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For a (reduced) cohomology theory h the mod ¢ cohomology theory
(5 Z,) is defined by h*(X ; Z,)=h***(X AM,) where M, is a co-Moore space
of type (Z,,2). By the representability theorem any (multiplicative) coho-
mology theory & is represented by a certain (ring) spectrum E. X-'M,isa
Moore spectrum of type Z,, so we put V,(0)=2"'M,. Since V,(0) is self
dual, EAV,(0) is a represented spectrum of ( ; Z,) so that h*(X;Z,) =
{X, EAV,(0)}_4. In [1] Araki-Toda discussed the multiplicative structure
in mod ¢ cohomology theories. In other words they investigated several con-
ditions on a ring spectrum E under which EAV (0) is a nice ring spectrum.

Let p be a fixed prime. A spectrum V(n) is defined to be a finite CW-
spectrum having H*(V(n) ; Z,)=E(Q,, @1, - - +, Q,) as a module over the mod p
Steenrod algebra where Q, are Milnor elements. For example, we can take
as V(0) a Moore spectrum of type Z,, i.e., V(0)=V,(0), and the existence of
V(n) is assured for n=1, p=3, for n=2, p=5 and for n=38, p=7. Making
use of Adams spectral sequence Toda [4] computed the homotopy groups of
V(@) and V(2) up to some range, and he then determined the structure of
the algebra {V(1), V(1)}, in [5].

Let E be a ring spectrum equipped with a multiplication x and a unit ..
The purpose of the present work is to give conditions on E under which
ENV(Q) and ENAV(2) are nice ring spectra (Theorem 4.2), by means of
Toda’s computations. In §1 we restate several results of Araki-Toda [1],
mainly existence theorems of admissible multiplications for E' A V(0), but they
are presented here in terms of the stable homotopy category of CW-spectra.
If p=3, then V(0) becomes a ring spectrum which admits a unique multipli-
cation . In §2 we first give a condition under which £ AV(1) has a mul-
tiplication whose restriction to EAV(0) is (¢ Av)AAT A1) where T denotes
the map switching two factors. We next study a condition for the com-
mutativity of EAV(1). In particular, when p=5 V(1) is a ring spectrum
whose multiplication 4, , is a unique extension of ». In § 3 we give a condi-
tion under which E'AV(2) has a multiplication whose restriction to EA V(1)
is induced by ¢ and v, ;, and then discuss the commutativity of £ AV (2).
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In § 4 we show that in the p=3 cases BP A\ V(n) are associative and com-
mutative ring spectra for the Brown-Peterson spectrum BP (Theorem 4.7),
although it seems difficult to investigate the associativity of EA V(1) and
ENAV(2) for a general E. We can construct a certain CW-spectrum P(n)
using the Baas-Sullivan technique of defining bordism theories with singu-
larities (see [2]). Since BP AV (n) is isomorphic to P(rn+1), the above result
means that P(n+1) is an associative and commutative ring spectrum if p=3
and V(n) exists (Theorem 4.10). In appendix we show that P(n) is always
a ring spectrum even if V(n) does not exist, and in addition that it is com-
mutative for p=3.

In this note we shall work in the stable homotopy category of CW-
spectra.

The authors wish to thank Professor S. Oka for his kind advices.

§1. Admissible multiplications of E/\V(0)

1.1. Let us fix a prime p and denote by V(0) the Moore spectrum of
type Z,, so we have a cofibering

T

s Py b y)—s 3

A CW-spectrum X is called a Z,-spectrum if the identity 1y: X—X has
order p. Thus a Z,-spectrum X is equipped with two maps

Yr: XAV(0)—>X and ¢y: 3" X—>XAV(0)
satisfying the equalities

‘I’X'SISX:O’

1.1
(L1 YxAND)=AANT)gx= 1y and QAAD)Yx+éxANAT)=1x,v0)-

Remark that ¢y and ¢y are uniquely determined when {2"X, X}=0.

It is well known that
‘1,0,=0 if p is odd, but
1.2) DLy : f p
p'lv(o):z'ﬂ'ﬂio Zf p:z,

where 7: 3'—2° is the Hopf map [1, Theorem 1.1]. This means that V(0) is
a Z ,-spectrum for an odd p, but not so for p=2. Let N denote the mapping
cone of the composition i-5: 3'-V(0). By Verdier’s lemma (see [3]) we then
have a cofibering

S VO AT O) - N, 5
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making the diagram below commutative
2t = X
Jo i
1A% 1IN
V(O)—>V(O)——>V(O) AV(0)—>2'V(0)
R I
X ——>V(O)——> N — 22
m N
in which the right-lower square commutes up to the sign —1.
For any Z ,-spectrum Y (A1 An)*: {2'X, Y} -{X A V(0), Y} is monic. Hence

LEMMA 1.1. XAV(0) is a Z,-spectrum if and only if 1yNi-p: 2'X—
XAV(0) is trivial.

We say that a map 7: XAVOAV(0)-XAV(0) is a pre multiplication
of XAV(0) if it satisfies yAAIAD=yAANiA1)=1. Assume that XAV (0)
is a Z,-spectrum, so we have a left inverse yy: XAN—-XAV(0) of 1Aiy.
Making use of this left inverse we define a map

70: XAVO)AV(0)—>XAV(0)
as the composition y,=7yAAKk,).
LEMMA 1.2. The map 7, is @ pre multiplication of X AV(0).

ProoF. = The difference ¢ A1 —1A< belongs to z*{3*, V(0) A V(0)} =
T {2, 2"} as {3, N}=0. So we get immediately

rvANE)ANIAD =ryAAE)ANIAD =yyANix)=1.
The above result-means that
1.3) XAV(0) is a Z,-spectrum if and only if it has a pre multiplication.

For two pre multiplications 7, ¥ of XA V(0) we can choose a map
b: XNV (0)-XAV(0) such that y—y'=bA A1A7). Obviously bAAD)AAx)
=0 and hence b(1 A7) =0 because p{2'X, X A\V(0)}=0. Consequently there
exists a unique map

1.4) B(y,7): 2’ X—>XAV(0)
so that y—7'=B(y,y)AAzxAzn). B(y,7) measures the difference of pre mul-
tiplications y and 5.

Let E be a ring spectrum, i.e., it has given maps p: EAE—E and ¢: 2°
—E such that pAN)=u(¢A1)=1. Every pre multiplication y of EAV(0)
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gives rise to a map
t EAVOAEAV(0)—>EANAV(0)

defined by the composition g,=r(uAIADAATAL) where T is the map
switching factors. This map satisfies the property

(4)  pAATADAAIAIAD)=gAATADAAIAIAD=pAL

Therefore this gives EAV(0) the structure of a ring spectrum having (A1
as the unit. On the other hand, each multiplication  of EAV(0) satisfying
(4,) yields a pre multiplication y; by putting y;=aQAL1AAD. This corres-
pondence is a left inverse of the previous y—z,.

PROPOSITION 1.8. Let E be a ring spectrum. The following conditions
are equivalent :
i) EAV(0)is a Z,-spectrum,
i) EAV(0) has a multiplication satisfying (4,), and
iii) EAV(0) is a ring spectrum with the unit ¢/\1.

PROOF. The above observations show the implications i)—ii)—iii), and
iii)—1) is immediate.

By the same argument as (1.4) we obtain a unique map
1.5) B(a, f): 2*)ENE—ENV(0)

so that g— =B, )AAzA1Ax) for two multiplications 2, 7/ of EAV(0)
satisfying (4,).

LEMMA 1.4. If o multiplication i of EAV(0) satisfies the property
(1), then there exists a unique map 7y; EAEAN—EANV(0) such that
AANTAD)=75yAANINE).

PROOF. Take a left inverse yy of 1A%y and fix our multiplication x=
7 associated with the pre multiplication y,=7y(AAky). Since

FANTADANLIAGY
=mAATADAALIAG) +B(@, g ANIAZ AT)AANLAT)
=0,

we can find a required map which is unique.
A similar discussion to the above shows that

every pre multiplication y of X AV (0) admits a factorization

1.6
1.6 r=ryANk).
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1.2. We put p=7 in the p=2 case and p=0 in the other cases and
denote by P its mapping cone. There exists a cofibering

Pl p v N,

;80 that the diagram below is commutative

sy 2 p Ty
[
22—V (0)—N >22.
i Ty Ty
T ky
2 ="

‘Take a map k: N—2* such that QAD)QA+T)=i-k-k, as 7, AAR)A+T)=0
and kf : {N, 2'}—-{V(0) AV(0), 2"} is epic. Setting k-jy=ay-7p, a € Z,, where
=0 in the p=2 case, the map k is expressed as a sum k=ay-zy+bky, be Z.
Therefore AAx)A+T)=bi-ky-k,. Applying (1A?)* on both sides we get
HD=1mod p. Thus

(1.7) ANDA+T) =% ky-k,.

Let D be the Moore spectrum of type Z,. and j: 3°—D be the canonical
inclusion. Then we have a cofibering

SV SV (0)-2>D-"25V(0)

80 that p-j=i,-% and n,-j=1, corresponding to the short exact sequence 0—
L y— 2L pw—2Z,—0. Put p,=7-7in the p=2 case and p,=0 in the other cases.
Denoting by @ its mapping cone there exists a commutative diagram

hx! LN D 1q > Q Tq X

2'— V(©0) — N 2
i Ty

iy

8 ky
2'V(0)=—==3'V(0)

consisting of four cofiberings. The above k}, coincides with the composition
¢-ky as kjy—1i-ky belongs to {3, V(0)}=0.

Let E be a ring spectrum such that 1/A\p,: 'E—E AD is trivial. For
any left inverse yo: EAQ—EAD of 1/\i, we now construct a left inverse
7 EAN—EAV(0) of 1A%y which is compatible with it. Considering the
diagram
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EAVOL9R A Q0% EAN 0% B A 31V (0)
(1.8) ml
ENAV(0) —>KEND >E AV (0)——>E N2V (0)
1A, 1A, 1N

with two cofiberings, we get a map y': EAN—EAV(0) which makes the
entire diagram commute. Five lemma shows that (1 Aiy) is a homotopy
equivalence. So we put yy={y’(AAiy)}~*-7/, which makes the above diagram
commutative again and satisfies yy(1 \iy)=1.

Consider the multiplication g, of E A V(0) associated with the pre multi-
plication y,=yy(AAk). This satisfies the property

(4, AN p=ANIADA+IAT(EAIANDAANTALD
because of (1.7). In other words the equality
(4,) AN pe=p(LASATIAD + A ATALAG)

holds. Thus 1A behaves as a derivation.

PROPOSITION 1.5. Let E be a ring spectrum. Inthe p=2 case ENAV(0)
has a multiplication satisfying (A;) and (4,) if and only if LA\j-p: ' E—-END
s trivial. In the other cases ENAV(0) has always a multiplication satisfy-
ng (4,) and (4,).

PrOOF. Our multiplication g, constructed suitably as the previous satis-
fies the properties (4,) and (4,). We next assume that there exists a multi-
plication g of E'AV(0) with the two properties when p=2. Lemma 1.4 says
that 7 has a factorization g=7yAALIAE)AANTAL). By use of (1.7) the
equality (4,) yields

AADFNAALIAk)=AALIADA+IAT)(EALAL
=AADAAEDAAEYEALAL.

This then implies that AA8)Fy=AADAANEkN) (A1) as 2{3'"EAE, EAV(0)}
=0. Putting yy=74(¢A1A1), it is a left inverse of 1 A\iy which has (1N\d)yx
=1Akjy. By the same argument as (1.8) we can find a left inverse y, of
1A% such that AAzy)re=7yyAAJy). Hence 1Aj.-5: S'E—-EAQ is trivial.

1.3. Let E be a ring spectrum and f: A—B be a map which induces
the trivial 1Af: EAA—EAB. Denote by C the mapping cone of the map
f», so we have a cofibering

f

At p o T4,
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For any &: S'"A—-ENC with (L1A#y)E=¢/A1 we define a left inverse of 1A%,
re: EAC—>ENB

by the formula (A A%y, =1—(@pADAANEAAzry). As is easily checked, the
correspondence £—7, has a left inverse and hence it is injective.

LEMMA 1.6. Let &: ' A—-ENC be a map such that (INAry)é=cA1.

i) If E is associative, then the relation y . (u A1) =(uALD{1Ay.) holds.

ii) If E is associative and commutative, then the relation y . (u AN1)ANT)
=@ADAAT)(. A1) holds.

Proor. Under our assumptions a routine computation shows that

ANr(eAD=@EADANLIANIHAAY,)
and AN (uADANT)=@ADAAT)AN ADGAD.

Let E be an associative ring spectrum such that EAV(0) is a Z,-
spectrum. Take a map ¢: 3°—-FE AN satisfying 1 Azny)é=¢ and consider
the left inverse 7, of 1A%y induced by the map £&. This gives us a pre mul-
tiplication ¢, by putting y,=y.(1/\k,). Note that there exists a map &,: 3*—
N satisfying =y -&=1 whenever p is odd. By means of Lemma 1.6 we see
that the above 7, is compatible with the multiplication x of E in the sense
that

7l AN IAD =@ ADA A7),

A
(4) rALADAATADANA AT = (A DAATGAD

when F is commutative or £=(A1)5,. The property (/4,) implies that the
multiplication g, induced by the left inverse y, is quasi associative, i.e.,

e ANIANIAD)=@ADAA ),
tANINIADAATAIAD =p(ANIA AL,
and WAAIALZADAAIAIAT) =(ADAAT) (A D.

‘(As)

A multiplication of EAV(0) is said to be admissible if it satisfies the
properties (4,), (4,) and (4,) (see [1]).

PROPOSITION 1.7. Let E be an assoctative ring spectrum. In the p=2
case ENV(0) has an admissible multiplication if 1Aj-p: Z'E—EAD 1s
trivial and E is commutative. In the other cases admissible multiplications
of EAV(0) exist always. (Cf., [1, Theorem 5.9]).
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ProoF. For any &:23°-EAQ satisfying (1Azg)&=:A1 we put &=
ANGYE. This determines the left inverse y, of 1Ay, which satisfies.
1 AN =ANzp)re and AADyr.=AADANAky). When p is odd we can take
the composition (¢A1)&) as & where & : 2’—Q satisfies #Q -&,=1. Therefore.
our multiplication p,=7.QAAEk)(eALIADAANTAL) is admissible.

REMARK. Araki-Toda [1, Corollary 3.9] showed that admissible multi-
plications #, 7 of EAV(0) coincide if and only if

Bz, /)eA)=0¢ {5, EAV(O)}.

1.4. Taking as a ring spectrum E the sphere spectrum S, Proposition.
1.3 implies that V(0) is a ring spectrum with the unit 2 whenever p is odd.
Its multiplication

¥: VIO AV(0)—>V(0)

is unique as {3'V(0), V(0)}=0. V(0) is commutative when p=>3 and associa-
tive when p=5. However it is not associative in the p=38 case [4, Lemma.
6.2]. Thus

P T=v, YW AD=YAAY)+i-a(w\xAz)  when p=3,

1.9)
Yo T=v, v AD =4 AA) when p=5,

where «,: 2°—2° is the generator of the 3-primary part (see 2.1).

We next discuss the commutativity of EAV(0) for p=2. When p=2,.
choose maps 7: 2'V(0)—2" and 7: 3°—V(0) such that 7.¢=7 and =-j=7, then
put »,=17-7 and 7,=7-z. Since {2'V(0), V(0)} is generated by two 7, and z,,
a routine computation shows that

{VOAVO),VO=Z,+2,+2,

with generators y,(1A#n), 7,(1A\x) and ¢-p-ky - k,.
Put

k(T —D)=aiyp(LAD) +biyp(AAT), a,beZ

as ayk(T—D=@An)(A—-T)=0. We use the relation AN)(@,+7)AA7)=
2.1, v to rewrite

k(T —1)=(a—D0)iyp, (AL A7) +2bk,= (b —@)iyn,(1 A7) +2ak,.

We here assume a=b mod 2, and set T=@2b+1)+cjkyk, for some ce Z,.
Then c=1mod 2, because 6=AATD)TAND=cANR)jkyk (1A% =cs. By the
above setting we have
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T*=1-+ 2wk,

which implies that 2jkyky=Q A0ty -kyk,=0. This is a contradiction.
Therefore

1.10) k(T —D=iynAN7) =131 A7) mod 2{V(0) AV(0), N}
(cf., [1, Theorem 7.4]).

PROPOSITION 1.8. Let E be a commutative ring spectrum such that
ENV() is a Z,-spectrum. Then the following conditions are equivalent:
i) EAV(0) has at least one commutative multiplication satisfying (4,),
ii) IApAAR)=1A7AAR): EAV(0)AV(0)—EAV(0) is trivial,
ili) 1A7: EAZYV(0)—FE is trivial, and
iv) 1IN7: 2*E—-ENV(0) is trivial.

ProOF. Since EAV(0) is a Z,-spectrum, 1A (1Az)=1 A, Ax) and
the conditions ii), iii) and iv) are equivalent.

i)—ii): Let 7 be a commutative multiplication satisfying (4,). By
virtue of Lemma 1.4 we obtain a decomposition g=7yAALIAk)AATA 1).
By the commutativity of 7 we have

ACNINAD=aANTADTATIAATALCALAAL
INANIAE)AALAT( AALIAL
=ACAINANAD +EADAALALAAD)AALAL

I

which implies that ¢ A7, (1 Ax)=0, and hence 1IN AN =0.
ii)—1): For any left inverse yy of 1Aiy we see

IvAANE)ANT) =7rxANE)+AAp)AALAT)
by (1.10). Therefore the pre multiplication y,=75y(1Ak,) is commutative,

and so our multiplication s, associated with the above 70 iIs commutative as
E is commutative.

1.5. In order to discuss the associativity of EAV(0) when p=2 we
require the following lemmas.

LEMMA 1.9. In the p=2 case there exists a map p,: N—PA V() so
that piiy =1, A1, (xp ADpy=1-7y, Dy =1A% and AAT)p,=ipky.

PROOF. First, consider the diagram
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n 1 T

21 V(0)—= N 25 3

i 7

1 g 2
2'V(0) el V(0) iP/\l'P‘/\ V(O)W_PH)Z V(0)

with two cofiberings. We then have a map p;: N—PAV(0) which makes
the entire diagram commute. In the commutative diagram
o A1) P %
v, VO D5 N, P AV O} DS (N, 527 (0)
i% 7% i

{P, V(O)}W{P, PA V(O)}W{P , 2*V(0)}

with two exact rows, the left 7% is epic. As (@pAD,Wiiy)=@p A1) AND
we get a map ¢: N—>V(0) such that' i, ADq-jy=1A\i—p5jy. Put py=pi+
(i, A1)q, it is clear that (zp A1)p,=t-7y and pojy=1At. Further Pty =1p A1
because q-iye2{V(0), V(0)} and 2(irp A1) =(ip ADi-y-7=0. On the other hand,
we may set AAD)D=aipky, 0 € Z, as j51Ax)p,=0. We apply i§ on both
sides to get a=1mod 2. Hence AAm)p,=1pky-.

LEMMA 1.10. There exist maps ky, tj: NAV(0)—PAV(0) such that
k(Gy AD=6Gy AD=1, k(iy AD=rl(ix ADT =pok, and £,(1/\2) =k(L A7) =p.

PrROOF. Consider the commutative diagram
(my AD)*

(22V©), PAVOR LS (N ATV©0), PATV(0))
Gy AD*

{ZV ), PAVO} =P V(0), PAV(0)}

G AT, PAVORS2V(0), PAVO)
GEAD*

{V(0), PAV(0)} W{Z V(0), PAV(0)}

—

(Ip AD)¥

consisting of two exact rows. Since poko(t A1) =pk(1A\D) =pdy=1p/\1, both

Dok, and pok,T are contained in the (iyAl)*-image. By chasing the above

diagram we get immediately maps x, and r; which satisfy the first two

equalities. The last equality composed jy from the right is valid. Since
j%:{N, PAV(0)}—{P, PAV(0)} is monic, the last is satisfied.

Let us consider the short exact sequence
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0—> (27 (©0), PAVOR DS (N ATV(0), PAT(0))

U ADS P AT(0), PAV(0)}—>0.

This sequence is split as x(jy/A1)=1. The first group is generated by
(ip A1)y, of order 2, and the last is generated by 15,5, of order 4 and E-mpA1
of order 2 where £: 3*—P is defined by np{=2-1;, (see [1, Theorem 8.3]).
Hence we see

(NAV(©), PAV(OY=Z,+Z,+ Z,

with generators r,, -7y Al and (@p ADp(ky AD).
For the Hopf map v: 2°—2° we may put

(ip ADy(ay A7) =0k, +bE-my A1+ cp A D)y (ky A1)
with ¢ € Z, and b,ce Z,. Applying (jy/A1)* on both sides we get
Cp AN AT)=0+bC -7p A1,

Recall the relation 2-1p,,¢ =(@r/A\Du(rpAx) obtained in [1, Theorem 8.3].
This implies that a=2 and b=0. Similarly, applying iy AD* we get

0=2p,ky+ c(ip ADpu(x A1),

Since 2pok, = Pke(AADAADPANAT) = E ADAAPAAT) =0, we find ¢=0.
Thus the relation

1.11) Cp A Dy(my A\7) =2k,
holds.

We here compare with the composition maps x(k, A1) and £k, ADAAT)
(TA1). Making use of the above results we have

k(o ADAATALD =r(ke ADGALAD =ko(Ey AT =Doko,
k(e ADANIAD = ANDAANTHT ADEATAL) =Dk,
nd
(e ADANATH T ADAALAD =il ANDAAT(T ADAANIAL
=k ANDT =poky.

1.12)
a

LEMMA 1.11. £k A D) ={(E,ADAATH(T AL mod 2{V(0) A\ V(O)AV(0),
PAV(O).

ProoF. TUsing the exact sequences
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(3, VO35 (52, V0)}- =205 (52 P AV 0)}—0

V), VO >{21V(0), VO)}-L22D% 1517 0), PAV(0)}—>0

we see that {2?, PAV(0)} and {2'V(0), PAV(0)} are Z,-modules which have
one generator (i A1)jjand (ip A1)y, respectively. Therefore z*: {2? P AV(0)}
—{ZV(©0), PAV©O)} and (IAz)*: {Z'V(0), PAVO)}—{VO)AV(©0), PAVO)}
are monic. Hence (1.12) implies that

£o(le AND) —ki(e ADAATHT AD) € (m Az Am)*{2%, PAV(0)}.

Observe that (ip A1), : {2° V(0)}—{2% PAV(0)} is epic, then we have the
equality that (kAL —kl(B, A ADAATIT AD =0 Az Az Ax) for some
a€Z, The result is now immediate from (1.11).

Let E be a ring spectrum such that 1Ay: 3'E—E is trivial. Take a
map &’ : 2*->E AP with A Azp)é’=cA\1 and E=A Ajy)E”. Between the left
inverses 7, and 7. induced by the maps & and &’ we have the relation

7:=@ e ADAAD)

because the (1 Aip Al),-images of both sides coincide.
We say that a pre multiplication y is associative if it satisfies the relation
rGAD=r(TANDAADNT NAIAD).

LEMMA 1.12. The pre multiplication y,=y.(L Ak;) is associative when
p=2.

PrOOF. By definition (1 A%p)7.A¢uADAAE’)=0, and hence (A1)
AANE")=0. Using Lemma 1.10 and this result we have

7eANE)G: AD
=@ ADANAR)ANIy AD(G: AL
=@ ADANk)A—=EAIADAAIATy ADAAE ADA Azy AD)
=@ ADA AR,

and similarly
7e AN AD=(ren ADAAKY.
The above equalities yield
1o AD =G ADAAR)INAE AL,

and
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7T ADAANT AIAD =1, AN TG ADAALAT)YAATAL)
=G ADAAAARADAANIATYAATAL.

Making use of Lemma 1.11 we obtain that
1IN &k NAD) =1 A k(B ADANTI(T AD),
which implies
70 AD=1(TADAAy )T ALAD).

Let z, be a multiplication of E' A V(0) associated with a pre multiplication
v. If y is compatible with g, i.e., if it satisfies (4,), then a routine compu-
tation shows

(s ALAT)
=G ADEEADAIALADAAIATAIADAATATAL

ANIAp)
—HTADAAPTADEAADALAIADAAIATAIADAATATAL.

Hence we see that

u, 18 associative if p and y are associative and if y is compatible

1.13
( ) with p.

By means of (1.9) and Lemma 1.12 with (1.13) we obtain

PROPOSITION 1.13. Let E be an associative ring spectrum. Assume that
E is commutative and 1 \y: X' E—E is trivial if p=2 and that 1/\i-a,: 3°F
—KENAV() is trivial if p=3. Then there exists an associative admissible
multiplication of E AV (0).

§2. Multiplications of EA V(1)

2.1. For any Z,-spectra X,Y amap f:23*X—-Y is called a Z,~map if
it satisfies f-vxr=vy(fAD and (fADgz=(—1*¢y-f. Let C denote the
mapping cone of a Z,-map f: 2*X—Y, so we have a cofibering

f

sex Loy te o o, ey,

By a similar discussion to (1.8) we find a map ,: CAV(0)—C such that
Yve(ANt)=1,. Thus C is a Z,-spectrum if f: 3*X—Y isa Z,-map. For any
Z ,-spectra X and Y Toda [5] introduced an operation
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0: {3*X, Y)—>(3*"X, Y}
by the formula 6(f) =vy(f AD¢x. This operation has the properties

i) 6 is derivative, i.e., 6(g- f)=g-0(/)+(—=1)**0(9)- f,

@1 . . .
il) f is @ Z,-map if and only if 6(f)=0.

LEMMA 2.1 ([5, Lemma 2.83]). Let X and Y be Z ,-spectra and C be the
mapping cone of a map f:3*X—Y. Then C is a Z,-spectrum if 0(f)=0.
The converse is valid under the assumption that {Y,3*X}={3'X, X} =
{2'Y, Y}=0.

PROOF. The above observations show the first half. On the other hand,
we get
ANAD) (G0N =G ANDA—grAND)(f ADgxme
=(—1D**""(c ADgyf -7c=0.
Hence i,0(f)7;=0 when p{C, C}=0. The latter half is now immediate.

In the following we always assume that a fixed prime p is odd. V(0)
is a Z,-spectrum, so that it has unique maps

¥ VIO AV(0)—>TV(0), é: 2V (O0)—>V(O)AV(0)

which satisfy (1.1) and moreover which are commutative, i.e., - T=+ and
T-¢=—¢. So we note that

@2.2) PAAD)=vGEAD =1, (AAR$=—(EAD=1.

A Z ,-spectrum X is said to be associative if Yx(rx A1) —9xAAY)=0
and (¢xA\Dgx+ANG)gx=0. There exists uniquely a map ay: 2’X—X so
that

\VX(\VX/\l)—Wle(l/\\V)ZC(X(l/\n/\n')
and
(px\Dox+ ANPdxr=ANINADax

when {3'X, X}=0 (see [5, Proposition 2.11). In particular X is associative
if {3'X, X}={2"X, X}=0.
As an analogy of 6 Toda [5] defined another operation

2=2x: (Z¥V(0), V(0)}—>{Z**'X, X}

by the formula A(h) =1 Ah)gx for each Z,-spectrum X. From the com-
mutativities of 4» and ¢ we obtain
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ZV(O)(h) = _0(h)

for every h: 3*V(0)—V(0).

Recall the spectrum V(n) whose ordinary cohomology is a certain ex-
terior algebra over the mod p Steenrod algebra. For n=1, p=3, for n=2,
p=5 and for n=3, p=T spectra V(n) were constructed in [4]. However
V(1) for p=2 and V(2) for p=38 do not exist [4, Theorem 1.2]. Consider
the following cofiberings

SV 0)— " V(0)—Ls V(1) Te1T(0), p=3
I ()L S V1) 2V (@) Ir (1), p=5

where we set ¢=2(p—1). When p=3 a map [#,]: 2*V(0)—V (1) exists even
though B does not exist.
We use the notations

ty=1,-1: X'—>V (1), ro=n-m,: V{1)—>2*?
0,=%,m: 27 VA)—>V(@A) and d6,=147: 2 T VA)—>V(Q)
and put
o« =, \1: 27 V(1) —>V(@A) and pF=pAL1: 37V 1)—>V(1)

for the elements o, =rn-a-¢ € 7,_,(S) and g,=n,- B4, € 7,,_5(S). Then we obtain
maps

o ZV(1)—>V(A) and p’: XY 1) —V(A)

such that o/ -%,=a’-4,-6 and p”’-¢,=a”-B-4,-6 [5, Lemmas 3.1 and 3.5].
Notice that V(1) and V(2) are Z,-spectra. Making use of the Adams

spectral sequence Toda computed the homotopy groups of V(1) and V(2) (see

[4, Theorem 5.2 and Corollary 5.4] and [5:;;Theorem 3.2 and Proposition 6.9]) :

2.3) D 7, (VA)=P@B, BIR{L, &, 6,8, a” B, 6,8, 6,5’ }R{io}
for degree<<p?’q—3 when p=5 and for degree<31 when p=3,
i) = (V@)={i)QPEIR{L, &, 6,8, a” B, 6,8, 0,8 }Q{in}

for degree <p?q¢—3 when p=5.
By applying the operations # and 2 Toda [5, Theorems 3.6 and 6.11}
determined an additive basis of the algebra {V(1), V(1)}, up to some range:

(2 4) {V(l)’ V(l)}* ;P(AB’ ﬁ/)®{19 aly 5153 a//ﬁ: 50[82, 50,82a,}®E(50)
' 'I‘P(‘B, ,8’)®{517 a’, 51,@5u 50‘8’ 0("‘351, .8”, 50,8251’ 50‘82(X//}
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for degree <(p*—1)q¢—5 when p=5 and for degree<14 when p=3.

The p=3 case is quite different from the other cases. Besides the previ-
ous examples we have that the products «”-«” and o« -a”’=a’”-o/ are not
trivial for p=3. Thus the relations

(2.5) o a"=p-6, and o -a’'=a"-0/=§"-3,
hold [5, Theorem 6.2]. Further we see [5, Theorem 6.4] that
(2.6) 60([pe ) =a""[Bi,]0 for p=3.

2.2, As {3'V(Q), V(1)}=0 the Z,-spectrum V(1) has unique maps
¥t VAOAV(0)—>V (), 6,2 ZVA)—>VAV(0)

satisfying (1.1). As is easily checked, v, and ¢, are compatible with + and
¢ respectively in the sense that the relations

‘:”1(7:1/\1):7:1‘!"; 771‘,’/'1:‘#(”1/\1),

2.
2.7) ¢17:1= (7/1/\1)¢ and (71'1/\1)¢lz _¢ T

Thold.
By means of Lemma 2.1 we see that «: 3?V(0)—V(0) is a Z,-map, i.e.,

(2.8) vaAD=a-y=y1Aa), (@N\Dg=¢-a=1ANa)$.

‘Whenever p=>5 V(1) is associative, but it is not so in the p=3 case. Thus
we have

WA AD = AW =’ Az Ad),

(2.
@9 (3 ADg + AN G =1 N ADa”

when p=3 [5, Lemma 6.5].
We here give a decomposition @7 the smash product 1Aa: 2V@)AV(0)
—V@Q)AV(). By virtue of (2.4) we have
{2V, V()i=Z, with a generator «/,
(Zre-V (1), VY =Z, with a generator f-d,,
{(Zra-a2 Y (1), VAO}=Z,+Z, with generators d,-8-d,, §'-0;.

So we may set

1Na=¢,-a -, +we, - p'o,(1 \x)
+QAND(@0,80,+yB'0) A A7) +2(L NGy Yy

‘where w, %, ¥, 2 € Z,. The following result was implicitly given in Toda [5].
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LEMMA 2.2. 1Aa=¢,-& -y, — ;- foANAT) + ANADFSAAT) — LA
dy- Y, when p=3, but 1 \a=4¢,-o’ -y, when p=5.

PROOF. The latter half is clear by the dimensional reason. We prove
only the p=3 case. We first use (2.2) and (2.8) to verify

0(a-0) =Y (@ ANDEADEAD=—a.
By use of (2.5) and (2.9) we compute

Ay (@) =+,(1 Na)d,
==Y AAPANAa-dANDA N,
=AAYT)ANa-dADANATH)¢,
=W AD =’ AN AZ)AALNA - ) (A NIADa” — (A 1)g,)
=ad"ANDANZzADANLINA)AALADG,
=’ AADAAD)AND) = F3,.

This implies =0 and y=1. Next, by (2.8) and (2.9) we get

V(P ADAANa ADANTAL),
=WnAAP +"ANTAD)ANADAATADG,
= 1lf1(1 A\ a)¢1 +a’d = _',8151,

and similarly
Y AATADANaAD (@ ADp, = —p'3,.
On the other hand, by (2.2) and (2.7) we see
00 =, ADEAD @A D@ ADg = — i CA D@ A DG - m,=4,.

Consequently it follows that z=w=—1.
Since -y =1Azn+z/A1 we have

COROLLARY 2.3. ,(1Aa) =pf-5,(1Ax —zAL)(r,A1) when p=3, but
v (AA@)=0 when p=5.

23. Amap r: XAVIOAVQ)-XAVQ) is said to be a pre multipli-
cation of XAV if yANING)=yANLADAAT)=1A+,. We here con-
struct a pre multiplication of X AV (1) under a suitable assumption on X.
Let V be the mapping cone of ¢,(1Aa). Then there exists a map
v: VA)AV(Q@)—V which makes the diagram below commutative
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SIYOATO) 25T A VO-L5 V) 1\ V)22 say (1) AV (0)
1 v
FVOATO > VO —— VI VOATO.

We put p,=p -1, Az—xAl) in the p=3 case and p,=0 in the other cases,
and denote by R its mapping cone. We then have a commutative diagram

SO AVO)——Zt V() AV(0)

avl liml

SVOAVO) YAy v 3y A) AV(0)
mAl kvl m Al
THVOAVO——V - B IO ATO)

involving four cofiberings in which the right-lower square commutes up to
the sign —1.

Assume that 1A\ p;: X A% V() AV(0)—-XAV(Q) is trivial. Each left
inverse yz: X AR—-XAV() of 1/\ip gives rise to a map

7 XAVAOAVD)—XAVQD)
defined by the composition 7, =71 A k)1 Av).

LEMMA 2.4. The map 7, is @ pre maultiplication of X AV(1).

PRrROOF. Obviously yzAAE)AAVANALAG) =14, Since zy(v(i A\ 1)
= EV*(jv(l /\ Wl)) we Se’t
v(il/\l):jv(l/\ﬂl)+a’ivl,b‘1T, ae Zp.

We apply (i/A\i)* on both sides to get that iyi,=aiyi, which implies ¢=1.
Thus v, AD)=7,AANr)+iyy,T. Hence we see

reQNAEDANADANGADAAD) =7 2A N k) ANG)AAAr) =1 Ay

Let E be a ring spectrum equipped with a multiplication x and a unit ..
For any pre multiplication y of £ A V(1) we define a map

b EAVAOAEANVQ)—>EAVQ)
as the composition y(uALADAATAL). This map satisfies the pfoperty

LANTADANIALNG)

/-ll 1
(4 = AANTADAALIAGADAAIAT) =p A\
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Every map g with (4,), gives EAV(1) the structure of a ring spectrum
having (A4, as the unit. As a consequence we obtain

PROPOSITION 2.5. Let E be a ring spectrum and assume that
ING -1 (ANT—z AL EAI®H V() AV(0)—>EA V(1)

is trivial if p=3. Then EAV(Q) is a ring spectrum which has o multipli-
cation satisfying the property (4,),.

2.4. Take the sphere spectrum S as the ring spectrum E in Proposition
2.5 when p=5. Then V(1) becomes a ring spectrum equipped with the unit
. Its multiplication

vt VAOAVA)—>TV ()
is unique and it is associative and commutative because

ROV ALE {VAOAVQD, VA)}—{V(Q), V(1)}
and ANIN* A VAOAVOATVQD), VAOI— VA AV(Q), V(1)}

are isomorphic. Thus 4, , satisfies the equalities
(2.10) - Y T=yy,, and Wl,l(‘h,l/\l)=T,”1,1(1/\‘P1,1) when p>5.

We here study the commutativity of EAV(1) in the p=3 case. Denot-
ing by M the mapping cone of §'-4,: 322*2V(0)— V(1) when p=3, then we have
a commutative (up to sign) diagram

SVOAVO) L5V A VO 25T @) A TN senyay AT
AL L ) lk@v Al
FVOAVO-L> V) 2> R T yuep@Avio)
IAT—7z AL lkR INT—z AL
O o VO = M —— 3y

consisting of three cofiberings. In the exact sequence

AAa)* AAm)*

{ZTVOATVO), VIO}—{2HV (D) A V(0), VA)}I—{VIOATV(D), V()
ANAG)* (L Aa)*

——>{VAOAV(0), VO}——{Z VDAV (0), V(1)},

AANA=)* is epic as A Aa)*y,#0. Therefore {(VAOAV(Q), V(1)} is spanned
by A A 7)*(3,80,1 A7), A A 7)*(0,850),) and (1 A z)*(F'64). But (1 A a)*
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("ANr)) =" (¥, — /oA \7)) = f'6,4, because of Lemma 2.2 and (2.5).
Hence we have

{VOAVQD), VV}=Z,+ Z,

with generators 6,8-4,(1 Ax)(x, A=) and 6,8-4,0 - (x, Axy).
Setting k,=kz-ky-v, myb;(T—1))=AN7—2 AD (@, A7 )(T—1)=0. So
we put

E(T—1D)=0aiy0,8-4,(L A7) (7, A7) + biy6,8 4,0 - Yr(m, A1)
where a,b e Z,. Applying T from the right we get
EA—T)=—atyd,f-t,(x AD(z; A7) — biyd,f- 4,0 (mw, A\ 7).
‘We substract the first equality from the latter to obtain
E(T—1)=(0b—a)iyd,f-1,0-y(z N\x).
Thus _
2.11) Jo, T =k, + c(k)iyd,f- 4,0 vz, Axy), ck) e Z,.

PROPOSITION 2.6. Let E be a commutative ring spectrum and assume
that INF -i,: EN2" 2V (0)—-ENAVQ) is trivial if p=3. Then there exists a
commutative multiplication of E AV (1) satisfying the property (A)),.

PROOF.  We may assume p=3. Take a left inverse y,,: EAM—EAV(1)
of 1A%y, and put y1=7yANk)—c(k)d,p-%,0 (A=), c(k) e Z,, Making use
of Lemma 2.4 and (2.9) we see that y{ is a pre multiplication of E AV (1) such
that y{(1AT)=y{. Therefore our multiplication g, associated with the above
71 is commutative.

§3. Multiplications of EAV(2)

3.1. In this section we assume p=5, so V(2) exists. The Z,-spectrum
V(2) has unique maps

¥yt VAV (0)—>V(2), @yt 2'V(2)—>V(2)AV(0)

satisfying (1.1) as {3'V(2), V(2)}=0. Note that V(2) is associative. Asis
easily seen, +, and ¢, are compatible with +, and ¢, respectively, thus

1?2(7:2/\1) =7:2‘l’1, 752*?2:‘#1(752/\1),

(CRY $oia=(ADg; and (mADg,=—¢m..

Recall that V(1) has a unique multiplication
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Yt VAOAVD)—V(Q)

which is associative and commutative whenever p=5. Of course this is an
extension of -, i.e.,

‘1’1,1(1/\2.1):‘#1 and ‘Vl,l(il/\l):‘lflT-

Note that g: 377*¢V(1)—V (1) is an attaching map of the Z p,-Spectrum
V(2). Lemma 2.1 shows that it is'a Z p-map, i.e., ¥, (3A1)=8-v,. The
equalities

‘(32) 1!f1,1(ﬁ/\1)—:ﬁ‘1!f1,1:\l’1,1(1/\.3)

hold because the aboves composed 1A%, or 4,A1 from the right are valid.
Hence there exists a map

Vo1t VAV Q) —V(2)
making the diagram below commutative

2y AVOLL v ) ATV L v A V)2, sarany 1y A V(D)

V1,1 V1,1 2,1 lﬂlfm
27479V (1) T V() — V(2) — 2Peatly (1),
2 2

V¥, becomes an extension of v, i.e., v, (1 Ail)#xpz. [A routine computation
shows that 4, , is associative in the sense that

(3.3) 11’2,1(1/\‘[’1,1):‘lfz,l(‘lfz,l/\l) when p>7.

But the authors don’t know whether Vs, 18 80 or not in the p=5 case,
although the equality

11’2,1(1 VAN 11”1) == ‘?2(‘#2,1 A\ 1)

holds in general.

We now consider the composition Yo, (AAB) : ZPTHV )NV (1) -V (2).
Since ¥, (ANAB)EAD) =ty (LA B =1,8- 4., =0 by (3.1) and (3.2) there exists
a map

22 SR AV(1)—>V(2)
such that ¥, ,(1AB) = py(z, A D).

LEMMA 3.1.  0,=(0,)%,0,8+ 8"%\r(m, A ), 2(0,) € Zs, if p=5 and 0,=0 if
p=T. '
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PROOF. Consider the following diagram

{221"1+3q+2V(1)/\V(O), V(z)}M:{ZzpwquV(l)/\V(l), V(Z)}

@nd*
{Zqu+4Q+3V(O), V(Z)}—;—){Zqu +3q +2V(1)’ V(z)}
., 1
il

{sz 4043 V(Z)}.

By use of (2.3) ii) we see directly that all maps in the above are isomorphic,
and also that 7,,,.4,.5(V(2)) is spanned by one generator 4,0, /%, in the p=5
case, but it is zero in the other cases. Therefore
Z when p=5

2N (PAV(D), V() =

{ MOAVQ), V(2)} {0 when p=T,
where the former has a generator 4,0,8- 8%y, (1 Ax,). The result is now im-
mediate.

3.2. Denote by W and U the mapping cones of +,,(1AB) and p, respec-
tively. Then we have commutative diagrams

sty AVO—2F 57 @) AVOLB V@) A V@)L srat ey @) A V)

O

2PV INTV(A)——> V(@) —— w ——> P (2IATV (1)
w

Y i
Jrq +‘”1V(1) A V(l)*_z’pwqﬂ V(l) /A V(1)
. Jw Al
soerayAVA) 2Ny, gy W, srasan () A V(1)
A1 ikw lﬂrz/\l
R CUN (S U YAV,

where the right-lower square commutes up to the sign —1.

As the V(1) case a map y: XAV@AV@2)—-XAV(2) is said to be a pre
multiplication of XAV (2) if fANINL)=yANLGADQAAT)=1A,,. Assume
that 1A p,: XAV (DAV(1)—-XAV(2) is trivial. For any left inverse
1o XAU-XAV(2) of 1 A\iy we define a map

72t XAVRIAV(@2)—>X ANV (2)
by putting 7,=7,AAkw)AAw).

LEMMA 3.2. The map 7, is a pre multiplication of X \V(2).



Ring spectra with V(1) and V(2) 213

PROOF. Clearly yy(ANA k) AAW)ANIAG) =LAV, {VIDAV(D), V(2)}
is generated by +,,T because (i, A 1*: {V(1) A V(2), V)1 —-{V(©2),V(©@)} is
isomorphic. We set

WG D) =y(IAT) +tigt, T, acZ,

as W, AD))=ny:(jw(LAx,)). The above equality yields that w(%,i, /i)
=1yt =0aiyt,0, which implies a=1. Therefore

ToANER)ANW)ANGAD =AU A Ew) A A i) A Ay T)=1 A, T.

For a ring spectrum E every pre multiplication y of EAV(2) gives us
a map

t EANVRANENV@2)—>EAV(2)
defined by the composition x,=7(uAIADAATAL). As is easily seen,

#AATADAAIALAG)

A,
), = ANTADAAINGADAAIAT) = p A, .

The above observation shows

PROPOSITION 3.3. Let E be a ring spectrum and assume that 1AN%,0,8
Bz Ar): EAZ?P U YV)AVA) - EAV(2) is trivial if p=5. Then
ENV(2) is a ring spectrum equipped with a multiplication satisfying (4),.

3.3. According to Proposition 3.3, V(2) is a ring spectrum having 4,
as the unit when p>7. As is easily checked, its multiplication

Va0t VQ)ATV(2)—>V(2)
is unique and it is associative and commutative. Thus
(3.4) ‘[’z,zT:\’fz,z and 1lfz,z(‘!fz,zA1):\Vz,z(l/\llfz,z) when p=T.

We next discuss the commutativity of EAV(2) in the p=5 case. Put
0:=u(0,)i,0,8- B'*, when p=5, i.e., p,=ph(z, A7), and denote by L its mapp-
ing cone. Then we have a commutative (up to sign) diagram

1AB 1A% 1IAR,

o4 iz

VAV LEV@AVOLIVE@AVE@LS Srerany@ AV
T A1 V2,1 lkww mAL
Spat2a 1 () A V(l)_m—) V@) o b _;U_,Z'zpq+2q+2v(1) AV(Q)
s Am) | I lku e A
FHHEVO)  —> V@ > L o IRORHT()
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with three cofiberings.

Setting k,=Fky-ky-w, k, (T —1) belongs to ¢, {V(2) AV(2),V(2)} as
k(T —1)) = — (7, Aw) (@, A7m)(T—1)=0. In order to compute the group
{VENV(2), V(2)} we use the exact sequence .

Ere V@AV, VLS V@AV, V)
LA v @ AVQ), V@Y sy @) AV, V@)
A routine computation shows that {37?+¢*'V(2) AV(1), V(2)}=0 and {V(2)A
V), V(2)} is generated by ;. If ,,(1AB)#0, then {VR)AV(2), V(2)}=0
which implies k,T =k, e {V(2 AV(2), L}.

PROPOSITION 3.4. Let E be a commutative ring spectrum and assume
that 1N©,0,8-B'%,: E N\ 2%V (0)—E AV (2) is trivial if p=>5. Then there
exists a commutative multiplication of E AV (2) which satisfies the property
(4y).

ProoF. If ¢, ,(1AB)=0 for p=5, then p,=0. So we have a multipli-
cation +r,,: V@QAV(2)—-V(2) even if p=>5. Since (AAL)*: {VR)AV(2),
V(2)}—-{V(2), V(2)} is always monic, 4, , is commutative. So we may as-
sume that +,,(1AB)#0 for p=>5. Any left inverse y.: EAL—-EAV(2) of
1A%, gives rise to a pre multiplication r, of E AV(2) defined by the composi-
tion y;(1Ak,), which is commutative. Consequently the multiplication of
E NV(2) associated with the above y, is commutative.

§4. Brown-Peterson spectrum BP

4.1. Let E be a ring spectrum equipped with a multiplication x and a
unit ¢. For any map f: A—B the smash 1A\ f: EAA—EAB is rewritten
as the composition (uADAANADAAS). So we have

4.1) 1IAf:ENA—-ENAB is trivial if {A, EAB}=0.
Recall that 7,(S) is a finite group for each n=>1.

LEMMA 4.1. Let f e r,(S), n=1, be a p-torsion element. If z,(E) is p-
torsion free, then 1A f: 3"E—E is trivial.

As a summary of Propositions 1.7,1.13,2.5,2.6,3.3 and 3.4 and (1.9),
(2.10) and (3.4) we obtain

THEOREM 4.2. Let E be an associative and commutative m’ng spectrum.
i) The p=2 case: EAV(0) is an associative ring spectrum if =, (E) is
2-torsion free.
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ii) The p=3 case: EAV(0) is an associative and commutative ring
spectrum if =,(E) is 3-torsion free, and E AV (1) is a commutative ring spec-
trum if m,,_J(E) is 3-torsion free.

iii) The p=5 case: EAV(Q) is always associative and commutative
ring spectrum, and ENV(2) is a commutative ring spectrum if m,,,_(E) is
5-torsion free.

iv) The p=T case: EAV(Q) and ENV(2) are always associative and
commutative ring spectra.

Let E be an associative and commutative ring spectrum such as z.(F) is
torsion free. For example, as candidates of £ we have the BU-spectrum K,
the unitary Thom spectrum MU, the Brown-Peterson spectrum BP and so
on. Since the above E satisfies all assumptions stated in Theorem 4.2,

@.2) EANV(0), EAVQ) and ENV(2) are all ring spectra, and moreover

the last two are commutative.

4.2. Fix a prime p and denote by BP the Brown-Peterson spectrum at
the prime p. This ring spectrum has a coefficient ring BP (==,(BP))=
Z plvy, « -+, vy, « - -] where the degree of v, is 2(p"—1). There is an equiva-
lent characterization of the V(n) spectra in terms of the BP homology. Thus
we may define the spectrum V(n) by specifying the structure of its BP-
homology as a BP -module (see [3]):

BP*(V(”’L))EBP*/@, Vs =0y vn)°

If V(n) exists and if we can find a map o,: 2?*®"**-VV(n)—V(n) for which
Ot BPy 5 pni1_y(V(0))—BP(V(n)) is the multiplication by v,,,,, then V(z+1)
is constructed as the mapping cone of w,, so

43 T DY ()2 V()25 V (n 4 1) T ()

is a cofibering.
Note that r,(BPAV()=Z,[v,,,, -], n=0. This shows that}the
canonical inclusion j,: 2°—V(n) induces isomorphisms

{V(n), BPAV(n)}—>{2°, BPAV(n)} when p=2,
{Vim) AV(n), BPAV(m)}——>{V(n), BPAV(n)} when p=3,
and
{Vm)AV@®)AV(n), BPAV(n)}—>{V(n) A\V(n), BP AV (n)}
when p=5,

because V(n) is 2(p**'—1)/(p—1)—(n+1) dimensional. If p is odd, then
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there exists a unique map
“.4), Q. V)AV(m)—>BP ANV (n)

whose restriction onto 2° is the canonical inclusion (A 7,.
Clearly we have

LEMMA 4.3. The map q, sotisfies the equalities q,(7, AN1)=q,(1N\j,)=
(A1l and q,T=q,.

It follows immediately that the map ¢, has the relation

’ (Aa)n (ﬂ/\ 1)(1 A qn)(Qn AN 1) = (,U/\ 1)(1 A qn)(T/\ 1)(1 A Qn)

whenever p=>5.

We now assume p=3, so V(1) exists only. We shall next show that the
map ¢, satisfies the property (4,),, too. By the sparseness of =, (BPAV (1)
we get that the sequence

0——>{3%** V() AV(0)AV(0), BPAV (1)}

(7!’1/\71'1/\”1)* {V(l)/\ V(l) A V(l), BP/\ V(]_)}M {20, BP/\ V(]-)}

is exact, and

(m Az Am)*: {23V (0)AV(0)AV(0), BPAV(Q)}
—>{ZVIOAVAOAVQ), BPAV (1)}

is isomorphic. Since {3"V(0), BP A\ V(1)} is spanned by one generator
(AD[pi,], we have

(V) AV(OAV(), BPAV)=Z,+Z,+ Z,
with generators
ADIBL Iy EALIALD, ADIBLIVAANATAL) and (ADBLIVAALIAR),

and
{ZFHVO)AVO)AV(0), BPAV()}=Z,

with a generator (¢ AD)[Bi ]y (yAD).
For the map ¢q,: VA)AVA)—BPAV(Q) of (4.4), we put

n=@EADAATAD)ANG): VIOAVUAVA)—>BPAVQ).
This satisfies the equality
“.5) v(AATD) =y,
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LEMMA 4.4,
V(T A=y, +a( ¢ ADBLIVEAIALFIATAL+IALIAD (7 Ary A7)
where a € Z,.
PROOF. Set
v(TAD =+ (ADBiLIV(ax ALAL+ Il Ax AL+ eI AIA) (@ Amy A ),

gy Oy, O € Zy a8 (G5 A% A1) * (T A1—1))=0. Composing 1 AT from the right
we get
vw(T ANDAANT)
=y, —CAD[BL I (@xz AIAL+ e INAINAT+ el A AD) (@ Amy Axy).

We apply (T'A1)* on two equalities to obtain

v =v,(TAD)—(ADB (@I AT AL+ axa ALAL+a I AL A=) (@ Ary Axy),
v(TADAANT)
= (TAD)+(ADIBLIv(@INAz AL+ a1l N1 A+ a;z ALAD) (@, A=y Awy).

The former implies a,=a,, and the latter does a,=a, and a,=a,. Thus a,=
a,=0a,.

Recall that V(1) is a Z,-spectrum equipped with unique structure maps
Y, and ¢,. For any CW-spectrum X we may regard XAV(Q) as a Z,-
spectrum whose structure maps are 1A+, and 1A¢,. Abbreviating

A=[BilvEAINLI+IATAL+HIAIA D) (A my Ay e
VAIOAVIOAVD)—V (D),

we operate the derivation @ on it.
LEMMA 4.5. 0(4) =i 1v (¢ AD)@, Am, Axy).
ProOF. Making use of (1.9), (2.6) and (2.7) we compute

A A) = ([FLINDWGADEALIAIALFIAZALIAL+IALAZAL
(m AT AT ADANS)
= ([BLIADANADY+ AN ADAAHEAIAL+1IAZAL) +1)
(m, Am Awy)
=[] AAY) Fia @Az AD)ANAGEALAL+IAZ AL (7 Ax Ay
+ By (P A (@, Amy Arwy)
+0[BL W@ NAIAL+INAT AL+ IAINAD) (7 Ay A7)
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= [ﬂ%]\l/‘(llf/\l)(ﬂl/\”l/\”l)
+ [l A1+ 1IAD) (@ AIAL+INAT AL+ IAIAR) (@ A7y A ry)
= [ﬁll]ilf(\[/‘/\l)(m/\”l/\?ﬁ)

PROPOSITION 4.6. The map ¢,: V)AV(m)—BPAV(n) satisfies the
equality (uANDANG)N @ AD)=(@ADAANg)T ALANQG,).

PrOOF. The (p,n)=(3,1) case: By Lemmas 4.4 and 4.5 we obtain
00 (T N1=1D)=a ADIBL1v (Y AD(x A Axy), 0€Zs
On the other hand, it is clear that

0() =ANY)AIADANGADNT AIADAAGADAALIAG) =0,
and
00, (T A1) =60()(T N1)=0

because 6(q,) belongs to {Z'V(1)AV(1), BPAV(1)}=0. Consequently we have
a=0, s0 y,(TA1)=y,. We use this relation and (4.5) to compute

eADANGD)(@GAD=@EADAAGWANTHGADAANTIANT)
=n(TADANT)=v,.

The other cases have already been done.
4.3. When p=3, we consider the map
7wt BPAV(®)AV(n)—>BPAV(n)
given by the composition (¢ A1)AA¢q,). A routine computation shows that

(AN IAD) =@ ADANAT,)

4,
“ UANIADAAT ADANIAT) =@ADAAT) (2 A1)

as p is associative and commutative. Moreover Lemma 4.3 and Proposition
4.6 imply that y, satisfies the relations

' el AD =1(TADAA 7 )T ALAL).
As before we define a multiplication
tn: BPAV(@)ABPAV(n)—>BPAV(n)

to be the composition y,(uATALAATAL). By use of (1.13) and (4.6) we
obtain .
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THEOREM 4.7. If p=3, then BPAV(n) is a ring spectrum equipped
with the unit «/\j, which is associative and commutative.

4.4. Let E be an associative BP-module spectrum whose coefficient
module z,(E) is finitely presented as a BP -module, further Y be a finite
CW-spectrum and W be a connective CW-spectrum such that HZ (W) is
Z y-free. Since BP*(W) is BP-flat, the pairing BPA\E—E gives us an iso-
morphism

4.7 BP*(W) ®* E¥(Y)—>E*(WAY).

Assume that E*( ) is a BP,/(p,v,, - -+, v,)-module. The generator v,
yields a homomorphism v : BP*(BP)—BP*~*»"-b whose image is contained
in the prime ideal (p, Vg, vy V,) (see [2, Lemma 1.7]). Hence v*®1:
BP*(BP) Qgp« E*(Y)—BP*~2#"D Q.. E*(Y) is trivial. Making use of (4.7)
the triviality of v¥ ® 1 implies that

(CX) (W, A\1)*: E¥(BPN\Y)——>E*-20"-1(Y)

is trivial for any finite Y.

- Using the Baas-Sullivan theory of manifolds with singularities we can
construct BP-module spectra P(n) with coefficient modules Pn)(=r.(P(n)))
=BP,/(p,v,, - +,v,_,) (see [2]). In particular

P(0)=BP and PQ1)=BPAV(0).
P(n+1) is related to P(n) by a cofibering of BP-module spectra

4.9) 3200 P(1) "% P(1)—2"5 P(n+ 1) 320"-1P ()

where -v, is given by the composition m,(v,A\1): 32®"~YP(n)—BP A P(n)—
P(n).

Since E*(P(m)AX) is always Hausdorff for n>1, (4.8) is true for
Pm)NX. Hence we have

LEMMA 4.8 ([2, Lemma 2.8]). Let E be an associative BP-module spec-
trum whose coefficient module r,(E) is a finitely presented BP -module. If
E*() is o P(n+1),~module, then the cofibering (4.9) induces a short exact
sequence

0——> E*=22+1(X A P()—~2M s (X A P+ 1)) 229" s B (XA P(0))—0

for any X.

PROPOSITION 4.9. BP AV(n) is homotopy equivalent to P(n+1).
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PrROOF. Beginning with BPAV(0)=P(1) the proof is inductively pro-
ceeded. We now assume that there exists a homotopy equivalence z, : P(n)
—BP A\ V(n—1) which induces the identity in homotopy groups. Note that
BPAV(®)*() becomes a P(rn+1),-module because BPAV(n) is a ring spec-
trum. In virtue of Lemma 4.8 we can choose a map

Tps1s P(M+1)—>BPAV(n)

such that z,,,9,=QA%,_)r,. Since the map r,,, induces the identity in
homotopy groups, it is a homotopy equivalence.

Theorem 4.7 combined with Proposition 4.9 shows

THEOREM 4.10. Assume p=8. If V(n) exists, then P(n+1) is an
associative and commutative ring spectrum.

Appendix

Recall that P(n) is an (associative) BP-module spectrum. Thus there
exists a pairing m,: BP/AP(n)—P(n) which satisfies m,(¢/A\1)=1. Denote
by e, : BP—P(n) the composition g,,_,- - - g,.

LEMMA A.1. There exist multiplications ¢,: P(n) \AP(n)—P(n) such
that ¢n(5n AN 1) =My, ¢n(1 VAN Sn) = mnT and ¢n+1(gn A gn) = gn¢n°

PROOF. Assume inductively that there exists a multiplication ¢, such
that ¢,(,Al)=m, and §,(1Ae,)=m,T. We consider the commutative
diagram .

0—>P(n+1)*(P(n) A P(n))—>Pn+1)*(P(n) AP(n+1))

0—> P(n+1)*(BPAP(n)) —> P(n+1)*(BPAP(n+1))
——>P(n+1)*(P(n) AP(n)—>0

—> P(n+1)*(BPAP(n)) —>0,

where two rows are induced by the cofibering (4.9) and all vertical arrows
are done by the map ¢,. By Lemma 4.8 two rows are exact and all vertical
arrows are epic. Note that g, is a BP-module map, i.e., m,,,AAg.)=9.M,.
By chasing the above diagram we can choose a map

Vai: POYAP(+1)—>P(+1)
so that v,.,AAGg)=9.¢, and ¥, (e, A)=m,,,. We again consider the
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commutative diagram

0—>P(n+1D)*(P) \P(n+1))——>P(n+1)*(P(n+1) AP(n+1))

0—> Pr+1D*(PMABP) — Pnr+1D*(Pn+DA BP)
——>P(n+1)*(P(n) AP(n+1))—>0

—> Pn+1)*(Pm)A\BP) —0

which consists of two exact rows induced by the cofibering (4.9) and of three
vertical arrows induced by ¢,,,. By a similar diagram chasing to the above
we get a map

St P+ DAPMR+1)—>Pn+1)

such that ¢,,,(9.AD)=14,,, and ¢,,,AAe,,)=m,,,T. Clearly ¢,,, has the
properties as required.

LEMMA A.2. If p=3, then we can take as ¢,’s in the above lemma
commutative ones.

PROOF. Assuming that a multiplication ¢, is commutative we shall
construct a commutative one ¢,,, which satisfies the properties stated in
Lemma A.1. We use the commutative diagram

0 0
| l
0—> Pn+1D)*(Pm)APm) —> Pn+1*Pn+1)AP(n)
l l
0—>P(n+D*(P(n) AP(n+1)—>P(n+1)*(P(n+1) AP(n+1))
| l
0—> Pn+D*(PM)APM) —> Pn+1)*Pn+1)AP®)
| |

0 0
0

|
—> Pn+1)*(Pm) A\Pm)) —>0
l
——>P(n+1)*(Pm) AP(n+1))—>0
|
—> P(n+1)*(P(n) A\Pm)) —>0
|
0

where all rows and columns are induced by the cofibering (4.9) and they are
exact. First, choose a map ¢,.,: P(n+1) AP(n+1)—P(n+1) so that
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¢;L+1(sn+1/\1):mn+1’ ¢7,z+1(1/\€n+1):mn+1T and ¢;z+1(gn/\gn):gn¢n'

Then we may assume that ¢,..(A1Ag,) =¢,.1(@.ADT. So there exists a
unique map w: 3**""2P(n) AP(n)—P(n+1) such that

Grir T =1+ w(hn ARy).
We compose T from the right to obtain
Fri1=0na T —WT(hy N ha).
So we find w=wT. Putting
Grs1=Gns1+W/2(Ry AT,
it becomes commutative, and moreover it has the properties as required.
Consequently we obtain

PROPOSITION A.3. P(n) is a ring spectrum equipped with e, as unit,
and g,: P(n+1)—P(n) is a map of ring spectra. Besides P(n) is commuta-
tive in the p=38 case.

REMARK. If 3n<2(p—1), then g,_, yields an isomorphism
Pn)*(P(n) AP(n) AP(n))—>Pn)*(P(n—1) AP(n—1) AP(n—1))

(cf., [2, Remark 2.14]). In this case P(n) is an associative and commutative
ring spectrum.
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