
theory, developed by many people of whom we mention Fuchs, Frobenius, (Tur­
rittin 1955), (Levelt 1975) and very recently (Babbitt and Varadarajan 1989). 
In the following theorem we restrict ourselves to the case Zo = 0, the general 
case being entirely similar. 
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(2.5.2) Theorem. Consider an n-th order linear differential equation with coef­
ficients in q(z». Then there exist dEN, a diagonal matrix P(X) with entries 
in qX], a constant matrix A in Jordan normal form and a vector (II,· .. , In) 
with entries in q (z» such that 

(
Y.I) _ p(zl/d) A (~l) . - e z . . . 
Yn In 

yields a basis of solutions YI, . .. , Yn oj our differential equation. 

(2.5.3) Remark. The notation zA stands for the matrix obtained by expanding 
zA = eAlogz via the Taylor series for eX. For example, if A = diag( aI, ... , an) 
th A (al an) d·fA (Ol)th A (llogz) enz=z, ... ,z anI =00 enz=OI· 

(2.5.4) Remark. If A = diag( aI, ... , an) then the theorem states that there 
exists a basis of solutions ofthe form exp(Pj(zl/d»za. J;(z), J;(z) E q(z» (i = 
1, ... , n). Moreover, if z = 0 is a regular singularity, then all entries Pi(X) of 
P(X) are identically zero. 

(2.5.5) Remark. Notice that the Picard-Vessiot extension F' of our differential 
equation can be obtained by adjoining to q(z» the elements Zl/d, exp(Pj(zl/d» 
and the entries of zA. A simple consideration shows that diag( et1 , ..• , etn ) 

is contained in Gala(F'/q(z») for any n-tuple it, ... ,tn E e satisfying 
I:7=I ait; = 0 whenever I:~=1 a;pi(zl/d) = 0 with at, ... , an E Z. This el-
ement acts on the solutions Yi via Yi --t et'Yi (i = 1, ... , n). 

As an example take the Bessel equation again (Example 2.3.4). At z = 0, 
a regular singularity, we have two independent solutions, namely the Bessel 
function Jo(z) and the function Yo(z) = logzJo(z) + J(z), where J(z) is 
a power series in z with infinite radius of convergence (see (ErdeIyi et al. 

1953». Clearly, Gala(F'/C(z))) = {O n I .A E q. At z = 00, an irreg­

ular singularity, we have the solutions exp(iz)J(l/z) and exp(-iz)J(-l/z), 
where J(t) is an asymptotic expansion in t (see (Erdelyi et al. 1953). Clearly, 

Gala(F' /C((z») = {( ~ A~') I .A E eX}. Thus we find that Gala(F/C(z» con­
tains a unipotent subgroup and a semisimple subgroup. It must be noted that 
the irreducibility of the action of Gala(F /c(z» cannot be proved by such local 
considerations. This is a global property which must be decided in other ways 
(see Example 2.3.4 and also Section 4). It turns out that in many cases the 
existence of a special element, found by local considerations, and the fact that 
GalaCFjC(z»O acts irreducibly, found by other means, largely determine the 
group Gala(FjC(z». This is the basic principle used in Section 4, where we 
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determine Galois groups of hypergeometric differential equations. In Section 3 
the required tools from linear algebraic groups are provided. Finally we mention 
that instead of considering linear differential equations over q (z - zo)) we can 
consider them over the smaller field Can (( Z - Zo )), the field of locally converging 
Laurent series in z - zoo In the neighbourhood of regular singularities this does 
not yield anything new. If Zo is an irregular singularity however, it makes a big 
difference. Considerations over Can (( Z - zo)) give a finer classification and by 
studying the so-called Stokes phenomenon which then arises and one can some­
times obtain more information on the differential Galois group (see (Martinet 
and Ramis 1989) or (Duval and Mitschi 1989)). Moreover, Stokes's matrices 
form an important ingredient in understanding the local to global behaviour of 
differential Galois groups of equations having irregular singularities. 

3. Linear Algebraic Groups 

3.1 Definitions and examples 

In order to understand and be able to work with differential Galois groups, 
some knowledge of linear algebraic groups is indispensable. In fact, it is the 
strong classification theory of linear algebraic groups and the familiarity of 
their representations which lends its power to the study of linear differential 
equations. In this Section we collect some definitions and theorems on linear 
algebraic groups which will be useful in the explicit determination of differential 
Galois groups. Readers who are interested in a systematic account of linear 
algebraic groups and their representations should consult (Humphreys 1972 
and 1975) or (Springer 1981). In this Section we let k be an algebraically closed 
field of characteristic zero, for example, k = C. 

(3.1.1) Definition. A linear algebraic group over k is a subgroup G C GL(n, k) 
with the property that there exist polynomials Pr E k[Xl1, ... ,Xnn] (r 
1, ... ,m) in the n2 variables Xij (i,j = 1, ... ,n) such that G = ((%) E 

GL(n, k) I Pr(gl1, ... ,gnn) = 0 for r = 1, ... , m}. 

Examples: 

1. The special linear group SL(n,k) = {g E GL(n,k) I detg = I}. 
11. The orthogonal group G(n, k) = {g E GL(n, k) I tgg = Jd} where tg 

denotes the transpose of g. 
111. The special orthogonal group SG(n, k) = G(n, k) n SL(n, k). 
IV. The symplectic group Sp(2n,k) = {g E SL(2n,k) I tgJg = J} in even 

dimension, where J is any non degenerate anti-symmetric 2n X 2n matrix. 
v. The exceptional group Gz = {g E SL(7,k) I F(gx,gy,gz) = F(x,y,z)} 

where F is a sufficiently general antisymmetric trilinear form. 
VI. The group of upper triangular matrices U = {g E G L( n, k) I gij = 

o for all i < j}. 
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Vll. The unipotent group U1 = {g E U(n,k) I gii = 1 for all i}. In fact, any 
algebraic subgroup of U1 is called unipotent. 

Notice that the groups mentioned above are actually Lie groups over k. 
This follows very quickly from the definition of linear algebraic groups. Of 
course, over lR. for example, there exist other Lie groups such as SU(n, q. It 
should be emphasized here that this Lie group cannot be realized as the set 
of complex solutions of polynomial equations, since the definition of SU(n, q 
involves complex conjugation, which is not an algebraic operation over C. It 
follows from the definition that a linear algebraic group is an algebraic variety. 
It mayor may not be irreducible. To avoid confusion with 'irreducible' in the 
sense of representation theory we shall reserve, by slight abuse of terminology, 
the word 'connected' for 'irreducible' in the sense of algebraic geometry. The 
connected component of our algebraic group which contains the identity ele­
ment will be called the component of the identity and is denoted by GO. The 
group GO is a normal algebraic subgroup of G of finite index and the connected 
components of G are precisely the cosets with respect to GO. Moreover, any 
algebraic subgroup of G of finite index automatically contains GO. An example 
is SO( n, k) which is the component of the identity in O( n, k). The coset de­
composition consists of the determinant 1 and -1 matrices. Another example 
occurs in Example 2.3.3. 

(3.1.2) Definition. An m-dimensional rational representation of a linear alge­
braic group G c G L( n, k) is a homomorphism p : G --+ G L( m, k) with the 
property that there exist polynomials Pij E k[Xl1 , ... , Xnnl (i, j = 1, ... , m) 
and an r E Z such that (p(g ))ij = det(g Y Pij(gll, ... ,gnn)' In other words, up 
to a possible common factor of the form det(g y (r E Z), the homomorphism p 
is given by polynomials. 

Notice that if G c SL(n,k), any rational representation of G is given 
by polynomials, since det(g) = 1 for all 9 E G. We shall assume that the 
reader is familiar with elementary concepts such as irreducible representations, 
equivalence of representations, invariant subspace, etc. Let P : G --+ G L( m, k) 
be a rational representation, which may even be the standard inclusion G C 
GL(n,k). Then we have the dual representation pd : 9 --+ tp(g-l), again in 
dimension m. Let p' : G --+ G L( m', k) be another rational representation. Then 
the direct sum representation p E9 p' is the m + m' dimensional representation 
obtained by simply writing 

(p E9 P')(g) = (p(g) ) p'(g) . 

The mm' dimensional tensor representation p0p' is obtained as follows. Replace 
each entry p(g)ij (i,j = 1, ... , m) in p(g) by the m' x m' matrix p(g)ij x p'(g). 
This yields an mm' x mm' matrix which we call (p 0 p')(g). One easily checks 
that this yields a rational representation. By repeating these constructions and 
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taking subrepresentations of them, we obtain a wealth of new representations. 
For example, the r-th symmetric product and the r-th exterior power of a 
representation p are subrepresentations of p ® p ® ... ® p (r times). The adjoint 
representation of G is a subrepresentation of i ® id , where i : G -t G L( n, k) is 
a faithful representation. In this paper our main interest will be in reductive 
groups. Usually they are defined as algebraic groups whose unipotent radical 
is trivial. Here we prefer to use a definition which is more practical for our 
purposes. 

(3.1.3) Definition. Let G C GL(n, k) be an algebraic group and p : G -t 

G L( m, k) a faithful rational representation. We call G reductive if p is com­
pletely reducible, i.e. km = VI EB ... EB Vr , where the Vi are irreducible p(G)­
invariant subspaces. 

That this definition does not depend on p is shown by the following theo-
rem. 

(3.1.4) Theorem. Any rational representation of a reductive group is completely 
reducible. 

A proof that our definition is equivalent to the usual definition, can be 
found in (Beukers, Brownawell and Heckman 1988, Appendix). It relies heavily 
on the Lie-Kolchin theorem. It is clear that Theorem 3.1.4 greatly simplifies 
the study of representations of reductive groups. A reductive group is called 
semi-simple if its centre is finite. In particular, a reductive group G c S L( n, k) 
which acts irreducibly on k n is automatically semi-simple since, by Schur's 
lemma, elements of the centre of G are scalar, of which there exist only finitely 
many in SL(n, k). 

3.2 Theorems 

The following statements give us very easy criteria to recognize algebraic groups 
from the occurrence of certain typical elements. They are taken from (Katz 
1990), where the Lie algebra versions are given. In all theorems of this Sub­
section we let G C GL(V) be a reductive, connected algebraic group acting 
irreducibly on the finite dimensional vector space V. The notation C· G stands 
for the group obtained by taking all products of elements of some suitable 
scalar group C with elements from G. The notation diag( d l , ... , dn ) will stand 
for the n X n matrix having the elements dl , ... ,dn on the diagonal and zeros 
at all off-diagonal places. 

(3.2.1) Theorem. (0. Gabber) Let Dc GL(V) be a group of diagonal matrices 
such that dGd- 1 = G for all d E D. Consider the diagonal group T consisting 
of all diag(tl'" . ,tn ) E GL(V) such that titj = tkt/ whenever didj = dkd/ for 
all diag(dl, ... , dn ) E D. Then TO C C· G. 
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The proof of this theorem is based on the fact that derivations of semi­
simple Lie algebras are inner. The following three theorems rely heavily on the 
classification theory of semi-simple Lie algebras. Theorem 3.2.2 is a collection 
of results found by Gabber, Kostant, Zarhin, Kazhdan-Margulis, Beukers and 
Heckman and undoubtedly many other people, while Theorems 3.2.3 and 3.2.4 
were found by O. Gabber with the purpose of determining differential Galois 
groups. 

(3.2.2) Theorem. Let D C GL(V) be such that dGd- 1 = G, Vd ED. Then 

z. if D contains diag(A, 1, ... ,1) with A "# ±1, then G = C· SL(V) (i.e. 
G = SL(V) or G = GL(V)). 

zz. if D contains diag( -1,1, ... ,1) then G = C· SL(V) or G = C· SO(V). 
m. if D contains an element with 1 on all diagonal places and 0 at all other 

places with precisely one exception, then G = C· SL(V) or G = C· Sp(V). 
w. if D = {diag(A, A-I, 1, ... ,1) I A"# O} then G = C·SL(V) or G = C·Sp(V) 

or G = C· SO(V). 

(3.2.3) Theorem. (0. Gabber) Let D C GL(V) be such that dGd- 1 = G, Vd E 
D. Then 
z. if D = {diag(.x,.x, A-I, A -1,1, ... , 1) I A "# O}, then we have the following 

possibilities: 

G = C· SL(V) or C . SO(V) or C . Sp(V). 
G = C· (SL(2) x (SL(k) or SO(k) or Sp(k))) with k = dim V - 2 and 
in standard tensor representation. 
G = C· G2 in 7 -dimensional standard representation. 
G = C . SO(7) in 8-dimensional spin representation. 
G = C· SL(3) in 8-dimensional adjoint representation. 
G = C· (SL(3) x SL(3)) in 9-dimensional standard tensor representa­
tion. 

n. if D = {diag(A,p" AP" A-I, p,-I, (Ap,)-l, 1, ... , I)}, then we have the same 
possibilities as in the previous case, except that in the second possibility 
only k = 4 is allowed. 

(3.2.4) Theorem. (0. Gabber) If dim V is a prime p, then G has the fol­
lowing possibilities, C· SL(V), C . SO(V), C· G2 (only when p = 7), 
C· symmP - 1 (SL(2, k)), where symmP- 1 stands for the (p - I)-the symmetric 
power of the standard representation of SL(n, k). 

Notice that all the above criteria require that G be a connected group 
acting irreducibly on V. Without either of these requirements the theorems are 
false. When determining the differential Galois group of a given linear differen­
tial equation in practice, it is usually not too hard to decide that the differential 
Galois group acts irreducibly (see Theorem 2.4.1). However, connectedness is 
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harder to check, and very often G is not even connected. So one usually stud­
ies GO, the component of the identity. Now the problem is to check that GO 
acts irreducibly on V. In some cases, like the hypergeometric equation (see 
Section 4) this is doable, but in other cases it may be a very tedious job. The 
following theorem partly avoids these problems at the cost of determination of 
irreducibility of higher order differential equations. 

(3.2.5) Theorem. Let G C GL(V) be a linear algebraic group such that G modulo 
its scalars is an infinite group. Then the following statements are equivalent, 

z. G acts irreducibly on the symmetric square S2V of v. 
zz. G = c· SL(V) or G = c· Sp(V). 

A proof of this theorem can be found in (Beukers, Brownawell and Heck­
man 1988, Appendix). 

4. Hypergeometric Differential Equations 

4.1 Introductory remarks 

Let p, q E ]\f, q 2:: p and a1, ... ,ap ; (31, ... ,(3q E C. For the moment, take (3q = 1 
and (3; 1. Z::;o (i = 1, ... , q). The generalized hypergeometric function in one 
variable z is defined by 

(4.1.1) 

where (a)n = a( a + 1) ... (a + n - 1) is the Pochhammer symbol. The adjective 
'generalized' refers to the fact that it is a generalization of the classical case 
q = 2, which was already studied by Euler, Gauss and Riemann. See (Erdelyi 
et al. 1953), (Klein 1933) or (Gray 1986). Note, that if a; E Z::;o for some i, 
then pFq-1 is a polynomial. When q > p the radius of convergence of (4.1.1) is 
infinite. When p = q and pFq-1 is not a polynomial, the radius of convergence 
of (4.1.1) is one. When specializing a;,(3j we obtain a large number offamiliar 
functions which occur throughout mathematics and physics, particularly in the 
case when q = 2, p:::; q. We give some examples: 

1. 

where Jo is the Bessel function of order zero. 
11. 
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111. 

2Fl ( 1 1 a I Z) = (1 - z)-a . 

IV. 

F (-n n + II.!-=-:.) - P ( ) 21 1 2 - nX, 

where Pn is the Legendre polynomial of degree n. 
v. 

IFI (~/r;lx2) = (-I)m(2::)!H2m(X), 

where H2m(X) is the Hermite polynomial of degree 2m. 

Let now a;,(3j (i = 1, ... ,p;j = 1, ... ,q) be arbitrary complex num­
bers. Throughout this Section we write a = z(d/dz). Consider the following 
differential equation of order q, 

q p 

(4.1.2) Il(a + (3j -1)F = z Il(a + a;)F 
j=1 ;=1 

which we call the hypergeometric differential equation. Let f( z) be any solution 
of the form 

(4.1.3) ao = 1 

Substitution of (4.1.3) into (4.1.2) yields A = 1- (3; for some i and the recursion 
relation 

IU=l(n + >. + a;) 
an +l = n'=I(n+A+(3j)an 

We thus see that solution (4.1.3) is in fact 

(4.1.4) I-ft; F. ( 1 + al - (3; 
zp q-l 1 + (31 - (3i .v. 

1 + ap - (3; I z) 
1 + (3q - (3; 

where v denotes suppression of the term 1 + (3; - (3;. In particular, when (3q = 1 
we see that 

pFq-l (;~ (3:~1 I z) 

is a solution. Whenever (3j - (3i E Z for some i,j, the function (4.1.4) may 
not be well defined since the coefficients may become infinite. In that case the 
functions (4.1.4) do not give a basis of solutions of (4.1.2) and it turns out, that 
solutions containing log z also show up. If, on the other hand, (3i - (3j ~ Z for 
all i,j, then the functions (4.1.4) do form a basis of solutions of (4.1.2). There 
are some crucial differences between the cases p = q and p < q. As remarked 
already, the radius of convergence of the hypergeometric function with p = q is 
generally 1, and with p < q it is infinite. A reason for this shows up if we write 
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out (4.1.2) explicitly. In the case p = q the equation has three singularities 
0,1,00 and it is a Fuchsian equation. A solution around z = ° usually does not 
converge beyond 1 and so its radius of convergence is 1. In case p < q there are 
only the singularities 0,00 and 00 is an irregular singularity. The monodromy 
in this case is not very interesting since it is the image of the fundamental 
group 7I"} (C \ {o}) ~ Z, and thus cyclic. The differential Galois group will carry 
much more information in this case. When p = q however, our equation is 
Fuchsian and according to Theorem 2.5.1 the monodromy group determines 
the differential Galois group. We also have the following theorem. 

(4.1.1) Theorem. (Pochhammer) Suppose p = q. Then there exist p - 1 linearly 
independent holomorphic solutions of Eq.(4.1.2) in a neighbourhood of z = 1. 

A proof can be found in (Beukers and Heckman 1989). In fact, Fuchsian 
hypergeometric equations are characterized by this property. 

(4.1.2) Theorem. Suppose we are given a Fuchsian differential equation over 
C(z) of order n which has the singularities 0, 1, 00 and no others. If this equation 
admits n - 1 linearly independent holomorphic solutions in a neighbourhood of 
z = 1 then it is equivalent over C( z) to an equation of the form Eq.( 4.1.2) with 
p = q = n. 

A consequence of all the above is, that in the case p = q the local mon­
odromy matrix aroud z = 1 has n - 1 eigenvalues 1 with corresponding eigen­
vectors. Such a matrix is called a pseudorefiection (if the n-th eigenvalue would 
be -1 we would have had a true reflection). Its Jordan normal form is either 
diag(>., 1, ... ,1) with>' # 1 or a matrix with 1 on the diagonal places, a non 
zero element at the place 1,2 and zeros everywhere else. The fact that the local 
monodromy around z = 1 is generated by a pseudoreflection is crucial in the 
determination of the differential Galois group in case p = q. The rest of this 
Section will be devoted to a sketch of a systematic treatment of the differential 
Galois group of a hypergeometric differential equation. 

4.2 Reducibility and imprimitivity 

Recall (Subsection 2.4) that a differential equation is called irreducible over 
C(z) if its corresponding differential operator does not factor over C(z). If 
:F/C(z) is the corresponding Picard-Vessiot extension, then it follows from 
Theorem 2.4.1 that a differential equation is irreducible over C( z) if and only 
if its differential Galois group Gala(:F/C(z)) acts irreducibly on the space of 
solutions. 

(4.2.1) Lemma. Eq.(4.1.2) lS irreducible over C(z) if and only if (}:i # f3j 
(mod Z) for all i,j. 
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Proof. Here we shall prove that ai =I=- {3j (mod Z) for all i,j implies irre­
ducibility. An elementary proof of the converse can be found in (Katz 1990) or 
(Beukers and Heckman 1989). Suppose Eq.(4.1.2) has a non-trivial factoriza­
tion LIL2Y = O. Usual theory shows that L2Y = 0 has a solution of the form 
ZA 2::%':0 akzk. It is automatically a solution of Eq.(4.1.2) and the arguments 
from Subsection 4.1 show that it is of the form ( 4.1.4). This implies the existence 
of a hypergeometric function with parameters, say, /1>1, ... ,/1>p; VI, ... ,Vg Vg = 1 
and /1>i - Vj =I=- Z Vi, j which satisfies a linear differential equation of order < q. 
Writing an for the coefficients of the power series of this function, we deduce 
such a differential equation from the existence of a non trivial recurrence for 
the an of the form 
(4.2.1) 

Ak(n)an+k + A k- 1 (n)an+k-l + ... + Al (n)an+l + Ao(n)an = 0, Vn ~ 0, 

where the Ai(n) are polynomials in n of degree < q and an =I=- 0 Vn ~ O. Since 
an = (/1>I)n··· (/1>p)n/(vdn··· (Vg)n for all n, the quotients an+;/an are rational 
functions in nand Eq.( 4.2.1) is equivalent to 

Ak(x)IU=I(/1>i+X)···(/1>i+x+k-1) + ... +Ao(x)-O 
ITj=I(Vj+x) ... (vj+x+k-1) -

Here, x is some arbitrary variable replacing n. Since /1>i - Vj ¢ Z for all i,j and 
degAk < q, the left most term has for some j a pole of the form x = 1- k - Vj 
which none of the other terms possesses. Hence relation (4.2.1) cannot exist, 
which implies our assertion. 0 

For the following lemma, recall Definition 2.4.4 on the equivalence of linear 
differential equations . 

(4.2.2) Lemma. Let H and H' be two irreducible (over Qz)} hypergeometric 
equations with parameters aI, ... ,ap ; {31, ... , {3g and a~, ... , a~l; {3~, ... ,{3~1 re­
spectively. Then H and H' are equivalent over Q z) if and only if p = p', q = q' 
and, after renumbering if necessary, ai == a;{mod Z} {3j == {3j{mod Z} for 
i = 1, ... , p; j = 1, ... , q. 

Proof. We shall only show that ai == a;(mod Z), {3j == {3j(mod Z) for all 
i, j implies the equivalence. Let V( aI, ... , ap; {31, ... , {3q) be the solution space 
ofH. Notice that (8+adf E V(al, ... ,ak + 1, ... ,ap;{31, ... ,{3q) for every 
f E V( aI, ... , ap; {31, ... , {3q). Moreover, 8 + ak is a ((>linear map. Its kernel, 
which is nothing but the one dimensional space spanned by Z-Oik, is contained 
in V( aI, ... , ap; 131, ... ,f3q) if and only if ak = 131 - 1 for some l. Hence, un­
der our assumptions, the systems with parameters al, ... , ap; {31, ... , {3q and 
aI, ... , ak + 1, ... , ap; {3l, ... , {3q are equivalent. An isomorphism ofthe solution 
spaces is given by the differential map 8+ ak. Similarly, the map 8+ {3k -1 maps 
V( aI, ... ,ap; {3l, ... , {3q) bijectively onto V( aI, ... , ap; {31, ... , {3k - 1, ... ,{3q). 
So, by using the operators 8 + ak, 8 + {3k - 1 and their inverses one can shift 
the parameters ai, {3j freely by integers. 0 
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An important consequence of Lemma 4.2.2 is that the differential Galois 
group in the irreducible case depends only on the parameters mod Z. From now 
on we shall assume that our hypergeometric differential equation is irreducible. 
We now go over to imprimitivity. Let V be a vector space and G a group 
acting on V in an irreducible way. We shall say that G is imprimitive on V 
if there exists a direct sum decomposition V = VI EB ... EB Vm (m > 1) such 
that G permutes the Vi. If such a decomposition does not exist we call G 
primitive on V. Let V be the vector space of solutions of Eq.(4.1.2) and G its 
differential Galois group . We have already assumed that G acts irreducibly 
on V. There are two more or less obvious ways in which G is imprimitive on 
V. They are known as Kummer induction and (inverse) Belyi induction, using 
Katz' terminology. Kummer induction arises as follows. Consider Eq.(4.1.2) 
and replace z by (zl/d/dP- q, where d is a natural number and (any d-th root 
of unity. We obtain 

(4.2.2) 

where 
P 

B = II(8+ d)· 
}=1 

One easily verifies the following operator equation, 

Notice that 
1 d-l q ( (3. - 1 k) 

z(z-;rA)d = II II 8+ -'- --
. d d 

k=O .=1 

(z;8)' = z llQ (8+ ~ +~) 
Hence, Eq.( 4.2.2) is a factor of the hypergeometric differential equation 1{ with 
parameters 

al al + 1 al + d - 1 a2 a p + d - 1 (31 (31 + 1 (3q + d - 1 
d'--d-'···' d 'd'···' d ;d'--d-'···' d 

More precisely, the direct sum of the solution spaces of Eq.(4.2.1) taken over 
all d-th roots of unity (, is precisely the solution space of 1{. In particular, if 
h(z), ... , Jq(z) is a basis of solutions of Eq.(4.2.1), then Ji((zl/d /dP- q) (i = 
1, ... , q, (d = 1) is a basis of solutions of 1{. Moreover, G, the differential Ga­
lois group of 1{ permutes the solution spaces of Eq.( 4.2.1) for different (, since 
G acts on ZI/d by multiplication with d-th roots of unity. So, G is imprimitive. 
Notice that the parameter set of 1{ has the property that modulo Z this ·set 
does not change if we add l/d to all parameters. 
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(4.2.3) Definition. A hypergeometric differential equation with the parameters 
0:1, ... , O:p; 131, ... ,j3q is called Kummer induced if it is irreducible and if there 
exists a number dEN such that modulo IE we have equality of the following 
sets 

{0:1 + ~, ... ,O:p +~} == {O:I, ... ,O:p}(mod IE) 

{j31 + ~, ... ,j3q + ~} == {j3I, ... , j3q}(mod IE) 

By the remarks made above, its differential Galois group is imprimitive. 
A study of the differential Galois group can now be carried out by studying 
the differential Galois group of the hypergeometric equation from which it is 
induced. Belyi induction arises as follows. Let a, bEN and define the algebraic 
function t(z) of z by z = ,),ta(1-t)b, where,), = (l+b/a)a(l+a/b)b is chosen such 
that branching takes place only above z = 0,1,00. Now take A, /l E C. Then 
tA(1_t)iL satisfies the hypergeometric differential equation of order q = p = a+b 
in z with parameters A,A + l/a, ... ,A + (a -1)/a,/l,/l + l/b, ... ,/l + (b-
1)/b; v, v + 1/(a + b), ... , v + (a + b -1)/(a + b), where v = (aA + b/l)/(a + b). 
Inverse Belyi induction is a small variation on the above theme. With the same 
notations, let Z-1 = ')'ta(1- t)b, Then the function tA(1- t)iL satisfies almost 
the same hypergeometric differential equation , the difference being that the 
0:- and j3-parameters are now interchanged. 

(4.2.4) Definition. A hypergeometric differential equation is called Belyi induced 
if it is irreducible and if there exist A, /l, vEe and a, bEN such that aA + b/l = 
(a + b)v and the parameter set modulo IE is given by 

1 a-I b-l 1 a+b-l 
A,A + ~, ... ,A + -a-,/l,···,/l + -b-;v,v + a + b""'v + a + b . 

The equation is called inverse Belyi induced if, with the same notations, its 
parameter set modulo IE reads 

1 a+b-l 1 a-I b-l 
v,v+ --b""'v + b ;A,A+ -, ... ,A+ --,/l, ... ,/l+ -b-a+ a+ a a 

(4.2.5) Theorem. Let G be the differential Galois group of Eq.(4.1.2), which 
we assume to be irreducible. Then G is imprimitive if and only if Eq.( 4.1.2) is 
either Kummer induced or Belyi induced or inverse Belyi induced. 

This theorem is not stated as such in either (Katz 1990) or (Beukers and 
Heckman 1989). The proof is fairly technical, but its ingredients are contained 
in the two references mentioned. 
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4.3 The primitive case 

(4.3.1) Theorem. Let G be the differential Galois group of Eq.(4.1.2), which we 
assume to be irreducible. Suppose G is primitive. Then either GO acts irreducibly 
or GO consists of scalars, in which case we have either GO ~ ex or GO = {id}. 

(4.3.2) Remark. From the proof of this theorem one sees that the latter cases 
can only occur when p = q. In such a case we have that G modulo its centre is 
finite. Theorem 4.3.3 will describe precisely when this happens. 

Proof. First assume p < q. Suppose GO acts reducibly. The fixed field KICCz) 
corresponding to GO is algebraic, and since 0,00 are the only singularities, it 
must be of the form K = CCzI/e) for some e E N. But then GIGo is cyclic. 
Letting W be an irreducible invariant subspace of GO, one sees that a maximal 
subset of distinct subspaces in {gWI g E G} yields a system of imprimitivity 
for G. Hence G is imprimitive, contrary to our assumption. Thus we conclude 
that GO acts irreducibly. Now assume p = q. This case is more tedious due 
to the occurrence of equations which have only algebraic solutions. We sketch 
the proof here, and rely on results from (Beukers and Heckman 1989). Let 
H be the monodromy group of Eq.(4.1.2) and let G be its Zariski closure in 
GL(n). In H we have the so-called reflection subgroup Hr which is generated 
by the elements {hhlh-Ilh E H}, where hI is the local monodromy element 
around the point z = 1. According to our remarks in Subsection 4.1, hI is 
a pseudo reflection. Let ho be the monodromy element around z = O. It is 
well known that H is generated by hI, ho. So, HI H r is generated by ho, i.e. 
HIHr is cyclic. In (Beukers and Heckman 1989, Theorem 5.14) it is shown 
that if H r is imprimitive, then H r is finite. Since HI H r is cyclic this implies 
that GO = {id} or ex. Now suppose that Hr is primitive. Then (Beukers and 

Heckman Prop.6.3) states that H~, component of the identity of the Zariski 
closure of Hr, is either trivial or irreducible on V. This proves our assertion. 0 

The following theorem enables one to recognize the cases of Theorem 4.3.1. 
We say that two sets of points A = {al,"" an} and B = {b l , ... , bn } with 
lad = Ibj I = 1 for i, j = 1, ... ,n interlace on the unit circle Izl = 1 if, following 
this circle clockwise, one meets the points of A and B alternately. 

(4.3.3) Theorem. Suppose p = q. Then G modulo its centre is finite if and only 
if the following conditions hold, 

z. 38 E e such that J.Li = Qi + 8 E Q and IIj = /3j + 8 E Q for all i, j. 
n. Letting N be the common denominator of J.Li, IIj, the sets {exp(27rihJ.Lk) 1 k = 

1, ... ,q} and {exp(27rihIl1Il = 1, ... ,q} interlace on the unit circle Izl = 1 
for all hEN with 1 ::; h ::; N, gcd( h, N) = 1. 

In particular, if 8 E Q then G is finite. 
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(4.3.4) Remark. In case p = q = 2 a complete list of all cases where G is finite 
was given by H.A.Schwarz (Schwarz 1873). For the case p = q > 2 a complete 
list was determined in (Beukers and Heckman 1989, Section 8). A proof of 
Theorem 4.3.3 can be found in the same reference in Section 4. 

The following theorem gives a rough description of the differential Galois 
groups that occur for hypergeometric differential equations in case GO acts 
primitively (i.e. the general case as we know by now).The case p f. q was 
settled by O.Gabber and N.M.Katz in 1986 (Katz 1990) and the case p = q by 
(Beukers and Heckman 1989). 

(4.3.5) Theorem. Let V be the solution space of Eq.4.1.2 and G its differential 
Galois group. Suppose G is primitive and that GO acts irreducibly on the space 
V. Then we have the following possibilities for G, 

If p = q, exp 27ri I:k(ak - (3k) f. ±1 then G = C· SL(V). 
Ifp=q, exp27riI:k(ak-(3k) = 1 thenG=C·SL(V) orC·Sp(V). 
If p = q, exp 27ri I:k(ak - (3k) = -1 then G = C . SL(V) or C· SO(V). 
If q - p = 1 then G = GL(V). 
If q - p is odd then G = C· SL(V). 
If q - p is positive and even, then G = C· SL(V) or C· SO(V) or C· Sp(V) 
or, in addition 

if q = 7,p = 1, 
if q = 8,p = 2, 
if q = 8,p = 2, 
ifq=8,p=2, 
i!q=8,p=2, 
ifq=9,p=3, 

G = C ·G2 

G = C . SL(3), SL(3) in adjoint representation 
G = C . (SL(2) x SL(2) x SL(2)) 
G = C· (SL(2) x Sp(4)) 
G = c· (SL(2) x SL(4)) 
G = C . (SL(3) x SL(3)). 

Proof. Suppose p = q. We know from Section 4.1 that the local monodromy 
around the point z = 1 is generated by the pseudoreflection h (i.e. h - I d has 
rank one) with special eigenvalue A = exp 27ri I:k«(3k - ak). Clearly, the group 
hGo h -1 is again connected and so hGO h -1 = GO, i.e. h normalizes GO. We now 
obtain the first three assertions of our theorem by application of Theorem 3.2.3 
to the normalizing element h and the group GO. Suppose q > p. From classical 
references (Barnes 1906) or (Meijer 1946) we know that we have at 00 a basis 
of formal solutions Y1, ... , Yq given by 

where P(X) = diag(X, (X, ... , (q-p-1 X, 1, ... ,1), A is a constant q x q matrix 
in Jordan normal form and the Ji are formal Laurent expansions in z-l/(q-p). 

From the remarks made at the end of Section 2.5 we see that the local Ga­
lois group, and hence the group G, contains the torus D consisting of all 
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diag( d1 , •.• , dq ) such that d i = 1 for i > q - p and d~' ... d:~; = 1 when­

ever L:!':f ai(i-l = 0, ai E Z. Trivially, D normalizes GO. We apply Gabber's 
Theorem 3.2.1. In order to do so, we must determine alII::; i,j, k, 1::; q such 
that d;dj = dkdl for all elements of D. Since d; = 1 for i > q - p this means 
that we have to watch for non trivial relations of the form d;dj = dkdl, d;dj = 
dk, di = dk, d;d j = 1, d i = 1 with 1 ::; i,j, k, I ::; q - p. From the defini­
tion of D this means that we must check for non trivial relations of the form 
(i + (j = (k + (I, (; + (j = (k or (i + (j = O. It is not hard to show that 

1. (i + (j = (k + (I =? i = k,j = I or q - p even, i == k + ~ mod q - p, j == 
I + ~ mod q - p or the same possibilities with i and j interchanged. 

11. (k = (i + (j =? 6 I (p - q), i == k ± ~ (mod q - p), j == k =t= ~ 
(mod q - p). 

111. (;+(j=O=?q-peven,j==i+~ (modq-p). 

Thus, if q - p is odd there are no restrictions and Theorem 3.2.1 implies 
that <C . GO contains the torus 

T = {diag(tl, ... , tq_ p , 1, ... ,1) I tl ... t q_ p =1= O}. 

In particular <C. GO contains Tl = {diag(t, 1, ... , l)lt =1= O} and Theorem 3.2.2 
now implies <C. GO = GL(V). Hence SL(V) C G. Moreover, if q - p = 1, we 
see that D = Tl and so G = GL(V) in this case. Now suppose q - p is even, 
but 6 f (q - p). Then the relations are generated by d;dj = 1, i - j = ~ 
(mod q - p) and Theorem 3.2.1 implies that <C. GO contains 

{diag(tI, ... ,t=,tll, ... ,t~,I, ... ,I) I tl··· t = =l=0} 
2 2 2 

In particular, <C. GO contains the torus {diag(t, 1, ... ,1, r 1 , 1, ... ,1) It =1= O} 
and Theorem 3.2.2 implies that C·Go is GL(V), C.Sp(V) or C·SO(V). Finally, 
if 6 I (q - p) then, by the same arguments as above, we find that <C. GO contains 
(after permutation of basis vectors, if necessary) 

{diag(ts,t,S,(tS)-1,r1,S-1,1, ... ,I) Its =1= a}, 

which is called the G2 -torus. Application of Theorem 3.2.3 yields the desired 
result. 0 

In the cases of Theorem 4.3.5 where we have a choice between SL(V) and 
a smaller selfdual group, there is a very easy criterion to make this decision. 

(4.3.6) Theorem. Let V be the solution space of EqA.1.2 and G its differential 
Galois group . Then the following two statements are equivalent, 

3. G is contained in <C. Sp(V) or <C . SO(V) 
u. 38 such that {al, . .. ,ap } = {8-al, . .. ,8-ap }{mod Z) and {~I, ... ,~q} = 
{8 - ~I, ... ,8 - ~q}{mod Z). 
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The proof, which is elementary, can be found in (Katz 1990). In this same 
book it is shown that there actually exist examples of hypergeometric differen­
tial equations having G2 as differential Galois group . 

(4.3.7) Theorem. (Gabber-Katz) Let V be the solution space ofEq.(4.1.2) and 
G its differential Galois group . Then the following statements are equivalent, 

l. G = C· G2 

ii. q = 7, p = 1 and :J1l, v with Il -I 0, v -I 0, Il + v -I 0 such that after renum­
bering of indices, if necessary, the numbers fh - al,· .. ,/37 - aI, considered 
(mod 7l..), equal !, Il, v, -Il, -v, Il + v, -Il - v. 
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Chapter 9 

p-adic Numbers and Ultrametricity 

by Gilles Christol 

A. Ultrametric Spaces 

The aim of this first part is to define classical ultrametric sets and especially 
p-adic numbers. This will be achieved through a general procedure described 
in Section 2. In Section 1 are given general definitions about ultrametric sets. 
These definitions may well be meaningless for the unwarned reader. Thus we 
suggest beginning at 2.1.2, reading Section 1 as and when needed. The ring Zp 

of p-adic numbers is introduced in Section 3.2 and the ring Z , a generalization 
of Zp without any privileged prime, is introduced in Section 3.3. The ring Z 
has already been used by physicists, as explained in 3.4. 

1. Ultrametric Distances 

1.1 Definitions 
1.1.1. A distance d on a set E is said to be ultrametric if it satisfies the usual 
conditions: 

d(a, b) ~ 0; d(a, b) = 0 ~ a = b; d(a, b) = d(b,a) , 

and if the triangle inequality is replaced by the stronger one: 

(1.1) d(a,e):::; max [d(a, b),d(b, e)] , 

called the ultrametric inequality. 

1.1.2. As a consequence of inequality (1.1), it is easily seen that: 

d(a,b) < d(b,e) ::} d(a, e) = d(b, e) , 

If we think geometrically, this means that 'all triangles are isosceles'. An amus­
ing consequence is that any point in a disk is its center. For let 

Da(r) = {x; d(a, x) :::; r} 
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Da(r-) = {x;d(a,x) < r} . 

Then for each b in Da(r), Db(r) = Da(r) . Moreover, if the 'circumference' 
{x;d(a,x) = r} is non empty, it contains every 'open disk' Db(r-) about any 
one of its points b , and is bigger (often much bigger) than the 'interior' Da(r-). 

Remarks. 

* 

* 

The set E is endowed with its metric space topology, and topological prop­
erties such as completeness of E will refer to that topology. 

The notions of 'open disk', 'interior', 'circumference' are set in quotation 
marks because they are not meant in the topological sense. In fact any 
disk Da(r) or Da(r-) is both open and closed. By definition of the metric 
topology, each point of E has a fundamental system of neighbourhoods 
which consists of disks which are both open and closed. A topological 
space with this property is said to be totally disconnected. 

1.2 Absolute Value and Valuations 
1.2.1. If the set E is a commutative group (with composition denoted addi­
tively), it is natural to ask the distance to be compatible with addition: 

d( a + c, b + c) = d( a, b) . 

Then the distance is entirely determined by the numbers d(a,O) = d(O,a). 
Another amusing consequence of ultrametricity is that a series converges in an 
ultrametric group as soon as its general term goes to zero. 

1.2.2. If the set E is a commutative ring, compatibility is expressed by : 

d( a, b) = la - bl , 

where 1.1 is an ultrametric absolute value, i. e., satisfies: 

(1.2) { 
lal ~ 0 ; lal = 0 {=} a = 0 

la + bl:::; max(lal,lbl) ; labl = lallbl . 

A ring endowed with an ultrametric absolute value is called a valued ring. A 
ring can be valued if and only if it has no zero divisor, indeed on any ring 
without zero divisor there is a trivial valuation defined by : 

V( a 1= 0) ,Ial = 1 . 

Then a valued ring has a fraction field to which the absolute value can be 
extended by : 

lalbl = lai/lbi . 
So valued rings are the subrings of valued fields. Such fields are often called 
non-Archimedean by reference to the Archimedean property of IR endowed with 
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the classical absolute value (or <C endowed with the norm, ... ) that one can reach 
all points from zero with steps of any given length. 

1.2.3. If K is a valued field, the set {Ial j a E K} is a multiplicative subgroup of 
lR,+ . In many circumstances it is more convenient to use 'additive' notations 1. 

For that purpose we choose some number a> 1, and we define: 

if a # 0 

if a = 0 

Translating ultrametric properties, one gets: 

(1.3) 

v(a) =00 -¢=} a=O 

v(a + b) ~ inf(v(a),v(b)) 

v(ab) = v(a) + v(b) . 

A map from a field K to lR, U {oo} that satisfies (1.3) is called a valuation. 
Given a valuation v, one gets back an ultrametric distance by 

dCa, b) = a-v(a-b) . 

Clearly the distances constructed in this way with various a's are all equivalent 
(i.e. define the same topology). 

2. A General Procedure for Obtaining Ultrametric 
Spaces 

2.1 Construction 
2.1.1. We will give a general description of a large class of ultrametric spaces 
that contains, among others, complete discretely valued rings (i. e., valued rings 
with valuations in N). We think that the view it gives of ultrametric spaces is 
more realistic than the geometric representation. Examples of 3) illustrate the 
following 'theory'. 

2.1.2. Let us examine an object under various magnifications. For each mag­
nification the object seems to be composed of a set (finite or not) of points. 
For instance under the 'zero' magnification there is only one point, namely the 
object itself. Now successively increasing the magnification reveals each point 
to be a cluster of smaller points, each of which can in its turn be split into sub­
points and so on. Our purpose is to describe the object as it appears under an 
infinite magnification. We construct a mathematical model of the situation by 
giving an infinite sequence En (n = 0, 1, ... ) of sets connected by maps i.pn from 
En+1 onto En . The situation can also be represented by a tree whose vertices 

1 For the sake of simplicity we define v only in the case of absolute values, but the 
additive notation is useful generally as will be seen in 2. 
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are the elements of U En and whose (directed) edges connect an+! E En+l to 
<Pn(an+d. In fig.1 we represent the case where each point of En is the image 
of exactly two elements of E n +1 . 

Fig.!. 

Now to represent our object, we consider the set E of the 'leaves of the 
tree' (or paths of the tree starting from Eo and of infinite length) i. e., more 
precisely, the set of sequences a = {an} such that: 

(2.1) 

Classically one uses the notation : 

E = fugEn 

and calls E the inverse limit of the En . 

2.1.3. Let us verify that the set E is equipped with an ultrametric topology. 
For that purpose let us define first a 'natural' distance on the tree just defined: 
let {dn } be any strictly decreasing sequence of real numbers going to zero (for 
instance dn = an for any a < 1), and let us agree that any edge connecting 
a vertex in En+! to a vertex in En has a length of ! (dn - dn+d. Then any 
infinite directed path ending in En has a length of ! dn and any path in the 
tree has finite length. Now there is an obvious distance on E , namely the length 
of the (shortest) path going from one 'leaf' to an other by passing through the 
tree. This definition can be easily expressed in mathematically correct terms. 
Let a and b be two distinct elements of E, i.e. two sequences {an} and {bn} 
satisfying (2.1) (hence an = bn implies aj = bj for i ~ n), let: 

v(a, b) = sup{n; an = bn} 

(this is the level where the 'common ancestor' of a and b lies). Then the formula: 
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dCa, b) = dv(a,b) 

defines an ultrametric distance on E. Moreover the topological space E so 
obtained is independent of the sequence {dn } and complete. Indeed if a( m) is 
a Cauchy sequence in E, then, for m large enough, the a(m) stay in the same 
disk (as E is ultrametric, to go outside a disk one needs to make a step larger 
than its radius) i. e. the sequence a( m)n is ultimately constant. Thus, if a is 
defined such that an = lim a( m)n for all n, one sees easily that a = lim a( m). 
The space E is a compact space if and only if the sets En are finite. Indeed if 
E is compact, the 'open' disks of radius dn are in one to one correspondence 
with the elements on En, but they are a disjoint covering of E. Thus En must 
be finite. Conversely, if the En are finite, for any sequence a( m) in E, one can 
find a in E such that for all n one has a( m)n = an for an infinite number of m. 
Thus a is a limit point of the sequence and E is compact. If v is a valuation, we 
have to choose dn = an for some a <1 for the distance to become an absolute 
value. 

2.2 Further Properties 
2.2.1. If the En are (commutative) groups and the 'Pn are group homomor­
phisms then E itself is a group with the rule of composition: 

with which the distance is compatible in the sense of 1.2.1. 

2.2.2. In the same way, if the En are rings and the 'Pn ring homomorphisms, 
then E becomes a ring for the product : 

But there is no reason for this product to be compatible with the distance in 
the sense of 1.2.2, i. e., for: 

v(a) = v(a,O) = inf{njan -=I O} 

to satisfy v(ab) = v(a)v(b). For instance, if the En have no zero divisors one 
only gets: 

v(ab) ~ sup(v(a), v(b)) , 

which is enough to ensure the continuity of the product. 

2.2.3. In many examples it is possible, for each vertex, to select one edge among 
those abutting in it. In other words, En can be 'lifted' in En+! , i. e., there exist 
applications 1/Jn from En to En+! such that 'Pno1/Jn = Identity. If this situation 
occurs, when describing E it is more concise to skip at each level the information 
already known from the previous one. More precisely elements of E can be given 
in the following way. Let E[n] be the quotient group En+1/'l/Jn(En) (isomorphic 
to the kernel of 'Pn), then the element {an} of E is entirely determined by the 
sequence a[a], ... , a[n] , ... , where: 
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a[O] = al and a[n] is the image of an+l in En+1I'IjJ(En) . 

This representation can be viewed as a kind of generalized decimal expansion. 
Moreover for each n there is a 'canonical lifting' P from En to E where p(an ) 
is given by the infinite path going through an and made of the chosen edges. 

2.2.4. An analogous situation occurs under the following circumstances. Let A 
be a ring and In a sequence of ideals of A such that : 

In+1 C In and nln = {O} . 

Let En be the ring AI In. Reduction modulo In gives a homomorphism 'Pn from 
E n +1 to En, and thus a distance on the ring E = ~En as shown in 2.1. There 
is a canonical embedding of A in E : each a in A is attached to the sequence 
{a mod In}. Then A is a dense topological subset of E. In other words E is 
the completion of A for the topology constructed from the In. The v defined 
in 2.2.2 is actually a valuation when In = JR for some ideal I "I A (such that 
nln = 0). 

3. Basic Examples 

3.1 Polynomials and Power Series 
3.1.1. Let k be a field and let En be the additive group of polynomials with 
coefficients in k of degree less than or equal to n. The natural projection from 
En+ 1 to En, namely 'forget the term of degree n + 1 " enables one to construct 
a group E along the line of 2.1 (use 2.2.1 for the group structure). 

3.1.2. The description of this set is more concrete if we use the trick of 2.2.3 
(indeed En is a subset of E n+1 ) : it appears to be the set k[[xll of 'formal power 
series over k ' i. e. the set of power series: 

00 

a = La[n]Xn ,a[n] E k 
n=O 

without any condition concerning the a[n] (they are formal because, for instance 
if k = C, most of them are nowhere convergent). The distance between two 
power series a and b is nv(a-b) (n < 1) where v(a - b) is the valuation of a - b, 
namely the smallest integer such that the coefficient of the term of degree n in 
a - b is not zero. 

3.1.3. Now there is a classical product on k[[xll given by : 

n 

ab[n] = L a[k]b[n-k] 
k=O 

which is an extension ofthe product of polynomials. For that law, the valuation 
just defined satisfies Condition (1.3) and is actually a valuation! This valuation 
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is called the x- adic valuation. This designation recalls that we are in a situation 
where 2.2.4 applies, taking for A the ring k[x] of all polynomials with coefficients 
in k and for I the ideal xk[x] (then In = In is the ideal xnk[x]). In that 
description, En appears as the set of polynomials modulo xn and k[[xlJ as the 
completion of k[x] with respect to the x-adic valuation (a polynomial is a 
power series whose coefficients are eventually zero !). 

3.1.4. As k[[xlJ is a valued ring it has a fraction field, namely the field k((x)) 
of formal power series over k , whose elements are : 

00 

a = L a[n]Xn , a[n] E k, a[v(a)] i= 0 
n=v(a) 

where v( a) belongs to Z and is, obviously, the valuation of a . The field k( x) of 
rational fractions over k is the fraction field of the ring of polynomials which is 
then contained in k( (x)). The x-adic valuation of a rational fraction f is given 
by writing it in the form: 

xv(f)P(x)/Q(x) ; P(O) i= 0; Q(O) i= 0 

(which enables us to expand it in Laurent series 'near 0'). Actually there are 
many other valuations defined over k( x) namely one for each irreducible poly­
nomial of k[x]. For instance, if k is algebraically closed, the valuations of k(x) 
are in one to one correspondence with the points of the 'projective line' over k , 
i. e. k U { 00 }: the valuation associated with the point e is given by the expansion 
of the rational fraction in Laurent series near e (i.e. in k((x - 0) for finite e 
and in k((l/x)) if e = 00 ). 

3.2 p-adic Numbers 
3.2.1. Let p be a prime number and let En = Z/pnz be the ring of 'integers 
modulo pn '. The projection2 from E n+1 to En given by the remainder when 
dividing by pn enables one to construct a ring E along the lines of 2.1 (use 
2.2.1 and 2.2.2 for the ring structure). Figure 2 shows the construction when 
p = 2 . This ring is denoted by Zp and called ring of p-adic integers. 

3.2.2. Let us now describe Zp more concretely. Using [0,1, ... ,pn - 1] as a set 
of representatives, En appears as a subset of En+1 • Even if this injection is not 
a ring homomorphism (for instance 1 + (pn -1) is 0 in En but not in EnH ), it 
allows us to apply the trick of 2.2.3. The ring Zp appears as the set of Hensel 
senes : 

00 

a = L a[n] pn , a[n] E [0, ... ,p - 1] . 
n=O 

With these notations, the (p-adic) valuation of a p-adic integer a is the smallest 
integer n such that a[n] i= O. It is not difficult to prove that this is actually a 

2 There is another natural projection given by the quotient when dividing by p, but 
this second one is not a ring homomorphism and will not concern us. 



G. Christol 447 

E-7L 15 7 11 3 13 5 9 1 14 6 10 2 12 4 8 0 
2 I\NI. I\NI. I\NI. I\NI. I\NI. I\NI. I\NI. I\NI. I\NI. I\NI. I\NI. I\NI. I\NI. I\NI. I\NI. I\NI. 

\ \ \ \ iIi j // ///// 
E =7L/167L 15 7 11 3 13 5 9 1 14 6 10 2 12 4 8 0 

4 "'I '\/ '\./ \/ "'I "'I '\/ \/ 
E = 7L/87L 

3 
7 3 

"'I 
5 1 6 2 4 0 

"\/ "'/ \/ 
E =7L/47L 

2 
3 

~ / 2~/0 

E 
o 

1 __________ 0 _______ 0 

Fig. 2. The 'tree' of 2-adic numbers 

valuation. Classically, the number a used to define the corresponding absolute 
value is chosen to be 1 so that the (p-adic) distance between to p-adic integers 

p 

a and b is p-v(a-b). 

Remarks. 

* 

* 

An infinite sequence a[n) of digits in [0, ... ,p-1] can represent an element 
of three distinct additive groups: 
1) a real number a[O) , a[l)'" a[n)'" of JI{/p71, 

2) a power series a[O) + a[I]X + ... + a[n)Xn + ... of 7l/p71[[xll , 

3) a p-adic integer a[O) + a[l)p + ... + a[n]pn + ... of tl p . 

Each of these groups is characterized by the way we carry out additions. For 
power series we behave like dunces and forget to carry, for real numbers, 
as everybody knows, we carry to the left and for p-adic integers we carry 
to the right. This fact explains why small perturbations can change every 
digit in the real case but not in the other two cases, where you cannot 
disturb digits lying before the one you change. 

We use [0,1, ... ,pn - 1] as a set of representatives, but other choices are 
available, for instance [(1 - p)/2, ... , (p - 1)/2] when p #- 2. Each choice 
leads to a distinct representation of tlp by mean of a Hensel expansion. 
The differences appear only in explicit calculations. 

3.2.3. In the above description, a positive integer m belongs to En as soon as 
pn > m . Then, using 2.2.3, it can be viewed as an element of 7l p . Its (finite) 
Hensel series is its expansion in base p . Its p-adic valuation is easily seen to 
be the power of the prime p that occurs in its prime power decomposition: for 
instance the 3-adic valuation of 2250 = 2.32 .53 is 2. In that way, tlp becomes the 
completion of the set N of natural integers endowed with the p-adic distance. 
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As an exercise, let the reader verify that negative integers correspond to Hensel 
series whose coefficients are ultimately equal to (p - 1) : for instance, in Z3 one 
has: 

3.2.4. As Zp is a valued ring it has a fraction field, namely the field Qp of p-adic 
numbers. Using Hensel representations, elements of Qp are 

00 
a = L a[n] pn , a[n] E [0, ... ,p -1) ,a[v(a)] 1= 0 , 

n=v(a) 

where v( a) belongs to Z and is, obviously, the (p-adic) valuation of a. The field 
Q of rational numbers is contained in Qp, the rational numbers appearing as 
the eventually periodic Hensel series. For instance, in Q3 one has : 

1 2 2+3 1 2 3 
- = - + -- =2 - +2+3+23 +3 + ... 24 3 1-9 ·3 . 

The p-adic valuation v(r) of a rational number r is given by writing it in the 
form: 

pv(r) ~ ; m and d prime to p. 

3.2.5. For each prime p we have defined a p-adic valuation (resp. absolute value) 
over Q . We will denote it by vp (resp. 1.lp) when confusion may occur. Besides 
the classical absolute value (often denoted by 1.100 by analogy with Example 
3.1) they are essentially the only ones, more precisely any non trivial valuation 
over Q must be equivalent to one of them. Moreover they are connected by the 
product formula: 

Irloo II Irlp = 1 
p prime 

3.3 The Ring Z and Adelie Numbers 

3.3.1. As it is difficult to believe that any single prime plays a special role in 
nature, we generalize the construction of Example 3.2 without any privileged 
prime. The starting point is the family of finite sets En = Z / nZ of 'integers 
modulo n'. For any integer k there is a projection from Ekn to En given by 
the remainder when dividing by n. These projections enable us to construct a 
ring, denoted by Z , along a method generalizing that of 2.1. However things 
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Fig. 3. 

are more complicated because the sets En are no longer stacked but ordered in 
a more intricate way shown in fig.3. 

Notice that going through two different paths from En to Em gives the 
same projection. At the price of introducing an arbitrary choice, we will work 
on a sub-stack of the array and then recover the 'classical' construction 2.1. 

3.3.2. A sequence of integers {un} is said to go multiplicatively to infinity if, 
for any given integer k , there exists an integer N such that, for n > N, Un 

becomes a multiple of k. For instance the sequence n! goes multiplicatively to 
infinity. We choose once and for all a sequence {un} among the numerous ones 
that satisfy the two conditions: 

(3.3.2.1) 
(3.3.2.2) 

{
{Un} goes multiplicatively to infinity 
Uo = 1 and for each n , Un divides U n+l • 

3.3.3. Let us change notations slightly and denote by En the set Z/unZ . The 
condition (3.3.2.2) implies that we can apply the construction of 2.1 and the 
algebraic remarks of 2.2 to the sequence of rings En and obtain a ring E = Z . 
Choosing for instance the sequence {I, 2, 6,12,60, ... } for Un, we get the 'tree' 
of Fig.4. 

Then the condition (3.3.2.1) says that distinct integers will be eventually 
separated in the construction, and hence that Z is a subring of Z . The topology 
induced on Z is described by the following remark : a sequence of integers 
converges to 0 in Z if and only if it goes multiplicatively to infinity (notice that 
this is independent of the chosen sequence {un} . Actually we have a special 
case of 2.2.4 with A = Z and In = unZ. Hence Z is dense in Z and Z appears 
as the set of 'limits' of sequences {sn} of integers such that Sn - Sm becomes a 
multiple of any fixed integer when n and m are large enough. 
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Fig. 4. A Z-tree 

Remark. As there are always new primes available, one cannot have In+m :::> 
In.Im for all integers nand m , hence the v defined in 2.2.2 is not a valuation, 
and Z is not a valued ring but only an ultrametric compact and complete ring. 

3.3.4. Let n be an integer, from its prime decomposition: 

n = II pvp(n) 

p prime 

we get the decomposition (this is the Chinese Remainder Theorem) : 

Z/nZ = II Z/pvp(n)z 

p prime 

(actually there is only a finite number of primes in the product, namely those 
dividing n). We can apply this decomposition for each Un . For any prime p , 
the condition 3.3.2.2 says that the sequence vp ( un) increases and the condition 
3.1.2.1 that it goes to infinity. Then the decomposition gives in the limit: 

Z = II Zp . 
p prime 

Here Z is a compact set, as an (infinite) product of compact sets. This allows us 

to write an element a of Z as a family (a2' a3, a5, ... , ap , ••• ) of p-adic numbers. 
The addition and multiplication laws act component by component. As an 
exercise the reader can recover the an of the construction 2.1 from the ap just 
defined. 

3.3.5. The ring Z has many zero divisors, as is easily seen from 3.3.4 (hence 
it cannot be valued I). Therefore it has no fraction field. However a kind of 
'fraction ring' can be defined, namely the ring of finite adeles : 



G. Christol 451 

AI = {(a2' a3, ... , ap , ••• ) j 

ap E Qp, ap E Zp for all but a finite number of p's} . 

The adeles A are constructed in the same way but with one more component 
a oo lying in JR., so that all completions of Q are considered. The group of (finite) 
ideles is the multiplicative subgroup of invertible elements of (finite) adeles. 
They are the (finite) adeles with non zero components and all but a finite 
number of components of (p-adic) valuation 0 (equivalently of absolute value 
1). Given an idele, the number: 

laool oo II lapl p 
p prime 

is called its volume. Any rational number a is identified with the (finite) adele 
all components of which are equal to a (if a is an integer we get the element of Z 
already obtained in 3.3.3.). If a i- 0 we obtain an idele and the product formula 
asserts that it has a unit volume. It is worth pointing out that Q is a discrete 
subgroup of A for addition, as Z is a discrete subgroup of JR. (indeed two rational 
numbers have distance 1 from each other for all but a finite number of p-adic 
distances). Moreover the analogy goes further and the quotient in both cases is 
compact (using the Chinese Remainder Theorem one proves AI Q = JR. IZ fI Z p). 

3.4 Parisi's Matrices 

3.4.1. Let us recall the definition of matrices introduced by Parisi as a 'replica 
symmetry breaking' in the Sherrington-Kirkpatrick mean field model of a spin 
glass (for details see Rammal, Toulouse, and Virasoro 1986). Let 1 = mN ~ 

... ~ mo = n be integers such that mi is a multiple of mi+l and let Qi(O ~ 
i ~ N - 1) be a sequence of real numbers. From these data, for 0 ~ i ~ N , 
one can construct a (n/m;) x (n/m;)-matrix Q(i) following the two recursion 
rules: 

a) Q(O) = [0] , 
b) The matrix Q(i+l) is constructed by substituting for the entry Q~i?b of 

Q(i) a (m;fmi+d x (m;fmi+l)-matrix p(i),a,b defined by: 

{ 
Q~i~ if a#- b 

(i),a,b ' 
p c,d = Qi if a = b and c i- d 

o if a = band c = d 

At the end of the process we get a so called Parisi matrix Q = Q(N) . 

3.4.2. We verify now that, by means of a slight change of notation, a Parisi ma­
trix, obtained from a strictly decreasing sequence Q; of positive real numbers, 
is nothing else than the table of mutual distances 'at level n' of Z endowed with 
one of the distances defined in 3.3.3. Thus it is not surprising that calculations 
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11 5 9 3 7 1 10 4 8 2 6 0 
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3 a. a. i~ ___ O_i a. a. 1 1 1 1 1 1 
7 a. a.! a. a. i ---,0=----;f3=- 1 1 1 1 ----"1:--.;.1- II 
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10 1 1, 1 1, 1 1 0 f3 i a. a.! a. a. 
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; ~~1--i= I =4-=-~~i--I---'!;----:!:-- ~:=---.....::=--I=~!~--~~r-I ~-" -=~~-::':-II 
o 1 1 I 1 1 I 1 1 a. a.! a. a.! f3 0 

Fig. 5. 

based on such matrices lead to an ultrametric space. More precisely choose a 
sequence {un} of integers satisfying (3.3.2.1) and (3.3.2.2) and a strictly de­
creasing sequence {dn } of real numbers going to zero such that, for 0 SiS N: 

Ui = mN-i ; di = QN-i 

and construct the associated distance on Z following 3.3.2 and 2.1.3. Then if we 
order the subset {O, 1, ... , n-I} of Z according to the remainder when dividing 
by the Ui'S , the table of mutual distances is exactly the Parisi matrix. We think 
an example is better than a complicated explanation. Figure 5 gives the Parisi 
matrix for the sequences {I, 2, 6,I2, ... } and {I, a,,8, .. . }. We must point out 
that Parisi matrices are constructed usually from increasing sequences Qi and 
that the associated distance is in fact given by 1 - Qi. When working in this 
last situation, it would be more convenient to have diagonal entries equal to 1 
instead of o. 

B. Complete Non-Archimedean Valued Fields 

4. General Properties 

4.1 Definitions 

4.1.1. Let K be a non-Archimedean valued field i. e. (see 1.2.2) a field endowed 
with an absolute value 1.1 satisfying (1.2). The set: 

OK = {a E K; lal S I} 
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is a valued ring (ultrametricity implies the stability with respect to addition). 
It is called the valuation ring of K. The set : 

MK = {a E K; lal < I} 

is an ideal of OK. In fact this is the maximal ideal because every element u of 
OK not in MK is invertible. Hence the set: 

is a field called the residue field of K. For instance for k((x)), the valuation 
ring is k[[x]] and the residue field is k. For Qp the valuation ring is Zp and the 
residue field is Z / pZ, i. e. the field with p elements, also denoted by IFp. We will 
use the following usual notation : 

If a E OK , its image in k is denoted by a. 

For instance if a is an integer in Zp then a is its residue (mod p) in Z/pZ. 

4.1.2. A field is said to be of characteristic zero if it contains Z. Otherwise 
its characteristic is the smallest integer p for which one has p.1 = O. This 
integer must be prime. Denote by ch(K) the characteristic of K. Examining 
the characteristics of a non-Archimedean valued field and of its residue field 
leads to three possibilities: 

1) ch(K) = ch(k) = 0, 
2) ch(K) = ch(k) = p, 
3) ch(K) = 0; ch(k) = p. 

Let us assume moreover that the field K is complete (for the topology 
defined by its valuation); then: 

* 

* 

In case of equal characteristics (cases lor 2), the field K contains subfields 
isomorphic to k( (x)). More explicitly, for any a in the maximal ideal, there 
is an embedding i, given by i(x) = a, of k((x)) into K. The image of i is 
denoted by k((a)). 
In case of unequal characteristics (case 3), the field K contains a subfield 
isomorphic to Qp. 

4.2 Looking for Squares in Qp 

Our next aim is to solve algebraic equations in complete non-Archimedean 
valued fields. Let us begin by the simplest case, namely second degree equations 
in the field of p-adic numbers. An elementary calculation reduces the question 
to solving the equation x 2 = a. The existence of solution(s) in the field Qp will 
be studied in three steps : 

4.2.1. As the valuation of any element of Qp is an integer, for a to be a square 
its valuation has to be an even integer (the trivial case a = 0 being omitted). 
For instance p is not a square in Qp. 
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4.2.2. Let us suppose v(a) to be even, i.e., a = p2nu, lui = 1. Then it is enough 
to solve x 2 = u. Taking residues, we get :;;2 = u (in IFp) and find a second 
condition for a to be a square in Qp, namely that u has to be a square in IFp. 
For instance neither 2 nor -1 are squares in Q3 because 2 is not a square in 
IF3 . 

Remark. Squares in IFp can be found directly by squaring all numbers in IFp or 
better by using the well known reciprocity law of Gauss, which we recall for the 
sake of completeness. Let p be a prime number and n an integer prime with p. 

The Legendre symbol ( i ) is 1 (resp. -1) if n is (resp. is not) a square in IF p • 

The Legendre symbol can be easily computed by means of the following rules 
where p and q are distinct odd prime numbers: 

( n ; p ) = (~) ,( n~m ) = (~ ) ( ; ) 

( ~1 ) = (_1)(P-l)/2 , (~ ) = (_1)(p2-1)/8 

(~) (~) = (_1)(P-l)(Q-l)/4 (reciprocity law) 

4.2.3. Now u is a square in IFp if and only if there exists a in Zp such that u - a 2 

belongs to pZr For u -I- 0 , a is invertible in Zp and the map: 

R( x) = ...!..- (u -a2 _ pX2) 
2a p 

is a contraction of Zp. Its unique fixed point v satisfies: 

u = (a + pV)2 

and gives a square root of u (starting with -a one gets -v and the other square 
root). We sum up our discussion by the following equivalence: 

{
a = p2nu lui = 1 

3b E Qp : a = b2 -¢::::::} a = 0 or _ 2. ' 
U = a (m IFp) . 

Remark. In IR there is only one condition to be satisfied for x to be a square, 
namely x ;::: 0 , but in Qp there are two conditions to be satisfied. Roughly 
speaking one half of real numbers are squares (compared to one quarter for 
p-adic numbers). 

4.2.4. Example. As -1 = 2 x 2 (mod 5) the polynomial x 2 + 1 has a root a in 
Z5 such that a = 2. It is a good exercise to do explicit calculations. Supposing 
the root to be 2 + 5b , one finds b = 1 + 5(b + b2 ), which enables us to find the 
Hensel series recursively: 

a = 2 + 5 + 2.52 + 53 + 3.54 + 4.55 + 2.56 + 3.57 + . .. . 
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4.3 Hensel's Lemma 

Basically, Hensel's lemma gives a generalization to any monic polynomial P 
with coefficients in Zp of the principle explained in 4.2.3 : it roughly says that 
for each root a of P (the polynomial obtained by taking residues coefficient­
wise) there exists in Zp one root a of P such that a = a. It represents an 
even more basic tool for solving algebraic equations in a complete ultrametric 
field K since any polynomial P whose coefficients lie in K can be broken into a 
product of polynomials each of which has all its roots with the same valuation. 

4.3.1. Hensel's Lemma. Let K be a complete ultrametric field and let P = 
~ai xi be a polynomial whose coefficients ai lie in OK. Suppose there exist 
two polynomials q and r whose coefficients lie in the residue field k, respectively 
prime, and such that P = ~ ai xi = q r. Then there exist two polynomials Q 
and R whose coefficients lie in OK and satisfying : P = Q R, Q = q , R = r , 
deg( Q) = deg( q). The proof of this lemma is based on Newton's algorithm. 

Remarks. 

* 

* 

The primality condition means that q and r have no common factors; it 
is essential as shown by the polynomial P = x2 + p of Zp[x] which is 
irreducible but verifies P = xx. 

There are several other Hensel lemmas (which deal with analytic functions, 
differential operators, ... instead of polynomials); each of them states that, 
under some mild condition (here primality), any break at the residue field 
level is actually a 'total' break. 

4.3.2. When the polynomial q is of degree one, Hensel's lemma becomes: Let 
K be a complete ultrametric field and let P be a polynomial whose coefficients 
lie in OK. Let a be a simple root of P (i. e. pea) = 0 but p' (a) -I 0). Then 
there exists a root a of P in OK such that a = a. 

4.3.3 Example. One can apply the method given in the proof of Hensel's lemma 
(i. e. Newton's method) to find roots of the polynomial x 2 + 1 . The root lying 
'near 2' appears to be the limit of the sequence: 

Uo = 2,Un+l = Un - (u~ + 1)/2un • 

In this particular case, explicit calculations are more involved if this general 
method is used instead of the method of 4.2.3. 

4.3.4 Newton's Polygon. With each polynomial : 

P = 2::anxn 

(more generally with each power or Laurent series) one associates the set Ll 
of points Lln with coordinates (n, v(an ». Let x be in K. A direct calculation 
shows that the straight line Ln (x) with slope v( x) which goes through the point 
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Lln intersects the y-axis at the point (0, v(anxn)). By the ultrametric inequality 
(1.3) one knows that the point (0, v(P(x») is above one line Ln(x) at least. 
Moreover, the ultrametric inequality is actually an equality when only one term 
of the sum has the smallest valuation. In other words, if there is only one point 
of Ll on the lowest line Ln( x) then this line intersects the y-axis at the point 
(0, v(P(x»). 

3 

.------... - .. --.----.- 0 _. __ ._-_._--

o 2 3 

Fig. 6. Newton polygon for the polynomial P(x) = 25x4 + 2x3 + 25x2 + 5x + 250, 
and graphic computation of the valuation of P(5). 

Conversely, if x is a root of P, as v( P( x» = 00, the previous situation 
cannot happen and the lowest line must encounter two points of Ll at least. 
Hence this lowest line must be an edge of the convex hull N(P) of the set 
Ll U {oo} where 00 means a point at infinity in the Oy-direction. By removing 
vertical edges from the boundary of N(P) one gets a polygonal line called the 
Newton polygon of P. Thus we proved the slopes of the edges of the Newton 
polygon to be the (possible) valuations of the roots of the polynomial. Actually 
one can go further by applying Hensel's lemma. Let us choose an edge of the 
Newton polygon of P. Let A denote its slope and m its length. Then there exist 
polynomials Q and R such that : 

1) P = QR. 
2) The polynomial Q is of degree m and has a Newton polygon consisting of 

a single edge of slope A, 
3) The slopes of the edges of the Newton polygon of R are distinct from A. 

From this one obtains a basic result: the irreducible polynomials of K(x) 
have Newton polygons consisting of a single edge. Thus their roots in any non­
Archimedean valued field containing K (and whose valuation extends that of 
K) have same valuation, namely the slope of the edge of the Newton polygon. 
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5. Extensions 

5.1 Finite Extensions 
5.1.1. Let K be a complete non-Archimedean valued field and let L be a finite 
(algebraic) extension of K, say of degree n. Then there exists a unique absolute 
value on L which extends the absolute value of K. Let a belong to L and let 
P(x) = xd + ... + ao be the minimal monic polynomial of K[x] such that 
P( a) = O. Then the valuation of a is given by the slope of the unique edge of 
the Newton polygon of P and one must have: 

(5.1) lal = laol1/ d or v(a) = v(ao)jd . 

It remains to verify that this actually gives an absolute value on L. 

Remark. For any a in L , the degree d of K(a) over K divides the degree n of 
Lover K (njd is the degree of Lover K(a)). 

5.1.2. Let us suppose now that K is discretely valued i. e. that the set v(K) 
of valuations of its elements is a discrete subgroup of lR (for instance Qp is 
discretely valued because v(Qp) = Z ) and that LjK is a finite extension of 
degree n. By construction the set v( L) is an additive subgroup of ~ v( K) and 
hence must be ~ v(K) for some integer e. This integer is called the ramification 
index of Lj K. On the other hand, the residue field L appears to be a finite 
extension of the residue field K. Let j be its degree. Then one can prove that 
n = ef. 

5.1.S. Let now L be an extension of Qp of finite degree n and ramification index 
e. Let us choose an element 1C of L such that V(1C) = 1je. As L is an extension 
of lFp, say of degree j, it must be the finite field with pi elements. For each 
element a of L choose an antecedent ~ such that Q: = a and denote by U the 
set of all antecedents (it has exactly pi elements). It is easy to prove that each 
element a of L has a unique expansion : 

00 

a = L ai1Ci ; ai E U 
ev(a)$;i 

which looks very much like a Hensel expansion. 

5.2 Algebraically Closed Extensions. Construction of Cp 
5.2.1. Let K be any field. Its algebraic closure Kaig is, roughly speaking, the 
set of all roots of polynomials in K[x]. It is also the smallest field containing 
K which is algebraically closed i. e. in which any polynomial is the product of 
polynomials of degree one. 

5.2.2. When K is a complete non-Archimedean field, there exists a unique 
absolute value over Kaig , given by Formula (5.1), which extends the absolute 
value of K. Hence the field Kalg is a non-Archimedean field but unfortunately 
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it is not complete in general. However a deep result of Krasner says that the 
completion of Kalg is an algebraically closed complete non-Archimedean field. 

5.2.3. The completion of the algebraic closure of Qp is 'classically' denoted by 
Cp because this field plays the role of C in many respects. The set of valuations 
v(Cp) is Q so Cp is not discretely valued. The residue field of Cp is the algebraic 
closure of the field lFp • Unlike Qp, or more generally any complete discretely 
valued field, there are, up to isomorphism, several immediate extensions of 
Cp, i. e. fields with the same set of valuations and residue field as Cp. This 
phenomenon will be made clear in the next paragraph. 

5.3 Spherically Complete Extensions 
5.3.1. A curious properties of Cp is that it contains decreasing sequences of 
disks with void intersection, i. e. disks: 

Dn = D(an,r;;) = {x E Cp ; 0:::; Ix - ani < rn) 

such that D n+1 ~ Dn but nDn = 0. As Cp is a complete field, when this 
situation occurs the sequence rn is strictly decreasing but does not go to 0 
(and so the situation cannot occur in Qp where the rn belong to pZ !). 

5.3.2. A metric space is said to be spherically complete if any decreasing se­
quence of disks in it has a non-empty intersection. Spherically complete spaces 
are complete (apply the definition to sequences of disks with radii going to 
zero) but the converse is not true. However one can prove the following results: 

* 

* 

* 

Any complete and discretely valued non-Archimedean field is spherically 
complete (easy), 

Any algebraically closed non-Archimedean field which is maximally com­
plete i. e. with no immediate extension (strict extension with same set of 
valuations and residue field) is spherically complete (not very difficult), 

Any algebraically closed non-Archimedean field is contained in a maxi­
mally complete field. The latter is algebraically closed hence spherically 
complete (very technical : the key point is to prove that the family of 
immediate extensions is actually a set! ). 

These results show the existence of a field, denoted by ilp , which contains 
Cp (and Qp) and is both algebraically complete and spherically complete. This 
field is useful under certain circumstances, but is difficult to visualize because 
it is so big. 

5.4 Ultrametric Banach Spaces 
5.4.1. A vector space E over the non-Archimedean valued field K is said to be 
ultrametric if it is endowed with a norm 11.11 satisfying the classical properties 
but where the triangular inequality is replaced by the ultrametric one: 

IIv + wll:::; Max(lIvll,lIwll) . 
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A vector space is said to be a Banach space if it is complete. Even though the 
proofs may be different, ultrametric Banach spaces have most of the properties 
of classical Banach spaces. For instance if E is a finite dimensional K-vector 
space and K is a complete non-Archimedean valued field, then all ultrametric 
norms over E are equivalent. 

5.4.2. However there are some noticeable exceptions. The most famous one is 
the Hahn-Banach theorem3 , which is false for non spherically complete fields. 
Indeed let L be a spherically complete field and let K be a complete but not 
spherically complete sub-field of L; then there is no K -linear map bounded by 
1 on L which extends the identity map of K . 

5.4.3. Let E be a K -Banach space. The family (ei) is said to be a normal basis 
of E if for all x in E there exist Xi in K such that: 

x = LXi ei ; Ilxll = sup IXil 
iEI iEI 

The existence and construction of normal bases is a fundamental issue when 
studying Banach spaces. As an example let C be the set of continuous functions 
from Zp to Cp . This is a Cp-Banach space for the norm: 

11111 = sup 11(x)1 
xEZp 

of uniform convergence and the family (ei) given by : 

ei(X) = x(x - 1) .. · (x - i + 1)/i! 

is proved to be a normal basis for it. More precisely if 1 belongs to C one has: 

00 n 

i=O i=O 

Conversely this formula (Newton's interpolation) enables to decide whether a 
function from N to Cp can be continued into a function of C : its interpolation 
coefficients ai, defined by the above formula, must go to zero. For instance the 
function: 

00 

n ------> an = L(a - l)i ei(n) 
i=O 

is the restriction to N of a function of C if and only if la - 11 < 1. In other 
words the number aX can be defined for a in 1 + pZp and x in Zp. 

3 Any linear form defined over some sub-vector space F of E and bounded by M on 
F can be extended to a linear form on E bounded by M. 
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6. Analytic Functions 

6.1 Generalities 
6.1.1. Let us choose once for all a complete algebraically closed non-Archimede­
an field K, for instance K = Cp. A power series : 

00 

f(x) = L an(x - at 
n=O 

converges if and only if its general term goes to zero i. e. it converges in the 
'open' disk: 

D(a,r-) ; r = Ij lim sup Viani 
as in the complex case. Moreover the power series converges for x such that 
Ix - al = r if and only if : 

lim lanl rn = 0 

in which case it converges in the 'closed' disk D(a, r). 

6.1.2. A function f defined in some ('open' or 'closed') disk D(a, r) of K is said 
to be analytic if it is the sum of a power series converging in that disk. Now 
because of the ultrametric nature of the distance in K, any point (3 in D( a, r) 
is a center and f can be expanded in a power series around (3. This power series 
converges in the disk D((3,r) = D(a,r). 

6.1.3. A function defined over a union of disks and analytic in each of them is 
called locally analytic. Again by ultrametricity, two disks are either concentric 4 

or disjoint. Hence if a function is defined on two non concentric disks and 
analytic on each one of them, there is no connection between the values of 
f in the two disks (just as in the complex case for functions holomorphic on 
a set with two connected components). As a consequence of this, one cannot 
construct analytic continuation by using the same trick as in the complex case. 
However theories of analytic continuation do exist (see 6.2 for instance) but are 
of a quite different kind. 

6.2 Basic Examples 

To illustrate general properties we give basic examples of analytic functions 
over Cp . 

6.2.1 The Exponential. Let [r] denote the integer part of the real r. A simple 
calculation shows that : 

v(n!) = [njp] + [njp2] + ... + [njph] + ... 
From this one deduces that the function: 

4 In the sense that there exists a common center. 
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00 

exp(x) = L xn In! 
n=O 

is only defined in a small disk namely the disk D(O, p-) with: 

p = Ipll/(p-l) < 1 

Moreover for any x in that disk one has : 

lexp(x) - 11::::; p < 1 

Hence: 
lexp(x)1 = 1 . 

In other words the exponential function is bounded (by 1 ) on its disk of conver­
gence and has no zero in it. More generally a bounded analytic function whose 
coefficients lie in a discretely valued field has only a finite number of zeros in 
its disk of convergence (proof by means of the Newton polygon). However non­
bounded functions can have an infinite number of zeros as will be shown for 
the logarithm function. Moreover, bounded function with coefficients in a non 
discretely valued field can also have an infinite number of zeros, for instance 
the function: I: an xn ; a~ = p , an E Cp • 

6.2.2 The Logarithm. The logarithm function is defined by : 

00 ( l)n 
log(x) = - L --- (x _1)n . 

n 
n=l 

It converges on the disk D(I, 1-) and for x and y in that disk one has 

log(xy) = log(x) + log(y) . 

In particular, if ( is a k-th root of unity in D(I, 1-) one has: 

1 1 
log(() = k log((k) = k log(l) = 0 . 

To find zeros of the logarithm function we have to figure out which k-th roots 
of unity lie in D(I, 1-) If ~ is a k-th root of unity, ~ - 1 is a root of the 
polynomial : 

Let k = phd with (d,p) = 1. One finds: 

Pk (x) = Pph (x) Q( x ) 

Q(x) = [1 + (1 + X)ph + ... + (1 + x)(d-l)ph l 

As Q(O) = d is prime to p, by looking at the Newton polygon of Q one sees 
that no root of Q can lie in D(O, 1-). Therefore only the ph-th roots of unity 
can lie in the disk D(I, 1-). Conversely, by looking at the Newton polygon of 
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the polynomial Pph(X) it is easy to show that the ph-th roots of unity lie in 
the disk D(l, 1-) and thus are zeros of the logarithm. Thus we constructed an 
infinite set of zeros of this function. It remains to prove that we have obtained 
all zeros in this manner. For that purpose, we consider the Newton polygon of 
the logarithm function constructed in Fig.7. 

o 

p-l 

zeros 

3 2 
P -p 

zeros 

Newton polygon of P3 

000 000 ooo~ 
j 

]0000 0000 0000 0000 0000 

o 

3 2 
P -p zeros 4 3 

P -p zeros 

Fig. 7. The Newton polygon of the logarithm function 

4 
P 

The link between the Newton polygons of the logarithm function and of 
the polynomials Ph is contained in the useful formula: 

log(x) = lim [1- Xph]jph for Ixl < 1 
h--+oo 

As for polynomials, the slopes of the edges of the Newton polygon of the log­
arithm function give the valuations of the zeros. Putting all the information 
together one finally obtains : For each integers h 2:: 0 the logarithm function 
has exactly ph - ph-l zeros such that: 

which are the roots of unity: 

This exhausts the set of zeros distinct from 1 . If Ixl < p, so that exp(x) does 
exist, one has: 

log(exp(x)) = x . 

In the opposite direction: 
exp(1og( x)) = x 
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holds when Ilog( x) I < p i. e. when Ix - 11 < p, where p is the radius of conver­
gence of the exponential function. 

6.2.3 The Artin-Hasse Exponential. The analytic function: 

R(x) = x + xP /p + xp2 /p2 + ... + Xph /ph + ... 

is defined in the disk D(a,I-) and looks (p-adically) very much like the log­
arithm log(1 - x), for the two functions have the same Newton polygon. For 
instance the zeros of the two functions have the same valuations. It is also easy 
to check on the Newton polygon that : 

IR(x)1 :::; Ixl if Ixl :::; p 

where p is the radius of convergence of the exponential function. 
One defines the Artin-Hasse exponential by taking the formal expansion: 

00 

(6.1) A(x) = exp(R(x)) = L enxn . 
n=O 

A priori this power series exists for Ixl < p, but in fact lenl :::; 1, and hence 
A(X) converges for Ixl < 1 (compare with the function x = exp(log(x)) which 
exists a priori only on D(I,p-) but in fact everywhere). 

Proof. One finds by formal calculations : 

A(x)P /A(xP ) = exp(px) = 1 + pg(x) , 

where the coefficients of 9 are p-adic integers. On the other hand, as for any 
power series in Q[[xll, there exist bn (in Q ) such that: 

00 

A(x) = II (1- bnx n ) 

n=l 

thus: 

00 00 

n=l n=l 

by induction on n one deduces that the bn are p-adic integers as well as the 
en. 0 

As the en are integers and el = 1 , one finds, for Ixl < 1 : 

(6.2) IA(x) -1 - xl:::; Ix2 1 hence IA(x) -11 = Ixl 

Now let us choose one number ~ in Cp such that: 

R(~)=a; 1~I=p 
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(by considering the Newton polygon of £ one sees that there exist exactly p-1 
numbers with these properties). To compute A(~) one must be very cautious: 
using (6.1) carelessly gives A(~) = 1 which contradicts (6.2). Indeed formula 
(6.1) is true only formally, hence for Ixl < p. So it cannot be applied for~. But 
one actually has for any x in D(O, p) : 

A(x)P = exp(p£(x)) 

because now Ip£(x)1 :::; Ipllxl < p. Thus A(~) is a p-th root of unity. Moreover 
by (6.2) one knows that it is the p-th root of unity that lies in D(l + ~,p2). 
Thus the Artin-Hasse exponential gives an analytic representation of the p-th 
roots of unity. 

6.2.4. In practice and to make calculations easier one works with a truncated 
function £( x) keeping only the first two terms. We leave it as an exercise to 
check the following properties: let 7r be a root of the polynomial X p - 1 + p = ° 
(,Dwork's 7r'). The function: 

00 

E 7r ( x) = exp( 7rX - 7rXP ) = L fn xn 
n=O 

(Dwork's exponential) which a priori converges in D(O, 1-), is actually defined 
in D(O,p(P-l)/P\ Moreover the value E(l) is the p-th root of unity which lies 
in the disk D(l + 7r, p2). 

6.3 Analytic Elements 

We only give a short overview of the most classical theory of analytic continu­
ation. It is due to Krasner. Let Ll be a subset of Cp and let: 

Ho(Ll) = {f E Cp(x) without any pole in Ll} 

We define the 'norm of uniform convergence' by the formula: 

IIfll = sup If(x)1 
xELl 

and consider the completion H(Ll) of Ho(Ll) for this norm (obviously this is 
a Banach space). The functions in H(Ll) are called analytic elements in Ll. 
When Ll is not too complicated, for instance if it is the complement in a disk 
of a finite union of smaller disks, H(Ll) has good properties, for instance the 
zeros of analytic elements are isolated. Hence on such Ll there is an analytic 
continuation theory. Namely if two analytic elements take same values on a 
small disk, then they are equal everywhere. 
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C. Integration 

There are two entirely distinct theories of integration on ultrametric groups 
depending upon the field on which the functions to be integrated are defined. 
When dealing with C-valued functions, this is a particular chapter in the general 
theory of integration over groups, but dealing with <Cp-valued functions leads 
to entirely new phenomena. 

7. <c-valued Integration 

7.1 Integration over a Profinite Group 

Let G n be finite Abelian groups and let: 

be their inverse limit for homomorphisms from Gn +1 onto Gn (see 2.1.2 and 
2.2.1). In this situation G is said to be a profinite group. It is then a compact 
group. Hence there is a (unique) Haar measure f1 on it such that : 

L df1(x) = 1 . 

The Haar measure on G can be easily calculated. Let a be in Gn and let: 

Dn(a) = {x E G; Xn = a} 

(recall that elements x in G are sequences {xn E Gn}). As Haar measures are 
invariant by translation one finds: 

where #(E) denotes the number of elements in E. Now, let f be a continuous 
function from G to <C , and for each a in Gn let us choose an antecedent f!. in 
G such that a = f!.n. One finds : 

(7.1 ) 

7.2 Integration over Zp 

7.2.1. By construction Zp is a profinite group. Now for any number x of Zp 
the absolute value Ixl is in IR. so that, for s in IR.+ , the function x --+ Ixls 
is a continuous function. As an example we will integrate it over Zp . Taking 
{a, 1, ... ,pn - I} as set of representatives for Z/pnz, equation (7.1) becomes: 
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Grouping together numbers with the same absolute value, one readily computes 
(remember Ipl = lip) : 

[ Ixls dp(x) = lim ~ [(pn _ pn-l) 1 s + (pn-l _ pn-2) Ipls + ... 
J'J'." n-+oo pn 

... + (p _ 1) Ipls(n-l)] 

= lim (p - 1) (1 + p-s-l + ... + p(-s-l)(n-l») 
n-+oo p 

= (1 - p-l )/(1 _ p-l-s) . 

7.2.2. The above computation can be generalized in the following way. Let 
f( Xl, .•. ,xr ) be a polynomial in Zp[XI, ... ,Xr 1 and let: 

be the number of solutions 'approximate at order n' of f 5. For instance in the 
case r = 1 and f(x) = X, one has N n = 1 for all n. One defines the so-called 
Poincare series: 

00 

P(T) = LNnTn 
n=O 

and one computes, for s in IR + : 

This formula enabled Igusa to prove P(T) to be a rational fraction. 

7.3 Integration over Z and the Replica Trick 

Let {Un} be a sequence satisfying conditions 3.3.2 and let g be a continuous 

function from Z to C . Formula 7.1 gives: 

[ g(z) dp(z) = lim ~ h n--+oo Un 

un-l 

L g(a) 
a=O 

n-l 

= lim 1 Lg(a) 
n X-+CO n 

a=O 

5 caution: an exact solution of f( Xl, ••• , Xr) = 0 gives an approximate solution but 
the converse is false. 
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where nx---t 00 means that n goes multiplicatively to infinity. Now suppose a 
distance d has been defined on Z by means of a decreasing sequence {dn } as in 
2.1.3 and 3.4.2. Using the corresponding Parisi matrices one computes for any 
function f from IR to <C: 

(7.2) 

kf (d(Z,O))d/1(z) = nl!....~ u1n U~l f(d(a, O)) 

1 un-l un-l 

= 1!....~ un(u n - 1) ~ ~ f(Q~~l) 
On the other hand the integral can be computed by a classical method. Namely 
let us define a function x from IR + to [0, 1] by : 

x(q) = /1{z E Z; d(z,O) < q} 

and let q be the 'inverse' function from [0,1] to 1R: 

q(x) = dn when 
1 

:::;x< 

shown in Fig.8. Then one finds easily: 

1 

(7.3) 
kf (d(z,O))d/1(Z) = 100 

f(q)dx(q) 

= 11 f(q(x))dx . 

Formulas (7.2) and (7.3) recall those used when dealing with the replica trick. 
The main <Estinction is that in our formulation, although the sequence Un goes 
to zero in Z, it has to be considered as an lR-valued sequence in formula (7.2) 
and thus goes to infinity. 
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8. Cp-valued Integration 

8.1 Measures on Zp 
8.1.1. A 'p-adic' measure p, on Zp is a bounded finitely additive map from finite 
unions of disks of Zp into Cp . Then, if f is a continuous function from Zp to 
Cp , one defines the integral of f by the formula: 

(8.1) 

It is not difficult to prove that the limit does exist, but the boundedness of p, 
is essential in the proof. 

8.1.2. Let us suppose that there exists an p-adic measure p, invariant by transla­
tion. The measure of a disk would depend only upon its radius. So, normalizing 
by p,(Zp)=l , we should get, for any a in Zp : 

As 11/pnl goes to infinity with n, the 'measure' p, cannot be bounded. Hence 
there is no p-adic Haar measure! However let us suppose the Haar measure 
does exist and compute its moments by means of its characteristic function. 
For any z in Cp such that Izl < p = IpjI/(p-l) one obtains: 

1 pn_l pn z 1 
= lim - ~ eaz = lim e -

n-+oo pn ~ n-+oo pn( e Z - 1) 
00 

= eZ ~ 1 = L ~~ zk 
k=l 

00 k 

= L-k ((l-k) ~! ' 
k=l 

where the Bk are Bernoulli numbers and (is the famous Riemann zeta function. 
The aim of the next paragraph is to give a correct version of this computation, 
namely to express values of the zeta function at negative integers by means of 
an integral over Zp-

8.2 A p-adic Zeta Function 
8.2.1. As C and Cp are algebraically closed they both contain exactly p - 1 (p-
1)-th roots of unity. Moreover, by Fermat's theorem the polynomial x p - 1 - 1 
has p-1 distinct roots in IFp (namely 1,2, ... ,p-1) hence, according to Hensel's 
lemma, it has p -1 roots in Zp, one in each disk D(i, Ipl) (1 ~ i < p). So the 
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(p - 1)-th roots of unity of <Cp actually lie in Zpo Let us choose a one to one 
mapping between (p - 1 )-th roots of unity in <C and (p - 1 )-th roots of unity in 
c" which preserves multiplication (group isomorphism). For instance for p = 5 
there are two such isomorphisms, one of which is given by : 

1--+1, -1--+-1, i--+2+···, -i--+3+··· . 

The other is obtained by exchanging i and -i. 

8.2.2. We will suppose now that p > 2. Let a be a (p -1)-th root of unity in 
c" distinct from 1, and let p.0/ be the p-adic measure defined by 

/-to/(Zp) = 1, /-to/(a + pnzp) = aa for n ~ 1 

As a P = a, the measure of a + pnzp does not depend of the (integer) a as 
center. Moreover the formula : 

guarantees the (finite) additivity of p.0/. 

8.2.3. Let us compute the moments of /-to/ : 

pR_l 

= lim ~ eaz aa = lim 
n-+oo L..., n-+oo 

a=O 

a-I 00 zk 
= =(l-a)~L(-k,a)-

eZa -1 L..., k! 
k=O 

The numbers L(-k,a) defined by the last equality lie in c", but they can be 
expressed as numbers in Q[a]. Thus by means of the isomorphism in 8.2.1 they 
can be viewed as elements of <C. Now this last equality becomes the Taylor ex­
pansion of a well known holomorphic function. A classical formula asserts that 
the L( -k, a)'s are the values, at negative integers, of a holomorphic function 
defined for Re( s) > 1 by : 

00 n 

L(s, a) = ~ ~ 
L..., nS 
n=l 

8.2.4. We readily compute (for Re(s) > 1, hence for all s by analytic continua­
tion) : 
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Hence it is natural to define a 'pseudo Haar measure' on Zp by: 

1 
-1-- /-l0/ . 

-(} 

Putting everything together and noticing that L( s, 1) = (( s) one finally obtains 
for every integer k 2:: 0 : 

As (( - k) = - B k / (k - 1) these numbers lie in Q, hence in .Cp. For instance, for 
k = 0 , one has /-l(Zp) = (p - 2)/2. 

8.2.5. Let Z; = Zp - pZp. As a immediate consequence of the definition one 
has: 

/-l(pX) = /-lex) 

so that /-l(Z;) = o. More generally: 

8.2.6. On the other hand, the formula: 

aP = (b + a - b)P = bP + pea - b)[ .. ·J + (a - b)P 

shows that for any a in Zp and n 2:: 1 : 

But, for any a in Z; one has: 

hence for any integer n 2:: 0 : 

Roughly speaking this means that if k - k' is divisible by (p - l)pn for n large 
enough then ak and ak ' are close in Zp. In other words the function k --t ak 

can be continued so as to obtain a continuous function from 

fu!!Z/(p -l)pnz = Z/(p-1)Z X Zp 

to Zp. 

8.2.7. Now using 8.2.6 it is not difficult to prove that: 
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is a function from Z/(p - l)Z X Zp to Zp, defined and continuous outside 1. 
Moreover from 8.2.5 one has, for all integers k ~ 0 : 

Remarks. 

* 
* 
* 

* 

The function (p was discovered by Kubota and Leopoldt. 

The factor (1 - p-S) is exactly the p-th factor in the Euler expansion of (. 

The continuity of (p gives many congruences between values at negative 
integers, hence between Bernoulli numbers. These congruences where al­
ready known as Kummer's congruences. 

The formula as = exp[log(a)s], true for a in 1 + pZp and lsi::; 1, shows 
the function (p to be (the restriction of) an analytic function on each 
component Zp of Z/(p-1)Z x Zp . 

8.2.8. As a typical example of p-adic computation we show how to compute the 
'residue' of (p near 1. Clearly we only have to compute: 

For Ixl < lone checks easily: 

00 

L 
a=l 

(a,p)=l 

a 

pR_l 

1 1· L aa -- 1m 
1- a n ..... oo a 

a=l 
(a,p)=l 

= loge 1 - x) - ~ loge 1 _ xp) = ~ log ( (1 - x )p ) 
p p 1- x p 

Let: 

One has: 

d={xECp ; Ixl::;l, Ix- 11=1}=D(O,1)-D(1,1-). 

pn+l_1 

L x a 

a 
a=l 

(a,p)=l 
a=l 

(a,p)=l 

But on d the sequence 
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converges uniformly to zero. From this one easily deduces that the sequence 

pn_l 

L x: 
a=l 

(a,p)=l 

uniformly converges in .1, i. e., that its limit is an analytic element in .1 . On 
the other hand there exists a polynomial P in Z[x] such that: 

(l-x)P P(x) 
-'----'-- = 1 - p --
I- xP 1- xP 

and for x in .1 one has : 

I P(x) I < 1 . 
l-xP -

Hence the function : 

1 ( (I-X)P) 1· Ln n( p(x))n og = 1m p ---
I - xP n ..... oo 1 - xP 

k=l 

is also an analytic element in .1 . As we know the two analytic elements agree 
for Ixl < 1 , by Krasner's theorem they agree everywhere in .1 , for instance at 
the (p - 1)-th roots of unity (distinct from 1). Finally we get the formula : 

1 -- 10g((1 - a)p-l) . 
I-a 

Here the (p - 1 )-th power must be left in the argument for the logarithm to be 
defined. 

8.3 The p-adic Gamma Function 

To define a p-adic gamma function we use an entirely distinct viewpoint. The 
aim is to find a p-adic analogue to functions like r( a) = J x a- 1 eX dx i. e. defined 
by integrating a differential depending upon a parameter. The basic remark is 
that when integrating on a closed path exact differentials give zero. So, following 
Dwork-Boyarski, we will act as if the path 0-00 were closed somewhere. 

8.3.1. Let 7r be a root of the polynomial X p - 1 + p (cf. 6.2.4) and let Ht be the 
space of overconvergent analytic functions, i. e. functions which are analytic in 
a disk D( 0, r) of Cp for some r > 1 (depending upon the function). For each 
'parameter' a in Zp let: 

If f = xaetrxg lies in ila then xi' = xaetrX(ag + 7rxg + xg') also lies in ila so it 
makes sense to define : 
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Taking 9 = xk (k ;::: 0) in the above computation one finds: 

(8.2) 

where ~ means that the difference of the two sides is in x lx ila . One deduces 
immediately that Wa is one dimensional over <Cp with x a e1rX as a basis. 

8.3.2. Define an operator, called inverse Frobenius, which acts on analytic func­
tions by the following formula : 

One checks that this operator preserves Ht, and the formula 

(8.3) ~(xf') = px [~(f)l' 

asserts that it preserves derivatives. To explain how it acts on ila we need to 
introduce the unique number b of Zp which satisfies: 

a=pb-r; rEZ, O::;r<p 

With these notations one finds : 

~(xa e1rX g) = x b e1rX ~(xa-pb e1r(x-x P) g) 

As explained in 6.2.4 the function e1r(x-x P ) is overconvergent so that the func­
tion ~(xa e1rX g) belongs to ilb (as r < p, terms containing a negative power 
of x disappear when applying ~). Formula (8.3) asserts that the action of ~ 
is compatible with taking quotients. So one obtains an operator, denoted Q , 

from Wa to Wb. By definition the p-adic gamma function is the 1 X 1 matrix 
of the operator Q , namely one has : 

(8.4) 

8.3.3. In Wo , using (8.2) one gets xk e1rX ~ Cst· x e1rX ~ O. Hence for a = 0 
one has b = r = 0 and one computes in Wo : 

rp(O) e1rX ~ e1rX ~(e1r(x-xP») ~ e1rX 

If lal = 1, p does not divide a and one has r > 0, a + 1 = pb - (r - 1). Using 
the definition of r p , (8.2) and (8.3) one computes in WaH: 

rp(a + 1) xb e1rX ~ 7["-rH ~(xa+le1rx) 

a 
~ 7["-rH ~( __ x a e1rX ) 

7[" 

~-arp(a)xbe1rX . 

If lal < 1 ,one has a = pb ,r = 0 and a+ 1 = p(b+ 1) - (p-l). One computes: 
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Summarizing one obtains: 

{
-I if lal < 1 

rp(O) = 1 , rp(a + 1)/ rp(a) = -a 
if lal = 1 

This was the original Morita definition for the p-adic gamma function. It can 
be used to compute its values at positive integers, namely: 

k 

rp(k) = (_l)k II i 
;=1 
pfi 

which reminds us of the values of the classical r function. 

8.3.4. Let 
00 

e7r(x-x P ) = L cnxn 

n=O 

one can prove that v(cn ) 2:: n(p - 1)/p2. Using (8.2) once more one readily 
computes, for l' E Z, ° :s l' < p -:- 1, bE Zp : 

7r r rp(pb _ 1') xb e7rX ::::: xb e7rX 'IjJ(x- r e7r(x-x P ») 
00 

= xb e7rX 'IjJ(L cnxn- r) 
n=O 

00 

= x b e7rX L cnp+rxn 
n=O 

00 

::::: xb e7rX L cnp+r (_7r)-n (b + n - l)(b + n - 2) ... (b) 
n=O 

Thus rp(pb - 1') = hr(b) where the function hr is defined by: 

00 

hr(x) = 7r- r L cnp+r (_7r)-n (x + n - l)(x + n - 2) .. · (x) 
n=O 

It is not very difficult to check that this formula defines a function hr which is 
analytic in the disk D(O, Iple -) where: 

e = p-1 + (p - 1)-1 - 1 < 0 . 

Hence the p-adic rp function is, in each disk l' + p Zp, the restriction of an 
analytic function. 
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Chapter 10 

Introduction to Lattice Geometry 

by Marjorie Senechal 

1. Introduction 

Lattices arise in many areas of number theory and physics. In this volume, 
for example, they appear in chapters on algebraic numbers, elliptic functions, 
and quasicrystals. One reason for their ubiquity is that the lattice is the basic 
framework for periodic structures, both algebraic and geometric. One reason 
for their importance is that many nonperiodic structures can be described as 
irrational sections of lattices in higher dimensions. 

(1.1) Definition. A lattice A is the group T, isomorphic to zn, of vector sums 

n 

{L:>l!;ai' (}:; E Z}, 
i=1 

where a1, a2, ... , an are n linearly independent vectors in R n. (We also use the 
word lattice for the orbit of any point of Rn under the action of T.) 

Thus by their very definition, lattices are geometric as well as algebraic 
entities (Figure 1). Their geometry is studied in at least three contexts. 

( i.) The metric properties of a lattice are most easily studied by means 
of positive definite quadratic forms in n variables: indeed, these properties are 
encoded in them. Let A be the n x n matrix whose columns are n linearly 
independent vectors a1, ... an. Then the columns are a basis for a lattice Aj A 
is said to be a generator matrix for A. The product AT A = M is a symmetric 
positive definite n x n matrix with entries mij = (aj, aj). This matrix is a 
Gram matrix, or 'metric tensor' for Aj by means of it, we can recover A up to 
congruence. M is also the matrix associated with the quadratic form xT Mx, 
where x ERn is a column vector. Thus, alternatively, a basis being chosen, we 
can identify lattices with their quadratic forms. 

We will use the notation N(x) = (x,x) for the norm or squared length 
Ixl2 of x, computed in the usual way with respect to an orthonormal basis. 
Because a lattice is a discrete point set, it has a minimal positive norm which 
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we will denote by r. Thus "Ix E A, xi:- 0, N(x) ~ r. In particular, if x E A 
is written in terms of the basis A, then xTMx = N(x) and (x, y) = xTMy. 
The volume of the lattice, YeA), is Idet AI; it is invariant under change of basis 
since Idet AXI = Idet AI when X E GL(n, Z). The determinant of the lattice is 
the determinant of its Gram matrix; hence det A = YeA?~ 

• • • • • • 
• • • • • • 

• • • • • • 
• • • • • • 

• • • • • • 
Fig. 1. A lattice in IR. 2 • 

The study of lattice symmetry is the study of finite subgroups of GL( n, Z). 
The symmetry group of a lattice is the semidirect product of its translation 
subgroup T and the isotropy subgroup E(A) of the vector 0 E A. Clearly, 
E(A) is a finite subgroup of D(n). Since T is invariant under E(A), E(A) has a 
faithful representation in Aut(T) = GL( n, Z). Conversely, any finite subgroup 
W c GL(n,Z) is a subgroup of the isotropy group of 0 for some lattice (a 
simple construction for a lattice invariant under W is given in (Conway and 
Sloane, 1988)). 

A group of isometries in IR. n which has a fixed point is called a point group. 
Since the right regular representation of any finite group can be realized by 
permutation matrices, every finite point group has a representation in GL(m, Z) 
for some m; m need not be equal to n. Determining the relation between m 
and n is a problem that goes back at least to Minkowski (Minkowski, 1887); 
we will discuss it in detail in Section 4. 

( ii.) There is a close relation between lattices and tilings of IR. n. Indeed, 
lattice theory has evolved side by side with tiling theory: historically, their 
development has been greatly stimulated by theoretical crystallography. Since 
ancient times, natural philosophers have attempted to explain the structure of 
matter as combinations of a very few basic geometric units. As far as crystals 
are concerned, these efforts first began to achieve success in the early 19th cen­
tury, when Haiiy proposed a model envisioning crystals as stacks of building 
blocks. Haiiy's theory accounted for many of the known morphological prop­
erties of crystals, and helped to establish the idea that a crystal is a modular, 
periodic structure. Since periodicity could be described more simply and more 
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• • • • • • • • • • • 

·0 • 8· • • • [] • • • 
• • • • • • • • • • • 

• • • • • • • · o· ·0· 
• • • • • • • 

Fig. 2. Dirichlet domains for plane lattices. 

generally by lattices than by Haiiy's bricks, lattices were soon the preferred 
way to describe crystals. Today, lattices and tilings in lR n are considered to 
be alternative models. For example, the lattice nodes can be taken to be the 
vertices, or the centers, of tilings of lRn by congruent parallel polytopes. 

Tilings help us to visualize the geometric properties of lattices. In crys­
tallography, the tiles are usually chosen to be copies of the box-like polytope 
whose vertices are the endpoints of the 2n vectors «"lal + ... + «"nan of A for 
which «"i = 0 or 1. This polytope is called a unit cell; its volume is V(A). It 
has 2n pairwise parallel (n - 1 )-dimensional faces, and lattice points only at 
its vertices. There are infinitely many choices of unit cell, corresponding to the 
infinitely many choices of lattice basis. The unit cell is convenient for classifi­
cation purposes, but it does not display the symmetry of A. There is however 
an alternative tile, the Voronoi· polytope of A, which does display the symmetry 
of A and also gives a great deal of additional information about its geometry. 

The history of Voronoi polytopes begins with early work on the classifica­
tion of binary quadratic forms. Lagrange had defined a positive definite binary 
quadratic form ax2 + 2bxy+cy2 to be 'reduced' (the distinguished representative 
of its equivalence class under unimodular transformations) if 0 ::; 2b ::; a and 
2b ::; c; such a form exists in every class. For example, the equivalent quadratic 
forms associated with the two bases {(1,0), (0, I)} and {(2, 1), (1, I)} for the 
square lattice are x 2 + y2 and 5x2 + 6xy + 2y2; the former is reduced but the 
latter is not. Dirichlet noted that Lagrange's conditions are always satisfied 
when the basis vectors aI, a2 for the corresponding lattice are chosen to have 
minimal lengths and non-negative scalar product. He also pointed out that the 
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perpendicular bisectors of ±al, ±a2 and ±( al - a2) define a convex polygon 
which is the region of the plane nearer to 0 than to any other point of A (Figure 
2). This polygon is a rectangle or a hexagon, according as (aI, a2) is or is not 
equal to O. 

Fig. 3. Fedorov's five parallelohedra. 

Dirichlet's polygon is the famous Dirichlet domain, a concept which has 
been redisovered or reintroduced in many different contexts and consequently 
is known by various names, including 'Wigner-Seitz cells', and 'Brillouin zones'. 
By 1885, Fedorov had enumerated the 5 combinatorial types of parallelohedra, 
polyhedra which fill ~3 in parallel position (Fe·dorov, 1885); they are shown in 
Figure 3. 

Early in this century, Vorono! extended the concept to higher dimensional 
lattices (Vorono!, 1908); thus we attach his name to them, but in honor of 
Dirichlet's contribution we denote them by the letter D. More recently, Delone 
and his colleagues discovered the 52 combinatorial types of Vorono! polytopes 
in ~4 (Delone, 1929; Shtogrin, 1973). The number of types in ~5 is not known; 
Engel estimates it to be about 75,000 (Engel, private communication). The 
Vorono! polytope is a remarkably useful tool for investigating lattice geometry. 
But although the construction is well known, it is not used to the extent that 
it could be. One goal of this article is to demonstrate its potential. 
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( iii.) Lattices are classified in different ways for different purposes. Most 
of these classification schemes can be described as quotient and submanifolds 
of GL(n, IR), with induced topologies (see, e.g., (Schwarzenberger, 1980) and 
(Michel and Mozryzmas, 1989)). 

Two matrices Al and A2 are generator matrices for the same lattice if and 
only if A2 = AIX, where X E GL(n, Z). Thus there is a one-one correspon­
dence between lattices and left cosets of GL( n, Z) in GL( n, IR). Two lattices are 
congruent if for each generator matrix A of Al there is a generator matrix B 
of A2 such that B = OA, where 0 E O(n). Thus to identify congruent lattices 
we take for the space of lattices the double quotient 

L(n) = O(n)\GL(n, IR)jGL(n, Z). 

Here V\ U and U jV are the sets of right and left cosets of V in U, respectively. 
Crystallographers classify lattices in various ways appropriate for the study 

of crystallographic groups (Michel and Mozryzmas, 1989). The key to this clas­
sification is the partition of L( n) into strata under the action of different groups. 
(A group action G -t Aut(M) partitions a mathematical structure M into or­
bits. The sets of orbits whose isotropy groups are conjugate under G are called 
strata.) Under the action of O(n) on L(n), the strata are called crystal sys­
tems. To each stratum there corresponds an O( n )-conjugation class of isotropy 
groups. The strata obtained by the action of GL(n,Z) on L(n) are called the 
Bravais classes of lattices. The number of Bravais classes is always larger than 
the number of crystal systems (for n = 3, the numbers are 14 and 7, respec­
tively). However, Jordan proved that the number of Bravais classes is finite in 
any dimension. 

In number theoretic contexts, where lattices are often identified with 
quadratic forms, the Gram matrices are a principal tool. MI and M2 are 
Gram matrices for the same lattice if there is an X E GL(n, Z) such that 
M2 = XT MIX; congruent lattices have the same Gram matrices. The positive 
definite symmetric n x n matrices or, equivalently, positive definite quadratic 
forms, constitute an open convex cone pen) c IRn(n+I)/2. We will denote the 
set of equivalence classes {XT MX} by Q(n). The commutative diagram below 
summarizes the relations among these various classifications. 

GL(n, IR) >- GL(n, IR)jGL(n, Z) 

/ ~ ~ 
pen) -< O(n)\GL(n, IR) ... L(n) 

~ ~ ~ 
Q(n) 
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Lattices can also be classified by their Vorono! polytopes, which in turn 
can be classified by their symmetry (crystal system or Bravais class) or by their 
combinatorial structure. The partition of L( n) according to combinatorial type 
does not coincide with its stratifications by symmetry. A single combinatorial 
structure can often be realized with different symmetries; the Vorono! polytope 
is very sensitive to parameter changes. Also, different combinatorial structures 
can have the same symmetry. 

A concise history of mathematical crystallography and the role that 
Hilbert's 18th problem has played in its development can be found in (Senechal, 
1985). Important background reading, in addition to the works already cited, 
includes the fundamental work of Coxeter (Coxeter, 1940, 1973, 1985, 1988), 
(Griinbaum and Shephard, 1987), the definitive work on tilings and patterns 
in the plane, and (Gruber and Lekkerkerker, 1987), a comprehensive, recently 
updated, survey of geometry of numbers, the field created by Minkowski. A 
recent encyclopedic book and supplementary series of papers by Conway and 
Sloane (Conway and Sloane, 1988) is an important summary of much of what is 
known today about lattices in (relatively) low dimensions. The present article 
draws on all of these sources but includes much that is new. This material, 
based on joint work with Michel and Engel, will appear in more complete form 
in our monograph (Engel, Michel, and Senechal, 1992?). 

2. Voronol Polytopes 

The construction of a Vorono! polytope of a lattice point is a straightforward 
generalization of the construction of the Dirichlet domain. We simply join 0 E A 
to each of the other lattice points and construct the perpendicular bisectors of 
these line segments. The Vorono! polytope D(O) is the smallest convex region 
about 0 bounded by these hyperplanes. (Although in principle this construction 
calls for an infinite number of operations, it can be shown that a small number 
suffices.) The facets of the polytope are its (n -1 )-dimensional faces; the lattice 
vectors whose bisectors are facets will be called facet vectors. Since every lattice 
point is a center of symmetry for A, and so is the midpoint between any pair 
of lattice points, D(O) and its facets are centrosymmetric. 

An equivalent description of D( 0) is 

D(O) = {x E IRnl I(x, f)1 ::; N(f)/2} 

for each facet vector f. 
Carrying out the Vorono! construction for each lattice point, we obtain a 

Voronoi' tiling of IR n by convex, parallel polytopes which share whole facets. 
Since the tiles are all congruent we can speak of 'the' Vorono! polytope of A. 
We will usually denote it simply by D; sometimes it will be necessary to use 
D(A). 

Vorono! polytopes belong to the class of polytopes known as parallelotopes, 
polytopes which tile IR n when placed facet-to-facet in parallel position. Venkov 
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showed that parallelotopes are completely characterized by three properties: 
they are centro-symmetric, their facets are centrosymmetric, and each closed 
sequence of facets linked by parallel (n - 2)-dimensional faces is of length 4 
or length 6 (Venkov, 1954); the last condition derives from the fact that plane 
'parallelogons' are quadrilaterals or hexagons. A long-standing conjecture as­
serts that every parallelotope is an affine image of a Voronol parallelotope; it 
has been established only for n ::; 4. 

Since each VoronOl polytope of a lattice A contains exactly one lattice 
point, its volume is equal to that of a unit cell, and thus it is an alternative 
tile which can be used to represent A. Since, by its construction, the VoronOl 
polytope is invariant under E(A), it displays the symmetry of the lattice in a 
much more visual form than does the generator matrix A or the Gram matrix 
M. Moreover, since each facet of the polytope lies in the bisector of a lattice 
vector, the polytope provides us with the details of the distribution of lattice 
points. The number p( m) of lattice points of A at squared distance m2 from 

the origin is given by the theta series 2:xEA q(X,X) = 2::=0 p( m )qm2, but the 
series does not tell us how the points are distributed in each concentric shell. 
Indeed, there are several examples of pairs of distinct lattices with the same 
theta series (Serre, 1970). But these lattices have different VoronOl polytopes, 
as we show below. 

VoronOl characterized the facet vectors of A: they are the vectors that are 
'relatively short'. Let mA = {mx,x E A}, for m a positive integer. We say that 
x and yare congruent modulo mA, or belong to the same coset modulo mA, 
if x - y E mAo 

(2.1) Theorem. Let x E A, x f O. Then x is a facet vector if and only if 
N(x) < N(y) for all y == x (mod 2A), y f ±X. 

Voronol's proof can be given a simple geometric interpretation. 

Proof. Let x be a facet vector and y == x modulo 2A. Then x - y E 2A so 
p = (x - y)J2 E A. Suppose N(y) ::; N(x). Then the perpendicular bisector of 
p cuts x at or below its midpoint. But then the bisector of x does not contribute 
a facet to D. Conversely, suppose that x is the (unique) shortest vector in its 
coset and let p be any lattice vector. Let y = 2p - X. Then y == x modulo 2A. 
By the above reasoning, the perpendicular bisector of p does not cut off the 
midpoint of X. Thus x is a facet vector (Figure 4.) Since D is centrosymmetric, 
if x is a facet vector so is -x. 0 

This simple theorem has many important corollaries, including the follow-
ing. 

(2.2) Corollary. (Minkowski) The number of facet vectors is at least 2n and at 
most 2(2n - 1). 
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T 

Fig. 4. A vector f is a facet vector if and only if it is the shortest vector in its coset 
modulo 2A. 

Proof. Since any centrosymmetric n-dimensional polytope has at least 2n facets, 
the smallest possible number of facet vectors is 2n. There are 2n cosets of 2A 
in Aj we can label them with the n-tuples (El, ••• ,En), where Ei = 0 or 1. A 
itself is represented by (0, ... ,0). Thus there are 2n -1 cosets corresponding to 
possible facet vectors. We double this number in order to include -f for each 
~ 0 

The minimum is attained in every dimension by the integer (hypercubic) 
lattice In and all lattices which are orthogonal direct sums of I-dimensional 
lattices. The maximum is also attained in every dimension: indeed, almost all 
lattices have 2(2n - 1) facet vectors (see Sec. 3). 

(2.3) Corollary. Every finite subgroup of GL(n, Z) has an orbit of size S such 
that S :5 2(2n - 1). 

Proof. The set of facet vectors is invariant under the action of the point group 
~~ 0 

(2.4) Corollary. If f is a facet vector, then it is the shortest vector in its coset 
(mod mA) for every m ~ 2. Thus linearly independent facet vectors belong to 
different cosets modulo mAo 

Proof. Let f be a facet vector and x = f + mv for some v E A. It follows from 
Theorem 2.1 that if N(f) ~ N(x) then m is odd. For every vector y = x+a:mv, 
where 0 < a: < 1, we have N(y) < N(f) (Figure 5). But 
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N(f - (m - l)v) = N(x + v) > N(J) 

because m - 1 is even, a contradiction. o 

(2.5) Corollary. Every vector of norm < 2r is a facet vector. 

Proof. We need to show that two such vectors cannot belong to the same coset 
modulo 2A. Let x,y E A, y =I- x, and suppose N(x) and N(y) are both < 2r. 
Then if x ± y E 2A, we would have N(x ± y) ~ 4r, so 

0::; N(x ± y) - 4r = N(x) + N(y) - 4r ± 2(x, y) 

which is impossible. o 

Fig. 5. Facet vectors belong to different cosets modulo m. 

(2.6) Corollary. The vectors of minimal norm r are always facet vectors. 

The positive definite integral quadratic forms of determinant d ::; 25 in low 
dimensions are completely classified in (Conway and Sloane, 1988b). Here we 
present a few illustrative examples of some important lattices and their Voronoi 
polytopes. 

a) The integer lattice In. Up to similarity, this is the unique lattice with an 
orthonormal basis. It is an orthogonal direct sum of one-dimensional lattices, 
and its Voronoi polytope is the n-dimensional hypercube. 

b) Root lattices. The lattices whose point groups are Z-irreducible and are 
generated by reflections have been studied the most intensively, partly because 
the tools for studying them are available, and partly because they arise in other 
'natural' ways - for example, they can be constructed by stacking lattices of 
equal spheres, and they play an important role in the theory of Lie algebras and 
groups. These lattices are called root lattices. The root lattices are described 
in detail in (Conway and Sloane, 1988a), (Coxeter, 1973) and (Engel, Michel, 
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and Senechal, 1992?). For our purposes, the following brief remarks will suffice. 
There are two infinite families of root lattices, usually denoted An and Dn, and 
one finite family, En, n = 6,7,8. All can be described in terms of the integer 
lattice. 

The An lattice, n ? 1, is conveniently defined to be an n-dimensional 
sublattice of I n+l ; it is the set of ( Xl, ... ,xn+d E In+! such that (Xl, ... ,Xn+l)· 
(1, ... ,1) = o. Thus its shortest vectors have the form (1, -1, 0, ... ,0), and 
there are n( n + 1) of them. Obviously r = 2. 

The Dn lattice is the n-dimensional 'checkerboard' lattice; its points are 
the (Xl, ... ,Xn ) E In with I:Xi E 2Z. Its vectors of norm r, which again is 
equal to 2, are those with two nonzero coordinates, which may be ±1; thus 
there are 2n( n - 1) vectors of minimal norm. D2 = 12 and D3 = A3, so this 
family is assumed to begin with n = 4. 

The En family is somewhat harder to visualize. The Vorono! polytope of 
Dg has two congruent orbits of 128 vertices whose squared distance from the 
origin is r = 2; each of these orbits, extended by all of the symmetries of Dg , 

is a copy of Dg • If we add one of them to Dg we obtain the lattice called Eg ; it 
has 240 = 112 + 128 vectors of minimal norm. The other two members of the 
En family can be obtained as 7 and 6 dimensional sublattices of E g • 

The Vorono! polytope of a root lattice is isohedral: its facets are equivalent 
under E(A). The isotropy groups are generated by reflections and hence can 
be described by Coxeter diagrams; the nodes can be interpreted as the vertices 
of a simplex which is a fundamental region of the corresponding infinite group 
(Figure 6). 

One can show that the Vorono! polytope of a root lattice is the union of 
the fundamental simplexes obtained by reflection in the hyperplanes containing 
the walls of the simplex which meet at o. The walls opposite 0 comprise the 
facets of the domain. Thus all the facets are congruent and the facet vectors 
are those of minimal norm. 

c) Duals of root lattices. Every lattice has a dual lattice A *, where 

A* = {y E ]Rnl(y,x) E Z, '<Ix E A}. 

The dual lattice is a useful construction in number theory as well as in many 
branches of crystallography, including the interpretation of diffraction patterns. 

Obviously, A** = A. The isotropy subgroups E(A) and E(A*) are conju­
gate in GL(n,lR.) but not necessarily in GL(n,Z). If A ~ A*, then A is said 
to be integral; note that in this case all of the entries of the Gram matrix are 
integers. (In particular, the root lattices are integral.) If A = A *, then A is 
self-dual. For integral A, [A* : A] = det A. Thus A is self-dual if and only if 
det A = l. 

In (Engel, Michel, and Senechal, 1992?) we prove: 

(2.7) Theorem. For the root lattices, vectors of the dual lattice are located only 
at vertices of the fundamental simplexes, though not all vertices need be dual 
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An 
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Dn '\ 

Ea 

Fig.6. Coxeter diagrams for the root lattices. Each node represents a vertex of a 
fundamental region. Solid nodes are elements of the dual lattice, as are the square 
marked nodes, which represent (0, ... ,0). 

lattice vectors. If A is a root lattice, the vertices of a given simplex which are 
elements of A* constitute a complete set of coset representatives of A in A*, 
and different coset representatives belong to different cosets mod 2A*. 

It follows that we can obtain the Vorono! polytope of A* by adjoining the 
vertex vectors which belong to A * to A and bisecting them and their images 
under E(A). This amounts to truncating D(A) at those vertices. Notice (Fig. 
6) that every vertex of the fundamental simplex of An belongs to A~; it follows 
that A~ has the maximum number of facet vectors, 2(2n - 1). 

The vectors of A * are orthogonal to lattice planes of A and conversely, so 
the lattice hyperplanes of one are parallel to the facets of the Voronol polytope 
of the other. (Alas, D(A) and D(A*) are not dual to one another in the usual 
geometric sense.) 

d) Intermediate lattices. A lattice A' such that A ~ A' ~ A* is said to be 
an intermediate lattice. To construct the intermediate lattices A', we add some 
but not all of the coset representatives of A in A * to A. It follows from the 
Proposition above that these coset representatives are facet vectors for D(A'). 
Thus D(A') is also obtained by suitable truncation of D(A). 

e) Orthogonal direct sums. Let A be a direct sum of sublattices Ai, i = 
1, ... , m of dimensions ni. Then dim A = L: nj = n. We embed the lattices Ai 
in IR n in the usual way and denote then by Ai. In (Engel, Michel, and Senechal, 
1992?) we show that x E IRn is in D(A) if and only if it is in the intersection of 
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the cylinders Di = D(Ai)EBlR n - ni . Thus D(A) is a product polytope IT D i . We 
see immediately that D 16 and Es EB E s, which have the same theta series, have 
different Vorono! polytopes. It is not difficult to prove that A* is the direct sum 
of the Ai. Thus when the Ai are root lattices it is straightforward to construct 
the Vorono! polytopes of A* and the intermediate lattices A'. 

The root lattices, together with their duals, intermediate lattices and direct 
sums, are present in some form in many if not most of the lattices that occur in 
number theory. For example, they are the building blocks for the construction 
of lattices by 'gluing' (see, e.g., (Conway and Sloane, 1988a)). 

3. The Sets S, F, and C 

For a deeper discussion of lattice geometry, we find it helpful to introduce the 
following sets: 

short vectors: S = {x E AIN(x) = r}, 

facet vectors: F = {x E AI x is a facet vector}, 

corona vectors: C = {x E AID(D) n D(x) f=. 0}. 

(3.1) Proposition. S ~ F ~ C. 

Proof. We have already seen that S ~ F. Since the definition of a facet vector 
f implies that D(D) n D(f) is a common facet, F ~ C. 0 

(3.2) Proposition. If x E C, then N(x) :::; N(y) for all y E x + 2A, and 
N(x) < N(y) for all y E x + 3A. 

Proof. This is yet another corollary of Theorem 2.1. o 

The 'if' cannot be replaced by 'iff'. 

(3.3) Corollary. ICI :::; 3n - 1. 

This maximum is attained in every dimension (for example, by the lattices 
In). 

It follows from the discussion in Section 2 that if A is a root lattice or a 
direct sum of root lattices and integer lattices, then S = F. We will now show 
that the converse is also true. The key lemma is due to Witt (Witt, 1941): 

(3.4) Lemma. A finite set of lattice vectors which is irreducible (i. e., cannot be 
decomposed into an orthogonal direct sum) and invariant under reflection in 
the hyperplanes orthogonal to each of them belongs to one of the lattice families 
An, Dn or En. 
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In is of course invariant under such reflections but is excluded from this list 
because it is the orthogonal direct sum of n identical one-dimensional lattices. 

Witt's proof is based on the fact that the hyperplanes divide space into 
a finite number of regions which are permuted by the reflections. It follows 
that the permutations generate a Coxeter group and the configuration of hy­
perplanes can be represented by a Coxeter diagram. Choosing those diagrams 
whose groups can be extended to infinite ones, the lemma follows. 

From Witt's lemma we derive the following remarkably simple characteri­
zation of the root lattices. 

(3.5) Theorem. Let A be irreducible. Then S = F if and only if A is a root 
lattice. 

Proof. We must show that if S = F then A is a root lattice. Let s, t E S. 
Reflection in the hyperplane orthogonal to s maps t to t - 2s( s, t ) / r. Corollary 
2.4 implies that A has no vectors whose norms lie properly between rand 2r, 
so N(s - t) = (s, s) + (t, t) - 2(s, t) = 2(r - (s, t)) = r or 2r or is> 2r. In the 
first case, (s, t) = r/2, in the second (s, t) = 0, and in the third N(s + t) = r 
and hence (s, t) = -r/2. In each case the image of t under reflection is in A 
and has norm r. Thus S is invariant under reflection in this hyperplane, and 
the conclusion follows from Witt's theorem. D 

Since the isotropy group of an orthogonal direct sum of congruent lat­
tices is the wreath product of the isotropy groups of these lattices, we have 
immediately: 

(3.6) Corollary. The Voronoi polytope of A is isohedral if and only if A is a root 
lattice or a direct sum of identical root lattices. 

Indeed, the theorem proves more: the Voronoi polytope is inscribable (that 
is, its facets are tangent to an inscribed sphere) if and only if A is In or a root 
lattice or a direct sum of root lattices and a properly scaled Ik. 

Although we will probably never know the number of different Voronoi 
polytopes in IR n for n > 5, we do know exactly how many of them are isohedral! 

(3.7) Corollary. The number of isohedral Voronoi' parallelotopes in IR n is 

I(n) = den) + e(n) + fen) 

where d( n) is the number of divisors of n (including 1 and n), e( n) is the 
number of divisors of n which are greater than 3 (again including n itself), and 
fen) = 0,1,2 or 3 according as none, one, two or three of the numbers 6,7, 8 
divides n. 

Proof. If kin, then we can also form the direct sum of n/k copies of Ak (In is 
the sum of n copies of Ad. Thus the number of isohedral polytopes which are 
direct sums of lattices of the A type is d( n). The same is true for copies of D 
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lattices, but here k ;::: 4. Finally, f( n) counts the number of direct sums that 
we can build with lattices of the E type. 0 

(3.8) Corollary. If A is not a root lattice or an appropriate direct sum of root 
lattices, then A has vectors of norm > rand < 2r. 

It follows from Corollary 2.2 and Proposition 3.2 that F = C if and only 
if IFI = 2(2n - 1). The case F = C is very different from the case S = F. 
For example, almost all plane lattices satisfy the condition F = C. For, when 
F = C, D(A) has six edges. D(A) is not a hexagon only if A has generators al 

and a2 which satisfy the very special condition (a!, a2) = o. 
Lattices for which exactly n + 1 parallelotopes meet at each vertex of the 

Voronoi tiling of R.n were called primitive by Voronoi (Voronoi, 1908); primitive 
lattices have the property F = C. Voronoi showed (Voronoi, 1909) that under 
the classification of primitive lattices by the combinatorial type of their Voronoi 
polytope, P( n) is partitioned into a finite number of open sets of dimension 
n(n + 1)/2. Thus the set of lattices in pen) for which F = C contains an open 
dense set. We conclude that 

(3.9) Theorem. The condition F = C is generic. 

Engel has shown that beginning with n = 4, there are also nonprimitive 
parallelotopes for which F = C (Engel, 1986). 

4. Sphere Packings 

If S generates F (and thus A), then any lattice point can be reached from any 
other by a path of vectors of minimal length. Such a lattice can be constructed 
by packing equal spheres: if we place spheres of radius 4- at each lattice point, 
we can go from any sphere to any other by an unbroken sequence of center-to­
center links of length yIr. There are many lattices which are generated by S 
but for which S =f. F. For example, a very small perturbation of a root lattice 
can produce a lattice with this property. 

This leads us to the very interesting topic of lattice (and nonlattice) sphere 
packings, and the problem of finding packings with maximal densities. The 
density 8 of a sphere-packing lattice is defined to be the ratio of the volume of 
a unit sphere to the volume of its Voronoi polytope. In a sphere-packing lattice, 
the number of spheres touching each sphere is lSI. This number is sometimes 
called the contact number or 'kissing number'. 

Various more or less successful techniques have been developed for finding 
the densest lattice packings in a given dimension. For example, Conway and 
Sloane have shown that lattice packings of high density can be constructed by 
'lamination' (Conway and Sloane, 1982). 



490 Chapter 10. Introduction to Lattice Geometry 

The process is straightforward. It follows from their construction that a 
vertex of a Vorono! cell of any n-dimensional lattice An is equidistant from the 
center of the cells that share that vertex. It is thus the center of a spherical 
'hole' in the lattice. Since the lattice is invariant under its translations, the 
holes are arranged in a finite number of lattices congruent to An. Suppose that 
An is a sphere-packing lattice. We 'inflate' the spheres to n + I-dimensional 
spheres of the same radius, and then create an (n + 1 )-dimensionallattice An+! 
by stacking copies of the inflated An one above the other, with the spheres of 
one layer placed above the centers of a lattice of holes in the layer below. 

To obtain dense packings, we start with n = 1 and at each stage of the 
lamination process choose a lattice of 'deep' holes - holes of maximal radius. In 
fact, we obtain the densest possible lattice packings in dimensions one through 
eight in this way, and very dense packings in other dimensions. The extremely 
dense twenty-four dimensional Leech lattice appears in this series. 

Evidently, the deeper the hole the larger the number of cells meeting at its 
center (and thus the larger the value of lSI in An +1), and the denser the lattice 
we obtain by stacking above it. (It seems that neither of these statements has 
been ever proved). This suggests that 8 varies directly with lSI. Unfortunately, 
the situation is more complicated, even in three dimensional space. For example, 
there are lattices with minimal lSI (that is, 6) whose density is arbitrarily close 
to that of the densest lattice, in which lSI = 12. Thus a lattice with lSI = 6 
can be denser than a lattice with lSI = 8. It appears that the relation between 
8 and lSI has never been completely clarified. 

There is, however, a theorem of Vorono! (Vorono!, 1907) which does link 
them. We will state it without proof. First we must define three more important 
classes of lattices. 

1. A lattice for which 8 is a local maximum is said to be extreme; if 8 is 
a global maximum the lattice is absolutely extreme. For n = 2,3, ... ,8, the 
absolutely extreme lattices are the root lattices A2 , A3 , D4 , D 5 , E 6 , E7 , E 8 • 

2. A perfect lattice is one whose Gram matrix is completely determined by 
its minimal vectors. ('Perfect' is not synonymous with'S generates F'.) 

3. A eutactic lattice is one whose minimal vectors are parallel to the vectors 
of a eutactic star. (A eutactic star is a set ±al,' .. ,±as of vectors in lR. n with 
the property that there exists a p, > 0 such that every x E lR. n satisfies 
(x, x) = p, 2:) ak, x)2 .) 

The extreme property is related to the density 8; the perfect property is 
related to the contact number lSI, and as Coxeter notes (Coxeter, 1973), eutaxy 
means 'good arrangement, orderly disposition'. Vorono! proved: 

(4.1) Theorem. A lattice is extreme if and only if it is perfect and eutactic. 

For further details, consult (Conway and Sloane, 1988b) and (Coxeter, 
1951). 
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5. Integral Representations and the Crystallographic 
Restriction 

Haiiy noted that his building-block theory of crystal structure implied that 
no crystal can have icosahedral symmetry. More generally, for each n there 
are finite subgroups of O(n) which cannot be represented in GL(n,Z). Which 
subgroups of O( n) do have such representations? 

(5.1) Lemma. (Minkowski) Let BE GL(n,Z) be of finite order. If B is congru­
ent to the identity matrix I modulo m, where m is an integer greater than 2, 
then B = I. 

We will give a very simple proof using Vorono! polytopes. 

Proof. Let A be a lattice invariant under B. If B = I + mA, for some A E 
GL(n, Z), then B(x + mv) = x + m(Ax + v + mAy) for every x, v in A. Thus 
B fixes the cosets of mAo Corollary 2.4 states that, for any lattice, the elements 
of F belong to different cosets of mAo Thus since B is an isometry it fixes the 
shortest members of these cosets. Since there are n independent facet vectors, 
B=L 0 

(5.2) Theorem. (Minkowski) Every homomorphism J.L : E -t GL(n,Zq), where 
E is a finite subgroup of GL( n, Z) and q is an odd prime, is an injection. 

Proof. It follows from the Lemma that Ker J.L = {I}. o 

A partial answer to our question is, 

(5.3) Corollary. If m is the order of a finite subgroup We GL(n, Z), then for 
each odd prime q, m divides K;(n, q) = 2qn(n-l)/2 I1~=2(qk - 1). 

Proof. For each odd prime q, the map tP : W -t GL(n, Zq) is a homomorphism. 
Thus W has a faithful representation in GL( n, Zq), which is a finite group of 
order K;(n, q) (the formula is due to Galois). 0 

The question then is, which integers m divide K;(n,q)? Let A(m) be the 
'universal exponent of m', defined as follows: A(l) = 1, A(2<>') = </>(2<>') if a 
= 1 or 2, and </>(2<>')/2 if a > 2, A(P<>') = </>(p<>') for p an odd prime, and 
A(2<>'prl ... p~r) =< A(2<>'),A(prl), ... ,A(p~r) >. Here </>(d), Euler 'sfunction , 
is the number of integers less than and relatively prime to d, and < a, b > is 
the least common multiple of a and b. 

(5.4) Corollary. The condition A( m) :::; n is sufficient to ensure that m divides 
lI:(n, q) for every q which does not divide m. 

Proof. Let m have the prime-power decomposition 2<>'prl ... p~r. A( m) is the 
smallest positive integer t such that qt == 1 (mod m) for every prime q which 
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does not divide m (see, e.g., (LeVecque, 1956)). By Corollary 5.3, for each odd 
prime q that does not divide m, m divides I1~=2(qk - 1). 0 

Neither Corollary 5.3 nor a sharper condition also due to Minkowski guar­
antees the existence of a subgroup of GL(n, Z) of order m. However, in the case 
that W is a cyclic group, we can get a necessary and sufficient condition. This 
result is known as the crystallographic restriction. 

As we have seen, the Vorono! polytopes for lattices in ]R2 are either quadri­
laterals or hexagons. Thus the order of a single element of GL(2, Z) can be only 
1, 2, 3, 4 or 6. It is not difficult to see that this 'restriction' holds in ]R3 as well. 

This is a special case of the following condition for arbitrary n. Let g( m) 
be the least value of n for which an element of order m appears in GL(n,Z). 

(5.5) Lemma. If the order of B E GL( n, Z) is a power of a single prime, m = pOi, 
then g(m) = ¢(pOl). 

Proof. B is an isometry, so its eigenvalues are m th roots of unity. One of them, 
say (, must be a primitive mth root, because the order of B is the maximum 
of the orders of the eigenvalues. The roots of the minimal polynomial of ( are 
precisely the primitive mth roots of unity, and since this polynomial divides the 
characteristic equation of B, all of the primitive mth roots must be eigenvalues. 
The number of primitive roots is ¢(pOl), so n ~ ¢(pOl). In fact, the integral lattice 
in the cyclotomic field R(() has dimension ¢(pOl), so this must be the lowest 
dimension n in which an element of order pOi appears in GL(n, Z). 0 

Suppose now that m is a product of distinct primes. 

(5.6) Theorem. Let B E GL(n,Z) have finite order m = pr1 •• • p~r. Then 

g(m) = L ¢(p7i). 
p~i#2 

Proof. If m is odd, then g(2m) = g(m) because -B E GL(n, Z). Thus we 
assume that if 201 1m, then a > 1. Clearly g( m) ::; L: ¢(pfi), because an element 
of that order can be constructed as a direct sum of elements of GL( ¢(pfi ,Z). 
But also g(m) ~ L:rf>(pfi): by the reasoning used in the case of a single prime 

power, the set of eigenvalues of B must include at least one ofthe pfi th primitive 
roots of unity, i = 1, ... , r, and hence it contains all of them. 0 

As Pleasants points out (Pleasants, 1985), proofs in the literature which 
mistakenly assert that ¢( m) = g( m) implicitly assume that for any m, a prim­
itive mth root of unity must be an eigenvalue of B. Hiller, whose notation we 
have followed here, gives a table of admissible orders m for n ::; 23 (Hiller, 
1985). 
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We have seen that every finite subgroup W c GL( n, Z) is isomorphic to a 
finite subgroup W' C GL( n, Z3). Obviously the entries in the matrices of W' 
can be taken to be 1, ° and -1. In some cases this is also true for the group W. 
For example, looking in the International Tables for X-Ray Crystallography, we 
find that all the matrices for the 14 Bravais lattices in IR3 have entries 0, 1 and 
-1. Evidently, for each lattice in IR3 a basis can be chosen so that its point group 
E can be represented in this simple form. This raises the interesting question 
of whether such a basis can be found for each lattice in every dimension. 

The vectors sums L:7=1 O:jaj, where O:j E {O, 1, -1} form a box which is a 
unit cell for 2A centered at the origin. The vectors which appear as the ph_ 
columns of the matrices representing E constitute the orbit of the basis vector 
aj. The matrices will have all their entries 0, 1 and -1 if and only if the orbits 
of all the basis vectors lie in this box. 

At first sight, determining whether such a basis exists appears to be an 
(impossibly difficult) exercise in group conjugation. However, a geometric ap­
proach has proved to be much more successful. Obviously, the shorter the basis 
vectors and the more symmetrical the box, the closer the basis will be to hav­
ing this property. Since the Vorono! polytope D(A) is invariant under E, and 
since facet vectors are 'relatively short', perhaps the basis we are seeking can 
be found in the set F. 

Although F generates A, it is not obvious that a lattice basis can be 
extracted from this set. This is in sharp distinction to a vector space, in which 
every spanning set contains a basis. Vorono! asserted, but did not prove, that 

(5.7) Theorem. Every lattice contains a basis of facet vectors. 

We believe this theorem to be true, and have proved it for large classes of 
lattices (Engel, Michel, and Senechal, 1992?). 

Plesken has determined the maximal subgroups of GL(n,Z) for n ::; 10 
(Plesken, 1977, 1980). By finding and examining bases offacet vectors for these 
lattices we have been able to prove 

(5.8) Theorem. For n::; 7, every finite subgroup ofGL(n,Z) can be represented 
by matrices with entries 0, 1 and -1. 

The proof of the theorem (Engel, Michel, and Senechal, 1992?) is quite 
complicated, involving both algebraic and geometric arguments and extensive 
use of the computer. 

In dimensions greater than 7, '0, 1, -1' bases can be found for many families 
of lattices, including all the root lattices An, Bn and Dn, but in general such a 
basis does not exist. The first exception occurs in IRs. There are 0,1, -1 bases 
for E6 and E7 (this is guaranteed by Theorem 5.4) but not, as J.H. Conway 
first pointed out (private communication), for Es. One way to see why not is 
study the corresponding Voronol tiling. Es is a sphere packing lattice which 
can be constructed by stacking layers of spheres in congruent E7 configurations 
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(Conway and Sloane, 1988a). Replacing the spheres of Es by Voronol polytopes, 
we see that the Voronol tiling can be divided into layers -1, 0, 1, ... , the tile 
centers in each layer constituting a lattice of E7 type. We find that DCO) meets 
56 others in layer -1, 126 in layer 0, and 56 in layer 1. But 2 x 56 + 126 = 
138, while D(Es) has 240 facets. Thus each Voronoi polytope must share one 
facet with a polytope in layer -2 and one with a polytope in layer 2. F cannot 
be contained in our box no matter what basis we use to construct it. It follows 
that we cannot represent Es by matrices with only 0, 1 and -1. 

More generally, Es is one of a series of intermediate lattices of type Dt = 
Dn U ( ~, ... , ~) + Dn (defined only for even n). The Voronoi polytope of Dt is 
obtained from that of Dn by truncating the latter at half of the vertices of type 
(~, ... , ~); thus these vertices are facet vectors for Dt. It can be shown that 
one of them must appear in every basis of facet vectors. Since their norm is 
n/4, these vertices recede from the center as n increases. The 'optimal' matrix 
representation for the point group of Dt will always have at least one entry no 
less than 2: [n/4]. 
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Chapter 11 

A Short Introduction to Quasicrystallography 

by Andre Katz 

1. Introduction 

Since the discovery (in the fall of 1984) of icosahedral quasicrystals, their struc­
ture determination has motivated a great deal of work. However, these efforts 
have been up to now rather unsuccessful and no systematic approach to this 
question is known. 

In this paper, we explain why this question is difficult and develop the basic 
problems related to the description of the microscopic (atomic) structure of 
quasicrystals. We focus on the 'quasiperiodic' point of view, and we emphasize 
the topological problems which arise when one goes from (point) atoms in the 
periodic case to 'atomic surfaces' of non-zero dimension in the quasiperiodic 
case. Although the paper is not written in a mathematically rigorous way, 
we hope that it will prove legible by mathematicians, and will stimulate the 
communication between mathematicians and physicists. 

After a brief review of classical crystallography, we give the necessary infor­
mation about the experimental and phenomenological aspects of quasicrystals. 
Then we set up the general framework for the description of quasiperiodic sets 
of points, as sections of a periodic lattice of 'atomic surfaces' embedded in a 
higher dimensional space, in the way introduced several years ago by J anner 
and Janssen in their theory of incommensurate crystals (J anner and Janssen 
(1977)). We explain in particular how to compute the Fourier transform of 
these structures, which is of primary importance for crystallography. The next 
topic is the study of the notion of symmetry for such structures, which is not 
exactly the same for ordinary crystals and for quasicrystals (for the sake of 
clarity we restrict the discussion to the icosahedral case). As an important ex­
ample, we develop in the following Section the description of the Penrose-like 
tilings, which are the best known quasiperiodic systems, and we explain how 
one can systematically study their local properties, such as the frequencies of 
the tiles or the classification of local patterns. 

In the following Section, we examine the special properties of the Penrose­
like tilings which should be preserved in any realistic model of quasicrystals, 
in connection with the physically important problem of the propagation of 
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orde-r. As explained in the last Section, this study results in natural topological 
constraints on the possible atomic surfaces, which on one hand allow us to 
distinguish between quasi crystals and other kinds of quasiperiodic systems such 
as modulated crystals, and on the other to recover to a certain extent the 
classical notion of integral stoechiometric coefficients. 

2. Phenomenology of Quasicrystals 

Let us first recall the fundamentals of experimental crystallography: the main 
tool used for the study of the microscopic structure of solid state materials is 
the diffraction of X-rays, electrons or neutrons. X-rays and electrons interact 
mainly with the electrons of the material, while neutrons interact with the 
nuclei. Consider for instance the diffraction of X-rays, and let per) be the elec­
tron density, where r E JR3. Then the output of the diffraction experiments is 
essentially the squared modulus lp(k)j2 of the Fourier transform P(k) of per). 

For an infinite and perfect periodic crystal, the function per) is periodic 
and lp(k)j2 is an array of Dirac peaks (called Bragg peaks by physicists). One 
measures the coefficients of these Bragg peaks (the so-called intensities) and the 
task of crystallography is to reconstruct per) or at least the atomic positions 
from these diffraction data. Observe that this is not a simple task since the 
phase of P(k) is not known: only the squared modulus lp(k)j2 is measured. 
In order to find the structure, crystallographers have to obtain and use all 
possible kinds of extra information, such as the density and stoechiometry of 
the compound under study and its chemical properties, the comparison with 
already known structures, and so on. 

One of the most important features of a crystalline structure is its sym­
metry group. Let us recall that in classical crystallography one usually defines 
three symmetry groups: the space group is the largest subgroup of the displace­
ment group (the Euclidean group of isometries of the affine space JR3) which 
leaves the crystal invariant. The intersection of the space group with the trans­
lation group JR 3 is the translation group of the crystal (which is an invariant 
subgoup of the space group), and the quotient group of the space group by 
the translation group is the point group, a finite subgroup of the orthogonal 
group 0(3). Now, it is known since the 19th century that only a finite number 
of subgroups of 0(3) may occur as point groups of a crystalline structure. In 
particular, five-fold axes are forbidden and a crystal cannot exhibit icosahedral 
symmetry. This is why the discovery of quasi crystals was so surprising. 

Quasicrystals were first discovered in ultra-quenched alloys of aluminium 
and manganese, prepared by the same method used for metallic glasses: the 
melted alloy is dropped onto a spinning wheel of copper, which is at room 
temperature. This produces a thin ribbon of alloy, which is cooled (quenched) 
at very high rates (up to several million Kelvins per second), depending on the 
experimental conditions. 
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As is well known, if the quenching rate is high enough, there is no time for 
the crystallization process to take place, and one gets an amorphous material 
(a metallic glass). These metallic glasses are characterized in diffraction ex­
periments by the absence of well-defined Bragg peaks, which are the signature 
of long range positional order. Roughly speaking, a metallic glass is simply a 
liquid which has been made infinitely viscous by the cooling. 

For lower quenching rates, one gets a microcrystalline structure, which is 
characterized by the presence of Bragg peaks in diffraction experiments, in a 
way compatible with the classical laws of crystallography. 

In the special case of AI-Mn alloys, and for intermediate cooling rates, 
Shechtman, Blech, Gratias and Cahn (Shechtman et al. 1984) observed a new 
phase, which has been named icosahedral quasicrystal. This phase appears in 
small grains of a few microns size embedded in an aluminium matrix. 

The striking feature of this phase is that its electron diffraction patterns ex­
hibit both sharp Bragg peaks and icosahedral symmetry. As mentioned above, 
such a situation is forbidden by the laws of classical crystallography. Since 
this initial discovery, icosahedral quasicrystals have been observed in several 
compounds, mainly ternary aluminium-based alloys. Up to now, the best qua­
sicrystalline samples (with single quasicrystals as large as a few millimeters) 
have been obtained in AI-Cu-Fe alloys. On the other hand, other kinds of 
'two-dimensional' quasicrystals have been obtained: they are characterized by a 
periodic arrangement of atoms along one direction and a non-periodic arrange­
ment in the planes orthogonal to that direction, which appears as a symmetry 
axis of order eight, ten or twelve, all of these cases being forbidden by the laws 
of classical crystallography. For general informations about quasicrystals, the 
reader is referred to the following books: International Workshop on Aperiodic 
Crystals (Les Houches)(1986) and The Physics of Quasicrystals (1987). 

Soon after it was recognized that these extraordinary electron diffraction 
patterns were not artifacts, three different approaches were devised to interpret 
them: the so-called icosahedral glass theory, the theory of multiple twinning and 
the theory of quasiperiodic structures. This last point of view will be developed 
in the remaining of this paper. Let us say a word about the two first: 

Following the point of view of icosahedral glasses, the quasicrystals are to 
be seen as 'random' packings of icosahedrally symmetric clusters of atoms. The 
randomness in these packings is not so easy to characterize: the idea is that 
during the growth of the solid phase from the melt, whole icosahedral clusters 
stick on the solid in a way compatible with steric hindrance, and when several 
sites are available for a cluster, then the choice is made at random. It can be 
shown, in particular with numerical simulations, that such a growth process 
may result in a partial positional ordering, which manifests itself through the 
appearance of peaks in the diffraction pattern (this is the 'Hendricks-Teller' 
effect), and the distribution of these peaks presents the icosahedral symmetry. 
However, these peaks are not infinitely thin like ideal Bragg peaks, and this 
broadening reflects the 'intrinsic disorder' of the structure which is referred to 
in the name icosahedral glass. 
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The theory of multiple twinning adopts quite the opposite point of view: 
the 'quasicrystallite' are considered to be 'twins' of a normal (cubic) crystal 
with a large unit cell, i. e., pieces of crystals glued together in an icosahedrally 
symmetric way around a common center. The diffraction pattern of such a 
multiple twin is the superimposition of the diffraction patterns of the different 
parts, and thus will present the icosahedral symmetry. However, since crystals 
cannot present the icosahedral symmetry, one cannot achieve an exact super­
imposition of the diffraction peaks coming from the components of the twin. 
Thus in this theory the icosahedral symmetry of the diffraction pattern is due 
to the approximate superimposition of a set of peaks and if the crystallites are 
small enough, the peak widths are large enough for this set of peaks to appear 
as an unique peak centered on an exact icosahedral site. 

It should be emphasized that at the time when these theories were pro­
posed, they were compatible with the available experimental data: both of 
them require rather large diffraction peaks (the first one because of intrinsic 
disorder and the second for the splitting of the peaks to be hidden). However, 
the progressive improvement of 'quality' and size of the quasicrystals prepared 
by chemists led to narrower and narrower diffraction peaks. In particular, the 
AI-Cu-Fe system produces very good single quasicrystals with peak widths far 
smaller than those predicted by the icosahedral glass model and which would 
require unrealistically large unit cells for a multiple twinning model to work. 
One the other hand, the theory of quasiperiodic structures constitutes a frame­
work large enough to allow the description of both some randomness of the 
structure (through a 'roughening' of the cut, see below) and the transition to 
periodic crystals with large unit cells which are in a precise sense 'close' to a 
quasiperiodic system (the so-called approximating structures). 

3. Description of Quasiperiodic Sets of Points 

Let us first recall the definition of quasiperiodicity (see for instance Besicovitch 
(1932)): a function (of d real variables) on an affine (d-dimensional) space E is 
said to be quasiperiodic if it is the restriction to E (embedded as an affine sub­
space) of a periodic function of n real variables defined in a higher dimensional 
space IR. n. Of course, if the embedded space E (which will be referred to as the 
'cut') is rationally oriented with respect to the lattice of periods of the periodic 
function (i. e., if E is parallel to a lattice subspace) then the restriction of this 
function to E is also periodic. But if the orientation of the cut is irrational, 
that is, if the vector subspace parallel to the cut contains no point of the lat­
tice besides the origin, then the restriction is not a periodic function. Observe 
that from an analytical point of view, the restriction to E can be considered as 
the density of the measure on E defined by the (multiplicative) product of the 
periodic function in IR. n by the Lebesgue measure carried by E. This product 
is well defined as soon as the function is smooth. 
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3.1 The Atomic Surfaces 

To describe a quasiperiodic set of points rather than a quasiperiodic function, 
the natural generalization is to attach to each of these points a Dirac delta 
and to consider them as the restriction J-l of a periodic measure instead of the 
restriction of a periodic (smooth) function. Let A be the lattice of periods of 
this periodic measure. Then this measure rr is the inverse image of a measure 
rt defined on the torus 'lIm = lR n / A through the canonical projection lR n f-7 ']['n. 

The carrier a of rt is to be a compact submanifold in ,][,n with a dimension 
n - d equal to the co dimension of the cut E, and a will be in the general case 
a manifold with boundary. For physical reasons to be made clear below, it is 
sufficient to consider measures with a continuous density along their carriers. 
The manifold a is called the 'atomic surface' and its canonical lift in lRn is 
the periodic set E of atomic surfaces. They do not correspond exactly to the 
atomic surfaces defined by J anner and Janssen: as will be made clear, the 
latter (which could be called 'large atomic surfaces') appear as the unions of 
our submanifolds over whole sublattices of the high-dimensional lattice, and 
they have no boundary. 

To determine a structure in quasi crystallography amounts to construct an 
appropriate lattice A in the relevant high-dimensional space lR n , and then to 
construct the atomic surface a in the torus lR n / A. Observe that this framework 
is a natural generalization of classical crystallography: in that case too, the first 
step is to find the space group of the crystal, and the second is to determine 
the atomic positions in the unit cell, that is in the 3-dimensional torus. We 
can say that this second step is to determine the embedding of a O-dimensional 
compact manifold (a finite set of points ... ) in ']['3 just as it is for quasicrystals 
to determine the embedding of the atomic surface in ']['n. 

Now, the main difficulty of quasicrystallography becomes clear: loosely 
speaking, the position of a manifold in ,][,n depends on 'infinitely more' param­
eters than the position of a finite set of points in ']['3. On the other hand, we get 
from diffraction experiments essentially the same amount of data: a finite set 
of numbers, measured' of course with a finite accuracy. It seems that the only 
way to solve this difficulty is to find enough a priori constraints on the atomic 
surface to make its position in ,][,n depend on finitely many real parameters 
only, and in this paper we report on some progress in this direction. 

Let us return to the description of our framework. From an analytical 
point of view, the set of intersections between the cut and the periodic set E 
of atomic surfaces carries the multiplicative product J-l between the measure 
rr defined on the atomic surfaces and the Lebesgue measure on the cut E. 
With our smoothness assumptions, this product is well defined as soon as the 
cut is transverse to the atomic surfaces, and we shall only consider situations 
in which this condition is generic with respect to the translations of the cut. 
The transversality condition means that the cut does not intersect any atomic 
surface on its boundary or on a point where the tangent space to the atomic 
surface has a non-zero intersection with the cut. Observe that asking for the 
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genericity of this property is not a strong restriction and simply means, in a 
first approach, that the boundary is not a too complicated set, such as a fractal 
set. 

To sum up, the definition of a quasiperiodic set of points involves: first, 
a periodic lattice of atomic surfaces, and second, a plane cut through this lat­
tice. Observe that for a given direction of the cut, one defines at once infinitely 
many different structures. In fact, for a generic atomic surface, two cuts yield 
isometric structures if and only if they are mapped on each other by a trans­
lation belonging to the lattice, up to a translation parallel to the cut. These 
translations may be described as all the vectors in IR n which project on the 
subspace orthogonal to the direction of the cut onto the projection of the lat­
tice, in such a way that the different structures are classified by the quotient of 
this subspace by the projection of the lattice. Since this last set is countable, 
we see that by shifting the cut we generate an uncountable infinity of different 
(non-isometric) structures. 

However, from a crystallographic point of view, all these structures are 
indistinguishable from each other, for they all yield the same intensities in 
their diffraction patterns, as we shall now compute. 

3.2 Fourier Transform 

Let us first remark that the Fourier transform Ii of the measure p on the cut 
obtained as the restriction to the cut of the measure 'if carried by the atomic 
surfaces, is well defined in physically relevant situations. In fact, we have in 
any atomic system a minimal distance between any two points, so that if ", is 
bounded we see immediately that the measure p is a slowly growing generalized 
function and thus admits a Fourier transform. 

To compute it, one has only to reproduce in Fourier (reciprocal) space 
the Fourier image of the construction of this measure: in direct space, we take 
the measure ", on the atomic surface attached to one fundamental domain of 
the lattice A (we identify here the chosen fundamental domain with the torus 
Tn). Then we construct the corresponding measure 'if on the lattice E of atomic 
surfaces by taking the convolution product of", with the measure defined by one 
Dirac delta at each vertex of the lattice A, and finally we take the multiplicative 
product by the Lebesgue measure carried by the cut, and consider the result 
as a measure on the cut. 

Accordingly, we have to consider the Fourier transform fj of ", in Fourier 
space, to take its multiplicative product by the Fourier image of the lattice of 
Dirac deltas (which is the reciprocal lattice A* of Dirac deltas) and finally to 
take the convolution product of the result by the Fourier image of the Lebesgue 
measure carried by the cut (Duneau and Katz (1985), Kalugin et al. (1985), 
Elser (1986)). 

The two first steps are always well defined in our context: since the atomic 
surface attached to one vertex of the n-dimensional lattice is compact, the 
Fourier transform fj exists and is a smooth (analytic) function, so that the 
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multiplicative product by the reciprocal lattice exists and simply results in 
attaching to each Dirac delta in this lattice A*, a coefficient which is the value 
of this smooth function at the same point. 

To develop the last step, let us first consider the case where the cut is 
identical to Ell, the vector subspace of IR n defining the direction of the cut E, 
and let El.. be the orthogonal subspace. Then the Lebesgue measure de carried 
by the cut can be written as the tensor product of the Lebesgue measure dXII 
on Ell with the Dirac delta at the origin in El..: 

so that: 

The Fourier transform is the tensor product of the Fourier transforms of 
the factors: we get the Lebesgue measure carried in the reciprocal space by the 
subspace El..* dual to El..: 

The convolution product of this measure by the lattice ij. A* of weighted Dirac 
deltas simply amounts to placing at each vertex of A * a copy of El.., bearing 
the Lebesgue measure weighted by a coefficient which is the value of ij at this 
vertex. The result has the form of a tensor product between the Lebesgue 
measure in El..* and a generalized function j1 in the orthogonal subspace EII*: 

and this generalized function j1 is the Fourier transform of the measure /-l defined 
on the cut. 

Observe that this last step simply corresponds to the projection of the 
lattice ij. A* of weighted Dirac deltas on EII* along El..*. 

To deal with the case where the cut E is no longer identical to the subspace 
Ell, let us denote Xl.. the vector in El.. such that E = El..+xl.. and observe that 
we get the same result by shifting the cut through the vector Xl.. and shifting 
the lattice E of atomic surfaces through -Xl.., keeping Ell as the cut. Such a 
shift of the atomic surfaces amounts to multiplying the function ij(k) by the 
phase factor e-ik.x.L, whose 'sampling' at each k E A* yields a different phase 
factor for each of the Dirac deltas of e-ik.x.L . ij. A*. 

Let us make some comments about this computation: 
The Fourier transform j1 of the structure is the sum of a countable family 

of weighted Dirac deltas, carried by the IE-module projection of A* on EII*, and 
this justifies the reference to the quasiperiodicity of this structure. Observe that 
for a 'completely irrational' orientation of the cut with respect to the lattice A, 
this IE-module is dense in EII*. 

However, the family of coefficients is not in general locally summable (al­
though it is locally f.2 as soon as the atomic surface a is a compact manifold 
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with a smooth enough boundary). For this reason, the very existence of the 
sum may depend on the phases of the coefficients, and this restriction is the 
'Fourier image' of the transversality condition stated in the direct space: the 
Fourier transform of the structure is well defined only when the structure itself 
is well defined. As mentioned above, this requires a transversality condition 
between the cut and the lattice E of atomic surfaces, which may break down 
for special positions ofthe cut (for instance if E has boundaries). In the Fourier 
space, these special positions correspond to special combinations of phase fac­
tors such that the (locally infinite) sum of weighted Dirac deltas does not exist 
as a generalized function. 

On the other hand, since a shift of the cut results only in a change of the 
phase factor for each of the coefficients of the Dirac deltas, we see that such 
a shift does not alter the intensities, which are the squared modulus of the 
coefficients of the peaks (this is true only if the projection of A* on EII* is one 
to one, but when one starts from experiments, it is always possible, and in 
fact natural, to construct the high-dimensional lattice A so that this property 
is verified). Since the diffraction experiments record only the intensities, we 
conclude that the 'large' infinity of different structures corresponding to the 
allowed parallel cuts are indistinguishable from the experimental (diffraction) 
point of view. 

Finally, observe that the carrier of the Fourier transform being a dense 
subset of the Fourier space EII* raises specific problems for the interpretation 
of experimental data. The fact that it is actually possible to 'index' the diffrac­
tion peaks unambiguously (that is, to find for each peak the vertex of A* of 
which this peak is the projection on EII*) is linked with the following impor­
tant (experimental) property: there is a strong 'hierarchical' structure for the 
diffraction patterns, in the sense that the set of peaks with an intensity greater 
than any strictly positive threshold is always a discrete set. Although the exact 
significance of this fact for the geometry of the atomic surface is not completely 
understood, we shall see on the example of the Penrose tilings that it seems to 
correspond to smoothness features of the atomic surface a. 

In order to show how the previous geometric framework may be directly 
relevant for the structural study of quasicrystals, we shall now present the 
results of the high dimensional generalization of the classical Patterson analysis. 

3.3 Patterson Analysis 

Let us first recall the hypothesis underlying classical crystallography: because of 
finite instrumental resolution, finite size effects, inelastic scattering and so on, 
the diffraction measurements do not result in infinitely thin peaks which could 
directly be considered as Dirac deltas. The crystallographic interpretation of 
these data requires some hypothesis, the main of which being that the sample 
is 'sufficiently well' described as a finite piece of a periodic structure. Then it 
is easy to show that the best approximation to the diffraction pattern which 
would result from such an ideal structure is provided by the assignment of 
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the integrated intensity of each diffraction peak as the coefficient of a Dirac 
delta located on the mass-center of each peak. Of course, one has to verify that 
the positions assigned in this way in the Fourier space coincide 'sufficiently 
well' with some allowed reciprocal lattice (this is nothing but the first of the 
numerous verifications of the consistency of their work which are made by 
crystallographers) . 

Considering the coefficients resulting from this integration to be the set of 
squared modulus lP(k)12 of the Fourier coefficients of the periodic diffracting 
function p(x), one can then compute their back Fourier transform. One obtains 
in this way a function proportional to (p * p)(x), (where p denotes as usual 
the function x I-t p( -x)) which describes the set of interatomic distances in 
the crystalline sample: more precisely, the function (p * p)(x) (the Patterson 
function) takes large values for the translations x which superimpose a large 
part of the crystal on itself. This is by definition the case for the periods of the 
crystal, so that the Patterson function is periodic with at least the periodicity 
of the crystal itself. But if there are several atoms in the unit cell of the crystal, 
then the Patterson function takes also large values for the vectors x which map 
an atom on a different atom of the cell. Thus it yields useful information about 
the relative atomic positions inside the crystalline cell. 

Observe however that the maxima of the Patterson function are not sharp, 
for two main reasons. The first one is that the diffracting function p is in general 
smooth (it is in general the electronic density, which is spread over all the 
atomic volume). The second is that only a finite number of intensities enter the 
computation of the back Fourier transform (those which are large enough to 
allow an accurate measurement). This is why the interatomic distances deduced 
from the Patterson analysis are not in general accurate enough to lead directly 
to the atomic structure of the crystal. 

Let us now turn to (icosahedral) quasicrystals. As already mentioned, the 
most prominent feature of their diffraction patterns is that they present sharp 
Bragg peaks and icosahedral symmetry. Since the icosahedral symmetry is not 
compatible with any lattice symmetry, it is clearly impossible to index these 
peaks in a 3-dimensional (reciprocal) lattice. But it is natural to try and index 
the peak positions in a Z-module of rank greater than 3, invariant under the 
icosahedral group. This happens to be possible with a Z-module of rank 6 and 
one is naturally led to develop the same analysis as for an ordinary crystal, i. e., 
to compute the integrated intensity for each peak and consider it as the squared 
modulus of a Fourier coefficient of an ideal quasiperiodic structure (Gratias et 
al. (1988)). 

Following in the reverse way the computation of the Fourier transform of a 
quasiperiodic function, it is then natural to embed the 3-dimensional reciprocal 
space in lR. 6 as the previous EII*, and to choose in lR. 6 a lattice A* projecting 
in a one to one way onto the 'experimental' Z-module. Then one can lift in 
a unique way the diffraction data on the lattice A * and consider them as the 
Fourier series of a periodic function in lR. 6 , which is the generalization of the 
Patterson function. Some 2-dimensional sections of this function computed for 
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Fig.!. The 6-dimensional Patterson function of the quasicrystal Al-Mn-Si computed 
from X-ray diffraction data and showing (a) the trace on a plane of the physical space 
spanned by a five-fold and a two-fold axis, (b) the trace on a five-fold plane of]R6 
and (c) the trace on a two-fold plane of]R6 (courtesy of D. Gratias) 
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the quasicrystal Al-Mn-Si are depicted on Fig. 1. Let us make some comments 
about its specific features. 

Since we have been dealing with atomic surfaces, it is worthwhile to explain 
the relation of the atomic surface and the diffracting density p. Let us first 
consider the case of a periodic crystal. For each atomic species a, one defines 
its atomic form factor Fa and the corresponding partial density is the sum 
of all the atomic form factors centered on all the vertices of the sublattice 
corresponding to the atomic species. Finally the function p is the sum of the 
previous partial densities over the different atomic species. 

In other words, we consider for each atomic species the convolution prod­
uct of the atomic form factor by the sublattice of Dirac deltas describing the 
positions of the corresponding atoms, and then sum over the different chemical 
species. 

For quasicrystals, we have to consider a (higher-dimensional) lattice Ea of 
atomic surfaces as the generalization of the periodic lattice of atomic positions 
for the atomic species a, and the measure ija instead of the corresponding 
lattice of Dirac deltas. To express the 'spreading' of the atomic surface along 
the 3-dimensional direction Ell only, we have to construct the measure carried 
by Ell with the density Fa with respect to the Lebesgue measure on Ell, and to 
compute the convolution product of ija by this last measure. Let p' be the sum 
of these convolution products over the set of atomic species: it is clear that p' 
is a periodic function (not necessary smooth in the E.L direction) which yields 
upon restriction to the cut E the diffracting density p. 

Now, the 6-dimensional Patterson function depicted on Fig. 1 is essentially 
proportional to p' * p'. As one can see, this function takes large values along 
two 'sheets', parallel to E.L and centered on the vertices and the body centers 
of the 6-dimensional simple cubic lattice. Moreover, the width of this function, 
measured along Ell, is qualitatively the same as the width of the Patterson 
function of a periodic crystal, i. e., is compatible with the sizes of the atoms of 
the material. 

These two main features of the 6-dimensional Patterson function strongly 
suggest that the atomic surfaces corresponding to this quasi crystal contain 
pieces not far from being parallel to E.L. In fact, if the atomic surfaces were 
curved or 'modulated' along Ell, this modulation would reflect in p' *p' through 
an additional blurring which is not observed, or at least may be neglected in 
first approximation 

Finally, one can draw a main qualitative conclusion from this Patterson 
analysis: it is that the system of atomic surfaces does not look so complicated. 
It seems that this system is made of only a small number of (3-dimensional) 
sheets parallel to E.L (much like the atomic surfaces of the Penrose tilings, 
see Section 5), so that the structural problem seems to reduce to the study of 
their shapes in E.L. However, this study is very difficult, mainly because, as 
mentioned above, these shapes depend a priori on infinitely many parameters. 
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4. Symmetry 

We will now turn to the study of the symmetry properties of quasicrystals. 
Since there is no general agreement among specialists on these questions, our 
discussion on this topic will be more speculative than the rest of this paper. 
For the sake of simplicity, we shall consider in this Section only icosahedral 
quasicrystals. 

To begin with, let us remark that the definition of these symmetry prop­
erties is not obvious, and that it is not possible to give a straightforward gen­
eralization of the definitions available in classical crystallography. 

In fact, one defines in classical crystallography the space group as the 
largest subgroup of the group of Euclidean motions which leaves the structure 
invariant. But for quasiperiodic structures, this group is in general reduced to 
the identity, so that this definition does not make sense and we have to 'weaken' 
in some sense our notion of symmetry. 

Observe that this situation has heavy consequences for the 'solid state 
physics' of quasicrystals. The point is that the existence of a translation group 
for crystals is the main tool used in the theory ofthermal vibrations (phonons), 
the theory of electronic states and so on. These classical theories do not ad­
mit any simple generalization for quasiperiodic media, and in fact very little 
is known on these important questions for quasi crystals. In that sense, the 
'weakening' of the notion of symmetry for quasicrystals is not formal: the main 
theoretical consequences of the ordinary notion of symmetry are actually lost. 

Now, the natural starting point is again the diffraction pattern. One can 
associate two groups with it. The first one is obviously the subgroup of the 
rotation group 0(3) which leaves this pattern invariant: it is the icosahedral 
group Yh, from which are named the icosahedral quasicrystals. The second is 
the symmetry group of the IE-module which carries the diffraction pattern. 
This last group contains the IE-module itself as its translation subgroup, and 
the quotient by this translation group contains, besides the icosahedral group, 
the so-called self-similarity transformations. 

4.1 The Icosahedral 'Point Group' 

In order to establish the physical meaning of the icosahedral symmetry in this 
context, let us refer once again to the case of periodic crystals. 

From a formal point of view, observe first that if the translation group L of 
a crystal is invariant under the action of the point group P, then the reciprocal 
lattice L* is invariant through the dual action of P. But the diffraction pattern 
is always invariant through the inversion with respect to the origin, simply 
because this operation changes the sign of the phases in the Fourier transform 
and these phases are lost in the diffraction pattern. Thus we see that for a 
periodic crystal the relationship between the point group and the symmetry 
group of the diffraction pattern is the following: if the point group contains the 
inversion with respect to the origin, then these two groups are identical; and 
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if the point group does not contain the inversion, then the symmetry group 
of the diffraction pattern is a two fold extension of the point group. For the 
quasicrystals, this means that we cannot at this level make any distinction 
between the group Yh, which contains the inversion and is of order 120, and 
the group Y, which does not contain the inversion and is of order 60. 

From a physical, or phenomenological point of view, one may consider that 
the relevant symmetry properties of a crystal depend on the problem under 
consideration, and more precisely on the natural length scales of the problem. 
For instance, if we study the interaction of the crystal with X-rays (whose wave 
length is of the order of magnitude of the interatomic distances in the crystal), 
then the relevant group to consider is the space group, since the X photons 
'see' the inhomogeneity of the material on the atomic scale. But if we consider 
the propagation of light in a transparent crystal, then the relevant group is the 
point group: in fact, the wave length of light is of the order of a micron, and 
at this scale the crystal is homogeneous, although its anisotropy may still have 
effects on the light propagation. 

Since the symmetry group ofthe diffraction pattern does not embody more 
information than this anisotropy, we may - cautiously - conclude that, as 
a phenomenological symmetry group, the icosahedral group of quasicrystals 
describe the anisotropy of the material on length scales large with respect to 
the atomic scale. 

4.2 The Invariance Group of the Z-module 

Let us recall more precisely the main steps of the strategy used in classical 
crystallography to determine a structure: one first identifies the point group 
(up to the inversion with respect to the origin) by looking at the symmetry of 
the diffraction pattern. Then one finds the space group of the structure by a 
closer examination of the diffraction pattern: for a given point symmetry, one 
has to choose among a finite list of possible space groups, which correspond 
to different reciprocal lattices, and the reciprocal lattice is closely related to 
the carrier of the diffraction pattern (up to the inversion ... ). When the space 
group (and thus the unit cell of the crystal) is known, it remains to find the 
location of the atoms inside the unit cell. One considers that the job is finished 
when one has found a model such that the simulated diffraction computed from 
the model coincides 'sufficiently well' with the experimental diffraction data. 

It is important to observe that the fact that the symmetries of the diffrac­
tion data actually reflect symmetry properties of the crystal itself does not play 
an essential role in this strategy, so that the same steps (or at least the first 
two) can be worked out for quasicrystals essentially in the same way, although, 
as explained above, there is no (non trivial) invariance group of isometries in 
the real space for quasiperiodic structures. 

In fact, one can classify the Z-modules invariant in IR3 under the action 
of the icosahedral group using the same systematic group-theoretical methods 
which are used to classify the crystallographic lattices. Since there is already 
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an extensive literature available on this subject, we shall not enter into much 
details, and give only the main results (see Janssen (1986), Cartier (1987), 
Martinais (1987 and 1988) and Levitov and Rhyner (1988)). 

The first point is that the rank of such invariant Z-modules is 6 or a 
multiple of 6. However, those Z-modules which are of rank 6n with n > 1 
appear as the sum of Z-modules of rank 6. Thus we have only to classify the 
Z-modules of rank 6. Observe that such a situation does not appear in classical 
crystallography where one classifies invariant lattices, i. e., discrete Z-modules 
of rank 3, because the sum of two different lattices is a Z-module of rank > 3 
and is no longer a discrete lattice. 

The second point is that there are only 3 different kinds (in the sense 
of Bravais lattices) of icosahedrally invariant Z-modules of rank 6. They are 
referred to as the primitive P, the face-centered F and the body-centered I. 
Let us now explain where these names come from. 

Observe that a Z-module of rank 6 in JR.3 can be considered as the pro­
jection in JR. 3 (embedded in JR. 6) of a 6-dimensional lattice Z 6. The choice of 
this 6-dimensionallattice is not unique, but it turns out that it is possible to 
choose a cubic one. In particular, the 'simple cubic' P comes from the following 
construction: 

Consider in JR. 3 a regular icosahedron and the twelve vectors joining the 
center to the vertices. Choose six vectors among the twelve, no two of them be­
ing opposite. Then there exists an unique embedding of JR.3 as a vector subspace 
of JR.6 such that the canonical orthonormal basis of JR.6 projects orthogonally on 
these six vectors of the icosahedron. Now consider in JR. 6 the action of the icosa­
hedral group which permutes the six basis vectors just as the ordinary action 
of the icosahedral group permutes the six chosen vectors in JR.3. Observe that 
since the icosahedral group acts on the basis vectors by (signed) permutations, 
this action leaves invariant the whole lattice generated by the basis, i. e., the 
simple cubic lattice A * made of the points whose six coordinates are integers. 

The 6-dimensional action of the icosahedral group just defined is not ir­
reducible, and upon reduction we find the two non-equivalent 3-dimensional 
irreducible representations of the group. They operate on two 3-dimensional 
invariant subspaces, one of them being of course the image of our embedding 
of JR.3, and the other the orthogonal subspace. Following our notations and in 
order to emphasize that the initial Z-module under study is the carrier of the 
diffraction pattern of a quasi crystal, it is natural to denote these two invari­
ant subspaces respectively EII* and E.L*. Since the 6-dimensional action of the 
icosahedral group is orthogonal and since the simple cubic group is self-dual (it 
is its own reciprocal lattice), we find in the 'direct' 6-dimensional space exactly 
the same geometry: the simple cubic lattice A and two orthogonal invariant 
subspaces, which are identified with our previous Ell and E.L. 

It is easy to compute the two projectors 71"11 and 7I".L onto Ell and E.L 
respectively. One finds: 
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J5 1 -1 -1 1 1 
1 J5 1 -1 -1 1 

1 -1 1 J5 1 -1 1 71"11=_-
2J5 -1 -1 1 J5 1 1 

1 -1 -1 1 v'5 1 
1 1 1 1 1 v'5 

and 
v'5 -1 1 1 -1 -1 
-1 v'5 -1 1 1 -1 

1.. 1 1 -1 J5 -1 1 -1 
71" =-- 1 1 -1 J5 -1 -1 2v'5 

-1 1 1 -1 v'5 -1 
-1 -1 -1 -1 -1 v'5 

Observe that although the choice of the cubic lattice is a handy one, it has no 
physical significance: we are interested only in the icosahedral group, which is a 
(very) small subgroup of the hyperoctahedral group which leaves invariant the 
cubic lattice. As a straightforward consequence of Shur's lemma, it is clear that 
one can make any dilatation or contraction along E1.., keeping the (physically 
relevant) icosahedral symmetry while breaking the (irrelevant) hypercubic one. 
In physical words, one may say that, since no actual operation can relate the 
'real' space Ell and the 'fictitious' space E1.., one can choose arbitrarily different 
unit lengths in each of them. 

We have thus found a first icosahedrally symmetric Z-module, which is 
the projection along 71"11 of the simple cubic group (called P for primitive) 
of JR.6. It now easy to find two more. In fact, since the 6-dimensional action 
of the icosahedral group implies only signed permutations, it follows that two 
sublattices of the simple cubic lattice are separately invariant under this action: 
the sublattice (of index 2) of vertices such that the sum of their six coordinates 
is an even number and the sublattice (of index 32) of vertices such that their six 
coordinates are simultaneously even or odd. As in the 3-dimensional case, each 
of these three invariant lattices is a sublattice of each of the two others. For 
instance, the simple cubic is a sublattice (of index 2) of the last one, 'scaled' by a 
factor one half, i. e., the lattice of points in JR.6 with coordinates simultaneously 
integers or half-integers. This shows that this last lattice is simply the body­
centered cubic denoted I. In the same manner, the simple cubic is shown to be 
a sublattice (of index 32) of the remaining one, which is in this way identified 
with the cubic lattice with a vertex added at the center of the even-dimensional 
faces (i. e., the facets of dimension 2 and 4 and the bodies (dimension 6) are 
centered). By analogy with the 3-dimensional case, this last lattice is simply 
referred to as the face-centered F lattice. Finally, one can easily show that 
(again as in the 3-dimensional case) the simple cubic P is self-dual and that 
the two lattices F and I are the reciprocal lattice of each other. 

One can show - but this is not trivial, see for instance Martinais (1988) 
- that although there are two more invariant sublattices of the simple cubic 



A. Katz 511 

lattice, the three projections on Ell of the three lattices P, F and J (or equiva­
lently, the three projections on EII* of P* , F* and J*, which are of more concern 
as long as we are dealing with diffraction data) are the only three icosahedrally 
invariant Z-modules in IR3. 

This classification plays the same role for icosahedral quasicrystals that the 
classification of the three cubic Bravais lattices for the cubic crystals. One can 
go further and classify completely the space groups, but we shall not develop 
on this point, referring to the above-mentioned literature for more details. 

We can now return to the analysis of diffraction data: as a consequence 
of the fact that the three Z-modules P*, F* and I* are submodules of P*, 
it is always possible to index the diffraction pattern in a simple cubic lattice 
with an adequate edge length. Then, if the quasicrystal under study actually 
corresponds to the primitive P*, one sees non-vanishing peaks on each of the 
possible sites. More precisely, since one observes in real experiments only a 
finite number of peaks, one verifies that the simple cubic is the smallest Z­
module in which fall all the observed diffraction peaks. On the contrary, if the 
relevant Z-module for the given quasicrystal is F* or J*, some peaks belonging 
to P* are systematically missing. Thus one can decide what is the relevant 
Z-module, and up to now two of them have been observed: the primitive P* 
in most of the quasicrystals (in particular Al-Mn-Si) and the face-centered F* 
in Al-Cu-Fe. 

Finally, one sees that the two first steps of the strategy sketched above are 
easily worked out for quasicrystals: one is able to find the relevant Z-module 
together with its scale (see below), to lift it as a (reciprocal) lattice in IR 6 , 

and finally to construct the corresponding lattice in the direct space. The last 
step is far more difficult: it consists in the construction of the atomic surfaces 
in the high-dimensional unit cell thus determined. No systematic approach to 
this step is known, but before coming to this question let us discuss a specific 
feature of our Z-modules, which has direct implications for the choice of the 
length scale for the high-dimensional lattice but may be of broader physical 
significance. 

4.3 Self-similarity 

Besides the icosahedral and the translational symmetries, the Z-module which 
carries the diffraction pattern possesses another symmetry: it is invariant 
through a group of homotheties. 

The simplest way to find it is to consider the 6-dimensionallattice which 
projects onto this Z-module, and let us choose the simple cubic case for the 
sake of clarity. This lattice is invariant under the group Gl(6, Z). On the other 
hand, Shur's lemma entails that the automorphisms of IR6 which commute with 
the icosahedral group are of the form A7r 1l + >.' 7r .L, for any real numbers A and 
A'. Thus the question is whether there exist matrices of this last form with 
integer entries, and one easily shows that they do exist and are all the powers 
of the following: 
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2 1 -1 -1 1 1 
1 2 1 -1 -1 1 

M= 
-1 1 2 1 -1 1 
-1 -1 1 2 1 1 
1 -1 -1 1 2 1 
1 1 1 1 1 2 

which is such that: 
M = 7 3 . '/r ll - 7-3 . '/r.L 

where 7 = (J5 + 1)/2 is the golden ratio. 
Thus one sees that our Z-module is invariant under the homotheties whose 

ratio is a power of 7 3 = J5 + 2. As a consequence, the indexation scheme of the 
diffraction pattern must contain not only the orientation of the chosen basis 
vectors, but also their length, measured (in the reciprocal space), in nm- l . 

One can show in the same way that the two other Z-modules F* and 1* 
are invariant through the dilatation of ratio 7 (and its powers). Let us remark 
that this fact allows an easy distinction between the primitive Z-module P* 
and, say, the face-centered F*: for the last one, one finds for each peak along a 
five-fold axis, another peak 7 times farther. For the primitive P*, some of these 
peaks are missing and one has to go 7'3 times farther to find the next one. 

One the other hand, one can wonder if these special self-similarity prop­
erties, which depend on the 'point symmetry' and are not a general feature of 
quasiperiodic structures, are or not relevant for the physics of quasicrystals. 
Observe once again that this symmetry of the Z-module does not reflect any 
real symmetry of the structure in the direct space: in fact, it is clear that a 
packing of atoms cannot be preserved by a group of homotheties. However, 
there are several instances in physics where a symmetry, although 'broken' 
in real systems, plays an important role in their understanding. Very little is 
known about the self-similarity properties of quasicrystals, but we shall show 
in the special case of Penrose-like tilings what kind of real-space features they 
correspond to. 

5. Penrose Tilings and Related Structures 

We shall now turn to the description of the best known class of quasiperiodic 
systems, which are the Penrose and 'Penrose-like' tilings. In our context, we 
define a tiling as a partition of the space into connected tiles which belong to a 
finite set of shapes. The 'Penrose-like' tilings are named after Roger Penrose, 
who discovered a strikingly simple non-periodic tiling of the plane with five­
fold symmetry (Penrose (1977)). Although his construction relied mainly on 
self-similarity properties and the quasiperiodicity of his tilings was recognized 
only later by crystallographers and solid state physicists, these tilings are in 
fact the simplest non-trivial quasiperiodic set of points that one can imagine. 
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Besides providing the reader with explicit examples of quasiperiodic struc­
tures, our goal in this Section is to analyze some properties of these tilings, 
which are not generic for quasiperiodic structures but are useful for the un­
derstanding of quasi crystals. On one hand, quasicrystals are not at all generic 
quasiperiodic systems, as we have already seen with Patterson functions, and 
share many properties with Penrose-like tilings. One the other hand, it is worth­
while to emphasize here that the relationship between quasiperiodic sets of 
points and quasiperiodic tilings is not at all the same that in the periodic case. 
As is well known, one can attach a periodic tiling to any periodic distribution of 
points, in such a way that the theories of both objects are essentially the same. 
This relation, which accounts for the relevance of periodic tilings in classical 
crystallography, is no longer true in the quasiperiodic case, and for instance the 
tiles of which are made the tilings we are to deal with have a priori nothing to 
do with 'unit cells' for quasicrystals. 

5.1 A Low Dimensional Example 

Let us start with the general definition of what we call tilings of the Penrose 
type (Katz and Duneau (1986)): to construct a d-dimensional tiling, consider 
in JR.n the simple cubic lattice zn generated by the canonical orthonormal basis 
of JR.n. Then choose any d-dimensional subspace Ell in JR.n, and denote E1. the 
orthogonal subspace. Let ,n be the unit hypercube spanned by the basis of 
JR.n. We define the atomic surface a in the n-dimensional torus ,[,n = JR."jzn 
by projecting orthogonally In on E1. and then projecting this polyhedron in 
,[,n along the canonical projection JR.n f-+ '['n. The atomic surface a constructed 
in this way is a (n - d)-dimensional manifold with boundary in '['n, and the 
corresponding lattice E of atomic surfaces in JR. n is made of copies of the (n - d)­
dimensional polyhedron 71"1.( In), each copy ae being embedded in an affine 
subspace parallel to E1. and attached to the vertex e of zn. 

The vertices of our tilings are the intersections of E with any d-dimensional 
plane cut E parallel to Ell, and which is everywhere transverse to E, i. e., which 
does not intersect any of the boundaries 8ae for e E zn. Observe that since 
the cut E is of dimension d and the boundaries 8ae are (piece-wise linear) 
manifolds of dimension n - d - 1, their non-intersection is a generic property 
in JR. n, which means that almost all choices of E will work. 

Of course, we are mainly interested in cases where the orientation of Ell is 
irrational with respect to the lattice zn: if this orientation is rational, that is, 
if Ell goes through d independent lattice points besides the origin, then these 
d vectors span a sublattice of Z n which is a symmetry group for the tilings, so 
that we get periodic structures. Notice that there are intermediate possibilities 
between such periodic cases and the 'completely irrational' cases where Ell 
intersects the lattice on the origin only. Such situations appear when one wants 
to describe the original Penrose tilings while sticking strictly to the previous 
definition, and also in the description of some quasi crystals which are periodic 
along one direction and quasiperiodic in the orthogonal planes. 



514 Chapter 11. Introduction to Quasicrystallography 

Fig. 2. The construction of a quasiperiodic tiling in the lowest dimensions. 

The simplest example of this construction is obtained with n = 2 and 
d = 1, and is depicted on Fig. 2. For an irrationally oriented Ell, we get a 
quasiperiodic tiling of the cut E by means of two segments, which are the 
projections of the two edges (horizontal and vertical) of the unit square ')'2. Al­
though this construction may look rather trivial, it deserves attention because 
the most important features of this class of tilings already appear in this simple 
case and may be discussed in a dimension-independent way. 

5.2 The Oblique Tiling 

To prove that we actually get a tiling by means of the projections of the edges 
of the square, the best way is to construct the so-called oblique tiling. The idea 
is the following: consider any tiling of IR n and any plane cut through this tiling. 
Each time the cut is generic, that is, intersects transversely the boundaries of 
the tiles, the traces of the tiles on the cut make up a covering of the cut, without 
overlapping nor hole. But this covering is not a tiling in general, since there 
is no reason for the traces of the tiles to belong to a finite set of shapes. For 
instance, consider a cut E with an irrational slope through the standard square 
tiling of the plane: since there is no minimal distance between the vertices of the 
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Fig. 3. Construction of the tiles of the oblique tiling. 

tiling and the cut, there is no minimal length for the segments of the induced 
covering of the cut, and this entails that there are infinitely many different 
lengths in this covering, which therefore is not a tiling. 

However, it is possible to adapt the shape of the tiles of a periodic tiling 
of IR n to the orientation of the cut, in order to obtain only a finite number 
of shapes in the generic cuts: the trick is to make the boundaries of the tiles 
parallel to either the direction of the cut Ell or to the orthogonal subspace E.L. 

For our low dimensions case, the construction of this oblique tiling is the 
following: let us start with the unit square, spanned by the canonical basis 
(101,102) of 1R2. We define e; = 71"11(10;) and e~ = 71".L(ci) (i = 1,2), in such a way 
that 10; = ei + e~. Observe that 101 /\ 102 = e1 /\ 102 + e~ /\ 102 = 1 (the area of 
the unit square), and that the two wedge products e1 /\ 102 and e~ /\ 102 are both 
positive. 

This means that the two parallelograms spanned by {e1' C2} and {e~, C2} 
do not overlap, so that the union {ei,'::2} U (ei + {el' C2} ) is still a unit cell for 
the lattice Z2, as depicted on the second part of Fig. 3. Now, let us proceed 
to the same decomposition for the vector 102 and each parallelogram: we get a 
new unit cell of Z2 made of four sub cells spanned by {ei, e2}, {ei, e~}, {e1' e2} 
and {e1' e~}. But the two subcells spanned by {ei, e~} and {e1' e2} are flat and 
we can omit them, so that we obtain finally only two sub cells whose union is 
a fundamental domain of Z2 (last part of Fig. 3). The corresponding tiling of 
the plane (Fig. 4) is the oblique tiling. 

Observe that whatever the order of the decomposition, the resulting tiling 
is the same. Since each tile is the product of the projection of a basis vector 
on Ell by the projection of the other on E.L, it is clear that any cut E parallel 
to Ell which does not intersect the lattice inherits a tiling by means of the two 
projections e1 and e2, which is our quasiperiodic tiling: in fact, the pieces of 
the boundaries of the tiles of the oblique tiling which are parallel to E.L are by 
their very construction identical to the lattice E of atomic surfaces. 

Due to its recursive character, the same argument works in any dimension 
n. Since we double the number of sub cells each time we operate the decompo-
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Fig. 4. The oblique tiling of the plane associated with the quasiperiodic tiling of the 
line. 

sit ion Ci = ei + e~, we end with 2n subcells. But only those which are spanned 
by d projections ei of basis vectors on Ell and (n - d) projections e; on E.1. 
have a non-zero volume and their number is (~). As in the low dimensions 
case, one easily verifies that the traces of these sub cells on E.1., which are par­
allelohedra spanned by (n - d) projections e~, exactly cover the atomic surface 
0"0 = 11".1.( 'Yn) attached to the origin, so that our construction yields in the gen­
eral case a tiling of the d-dimensional cut E by means of the projections of the 
(~) d-dimensional facets of the hypercube 'Yn. 

Since the oblique tiling is periodic, it projects in the n-dimensional torus 
on a partition of the torus, which presents the following special property: each 
cell in this partition is the sum (in the sense of the sum of subsets in the 
Abelian group 'J['n) of a subset contained in the projection of Ell and of a subset 
contained in the projection of E.1.. The first one is the projection in 'J['n of a 
type of tile of the quasiperiodic tiling, while the second, as we shall see below, 
is the projection in 'J['n of the corresponding 'existence domain' of this type of 
tile. Conversely, given any finite partition of 'J['n with this special property, we 
can lift it in IR. n to obtain a periodic tiling, which will give a quasiperiodic tiling 
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upon restriction to any cut parallel to Ell which is everywhere transverse to 
the boundaries of the tiles of this periodic tiling of jRn. Thus we conclude that 
quasiperiodic tilings are in one to one correspondence with this special kind 
of partitions of the torus, which have been called 'Penrose partitions' by V.1. 
Arnol'd (Arnol'd (1988)). 

5.3 Fourier Transform 

The simple geometry of the atomic surface associated to the Penrose-like tilings 
permits the explicit computation of their Fourier transform. Let us work out 
the low dimensional case, and let I-L be the measure defined by attaching a Dirac 
delta to each vertex of the tiling defined by the cut Ell (we choose this special 
cut in order to avoid the additional phase factor associated with the translation 
of the cut along E.L). 

The simplicity of this peculiar case stems from the fact that the measure TJ 

carried by a single atomic surface (say, the component 0"0 attached to the origin 
of jR2) is the tensor product of a Dirac delta at the origin of Ell by a measure 
in E.L. And since we want all the vertices in the tiling to have the same weight, 
this last measure has a density (with respect to the Lebesgue measure of E.L) 
which is simply the characteristic function :n"o ofthe segment 0"0 = 7r.L(r2), up 
to an irrelevant multiplicative constant. Thus: 

so that its Fourier transform is the tensor product of the corresponding Fourier 
transforms and may be written: 

The Fourier transform if of the periodic measure if carried by the whole 
lattice E of atomic surfaces is simply the 'sampling' of this function by the 
reciprocal lattice A* of the square lattice A, which is itself a square lattice: 

and finally we obtain the Fourier transform Ii by a projection on EII*: 

If the orientation of Ell is irrational, then the carrier 7r 1l *(A*) is a dense /2;­

module, as we already know. We have developed this simple calculation mainly 
to illustrate the two following properties: 
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First, the 'hierarchical' structure of the Fourier transform. The coefficient 
of each Dirac delta in Ii is the value of Tj on the lattice vertex which projects on 
this point, and since the function Tj is decreasing in the direction of E.L*, this 
coefficient will be small if the vertex is far away from EII*. It is clear that the 
set of Dirac deltas with a modulus of their coefficients greater than any strictly 
positive threshold come from a strip of finite width parallel to EII*, so that this 
set is discrete. However, the decreasing rate of Tj is not simple to characterize 
for a generic atomic surface; the 'trend' is that if the atomic surface has a lot 
of holes, for instance, then the decrease of Tj will be slower and the hierarchical 
structure of Ii less marked. 

Second, the summability properties of the family of coefficients. Consider 
a point k E EII* and the affine line parallel to E.L* going through k. The set 
of Dirac deltas contributing to Ii in a small ball centered on k come from a 
strip which is the product of the affine line by the ball. Due to the irrational 
orientation of E.L*, the vertices of A * falling in this strip are evenly (and even 
quasiperiodically) distributed around the line, in such a way that the summa­
bility properties of the family of coefficients of this set of Dirac deltas is the 
same that the integrability properties of the restriction of Tj to the line: namely 
those of the function (sin( k )) / k. Thus we see that the family of coefficients is 
locally £2 but not locally £1. 

5.4 Local Isomorphism 

Returning to direct space, let us now discuss a very important property of 
the Penrose like tilings, which seems (experimentally) to be shared by the 
icosahedral quasicrystals. It is known as the local isomorphism property, and it 
is two-fold: the first part is that any finite packing of tiles which appears in a 
given tiling, appears infinitely many times in the same tiling with a well-defined 
frequency. The second part asserts that any finite packing of tiles which appears 
in a given tiling, appears in any tiling defined by a cut E parallel to the same 
Ell. 

As will be made clear below, the first part is true for any Penrose-like 
tiling, while the second is true only when the Z-module 7r.L(A) is dense in E.L, 
i. e., in 'completely irrational' cases. 

To explain these properties, let us return to the low dimensional model of 
Fig. 2. We want to show that any finite patch of tiles which appears somewhere 
in the tiling in repeated infinitely many times. Let {O"eJ (ei E Z2) be the 
finite family of atomic surfaces whose intersections with the cut E define the 
vertices of our patch of tiles and consider the intersection (3 = ni 7r.L( O"e;) of the 
projections on E.L of the atomic surfaces O"e;. The important point is that since 
the cut intersects each atomic surface O"e; in its interior, the finite intersection 
(3 has a non empty interior in E.L. 

Consider the set of translations ( E Z2 such that E - ( intersects (3. This 
set is infinite, because it contains 0 and the projection 7r.L(Z2) is not discrete 
(and is in fact dense) as soon as Ell is not a lattice subspace (in which case 
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we have a periodic tiling and we have a whole sublattice of ('s leaving the cut 
invariant). In any case, we see that for each ( in this set, the cut E intersects 
the family {lTe;+(}, which corresponds to a copy of our initial patch of tiles, 
shifted by z = 71"11 ((), and this proves the first part of the local isomorphism 
property. 

Observe that the family of translations z thus defined is in fact a quasiperi­
odic set and has a well-defined density in Ell. In fact, it is obtained through 
the same canonical construction, using j3 instead of IT as the prototypic atomic 
surface. 

For the second part, consider two tilings defined by the two parallel cuts E 
and E'. We want to see whether any patch of tiles which appears in E appears 
also in E'. The argument runs as in the previous case, but we have now to define 
the set of translations ( such that E' - ( intersects f3. Then it is no longer always 
true that this set is not empty if E' =f. E. For the low dimensional example, 
it is clear that 71".1.(1£2) is dense if Ell is not rationally oriented, so that we 
find infinitely many ('s and the second part of the local isomorphism property 
holds. If Ell is a lattice subspace, then 7I".L(Z2) is a discrete lattice in E.L, and 
if the initial patch of tiles is large enough, then j3 is a segment so small that 
for an arbitrary choice of E', there may be no ( at all. 

There are interesting questions on the relation between the size of the finite 
patch under consideration and the frequency of its repetitions: it is clear that 
this frequency, which is the density of the translations z, is measured by the 
length of the intersection f3, so that the question is equivalent to the following: 
how fast does the intersection j3 shrinks when the length of the patch grows? 

For this low dimensional example, the answer is given by the classical the­
ory of Diophantine approximation in number theory, and depends on number 
theoretical properties of the slope. If this slope is an algebraic number it can 
be shown, as a consequence of Roth's theorem, that for almost all patches the 
mean distance between two successive copies of the patch is proportional to its 
length: this corresponds to the fact that algebraic numbers are not very well 
approximated by rational numbers. On the contrary, if the slope is very well 
approximated by rational numbers, for instance if it is a Liouville number, then 
the mean distance between copies of a patch can grow faster than any power 
of the length of that patch. 

In higher dimensions, the proof of the local isomorphism property is ex­
actly the same: the intersection j3 is no longer a line segment, but a (n - d)­
dimensional polyhedron embedded in E.L. The only new feature is that there 
are more possibilities than just the periodic and completely irrational cases, 
and one is led to define the so-called 'local isomorphism classes' to classify the 
tilings in the intermediate cases where 7I".1.(A) is neither dense nor discrete. 
However, we shall not develop this point since it seems irrelevant as far as qua­
sicrystals are concerned: recall that our starting point is the Z-module carrying 
the diffraction pattern, and that the natural choice of the high-dimensionallat­
tice has dimension equal to the rank of the Z-module, in such a way that we are 
always in the 'completely irrational' case. Then the second part of the local iso-
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morphism property holds: in other words, there is only one local isomorphism 
class. 

To summarize, the local isomorphism property follows from two features of 
the construction: the first one is the orientation Ell of the cut, which should be 
completely irrational for both parts of the property to hold. The second, which 
is the most important, is that the prototypic atomic surface (J' is contained in 
a (n - d}-dimensional plane (which is of course transverse to Ell, but is not 
necessarily parallel to E.L). This last condition is required for each local pattern 
(i. e., the restriction to a bounded subset U c E ofthe cut) to be locally constant 
with respect to the translations ofthe cut along E.L. In fact, consider the set Eu 
of the atomic surfaces (J'e intersecting E on U. Since the projections (parallel 
to Ell) of Eu on E.L (or on any (n - d)-dimensional subspace transverse to Ell) 
has a non empty intersection f3 = nt7e EL'u ?T.L( (J'e), the cut will still intersect the 
same Eu if we shift the cut, as long as E still intersects f3. And if the atomic 
surfaces are parallel, the relative positions of the points (J'e n E will remain 
constant under such allowed shifts. 

The local constancy of the local patterns is a 'rigidity' feature which de­
pends only on the atomic surfaces being embedded in planes. This is by their 
very definition the case of the Penrose-like tilings, but it also occurs (at least 
in the first approximation) for the icosahedral quasi crystals, as shown by the 
Patterson analysis (for quasicrystals, the atomic surface is made of several 
'sheets', but it is clear that the previous argument remains valid in that case). 
Such 'rigid' structures share with tilings the following property: for any given fi­
nite radius r, there exist only a finite number of different atomic configurations 
within any ball of radius r. Of course, this number grows with r (it remains 
bounded for a periodic crystal), but the situation is nevertheless quite different 
for quasicrystals and for displacive modulated crystals, which are quasiperi­
odic structures described by 'curved' atomic surfaces, and in which the mutual 
distances between atoms changes continuously upon a shift of the cut. 

5.4.1 Pseudo-group of Translations. The local isomorphism property can also 
be described by a pseudo-group of translations for these 'rigid' quasiperiodic 
structures. In our context, a set of translations forms a pseudo-group if each 
translation in this set maps a finite fraction of the vertices onto vertices of the 
structure. The subset of vertices which are mapped to other vertices constitutes 
the domain of the translation, and the product (composition) of two transla­
tions is defined only on the intersection (if not empty) of the image of the first 
one and the domain of the second. 

To see how such a pseudo-group arises in our constructions, consider a 
quasiperiodic system associated with a prototypic atomic surface (J'o (attached 
to the origin of ]Rn) embedded in E.L. Then consider any ( E zn such that 
the intersection f3c. = (J'o n ((J'o + ?T.L( ()) is not empty. It is clear that for any 
E the cut E - ( intersects all the atomic surfaces which are intersected by E 
on the 'subsurfaces' f3c. + zn, so that the translation z = ?T II (() E Ell maps a 
subset of the structure defined by E onto a subset of the structure defined by 
E - (. The domain of the translation z is the set of vertices of the first structure 
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which correspond to atomic surfaces intersected by E on the subsurface, and 
they form a finite fraction of the whole structure measured by the ratio of the 
volume of {3, and the volume of the whole atomic surface u. We see that the 
domain of a translation z is a large fraction of the whole structure when z is 
the projection '/r ll (() of a ( E zn such that the other projection '/r.L(() is small, 
and this requires z to be large. Finally, the pseudo-group of translations is very 
simple to describe: it is the projection on Ell of the subset of zn which projects 
on E.L on translations small enough to map the atomic surface Uo onto an 
image which intersects Uo. Unfortunately, it is not known whether the existence 
of such a structure, which seems to embody all the 'translational symmetry' 
of quasicrystals, has or not consequences for the propagation problems (for 
phonons and electrons) in these systems. 

5.4.2 Classification of Local Patterns. Let us now show that the same tools 
allow the classification of local patterns in the context of 'rigid' structures, and 
specifically the classification of the possible packings of tiles around a common 
vertex in the case of the Penrose-like tilings (Katz (1989 a)). 

Let us consider the general case of a d-dimensional Penrose-like tiling, 
defined by a cut E in lR n and the projection Uo = '/r.L(rn) (where "In is the unit 
hypercube of lR n) as the prototypic atomic surface attached to the origin. Let 
us first determine all the vertices of the tiling which are the origins of a given 
edge ej = '/r1l(6j). In order to yield such an edge attached to a vertex x = Enue, 
the cut E must intersect also the atomic surface ue+e;, and this requires x to 
fall in uen(uHe; -ej). But since '/r.L(ej) = 0, this last intersection is simply the 
projection of the (n - I)-dimensional facet "I~-1 of "In which does not contain 
6 j. 

We shall call this projection '/r.L( "I~-1)' which is a polytope inscribed in the 
atomic surface, the existence domain of the edge: each atomic surface which 
is intersected by the cut on this existence domain yields in the tiling a vertex 
which is the origin of an edge ej. Observe that we could as well consider the 
existence domain of the extremities of the same edge: it is of course the other 
facet '/r.L( "I~-1 + 6i). 

One can easily iterate this argument d times. For instance, a vertex x is 
the origin of a two-dimensional facet spanned by {ej, e j} if and only if both x 
and x + ej are the origin of an edge ei. The corresponding existence domain is 
easily seen to be the projection ofthe (n - 2)-dimensional facet "I~-2 of "In which 
does not contain either 6i nor 6 j. And finally, the existence domains of the tiles 
spanned by d vectors {ej, ej, ... , ek} are the subpolyhedra of the atomic surface 
spanned by the (n - d) remaining vectors {el' e~, ... , e~}. Observe that each 
of these polyhedra is present 2d times in the atomic surface, according to the 
vertex considered as the origin of the corresponding tile. Moreover, the relative 
abundance of each kind of tile is proportional to the volume of its existence 
domain. 

By considering the superposition of all the existence domains of tiles, one 
gets a cellular decomposition of the atomic surface, in which each cell corre-
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sponds to the set of vertices attached to a family of tiles such that the given 
cell is the intersection of their existence domain. One can achieve in this way 
the complete classification of the 'vertex neighborhoods' of the tiling, i. e., the 
possible arrangements of tiles around a common vertex. Of course, the explicit 
computations become difficult quickly as the dimensions n or d increase, al­
though there is nothing more to compute than the intersection of a family of 
(n - d)-dimensional polyhedra. 

More generally, one can develop the same considerations for any 'rigid' 
quasiperiodic structure associated with a system of atomic surfaces embedded 
in parallel subspaces: each local pattern made of p points which appears in the 
structure admits an existence domain which is the intersection of p suitably 
shifted copies of the atomic surface, and the frequency of each particular pat­
tern is proportional to the volume of its existence domain. In other words, in 
the 'rigid' cases, one can systematically study the finite configurations which 
appears in the quasiperiodic structures, as soon as the corresponding atomic 
surfaces are given. 

5.5 Self-Similarity 

Up to now, we have considered any irrational orientation for the pair of sub­
spaces (Ell, E.L). Let us now specialize to the case where there exist lattice­
preserving linear transformations which commute with the two projections (71"11, 
7I".L). Such transformations are elements M of Gl(n, '1,) which preserve the sub­
spaces Ell and E.L. 

Given a tiling associated to the canonical atomic surface 7I".L( In), one can 
construct a new atomic surface as 7I".L M( In), by taking the projection of the 
image through M of the unit hypercube. Since M preserves Ell and E.L, it 
transforms any cut E into a parallel cut M(E) which carries the image under 
the restriction of M to Ell of the tiling carried by E. 

Of special interest is the case where M operates on Ell and E.L by ho­
motheties, since in this case the image of the tiling under M is a tiling of the 
same type, but at a different scale. This happens in particular when there is 
an invariance point group of the high-dimensional lattice, such that Ell and 
E.L are the only two invariant subspaces, carrying irreducible non-equivalent 
representations of the invariance group. As we have already seen, such a situa­
tion occurs for icosahedral symmetry, but in order to give an explicit example 
it is worthwhile to consider a two-dimensional case. The simplest choice is the 
octagonal tilings (which were first introduced by R. Ammann, see Griinbaum 
and Shephard (1987)). 

5.5.1 The Octagonal Tilings. These tilings are obtained in a straightforward 
way as Penrose-like tilings with n = 4, d = 2, and the orientation of the pair 
(Ell, E.L) prescribed by the following symmetry considerations, which are a 
paraphrase of the icosahedral case: 

Consider a regular octagon in the Euclidean plane and choose four of its 
vertices, no two of them being opposite. Consider the four vectors joining the 
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center of the octagon to these vertices. There exists an unique embedding of the 
plane in ]R4 such that the canonical orthonormal basis of ]R4 projects orthog­
onally on our four vectors. Now consider the symmetry group of the octagon. 
Since it permutes the vertices of the octagon, we can define a 4-dimensional 
action of this group by the condition that it permutes the basis vectors in the 
same way as the vertices of the octagon, and since this action involves only 
signed permutations, the lattice Z4 spanned by the basis is preserved by this 
action. Then we decompose it into irreducible representations and we find two 
of them, one carried by our embedded plane, which is identified with Ell, and 
the other by the orthogonal plane, identified with E..L. 

It is easy to see that the prototypic atomic surface 7I"..L( 1'4) is an octagon, 
and that the six 2-dimensional facets of 1'4 fall under 71"11 on two orbits of tiles: 
two squares (with orientations differing by a 71"/4 rotation), and four rhombs 
with an acute angle of 71" /4, again mapped on each other by rotations which are 
multiples of 71" / 4. A sample of an octagonal tiling is shown on Fig. 5. 

If we choose our initial vertices in the octagon such that the angles between 
consecutively numbered vectors ei = 7I"1I(ci), (i = 1, ... ,4) are equal to 71"/4, 
then the angle between the corresponding projections e~ = 7I"..L(ci) are 371"/4, so 
that one has equalities of the type: el + e2 + e3 = ( J2 + 1 )e2 while e~ + e~ + e; = 
-( J2 - l)e~. This suggests that we study the matrix: 

M=(~ ::T) 
-1 0 1 1 

M is easily seen to have all the required properties: its determinant is 1, so 
that it belongs to Gl( 4, Z), and it commutes with the action of the octagonal 
group, so that it reduces on Ell to a dilatation of ratio (v12 + 1) and on E.L to 
a contraction of ratio -( J2 - 1). 

Now, our general argument shows that if we replace our original atomic 
surface by an octagon (J2 - 1) times smaller, then we will find in any cut an 
octagonal tiling scaled by a factor (J2 + 1). In particular, if we consider both 
atomic surfaces: our original one containing the smaller one, we see that we 
can 'extract' from any tiling the vertices of a larger one, by discarding all the 
vertices which correspond to intersections of the cut with the large octagon, 
falling outside the small one. In the cut, one can describe this operation as the 
regrouping of clusters of tiles to form larger tiles, and this is called a deflation. 
Since the matrix M is invertible, this process may be done in the reverse way: 
it is possible to 'dissect' the tiles of a given tiling, in order to obtain a tiling of 
the same type, but with an edge length shortened by a factor (J2 -1). This is 
called an inflation, because it enlarges the number of the tiles. 

Observe that for these considerations we are not interested in comparing 
the tiling carried by E and M(E), because the 'absolute' position of the cut is 
in general difficult to assess (due to the local isomorphism property) unless the 
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Fig. 5. A sample of the octagonal tiling, showing some deflated tiles. 

tiling has special (global) symmetry properties. On the contrary, we are inter­
ested in comparing two tilings carried by the same cut. This entails that the 
position of the small atomic surface inside the large one is irrelevant: whatever 
this position, the discarding process explained above will lead to a 'deflated' 
tiling. We conclude that in the octagonal case the inflation/deflation construc­
tions are not uniquely defined (although it is possible to devised decorations of 
the tiles such that these constructions may be made unique for the decorated 
tiles ). 

This is in sharp contrast with the original Penrose tilings. As is well known, 
the uniqueness of the inflation/ deflation operations has played a key role as well 
in the constructions of Roger Penrose as in the early study of these tilings by 
R. Penrose and J. Conway (see Gardner (1977)). Without entering into much 
details, let us say a word about the special case of these original Penrose tHings. 
One possible approach is the following: these tHings may be constructed from 
a 4-dimensional space equipped with a lattice A which is not the simple cubic, 
but is invariant under the group Z5 (this lattice is generated by any four of the 
five vectors whose convex hull is the symmetric 4-dimensional simplex, and the 
action of Z5 permutes these five vectors). In this context, the atomic surface 
which yields the Penrose tilings is made of four 'sheets' (connected components) 
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for each vertex of the lattice, and these components are pentagons of two sizes. 
Finally, the deflation matrix M maps the two large pentagons exactly onto the 
small ones (and the small ones inside the large ones) in such a way that the 
deflated set of atomic surfaces sit in only one position inside the original one, 
and this entails the uniqueness of the deflation in this case. In fact, the deflation 
process consists in keeping all the vertices corresponding to the original small 
pentagons (which are identical to the deflated large pentagons), and discarding 
most of the vertices corresponding to the original large pentagons (of which the 
deflated small pentagons are only a small subset). 

Returning to the general case, let us stress that the properties which are 
referred to as the 'self-similarity' of the quasiperiodic tilings or of the quasicrys­
tals are rather heterogeneous: on one hand, there is the actual and well-defined 
self-similarity of the Z-modules, connected with symmetry-preserving automor­
phisms of the high-dimensional lattices A. One the other hand, the notion of 
self-similarity can have only a weaker meaning for the quasiperiodic structures 
themselves, since the previous symmetry is broken as soon as one introduces 
the atomic surfaces (which of course cannot be invariant through a group of 
homotheties) 

However, some breakings may be weaker than others: in the case of 'self­
similar' Penrose or Penrose-like tilings, the remaining 'self-similarity' is that, 
roughly speaking, it is possible to build clusters of tiles which yield new larger 
tiles of the same shape, arranged in the same type of tilings. There is an obvious 
analogy in the case of quasicrystals: one can wonder if some clusters of atoms 
are packed in the quasi crystal in the same way as single atoms, and study the 
implications of this kind of hypothesis for the geometry of the atomic surfaces. 
Very little is known at the present time on these questions. 

6. Propagation of Order 

6.1 The Main Problem of Quasicrystallography 

Besides the local isomorphism property, there are other features of the Penrose­
like tilings which may help to understand the structure of quasicrystals, and 
which are linked with the major problem of the propagation of order in these 
materials. In fact, structure determination is only one of the problems raised 
by the discovery of quasicrystals. The main one is to understand the simple 
possibility of non periodic long range order. In a perfect quasiperiodic structure 
the positions of any two atoms are correlated, whatever the distance between 
them, while the number of different neighborhoods of atoms grows with the 
size of the neighborhood. 

Moreover, it is reasonable to consider that in a metallic alloy the effective 
interatomic forces are essentially short range, so that the actual position of a 
given atom is controlled by the positions of atoms which are at distances much 
larger than the range of their interactions. We are thus led to imagine that 
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the ordering propagates in the material, and we have to understand how such 
propagation can occur. 

It seems that the problem splits into two sub-problems. The first one deals 
with the existence of local constraints which could force the quasiperiodic order 
(for Penrose-like tilings, this is the question of 'matching rules'). The second 
sub-problem concerns the possibility of atomic rearrangements, which could al­
low for the relaxation of defects or of strain during the growth of the quasicrys­
tal, and would thus permit the long range manifestation of a locally-governed 
propensity for icosahedral symmetry. It turns out that these two requirements: 
the existence of local constraints forcing the quasiperiodic order and the possi­
bility of low energy rearrangements of atoms, lead to severe constraints on the 
atomic surfaces, as we shall now explain. 

6.2 Matching Rules 

Matching rules are known for the original Penrose tilings, for the octagonal 
tilings and for the 3-dimensional Penrose-like tilings with icosahedral symmetry 
(Katz (1988)). They consist in decorations of the tiles, such that any tiling in 
which the decorations 'match' (in a sense which depends on the decoration) for 
each pair of adjacent tiles is a quasiperiodic tiling. Although there is not yet 
a complete theory for the matching rules, it is possible to give the following 
general ideas about their existence and construction. 

For the sake of clarity, let us consider the octagonal tilings. Given any 
tiling of the plane by means of the two squares and the four rhombs which 
appear in the octagonal tilings, it is quite clear that it is always possible to lift 
this tiling in IR\ i. e., to find a cut in IR4 such that the vertices of the given 
tiling are the projections on Ell of the atomic surfaces intersected by this cut. 
As we have seen, the tiling is a quasiperiodic octagonal tiling if and only if this 
cut may be chosen as a plane E parallel to Ell. Thus in our framework, the 
matching rules correspond to a set of local constraints on the cut such that any 
cut fulfilling these constraints is homotopic to a plane parallel to Ell. 

It is essential to observe that such local constraints cannot exist for a 
generic orientation of Ell. Loosely speaking, in order for such local rules to exist, 
we must be able to recognize locally the orientation of Ell. Let us explain in the 
general case (tilings defined by a d-dimensional cut through IR n equipped with 
a lattice A) which kind of special orientation of Ell may give rise to matching 
rules for the corresponding Penrose-like tilings. 

Since we are dealing with the orientations of d-dimensional planes in IR n, 

it is natural to consider the Grassmannian manifold Gd of these planes. Recall 
that, given a flag of embedded vector subspaces {PI c p2 C ... C pn-l C 
lRn }, one can define a stratification of Gd by looking at the transversality of the 
d-dimensional planes to the components of the flag. Let us define a stratification 
of the same kind which will allow us to characterize the orientation of the d­
dimensional planes with respect to the lattice A. Consider in lR n the ball of 
radius r centered at the origin and recall that a lattice p-plane is a p-dimensional 
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plane in lR n which goes through p affinely independent vertices of A besides the 
origin. Now, consider the (finite) family of lattice planes defined by vertices of 
A falling in the previous ball, and the associated stratification of Gd obtained 
by looking at the transversality properties of the d-dimensional planes with 
respect to this family of lattice planes. It is clear that if we enlarge the radius 
r, we obtain a finer stratification. 

It turns out - although we do not have a rigorous proof of it - that 
a necessary condition for the existence of matching rules for the Penrose-like 
tilings corresponding to an orientation Ell for the cut, is that the direction 
Ell C Gd falls on a stratum of dimension zero of such a stratification, and the 
smallest r for which this occurs measures the 'range' of the matching rules. 

In other words, a necessary condition for the existence of matching rules 
is that the direction Ell is simultaneously non-transverse to a family of lattice 
planes, large enough to completely determine this direction. Let us give some 
examples. 

First, the low dimensional case of Fig. 2: in that trivial case, the Grass­
mannian Gi is a circle, the lattice planes are lines and Ell is either transverse to 
a lattice line or identical to it, so that the stratification of the circle is made of 
arc segments bounded by rational directions p/q such that the point (p, q) E Z2 
falls inside the disk of radius r. It follows from our condition that matching 
rules exist for these I-dimensional tilings only if they are periodic. 

Second, the octagonal case. Referring to the notations of Sect. 5.5, let 
us exhibit the family of lattice planes which are non-transverse to Ell: as 
already mentioned, the sum (e1 + e3) is parallel to e2 in Ell and the sum 
(e~ + e~) is parallel to e~ in E.L. It follows that the lattice plane spanned by C2 

and (c1 + c3) intersects Ell along a line (which is the same as its projection) 
and thus is not transverse to Ell. By application of the octagonal group, we 
find four planes of this kind. To find another family of four planes, observe that 
(el + e4) is parallel to (e2 + e3) in Ell and (ei + e~) is parallel to (e~ + e~) in E.L. 
It follows as previously that the lattice plane spanned by (C1 + C4) and (C2 + C3) 

is not transverse to Ell, and the octagonal group again provides us with four 
planes of this kind. It is easy to see that the non-transversality to these eight 
planes completely determine the direction Ell. In fact, the non-transversality 
to each quadruplet of planes defines a I-dimensional stratum in the Grassman­
nian G~, each of which is made of planes invariant under a realization of the 
symmetry group of the square. These two strata intersect at a point which 
presents the full octagonal symmetry. 

One can develop similar considerations for the icosahedral case. One finds 
an orbit of 15 4-dimensionallattice planes which are non-transverse to Ell and 
such that this property enforces the icosahedral symmetry of Ell. It may be 
possible that a set of 3-dimensionallattice planes is sufficient. 

Let us make two comments: first, the existence of a point symmetry group 
seems not to be required for our necessary condition to hold. But it helps, 
since we get a whole orbit of non-transverse lattice planes as soon as we have 
found one. Second, in the octagonal and icosahedral cases where there exist self-
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similarity transformations, one can easily verify that each of the non-transverse 
lattice planes is invariant under the self-similarity operations. This could indi­
cate some relationship between the existence of such a family of non-transverse 
lattice planes and the existence of self-similarity properties. 

Finally, we must emphasize that even for this first step (the characteriza­
tion of 'good' orientations for Ell), the situation is far from being thoroughly 
investigated. In particular, all of the cases for which we know matching rules 
possess both a 'large' point group and self-similarity transformations. It would 
be very interesting to have an example (if it exists) of a system possessing 
matching rules, but with less symmetry. 

The next step is to show how one can actually construct matching rules for 
Penrose-like tilings corresponding to these 'good' orientations of Ell. To explain 
the main idea, let us first return to the low dimensional model depicted on Fig. 
2. It is clear that with an arbitrary 'wavy' cut, which is only required to be a 
section of the projection 71"11 (i.e., to project in a one to one way on Ell), we 
can select by intersection any set of atomic surfaces, even surfaces which do 
not build the two tiles of the quasiperiodic tilings obtained with a straight cut 
parallel to Ell. Now consider the oblique tiling of Fig. 4, and add the following 
condition on the cut: it is required not to cross the boundaries of the oblique 
tiles which are parallel to Ell. 

One immediately sees that this restricted class of cuts selects only whole 
tiles: the cut is 'channeled' between the boundaries of the oblique tiles in such 
a way that it is forced to go out of any oblique tile through an atomic surface 
which is the extremity of a tile of the quasiperiodic tiling. However, this chan­
neling is only local: each time the cut goes out from a large oblique tile, it may 
either enter another large tile or a small one, and no global ordering is forced 
by this new requirement. 

Nevertheless, these considerations suggest that we can try to enforce more 
long range order in the tiling by enlarging the 'forbidden set' parallel to Ell 
that the cut is required not to cross. For the low dimensional case, it is clear 
that there are only two qualitatively different situations. Either the orientation 
of Ell is rational, and if we enlarge the forbidden set sufficiently, then these 
line segments will connect to form whole straight lines which give rise to a 
global channeling of the cut corresponding of course to periodic tilings, or the 
orientation of Ell is irrational, in which case, whatever the finite enlargement 
of the forbidden set, no topological change will occur and no global channeling 
will appear. Thus we recover the fact that the kind of matching rules we are 
dealing with exist in the low dimensional case only for periodic tilings. 

In higher dimension the geometry is far trickier, and we shall give here 
only a short account of the construction. Observe first that the boundaries of 
the oblique tiles fall into two subsets: those which are the product of a tile of 
the quasiperiodic tiling and the boundary of its existence domain, and those 
which are the product of the existence domain of a tile and the boundary of 
this tile. If we take the first subset as the forbidden set, then it is again true 
that any cut which does not cross this forbidden set selects whole tiles (this is 
the local channeling) but no global channeling is forced at this stage. 
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To understand how a finite enlargement of the forbidden set can result in 
global constraints on the cut, we have to look more closely at these boundaries 
'parallel to Ell' of the oblique tiles. For this, consider their traces in the fibers 
of 7["-L. As we already know, a generic fiber does not intersect this forbidden set 
and is a well-behaved cut carrying a quasiperiodic tiling. Now, the key point 
is that non-generic fibers intersect the forbidden sets attached to infinitely 
many vertices of A. This is the consequence of two independent features of the 
construction: the non-transversality property of Ell, and the special choice of 
the atomic surfaces, which is bounded in E-L by the traces on E-L of lattice 
planes non-transverse to Ell. The net result is that one finds in these non­
generic fibers of 7["-L a (quasiperiodic) distribution of traces of the forbidden 
set, in such a way that a finite enlargement of this set will connect these traces 
and yield an infinite forbidden set, just as in the low dimensional periodic case. 

However, the co dimension of the forbidden set depends on the dimension 
of the tiling: for the low dimensional model, the total space is IR 2 and the 
forbidden set is I-dimensional, so that when the pieces of the forbidden set 
are glued together (in the periodic case), the plane is disconnected in a family 
of parallel strips and any cut confined in one of these strips yields a periodic 
tiling. Consider now the octagonal case: the total space is 1R4, and one can show 
that the forbidden set (suitably enlarged to give matching rules) admits as a 
deformation retract a family of 2-dimensional lattice affine subspaces, which 
of course do not disconnect 1R4. Observe however that the requirement for a 
2-dimensional cut not to cross a family of 2-dimensional planes in 1R4 is a strong 
constraint, which happens to be sufficient to force the cut to be homotopic to 
a plane parallel to Ell. The proof of this main conclusion is not simple and will 
not be developed here. 

Let us now turn to the consequences of this (partial) theory of matching 
rules for tilings, to understand the propagation of order in quasicrystals. The 
notion of 'matching rules' for packings of atoms must clearly be defined in 
the following way (Levitov (1988)): we shall say that a quasiperiodic structure 
admits local rules if there exists a finite family of finite configurations, such that 
any structure which induces around each vertex a configuration belonging to 
this family, is quasiperiodic. Of course, such a definition assumes the structure 
to be 'rigid' in the sense that the corresponding atomic surfaces are embedded in 
parallel planes, since otherwise we have infinitely many possible configurations 
around each point. 

It seems clear that the previous discussion on the possible orientations of 
Ell remains valid for these more general structures, so that it is not impossible 
for icosahedral quasicrystals to admit local rules. More interestingly, the dis­
cussion on matching rules strongly suggests - we do not claim that we have 
any proof of this assertion - that in order for local rules to exist for a qua­
sicrystal, the atomic surfaces must be polyhedra bounded by the traces of lattice 
planes non-transverse to Ell, and to get short range local rules, i. e., for the 
configurations in the family of 'local models' to be as small as possible, we 
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have to look for lattice planes with the smaller possible Miller indices: namely, 
the best candidates are the 15 symmetry planes of the icosahedral group. 

To conclude, let us emphasize that the existence of local rules may be not 
required for real quasicrystals. It is possible that their stability is controlled 
by long range interactions, such as some version of the Hume-Rothery effect. 
All that we can say is that, if we admit that local rules exist for quasicrystals, 
then we get severe constraints on the possible atomic surfaces, which are likely 
to be polyhedra bounded by symmetry planes. Of course, we hope that such 
constraints will help us to find the structure - but this is just a hope. 

7. Topological Properties of Atomic Surfaces 

Let us now turn to our last topic, which has still to do with the propagation of 
order, but from a quite different point of view. Recall that quasicrystals grow 
from the melt, and that in a (perfect) quasicrystal the position of any atom is 
correlated with the positions of atoms which are far away. Even if the energetics 
of local configurations make it possible to have local rules as discussed in the 
previous Section, the fact that quasicrystals actually grow without too many 
defects may require a mechanism which allows the rearrangement of atoms in 
the solid phase in order to achieve the long range ordering. 

Thus one can imagine the growth of a quasi crystal as a two step process. 
Atoms in the melt stick on the boundary of the growing quasicrystal at positions 
governed by short range interactions and which are not necessarily compatible 
with the quasiperiodic order, but which nevertheless could perhaps be described 
by a 'wavy' cut in our framework. Then, as new layers of atoms stick to the 
solid phase, the propensity to form a quasicrystal manifests itself through a bulk 
reconstruction, a process through which atoms jump to their final positions 
and which geometrically corresponds to the progressive flattening of the cut 
behind the 'quasicrystallization front'. We require that the deformation of the 
cut and its progressive flattening should be energetically possible at (or below) 
the quasicrystallization temperature, i. e., should be a low activation energy 
process. 

7.1 The Closeness Condition 

To understand how this last condition yields topological constraints on the 
atomic surfaces, let us return once more to the low dimensional model of Fig. 
2, and examine what happens when one moves the cut (say, upward). Each 
times the cut reaches the upper tip of an atomic surface, it begins at the same 
time to intersect a neighboring atomic surface, because the projection on E..L 
of the upper tip of any atomic surface coincide with the projection of the lower 
tip of a neighboring one. This depends of course on the choice of the atomic 
surface (the length of the segment in this low-dimensional model) and can be 
interpreted as the 'jump' of a vertex from a site to a neighboring one. 
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This is the only elementary change in the tiling upon a shift of the cut 
but, since the orientation of the cut is irrational, such elementary changes 
occur infinitely many times for any finite translation of the cut, resulting in an 
uncountable infinity of different tilings. 

Observe that from a physical point of view these 'jumps' should be low 
activation energy processes, for two reasons: 
First, they correspond to a symmetry operation of the nearest neighbor con­
figuration, so that if the effective range of the interatomic interaction is short, 
the energies of the two configurations related by the jump should be close to 
each other (they may differ only by the second and further shells, whose con­
tributions to the energy is small). 
Second, the energy barrier between the two equilibria of the jumping atom 
should be low, simply for geometrical reasons: the distance between the two 
sites is small and during the jump the atom does not come too close to its 
neighbors. 

Finally, we conclude that for this special choice of atomic surface, (and in 
fact for any Penrose-like tiling), the cut should be 'glissile', i. e., should allow 
the bulk reconstruction. 

Conversely, let us examine what happens if we alter the length of the 
atomic surface. Suppose for instance that we decrease its length a little, and 
let us move the cut upward. When the cut reaches the upper end point of an 
atomic surface and leaves it, the corresponding atom has no neighboring site 
to jump to. The prescription is that there should no longer exist an atom on 
this site, but of course atoms cannot vanish and we have to see it as a point 
defect in the structure (an insertion). 

Similarly, when the cut reaches the lower end point of an atomic surface, 
resulting in a new intersection, no atom can magically appear and we find a 
vacancy at this site. Such defects are of relatively high energy and the system 
will resist producing them: the end points of the atomic surfaces will 'anchor' 
the cut and the flattening of the cut will not occur. We see that the cut will 
be 'glissile' only when the appearance of an inserted atom coincide with the 
appearance of a neighboring vacancy, so that the inserted atom can fall in the 
vacancy and both defects cancel: this is the previous 'jump'. 

To summarize this discussion, observe that point defects appear each time 
the cut crosses the boundary of an atomic surface, in such a way that the 
requirement that such defects do not exist corresponds to the atomic surface 
having no boundary. In fact, one sees immediately that we do not change our 
quasiperiodic structure if we 'complete' the atomic surfaces by the addition of 
the segments parallel to Ell which connect the lower end-point of any atomic 
surface to the upper end-point of its neighbor, and which are the 'jump tra­
jectories': these new segments are generically not intersected by the cut just 
because they are parallel to it. 

We can now formulate our topological constraint in the general case: in 
order to allow for low activation energy rearrangements of the structure, the 
atomic surface (j embedded in the high-dimensional torus should be a close 



532 Chapter 11. Introduction to Quasicrystallography 

manifold without boundary. Observe that the Penrose-like tilings are of this 
type: it is always possible to 'complete' the atomic surface, which is the projec­
tion 7rJ.(-yn) wound in the torus ']['n, by gluing on its boundary some new pieces 
which are nowhere transverse to the direction of Ell, and thus are generically 
not intersected by the cut. Let us describe this construction for the octagonal 
case. 

Rather than carrying out the construction in the torus ']['4, let us construct 
it periodically in ]R4. Consider an octagonal atomic surface and one of the edges, 
say ei, of its boundary. Observe that this edge is mapped on the opposite side 
of the octagon by the translation (e~ + e~ + e~) (or the opposite) so that the 
translation (e2 + e3 + e4) maps this edge ei on the boundary of another atomic 
surface (because the sum (e~ + e~ + e~) + (e2 + e3 + e4) = (102 + 103 + 104) is 
a lattice vector). Thus we can make the boundaries of atomic surfaces vanish 
by gluing on each edge e~ of the boundary a rectangle spanned by ei and 
(ej + ek + el), where (i,j,k,l) is a permutation of (1, ... ,4). Of course, this 
first step introduces new boundaries, which are the segments (ej + ek + el), but 
it is easy to see that these new boundaries enclose a periodic set of octagons 
contained in planes parallel to Ell, so that we can in a second step add these 
octagons and we are left with no boundaries at all. 

The completed atomic surface is the projection of this construction in the 
torus ']['4, and is a manifold without boundary which is easy to identify: by 
deforming the manifold so as to shrink the images of the rectangles and of 
the additional octagon, we see that the topology of this manifold is the same 
as what we obtain by gluing directly each edge of the atomic surface on the 
parallel opposite edge, and it is well known that this operation yields a two 
handled torus. Finally, we conclude that the completed atomic surface of the 
octagonal tiling is a two handled torus embedded in the 4-dimensional torus. 
It is clear that the construction depends only on the geometry of 7rJ.( 'Yn) and 
may be carried in n - d steps in the general case of Penrose-like tilings. 

7.1.1 The Definition ofthe Measure 'fl. It may seem curious that we can modify 
(complete) the atomic surface without changing the structure, and in partic­
ular without changing its Fourier transform, whose computation relies on the 
atomic surface 0'. The reason is that the measure 'fl which is involved in this 
computation is completely determined by the geometry of the atomic surface, 
through the condition that each point in the structure appears with the same 
weight. 

As a first example, consider our low dimensional model and suppose that 
we tilt all the atomic surfaces without changing the length of their projection 
on EJ.. Since the length of the atomic surface is then multiplied by the inverse 
of the sine of the angle between EJ. and the atomic surface, we see that in 
order not to change the weight of the vertices in the cut, we have to multiply 
by the same sine the (constant) density of the measure 'fl carried by the atomic 
surface. This remark leads to the following construction: 

Let us deal with a structure of dimension d defined by ad-dimensional 
cut in ]Rn. Consider ]Rn the canonical volume form w. Since it is constant, 
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it projects on a well defined volume form still denoted w on the torus ']['n. 

Similarly, consider d constant vector fields defined by an orthonormal basis of 
Ell in R n. They project in ,][,n on d constant vector fields (Vl' V2, ••. ,Vd), which 
span at each point the tangent space to the leaf of the foliation defined by Ell. 
Now, take the inner product of w by the wedge product of these d vector fields: 
we get a constant (n - d)-differential form W(Vl /\ V2 /\ .•• /\ Vd) on ']['n, which 
is null by definition on any (n - d)-dimensional vector subspace tangent to ,][,n 

and non transverse to the foliation Ell. Finally, the density of the measure Tf 
on the atomic surface (J' is the restriction of w( Vl /\ V2 /\ .•• /\ Vd) to (J', i. e., the 
inverse image of w( Vl /\ V2 /\ ••• /\ Vd) with respect to the embedding of (J' in ']['n. 

With this definition, it is now clear that Tf is zero on the new pieces we 
have added to the original atomic surface, since they are non-transverse to Ell, 
so that nothing is changed neither in the structure nor in its Fourier transform. 

Moreover, observe that the measure Tf must be of constant sign (which 
we can choose positive) in order for the structure to make sense physically: 
a negative value for Tf on an intersection would correspond to an 'antiatom'. 
This corresponds to an additional constraint on the embedding of (J' (which 
thus must be orient able) in ']['n. Namely, at each transverse intersection point 
between (J' and the cut E wound in ']['n, the relative orientation of their tangent 
space must be the same. 

Finally, the measure Tf must be positive or zero along (J', and the points 
where Tf = 0 appear as a 'fold locus' for the atomic surface (J'. From a topological 
point of view, it is interesting to discuss the stability of this 'fold locus', i.e., 
whether it is possible to remove it by a small deformation of (J'. This is not 
always possible, and may correspond to the distinction to be made between 
quasicrystals and modulated crystals, as we shall now see. 

7.2 Quasicrystals versus Modulated Crystals 

Let us recall that one calls (displacive) modulated crystals a kind of structure 
in which atoms lie at positions which are close to the sites of a periodic lattice, 
from which they are shifted by a periodic modulation which is incommensu­
rate with respect to the lattice parameters. There also exist structures which 
can be described as interpenetrating modulated crystals. They are called 'in­
tergrowths'. All these structures are clearly quasiperiodic and can be described 
within the previous framework, which was in fact introduced by Janner and 
Janssen precisely to describe them, several years before the discovery of qua­
sicrystals. By their very definition, the modulated structures can be demodu­
lated, i. e., one can decrease the modulation function down to zero and recover 
a periodic crystal. This entails that the corresponding atomic surface is a m­
dimensional torus (where m is the number of independent modulations), in 
the case of a modulated crystals, or a set of similar tori in the case of inter­
growth. Conversely, let us show that each time the atomic surface is (up to a 
small deformation) everywhere transverse to the foliation defined by Ell, then 
it corresponds to a modulated crystal or an intergrowth: 
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Suppose that we are given in the high dimensional torus Tn such an atomic 
surface everywhere transverse to the foliation defined by the projection of Ell 
on Tn. Let us lift the atomic surface in]Rn and call a 'large atomic surface' any 
connected component of the lift. It is easy to show that any such large atomic 
surface projects in a one to one way onto El.: consider any cut parallel to Ell and 
an intersection point with any large atomic surface; since the cut is everywhere 
transverse to the large atomic surface, one can follow the intersection when one 
shifts the cut along any path drawn in El.. This shows that the projection of the 
large atomic surface on El. is a covering map. But since El. is a contractible set 
and the large atomic surface is connected, this covering is a homeomorphism. It 
is then immediate that each large atomic surface is invariant under a subgroup 
of rank dim(El.) of the translation group of ]Rn, and thus projects in Tn onto 
a torus of dimension dim(El.). 

Of course, one may find in Tn either one torus or several tori as the atomic 
surface, and these two cases correspond respectively to modulated crystals and 
to intergrowth structures. Thus it is attractive to reserve (under the close­
ness hypothesis) the word 'quasicrystal' to the cases where the atomic surface 
presents a stable fold locus, in such a way that we find in ]Rna small number 
of 'large atomic surfaces' and not a whole lattice of them. This is the case for 
the Penrose-like tilings (as soon as we are not in too low dimensions) and for 
instance it is easy to see that there is only one connected component in ]R4 
above the two handled torus which defines the octagonal tHings. 

Such a topological situation causes a strange behaviour of the system under 
vibra,tions or fluctuations of the cut. For modulated crystals, a vibration of the 
cut simply results in vibrations of atoms (the so-called phason modes), but for 
a quasicrystal, the effects of such a vibration are quite different: 

In fact, consider an atomic surface with a (topologically stable) fold locus in 
Tn, lift it in]Rn and consider a connected component ofthis lift. Now, choose an 
intersection point between this component and the cut, and try and follow this 
intersection when moving the cut along a path defined in El.. It is clear that it 
is possible to lift such a path if and only if it does not cross the projection on El. 
of the fold locus, because at these points the inverse image of the tangent vector 
to the path is not defined. Thus we see that the projection is a covering map 
only in the complement of the projection of the fold locus, which is in general 
dense in El. and is to be considered as a ramification locus for this covering. 
In particular, if we consider a closed path contained in this complement we 
see that after the transport of the cut along this path, we recover the same 
quasicrystal (since it is defined by the initial cut) but that some atoms have 
been permuted (in fact, a finite fraction which depends on the area enclosed 
by the loop in El.). This striking feature of quasicrystals, first mentioned in 
Frenkel et al. (1986), shows that for quasicrystals, the atomic displacements 
induced by a vibration of the cut are not only vibrations of atoms around their 
equilibrium positions. They necessarily involve displacements of atoms from 
one equilibrium position to another, and could result in special mass-diffusion 
kinetics. However, no experimental results have been up to now reported in 
this direction. 
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7.3 The Homology Class of the Atomic Surface 

As a last consequence of the closeness condition, let us show how this hypoth­
esis allows us to recover to a certain extent the classical notion of integral 
stoechiometric coefficients (Kalugin (1989), Katz (1989 b)). 

For the sake of simplicity, we shall restrict the following discussion to the 
case of 2-dimensional octagonal quasicrystals. Observe first that, as an imme­
diate consequence of its closeness, a compact atomic surface without boundary 
embedded in ']['4 is homologically a cycle and thus defines a homology class. 
Although its homology class does not provide much information about an em­
bedded manifold, it is worthwhile considering it because it is directly related 
to the density (or more pre'cisely the atomic concentration) of the quasicrystal. 

The simplest way to handle such homology classes is to make use of the 
intersection index. Recall that on the n-th homology group of any compact man­
ifold of even dimension 2n, there is a natural pairing which is the homological 
version of the Poincare duality usually defined in cohomology. Concretely, the 
pairing between two classes (their intersection index) is defined as follows: con­
sider any representatives of the two classes; it is always possible to choose them 
so that they are transverse and thus intersect in a finite number of points. Then 
the choice of an orientation allows us to assign a sign ± 1 to each of these points 
and the intersection index between the two classes is simply the sum of these 
signs. As is well known, the intersection index depends only on the homology 
classes and is a non-degenerate pairing (a scalar product). In other words, an 
embedded manifold is homologous to zero if and only if its intersection indices 
with the elements of a basis of the n-th homology group are all zero. 

For the octagonal quasicrystals, n = 2 and the 2n-dimensional manifold is 
']['4. Using the four canonical angles (}i as coordinates on ']['4, a convenient basis 
of H 2 (']['4) is provided by the classes of the six 2-dimensional tori '][' ij defined by 
the equations (h = (h = 0 , where (i,j, k, l) is a permutation of (1, ... ,4). Thus 
the homology class of an atomic surface (7 is characterized by the 6 integers 
«(7 I 'll.';j). This is only a very crude characterization of (7, since quite different (7'S 

may define the same homology class. Nevertheless, this is sufficient to compute 
the atomic concentration of the quasicrystal, as we will now show. 

Let us first notice that our basis is invariant (up to a sign) under the action 
of the octagonal group, and that there are only two orbits under this action, 
associated with the two types of tiles (the squares and the rhombs) of which 
the octagonal tilings are made. It is clear that since (7 is itself invariant, the 
intersection indices of (7 with two tori related by a symmetry operation have to 
be equal, so that on account of symmetry the number of independent indices 
reduces to 2. 

To compute the atomic concentration, let us consider a large volume V 
in a plane cut parallel to Ell and identified with the physical space. Let N be 
the number of intersection points in V between the cut and the set of atomic 
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surfaces. Then the atomic concentration is equal to the ratio N jV and we are 
looking for an expression of this ratio in terms of intersection indices. For this, 
let us build on the cut the octagonal tiling corresponding to the given simple 
cubic lattice of JR.4 and consider the projection of a tile in T4. The key point 
is to observe that this tile wound round T4 along the projection of Ell can 
be completed to yield a manifold isotopic to one of the 2-dimensional tori T ij 
by gluing on its boundary a set of cells which are not transverse to El.: the 
construction is exactly the same as for the closing of the atomic surface, with 
the exchange of El. and Ell. 

For instance, let us consider the square spanned by e1 and e3. Let us glue 
the square {e1' e~} along the edge e1, the square {e;, e3} along the edge e3 and 
the square {e;, e~} attached to the origin of the tile and glued along the two 
edges e; and e~ of the newly added squares. Then one verifies easily that the 
free edges of this construction are mapped on each other either by e1 + e; = 61 

or by e3 + e~ = C3 so that this construction closes on an object homotopic to 
T 13 upon projection in T4. 

This shows that the mean number of atoms falling in each direction of tile 
is equal to the intersection index of the atomic surface with the corresponding 
torus T ij. If the atomic surface (J' is actually closed, then this mean number is an 
integer and we recover in some sense the usual notion of integral stoechiometric 
coefficients. On the other hand, we cannot measure this mean number of atom 
per tile for each kind of tile: we can only compute the mean over the set of the 
6 directions of tiles, using the density of the quasicrystal to assess the atomic 
concentration and the diffraction data to assess the unit length in JR.4 or the 
length of the edges of the corresponding tiles. 

Let Vs and Vr be the areas of the square and of the rhomb, and n.and nr 
their respective numbers (for each of the orientations) inside the volume V. As 
already mentioned, the intersection indices ((J' I T ij) depend only on the type 
(square or rhomb) ofthe tile associated with the torus Tij. Let i. and ir denote 
these two numbers. We have: 

v = 2n. Vs + 4nr Vr and N = 2ns is + 4nr ir so that: 

NjV = (nsis + 2nrir)j(nsv. +2nr vr) 

As one can easily see, the existence domain of a square is a square and the 
existence domain of a rhomb is a rhomb, so that if V is large enough: 

ns ~ h nr while v. = h Vr 

in such a way that: 
NjV = Ij(2vs)(is + hir) 

Finally, we see that the measurable quantity 2vs N jV should be of the form 
is + v'2 ir. Of course, one can trivially remark that these linear combinations 
are dense in JR., but we are expecting reasonably small intersection indices. 

The same computations can be developed for the icosahedral quasicrystals. 
In this case, one computes from the experimental data a number which should 
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fall in the modulus Z( T) if the closeness hypothesis is verified. It happens that 
one can fit these numbers very well in the two cases of AI-Mn-Si and AI-Cu-Fe 
for which the density has been measured with sufficient accuracy. This yields 
additional constraints to be satisfied by the atomic surfaces. 

However, it is necessary to stress that, as for the existence oflocal rules, the 
closeness hypothesis is not a physically undisputable requirement, but merely 
a plausible assumption which may help to find a structural model. 

As the reader may have observed, the research of the atomic structure of 
quasicrystals is a difficult task and is far from its achievement, even if it is not 
completely hopeless. 
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1. Introduction 

Quantum Mechanics was born in 1900, when Planck [PLOO] investigated the 
laws of black body radiation. He found the correct formula for the power spec­
trum in terms of the light frequency. Einstein's interpretation in 1905 by means 
of energy quanta [EI05] was confirmed by his interpretation of the photoelectric 
effect. However it took years before Quantum Mechanics became such a solid 
body of knowledge that it could not be avoided by any reasonable physicist. 
There is no doubt today that it is a fundamental theory of matter, and that it 
has changed daily life through new technology, in a way which has never been 
known before in human history. 

My purpose in this introduction, is not to develop some philosophy about 
human society, but rather to reinterpret some basic facts in Quantum Mechan­
ics, in the light of new sophisticated mathematical techniques which I have 
proposed to use a few years ago to get a gap labelling for quantum systems of 
aperiodic media. 

Aperiodic media have been the focus of attention during the last twenty 
years in Solid State Physics: disorder in metals or semiconductors, charge den­
sity waves in quasi one dimensional organic conductors, superlattices, structure 
of glasses, quasi crystals, high temperature superconductors. They provide new 
materials with interesting unusual physical properties which are to be used 
in modern technology sooner or later. While periodic media are now well un­
derstood through Bloch theory, giving rise to band spectrum for electrons, the 
correct mathematical framework for aperiodic material is not completely devel­
oped yet. One proposal that I have attempted to give during the last few years 
is that Non Commutative Geometry and Topology, from the point of view de­
veloped by A. Connes, is the most accurate candidate for it. It is accurate both 
from a fundamental point of view, as I will try to show in this introduction, 
but also from a very practical point of view, through its efficiency in computing 
real things in real experiments. 

In the present work I will explain only one piece in this game, namely how 
to obtain accurately the gap labelling for complicated band spectra, by com­
puting K-groups of observable algebras appearing as natural objects associated 
to electrons motion. 

However the reader must know that other pieces have been already worked 
at, such as the existence and quantization of plateaus for the Quantum Hall 
conductance [BE88a, BE88b, XI88, NB90], semiclassical calculations to explain 
the behavior of Bloch electrons in a uniform magnetic field [BR90] (a subject 
of interest in the field of high temperature superconductors), a semiclassical 
Birkhoff expansion and Nekhoroshev's type estimates in Quantum Mechanics 
[BV90], and electronic properties of scale invariant homogeneous media such as 
fractals or quasi crystals [SB90]. It seems also to be the correct tool to investigate 
rigorously properties of quantum systems which are classically chaotic, a field 
in which no rigorous result has been proved yet, even though physicists have 
accumulated an enormous body of knowledge [BE90b]. 
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My main motivation in pushing toward Non Commutative techniques, 
comes from the fact that in many instances, physicists are using wave func­
tions which are not well adapted in most problems encountered in modern 
Quantum Physics, essentially because they are defined up to a very trouble­
some phase factor. But if we are to abandon wave functions, we must explain 
how quantum interferences enter into the game. For indeed, each typical quan­
tum phenomenon is due to quantum interferences: gaps in electron spectra, 
localization in disordered or aperiodic media, level repulsion in quantum chaos, 
phase quantization in Aharonov-Bohm effect, flux quantization in supercon­
ductors or in dirty metals, quantization of Hall conductance in the Quantum 
Hall effect, etc. 

It is the purpose of this introduction to give a hint in this direction. 

Acknowledgements. I wish to thank J.B. Bost for explaining the index theorem for 
Treplitz operators and the Pimsner-Voiculescu exact sequence. I thank also all my 
collaborators without whom almost none of the results here could have been found. I 
thank also A. Barelli for reading the manuscript. 

1.1 Waves 

The key idea in Einstein's explanation of black body radiation was that ev­
erything behaved as if the energy exchanged between matter and light were 
quantized as an integer multiple of a small unit. This small unit, called a quan­
tum, is given by the famous Planck formula 

(1.1.1) E=hv, 

where v is the light frequency, and h a constant, Planck's constant. 
In 1905, in the paper for which he was awarded the Nobel prize [EI05], 

Einstein used this result to explain the photoelectric effect. He claimed that 
Planck's quantum was actually the energy of a particle, the particle of light 
that he called 'photon' with momentum p = h(Y, where (Y was the number of 
waves per unit length. With such a simple idea, namely that light was actually 
made of particles, he could explain why there was no electric current as long 
as the light frequency was smaller than a threshold frequency vo, and why that 
current was proportional to the difference v - Vo, for v > Vo. Thanks to that 
theory, Planck's constant could be measured, and it appeared that it had the 
same value as the one given by black body radiation. Such an amazing result 
was an indication that Planck's formula had a universal meaning, namely that 
indeed light was made of photons as explained by Einstein. 

In 1911, Lord Rutherford reported upon a series of experiments he had 
performed on a-ray diffraction patterns produced by various targets [RU11]. 
He concluded that atoms were not such simple objects as their name 'atom' 
could suggest. According to his picture, they were made of a heavy nucleus, 
supporting all the mass, around which electrons would move like planets around 
the sun. The attracting forces however, were Coulomb forces, namely purely 
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electrostatic, in such a way that the nucleus had a positive charge +ne, if n 
was the number of electrons gravitating around, and e the electron charge. 

It was immediately realized that such a structure was unstable from a 
purely classical point of view. For an accelerated charged particle must radiate 
some electromagnetic field, ending in a permanent loss of energy, which could 
be gained only in the collapse of the electrons on to the nucleus. Such a simple 
minded argument is questioned nowadays [GB82]' because it does not take into 
account the possibility of regaining energy from the electromagnetic field float­
ing around. But even with this, a classical treatment of atoms would be much 
too complicated, and would not explain the universality of Planck's constant, 
resulting in "the inadequacy of classical mechanics and electromagnetism to 
explain the inherent stability of atoms" [B083]. 

By the time, a very elegant solution to this paradox was proposed a year 
later by N. Bohr in 1913 [BOI3, BOI4, BOI5a, BOI5b, BOI8]. It started with 
the remark that Planck's constant had the dimension of an action. So that he 
was led to postulate that the electron classical phase space orbits, giving rise 
to a stable motion, were such that their classical action was quantized according 
to the rule 

(1.1.2) i p . dq = nh ,n E Z . 

For an electron on a circular orbit in a hydrogen atom, this simple rule together 
with the usual rules of classical mechanics, give quantization of energy levels 
according to En = -Eo/n2 (n = 1,2, ... ), Eo = 27r2 k2me4 /h2 :::::: 13.6eV. 

In addition, whenever an electron jumps from the orbit n to the orbit m, 
the change in energy will be compensated by emitting or absorbing a photon 
of frequency l/n,m, given by Planck's law. It leads immediately to the famous 
Balmer formula 

(1.1.3) 

which was known from the mid-nineteenth century by Balmer for n = 2, and 
then generalized by Rydberg for any pair n, m. It was used as a phenomenologi­
cal formula to explain the ray spectrum emitted by hydrogen atoms. Amazingly 
enough the value of Rydberg's constant given by (1.1.3), agreed with the ex­
perimental to one part in 104 ! It could not be just a coincidence. 

In the years following the First World War, more and more physicists 
were involved in the problem of understanding properties of atoms. The Stern­
Gerlach experiments in 1922 [SG22] gave support to the idea of stationary 
states, while the Compton effect discovered in 1924 [C023] confirmed the views 
of Einstein about photons. 

As elegant and simple as it was, this argument did not explain yet why 
quantization of the electron action was required to get stability. And this is 
precisely the point where Quantum Mechanics had to be developed. 
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The key idea came in 1925 and was exposed in L. de Broglie's thesis [BR25]. 
Until Einstein's paper in 1905, and since the beginning of the 19th century, 
light was obviously a wave phenomenon. Interferences and diffraction had been 
successfully interpreted by physicists like Young, Fresnel, through Huygens's 
principle. By the 1860's, Maxwell had shown that they were actually electro­
magnetic waves of very short wavelength. However, Einstein had reintroduced 
also very successfully, an old concept, quite popular in the 17th century, namely 
that light was made of corpuscules. 

L. de Broglie also pointed out that matter was obviously known to be made 
of particles. Chemists from the 19th century had used atoms and molecules 
to explain chemical reactions, and Mendeleev had also successfully classified 
elementary atoms. Moreover, several works on brownian motion in the first 
decade of the 20th century, gave some reality to the existence of atoms and 
molecules and the Avogadro number could be measured. By the end of the 
19th century, J. J. Thompson had found that electric current was created by 
particles that he called electrons. Radioactivity gave also new particles like a 
particles. At last, Rutherford had confirmed the intricate relationships between 
these particles to constitute atoms. 

There was clearly a dissymmetry between the Einstein treatment of radia­
tions and the way particles like electrons were looked at. L. de Broglie claimed 
that the wave-corpuscule duality should be a universal principle: to each particle 
is associated a wave and vice-versa. This idea was soon convincingly confirmed 
by electron interference phenomena, a very widely accepted fact nowadays. 

To give support to that idea, one has to go back to the very definition 
of a wave. The simplest example is provided by plane waves represented by a 
function proportional to 

(1.1.4) 'Ij;(t,x) = ei(wt-kx) , 

where w is the pulsation namely w /27r is the number of waves per unit time, 
while k is the wave vector, with direction equal to the direction of the wave 
and Ik1/27r is the number of waves per unit length. The phase is then constant 
on the planes kx = wt + const. resulting in a phase velocity vt/> = kw/lkI2 • 

Now one can argue that plane waves are only an idealization of real ones 
even for free particles. Actually, a real wave is never pure, it is usually what 
one called at that time a 'wave packet', namely a superposition of plane waves 
in the form 

(1.1.5) 

with a k-dependent pulsation (dispersion law). If f is a regular function de­
creasing rapidly at infinity in k, so does 'Ij;(t, x), as a function of x at each time 
t. Its maximal value is reached at points x's for which the phase factor in the 
integral is stationary, namely 

(1.1.6) tVkw = x + const. , 
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resulting in a 'group velocity' v 9 = VkW if Vk is the gradient with respect 
to k. It is then natural to assume that the particle associated to this wave 
has a velocity given by the group velocity, and that its energy E is related 
to the pulsation W through Planck's formula namely E = 1iw (n = h/27r). 
We then remark that in classical mechanics, the energy E is represented by 
the Hamiltonian function H( q, p) (where now q represents the position of the 
classical particle). Moreover the Hamilton equations of motion give for the 
velocity 

(1.1. 7) 

The similarity between (1.1.6) for the group velocity and (1.1.7) for the 
particle velocity is striking and led de Broglie to supplement Planck's formula 
E = hv = 1iw by a similar expression for the momentum, namely 

(1.1.8) p =nk (de Broglie's formula), 

extending the Einstein formula for the photon, to every free particle. 
However the previous argument does not apply to particles submitted to 

forces, like for instance to electrons in the hydrogen atom. Clearly, free wave 
packets cannot represent such a particle. But we may extend the argument in 
the following way: on a very short distance dx, and during a short amount of 
time dt, the wave can be approximated by plane waves, so that its phase factor 
increases by the amount 

(1.1.9) d¢ = wdt - kdx = {Hdt - pdq}/n. 

Let us consider first a particle in a stationary state, namely such that 
its associated wave is monochromatic, which means that w is fixed. Then 
H( q, p) = E = const. If 'Y represents its classical orbits in phase space, the 
total variation of the phase along this orbit will be 

(1.1.10) L1¢ = - i pdq/ n . 

For closed orbits, the corresponding wave functions must be single-valued, re­
sulting in the relation L1¢ = 27rn (n E Z) which is nothing but Bohr's quanti­
zation condition 

(1.1.11) i pdq = nh, (n E Z). 

Therefore stationary states are only stationary waves, giving a coherent scheme 
for their stability: stability comes from constructive interferences for the wave 
associated to the particle. Actually a real wave will be a superposition of pure 
waves. Going back to (1.1.9), and remarking that Hdt- pdq = -L(q, dq/dt)dt 
where L is the Lagrangian, a pure wave will have the form 
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(1.1.12) 1jJ(t,x) = exp (-~ 1: dSL(q(s),q/(S))) , q(to) = Xo ,q(t) = x, 

along a trajectory s -+ q(s) (here q' = dq/ds) , which mayor may not be 
a solution of the Hamilton equations. The importance of the Lagrangian in 
building up phases was emphasized in 1936 by Dirac. In his 1942 thesis [FE48], 
R.P. Feynman started from this expression to give an integral representation 
of the wave function in the formal form: 

(1.1.13) 1jJ(t, x) = J g Dq(s)exp (-~ 1: dSL(q(s),q/(S))) 1jJ(O,q(O)) , 

where one integrates over the set of all trajectories such that q(t) = x. This 
formal expression can be seen as a superposition of pure waves, like a wave 
packet is a superposition of plane waves. 

Again, we can argue that the main contribution to this integral comes 
from trajectories which produce stationary phase factors. By the Maupertuis 
principle these trajectories are precisely the classical orbits of the corresponding 
classical system. 

For a single particle in a potential, represented by a Hamiltonian H = 
p2 /2m+ V(q), Feynman showed that the wave function in (1.1.13) is a solution 
of Schrodinger equation 

(1.1.14) 
• 81jJ n2 
In- = --Ll·I. + V·I. at 2m '¥ '¥ , 

and conversely, he showed that every solution of Schrodinger equation can be 
written as the path integral (1.1.13), establishing a complete formal equivalence 
between the two formalisms. Notice that Schrodinger introduced this equation 
in 1926 [SR26] on the basis of a variational principle instead and the success 
was so high that this logical scheme was forgotten for a long time. 

E. Nelson [NE64] proved in 1964 that one can give a mathematical rig­
orous meaning of (1.1.13) for most values of the mass m, whereas Albeverio 
et al. [AH76] developed a formalism based upon Fresnel integrals, which gives 
a mathematical status to (1.1.13) for potentials V which are Fourier trans­
forms of positive measures. This result has been improved recently by Fujiwara 
[FU80, FU90j. Still, the mathematical status of the Feynman path integral is 
rather unclear. It will require quite a lot of improvements to make it a useful 
mathematical tool. 

Even though (1.1.13) is quite formal, it has been used over and over, es­
pecially in Quantum Field Theory. Still today it is one of the most powerful 
tools for intuition, in dealing with proper definitions and properties of models 
both in Particle and Solid State Physics. 
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1.2 Particles 

In the previous Section, we described the usual way of representing waves, 
leading to Schrodinger equation. However, it is to be noted that from a historical 
viewpoint, waves appeared later in the 1926 paper by E. Schrodinger [SR26], 
only a few months after the work of Heisenberg, Born and Jordan on what was 
called at the time 'Matrix Mechanics' [BH25]. 

The description of point-like particles had been the purpose of Classi­
cal Mechanics, which reached a very sophisticated level by the middle of the 
nineteenth century, with the works of Lagrange, Liouville, Hamilton, Jacobi. 
They had introduced a new function for the mechanical energy, the so-called 
'Hamiltonian', giving rise to a symmetric treatment of momentum and position 
through the so-called 'phase space'. Moreover, the symplectic structure of the 
equations of motion was conserved by a special family of changes of coordi­
nates called 'canonical transformations'. Instead of computing the solutions by 
various techniques, like perturbation theory, Jacobi proposed a new method: 
to compute a canonical change of coordinates transforming the equations of 
motion into a family of trivial ones. Liouville had introduced also the notion 
of action-angle variables [AR78], which had the property of being a univer­
sal choice of coordinates, at least locally in phase space, and one could define 
properly the notion of completely integrable system. 

In the beginning of the twentieth century, this part of classical mechanics 
was taught in universities as the most sophisticated piece of knowledge. 

No surprise then that Bohr pointed out the importance of action inte­
grals in dealing with quantization. Soon enough after his 1913 seminal paper, 
A. Sommerfeld [S015] had extended his quantization condition to get the two 
other quantum numbers for a complete description of stationary states of the 
hydrogen atom. In a 1917 paper [EI17], Einstein generalized the method to 
non-separable Hamiltonians, by means of Jacobi's method: through various 
canonical transformations, one expresses the classical Hamiltonian in terms of 
action variables only and then one replaces each action variable Jk by nkn, 
where nk is an integer. In this way it became possible to treat more com­
plicated problems like the emission spectrum of atoms and molecules [SR82, 
JR82, MA85 ]. The method was improved later on by Brillouin [BR26] and 
Keller [KE58] and is known nowadays as the EBK quantization scheme. 

However, the method did not succeed at the time, in explaining details 
of atomic spectra: the case of the helium atom was especially emphasized in 
the beginning of the twenties. The exclusion principle partly responsible for 
the discrepancy was discovered only in 1925 by W. Pauli. Moreover, the Stern 
and Gerlach experiment in 1922 [SG22], coming after many difficulties in in­
terpreting the Zeeman multiplets, showed the limits of the method in that this 
quantization condition was unable to explain why angular momenta in atoms 
required to introduce half-integers as quantum numbers. Sure enough there was 
something wrong about the old theory of quanta. 

During the year 1925; W. Heisenberg using a method of 'systematic guess-
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ing' [VW67], was 'fabricating quantum mechanics' [HE25, HE85]. His first mo­
tivation was to compute the line intensities in the hydrogen spectrum. He used 
a generalization of Fourier analysis which proved quite hard and forced him 
to consider the simpler problem of a harmonic oscillator. That was enough to 
produce new rules, soon recognized as the rules of matrix multiplication. Imme­
diately after his paper was published, M. Born conjectured that the basic equa­
tion in this theory was the 'commutation rule', and that was confirmed some 
days later by a calculation of his pupil P. Jordan who showed that within the 
Heisenberg rules, the canonical commutation relations [q,p] = iii were correct 
[BJ25]. This led to the extraordinary 'three men paper' published in November 
1925 by M. Born, W. Heisenberg and P. Jordan [BH25], in which the basic 
principles of quantum mechanics are settled in a way which requires no change 
in the light of later improvements. Moreover several difficulties were solved 
at once like formulre for perturbation theory, the 'anomalous' Zeeman effect 
(quantization rules for the angular momentum), and they also recovered the 
Planck formula for black body radiation through using the statistical approach 
of P. Debye. A few weeks after, W. Pauli gave a treatment of the hydrogen 
atom, using this new mechanics [PA26]. 

The first step in Heisenberg's intuition is related to the fact that only 
observable quantities must enter in building up a theory. One of the main 
problem in the old theory comes from the fact that one is dealing with classical 
orbits which are obviously meaningless (this will be made more precise in 1927 
[HE27, JA74], by means ofthe uncertainty principle). However, there was surely 
a notion of 'stationary states' which could be observed through spectral lines, 
and interpreted as energy levels. To compute line intensities, it was necessary 
to consider transitions from one stationary state labelled by n to another one 
labelled by (n - I). In dealing with a time dependent quantity x(t), there is a 
frequency v( n, n -I) = w( n, n -I) /27r associated to such a transition: this is the 
frequency of the light emitted by the atom. The observed rule for transition is 
given by 

(1.2.1) w(n,n -I) +w(n -l,n -I-I') = w(n,n -1-1'), 

which permits to write the transition frequency as 

(1.2.2) w(n,n -I) = {Wen) - wen -In/Ii, 

where Wen) is called a spectral term; according to Planck's formula, it is an 
energy (defined up to an additive constant term). 

The second step is Bohr's correspondence principle according to which 
quantum mechanics must agree with classical laws for large quantum numbers 
n. Thus for fixed I's and large n's (2.2) gives 

(1.2.3) wen, n - I) = I· wen) = I/1i8W/8n , 

where 1/1i8W/8n can be understood as 8Wj8J if J = nn is the classical 
action integral, in complete analogy with the classical calculation of particle 
frequencies. 
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The emission of electromagnetic waves is then classically governed by the 
laws of electrodynamics. For instance, the electric field at a distance r from the 
emitting electron is given by 

(1.2.4) £:=:;;j e/r3 {r x (r x v')} , 

where v' = d2r / dt2 is the electron acceleration. It implies that classically a 
quantity x(t), like the electron position or its velocity, can be expanded in 
Fourier transform, in terms involving all possible transition frequencies. The 
quantum assumption made by Heisenberg is that the correspondence should 
be as follows 

(1.2.5) 
in quantum theory x(t) = L a(n, n _l)eiw(n,n-I)t , 

in classical theory x(t) = L al(n)eiw(n)./-t . 

He then addressed the question of how to compute quantities like x(t)y(t), 
whenever x and yare two observable quantities. Using (1.2.1) and (1.2.4) he 
then found immediately 

(1.2.6) (x· y)(n,n -l) = Lx(n,n -l')y(n -l',n -l). 
I' 

This law is nothing but matrix multiplication as M. Born realized soon after 
[VW67]. 

Differentiating x(t) with respect to time, one gets the so-called Heisenberg 
equations of motion which are, in matrix language 

(1.2.7) dx/dt = (xW - Wx)/ili, 

where W is the diagonal matrix given by (1.2.2). 
The third step is now to express the Bohr-Sommerfeld-Einstein quanti­

zation condition (1.1.2). In order to do so, let us consider a one dimensional 
particle, and let us write the action as 

(1.2.8) 

If one formally differentiates both sides with respect to n (!), one gets 

(1.2.9) Ii = h/27r = m L [. 8/8n{lql(n)12 lw(n)} , 
1 

with its quantum equivalent [HE25] 

(1.2.10) Ii = 2m L {Iq(n, n + lWw(n, n + l) - Iq(n, n - lWw(n, n -l)} . 
1>0 
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In the matrix language, this is nothing but the diagonal part of the canonical 
commutation relation (nl(q . p - p. q)ln) = in, where p = mdq/dt is the mo­
mentum. Using the Heisenberg equation of motion, Jordan could prove that 
the commutator qp - pq is actually diagonal in such a way that 

(1.2.11) q . p - p . q = in . 
In his first 1925 paper, Heisenberg used this new mechanics to compute the 
spectrum of an anharmonic oscillator. He actually made a very important re­
mark: in order to get the spectrum of a quantized harmonic oscillator, he im­
posed the existence of a 'ground state', namely he demanded that the energy 
be bounded from below. This can be expressed in modern language by asking 
the observable algebra to contain the notion of 'positive elements'. 

1.3 Why is the Set of Observables a C*-Algebra? 

The Heisenberg arguments have justified the non commutative approach to 
quantum mechanics. The correspondence principle can be sharpened now in 
the following way: 

(i) classical observable quantities are functions on the phase space. Quan­
tum mechanically, they are replaced by elements of a non commutative algebra 
A over the complex numbers. 

(ii) the observable algebra must admit an involution A --t A* such that 
(A + B)* = A * + B*, (AB)* = B* A *, (if>. E C, >. * is the complex conjugate 
of >.). It expresses the fact that we need real numbers to measure physical 
quantities. 

(iii) a measurement process is described by states, namely linear forms r: 
A --t C, such that r(A* A) ~ 0 for any A in A and r(l) = 1. 

The positivity property (iii) is actually crucial for quantization. Indeed one 
can exhibit examples of algebras, generated by elements q = q* and p = p*, 
satisfying (1.2.11), for which the Hamiltonian H = p2 + q2 corresponding to a 
harmonic oscillator, would not admit quantized energy levels. In its first 1925 
paper, Heisenberg found that the frequencies in this model satisfied W( n) = 
1iw(n+const.). To fix the arbitrary constant, he insists in having a lowest energy 
level, namely a ground state, which gives the famous n + 1/2. 

If one insists that the observable algebra be entirely defined by measure­
ment processes, one may use the Gelfand-Naimark-Segal construction [SA71, 
BR79, PE79, TA79] from any state r, to get a Hilbert space H r , and a unit 
vector Cr, for which any observable A is represented by an operator 7l"rCA) such 
that 7rr(A*) = 7rr(A)* and r(A) = (Crl7rr(A}Cr). 

Practical calculations will not be possible without permitting to take limits 
of sequences of observables. Otherwise it would be like ignoring real numbers 
and working only with rationals. The main problem is that there are many ways 
of defining a topology on such an algebra. The measurement process provides 
us with a way of defining a natural topology. 
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For technical simplicity, one can restrict oneself to the set of observables 
giving rise for each state, to bounded operators in the GNS representation, in 
such a way that if we set 

(1.3.1 ) 

we get a norm on A satisfying 

(1.3.2) 

Then one can include in A all possible elements obtained by a limiting pro­
cedure: this means that we ask A to be complete. Such an algebra is called a 
C* -algebra: 

Definition. 1) A C*-aZgebra is an algebra over the complex field with an invo­
lution satisfying (ii), and a norm satisfying (1.3.2), for which it is complete. 

2) A *-homomorphism from the C*-algebra A to the C*-algebra B is a 
linear mapping a : A --t B such that a(AB) = a(A)a(B) and a(A*) = a(A)* 
for any A, B E A. It is a * -isomorphism if it is invertible, and a * -automorphism 
of A whenever it is an isomorphism from A to A. 

3) A one-parameter group of * -automorphisms is a family {at; t E ~} of 
* -automorphisms of A such that a.+t = a. 0 at for any s, t E ~; it is point-wise 
norm continuous whenever for any A E A the mapping t E ~ --t at(A) E A is 
continuous in norm. 

4) A * -derivation on a C* -algebra A, is a linear map h defined on a dense 
subalgebra 1)(8) in A, and such that 8(AB) = 8(A)B + A8(B), h(A*) = 8(A)* 
for any A, B E 1)( h). 

5) A * -derivation h generates a one-parameter group of point-wise norm 
continuous *-automorphisms {at;t E ~} if and only if for A E 1)(h),h(A) = 
dat(A)/dt at t = 0, namely if one can write at = exp{th}. 

As we see, C* -algebras emerge as very natural objects from Heisenberg's 
construction. Moreover, the norm which has been constructed here has another 
canonical property: eq. (1.3.2) implies that the square of the norm of A is 
nothing but the spectral radius of A * A; hence the topology given by a C*­
norm comes entirely from the algebraic structure (algebra and positivity)! In 
particular every *-homomorphism is automatically norm-continuous namely 
Ila(A)11 :S IIAII,A E A, showing that the algebraic structure is sufficient to 
define the topology. 

The restriction to bounded operators is not actually essential, in that 'good 
observables' can be computed through bounded operators, by means of re­
solvents (Green's functions), or any kind of functional calculus. However, as 
pointed out by von Neumann, unbounded observables raise a very difficult 
technical problem, due to the domain of definition which may lead to the im­
possibility of computing bounded functions. This is why he defined self-adjoint 
operators [FA 75]. They are precisely those unbounded symmetric operators for 
which the Schrodinger equation ia'l/J / at = H'l/J admits a unique solution for all 
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time with a given initial data. Then the functional calculus and spectral theory 
exist for self-adjoint operators and permit to reduce their study to the case of 
bounded operators. 

The correspondence principle is now supplemented by requiring that the 
classical symplectic structure should survive quantum mechanically. By analogy 
with the previous calculation, this is done by defining Poisson's brackets and 
canonical variables as follows 

(iv) Poisson's brackets are given by [DI26] 

(1.3.3) {A, B} = [A, B]/ili , [A, B] = AB - BA . 

Then one sees that the map C H : A -+ {H, A} satisfies all axioms of a derivation 
namely it is linear and 

(1.3.4 ) 

Quantum equations of motion will then be nothing but Hamilton-Jacobi's ones 
namely 

(1.3.5) 

If H = H* is unbounded CH is an unbounded derivation, which requires to 
define properly its domain of definition [BR79] in such a way that solutions 
of (1.3.5) be given by A(t) = exp{tCH(A)}. More generally, any canonical 
transformation is generated by products of operators on .A of the form exp{ C H } 

with H = H*. Going back to (1.3.3), one sees that they correspond formally 
to unitary transformations of the form A -+ SAS- I . In this way perturbation 
theory will be quite simple to develop in a completely similar way with classical 
mechanics [BV90]. 

(v) the observable algebra .A can be constructed by means of a family of 
bounded functions of two families of elements Q k = Qk and Pk = P: (k = 
1,· .. ,D) satisfying the canonical commutation relations 

(1.3.6) 

As we will see there exist many different non isomorphic such algebras, depend­
ing upon the problem we want to investigate. The simplest one is generated 
by smooth fast decreasing functions of the P's and the Q's, through Weyl's 
quantization formula, and gives rise to the algebra K- of compact operators, 
which is used in ordinary Quantum Mechanics. However, when dealing with 
periodic or aperiodic media we will get different algebras, giving rise to various 
kinds of spectra. 

The connection with waves and Schrodinger's point of view was done in 
1926 by Schrodinger and Pauli [JA74]. In modern language, wave functions 
provide a 'representation' of the observable algebra. For ordinary Quantum 
Mechanics, Weyl's theorem [RSII] shows that there is a unique (up to unitary 
equivalence) such representation, namely the Hilbert space is L2(RD) and Qk 
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Y" 

y,y' 

Fig. 1. Groupoid as transitions between stationary states 

is the operator of multiplication by the k-th coordinate Xk, while Pk is the 
differential operator -ih8j8xk. Therefore for a 3D particle in a potential H = 
p2j2m + V(Q) is nothing but the Schrodinger operator (see eq. (1.1.14)) 

(1.3.7) H = -Ii? j2ml1 + Vex) . 

The three men paper [BH25] has been so cleanly written that most of the text­
books in quantum mechanics have forgotten the original intuition of Heisenberg 
and usually introduce the operator aspect as a consequence of the Schrodinger 
equation, after having defined the notion of wave functions, of states as vec­
tors in a Hilbert space, and then coming to the point where partial differential 
operators can be algebraically interpreted. 

Actually, the original approach by Heisenberg contains much more struc­
ture than a first look may show. A lot of progress were made by mathematicians 
during the seventies to use this construction in building various C* -algebras. 
The breakthrough went with the notion of a groupoid [HA 78a, HA 78b, RE80, 
C079], which is nothing but the abstract generalization of the notion of tran­
sition between stationary states as defined by Bohr and Heisenberg. 

A groupoid G is a family of two sets {G(O), G} where G(O) is called the 
basis and generalizes the set of stationary states. An element '"'( of G is called 
an 'arrow' and represents a transition between two elements of G(O) its source 
s('"'(), and its range r('"'(). Giving two arrows '"'( and '"'(' such that r('"'(') = s( '"'(), one 
can define a new one '"'(0'"'(' (see Fig. 1) with r('"'(o'"'(') = r('"'() and s('"'(o'"'(') = s('"'('). 
Actually we demand that an element x of the basis be considered as a special 
arrow with r( x) = s( x) = x, x 0 '"'( = '"'( for every arrow '"'( such that r('"'() = x, 
and '"'( 0 x = '"'( for every arrow '"'( such that s( '"'() = x; in other words, x is a 
unit. At last we demand that each arrow '"'( E G admits an inverse ,",(-1 with 
r('"'(-l) = s('"'(), S('"'(-l) = r('"'() and ,",(-1 0 '"'( = s('"'(), '"'( 0 ,",(-1 = r('"'(). Examples of 
groupoids are known: 

1) if the basis has only one element, then G is a group. 
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2) On the other extreme, given a set X, a groupoid G(X) is defined with 
X as a basis and G = X x X. Then rex, y) = x, sex, y) = y, and x is identified 
with the arrow (x,x); we define the product by (x,y) 0 (y,z) = (x,z), and the 
inverse by (x,y)-l = (y,x). 

3) Let now M be a compact space, and let r be a locally compact group. 
We assume that r acts on M through a group of homeomorphisms 9 E r -+ fg 
such that f gg, = fg 0 f g,. Then we get a groupoid by letting M be the basis, 
and G = M x r. Then r(x,g) = x, s(x,g) = f;l(x), (x,g) 0 (J;l(x), g') = 
(x,gg'), (X,g)-1 = (J;1(X),g-1), and x will be identified with (x,l) where 1 
is the unit of r. 

One can easily define the notion of measurable, topological, differentiable 
groupoid, by asking G(O) and G to be measurable spaces, topological spaces, 
or manifolds, and demanding that the maps defining the range, the source, 
the product and the inverse be measurable, continuous or smooth (see [C079], 
for more details). In particular, foliations on a smooth compact manifold are 
described by differentiable groupoids. 

Let G be a locally compact groupoid. We say that G is discrete whenever 
for every x in the basis, the set G(x) = bEG; r(,) = x} is discrete. In this case 
we consider the topological vector space Cc( G) of complex continuous functions 
with compact support on G. It becomes a * -algebra if we define the product 
and the adjoint as follows 

(1.3.8) fl'(,) = L f(,')1'(,'-1 0,) , 
")"EG(") 

If G is given by the example 2) with X = {l, 2, ... ,n}, a continuous function 
with compact support on G is nothing but a matrix f = ((J(i,j))), and the 
product is nothing but the usual matrix multiplication, whereas the * is nothing 
but the usual hermitian conjugate. 

For every x in the basis of G, we then define the Hilbert space H x = 
[2(G(x)). A representation trx of Cc(G) in this Hilbert space is provided by 
setting 

(1.3.9) (7rx (J)'IjJ)CI) = L 1(,-1 o,')'IjJ(,'). 
")"EG(") 

One can check that 7rx (Jl') = 7rx (J)7rx (J'), and that 7rx (J)* = 7rx (J*) for every 
f, I' in Cc( G). Therefore we get a C* -norm by setting 

(1.3.10) Ilfll = sUPxEG(O) II trx (J) II , 
By completing Cc ( G) with respect to this norm, we get a C* -algebra C*( G). 
The generalization of this construction to every locally compact groupoid can 
be found in [RE80]. 
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1.4 The Index Theorem Versus Wave-Particle Duality 

In this Section we want to illustrate the wave-particle duality in a mathematical 
problem namely the Index Theorem for Tceplitz operators. 

Let f be a complex continuous function on the real line IR, periodic of 
period 27r, which never vanishes. Then it is quite elementary to show that it 
can be written as 

(1.4.1) f(x) = exp{inx + ¢>(x)} , 

where ¢> is a complex continuous function on the real line IR, periodic of period 
27r, and n is an integer. Both nand ¢> are uniquely defined through (1.4.1). 
Indeed the integer n can be computed through a Cauchy formula: 

(1.4.2) 
1 [27r f'ex) 

n = 2i7r io dx f(x) 

showing that it can be seen as the winding number of the closed path 'Y = f(l') 
in the complex plane given by the image of the torus l' = IR/Z by f. Obvi­
ously, this winding number does not change under a continuous deformation 
of this path, namely, n is a homotopic invariant. Actually, f is homotopic to 
the function en : x --+ exp{inx}, simply by letting ¢> go to zero uniformly in 
(1.4.1). So, since a continuous function never vanishes if and only if it has a 
continuous inverse, the winding number n classifies the homotopy classes of 
invertible functions in the algebras C(1'). 

We then remark that n is defined by the requirement that the phase of 
f changes by a multiple of 27r whenever x varies through one period. This is 
therefore a condition very similar to the Bohr quantization rule (1.1.2). More­
over we see here that it is expressed as the evaluation of the closed I-form 
Tf = dz/2i7rz over the path 'Y = f(l') defined by f 

(1.4.3) 

Since Tf is closed, it defines a de Rham cohomology class [Tf] in the first co­
homology group HI (C\ {O}, <C) over the pointed complex plane C\ {O}. By 
Cauchy's formula the evaluation of [Tf] on any closed path is an integer so 
[Tf] E HI(C\{O},Z). 

On the other hand, 'Y is a closed path, and therefore it defines a homology 
class b] = 1*[1'] in HI(C\{O},Z). By the de Rham duality one can therefore 
write n in the following abstract way 

(1.4.4) n = ([Tf]If*[l']) 

exhibiting the homological content of the 'wave' aspect of Bohr's quantization 
rule. 

Let us now consider the Hardy space H(D) namely the space of holomor­
phic functions on the unit disc D = {z E C; Izl < I} with square integrable 
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boundary value on the unit circle Sl = {z E C; Izl = 1} ~ ,][,.H(D) is a closed 
subspace of the Hilbert space L2('][') namely the subspace of function having 
a Fourier series vanishing on negative frequencies. We will denote by P the 
orthogonal projection onto H(D). 

For f E C(,][,), we will denote by T(f) the restriction to ?-leD) of the 
operator of multiplication by f. It is called the Treplitz operator associated to 
f. The main property of T(f) is the following 

Proposition 1.4.1. The Treplitz operator T(f) is Fredholm. More precisely, the 
operators T(f)T(f-l) - 1 and T(f-l )T(f) - 1 are compact. 

Proof. First of all, it is easy to check that IIT(f)11 :::; Ilflloo where IIflloo = 
sUPxE'J["lf(x) I· Therefore, by Stone-Weierstrass theorem, we can approximate f 
by a sequence of trigonometric polynomials. Since the set of compact operators 
is norm closed it is enough to prove the theorem for trigonometric polynomials. 

We can write T(f) = P f P where f denotes here the operator of multipli­
cation by f in L2(']['). Thus T(f)T(f-l) - 1 = P[j, Plf-1 P. It is enough to 
show that [j, P] is compact. By linear combination, it is sufficient to consider 
the case for which f( x) = exp{inx}. An elementary calculation shows that it 
is a finite rank operator. 0 

It is well known [RSIV, CF87] that a Fredholm operator T admits finite di­
mensional kernel and cokernel. The index is then defined as follows: 

(1.4.5) Ind(T) = dim(Ker(T)) - dim(Coker(T)) . 

It satisfies the following properties: 
(i) Ind is norm continuous (homotopy invariance), 
(ii) If K is any compact operator Ind(T + K) = Ind(T), 
(iii) Ind(T*) = -Ind(T). 
The main result about Treplitz operators is the following theorem 

Index Theorem. The index of the Treplitz operator T(f) is equal to the winding 
number of f namely: 

(1.4.6) Ind(T(f)) = -([77]If*['][']) 

where 77 = dz/2i1rz. 

Proof. By the homotopy invariance of both sides, and thanks to the formula 
(1.4.1), it is sufficient to prove this formula for f(x) = en (x ) = exp{inx}. The 
formula (1.4.4) shows that the right-hand side is nothing but n. Let us consider 
9 E ?-leD). Then if n :::; 0, T(en)g(z) = zng(z) showing that Ker(T(f)) = {OJ. 
If n < 0 T(en)g(z) = Reg(g(z)/zln l) where Reg(h) denotes the regular part of 
the meromorphic function h; thus T( en)g = 0 if and only if 9 is a polynomial 
of degree Inl - 1, namely dim{Coker(T(f))} = Inl = -no Since Coker(T) = 
Ker(T*), and T(enY = T(e_n ) we get immediately the result. 0 



J. Bellissard 555 

The Index Formula (1.4.6) is interesting in that, while the right hand side 
expresses in some way a property of 'waves', related to the necessity that the 
phase of f varies by a multiple of 271" as x varies on one period, the left hand 
side gives an expression of the winding number in term of an operator, which 
may be interpreted as the analog of the 'particle' interpretation in quantum 
mechanics. 

1.5 The Sturm-Liouville Theory on an Interval 

Let us consider now a Schrodinger equation on a finite interval, namely we seek 
for solutions of the following ordinary differential equation 

(1.5.1) ¢"(x) + (E - V(x))¢(x) = 0 x E (-L,L) 

where we assume that V is a continuous non negative function on (-L, L). 
Let us consider first the point of view of waves. It is well known [AR74] 

that given Xo in (-L, L) and A, BEe, there is a unique solution such that 
¢( xo) = A and ¢' (xo) = B. This solution is of class C2 • It is real whenever E, A 
and B are real. In particular for every value of E, we can find unique solutions 
¢± such that 

(1.5.2) ±¢±(±L) = -1 , 

They are real for real E's, and whenever E ~ 0, these two solutions are positive 
and convex everywhere on ( - L, L). Moreover they are analytic entire functions 
of E in the complex plane. 

In what follows we will restrict ourselves to the solution ¢_ which will be 
denoted by ¢ E to specify the value of the energy. The case of ¢+ can be treated 
in a similar way. The main result is contained in the following theorem 

Theorem 1. (i) The set of E's for which ¢E(L) = 0 is an infinite discrete 
sequence of positive numbers 0 < Eo < El < ... < E n- 1 < ... converging to 
00. 

(ii) If E n- 1 < E < En, the solution ¢E has exactly n simple, isolated 
zeroes -L < xl(E) < x2(E) < ... < xn(E) < L such that dXk(E)/dE < 0 and 
xn(E) converges to L as E tends to E n- 1 from above. 

Proof. Let us define the Wronskian of two functions ¢, ¢ by W x( ¢, ¢) = 
¢( x )¢' (x) - ¢' (x )¢( x). Differentiating and using the Schrodinger equation, we 
get the following identities 

(1.5.3a) Wx(¢E, ¢e) = 2iIm(E) 1 d(I¢E((W, 
[-L,x] 

(1.5.3b) 



556 Chapter 12. Gap Labelling Theorems for Schrodinger Operators 

The first identity applied to x = L shows that if Im(E) =f. 0, 'lj;E(L) =f. o. 
The second one shows that if 'lj; E( L) = 0, then 'lj;'e( L) =f. 0 (by the uniqueness 
theorem), and therefore aE'lj;E(L) =f. o. Thus any E such that 'lj;E(L) = 0 is 
necessarily real and isolated. Since 'lj;E is positive for E ~ 0, each such value is 
automatically positive. So we get a discrete set 0 < Eo < El < ... < En- 1 < 
... corresponding to solutions of'lj;E(L) = O. We will prove below that it is 
actually infinite and unbounded. 

On the other hand, iffor some x in [-L, L] 'lj;E(X) = 0, 'lj;k(x) cannot vanish 
for otherwise, by the uniqueness theorem, we would have 'lj;E = 0, contradicting 
the fact that 'lj;k( -L) = 1. Therefore, each zero of'lj;E is simple and isolated. 
Let x(E) be such a zero. Differentiating the identity 'lj;E(x(E)) = 0 with respect 
to E, and using (1.5.3b), we get (since for E real, 'lj;E is real) 

(1.5.4) dx(E)/dE = -Nk(x(E))} -21 d('lj;E((? < 0 . 
[-L,x(E)] 

The only way for a new zero to hold as E increases, is to appear at the extremity 
L of the interval namely for E = En for some n. Otherwise, there would be a 
value E' i En for all n's and a point x' in (-L, L) such that for E: small enough 
and E' - E: < E < E', 'lj;E admits -L < xl(E) < x2(E) < ... < xk(E) < L as 
zeroes for some k, and for E' < E < E' + E: there would be a new zero x'(E) 
between say xj(E) and xj+l(E), converging to x' as E converges to E' from 
above. Since the function 'lj;E is smooth in E, it converges point-wise to 'lj;k as 
E -+ E', and in particular (-)j'lj;EI(X);::: 0 for xj(E) < x < xj+1(E). Thus x' 
would be a double zero of'lj;E' which is impossible. Thus as E increases, one 
and only one zero appears every time E takes values in the set of En's. 

Let us now introduce the real function BE(X) defined by tan(BE(x)/2) = 
vE'lj;E(X)/'lj;k(x) which may also be defined as the unique solution of 

(1.5.5) dBE(X)/dx = 2-../E - 2V(x)/-../Esin2 (BE(x)/2) , BE(-L) = O. 

Since V ;::: 0 we get vE/7r - (V)/7rvE ~ BE(L)/47rL ~ vE/7r, with (V) = 
(1/2L) Jr-L,L] dxV(x). On the other hand, BE(L)/27r = n for E = En - 1 as one 
can easily see from the definition, so we get 

(1.5.6) 

showing that the sequence {En; n E N} is infinite and unbounded. D 

Let us now consider the vector !P'E(X) = ('lj;E(x),'lj;k(x)/vE) E ]R2. Thanks 
to the uniqueness theorem, it never vanishes for -L ~ x ~ L. Thus it defines 
a unique line LlE(X) in the projective space lP'lR.(I). We will identify lP'lR.(I) 
with the unit circle through the stereographic projection so that LlE( x) is 
parametrized by the angle BE ( x )(mod 27r) defined above. Therefore denoting 
by Tf the closed I-form Tf = dB/27r on the unit circle, the previous theorem 
shows that 
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(1.5.7) En- 1 < E < En, n = [(77ILlE( -L, L))] , 

where [x] represents the integer part of x. 
Let us now consider the operator point of view. Let H be the self adjoint 

operator defined by H = Ho + V where Ho is defined as -{P 18x2 with Dirich­
let boundary conditions on [-L,L]. By standard arguments, Ho is a positive 
operator with a compact resolvent and therefore it has a discrete unbounded 
spectrum on the real positive axis. Since V ;:::: 0 the same is true for H. E is 
an eigenvalue of H if and only if the corresponding solutions 'l/J± both vanish 
on ±L, in which case they are proportional. Thus the spectrum of H coincides 
with the family {En; n E N} defined previously. 

Let now PE be the eigenprojection X{H :s E} of H onto the energies 
smaller than or equal to E. Then we get the following gap labelling theorem 

Theorem 2 (The First Gap Labelling Theorem). Let H be the self adjoint op­
erator on L2( -L, L) defined by H = -8218x2 + V with Dirichlet boundary 
conditions. We denote by 0 < Eo < El < ... < En-I··· the eigenvalues of 
H. For E E JR, let PE be the eigenprojection of H on energies smaller than or 
equal to E. 

Let also 'l/JE be the unique solution of -'l/J'E(x) + V(X)'l/JE(X) = E'l/JE(X) such 
that 'l/JE(-L) = 0, 'l/J'e(-L) = 1. Let LlE(X) be the line defined by the vector 
('l/JE(x),'l/J'e(x)/v'E) in JR2, and let 77 be the canonical closed i-form on IP'JR(l). 

Then if En- 1 :s E < En we get 

(1.5.8) Tr(PE) = [(77ILlE(-L,L))] = n. 

Remark. Here as in the index formula, we get a formula with two sides: the 
r.h.s. represents the operator, namely the particle point of view, while the l.h.s. 
represents the wave function point of view. 

2. Homogeneous Media 

2.1 Breaking the Translation Symmetry 

This Section will be devoted to the description of the formalism required to 
treat more complicated problems arising in Physics, and especially in the phys­
ical properties of solids. The main tool in Solid State Physics is the Bloch theory 
valid for periodic crystals [MA76). It gives rise to the theory of bands. Much 
effort has been devoted during the fifties and the sixties to the explicit calcula­
tion of bands and Bloch waves in real crystals. Considering the great number of 
crystal symmetries, one can imagine how difficult it was to exhaust all possible 
cases. The next class of problems solid state physicists were interested in, was 
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the transport properties of these materials: electric conduction (metals, semi­
conductors, insulators, superconductors), thermal properties (phonons, heat 
capacity, diffusion constant). This requires the use of the Green-Kubo theory, 
which is not yet completely justified because of its conceptual difficulty, but 
which can be considered as a satisfactory and widely accepted phenomenolog­
ical theory. Bloch's theory and Green-Kubo's theory are basic tools in dealing 
with the subject as long as we are not dealing with the many-body problem. 

However, most materials are actually aperiodic. First of all, even though 
the periodic case is an excellent approximation, there is usually quite a lot of 
defects in real crystals. Moreover, temperature produces migration of atoms 
in a solid, leading to some randomness in the distribution of forces acting on 
the electrons. Roughness of interfaces may also produce random forces in 2D 
devices. However, defects and thermal fluctuations, as long as they are small, 
can be treated as a first order perturbation of band theory. 

But aperiodicity may be produced on large scale for physical reasons. The 
oldest example is probably the effect of a uniform magnetic field on electronic 
properties of a crystal. It has been the focus of attention since the very early 
days of Solid State Physics with the works of Landau [LA30) and Peierls [PE33) 
in the thirties devoted to the electron diamagnetism of metals. As a matter of 
fact, a uniform magnetic field breaks the translation symmetry of the Bloch 
waves because it produces a non translation invariant phase factor. On the 
other hand, the response of a solid to a uniform magnetic field is one of the 
most useful tools for experiments to get information on the microscopic prop­
erties. The reason is that a magnetic field breaks the time reversal symmetry, 
and will enable to separate various effects. For instance the Hall effect permits 
to measure the sign and the density of charge carriers in a conductor. Moreover, 
de Haas-van Alfen oscillations of the magnetoresistance give precise informa­
tions on the shape of the Fermi surface. Still the calculation of the electronic 
energy spectrum in this case required the contribution of hundreds of the best 
physicists during the last forty years. One of the most spectacular results is 
probably the calculation by Hofstadter in 1976 [H076, WI84, S085] of the 
energy spectrum for a 2D electron in a square crystal submitted to a perpen­
dicular magnetic field: it has a fractal structure which is still under study now 
by mathematicians [BS82b, EL82b, HS87, GH89, BR90). 

Other materials are intrinsically aperiodic. The charge density wave in a 
one-dimensional chain submitted to a Peierls instability, is modulated at a fre­
quency determined by the Fermi quasimomentum, giving rise to a quasiperiodic 
effective potential for electrons. Quasicrystals discovered in 1984 [SB84], have 
their atoms located on a quasiperiodic lattice. Amorphous materials, have their 
atoms located on a very aperiodic lattice, which nevertheless may be generated 
by a deterministic geometry [MS83]. All these states of matter are actually 
stable (or may be strongly metastable). 

So there is a need for a mathematical framework liable to describe these 
situations, and to permit the calculation of physical quantities of interest such 
as the electronic spectrum, the density of states, thermodynamical quantities 
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(e.g. the heat capacity), the transport coefficients. The main difficulty is that 
translation invariance is broken, in such a way that there is no Bloch decom­
position of the problem. 

The main tool we develop here is the description of a Non Commutative 
Manifold, namely the Brillouin zone of an aperiodic medium, in order to replace 
Bloch theory for aperiodic media! 

2.2 Non-Commutative Geometry 

An ordinary locally compact manifold M is usually described as a set with 
a topology which makes it a locally compact space. In addition, one usually 
defines a family of charts, namely mappings from open sets in lR. n into M 
satisfying compatibility and smoothness conditions [B067a]. It allows to define 
the space of Coo functions on M with compact support; it is a commutative 
Frechet * -algebra. The space Co (M) of continuous functions vanishing to zero 
at infinity on M is the completion of the space Coo(M) under the sup-norm. 
It is a commutative C* -algebra. Then smooth real vector fields with compact 
support are nothing but a family of * -derivations of this algebra generating a 
one-parameter group of point-wise norm continuous *-automorphisms. 

Conversely, the manifold structure of M can be recovered from the data 
of Co(M), namely from Co(M) and the family of all smooth vector fields with 
compact support, the dense sub algebra given by the common domain of all 
polynomials in these vector fields being nothing but Co(M). 

Gelfand's theorem [SA7l, B067b] asserts that every commutative C*­
algebra A is the space of continuous functions vanishing to zero at infinity 
on a locally compact space M. In this latter case, M is constructed as the set 
of characters of A namely the set of * -homomorphisms from A to C, and the 
identification between points x of M and a character X of A is given through 
xU) = J(x) for all J E A. 

A non-commutative locally compact space will be defined by analogy with 
the commutative case as the data of a non commutative C* -algebra A, which 
will represent the space of continuous functions vanishing to zero at infinity 
on a virtual object which will be the non commutative space itself [C090]. 
The fact of the matter is that only functions on a non commutative space are 
defined, not the space itself at this level of generality. The game consists in 
expressing every geometrical property of an ordinary manifold M as an alge­
braic property on Co(M), and in extending this last property as a definition in 
the non-commutative case. In this way, M becomes a smooth manifold when­
ever we have defined on A a family of * -derivations generating one-parameter 
groups of point-wise norm continuous * -automorphisms. In much the same way, 
a vector bundle [ is defined through the data of its smooth sections, which is 
nothing but a module (in the algebraic sense) over the algebra A. One can 
then associate to each derivation 8 a connection V on this bundle by means of 
a linear map V : [ --+ [ such that V(fTJ) = 8(f)TJ + JV( TJ) for J E A, TJ E [. 
Such a connection is not unique: it is defined up to a module homomorphism. 
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In much the same way one can integrate functions. This can be done in 
the simplest cases by means of a trace on A, namely a densely defined linear 
map r on A such that r(A* A) = r(AA*) ~ 0 for any A EA. This is a natural 
generalization of the integral. However, there are C*-algebras on which no non 
trivial trace exists, but as far as we will be concerned in this paper, all C*­
algebras we will consider will have a faithful trace. A trace is faithful if for each 
non zero element A E A, r(AA*) > O. 

More generally, one can define a differential algebra ileA) as the linear 
space generated by symbols of the form AodAl ... dAn, Ai E A. This alge­
bra becomes a *-algebra if we impose the relations d(AB) = (dA)B + A(dB) 
and d(A*) = (dA)*. Moreover it is graded over Z if we define the degree of 
AodAl ... dAn as n. The differential d is extended to ileA) by linearity and 
by imposing J2 = O. Then, a closed current is a trace on this graded algebra, 
namely a linear map r : ileA) --t C such that 

r(",r/) = (_l)deg('1)deg(r/)r(",'",), r(d",) = 0, for all """,' E ileA) . 

The definition and the study of cyclic and de Rham cohomology defined 
on closed currents in this non commutative context, have been the subject of 
A. Connes's work and we will refer the reader to [C082, C083] for a complete 
description. 

2.3 Periodic Media: Bloch Theory and the Brillouin Zone 

Let us consider first a Schrodinger operator on L2(Rn) of the form 

H = p2j2m+ V, 

where V is a continuous and periodic function on R n with a lattice of periods 
r. It means that H commutes with the operators T( a) of translation by a E r. 
r is a Bravais lattice namely a discrete subgroup of Rn such that the linear 
space it generates is equal to Rn. We will set V = Rnjr; V can be represented 
by means of the unit cell of the lattice, which is a fundamental domain for r 
(the Voronoi cell). 

The Bloch theory consists in diagonalizing simultaneously H and the 
T( a ),s. To do so, we introduce the reciprocal lattice r* as the set of b's in 
Rn such that the scalar product (bla) is an integer multiple of 271" for any 
a E r. The Brillouin zone will be defined as the quotient B = R n j r* and is 
isomorphic to a n-dimensional torus. Notice that this definition of the Brillouin 
zone is not exactly the same as the definition given by Solid State physicists 
[MA76]. 

Now, the generalized eigenfunctions of the T(a)'s are Bloch waves, namely 
functions 'ljJk(X) on Rn x Rn such that 

(2.3.1) 
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Here k is defined modulo r* namely, k -t 'l/;k(X) can be seen as a function over 
B. Moreover, for every pair 'l/;k(X),¢>k(X) of Bloch waves, the map x E IRn-t 
'l/;k(X)*¢>k(X) is r-periodic and can therefore be seen as a function over V. 

In order to get a mathematically clean picture we introduce the Hilbert 
space W built as the space of 'I/;'s satisfying (2.3.1), and such that 

(2.3.2) 

W is actually isomorphic to 'Ii = L2(lRn) and a unitary transformation from 'Ii 
to W is defined by the following 'Wannier transform': 

(2.3.3a) Wf(x,k) = Lf(x-a)ei(k1a}, fE'Ii, 
aEr 

(2.3.3b) 

which satisfies WW* = lw, W*W = In. In particular the norms are con­
served. 

We then introduce for each k E B the Hilbert space 'lik of functions u on 
IR n, such that 

(2.3.4) u(X + a) = ei(k1a}u(x) , 

Then an element 'I/; of W defines a square integrable section k -t 'l/;k E 'lik 
and conversely, each such section defines an element of W, namely W can be 
identified with the direct integral [DI69] 

(2.3.5) W = J: dnkHk. 

Then both WT(a)W* and WHW* leave each fiber 'lik invariant. WT(a)W* is 
nothing but the operator of multiplication by ei(kla}. Hence the C* -algebra the 
T(a)'s generate, is nothing but the algebra C(B) of continuous functions over 
B acting on W by multiplication. 

On the other hand, it is standard to check that the self-adjoint operator 
H is transformed by W into the family of partial differential operators 

(2.3.6) Hk = -(/i2 /2m) L EP /{)x~ + Vex) , 
iE[l,n] 

with domain 'D(Hk) given by the space of elements u's in 'lik such that 
{)2u/{)x; E 'lik. It is a standard result [RSII] that the Hk'S have compact 
resolvents: this is because for V = 0, the spectrum of 'lik is the discrete set 
of eigenvalues {(/i2/2m)(k + b)2j bE r*}, showing that its resolvent is indeed 
compact, whereas V is a bounded operator. 
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We can then identify 1{k with [2(r*) by means of the choice of the or­
thonormal basis {Ub( k)j b E r*}, where 

(2.3.7) 

whereas the resolvent (zl-Hk)-l becomes a compact operator Rk(Z) on 12(r*) 
the matrix of which being Rk(Z)b,bl = (ub(k)l(zl- Hk)-lubl(k)). If L(b) is the 
translation by b E r* in z2(r*), we actually get 

(2.3.8) 

and the map k E ]Rn -+ Rk(Z) E JC(i2(r*)) is norm continuous (here JC(l2(r*)) 
denotes the C*-algebra of compact operators on [2(r*)). In other words, R(z) 
defines a continuous map from ]R n to the C* -algebra JC of compact operators, 
satisfying the covariance condition (2.3.8). Here we must notice that given 
two Hilbert spaces with a countable basis 1{ and 1{1, the C*-algebras JC(1{) 
and JC(1{I) are actually isomorphic, and this allows us to denote them by JC 
without referring to the Hilbert spaces on which they act. 

A better representation will be given by the data of a family {'ljJj E Wj j E 
Nn}, such that 'ljJj(k) : k E B -+ 'ljJj(.j k) E Lfoc(]Rn) is continuous, and 

(2.3.9) i dnx'ljJj(x, k)*'ljJj' (x, k) = 8j,jl . 

It is tedious but easy to prove that such a family exists and can be constructed 
in such a way to be Coo with respect to k. Clearly, {'ljJj(k)jj E Nn} gives an 
orthonormal basis of 1{k. 

Let b E r* -+ neb) E Nn be a bijection. We then denote by S(k) the 
unitary operator from [2(r*) into [2(Nn) defined by 

(2.3.10) 

It satisfies S(k)L(b) = S(k - b) for b E r*. Then R~(z) = S(k)Rk(Z)S(k)* is 
norm continuous and is r* -periodic in k, and defines therefore a continuous 
mapping from B into JC namely an element of the C*-algebra C(B) ® JC. 

The main result of this Section is the following 

Theorem 3. The C*-algebra generated by the family {T(x)R(z)T(x)-l j x E ]Rn} 
of translated of the resolvent of H is isomorphic to C(B) ® JC. 

This result is actually the intuitive key to understand the point of view 
developed later on. For indeed, the algebra C(B) ® JC can be identified with the 
algebra of the Brillouin zone. 

Even though C(B) ® K is already non commutative, its non commutative 
part comes from K which represents possible degeneracies. More precisely, given 
a complex vector bundle E over B, we will denote by E the space of continuous 
sections of E: E is then a module over C(B) for the point-wise multiplication. 
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However, each section can be seen locally as a continuous map from B into cP 
for some N, and therefore we can multiply it point-wise with a N x N-matrix 
valued continuous function over B, namely by an element of CCB) 0 MN(C) 
which is canonically imbedded in CCB) 0 K. Such an operator is a module 
homomorphism of £, and we can see that each module homomorphism is of 
this type. Moreover, the Swann-Serre theorem [RI82] asserts that for every 
vector bundle E there is N big enough and a projection P in C(B) 0 MN(C), 
such that its module of sections £ is isomorphic to the module PCCB) 0 eN = 
{f : k E B -+ C N ; P f = J}; conversely, each projection in C(B) 0 K gives rise 
to such a vector bundle. Hence C(B) 0 K contains not only the construction of 
B itself but also that of every vector bundle over B. 

This way of reasoning applies as well to every locally compact space M 
provided Co(M) 0 K replaces C(B) 0 K. Co(M) 0 K will be called the algebra 
of M; in particular, K represents the algebra of a point. 

We say that a C* -algebra A is stable whenever it is isomorphic to A 0 K. 
It is a standard result that K is stable [BL86]. Therefore for any C* -algebra A, 
A 0 K is always stable, and is called the stabilized of A. Two C* -algebras A 
and B are stably isomorphic whenever A 0 K is isomorphic to B 0 K. 

The Theorem 3 shows that if H is a periodic Schrodinger operator, the 
algebra of the Brillouin zone is nothing but the algebra C*(H) generated by 
the family of all translated of the resolvent of the Hamiltonian H. But the 
construction of C*(H) does not require the periodicity of the potential V, and 
can be done for an aperiodic potential as well. Therefore, C*(H) will be called 
the 'Non Commutative Brillouin zone' or the 'Brillouin zone' of H. 

2.4 Homogeneous Schrodinger Operators [BE86] 

We see that two ingredients are necessary to define a Non-Commutative Bril­
louin zone, namely the energy operator and the action of the translation 
group on H. Actually, this is not so surprising if we deal with a homoge­
neous medium. For indeed, a homogeneous medium with infinite volume looks 
translation invariant at a macroscopic scale, even though translation invariance 
may be microscopically broken. For this reason, there is no natural choice of 
an origin in space. In particular if H is a Hamiltonian describing one par­
ticle in this medium, we can choose to replace it by any of its translated 
Ha = T(a)HT(a)-l (a E ]Rn) and the physics will be the same. This choice is 
entirely arbitrary, so that the smallest possible set of observables must contain 
at least the full family {Ha; a E ]Rn}. 

Actually H is not a bounded operator in general, so that calculations 
are made easier if we consider its resolvent instead. On the other hand as has 
already been argued in Section 1.3, the set of observables must be a C* -algebra. 
So we must deal with the algebra C*(H) anyway. Let us define precisely what 
we mean by 'homogeneity' of the medium described by H. 

Definition. Let 1-£ be a Hilbert space with a countable basis. Let G be a locally 
compact group (for instance ]Rn or zn). Let U be a unitary projective repre-
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sentation of G namely for each a E G, there is a unitary operator U(a) acting 
on 1i such that the family U = {U(a); a E G} satisfies the following properties: 

(i) U(a)U(b) = U(a+b)eit/>(a,b) for all a, bEG, where ¢(a, b) is some phase 
factor. 

(ii) For each 1/; E 1i, the map a E G -+ U(a)1/; E 1i is continuous. 
Then a self adjoint operator H on 1i is homogeneous with respect to G if 

the family S = {Ra(z) = U(a)(zl - H)-lU(a)-l;a E G} admits a compact 
strong closure. 

Remark. A sequence An of bounded operators on 1i converges strongly to the 
bounded operator A if for every 1/; E 1i, the sequence {An 1/;} of vectors in 1i 
converges in norm to A1/;. So the set S has a strong compact closure if given 
E: > 0, and a finite set 1/;1, ... , 1/; N of vectors in 1i, there is a finite set a1, ... , an 

in G such that for every a in G and every 1 :::; j :::; N there is 1 :::; i :::; n such 
that II(Ra(z) - Ra;(z))1/;j II :::; E:. In other words, the full family of translated of 
R( z) being well approximated on vectors by a finite number of them, repeats 
itself infinitely many times up to infinity. 

The virtue of this definition comes from the construction of the 'hull'. In­
deed let Z be in the resolvent set p( H) of H, and let H be homogeneous. Then let 
D(z) be the strong closure ofthe family {Ra(z) = U( a)(zl - H)-lU( a)-l; a E 
G}. It is therefore a compact space, which is metrizable since the Hilbert space 
1i has a countable basis. Moreover, it is endowed with an action of the group 
G by means of the representation U. This action defines a group of homeomor­
phisms of D(z). 

We first remark that if z' is another point in p(H) the spaces il(z) and 
D( z') are actually homeomorphic. For indeed, we have for a E G 

(2.4.1 ) 
Ra(z') = {I + (z' - z)Ra(z)} -1 Ra(z) , 

{I + (z' - z)Ra(z)} -1 = {I - (z' - z)Ra(z')} , 

so that {Ra;{z); i :2: O} converges strongly to R if and only if {Ra;(z'); i :2: O} 
converges strongly to some R' and the map R E D( z) -+ R' E D( z') is an 
homeomorphism. Identifying them gives rise to an abstract compact metrizable 
space D endowed with an action of G by a group of homeomorphisms. If wED 
and a E G we will denote by Ta.w the result of the action of a on w, and by 
Rw(z) the representative of win D(z). Then one gets 

(2.4.2) U(a)Rw(z)U(a)* = RTo.w(Z) , 

(2.4.3) Rw(z') - Rw(z) = (z - z')Rww(z')Rw(z) = (z - z')Rw(z)Rw(z') . 

In addition, z -+ Rw(z) is norm-holomorphic in p(H) for every wED, and 
w -+ Rw(z) is strongly continuous. 

Definition. Let H be a homogeneous operator on the Hilbert space 1i with 
respect to the representation U of the locally compact group G. Then the hull 
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of H is the dynamical system (Q, G, U) where Q is the compact space given 
by the strong closure of the family {Ra(z) = U(a)(zl - H)-l U(a)-l; a E G}, 
and G acts on Q through U. 

The equation (2.4.3) is not sufficient in general to insure that Rw(z) is the 
resolvent of some self-adjoint operator Hw, for indeed one may have Rw(z) = 0 if 
no additional assumption is demanded. A sufficient condition is that H be given 
by Ho + V where Ho is self-adjoint and G-invariant, whereas V is relatively 
bounded with respect to Ho, i.e. II(z - HO)-l VII < 00, and limlzl ..... ooll(z -
HO)-l VII = O. Then, 

Rw(z) = {I - (z - HO)-lVw} -l(Z - HO)-l 

where (z - Ho)-lVw is defined as the strong limit of (z - HO)-lVa" which 
obviously exists. So Rw(z) is the resolvent of Ho + Vw. 

In the case of Schrodinger operator, the situation becomes simpler. Let us 
consider the case of a particle in ~ n submitted to a bounded potential V and 
a uniform magnetic field with vector potential A, such that 

(2.4.4) 

The Schrodinger operator is given by 

(2.4.5) H = (1/2m) L (PJl - eAJl)2 + V = Ho + V . 
JlE[l,n] 

The unperturbed part Ho is actually translation invariant provided one uses 
magnetic translations [ZA64] defined by (if a E ~n, 'l/J E L2(~n)) 

(2.4.6) U(a)'l/J(x) = exp {(ie/Ii) 1 dX'Jl AJl(XI )} 'l/J(x - a) . 
[x-a,x] 

It is easy to check that the U( a )'s give a projective representation of the trans­
lation group. The main result in this case is given by 

Theorem 4. Let H be given by (2.4.4) and (2.4.5) with V a measurable essen­
tially bounded function over ~n. Let B8{L2(~n)} represent the space of bounded 
linear operators on L2(~n) with the strong topology, let LIR(~n) be the space of 
measurable essentially bounded real functions over ~n with the weak topology 
of Ll(~n), and let z be a complex number with non zero imaginary part. Then, 
the map V E LIR(~n) -t {z - Ho - V}-l E B8{L2(~n)} is continuous. 

The proof of this theorem can be found in [NB90, Appendix]. As a conse­
quence we get 

Corollary 2.4.1. Let H be given by (2.4.4) and (2.4.5) with V a real, measurable, 
essentially bounded function over ~n. Then H is homogeneous with respect to 
the representation U {Eq. {2.4.6}} of the translation group. 
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Proof Indeed, any ball in LR'(Rn) is compact for the weak topology of p(Rn). 
Moreover, U(a)VU(a)* = Va where Va(x) = Vex - a) almost surely. So Va 
belongs to the ball {V' E LR'(Rn); IIV'II ~ IIVII}, and the weak closure of the 
family {Va; a ERn} in LR'(Rn) is compact. Thanks to Theorem 4, it follows 
that the strong closure of the family {(z - Ho - Va)-l; a ERn} is the direct 
image of a compact set by a continuous function, and is therefore compact. 0 

Another consequence of this result is given by the following characteriza­
tion of the hull 

Corollary 2.4.2. Let H be as in Corollary 2.4-1. Then the hull of H is homeo­
morphic to the hull of V namely the weak closure of the family Q = {Va; a E 
Rn} in LJR'(Rn). Moreover, there is a Borelian function v on Q such that 
Vw(x) = v(T-Xw) for almost every x E Rn and all wE Q. If in addition V is 
uniformly continuous and bounded, v is continuous. 

Proof Let Pk be non negative functions on Rn such that fntn dnXPk(X) = 1 and 
that for each 8 > 0 limk-+oo~x/>6dnxPk(X) = o. Vw is an element of LR'(Rn). 
Let Vk(W) be defined by Vk(W) = JlRn dnxVw(X)Pk(X). By definition of the hull, 
this is a sequence of continuous functions on Q. We set v(w) = limk-+oovk(w) if 
the limit exists. This is a Borelian function because if I is a closed interval in 
R, the set l:(I) = {w E Q;v(w) E I} is given as l:(I) = nn;?:l Uk;?:l np;?:k{W E 
Q; vp(w) E I(l/n)}, where I(e) is the set of points in R within the distance 6 
from I. Since Vk is continuous, l:(I) is a Borel set. If now FE Ll(Rn), one gets 
JlRn dnxv(T-Xw)F(x) = limk-+oo JIR2n dnxdnYVr-"'w(Y)Pk(y)F(x), which by the 
covariance property is nothing but limk---+oo JIR2n dnxdnYVw(X)pk(y)F(x - y). 
Since the convolution limk---+oo JlRn dnYPk(y)F(x - y) converges to F in Ll (R n), 
it follows that v(T-Xw) = Vw(x) for almost all x's, and all wE Q. 

Let V be uniformly continuous and bounded on Rn. Then Vw exists 
as an element of LR'(Rn). We claim that (vkh;?:o is a Cauchy sequence 
for the uniform topology. For indeed, by definition of the hull, for each 
w E Q, there is a sequence {a;} in R n, such that JlRn dn x Vw (x )F( x ) = 
limi---+oo JlRn dnxV(x - ai)F(x), for every F E Ll(Rn). In particular, we get 
IVk(W) - vkl(w)1 ~ limi---+oo JIR2 dnxdnylV(x - ai) - V(y - ai)lpk(X)Pkl(y). 
Since V is uniformly continuous, given 6 > 0, there is 8 > 0 such that if 
Ix - yl < 8 => IV(x) - V(y)1 < 6/2. Therefore, using Ix - yl > 8 => Ixl > 8/2 or 
Iyl > 8/2, we get whenever k < k' 

[ dnxdnylV(x - ai) - V(y - ai)lpk(X)Pkl(y) 
JIR2n 

~ 6/2 + 211Viloo { [ dnXPk(X) + [ dnXPkl(X)} 
J/X/>6/2 J/X/>6/2 

Choosing N big enough, for k, k' > N the right hand side is dominated by 6, 
proving the claim. Therefore, the sequence Vk converges uniformly to a contin­
uous function v. 0 
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The situation is very similar and actually technically simpler for a discrete 
Schrodinger operator on a lattice. Let us consider a Bravais lattice, that will 
be identified with zn, and let us consider the Hilbert space [2(zn) of square 
summable sequences indexed by n-uples x = {Xl, ... , Xn} E Z n. Let us consider 
the operator H acting on [2(zn) as follows 

(2.4.7) H1jJ(x) = L H(X,XI)1jJ(X') , 
x'EZn 

where the sequence {H(x,XI);X' E zn} satisfies IH(x,X')1 :S f(x - x') with 
I:aEZ" f( a) < 00. Therefore H is bounded, and there is no need to consider 
resolvents anymore. Then we get the following theorem, where we let now U 
be the unitary representation of the translation group zn given by 

(2.4.8) U(a)1jJ(x) = 1jJ(x - a) , 

Theorem 5. Let H be given by (2.4.7). Then H is homogeneous with respect to 
the representation U (Eq. (2.4.8») of the translation group. 

Moreover, if fl is the hull of H, there is a continuous function vanishing 
at infinity h on fl x Zn, such that H",(x, x') = h(T-Xw,x' - x), for every pair 
(X,X') E zn and wE fl. 

Proof. Let D( a) be the disc in the complex plane centered at zero with radius 
f(a). Let flo be the product space I1(x,x')EZn xzn D(x - x'). By Tychonov's 
theorem, it is a compact space for the product topology. The sequence H(a) = 
{H(x - a, x' - a); (x, x') E zn x zn} belongs to flo for every a E zn. Therefore 
the closure fl of the family {H(a); a E zn} is compact. For wE fl let H",(x, x') 
be the (x, x') component of w. For the product topology the projections on 
components being continuous, the map w E fl -t H",(x, x') E C is continuous 
for each pair (X,X') E zn x zn. Moreover we easily get IH",(x,x')1 :S f(x - x') 
for all pairs (X,X') E zn x zn. Let now H", be the operator defined by (2.4.7) 
with H replaced by liw. Its norm is bounded by IIH", II :S I:aEZn f(a), and the 
map w E fl -t H", is weakly continuous, and therefore strongly continuous. In 
particular, the family {H",;w E fl} is strongly compact. We also remark that 
if w is the limit point of the sequence H(ai) in flo then H", is the strong limit 
of the sequence U( a;)HU( ai)*. At last, let Ta be the action of the translation 
by a in flo defined by T a H' = {H'(x - a, x, - a); (x, x') E zn x zn} whenever 
H' E flo then one has 

(2.4.9) U(a)H",U(a)* = HT:; a E zn,w E fl . 

So that H is indeed homogeneous, and its hull is precisely fl. Moreover, (2.4.9) 
implies that H",(x -a, x' - a) = HT:;(X, x'), namely, H",(x, x') = HT-xw(O, x'­
x). Thus h(w,x) = Hw(O,x). 0 

Some examples of Hamiltonians for which the hull can be explicitly com­
puted will be especially studied in Section 3. 
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2.5 The Non-Commutative Brillouin Zone 

Let us consider now a topological compact space fl with a ]R n-action by a 
group {Ta j a E ]Rn} of homeomorphisms. Given a uniform magnetic field B = 
{B ,..,,,} we can associate to this dynamical system a C* -algebra C*( fl x ]R n, B) 
defined as follows. We first consider the topological vector space CK(fl x ]Rn) 
of continuous functions with compact support on fl x ]Rn. It is endowed with 
the following structure of * -algebra 

(2.5.1) 
fg(w,x) = f dnyf(w,y)g(T-Yw,x_y)ei7r(e/h)B.xl\y, 

JJRn 
I*(w,x) = f(T-Xw, -x)* , 

where B.xl\y = B,..,,,x,..y,,, f,g E CK(flx]Rn), andw E fl, x E ]Rn. Here e is the 
electric charge of the particle and h = 2111i is Planck's constant. Let us remark 
here that this construction is very similar to the one given for the algebra of a 
groupoid (see Section 1.3). Here the groupoid is the set r = fl x ]Rn, its basis 
is reO) = fl, and the laws are given by: r(w,x) = w,s(w,x) = T-Xw,(w,x) = 
(w, y) 0 (T-Yw, x - y), (w, X)-l = (T-Xw, -x). 

This *-algebra is represented on L2(]Rn) by the family of representations 
{7rw jW E fl} given by 

(2.5.2) 7rw(f)1jJ(x) = f dnyf(T-xw, y - x)ei7r(e/h)B.yl\x1jJ(y) , 1jJ E L2(]Rn) 
JJRn 

namely, 7rw is linear and 7rw(fg) = 7rw(f)7rw(g) and 7rw(f)* = 7rw(f*). In addi­
tion, 7rw (f) is a bounded operator, for II7rw (f)11 :::; Ilflloo,l where 

(2.5.3) IIflloo,l = Max{suPWEil f dnylf(w,y)l,suPwEil f dnyll*(w,y)I}. 
JJRn JJRn 

It is a norm such that IIfglloo,l :::; IIflloo,l, IIflloo,l = 111* 1100,1, and we will denote 
by Loo,l(fl x ~nj B) the completion of CK(fl x ]Rn) under this norm. We then 
remark that these representations are related by the covariance condition: 

(2.5.4) 

Now we set 

(2.5.5) 

which defines a C*-norm on Loo,l(fl x IRnj B), and permits to define c*(n x 
IRn,B) as the completion of CK(n x IRn) or of Loo,l(n x IRnjB) under this 
norm. 

The main result of this Section is summarized in the: 

Theorem 6. Let A,.. be the vector potential of a uniform magnetic field B, and 
let V be in Loo(IRn). Let H be the operator 
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H = (1/2m) L (P/L - eA/L)2 + V = HB + V 
/LE[I,n] 

and we denote by Q its hull. Then for each z in the resolvent set of H, and for 
every x E JR n there is an element r( z; x) E C*( Q x JR n, B), such that for each 
wE Q, 7rw (r(z; x)) = (z - HT-xw)-l. 

Proof. Since the magnetic field B is uniform, it defines a real antisymmet­
ric N x N matrix. By Cartan's theorem, there is an orthonormal basis in 
JRn{el,e2,"',e21-I,e21,e2l+1,"',en} and positive real numbers Bj(l::::; j::::; 
1 ::::; n/2) such that 

(2.5.6) 

Let A/L be the vector potential in the symmetric gauge, namely, A/L 
-(1/2)B/Lvxv. Then, the operators K/L = -iO/L - 27re/hA/L obey the following 
commutation relations 

(2.5.7) 
[K2j-I,K2jJ = i27re/hBj, 

[K/L, KvJ = 0 otherwise. 

1 ::::; j ::::; 1 , 

Therefore at V = 0, the Schrodinger operator H B will satisfy 

(2.5.8) 

exp{-tHB} = II exp{-t(h2/87rm)(Kij _1 + Kij )} 
jE[I,I] 

II exp { -t( h2 /87rm )K;;,} 
mE[2j+l,n] 

In particular, it acts on V' E L2(JR n ) through 

(2.5.9) 

where fB(x; t)) = ITjE[I,I] h(xj; t; B j ) ITmE[2j+l,n] fI (xm; t), with the following 
notations 

(i) if x = (Xl,'" ,Xn), then Xj = (X2j-I,X2j) E JR2 for 1::::; j::::; 1, 
(ii) fI(x;t) = (t.h/27rm)-lexp{-27rmx2/t.h 2 } if x E JR, 
(iii) hex; t; B) = (eB / h) (2sinh(t.eBh/47rm ))-1 

exp{ -7reBx2 /(2h.tanh(t.eBh/47rm))). 

In particular, the kernel fB(x; t) is smooth and fast decreasing in x. In 
view of (2.5.2) and (2.5.3), we see that fB(t) E L'~,l(Q x JRn; B) and that 
7rw (fB(t)) = exp{ -tHB} whatever Q and wE Q. 

Now by Dyson's expansion, we get 
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e-t(HB+V) =e-tHB + f) -r it ds l i s
, dS 2 •. . 1sn

-, dsne-(t-s,)HB 

n=O 0 0 

Ve-(s,-s2)HB ... Ve-SnHB. 

Thus it is enough to show that Vet,s) = exp{-tHB}V exp{-sHB} has the 
form 7rw(g) for some g E Loo,l( D x jRn; B). For indeed the Dyson series converges 
in norm since V is bounded. Thanks to (2.5.8), we get Vet,s) = 7rw(v(t,s)) with 

(2.5.10) 

Now we recall that Vw is the weak limit in Loo(jRn) of a sequence of the 
form V(. - ai) as i ---+ 00. Since fB is smooth and fast decreasing, it follows 
that the left hand side of (2.5.10) is continuous in both wand x, and that its 
LOO,l(D x jRn; B)-norm is estimated by 

(2.5.11 ) IIv(t, S )1100,1 ::; 11V1l001IfB(t)1100,IilfB(s )1100,1 ::; const·llVlloo , 

uniformly in s, t. Therefore the Dyson expansion converges in Loo,l(D x jRn; B), 
and exp{ -t(HB + Vw)} = 7rw(fB,v(t)) for some fB,v(t) E Loo,l(D x jRn; B). It 
follows from (2.5.5) that if Vex) :::: V_ almost surely, we have 

(2.5.12) 

In particular, smce (z - Hw)-l = Iro,ool dtexp{ -t(HB + Vw - z)} provided 
Re(z) < V_, the theorem is proved. 0 

Problem. When is the C*algebra A generated by the Hamiltonian and the 
family of its translated, identical to C*(D x jRn, B)? In most examples, one can 
prove the equality. But is there a general condition on the potential implying 
it? 

2.6 Non-Commutative Calculus 

In the previous Section we constructed the non commutative Brillouin zone, 
which is identified with the C*-algebra A = C*(D x jRn,B). We now want to 
show that it is indeed a manifold. In order to do so we will first describe the 
integration theory and then we will define a differential structure. 

We have already seen in Section 2.2 that one can indeed integrate functions 
by means of a trace on A. Let P be now a probability measure on D, invariant 
and ergodic under the action of jR n. We associate to P a normalized trace T on 
A = C*(D x jRn,B) as follows: 

(2.6.1) T(f) = L P(dw)f(w,O) , 



J. Bellissard 571 

One can easily check that this formula defines a trace on the dense subalgebra 
CK(Q x ]Rn). If p:::: 1, we denote by £p(A,r) the completion OfCK(Q x ]Rn) 

under the norm: 

(2.6.2) 

In particular, one can check that the space L2(A,r) is a Hilbert space (GNS 
construction) identical to L2 (Q x ]R n). The map <p E L2 (A, r) --t f <P E L2 (A, r) 
defines a representation 1I"GNS of A. The weak closure W = 1I"GNs(A)", denoted 
by W*(Q,]Rn,B,p), is a Von Neumann algebra. By construction the trace r 
extends to a trace on this algebra. We remark that if H is a self-adjoint element 
of A, its eigenprojections are in general elements of the Von Neumann algebra 
W. 

The main result is provided by the following theorem 

Theorem 7. Let f be an element ojCK(Q x ]Rn). Then its trace can be obtained 
as the trace per unit volume oj the operator 1I"",(f), namely jor P-almost all w 's 

(2.6.3) r(f) = lim 1/IAITrA(1I"",(f)) , 
AtlRn 

where TrA is the restriction oj the usual trace in L2(]Rn) onto L2(A). 

Remark. In the limit A i ]R n the subsets A are measurable, their union adds 
up to ]Rn, and limAtlRn IAL1(A+ a)I/IAI = 0, where L1 represents the symmetric 
difference (Fj2Slner sequence [GR69]) . 

Proof. Since f belongs to CK(Q x ]Rn), the operator 1I"",(f) admits a smooth 
kernel given by F",(x, y) = f(T-Xw, y_x)eiB.xl\y (see Eq. (2.5.2)). By Fredholm 
theory [SI79J, the trace of this operator restricted to A is given by: 

By Birkhoff's ergodic theorem, we get for P-almost all w's 

which proves the result. o 

To define the differential structure, we denote by op. the linear map from 
CK(Q x ]Rn) into CK(Q x ]Rn) defined by: 

(2.6.4) Op.f(w,x) = iXp.f(w,x). 

It is quite easy to check that it is a family of mutually commuting * -derivations 
(see Definition in Section 1.3), which generates an n-parameter group of *­
automorphisms namely: 
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(2.6.5) P((f)(w, x) = ei«(,x) few, x) . 

This group extends by continuity to the C* -algebra A, and therefore the a's 
are generators. It is an elementary calculation to show that 

(2.6.6) 

where XJL is the position operator namely the multiplication by xJL in L2(jRn). 
In the periodic case (see Section 2.3), let k E jRn -+ fk be the compact oper­

ator valued map associated with f in the Wannier representation (Eq. (2.3.6)), 
such that L(b)fkL(b)-l = fHb for b E r*. Then it is easy to check that 
{i[XJL,flh = afk/akJL' showing that aJL is nothing but the derivation with 
respect to k in the Brillouin zone. In such a way that the differential structure 
defined by the a's is a natural generalization of the differential structure on the 
Brillouin zone in the non commutative case. 

3. The Lattice Case: Physical Examples 

In Section 2 we have introduced the Non-Commutative Brillouin zone of an 
electron in a potential submitted to a uniform magnetic field. The relation 
between the Schrodinger operator in jR n and the lattice problem has been dis­
cussed over and over again and is known in textbooks as the 'tight binding 
representation'. Recently, several mathematical studies have been proposed to 
justify such a representation [BE88b, GM90J. One can see this representation 
in many ways: the usual one consists in starting from Bloch's theory for the 
periodic crystal. Then one reduces the study to the bands lying in the vicinity 
of the Fermi level, since only electrons with energy close to the Fermi energy up 
to thermal fluctuations, contribute to physical effects like electric conductivity. 
In the roughest approximation, only one band contributes, but in general a fi­
nite number of them has to be considered. We then describe the corresponding 
Hilbert subspace selected in this way by using a basis of Wannier functions. 
Then adding either a weak magnetic field, or impurities in the crystal, or even 
the Coulomb potential between electrons results in getting a lattice operator, 
with short range interaction, where the lattice sites actually label the Wannier 
basis. In the case of a weak magnetic field, we obtain the main approximation 
for the effective Hamiltonian by means of the so-called ~Peierls substitution', 
namely if E( k) is the energy band function as a function of the quasimomen­
tum k E B, we simply replace k by the operator K = (P - eA)/fi , where 
P = -ifiV' is the momentum operator, and A is the magnetic vector potential. 
Since E(k) is periodic in k, it can be expanded in Fourier series, it is enough 
to define by means of a Weyl quantization, the operators exp{i(Kjb)} where 
b E r*. These operators are called 'magnetic translations' [ZA64J. In Section 
3.1, we will focus on this question. 
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:~." 

Fig. 2. The square lattice in two dimensions. U1 and U2 are the magnetic translations, 
4> is the flux through the unit cell, 4>0 = hie is the flux quantum, and a = 4>/4>0. 

3.1 Two-Dimensional Lattice Electrons in a Uniform Magnetic 
Field 

We consider a 2D lattice, that will be identified with Z2 . Examples of such 
lattices with a symmetry group are the square lattice, the triangular lattice, the 
honeycomb lattice (see Fig. 2). We can also consider lattices like the rectangular 
one or even a rhombic lattice. We assume that this lattice is imbedded in a plane 
of the real 3D space, and is submitted to a perpendicular uniform magnetic field 
B. The Hilbert space of states is identified with [2(Z2), and the most important 
class of operators acting on it is the set of magnetic translations denoted by 
W(m), m E Z2, acting as follows: 

(3.1.1) 

where 0: = <P / <Po, <Po = h / e is the quantum of flux, whereas <P is the magnetic flux 
through a unit cell. They are unit aries and satisfy the following commutation 
rule: 

(3.1.2) W(m)W(m') = ei1ram l\m'W(m + m') . 



574 Chapter 12. Gap Labelling Theorems for Schrodinger Operators 

Fig. 3. The triangular lattice with the three magnetic translations and the two dif­
ferent normalized fluxes fJ and ex - TJ. 

If we set U1 = W(l,O) and Uz = W(O, 1), we get W( m) = U;"I U;'2 e i 1l"am l m 2 

whereas they obey the following commutation rule: 

(3.1.3) 

It turns out that all models constructed so far to represent a lattice electron in 
a magnetic field, are given by a Hamiltonian belonging to the C* -algebra Aa 
generated by U1 and Uz. The simplest example is provided by the Harper model: 
if the energy band of the electron is given by E( k) = 2t{ cos al kl + cos az kz} 
(square lattice) the Peierls substitution gives 

(3.1.4) 

After the gauge transformation 1f;(ml,mz) = e-i1l"am1m2</J(mI,mZ -1) the cor­
responding Schrodinger equation H 1f; = E1f; leads to the so-called 'Harper equa­
tion' [HA55] 

(3.1.5) 

</J(ml + 1,mz) + </J(ml -l,mz) + e-Zi1l"am1 </J(mI,mz + 1) 

+ eZirraml</J(ml,mz -1) = E</J(ml,mz). 
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B--A B--A B--A 

\ / \ / \ 
B--A B---A B----A 

/ \ / \ / 
B---A B--A B--A 

\ / \ / \ 
B--A B--A B--A 

/ \ / \ / 
B-A\ /B-A\ ;-A\ 

B--A B--A B--A 

/ \ / \ / 
B-A\ ;-\ /-A\ 

B--A B--A B--A 

/ \ / \ / 
B--A B--A B--A 

Fig. 4. The honeycomb lattice with its two sublattices. 

In much the same way one can describe the nearest neighbour model for a 
triangular or hexagonal lattice as follows: one introduces the unitary operator 
U3 defined by 

(3.1.6) 

These three operators will represent the translation in the three directions of 
the triangular lattice, in which we suppose that the flux through a triangle 
with vertex up is given by 1] (in units of the flux quantum), whereas the flux 
through triangles with vertex down is a -1] (see Fig. 3). The nearest neighbour 
Hamiltonian will simply be 

(3.1.7) 

The honeycomb lattice can be decomposed into two sublattices rA and rB (see 
Fig.4), so that we can decompose the Hilbert space into the direct sum of the 
two subspaces 'HI = [2(rI), I = A, B, and the Hamiltonian can be written in 
matrix form as 

(3.1.8) 
o U1 + U2 + U3 

Ui + Vi + U; 0 
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-4 4 

Fig. 5. The Hofstadter srectrum, namely the spectrum of H = U1 + ut + U2 + U; 
as a function of a [H076 . 

where the U's refer to an underlying triangular lattice in which a has to be 
replaced by a/3 and TJ by a/6. 

More generally one can easily take into account interactions with any sites 
by adding to the Hamiltonian other monomials in the U's. One can also easily 
describe a model in which the unit cell contains different sites, occupied by 
different species of ions by introducing a decomposition of the Hilbert space 
similar to the one of the honeycomb lattice. 

The non-commutative manifold associated to Aa is a non-commutative 
torus. For indeed we have two non commuting unitary generators. This algebra 
was introduced and studied by M. Rieffel [RI81] in 1978, and has been called 
the 'rotation algebra'. For indeed, it can also be constructed as the crossed 
product of the algebra of continuous functions on the unit circle, by the action 
of IE given by the rotation by a on the circle. Then U1 is nothing but the map 
x E '[' --+ eix E <C, whereas U2 is the rotation by a. 

The trace on Aa is defined by analogy with the Haar measure on '['2 by 
means of the Fourier expansion namely: 
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(3.1.9) r(W( m)) = Dm,o , mE Z2. 

Again this trace is also equal to the trace per unit volume in the represen­
tation of Ac. defined by Eq. (3.1.1) on [2(Z2). 

On the other hand the differential structure is defined by the two commut­
ing derivations a1 and a2 given by: 

(3.1.10) 

In much the same way, if Xp,(p, = 1,2) represents the (discrete) position oper­
ator on [2(Z2), we also get: 

(3.1.11) ap,J = i[Xp"Jl . 

Let us mention the work of A. Connes and M. Rieffel [CR87, RI90) which 
classifies the fiber bundles on this non commutative torus, and also the moduli 
space of connections. 

One of the remarkable facts about the previous models, and also about 
most smooth self adjoint elements of this C* -algebra (namely at least of class 
Ck for k > 2), is that their spectrum is a Cantor set provided Q: is irrational. One 
sees in Fig. 5 above the famous Hofstadter spectrum representing the spectrum 
of the Harper Hamiltonian as a function of Q:. One sees a remarkable frac­
tal structure which has been investigated by many physicists [H076, CW78, 
CW79, CW81, WI84, RA85, S085, BK90) and mathematicians [BS82b, EL82b, 
HS87, GH89, BR90] , without having been completely understood quantita­
tively so far. We refer the reader to [BE89) for a review. 

3.2 Quasicrystals 

In 1984, in a famous paper, Shechtman et al. [SB84] announced the discov­
ery of a new type of crystalline phase in rapidly cooled alloys of Aluminium 
and Manganese, for which the diffraction pattern was point like but with a 
fivefold symmetry. This is forbidden by theorems on crystalline groups in 3 
dimensions. However, if one breaks the translation invariance it is possible to 
get such a diffraction pattern provided the lattice of sites where the ions lie is 
quasiperiodic. 

This discovery created an enormous amount of interest. Actually aperiodic 
tilings of the space had already been studied since the end of the seventies. 
The first example was provided by Penrose in 1979 [PN79) who gave a tiling 
of the plane with two kinds of tiles, having a fivefold symmetry. This was 
followed by several works concerning a systematic construction of such tilings 
in particular by Conway [GA77), de Bruijn [BR81). Mackay [MK82) and then 
Mosseri and Sadoc [MS83, NS85) gave arguments for the relevance of such 
tilings in solid state physics. A 3-dimensional generalization of the Penrose tiling 
was theoretically described by Kramer and Neri [KN84). Experimentally, the 
diffraction pattern created by such tilings was observed empirically by Mackay, 
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Fig. 6. The cut and projection method for a one dimensional quasicrystal. 

whereas Levine and Steinhardt [LS84] suggested to consider quasi periodicity 
as a basis to get a quasi crystal with icosahedral symmetry. 

In this Section we will rather use the projection method introduced in­
dependently by Elser [EL85] and Duneau-Katz [DK85] (see Fig. 6). In this 
method, a quasicrystal is seen as the projection of a lattice Z" of higher dimen­
sion contained in JR", on a subspace E ::::i JRn irrationally oriented with respect 
to the canonical basis defining Z" which will be identified with the physical 
space. We then call El. the subspace perpendicular to E. We will denote by II 
and Ill. the orthogonal projections onto E and El.. Let c(Jl)(I S Jl S v) be 
the unit vectors of the canonical basis of JR". We set c(Jl + jv) = (- )ic(Jl) , for 
j E Z. Then we set c(Jl) = II (c(Jl)) and c' (Jl) = II 1. (c(Jl )). Let now L1 be the 
(half-closed) unit cube [0,1]" of JR", ( E JR" , and let L:(O be the strip obtained 
by translating L1 + ( along E, namely L:(O = L1 + E + (. In the sequel we 
shall drop the reference to (. We denote by S = 2: nJR" the set of lattice points 
contained in the strip L:. The quasilattice .c will be obtained as the orthogonal 
projection of S on E (see Fig. 7). It is a discrete subset of E, and there is a 
one-to-one correspondence between .c and S [DK85]. The 'acceptance zone' is 
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the intersection Q = ~ nEl.. of ~ with the perpendicular space (see Fig. 8). 

Fig. 7. The octagonal lattice, obtained as a projection of Z4 on ~2 in such a way as 
to conserve the 8-fold symmetry. The projection of the canonical basis of Z4 on ~2 
is shown above. 

It is a polyhedron in a (v - n)-dimensional space. The projection of ~ on 
Q is discrete if E is rationally oriented and dense if it is irrationally oriented. If 
v is high enough one can also get intermediate situations where this projection 
is dense in a union of polyhedra of lower dimension. A substrip ~' of ~ is a 
subset of ~ invariant by translation along E. Such a substrip will be identified 
with its projection QI = Ih {~'} in the acceptance zone. Q' will be called the 
'acceptance zone' of ~'. 

To describe the quantum mechanics of a particle on £, we first introduce 
the large Hilbert space K = [2(zv) and the physical Hilbert space 1-£ = [2(£). 
1-£ can be seen as a subspace of K if we identify £ with S. Denoting by X fJ 
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the characteristic function of Sin Z" we can identify the orthogonal projection 
onto H in K with the operator of multiplication by xn· More generally, if 2:' 
is a substrip of 2:, the orthogonal projection in K onto P(2:' nZ") will be 
denoted by xn', if il' is the acceptance zone of 2:'. 

Fig. 8. The acceptance zone of the octagonal lattice. The various subsets correspond 
to the projections of points in the octagonal lattice having a given local environment 
[SB90j. 

A free particle on the lattice ZV is usually described by the algebra gen­
erated by the translation operators TI'(1 ~ j.l ~ v). It is isomorphic to the 
algebra C('Jl'") of continuous functions on the v-dimensional torus, namely the 
Brillouin zone in this case. For convenience, we will set TI'+II = T; = T;;I, and 
TI'+211 = TI' . By analogy, we shall consider the algebra Q(v, E) generated by 
the restrictions SI' = xnTl'xn of the translation operator to H. For instance, 
the Laplacian Llc on the lattice C is nothing but the Hamiltonian given by 

211 
(3.2.1) Llc = l)SI' -1) . 

1'=1 

The operators SI' are no longer unitary, but they are partial isometries, and 
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they do not commute anymore. Thus Q(v, E) describes the set of continu­
ous functions on a non commutative compact space (the identity belongs to 
Q(v, E)).The commutation rules are given as follows: 

(3.2.2) 

Actually we get SIl = Xnn{f]+e/(Il)}TIlXnn{n-e/(Il)}. More generally, if x E 
Z", T(x) will denote the translation by x in !C. Then we set Sex) = xnT(x)xn, 
in particular SIl = S(C:(f-t)). It follows immediately that: 

(3.2.4) 

This latter set is nothing but the acceptance zone of the set of points x in I: 
such that the path ,(x) = (xo, ... ,XN) is entirely included in I:, whenever 
Xo = x, Xk = Xk-l + C:(f-tk). In particular, any element f of the algebra Q(v, E) 
can be approximated in norm, by a sequence of 'trigonometric polynomials' 
namely finite sums of the form 

(3.2.5) f = L c(I!:.)Xn(Il)T(C:(f-td + C:(f-t2) + ... + C:(f-tN)) , 
1: 

where the c(f-t)'s are complex coefficients. 
For f-t =-(f-tl, f-t2,· .. ,f-tN) such that 1 :::; f-ti :::; 2v, we set x(f-t) = C:(f-tl) + 

C:(f-t2) +. -:-: + C:(f-tN), and for a E Z", we denote by lea) the set oflt's such that 
x(l!:.) = a. A linear form on Q(v, E) is then defined by linearity as follows: 

(3.2.6) 

where 1.1 denotes the Lebesgue measure in El.. Since the Lebesgue measure 
is translation invariant, one can easily check that if f, g are two trigonometric 
polynomials, TUg) = T(g!) and that TUf*) > 0 as soon as f is non zero in 
Q(v,E). At last, T(l) = 1 and therefore T extends uniquely to a normalized 
trace on Q(v, E). 

As in the previous Section, one defines the differential structure on Q(v, E) 
by means of the group of * -automorphisms Tfa (a E Til) defined by linearity by: 

(3.2.7) 

and the derivation all is given by: 

(3.2.8) 

A special case concerns the 1D quasicrystals. Then v = 2, and E is a line in ]R2 

(see Fig. 6). Let w be the slope of E and we set 0: = w/(w + 1). It is sufficient 
to choose ( of the form ( = (0, no + TJ) with no E Z, and -1 :::; TJ < w. The 
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lattice C is then a sublattice of E, and it is in one-to-one correspondence with 
Z. More precisely, if x = (m,n) E S, one set, lex) = m + n - no. The map 
xES -+ I(x) E Z,isone-to-one,withinversegiven byn = no+I+[/a-O], m = 
I-I - [la - 0], provided 0 = a - (1- a)"l E [0,1] (here, [r] denotes the integer 
part of r). In particular, ri is naturally isomorphic to z2(Z). 

cs cc sc 

~ ~ 
!2 ~ •• ---------1.-----.1---------11 

-co o 1- CO 1 

Fig.9. The acceptance zone for the one dimensional quasilattice shown in Fig. 6. 
The subintervals correspond to the projections of the lattice points with indicated 
environment, c stands for horizontal bonds whereas s stands for the vertical ones. 

Then setting T = Sl +S2, T is nothing but the translation by one in ri. On 
the other hand, we can easily check that Xa = Xnn{n-el(2)} = S;S2 (see Fig. 9) 
is identified with the operator Xa,8 of multiplication by X[I-a,l)(la - 0) in ri 
where X[l-a,l) is the characteristic function of [I-a, 1) in the unit circle. Hence, 
the algebra Qa is generated by T and x",. By the previous remark, the Abelian 
C*-algebra generated by the family {Xa,n = TnXaT-n} is naturally isomorphic 
to the algebra Ca generated by the characteristic functions X[H(n-l)a,Hna) of 
the interval [1 + (n -1 )a, 1 + na) of the unit circle. Thus Qa = Q(2, E) appears 
as the cross product of Ca by the rotation by a on the unit circle. This algebra 
was already studied by J. Cuntz and shown to be isomorphic to the UHF algebra 
constructed by Pimsner and Voiculescu in the study of the rotation algebra. 
In particular, when a is irrational, Ca contains all continuous functions on the 
unit circle, and therefore, Qa contains the irrational rotation algebra Aa. 

It will be convenient to define a 'universal' C* -algebra formally given 
by Q = UaE[O,lj Qa. In order to do so, let Xn be the map on ']I'2 defined 
by Xn(a,x) = X[H(n-l)a,Hna)(X). We shall denote by C the Abelian C*­
algebra generated by the Xn's. If f is the diffeomorphism of ']I'2 defined by 
f(a,x) = (a,x - a), then Q appears as the cross product of C by f. For an 
irrational, the set Ia of elements of Q vanishing at a is a closed two-sided ideal. 
Then, Qa can be identified with the quotient QjIa . The quotient map will be 
denoted by Pc<' 

One model has been the focus of attention in this latter case, namely the 
'Kohmoto model' [KK83, OP83, K084, OK85, CA86, KL86, LP86, SU87, BI89, 
LE89, SU89, BI90], the Hamiltonian of which acting on 12(Z) as follows: 
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(3.2.9) H(0I,6) = T + T* + VX(0I,6) = Sl + S2 + S; + S; + VS;S2 , 

where V ~ 0 is a coupling constant. It describes a ID Schrodinger operator 
with a potential taking two values in a quasiperiodic way with quasiperiods 
1 and a. This operator and operators related to it have been also proposed 
to describe the behavior of ID electrons in a Charge Density Wave (CDW) 
once the linear chain is submitted to a Peierls instability. The energy spectrum 
of the Kohmoto Hamiltonian has been computed first by Ostlund and Kim 
[OK85]. It has a beautiful fractal structure which can be investigated by means 
of a renormalization group analysis [KK83, OP83, K084, S085, KL86, CA86, 
LP86, SU87, BE89, BI89, LE89, SU89]. More precisely one has 

Proposition 3.2.1 [BI90]. Let H be a self adjoint element in Q. Then the gap 
boundaries of the spectrum of POI(H) are continuous with respect to a at any 
irrational number. 

Proposition 3.2.2 [BI89]. For any number a in [0, 1], the spectrum 2:( a) of 
the operator H(OI,IJ) acting on l2(Z) and given by Eq. (3.2.9), is independent of 
()E[O,I). 

Proposition 3.2.3 [BI89]. For any irrational number a in [0,1], and any () in 
[0,1), the operator H(OI,IJ) acting on l2(Z) and given by Eq. (3.2.9), has a Can­
tor spectrum of zero Lebesgue measure, and its spectral measure is singular 
continuous. (See Fig. 10) 

In dimension D > 1, the character of the spectrum is not known rigor­
ously yet. However, several theoretical works have been performed in 2D and 
they indicate that two regimes can be obtained, depending upon the values of 
the Fourier coefficients of the Hamiltonian under consideration: an 'insulator' 
regime, for which the spectrum looks like a Cantor set, presumably of zero 
Lebesgue measure, and a 'metallic' regime for which the spectrum has very few 
gaps and a continuous (but fractal) density of states. 

The oldest works [see for reviews BE89 and S087, KS86, ON86, TF86, 
HK87], consist in restricting the lattice to a finite box A, and to diagonalize 
numerically by brute force the finite dimensional matrix obtained by restrict­
ing the Hamiltonian to A. The main difficulty with this method comes from 
surface states. For small boxes (with about 2000 sites), it is estimated that 
surface states may contribute up to 20 % of the spectrum. It is then necessary 
to eliminate the surface state contribution from the spectrum to get a good 
approximation of the infinite volume limit. To solve this difficulty one may ap­
proximate the lattice .c by a periodic lattice with large period, and use Bloch's 
theory to compute the spectrum numerically. This can be done by replacing 
the space E by a 'rational' one close to it [M088, JD88]. 

More recently a solvable model called the 'labyrinth model', has been found 
by C. Sire [S189], using a Cartesian product of two ID chains. It exhibits a 
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Fig. 10. The spectrum of the Kohmoto Hamiltonian (eq. 3.2.9) as a function of a 
[OK85). 

'metal-insulator' transition. In the insulating regime this Hamiltonian admits 
a Cantor spectrum of zero Lebesgue measure. 

At last a Renormalization Group approach has been proposed to compute 
numerically the spectrum in the infinite volume limit [SB90]. Even though 
it is in principle rigorous, the practical calculation on the computer requires 
approximations. The cases of Penrose and octagonal lattices in 2D with nearest 
neighbour interactions have been performed, and also give a Cantor spectrum 
in the insulating regime [BS 91]. 
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3.3 Superlattices and Automatic Sequences 

Superlattices are made of two species of doped semiconductors piled in on top 
of each other to produce a 1D chain of quantum wells. A qualitative model 
to describe electronic wave functions is given by a 1D discrete Schrodinger 
operator of the form 

(3.3.1) H'ljJ(n) = 'ljJ(n + 1) + 'ljJ(n -1) + AV(n)'ljJ(n) ,'ljJ E [2(Z) , 

where V(n) represents the effect of each quantum well, and A is a positive pa­
rameter which will play the role of a coupling constant. An interesting situation 
consists in building up the superlattice by means of a deterministic rule. The 
simplest one is given by a periodic array, in which we alternate the two species 
in a periodic way. But in general the rule will be aperiodic. One widely studied 
example is the Fibonacci sequence: given two letters a and b, one substitutes 
the word ab to a, and the word a to b. Starting from a one generates an infinite 
sequence abaababaabaababa . .. in which the frequency of a's is given by the 
golden mean (J5 - 1)/2. Another example (the oldest one actually) of such a 
substitution is the Thue-Morse sequence [TU06, M021, QU87]. It is obtained 
through the substitution a --+ ab, b --+ ba, and gives abbabaabbaababba . .. Also 
if S2(n) is the sum of the digits of n in a dyadic expansion, then the sequence 
(u(n)k?:o defined by setting u(n) = a if S2(n) is even, and u(n) = b if S2(n) is 
odd, is the Thue-Morse sequence again. 

To define a substitution, we start with the data of a finite set A called 
an 'alphabet'. Elements of A are called 'letters'. Elements of the Cartesian 
product Ak are called 'words of length k'. The disjoint union A* = Uk>lAk, is 
the set of words. The length of a word w is denoted by jwj. A substi~tion is 
a map (from A to A*, which associates to each letter a E A a word ((a). We 
extend (into a map from A* into A* by concatenation namely ((aoal ... an) = 
((ao)((al) ... ((an). In particular one can define the iterates (n of (. We shall 
assume the following [see QU87 p. 89]: 

(Sl) limn--+oo j(n(a)j = +00 for every a E A. 
(S2) there is a letter 0 E A such that ((0) begins by O. 
(S3) for every a E A, there is k ;::: 0 such that (k(a) contains O. 

The first condition insures the existence of an infinite sequence. The second 
is actually always fulfilled [QU87 p.88], so that the 'substitution sequence' 
u = limn--+oo (n(o) exists in the infinite product space AN such that (( u) = u. 
Let T be the shift in AN, namely (TW)k = Wk+l, and let il be the compact 
subspace of AN given as the closure of the family O(u) = {Tnuj n ;::: O}. Then 
(il, T) is a topological dynamical system, and the condition (S3) insures that 
it is minimal, namely that every orbit is dense [QU87, Theorem V.2]. By P. 
Michel's theorem [QU87, Theorem V.13], it is therefore uniquely ergodic namely 
it admits a unique ergodic invariant probability measure that will be denoted 
byP. 
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In much the same way, defining u'-k = uk_1 = Uk-I, for k ~ 1, one 
gets a two-sided sequence in AZ. Q' is the closure of the orbit of u' under 
the two-sided shift T' defined similarly on AZ. It is then easy to check that 
the dynamical system (Q', T') is still uniquely ergodic. Moreover, the unique 
invariant probability measure P' is uniquely determined by P. Thus each non 
empty open set of Q' has a positive measure, implying that (Q', T') is minimal 
(see Proposition IV.5 in [QU87]). 

A sequence {V(n)j n E Z} of real numbers is a 'substitution potential' 
whenever there is a substitution fulfilling conditions (Sl-3) and a mapping V 
from A to IR such that 

(3.3.2) V(n) = V(u n ) = V( -n - 1) , for n ~ O. 

It will be convenient to extend V to Q' by setting v( w) 
w E Q'. Then for w E Q, we define the potential Vw by: 

V(wo), for 

(3.3.3) 

Following the method described in Section 2, we deduce that the Hamiltonian 
given in Eq. (3.3.1) belongs to the C* -Algebra C*(Q', T') which is the crossed­
product of the space C( Q') by the action of Z defined by T'. An element F in this 
algebra is described by a kernel F(w,n), which is for each nEZ, a continuous 
function of w on Q'. For each w E Q' one gets a representation (7r w, 1iw) of 
this algebra, such that 1iw = [2(Z), and if U denotes the translation by 1 in 
[2(Z), f E C(Q'): 

(3.3.4) 7rw (T') = U* 7rw (J) = Multiplication by f(T,n w ) . 

This is equivalent to saying that the matrix elements of 7rw (F) are: 

(3.3.5) 

We immediately get the 'covariance property' U- I 7rw(F)U = 7rT'w(F). Since 
(Q',T') is minimal, it follows that the spectrum of 7rw (F) (as a set) does not 
depend on w E Q'. 

A trace r on this algebra is defined as the trace per unit volume. Using 
Birkhoff's theorem [HA56], and Eq. (3.3.5), it can easily be shown that it is 
given as follows: 

(3.3.6) reF) == lim N- I L (nl7rw(F)ln) = f P'(dw)F(w,O). 
N-~ iw 

05,n<N 

In much the same way as in the previous Sections, a differential structure is 
defined by one derivation 8 such that: 

(3.3.7) 8F(w,n) == inF(w,n) , '* 7rw(8F) = -i[X,7rw(F)] , 

where X is the position operator namely X1j;(n) = n1j;(n) for 1j; E F(Z),n E Z. 
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Very few results have been obtained yet on the spectral properties of the 
Hamiltonian H above. The Fibonacci sequence is actually a special case of a 
1D quasicrystal, and gives rise to Kohmoto's model. 

J. M. Luck [LU90], gave a series of theoretical arguments to show that 
several non almost-periodic examples of substitutions give rise to a Cantor 
spectrum. The width of the gaps follows a scaling behaviour in ,X as ,X -t O. 
This has been rigorously proved in two cases [AA86, AP88, BE90a, DP90, 
BB90]: the Thue-Morse (given by a -t ab, b -t ba) and the period-doubling 
sequence (given by a -t ab, b -t aa). More precisely one has: 

Proposition 3.3.1. Let H be given by (3.3.1) above, where V is defined either 
by the Thue-Morse or by the period doubling sequence. Then H has a Cantor 
spectrum of zero Lebesgue measure. Its spectral measure is singular continuous. 
Moreover as ,X ~ 0, the gap widths W obey to the following asymptotics: 

(i) for the Thue-Morse sequence: W ~ const. ,XtTb('x), with a = Ln4/ Ln3, 
and b is a continuous function bounded away from zero and such that b('x) = 
b( 'x/3); 

(ii) for the period doubling sequence, we get two families of gaps with 
- either W ~ const. ,x, 
- or W ~ const.exp{3Ln2/,X},XLn2. 

4. K-Theory and Gap Labelling 

This Section is devoted to the exposition of the general theory of gap labelling. 
The operator side of the formula is given by a natural countable group associ­
ated to each algebra, the group Ko [AT67, KA78, CU82, BL86] which serves to 
label gaps of an aperiodic Hamiltonian in a stable way under perturbations. In 
Section 4.1, we introduce the Integrated Density of States (IDS) [CF87], using 
the trace per unit volume, to count the number of states below some energy 
level. In Sections 4.2 and 4.3, we will give the general properties of the Ko­
group, generalizing in this way the homotopy invariant aspect of the index of a 
Fredholm operator. The wave aspect of the gap labelling will be investigated in 
the next Sections. Most of the content of this Section can be found in [BE86], 
already. We will postpone the study of examples to Section 5. 

4.1 Integrated Density of States and Shubin's Formula 

The operators we have studied up to now model the motion of a single particle 
in a solid with infinitely many fixed ions producing the potential. This is the 
'one-body' approximation. However in a solid with infinitely many ions, there 
is an infinite number of electrons. This is not a problem as long as we can 
neglect the electron-electron interaction, and also the deformation of the ionic 
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potential by the electrons themselves (electron-phonon interaction). For then 
the total energy is simply the sum of the individual single electron energies. 
If we take into account the Pauli exclusion principle, electrons being fermions, 
the ground state energy of the electron gas will simply be given by adding up 
all filled individual energy states, each of them being occupied by one electron 
only. The main technical difficulty comes from having to distribute an infinite 
number of fermions on a continuum of energy levels. The key fact about it 
comes from the homogeneity of the crystal we are investigating: electrons in 
far apart areas tend to ignore each other; moreover, spectral properties will 
tend to be almost translation invariant, at least if we compare large regions. 
Therefore it will be enough to consider the number of available energy levels 
per unit volume. This is how the integrated density of states IDS is defined. 

Let H be the Hilbert space L2(]Rn), and let us consider the Schrodinger 
operator given by (2.4.5) H = (112m) L/LE[1,nj(P/L-eA/L)2+V = HB+V, where 
A is the vector potential associated to a uniform magnetic field B, and V is a 
real measurable essentially bounded function on ]R n. For any rectangular box A, 
we denote by HA the restriction of H to A with some boundary conditions (for 
instance, Dirichlet or periodic boundary conditions). Then HA has a discrete 
spectrum bounded from below. Let NA(E) be the number of eigenvalues of 
HA smaller than or equal to E. Because of the homogeneity condition, if we 
translate A by (, we expect NA+C(E) = NA(E) + o(IAI) (where 1.1 denotes 
the Lebesgue measure), and if A and A' are two large non intersecting boxes, 
NAUA'(E) = NA(E) + NA'(E) + o(IA U A'l). In other words, we expect NA(E) 
to increase with A as IAI. SO we define the IDS as: 

(4.1.1) 

Here the limit A i ]R n is understood in the following sense: we consider a 'F(Illner 
sequence' [GR69] namely a sequence Ak of bounded open sets, with piecewise 
smooth boundary, with union ]Rn, and such that IAkLl(Ak + a)I/IAkl converges 
to zero as k --t 00 (Ll is the symmetric difference of sets). 

The very same definition can apply to the case of a Hamiltonian on a 
lattice (Section 2.4, Eq. (2.4.7)) and we can also extend this definition to the 
case where the lattice is a homogeneous sublattice of ]Rn. We will leave to the 
reader the obvious extension to this case. 

One remarks that NA(E) is also the trace of the eigenprojection X(HA :::; 
E) onto eigenstates of HA with energy less than or equal to E. So that the IDS 
appears as 

(4.1.2) N(E) = l~w.. Tr{x(HA :::; E)}/IAI· 

The first rigorous work on the IDS goes back to Benderskii-Pastur [BP70], 
who proved the existence of the limit for a one-dimensional Schrodinger oper­
ator on a lattice with a random potential. Then the existence and smoothness 
properties of the derivative dN as a Stieljes-Lebesgue measure, were proved by 
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different methods with an increasing degree of generality for the Schrodinger 
operator with random potential by Pastur [PA73], Nakao [NA77], Kirsch and 
Martinelli [KM82]. The algebraic approach goes back to the work of Shubin 
[SH79] inspired by the Index theory of Coburn, Moyer and Singer [CM73] on 
uniformly elliptic operators with almost periodic coefficients. The extension to 
more general coefficients is elementary and has been given in the discrete case 
by the author in [BE86], and for the continuum case it is given below [BL85]. 

The formula (4.1.2) is very reminiscent to the formula defining the trace 
per unit volume of the eigenprojector X(H ::; E) of the infinite volume limit. 
Notice that this projector does not belong in general to the C* -algebra A of 
H but to the Von Neumann algebra Loo(A, T) associated to the trace per unit 
volume by means of the GNS construction. 

Definition: Shubin's Formula. 

We say that H obeys to Shubin's formula whenever the IDS satisfies: 

(4.1.3) N(E) = T{X(H ::; E)} , 

where T is the trace per unit volume in the C*-algebra of H. 

To establish Shubin's formula, we have to compare Tr{x(HA ::; E)} /IAI with 
Tr{XAx(H ::; E)}/IAI as Ai ]RD, where XA is the characteristicfunction of A, 
and to show that they are equal. The first result in this respect was provided by 
Shubin [SH79] whenever H is a uniformly elliptic partial differential operator 
with almost periodic coefficients. 

Actually, Shubin's proof can be extended to a more general situation. Let 
us formulate the result. Let Q be a compact space with a ]RD-action by a group 
{Ta; a E ]R D} of homeomorphisms. We assume that there is Wo E Q the orbit of 
which being dense in Q. Let Uoo(Q, ]Rn) be the space of smooth functions f on 
~n, with bounded derivatives of every order, such that there exists a continuous 
function F on Q for which f(x) = F(T-X wo ). We set fw(x) = F(T-Xw). Let 
H w be a uniformly elliptic formally self-adjoint operator of the form: 

(4.1.4) Hw = L h<.,:)(x)DOI , 
1001::S;m 

where MOl) E Uoo(Q, ]Rn), a = (al,· .. ,an) E Nn is a multi-index, lal = al + 
... + an, whereas DOl = I11<I'<n {-iOl'}OI1'. By uniformly elliptic we mean that 

the principal symbol hSm) s~ti~fies: 

(4.1.5) hSm)(x,O = L hSOI)(X)(OI;::: cl(lm, c > 0 ;x,( E]Rn. 

1001=m 

By formally self-adjoint, we mean that for any pair ify, '1jJ of functions in the 
Schwartz space S(]R n) we have: 

(4.1.6) 
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Then it is well-known that Hw admits a unique self-adjoint extension, still 
denoted by Hw and that s(~n) is a core [SH79, HOS5j. Moreover, it satisfies 
the covariance condition 

(4.1. 7) U(a)HwU(a)* = Hraw . 

Now for any A in the F¢lner sequence defined above, we consider the 
operator HwA defined by (4.1.4), with domain D(A) given by the space of 
functions 1/J in the Sobolev space 1{m(A) satisfying the boundary conditions 
Bj1/J18A = 0 (1 :::; j :::; m/2); we assume the operators Bj to have order not 
exceeding m - 1, and to be self-adjoint. It is known that Hw,A is self-adjoint 
and has a discrete spectrum, bounded from below. Therefore NA(E) exists and 
is finite. The main result of Shubin [SH79, Theorem 2.1] can be rephrased as 
follows: 

Theorem 8. If Hw is a uniformly elliptic self-adjoint operator with coefficients 
in UOO(il, ~n), then: 

(i) there is r(z) E C*(il x ~n,B = 0) such that 7rw (r(z)) = {z - H w }-l, 
for every complex z in the resolvent set of Hw; 

(ii) Shubin's formula holds. 

Sketch of the proof. Let us only indicate the punch line of the proof. First of 
all, standard results show that the elementary solution of the heat equation 
ou/ot = -Hwu admits a regular kernel Gw(t; x, y) which depends smoothly 
upon x and y, and satisfies for any multi-indices O!, (3, 'Y the following type of 
estimate: 

where 0 < t < T, and the constant C > 0 depends only on O!, (3, 'Y and 
T. The covariance condition shows that if we set G(t;w,x) = Gw(t;O,x), 
then Gw(t;x,y) = G(t;T-Xw,y - x). Thus G(t;w,x) defines for each t > 0, 
an element get) of L oo ,l(il x ~n; B = 0), showing that e- tHw = 7rw (g(t)). 
It follows from the covariance condition, the strong continuity of 7rw (g(t)) 
with respect to w, and the density of the orbit of Wo in il, that the spec­
trum of Hw is contained in the spectrum of H. The resolvent is given by 
(Hw - z)-l = fro,ool dt exp{ -t(Hw - z)} for Re(z) sufficiently negative, showing 

that r( z) exists. 
On the other hand, N(E) is a non decreasing non negative function of E. 

Its derivative exists as a Stieljes-Lebesgue measure. It is thus sufficient to show 
that its Laplace transform N(t) = J N(dE)e- Et is equal to r{exp( -tH)}. If 
we call fw,A the kernel ofthe operator exp{ -tHw} -exp{ -tHw,A}, one has the 
following estimate: 
(4.1.9) 
lo~ol jw,A(t; x, y)1 :::; CC(n+lal+m"Y)/mexp{ -c[(lx - yl + dist(y, oA))m /t]l/m} , 



showing that lim.1TlRn Tr{j"".1}/IAI 
holds. 
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0, and therefore the Shubin formula 
o 

In the discrete case the situation is much simpler, from a technical point of 
view. Let G be a (non necessarily Abelian) countable discrete amenable group 
[GR69). By amenable we mean that there is a F¢lner sequence, namely an 
increasing sequence (An)n>o of finite subsets of G, with union equal to G, and 
such that limn --+oo I An Ll(a-:'" 1 AnWIAnl = O. In practice, G will be zn, but it 
may perfectly contain non Abelian parts, corresponding to discrete symmetries. 
Let fl be a compact space endowed with a G-action by homeomorphisms, 
and let P be a G-invariant ergodic probability measure. The set r = fl x 
G is a topological groupoid if we set r(w,x) = w,s(w,x) = x-1w,(w,y) 0 

(y-1 w,y-1x) = (w,x),(w,X)-l = (x-1w,x-1). Let r(2) denote the set of pairs 
Crl, 1'2) with r({'2) = S({'l)' A unitary co cycle is a mapping 8: r(2) ~ Sl, where 
Sl is the unit circle, such that 8({'1,I'2)8(I'1 01'2,1'3) = 8({'1,I'2 01'3)8({'2,I'3). 
We can then construct the C*-algebra C*(fl, G, 8) by means of the method of 
Section 2.5 [RE80J, where now G replaces IRn, the Haar measure on G (here the 
discrete sum) replacing Lebesgue's measure, and 8 replacing ei1r(e/h)B.xl\y. We 
also get a family 7r '" of representations on [2 (G) in a similar way. Then [BE86 
Appendix): 

Theorem 9. Let H be a self-adjoint element of C*(fl,G,8). Then the Shubin 
formula holds for H. 

In what follows, the spectrum of H is understood as the spectrum in the 
C* -algebra, namely 

(4.1.10) Sp(H) = U a{7r",(H)}. 
",En 

The main properties of the IDS are listed below. From Shubin's formula 
it is easy to get: 

Proposition 4.1.1. Let H be a homogeneous self-adjoint Hamiltonian, and let A 
be the C* -algebra it generates by translation. Let T be a translation invariant 
trace, for which H obeys to Shubin's formula. 

Then its IDS is a non negative, non decreasing function of E, which is 
constant on each gap of Sp(H). 

The IDS also depends upon the choice of a translation invariant ergodic 
probability measure P on the hull of the Hamiltonian. We say that a trace T on 
a C*-algebra A is faithful if any f in V (A, T) n A with T(f* f) = 0 necessarily 
vanishes. Then 

Proposition 4.1.2. Let H be as in Proposition 4.1.1. If T is faithful, the spectrum 
of H coincides with the set of points E E IR in the vicinity of which the IDS is 
not constant. 
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Proof. Let E be a point in the spectrum of H (the spectrum is the set of E E R. 
for which (El- H) has no inverse in A). Then for any 8 > 0 the eigenprojection 
X(E - 8 < H ::; E + 8) is a non zero positive element of the Von Neumann 
algebra LOO(A,r). Since r is faithful, we have 

N(E + 8) - N(E - 8) = r(x(E - 8 < H ::; E + 8)) > 0 , 

proving the result. o 

Remark. Suppose we consider the operator H = -,,1+ Von R.n where V decays 
at infinity. Then the hull of H is the one-point compactification of R. n. The only 
translation invariant ergodic probability measure on the hull Q = R. n U {oo} 
is the Dirac measure at 00. Therefore, the trace per unit volume cannot be 
faithful. In particular the IDS does not take into account the discrete spectrum 
of H, since the density of such eigenvalues is zero. 

Another example of such phenomena is provided by strong limits when 
a --+ p/q of the Kohmoto model (see Section 3.2), which may exhibit simple 
isolated eigenvalues in the gaps of the spectrum of the periodic model [BI90]. 

Proposition 4.1.3. With the assumption of Proposition 4.1.1, any discontinuity 
point of the IDS is an eigenvalue of H with an infinite multiplicity. 

Proof. Let E be such a discontinuity point. It means that there is 6 > 0, such 
that for every 8 > 0, N(E + 8) - N(E - 8) = r(x(E - 8 < H ::; E + 8)) ~ 
6 . Taking the limit 8 --+ 0, we get a non zero eigenprojection x(H = E) 
corresponding to the eigenvalue E. Since r(x(H = E)) ~ 6> 0, it follows that 
the multiplicity per unit volume is bigger than or equal to 6, and therefore the 
multiplicity of E is infinite. 0 

Remark. Many examples of physical models have given such eigenvalues. For 
instance, the discrete Laplace operator on a Sierpinski lattice [RA84] has a 
pure-point spectrum containing an infinite family of isolated eigenvalues of 
infinite multiplicity, the other eigenvalues being limit points and having infinite 
multiplicity as well. So that the IDS has no continuity point on the spectrum. 
Another example was provided by Kohmoto et al.[KS86]' namely the discrete 
Laplace operator on a Penrose lattice in 2D, for which E = 0 is an isolated 
eigenvalue with a non zero multiplicity per unit area. 

Actually one has the following result proved by Craig and Simon [CS83) 
and in a very elegant way, by Delyon and Souillard [DS84): 

Proposition 4.1.4. Let H = L1 + V be self adjoint, bounded and homogeneous 
on zn. Then its IDS is continuous. 
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Sketch of the proof. Taking A a finite parallelepipedic box, the eigenvalues of HA 
have multiplicity not bigger than O(18AI). This is due to the special geometry 
of the hypercubic lattice zn. Therefore the multiplicity per unit volume of any 
eigenvalue must vanish. 0 

Remark. 1) Such a general argument is not available yet in the continuum. 
However with reasonable assumptions on the potential one may expect such a 
result. 

2) Craig and Simon have actually proved that the IDS is Log-Holder con­
tinuous [CS83]. 

3) The extension of this result to Hamiltonians with short range interac­
tions should be possible. 

4.2 Gap Labelling and the Group Ko 

In the previous Section, we have introduced the IDS, which is constant on each 
gap of the spectrum. A label of a spectral gap {g} is given by the value N(g) 
taken by the IDS on this gap. This is a real number which has been recognized 
to be very rigid under perturbations of the Hamiltonian. In this Section we will 
label gaps in a different way, which will explain such a rigidity. 

For indeed, one can associate to {g} the eigenprojection P(g) of the Hamil­
tonian H, on the interval (-00, E] of energies where E is any point in {g}. 
Clearly, P(g) does not depend upon the choice of E in {g}. Moreover, if f is 
any smooth function on lR such that 0 :=; f :=; 1, f(E) = 1 for E :=; inf{g}, and 
f(E) = 0 for E :::: sup{g}, then P(g) = f(H). In particular, P(g) belongs to 
the C* -algebra A of H . However, the data of P(g) contained not only an in­
formation about the spectral gap {g}, but also about the nature of the spectral 
measure of H. Changing H by a unitary transformation, or more generally by 
an algebraic automorphism will not change the spectrum as a set. So that it is 
sufficient to label {g} by means of the equivalence class of P(g) under unitary 
transformations. 

This is a highly non trivial fact, for the set of equivalence classes of pro­
jections of A is usually a rather small set. To illustrate this claim, let K be the 
algebra of compact operators on a separable Hilbert space. Then a projection is 
compact if and only if it is finite dimensional. Moreover, two such projections 
are unitarily equivalent if and only if they have the same dimension. So, up 
to unitary equivalence, the set of projections in K is nothing but the set N of 
integers. 

Actually we will use the Von Neumann definition of equivalence [PE79], 
namely: 

Definition Two projections P and Q of a C*-algebra A are equivalent if there 
is U E A such that UU* = P and U*U = Q. We will then write P;:::;; Q. 

We will now give a few lemmas. 
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Lemma 4.2.1 [PE79]. Let P and Q be two projections in a C*-algebra A such 
that liP - QII < 1. Then they are equivalent. In particular any norm continuous 
path t E R --+ P(t) E Proj(A) is made of mutually equivalent projections. 

Proof. We consider F = PQ in A. We claim that its square F F* is invertible in 
the subalgebra PAP. Actually, since P is the unit in PAP, we get IIFF*-PII ~ 
IIQ - PII < 1. Therefore the series En>o cn(P - FF*)n converges absolutely 

in norm provides limsuPn-+oolcnI1/n ~ 1~ In particular (FF*)-1/2 = (P - (P­
FF*))-1/2 can be constructed as the sum of such a norm convergent series 
in PAP. If we now set U = (FF*)-1/2 F then we get an element in A which 
satisfies UU* = P. On the other hand U*U = F*{FF*}-l F is the sum of the 
series I:n~o F*(P - F F*)n F = I:n~o( Q - F* F)n F* F = Q. Thus P ~ Q. D 

Let A be a separable C*-algebra. We will denote by P(A) the set of equiv­
alence classes of projections in A, and by [P] the equivalence class of P. The 
next important property is 

Lemma 4.2.2 [PE79]. Let A be a separable C* -algebra. The set P(A) of equiv­
alence classes of projections in A is countable. 

Proof. Since A is separable, there is a countable set (An)n~o in A which is 
norm dense in the unit ball. Given P a projection, and c < 1/2, there is an 
n E N such that II P - An II ~ c. Replacing An by (An + A~) /2 does not change 
this estimate, so that we can assume An to be self-adjoint. Thus its spectrum 
is contained into the union of two closed real intervals of width c, the first 
centered at zero, the other at one. If the eigenprojection corresponding to the 
latter piece of the spectrum of An is denoted by Pn, we get IlPn - Anll ~ c, 
showing that liP - Pnll ~ 1, namely P ~ Pn . Therefore the set of equivalence 
classes of projections contains at most a countable family of elements. D 

Two projections P and Q in A are orthogonal whenever PQ = QP = O. 
In this latter case, the operator sum P + Q is a new projection called the direct 
sum of P and Q, and it is denoted by P EB Q . We then get: 

Lemma 4.2.3. Let P and Q be two orthogonal projections in the C* -algebra A. 
Then the equivalence class of their direct sum depends only upon the equivalence 
classes of P and of Q . In particular, a sum is defined on the set t: of pairs 
([P], [Q]) in P(A) such that there are P' ~ P and Q' ~ Q with P'Q' = Q'P' = 
0, by [P]+[Q] == [P'EBQ']. This composition law is commutative and associative. 

Proof. Suppose that there are projections P' ~ P and Q' ~ Q such that P' Q' = 

Q' P' = O. This means that there are U and V in A such that UU* = P, U* U = 
P', VV* = Q, V*V = Q'. One immediately checks that (1 - P)U = 0, and 
similar relations with U*, V, V*. It implies in particular that VU* = UV* = 
V*U = U*V = O. Thus if we set W = U + V, we get WW* = P EB Q and 
W* W = P' EB Q'. Hence, P EB Q ~ P' EB Q'. SO that the sum is defined on the 
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set £ of pairs ([P], [Q]) in P(A) such that there are pi ;:::: P and Q' ;:::: Q with 
P'Q' = Q' pi = 0, by [P] + [Q] == [Pi EB Q']. Since two orthogonal projections 
commute, the sum is commutative. Because the direct sum comes from the 
operator sum it is associative as well. 0 

The main problem is that £ can be rather small, and our first task is to 
enlarge this definition in order to define the sum everywhere. The main idea 
consists in replacing the algebra A by the stabilized algebra AQ9K. We have seen 
that such an algebra is naturally associated to a non commutative manifold in 
that it gives the set of multipliers of sections on any fiber bundle. We will imbed 
A into AQ9K by identifying A E A with the matrix {i(A)}m,n = AOm,oon,O, if K 
is identified with the algebra generated by finite dimensional matrices indexed 
by N. Actually we get: 

Lemma 4.2.4. Given any pair P and Q of projections in the C* -algebra A Q9 K, 
there is always a pair pi, Q' of mutually orthogonal projections in A Q9 K such 
that pi ;:::: P and Q' ;:::: Q. In particular the sum [P] + [Q] == [Pi EB Q'] is always 
defined. 

Proof. By definition any element in A Q9 K can be approximated in norm by 
a finite matrix with elements in A, namely by an element of A Q9 MN(C) for 
some N E N. In particular if P is a projection in A Q9 K, given 6 < 1/2, one 
can find A = A * in A Q9 MN( C) such that liP - All::::; 6. Thus the spectrum of 
A is contained in the union of two disks of radius 6 one centered at the origin, 
the other one centered at z = 1. The spectral projection pi corresponding to 
the latter one satisfies IIP' - All::::; 6, and pi E A Q9 MN(C). We get that 
liP - pili < 1, namely P ;:::: P'. Thus one can always suppose that P is in 
A Q9 MN( C). If now Q is another projection in A Q9 MN( C), Q is equivalent to 
the matrix Q' in A Q9 M2N(C) with {Q'}m,n = 0 for m, n rf- [N,2N - 1] and 
{Q'}N+m,N+n = {Q}m,n if m,n E [O,N - 1]. In particular, PQ' = Q'P = O. 
Therefore in A Q9 K one can always add two equivalence classes. 0 

In other words, if A is a stable algebra, the set P(A) of equivalence classes 
of projections is an Abelian monoid with neutral element given by the class of 
the zero projection. If A is not stable, we will still denote by P(A) the set of 
equivalence classes of projections of the stabilized algebra A Q9 K. 

There is a standard way to construct a group from such a monoid [CU82], 
generalizing the construction of Z from N. We consider on the set of pairs 
([P], [Q]) E P(A) x P(A), the equivalence relation 

(4.2.1) ([P], [Q])R.([P I ], [Q']) ¢} 3[R] E P(A) [P] + [Q'] + [R] = [Pi] + [Q] + [R] 

Roughly speaking it means that [P]- [Q] = [P I ]- [Q']. We get 

Theorem 10. (i) For a separable C*-algebra A, the set Ko(A) = P(A Q9 K) x 
P(A Q9 K)/R. is countable and has a natural structure of Abelian group. 
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(ii) Any real valued map <I> defined on the set of projections of A such that 
P ~ Q => <I>(P) = <I>(Q), and <I>(P EEl Q) = <I>(P) + <I>(Q), defines canonically a 
group homomorphism <1>* from Ko(A) into JR. 

(iii) Any trace r on A defines in a unique way a group homomorphism r* 
such that if P is a projection on A, rep) = r*([PJ) where [PJ is the class of P 
in Ko(A). 

Proof. (i) Since A 0 K is separable the set peA) is countable and so is Ko(A). 
Moreover, the equivalence relation R is compatible with the addition in peA), 
namely if ([PIJ, [QIJ)R([P;], [Qm and ([P2], [Q2J)R([P~], [Qm then from (4.2.1) 
there is an [RJ such that 

[PIJ + [P2J + [Q~J + [Q~J + [RJ = [p;J + [P~J + [Qd + [Q2J + [RJ , 

namely ([PIJ + [P2], [QIJ + [Q2])R([P;J + [P~], [Q~J + [Q~]), showing that the 
addition on peA) x peA) defines on the quotient space a structure of Abelian 
monoid. The neutral element is the class of [OJ == ([0], [0]), namely the set of 
([R], [RJ)'s with [RJ in peA). Thus for any element ([P], [QJ) in peA) x peA) 
the sum ([P]' [Q]) + ([Q], [P]) is equivalent to [OJ, showing that in the quotient 
space any element has an opposite element: so it is a group. Clearly peA) is 
imbedded in this group through the map [PJ --t ([P], [0]) and the quotient 
map, giving a homomorphism of monoid. 

From now on, we will identify [PJ with its image in Ko(A). The assertions 
(ii) and (iii) are direct consequences of the definition of Ko(A). 0 

Theorem 11 (The Abstract Gap Labelling Theorem). Let H be a homoge­
neous self-adjoint operator satisfying Shubin's formula (4.1.3). Let A be the 
C*-algebra it generates together with the translation group (its non commuta­
tive Brillouin zone). Let Sp( H) be its spectrum in A. Then for any gap {g} of 
Sp(H), 

(i) the value of the IDS of H on {g} belongs to the countable set of real 
numbers [0, r(l)J n r*(Ko(A). 

(ii) the equivalence class neg) = [peg)] E Ko(A), gives a labelling invariant 
under small perturbations of the Hamiltonian H within A. 

(iii) If S is a subset of JR which is closed and open in Sp(H), then n(S) = 
[PsJ E Ko(A) where Ps is the eigenprojection of H corresponding to S, is a 
labelling for each such part of the spectrum. 

As a consequence, we get the stability of the gap labelling namely the 
property (ii) above which is immediate from the Lemma 4.2.1. Let us make 
this point more precise: 

Proposition 4.2.5 (Stability and Sum Rules for the Labelling). Let t E JR ~ H (t) 
be a continuous family (in the norm-resolvent sense) of self-adjoint operators 
with resolvent in a separable C* -algebra A. 
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(i) invariance: the gap edges of H are continuous and the labelling of a gap 
{get)} is independent oft as long as the gap does not close. 

(ii) sum rule: suppose thatfort E [to,t1 ], the spectrum of H(t) contains an 
open-closed subset Set) such that S(to) = S+ U S_ and S(tt) = S~ U S'-- where 
S± and S~ are open-closed in Sp(H(to)), Sp(H(td); then n(S+) + n(S_) = 
n(S~) + n(S'--). 

4.3 Properties of the K-Groups 

In Section 4.2, we have defined the group Ko(A) in an abstract way, and we 
have shown how it can be used to label the gaps or the open-closed subsets 
of the spectrum of a homogeneous Hamiltonian. Obviously we will need to 
compute more explicitly the group Ko(A) and its image under the trace per 
unit volume in order to get a labelling of the gaps. In this Section let us give 
some general rules for such a computation, which we will use in the last Section 
to get the result in various classes of examples. The proofs of these properties 
are too long to be reproduced here, so that we will invite the reader to look 
into the references if he wants to have the proofs. 

Let us first define the group Kl(A). Let A be a separable C*-algebra 
with a unit. GLn(A) is the group of invertible elements of the algebra Mn(A). 
One can consider GLn(A) as the subgroup of GLnH(A) made of matrices X 
with coefficients in A, such that Xn+1,m = Xm,n+l = Dn+l,m. GL(A) is then 
the inductive limit of this family, namely the norm closure of their union. Let 
GL(A)o be the connected component of the identity in GL(A). One set: 

(4.3.1) Kl(A) = 7ro(GL(A)) = GL(A)/GL(A)o . 

Here 7ro(M) denotes the set of connected components of the topological space 
M. If A has no unit, one sets Kl(A) = Kl(A~). 

So Kl(A) is an Abelian group. For indeed the path B(t) defined by 

B(t)=[co~t sint][B 
- sm t cos t ° 0] [c~s t 

1 sm t 

permits to connect the following matrices in GL(A) 

0] '" [A 0] '" [BA 0] 
l"'OB'" 01 

- sin t] 
cos t 

Since A is separable, it is easy to check that K1(A) is countable. 
The main general properties of Ko(A) and Kl(A) are summarized in the 

following theorem 

Theorem 12. Let A, B be separable C* -algebras 
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(i) If f : A -+ 8 is a * -homomorphism, then f defines in a unique way 
groups homomorphisms f* from Ki(A) into Ki(8) (i = 0,1). They satisfy id* = 
id, and (f 0 g)* = f* 0 g*. 

(ii) Ki(A EB 8) is isomorphic to Ki(A) EB Kj(8). 
(iii) If A is the inductive limit of a sequence (An)n>o of C*-algebras then 

Ki(A) is the inductive limit of the groups Ki(An). -
(iv) IfCo(lR) is the space of continuous functions on IR vanishing at infinity, 

Ki(A) is isomorphic to Ki+1(Co(lR) Q9 A) (where i + 2 == i). 
(v) Ko(A) is isomorphic to the group 7r1(GL(A» of homotopy classes of 

closed paths in GL(A). If T is a trace on A and if t E [0,1]-+ U(t) is a closed 
path in GL(A) we get [C081]: 

(4.3.2) T*([U]) = 1/2i7r [ dtT(U(t)-1U'(t» 
1[0,1] 

(vi) If </> : .:1 -+ A, and 'IjJ : A -+ 8 are * -homomorphisms such that the 
sequence 0 -+ .:1 -+ A -+ 8 -+ 0 is exact, then the following six-terms sequence 
is exact [CU82, BL86]: 

Ko(.:1) Ko(A) Ko(8) 

'IjJ* </>* 

In the previous theorem, Ind and Exp are the 'connection' automorphisms 
defined as follows assuming that A has a unit. Let P be a projection in 8 Q9 K" 
and let A be a self-adjoint element of A Q9 K, such that 'IjJ Q9 ideA) = P. One 
gets: 

'IjJ 129 ide e2i1rA ) = e2h-P = 1 . 

So that B = e2i1rA E (.:1 129 K,)~ and is unitary in (.:1 129 q~. The class of B 
gives an element of K1 (.:1) which is by definition Exp([P]). One can check that 
this definition makes sense. In much the same way, let now U be an element 
of (8 129 K~) which we may assume without loss of generality to be the image 
by 'IjJ 129 id of a partial isometry W in (A 129 q~. Then Ind([U]) is the class 
of [WW*] - [W*W] in Ko(.:1). One can also check that this definition makes 
sense. 

In order to compute these groups in practice we will also need two other 
kinds of results. The first one is a theorem by Pimsner and Voiculescu [PV80a], 
and concerns Z-actions on a C* -algebra. 
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Theorem 13. Let A be a separable C* -algebra, and ° be a * -automorphism of 
A. The crossed product of A by Z via ° is the C*-algebra generated by A and 
a unitary U such that U AU-1 = o(A) for all A's in A. Then there exists a 
six-terms exact sequence of the form: 

Ko(A) 
id - 0* 

Ko(A) 
J* 

Ko(A >4", Z) 

Ind I 1 Exp 

K1(A >4", Z) Kl(A) ! Kl(A) 
J* id- 0* 

where j is the canonical injection of A into the crossed product B = A >4", Z. 

The connection homomorphisms in Theorem 13, are defined from the fol­
lowing exact sequence (called the Toeplitz extension of A): let S be a non 
unitary isometry such that S*S = 1, SS* = 1 - P, with P =I- o. The C*­
algebra C*(S) defined by S does not depend upon the choice of S [C067j. 
Choosing U in B such that o(A) = U* AU, one gets a homomorphism 1jJ from 
A 0 K, into the subalgebra T of B 0 C*(S) generated by U 0 S and A 01 by 
the formula: 

where ei,j is the matrix with all its elements equal to zero but for the element 
(i,j), equal to one. Then the image of 1jJ is the idealJ generated by 10P in T 
and the quotient algebra T / J is isomorphic to B. In other words the sequence 
o - A 18) K, - T - B - 0 is exact. 

We will use this exact sequence to compute the gap labelling of the ID 
Schrodinger operator with a potential given by an automatic sequence. 

At last, let us indicate the Connes analog of Thorn's isomorphism [C081j 

Theorem 14. Let A be a separable C* -algebra, and ° be a one parameter group of 
*-automorphisms of A. Then there is a natural isomorphism between Ki(A >4", 

JR.) and Ki(A 0 Co(JR.)) R:i KiH(A), for i E Z/2. 

These rules allow us to compute the K-groups for inductive limits, ideals, 
quotients, extensions, tensor product by Mn , K"Co(JR.), and by crossed products 
by Z or JR.. It is more than enough for the class of C* -algebras we have developed 
previously in this paper to compute it. 
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5. Gap Labelling Theorems for ID Discrete Hamiltonians 

5.1 Completely Disconnected Hull 

Let n be a compact metrizable space. In this Section we will assume that n 
is completely disconnected. Let T be a homeomorphism of n. We will assume 
that T is 'topologically transitive' namely that it admits at least one dense 
orbit in n. At last p will denote a T-invariant ergodic probability measure on 
n. 

We will consider ID discrete Schrodinger operators of the form: 

(5.1.1) H",1jJ(n) = 1jJ(n+l)+1jJ(n-l)+v(T-nw)1jJ(n), 

where v is a continuous function on n. More generally, we will consider bounded 
self-adjoint operators acting on z2(Z) as follows: 

(5.1.2) Hw1jJ(n) = L v(T-nw; m - n)1jJ(m), wEn, 1jJ E [2(Z), 
mEZ 

where each map Vj : wEn -+ v(w;j) E C is continuous on n. 
The oldest examples investigated in the literature are the case of a ID 

Schrodinger operator with random potentials of Bernouilli type [CF87] or with 
a limit periodic potential [M081, AS81]. On the lattice they give rise to a 
completely disconnected hull indeed. The case of ID quasicrystals falls into this 
class (see Section 3.2). More recently potentials with a hierarchical structure 
had been investigated [Ke88, LM88, KL89]. They also belong to such a class, 
together with potentials given by a substitution (Section 3.3). More generally 
every operator like the one given by (5.1.1) in which the coefficients take finitely 
many values, is of this type. 

Recall that the C* -algebra generated by the family of translated of H is 
the crossed product c*(n, T) = c(n) >4T Z of the algebra C(n) of continuous 
functions on n, by the Z-action defined by T. The probability p defines a trace 
T on it, which coincides with a trace per unit length. 

Thanks to results of Section 4, the gap labelling will be given by the Ko­
group of c*(n, T), whereas the values of the IDS on the gaps will belong to 
the image of this group by the trace T. The main tool to compute the Ko-group 
is provided by the Pimsner-Voiculescu exact sequence (cf. Section 4.3) where 
A = c(n) and a = T* is the automorphism induced by T. We need first the 
following lemmas proved in [see BB91]: 

Lemma 5.1.1. Let n be a completely disconnected compact metrizable space. 
Then K 1(C(n» = {O}. 

Lemma 5.1.2. Let n be a completely disconnected compact metrizable space. 
Then Ko(C(n» is isomorphic to the group C(n, Z) of integer valued continuous 
functions on n. 
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The main result of this Section will be the following 

Theorem 15. Let Q be a completely disconnected compact metrizable space, and 
T a homeomorphism on Q. Then: 

(i) If T is topologically transitive Kl(C(Q) )<IT Z) is isomorphic to Z. 
(ii) Ko(C(Q)<IT Z) is isomorphic to the quotient C(Q,Z)/CD, where CD is 

the subgroup CD = {f E C(Q, Z); 3g E C(Q, Z), f = g - g 0 T- l }. 

(iii) Let 11- be a T-invariant ergodic probability measure on Q, and T be the 
corresponding trace on C(Q) )<IT Z. Then, the image of Ko(C(Q) )<IT Z) by T is 
equal to the countable subgroup 11-( C( Q, Z)) of IR. 

Proof. Thank to Lemmas 5.1.1 and 5.1.2, and using the Pimsner-Voiculescu 
exact sequence for A = C(Q),Q = T* the automorphism defined by T, we get 
the following exact sequence 

(5.1.3) 0 -+ Kl(C(Q) )<IT Z) -+ C(Q, zl~'C(Q, Z) -+ Ko(C(Q) )<IT Z) -+ 0 , 

where the middle arrow is given by id - T*. Since the sequence is exact, it 
follows that Kl(C(Q) )<IT Z) is isomorphic to the kernel of id - T*. If T is 
topologically transitive, the kernel of id - T* is the set of constant functions in 
C(Q,Z) namely Z and (i) is proved. 

For the same reason, since the sequence is exact, the fourth arrow i* is 
surjective. Thus Ko(C(Q) )<IT Z) ~ C(Q, Z)/Ker(i*), which proves (ii) because 
Ker(i*) = Im{id - T*} = CD. 

If i is the canonical injection from C(Q) into C(Q)<IT Z, it follows from the 
definition of the trace given by 11- that TO i = 11-. By functoriality T* 0 i* = 11-* 

on the corresponding Ko-groups. One can show that 11-* is nothing but 11- acting 
on C(Q, Z) (see the proof of the Lemma 5.1.2 in [BB91]), and i* is surjective, 
(iii) holds. 0 

5.2 Potentials Taking Finitely Many Values 

Let us now consider a Hamiltonian on [2(Z) of the form given by: 

(5.2.1) H1jJ(n) = L tm (n)1jJ(n + m) ,1jJ E [2(Z) , 
Iml$N 

where the coefficients take finitely many values. Then the hull Q can be con­
structed as to be the closure of an orbit of Tin AZ where A is a finite set (the 
possible values of the coefficients), and T the two-sided shift on AZ. It is there­
fore completely disconnected. By a 'letter' we mean a point in the finite set A, 
while a 'word' will be a finite sequence w = (aoal ... an) of letters; n = Iwl is 
the length of w. Let 11- be a T-invariant ergodic probability measure on Q. 

Given a sequence w = (W(n))nEZ E AZ, the occurrence number Lw(w) of 
a word w in w is defined (whenever it exists) by: 
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(5.2.2) 
Lw(w) = lim 1/(2L + 1)#{n E [-L, Lj; (w(n + 1),··· ,wen + N)) = w} . 

L---+oo 

By Birkhoff's ergodic theorem, this limit exists for jl-almost all wED; it 
is independent of wand coincides with jl(X w) where X w is the characteristic 
function of the cylinder set Dw = {w E D;(w(O),··· ,weN -1)) = w}. A direct 
consequence of Theorem 15 is given by: 

Proposition 5.2.1. The values of the IDS of H on the spectral gaps are linear 
combinations with integer coefficients of the occurrence numbers of any possible 
word of A. 

Ex 1: Bernouilli Process 

Corollary 5.2.2. If D = {-1,+1}'" T is the two-sided shift, and jl = 0nEZjlp 

the B ernouilli measure where jlp { -I} = p, jlp { + I} = 1 - p, the possible values 
of the IDS on gaps of H given by (5.1.2), are linear combinations with integer 
coefficients of the numbers pm(1 _ p)n. 

Remark. 1) In this last corollary, T is not topologically transitive on D. Nev­
ertheless (ii) and (iii) of Theorem 15 still hold. 

2) If H is given by (5.1.1), where yen) = v(T-nw ) takes values ±V with 
probabilities p, (1- p) respectively, we cannot expect more than one gap. How­
ever for models with longer range interaction of the type (5.1.2), or another 
function v in C(Q), one may expect more than one gap, even though their 
number may be finite. 

Ex 2: Induced Process 

Another example of systems described by such a construction is given as follows: 
let (M, S, P) be a dynamical system, namely M is a compact metrizable space, 
S is a homeomorphism of M, and P is a S-invariant ergodic probability measure 
on M. Let now Ai (1 ::; i ::; N) be a finite family of P-measurable subsets of M. 
Let Ao be the *-algebra generated by the functions {XiOSn; 1 ::; i ::; N, n EN}, 
where Xi is the characteristic function of Ai. Without loss of generality we can 
assume that the A;'s form a partition of M. Let A be the norm closure of Ao 
in LOO(M,P). A is an Abelian C*-algebra, so that there is a compact space 
D, (its spectrum namely the set of characters of A), such that A is isomorphic 
to C(D). The map g E Ao --t go S E Ao induces a *-automorphism of A, 
which in turn gives rise to a homeomorphism also denoted by S, of D. The 
map g E Ao --t J dP(w)g(w) E C extends to a trace on A which in turn defines 
a S invariant ergodic probability measure on D. Thus we get a new dynamical 
system (D, S, P), induced by the family {Ai; 1::; i ::; N}. 
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The partition P = {Ai; 1 ~ i ~ N} is called 'generating' if there is a 
compatible metric on M for which, for any t: > 0, there are m ~ n such that 
the partition Pm,n = smp t"sm+lp 1\ .. ·I\snp contains only atoms of diameter 
less than or equal to t:. 

Application of the Theorem 15 gives [BB91J: 

Proposition 5.2.3 . (i) The compact space Q induced by the partition P = 
{Ai; 1 ~ i ~ N} is completely disconnected. 

(ii) IfP is generating, C(M) is a closed subalgebra ofC(Q). If in addition 
(M, S) is uniquely ergodic, then (Q, S) is also uniquely ergodic, and the unique 
ergodic invariant measures on M and Q agree. 

(iii) The IDS of a self adjoint element of C(Q) )<ls Z takes values in the 
Z-module generated by the numbers P(Ai(O) n SAi(l) n ... Sk A;(k)) where 1 ~ 
i(n) ~ N for alln's. 

Among the examples which have been investigated in the literature, let us 
mention the following: 

Ex 3: The Kohmoto model [KK83, OP83, K084, OK85, KL86, LP86, CA87, 
SU87, WI89, BI89, LE89, SU89, BI90J 

The algebra is generated by the characteristic function X[l-a,l) of the interval 
Ao = [I-a, 1) on the torus M = T, with S = Ra is the rotation by a E (O,I)\Q 
and P = oX is the normalized Lebesgue measure. Then (T, Ra) is uniquely 
ergodic. The Kohmoto model is given by: 
(5.2.3) 
Hx'IjJ(n) = 'IjJ(n + 1) + 'IjJ(n - 1) + VX[I-a,l)(na - x)'IjJ(n) ,x E T ,'IjJ E [2(Z). 

Hamiltonians on a ID quasicrystal also belong to the same algebra. Applying 
the Proposition 5.2.3 we get: 

Proposition 5.2.4. The IDS of the Kohmoto model, or of Hamiltonians in the 
same algebra, takes values in the set (Z + Za) n [0, IJ. If we denote by Q the 
corresponding hull, the Ko -group of the algebra C( Q) )<l a Z defined above, is 
isomorphic to Z2. Its image under the trace defined by the Lebe8gue measure 
on Q i8 the dense subgroup Z + Za of~. 

Ex 4: The B-S Model [BS82a]: 

It is given by the same dynamical system (T, Ra , oX), but now Ao = [1- (3,1), 
where (3 is an irrational number rationally independent of a. One possible 
example of Hamiltonian is given by: 
(5.2.4) 
Hx'IjJ(n) = 'IjJ(n + 1) + 'IjJ(n -1) + VX[I-,B,I)(na - x)'IjJ(n) ,x E T ,'IjJ E [2(Z). 



604 Chapter 12. Gap Labelling Theorems for Schrodinger Operators 

More generally, one can introduce the sets Ai = [1 - Pi, 1] (1 ::; i ::; N), where 
the numbers 1, Q, Pi are all rationally independent. Then the same argument 
leads to a gap labelling given by the Z-module generated by 1, Q and the (3i 'so 

5.3 Some Almost Periodic Hamiltonians 

1) Limit-Periodic Case. Let us consider the Hamiltonian H given by (5.1.2), 
where the coefficients are limit periodic sequences on Z. We recall that a se­
quence V = (V(n))nEZ is limit periodic [B047] if it is the uniform limit of 
a family of periodic sequences. It implies that there is a sequence (qi)iEN of 
integers, such that qo = 1, qi+r!qi = ai E N\{O,l}, and for each i 2:: 0, a 
qi-periodic sequence Vi on Z, such that sUPnEzIV(n) - Vi(n)1 --* 0 as i --* 00. 

Such models have been investigated in [M081, AS81, BB82, KC88, LM88, 
KL89). 

The hull of such a sequence can then be constructed as follows: as a set Q = 
lIiEN{O, 1,···, ai -I}. If w', w" E Q, the sum w' +w" = w is defined as follows: 
Wo is the unique integer in {O, 1,· .. ,ao - I} such that wb + w~ = Wo + aOrl, 
where rl takes values 0 or 1. By recursion if ri E {O, I} is defined, then Wi is 
the unique integer in {O, 1,·· . ,ai - I} such that w: + W;' + ri = Wi + airi+l, 
where now ri+l takes values 0 or 1. One can check that this sum is associative 
and commutative, that the sequence 0 with all coordinates equal to 0 is a 
neutral element, and that every element w E Q has an opposite w' defined by 
wb = ao - Wo, w; = ai - 1 - Wi (i 2:: 1). Thus Q is a compact Abelian group. 

We then denote by c the element (8i,0 )iEN and we check that Tw = w + c 
is a homeomorphism of Q, whereas the orbit of 0 is dense. Actually, if n E N, 
one can decompose n in a unique way in the form n = Vo + VIql + ... + VLqL 
with ° ::; Vi < ai and we check that Tn ° = nc = (va, VI •.. , VL, 0, ... , 0, ... ), 
namely n E N --* TnO E Q extends in a unique way to a group homomorphism 
with a dense image. 

Any character X of Q is associated to a unique rational number (mod 1) of 
the form kin by X(w) = lIi~Le2i1rkw;q;/qL. Thus the dual group of Q can be 
identified with the subgroup of the torus 1I' given by numbers of the form kin; 
it is isomorphic to the inductive limit Q* = LimLENZ/nZ, where the injection 
of ZlqLZ into ZlqL+IZ is given by the multiplication by aLH. The 'frequency 
module' is the Z-module generated by the k I qL 's in Q. In the sequel we will 
denote by Z[aj; i E N] the group Q so constructed. Clearly it is completely 
disconnected. So we can summarize it as follows: 

Proposition 5.3.1. A bounded sequence (V( n ))nEZ is limit periodic if and only if 
there is a sequence (ai)iEN of integers bigger than 1, and a continuous function 
v on the compact group Z[ai;i E N] such that V(n) = v(nc). 

T is uniquely ergodic, since any T-invariant measure must coincide with 
the Haar measure 1-'. Since Q is a product space, and one can show that the 
Haar measure is the product measure I-' = ®iENl-'i where I-'i is the uniform 
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measure on {O, 1,· .. ,aj - I}, namely the measure which affects the weight 
l/aj to each point. So as a corollary of Theorem 15 we get: 

Theorem 16. Let H be given by (5.1.2) where the coefficients are limit periodic 
sequences. Then the IDS on the gaps of H takes values in the frequency module 
of the hull. 

2) Harper's Model and related ones [HA55, H076, RI81, BE88b]. Let us now 
consider the models described in Section 3.1. The algebra is now A", = C*(U, V) 
where U and V are two unitary operators such that UV = e2i7r"'VU. Let us 
remark that this algebra is isomorphic to the crossed product C(1l') ><1", Z where 
Z acts on 1l' through the rotation R", by a. For indeed, C(1l') is the C* -algebra 
generated by one unitary operator V, namely the function V : x E 1l' --+ e2i7rx E 
C. Thus V 0 R", = UVU- l , showing that U is the generator of the rotation 
in the crossed product. We get the following gap labelling in that case [RI81, 
PV80b]: 

Theorem 17. Let a be an irrational number in (0,1). The Ko -group of the alge­
bra A", = C*(U, V) ~ C(1l') ><1", Z defined above, is isomorphic to Z2. Its image 
under the trace defined by the Lebesgue measure on 1l' is the dense subgroup 
Z + Za of '8... 

Proof. Let a be irrational now, and let Ba = C(Q) ><10 Z be the algebra cor­
responding to the Kohmoto model (see Section 5.2). Since the characteristic 
functions of the intervals rna, mal generate C(Q), and since these intervals 
can be as small as we want, it follows that C( Q) contains C(1l') as a closed 
subalgebra. Thus A", is contained as a closed subalgebra of Ba. In particular, 
by functoriality, Ko(Aa) is a subgroup of Ko(Ba). Since Ko(Ba) ~ Z2, it is 
enough to show that the generators of Ko(Ba) can be taken in Ko(Aa). M. 
Rieffel [RI81] found one projection given by: 

(5.3.1) PR = fU + 9 + U- l f . 

Here f and 9 are continuous functions on 1l' constructed as follows: given 
o < c < a,1 - a, g(x) = 0 if a ::; x ::; 1 - c, g(x) = 1 if 0 ::; x ::; a - c, 
0::; g(x + a) = 1 - g(x) ::; 1 if 1 - c ::; x ::; 1; then f(x) = {g(x) - g(X)2P/2 
if 1 - c ::; x ::; 1, and f(x) = 0 otherwise on [0,1]. We continue them by 
periodicity on JR.. We can even choose f and 9 in COO(1l'). Then PR is a projection 
in A",. Now, let S be the element of Ba given by S = aU + b, where a(x) = 
g(x + a)l/2 Xll _ a ,l), b(x) = g(x)l/2 X[1_a,l). We check that both a, b E C(Q), 
and that SS* = Xll-a,l) whereas S* S = PRo Thus Xll-a,l) ~ PR in Ba , which 
shows that the two generators ofKo(Ba), namely [1] and [Xll-a,l)] can be taken 
in Aa. Thus Ko(Ba) = Ko(Aa). 0 
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3) Denjoy's Diffeomorphism of the Circle [HE79]. We consider now the dy­
namical system (1I', S), where S is an orientation preserving homeomorphism. 
One can lift S as an increasing function from JR to JR, also denoted by S, such 
that Sex + 1) = Sex) + 1. By Poincare's theorem [HE79], the rotation number 
a = limn-+oo{Sn(x) - x}/n is well defined modulo 1. We will assume that it is 
irrational. Then, S is uniquely ergodic, and has no periodic orbits. If /1 is the cor­
responding invariant measure, we set h( x) = !ro,xl d/1 to get h( x + 1) = h( x) + 1 
and hoS = ROtoh, showing that S and the rotation ROt are semi-conjugate. The 
support M of /1 is always the unique minimal S-invariant closed subset of 1I'. 
Denjoy's theorem [HE79] asserts that if S has a bounded-variation first deriva­
tive, then M = l' and h is a homeomorphism. In this latter case, h induces an 
isomorphism between the C*-algebras C(1'»<IOt Z and C(1I'»<Is Z. 

Examples with M i= l' have been constructed by Denjoy [HE79]. Then, 
M is a nowhere dense set without isolated points, so it is completely dis­
connected. Its complement is a countable union of intervals (aj,n, bj,n) (the 
'gaps' of M) where n E N, j E J (J is a countable set), aj,n < bj,n, and 
sn(aj,o) = aj,n,sn(bj,o) = bj,n. h is constant on each gap, and we denote by 
()j,n its value on (aj,n, bj,n). It follows that h(S(x» = h(x) + a (mod 1), namely 
()j,n = {()j,O + na} ({x} denotes the fractional part of x). From Theorem 15, 
we get [PS86]: 

Proposition 5.3.2. If S is a homeomorphism of 1I', with irrational rotation num­
ber and minimal set M i= 1I', the values of the IDS of a self adjoint element of 
C(1I') )<Is Z or C(M) )<Is Z on spectral gaps belong to the Z-module generated by 
the numbers {()j,O - ()jl,O + na}, where j,j' E J. 

Remark. Every point x outside M is non-wandering, and limn-+±oo dist( sn x, M) 
= O. Let a be the closest point of M from x. If v is a continuous function on 1I', 
the potential Vx (n) = v( s-n x) differs from Va by a sequence converging to zero 
as Inl -+ 00. In this way, the corresponding Schrodinger operator Hx = Ll + Vx 
differs from H a = Ll + Va by a potential converging to zero at infinity, namely 
a localized impurity. It will give rise to isolated eigenvalues of multiplicity one 
which cannot be seen in the IDS, since their multiplicity per unit length is zero. 
For example if v is supported by the gap (aj,o, bj,o), Vx is a continuous family 
of rank one operators vanishing on gaps (ajl ,n, bjl ,n) with j' i= j. However, as 
x varies in 1I', this eigenvalue also varies continuously, giving rise to a band in 
Sp(H) = UX Ell'Sp(Hx). 

5.4 Automatic Sequences: Potentials Given by a Substitution 

Let us consider now the situation where [} is generated by a substitution (see 
Section 3.3). Namely let A be a finite set (the 'alphabet') with L elements, and 
let A* = Uk9Ak be the set of words. A substitution is a map ( from A to 
A *, which can be extended to A * by concatenation. We denote by Mb,a (() the 
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occurrence number of the letter b in the word ((a): it gives an L x L matrix 
M( 0 with integer coefficients and called the 'occurrence matrix'. Then if ( and 
'" are two substitutions we get 

(5.4.1) M(OM(",) = M((",) . 

By Perron-Frobenius's theorem, M( 0 has an eigenvalue () of highest mod­
ule which is positive with corresponding eigenvector V having non negative 
coordinates. If in addition M( 0 is primitive, namely if there is an integer n 
such that M( on has positive coefficients (a condition fulfilled whenever 83 is 
satisfied), this eigenvalue is simple and V has positive coordinates. We will 
normalize V by the condition L:a Va = 1. 

We now assume that the substitution ( satisfies the hypotheses 81-83 of 
8ection 3.3. In particular there is a letter 0 such that the word ((0) begins 
with O. 80 that there is an infinite word, or an infinite sequence of letters 
U = limn--+oo(n(o). The occurrence number of a letter a in this sequence is then 
given by: 

(5.4.2) L(a) ~ ,l!.."!, M(,') •. , {~M(")"'} -, ~ V •. 

The limit is reached as a consequence of the spectral theorem. In particular, 
if n is the two-sided hull of u, and if T is the two-sided shift, any T-invariant 
ergodic measure f/, on n satisfies f/,(Xa) = Va, where Xa is the characteristic 
function of the set of doubly infinite sequences w of letters such that w(O) = a. 

More generally, let AN be the set of all words of length N in the sequence 
u. The substitution ( induces on AN a substitution (N for any N ~ 1 as follows: 
AN is now considered as the set of letters of a new alphabet. If wEAN begins 
with a assume that ((w) = aOal" 'an while the length of ((a) is m. Then we 
set: 

(5.4.3) 

80 defined, I(N(W)I = 1((a)1 and we will extend it to AN by concatenation. In 
much the same way, we get an occurrence matrix denoted by MN(O, again 
satisfying (5.4.1), with integer coefficients. In particular, if the axioms 81-
83 are satisfied, MN( 0 is primitive and admits the same highest eigenval­
ues () as M(C) [QU87, Proposition V.15], with a corresponding eigenvector 

V(N) having positive coordinates and normalized according to L:w V~N) = 1. 
Now we remark that if U = OUI'" UN-I'" one has (iV(OUI'" UN-I) = 
(OUI ... UN-I)( UI ... UN)'" in such a way that the occurrence number of a 
word w in U is nothing but the limit: 

(5.4.4) 
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where O(N) = OUI ..• UN-I. In particular any T-invariant ergodic measure J.l on 
[l satisfies J.l(X w) = V~N), where X w is the characteristic function of the set 
of doubly infinite sequences of letters such that v(O)v(l)··· v(N) = w. This 
implies that [l is uniquely ergodic [QU87 Theorem V.13). 

Our main result for substitutions is the following: 

Theorem 18. Let H be given by Eq. (5.1.2) where the coefficients are determined 
by a substitution ( on a finite alphabet A, which satisfies the hypothesis Sl-S9. 
Then the values of the IDS of H on the spectral gaps (contained in [0, 1)) belong 
to the Z [O-I)-module generated by the coordinates of the normalized positive 
eigenvectors V and V(2) of the occurrence matrices M(C) and M2((), where 0 
is the common highest eigenvalue of each of them. 

Proof. For p large enough, namely if OP > const. N, (NP is entirely determined 
on wEAN by the knowledge of the first two letters of w. In the sequel, let 
p assume such a condition. To compute J.l it is thus sufficient to compute the 
positive eigenvectors of all the MN( ()'s. Actually there is a remarkable property 
of these matrices namely M 2 (() will suffice to get it. To see this one defines 
7rN,2 as the map from AN into A2 which gives the restriction to the first two 
letters extended to the set of corresponding words by concatenation. One also 
defines T2,N,p as the map from A2 into AN given by: 
(5.4.5) 
T2,N,p(W) = (aOaI ... aN-d(aIa2 ... aN) ... (al(p(a)I-Ial(?(a)l'" al(p(a)I+N-2) ' 

where (P( w) = aOaI ... an and w begins by a. Then one immediately obtains: 

(5.4.6) T2,N,p 0 7rN,2 = (fv, 7rN,2 0 T2,N,p = (~, (N 0 2,N,p = T2,N,p 0 (2 . 

If we denote by M2,N,p the occurrence matrix associated to T2,N,p, we get: 

(5.4.7) 

In particular M2 and MN have the same non zero eigenvalues and VN = 
M2,N,p(V(2») is a positive eigenvector of MN associated to the highest eigen­
value O. We just need to normalize VN to get the occurrence number of any word 
in u. This is done by remarking that L:w{M2,N,p}w,v = IT2,N,p(v)1 = I(P(vo)1 = 
1(~(v)1 = L:v,{Mf}v',v if v begins by the letter Vo. Thus, L:v{M2,N,pV(2)}v = 

L:v{M4'V(2)}v = OP L:v Vv(2) = OP. 
Consequently, the occurrence number of a word w in U is therefore given by 

the coordinates of V(N) = VN/L:w{VN}w = VNO-P, which, since M2,N,p has 
integer coefficients, belongs to the set of linear combinations with integer coef­
ficients of the coordinates of V(2) divided by some power of O. Since M2 ,N,p has 
integer coefficients, this set is the Z[O-l)-module generated by the coordinates 
of V(2), where Z[X) is the set of polynomials in X with integer coefficients. D 

To illustrate this result, let us treat a few examples. 
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1) The Fibonacci Sequence is given by an alphabet with two letters 
A = {O, I}, and the substitution is ((0) = 01, ((1) = 0, which obeys SI­
S3. The alphabet A2 contains only the words {OO, 01, 10}, giving (2(00) 
(01 )(10), (2(01) = (01 )(10), (2(10) = (00), and: 

(5.4.8) M(() = [~ ~] , [0 0 1] 
M 2 (() = 1 1 0 , 

1 1 0 

and the highest eigenvalue is given by () = (y5 + 1)/2, namely the inverse of 
the golden mean 0" = ( y5 -1) /2. The corresponding eigenvectors V and V2 are 
given by: 

(5.4.9) [
20" -1] 

V2 = 1-0" . 

1-0" 

Thus, since 0"2 = 1 - 0", the IDS on the gaps takes values of the form m + nO" 

where m, n E Z. 

2) The Thue-Morse sequence is again made with two letters with ((0) = 01, 
((1) = 10. This sequence also obeys 51-53. The alphabet A2 contains the 
four words {00,01,10,11} and we get (2(00) = (01)(10), (2(01) = (01)(11), 
(2(10) = (10)(00), (2(11) = (10)(01). The two matrices M(() and M2 (() are 
given by: 

(5.4.10) M(() = [i i], [
0 0 1 0] 1 1 0 1 

M 2 (() = 1 0 1 1 ' 

o 1 0 0 

and the highest eigenvalue is given by () = 2. The corresponding eigenvectors 
are: 

V2 = [:~~]. 
1/6 

(5.4.11) [ 1/2] 
V= 1/2 ' 

Thus the IDS in gaps will take values in the set 1/3Z[I/2) n [0,1]' namely the 
set of numbers ofthe form k/(3·2N ) where kEN and N E N. We then remark 
that for the Hamiltonian H = -.1 + V, where .1 is the discrete Laplacian on 
Z, whereas V(n) takes values Vo or VI according to whether Un = 0 or 1, it has 
been shown [BE90a] that all gaps corresponding to k = 3j + 1 or 3j + 2 (j E N) 
are indeed open, whereas the others are closed due to a special symmetry of 
the Thue-Morse potential. However a generic perturbation of V in C(il) will 
open these gaps too. 

3) The period-doubling sequence [BB90] is also defined with two letters by 
((0) = 01, ((1) = 00. This sequence also obeys 51-53. We get A2 = {OO, 01, 1O} 
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and (2(00) = (01)(10), (2(01) = (01)(10), (2(10) = (00)(00). The two matrices 
M(O and M2(O are given by: 

(5.4.12) M(C) = [~ ~] , [0 0 2] 
M2(C) 1 1 0 , 

1 1 0 

with the highest eigenvalue () = 2, and eigenvectors V = (2/3,1/3), whereas 
V2 = (1/3,1/3,1/3). So again the IDS takes values on gaps in the set of k/(3· 
2N) where kEN and N E N. If H = -,1+ V, where ,1, is the discrete Laplacian 
on Z, whereas V(n) takes values Vo or Vl according to whether Un = 0 or 1, it 
has been shown [BB90] that indeed all gaps are open. 

4) The Rudin-Shapiro sequence (rn)n:;::O [RU59, SH51, QU87] is defined 
recursively by ro = 1, r2n = rn, r2n+l = (-l)n rn . It is actually given by 
rn = (_l)!(n) where fen) is the number of 11 in the dyadic representa­
tion of n. It can also be defined through the substitution involving 4 let­
ters [CK80] given by ((0) = 02, ((1) = 32, ((2) = 01, ((3) = 31. If U = 
limn->oo (n(o), and if r is the map from A to { -1, + I} given by r(O) = r(2) = 
1,r(1) = r(3) = -1, then r(un) = rn. The alphabet A2 contains the eight 
words {01, 02,10,13,20,23,31, 32} and we get (2(01) = (02)(23), (2(02) = 
(02)(20), (2(10) = (32)(20), (2(13) = (32)(23), (2(20) = (01)(10), (2(23) = 
(01)(13), (2(31) = (31)(13), (2(32) = (31)(10). The two matrices M( 0 and 
M 2 (C) are given by Eq. (5.4.13a and b) below. We get () = 2, and V = 
(1/4,1/4,1/4,1/4), whereas V2 = (1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8). Thus 
the values of the IDS on gaps are of the form k2- N where kEN and N E N. 
The structure of the gaps in that case is quite involved [L U90] and no rigorous 
result has been proved yet in this case. 

M(() ~ [~ 
0 1 

~l 0 1 
1 0 
1 0 

(5.4.13a) 

0 0 0 0 1 1 0 0 
1 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 1 

(5.4.13b) M 2 (C) = 
0 0 0 0 0 1 1 0 
0 1 1 0 0 0 0 0 
1 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 1 
0 0 1 1 0 0 0 0 
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6. Gap Labelling Theorems 

Whereas in Section 5 we investigated 1D discrete Schrodinger operators it re­
mains to compute the gap labels in a more general situation, namely either 
for discrete Hamiltonians in higher dimension, or for Hamiltonians given by 
homogeneous pseudo differential operators on lRn. 

It turns out that this latter case can be solved using geometrical techniques 
coming from the study of smooth foliations on manifolds and developed by A. 
Connes [C082]. On the other hand, the discrete case which corresponds in the 
physicist's language to the so-called "tight-binding representation" [BE86], can 
be solved by associating a continuous system, its suspension, the C* -algebra 
of which (i.e. the Non-Commutative Brillouin zone) being 'Morita equivalent' 
to the algebra of the discrete case. As a result, their K-groups are the same 
and the gap labelling of the discrete version can be computed through Connes 
formulre from the continuous one. 

Specializing to one dimensional situations, we get a much more precise 
result in the case of ODE's thanks to the approach proposed by R. John­
son [JM82, J083, J086]. It gives a generalization of the Sturm-Liouville gap 
labelling theorem (see Section 1.5) for homogeneous 1D systems. Very re­
cently [J090] he proposed an extension of this theory to odd dimensions for 
Schrodinger operators. 

6.1 Connes Formulre for Group Actions 

In Section 2 we have shown that the Non-Commutative Brillouin zone for a 
homogeneous Hamiltonian H acting on L2(lR n), is given by the C* -algebra 
A = C(Q) ><IT lR n, where Q is a compact metrizable space and T is a contin­
uous action of the translation group lR n on Q. Let P be a T-invariant ergodic 
probability measure on Q. Then we get a trace Tp on C(Q) ><1T lR n equal for P­
almost all w E Q to the trace per unit volume of the representative Hw of H. 
If a uniform magnetic field is present, the Non-Commutative Brillouin zone is 
A = C*(Q x lRn,B), described in Section 2.5. 

If H is bounded below, Shubin's formula asserts that the IDS on spec­
tral gaps of H is equal to T(X<E(H)) where X<E(H) is the eigenprojection - -
of H corresponding to energies smaller than E. Since E is in a spectral gap, 
the continuous functional calculus implies that X<E(H) is a projection in the 
C* -algebra A and therefore the IDS takes values in the countable subgroup 
T*(Ko(A)). Thus as in Section 5 we want to get rules for calculating this group. 
The first important tool is Theorem 14 of A. Connes [C081] on crossed prod­
ucts, which relates the K-groups of the Non-Commutative Brillouin zone to the 
topology of the space Q. This space represents the lack of translation invari­
ance of H, namely the amount of disorder in the system described by H. An 
important consequence is the following 
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Proposition 6.1.1. We get: 
(i) Ko(C*(il x ]R.n, B» ~ Ko(C(il» whenever n is even, 
(ii) Ko(C*(il x ]R.n, B» ~ Kl(C(il» whenever n is odd. 

Sketch 01 the proof. The main remark about C*(il x ]R.n, B) is that it can 
be written as a double crossed product [XI88] as follows C*(il x ]Rn, B) ~ 
«C(il) ~T,]Rl+8) ~,8]Rl), that is to be described below. Theorem 14 used twice, 
we then get the result. 

Now the double crossed product structure comes from the way the mag­
netic field acts (see Section 2.5, Eq. (2.5.6)): there is a decomposition of x E ]R.n 
into x = (x+ EB x_ EB xo) E £+ EB L EB £0 such that dim(E±) = 1, dim(£o) = 
s = n - 21, and (Bx)+ = bx_, (Bx)_ = -bxo, (Bx)o = 0, where b is an 1 x I 
real symmetric matrix. Then if 1 is a continuous function with compact sup­
port on ]Rn, we define 1 by I(w,x) = l(w,x)ei1r(e/h)(x+ 1bx_). The map 1 -+ 1 
defines a *-isomorphisiii bet;een C*(il x ]Rn,B) and an algebra A' on which 
the structure is 

(6.1.1) 
L1L2(w,x) = [ dnyL1(w,x)L2(T-Yw,x - y)ei1r(e/h)(x+-Y+ 1by ) , 

llRn 

L*(w, x) = L(T-Xw, _x)ei27r(e/h)(x+lbL) . 

If we define on the crossed product C(il) ~T' £+ EB £0 (where T' is the re­
striction of T to £+ EB £0), a group of *-automorphisms by f3xlI(g)(W,X') = 

g(T'-X Il w, x' )ei7r(e/h)(x'lbx") for x' E £+ EB £0, x" E £_, it is then tedious but 
elementary to check that (C( il) ~ T' £+ EB £0) ~,8 L is isomorphic to A'. 0 

This result shows that there is certainly a difference in the treatment of 
odd or even dimensions. In the odd case, we associate to the projection X::;'E(H) 
an invertible matrix valued map on il, whereas in the even case, one has to find 
a fiber bundle over il, or equivalently a projection valued map on il. As we will 
see this problem is not yet solved. A solution has been found by R. Johnson in 
1D for Schrodinger operators, and he has recently found an important step to 
treat the odd dimensional case. 

However, there is another general result by A. Connes which permits to 
compute the group T*(Ko(C(il) ~T ]Rn)) in many relevant situations. Let us 
assume that il is a smooth manifold, and that the action of ]R n is smooth 
namely that Ta is a diffeomorphism for a E ]Rn. Therefore, one gets smooth 
vector fields X 1 ,X2 ,··· ,Xn on il formally defined by 

(6.1.2) 

Now a smooth differential form Tf of degree n on il, will give a volume element 
on each n-dimensional subspace of the tangent space Twil at w E il. Evaluating 
it on the subspace tangent to the orbits of]Rn gives rise to the smooth function 
(TfIX1 /\ X 2 /\ •.• /\ Xn) on il. The averaged value of this function 
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(6.1.3) 

defines a de Rham current of degree n called the 'Ruelle-Sullivan current' of 
the smooth dynamical system (!l, T, P). Its main properties are the following: 

(i) C is closed namely (CldB) = 0 for any (n -I)-form B 
(ii) C is positive namely for any n-form ry positive along the orbits of 

JRn, (Clry) ;::: 0 (ry is positive along the orbits of JRn whenever (ryIXl /\ X 2 /\ ••• /\ 

Xn) ;::: 0). 
One can show [C082] that any such current is automatically of the form 

given by Eq. (6.1.3). Since it is closed, it defines a class [C] in the de Rham 
homology group Hn(!l, JR), and therefore, its evaluation (Clry) on a closed form 
ry can also be written in terms of the duality between the homology and the 
cohomology as ([C]I[ry]) where [ry] is the cohomology class of ry. Recall that 
a closed n-form ry has integer coefficients whenever its evaluation on any n­

cycle is an integer. The set of such forms defines a discrete countable subgroup 
Hn(!l,z) of the n-th cohomology group. 

The next theorem by A. Connes is the main result concerning the gap 
labelling in the continuous case [C082]: 

Theorem 19. If JR n acts freely on !l by means of diffeomorphisms, the countable 
subgroup 7*(Ko(C(!l) >4T JRn)) of JR coincides with the group ([C]IHn(!l,Z)) 
obtained by evaluating the Ruelle-Sullivan current C on the n-th cohomology 
group with integer coefficients. 

In practice, it will require the calculation of a set of closed n-forms with 
integer coefficients generating Hn(!l, Z). The evaluation of C on it is then purely 
computational. 

Let us now relate the Proposition 6.1.1 to Theorem 19 by showing how the 
trace acts on Ki+n(C(!l)) through the isomorphism with Ko(C(!l) >4T JRn). In 
the case n = 1, Ko(C(!l) >4T JR) is isomorphic to Kl(C(!l)). A typical element of 
the latter may be generated by a smooth map wE !l-+ U(w) E GLN(C). Then 
we get a closed I-form by considering ryU = (I/2i1r)Tr(U- l dU). It represents 
the differential of the logarithm of Det(U) (up to the normalization factor). It 
is well known that the variation of LogDet(U) on any closed path in !l is an 
integer multiple of 2i7r, which implies that ry has integer coefficients. Actually 
any element in Hl (!l, Z) can be obtained in this way and therefore it is enough 
to consider numbers of the form (ClrlU). It is simple to check that if U is 
homotopic to U', ryU and ryU' are also homotopic, and therefore they admit 
the same equivalence class in Hl (!l, Z). Thus U -+ ryU defines a map ry* from 
Kl (C(!l)) into Hl (!l, Z) Moreover, it is elementary to check that 'r/UV = ryu+ryV, 
showing that ry* is actually a group homomorphism. Using Connes's Theorem 
19 and Birkhoff's ergodic theorem, all possible gap labels are given by numbers 
(where Uw(a) = U(T-aw)) 
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(6.1.4) 

([C]lrh[U]) = 1 P(dw)((1/2i1r)Tr(U-1 dU)IX) = 

j+L 
= lim (1/2i1r)(1/2L) daTr(Uw(a)-ldUw(a)/da) , 

L-+oo -L 

which is nothing but the average of the variation of the phase of Det(U) along 
P-almost every orbit. We will see later on how to associate canonically to each 
gap of aID Schrodinger equation a map wE Q -t U(w) E C\{O}. 

We can generalize this construction to the odd dimensional case by con­
sidering the n-form 17i;') = en Tr((U-1du)n) instead, where en is a suitable 

normalization factor insuring that 17i;') has integer coefficients. 
If now n = 2, a typical element of Ko(C(Q)) is given by a smooth map 

wE Q -t pew) E MN(C) such that P(w)2 = pew). Such a map defines a fiber 
bundle over Q by taking the image of the projection P( w) as the fiber above w. 
A closed differential 2-form is then given by the trace of the curvature of this 
bundle, namely the second Chern class ()p = (1/2i1r)Tr(PdPdP). That ()p has 
integer coefficients is a classical result about Chern classes. The map P -t ()p 

defines also a group homomorphism (). between Ko(C(Q)) and H2(Q,Z). It is 
surjective also (but not injective!), so that gap labels are provided by numbers 
([Cll().[P]) for all possible pIS. Remark that using again Birkhoff's ergodic 
theorem and setting Pw(a) = p(T-aw ), 

(6.1.5) 

([C]I().[Pl) = lim (1/2i1r)(1/2L) 1. daTr(Pw[8Pw/8al, 8Pw/ 8a2]) , 
L-+oo [-L,L] 

which is the averaged Chern class of the bundle over Q defined by P along 
P-almost every orbit. The main problem is that nobody yet has been able 
to associate explicitly such a bundle to a given spectral gap of the original 
Hamiltonian H. 

The generalization for n = 2p consists in replacing ()p by the higher Chern 
classes, namely ()<j:) = en Tr(P(dPdP)n/2) where en is a suitable normalization 
constant to make sure that we have an n-form with integer coefficients. 

Let us finish by remarking that formulae (6.1.4) and (6.1.5) do not require 
the smoothness of Q. We conjecture that they are still true whenever Q is a 
compact space, owing to the fact that it is always possible to regularize any 
continuous function over Q along the orbits of ]R n by means of a convolution 
with a smooth function on ]Rn. 

6.2 Gap Labelling Theorems for Quasiperiodic Hamiltonians on ]R n 

Thanks to Theorem 19, we are able to compute possible gap labels in full 
generality, at least if the disorder space Q is a manifold on which ]R n acts freely 
by diffeomorphisms. By a free action, we mean that if there are w E Q, a, b E 
]Rn such that Taw = Tbw then a = b. 
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Our first important result concerns the quasi periodic potentials. Recall 
that V is a quasi periodic function on IR n whenever there exists v > n, and a 
continuous function V on IR v periodic of period 1 in each variable, such that if 
[B047] 

(6.2.1) 
j j 

then Vw=o = V. Moreover the rectangular v X n matrix a = ((a Ilj )) is called 
the 'frequency matrix'. It is 'irrational' if the subspace L1a = {ax; x E IRn} 
intersects the lattice ZV at {O} only. The hull of such a function is then the 
torus fl = ']['V and IR n acts on it through the translation TXw = w + ax. This 
action is always smooth (it is actually analytic), and it is free if and only if a 
is irrational. 

There is a unique T-invariant ergodic probability measure on ']['v namely 
the Lebesgue measure P(dw) = dVw. The action of IR n is defined by the n 
constant vector fields Xi = (allj )IlE[l,vl. The calculation ofthe n-th cohomology 
group of ']['V is actually quite easy. The generators are the n-forms dWi(l) /\ ... /\ 

dWi(n) where 1 -::; i(l) < i(2) < ... < i(n) -::; v. By definition, they have integer 
coefficients so that Hn(']['v,Z) ::::: ZN with N = v!/(v - n)!n!. Therefore we 
immediately get [BL85] 

Proposition 6.2.1. Let H be a pseudo-differential operator on IR n bounded from 
below with quasiperiodic coefficients, the frequency matrix a of which being 
irrational. Then its IDS on spectral gaps takes values in the dense subgroup 
2:,8 n,8det(,8) where the sum runs over the set of square submatrices ,8 of max­
imal rank of a. 

6.3 Johnson's Approach for Schrodinger Operators 

Let us consider now the one-dimensional Schrodinger operator acting on L2(IR) 
by 

(6.3.1) 

where fl is a compact metrizable space, w E fl, T is a group action of IR by 
homeomorphisms and v is a continuous real function on fl. This equation can 
be written as a first order differential system: 

(6.3.2) 

with 

(6.3.3) 

dtJr/dx = M(T-Xw)tJr(x) , 

[ 1f;(x)] 
tJr( x) = T/lJi) , M(w) = [-VB: v(w) 

-IE 
VB] o ' 
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The full spectrum of H is the union sp(H) = UwEnSp(Hw). Remark that 
if wE Q has a dense orbit, then sp(H) = Sp(Hw). We will also denote by P a 
T-invariant ergodic probability measure on Q. 

Proposition 6.3.1. If E belongs to a spectral gap of the operator Hw = -d} / dx 2 + 
v(T-Xw) defined by Eq. (6.3.1), up to normalization, there is a unique real so­
lution tli+ (resp. tli_) of Eq. (6.3.2) converging to zero at +00 (resp. -00). This 
solution belongs to C2(JR), depends continuously on wE Q and decays exponen­
tially fast at infinity. Moreover these two solutions give linearly independent 
vectors of JR2 at every x E JR. 

Sketch of a proof. Uniqueness: given two solutions tlil and tli2 of (6.3.2) their 
Wronskian is constant for M is traceless. Thus if they both converge to zero 
at +00 their Wronskian vanishes identically and they must be equal up to a 
constant. 

Existence: let us consider the Green function GE(W; x, y) defined by 

(6.3.4) 

where 8x is the Dirac measure at x. It is easy to check that U x = (1 + p2)-1/28x 

belongs to L2(JR) if p = -id/dx. Then U x is Holder continuous of exponent 
a < 1/2 and bounded with respect to x. Moreover, Eo ::; -(1 + Ilvll) => 
Hw - Eo 2: 1 + p2. Using the resolvent equation, it follows that (1 +p2)1/2(Hw_ 
z)-I(l + p2)1/2 is a family of bounded operators, strongly continuous with 
respect to w E il, and norm-analytic with respect to z in the resolvent set of 
Hw. Thus Eq. (6.3.4) defines for every R > 0, a bounded continuous function 
of the variables (E,w, x, y) E C\sp(H) x Q x JR2, analytic in E, continuous in 
w, Holder continuous of exponent a < 1/2 in (x, V). 

On the other hand, in the sense of distributions, one gets 

(6.3.5) (EP /ax2 + v(T-Xw) - E) GE(W; x, y) = 8(x - y) . 

In particular, if x> xo, the map 'IjJ: x E JR --t GE(W;X,Xo) is a solution of 
(6.3.1), which, by uniqueness, can be continued in a unique way as a solution 
of (6.3.1) on the full line. Standard results on ODE's show that this solution is 
automatically in C2 (JR). 

To show that 'IjJ decays exponentially fast at +00, let W(a) be the unitary 
operator on L2(JR) of multiplication by eiax . Then Hw(a) = W(a)HwW(a)* = 
H w + 2ap + a2 and 

(6.3.6) 

Since p is Hw-bounded, it follows that Hw(a) is analytic with respect to a in the 
norm-resolvent sense. In particular, if E ~ Sp(Hw) there is PE > 0 such that if 
a E C and lal ::; PE, one has 11(1+p2)1/2(Hw(a)-E)-1(1+p2)1/211 ::; CE < 00. 
Thus, using (6.3.6) we get 
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(6.3.7) 

Hence 1/J is exponentially decaying at +00 and defines the solution !Ii+ of the 
proposition. A similar argument holds for !Ii _. D 

Let us now consider the trivial bundle [0 = D X lR2 . Using the previous 
proposition, one can find for each wED a vector <p±(w), unique up to a nor­
malization factor, such that the unique solution of (6.3.2) with initial condition 
<p±(w) at x = 0, decays exponentially fast at ±oo. Moreover, we know that 
these vectors vary continuously with respect to w, and are linearly indepen­
dent. This gives a splitting [0 = [+ EB [_ into the Whitney sum of two line 
bundles. Denoting by <p±(w, x) the solution of (6.3.2) with initial condition 
<p±(w) at x = 0, we remark that <P±(T-aw,x - a) satisfies also the equation 
(6.3.2) and also converges to zero at ±oo. By the uniqueness theorem, it fol­
lows that <p±(w, x) E [+(T-Xw). On the other hand, as x varies, <p±(w, x) never 
vanishes otherwise it would be identically zero, and therefore it rotates around 
the origin in lR 2. Let us parametrize <p±(w, x) by means of the angle 8±(T-Xw) 
with the first axis. If x varies between -L and +L, the total variation of this 

angle can be written as LlL8± = J~f d/dx(8±(T-X(w)) and LlL8±/rr differs 
from the number of zeroes of 1/J± in the interval [-L, +L] by at most 2. Sturm­
Liouville's theory (see Section 1.5) shows that this number of zeroes is equal 
to the number of eigenvalues smaller than E of the Hamiltonian HL given 
by the restriction of Hw to [-L,+L] with suitable boundary conditions. Thus 
as L -+ 00, LlL8±/2L7r converges P-almost surely to the IDS N(E). Using 
Birkhoff's ergodic theorem again, one gets 

(6.3.8) N(E) = 1/7r l dP(w)d/dx(8±(T-Xw))lx=0 . 

If D were a manifold, and if the action of lR were smooth, denoting by X the 
vector field defined by the flow, we could write 

(6.3.9) 

Moreover if we identify lR2 with the complex plane C, d8± is homologous to 
_i<p±ld<p±. Adopting these notations even if D is not a manifold, we get for 
the value of the IDS on the previous gap, a Connes formula with an explicit 
I-form, namely the rotation angle of a solution vanishing at infinity [JM82, 
J083, J086, BE86]: 

Theorem 20. If Hw = -d2/dx2 + v(T-Xw) acts on L2(lR), where v E C(D), 
and (D, JR, P) is a topological dynamical system with P an invariant ergodic 
probability, the IDS on gaps is given by 
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where IP± = !li± + i!li,± / VE and !li± is the solution of the Schriidinger equation 
Hw"p = E"p vanishing at ±oo. 

Remark. We get therefore a result compatible with the form found in Section 
6.1. For indeed here the maps w E fl -+ 1P±(w) E C have inverses and they 
define elements in GL(C(fl)). 

The previous construction has been extended recently by R. Johnson 
[J090] to the case of a Schrodinger operator ofthe type given by Eq. (6.3.1) on 
JR n, for n odd. Let D be a bounded open domain with Coo boundary aD given 
as the zero set of a Coo function from JRn into JR, having no critical point on aD. 
Let V(x) be a bounded continuous function on the closure of D. We consider 
the Schrodinger operator HD = -..1 + V with Dirichlet boundary conditions 
on aD, and we assume that the potential V is such that HD has a simple 
spectrum given by the eigenvalues E1 < E2 < ... < Ei < .... If ("pi)i>l are 
the corresponding eigenfunctions, there is y E D such that "pi(Y) f. 0 for-every 
i 2: 1. Without loss of generality, one can choose the origin of the coordinates 
in such a way that Y = O. 

As in (6.3.4) let GD(E;x,y) be the Green function of HD at the energy 
E, and we set g(x,E) = GD(E;x,O). Let ( be the map from D x JR to the 
projective space JRlP'(n) (the manifold of lines in JRnH) given by 

(6.3.10) ((x, E) = [g(x, E), alg(X, E), .. ·, ang(x, E)] , 

where ai = a/aXi, and [u] denotes the line through the vector u. This map is 
well defined at every 'non singular point', namely points where the vector in 
brackets does not vanish. Whenever g does not vanish, this line is nothing but 
the line [1, V'xLog(g)]. 

Since n is odd, the space JRlP'(n) is an orient able manifold. So let 'vol' be 
its volume form normalized in such a way that 

(6.3.11) [ vol = fln /2 , 
Ill?Jl>(n) 

fln = volume of the n-sphere sn . 

The 'oscillation' of g is the integral of the pull-back evol, which can be viewed 
as a rigorous definition of the differential of Log(g). More precisely, in order to 
avoid the singular points, we fix the interval I = [Eo, E] where Eo < E .Let L 
be the union of the hypersurfaces aD x I and D x {E}, and we set: 

(6.3.12) O(D;E) = t evol- L Ind(sj), 
L jE[l,M] 

where Sl, •.. , S M are the singular points of g (see [J090] for a precise definition 
of them), and Ind( s) is the index of the lift ofthe map ( to sn at the point s. 
The main result of Johnson is the following: 
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Proposition 6.3.2. With the previous notation, if n is odd, and if E is not an 
eigenvalue of H D, the oscillation number satisfies the formula: 

(6.3.13) OeD; E) = -ilnND(E) 

where ND(E) is the number of eigenvalues of HD in the interval [Eo,E]. 

Let now assume that il is a topological compact metrizable space, endowed 
with an action of JR n by a group of homeomorphisms. P will denote an invariant 
ergodic probability measure on w. Let v be a continuous function on il, and 
for w E il let V", be the potential on JRn given by V",(x) = v(T-Xw ). Let 
(Dm)m~l be a F¢lner sequence (see Section 4.1) of bounded open domains in 
JRn satisfying the same conditions as D above, and covering JRn. Then the mean 
oscillation number is defined as 

(6.3.14) O~(E) = lim IDnl-10(Dn ; E) , 
n--+oo 

and by using the Proposition 6.3.2 it follows that the IDS is given by 

(6.3.15) 

We will conclude this Section by addressing the following question: 

Problem. Prove that the mean oscillation number can be written in the form 
(CI7]), where C is the Ruelle-Sullivan current and 7] a closed n-form related to 
(*vol above. 

6.4 Strong Morita Equivalence and Tight-Binding Approximation 

Our last Section will concern the relation between Hamiltonians on the contin­
uum and on a discrete lattice. In ID this is related to the so-called 'Poincare' 
section, and its converse the so-called 'suspension' construction. Let (il, T, JR) 
be a dynamical system, namely il is a compact metrizable space endowed with 
an action of JR by a group of homeomorphisms (TS)8ER. By a 'smooth transver­
sal' (or a Poincare section), we mean a compact subspace N such that for every 
w E il, the orbit of w meets N and the set .c(w) = {s E JR; T-Sw E N} is dis­
crete, non empty and depends continuously on w E il. We then define on N 
the 'first return map' cp as follows: if ( E N, let t(O be the lowest positive real 
number t such that Tt ( EN, and we set cp( 0 = T t«) (. By hypothesis on N 
the map ( E N -+ t( 0 E (0,00) is continuous (in particular there is L > ° 
such that t( 0 ~ L for all ( EN). Then (N, cp) gives a Z-action on N. 

Conversely, let (N, cp) be a Z-action on a compact metrizable space N, and 
let ( E N -+ t( 0 E (0,00) be a continuous function. Let us consider on the 
space N x JR, the map ~ : ((, t) -+ (cp( 0, t - t( 0). The suspension of N is then 
the space SN = N x JR/~, namely the compact topological space obtained by 
identifying ((, t) with ~((, t). We then consider the flow T S : ((, t) -+ ((, t + s) 
on N x R Since T and ~ commute, it follows that T defines an JR-action 
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on SN. Then N can be identified with the transversal N x {OJ in SN, and 
one can easily check that the first return map coincides with 1>. If now N is 
a smooth transversal of the dynamical system (il, T, JR) the map h : ((, t) E 
N x JR -+ Tt( E il defines a homeomorphism of SN onto il which intertwins 
the corresponding JR-actions. 

The main question is to find the relation between the C* -algebras B = 
C(il) >4T JR and C = C(N) >4q, Z. These two algebras are actually 'strongly 
Morita equivalent' [RI82, AMS81]. In particular they are 'stably isomorphic' 
namely B 18) K and C 18) K are isomorphic, implying that they have the same K­
groups. In this Section we wish to develop this theory to apply to our problem. 

More generally, let (il, T, JR n) be a dynamical system in n-dimensions. A 
smooth transversal is defined as before where JRn replaces JR. Then we get 
immediately: 

Lemma 6.4.1. If N is a smooth transversal of (il, T, JRn) there is R > 0 such 
that if w E il, s, t E £(w), then Is - tl 2: R. Moreover, s E £(w) if and only if 
(s - t) E C(T-tw). 

Let now rN be the set of pairs ((, s) where ( E Nand s E £(0. Since C( 0 
is discrete, rN is endowed with an obvious topology which makes it a locally 
compact space. We define by Co the space Ce(rN) of continuous functions on 
rN with compact support endowed with the structure of * -algebra given by: 

(6.4.1) CIC2((,S) = L CI((,t)C2(T-t (,s-t) , 
tEC( () 

c*((, t) = c(T-t(, -t)* . 

For ( E N, we then denote by 11"( the *-representation of Co on 12(£(C)) given 
by: 

(6.4.2) 1I"((c)1jJ(s) = L c(T- 8 (, t - s)1jJ(t) . 
tEC(() 

Then a C*-norm is given by 

(6.4.3) 

We will denote by C C*(N) the completion of Co under this norm. We 
remark that Co has a unit namely 1((, s) = 158 ,0. We will denote by Bo the 
dense subalgebra CeCil x JRn) of B = C(il) XT JRn. 

Remark. If ( EN, the set C( 0 is a deformed lattice in JR n. The C* -algebra 
C*(N) is then exactly the algebra containing all Hamiltonians on this lattice. 
It is even possible to define properly the notion of covariance [C079, C082, 
BE86]. In [BE86], a connection between the Schrodinger operator in JRn with a 
potential given by a function on il, and operators on the lattices C( 0 has been 
described justifying the so-called 'tight-binding' representation in Solid State 
Physics. 
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Now let Xo be the space Cc(N x ]Rn). We define on it a structure of Bo -Co-
bimodule as follows (where b E Bo,c E Co,k E Xo): 

(6.4.4) 

kc( (, s) = L k(T- t(, S - t)c(T-t(, -t) , 
tEC«) 

bk((, s) = [ dntb(T 8 (, t)k((, s - t) . 
JlRn 

Moreover, we define a 'hermitian' structure [RI82] by means of scalar products 
with values in the algebras Bo and Co, namely if k, k' E Xo: 

(6.4.5) 

(klk')8(W,S) = L k(T-tw,t)k'(T-tw,t - s)* , 
tEC(w) 

(klk')c((,s) = [ dntk((,t)*k'(T-t(,s - t). 
JlRn 

then we get the following properties which will be left to the reader [RI82]: 

Lemma 6.4.2. The hermitian bimodule structure defined by (6.4.4) and (6.4.5) 
satisfies the following identities (here b,b' E Bo,c,c' E Co,k,k',k" E Xo) 

(i) bk E Xo, kc E Xo· 
(ii) b(b'k) = (bb')k, (kc)c' = k(cc'), (bk)c = b(kc) 
(iii) (klk')8 E Bo, (klk')e E Co. 
(iv) (bklk')8 = b(klk')8 (klk'c)e = (klk')e c. 
(v) (klk')i; = (k'lk)8, (klk')c = (k'lk)e. 
(vi) (klk)8 ~ 0 and (klk)8 = 0 =} k = 0 (same property with C). 
(vii) (kclk')8 = (klk'c*)8 (klbk')e = (b*klk')e 
(viii) k(k'lk")e = (klk')8k". 
(ix) (kclkc)8 S; IlcIl2(klk)8, (bklbk)e S; Il bI1 2(klk)c 
(x) (XOIXO)8 is dense in Bo, (xolxo)e = Co. 
(xi) There is u E Xo such that Ie = (ulu)c. 

We simply want to prove (xi) for it will be useful in practice. Let 9 be a 
continuous function on ]R n with compact support contained in the open ball of 
radius R/2, and such that JlRn dntlg(tW = 1. Then u((,s) == g(s) satisfies (xi), 
in particular u is not unique. Then a norm is defined on xo by setting: 

(6.4.6) Ilkll = II(klk)811 1 / 2 = II(klk)eI1 1/ 2 . 

We will denote by X the C - B-bimodule obtained by completing Xo under this 
norm. It also satisfies all the properties of the Lemma 6.4.2. 

Now let P be an invariant ergodic probability measure on D. Then it 
induces on N a probability measure f.l with the property that whenever s : 
( E N -+ s( 0 E ]R n is a continuous function such that s( 0 E £(0, then f.l is 
invariant by the map ¢s(() = ysW(. Moreover any Borelian set Fin N which 
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is <ps-invariant for every s satisfies f.-l(F) = 0 or 1. Then we get a trace on each 
of the algebras Eo and Co via: 

(6.4.7) Tp(b) = 1 P(dw)b(w, 0) , 

We then get easily: 

Lemma 6.4.3. The traces Tp and TJl satisfy Tp((klk')s) = TJl((k'lk)e), for every 
k,k'inXo. 

Now let c E Co, and u E xo such that Ie = (ulu)e. Then we set p(c) = 
(uclu)s. It is easy to check that p(c) E Eo, and that p is a *-endomorphism, 
namely it satisfies p(cc') = p(c)p(c') and p(c)* = p(c*). Thus p extends as a 
*-endomorphism from C into E. Moreover, p(Ie) is a projection in Eo, and for 
every projection P in Co, pep) is a projection in Eo. 

Conversely, given any projection Q in 80, using the property (x), we can 
find two finite families 1£ = (kih<i<I and 1£' = (kDl<i<I in XO such that 
IIQ - L:iE[l,Il(k;jk;)sll :::; E < 1/2~ It is actually possibl~ to choose k' = 1£ 
if we accept to replace Xo by x. Then by an argument similar to the one 
used in the proof of Lemma 4.2.2, one gets a projection Q' ~ Q in the form 
Q' = L:;=l (k;jk i ) S for some 1£ E Xl. If we now set P' = (( (k;jkj)e ))i,j, we get 
a projection in the matrix algebra MI(C), 

More generally through the replacement of 80 by ML(80 ), of Co by 
MN(CO), and of Xo by JvhxN(XO), we get in an obvious way a ML(80 )-MN(CO) 
hermitian bimodule, and any projection in ML(80 ) will give rise in the same 
manner, to a projection in MNI(C), for some N'. This is the basic argument 
leading to [BR77, RI82J: 

Theorem 21. (i) The C* -algebras 8 = C( D) >4 T IR nand C = C*( N) are stably 
isomorphic, namely E ® K and C ® K are isomorphic (not in a canonical way). 

(ii) The Ko-groups of 8 and C are isomorphic. 
(iii) Their images by the traces coincide namely Tp(Ko(8)) = TJl(Ko(C)). 

Remark. The property (iii) is a direct consequence of the Lemma 6.4.3. 

As a consequence of Theorem 21, the computation of the gap labelling for 
a discrete system is equivalent to that of its suspension. This gives immediately 
some results in practice. First of all let us consider a Hamiltonian on zn with 
quasiperiodic coefficients. It means that it has the form: 

(6.4.8) Hf.'l/;(m) = L h(~ - am, m' - m)1jJ(m') , 
m'Ezn 

where h E C('Jl'V) >4 <> Z n, and a is a v X n matrix with rationally independent real 
column vectors, acting on the n-dimensional torus 'Jl'v by translation namely 
Tm~ = ~ - am. 
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The suspension of the dynamical system ('1['",a,zn) is actually given by 
('1['"+n,,B,lR.n), where the matrix ,B is the (v + n) x n real matrix given by 
,B = [a, In] obtained by gluing together the v x n matrix a and the n x n 
identity matrix In. Using the Proposition 6.2.1, we get the following result 
[BE81, EL82a, DS83, BL85]. 

Proposition 6.4.4. Let H be as in Eq. (6.4.8). Then the IDS on spectral gaps 
takes values in the Z-module in lR. generated by 1 and all the minors of the 
matrix a. 

In particular if n = 1, this module is generated by 1 and the components 
of the line a. 

Another consequence was given by A. Connes, and concerns the absence 
of gaps in the spectrum. 

Proposition 6.4.5. Let Q be a manifold such that the first cohomology group 
HI(Q,Z) = O. If </J is a minimal diffeomorphism, the algebra C(Q) Aq, Z is 
simple, has a unit and no non trivial projection. 

In particular, if (HW)WEJI is a covariant family of self adjoint bounded 
operators on l2(Z) of the form: 

Hw1f;(m) = L h(rm(w),m' - m)1f;(m') , 
m'EZ 

with h E C(Q) Aq, Z then for every wE Q, the spectrum of Hw is connected. 

Sketch of the proof [C08I]. First of all, the minimality of <P implies the simplicity 
of C(Q) Xlq, Z [SA79]. 

Let p, be a </J-invariant probability measure on Q. Let SQ be the suspension 
corresponding to the constant first return time t(w) = 1, then the measure 
p = p,( dw )dt is invariant and ergodic on SQ. Using Theorem 21, the image of 
the Ko-group of C( Q) A q, Z by the trace T Jl is identical with the image of the Ko­
group of its suspension C(SQ) AT lR. by the induced trace Tp. By Theorem 19, 
this last set is given by ([C]IHI(SQ, Z)), where C is the Ruelle-Sullivan current 
induced by P. The flow on S Q is then generated by the vector field a/at. Since 
Q is connected ( </J is minimal), and HI (Q, Z) = 0, it follows that HI (S Q, Z) = Z 
with the I-form dt as generator. Then one clearly has ([C]I[dt]) = 1, for P is 
a probability, and we get Tp(Ko(C(SQ) AT JR)) = TJl(Ko(C(Q) Aq, Z)) = Z. 
Now let P be a projection in C(Q) Aq, Z, it follows that its trace is an integer, 
and therefore it must be 0 or 1, because 0 ::; P ::; 1=}0 ::; T Jl (P) ::; 1. It 
is elementary to check that since </J is minimal, the support of any invariant 
measure on Q is Q itself, implying that the trace T Jl is faithful, and therefore 
P = 0 or 1. 
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In particular, since </> is minimal, and since THwT-l = Hq,(w) , the spectrum 
of Hw is independent of w E fl. If it had a gap G = (a, b) then the eigenpro­
jection X(-oo,Ej(Hw ), with E E G, would define a non trivial projection (i.e. 
different from 0 or 1) in the C*-algebra C(fl) >4q, Z leading to a contradiction. 
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Chapter 13 

Circle Maps: Irrationally Winding 

by Predrag Cvitanovic 

1. Introduction 

In these lectures we shall discuss circle maps as an example of a physically in­
teresting chaotic dynamical system with rich number-theoretic structure. Circle 
maps arise in physics in a variety of contexts. One setting is the classical H amil­
tonian mechanics; a typical island of stability in a Hamiltonian 2-d map is an 
infinite sequence of concentric KAM tori and chaotic regions. In the crudest 
approximation, the radius can here be treated as an external parameter fl, and 
the angular motion can be modelled by a map periodic in the angular variable 
(Shenker 1982; Shenker and Kadanoff 1982). In holomorphic dynamics circle 
maps arise from the winding of the complex phase factors as one moves around 
the Mandelbrot cacti (Cvitanovic and Myrheim 1983 and 1989). In the context 
of dissipative dynamical systems one of the most common and experimentally 
well explored routes to chaos is the two-frequency mode-locking route. Interac­
tion of pairs of frequencies is of deep theoretical interest due to the generality 
of this phenomenon; as the energy input into a dissipative dynamical system 
(for example, a Couette flow) is increased, typically first one and then two of 
intrinsic modes of the system are excited. After two Hopf bifurcations (a fixed 
point with inward spiraling stability has become unstable and outward spirals 
to a limit cycle) a system lives on a two-torus. Such systems tend to mode-lock: 
the system adjusts its internal frequencies slightly so that they fall in step and 
minimize the internal dissipation. In such case the ratio of the two frequencies is 
a rational number. An irrational frequency ratio corresponds to a quasiperiodic 
motion - a curve that never quite repeats itself. If the mode-locked states over­
lap, chaos sets in. For a nice discussion of physical applications of circle maps, 
see the references (Jensen et al. 1983 and 1984; Bak et al. 1985). Typical ex­
amples are dynamical systems such as the Duffing oscillator and models of the 
Josephson junction, which possess a natural frequency WI and are in addition 
driven by an external frequency W2. Periodicity is in this case imposed by the 
driving frequency, and the dissipation confines the system to a low dimensional 
attractor; as the ratio WdW2 is varied, the system sweeps through infinitely 
many mode-locked states. The likelihood that a mode-locking occurs depends 
on the strength of the coupling of the internal and the external frequencies. 
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By losing all of the 'island-within-island' structure of real systems, circle 
map models skirt the problems of determining the symbolic dynamics for a re­
alistic Hamiltonian system, but they do retain some of the essential features of 
such systems, such as the golden mean renormalization (Greene 1979; Shenker 
and Kadanoff 1982) and non-hyperbolicity in form of sequences of cycles accu­
mulating toward the borders of stability. In particular, in such systems there 
are orbits that stay 'glued' arbitrarily close to stable regions for arbitrarily 
long times. As this is a generic phenomenon in physically interesting dynami­
cal systems, such as the Hamiltonian systems with coexisting elliptic islands of 
stability and hyperbolic homoclinic webs, development of good computational 
techniques is here of utmost practical importance. 

We shall start by briefly summarizing the results of the 'local' renormaliza­
tion theory for transitions from quasiperiodicity to chaos. In experimental tests 
of this theory one adjusts the external frequency to make the frequency ratio as 
far as possible from being mode-locked. This is most readily attained by tun­
ing the ratio to the 'golden mean' (V5 - 1)/2. The choice of the golden mean 
is dictated by number theory: the golden mean is the irrational number for 
which it is hardest to give good rational approximants. As experimental mea­
surements have limited accuracy, physicists usually do not expect that such 
number-theoretic subtleties as how irrational a number is should be of any 
physical interest. However, in the dynamical systems theory to chaos the start­
ing point is the enumeration of asymptotic motions of a dynamical system, and 
through this enumeration number theory enters and comes to play a central 
role. 

Number theory comes in full strength in the 'global' theory of circle maps, 
the study of universal properties of the entire irrational winding set - the main 
topic of these lectures. We shall concentrate here on the example of a global 
property of the irrational winding set discovered by Jensen, Bak, and Bohr 
(Jensen et al. 1983 and 1984; Bak et al. 1985): the set of irrational wind­
ings for critical circle maps with cubic inflection has the Hausdorff dimension 
DH = 0.870 ... , and the numerical work indicates that this dimension is uni­
versal. The universality (or even existence) of this dimension has not yet been 
rigorously established. We shall offer here a rather pretty explanation (Cvi­
tanovic, Gunaratne and Vinson 1990) of this universality in form of the explicit 
formula (39) which expresses this Hausdorff dimension as an average over the 
Shenker universal scaling numbers (Shenker 1982; Feigenbaum, Kadanoff and 
Shenker 1982; Ostlund et al. 1983). The renormalization theory of critical cir­
cle maps demands at present rather tedious numerical computations, and our 
intuition is much facilitated by approximating circle maps by number-theoretic 
models. The model that we shall use here to illustrate the basic concepts might 
at first glance appear trivial, but we find it very instructive, as much that 
is obscured for the critical maps by numerical work is here readily number­
theoretically accessible. Indicative of the depth of mathematics lurking behind 
physicists' conjectures is the fact that the properties that one would like to 
establish about the renormalization theory of critical circle maps might turn 
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out to be related to number-theoretic abysses such as the Riemann conjecture, 
already in the context of the 'trivial' models. 

The literature on circle maps is overwhelming, ranging from pristine 
Bourbakese (Herman 1979; Yoccoz 1984) to palpitating chicken hearts (Glass 
et al. 1983), and attempting a comprehensive survey would be a hopeless un­
dertaking. The choice of topics covered here is of necessity only a fragment of 
what is known about the diffeomorphisms of the circle. 

2. Mode Locking 

The Poincare section of a dynamical system evolving on a two-torus is topo­
logically a circle. A convenient way to study such systems is to neglect the 
radial variation of the Poincare section, and model the angular variable by a 
map of a circle onto itself. Both quantitatively and qualitatively this behavior 
is often well described (Arnold 1961, 1965 and 1983) by I-dimensional circle 
maps x ~ x' = f(x), f(x + 1) = f(x) + 1 restricted to the circle, such as the 
sme map 

(1) X n +l = Xn + fl - 2~ sin(27rxn ) mod 1. 

f( x) is assumed to be continuous, have a continuous first derivative, and a 
continuous second derivative at the inflection point. For the generic, physically 
relevant case (the only one considered here) the inflection is cubic. Here k 
parametrizes the strength of the mode-mode interaction, and fl parametrizes 
the WdW2 frequency ratio. For k = 0, the map is a simple rotation (the shift 
map) 

(2) X n +l = Xn + Q mod 1, 

and fl is the winding number 

(3) W(k, fl) = lim xn/n . 
n--+oo 

If the map is monotonically increasing (k < 1 in (1)), it is called subcritical. For 
sub critical maps much of the asymptotic behavior is given by the trivial (shift 
map) scalings (Herman 1979; Yoccoz 1984). For invertible maps and rational 
winding numbers W = P/Q the asymptotic iterates of the map converge to a 
unique Q-cycle attractor 

fQ(Xi)=Xi+P, i=0,1,2,···,Q-l. 

For any rational winding number, there is a finite interval of parameter values 
for which the iterates of the circle map are attracted to the P/Q cycle. This 
interval is called the P/Q mode-locked (or stability) interval, and its width is 
given by 
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(4) L1 - Q-2/l p / Q _ nright _ n1eft 
P/Q - - Jtp/Q Jtp/Q 

Parametrizing mode lockings by the exponent f-l rather than the width L1 will 
be convenient for description of the distribution of the mode-locking widths, as 
the exponents f-l turn out to be of bounded variation. The stability of the PI Q 
cycle is defined as 

A p/Q = aaxQ = f'(xo)f'(xt}··. f'(xQ-d 
Xo 

For a stable cycle IAllies between 0 (the superstable value, the 'center' of the 
stability interval) and 1 (the fl~!~t, fl;f~ ends of the stability interval (4)). 
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Fig. I. The critical circle map (k = 1 in (1)) devil's staircase (Jensen et al. 1983 and 
1984; Bak et al. 1985): the winding number W as function of the parameter D. 

For the shift map, the stability intervals are shrunk to points. As fl is 
varied from 0 to 1, the iterates of a circle map either mode-lock, with the 
winding number given by a rational number PIQ E (0,1), or do not mode­
lock, in which case the winding number is irrational. A plot of the winding 
number W as a function of the shift parameter fl is a convenient visualization 
of the mode-locking structure of circle maps. It yields a monotonic 'devil's 
staircase' of fig. 1 whose self-similar structure we are to unravel. 

Circle maps with zero slope at the inflection point Xc 

f'(x c ) = O,f"(x c ) = 0 

(k = 1, Xc = 0 in (1)) are called critical: they delineate the borderline of chaos 
in this scenario. As the non-linearity parameter k increases, the mode-locked 
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intervals become wider, and for the critical circle maps (k = 1) they fill out the 
whole interval. For numerical evidence see the references (Jensen et al. 1983 and 
1984; Bak et al. 1985: Lanford 1985); a proof that the set of irrational windings 
is of zero measure is given by Swiatek (Swiatek 1988). A critical map has a 
superstable P/Q cycle for any rational P/Q, as the stability of any cycle that 
includes the inflection point equals zero. If the map is non-invertible (k > 1), 
it is called supercritical; the bifurcation structure of this regime is extremely 
rich and beyond the scope of these (and most other such) lectures. 

For physicists the interesting case is the critical case; the shift map is 'easy' 
number theory (Farey rationals, continued fractions) which one uses as a guide 
to organization of the non-trivial critical case. In particular, the problem of 
organizing sub critical mode lockings reduces to the problem of organizing ra­
tionals on the unit interval. The self-similar structure of the devil's staircase 
suggests a systematic way of separating the mode lockings into hierarchies of 
levels. The set of rationals P/Q clearly possesses rich number-theoretic struc­
ture, which we shall utilize here to formulate three different partitionings of 
rationals: 

1. Farey series 
2. Continued fractions of fixed length 
3. Farey tree levels 

3. Farey Series Partitioning 

Intuitively, the longer the cycle, the finer the tuning of the parameter Q re­
quired to attain it; given finite time and resolution, we expect to be able to 
resolve cycles up to some maximal length Q. This is the physical motivation for 
partitioning mode lockings into sets of cycle length up to Q (Artuso, Cvitanovic 
and Kenny 1989; Cvitanovic 1987a). In number theory such set of rationals is 
called a Farey series (Hardy and Wright 1938). 

(1) Definition. The Farey series :FQ of order Q is the monotonically increasing 
sequence of all irreducible rationals between 0 and 1 whose denominators do 
not exceed Q. Thus P;fQj belongs to :FQ if 0 < Pi ~ Qi ~ Q and (PiIQi) = 1. 

For example 

{ Ill 2 1 3 2 3 4 I} 
:F5 = 5'4'3' 5'2'5'3' 4'5' 1 

A Farey sequence can be generated by observing that if Pj-I/Qi-l and P;fQj 
are consecutive terms of :FQ, then 

PiQi-l - Pj- 1 Qi = l. 

The number of terms in the Farey series FQ is given by 
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(5) 
Q 

4i(Q) = L </>(n) 
3Q2 
-2 + O(QlnQ). 

7r 
n=l 

Here the Euler function ¢( Q) is the number of integers not exceeding and 
relatively prime to Q. For example, ¢(1) = 1, ¢(2) = 1, ¢(3) = 2, ... , ¢(12) = 
4, ¢(13) = 12, ... As ¢(Q) is a highly irregular function of Q, the asymptotic 
limits are not approached smoothly: incrementing Q by 1 increases 4i(Q) by 
anything from 2 to Q terms. We refer to this fact as the 'Euler noise'. 

The Euler noise poses a serious obstacle for numerical calculations with 
the Farey series partitioningsj it blocks smooth extrapolations to Q --+ 00 lim­
its from finite Q data. While this in practice renders inaccurate most Farey­
sequence partitioned averages, the finite Q Hausdorff dimension estimates ex­
hibit (for reasons that we do not understand) surprising numerical stability, 
and the Farey series partitioning actually yields the best numerical value of the 
Hausdorff dimension (30) of any methods used so farj for example (Artuso, Cvi­
tanovic and Kenny 1989j Cvitanovic 1987a), the sine map (1) estimate based 
on 240 :::; Q :::; 250 Farey series partitions yields DH = .87012 ± .00001. The 
quoted error refers to the variation of DH over this range of Qj as the compu­
tation is not asymptotic, such numerical stability can underestimate the actual 
error by a large factor. 

4. Continued Fraction Partitioning 

From a number-theorist's point of view, the continued fraction partition­
ing of the unit interval is the most venerable organization of rationals, pre­
ferred already by Gauss. The continued fraction partitioning is obtained by 
deleting successively mode-locked intervals (points in the case of the shift 
map) corresponding to continued fractions of increasing length. The first level 
is obtained by deleting .:1[1], .:1[2], ... ,.:1[ad' ... mode-lockingsj their comple­
ment are the covering intervals £1,£2, ... ,£au ... which contain all wind­
ings, rational and irrational, whose continued fraction expansion starts with 
[a1, ... J and is of length at least 2. The second level is obtained by deleting 
.:1[1,2], .:1[1,3], .:1[2,2], .:1[2,3],· .. , .:1[n,m], ... and so on, as illustrated in fig. 2 

(2) Definition. The n-th level continued fraction partition Sn = {a1a2··· an} is 
the monotonically increasing sequence of all rationals PdQ; between 0 and 1 
whose continued fraction expansion is of length n: 
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The object of interest, the set of the irrational winding numbers, is in 
this partitioning labelled by Soc> = {ala2a3"'}, ak E Z+, i. e., the set of 
winding numbers with infinite continued fraction expansions. The continued 
fraction labelling is particularly appealing in the present context because of 
the close connection of the Gauss shift to the renormalization transformation 
R, discussed below. The Gauss shift (see for instance Billingsley (Billingsley 
1965)) 

T( x) = ~ - [~] x # 0 

(6) 0 , x = 0 

([ .•. J denotes the integer part) acts as a shift on the continued fraction repre­
sentation of numbers on the unit interval 

(7) 

and maps 'daughter' intervals Rala2aa ... into the 'mother' interval Ra2aa ...• 

n 

o 

t3 t2 t, 
~ -- -- - -- +-;~"II--"" 1 1 1-1 ---------"""1 

£:.2 £:., 

2 t", t',2 
1------------------------1 1 11 ...... -11-11-++----1 

£:"2 

Fig. 2. Continued fraction partitioning of the irrational winding set (Artuso,Aureli 
and Cvitanovic 1990b). At level n=l all mode locking intervals Ll[a] with winding 
numbers 1/1, 1/2, 1/3, ... , 1/ a, ... are deleted, and the cover consists of the com­
plement intervals la. At level n=2 the mode locking intervals Ll[a,2], Ll[a,3], ..• are 
deleted from each cover la, and so on. 

However natural the continued fractions partitioning might seem to a num­
ber theorist, it is problematic for an experimentalist, as it requires measuring 
infinity of mode-lockings even at the first step ofthe partitioning. This problem 
can be overcome both numerically and experimentally by some understanding 



638 Chapter 13. Circle Maps: Irrationally Winding 

of the asymptotics of mode-Iockings with large continued fraction entries (Ar­
tuso et al. 1990b; Cvitanovic, Gunaratne and Vinson 1990). Alternatively, a 
finite partition can be generated by the partitioning scheme to be described 
next. 

5. Farey Tree Partitioning 

The Farey tree partitioning is a systematic bisection of rationals: it is based 
on the observation that roughly half ways between any two large stability in­
tervals (such as 1/2 and 1/3) in the devil's staircase of fig .. 1 there is the next 
largest stability interval (such as 2/5). The winding number of this interval is 
given by the Farey mediant (P + PI)/(Q + Q') of the parent mode-Iockings 
P/Q and P'/Q' (Hardy and Wright 1938). This kind of cycle 'gluing' is rather 
general and by no means restricted to circle maps; it can be attained whenever 
it is possible to arrange that the Qth iterate deviation caused by shifting a 
parameter from the correct value for the Q-cycle is exactly compensated by 
the Q'th iterate deviation from closing the Q'-cycle; in this way the two near 
cycles can be glued together into an exact cycle of length Q+Q' . The Farey 
tree is obtained by starting with the ends of the unit interval written as 0/1 
and 1/1, and then recursively bisecting intervals by means of Farey mediants. 
This kind of hierarchy of rationals is rather new, and, as far as we are aware, 
not previously studied by number theorists. It is appealing both from the ex­
perimental and from the the golden-mean renormalization (Feigenbaum 1987a) 
point of view, but it has a serious drawback of lumping together mode-locking 
intervals of wildly different sizes on the same level of the Farey tree. The Farey 
tree partitioning was introduced in the references (Williams and Browne 1947; 
MacKay 1982; Cvitanovic and Myrheim 1983 and 1989; Cvitanovic, Shraiman 
and Soderberg 1985) and its thermodynamics is discussed in details by Feigen­
baum. 

(3) Definition. The n-th Farey tree level Tn is the monotonically increasing 
sequence of those continued fractions [al, a2, ... ,ak] whose entries aj 2: 1, i = 

1,2, ... ,k - 1, ak 2: 2, add up to 2::=1 ai = n + 2. 

For example 

( 1 1 3 3) T2 = {[4], [2,2], [1, 1, 2], [1, 3]} = 4' 5' 5' 4 . 

The number of terms in Tn is 2n. Each rational in Tn- l has two 'daughters' in 
Tn, given by 

[ ... ,a] -- { [ ... ,a -1,2] , [ ... ,a + 1] } 

Iteration of this rule places all rationals on a binary tree, labelling each by 
a unique binary label (Cvitanovic, Shraiman and Soderberg 1985). The tran­
scription from the binary Farey labels to the continued fraction labels follows 
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from the mother-daughter relation above; each block 1···0 ('1' followed by 
a-I zeros) corresponds to entry ["', a,"'J in the continued fraction label. 
The Farey tree has a variety of interesting symmetries (such as 'flipping heads 
and tails' relations obtained by reversing the order of the continued-fraction 
entries) with as yet unexploited implications for the renormalization theory: 
some of these are discussed in reference (Cvitanovic, Shraiman and Soderberg 
1985). 

.L 

3 

, .. /.'.'~, 
z;r", 1+6 

, ", ,/ .. , 
3;T 2.1.. I.~ I. L. '\ /,., /\ jfil 

_1'_' _1_ I _1_ _1_ I I _'_1_ 

'\ 7 "'.~\~' t. "':\' /~ "~ t~\. 

4 

5 

Fig. 3. The Farey tree in the continued fraction representation (from Cvitanovic and 
Myrheim 1983 and 1989) 

(8) 

The smallest and the largest denominator in Tn are respectively given by 

1 
[n-2J = --2' n-

[ J Fn+2 
1,1, ... , 1,2 = z;;-- ex: p , 

L'n+I 

where the Fibonacci numbers Fn are defined by Fn+1 = Fn + Fn- I ; Fo = 
0, FI = 1, and p is the golden mean ratio 

(9) 
1 + y'5 

p = -2- = 1.61803 ... 

Note the enormous spread in the cycle lengths on the same level of the Farey 
tree: n :S Q :S pn. The cycles whose length grows only as a power of the Farey 
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tree level will cause strong non-hyperbolic effects in the evaluation of various 
averages. 

The Farey tree rationals can be generated by backward iterates of 1/2 by 
the Farey presentation function (Feigenbaum 1987a and 1988a): 

(10) 

lo(x) = x/(1 - x) 

hex) = (1 - x)/x 

a :S x < 1/2 

1/2 < x :S 1 . 

(the utility of the presentation function is discussed at length by Feigenbaum in 
the above references). The Gauss shift (6) corresponds to replacing the binary 
Farey presentation function branch 10 in (10) by an infinity of branches 

(a-I)( 1 = h 0 10 x) = - - a, 
x 

1 1 
-- < x:S-, 
a-I a 

(11) Ie 0···0 Ib 0 la(x). 

A rational x = [aI, a2, .. . ,ak] is 'annihilated' by the kth iterate of the Gauss 
shift, lala2 ... ak(X) = o. The above maps look innocent enough, but note that 
what is being partitioned is not the dynamical space, but the parameter space. 
The flow described by (10) and by its non-trivial circle-map generalizations will 
turn out to be a renormalization group flow in the function space of dynamical 
systems, not an ordinary flow in the phase space of a particular dynamical 
system. 

Having defined the three partitioning schemes, we now briefly summarize 
the results of the circle-map renormalization theory. 

6. Local Theory: 'Golden Mean' Renormalization 

Possible trajectories of a dynamical system are of three qualitatively distinct 
types: they are either asymptotically unstable (positive Lyapunov exponent), 
asymptotically marginal (vanishing Lyapunov) or asymptotically stable (neg­
ative Lyapunov). The asymptotically stable orbits can be treated by the tra­
ditional integrable system methods. The asymptotically unstable orbits build 
up chaos, and can be dealt with using the machinery of the hyperbolic, 'Ax­
iom A' dynamical systems theory (Ruelle 1978). Here we shall concentrate on 
the third class of orbits, the asymptotically marginal ones. I call them the 'bor­
der of order'; they lie between order and chaos, and remain on that border to 
all times. 

The way to pinpoint a point on the border of order is to recursively adjust 
the parameters so that at the recurrence times t = nl, n2, n3, ... the trajectory 
passes through a region of contraction sufficiently strong to compensate for the 
accumulated expansion of the preceding ni steps, but not so strong as to force 
the trajectory into a stable attracting orbit. The renormalization operation R 
implements this procedure by recursively magnifying the neighbourhood of a 
point on the border in the dynamical space (by rescaling by a factor Q'), in 
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the parameter space (by shifting the parameter origin onto the border and 
rescaling by a factor b), and by replacing the initial map f by the nth iterate 
fn restricted to the magnified neighbourhood 

There are by now many examples of such renormalizations in which the new 
function, framed in a smaller box, is a rescaling of the original function, i. e. 
the fix-point function of the renormalization operator R. The best known is 
the period doubling renormalization, with the recurrence times ni = 2i. The 
simplest circle map example is the golden mean renormalization (Shenker 1982), 
with recurrence times ni = Fi given by the Fibonacci numbers (8). Intuitively, 
in this context a metric self-similarity arises because iterates of critical maps 
are themselves critical, i. e. they also have cubic inflection points with vanishing 
derivatives. 

The renormalization operator appropriate to circle maps (Feigenbaum, 
Kadanoff and Shenker 1982; Ostlund et al. 1983) acts as a generalization of 
the Gauss shift (11); it maps a circle map (represented as a pair of functions 
(g, j), see fig. 4), of winding number [a, b, c, ... J into a rescaled map of winding 
number [b, c, .. . J: 

(12) ( g) (aga - I 0 f 0 a-I ) 

Ra f = aga-I 0 fog 0 a-I ' 

Acting on a map with winding number [a, a, a, . .. J, Ra returns a map with the 
same winding number [a, a, ... J, so the fixed point of Ra has a quadratic irra­
tional winding number W = [a, a, a, ... J. This fixed point has a single expanding 
eigenvalue ba. Similarly, the renormalization transformation Rap ... Ra2Ral == 
Ra,a2 ... ap has a fixed point of winding number Wp = [aI, a2,· .. ,ap , aI, a2, ... J, 
with a single expanding eigenvalue op (Feigenbaum, Kadanoff and Shenker 1982; 
Ostlund et al. 1983). A computer assisted proof for the golden mean winding 
number has been carried out by Mestel (Mestel 1985; we assume that there is 
a single expanding eigenvalue for any periodic renormalization). 

For short repeating blocks, b can be estimated numerically by comparing 
successive continued fraction approximants to W. Consider the PrlQr rational 
approximation to a quadratic irrational winding number Wp whose continued 
fraction expansion consists of r repeats of a block p. Let Dr be the parameter 
for which the map (1) has a superstable cycle of rotation number PrlQr = 
[p,p, ... ,pJ. The bp can then be estimated by extrapolating from (Shenker 1982) 

(13) 

What this means is that the 'devil's staircase' of fig.4 is self-similar under 
magnification by factor bp around any quadratic irrational Wp. 

The fundamental result of the renormalization theory (and the reason why 
all this is so interesting) is that the ratios of successive Pr I Q r mode-locked 
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Fig. 4. The golden-mean winding number fixed-point function pair (f, g) for critical 
circle maps with cubic inflection point. The symbolic dynamics dictates a unique 
framing such that the functions (f,g) are defined on intervals (x ~ x ~ x/a,x/a ~ 
x ~ xa), x = f- I (0): in this framing, the circle map (f, g) has continuous derivatives 
across the f-g junctions (from Feigenbaum 1988b). 

intervals converge to universal limits. The simplest example of (13) is the se­
quence of Fibonacci number continued fraction approximants to the golden 
mean winding number W = [1,1,1, ... J = (J5 - 1)/2. For critical circle maps 
with a cubic inflection point 61 = -2.833612 ... j a list of values of {jp's for 
the shortest continued fraction blocks p is given in reference (Cvitanovic, Gu­
naratne and Vinson 1990). 

When the repeated block is not large, the rate of increase of denomina­
tors Qr is not large, and (13) is a viable scheme for estimating 6's. However, 
for long repeating blocks, the rapid increase of Qr's makes the periodic orbits 
hard to determine and better methods are required, such as the unstable man­
ifold method employed in reference (Cvitanovic, Gunaratne and Vinson 1990). 
This topic would take us beyond the space allotted here, so we merely record 
the golden-mean unstable manifold equation (Feigenbaum and Kenway 1983; 
Cvitanovic 1985; Cvitanovic, Jensen, Kadanoff and Procaccia 1985; Gunaratne 
1986) 

(14) 

and leave the reader contemplating methods of solving such equations. We 
content ourselves here with stating what the extremal values of 6p are. 
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For a given cycle length Q, the narrowest interval shrinks with a power 
law (Kaneko 1982, 1983a and 1983b; Jensen et al. 1983 and 1984; Bak et al. 
1985; Feigenbaum, Kadanoff and Shenker 1982) 

(15) fll/Q ex Q-3 

This leading behavior is derived by methods akin to those used in describing 
intermittency (Pomeau and Manneville 1980): l/Q cycles accumulate toward 
the edge of 0/1 mode-locked interval, and as the successive mode-locked inter­
vals l/Q, l/(Q -1) lie on a parabola, their differences are of order Q-3. This 
should be compared to the subcritical circle maps in the number-theoretic limit 
(2), where the interval between l/Q and 1/(Q - 1) winding number value of 
the parameter Q shrinks as I/Q2. For the critical circle maps the £l/Q interval 
is narrower than in the k=O case, because it is squeezed by the nearby broad 
flO/ l mode-locked interval. 

For fixed Q the widest interval is bounded by P/Q = Fn-I/Fn, the n­
th continued fraction approximant to the golden mean. The intuitive reason is 
that the golden mean winding sits as far as possible from any short cycle mode­
locking. Herein lies the surprising importance of the golden mean number for 
dynamics; it corresponds to extremal scaling in physical problems characterized 
by winding numbers, such as the KAM tori of classical mechanics (Greene 1979; 
Shenker and Kadanoff 1982). The golden mean interval shrinks with a universal 
exponent 

(16) 

where P = Fn - l , Q = Fn and III is related to the universal Shenker number 
151 (13) and the golden mean (9) by 

In 1151 1 
(17) III = 2lnp = 1.08218 ... 

The closeness of III to 1 indicates that the golden mean approximant mode­
lockings barely feel the fact that the map is critical (in the k=O limit this 
exponent is Il = 1). 

To summarize: for critical maps the spectrum of exponents arising from 
the circle maps renormalization theory is bounded from above by the harmonic 
scaling, and from below by the geometric golden-mean scaling: 

(18) 3/2 > Ilm/n 2: 1.08218· . '. 

7. Global Theory: Ergodic Averaging 

So far we have discussed the results of the renormalization theory for isolated 
irrational winding numbers. Though the local theory has been tested experi­
mentally (Stavans et al. 1985; Gwinn and Westervelt 1987), the golden-mean 
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universality utilizes only a few of the available mode-locked intervals, and from 
the experimental point of view it would be preferable to test universal proper­
ties which are global in the sense of pertaining to a range of winding numbers. 
We first briefly review some of the attempts to derive such predictions using 
ideas from the ergodic number theory, and then turn to the predictions based 
on the thermodynamic formalism. 

The ergodic number theory (Billingsley 1965; Khinchin 1964) is rich in (so 
far unfulfilled) promise for the mode-locking problem. For example, while the 
Gauss shift (6) invariant measure 

(19) 
1 1 

p.( x) = In 2 1 + x 

was known already to Gauss, the corresponding invariant measure for the criti­
cal circle maps renormalization operator R has so far eluded description. It lies 
on a fractal set - computer sketches are given in references (Farmer and Satija 
1985; Umberger Farmer and Satija 1986) - and a general picture of what the 
'strange repeller' (in the space of limit functions for the renormalization op­
erator (12) might look like is given by Lanford and Rand (Lanford 1987a and 
1987b; Rand 1987 and 1988). In reference (Ostlund et al. 1983) the authors 
have advocated ergodic explorations of this attractor, by sequences of renor­
malizations Rak corresponding to the digits of the continued fraction expansion 
of a 'normal' winding number W = [al,a2,a3,"']' A numerical implementa­
tion of this proposal (Farmer and Satija 1985; Umberger, Farmer and Satija 
1986) by Monte Carlo generated strings aI, a2, a3, ... yields estimates of 'mean' 
scalings 8 = 15.5 ±.5 and a = 1.8 ±.1. 8n is the estimate of the mean width of 
an 'average' mode-locked interval Ll pn / Qn , where Pn/Qn is the nth continued 
fraction approximation to a normal winding number W = [aI, a2, a3, ... ]. In 
this connection the following beautiful result by Khinchin, Kuzmin and Levy 
(Khinchin 1964) of the ergodic number theory is suggestive: 

Theorem. For almost all WE [0,1] the denominator Qn of the n-th continued 
fraction approximant W = Pn/Qn + en, Pn/Qn = [aI, a2, a3, ... , an] converges 
asymptotically to 

(20) 
1 7l'2 

lim -In Qn = 121 2 . 
n-+oo n n 

In physics this theorem pops up in various guises; for example, 7l'2/6ln2 
can be interpreted as the Kolmogorov entropy of 'mixmaster' cosmologies (see 
references in Csordas and Szepfalusy 1989). In the present context this theo­
rem has been used (Umberger, Farmer and Satija 1986) to connect the ergodic 
estimate of "8 to 8 estimated (Jensen et al. 1983 and 1984; Bak et al. 1985) by 
averaging over all available mode-lockings up to given cycle length Q, but it 
is hard to tell what to make out of such results. The numerical convergence of 
ergodic averages is slow, if not outright hopeless, so we abandon henceforth the 
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ergodic 'time' averages (here the 'time' is the length of a continued fraction) 
and turn instead to the 'thermodynamic' averages (averages over all 'configu­
rations', here all mode lockings on a given level of a resolution hierarchy). 

8. Global Theory: Thermodynamic Averaging 

Consider the following average over mode-locking intervals (4): 

00 

(21) il(r) = L L Llp/Q . 

Q=l (PIQ)=l 

The sum is over all irreducible rationals P/Q, P < Q, and Llp / Q is the width of 
the parameter interval for which the iterates of a critical circle map lock onto 
a cycle of length Q, with winding number P/Q. 

The qualitative behavior of (21) is easy to pin down. For sufficiently nega­
tive r, the sum is convergent; in particular, for r = -1, il( -1) = 1, as for the 
critical circle maps the mode-Iockings fill the entire il range (Swiatek 1988). 
However, as r increases, the contributions ofthe narrow (large Q) mode-locked 
intervals Llp / Q get blown up to l/Llp/Q' and at some critical value of r the 
sum diverges. This occurs for r < 0, as il(O) equals the number of all rationals 
and is clearly divergent. 

The sum (21) is infinite, but in practice the experimental or numerical 
mode-locked intervals are available only for small finite Q. Hence it is necessary 
to split up the sum into subsets Sn = {i} of rational winding numbers PdQi on 
the 'level' n, and present the set of mode-Iockings hierarchically, with resolution 
increasing with the level: 

(22) Zn(r) = L Ll;T. 
iESn 

The original sum (21) can now be recovered as the z = 1 value of a 'generating' 
function il(z, r) = I:n zn Zn(r). As z is anyway a formal parameter, and n is 
a rather arbitrary 'level' in some ad hoc partitioning of rational numbers, we 
bravely introduce a still more general, P / Q weighted generating function for 
(21 ): 

00 

(23) il(q,r) L L e-vP / QQ Q2P.P/QT. 

Q=l (PIQ)=l 

The sum (21) corresponds to q = o. Exponents vp/Q will reflect the importance 
we assign to the P / Q mode-locking, i. e. the measure used in the averaging over 
all mode-Iockings. Three choices of of the vp/Q hierarchy that we consider here 
correspond respectively to the Farey series partitioning (definition (1)) 
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00 

(24) Q(q, r) = L tJ.)(Q)-q L Q2/LP/QT, 
Q=1 (PIQ)=1 

the continued fraction partitioning (definition (2)) 

00 

(25) Q(q, r) = L e-qn L Q2/L[.1' · ..• nl T 

n=1 [al, ... ,a n] 

and the Farey tree partitioning (definition (3)) 

00 2 n 

(26) Q(q,r) = L Tqn L Q?' , Q;/Pj E Tn. 
k=n i=1 

Other measures can be found in the literature, but the above three suffice for 
our purposes. 

Sum (23) is an example of a 'thermodynamic' average. In the thermody­
namic formalism a function r(q) is defined by the requirement that the n -+ 00 

limit of generalized sums 

(27) 

is finite. For details on the thermodynamic formalism see the literature (Ru­
elle 1978; Grassberger 1983; Hentschel and Procaccia 1983; Benzi et al. 1984; 
Halseyet al. 1986; Feigenbaum 1987b and 1987c). Thermodynamic formalism 
was originally introduced to describe measures generated by strongly mixing 
ergodic systems, and for most practitioners Pi in (27) is the probability of find­
ing the system in the partition i, given by the 'natural' measure. What we are 
using here in the Farey series and the Farey tree cases are the 'equipartition' 
measures Pi = liNn, where N n is the number of mode-locking intervals on 
the nth level of resolution. In the continued fraction partitioning this does not 
work, as N n is infinite - in this case we assign all terms of equal continued frac­
tion length equal weight. It is important to note that as the Cantor set under 
consideration is generated by scanning the parameter space, not by dynamical 
stretching and kneading, there is no 'natural' measure, and a variety of equally 
credible measures can be constructed (Jensen et al. 1983 and 1984; Bak et al. 
1985; Artuso, Cvitanovic and Kenny 1989; Cvitanovic 1987a; Artuso 1988b and 
the above mentioned references on thermodynamical formalism). Each distinct 
hierarchical presentation of the irrational winding set (distinct partitioning of 
rationals on the unit interval) yields a different thermodynamics. As far as I can 
tell, no thermodynamic function q( r) considered here (nor any of the q( r) or 
f( O!) functions studied in the literature in other contexts) has physical signifi­
cance, but their qualitative properties are interesting; in particular, all versions 
of mode-locking thermodynamics studied so far exhibit phase transitions. 
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We summarize by succinctly stating what our problem is in a way sug­
gestive to a number theorist, by changing the notation slightly and rephrasing 
(21) this way: 

(4) Definition: The mode-locking problem. Develop a theory of the following 
'zeta' function: 

00 

(28) (s) = L L n-2/lm/nS, 

n=l (mln)=l 

where Il is defined as in (4). 

For the shift map (2), Ilm/n = 1, and this sum is a ratio of two Riemann 
zeta functions 

;()= (2s-1) 
., s (2s)' 

For critical maps the spectrum of exponents arising from the circle maps renor­
malization theory is non-trivial; according to (18) it is bounded from above by 
the harmonic scaling, and from below by the geometric golden-mean scaling. 

Our understanding of the ( s) function for the critical circle maps is 
rudimentary - almost nothing that is the backbone of the theory of number­
theoretic zeta functions has been accomplished here: no good integral repre­
sentations of (28) are known, no functional equations (analogous to reflection 
formulas for the classical zeta functions) have been constructed, no Riemann­
Siegel formulas, etc .. We summarize basically all that is known in the remainder 
of this lecture, and that is not much. 

9. The Hausdorff Dimension of Irrational Windings 

A finite cover of the set irrational windings at the 'n-th level of resolution' is 
obtained by deleting the parameter values corresponding to the mode-lockings 
in the subset Sn; left behind is the set of complement covering intervals of 
widths 

(29) 

Here Qp"iiQr (QF:,/QI) are respectively the lower (upper) edges of the mode­
locking intervals f).Pr/Qr (f).PI/QI) bounding fi and i is a symbolic dynamics 
label, for example the entries of the continued fraction representation P / Q = 
[aI, a2, ... , an] of one of the boundary mode-lockings, i = ala2'" an. fi provide 
a finite cover for the irrational winding set, so one may consider the sum 

(30) Zn(r) = L fiT 
iESn 



648 Chapter 13. Circle Maps: Irrationally Winding 

The value of -r for which the n -+ 00 limit ofthe sum (30) is finite is the Haus­
dorff dimension (see for example Falconer 1985) DH of the irrational winding 
set. Strictly speaking, this is the Hausdorff dimension only if the choice of cov­
ering intervals f.; is optimal; otherwise it provides an upper bound to DH. As by 
construction the f.i intervals cover the set of irrational winding with no slack, 
we expect that this limit yields the Hausdorff dimension. This is supported 
by all numerical evidence, but a proof that would satisfy mathematicians is 
lacking. 

Jensen, Bak and Bohr (Jensen et al. 1983 and 1984; Bak et al. 1985) have 
provided numerical evidence that this Hausdorff dimension is approximately 
D H = .870 ... and that it is universal. It is not at all clear whether this is the 
optimal global quantity to test - a careful investigation (Artuso, Cvitanovic 
and Kenny 1989; Cvitanovic 1987a) shows that DH is surprisingly hard to pin 
down numerically. At least the Hausdorff dimension has the virtue of being in­
dependent of how one partitions mode-Iockings and should thus be the same for 
the variety of thermodynamic averages in the literature. In contrast, the gen­
eralized dimensions introduced through the thermodynamical formalism differ 
from version to version. 

10. A Bound on the Hausdorff Dimension 

We start by giving an elementary argument that the Hausdorff dimension of 
irrational windings for critical circle maps is less than one. The argument de­
pends on the reasonable, but so far unproven assumption that the golden mean 
scaling (17) is the extremal scaling. 

In the crudest approximation, one can replace /JP/Q in (28) by a 'mean' 
value P; in that case the sum is given explicitly by a ratio of the Riemann 
( -functions: 

(31) .a(r) = f </l(Q) Q2ril = ( -2rp -::- 1) 
Q=l (- 2r /J) 

As the sum diverges at -r = Hausdorff dimension, the 'mean' scaling exponent 
p and DH are related by the ( function pole at (1): 

(32) DHP = 1. 

While this does not enable us to compute DH, it does immediately establish 
that DH for critical maps exists and is smaller than 1, as the /J bounds (18) 
yield 

(33) 
2 
3" < DH < .9240 ... 

To obtain sharper estimates of D H, we need to describe the distribution of 
/JP/Q within the bounds (18). This we shall now attempt using several variants 
of the thermodynamic formalism. 
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11. The Hausdorff Dimension in Terms of Cycles 

Estimating the n -+ 00 limit of (30) from finite numbers of covering intervals 
fi is a rather unilluminating chore. Fortunately, there exist considerably more 
elegant ways of extracting DH. We have noted that in the case of the 'trivial' 
mode-locking problem (2), the covering intervals are generated by iterations 
of the Farey map (10) or the Gauss shift (11). The nth level sum (30) can be 
approximated by cn, where C(y,x) = 8(x - f-1(y))If'(yW; this amounts to 
approximating each cover width fi by Idr /dxl evaluated on the ith interval. 
By nothing much deeper than use of the identity log det = tr log, the spectrum 
of C can be expressed (Ruelle 1978) in terms of stabilities of the prime (non­
repeating) periodic orbits p of f( x): 

(
ex> zrnp IA;IT ) 

det(1- zC) = exp - L L -r-l-l/Ar 
p r=l p 

ex> 

(34) = II II (1 - znp IAplT / A;) 
p k=O 

In the 'trivial' Gauss shift (11) renormalization model, the Fredholm determi­
nant and the dynamical zeta functions have been introduced and studied by 
Mayer (Mayer 1976) who has shown that the eigenvalues of the transfer oper­
ator are exponentially spaced, just as for the dynamical zeta functions (Ruelle 
1976) for the 'Axiom A' hyperbolic systems. 

The sum (30) is dominated by the leading eigenvalue of C; the Hausdorff 
dimension condition Zn( -DH) = 0(1) means that T = -DH should be such 
that the leading eigenvalue is z = 1. The leading eigenvalue is determined by 
the k = 0 part of (34); putting all these pieces together, we obtain a pretty 
formula relating the Hausdorff dimension to the prime cycles of the map f(x): 

(35) 0= II (1 -1/IApIDH) 
p 

For the Gauss shift (11) the stabilities of periodic cycles are available an­
alytically (Mayer 1976; Artuso, Aurell and Cvitanovic 1990b), as roots of 
quadratic equations: For example, the Xa fixed points (quadratic irrationals 
with Xa = [a, a, a ... J infinitely repeating continued fraction expansion) are 
given by 

(36) 
-a+ v'£i2+4 

Xa = 2 

and the Xab = [a, b, a, b, a, b, ... J 2-cycles are given by 
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(37) Xab 

Aab = 

-ab + v(ab)2 + 4ab 
2b 

( )-2 (ab+2+vab(ab+4))2 
XabXba = 2 

We happen to know beforehand that DR = 1 (the irrationals take the full mea­
sure on the unit interval; the continuous Gauss measure (19) is invariant under 
the Gauss shift (6); the Perron-Frobenius theorem), so is the infinite product 
(35) merely a very convoluted way to compute the number I? Possibly so, but 
availability of this exact result provides a useful testing ground for trashing 
out the optimal methods for determining zeros of Fredholm determinants in 
presence of non-hyperbolicities. The Farey map (10) has one marginal stability 
fixed point Xo = 0 which is excluded from the cycle expansion of (35), but its 
ghost haunts us as a nonhyperbolic 'intermittency' ripple in the cycle expan­
sion. One has to sum (Artuso, Aurell and Cvitanovic 1990b) infinities of cycles 
of nearly same stability 

00 

(38) II (1-IApn = 1- L IAal T + (curvatures) 
p a=l 

in order to attain the exponential convergence expected on the basis of the 
hyperbolicity (Mayer 1976) of this dynamical ( function. We know from (36) 
that IAnl ex n 2 , so the stability grows only as a power of the cycle length n, 
and these infinite sums pose a serious numerical headache for which we (as yet) 
know of no satisfactory cure. The sum (38) behaves essentially as the Riemann 
(( -2,-), and the analytic number theory techniques might still rescue us. 

Once the meaning of (35) has been grasped, the corresponding formula 
(Cvitanovic, Gunaratne and Vinson 1990) for the critical circle maps follows 
immediately: 

(39) 0= II (1 - 1/16p IDH ) . 

P 

This formula relates the dimension (introduced by Jensen et al.) of irrational 
windings to the universal Shenker parameter scaling ratios 6p ; its beauty lies 
in relating DR to the universal scalings 6p , thus rendering the universality of 
the Jensen et al. dimension manifest. As a practical formula for evaluating this 
dimension, (39) has so far yielded estimates of DR of modest accuracy, but 
that can surely be improved. In particular, computations based on the infinite 
products (34) should be considerably more convergent (Christiansen et al. 1990; 
Cvitanovic, Christiansen and Rugh 1990) but have not been carried out so far. 

The derivation of (39) relies only on the following aspects of the 'hyper­
bolicity conjecture' of references (Cvitanovic, Shraiman and Soderberg 1985; 
Lanford 1987a and 1987b; Rand 1987 and 1988; Kim and Ostlund 1989; Feigen­
baum 1988b): 
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1) limits for Shenker 8's exist and are universal. This should follow from the 
renormalization theory developed in (Feigenbaum, Kadanoff and Shenker 
1982; Ostlund et al. 1983; Mestel 1985), a general proof is still lacking. 

2) 8p grow exponentially with n p , the length of the continued fraction block 
p. 

3) 8p for p = ala2 ... n with a large continued fraction entry n grows as a 
power of n. According to (15), limn--+co 8p ex: n 3 • In the calculation of ref­
erence (Cvitanovic, Gunaratne and Vinson 1990) the explicit values of the 
asymptotic exponents and prefactors were not used, only the assumption 
that the growth of 8p with n is not slower than a power of n. 

Explicit evaluation of the spectrum was first attempted in reference (Ar­
tuso, Aurell and Cvitanovic 1990b )-prerequisite for attaining the exponential 
(or faster (Christiansen et al. 1990; Cvitanovic, Christiansen and Rugh 1990)) 
convergence of the cycle expansions are effective methods for summation of infi­
nite families of mode-lockings. At present, those are lacking - none of the tricks 
from the Riemann-zeta function theory (integral representations, saddle-point 
expansions, Poisson resummations, etc.) have worked for us - so we have been 
forced to rely on the rather treacherous logarithmic convergence acceleration 
algorithms (Levin 1973). 

12. Farey Series and the Riemann Hypothesis 

The Farey series thermodynamics (24) is obtained by deleting all mode-locked 
intervals L1p, /Q' of cycle lengths 1 :::; Q' :::; Q. What remains are the irrational 
winding set covering intervals (29). 

The thermodynamics ofthe Farey series in the number-theory limit (2) has 
been studied by Hall and others (Hall 1970; Kanemitsu et al. 1982 and 1984); 
their analytic results are instructive and are reviewed in references (Artuso, 
Cvitanovic and Kenny 1989; Cvitanovic 1987a). 

(40) 

The main result is that q( 7) consists of two straight sections 

q(7) = { 
7/2 

1 + 7 

7:::; -2 

72:-2 

and the Farey arc thermodynamics undergoes a first order phase transition at 
7 = -2. What that means is that almost all covering intervals scale as Q-2 (the 
q = 1 + 7 phase); however, for 7 :::; -2, the thermodynamics average is domi­
nated by a handful of fat intervals which scale as Q-l. The number-theoretic 
investigations (Hall 1970; Kanemitsu et al. 1982 and 1984) also establish the 
rate of convergence as Q -+ 00; at the phase transition point it is very slow, 
logarithmic (Artuso, Cvitanovic and Kenny 1989; Cvitanovic 1987a). In prac­
tice, the Euler noise is such numerical nuisance that we skip here the discussion 
of the q( 7) convergence altogether. 
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For the critical circle maps the spectrum of scales is much richer. The 
I/Q mode-locked intervals which lie on a parabolic devil staircase (Kaneko 
1982, 1983a and 1983b; Jensen et al. 1983 and 1984; Bak et al. 1985; Cvi­
tanovic, Shraiman and Soderberg 1985) yield the broadest covering interval 
R(l, Q) ~ kQ-2, with the minimum scaling exponent J.lmin = 1. and the nar­
rowest covering interval R( Q, Q - 1) ~ kQ-3, with the exponent J.lmax = 3/2. 

The Farey series thermodynamics is of a number theoretical interest, be­
cause the Farey series provide uniform coverings of the unit interval with ratio­
nals, and because they are closely related to the deepest problems in number 
theory, such as the Riemann hypothesis (Edwards 1974; Titchmarsh 1951). The 
distribution of the Farey series rationals across the unit interval is surprisingly 
uniform - indeed, so uniform that in the pre-computer days it has motivated a 
compilation of an entire handbook of Farey series (Neville 1950). A quantitative 
measure of the non-uniformity of the distribution of Farey rationals is given by 
displacements of Farey rationals for PdQi E :FQ from uniform spacing: 

i Pi 
6i = ~(Q) - Qi' i = 1,2,···,~(Q) 

The Riemann hypothesis states that the zeros of the Riemann zeta function 
lie on the s = 1/2 + iT line in the complex s plane, and would seem to have 
nothing to do with physicists' real mode-locking widths that we are interested 
in here. However, there is a real-line version of the Riemann hypothesis that 
lies very close to the mode-locking problem. According to the theorem of Franel 
and Landau (Franel and Landau 1924; Edwards 1974; Titchmarsh 1951), the 
Riemann hypothesis is equivalent to the statement that 

L 16;1 = o(Q~+') 
Qi~Q 

for all E as Q --t 00. The mode-Iockings L1 p / Q contain the necessary informa­
tion for constructing the partition of the unit interval into the Ri covers, and 
therefore implicitly contain the 6; information. The implications of this for the 
circle-map scaling theory have not been worked out, and is not known whether 
some conjecture about the thermodynamics of irrational windings is equivalent 
to (or harder than) the Riemann hypothesis, but the danger lurks. 

13. Farey Tree Thermodynamics 

The narrowest mode-locked interval (16) at the n-th level of the Farey tree 
partition sum (26) is the golden mean interval 

(41) 

It shrinks exponentially, and for T positive and large it dominates q( T) and 
bounds dq(T)/dT: 
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(42) q:nax = l~~; I = 1.502642 ... 

However, for 1" large and negative, q(1") is dominated by the interval (15) which 
shrinks only harmonically, and q( 1") approaches 0 as 

(43) 
q( 1") 

1" 

3lnn 
-- -+0. 
nln2 

So for finite n, qn(1") crosses the 1" axis at -1" = D n , but in the n -+ 00 limit, 
the q( 1") function exhibits a phase transition; q( 1") = 0 for 1" < - D H, but is a 
non-trivial function of 1" for -DH ::; 7. This non-analyticity is rather severe -
to get a clearer picture, we illustrate it by a few number-theoretic models (the 
critical circle maps case is qualitatively the same). 

An cute version of the 'trivial' Farey level thermodynamics is given by 
the 'Farey model' (Artuso, Cvitanovic and Kenny 1989; Cvitanovic 1987a), in 
which the intervals Rp / Q are replaced by Q-2: 

2" 

(44) Zn(1") = L Q~r. 
i=1 

Here Qi is the denominator of the ith Farey rational PdQi. For example (see 
definition (3)), 

Z2(1/2) = 4 + 5 + 5 + 4. 

Though it might seem to have been pulled out of a hat, the Farey model is 
as sensible description of the distribution of rationals as the periodic orbit 
expansion (34). By the 'annihilation' property of the Gauss shift (11), the n-th 
Farey level sum Zn( -1) can be written as the integral 

(45) 

with the sum restricted to the Farey level L: a1 + ... + ak = n + 2. It is easily 
checked that f~l ... ak (0) = (-l)kQ[al, ... ,akl' so the Farey model sum is a partition 
generated by the Gauss map preimages of x = 0, i. e. by rationals, rather than 
by the quadratic irrationals as in (34). The sums are generated by the same 
transfer operator, so the eigenvalue spectrum should be the same as for the 
periodic orbit expansion, but in this variant of the finite level sums we can can 
evaluate q(1") exactly for 1" = k/2, k a non-negative integer. First one observes 
that Zn(O) = 2n. It is also easy to check (Williams and Browne 1947) that 
Zn(1/2) = L:i Qi = 2· 3n. More surprisingly, Zn(3/2) = L:i Q3 = 54· 7n- 1 . 

Such 'sum rules', listed in the table 1, are consequence of the fact that the 
denominators on a given level are Farey sums of denominators on preceding 
levels (Artuso, Cvitanovic and Kenny 1989; these computations have been made 
in collaboration with A. D. Kennedy). Regrettably, we have not been able to 
extend this method to evaluating q( -1/2), or to real 7. 

A bound on D H can be obtained by approximating (44) by 
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In this approximation we have replaced all Rp / Q , except the widest interval 
R1 / n , by the narrowest interval RFn_l/Fn (see (16)). The crossover from the 
harmonic dominated to the golden mean dominated behavior occurs at the 7" 

value for which the two terms in (46) contribute equally: 

(47) 

Table 1. Recursion relations for the Farey model partition sums (44) for r = 
1, 1/2, 1, ... ,7/2; they relate the 2q(T) = limn_co Zn+l (r)/ Zn (r) to roots of polyno­
mial equations. 

7" 2q(r) Zn(7") = 

0 2 2Zn- 1 

1/2 3 3Zn- 1 

1 (5 + vYi)/2 5Zn- 1 - 2Zn- 2 

3/2 7 7 Zn-l 

2 (11 + Vli3)/2 lOZn-l + 9Zn- 2 - 2Zn- 3 

5/2 7 + 4V6 14Zn- 1 + 47Zn- 2 

3 26.20249 ... 20Zn- 1 + 161Zn_2 + 40Zn- 3 - Zn-4 

7/2 41.0183 ... 29Zn- 1 + 485Zn- 2 + 327Zn- 3 

n/2 pn p= golden mean 

For negative 7" the sum (46)) is the lower bound on the sum (30), so iJ is a 
lower bound on D H. The size of the level-dependent correction in (47) is omi­
nous; the finite n estimates converge to the asymptotic value logarithmically. 
What this means is that the convergence is excruciatingly slow and cannot be 
overcome by any amount of brute computation. 

14. Artuso Model 

The Farey model (30) is difficult to control at the phase transition, but con­
siderable insight into the nature of this non-analyticity can be gained by 
the following factorization approximation. Speaking very roughly, the stabil­
ity A ~ (_I)nQ2 of a P/Q = [a!, ... , an] cycle gains a hyperbolic golden-mean 
factor _p2 for each bounce in the central part of the Farey map (10), and a 
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power-law factor for every ak bounces in the neighbourhood of the marginal 
fixed point Xo = O. This leads to an estimate of Q in P/Q = [al,"" an] as a 
product of the continued fraction entries (Artuso 1988a and 1988b) 

In this approximation the cycle weights factorize, Aala2 ... an = Aal Aa2 •.. A an , 

and the curvature corrections in the cycle expansion (38) vanish exactly: 

00 

l/((q, r) = 1 - 2)pa)2r za, z = Tq 
a=1 

The q = q(r) condition l/((q,r) = 0 yields 

(48) p-2r = 4>(-2r,z) 

where 4> is the Jonquiere function (Fornberg and Kolbig 1975) 

00 xn 1 100 fS-Ix 
4>(s, x) = L - = r( ) dt-t -

n=l n S s 0 e - x 

The sum (48) diverges for z > 1, so q ~ O. The interesting aspect ofthis model, 
easy to check (Artuso 1988a and 1988b), is that the q(r) curve goes to zero 
at r = -DH, with all derivatives dnq/dr n continuous at DH, so the phase 
transition is of infinite order. We believe this to be the case also for the exact 
trivial and critical circle maps thermodynamics, but the matter is subtle and 
explored to more depth in references (Feigenbaum 1987a and 1988a). 

There is one sobering lesson in this: the numerical convergence acceleration 
methods (Levin 1973) consistently yield finite gaps at the phase transition 
point; for example, they indicate that for the Farey model evaluated at r = 
-DH+€, the first derivative converges to dq/dr -t .64± .03. However, the phase 
transition is not of a first order, but logarithmic of infinite order (Cvitanovic 
1987a), and the failure of numerical and heuristic arguments serves as a warning 
of how delicate such phase transitions can be. 

15. Summary and Conclusions 

The fractal set discussed here, the set of all parameter values corresponding to 
irrational windings, has no 'natural' measure. We have discussed three distinct 
thermodynamic formulations: the Farey series (all mode-Iockings with cycle 
lengths up to Q), the Farey levels (2n mode-Iockings on the binary Farey tree), 
and the Gauss partitioning (all mode-Iockings with continued fraction expan­
sion up to a given length). The thermodynamic functions are different for each 
distinct partitioning. The only point they have in common is the Hausdorff 
dimension, which does not depend on the choice of measure. What makes the 
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description of the set of irrational windings considerably trickier than the usual 
'Axiom A' strange sets is the fact that here the range of scales spans from the 
marginal (harmonic, power-law) scalings to the the hyperbolic (geometric, ex­
ponential) scalings, with a generic mode-locking being any mixture of harmonic 
and exponential scalings. One consequence is that all versions of the thermo­
dynamic formalism that we have examined here exhibit phase transitions. For 
example, for the continued fraction partitioning choice of weights tp , the cycle 
expansions of Artuso et al. (Artuso, Aurell and Cvitanovic 1990a and 1990b) 
behave as hyperbolic averages only for sufficiently negative values of T; hyper­
bolicity fails at the 'phase transition' (Artuso, Cvitanovic and Kenny 1989; 
Cvitanovic 1987a; Artuso 1988a and 1988b) value T == -1/3, due to the power 
law divergence of the harmonic tails D ... n ~ n 3 • 

The universality of the critical irrational winding Hausdorff dimension fol­
lows from the universality of quadratic irrational scalings. The formulas used 
are formally identical to those used for description of dynamical strange sets 
(Artuso, Aurell and Cvitanovic 1990a), the deep difference being that here the 
cycles are not dynamical trajectories in the coordinate space, but renormal­
ization group flows in the function spaces representing families of dynamical 
systems. The 'cycle eigenvalues' are in present context the universal quadratic 
irrational scaling numbers. 

In the above investigations we were greatly helped by the availability of the 
number theory models: in the k = 0 limit of (1) the renormalization flow is given 
by the Gauss map (6), for which the universal scaling Dp reduce to quadratic 
irrationals. In retrospect, even this 'trivial' case seems not so trivial; and for 
the critical circle maps we are a long way from having a satisfactory theory. 
Symptomatic of the situation is the fact that while for the period doubling 
repeller DH is known to 25 significant digits (Cvitanovic, Christiansen and 
Rugh 1990), here we can barely trust the first three digits. 

The quasiperiodic route to chaos has been explored experimentally in sys­
tems ranging from convective hydrodynamic flows (Stavans et al. 1985) to semi­
conductor physics (Gwinn et al. 1987). Such experiments illustrate the high 
precision with which the experimentalists now test the theory of transitions 
to chaos. It is fascinating that not only that the number-theoretic aspects of 
dynamics can be measured with such precision in physical systems, but that 
these systems are studied by physicists for reasons other than merely testing the 
renormalization theory or number theory. But, in all fairness, chaos via circle­
map criticality is not nature's preferred way of destroying invariant tori, and 
the critical circle map renormalization theory remains a theoretical physicist's 
toy. 
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Chapter 14 

An Introduction To Small Divisors Problems 

by Jean-Christophe Yoccoz 

1. Introduction 

The problems linked with the so-called 'small divisors', i. e. the near resonances 
of frequencies in a quasiperiodic motion, have been known and studied since the 
last century. But it is only in the past fifty years, beginning with Siegel (Siegel 
1942), that they have started to be overcome. To illustrate these problems, we 
have chosen, amongst others, two cases where they occur. 

The first part of the text is devoted to a short survey of the dynamics of 
diffeomorphisms of the circle. Due to the works of Poincare, Denjoy, Arnold, 
Moser and Herman, one can say that the theory is now fairly well understood, 
the only difficulty in this case being the small divisors in their simplest form. 

On the opposite, the second part of the text is devoted to invariant tori in 
Hamiltonian dynamics, probably the part of small divisor theory which is most 
relevant to physics. The dynamics here are only very partially understood, and 
many important questions are still open. Nevertheless, the theorems of stability 
of quasiperiodic motions, known as KAM~theory after Kolmogorov, Arnold and 
Moser, are an essential step in the knowledge of these dynamics. 

We have not tried to give a complete bibliography on the subject. The 
interested reader should consult the very good survey by Bost (Bost 1985), 
and the included references 

2. Diffeomorphisms of the Circle 

2.1 The Rotation Number 

We refer in this Section to the work of Herman (Herman 1979). 

2.1.1 Introduction. Let 'fl = lRjZ be the circle (or I-dimensional torus). We 
write Diff~('fl) for the group of orientation preserving cr -diffeomorphisms of 
'fl. We may have r = 0, or r E [1, +00), or r = 00 or r = w (meaning real­
analytic). We are interested in the dynamics under iteration of a diffeomorphism 
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of the circle. But for practical reasons it is generally easier to work with a lift 
to JR. of such a diffeomorphism, i. e. to work in the group Dr(']['l) formed by the 
C r -diffeomorphisms of the real line such that f( x) - x is Z-periodic. We then 
denote by 1 the induced diffeomorphism of ']['1. 

2.1.2 Examples. For a E JR. (resp. a E ']I'1), we denote by ROt the translation 
x f-t x + a which belongs to D""(']I'l) (resp. Diff.t' (']I' 1». 

i) Blaschke products Let n ~ 0, A E 31 = {z E C,lzl = I} and let 
ao, a1,···, an, b1, b2 , ... , bn ED = {z E C, Izl < I}. Then the formula 

fez) = Af.r(z-_ai )f.r(z-_bj )-l 
. 1 - a, z. 1 - bJ" Z 
.=0 J=l 

defines a rational map which preserves 31 and whose restriction to 31 has 
degree 1. If it has no critical point on 31 (which always occurs provided 
lail, Ibj I are small enough) it defines an element of Diff.t' (']I' 1 ». 

ii) The Arnold family The formula 

fa t(x) = x + t + asin(27l"X) ,Ial < -21 ,t E JR. , ~ 

defines a 2-parameters family in DW(']I'l), first studied by Arnold (Arnold 
1965). 

2.1.3 Definition of the Rotation Number. Let f E DO(']I'l). We give below 
several equivalent ways, after Poincare, to define the rotation number of f, 
which is a real number denoted by p(f). 

(1) Proposition. As n goes to 00, the sequence ~(fn(x) -x) converges um­
formly in x to a constant limit p(f). 

(2) Proposition. Writing rational numbers p/q in irreducible form with q ~ 1, 
we define: 

D-(f) = 

{~ E Q, '<Ix E JR., rex) < x + p} 

{~ E Q, '<Ix E JR., rex) > x + p} 

These two sets form a Dedekind section of the rational numbers defining p(f). 

(3) Proposition. Let p, be a probability measure on ']I'1 invariant under 1, then 

p(f) = 1 (f(x) - x)dp,(x) . 

(4) Proposition. There exists a real number a and an non-decreasing map h 
JR. --t JR. satisfying, for all x E JR.: 
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hex + 1) = hex) + 1 , h(f(x)) hex) + a: . 

Moreover, one then has a: = p(f). 

2.1.4 Equivalence of the Definitions. We briefly indicate how the various 
above mentioned definitions are related. Write f(x) = x+</l(x). Then for n 2': 1, 
one has: 

n-l 

i=O 

Let f-l be a probability measure on 1['1, invariant under f and ergodic. By 
Birkhoft"'s ergodic theorem, there exists Xo E ~ such that: 

(1) 

On the other hand, as fn is increasing, one has: 

(2) maxCrCy) - y) < minCrCy) - y) + 1 . 
yE~ yE~ 

Putting (1) and (2) together gives Propositions 1 and 3. 

Defining h by hex) = j:l([0, x)) for x 2': ° and hex) = -j:l([x, 0)) for x:S ° 
(where j:l is the lift of f-l to ~), one has for all x E ~: 

h(x+1)-h(x) 

h(f(x)) - hex) 

reO) - 1 < hcr(O)) 

j:lC[x, x + 1)) = 1, 
j:l([x, f(x))) 

j:lC[O, f(O))) = h(f(O)) , 

nh(f(O)) < reO) + 1 . 

By Proposition 1, one has h(f(O)) = p(f). This gives Proposition 4. 

If plq E D+(f) and p'lq' E D-(f), then for all x E ~ one has: 

x + p' q < rql (x) < x + pq' 

hence pi q > p' I q'. If pi q and p' I q' do not belong to D+(f) U D- (f), there 
exist XO,X1 E [0,1) such that r(xo) = Xo + p and f q' (xd = Xl + p'. Then, for 
n 2': 1: 

-1+np'q:S rqq'(xd-1 < rqq'(O):S rqq'(xo) < l+npq'; 

this gives plq 2': p'lq'· By symmetry, p'lq' 2:: plq, hence Proposition 2 holds. 

2.1.5 Properties of the Rotation Number. The following properties hold: 
i) For Q E IR, one has p(Ro:) = Q. 

ii) For f E DO(1['I), nEZ, one has per) = np(f). 
iii) If f,g E DO(1['I) and h : ~ ~ ~ is an increasing map which satisfies 

h 0 f = go hand h 0 R1 = R1 0 h, then p(f) = peg). In particular, the 
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rotation number is a conjugacy invariant in the group DO(']['l), but is not 
a homomorphism into JR.. 

iv) For f E DO(']['l), P E IE one has p(Rp 0 f) = p + p(f). This allows to define 
the rotation number (with values in ']['1) for f E Diff~ (']['1). 

v) Let p/ q be a rational number (q 2:: 1, p 1\ q = 1) and f E DO (']['1). Proposi­
tion 2 says that one has p(f) = p/q if and only if there exists Xo E JR. such 
that fq(xo) = Xo + p. This gives for the induced homeomorphism f of ']['1 

a periodic orbit of minimal period q cyclically ordered on ']['1 as an orbit 
of Rpjq. 

vi) On the opposite, P(f) is irrational if and only if f has no periodic orbit. 
In this case, one can show that the increasing map h of Proposition 4 is 
uniquely determined by its value at zero. This implies (see Section 2.1.4) 
that there is a unique f-invariant probability measure on ']['1: in other 
terms, every orbit of f has the same statistical distribution on ']['1. 

2.1.6 Denjoy's Alternative and Denjoy's Theorems. Let f E DO(']['l) have 
irrational rotation number 0:. Let f be the induced homeomorphism of ']['1 and 
let J1, be the unique f-invariant probability measure on ']['1. Two cases can occur: 
i) Supp J1, = ']['1. Then the increasing map h of Proposition 4, normalized 

by the condition h(O) = 0, defines a homeomorphism in DO(']['l) which 
conjugates f and RO/. The dynamical properties of f and RO/ are the same 
fom the topological viewpoint. In particular, every orbit of f is dense in 
']['1. 

ii) Supp J1, = K i= ']['1. One then speaks of f (or 1) as a Denjoy counter­
example. The set K is a Cantor subset (compact, totally disconnected and 
without isolated points) of ']['1, invariant under /, whose points are exactly 
the limit points of every orbit of f-
One may ask whether Denjoy counter-examples exist at all. The following 

theorems of Denjoy (Herman 1979; Denjoy 1932; Denjoy 1946) answer this 
question. 

(1) Theorem. A C2 -diiJeomorphism of']['l with no periodic orbits is topologically 
conjugated to an irrational rotation. 

(2) Theorem. Let 0: E JR. - Q. There exist a Denjoy counter-example f with 
p(f) = 0: and f E D2-f(']['1) for all f > o. 

2.1.7 Topological Stability Questions. Let f E D2(']['1) have no periodic orbit. 
Then by Denjoy's Theorem 1 above the topological dynamics of f are known, 
but this is not sufficient to answer further questions as: 
i) Is the statistical distribution of J-orbits in ']['1 given by a continuous den­

sity? by a Coo_ density? This amounts (see Section 2.1.4) to ask whether 
the topological conjugacy between f and RO/, where 0: = p(f), is C1 or 
Coo. 
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ii) Assuming f real-analytic, we are interested not only to the dynamics of I 
on '['1 (or S1), but also in a neighbourhood of it in C/7/., (or C). For ex­
ample, one wants to know whether the circle is topologically stable under 
I (meaning that for every neighbourhood U of '['t there exists a neigh­
bourhood V c U such that any I-orbit starting in V stays in U). An 
easy argument shows that topological stability is actually equivalent to 
the analyticity of the conjugating function h. 

In order to discuss the smoothness of the conjugacy to the rotation ROil it 
is necessary to introduce some further arithmetical conditions on the rotation 
number a. 

2.2 Diophantine Approximation for Irrational Numbers and 
Continued Fraction 

2.2.1 Algebraic Formalism. An extended treatment of the subject can be 
found in textbooks (Lang 1966; Cassels 1957; Schmidt 1980). 

For x E JR, let [xl be the integral part of x, and let 

{x} = x - [xl and \\x\\ = inf \x - p\ . 
pEZ 

Let a E JR - Q. Define ao = [a], ao = {a} and for n ~ 1: 

One has ao E 7/." an E N* for n ~ 1 and an E (0,1) for n ~ O. The continued 
fraction of a is: 

For n ~ 0, let {3n 

Pn 

Then, defining: 

a = 
1 

ao + ----:;1-­
at + ---:;1-

a2+-

1 
= ao + -----:;-1---

at + ----=-1--

{3-2 = a , {3-1 = 1 , q-2 = 1 , q-1 = 0 , P-2 = 0 , P-1 = 1 , 

the following algebraic formulas hold: 
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and 

Finally 

f3n (-I)n(qno - Pn) (n ~ -2) 

qn anqn-l + qn-2 (n ~ 0) 

Pn anPn-l + Pn-2 (n ~ 0) 

f3n-2 = an f3n-l + f3n (n ~ 0) 

Pn+lqn - Pnqn+l 

qn+lf3n + qnf3n+1 

(-It (n ~ -2) 

o = 

1 (n ~ -2) . 

Pn + Pn-IOn 

qn + qn-IOn 
(n ~ 0) . 

The rational numbers (Pn/qn)n?o are called the convergents of o. 

2.2.2 Approximation Properties. For q ~ 1, let 

Then the convergents Pn/qn of 0 are the best rational approximations to 0 in 
the sense that one has, for n ~ 0 and qn :::; q < qn+l: 

Moreover, by the penultimate formula in 2.2.1 one has: 

2.2.3 Diophantine Conditions. We introduce now various Diophantine condi­
tions. 

i) Let () ~ 0, p > O. Define: 

C((), p)= {o E IR -ij, \fq ~ 1 , O"q(o) > pq-I-8} 

C(()) = U C((),p) 
p>o 

C = U C(()) . 
8?O 

In terms of the convergents of 0, one has: 

o EC((),p) 

o E C((),p) , 

and also: 



0: E C( 8) -¢:=> qn+1 = O( q~+II) 

-¢:=> 0:;;.!.1 = O(i3!) , 
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0: E C -¢:=> loge qn+1) = O(1og( qn)) . 

ii) Clearly, one has C(8,p) C C(8',p') for 8 ~ 8', p 2: p'. For () 2: 0, p > 0, the 
set C( 8, p) is closed and has empty interior. The sets C( 8) and C are countable 
unions of such sets, and this means that they are small in the topological sense 
(Baire category). 

In the measure theoretical sense, the opposite is true: for 8 > 0, C( 8) has 
full Lebesgue measure (but C(O) has Lebesgue measure zero). 

iii) It is an easy exercise to show that the continued fraction of an irrational 
number 0: is preperiodic (meaning: 3k, no such that an+k = an for n 2: no) if 
and only if 0: is algebraic of degree 2. Thus such a number belongs to C(O). 
A much harder theorem by Roth says that every irrational algebraic number 
belongs to C( 8) for all 8 > 0, but it is not known for any such number (of degree 
2: 3) whether it belongs to C(O). 

iv) The group GL(2, Z) acts on lR by 

where 

Mx = ax + b , 
ex +d 

M = (~ !) EGL(2,Z), 

and this action is related to the continued fraction algorithm as follows. For 
0:,0:' E lR - Q, the two properties are equivalent: 

(1) 3g E GL(2,Z) such that go: = 0:' 

(2) 3k E Z, 3no EN such that an(o:) = an+k(O:') for all n 2: no . 

This shows that for all 8 2: 0, the set C( 8) is invariant under the action of 
GL(2,Z). 

v) The sets C( 8) or C are appropriate for small divisors problems involving 
finite or infinite differentiability conditions. In the real-analytic case, different 
conditions are more appropriate. 

Let 0: E lR - Q. Define 

and 

and let 

Llo(o:) 10 , 

if Lln 2: loge 0:;1 ) 

if Lln ~ loge 0:;1 ) 
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Ho = {aER-IQ, 3no, Vn~no, Lln~log(a~l)}, 

H = {aER-IQ, VgEGL(2,Z), g·aEHo,}, 

B {aEIR-IQ, 3gEGL(2,Z), g·aEHo,}, 

It is easily seen that 
CCHCHo cB, 

# # # 

and 

n 

The set B, named after Brjuno who first considered it (Brjuno 1971, 1972) is 
a countable union of closed sets with empty interior. The set H has a more 
complicated nature. 

2.3 Smooth Conjugacy 
2.3.1 The Linearized Equation. Let j = ROi + LlI/J, h = Id + Ll!li E DO (']['1). 
If we linearize at j = ROi , h = Id (where Id is the identity map) the conjugacy 
equation h 0 ROi 0 h-1 = j, we get 

Let m be the Lebesgue measure on ']['1 and: 

For equation (*) to have a solution, one must have 

L LlI/J dm = 0, 

which is the infinitesimal version of the condition p(f) = a. One may ask for 
solution Ll1f; such that 

L Ll1f; dm = 0; 

this is just a normalizing condition on h. Besides this, equation (*) is trivially 
solved for Fourier coefficients: 

~(n) = (exp(27rina) _1)-1 L11>(n) , n # 0 

and we see that the relation between the smoothness properties of LlI/J and Ll1f; 
depend on the small divisors (exp(27rina) - 1). One has 

and the Diophantine conditions of Section 2.2.3 thus appear in the discussion. 
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(1) Proposition. If Q: E C and iJ.¢ E CO'(TI), then iJ.'IjJ E CO'(TI). If Q: rf- C, 
there exists iJ.¢ E CO'(TI) such that iJ.'IjJ cannot even be a distribution. 

(2) Proposition. Let r, s > 0, r, s rf- N, r - s = 1 + 8 ~ 1. If Q: E C( 8) and 
iJ.¢ E CO(TI), then iJ.'IjJ E C3(TI). If Q: rf- C(8) there exists iJ.¢ E CO(TI) such 
that iJ.'IjJ rf- Ca(TI). 

(3) Proposition. If limn ..... +oo q;llog( qn+l) = 0, and iJ.¢ E Ct(TI), then iJ.'IjJ E 
Ct(TI). If limsuPn ..... +ooq;llog(qn+t} > 0, there exists iJ.¢ E Ct(TI), such 
that iJ.'IjJ cannot even be a distribution. 

Propositions 1 and 3 are easily proven. The proof of Proposition 2 requires 
standard techniques in harmonic analysis. In Proposition 2, in case r or s is an 
integer, the condition r - s = 1 + 8 is replaced by r - s > 1 + 8. 

2.3.2 Local Theorems. The first theorem on smooth conjugacy for diffeomor­
phisms of the circle was proved by Arnold in 1961. 

i ) The analytic case 

(1) Theorem. Let Q: E 13, S > 0. There exists EO > ° such that, if f E DW(TI) 
satisfies p(f) = Q: and extends holomorphically in the strip {z, lIme z) I < S} 
with If(z) - z - Q:I < EO in this strip, then the conjugacy function h between f 
and Rae extends holomorphically in the strip {z, IIm(z)1 < S/2}. 

For details see the references (Arnold 1965; Herman 1979; Riissmann 1972; 
Yoccoz 1989). Note that the Brjuno set 13 is not the one arising from the 
linearized equation (Proposition 3 above). The condition Q: E 13 is actually 
optimal. 

(2) Theorem. Let Q: rf- 13, Q: E IR. - Q, and a > 3. Let), E SI be the unique value 
such that the Blaschke product 

f = )'z2 Z + a 
A,a 1 + az 

has rotation number Q: on SI. Then fA,a is not analytically conjugated to Rae. 

See Yoccoz (Yoccoz 1989). 

ii ) The smooth case 

(3) Theorem. Let 8 ~ 0, Q: E C(8), ro > 2 + 8. There exists a neighbourhood 
U of Rae in DTo(']['l) such that, if r ~ ro satisfies r rf- N, r - 1 - 8 ¢:. Nand 
f E DT(']['I) n U, then the conjugacy function h between f and Rae belongs to 
nT-I-B(']['I). In particular, if f E nOO(']['I) n U, then h E DOO(TI). 
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For a proof see Moser (Moser 1966; Herman 1979). The arithmetical con­
ditions above are again optimal. 

(4) Theorem. Let r ~ s ~ 1, B = r - s - 1, a (j. C(B). Then there exists, 
arbitrarily near ROlin the C T -topology, diffeomorphisms f E DTIl'I) with p(f) = 
a, such that the conjugacy does not belong to D8 (,][,I). 

See Herman (Herman 1979). 

2.3.3 Global Theorems. We once more consider separately the smooth case 
and the analytic case 

i ) The smooth case 

After Arnold and Moser proved around 1965 the local conjugacy theorems 
above, it was an important open question, formulated by Arnold, whether one 
could remove the hypothesis that f is near ROI and still have smooth conjugacy 
theorems. Herman answered this positively in 1976. For the following theorem, 
see the references (Herman 1979; Yoccoz 1984; Katznelson and Ornstein 1989a 
and 1989b; Khanin and Sinai 1987). 

(5) Theorem. Let r ~ s ~ 1 and B ~ 0, such that r - s -1 > o. If a E C(B) and 
f E DT(']['l) satisfies p(f) = a, then the conjugacy function h belongs to D8 (,][,1). 
In particular if a E C and f E DOO ('][' 1 ) satisfies p(f) = a then h E DOO(']['l). 

Note the slight difference with the arithmetical condition of the local The­
orem 3, which is known to be true even for B = r - s - 1 provided that rand 
s are not integers. 

ii ) The analytic case 

(6) Theorem. If a E 1{ and f E D"'(,][,l) satisfies p(f) = a then h E D"'(,][,l). 
Conversely, if a (j. 1{ there exists f E D"'(,][,l) such that p(f) = a and h (j. 
D"'(,][,l). 

See Yoccoz (Yoccoz 1989). 

2.3.4 Some Remarks on the Proofs. 

i ) Functional analysis: Newton's method 

A first natural approach to the conjugacy problem is to solve the conjugacy 
equation in an appropriate functional space. 

The simplest method would be to present the conjugacy function as a fixed 
point of a contracting map. But no such proof is known at the moment, even 
in the simplest case, where the rotation number belongs to C(O). 

In 1954, Kolmogorov proposed (Kolmogorov 1954) to replace in small di­
visors problems the Picard's iteration algorithm by Newton's algorithm. This 
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was successfully carried out by Arnold in the analytic case and Moser in the 
smooth case (Arnold 1965; Arnold 1963a; Arnold 1963b; Moser 1966; Moser 
1962; Moser 1969). 

In the smooth case, one modifies slightly Newton's algorithm introducing 
smoothing operators to take care of the loss of differentiability at each step in 
the linearized equation. In the analytic case, the loss is controlled by changing 
the (complex) domains of definition at each step of the algorithm. 

Later on, these methods gave rise to many versions of implicit function 
theorems in appropriate functional spaces (Moser 1961; Sergeraert 1972; Hor­
mander 1976; Lojasiewicz and Zehnder 1979; Zehnder 1976; Hamilton 1974 
and 1982). Amongst those, the simplest and easiest to handle (but, as a conse­
quence, not giving the more precise results) is the one introduced by Hamilton 
(Hamilton 1974 and 1982; Bost 1985; Herman 1980). Herman has given from 
Hamilton's implicit function theorem proofs of many small divisors theorems 
in the Coo-case, including the local conjugacy theorem above and the KAM­
theorems (Herman 1980; Bost 1985). 

ii ) Functional analysis: Schauder-Tichonoff's fixed point theorem 

Herman has given (Herman 1983, 1985 and 1986) short and simple proofs of the 
local conjugacy theorem and the invariant curve theorem. They are based on 
Schauder-Tichonoff's fixed point theorem: any continuous map from a convex 
compact set in a locally convex topological vector space into itself has a fixed 
point. These proofs involve subtle manipulations of the functional equations 
and a fine study of the basic difference equation of Section 2.3.1. 

iii ) Global conjugacy 

To prove his global conjugacy theorem, Herman had to develop non perturba­
tive methods. In the smooth case, his proof starts from the following obser­
vation: a diffeomorphism f is cr -conjugated to a rotation if and only if the 
iterates f n , n ;::: 0, form a bounded family in the c r -topology. A variant of 
this is used by Katznelson and Ornstein (Katznelson and Ornstein 1989a and 
1989b). The derivatives of the iterates are given by explicit formulas of the 
Faa-di-Bruno type. There is then a very delicate interplay between the geome­
try of the orbits of f and the size of the derivatives of the iterates. The crucial 
iterates in this process are the f qn , where the Pn/qn are the convergents of the 
rotation number. 

In the analytic case (Yoccoz 1987 and 1989) a different way is used to 
control the r n , mimicking at the diffeomorphism level the G L(2, Z) action on 
rotation number. The method also allows to construct the counterexamples. In 
the smooth case, counterexamples are constructed by Herman on the basis of 
a Baire category argument. 
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3. Invariant Tori 

3.1 Diophantine Conditions 

One of the most serious problems with small divisors involving more than 
two independent frequencies is the lack of a perfect analogue of the continued 
fraction algorithm. Nevertheless, one can still define Diophantine conditions as 
in Section 2.2.3. 

For a = (aI, a2, ... ,an), /3 = (/31, /32, ... ,/3n) in IR n, we let 

n n 

lal = :E lail , < a,/3 > = :E a i/3i . 
i=l i=l 

3.1.1 Discrete Time (Diffeomorphisms). Let n 2: 1. For a = (aI, a2, ... , an) 
in IR n and q 2: 1, define 

17q(a) = inf I/<k,a>/I. 
kEZn , l::'Slkl::'SQ 

One has 17q ( a) =I 0 for all q 2: 1 if and only if 1, aI, a2, . .. ,an are linearly 
independent over Q. For 0 2: 0, p > 0, define: 

C(O,p) = {a E IR n , Vq 2: 1, 17q (a) 2: pq-n-8} 

C(O) = U C(O, p) 
p>O 

C = U C(O) . 
8~O 

As for n = 1, one has C(O,p) C C(OI,p') for 0 ~ 0' , p 2: p' and C(O,p) is a 
closed totally disconnected subset of IRn. Consequently, C(O) and C are small 
in the topological sense (Baire category). But C(O) has full Lebesgue measure 
for 0 > 0 (C(O) has Lebesgue measure 0). 

3.1.2 Continuous Time (Flows). Let n 2: 2. For a = (aI, a2, ... , an) in IR n 
and q 2: 1, define 

17;(a) = inf l<k,a>l. 
kEZn ,l::'Slkl::;q 

One has 17;( a) =I 0 for all q 2: 1 if and only if aI, a2, ... ,an are linearly 
independent over Q. For () 2: 0, p > 0, define: 

C*(O,p) = {a E IR n, Vq 2: 1 , 17;(a) 2: pl-n-8} 

C*(O) = U C*(O,p) 
p>O 

C* = U C(O) . 
8~O 
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The set c*(e) is the homogeneous analogue of the set C(e). Indeed one has: 

One also has, for t > 0: 

tc*(e,p) = c*(e,tp) . 

The intersection of C*( e, p) with the sphere < a, a >= 1 is a compact totally 
disconnected set. For e > 0, c*(e) has full Lebesgue measure, but C*(O) has 
Lebesgue measure O. 

3.2 Quasiperiodic Motions on Tori 

3.2.1 Discrete Time (Diffeomorphisms). Let n 2: 1 and 'm = ]R.n/zn be the 
n-dimensional torus. Let Diff;('['n) be the group of Cr-diffeomorphisms of ,[,n 

homotopic to the identity; the lifts to ]R. n of such diffeomorphisms form the 
group Dr('['n) of diffeomorphisms 1 of]R.n such that 1 - Id is Zn-periodic. 

For a E ]R.n, (resp. a E '['n), let RO/ be the translation x f---? x + a. For 
n 2: 2 there is unfortunately no rotation number for diffeomorphisms in Dr('['n): 
it is easy for instance to construct 1 in DW('['2) such that 1(0,0) = (0,0) 
and 1(0,1/2) = (1,1/2). The best one can do is to define a rotation set: for 
1 E D°('lrn) let! be the induced homeomorphism of ,][,n and M(!) be the set 
of probability measures on ,][,n invariant under 1. Define: 

R(f) = {J'Jrn (f(x) - x) dll(x) , Il E M(!)} . 

This is a compact convex non empty subset of ]R. n, and one can only speak of 
a rotation number when this set is reduced to one single point, for instance if 
! has only one invariant probability measure on '['n. 

It may be therefore rather surprising that a local smooth conjugacy the­
orem analogous to the case n = 1 still holds. The following theorem is due to 
Arnold and Moser (Arnold 1965; Moser 1966; Herman 1979). 

(1) Theorem. Let e 2: 0, a E C(e), ro > n + 1 + e. There exists a neighborhood 
U of RO/ in DTo(']['n) such that, if r 2: ro satisfies r i. N, r - e i. Nand 
1 E Dr(']['n) n U, then there exists a unique A E ]R.n, near 0, and a unique 
hE Dr- n- 8(']['n) near the identity such that 

h(O) = 0 . 

Moreover, the map 1 f---? (A, h) defined on Un Dw('['n) with values in ]R.n X 

DOC ('][' n, 0) (where DOC (']['n, 0) is the subgroup of Doo('['n) formed by the diffeo­
morphism fixing 0) is a local COO-tame diffeomorphisms in the sense 01 Hamil­
ton. 
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The concept of smooth tame maps, introduced by Hamilton, seems to be 
the natural one when one deals with Frechet spaces such as spaces of Coo-maps. 
For a definition see Hamilton and Bost (Hamilton 1974 and 1982; Bost 1985) 

The main point of the theorem is the following: for diffeomorphisms f near 
Reo to exhibit a quasiperiodic motion with frequency a is equivalent to have 
>. = 0 in the theorem, and this happens exactly (due to the last assertion in 
the theorem) on a submanifold of DOC (Tn) of codimension n. 

Another important fact is that the 'size' of the neighbourhood U of RO! in 
Dro(Tn) with a E C(e,p) depends only on e, p, and roo 

When a 1. C, the set of diffeomorphisms which exhibit a quasiperiodic 
motion of frequency a, is very poorly understood, even in the neighbourhood 
of RO!. 

3.2.2 Continuous Time (Flows). Let XTcrn) be the vector space of CT-vector 
fields on Tn. For a ERn, we denote by XO! the constant vector field 2:::7=1 ai a~i' 
where e1, e2, ... ,en are the coordinates on Tn. 

For h E Diff1(Tn) and X E XO(T n), let h*X be the image under X under 
h: 

h*X((}) = Dh(h-1(e))X(h-1(e)) . 

The local conjugacy for flows is then the following theorem (Arnold 1965; Moser 
1966; Herman 1979). 

(2) Theorem. Let e ~ 0, a E c*(e), ro > n + e. There exists a neighbourhood 
U of XO! in Xro (Tn) such that if r ~ ro satisfies r 1. N, r - e 1. N, then 
for any X E xr(Tn) n U there exists a unique>. E Rn near 0 and a unique 
h E DiH;;+1-n-8(Tn, 0) near the identity such that: 

X = X A + h*XO! . 

Moreover the map X I---t (>', h) defined on xoo(Tn) n U with values in Rn x 
Di:£Fa'(Tn,O) is a local COO-tame diffeomorphism. 

3.3 Hamiltonian Dynamics 
3.3.1 Lagrangian Tori. Let M be a smooth manifold of even dimension 2n, 
and let w be a symplectic form on M, i. e. a closed non-degenerate 2-form. 

The fundamental example in our context will be M = Tn X R n (or M = 
Tn xV, V open in R n), with w = 2:::7=1 dri 1\ de j , where r1, r2, ... ,rn are the 
coordinates in R n and e1, e2, ... ,en are the coordinates in Tn. One has then 

w = d>', >. = 2:::7=1 rjd(}j. 
A submanifold T of M is Lagrangian if its dimension is n and one has for 

all x E T: 

Wx /TxT == O. 

We will be only interested in the case where T is diffeomorphic to the torus 
Tn; we then speak of a Lagrangian torus. 
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The content of the following proposition is that in a neighbourhood of a 
Lagrangian torus, one can forget the ambient manifold M and work in 1'n x]R. n. 

(1) Proposition. Let l' be a Coo Lagrangian torus in M. There exists an open 
set V in ]R. n containing 0, an open set U in M containing 1', and a Coo_ 
diffeomorphism K from U onto 1'n x V such that 

K(1') = r x {O} . 

K*(2:,dri II dOi ) = w . 

Moreover the restriction of K to l' may be any given Coo -diffeomorphism from 
l' onto Tn X {O}. 

3.3.2 Quasiperiodic Invariant Tori. Let H be a Hamiltonian on M, i. e. a 
Coo-function on M. The associated Hamiltonian vector field XH is defined by: 

An important property of Lagrangian submanifolds is the following proposition. 

(2) Proposition. Let l' be a Lagrangian sub manifold of M contained in an energy 
hypersurface of a Hamiltonian H. Then l' is invariant under the flow of X H . 

Indeed, for all x E 1', T x l' is its own wx-orthogonal and is contained in 
Ker(DxH), hence contains XH(X). 

(3) Definition. Let H E COO(M) and a E ]R.n. We say that a Lagrangian torus l' 
is an a-quasiperiodic (Lagrangian) torus for the Hamiltonian vector field X H 

if l' is invariant under X H and there exists a Coo -diffeomorphism k from l' 
onto 1'n such that 

3.3.3 Complete Integrability, the Twist Condition. Let V be an open set in 
]R.n and Ho E COO(V). Then Ho may also be considered as a Hamiltonian on 
1'n X V, said to be completely integrable. The Hamiltonian vector field XHo is: 

Every (Lagrangian) torus {r = ro}, (ro E V) is invariant under XHo , the 
restriction of XHo to it being the constant vector field 2:,7=1 ~(ro) a~i . 

Defining ai(1') = ~(r), and a(1') = (a1(r),a2(r), ... ,an(r)), the torus 
{1' = 1'o} is an a(1'o)-quasiperiodic torus for XHo. We say that Ho satisfies the 
twist condition along {1' = 1'o} if: 
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( [PHo ) 
det ar;arj (ro) -I- 0 . 

In other terms, the map r t--+ a( r) has to be a local diffeomorphism near r = ro. 

3.3.4 Normal Forms. Let H be a Hamiltonian on M, let a E ]Rn, and let 'f 
be an a-quasiperiodic Lagrangian torus for XH. By Proposition 1 in Section 
3.3.1, there exists an open set V in ]Rn, a neighbourhood U of'f in M and a 
Coo-diffeomorphism K from U onto 'fn X V such that: 

K('f) = 'fn X {O} , 

K*CEdr; 1\ dO i ) = w , 

(K* . XH) j'fn x {O} = (X",O). 

(3) Proposition. Assume moreover that a E C*, and let N ~ 1. Then one can 
choose V, U, K as above and such that moreover one has: 

HoK-1(O,r) = Ho(r) + <p(O,r) , 

with <p(O, r) = o(llrIIN ). 

One says that the completely integrable Hamiltonian Ho in 'fn x V is 
a normal form (of order N) for H in the neighbourhood of 'f. Thus, near a 
quasiperiodic Lagrangian torus whose frequency belongs to C*, a Hamiltonian 
may be approximated at any order by a completely integrable one. 

In particular, taking N = 2, we say that H satisfies the twist condition 
along 'f if one has for the normal form Ho: 

( a2Ho ) 
det ariarj (0) -I- O. 

Actually, even when the frequency a does not belong to C*, it is still possible 
to define the twist condition along 'f: taking U, V, K as in the beginning of 
this Section, write: 

where A(O) is a symmetric n x n matrix depending on 0 E 'fn. The twist 
condition for H along 'f is then: 

det (i1f" A(O) dm(O)) -# O. 
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3.4 KAM-Theorems 

For the theorems of Kolmogorov Arnold and Moser (KAM-theorems) which are 
described below in an informal way, we refer to the following papers (Arnold 
1963a and 1963b; Poschel1980 and 1982; Moser 1969; Herman 1980; Riissmann 
1970, 1972 and 1983). 

3.4.1 Fixed Frequency. Let H be a Hamiltonian on a symplectic manifold 
(M,w) of dimension 2n. Let 8 > 0, p > 0, a E C*(8,p). Assume that the vector 
field XH exhibits an a-quasiperiodic Lagrangian torus 'Jr, and that the twist 
condition is satisfied by H along 'Jr. 

Then there exists a neighbourhood W of a in JR.n, a neighbourhood U of 'Jr 
in M and a neighbourhood U of H in Coo(M), such that for any perturbation 
if E U, and any frequency 13 E W n C*(8, p), the Hamiltoni~n vector field XIi 

has in U a j3-quasiperiodic Coo Lagrangian torus. T ,B(if). 
Moreover, for any given 13 E WnC*(8,p) the map if f-t T,B(if) is smooth 

in U (actually, the map (13, if) f-t T,B( if) is smooth in the sense of Whitney in 
(WnC*(8,p)) xU. 

Finally, for any if E U, the union : 

U T,B(if) 
,BEWnC*(8,p) 

has positive Lebesgue measure, and even arbitrarily large relative Lebesgue 
measure in U (if one takes U, U, W small enough). 

3.4.2 Persistence of Tori. We want to give a very rough idea of the cause of the 
persistence of a-quasiperiodic Lagrangian tori (a E C*) under perturbations. 

We only discuss the infinitesimal level, neglecting terms of order 2: 2 in 
the perturbation. 

Assume that a Hamiltonian H has an a-quasiperiodic Lagrangian torus '][', 
with a E C*, and that H satisfies the twist condition along ']['. Then there are, 
in a neighbourhood of '][', symplectic coordinates (8, r) E ,][,n x V (V open in 
JR.n,O E V) such that the equation of'][' is {r = O} and that H may be written: 

H(8,r) = Ilo+ < a,r > + < Ar,r > +¢>(8,r) , 

with Ilo ~ JR., A a symmetric invertible matrix, and t(8,r) = O(lIrW). 
Let H = H + L1.H a small perturbation of H, '][' a small Lagrangian Coo_ 

perturbation of ']['. Then there us a unique L1..x E JR. n and a unique L1.'IjJ E Cg"(']['n) 
such that: 

The condition on first-order terms for T to be invariant under X Ii (i. e. for if 

to be constant on T) is that there exists L1.1l E JR. such that: 

(1) L1.1l = < a, dL1.'IjJ( 0) + L1..x > +L1.H( 0,0) . 
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Keeping only O-th and first-order terms, the O-component of X if along Tis: 

Xa + A· (.1'\ + dL1"p(O)) + ! L1H(O, 0) 

and for this to be of the form h*Xa, h = Id + L1h, L1h E (Cg"(']['n)t one must 
have: 

(2) 

Now, under the hypothesis 0 E C*, the operator La : C8"(']['n) -+ C8"(']['n) 

is invertible; this is easily proved considering Fourier coefficients. Hence (1) is 
solved by: 

{ 
L1/-l = < 0,.1,\ > + 1 L1H(O,O) dO 

L1~ L~'(-L1H(O,~ + f ... L1H(O,O) dO) . 

Then putting: 

S(O) 
a 

= aT L1H(O, 0) + A· dL1"p(O) , 

equation (2) is solved by: 

{ 
.1'\ _A-1 j'F" S(O) dO 

L1h = L;;l(S + A . ,\) . 

This shows that, at the infinitesimal level, '][' and the normalized conjugacy 
h are uniquely determined by the perturbation L1H; this gives at least some 
plausibility argument to the statements in Section 3.4.I. 

3.4.3 Fixed Energy. The tori in the KAM-theorem of Section 3.4.1 are not 
necessarily in the same energy surface than was the initial torus ']['. There is a 
modified version of the KAM-theorem if one looks for quasiperiodic Lagrangian 
tori in a fixed energy hypersurface , which requires two modifications. 

i) The twist condition is modified as follows. Let Ho be a normal form of 
order ~ 2 for H near '][' (cf. Section 3.3.4) and 0 : V -+!R. n the frequency map 
of Ho (cf. Section 3.3.3). We still assume that the frequency 0(0) of'][' belongs 
to C*. But instead of assuming that the derivative Do(O) is a linear isomor­
phism of !R. n , we now assume that the restriction of Do(O) to the hyperplane 
tangent to {Ho = constant} is a linear isomorphism onto a hyperplane of !R. n 

not containing 0(0). This is the modified twist condition for fixed energy. 

ii) The conclusion of the theorem is modified as follows. Let if E U a per­
turbation of Hand j3 E W n C*(O, p) a frequency. Instead of a j3-quasiperiodic 
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torus in an unspecified energy surface, we obtain, in any given energy surface 
near the original one, a tj3-quasiperiodic torus for some real number t near l. 
The other conclusion of the theorem, mutatis mutandis, are the same. 

3.4.4 Discrete Times. Recall that a diffeomorphism I of a symplectic manifold 
(M,w) is symplectic if f*w = w. 

When w is given as the differential of a I-form A (for instance: M = ']['nx V, 
A = L:~=l ridBi), this means that the I-form f* A - A has to be closed. We say 
that I is exact symplectic when this I-form is exact. 

Let I be a symplectic diffeomorphism of (M,w). Assume that I leaves 
invariant some Lagrangian torus ']['. Let a E ']['n. We say that '][' is an a­
quasiperiodic torus for I if there is a diffeomorphism k from '][' onto ,][,n such 
that k 0 11,][,0 k-1 is the translation Ro of ']['n. 

Let '][' be an a-quasiperiodic torus for a symplectic diffeomorphism f. If 
we are only interested in the dynamics of I (and its perturbations) in a neigh­
bourhood U of '][' we may assume that: 

U = ,][,n X V 

'][' = ,][,n X {O} 
w = L:dri 1\ dB j 

I(B,O) = (B + a, 0) . 

The last condition implies that I is exact symplectic. Write the coordinates of I 
as I( B, r) = (II (B, r), h (B, r )), and let A( B) be the symmetric matrix %rII (B, 0). 
Then the twist condition for I along,][, is: 

det (i1fn A( B) dB) f. o. 

The KAM-theorem for symplectic diffeomorphisms is now as follows. Let B > 0, 
p> 0, a E C(B,p). Let I be a symplectic Coo-diffeomorphism of a symplectic 
manifold (M, w). Let '][' be an a-quasiperiodic invariant Lagrangian torus for 
I. Assume that the twist condition is satisfied by I along ']['. 

Then there exists a neighbourhood W of a E ']['n, a neighbourhood U of '][' 
in M and a neighbourhood U of I in Diff""(M) such that, for any symplectic 
perturbation 9 E U exact near '][' and for any frequency j3 E W n C(B, p), there 
exists in U a j3-quasiperiodic Lagrangian torus Tp(g) for 9 (exact near '][' means 
that 9 is exact in the coordinates (8, r) E ,][,n x V). 

The other conclusions of Section 3.4.1 on smoothness and measure are still 
true in this case. 

As a final remark, we note that the three versions of the KAM-theorems 
presented above (fixed frequency, fixed energy, discrete time) may be proven 
along the same lines. But actually, it has been shown (R. Douady 1982) that 
anyone of the three versions implies the other two. 

3.4.5 Final Comment. The quasiperiodic invariant tori provided by the KAM­
theorem are an essential step in our knowledge of Hamiltonian dynamics. But, 
although they describe the dynamics on a set of positive measure, this set is in 
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general not open and one would like to know what happens 'between'the KAM­
tori. This an extremely rich and very active field of study (Chenciner 1985; 
Herman 1989), with many important recent developments. But this would take 
us too far. 
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