
ar
X

iv
:2

10
3.

01
50

7v
1 

 [
m

at
h.

SG
] 

 2
 M

ar
 2

02
1

ARNOLD CONJECTURE AND MORAVA K-THEORY

MOHAMMED ABOUZAID AND ANDREW J. BLUMBERG

Abstract. We prove that the rank of the cohomology of a closed symplec-
tic manifold with coefficients in a field of characteristic p is smaller than the
number of periodic orbits of any non-degenerate Hamiltonian flow. Following
Floer, the proof relies on constructing a homology group associated to each
such flow, and comparing it with the homology of the ambient symplectic man-
ifold. The proof does not proceed by constructing a version of Floer’s complex
with characteristic p coefficients, but uses instead the canonical (stable) com-
plex orientations of moduli spaces of Floer trajectories to construct a version of
Floer homology with coefficients in Morava’s K-theories, and can thus be seen
as an implementation of Cohen, Jones, and Segal’s vision for a Floer homotopy
theory. The key feature of Morava K-theory that allows the construction to
be carried out is the fact that the corresponding homology and cohomology
groups of classifying spaces of finite groups satisfy Poincaré duality.
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1. Introduction

This introduction is split into two parts: the first explains the consequences
of this paper for symplectic topology. The second gives a proof of these applica-
tions, providing references to the various parts of the paper where the necessary
ingredients are established.

1.1. Applications of the main results. Let (M,ω) be a closed symplectic man-
ifold, and H : M × S1 → R a Hamiltonian function all of whose closed time-1
Hamiltonian orbits are non-degenerate (these data will be fixed for the entirety of
the paper). Arnol’d conjectured that the number of such orbits is bounded below
by the minimal number of critical points of a Morse function on M . We prove:

Theorem 1.1. For each natural number 0 ≤ n < ∞, the rank of the generalized
homology of M with respect to Morava K-theory, H∗(M ;K(n)), is smaller than the
number of time-1 closed contractible Hamiltonian orbits of H.

In the above statement, we operate with the usual conventions in chromatic ho-
motopy theory (we recommend [Rav92] as a good introductory reference for the
chromatic viewpoint and [Wür91] as a guide to the Morava K-theories in partic-
ular): the Morava K-theories K(n) implicitly depend on a prime p which is not
included in the notation, and we adopt the standard convention that the case n = 0
corresponds to rational homology H∗(M,Q). The above result thus contains as a
special case the result of Fukaya and Ono [FO99] and Liu and Tian [LT98], who
extended Floer’s construction of Hamiltonian Floer homology [Flo89] to arbitrary
closed symplectic manifolds.

Our notation for generalized homology groups will however be non-standard, as
we write H∗(M ;K(n)) for the group usually written as K∗(n)(M). For n strictly
positive, the coefficients H∗(∗;K(n)) = K(n)∗ of Morava K-theory (i.e., the gen-
eralized homology groups of a point) are

(1.1.1) K(n)∗ ∼= Fp[v
±
n ],

where vn is a variable of degree of 2(pn−1). In Theorem 1.1, the rank ofH∗(M ;K(n))
is taken as a module over Fp[v

±
n ]; since this ring is a graded field and H∗(M ;K(n))

is a graded module, the rank in Theorem 1.1 is simply the number of elements of a
basis of H∗(M ;K(n)) over K(n)∗.

The bound of Theorem 1.1 can be re-expressed in terms of ordinary homology
using the Atiyah-Hirzebruch spectral sequence: if we choose n so that 2(pn − 1) is
larger than the dimension ofM , the spectral sequence which computesH∗(M ;K(n))
from

(1.1.2) H∗(M,K(n)∗) ∼= H∗(M ;Fp)⊗K(n)∗

collapses at the E2 page and so H∗(M ;K(n)) has the same rank as H∗(M ;Fp)⊗Fp

K(n)∗. That is, all Morava K-theories for such n have the same rank which more-
over agrees with the rank of H∗(M ;Fp) over Fp. Passing from Fp to an arbitrary
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characteristic p field by the universal coefficients formula, we conclude the state-
ment given in the abstract:

Corollary 1.2. The rank of the ordinary homology group H∗(X ; k) for each char-
acteristic p field k is smaller than the number of time-1 closed contractible Hamil-
tonian orbits of H. �

Remark 1.3. In [FO01], Fukaya and Ono proposed an approach to an integral
version of Corollary 1.2. The results of this paper shares with their proposal the
use of the natural stable almost complex structure on moduli spaces of Hamiltonian
Floer trajectories. In this paper, we combine this stable almost complex structure
with orientation theory for generalized cohomology theories, whereas their proposal
is to use this stable almost complex structure to choose (virtual) perturbations of
the Cauchy-Riemann equation for which all perturbed solutions lie in the locus with
trivial isotropy.

1.1.1. Hamiltonian Floer K(n)-homology. The proof of Theorem 1.1 follows in
broad strokes the previous work on the Arnol’d conjecture initiated by Floer. We
begin by considering the lattice Π of classes β ∈ H2(M ;Z) lying in the image of
the map from π1(LM), the fundamental group of the free loop space LM , to the
homology of M which associates to each loop of loops the corresponding torus.
Recalling that the symplectic form ω defines an energy map

(1.1.3) H2(M ;Z)→ R

which assigns to each class β the area ω(β) of any representing curve, we define the
Novikov ring Λ∗ with coefficients in K(n)∗ to be the 2-periodic ring whose elements
of degree 0 are infinite sums

(1.1.4)
∑

β∈Π
ω(β)→+∞

aβq
β

with aβ ∈ K(n)∗.
Here, we use the familiar notation in symplectic topology where such a series

consists of an a priori infinite sum indexed by elements of Π, with the condition that
there are only finitely many terms indexed by elements whose energy is smaller than
any given integer. This ring can be thought of more abstractly as follows: if u is a
variable of degree 2, we obtain Λ∗ by completing the group ring of Π with coefficients
in the 2-periodic ring K(n)∗[u, u

−1], with respect to the filtration associated to the
map Π→ R induced by ω.

We assign to M the Λ∗ module

(1.1.5) H∗(M ; Λ) ≡ H∗(M ;K(n))⊗K(n)∗ Λ∗.

Remark 1.4. The above formula will end up being an (easy) theorem, rather than
a definition. As we shall presently see in Section 1.1.2, there is a ring spectrum
Λ whose homotopy groups are Λ∗ and which is a K(n)-module. The left hand
side should be thought of as the generalized homology of M with coefficients in Λ.
Because K(n) is a field, this homology admits the above expression (see e.g. [HS99,
3.4]).

The key goal of this paper is the construction of the Floer homology of H with
coefficients in K(n), denoted HF∗(H ; Λ), as a Λ∗-module. For the next result,
we shall consider the rank of this module, which we define to be the rank of the
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associated module over the field of fractions of Λ∗. The main application follow
immediately from the following result:

Proposition 1.5. The Floer homology HF∗(H ; Λ) satisfies the following properties
as a Λ∗ module:

(1) it admits H∗(M ; Λ) as a summand, and
(2) its rank is bounded above by the number of contractible closed time-1 Hamil-

tonian orbits of H.

Proof of Theorem 1.1. The rank of HF∗(H ; Λ) is bounded below by the rank of
H∗(M ; Λ) over Λ∗, which agrees with the rank of H∗(M ;K(n)) over K∗(n) by
base change. We conclude that the number of closed time-1 Hamiltonian orbits is
bounded as desired. �

Remark 1.6. Though we shall not establish the result in this paper, a slight ex-
tension of our constructions implies that the isomorphism type of HF∗(H ; Λ) as a
Λ∗ module is independent of the Hamiltonian function, and of the auxiliary data
required to define it, e.g. of a choice of compatible almost complex structure on
M . Choosing the Hamiltonian to be C2-small then implies (via a spectral se-
quence argument), that HF∗(H ; Λ) is isomorphic to H∗(M ; Λ). As in the case of
ordinary Floer homology, we expect that there will be many alternative ways of
proving this result, including using S1-localization as in Fukaya and Ono’s original
work [FO99], or further pushing the comparison between Morse and Floer theory
[Fuk97, PSS96, FW18] adopted in this paper.

Remark 1.7. As we shall presently discuss, the construction of this paper can be
seen as a realization of the vision of Cohen, Jones, and Segal [CJS95], that the
Floer homology of symplectic manifolds should lift to a (stable) homotopy type,
in analogy with the Morse homology of a finite dimensional manifold arising by
applying the homology functor to its stable homotopy type. Such a homotopy type
would give rise to Floer homology groups with coefficients in generalized cohomol-
ogy theories. However, it was realized early on that, because the tangent spaces
of moduli spaces arising in Floer theory are not in general (stably) trivial, but al-
ways have stable almost complex structures, one can only hope for the existence
of such Floer homology groups with coefficients in generalized cohomology theories
equipped with Thom isomorphism theorems for complex vector bundles, i.e. for
complex-oriented cohomology theories. The key point is that such theories satisfy
Poincaré duality isomorphisms for manifolds equipped with stable almost complex
structures. In particular, the Floer (stable) homotopy groups of a Hamiltonian on
a general symplectic manifold cannot be defined.

In Section 1.2.2 below, we explain why we have to restrict our coefficients further,
and do not define Floer homology with coefficients in arbitrary complex-oriented
cohomology theories. The key problem is that the moduli spaces appearing in
Floer theory can sometimes be (locally) described as quotients of manifolds by
finite groups actions with non-trivial fixed points, so the construction of general-
ized Floer homology groups requires considering theories which are equipped with
Poincaré duality isomorphisms for orbifolds (equipped with stable almost complex
structures). The simplest known examples of such theories arise from the Morava
K-theories discussed above.
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1.1.2. The Floer K(n)-homotopy type. We now explain the construction of Hamil-
tonian Floer K(n)-homology, and the proof of Proposition 1.5. In Floer theory, the
construction of Hamiltonian Floer homology classically proceeds via the construc-
tion of a chain complex (the Floer complex). Unfortunately, the only homology
theories that are naturally computed by chain complexes agree with ordinary ho-
mology [BCF68]. We must therefore start using the language of stable homotopy
theory, and introduce various spectra from which (generalized) homology groups
are obtained by considering homotopy groups. The appearance of homotopy groups
becomes less surprising when one is reminded that the homology of a chain complex
is the quotient of cycles by boundaries, that cycles correspond to maps from the
ground ring considered as free chain complex of rank 1, and that boundaries corre-
spond to maps which are chain homotopic to zero, so that the quotient corresponds
to passing to the equivalence relation of chain homotopy.

Remark 1.8. Unfortunately, there is not a definitive modern exposition of spectra
and the stable category aimed at a general audience. Adams [Ada74, Part 3] is the
classic introduction to spectra for the reader unfamiliar with the subject; Lewis-
May-Steinberger [LMSM86] is the definitive treatment of the category of spectra
which was the basis for most work in the subject in the 20th century. A very nice
discussion and comparison between the modern theories of diagram spectra (which
gives a point-set symmetric monoidal model of the stable category) is Mandell-May-
Schwede-Shipley [MMSS01], and the equivariant theory is described in Mandell-
May [MM02].

Although in the body of the paper we will require the full strength of the modern
theories, for the purpose of this introduction the reader should simply have in mind
that spectra are collections of based spaces {Xi} indexed by the natural numbers,
together with the datum of maps ΣXi → Xi+1 from the suspension of each space
to the next, together with additional structures whose specification would not help
the exposition. Given a based space A, the associated suspension spectrum is the
collection of spaces {ΣiA}, where Σi denotes the iterated suspension. Roughly
speaking, the category of spectra is a model of the result of formally inverting the
suspension operator Σ on the category of spaces; the inverse of Σ (up to homotopy)
is then the loops Ω, which we sometimes write Σ−1 depending on context. The
homotopy groups of a spectrum are produced by a process of stabilization of the
homotopy groups of the spaces {Xi}.

A key point to take from the above vague description is that operations on based
spaces induce operations on spectra. At the level of spaces, the operations that we
shall use are the addition of a disjoint basepoint, which canonically associates to
each space X a based space X+, the smash product of based spaces (A, ∗) and
(B, ∗):
(1.1.6) A ∧B ≡ A×B/A× ∗ ∪ ∗ ×B,

and the construction of the mapping space F (A,B) of (base-point preserving) con-
tinuous maps between based spaces.

In order to allow the reader unfamiliar with the subject to understand the basic
ideas, we shall use notation reminiscent of chain complexes. In particular, we write

(1.1.7) C∗(M ; k) ≡M+ ∧ k ∼= Σ∞
+ M ∧ k,

for the spectrum of chains of M with coefficients in a spectrum k. This is the
spectrum whose homotopy groups are the generalized homology groups H∗(M ; k),
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which are usually written k∗(M). We shall treat the subscript in C∗ as entirely
decorative (in the sense that Ck(M ; k) is not given any meaning), though it does
allow us to distinguish chains from cochains: we thus write

(1.1.8) C∗(M ; k) ≡ F (M+, k)

for the spectrum of cochains of M with coefficients in the spectrum k; the homotopy
groups of this spectrum are the generalized cohomology groups H∗(M ; k), usually
denoted k∗(M).

Our work requires the use of the algebraic structure of the category of spectra;
this is a symmetric monoidal category under the smash product, for which the
sphere spectrum is the unit. This allows the definition of ring spectra and categories
of module spectra associated to a ring spectrum in the evident ways. That is, a ring
spectrum k is a spectrum with a unit map S → k and a multiplication k ∧ k → k

which is appropriately associative and unital. Such a ring has a category of module
spectra which we denote k-mod, consisting of spectra equipped with an associative
action of k; one key example are the chains with coefficients in k, which are equipped
with a natural map

(1.1.9) C∗(M ; k) ∧ k→ C∗(M ; k).

Classical models of spectra (i.e., those described in [Ada74] and [LMSM86]) only
admitted a symmetric monoidal structure after passage to the homotopy category
(for the derived smash product); the advantage of more modern categories of spec-
tra (e.g. as discussed in [MMSS01]) is a point-set symmetric monoidal structure.
Module spectra on the point-set level are a much more satisfactory technical notion
than modules in the homotopy category; we will be careful to distinguish in what
follows between the two cases. Nonetheless, the casual reader does not need to
worry extensively about these issues on a first reading.

We end this aside by warning the reader that the proper development of the
theory requires understanding the modern homotopy theory of ring spectra and
their modules and the methods for computing derived functors in this context. For
example, we implement much of this by considering cofibrant ring spectra, and
notions of fibrant and cofibrant modules. These technical issues will be elided in
this introduction, and are discussed in Appendix A.

Returning to the discussion of the previous section, we fix a prime p and consider
a associative ring spectrum K(n) representing Morava K-theory; the ring structure
was shown to be unique by Angeltveit [Ang11], although there are uncountably
many choices of complex orientation (see Appendix B.4). Associated to any monoid
Π, and in particular to the submonoid of H2(M,Z) considered earlier, we have a
monoid ring with coefficients in K(n), which we denote

(1.1.10) K(n)[Π] ≡ K(n) ∧ Σ∞
+ Π.

This is an associative ring spectrum; the product in the monoid ring is defined by
combining the operation on Π and the product in K(n). Moreover, the natural
inclusion K(n)→ K(n)[Π] makes the monoid ring into an algebra under K(n). In
our context, there is additional structure coming from the homomorphism ω : Π→
R. Specifically, ω induces a grading of this ring by R; it will be more convenient
to pass to the associated decreasing filtration K(n)[Π≥λ] indexed by λ ∈ R, arising
from the filtration of Π which associates to each real number λ all elements whose
image under ω is larger than λ.
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We are interested in a 2-periodic version of this ring, so we introduce an asso-
ciative ring spectrum PS which is equivalent to the infinite wedge

∨
n Σ

−2nS of
negative and positive spheres of even dimension, and which we refer to as the 2-
periodic sphere spectrum. For our purposes it is convenient to have more point-set
control, and so we describe a specific model of this ring in Appendix A.2.3.

We define the 2-periodic group ring of Π with coefficients in K(n) to be the
smash product PS ∧ K(n)[Π], which inherits a natural filtration from K(n)[Π],
with quotients

(1.1.11) PS ∧K(n)[Π≤λ] ≡ PS ∧K(n)[Π]/PS ∧K(n)[Π≥λ].

We define the spectral Novikov ring Λ to be the completion of the group ring with
respect to this filtration, i.e., the corresponding homotopy inverse limit.

(1.1.12) Λ ≡ holim
λ

PS ∧K(n)[Π≤λ].

By construction, the coefficient ring of Λ is the graded ring Λ∗ from Section 1.1.1,
and the natural map

(1.1.13) PS ∧K(n)[Π]→ Λ

induces an equivalence on associated graded spectra with respect to the subfiltration
associated to any discrete unbounded subset of R (note that all such subsets are
countable).

The main construction of this paper, performed in Section 1.2 below, is of a
spectrum of Floer chains

(1.1.14) CF∗(H ; Λ),

associated to the Hamiltonian H , which is a module over Λ (in the homotopy
category) and is equipped with a complete decreasing filtration. We denote by

(1.1.15) CFλ
∗ (H ; Λ)

the quotient of CF∗(H ; Λ) by its λ-filtered part; CF∗(H ; Λ) is then the homotopy
inverse limit holimλ CFλ

∗ (H ; Λ).

Definition 1.9. The Floer homology groups HF∗(H ; Λ) are given by the inverse
limit

(1.1.16) HFk(H ; Λ) ≡ lim
λ

πk(CFλ
∗ (H ; Λ))

of the homotopy groups of CFλ
∗ (H ; Λ):

Remark 1.10. A more sensible version of Definition 1.9 would be to set

(1.1.17) HFk(H ; Λ) ≡ πk(CF∗(H ; Λ)).

However, the ad hoc definition above has the advantage that it allows us to prove
Theorem 1.1 without having to analyze the Mittag-Leffler condition for the inverse
system πk(CFλ

∗ (H ; Λ)) of homotopy groups. In a more complete account of Hamil-
tonian Floer homology with coefficients in MoravaK-theories, one would verify this
condition (which in fact does hold).

We can now explain how the results of the previous section follow from results
stated in terms of spectra, which we split into two parts:
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Proposition 1.11. The filtered spectrum CF∗(H ; Λ) admits the structure of a fil-
tered module over the filtered ring Λ in the homotopy category of spectra. The as-
sociated graded spectrum with respect to a sufficiently fine discrete and unbounded
subset of R is a free module over PS∧K(n)[Π], generated by closed time-1 periodic
orbits of H.

Proposition 1.12. The Floer cochains CF∗(H ; Λ) admit C∗(M ; Λ) as a retract in
the homotopy category of modules over Λ. Moreover, this retraction is compatible
with the filtration by Λ in the following sense: if we regard C∗(M ; Λ) as a filtered
Λ-module using the isomorphism C∗(M ; Λ) ∼= C∗(M ; k) ∧k Λ, then there exists a
constant c such that the retraction restricts to a composite

(1.1.18) Cλ
∗ (M ; Λ)→ CFλ+c

∗ (H ; Λ)→ Cλ+c
∗ (M ; Λ),

where c does not depend on λ.

Both of these results depend on the module structure on the Floer chains. In
contrast to our use of strict multiplications on Λ, notice that here we are making a
weaker assertion about module structures, which are only asserted to exist in the
homotopy category of spectra. This assertion amounts to the existence of a map of
spectra

(1.1.19) CF∗(H ; Λ) ∧ Λ→ CF∗(H ; Λ)

such that the action of the unit of Λ is homotopic to the identity, and the following
diagram commutes up to homotopy (the left vertical map is induced by the ring
structure on Λ, and the top horizontal map is the module map):

(1.1.20)

CF∗(H ; Λ) ∧ Λ ∧ Λ CF∗(H ; Λ) ∧ Λ

CF∗(H ; Λ) ∧ Λ CF∗(H ; Λ).

Remark 1.13. As with Remark 1.10, implementing the construction of module
structures at the level of homotopy categories is done for the sake of technical con-
venience, and Floer theory provides all the necessary data to produce the higher
homotopies in the above diagrams which are required to lift CF∗(H ; Λ) to an object
in the point-set category of modules over Λ.

The assertion in Proposition 1.11 that the module structure is compatible with
the filtrations is a consequence of suitable pairings

(1.1.21) PS ∧K(n)[Π>λ1 ] ∧ CF>λ2
∗ (H ; Λ)→ CF>λ1+λ2

∗ (H ; Λ),

where we write CF>λ
∗ (H ; Λ) for the λ-filtered part.

Passing to homotopy groups, these structures imply that the Floer homology
HF∗(H ; Λ) forms a module over Λ∗ and that the module structure is compatible
with the induced filtrations on both sides. This reduces the results of the previous
section to Proposition 1.11 and 1.12:

Proof of Proposition 1.5. By considering the spectral sequence associated to the
filtration of CF∗(H ; Λ), we see that the rank of HF∗(H ; Λ) over Λ∗ is smaller
than the number of Hamiltonian orbits. On the other hand, by Proposition 1.12,
considering the spectral sequences associated to the filtration of C∗(M ; Λ) and
CF∗(H ; Λ) implies that the the homology H∗(M ; Λ) is a submodule of HF∗(H ; Λ)
and hence has smaller rank. �



ARNOLD CONJECTURE AND MORAVA K-THEORY 9

1.2. Construction of the spectra of Floer chains.

1.2.1. The relative cochains of Floer trajectories. Having discussed the consequences
of the existence of Floer spectra for symplectic topology, we now turn to their con-
struction. We begin by recalling that, in the construction of ordinary Floer ho-
mology, the Floer chain complex is generated by closed time-1 Hamiltonian orbits.
The differentials in the Floer complex are obtained by (virtual) counts of elements
of moduli spaces of Floer trajectories (i.e., Morse gradient flow lines of the 1-form
in the loop space obtained by transgressing ω).

For the spectral generalization, it is convenient to start by introducing the set

P of lifts of contractible Hamiltonian orbits to the cover L̃M of the free loop space
of M associated to the image Π of the homomorphism

(1.2.1) π1(LM)→ H2(M,Z).

Concretely, a lift of an orbit to an element of P corresponds to an equivalence
class of choices of capping discs, i.e., extensions of the map S1 → M to a 2-disc.
Two discs lie in the same equivalence class whenever the corresponding map from
a sphere to M represents the trivial homology class. In particular, there is a well-
defined action map

(1.2.2) A : P → R

which assigns to elements of P the integral of ω over the corresponding capping
disc. As discussed in Section 9.2, we can associate to each pair of elements of P a

moduli space MR

(p, q) of (stable) Floer trajectories. The key properties that are
relevant at the moment is that this is a compact Hausdorff topological space, which
is empty whenever p does not strictly precede q with respect to the above partial

order (in practice, we artificially setMR

(p, p) to be a point, instead of being empty
as geometry dictates). The description of the topology of the moduli space of Floer
trajectories yields natural closed inclusions

(1.2.3) MR

(p, q)×MR

(q, r)→MR

(p, r)

which are associative and unital. This defines a partial ordering on elements of P
given by

(1.2.4) p < q if and only ifMR

(p, q) is non-empty.

The action of Π on P preserves this ordering, and is free with finite quotient given
by the set of time-1 Hamiltonian orbits. We thus have the principal example of the
notion of flow category discussed in Section 2.1:

Definition 1.14. The category MR
(H) of Floer trajectories for H , has set of

objects P, morphisms the moduli spaces of Floer trajectoriesMR

(p, q), and compo-
sitions given by Equation (1.2.3).

Remark 1.15. Cohen, Jones, and Segal [CJS95] introduced the term flow categories
to refer to categories whose morphism spaces are manifolds with corners, so that
the composition maps give rise to inclusions of boundary strata. Their notion is
appropriate for Morse theory, or for Floer-theoretic contexts wherein one can choose
perturbations which ensure that all moduli spaces are manifolds, which is not the
case in our situation. We adopt the terminology used by Pardon in [Par16], so that
our notion is a generalization of the original notion. If we want to specifically refer
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to flow categories in which all morphism spaces are manifolds, we shall use the term
manifold flow category.

At this stage, we introduce the notation ∂MR

(p, q) for the subspace ofMR

(p, q)
consisting of broken Floer trajectories, i.e., those which are images of compositions

inMR

(H). Letting Ωk denote the desuspension of an associative ring spectrum k,
we introduce a spectrum

(1.2.5) C∗
rel∂(M

R
(p, q),Ωk),

which we call the spectrum of relative cochains, and whose homotopy groups com-
pute relative cohomology

(1.2.6) π−k(C
∗
rel∂(M

R

(p, q),Ωk)) ≡ Hk+1(MR

(p, q), ∂MR

(p, q); k).

As discussed in Section 2.2, the specific model for relative cochains that we use
admits a functorial map

(1.2.7) C∗
rel∂(M

R

(p, q),Ωk) ∧ C∗
rel∂(M

R

(q, r),Ωk)→ C∗
rel∂(M

R

(p, r),Ωk),

which is constructed as a composition of two operations. The first is the canonical
product of cochains, which gives a map

(1.2.8) C∗
rel∂(M

R

(p, q),Ωk) ∧ C∗
rel∂(M

R

(q, r),Ωk)

→ C∗
rel∂(M

R

(p, q)×MR

(q, r),Ω2k).

The second map is a spectrum-level model

(1.2.9) C∗
rel∂(M

R

(p, q)×MR

(q, r),Ω2k)→ C∗
rel∂(M

R

(p, r),Ωk)

for the boundary homomorphism associated to the inclusion of the productMR

(p, q)×
MR

(q, r) as a closed subset ofMR

(p, r), which is given by Equation (1.2.3). In par-

ticular, we obtain a category of relative cochains, which we denote C∗
rel∂(M

R

(H),Ωk),
with objects the elements of P and morphisms the spectra of relative cochains. This
is our fundamental example of a spectral category, which is the analogue of the no-
tion of a dg category, in the case where the base ring is replaced by a ring spectrum.

The action of Π on P naturally lifts to the category of relative cochains. More-
over, Π acts on k-mod via the homomorphism

(1.2.10) 2c1 : Π→ 2Z

associated to the first Chern class, together with the action of 2Z on the category
of k-modules given by suspension; the precise notion of group actions on spectral
categories that we use is we explained in Section A.5. We now can describe the
central notion of a virtual fundamental chain (see Definition 3.10 in the text):

Definition 1.16. A virtual fundamental chain on the moduli spaces of Floer trajec-
tories, with coefficients in k, is a Π-equivariant functor from the category of relative
cochains to the category of k-modules,

(1.2.11) δ : C∗
rel∂(M

R

(H),Ωk)→ k-mod,

mapping each element of P to a rank-1 module, i.e., a k-module weakly equivalent
to Σnk for some n ∈ Z.
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In practice we will work with a homotopical representative of a virtual funda-
mental chain given by a collection of composable Π-equivariant bimodules relating

Π-equivariant spectrally enriched categories, of which the first is C∗
rel∂(M

R

(H),Ωk)
and the last is k-mod. As discussed in Section 3, we can compose bimodules (via the

bar construction), to obtain a bimodule over C∗
rel∂(M

R

; Ωk) and k-mod. Interpret-
ing this bimodule as a functor with value in k-mod, we obtain the desired virtual
fundamental chain. Alternatively, we can think of a virtual fundamental chain as
a homotopy coherent functor between ∞-categories, but we will not seriously use
that viewpoint in this paper.

Example 1.17. This is the first of a series of examples in which we consider the
following implausibly simple situation: say that P consists of only two elements

p < q, and that Π is trivial. In that case, there is a single moduli spaceMR

(p, q) of

interest, and the spectral category C∗
rel∂(M

R

,Ωk) consists of a single (non-trivial)

morphism space which is the spectrum C∗(MR

(p, q); Ωk).
To prepare the groundwork for Section 1.2.2, we assume that we are in a generic

situation in which MR

(p, q) is manifold whose dimension we denote by d. As
we shall see in Section 11, this manifold admits a natural stable almost complex
structure, so the spectral version of Poincaré duality, which goes under the name
Spanier-Whitehead duality [SW55], yields an equivalence

(1.2.12) C∗(MR

(p, q); Σdk) ≃ C∗(M
R

(p, q); k),

whenever k is a complex-oriented cohomology theory. We shall spend inordinate
effort in Sections 6, 7, and 8 specifying such a map at the point set level in order
to establish the necessary functoriality; but the case of a single manifold is classical
(e.g., see [Ada74, Part III.10.13]).

Composing with the map C∗(M
R

(p, q); k)→ k given by the projection to a point
gives a map

(1.2.13) C∗(MR

(p, q); Σdk)→ k

which after a shift by d+ 1 gives a virtual fundamental chain δ.
In this case, it is straightforward to explain how to extract a homotopy type

from a virtual fundamental chain: there is a natural map

(1.2.14) k→ C∗(MR

(p, q); k)

obtained by pullback under the projection to a point. After a shift, the composite
with the virtual fundamental chain is a map

(1.2.15) Ωk→ Ωd+1k.

We associate to δ the (homotopy) fibre of this map. If we assume that k is an
Eilenberg-Mac Lane spectrum (i.e., we are considering ordinary homology), this
would amount to the 2-term chain complex

(1.2.16) k→ Ωdk,

with differential prescribed by the fundamental class ofMR

(p, q). Of course, this
map can only be non-trivial if d = 0, in which case it precisely corresponds to a

(possibly signed) count of elements ofMR

(p, q).
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Remark 1.18. As should be clear from the above discussion, the homotopy type of

C∗(M
R

(p, q); k) serves as the domain of the virtual fundamental chain, and plays no
other role in the construction of the homotopy type associated to this simplest case
of a flow category. This is related to the idea that the image of the fundamental class
of a k-oriented manifold in the coefficient ring k depends only on the bordism class
of the manifold, in which the key point is that the (relative) fundamental class
of a manifold restricts to the fundamental class of its boundary. In our setting,
we expect the existence of a notion of bordism of spaces equipped with virtual
fundamental chains (and more generally of flow categories equipped with virtual
fundamental chains), so that the constructions of this paper only depend on this
bordism type. While we do require a result of this nature in our comparison of
Morse and Floer theory (c.f. Section 1.2.5 below), we do not develop the general
notion, and our proof proceeds via ad-hoc methods.

The results of this paper are summarized by the following:

Theorem 1.19. The moduli spaces of Floer trajectories admit virtual fundamental
chains with coefficients in any Morava K-theory K(n).

We now explain how the above result, together with the construction in Sec-
tion 3 of a homotopy type associated to each virtual fundamental chain, yields a
construction of spectra of Floer chains:

Proof of Proposition 1.11. Since our references to Section 3 will otherwise be com-
pletely opaque, we begin by outlining the construction and properties of the homo-
topy type of a virtual fundamental chain.

For each λ, we can restrict P to the elements of action ≤ λ and add a new

terminal object; denote this poset by Pλ. We write C∗
rel∂(M

R

λ; Ωk) for the restriction
of the relative cochains to Pλ. Similarly, we can restrict δ to a virtual fundamental
chain δλ. We can now define the homotopy type of δλ as the derived smash product:

(1.2.17) |δλ| = Sλ ∧C∗
rel∂(M

R

λ;Ωk)
δλ,

where here Sλ is the unique C∗
rel∂(M

R

λ; Ωk)-module specified to be trivial everywhere
except at the new terminal point of Pλ, where it is S.

The evident collapse maps Pλ2 → Pλ1 for λ2 > λ1 give rise to maps |δλ2 | → |δλ1 |,
and Definition 3.44 then constructs the Floer chains CF∗(H ; Λ) as the homotopy
limit over these maps. By construction, there is an evident decreasing filtration,
and we show in Theorem 3.63 that CF∗(H ; Λ) is a filtered module spectrum over
Λ. A computation explained in Proposition 3.46 shows that suitable associated
graded spectra are free on the number of orbits. Putting this all together proves
Proposition 1.11. �

In the remainder of this introduction, we continue the process of deriving the
proof of our results, which have now been reduced to Theorem 1.19, and to Propo-
sition 1.12 whose proof is postponed until Section 1.2.5.

1.2.2. Virtual fundamental chains from global Kuranishi charts. The basic idea be-
hind the proof of Theorem 1.19 follows the outline in the toy case of Example 1.17,
but there are two problems: at a fundamental level, the elements of the moduli
spaces of Floer trajectories may have non-trivial groups of automorphisms, so that
one requires a notion of orientations for orbifolds. At a technical level, the moduli
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spaces we encounter are not themselves orbifolds, but have natural local presen-
tations as quotients of topological spaces equipped with thickenings to topological
manifolds. To be precise, we need the following notion:

Definition 1.20. A Kuranishi chart is a quadruple (X,V, s,G), consisting of the
following data:

(1) (Symmetry group) a finite group G,
(2) (Thickened chart) a G-manifold X (paracompact and Hausdorff, and pos-

sibly with boundary), for which the action of G is assumed to be locally
modeled after a linear representation,

(3) (Obstruction space) a finite dimensional G representation V equipped with
an invariant inner product,

(4) (Defining section) and a G-equivariant map s : X → V .

We write Z = s−1(0) for the zero locus, and define the footprint to be the quotient
space Z/G.

Remark 1.21. Working with smooth instead of topological manifolds, the appear-
ance of the above definition in symplectic topology goes back to Fukaya and Ono
[FO99]; they explain that it can be traced back to Kuranishi’s work on deformation
theory of complex manifolds. The case of topological manifolds was considered
by Pardon [Par16], where the condition of local linearity was not required. The
terminology of footprints is due to McDuff and Wehrheim [MW17].

As a toy case, the reader should have in mind a situation in which the mod-

uli spaces MR

(p, q) of Floer trajectories admit a global Kuranishi chart, i.e., are
homeomorphic to a footprint of a Kuranishi chart as above, where we still restrict
attention to finite groups (a more general notion of a global Kuranishi chart would
include the case in which G is a compact Lie group, V is replaced by a G-vector
bundle over a G-manifold X , and s is a section of V ).

Our results will rely on considering Kuranishi charts with the property that the
underlying manifold X admits an orientation with respect to a given cohomology
theory. Concretely, the orientations we consider arise from the data of stable com-
plex structures, so we need to define this notion for topological manifolds. There
are in fact two such notions; we refer the reader to [MM79] for the definitions used
below. In order to formulate them, we recall that work of Milnor [Mil64] and Kister
[Kis64] associates to each topological manifold a fibre bundle whose structure group
TOP(d) is the group of homeomorphisms of Rd fixing the origin. This is usually
called the tangent microbundle of a topological manifold. We have natural maps
TOP(d)→ TOP(d + 1), and define the direct limit to be the group TOP of stable
homeomorphisms of Euclidean space. The stable tangent space of each topological
manifold X is thus classified by a map

(1.2.18) X → BTOP.

There is a natural map U(d)→ TOP(2d) given by the action of the unitary group
on Cd ∼= R2d, which induces a map U → TOP by taking direct limits. A stable
complex lift of the tangent microbundle of X is a lift of the classifying map to BU .

While we expect that all the examples we consider admit stable complex struc-
tures in the above sense, it shall turn out that the following strictly weaker notion is
sufficient for our purpose: consider the inclusion TOP(d)→ F (d) into the (group-
like) monoid of based self-homotopy equivalences of Sd. We also have natural maps
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F (d)→ F (d+1), and the direct limit is the monoid F of stable self-homotopy equiv-
alences of spheres, which is equipped with a natural map TOP → F . Associated
to each manifold X is the composite map

(1.2.19) X → BF,

which classifies the stable tangent spherical fibration of X . A stable complex lift
of the spherical fibration of X is then a lift of this map to BU (this is strictly
less information than a lift of the tangent microbundle, because the composite
with the map BU → BTOP need not be homotopic to the original map). This is
the notion that we will use, as the additional flexibility of working with arbitrary
spherical fibrations will allow us to provide extremely concrete constructions of
duality isomorphisms; we illustrate this by continuing Example 1.17:

Example 1.22. Assuming still that we only have two Hamiltonian orbits, we relax

the condition thatMR
(p, q) is a manifold, and require only that it admit a global

Kuranishi chart for which the group G is trivial. In that case, we have a closed
inclusion

(1.2.20) MR

(p, q)→ X,

defined as the zero-locus of a map s : X → V . Whenever the spherical fibration
of X has a stable complex lift, and assuming that k admits a complex orientation
(see Section 1.2.4 below), we may apply a generalized version of Alexander duality
discussed in Section 6.2 to obtain an equivalence

(1.2.21) C∗(MR

(p, q); Σ2nk) ≃ C∗(X,X \MR

(p, q); k),

where the right hand side is the spectrum of relative chains of the pair (X,X \
MR

(p, q)) with coefficients in k, whose homotopy groups compute relative homology

(1.2.22) πk(C∗(X,X \MR

(p, q); k)) ≡ Hk(X,X \MR

(p, q); k),

and which can be defined as the smash product of k with the mapping cone of the

inclusion of X \ MR

(p, q) in X (c.f. Definition A.60). We call this spectrum the
virtual cochains following Pardon [Par16]. The defining map s yields a map

(1.2.23) C∗(X,X \MR

(p, q); k)→ C∗(V, V \ 0; k),
of relative chains. The right hand side is a rank-1 module over k (corresponding to
the fact that the reduced homology of a sphere has rank 1), so that the composite

(1.2.24) C∗(MR

(p, q); Σ2nk)→ C∗(V, V \ 0; k),
defines the desired virtual fundamental class after desuspension.

The next step is to consider global charts with non-trivial group actions. The
solution for formulating Poincaré duality for orbifolds with coefficients in ordinary
cohomology is well-understood: it suffices to invert the order of the isotropy in the
coefficient ring. One way to understand why this works is to consider the (Borel)
equivariant cohomology of a space Z equipped with the action of a finite group G.
This cohomology group is the ordinary cohomology of the space

(1.2.25) BZ ≡ EG×G Z
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obtained by applying the Borel construction to Z. If we work with a coefficient
ring R in which the order of G is inverted, the natural maps

(1.2.26) H∗(Z/G;R)→ H∗(BZ;R)→ (H∗(Z;R))G

are isomorphisms. If Z is a manifold, this allows one to deduce Poincaré duality
for Z/G from Poincaré duality for Z (this is essentially the point of view used by
Fukaya and Ono [FO99]), while if Z is a closed subset of a manifold X , we can use
the above to relate the cohomology of the quotient to the equivariant homology of
the pair (X,X \ Z) (this is the point of view used in Pardon’s work [Par16]). Of
course, both of these points of view need to be globalised in order to be of much
use.

Since we cannot control the order of G, the above strategy ultimately leads to
working with rational coefficients. Studying generalized cohomology theories there-
fore requires a new idea, and the key point is to focus on the middle term of Equation
(1.2.26). Since this involves a Borel construction, we are led to employ the tech-
niques of equivariant stable homotopy theory. More specifically, Equation (1.2.26)
is a version of the norm map from the homotopy orbits to the homotopy fixed-
points, the study of which is the subject of the theory of Tate cohomology and Tate
spectra.

The appearance of the Morava K-theories in our work is now suggested by the
foundational observation of Ravenel [Rav82] that the MoravaK-theoryH∗(BG,K(n))
for a finite group G has finite rank over K(n)∗. Greenlees and Sadofsky [GS96] in-
terpreted this to show that BG is self-dual with respect to Morava K-theories in
the sense that there is a corresponding isomorphism

(1.2.27) H∗(BG,K(n)) ∼= H∗(BG,K(n))

which arises from a comparison of spectra.
It is natural to expect now that there should be some kind of Poincaré duality

for orbifolds with coefficients in MoravaK-theory, and indeed we have the following
result of Cheng [Che13]:

Theorem 1.23. If a finite group G acts on a closed smooth manifold X of dimen-
sion 2d, then the datum of an almost complex structure on X that is preserved by
G induces an isomorphism

(1.2.28) H∗(BX ;K(n)) ∼= H2d−∗(BX ;K(n)),

between the K(n) homology and cohomology of the classifying space BX ≡ X ×G

EG.

We reprove this result in greater generality, using the same basic building blocks:
this duality follows from Spanier-Whitehead duality, the vanishing of Tate cohomol-
ogy for K(n)-local theories [GS96], and the Adams isomorphism [Ada84]. These
matters are discussed at great length in Section 6 where we refer to the appendices
for some of the technical details, but the following continuation of Example 1.22
provides a basic summary.

Example 1.24. Assume that MR

(p, q) admits a global Kuranishi chart such that
V is a complex representation, and X admits a stable almost complex structure.
Following Greenlees and May’s treatment of Tate cohomology [GM95], we consider
the composition of G-equivariant maps

(1.2.29) EG+ ∧C∗(Z; k)→ C∗(Z; k)→ C∗(EG;C∗(Z; k)).
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induced by the projection EG+ → S0. The key result of Greenlees and Sadof-
sky [GS96] that we use is that, whenever k is a Morava K-theory, the above map
is a G-equivariant equivalence, so that it can be inverted up to homotopy to yield
a map

(1.2.30) C∗(BZ;K(n)) ≃ C∗(EG;C∗(Z;K(n)))G 99K (EG+ ∧ C∗(Z;K(n)))
G
,

after passing to fixed points, where we use 99K to indicate the fact that we invert
a canonically given map (more generally, if we are representing a map in the ho-
motopy category by a zig-zag with backwards maps equivalences). Next, we use
the assumption that X has a stable almost complex structure and that K(n) is
complex oriented to construct an equivalence

(1.2.31) C∗(Z; ΣdK(n)) 99K C∗(X,X \ Z;K(n)),

which is again given by Spanier-Whitehead duality, where d is the dimension of X .
This equivalence can be factored through G-equivariant maps, so that we obtain a
homotopy class of maps

(1.2.32)
(
EG+ ∧ C∗(Z; ΣdK(n))

)G
99K (EG+ ∧ C∗(X,X \ Z;K(n)))

G
.

Finally, we use the Adams isomorphism, a deep result in equivariant stable ho-
motopy theory (discussed in Appendix C) which asserts that the fixed points and
orbits of free spectra are equivalent, to get a map

(1.2.33) (EG+ ∧ C∗(X,X \ Z;K(n)))
G
99K C∗(BX,B(X \ Z);K(n)),

where BX and B(X \Z) again refer to the Borel constructions on the G-spaces X
and X \ Z. We have, as before, a natural map

(1.2.34) C∗(BX,B(X \ Z);K(n))→ C∗(BV,B(V \ 0);K(n))

and the fact that V is a complex representation and K(n) is complex oriented
trivialize the action of G on the representation sphere SV in the category of K(n)-
modules (see Section B.2 and in particular Corollary B.43 for discussion of this
untwisting), which yields a map

(1.2.35) C∗(BV,B(V \ 0);K(n))→ C∗(V, V \ 0;K(n))

splitting the natural homotopy class of maps in the other direction. Applying the
appropriate desuspensions provides a map

(1.2.36) C∗(BZ; ΩK(n))→ Ωd+1C∗(V, V \ 0;K(n)),

whose composition with the pullback of cochains from Z to BZ is the desired
fundamental chain.

1.2.3. Kuranishi flow categories. In the finite-dimensional approach to virtual fun-
damental chains, one starts by observing that the moduli spaces of Floer trajectories
admit covers by footprints of Kuranishi charts. The difficulty in formulating a global
notion lies in stating the required data along overlaps of charts. Our solution is to
introduce, in Definition 4.25, a monoidal category ChartK of Kuranishi charts. We
believe that this brings substantial clarity to various constructions, as much of the
content of this paper can be interpreted in terms of constructions of lax monoidal
functors from ChartK (and related categories) to categories of spectra.
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Remark 1.25. Since the theory of Kuranishi charts contains the theory of orbifold
charts, the reader may be concerned by the fact that a complete theory of maps of
orbifolds needs to be formulated in terms of a 2-category (see e.g. Joyce [Joy19]).
We avoid these 2-categorical subtleties because the explicit geometric constructions
of Floer theory can be performed at the 1-categorical level.

We begin by formulating the variant of the notion of Kuranishi structure [FO99],
Kuranishi space [Joy19], implicit atlas [Par16], or Kuranishi atlas [MW17] that we

use. We define a Kuranishi presentation of MR

(p, q) to be a diagram in ChartK
(i.e., a functor from a categoryA(p, q) to ChartK), equipped with a homeomorphism
between the colimit of the corresponding diagram in the category of topological

spaces (under the footprint functor) withMR

(p, q). We impose some mild technical
conditions on our diagrams, the most important of which is the requirement that the

collection of transition functions relating charts covering each point inMR
(p, q) is

contractible. The construction of such a Kuranishi presentation is given in Section
10.3; as with all the other finite dimensional approaches to the construction of
virtual fundamental chains, the thickenings are moduli spaces of Floer trajectories
with additional marked points, which solve perturbed pseudo-holomorphic curve
equations. The additional choice of marked points gives rise to the group G of
symmetries, and the perturbations are chosen from the vector space V .

Recalling that the spacesMR

(p, q) are the morphisms of a category, we need to
formulate the multiplicativity of Kuranishi presentations. This takes the form of
functors A(p, q) × A(q, r) → A(p, r), which are associative in the sense that they
satisfy the axioms of a bicategory, and of coherent natural transformations in the
diagram

(1.2.37)

A(p, q)×A(q, r) A(p, r)

ChartK×ChartK ChartK .

Such structure is encoded by the notion of a lift of a flow category to a Kuranishi
flow category (see Section 4.1.6), and the construction of such a lift in the context
of Hamiltonian Floer theory is given in Section 10.4.

Remark 1.26. The reader who is familiar with Floer theory will observe that the

space MR
(p, q) has a virtual dimension virdimMR

(p, q) ∈ Z, which should agree
with the quantity dimX −dimV for each Kuranishi chart of this space. The maps

that arise in the Kuranishi presentation ofMR

(p, q) are thus maps between charts
of the same virtual dimension. On the other hand, we have

(1.2.38) virdimMR

(p, q) + virdimMR

(q, r) = virdimMR

(p, r)− 1,

so that the product of charts forMR
(p, q) andMR

(q, r) has virtual dimension one

smaller than the virtual dimension of charts for MR

(p, r). Instead of considering
arbitrary maps between charts of different virtual dimension, we shall restrict at-
tention to those that arise by composing equi-dimensional maps with inclusions of
boundary strata. This is why the definition of the category ChartK in Section 4.1.4
incorporates the data of stratifications.



18 M. ABOUZAID AND A.J. BLUMBERG

In order to discuss the relevance of Kuranishi flow categories to the construction
of virtual fundamental chains, we shall introduce the notion of a tangentially twisted
fundamental chain. It is extremely convenient for this purpose to consider the
(Milnor) model MX for the spherical tangent fibration of a topological manifold
X , whose fibre at a point x ∈ X is the cone of the inclusion of X \ x in X (see
Section 6.2). As with every spherical fibration over X , we obtain a spectrum of
tangentially twisted cochains

(1.2.39) C∗(Z;MX ∧ k)

associated to every map Z → X and every spectrum k, whose homotopy groups
compute cohomology with twisted coefficients.

If Z is a compact subset of X , the main advantage of this model is the existence
of a natural equivalence

(1.2.40) C∗(X,X \ Z)→ C∗(Z;MX)

which realizes Spanier-Whitehead duality. If X is not assumed to be closed, then
the right hand side should incorporate a condition of compact support as in Poincaré
duality for non-compact manifolds, and if Z intersects the boundary ofX , we should
consider the relative cochains of the pair (Z, ∂X ∩ Z) as in Lefschetz duality.

In the setting of Kuranishi charts, it is more natural to consider the virtual
tangent bundle, which is the desuspension MX−V by the G-representation V . To
keep track of equivariance, we pull back MX−V to the Borel construction BZ, and
consider, as in Example 1.24, the Borel equivariant cochains

(1.2.41) C∗,c
rel∂(BZ;MX−V ∧ k),

which are compactly supported (along the Z direction), relative the intersection of
Z with the boundary of X . Specializing to the case k represents a MoravaK-theory
K(n), we again refer to Section 6.2 for the construction of a zig-zag of equivalences

(1.2.42) C∗,c
rel∂(BZ;MX−V ∧ k)← · · · → C∗(X,X \ Z; Σ−V k)

in the case of a single chart. The results of Section 7 then show that this zig-zag
can be made homotopy coherent in an appropriate sense. Using the map of pairs
(X,X \ Z)→ (V, V \ 0) as in Example 1.24, it is then relatively straightforward to
map C∗(X,X \ Z; Σ−V k) to a rank-1 module over k.

The outcome of this discussion is that every Kuranishi flow category, and in par-

ticular the lift ofMR

(H) constructed in Section 10, admits a twisted fundamental
chain. In order to formulate this notion, we shall consider, for each pair (p, q) of
Hamiltonian orbits, a spectrum denoted

(1.2.43) C∗,c
rel∂(BZ;MX−V ∧ k)(p, q)

which is obtained by gluing together the Borel equivariant spectra of twisted cochains

C∗,c
rel∂(BZ;MX−V ∧ k) over all Kuranishi charts ofMR

(p, q).

Remark 1.27. The precise construction of these twisted cochains will incorporate an
additional shift by the difference dp− dq of integers associated to each orbit, which
record the degrees of the corresponding cells. We shall delay discussing this datum
in the introduction until its importance to the existence of complex orientation
becomes clear below.
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Proposition 1.28. If k represents a Morava K-theory, there is a Π-equivariant
spectral category C∗,c

rel∂(BZ;MX−V ∧ k) with objects p ∈ P and morphisms given
by Equation (1.2.43), which admits a Π-equivariant functor

(1.2.44) C∗,c
rel∂(BZ;MX−V ∧ k)→ k-mod

assigning to each element of P a rank-1 module over k.

Proof. The construction of the spectral category of tangentially twisted cochains is
given in Section 7.2. In Section 7.3, we compare this to a spectral category built
from the virtual cochains, which is proved, in Section 5 to admit the desired functor
to the category of modules. �

Remark 1.29. As should be clear from the above discussion, Proposition 1.28 is a
general result about lifts of flow categories to Kuranishi presentations, and its proof
uses no specific feature of Hamiltonian Floer theory. The fact that we restrict its
statement to Morava K-theory is thus slightly surprising: the issue lies in Equation
(1.2.29), which is the step comparing the twisted cochains, which are built from
cochains of sections of spectra over classifying spaces of finite groups, with the
chain theory. This comparison holds more generally for K(n)-local cohomology
theories, which in particular have the property that they vanish on spaces which
are K(n)-acyclic.

1.2.4. Oriented Kuranishi charts. At this stage, it remains to compare twisted and
ordinary cochains in order to construct virtual fundamental chains from twisted
ones. As discussed in Section 1.2.2, this amounts to a lifting problem for the tangent
spherical fibration of Kuranishi charts from the space F of stable self homotopy
equivalences of spheres to the unitary group U . Our lifting will factor through
the stable orthogonal group O = colimd O(d), in the sense that we exhibit an
equivalence between the stable spherical fibration MX of the Kuranishi charts that
we consider, and the sphere bundle STX of a vector bundle TX .

Remark 1.30. If we worked with smooth Kuranishi charts, the vector bundle TX
would, as the notation indicates, be the ordinary tangent bundle. In that case, it
is standard to use an exponential map to compare STX to the model MX for the
spherical fibration which we find convenient for proving Spanier-Whitehead duality.
Of course, the exponential map uses a choice (of Riemannian metric), which one
must keep track of while trying to prove the functoriality and multiplicativity of the
comparison. While this is a slightly technical point to discuss in the introduction,
our solution to this problem may be of interest to readers who would appreciate a
preview of the relevant part of the paper (Sections 6.3, 8.1 and 8.2).

Consider, as Nash did in [Nas55], the space NX of Moore paths in X which do
not return to their starting point so that, in particular, the only constant path is
the one parameterized by an interval of length 0. If X is smooth, we impose in
addition the condition that all paths are differentiable at the origin. The derivatives
at the origin and the evaluation at the other endpoint yield natural maps

(1.2.45) TX ← NX → X ×X

of fibre bundles over X . Denoting by 0 the section of NX consisting of constant
paths, we find that the above maps restrict to maps

(1.2.46) TX \ 0← NX \ 0→ X ×X \X.
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Defining NX |0 and TX |0 to be the fibre bundles obtained by taking the cone over
the complement of 0 at each point, we have induced maps

(1.2.47) TX |0← NX |0→MX,

which are equivalences of spherical fibration over X . It is then easy to compare the
spherical fibration TX |0 with STX via another zig-zag.

It should be clear to the reader that the construction above is free of choices,
functorial, and multiplicative. Choices would enter in picking inverse homotopy
equivalences, but we systematically avoid choosing inverses in this paper.

One the main technical points of this paper is to avoid using the smooth structure
on the moduli spaces of pseudo-holomorphic maps. There are potential approaches
to proving this smoothness result both from the finite dimensional point of view
[FOOO16] or using the theory of polyfolds [HWZ09]. Instead, we introduce the
notion of a flag smooth manifold, which consists of the data of a topological manifold
X equipped with a topological submersion over a smooth manifold, together with a
smooth structure on all fibers (a related notion appeared already in [Sie99]). Note
that such a structure yields a vector bundle on X , which we denote TX , defined as
the direct sum of the tangent spaces of the fibers with the pullback of the tangent
space of the base. It is quite easy to adapt the Nash argument comparing different
models of tangent spherical fibrations to this setting.

Remark 1.31. A more careful construction than the one given in this paper would
show that a flag smooth structure with total space X gives a lift of the classifying
map of the topological microbundle X to a vector bundle (rather than simply a
lift of the corresponding spherical fibration). In dimension greater than 5, smooth-
ing theory [KS77] implies that a lift of the topological microbundle of a manifold
determines an underlying smooth structure.

The results that we need are not so delicate as to require smoothing theory.
One way to think about this is that the homotopy type associated to moduli spaces
depends only on their structured bordism class. Standard arguments in Pontryagin-
Thom theory imply that the relevant smooth and topological G bordism groups are
isomorphic (the case of dimension 4 is more delicate than that of higher dimensional
manifolds, but was worked out by Freedman and Quinn [FQ90]).

By simply requiring the datum of a flag smooth structure on the thickening, it
is straightforward to extend the notion of a flag smooth manifold to that of a flag
smooth Kuranishi chart. It is less straightforward to formulate the functoriality of
the notion. This is done in Section 4.2, where we construct a monoidal category

ChartfsK of flag smooth charts, using a notion that is entirely motivated by the
geometry of moduli spaces of Floer trajectories (c.f. Definition 4.40). This category
admits a forgetful functor to ChartK, so that it makes sense to define a flag smooth
Kuranishi flow category to be a lift of the diagram underlying a Kuranishi flow

category from ChartK to ChartfsK .
The relevance of this notion to Floer theory is given by the fact that the thick-

enings that we construct admit forgetful maps to abstract moduli spaces of curves
with marked points. These abstract moduli spaces have natural smooth structures
essentially coming from their description in terms of submanifolds of complex al-
gebraic varieties. The fibers of these forgetful maps are naturally embedded inside
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smooth Banach manifolds as zero loci of smooth Fredholm sections of Banach bun-
dles, and hence are smooth whenever the section is transverse to the origin. Putting
these ingredients together yields the following result which is proved in Section 10.5.

Proposition 1.32. The flow categoryMR

(H) lifts to a flag smooth Kuranishi flow
category. �

Having constructed a lift of the spherical fibration to a real vector bundle, we
now consider the problem of lifting the corresponding stable bundle to a stable
complex vector bundle. The relevant notion is that of a relative stable complex
orientation, i.e. we have for each orbit p a stable complex vector space

(1.2.48) Vp = (V +
p , V −

p )

whose formal difference is the dimension of the corresponding cell of the Floer
chains. This is one of the additional complications of Floer theory when thought
of as infinite dimensional Morse theory, as we can assume V −

p = 0 in the finite
dimensional situation. A complex orientation of a Kuranishi chart relative the pair
Vp and Vq thus consists of a G-equivariant complex vector bundle I over each chart,
together with a G-representation W and an isomorphism

(1.2.49) V +
p ⊕ R⊕W ⊕ TX ⊕ V −

q
∼= V −

p ⊕W ⊕ I ⊕ V +
q .

There is a natural topology on the space of such isomorphisms, so we construct a
category ChartoriK (Vp, Vq) of Kuranishi charts with stable complex structures rela-
tive the pairs Vp and Vq, as a category internal to topological spaces (i.e. with both
objects and morphisms equipped with a natural topology, and continuous compo-
sitions). This accounts for the functoriality of orientations. The multiplicativity of
orientations then arises from composition functors

(1.2.50) ChartoriK (Vp, Vq)× ChartoriK (Vq, Vr)→ ChartoriK (Vp, Vr)

which equip the collection of such categories with the structure of a bicategory which
we denote ChartoriK . Considering the monoidal category ChartK as a bicategory with
a single 0-cell, we have a forgetful 2-functor

(1.2.51) ChartoriK → ChartK,

so it again makes sense to define a complex oriented Kuranishi flow category as a
lift of a Kuranishi flow category to ChartoriK .

Returning to Floer theory, we have the following summary of the results of
Section 11:

Theorem 1.33. The flow category MR
(H) admits a lift to a complex-oriented

Kuranishi flow category. �

Proof of Theorem 1.19. Given Theorem 1.33, this is essentially a consequence of the
long work of Sections 5, 7, and 8, which proves that every complex oriented Kuran-
ishi flow category is equipped with a virtual fundamental chain with coefficients in
Morava K-theory. The following diagram may help the reader trace through the
various maps; each entry is a spectrally enriched Π-equivariant category associated
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to the complex oriented Kuranishi presentation ofMR

(H)

(1.2.52)

C∗,c
rel∂(BZ;TX |0−V ) C∗,c

rel∂(BZ;NX |0−V )

C∗,c
rel∂(BZ;STX−V ∧ k) C∗,c

rel∂(BZ;MX−V )

C∗,c
rel∂(BZ;SI−V−ℓ ∧ k) (EG+ ∧ C∗,c

rel∂(Z;MX−V ))G

C∗,c
rel∂(BZ; Ωk) (EG+ ∧ X|Z−V )G

C∗
rel∂(BZ; Ωk) BX|Z−V

C∗
rel∂(M

R

(H); Ωk) k-mod

Evaluation

Evaluation

Index

Orientation

Ambidexterity

Compactness

Duality

Adams

AugmentationPullback

More precisely, each solid morphism is a Π-equivariant functor, and each dashed
arrow is a Π-equivariant bimodule representing an equivalence. As discussed in Sec-
tion 3, we can compose bimodules (via the bar construction), to obtain a bimodule

over C∗
rel∂(M

R
(H); Ωk) and k-mod. Interpreting this bimodule as a functor with

value in k-mod, we obtain the desired virtual fundamental chain. �

1.2.5. Comparison with Morse theory. We now return to discuss Proposition 1.12:
in order to compare Floer homology with ordinary homology, we use Morse theory
as an intermediate step, as in [Fuk97, PSS96]. The starting point is a Morse-Smale

function f on M . Consider the set X of lifts of critical points of f to the cover L̃M ,
partially ordered by the values of the action functional and by those of f . These are
the objects of a flow category T , whose morphisms T (x, y) are compactified moduli
spaces of gradient flow lines connecting critical points x and y. The constructions
of this paper, implemented in a much simpler setting with trivial isotropy groups
and obstruction spaces, yield a virtual fundamental chain on this flow category,
with coefficients in K(n). We denote by CM∗(f ; Λ) the corresponding homotopy
type constructed using the methods of Section 3. The following result, which is
essentially due to Cohen, Jones, and Segal [CJS95], follows from the results proved
in Appendix D.1:

Theorem 1.34. There is a natural equivalence CM∗(f ; Λ) ∼= C∗(M ; Λ).

Proof. In Appendix D.1 we construct a homotopy type CM∗(f ; k) from the flow
category with objects critical points of f . The inclusion of constant filling discs

gives a distinguished map M → L̃M , so that we can write each element of X
canonically as a pair ([x], π) with [x] a critical point of f and π an element of Π.
The key point is that the space of morphisms between objects ([x], π) and ([x′], π′)
is empty whenever π 6= π′. This implies that we have an equivalence

(1.2.53) CM∗(f ; Λ) ∼= CM∗(f ; k) ∧k Λ.
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In Proposition D.1, we prove the equivalence of CM∗(f ; k) with C∗(M ; k). Since

(1.2.54) C∗(M ; Λ) ∼= C∗(M ; k) ∧k Λ,

the desired result follows. �

The comparison of Morse and Floer theory can then be implemented as follows:
consider the partial ordering on X ∐P extending the partial order of these two sets
by

(1.2.55) x < p if and only if A(x) < A(p)− c

for some constant c that will depend on the Hamiltonian H (i.e., its Hofer en-
ergy). In particular, a Hamiltonian orbit of H never precedes a critical point of

f . In Section 9, we construct a flow category MR

(f,H) with such objects, with
morphisms between critical points given by moduli spaces of gradient trajectories,
those between Hamiltonian orbits by moduli spaces of Floer trajectories, and those

between a critical point x and an orbit p given by a mixed moduli spaceMR
(x, p)

consisting of a pseudo-holomorphic plane with a marked point, which is asymptotic
to p along the end, and a gradient flow line from x to the image of the marked
point, at illustrated in Figure 1.

x p

Figure 1. A representation of an element of the moduli space

MR

(x, p).

Proposition 1.35. The flow category MR

(f,H) admits a virtual fundamental
chain with coefficients in K(n).

Proof. The construction of a lift to a complex oriented Kuranishi flow category is
done in Section 11. The existence of the fundamental chain then follows from the
results of Section 5, 7, and 8. �

At this stage, we can appeal to Section 3.5, in which we prove that the homotopy

type associated to the fundamental chain onMR

(f,H) is the cofiber of a map

(1.2.56) CM∗(f ; Λ)→ CF∗(H ; Λ),

induced from maps

(1.2.57) CMλ
∗ (f ; Λ)→ CFλ+c

∗ (f ; Λ)

where c is the constant appearing in Equation (1.2.55).
We complete the reduction of the results stated in the introduction to those

proved in the paper with:

Proof of Proposition 1.12. Having constructed a map of homotopy types, it remains

to show that it splits. In Section 9.5, we construct a flow categoryMR

(f,H, f) with
objects indexed by three copies of the set X of critical points of the Morse function
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f , which are ordered as X− < X0 < X+, and one copy of the set P of Hamiltonian

orbits. The key properties of this category are that it admits MR

(f,H) as the
full subcategory with objects X− and P , that X0 and P consist of incomparable
objects, and that the full subcategory with objects P ∐ X+ has the property that
there are no morphisms from p to x+ unless A(x) ≤ A(y) − c and f(x) ≤ f(y),
with this space of morphisms consisting of a point whenever x = y.

In Section 11, we prove that this category admits a lift to a complex oriented
Kuranishi flow category, and hence determines a homotopy type over Λ. It is clear

from the construction ofMR

(f,H, f) that the hypotheses of Proposition 3.78 hold
for the subcategories with objects X− ∐ X0 and X+ ∐ X0; i.e., that the associated
homotopy types are acyclic. We can then apply Proposition 3.80 to conclude that

this data specifies a retraction as a Λ-module of the map represented byMR

(f,H)
from Morse to Floer chains. �

1.3. Outline of the paper. We end this introduction with Figure 2, which pro-
vides a dependency diagram for the contents of this paper: dashed arrows indicate
minimal dependencies, i.e. that the essential point of the target section can be
understood without reference to the source:

Kuranishi
presentations

Floer
theory

Algebraic
Topology

Section 2

Section 4.1

Section 4.2

Section 4.3

Section 3

Section 5

Section 6

Section 7

Section 8

Section 9

Section 10

Section 11

Appendix D

Appendix A

Appendix B and C

Figure 2. Dependency diagram: dashed arrows indicate minimal
dependencies.
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Part 1. The homotopy type of flow categories

2. Topological and orbispace flow categories

As observed by Cohen-Jones-Segal [CJS95], filtered homotopy types arise in
Floer theory from appropriately oriented flow categories. The purpose of this sec-
tion is to introduce the formalism of such categories, to define the corresponding
spectrally enriched categories of relative cochains, and to introduce the notions of
orbispace and Kuranishi flow categories which will be relevant to Floer theoretic
applications.

2.1. Topologically enriched flow categories.

2.1.1. Equivariant flow categories. Let P be a partially ordered set which is locally
finite dimensional in the sense that, for any pair of comparable elements p < q, there
is a bound on the number of elements of a totally ordered subset with minimum p
and maximum q; this technical condition will not be relevant in this section, but
will be essential in Section 3,

Remark 2.1. In Floer theory, the set P will be the set of lifts of Hamiltonian orbits
to the universal cover of the free loop space, or to an intermediate cover on which
the action functional is well-defined. This set is naturally ordered by action, but this
ordering need not be locally finite dimensional. Nonetheless, Gromov compactness
implies that one may in some sense discretize this ordering so that local finiteness
holds, allowing the constructions of this section to directly apply.

We treat P as a category in the usual way, with objects the elements of P and
morphisms given by an arrow from p to q if and only if p ≤ q. We shall also fix a
discrete group Π acting freely on P as a category; explicitly, Π has a free action on
the elements of P that is compatible with the order in the sense that p < q then
π(p) < π(q) for π ∈ Π.

We will extend the action of Π to enriched categories over P ; we are primarily
interested in topologically or spectrally enriched categories. In order to specify
actions of groups on categories, we use the language of 2-categories, i.e., categories
equipped with a category of morphisms for each pair of objects. Associated to
Π is a 2-category BΠ with a single object, 1-cells the elements of Π, and 2-cells
encoding the product on Π. An action of Π on a category is now some kind of
2-functor from BΠ to the 2-category of enriched categories, enriched functors, and
enriched natural transformations. Explicitly, the data of the action on an enriched
category C consists of:

(1) For each π ∈ Π an enriched functor

(2.1.1) γπ : C → C,



26 M. ABOUZAID AND A.J. BLUMBERG

(2) for each pair π1, π2 ∈ Π a natural comparison transformation

(2.1.2) γπ1 ◦ γπ2 → γπ2π1 ,

and this data satisfies unitality and associativity properties that we describe in more
detail in Appendix A.5. When the comparison transformation (Equation (2.1.2))
is the identity, we refer to this as a strict action. A strict action can also be
described as a functor from G (regarded as a category with a single object) to the
category of categories. Many of the actions we consider are strict. However, we
will also consider pseudo-actions (where the transformation is an isomorphism) and
homotopical actions (where the transformation is merely a weak equivalence).

Definition 2.2. A Π-equivariant flow category over P is a topologically enriched
category with object set P, equipped with a strict action of Π extending the action
on the set of objects, and such that morphisms from p to q are given by a point if
p = q, and are otherwise empty unless p < q.

We note at this stage that there is tautological example of such a flow category,
given by considering P as a topological category with discrete spaces of morphisms;
this will be the key example to consider in Section 3.

Remark 2.3. The example to keep in mind for Floer theory is the following: on a
symplectic manifold equipped with a non-degenerate Hamiltonian we consider the
set P of lifts of time-1 orbits to the universal cover of the free loop space (or an
intermediate cover on which the action functional is singly valued), with partial
order induced by action. The group Π is then given by the deck transformations of
this cover, and the morphisms in the flow category are given by the Gromov-Floer
compactification of the moduli spaces of Floer trajectories (see Section 9).

Remark 2.4. We warn the reader that we do not assume that the morphism spaces
are CW complexes or Euclidean Neighborhood Retracts (ENRs), nor that they
have the homotopy types of such spaces. Instead, the main properties implied by
the geometric constructions we consider is that the morphism spaces are compact
and are locally homeomorphic to closed subsets of Euclidean space. In particular,
they are Hausdorff.

Example 2.5. The simplest non-trivial example arises in the case P is a totally
ordered set consisting of a triple of elements {p < q < r} and the group Π is trivial.
Consider the data of topological spacesM(p, q),M(q, r) andM(p, r), and a closed
embedding

(2.1.3) M(p, q)×M(q, r)→M(p, r),

whose image will be denoted ∂M(p, r). This composition map suffices to specify a
topologically enriched category with object set P , where we define

(2.1.4) M(p, p) =M(q, q) =M(r, r) = ∗
and composition maps with ∗ to be the identity.

2.1.2. Collared completion of flow categories. In Section 2.2, we shall consider a
certain spectrally enriched category associated to a flow category, whose homotopy
groups compute the relative cohomology of morphism spaces. We will use a lift
to spectra of the boundary homomorphism in cohomology with coefficients in a
spectrum k

(2.1.5) H∗(Y ; k)→ H∗+1(X,Y ; k) = H∗(X,Y ; Ωk)
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associated to an inclusion Y ⊂ X . In order for such a map to be functorial, it
is convenient for Y to be equipped with a collar, corresponding to the variable
appearing in the delooping of the right hand side. Our purpose in this section is to
replace each flow category by a collared completion, which will be essential for the
functoriality of later constructions.

Definition 2.6. For each pair p, q ∈ P, we define the partially ordered set 2P(p, q)
to consist of totally ordered subsets of P all of whose elements lie strictly between
p and q, with ordering given by inclusion.

We assign to each element Q ∈ 2P(p, q) the cube

(2.1.6) κQ ≡
∏

i∈Q

κi

of dimension |Q|, where each κi is an interval [0, 1]. We adopt the convention that
κ∅ = ∗ when Q is empty. Given an inclusion Q ⊂ P of elements of 2P(p, q), we
have a natural map

(2.1.7) κQ → κP

associated to setting all coordinates not in Q to equal 0; this construction defines
a functor from 2P(p, q) to the category of topological spaces.

IfM is a flow category, we can think of each element Q = (q1, . . . , qn) of 2
P(p, q)

as a composable sequence in P , so we associate to it the space

(2.1.8) M(Q) ≡M(p, q1)× · · · ×M(qn, q).

This construction is contravariantly functorial in Q, in the sense that an inclu-
sion Q → P of elements of 2P(p, q) induces a natural map M(P ) → M(Q) by
composition inM.

Since the cube κQ on Q is covariantly functorial in Q, we can define the collared
completion of M(p, q) to be the union of the values of the functor M(−) × κ(−)

quotiented by the equivalence relation that glues these spaces along the maps

(2.1.9) M(Q)× κQ ←M(P )× κQ →M(P )× κP

for each inclusion Q→ P :

Definition 2.7. The collared completion ofM(p, q) is the coend

(2.1.10) M̂(p, q) ≡
∫ Q∈2P(p,q)

M(Q)× κQ,

of the functors M and κ on 2P(p, q).

Remark 2.8. The space M̂(p, q) is homeomorphic to the homotopy colimit of the
functor 2P(p, q) → Top, which assigns M(Q) to Q. That construction would
naturally yield a decomposition into simplices, whereas later constructions will rely
on the cubical decomposition that we highlight.

The collared completion is naturally equipped with a projection map

(2.1.11) M̂(p, q)→M(p, q)

which is induced by the collapse maps κQ → ∗. It also has a natural notion of
boundary:
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Definition 2.9. The boundary ∂M̂(p, q) of M̂(p, q) is the subset where one or
more collar coordinate equals 1.

Observe that, by construction, the inclusion ∂M̂(p, q)→ M̂(p, q) is a Hurewicz
cofibration (i.e. a map satisfying the homotopy extension property, which in par-
ticular implies that it is a closed inclusion); it is in fact locally modeled after the
canonical example of such a cofibration, which is the inclusion of a space in its
product with the interval [0, 1).

Remark 2.10. Our use of the term boundary is justified by considering the case
studied by Cohen, Jones, and Segal [CJS95]: if each space M(p, q) is a smooth
manifold with corners, such that the composition maps

(2.1.12) M(p, q)×M(q, r)→M(p, r)

enumerate the codimension-1 boundary strata, then M̂(p, q) is again a manifold
with corners, with boundary given as above.

Example 2.11. In the caseM = P , it is straightforward to compute that

(2.1.13) P̂(p, q) ≡ colim
Q∈2P (p,q)

κQ

is a cubical complex obtained by gluing along these inclusions. By the assumption
that P is locally finite dimensional, P̂(p, q) is a finite dimensional cubical complex,
which deformation retracts to the inclusion of the point associated to Q = ∅. We
consider the following special cases:

(1) If p = q, P̂(p, p) is a point and ∂P̂(p, p) = ∅.
(2) If p and q are successive elements,

(2.1.14) P̂(p, q) = ∗ and ∂P̂(p, q) = ∅.
(3) If there is a unique element q1 such that p < q1 < q, then

(2.1.15) P̂(p, q) = [0, 1] and ∂P̂(p, q) = {1},

with the endpoint 0 the image of the inclusion of κ∅, and the endpoint 1
the image of the inclusion of ∂P̂(p, q).

(4) If there are two incomparable elements between p and q, i.e., p < q1 < q
and p < q2 < q, then

(2.1.16) P̂(p, q) = [0, 1] ∨0 [0, 1] and ∂P̂(p, q) = {1} ∪ {1},
where the union means the disjoint union of the endpoints. More generally,
as shown on the left side of Figure 3, if there are k incomparable elements
{qi} between p and q, then

(2.1.17) P̂(p, q) = [0, 1] ∨0 [0, 1] ∨0 . . . ∨0 [0, 1]︸ ︷︷ ︸
k

and ∂P̂(p, q) =
⋃

k

{1}

(5) Given the poset p < q1 < q2 < q, then

(2.1.18)
P̂(p, q) ∼= [0, 1]× [0, 1]

∂P̂(p, q) ∼= {(1, t) | t ∈ [0, 1]} ∨ {(s, 1) | s ∈ [0, 1]}
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with basepoint (1, 1) (see the right side of Figure 3). More generally, if P
is a totally ordered finite poset with k elements (and bottom element p and
top element q), then

(2.1.19) P̂(p, q) = [0, 1]|P|−2

with boundary the faces where at least one coordinate is 1.

(6) Given the poset p < q1 < q < z and p < q2 < q, we have that P̂(p, q)
consists of the product [0, 1] × [0, 1] corresponding to the totally ordered
subset p < q1 < q < z and the product [0, 1] × [0, 1] corresponding to the
totally ordered subset p < q2 < q < z, glued along the face corresponding
to q. The boundary is the set of edges where the coordinate associated to
either q, q2, or q1 is 1.

p

q1

q2
...

qk

q p q1 q2 q

∅

q1
q2
· · ·
qk ∅

q1

q2

q1q2

Figure 3. The cubical complex of morphisms from p to q associ-
ated to small posets.

Given totally ordered subsets P ∈ 2P(p, q) and Q ⊂ 2P(q, r), there is a natural
map

(2.1.20) θp,q,r : κ
P × κQ → κP∐{q}∐Q

specified by the inclusion on coordinates in P and Q and setting the coordinate q
to 1. These maps are associative:

Lemma 2.12. Given a well a totally ordered subset R ⊂ 2P(r, s), the following
diagram commutes:

(2.1.21)

κP × κQ × κR κP∐{q}∐Q × κR

κP × κQ∐{r}∐R κP∐{q}∐Q∐{r}∐R.

θp,q,r×id

id×θq,r,s θp,r,s

θp,q,s

�

Furthermore, the map θp,q,r is compatible with inclusions of subsets in 2P(p, q)
and 2P(q, r). Combining this with the natural homeomorphism

(2.1.22) M(P )×M(Q)→M(P ∪ {q} ∪Q)

for P ⊂ 2P(p, q) and Q ⊂ 2P(q, r), which is contravariantly functorial in both
variables, we obtain an associative product map

(2.1.23) M̂(p, q)× M̂(q, r)→ M̂(p, r),
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whose image is contained in ∂M̂(p, r). By construction, the space of morphisms

M̂(p, p) is a single point, which acts as the unit.

Definition 2.13. The collared completion ofM is the topological category M̂ with
object set P and morphism spaces from p to r given by M̂(p, r).

Applying this construction to M = P yields the collar category P̂ with mor-
phisms the cubical complexes κ(p, q) (where we take the unique point in κ(p, p)
to be the identity map), and the associative and unital composition specified by
Equation (2.1.23).

Remark 2.14. The collared category P̂ is constructed to have the universal property
that an enriched functor from P̂ to spaces or spectra is the same data as a homotopy
coherent diagram over P . More generally, the collared completion produces a fat-
tened indexing category that allows us to encode coherent composition homotopies
explicitly. See [Vog73] and [CP97] for a early treatments of homotopy coherent
category theory, and [Lei75] for an appearance of this particular construction (and
also [Seg74]).

Lemma 2.15. The collared completion M̂ is equipped with an enriched projection
functor M̂ → P̂ such that the following diagram commutes

(2.1.24)

M̂ M

P̂ P ,
where the horizontal maps are induced by the projection maps that collapse the collar
directions. �

Since the construction of collars did not involve any choices, the group Π has
a natural induced action on the collared completions. More precisely, for π ∈ Π,
let π(Q) denote the evident subset of 2P(π(p), π(q)). Then π takes κP to κπ(P )

(where the action on the coordinates is trivial) and the inclusion κP → κQ induces
an inclusion κπ(P ) → κπ(Q). As a consequence, π acts on morphisms via a natural
map

(2.1.25) M̂(p, q)→ M̂(π(p), π(q))

which is the identity. Moreover, π is evidently compatible with the composition
maps θ, i.e.,

(2.1.26) π(θp,q,r(f, g)) = θπ(p),π(q),π(r)(π(f), π(g)),

and clearly preserves the unit. This discussion establishes that M̂ is a Π-equivariant
flow category.

Moreover, it is clear from the construction that the functors in Diagram (2.1.24)
are strictly Π-equivariant. Here a Π-equivariant functor between equivariant cate-
gories C and D is a 2-natural transformation between the 2-functors BΠ → C and
BΠ → D. Explicitly, this amounts to an enriched functor F : C → D and natural
transformations γπ ◦ F → F ◦ γπ (which in this case are through identities) that
satisfy compatibility diagrams listed in Appendix A.5.3.

Summarizing, we have:
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Lemma 2.16. The collared completion M̂ of a Π-equivariant flow category M is
a Π-equivariant flow category, and all the arrows in Diagram (2.1.24) are strictly
Π-equivariant. �

2.2. Relative cochains of topological flow categories. Given a topological
flow categoryM, we can construct a spectral category (i.e., a category enriched in
spectra) by applying the functor Σ∞

+ that adds a disjoint basepoint and takes the
suspension spectrum to the mapping spaces. It will turn out that, for the purpose
of associating homotopy types to flow categories, we need to consider instead a
category of relative cochains constructed in this section.

2.2.1. Background on spectra. Throughout this section (and the paper), we take as
our point-set models of equivariant spectra the closed symmetric monoidal cate-
gories of orthogonal G-spectra for various finite groups G (although only the case
of trivial G is used in this section). See Appendix A.1 for a rapid review of the
foundations of the theory of equivariant orthogonal spectra.

We will write SpG to denote the category of orthogonal G-spectra, which is
symmetric monoidal with respect to the smash product ∧ and has unit the sphere
spectrum S. We will denote by F (X,Y ) the internal mapping object, i.e., the
spectrum of maps from X to Y . We will frequently make use of the natural smash
product map

(2.2.1) F (X,Y ) ∧ F (W,Z)→ F (X ∧W,Y ∧ Z)

which is the adjoint of the smash of the evaluation maps. This map is associative
and unital; see Proposition A.9. Note however that this map is not usually a weak
equivalence except in the presence of dualizability hypotheses (e.g., see [LMSM86,
§III] for a comprehensive treatment of formal duality theory).

Definition 2.17. For a space Z and an orthogonal spectrum X, the spectrum of
cochains of Z with coefficients in X is given by

(2.2.2) C∗(Z;X) = F (Σ∞Z+, X
mfib),

where Σ∞ denotes a particular strong monoidal model for the suspension spectrum
functor (given by the functor F0(−) : GTop → SpG discussed in Appendix A.1.1)
and (−)mfib is the lax monoidal fibrant replacement functor on orthogonal spectra
described in Appendix A.1.10.

We will need the compactly-supported version of the cochains.

Definition 2.18. The spectrum of compactly supported cochains on Z with coef-
ficients in X is the orthogonal spectrum

(2.2.3) C∗,c(Z;X) = F (Σ∞Z+, Xmfib),

where Z+ denotes the one-point compactification. Note that our assumptions on Z
suffice to ensure that the one-point compactification is Hausdorff.

We also have relative versions.

Definition 2.19. For a Hurewicz cofibration Y → Z, the spectrum of relative
cochains of the pair (Y, Z) with coefficients in X is the orthogonal spectrum

(2.2.4) C∗(Z, Y ;X) = F (Σ∞Z/Y,Xmfib),

and C∗,c(Z, Y ;X) is the compactly supported analogue.
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With the familiar convention in algebraic topology that the quotient of a space
by the empty set corresponds to adding a disjoint basepoint, the absolute case in
Equations (2.2.2) and (2.2.3) corresponds to the case Y = ∅.

Since (−)mfib is lax monoidal, we have a natural smash product map

(2.2.5) C∗(Z1;X1) ∧ C∗(Z2;X2)→ C∗(Z1 ∧ Z2;X1 ∧X2)

induced from the smash product map on mapping spectra; this is associative and
unital. There are analogous maps on C∗,c(−;−) and the relative versions, using
the canonical isomorphism X+

1 ∧X+
2
∼= (X1×X2)

+ (which requires that the spaces
involved be locally compact Hausdorff).

The fibrant replacement is required to ensure that our cochains have the right
homotopy type; we now explain what we mean by this. As alluded to in Remark
2.4, one subtlety that arises is that we cannot in general assume that Z has the
homotopy type of a CW complex, as we shall assume only that it is locally compact,
paracompact, and Hausdorff. Therefore, we are not computing the usual derived
mapping space, as we do not expect C∗(−;−) to preserve weak equivalences in the
first variable, although it does preserve homotopy equivalences.

We are however correctly computing the cohomology. Recall that by the main
theorem of [Hub61], the Čech cohomology groups can be computed using the space
of maps from a k-space into Eilenberg-Mac Lane spaces. As a consequence, for
a fibrant model of HR the homotopy type C∗(Z;HR) has homotopy groups that
recover Čech cohomology. More generally, analogous results hold for C∗(Z;X) for
any fibrant orthogonal spectrum X , where we have in mind [Bro73, Jar97] for Čech
theory in the context of generalized cohomology; e.g., see [Lur09, 7.1.0.1] (note
that in our context the Čech and hypercover localizations agree, as the covering
dimension of the spaces Z that arise is finite; e.g., see [Lur09, 7.2.1.12]).

Remark 2.20. If we were studying the homology of Kuranishi presentations, the
potential pathologies of the spaces we consider would force us to consider the asso-
ciated pro-spaces constructed either from nerves of Čech covers, or neighbourhoods
in the ambient manifold (this is the subject of Shape theory [Mar00]), see [Par16,
Appendix A.9] for the corresponding discussion at the level of ordinary homology.

2.2.2. The relative cochains of a flow category.

Notation 2.21. The notion of relative cochains will require the use of certain desus-
pension functors. It is convenient to label the spheres appearing in these desuspen-
sions by elements q of the partially ordered set P , so we begin by introducing a real
line

(2.2.6) ℓq ≡ R{[q]},

where we recall that [q] is the equivalence class of q under the action of Π. By
construction, this choice is Π-invariant in the sense that ℓq = ℓπ·q for each π ∈ Π.

The main advantage of working with the line ℓq rather than the real line R is that
it breaks the symmetry on the direct sum ℓq ⊕ ℓp, when considering more than one
orbit, which makes is possible to unambiguously write down maps on this direct
sum that depend on its decomposition into factors.

We write Sℓq for the associated copy of S1 obtained by one-point compactifica-
tion, and, given a spectrum k, we write

(2.2.7) Ωℓqk ≡ F (Σ∞Sℓq , (k)mfib)
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for the desuspension.

LetM be a Π-equivariant flow category over P , and k a cofibrant ring spectrum:

Definition 2.22. For each pair of distinct elements (p, q) ∈ P, the relative cochains

of M with coefficients in k are the Ωℓqk-valued cochains on M̂(p, q) relative to

∂M̂(p, q), i.e.,

(2.2.8) C∗
rel∂(M; Ωk)(p, q) ≡ C∗(M̂(p, q), ∂M̂(p, q); Ωℓqk).

In the special case p = q, we define

(2.2.9) C∗
rel∂(M; Ωk)(p, p) ≡ k.

Remark 2.23. In Floer and Morse theory, it is in some sense more natural to in-
troduce a line ℓpq associated to a pair of objects, which corresponds to translation
in the moduli space of flow lines connecting them. The group of translation is
canonically identified with R, so that the labelling by orbits is again only a matter
of convenience to record correspondence between factors. Our notation breaks the
symmetry between input and output, and formally associates this line of transla-
tions to the output. One can proceed without breaking symmetry, at the cost of
replacing the composition formulae which we will presently define by more compli-
cated ones.

We have observed earlier that the inclusion ∂M̂(p, q) → M̂(p, q) is always a
Hurewicz cofibration, so that the relative cochains C∗

rel∂(M; Ωk)(p, q) compute the
relative (shifted) cohomology groups.

Remark 2.24. We may identify the spaces in the spectrum C∗
rel∂(M; Ωk)(p, q) as

follows. By adjunction, for any based space Z we have natural equivalences

(2.2.10) F (Σ∞Z, (Ωℓqk)mfib) ≃ F (Σ∞Z,Ωℓqkmfib) ∼= F (Σ∞Sℓq ∧ Z, kmfib)

of orthogonal spectra, and so for a finite-dimensional representation V we have an
equivalence

(2.2.11) (C∗
rel∂(M; Ωk)(p, q)) (V ) ≃

Map
(
Sℓq ∧ M̂(p, q)/∂M̂(p, q),Ω∞ΩV kmfib

)
,

i.e., we may identify the value of this spectrum at V with maps whose domain is
M̂(p, q) × Sℓq , subject to the condition that the boundary in the first factor and
the basepoint in the second factor map to the basepoint in the target.

Example 2.25. Let P be the natural numbers with their usual ordering, and let
k be the sphere spectrum for specificity. In that case, P̂(p, q) = [0, 1]q−p−1, and

the inclusion of ∂P̂(p, q) ⊂ P̂(p, q) is a homotopy equivalence unless p and q are
successive elements, in which case the boundary is empty. This implies that the
spectrum C∗

rel∂(P̂ ; ΩS)(p, q) is contractible (i.e., has trivial homotopy groups) ex-
cept for successive elements, where it is equivalent to ΩS. The reason for having
non-trivial models for acyclic spectra is that we shall need the composition maps,
which are about to be defined, to encode specified null homotopies.

Given a triple (p, q, r), we now define a composition map

(2.2.12) Ψp,q,r : C
∗
rel∂(M; Ωk)(p, q) ∧ C∗

rel∂(M; Ωk)(q, r)→ C∗
rel∂(M; Ωk)(p, r).
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The starting point is to fix a homeomorphism of the interior of the collar κ̊ = (0, 1)
with R, and obtain an identification

(2.2.13) κ̊q ∼= ℓq.

Given a pair P and Q of elements of 2P(p, q) and 2P(q, r), the projection away
from the q coordinate induces a map

(2.2.14) κQ∐{q}∐P → κQ × κP ,

and the inverse to the homeomorphism of Equation (2.2.13) induces a map

(2.2.15) (κq)+ ∧ Sℓr → Sℓq⊕ℓr .

Combining these, we define the map

(2.2.16) ∆P,Q : κ
Q∐{q}∐P
+ ∧Sℓr → (κQ×κP )+ ∧κq

+ ∧Sℓr → (κQ×κP )+ ∧Sℓq⊕ℓr .

The key point is that this map takes both endpoints of the κq factor in κQ∐{q}∐P ,
to the basepoint of the sphere Sℓq⊕ℓr ∼= Sℓq ∧ Sℓr . This means, in particular, that
any basepoint-preserving map from the left-hand side extends (as a constant map)
to any cube labeled by a set that does not contain q.

Using the inverse of the homeomorphism

(2.2.17) M(P )×M(Q)→M(P ∪ {q} ∪Q),

we have a map ∆P,Q

(2.2.18)

(M(P ∪ {q} ∪Q)× κQ∐{q}∐P )+ ∧ Sℓr

(M(P )×M(Q)× κQ × κP )+ ∧ κq
+ ∧ Sℓr

(M(P )×M(Q)× κQ × κP )+ ∧ Sℓq⊕ℓr .

Thus, since the maps ∆P,Q are compatible with inclusions, they extend over the
colimit to give rise to maps

(2.2.19) ∆p,q,r : M̂(p, r)+ ∧ Sℓr → (M̂(q, r)× M̂(p, q))+ ∧ Sℓq⊕ℓr

→ (M̂(q, r)+ ∧ Sℓr) ∧ (M̂(p, q)+ ∧ Sℓq ).

When we take p = q or q = r, these maps are the identity.

Lemma 2.26. The maps ∆p,q,r are coassociative, in the sense that for p ≤ q ≤
r ≤ s, the following diagram commutes

(2.2.20)

M̂(p, s)+ ∧ Sℓs (M̂(q, s)+ ∧ Sℓs) ∧ (M̂(p, q)+ ∧ Sℓq)

(M̂(r, s)+ ∧ Sℓs)∧
(M̂(p, r)+ ∧ Sℓr)

(M̂(r, s)+ ∧ Sℓs) ∧ (M̂(q, r)+ ∧ Sℓr)

∧(M̂(p, q)+ ∧ Sℓq).

∆p,q,s

∆p,r,s ∆q,r,s∧id

id∧∆p,r,s
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Proof. It is straightforward to chase elements around these diagrams using the
formulas above. A key aspect to note is that going down and over we permute Sℓs

past Sℓr and then Sℓr past Sℓq . Going the other way, we permute Sℓs past Sℓq and
then Sℓs past Sℓr . �

We now use these maps to make the relative cochains into a spectral category.

Definition 2.27. For p 6= q 6= r, the map Ψp,q,r is the composition

(2.2.21)

C∗
rel∂(M; Ωk)(q, r) ∧C∗

rel∂(M; Ωk)(p, q)

C∗
rel∂((M(q, r), ∂M(q, r)) × (M(p, q), ∂M(p, q)); Ωℓq⊕ℓr(k ∧ k))

C∗
rel∂(M; Ωk)(p, r)

where the top arrow is induced by the smash product of mapping spectra and the
bottom map is induced by the dual of the map ∆p,q,r and the multiplication k∧k→ k.
(In the middle spectrum of Diagram (2.2.21), we are using the standard notation
where for pairs (X,Y ) and (W,Z), we write (X,Y ) × (W,Z) to denote the pair
(X ×W,X × Z ∪ Y ×W ).)

When p = q or q = r, we define Ψp,p,q and Ψp,q,q in terms of the composite

(2.2.22) k ∧ (Ωℓqk)mfib → kmfib ∧ (Ωℓqk)mfib → (k ∧Ωℓqk)mfib → (Ωℓqk)mfib,

using the canonical homeomorphism kmfib ∼= F (S, kmfib).

Since the unit map S → C∗
rel∂(M; Ωk)(p, p) is the unit map S → k, we can

conclude that the composition is unital:

Lemma 2.28. The diagram

(2.2.23)

S ∧ C∗
rel∂(M; Ωk)(p, q) C∗

rel∂(M; Ωk)(p, p) ∧C∗
rel∂(M; Ωk)(p, q)

C∗
rel∂(M; Ωk)(p, q)

commutes, as does the analogous diagram on the other side.

Proof. The unitality diagram can be written as

(2.2.24)

S ∧ C∗
rel∂(M; Ωk)(p, q) kmfib ∧ C∗

rel∂(M; Ωk)(p, q)

C∗
rel∂(M; Ωk)(p, q).

Since the map S ∧ F (X,S) → F (X,S ∧ S) is the unit S → F (S,S) followed by
the composition pairing F (S,S)∧ F (X,S)→ F (S∧X,S∧ S), it is formal that the
diagram

(2.2.25)

S ∧ F (X,S) F (X,S ∧ S)

F (X,S)
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commutes (e.g., see the discussion before [EKMM97, 6.12]). Since the right hand
vertical map is induced by the product on k, the unitality diagram in Equa-
tion (2.2.24) commutes. �

Moreover, it is straightforward to check that the product maps are associative,
using Lemma 2.26:

Lemma 2.29. Given a quadruple p ≤ q ≤ r ≤ s of elements of P, the product
maps defined above fit in a commutative diagram of spectra

(2.2.26)

C∗
rel∂(M; Ωk)(p, q) ∧ C∗

rel∂(M; Ωk)(q, r)

∧C∗
rel∂(M; Ωk)(r, s)

C∗
rel∂(M; Ωk)(p, r)

∧C∗
rel∂(M; Ωk)(r, s)

C∗
rel∂(M; Ωk)(p, q) ∧ C∗

rel∂(M; Ωk)(q, s) C∗
rel∂(M; Ωk)(p, s).

�

For the next definition, recall that a category C enriched in spectra consists of
a category C equipped with mapping spectra C(x, y) for each pair of objects x, y
and suitably associative and unital composition maps. This is the stable homotopy
theory generalization of a dg category. See Appendix A.3.2 for a precise definition
and some of the technical properties we need.

Definition 2.30. For a Π-equivariant flow category M, the category of relative
cochains with coefficients in k, denoted C∗

rel∂(M; Ωk), is the spectral category with

• objects the elements of P, and
• morphism spectra for pairs (p, q) given by C∗

rel∂(M; Ωk)(p, q).

The composition is specified by Ψp,q,r and the unit is induced by the unit for k.

Moreover, the only choice made in the construction is the identification in Equa-
tion (2.2.13), which we fix, so that the resulting category acquires a natural action
by the group Π that acts on P . Specifically, Π acts on morphisms via the natural
identity map

(2.2.27) C∗
rel∂(M; Ωk)(p, q)→ C∗

rel∂(M; Ωk)(πp, πq)

for each element π ∈ Π. It is straightforward to verify that this action on the
morphism spectra is compatible with composition and preserves the unit.

Lemma 2.31. The category of relative cochains C∗
rel∂(M; Ωk) has a strict action

of Π. �

There are pullback maps

(2.2.28) C∗
rel∂(P ; Ωk)(p, q)→ C∗

rel∂(M; Ωk)(p, q)

induced by the projection M̂(p, q) → P̂(p, q), which are strictly compatible with
the Π-action and with composition and thus induce a strict Π-equivariant spectral
functor.

Lemma 2.32. There is a strict Π-equivariant functor

(2.2.29) C∗
rel∂(P ; Ωk)→ C∗

rel∂(M; Ωk).

�
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Example 2.33. The basic case of the category C∗
rel∂(P ; ΩS) will be particularly

important in Section 3.

(1) If P consists of a single element p, then

(2.2.30) C∗
rel∂(P ; ΩS)(p, p) = S

and the composition is induced by the natural map

(2.2.31) S ∧ S ∼= S

(2) If P consists of two elements, then

(2.2.32) C∗
rel∂(P ; ΩS)(p, q) ∼= (ΩℓqS)mfib ≃ ΩS.

The two compositions are both essentially the identity map.
(3) If P = {p < q < r}, then

(2.2.33)
C∗

rel∂(P ; ΩS)(p, q) ≃ ΩS, C∗
rel∂(P ; ΩS)(q, r) ≃ ΩS

and C∗
rel∂(P ; ΩS)(p, r) ≃ ∗.

In terms of these descriptions, the non-identity composition ΩS ∧ ΩS →
∗ is the terminal map. (In other words, the actual composition is null-
homotopic.)

(4) If P consists of elements p < q1 < q and p < q2 < q with q1 and q2 incom-
parable, then for the pairs (p, q1), (p, q2), (q1, q), and (q2, q) the mapping
spectrum is equivalent to ΩS. For (p, q), we have that

(2.2.34) C∗
rel∂(P ; ΩS)(p, q) ≃ F (S1,ΩS) ≃ Ω2S.

This computation uses the identification

(2.2.35) κ(p, q)/∂κ(p, q) ∼= ([0, 1] ∨ [0, 1]) /{{1} × [0, 1] ∪ [0, 1]× {1}} ∼= S1

In this case, the composition ΩS∧ΩS→ Ω2S is homotopic to the identity.

2.3. Orbispace flow categories and the Borel construction. The formal-
ism of topological flow categories is designed to reflect structures present in finite-
dimensional Morse theory. In the infinite-dimensional setting, a new geometric
phenomenon (bubbling) causes the moduli spaces of flow lines to potentially admit
additional symmetries, so that they acquire the structure of orbispaces. The pur-
pose of this section is to provide a generalization of the flow category formalism
that encodes this situation.

Since the geometry provides us with natural charts, we do not appeal to the
general formalisms of orbispaces recently developed in homotopy theory [HG07,
Kör18, Sch18a], preferring to give a direct construction. The outcome of this section
is that we can associate to categories enriched in orbispaces a topological category
via the Borel construction.

Notation 2.34. We will frequently use constructions of homotopy colimits and lim-
its, which we do using explicit models in terms of the (co)bar construction. See
Appendix A.3.4 for a review of the bar construction in the context of spectra, and
Appendix A.3.6 for a review of homotopy (co)limits and for various technical results
that we need.
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2.3.1. Orbispace presentations. We begin by defining the category Chart∅O of charts
of orbispaces, which is sometimes referred to as the category of equivariant spaces
(the subscript ∅ is required for consistency with later notation, where we will in-
troduce stratified orbispaces):

Definition 2.35. The category Chart∅O has objects pairs (Z,G), where G is a
finite group and Z is a G-space. A morphism (Z0, G0)→ (Z1, G1) is specified by a
homomorphism p : G0 → G1 and a G0-equivariant map Z0 → p∗Z1. Composition of
group homomorphisms and of maps of spaces defines the composition of morphisms

in Chart∅O.

In the above definition, p∗Z1 refers to considering Z1 as a G0 space with the
action induced by the map from G0 to G1. We shall often abuse notation and write
Z1 for p∗Z1. Note that the composition depends on the fact that for p1 : G0 → G1

and p2 : G1 → G2, there is an identification

(2.3.1) (p2 ◦ p1)∗Z2 = p∗2(p
∗
1Z2).

Remark 2.36. Although we do not need this formalism in the paper, Chart∅O is a
enriched indexed category [Shu13] — the enrichments on mapping spaces vary with
the domain and these enrichments are compatible in a precise sense.

We have a natural functor

Chart∅O → Top(2.3.2)

(Z,G) 7→ Z/G.(2.3.3)

In particular, associated to any functor

(2.3.4) (Z•, G•) : A→ Chart∅O

with domain a small category A, we can construct a space

(2.3.5) colim
α∈A

Zα/Gα.

as the colimit of the composite A→ Chart∅O → Top.

There is a distinguished class of morphisms in Chart∅O:

Definition 2.37. An open embedding (Z0, G0)→ (Z1, G1) is a morphism of charts
of orbispaces such that

(1) ker(G0 → G1) acts freely on Z0, and
(2) the induced map Z0 ×G0 G1 → Z1 is an open embedding.

The freeness of the action by the kernel readily implies:

Lemma 2.38. If f : (Z0, G0) → (Z1, G1) is an open embedding, then the map
G0 → G1 induces an isomorphism Gz0 → Gf(z0) of stabilizer groups for each
z ∈ Z0. �

The cartesian product induces a symmetric monoidal structure on Chart∅O.

Lemma 2.39. The category of charts of orbispaces is symmetric monoidal, with
product

(2.3.6) Chart∅O ×Chart∅O → Chart∅O

specified on objects by the assignment

(2.3.7) ((Z1, G1), (Z2, G2)) 7→ (Z1 × Z2, G1 ×G2).
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On morphisms, we define the map

(2.3.8) f1 × f2 : (Z1 × Z2, G1 ×G2)→ (Z ′
1 × Z ′

2, G
′
1 ×G′

2)

induced by arrows fi : (Zi, Gi) → (Z ′
i, G

′
i) to be the product of the maps of spaces

and of groups. �

We now define the version of an orbispace structure on a topological space that
we use.

Definition 2.40. An orbispace cover of a topological space M consists of the
following data:

(1) A diagram (Z•, G•) : A→ Chart∅O factoring through the subcategory of open
embeddings.

(2) A homeomorphism colimα∈A Zα/Gα →M.

The isotropy group G[z] of a point [z] ∈ M (with respect to an orbispace cover) is
the stabilizer group (Gα)z for any lift of [z] to z ∈ Zα.

Notice that in fact the data of the topological spaceM is redundant; it suffices to

simply provide the diagram (Z•, G•) : A→ Chart∅O and defineM to be the colimit.
As a consequence, we will often describe an orbispace presentation in terms of the
diagram and suppressM.

Definition 2.41. An orbispace cover of M is an orbispace presentation if for
each point [z] ∈ Z, the nerve of A[z] is contractible, where A[z] ⊂ A denote the full
subcategory consisting of objects α of A such that the image of the map Zα →M
contains [z].

This condition is essential to ensure that the algebraic constructions that we will

study, and that are expressed in terms of the presentation (Z•, G•) : A→ Chart∅O,
accurately reflect the intrinsic geometric features of the spaceM. The first instance
of the importance of this constraint is the following consistency check.

Lemma 2.42. If (Z•, G•) : A → Chart∅O is an orbispace presentation of M, the
natural map

(2.3.9) hocolim
α∈A

Zα/Gα →M

is a quasifibration with contractible homotopy fibers (in particular, a weak equiva-
lence).

Proof. Since the homotopy colimit is over a functor to Top taking values in open
embeddings of subspaces of M, the nerve condition allows us to apply the homo-
topical Siefert-van Kampen theorem [Lur14a, A.3.1] and conclude that the natural
map is a weak equivalence. The nerve condition also implies that the actual fibers
are contractible and therefore that the inclusion of the fiber in the homotopy fiber
is an equivalence; the map is a quasifibration. �

Given a pair (M, ∂M), and an orbispace cover (Z•, G•) : A → Chart∅O of M,
we define an orbispace cover

(2.3.10) (∂Z•, G•) : A→ Chart∅O

of ∂M, which we call the boundary cover, as follows: for each α in A, projection
induces a map

(2.3.11) Zα → Zα/Gα →M.
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This permits us to define ∂Zα as the inverse image of the boundary:

(2.3.12) ∂Zα ≡ Zα ×M ∂M.

Notice that ∂Zα inherits a Gα action since the pullback factors through the orbits
Zα/Gα and is evidently functorial in A.

The following result makes it possible to use the above notion in our construc-
tions:

Lemma 2.43. Let (M, ∂M) be a pair. Then the diagram (∂Z•, G•) is an orbispace
cover of ∂M. If (Z•, G•) is an orbispace presentation of M, then this diagram is
an orbispace presentation of ∂M. �

Proof. Since colimits in spaces are stable under base change,

(2.3.13) colim
α∈A

∂Zα/Gα
∼= (colim

α∈A
Zα/Gα)×M ∂M∼= ∂M.

It is straightforward to check that the open embedding condition is satisfied. More-
over, it is clear that the contractibility of the nerves of A[z] for (Z•, G•) implies the
same for (∂Z•, G•). �

2.3.2. Orbispace flow categories. We now return to the setting of Section 2.1. We
assume that P is a partially ordered set with a free action of a discrete group Π.
In order to proceed, we will need to employ the notions of bicategory (a weak 2-
category) and various kinds of 2-functors between bicategories. We review these
definitions in Appendix A.4, but we also take pains to spell out in some detail the
structure we are working with.

First, note that any monoidal category C gives rise to an example of a bicat-
egory sometimes denoted BC in which there is a single object, the category of
endomorphisms of that object is given by C, and the composition is given by the
monoidal product. This is a bicategory and not a strict 2-category because the
product in a monoidal category is only associative up to coherent isomorphism.

We are particularly interested in this construction applied to Chart∅O; we will often

abusively denote the resulting bicategory by Chart∅O. Note that if we replace C by
an equivalent strict monoidal category (where the associativity isomorphisms are
the identity), then this construction yields a strict 2-category.

For strict 2-categories C and D, a strict functor F : C → D is specified by a
function ob(C) → ob(D), functors Fx,y : C(x, y) → D(Fx, Fy) for each pair of
objects x, y, and natural identities Ff ◦ Fg → F (f ◦ g) along with associativity
and unitality data expressed by natural transformations. But for bicategories C
and D, it is useful to work with functors where the composition transformation is
not the identity. A lax functor F : C → D is specified by a function ob(C)→ ob(D),
functors Fx,y : C(x, y) → D(Fx, Fy) for each pair of objects x, y, and natural
transformations Ff ◦ Fg → F (f ◦ g) along with associativity and unitality data
expressed by natural transformations (see Definition A.123).

Example 2.44. One of the original motivations for the definition of bicategories
and lax functors was the example of enriched categories. Let V be a monoidal
category regarded as a bicategory as above and let S be a set. We will regard S as
a bicategory by letting each category of morphisms be the terminal category with
a single object and single morphism. Then a lax functor S → V is equivalent to a
category enriched in V with object set S.



ARNOLD CONJECTURE AND MORAVA K-THEORY 41

Next, we need to introduce the (somewhat less standard) notion of a Π-equivariant
bicategory C. We explain this in gory detail in Appendix A.5.4, but for now we
point out that we have in mind an extremely strict notion insofar as we mean an
action of Π on the set of objects (0-cells) such that for π ∈ Π we have identity maps

(2.3.14) C(x, y)→ C(πx, πy)
which are compatible with the horizontal composition. In fact, in our main ex-
amples, we will work with Π-equivariant 2-categories (strict bicategories). A Π-
equivariant 2-functor C → D is a 2-functor which is strictly compatible with the
Π action on the 1-cells; this compatibility is expressed by natural identities inter-
changing F and the action.

We are now ready to define an orbispace flow category. In light of Example 2.44,
an orbispace flow category should be thought of as a way of presenting a category

enriched in orbispaces. In the following, we regard Chart∅O as a bicategory having
trivial Π-action.

Definition 2.45. An orbispace flow category consists of the following data:

(1) A Π-equivariant 2-category A, with object set P, and such that A(p, p) = ∗
(i.e., the category with a single object and morphism) and A(p, q) is empty
unless p ≤ q.

(2) A strictly Π-equivariant normal lax 2-functor (Z•, G•) : A→ Chart∅O, such
that the value for any pair (p, q) is an orbispace presentation. Here normal
means that the 2-functor strictly preserves identities.

More explicitly, such a flow category consists of categories A(p, q) for each pair
of comparable elements of P , together with composition functors

(2.3.15) A(q, r) ×A(p, q)→ A(p, r),

that are strictly associative. The action of Π permutes the categories A(p, q) in
that we require that A(p, q) be equal to A(πp, πq) for π ∈ Π.

Moreover, we have an orbispace presentation (Z•, G•)(p, q) : A(p, q) → Chart∅O
for each ordered pair p < q, and natural transformations

(2.3.16) (Z•, G•)(p, q)× (Z•, G•)(q, r)⇒ (Z•, G•)(p, r)

such that the two induced natural transformations

(2.3.17) (Z•, G•)(p, q)× (Z•, G•)(q, r) × (Z•, G•)(r, s)⇒ (Z•, G•)(r, s)

on the product A(p, q)×A(q, r) ×A(r, s) coincide (there are similar diagrams and
conditions for units which we do not describe here).

The Π-equivariance of the 2-functor to Chart∅O means that the orbispace presen-
tations

(2.3.18) (Z•, G•)(p, q) : A(p, q)→ Chart∅O

and

(2.3.19) (Z•, G•)(πp, πq) : A(πp, πq)→ Chart∅O

coincide.
We can associate to each orbispace flow category (A,Z•, G•) a Π-equivariant

topological flow categoryMA, i.e., a lax functor from the chaotic category of P to
the bicategory associated to the monoidal category of spaces.
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Proposition 2.46. Let (A,Z•, G•) be an orbispace flow category. Then there is a
Π-equivariant topological flow category with object set P and morphisms from p to
q given by

(2.3.20) MA(p, q) = colim
α∈A(p,q)

Zα/Gα.

Proof. First, observe that the composition

(2.3.21) colim
α∈A(p,q)

Zα/Gα × colim
β∈A(q,r)

Zβ/Gβ →

colim
(α,β)∈A(p,q)×A(q,r)

(Zα/Gα × Zβ/Gβ)→

colim
(α,β)∈A(p,q)×A(q,r)

(Zα × Zβ)/(Gα ×Gβ)→ colim
γ∈A(p,r)

Zγ/Gγ

is associative and unital. The assignment Z•/G• specifies a monoidal functor

Chart∅O → Top and therefore induces a 2-functor on the associated bicategories;
this gives rise to a normal lax 2-functor from A to Top. Since A is a 2-category
and colim is a monoidal functor in the indexing category, MA as specified is a
topological category. Put more succinctly, applying the colimit functor to the hom
categories of a normal lax 2-functor from A to Top yields a lax functor from the
chaotic category on P to Top.

Next, we need to describe the action of Π. For each π ∈ Π, the strict 2-functor
γπ encoding the action permutes the colimits above and so gives rise to a functor
γM
π :MA →MA; it is straightforward to check that this is associative and unital.

�

Remark 2.47. Our example of interest fits into the framework of Definition 2.45,
and imposing additional strictness reduces technical complexity. However, we can
in fact take as input for our construction a bicategory A rather than a strict 2-
category without much trouble. Rectifying A to a biequivalent strict 2-category
(see Theorem A.126 for a precise statement), we can proceed as above in Proposi-
tion 2.46, although the resulting action of Π satisfies the associativity composition
only up to natural isomorphism; the collection of functors specify a pseudo-action
of Π onMA. Rectifying this action to a strict action of Π yields the desired flow
category structure onMA.

More generally, our definition can be phrased in a homotopy-coherent setup;
ultimately, this will be the correct form of these constructions, and in this context
the distinctions we are making above disappear.

We can now formulate the notion of a flow category that has an orbispace struc-
ture.

Definition 2.48. If M is a topological flow category, a lift of M to an orbis-
pace category is an orbispace category (A,Z•, G•) equipped with an isomorphism of
topological categories

(2.3.22) MA →M.

In particular, note that a lift to an orbispace category means we have homeo-
morphismsMA(p, q) ∼=M(p, q) for all (p, q).
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2.3.3. The Borel construction. The Borel construction can be applied to an orbis-
pace flow category. We will write EG for the two-sided bar construction B(G,G, ∗),
providing a functorial model for the universal space for G. Using this model, we
write

(2.3.23) E : Chart∅O → Chart∅O

for the strong monoidal functor specified on objects by the assignment

(2.3.24) (Z,G) 7→ (Z × EG,G).

The assertion that this is a strong monoidal functor amounts to the fact that the
natural map

(2.3.25) (Z1 × EG1)× (Z2 × EG2) ∼= (Z1 × Z2)× (E(G1 ×G2))

is a homeomorphism for our chosen model of the universal space.
Formally, the functor E has the effect of cofibrantly replacing each space in

the Borel model structure for its group of equivariance. Composing E and the
quotient yields the Borel construction; we can alternatively describe this as the bar
construction B(∗, G,X).

Lemma 2.49. There is a strong monoidal Borel construction functor

(2.3.26) B : Chart∅O → Top

specified on objects by the assignment

(2.3.27) (Z,G) 7→ (Z × EG/G) = Z ×G EG

and on morphisms by assigning to f : (Z,G)→ (Z ′, G′) the composite

(2.3.28) Z ×G EG→ (f∗Z ′ × f∗EG′)/G→ Z ′ ×G′ EG′

The monoidal structure is induced by the homeomorphism

(2.3.29) (Z1 ×G1 EG1)× (Z2 ×G2 EG2) ∼= (Z1 × Z2)×G1×G2 (E(G1 ×G2)).

Since the Borel construction is functorial, we can apply it to orbispace presen-
tations.

Definition 2.50. The Borel construction of an orbispace presentation (Z•, G•) : A→
Chart∅O is the functor

(2.3.30) BZ• : A→ Top

produced as the composite

(2.3.31) A Chart∅O Top

which assigns to each object α ∈ A the space

(2.3.32) BZα ≡ Zα ×Gα
EGα.

Passing to the homotopy colimit, we obtain a Borel homotopy type for an orbis-
pace presentation.

Definition 2.51. The Borel homotopy type of an orbispace presentation (A,Z•, G•),
is the space

(2.3.33) BZ(A) ≡ hocolim
α∈A

BZα.
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Note that the notation is potentially ambiguous since the Borel homotopy type

depends not only on the indexing category A, but also on the functor A→ Chart∅O.
In practice, no confusion shall arise, and we shall further abuse notation by dropping
A from the notation when this is warranted.

By construction, for an orbispace presentation with associated spaceM, we have
a natural map

(2.3.34) BZ →M
induced by the canonical natural transformation Zα ×Gα

EGα → Zα/Gα deter-
mined by the terminal map EGα → ∗ and the natural map

(2.3.35) hocolim
α∈A

Zα/Gα → colim
α∈A

Zα/Gα.

As a sanity check for our definitions, we identify the fiber of this map; this is
another consequence of the acyclic nerve condition in the definition of an orbispace
presentation.

Lemma 2.52. Given an orbispace presentation, the fibre B[z]Z of the map BZ →
M at a point [z] ∈ M is equivalent to the classifying space BG[z].

Proof. Let Gαz
denote the stabilizer group of a point z ∈ Zα mapping to [z]; this

subgroup of Gα is well-defined up to conjugacy, and the fibre of

(2.3.36) BZα = Zα ×Gα EGα → Zα/Gα →M
can be identified with BGαz

. The fibre of the map BZ toM is then given by the
homotopy colimit of BGαz

over A, as can be seen by factoring this map through
the homotopy colimit of Zα/Gα:

(2.3.37) BZ• ⊗A N(− ↓ A)→ (Z•/G•)⊗A N(− ↓ A)→ (Z•/G•)⊗A ∗.
where the second arrow is induced by the map from the functor A → Top that
is the nerve of the overcategory at an object of A to the constant functor on a
point. Here, we are using the “tensor product of functors” description of the coend
computing the (homotopy) colimit; see Appendix A.3.6 for a review.

Each map of f : α→ β of charts whose image contains [z] induces a mapBGαz
→

BGβz
which is an equivalence by Lemma 2.38, since we assumed that Gf acts freely

on the fibres. Since the nerve of A[z] is contractible by the assumption that we start
with an orbispace presentation, we conclude that the homotopy colimit

(2.3.38) hocolim
A

BGαz
∼= hocolim

A[z]

BGαz

is equivalent to BG[z]. �

Given an orbispace lift (A,Z•, G•) of a strictly Π-equivariant flow categoryM
over a partially ordered set P , we will define an associated strictly Π-equivariant
topological category BZ. The argument for the following proposition is the same
as the proof of Proposition 2.46, relying on Lemma 2.49 to produce a lax 2-functor
from A to Top and the fact that the homotopy colimit has the same monoidal
properties as the colimit.

Proposition 2.53. Let (A,Z•, G•) be an orbispace lift of M. Then there is a
strictly Π-equivariant topological category BZ with objects those of P and morphism
spaces determined as

(2.3.39) BZ(p, q) ≡ BZ(A(p, q))
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via the Borel construction. The composition

(2.3.40) BZ(A(p, q)) ×BZ(A(q, r))→ BZ(A(p, q)×A(q, r))→ BZ(A(p, r))

is determined by the horizontal composition in A and Lemma 2.49. �

By construction, BZ is compatible withM in the following sense.

Lemma 2.54. There is a natural Π-equivariant functor

(2.3.41) BZ →M,

which is the identity on objects. �

We may think of BZ as the topological flow category associated by the Borel
construction to an orbispace flow category. The relative cochains of the morphism
spaces in BZ yield a strictly Π-equivariant category

(2.3.42) C∗
rel∂(BZ; Ωk)

by applying the construction from Section 2.2.2, with morphism spectra

(2.3.43) C∗(B̂Z(p, q), ∂B̂Z(p, q); Ωk).

The functoriality of this construction readily implies:

Lemma 2.55. There is a natural Π-equivariant functor

(2.3.44) C∗
rel∂(M; Ωk)→ C∗

rel∂(BZ; Ωk).

�

While Lemma 2.55 is conceptually satisfying, it shall play no direct role in our
construction: we shall henceforth work exclusively with C∗

rel∂(BZ; Ωk) as our model
for the relative cochains of an orbispace flow category. The intuition here is that
this spectral category reflects some of the features of the given orbispace category
which should not be forgotten, as one would do by considering the ordinary relative
cochains of the underlying topological category.

The comparison map that will play a key role in our construction is the spectral
functor

(2.3.45) C∗
rel∂(P ; Ωk)→ C∗

rel∂(BZ; Ωk)

induced by the fact that BZ is a category over P .

3. Partial orders and homotopy types

The purpose of this section is to explain how, given a locally finite dimensional
partially ordered set P as in the previous section, we may associate a homotopy
type filtered by P to each spectral functor from C∗

rel∂(P ; Ωk) to the category of
k-modules. For specificity, we assume that P is additionally equipped with an
order preserving map to R, which we refer to as the action (see Section 3.2 below).
Assuming that P carries a free action (over R) of a group Π with a homomorphism
to R, and that the spectral functor is equivariant, we show that the associated
filtered homotopy type has an action by a Novikov ring associated to Π.
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3.1. The spectral Novikov ring. In this section, we will construct a spectral
Novikov ring associated to an associative ring spectrum k and a discrete group Π
equipped with action and index homomorphisms

(3.1.1) A× deg : Π→ R× Z.

These Novikov rings arise as certain completions of the “spectral group ring” k[Π].
We begin by recalling the algebraic version of the Novikov ring that we construct.

We define

(3.1.2) Π>λ := {π ∈ Π | A(π) > λ} Π≥λ := {π ∈ Π | A(π) ≥ λ}

and Π<λ and Π≤λ analogously.
Let R be a commutative ring. We want to define the Novikov ring ΛR,Π to be the

completion of the group ring R[Π] with respect to the decreasing filtration induced
by A, i.e., by Π>λ. As an R-module, this can be described as the inverse limit

(3.1.3) ΛR,Π = lim
λ

R[Π]

R[Π>λ]
.

However, the preceding candidate definition of the Novikov ring ΛR,Π obscures a
description of ring structure, as R[Π]/Πλ is not itself a ring. For this purpose,
we can consider the group ring R[Π≥0] and consider the completion of this at the
decreasing filtration specified by Π>λ, for λ ≥ 0. This can be described as the
inverse limit

(3.1.4) Λ+
R,Π = lim

λ

R[Π≥0]

R[Π≥λ]
.

Here since R[Π≥λ] is an ideal in R[Π≥0], this inverse limit is evidently itself a ring.
To produce the Novikov ring itself, we invert the elements Π>0. Note that we have
not assumed that Π is commutative, but this localization makes sense because Π≥0

and Π>0 are closed under conjugation:

(3.1.5) A(π1π2π
−1
1 ) = A(π1) +A(π2)−A(π1) = A(π2).

Then for any x ∈ Π0
+ and y ∈ Π0, we have (yxy−1)y = yx. That is, the (left) Ore

condition is satisfied.
We now turn to produce a version of these completions in the context of the ring

spectrum k. Note that in our application k is not a commutative ring spectrum.
Nonetheless, we can retain control on the completions we study because π∗(k) is
graded commutative and because the existence of the action map ensures that the
Ore condition will hold.

Definition 3.1. The spectral group ring k[Π] is the associative ring spectrum with
underlying spectrum the free k-module k ∧ Σ∞

+ Π, with multiplication map

(3.1.6) (k ∧ Σ∞
+ Π) ∧ (k ∧ Σ∞

+ Π) ∼= (k ∧ k) ∧ Σ∞
+ (Π×Π)→ k ∧Σ∞

+ Π.

Here the first map is induced by the transposition maps and the second map is
induced by the multiplications on k and Π respectively.

We will now introduce a graded variant of the group ring k[Π]. Specifically,
we want to twist the wedge summand associated to π ∈ Π by the sphere of di-
mension deg(π). To describe the multiplicative structure, we find it convenient to
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use the strictly multiplicative system of even spheres {S[n]}n∈Z described in Ap-
pendix A.2.3; these have the property that S[n] ≃ S−2n and there are associative
multiplication maps

(3.1.7) S[n] ∧ S[m]→ S[n+m]

for all m,n ∈ Z. We build the group ring using the category of graded ring spectra;
we review this in detail in Appendix A.2.3 as well, but for now we simply note that
for a (possibly non-unital) monoid M , an M -graded spectrum is a collection of
spectra {Em} for m ∈ M . An M -graded ring spectrum is an M -graded spectrum
equipped with associative multiplication maps Em ∧ En → En+m for m,n ∈ M ;
we require these to be unital if M is. Associated to an M -graded spectrum E is
an underlying spectrum that is equivalent to the wedge

∨
m∈M Em; when E is an

M -graded ring spectrum, the underlying spectrum is a ring spectrum.

Definition 3.2. The graded spectral group ring Σdegk[Π] is the underlying spec-
trum associated to the Π-graded spectrum whose value at π is

(3.1.8) S[− deg(π)] ∧ k,

equipped with multiplication maps

(3.1.9) (S[− deg(π1)] ∧ k) ∧ (S[− deg(π2)] ∧ k)→ S[− deg(π1 · π2)] ∧ k

induced by the products on {S[n]}, k, and Π.

We now define a decreasing filtration on Σdegk[Π] induced by the action homo-
morphism. For this purpose, we use the homotopical version of the filtered derived
category (see Appendix A.2.2 for a quick review or [BMS19, §5.1] and [GP18]
for more detailed treatments). By a decreasing filtration on a spectrum X we
mean a functor F : Rop → Sp such that each map F (λ) → F (λ′) for λ > λ′ and
F (−∞) = hocolimF ≃ X .

We let Σdegk[Π>λ] denote the underlying spectrum associated to the Π>λ-graded
spectrum whose value at π ∈ Π>λ is given by Equation (3.1.8). For λ > λ′ there is
a natural inclusion Π>λ → Π>λ′ that induces commutative diagrams

(3.1.10)

Π>λ Π Σdegk[Π>λ] Σdegk[Π]

Π>λ′ Σdegk[Π>λ′ ]

Thus, this specifies a decreasing filtration on Σdegk[Π].
We can complete a filtered spectrum by taking the Bousfield localization with

respect to the maps which induce equivalences of associated graded spectra; see
Definition A.75 (and the surrounding discussion in Appendix A.2.2). The colimit
of the resulting filtered spectrum is the completion of Σdegk[Π]. To describe the
completion explicitly, notice that there is an induced map of cofibers

(3.1.11) k[Π]/k[Π>λ]→ k[Π]/k[Π>λ′ ]

and hence a functor Rop → Sp specified on objects by the assignment

(3.1.12) λ 7→ k[Π]/k[Π>λ].

Since colimits commute with the smash product, there is a natural isomorphism

(3.1.13) k[Π]/k[Π>λ] ∼= k[Π≤λ],
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where Π≤λ denotes the subset of Π of elements of action less than or equal to λ.

Definition 3.3. The completed graded group ring is the completion of Σdegk[Π]
with respect to the decreasing filtration by action. This is specified by the formula

(3.1.14) Σdegk((Π)) = holim
λ∈Zop

(
Σdegk[Π]/Σdegk[Π>λ]

)
.

Remark 3.4. Note that we have passed to Z ⊂ R for the purpose of taking the
(homotopy) limit above. The only property that we use is that Z is discrete, closed
under addition, and terminal with respect to the usual ordering (hence initial when
considered in Rop).

By construction, the completion Σdegk((Π)) is the homotopy colimit of a de-
creasing filtration defined via

(3.1.15) λ 7→ Σdegk[Π>λ]/ holim
λ

k[Π>λ],

which can be rewritten as

(3.1.16) λ 7→ hofib
(
Σdegk((Π))→ Σdegk[Π]/Σdegk[Π>λ]

)
,

and with the natural induced maps on homotopy fibers.
The completion map induces an equivalence on associated graded objects in the

following sense.

Lemma 3.5. For each λ ∈ R, there is an induced equivalence

(3.1.17) k[Π]/k[Π>λ] ≃ k((Π))/hofib (k((Π))→ k[Π]/k[Π>λ]) .

For λ′ < λ, there is an induced equivalence

(3.1.18) k[Π>λ]/k[Π>λ′ ] ≃ k((Π))/hofib (k((Π))→ k[Π>λ])

k((Π))/hofib (k((Π))→ k[Π>λ′ ])
.

�

Next, we turn to discussion of the multiplicative structure. The filtration is
compatible with the product: for λ1 > λ′

1 and λ2 > λ′
2, there is a commutative

diagram

(3.1.19)

Σdegk[Π>λ1 ] ∧ Σdegk[Π>λ2 ] Σdegk[Π>λ1+λ2 ].

Σdegk[Π>λ′
1
] ∧ Σdegk[Π>λ′

2
] Σdegk[Π>λ′

1+λ′
2
].

induced by the fact that the action map A is a homomorphism. These maps are
associative, and therefore imply that the decreasing filtration on Σdegk[Π] makes it
into a monoid in the category of filtered spectra. Since the completion functor is
lax monoidal (see Theorem A.77), there is an induced multiplicative structure on
the completion as a filtration. Moreover, the passage to the colimit is symmetric
monoidal, and so we we have an induced ring structure on Σdegk[Π].

Theorem 3.6. The Laurent series ring Σdegk((Π)) is an associative ring spectrum.
�

Notation 3.7. Since Π and k are fixed in the paper, we shall denote this completed
group ring by Λ, and call it the Novikov ring spectrum.
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On homotopy groups, the Mittag-Leffler condition is satisfied and so we have
the following computation.

Lemma 3.8. There is a canonical isomorphism of graded rings

(3.1.20) π∗(Σ
degk((Π))) ∼= Λπ∗(k),Π

where each indeterminate π ∈ Π has degree − deg(π). �

Proof. The assertion about the additive structure follows by direct calculation, us-
ing the Mittag-Leffler condition. To see that the multiplicative structure is correct,
we can give an alternate construction of Σdegk((Π)) by constructing an analogue of
Λ+, completing Σdegk[Π≥0] using the decreasing filtration given by Σdegk[Π>λ] and
inverting positive degree elements of Π. The fact that the Ore condition holds im-
plies that we can describe this localization in terms of a calculus of fractions [Lur14a,
§7.2.3], and in particular has the expected universal property with respect to in-
verting elements. Now the assertion follows by a direct comparison of homotopy
groups. �

3.2. Homotopy types from cellular diagrams. For the remainder of this paper,
we assume that we have an action map

(3.2.1) A : P → R,

that is compatible with the partial order on P in the sense that if there is arrow
from p to q, then A(p) ≤ A(q). Moreover, we strengthen the condition of local
finiteness by requiring that

(3.2.2)
for every λ ∈ R, and p ∈ P , there are only finitely many elements q of
P receiving an arrow from p, and so that A(q) < λ.

Furthermore, we assume that the action maps on Π and P are compatible with
the Π-action on P in the sense that the diagram

(3.2.3)

Π× P R× R

P R

A

+

A

commutes, i.e., the formula

(3.2.4) A(π · p) = A(π) +A(p)
holds.

Our goal in this section is to construct a spectrum |δλ| for each action level λ
from the data of a Π-equivariant spectral functor

(3.2.5) δ : C∗
rel∂(P ; ΩS)→ k-mod

In the next section, we shall explain how to assemble these spectra to a inverse
system.

First, we need to explain what we mean by a Π-equivariant spectral functor to
k-modules. We begin by describing the action of Π on the category k-mod of (left)
k-modules. Roughly speaking, we want Π to act on k-mod via

(3.2.6) π 7→ Σdeg π(−).
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We do this by smashing with the coherent system of models for spheres {S[n]}.
Writing γπ for the functor

(3.2.7) S[− degπ] ∧ (−) : k-mod→ k-mod,

the action of Π on k-mod is specified by the assignment

(3.2.8) π 7→ γπ.

The multiplicative structure of the system {S[n]} induces an associative collection
of composition natural transformations γπ1 ◦ γπ2 → γπ1π2 specified by the formula

(3.2.9) S[− deg π1] ∧ (S[− deg π2] ∧ (−))→ S[− deg(π1 + π2)] ∧ (−).
However, although these transformations are natural equivalences, they are not the
identity as would be the case for a strict action. We refer to this structure as a
homotopy action of Π; this is a lax functor from the 2-category generated by Π to
the 2-category of categories, where the associativity transformations are through
weak equivalences. See Appendix A.5.2 and in particular Theorem A.138 for more
discussion. Equivariant functors F : C → D between categories with homotopy
action of Π then come in two varieties, depending on the direction of the natural
transformations expressing the action. We will consider those specified by a spectral
functor F along with a family of natural transformations

(3.2.10) γD
π ◦ F → F ◦ γC

π

that are suitably compatible with the associativity and unit transformations. For
instance, specializing to the case where the domain category C has a strict action
of Π and the range is k-mod with the action of Π specified above, a Π-equivariant
functor is specified by natural transformations

(3.2.11) S[− deg(π)] ∧ F (−)→ F (π−)
such that the diagram

(3.2.12)

S[− deg(π1)] ∧ S[− deg(π2)] ∧ F (c) S[− deg(π1 + π2)] ∧ F (c)

S[− deg(π1)] ∧ F (π2c) F ((π1 + π2)c)

commutes, along other coherence diagrams which we discuss in Definition A.140.
We now give the main definition of this section, for which we fix a partially

ordered set P with a free action of Π, and a Π-equivariant map A to R, satisfying
Condition (3.2.2):

Definition 3.9. A Π-equivariant P-cellular diagram is a Π-equivariant spectrally
enriched functor

(3.2.13) δ : C∗
rel∂(P ; ΩS)→ k-mod.

That is, δ is a Π-equivariant C∗
rel∂(P ; ΩS)-module over k.

In order to relate the notion of cellular diagram to flow categories, we consider
the analogous generalization:

Definition 3.10. A virtual fundamental chain for a topological flow category M
is a Π-equivariant spectrally enriched functor

(3.2.14) δ : C∗
rel∂(M; Ωk)→ k-mod
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with the property that the image of each object is equivalent to a graded line, i.e., a
k-module equivalent to Σnk for some n ∈ Z.

Remark 3.11. It is tempting to require that the functor in Equation (3.2.14) be
enriched over k, but this in fact does not make sense in the setting we are consider-
ing: the ring spectrum k is only an associative spectrum, so that it does not make
sense to consider categories enriched over k.

As a special case, we define a virtual fundamental chain for a Kuranishi flow
category X to be a Π-equivariant functor

(3.2.15) δ : C∗
rel∂(BZ; Ωk)→ k-mod

where BZ is the topological flow category from Proposition 2.53.

Remark 3.12. Our formulation of the notion of virtual fundamental chain is analo-
gous to the one used by Pardon [Par16]. The constructions of virtual fundamental
chains in Floer theory that exist in the literature [FO99, LT98, Par16, FW18]
amount to such a construction in the category of HQ modules.

As observed earlier, the projection map to the collar and the unit of k induce a
natural Π-equivariant functor

(3.2.16) C∗
rel∂(P ; ΩS)→ C∗

rel∂(M; Ωk).

Therefore, we have the following immediate corollary.

Corollary 3.13. A virtual fundamental chain determines a Π-equivariant P-cellular
diagram.

Remark 3.14. In this paper, the value of δ will always be a graded line. However,
this condition is not required for the general theory, and applications to symplectic
topology which go beyond the ones considered here naturally lead one to consider
more general values.

Our construction depends on the homotopy class of Π-equivariant spectral func-
tors represented by the virtual fundamental chain. In fact, in our application, a
Π-equivariant P-cellular diagram δ is presented as a sequence of zig-zags of Π-
equivariant spectral functors between spectral categories with Π-actions

(3.2.17) C∗
rel∂(P ; ΩS) C1 C2 · · · Cn k-mod≃ ≃

such that all of the functors pointing left are equivalences of spectral categories,
i.e., functors which are homotopically fully-faithful and essentially surjective. (Such
functors are typically referred to as DK-equivalences; see Definition A.92 for a
review.) A simplifying aspect of our situation is that all of the categories Ci have
strict actions of Π and the functors are strictly equivariant, with the exception of
k-mod (as discussed above) and of hence the last functor Cn → k-mod.

It is possible to formally rectify such a zig-zag in order to work with a repre-
sentative that is an actual functor. Since our constructions use this functor in a
bar construction, we can do this using the interpretation of spectral functors as
bimodules. (We explain this perspective in detail in Appendix A.3.2, but we give
an indication of the strategy here.)

Suppose that we have a zig-zag

(3.2.18) C1 C2 C3.GF
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Associated to the spectral functor F is the C1∧Cop2 -module specified by the assign-
ment

(3.2.19) (x, y) 7→ C1(Fy, x)

and associated to the spectral functor G is the C2 ∧ Cop3 -module specified by the
assignment

(3.2.20) (x, y) 7→ C3(y,Gx)

Note that since F is a DK-equivalence, there is an equivalence

(3.2.21) C1(Fy, x) ≃ C1(Fy, Fz) ≃ C2(y, z)
for Gz ≃ x. Then the tensor product of these bimodules (which we can compute
using the bar construction) yields a C1 ∧Cop3 -module that represents the composite
functor.

For the remainder of this section, we will tacitly suppress the issue of rectifying
a zig-zag and write in terms of a representative that is an honest functor.

3.2.1. Homotopy type of sub-level sets. We now begin to construct the homotopy
type associated to a Π-equivariant cellular diagram. We do this in terms of the
filtration of P by the action map A.
Definition 3.15. For each real number λ, let Pλ denote the quotient of P by the
elements p such that A(p) > λ. That is,

(3.2.22) Pλ = {p ∈ P | A(p) ≤ λ}
∐
{∞},

where the partial order is inherited from P and ∞ is a new terminal object.

Note that Pλ no longer admits an action of Π; instead, each element π ∈ Π
induces a functor from Pλ to Pλ+A(π); we explain this in more detail below.

Remark 3.16. The reader should have in mind the following analogy: the homotopy
type we seek to define corresponds to a Laurent series ring k((z)), with degree of
monomials corresponding to action. In order to construct this, one may start with
znk[z−1], and take an inverse limit (n plays the role of λ).

The filtration on P induces one on Π-equivariant P-cellular diagrams.

Definition 3.17. Given a Π-equivariant P-cellular diagram δ, we define the spec-
tral functor

(3.2.23) δλ : C∗
rel∂(Pλ; ΩS)→ k-mod

to be the restriction of δ to Pλ, where we stipulate that δλ(∞) = ∗.
Next, we will define the homotopy type associated to δλ in terms of a suitable de-

rived tensor product, which we compute explicitly via a two-sided bar construction.
For each λ, we have the following distinguished module over C∗

rel∂(Pλ; ΩS).

Definition 3.18. Let Sλ denote the (contravariant) functor

(3.2.24) C∗
rel∂(Pλ; ΩS)→ Sp

which is uniquely specified by the assignment of S to the terminal object, and the
zero-object ∗ to every other object. The structure map

(3.2.25) C∗
rel∂(Pλ; ΩS)(∗, ∗) = S→ F (S,S)

is the canonical map given as the adjoint of the multiplication map S ∧ S→ S.



ARNOLD CONJECTURE AND MORAVA K-THEORY 53

We briefly recall the details of the two-sided bar construction for spectral cat-
egories and functors; some technical results we require are discussed in Appen-
dix A.3.4.

Definition 3.19. For a spectral category C, a left C-module (i.e., covariant functor)
F , and a right C-module (i.e., contravariant functor) G, the two-sided bar construc-
tion B(G, C, F ) is the spectrum given as the geometric realization of the simplicial
spectrum B•(G, C, F ) defined as

(3.2.26) [k] 7→
∨

c0,c1,...,ck

G(ck) ∧ C(ck−1, ck) ∧ . . . ∧ C(c0, c1) ∧ F (c0),

with face maps induced by the compositions and module actions and degeneracies
by the units of C.

In order for this to have the correct homotopy type, we need to ensure that
the smash products compute the derived smash product; for this purpose, we use
the notion of a pointwise-cofibrant spectral category, which is a spectral category C
where the mapping spectra C(x, y) are cofibrant spectra for each pair of objects
x and y. As we review in Appendix A.3.2, we can replace C by a pointwise-
cofibrant category C′ equipped with a DK-equivalence C′ → C and at least one
of the pullbacks of G and F to C′-modules by a pointwise-cofibrant module. There
is a further subtlety insofar as we need these cofibrant replacements to preserve the
action of Π; we discuss how to accomplish this in Appendix A.5.1 when the action
of Π on C is strict, which suffices for our applications.

Definition 3.20. Given λ, we define the homotopy type of δλ to be

(3.2.27) |δλ| = B(Sλ, C
∗
rel∂(Pλ; ΩS), δλ),

which is a model for the (derived) tensor product of functors

(3.2.28) Sλ ∧LC∗
rel∂(Pλ;ΩS) δλ.

We will also denote this bar construction by B(Sλ, δλ), and refer to it as the geo-
metric realization of δλ.

Remark 3.21. Definition 3.20 should be thought of as an analogue of the iterated
cone construction that arises in the Cohen-Jones-Segal approach to the Floer ho-
motopy type. In their setting, they construct an explicit resolution of the module
corresponding to δλ in order to derive the tensor product of functors. There are also
certain differences since they fix P = Z and work with chains rather than cochains.
Roughly speaking, in the context of chains, we would consider the stabilized flow
category Σ∞

+ P̂+
λ , where P+

λ is the full subcategory of P consisting of elements of
action < λ and an adjoined “terminal” object which receives maps from all ele-
ments except the extremal ones (i.e., those that have no outgoing maps). We can

then assign a homotopy type to functors δ : Σ∞
+ P̂ → Sp by restricting to a func-

tor δλ : Σ
∞
+ P̂+

λ → Sp (defined to be ∗ on the new terminal object) by passage to
the homotopy colimit. This formulation recovers the Cohen-Jones-Segal homotopy
type when P = Z.

The action of Π on P , C∗
rel∂(Pλ; ΩS), and δλ assemble to equip a suitable inverse

limit over λ of the spectra |δλ| with an action by the completed twisted group ring
Σdegk((π)). We will describe this action in detail in Section 3.3 below; for the time
being, we will consider a fixed λ and ignore the equivariant structure.
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We now explain how to compute the geometric realization |δλ| in simple ex-
amples, which ultimately build up to the computation of the associated graded
spectrum in the general case. Since Sλ is trivial except at the terminal object, we
can rewrite the bar construction as follows.

Lemma 3.22. The bar construction B(Sλ, C
∗
rel∂(Pλ; ΩS), δλ) is the simplicial spec-

trum whose k-simplices are

(3.2.29)
∨

p0≤p1≤...pk−1

A(pk−1)≤λ

C∗
rel∂(∞, pk) ∧ C∗

rel∂(pk−1, pk) ∧ . . . ∧C∗
rel∂(p0, p1) ∧ δλ(p0),

where the 0-simplices are the trivial spectrum ∗. The face map d0 is the trivial map,
the face maps d1, . . . , dn−1 are given by the composition in C∗

rel∂(Pλ; ΩS), and the
face map dn is determined by the module structure on δ.

Proof. The identification of the 0-simplices follows from the fact that

(3.2.30) B0(Sλ, C
∗
rel∂(Pλ; ΩS), δλ) =

∨

p∈Pλ

Sλ(p) ∧ δλ(p).

Since Sλ(p) = ∗ unless p =∞ in which case it is equivalent to Smfib, this coproduct
collapses to δλ(∞), which is also ∗ by definition. Therefore, the 0-simplices of this
bar construction are always homeomorphic to ∗. The description of the higher
simplices follows from the definitions in the same fashion. �

Lemma 3.23. The resulting bar construction is split (see Section A.3.4) with the
splitting given by the subspectra

(3.2.31) B̄•(P , λ) = B̄•(Sλ, C
∗
rel∂(Pλ; ΩS), δλ),

obtained by restricting the coproducts in the expression for the two-sided bar con-
struction to sequences of objects in C without repeated elements. �

This property implies that the geometric realization of the simplicial spectrum
B•(P , λ) can then be computed in terms of the filtered colimit of the skeleta com-
puted via the pushouts

(3.2.32)

B̄n(P , λ)× ∂∆n skn−1B(P , λ)

B̄n(P , λ)×∆n sknB(P , λ).
Here the top horizontal map is induced by the face maps.

We now compute a series of simple examples. In these cases, since Pλ is finite,
there are no nondegenerate simplices in degree larger than the maximal length of
a totally ordered subset of Pλ.

Example 3.24.

(1) If Pλ consists only of the object ∞ (e.g., P has no objects of action ≤ λ),
then |δλ| is homeomorphic to a point.

(2) If Pλ has a single object p <∞, then the 1-simplices of |δλ| are given by

(3.2.33) Sλ(∞) ∧ C∗
rel∂(Pλ; ΩS)(p,∞) ∧ δλ(p) ≃ S ∧ΩS ∧ δ(p) ≃ Ωδ(p),

as all other terms in the wedge are ∗. Moreover, there are no higher sim-
plices in the reduced complex. The geometric realisation thus is equivalent
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to the quotient of ∆1
+∧(Ωδ(p)) which identifies {0, 1} = ∂∆1 with the base-

point in Ωδ(p); it is therefore equivalent to the suspension ΣΩδ(p) ≃ δ(p).
(3) If Pλ consists of objects p < q < ∞, then the 1-simplices have nontrivial

terms corresponding to (p,∞) and (q,∞). Furthermore, by Remark 2.25,
the term corresponding to (p,∞) is contractible. As a consequence the
1-simplices are equivalent to

(3.2.34) Sλ(∞) ∧ C∗
rel∂(Pλ; ΩS)(q,∞) ∧ δλ(q) ≃ S ∧ΩS ∧ δ(q) ≃ Ωδ(q).

The nondegenerate 2-simplices are only non-vanishing for the triple (p, q,∞);
calculating, we obtain

Sλ(∞) ∧C∗
rel∂(Pλ; ΩS)(q,∞) ∧C∗

rel∂(Pλ; ΩS)(p, q) ∧ δ(p)

≃ S ∧ ΩS ∧ ΩS ∧ δ(p) ≃ Ω2δ(p).

The first face map lands in ∗, the second in the contractible nondegenerate
1-simplex, and the third is induced by structure map

(3.2.35) C∗
rel∂(Pλ)(p, q) ∧ δ(p)→ δ(q).

Equation (3.2.32) shows that the geometric realisation is therefore equiva-
lent to the cofiber of the structure map Ωδ(p)→ δ(q). To be more precise,
the geometric realization can be described as the spectrum obtained by the
quotient of ∆2

+ ∧ (Ω2δ(p)) which identifies the first face with ∆1
+ ∧ (Ωδ(p))

via the (loop of) the structure map and the other two faces with ∗, and
identifies the two vertices of the first face with ∗.

If the structure map was the identity, then we are looking at the based
tensor with the quotient of ∆2 that identifies the horn Λ2

0 to ∗; this is con-
tractible, and so the result is ∗. When the structure map is null-homotopic,
we conclude that there is an equivalence

(3.2.36) |δλ| ≃ δ(p) ∨ δ(q).

(4) If Pλ consists of objects (p, q1, q2,∞) with p < q1 < ∞ and p < q2 < ∞,
then the 1-simplices have non-vanishing contributions potentially from the
terms corresponding to (q1,∞), (q2,∞), and (p,∞). Computing as above,
the contributions to the 1-simplices from the first two terms are thus the
wedge

(3.2.37) Ωδ(q1) ∨ Ωδ(q2).

For (p,∞), since κ(p,∞) is the wedge [0, 1]∨ [0, 1] (where the intervals have
basepoint 0) and ∂κ(p,∞) is the union of the two endpoints {1}, we find
that

(3.2.38) C∗
rel∂(Pλ; ΩS)(p,∞) ∧ δ(p) ≃ Ω2δ(p).

That is, in total the one-simplices are the wedge

(3.2.39) Ωδ(q1) ∨ Ωδ(q2) ∨ Ω2δ(p).

The 2-simplices have contributions from the triples (p, q1,∞) and (p, q2,∞);
thus the 2-simplices are the wedge

(3.2.40) Ω2δ(p) ∨ Ω2δ(p).
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Therefore, the homotopy type of the geometric realization is given by
the quotient of the wedge

(3.2.41)
(Ωδ(q1) ∧∆1

+) ∨ (Ωδ(q2) ∧∆1
+) ∨ (Ω2δ(p) ∧∆1

+)

∨ (Ω2δ(p) ∧∆2
+) ∨ (Ω2δ(p) ∧∆2

+)

where the two copies of Ω2δ(p)∧∆2
+ are attached to each other along weak

equivalences on a face to Ω2δ(p) in the 1-simplices and to Ωδ(q1)∧∆1
+ and

Ωδ(q2)∧∆1
+ via the structure maps along the other faces. This is equivalent

to the homotopy pushout of the diagram

(3.2.42) ΣΩδ(q1) ΣΩ2δ(p) ΣΩδ(q2),

where the maps in the pushout are determined by the structure maps of δ.
Now assume that the structure maps are null-homotopic. Since the con-

necting map in the cofiber sequence

(3.2.43) ΣΩ2δ(p) ΣΩδ(q1) ∨ΣΩδ(q2) |δ| Σ2Ω2δ(p)

is null homotopic, the homotopy type is equivalent to

(3.2.44) ΣΩδ(q1) ∨ ΣΩδ(q2) ∨ Σ2Ω2δ(p) ≃ δ(q1) ∨ δ(q2) ∨ δ(p).

We can see this more explicitly as follows. For each Ω2δ(p), the face maps
are trivial except for the map to Ω2δ(p) which is a weak equivalence. There-
fore, the contribution to the realization from the 2-simplices is the based
tensor of Ω2δ(p) with the gluing of two copies of ∆2 along a face, with the
boundary collapsed to ∗.

More generally, the descriptions given in Equation (3.2.36) can be extended by
considering the filtration on |δλ| induced by A. The key computation required to
analyze this filtration is given by the following:

Lemma 3.25. Let δλ,p denote the module on Pλ which has value δ(p) at p and ∗
everywhere else. Then the bar construction

(3.2.45) B(Sλ, C
∗
rel∂(Pλ; ΩS), δλ,p)

is naturally equivalent to δ(p).

Proof. The bar construction in question has k-simplices

(3.2.46)
∨

p,q0,q1,...,qk−1,∞

δ(p) ∧C∗
rel∂(p, q0) ∧ C∗

rel∂(q0, q1) ∧ . . . ∧ C∗
rel∂(qk−1,∞),

for a totally ordered subset Q = (p, q0, . . . , qk−1) of P . For the nondegenerate
simplices, we have p < q0 < . . . < qk−2. The 0-simplices are ∗, and the 1-simplices
are C∗

rel∂(Pλ,Ωk)(p,∞) ∧ δ(p).
To analyze this bar construction, observe that since the action maps

(3.2.47) δλ,p(p) ∧ C∗
rel∂(Pλ;S)(p, q)→ δλ,p(q)

are all the trivial map and hence the face map d0 is trivial, there is a natural
equivalence

(3.2.48) B(Sλ, C
∗
rel∂(Pλ; ΩS), δλ,p) ∼= δp ∧B(Sλ, C

∗
rel∂(Pλ; ΩS),Sp),

where here Sp abusively denotes the covariant analogue of Sλ.
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First, we analyze the case when the restriction of Pλ to elements over p is iso-
morphic to the finite set {0, 1, . . . ,m} with the standard order, which we will write
as {p, q0, q1, . . . , qm−2,∞}. In this case, the k-simplices of the bar construction are
contractible except when k = m, where

(3.2.49) C∗
rel∂(p, q0) ∧ C∗

rel∂(q0, q1) ∧ . . . ∧C∗
rel∂(qm,∞) ≃ ΩmS.

The evident map to the simplicial object obtained by setting the ℓ-simplices to ∗
for ℓ < m clearly induces a weak equivalence on geometric realizations, and so the
geometric realization of the bar construction is ΣmΩmS ≃ S.

We can interpret this calculation as follows, which is useful for understanding
the general case: the projection induces the canonical map

(3.2.50) C∗
rel∂(Pλ; ΩS)(p, q)→ C∗(Pλ; ΩS)(p, q).

Since the cubical complex κ(p, q) contracts to the cone point for any p and q, the
latter is equivalent to S, and the projection map is a natural equivalence.

We now consider general posets Pλ. Consider the simplicial spectrum C∗(Pλ)•
with k-simplices

(3.2.51)
∨

p,q0,q1,...,qk−1,∞

C∗(p, q0) ∧C∗(q0, q1) ∧ . . . ∧ C∗(qk−1,∞),

for a totally ordered subset Q = (p, q0, . . . , qk−1) of Pλ. The 0-simplices are ∗,
and the 1-simplices are C∗(Pλ,Ωk)(p,∞). The structure maps are induced by the
composition. The geometric realization of C∗(Pλ) is equivalent to S; since the
cubes are contractible, the k-simplices are equivalent to ΩkS, and the structure
maps induce an equivalence to the bar construction on the cochains of S1, i.e., S.

Since the projection maps of Equation (3.2.50) are compatible with the compo-
sition, they induce a simplicial map

(3.2.52) B•(Sλ, C
∗
rel∂(Pλ; ΩS),Sp)→ C∗(Pλ)•.

We will now argue that this map is an equivalence. By construction, each cubical
complex κ(p, q) can be written as

(3.2.53) κ(p, q) = hocolim
Q∈2p,q

κ(Q),

where Q is a totally ordered subset and the inclusions are determined by setting
coordinates to 0. The boundary ∂κ(p, q) can analogously be written as a homotopy
colimit over the same diagram

(3.2.54) ∂κ(p, q) = hocolim
Q∈2p,q

∂κ(Q),

This implies that we can decompose the cochains and relative cochains as homotopy
limits and express the projection map as

(3.2.55) C∗
rel∂(κ(p, q); ΩS) ∼= holim

Q∈2p,q
C∗

rel∂(Q; ΩS)

→ C∗(κ(p, q); ΩS) ∼= holim
Q∈2p,q

C∗(Q; ΩS).

These decompositions are compatible with the simplicial structure, since κ(p, q) is
a subcomplex of κ(p, q′) for q′ > q. By the finiteness hypothesis on P , we can
pull these homotopy limits outside the geometric realization; the result now follows
from the calculation for a cube.

�
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We now return to study the filtration on |δλ|: observe that if we restrict to
objects with action > n or ≥ n for n ≤ λ, we obtain full subcategories of Pλ which
we will denote Pλ,>n and Pλ,≥n.

Definition 3.26. Let |δλ,>n| be the bar construction

(3.2.56) B(Sλ, C
∗
rel∂(Pλ,>n; ΩS), δλ,>n),

where we are restricting to the poset Pλ,>n. We define |δλ,≥n| analogously to be the
bar construction

(3.2.57) B(Sλ, C
∗
rel∂(Pλ,≥n; ΩS), δλ,≥n),

specified by restricting to the poset Pλ,≥n.

There is a natural inclusion |δλ,>n| → |δλ,≥n|. Using this, we can identify the
“associated graded” piece corresponding to a fixed n ≤ λ, under a hypothesis on
the action filtration on P that holds in our examples.

Proposition 3.27. If the subset of P of elements of action n is discrete (i.e. p ≤ q
and A(p) = A(q) = n implies that p = q), then there is an equivalence

(3.2.58) |δλ,≥n|/|δλ,>n| ≃
∨

A(p)=n

δ(p).

Proof. Writing

|δλ,≥n| = B(δλ,≥n, C
∗
rel∂(Pλ,≥n,ΩS),Sλ)

∼= B(δλ,≥n, C
∗
rel∂(Pλ,≥n,ΩS), C∗

rel∂(Pλ,≥n,ΩS)) ∧C∗
rel∂(Pλ,≥n,ΩS) Sλ

and analogously for |δλ,>n|. Next, observe that

(3.2.59) B(δλ,>n, C
∗
rel∂(Pλ,>n,ΩS),Sλ) = B(δλ,>n, C

∗
rel∂(Pλ,≥n,ΩS),Sλ),

since any chain in P which passes through q such that A(q) = n will give rise to a
trivial contribution in the righthand side, as δλ>n evaluated on the minimal element
of that chain will have action ≤ n and so be ∗.

Therefore using the fact that colimits commute, the quotient in question can be
computed in terms of the induced quotient of functors

(3.2.60)

B(δλ,>n, C
∗
rel∂(Pλ,>n,ΩS), C∗

rel∂(Pλ,>n,ΩS))

B(δλ,≥n, C
∗
rel∂(Pλ,≥n,ΩS), C∗

rel∂(Pλ,≥n,ΩS)).

Now, as functors, for p such that A(p) > n, we have that

(3.2.61) B(δλ,≥n, C
∗
rel∂(Pλ,≥n,ΩS), C∗

rel∂(Pλ,≥n,ΩS))

and

(3.2.62) B(δλ,>n, C
∗
rel∂(Pλ,>n,ΩS), C∗

rel∂(Pλ,>n,ΩS))

coincide, and so the quotient vanishes for p such that A(p) > n. As a consequence,
we can reduce to computing the bar construction with respect to the module δλ=A(p)

which coincides with δ on p such that A(p) = n and is ∗ elsewhere.
Under our assumption, there are no arrows between elements p and q of action

equal to n if they are distinct. This implies that the bar construction for this
module splits as a wedge over p such that A(p) = n. The result then follows from
Lemma 3.25. �
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Remark 3.28. In fact, we can drop the assumption of Proposition 3.27, at the cost
of considering a filtration indexed by P itself; since the applications we consider do
not require this generality, we work with the above simplified setting.

The layers of this filtration on |δλ| are attached by the module structure maps
of δλ; when these are null-homotopic, the filtration splits. To see this, we appeal to
the notion of the Kan suspension of a simplicial spectrum [Kan63], which we will

denote by Σ̃.

Definition 3.29. For a simplicial spectrum X•, the k-simplices of the Kan sus-
pension Σ̃X• are determined by the formula

(3.2.63) (Σ̃X)k = X0 ∨X1 ∨ . . . ∨Xk−1.

On the summand Xℓ in (Σ̃X)k, we have degeneracies specified by the formulas

(3.2.64) si =

{
si−(k−ℓ) : Xℓ → Xℓ+1 i ≥ k − ℓ

id : Xℓ → Xℓ i < k − ℓ

and face maps

(3.2.65) di =

{
id : Xℓ → Xℓ i < k − ℓ

di−(k−ℓ) : Xℓ → Xℓ−1 i ≥ k − ℓ, ℓ > 0

and as the trivial map for i = k, ℓ = 0.

The Kan suspension has the effect of shifting the nondegenerate simplices up
a simplicial degree. Moreover, it models the ordinary suspension, in the following
sense: for cofibrant simplicial spectra X , there is a natural equivalence

(3.2.66) Σ|X | → |Σ̃X |
of spectra.

Proposition 3.30. Assume that the subset of P of elements of action n is discrete
(i.e. p ≤ q and A(p) = A(q) = n implies that p = q). When the action maps
C∗

rel∂(p, q) ∧ δλ(p) → δλ(q) are null-homotopic for all p such that A(p) = n, the
filtration splits and we find

(3.2.67) |δλ,≥n| ≃ |δλ,>n| ∨
∨

A(p)=n

δ(p).

Proof. The connecting map in the cofiber sequence

(3.2.68) |δλ,>n| → |δλ,≥n| →
∨

A(p)=n

δ(p)→ Σ|δλ,>n|

induces the composite

(3.2.69) |δλ,A(p)=n| → Σ|δλ,>n| → |Σ̃δλ,>n|
to the Kan suspension. The composite is the geometric realization of a simplicial
map, which can be described as follows. For k ≥ 1, each nondegenerate k-simplex
in |δλ,A(p)=n| corresponds to a totally-ordered subset {p, q1, . . . , qk−1,∞} where

A(q1) > A(p) = n. For k ≥ 2, each nondegenerate simplex in Σ̃δλ,>n corresponds
to a totally-ordered subset (q1, . . . , qk−1,∞) with A(q1) > n. The map on the
nondegenerate k-simplices is then the map induced by the action maps C∗

rel∂(p, q1)∧
δ(p) → δ(q1) along with the smash product of the identity maps, except on the
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1-simplices where it is the collapse map. This assignment is clearly compatible
with the simplicial structure. The map on the degenerate simplices is analogous.
Although we have not assumed that the null-homotopies of the action maps are
compatible, because the face map corresponding to the module action in |δλ,A(p)=n|
is trivial, the homotopies assemble to produce a null homotopy of the connecting
map. �

Using the fact that

(3.2.70) |δλ,>n| = colim
m<n

|δλ≥m|,

we can conclude the following proposition.

Proposition 3.31. Suppose that all the composition maps in δλ other than the
identities are null homotopic. Then we have an equivalence

(3.2.71) |δλ| ≃
∨

A(q)≤λ

δ(q).

�

3.2.2. Signpost: Morse and Floer theory. It is useful at this stage to note that the
constructions of the above section suffice to produce the Morse homotopy type of a
function on a closed manifold, as discussed in Appendix D. In this setting, discussed
already by Cohen-Jones-Segal [CJS95], the group Π is trivial, the category P is
finite, and the morphisms in the flow category M are topological manifolds with
stratified boundary, arising as moduli spaces of flow lines of a Morse-Smale function.

To briefly summarize the construction, recall that moduli spaces of flow lines
in Morse theory are oriented relative the positive-definite subspace of the Hessian
matrix at each critical point. We write δp for the corresponding orientation line,
which is a (graded) rank-1 module over k, and introduce the spectral category
C∗(M, δ), whose objects are those of M, and whose morphisms assign to a pair
(p, q):

(3.2.72) C∗(M, δ)(p, q) ≡M(p, q)+ ∧ Homk(δp, δq).

There is a canonical functor

(3.2.73) C∗(M, δ)(p, q)→ k-mod,

given by projectingM(p, q) to a point.
In Appendix D, we explain (in a variant of the work of [CJS95]), that there is a

zig-zag of equivalences

(3.2.74) C∗
rel∂(M; Ωk)← · · · → C∗(M, δ)

which arises from an appropriate application of Poincaré duality with coefficients in
k (i.e., Spanier-Whitehead duality). In principle, this requires that the flow category
be oriented with respect to k, i.e., that the underlying manifolds admit compatible
orientations, but this is true for the sphere spectrum, and hence holds for every
spectrum. Nonetheless, we limit the discussion in Appendix D to complex oriented
theories, since it allows us to appeal to the results of the main part of the paper
without modification (the only place they appear is in the proof of Lemma D.6).

Using the 2-sided bar construction to compose the zig-zag in Equation (3.2.74)
with the functor in Equation (3.2.73), and the pullback morphism C∗

rel∂(P ; Ωk)→
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C∗
rel∂(M; Ωk), where P is the partially ordered set of critical points, we obtain a

functor

(3.2.75) C∗
rel∂(P ; Ωk)→ k-mod.

Since P is finite in this context, the truncation Pλ does not depend on the choice
of constant λ as long as it is sufficiently large. Applying the results of Section 3.2.1
thus produces the Morse homotopy type. In order to compare this to the classical
homotopy type of the underlying manifold, we develop special tools in Appendix
D, that are variants of the tools which we introduce in Section 3.5 below, in order
to compare Morse and Floer theory.

3.3. The homotopy type as an inverse limit. Returning to the general theory,
the construction of Pλ is evidently contravariantly functorial in λ, i.e., for λ0 < λ1

there is a canonical functor

(3.3.1) Pλ1 → Pλ0

given by sending all of the elements p ∈ Pλ1 with A(p) > λ0 to the terminal
object. However, the description of the functoriality of the associated homotopy
types requires more work. In the bar construction, the attachment of cells for δp is
controlled by totally ordered subsets of Pλ with top entry ∞; changing the length
of these totally ordered subsets by collapsing shifts the simplicial degree in which
these attaching maps are represented. To handle this, we need to consider a suitable
intermediate construction that interpolates the effects of shifts of degree.

To explain our construction, we begin by working through the most basic exam-
ple:

Example 3.32. Let P be a partially ordered set with two objects p < q such that
A(p) = 0 and A(q) = 1. We assume we are given a functor

(3.3.2) δ : C∗
rel∂(P ; ΩS)→ k-mod.

Then P0 is the poset p→∞ and P1 is the poset p→ q →∞. We will construct a
representative of a homotopy class of maps |δ1| → |δ0| in a way that will extend to
general P .

To do this, we consider the poset category P0,1 with non-identity arrows gener-
ated by the following diagram

(3.3.3)

∞0 ∞1

p q.

We define a functor δ01 on the relative cochains of P0,1, which is specified on
objects as

(3.3.4)





δ01(p) = δp,

δ01(q) = δq,

δ01(∞0) = δ01(∞1) = ∗,
and on morphisms, δ01 is determined by δ. We define the functor S0,1 to vanish
on all objects but ∞1, where it is S. The homotopy type associated to δ01 is then
given by two-sided bar construction:
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(3.3.5) |δ01| ≡ B(S0,1, C
∗
rel∂(P0,1; ΩS), δ01).

There is an evident functor P0,1 → P1 specified on objects by sending both ∞0

and ∞1 to ∞. We specify a map of bar constructions

(3.3.6) B•(S0,1, C
∗
rel∂(P0,1; ΩS), δ01)→ B•(S1, C

∗
rel∂(P1; ΩS), δ1)

as follows. The pullbacks of the functors δ1 and S1 to C
∗
rel∂(P0,1; ΩS) induce natural

transformations

(3.3.7) δ01 ⇒ δ1 and S01 ⇒ S1

as functors on P0,1. There is a functor

(3.3.8) C∗
rel∂(P0,1; ΩS)(p,∞1)→ C∗

rel∂(P1; ΩS)(p,∞)

determined by the restriction map

(3.3.9) C∗
rel∂(κ

p∞0∞1 ∨ κpq∞1 ; ΩS)→ C∗
rel∂(κ

pq∞; ΩS).

We map C∗
rel∂(p,∞2) to C∗

rel∂(p,∞) using the restriction map and we map the
composite C∗

rel∂(p,∞1) ∧ C∗
rel∂(∞1,∞2) to the degenerate simplex C∗

rel∂(p,∞) ∧
C∗

rel∂(∞,∞) using the composite of the composition and the restriction map. This
is clearly a simplicial map, and therefore we have a map of geometric realizations

(3.3.10) |δ01| → |δ1|.
We claim that the map in Equation (3.3.10) is an equivalence. Observe that by
construction it is compatible with the filtration by action, and so we have a com-
mutative diagram of cofiber sequences

(3.3.11)

|δ01,>0| |δ01,≥0| = |δ01| δp

|δ1,>0| |δ1,≥0| = |δ1| δp

where the vertical maps are induced by the comparison map. Since the outer maps
are equivalences, the middle map must be as well.

Let P ′
0 denote the subcategory of P0,1 with objects p → ∞0 → ∞1. We write

δ001 for the functor induced by δ, and S1 for the functor induced by S0,1. We define

(3.3.12) |δ001| = B(S1, C
∗
rel∂(P ′

0,ΩS), δ001).

Collapsing q to ∞1 induces a functor P0,1 → P ′
0; this produces a comparison

map

(3.3.13) |δ01| → |δ001|
as follows. For simplices that correspond to chains that do not contain q, we
use the identity map and the restriction map. Otherwise, the comparison map
of Equation (3.3.13) is induced by the composite of the map of bar constructions
arising from the composite of the map δ01 → δ001 and composition and restriction
as above. Note that this map is usually not an equivalence; it is our model for the
projection.

We complete the construction by comparing |δ001| to |δ0|. By inspection, the
filtration by action (Proposition 3.27) implies that B•(S1, C

∗
rel∂(P ′

0,ΩS), δ001) and
B•(S0, C

∗
rel∂(P0,ΩS), δ0) are abstractly equivalent.
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We construct an explicit zig-zag exhibiting this equivalence using the Kan sus-
pension. Specifically, there is a map

(3.3.14) |δ001| → |Σ̃ΩB•(S0, C
∗
rel∂(P0,ΩS), δ0)|

induced by a map of simplicial spectra δ001 → Σ̃Ωδ0. Here Ωδ0 is the cotensor with
S1 in the category of simplicial spectra; this is computed levelwise, and amounts
simply to looping each wedge summand in the k-simplices. Since there is a natural
equivalence

(3.3.15) |Σ̃ΩB•(S0, C
∗
rel∂(P0,ΩS), δ0)| ←− Σ|ΩB•(S0, C

∗
rel∂(P0,ΩS), δ0)|

and natural equivalences

(3.3.16) Σ|ΩB•(S0, C
∗
rel∂(P0,ΩS), δ0)| ΣΩ|δ0| |δ0|,

given this claim we can conclude the desired comparison result. (Here we are using
the fact that the loop functor commutes with geometric realization of simplicial
spectra.)

The map of simplicial spectra |δ001| → Σ̃Ω|δ0| is constructed as follows. The
1-simplices of |δ001| are specified by the contractible spectrum

(3.3.17) C∗
rel∂(P0,1; ΩS)(p,∞1) ∧ δp

and the non-degenerate 2-simplices are

(3.3.18) C∗
rel∂(P0,1; ΩS)(p,∞0) ∧C∗

rel∂(P0,1; ΩS)(∞0,∞1) ∧ δp ≃ Ω2δp.

The 2-simplices of Σ̃Ωδ0 are

(3.3.19) Ω (C∗
rel∂(P0; ΩS)(p,∞) ∧ δp) ≃ Ω2δp,

and the 1-simplices and the 0-simplices are ∗. The map in this case is specified on
the 2-simplices as the equivalence smashing together the identity map on δp, the
equivalence

(3.3.20) C∗
rel∂(P0,1; ΩS)(p,∞0)→ C∗

rel∂(P1; ΩS)(p,∞)

induced by the functor P0,1 → P1, and the identification

(3.3.21) C∗
rel∂(P0,1; ΩS)(∞0,∞1)→ ΩS.

The idea is that the extra ΩS term arising from looping and the suspension serves
as the receptacle of the mapping spectra in the domain that do not involve p. On
the 1-simplices, that map is just the collapse map; this is a weak equivalence. A
straightforward check verifies that these levelwise maps are compatible with the
simplicial identities.

Therefore, we end up with a zig-zag of maps, in which all but one arrow is an
equivalence:

(3.3.22) |δ1| |δ01| |δ001| · · · |δ0|.≃ ≃ ≃

We now explain a generalization of this procedure for constructing representa-
tives of a homotopy class of maps from |δλ2 | to |δλ1 | that collapse the elements in
Pλ2 of action greater than λ1.
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Definition 3.33. Given a pair λ1 < λ2 of real numbers, the partially ordered set
Pλ2,λ1 is specified as having elements the union of those of Pλ2 , together with two
additional elements {∞1,∞2}.

In mild abuse of notation, we will write P ∩Pλ2,λ1 to denote the subset of Pλ2,λ1

coming from P.
The morphisms of Pλ2,λ1 are uniquely determined by the following requirements:

(1) The poset Pλ2 is a full subcategory of Pλ2,λ1 .
(2) There is a unique map ∞1 →∞2; that is the only map with domain ∞1.
(3) For each p ∈ P ∩ Pλ2,λ1 , there is a unique map p → ∞1 when A(p) ≤ λ1

and no map from p→∞1 otherwise.
(4) There is a unique map p→∞2 for each p ∈ P ∩ Pλ2,λ1 .

Note that the object ∞2 is a terminal object and the subcategory ∞1 → ∞2

is a terminal spine, in the sense that all maps in Pλ2,λ1 with source ∞1 or ∞2

have target in the subcategory. Moreover, the undercategory of ∞1 in Pλ2,λ1 is
isomorphic to Pλ1 .

We now explain how to associate a homotopy type to Pλ2,λ1 and to a P-cellular
diagram δ.

Definition 3.34. Define Sλ2,λ1 to be the right C∗
rel∂(Pλ2,λ1 ; ΩS)-module specified

on objects p ∈ Pλ2,λ1 via

(3.3.23)

{
Sλ2,λ1(p) = S p =∞λ2

Sλ2,λ1(p) = ∗ otherwise

and with the evident structure maps. Define δλ2,λ1 to be the left C∗
rel∂(Pλ2,λ1 ; ΩS)-

module specified on objects p ∈ Pλ2,λ1 as

(3.3.24)

{
δλ2,λ1(p) = δp p ∈ P ∩ Pλ2,λ1

δλ2,λ1(p) = ∗ otherwise

and with structure maps inherited from δ.

We make the following definition in analogy with Definition 3.20.

Definition 3.35. The homotopy type |δλ2,λ1 | is the geometric realization of the
simplicial spectrum given as the bar construction

(3.3.25) B(Sλ2,λ1 , C
∗
rel∂(Pλ2,λ1 ; ΩS), δλ2,λ1),

which is a model for the (derived) tensor product of functors

(3.3.26) Sλ2,λ1 ∧LC∗
rel∂(Pλ2,λ1

;ΩS) δλ2,λ1 .

There is an evident functor Pλ2,λ1 → Pλ2 defined to be the identity on P ⊂ Pλ2,λ1

and to take ∞1 and ∞2 to the terminal object of Pλ2 . We can use this to define a
comparison map on homotopy types as follows.

Lemma 3.36. There exists a natural map

(3.3.27) B(Sλ2,λ1 , C
∗
rel∂(Pλ2,λ1 ; ΩS), δλ2,λ1)→ B(Sλ2 , C

∗
rel∂(Pλ2 ; ΩS), δλ2)

specified by restriction and collapsing.
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Proof. A nontrivial k-simplex of B•(Sλ2 , C
∗
rel∂(Pλ2 ; ΩS), δλ2) corresponds to a to-

tally ordered length k subset Q of Pλ2 of the form

(3.3.28) p = q0 < q1 < q2 < . . . < qk−1 <∞.

Consider a subset Q̃ of PΛ that is in the inverse image of Q under the projection
PΛ → PmaxΛ; this labels a simplex of the domain. If Q = {p, q1, . . . , qk−1,∞} and
A(qk−1) > λ1, then Q̃ = {p, q1, . . . , qk−1,∞2} and we map the associated k-simplex

by the identity map. Otherwise, Q̃ either has the form

(3.3.29) p = q0 < q1 < q2 < . . . < qk−1 <∞2.

or

(3.3.30) p = q0 < q1 < q2 < . . . < qk−1 <∞1 <∞2,

with A(qk−1) ≤ λ1. Since the cubical complex P̂λ2(qk−1,∞) is a subcomplex of

P̂λ2,λ1(qk−1,∞2) and analogously

(3.3.31) ∂P̂λ2(qk−1,∞) ⊆ ∂P̂λ2,λ1(qk−1,∞2),

there are restriction maps

(3.3.32) C∗
rel∂(Pλ2,λ1 ; ΩS)(qk−1,∞2)→ C∗

rel∂(Pλ2 ; ΩS)(qk−1,∞)

which are compatible with the composition and module structure maps. Therefore,
in the first case we have a map

(3.3.33)

C∗
rel∂(p, q1) ∧C∗

rel∂(q1, q2) ∧ . . . ∧ C∗
rel∂(qk−1,∞2)

C∗
rel∂(p, q1) ∧C∗

rel∂(q1, q2) ∧ . . . ∧ C∗
rel∂(qk−1,∞)

induced by the restriction and in the second case we have a map

(3.3.34)

C∗
rel∂(p, q1) ∧ C∗

rel∂(q1, q2) ∧ . . . ∧C∗
rel∂(qk−1,∞1) ∧ Crel∂

∗ (∞1,∞2)

C∗
rel∂(p, q1) ∧ C∗

rel∂(q1, q2) ∧ . . . ∧C∗
rel∂(qk−1,∞) ∧ C∗

rel∂(∞,∞)

determined by the identity maps, the composition, and the restriction. This speci-
fies a simplicial map and hence on realization a map of spectra. �

Under our standing hypotheses listed at the beginning of Section 3.2, this map
is an equivalence:

Proposition 3.37. The comparison map defined in Lemma 3.36 is a weak equiv-
alence.

Proof. By construction, the comparison map is compatible with the action filtration
and therefore induces maps

(3.3.35) B(Sλ2,λ1 , C
∗
rel∂(Pλ2,λ1,≥n; ΩS), δλ2,λ1,≥n)

→ B(Sλ2 , C
∗
rel∂(Pλ2,≥n; ΩS), δλ2,≥n)
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and

(3.3.36) B(Sλ,λ1 , C
∗
rel∂(Pλ2,λ1,>n; ΩS), δλ2,λ1,>n)

→ B(Sλ2 , C
∗
rel∂(Pλ2,>n; ΩS), δλ2,>n)

for each n. Since δΛ(∞i) = ∗ for all ∞i, these maps induce an equivalence on
associated graded spectra with respect to the action filtration. By our hypothesis
on P , the filtration is finite and thus equivalences on associated graded spectra
induce by induction an equivalence on the geometric realizations. �

The point of |δλ2,λ1 | is to provide an intermediate object that maps to both δλ1

and δλ2 . Lemma 3.36 constructed the comparison map to δλ2 ; we now turn to
explain the map to δλ1 .

We will write Pλ1

λ2,λ1
to denote the full subcategory of Pλ2,λ1 spanned by the

objects of P of action smaller than or equal to λ1, ∞1, and ∞2. There is a natural
functor Pλ2,λ1 → Pλ1

λ2,λ1
that collapses q ∈ P ∩ Pλ2,λ1 such that A(q) > λ1 to ∞2.

We will construct a corresponding collapse map on homotopy types.

Lemma 3.38. There is a map of spectra

(3.3.37) B(Sλ2,λ1 , C
∗
rel∂(Pλ2,λ1 ; ΩS), δλ2,λ1)→ B(Sλ1

λ2,λ1
, C∗

rel∂(Pλ1

λ2,λ1
; ΩS), δλ1

λ2,λ1
)

induced by restriction and collapse.

Proof. Simplices in the domain can be labeled by totally ordered subsets Q =
{q1, q2, . . . ,∞2} of PΛ. The map is in question is defined levelwise on wedge sum-
mands as follows:

(1) Simplices labeled by subsets Q such that A(q1) > λ1 are taken to the
basepoint in the range.

(2) All other simplices are mapped using the identity on mapping spectra for
qi, qi+1 ∈ P ∩ Pλ2,λ1 , the restriction on pairs qi,∞2 with qi ∈ Pλ1 (as in
the construction of the map in Lemma 3.36), and the identity on mapping
spectra for the pair ∞1,∞2.

It is straightforward to check that these assignments assemble into a simplicial
map. �

Finally, we can compare the range to B(Sλ1 , C
∗
rel∂(Pλ1 ; ΩS), δλ1), as follows.

Proposition 3.39. There is a zig-zag of equivalences

(3.3.38)

B(Sλ1

λ2,λ1
, C∗

rel∂(Pλ1

λ2,λ1
; ΩS), δλ1

λ2,λ1
)

· · ·

B(Sλ1 , C
∗
rel∂(Pλ1 ; ΩS), δλ1).

≃

≃

Proof. The point is that the Kan suspension of Ωδλ1 has no 1-simplices and the

k-simplices corresponds bijectively to the k− 1-simplices of Pλ1

λ2,λ1
. Specifically, we

define a map of simplicial spectra

(3.3.39) B(Sλ1

λ2,λ1
,Pλ2,λ1 , δλ2,λ1)→ Σ̃ΩB(Sλ1 ,Pλ1 , δλ1)

as the identity on terms coming from δp, the identity on mapping spectra corre-
sponding to objects in P ∩ PΛ, and the natural comparison map to ΩS for the



ARNOLD CONJECTURE AND MORAVA K-THEORY 67

morphism spectrum of ∞1,∞2. It is straightforward to see that this is a weak
equivalence by inspecting the levelwise cofiber. �

We now will use the preceding work to define a zig-zag representing the projection
map δλ2 → δλ1 .

Definition 3.40. We denote by ∆λ2

λ1
the zig-zag representing a homotopy class

(3.3.40) δλ2 → δλ1

constructed as the composite zig-zag

(3.3.41) |δλ2 | |δλ2,λ1 | |δλ1

λ2,λ1
| . . . |δλ1 |,≃ ≃≃

where the leftmost equivalence is defined in Lemma 3.36, the righthand middle map
in Lemma 3.38, and the comparison zig-zag of equivalences in Proposition 3.39.

The following sanity check verifies that these projection maps behave the way we
expect. Here recall that from Definition 3.26 that |δλ2,>λ1 | is the homotopy type
obtained by restricting to the subcategory of Pλ2 of objects with action > λ1.

Proposition 3.41. For λ2 > λ1, there is an equivalence

(3.3.42) |δλ2,>λ1 | ≃ hofib(|δ2| → |δ1|).
Proof. It suffices to consider the homotopy fiber of the map

(3.3.43) B(Sλ2,λ1 , C
∗
rel∂(Pλ2,λ1 ; ΩS), δλ2,λ1)→ B(Sλ1

λ2,λ1
, C∗

rel∂(Pλ1

λ2,λ1
; ΩS), δλ1

λ2,λ1
)

from Lemma 3.38. We do this by factoring the map, as follows. First, we have the
map
(3.3.44)

B(Sλ2,λ1 , C
∗
rel∂(Pλ2,λ1 ; ΩS), δλ2,λ1)→ B(Sλ2,λ1 , C

∗
rel∂(Pλ2,λ1 ; ΩS), δλ1

λ2,λ1
),

Then we compose with the map

(3.3.45) B(Sλ2,λ1 , C
∗
rel∂(Pλ2,λ1ΩS), δλ1

λ2,λ1
)→ B(Sλ1

λ2,λ1
, C∗

rel∂(Pλ1

λ2,λ1
; ΩS), δλ1

λ2,λ1
)

induced by the restrictions. The composite is precisely the map from Equation (3.3.43).
The homotopy fiber of the first of these is clearly equivalent to |δλ2,>λ1 |; the sim-
plices in the fiber are precisely those corresponding to chains that are contained in
P>λ1 . The second map is a weak equivalence by the filtration argument, since it is
action-preserving. �

Next, we have the following associativity property for these zig-zags.

Lemma 3.42. For λ0 < λ1 < λ2, the zig-zags ∆λ2

λ1
◦ ∆λ1

λ0
and ∆λ2

λ0
represent the

same map in the homotopy category.

Proof. For this purpose it is convenient to introduce another construction akin to
Pλ′,λ with an additional intermediate object. Specifically, we consider the category
Pλ3,λ2,λ1 , which has two auxiliary objects ∞1 and ∞2 in addition to the terminal
object ∞, and morphisms specified such that:

(1) Pλ1 , Pλ2 , and Pλ3 are full subcategories,
(2) the unique non-terminal map with domain ∞1 has codomain ∞2, and
(3) for p such that A(p) ≤ λ1, p has a unique map to ∞1 and ∞2 and for p

such that A(p) ≤ λ2, p has a unique map to ∞2.
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For convenience, we write |δλ3,λ2,λ1 | for the associated homotopy type.
Now, there are collapse maps

(3.3.46) |δλ3,λ2,λ1 | |δλ2

λ3,λ2,λ1
| |δλ2,λ1 |

and

(3.3.47) |δλ3,λ2,λ1 | |δλ1

λ3,λ2,λ1
| . . . |δλ1 |.

In addition, there are collapse maps

(3.3.48) |δλ3,λ2,λ1 | |δλ3,λ1 | |δλ1

λ3,λ2,λ1
| |δλ1

λ3,λ1
|

which are weak equivalences, by the argument for Proposition 3.37.
These comparison weak equivalences are compatible with the collapse zigzags to

|δλ1 |. Specifically, the diagram

(3.3.49)

|δλ3,λ2,λ1 | |δλ3,λ1 |

|δλ1

λ3,λ2,λ1
| |δλ1

λ3,λ1
|

commutes. This implies that the collapse zigzag |δλ3,λ2,λ1 | ↔ |δλ1 | is homotopic to
the zig-zag |δλ3,λ1 | ↔ |δλ1 |.

Next, the collapse map |δλ3,λ2,λ1 | → |δλ1

λ3,λ2,λ1
| factors through |δλ2

λ3,λ2,λ1
|, and

the diagram

(3.3.50)

|δλ3,λ2 | |δλ3,λ2,λ1 |

|δλ2

λ3,λ2
| |δλ2

λ3,λ2,λ1
| |δλ2,λ1 |

|δλ1

λ3,λ2,λ1
| |δλ1

λ2,λ1
|

commutes. The result now follows from the fact that all of the horizontal maps are
weak equivalences, again by the argument for Proposition 3.37. �

Ideally, we would now define the homotopy type of a Π-equivariant P-cellular
diagram δ : C∗

rel∂(P ; ΩS)→ k-mod as an analogous homotopy limit of a diagram

(3.3.51) holim
λ
|δλ|

over the zig-zags ∆λ2

λ1
for each λ2 > λ1 in R, with a fixed choice of Λλ2,λ1 for each

pair (λ1, λ2). However, this definition is unmanageable as written; indexing over R

raises various technical problems.
Instead, we may consider a countable indexing set I ⊂ R which is final (i.e.,

admitting a subsequence going to +∞), and which we give the induced (total) order
from R. We have a diagram constructed from the spectra {|δi|} and the zig-zags

connecting |δi| and |δi−1|; we denote the indexing category for this diagram by Ĩ.
We can compute holimĨ |δ−| as a model for the filtered homotopy type. Lemma 3.42
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implies that any choice of diagram Ĩ will result in an equivalent homotopy limit.
(See Appendix A.7 for a discussion of homotopy limits over zig-zags.)

Since we shall later study the action of the Novikov ring on this homotopy type,
it is convenient to assume that I is closed under addition. We thus specialise to
consider the set {kǫ}k∈Z. The next lemma records the fact that the homotopy type
is independent of the choice of ǫ.

Lemma 3.43. For any constants ǫ1, ǫ2 ∈ R, there is a natural zig-zag of equiva-
lences

(3.3.52) holim
k∈Z

|δkǫ1 | ≃ holim
k∈Z

|δkǫ2 |.

�

This invariance result justifies the following definition.

Definition 3.44. The homotopy type |δ| of a Π-equivariant P-cellular diagram δ
is the object of Ho(Sp) represented by

(3.3.53) holim
k∈Z

|δkǫ|.

for any choice of positive non-zero constant ǫ.

When studying the module structure, we will need to work with various specific
representatives of |δ|.

Definition 3.45. Let I ⊂ R be a countable discrete subset. We write δ(I) to denote
the diagram of zig-zags indexed by I.

We will typically work with systems δ(. . .→ kǫ→ . . .) and translations thereof.
Given a countable discrete diagram I ⊂ R, we can consider the restricted diagrams
I≤λ = {i ∈ I | i ≤ λ}; the inclusions I≤λ1 → I≤λ2 for λ2 > λ1 induce compatible
maps of homotopy limits

(3.3.54) holim
I≤λ2

|δi| → holim
I≤λ1

|δi|.

Therefore, we regard the homotopy type of a Π-equivariant P-cellular diagram as
equipped with a natural filtration by action. We record the following variant of
Proposition 3.27:

Proposition 3.46. Let I be ǫ-dense and suppose there are no morphisms from p
to q whenever A(q) ≤ A(p)+ ǫ. Then the associated graded spectra for the filtration
on |δ| given by Equation (3.3.54) can be described for λ2 = nǫ and λ1 = (n− 1)ǫ as

(3.3.55) hofib(δλ2 → δλ1) ≃
∨

A(p)∈(λ1,λ2]

δ(p).

�

Although we did not construct it directly this way, we view |δ| as a completion
with respect to a decreasing filtration. As a consequence, |δ| is itself equipped
with the decreasing filtration given by the homotopy fibers of the natural maps
|δ| → |δλ|, induced as above. Here by a filtration we again mean a zig-zag with
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upwards arrows weak equivalences, induced by passage to homotopy fibers from the
diagrams

(3.3.56)

|δ| |δλ2 |

...

|δλ1 |

for λ2 > λ1. Therefore, choosing representatives for the zig-zags, we get a filtration

(3.3.57) . . .→ hofib(|δ → |δλ2 |)→ hofib(|δ → |δλ1 |)→ hofib(|δ → |δλ0 |)→ . . .

Proposition 3.47. This decreasing filtration is complete in the sense that

(3.3.58) |δ| ≃ hocolim
λ→−∞

(hofib(δ → δλ))

and

(3.3.59) holim
λ→∞

(hofib(δ → δλ)) ≃ ∗.

�

It will be useful later on to have the following alternate characterization of the
terms in this filtration.

Lemma 3.48. Suppose that |δ| is represented by the homotopy limit over I ⊂ R.
Then for any λ0, there is an equivalence

(3.3.60) hofib(δ → δλ0) ≃ holim
i∈I
|δi,>λ0 |.

Proof. Since homotopy limits commute up to weak equivalence, we can compute

(3.3.61) hofib(δ → δλ0) ≃ holim
i

(hofib(δi → δλ0)) .

The result now follows from Lemma 3.41. �

Here notice that the maps in the homotopy limit system holimλ |δλ,>λ0 | are pre-
cisely the zig-zags ∆λ2

λ1
restricted to represent a homotopy class of maps |δλ2,>λ0 | →

|δλ1,>λ0 |. We refer to these terms as the truncated homotopy limits.
The maps in the filtration are induced by the natural inclusions.

Lemma 3.49. For λ2 > λ1 > λ0, there are natural inclusion maps

(3.3.62) |δλ2,>λ1 | → |δλ2,>λ0 |
which are strictly associative.

Proof. The maps are induced by the evident levelwise simplicial inclusions; the cat-
egory C∗

rel∂(Pλ2,>λ1 ; ΩS) is a full subcategory of C∗
rel∂(Pλ2,>λ0 ; ΩS). Associativity

is evident. �

Assembling these, we have the following induced maps on homotopy limits arising
as the composite of the inclusions levelwise.
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Lemma 3.50. Fix I ⊂ R. Then for each λ0, λ1 ∈ I such that λ1 > λ0, there are
natural maps

(3.3.63) holim
i∈I
|δi,>λ1 | → holim

i∈I
|δi,>λ0 |

which are strictly associative. �

In light of this, we take the system

(3.3.64) . . .→ holim
i∈I

|δi,>λ2 | → holim
i∈I

|δi,>λ1 | → holim
i∈I

|δi,>λ0 | → . . .

as our model of the decreasing filtration on |δ|.
Lemma 3.51. The decreasing filtration of Equation (3.3.64) is complete; the ho-
motopy limit is trivial and the homotopy colimit is equivalent to δ.

Remark 3.52. Note that we have not in fact constructed a map of filtered spectra
comparing this decreasing filtration with the one induced by Equation (3.3.57);
the natural comparison maps are compatible with the structure maps only up to
homotopy. With a little more work it is possible to rigidify these comparison maps,
but since for our purposes it suffices to simply take the filtration described in
Equation (3.3.64) as the definition, we do not carry this out here.

Example 3.53. Say that P = Z, and δ is the functor mapping all objects to k,
and all morphisms to 0. According to Proposition 3.31 and Equation (3.2.71), the
homotopy type of |δλ| for each real number λ is a wedge of copies of k indexed
by integers smaller than λ. Therefore, by definition the homotopy type of δ is the
homotopy limit

(3.3.65) holim
λ

∨

k≤λ,k∈Z

k,

where the structure maps in the inverse system are given by projecting away from
the missing summands. Since the system of homotopy groups is evidently Mittag-
Leffler, there is an additive identification

(3.3.66) π∗|δ| ∼= k∗((t)) ≡ k∗[[t]][t
−1],

where here R((t)) denotes Laurent series (i.e. series in t and t−1 with finitely many
monomials of negative exponent) and k∗ denotes the homotopy groups of k. In the
formula above, the formal variable t is in degree 0. In order to put the variable
in a different degree, we can consider suspensions of k. This identification can be
promoted to a multiplicative equivalence, although this is a bit complicated. We
explain both aspects of the general situation in more detail below.

On the other hand, one could try to set λ = −∞ in the definition of the homotopy
type, and avoid taking the inverse limit over λ. However, in this example, the
resulting two-sided bar construction is acyclic; there does not exist an element
z ∈ P such that (z,∞) is a pair of successive elements in P−∞.

3.4. The equivariant structure of the filtered homotopy type. We now
introduce the action of Π on the homotopy limit of the spectra {|δλ|}. We begin
by looking at the interaction of the action with the filtrations by λ on Π and P .

First, note that Equation (3.2.4) implies that the collection of posets {Pλ} is
compatible with the action of Π on P , in the following sense.
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Lemma 3.54. For each π ∈ Π and λ ∈ R, we have induced isomorphisms

απ : PA(p)=λ → PA(p)=A(π)+λ(3.4.1)

απ : Pλ,>k → Pλ+A(π),>k+A(π)(3.4.2)

απ : Pλ → Pλ+A(π),(3.4.3)

where we stipulate that π acts trivially on the terminal object. These maps are
evidently strictly associative in the sense that απ1 ◦ απ2 = απ1π2 and unital in that
αe is the identity map. �

Moreover, the proof of Lemma 2.31 establishing a strict action of Π on C∗
rel∂(P ; ΩS)

lifting the action on P induces an analogous action on the collection {C∗
rel∂(Pλ; ΩS)}

which is compatible with the categorical structure.

Proposition 3.55. For each π ∈ Π and λ ∈ R, we have induced homeomorphisms

(3.4.4) απ : C
∗
rel∂(Pλ; ΩS)(p, q)→ C∗

rel∂(Pλ+A(π); ΩS)(πp, πq)

for each π ∈ Π. These maps are strictly associative in the sense that απ1 ◦ απ2 =
απ1π2 and unital in that αe is the identity map.

The maps απ are compatible with the composition and categorical unit in the
sense that we have commutative diagrams

(3.4.5)

C∗
rel∂(Pλ)(q, r)

∧C∗
rel∂(Pλ)(p, q)

C∗
rel∂(Pλ+A(π))(πq, πr)

∧C∗
rel∂(Pλ+A(π))(πp, πq)

C∗
rel∂(Pλ)(p, r) C∗

rel∂(Pλ+A(π))(πp, πr)

(where here the coefficients are understood to be ΩS) and

(3.4.6)

S C∗
rel∂(Pλ; ΩS)(p, p)

C∗
rel∂(Pλ+cA(π); ΩS)(πp, πp).

�

We now turn to describe the interaction of Π with the left and rightCrel∂
∗ (Pλ; ΩS)-

modules that are used in the bar construction that defines |δλ|.
Lemma 3.56. For π ∈ Π, there are maps

(3.4.7) βπ : Sλ(p)→ Sλ+A(π)(πp)

specified by the identity maps. These maps are strictly associative and unital. They
are also clearly compatible with the module action map. �

The action of Π on δ is lax, which complicates the description of the structure
that arises on the terms of the filtration. In the following proposition, for π ∈ Π
we will write S[π] to denote S[− deg π].

Proposition 3.57. For π ∈ Π and λ ∈ Λ, there are maps of spectra

(3.4.8) γπ : δλ(p) ∧ S[π]→ δλ+A(π)(πp)
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The diagrams

(3.4.9)

δλ(p) ∧ S[π1] ∧ S[π2] δλ(p) ∧ S[π1π2]

δλ+A(π1)(π1p) ∧ S[π2] δλ+A(π1)+A(π2)((π1π2)p)

γπ1 γπ1π2

commute, and analogous diagrams express the associativity of these maps.
The action maps are also compatible with the module structure on δ, in that the

following diagrams commute:

(3.4.10)

C∗
rel∂(Pλ; ΩS)(p, q) ∧ δλ(p) ∧ S[π] δλ(q) ∧ S[π]

C∗
rel∂(PA(π)+λ; ΩS)(πp, πq) ∧ δλ+A(π)(πp) δλ+A(π)(πq)

απ∧γπ γπ

and the analogous associativity diagrams also commute. �

Proposition 3.58. For each π ∈ Π and λ ∈ R, there is a natural map of spectra

(3.4.11) απ : B(Sλ, C
∗
rel∂(Pλ; ΩS), δλ) ∧ S[π]

→ B(Sλ+A(π), C
∗
rel∂(Pλ+A(π); ΩS), δλ+A(π)).

The diagrams

(3.4.12)

B(Sλ, δλ) ∧ S[π1] ∧ S[π2] B(Sλ, δλ) ∧ S[π1π2]

B(Sλ+A(π1), δλ+A(π1)) ∧ S[π2] B(Sλ+A(π1+π2), δλ+A(π1+π2))

απ1

απ1π2

commute, as do the analogous diagrams expressing the associativity of these maps.
This structure is weakly unital in the sense that, for 0 ∈ Π, the map α0 is related
to the identity via the unit weak equivalence S→ S[e].

Proof. For each k, the smash product βπ ∧ απ ∧ . . . ∧ απ︸ ︷︷ ︸
(k−1)

∧γπ specifies a map on

k-simplices

(3.4.13) Bk(Sλ, C
∗
rel∂(Pλ; ΩS), δλ) ∧ S[π]

→ Bk(Sλ+A(π), C
∗
rel∂(Pλ+A(π); ΩS), δλ+A(π)).

The compatibility of the constituent maps with the unit, composition, and module
structure imply that these maps assemble into a simplicial map

(3.4.14) B•(Sλ, C
∗
rel∂(Pλ; ΩS), δλ) ∧ S[π]

→ B•(Sλ+A(π), C
∗
rel∂(Pλ+A(π); ΩS), δλ+A(π)).

The associativity and unitality follow immediately from the discussion above. �

We now turn to describe the compatibility of the Π action with the zigzags
appearing the homotopy limit system of Definition 3.44. It is clear that π ∈ Π
takes a representative of the projection for λ1 < λ2 to a representative of the
projection for A(π) + λ1 < A(π) + λ2.
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Proposition 3.59. For π ∈ Π, the following diagram of zigzags commutes:

(3.4.15)

|δλ2 | ∧ S[π] |δλ2,λ1 | ∧ S[π] |δλ1

λ2,λ1
| ∧ S[π] . . . |δλ1 | ∧ S[π]

|δA(π)+λ2
| |δA(π)+λ2,A(π)+λ1

| |δA(π)+λ1

A(π)+λ2,A(π)+λ1
| . . . |δA(π)+λ1

|

≃ ≃≃

≃ ≃≃

�

As a consequence, we obtain an action on systems of the following form.

Proposition 3.60. For π ∈ Π and I ⊂ R a countable discrete subset, there are
natural maps

(3.4.16) δ(I) ∧ S[π]→ δ(A(π) + I)

and therefore there are maps of spectra

(3.4.17) απ :

(
holim
k∈Z

|δkǫ|
)
∧ S[π]→ holim

k∈Z

(|δkǫ| ∧ S[π])→ holim
k∈Z

|δA(π)+kǫ|.

�

We also have the analogous result for the truncated homotopy limits. Specifically,
using the evident analogues of Proposition 3.58 and Proposition 3.59, we obtain the
following action on the terms of the filtration:

Corollary 3.61. For an element π ∈ Π and λ0 ∈ R, there are maps of spectra

(3.4.18) απ :

(
holim
k∈Z

|δkǫ,>λ0 |
)
∧ S[π]→

holim
k∈Z

(|δkǫ,>λ0 | ∧ S[π])→ holim
k∈Z

|δkǫ+A(π),>λ0+A(π)|.

�

The following proposition records the way these maps assemble into coherent
actions maps for Π. (We write this out for the absolute case; analogous results hold
for the truncated homotopy limits.)

Proposition 3.62. For π1, π2 ∈ Π, the composite
(3.4.19)

|δλ2 | ∧ S[π1] ∧ S[π2] |δA(π1)+λ2
| ∧ S[π2] |δA(π1)+A(π2)+λ2

|

|δλ2,λ1 | ∧ S[π1] ∧ S[π2] |δλ2+A(π1),λ1+A(π1))| ∧ S[π2] |δA(π1)+A(π2)+λ2,A(π1)+A(π2)+λ1
|

|δλ1

λ2,λ1
| ∧ S[π1] ∧ S[π2] |δλ1+A(π1)

λ2+A(π1),λ1+A(π1))
| ∧ S[π2] |δA(π1)+A(π2)+λ1

A(π1)+A(π2)+λ2,A(π1)+A(π2)+λ1
|

...
...

...

|δλ1 | ∧ S[π1] ∧ S[π2] |δA(π1)+λ1
| ∧ S[π2] |δA(π1)+A(π2)+λ1

|

≃ ≃ ≃

≃

≃

≃

≃

≃

≃
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coincides with the zig-zag

(3.4.20)

|δλ2 | ∧ S[π1π2] |δA(π1+π2)+λ2
|

|δλ2,λ1 | ∧ S[π1π2] |δ(π1+π2)(λ2,λ1)|

|δλ1

λ2,λ1
| |δA(π1+π2)+λ1,(π2+π1)(Λ)|

...
...

|δλ1 | ∧ S[π1π2] |δA(π1+π2)+λ1
|

≃ ≃

≃

≃

≃

≃

up to the product on {S[−n]}.
The analogous diagrams which express the associativity of the action of Π on

these homotopy types, commute. �

We now want to assemble these results into a description of multiplicative struc-
tures on |δ|. To be precise, since Π is discrete, to produce a map k[Π]∧Z → Z in the
homotopy category, it suffices to produce a map of monoids Π→ MapHo(Sp)(Z,Z).
For this purpose, it is enough to produce action maps aπ : Z → Z for each π ∈ Π
and show that aπ1 ◦ aπ2 = aπ1π2 for all π1, π2 ∈ Π; note that these action maps
are maps in the homotopy category. Producing a map Σdegk[Π] ∧ Z → Z in the
homotopy category is not substantially more difficult; considering the construction
of Σdegk[Π] in terms of Π-graded spectra, it suffices to produce shifted action maps
aπ : Z ∧ S[π]→ Z such that the diagram

(3.4.21)

Z ∧ S[π1] ∧ S[π2] Z ∧ S[π1π2]

Z ∧ S[π2] Z

id∧µ

aπ1∧id aπ1π2

aπ2

homotopy commutes.
Using this technique, we have the following result about the Π action on |δ|.

Theorem 3.63. The homotopy type |δ| as an orthogonal spectrum is a homotopy
module over Σdegk[Π]. That is, there is an action map

(3.4.22) Σdegk[Π] ∧ |δ| → |δ|
which is associative and unital in the homotopy category.

Proof. For an element π1 ∈ Π, we begin by constructing the action map. Writing
I = {kǫ | k ∈ Z} and I1 = A(π1) + I, we have a zig-zag

(3.4.23) holim
k∈I

|δk| ∧ S[π] holim
k∈I1

|δk| holim
k∈I∪I1

|δk| holim
k∈I

|δk|,
απ1 ≃ ≃

where here the homotopy limit over I ∪ I1 denotes the diagram with morphism
zig-zags induced by the order on I ∪ I1 as well as morphism zig-zags coming from
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I and I1. Lemma 3.42 (along with the discussion of homotopy limits over zigzags
in Section A.7) shows that the two unlabeled maps in the zig-zag are weak equiva-
lences.

To see that the collection of these maps induce an action of ΣdegΠ in the homo-
topy category, we fix elements π1 and π2 and consider the following diagram, where
we write I2 = A(π2) + I and I12 = A(π2) + I1 = A(π1π2) + I.
(3.4.24)

holim
k∈I

|δk| ∧ S[π1] ∧ S[π2] holim
k∈I1

|δk| ∧ S[π2] holim
k∈I∪I1

|δk| ∧ S[π2] holim
k∈I

|δk| ∧ S[π2]

holim
k∈I12

|δk| holim
k∈I2∪I12

|δk| holim
k∈I2

|δk|

holim
k∈I∪I12∪I2

|δk| holim
k∈I∪I2

|δk|

holim
k∈I

|δk|.

απ1

απ1π2

απ2 απ2

≃ ≃

απ2

≃ ≃

≃

≃

≃ ≃

≃

All of the subdiagrams commute: the top left triangle commutes by Proposi-
tion 3.60, the two squares commute by Proposition 3.62, and the remaining subdi-
agrams commute by the fact that restriction of diagrams is associative on homo-
topy limits. Composing with the natural equivalence S[π1] ∧ S[π2] → S[π1π2], we
conclude that απ1π2 = απ1απ2 in the homotopy category. Unitality is clear from
Proposition 3.60 and Proposition 3.59. �

Remark 3.64. We can rectify these homotopy coherent actions to genuine actions
by considering a more elaborate generalization of Lemma 3.42; since we do not
need this for the main applications of this paper, we leave this refinement for future
work.

Next, we want to extend this action to an action by the Novikov ring Λ, the
completion of Σdegk[Π]. To do this, we need to describe the interaction of the
decreasing filtration on |δ| with the decreasing filtration on Σdegk[Π]. Recall that
the filtration on Σdegk[Π] is given by

(3.4.25) λ 7→ Σdegk[Π>λ]

and the filtration on |δ| is defined in Equation (3.3.64) as

(3.4.26) λ 7→ holim
i∈I

|δi,>λ|.

The next lemma, combined with Corollary 3.61 and Proposition 3.62, show that
these filtrations are compatible with the action of Π on |δ|.
Lemma 3.65. For an element π ∈ Π and λ1 > λ0, the following diagram commutes

(3.4.27)

holim
i∈Iλ1

|δλi,>λ1 | ∧ S[π] holim
i∈Iλ1+A(π)

|δλi,>λ1+A(π)|

holim
i∈Iλ0

|δλi,>λ0 | ∧ S[π] holim
i∈Iλ0+A(π)

|δλi,>λ0+A(π)|,

απ

απ

where the vertical maps are the natural inclusions. �
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The argument for Theorem 3.63 generalizes to establish that the action maps
described in Lemma 3.65 yields a multiplication that is compatible with the filtra-
tions.

Proposition 3.66. There are action maps in the homotopy category

(3.4.28) Σdegk[Π>λ2 ] ∧ holim
i∈I
|δi,>λ1 | → holim

i∈I
|δi,>λ1+λ2 |

�

The fact that the diagram in Lemma 3.65 strictly commutes implies that the
action maps of Proposition 3.66 in fact assemble into an action in the homotopy
category of filtered spectra. Note that is essential here that we have constructed
Σdegk[Π] as a filtered ring prior to passage to the homotopy category.

Theorem 3.67. The action maps above give |δ| the structure of a filtered module
in the homotopy category of filtered spectra over the filtered ring Σdegk[Π]. �

Passing to completions, we can conclude the following.

Theorem 3.68. The action maps above induce on |δ| the structure of a module
over the filtered ring Λ in the homotopy category of filtered spectra.

Proof. As discussed in Section A.2.2 (e.g., see Theorem A.77), completion is a lax
symmetric monoidal functor on the homotopy category of filtered spectra, where the
category of complete filtered spectra is endowed with the completed smash product
of filtered spectra. Since |δ| is complete for the decreasing filtration as shown in
Lemma 3.51, the induced module structure in the complete category gives rise to
one in the category of filtered spectra. �

Since passage to the underlying object (i.e., the homotopy colimit of the filtra-
tion) is a lax monoidal functor, Theorem 3.68 yields the following corollary.

Corollary 3.69. The spectrum |δ| is a Λ-module in the homotopy category. �

3.5. Maps of homotopy types. This section discusses the methods that we shall
use to compare the filtered homotopy type, obtained by applying the methods of
the previous section in Floer theory, to the classical homotopy type associated
to the underlying symplectic manifold. The same method can be used to prove
independence of the choice of auxiliary data, e.g., the Hamiltonian and the almost
complex structure, though we shall not establish this independence result in this
paper.

Comparison maps arise from the following typical construction in Floer theory:
we have a group Π, a pair of partially ordered sets {P i}i=0,1 with free actions of
the Π, equipped with action maps compatible with the ordering, and associated
flow cellular diagrams

(3.5.1) δi : C∗
rel∂(P i; ΩS)→ k-mod.

The first step in understanding invariance is to be able to construct maps of the
associated homotopy types, so we begin with the data which we will use to map
|δ0| to |δ1|. Fix a constant c ∈ R.

Definition 3.70. Let P01 = P0 ∐ P1 denote the partially ordered set where the
ordering between elements of P0 and P1 is unchanged, and the only new relations
are specified as follows:

(3.5.2) For p0 ∈ P0, p1 ∈ P1, p0 < p1 if and only if A(p0) ≤ A(p1)− c.
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We can define the relative cochains C∗
rel∂(P01; ΩS) as above in Definition 2.30.

Although the action is no longer strictly compatible with the partial order, the
constructions work without modification. (In addition, note that we can always
reindex P1 in order to arrange for c to be 0.)

We now explain the class of modules δ we consider in this context. Recall that
for any spectral category C, given a C-module M we can form the module ΩM ,
which pointwise is given by the formula (ΩM)(c) = ΩM(c).

Definition 3.71. Let δ0 and δ1 be modules over P0 and P1 respectively. We define
categorical continuation data from δ0 to δ1 to consist of a cellular diagram δ01 over
P01 whose restriction to P0 coincides with δ0, and whose restriction to P1 coincides
with Ωδ1.

A particularly interesting case is where we are given a fixed partially ordered set
P , and identifications P0 ∼= P ∼= P1. In this case, we assume that the constant c
in the definition of the ordering on P01 vanishes, and we consider a fundamental
chain δ on P , together with isomorphisms δ0 ∼= δ and δ1 ∼= Ωδ.

Definition 3.72. A choice of categorical continuation data is unitriangular if we
are in the situation above and for each pair (p, q) ∈ P with corresponding elements
q0 ∈ P0 and p1 ∈ P1 such that A(q0) = A(p1), the structure map

(3.5.3) C∗
rel∂(P01,S)(q0, p1) ∧ δ0(q0)→ Ωδ1(p1)

vanishes unless p = q, in which case it is given by the equivalence

(3.5.4) ΩS ∧ δ(p)→ Ωδ(p)

induced by the canonical identification

(3.5.5) C∗
rel∂(P01,S)(q0, p1) ≃ ΩS.

Remark 3.73. As suggested by the terminology, a unitriangular continuation da-
tum should be thought of as an upper triangular matrix with identities along the
diagonal. In particular, note that the condition we impose does not uniquely de-
termine the categorical continuation data, although there are of course a family of
constraints imposed by the composition maps.

Given categorical continuation data δ01, we define the homotopy type |δ01| in
analogy with Definition 3.44.

Definition 3.74. For each real number λ, P01
λ is the quotient of P01 by elements

p ∈ P0 such that A(p) > λ and q ∈ P1 such that A(q) > λ + c. We define δ01λ
to be the functor induced by δ01 by restriction, as in Section 3.2.1. The geometric
realization is then the homotopy limit

(3.5.6) |δ01| = holim
k∈Z

|δ01kǫ |,

Corollary 3.69 implies that |δ01| is a Λ-module in the homotopy category.

For each λ, there is an inclusion P1
λ → P01

λ , which induces a comparison map on
homotopy types.

Proposition 3.75. Let δ01 be categorical continuation data for δ0 and δ1. Then
for each λ, there are maps

(3.5.7) ι1,λ : Ω|δ1λ+c| → |δ01λ |
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induced by the inclusion of P1
λ in P01

λ . On passage to homotopy limits, these maps
induce a map of spectra

(3.5.8) ι1 : Ω|δ1| → |δ01|.
There are action maps in the homotopy category

(3.5.9) Ω|δ1λ+c| ∧ S[π]→ |δ01λ+A(π)|
which induce a map of filtered Λ-modules

(3.5.10) Σdegk[Π>λ1 ] ∧Ω|δ1λ2+c| → |δ01>λ1+λ2
|.

As a consequence, the map ι1 is a map of Λ-modules.

Proof. Since there are no maps in P01 from objects in P1 to objects in P0, the
inclusion of posets P1

λ+c → P01
λ induces a map of simplicial spectra

(3.5.11) ι1 : B•(S
1
λ+c, C

∗
rel∂(P1

λ+c,ΩS),Ωδ1λ+c)→ B•(S
01
λ , C∗

rel∂(P01
λ ,ΩS), δ01λ ).

These maps are clearly compatible with the zig-zags in the homotopy limit system
and therefore induce a map Ω|δ1| → |δ01| on passage to the homotopy limits.
Moreover, a straightforward check using the constructions of the previous section
shows that these maps are compatible with the filtration (in the homotopy category)
and induce a map of Λ-modules in the homotopy category. �

We can identify the cofiber of the map ι1 in terms of |δ0|. A standard diffi-
culty with working with modules in the homotopy category is that cofibers do not
automatically inherit module structures. In our case, we exploit the fact that we
can directly obtain the module structures on the cofiber of ι1 by working with a
concrete construction.

Theorem 3.76. There are homotopy cofiber sequences

(3.5.12) Ω|δ1>λ+c| → |δ01>λ| → |δ0>λ|,
and on passage to homotopy limits a homotopy cofiber sequence of homotopy Λ-
modules

(3.5.13) Ω|δ1| → |δ01| → |δ0|.
Proof. Since homotopy (co)fibers commute with homotopy inverse limits, it es-
sentially suffices to consider what happens at a fixed λ. Moreover, as homotopy
cofibers commute with geometric realization, it suffices to analyze the geometric
realization of the simplicial object produced by the levelwise cofiber. The cofiber is
easy to compute levelwise; any simplex corresponding to a path that lies completely
in the image of P1

λ in P01
λ is contracted to ∗. As a consequence, we can describe

the homotopy cofiber as the geometric realization of the bar construction

(3.5.14) B•(S
01
λ , C∗

rel∂(P01
λ ,ΩS), δ̃0λ),

where δ̃0λ denotes the module on C∗
rel∂(P01

λ ,ΩS) which is the restriction of δ0 on
p ∈ P0

λ and ∗ otherwise. This description of the homotopy cofiber is clearly equipped
with a natural action of k[Π>λ] that is induced from the maps

(3.5.15) B•(S
01
λ , C∗

rel∂(P01
λ ,ΩS), δ̃0λ) ∧ S[π]→

B•(S
01
λ+A(π), C

∗
rel∂(P01

λ+A(π),ΩS), ˜δ0λ+A(π)),
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and which is compatible with the maps ι1 as maps of modules. Therefore there is
an induced Λ-action after completion.

To identify this homotopy cofiber, we now proceed as in the proof of Proposi-
tion 3.37. Specifically, the analogue of the construction of Lemma 3.36 produces
a simplicial map from the homotopy cofiber to |δ0|. Since the action of k[Π>λ] is
compatible with composition and with the restriction map, this simplicial map is
compatible with the action of k[Π>λ] and induces a map of Λ-modules on passage to
completions. On the other hand, the argument for Proposition 3.37 shows that this
map is a weak equivalence. We conclude that there is a natural equivalence from
the homotopy cofiber to |δ0| which is a filtered map of homotopy Λ-modules. �

As an immediate corollary, the connecting map yields the desired comparison
maps.

Corollary 3.77. A choice of categorical continuation data determines maps

(3.5.16) |δ0λ| → |δ1λ+c|
and

(3.5.17) |δ0>λ| → |δ1>λ+c|
that are compatible with the filtered action of Σdegk[Π] and on passage to completion
maps of homotopy Λ-modules

(3.5.18) |δ0| → |δ1|
with homotopy cofiber a homotopy Λ-module equivalent to Σ|δ01|. �

Next, when the categorical continuation data is unitriangular, the homotopy
type is contractible.

Proposition 3.78. Let δ01 be unitriangular categorical continuation data for δ0.
Then |δ01| is contractible. In particular, the induced map in Equation (3.5.18) is
an equivalence.

Proof. This follows from a variation of the filtration argument used to establish
Proposition 3.31. Specifically, we consider the same basic argument, but now we
additionally filter the objects with equal action and inductively reduce to the case
of the bar construction B(S01

λ , C∗
rel∂(P01

λ ; ΩS), δ01λ,p) where δ01λ,p is the module which

is nontrivial on the two copies of p (in P0 and P1) and ∗ otherwise. In this case
the argument for Lemma 3.25 shows that the homotopy type reduces to the cofiber
of the action map Ωδ(p) → Ωδ(p). Since this homotopy cofiber is contractible by
definition, the contribution to the associated graded is trivial. �

Next, we shall describe additional categorical data that suffices to prove that the
map in Equation (3.5.18) splits. Consider a pair (P00, δ00) and (P01, δ01) of cellular
diagrams, and categorical continuation data P01 representing a map |δ00| → |δ01|.
Definition 3.79. Categorical retraction data for the map δ00 → δ01 consists of:

(1) A category P� with objects the disjoint union P00
∐P01

∐P10
∐P11, where

P10 = P00 and P11 = P10, and morphisms indicated by the diagram

(3.5.19)

P01 P11

P00 P10,
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where each arrow specifies morphisms as in the definition of categorical
continuation data for the domain and codomain, such that the analogue
of Equation (3.5.2) holds (i.e., there is a constant c so that there is no
morphism in P� from p to q unless A(p) ≤ A(p) − c).

(2) A module δ� on C∗
rel∂(P�,ΩS) such that:

(a) The restriction to any adjacent pair of summands (i.e., terms con-
nected by arrows in Equation (3.5.19)) in the disjoint union specifies
categorical continuation data as do the pairs (P00

∐P01,P10
∐P11),

(P00
∐P10,P01

∐P11), and (P00
∐P10

∐P01,P11).
(b) The restriction to the pairs P00 → P10 and P10 → P11 specifies uni-

triangular categorical continuation data.

In the following, we will write δ00,01 for the restriction of δ� to the subdiagram
spanned by P00

∐P01, and analogously for other subsets of the sum. The existence
of categorical retraction data imposes fairly stringent conditions on the modules
obtained by restricting to various subdiagrams. In particular, if we regard δ00,01 as
categorical continuation data for δ0 and δ1, then

(1) δ00,10 is unitriangular categorical continuation data for δ0 and δ0,
(2) δ10,11 is unitriangular categorical continuation data for Ωδ0 and Ωδ0,
(3) and δ01,11 is categorical continuation data for Ωδ1 and Ωδ0.

Therefore, we can think of the up and over direction in the square as represent-
ing a composite δ0 → δ1 → δ0 and the over and up direction in the square as
representing a composite δ0 → δ0 → δ0 of identity maps. The idea for the next
proposition is that this data represents a commutative diagram.

Proposition 3.80. Given categorical retraction data, the map of homotopy Λ-
modules f : |δ0| → |δ1| represented by the categorical continuation data δ00,01 is
split. For fixed λ, this splitting restricts to a composite

(3.5.20) |δ0λ| → |δ1λ+c| → |δ1λ+c|
and a composite

(3.5.21) |δ0>λ| → |δ1>λ+c| → |δ1>λ+c|
on the restricted homotopy limits.

Proof. Recall that a cofiber sequence X → Y → C → ΣX in any stable category
splits if the map C → ΣX is null-homotopic. (In fact, this is true in any triangulated
category.)

There is a cofiber sequence

(3.5.22) Ω2|δ0| → |δ�| → |δ00,10,01|,
and the inclusion Ω2|δ0| → |δ�| factors as both the composites Ω2|δ0| → |δ01,11| →
|δ�| and Ω2|δ0| → |δ10,11| → |δ�|. Since |δ10,11| ≃ ∗ by hypothesis, we see that this
map is null-homotopic.

Moreover, since the cofiber of the inclusion |δ01,11| → |δ�| is |δ00,10| ≃ ∗, we see
that the map Ω2|δ0| → |δ01,11| is itself null-homotopic. First, the cofiber sequence

(3.5.23) Ω2|δ1| → Ω2|δ0| → |δ01,11|
implies that the map Ω2|δ1| → Ω2|δ0| is a retraction, i.e., that the cofiber sequence

(3.5.24) Ω|δ01,11| → Ω2|δ1| → Ω2|δ0|
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is split. Rewriting, this splitting exhibits a weak equivalence

(3.5.25) |δ1| ≃ |δ0| ∨ hocofib(f).

To see that f is split by g, we observe that we have a map

(3.5.26) |δ01,11| → |δ�| → |δ00,01|,
where the composite map can be described as the canonical map

(3.5.27) Ωhocofib(g)→ hocofib(f).

As this map is an equivalence, we can conclude that f is split with retraction g.
The assertions about the restriction to fixed λ are straightforward, since the

maps are compatible with λ and with the zig-zags in the restricted homotopy limit.
�

Part 2. Virtual fundamental chains from Kuranishi flow categories

4. Kuranishi flow categories and orientations

4.1. Kuranishi flow categories. The purpose of this section is to formalise the
idea of a lift of a topological flow category to a flow category with morphism spaces
equipped with a variant of the notion of Kuranishi structure introduced by Fukaya
and Ono [FO99]. From our point of view, such a lift is a further refinement of
the definition of an orbispace flow category introduced in Section 2.3, and we shall
make use of that notion in this section. As discussed in the introduction, we find
the various existing formalisms of Kuranishi structures ill-adapted for the formal
constructions which are required in this paper; Definition 4.33 implements our
desired notion of a lift.

4.1.1. Kuranishi Charts. We begin by elaborating on the notion of a Kuranishi
chart given in the introduction (Definition 1.20), and introducing a category for
which these are the objects.

Definition 4.1. A Kuranishi chart is a quadruple (X,V, s,G) consisting of the
following data:

(1) (Symmetry group) a finite group G,
(2) (Thickened chart) a G-manifold X (paracompact and Hausdorff, and pos-

sibly with boundary),
(3) (Obstruction space) a finite dimensional G-representation V equipped with

an invariant inner product, and
(4) (Defining section) a G-equivariant map s : X → V .

We write Z = s−1(0) for the zero locus (which is locally compact), and define the
footprint of the chart to be the quotient space Z/G.

We define the boundary of a Kuranishi chart to be the chart

(4.1.1) ∂X ≡ (∂X, V, s,G)

We say that a Kuranishi chart is without boundary if the boundary of X is empty.
By convention, we require that X have pure dimension, so that we can assign to
each Kuranishi chart a virtual dimension

(4.1.2) dimX = dimX − dim V.
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Remark 4.2. In our definition of G-manifold X , we require the condition that the
G-action be locally Euclidean, i.e., that there is a G-invariant neighbourhood of
each orbit which is G-equivariantly identified with a neighbourhood of an orbit
in a G-representation. This implies that X is a G-ENR (see e.g., [tD87]), and
in particular that X/G has the homotopy type of a CW -complex. Note that an
example of Bing [Bin52] shows that there are Z/2Z actions on S3 which do not
satisfy this property, and results of Quinn [Qui82, Proposition 2.1.4] show that
there are action of finite groups on discs which are locally Euclidean, but are not
conjugate to smooth actions.

Definition 4.1 specifies the objects of the category of Kuranishi charts. We now
define the morphisms.

Definition 4.3. A map f : X → X′ of Kuranishi charts is given by the following
data:

(1) a homomorphism G→ G′,
(2) an isometric embedding V → V ′ which is G-equivariant, and
(3) a G-equivariant map X → X ′ preserving the boundary, which commutes

with the defining sections.

Denoting by G⊥
f the kernel of the map of groups, and by V ⊥

f the quotient V ′/V , we
require the following properties to hold:

(1) the action of G⊥
f on X is free and the map from the quotient to X ′ is an

open embedding in the inverse image of V ⊂ V ′, and
(2) near each point in X ′ lying in the image of X under f , there is a product

chart U(X)/G⊥
f × U(V ⊥

f ) with U(X) an open subset in X and U(V ⊥
f ) an

open subset in V ⊥
f , such that the following diagram commutes:

(4.1.3)

U(X)× U(V ⊥
f ) X ′

X × V ⊥
f V ⊥

f .

The last condition above amounts to the requirement that the projection X ′ →
V ⊥
f be a topological submersion near the image of X , with fibre containing X/G⊥

f

as an open subset.

Remark 4.4. The requirement of topological submersion is stronger than that of
topological transversality used e.g., in [Par16]. In the smooth case, it can be re-
placed by a condition on tangent spaces.

Remark 4.5. Starting in Section 5, we shall assume that the group homomorphism
G → G′ is surjective, as this simplifies various constructions, and the outcome of
Part 3 is that the output of Floer theory are maps of Kuranishi charts satisfying
this property. The first instance where this condition is used is discussed in Remark
5.5 below.

Composition is defined in the obvious way; the only point to check is that the
two properties we impose are preserved.

Lemma 4.6. Given maps X
f→ X′ g→ X′′, the kernel G⊥

g◦f acts freely on X, and

the composition X ′′ → V ⊥
g◦f is a topological submersion near the image of X.
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Proof. If a non-trivial element of G⊥
g◦f lies in G⊥

f , it acts freely by the condition on

the map X→ X′; otherwise, it maps to a non-trivial element of G⊥
g , which must act

freely on X ′ by the assumption on X′ → X′′. Since the map X → X ′ is equivariant,
we conclude that there are no fixed points in X .

To check the second property, observe that the product U(X)×(U(V ⊥
f )×U(V ⊥

g ))
gives the desired chart. �

From the above definition, it is apparent that the virtual dimensions of X and
X′ must agree if there is a map between them, and so the category of Kuranishi
charts decomposes as the disjoint union of categories indexed by the integers.

Remark 4.7. One natural generalisation is to allow for V to be a vector bundle, and
our constructions can be carried out with only minor modifications in this context.
It is theoretically possible to allow V to be a TOP-microbundle [Mil64], but the
authors are not aware of a context where such generality arises naturally, and we
expect that a substantial modification of our methods would be required in this
setting to account for appropriate formulations of transversality.

Proposition 4.8. The category of Kuranishi charts has a monoidal structure, given
by the natural product of Kuranishi charts, which assigns to a pair X = (X,V, s,G)
and X′ = (X ′, V ′, s′, G′) the chart

(4.1.4) X× X′ ≡ (X ×X ′, V ⊕ V ′, s⊕ s′, G×G′).

This product is naturally compatible with maps of Kuranishi charts, and the unit is
the chart (∗, {0}, s, {e}), where s is the unique map taking ∗ to 0.

Remark 4.9. It is straightforward to see that X × X′ is naturally isomorphic to
X′ × X, i.e., that the monoidal structure on the category of Kuranishi charts is in
fact symmetric. We shall never appeal to such symmetries in this paper, so we omit
the corresponding discussion.

Definition 4.10. We have a zero locus functor from the category of Kuranishi

charts to Chart∅O given by

(4.1.5) (X,V, s,G) 7→ (s−1(0), G).

Composing the zero locus functor with the quotient functor Chart∅O → Top given by
the assignment (Z,G) 7→ Z/G, we obtain the footprint functor from the category
of Kuranishi charts to Top given by

(4.1.6) (X,V, s,G) 7→ s−1(0)/G.

(Here we use the terminology introduced by McDuff and Wehrheim [MW17].)
The compatibility of boundaries with maps of Kuranishi charts yields an endo-

functor

(4.1.7) X 7→ ∂X = (∂X, V, s,G)

which assigns to a chart its boundary.

Remark 4.11. In applications, V is a choice of inhomogeneous data (obstruction
bundle) for a Cauchy-Riemann equation on a family of Riemann surfaces, and X is
an associated moduli space of maps from a Riemann surface with marked points sat-
isfying geometric constraints. The geometric setup allows for increasing the number
of marked points (with additional constraints), and enlarging the obstruction space.
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While enlarging the obstruction space from V0 to V1 yields a map of moduli spaces,
considering a setup where the moduli spaces X0 and X1 essentially differ only in
the number of marked points yields a correspondence X0 ← X → X1. In order
to arrive at the abstract setting we are considering, we shall use the fact that the
correspondence X is also a Kuranishi chart. This procedure explains some of the
combinatorial complexity in Part 3, which we have traded for the straightforward
functoriality of our notion of maps of Kuranishi charts.

4.1.2. Stratified orbispace presentations. Let S be a partially ordered set. The
following notion will be essential for the construction of this paper:

Definition 4.12. An 〈S〉-stratification of a topological spaceM is an assignment
of a closed subset ∂qM to each element q ∈ S, such that

(4.1.8) ∂qM∩ ∂rM = ∅
whenever q and r are not comparable.

A map f : M → B of 〈S〉-stratified spaces is a continuous map M → B such
that f(∂qM) ⊆ ∂qB.

The above notion leads to a stratification in the usual sense, with the stratum
∂QM associated to each subset Q of S being empty unless Q is totally ordered, in
which case we set

(4.1.9) ∂QM≡
⋂

q∈Q

∂qM.

When Q = ∅, we will interpret ∂QM to beM. It is clear that for a stratified map
f :M→ B we have an inclusion f(∂QM) ⊆ ∂QB for all Q.

In this setting, we shall find it convenient to define a notion of orbispace presen-
tation that involves choices of charts for each possible stratum:

Definition 4.13. The category ChartO〈S〉 of 〈S〉-stratified orbispace charts is the
category with

(1) objects the pairs (Z,G), where Z is an 〈S〉-stratified topological space, and
G a finite group acting on Z via stratification-preserving maps, and

(2) the morphisms are specified by a homomorphism p : G0 → G1 and a G0-
equivariant stratification-preserving map Z0 → p∗Z1.

Note that the case S = ∅ yields the category Chart∅O discussed in Section 2.3.1,
and that we have a functor

(4.1.10) ChartO〈S〉 → Chart∅O

which forgets the stratification.

Notation 4.14. Given a totally ordered subset Q of S, we obtain a new partially
ordered subset

(4.1.11) ∂QS ⊂ S
consisting of all elements of S that are comparable to every element of Q, but do
not lie in Q. We understand ∂∅S to be S.

This notation is chosen to make the following lemma hold.
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Lemma 4.15. IfM is an 〈S〉-stratified space, then the stratum ∂QM is naturally
a 〈∂QS〉-statified space. In addition, for Q′ ⊆ Q totally-ordered subsets of S, we
have

∂QS = ∂Q\Q′
(
∂Q′S

)
(4.1.12)

∂QM = ∂Q\Q′
(
∂Q′M

)
,(4.1.13)

respectively considered as subsets of S andM. In particular, whenM′ is a 〈∂Q′S〉-
stratified space, we can regard ∂Q\Q′M′ as a 〈∂QS〉-stratified space by restriction.

Proof. For q ∈ ∂QS, we set ∂q(∂QM) = ∂qM∩ ∂QM; the first assertion is clear.
For the second one, we note that an element of S is comparable to every element of
Q if and only if it is comparable to every element of Q′ and Q \Q′, which implies
the remaining statements. �

We now define the category of orbispace charts in this context.

Definition 4.16. The category ChartO of stratified orbispace charts is the category
whose objects are triples (S, Z,G), where S is a partially-ordered set, and (Z,G) is
an object of ChartO〈S〉.

A morphism (S, Z,G) to (S ′, Z ′, G′) is determined by an order-preserving iso-
morphism ρ : S ∼= ∂QS ′ for some totally ordered subset Q of S ′ and a morphism

(4.1.14) f : (Z,G)→ (∂QZ ′, G′),

in ChartO〈S〉, where we regard ∂QZ ′ as a 〈S〉-stratified space via ρ.
Given morphisms

(f, ρ) : (S, Z,G)→ (S ′, ∂QZ ′, G′)(4.1.15)

(g, ρ′) : (S ′, Z ′, G′)→ (S ′′, ∂Q′

Z ′′, G′′),(4.1.16)

the composite morphism (g ◦ f, ρ′ ◦ ρ) is specified as follows: we let

(4.1.17) Qg◦f = ρ′(Q) ∐Q′,

where by ρ′(Q) we abusively mean the composition Q → S ′ ∼= ∂Q′S ′′ → S ′′. Since

∂Q′S ′′ consists of elements of S ′′ which are comparable to all elements of Q′, the
union ρ′(Q) ∐ Q′ is totally ordered. Then the isomorphism S ∼= ∂ρ′(Q)∐Q′S ′′ is
determined by ρ and ρ′, and the map (Z,G) → (Z ′′, G′′) is the composite of of f
with the restriction of g.

The category of stratified orbispace charts inherits a monoidal structure from its
constituent components.

Proposition 4.17. The category ChartO has a monoidal structure, where the prod-
uct of (S, Z,G) and (S ′, Z ′, G′) is given by (S ∐ S ′, Z × Z ′, G × G′). The unit is
given by (∅, ∗, {e}).

In many of our geometric applications, the stratified orbispace charts we deal
with live in the simpler subcategory of ChartO where morphisms are determined
by actual equalities S = ∂QS ′.
Definition 4.18. The category ChartisoO is the subcategory of ChartO with the same
objects but where the morphisms are specified by identities S = ∂QS ′. For a given
S, the category ChartSO is the full subcategory of ChartisoO spanned by the objects
(∂QS, Z,G) as Q varies over the totally-ordered subsets of S.
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We can now define the notion of an orbispace presentation for a stratified space:

Definition 4.19. A stratified orbispace presentation of an 〈S〉-stratified space M
consists of

(1) A small category A, equipped with a functor (Z,G) : A→ ChartSO, and
(2) a continuous map

(4.1.18) colim
α∈A

Zα/Gα →M

which is a stratified homeomorphism of 〈S〉-stratified spaces, where the col-
imit is taken in the category of topological spaces, which is equipped with
the induced stratification.

We require that the restriction of the functor specified in the first condition to
the subcategory of A with image in the category of 〈∂QS〉-charts be an orbispace
presentation of ∂QM (note that the second condition requires that each object of A
maps to such a chart).

We remind the reader that the condition of being an orbispace presentation is a
condition of contractibility of the nerve of the subcategory of charts whose image
contain any given point of the underlying space. We can formulate this notion
in exactly the same way in the stratified context, using the forgetful functor from
Equation (4.1.10).

One should think of a stratified orbispace presentation of M as a collection of
orbispace presentations of all of the strata of M, functorially depending on the
choice of stratum.

4.1.3. 〈S〉-Kuranishi charts. Except for the fact that we allow partially ordered
sets more general than the natural numbers, and that we work with topological
manifolds rather than smooth ones, the following notion is essentially equivalent to
the notion considered by Jänich [Jän68]:

Definition 4.20. An 〈S〉-manifold is a manifold X with boundary, which is 〈S〉-
stratified in the sense of the previous section, such that each stratum ∂QX is a
manifold with boundary admitting a neighbourhood which is homeomorphic to

(4.1.19) ∂QX × (−∞, 0]Q,

via a homeomorphism that preserves strata.

To clarify the above definition, if P is a subset of Q, the intersection of ∂PX
with the image of the chart in Equation (4.1.19) is assumed to be the product of
∂QX × (−∞, 0]Q\P .

Definition 4.21. We denote by ChartK〈S〉 the category of 〈S〉-Kuranishi charts:
the objects X = (X,V, s,G) are as before, except that X is a 〈S〉-manifold, and the
G-action preserves the stratification. Morphisms are required to preserve the strata
and the witness to the topological submersion in Equation (4.1.3) is required to be
a stratified map.

The boundary functor of Kuranishi charts has a stratified analogue.

Lemma 4.22. Let S be a partially-ordered set and let Q ⊂ S be a totally ordered
subset. If X is an 〈S〉-manifold, then ∂QX is an 〈∂QS〉-manifold.
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Proof. If Q ⊂ P , then a neighbourhood of ∂PX in ∂QX is locally homeomorphic
to ∂PX × [0,∞)P\Q. �

If X admits an action of G that preserves the stratification, then ∂QX inherits
an action.

Definition 4.23. For each totally ordered subset Q ⊆ S, there is a functor

(4.1.20) ∂Q : ChartK〈S〉 → ChartK〈∂QS〉
specified by mapping X = (X,V, s,G) to

(4.1.21) ∂QX ≡ (∂QX,V, s|∂QX,G).

The monoidal structure on the category of Kuranishi charts corresponds, in the
stratified setting, to the existence of natural functors

(4.1.22) ChartK〈S1〉 × ChartK〈S2〉 → ChartK〈S1 ∐ S2〉
whenever S1 ∐ S2 is ordered in such a way that p1 < p2 whenever pi ∈ Si. This
makes the disjoint union of the categories ChartK〈S〉 into a monoidal category. In
Section 4.1.4 below, we shall consider a category of stratified charts with objects the
disjoint union of the categories ChartK〈S〉, but with some additional morphisms
corresponding to inclusions of boundary strata.

Remark 4.24. We note that a stratification was not assumed in Section 2.1, when
topological and orbispace flow categories were considered. In that context, the
stratification on each morphism space is induced by the structure maps. Thus, a
Kuranishi presentation of a morphism space in a flow category inherits a stratifi-
cation of its zero locus. We shall require a stratification of the thickening as well,
which justifies the introduction of the above notion.

4.1.4. Stratified Kuranishi charts. We now introduce the main category of Kuran-
ishi charts which we use:

Definition 4.25. The category of stratified Kuranishi charts, denoted ChartK, has

(1) objects consisting of a partially ordered set S and an object X of ChartK〈S〉,
and

(2) morphisms f from (S,X) to (S ′,X′) specified by an order-preserving iso-
morphism ρ : S → ∂QS ′ for a totally ordered subset Q of S ′ and a map
X → ∂QX′ of ChartK〈S〉 charts, where we regard ∂QX′ as a ChartK〈S〉
chart via ρ.

Composition of morphisms is defined as in Definition 4.16.

By construction, we have a fully faithful embedding ChartK〈S〉 ⊂ ChartK which
lands in the subcategory of morphisms where S = S′ (i.e. ρ is the identity map).
We have a functor

(4.1.23) ChartK×ChartK → ChartK

which assigns to each pair X1 ∈ ChartK〈S1〉 and X2 ∈ ChartK〈S2〉 the product
Kuranishi chart X1 × X2 ∈ ChartK〈S1 ∐ S2〉. On morphisms, we define the map

(4.1.24) f1 × f2 : X1 × X2 → ∂Q1∐Q2(X′
1 × X′

2)

using the isomorphism ∂Q1X′
1 × ∂Q2X′

2
∼= ∂Q1∐Q2(X′

1 × X′
2).

The functoriality and associativity of the above product are recorded in the
following lemma.
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Lemma 4.26. The product of Kuranishi charts equips ChartK with a monoidal
structure, with unit (∅, (∗, {0}, s, {e})). The zero-locus functor ChartK → ChartO
is strongly monoidal. �

We again often want to restrict attention to the subcategory of ChartK in which
the morphisms of partially ordered sets are isomorphisms.

Definition 4.27. The category ChartisoK is the subcategory of ChartK with the same
objects but where the morphisms are specified by identities S = ∂QS ′. For a given
S, the category ChartSK is the full subcategory of ChartisoK spanned by the objects
(∂QS,X) as Q varies over the totally-ordered subsets of S.

Notice that given an isomorphism S ∼= S ′, there is an induced isomorphism of
categories ChartK〈S〉 → ChartK〈S ′〉. In the context of Section 2, we are given a
partially ordered set P , equipped with an action of a group Π, and this induced
isomorphism yields:

Lemma 4.28. For π ∈ Π and a subset Q ⊂ P, there is a natural isomorphism of
categories

(4.1.25) απ : ChartK〈Q〉 → ChartK〈πQ〉.
This assignment is strictly associative since απ ◦ απ′ = αππ′ . �

Given an object X of ChartSK, we can produce an object of ChartK〈S〉 by col-
laring, i.e., attaching a cube κQ × ∂QX to X for each totally-ordered subset Q,
exactly as in Definition 2.9.

Lemma 4.29. There is a collar functor

(4.1.26) (−̂) : ChartSK → ChartK〈S〉.
�

We will use the collaring functor extensively in Section 5. In particular, we
will rely on the fact that the collaring functor is compatible with products in the
following sense.

Proposition 4.30. Let S1, S2, and S12 be partially ordered sets, and Q a totally
ordered subset of S12. An isomorphism S1∐S2 ∼= ∂QS12 determines a commutative
diagram:

(4.1.27)

ChartS1∐S2

K ChartS1

K ×ChartS2

K ChartS12

K

ChartK〈S1 ∐ S2〉 ChartK〈∂QS12〉 ChartK〈S12〉.
(−̂) (−̂)

∼= ∂Q

�

4.1.5. Kuranishi presentations. LetM be a compact Hausdorff space that is 〈S〉-
stratified, for S a partially ordered set.

Definition 4.31. A d-dimensional 〈S〉-Kuranishi presentation of M consists of
the following data:

(1) An indexing category A.

(2) A stratified orbispace presentation (∂Q•S•, Z•, G•) : A→ ChartSO ofM.
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(3) A lift X : A→ ChartSK → ChartSO of the orbispace presentation via the zero

locus functor that factors through the subcategory of ChartSK consisting of
charts of virtual dimension d− |Q•|.

Note that the value of the partially ordered set S• is in fact constant, and given by
S, because we imposed this condition in the definition of an orbispace presentation,
and the footprint functor preserves the datum of the partially ordered set.

Whenever S = ∅, we say that this is a closed Kuranishi presentation of M.
Whenever A is a singleton, we say that M is equipped with a global Kuranishi
chart. We shall often abuse notation and write X : A → ChartK for a Kuranishi
presentation, neglecting to write down the homeomorphism to M, and even the
stratification data; indeed, the space M and its 〈S〉-stratification are determined
by the functor X, as is it homeomorphic to the colimit of the footprints Zα/Gα over
all charts.

4.1.6. Kuranishi flow categories. We now return to the setting of Sections 2.1 and
2.3.2: P is a partially ordered set with a free action of Π. Additionally, we fix an
assignment of integers dp ∈ Z for each element p ∈ P , which is Π-equivariant in the
sense that

(4.1.28) dπ·p ≡ dp + 2deg π.

Remark 4.32. The reader familiar with Morse theory may want to keep in mind
that, in this context, the integer dp assigned to a critical point is the dimension of
the positive-definite subspace of the Hessian matrix.

We write P(p, q) for the partially ordered set of elements of P which are strictly
between p and q. Given a triple p < q < r, we have an equality

(4.1.29) P(p, q) ∐P(q, r) = ∂qP(p, r),
where ∂qP(p, r) denotes as above the complement of {q} in the subset of elements of
P(p, r) that are comparable to q. This observation plays a key role in the following,
which should be compared with Definition 2.45:

Definition 4.33. A Π-equivariant Kuranishi flow category X with objects P con-
sists of:

(1) A strictly Π-equivariant 2-category A, with object set P, and such that
A(p, p) = ∗, and A(p, q) is empty unless p ≤ q.

(2) A strict 2-functor X : A → ChartK, which assigns to A(p, q) a 〈P(p, q)〉-
Kuranishi presentation of dimension dp − dq − 1 (except if p = q, in which
case we require this presentation to have dimension 0, and to be a point),
and which is strictly Π-equivariant. (Here we are regarding ChartK as a
bicategory with a single object.)

Note the analogy with Definition 2.45, with the proviso that we now require X

to be a strict rather than a lax functor. In particular, the 2-functor A → ChartK
consists of a functor A(p, q) → ChartK for each pair (p, q), so that the following
diagram commutes

(4.1.30)

A(p, q)×A(q, r) A(p, r)

ChartK×ChartK ChartK .
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The equivariance of the functor in Definition 4.33 comes from the trivial Π-action on
ChartK, and the natural isomorphisms of Lemma 4.28 corresponding to relabelling
a 〈P(p, q)〉-Kuranishi presentation to obtain a 〈P(π · p, π · q)〉 presentation.

For later constructions, we shall also fix a Π-invariant assignment Vp ≡ (V +
p , V −

p )

of a pair of vector spaces for each element p ∈ P , so that V −
p is a complex vector

space, with the property that each orbit has an element p0 such that

(4.1.31) dimV +
p0
− dim V −

p0
= dp0 .

Remark 4.34. In Morse theory, V +
p is the positive eigenspace of the Hessian at the

critical point associated to p and we shall set V −
p to vanish, while in Floer theory

the stable vector space Vp represents the virtual index of an operator on a plane
with asymptotic ends associated to a Hamiltonian orbits.

4.2. Flag smooth Kuranishi presentations. The purpose of this subsection
and the next is to introduce the refinements of the notion of Kuranishi presenta-
tion that are required to construct virtual fundamental chains in Floer theory, with
coefficients in complex oriented cohomology theories. The reader who is mostly
interested in the formal aspects of the theory may want to postpone reading this
section until after Section 6.3, while the reader who is mostly interested in Hamil-
tonian Floer theory should probably first read Section 9 and refer to this section
while reading Section 10.

4.2.1. Fibered Kuranishi charts. We begin by considering the structure we are fac-
ing before any choice of smooth structure. Since all constructions require stratifi-
cations, we shall first fix a partially ordered set S. If X and B are 〈S〉-manifolds,
a stratified submersion

(4.2.1) X → B

is a stratified map which is locally homeomorphic to a projection

(4.2.2) Rn0+n1 × [0,∞)Q → Rn1 × [0,∞)Q,

in a neighbourhood of each point lying in ∂QX .

Definition 4.35. A fibered 〈S〉-Kuranishi chart is a triple (X, B, π), consisting
of an 〈S〉-Kuranishi chart, a G-equivariant 〈S〉-manifold B, and a G-equivariant
stratified topological submersion π : X → B.

We form a category of fibered stratified Kuranishi charts as follows.

Definition 4.36. The category of fibered 〈S〉-Kuranishi charts has objects as above
and a morphism f : α → β is given by a map of the corresponding Kuranishi
charts, and an equivariant topological stratified submersion Bα → Bβ, which fit in
a commutative diagram

(4.2.3)

Xα Xβ

Bα Bβ ,

such that the map Xβ → Bβ × Vβ/Vα is a topological submersion near the image
of Xα, and contains this image as an open subset. It is straightforward to define
composition as in the construction of the category of Kuranishi charts.
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Remark 4.37. The condition on morphisms should be thought of as a strengthening
of the transversality condition for Kuranishi charts: writing Xβ,p for the fibre
of Xβ over a point p in Bβ , we obtain a Kuranishi chart βp given by this total
space, an action of Gβ inherited from Xβ , and the projection to Vβ . Writing αp

for the corresponding Kuranishi chart obtained as the fibre of the composition
Xα → Bα → Bβ , the transversality in Diagram (4.2.3) is thus the assertion that
we have a map αp → βp of Kuranishi charts for each p ∈ Bβ .

4.2.2. Flag smooth structures. In the language of the previous section, a flag smooth
Kuranishi chart is a fibred Kuranishi space together with a choice of smooth struc-
ture on the base B and a fibrewise smooth structure on the topological submersion
X → B, in the following sense: we have a choice of atlas for X consisting of product
charts Rn × U → X over charts U → B, with transition functions which are con-
tinuously differentiable in the fibre direction (depending continuously on the base).
Before implementing this idea, we explain why a naive approach fails:

Remark 4.38. Assuming that the projections Xα → Bα and Xβ → Bβ in Diagram
(4.2.3) are both equipped with fibrewise smooth structures, one natural condition
to impose is that these two smooth structures be compatible in the sense that
the fibres of Xα → Bβ are also equipped with a smooth structure such that the
composition with the map to Bα is smooth. We could try to define a morphism to
be such a choice of smooth structure, but it is not clear how to define compositions
in this context. We believe that it might be possible to resolve this problem by
working in an ∞-categorical context (i.e., by introducing a space of compositions),
but we did not explore such a solution.

Our way to handle this issue is to record an additional projection to smooth
manifolds with maps going in the other direction:

Definition 4.39. The category of equivariant submersions of smooth 〈S〉-manifolds
has objects (G,B → B′) consisting of a finite group G, and a G-equivariant sub-
mersion B → B′ of 〈S〉-manifolds. A morphism (G0, B0 → B′

0)→ (G1, B1 → B′
1)

consists of a homomorphism G0 → G1, and a commutative diagram

(4.2.4)

B0 B1

B′
0 B′

1

of smooth G0-equivariant maps.

Note that it follows immediately that the arrow B0 → B1 is a submersion,
but that B′

1 → B′
0 need only be submersive along the image of the composition

B0 → B1 → B′
1.

Definition 4.40. A flag smooth 〈S〉-Kuranishi chart α consists of:

(1) an 〈S〉-Kuranishi chart Xα,
(2) a smooth Gα-equivariant submersion of 〈S〉-manifolds Bα → B′

α.
(3) a Gα-equivariant stratified topological submersion Xα → Bα, and
(4) a Gα-invariant fiberwise smooth structure on the composition Xα → B′

α.

We require these data to be compatible in the following sense:

(1) The restriction of the map sα : Xα → Vα to a fiber of Xα → B′
α is smooth

near Zα, and
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(2) the restriction of the map Xα → Bα to a fiber of Xα → B′
α is a smooth

submersion near Zα onto the corresponding fiber of the map Bα → B′
α.

We define a category of flag smooth charts as follows.

Definition 4.41. The category ChartfsK 〈S〉 of flag smooth 〈S〉-Kuranishi charts
has objects charts as in Definition 4.40. A morphism from α to β consists of a map
f of Kuranishi charts as before and a commutative diagram of stratified maps

(4.2.5)

Xα Bα B′
α

Xβ Bβ B′
β

f

in which each arrow labelled ։ is an equivariant smooth submersion, and such that,
for each p ∈ Bβ, the map

(4.2.6) Xβ,p → Vβ/Vα

is a smooth submersion near the image of Xα,p. We shall impose an additional
condition as follows. The fibres of Xα → B′

β acquire smooth structures in two
different ways:

(1) from their inclusions in the fibres of Xα → B′
α and the fact that Xα → Bα

is smooth on fibres, and
(2) from the inclusion of their free quotients in the fibres of Xβ → B′

β and the

fact that these fibres submerse to Vβ/Vα.

We requires that these two smooth structures agree.

We define composition in terms of the composition of morphisms of Kuranishi
charts, as well as the two right squares in the following diagram:

(4.2.7)

Xα Bα B′
α

Xβ Bβ B′
β

Xγ Bγ B′
γ .

Lemma 4.42. The morphisms in ChartfsK 〈S〉 are closed under composition.

Proof. The key point to check is that the two induced smooth structures on the
fibres of the map Xα → B′

γ agree. Denoting by Xα,p′ such a fibre for p′ ∈ B′
γ , this

follows by considering the following diagram

(4.2.8)

Xα,πα(p′) Xα,p′ Xγ,p′

Xα,πβ(p′) Xβ,πβ(p′) Xβ,p′ .

�
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4.2.3. Flag smooth Kuranishi flow categories. To proceed further, we combine the
categories associated to different choices of partially-ordered sets labelling strata
into a single category, taking Definition 4.25 as our model:

Definition 4.43. The category of equivariant submersions of stratified manifolds
is the category with

(1) Objects given by (S, G,B → B′), with S a partially ordered set, and (G,B →
B′) an object of the category of smooth equivariant submersions of 〈S〉-
manifolds.

(2) Morphisms f : (S0, G0, B0 → B′
0) → (S1, G1, B1 → B′

1) specified by an
order-preserving isomorphism ρ : S0 ∼= ∂QS1 for some totally ordered subset
Q of S1 and a map

(4.2.9) (G0, B0 → B′
0)→ (G1, ∂

QB1 → ∂QB′
1)

of equivariant submersions of 〈S0〉-manifolds, where we regard ∂QB1 and
∂QB′

1 as 〈S0〉-manifolds via ρ.

Composition is defined as in Definition 4.25. This category is monoidal with the
evident structure maps.

We may proceed in exactly the same way to pass to Kuranishi charts:

Definition 4.44. The category ChartfsK of stratified flag smooth Kuranishi charts

has objects (S, α) consisting of a partially ordered set S and an object α of ChartfsK 〈S〉.
A morphism f : (S0, α0) → (S1, α1) consists of a morphism in ChartK, and a lift

of the corresponding morphism in ChartK〈S0〉 to ChartfsK 〈S0〉.
The following lemma helps make sense of the above definition.

Lemma 4.45. The compatibility of the flag smooth structure with the stratification
yields a lift of the restriction functor

(4.2.10) ChartK〈S〉 → ChartK〈∂QS〉
associated to a totally ordered subset Q of S to a functor

(4.2.11) ChartfsK 〈S〉 → ChartfsK 〈∂QS〉.
In particular and as before, there are no morphisms from (S0, α0) to (S1, α1)

unless S0 ∼= ∂QS1 for some Q. We will again sometimes want to restrict to subcat-
egories where this isomorphism is in fact the identity:

Definition 4.46. The subcategory Chartfs,isoK consists of those morphisms for

which the isomorphism S0 ∼= ∂QS1 is the identity. The full subcategory Chartfs,SK ⊂
Chartfs,isoK is spanned by the objects of the form ∂QS as Q varies over the totally-
ordered subsets of S.

There is a natural product functor

(4.2.12) ChartfsK 〈S1〉 × ChartfsK 〈S2〉 → ChartfsK 〈S1 × S2〉
lifting the corresponding functor for Kuranishi spaces. Explicitly, given flag smooth
charts α1 and α2, we define the product α1×α2 to have underlying Kuranishi chart
given by the product X1×X2 and use the submersion of smooth 〈S1∐S2〉-manifolds

(4.2.13) Bα1×α2 ≡ Bα1 ×Bα2 → B′
α1
×B′

α2
≡ B′

α1×α2
.
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There is an induced projection

(4.2.14) Xα1×α2 → B′
α1×α2

,

and the product induces a fibrewise smooth structure over B′
α1×α2

. Verifying the
remaining properties is straightforward, as is the functoriality of this construction.

The above product functor is naturally coherently associative, and is compatible

with maps in ChartfsK , so we conclude:

Lemma 4.47. The product of flag smooth charts defines a monoidal structure on

ChartfsK , for which the forgetful functor to ChartK is strictly monoidal. �

We now lift the notion of flow categories to the flag smooth setting.

Definition 4.48. A Π-equivariant flag smooth Kuranishi flow category with object
set P is a Kuranishi flow category equipped with compatible lifts of all diagrams from

ChartK to ChartfsK .

Note that unpacking this definition involves the categories Chartfs,SK from Defi-
nition 4.46.

4.3. Complex-oriented Kuranishi charts. We continue the development of an
abstract framework for formulating the notion of (stable) complex orientations of
Kuranishi charts and presentations. We begin by considering a refinement of the
notion of a flag smooth chart, which is equipped with a canonical tangent space,
and then discuss the data required to fix a stable isomorphism between this tangent
space and a complex vector bundle. We note that, throughout this section, we only
explicitly use the projection map Xα → Bα, and the map Bα → B′

α will play no
role in our construction.

4.3.1. Charts with tangent bundles. We may assign to each flag smooth chart α a
vector bundle on Xα given by the direct sum of TBα and the fibrewise tangent
bundle TαXα (see Section 6.3 below for an extended discussion). Our goal is to
compare these tangent bundles for the source and target of maps of flag smooth
charts. The key result of this section is Lemma 4.51.

We start by associating to a partially ordered set S a category ChartTK〈S〉 of 〈S〉-
Kuranishi charts with tangent bundles: this is an internal category in spaces, i.e.,
a category which is equipped with a topological space of objects and a topological
space of morphisms (see Appendix A.6 for a quick summary of the definition and
properties of internal categories):

Definition 4.49. An object of ChartTK〈S〉 consists of

(1) an object α of ChartfsK 〈S〉,
(2) an open Gα-invariant subspace Zori

α of Zα,
(3) inner products on TαXα and TBα (as vector bundles on Zα and Bα),

which are Gα-invariant and are compatible with the stratification in the
sense that the restriction of TBα to the stratum labelled by Q ⊂ S splits
as an othogonal direct sum of T∂QBα with the direction normal to each
codimension 1 boundary stratum ∂qBα for q ∈ Q:

(4.3.1) TBα
∼= RQ ⊕ T∂QBα.
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The topology on the space of inner products on a fixed vector space determines the
topology on the space of objects.

A morphism in ChartTK〈S〉 from a lift of a flag smooth Kuranishi chart α to a

lift of β consists of a morphism f in ChartfsK 〈S〉 from α to β mapping Zori
α to Zori

β ,
such that the short exact sequences

0→ T βBα →TBα → TBβ → 0(4.3.2)

0→ TαXα →T βXβ → V ⊥
f ⊕ T βBα → 0(4.3.3)

induce the same inner product on V ⊥
f ⊕ T βBα (as a vector bundle on Zori

α ). The
topology on the space of morphisms is given by pulling back the subspace topology
on the product of the spaces of objects associated to the source and the target.

To be more explicit about the space of morphisms, we require that TBα → TBβ

be an orthogonal projection (with kernel that we denote T βBα), and that TαXα →
T βXβ be an isometric embedding. Recall that the map Vα → Vβ is an isometric
embedding, which equips V ⊥

f with an inner product. The definition of a morphism

of flag smooth charts implies that the cokernel of TαXα → T βXα is identified with
the direct sum V ⊥

f ⊕ T βBα, and we require that the inner product induced from

its description as a quotient splits as a direct sum of the inner product on V ⊥
f with

the restriction of the inner product on TBα to T βBα.
Note that the space of morphisms can be alternatively described as a subspace of

the space Gα-equivariant inner products on T βXβ , TBα, and TBβ (the last datum
is required because the map Bα → Bβ is not in general surjective). Equipping it
with the induced topology, the natural map from the space of morphisms lifting f
to the spaces of objects lifting α and β is continuous; i.e., the source and target
maps are continuous. The next result asserts that composition is continuous and
well-defined:

Lemma 4.50. Given lifts of composable arrows f : α → β and g : β → γ to
ChartTK〈S〉 whose restrictions to the space of lifts of β agree, the inner products on
T γXγ and TBα induce the same inner product on V ⊥

f◦g ⊕ T γBα.

Proof. Since the two inner products on TBβ associated to f and g agree, the
restriction to the subspace T γBα of the inner product on TBα associated to f
splits as a direct sum T βBα ⊕ T γBβ, with the two summands equipped with the
inner products associated to the lifts of morphisms f and g. Similarly, the inner
product on T γXγ induces an inner product on its quotient by TαXα which splits
as an orthogonal direct sum of V ⊥

f ⊕T βBα and V ⊥
g ⊕T γBβ. The result follows by

collecting factors. �

For the next result, we write TXα for the direct sum TαXα ⊕ TBα.

Lemma 4.51. Each morphism in ChartTK〈S〉 lifting an arrow f induces an iso-
morphism

(4.3.4) TXα ⊕ V ⊥
f
∼= TXβ
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of equivariant vector bundles over Zori
α . A lift of composable arrows f and g induces

a commutative diagram

(4.3.5)

TXα ⊕ V ⊥
f ⊕ V ⊥

g TXβ ⊕ V ⊥
g

TXα ⊕ V ⊥
g◦f TXγ.

Proof. Using the orthogonal decomposition associated to an inner product, the
datum of a morphism in ChartTK〈S〉 induces isomorphisms

T βXβ
∼= TαXα ⊕ T βBα ⊕ V ⊥

f(4.3.6)

TBα
∼= TBβ ⊕ T βBα.(4.3.7)

Combining these two isomorphisms, we obtain

TXβ
∼= T βXβ ⊕ TBβ(4.3.8)

∼= TαXα ⊕ T βBα ⊕ TBβ ⊕ V ⊥
f(4.3.9)

∼= TαXα ⊕ TBα ⊕ V ⊥
f ≡ TXα ⊕ V ⊥

f .(4.3.10)

The compatibility with compositions is straightforward. �

In the remainder of this section, we discuss the multiplicativity of these con-
structions. As before, the starting point is the construction of a category ChartTK
with objects consisting of the union of the categories ChartTK〈S〉 as S varies.

Definition 4.52. The category of Kuranishi spaces with tangent spaces is the
internal category ChartTK in topological spaces with

(1) space of objects given by the union of the object spaces of ChartTK〈S〉 as S
varies over all partially-ordered sets, equipped with the topology as a disjoint
union, and

(2) space of morphisms specified by the stipulation that a morphism between

lifts of objects in ChartfsK 〈S0〉 and ChartfsK 〈S1〉 consists of a morphism f

in ChartK and a lift of the induced arrow in ChartfsK 〈S0〉 to ChartTK〈S0〉.
The key point, as in Section 4.2.3, is the restriction functor

(4.3.11) ChartTK〈S〉 → ChartTK〈∂QS〉
induced by the compatibility of inner products with stratifications. Note that
restriction induces canonical isomorphisms

TαX ∼= Tα∂QX(4.3.12)

TBα
∼= RQ ⊕ T∂QBα,(4.3.13)

where the second relies on the choice of inner product. Taking the direct sum, we
conclude:

Lemma 4.53. The restriction functor in Equation (4.3.11) induces an isomor-
phism

(4.3.14) TXα
∼= RQ ⊕ T∂QXα.

�
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We have a natural product map

(4.3.15) ChartTK〈S1〉 × ChartTK〈S2〉 → ChartTK〈S1 × S2〉,
lifting the product in Equation (4.2.12) by taking the direct sum of the inner prod-
ucts on the (fibrewise) tangent spaces. The naturality and continuity of this con-
struction is summarised as follows:

Lemma 4.54. The product of Kuranishi charts with tangent spaces defines a
monoidal structure on ChartTK, for which the forgetful functor to ChartK is strictly
monoidal. �

We again will consider the restricted subcategories of ChartTK relative to a fixed
partially-ordered subset S, as in Definition 4.27 and 4.46.

Definition 4.55. The subcategory ChartT,iso
K consists of those morphisms for which

the isomorphism S0 ∼= ∂QS1 is the identity, and the full subcategories ChartT,S
K ⊂

ChartT,iso
K are spanned by the objects of the form ∂QS as Q varies over the totally-

ordered subsets of S.
Returning to the context of Definition 4.48, we have the following lift:

Definition 4.56. A Kuranishi flow category with tangent bundles consists of a

flag smooth Kuranishi presentation X : A → ChartfsK , a Π-equivariant topological

2-category AT over A, and a commutative diagram

(4.3.16)

AT ChartTK

A ChartfsK .

We require that:

(1) the spaces of objects and of morphisms of AT lifting each object and each
morphism in A be contractible,

(2) that the target maps from morphisms to objects in AT be a fibration,
(3) and that the induced functor from A to ChartO given by Zori be a stratified

orbispace presentation.

As described in Appendix A.6, a topological bicategory is a bicategory where
the categories of morphisms are internal categories in spaces. A Π-equivariant
topological bicategory is defined completely analogously as in the non-enriched
setting, requiring that the relevant action maps are given by internal functors.
Note also that for each category of morphisms, the fact that the target of the
functor AT(p, q)→ A(p, q) is discrete means that the induced maps on objects and
morphisms are locally constant.

4.3.2. Categories of Kuranishi charts with relative orientations. The constructions
of the previous sections lead to a well-defined and functorial notion of Kuranishi
charts equipped with tangent spaces. In this section, we introduce a notion of stable
almost complex structure for such tangent spaces. More precisely, the situation we
shall encounter when studying Floer theory in Section 11 is that of (relative) stable
complex structures (see Appendix B for some basic theory of relative orientations)

To this end, we consider a pair V0 = (V +
0 , V −

0 ) and V1 = (V +
0 , V −

1 ) of stable
vector spaces, with complex structures on V −

0 and V −
1 .
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Definition 4.57. The category ChartoriK (V0, V1) of Kuranishi charts equipped with
stable complex structures relative V0 and V1, is the internal category in spaces with
objects consisting of

(1) an object α of ChartTK,
(2) a complex Gα-equivariant vector bundle IC

α over Zori
α ,

(3) a complex Gα-representation W ,
(4) a finite set Oα, and
(5) a Gα-equivariant isomorphism

(4.3.17) V +
1 ⊕ ROα ⊕Wα ⊕ TXα ⊕ V −

0
∼= V −

1 ⊕ IC

α ⊕Wα ⊕ V +
0

of vector bundles over Zori
α .

The topology on the space of objects is given by the topology on the space of such
isomorphisms (and the topology on objects of ChartTK).

A morphism in ChartoriK (V0, V1) consists of

(1) a morphism f : α → β in ChartTK (recall that this entails a choice of a
totally ordered subset Qf of Sβ),

(2) a bijection Oα
∼= Oβ ∐Qf ,

(3) an isomorphism

(4.3.18) IC

β
∼= IC

α ⊕ V ⊥
f

of vector bundles on Zα, and
(4) a Gα-equivariant embedding Wα →Wβ, whose quotient we denote W

⊥
f such

that the following diagram commutes:

(4.3.19)

W⊥
f ⊕ V ⊥

f ⊕
V +
1 ⊕ ROα ⊕ TXα ⊕Wα ⊕ V −

0

W⊥
f ⊕ V ⊥

f ⊕
V −
1 ⊕ IC

α ⊕Wα ⊕ V +
0

V +
1 ⊕ ROβ ⊕Wβ ⊕ TXβ ⊕ V −

0 V −
1 ⊕ IC

β ⊕Wβ ⊕ V +
0 ,

where we use the isomorphism V ⊥
f ⊕ TXα

∼= RQf ⊕ TXβ obtained by com-
bining Lemma 4.51 and Lemma 4.53.

We topologise the space of morphisms by taking the product of the topology
of morphisms in ChartTK with the topology on the space of splittings in Equation
(4.3.18) and the topology on the space of objects.

We define ChartoriK 〈S〉(V0, V1) to be the subcategory of objects lifting ChartTK〈S〉.
This is the essential case to consider, and the general case is only included to
facilitate the discussion of products in Section 4.3.3 below.

4.3.3. The bicategory of Kuranishi charts with complex structures. We now study
the multiplicativity of the construction. We begin by constructing a bicategory
with 1-cells given by the categories from Section 4.3.2.

The key construction is the following:

Definition 4.58. There is a functor

(4.3.20) ChartoriK (V0, V1)× ChartoriK (V1, V2)→ ChartoriK (V0, V2)

which assigns to a pair α ∈ ChartoriK (V0, V1) and β ∈ ChartoriK (V1, V2) a product

α× β ∈ ChartoriK (V0, V2) given by
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(1) the product of the underlying objects in ChartTK,
(2) the union Oα×β ≡ Oα ∐Oβ ,
(3) the product vector bundle IC

α×β ≡ IC
α × IC

β over Zori
α×β,

(4) the Gα×β complex representation

(4.3.21) Wα×β ≡Wα ⊕ V −
1 ⊕Wβ ,

(5) and the composite isomorphism

V +
2 ⊕ ROα×β ⊕Wα×β ⊕ TXα×β ⊕ V −

0(4.3.22)

∼= V +
2 ⊕Wβ ⊕ TXβ ⊕ ROβ(4.3.23)

⊕ V −
1 ⊕ ROα ⊕Wα ⊕ TXα ⊕ V −

0(4.3.24)

∼= V −
2 ⊕Wβ ⊕ IC

β ⊕ V +
1 ⊕Wα ⊕ TXα ⊕ ROα ⊕ V +

0(4.3.25)

∼= V −
2 ⊕Wβ ⊕ IC

β ⊕ V −
1 ⊕Wα ⊕ IC

α ⊕ V +
0(4.3.26)

∼= V −
2 ⊕Wα×β ⊕ IC

α×β ⊕ V +
0 .(4.3.27)

Since the only operations used in the construction of the product are disjoint
unions of sets, direct sum of vector spaces, and products of topological spaces, we
can immediately deduce the following lemma.

Lemma 4.59. There are natural homeomorphism between the composites

(4.3.28)

ChartoriK (V0, V1)× ChartoriK (V1, V2)

×ChartoriK (V2, V3)

ChartoriK (V0, V2)

×ChartoriK (V2, V3)

ChartoriK (V0, V1)× ChartoriK (V1, V3) ChartoriK (V0, V3),

and these associativity diagrams are coherent. �

The above discussion allows us to construct a bicategory as follows:

Definition 4.60. The topological bicategory ChartoriK of Kuranishi charts with
relative orientations has 0-cells given by pairs V = (V +, V −) consisting of a real
vector space V + and a complex vector space V −, 1-cells given by the categories
ChartoriK (V0, V1) and composition of 1-cells given by Equation (4.3.20).

We now have all the structural results required to define the key notion of this
paper.

Definition 4.61. A complex oriented Kuranishi flow category consists of a Ku-
ranishi flow category X : A → ChartK together with a Π-equivariant topological
2-category Aori with 0-cells P, equipped with a strictly Π-equivariant 2-functor
Aori → A and a strictly Π-equivariant 2-functor Aori → ChartoriK . Here we use
the natural isomorphisms of Lemma 4.28 and the assignment described in Equa-
tion (4.1.31) to express the compatibility with the Π-action.

We require that:
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(1) the diagram

(4.3.29)

Aori A

ChartoriK ChartK

commutes,
(2) the 2-functor Aori → A induces an acyclic fibration of nerves for each

Aori(p, q)→ A(p, q),
(3) and the functors A(p, q)→ ChartO induced by Zori are stratified orbispace

presentations.

5. The virtual cochains of Kuranishi presentations

5.1. The virtual cochains of a Kuranishi chart. In this section, we introduce
our second model for cochains, whose existence depends on a choice of Kuranishi
presentation.

Notation 5.1. We will use the notational convention that for a pair of spaces A ⊆ B,
the symbol B|A denotes the homotopy cofiber (mapping cone) usually denoted
C(B,B \ A). Explicitly, this is the union B ∪ C(B \ A), where the basepoint of
C(B \A) is given by the cone point 1. If A is a based space, with basepoint disjoint
from B, we use the same notation for the cofiber in the category of based spaces,
i.e. we collapse the cone on the basepoint. Note that the homotopy cofiber is a
functor of pairs.

Associated to each 〈S〉-Kuranishi chart X is the homotopy cofiber X |Z of the
inclusion of the complement of the zero-locus Z = s−1(0) into the domain X of
the chart. Because the section s : X → V is G-equivariant, X |Z is a G-space with
basepoint given by the cone point. Applying the Borel construction and appro-
priate shifts, we have the following definition, where we adopt Pardon’s terminol-
ogy [Par16].

Definition 5.2. The spectrum of virtual cochains of a Kuranishi chart is the Borel
construction

(5.1.1) BX |Z−V ≡ C∗(EG;F (SV , (X |Z)mfib))G = EG+ ∧G F (SV , (X |Z)mfib)

where here (−)mfib denotes the monoidal fibrant replacement functor (see Defini-
tion A.47) in the category of orthogonal G-spectra on the trivial universe.

Remark 5.3. Although it might appear that we would want to use the fibrant
replacement functor on the complete universe, since we are considering the Borel
homotopy type of F (SV , (X |Z)mfib) it suffices to work over the trivial universe.

Another way of thinking of the spectrum of virtual cochains is to view it as the
“total spectrum” of a fiberwise spectrum over BG with fiber the desuspension of
X |Z by V .

It is convenient to break up the construction of virtual cochains into two steps:
the first step associates to a Kuranishi chart X the triple (X |Z, V,G). The second
step is the Borel functor from such triples to spectra. The essential problem is
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that the first step is not functorial: a map f : α→ β of Kuranishi charts does not
canonically induce a map

(5.1.2) V ⊥
f ×Xα|Zα → Xβ|Zβ ,

though such a map arises from a choice of splitting of the normal bundle of the
image of Xα in Xβ (appropriately interpreted, since the underlying manifolds and
maps need not be smooth). Fixing such a choice, we would obtain a canonical map

(5.1.3) V ⊥
f |0 ∧Xα|Zα → Xβ |Zβ ,

but the desired map of desuspensions would require a comparison between V ⊥
f |0

and the standard sphere SV ⊥
f . Keeping track of the equivariance, coherence, and

multiplicativity of such choices of map is technically demanding. Instead, our so-
lution will produce a zig-zag, obtained from Pardon’s degeneration to the normal
cone.

5.2. Degeneration along an interval. Our goal in this section is to associate to
an arrow f : α → β of Kuranishi charts in ChartK〈S〉 a canonical map of virtual
cochains in the homotopy category, which is realised by a zig-zag of maps that are
defined independently of any choices. To simplify our discussion, we shall assume,
as discussed in Remark 4.5, that the map Gα → Gβ is a surjection. This implies
that Vα and hence V ⊥

f andXf = Xα×Gα
Gβ areGβ-spaces. In particular, the direct

sum decomposition Vα ⊕ V ⊥
f
∼= Vβ and the inclusion Xf ⊂ Xβ are Gβ-equivariant.

Consider the set of triples

(5.2.1) {(t, x, v) ⊂ [0, 1]×Xβ × Vβ | sβ(x) = tπf (v)},
where πf is the projection from Vβ to its subspace Vβ/Vα = V ⊥

f . The transversality
assumption for maps of Kuranishi charts implies that the fiber over t = 0 contains
the product Xf × V ⊥

f as an open subset.

Definition 5.4. The degeneration to the normal cone of f , denoted Xα,β, is the
space obtained from Equation (5.2.1) by removing the complement of Xf ×V ⊥

f from
the fibre over 0.

Note that the projection induces a map Xα,β → [0, 1], such that the fiber at 0 is
canonically identified with Xf × V ⊥

f , and the fiber away from 0 with Xβ .

Remark 5.5. If we drop the assumption that Gα → Gβ is a surjection, then V ⊥
f fails

to be a Gβ representation, but the construction above can be replaced by observing
that (Xα × V ⊥

f )×Gα
Gβ is naturally a Gβ-equivariant vector bundle over Xf . The

surjectivity assumption thus allows us to avoid considering general vector bundles
in our notions of morphisms of Kuranishi charts.

For the next result, we write 1 for the partially ordered set 0 < 1.

Lemma 5.6. The Gβ action on Xβ extends naturally to Xα,β in such a way that
the projection map sα,β : Xα,β → Vβ is Gβ-equivariant. The quadruple Xα,β ≡
(Xα,β, Vβ , sβ , Gβ) is a 〈S × 1〉-Kuranishi chart, equipped with natural maps

(5.2.2) (Xα × V ⊥
f ,S)→ (Xα,β ,S × 1)← (Xβ ,S)

of stratified Kuranishi charts, where the required isomorphisms of partially ordered
sets are given by the evident identifications

(5.2.3) S × {0} ∼= ∂S×{0}(S × 1) and S × {1} ∼= ∂S×{1}(S × 1).
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Proof. The projection Xβ → V ⊥
f is locally trivial near each point in Xα/G

⊥
f by

assumption. This implies that the map Xα,β → V ⊥
f is locally modelled, near each

point in Xf , after the product of Xf with the subset of [0, 1] × V ⊥
f × Vβ given

by elements (t, u, v) such that u = tv. We may trivialise the second factor as
[0, 1] × V ⊥

f , which implies that Xα,β is a manifold. We conclude that Xα,β is a
stratified Kuranishi chart, and the existence of the desired maps associated to the
boundary of the interval follow by inspection. �

In particular, we obtain the Gβ-space Zα,β as the inverse image of 0 under sα,β.
We also denote by Zf the quotient of Zα by G⊥

f .

Remark 5.7. An alternative point of view on the degeneration to the normal cone
is that the map Xα,β → [0, 1] is a (topological) submersion whose fibre is an 〈S〉-
Kuranishi chart. One could thus formulate a notion of Kuranishi charts over a
base. Since the only such charts we encounter arise from explicit constructions, the
additional formalism would just complicate matters.

Lemma 5.6 induces a zig-zag

(5.2.4) V ⊥
f |0 ∧Xα|Zα → Xα,β|Zα,β ← Xβ|Zβ ,

which suggests using Vα|0 as a model for the sphere. However, the fact that the
natural map

(5.2.5) Vα|0 ∧ V ⊥
f |0→ Vβ |0

fails to be a homeomorphism leads us to prefer using the standard sphere SVα .

We thus enlarge Xα,β to admit an embedding of the product of Xf × SV ⊥
f , by

considering its closure X̄α,β under the inclusion

(5.2.6) [0, 1]×Xβ × Vβ ⊂ ([0, 1]×Xβ)+ ∧ SVβ

where we recall that SVβ is the 1-point compactification of Vβ with basepoint at
infinity.

The map sα,β extends to a map

(5.2.7) X̄α,β → SVβ ,

given by the composition

(5.2.8) Xα,β → ([0, 1]×Xβ)+ ∧ SVβ → SVβ .

At this stage, we note that we have a natural inclusion

(5.2.9) Xf |Zf ∧ SV ⊥
f →

(
(Xf )+ ∧ SV ⊥

f

)
|Zf

as can be seen via the identification

(5.2.10) Xf |Zf ∧ SV ⊥
f ∼= C((Xf )+ ∧ SV ⊥

f , (Xf \ Zf )+ ∧ SV ⊥
f ),

with the cofiber taken in the category of based spaces, and using the inclusion

(5.2.11) (Xf \ Zf )+ ∧ SV ⊥
f ⊂ ((Xf )+ ∧ SV ⊥

f ) \ (Zf × {0}) .
The natural embeddings:

(5.2.12) (Xf )+ ∧ SV ⊥
f → X̄α,β ← Xβ

which are respectively over the endpoints 0 and 1, thus induce maps of Gβ-spaces:

(5.2.13) SV ⊥
f ∧Xf |Zf → X̄α,β |Zα,β ← Xβ |Zβ.
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Composing further with the map induced by projection from Xα to Xf yields

(5.2.14) SV ⊥
f ∧Xα|Zα → X̄α,β |Zα,β ← Xβ |Zβ .

Lemma 5.8. The map Xβ |Zβ → X̄α,β |Zα,β is a Gβ-equivariant homotopy equiva-
lence.

Proof. This map factors through the inclusion Xα,β |Zα,β ⊂ X̄α,β|Zα,β , which is a
homotopy equivalence because the inclusion V |0 ⊂ SV |0 is a homotopy equivalence.
The inclusion of the interior of a manifold with boundary is a homotopy equivalence,
and the interior of Xα,β is the product of Xβ with an interval. �

Desuspending by Vβ , we obtain a diagram of Gβ-spectra:

(5.2.15) F (SVα , (Xf |Zf )
mfib)→ F (SVβ , (X̄α,β |Zα,β)

mfib)← F (SVβ , (Xβ |Zβ)
mfib).

where the first map is obtained by decomposing SVβ as SVα ∧ SV ⊥
f , and applying

the identity on the SV ⊥
f factor.

Applying the (desuspended) Borel construction, we obtain a diagram of non-
equivariant spectra

(5.2.16) BXα|Z−Vα
α → BX̄α,β |Z−Vβ

α,β ← BXβ|Z−Vβ

β

with the property that the left-pointing arrow is an equivalence.
At this stage, we note that, since there is a Gβ-homeomorphism Xf |Zf

∼=
Xα|Zα ⋉Gα

Gβ , the fact that the G⊥
f action on Xα|Zα is free implies the following

corollary of Lemma A.22:

Lemma 5.9. The projection from Xα|Zα to Xf |Zf induces a natural equivalence

(5.2.17) BXα|Z−Vα
α
∼= BXf |Z−Vα

f .

�

5.3. Simplicial degeneration to the normal cone. While our ultimate goal
will be to construct a degeneration to the normal cone for cubical diagrams in
ChartK〈S〉, we begin by considering the simplicial case. Let ∆ChartK〈S〉 denote
the category of simplices of ChartK〈S〉, i.e., objects are functors n → ChartK〈S〉,
where n is the ordered set (0, . . . , n) and morphisms are commutative diagrams.

We assign to each simplex σ : n → ChartK〈S〉 an 〈S × n〉-Kuranishi chart as
follows: define

Vσ ≡ Vσ(n)(5.3.1)

Gσ ≡ Gσ(n),(5.3.2)

and consider the submanifold

(5.3.3) Xσ ⊂ ∆n ×Xσ(n) × Vσ(n)

consisting of elements (t0, . . . , tn, x, v) with
∑

ti = 1, such that the following two
conditions hold:

(1) The projection of x to Vσ satisfies

(5.3.4) sσ(n)(x) =
n∑

i=0

Ti · πiv,

where πi is the projection from Vσ(n) to the orthogonal complement of Vσ(i)

in Vσ(i+1), and Ti =
∑

i≤j tj .
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(2) Whenever t lies the image of ∆m → ∆n, for a map ι : m → n, then x lies
in the image of Xσ(ι(m)) in Xσ(n).

The action of Gσ on Xσ(n)×Vσ(n) yields an action on Xσ, for which the projection
map sσ to Vσ is equivariant. As in Lemma 5.6, the quadruple (Xσ, Vσ, sσ, Gσ) is
an 〈S × k〉-Kuranishi chart.

We now consider the partial compactification

(5.3.5) Xσ ⊂ X̄σ

obtained as the closure of Xσ in
(
∆n ×Xσ(n)

)
+
∧ SVσ(n) . The group Gσ acts on

X̄σ, and we have a natural inclusion Zσ ≡ s−1
σ (0) ⊂ X̄σ, given as the inverse image

of the origin in SVσ . It is useful to give a slightly more formal definition at this
stage:

Lemma 5.10. There is a natural pushout diagram of based spaces

(5.3.6)

∐

ρ
g
→τ

f
→σ

(Xf◦g × V ⊥
g )+ ∧ SV ⊥

f

∐

ρ
f◦g
→ σ

(Xf◦g)+ ∧ SV ⊥
f◦g

∐

τ
f
→σ

(Xf )+ ∧ SV ⊥
f X̄σ,

where the coproducts are taken over injective maps. �

Given a map f : τ → σ of simplices in ChartK〈S〉, we write Xf for the image of
Xτ in Xσ. We write f as well for the corresponding map ∆τ → ∆σ of simplices,
and ∆f for its image. Let V ⊥

f denote the orthogonal complement of Vτ in Vσ.

Lemma 5.11. The fiber of Xσ over the interior of ∆f projects homeomorphically
to the product of V ⊥

f with Xf . The closure of this fiber is homeomorphic to V ⊥
f ∧X̄f .

Proof. In the expression
∑

Tiπiv defining Xσ, all coefficients Ti vanish along ∆f

for integers i which larger than the label of each vertex in the image of f , while
all other coefficients are either non-zero, or agree with the corresponding coefficient
defining Xf . This implies that the fiber of Xσ over ∆f splits as the product of V ⊥

f

with Xf . �

Corollary 5.12. If the image of f contains the maximal vertex of ∆σ, the induced
map

(5.3.7) Xf → Xσ ×∆τ ∆σ

is a Gσ-equivariant homeomorphism. �

Remark 5.13. At this stage, we could define the simplicial virtual cochains of a
functor A→ ChartK〈S〉 to be the homotopy colimit of the desuspensions

(5.3.8) hocolim
σ∈∆A

BX̄σ|Z−Vσ
σ .

In such a setting, it would be possible to formulate the multiplicativity of the
degeneration of the normal cone in terms of bi-simplicial objects. We shall find
it much more convenient to use cubical objects. The reader should have in mind
the analogous problem for proving multiplicativity of the Serre spectral sequence,



106 M. ABOUZAID AND A.J. BLUMBERG

which can be established by a bi-simplicial argument [Dre67] replacing the original
cubical proof.

5.4. Bi-simplicial degenerations. In this section, we compare the product of
degenerations with the degeneration over a bi-simplex associated to its natural
(prismatic) simplicial subdivision.

Consider simplices σ : n → ChartK〈S1〉 and τ : m → ChartK〈S1〉. The product
of the corresponding degenerations is a space

(5.4.1) Xσ ×Xτ → ∆n ×∆m.

We would like to express this spaces as a union (colimit) of degenerations over the
standard triangulation of the product of simplices. To this end, consider a map
f : k→ n× m, yielding a map

(5.4.2) f : ∆k → ∆n ×∆m,

and let

(5.4.3) (σ × τ) ◦ f : k→ ChartK〈S1 ∪ S2〉
denote the composition of f with the product of σ and τ .

Lemma 5.14. If f(k) = (n,m), there is a natural homeomorphism

(5.4.4) f∗(Xσ ×Xτ )→ X(σ×τ)◦f

over ∆k.

Proof. The fibers of both spaces over a point in ∆k are contained in

(5.4.5) Xσ(n) ×Xτ(m) × Vσ(n) × Vτ(m),

and we shall show that they are equal. To this end, note that the projection πi

associated to i ∈ k is the direct sum of the projections πfn(i)⊕πfm(i) on Vσ(n)×Vτ(m),
which are given by

πfn(i) =
∑

πfn(i−1)<j≤πfn(i)

πj(5.4.6)

πfm(i) =
∑

πfm(i−1)<j≤πfm(i)

πj .(5.4.7)

A collection of elements (x, y) ∈ Xσ(n) ×Xτ(m) and (u, v) ∈ Vσ(n) × Vτ(m) lies in
the degeneration associated to the composition if we have

(sσ(x), sτ (y)) =

k∑

i=0

Ti


 ∑

πfn(i−1)<j≤πfn(i)

πju,
∑

πfm(i−1)<j≤πfm(i)

πjv


(5.4.8)

=




n∑

j=0


 ∑

j≤πfn(i)

ti


πju,

m∑

j=0


 ∑

j≤πfm(i)

ti


πjv


(5.4.9)

=




n∑

j=0

Tjπju,

m∑

j=0

Tjπjv


 .(5.4.10)

In the last step, we use the fact that the map in Equation (5.4.2) is given in
coordinates by tfn(i) = tfm(i) = ti, and all other coordinates vanish. The last
expression above is exactly the formula for the pullback of degenerations. �
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5.5. Cubical degeneration to the normal cone. Denote by 1 the category
0 → 1 as before, and 1n the product category, which is equipped with canonical
morphisms called edges which are the product of identities in all but one of the
factors. We refer to a functor σ : 1n → ChartK〈S〉 as an n-cube in ChartK〈S〉.
Cubes in ChartK〈S〉 form a category �ChartK〈S〉 where a morphism σ → τ is a
factorisation of σ through a map of cubes 1n → 1m. We shall only consider the
subcategory �nd ChartK〈S〉 consisting of non-degenerate cubes, i.e., those which
do not factor through a degeneracy. Since we exclude degenerate cubes, a map of
cubes is given by the inclusion of a facet, which can be combinatorially recorded as
a map from a subset of {1, . . . ,m} to {0, 1}.

As explained in Theorem A.184, in the context in which we work, the evident
inclusion functor �nd ChartK → �ChartK induces an equivalence on homotopy
colimits. As a consequence, our choice to ignore degenerate cubes is harmless.
Since we never work with the full category of cubes in the main text, in abuse of
notation we will henceforth write �C to denote �ndC (for any category C).

Let �n denote the product [0, 1]n.

Definition 5.15. Let σ : 1n → ChartK〈S〉 be a cube. The cubical degeneration to
the normal cone is the union of the simplicial degeneration of the normal cones

(5.5.1) Xσ ≡ colim
ι : k→1n

Xσ◦ι,

where the colimit is over the standard simplicial subdivision of the square whose
simplices are labelled by functors k→ 1n.

This colimit is given by the union of the spaces associated to top-dimensional
simplices (injective order preserving maps n → 1n), glued along codimension 1
interior simplices. The interior condition on facets is equivalent to the condition that
0n and 1n are respectively the minimal and maximal element of the corresponding
map n→ 1n. Inductively applying Lemma 5.14, we conclude that Xσ is a manifold
with boundary equipped with a projection map

(5.5.2) Xσ → �
n,

which is a topological submersion, so that the inverse image of every boundary
stratum of the cube is a manifold (with boundary).

The above construction is equivariant with respect to the action of Gσ ≡ Gσ(1n)

and admits a natural equivariant projection map to Vσ ≡ Vσ(1n), yielding the
Kuranishi chart

(5.5.3) (Xσ, Vσ, sσ, Gσ) ∈ ChartK〈S × 1k〉.
We denote by Zσ ⊂ Xσ the inverse image of the origin in Vσ . The closure of Xσ

in
(
�

n ×Xσ(1n)

)
+
∧ SVσ(1n) will be denoted X̄σ as before.

Using the Borel construction, we obtain the spectrum of cubical virtual cochains
by applying the construction of Definition 5.2 to a cube σ in order to obtain
BX̄σ|Z−Vσ

σ .
We now turn to explain the functoriality of this construction. Given a morphism

f : τ → σ of cubes in ChartK〈S〉, we write Xf for the free quotient of Xτ of G⊥
f ,

and define V ⊥
f as before to be the orthogonal complement of Vτ in Vσ. Lemma 5.11

allows us to associate to each such morphism a map of spaces

(5.5.4) SV ⊥
f ∧ X̄τ |Zτ → X̄σ|Zσ,
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which is equivariant with respect to the homomorphism Gτ → Gσ.

Remark 5.16. While we have an inclusion Xσ ⊂ X̄σ, the induced map Xσ|Zσ →
X̄σ|Zσ is in fact bijective. To see this, note that X̄σ is obtained from Xσ by adding
a single point, but that this point is identified with the cone point in X̄σ|Zσ. Thus,
the map Xσ|Zσ → X̄σ|Zσ can be alternatively described as changing the topology
on Xσ|Zσ in such a way that a sequence in Xf ×V ⊥

f whose second coordinate goes
to infinity converges to the cone point.

Combining the maps constructed above, each arrow f : τ → σ yields a composi-
tion:

(5.5.5)

BX̄τ |Z−Vτ
τ ≡ (EGτ )+ ∧Gτ

F (SVτ , (X̄τ |Zτ )
mfib)

→ (EGσ)+ ∧Gσ
F (SVf , (X̄f |Zf )

mfib)

→ (EGσ)+ ∧Gσ
F (SV ⊥

f ∧ SVf , SV ⊥
f ∧ (X̄f |Zf )

mfib)

→ (EGσ)+ ∧Gσ
F (SVσ , (SV ⊥

f ∧ X̄f |Zf)
mfib)

→ (EGσ)+ ∧Gσ
F (SVσ , (X̄σ|Zσ)

mfib) ≡ BX̄σ|Z−Vσ
σ ,

where we used the quotient by G⊥
f in the first step, the identity on SV ⊥

f in the sec-

ond, the multiplicativity of the functor ( )mfib in the third step, and Equation (5.5.4)
in the last step. Since all these maps are associative, we conclude:

Lemma 5.17. The assignment

(5.5.6) σ 7→ BX̄σ|Z−Vσ
σ

extends to a functor �ChartK〈S〉 → Sp which is specified on morphisms by the
composition Equation (5.5.5). �

We shall call this functor the virtual cochains functor.
Appealing to Lemma 5.14, and using the external multiplicativity of the fibrant

replacement functor ( )mfib (see Proposition A.49), we find that this construction
is multiplicative in the sense that the product of Kuranishi charts induces a map

(5.5.7) BX̄σ|Z−Vσ
σ ∧BX̄τ |Z−Vτ

τ → BX̄σ×τ |Z−Vσ×τ

σ×τ .

A straightforward check shows that this product is functorial in σ and τ . Moreover,
the product map is itself naturally associative for triples, in the sense that the
following diagram commutes:

(5.5.8)

BX̄σ|Z−Vσ
σ ∧BX̄τ |Z−Vτ

τ ∧BX̄ρ|Z−Vρ
ρ BX̄σ×τ |Z−Vσ×τ

σ×τ ∧BX̄ρ|Z−Vρ
ρ

BX̄σ|Z−Vσ
σ ∧BX̄τ×ρ|Z−Vτ×ρ

τ×ρ BX̄σ×τ×ρ|Z−Vσ×τ×ρ

σ×τ×ρ

Moreover, it is evidently unital.
Putting this all together, we conclude:

Lemma 5.18. The virtual cochains functor is lax monoidal. �
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5.6. Virtual cochains of Kuranish flow categories. We now have the tools at
hand to extend the definition of virtual cochains from charts to presentations, and
from there to flow categories. For the next definition, recall from Lemma 4.29 that
we have a collar functor X→ X̂ from ChartSK to ChartK〈S〉.

Definition 5.19. The virtual cochains of a Kuranishi presentation X : A→ ChartSK
is the homotopy colimit

(5.6.1) BX̄ |Z−V (A) ≡ hocolim
σ∈�A

B
¯̂
Xσ|Ẑ−Vσ

σ .

We often write BX̄ |Z−V for the virtual cochains, omitting the domain category
from the notation.

This construction is functorial with respect to natural transformations of Ku-
ranishi presentations, and passing from a presentation to a stratum labelled by an
element q yields a natural morphism

(5.6.2) B∂qX̄ |∂qZ−V → BX̄ |Z−V .

Moreover, we have the following multiplicativity property:

Lemma 5.20. Given Kuranishi presentations X(i) : A(i)→ ChartSi

K for i = {1, 2}
we have a natural equivalence

(5.6.3) BX̄ |Z−V (A(1)) ∧BX̄ |Z−V (A(2))→ BX̄ |Z−V (A(1)×A(2)),

which is associative in the sense that, for a triple of Kuranishi presentations with
domain A(i) for i ∈ {1, 2, 3}, the following diagram commutes:

(5.6.4)

BX̄ |Z−V (A(1)) ∧BX̄ |Z−V (A(2))

∧BX̄ |Z−V (A(3))

BX̄ |Z−V (A(1) ×A(2))

∧BX̄ |Z−V (A(3))

BX̄ |Z−V (A(1))∧
BX̄ |Z−V (A(2)×A(3))

BX̄ |Z−V (A(1) ×A(2)×A(3)),

Proof. There is a natural functor �A1 ×�A2 → �(A1 ×A2) given by the product

of squares. Letting X12 : A1 × A2 → ChartS1∐S2

K denote the product presentation,
and pulling back to �A1 × �A2 we have a natural transformation

(5.6.5) B
¯̂
X1|Ẑ−V1

1 ∧B
¯̂
X2|Ẑ−V2

2 → B
¯̂
X12|Ẑ−V12

12

of functors on �A1×�A2. This natural transformation is induced similarly to the
discussion of the multiplicativity of charts above, using the map

(5.6.6)

(EG1)+ ∧G1 F (SV1 , (X̄1 | Z1)
mfib) ∧ (EG2)+ ∧G2 F (SV2 , (X̄2 | Z2)

mfib)

E(G1 ×G2)+ ∧G1×G2 F (SV12 , (X̄12 | Z12)
mfib).

Composing all these maps with the covariance of hocolim, we get

(5.6.7) hocolim
�A1×�A2

B
¯̂
X1|Ẑ−V1

1 ∧B
¯̂
X2|Ẑ−V2

2 → hocolim
�(A1×A2)

B
¯̂
X12|Ẑ−V12

12 .
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Finally, as explained in Equation (A.3.38), we have a natural map

(5.6.8) hocolim
�A1

B
¯̂
X1|Ẑ−V1

1 ∧ hocolim
�A2

B
¯̂
X2|Ẑ−V2

2

→ hocolim
�A1×�A2

B
¯̂
X1|Ẑ−V1

1 ∧B
¯̂
X2|Ẑ−V2

2

whose composition with the above gives the desired result. Associativity follows
from the associativity of the constituents of these transformations. �

We now return to the setting of Section 4.1.6: given a Kuranishi flow category
X with objects P with a choice of vector spaces as V ±

p for each element p ∈ P as
in the discussion preceding Remark 4.34, and a basepoint p0 in each orbit of the
action of Π in P which satisfies Equation (4.1.31), we begin by defining a reduced
degree

(5.6.9) deg p ≡ dp0 − dp
2

.

Recalling that our assumption is dim X̂ − dimV = dp − dq − 1, we then have the
following equality.

(5.6.10) 1 + dim X̂α − dimVα − dimV +
p + dimV +

q + dimV −
p − dim V −

q

= 2(deg q − deg p)

for each Kuranishi chart corresponding to an object of A(p, q).
Given a cube σ ∈ �A(p, q), we define

(5.6.11) B
¯̂
Xσ|Ẑ−V−d

σ ≡

C∗

(
EGσ;F (SVσ , (X̂σ|Ẑσ)

mfib) ∧ SV −
p +V +

q −(V +
p +V −

q )
)
Gσ

[deg p− deg q],

where the shift deg p−deg q corresponds to smashing with the spheres from Section
A.2.3, and

(5.6.12) SV −
p +V +

q −(V +
p +V −

q ) ≡ SV −
p +V +

q ∧ S−(V +
p +V −

q ),

using the Mandell-May model for negative spheres from Appendix A.1.1.

Remark 5.21. It might seem simpler to replace Equation (5.6.13) by the Borel equi-

variant chains of F (SVσ+V +
p +V −

q , (SV +
q +V −

p ∧ ¯̂
Xσ|Ẑσ)

mfib). However, it is not clear to
the authors how to compose morphisms with this simpler model. On the other hand,

it would be possible at this stage to use the spheres F (SVσ+V +
p +V −

q , (Xσ|Zσ)
mfib)∧

SV −
p +V +

q as a model for desuspension instead of the Mandell-May spheres. This
will have the desired functoriality and multiplicativity property, but does not allow
us to cleanly separate the part of the construction that are required for orientations
from the rest.

Next, for each pair (p, q) of objects in P , we define the spectrum of morphisms
in the category of virtual cochains as the homotopy colimit

(5.6.13) BX̄ |Z−V −d(p, q) ≡ hocolim
σ∈�A(p,q)

B
¯̂
Xσ|Ẑ−V−d

σ

over σ ∈ �A(p, q),
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Lemma 5.22. For a Kuranishi flow category X and objects p, q, r ∈ P, there is a
natural associative composition map:

(5.6.14) BX̄ |Z−V −d(p, q) ∧BX̄ |Z−V−d(q, r)→ BX̄ |Z−V −d(p, r).

Proof. Before desuspensions, the map is induced by Equations (5.6.2) and Lemma
5.20. To incorporate shifts, it suffices to construct a functorial map for products
of charts. This is obtained from the multiplicativity of the model of spheres from
Section A.2.3 and from the multiplicativity of the fibrant replacement functor.
Explicitly, given triples p < q < r, we use the composition

(5.6.15)

F (SVσ1 , (
¯̂
Xσ1 |Ẑσ1)

mfib) ∧ SV −
p +V +

q −(V +
p +V −

q )

∧F (SVσ2 , (
¯̂
Xσ2 |Ẑσ2)

mfib) ∧ SV −
r +V +

p −(V +
r +V −

p )

F (SVσ1+Vσ2 , (
¯̂
Xσ1 |Ẑσ1 ∧ ¯̂

Xσ2 |Ẑσ2)
mfib) ∧ SV −

p −V +
p ∧ SV +

p −V −
p )

∧SV −
r +V +

q −(V −
q +V +

r )

F (SVσ1+Vσ2 , (
¯̂
Xσ1 |Ẑσ1 ∧ ¯̂

Xσ2 |Ẑσ2)
mfib) ∧ SV −

r +V +
q −(V −

q +V +
r ).

Associativity follows from the fact that A is a 2-category. �

The strict action of Π on X implies the following result.

Proposition 5.23. For a Kuranishi flow category X, the virtual cochains form a
Π-equivariant spectrally enriched category with object set P and morphism spectra
BX̄ |Z−V−d(p, q) for objects p and q. �

Finally, given an associative ring spectrum k we produce a new spectral category
by smashing each morphism spectrum with k.

Definition 5.24. The Π-equivariant spectral category BX̄ |Z−V−d ∧ k has object
set P, with morphism spectra given by the k-modules

(5.6.16)
(
BX̄ |Z−V −d ∧ k

)
(p, q) = BX̄ |Z−V−d(p, q) ∧ k.

Remark 5.25. It is tempting to think of BX̄ |Z−V−d ∧ k as a category enriched
in k-modules, but this only makes sense if k is commutative (at least E2). In
the applications of interest in this paper, k is typically only an associative ring
spectrum.

5.7. An augmentation of the virtual cochains. The collapse map from a based
space to S0 induces an augmentation (i.e., a map to the ground ring) on reduced
homology. Our goal in this section is to obtain a similar construction on virtual
cochains.

Given a Kuranishi chart α, the starting point is the mapXα|Zα → SVα |0 induced
by the projection from Xα to SVα . This map induces a map of G-spectra

(5.7.1) F (SVα , (Xα|Zα)
mfib)→ F (SVα , (SVα |0)mfib).

Morally speaking, the augmentation arises by passing to the Borel construction;
F (SVα , (SVα |0)mfib) ≃ S and (EGα)+ ∧Gα

S ≃ Σ∞
+ BGα, and so the collapse map

Σ∞
+ BGα → S now induces the augmentation. However, in order to study the
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multiplicative properties of the augmentation, we need to be precise about the
zig-zag. We have the following diagram of comparison maps:

(5.7.2) F (SVα , (SVα |0)mfib) F (SVα , (SVα)mfib) F (SVα , SVα) S
≃

≃

Applying the Borel construction, we obtain a natural weak equivalence

(5.7.3) (EGα)+ ∧Gα
S→ (EGα)+ ∧Gα

F (SVα , (SVα |0)mfib).

Next, we have the chain of homeomorphisms

(5.7.4)
(EGα) ∧Gα

S = Σ∞
+ B(Gα, Gα, ∗) ∧Gα

S ∼= B(Σ∞
+ Gα,Σ

∞
+ Gα,S) ∧Gα

S

∼= B(S,Σ∞
+ Gα,S) ∼= Σ∞

+ BGα.

We now obtain a natural zig-zag

(5.7.5) BSVα |0−Vα ≡ C∗(EGα;F (SVα , (SVα |0))mfib)Gα
Σ∞

+ BGα S,≃

and composing with the map

(5.7.6) BX̄α|Z−Vα
α BSVα |0−Vα

yields the augmentation associated to a chart.
More generally, given a cube σ of Kuranishi charts, we have a natural map

(5.7.7) B
¯̂
Xσ|Ẑ−Vσ

σ → BSVσ |0−Vσ .

In order to discuss the functoriality of this map, we note that an inclusion Vα → Vβ

induces a natural inclusion

(5.7.8) SV ⊥
f ∧

(
SVα |0

)
→ SVβ |0,

arising from the fact that the left hand side is equivariantly homeomorphic to
SVβ |(SVf × 0). Desuspending and passing to the Borel construction then yields an
equivalence

(5.7.9) BSVα |0−Vα → BSVβ |0−Vβ .

This construction is multiplicative in the following sense. Recall from Equa-
tion (A.1.112) that there is a natural map

(5.7.10) SV1 |0 ∧ SV2 |0→ SV1⊕V2 |0.
Proposition 5.26. Given a pair of inclusions fi : Vαi

→ Vβi
, for i ∈ {0, 1}, we

have an identification V ⊥
f0×f1

∼= V ⊥
f0
⊕ V ⊥

f1
, which, together with Equation (5.7.8)

gives a commutative diagram

(5.7.11)

SV ⊥
f0 ∧

(
SVα0 |0

)
∧ SV ⊥

f1 ∧
(
SVα1 |0

)
SVβ0 |0 ∧ SVβ1 |0

SV ⊥
f0×f1 ∧

(
SVα0⊕Vα1 |0

)
SVβ0

⊕Vβ1 |0.

Moreover, these identifications are associative for inclusions fi : Vαi
→ Vβi

for
i ∈ {0, 1, 2}.
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Proof. To see that the compatibility diagram commutes is a straightforward check of
the formulas. The claim about associativity follows from the commutative diagrams

(5.7.12)

SVβ0 |0 ∧ SVβ1 |0 ∧ SVβ2 |0
(
SVβ0

⊕Vβ1 |0
)
∧ SVβ2 |0

SVβ0 |0 ∧
(
SVβ1

⊕Vβ2 |0
)

SVβ0
⊕Vβ1

⊕Vβ2

and the associativity of the smash product. �

Passing to desuspensions and applying the Borel construction, we obtain a com-
mutative diagram of spectra:

(5.7.13)

BSVα0 |0−Vα0 ∧BSVα1 |0−Vα1 BSVβ0 |0−Vβ0 ∧BSVβ1 |0−Vβ1

BSVα0⊕Vα1 |0−Vα0⊕Vα1 BSVβ0
⊕Vβ1 |0−Vβ0

⊕Vβ1 .

Proposition 5.26 implies that these compositions are associative as well. Moreover,
we observe that there is a natural map S→ BS0|0 induced by the homeomorphism
S0 → S0|0, and so we can conclude the following proposition.

Lemma 5.27. The assignment X 7→ BSV |0−V lifts to a lax monoidal functor

(5.7.14) BSV |0−V : ChartK → Sp .

�

Pulling this functor back to �ChartK under the evaluation map given by the
vertex 1n of the n-dimensional cube, the following result is straightforward to check:

Lemma 5.28. Equation (5.7.7) defines a lax monoidal transformation

(5.7.15) BX̄σ|Z−Vσ
σ → BSV |0−V

of functors �ChartK → Sp. �

We now turn to defining the augmentation of the virtual cochains of a Kuranishi
presentation.

Definition 5.29. Given a Kuranishi presentation X : A→ ChartK, we define

(5.7.16) BSV |0−V (A) ≡ hocolim
α∈A

BSVα |0−Vα .

Lemma 5.28 has the following immediate corollary.

Corollary 5.30. There is an augmentation of virtual cochains

(5.7.17) BX̄ |Z−V (A)→ BSV |0−V (A)

associated to each Kuranishi presentation. �

This comparison map is functorial in A and multiplicative.
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Proposition 5.31. Given a pair of Kuranishi presentations X(i) : A(i)→ ChartSi

K

for i ∈ {1, 2}, there is a map of homotopy colimits

(5.7.18) BSV |0−V (A(1)) ∧BSV |0−V (A(2))→ BSV |0−V (A(1)×A(2))

which fits into a commutative diagram

(5.7.19)

BX̄ |Z−V (A(1)) ∧BX̄ |Z−V (A(2)) BX̄ |Z−V (A(1) ×A(2))

BSV |0−V (A(1)) ∧BSV |0−V (A(2)) BSV |0−V (A(1)×A(2)).

for Kuranishi presentations X1,X2, and X3, the evident associativity diagram com-
mutes. �

We apply the above discussion to a Kuranishi flow category X with object set P .
Definition 5.32. For a Kuranishi flow category X, the Π-equivariant spectral cat-
egory BSV |0−V−d has object set P and morphism spectra

(5.7.20) SV |0−V−d(p, q) ≡ hocolim
α∈A(p,q)

BSVα |0−Vα ∧SV −
p +V +

q −(V +
p +V −

q )[deg p−deg q],

in analogy with Equation (5.6.13). The compositions in this spectrally enriched
category are induced by the lax monoidal structure on the functor BSV |0−V , the
multiplicative structure on the spheres, and the action of Π by the action on P and
A.

Corollary 5.30 and Proposition 5.31 yield a Π-equivariant spectral functor

(5.7.21) BX̄ |Z−V −d → BSV |0−V−d.

In order to analyse the outcome of this construction, we consider the map

(5.7.22) S→ SVα |0−Vα = F (SVα , (SVα |0)mfib)

induced by the inclusion SVα ⊂ SVα |0. This is an equivalence, and the diagram

(5.7.23)

S SVα |0−Vα

SVβ |0−Vβ

commutes for each arrow of Kuranishi charts. This transformation is compatible
with products, so we conclude:

Lemma 5.33. There is a lax monoidal equivalence from the constant functor S on
ChartK to SV |0−V . �

We now construct a zig-zag of Π-equivariant spectral functors that represent a
homotopy class of functors

(5.7.24) BSV |0−V−d → Sp,

mapping p to SV +
p −V −

p [− deg p].
We consider the Π-equivariant spectral category Z with object set P , and mor-

phisms from p to q given by

(5.7.25) Z(p, q) = hocolim
α∈A(p,q)

(BGα)+ ∧ SV −
p +V +

q −(V +
p +V −

q )[deg p− deg q].
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Lemma 5.33 supplies a Π-equivariant spectral functor Z → BSV |0−V−d. On
the other hand, there is a Π-equivariant spectral functor from Z to the category of
spectra induced by the projection map BGα → ∗ and the map

(5.7.26) SV −
p +V +

q −(V +
p +V −

q ) ∧ SV +
p −V −

p ∼=
SV +

q −V −
q ∧ SV −

p −V +
p ∧ SV +

p −V −
p → SV +

q −V −
q

arising by permuting the spheres and using the natural map SV ∧ S−V → S0. The
resulting zig-zag

(5.7.27) BX̄ |Z−V −d BSV |0−V−d Z Sp

of Π-equivariant spectral functors provides our model for the augmentation.
Using the bar construction to produce a formal composition rectifying this zig-

zag (as discussed in Section A.5.3), we conclude the following proposition by smash-
ing with a ring spectrum k.

Proposition 5.34. If k is a cofibrant associative ring spectrum, the augmentation
yields a Π-equivariant spectral functor

(5.7.28) BX̄ |Z−V −d ∧ k→ k−mod,

category, mapping p to a spectrum which is equivalent to SVp [deg p] ∧ k. �

5.8. Signpost: basic examples. We end this section by outlining how a closed
Kuranishi presentations gives rise to a two-cell homotopy type.

First, let X : A→ ChartK be a closed Kuranishi presentation of virtual dimension
d− 1. We shall construct a diagram

(5.8.1) Ωk→ C∗(BZ; Ωk) L99 · · · 99K BX |Z−V−d ∧ k→ SV |0−V−d ∧ k ∼= Ωdk

where the first arrow comes from the unit, and the last arrow from smashing the
augmentation from Section 5.7 with k. The construction of the middle zig-zag will
rely on the assumption that (i) the charts Xα admit Gα-equivariant orientations
with respect to k, which are moreover compatible with maps of charts, and (ii) the
spectrum k is ambidextrous (see Section B.4).

Inverting the arrows in the zig-zag, the outcome is a map Ωk → Ωdk. The
homotopy type associated to X is the cofibre of the corresponding map. As a reality
check, we note that, if the map vanishes, then this cofibre is equivalent to the sum
k⊕Ωdk. In Morse theory, whenever the index difference between two critical points
is d, then the moduli space of flow lines between them is d− 1-dimensional, which
justifies this shift.

The construction of a homotopy type with more cells labelled by a totally ordered
set P is associated to a diagram

(5.8.2) C∗
rel∂(P ; Ωk)→ C∗

rel∂(BZ; Ωk) L99 · · · 99K BX̄ |Z−V −d ∧ k→ k−mod,

of functors between spectrally enriched categories. The first arrow goes back to the
constructions of Section 2.2.2, and the last one is given by the multiplicativity of
the augmentation. The middle zig-zag will again follow from certain orientability
assumptions on the Kuranishi presentations that we consider.
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6. Comparison of cochains on a Kuranishi chart

The goal of this section is to relate compactly supported and virtual cochains
on a single Kuranishi chart. This will involve the use of several geometric and
homotopy-theoretic ideas: Spanier-Whitehead duality, ambidexterity, the Adams
isomorphism, flag smooth structures, models of the tangent spherical fibration, and
universal orientations. We also begin to explain how this comparison extends to
spectral categories by discussing the compatibility of the maps we construct with
inclusions of boundary strata, and products of charts.

To start, we recall that Spanier-Whitehead duality is a generalization, at the level
of stable homotopy types, of Poincaré duality. Since our charts are not necessarily
compact, and virtual cochains in some sense correspond to homology, it is thus
natural that the first step in the comparison with ordinary cochains is the passage
to a compactly supported theory.

6.1. Compactly supported cochains. Given a orbispace chart (Z,G), we let Z+

denote the 1-point compactification of Z regarded as based at the point at infinity,
and consider the space BZ+ obtained as the reduced Borel construction on Z+,
i.e., the quotient of the map EG×G ∗ → EG×G Z+ that includes the basepoint.

Definition 6.1 (c.f. Equation (2.2.3)). Given a vector space E, we define the
compactly supported cochains of Z as the spectrum of maps

(6.1.1) C∗,c(BZ; ΩEk) = F (BZ+,ΩEkmfib).

Note that this is an abuse of terminology because there is no compact support
condition in the direction of the Borel construction, but only with respect to the
base Z. The natural map BZ → BZ+ induces a map

(6.1.2) C∗,c(BZ; ΩEk)→ C∗(BZ; ΩEk)

which is an isomorphism whenever Z is compact. We shall mostly be interested in
the case E is a (trivialized) line which we denote ℓ.

We will assume that Z is an 〈S〉-stratified space for a poset S, in the sense of
Definition 4.12. Recall that this means that we have a closed subset ∂Z ⊂ Z which
is a union of closed subsets

(6.1.3) ∂Z =
⋃

q∈S

∂qZ

with ∂qZ ∩ ∂pZ = ∅ whenever q and p are not comparable. We denote by Ẑ the
collared completion of Z as in Definition 2.9 (see also Lemma 4.29).

We now define the relative compactly supported cochains to be the spectrum
of cochains on Ẑ which vanish at the boundary; note that the collaring function
ensures that the inclusion of B∂Ẑ+ into BẐ+ is a Hurewicz cofibration.

Definition 6.2 (c.f. Equation (2.2.4)). The relative compactly supported cochains
of an 〈S〉-stratified space are given by the spectrum

(6.1.4) C∗,c
rel∂(BẐ; Ωℓk) ≡ C∗,c(BẐ,B∂Ẑ; Ωℓk) = F (BẐ+/B∂Ẑ+,Ωℓkmfib).

The map in Equation (6.1.2) extends to a natural comparison map

(6.1.5) C∗,c
rel∂(BẐ; Ωℓk)→ C∗

rel∂(BẐ; Ωℓk).

This comparison map is multiplicative, since the inclusion Z → Z+ is compatible
with the homeomorphism Z+

1 ∧ Z+
2
∼= (Z1 × Z2)

+.



ARNOLD CONJECTURE AND MORAVA K-THEORY 117

Lemma 6.3. Given a pair (Z1, G1) and (Z2, G2) of orbispace charts, and real lines
ℓ1 and ℓ2, we have a commutative diagram

(6.1.6)

C∗,c
rel∂(BẐ1; Ω

ℓ1k) ∧C∗,c
rel∂(BẐ2; Ω

ℓ2k) C∗,c
rel∂(B(Ẑ1 × Ẑ2); Ω

ℓ1⊕ℓ2k)

C∗
rel∂(BẐ1; Ω

ℓ1k) ∧C∗
rel∂(BẐ2; Ω

ℓ2k) C∗
rel∂(B(Ẑ1 × Ẑ2); Ω

ℓ1⊕ℓ2k).

The evident associativity diagrams strictly commute. �

For a codimension 1-stratum associated to an element q ∈ Q, we have a boundary
map

(6.1.7) C∗,c
rel∂(B∂qẐ; Ωκ⊕ℓk)→ C∗,c

rel∂(BẐ; Ωℓk),

where κ is the real line associated to the collar. The boundary map fits into the
commutative diagram

(6.1.8)

C∗,c
rel∂(B∂qẐ; Ωκ⊕ℓk) C∗

rel∂(B∂qẐ; Ωκ⊕ℓk)

C∗,c
rel∂(BẐ; Ωℓk) C∗

rel∂(BẐ; Ωℓk).

6.2. Spanier-Whitehead duality. The main goal of this subsection is to con-
struct what we call the Milnor model for the tangential twist of (compactly sup-
ported relative) cochains associated to Kuranishi charts, and compare them, via
Spanier-Whitehead duality, to the virtual cochains. This will require a choice of
coefficients for which the classifying spaces of finite groups are dualizable (i.e., be-
have as Poincaré duality spaces); it is at this point in our work that restriction to
the Morava K-theories becomes relevant. We conclude the section with the use
of the Adams isomorphism and the norm map from homotopy orbits to homotopy
fixed-points to pass from chains to cochains.

6.2.1. Spanier-Whitehead duality for manifolds. Let X be a topological manifold.
We regard X ×X as a space over X via the projection π : X ×X → X to the first
factor.

Definition 6.4. Let MX be the spherical fibre bundle over X obtained from X×X
by taking the fiberwise cone of (X ×X \∆), where ∆ denotes the diagonal.

As a set, this is

(6.2.1) MX ≡
∐

x∈X

X |x

where X |x = C(X,X \ x) as in Section 5.1. Since the homeomorphism group of
connected manifolds acts transitively, the first coordinate projection mapMX → X
is a fibre bundle. There is a canonical section

(6.2.2) X →MX

given by the cone point in each fibre, and the image of this section is contained in
a contractible subbundle

(6.2.3) M0X ≡
∐

x∈X

C(X \ x)
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given by the union of all the cones.

Remark 6.5. We call MX the Milnor model of the tangent spherical fibration of
X , because of its close relationship with the tangent microbundle introduced by
Milnor in [Mil64], and our inability to find a result in the literature that uses this
construction preceding Milnor’s work.

Let i : Z ⊂ X be a closed subset. We shall abuse notation and write MX for the
restriction of the Milnor model to Z, i.e., the pullback along the inclusion i. We
now explain a construction of Atiyah-Spanier-Whitehead duality as an equivalence

(6.2.4) Σ∞X |Z = Σ∞C(X,X \ Z)→ C∗,c0(Z;MX),

where the righthand side is the spectrum of compactly supported sections relative
to M0X .

Recall from Section B.1 that the compactly supported sections are defined in
terms of the spectrum C∗(Z;MX) = ΓZ(MX) of sections of the parametrized sus-
pension spectrum of the Milnor fibration. Specifically, in Definitions B.10 and B.12,
we define the spectrum of compactly supported sections of MX relative to M0X
as the levelwise subspectrum

(6.2.5) C∗,c0(Z;MX) = Γc
Z(MX,M0X)

of C∗(Z;MX) consisting of sections whose values, outside a compact subset of Z,
lie in M0X . There is an evident inclusion map

(6.2.6) C∗,c(Z;MX ∧ k)→ C∗,c0(Z;MX ∧ k).

The duality map is induced by the space-level map

(6.2.7) X |Z → MapZ(Z;MX)

that includes X |Z as the “constant” sections, where here MapZ(Z;MX) denotes
the space of sections. More precisely, we start with the map

(6.2.8) X → MapZ(Z;MX)

which assigns to each point x ∈ X the section of MX that maps every point z ∈ Z
to x in the fiber. These sections are clearly compactly supported relative to M0X .
Moreover, if x lies in X \ Z, this section lands in the cone part for every z ∈ Z, so
that this map extends tautologically to a map

(6.2.9) X |Z → Γc
Z(MX,M0X),

where the target is the space of compactly supported sections of MX relative to
M0X over Z.

Proposition 6.6. Let X be a topological manifold and Z ⊂ X a closed subset. If
k is a cofibrant spectrum, the Spanier-Whitehead duality map of Equation (6.2.9)
and the inclusion induce natural equivalences:

(6.2.10) Σ∞X |Z ∧ k→ C∗,c0(Z;MX ∧ k)← C∗,c(Z;MX ∧ k).

Proof. The proof proceeds by inducting on the number of elements of a contractible
cover and uses the continuity properties of these invariants. When Z is a con-
tractible closed set, the theorem is tautologically true. Since each of the functors
in the zig-zag satisfies the Mayor-Vietoris property, we can conclude that the theo-
rem holds for closed subsets which admit a locally finite contractible cover. Every
closed subset of a manifold is an intersection of such sets, and the result now follows
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since each of the terms in the zig-zag represent cohomology theories (as functors of
closed subsets of X) that are continuous in the sense of [Spa87, §2], i.e., have the
property that the colimit over closed neighborhoods of A is equal to the value at A.
For Σ∞X |Z, continuity is a consequence of the fact that X |Zi becomes a filtered
system and the homotopy cofiber commutes with filtered homotopy colimits. For
the spectra of sections, this follows as in [LR68, Thm. 5]; see also Section B.1. �

We shall refer to the middle and right hand side of Equation (6.2.10) as the two
models for the spectrum of compactly supported sections with coefficients in k.

Remark 6.7. In the classical point of view on Poincaré duality, the left hand side is
the homology of the complement of Z (which we call virtual cochains of Z following
Pardon), and the right hand side is the (twisted) cohomology of Z.

The next result asserts that the construction of the Milnor fibration is compatible
with products. For a pair of sectioned parametrized spaces (refered to as ex-spaces)
f1 : E1 → X1 and f2 : E2 → X2, there is an external smash product E1 ⊼ E2 over
X1 × X2 that on fibers is the smash product, and which we review in Definition
B.2.

Lemma 6.8. If X1 and X2 are manifolds, there is a natural map

(6.2.11) MX1 ⊼MX2 →M(X1 ×X2)

of sectioned spaces over X1 ×X2 induced by the product on homotopy cofibers

(6.2.12) C(X1, X1\{x1})∧C(X2, X2\{x2})→ C(X1×X2, (X1×X2)\{(x1, x2)})

as in Equation (A.1.111). This product map is associative in the sense that the
diagram of ex-spaces over X1 ×X2 ×X3

(6.2.13)

MX1 ⊼MX2 ⊼MX3 MX1 ⊼M(X2 ×X3)

M(X1 ×X2) ⊼MX3 M(X1 ×X2 ×X3)

commutes. �

We now state the compatibility of our models for the Spanier-Whitehead duality
maps with the product structure. For the formulation of the next result, we use
the natural maps

(6.2.14)

C(X1, X1 \ Z1) ∧C(X2, X2 \ Z2)

C(X1 ×X2, (X1 ×X2) \ (Z1 × Z2))

of Equation (A.1.111) throughout the diagram and note that the product maps on
spectra of compactly supported cochains are defined using the monoidal structure
on spaces of sections (see Proposition B.13) and the multiplicativity of the fibrant
replacement functor.
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Lemma 6.9. The product map induces a commutative diagram

(6.2.15)

Σ∞X |Z1 ∧Σ∞X |Z2 Σ∞ (X1 ×X2|Z1 × Z2)

C∗,c0(Z1;MX1) ∧ C∗,c0(Z2;MX2) C∗,c0(Z1 × Z2;M (X1 ×X2))

C∗,c(Z1;MX1) ∧ C∗,c(Z2;MX2) C∗,c(Z1 × Z2;M (X1 ×X2))

for any pair Z1 and Z2 of closed subsets and analogous commuting associativity
diagrams. Finally, for any associative ring spectrum k we have a corresponding
diagram with coefficients in k. �

Remark 6.10. Note the fact that MX is defined without assuming that X is a
manifold, and that the Spanier-Whitehead duality map is also defined without this
assumption. The manifold condition only enters in the proof that the map is an
equivalence, and in fact that condition is only required near Z. We shall use this
flexibility in later constructions.

Remark 6.11. A fundamental disadvantage of the model MX is the absence of
adequate maps associated to covering maps X̃ → X . The other models of the
tangent spherical fibration which we will later use are equipped with a canonical
map from the pullback of the fibration associated to X to the fibration associated to
X̃ . For the Milnor model, such a map only exists if the covering space is inessential
in the sense that it is a product of X with a discrete set. We shall return to this
issue in Section 7.2.1.

6.2.2. Spanier-Whitehead duality for manifolds with corners. For a manifoldX with
boundary, the inclusion map in Equation (6.2.7) is still well-defined, but is unfor-
tunately not well-adapted to encoding the relationship between duality for Z and
for its intersection with the boundary. Instead, we shall work with cochains rela-
tive the boundary, after attaching a collar. This allows us both to avoid questions
of cofibrancy of the inclusion of the boundary and to be able to define boundary
homomorphisms at the level of cochains.

We work in the setting of 〈S〉-manifolds as in Section 4.1.3: applying the con-

struction of Section 2.1 in this context, we obtain a collared space X̂ which is
covered by the union of the product of strata ∂QX with the corresponding cube
collar κQ, which we find convenient to identify with [0, 1]Q for the beginning of this
section.

Lemma 6.12. If X is an 〈S〉-manifold with boundary, so is X̂, and there is a
natural homeomorphism

(6.2.16) ∂QX̂ ∼= ∂̂QX.

Proof. The proof that X̂ is a manifold is local: the assumption that X is an 〈S〉-
manifold amounts to the assertion that the stratification near ∂QX is given by the
product of ∂QX with (−∞, 0]Q. We conclude that a neighbourhood of ∂QX × κQ

in X̂ is homeomorphic to ∂QX × (−∞, 1]Q. �

We have a version of the Milnor model in the stratified setting.
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Definition 6.13. We define the completed Milnor spherical fibration

(6.2.17) MX̂ → X̂

as the restriction of the Milnor tangent bundle of the topological manifold without
boundary obtained as the union of X with infinite collars ∂QX × [0,∞)Q to the

collared manifold X̂.

Given a closed subset Z ⊂ X , which we equip with the stratification inherited
from X , we obtain an inclusion Ẑ ⊂ X̂ . As before, we also abusively write MX̂
for the restriction of the completed Milnor spherical fibration to Ẑ, which inherits
a stratification from X̂ . For each totally ordered subset Q of S, we obtain an
inclusion of pairs

(6.2.18) (∂QX̂, ∂QẐ) ⊂ (X̂, Ẑ).

The restriction of the Milnor spherical bundle to the boundary admits a subfi-
bration

(6.2.19) M
in
X̂ ⊂MX̂

over the boundary, consisting of “inward pointing” vectors, i.e. points lying in X̂
rather than in the infinite completion.

Lemma 6.14. The fibre of M
in
X̂ over every (boundary) point is contractible.

Proof. Since the result is local, it suffices to show that the fibre of M
in
(Rn−k ×

(0, 1]k) at a boundary point is contractible at the deepest stratum. There is a
natural equivalence

(6.2.20) MxRn−k ∧M
in

1 (0,∞)∧k →M
in

(x,1k)(R
n−k × (0, 1]k)

induced by the product in Equation (6.2.11). The space M
in

1 (0,∞) is contractible,
so the result follows. �

At this stage, we introduce the compactly supported relative cochains.

Definition 6.15. The compactly supported relative cochains is the spectrum

(6.2.21) C∗,c0
rel∂ (Ẑ;MX̂) ⊂ C∗(Ẑ;MX̂)

consisting of sections whose values lie in M0X̂ outside a compact set, and in M
in
X̂

at the boundary.

As in the previous section, this is ultimately a model for the compactly supported
cochains relative the boundary:

Lemma 6.16. The inclusion of sections with value the base section outside a com-
pact set and on the boundary induces an equivalence

(6.2.22) C∗,c
rel∂(Ẑ;MX̂)→ C∗,c0

rel∂ (Ẑ;MX̂)

Proof. This follows from the contractibility of the fibres of M
in
X̂ . �
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Our goal now is to construct a commutative diagram

(6.2.23)

Σ∞∂QX̂ |∂QẐ C∗,c0(∂QẐ;M∂QX̂)

Σ∞X̂ |Ẑ C∗,c0
rel∂ (Ẑ;MX̂)

in which the solid horizontal map is defined as in the previous section and the solid
vertical map is the map induced by the inclusion of pairs in Equation (6.2.18).

It is convenient at this stage to write MκQ → κQ for the space whose fibre at a
point t ∈ κ is the cone of the inclusion of the complement of t in κ. Note that this
definition involves some abuse of terminology as the fibres over points lying in the
boundary are contractible because we do not complete to a manifold. With this
model, there is a natural diagram

(6.2.24)

M∂QX̂ ⊼MκQ MX̂

∂QX̂ × κQ X̂

where the top horizontal map is induced by the product ∂QX̂ × κQ → X̂ after
passing to the product, and taking the cone of the complement of the diagonal.

We now fix the section t 7→ (1, |1 − t|) of the Milnor fibration of the one di-
mensional cube, which induces, by taking the product and the maximum of collar
coordinates, a section of MκQ. By definition, the value of this section along the
boundary facets where any coordinate vanishes agrees with the cone point, and the
value at the corner 1Q lies in the inner pointing part. This induces a map of section
spaces

(6.2.25) Map∂QẐ(∂
QẐ;M∂QX̂)→

Map∂QẐ(∂
QẐ × κQ;M∂QX̂ ∧MκQ)→ MapẐ(Ẑ;MX̂)

where the first map is the product with the given section, and the second is the
composition of the top horizontal map in Equation (6.2.24) with the extension
away from the collar by the constant section with value the cone point. These
maps preserve the condition that a compact subset be mapped to the cone part of
the Milnor model. Passing to spectra, we obtain the right vertical map in Diagram
(6.2.23). It thus remains to define the bottom horizontal map.

The most obvious such map arises from Equation (6.2.7), noting the fact the
image of such constant sections takes the desired values at the boundary. However,
this choice would not yield a commutative diagram, so we change it in the collar to
obtain a map

(6.2.26) X̂ |Ẑ → MapẐ(Ẑ;MX̂)

which assigns to a point x in the collar with collar coordinate {tq(x)}q∈Q the section

(6.2.27) z 7→
{
(x,maxq tq(x)) if z ∈ Z

(x,maxq |tq(x) − tq(z)|) if z ∈ ∂QZ × κQ,

and which we extend to the cone direction in X̂ |Ẑ by using the maximum of the
cone coordinates. This is clearly continuous.
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The diagram

(6.2.28)

∂QX̂ |∂QẐ Map∂QẐ(∂
QẐ;M∂QX̂)

X̂ |Ẑ MapẐ(Ẑ;MX̂)

then commutes by construction, which yields Diagram (6.2.23) after passing to
spectra.

We now state the analogue of Proposition 6.6, whose proof is entirely similar:

Proposition 6.17. The Spanier-Whitehead maps, and the inclusion of the base-
section induce equivalences

(6.2.29) Σ∞X̂ |Ẑ → C∗,c0
rel∂ (Ẑ;MX̂)← C∗,c

rel∂(Ẑ;MX̂).

�

We note a final infelicity of our construction: while we have arranged for Diagram
(6.2.23) to commute, there seems to be no natural way to construct a boundary
map

(6.2.30) C∗,c(∂QẐ;M∂QX̂)→ C∗,c
rel∂(Ẑ;MX̂)

in such a way that the comparison maps above give a commutative diagram. The
problem is that the section of Mκ used to construct Equation (6.2.25) does not
vanish at the boundary. However, it is straightforward to see that the map

(6.2.31) t 7→ (1/2, 2|1/2− t|)

does satisfy this property.
In order to compare these two constructions, we introduce an intermediate

spectrum of sections constructed using Equation (6.2.31), which we denote by

C
∗,c′0
rel∂ (Ẑ;MX̂). There is then a zig-zag of comparisons

(6.2.32) C∗,c
rel∂(Ẑ;MX̂)← C

∗,c′0
rel∂ (Ẑ;MX̂)→ C∗,c0

rel∂ (Ẑ;MX̂),

where the left pointing arrow is the inclusion of sections which are inward pointing
at 1/2 and take value in the cone region over [1/2, 1] and the right pointing arrow

is the composition of the restriction to the complement of [1/2, 1]× ∂Ẑ, together

with the identification of this complement with Ẑ given by rescaling the collar
coordinate.

6.2.3. Spanier Whitehead duality for Kuranishi charts. Let X be a G-equivariant
〈S〉-manifold, and let Z ⊂ X be a closedG-invariant subset. We assume throughout
that the stratification is preserved by G. The constructions of the previous sections
only involved the choice of a section of the fibration associated to the collar κ, and
hence are clearly G-equivariant. We conclude:
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Proposition 6.18. There is a commutative diagram of G-spectra

(6.2.33)

Σ∞∂QX̂ |∂QẐ Σ∞X̂ |Ẑ

C∗,c0
rel∂ (∂

QẐ;M∂QX̂) C∗,c0
rel∂ (Ẑ;MX̂)

C
∗,c′0
rel∂ (∂

QẐ;M∂QX̂) C
∗,c′0
rel∂ (Ẑ;MX̂)

C∗,c
rel∂(∂

QẐ;M∂QX̂) C∗,c
rel∂(Ẑ;MX̂)

in which all vertical arrows are equivalences. �

We now will pass to homotopy fixed points for the action of G. For convenience,
we introduce the following notation.

Notation 6.19. We will write

C∗(BG;Y ) = C∗(EG;Y )G(6.2.34)

C∗,c0
rel∂ (BẐ;MX̂) = C∗(EG;C∗,c0

rel∂ (Ẑ;MX̂))G(6.2.35)

C∗,c
rel∂(BẐ;MX̂) = C∗(EG;C∗,c

rel∂(Ẑ;MX̂))G(6.2.36)

for the homotopy fixed-point spectra.
As explained in Appendix B.1 (see Proposition B.15), for a G-spectrum Y the

spectrum C∗(BG;Y ) is equivalent to the spectrum of sections of a parametrized
spectrum over BG induced by the Borel construction.

Applying the functor C∗(EG;−)G to Diagram (6.2.33) in Proposition 6.18, we
obtain the diagram of spectra:

(6.2.37)

C∗(BG, ∂QX̂ |∂QẐ) C∗(BG, X̂ |Ẑ)

C∗,c0
rel∂ (B∂QẐ;M∂QX̂) C∗,c0

rel∂ (BẐ;MX̂)

C
∗,c′0
rel∂ (B∂QẐ;M∂QX̂) C

∗,c′0
rel∂ (BẐ;MX̂)

C∗,c
rel∂(B∂QẐ;M∂QX̂) C∗,c

rel∂(BẐ;MX̂)

in which all horizontal maps are equivalences.
The homeomorphism EG1×EG2

∼= EG1×EG2 and the external multiplicative
structure on fixed points induce an associative pairing

(6.2.38) C∗(EG1;Y1) ∧ C∗(EG2;Y2)→ C∗(E(G1 ×G2);Y1 ∧ Y2).

Lemma 6.20. Given 〈Si〉-manifolds Xi for i ∈ {1, 2}, and closed inclusions Zi ⊂
Xi of Gi-invariant subsets, the map X̂ |Ẑ1 ∧ X̂ |Ẑ2 → X̂1 × X̂2|Ẑ1 × Ẑ2 induces a
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map

(6.2.39) C∗(BG1, X̂ |Ẑ1) ∧C∗(BG2, X̂ |Ẑ2)→ C∗(B(G1 ×G2), X̂1 × X̂2|Ẑ1 × Ẑ2).

These maps satisfy the evident associativity diagram for a triple of pairs (Xi, Zi).
�

If the space we consider arises from a Kuranishi chart, it is natural at this stage
to also desuspend by the G-representation V .

Definition 6.21. For a G-representation V , we define

(6.2.40) C∗,c(BẐ;MX̂−V ) ≡ C∗(EG,F (SV , C∗,c(Ẑ;MX̂)))G.

Writing FẐ(S
V , (MX̂)mfib) for the spectrum of compactly supported sections

of (MX̂)mfib) (denoted in Appendix B.1 by Γc
Ẑ
(SV , (MX̂)mfib)), we can use the

adjunction homeomorphism

(6.2.41) F (SV , C∗,c(Ẑ;MX̂)) ∼= C∗,c(Ẑ;FẐ(S
V , (MX̂)mfib))

described in Lemma B.14 to see that this construction is homeomorphic to the
spectrum of sections that are compactly supported in the direction of Ẑ.

Lemma 6.22. An isomorphism from a product of Kuranishi charts X1 × X2 to a
boundary stratum of a Kuranishi chart X, determines a commutative diagram

(6.2.42)

C∗(BG1, X̂ |Ẑ−V1
1 ) ∧ C∗(BG2, X̂ |Ẑ−V2

2 ) C∗(BG, X̂ |Ẑ−V1⊕V2)

C∗,c0
rel∂ (BẐ1;MX̂−V1

1 ) ∧ C∗,c0
rel∂ (BẐ2;MX̂−V2

2 ) C∗,c0
rel∂ (BẐ;MX̂−V1⊕V2)

C
∗,c′0
rel∂ (BẐ1;MX̂−V1

1 ) ∧ C
∗,c′0
rel∂ (BẐ2;MX̂−V2

2 ) C
∗,c′0
rel∂ (BẐ;MX̂−V1⊕V2)

C∗,c
rel∂(BẐ1;MX̂−V1

1 ) ∧ C∗,c
rel∂(BẐ2;MX̂−V2

2 ) C∗,c
rel∂(BẐ;MX̂−V1⊕V2)

in which the vertical arrows on the right are equivalences and the vertical arrows
on the left induce equivalences on the derived smash product.

Proof. The vertical maps are compositions of product maps with boundary maps:
commutativity of the boundary maps follows by desuspending Diagram (6.2.33)
with the negative spheres, applying the Borel cochains, and using the compatibility
of function spectra with smash products as in Equation (2.2.1) in the top right
corner, and similarly in the other entries of the middle and right column. �

Note that we can collapse the collar to compare the first row in Diagram (6.2.42)

with the uncollared analogue. Moreover, smashing MX̂ with a spectrum k yields
a corresponding commutative diagram with coefficients in any spectrum.

Remark 6.23. At this stage, we point out the following difficulty: if X → X′ is an
inessential map of 〈S〉-Kuranishi charts (i.e. the corresponding covering map is a
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product), we obtain a diagram

(6.2.43)

X |Z MapX(Z,MX)

X ′|Z ′ MapX′(Z ′,MX ′)

which does not commute: the problem is that the section induced by an element of
X |Z under the top horizontal map vanishes on the other points lying in the same
orbit, while the map induced by the composition is invariant under the action. We
shall return to this discussion in Section 7, where we introduce a map in the stable
category represented by a zig-zag to resolve this issue.

6.2.4. The Adams and norm isomorphisms for charts. There are two remaining
steps in the comparison between virtual and compactly supported cochains. First,
we use a natural map

(6.2.44) (−)hG → (−)hG

from the homotopy orbits to the homotopy fixed points, known as the “norm map,”
which we review in Appendix C.4.

For any finite group G, the composition

(6.2.45) EG+ → S0 → Map(EG+, S
0)

induced by the projection EG→ ∗ yields for any G-spectrum Z a map

(6.2.46) Σ∞EG+ ∧ Z → F (Σ∞EG+, Z).

Passing to G-fixed points, we obtain the norm map

(6.2.47) (Σ∞EG+ ∧ Z)G → F (Σ∞EG+, Z)G.

The righthand side is the homotopy fixed point spectrum of Z and the Adams
isomorphism connects the lefthand side via a natural zig-zag of weak equivalences
to the homotopy orbits ZhG = EG+ ∧G Z. The cofiber of the norm map is by
definition the Tate fixed points of Z.

Specializing to X = Z ∧k for a G-spectrum Z and a Morava K-theory spectrum
k, the norm map takes the form

(6.2.48) (Σ∞EG+ ∧X ∧ k)G → F (Σ∞EG+, k ∧X)G,

Since in this case the Tate fixed point spectrum vanishes, Equation (6.2.48) is an
equivalence, as discussed in Appendix B.4. For the next statement, we fix for each
universe U a fibrant replacement functor QU (−) for orthogonal G-spectra such that
the assignment is externally multiplicative in the sense that there are associative
natural transformations

(6.2.49) QU1 ×QU2 → QU1⊕U2

of functors on SpG1
× SpG2

induced by the external smash product (see Section A.1.10
for the explicit construction we use and a discussion of its properties). Note that in
general, even when U1 and U2 are complete universes, U1 ⊕ U2 will not be a com-
plete G1 × G2 universe. We ultimately handle this issue by working with specific
universes given in terms of countable direct sums of the regular representation and
using the natural map

(6.2.50) ρG1 ⊕ ρG2 → ρG1 ⊗ ρG2
∼= ρG1×G2
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specified by the linear extension of the maps specified by the formulas

(6.2.51)

g1 7→
1√
#G2

∑

g∈G2

g1 ⊗ g

g2 7→
1√
#G1

∑

g∈G1

g ⊗ g2.

We discuss this point further in the paragraphs surrounding Equation A.1.85.

Lemma 6.24. When k is a Morava K-theory, the norm map induces a zig-zag of
equivalences

(6.2.52)

(
QU (EG+ ∧X |Z−V ∧ k)

)G
(QU (C

∗(EG;X |Z−V ∧ k))G

C∗(BG,X |Z−V ∧ k).

≃

≃

Moreover, an isomorphism from a product of Kuranishi charts X1×X2 to a boundary
stratum of a Kuranishi chart X determines a commutative diagram

(6.2.53)

(QU1(EG1,+ ∧X |Z−V1
1 ∧ k))G1∧

(QU2(EG2,+ ∧X |Z−V2
2 ∧ k))G2

(QU1⊕U2(EG12,+∧
X |Z−V1⊕V2

12 ∧ k))G12

(QU1(C
∗(EG1;X |Z−V1

1 ∧ k))G1∧
(QU2(C

∗(EG2;X |Z−V2
2 ∧ k))G2

(QU1⊕U2(C
∗(EG12;

X |Z−V1⊕V2 ∧ k))G12

C∗(BG1;X |Z−V1
1 )∧

C∗(BG2;X |Z−V2

2 )
C∗(BG12;X |Z−V1⊕V2

12 ).

Proof. The zig-zag of equivalences is comprised of the norm map, which is an
equivalence by hypothesis on k, and the composite

(6.2.54) C∗(BG;X |Z−V ) ∼= F (EG+, (X |Z−V )mfib)G

→ (QUF (EG+, (X |Z−V )mfib))G.

The commutativity of the product diagrams are a consequence of the externally
multiplicative properties of the functor Q− (see Proposition A.49 and Lemma A.54)
and of the norm map (see Proposition C.46). �

On the other hand, the spectrum EG+ ∧X |Z−V ∧k is (by construction) G-free.
For G-free spectra, the Adams isomorphism provides a natural weak equivalence
between the G-homotopy orbits and the G-fixed points, see Appendix C. To be
more precise, Definition C.6 and Proposition C.11 establish the following:

Lemma 6.25. There is a zig-zag of equivalences

(6.2.55) BX |Z−V ∧ k . . . (QU (EG+ ∧X |Z−V ∧ k))G.≃ ≃
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Moreover, an isomorphism from a product of Kuranishi charts X1×X2 to a boundary
stratum of a Kuranishi chart X, induces a commutative diagram

(6.2.56)

(QU1(EG1,+ ∧X |Z−V1
1 ∧ k))G1∧

(QU2(EG2,+ ∧X |Z−V2

2 ∧ k))G2

(BX |Z−V1
1 ∧ k)∧

(BX |Z−V2

2 ∧ k)

. . . . . .

(QU1⊕U2(EG+ ∧X |Z−V1⊕V2 ∧ k))G BX |Z−V1⊕V2 ∧ k.

Remark 6.26. Our eventual treatment of the Adams isomorphism will be substan-
tially more complicated than might be gleaned from the above discussion, because
of the need to establish suitable functoriality with respect to change of group. See
Section 7.3.4 and Appendix C.

6.2.5. Signpost: Spanier-Whitehead duality and Ambidexterity isomorphisms for
charts. To simplify the situation, let us consider a closed Kuranishi chart of dimen-
sion d− 1, and choose k to be a Morava K-theory spectrum: We have constructed
a zig-zag of equivalences

(6.2.57)

BX |Z−V−d ∧ k · · · (EG+ ∧X |Z−V−d ∧ k)G

C∗,c(BZ;MX−V−d ∧ k) · · · C∗(BG,X |Z−V−d ∧ k).

There are two essential remaining points at this stage:

(1) Studying the compatibility of these constructions with maps and products
of Kuranishi charts, and

(2) comparing the final term with an untwisted cochain spectrum.

We carry out the first part in Section 7. For the second, we note that, if the
manifold X is k-oriented, we obtain an equivalence of spectra over Z:

(6.2.58) MX ∧ k ∼= Z ⊼ Σd−1k,

where Z ⊼ Σd−1k is the trivial parametrized spectrum with fibre Sd−1 ∧ k. If this
orientation is G-equivariant, we conclude that we have an equivalence of orthogonal
G-spectra

(6.2.59) C∗,c(Z;MX−V−d ∧ k)→ C∗,c(Z; Ωk).

Assuming that we have started with a global chart, we end up with the desired
zig-zag

(6.2.60) Ωk→ C∗(BZ; Ωk)← · · · → BX |Z−V−d ∧ k→ Ωdk,

thus producing a homotopy type.
Because the problem of writing down orientations is non-trivial in the geometric

contexts that motivate our applications, we shall next turn to the problem of finding
conditions which guarantee the existence of orientations.
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6.3. Flag smooth Kuranishi charts and tangential spherical fibrations. As
we review in Section B.4, the Morava K-theories are complex oriented cohomology
theories. As a consequence, our strategy to produce K(n)-orientations of Kuranishi
presentations is to lift the spherical tangent fibration arising from the Milnor con-
struction to a (stably complex) vector bundle, then appeal to the orientability of
complex vector bundles with respect to the generalized cohomology theories which
we consider. The most straightforward way to do so would be to work in the context
of smooth Kuranishi charts; however, applying this to Floer theory requires more
analytic work than we are willing to carefully implement. Instead, our strategy is to
use the fact that the Kuranishi charts which appear in our examples submerse over
smooth manifolds with smooth fibres. This notion was axiomatised in Section 4.2,
but we recall all the basic notions here (since we do not discuss functoriality):

If X and B are (topological) 〈S〉-manifolds, we say that a map

(6.3.1) X → B

is a topological submersion if it is locally homeomorphic to a projection

(6.3.2) Rn1+n2 × [0,∞)Q → Rn1 × [0,∞)Q,

in a neighbourhood of each point lying in a stratum of X labelled by Q, via a
stratum-preserving map. We also define a fibrewise smooth structure on a topo-
logical submersion X → B as a choice of atlas for X consisting of product charts
Rn2 ×U → X over charts U → B, with transition functions which are continuously
differentiable in the fibre direction (depending continuously on the base).

With the above in mind, we recall from Definition 4.40, that a flag smooth
〈S〉-Kuranishi chart consists of

(1) a Kuranishi chart X ∈ ChartK〈S〉,
(2) a smooth 〈S〉-manifold B equipped with a G action,
(3) a G equivariant topological stratified submersion π : X → B, and
(4) a fibrewise smooth structure on π.

We require that the map s : X → V be smooth on each fibre of π.

Remark 6.27. In applications, X will be a moduli space of maps from a family of
Riemann surfaces with marked points, and B will be an abstract moduli space of
Riemann surfaces. In order to arrange for B to also be stratified by S, we shall
impose constraints on the degenerations in X .

We shall presently see that such a flag smooth structure on a Kuranishi chart
induces a lift of its Milnor spherical fibration to a vector bundle. The starting point
is to consider the fibrewise tangent space

(6.3.3) T πX → X

of the projection X → B.

Definition 6.28. We define the tangent space of X to be the direct sum of the
fibrewise tangent space with the pullback of the tangent space of B,

(6.3.4) TX ≡ T πX ⊕ π∗TB.

We write STX for the sphere bundle of TX, and STX |0 for the spherical fibration
over X obtained as the fibrewise cone of the complement of the origin in STX .
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For our later discussion, we note that the inclusion STX → STX |0 is a fibrewise
homotopy equivalence.

There is a natural notion of a product of flag smooth Kuranishi charts, given by
taking the product of the submersions, and the construction of the tangent bundle
of the chart is multiplicative, in the following sense:

Lemma 6.29. For flag smooth Kuranishi charts X1 and X2, there is a commutative
diagram

(6.3.5)

STX1 ⊼ STX2 ST (X1×X2)

STX1 |0 ⊼ STX2 |0 ST (X1×X2)|0

of homotopy equivalences of spherical fibrations over X1 ×X2. �

Unfortunately, there is no direct map from STX |0 to MX . We shall instead
construct a correspondence comparing them via a variant of Nash’s model for the
tangent space.

6.3.1. The Nash spherical fibration.

Definition 6.30 (c.f. [Nas55]). If B is a topological manifold, a Nash path
γ : [0,∞) → B is a path which is either constant or satisfies the property that
γ(t) 6= γ(0) for t 6= 0.

We now assume that B is a smooth manifold.

Definition 6.31. When B is smooth, we define NB → B to be the fiber bundle of
Nash paths which are differentiable at the origin. We let NB be the mapping cone
(homotopy cofibre) of the inclusion of paths with non-zero derivative.

The evaluation maps at any non-zero point (say 1) and of the derivative at the
origin yield a zig-zag:

(6.3.6) MB ← NB → STB|0.
These maps can be shown to be fibrewise equivalences overB by a direct application
of Nash’s argument (c.f. Proposition 6.34 below). This zig-zag is compatible with
products:

Lemma 6.32. The product of paths induces a fibrewise equivalence NB1 ⊼NB2 →
N (B1 ×B2), which fits in a commutative diagram

(6.3.7)

MB1 ⊼MB2 NB1 ⊼NB2 STB1 |0 ⊼ STB2 |0

M (B1 ×B2) N (B1 ×B2) ST (B1×B2)|0.

�

Assuming that π : X → B is a topological submersion over a smooth manifold
B equipped with a flag smooth structure, and that both X and B are without
boundary, we have:
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Definition 6.33. The Nash tangent space NX is the space of maps γ : [0,∞)2 →
X whose restriction to the diagonal is a Nash path, and such that the following
properties hold near the origin:

(1) The composition π ◦ γ is differentiable, and is independent of the second
coordinate.

(2) The family of curves in the fibres of π parametrised by the first coordinate
are differentiable at the origin, and the corresponding path of derivatives is
continuous.

The Nash spherical fibration NX is the cone of the complement of the locus
{γ | dγ = 0} ⊂ NX given by the vanishing of both directional derivatives at the
origin.

The differentiability conditions we have imposed imply that the Nash path ob-
tained by restriction to the diagonal can only be constant whenever the two direc-
tional derivatives vanish.

Proposition 6.34. The map NX → X is a sectioned fibre bundle, and the evalu-
ation maps

(6.3.8) (X ×X,X ×X \X)← (NX,NX \ {γ | dγ = 0})→ (TX, TX \X)

are fibrewise homotopy equivalences of pairs. In particular, the induced maps

(6.3.9) MX ← NX → STX |0
are equivalences of spherical fibrations, which are compatible with products as in
Diagram (6.3.7).

Proof. Consider the group Diffπ(X) of homeomorphisms of X which lift a diffeo-
morphism of B and whose restriction to fibers is given by a continous family of
smooth maps. The action of Diffπ(X) is locally transitive, and lifts to the spaces
MX ← NX → STX |0. It thus suffices to show that the map of fibers is a homotopy
equivalence.

To this end, we choose a local trivialisation of X as a product Rn+k ∼= Rn × Rk,
with the map to B given by the projection to Rk. Letting N0R

n+k denote the fiber
at the origin, the inclusion of linear maps gives a splitting of the map

(6.3.10) N0R
n+k → Rn+k|Rn+k \ 0

where the right hand side can be identified either with the fiber of MRn+k at
the origin, or with the fiber of Sn+k|0. It thus remains to prove that N0R

n+k

deformation retracts onto its subspace of linear maps.
The argument given by Nash applies verbatim: there are two steps to the ho-

motopy, the second of which is the straight-line homotopy, but the problem is that
this may violate the condition that 0 be the only point along the diagonal mapping
to the origin. So the first step is to run the homotopy which “pulls back” under
the obvious continuous splitting of [0, ǫ)2 → [0,∞)2. The key point is to pick ǫ
continously varying in all the parameters so that the resulting straight-line homo-
topy avoids the basepoint. This is ensured by the C1 conditions near the origin,
which provide a function ǫγ such that the origin is the only intersection point of
the image of the diagonal embedding [0, ǫγ ] → [0,∞)2 under γ with the ray gen-
erated by the negative of the sum of the directional derivatives of γ at 0. Since
all constructions take place before taking cones, this construction gives the desired
fiberwise homotopy equivalence, which preserves the sections by construction. �
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The preceding proposition justifies the terminology spherical fibration for NX ,
since it proves that its fiber is homotopy equivalent to a sphere of dimension equal
to that of X .

If X admits an action of a groupG preserving the flag smooth structure, then our
three models for the tangential spherical fibration are G-equivariant fiber bundles
over X , whose underlying non-equivariant fiber bundles are homotopy equivalent.

Remark 6.35. In fact, these fiber bundles are equivariantly homotopy equivalent,
but this shall not be required for our purpose.

6.3.2. Boundary maps for tangential fibrations. Given a manifold X with corners,

we noted in Section 6.2.2 that there is a natural map M∂X ⊼Mκ→MX̂ over the
collar, induced by a section of the Milnor fibration of the collar Mκ→ κ. Our goal
in this section is to extend this boundary map to the other models of the tangent
spherical fibration.

If π : X → B is a flag smooth 〈S〉-Kuranishi chart, then the induced map of
collared completions

(6.3.11) π̂ : X̂ → B̂

admits the structure of a flag smooth topological submersion, which is canonical
up to contractible choice: the smooth structure on B̂ is determined by the germ of
a collar along the boundary strata of the manifold B. We fix such a choice in this
section.

Define NX̂ to be the restriction to X̂ of the Nash tangent space of the union
of X with infinite collars as a flag smooth submersion over the union of B with
infinite collars.

The product decomposition along the collar yields a commutative diagram

(6.3.12)

M∂QX̂ ⊼MκQ N∂QX̂ ⊼NκQ ST∂QX̂ |0 ⊼ STκQ |0

MX̂ NX̂ STX̂ |0

where the second vertical arrow is given by the composition

(6.3.13) [0,∞)2 → [0,∞)2 × [0,∞)→ ∂QX̂ × κQ → X̂,

in which the first arrow is (t1, t2)→ (t1, t2, t2).
We shall use this diagram to construct a map from sections of the tangent space

over a boundary stratum to global sections. We start by considering the interval:
given a pairs of points (t0, t1) ∈ κ consider the path γ(t0, t1) : [0,∞) → κ whose
restriction to [0, 1] is the straight path from t0 to t1, and which has constant value
t1 outside the unit interval. This construction gives an embedding

(6.3.14) Mκ→ Nκ

which is a splitting of the evaluation map, and can be composed with the derivative
at the origin to give a map Mκ→ STκ|0. Taking products, we obtain maps

(6.3.15) MκQ → NκQ → STκQ |0.
Fixing the product section of MκQ chosen in Equation (6.2.31), which vanishes

at the endpoints of the collar, we can thus assign to a section of each of these
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spherical fibrations over ∂QX̂ a corresponding section of the spherical fibration
over X̂ which vanishes at the boundary, and thus obtain a commutative diagram:

(6.3.16)

M∂QX̂ N∂QX̂ ST∂QX̂ |0

MX̂ NX̂ STX̂ |0.

6.3.3. Tangentially twisted cochains. The outcome of the previous section is that we
can assign to a flag smooth Kuranishi chart X = (X,V, s,G, π,B) a G-equivariant
spherical fibration NX over Z, with maps to the Milnor and vectorial tangent
spaces. Passing to the spectra of section over the Borel construction, and to the
collared completion, we obtain a diagram of maps

(6.3.17)

C∗,c(BẐ;MX̂−V ) C∗,c(BẐ;NX̂−V )

C∗,c(BẐ;STX̂−V ) C∗,c(BẐ;STX̂−V |0).
It is straightforward to check that these maps are compatible with products, as

long as germs of smooth collars of the bases are appropriately chosen:

Definition 6.36. A compatible choice of smooth collars for the strata of an 〈S〉-
stratified smooth manifold B consists of a germ of smooth embedding for each

(6.3.18) ∂QB × [0, 1)Q\Q′ → ∂Q′

B,

for each pair Q′ ⊂ Q of totally ordered subset Q, which extends the inclusion
∂QB × {0}Q\Q′ → B. We require that, for each triple Q′′ ⊂ Q′ ⊂ Q, the following
diagram commutes:

(6.3.19)

∂QB × [0, 1)Q\Q′ × [0, 1)Q
′\Q′′

∂Q′

B × [0, 1)Q
′\Q′′

∂QB × [0, 1)Q\Q′′

∂Q′′

B.

Compatible choices of smooth collars on 〈Si〉-stratified smooth manifolds Bi for
i ∈ {1, 2} induce such a choice for their product, and a choice of smooth collars on
B induces one on each boundary stratum.

Lemma 6.37. An isomorphism of the product X1 × X2 of a pair of flag smooth
Kuranishi charts with a stratum of a Kuranishi chart X, and a choice of smooth
collars for the strata of B which restricts to product collars for the strata of B1×B2,
determine a commutative diagram

(6.3.20)

C∗,c
rel∂(BẐ1;MX̂−V

1 ) ∧C∗,c
rel∂(BẐ2;MX̂−V

2 ) C∗,c
rel∂(BẐ;MX̂−V )

C∗,c
rel∂(BẐ1;NX̂−V

1 ) ∧ C∗,c
rel∂(BẐ2;NX̂−V

2 ) C∗,c
rel∂(BẐ;NX̂−V )

C∗,c
rel∂(BẐ1;S

TX̂−V
1 |0) ∧ C∗,c

rel∂(BẐ2;S
TX̂−V
2 |0) C∗,c

rel∂(BẐ;STX̂−V |0)
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in which the righthand vertical arrows are equivalences and the lefthand vertical
arrows induce equivalences of derived smash products. �

We now provide a functorial and multiplicative comparison between the models
STX |0 and STX . The key problem is that the section of STκ|0 chosen to map
sections on the boundary to sections on X does not lie in the ordinary tangent
bundle. On the other hand, any identification (0, 1) ∼= R gives a section of STκ

which vanishes at the boundary, and hence a section of STκ|0 by inclusion. Thus,
it will suffice to compare the constructions associated to these two sections.

Let κ̂ denote the interval [0, 2], and consider the section of ST κ̂|0 which is given
by the section induced by Equation (6.2.31) in the interval [0, 1], and by (the closure
of) an identification of the interval (1, 2) with R along the second part. These two
sections both vanish (i.e., have value the basepoint) at 1, so the construction is

well-defined. Taking products, we obtain a section of ST κ̂Q |0 for every finite set Q.
The key observation is that we have two collapse maps

(6.3.21) κQ ← κ̂Q → κQ

corresponding to the first and the second interval, and these map the “concatenated
sections” to the first and the second section, respectively.

Let
ˆ̂
X be the completion of a flag smooth 〈S〉-manifold X obtained by attaching

the collar κ̂Q × ∂QX along the stratum labelled by Q. We then have natural maps

(6.3.22) X̂ ← ˆ̂
X → X̂

obtained respectively by collapsing the first and the second sets of collars.
Whenever Q labels a boundary stratum of X , we obtain a commutative diagram

(6.3.23)

ST∂QX̂ |0 ST∂Q ˆ̂
X |0 ST∂QX̂ |0 ST∂QX̂

STX̂ |0 ST
ˆ̂
X |0 STX̂ |0 STX̂

where the first vertical arrow corresponds to the section that moves in the cone
direction, and the third vertical arrow uses the identification of the collar with R.

We thus obtain a diagram of maps of compactly supported relative cochains.
This comparison diagram is multiplicative:

Lemma 6.38. An isomorphism of the product X1 × X2 of a pair of flag smooth
Kuranishi charts with a stratum of a Kuranishi chart X, together with a compatible
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choice of collars, determines a commutative diagram

(6.3.24)

C∗,c
rel∂(BẐ1;S

TX̂−V
1 |0) ∧ C∗,c

rel∂(BẐ2;S
TX̂−V
2 |0) C∗,c

rel∂(BẐ;STX̂−V |0)

C∗,c
rel∂(B

ˆ̂
Z1;S

T
ˆ̂
X−V

1 |0) ∧ C∗,c
rel∂(B

ˆ̂
Z2;S

T
ˆ̂
X−V

2 |0) C∗,c
rel∂(B

ˆ̂
Z;ST

ˆ̂
X−V |0)

C∗,c
rel∂(BẐ1;S

TX̂−V
1 |0) ∧ C∗,c

rel∂(BẐ2;S
TX̂−V
2 |0) C∗,c

rel∂(BẐ;STX̂−V |0)

C∗,c
rel∂(BẐ1;S

TX̂1−V ) ∧ C∗,c
rel∂(BẐ2;S

TX̂2−V ) C∗,c
rel∂(BẐ;STX̂−V )

in which the righthand vertical arrows are equivalences and the lefthand vertical
arrows induce equivalences of derived smash products. �

6.4. Complex-oriented charts. In this section, we shall complete the compari-
son between different models for the cochains on a chart. We prove that a choice of
stable almost complex structure on the virtual tangent bundle induces a trivializa-
tion of the tangentially twisted cochains whenever our choice of spectral coefficients
are complex-oriented. The formalism that we adopt for doing this is designed to
allow us to globalise these constructions.

6.4.1. Stable vector bundles over orbispace charts. We begin by considering vector
bundles attached to charts.

Definition 6.39. We define a stable vector bundle over an orbispace chart (Z,G)
to be a pair (I, V ), where I is a G-equivariant vector bundle over Z and V is a
finite-dimensional real G-representation. We write dI and dV for the dimensions
of I and V respectively, and define the virtual dimension of such a stable bundle to
be the difference dI − dV .

Let ℓ denote a trivialized real line; i.e., as above, we have a fixed identification
of ℓ with R. Both I and V give rise to vector bundles over the Borel construction
BZ = EG ×G Z. In a mild abuse of notation, we denote the associated spherical
fibrations by SI and SV .

Definition 6.40. Given a stable vector bundle over an orbispace chart, we have
the parametrized spectrum

(6.4.1) SI−V−ℓ ≡ FBZ(S
V+ℓ, (SI)mfib).

For an associative ring spectrum k, we associate to this setup the space of compactly
supported relative cochains from Definition 6.2:

(6.4.2) C∗,c
rel∂

(
BZ;SI−V−ℓ ∧ k

)
≡ F (BẐ+/B∂Ẑ+, SI−V−ℓ ∧ kmfib).

Remark 6.41. If Z is the zero locus of a Kuranishi chart, then the tangent bundle
of X , together with the obstruction space V , yields a stable vector bundle over Z.
Note as well that we are considering the case of an 〈S〉-Kuranishi chart here; in the

case of a 〈∂QS〉-chart, considered as an object of ChartSK, we shall more generally
take the direct sum of I with RQ.

Consider the following situation:
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(1) X1 and X2 are a pair of Kuranishi charts, and X1 × X2 is a codimension 1
boundary stratum of a chart X, and

(2) Xi and X are respectively equipped with stable vector bundles (Ii, Vi) and
(I, V ) and lines ℓi and ℓ.

Definition 6.42. We define a compatibility isomorphism to be G-equivariant iso-
morphisms of vector bundles over Z1 × Z2 and inner product spaces

I ∼= I1 × I2(6.4.3)

V ∼= V1 × V2.(6.4.4)

Pulling back I under the projection Ẑ → Z yields a collared vector bundle over

Ẑ, i.e., a canonical identification over each part of the collar with the pullback of
the restriction of I to the corresponding stratum.

Lemma 6.43. Given charts as above and a compatibility isomorphism, the product
of compactly supported relative cochains discussed in Lemma 6.3 followed by the
boundary inclusion of Equation (6.1.8) yield a map

(6.4.5)

C∗,c
rel∂

(
BẐ1;S

I1−V1−ℓ1 ∧ k
)
∧ C∗,c

rel∂

(
BẐ2;S

I2−V2−ℓ2 ∧ k
)

C∗,c
rel∂

(
BẐ;SI−V−ℓ ∧ k

)
.

�

The compatibility isomorphisms in our setting arise as part of classifying map
data that is compatible the monoidal structure on the categories of Kuranishi charts
equipped with tangent bundles that we consider; this implies coherent associativity
on the product maps described in Lemma 6.43. We will return to this point in
Section 8.3.3.

6.4.2. Complex vector bundles and orientations. We now study the consequences
of a complex structure on the vector bundles associated to charts.

Definition 6.44. A complex stable vector bundle over an orbispace chart (Z,G) is
a stable vector bundle over the chart such that I and V are equipped with complex
structures, which are preserved by the G-actions and compatible with the inner
product.

Passing to the Borel construction, a complex stable vector bundle gives rise to
a stable complex vector bundle over BZ.

Remark 6.45. In our application, the stable complex vector bundle will arise from
a complex-linear ∂ operator over the moduli space of Floer solutions. In order
to define such an operator, one must impose growth/decay conditions at infinity
which are best formulated by choosing a complex trivialisation over each orbit of
the tangent bundle of the ambient symplectic manifold. With such a choice, we
shall consider solutions which converge to a constant along one end, and vanish
along another. This asymmetric choice is required for multiplicativity to hold in
the form discussed in the next section.
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It is illuminating to express the notion of a complex orientation in terms of
parametrized spectra. For a G-representation V over a G-space Z, denote by SV

BZ

the parametrized space over BZ with total space SV ×BZ and fiber SV ; as usual,
when V = Rn, we write Sn

BZ for this parametrized space. Let k denote an associative
ring spectrum. Then the discussion in Section B.2 shows that a k-orientation of a
spherical fibration f : E → BZ with fiber SV gives rise to a trivialization in the
form of an equivalence of parametrized spectra

(6.4.6) E ∧ k→ S
|V |
BZ ∧ k

overBZ, where we are abusively denoting the fibrewise smash product of parametrized
spectra and the tensor of parametrized spectra over spectra as “∧”.

If we assume that k admits an equivariant complex orientation, returning to
the setting of a complex stable vector bundle over an orbispace chart, we have an
equivalence

(6.4.7) SI ∧ k→ SdI

BZ ∧ k.

More generally, we have the following zig-zag of equivalences

(6.4.8)

C∗,c
rel∂

(
BZ;SI−V−ℓ ∧ k

)
C∗,c

rel∂(BZ;SdI−V −ℓ ∧ k)

C∗,c
rel∂(BZ;SdI−dV −ℓ ∧ k).

Finally, desuspending by the models for spheres discussed in Appendix A.2.3 and
applying the multplicative comparisons of Proposition A.81, we obtain a zig-zag of
equivalences

(6.4.9) C∗,c
rel∂(BZ;SI−V−ℓ ∧ k)

[
dV − dI

2

]
→ · · · ← C∗,c

rel∂(BZ; Ωℓk).

6.4.3. Stable complex vector bundles over orbispace charts. Returning to the setting
of Section 6.4.1, we say that a compatibility isomorphism for Kuranishi charts
equipped with stable complex bundles consists of maps as in Equations (6.4.3) and
(6.4.4) which respect the complex structures.

As discussed in Section B.2, assuming that k admits a multiplicative complex
orientation, given vector bundles I1 and I2 which are respectively defined over BZ1

and BZ2, the diagram

(6.4.10)

(SI1 ∧ k) ⊼ (SI2 ∧ k) (S
dI1

BZ1
∧ k) ⊼ (S

dI2

BZ2
∧ k)

SI1⊕̄I2 ∧ k S
dI1+dI2

BZ1×BZ2
∧ k

of spectra over BZ1 × BZ2 commutes, where here the fiberwise smash product
is the external smash product from spaces over BZ1 and BZ2 to BZ1 × BZ2 and
analogously with the direct sum ⊕̄. Then a compatibility isomorphism for Kurniahsi
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charts equipped with stable complex bundles determines a commutative diagram

(6.4.11)

C∗,c
rel∂

(
BẐ1;S

I1−V1−ℓ1 ∧ k
)
∧

C∗,c
rel∂

(
BẐ2;S

I2−V2−ℓ2 ∧ k
) C∗,c

rel∂

(
BẐ;SI−V−ℓ ∧ k

)

C∗,c
rel∂

(
BẐ1;S

dI1−V1−ℓ1 ∧ k
)
∧

C∗,c
rel∂

(
BẐ2;S

dI2−V2−ℓ2 ∧ k
) C∗,c

rel∂

(
BẐ;SdI−V−ℓ ∧ k

)

C∗,c
rel∂(BẐ1;S

dI1−dV1−ℓ1 ∧ k)∧
C∗,c

rel∂(BẐ2;S
dI2−dV2−ℓ2 ∧ k)

C∗,c
rel∂(BẐ;SdI−dV −ℓ ∧ k)

in which the righthand vertical arrows are equivalences and the lefthand vertical
arrows induce equivalences of derived smash products. Using the multiplicativity of
the spheres S[n] and the comparisons of Equation (6.4.9), we obtain a commutative
diagram

(6.4.12)

C∗,c
rel∂

(
BẐ1;S

I1−V1−ℓ1 ∧ k
)
[
dV1−dI1

2 ]∧

C∗,c
rel∂

(
BẐ2;S

I2−V2−ℓ2 ∧ k
)
[
dV2−dI2

2 ]
C∗,c

rel∂

(
BẐ;SI−V−ℓ ∧ k

)
[dV −dI

2 ]

· · · · · ·

C∗,c
rel∂(BẐ1; Ω

ℓ1k)

∧C∗,c
rel∂(BẐ2; Ω

ℓ2k)
C∗,c

rel∂(BẐ; Ωℓk).

We will study the associativity of this diagram (and rely on coherent compat-
ibility conditions coming from a monoidal structure on the category of charts) in
Section 8.3 below.

6.4.4. Charts equipped with (relative) complex orientations. In order to describe
relative complex orientations, we start with a pair of stable vector spaces

(6.4.13) Vp = (V +
p , V −

p ) and Vq = (V +
q , V −

q )

such that V −
p and V −

q are equipped with complex structures (the reason for this
requirement will be clear once we discuss the multiplicative notion later in this
section).

Definition 6.46. A stable complex lift of the tangent space of a flag smooth 〈S〉-
Kuranishi chart (X,V, s,G,B, π) relative to Vp and Vq and a real line ℓq, consists
of the following data:

(1) A complex vector bundle on I over Z and a complex G-representation W ,
(2) a complex structure on V , compatible with the G-action and the inner prod-

uct,
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(3) and a G-equivariant real isomorphism of vector bundles over Z:

(6.4.14) V −
p ⊕ ℓq ⊕ TX ⊕W ⊕ V +

q
∼= V +

p ⊕ I ⊕W ⊕ V −
q .

Remark 6.47. The definition is modeled after the intended application in Floer
theory, see in particular Equation (11.4.12) (and also c.f. Definition 4.57). The
point is that the tangent space of moduli spaces is naturally isomorphic to the
linearisation of a Cauchy-Riemann operator with inhomogenous terms that are
not complex linear. Gluing operators associated to the cylindrical ends yields an
operator that admits a deformation to a complex linear operator, canonically up
to contractible choice [FH93, WW15, Sei08]. We have to work with stable vector
spaces Vp and Vq (rather than ordinary ones) because the operators associated to
the cylindrical ends may not be surjective.

We introduce the notation:

T(X) ≡ FBZ(S
V , (STX)mfib) ∧ SV −

p +V +
q −(V +

p +V −
q )(6.4.15)

P(X) ≡ FBZ(S
V +
p +ℓq+W+V +V −

q , (SV −
p +ℓq+TX+W+V +

q )mfib)(6.4.16)

∼= FBZ(S
V +
p +ℓq+W+V +V −

q , (SV +
p +I+W+V −

q )mfib)

I(X) ≡ FBZ(S
V+ℓq , (SI)mfib),(6.4.17)

for the induced parametrized spectra over BZ, where we omit the additional data
required to formulate a stable lift from the notation. Here also note that the no-

tation SV −
p +V +

q −(V +
p +V −

q ) (and subsequent manipulations of these terms) involves
the standard negative spheres S−V = FV S

0 in orthogonal G-spectra (see Sec-
tion A.1.2). In this context, (−)mfib denotes the fiberwise multiplicative fibrant
replacement functor (see Definition B.6).

We have natural G-equivariant fiberwise equivalences

(6.4.18)

T(X) FBZ(S
V+V +

p +V −
q , (SV −

p +TX+V +
q )mfib)

P(X) FBZ(S
V +
p +ℓq+W+V +V −

q , (SV −
p +ℓq+TX+W+V +

q )mfib)

I(X) FBZ(S
V +
p +ℓq+W+V +V −

q , (SV +
p +I+W+V −

q )mfib)

∧Sℓq+W

=

∧S
V +
p +V −

q

∼=

of parametrized spectra over BZ.
Passing to spectra of compactly supported sections, the equivalences of Equa-

tion (6.4.18) give rise to a zig-zag of equivalences

(6.4.19) C∗,c
rel∂ (BZ; I(X)) C∗,c

rel∂ (BZ;P(X)) C∗,c
rel∂ (BZ;T(X))

Given a stratum of ∂X of X, with normal bundle κ, we set

T(∂X) ≡ FB∂Ẑ(S
V , (ST∂X)mfib) ∧ SV −

p +V +
q −(V +

p +V −
q )(6.4.20)

P(∂X) ≡ FB∂Ẑ(S
V +
p +ℓq+κ+W+V +V −

q , (SV −
p +ℓq+TX+W+V +

q )mfib)(6.4.21)

∼= FB∂Ẑ(S
V +
p +ℓq+κ+W+V +V −

q , (SV +
p +I+W+V −

q )mfib)

I(∂X) ≡ FB∂Ẑ(S
V +ℓq+κ, (SI)mfib),(6.4.22)
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where we are implicitly using the isomorphism ST∂X̂+κ → STX̂ of parametrized
spectra over B∂Ẑ. Note that these definitions are slightly awkward because the
definition of these spectra uses the ambient chart X.

Lemma 6.48. We have a commutative diagram

(6.4.23)

T(∂X) P(∂X) I(∂X)

F (Sκ,T(X)) F (Sκ,P(X)) F (Sκ, I(X)),

where the vertical maps are induced by smashing with Sκ. �

Passing to spectra of compactly supported sections yields the following compar-
ison diagram.

Lemma 6.49. The maps of Lemma 6.48 induce commutative diagrams:

(6.4.24)

C∗,c
rel∂

(
B∂Ẑ;T(∂X)

)
C∗,c

rel∂

(
BẐ;T(X)

)

C∗,c
rel∂

(
B∂Ẑ;P(∂X)

)
C∗,c

rel∂

(
BẐ;P(X)

)

C∗,c
rel∂

(
B∂Ẑ; I(∂X)

)
C∗,c

rel∂

(
BẐ; I(X)

)
.

�

6.4.5. Multiplicativity of relative orientations. We now begin to discuss multiplica-
tivity of relative orientations. In contrast to the previous discussion, where we con-
structed comparison zig-zags of multiplicative functors, we shall ultimately perform
the multiplicative comparison using a bimodule which represents an equivalence.
Here we set up the action maps without considering the full bimodule structure.

To start, let

(6.4.25) Vp = (V +
p , V −

p ) and Vq = (V +
q , V −

q ) and Vr = (V +
r , V −

r )

be a triple of stable vector spaces, and consider a triple of data

(6.4.26) {(Xi, Ii,Wi, ℓi)}i=0,1 and (X, I,W, ℓ)

consisting of flag smooth Kuranishi charts equipped with stable complex vector
bundles, and associated lifts of the tangent space relative Vp and Vq for X1, Vq and
Vr for X2, and Vp and Vr for X. We assume that X1 ×X2 is a boundary stratum of
X and further that we are given complex isomorphisms

I1 ⊕ I2 ∼= I(6.4.27)

W1 ⊕ V −
q ⊕W2

∼= W.(6.4.28)

We express the necessary compatibility of the lifts as follows.
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Definition 6.50. The complex lifts of the tangent spaces of Xi are compatible with
the complex lift of the tangent space of X if the following diagram commutes:

(6.4.29)

V −
p ⊕ ℓq ⊕ TX1 ⊕W1⊕

V −
q ⊕ ℓr ⊕ TX2 ⊕W2 ⊕ V +

r

V −
p ⊕ TX ⊕W ⊕ ℓr ⊕ V +

r

V −
p ⊕ ℓq ⊕ TX1 ⊕W1⊕
V +
q ⊕ I2 ⊕W2 ⊕ V −

r

V +
p ⊕ I ⊕W ⊕ V −

r .

V +
p ⊕ I1 ⊕W1 ⊕ V −

q ⊕ I2 ⊕W2 ⊕ V −
r

In order to state the consequence of this compatibility at the level of spectra, we
use the notation from Equation (6.4.15):

Lemma 6.51. Assume that the complex lifts of the tangent spaces of Xi are com-
patible with the complex lift of the tangent space of X. Then there are natural maps

T(X1) ∧ T(X2)→ F (Sκ,T(X))(6.4.30)

I(X1) ∧ I(X2)→ F (Sκ, I(X))(6.4.31)

P(X1) ∧ T(X2)→ F (Sκ,P(X))(6.4.32)

I(X1) ∧ P(X2)→ F (Sκ,P(X)),(6.4.33)

of parametrized spectra over BẐ1 × BẐ2 such that the following three diagrams
commute:

(6.4.34)

I(X1) ∧ I(X2) I(X1) ∧ P(X2)

F (Sκ, I(X)) F (Sκ,P(X))

(6.4.35)

T(X1) ∧ T(X2) P(X1) ∧ T(X2)

F (Sκ,T(X)) F (Sκ,P(X))

(6.4.36)

I(X1) ∧ T(X2) I(X1) ∧ P(X2)

P(X1) ∧ T(X2) F (Sκ,P(X))
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Proof. The first two maps are entirely straightforward to construct. The third is
defined as the composition

(6.4.37)

FBẐ1
(SV +

p +ℓq+W1+V1+V −
q , (SV −

p +ℓq+TX1+W1+V +
q )mfib)

∧FBẐ2
(SV2 , (STX2)mfib) ∧ SV −

r +V +
p −(V +

r +V −
p )

FBẐ1×BẐ2
(SV +

r +ℓq+W1+V1+V2+V −
q ,

(SV −
p +ℓq+TX1+TX2+W1+V +

q ∧ SV −
r −V −

p )mfib)

FBẐ1×BẐ2
(SV +

r +ℓq+W1+V12+V −
q , (SV −

r +ℓq+T (X1×X2)+W1+V +
q )mfib)

FBẐ1×BẐ2
(Sκ, F (SV +

r +V12+W12+V −
q , SV −

r +ℓq+TX+W12+V +
q )),

∧SW2+κ

and the fourth map is given by

(6.4.38)

FBẐ1
(SV1+ℓq , (SI1)mfib) ∧ FBẐ2

(SV +
r +ℓp+W2+V2+V −

p , (SV +
r +I2+W2+V −

p )mfib)

FBẐ1×BẐ2
(SV +

r +ℓq+ℓp+W2+V12+V −
p , (SV +

r +I12+W2+V −
p )mfib)

FBẐ1×BẐ2
(Sℓp , F (SV +

r +ℓq+ℓp+W12+V12+V −
p , (SV +

r +I12+W12+V −
p )mfib)),

∧SW1

where we use the isomorphism κ ∼= ℓp to get the desired statement.
The commutativity of Diagrams (6.4.34) and (6.4.35) are easy to check. The

commutativity of Diagram (6.4.36) follows from Equation (6.4.29), which directly
implies the following diagram commutes:

(6.4.39)

FBẐ1
(SV1+ℓq , (SI1)mfib)

∧FBẐ2
(SV2 , (STX2)mfib)

∧SV −
r +V +

p −(V +
r +V −

p )

FBẐ1
(SV1+ℓq , (SI1)mfib)

∧FBẐ2
(SV +

r +ℓp+W2+V2+V −
p ,

(SV +
r +I2+W2+V −

p )mfib)

FBẐ1
(SV +

p +ℓq+W1+V1+V −
q ,

(SV −
p +ℓq+TX1+W1+V +

q )mfib)

∧FBẐ2
(SV2 , (STX2)mfib)

∧SV −
r +V +

p −(V +
r +V −

p )

FBẐ1×BẐ2
(Sκ, F (SV +

r +V12+W12+V −
q ,

SV −
r +ℓq+TX+W12+V +

q )).

�

Note that the three diagrams above are very similar to the diagrams expressing
the structure of I and T as spectral categories, a I-T-bimodule structure on P, and
the maps I → P and T → P as bimodule maps, except for the fact that we see a
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desuspension by ℓq. Identifying ℓq with the collar direction (as in Equation (6.1.8)),
we immediately obtain maps expressing these structures (except for associativity).

Corollary 6.52. The data of an isomorphism of the product X1 × X2 of a pair
of flag smooth Kuranishi charts with a boundary stratum of a Kuranishi chart X

induces maps

C∗,c
rel∂(BẐ1,T(X1)) ∧ C∗,c

rel∂(BẐ2,T(X2))→ C∗,c
rel∂(BẐ,T(X))(6.4.40)

C∗,c
rel∂(BẐ1, I(X1)) ∧ C∗,c

rel∂(BẐ2, I(X2))→ C∗,c
rel∂(BẐ, I(X))(6.4.41)

C∗,c
rel∂(BẐ1,P(X1)) ∧ C∗,c

rel∂(BẐ2,T(X2))→ C∗,c
rel∂(BẐ,P(X))(6.4.42)

C∗,c
rel∂(BẐ1, I(X1)) ∧ C∗,c

rel∂(BẐ2,P(X2))→ C∗,c
rel∂(BẐ,P(X)),(6.4.43)

such that the following three diagrams commute:

(6.4.44)

C∗,c
rel∂(BẐ1, I(X1))∧
C∗,c

rel∂(BẐ2, I(X2))

C∗,c
rel∂(BẐ1, I(X1))∧
C∗,c

rel∂(BẐ2,P(X2))

C∗,c
rel∂(BẐ, I(X)) C∗,c

rel∂(BẐ,P(X))

(6.4.45)

C∗,c
rel∂(BẐ1,T(X1))∧
C∗,c

rel∂(BẐ2,T(X2))

C∗,c
rel∂(BẐ1,P(X1))∧
C∗,c

rel∂(BẐ2,T(X2))

C∗,c
rel∂(BẐ,T(X)) C∗,c

rel∂(BẐ,P(X))

(6.4.46)

C∗,c
rel∂(BẐ1, I(X1))∧
C∗,c

rel∂(BẐ2,T(X2))

C∗,c
rel∂(BẐ1, I(X1))∧
C∗,c

rel∂(BẐ2,P(X2))

C∗,c
rel∂(BẐ1,P(X1)) ∧ C∗,c

rel∂(BẐ2,T(X2)) C∗,c
rel∂(BẐ,P(X))

�

6.5. Signpost: Construction of the homotopy type for global charts. We
summarise the constructions of this section in the case of a global, closed flag
smooth Kuranishi chart, equipped with a stable complex lift of its spherical tan-
gent fibration. The outcome of the previous sections is that we have a zig-zag of
equivalences

(6.5.1) X |Z−V−d ∧ k← · · · → C∗(BZ;STX−V −d ∧ k)← · · · → C∗(BZ; Ωℓk),

where the first zig-zag arises from the Spanier-Whitehead duality map, and the
equivalences of different models of the tangent spherical fibration, and the second
arises from orientation data.

If we compose these equivalences on the right side with the map

Ωℓk→ C∗(BZ; Ωℓk),(6.5.2)

(6.5.3)
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and compose with the map

(6.5.4) X |Z−V ∧ k→ Ωdk

on the left, we obtain a zig-zag representing a map

(6.5.5) Ωℓk→ Ωdk

whose homotopy cofiber is the homotopy type associated to this chart.

7. Coherent comparisons: support and duality

The goal of this section is to extend the constructions of the first half of Section 6
to the level of Kuranishi presentations by describing their functorial properties.
Specifically, by checking that the behaviour of boundary and product maps are
functorial, we extract spectral categories which interpolate between virtual cochains
and Milnor-twisted cochains.

7.1. Comparing compactly supported and ordinary cochains.

7.1.1. Orbispace flow categories with unique factorisation. By passing to zero-loci,
a Kuranishi flow category X : A→ ChartK determines an orbispace flow category,
and hence a pair of topological flow categories BZ andM, which are respectively
obtained by taking the Borel construction and the quotient of charts. These cate-
gories are equipped with a Π-equivariant functor BZ →M, as explained in Section
2.3. Applying the construction of Section 2.2.2, we obtain a spectrally enriched cat-
egory of relative cochains which we denote

(7.1.1) C∗
rel∂(B̂Z; Ωk).

Recall that the morphisms in this category are defined in Equation (2.3.43) using
the stratification of the morphism spaces BZ(p, q) arising from the compositions

(7.1.2) BZ(p, q)×BZ(q, r)→ BZ(p, r).

In the construction of virtual cochains, we instead used the stratification induced
by the inverse image of strata in the original flow categoryM. This section explains
a procedure for constructing a category built from relative cochains with respect to
this geometric stratification.

The fundamental problem for defining a category whose morphisms are

(7.1.3) C∗(BẐ(p, q), B∂Ẑ(p, q); Ωk)

is that the map

(7.1.4) BZ(p, q)×BZ(q, r)→ B∂qZ(p, r).

need not be a homeomorphism. One way to ensure that this condition holds is to
consider the following variant of orbispace flow categories:

Definition 7.1. An orbispace flow category with collars consists of a Π-equivariant
2-category A over P and a Π-equivariant strict 2-functor Â→ ChartO, so that we
have orbispace presentations

(7.1.5) (Z,G) : Â(p, q)→ ChartO〈P(p, q)〉
such that the following properties hold:
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(1) The functors X are Π-equivariant in the sense that the following diagram
commutes:

(7.1.6)

Â(p, q) ChartO〈P(p, q)〉

Â(π · p, π · q) ChartO〈P(π · p, π · q)〉
(2) For each triple (p, q, r) the following diagram commutes:

(7.1.7)

Â(p, q)× Â(q, r) ChartO〈P(p, q)〉 × ChartO〈P(q, r)〉

Â(p, r) ChartO〈P(p, r)〉,
where the right vertical map is given by taking the product with a collar
labelled by q.

We say that this flow category has unique factorisation if the following additional
condition holds:

(7.1.8)
each component of ∂qZα for α ∈ Â(p, r) is the homeomorphic image
of a single component of Zα− × Zα+ , for uniquely determined elements

α+ ∈ Â(p, q) and α− ∈ Â(q, r).

Remark 7.2. We can define a notion of Kuranishi flow category with collars replac-
ing ChartO by ChartK everywhere in the above definition, but we shall not use
this notion. The main reason for avoiding it is that it is awkward to formulate flag
smoothness (see Section 4.2) for Kuranishi flow categories with collars.

We can associate to an orbispace flow category with collars a Π-equivariant
topologically enriched category BZ with morphism spaces

(7.1.9) BZ(p, q) ≡ hocolim
α∈Â(p,q)

BZα

as before. The following result asserts that Condition (7.1.8) ensures that the two
stratifications of the Borel construction agree:

Lemma 7.3. If an orbispace flow category with collars has unique factorisation,
then for each totally ordered subset P with minimum p and maximum q, the inverse
image of ∂PM(p, q) in BZ(p, q) agrees with ∂PBZ(p, q).
Proof. The fact that the image of ∂PBZ(p, q) lies in ∂PM(p, q) follows from the
construction. The reverse inclusion is an immediate consequence of Condition
(7.1.8) that all strata are products. Indeed, the inverse image of ∂PM(p, q) in
BZ(p, q) is obtained as a homotopy colimit of all charts that intersect ∂PM(p, q),
and these are all product charts by our definition of an orbispace flow category with
collars. �

It is clear that passing from a flow category to its collared completion yields the
data of an orbispace flow category with collars. In the remainder of this section,
we explain how to associate to any orbispace flow category (Z,G) : A → ChartO
an orbispace flow category with collars, so that Condition (7.1.8) holds as well.

To begin, we define a new bicategory ~A with the 0-cells again given by the

elements of P , and with 1-cells given by categories ~A(p, q) that we now define.
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Definition 7.4. For p, q ∈ P, the category ~A(p, q) has

• objects given composable sequences ~α with source p and target q, i.e. a
sequence

(7.1.10) ~α = (α0, . . . , αk−1),

with αi ∈ A(pi, pi+1) for some totally ordered subset P ⊆ P(p, q), where we
set p0 = p and pk = q.
• A morphism

(7.1.11) ~f : ~α→ ~β

is specified as follows: writing P = (p1, . . . , pk) and Q = (q1, . . . , qℓ) for the

sequences of objects associated to ~α and ~β, we assume that we have an in-
clusion Q ⊂ P , which induces a decomposition of P into subsets {Pj} where
Pj = {p ∈ P | qj ≤ p < qj+1}. We will write Pj = {pj1 , pj2 , . . . , pjm} in
what follows. The morphism is then specified by morphisms for each j

(7.1.12) fj : µ(αj1 × αj2 . . .× αjm)→ βj

in A(qj , qj+1), where µ denotes the composition

(7.1.13) A(qj , pj1)×A(pj1 , pj2)× . . .×A(pjm , qj+1)→ A(qj , qj+1).

Note that there is a natural functor

(7.1.14) ~A(p, q)→ A(p, q),

which assigns to each sequence of objects ~α their product which we denote µ(~α).
We now assemble these into a 2-category structure:

Lemma 7.5. For p, q, r ∈ P, there are strictly associative functors

(7.1.15) ~A(p, q)× ~A(q, r)→ ~A(p, r),

so that the following diagram commutes:

(7.1.16)

~A(p, q)× ~A(q, r) ~A(p, r)

A(p, q)×A(q, r) A(p, r).

Proof. The functors in question are specified on objects by the assignment

(7.1.17) ~α× ~β 7→ ~α× ~β.

Onmorphisms, given inclusionsQ1 ⊆ P1 andQ2 ⊆ P2, we have an induced inclusion
Q1 ∐ {q} ∐ Q2 ⊆ P1 ∐ {q} ∐ P2. The induced partition of P1 ∐ {q} ∐ P2 is the
disjoint union of the partitions induced on P1 and P2, and so we take the product
of the collections of morphisms {f1

j } and {f2
j }. �

To express the functoriality of the relative cochains with respect to this construc-
tion, we need to use the twisted arrow category (see Section A.8). Given an orbis-
pace flow category (Z,G), we will replace our indexing 2-category A by applying
the twisted arrow category construction to each morphism category; Lemma A.172
shows that this produces a new 2-category. Specifically, we will use the Π-equivariant
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bicategory Tw ~A with morphism categories given by Tw ~A(p, q). Note that this 2-
category is equipped with a natural Π-equivariant 2-functor

(7.1.18) Tw ~A→ A.

We now define our replacement functor.

Proposition 7.6. Given an orbispace flow category (Z,G) : A→ ChartO, there is
a collared orbispace flow category with unique factorisation, given by functors

(7.1.19) (~Z, ~G) : Tw ~A(p, q)→ ChartO〈P(p, q)〉,
and a natural functor

(7.1.20) C∗
rel∂(BZ; Ωk)→ C∗

rel∂(B ~Z; Ωk)

which is an equivalence of spectrally enriched, Π-equivariant categories.

Proof. We begin by constructing the functor (~Z, ~G). Using the composite functor

(7.1.21) Tw ~A(p, q)→ ~A(p, q)→ A(p, q)

we obtain a product chart (Ẑµ~α, Ĝµ~α), considered as an object of ChartO〈P(p, q)〉
via the external monoidal product. In particular, Ẑµ~α is the collared completion of
the product

(7.1.22) Zα0 × Zα1 × . . .× Zαk−1
.

Now assume that we are given an arrow ~f : ~α → ~β. We define an object ~Z~f of

ChartO〈P(p, q)〉 by taking the union of the interiors of the strata of Ẑµ~α which are
labeled by totally ordered subsets of Q

(7.1.23) ~Z~f ≡
⋃

R⊂Q

Int(∂RẐµ~α).

This is a G~α-equivariant stratified submanifold of Ẑµ~α, and hence defines an object
of ChartO〈P(p, q)〉. Furthermore, it is straightforward to see that by construction

each component of ∂r ~Z~f is the homeomorphic image of a single component of

~Z~g− × ~Z~g+ , for uniquely determined elements ~g+ ∈ ~A(p, r) and ~g− ∈ ~A(r, q).
Next, we want to verify that this construction is functorial. Explicitly, given a

morphism in Tw ~A(p, q) from ~f : ~α→ ~β to ~g : ~α′ → ~β′, we need to construct a map
~Z~f → ~Z~g. The map is induced by the arrow from ~α→ ~α′.

The fact that these functors are compatible with composition and therefore
that the above construction assembles into a 2-functor again follows from the fact
that the twisted arrow category is monoidal and the multiplicative structure on
ChartO〈−〉 ultimately comes from the cartesian product.

Next, we want to map the spectral category of relative cochains C∗
rel∂(BZ; Ωk)

to C∗
rel∂(B

~Z; Ωk). Denoting the homotopy colimit of the spaces B~Z~f by

(7.1.24) B~Z(p, q) ≡ hocolim
~f∈Tw ~A(p,q)

B ~Z~f ,

we have a natural composition

(7.1.25) B~Z(p, q)→ hocolim
~f∈Tw ~A(p,q)

BZµ~α → hocolim
α∈A(p,q)

BZα = BZ(p, q),
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where the first arrow is induced by composing the inclusion ~Z~f ⊂ Ẑ~α with the

projection along the collar directions, and the second by the functor Tw ~A(p, q)→
A(p, q).

In particular, for each p and q, pullback of relative cochains yields a map of
spectra

(7.1.26) C∗
rel∂

(
BZ; Ωk

)
(p, q)→ C∗

rel∂

(
B ~Z; Ωk

)
(p, q).

This map is compatible with the composition and clearly Π-equivariant, so the
pullback induces the functor in Equation (7.1.20). Finally, it is straightforward to
check that these morphisms are pointwise equivalences of spectra. �

7.1.2. Compactly supported cochains. To study the functoriality of compactly sup-
ported cochains, note that a map f : α → β of orbispace charts induces a map
Zα → Zβ which is the composition of a finite-to-one map and an open inclusion.
Since compactly supported functions are contravariantly functorial with respect
to proper maps, and covariantly functorial with respect to open inclusions, this
suggests that we factor this map as

(7.1.27) Zα → Zf → Zβ,

where Zf the quotient of Zα by the kernel G⊥
f of the map Gα → Gβ . This quotient

admits a residual action of Gα/G
⊥
f
∼= Gβ , so that we can form the classifying space

(7.1.28) BZf ≡ Zf ×Gβ
EGβ

∼= B(Zα/G
⊥
f , Gβ , ∗).

The projection Zα → Zf and the surjection Gα → Gβ induce a map

BZα = B(Zα, Gα, ∗)→ B(Zα/G
⊥
f , Gβ , ∗) = BZf(7.1.29)

with homotopy fibre EG⊥
f , and which is therefore an equivalence.

We define

(7.1.30) C∗,c(BZf ; Ωk)

to be the cochains which are compactly supported over Zf (as in Definition 6.2).
The functoriality of compact support yields a diagram

(7.1.31) C∗,c(BZα; Ωk)← C∗,c(BZf ; Ωk)→ C∗,c(BZβ ; Ωk)

where the first map is pullback along the finite projection Zα → Zf , and the
second is pushforward along the open inclusion Zf → Zβ . In order to formulate the
functoriality of compactly supported cochains, we are thus again led to pass from
the category of orbispace charts to its twisted arrow category.

For the statement of the next result, recall that ChartO〈S〉 is the category with
objects orbispace charts stratified by S, and morphisms maps of orbispace charts re-
specting the stratification. In Equation (6.1.4), we introduced the relative cochains
of such an orbispace chart.

Proposition 7.7. The assignment f 7→ C∗,c
rel∂(BZf ; Ωk) extends to a functor

(7.1.32) TwChartO〈S〉 → Sp .

Proof. Given arrows fi : αi → βi in ChartO〈S〉, and a factorisation of f0 as h◦f1◦g,
the inclusion Zf0 → Zβ0 factors through Zh. The resulting map Zf0 → Zh is an
open inclusion, and we obtain a corresponding map

(7.1.33) C∗,c
rel∂(BZf0 ; Ωk)→ C∗,c

rel∂(BZh; Ωk).
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Composing with the pullback map from Zh to Zf1 , we obtain a map from the
compactly supported (relative) cochains of BZf0 to those of BZf1 :

(7.1.34) C∗,c
rel∂(BZf0 ; Ωk)→ C∗,c

rel∂(BZf1 ; Ωk).

In order to check the compatibility of this construction with composition, it will be
important to have an alternative construction: the projection Zα0 → Zf0 factors
through Zg, so we have a pullback map

(7.1.35) C∗,c
rel∂(BZf0 ; Ωk)→ C∗,c

rel∂(BZh; Ωk).

Composing with the pushforward map associated to the open inclusion of Zh in Zf1 ,
we also obtain a map of compactly supported (relative) cochains. The compatibil-
ity between proper pullback and open pushforward maps in compactly supported
cochains is then encoded by the commutativity of the diagram

(7.1.36)

C∗,c
rel∂(BZf0 ; Ωk) C∗,c

rel∂(BZh; Ωk)

C∗,c
rel∂(BZg; Ωk) C∗,c

rel∂(BZf1 ; Ωk).

�

Remark 7.8. In Equation (6.1.4), we defined the relative cochains by using the
collared completion. If the boundary is already equipped with a collar, or more
generally if it is a closed inclusion, we need not pass to the collared completion
first. This will be used below to avoid an unnecessary double collar.

This construction admits functorial boundary maps associated to collars: given
an element q of S, there is a natural functor

(7.1.37) ChartO〈∂qS〉 → ChartO〈∂S〉
which maps a chart stratified by a subset of ∂qS to the product with the collar κq

indexed by q. Letting ℓq denote a line associated to q, we have a natural map

(7.1.38) C∗,c
rel∂(BZ; Ωℓ+ℓqk)→ C∗,c

rel∂(BZ × κq; Ωℓk),

which defines a natural transformation between these two functors from ChartO〈∂qS〉
to spectra.

This construction is also functorial for products: given a pair S1 and S2 of
partially ordered sets, there is a natural functor

(7.1.39) ChartO〈S1〉 × ChartO〈S2〉 → ChartO〈S1 ∪ S2〉
given by taking the product of the underlying spaces and group actions. This
induces a functor on twisted arrow categories. Given a pair of real lines ℓ1 and ℓ2,
the homeomorphism BZf1 ×BZf2

∼= BZf1×f2 induces a natural map

(7.1.40) C∗,c
rel∂(BZf1 ; Ω

ℓ1k) ∧ C∗,c
rel∂(BZf2 ; Ω

ℓ2k)→ C∗,c
rel∂(BZf1×f2 ; Ω

ℓ1+ℓ2k)

which is also functorial in the inputs.
Given an orbispace presentation X : Â → ChartO〈S〉, and a ring spectrum k,

we define the compactly supported cochains of the presentation as the homotopy
colimit of the compactly supported cochains for all arrows. First, we assume that
the input is collared.
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Definition 7.9. Given a collared orbispace flow category as in Definition 7.1, we
define a Π-equivariant spectral category C∗,c

rel∂(BZ; Ωk) with objects elements of P,
with morphism spectra for a pair (p, q) given by the compactly supported relative
cochains

(7.1.41) C∗,c
rel∂(BZ; Ωk)(p, q) ≡ hocolim

f∈Tw Â(p,q)
C∗,c

rel∂(BZf ; Ω
ℓqk)

of the corresponding presentation, and composition given by the map

(7.1.42) C∗,c
rel∂(BZ; Ωk)(p, q) ∧ C∗,c

rel∂(BZ; Ωk)(q, r)→ C∗,c
rel∂(BZ; Ωk)(p, r)

induced by the product map from Equation (7.1.40), and the boundary map from
Equation (7.1.38) associated to the stratum labelled by q.

Recall that the attachment of a collar associates to each Kuranishi flow category
X : A→ ChartK an orbispace flow category with collars

(7.1.43) (Ẑ, G) : A(p, q)→ ChartO〈P(p, q)〉.
Applying the above construction, we have:

Definition 7.10. The category of compactly supported relative cochains associated
to a Kuranishi flow category X : A→ ChartK is the Π-equivariant spectral category
C∗,c(BZ; Ωk), with objects the elements of P and with morphism spectra

(7.1.44) C∗,c
rel∂(BZ; Ωk)(p, q) ≡ hocolim

f∈TwA(p,q)
C∗,c(BẐf , B∂Ẑf ; Ω

ℓqk).

Starting with the orbispace flow category with unique factorisation introduced

in Proposition 7.6, and applying Equation (7.1.41) to Â = Tw ~A, we can produce

another spectrally enriched category C∗,c(B ~Z; Ωk), with morphism spectra

(7.1.45) C∗,c
rel∂(B

~Z; Ωk)(p, q) ≡ hocolim
φ∈Tw2 ~A(p,q)

C∗,c(B~Zφ, B∂ ~Zφ; Ω
ℓqk),

where Tw2 ~A is the twisted arrow category of the category Tw ~A from Section 7.1.1,
and we write φ for a morphism in this category (this consists of a commutative
diagram as in Equation (A.8.1)). In analogy with Proposition 7.6, we have the
following result:

Lemma 7.11. There is a Π-equivariant spectrally enriched equivalence

(7.1.46) C∗,c
rel∂(B

~Z; Ωk)→ C∗,c
rel∂(BZ; Ωk).

Sketch of proof. Let

(7.1.47) µ : Tw2 ~A(p, q)→ TwA(p, q),

denote the (covariant) functor which is specified on objects by the assignment to a

commutative diagram representing an arrow in Tw ~A(p, q)

(7.1.48)

~α0
~β0

~α1
~β1.

~f0

~g

~f1

~h

of the arrow in A(p, q)

(7.1.49) µ~g : µ~α0 → µ~α1.
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It is clear that this assignment is functorial.
The desired comparison functor is then most easily described as the composition

of two maps: the first is the natural map

(7.1.50) hocolim
φ∈Tw2 ~A(p,q)

C∗,c(BẐµφ, B∂Ẑµφ; Ω
ℓqk)→

hocolim
f∈TwA(p,q)

C∗,c(BẐf , B∂Ẑf ; Ω
ℓqk).

associated to the pullback of the functor C∗,c(BẐf , ∂Ẑf ; Ω
ℓqk) to Tw2 ~A(p, q) along

µ. The second functor is the natural map

(7.1.51) hocolim
φ∈Tw2 ~A(p,q)

C∗,c(B ~Zφ, B∂ ~Zφ; Ω
ℓqk)→

hocolim
φ∈Tw2 ~A(p,q)

C∗,c(BẐµφ, B∂Ẑµφ; Ω
ℓqk)

induced by the open inclusion

(7.1.52) ~Zφ ⊂ Ẑµφ.

We can see these functors are equivalences by applying Quillen’s theorem A; the
fact that the categories A[u] have contractible nerve implies that the categorical
fibers are contractible. �

7.1.3. A different model for compactly supported cochains. In the remainder of Sec-
tion 7.1, we shall work with an orbispace flow category with unique factorisation as
in Definition 7.1, with the goal of comparing its compactly supported and ordinary
relative cochains.

Remark 7.12. The essential difficulty in implementing the desired comparison is
that the map

(7.1.53) BZα → BZ ≡ hocolim
α

BZα

is not the inclusion of the inverse image of an open subset of colimZα/Gα, hence
does not induce a map of compactly supported cochains over this space.

Let X : A → ChartO〈S〉 be an orbispace presentation of M. For each object
α ∈ A, define

(7.1.54) Zα ≡ hocolim
β∈A

Zβ ×M (Zα/Gα).

In other words, for each chart β, we take the open subset of Zβ consisting of points
whose projection to the spaceM lies in the footprint of the chart α, and (homotopy)
glue these spaces together over all objects β ∈ A. This construction is covariantly
functorial in α.

Lemma 7.13. The map Zα → Zβ induced by a morphism f : α → β is an open
embedding. �

Passing to Borel constructions, we define

(7.1.55) BZα ≡ hocolim
β∈A

BZβ ×Z Zα/Gα.

The corresponding functor A→ Top maps each arrow to an embedding lying over
the open embedding of footprints, so we obtain an induced covariant functor

(7.1.56) α 7→ C∗,c
rel∂(BZα; Ωk)
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where the support condition is again that cochains are required to vanish away from
the inverse image of a compact subset of Zα.

Passing to the homotopy colimit over the indexing category, we have the following
definition.

Definition 7.14. Let X : A→ ChartO〈S〉 be an orbispace presentation ofM. We
define the compactly supported cochains as

(7.1.57) C∗,c
rel∂(BZ•; Ωk) ≡ hocolim

α∈A
C∗,c

rel∂(BZα; Ωk).

This construction is functorial with respect to collars, as we have a natural map

(7.1.58) C∗,c(BZ•; Ωℓ+ℓqk)→ C∗,c
rel∂(B(Z × κq)•; Ωℓk)

which is analogous to Equation (7.1.38).
As to multiplicativity, we note that for a product presentation A(1) × A(2) →

ChartO, there is a natural homeomorphism

(7.1.59) BZα1 ×BZα2 → BZα1×α2

for each chart, which induces a map

(7.1.60) C∗,c
rel∂(BZ•(1); Ωℓ1k) ∧ C∗,c

rel∂(BZ•(2); Ωℓ1k)→ C∗,c
rel∂(BZ•(12); Ωℓ1+ℓ2k)

Remark 7.15. The functoriality of Equation (7.1.57) with respect to the indexing
category is more delicate: given a functor F : A(1)→ A(2), we have a natural map

(7.1.61) BZα → BZF (α)

which is compatible with the projection to Zα. We thus obtain a diagram

(7.1.62) C∗,c
rel∂(BZ•(1); Ωk)← hocolim

(f :α→β)∈A(1)
C∗,c

rel∂(BZF (α); Ωk)

→ C∗,c
rel∂(BZ•(2); Ωk).

We shall essentially avoid appealing to functoriality with respect to changing the
index category by arranging for Equation (7.1.61) to be an isomorphism.

We now put together the above ingredients to construct a spectral category
C∗,c

rel∂(BZ•; Ωk) associated to each orbispace flow category with unique factoriza-
tion. The factorization condition implies that the map

(7.1.63) hocolim
α1×α2∈Â(p,q)×Â(q,r)

Zα1 × Zα2 → hocolim
α∈Â(p,r)

∂qZα

is a homeomorphism. We have a corresponding homeomorphism after passing to
Borel constructions, and taking fibre products over Z(p, q) × Z(q, r) ∼= ∂qZ(p, r)
yields a homeomorphism

(7.1.64) Zα1 × Zα2 ∼= Zα1×α2 .

This allows us to bypass the zig-zag discussed in Remark 7.15.

Definition 7.16. Given an orbispace flow category with unique factorization, we
define

(7.1.65) C∗,c
rel∂(BZ•; Ωk)(p, q) ≡ hocolim

(f : α→β)∈Â(p,q)
C∗,c

rel∂(BZα; Ωℓqk).

The composition is induced by Equation (7.1.64) and yields a composition map

(7.1.66) C∗,c
rel∂(BZ•; Ωk)(p, q) ∧ C∗,c

rel∂(BZ•; Ωk)(q, r)→ C∗,c
rel∂(BZ•; Ωk)(p, r)

for triples in p, q, r ∈ P, which is associative and unital.
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7.1.4. Comparison with ordinary cochains. The starting point of the comparison
with ordinary cochains is to consider an orbispace presentation A → ChartO〈S〉:
there is a natural map

(7.1.67) C∗,c
rel∂(BZα; Ωk)→ C∗

rel∂(BZ; Ωk)

induced by the inclusion BZα → BZ and the inclusion of the space of compactly-
supported sections in the space of all sections. This map incudes a weak equivalence
of spectral categories.

Lemma 7.17. For each orbispace presentation, the map

(7.1.68) C∗,c
rel∂(BZ•; Ωk)→ C∗

rel∂(BZ; Ωk)

is an equivalence.

Proof. Expanding, we need to show that the map

(7.1.69) hocolim
α∈A

C∗,c
rel∂(BZα; Ωk)→ C∗

rel∂(hocolim
α∈A

BZα; Ωk)

is an equivalence. Since M is compact, we can choose a finite subcover of {Zα}
with indexing set J and a partition of unity subordinated to this subcover such that
the each function fi has compact support. We can now conclude that the evident
restriction map

(7.1.70) C∗,c
rel∂(hocolimα∈A

BZα; Ωk)→ hocolim
α∈A

C∗,c
rel∂(BZα; Ωk)

induced by the partition of unity is a weak equivalence. Since the comparison
between globally supported compactly-supported sections and all sections is a weak
equivalence, the result follows. �

The comparison map from Equation (7.1.67) is compatible both with collars and
with the product of presentations. Therefore, applying it to the collared categories
from Section 7.1.1, we conclude:

Lemma 7.18. Given an orbispace flow category with unique factorization, the
comparison map induces a Π-equivariant equivalence

(7.1.71) C∗,c
rel∂(BZ•; Ωk)→ C∗

rel∂(BZ; Ωk)

of spectral categories. �

7.1.5. Comparison with compactly supported cochains. Observe that, for each arrow
f : α→ β, we have a homeomorphism

(7.1.72) Zf ≡ Zβ ×X (Zα/Gα),

which induces an inclusion

(7.1.73) Zf → Zα

lying over the natural homeomorphism Zf/Gβ → Zα/Gα.
Passing to the compactly supported relative cochains of the Borel constructions,

we obtain a map

(7.1.74) C∗,c
rel∂(BZα,Ωk)→ C∗,c

rel∂(BZf ,Ωk).
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Lemma 7.19. The map of Equation (7.1.74) defines a natural transformation

between these functors from Tw Â to Sp and hence on passage to homotopy colimits
maps

(7.1.75) C∗,c
rel∂(BZ•; Ωk)→ C∗,c

rel∂(BZ; Ωk)

for each orbispace presentation. �

These maps are again compatible with boundaries and products, and so we
conclude:

Lemma 7.20. The map in Equation (7.1.75) induces a Π-equivariant equivalence
of spectral categories

(7.1.76) C∗,c
rel∂(BZ•; Ωk)→ C∗,c

rel∂(BZ; Ωk).

�

7.1.6. Signpost: Compactly supported cochains. We now continue the discussion of
Section 5.8: given a Kuranishi flow category, we have extended the maps from Equa-
tion (5.8.2) in one direction, to obtain a zig-zag of equivalences of Π-equivariant
spectral categories

(7.1.77) C∗(P ; Ωk)→ C∗
rel∂(BZ; Ωk)← · · · → C∗,c

rel∂(BZ; Ωk),

where the omitted arrows arise by applying Proposition 7.6, and Lematta 7.11, 7.18,
and 7.20.

What remains to be done to construct a homotopy type is to produce a further
zig-zag

(7.1.78) C∗,c
rel∂(BZ; Ωk) L99 · · · 99K BX|Z−V −d ∧ k.

In the absence of group actions, this is essentially asserting the existence of a
coherent (untwisted) Poincaré duality equivalence.

7.2. The Milnor fibrations for flow categories. Our goal in this section is
to prepare the ground to lift the equivalence from Section 6.2 to Kuranishi flow
categories, by constructing an associated spectral category built from the spectra
of sections of Milnor fibrations. We begin by addressing the technical problem
alluded to in Remark 6.11.

7.2.1. Inessential charts.

Definition 7.21. A map f : X → X′ of Kuranishi charts is inessential if the cov-
ering map X → X/Gf is trivial.

We extend the terminology to presentations and flow categories by saying that
they are inessential if all morphisms satisfy this property.

Proposition 7.22. Let X : A→ ChartK be a Π-equivariant Kuranishi flow category
lifting a topological flow categoryM. There exists an inessential Π-equivariant flow
category X : A→ ChartK lifting the collared completion M̂.

Proof. For each pair (p, q) of objects of P , we define a category A(p, q) with

(1) objects the pairs α = (α,Xα), with Xα an open subset of X̂α such that the

inclusion map Xα → X̂α induces the trivial map on fundamental groups,
and



ARNOLD CONJECTURE AND MORAVA K-THEORY 155

(2) morphisms from α to β given by a map α → β such that the image of Xα

in Xβ is contained in Xβ.

The assignment

(7.2.1) α 7→ Xα ≡ (Gα, Xα, Vα, sα)

thus specifies a functor X to ChartK.
By construction, X is a functor over M̂(p, q). The condition on fundamental

groups implies that all morphisms in the image of this functor are inessential. To see
that X is a Kuranishi presentation, we consider the evident functor A(p, q)→ A(p, q)
which assigns α to α. Since any sufficiently small neighbourhood of a point in a
manifold is inessential, Quillen’s Theorem A implies that the induced map on nerves

(7.2.2) N•A(p, q)[z]→ N•A(p, q)[z]

is a weak equivalence and hence N•A(p, q)[z] is contractible for each [z] ∈ M̂(p, q).
That is, X is a Kuranishi presentation.

We define the product by assigning to a pair α1 ∈ A(p, q) and α2 ∈ A(q, r) the
object

(7.2.3) α1 × α2 ≡ (α1 × α2, Xα1
×Xα2

× κq)

of A(q, r) consisting of the collar on the inclusion of Xα1
× Xα2

in the boundary
stratum associated to q. It is straightforward to see that this yields a Kuranishi
flow category X : A→ ChartK. �

Remark 7.23. The only reason to pass to the collared category is that it provides
us with a natural formula for the product of inessential charts. It is plausible that
one can use an inductive scheme to construct a flow category liftingM itself. One
reason that it may not be worth it to pursue such a result is that it is not difficult
to strengthen the above result by proving that all the cochains models for X are
equivalent to the corresponding ones for X, thus allowing us to produce from the
inessential presentation for M̂, the desired data forM itself.

We shall henceforth assume that every Kuranishi flow category we consider is
inessential.

7.2.2. One point compactifications and virtual cochains. Recall that we introduced
a (partial) compactification Xσ ⊂ X̄σ by adding a point at infinity for the vec-
tor space direction of all facets of the form Xτ × V ⊥

f (c.f. Lemma 5.10). Since
our discussion of Spanier-Whitehead duality for manifolds with boundary required
passing to collared completions (see Section 6.2.2), we revise the construction of

virtual cochains to incorporate collars, and thus define ˆ̄Xσ to be the pushout

(7.2.4)

∐

ρ
g
→τ

f
→σ

(X̂f◦g × V ⊥
g )+ ∧ SV ⊥

f

∐

ρ
f◦g
→ σ

X̂f◦g × SV ⊥
f◦g

∐

τ
f
→σ

(X̂f )+ ∧ SV ⊥
f ˆ̄Xσ
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in the category of based spaces, where the coproducts are taken over boundary

strata (i.e., injective maps). By construction, the embedding Ẑσ ⊂ ˆ̄Xσ avoids the
basepoint.

This construction is compatible with the maps to Vτ and Vσ, and thus yields a
functor

�ChartK〈S〉 → Sp(7.2.5)

σ 7→ ˆ̄Xσ|Ẑ−Vσ
σ .

Returning to the construction from Section 5.6, we introduce a new model

(7.2.6) B ˆ̄X |Ẑ−V (A) ≡ hocolim
σ∈�A

B ˆ̄Xσ|Ẑ−Vσ
σ

for the virtual cochains of a Kuranishi presentation. This model of the virtual
cochains is multiplicative, in that there is an associative product map

(7.2.7) B ˆ̄X |Ẑ−V (A(1)) ∧B ˆ̄X |Ẑ−V (A(2))→
BX̄ |Z−V (A(1)) ∧BX̄ |Z−V (A(2)).

For each σ ∈ �A, the map ˆ̄Xσ → X̄σ collapsing the collars induces an equivalence

(7.2.8) ˆ̄Xσ|Ẑσ → X̄σ|Zσ,

so we conclude:

Lemma 7.24. For a Kuranishi presentation A, the collapse map induces an equiv-
alence of spectra

(7.2.9) B ˆ̄X |Ẑ−V (A)→ BX̄ |Z−V (A).

�

The above equivalence is multiplicative.

Lemma 7.25. The following diagram commutes

(7.2.10)

B ˆ̄X |Ẑ−V (A(1)) ∧B ˆ̄X |Ẑ−V (A(2)) B ˆ̄X |Ẑ−V (A(1)×A(2))

BX̄ |Z−V (A(1)) ∧BX̄ |Z−V (A(2)) BX̄ |Z−V (A(1)×A(2)).

�

Equation (7.2.8) is also compatible with the inclusion of boundary strata, which
justifies the following definition, where we use brackets to denote shifts using the
multiplicative spheres of Appendix A.2.3.

Definition 7.26. Given a Kuranishi flow category X with objects P, we define the

Π-equivariant spectral category B ˆ̄X|Ẑ−V−d to have morphism spectra

(7.2.11) B ˆ̄X|Ẑ−V−d(p, q) ≡ B ˆ̄X |Ẑ−V+Vq−Vp(p, q)[deg p− deg q],

as in Equation (5.6.13). The composition is defined via the evident extension of
Lemma 5.22 and the unit is defined using the unit map S→ S[0].

We now have the following comparison.



ARNOLD CONJECTURE AND MORAVA K-THEORY 157

Lemma 7.27. The map in Equation (7.2.9) induces a Π-equivariant equivalence
of spectral categories

(7.2.12) B ˆ̄X|Ẑ−V−d → BX̄ |Z−V −d.

�

7.2.3. Milnor fibration and cubical diagrams. As in Section 7.2.2, consider a cube

σ in �ChartK〈S〉, with domain 1n. Let X̃σ denote the completion of X̂σ to a

manifold without boundary, obtained by attaching infinite ends, and let ˜̄Xσ be the

corresponding completion of ˆ̄Xσ. Given a map f : σ → τ of cubes in �ChartK〈S〉,
define ˆ̄Xf and ˜̄Xf to be the quotients of ˆ̄Xτ and ˜̄Xτ by G⊥

f .

Definition 7.28. The Milnor spherical fibration M ˆ̄Xf → X̂f is the fibrewise cone

of the complement of the diagonal section of the projection ˜̄Xf × X̂f → X̂f .

We consider M ˆ̄Xf as a fibration over a zero-locus ŝ−1
f (0) ≡ Ẑf . The group

Gf ≡ Gσ naturally acts on ˆ̄Xf and ˜̄Xf , and the maps to Vf ≡ Vτ are equivariant,

so the pair (Ẑf , Gf ) is an orbispace chart. Note that Ẑf is the image of Ẑτ under
the projection map, which is obtained by taking the free quotient by G⊥

f .
Thus, we can associate to a map f three models for the spectrum of compactly

supported relative sections of the Milnor fibration:

(7.2.13) C∗,c0
rel∂ (BẐf ;M

ˆ̄X−V
f ∧ k)← C

∗,c′0
rel∂ (BẐf ;M

ˆ̄X−V
f ∧ k)

→ C∗,c
rel∂(BẐf ;M

ˆ̄X−V
f ∧ k).

As in Section 6.2.3, c0 refers to sections with value in the conical part outside a
compact set, and which are inward pointing at the boundary; c refers to sections
which strictly vanish outside a compact set and on the boundary. The support
condition c′0 is a subset of the support condition c, and agrees with the support
condition c0 upon restricting to the union of the interior with the union of the
products of the boundary strata with half-collars [0, 1/2]. In order to minimise
needless repetitions, we write

(7.2.14) C∗,c̃
rel∂(BẐf ;M

ˆ̄X−V
f ∧ k)

for any of these models.
The proof of the following result is elementary, but it is the key reason for

introducing inessential charts:

Lemma 7.29. Given maps f : σ → τ and g : ρ→ σ, there is a natural equivalence
of spherical fibrations over Ẑg

(7.2.15) M ˆ̄Xf◦g →M ˆ̄Xg,

where the first fibration is obtained by pullback under the natural map Ẑg → Ẑf◦g.

Proof. By assumption, the covering space Xρ → Xf◦g is the product of Xf◦g with
Gf◦g, hence the covering space Xg → Xf◦g is the product of Xf◦g with G⊥

f . The

map of fibrations is then obtained on each point z in Ẑg by mapping X̂f◦g to the

covering sheet of X̂g containing the image of z. �
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Thus, for each composition f ◦ g, pullback defines maps of twisted cochains

(7.2.16) C∗,c̃
rel∂(BẐf◦g;M

ˆ̄X−V
f◦g ∧ k) C∗,c̃

rel∂(BẐg;M
ˆ̄X−V
g ∧ k)

that fit into the commutative diagram

(7.2.17)

C∗,c0
rel∂ (BẐf◦g;M

ˆ̄X−V
f◦g ∧ k) C∗,c0

rel∂ (BẐg;M
ˆ̄X−V
g ∧ k)

C
∗,c′0
rel∂ (BẐf◦g;M

ˆ̄X−V
f◦g ∧ k) C

∗,c′0
rel∂ (BẐg;M

ˆ̄X−V
g ∧ k)

C∗,c
rel∂(BẐf◦g;M

ˆ̄X−V
f◦g ∧ k) C∗,c

rel∂(BẐg;M
ˆ̄X−V
g ∧ k).

On the other hand, the inclusion of the collar together with the section of the
fibration in the collar direction (see Equation (6.2.31)) with appropriate values at
the ends, induce pushforward maps of twisted cochains

(7.2.18) C∗,c̃
rel∂(BẐf◦g;M

ˆ̄X−V
f◦g ∧ k)→ C∗,c̃

rel∂(BẐf ;M
ˆ̄X−V
f ∧ k),

which fit into an analogous compatibility diagram to Equation (7.2.17).
To state the compatibility between these two constructions, consider a factor-

ization f = g ◦ f ′ ◦ h, which induces a commutative diagram of pairs

(7.2.19)

(X̂f ′◦h × V ⊥
h × V ⊥

f × V ⊥
g , Ẑf ′◦h) (X̂f × V ⊥

h × V ⊥
g◦f ′ , Ẑf)

(X̂f ′ × V ⊥
f × V ⊥

g , Ẑf ′) (X̂g◦f ′ × V ⊥
g◦f ′ , Ẑg◦f ′)

where the horizontal maps are quotient maps by the action of a finite group, and
the vertical maps are inclusions of boundary strata.

The outcome of the previous discussion is that we have a commutative diagram

(7.2.20)

C∗,c̃(BẐf ′◦h;M
ˆ̄X−V
f ′◦h ∧ k) C∗,c̃(BẐf ;M

ˆ̄X−V
f ∧ k)

C∗,c̃(BẐf ′ ;M ˆ̄X−V
f ′ ∧ k) C∗,c̃(BẐg◦f ′ ;M ˆ̄X−V

g◦f ′ ∧ k).

We can thus assign to each arrow from f to f ′ in Tw�ChartK〈S〉 the map

(7.2.21) C∗,c̃(BẐf ;M
ˆ̄X−V
f ∧ k)→ C∗,c̃(BẐf ′ ;M ˆ̄X−V

f ′ ∧ k)

obtained by composition around this diagram. To see that composition is asso-
ciative, we observe that for a composable pair of factorizations f = g ◦ f ′ ◦ h
and f ′ = g′ ◦ f ′′ ◦ h′ we have the following commutative diagram arising from an
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elaboration of Equation (7.2.19):
(7.2.22)

C∗,c̃(BẐf ′′◦h′◦h;M
ˆ̄X−V
f ′′◦h′◦h ∧ k) C∗,c̃(BẐf ′◦h;M

ˆ̄X−V
f ′◦h ∧ k) C∗,c̃(BẐf ;M

ˆ̄X−V
f ∧ k)

C∗,c̃(BẐf ′′◦h′ ;M ˆ̄X−V
f ′′◦h′ ∧ k) C∗,c̃(BẐf ′ ;M ˆ̄X−V

f ′ ∧ k) C∗,c̃(BẐg◦f ′ ;M ˆ̄X−V
g◦f ′ ∧ k)

C∗,c̃(BẐf ′′ ;M ˆ̄X−V
f ′′ ∧ k) C∗,c̃(BẐg′◦f ′′ ;M ˆ̄X−V

g′◦f ′′ ∧ k) C∗,c̃(BẐg◦g′◦f ′′ ;M ˆ̄X−V
g◦g′◦f ′′ ∧ k).

We then have the following lemma, which expresses the functoriality of pullback
and pushforward in this context.

Lemma 7.30. Given composable maps f2 ◦ f1 ◦ f0, the composite of pushforward
maps
(7.2.23)

C∗,c̃(BẐf2 ;M
ˆ̄X−V
f2
∧ k) C∗,c̃(BẐf2◦f1 ;M

ˆ̄X−V
f2◦f1

∧ k) C∗,c̃(BẐf2◦f1◦f0 ;M
ˆ̄X−V
f2◦f1◦f0

∧ k)

coincides with the map induced by pushforward of the composite

(7.2.24) C∗,c̃(BẐf2 ;M
ˆ̄X−V
f2
∧ k) C∗,c̃(BẐf2◦f1◦f0 ;M

ˆ̄X−V
f2◦f1◦f0

∧ k)

and the composite of pullback maps
(7.2.25)

C∗,c̃(BẐf0 ;M
ˆ̄X−V
f0
∧ k) C∗,c̃(BẐf1◦f0 ;M

ˆ̄X−V
f1◦f0

∧ k) C∗,c̃(BẐf2◦f1◦f0 ;M
ˆ̄X−V
f2◦f1◦f0

∧ k)

coincides with the pullback of the composite

(7.2.26) C∗,c̃(BẐf0 ;M
ˆ̄X−V
f0
∧ k) C∗,c̃(BẐf2◦f1◦f0 ;M

ˆ̄X−V
f2◦f1◦f0

∧ k)

Thus, since the lemma implies that the compositions along the outside of the
square of Equation (7.2.22) coincide with the maps in the square
(7.2.27)

C∗,c̃(BẐf ′′◦h′◦h;M
ˆ̄X−V
f ′′◦h′◦h ∧ k) C∗,c̃(BẐf ;M

ˆ̄X−V
f ∧ k)

C∗,c̃(BẐf ′′ ;M ˆ̄X−V
f ′′ ∧ k) C∗,c̃(BẐg◦g′◦f ′′ ;M ˆ̄X−V

g◦g′◦f ′′ ∧ k),

we conclude that this assignment is compatible with the composition in Tw�ChartK〈S〉,
which proves the following lemma.

Lemma 7.31. The assignment f 7→ C∗,c̃(BẐf ;M
ˆ̄X−V
f ∧ k) defines a functor

Tw�ChartK〈S〉 → Sp, and the maps in Equation (7.2.13) give rise to natural
transformations of the three models for compact support. �

7.2.4. Milnor-twisted cochains of flow categories. As a first step to apply Lemma
7.31 to flow categories, we note that the inclusion of a stratum Q ⊂ S gives rise to
a map of cochains

(7.2.28) C∗,c̃(B∂QẐf ;M∂Q ˆ̄X−V
f ∧ k)→ C∗,c̃(BẐf ;M

ˆ̄X−V
f ∧ k)
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induced by the inclusion of the collar κQ × ∂QẐf in Ẑf and the aforementioned
choice of section of the Milnor fibration of the collar.

The second step is to observe that the construction is multiplicative: given a pair
of arrows f ∈ �ChartK〈S1〉 and g ∈ �ChartK〈S2〉, the homeomorphism X̂f ×X̂g

∼=
X̂f×g induces a product map

(7.2.29) C∗,c̃(BẐf ;M
ˆ̄X−V
f ∧ k) ∧ C∗,c̃(BẐg;M

ˆ̄X−V
g ∧ k)

→ C∗,c̃(BẐf×g;M
ˆ̄X−V
f×g ∧ k).

Moreover, this product map is associative.
Putting these two ingredients together, we associate to each Kuranishi flow cat-

egory X the following:

Definition 7.32. The Π-equivariant spectral category C∗,c̃(BẐ;M ˆ̄X−V −d∧k) has
object set P and morphism spectra

(7.2.30) C∗,c̃(BẐ;M ˆ̄X−V −d ∧ k)(p, q) ≡
hocolim
f∈�A(p,q)

C∗,c̃(BẐf ;M
ˆ̄X
−V+Vq−Vp

f ∧ k)[deg p− deg q].

The product map

(7.2.31)

C∗,c̃(BẐ;M ˆ̄X−V−d ∧ k)(p, q) ∧ C∗,c̃(BẐ;M ˆ̄X−V −d ∧ k)(q, r)

C∗,c̃(BẐ;M ˆ̄X−V−d ∧ k)(p, r)

is defined by combining Equation (7.2.29), the boundary map associated to the q-
stratum of cubes of Kuranishi charts indexed by A(p, r), and the induced map of
homotopy colimits.

Having constructed categories for each of the support conditions c̃ ∈ {c, c0, c′0},
the compatibility of the maps in Equation (7.2.13) with the product yields compar-
ison functors:

Lemma 7.33. The comparison maps assemble to Π-equivariant spectral functors

(7.2.32)

C∗,c0
rel∂ (BẐ;M ˆ̄X−V−d ∧ k) C

∗,c′0
rel∂ (BẐ;M ˆ̄X−V−d ∧ k)

C∗,c
rel∂(BẐ;M ˆ̄X−V −d ∧ k)

which are DK-equivalences of spectral categories. �

7.3. Spanier-Whitehead duality. In Section 6.2, we constructed a comparison
between virtual cochains and cochains twisted by the Milnor model of the tangent
bundle. The ingredients used were Spanier-Whitehead duality, the Adams isomor-
phism, and the fact that the norm map with coefficients in Morava K-theory is an
equivalence.

In this section, we realize the Spanier-Whitehead duality equivalence as a functo-
rial map, allowing us to prove an equivalence between categories constructed from
cochains twisted by the Milnor model and the homotopy fixed points of the spaces
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underlying the construction of virtual cochains. At the end, we explain how to ap-
ply the norm map and the Adams isomorphism to complete the comparison, though
the details of most of the constructions (especially for the Adams isomorphism) are
postponed to Appendix C.

7.3.1. Functorial Spanier-Whitehead duality for manifolds. For expositional clarity,
we begin by discussing the case of manifolds. The essential problem is that, if N is
a finite group and X is a manifold which is a trivial cover of X/N (with fiber N),
the diagram

(7.3.1)

X+ MapX(X,MX)

X+/N MapX/N (X/N,MX/N)

does not commute. In fact, it fails to commute already for X = N . So the
comparison between the maps used to build the virtual cochains and those used to
build the twisted cochains requires a more elaborate construction.

We introduce the based space

(7.3.2) ℳapX/N (X,S0) ≡ X+ ∧N Map(N+, S
0)

whose points we think of as represented by a point in X/N , and a map from the
fiber to S0. We have natural maps

(7.3.3) X+ →ℳapX/N (X,S0)← X+/N,

where the rightward arrow is fibrewise Spanier-Whitehead duality

(7.3.4) X+
∼= X+ ∧N N → X+ ∧N Map(N+, S

0),

induced by the map θn : N → Map(N+, S
0) specified by θn(x) = ∗ unless x = n, and

the leftward arrow is the inclusion of constant maps with value on the distinguished
orbit the non-basepoint in S0.

We also have a natural map

(7.3.5) ℳapX/N (X,S0)→ MapX(X,MX)

given by smashing the composition

(7.3.6) ℳapX/N (X,S0)→ X/N → MapX/N (X/N,MX/N)→ MapX(X,MX)

with the map

(7.3.7) ℳapX/N (X,S0)→ Map(X,S0)

induced by the fact that X → X/N is assumed to be a trivial cover. The point of
all of this is the following compatibility:

Lemma 7.34. The following diagram commutes

(7.3.8)

X+ MapX(X,MX)

ℳapX/N (X,S0)

X+/N MapX/N (X/N,MX/N)
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�

None of the map above are equivalences, but this can be addressed by passing
to the stable category. As an initial step, we consider the spectrum

(7.3.9) ℱX/N (X,S) ≡ X+ ∧N F (N+, (S)
mfib).

Remark 7.35. Note that the fibrant replacement functor used here involves only
trivial representations. This facilitates comparisons with the twisted cochains, and
computes the desired homotopy type because we shall eventually pass to homotopy
fixed points. In Appendix C, we shall have occasion to use a fibrant replacement
functor involving all representations.

Once again, we have natural maps

(7.3.10) Σ∞X+ ℱX/N (X,S) Σ∞X+/N

induced by duality and the inclusion of the zero-sections; these are underlying
equivalences (see Lemma C.15). There is also a natural map

(7.3.11) ℱX/N (X,S)→ C∗,c(X ;MX)

defined as above; this is induced from the composite

(7.3.12) X+ ∧N F (N+,S
mfib)→ X+/N → C∗,c(X/N ;MX/N)→ C∗,c(X ;MX),

where the first map is induced by the collapse map, the second by the Spanier-
Whitehead map (the inclusion of constant sections), and the last by pullback of
sections.

The following lemma now expresses the compatibility of these constructions; it
is a specialization of the equivariant version we actually use, which is stated below.

Lemma 7.36. The following diagram commutes, and the three maps in the top
right triangle are (underlying) equivalences of spectra:

(7.3.13)

Σ∞X+ C∗,c(X ;MX)

ℱX/N (X,S)

Σ∞X+/N C∗,c(X/N ;MX/N)

Proof. The bottom square commutes essentially by construction, and the top trian-
gle commutes from the definition of the Spanier-Whitehead duality map, since the
inclusion of constant sections factors through the projection to X+/N . We have al-
ready explained why both the top and downward arrow are underlying equivalences;
the remaining arrow immediately follows. �

The constructions above can be carried out assuming an ambient G-action, ex-
tend to closed subsets as well as to manifolds with boundary, and can be formulated
with coefficients in any spectrum k. Specifically, if we suppose that X is a man-
ifold with boundary with an action of a finite group G, N ⊂ G is a subgroup
such that X → X/N is a trivial cover, and Z ⊂ X is a closed subset, then we
have a G-spectrum ℱX|Z/N (X |Z, k) defined in analogy with non-equivariant ver-
sion (see Definition C.12). The following result follows via the same argument as
Lemma 7.36.
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Lemma 7.37. The following diagram of G-spectra commutes, and the three maps
in the top right triangle are equivalences of spectra:

(7.3.14)

Σ∞X |Z+ C∗,c0
rel∂ (Z;MX ∧ k)

ℱX|Z/N (X |Z, k)

Σ∞X |Z+/N C∗,c0
rel∂ (Z/N,MX/N ∧ k)

�

We need to study the compatibility of this construction with suspensions, prod-

ucts, and boundaries: first, if SV ⊥

is a G-sphere, the inclusion

(7.3.15) SV ⊥ ∧X |Z → (SV ⊥ ∧X+)|Z
(see Equation (5.2.9)), induces a map

(7.3.16)

SV ⊥ ∧ℱX|Z/N (X |Z, k) ℱ(SV ⊥∧X|Z)/N (SV ⊥ ∧X |Z, k)

ℱ(SV ⊥∧X+)|Z/N ((SV ⊥ ∧X+)|Z, k).

On the other hand, since Z lies away from the cone point of SV ⊥ ∧ X+, we can

make sense of the Milnor fibration M
(
SV ⊥ ∧X+

)
as a spherical fibration over Z,

and we have natural maps

(7.3.17) ℱ(SV ⊥∧X|Z)/N (SV ⊥ ∧X |Z, k)→ C∗,c0
rel∂ (Z;M(SV ⊥ ∧X+) ∧ k)

← ΣV ⊥

C∗,c0
rel∂ (Z;MX ∧ k).

Passing to the adjoint of these maps, and introducing a direct sum decomposition
W = V ⊕ V ⊥, we have:

Lemma 7.38. The following diagram commutes:

(7.3.18)

X |Z−V ∧ k (SV ⊥ ∧X+)|Z−W ∧ k

ℱX|Z/N (X |Z, k)−V ℱ(SV ⊥∧X+)|Z/N ((SV ⊥

+ ∧X)|Z, k)−W

C∗,c0
rel∂ (Z;MX−V ∧ k) C∗,c0

rel∂ (Z;M(SV ⊥

+ ∧X)−W ∧ k).

�

Next, we assume that X is stratified, and consider the inclusion of a boundary
stratum ∂QX ⊂ X . Passing to the collared completion as in Section 6.2.3, and

using the modified map from X̂ |Ẑ to C∗,c0(Ẑ,MX̂) from that section yields:
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Lemma 7.39. The following diagram of G-spectra commutes:

(7.3.19)

∂QX̂ |∂QẐ ℱ∂QX̂|∂QẐ/N (∂QX̂ |∂QẐ, k) C∗,c0
rel∂ (∂

QẐ;MX̂)

X̂ |Ẑ ℱX̂|Ẑ/N (X̂ |Ẑ, k) C∗,c0
rel∂ (Ẑ;MX̂)

�

Finally, we note the compatibility of this construction with products: for each
pair of triples (Xi, Zi, Ni) for i = 0, 1, we have a natural map

(7.3.20)

ℱX0|Z0/N0
(X0|Z0, k) ∧ℱX1|Z1/N1

(X1|Z1, k)

ℱX0×X1|Z0×Z1/(N0×N1)(X0 ×X1|Z0 × Z1, k).

given by the smash product in the base and the fiber (this uses the fact that the
fibrant replacement functor we use is multiplicative). As discussed in Lemma C.14,
these maps are associative and unital.

Lemma 7.40. The diagrams

(7.3.21)

X0|Z0 ∧X1|Z1 ℱX0|Z0/N0
(X0|Z0, k) ∧ℱX1|Z1/N1

(X1|Z1, k)

X0 ×X1|Z0 × Z1 ℱX0×X1|Z0×Z1/(N0×N1)(X0 ×X1|Z0 × Z1, k).

and

(7.3.22)
ℱX0|Z0/N0

(X0|Z0, k) ∧ℱX1|Z1/N1
(X1|Z1, k) C∗,c0

rel∂ (Z0;MX0) ∧ C∗,c0
rel∂ (Z1;MX1)

ℱX0×X1|Z0×Z1/(N0×N1)(X0 ×X1|Z0 × Z1, k) C∗,c0
rel∂ (Z0 × Z1;MX0 ×X1)

commute.

Proof. The first square commutes by Lemma 6.9. That lemma also implies that
the second square commutes, when combined with the easy check that the natural
inclusion of sections is multiplicative. �

7.3.2. Functorial Spanier-Whitehead duality for Kuranishi charts. In the previous
section, we assembled all the properties of the Spanier-Whitehead equivalence that
are required to set up a functorial natural transformation from the virtual cochains
of Kuranishi presentations to the cochains of the zero-loci twisted by the Milnor
model of the tangent fibration. In order to formulate the comparison, we consider
a refinement of the category of cubes:

Definition 7.41. The category �SubChartK〈S〉 of cubes of Kuranishi charts with
a choice of freely acting subgroup is the category with

(1) objects given by pairs (σ,N), where σ is a cube of inessential Kuranishi
charts and N ⊂ Gσ is a subgroup acting freely on Xσ, and

(2) morphisms from (σ,N) to (σ′, N ′) given by a map f : σ → σ′ such that N ′

is contained in f(N).
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Consider the category Speq of equivariant spectra, which can be thought of

as a stabilization of the category Chart∅O; objects consist of pairs (G,X) where
G is a finite group and X is a G-spectrum. We now construct a functor from
Tw�SubChartK〈S〉 to the category of equivariant spectra which is given on ob-
jects by the assignment

(7.3.23) f 7→ (Gf ,ℱX̄f |Zf

N′

(X̄f |Zf , k)
−Vf )

where f is an arrow from (σ,N) to (σ′, N ′), and we recall that Vf ≡ Vσ. Observe

that
Xf |Zf

N ′ is also the quotient ofX |Z by the free action of f−1(N ′). On morphisms,
the functor is given by the following special case of Lemma C.29:

Lemma 7.42. Each factorization

(7.3.24)

(σ0, N0) (σ′
0, N

′
0)

(σ1, N1) (σ′
1, N

′
1)

f0

g

f1

h

induces a natural map

(7.3.25) ℱX̄f0
|Zf0

/N ′
0
(X̄f0 |Zf0 , k)

−Vf0 → ℱX̄f1
|Zf1

/N ′
1
(X̄f1 |Zf1 , k)

−Vf1 .

Proof. The orthogonal complement of the inclusion Vf0 → Vf1 is V ⊥
g . By adjunc-

tion, it suffices to construct a map

(7.3.26) SV ⊥
g ∧ℱX̄f0

|Zf0
/N ′

0
(X̄f0 |Zf0 , k)→ ℱX̄f1

|Zf1
/N ′

1
(X̄f1 |Zf1 , k).

Recall that Xf0 is the quotient of Xσ0 by G⊥
f0
. Factoring f0 = h ◦ f1 ◦ g, we can

describe Xf0 instead as the quotient of Xg by G⊥
h◦f1

. Recalling that the product of

Xg with V ⊥
g has a natural embedding in Xσ1 , we have a natural map

(7.3.27)

SV ⊥
g ∧ℱX̄f0

|Zf0
/N ′

0
(X̄f0 |Zf0 , k)

ℱ
(S

V ⊥
g ∧(X̄g)+)|Zg/(h◦f1)−1N ′

0

((SV ⊥
g ∧ (X̄g)+)|Zg/G

⊥
h◦f1

, k).

Thus, we need to construct a further map from the target of the above map to
ℱX̄f1

|Zf1
/N ′

1
(X̄f1 |Zf1 , k).

We first construct a map V ⊥
g × (Xf0/N

′
0)→ Xf1/N

′
1: we have a natural map

(7.3.28) V ⊥
g ×Xg → Xσ1 → Xf1 ,

so it suffices to show that this map descends to the quotients. This follows from
the inclusion h−1(N ′

0) ⊂ N ′
1, and the description of Xf1/N

′
1 as the quotient of Xσ1

by the inverse image of N ′
1 under f1, and of Xf0/N

′
0 as the quotient of Xg by the

inverse image of N ′
0 under h ◦ f1.

Passing to fibrewise compactifications and taking the cone on the complement
of zero-loci, we obtain a map

(7.3.29) (SV ⊥
g ∧ (X̄g)+)|Zg/(h ◦ f1)−1N ′

0 → X̄f1 |Zf1/N
′
1.

To complete the construction, we must relate the quotient of (SV ⊥
g ∧ (X̄g)+)|Zg

by G⊥
h◦f1

(i.e., the total space of the fibrewise spectrum of maps in the target of
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Equation (7.3.27)) to the subset of X̄f1 |Zf1 lying over the image of the above map.

This subset is precisely the image of (SV ⊥
g ∧ (X̄g)+)|Zg under f1, i.e.,

(7.3.30) (SV ⊥
g ∧ (X̄g)+)|Zg/(h ◦ f1)−1N ′

0 ×X̄f1
|Zf1

/N ′
1
X̄f1 |Zf1

∼= (SV ⊥
g ∧ (X̄g)+)|Zg/G

⊥
f1 .

The evident inclusion G⊥
f1
→ G⊥

h◦f1
yields a covering map

(7.3.31) (SV ⊥
g ∧ (X̄g)+)|Zg/G

⊥
f1 → (SV ⊥

g ∧ (X̄g)+)|Zg/G
⊥
h◦f1 ,

and hence a pullback map

(7.3.32)

ℱ
(S

V ⊥
g ∧(X̄g)+)|Zg/(h◦f1)−1N ′

0

((SV ⊥
g ∧ (X̄g)+)|Zg/G

⊥
h◦f1

, k)

ℱ
(S

V ⊥
g ∧(X̄g)+)|Zg/(h◦f1)−1N ′

0

((SV ⊥
g ∧ (X̄g)+)|Zg/G

⊥
f1
, k).

On the other hand, the inclusion of (SV ⊥
g ∧ (X̄g)+)|Zg/G

⊥
f1

in X̄f1 |Zf1 yields an
inclusion

(7.3.33)

ℱ
(S

V ⊥
g ∧(X̄g)+)|Zg/(h◦f1)−1N ′

0

((SV ⊥
g ∧ (X̄g)+)|Zg/G

⊥
f1
, k)

ℱX̄f1
|Zf1

/N ′
1
(X̄f1 |Zf1 , k).

Thus, composing Equation (7.3.33) with Equation (7.3.32) and Equation (7.3.27)
yields the result. �

This assignment on morphisms is compatible with the composition in the twisted
arrow category.

Proposition 7.43. The assignment

(7.3.34) f 7→ (Gf ,ℱX̄f |Zf

N′

(X̄f |Zf , k)
−Vf )

specifies a functor

(7.3.35) Tw�SubChartK〈S〉 → Speq
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Proof. Given factorizations f0 = id ◦f1 ◦ g0 and f1 = id ◦f2 ◦ g1, we need to show
that the diagram

(7.3.36)

SV ⊥
g1 ∧ SV ⊥

g0∧
ℱX̄f0

|Zf0
/N ′

0
(X̄f0 |Zf0 , k)

SV ⊥
g1 ∧ℱX̄f1

|Zf1
/N ′

1
(X̄f1 |Zf1 , k)

SV ⊥
g1

⊕V ⊥
g0∧

ℱX̄f0 |Zf0
/N ′

0
(X̄f0 |Zf0 , k)

SV ⊥
g1◦g0 ∧ℱX̄f0

|Zf0
/N ′

0
(X̄f0 |Zf0 , k) ℱX̄f2

|Zf2
/N ′

2
(X̄f2 |Zf2 , k)

commutes, where here we are using the identification V ⊥
g1 ⊕ V ⊥

g0
∼= V ⊥

g1◦g0 .
As discussed in Section A.8, it suffices to check that the assignment to arrows is

compatible with composition in a handful of special cases. We begin by considering
the composite expressed by the factorizations f0 = id ◦f1 ◦ g0 and f1 = id ◦f2 ◦ g1.
In this case, the natural maps of Equation (7.3.27) are induced in part by the
identification of Xf0 = Xg0/G

⊥
f1
, Xf1 = Xg1/G

⊥
f2
, and Xf0 = Xg0/G

⊥
f1◦f0

.
Fixing h = id in the construction of Lemma 7.42, observe that we are considering

maps induced by

(7.3.37) V ⊥
g0 ×Xg0 → Xσ1 → Xf1

and

(7.3.38) V ⊥
g1 ×Xg1 → Xσ2 → Xf2

with

(7.3.39) V ⊥
g1◦g0 ×Xg1◦g0 → Xσ2◦σ1 → Xf2 .

Here note that V ⊥
g1◦g0 is the orthogonal complement of the image of V ⊥

g1 .
Because the covering maps of Equation (7.3.31) is the identity in this case, the

pullback maps of Equation (7.3.32) are isomorphisms as well and so the relevant
composite is determined by the inclusions of Equation (7.3.33). Putting this all
together, the two maps coincide, using the functoriality of cone construction and
the fact that the inclusions do.

Next, we consider the composite expressed by the factorizations f0 = h0 ◦ f1 ◦ id
and f1 = h1 ◦ f2 ◦ id. In this case, the maps of Equation (7.3.27) are determined
by the identifications of Xf0 as the quotient of X by G⊥

h0◦f1
and as the quotient of

X by G⊥
h1◦h0◦f2

, and Xf1 as the quotient of X by G⊥
h1◦f2

.

Here, the maps of Equation (7.3.27) are induced by the maps Xid → Xσ0 → Xf1 ,
Xid → Xσ0 → Xf2 , and Xid → Xσ0 → Xf2◦f1 . In this case, when considering the
covering maps of Equation (7.3.31), we are considering the coverings associated
to the inclusions G⊥

f1
→ G⊥

h0◦f1
, G⊥

f2
→ G⊥

h1◦f2
, and G⊥

f2
→ Gh0◦h1◦f2 . Since

f1 = h1 ◦ f2, the composite of the first two maps

(7.3.40) G⊥
f2 → G⊥

h1◦f2 = G⊥
f1 → G⊥

h0◦f1 = G⊥
h0◦h1◦f2

coincides with the last map, and so the composite of the associated coverings coin-
cides with the covering of the last map.
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Finally, we consider a composite expressed by the factorizations f0 = h0 ◦ f1 ◦ g0
and f1 = h1 ◦ f2 ◦ id. In this case, small variations on the arguments above suffice
to check that the assignment is compatible with the composition. �

Passing to collared completions, the same construction yields another functor.

Proposition 7.44. There is a functor from Tw�SubChartK〈S〉 to Speq specified
by the assignment on objects

(7.3.41) f 7→ (Gf ,ℱ ˆ̄Xf |Ẑf

N′

( ˆ̄Xf |Ẑf , k)
−Vf ),

equipped with a natural transformation to the functor specified by Equation (7.3.23).
�

Forgetting the subgroup N induces a natural functor

(7.3.42) Tw�SubChartK〈S〉 → Tw�ChartK〈S〉.
Thus precomposing pulls back the functor Tw�ChartK〈S〉 → Speq specified by
the assignment

(7.3.43) f 7→ (Gf , C
∗,c0
rel∂ (Ẑf ,M

ˆ̄X−V
f ∧ k))

(described in Lemma 7.31) to a composite functor

(7.3.44) Tw�SubChartK〈S〉 → Tw�ChartK〈S〉 → Speq .

For each object f of Tw�SubChartK〈S〉, Lemma 7.37 yields a map

(7.3.45) ℱ ˆ̄Xf |Ẑf

N′

( ˆ̄Xf |Ẑf , k)
−Vf → C∗,c0

rel∂ (Ẑf ,M
ˆ̄X−V
f ∧ k)

of Gf -spectra.
Lemmas 7.38 and 7.39 generalize to the following result.

Lemma 7.45. The map of Equation (7.3.45) induces a natural transformation of
functors Tw�SubChartK〈S〉 → Speq, i.e., for each factorization f0 = h◦ f1 ◦ g, the
following diagram commutes:

(7.3.46)

ℱX̄f0
|Zf0

/N ′
0
(X̄f0 |Zf0 , k)

−Vf0 C∗,c0
rel∂ (Ẑf0 ,M

ˆ̄X−V0

f1
∧ k)

ℱX̄f1
|Zf1

/N ′
1
(X̄f1 |Zf1 , k)

−Vf1 C∗,c0
rel∂ (Ẑf1 ,M

ˆ̄X−V1

f1
∧ k).

Proof. We follow the steps in the construction of the map from Lemma 7.42: we
start with the commutative diagram
(7.3.47)

SV ⊥
g ∧ℱ ˆ̄Xf0

|Ẑf0
/N ′

0

( ˆ̄Xf0 |Ẑf0 , k) C∗,c0
rel∂ (Ẑf0 , S

V ⊥
g ∧M ˆ̄Xf0 ∧ k)

ℱ
(S

V ⊥
g ∧( ˆ̄Xg)+)|Ẑg/(h◦f1)−1N ′

0

((SV ⊥
g ∧ ( ˆ̄Xg)+)|Ẑg/G

⊥
h◦f1

, k) C∗,c0
rel∂ (Ẑg, S

V ⊥
g ∧ (M ˆ̄Xg)+ ∧ k)

ℱ
(S

V ⊥
g ∧(X̄g)+)|Zg/(h◦f1)−1N ′

0

((SV ⊥
g ∧ (X̄g)+)|Zg/G

⊥
f1
, k)
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for which the commutativity of the top square arises from the compatibility of our

Spanier-Whitehead map with smashing with the sphere SV ⊥
g , and the commuta-

tivity of the bottom triangle from its compatibility with pullback. Next, we have a
commutative diagram
(7.3.48)

ℱ
(S

V ⊥
g ∧(X̄g)+)|Zg/(h◦f1)−1N ′

0

((SV ⊥
g ∧ (X̄g)+)|Zg/G

⊥
f1
, k) C∗,c0

rel∂ (Ẑg, S
V ⊥
g ∧ (M ˆ̄Xg)+ ∧ k)

ℱX̄f1
|Zf1

/N ′
1
(X̄f1 |Zf1 , k) C∗,c0

rel∂ (Ẑf1 ,M
ˆ̄Xf1 ∧ k),

given by the compatibility with pushforward. �

On the other hand, Lemma 7.40 implies that these maps are compatible with
products. To state the compatibility, we write �ChartK for the following category
which combines the categories �ChartK〈S〉 as the poset S varies. Note that this is
not the category of cubes on ChartK; the definition below reflects the restrictions
on the interaction of the cubes with the posets in the combined category that arise
in our setting.

Definition 7.46. Let �ChartK denote the category with

(1) objects cubes in ChartK〈S〉 for some partially ordered set S, and
(2) morphisms from �τ0 ∈ ChartK〈S0〉 to �σ1 ∈ ChartK〈S1〉 given by a map

of cubes τ1 → σ1 in ChartK〈S1〉, an identification S0 ∼= S1 \Q for a totally
ordered set Q, and an identification τ0 ∼= ∂Qτ1 of cubes in 〈S0〉, where ∂Qτ1
is the restriction to the stratum labelled by Q.

We define �SubChartK to be the category which has objects those of �ChartK along
with the additional choice for each chart of a freely acting subgroup N of G; for
morphisms we impose the condition that N1 be contained in the image of N0.

It is straightforward to check that �ChartK is a monoidal category under the
evident product induced by the product of cubes and of charts in ChartK〈S〉. We
then have the following lemma:

Lemma 7.47. Given an object f of Tw�SubChartK, the assignments

(7.3.49) f 7→ (Gf ,ℱ ˆ̄Xf |Ẑf

N′

( ˆ̄Xf |Ẑf , k)
−Vf )

and

(7.3.50) f 7→ (Gf , C
∗,c0
rel∂ (Ẑf ,M

ˆ̄X−V
f ∧ k))

specify lax monoidal functors Tw�SubChartK → Speq. �

Finally, we can now record the comparison induced by the Spanier-Whitehead
duality map; this is a direct consequence of Lemma 7.40.

Lemma 7.48. Spanier-Whitehead duality defines a lax monoidal natural transfor-
mation

(7.3.51) (Gf ,ℱ ˆ̄Xf |Ẑf

N′

( ˆ̄Xf |Ẑf , k)
−Vf )⇒ (Gf , C

∗,c0
rel∂ (Ẑf ,M

ˆ̄X−V
f ∧ k))

of functors from Tw�SubChartK to Speq. �
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7.3.3. Spanier-Whitehead duality for flow categories. We now consider a Kuranishi
flow category X : A→ ChartK as before, where A is a 2-category. In Section 7.2.4,
we used the 2-category �A to define twisted cochains. Here, we begin by intro-
ducing the 2-category �SubA, with the categories of 1-cells �SubA(p, q) consisting
of the category with objects a cube σ in A(p, q) together with a subgroup N of
Gσ acting freely on Xσ, and maps such that N is contained in N ′; to be precise,
this specifies a bicategory, and we are implicitly rectifying as in the discussion sur-
rounding Theorem A.126. It is straightforward to see that X lifts to a natural
Π-equivariant 2-functor

(7.3.52) X : �SubA→ �SubChartK

that induces a Π-equivariant 2-functor

(7.3.53) X : Tw�SubA→ Tw�SubChartK .

Composing with the functor of (fibrewise) virtual cochains from Equation (7.3.41),
and taking homotopy fixed points, for each pair of objects p and q we obtain a func-
tor

Tw�SubA(p, q)→ Sp(7.3.54)

f 7→ C∗(BGf ,ℱ ˆ̄Xf |Ẑf

N′

( ˆ̄Xf |Ẑf , k)
−Vf ),(7.3.55)

where f is an arrow with target (σ′, N ′). Taking the homotopy colimit over this
functor, and shifting by the degrees of p and q yields a spectrum. Since the work
above shows that these functors are part of the data of a Π-equivariant 2-functor,
the homotopy colimits assemble to yield a spectral category.

Definition 7.49. For a Kuranishi flow category X, we define the Π-equivariant

spectral category C∗(BG,ℱ ˆ̄X|Ẑ
N

( ˆ̄X|Ẑ, k)−V −d) to have objects P and morphism

spectra

(7.3.56) C∗(BG,ℱ ˆ̄X|Ẑ
N

( ˆ̄X|Ẑ, k)−V −d)(p, q) ≡

hocolim
f∈Tw�SubA(p,q)

C∗(BGf ,ℱ ˆ̄Xf |Ẑf

N′

( ˆ̄Xf |Ẑf , k)
−Vf+Vq−Vp)[deg p− deg q],

We also have an uncollared version.

Definition 7.50. For a Kuranishi flow category X, we define the Π-equivariant
spectral category C∗(BG,ℱX̄|Z

N

(X̄ |Z, k)−V −d) to have objects P and morphism

spectra

(7.3.57) C∗(BG,ℱX̄ |Z
N

(X̄ |Z, k)−V −d)(p, q) ≡

hocolim
f∈Tw�SubA(p,q)

C∗(BGf ,ℱX̄f |Zf

N′

(X̄f |Zf , k)
−Vf+Vq−Vp)[deg p− deg q].

For each p and q, there is an evident comparison between the mapping spectra
of the collared and uncollared versions, which is given by the projection map

(7.3.58) C∗(BG,ℱ ˆ̄X|Ẑ
N

( ˆ̄X|Ẑ, k)−V −d)(p, q)→ C∗(BG,ℱX̄|Z
N

(X̄ |Z, k)−V−d)(p, q)
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Lemma 7.40 implies that the maps of Equation (7.3.58) assemble to a spectral
functor

(7.3.59) C∗(BG,ℱ ˆ̄X|Ẑ
N

( ˆ̄X|Ẑ, k)−V −d)→ C∗(BG,ℱX̄ |Z
N

(X̄ |Z, k)−V −d).

On the other hand, applying Lemma 7.48 yields:

Lemma 7.51. There is a natural equivalence

(7.3.60) C∗(BG,ℱ ˆ̄X|Ẑ
N

( ˆ̄X|Ẑ, k)−V −d)→ C∗,c0
rel∂ (BẐ;M ˆ̄X−V −d ∧ k)

of Π-equivariant spectral categories.

Proof. The functor factors through the Π-equivariant spectral category where the
morphism spectra are defined as the homotopy colimits of the Milnor twisted
cochains over Tw�SubA(p, q). The first map is then a level-wise equivalence, and
a straightforward application of Quillen’s Theorem A implies that the second map
is an equivalence as well. �

7.3.4. Using the Adams isomorphism and the norm map. We now explain how
to apply the results of Appendix C to give an equivalence between the category
C∗(BG,ℱX̄ |Z

N

(X̄ |Z, k)−V −d) constructed above and the category BX̄ |Z−V −d ∧ k

of virtual cochains defined in Section 5.6 (see Definition 5.24).
We begin by casting virtual cochains in terms of the constructions of Appendix C:

let Sp−Vect
eq denote the category introduced in Appendix C.2.2 (see Definition C.18),

with:

(1) Objects specified by triples (G, Y, V ), with Y a (cofibrant) G-spectrum and
V a finite-dimensional G-representation.

(2) Morphisms f : (G, Y, V )→ (G′, Y ′, V ′) given by
(a) a surjection G→ G′ with kernel G⊥

f acting freely on Y ,

(b) a G-embedding V → V ′ which is an isometric embedding, with coker-
nel V ⊥

f ,

(c) a G-equivariant map

(7.3.61) SV ⊥
f ∧ Y → Y ′.

We can interpret the virtual cochains in terms of the category Sp−Vect
eq .

Lemma 7.52. There is a lax monoidal functor

(7.3.62)
�ChartK → TwSp−Vect

eq

σ 7→ (Gσ , X̄ |Zσ, Vσ).

�

The functorBX̄σ|Z−Vσ
σ used to construct the spectral category of virtual cochains

factors through the functor BY −V considered in Appendix C.2.2.
To express the construction of the spectrum of sections in similar terms, consider

the category Sp−Vect
eq,Sub that refines Sp−Vect

eq (see Definition C.21), with:

(1) Objects specified by tuples (G, Y, V,N), consisting of a G-equivariant cofi-
brant spectrum Y , a finite-dimensional G-representation V , and a subgroup
N ⊆ G.

(2) Morphisms f : (G0, Y0, V0, N0) → (G1, Y1, V1, N1) specified by a morphism

in Sp−Vect
eq such that N1 ⊆ f(N0).
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We have the following functor out of this category.

Lemma 7.53. The assignment

(7.3.63) (σ,N) 7→ (Gσ, X̄σ|Zσ, V,N)

defines a lax monoidal functor from �SubChartK to Sp−Vect
eq,Sub, which gives rise to a

commutative diagram:

(7.3.64)

Tw�SubChartK TwSp−Vect
eq,Sub

�ChartK Sp−Vect
eq .

�

The key remaining point is that given a Kuranishi flow category X, the functor

(7.3.65)
Tw�SubA(p, q)→ Sp

f 7→ C∗(BGf ,ℱX̄f |Zf

N′

(X̄f |Zf , k)
−Vf+Vq−Vp)[deg p− deg q]

applied in Equation (7.3.57)) factors through the functor

(7.3.66)
Tw Sp−Vect

eq,Sub → Sp

(G, Y, V,N) 7→ C∗(BGf ,ℱYf/N ′(Yf , k)
−Vf )

considered in Appendix C.2.2. At this point the following proposition now com-
pletes the comparison.

Proposition 7.54. There is a Π-equivariant zig-zag of equivalences of spectral
categories

(7.3.67) BX̄ |Z−V −d ∧ k ≃ C∗(BG,ℱX̄ |Z
N

(X̄ |Z, k)−V −d).

Proof. This comparison is deduced from a combination of several lax monoidal
equivalences of functors with domain TwSp−Vect

eq,Sub, which are constructed in Ap-
pendix C and summarized in Section C.5. �

7.3.5. Signpost: Spanier-Whitehead duality for Kuranishi flow categories. We have
constructed a Π-equivariant zig-zag of equivalences of spectral categories

(7.3.68) C∗,c
rel∂(BẐ;M ˆ̄X−V−d)→ · · · ← B ˆ̄X|Ẑ−V−d,

relating the virtual cochains to the Milnor-twisted cochains of any Π-equivariant
Kuranishi flow category. In the next section, we explain how, by lifting to a complex
oriented Kuranishi flow category, and studying the cochains with coefficients in
Morava K-theory, we obtain an isomorphism between the twisted and untwisted
cochains.

8. Coherent comparisons: tangent spaces and orientations

The purpose of this section is to implement, in a functorial context, the compar-
ison of models for the tangent space considered in Section 6.3 and the construction
of orientations from Section 6.4. This requires us to work with Kuranishi charts
and presentations equipped with tangent bundles and complex oriented Kuranishi
charts and presentations, as introduced in Section 4.3. Throughout the section, we
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will work with the internal category Tw�ChartTK; recall from Appendix A.6 that

this category inherits its internal structure from ChartTK. We will also work with
twisted arrow categories on cubes on enriched categories, which inherit enrichments
in the usual way.

8.1. Tangent spaces and Whitney spherical fibrations.

8.1.1. Whitney spherical fibration of cubical diagrams. Let σ and τ be cubes in

ChartfsK 〈S〉, and f : τ → σ a map of cubes. We will write �σ for the geometric
realization of the domain of a cube σ, and �f for the image of �τ in �σ under a

map f : τ → σ of cubes. We also write κf for the collar of �τ in �̂σ; this is a cube
of dimension dimσ − dim τ .

Forgetting down from �ChartfsK 〈S〉 to �ChartK〈S〉, recall from Section 5.5 that
we can associate to f : τ → σ a cubical degeneration to the normal cone Xf and a
map Zf → Xf . We have a natural map Xσ → �σ ×Xσ(1n), and we let Bσ denote
Bσ(1n): the fibre of Xσ → Bσ has a natural fibrewise smooth structure, so we define

(8.1.1) TXσ ≡ T σXσ ⊕ TBσ.

We now explain the identification that results from lifting f to the category
ChartTK〈S〉 of Kuranishi charts with tangent bundles. We begin by studying the
case of a cube σ.

Lemma 8.1. Let σ be an object of �ChartfsK 〈S〉. A lift of σ to �ChartTK〈S〉
determines an equivariant isomorphism

(8.1.2) TXσ
∼= TXσ(1n) ⊕ T�σ.

Given a map f : τ → σ in �ChartTK〈S〉, there is a natural equivariant isomorphism
along Xτ

(8.1.3) f∗TXσ
∼= TXτ ⊕ Tκf ⊕ V ⊥

f ,

so that the following diagram commutes:

(8.1.4)

f∗TXσ f∗
(
T σXσ(1n) ⊕ T�σ

)

TXτ ⊕ Tκf ⊕ V ⊥
f TXτ(1m) ⊕ T�τ ⊕ Tκf ⊕ V ⊥

f .

Given maps f : τ → σ and g : ν → τ , the natural equivariant isomorphism

(8.1.5) (g ◦ f)∗TXσ
∼= TXν ⊕ Tκg◦f ⊕ V ⊥

g◦f

coincides with the composite isomorphism

(8.1.6)

g∗(f∗TXσ) ∼= g∗(TXτ ⊕ Tκf ⊕ V ⊥
f )

∼= (TXν ⊕ Tκg ⊕ V ⊥
g )⊕ g∗Tκf ⊕ g∗V ⊥

f

∼= TXν ⊕ Tκg◦f ⊕ V ⊥
g◦f .

and the analogue of Equation (8.1.4) commutes.

Proof. By definition, the fibrewise tangent space sits in a short exact sequence of
vector bundles

(8.1.7) T σXσ → T�σ ⊕ T σXσ(1n) ⊕ Vσ → Vσ;
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the key point is that the map in the right depends on the chosen point in �σ.
Taking the quotient by Vτ in the middle and right terms yields the sequence

(8.1.8) T σXσ → T�σ ⊕ T σXσ(1n) ⊕ V ⊥
f → V ⊥

f .

The inner product on T σXσ(1n) decomposes the above as the direct sum of the

kernel of the projection from T σXσ(1n) to V ⊥
f with the kernel of

(8.1.9) T�σ ⊕ V ⊥
f ⊕ V ⊥

f → V ⊥
f .

At this stage, we observe that this kernel can be described as the graph of a map
T�σ ⊕ V ⊥

f → V ⊥
f , whose target is the third factor in the source of the above map.

This yields the desired trivialisation. The compatibility with boundary strata then
follows from the compatibility of morphisms in ChartTK〈S〉 with strata. The identifi-
cation of the isomorphism in Equation (8.1.6) with the isomorphism induced by the
composite follows from the fact that the decompositions involved are constructed
in terms of the inner products and directions in the cubes; despite the ordering
suggested by the notation, the terms of the decompositions coincide. �

We now extend Lemma 8.1 to maps of cubes as follows. We define TXf to be
the vector bundle over Xf obtained from TXτ by taking the quotient by G⊥

f . We
have the following straightforward generalization:

Corollary 8.2. Each arrow f : σ → τ in �ChartTK〈S〉 gives rise to a natural
isomorphism

(8.1.10) TXf
∼= TXf(1m) ⊕ T�f .

A factorization f0 = h ◦ f1 ◦ g in �ChartTK〈S〉 determines a natural isomorphism

(8.1.11) TXf0
∼= TXf1 ⊕ Tκg ⊕ V ⊥

g .

Given another factorization f1 = h′◦f2◦g′ in �ChartTK, the isomorphism associated
to the factorization f2 = (h′ ◦ h) ◦ f0 ◦ (g ◦ g′)
(8.1.12) TXf0

∼= TXf2 ⊕ Tκg◦g′ ⊕ V ⊥
g◦g′ .

is equal to the composite isomorphism

(8.1.13)

TXf0
∼= TXf1 ⊕ Tκg′ ⊕ V ⊥

g′

∼=
(
TXf2 ⊕ Tκg ⊕ V ⊥

g

)
⊕ Tκg′ ⊕ V ⊥

g′

∼= TXf2 ⊕ (Tκg ⊕ Tκg′)⊕ (V ⊥
g ⊕ T⊥

g′ )

�

Remark 8.3. Since the action of G⊥
f on Bτ may not be free, directly making sense

of TXf requires introducing the tangent space of the orbifold Bf ≡ Bτ/G
⊥
f . We

return to this point at the beginning of Section 8.2.

We next shall pass to collared cubical degenerations. In order to study their
tangent space, we need to equip the corresponding collared base with a smooth
structure along the region where the collars are attached. To this end, we pick
a compatible choice of smooth collar on Bf (in the sense of Definition 6.36) for

each arrow f in �ChartTK〈S〉. By induction on the dimension of the cube, we can

arrange that these collars are preserved by morphisms in Tw�ChartTK〈S〉.
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Having made this choice, we associate to each such arrow the vector bundle

(8.1.14) T X̂f
∼= T fX̂f ⊕ T B̂f .

over X̂f .

We will write STX̂f for the spherical fibration over X̂f (and by restriction over

Ẑf) obtained from the fibrewise 1-point compactification of T X̂f . Since the study of
vector bundles and their associated sphere bundles goes back to Whitney [Whi35],
we shall use the following terminology:

Definition 8.4. Given an object f ∈ Tw�ChartTK〈S〉, the Whitney spherical

fibration STX̂f |0 on X̂f is the fibrewise cone of the complement of the zero section

in STX̂f .

Although �ChartTK〈S〉 has a topologized space of objects, the Whitney spherical

fibration only depends on the component of f in the mapping space of �ChartTK〈S〉.

Lemma 8.5. Suppose that f0 and f1 belong to the same component of the space of

maps in �ChartTK〈S〉. Then the spherical fibrations STX̂f0 |0 and STX̂f1 |0 coincide.

Proof. Clearly X̂f0 and X̂f1 are equal, as the quotient in question does not depend

on the choice of inner product, and similarly T X̂f0 and T X̂f1 coincide. Since the
zero section is also independent of the inner product, the result follows. �

Given a spectrum k, we can stabilize the Whitney spherical fibration. See Sec-
tion B.1 for a concise review of the aspects of the theory of parametrized spectra
we require.

Definition 8.6. For each arrow f : σ → τ in �ChartTK〈S〉, we have parametrized
Whitney spectra

(8.1.15) STX̂f−V ∧ k and STX̂f |0−V ∧ k

over X̂f . Pulling back along the map Ẑf → X̂f , we obtain parametrized spectra

over Ẑf .

By Lemma 8.5, these spectra only depend on the component of f in the space
of maps in �ChartTK〈S〉.

We consider as before the spectra of Borel equivariant compactly supported
sections, which vanish at the boundary, of these parametrized spectra.

Definition 8.7. Let f : σ → τ be a map in �ChartTK〈S〉. Then there are assign-
ments

(8.1.16)
f 7→ C∗,c

rel∂

(
BẐf ;S

TX̂f−V ∧ k
)

and

f 7→ C∗,c
rel∂

(
BẐf ;S

TX̂f |0−V ∧ k
)
.

Introducing the notation ˆ̂Xf◦g for the double collar (which we will require for tech-
nical reasons below), we also have an assignment of global sections

(8.1.17) f 7→ C∗,c
rel∂

(
B ˆ̂Zf ;S

T ˆ̂Xf |0−V ∧ k
)
.
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We now explain the functoriality and compatibility of these constructions. We
start by explaining how to assemble them into spectral categories. As usual, we
begin with the pointwise functoriality necessary to build the mapping spectra. In
the following result, we use the twisted arrow category and categories of cubes
constructions in the context of internal categories; see Definition A.160 and the
surrounding discussion for a review of these constructions. Throughout, we will
tacitly regard Sp as an internal category in topological spaces with the discrete
topology on objects.

Proposition 8.8. The three assignments of Definition 8.7 assemble to topologically
enriched functors

(8.1.18) Tw�ChartTK〈S〉 → Sp .

Proof. We give the argument for the functor specified by C∗,c
rel∂

(
BẐh;S

TX̂h |0−V
)
;

the case of the other two spectra is entirely analogous. Suppose that we have a
factorization f = g ◦ f ′ ◦ h. Then Corollary 8.2 shows that the diagram
(8.1.19)

C∗,c
rel∂

(
BẐh;S

TX̂h |0−V
)

C∗,c
rel∂

(
BẐf ′◦h;S

TX̂f′◦h |0−V
)

C∗,c
rel∂

(
BẐf ;S

TX̂f |0−V
)

C∗,c
rel∂

(
BẐf ′ ;STX̂f′ |0−V

)
C∗,c

rel∂

(
BẐg◦f ′ ;STX̂g◦f′ |0−V

)

C∗,c
rel∂

(
BẐg;S

TX̂g |0−V
)
,

f ′◦

◦h

g◦

◦h

◦f ′◦h

g◦f ′◦

◦f ′

g◦

with horizontal arrows given by pullback along compositions and vertical arrows
by pushforward along collars, commutes. (Similarly, the analogous versions of

Equation (8.1.19) for C∗,c
rel∂

(
BẐf ;S

TX̂f−V ∧ k
)

and C∗,c
rel∂

(
B ˆ̂Zf ;S

T ˆ̂Xf |0−V ∧ k
)

also commute.)

The functor is then given on the morphism in Tw�ChartTK〈S〉 → Sp from f to
f ′ represented by f = g ◦ f ′ ◦ h by the composition

(8.1.20) C∗,c
rel∂

(
BẐf ;S

TX̂f |0−V
)
→ C∗,c

rel∂

(
BẐf ′ ;STX̂f′ |0−V

)

around the square in Equation (8.1.19). To see that this is a functor, assume we
have the composition of factorizations f = g ◦ f ′ ◦ h and f ′ = g′ ◦ f ′′ ◦ h′. Then the
compatibility with composition comes from the fact that the diagram
(8.1.21)

C∗,c
rel∂

(
BẐf ′◦h;S

TX̂f′◦h |0−V
)

C∗,c
rel∂

(
BẐf ;S

TX̂f |0−V
)

C∗,c
rel∂

(
BẐf ′′◦h′ ;STX̂f′′◦h′ |0−V

)
C∗,c

rel∂

(
BẐf ′ ;STX̂f′ |0−V

)
C∗,c

rel∂

(
BẐg◦f ′ ;STX̂g◦f′ |0−V

)

C∗,c
rel∂

(
BẐf ′′ ;STX̂f′′ |0−V

)
C∗,c

rel∂

(
BẐg′◦f ′′ ;STX̂g′◦f′′ |0−V

)
.

◦h

g◦

◦h

◦h′

g′◦

◦h′

g◦

g′◦
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and the diagram from the composite factorization f = g ◦ g′ ◦ f ′′ ◦ h ◦ h′

(8.1.22)

C∗,c
rel∂

(
BẐf ′′◦h◦h′ ;STX̂f′′◦h◦h′ |0−V

)
C∗,c

rel∂

(
BẐf ;S

TX̂f |0−V
)

C∗,c
rel∂

(
BẐf ′′ ;STX̂f′′ |0−V

)
C∗,c

rel∂

(
BẐg◦f ′ ;STX̂g◦f′ |0−V

)
◦h◦h′

g◦g′◦

◦h◦h′

g◦g′◦

have the same outer composite. This follows from the composition statement in
Corollary 8.2.

To see that these functors are topologically enriched, we need to check that func-
tors are locally constant and induce continuous maps of mapping spaces. Lemma 8.5
implies the first part of this, and the second condition follows from the definition of
morphisms in terms of the pushforward along collars and the pullback maps. �

In light of this, we can make the following definition. The homotopy colimits
here are topologized, as we are working with internal categories. However, since the
range category has the discrete topology on objects, this construction simplifies; see
Definition A.163 for a review of the definition.

Definition 8.9. Given a Kuranishi presentation with tangent bundle X : AI →
ChartTK〈S〉, we construct the following homotopy colimits of spectra

(8.1.23)

C∗,c
rel∂

(
BẐ;STX̂ |0−V

)
(AI) ≡ hocolim

f∈Tw�AI

C∗,c
rel∂

(
BẐf ;S

TX̂f |0−V ∧ k
)

C∗,c
rel∂

(
BẐ;STX̂−V

)
(AI) ≡ hocolim

f∈Tw�AI

C∗,c
rel∂

(
BẐf ;S

TX̂f−V ∧ k
)

C∗,c
rel∂

(
B ˆ̂Z;ST ˆ̂X |0−V

)
(AI) ≡ hocolim

f∈Tw�AI

C∗,c
rel∂

(
B ˆ̂Zf ;S

T ˆ̂Xf |0−V ∧ k
)
,

where there are two different models of the first spectrum, corresponding to the
choice of collar section which is hidden from the notation.

We now assemble the pointwise constructions of Definition 8.9 to produce Π-
equivariant spectral categories; this amounts to showing that there are natural
associative composition maps which are Π-equivariant. We can choose the smooth
collars to be strictly compatible with products. Then the multiplicative diagrams
established in Lemma 6.38 provide associative composition maps. By construc-
tion, these mapping spectra are strictly compatible with the action of Π and the
composition of the lemma clearly are as well, so we conclude the following.

Proposition 8.10. Given a Kuranishi flow category with tangent bundle X, each
of the four models of twisted cochains in Definition 8.9 gives rise to a Π-equivariant
spectral category with objects those of X and morphism spectra
(8.1.24)

C∗,c
rel∂

(
BẐ;ST X̂ |0−V−d

)
(p, q) ≡ C∗,c

rel∂

(
BẐ;STX̂ |0−V+Vq−Vp

)
(p, q)[deg p− deg q],

C∗,c
rel∂

(
B ˆ̂Z;ST ˆ̂X |0−V−d

)
(p, q) ≡ C∗,c

rel∂

(
B ˆ̂Z;ST ˆ̂X |0−V+Vq−Vp

)
(p, q)[deg p− deg q]

C∗,c
rel∂

(
BẐ;ST X̂−V−d

)
(p, q) ≡ C∗,c

rel∂

(
BẐ;STX̂−V+Vq−Vp

)
(p, q)[deg p− deg q].

�

Next, we will compare these Π-equivariant spectral categories. The inclusion
induces a pointwise comparison:
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Proposition 8.11. For each map f : σ → τ in �ChartTK〈S〉, there is a natural
comparison map

(8.1.25) C∗,c
rel∂

(
BẐf ;S

TX̂f−V ∧ k
)
→ C∗,c

rel∂

(
BẐf ;S

TX̂f |0−V ∧ k
)

of spectra of compactly supported sections which vanish at the boundary. �

The analogue of the argument for Lemma 7.29 now establishes the following
compatibility result.

Lemma 8.12. For composable maps f and g in �ChartTK〈S〉, there is a commu-
tative diagram

(8.1.26)

C∗,c
rel∂

(
BẐf◦g;S

TX̂f◦g−V ∧ k
)

C∗,c
rel∂

(
BẐf◦g;S

TX̂f◦g |0−V ∧ k
)

C∗,c
rel∂

(
BẐg;S

TX̂g−V ∧ k
)

C∗,c
rel∂

(
BẐg;S

TX̂g |0−V ∧ k
)

where the vertical maps are induced by pullback. �

The comparison between the spectra associated to f ◦ g and f is not as straight-
forward. There are, as discussed in Section 6.3.3, two natural sections that one
can use along the collar, which are respectively adapted to the comparison with
the Milnor model and to the standard spherical fibration. Using the double collar
ˆ̂Xf◦g, we can use the concatenation of these two sections to provide the desired
comparison, as in Lemma 6.38.

Proposition 8.13. For composable maps f and g in �ChartTK〈S〉, there is a com-
mutative diagram

(8.1.27)

C∗,c
rel∂

(
BẐf◦g;S

TX̂f◦g |0−V ∧ k
)

C∗,c
rel∂

(
BẐf ;S

TX̂f |0−V ∧ k
)

C∗,c
rel∂

(
B ˆ̂Zf◦g;S

T ˆ̂Xf◦g |0−V ∧ k
)

C∗,c
rel∂

(
B ˆ̂Zf ;S

T ˆ̂Xf |0−V ∧ k
)

C∗,c
rel∂

(
BẐf◦g;S

TX̂f◦g |0−V ∧ k
)

C∗,c
rel∂

(
BẐf ;S

TX̂f |0−V ∧ k
)

C∗,c
rel∂

(
BẐf◦g;S

TX̂f◦g−V ∧ k
)

C∗,c
rel∂

(
BẐf ;S

TX̂g−V ∧ k
)
.

�

To compare the spectral categories, we need to show that the comparison maps
above pass to homotopy colimits.
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Lemma 8.14. Given a Kuranishi presentation with tangent bundle X : AI →
ChartTK〈S〉, there are natural equivalences of spectra

(8.1.28)

C∗,c
rel∂

(
BẐ;STX̂−V |0−V

)
(AI) C∗,c

rel∂

(
BẐ;ST ˆ̂X |0−V

)
(AI)

C∗,c
rel∂

(
BẐ;STX̂−V

)
(AI) C∗,c

rel∂

(
BẐ;STX̂ |0−V

)
(AI)

Proof. To see that the comparisons of Proposition 8.13 are functorial, we consider
composable factorizations f = g◦f ′◦h and f ′ = g′◦f ′′◦h′ in �ChartTK〈S〉. Putting
these together yields the composition f = g ◦ g′ ◦ f ′′ ◦ h′ ◦ h and inspection of the
induced diagram of cochains associated to the commutative diagram

(8.1.29)

Xf ′′◦h′◦h Xf ′◦h Xf

Xf ′′◦h′ Xf ′

Xf ′′ .

g′◦

g◦g′◦

◦h

◦h′◦h

g◦

◦h

g′◦

◦h′

yields the result; the key thing to check is that the concatenation of sections that
give rise to Proposition 8.13 is compatible with this diagram. This follows because
the comparison is ultimately induced by collapsing along collar directions and re-
stricting sections (see Equation (6.3.22)). Specifically, since the collapsing occurs
along specified directions for each map, to see that it is compatible with the com-
position, it suffices to observe that by construction the labeling of these directions
is compatible with the composition. �

The evident extension of the construction of Section 6.3.3 and Lemma 6.38 now
shows that these comparison maps are multiplicative. Moreover, it is straightfor-
ward to check that the multiplicative structure is compatible with the functoriality
in the twisted arrow category since the collapsing of collars is evidently multiplica-
tive. Putting this all together, we have a comparison of spectral categories.

Lemma 8.15. There are Π-equivariant DK-equivalences of spectral categories

(8.1.30)

C∗,c
rel∂

(
BẐ;ST X̂ |0−V−d

)
C∗,c

rel∂

(
B ˆ̂Z;ST ˆ̂X |0−V−d

)

C∗,c
rel∂

(
BẐ;ST X̂−V−d

)
C∗,c

rel∂

(
BẐ;ST X̂ |0−V−d

)
.

�

8.2. The Nash spherical fibration. Recall from Section 6.3.1 (notably Defini-
tion 6.33) that we defined the Nash spherical fibration of a smoothly fibred Kuran-
ishi chart α in terms of a subspace of the space NXα of maps from a quadrant to
Xα, whose projection to Bα depends only on the first coordinate, which are appro-
priately differentiable near the origin, and whose restriction to the diagonal gives



180 M. ABOUZAID AND A.J. BLUMBERG

a Nash path. In this section, we formulate the functoriality of this construction.
The key idea that allows us to achieve suitable functoriality is to define the Nash
fibration on collared cubes in a piecewise way.

8.2.1. The Nash tangent space. Given a map f : τ → σ in �ChartfsK 〈S〉, consider
the projection map

(8.2.1) Xf → Bτ/G
⊥
f ≡ Bf .

Since the action of G⊥
f on Bτ may not be free, the space Bτ/G

⊥
f is not necessarily

a manifold. However, it is an orbifold, and so we can still make sense of the tangent
space of Bf (as an orbibundle), and of the notion of derivatives of paths.

Remark 8.16. Since we are only interested in the corresponding notions for paths
which factor through Xf , we shall lay things out explicitly: the tangent space TBf

makes sense as a vector bundle over Xf , since it can be defined as the quotient
of the pullback of TBτ as a vector bundle on Xτ under the action of G⊥

f , as we
did above in Corollary 8.2. In particular, we say that a path in Xf projects to a
smooth path in Bf if it lifts to a path in Xτ whose projection to Bτ is smooth. In
such a situation, the derivative of the path is an element of TBf .

The Nash tangent space of X̂f , denoted NX̂f , consists as in Section 6.3.1 of
maps

(8.2.2) [0,∞)2 → X̃f ,

where X̃f is the space obtained by attaching infinite collars to Xf , satisfying the
following conditions:

(1) the restriction to the diagonal is a Nash path,

(2) the map takes the origin to X̂f ,

(3) the projection to the infinite completion B̃f of the base is a smooth path
that depends only on the first variable, and

(4) the family of paths in the fibres of the projection map to B̃f , parametrized
by the first coordinate, is continuously differentiable.

This construction is unfortunately not sufficiently functorial; the inclusion X̂f →
X̂σ does not induce a map of Nash tangent spaces because we do not have a splitting
of the projection Bf → Bσ. Our strategy to handle functoriality will be to construct
a Nash tangent space over ˆ̂Xf in a piecewise way.

Recall that the strata of Xf are indexed by compositions f ◦ g. We denote by
ˆ̂Xg
f the subset of ˆ̂Xf given as

(8.2.3) ˆ̂Xg
f ≡ X̂f◦g × V ⊥

g × κg.

We have a natural projection map to a cover of ˆ̂�f

(8.2.4) ˆ̂Xg
f → ˆ̂�g

f
∼= �̂g × κg,

as shown in Figure 4. For the statement of the next result, we recall that we have
a submersion of smooth orbifolds with corners Bf◦g → Bf .

Definition 8.17. The Nash tangent space N ˆ̂Xg
f over ˆ̂Xg

f consists of maps

(8.2.5) [0,∞)2 → X̃f
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ˆ̂�g◦h
f

ˆ̂�g
f

ˆ̂�id
f = �̂f

Figure 4. Decomposition of square

such that the restriction to the diagonal inclusion is a Nash path, mapping the origin
to ˆ̂Xg

f , and such that the following properties hold near the origin:

The projection to B̃f◦g is a continuously differentiable family of paths.(8.2.6)

The family of paths parametrised by the first coordinate is a continuously
differentiable family of paths mapping to the fibres of the projection to
B̃f .

(8.2.7)

Remark 8.18. Note that we do not have a projection map ˆ̂Xf → B̃f◦g, but the first
condition above nonetheless makes sense because the restriction to a neighbourhood
of ˆ̂Xg

f admits such a map. This is in fact the reason we are working with the double
collared space, as it would not be sufficient to have the projection map defined on
ˆ̂Xg
f if we did not know that it extends to a neighbouhood.

Condition (8.2.7) implies that for a composition f ◦ g ◦ h we have a map

(8.2.8) N ˆ̂Xg◦h
f → N ˆ̂Xg

f

along the intersection of ˆ̂Xg◦h
f and ˆ̂Xg

f , given by the projection from B̃f◦g◦h to B̃f◦g.
This map is natural in the sense that, for a quadruple composition f ◦ g ◦ h ◦ k, we
have a commutative diagram

(8.2.9)

N ˆ̂Xg◦h◦k
f N ˆ̂Xg◦h

f

N ˆ̂Xg
f .

This leads us to the following definition:

Definition 8.19. The Nash tangent space N ˆ̂Xf of ˆ̂Xf is the union of the spaces
N ˆ̂Xg

f over all compositions of cubes f ◦g, glued along the maps in Equation (8.2.8).

Note that the space N ˆ̂Xf is homeomorphic to the homotopy colimit of the dia-
gram of spaces N ˆ̂Xg

f over the maps of Equation (8.2.8), as these are closed inclu-
sions.
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Lemma 8.20. Each composition f ◦g in �ChartfsK 〈S〉 induces a natural inclusion

(8.2.10) N ˆ̂Xf◦g × V ⊥
g × κ̃g → N ˆ̂Xf

of spaces over ˆ̂Xf◦g.

Proof. The map is induced by the inclusion into the colimit coming from the natural
map ˆ̂Bf◦g → ˆ̂Bf ; it is an inclusion since the fibers over ˆ̂Bf◦g are contained in the
fibers over ˆ̂Bf . �

On the other hand, associated to a composition f ◦ g in �ChartfsK 〈S〉 we have a
map

(8.2.11) N ˆ̂Xf◦g → N ˆ̂Xg

of Nash tangent spaces over ˆ̂Xg, induced by pulling back paths from Bf◦g to Bg.
These constructions are compatible in the following sense:

Lemma 8.21. For each factorization f0 = h ◦ f1 ◦ g in �ChartfsK 〈S〉, there is a
natural map

(8.2.12) N ˆ̂Xf0 × V ⊥
g × κ̃g → N ˆ̂Xf1

of spaces over ˆ̂Xf1 , which is functorial with respect to composition in Tw�ChartfsK 〈S〉.

Proof. The map in question is constructed as the composite

(8.2.13) N ˆ̂Xf0 × V ⊥
g × κ̃g → N ˆ̂Xh◦f1 → N ˆ̂Xf1 ,

where the first map is from Lemma 8.20 and the second map is from Equation (8.2.11).
Checking that this map is compatible with the composition in the twisted arrow
category amounts to a straightforward verification of the compatibility of pullback
of paths and inclusion of fibers. �

We next formulate the multiplicativity of this construction: as in the discussion
preceding Lemma 7.48 (see Definition 7.46), we start by defining a variant of the
category of cubes (and abuse notation by referring to it with the symbol �).

Definition 8.22. The category �ChartTK has

(1) objects given by cubes in �ChartTK〈S〉 for some partially ordered set S, and
(2) morphisms given by a map of cubes, inclusions of boundary strata associated

to totally ordered subsets of S, and inclusions of strata of cubes.

We write Tw�ChartTK for the twisted arrow category as always. The following
lemma describing the interaction of the Nash tangent space with products is now
essentially an immediate consequence of the definitions.

Lemma 8.23. Associated to each pair (f0, f1) of objects of �ChartTK is a home-
omrphism

(8.2.14) N ˆ̂Xf0 ×N ˆ̂Xf1 → N ˆ̂Xf0×f1

of spaces over ˆ̂Xf0×f1 , which is functorial in each variable in with respect to mor-

phisms in Tw�ChartTK and is associative for triple products in the sense that the
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diagram

(8.2.15)

N ˆ̂Xf0 ×N ˆ̂Xf1 ×N ˆ̂Xf2 N ˆ̂Xf0×f1 ×N ˆ̂Xf2

N ˆ̂Xf0 ×N ˆ̂Xf1×f2 N ˆ̂Xf0×f1×f2

commutes. �

8.2.2. Construction of the Nash spherical fibration. We begin with the observation
that there is a natural map

(8.2.16) N ˆ̂Xg
f → T fXf ⊕ TBf◦g

given by the derivatives at the origin, and where we identify the tangent spaces of
collared completions with those of the underlying manifolds (we recall that TBf◦g

is not globally defined on ˆ̂Xf , but makes sense on ˆ̂Xg
f where the left hand side is

given). Our proximate goal is to map the right hand side to TXf ; we can then
define the Nash spherical fibration as the cone of the complement of the inverse
image of 0.

We start with the restriction of the vector bundle T fXf ⊕ TBf◦g to ˆ̂Zf◦g ⊂ ˆ̂Zf .
We have the natural projection

(8.2.17) TBf◦g → TBf ,

which provides the composite

(8.2.18) N ˆ̂Xg
f → T fXf ⊕ TBf◦g → T fXf ⊕ TBf

∼= TXf

that we use along this subset of ˆ̂Zf . The compatibility of these splittings of TXf

with the maps induced on the Nash tangent space by morphisms in ChartTK implies
the following:

Lemma 8.24. Given a composition f ◦ g ◦ h, the following diagram

(8.2.19)

N ˆ̂Xg◦h
f N ˆ̂Xg

f

TXf

commutes along ˆ̂Zf◦g◦h ⊂ ˆ̂Zf , where the top map is the map of Equation (8.2.11)
and the vertical and diagonal maps are the projections of Equation (8.2.18). �

Recalling that ˆ̂Xg
f is the product of X̂f◦g × V ⊥

g with a collar cube κg, Equa-

tion (8.2.18) specifies the map from the Nash tangent space to the ordinary tangent
space along the corner stratum of the cube in which all coordinates vanish (after
restricting to the vanishing locus). We now consider the corner stratum along which
all coordinates are equal to 1. We define a vector bundle

(8.2.20) T f◦gXf ≡ T f◦gXf◦g ⊕ V ⊥
g ⊕ Tκg

along this stratum, and observe that the data of morphisms in ChartTK〈S〉 gives a
surjection

(8.2.21) T fXf → T f◦gXf .
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This yields a map

(8.2.22)
N ˆ̂Xg

f → T f◦gXf ⊕ TBf◦g

∼= TXf◦g ⊕ V ⊥
g ⊕ Tκg

∼= TXf ,

where we use Lemma 4.51 to identify the tangent spaces.
In order to compare the map of Equation (8.2.22) to previous constructions, we

consider the map ˆ̂Zf◦g → ˆ̂Zf associated to setting the collar coordinates equal to
1, and the projection ˆ̂Zg → ˆ̂Zf◦g.

Lemma 8.25. The following diagrams of spaces over ˆ̂Zf◦g and over ˆ̂Zg commute:

(8.2.23)

N ˆ̂X id
f◦g × V ⊥

g × κ̃g N ˆ̂Xg
f

TXf◦g ⊕ V ⊥
g ⊕ Tκg TXf

(8.2.24)

N ˆ̂X id
f◦g N ˆ̂X id

g

TXf◦g TXg.

�

Figure 5. Boundary conditions along the square.

The above procedure fixes the map of tangent spaces along the (dark) blue region
in Figure 5 (as well as in the interior of the middle square). We shall now extend
to the remainder by interpolation. This will involve choices; we need to ensure that
the space of choices is nonempty and contractible.

Definition 8.26. We define Sgf to be the space of splittings of the diagonal inclusion

(8.2.25) T fBf◦g → T fBf◦g ⊕ T fBf◦g,

topologized as a subspace of the space of maps.
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The space S
g
f will control the choices of the map on ˆ̂Xg

f . It is clear that S
g
f is

contractible, and that the two choices used so far correspond to the projection to
the first and the second factors, via the decomposition

(8.2.26) T fXf ⊕ TBf◦g
∼= T f◦gXf ⊕ T fBf◦g ⊕ T fBf◦g ⊕ TBf ,

which makes sense in ˆ̂Xg
f .

Given a composition g ◦ h, we have a splitting

(8.2.27) T fBf◦g◦h
∼= T fBf◦g ⊕ T f◦gBf◦g◦h.

Along the intersection of ˆ̂Xg
f with ˆ̂Xg◦h

f , recall that we have a natural map

(8.2.28) T f◦gXf → T f◦g◦hXf .

We fix the map

(8.2.29) S
g
f → S

g◦h
f

given by assigning to a splitting T fBf◦g ⊕ T fBf◦g → T fBf◦g the direct sum with
the map

(8.2.30) π2 : T
f◦gBf◦g◦h ⊕ T f◦gBf◦g◦h → T f◦gBf◦g◦h

given by projection to the second factor and using Equation (8.2.27). Here, we
recall that the two factors are ordered in such a way that the first corresponds to
the splitting of the fibrewise tangent spaces of Xf , and the second to the splitting
of the (fibrewise) tangent spaces of Bf . This specifies the compatibility conditions
along the red (medium dark) labelled arcs in Figure 5.

Next, consider the image of ˆ̂Xg◦h
g ⊂ ˆ̂Xg in ˆ̂Xf◦g◦h

f . We have an associated
natural map

(8.2.31) T g◦hXg ⊕ V ⊥
g ⊕ Tκg

∼= T f◦g◦hXf ,

as well as a direct sum decomposition

(8.2.32) T fBf◦g◦h
∼= T gBg◦h ⊕ T fBf◦g.

We fix the map

(8.2.33) Shg → S
g◦h
f

given by assigning to a splitting T gBg◦h ⊕ T gBg◦h → T gBg◦h its direct sum with
the map

(8.2.34) π1 : T
fBf◦g ⊕ T fBf◦g → T fBf◦g.

given by projection to the first factor and using Equation (8.2.32). This specifies
the compatibility conditions along the (light) green labelled arcs in Figure 5.

We now turn to the question of how to make a global choice of elements of Sgf
for each composable pair (f, g) that are suitably compatible. We will write

(8.2.35) Ar(�ChartTK)2 ≡ Ar(�ChartTK)×ob(�ChartTK) Ar(�ChartTK)

to denote the space of pairs of composable arrows in �ChartTK and more generally

Ar(�ChartTK)k for the space of k-tuples of composable arrows. We write S for the

total space of the parametrized space over the indexing space Ar(�ChartTK)2 with
fiber S

g
f . A section of this parametrized space is precisely a continuous choice of

section in S
g
f for each composable pair (f, g). There are analogous parametrized
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spaces Sk over Ar(�ChartTK)k, and there is a natural continuous map from sections
of S to sections of Sk for each k.

Composition in Ar(�ChartTK) specifies two maps

(8.2.36) Ar(�ChartTK)3 → Ar(�ChartTK)2,

and together with Equations (8.2.29) and (8.2.33) we obtain induced maps ◦S1 and
◦S2 from sections of the parametrized space S3 to sections of S.

Definition 8.27. We say that a section of S (i.e., choice of sections in S
g
f for all

composable morphisms f ◦ g) is compatible if, for each triple composition f ◦ g ◦ h,
the values of the induced section of S3 coincide under the maps ◦S1 and ◦S2 .

A priori, it is not clear that the space of compatible sections is nonempty. The
folllowing result that it is both nonempty and contractible, so in particular we can
choose one to work with in our constructions.

Lemma 8.28. The space of compatible sections of S for all composable morphisms
f ◦ g is nonempty and contractible.

Proof. We begin by showing that the space is nonempty. The proof proceeds by
(double) induction: we simultaneously induct on the dimension of the collar cubes
and the collection of composable morphisms. For cubes of dimension 0, the space
of choices of compatible sections is a point. Now, assuming that we have chosen
compatible sections of all cubes of dimension strictly less than n, we extend the
choices as follows. We pick an arbitrary order on the cubes f of dimension n. For
each such cube, we pick an order on the composable morphisms f ◦ g, and proceed
to choose compatible extensions by decreasing induction on the dimension of the
domain of g. We can do this by interpolating arbitrarily between the boundaries.
Since the choices for each cube are independent of one another, there is no ob-
struction to completing the selection of compatible choices in dimension n. This
establishes that the space of compatible sections is nonempty.

To show that the space of compatible sections is contractible, we choose a com-
patible section s. We construct a homotopy from the identity map to the constant
map at s using the same inductive approach as above. Specifically, we proceed by
a double induction, choosing at each stage compatible homotopies to the constant
map on s; we can choose any homotopy on each cube that is compatible on the
boundaries, and it is clear that this can always be done. The independence of the
choices again mean that the choice of such lifts is unobstructed. �

Now assuming that we have fixed a choice of compatible section of Sgf , we see
that for each composition f ◦ g, we have a natural commutative diagram

(8.2.37)

N ˆ̂Xf◦g × V ⊥
g × κ̃g N ˆ̂Xf

TXf◦g × V ⊥
g × Tκg TXf
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of spaces over ˆ̂Xf◦g, and a commutative diagram

(8.2.38)

N ˆ̂Xf◦g N ˆ̂Xg

TXf◦g TXg

of spaces over ˆ̂Zg.

Definition 8.29. The Nash spherical fibration N ˆ̂Xf over ˆ̂Xf is the spherical fibra-
tion obtained by taking the cone of the complement of the inverse image of TXf \0.

A key observation about this construction is that it only depends on the com-
ponent of f .

Lemma 8.30. Let f1 and f2 be morphisms in �ChartTK such that f1 and f2 are
in the same component of the mapping space. Then N ˆ̂Xf1 and N ˆ̂Xf2 coincide.

Proof. It is clear that ˆ̂Xf0 and ˆ̂Xf1 coincide; the relevant quotients are independent
of the choice of inner product on the tangent space. Next, observe that the total
space N ˆ̂Xf of the Nash tangent space as constructed in Definition 8.19 is also
manifestly independent of the choice of inner product. The map to ˆ̂Xf constructed
in this section does depend on the use of the inner product data in the construction
of the map in Equation (8.2.22) (via Lemma 4.51). However, the definition of
the Nash spherical fibration does not depend on the inner product, because the
constructed map is independent of this data (and the splitting identification) near
0. �

The continuity condition for derivatives at the origin implies that cubes whose
directional derivatives do not vanish in TXf restrict to a non-constant path along
the diagonal. Evaluation of these derivatives and of the value at the point (1, 1)
thus induces natural maps

(8.2.39) M ˆ̂Xf ← N ˆ̂Xf → STXf |0
of parametrized spaces over ˆ̂Zf (here recall the definition of the Milnor spherical
fibration from Definition 7.28). We argue below that the induced maps are fiber-
wise equivalences. We would like to immediately conclude that therefore we have
induced equivalences on spaces of sections. However, the projection N ˆ̂Xf → ˆ̂Zf is a
quasifibration but not a fibration. For any quasifibration, the path space construc-
tion gives rise to an associated fibration, and it is standard to compute spaces of
sections in terms of this fibration; in general, spaces of sections computed directly
using the quasifibration might not have the correct homotopy type. Nonetheless,
in the current setting, we do not have to perform the replacement in order to work
with sections.

Lemma 8.31. The projection map N ˆ̂Xf → ˆ̂Zf is a quasifibration and the canonical
map from the space of sections of the projection to the space of sections of the
associated fibration is a weak equivalence. The induced maps to the Milnor and
Whitney spherical fibrations are equivalences.

Proof. We begin by arguing that N ˆ̂Xf → ˆ̂Zf is a quasifibration such that the
space of sections has the correct homotopy type. We rely on Proposition B.20.
Considering the construction of the Nash spherical fibration, observe that it is
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built by gluing together fibrations over the cubical decomposition of the double
collar ˆ̂Xf ; in fact, by Proposition 6.34, restricted to the pieces of the cubical cover
we have fiber bundles. Since subcubes in the decomposition include by cofibrations
essentially by construction, the argument of Proposition B.20 applies to show that
the comparison map of sections spaces is a weak equivalence. (The argument also
shows that the induced parametrized space is an ex-quasifibration.)

Next, we show that the comparison maps are equivalences, again extending the
argument of Proposition 6.34. The projections maps ˆ̂Xg

f → ˆ̂Pg → ˆ̂Pf are submer-
sions, hence are locally modelled after

(8.2.40) Rn+k+ℓ → Rn+k → Rk.

At each point, we can choose such a local model so that the choices of splitting in
S
g
f identify the map

(8.2.41) T fXf ⊕ TBf◦g → T fXf ⊕ TBf

with the projection

(8.2.42) Rℓ+n × Rn+k → Rℓ × Rn × Rk,

where the map on the factors ℓ and k are the identity, and on the Rn × Rn factors
is a linear splitting of the identity map. Given a pair (v1, v2) of vectors in the left
hand side, we define γv1,v2 to be the map from [0,∞)2 to Rn+k+ℓ given by radially
extending

(8.2.43) (t1, t2) 7→ t1v2 + t2v2

from [0, 1]2. This defines a splitting of the map

(8.2.44) N ˆ̂Xg
f → TXf ,

thus inducing a map STXf |0 → NX̂f . Nash’s argument then shows that this is a
fibrewise homotopy equivalence. We can now evaluate further to TXf |0 and glue.
As in the argument above, we glue these fiberwise homotopy equivalences over the
cubical decomposition of ˆ̂Xf ; by Proposition B.20, the assembled maps are fiberwise
equivalences. �

8.2.3. Functoriality of the Nash fibrations. It is straightforward to see that the
maps constructed in the previous section induce a pullback map

(8.2.45) N ˆ̂Xf◦g → N ˆ̂Xg.

As with the Milnor model of the tangent fibration, the key problem is to make these
spaces compatible with desuspension to make sense of pushforward.

We start by adding a third collar, and constructing a Nash fibration

(8.2.46) N ˆ̂̂Xf → ˆ̂̂Xf

by extending the definition of N ˆ̂̂Xf in an invariant way across the third set of
collars, as well as the map to TXf . In this way, we obtain a canonical map

(8.2.47) N ˆ̂̂Xf◦g ⊼ V ⊥
g |0 ⊼Mκg → N ˆ̂̂Xf ,

of spaces over ˆ̂̂Zf◦g × κg, extending the map from Equation (8.2.37) to a collar,

and taking the appropriate cones. While the spaces V ⊥
g |0 and SV ⊥

g are homotopy
equivalent, the lack of a canonical equivalence between them makes it difficult to
use this.
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Lemma (7.2.19) leads us instead to consider the following pushout diagram
(8.2.48)

∐

π
h
→ρ

g
→τ

f
→σ

N ˆ̂̂Xf◦g◦h ⊼Mκg ⊼Mκh ⊼ (V ⊥
h |0 ∧ SV ⊥

g |0)
∐

ρ
f◦g
→ σ

N ˆ̂̂Xf◦g ⊼Mκg ⊼ SV ⊥
g |0

∐

ρ
f◦g◦h
→ σ

N ˆ̂̂Xg◦h ⊼Mκg◦h ⊼ SV ⊥
g◦h |0 N ˆ̄̂̂Xf .

Lemma 8.32. The inclusion N ˆ̂̂Xf → N ˆ̄̂̂Xf is an equivalence of spherical fibrations

over ˆ̂̂Xf .

Proof. The space N ˆ̂̂Xf is the pushout of the diagram
(8.2.49)

∐

π
h
→ρ

g
→τ

f
→σ

N ˆ̂̂Xf◦g◦h ⊼Mκg ⊼Mκh ⊼ (V ⊥
h |0 ∧ V ⊥

g |0)
∐

ρ
f◦g
→ σ

N ˆ̂̂Xf◦g ⊼Mκg ⊼ V ⊥
g |0

∐

ρ
f◦g◦h
→ σ

N ˆ̂̂Xg◦h ⊼Mκg◦h ⊼ V ⊥
g◦h|0 N ˆ̂̂Xf .

The natural map N ˆ̂̂Xf → N ˆ̄̂̂Xf is induced by the inclusion of the first factor in

the bottom left corner of the above diagram; specifically the map N ˆ̂̂Xσ → N ˆ̄Xσ

is induced by the map V |0 → SV |0. Since this latter map is a bijection, so is the
comparison map, although it is not usually a homeomorphism. To see that it is a
homotopy equivalence, we use excision; as observed in Remark 5.16, the map can
be regarded as changing the topology near the basepoint in each fiber. Since we
can choose a neighborhood U of the basepoint section such that the comparison
map is a homeomorphism on the complement, the inclusion of U into the fiber is
an NDR-pair, and U is contractible, the map is a homotopy equivalence. �

The naturality of this construction implies that the restriction of N ˆ̄̂̂Xf to the
collar labelled by f ◦ g is equipped with a natural map

(8.2.50) N ˆ̄̂̂Xf◦g ⊼ SV ⊥
g ⊼Mκg → N ˆ̄̂̂Xf .

In fact, it is straightforward to verify that this construction is functorial in the
twisted arrow category.

Lemma 8.33. Each factorization f0 = h ◦ f1 ◦ g induces a natural equivalence

(8.2.51) N ˆ̄̂̂Xf1 ∧ SV ⊥
g ∧Mκg → N ˆ̄̂̂Xf0

of spherical fibrations over ˆ̂̂Zf1 ×κg, and these equivalences are compatible with the
composition of factorization. That is, given composable factorizations f0 = h◦f1◦g
and f1 = h′ ◦ f2 ◦ g′, the equivalence

(8.2.52) N ˆ̄̂̂Xf2 ∧ SV ⊥
g′◦g ∧Mκg′◦g → N ˆ̄̂̂Xf0
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coincides with the composite

(8.2.53)
N ˆ̄̂̂Xf2 ∧ SV ⊥

g′◦g ∧Mκg′◦g → N ˆ̄̂̂Xf2 ∧ SV ⊥
g′ ∧Mκg′ ∧ SV ⊥

g ∧Mκg

→ N ˆ̄̂̂Xf1 ∧ SV ⊥
g ∧Mκg → N ˆ̄̂̂Xf0 .

�

8.2.4. Multiplicativity of Nash fibrations. We now consider the Nash fibration for
products of charts. Building on Lemma 8.23, we have the following product map.

Corollary 8.34. For each pair (f0 ◦ g0, f1 ◦ g1) of composable morphisms in the

category �ChartTK〈Si〉, there is a natural map

(8.2.54) S
g0
f0
× S

g1
f1
→ S

g0×g1
f0×f1

which is associative for composable triples in the sense that the following diagram
commutes:

(8.2.55)

S
g0
f0
× S

g1
f1
× S

g2
f2

S
g0×g1
f0×f1

× S
g2
f2

S
g0
f0
× S

g1×g2
f1×f2

S
g0×g1×g2
f0×f1×f2

.

�

In addition, for Q a totally ordered subset of S, we have a restriction map

(8.2.56) S
g
f → S

∂Qg
∂Qf

,

and these restriction maps are functorial under inclusions of totally ordered subsets
Q′ ⊂ Q ⊂ S.

We can use the maps of Corollary 8.34 and Equation (8.2.56) to inductively
choose sections of Sgf which are compatible with products. The multiplicative com-

patibility condition amounts to the following: the product of the sections of Sg1f1 and

S
g2
f2

on ˆ̂Zg1
f1
× ˆ̂Zg2

f2
agrees with the restriction of the section of Sg1×g2

f1×f2
on ˆ̂Zg1×g2

f1×f2
. A

small modification of the double induction in Lemma 8.28 then lets us find sections
which are compatible with the product structure, since the data of the morphisms
in �ChartTK ensures that the required inductive choices are unobstructed. Finally,
suppose that P is equipped with a free action of Π. Given any finite totally ordered
subset Q ⊂ P , we can make a choice of inductive extension of the section for the
orbit of each poset in P(Q) under Π which is compatible with products, as these
are independent of one another.

Lemma 8.35. The space of compatible sections of Sgf for all partially ordered sets S
and all composable pairs f ◦g in �ChartTK〈S〉 which are compatible with restriction
maps to boundary strata and with products is nonempty and contractible. Given a
partially ordered set P equipped with a free action by a group Π, the choices for the
partially ordered sets P(Q) obtained from finite totally ordered subsets Q of P can
be made equivariant under the action of Π. �
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8.2.5. The Nash-twisted cochains. We now compare the constructions of Section
8.1.1 to the analogous cochains built from the Nash spherical fibration. Given a
spectrum k,

Definition 8.36. For each arrow in f ∈ �ChartTK〈S〉, we have the spectrum

(8.2.57) C∗,c
rel∂

(
B ˆ̂̂Zf ;N

ˆ̄̂̂X−V
f ∧ k

)

of Borel equivariant compactly supported sections which vanish at the boundary of

the parametrized spectrum N ˆ̄̂̂X−V
f ∧ k over ˆ̂̂Zf .

There is a natural pullback map

(8.2.58) C∗,c
rel∂

(
B ˆ̂̂Zf◦g;N

ˆ̄̂̂X−V
f◦g ∧ k

)
→ C∗,c

rel∂

(
B ˆ̂Zg;N

ˆ̄̂̂X−V
g ∧ k

)

for each composition. Fixing the section of Mκ chosen in Equation (6.2.31), and
using the map from Equation (8.2.50), we also obtain a map

(8.2.59) C∗,c
rel∂

(
B ˆ̂̂Zf◦g;N

ˆ̄̂̂X−V
f◦g ∧ k

)
→ C∗,c

rel∂

(
B ˆ̂̂Zf ;N

ˆ̄̂̂X−V
f ∧ k

)

for each composition.
A diagram chase analogous to the one for Diagram (8.1.19) implies:

Lemma 8.37. The assignment

(8.2.60)
Tw�ChartTK〈S〉 → Sp

f 7→ C∗,c
rel∂

(
B ˆ̂̂Zf ;N

ˆ̄̂̂X−V
f ∧ k

)

specifies a topologically enriched functor of internal categories equipped with natural
equivalences to the functors associated to Milnor and Whitney twisted cochains.

Proof. The only part of the proof that requires additional comment is the verifi-
cation that we have a topological functor. Recall that we are regarding Sp as an
internal category in topological spaces with the discrete topology on objects and
the usual enrichment on mapping spaces. Therefore, the assignment must be locally
constant in order to specify a topological functor. This follows from the fact that the
assignment of Equation (8.2.60) is constant on the components of ob(�ChartTK〈S〉),
as any choice of inner product leads to the same spectrum. From this, we can deduce
that the functor is constant on the components of ob(Tw�ChartTK〈S〉). �

We now pass to (topologized) homotopy colimits. We review the required notion
of homotopy colimit over a topological category in Section A.6; note that since
the functor we are taking the homotopy colimit of depends only on the component
of the argument, the situation is significantly simpler than the case of a general
functor.

Definition 8.38. Given a topologically enriched functor AT → �ChartTK〈S〉, we
define a spectrum of cochains in terms of the homotopy colimit

(8.2.61) C∗,c
rel∂

(
B ˆ̂̂Z;N ˆ̄̂̂X−V ∧ k

)
(AT) ≡ hocolim

f∈Tw�AT

C∗,c
rel∂

(
B ˆ̂̂Zf ;N

ˆ̄̂̂X−V
f ∧ k

)
.

Applying the previous discussion, we conclude:

Lemma 8.39. There is a natural equivalence from C∗,c
rel∂

(
B ˆ̂̂Z;N ˆ̄̂̂X−V ∧ k

)
(AT) to

the corresponding construction involving the Whitney model. �
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Fixing a choice as in Lemma 8.35 ensures that the assignment of Definition 8.38
is multiplicative, using the natural product map on topological homotopy colimits.
Therefore, we can conclude the following result.

Proposition 8.40. Given a Kuranishi flow category with tangent bundles X, there

is a Π-equivariant spectral category C∗,c
rel∂

(
B ˆ̂̂Z;N ˆ̄̂̂X−V−d ∧ k

)
, with objects those

of X and with morphism spectra
(8.2.62)

C∗,c
rel∂

(
B ˆ̂̂Z;N ˆ̄̂̂X−V−d ∧ k

)
(p, q) ≡

C∗,c
rel∂

(
B ˆ̂̂Z;N ˆ̄̂̂X−V−Vp+Vq ∧ k

)
(p, q)[deg p− deg q].

�

Returning to Lemma (7.2.19), we conclude that the evaluation maps in Equation
(8.2.39) extend to maps of these completions

(8.2.63) M ˆ̄̂̂Xf ← N ˆ̄̂̂Xf → STXf |0

over ˆ̂̂Z. We use these completions to compare C∗,c
rel∂

(
B ˆ̂̂Z;N ˆ̄̂̂X−V−d ∧ k

)
to the

other spectral categories we have constructed.

Proposition 8.41. The maps in Equation (8.2.63) are functorial and yield Π-
equivariant equivalences of spectral categories

(8.2.64)

C∗,c
rel∂

(
B ˆ̂̂Zf ;S

TX−V−d ∧ k
)

C∗,c
rel∂

(
B ˆ̂̂Z;N ˆ̄̂̂X−V −d ∧ k

)

C∗,c
rel∂

(
B ˆ̂̂Z;M ˆ̄̂̂X−V −d ∧ k

)
,

where the first and last categories are obtained from the constructions of Sections
8.1 and 7.2 by using three collars.

Proof. The comparisons in Equation (8.2.63) are multiplicative and independent
of the choice of compatible section in Lemma 8.35. Moreover, they are evidently
Π-equivariant, since the action of Π simply permutes the morphism spectra. �

Collapsing the inner two collars is multiplicative and Π-equivariant, and provides
a natural comparison with the previously constructed categories:

Proposition 8.42. Given a Kuranishi flow category with tangent bundle X, there
is a zig-zag of Π-equivariant equivalences of spectral categories induced by collapsing
collars:

(8.2.65)

C∗,c
rel∂

(
BẐ;ST X̂−V−d ∧ k

)
C∗,c

rel∂

(
B ˆ̂̂Z;N ˆ̄̂̂X−V −d ∧ k

)

C∗,c
rel∂

(
BẐ;M ˆ̄X−V −d ∧ k

)
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Proof. The zig-zag is the composition of the comparison of Proposition 8.41 with
the comparison maps

(8.2.66) C∗,c
rel∂

(
B ˆ̂̂Zf ;S

TX−V−d ∧ k
)
→ C∗,c

rel∂

(
BẐ;ST X̂−V−d ∧ k

)

and

(8.2.67) C∗,c
rel∂

(
B ˆ̂̂Z;M ˆ̄̂̂X−V −d ∧ k

)
→ C∗,c

rel∂

(
BẐ;M ˆ̄X−V−d ∧ k

)

induced by the collapse of the inner collars and the induced maps on homotopy
colimits coming from the multiplicative functors AT → A. Since by hypothesis
(recall Definition 4.56) the fibers of AT over A are contractible, the source and
target maps in AT are contractible, and the object space in A is discrete, the
hypotheses of Proposition A.164 (the internal version of Quillen’s theorem A) are
satisfied and we can conclude that these maps are weak equivalences. �

8.2.6. Signpost: Comparison of tangentially twisted spherical fibrations. At this
point, we have constructed a Π-equivariant zig-zag of DK-equivalences of spectral
categories

(8.2.68) C∗,c
rel∂(BẐ;ST X̂−V−d)→ · · · ← BX̄ |Z−V −d.

What remains is the comparison between tangentially twisted and ordinary cochains.

8.3. Complex-oriented flow categories. The purpose of this section is to com-
pare the tangentially twisted cochains of a flag smooth Kuranishi presentation
equipped with a relative complex structure in the sense of Section 4.3 with the
ordinary cochains. The comparison proceeds in three steps:

(1) We construct a category consisting of cochains twisted by the (stable) com-
plex vector bundle appearing in the definition of relative complex orienta-
tions.

(2) We compare this to the tangentially twisted cochains via a bimodule rep-
resenting an equivalence.

(3) We complete the argument by using complex-orientability to trivialize the
cochains twisted by a complex vector bundle.

8.3.1. Bimodule comparison between twisted cochains. Let V0 = (V +
0 , V −

0 ) and
V1 = (V +

1 , V −
1 ) be a pair of stable vector spaces, with complex structures on V −

0

and V −
1 . Associated to V0 and V1 is the internal category ChartoriK (V0, V1) of Ku-

ranishi charts equipped with stable complex structures relative V0 and V1 from
Definition 4.57. We will work with a distinguished subcategory of the category of
cubes on ChartoriK (V0, V1).

Definition 8.43. In abuse of notation, we will write �ChartoriK (V0, V1) to denote

the subcategory of cubes on ChartoriK (V0, V1) with:

(1) Objects with fixed stratifying set (i.e., each cube lands in a given subcategory

ChartoriK (V0, V1)〈S〉).
(2) Morphisms defined as in Definition 8.22 by a morphism of cubes with a

fixed stratification along with a choice of boundary stratum.

The topology on the objects and morphisms is the subspace topology induced from
ChartoriK (V0, V1).
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Given an object σ of �ChartoriK (V0, V1) we set

(8.3.1) TXσ = TXσ(1n) and Vσ = Vσ(1n)

as before, and define

(8.3.2) Wσ = Wσ(1n), I
C

σ = IC

σ(1n), and Oσ = Oσ(1n)

(In fact, the set O is independent of the vertex of σ, since we have restricted the
domain category to a fixed stratification.) Given a morphism f : τ → σ, we define

(8.3.3) Wf = Wτ , I
C

f = IC

τ , and Of = Oτ .

Combining Corollary 8.2 with the definition of complex-oriented charts, we find
that there is a natural isomorphism

(8.3.4) V −
0 ⊕ ROf ⊕W ⊕ TXf ⊕ V +

1
∼= V +

0 ⊕ IC

f ⊕ T�f ⊕W ⊕ V −
1 .

We adopt the notation from Equation (6.4.15), and define for each morphism

f ∈ �ChartoriK (V0, V1) the spectra

C
∗,c
rel∂(BẐf ;T(X)) ≡C

∗,c
rel∂(BẐf ;F (SV , (STX )mfib) ∧ SV

−
0 +V

+
1 −(V +

0 +V
−
1 )

∧ k)

(8.3.5)

C
∗,c
rel∂(BẐf ;P(X)) ≡C

∗,c
rel∂(BẐf ;F (SV

+
0 +Of+W+V +V

−
1 , (SV

−
0 +Of+TX+W+V

+
1 ∧ k)mfib))

(8.3.6)

∼=C
∗,c
rel∂(BẐf ;F (SV

+
0 +Of+W+V +V

−
1 , (SV

+
0 +I+T�f+W+V

−
1 ∧ k)mfib))

C
∗,c
rel∂(BẐf ; I(X)) ≡C

∗,c
rel∂(BẐf ;F (SV , (SI

∧ k)mfib) ∧ ST�f−Of ).

(8.3.7)

Note, that in contrast to Section 6.4, the ring spectrum k enters in the construction
of these spectra. It is straightforward to check that these constructions define
topological functors with domain Tw�ChartoriK (V0, V1); the key point is that they
are all locally constant on the object space. Summarizing, we have the following
proposition:

Proposition 8.44. The assignments

(8.3.8)

f 7→C∗,c
rel∂(BẐf ;T(X))

f 7→C∗,c
rel∂(BẐf ;P(X))

f 7→C∗,c
rel∂(BẐf ; I(X))

specify topological functors

(8.3.9) Tw�ChartoriK (V0, V1)→ Sp .

�

The smash product induces comparisons between these constructions.

Lemma 8.45. For each morphism f ∈ �ChartoriK (V0, V1), the smash product with

the identity on SW+Of and on SV +
0 +W+V −

1 defines natural equivalences of spectral
functors:

(8.3.10) C∗,c
rel∂(BẐf ;T(X))→ C∗,c

rel∂(BẐf ;P(X))← C∗,c
rel∂(BẐf ; I(X)).

�
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We now consider the multiplicativity of this construction: recall that ChartoriK is
a topological bicategory.

Proposition 8.46. There are natural maps

C∗,c
rel∂(BẐf1 ;T(X)) ∧ C∗,c

rel∂(BẐf2 ;T(X))→ C∗,c
rel∂(BẐf1×f2 ;T(X))(8.3.11)

C∗,c
rel∂(BẐf1 ; I(X)) ∧ C∗,c

rel∂(BẐf2 ; I(X))→ C∗,c
rel∂(BẐf1×f2 ; I(X)),(8.3.12)

which define strict functors

(8.3.13) Tw�ChartoriK → Sp .

�

We can now state the functorial analogue of Lemma 6.51:

Lemma 8.47. There are natural maps

C∗,c
rel∂(BẐf1 ;P(X)) ∧ C∗,c

rel∂(BẐf2 ;T(X))→ C∗,c
rel∂(BẐf1×f2 ;P(X))(8.3.14)

C∗,c
rel∂(BẐf1 ; I(X)) ∧ C∗,c

rel∂(BẐf2 ;P(X))→ C∗,c
rel∂(BẐf1×f2 ;P(X)),(8.3.15)

such that the following three diagrams commute:

(8.3.16)

C∗,c
rel∂(BẐf1 ; I(X)) ∧ C∗,c

rel∂(BẐf2 ;P(X)) ∧ C∗,c
rel∂(BẐf3 ;T(X)) C∗,c

rel∂(BẐf1 ; I(X)) ∧ C∗,c
rel∂(BẐf2×f3 ;P(X))

C∗,c
rel∂(BẐf1×f2 ;P(X)) ∧ C∗,c

rel∂(BẐf3 ;T(X)) C∗,c
rel∂(BẐf1×f2×f3 ;P(X))

(8.3.17)

C∗,c
rel∂(BẐf1 ;P(X)) ∧ C∗,c

rel∂(BẐf2 ;T(X)) ∧ C∗,c
rel∂(BẐf3 ;T(X)) C∗,c

rel∂(BẐf1 ;P(X)) ∧ C∗,c
rel∂(BẐf2×f3 ;T(X))

C∗,c
rel∂(BẐf1×f2 ;P(X)) ∧ C∗,c

rel∂(BẐf3 ;T(X)) C∗,c
rel∂(BẐf1×f2×f3 ;P(X))

(8.3.18)

C∗,c
rel∂(BẐf1 ; I(X)) ∧ C∗,c

rel∂(BẐf2 ; I(X)) ∧ C∗,c
rel∂(BẐf3 ;P(X)) C∗,c

rel∂(BẐf1 ; I(X)) ∧ C∗,c
rel∂(BẐf2×f3 ;P(X))

C∗,c
rel∂(BẐf1×f2 ; I(X)) ∧ C∗,c

rel∂(BẐf3 ;P(X)) C∗,c
rel∂(BẐf1×f2×f3 ;P(X))

�

Remark 8.48. We note the slight differences in formulation from Section 6.4.5,
which is due to the fact that we incorporated in ChartoriK a choice of finite set for
each object, with respect to which we destabilise. In the case of Kuranishi flow
categories, this set will be the singleton q for a chart of the space of morphisms
from p to q. When taking products in ChartoriK we take disjoint unions of finite sets,
and if we start with singletons, one of the two elements ends up corresponding to
the collar direction.

8.3.2. The category of stable complex vector bundles. For clarity of exposition, we
now forget most of the data of a complex oriented Kuranishi chart by passing to
the underlying zero-locus. To formalize this, we make the following definition.

Definition 8.49. Let SVBC denote the topological category of charts of stratified
stable complex orbibundles.

(1) Objects consist of a stratified orbispace chart (S, G, Z) (recall Definition 4.16),
a finite set Q, a G-equivariant complex bundle I over Z, and a G-equivariant
complex inner product space V .
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(2) A morphism f is given by a map (G′,S ′, Z ′)→ (G,S, Z) of the underlying
orbispace charts, a choice of finite set Qf , a bijection Q′ ∼= Q ∐ Qf , an
inclusion V ′ → V of G′ representations, equivariant isomorphisms I/I ′ ∼=
V/V ′ of vector bundles over Z ′, and complex-linear equivariant splittings
of the exact sequences

(8.3.19)
I ′ → I → I/I ′

V ′ → V → V/V ′.

The topology on the morphism spaces is induced by the topology on the space
of such splittings. Composition is defined by composition of splittings.

There is a natural monoidal structure on SVBC given by the product of under-
lying charts, the external direct sum of the corresponding vector bundles, and the
direct sum of splittings.

The category SVBC is a coarsening of ChartoriK , in the following sense:

Lemma 8.50. The forgetful map

(8.3.20) α 7→ (Gα,Sα, Qα, Zα, I
C

α , Vα)

defines a strict functor

(8.3.21) ChartoriK → S VBC .

�

We now define the subcategory of cubes on SVBC we work with.

Definition 8.51.

(1) Let �S VBC denote the subcategory of cubes in S VBC with fixed stratifying
partially ordered set S and labelling finite set Q.

(2) Let Tw�SVBC denote the subcategory of the twisted arrow category whose

objects are pairs consisting of an arrow in �SVBC and a choice of totally
ordered subset of the corresponding partially ordered set S.

As before, we associate to each morphism f ∈ �SVBC a cubical degeneration
Zf which is an open subset of Zf(1n) × �f . We now consider the lax monoidal
functor

(8.3.22) Tw�SVBC → Sp

defined on objects by the assignment

(8.3.23) f 7→ C∗,c
rel∂(BẐf ;F (SV , (SI ∧ k)mfib) ∧ ST�f−Qf ).

Comparing with Equation (8.3.7), we conclude:

Lemma 8.52. The lax functor C∗,c
rel∂(BẐf ; I(X)) from Tw�ChartoriK → Sp factors

through Tw�SVBC. �

Remark 8.53. It is straightforward to construct a lax functor TwChartoriK → Sp

that factors through TwS VBC without passing to the category of cubes, but we
shall require cubes to be able to formulate the functoriality of choices of classifying
maps for the given complex vector bundles, which we do in the next section.
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8.3.3. Functorial and multiplicative classifying maps. We now impose the assump-
tion that k is a multiplicative complex oriented spectrum. Given an object f of
Tw�SVBC, we consider the vector bundle IC

f and the vector space Vf as com-
plex vector bundles over BZf . We shall apply the constructions of Section 6.4.5 to
trivialize the corresponding spherical fibrations, but to do this coherently requires
suitable choices of classifying maps.

Definition 8.54. Classifying data for an object f of Tw�S VBC is a collection
of classifying maps for the complex bundles IC

f , Vf , and V ⊥
f , by which we mean

maps to BU(W ) (for appropriate W ) along with specified isomorphisms from the
pullback of the universal bundle.

The key fact that allows us to choose the classifying maps we need is the following
standard lemma.

Lemma 8.55. Let f : E → B be a complex vector bundle with fiber V . Let ξV
denote the universal bundle over BU(V ). The space of pairs (f̃, γ), where f̃ : B →
BU(V ) is a classifying map for f and γ is a choice of isomorphism f ∼= f̃∗ξV of
complex bundles, is nonempty and contractible.

Example 8.56. When B = ∗, there is a natural map from the space of pairs (f̃, γ) to
the space Map(∗, BU(V )); this is a model of the universal bundle EU(V )→ BU(V )
with fiber U(V ).

In order to state the desired properties that such classifying maps should satisfy,
we consider a composition f ◦ g : ρ→ τ → σ of cubes, and note that the inclusion
Vτ → Vσ implies that Vτ has a natural action of Gσ, hence that the action of Gg

on V ⊥
g is pulled back from an action of Gf◦g. In particular, thinking of V ⊥

g as a
vector bundle over BZg, we find that it is naturally isomorphic to the pullback of
a bundle on BZf◦g.

Definition 8.57. Let f and g be composable maps in �SVBC. A triple of clas-
sifying maps for (IC

f , Vf , V
⊥
f ), (IC

f◦g, Vf◦g, V
⊥
f◦g), and (IC

g , Vg, V
⊥
g ) are compatible

if

(1) The classifying map for V ⊥
g factors through BZf◦g.

(2) The classifying maps for IC

f◦g and Vf◦g agree with those for IC
g and Vg under

pullback with respect to the projection Zg → Zf◦g.
(3) The restriction of the classifying maps for IC

f and Vf to Zf◦g are given by

the direct sum of the classifying maps for IC

f◦g and Vf◦g with the classifying

map for V ⊥
g .

(4) The classifying map for V ⊥
f◦g is the direct sum of the classifying maps for

V ⊥
f and V ⊥

g .

While the space of choice of classifying maps associated to each arrow is con-
tractible, it is not clear how to make sure that the choices are compatible: the
natural way to construct such choices is by induction on the dimension of the tar-
get of each arrow, but the notion of compatibility makes such an inductive scheme
impossible because the choice for g is constrained by the one for f ◦ g. This leads
us to consider the following category.

Definition 8.58. Let SVBC

sub〈S〉 be the category with:
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(1) Objects the pairs (α,Gα) with α an object of S VBC stratified by S, and Gα

a subgroup of Gα acting freely on Zα and trivially on Vα.
(2) A morphism consists of a map f : α→ β in SVBC, such that

(8.3.24) Gβ ⊂ f(Gα).

(This construction is evidently closed under compositions.)

We assemble these categories into the category�SVBC

sub, with objects the union

of the objects of S VBC

sub〈S〉 for all ordered sets S, and morphisms given as in

Definition 4.25. The fiber category of the forgetful functor �SVBC

sub → �SVBC at
each object is contractible, as it has a final object given by taking the distinguished
subgroup to be {e}. Thus, Quillen’s theorem A implies we can work with �SVBC

sub

in place of �SVBC:

Lemma 8.59. The forgetful functor

(8.3.25) �SVBC

sub → �SVBC

is homotopy cofinal. �

For each cube σ in SVBC

sub〈S〉, we define Gσ to be the group associated to σ(1n).
Given a map f : τ → σ of cubes, we set Gf ≡ Gσ. We define Gf to be the quotient

Gf/Gf . Since Gf acts freely on Zf , and IC

f is a Gf -equivariant bundle, we conclude

that it is pulled back from a Gf equivariant bundle on the quotient Zf/Gf , and
hence that the corresponding bundle over BZf is obtained by pull back under the
projection map

(8.3.26) BZf → EGf ×Gf
Zf/Gf .

At the same time, the vector spaces Vf and V ⊥
f are Gf representations which are

pulled back under the surjection to Gf , and hence the corresponding bundle over
BZf is pulled back from BGf . Given the commutative diagram

(8.3.27)

BZf EGf ×Gf
Zf/Gf

BGf BGf

we conclude:

Lemma 8.60. The complex vector bundles IC

f , Vf and V ⊥
f over BZf are naturally

isomorphic to the pullback of vector bundles over EGf ×Gf
Zf/Gf . �

Note that a composition f ◦ g induces a commutative diagram

(8.3.28)

BZg BZf◦g BZf

EGg ×Gg
Zg/Gg EGf◦g ×Gf◦g

Zf◦g/Gf◦g EGf ×Gf
Zf/Gf ,

where the right arrow on the bottom uses the fact that Gf◦g = Gf , and the left
arrow uses the surjection

(8.3.29) Gf◦g → Gg
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induced by Equation (8.3.24). This lets us inductively choose compatible classifying
maps, as follows.

Lemma 8.61. The space of compatible choices of classifying maps for all arrows f
in �SVBC

sub〈S〉, with the property that they are pulled back from EGf ×Gf
Zf/Gf ,

is nonempty and contractible.

Proof. We proceed by induction on the dimension of the target of an arrow. For
0-dimensional targets, the choice is clearly unconstrained. Now, given a choice
of compatible classifying maps for all arrows whose target has dimension strictly
less than n, the compatibility conditions dictate the choices of classifying maps for
Vf and IC

f whenever the domain of f has dimension strictly less than n and the

target has dimension n. Thus, choosing classifying maps for V ⊥
f by induction on

the codimension of f determines the choices of classifying maps for all maps with
n-dimensional target and domain of dimension strictly less than n. Finally, we can
extend this choice to n-dimensional cubes, completing the inductive step.

This induction shows the space of compatible classifying maps is nonempty. To
see that it is contractible, observe that the same inductive procedure allows us to
construct a homotopy to any particular point in this space. �

Since the bundle IC

∂Qf and the representation V∂Qf associated to a stratum la-

belled by a totally ordered subset Q of S are defined to agree with the pair (IC

f , Vf ),

it is straightforward to extend this construction to the category �SVBC

sub, so that
classifying maps are compatible with restriction to boundary strata.

Proposition 8.62. We can choose compatible classifying maps for the category
�SVBC

sub. �

We can also extend the choice of classifying data to Tw�SVBC

sub, and for the
remainder of the section we will work with the twisted arrow category. We now
describe how to arrange for the choice of classifying maps to be compatible with
the external product.

Definition 8.63. A choice of classifying maps is multiplicative if for each product
f1×f2 of charts, the classifying maps for (IC

f1×f2
, Vf1×f2) coincide with the products

of the classifying maps for (IC

f1
, Vf1) and (IC

f2
, Vf2).

Choosing multiplicative classifying maps would involve keeping track of product
decompositions of charts, so we instead consider the following categories which
encode the space of choices. First, we have the following pointwise definition,
which is justified by Proposition 8.62.

Definition 8.64. Let Tw�SVBC

sub,class be the internal category in spaces where

the objects are given by the objects of Tw�SVBC

sub along with compatible classifying
data. The topology on the objects is given by the topology on the space of classifying
data. Morphisms are specified by maps in Tw�SVBC

sub that are compatible with
the classifying data.

By Lemma 8.55, the projection

(8.3.30) Tw�SVBC

sub,class → Tw�SVBC

sub
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induces a DK-equivalence of internal categories. Moreover, as we explain in more
detail below, the topologized classifying map information can be pulled back to
Tw�ChartoriK .

The point of introducing Tw�SVBC

sub,class is that taking the product of classi-
fying maps induces a continuous map from the product of spaces of classifying data
to classifying data on the product.

Proposition 8.65. The symmetric monoidal structure on Tw�SVBC

sub coupled
with the product of classifying maps induces a symmetric monoidal structure on the
topological category Tw�SVBC

sub,class. �

8.3.4. Trivializing twisted cochains. Now that we have produced compatible mul-
tiplicative product maps, we can apply the results of Section B.2 to compatibly
trivialize the bundles.

Definition 8.66. Let C̃hartO denote the topological category with

(1) objects consisting of a S-stratified orbispace chart (G,Z,S), a finite set Q,
a pair of complex inner-product spaces W and V .

(2) morphisms f from (G′,S ′, Z ′)→ (G,S, Z) given by a map of the underlying
orbispace charts, a choice of finite set Qf , a bijection Q′ ∼= Q∐Qf , isome-
tries V ′ → V and W ′ →W , and a complex isomorphism (V ′)⊥ ∼= (W ′)⊥.

This is a monoidal category with monoidal structure induced by the product of
Kuranishi charts and direct sum of vector spaces.

Lemma 8.67. We have a lax monoidal topological functor Tw�C̃hartO → Sp
given on objects by

(8.3.31) f 7→ C∗,c
rel∂(BẐf ;F (SV , SW ∧ k)mfib) ∧ ST�f−Qf ).

�

There is a natural topological functor

(8.3.32) Tw�SVBC

sub,class → Tw�C̃hartO

induced from the projection S VBC

sub,class → C̃hartO that passes to the fiber of the
bundle I, and so we obtain a topological functor

(8.3.33) Tw�SVBC

sub,class → Sp

by pulling back Equation (8.3.31). We begin by comparing this to the complex
twisted cochains functor of Equation (8.3.23), using the complex Thom isomorphism
(see Section B.2) and the fact that k is complex-oriented.

Proposition 8.68. There is a natural zig-zag of lax monoidal equivalences con-
necting the complex twisted cochains functor

(8.3.34) C∗,c
rel∂(BẐf ;F (SV , (SI ∧ k)mfib) ∧ ST�f−Qf )

and the pullback functor in Equation (8.3.33).

Proof. Given an object of Tw�SVBC

sub, consider the spectrum

(8.3.35) f 7→ C∗,c
rel∂(BẐf ;F (SV , (S Ĩ ∧ k)mfib) ∧ ST�f−Qf ),

where Ĩ denotes the complex inner-product space that is the fiber of the vec-
tor bundle I. This assignment specifies a lax monoidal topological functor from
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Tw�SVBC

sub to spectra, and it is straightforward to check that the functor de-
scribed in Equation (8.3.35) is naturally equivalent to the pullback functor described
in Equation (8.3.33).

Therefore, it suffices to compare Equation (8.3.35) to the complex twisted cochains.
This follows using the equivariant Thom isomorphism of Theorem B.48. In partic-
ular, Proposition B.46 implies that for a bundle I with base Z and fiber Ĩ, there is
a natural zig-zag

(8.3.36) TI ∧ k→ ΣĨ
+Z ∧ k,

where TI denotes the Thom space of I, which is compatible with the external
multiplication. Interpreted in terms of the corresponding parametrized spectra,
the Thom zig-zag yields a natural multiplicative comparison

(8.3.37) SI ∧ k ≃ S Ĩ
Z ∧ k.

Moreover, the Thom isomorphism is realized as a composite consisting of enriched
functors of classifying maps, and is in particular continuous for the topology on the
classifying data. �

8.3.5. Comparison with untwisted cochains. The last step in the comparison be-
tween tangentially twisted and ordinary cochains is to consolidate the sphere coor-
dinates.

Definition 8.69. Let C̃hart
disc

O denote the category with

(1) objects (S, Z,G,Q, dI , dV ) consisting of an S-stratified orbispace chart (Z,G),
a finite set Q, and a pair (dI , dV ) of integers, and

(2) morphisms specified by a morphism of stratified orbispace charts together
with a non-negative integer k such that the pairs of integers are related by

(8.3.38) (dI , dV )→ (dI + k, dV + k).

This is a monoidal category with monoidal structure induced by the product of Ku-
ranishi charts and addition of integers.

The category C̃hart
disc

O discretizes the maps between spheres in C̃hartO. There
is an evident lax monoidal topological functor

(8.3.39) C̃hartO → C̃hart
disc

O

that takesW and V to their dimension and any morphism to the unique correspond-

ing map in C̃hart
disc

O , using the fact that a morphism exists in C̃hartO only when
Equation (8.3.38) holds. Note that this projection functor is not a DK-equivalence
because the spaces of isometries between inner product spaces are not contractible
unless they are 0-dimensional.

Lemma 8.70. The assignment for an arrow f in �C̃hartO

(8.3.40) f 7→ C∗,c
rel∂(BẐf ;S

T�f−Qf ∧ k)[dI − dV ]

specifies a lax monoidal functor

(8.3.41) Tw�C̃hart
disc

O → Sp

�
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We would now like to compare the pullback of Equation (8.3.40) along the pro-
jection

(8.3.42) Tw�C̃hartO → Tw�C̃hart
disc

O ,

to the functor

(8.3.43) f 7→ C∗,c
rel∂(BẐf ;F (SV , SW ∧ k)mfib) ∧ ST�f−Qf ).

of Equation (8.3.31).
For k = S, there would be no reason to expect a comparison of this form, since

the objects of C̃hartO have nontrivial automorphisms coming from unitary groups.
The key point, as discussed in Lemma B.42, is that the zig-zag representing the
complex Thom isomorphism

(8.3.44) MUPG ShV MUPG SV ∧MUPG

is U(V )-equivariant where we give MUPG the trivial U(V )-action (and here ShV

is the V -shift functor from Definition A.14).
Given the trivialization of the unitary group actions, pointwise we are looking

at the equivalence

(8.3.45) F (SV , SW ) ≃ S[|W | − |V |].

To produce a model of this equivalence which is compatible with the functoriality

and monoidal structure on C̃hart
disc

O , we proceed as in Section 8.3.1 by construct-
ing a bimodule representing an equivalence. Specifically, we consider the functor

Tw�C̃hartO → Sp specified by the assignment

(8.3.46) f 7→ C∗,c
rel∂(BẐf , F (SU ,S[|V |])) ∧ ST�f−Qf .

The argument in Section B.3 then proves the following proposition, which estab-
lish there is a strictly Π-equivariant bimodule structure on passage to homotopy
colimits.

Proposition 8.71. There are natural associative and unital maps

(8.3.47)

C∗,c
rel∂(BẐf ;Fk(S

V ∧ k, SW ∧ k)mfib) ∧ ST�f−Qf ) ∧ C∗,c
rel∂(BẐf ;F (SU ,S[|V |])) ∧ ST�f−Qf

C∗,c
rel∂(BẐf ;F (SU ,S[|V |])) ∧ ST�f−Qf

(8.3.48)

C∗,c
rel∂(BẐf ;F (SU ,S[|V |])) ∧ ST�f−Qf ∧C∗,c

rel∂(BẐf ;S
T�f−Qf ∧ k)[dI − dV ]

C∗,c
rel∂(BẐf ;F (SU ,S[|V |])) ∧ ST�f−Qf

�

Specifically, we get Π-equivariant comparisons of the associated spectral cate-
gories with morphism spectra computed via hocolimTw�AT .
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8.3.6. Complex-oriented Kuranishi presentations. Finally, we consider a Π-equivariant
2-category Aori equipped with a strictly Π-equivariant 2-functor

(8.3.49) Aori → ChartoriK

which lifts a Kuranishi presentation of a flow category over a partially ordered set
P , forming a complex-oriented Kuranishi presentation as in Definition 4.61. First,
observe that we can lift the classifying data attached to each object of S VBC

sub,class

to ChartoriK so that it is preserved under the projection functor; this simply involves

augmenting the objects and morphisms of ChartoriK in analogy with Definition 8.64.

We denote the resulting topological bicategory by Chartori,classK . We then have a
Π-equivariant lift of the given complex-oriented Kuranishi presentation to a strictly
Π-equivariant topological 2-functor

(8.3.50) Aori,class → Chartori,classK

that sits in the commutative diagram

(8.3.51)

Aori,class Chartori,classK

Aori ChartoriK .

Since the classifying data is contractible, passing to this lift does not change the
realization:

Lemma 8.72. The projection 2-functor Aori,class → Aori induces homotopy cofinal
functors Aori,class(p, q)→ Aori(p, q) for each pair p, q ∈ P. �

We obtain from the complex-oriented Kuranishi presentation a Π-equivariant
assignment

(8.3.52) p→ Vp = (V +
p , V −

p )

of a stable vector space to every element of P . The relative isomorphism from
Equation (4.3.17) between TXα and IC

α implies that

(8.3.53) 1 + dimXα − dimVα − dimV +
p + dimV +

q =

2(dimC IC

α − dimC Vα − dimC V −
p + dimC V −

q ).

Applying Equation (5.6.10), we conclude that for each pair (p, q) of objects of P ,
we have

(8.3.54) dimC IC

α − dimC Vα = deg q − deg p.

The following proposition is the main result of this section, which completes the

comparison zig-zag connecting C∗,c
rel∂(BẐ;ST X̂−V−d) to C∗,c

rel∂

(
BẐ,Ωk

)
, as defined

in Definition 7.9.

Proposition 8.73. Given a complex oriented Kuranishi presentation, there is a
Π-equivariant zig-zag of DK-equivalences of spectrally enriched categories
(8.3.55)

C∗,c
rel∂

(
BẐ;ST X̂−V−d ∧ k

)
C∗,c

rel∂

(
BẐ;Sℓ+I−V−d ∧ k

)
C∗,c

rel∂

(
BẐ; Ωk

)
.
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Proof. First, Proposition 8.46 and Lemma 8.47 establish an equivalence of Π-
equivariant spectral categories given by an invertible bimodule

(8.3.56) C∗,c
rel∂

(
BẐ;ST X̂−V−d ∧ k

)
≃

hocolim
Tw�AT

C∗,c
rel∂(BẐf ;F (SV , (SI ∧ k)mfib) ∧ ST�f−Of ),

where here the notation on the righthand side denotes the spectral category with
morphisms from p to q given by the homotopy colimits over Tw�AT(p, q). Lemma 8.52
now shows that the natural map

(8.3.57)

hocolim
Tw�AT

C∗,c
rel∂(BẐf ;F (SV , (SI ∧ k)mfib) ∧ ST�f−Of )

hocolim
Tw�SVBC

sub

C∗,c
rel∂(BẐf ;F (SV , (SI ∧ k)mfib) ∧ ST�f−Of )

is a DK-equivalence of Π-equivariant spectral categories, where the notation on
the bottom abusively denotes the spectral category with morphisms given by the
homotopy colimit over the pullback of diagrams along the projection Tw�AT →
Tw�SVBC

sub. Using the DK-equivalence of Equation (8.3.30), we can introduce

classifying data by considering Tw�SVBC

sub,class and the lift of the flow category
from Equation (8.3.50) to work with the composite

(8.3.58) Aori,class → Chartori,classK → S VBC

sub,class .

Specifically, we have an equivalence

(8.3.59)

hocolim
Tw�AT,class

C∗,c
rel∂(BẐf ;F (SV , (SI ∧ k)mfib) ∧ ST�f−Of )

hocolim
Tw�SVBC

sub,class

C∗,c
rel∂(BẐf ;F (SV , (SI ∧ k)mfib) ∧ ST�f−Of )

that lifts the map of Equation (8.3.57) in the sense that the square

(8.3.60)

hocolim
Tw�AT,class

C∗,c
rel∂(−) hocolim

Tw�SVBC

sub,class

C∗,c
rel∂(−)

hocolimTw�AT C∗,c
rel∂(−) hocolimTw�SVBC

sub
C∗,c

rel∂(−)

commutes, is Π-equivariant, and the vertical maps are DK-equivalences.
Next, Proposition 8.68 trivializes the complex bundles to produce a Π-equivariant

equivalence

(8.3.61)

hocolim
Tw�SVBC

sub,class

C∗,c
rel∂(BẐf ;F (SV , (SI ∧ k)mfib) ∧ ST�f−Of )

hocolim
Tw�SVBC

sub,class

C∗,c
rel∂(BẐf ;Fk(S

V ∧ k, (SW ∧ k)mfib) ∧ ST�f−Qf ).
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Finally, Proposition 8.71 assembles into a Π-equivariant bimodule equivalence

(8.3.62)

hocolim
Tw�SVBC

sub,class

C∗,c
rel∂(BẐf , Fk(S

V ∧ k;SW ∧ k)mfib) ∧ ST�f−Qf

hocolim
Tw�SVBC

sub,class

C∗,c
rel∂(BẐf ;S

T�f−Qf ∧ k)[dI − dV ]

≃

combining the sphere coordinates, and applying Equation (8.3.54) and using the
multiplicative properties of the system of spheres {S[−]} now completes the argu-
ment. �

Part 3. Floer theoretic constructions

9. Hamiltonian Floer theory and Morse theory

Let M be a closed symplectic manifold of real dimension 2n. In this section,
we construct the moduli spaces of Floer trajectories of a non-degenerate Hamilton-
ian function H on M , and prepare the ingredients needed to construct a Kuran-
ishi presentation of such spaces. As noted earlier, our approach is closest to Par-
don’s construction from [Par16, Section 10], and can be compared with the work of
McDuff-Wehrheim [MW17]. All these points of view are variants of the Kuranishi
construction of Fukaya-Ono [FO99] and Fukaya-Oh-Ohta-Ono [FOOO09].

Since our applications rely on being able to (partially) compute the homotopy
type associated to H , we shall simultaneously build a Kuranishi presentation of
a larger category with four types of objects, three of which correspond to critical
points of a fixed Morse functions, and one to Hamiltonian orbits of H . We then
implement a variant of the comparison between Floer and Morse theory, via fibre
products of moduli spaces with marked points (see [Fuk97, PSS96]).

9.1. Stable maps and buildings.

Definition 9.1. A pre-stable cylinder consists of the following data

(1) A finite tree T equipped with a distinguished root vertex,
(2) For each vertex v ∈ T other than the root, a genus 0 closed Riemann surface

Σv. We define Σv = R× S1 if v is the root, which we can identify with the
complement of the points z− = 0 and z+ =∞ in P1,

(3) (Nodal points) For each flag (v, e) (i.e. a pair consisting of an endpoint v
of an edge e in T ), a marked point zv,e ∈ Σv.

A pre-stable building is a finite ordered collection of pre-stable cylinders.

We shall often write Σ for a pre-stable building. The automorphism group
Aut(Σ) is the direct product of the automorphism groups of the underlying pre-
stable cylinders: these consist of a (rooted) automorphism f of the corresponding
tree and a biholomorphism φv of the Riemann surfaces Σv

∼= Σf(v) mapping the
nodal point labelled by e to the nodal point labelled by f(e).

Consider a pair x± of free loops in M (i.e., maps S1 →M). A map u : R×S1 →
M is asymptotic to x± if u(s, t) exponentially converges (in the Ck norm for every
k) to x±(t) in the limit s 7→ ±∞.
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− + − +

Figure 6. A representation of a pre-stable cylinder with automor-
phism group Z/2 and the corresponding tree; the great equators
are supposed to help visualise that these are sphere components.
The root carries the marked points z± which correspond to the
ends t = ±∞ of Σv ≡ R× S1.

Definition 9.2. A stable map u with asymptotic conditions x± consists of a pre-
stable cylinder and a map uv : Σv →M from each component such that:

(1) (Asymptotic conditions) uv is asymptotic to x± if v is the root,
(2) (Well-defined at the nodes) uv(zv,e) = uv′(zv′,e) whenever v and v′ are the

two endpoints of an edge e, and
(3) (Stability) If v is the root, and uv is independent of R, then the valence of v

is strictly positive. If v is not the root, and uv is constant, then the valence
of v is strictly larger than two.

We refer to the map corresponding to the root as a cylinder, and the maps
corresponding to other vertices as sphere bubbles. There is an equivalence relation
on the set of stable maps defined as follows: an equivalence between two maps is
a (rooted) isomorphism f of the underlying tree and a biholomorphism φv of the
Riemann surfaces Σv

∼= Σf(v) intertwining the marked points labelled by e and
f(e) and the maps to M , such that the restriction to the root is a translation.
In particular, the asymptotic conditions are locally constant in the space of stable
maps. Note that, as soon as there is more than one vertex, the biholomorphism of
the root must be the identity because no finite set is invariant under a non-trivial
translation. An automorphism of a stable map is a self-equivalence in the above
sense.

Remark 9.3. In this generality, the group of automorphisms is not necessarily finite,
as a composition of the height function S2 → [0, 1] with a path in M will have S1

as its group of automorphisms.

Stable maps model the open subspace of the Gromov-Floer compactification of
the moduli space of Floer cylinders obtained by allowing sphere bubbles. To obtain
all strata of the compactification, we have to consider breaking of cylinders:

Definition 9.4. A stable building with asymptotic conditions given by loops x± : S1 →
M consists of a collection of loops {xi}ki=1 and stable maps {ui}ki=0 with asymptotic
conditions (xi, xi+1), where we set x0 = x− and xk+1 = x+.

A pair of stable buildings are equivalent if each of the corresponding stable maps
are equivalent.

Remark 9.5. The terminology of buildings goes back to the literature on symplectic
field theory [EGH00]. It is convenient in this setting to distinguish the bubbling



ARNOLD CONJECTURE AND MORAVA K-THEORY 207

phenomenon of pseudo-holomorphic curves, from the breaking phenomenon of so-
lutions to Floer’s equation.

x2

x+

x1

x− +
x2x1

−

Figure 7. A representation of a stable building with automor-
phism group Z/2 and the corresponding tree.

It shall be useful to encode the combinatorics of stable buildings by trees as
follows: consider a tree equipped with a pair v± of distinguished vertices. A stable
building thus consists of the following data: (i) for each vertex along the minimal
path from v+ to v−, a cylinder mapping to M with marked points labelled by
the adjacent edges which do not lie on this path, and (ii) for each other vertex,
a closed Riemann surface of genus 0 with marked points labelled by all adjacent
edges, together with a map to M . Removing the edges along the path from v+ to
v−, we obtain a collection of rooted trees; we require that the data associated to
each such tree define a stable map as in Definition 9.2.

9.2. Lifts of Hamiltonian orbits and moduli spaces of stable Floer cylin-
ders. Let H : S1×M → R be a Hamiltonian function all of whose time-1 periodic
orbits are non-degenerate. Let P(H) denote the set of lifts of the contractible

Hamiltonian orbits of H to an intermediate regular cover L̃M of the free loop
space of M on which the action and index of loops is well-defined (i.e., so that
the torus in M corresponding to any loop in this cover has trivial area and Chern
number). Let Π denote the group of deck transformations (i.e. the image of the
surjective homomorphism from the fundamental group of LM which is associated
to this chosen cover).

An element p ∈ P(H) consists of an orbit of H together with a homotopy class of
bounding discs passing through a fixed basepoint in M (capping disc). The action
(the difference between the integral of H over the orbit and the integral of the
symplectic form ω over the bounding disc) and the (normalised) Conley-Zehnder
index define maps

(9.2.1) A : P(H)→ R and deg : P(H)→ Z.

We normalise the degree so that it is given by the dimension of the positive-definite
subspace of the Hessian when computed for the constant capping discs of the orbits
corresponding to the critical points of a Morse function (in particular, any minimum
has degree equal to the dimension of M , and any maximum has degree 0). There
is a natural map Π → H2(M,Z) which associates to each homotopy class of free
loops the corresponding homotopy class of tori mapping to M , and we define

(9.2.2) A : Π→ R and deg : Π→ Z.

to be the composition with the maps on H2(M,Z) defined by [ω] ∈ H2(M,R) and
c1(M) ∈ H2(M,Z).
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We write [p] for the class of an element of P(H) in the quotient P(H)/Π, and
identify it with the corresponding orbit. The action of Π on P(H) is free and
the quotient is finite because a non-degenerate Hamiltonian function on a closed
manifold admits only finitely many time-1 orbits. Given an ω-tame almost complex
structure J on M , the following definition is standard, and is a variant of Floer’s
definition [Flo89], in the sense that it takes sphere bubbling into account:

Definition 9.6. A pseudo-holomorphic stable building is a stable building such
that each sphere bubble is J-holomorphic (i.e. satisfies du ◦ j = J ◦ du), the Floer
operator

(9.2.3) ∂H ≡ (du−XH ⊗ dt)
0,1

=
1

2
((du−XH ⊗ dt) + J(du −XH ⊗ dt) ◦ j)

vanishes on each cylinder, and the energy

(9.2.4) E(u) =

∫
‖du−XH ⊗ dt‖2

is finite, where the integral is taken over all components of the domain, and the
inhomogeneous term XH ⊗ dt vanishes on the sphere bubbles.

The moduli space MR

([p], [q]) of Floer cylinders is the space of equivalence
classes of pseudo-holomorphic stable buildings, which are asymptotic to [p] at −∞,
and [q] at +∞.

[p] [q](du −XH ⊗ dt)0,1 = 0

Figure 8. The asymptotic conditions on elements ofM([p], [q]).

Remark 9.7. It is traditional to writeM([p], [q]) for this moduli space, but we find
it convenient to indicate the fact that the symmetry of the Floer components is
broken from C∗ to R.

The (Hausdorff) topology on MR

([p], [q]) is obtained by implementing ideas of
Gromov [Gro85] and Kontsevich [Kon95] in this specific context, and is described in
detail in [FO99, Chapter 3]. We summarise the key ideas: the topology incorporates
the possibility that a sequence of maps with domain a cylinder converge to a stable
map with domain containing spheres, or a multi-level map with multiple cylinders.
The key fact we shall use is the existence of a canonical decomposition

(9.2.5) MR

([p], [q]) ≡
∐

b∈π1(LM,[p],[q])

MR

([p], [q]; b)

indexed by the set π1(LM, [p], [q]) of homotopy classes of paths in the free loop space
from [p] to [q]. There is a natural map π1(LM, [p], [q]) → R given by the energy
of any representing cylinder in M , which is the difference between the integrals of
ω and of dH ∧ ds. The fundamental result we shall use is Gromov’s compactness
theorem, which appears in this context as [FO99, Theorem 11.1]:

Theorem 9.8. The map MR

([p], [q]) → [0,∞) induced by ω is proper, and the
origin has a neighbourhood whose inverse image is trivial. �
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Remark 9.9. The statement above is compatible with the existence of the translation-
invariant cylinder associated to [p] = [q] because the stability condition we imposed
excludes it.

We now return to consider lifted orbits p, q ∈ P(H). As such lifts are points in

L̃M , they determine a collection π1(L̃M, [p], [q]) of homotopy classes of paths in
LM from [p] to [q] which lift to this space with the given endpoints. We define

(9.2.6) MR

(p, q) ≡
∐

b∈π1(L̃M,[p],[q])

MR

([p], [q]; b),

and note that this is a compact Hausdorff topological space by Gromov compact-
ness. It is evident that each element π ∈ Π induces an identification

(9.2.7) MR

(p, q) =MR

(π · p, π · q).
By construction, there is a natural associative map

(9.2.8) MR

(p, q)×MR

(q, r)→MR

(p, r)

which concatenates stable buildings, and which strictly commutes with the Π-
action.

In order for this construction to fit with our framework for constructing homo-
topy types from topologically enriched categories as described in Section 2.1, it
remains to equip P(H) with the desired partial order, which we define by

(9.2.9) p < q wheneverMR
(p, q) is non-empty.

Gromov’s compactness theorem readily implies that, for each element p of P(H),
and constant E ∈ R, there are finitely many elements q such that p < q and
A(q) ≤ E. Since the ordering is clearly preserved by Π, we conclude:

Lemma 9.10. The moduli spaces MR

(p, q) are the morphism spaces of a Π-

equivariant topological flow category MR

(H) with object set P(H). �

9.3. Abstract moduli spaces of cylinders. Consider a genus-0 Riemann surface
Σ with points marked by {+,−}. An angular lift at z± is a choice of oriented real
line in Tz±Σ. Note that such a choice determines a biholomorphism to P1 mapping
the marked points to 0 and∞, uniquely up to positive real dilation, and in particular
at choice at one end determines a choice at the other end.

We shall construct a moduli space of stable Riemann surfaces with marked points
labelled by the union of ± with an ordered collection S of finite sets, equipped with
compatible angular lift at the points z±. In order to construct a smooth structure
on this moduli space (and later a stable almost complex structure), we start with
the smooth structure on the Deligne-Mumford space.

Remark 9.11. A delicate point in Floer theory is the construction of smooth struc-
tures on moduli spaces of abstract curves in such a way that moduli spaces of
pseudo-holomorphic maps acquire a smooth structure for which the forgetful map
is smooth. We shall not construct a smooth structure on the moduli space of
pseudo-holomorphic maps, so these considerations are irrelevant for our purpose.

Given a finite set r, we shall consider the Deligne-Mumford space Mr∐± of
stable genus 0 Riemann surfaces with points marked by the set r ∐ {±}. It is
a standard fact going back to Knudsen [Knu83, Theorem 2.7] (see e.g. [MS12,



210 M. ABOUZAID AND A.J. BLUMBERG

Appendix D.4] for a symplectic topology reference) that this space is a smooth
complex projective variety stratified by the topological type of the underlying curve,
which is determined by a tree T , and a partition of r ∐ ± among the vertices of
T , so that every vertex is stable (i.e. the sum of the valence and the number of
marked points associated to the vertex is not less than 3). In particular, there
are vertices v± carrying the marked points {z±}. We can think of each element of
Mr∐± as a building with levels given by a component corresponding to a vertex
lying on the path from + to −, together with all the components whose paths to v±
pass through this vertex. We write ∂Mr∐± for the local normal crossings divisor
corresponding to strata with at least two levels. This is further stratified by the
number of edges between v− and v+, and we write ∂kMr∐± for the stratum with k
such edges. We say that curves on this stratum have (k+1)-levels, which we order
starting at the level containing the marked point −.
Remark 9.12. Our definition of the boundary divisor ∂Mr∐± is not standard: one
usually defines it to consist of the locus where the underlying curve has more than
one component, so that our boundary divisor is a subset (in fact, an irreducible
component) of the usual one. The reason for this choice is that, for the purpose of
studying Floer theory, we need to treat edges separating v± differently from other
edges.

Note that the symmetry group on r letters, which we denote Gr, acts onMr∐±

preserving the boundary. We shall (partially) break this symmetry as follows (we
invite the reader to look at Remark 9.16 below for some explanation for why all
this data is required):

Definition 9.13. Given a pair p < q of elements of P(H), we define D(p, q) to be
the set of data consisting of

(1) a pair of positive integers S and S′, and an injective order preserving map
{1, . . . , S′} → {1, . . . , S},

(2) a sequence {ri}Si=1 of positive integers indexed by S,
(3) an inclusion P ⊂ P ′ of elements of 2P(H)(p, q) (i.e. totally ordered subsets

of P(H) strictly between p and q), and
(4) order preserving surjective maps from {1, . . . , S} to the successive elements

of {p} ∐ P ∐ {q}, and from {1, . . . , S′} to the successive elements of {p} ∐
P ′ ∐ {q}.

We require that these order preserving maps satisfy the following condition: if pi <
qi and p′i < q′i are the successive elements of P and P ′ associated to i ∈ S′ and its
image in S, we require that

(9.3.1) pi ≤ p′i < q′i ≤ qi.

By abuse of notation, we write S for the set {1, . . . , S}, and similarly for S′. In
other words, we consider each natural number S as an object of the category whose
maps are order preserving injections.

The above data thus consists of an assignment ri of a natural number for each
i ∈ S; we write ri as well for the set of numbers {1, . . . , ri}. We write rS for
the (disjoint) union of the sets ri indexed by the members of the sequence S, and
similarly for rS′ .

For later purposes, we note the following immediate consequence of our con-
struction:
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Lemma 9.14. Each element π ∈ Π induces a canonical bijection

(9.3.2) π · : D(p, q)→ D(π · p, π · q),
such that the following diagram

(9.3.3)

D(p, q) D(π · p, π · q)

D(π′ · π · p, π′ · π · q)

π·

(π′·π)·
π′·

commutes. This assignment is strictly associative as is unital in that the identity
of Π acts by the identity map. �

Definition 9.15. For each α ∈ D(p, q), the moduli spaceMα (respectivelyM′
α) is

the subset ofMrS∐± (resp. MrS′∐±) given by stable curves satisfying the following
constraints:

• for each i ∈ S (resp. S′), any two points marked by elements of ri lie in
the same level
• the induced map from S (resp. S′) to levels factors through an order pre-
serving map from the set of successive elements of P (resp. P ′) to the set
of levels (here, P ⊂ P ′ are the sets of orbits that are part of the data of α).
• the fibre of the universal curve is obtained by pullback from MrS′∐±.

As a consequence of the last condition, note that the projection mapMα →M
′
α

is a submersion, and that each curve in these moduli spaces is equipped with a
labelling of the Floer edges of the corresponding tree by elements of P , given by
the minimum of the labels appearing in the adjacent level closest to the output
(this agrees with the maximum of the labels appearing in the adjacent level closest
to the input, because we have assumed that the map from S to successive elements
of P is surjective).

Remark 9.16. To justify the above definition, the expert reader should anticipate

that the basic charts on the interior of the moduli space MR

(p, q) are associated
to a choice r of a number of marked points to stabilise the domains of trajectories,
and the group acting on such a chart is the symmetric group on r letters. From this
point of view, the difficulty is to construct maps of charts associated to changing
the number of marked points; the natural construction yields a correspondence for
each inclusion f : {1, . . . , r′} → {1, . . . , r}, i.e. the partition r = Imf ∐ (r \ Imf),
with automorphism group given by the products of the symmetric groups of order
r′ and r − r′. Since our point of view is to consider maps of charts rather than
correspondences, we are thus led naturally to consider charts labelled by a finite
collection S of integers, in which case the automorphism group will be the product
of symmetric groups indexed by S. It is easy in this case to associate forgetful maps
of Kuranishi charts to inclusions S′ ⊂ S.

The reason for labelling our basic charts by inclusions S′ ⊂ S, rather simply by
such a set, ultimately is related to the fact that we will need to lift our Kuranishi
charts to flag smooth charts (see Section 4.2); in order to avoid discussions of
smoothness of gluing maps, it is convenient to ensure that all maps of abstract
moduli spaces that we consider are smooth fibrations, and forgetful maps which
change the domain of the underlying map may not satisfy this property.



212 M. ABOUZAID AND A.J. BLUMBERG

In the above discussion, we considered only the interior of the moduli space. The
description of a general Kuranishi chart of the moduli space requires a choice of a
totally ordered set P of P(p, q) of intermediate orbits. Passing to pairs P ⊂ P ′ will
allow us to more clearly formulate the flag smooth structure discussed above, but
will also be crucial in constructing functorial and multiplicative (relative) stable
complex orientations in Section 11 (see specifically Subsection 11.3.3).

Finally, the fact that the data of intermediate orbits and choices of marked points
are not chosen independently is related to the fact that we only consider strict 2-
functors in our definition of a Kuranishi presentation. We shall later observe the
existence of a natural map D(p, q)×D(q, r)→ D(p, r), and use this correspondence
to associate to a product of charts for the pairs (p, q) and (q, r), a chart for the pair
(p, r). The map from S to the successive elements of P will ensure that this is in
fact the product of charts (rather than a chart containing the product chart as an
open subset). We could drop this choice from our data at the cost of re-defining
Kuranishi presentations using lax 2-functors.

Example 9.17. Consider a pair p < r of elements of P(H). Let P = ∅, and assume
that we have an element q of P(H) such that p < q < r; let P ′ = {q}. Let
S = {1 < 2 < 3}, and S′ = {1 < 3}, so that we have a triple of totally ordered sets
r1, r2, and r3, which we assume all consist of a pair of elements, which we denote
zji for 1 ≤ i ≤ 3, and 1 ≤ j ≤ 2. Since P is empty, we assign to each i ∈ S the
pair of elements p < r. We refine this for elements of S′ by assigning p < q to the
element 1 and q < r to the element 2.

p
q

r

z13 z23

z11

z21

p
q

r

z13 z23

z11

z21

z12

z22
p

q
r

z13 z23

z11

z21

z12

z22

Figure 9. A graphical representation of an element ofM′
α (cen-

ter), and two elements of its inverse image inMα (left and right).
The marked points can have arbitrary position within the given
component.

The moduli spaceM′
α is thus a subset of the moduli space of stable spheres with

four marked points (corresponding to the union of {p, r} with r1 ∐ r3). The key
condition is that, if the point p and r do not lie in the same component, then they
are separated by exactly one nodal point (which we label q), and all points labelled
by r1 and r3 respectively lie on the same side of this node as p and r (see Figure
9).

We define the moduli space of Floer cylinders MR

rS →MrS∐± to be the moduli
space of Riemann surfaces with points marked by rS∐±, and an asymptotic marker
at the positive end of each Floer node. This is a smooth manifold with bound-
ary, which can be defined as a circle bundle over an oriented boundary blowup of
Deligne-Mumford space along the boundary divisor ∂MrS∐±, but we shall give an
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alternative and explicit construction in Section 9.7 below (the construction as a
blowup would proceed along the lines of the construction of [KSV95]). For each

α ∈ D(p, q), we denote the inverse image ofMα in this moduli space byMR

α. We

similarly obtain a moduli spaceM′R
α overM′

α, and a submersionMR

α →M
′R
α over

the projectionM′
α →Mα.

Remark 9.18. The appearance of two moduli spacesMR

α and M′R
α is particularly

relevant for the functoriality of flag smooth structures as in Section 4.2.

9.4. Continuation maps. Floer’s construction of homology groups associated to
Hamiltonians extends to map associated to 1-parametric families of Hamiltonians,
i.e. maps from R× S1 to the space of functions on M . We only need the following
special situation:

Definition 9.19. An admissible continuation equation is a map R× S1 ×M → R

whose restriction to each end of the cylinder either vanishes or agrees with H.

1

Figure 10. The graph of the cutoff function χ.

Using a cut-off function χ : R → [0, 1] which vanishes at the negative end and
equals 1 at the positive end, we associated to H a pair

H+(s, t) ≡ χ(s)H(t)(9.4.1)

H−(s, t) ≡ χ(−s)H(t)(9.4.2)

of admissible continuation equations. We also fix a family χS of functions from R

to [0, 1], parametrised by S ∈ [0,∞) such that χ0 vanishes identically, and

(9.4.3) χS(s) =

{
χ+(s+ S) s ≤ 0

χ−(s− S) 0 ≤ s

whenever S ∈ [0,∞) is sufficiently large (see Figure 11). We then define a family

Figure 11. The graph of the cutoff functions χS for S sufficiently
large.

HS of continuation equations parametrised by S ∈ [0,∞), given by

(9.4.4) HS(s, t) = χS(s)H(t).
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Note that the definition makes sense because HS(0, t) = H(t) at the boundary
of the domains of definition. In the limit S → +∞, the domain splits into two
copies of the real line respectively carrying the Hamiltonians H+ and H−. We
write {HS}S∈[0,∞] when we allow this possibility.

We now consider pseudo-holomorphic maps associated to such equations. The
key difference is that stability is defined relative the map R × S1 ×M → P1 ×M ,
which is given by the natural inclusion on the first factor (see Definition 9.28);
note that this stability condition is different even when the function H identically
vanishes.

Definition 9.20. A pseudo-holomorphic stable map with respect to an admissible
equation H• is a stable map such that each sphere bubble is J-holomorphic, and the
cylindrical component satisfies the equation

(9.4.5) ∂H• ≡ (du−XH• ⊗ dt)
0,1

= 0.

The moduli space of stable maps as defined above may not be compact because
we have not yet incorporated breaking or bubbling along the ends.

The compactification is obtained by considering pseudo-holomorphic stable build-
ings as before: we consider a chain of pseudo-holomorphic stable maps with com-
patible asymptotic conditions (see Section 9.6 below for the construction of the
corresponding abstract moduli spaces).

Given a Hamiltonian orbit [p] of H , we extract from the space of pseudo-

holomorphic buildings for H+ the moduli spaceMR
(M, [p]) of equivalence classes

of maps which converge to [p]. These consist of a stable map whose cylindrical
component solves Equation (9.4.5) for H• = H+, and a collection of stable maps
whose cylindrical component solves Floer’s equation (for H) with matching asymp-
totic conditions, such that the last asymptotic condition is given by [p] (along the
positive end). Note that, since the inhomogeneous term vanishes at the end labelled
M , the marked point z− may lie on a sphere bubble. The same construction for H−

yields a moduli spaceMR
([p],M) with asymptotic condition [p] along the negative

end.
The identically vanishing Hamiltonian defines a moduli spaceMR

(M,M ; 0) con-
sisting of equivalence classes of maps with constant asymptotic conditions at both
ends. Finally, the 1-parametric family of continuation equations {HS}S∈[0,∞] yields

a moduli space MR
(M,M) of equivalence classes of maps with constant asymp-

totic conditions at both ends. In the case S =∞, an element of this moduli space
consists of a chain of stable maps with stable asymptotic conditions, the first and
last of which respectively correspond to H• = H±, while the intermediate ones are
solutions to Floer’s equation.

For each orbit [p], we have tautological inclusions

(9.4.6) MR

(M,M ; 0)→MR

(M,M)←MR

(M, [p])×MR

([p],M),

and for each orbit [q] we have as well natural inclusions of products

MR

(M, [p])×MR

([p], [q])→MR

(M, [q])(9.4.7)

MR
([p], [q])×MR

([q],M)→MR
([p],M).(9.4.8)

In this context, Gromov’s compactness theorem implies:
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Lemma 9.21. The subsets ofMR

(M, [p]),MR

([p],M), andMR

(M,M) consisting
of elements of bounded energy are compact. Moreover, there is a constant ǫ so that

the only elements of MR

(M,M ; 0) of energy smaller than ǫ are constant. �

9.5. Combining continuation maps and Morse trajectories. Let f be a
Morse-Smale function as in Appendix D; to harmonise notation, we shall write
[x] for a critical point of f . We shall presently use the moduli spaces T ([x],M),
T ([x], [y]), and T ([y],M), associated to a pair [x] and [y] of critical points of f , and
consisting of flow lines with convergence conditions at one or both ends given by
fixed critical points. These are defined more precisely in the Appendix.

We introduce an additional moduli space T ([x],M,M) whose interior consists
of a choice of a point on a (half-infinite) gradient flow line starting at [x]. There
are again natural maps:

(9.5.1) T ([x],M)→ T ([x],M,M)← T ([x], [y]) × T ([y],M)

corresponding respectively to the locus where the additional point is the finite
endpoint, and where it converges to the infinite end. We also introduce the moduli
space

(9.5.2) T ([x],M, [y]) ≡ T ([x],M)×M T (M, [y])

consisting of a pair of gradient flow lines meeting at a point in M .
Let P(f) denote the set of lifts of the critical points of f (considered as constant

maps with domain S1) to L̃M . An element of P(f) is thus represented as before
by a homotopy class of bounding discs. We shall construct a flow category with
objects three copies of P(f), which we denote P(f)−, P(f)0, and P(f)+, and one
copy of P(H). To define the morphism spaces in this category, we associate to
elements (x, y, z) of P(f) and p of P(H) the moduli spaces

MR

(x−, p) ⊂ T ([x],M)×M M
R

(M, [p])(9.5.3)

MR

(p, z+) ⊂M
R

([p],M)×M T (M, [z])(9.5.4)

MR

(y0, z+) ⊂ T ([y],M)×M M
R

(M,M ; 0)×M T (M, [z])(9.5.5)

MR

(x−, y0) ⊂ T ([x],M, [y])(9.5.6)

consisting of elements which represent paths in L̃M with the prescribed asymptotic
conditions. These moduli spaces are represented on the outer edges of Figure 12.

To construct the moduli space associated to a pair (x−, z+), we introduce a
space whose natural boundary consists of the products of spaces labelling the top
and bottom of Figure 12. We proceed in two step: first, we introduce the moduli
spaces

MR

(x−, z+)Floer ⊂ T ([x],M)×MM
R

(M,M)×M T (M, [z])(9.5.7)

MR

(x−, z+)Morse ⊂ T ([x],M,M)×MM
R

(M,M ; 0)×M T (M, [z])(9.5.8)

where we again prescribe the homotopy class imposed by the input and output.
Note that both of these spaces include, as a boundary stratum, the subset of the
fibre product

(9.5.9) T ([x],M)×M M
R

(M,M ; 0)×M T (M, [z]),
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x− z+

p

y0

∂H+ = 0 ∂H− = 0

∂HS
= 0

∂ = 0

∂ = 0

∂ = 0

Figure 12. A graphical representation of the flow category

MR

(f,H, f).

consisting of configurations in the prescribed homotopy class (this is represented by
the central diagram in Figure 12). Taking the union along this stratum, we obtain

(9.5.10) MR

(x−, z+) ≡M
R

(x−, z+)Morse ∪M
R

(x−, z+)Floer.

For notational consistency, for each pair x and y of lifts to L̃M of critical points of
f , we define the moduli spaces T (x, y) ⊂ T ([x], [y]) of gradient flow lines that lift

as paths in L̃M with the prescribed endpoints, and we then set

(9.5.11)

MR

(x−, y−)

MR
(x0, y0)

MR

(x+, y+)




≡ T (x0, y0).

Remark 9.22. It would be more natural to construct a category involving only the
moduli spaces appearing in the upper half of Figure 12 (i.e. use only the moduli

space MR

(x−, z+)Floer, and not MR

(x−, z+)Morse). However, the corresponding
flow category does not admit a fundamental chain in the sense of this paper. We
choose not to develop the formalism of relative fundamental chains of flow categories
that would be required to obtained the desired results in this context.

The moduli spaces described above are compact because prescribing the lift
determines the action. For the statement of a more refined consequence of Gromov’s
compactness theorem, we introduce the set

(9.5.12) P(f,H, f) ≡ P(f)− ∐ P(H)∐ P(f)0 ∐ P(f)+,
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where P(f)•, for • ∈ {+, 0,−} is a copy of P(f) with elements denoted x•. We
equip this set with an ordering given by

(9.5.13) a < b wheneverMR
(a, b) is non-empty.

Gromov compactness again immediately implies that this ordering satisfies the
property that, given any a, the set of elements b which receive morphisms from a,
and have bounded action, is finite.

The Π action on P(f,H, f) preserves this partial order. The moduli spaces

MR
(a, b) are the morphisms of a category whose composition maps are induced

by Equation (9.4.6)-(9.4.8), as well as Equations (D.1.1)-(D.2.3). We conclude
(recalling Equation (9.2.7) for the Π-action):

Lemma 9.23. The morphisms above define a strictly Π-equivariant topological

category which we denoteMR

(f,H, f) with objects P(f,H, f). �

There is one minor inconvenience with the above construction: while there is a
natural map A from P(f,H, f) to R given by the action of each lift to an orbit

to L̃M , this map does not respect the order, because, unlike the moduli space of
solutions to Floer’s equation, the moduli space of continuation maps need not be
empty when its topological energy is negative. We shall remedy this by recalling
the following standard result:

Lemma 9.24. There is a constant CH with the property that, for any pair of

elements a and b of P(f,H, f), the moduli space MR
(a, b) is empty whenever

(9.5.14) A(b)−A(a) ≤ −CH .

Moreover, there is a positive constant ǫ so that if x0 ∈ P(f)0 and y+ ∈ P(f)+ and

A(y)−A(x) < ǫ, then the only moduli spacesMR

(x0, y+) which are not empty are
those consisting of a pair of gradient flow lines and a constant sphere. �

9.6. Abstract moduli spaces of half-planes and spheres. The moduli spaces
of Section 9.3 are sufficient to construct the Kuranishi flow category associated to
a Hamiltonian. In order to compare the corresponding homotopy type to the one
obtained from Morse theory, we consider the following construction:

We begin by fixing the categories of data associated to each case, extending
Definition 9.13. To this end, we introduce the set

(9.6.1) P(f,H, f) ≡ {M−,M0,M+} ∐ P(H),

which is partially ordered by M− < M0 < M+, and M− < p < M+ for each element
p ∈ P(H), and the previously given ordering of elements P(H). We have a natural
order preserving map

P(f,H, f)→ P(f,H, f)(9.6.2)

a 7→ a,(9.6.3)

which is given by the identity on P(H), and the evident projections

(9.6.4) P(f)− ∐ P(f)0 ∐ P(f)+ → {M−,M0,M+}.
Definition 9.25. Given an ordered pair a < b of elements of P(f,H, f), we define
a category D(a, b) with objects consisting of an inclusion of totally ordered subsets
P ⊂ P ′ of P(a, b) ∩ P(H),
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and the following additional data if the pair (a, b) is not contained in {M−,M0},
or in {M+}:

(1) an order preserving injective map {1, . . . , S′} → {1, . . . , S} of sets indexing
a collection {ri}Si=1 of natural numbers, and

(2) a surjective map from S to the successive elements of {a}∐P ∐{b}, and a
refinement of the restriction to S′, valued in the set of successive elements
of {a} ∐ P ′ ∐ {b}.

An arrow α0 → α1 is given by the following data:

(1) a factorisation of the map S′
0 → S0 into a composition of injective maps

(9.6.5) S′
0 → S′

1 → S1 → S0

with the property that the sequence {ri}S1

i=1 is obtained by pulling back

{rj}S0

j=1, and

(2) inclusions P0 ⊂ P1 ⊂ P ′
1 ⊂ P ′

0 which are compatible with the assignments
of successive elements of these sets to each element of Si and S′

i.

Note that, if a and b both lie in {M−,M0,M+}, the datum P is uniquely deter-
mined to be the empty set. Moreover, if they both lie in {M−,M0}, or both agree
with M+, the set D(a, b) is a singleton.

Remark 9.26. The fact that we treat elements of P(H) and P(f) differently is
ultimately a consequence of the fact that we appeal to the smoothness of moduli
spaces of gradient trajectories in Morse theory, but not in Floer theory. It is
possible to have an entirely parallel discussion for the two cases by studying Morse
trajectories with hypersurface constraints.

For the construction of Kuranishi flow categories we need to define composition
functors on the categories D(a, b); for this, we recall that the addition of natural
number lifts to a monoidal structure on the category with morphisms given by
order preserving injections. This category is strictly monoidal in the sense that the
comparison map S1 ⊗ (S2 ⊗ S3) ∼= (S1 ⊗ S2)⊗ S3 is the identity map. This notion
is related to the notion of a strict 2-category, discussed in Appendix A.4.

Lemma 9.27. There is a natural map

(9.6.6) D(a, b)×D(b, c)→ D(a, c),
yielding a strict Π-equivariant 2-category D(f,H, f) with objects P(f,H, f), and
1-morphisms the categories D(a, b).
Proof. Given α1 = (S′

1 ⊂ S1, P1 ⊂ P ′
1) ∈ D(a, b) and α2 = (S′

2 ⊂ S2, P2 ⊂ P ′
2) ∈

D(b, c), we define α1×α2 to consist of (i) the inclusion S′
1 ∐S′

2 → S1 ∐S2, and (ii)
the inclusion P1∐{b}∐P2 ⊂ P ′

1∐{b}∐P ′
2 if b lies in P(H), and inclusion of disjoint

unions of sets otherwise. The triple products (α1 × α2) × α3 and α1 × (α2 × α3)
are evidently equal. Equivariance follows immediately from Lemma 9.14, and the
compatibility of these compositions with the Π action. �

We now extend the construction of the previous section to a 2-functor defined on
D(f,H, f), valued in the monoidal category of equivariant submersions of stratified
manifolds (see Definition 4.43). In order to describe the groups appearing in this
functor, we associate to each natural number k the symmetric group on k letters.
Given a pair a < b in P(f,H, f), and α ∈ D(a, b), we denote by Gα the product of
symmetric groups indexed by the sequence Sα.
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To define this 2-functor, we proceed by considering all possibilities for a pair
of elements a < b in P(f,H, f). Our discussion below will explain how to assign
a smooth Gα-equivariant submersion of 〈P(a, b)〉-manifolds to each object α of
D(a, b). The functoriality and multiplicativity of the construction is left to the
reader, and is a straightforward exercise in applying the explicit constructions of
Section 9.7 below:

We start by considering the cases in which the set S is assumed to be empty:

if a and b agree, or a = M− and b = M0, we defineMR

α andM′R
α to both be a

point.
Next, if a and b both lie in P(H), we use the definition from Section 9.3. There

are four remaining cases to consider.
We leave the case a = M− and b = M+ for the end; for the other cases, we need

the following:

Definition 9.28. For each finite set r, the moduli space

(9.6.7) Mχ

r∐± ⊂M±∐r(P
1, {0,∞})

consists of the degree 1 component of the moduli space of stable maps into P1, with
z− mapping to 0 and z+ to ∞.

Having restricted to degree 1 maps, the map is a biholomorphism on some com-
ponent, on which there is a distinguished point, which we denote zχ, which maps
to 1 ∈ P1; we refer to this as a marked point even though it is allowed to agree
with a node. Note that there are natural maps

(9.6.8) Mχ

r∐± →M
χ

r′∐±

associated to forgetting marked points.
We define the underlying universal curve

(9.6.9) Cχr∐± →M
χ

r∐±

by restricting the universal curve overM±∐r(P
1). We shall use this moduli space to

model moduli spaces with marked points needed to relate Morse and Floer theory.

Definition 9.29 (Case 1). Given α ∈ D(M0,M+), define

(9.6.10) M′R
α ≡M

χ

rS′∐±

and set

(9.6.11) MR

α ⊂M
χ

rS∐±

to consist of those curves whose domain is pulled back from Mχ

rS′∐± under the
forgetful map.

Note that, in this case, the sets P and P ′ are empty, so that there is only one
level.

We now consider the next two cases. If a = M− and b = p ∈ P(H), then for

each tree labelling a curve inMχ

rS′∐±, we define a Floer edge to be an edge along
the path between the vertex carrying the marked point χ and the positive end. If
a = p ∈ P(H) and b = M+, we define a Floer edge to be an edge along the path
between the vertex carrying the marked point χ and the negative end. In either
case, we define a level to be a connected component of the complement of the Floer
edges. The levels are again ordered.
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− +

z1 z3

z4

z2

(a) Case 1: |S| = 1

p
+

z31

z11

z21

zχ

z12

−

(b) Case 2: |S| = 2. There

are two levels. The inverse

image of 1 ∈ P1 is labelled

by a cross.

q
+

z11

zχp

z12z13

−

(c) Case 3: |S| = 3. There

are three levels, which are

separated by the nodes la-

belled p and q.

Figure 13. A graphical representation of elements of Mα (left
and right) for Cases 1, 2, and 3. The point labelled with zχ may
agree with any node or marked point.

Definition 9.30 (Cases 2 and 3). If p lies P(H), then for each element α in
D(M−, p) or in D(p,M+) we define

(9.6.12) M′
α ⊂M

χ

rS′∐±

to consist of those curves such that:

(1) all points labelled by the same element of S′ lie in the same level, and
(2) the induced map from S′ to levels preserves order, and factors through an

order preserving surjective map from the set of successive elements of {−}∐
P ′ ∐ {+} to the set of levels, with {−,+} corresponding to (M−, p) in the
first case, and to (p,M+) in the second.

We define

(9.6.13) Mα ⊂Mχ

rS∐±

to consist of curves whose domain is pulled back fromM′
α under the forgetful map,

such that all points labelled by the same element of S lie in the same level, and such
that the induced map from S to the set of levels factors through successive elements
of {−} ∐ P ∐ {+}.

Note thatMα andM′
α are respectively stratified by P and P ′.

We define a Floer vertex to be a vertex with two adjacent Floer edges, and define

(9.6.14) MR

α →Mα andM′R
α →M

′
α

to be the spaces of curves equipped with compatible asymptotic markers at the
two ends of each component corresponding to a Floer vertex of the underlying tree

(see Section 9.7). The spacesMR

α andM′R
α are respectively smooth 〈P 〉 and 〈P ′〉

manifolds, and in particular both are 〈P(a, b)〉-manifolds (the boundary stratum
associated to each element of P(a, b) that does not lie in P is empty). There is a
natural forgetful map

(9.6.15) MR

α →M
′R
α

which is a stratified submersion (see Lemma 9.44 below).
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For the final case, we must introduce new moduli spaces of Deligne-Mumford
type: given a set r, we consider a moduli space

(9.6.16) Mχ±

r∐± ⊂M±∐r((P
1, {0,∞})2),

consisting of stable curves in P1 × P1 of degree (1, 1), mapping z− to (0, 0) and z+
to (∞,∞), and which is the closure of the set of maps such that

(9.6.17)
the second factor is given by composing the first factor by multiplication
by a complex number λ with 1 ≤ |λ|.

When r = 0, we may identifyMχ±

± with a closed unit disc D2.
There is a natural forgetful map

(9.6.18) Mχ±

r∐± →M
χ±

r′∐±

as before, and in particular a map to D2 obtained by forgetting all marked points
except z±. The fibres of this map to D2 over the point 0 and 1

∂0Mχ±

r∐± ⊂M
χ±

r∐± ⊃ ∂1Mχ±

r∐±(9.6.19)

respectively consist of maps which factor into the union of two lines, and those
which pass through the point (1, 1).

Lemma 9.31. The moduli spaceMχ±

r∐± is a smooth manifold with boundary ∂1Mχ±

r∐±

which is canonically identified with the product:

(9.6.20) Mχ

r∐± × S1.

Proof. We note that multiplication by S1 acts freely on the set of pairs of maps
which differ by multiplication by λ with modulus 1. Since every map from P1 to
P1×P1 in degree (1, 1), passing through the points (0, 0), (1, 1) and (∞,∞) factors
through the diagonal, we conclude that those for which λ = 1 exactly correspond
to curves inMχ

r∐±. �

We define the underlying universal curve

(9.6.21) Cχ±

r∐± →M
χ±

r∐±

as before by pulling back the universal curve over the moduli spaces of maps with
target P1 × P1.

+ +

z21
z11

zχ− zχ+

(a) A one level curve

q
+

z11

zχ+p

z12z13

zχ−

−

(b) A 3 level curve with |S| = 3

Figure 14. A graphical representation of two elements of Mα

(left and right) for Case 4.

We finally return to the case a = M− and b = M+. Given a tree labelling a curve

inMχ±

r∐±, we define a Floer edge to be an edge along the path between the vertex
carrying the marked point χ− and the vertex carrying χ+, yielding a decomposition
into levels as before.
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Definition 9.32 (Case 4). For each element α ∈ D(M−,M+) we define

(9.6.22) M′
α ⊂M

χ±

rS′∐±

such that (i) all points labelled by the same element of S′ lie in the same level, and
(ii) the induced map from S′ to levels factors through an order preserving surjective
map from the set of successive elements of {−} ∐ P ′ ∐ {+} to the set of levels.

We let

(9.6.23) Mα ⊂M
χ

rS∐±

denote the set of curves whose domain is pulled back from M′
α under the forgetful

map, imposing again the condition above on the domain, and in particular that the
map from S to the set of levels factors through successive elements of {−}∐P∐{+}.

We define a Floer vertex to be a vertex with two adjacent Floer edges, and in
the next section, we shall define

(9.6.24) MR

α →Mα andM′R
α →M

′
α

to be the spaces of curves inMα equipped with compatible asymptotic markers at
the two ends of each component corresponding to a Floer vertex of the underlying
tree. These are again 〈P(a, b)〉-manifolds, equipped with an equivariant smooth

submersionMR

α →M
′R
α .

9.7. Construction of abstract moduli spaces. In this section, we give a precise
construction of the abstract moduli spaces of holomorphic curves needed for Hamil-
tonian Floer theory. The basic idea is that the moduli spaces we need have the
additional datum of a real line connecting the marked points ±, and that we shall
obtain them from moduli spaces of maps to products of P1 on which we impose a
reality condition. Before proceeding further, we remind the reader that we have
defined a notion of Floer component for all moduli spaces introduced in Sections
9.3 (Floer trajectories) and 9.6 (Continuation maps). Given a pair of elements a
and b of P(f,H, f), and α ∈ D(a, b), we shall define several auxiliary moduli spaces

before constructingMR

α andM′R
α .

To begin, in the case (i) a = b, (ii) a = M− and b = M0, or (iii) a = M0 and
b = M+, we have already defined these moduli spaces (see in particular Definition
9.29).

We must therefore discuss the cases of Floer trajectories, and the remaining cases
discussed in Section 9.6. To unify the discussion, let {χb

a} denote (i) the empty set
in the setting of Floer trajectories, (ii) the singleton χ− or χ+ in Cases 2 and 3 of
Section 9.6, or (ii) the pair (χ−, χ+) in Case 4.

Before proceeding further, given α ∈ D(a, b), we define SH and S′H to be the
subsets of S and S′ mapping to successive elements of P ∩P(H) and P ′∩P(H). We
have a natural ordering on the union of these sets with {χb

a}, given by the ordering
on SH induced by its inclusion in S, and the requirement that

(9.7.1) χ− is the initial, and χ+ the terminal element of SH ∐ {χb
a},

and similarly for S′H .

Remark 9.33. For many purposes, it is sufficient to replace SH by its image in
the set of successive elements of P . However, note that we have a forgetful map
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SH → S′H , but no such map when considering successive elements of P and P ′.
This makes our choice easier to use.

Consider the moduli space

(9.7.2) MrS∐±((P
1, {0,∞}){χb

a}∐SH

)

of stable maps from a genus 0 Riemann surface with points marked by rS ∐ ± to

(P1){χ
b
a}∐SH

, mapping z− to (0, . . . , 0) and z+ to (∞, . . . ,∞). We have a natural
forgetful map

(9.7.3) MrS∐±((P
1, {0,∞}){χb

a}∐SH

)→MrS′∐±((P
1, {0,∞}){χb

a}∐SH

).

Definition 9.34. For each pair a and b of elements of P(f,H, f), we define the
moduli spaces

MSH

α ⊂MrS∐±((P
1, {0,∞}){χb

a}∐SH

)(9.7.4)

MS′H

α ⊂MrS′∐±((P
1, {0,∞}){χb

a}∐S′H

)(9.7.5)

to consist of maps satisfying the following properties:

The projection to each component of the target has degree 1.(9.7.6)

The ordering along the path from z− to z+ of the components which
map non-trivially to each factor of the target respects the ordering in
Equation (9.7.1). Moreover, any two components associated to factors
of SH mapping to the same pair of sucessive elements of P agree.

(9.7.7)

For each i ∈ SH (or S′H), the image of the points marked by elements

of ri in the factor of (P1)S
H

corresponding to i lies in P1 \ {0,∞} .(9.7.8)

For each i ∈ S (or S′) mapping to a pair (M−, p) of successive elements
of P (or P ′), the image of the points marked by elements of ri in the
factor (P1){χ−} lies in P1 \ {∞} .

(9.7.9)

For each i ∈ S (or S′) mapping to a pair (p,M+) of successive elements
of P (or P ′), the image of the points marked by elements of ri in the
factor (P1){χ+} lies in P1 \ {0} .

(9.7.10)

The domain of each curve in MSH

α is pulled back from its image in

MS′H

α .
(9.7.11)

To understand the above moduli spaces, we consider the following commutative
diagram of forgetful map

(9.7.12)

MrS∐±((P
1, {0,∞}){χb

a}∐SH

) MrS′∐±((P
1, {0,∞}){χb

a}∐SH

)

MrS∐±((P
1, {0,∞}){χb

a}) MrS′∐±((P
1, {0,∞}){χb

a})

Recalling that we have natural inclusions

Mα →MrS∐±((P
1, {0,∞}){χb

a})(9.7.13)

M′
α →MrS′∐±((P

1, {0,∞}){χb
a})(9.7.14)

we can relate the moduli spaces from Definition 9.34 with those from previous
sections:
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Lemma 9.35. The moduli spaces MSH

α and MS′H

α are smooth manifolds with

corners, equipped with smooth Gα actions, and Diagram (9.7.12) induces a com-
mutative diagram

(9.7.15)

MSH

α MS′H

α

Mα M′
α

in which all arrows are equivariant submersions.

Proof. Condition (9.7.8) gives a decomposition of the domains of curves in MSH

α

andMS′H

α into levels, which by Conditions (9.7.8)–(9.7.10) agrees with the decom-
position into levels of their images under the map which forgets the factors labelled

by elements of SH or S′H . This shows that the image ofMS′H

α under the forgetful

map lies inM′
α, and Condition (9.7.11) implies the same forMSH

α . Moreover, since
no component is collapsed by any projection map, they are all submersions. �

If we instead forget the marked points rS , we obtain a map to the moduli space

M±((P
1, {0,∞})SH∐{χb

a}). We introduce the subset

(9.7.16) RC

α ⊂M±((P
1, {0,∞})SH∐{χb

a})

consisting of stable maps of degree 1 in each component, which map z± to
(0, . . . , 0) and (∞, . . . ,∞), and such that

(9.7.17)

the ordering of components satisfies Condition (9.7.7). Moreover, if
{χb

a} = {χ−, χ+}, then the projection to M±

(
(P1, {0,∞}){χ−,χ+}

)

maps toMχ±

± .

We note that these moduli spaces have straightforward explicit descriptions:

Lemma 9.36. If {χb
a} is empty, or consists of a singleton, the moduli space RC

α is

biholomorphic to a product (C∗)|S
H |−|P∩P(H)| × C|P∩P(H)|−1. If {χb

a} = {χ−, χ+},
it is biholomophic to the product of (C∗)|S

H |−|P∩P(H)| with the subset |∏i zi| ≤ 1
in a complex affine space of dimension |P | − 1. Moreover, the forgetful map

(9.7.18) RC

α →R
′C
α

is a submersion, and there is a canonical short exact sequence

(9.7.19) 0→ CSH\S′H → TRC

α → TR′C
α → 0

of tangent spaces. �

For the statement of the next result, recall that MSH

α and MSH

α have natural

actions by the product Gα of permutation groups. We equip RC

α and R′C
α with the

trivial action of this group.
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Lemma 9.37. The following diagram of forgetful maps commutes, and all arrows
are Gα equivariant smooth submersions:

(9.7.20)

MSH

α MS′H

α

RC

α R′C
α .

Proof. The key point is that, for any target X , the critical points of a forgetful map
Mr(X) → Mr′(X) consist of points lying on a stratum where there is a node in
the target whose inverse image in the source is non-trivial (i.e. there is at least one
component that is collapsed to this node). Condition 9.7.8 precludes this. �

At this stage, we impose the desired reality condition by considering the sub-
spaces

Rα ⊂ R
C

α(9.7.21)

R′
α ⊂ R

′C
α(9.7.22)

consisting of maps from a pre-stable curve Σ to (P1)S
H∐{χb

a} or (P1)S
′H∐{χb

a} sat-
isfying the following property:

on any component of Σ, all non-constant factors of the map to

(P1)S
H∐{χb

a} differ by multiplication by a positive real number.
(9.7.23)

For the proof of the next result, which is the real analogue of Lemma 9.36, it
is convenient to note that every domain is a chain of rational curves with one end
carrying the marked point z− and the other the marked point z+.

Lemma 9.38. The moduli space Rα is a smooth manifold with corners, whose

interior is diffeomorphic to a Euclidean space. The forgetful map to R′C
α defines a

submersion

(9.7.24) Rα →R′
α,

with fibre the product RSH\S′H

(canonically up to translation).

Proof. Condition (9.7.23) implies that each such stratum of Rα is a product of
the quotient by the diagonal action of R on a product of euclidean spaces, and

in particular, that the interior stratum is RS+|{χb
a}|−1. The smooth structure is

inherited from the ambient space.
To prove that the forgetful map has the desired target, recall from Definition 9.13

that we have required for the map from S′ to the successive elements of {a}∐P ′∐{b}
to be surjective, which implies that the map from S′ to the successive elements of

{a}∐P ′∐{b} is also surjective, hence that the forgetful map from Rα to R′C
α does

not collapse any component. From this, it follows that the image lies in R′
α, with

fibre a product of euclidean spaces indexed by SH \ S′H . �

Consider the fibre products

MSH ,R

α ≡MSH

α ×
R

C

α

Rα(9.7.25)

MS′H ,R

α ≡MS′H

α ×
R

′C
α

R′
α,(9.7.26)
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which have real dimension 2rS + SH + |{χb
a}| − 1 and 2rS′ + S′H + |{χb

a}| − 1.
The notation indicates that we have, in addition to the marked points labelled by
the union of the sets labelled by elements of S or S′, an additional SH ∐ {χb

a} or
S′H ∐ {χb

a} special points which are real, obtained as the inverse image of 1 ∈ P1

in the corresponding factor.

Example 9.39. If rS = rS′ = 1 is a point, and in the absence of additional marked

points corresponding to continuation, the moduli spaces RC

α = Rα are given by a

point, so thatMSH ,R

α is a copy of C∗.

If SH = S′
H has two elements, and |rS | = 2, then MSH

α is a 6 dimensional

manifold. The moduli space Rα is an interval embedded in RC

α
∼= P1. Thus,

MSH ,R

α has codimension 1 inMSH ,R

α , so that its real dimension is 5.

We now consider the forgetful map in the other direction: there is a natural

action of RSH

and RS′H

on MSH ,R

α and MS′H ,R

α by composing the given map to

(P1)S
H

and (P1)S
′H

with the action of R on each factor of the target, given by

(9.7.27) (t, z) 7→ etz.

Definition 9.40. The moduli spaces of abstract Floer cylinders,MR

α andM′R
α are

the quotients ofMSH ,R

α andMS′H ,R

α by the action of RSH

and RS′H

.

Proposition 9.41. The spaces MR

α and M′R
α are smooth (Hausdorff) manifolds

with corners, equipped with a Gα action. There is an equivariant commutative
diagram

(9.7.28)

MSH ,R

α MS′H ,R

α

MR

α M′R
α

in which all arrows are submersions, and the vertical maps have a contractible space
of sections.

The kernel TM
RMSH ,R

α of the projection map TMSH ,R

α → TMR

α is naturally

isomorphic to RSH

, the kernel TRMSH ,R

α of the projection map TMSH ,R

α → TRα

is equipped with a natural complex structure, and there is a canonical short exact
sequence

(9.7.29) R→ TM
R

MSH ,R

α ⊕ TRMSH ,R

α → TMSH ,R

α ,

whose kernel corresponds to translation.

Proof. The properties of the two moduli spaces are entirely analogous, so we focus

on MR

α. The action of RSH

is free because we have assumed that, whenever a
component of the domain is equipped with a non-trivial map to one of the factors

of (P1)S
H

, it must carry at least one marked point. Properness of the action can
be seen from analysing the extension to the full moduli space of maps (fixed points
are given by configurations in which the components carrying degree 1 maps are
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distinct). Each orbit of this action lies in a fibre of the projection mapMSH ,R

α →
Mα. In the interior ofMα, a local identification of the complement of the marked
points ± with R × S1 fixes a local diffeomorphism between fibres and a product

of an open subset of RSH

(corresponding to the R coordinates of the real marked
points), with a circle (corresponding to their common angular parameter).

The boundary ofMSH ,R

α is mapped to the boundary divisor ofMα. The bound-
ary strata are indexed by a decomposition α = α1 × · · · × αk, which gives rise to a
commutative diagram

(9.7.30)

MSH
1 ,R

α1
× · · · ×MSH

k ,R

αk
MSH ,R

α

Mα1
× · · · ×Mαk

Mα.

This diagram is a fibre product, and the image of the top map is a codimension-k
boundary stratum. This locally identifies the fibre over codimension-k boundary

strata as a product of (S1)k with RSH

. The above analysis implies that the map

MR

α →Mα is surjective, and that its restriction to the interior of each codimension-

k stratum is an (S1)k bundle.
Finally, the contractibility of the space of sections follows from the fact that,

over a fixed point of Gα inMR

α, the action on the fibres is trivial.
The descriptions of the kernels of tangent spaces are straightforward exercises,

which follow from the statement that the projectionMSH ,R

α →MR

α does not col-

lapse any component, while the projection MSH ,R

α → Rα does not collapse any
component to a node. �

Corollary 9.42. For each decomposition α = α1 × α2, there is a commutative
diagram of Gα1

×Gα2
manifolds

(9.7.31)

M′R
α1
×M′R

α2
MR

α1
×MR

α2
MSH

1 ,R

α1
×MSH

2 ,R

α2
Rα1

×Rα2

M′R
α MR

α MSH ,R

α Rα

such that the vertical maps enumerate the codimension 1-boundary strata of the
moduli spaces in the bottom row. The construction is associative in the sense that
the following diagram commutes:

(9.7.32)

MR

α1
×MR

α2
×MR

α3
MR

α1×α2
×MR

α3

MR

α1
×MR

α2×α3
MR

α1×α2×α3
.

�
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Given a pair of elements a < c in P(f,H, f), and an element b ∈ P(a, c), we define
∂bMR

α for each α ∈ D(a, c) to be the union of the image of all maps MR

α1
×MR

α2

such that α1 ∈ D(a, b) and α2 ∈ D(b, c).

Lemma 9.43. The moduli spaceMR

α is a Gα equivariant smooth 〈P(a, c)〉 manifold
with corners.

Proof. The only case which in not clear from the definition is the description of the

stratum ∂M0MR

α, whenever a = M− and c = M+. We define this stratum to be

the locus where the two maps to P1, labelled by χ− and χ+, agree. �

We now consider an arrow α→ β in D(a, b).

Lemma 9.44. The following diagram of forgetful maps is commutative, and all
arrows except the leftmost vertical map are Gα-equivariant submersions:

(9.7.33)

M′R
β MR

β MSH
β ,R

β Rβ

M′R
α MR

α MSH
α ,R

α Rα

The induced map of kernels T βMSH
α ,R

α → T βMR

α ⊕ T βRα is an isomorphism.

Writing T β,RMSH ,R

α for the kernel of the induced map

(9.7.34) TRMSH ,R

α → TRMSH ,R

β ,

there are canonical identifications

T βMR

α
∼= T β,RMSH ,R

α
∼=

⊕

z∈rSα\rSβ

TzΣ(9.7.35)

T βMR

±(S
H
α , {χb

a}) ∼= R
SH
α \SH

β ,(9.7.36)

where Σ is the domain of the given element of MR

α.

Proof. The inclusion S1 ⊂ S0 induces a map

(9.7.37) MrS0∐± →MrS1∐±

by forgetting marked points. The condition that S′
0 ⊂ S′

1 implies that points whose
underlying curve is pulled back fromMrS′

0
∐± map to points whose underlying curve

is pulled back from MrS′
1
∐±. Moreover, given a curve in the domain which is in

the image ofMR

α0
the condition that the map from S′

0 to the set of levels factors

through {−} ∐ P0 ∐ {+} implies in particular that the map from S0 to the set
of levels is surjective, hence that the forgetful map on this locus preserves levels.
This immediately implies that the set of points labelled by elements of S1 lie in the
same level, and that the map from S′

1 to the set of levels is surjective. Finally, the
condition that the inclusion P0 ⊂ P1 is compatible with indexing gives the desired
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factorisation of the map from the set of successive elements of {−}∐P1∐{+} to the
set of levels. This gives a mapMα →Mβ , which fits in a commutative diagram

(9.7.38)

Mα Mβ

M′
α M′

β .

In order to lift this diagram to the moduli spaces we study, observe that the for-

getful mapsMSH
α ,R

α →MSH
β ,R

β and Rα → Rα are submersions because each curve

represented by a point in the domain is biholomorphic to the curve represented by
its image. The tangent space of the fibres of the map Rα → Rα is canonically

isomorphic to R
SH
α \SH

β , while the relative tangent space of the third column of Di-

agram (9.7.33) is the direct sum of
⊕

z∈rα\rβ
TzΣ with R

SH
α \SH

β . The first factor

is transverse to the orbits of the action by RSH
α , and the second is contained in it.

The compatibility of this submersion with the foliation thus induces a submersion

MR

α →M
R

β , with the stated relative tangent space. �

Note that the mapM′R
β →M

′R
α may not be a submersion because we have not

imposed enough conditions on the fibre of the universal curve of elements ofM′R
β .

Comparing with Definition 4.39, we have:

Corollary 9.45. The assignment α 7→ (Gα,M
′R
α → M

R

α) defines a functor from

D(a, b) to the category of equivariant submersions of 〈P(a, b)〉-manifolds. �

Next, we state the compatibility between the maps associated to arrows and to
products:

Lemma 9.46. Given maps α1 → β
1
and α2 → β

2
, the following diagram com-

mutes:

(9.7.39)

MR

α1
×MR

α2
MR

β
1
×MR

β
2

M′R
β
1
×M′R

β
2

M′R
α1
×M′R

α2

MR

α1×α2
MR

β
1
×β

2
M′R

β
1
×β

2
M′R

α1×α2

Moreover, the corresponding associativity diagrams commute. �

Corollary 9.47. The assignment of the submersion MR

α → M
′R
α to each object

α ∈ D(a, b) extends to a strictly Π-equivariant lax 2-functor from D(f,H, f) to the
category of stratified equivariant submersions. �

10. Kuranishi flow categories from Floer theory

10.1. Categories of thickening data. Given a pair a < b of objects of P(f,H, f)
such that D(a, b) is not a point we shall define a Floer thickening datum α for a

stratum of the moduli spaceMR

(a, b) to consist of:
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(i) an object α of D(a, b). We shall write α = (S′
α ⊂ Sα, Pα ⊂ P ′

α) for the
constituent sets.

(ii) (Choice of stratum) a subset Qα of P(a, b), such that Qα ∩P(H) is contained
in Pα. We define Q

α
to be the projection to P(a, b) of the intersection of Qα

with P(H) ∩ P(f)0,
(iii) a commutative diagram

(10.1.1)

MR

α ∂Q
αMR

α

M′R
α ∂Q

αM′R
α

in which the horizontal arrows are Gα invariant open inclusions. We write

CR

α →M
R

α for the pullback of the universal curve overMR

α toMR

α. ,

(iv) a complex linear finite dimensional subspace

(10.1.2) Vα ⊂ C∞ ⊗C

⊕

i∈S

C[Gri ],

which is invariant under the group Gα ≡
⊕

Gri .
(v) a Gα equivariant complex-linear map

(10.1.3) λα : Vα → C∞
c (CR

α ×M,T 0,1
fib C

R

α ⊗ TM),

whose image consists of sections which are supported away from all nodes,
and away from the positive and negative ends ǫα. Here,

(10.1.4) T 0,1
fib C

R

α ⊗ TM

is the vector bundle over CR

α×M consisting of complex anti-linear maps from

the relative tangent bundle of the projection CR

α →M
R

α to TM , and we write

(10.1.5) C∞
c (CR

α ×M,T 0,1
fib C

R

α ⊗ TM)

for the space of sections which are supported away from all nodes and all ends.
(vi) a collection Dα of compact codimension 2 submanifolds with boundary Di ⊂

M , indexed by Sα, and equipped with a path of sub-bundles of TM along Di

from TDi to an almost complex sub-bundle.

Whenever D(a, b) is a singleton, the only non-trivial choice above is that of the

subset Qα; we setMR

α = {∗} and Vα = {0} in this case.
At this stage, we are ready to introduce a category of thickening data:

Definition 10.1. For each pair (a, b) of elements of P(f,H, f), define a category
A(a, b) of Floer thickening data whose objects are given by the data

(10.1.6) α = (α,MR

α,M
′R
α , Qα, Vα, λα, Dα),

as above. A morphism α→ β consists of

(1) a map α→ β in D(a, b) (and in particular a sujection Gα → Gβ),
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(2) an inclusion Qβ ⊂ Qα, such that the induced maps of moduli spaces restrict
to maps

MR

α →M
R

β(10.1.7)

M′R
β →M

′R
α ,(10.1.8)

(3) a complex linear isometric embedding Vα → Vβ of Gα-representations, so
that the diagram

(10.1.9)

Vα Vβ

C∞
c (CR

α ×M,T 0,1
fib C

R

α ⊗ TM) C∞
c (CR

β ×M,T 0,1
fib C

R

β ⊗ TM)

commutes.

We require that the submanifold Di associated to each element of Sβ agree with the
submanifold associated to its image in Sα, and similarly for the path of subbundles
of TM over Di.

The definition of composition in this category is straightforward once we observe
the following: if we are given a pair of arrows f : α→ β and g : β → γ, and subsets

MR

α ⊂ M
R

α, M
R

β ⊂ M
R

β , and M
R

γ ⊂ M
R

γ such that MR

α maps to MR

β under f

andMR

β maps toMR

γ under g, we can conclude thatMR

α maps toMR

γ under the
composite g ◦ f .
Remark 10.2. The requirement that Vα be contained in the Gα-universe C∞ ⊗C⊕

i∈S C[Gri ] ensures that A(a, b) is a small category, and will imply that the com-
positions we shall presently define are strictly associative. The reason for passing
to open subsets is related to the need to later construct stable complex structure
in Section 11.3.3

In analogy with Lemma 9.14, we have:

Lemma 10.3. Each element π ∈ Π induces a canonical isomorphism of categories

(10.1.10) π · : A(a, b)→ A(π · a, π · b),
such that the following diagram

(10.1.11)

A(a, b) A(π · a, π · b)

A(π · a, π · b)

π·

(π′·π)·
π′·

commutes. This assignment is unital in the sense that e ∈ Π is taken to the identity
map and it is strictly associative. �

We now consider the multiplicativity of this construction: given a pair α1 and

α2 of Floer thickening data for strata of the moduli spacesMR

(a, b) andMR

(b, c),
we define the product Floer thickening datum α1 × α2 for a stratum of the moduli

spaceMR

(a, c) to consist of:

(i) the composition α1 × α2 ∈ D(a, c),
(ii) the subset of P(a, c) defined as Qα1×α2 ≡ Qα1 ∐ {b} ∐Qα2 ,
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(iii) the commutative diagram

(10.1.12)

MR

α1×α2
≡MR

α1
×MR

α2
∂
Q

α1×α2MR

α1×α2

M′R
α1×α2

≡M′R
α1
×M′R

α2
∂
Q

α1×α2M′R
α1×α2

,

(iv) the finite dimensional subspace

(10.1.13) Vα1×α2
∼= Vα1 ⊕ Vα2 ⊂ C∞ ⊗C C[Gα1×α2 ],

(v) the map

(10.1.14) λα1×α2 : Vα1×α2 → C∞
c (CR

α1×α2
×M,T 0,1

fib C
R

α1×α2
⊗ TM),

given by the direct sums of λ1 and λ2, and
(vi) the collection Dα1×α2 which is the union of Dα1 with Dα2 .

Given an ordered triple (a, b, c) of elements of P(f,H, f), the product of Floer
thickening data defines a functor

(10.1.15) A(a, b)×A(b, c)→ A(a, c)

such that the associativity diagram

(10.1.16)

A(a, b)×A(b, c)×A(c, d) A(a, b)×A(b, d)

A(a, c)×A(c, d) A(a, d)

strictly commutes and the functor is unital. Moreover, the action of Π is strict.
Summarizing, we have the following result.

Lemma 10.4. The functor in Equation (10.1.15) equips the collection A(f,H, f)
of categories A(a, b) with the structure of a strict Π-equivariant 2-category. �

10.2. Regular thickenings of moduli spaces. Next, we consider a fibre Σ of

the universal curve CR

α → M
R

α for α ∈ A(a, b), and a pseudo-holomorphic stable
building u, with domain Σ. Denoting the direct sum of the spaces of smooth anti-
holomorphic 1-forms on each component of Σ, with values in the pullback of TM
by Ω0,1(Σ, u∗TM), we have an element

(10.2.1) ∂(a,b)u ∈ Ω0,1(Σ, u∗TM)

given on each Floer cylinder by Equation (9.2.3), on components which carry the
marked point χ by Equation (9.4.5), and on all other components by the homo-

geneous ∂ operator. For the next definition, recall that a choice of element in
α ∈ D(a, b) entails a choice of totally ordered subset Pα of P(a, b), and that the

Floer edges of trees labelling strata of MR

α are decorated by elements of Pα. In
addition, for a ∈ P(f,H, f), we introduce the notation

(10.2.2) [a] =

{
[a] if a ∈ P(H)

M otherwise.

Definition 10.5. For each α ∈ A(a, b), the thickened moduli spaceMR

α([a], [b]) is
the space whose elements (Σ, u, v) consist of
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(1) a fibre Σ of the universal curve CR

α →M
R

α,
(2) a stable map u : Σ → M with asymptotic conditions [a] along the negative

end, and [b] along the positive end, and given along each Floer node by
the corresponding element of Pα. For each i ∈ S, we require that the set
of points labelled by ri be invariant under the action of the automorphism
group of the underlying map without marked points, and that their images
under u lie in Di.

(3) an element v of Vα such that u satisfies the inhomogeneous Cauchy-Riemann
equation

(10.2.3) ∂(a,b)u+ λ(v) = 0.

To clarify the definition, whenever [a] or [b] is given by M , the asymptotic
condition in the definition is an unspecified point in M . In the case a lies in P(f)−
and b in P(f)0, we interpret the above definition to say that MR

α([a], [b]) = M ,
corresponding to constant maps.

By construction, we have a continuous projection map

(10.2.4) MR

α([a], [b])→M
R

α.

Since the target of this projection is stratified by P(a, b), the inverse images induce

a stratification ofMR

α([a], [b]).
Note that we have a natural map

(10.2.5) s : MR

α([a], [b])→ Vα,

which is Gα equivariant, providing us with all the ingredients for a Kuranishi chart.
However, the total space is not necessarily a manifold. In order to ensure this we

introduce some notation: given an element ofMR

α([a], [b]), we write

(10.2.6) F(u∗TM, u∗TDα)

for the space of sections of u∗TM on each component of the domain, whose values
at the marked points labelled by ri lie in u∗TDi. We require these sections to have
appropriate regularity (e.g., of W k,2 class for 2 ≤ k), and to decay exponentially
along the ends. The linearisation of the Floer equation (and the holomorphic curve
equation on sphere bubbles), defines a map

(10.2.7) F(u∗TM, u∗TDα)→ E0,1(u∗TM)

where the right hand side is the direct sum of a copy of the fibre of TM at each
node with the spaces of complex antilinear 1-forms, valued in the pullback of TM ,
on each component of the domain (c.f. Section 11.3.2 below). The regularity of the
target is assumed to be one lower than that of the domain.

Definition 10.6. The regular part MR,reg

α ([a], [b]) ⊂ MR

α([a], [b]) is the locus of
points where (i) u is transverse to Di at each point in ri, and (ii) the linearised ∂
operator

(10.2.8) Vα ⊕F(u∗TM, u∗TDα)→ E0,1(u∗TM)

is surjective.

Remark 10.7. Our notion of regularity amounts to the condition that the linearisa-
tion of the ∂ operator with constraints on the modulus of the corresponding points

inMR

α is surjective. There is a weaker notion of regularity where one would require
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only surjectivity of the operator for the parametrised problem over this moduli
space. Moreover, the fact that we assumed surjectivity of the operator with expo-
nentially decaying conditions implies that the evaluation map to M is a submersion
at each end with vanishing Hamiltonian conditions. In fact, if there are two such
ends, then the evaluation map to M2 at both ends is a submersion.

Recall that our goal is to construct Kuranishi charts for the moduli spaces in
Equations (9.2.6), (9.5.3)–(9.5.6) and (9.5.10). To simplify the notation, we shall
write Qα(f)0 and Qα(f)± for the intersections of Qα with P(f)0 and P(f)±. Given
elements (x, y, z) of P(f) and (p, q) of P(H), we then define

MR,reg

α (x−, y−)

MR,reg

α (x0, y0)

MR,reg

α (x+, y+)




≡ ∂QαT (x, y)

(10.2.9)

MR,reg

α (p, q) ⊂MR,reg

α ([p], [q])(10.2.10)

MR,reg

α (x−, p) ⊂ ∂Qα(f)−T ([x],M)×M M
R,reg

α (M, [p])(10.2.11)

MR,reg

α (p, z+) ⊂MR,reg

α ([p],M)×M ∂Qα(f)+T (M, [z])(10.2.12)

MR,reg

α (y0, z+) ⊂(10.2.13)

∂Qα(f)0T ([y],M)×MM
R,reg

α (M,M)×M ∂Qα(f)+T (M, [z])

MR,reg
(x−, y0) ⊂ ∂QαT ([x],M, [y]),(10.2.14)

to consist of those curves which lift to the cover L̃M of the loop space as paths
from the first to the second element of P(f,H, f). It remains to define the moduli
space for a pair x− ∈ P(f)− and z+ ∈ P(f)+, which we break up into several cases
(in all cases, the given subset consists of all elements of the right hand side in the
given homotopy class):

(i) If Qα(f)0 6= ∅, we have

(10.2.15) MR,reg

α (x−, z+) ⊂
∂Qα(f)−∪Qα(f)0T ([x],M,M)×M ∂M0MR,reg

α (M,M)×M ∂Qα(f)+T (M, [z]),

where ∂M0MR,reg

α (M,M) is given in Lemma 9.43.
(ii) If Qα ∩ P(H) 6= ∅, we have

(10.2.16) MR,reg

α (x−, z+) ⊂
∂Qα(f)−T ([x],M)×M M

R,reg

α (M,M)×M ∂Qα(f)+T (M, [z]),

where we note that Q
α
= Qα ∩ P(H) in this case, so that this intersection

enters in the definition of the moduli spaceMR,reg

α (M,M) via the top line in
Diagram (10.1.1).
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(iii) If Qα(f)0 = ∅ = Qα ∩ P(H), we have

(10.2.17) MR,reg

α (x−, z+) ⊂
∂Qα(f)−T ([x],M) ×MM

R,reg

α (M,M)×M ∂Qα(f)+T (M, [z])∪
∂Qα(f)−T ([x],M,M)×M ∂M0MR,reg

α (M,M)×M ∂Qα(f)+T (M, [z]),

where the union is taken along the common stratum

(10.2.18) ∂Qα(f)−T ([x],M) ×M ∂M0MR,reg

α (M,M)×M ∂Qα(f)+T (M, [z]).

In the above definition, we have implicitly used the fact that the three cases are
mutually exclusive: the key point is that elements of P(H) and P(f)0 are not
comparable, so that the first two cases have no overlap. Keeping this in mind, we
can in fact give a uniform definition as

(10.2.19) MR,reg

α (x−, z+) ⊂
∂Qα(f)−T ([x],M) ×MM

R,reg

α (M,M)×M ∂Qα(f)+T (M, [z])∪
∂Qα(f)−∪Qα(f)0T ([x],M,M)×M ∂M0MR,reg

α (M,M)×M ∂Qα(f)+T (M, [z]).

We now state the main consequence of regularity and gluing theory for holomor-
phic curves, which follows from the standard methods as can be found in [MS12],
and:

Proposition 10.8 (c.f. [Par16]). The quadruple (MR,reg

α (a, b), V, s,Gα) is a ∂QαP(a, b)-
stratified Kuranishi chart.

Proof. We discuss the case in which a and b are both orbits; the general case follows
by the same analysis, keeping in mind that the evaluation map at the ends labelled
by M is submersive, so that the fibre product is necessarily transverse.

It is convenient to use the forgetful map from MR,reg

α (a, b) to MR

α, which by
definition respects stratification. The inverse image of the interior of a stratum

in MR

α is a smooth manifold, as it can be locally described as the zero-locus of a
Fredholm section of a Banach bundle over a base which is the product of a smooth

chart for the given stratum of MR

α (given as a prestable Riemann surface with
marked points, equipped with varying conformal structure) with the vector space
Vα, and with the space of maps of appropriate regularity.

The gluing theorem for moduli spaces of pseudo-holomorphic curves, which is im-

plemented in detail in [Par16, Appendix C] shows that the total spaceMR,reg

α (a, b)
is a topological manifold with the stated stratification. �

The regular locus is compatible with the Gα action, so that the data

(10.2.20) Mα(a, b) ≡
(
MR,reg

α (a, b), Vα, sα, Gα

)

defines an object of Chart
P(a,b)
K ; the stratification is given by orbits and critical

points that appear as limits of each level.

Remark 10.9. We shall often abuse notation and write u for an element ofMR

α(a, b),
rather than specifying that it (possibly) consists (of a pair) of (half)-gradient flow
lines as well.
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10.3. Kuranishi presentation of moduli spaces. We begin by considering the
functoriality of the construction in the previous section:

Lemma 10.10. The assignment α 7→ Mα(a, b) extends to a functor

(10.3.1) M(a, b) : A(a, b)→ ChartK .

Proof. The key point is to assign a natural map of Kuranishi charts

(10.3.2) Mα0(a, b)→ Mα1(a, b)

to each map from α0 to α1. The surjection Gα0 → Gα1 and the inclusion Vα0 →
Vα1 are given by the definition of a morphism, and we also have a forgetful map

MR

α0
→MR

α1
. It remains to lift this to a map

(10.3.3) MR

α0
(a, b)→MR

α1
(a, b)

and then check compatibility with regular loci.

For the first part, fix a point inMR

α1
. This determines the domain for curves lying

in its inverse image inMR

α1
(a, b), and similarly for its inverse image inMR

α0
(a, b) via

the projection toMR

α0
. Since the forgetful map of abstract moduli spaces induces

an isomorphism on the pullback of the universal curve, it suffices to show that we

impose less conditions on a map to obtain an element of MR

α1
(a, b) than we need

to obtain an element of MR

α0
(a, b): (i) the asymptotic conditions at each Floer

node are the same by the inclusion P0 ⊂ P1, (ii) the inclusion S1 ⊂ S0 and the
compatibility on the choice of divisors implies that fewer marked points conditions
are imposed in the target, and (iii) the inclusion Vα0 → Vα1 implies that the allowed
space of inhomogeneous terms is larger. We conclude that we have a commutative
diagram

(10.3.4)

MR

α0
(a, b) MR

α1
(a, b)

MR

α0
MR

α1
.

To check that the mapMR

α0
(a, b)→MR

α1
(a, b) preserves regular loci, we observe

that the condition for regularity in the domain are stronger than in the range, be-
cause of the inclusion Vα0 → Vα1 , and the fact that we impose divisorial conditions
at marked points by the set S0 which contains S1.

Checking that the conditions for a map of Kuranishi charts hold is now straight-

forward: the kernel of the map Gα0 → Gα1 acts freely on MR

α0
(a, b) because the

forgetful map of domains does not collapse any component, and the implicit func-

tion theorem together with the gluing theorem imply that the space MR

α1
(a, b) is

locally the product of Vα1/Vα0 with the image ofMR

α0
(a, b). �

For each α ∈ A(a, b), we have a natural equivariant projection

(10.3.5) MR

α(a, b)×Vα
{0} →MR

(a, b),

which is compatible with morphisms. Thus, the functor M(a, b) is naturally a func-

tor over the moduli spaceMR

(a, b).
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Proposition 10.11. The functor M(a, b) is a Kuranishi presentation ofMR

(a, b).

Proof. Given a point [u] ∈ MR
(a, b), let A(a, b)[u] denote the subcategory of A(a, b)

consisting of elements α for which [u] lifts toMR,reg

α (a, b). We shall prove that the
nerve of A(a, b)[u] is contractible. To see this, it will suffice to show that for any
functor F : C → A(a, b)[u] from a category with finitely many objects, the induced
map of nerves is null-homotopic. By taking such a category be to the category of
simplices associated to subdivisions of the spheres, we conclude that the homotopy
groups of the nerve of A(a, b)[u] vanish, and by the Whitehead theorem, we have
that A(a, b)[u] is contractible. (c.f. the proof of [Wal85, 1.6.7]).

To show that the induced map of nerves N•F is null-homotopic, we recall that a
natural transformation F → G induces a homotopy of maps of nerves N•F ≃ N•G.
Thus, our null-homotopy will be constructed as a zig-zag of natural transformations.
More precisely, we pick a convenient chart ω ∈ A(a, b) so that u lifts to the regular

locus of MR

ω(a, b), and construct a zig-zag of natural transformations between F
and the constant functor at ω. The most important condition we impose is that
Dω be disjoint from all divisors DF (c) appearing in the image of F . For simplicity,
we also assume that the element of D(a, b) corresponding to ω is of the form (S′

ω =
Sω, Qω = P ′

ω = Pω = Pu), where Pu is the set of asymptotic conditions appearing
as intermediate orbits in u. We also require that Vω be sufficiently large that it
surjects onto the linearised ∂ operator at u, with constraints along the divisors
Dω ∐DF (c) for each c ∈ C.

The first step is to observe that Pu is a subset of PF (c) for each c ∈ C. The triple
(S′

c ⊂ Sc, Pu ⊂ PF (c)) defines an object of D(a, b), and there is a corresponding
inclusion of moduli spaces which is locally a homeomorphism near the image of u

in MR

F (c). We thus obtain a functor from C to A(a, b), equipped with a natural
transformation to F , with the property that the set of asymptotic orbits appearing
for each object of C is Pu ⊂ PF (c). A similar argument reduces the problem to the
situation in which QF (c) = P ′

F (c) = PF (c) = Pu for each c ∈ C.
Next, for each object α of A(a, b) which in the image of F , consider a map α→ α′

in A(a, b) where α′ given by the same data as α except that the representation Vα′

properly includes Vα. This construction yields an inclusion

(10.3.6) MR

α(a, b)→M
R

α′(a, b).

We may choose Vα′ large enough so that any lift of u remains regular if we impose
divisorial conditions along the hypersurfaces Dω associated to the object ω fixed
at the beginning of the proof. This in particular means that these points lie in the
image of the Kuranishi chart associated to the object of A(a, b) given by the same
data as α′, except that we take the disjoint union of Dα with Dω, and add the
sequence Sω to Sα.

Since A(a, b) is filtered by the number of elements of the set Sα, we can use
an inductive argument over the image of C under F to choose α′ together with a
prescribed commutative diagram

(10.3.7)

Vα Vβ

Vα′ Vβ′
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whenever α → β is the image of an arrow in C. This yields a zig-zag of natural
transformations from F to a functor F ′ which now has the property that SF ′(c) con-
tains Sω, and DF ′(c) contains Dω (for all c in the domain). By further considering
the natural transformations associated to the inclusion S′

F (c) ⊂ S′
F (c)∐Sω ⊃ Sω, we

have a further zig-zag of natural transformations to a functor F ′′ with the property
that SF ′′(c) = Sω.

For the next step, we pick an embedding of VF (c) and Vω in a representation
Vω(c) which contains their direct sum, and keep the remaining data unchanged.
This yields a zig-zag to a chart with marked points given by SF (c) ∐ Sω, and
obstruction space given by Vω . Forgetting the points marked by SF (c) yields the
final natural transformation. This completes the proof that the map induced by F
on nerves is null-homotopic. �

10.4. Kuranishi presentations of product moduli spaces. Given an ordered
triple (a, b, c) of elements of P(f,H, f), recall that the product of Floer thickening

data associates to a thickening α of ∂QαMR

(a, b) and a thickening β of ∂QβMR

(b, c)

a thickening α×β of ∂Qα×βMR

(a, c), where Qα×β ≡ Qα∐{b}∐Qβ. The following
result is immediate from the definition of the product thickening:

Lemma 10.12. There is a canonical isomorphism of Kuranishi charts

(10.4.1) Mα(a, b)× Mβ(b, c)→ Mα×β(a, c),

which defines a natural isomorphism of functors in the following diagram

(10.4.2)

A(a, b)×A(b, c) A(a, b)

ChartK×ChartK ChartK .

�

Lemma 10.12 provides the remaining data for a Kuranishi flow category indexed
by A(f,H, f). The 2-associativity property again follows from the corresponding
property for disjoint unions of sets, the condition that strata are products is implied
by Lemma 10.12, and equivariance follows from the naturality of our construction.
We summarize this discussion (and recall Definition 4.33):

Lemma 10.13. The topological flow category MR
(f,H, f) associated to a non-

degenerate Hamiltonian, an almost complex structure, and a Morse function lifts to
a Π-equivariant Kuranishi flow category M, with domain the 2-category A(f,H, f).

�

10.5. Flag smooth presentation. We now lift the Kuranishi presentation above
to a flag smooth presentation (see Section 4.2.2, and in particular Definition 4.40).

We start by defining the smooth parameter space which serves as the base for all
charts that we consider. Thus, given elements (x, y, z) of P(f) and (p, q) of P(H),
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and for an object α of the appropriate category of Floer thickening data, we define

Bα(x−, y−)

Bα(x0, y0)

Bα(x+, y+)




≡ ∂QαT (x, y)(10.5.1)

Bα(p, q) ≡MR

α(10.5.2)

Bα(x−, p) ≡ ∂Qα(f)−T ([x],M)×MR

α(10.5.3)

Bα(p, z+) ≡M
R

α × ∂Qα(f)+T (M, [z])(10.5.4)

Bα(y0, z+) ≡ ∂Qα(f)0T ([y],M)×MR

α × ∂Qα(f)+T (M, [z])(10.5.5)

B(x−, y0) ≡ T ([x],M, [y]).(10.5.6)

Finally, for a pair of elements of P(f)− and P(f0), we define

(10.5.7) Bα(x−, z+) ≡ ∂Qα(f)−T ([x],M)×MR

α ×M ∂Qα(f)+T (M, [z])

∪ ∂Qα(f)−∪Qα(f)0T ([x],M,M)× ∂M0MR

α × ∂Qα(f)+T (M, [z]),

where the union is taken along the common boundary stratum

(10.5.8) ∂Qα(f)−T ([x],M)× ∂M0MR

α × ∂Qα(f)+T (M, [z]).

Lemma 10.14. For each pair (a, b) in P(f,H, f), the space Bα(a, b) is a Gα-
equivariant 〈∂QαP(a, b)〉-smooth manifold.

Proof. This follows immediately form the smoothness of the moduli spacesMR

α, and
the moduli spaces of gradient flow lines. The only exceptional situation is that of
(a, b) = (x−, z+), where our definition is piecewise, and one would in principle only
obtain a smooth manifold by choosing a smoothing along the common boundary

stratum. Nonetheless, since MR

α and T ([x],M,M) are respectively canonically

locally diffeomorphic to the products of ∂M0MR

α and T ([x],M) with an interval
near these boundary strata, the smooth structure on their union is canonical. �

We have a projection map

(10.5.9) MR

α(a, b)→ Bα
which is Gα-equivariant and forgets the map u. Moreover, replacing the moduli

spaces MR

α in Equations (10.5.1)–(10.5.7) by M′R
α , we obtain a moduli space B′

α,
with a smooth stratified Gα equivariant submersion

(10.5.10) Bα → B′
α.

Lemma 10.15. For each α ∈ A(a, b), the forgetful maps

(10.5.11) MR,reg

α (a, b)→ Bα → B′
α

are equipped with a natural relative smooth structure, lifting Mα(a, b) to a flag
smooth Kuranishi chart. Each map f : α → β in D(a, b) lifts to the category of
flag smooth charts.
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Proof. By definition,MR,reg

α (a, b), Bα and B′
α are stratified by ∂QαP(a, b). The for-

getful map fromMR,reg

α (a, b) to the abstract moduli spaces is Gα-equivariant, and
is compatible with the stratification. The moduli spaces Bα and B′

α are smooth, and
the forgetful map Bα → B′

α is a smooth submersion by Proposition 9.41. Proposi-
tion 10.8 immediately implies that the map to Bα is a Gα-equivariant topological
submersion.

Since the domain of an element ofMR,reg

α (a, b) is identified with its image in B′
α,

we can repeat the proof of Proposition 10.8 using the smaller moduli space B′
α as our

base: this implies that the restriction of this projection to each stratum is equipped
with a relative smooth structure, obtained as the zero-locus of a Fredholm bundle
over a Banach manifold, whose base contains Vα as a factor. The gluing theorem
for moduli spaces of pseudo-holomorphic curves is smooth for fixed parameter (see,
e.g. [MS12, Theorem 10.1.2], or the universal characterisation in [Swa19] for the
analogous problem in Gromov-Witten theory), which gives rise to a global relative
smooth structure over B′

α, with the property that the map to Vα is smooth.

On a fibre of the projection mapMR,reg

α (a, b)→ B′
α, the map to Bα is obtained

by recording the position in the domain of inverse images of real codimension-
2 submanifolds in M , hence is smooth by the implicit function theorem. It is
a submersion onto the fibres of Bα → B′

α because of the assumption that the
corresponding curves with constraints in Bα are regular.

Given a morphism f : α→ β, the assumption that Vα surjects onto the cokernel
of the linearised Cauchy-Riemann operator implies that the restriction of the map

MR,reg

β (a, b) → Vβ to each fibre over Bβ is (smoothly) transverse to Vα along the

image ofMR,reg

α (a, b). Finally, the two smooth structures on the fibres of the map

MR,reg

α (a, b)→ B′
β agree because they can be described in terms of a zero-locus of

a Fredholm operator. This completes the construction of a lift to the category of
flag-smooth charts.

�

Combining the above result with Lemma 9.44, we conclude:

Corollary 10.16. The projection maps MR,reg

α (a, b) → Bα → B′
α lift M(a, b) to a

flag smooth Kuranishi presentation of MR

(a, b). �

This construction is compatible with products of charts: given elements α ∈
A(a, b) and β ∈ A(b, c), we have a commutative diagram

(10.5.12)

MR

α(a, b)×M
R

β(b, c) MR

α×β(a, c)

Bα × Bβ Bα×β

in which the horizontal arrows are homeomorphisms. Since the above construction
is functorial in α and β, the associated strict unitality and associativity diagrams
commute, and Π strictly acts, we conclude (recall Definition 4.48):

Lemma 10.17. The Kuranishi flow category M lifts to a flag smooth Kuranishi
flow category. �
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11. Stable complex structures

In this section, we lift the flag-smooth Kuranishi flow category constructed in the
previous section to a complex-oriented flow category. The construction proceeds in
three steps: we first construct a stable almost complex structure on the abstract

moduli spaces of Floer cylinders MR

α and a stable framing of the moduli spaces
of Morse trajectories, then construct a stable almost complex structure on the
fibrewise tangent space of the projection from the moduli spaces of Floer trajectories

MR

α(p, q) to Bα, and finally combine the two to obtain the desired stable almost
complex structure on the tangent space of each chart, which we define to be the
direct sum of this fibrewise tangent space with the pullback of TBα.

11.1. Stable complex structures on abstract moduli spaces. We assume that
we are in the non-trivial situations studied in Sections 9.7, namely, we consider a
pair (a, b) ∈ P(f,H, f) such that a and b are distinct elements of P(f,H, f), and
we are not in the situation a = M− and b = M0, or a = M0 and b = M+. This

ensures that the moduli spacesMR

α are not defined to be a point for trivial reasons.
We shall in particular use the description of tangent spaces in Proposition 9.41 and

Lemma 9.44. We shall apply these results to the subsetsMR

α ⊂M
R

α considered in

Diagram (10.1.1). For this purpose, we write

MS,R

α ⊂MS,R

α(11.1.1)

for the inverse image of MR

α in MS,R

α . This is a smooth manifold with corners,

which submerses overMR

α. We write

(11.1.2) Rα ⊂ Rα

for the image of this manifold under the submersionMS,R

α →Rα. This is a stratum

of Rα, hence again a smooth manifold with corners.

Definition 11.1. The space Jbase(α) consists of the following data:

(1) a Gα-invariant inner product on TMS,R

α which is

(11.1.3)

induced from its restriction to TM
RMS,R

α
∼= RSH

α and TRMS,R

α , via
Equation (9.7.29). We assume that the first restriction splits orthogo-

nally as direct sum of the factors of RSH
α , and the second restriction is

(the real part of) a hermitian inner product on TRMS,R

α .

(2) an isomorphism ℓb ⊕ R
Q

α ⊕ TRα
∼= RSH

α ∐{χb
a} of vector bundles over Rα,

where ℓb is a trivialised real line associated to b, and

(3) a Gα-equivariant section of the projection mapMSH ,R

α →MR

α.

We begin by noting that a stable complex structure on MR

α may be obtained
from the space Jbase(α). Indeed, the inner product determines an isomorphism

TMR

α ⊕ RSH
α ∼= TMSH ,R

α
∼= TRα ⊕ TRMSH ,R

α(11.1.4)
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of vector bundles overMSH ,R

α . Taking the direct sum with ℓb⊕R
Q

α , and using the

trivialisation of R⊕ TRα yields an isomorphism

(11.1.5) ℓb ⊕ R
Q

α ⊕ TMR

α ⊕ RSH
α ∼= RSH

α ∐{χb
a} ⊕ TRMSH ,R

α

overMSH ,R

α , and the choice of section yields an isomorphism of vector bundles over

MR

α.
Before proceeding further, we note the following:

Lemma 11.2. Jbase(α) is contractible.

Proof. This is straightforward to see for the choice of framing of Rα because this

manifold is contractible, and for the choice of section of the projection fromMS,R

α

because the fibre is contractible and the isotropy group acts trivially on the fibre
over any point with non-trivial stabiliser. Regarding the inner product, recall that

the kernels TRMS,R

α and TM
RMS,R

α span the tangent space TMS,R

α , and that their
intersection is canonically isomorphic to R, corresponding to the diagonal inclusion

in RSH
α and to the (real) translation of all components in TRMS,R

α .
To describe the space of inner products, start with the real part of a hermitian

inner product on TRMS,R

α ; this determines a metric on the subspace spanned by

translation of all components. A choice of extension to RSH
α compatible with the

inner product is a fibre of the map R
SH
α

+ → R+ given by adding all components,
which is evidently contractible. This completes the construction. �

We conclude:

Lemma 11.3. Every element of Jbase(α) determines an isomorphism

(11.1.6) ℓb ⊕ TMR

α ⊕ R
Q

α
∐SH

α ∼= R{χb
a}∐SH

α ⊕ TRMS,R

α

of vector bundles over MR

α. �

Recall that, for each arrow f : α→ β in A(a, b), the map of moduli spaces takes

MR

α to MR

β . It similarly maps Rα to Rβ , and M
SH ,R

α to MSH ,R

β . Since these
are all open subsets of strata of the moduli spaces studied in Section 9.7, Lemma
9.38 and Proposition 9.41 describe the fibres of the induced maps of tangent space.
Recalling that the strata are prescribed by the choice of subsets Qβ ⊂ Qα, we have:

Lemma 11.4. The projections to the cokernels of the maps of tangent spaces

TMR

α → TMR

β(11.1.7)

TRα → TRβ(11.1.8)

TMSH ,R

α → TMSH ,R

β(11.1.9)

are canonically split, and admit natural isomorphisms to R
Q

α
\Q

β which are uniquely
determined up to positive rescaling of each factor. �

Definition 11.5. For each arrow f : α → β, the space Jbase(f) consists of a pair
of elements of Jbase(α) and Jbase(β) such that:
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(1) the projection map TMSH ,R

α → TMSH ,R

β is orthogonal, and

(11.1.10)
the induced metric on the kernel T βMSH ,R

α splits orthogonally as a

direct sum of the factors of RSH
α \SH

β and
⊕

TzΣ, and the induced metric

on the cokernel respects the decomposition of R
Q

α
\Q

β into summands.

(2) there is an identification of the cokernel in Equation (11.1.8) with R
Q

α
\Q

β ,
in the prescribed class, such that the induced map to TRβ yields a commu-
tative diagram

(11.1.11)

RSH
α \SH

β RSH
α RSH

β

RSH
α \SH

β ℓb ⊕ R
Q

α ⊕ TRα ℓb ⊕ R
Q

β ⊕ TRβ ,

(3) the sections gives rise to a commutative diagram

(11.1.12)

MR

α MR

β

MSH ,R

α MSH ,R

β .

We equip Jbase(f) with the subspace topology.

To state the associativity of this construction, we introduce a category internal
to the category of topological spaces (see Appendix A.6 for a brief review of the
definitions of internal categories and internal functors that we use):

Definition 11.6. The category Abase(a, b) has:

• objects given by the disjoint union, over α ∈ A(a, b), of the spaces Jbase(α).
• morphisms given by the disjoint union, over morphisms f ∈ A(a, b), of the
spaces Jbase(f).
• composition given by the natural continuous map

(11.1.13) Jbase(f)×Jbase(β) Jbase(g)→ Jbase(g ◦ f),

obtained from the fact that composition is compatible with commutative
squares and orthogonal projections.

Having established earlier that the object spaces of this category are contractible,
we now consider morphisms. For the next result, we use the fact that the kernel

T βMR

α of the projection map from TMR

α to TMR

β , is naturally isomorphic to the

kernel of the projection map from TRMSH ,R

α to TRMSH ,R

β , as can be seen by

noting that both are given by the direct sum over all points in SH
α \ SH

β of the

tangent space at the underlying Riemann surface (see Lemma 9.44).
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Lemma 11.7. The space Jbase(f) is contractible, and each element induces a com-
mutative diagram

(11.1.14)

T βMR

α TMR

α ⊕ R
Q

α
\Q

β TMR

β

T βMSH ,R

α TMSH ,R

α ⊕ R
Q

α
\Q

β TMSH ,R

β

T βRα TRα TRβ

of maps vector bundles overMR

α, in which the rows are split exact sequences. More-
over, the induced splitting of the sequence

(11.1.15) T βMR

α TRMSH ,R

α TRMSH ,R

β

respects the complex structure. �

Corollary 11.8. The following diagram, in which the horizontal maps are induced

by the stable complex structures on MR

α and on MR

β, is commutative:

(11.1.16)
ℓb ⊕ TMR

β ⊕ R
Q

β
∐SH

β ⊕ RSH
α \SH

β ⊕ T βMR

α TRMSH ,R

β ⊕ R{χb
a}∐SH

β ⊕ RSH
α \SH

β ⊕ T βMR

α

ℓb ⊕ TMR

α ⊕ R
Q

α
∐SH

α TRMSH ,R

α ⊕ RSH
α ∐{χb

a}.

�

For the next result, we note that a splitting of the surjections TMR

α → TMR

β

and TMR

β → TMR

γ induces a splitting of the kernel of the composite map

(11.1.17) T γMR

α
∼= T βMR

α ⊕ T γMR

β .

Lemma 11.9. The splitting in Equation (11.1.17) associated to each element of
the fibre product Jbase(f)×Jbase(β) Jbase(g) gives rise to a commutative diagram:

(11.1.18)

T βMR

α ⊕ T γMR

β ⊕ TMR

γ T βMR

α ⊕ TMR

β ⊕ R
Q

β
\Q

γ

T γMR

α ⊕ TMR

γ TMR

α ⊕ R
Q

α
\Q

γ ,

and similarly for the tangent spaces of Rα and MSH ,R

α . �

Corollary 11.10. The stable isomorphism between the stable complex structures

onMR

α andMR

γ associated to the composition g ◦ f coincides with the composition
of the stable isomorphisms associated to g and f . �

We now consider the multiplicativity of this construction: recall that, given a

pair of inclusions {MR

αi
⊂ MR

αi
}2i=1, with α1 ∈ A(a, b) and α2 ∈ A(b, c), we have
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definedMR

α1×α2
to be the product of these spaces. We similarly define Rα1×α2 and

MS,R

α1×α2
to be the product of the corresponding moduli spaces.

There is a natural map

(11.1.19) Jbase(α1)× Jbase(α2)→ Jbase(α1 × α2)

defined as the direct sums of:

(1) The inner products on TMS,R

αi
,

(2) the stable framings of Rαi
, and

(3) the sections of the projectionsMS,R

αi
→MR

αi
.

In particular, for the framings, we note that

(11.1.20) Qα1 ∐ {b} ∐Qα2 ∐ {c} ≡ Qα1×α2 ∐ {c},

so we obtain the desired stable framing of the product.

Lemma 11.11. The stable almost complex structures induced by elements of Jbase(α1),
Jbase(α2), and their image in Jbase(α1 × α1) fit in a commutative diagram

(11.1.21)

ℓc ⊕ R
Q

α1×α2
∐SH

α1×α2 ⊕ TMR

α1×α2
TRMR

α1×α2
⊕ R

{χc
a}∐SH

α1×α2

ℓb ⊕ R
Q

α1
∐SH

α1 ⊕ TMR

α1
⊕

ℓc ⊕ R
Q

α2
∐SH

α2 ⊕ TMR

α2

TRMR

α1
⊕ R

{χb
a}∐SH

α1

⊕TRMR

α2
⊕ R

{χc
b}∐SH

α2 .

�

Next, we state the associativity of the product construction: to start, we observe

that, given a triple {MR

αi
⊂MR

αi
}3i=1, the products

MR

α1×α2×α3
⊂MR

α1×α2×α3
(11.1.22)

MSH ,R

α1×α2×α3
⊂MSH ,R

α1×α2×α3
(11.1.23)

Rα1×α2×α3 ⊂ Rα1×α2×α3
(11.1.24)

are independent of parenthesisation. The fact that the comparison of orientations
on moduli spaces and their products is associative then amounts to:

Lemma 11.12. The following diagram commutes:

(11.1.25)

Jbase(α1)× Jbase(α2)× Jbase(α3) Jbase(α1)× Jbase(α2 × α3)

Jbase(α1 × α2)× Jbase(α3) Jbase(α1 × α2 × α3).

�

Finally, we consider the functoriality of the product maps: given maps {αi →
βi}2i=1, and open subsets {MR

αi
⊂MR

αi
}2i=1 and {MR

βi
⊂MR

β
i

}2i=1 included in the
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strata labelled by Q
αi

and Q
βi
, such thatMR

αi
maps toMR

βi
, we observe that the

following diagram

(11.1.26)

MR

α1
⊕MR

α2
MR

β1
⊕MR

β2

MR

α1×α2
MR

β1×β2

commutes, as do the corresponding diagrams

(11.1.27)

MSH ,R

α1
⊕MSH ,R

α2
MSH ,R

β1
⊕MSH ,R

β2

MSH ,R

α1×α2
MSH ,R

β1×β2

and

(11.1.28)

Rα1 ⊕Rα2 Rβ1 ⊕Rβ2

Rα1×α2 Rβ1×β2 .

Moreover, the identifications of the cokernel of each of these maps with

(11.1.29) R
Q

α1×α2
\Q

β1×β2

agree (up to the same real positive dilation ambiguity in each factor).
The functoriality of the product maps allows us to pass to arrows:

Lemma 11.13. Given a pair of arrows f1 : α1 → β1 and f2 : α2 → β2, there is a
natural map

(11.1.30) Jbase(f1)× Jbase(f2)→ Jbase(f1 × f2),

which is functorial in the sense that, for each pair of compositions g1◦f1 and g2◦f2,
the following diagram commutes:

(11.1.31)

Jbase(f1)×Jbase(β1) Jbase(g1)

×Jbase(f2)×Jbase(β2) Jbase(g2)
Jbase(g1 ◦ f1)× Jbase(g2 ◦ f2)

Jbase(f1 × f2)×Jbase(β1×β2) Jbase(g1 × g2) Jbase(g1 ◦ f1 × g2 ◦ f2).

Moreover, this construction is multiplicative in the sense that the following diagram
commutes:

(11.1.32)

Jbase(f1)× Jbase(f2)× Jbase(f3) Jbase(f1)× Jbase(f2 × f3)

Jbase(f1 × f2)× Jbase(f3) Jbase(f1 × f2 × f3).

�

Reformulating the above result in more abstract terms, we have:
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Corollary 11.14. The categories Abase(a, b) are the 1-cells of a bicategory (in fact,
a 2-category) internal to topological spaces, with 0-cells the elements of P(f,H, f).

�

11.2. Stable complex structures and Morse stable framings. In this sub-
section, we combine the constructions of the preceding subsection, with those of
Appendix D.2, to construct a stable complex structure on the moduli spaces Bα,
which are the bases of the flag smooth Kuranishi presentations introduced in Section
10.5.

If x is a critical point of f , let V +
x denote the positive definite subspace of the

Hessian of f at x. The starting point is to fix the choice of trivialisation of the
ascending manifold at x

(11.2.1) TT ([x],M) ∼= V +
x

in Equation (D.2.2). As explained in Appendix D, this induces a stable framing

(11.2.2) TT (x, y)⊕ ℓy ⊕ V +
y
∼= V +

x .

Next, we consider the moduli spaces T (M, [x]). Proceeding by induction on the
Morse index of [y], and letting ℓM = R{M}, we pick stable isomorphisms

(11.2.3) TT (M, [x]) ⊕ ℓy ⊕ V +
x
∼= ℓM ⊕ TM

subject to the following constraint: along the codimension 1 boundary stratum
T (M, [x]) × T ([x], [y]) of T (M, [y]), we require that the following diagrams, where
the arrows are given by Equation (11.2.2) and (11.2.3), are commutative:

(11.2.4)

TT (M, [x])⊕ ℓx ⊕ TT ([x], [y]) ⊕ ℓy ⊕ V +
y TT (M, [y])⊕ ℓy ⊕ V +

y

TT (M, [x])⊕ ℓx ⊕ V +
x ℓM ⊕ TM.

Remark 11.15. Observe that Equation (11.2.3) provides a stable almost complex
structure on the moduli spaces T (M, [x]). In fact, these moduli spaces have natural
stable framings by the negative-definite subspace of the Hessian. We do not use
these stable framings because we have already framed T ([x],M), and these two
families of moduli spaces cannot be simultaneous framed, compatibly with Poincaré
duality, unless M is itself a stably framed manifold.

Since the moduli spaces T ([x],M, [y]) are defined as the fibre products of T ([x],M)
and T (M, [y]) over the evaluation map to M , the framing of T ([x],M) and the sta-
ble isomorphism of TT (M, [y]) with TM yields a stable framing:

(11.2.5) TT ([x],M, [y]) ⊕ V +
y ⊕ ℓy ∼= V +

x ⊕ ℓM ,

for which it is straightforward to check that we have a commutative diagram

(11.2.6)

TT ([x],M, [y])⊕ ℓy⊕
TT ([y], [z])⊕ V +

z ⊕ ℓz
TT ([x],M, [z])⊕ V +

z ⊕ ℓz

TT ([x],M, [y])⊕ ℓy ⊕ V +
y V +

x ⊕ ℓM
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associated to the boundary stratum T ([x],M, [y])⊕TT ([y], [z]), and a commutative
diagram

(11.2.7)

TT ([x], [y])⊕ ℓy⊕
TT ([y],M, [z])⊕ V +

z ⊕ ℓz
TT ([x],M, [z])⊕ V +

z ⊕ ℓz

TT ([x], [y])⊕ ℓy ⊕ V +
y ⊕ ℓM V +

x ⊕ ℓM

associated to the boundary stratum T ([x], [y])⊕ TT ([y],M, [z]).
Finally, we consider the moduli space T ([x],M,M), for which we state the fol-

lowing result, whose proof we leave to the reader:

Lemma 11.16. There is a choice of stable framings

(11.2.8) TT ([x],M,M) ∼= V +
x ⊕ ℓM

subject to the following constraints:

• Along the boundary stratum TT ([x],M), Equation (11.2.8) is obtained from
the framing TT ([x],M) ∼= V +

x , and the product decomposition

(11.2.9) TT ([x],M,M) ∼= TT ([x],M)⊕ ℓM .

• Along each boundary stratum T ([x],M, [y])×T ([y],M), we have a commu-
tative diagram

(11.2.10)

TT ([x],M, [y])⊕ ℓy ⊕ T ([y],M) TT ([x],M,M)

TT ([x],M, [y])⊕ ℓy ⊕ V +
y V +

x ⊕ ℓM .

• Along each boundary stratum T ([x], [y])×T ([y],M,M), we have a commu-
tative diagram

(11.2.11)

TT ([x], [y])⊕ ℓy ⊕ T ([y],M,M) TT ([x],M,M)

TT ([x], [y])⊕ ℓy ⊕ V +
y ⊕ ℓM V +

x ⊕ ℓM .

�

Finally, we state the desired result concerning the stable complex structure of
the moduli spaces which serve as the base of the flag smooth Kuranishi structures
in Hamiltonian Floer theory. To this end, we write

(11.2.12) V +
a ≡

{
0 if a ∈ P(H)

V +
a otherwise.

Given α ∈ A(a, b), we also define
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Oα ≡ Qα ∐ {χb
a} ∐ {b}(11.2.13)

Ibase,Cα ≡




TRMSH ,R

α ⊕ C{χb
a} ⊕ TM if b ∈ P(f)+

TRMSH ,R

α ⊕ C{χb
a} otherwise.

(11.2.14)

W base
α ≡ RSH

α .(11.2.15)

Given an arrow f from α to β in A(a, b), we define

Ibase,Cf ≡ T βMR

α(11.2.16)

W base
f ≡ RSH

α \SH
β ,(11.2.17)

and note that we have a natural isomorphism

(11.2.18) W base
α
∼= W base

β ⊕W base
f .

Proposition 11.17. The space Jbase(α) parameterises a continuous family of iso-
morphisms

(11.2.19) V +

b
⊕ TBα ⊕ ROα ⊕W base

α
∼= W base

α ⊕ Ibase,Cα ⊕ V +
a .

Given an arrow f in A(a, b) from α to β, the space Jbase(f) parametrises a contin-
uous family of isomorphisms of vector bundles

TBα ⊕ RQα\Qβ ∼= TBβ ⊕ Ibase,Cf(11.2.20)

Ibase,Cα
∼= Ibase,Cβ ⊕ Ibase,Cf ,(11.2.21)

which are compatible with composition in the category Abase(a, b). In addition, the
following diagram commutes (we use the evident isomorphism Oα = Oβ∐(Qα\Qβ)
in the left vertical arrow):

(11.2.22)

V +

b
⊕ TBβ ⊕ ROβ ⊕W base

β

⊕W base
f ⊕ Ibase,Cf

W base
β ⊕ Ibase,Cβ ⊕ V +

a ⊕W base
β

⊕W base
f ⊕ Ibase,Cf

V +

b
⊕ TBα ⊕ ROα ⊕W base

α W base
α ⊕ Ibase,Cα ⊕ V +

a .

This data is associative and multiplicative in the sense that it specifies an enriched
2-functor to the topological bicategory of Definition 11.18 below.

Proof. We use the isomorphism ℓb ∼= R{b} to incorporate this factor into ROα . The
only non-trivial case to discuss occurs whenever a ∈ P(f)− and b ∈ P(f)+: we
identify the copy of ℓM appearing in Equation (11.2.8) with R{χ−}. �

We define an auxiliary topological bicategory to articulate the associativity of
the preceding definition; this is a simplified version of the construction of Defini-
tion 4.57.

Definition 11.18. We define a topologically enriched bicategory C with:

(1) objects given by finite-dimensional complex inner-product spaces V ,
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(2) morphism categories define as the internal categories C(V1, V2) with the
space of objects specified by:
(a) A partially ordered set S and a totally-ordered subset Qα ⊂ S,
(b) A smooth 〈∂QαS〉-manifold Bα with action by Gα,
(c) A complex vector bundle Iα on Bα,
(d) A set Oα and a complex vector space Wα,
(e) and an isomorphism

(11.2.23) V0 ⊕ TBα ⊕ ROα ⊕Wα
∼= Iα ⊕Wα ⊕ V1.

The topology is induced from the topology on the space of isomorphisms.
The space of morphisms f : α→ β is specified by the following data:

(1) An inclusion Qβ ⊂ Qα and a surjection Gβ → Gα,
(2) An equivariant submersion Bα → ∂QαBβ (and a choice of cokernel identi-

fication as in Equation (11.1.29)),
(3) A complex vector bundle If on Bα, and
(4) isomorphisms

(11.2.24) Iα ∼= Iβ ⊕ If

and

(11.2.25) TBα ⊕ RQα\Qβ ∼= TBβ ⊕ If

such that the analogous diagram to Equation (11.2.22) commutes.

Composition is specified in the evident way, following the work of Section 4.3.3.

11.3. Stable fibrewise complex structure. In this section, we shall construct
stable almost complex structures on moduli spaces of pseudo-holomorphic cylinders
with marked points, and with fixed conformal structure. These are the fibres of
the projection map from the Kuranishi charts we consider to the abstract moduli
space of cylinders with marked points, so we refer to this construction as a fibrewise
(stable almost) complex structure.

11.3.1. Fredholm operators associated to orbits.

Notation 11.19. Given a Riemann surface Σ, obtained from a closed connected
Riemann surface by removing finitely many points, and a map u : Σ → M , we
write F(u∗TM) for sections of the pullback of TM , and E0,1(u∗TM) for complex
anti-linear 1-forms on Σ valued in TM . For concreteness, we require the sections
of F to be in W 2,2 and E0,1 in W 1,2, where the norms are taken with respect to
cylindrical metrics near the punctures. We write Ω0,1

c (u∗TM) for the subspace of
E0,1(TM) consisting of smooth 1-forms of compact support.

Given a connection ∇ on u∗TM , which is complex-linear in the sense that
∇vJξ = J∇vξ, we begin by considering the complex-linear Fredholm operator

∇0,1 : F(u∗TM)→ E0,1(u∗TM)(11.3.1)

ξ 7→ (∇ξ)0,1 ≡ (v 7→ ∇jvξ −∇vJξ)(11.3.2)

associated to each map u : Σ → TM . If the domain is not compact, we assume
that u converges along each puncture to a map x : S1 → M , that we have a
chosen unitary trivialisation of x∗TM , and that the chosen connection on u∗TM
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extends the connection induced by this trivalisation. Since we are only interested
in asymptotic conditions given by time-1 Hamiltonian orbits, we shall fix:

(11.3.3)
a complex linear connection on the pullback of TM to S1 × TM ,
whose restriction to the graph of every Hamiltonian orbit is induced
by a trivialisation,

and assume that ∇ converges to this connection along cylindrical ends associated
to the punctures of Σ.

Let us now consider a (not-necessarily complex) linear map

(11.3.4) Y : F(u∗TM)→ E0,1(u∗TM),

of order 0 (in the sense that Y (ξ), evaluated at a point z ∈ Σ depends only on the
value ξ(z) rather than on the derivatives at this point), and consider the operator

∇0,1
Y : F(u∗TM)→ E0,1(u∗TM)(11.3.5)

ξ 7→ (∇ξ)0,1 − Y (ξ).(11.3.6)

In order to control the behaviour of this operator, we shall assume that

(11.3.7)

near each puncture, Y = (A ⊗ dt)0,1 for an endomorphism A of
u∗TM , and the connection ∇A induced by A and the chosen con-
nection preserves the symplectic form. Moreover, either A vanishes
or ∇A exponentially converges in all derivatives to a flat connection
whose monodromy is a symplectic matrix that does not admit 1 as
an eigenvalue.

Explicitly, the above convergence conditions say that there is a loop S(t) of symmet-
ric matrices such that A converges to S(t) with respect to a choice of cylindrical end.
A loop of such matrices generates a path of symplectomorphisms, whose endpoint
has constrained eigenvalues.

We shall make use of the following standard fact, which amounts to the statement
that the operator considered above is elliptic:

Lemma 11.20. Let G be a finite group of automorphisms of u preserving u∗Y .
There is a finite dimensional complex G-representation V , equipped with an equi-
variant complex-linear map

(11.3.8) λ : V → Ω0,1
c (Σ, u∗TM),

whose image may be assumed to be supported in any arbitrary G-invariant non-
empty open subset of the domain, such that the direct sum

(11.3.9) ∇0,1
Y ⊕ λ : F(u∗TM)⊕ V → E0,1(u∗TM)

is surjective. Moreover, if this operator is surjective at u, then any continuous
extension to a sufficiently small neighbourhood is surjective (using the C∞-topology
with exponential decay along the ends). �

We shall use this construction to associate to each Hamiltonian orbit [p] (with
chosen trivialisation of [p]∗TM) a stable vector space as follows: abusing notation,
we write F([p]∗TM) and E0,1([p]∗TM) for the Banach spaces obtained from [p] by
considering the induced translation-independent map R× S1 →M . Let

(11.3.10) χ : P1 → [0, 1]
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be a cutoff function which vanishes outside the circle of radius exp(1), and is
identically equal to 1 in the circle of radius exp(−1), and consider the 1-form on
R× S1 = P1 \ {0,∞}

(11.3.11) Y[p](s, t) ≡
(
χ(es+it) ·BH ⊗ dt

)0,1 ∈ E0,1([p]∗TM),

where the matrix BH is obtained by differentiating the Hamiltonian flow with
respect to the chosen connection. By construction, this 1-form vanishes whenever t
is sufficiently large, hence satisfies Condition (11.3.7) along the positive end. Along
the negative end, the assumption that each orbit be non-degenerate is equivalent
to the requirement that Condition (11.3.7) hold, so that we obtain a Fredholm

operator ∇0,1
[p] from Equation (11.3.5).

∇0,1ξ(∇ξ −BH ⊗ dt)0,1

Figure 15. The operator ∇0,1
[p] associated to each Hamiltonian

orbit.

Applying Lemma 11.20, we find a finite dimensional complex vector space V −
[p]

equipped with a map

(11.3.12) λ[p] : V −
[p] → Ω0,1

c ([p]∗TM),

so that the direct sum ∇0,1
[p] ⊕ λx is surjective. For concreteness, we also assume

that the support, expressed in cylindrical coordinates, is contained in [−1, 1]× S1.
Letting V +

[p] denote the kernel of this map, we obtain a stable vector space (V +
[p], V

−
[p])

associated to each orbit.

Remark 11.21. In the abstract theory discussed in Sections 6.4 and 4.3, the complex
structure on V −

[p] is used in formulating the appropriate notion of multiplicativity of

orientations, but we shall need it to before that stage, to define the stable complex
structure.

The above discussion will be used to define stable complex orientations for mod-
uli spaces of pseudo-holomorphic cylinders. If [x] is a critical point of the Morse
function f , we have already defined V +

[x] in Section 11.2 to be the tangent space of

the ascending manifold of f at [x]; we set V −
[x] = 0. To have a consistent notation,

given a ∈ P(f,H, f), we write V ±
a for the vector spaces associated to the critical

point or orbit corresponding to a, and then define

(11.3.13) V ±
a ≡

{
V ±
a if a ∈ P(H)

0 otherwise,

noting that comparing with Equation (11.2.12) gives a canonical isomorphism

(11.3.14) V ±
a ⊕ V ±

a
∼= V ±

a .
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11.3.2. Moduli spaces of maps and Fredholm operators. We shall presently con-
struct a 1-parameter family of stable vector bundles which interpolate between the
(fibrewise) tangent space of the moduli space of Floer trajectories and a stable
complex vector bundle. The construction will proceed via an interpolating fam-
ily of Fredholm operators, but the usual difficulties of bubbling and breaking in
Floer theory will make the construction clearer if we introduce an auxilliary moduli
space. For the next definition, we let (a, b) be elements of P(f,H, f), and recall that
the Floer components are the irreducible components of the domain of a pseudo-
holomorphic curve on which the Cauchy-Riemann operator that we consider has a
non-vanishing inhomogeneous term. In the case of Floer trajectories, this consists
of all components lying between the input and the output:

Definition 11.22. The moduli space M̃R(a, b) of based Floer trajectories consists

of an element of MR

(a, b), together with a lift of the underlying map u : Σ → M
to the space of equivalence classes of stable maps

(11.3.15) ũ : Σ̃→M × P1,

whose domain is a pre-stable curve Σ̃, such that (i) the stabilisation of the projection
to M has domain Σ, and agrees with u, and (ii) the projection to P1 has degree 1,
maps the marked points z± to 0 and ∞, and respects the angular structure on the
non-constant component.

To clarify the last condition, observe that since holomorphic maps have non-
negative degree, and are constant when the degree vanishes, there is a unique
component of Σ̃ mapping non-trivially to P1. The assumptions imply that, if this
component is not collapsed by the projection to M , then it has an identification
with R × S1 that is canonical up to translation; the additional datum in a based
trajectory thus fixes the ambiguitity in this identification, and in this case Σ̃ = Σ.
The only other possibility is the existence of a single unstable component on which
the map is non-constant, which is labelled by an element of P appearing as an
asymptotic condition of one of the cylindrical components of Σ. We conclude:

Lemma 11.23. The forgetful map M̃R(a, b) → MR

(a, b) is a fibre bundle with
fibre homeomorphic to a closed interval. �

We orient this interval according to the position of the distinguished component
in the arc connecting − to +, i.e. so that there is an orientation preserving iden-
tification with [0, 1] mapping 0 to the point in the fibre where this component is
leftmost in the chain (if both a and b lie in P(H), then this is necessarily a Floer
component). If a = p is an orbit of H , this corresponds to the component map-
ping to M via the projection to S1 and the map p : S1 → M . Otherwise, this
corresponds to the case where the map from this component to M is constant.

We now place ourselves in the context of Section 10.2, i.e. we consider the zero

locus Zα of the moduli spaceMR

α(a, b), whose points are represented by a Riemann
surface Σ with marked points, together with a map u : Σ→M . The moduli space
is stratified by trees, and if Σ lies in the stratum indexed by a tree T , we write
{Σv}v∈V (T ) for the underlying curves labelled by the vertices of a tree T .

Pulling back M̃R(a, b) under the map Zα →MR
(a, b), we obtain a space which

we denote Z̃α, which is stratified by trees T̃ , with vertices labelled v+ and v− as
before, and a distinguished vertex v• along the path from v+ to v−, corresponding
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to the component carrying a non-trivial map to P1. We may canonically assign

to T̃ a tree T which labels a stratum ofMR

α(a, b), by forgeting the vertex v• (and
collapsing it if the resulting map is unstable). Note that, if this vertex is a stable

component, then T is isomorphic to T̃ , and otherwise is has one fewer vertex.
There are two distinguished sections {ũ• = a} and {ũ• = b} of the map from

unbased to based Floer trajectories, given by adding an unstable component map-
ping either to a or to b, and corresponding to the stratum for which v• labels an
unstable component which is either leftmost or rightmost along the arc of Floer
components. Our goal is to construct a stable vector bundle on Z̃α whose restric-
tion to the section labelled by a is the direct sum of the stable tangent space of

MR

α(a, b) with (V +
a , V −

a ), and whose restriction to the other section is the direct

sum of a stable complex vector bundle with (V +
b , V −

b ). The contractibility of the

fibres will then induce an isomorphism between these vector bundles on Zα which
is canonical up to contractible choice. As discussed earlier, the construction will
proceed via families of Fredholm operators whose domains and range we begin by
introducing.

For each element i ∈ Sα of the set of Floer thickening data, recall that we fixed
codimension 2 submanifolds Di of M , and a path of subbundles of the restriction

of TM to Di. Given the identification of the fibre of M̃R(a, b) → MR

(a, b) with
an interval, we thus obtain an assignment ∆i(ũ) of a subbundle of the pullback of
TM along this path for each marked point labelled by i of the domain of a curve
ũ ∈ Z̃α, which agrees with the tangent space of Di along the section labelled by a,
and with the complex subbundle along the section labelled by b.

We obtain a Banach space

(11.3.16) F (ũ∗
vTM, {∆i}i∈Sα

)

associated to each vertex v ∈ T , consisting of sections whose values at a point
marked by ri lies in ∆i(ũ) for each i ∈ Sα. We specify that we require exponential
decay at the ends z±, even if these are asymptotic to constants (rather than Floer
trajectories), but that we do not impose any condition at nodes. If v• labels an
unstable component corresponding to an orbit, then this is the Banach space asso-
ciated in Section 11.3.1 to an orbit. By taking the direct sum over all vertices of
T , we define

(11.3.17) F(ũ∗TM,∆α) ≡
⊕

v

F(ũ∗
vTM, {∆i}i∈Sα

).

This construction is functorial in α, in the sense that, for each map α→ β, the
forgetful map induces an inclusion

(11.3.18) F(ũ∗TM,∆α) ⊂ F(ũ∗TM,∆β).

of Banach bundles over Z̃α.

Lemma 11.24. If ∆i(ũ) is transverse to the image of the tangent space of the do-
main under the differential of u, the cokernel of the inclusion in Equation (11.3.18)

is naturally isomorphic, as a vector bundle over Z̃α, to the pullback of the fibrewise

tangent space T βMR

α of the projection from MR

α toMR

β.

Proof. The fibrewise tangent space T βMR

α is naturally identified with a direct sum,

over all marked points forgotten by the map MR

α → M
R

β , of the tangent space of
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the underlying curve. Since the domain in Equation (11.3.18) is obtained from the
range by imposing divisorial conditions at these marked points, the transversality
condition implies that the cokernel is isomorphic to this direct sum as well. �

We also define

(11.3.19) E0,1(ũ∗TM) ≡
⊕

v

E0,1(ũ∗
vTM)⊕

⊕

e

Tũ(e)M

where the second direct sum is taken over all edges of T which are not Floer edges
(i.e. the nodes of the Riemann surface) and, as before, ũ(e) is the common value
of the two sides of the node associated to the edge e.

Recall that we fixed a cutoff function χ : R → [0, 1] in Equation (11.3.10). This
function induces a map χ ◦ ũv on each Floer component of the domain of ũ by
composing ũ with the projection to P1, and pulling back under the projection
R × S1 → R, and the map ũ → P1. By construction, χ ◦ ũv is a non-trivial cutoff
function if v = v•, vanishes on all component between v+ and v•, and is identically
1 on the components between v• and v−.

We can write the linearisation of the pseudo-holomorphic curve equation along
each component uv of u in the form of Equation (11.3.5). On a lift ũv, we consider
the 1-form

(11.3.20) Yũv
≡ (χ ◦ ũv)Yv ∈ C∞(Σv ×M,T 0,1Σv ⊗ TM).

We obtain an operator

(11.3.21) ∇0,1
ũ : F(ũ∗TM,∆α)→ E0,1(ũ∗TM)

given on each component by the restriction of

ξ 7→ (∇ξ)0,1 − Yũv
.(11.3.22)

to the space of sections with values constrained to lie in ∆i(ũ) at the points marked
by ri, by the evaluation map

(11.3.23) F(ũ∗
vTM,∆α)→ Tũ(e)M

at each flag (v, e) pointing towards the root (with e corresponding to a node),
and its negative for flags pointing away from the root (recall that a flag is a pair
consisting of an edge and one of its endpoints, so that it can be thought of as a
direction along the edge). Since the operator ∇0,1

Yũv
satisfies Condition (11.3.7) on

the cylindrical components, the operator ∇0,1
ũ is Fredholm.

Lemma 11.25. The pullback of the operator (11.3.21) to the section {ũ• = b} is
canonically isomorphic to the direct sum of the linearisation of the ∂ operator on u
with the operator ∇0,1

b (we interpret this operator to vanish if b is not a Hamiltonian
orbit). The pullback of the operator (11.3.21) to the section {ũ• = a} is the direct
sum of a complex linear operator with the operator ∇0,1

a . �

Note that Z̃α is naturally equipped with a Gα action with the property that
the projection to the Floer moduli space is Gα equivariant. The operators ∇0,1

ũ are
compatible with this action in the sense that each element g induces a commutative
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diagram

(11.3.24)

F(ũ∗TM,∆α) E0,1(ũ∗TM)

F((g · ũ)∗TM,∆α) E0,1((g · ũ)∗TM),

and the vertical maps associated to a product h · g agree with the composition.

11.3.3. The fibrewise oriented locus of the space of stable maps. The purpose of this
section is to incorporate the obstruction spaces Vα that enter in the construction

of the moduli spaceMR,reg

α (a, b), and those which we associate to each orbit, into
a single obstruction space mapping to the restriction of E0,1(ũ∗TM) to a subset of

the space Z̃α constructed in the previous section. The essential missing ingredient
in the construction of this larger obstruction space is a choice of cylindrical ends
for Floer trajectories, i.e. an identification of a neighbourhood of each Floer end
with either [0,+∞)× S1 or (−∞, 0]× S1. Since the component carrying each end
is canonically identified with R × S1 up to translation, this choice can locally be
identified with a choice of a positive real number.

The key fact we need about cylindrical ends is that, if curves Σ1 and Σ2 are
equipped with cylindrical ends along the positive and negative end, then the result

(11.3.25) Σ1#RΣ2

of gluing the positive end of Σ1 to the negative end of Σ2 with a finite gluing
parameter R ∈ [0,∞) is again canonically equipped with cylindrical ends. We say
that such a cylindrical end is obtained by gluing. If Σi are equipped with marked
points, so that the pair (Σ1,Σ2) define an element of a codimension 1 boundary

stratum of some moduli spaceMR

α, then the construction of the glued surface above

gives a neighbourhood of this boundary stratum in MR

α, when Σi are allowed to
vary in modulus.

To systematically use the above observation, recall that a totally ordered subset
Pα ⊂ P(a, b) is part of the datum of an element of A(a, b). We are particularly
interested in the case Pα is a subset of P(H), so we restrict our attention to that
situation.

Definition 11.26. The space Ends(α) of parametrised ends onMR

α, is the space of
smoothly varying choices ǫ of cylindrical ends for each Floer flag (v, e) with e labelled

by an element of Pα \Qα, on the stable curves parametrised by the stratum ∂PαMR

α

which lie in the canonical R-family of ends induced by the cylindrical structure, are

(11.3.26)
separated from all marked points and special points, by an annulus of
modulus at least 1,

and such that

(11.3.27)
every point inMR

α is represented as a glued surface in the image of the

embedding of ∂PαMR

α × [0,∞)Pα\Q
α in ∂Q

αMR

α.

As discussed above, every surface inMR

α inherits a choice of parametrised ends
induced by gluing. Because of Condition (11.3.27), the space Ends(α) may be
empty. However, the following observation will greatly simplify the discussion in
Section 11.4 below:
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Lemma 11.27. If Ends(α) is non-empty, then it is contractible, and the projection
map

(11.3.28) MR

α → ∂PαMR

α

induced by forgetting the gluing parameters is independent of this choice of element
of Ends(α). �

In Section 11.3.1, we fixed a complex vector space V −
[p] for each orbit [p], and a

map λ[p] in Equation (11.3.12). Letting p denote a lift to P(H), we write V −
p for

V −
[p]. Given an element u ∈ Zα we obtain a map

(11.3.29) λp : V −
p → E0,1(ũ∗TM)

whenever ũv• corresponds to the orbit p, given by the composition

(11.3.30) V −
p → Ω0,1

c (p∗TM)→ E0,1(ũ∗
v•TM)→ E0,1(ũ∗TM).

Given an element ǫ ∈ Ends(α), we shall extend this map to an open subset of Z̃α.
To begin, note that the choice of ends determines, for each curve Σ represented by

a point in MR

α and each orbit p ∈ Pα, a thin part labelled by p which we denote
Σp ⊂ Σ which is either (i) a half-infinite cylinder, (ii) the union of two half-infinite
cylinders, or (iii) an annulus [0, R] × S1 which is the region along which the two
surfaces are glued. By definition, Σp admits a canonical projection to S1. For
the next definition, we fix, for each orbit [p], a smooth map from S1 × D2n to
M , extending the map [p] for S1 × {0}, and with the property that the image of
{t} ×D2n is a geometrically convex neighbourhood of [p](t) for each t ∈ S1.

Definition 11.28. The space of Floer trajectories Zǫ
α, is the space of of maps

u ∈ Zα such that each point in Σp lying over a point t ∈ S1 maps to the fixed
geodesically convex neighbourhood of [p](t).

We now define a map

(11.3.31) V −
p → E0,1(ũ∗TM)

for each lift ũ ∈ Z̃ǫ
α of such a map as follows: the inverse image of [−1, 1]×S1 ⊂ P1

under the map Σ̃ → P1 which determines the lift yields a map [−1, 1] × S1 → Σ
which is an embedding unless the lift has an additional component, corresponding
to the inverse image of the corresponding subset of P1. If the image of [−1, 1]×S1

is not contained in Σp, we set the extension of λp to vanish, and we define it by
parallel transport from the image of p to the thin region whenever the distance
from [−1, 1]× S1 to every point in ∂Σp is greater than 1. We interpolate between
these choices using a fixed cutoff function depending on the distance to ∂Σp.

The construction of the thickened moduli spaceMR

α(a, b) also provides us with
a map λα from Vα to E0,1(ũ∗TM). For the next definition, we set

V ′
α ≡ Vα ⊕

⊕

p∈Pα

V −
p(11.3.32)

Definition 11.29. The regular locus Z̃ǫ,reg
α is the set of based Floer trajectories ũ

in Z̃ǫ
α such that (i) the image under u of the tangent space of the domain at a point

labelled by ri is transverse to ∆(ũ) for each i ∈ S, and (ii) the map

(11.3.33) F(ũ∗TM, {∆i}i∈Sα
)⊕ V ′

α → E0,1(ũ∗TM)
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is surjective.

For the section associated to b, Equation (11.3.33) is, by construction, the direct

sum of three factors: (i) the operator ∇0,1
b ⊕λb constructed in the previous section,

(ii) the trivial map on the direct sum of V −
a with the vector space

(11.3.34) W fib
α ≡

⊕

p∈Pα

V −
p ,

and (iii) the inhomogeneous operator

(11.3.35) F(u∗TM,∆α)⊕ Vα → E0,1(u∗TM)

obtained by linearising the Floer equation.
For the section associated to a, we also have a direct sum of three factors: (i)

the operator ∇0,1
a ⊕λa, (ii) the trivial map on the vector space V −

b ⊕W fib
α , and (iii)

a complex-linear map

(11.3.36) F(u∗TM,∆α)⊕ Vα → E0,1(u∗TM)

whose restriction to the first factor is homogeneous.
We define the index bundle Ifib,Cα to be the complex vector bundle defined as the

kernel of Equation (11.3.36) over the locus where this complex linear operator is
surjective. The above discussion implies:

Proposition 11.30. There is a Gα-equivariant vector bundle over Z̃ǫ,reg
α such that

(i) the pullback under section associated to b is naturally isomorphic to the direct
sum

(11.3.37) V +
b ⊕W fib

α ⊕ TαMR

α(a, b)⊕ V −
a ,

while (ii) the pullback under the section associated to a is naturally isomorphic to
a direct sum

(11.3.38) V −
b ⊕W fib

α ⊕ Ifib,Cα ⊕ V +
a .

�

This result leads us to the following:

Definition 11.31. The stably fibrewise oriented locus

(11.3.39) Zǫ,ori
α ⊂ Zǫ,reg

α

is the set of points whose inverse image Z̃ǫ,ori
α in Z̃ǫ

α lies in the regular locus Z̃ǫ,reg
α .

As an immediate consequence of Proposition 11.30, we conclude that the re-

striction of TαMR

α(a, b) to the stably oriented zero-locus is equipped with a stable
isomorphism to the complex vector bundle Ifib,Cα , which is defined up to contractible
choice.

To be more precise, it is convenient to introduce a parametrisation of the fibres

of the maps M̃R(a, b) → MR
(a, b), which is compatible with the structure maps.

Note that the mapMR

(a, b)×MR

(b, c)→MR

(a, c) for a triple (a, b, c) lifts to an

identification of each fibre of M̃R(a, c) over this boundary stratum with the union

of the fibres of M̃R(a, b) and M̃R(b, c), glued at the common endpoint. This leads
to the following definition:
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Definition 11.32. A multiplicative Moore parametrisation of the fibres of M̃R(a, b)→
MR

(a, b) is specified by:

(1) A function mab : M
R

(a, b)→ (0,∞) for each pair (a, b) ∈ P(f,H, f), and
(2) an identification of each fibre with the interval [0,mab] such that, for each

triple (a, b, c),

(a) the map mac restricts on the stratumMR

(a, b)×MR

(b, c) to mab+mbc,
and

(b) the identification of fibres is compatible with the natural map

(11.3.40) [0,mab] ∪ [0,mbc]→ [0,mab] ∪ [mab,mbc +mab]→ [0,mab +mbc].

From the above construction, we obtain a family of Gα-equivariant vector bun-
dles on Zǫ,ori

α ,

(11.3.41) {It,ǫα , t ∈ [0,mab]},

from the identification of the fibre of M̃R(a, b)→MR
(a, b) with intervals [0,mab],

and such that I0,ǫα is given by Equation (11.3.38), and Imab,ǫ
α by Equation (11.3.37).

Definition 11.33. For each choice ǫ ∈ Ends(α) of strip-like ends, we define Jfib(ǫ)
to be the space consisting of continuous families of

(1) inner products on the vector bundles It,ǫα , and
(2) continuous families of inner-product preserving isomorphisms

(11.3.42) It,ǫα
∼= I0,ǫα ,

parametrised by t ∈ [0,mab] which are the identity for t = 0.

Remark 11.34. It is important to note that the space Jfib(ǫ) does not depend on
the choice of parametrisation in the sense that there is a canonical isomorphism
associated to a changing the parametrisation. In that sense, the only use of Defini-
tion 11.32 is that it will allows us to use the notation t1 + t2 for concatenation of
the points in the fibres, via Equation (11.3.40).

Corollary 11.35. Each element of Jfib(ǫ) determines an isomorphism

(11.3.43) V +
b ⊕W fib

α ⊕ TαMR

α(a, b)⊕ V −
a
∼= V −

b ⊕W fib
α ⊕ Ifib,Cα ⊕ V +

a ,

of vector bundles over Z̃ǫ,ori
α . �

11.3.4. Functoriality of stable complex fibrewise orientations. In order to formulate
the functoriality of the construction of the previous section, observe that a map

f : α → β associates to each choice of ends ǫ on MR

β , a choice of ends on MR

α.
However, this choice does not necessarily satisfy Conditions (11.3.26) and Condition

(11.3.27) because the additional marked points of curves in MR

α may lie in the

cylindrical ends specified overMR

β .

Definition 11.36. The space Ends(f) is the subset of element ǫ ∈ Ends(β) for

which the pullback f∗ǫ satisfies Condition (11.3.27) when restricted toMR

α.

For the next result, we observe that an arrow f : α→ β induces a natural direct
sum decomposition

(11.3.44) V ′
β
∼= V ′

α ⊕ V ′
β/V

′
α,



260 M. ABOUZAID AND A.J. BLUMBERG

where the quotient is the direct sum of Vβ/Vα with

(11.3.45) W fib
β /W fib

α =
⊕

r∈Pβ\Pα

V +
r .

Lemma 11.37. The restriction of the map Z̃α → Z̃β maps the oriented locus Z̃ǫ,ori
α

to Z̃ǫ,ori
β , and induces a short-exact sequence

(11.3.46) 0→ It,ǫα → It,ǫβ → V ′
β/V

′
α ⊕ T βMR

α → 0

for each t ∈ [0,mab]. Given a composition α→ β → γ, the induced exact sequences
fit in a commutative diagram:

(11.3.47)

It,ǫα It,ǫβ V ′
β/V

′
α ⊕ T βMR

α

It,ǫα It,ǫγ V ′
γ/V

′
α ⊕ T γMR

α

V ′
γ/V

′
β ⊕ T γMR

β V ′
γ/V

′
β ⊕ T γMR

β .

=

=

Proof. Since Pα ⊂ Pβ , Definition 11.29 implies that Zǫ
α is mapped to Zǫ

β.

Next, we note that the operators in Equation (11.3.33) fit in a commutative
diagram

(11.3.48)

F(ũ∗TM,∆α)⊕ V ′
α E0,1(ũ∗TM)

F(ũ∗TM,∆β)⊕ V ′
β

where the vertical arrow is an inclusion because Sβ ⊂ Sα (i.e. there are more con-
straints in the source), and Pα ⊂ Pβ (there are more obstruction bundles associated
to orbits in the target). The cokernel of the vertical map is V ′

β/V
′
α, from which the

desired result follows. �

We now consider the restriction of the above exact sequence to the endpoints
of the interval [0,mab]. For t = mab, it is identified under the isomorphisms in
Equation (11.3.37) with the direct sum of

(11.3.49) TαMR

α(a, b)→ T βMR

β(a, b)→ Vβ/Vα ⊕ T βMR

α

with the identity on V −
a , and the direct sum decompositionW fib

β
∼= W fib

α ⊕W fib
β /W fib

α .
On the other hand, at t = 0, this short exact sequence is identified by Equation
(11.3.38) with the direct sum of a short exact sequence of complex bundles

(11.3.50) Ifib,Cα → Ifib,Cβ → Vβ/Vα ⊕ T βMR

α

with the identity on V −
b . In order to use this observation, recall that we have a

fixed inner product on V ′
β and V ′

α and hence on the quotient. We consider the space

(11.3.51) J(f, ǫ) ⊂ Jfib(ǫ)× Jbase(α)

consisting of an element of Jfib(ǫ) such that the metric on V ′
β/V

′
α⊕T βMR

α induced

by Equation (11.3.46) splits as an orthogonal direct sum so that V ′
β/V

′
α is equipped
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with its natural inner product, and an element of Jbase(α) yielding the same inner

product on T βMR

α (c.f. Section 4.3.1, where this condition of agreement of inner
products appears in an abstract context). In addition, we require the trivialisation

of the family of bundles It,ǫβ , which we fixed in Equation (11.3.43), to preserve the

family of subspaces It,ǫα .
The above discussion implies:

Lemma 11.38. There is a natural map J(f, ǫ)→ Jfib(ǫ). Moreover, each element
of J(f, ǫ) induces a family of splittings

(11.3.52) It,ǫβ
∼= It,ǫα ⊕ V ′

β/V
′
α ⊕ T βMR

α

parametrised by t ∈ [0,mab], yielding a commutative diagram

(11.3.53)

V +
b ⊕W fib

α ⊕ TαMR

α(a, b)

⊕V ′
β/V

′
α ⊕ T βMR

α ⊕ V −
a

V −
b ⊕W fib

α ⊕ Ifib,Cα

⊕V ′
β/V

′
α ⊕ T βMR

α ⊕ V +
a

V +
b ⊕W fib

β ⊕ T βMR

β(a, b)⊕ V −
a V −

b ⊕W fib
β ⊕ Ifib,Cβ ⊕ V +

a

of vector bundles over Z̃ǫ,ori
α . �

We now discuss the functoriality of these constructions for composable mor-
phisms f : α → β and g : β → γ. First, we observe that there is an associative
composition map

(11.3.54) Ends(f)×End(β) Ends(g)→ Ends(g ◦ f),
given by the fact that pullback of ends under forgetful maps is associative. For each
ǫ ∈ Ends(g) ⊂ Ends(γ) such that g∗(ǫ) ∈ Ends(β) lies in Ends(f), we have natural
maps

(11.3.55) J(g, ǫ)→ Jfib(g
∗(ǫ)) × Jbase(β)← J(f, g∗(ǫ)).

Lemma 11.39. There is a natural map

(11.3.56) J(g, ǫ)×Jfib(g∗(ǫ))×Jbase(β) J(f, g
∗(ǫ))→ J(g ◦ f, ǫ)

which is associative up to natural isomorphism. �

11.3.5. Multiplicativity of stable complex fibrewise orientations. We now consider
the multiplicativity of the construction from the previous section. Consider a triple
of orbits (a, b, c), and charts α1 and α2 in A(a, b) and A(b, c).

Given choices of strip-like ends ǫi ∈ Ends(αi) satisfying Condition (11.3.27), the

product family ǫ1 × ǫ2 on MR

α1×α1
also satisfies this condition, so that we have a

natural map

(11.3.57) Ends(α1)× Ends(α2)→ Ends(α1 × α2)

By construction, the product map of Kuranishi charts induces a map of oriented
loci,

(11.3.58) Zǫ1,ori
α1

× Zǫ2,ori
α2

→ Zǫ1×ǫ2,ori
α1×α2

.
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Moreover, comparing the definition of the index bundles on based Floer trajectories
of each factor with those in the total space yields a natural isomorphism

(11.3.59) It,ǫ1×ǫ2
α1×α2

∼=





It,ǫ1α1
⊕W fib

α2
⊕ Ifib,Cα2

⊕ V −
c 0 ≤ t ≤ mab

V −
a ⊕ Tα1MR

α1
(a, b)⊕W fib

α1

⊕It−mab,ǫ2
α2

mab ≤ t ≤ mab +mbc,

where we use the fact that there is a copy of V −
b in It,ǫ1α1

and one in It−mab,ǫ2
α2

. For

the statement of the next result, we note the isomorphisms

Ifib,Cα1×α2
∼= Ifib,Cα1

⊕ Ifib,Cα2
(11.3.60)

W fib
α1×α2

∼= W fib
α1
⊕ V −

b ⊕W fib
α2

.(11.3.61)

Lemma 11.40. There is a natural map Jfib(ǫ1) × Jfib(ǫ2) → Jfib(ǫ1 × ǫ2), such
that the product family of complex structures on the fibrewise tangent space fit in a
commutative diagram:

(11.3.62)

W fib
α1
⊕ Tα1MR

α1
(a, b)⊕ V −

a ⊕
V +
c ⊕W fib

α2
⊕ Tα2MR

α2
(b, c)⊕ V −

b

V +
c ⊕W fib

α1×α2
⊕

Tα1×α2MR

α1×α2
(a, c)⊕ V −

a

W fib
α1
⊕ Tα1MR

α1
(a, b)⊕ V −

a ⊕
V −
c ⊕W fib

α2
⊕ Ifib,Cα2

⊕ V +
b

V −
c ⊕W fib

α1×α2
⊕

Ifib,Cα1×α2
⊕ V +

a .

V −
b ⊕W fib

α1
⊕ Ifib,Cα1

⊕ V +
a ⊕

V −
c ⊕W fib

α2
⊕ Ifib,Cα2

�

This isomorphism is functorial in the sense that a pair of maps fi : αi → βi,
induce a commutative diagram

(11.3.63)

It,ǫ1α1
⊕W fib

α2

⊕Ifib,Cα2
⊕ V −

c

It,ǫ1β1
⊕W fib

β2

⊕Ifib,Cβ2
⊕ V −

c

V ′
β1
/V ′

α1
⊕ T β1MR

α1

⊕V ′
β2
/V ′

α2
⊕ T β2MR

α2

It,ǫ1×ǫ2
α1×α2

It,ǫ1×ǫ2
β1×β2

V ′
β1×β2

/V ′
α1×α2

⊕
T β1×β2MR

α1×α2

V −
a ⊕ Tα1MR

α1
(a, b)

⊕W fib
α1
⊕ It−mab,ǫ2

α2

V −
a ⊕ T β1MR

β1
(a, b)

⊕W fib
β1
⊕ It−mab,ǫ2

β2

V ′
β1
/V ′

α1
⊕ T β1MR

α1

⊕V ′
β2
/V ′

α2
⊕ T β2MR

α2

where 0 ≤ t ≤ mab for the two squares at the top, and mab ≤ t ≤ mab+mbc for the
two squares at the bottom, and all vertical arrows are isomorphisms. This implies
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that a pair of splittings for the short exact sequences in Equation (11.3.52) for the
arrows fi : αi → βi determine a splitting for the product arrow f1×f2, characterised
by the property that the diagram with backward pointing arrows commutes.

Building upon Lemma 11.38, we have:

Lemma 11.41. For each pair of maps fi : αi → βi, the following diagram com-
mutes

(11.3.64)

Jfib(f1, ǫ1)× Jfib(f2, ǫ2) Jfib(ǫ1)× Jfib(ǫ2)

Jfib(f1 × f2, ǫ1 × ǫ2) Jfib(ǫ1 × ǫ2).

�

From the commutativity of splittings of Diagram (11.3.63), we conclude that the
comparison maps of the product of stable complex structures are functorial in the
sense that they fit in a commutative cube, with one face given by the direct sum of
the maps in Diagram (11.3.53) with

(11.3.65) V ′
β1×β2

/V ′
α1×α2

⊕ T β1×β2MR

α1×α2
∼=

V ′
β1
/V ′

α1
⊕ T β1MR

α1
⊕ V ′

β2
/V ′

α2
⊕ T β2MR

α2

and the other the analogue of Equation (11.3.53) for the morphism f1 × f2. In
particular, we obtain an isomorphism

(11.3.66)

W fib
α1
⊕ Tα1MR

α1
(a, b)⊕ V −

a ⊕ V +
c ⊕

W fib
α2
⊕ Tα2MR

α2
(b, c)⊕ V −

b ⊕ V ′
β1×β2

/V ′
α1×α2

⊕ T β1×β2MR

α1×α2

V −
c ⊕W fib

α1×α2
⊕ Ifib,Cβ1×β2

⊕ V +
a ,

over Zǫ1,ori
α1

×Zǫ2,ori
α2

, depending canonically on elements of Jfib(f1, ǫ1)× Jfib(f2, ǫ2).
The isomorphism of Equation (11.3.59) is also multiplicatively associative in the

sense that, if we are given four orbits a, b, c, and d, and a triple of charts with

ends (MR

αi
, ǫi)

3
i=1, with α1 ∈ A(a, b), α2 ∈ A(b, c), and α3 ∈ A(c, d), then we have

commutative diagrams

(11.3.67)

It,ǫ1×ǫ2×ǫ3
α1×α2×α3

It,ǫ1α1
⊕W fib

α2×α3
⊕ Ifib,Cα2×α3

⊕ V −
c

It,ǫ1×ǫ2
α1×α2

⊕W fib
α3

⊕Ifib,Cα3
⊕ V −

c

It,ǫ1α1
⊕W fib

α2
⊕ Ifib,Cα2

⊕V −
b ⊕ Ifib,Cα3

⊕ V −
c
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for 0 ≤ t ≤ mab, where we note that V −
c appears because it is an intermediate

orbit. For mab ≤ t ≤ mab +mbc, we instead have a commutative diagram

(11.3.68)

It,ǫ1×ǫ2×ǫ3
α1×α2×α3

V −
a ⊕ Tα1MR

α1
(a, b)⊕W fib

α1
⊕ It−mab,ǫ2×ǫ3

α2×α3

It,ǫ1×ǫ2
α1×α2

⊕W fib
α3

⊕Ifib,Cα3
⊕ V −

c

V −
a ⊕ Tα1MR

α1
(a, b)⊕W fib

α1
⊕

It−mab,ǫ2
α2

⊕W fib
α3
⊕ Ifib,Cα3

⊕ V −
c .

Finally, for mab +mbc ≤ t ≤ mab +mbc +mcd, the following diagram commutes:

(11.3.69)

It,ǫ1×ǫ2×ǫ3
α1×α2×α3

V −
a ⊕ Tα1MR

α1
(a, b)⊕

W fib
α1
⊕ It−mab,ǫ2×ǫ3

α2×α3

V −
a ⊕ Tα1×α2MR

α1×α2
(a, c)

⊕W fib
α1×α2

⊕ It−mab−mbc,ǫ3
α3

V −
a ⊕ Tα1MR

α1
(a, b)⊕W fib

α1

⊕V −
b ⊕ Tα2MR

α2
(b, c)⊕W fib

α2

⊕It−mab−mbc,ǫ3
α3

.

Returning to Lemma 11.38, we have:

Lemma 11.42. Given four orbits a, b, c, and d, a triple α1 ∈ A(a, b), α2 ∈ A(b, c),
and α3 ∈ A(c, d), and a triple {ǫi}3i=1 of strip-like ends ǫi ∈ Ends(αi), the following
diagram commutes:

(11.3.70)

Jfib(ǫ1)× Jfib(ǫ2)× Jfib(ǫ3) Jfib(ǫ1 × ǫ2)× Jfib(ǫ3)

Jfib(ǫ1)× Jfib(ǫ2 × ǫ3) Jfib(ǫ1 × ǫ2 × ǫ3)

�

From the commutativity of Diagrams (11.3.67)–(11.3.69), we conclude that the
comparison maps for product orientations are associative, i.e. that they give rise
to the same map

(11.3.71)

W fib
α1
⊕ Tα1MR

α1
(a, b)⊕ V −

a ⊕W fib
α2
⊕ Tα2MR

α2
(b, c)⊕ V −

b

⊕V +
d ⊕W fib

α3
⊕ Tα3MR

α3
(c, d)⊕ V −

c

V −
d ⊕W fib

α1×α2×α3
⊕ Ifib,Cα1×α2×α3

⊕ V +
a

of vector bundles overMR

α1×α2×α3
.

11.4. The category of oriented charts.
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11.4.1. Oriented charts. We begin this section by noting that the constructions of
Section 11.3.3 may be performed in families: we associate to each object α of A(a, b)
the contractible space Jfib(α), mapping to Ends(α), whose fibre at ǫ is Jfib(ǫ). We
define J(α) to be the product Jfib(α)× Jbase(α).

We have natural evaluation maps

(11.4.1) J(α)← J(f)→ J(β),

so we can consider the disjoint union of the spaces J(f) as the morphism spaces of
a category. Lemma 11.39 asserts that composition is well-defined and associative.
Summarizing, we can make the following definition.

Definition 11.43. The topological category J(a, b) is specified by

(11.4.2) ob J(a, b) =
∐

α

J(α) mor J(a, b) =
∐

ǫ∈Ends(f)

J(f, ǫ).

We shall presently introduce a category of subsets of J(A)(a, b), whose purpose
is to solve a technical problem explained in Remark 11.47 below. In order to set up
the problem, recall that Ends(α) is a subspace of the space of choices of cylindrical

ends on ∂PαMR

α. Given a subset E ⊂ Ends(α), we define the space of elements of
J(α) lying over E by the pullback

(11.4.3) JE(α) ≡ J(α) ×Ends(α) E .
Given a morphism f : α → β, and subsets E ⊂ Ends(α) and F ⊂ Ends(β), we
define

(11.4.4) JFE (f) ≡
{
E ×Ends(α) JF (β) E ⊂ f∗F
∅ otherwise.

Given a pair of composable morphisms f : α → β and g : β → γ, and subsets
E ⊂ Ends(α), F ⊂ Ends(β), and G ⊂ Ends(γ), note that the map J(f)×F J(g)→
J(g ◦ f) restricts to a map

(11.4.5) JFE (f)×F JGF(g)→ JGE (g ◦ f).
Putting this together, we make the following definition.

Definition 11.44. The category Aori(a, b) is the category whose space of objects is
the disjoint union over all objects α ∈ A(a, b) and over subset E of Ends(α) of the
spaces JE(α):

(11.4.6) obAori(a, b) ≡
∐

α∈A(a,b)

∐

E⊂Ends(α)

JE(α).

The space of morphisms is defined to be the disjoint union over all morphisms f in
A(a, b), and over all pairs E ⊂ Ends(α) and F ⊂ Ends(β) of the spaces JFE (f):

(11.4.7) morAori(a, b) ≡
∐

f∈A(a,b)

∐

E,F

JFE (f).

The source and target maps from morAori(a, b) to obAori(a, b) are induced by the
evident projection JFE (f)→ JE(β) for the target and the pullback along f and pro-
jection on the source. Composition in Aori(a, b) is induced from J(a, b) via Equa-
tion (11.4.5).
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It will be convenient to analyse the topological categoryAori(a, b) via the discrete
category AEnds(a, b) whose objects consist of an object α of A(a, b) and a subset E
of Ends(α), and whose morphisms are given by a morphism f in A(a, b) and the
datum of the inclusion of F in f∗E if E lifts to Ends(f). Before proceeding further,
we note a significant technical advantage of Aori(a, b), which essentially follows by
construction.

Lemma 11.45. The source and target maps s, t : morAori(a, b)→ obAori(a, b) are
fibrations. �

Note that the previous result fails for J(a, b) because the map Ends(f) →
Ends(β) is not necessarily surjective.

We associate to each object (α, E) in AEnds(a, b), the subset

(11.4.8) ZE
α(a, b) ⊂ Zα(a, b),

consisting of points which lie in Zǫ′,ori
α (a, b) for each choice of cylindrical end ǫ′

contained in E .
Lemma 11.46. The assignment (α,E) 7→ (∂QαP(a, b), ZE

α(a, b), Gα) extends to a
functor AEnds(a, b)→ ChartO.

Proof. A morphism f : α → β maps Zα(a, b) to Zβ(a, b), and this maps takes the

subset Zf∗ǫ,ori
α (a, b) to Zǫ,ori

β (a, b) whenever ǫ lies in Ends(f). The result follows. �

Remark 11.47. It is tempting to streamline the above construction and consider
only the subset E = Ends(α) as our object. Unfortunately, this assignment is
not functorial in A(a, b), which is the reason for passing to AEnds(a, b) and for
introducing the piecewise definition in Equation (11.4.5).

The functor given in Lemma 11.46 is an orbispace presentation.

Lemma 11.48. The functor specified in Lemma 11.46 by the assignment (α, E) 7→
(∂QαP(a, b), ZE

α(a, b), Gα) is an orbispace presentation of MR
(a, b).

Proof. The key point is that, for each [u] ∈MR

(a, b) which lifts to a spaceMR

α(a, b)
and for each ǫ ∈ Ends(α), there is some chart α′, which differs from α only in having
a larger obstruction space Vα′ containing Vα, so that [u] lies in the image of the
projection map from Zǫ

α. Indeed, the condition of lying in Zǫ,ori
α is a surjectivity

statement for a family of Fredholm operators parametrised by a closed interval,
hence can be achieved by enlarging the obstruction. This implies that each point

in MR

(a, b) lies in the image of a chart with associated to (α, E) for some E . To
prove that the nerve of the category of charts covering a given point is contractible,
we use the same argument as Proposition 10.11: the key point is that, if the data
in charts α and α′ agree except for the choice of obstruction bundle Vα, and [u] lies
in the image of the charts associated to (α, E) and (α′, E ′), then [u] will lie in the
image of a chart associated to (α′′, E ′ ∐ E), where the data for α′′ agrees with that
of α, except that the obstruction bundle contains both Vα and Vα′ . �

For the next statement, we use the notion of a topologically enriched orbifold
presentation, which is a mild extension of Definition 2.41; the indexing category is

an internal category, and the required homeomorphism comparesMR

(a, b) to the
colimit over π0A

ori(a, b) (c.f. Proposition A.157).
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Corollary 11.49. The composition Aori(a, b) → AEnds(a, b) → ChartO is a topo-

logically enriched orbispace presentation of MR

(a, b).

Proof. It suffices to verify that the functor Aori(a, b) → AEnds(a, b) induces an
acyclic fibration of nerves. But this follows from Quillen’s theorem B since each
relevant overcategory is contractible and the induced comparison maps are evidently
equivalences. �

Recall that we defined the tangent bundle ofMR,reg

α (a, b) to be the vector bundle

(11.4.9) TMR

α(a, b) ≡ TαMR

α(a, b)⊕ TBα.
In a mild abuse of notation, we denote its restriction to ZE

α (a, b) by TMR

α(a, b). We
analogously introduce the complex vector bundle

(11.4.10) IC

α ≡ Ifib,Cα ⊕ Ibase,Cα

and the vector space

Wα ≡W fib
α ⊕W base

α .(11.4.11)

Taking the direct sum of the isomorphisms in Equations (11.2.19) and (11.3.43),
we have:

Lemma 11.50. The space JE(α) parametrises a continuous family of isomorphisms

(11.4.12) V +
b ⊕ ROα ⊕ TMR

α(a, b)⊕Wα ⊕ V −
a
∼= V −

b ⊕ IC

α ⊕Wα ⊕ V +
a

of vector bundles over ZE
α (a, b). �

We associate to a morphism in Aori(a, b) the vector space

Wf ≡W fib
f ⊕W base

f .(11.4.13)

Each element of JFE(f) induces isomorphisms

RQβ\Qα ⊕ TMR

α(a, b)
∼= TMR

β(a, b)⊕ Vα/Vβ(11.4.14)

IC

α
∼= IC

β ⊕ Vα/Vβ(11.4.15)

Wα
∼= Wβ ⊕Wf(11.4.16)

where the first two arise from the splitting of Diagram (11.3.46) that is part of the
definition of an element of J(f), and the second two are straightforward direct sum
decompositions.

The next result asserts that the stable complex structure on TMR

α is identified

with the direct sum of the stable complex structure on TMR

β with Vα/Vβ ⊕Wf .

Lemma 11.51. For each morphism f from α to β, and for each element of JFE(f),
the following diagram of Gα equivariant vector bundles over ZE

α(a, b) commutes:

(11.4.17)

V +
b ⊕ ROβ ⊕ TMR

β(a, b)⊕Wβ ⊕ V −
a

⊕Vα/Vβ ⊕Wf

V +
b ⊕ ROα ⊕ TMR

α(a, b)

⊕Wα ⊕ V −
a

V −
b ⊕ IC

β ⊕Wβ ⊕ V +
a

⊕Vα/Vβ ⊕Wf

V −
b ⊕ IC

α ⊕Wβ ⊕ V +
a .
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�

For the statement of the next result, we specify that we interpret Lemma 11.50

as the assignment of a stable isomorphism between TMR

α(a, b)⊕Wα and IC
α ⊕Wα,

relative the stable vector spaces Va and Vb, and the set Oα. Returning to Definition
4.57, we have:

Corollary 11.52. The family of isomorphisms in Lemma 11.50 defines a (topolog-

ically enriched) lift of the functor Aori(a, b)→ ChartfsK (a, b) to ChartoriK (a, b). �

We now consider the multiplicativity of this construction: the results of Sections
11.1 and Section 11.3.5 imply that the collection of categories J(a, b) are the 1-cells
of a bicategory over A(a, b).

Taking the product of subsets of Ends(α1) and Ends(α2), we obtain a (topolog-
ically enriched) functor

(11.4.18) Aori(a, b)×Aori(b, c)→ Aori(a, c),

which we think of as the product of oriented charts. There is a natural isomorphism
between the two functors

(11.4.19) Aori(a, b)×Aori(b, c)×Aori(c, d)→ Aori(a, d),

arising from the associativity of products of sets. Since the construction of Aori(a, b)
is invariant under the action of Π, we obtain a Π-equivariant bicategory Aori, with
0-cells a ∈ P(f,H, f), 1-cells Aori(a, b) enriched in Top, and 2-compositions given
by Equation (11.4.18).

We now observe that we have natural isomorphisms

TMR

α1×α2
(a, c) ∼= TMR

α1
(a, b)⊕ TMR

α2
(b, c)(11.4.20)

Wα1×α2
∼= Wα1 ⊕ V −

b ⊕Wα2(11.4.21)

IC

α1×α2
∼= IC

α1
⊕ IC

α2
(11.4.22)

ROα1×α2 ∼= ROα1 ⊕ ROα2 ,(11.4.23)

We finally conclude that we have constructed a complex oriented Kuranishi flow
category (in the sense of Definition 4.61):

Lemma 11.53. The family of isomorphisms in Lemma 11.50 defines a (topologi-
cally enriched) Π-equivariant lift of the Kuranishi presentation Aori → A→ ChartK
to the bi-category ChartoriK (equipped with the trivial Π-action). �

Part 4. Appendices

Appendix A. Groups, categories, and spectra

The purpose of this section is to provide necessary technical background for our
work.

A.1. Background on the category of G-spectra. In this subsection, we give a
concise review of the point-set model of the equivariant stable category we use, the
category of orthogonal G-spectra. This is a symmetric monoidal category equipped
with a notion of stable equivalence detected by the equivariant stable homotopy
groups. The canonical reference for this category is [MM02]; see also the appendix
to [HHR16] for another treatment with a slightly different emphasis.
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A.1.1. The point-set category of orthogonal G-spectra. We will assume throughout
this section a choice of finite group G. A universe U for G is a countably infinite-
dimensional real inner product space containing R∞, equipped with a linear G-
action that preserves the inner product, which is the direct sum of finite-dimensional
G-inner product spaces, and such that any finite-dimensional G-inner product in
U occurs infinitely often. Two extreme examples of universes are given by the
trivial universe R∞ and the complete universes which contain all irreducible finite-
dimensional G-representations. We will often work with the specific model of the
complete universe given by the countable sum of the regular representation which
we denote ρ. We write V(U) for the set of finite dimensional G-inner product spaces
that are isomorphic to a G-stable subspace of U .

We write IUG for the category with object set V(U) and with morphisms IUG(V,W )
for V,W ∈ V(U) given by the G-space of isometric isomorphisms V → W , where
G acts by conjugation. Let T G denote the category of G-spaces and G-equivariant
maps, regarded as enriched over itself where the mapping G-space is the space of
non-equivariant maps equipped with the conjugation action.

Definition A.1 (Definition II.2.6 of [MM02]). An orthogonal G-spectrum is an
enriched functor X : IUG → T G equipped with structure maps

(A.1.1) σV,W : X(V ) ∧ SW → X(V ⊕W )

that comprise a natural transformation of functors and are associative and unital.
A map of orthogonal G-spectra is a natural transformation that commutes with the
structure map. We denote the category of orthogonal G-spectra by SpG; we will

write SpUG when it is necessary to emphasize the universe U .

Remark A.2. The category SpUG only depends on the isomorphism classes of finite
dimensional representations appearing as invariant subspaces of U ; it would thus
be cleaner to label the category by the set of such isomorphism classes, but this
conflicts with the established literature. The choice of universe will enter, later, in
the construction of fibrant replacement functors.

The following proposition records the existence of enriched limits and colimits
in SpUG; this can be deduced as a consequence of [MM02, II.4.3], as the following
paragraph there explains.

Proposition A.3. The category SpUG is complete and cocomplete. Moreover, it
is tensored and cotensored over based G-spaces; for a based G-space A and an
orthogonal G-spectrum X, the tensor A∧X is given by the levelwise smash product
which has V th space A ∧X(V ) and the cotensor F (A,X) is given by the levelwise
function space which has V th space Map(A,X(V )).

An important advantage of SpUG over earlier models of the equivariant stable cat-
egory is that it is symmetric monoidal. We write S for the orthogonal G-spectrum
with V th space the representation sphere SV (i.e., the one-point compactification
of the G-representation V ). To see this, we give another description of orthogonal
G-spectra as diagrams.

Let JVG denote the category with objects the elements of V(U) and morphism
spaces defined as the following Thom spaces: let E(V, V ′) be the total space of the
sub-bundle of the product bundle I(V, V ′)×V ′ specified by taking pairs (f, x) such
that x ∈ V ′ − f(V ), where V ′ − f(V ) denotes the orthogonal complement. Then
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JVG(V, V
′) is the associated equivariant Thom space. This is a symmetric monoidal

category under the operation ⊕ given by

(A.1.2) (f, x)⊕ (g, x′) = (f ⊕ g, x+ x′).

The category of orthogonal G-spectra is precisely the symmetric monoidal category
of continuous (enriched) functors from JVG to spaces. In light of this, the following
result is just an application of the Day convolution.

Proposition A.4 (Theorem II.3.1 of [MM02]). The category SpU
G is a symmetric

monoidal category with respect to the smash product ∧ of orthogonal G-spectra,
where the unit is S.

Next, we recall that although the universe U will play a central role in deter-
mining the homotopy theory of SpU

G which we discuss in Appendix A.1.6 below, its
role in the point-set theory can be elided as follows:

Proposition A.5 (Theorem V.1.5 of [MM02]). For universes U and U ′, there is
a change of universe functor

(A.1.3) IU
′

U : SpUG → SpU
′

G .

that is strong symmetric monoidal. When U = U ′, this functor is the identity, and
given U , U ′, and U ′′, there is a natural isomorphism IU

′′

U ′ ◦IU ′

U
∼= IU

′′

U . In particular,

IU
′

U is always an equivalence of categories.

We refer to the monoid objects in SpUG as associative ring orthogonal G-spectra

and the commutative monoid objects in SpUG as commutative ring orthogonal G-
spectra. The following is an easy consequence of Proposition A.3 and the analysis
of [EKMM97, §II.7].

Proposition A.6. The categories of monoids and commutative monoids in SpUG,
which we respectively denote AssG and CommG, are complete and cocomplete. The
categories AssG and CommG are tensored and cotensored over unbased G-spaces;
for an unbased G-space A, the cotensor is created in SpG.

We make frequent use of an “external” smash product. Given an orthogonal
G0-spectrum X0 and an orthogonal G1-spectrum X1, we want to regard the smash
product X0 ∧ X1 as a G0 × G1 spectrum. One way to do this is simply to regard
X0 as a G0 × G1-spectrum with trivial G1-action and X1 as a G0 × G1-spectrum
with trivial G0-action; then X0 ∧X1 is an orthogonal G0×G1-spectrum. However,
it is technically convenient to have an explicit model of this process.

The external smash product [MM02, II.2.4] produces an orthogonal G0 × G1-

spectrum X1∧̄X2 indexed on the product category J
V0

G0
× J

V1

G1
, so that the value at

(V1, V
′
1) is X1(V1) ∧X2(V

′
1). To internalize this, we use the direct sum map

(A.1.4) ⊕ : JV0

G0
× J

V1

G1
→ J

V0⊕V1

G0×G1
.

Onmorphisms, this functor is specified for (f, x) ∈ J
V0

G0
(V, V ′) and (g, y) ∈ J

V1

G1
(W,W ′)

by the element of JV0⊕V1

G0×G1
(V ⊕W,V ′ ⊕W ′)

(A.1.5) (f, x) ⊕ (g, y) 7→ (f ⊕ g, x+ y).

Left Kan extension along the direct sum in Equation (A.1.4) now produces the
external smash functor:
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Lemma A.7. For finite groups G1 and G2, there is an external smash product
functor

(A.1.6) SpU1

G1
× SpU2

G2
→ SpU1⊕U2

G1×G2

which is associative in the sense that for groups G1, G2, and G3, the diagram

(A.1.7)

SpU1

G1
× SpU2

G2
× SpU3

G3
SpU1⊕U2

G1×G2
× SpU3

G3

SpU1

G1
× SpU2⊕U3

G2×G3
SpU1⊕U2⊕U3

G1×G2×G3

commutes.

Proof. The associativity of the external smash product follows from the fact that
the diagram

(A.1.8)

J
V0

G0
× J

V1

G1
× J

V2

G2
J
V0

G0
× J

V1⊕V2

G1×G2

J
V0⊕V1

G0×G1
× J

V2

G2
J
V0⊕V1⊕V2

G0×G1×G2

id×⊕

⊕×id ⊕

⊕

evidently commutes. �

We now turn to a discussion of the internal function objects in SpG; it is a closed
symmetric monoidal category. The category SpG can be viewed as a category of
presheaves of topological spaces and therefore comes with a natural enrichment; we
denote the mapping space as MapSpG

(X,Y ).

Definition A.8. For X,Y orthogonal G-spectra, the mapping orthogonal G-spectrum
F (X,Y ) is specified by the formula

(A.1.9) F (X,Y )(W ) = MapSpG
(X,Y [W ]),

where Y [W ](V ) = Y (W ⊕ V ).

For spectra X and Y , there is a natural evaluation map

(A.1.10) X ∧ F (X,Y )→ Y

which is the adjoint of the identity map F (X,Y )→ F (X,Y ). Given spectra X , Y ,
W , and Z, the evaluation maps induce a map

(A.1.11) X ∧W ∧ F (X,Y ) ∧ F (W,Z)→ X ∧ F (X,Y ) ∧W ∧ F (W,Z)→ Y ∧ Z.

The adjoint of this map is the smash product map on function spectra

(A.1.12) F (X,Y ) ∧ F (W,Z)→ F (X ∧W,Y ∧ Z).

The associativity of the smash product implies the following proposition.

Proposition A.9. The smash product map of function spectra is associative and
unital in the sense that the diagrams
(A.1.13)

F (X1, Y1) ∧ F (X2, Y2) ∧ F (X3, Y3) F (X1 ∧X2, Y1 ∧ Y2) ∧ F (X3, Y3)

F (X1, Y1) ∧ F (X2 ∧X3, Y2 ∧ Y3) F (X1 ∧X2 ∧X3, Y1 ∧ Y2 ∧ Y3)
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and

(A.1.14)

S ∧ F (X,Y ) F (S,S) ∧ F (X,Y )

F (X,Y )

commute.

A.1.2. Shift desuspension. We now introduce the functors relating G-spaces to G-
spectra, and which are analogous in the non-equivariant setting to the functors
which assign to each space its suspension spectrum and to each spectrum the cor-
responding space assigned to the spheres S0. For convenience, we consider a slightly
more general situation, wherein we choose a finite-dimensional real representation
V that is isomorphic to one in the universe U , to which we shall associate an adjoint
pair

(A.1.15) EvV : SpG T G : FV .

Definition A.10. The functor EvV evaluates an orthogonal G-spectrum at V , i.e.,
EvV (X) = X(V ) and the functor FV is the left adjoint to EvV . For V ⊂ W , FV

is given by the formula

(A.1.16) FV X(W ) = O(W )+ ∧O(W−V ) Σ
W−V X.

The left adjoint FV is known as the “shift desuspension functor”. When V = 0,
F0X is a model of the suspension spectrum functor typically denoted by Σ∞ and
EvV is the functor typically denoted by Ω∞. Notice that there is an isomorphism

(A.1.17) Σ∞X = F0X ∼= F0S
0X ∼= S ∧X.

Mapping out of suspension spectra is straightforward: when X = Σ∞A = F0A,
we have

F (Σ∞A, Y )(W ) = F (F0A, Y )(W ) = MapSpG
(F0A, Y [W ])(A.1.18)

∼= MapT G(A, Y [W ](0)) ∼= MapT G(A, Y (W )).(A.1.19)

When V is not 0, FV S
0 gives a specific model of the “negative V -sphere”. The

shift desuspension functors are multiplicative in the sense that there is a natural
isomorphism

(A.1.20) FV A ∧ FWB ∼= FV ⊕WA ∧B.

(See Lemma II.4.8 of [MM02].)
The shift desuspension and evaluation functors are compatible with the external

smash product.

Lemma A.11. Let A0 be a G0-space and A1 be a G1-space. For any G0-representation
U0 and G1-representation U1, there is a natural homeomorphism

(A.1.21) FU0A0 ∧ FU1A1
∼= FU0⊕U1A0 ∧ A1

Lemma A.12. Let A0 be a G0-space and A1 be a G1-space. For any G0-representation
U0 and G1-representation U1, there is a natural map

(A.1.22) EvU0A0 ∧ EvU1A1 → EvU0⊕U1A0 ∧ A1
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A.1.3. Suspension, loops, and shift. For any finite-dimensional G-representation
V , there is an adjoint pair (ΣV ,ΩV ) of suspension and loop endofunctors. These
functors are defined in terms of the tensor and cotensor with the based space SV ,
i.e., ΣV X = SV ∧X and ΩV X = F (SV , X).

Lemma A.13. Let X0 be an orthogonal G0-spectrum and X1 be an orthogonal
G1-spectrum. For any G0-representation U0 and G1-representation U1, there is a
homeomorphism

(A.1.23) SU0X0 ∧ SU1X1 → SU0⊕U1X0 ∧X1.

and a natural map

(A.1.24) ΩU0X0 ∧ ΩU1X1 → ΩU0⊕U1X0 ∧X1.

There is another model of the suspension functor which is sometimes useful:

Definition A.14. Let V be a finite-dimensional G-representation and X be an
orthogonal G-spectrum. Then we define the V -shift functor ShV applied to X via
the formula

(A.1.25) (ShV X)(W ) = X(V ⊕W ),

where the structure maps are induced from those of X and the orthogonal action
via direct sum with the identity on V .

For each V , there is a natural transformation

(A.1.26) SV ∧ (−)→ ShV (−),
induced by the structure map of X , and an easy computation with stable homotopy
groups shows that this is always a stable equivalence.

The functoriality of the shift functor in V can be summarized as follows.

Lemma A.15. Let X be an orthogonal G-spectrum. The construction Sh(−)(X)

specifies a functor from JVG to orthogonal G-spectra.

In particular, iterating the shift functor can be identified with the direct sum of
representations: for representations V and W , there is a natural homeomorphism

(A.1.27) ShV ShW X ∼= ShV ⊕W X.

We can also obtain “translation” morphisms of the following form:

Lemma A.16. For U ⊂ V , we have a natural map

(A.1.28) ShU X → ΩV −U ShV X

induced by adjunction from the map

(A.1.29) SV−U ∧ ShU X → ShV X.

For any U , V , and W , this induces a natural map

(A.1.30) ΩU ShW X → ΩU⊕V ShW⊕V X

constructed as the composite

(A.1.31) ΩU ShW X → ΩUΩV ShW⊕V X ∼= ΩU⊕V ShW⊕V X,

using Equation (A.1.30) applied to the inclusion W → W ⊕ V to produce the map
ShW X → ΩV ShW⊕V X.

The shift functor is compatible with the external product.
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Lemma A.17. There are natural transformations

(A.1.32) ShW1 ∧ShW2 → ShW1⊕W2

induced by the maps

(A.1.33)
X(V1 ⊕W1) ∧X(V2 ⊕W2) −→ X(V1 ⊕W1 ⊕ V2 ⊕W2)

−→ X(V1 ⊕ V2 ⊕W1 ⊕W2).

These transformations are associative and unital.

It is straightforward to check that the natural transformation SV ∧(−)→ ShV (−)
is externally monoidal:

Lemma A.18. For finite groups G1 and G2 and representations V1 and V2 respec-
tively, for any G1-spectrum X and G2-spectrum Y the diagrams

(A.1.34)

(SV1 ∧X) ∧ (SV2 ∧ Y ) SV1⊕V2 ∧ (X ∧ Y )

ShV1 X ∧ ShV2 Y ShV1⊕V2(X ∧ Y )

commutes. Moreover, the analogous associativity and unitality diagrams commute.

A.1.4. The category of equivariant spectra. In our work, we will need to consider
the category that combines all equivariant spectra as the group G varies.

Definition A.19. Let Speq denote the category with:

(1) Objects pairs (G,X) where G is a finite group.
(2) Morphisms from (G,X) → (G′, X ′) specified by a group homomorphism

f : G→ G′ and a map X → f∗X ′.

Here we are considering the equivariant spectra indexed on the trivial universe.

Lemma A.7 implies that Speq is a symmetric monoidal category.

Proposition A.20. The category Speq is a symmetric monoidal category product
given by the external product of spectra:

(A.1.35) (G1, X1) ∧ (G2, X2) = (G1 ×G2, X1 ∧X2),

and the unit is ({e},S).
Proof. Functoriality follows from the observation that given pairs (G1, X1) and
(G2, X2) and a map f : (G1, X1)→ (G′

1, X
′
1), there is a natural map of (G1 ×G2)-

spectra

(A.1.36) X1 ∧X2 → (f × id)∗(X ′
1 ∧X2)

induced from the identification

(A.1.37) f∗X ′
1 ∧X2

∼= (f × id)∗(X ′
1 ∧X2).

�

We will in practice often work with the subcategory where the maps f : (G1, X1)→
(G′

1, X
′
2) are given by surjections G1 → G′

1.

Definition A.21. Let Speq,surj denote the symmetric monoidal subcategory of Speq
with:

(1) Objects pairs (G,X) where G is a finite group.
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(2) Morphisms from (G,X) → (G′, X ′) specified by a surjective group homo-
morphism f : G→ G′ and a map X → f∗X ′.

In order to express the compatibly of the enrichments on the different mapping
spectra in this category, is it useful to take a more sophisticated view of Speq and
Speq,surj and regard these as symmetric monoidal index enriched categories; these
are equivalently categorical fibrations of symmetric monoidal categories. Here the
indexing category is the category of finite groups. We do not make serious use
of this perspective, but refer the reader to [Shu13, Boh14] for a discussion of this
point.

A.1.5. Fixed points and orbits. For a G-space X , there are two reasonable notions
of fixed-point space for a subgroup H ⊂ G. We can form the fixed set

(A.1.38) XH = {x ∈ X |hx = x, ∀h ∈ H},
or equivalently consider the space of equivariant maps G/H → X . The space XH

has a natural action of the Weyl group WH = NGH/H , where here NGH denotes
the normalizer of H in G.

On the other hand, we can also form the homotopy fixed-points

(A.1.39) XhH = Map(EG,X)H ,

i.e., the H-equivariant maps from EG to X , where EG is a free contractible G-
space. There is a natural map XH → XhH induced by the projection EG → ∗,
which is not usually an equivalence.

Analogously, we can form the orbits XH = X/H as the quotient and the homo-
topy orbits

(A.1.40) XhH = (EG ×X)/H,

which we will often write EG ×H X , and is usually called the Borel construction.
This can also be described using the two-sided bar construction as

(A.1.41) XhH
∼= B(G/H,G,X).

We record the following technical lemma about the behavior of the Borel construc-
tion in the context of free actions.

Lemma A.22. Let θ : H → G be a homomorphism and Z an H-space such that
ker θ acts freely on Z. Then there is a natural equivalence (G∧θ Z)hG ≃ ZhH , i.e.,

(A.1.42) (EG+ ∧ (G ∧θ Z))/G ≃ (EH+ ∧ Z)/H.

Proof. For expositional clarity, we start with the case where θ is the inclusion of a
subgroup. Then G ∧θ Z is the usual induction functor G ∧H Z, and so we have an
equivalence of G-spaces

(A.1.43) (EG+ ∧ (G ∧H Z)) ≃ G ∧H (EH+ ∧ Z).

Collapsing G on the right, we obtain

(A.1.44) ∗ ∧H(EH+ ∧ Z) ∼= (EH+ ∧ Z)/H.

Now for arbitrary θ, we proceed as follows. We can rewrite the left-hand side of
the desired equivalence as

(A.1.45) EG+ ∧
(
G ∧H/ ker θ ((H/ ker θ) ∧H X)

)
,
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where H/ ker θ → G is (isomorphic to) an inclusion. This expression is naturally
equivalent to

(A.1.46) G ∧H/ ker θ (E(H/ ker θ)+ ∧ ((H/ ker θ) ∧H X)) ,

Finally, since ker θ acts freely on X , when we collapse G we can use the iterated
homotopy orbit formula to obtain an expression that is naturally weakly equivalent
to ZhH . �

In the context of orthogonal G-spectra, we can form analogues of these con-
structions. The situation with orbits is slightly simpler, so we begin there: given
a subgroup H ⊂ G, we say that a G-universe U is H-trivial if it is trivial as an
H-representation.

Definition A.23. The orbit spectrum of an X orthogonal G-spectrum indexed on
an H-trivial universe is defined via the levelwise formula

(A.1.47) X/H(V ) = X(V )/H.

When applying the orbits to a spectrum indexed on a universe U which is not
H-trivial, we tacitly precompose with the change-of-universe functor. Analogously,
we can consider the homotopy orbits to be defined as the orthogonal spectrum
XhH = EG+ ∧H X .

For fixed-points, there are analogues of the definitions given for spaces. Specifi-
cally, we can define the categorical fixed-points XH and the homotopy fixed-points
XhH .

Definition A.24. Let X be an orthogonal G-spectrum. For H ⊂ G, the categorical
fixed-points XH are defined via the levelwise formula

(A.1.48) XH(V ) = X(V )H .

The categorical fixed-points can also be described as the cotensor F (G/H+, X)
or equivalently the mapping spectrum F (Σ∞G/H+, X).

The categorical fixed points are lax monoidal with respect to the external smash
product of spectra.

Lemma A.25. For an orthogonal G0-spectrum X0 and an orthogonal G1-spectrum
X1, there is a natural map of spectra

(A.1.49) XG0
0 ∧XG1

1 → (X0 ∧X1)
G0×G1 .

which is associative and unital.

Proof. For a G0-space A0 and G1-space A1, there is an evident homeomorphism of
spaces

(A.1.50) AG0
0 ×AG1

1 → (A1 ×A2)
G0×G1 .

The required space-level map

(A.1.51) XG0
0 (V )×XG0

0 (W )→ (X0 ∧X1)
G0×G1(V ⊕W ).

is specified by the homeomorphism of Equation (A.1.50) and the inclusion into the
colimit computing (X0 ∧X1)(V ⊕W ). �

We now turn to the analog of the homotopy fixed point functor.
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Definition A.26. Let X be an orthogonal G-spectrum. For H ⊂ G, the homotopy
fixed points are defined as

(A.1.52) XhH = F (EG+, X)H .

One might hope that the categorical fixed-points commute with the suspension
spectrum functor. However, this is false, as we recall below. As a consequence, we
define another kind of fixed-point functor, the geometric fixed-points ΦH .

Theorem A.27 (Definition V.4.3, Corollary V.4.6, Proposition V.4.7 of [MM02]).
For a subgroup H ⊂ G, there is a geometric fixed-point functor

(A.1.53) ΦH : SpG → SpWH

with the properties that ΦH is strong symmetric monoidal and that ΦHΣ∞A ∼=
Σ∞AH .

There is a natural relationship between the point-set geometric fixed point and
categorical fixed point functors.

Lemma A.28. For any H ⊂ G, there is a natural transformation

(A.1.54) ΦH → (−)H .

A.1.6. The homotopy theory of orthogonal G-spectra. In order to control the ho-
motopy category and compute derived functors, we shall work with the standard
stable model structures on SpUG. This model structure is a stabilization of the model
structure on the category of G-spaces where the weak equivalences and fibrations
are detected by passage to H-fixed points for all H ⊂ G. Specifically, the equivari-
ant stable equivalences are detected by the equivariant stable homotopy groups,
where we stabilize along the poset of representations in U .

Definition A.29. The equivariant stable homotopy groups of an orthogonal G-
spectrum X with respect to the universe U are defined for a subgroup H ⊆ G and
an integer q to be

(A.1.55) πH
q (X) =





colim
V⊂U

πq((Ω
V X(V ))H) q ≥ 0

colim
R−q⊂V ⊂U

π0((Ω
V −R

−q

X(V ))H) q < 0,

As usual, the stable homotopy groups can be computed in terms of the spaces
of X when the adjoint structure maps are equivalences of G-spaces.

Definition A.30. An orthogonal G-spectrum X is said to be an Ω-spectrum if the
adjoint structure maps

(A.1.56) X(V )→ ΩWX(V ⊕W )

are weak equivalences of G-spaces for all V and W .

We define the equivariant stable equivalences in terms of the stable homotopy
groups.

Definition A.31. An equivariant stable equivalence X → Y of orthogonal G-
spectra is a map that induces isomorphisms

(A.1.57) πH
q (X)→ πH

q (Y )

for every q and H.
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We would now like to define the equivariant stable category as the localization
of the category SpG at the equivariant stable equivalences. In order to maintain
control on this localization, we work with a model structure on SpG. In fact, there

are several relevant model structures on SpU
G, but all of the ones we work with

have the same weak equivalences; the differences amount to different choices of
resolutions for computing derived functors.

Proposition A.32 (Section III.4 of [MM02]). There is a stable model structure on

SpGU in which the weak equivalences are the equivariant stable equivalences and the
fibrant objects are the Ω-spectra.

This model structure is arranged to be compatible with the standard model
structure on the category TG where the weak equivalences are detected on passage
to fixed points for all closed subgroups. The following theorem is now implicit in
the construction of the model structure on SpG; see the proof of Theorem III.4.2
of [MM02].

Lemma A.33. The adjunction (Σ∞,Ev0) is a Quillen adjunction.

Furthermore, the natural isomorphism

(A.1.58) F0X ∧ F0Y ∼= F0(X ∧ Y )

and the fact that the subcategory of cofibrant G-spaces is closed under smash prod-
uct implies that this adjunction is in fact a symmetric monoidal Quillen adjunction.

There are associated model structures on AssG and CommG; see Sections III.7
and III.8 of [MM02], substituting Lemma B.132 of [HHR16] for Lemma III.8.4
of [MM02].

Theorem A.34. There is a model structure on AssG where the weak equivalences
and fibrations are detected by the forgetful functor to SpG. There is a model struc-
ture on CommG where the weak equivalences are the stable equivalences and the
fibrant objects are objects which satisfy the conditions of an Ω-prespectrum except
at level 0.

As a warning, note that one troublesome aspect of the stable model structure on
CommG described above is that the underlying orthogonal G-spectra of cofibrant
commutative ring spectra are usually not cofibrant.

A.1.7. The derived smash product and mapping spectrum in SpG. We can use the
model structure on SpG to compute derived functors. In general, given a functor
F : SpG → C, it is a natural question to ask if F factors through the canonical
functor SpG → Ho(SpG). This requires that F preserve stable equivalences, which
does not happen in general. But if F is a left or right Quillen adjoint, it will preserve
weak equivalences between cofibrant or fibrant objects, respectively. In these cases,
we can derive F by precomposing with the cofibrant or fibrant replacement functor.

Of particular interest are the derived smash product and derived mapping spec-
trum. If X is cofibrant, then X ∧ (−) preserves weak equivalences [MM02, III.7.3],
and so for orthogonal G-spectra X and Y the derived smash product X ∧L Y can
be computed by cofibrantly replacing X or Y and forming the point-set smash
product. We can also derive the external smash product in the analogous fashion.
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Lemma A.35. Let X0 be a cofibrant orthogonal G0-spectrum. Then for any map
f : X1 → X ′

1 of orthogonal G1-spectra, the induced map

(A.1.59) X0 ∧X1 → X0 ∧X ′
1

of orthogonal G0×G1-spectra is a weak equivalence. Analogously, if X1 is a cofibrant
G1-spectrum, then for any map g : X0 → X ′

0 of orthogonal G0-spectra, the induced
map

(A.1.60) X0 ∧X1 → X ′
0 ∧X1

of orthogonal G0 ×G1-spectra is a weak equivalence.

On the other hand, to derive the mapping spectrum, we use the fact that the
spectral version of Quillen’s axiom SM7 for simplicial model categories implies that
for cofibrant X the functor F (X,−) preserves stable equivalences between fibrant
objects.

Definition A.36. For X and Y orthogonal G-spectra, the derived mapping spec-
trum RF (X,Y ) is given by the formula

(A.1.61) RF (X,Y ) = F (X ′, Y ′),

where X ′ is a cofibrant orthogonal G-spectrum stably equivalent to X and Y ′ is a
fibrant orthogonal G-spectrum stably equivalent to Y .

We will also make use to the following result that provides homotopical control
when mapping out of dualizable spectra; in our example, we will consider the loop
spectrum F (SV ,−).
Lemma A.37. Let A be a finite G-CW complex. Then the mapping spectrum
F (A,−) preserves weak equivalences of orthogonal G-spectra.

A.1.8. Derived fixed-point functors. We now review how to derive the various fixed-
point functors on orthogonal G-spectra. We begin by discussing the categorical and
geometric fixed points.

Proposition A.38 (Proposition V.3.4 and Proposition V.4.17 of [MM02]). The
categorical fixed-point functor (−)H is a Quillen right adjoint; we derive by applying
the point-set functor to a fibrant replacement of the input. The geometric fixed-point
functor ΦH is a homotopical left adjoint can be derived by cofibrantly replacing the
input.

We can detect weak equivalences with either the categorical or geometric fixed-
points.

Proposition A.39 (Corollary V.4.13 of [MM02]). For a map X → Y of orthogonal
G-spectra, the following conditions are equivalent:

(1) the map X → Y is an equivalence.
(2) the induced maps

(A.1.62) XH → Y H

are (non-equivariant) weak equivalences for all H ⊂ G.
(3) the induced maps

(A.1.63) ΦHX → ΦHY

are (non-equivariant) weak equivalences for all H ⊂ G.
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As mentioned above, the interaction of the categorical fixed-point functor with
the suspension spectrum functor is complicated: a fundamental structural result
about the equivariant stable category is the tom Dieck splitting, which characterizes
this relationship.

Theorem A.40 (Theorem XIX.1.3 in [May96]). There is a natural isomorphism
in the (non-equivariant) stable category

(A.1.64) (Σ∞
+ X)H ∼=

∨

K

(E(WK)+ ∧WK XK),

where K varies over the conjugacy classes of subgroups of H, and WK is the Weyl
group of K in H (the quotient of the normaliser by K).

In terms of the tom Dieck splitting (Theorem A.40), the natural transformation
ΦH → (−)H is the inclusion of the summand corresponding to H .

Next, we explain how to compute the derived fixed-points of the external smash
product. The homomorphisms

(A.1.65) i0 : G0
∼= G0×{e} → G0×G1 and i1 : G1

∼= {e}×G1 → G0×G1

determined by the evident inclusions induce functors

(A.1.66) i∗0 : SpG0×G1 → SpG0 and i∗1 : SpG0×G1 → SpG1 .

We use the fact that orthogonal G-spectra are tensored over orthogonal spectra,
and let i∗e denote the forgetful functor SpG → Sp.

Lemma A.41. Let X0 be an orthogonal G0-spectrum and X1 an orthogonal G1-
spectrum. There are natural isomorphisms

(A.1.67) i∗0(X0 ∧X1) ∼= X0 ∧ i∗eX1 and i∗1(X0 ∧X1) ∼= i∗eX0 ∧X1.

of orthogonal G0-spectra and G1-spectra respectively.

By definition, there is a natural identification

(A.1.68) (X0 ∧X1)
G0 ∼= (i∗0(X0 ∧X1))

G0

of orthogonal spectra. Keeping track of the G1-action, we have the following ho-
motopical version of this isomorphism.

Lemma A.42. Let X0 be an orthogonal G0-spectrum and X1 an orthogonal G1-
spectrum. Then there is a natural isomorphism in the stable category of orthogonal
G1-spectra

(A.1.69) (XG0
0 ) ∧X1 → (X0 ∧X1)

G0

and a natural isomorphism in the stable category of orthogonal G0-spectra

(A.1.70) X0 ∧ (XG1
1 )→ (X0 ∧X1)

G1 .

Corollary A.43. Let X0 be an orthogonal G0-spectrum and X1 be an orthogonal
G1-spectrum. Then there are natural isomorphisms in the stable category

(A.1.71) ((X0 ∧X1)
G0)G1 ∼= (X0 ∧X1)

G0×G1 ∼= ((X0 ∧X1)
G1)G0 .
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A.1.9. Borel equivariant homotopy theory. The derived functors of the homotopy
orbits and homotopy fixed points of an orthogonal G-spectrum are defined on the
“Borel” equivariant stable category, which we now review. (See [BM17, §1] for a
more expansive discussion of this homotopy category in these terms.)

Definition A.44. A map X → Y of orthogonal G-spectra (on any universe) is a
Borel equivalence if it is an underlying equivalence of spectra, i.e., if it induces an
isomorphism on the underlying non-equivariant stable homotopy groups πe

k for all
k.

Computing the geometric fixed-points makes it clear that if a map X → Y of
orthogonal G-spectra is an underlying equivalence of spectra, then EG+ ∧ X →
EG+ ∧ Y is an equivariant stable equivalence.

Theorem A.45 (Theorem IV.6.3 of [MM02]). Fix a complete universe U . There

is a model structure on SpUG where the weak equivalences are the Borel equivalences
and the fibrant objects are the spectra X such that the maps Xn → ΩXn+1 are
underlying equivalences.

The Borel equivariant homotopy theory on SpG can also be described as both
a localization and a colocalization of the stable model structure (for the complete
universe U) on SpG at the Borel equivalences. The local objects in SpG are those
G-spectra X such that the evident map X → F (EG,Xfib) is a weak equivalence.
The colocal objects are those G-spectra X such that the map EG+ ∧ X → X is
a weak equivalence. Equivalently, we can regard this as the full subcategory of
orthogonal G-spectra on U built solely from free cells of the form G+ ∧ Σ∞Dn.

These characterizations show that derived mapping spectra RFB(X,Y ) in the

Borel category can then be described in terms of derived mapping spectra in SpUG:

(A.1.72)
RFB(X,Y ) ∼= RF (EG+ ∧X,EG+ ∧ Y ) ∼= RF (EG+ ∧X,Y )

∼= RF (X,F (EG, Y )).

Choosing a cofibrant model for EG+, EG+ ∧ X is cofibrant in SpG if X is and
F (EG+, Y ) is fibrant if Y is, so we can compute using a cofibrant replacement of

X and a fibrant replacement of Y in SpUG.
The following calculation characterizes the Borel homotopy type of the derived

mapping spectrum in the Borel category.

Lemma A.46. Let X and Y be orthogonal G-spectra. Then there is an equivalence
of derived mapping spectra

(A.1.73) EG+ ∧RF (X,Y ) ∼= EG+ ∧RF (EG+ ∧X,Y ) ∼= EG+ ∧RFB(X,Y ).

Proof. Let U denote the complete universe. Suppose that X is cofibrant in SpG

with respect to U . Then the map in the equivariant stable category

(A.1.74) EG+ ∧RF (X,Y )→ EG+ ∧RF (EG+ ∧X,Y )

can be computed as the point-set map

(A.1.75) EG+ ∧ F (X, (Y )fibU )→ EG+ ∧ F (EG+ ∧X, (Y )fibU ).

This map is an equivalence if the map F (X, (Y )fibU ) → F (EG+ ∧ X, (Y )fibU ) is
an underlying equivalence, which follows since EG+ ∧ X → X is an underlying
equivalence and the underlying spectrum of (Y )fibU is homeomorphic to (Y )fib

R∞ , i.e.,
to the non-equivariant fibrant-replacement functor. �
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A.1.10. Fibrant replacement functors on SpG. There are two different families of
fibrant replacement functors for the stable model structure on SpG that are relevant
to our work. Both of these functors are equipped with a natural weak equivalence
from the identity functor on SpG.

First, for any universe U , the construction of the model structure produces a
functorial fibrant replacement functor (−)fib; this functor arises via the functorial
factorization of the terminal map X → ∗ into an acyclic cofibration followed by
a fibration. When it is necessary to emphasize the universe, we will write (−)fibU .
Although the construction of this functor is not very explicit, it has the attractive
property (evident from the description in terms of factorization) that if X is cofi-
brant then Xfib is cofibrant. However, there is no reason to expect that this functor
is strictly compatible with the symmetric monoidal structure.

Work of Kro [Kro07, 3.2] (generalized to the equivariant context in [BM17, §19])
constructs for any universe U a lax monoidal fibrant replacement functor, (−)mfib.
This functor is extremely useful when constructing products on mapping spectra.

Definition A.47. For a universe U and an orthogonal G-spectrum X, define the
orthogonal spectrum QUX via the assignment

(A.1.76) Xmfib(V ) = QUX(V ) = hocolim
W∈U

ΩW⊗V X((W ⊕ R)⊗ V ).

Here the homotopy colimit is indexed over the partially ordered set of finite dimen-
sional subspaces of U (ordered by inclusion). There is a natural transformation
id→ (−)mfib induced by the inclusion of X(V ) = Ω0⊗V X(R⊗ V ).

When used without specification of the universe, we will understand (−)mfib

to be constructed with respect to a complete universe U . An important caveat
is that (−)mfib, although given by an explicit formula, does not preserve cofibrant
objects in general. However, the natural transformation id→ (−)mfib is a Hurewicz
cofibration, as we now explain.

Lemma A.48. Let X be an orthogonal G-spectrum. The natural map X → Xmfib

is a Hurewicz cofibration.

Proof. Standard arguments (e.g., [EKMM97, X.3.5]) imply that the defining inclu-
sion is an h-cofibration of G-spaces, and therefore id→ (−)mfib is an h-cofibration
of orthogonal G-spectra. �

For a G1-spectrum X and a G2-spectrum Y indexed on universes U1 and U2

respectively, we have the following composite
(A.1.77)

ΩW1⊗V1X((W1 ⊕ R)⊗ V2) ∧ΩW2⊗V2Y ((W2 ⊕ R)⊗ V2)

Ω(W1+W2)⊗V1X(((W1 +W2)⊕ R)⊗ V2) ∧ Ω(W1+W2)⊗V2Y (((W1 +W2)⊕ R)⊗ V2)

Ω(W1+W2)⊗(V1⊕V2)(X ∧ Y )((W1 +W2)⊕ R)⊗ (V1 ⊕ V2))

On passage to homotopy colimits, this yields the following.

Proposition A.49. There is a map of orthogonal G1 ×G2-spectra

(A.1.78) QU1X ∧ QU2Y → QU1⊕U2(X ∧ Y )
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which is associative and unital.

When G = G1 = G2 and U = U1 = U2, internalizing via Kan extension along
the direct sum yields the following result for the smash product on SpUG.

Proposition A.50. For any universe U , the fibrant replacement functor QU is a
lax symmetric monoidal functor on SpUG.

We record a simple consequence of this fact.

Corollary A.51. For any pair A and B of orthogonal G-spectra, there is a natural
map

(A.1.79) QUF (A,B)→ F (A,QUB)

that arises as the adjoint of the composite

(A.1.80) A ∧ QUF (A,B)→ QUA ∧QUF (A,B)→ QU (A ∧ F (A,B))→ QUB,

where the first map is induced by the unit of QUA, the second by the lax monoidal
structure map, and the third by the evaluation map on F (−,−).

We now discuss functoriality and multiplicativity in the context of surjections
p : G → H . We begin with a general result about the interaction of the fibrant
replacement functor with arbitrary group homomorphisms.

Lemma A.52. Let p : G1 → G2 be a group homomorphism, X a orthogonal G2-
spectrum, and U a G2-universe. Then there is a natural map of orthogonal G1-
spectra

(A.1.81) p∗QUX → Qp∗Up
∗X

that is a homeomorphism. Moreover, given p1 : G1 → G2 and p2 : G2 → G3, the
diagram

(A.1.82)

(p2 ◦ p1)∗QUX = p∗2(p
∗
1 ◦ QUX) p∗2Qp∗

1U
p∗1X

Q(p2◦p1)∗(p2 ◦ p1)∗X Qp∗
2p

∗
1U

p∗2p
∗
1X.=

commutes.

Proof. For the first part, there are homeomorphisms
(A.1.83)

p∗ hocolim
W∈U

ΩW⊗V X((W ⊕ R)⊗ V ) ∼= hocolim
W∈U

Ωp∗W⊗p∗V X((p∗W ⊕ R)⊗ V ),

where we are assuming V has trivial action. Since the poset {p∗W} is cofinal in the
poset of finite-dimensional subspaces of p∗U , this implies the result. For the second
part, this just amounts to the fact that (p2 ◦p1)∗ = p∗2 ◦p∗1 as functors. Specifically,
the inclusion of {(p2 ◦ p1)∗W} in (p2 ◦ p1)∗U3 coincides with the composite of the
inclusion of p∗1U1 in U2 and the pullback along p2. �

It will turn out to be very useful to restrict to specific models of G-universes
defined in terms of the regular representation. We now review some facts about the
regular representations ρG and ρH and the consequences for the complete G and
H universes formed as countable direct sums of regular representations. (See for
example [Wim19] for similar constructions.)



284 M. ABOUZAID AND A.J. BLUMBERG

There is a fixed point identification (ρG)
G ∼= R, which we can represent as

the subspace spanned by any scalar multiple of the vector
∑

i gi; it is conve-
nient to choose a representative that is a unit vector. The pullback p∗ρH is a
G-representation, and there is a direct sum decomposition ρG ∼= p∗ρH ⊕ (p∗ρH)⊥.
We can define a specific isometric embedding p̂ : p∗ρH → ρG using the formula

(A.1.84) h 7→ 1√
#ker(p)

∑

g∈p−1(h)

g.

(Here we are again choosing the scaling to ensure we have a unit vector.) We have
a similar embedding

(A.1.85) fG1,G2 : ρG1 ⊕ ρG2 → ρG1 ⊗ ρG2
∼= ρG1×G2

defined using the linear extension of the maps ρG1 → ρG1⊗ρG2 and ρG2 → ρG1⊗ρG2

specified as

(A.1.86) g1 7→
1√
#G2

∑

g∈G2

g1 ⊗ g

and similarly for G2. It is convenient to write

(A.1.87) ũG2 =
1√
#G2

∑

g∈G2

g

to simplify this formula to g1 7→ g1 ⊗ ũG2 , at which point we can write Equa-
tion (A.1.85) as

(A.1.88) (g1, g2) 7→ g1 ⊗ ũG2 + ũG1 ⊗ g2.

We now record the functorial and multiplicative properties of these maps. First,

note that (̂−) is a functor; the key point here is that for p : G→ H , p∗ũH = ũG.

Lemma A.53. For surjections p1 : G→ H and p2 : H → K,

(A.1.89) p̂2 ◦ p̂1 = p̂2 ◦ p1.
Next, observe that f(−,−) is associative. For this, we need the fact that under

the canonical isomorphism ρG1 ⊗ ρG2
∼= ρG1×G2 , there is an induced identification

ũG1 ⊗ ũG2
∼= ũG1×G2 .

Lemma A.54. For groups G1, G2, and G3, the diagram

(A.1.90)

ρG1 ⊕ ρG2 ⊕ ρG3 ρG1 ⊕ ρG2×G3

ρG1×G2 ⊕ ρG3 ρG1×G2×G3

commutes.

Proof. Expanding, we have

(A.1.91) (g1 ⊗ ũG2 + ũG1 ⊗ g2)⊗ ũG3 + ũG1×G2 ⊗ g3

= g1 ⊗ ũG2 ⊗ ũG3 + ũG1 ⊗ g2 ⊗ ũG3 + ũG1×G2 ⊗ g3
∼= g1 ⊗ ũG2 ⊗ ũG3 + ũG1 ⊗ g2 ⊗ ũG3 + ũG1 ⊗ ũG2 ⊗ g3.

And similarly for the other way around the diagram. �

Finally, these embeddings are compatible.
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Lemma A.55. For surjections p1 : G1 → H1 and p2 : G2 → H2, the following
diagram commutes

(A.1.92)

p∗1ρH1 ⊕ p∗2ρH2 ρG1 ⊕ ρG2

(p1 ⊕ p2)∗(ρH1 ⊕ ρH2) ρG1 ⊕ ρG2

(p1 × p2)∗(ρH1 ⊗ ρH2) ρG1 ⊗ ρG2

(p1 × p2)∗(ρH1×H2) ρG1×G2

Proof. The commutativity of the top square follows immediately from the fact that
the kernel and the inverse image commute with direct sums. For the middle square,
going over and down yields

(A.1.93)


 1

#ker(p1)

∑

h∈p−1
1 (h1)

h


⊗ ũH2 + ũH1 ⊗


 1

#ker(p2)

∑

h∈p−1
2 (h2)

h


 .

On the other hand, going down and over yields

(A.1.94)
1

(#ker(p1))(#ker(p2))


 ∑

h∈p−1
1 (h1)

h⊗ ũG2 +
∑

h∈p−1
2 (h2)

ũG1 ⊗ h


 .

The bottom square commutes as a consequence of the comparison of ũG1⊗ ũG2 and
ũG1×G2 . �

The point of these observations is that the monoidal fibrant replacement func-
tor (when constructed using the universes that are countable sums of the regular
representation) is monoidal with respect to the external product and contravari-
antly functorial in surjections of groups. Specifically, for any group G we write
U(G) = ρG⊗R∞ for the G-universe which is the infinite direct sum of copies of the
regular representation equipped with a natural inner product. First, note that for
an orthogonal G-spectrum Y , the natural map iU : Y → QU(G)Y arising from the
inclusion of the trivial vector space in U(G) has a preferred model using the choice
of fixed-point identification (ρG)

G ∼= R. Next, observe that for a surjection G→ J ,
the isometric embedding p̂ : p∗ρJ → ρG gives rise to an isometric embedding

(A.1.95) p̂ : p∗U(J)→ U(G).

Proposition A.56. Given a surjection G→ J , there is a natural transformation

(A.1.96) Qp∗U(J) → QU(G)

which is compatible with the external lax monoidal structure on Q(−) in the sense
that for surjections G1 → J1 and G2 → J2, there is a commutative diagram

(A.1.97)

Qp∗U(J1) ∧ Qp∗U(J2) QU(G1) ∧ QU(G2)

Qp∗U(J1×J2) QU(G1×G2).
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Proof. The existence of the transformation follows from the isometric embedding
p̂, which induces maps

(A.1.98) hocolim
W∈U

ΩW⊗V X((W ⊕ R)⊗ V )→ hocolim
p̂W∈p̂U

Ωp̂W⊗V X((p̂W ⊕ R)⊗ V ).

Lemma A.55 then implies these transformations are externally monoidal. �

Let f : (G, Y ) → (G′, Y ′) be an arrow in the category Speq,surj of equivariant
orthogonal spectra, and recall that a morphism consists of a surjection p : G→ G′

together with a G-equivariant map from Y → p∗Y ′. We consider the assignment

(A.1.99) f 7→ (G,Qp∗U(G′)Y ) ∈ Speq

of an equivariant spectrum to each such arrow.

Lemma A.57. Each factorization f0 = h ◦ f1 ◦ g in Speq

(A.1.100)

(G0, Y0) (G′
0, Y

′
0)

(G1, Y1) (G′
1, Y

′
1)

f0

g

f1

h

induces a natural map

(A.1.101) (G0,Qf∗
0 U(G′

0)
Y0)→ (G1,Qf∗

1 U(G′
1)
Y1).

Proof. To produce the map

(A.1.102) Qf∗
0 U(G′

0)
Y0 → g∗Qf∗

1 U(G′
1)
Y1

of orthogonal G0-spectra, Lemma A.52 shows that is suffices to obtain a map

(A.1.103) Qf∗
0 U(G′

0)
Y0 → Qg∗f∗

1 U(G′
1)
g∗Y1 = Q(g◦f1)∗U(G′

1)
g∗Y1.

This is given as the composite

(A.1.104) Qf∗
0 U(G′

0)
Y0 → Qf∗

0 U(G′
0)
g∗Y1 → Q(g◦f1)∗U(G′

1)
g∗Y1.

where the first map is induced by the map Y0 → g∗Y1 specified by the arrow g and
the second by the factorization f0 = h ◦ (g ◦ f1) and Proposition A.56. �

This assignment yields a functor from the twisted arrow category.

Proposition A.58. The assignment of Equation (A.1.99) yields a monoidal func-
tor

(A.1.105) Tw Speq,surj → Speq,surj .

Proof. To see that this assignment is functorial in the twisted arrow category,
we have to check that the description given by Lemma A.57 is compatible with
composition in TwSpeq,surj. This follows from the fact that the pullback (−)∗ is
functorial and the restriction map of Lemma A.52 is functorial (as indicated in
Equation (A.1.82)). The fact that this is a monoidal transformation comes from
Proposition A.56. �

We will abusively denote by (G, Y ) the functor TwSpeq → Speq that projects
onto the domain of f . Then the natural inclusions iU induce a comparison:

Corollary A.59. There is a monoidal natural transformation

(A.1.106) (G, Y )⇒ (G,QU(G′)Y )

of functors TwSpeq → Speq. �
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A.1.11. An explicit model for the homotopy cofiber. For a pair (X,A) of unbased
G-spaces, we will find it convenient to work with an explicit model of the homotopy
cofiber. We record the definition and some basic properties (c.f. [LMSM86, §III.4]).

Definition A.60. Let C(X,A) denote the unreduced mapping cone specified as the
union X ∪ CA where the basepoint of CA is given by the cone point 1.

Given a pair of unbased G-spaces (X,A) and a G-space B, there is a natural
G-homeomorphism of based spaces

(A.1.107) B+ ∧C(X,A)→ C(X ×B,A×B).

More generally, for pairs of unbased G-spaces (X,A) and (Y,B), we have a
natural weak equivalence

(A.1.108) C(X,A) ∧ C(Y,B)→ C(X × Y, (A× Y ) ∪ (X ×B))

specified by the formulas

(A.1.109)





(x, y) x ∈ X, y ∈ Y

((x, b), t) x ∈ X, (b, t) ∈ CB

((a, y), s) y ∈ Y, (a, s) ∈ CA

((a, b),max(s, t)) (a, s) ∈ CA, (b, t) ∈ CB.

These maps are associative.

Proposition A.61. For pairs of unbased G-spaces (X,A), (Y,B), and (Z,D), the
following diagram commutes:
(A.1.110)

C(X,A) ∧ C(Y,B) ∧ C(Z,D) C(X × Y, (A× Y ) ∪ (X ×B)) ∧ C(Z,D)

C(X,A) ∧ C(Y × Z, (B × Z) ∪ (Y ×A)) C(X × Y × Z, (A× Y × Z) ∪ (X ×B × Z) ∪ (X × Y ×D)).

Proof. This follows by tracing elements around the diagram using the explicit for-
mulas for the maps. For example, given x ∈ X , y ∈ Y , and (d, t) ∈ CD, the over and
down composite goes to ((x, y), (d, t)) and then to ((x, y, d), t). The down and over
composite goes to (x, ((y, d), t)) and then to ((x, y, d), t). The other checks are anal-
ogous, using the fact that max(s,max(t, v)) = max(max(s, t), v) = max(s, t, v). �

When specializing Equation (A.1.108) to the case of C(X,X−A) and C(Y, Y −B)
for A ⊂ X and B ⊂ Y , we obtain the following product map
(A.1.111)

C(X,X −A) ∧ C(Y, Y −B)→ C(X × Y, ((X −A)× Y ) ∪ (X × (Y −A)))

= C(X × Y, (X × Y )− (A×B)),

which we will make frequent use of.
We are particularly interested in the special case of C(SV , SV − 0) for a finite-

dimensional real vector space V . Then the map in Equation (A.1.108) produces a
natural weak equivalence

(A.1.112) C(SV , SV − {0}) ∧ C(SW , SW − {0})→ C(SV ⊕W , SV⊕W − {0}),
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by composing the map

(A.1.113)

C(SV , SV − {0}) ∧ C(SW , SW − {0})

C(SV × SW , (SV − {0} × SW ) ∪ (SV × SW − {0}))

with the map induced by the basepoint collapse map SV × SW → SV⊕W and the
map of cones

(A.1.114) C
(
(SV − {0} × SW ) ∪ (SV × SW − {0})

)
→ C

(
SV⊕W − {0}

)

induced by the inclusion and basepoint collapse. It is straightforward to check that
these maps are also associative, since the basepoint collapse is obviously associative
and the cone maps commute. Summarizing, we have the following:

Proposition A.62. For vector spaces U , V , and W , the following diagram com-
mutes:
(A.1.115)

C(SU , SU − {0}) ∧ C(SV , SV − {0}) ∧ C(SW ,W − {0}) C(SU⊕V , SU⊕V − {0}) ∧ C(SW ,W − {0})

C(SU , U − {0}) ∧C(SV ⊕W , SV⊕W − {0}) C(SU⊕V ⊕W , SU⊕V⊕W − {0}).

A.2. Graded spectra, filtered spectra, and completions. In this section, we
review the theory of filtered and graded spectra and completions from this per-
spective. For more discussion, we recommend the treatment in [GP18] (and see
also [Lur14b, §2.4, §3], the quick review in [BMS19, §5.1], and [BM17, §6]).

A.2.1. Filtered and graded spectra. Let Z denote the category associated to the
poset (Z,≤).
Definition A.63. A filtered spectrum is a functor Zop → Sp. Explicitly, we can
write this as a sequence

(A.2.1) X• = . . .→ Xn → Xn−1 → . . .

of spectra. We will denote the category of filtered spectra as Filt(Sp).

We regard Filt(Sp) as giving models of decreasing filtrations, and so we think of

(A.2.2) X−∞ = colim
n

X•

as the “underlying object” of the filtration.
Let Zdisc to denote the category with objects the elements of Z and only the

identity morphisms.

Definition A.64. A graded spectrum is a functor Zdisc → Sp. We will write
Gr(Sp) to denote the category of graded spectra.

The category of graded spectra is equipped with a functor to spectra specified
by the formula

(A.2.3) X• 7→
∨

n

Xn.

We refer to this as the “underlying object” of the graded spectrum.
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Definition A.65. There is an associated graded functor

(A.2.4) Gr: Filt(Sp)→ Gr(Sp)

specified on objects by the formula

(A.2.5) Gr(X•)n = Xn−1/Xn.

Since Zop and Zdisc are symmetric monoidal categories with operation + and
unit 0, the category Filt(Sp) and Gr(Sp) are endowed with symmetric monoidal
structures by the Day convolution.

Proposition A.66. The categories Filt(Sp) and Gr(Sp) are symmetric monoidal
under the Day convolution. The unit of Filt(Sp) is given by the filtered spectrum
that is S for n ≤ 0 and ∗ otherwise (with all maps the id or the trivial map). The
unit in Gr(Sp) is the graded spectrum with value S at 0 and ∗ everywhere else.

The symmetric monoidal product on Filt(Sp) can be written

(A.2.6) (X• ∧ Y•)n = colim
p+q≥n

Xp ∧ Yq

and on Gr(Sp) as

(A.2.7) (X• ∧ Y•)n =
∐

p+q=n

Xp ∧ Yq.

For example, a monoid in Spgr is specified by associative product maps

(A.2.8)
∨

i+j=k

Xi ∧Xj → Xk.

In particular, for each (i, j) such that i+ j = k, we have maps

(A.2.9) Xi ∧Xj → Xk

which are associative and unital in the evident fashion.
The Day convolution product on Filt(Sp) encodes a filtered multiplication on

X−∞.

Lemma A.67. The underlying spectrum functor

(A.2.10) colim
n

: Filt(Sp)→ Sp

and the associated graded functor

(A.2.11) Gr: Filt(Sp)→ Gr(Sp)

are strong symmetric monoidal.

We now turn to the homotopy theory of filtered and graded spectra. The category
Filt(Sp) can be equipped with the projective model structure.

Proposition A.68. There is a model structure on Filt(Sp) in which the fibrations
and weak equivalences are detected levelwise.

Cofibrant objects in Filt(Sp) in particular have the property that the structure
maps are cofibrations, and so we can derive the underlying spectrum functor to
obtain the homotopy colimit.

The category Gr(Sp) also admits a projective model structure, which in this case
is just the product model structure since there are no nontrivial morphisms in Zdisc.
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Proposition A.69. There is a model structure on Gr(Sp) in which the cofibrations,
fibrations, and weak equivalences are detected levelwise.

The associated graded functor are evidently homotopical.

Lemma A.70. The functor Gr is the left adjoint of a Quillen adjunction.

We use this to define a coarser notion of weak equivalence on Filt(Sp) that will
be useful when we study completions.

Definition A.71. A map f : X• → Y• of filtered spectra is a graded (or filtered)
equivalence if the induced map

(A.2.12) Gr(X•)→ Gr(Y•)

is an equivalence.

Moreover, these products are compatible with the model structures, in the fol-
lowing sense.

Proposition A.72 (Theorem 3.50 of [GP18]). The projective model structures on
Filt(Sp) and Gr(Sp) are monoidal model categories for the Day convolution product
and Gr is the left adjoint in a monoidal Quillen adjunction.

A.2.2. The completion of a filtered spectrum. Let X• be a filtered spectrum. We
can form the completion of X• as follows. For each n, the commutative diagram

(A.2.13)

Xn X−∞

Xn−1

implies that there are induced maps X−∞/Xn → X−∞/Xn−1.

Definition A.73 (see Section 3.10 of [GP18]). The completion (as a spectrum) is
defined to be

(A.2.14) X̂ = holim
n

(X−∞/Xn) .

The completion is itself equipped with a decreasing filtration; we define a filtered
spectrum

(A.2.15) X̂n = hofib(X̂ → X−∞/Xn).

There is a natural map Xn → X̂n for every n, and these assemble into a natural

transformation id → (̂−). Essentially by construction, this natural transformation
induces an equivalence on associated graded spectra.

Lemma A.74. For any X•, the natural map X• → X̂• is a graded equivalence.

As a consequence of Lemma A.74, the completion can be abstractly described
by inverting the graded equivalences.

Definition A.75 (Definition 3.5 of [GP18]). Let Comp(Filt(Sp)) denote the model
category structure on Filt(Sp) obtained by the left Bousfield localization at the graded
equivalences.

The formal model of completion given by localization coincides with the explicit
construction given above.
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Proposition A.76 (Proposition 3.31 of [GP18]). The completion functor is natu-
rally equivalent to the localization functor Filt(Sp)→ Comp(Filt(Sp)).

The symmetric monoidal structure on Filt(Sp) induces one on Comp(Filt(Sp)).

Theorem A.77 (Theorem 3.50 of [GP18]). The Day convolution product equips
Comp(Filt(Sp)) with the structure of a symmetric monoidal model category and the
localization functor is a lax symmetric monoidal Quillen functor.

Explicitly, we can compute the completed smash product on Filt(Sp) as

(A.2.16) X•∧̂Y• = ̂(X• ∧ Y•).

As a consequence of Theorem A.77, the completion preserves multiplicative
structures:

Corollary A.78. Let R• be an associative or commutative ring object in Filt(Sp).

Then R̂• is an associative or commutative ring object, respectively, in Comp(Filt(Sp)).

In particular, we have the following useful corollary.

Corollary A.79. Let R• be an associative ring object in Filt(Sp). Then the under-

lying spectrum of the completion R̂ = colimn R̂• is an associative ring orthogonal
spectrum.

In the previous discussion, we have focused on spectra with a filtration indexed
by Z. However, it is often natural to consider other directed systems, notably R.
In this context, a filtered spectrum is a functor Rop → Sp, which again we think of
as a decreasing filtration on X−∞ = colimn X•. However, the notion of associated
graded is more complicated, as it should be described in terms of the quotients

(A.2.17) Gr(X•)n = Xn/ colim
m>n

Xm.

We can nonetheless define the completion of an R-filtered spectrum as the filtered
spectrum

(A.2.18) X̂n = hofib(X̂ → X−∞/Xn).

having underlying spectrum

(A.2.19) X̂ = holim
n

(X−∞/Xn) .

However, in order to avoid dealing with some of the technical complexities that
arise in this setting, in the body of the paper we will always work with filtered
spectra induced by composites

(A.2.20) Zop → Rop → Sp

obtained by choosing cofinal indexing sets in Rop.

A.2.3. Graded spectra and the 2-periodic sphere spectrum. In this section, we ex-
plain how to obtain a coherent multiplicative system of positive and negative
spheres. We do this by working with a particular model of the 2-periodic sphere
spectrum, following Lurie [Lur14b, §3]. Conceptually, the best description is as the
Thom spectrum of the E2 map

(A.2.21) Z ≃ Ω2BU(1)→ Ω2BU → BU × Z.
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Here the last map is specified by Bott periodicity; it takes some work to show that
this map is E2. For our purposes, we will in fact use an intermediate form of the
construction in the category of graded spectra.

Lurie constructs a graded E2 ring spectrum (by which we mean an E2 al-
gebra in the category of graded spectra) denoted S[β±] with the property that
(S[β±])k ≃ S−2k [Lur14b, §3.4]; the underlying E2 ring spectrum of S[β±] is∨

n∈Z
S−2n [Lur14b, §3.5.13]. We can use the constituent spectra of S[β±] as our

coherent family of (even) spheres, as follows:

Proposition A.80. There is a collection of spectra {S[n]}n∈Z with the following
properties:

(1) For n ∈ Z, S[n] is cofibrant as a spectrum,
(2) For n ∈ Z, S[n] ≃ S−2n,
(3) For n,m ∈ Z, there are strictly associative and unital maps

S[n] ∧ S[m]→ S[n+m],

which are models of the standard equivalences

S−2n ∧ S−2m → S−2(n+m).

Proof. Lurie constructs S[β±] as a graded E2 ring spectrum in the ∞-category of
graded spectra. Using [NS17, 1.1], we rectify S[β±] to a strictly associative graded
ring spectrum. �

In fact, we can say something slightly stronger about the comparison to the
standard spheres; the following proposition is a consequence of [Lur14b, 3.4.5], and
says that the multiplication maps on the {S[n]} are coherently compatible with the
standard multiplication of spheres.

Proposition A.81. There is a zig-zag of equivalences as graded associative ring
spectra between the free associative ring on S−2(−1) (where this denotes the graded
ring spectrum X such that X−1 = S−2) and the negative truncation of S[β±].
Analogously, there is a zig-zag of equivalences as graded associative ring spectra
between the free associative ring on S2(1) and the positive truncation of S[β±]. �

Remark A.82. The residual E2 structure on the system of spheres {S[n]} gives rise
to a graded commutative structure when we pass to homotopy groups. Nonetheless,
a natural question that arises (although the answer is not germane to our enter-
prise) is whether we can do better before passage to homotopy groups. However, a
calculation with power operations shows that in fact there cannot be an E3 struc-
ture. (See [BMMS86, VII.6.1] for an early example of this kind of argument in the
context of H∞ ring spectra.) In contrast, there are E∞ structures on the analogous
constructions of periodic cobordism and periodic HZ.

We now turn to a generalization of the notion of graded spectrum specified
above that we use to describe our version of the spectral twisted Novikov ring. Let
Σ be a discrete monoid (which we assume is countable), potentially non-unital.
In the following, we will regard Σ as a discrete monoidal category with object set
Σ, monoidal product specified by the product on Σ, and the only morphisms the
identity. (This monoidal category is non-unital in the case that Σ is non-unital.)

Definition A.83. The category SpΣ,gr of Σ-graded spectra consists of functors
Σ → Sp; a graded spectrum X• is specified by a collection of spectra {Xσ} for
σ ∈ Σ, and maps X• → Y• are given levelwise.
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Once again, the Day convolution endows SpΣ,gr with a monoidal structure. If Σ
is unital, the Day convolution monoidal structure has unit the Σ-graded spectrum
that is S at 0 and ∗ elsewhere. An explicit formula for the product is given by the
expression

(A.2.22) (X• ∧ Y•)σ =
∨

σ1σ2=σ

Xσ1 ∧ Yσ2 .

Moreover, there is again a lax monoidal “underlying spectrum” functor SpΣ,gr → Sp
specified on objects by the assignment

(A.2.23) X• →
∨

σ∈Σ

Xσ.

Now, assume that we have a degree homomorphism deg : Σ → Z and fix an
associative ring orthogonal spectrum k.

Lemma A.84. Consider the Σ-graded spectrum specified by the formula

(A.2.24) Xσ := S[− deg(σ)] ∧ k.

The product maps

(S[− deg(σ1)] ∧ k) ∧ (S[− deg(σ2)] ∧ k)→
(S[− deg(σ1)] ∧ S[− deg(σ2)]) ∧ (k ∧ k)→

S[− deg(σ1)− deg(σ2)] ∧ k ∼= S[− deg(σ1σ2)] ∧ k

make this into a monoid object in Σ-graded spectra.

Definition A.85. We let Σdegk[Σ] denote the underlying spectrum of Xσ. This is
an associative ring orthogonal spectrum with homotopy type

Σdegk[Σ] ≃
∨

σ∈Σ

S[− deg(σ)] ∧ k.

(When Σ is non-unital, so is the underlying ring spectrum.)

A.3. Homotopical algebra of enriched categories.

A.3.1. Enriched categories. Our definitions of flow category and virtual fundamen-
tal chain rely on the notions of categories enriched in spaces and spectra, i.e.,
categories C such that for every pair of objects x, y ∈ ob(C) there is a mapping
space or spectrum C(x, y). See [Kel05] for a comprehensive introduction to en-
riched category theory. In what follows, let V be a symmetric monoidal category
with product ⊠ and unit 1; in our applications V will either be topological spaces
under the cartesian product, pointed topological spaces under the smash product,
or spectra under the smash product.

Definition A.86. A V -enriched category C is specified by a class of objects ob(C)
and for every pair of objects x, y ∈ ob(C), an object C(x, y) of V satisfying the
following conditions:

(1) For every triple of objects x, y, z ∈ ob(C), there are composition maps

(A.3.1) C(x, y)⊠ C(y, z)→ C(x, z).
(2) For every object x ∈ ob(C), there is a distinguished unit morphism 1 →
C(x, x).

(3) The composition maps are associative and unital in the evident sense.
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We will say that an enriched category is small if it has a set of objects.

Associated to a V -enriched category C we can extract an underlying ordinary
category.

Definition A.87. Let C be a V -enriched category. The ordinary category under-
lying C has morphism sets specified as MapV (1, C(x, y)).

If C and D are V -enriched categories, an enriched functor F : C → D is specified
by:

(1) A function ob(C)→ ob(D), and
(2) morphisms C(x, y) → D(Fx, Fy) in V that are compatible with the unit

and the composition.

Enriched natural transformations are defined analogously.
We will often use the following construction on enriched categories.

Definition A.88. Let C and D be V -enriched categories. The V -enriched category
C ⊠ D is defined to have objects ob(C)× ob(D) and morphism objects given by the
formula

(A.3.2) (C ⊠D)((x, y), (x′, y′)) = C(x, x′)⊠D(y, y′).
A.3.2. Spectral categories. We now specialize to a discussion of the theory of small
categories enriched in orthogonal spectra, which we refer to as spectral categories.
Let SpCat denote the category of small spectral categories and spectral functors.

The category SpCat is symmetric monoidal, where the product is given by the
smash product of spectral categories (as in Definition A.88) and the unit is the
spectral category S with a single object x and morphism spectrum S.

It is often useful to think of a spectral category as a “ring with many objects”;
given a spectral category C with a single object x, the mapping spectrum C(x, x)
is an associative ring orthogonal spectrum. We define modules over a spectral
category C as follows.

Definition A.89. Let C be a spectral category. The category C-mod of left C-module
has:

(1) objects the spectral functor C → Sp, and
(2) morphisms the natural transformations.

Analogously, the category mod-C of right C-module has objects the spectral functors
Cop → Sp.

Given spectral categories C and D, a (C,D)-bimodule is a left module over the
spectral category C ∧ Dop.

A spectral functor F : C → D induces an adjunction on module categories.

Proposition A.90. Let F : C → D be a spectral functor. There is an adjoint pair

(A.3.3) F! : C-mod D-mod: F ∗.

where F ∗ is the pullback and F! is the enriched left Kan extension. (And analogously
for the categories of right modules.)

We now turn to discussion of the homotopy theory of spectral categories and
their modules. Associated to any spectral category C, we can form the homotopy
category Ho(C).
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Definition A.91. For a spectral category C, let Ho(C) be the ordinary category
with the same objects as C and morphism sets specified as

(A.3.4) Ho(C)(x, y) = π0C(x, y).
This gives rise to the following homotopical notion of equivalence of spectral

categories:

Definition A.92. A spectral functor F : C → D is a DK-equivalence of spectral
categories if

(1) for each pair of objects x, y ∈ ob(C), the induced map of spectra C(x, y)→
D(Fx, Fy) is a stable equivalence, and

(2) the induced functor Ho(C)→ Ho(D) is an equivalence of categories.

We work with spectral categories up to DK-equivalence; to express this, it is
useful to construct a model structure on SpCat in which the DK-equivalences are
the weak equivalences. In the remainder of the section, we assume we fixed a chosen
model structure on orthogonal spectra (e.g., the stable model structure described
in Proposition A.32).

Theorem A.93. There is a model structure on SpCat in which:

(1) the weak equivalences are the DK-equivalences, and
(2) the fibrations are the functors such that the maps C(x, y)→ D(Fx, Fy) are

fibrations for every x, y ∈ ob(C).
Proof. When considering the category SpCat∆ of small spectral categories enriched
over symmetric spectra, this result is proved in [Tab09]. There is an adjunction
(F,U) between symmetric spectra and orthogonal spectra, where F is given by left
Kan extension and U is the restriction. This adjunction is monoidal, in the sense
that F is strong symmetric monoidal and U is lax monoidal. As a consequence,
there is an induced adjunction (F,U) between SpCat∆ and SpCat. The model
structure on SpCat can be constructed as the transferred model structure along
the functor U : SpCat → SpCat∆; we check the axioms for [BM13, 1.10], all of
which are clear except for the existence of a generating set of intervals. But that
follows by applying the functor F to the corresponding set for SpCat∆. �

Unfortunately, the model structure of the preceding theorem is not compatible
with the symmetric monoidal structure; it is not the case that if C is cofibrant
then C ∧ (−) is a left Quillen functor. Nonetheless, we can form the derived smash
product of spectral categories, using a theory of flat objects.

Definition A.94. We say a small spectral category C is pointwise cofibrant if for
all pairs of objects x, y in C, the mapping spectrum C(x, y) is a cofibrant orthogonal
spectrum. We say C is pointwise fibrant if each mapping spectrum C(x, y) is a
fibrant orthogonal spectrum.

We now have the following key result.

Proposition A.95. Let C be a pointwise cofibrant spectral category. Then the
functor

(A.3.5) C ∧ (−) : SpCat→ SpCat

preserves DK-equivalences.
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Since fibrant objects in Theorem A.93 are precisely the pointwise fibrant objects
and the cofibrant objects are in particular pointwise cofibrant [Tab09, 3.3] and this
model structure has functorial factorization, we can always arrange for these prop-
erties to hold. In fact, an even easier approach is to work with the model structure
on the category of small spectral categories with fixed object set; see [BM12, §2]
for discussion of this point, following [SS03b].

Proposition A.96. There are functors

(A.3.6) (−)f : SpCat→ SpCat and (−)c : SpCat→ SpCat

such that Cf is pointwise fibrant for all C, Cc is pointwise cofibrant for all C, and
there are natural transformations through DK-equivalences

(A.3.7) id→ (−)f and (−)c → id

that are the identity on object sets.

As a consequence of Proposition A.95, given spectral categories C and D we write
C ∧L D to denote C′ ∧ D, where C′ → C is a pointwise cofibrant replacement. We
refer to C ∧L D as the derived smash product of the spectral categories C and D.

There are also (much simpler) model structures on the categories C-mod and
mod-C; as with all presheaf categories, these are lifted directly from the model
structure on Sp.

Theorem A.97 (Theorem 6.1 of [SS03a]). There are model structures on C-mod
and mod-C in which the fibrations and weak equivalences are detected pointwise.

Inspection of the cofibrant objects provides the following useful corollary.

Corollary A.98. When C is pointwise cofibrant, a cofibrant C-module is itself
pointwise cofibrant; in this case, there is a pointwise cofibrant replacement functor
on C-modules.

The model structure of Theorem A.97 is compatible with the adjunction of
Proposition A.90, since fibrations and weak equivalences are clearly preserved by
pullback along a spectral functor C → D.

Proposition A.99 (Proposition 3.2 of [Toë07]). Let F : C → D be a spectral func-
tor. Then the adjunction (F!, F

∗) is a Quillen adjunction. When F is a DK-
equivalence, the adjunction is a Quillen equivalence.

A.3.3. Spectral presheaves. Let D be a small symmetric monoidal topologically en-
riched category. In many of our examples, D will in fact have discrete mapping
spaces. Using the canonical topological enrichment on the category of orthogonal
spectra, we have:

Definition A.100. The category Pre(D, Sp) of spectral presheaves has objects the
functors D → Sp and morphisms the natural transformations.

Since D is symmetric monoidal, Day convolution endows the category Pre(D, Sp)
with the structure of a symmetric monoidal category, where the unit is the presheaf
represented by D(1,−)+∧S. The category of (commutative) monoids in Pre(D, Sp)
is precisely the category of lax (symmetric) monoidal functors D → Sp.
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Theorem A.101. The category Pre(D, Sp) admits a projective model category
structures where the weak equivalences and fibrations are defined pointwise, lifted
from the stable and positive stable model structures on Sp. When working with the
positive stable model structure, the projective model structure makes Pre(D, Sp) into
a symmetric monoidal model category.

The symmetric monoidal model structure on Pre(D, Sp) can be lifted to cate-
gories of monoids and commutative monoids.

Theorem A.102. There are cofibrantly generated model structures on the cate-
gories of monoids and commutative monoids in Pre(D, Sp) where the fibrations and
weak equivalences are determined by the forgetful functor to Pre(D, Sp) (with the
positive stable model structure).

For us, the import of the preceding theorem is that it provides a cofibrant replace-
ment functor: given a lax symmetric monoidal functor D → Sp, we can functorial
replace it with a monoidal functor that takes values in flat spectra, i.e., spectra for
which the point-set smash product computes the derived smash product. Specif-
ically, an orthogonal spectrum X is flat if the functor X ∧ (−) preserves weak
equivalences. Cofibrant spectra are flat, but there are interesting examples of spec-
tra that are flat but not cofibrant. Most notably, the underlying spectra of cofibrant
commutative ring orthogonal spectra are flat but not cofibrant. More generally, the
standard analysis of the underlying spectrum of cofibrant associative and commu-
tative ring spectra extends to establish the following result for presheaves.

Proposition A.103. Cofibrant monoids and cofibrant commutative monoids in
Pre(D, Sp) are pointwise flat.

A.3.4. The two-sided bar construction for spectral categories. Let C be a spectral
category, M a right C-module, and N a left C-module. We can define the smash
product ofM and N over C as the usual coequalizer

(A.3.8) M∧ C ∧N M∧N M∧C N
where the two parallel maps are the actions of C onM andN respectively. For prac-
tical work, we use the resolution ofM∧CN given by the two-sided bar construction.
In this section we review the properties and definition of the bar construction.

Definition A.104 (Definition 6.1 of [BM12]). Let C be a spectral category, M
a right C-module and N a left C-module. Then the two-sided bar construction is
the geometric realization B(M; C;N ) of the simplicial spectrum B•(M; C;N ) with
simplices

(A.3.9) [k]→
∨

c1,c2,...,ck

M(c1) ∧ C(c1, c2) ∧ . . . ∧ C(ck−1, ck) ∧N (ck),

degeneracy maps induced by the composition in C and the module structure maps,
and face maps induced by the unit of C.

The usual simplicial homotopy shows that the canonical map

(A.3.10) B(C; C;N )→ N
is always a homotopy equivalence of spectra (e.g., see [BM12, 6.3]). More generally,
there is a natural map

(A.3.11) B(M; C;N )→M∧C N
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given by composition. Equation (A.3.11) is an equivalence under suitable cofibrancy
hypotheses, which we now discuss.

First, recall that in order for the bar construction to be tractable, it is essential to
impose conditions to that it is a proper simplicial object: levelwise equivalences of
proper objects induce weak equivalences on geometric realization. See [EKMM97,
§X.2] for a careful discussion of the geometric realization of proper simplicial spec-
tra; adapting that argument, in this context it suffices for C to be pointwise cofi-
brant.

Lemma A.105. Let C be a pointwise cofibrant spectral category. Then B•(M; C;N )
is a proper simplicial spectrum.

Given a spectral category C and a C-moduleM , by the discussion of the preceding
section we can produce

(1) a pointwise cofibrant spectral category C′ along with a DK-equivalence
F : C′ → C and

(2) a pointwise cofibrant C′-module M ′ along with a DK-equivalence M ′ →
F ∗M .

Thus, we can conclude the following result about deriving the bar construction.

Proposition A.106. Let C be a spectral category, M a right C-module, and N
a left C-module. If C is pointwise cofibrant and M is pointwise cofibrant, then
B(M; C;−) maps DK-equivalences to weak equivalences.

Proof. Let N → N ′ be a DK-equivalence of spectral categories. Then there is a
levelwise equivalence

(A.3.12) Bk(M′; C;N )→ Bk(M; C;N )

and since both of these simplicial objects are proper, there is an induced weak
equivalence on geometric realizations. �

There is also a weaker condition than properness that is sometimes useful, namely
being a split simplicial object. We follow the discussion in [Rie14, §14.4] in our
exposition of this situation.

Definition A.107 (Definition 14.4.2 of [Rie14]). A simplicial space X• is split if
there exist subspaces N• ⊂ X• such that the canonical map

(A.3.13)
∨

[n]։[k]

Nk → Xn

is a homeomorphism for each n.

The point of this condition is that the geometric realization can be computed as
the filtered colimit of skeleta which are constructed iteratively via the pushouts

(A.3.14)

N̄n × ∂∆n skn−1X•

Nn ×∆n sknX•.

One consequence of this is that even when X• and Y• are not proper, a level-
wise weak equivalence induces a weak equivalence on geometric realizations [Rie14,
14.5.7].
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A.3.5. Functors and bimodules. We now turn to a discussion of the relationship be-
tween spectral functors and bimodules. Specifically, we will explain how to use the
representation of spectral functors as bimodules to rectify zigzags for the purposes
of computing the homotopy colimit.

Definition A.108. Let F : C0 → C1 be a spectral functor. Associated to F are the
two bimodules:

(1) The (C0 ∧ Cop1 )-module FC1 specified on objects by the assignment

(A.3.15) (x0, x1) 7→ C1(x1, Fx0)

and
(2) the (C1 ∧ Cop0 )-module CF1 specified on objects by the assignment

(A.3.16) (x1, x0) 7→ C1(Fx0, x1).

We think of the bimodule FC1 as encoding F in the sense that it specifies the
data of an assignment of the representable spectral presheaf C1(−, Fx) to an object
x ∈ C0.

These assignments are compatible with composition in the following sense.

Proposition A.109. Let F : C0 → C1 and G : C1 → C2 be spectral functors. Then
there are natural isomorphism in the homotopy category

(A.3.17) FC1 ∧LC1

GC2 ∼= FGC2
and

(A.3.18) CG2 ∧LC1
CF1 ∼= CFG

2

Proof. We explain the argument for the first comparison. Fixing a pair of objects
x ∈ ob(C0) and y ∈ ob(C2), the derived smash product on the lefthand side can be
written as the bar construction B(C1(−, Fx); C1; C2(y,G−)). Composition yields a
natural map

(A.3.19) B(C1(−, Fx); C1; C2(y,G−))→ C2(x2, GFx)

which is a weak equivalence by the usual simplicial contraction [BM12, 6.3]. It is
straightforward to check that these pointwise equivalences assemble to a natural
transformation through weak equivalences of spectral functors. �

We now explain how to use this formalism to invert zig-zags for the purposes of
computing the bar construction. Suppose that F : C0 → C1 is a DK-equivalence.
Then in particular, F is homotopically essentially surjective, and so for any x1 ∈
ob(C1) we have x1 ≃ Fz for some object z in C0. Therefore,

(A.3.20) C1(Fx0, x1) ≃ C1(Fx0, F z) C0(x0, z).
≃

That is, in this case the (C1 ∧ Cop0 )-module CF1 can be regarded as specifying the
homotopical inverse to F . Thus, we can compute the composite of F and its inverse
as the bar construction B(F C1, C0, CF1 ); there is a natural equivalence

(A.3.21) B(F C1, C0, CF1 ) ≃ C0,
when C1 and C0 are pointwise cofibrant. Note that we are describing a familiar
phenomenon fromMorita theory here; CF1 and FC1 are invertible bimodules realizing
the equivalence between C0 and C1. In some situations, it is more convenient to
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construct an invertible bimodule than a functor realizing an equivalence; we use
this technique in a comparison starting in Section 6.4.5.

For a second example, suppose that we have a zig-zag of spectral functors

(A.3.22)
C0 C1 C2F

≃

G

where F is a DK-equivalence. Then the bimodule representing the homotopical
composite functor C0 → C2 represented by the zig-zag can be computed as the
(C0∧Cop2 )-module given by the derived smash product CF0 ∧LC1

GC2. We can compute
this bimodule using the bar construction: For objects x ∈ ob(C0) and y ∈ ob(C2),
we have

(A.3.23) (CF0 ∧LC1

GC2)(x, y) ≃ B(C0(Fx,−); C1(−,−); C2(y,G−)),
provided that C1 and either C0 or C2 are pointwise cofibrant.

More generally, given a zig-zag

(A.3.24) C0 C1 C2 C3 . . . Ck−1 Ck,F0

≃

G0 F1

≃

G1 Fk−1

≃

Gk−1

where the backward functors {Fi} are DK-equivalences, we can construct a model
of the composite homotopical functor C0 → Ck as the (C0, Ck)-bimodule given by
the iterated derived smash product

(A.3.25)
(
CF0
0 ∧LC1

G0C2
)
∧LC2

(
CF1
2 ∧LC3

G1C4
)
∧LC4

. . .∧LCk−2

(
CFk−1

k−2 ∧LCk−1

Gk−1Ck
)
.

Explicitly, under pointwise cofibrancy hypotheses, we can compute this as the geo-
metric realization of the multisimplicial bar construction

B•(C0(F0−,−); C1(−,−); C2(−, G0−); C2(−,−);(A.3.26)

C2(F1−,−); C3(−,−); C4(−, G1−); . . . ; Ck(−, Gk−1−))
defined as follows.

Recall that a m-multisimplicial spectrum is a functor

(A.3.27) ∆op ×∆op × . . .×∆op

︸ ︷︷ ︸
m

→ Sp .

When m = 2, such an object is more commonly referred to as a bisimplicial spec-
trum.

Definition A.110. Given spectral categories C0, C1, . . . , Cm and Ci ∧ Copi+1-modules
Mi,i+1 for 0 ≤ i < m, the m-multisimplicial bar construction

(A.3.28) B•,•,...,•(M0,1; C1;M1,2; C2;M2,3; C3;M3,4; . . . ; Cm−1;Mm−1,m)

is the m-simplicial C0 ∧ Copm -module with simplices specified by the assignment

(A.3.29)

[k0,k1, . . . , km] 7→
∨
M0,1(x, y1,1) ∧ C1(y1,1, y1,2) ∧ . . . ∧ C1(y1,k0−1, y1,k0)

∧M1,2(y1,k0 , y2,1) ∧ C2(y2,1, y2,2) ∧ . . . ∧ C2(y2,k1−1, y2,k1)

∧M2,3(y2,k1 , y3,1) ∧ . . . ∧ . . . ∧ Cm−2(ym−2,km−3−1, ym−2,km−3)

∧Mm−2,m−1(ym−2,km−3 , ym−1,1) ∧ Cm−1(ym−1,1, ym−2,2) ∧ . . .

∧ Cm−1(ym−1,km−1−1, ym−1,km−1)

∧Mm−1,m(ym−1,km−1 , z)
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where the multisimplicial structure maps are induced by the bimodule actions on
Mi,i+1, the compositions in Ci, and the unit.

We can form the geometric realization by passing to the diagonal (yielding a
simplicial spectrum) and then taking the usual geometric realization, or by taking
iterative geometric realizations in any order. We continue to denote the geometric
realization of a multisimplicial spectrum as | − |.
Lemma A.111. There is a natural map of

(A.3.30)

|B•,•,...,•(M0,1; C1;M1,2; C2;M2,3; C3;M3,4; . . . ; Ck−1;Mm−1,m)|

M0,1 ∧C1 M1,2 ∧C2 ∧M2,3 ∧C3 ∧M3,4 . . . ∧Ci
. . . ∧Ck−1

Mm−1,m

that is a weak equivalence when all of {Ci} and {Mj,j+1} are pointwise cofibrant.

A.3.6. Homotopy colimits. We briefly review the practical theory of homotopy col-
imits and record here some technical material required for manipulating them. We
will work with a version of the Bousfield-Kan definition of the homotopy colimit in
terms of the bar construction, following [Rie14, §5]. For a comprehensive discussion
of the relationship to the left derived functor of the colimit, also see the excellent
treatment in [Shu06].

We begin by defining the relevant version of the bar construction. We will fix
a symmetric monoidal category V and consider V-enriched categories; as usual, in
our examples V will be either spaces or spectra.

Definition A.112. Let C be a V-enriched category that is tensored and A be a small
category. For functors F : Aop → V and G : A → C, the simplicial bar construction
B•(F ;A;G) is the simplicial object of C with k-simplices

(A.3.31) [k] 7→
∐

a0→a1→...→ak

F (a0)⊗G(ak),

where ⊗ denotes the tensor of an object of V and an object of C.
In order to form the geometric realization of B•(F ; C;G) we need to assume that

C has more structure, specifically an enrichment in either spaces or simplicial sets.
In this situation, we denote by B(F ; C;G) the geometric realization |B•(F ; C;G)|.
Remark A.113. The bar construction is a fattened-up version of the tensor product
of functors, which in the setting above is defined to be the coequalizer

(A.3.32)
F ⊗A G = Coeq

(∐
f : a→a′ G(a′)⊗ F (a)

∐
a G(a)⊗ F (a)

)
.

f∗

f∗

Specifically, we have natural isomorphisms

(A.3.33) B(F ;A;G) ∼= B(F ;A;A) ⊗A G.

and

(A.3.34) B(F ;A;G) ∼= F ⊗A B(A;A;G).

Since the standard simplicial homotopies imply that the maps B(A;A;G) → G
and B(F ;A;A) → F are equivalences, the bar construction should be thought of
as tensoring with a resolution of F or G, respectively.
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We now assume that:

(1) C is a cofibrantly generated model category,
(2) C is enriched in simplicial sets or topological spaces and the enrichment is

compatible with the model structure (i.e., satisfies the analogue of Quillen’s
SM7), and

(3) C admits functorial cofibrant replacement.

In this context, we can define the homotopy colimit in terms of the bar construction.

Definition A.114. Let A be a small category, and F : A → C a functor that takes
values in cofibrant objects. Then we define the homotopy colimit via the formula

(A.3.35) hocolim
A

F = B(F ;A; ∗),

where ∗ denotes the constant functor to simplicial sets at the terminal object and
the bar construction is computed as the geometric realization of the simplicial object
in C with k-simplices specified by the formula

(A.3.36) [k] 7→
∐

a0→a1→...→ak

F (a0).

Notice that if C is the category of simplicial sets and we take F to also be the
functor ∗, then
(A.3.37) hocolim

A
∗ = |N•A|,

i.e., the nerve of A.
The hypothesis on F guarantees that the construction of the homotopy colimit is

invariant under natural transformations of diagrams that are pointwise weak equiv-
alences. In the event that we are considering a functor F that does not take values
in cofibrant objects, we precompose with the cofibrant replacement functor on C to
obtain a homotopy-invariant construction from the formula of Definition A.114.

We will use the fact that when C is a symmetric monoidal category in which the
tensor commutes with colimits in each variable, the homotopy colimit inherits a
natural external product structure. We specialize to the case of main interest.

Lemma A.115. Suppose we have two functors F : A → Sp and G : A → Sp. Then
there is a natural map

(A.3.38) hocolim
A

F ∧ hocolim
A

G→ hocolim
A×A

(F ∧G)

specified as

(A.3.39) B(F ;A; ∗) ∧B(G;A; ∗)→ B(F ∧G;A×A; ∗),
defined on the k-simplices as
(A.3.40) ∐

a0→a1→...→ak

F (a0) ∧
∐

a′
0→a′

1→...→a′
k

G(a′0)→
∐

(a0→a1→...→ak),
(a′

0→a′
1→...→a′

k)

F (a0) ∧G(a′0).

Next, we quickly discuss some comparison results for homotopy colimits. Sup-
pose that we have diagram categories A and B, a functor G : A → B, and a functor
F : B → C where B and C are model categories as above. In this case, there is a
comparison map

(A.3.41) γ : hocolim
A

F ◦G→ hocolim
B

F.
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The functor G : A → B is homotopy final if for each b ∈ B the comma category
b ↓ F has contractible nerve.

Lemma A.116 (Theorem 8.5.6 in [Rie14]). If G : A → B is homotopy final, then
comparison map γ is a weak equivalence for any functor F : B → C.
Notation A.117. In some previous work, homotopy final functors had been referred
to as homotopy cofinal. We adopt the recent consensus (e.g., see [Rie14, 8.3.3])
that the correct term is homotopy final; under this convention, the dual condition
(which we will not need) refers to homotopy initial functors.

Taking F to be the functor B → Set∆
op

that is constant at a point, we immedi-
ately obtain the following version of Quillen’s theorem A.

Corollary A.118. A homotopy final functor G : A → B induces a weak equivalence
of simplicial sets N•G : N•A → N•B.

We will find the following condition for checking homotopy finality very useful.

Proposition A.119 (See Lemma 8.5.2 in [RB06]). Let G : A → B be a right
adjoint. Then G is homotopy final.

Interesting applications of Proposition A.119 arise when G is the inclusion of
a full subcategory; in this case, the conclusion is that the inclusion of a reflective
subcategory is homotopy final.

One of the advantages of Definition A.114 is that it can be adapted to any
suitable enriched category; we have already seen this in the context of spectral
categories. More generally, we now assume that C is a V-enriched model category,
where V is itself a model category equipped with a well-behaved notion of geometric
realization. Specifically, we assume that we are given a cosimplicial object ∆• in
V . Then given a simplicial object X• in V , the geometric realization of X• can be
defined as

(A.3.42) |X•| =
∫

∆

∆n ⊗Xn.

Moreover, the functor |− | has a right adjoint (specified by the mapping object out
of ∆n). If we assume that | − | is strong symmetric monoidal and a left Quillen
functor, then C and V have the structure of simplicial model categories. In this
context, we can define a weighted homotopy colimit; see [Rie14, §9] for further
discussion of the properties of this definition.

Definition A.120. Let A be a small V-category that is pointwise cofibrant, F : A →
C a functor that takes values in cofibrant objects, and G : Aop → V a functor that
takes values in cofibrant objects. Then we define the weighted homotopy colimit of
F with weights G via the formula

(A.3.43)
G

hocolim
A

F = B(F ;A;G),

by which we mean the geometric realization of the simplicial object in V with k-
simplices

(A.3.44) [k] 7→
∐

a0,a1,...,ak

F (a0)⊗A(a0, a1)⊗ . . .⊗A(ak−1, ak)⊗G(ak).
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One problematic aspect of using Definition A.120 is the issue of ensuring that F
and G take values in cofibrant objects. Cofibrant replacement functors are typically
not enriched, and so additional hypotheses are necessary in practice; in general,
we need to assume the existence of the projective model structure on diagrams.
See [Shu06, §23] and [Rie14, 9.2] for a discussion of this point (and of the cofibrancy
conditions required in the definition more generally).

A.4. 2-categories and 2-functors. In this section, we give a brief review of the
definitions we need from the theory 2-categories and bicategories. We refer the
reader to Lack’s exposition in [Lac10] for a more detailed treatment.

Definition A.121. A 2-category C is a category enriched in categories:

(1) A class ob(C) of objects (the 0-cells).
(2) For each pair x, y ∈ ob(C) a category C(x, y); the objects of C(x, y) are

referred to as 1-cells and the morphisms as 2-cells.
(3) For each triple x, y, z of objects there is a strictly associative and unital

composition functor.

For example, the category Cat of categories has an enrichment in categories given
by taking the functor category as the category of morphisms. Another natural class
of examples comes from permutative (strict) monoidal categories: there is a single
object and the category of morphisms is given by the objects of the monoid, with
composition the monoidal composition law. However, many natural examples are
not 2-categories because the composition isn’t strict; e.g., monoidal categories.

This leads to a weaker notion of a 2-category, given by the theory of bicategories.
Roughly speaking, the idea is that a bicategory C is a category enriched over cat-
egories in a weak sense; C is equipped with a mapping category C(x, y) for each
pair of objects x, y and composition and unit functors that satisfy associativity and
unitality conditions up to natural isomorphism.

Definition A.122. A bicategory C consists of the following data:

(1) A class ob(C) of objects (the 0-cells).
(2) For each pair x, y ∈ ob(C) a category C(x, y); the objects of C(x, y) are

referred to as 1-cells and the morphisms as 2-cells.
(3) For each x ∈ ob(C), a distinguished 1-cell idx ∈ ob(C(x, x)).
(4) For x, y, z ∈ ob(C), a composition functor

(A.4.1) C(x, y)× C(y, z)→ C(x, z).
(5) For f ∈ ob(C(w, x)), g ∈ ob(C(x, y)), and h ∈ ob(C(y, z)), a natural iso-

morphism (fg)h→ f(gh).
(6) For f ∈ ob(C(x, y)), natural isomorphisms idx f → f and f idy → f .
(7) Associativity pentagons and unit diagrams that strictly commute; see e.g., [Lei98,

1.0].

When the associativity and unit isomorphisms are the identity, this data just
specifies an enrichment over Cat, i.e., a 2-category as in Definition A.121; to distin-
guish this situation, we will refer to this as a strict 2-category. We shall presently
see that every bicategory is equivalent to a strict 2-category, just as every symmetric
monoidal category is equivalent to a permutative category.

Definition A.123. Let C and D be bicategories. A lax functor F : C → D consists
of the following data:
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(1) A function F : ob(C)→ ob(D).
(2) For every x, y ∈ ob(C), a functor Fxy : C(x, y)→ D(Fx, Fy).
(3) For 1-cells f : x → y and g : y → z, natural transformations (i.e., 2-cells)

Fg ◦ Ff → F (g ◦ f).
(4) For 0-cells x ∈ ob(C), natural transformations (i.e., 2-cells) idFx → F (idx).
(5) Associativity and unitality diagrams for the 2-cells described in the preceding

items; see e.g., [Lei98, 1.1].

When the 2-cells are natural isomorphisms, F is a pseudofunctor. When the 2-cells
are in fact identities, F is a strict 2-functor.

There is an evident analogue of a natural transformation.

Definition A.124. Let F,G : C → D be lax functors between bicategories C and D.
A lax transformation τ : F → G consists of the following data:

(1) For each x ∈ ob(C), a 1-cell τx : F (x)→ G(x) in D.
(2) For each 1-cell f : x→ y in C, a 2-cell Gf ◦ τx → τy ◦ Ff .
(3) Associativity and unit diagrams for the 2-cells described above.

When the 2-cells are natural isomorphisms, F is a strong transformation. When
the 2-cells are in fact identities, F is a strict transformation.

Using the preceding definition, we can now define an equivalence of bicategories.

Definition A.125. Let C and D be bicategories. A biequivalence of bicategories
between C and D consists of pseudofunctors F : C → D and G : D → C and strong
transformations G ◦ F → idC and idD → F ◦G. If C and D are strict 2-categories,
F and G are strict functors, and the transformations are strict isomorphisms, we
say this is a 2-equivalence of 2-categories.

Using a version of Isbell’s construction [Isb69], we have the following rectification
theorem.

Theorem A.126 (e.g., see Section 2.3.3 of [Gur06]). Let C be a bicategory. There
exists a strict 2-category C′ and a biequivalence C′ → C.

The rectification is functorial in the following sense.

Theorem A.127 (e.g., see Section 2.4.3 of [Gur06]). Let F : C → D be a pseudo-
functor between bicategories C and D. Then there exists a strict functor F ′ : C′ →
D′, where C′ and D′ are the strictifications of C and D such that the square

(A.4.2)

C D

C′ D′

F

F ′

commutes.

Finally, we note that there are two different possible generalizations of the notion
of the opposite of a category to the setting of bicategories; these correspond to
reversing the 1-cells or the 2-cells, respectively.

Definition A.128. Let C be a bicategory.
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(1) The opposite bicategory Cop has the same objects as C and we define the
category of morphisms Cop(x, y) to be C(y, x).

(2) The conjugate bicategory Cconj has the same objects as C and we define the
category of morphisms Cc(x, y) to be the opposite category C(x, y)op.

In each case, the rest of the structure of the bicategory is defined in the evident way.

A.5. Group actions on categories. In this section, we discuss the foundations
of the theory of groups actions on categories. In general, this is a technically
demanding subject; fortunately, in the work at hand, the actions we encounter are
very rigid.

Let G be a discrete group and BG the strict 2-category with a single object, 1-
cells the discrete category with objects the elements of G and identity morphisms,
and 2-cells given by the composition in G (i.e., the monoidal structure on the 1-
cells). Let Cat denote the strict 2-category of categories, functors, and natural
transformations.

Definition A.129. An action of G on a category C is a 2-functor

(A.5.1) γ : BG→ Cat

The action is strict when γ is a strict functor, pseudo when γ is a pseudofunctor,
and lax when γ is a lax functor.

Unpacking this data, the action of G on a category C is specified by:

(1) A collection of functors Fg : C → C indexed by g ∈ G and
(2) suitable associative and unital natural transformations

(A.5.2) αgh : Fg ◦ Fh → Fgh

for g ∈ G.

When the action is strict, the natural transformations αgh are the identity. When
the action is a pseudo-action, these natural transformations are isomorphisms. A
lax action simply has natural transformations. Note that this definition requires
that the composition transformations are strictly associative and unital.

Example A.130. Any category C can be endowed with the trivial G-action by con-
sidering the strict functor which takes the unique object of BG to C, each g ∈ G
to the identity, and for which all the 2-cells are the identity. We will denote this
2-functor by idG; the category C will be clear from context.

Remark A.131. Although we do not use this perspective in the paper, we note
that another way to encode such equivariant structures is in terms of categorical
fibrations over BG.

In our context, we are interested in the generalization where Cat is replaced by
a category of enriched categories.

Definition A.132. Let V be a symmetric monoidal category. Denote by CatV
denotes the 2-category of V -enriched categories, enriched functors, and enriched
natural transformations.

We now have an analogous definition of the action of a group G on a V -enriched
category. We give a general definition, although in our work V is typically either
be the category of topological spaces or the category of orthogonal spectra.
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Definition A.133. An action of G on a V -category C is a 2-functor

(A.5.3) γ : BG→ CatV .

The action is strict when γ is a strict functor, pseudo when γ is a pseudofunctor,
and lax when γ is a lax functor.

Recall that for a pair of V -enriched categories C and D, we can form the tensor
product C ⊗ D, with objects ob(C) × ob(D) and morphisms given by the tensor
C(x, y) ⊗ D(x′, y′). The following lemma records the compatibility of the tensor
product of V -enriched categories with group actions.

Lemma A.134. Let C and D be V -enriched categories with actions by G. Then
C ⊗ D is a V -enriched category with an action of G.

Proof. Let F C
g and FD

g denote the functors encoding the G-actions on C and D
respectively. The required functors C ⊗ D → C ⊗ D are defined as F C

g ⊗ FD
g ; the

natural transformations expressing composition are defined analogously. �

A.5.1. Cofibrant replacement and group actions. We now specialize to the case
where V = Sp, to discuss the interaction of group actions with cofibrant replace-
ment. Specifically, in order to maintain homotopical control, it will be necessary
for us to cofibrantly replace spectral categories C with actions of G such that the
result inherits an equivariant structure. This turns out to be straightforward for
strict actions, since the pointwise-cofibrant replacement is functorial.

Specifically, given spectral functors γg1 : C → C and γg2 : C → C, there are induced
functors γc

g1 : Cc → Cc and γg2 : Cc → Cc such that

(A.5.4) γc
g1 ◦ γc

g2 = (γg1 ◦ γg2)c.
(Here Cc denotes the pointwise cofibrant replacement.) When these functors are
part of a strict action, γg1 ◦ γg2 = γg1g2 and so

(A.5.5) γc
g1 ◦ γc

g2 = γc
g1g2 .

This suggests that the assignment g 7→ γc
g specifies the strict action of G on Cc. To

verify this, note that analogously, (−)c carries the associativity diagrams for the
action of G on C to the associativity diagrams for an action of G on Cc, and similarly
for the unitality diagrams. This discussion proves the following proposition.

Proposition A.135. Let C be a spectral category with a strict action of G. Then
Cc is a pointwise-cofibrant spectral category with a strict action of G.

A.5.2. Homotopical group action on categories. The coherent system of spheres
{S[n]} constructed in Proposition A.80 gives rise to a lax action of Z on the category
Sp of spectra or on the category of R-modules for any ring spectrum R.

Proposition A.136. The assignment n 7→ (−)∧S[−n] specifies a lax functor from
BZ to Cat, where the unit and associativity transformations are induced by the
associative ring structure on the system {S[−n]}.

In fact, since the functor (−)∧S[−n] : Sp→ Sp is evidently spectrally enriched,
the proof of Proposition A.136 immediately extends to provide a lax functor from
BZ to SpCat.

Although the multiplication map S[−n] ∧ S[−m]→ S[−n−m] is not a homeo-
morphism, it is a weak equivalence. We describe this situation as follows.
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Definition A.137. A homotopy action of a group G on a model category C is
given by a lax action of G on C such that the unit and associativity transformations
are through weak equivalences in C.

Specializing and rewriting, we have the following basic result.

Theorem A.138. The assignment n 7→ (−) ∧ S[−n] specifies a homotopy action
of Z on k−mod.

In the interests of concision, we do not give a complete treatment of the theory
of homotopical actions of discrete groups. In fact, the only thing we really need is a
version of the following consistency check, which provides a justification for Defini-
tion A.137 (and our language in describing it). (See [Hov99, 1.4.3] for discussion of
the relevant 2-category of model categories and pseudofunctor induced by passage
to the homotopy category and derived functors.)

Proposition A.139. Let F be a lax functor from BG to the 2-category of model
categories, Quillen adjunctions, and natural transformations such that F specifies a
homotopy action of G on C. Then composition with the pseudofunctor specified on
objects by passage to the homotopy category yields a pseudoaction of G on Ho(C).
A.5.3. Groups actions, functors, and bimodules. We now turn to discussion of equi-
variant functors between categories with G actions. In the following, we omit the
modifiers on functors and transformations except when necessary, as there are anal-
ogous versions of the definitions and results for each degree of strictness.

Definition A.140. Suppose that C and D are categories with actions of G, i.e.,
there are 2-functors γC : BG → Cat and γD : BG → Cat that pick out C and D.
Then an equivariant functor F : C → D is specified by a natural transformation
γC → γD.

Spelling this out a little bit, an equivariant functor from C to D is specified by:

(1) A functor F : C → D.
(2) Coherent natural transformations γg ◦ F → F ◦ γg for each g ∈ G.

We are most interested in the setting of equivariant spectral categories.

Definition A.141. Let C be a spectral category with an action of G. Then a G-
equivariant C-module is a G-equivariant functor from C to Sp, where Sp is given
the trivial G-action.

Writing out part of this data, a G-equivariant C-module is specified by a C-
module M equipped with natural transformations γg : M(−) → M(g−) for each
g ∈ G such that the diagrams

(A.5.6)

C(x, y) ∧M(x) M(y)

C(gx, gy) ∧M(gx) M(gy)

γg∧γg γg

commute.
We now want to describe the interaction of equivariant spectral functors C → D

with G-equivariant bimodules. Recall that given a functor F : C → D, there are
associated C ∧ Dop and D ∧ Cop bimodules FD and DF specified on objects by the
assignments (c, d) 7→ D(d, Fc) and (c, d) 7→ D(Fc, d), respectively.
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Proposition A.142. Let C and D be spectral categories with a G-action, and let
F : C → D be a G-equivariant spectral functor. Then the bimodules FD and DF are
G-equivariant bimodules.

Proof. We give the argument for FD; the argument for DF is analogous. We are
given a spectral functor F : C → D and a lax transformation γC → γD that lifts
F , i.e., coherent natural transformations τg : γg ◦ F → F ◦ γg for each g ∈ G. We
need to construct a lax transformation γC∧D → idG, which amounts to providing
natural transformations

(A.5.7) D(−, F−)→ D(γg(−), F (γg(−)))
that satisfy the required compatibilites. These are constructed as the composite

(A.5.8) D(−, F−) D(γg(−), γg(F (−))) D(γg(−), F (γg(−))).
γg τg

�

We now turn to a discussion of the equivariant structure of the bar construction
in the setting of G-equivariant spectral categories. In the following statement, recall
that an orthogonal spectrum with G-action is an object of the Borel category of
equivariant spectra; this is equivalent to a module spectrum over Σ∞

+ G.

Theorem A.143. Let C be a spectral category with a strict G-action, and sup-
pose that we have a right C-module M and a left C-module N which are strictly
G-equivariant. Then the two-sided bar construction B(M ; C;N) is an orthogonal
spectrum with G-action.

Proof. Producing the structure of an orthogonal spectrum with G-action given an
orthogonal spectrum X is equivalent to producing a map of topological monoids
G+ → Map(X,X). For each n and g ∈ G, the G-actions on M , N , and C give rise
to maps of spectra

(A.5.9)

∨

c0,...cn

M(c0) ∧ C(c0, c1) ∧ . . . ∧ C(cn−1, cn) ∧N(cn)

∨

gc0,...gcn

M(gc0) ∧ C(gc0, gc1) ∧ . . . ∧ C(gcn−1, gcn) ∧N(gcn).

θg

Since the action maps are via functors, the maps θg assemble to maps of simplicial
spectra

(A.5.10) θg : B•(M ; C;N)→ B•(M ; C;N).

Since the actions and functors are strict, we see that θg ◦ θh = θgh, and so these
maps specify the structure of an orthogonal spectrum with G-action. �

More generally, the same argument implies we have the following basic result
that lets us handle the multisimplicial bar construction that arises from zigzags of
spectral functors.

Proposition A.144. Let C0, C1, . . . , Ck be strictly G-equivariant spectral categories.
Given a zig-zag of strictly G-equivariant functors

(A.5.11) C0 C1 C2 C3 . . . Ck−1 Ck,F0 G0 F1 G1 Fk−1 Gk−1
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then the bar construction of Equation (A.3.26) is endowed with an induced G-action.

In our case of interest, the last category in the zig-zag has a homotopical ac-
tion rather than a strict action. In this case, the argument above shows that the
multisimplicial bar construction produces a homotopy coherent G-action on the
spectrum. As we review in Section A.7 below, a homotopy coherent action is sim-
ply given by a homotopy coherent diagram in spectra indexed by the category BG
with a single object and morphism set G. This is a simplicial diagram in spectra
(regarded as a simplicial category via the standard topological enrichment) indexed
by CBG, the free resolution of BG. Homotopy coherent diagrams are equivalent
to strict diagrams in the sense that any orthogonal spectrum with a homotopy
coherent G-action can be rectified to an equivalent spectrum with G-action.

Proposition A.145. Let C0, C1, . . . , Ck−1 be strictly G-equivariant spectral cate-
gories and let Ck be a spectral category with a homotopical G-action. Given a
zig-zag of strictly G-equivariant functors

(A.5.12) C0 C1 C2 C3 . . . Ck−1 Ck,F0 G0 F1 G1 Fk−1 Gk−1

then the bar construction of Equation (A.3.26) is endowed with a homotopy coherent
G-action.

Proof. The key point is that the coherence data of the homotopical G-action on C
shows that the maps θg specify a simplicial functor from the free resolution of the
category BG specified by G. This is essentially immediate; C(BG) has k-simplices
the iterated free group on the elements of G. �

A.5.4. Group actions on bicategories. In addition to the notion of a group action
on a category, we will also need the notion of a Π-equivariant bicategory and of
lax functors between Π-equivariant bicategories, for a discrete group Π. Since we
do not want to discuss tricategories in this paper, we will write down explicitly the
data we have in mind. This is manageable only because the version of the notion we
are dealing with is extremely strict. (See [BGM19] for a more detailed treatment
of this notion.)

Definition A.146. Let C be a bicategory and Π a discrete group. A strict Π-action
on C is determined by specifying for each π ∈ Π, a strict 2-functor γπ : C → C. We
require that this assignment is

(1) strictly unital, in the sense that the 2-functors γe ◦γπ1 , γπ1 ◦γe and γπ1 are
equal.

(2) strictly respects composition, in the sense that the 2-functors γπ1 ◦ γπ2 and
γπ1π2 are equal.

(3) strictly associative, in the sense that the 2-functors γπ1π2◦γπ3 and γπ1◦γπ2π3

are equal.

We record the following relationship between a strict action on a bicategory and
the associated topological category.

Proposition A.147. Let C be a 2-category (a strict bicategory) with a strict Π-
action. Then the associated topological category formed by applying the classifying
space functor to each morphism category has a strict Π-action.
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Let C and D be bicategories with strict Π-actions. We will work with two notions
of equivariant 2-functors between C and D in this paper. First, we define a strictly
Π-equivariant lax 2-functor F : C → D as follows.

Definition A.148. A strictly Π-equivariant lax 2-functor F : C → D is a lax 2-
functor such that for each π ∈ Π, the 2-functors F ◦ γπ and γπ ◦ F are equal. That
is, we require that the diagram

(A.5.13)

C C

D D

γπ

F F

γπ

commutes for each π ∈ Π.

The strictness of the data we are requiring in this context makes it possible to
check that our examples satisfy these requirements by checking a comparatively
small number of explicit diagrams, even though the underlying functor itself is lax.

We will also work with the variant where we relax the strictness of the Π-action
at the cost of making the underlying functor more strict. Specifically, we define a
pseudo Π-equivariant strict 2-functor F : C → D as follows.

Definition A.149. A pseudo Π-equivariant strict 2-functor F : C → D is a strict
2-functor such that for each π ∈ Π, there is a pseudonatural equivalence connecting
the 2-functors F ◦ γπ and γπ ◦ F . That is, we require that the diagram

(A.5.14)

C C

D D

γπ

F F

γπ

commute up to natural isomorphism for each π ∈ Π. Moreover, we require a variety
of coherence diagrams to commute, see [BGM19, 2.3] for explicit details.

Once again, it is possible to check that our examples satisfy these requirements
using a comparatively manageable amount of data.

A.6. Internal categories and bicategories enriched in internal categories.
In addition to topologically enriched categories, where the morphism sets are topol-
ogized, we also work with categories where the set of objects is also equipped with
a topology. Such objects are referred to as internal categories in topological spaces
(or sometimes category objects in spaces). In this section, we give a rapid review;
see [ML98, §XII.1] and [Lin13, §A] for more details.

Definition A.150. An internal category C in topological spaces consists of the data
of spaces C0 = ob(C) and C1 = mor(C) along with

(1) Source and target maps t, s : C1 → C0,
(2) an identity map id : C0 → C1,
(3) and composition maps C1×C0 C1 → C1, where the pullback is over the source

and target maps respectively,

such that the evident associativity and unitality diagrams commute.
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Notice that an internal category in topological spaces with a discrete space of
objects specifies the same data as a topologically enriched category; given a topo-
logical category C, the associated internal category has

(A.6.1) C0 = ob(C) and C1 =
∐

ob(C)×ob(C)

C(x, y).

The notion of an internal category can be defined in terms of any ambient category
that has enough pullbacks, although we will only require the example of spaces.

Functors between internal categories are specified in terms of suitable maps be-
tween object and morphism objects.

Definition A.151. Let C and D be internal categories. An internal functor F : C →
D is specified by the data of continuous maps F0 : C0 → D0 and F1 : C1 → D1 which
are suitably compatible with the source, target, composition, and identity maps.
Specifically, we require that the diagrams

(A.6.2)

C1 ×C0 C1 D1 ×D0 D1

C1 D1

f1×f0
f1

f1

and

(A.6.3)

C1 C0 C1

D1 D0 D1

f1

s

t

id

f0 f1

s

t id

commute.

Similarly, there is a notion of internal natural transformations between internal
functors.

Definition A.152. Let C and D be internal categories and F and G internal
functors C → D. An internal natural transformation F → G is specified by a map
τ : C0 → D1 satisfying:

(1) The composites s ◦ τ = F and t ◦ τG.
(2) The diagram

(A.6.4)

C1 D1 ×D0 D1

D1 ×D0 D1 D1

(G1,τ◦s)

(τ◦t,F1)

commutes.

Putting this together, we can organize the category of internal categories as
follows.

Proposition A.153. There is a 2-category of internal categories in spaces, inter-
nal functors, and internal natural transformations. This is in fact a symmetric
monoidal 2-category with respect to the cartesian product.
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We can define monoidal and symmetric monoidal internal categories in terms of
the symmetric monoidal structure on the 2-category of internal categories.

We also have an enrichment and internal hom on the category of internal func-
tors, which are constructed as follows. First, given internal categories C andD, there
is a space of internal functors Fun(C,D) defined as the subspace of Map(C0,D0)×
Map(C1,D1) that satisfy the requirements of Definition A.151.

Proposition A.154. The mapping spaces Fun(C,D) specify an enrichment in
spaces on the category of internal categories and internal functors.

The mapping spaces provide the object spaces of internal categories of functors.
That is, we define Fun(C,D)0 = Fun(C,D) and Fun(C,D)1 is defined to be the
subspace of Fun(C,D)0×Fun(C,D)0×Map(C0,D1) satisfying the requirement that
for the tuple (f0, f1, γ), γ specifies the data of a natural transformation at each
point between f0 and f1. (In the interest of concision, we do not write out in detail
the diagrams representing this compatibility.)

Proposition A.155. The category of internal categories and internal functors is
Cartesian closed.

Example A.156. We will be most interested in the category of internal diagrams.
That is, for a discrete category I and an internal category C, we have an internal
category of I-shaped diagrams in C.

Given an internal category C in spaces, applying π0 to both the objects and the
morphisms yields an ordinary category π0C; this assignment is evidently functorial.

Proposition A.157. There is a functor π0 from the category of internal categories
in spaces to the category of categories.

We will often deal with internal functors F : C → D where D has a discrete
object set. As a consequence, it is useful to be explicit about what conditions the
discrete object set of D imposes on F .

(1) The requirement that F : C0 → D0 be continuous means that F must factor
through π0C0.

(2) The continuous maps C(x, y)→ D(Fx, Fy) can only depend on the image
of x and y in D0; e.g., when F factors through π0C0, the maps on morphism
spaces must depend only on the component the objects belong to.

We can define the classifying space of an internal category in spaces as the evident
generalization of the usual notion.

Definition A.158. The nerve of an internal category in topological spaces C is the
simplicial space N•C with n-simplices

(A.6.5) [n] 7→ C1 ×C0 C1 ×C0 × . . .×C0 C1︸ ︷︷ ︸
n

,

where we understand N0C = C0 and N1C = C1. The degeneracies are induced by
the identity map and the degeneracies by the composition maps.

When either of the natural maps s, t : C1 → C0 is a fibration, the pullbacks that
appear in N•C are homotopy pullbacks. When the identity map C0 → C1 is a
cofibration, the nerve is a proper simplicial space. We then have the following easy
lemma.
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Lemma A.159. Let C and D be internal categories in spaces such that at least
one of the maps s and t are fibrations and the identity maps for C and D are
cofibrations. Then an internal functor F : C → D such that F0 and F1 are weak
equivalences induces a weak equivalence |N•C| → |N•D|.

Next, we consider arrow categories in the context of internal categories. Let C
be an internal category. The arrow category Ar C of C is the internal category with
objects (Ar C)0 = C1 and morphisms

(A.6.6) (Ar C)1 = (C1 ×C0 C1)×C1 (C1 ×C0 C1),
where the pullback is over the composition maps. Composition is induced by com-
muting pullbacks and the compositions maps in C. Similarly, we define the twisted
arrow category of C as follows.

Definition A.160. Let C be an internal category in spaces. Then the internal
twisted arrow category Tw C has object space (Tw C)0 = C1 and morphisms specified
by the pullback diagram

(A.6.7)

(Tw C)1 C1 ×C0 C1 ×C0 C1

∗ C1,

where the vertical map is the iterated composition and the bottom horizontal map
picks out a morphism in C1. Composition is induced by the composition in C and
commuting pullbacks.

We now quickly review the theory of homotopy colimits in a context where the
indexing category X is an internal category in spaces. We refer the reader to
Appendix A of [Lin13] for further discussion.

Without loss of generality we will assume that i : X0 → X1 is a Hurewicz cofi-
bration; the usual whiskering construction ensures that we can harmlessly replace
X if necessary to ensure this condition holds.

Definition A.161. Left and right X -modules are spaces M and N over X0, re-
spectively equipped with action maps

(A.6.8) X1 ×X0 M →M N ×X0 X1 → N.

We can now give a bar construction version of the definition of a homotopy
colimit.

Definition A.162. Given an internal category X and right and left X -modules
M and N , the bar construction B·(M,X , N) is the simplicial space defined via the
assignment

(A.6.9) [k] 7→M ×X0 X1 ×X0 . . .×X0 X1 ×X0 N

and the obvious structure maps coming from composition, the unit, and the module
structures.

In particular, we have the following definition.
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Definition A.163. Given a left X -module F , the (uncorrected) homotopy colimit
of F over X is specified to be the bar construction B(∗,X , F ), where ∗ denotes the
constant module at the point.

However, we often are interested in considering the homotopy colimit of an en-
riched functor F : X → Top; recall that such an enriched functor ignores the topol-
ogy on the object set of X . In particular, F (x) depends only on [x] ∈ π0X0. In
this case, the homotopy colimit hocolimX F is specified as the homotopy colimit
associated to the X -module F̂ constructed as the (enriched) coend:

(A.6.10)

∫ x∈X0

(X1 ×X0 {x})× F (x),

where here the pullback on the left indicates the subspace of morphisms with source
x. The module structure is given by the obvious composition and the target map.
The X -module F̂ is constructed to make the usual coend formulas (which ignore
the topology on the object set) correct. That is, when it exists, we can equivalently
compute the homotopy colimit using the factorization through the enriched category
with objects π0X0 and morphisms the fibers of X1 over the components.

In order to compare homotopy colimits over internal categories, we will need a
version of Quillen’s theorem A that applies in this context. For our applications,
it will suffice to consider the situation where we have a functor F : A → B with B
having a discrete set of objects, but we give a general statement (see e.g., [ERW19,
4.7] for a discussion and proof). In what follows, we write (F/B)0,0 for the subspace
of ob(A)×mor(B) consisting of pairs (a0, F (a0)→ b0).

Proposition A.164. Let A and B be internal categories in spaces and F a con-
tinuous functor F : A → B such that

(1) For each object b ∈ ob(B), the overcategory F/b is contractible,
(2) the target map hom(A)→ ob(A) is a fibration,
(3) the map (FD)0,0 → ob(B) specified by (a0, F (a0)→ b0) 7→ b0 is a fibration,
(4) either the source or the target map hom(B)→ ob(B) is a fibration, and
(5) the identity maps ob(A)→ A and ob(B)→ B are Hurewicz cofibrations.

Then F induces a weak equivalence on classifying spaces.

Finally, we will need to work with 2-categories and bicategories where the mor-
phism categories are given by internal categories. The former are simply categories
enriched in internal categories in spaces, and the latter are bicategories enriched in
the monoidal 2-category of internal categories of spaces [GS16]. We refer to these
as topological 2-categories and topological bicategories respectively. We do not write
out the definitions, since what we need from the theory of such categories is quite
limited.

A.7. Homotopy limits over zig-zags and homotopy coherent diagrams.

Let Ĩ denote a category with

(1) objects N or Z, and
(2) non-identity morphisms generated by the requirement that for each pair

(i, i+1) there is a unique morphism either from i→ i+1 or from i+1→ i.

If C is a model category, a zig-zag diagram in C over Ĩ is a functor Ĩ → C such that
the morphisms from i to i+ 1 are taken to weak equivalences. Such a diagram are
a homotopical model of a directed system; the zig-zag from i to j represents a map
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in the homotopy category. (Note that here we are fixing a preferred direction for
the diagram; the discussion is entirely equivalent if we choose the other polarity.)

We have several options for computing the homotopy (co)limit of a diagram

D : Ĩ → C. One possibility is simply to directly compute the homotopy (co)limit of
the zig-zag diagram, via the Bousfield-Kan formula. Another possibility is to rectify:

to replace the original diagram D : C → Ĩ with a weakly equivalent diagram (i.e.,
construct a natural transformation D → D′) such that each entry is a cofibrant-
fibrant object of C. Then one can choose homotopy inverses for each backwards
map, i.e., convert D′ to a diagram indexed on N or Z regarded as a poset. The
homotopy co(limit) of D′ can be computed directly, and the work of [ABG+18,
§3.3] shows that computing the homotopy limit in this fashion produces a weakly
equivalent result. Another outcome of the arguments there is that the existence of
parallel zig-zags that are homotopic do not change the homotopy limit.

Another way to study this situation is to use the formal theory of rectification
of homotopy coherent diagrams. Specifically, let I be a small category and C be an
arbitrary category. There is an evident natural functor

(A.7.1) Ho(CI)→ Ho(C)I .

An object in Ho(CI) can be thought of as represented by a cofibrant-fibrant diagram
in a suitable model structure on CI , when such a model structure is available.
Alternatively, we can regard it as a homotopy coherent diagram on I [Vog73, CP97].
Given a category I, let UI denote the underlying graph where the vertices are
objects and the edges specified by morphisms. This forgetful functor has as left
adjoint the free category on a graph, and we write CI to denote the simplicial
resolution associated to the monad of this adjunction.

Definition A.165. When C is a simplicial model category and I is a small category,
a homotopy coherent diagram of shape I is a simplicial functor CI → C, where CI
denotes the free simplicial resolution of I.

The main result of Vogt amounts to a proof that Ho(CI) is equivalent to the
homotopy category of homotopy coherent diagrams.

Theorem A.166. There is an equivalence of categories

(A.7.2) Ho(CI) ∼= Coh(C, I),

where the latter denotes the homotopy category with objects the homotopy coherent
I-shaped diagrams in C and morphisms the homotopy classes of natural transfor-
mations.

A particular example of interest is when I is the category BG associated to a
discrete group G, with a single object and morphisms the elements of G. Then
a homotopy-coherent action of G on a space or spectrum is given by a simplicial
functor from CBG.

Since it is much easier to construct diagrams in the homotopy category, i.e.,
objects of Ho(C), it is essential to understand the obstruction to producing a section
of the object function of Equation (A.7.1). As one would hope, there is a concrete
obstruction theory for this problem [Coo78]. However, it is clear from the definition
that the obstruction theory is trivial when I is a free category.
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Proposition A.167. Let I be a free category on a graph G. Then there is a section
of the comparison functor; any homotopy commutative diagram of shape I can be
rectified to a homotopy coherent diagram of shape I. �

Recall that the free category on the graph G has objects the vertices of G and
non-identity arrows the strings of compatible edges of G, i.e., strings e1, e2, . . . , en
where s(ei) = t(ei−1). For our purposes, the most interesting free categories are
the posets N and Z; these are the free categories on the graphs with vertices in
bijection with the objects and edges corresponding to pairs {i, i+ 1}.
Corollary A.168. Any homotopy commutative diagram over N or Z (or in fact
any countable totally ordered set) can be rectified to a homotopy coherent diagram.

Now, suppose we have a zig-zag diagram Ĩ as above. This discussion gives a
formal rectification procedure: choosing homotopy inverses, we obtain a diagram in
the homotopy category, which we can rectify using Corollary A.168. The homotopy

limit of the rectified diagram coincides with the homotopy limit over Ĩ.

A.8. The twisted arrow category. In this section, we record facts that we need
about the twisted arrow category construction (sometimes referred to as the sub-
division of a category). See [Rie14, 7.2.9], [Lur19, 2.3.5], or [Pen17, 3.1] for more
comprehensive treatments; the latter two in particular give clear explanations of
the relationship to the bicategory of spans.

Definition A.169. The twisted arrow category Tw C of a category C is the category
whose objects are arrows f : α → β in C, and whose morphisms from f0 to f1 are
given by factorisations of f0 through f1, i.e., by diagrams

(A.8.1)

α0 β0

α1 β1.

f0

g

f1

h

Example A.170. The twisted arrow category of 0← 01→ 1 is given by

(A.8.2) id0 ← f0 → id01 ← f1 → id1 .

Lemma A.171. There is a natural functor Tw C → C which assigns to each arrow
its domain, and which yields a commutative diagram

(A.8.3)

Tw C × TwD Tw(C × D)

C × D.
�

The construction of the twisted arrow category specifies a monoidal endofunctor
on the category of categories; this has the extremely useful consequence that ap-
plying the twisted arrow category to the morphism categories of a bicategory (or a
Π-equivariant bicategory) produces a new (Π-equivariant) bicategory.

Lemma A.172. Given a Π-equivariant bicategory C, we can form a Π-equivariant
bicategory Tw C such that the objects of Tw C are those of C and the morphism
categories are specified by the assignment

(A.8.4) (Tw C)(p, q) = Tw(C(p, q)).
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�

As befits a subdivision, the geometric realization of the twisted arrow category
of C is the same as that of C.

Proposition A.173. The functor Tw C → C induces a weak equivalence of simpli-
cial sets

(A.8.5) N• Tw C → N•C.
�

Pulling back along Tw C → C induces an equivalence on homotopy colimits.

Lemma A.174. Given a functor F : C → D, the natural map

(A.8.6) hocolim
Tw C

F → hocolim
C

F

is a weak equivalence. �

Next, we record here a standard strategy for checking that a function ob(Tw C)→
ob(C) in fact is functorial in the twisted arrow category. Any arrow

(A.8.7)

X0 X ′
0

X1 X ′
1

g

f0

f1

h

in Tw(C) can be factored as the composites

(A.8.8)

X0 X ′
0 X0 X ′

0

X1 X ′
0 X0 X ′

1

X1 X ′
1 X1 X ′

1.

g

f0

id

f0

id

f1◦h

id

g

f1◦g

h

f1

h

f1

id

As a consequence, to check that an assignment is functorial, it suffices to check
compositions in Tw(C) of the form (g, id) ◦ (id, h), (g1, id) ◦ (g0, id), and (id, h0) ◦
(id, h1) and then a composition in which one map is generic and one is either of
the form (g, id) or (id, h). This observation is particularly useful when checking the
existence of a natural transformation F ⇒ G for functors F,G : Tw C → D. By
definition, such a transformation is specified by maps νf : F (f) → G(f) in D that
commute with maps f → g in Tw C.

Lemma A.175. Let F and G be functors Tw C → D. A natural transformation
F ⇒ G is specified by a collection of maps νf : F (f)→ G(f) such that the naturality
diagrams hold for either of the classes of pairs in Equation (A.8.8).

To provide more context for the discussion above, we conclude our discussion by
explaining the connection between the twisted arrow category and the 2-category
of spans.
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Definition A.176. For a category C, recall that the 2-category of spans in C has
objects the zig-zags x ← y → z, which morphisms the category of commutative
diagrams

(A.8.9)

y

x z

y′

and the 2-cells determined via pullback. The associativity isomorphisms are the
usual comparisons of pullbacks.

The connection between spans and the twisted arrow category is that functors
Tw(C)op → D are in bijection with normal oplax functors from C to spans on D.
(Here recall that a normal functor has unit transformation the identity.) In fact,
there is an equivalence of suitable categories, as follows (e.g., see [Lur19, 2.3.5]
and [Err99, App. A]).

Theorem A.177. There is an equivalence between the category of functors Tw C →
D with morphisms natural transformations and the category of normal oplax func-
tors C → Span(D) with morphisms isomorphism classes of oplax transformations
such that the 1-cells admit right adjoints.

Sketch of proof. We mainly explain how the bijection on objects is constructed.
Assume we are given a functor F : Tw C → D. We construct the functor F̃ : C →
Span(D) as follows. On an object c ∈ C, we set F̃ (c) = F (idc). For a morphism
f : c→ d in C, we have the span

(A.8.10) F (idc) F (f) F (idd)

formed from the arrows in Tw C

(A.8.11)

c d c d

c c d d.

f

id f

f

id

f

id

id

Write this span as F̃ (f).
Given maps f : c→ d and g : d→ e in C, we produce the morphism

(A.8.12) F̃ (f ◦ g)→ F̃ (f) ◦ F̃ (g)

specified by the diagram

(A.8.13)

F (f ◦ g)

F (f) F (g)

F (idd),

F (f,ide)F (idc,g)

F (f,idc) F (idd,g)
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where here the notation F (−,−) refers to the image of the map of spans determined
by the pair of arrows. �

A.9. Categories of cubes. The purpose of this section is to record some basic
results about the categories of cubical diagrams. Let 1

¯
denote the category specified

by the poset {0→ 1}, and 1
¯
n the product. There are face maps

(A.9.1) di,ǫ : 1
¯
n → 1

¯
n+1

which insert ǫ at position i, and degeneracy maps

(A.9.2) si : 1
¯
n → 1

¯
n−1

which project away from the ith entry. The category � has objects the categories
1
¯
n and morphisms generated by the face and degeneracy maps. This is an elegant
Reedy category with fibrant constants.

Definition A.178. For a (small) category C, let �C denote the category with
objects the functors 1

¯
n → C and morphisms the commutative diagrams

(A.9.3)

1
¯
n 1

¯
m

C.
We refer to �C as the category of cubes in C.

Given a functor F : C →M, whereM is a model category, we can compute the
homotopy colimit hocolimC F by precomposing with the functor t that evaluates at
the terminal object to get a functor �C → M, cofibrantly replacing in the Reedy
model structure, and computing the colimit hocolim�C F .

Proposition A.179. Let M be a model category. For any functor F : C → M,
there is a natural equivalence

(A.9.4) hocolim
�C

F ◦ t→ hocolim
C

F.

In our work, constructing degeneracies introduces difficulties, so we consider
nondegenerate cubes.

Definition A.180. For a small category C, let �ndC denote the full subcategory of
�C specified by the functors that do not factor through any degeneracy map, i.e., for
which no morphism is taken to the identity of C. Note that the morphisms here are
specified by the inclusions of cubes. We refer to this category as the nondegenerate
cubes in C.

There is a natural inclusion functor �ndC → �C. Corresponding to any element
σ ∈ �C is a unique nondegenerate cube σ̃ ∈ �ndC that factors maps out of σ to
elements of �ndC. We now need to impose an additional condition on C in order to
simplify the homotopical properties of �ndC.
Definition A.181. We will say that an element of �ndC is totally nondegenerate
if all of its faces are also elements of �ndC. We will refer to �ndC as nonsingular
if all elements are totally nondegenerate.

Since the faces of �ndC involves composition of maps, the following proposition
is clear.
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Lemma A.182. Let C be a (small) category. Suppose that for any f in C, if
gf = id or fg = id then f = g = id; i.e., C has no nontrivial isomorphisms and no
nontrivial retractions. Then �ndC is nonsingular.

The requirement that �ndC be nonsingular makes it possible to check that the
assignment of the unique nondegenerate cube corresponding to a degenerate cube
is part of the data of an adjoint.

Lemma A.183. Suppose that �ndC is nonsingular. Then the inclusion �ndC → �C
has a left adjoint.

As a consequence of Proposition A.119, we now conclude the following compar-
ison theorem.

Theorem A.184. Assume that �ndC is nonsingular. Let F : �C →M be a functor.
Then the inclusion functor ι : �ndC → �C induces a weak equivalence

(A.9.5) hocolim
�ndC

F ◦ ι→ hocolim
�C

F

In particular, Lemma A.182 and Theorem A.184 implies that for a poset or
more generally for a category without non-identity retractions, we can compute the
homotopy colimit of a functor over C using the pullback to �ndC.

Appendix B. Parametrized spectra, orientation theory, and
ambidexterity

B.1. Parametrized spectra. In this section, we review the some basic definitions
from the theory of parametrized spaces and spectra over a topological space B
with a G-action. We will assume throughout that B is locally compact, Hausdorff,
and second-countable. However, we will not necessarily assume that B has the
homotopy type of a G-CW complex.

We will denote by T G
/B the category of ex-spaces over B, i.e., G-spaces over B

equipped with a chosen section s that equips the fibers with basepoints. For a
finite-dimensional inner product space W , we write SW

B for the parametrized W -
sphere that has total space SW ×B and fibers SW . The category T G

/B has a closed

symmetric monoidal under the fiberwise smash product; in particular, we will write
ΩV

B for the fiberwise mapping spectrum from SV
B .

Roughly speaking, recall that a parametrized orthogonal G-spectrum over B is
defined to be a collection of parametrized spaces {X(V )} over B equipped with
O(V )-actions and O(W )×O(V )-equivariant structure maps

(B.1.1) SW
B ∧X(V )→ X(V ⊕W ).

Parametrized spectra can be given a diagrammatic interpretation akin to the defi-
nition of orthogonal G-spectra.

Definition B.1. A parametrized orthogonal G-spectrum over B is an enriched
functor X : IUG → T G equipped with structure maps

(B.1.2) σV,W : X(V ) ∧ SW
B → X(V ⊕W )

that comprise a natural transformation of functors and are associative and uni-
tal. A map of parametrized orthogonal G-spectra is a natural transformation that
commutes with the structure map. We will denote by Sp/B,G the category of
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parametrized orthogonal G-spectra over B, writing SpU
/B,G when necessary to em-

phasize the universe U .

We will often use an external version of the symmetric monoidal structure on
parametrized spaces and spectra.

Definition B.2. The external smash product of parametrized spaces f1 : E1 → B1

and f : E2 → B2 is the parametrized space E1⊼E2 over B1×B2, with fibers F1∧F2.
Specifically, the total space is defined as the pushout

(B.1.3)

(E1 ×B2) ∪B1×B2 (B1 × E2) E1 × E2

B1 ×B2 E1 ⊼E2,

where the maps are induced by the sections and the structure maps respectively. If
the f1 is a G1-ex-space and f2 is a G2-ex-space, then f1⊼f2 has a (G1×G2)-action.

If f1 and f2 are parametrized orthogonal spectra, we form the external smash
product f1 ⊼ f2 using the left Kan extension and the external smash product of
spaces, just as we defined the external smash product of orthogonal spectra. If f1 is
an orthogonal G1-spectrum and f2 is an orthogonal G2-spectrum, then f1 ⊼ f2 is a
(G1 ×G2)-spectrum.

We now turn to a concise statement of the results on the homotopy theory of
parametrized spaces and spectra that we need. The construction and use of model
structures on parametrized spectra is technical and significantly more difficult than
in the absolute case. We first record a very convenient condition on a parametrized
space, the notion of an ex-fibration (see [MS06, 8.1]).

Definition B.3. An ex-space B → X → B is an ex-fibration if the structure map
X → B be a Hurewicz fibration and the section B → X is a closed inclusion such
that there exists a retraction X × I → X

∐
B(B × I) (over B).

We now turn to the model structures on parametrized spectra.

Definition B.4. The level model structure on SpU/B,G is specified by taking the
fibrations to be the fiberwise weak equivalences and the fibrations to be the fiberwise
fibrations of orthogonal G-spectra.

We define the stable homotopy groups of a parameterized G-spectrum to be the
collection of stable homotopy groups of the fibers. A fiberwise stable equivalence
f : X → Y is a map of parametrized G-spectra that induces an equivalence on
stable homotopy groups after fibrant replacement in the level model structure.

Definition B.5. The stable model structure on SpU/B,G is specified by taking the
weak equivalences to be the fiberwise stable equivalences. The fibrant objects are
fibrant in the level model structure and are Ω-spectra, in that the adjoint structure
maps are fiberwise stable equivalences.

For computing right-derived functors, one key construction we need is a fiberwise
lax monoidal fibrant replacement functor for parametrized spectra. We do this
using a fiberwise analogue of the construction of the non-parametrized lax monoidal
fibrant replacement functor given in Definition A.47.
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Definition B.6. For a universe U and an orthogonal parametrized G-spectrum X
over a base B, define the orthogonal spectrum QUX via the assignment

(B.1.4) Xmfib
B (V ) = QUX(V ) = hocolim

W∈U
ΩW⊗V

B XB((W ⊕ R)⊗ V ).

Here the homotopy colimit is indexed over the poset under inclusion of finite di-
mensional subspaces of U . There is a natural transformation id→ (−)mfib induced

by the inclusion of XB(V ) = Ω0⊗V
B XB(R⊗ V ).

This functor is lax monoidal with respect to the external product.

Proposition B.7. There is a map of orthogonal G1 ×G2-spectra over B1 ×B2

(B.1.5) QU1X ∧ QU2Y → QU1⊕U2(X ∧ Y )

which is associative and unital.

In contrast with the non-parametrized setting, the construction of Definition B.6
does not necessarily produce a fibrant parametrized orthogonal spectrum. This is
true however when the input is already fibrant in the level model structure; more-
over, if the input is ex-fibrant, so is the output of this process. Furthermore, given
a parametrized spectrum X , it follows from [Mal19, 5.2.5] that one can construct a
suitable replacement of X with the property that all of the constituent spaces are
ex-fibrations.

B.1.1. Spaces and spectra of sections. Starting in Section 6, we defined the twisted
cochains in terms of a spectrum of sections with compact support. In this section,
we review the theory of spaces and spectra of sections.

Definition B.8. The (based) space of sections of an ex-space X → B with basepoint
section s is defined as

(B.1.6) ΓB(X) = MapB(B,X),

i.e., maps over B from B to X, with basepoint s. This can be described as p∗X,
where p : X → ∗ is the canonical map and p∗ participates in the adjunction (p∗, p∗).
If X is a parametrized G-space, ΓB(X) is a G-space via the conjugation action.

The construction of the space of sections is compatible with the external smash
product.

Proposition B.9. For ex-spaces X1 → B1 and X2 → B2, there is a natural map

(B.1.7) ΓB1(X1) ∧ ΓB2(X2)→ ΓB1×B2(X1 ⊼X2).

These maps are associative and unital. When X1 is a parametrized G1-space and
X2 is a parametrized G2-space, the natural map is a map of (G1 ×G2)-spaces.

We will be interested in sections with compact support. As is often the case with
mapping constructions in parametrized spaces, the point-set topology requires a bit
of care. The required discussion is folklore, but is not in the classical literature in
a convenient way; see [Mal14, §A.2] for a recent treatment.

Definition B.10. For an ex-space X → B with basepoint section s, we define the
following spaces of sections:

• The space of sections with compact support

(B.1.8) Γc
B(X) ⊆MapB(B,X)

consisting of those sections which vanish outside a compact subset of B.
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• For a closed subset A ⊂ B, we define the subspace

(B.1.9) Γc
B,A(X) ⊆MapB(B,X)

to consist of those sections that vanish off A. When s ∈ Γc
B,A(X), this is a

based space.
• For Y ⊂ X, we define the compactly supported sections relative to Y , de-
noted

(B.1.10) Γc
B(X,Y ) ⊆MapB(B,X),

to be the space of sections that land in Y off a compact subset of B.

The topology on these spaces is described below.

When B is compact, we can use the subspace topology induced from the topology
on MapB(B,X). If B is not compact, we consider the natural inclusion B →
B+, where B+ denotes the one-point compactification. We can form the pushout
X ∪B B+ using the section s : B → X . Now we give Γc

B(X) the subspace topology
as a subspace of MapB+(B+, X ∪B B+); sections with compact support over B

extend to sections over B+. The topologies on Γc,A
B (X) and Γc

B(X,Y ) are defined
analogously.

Proposition B.11. For parametrized spaces X1 and X2 over base spaces B1 and
B2 respectively, there is a natural map

(B.1.11) Γc
B1

(X1) ∧ Γc
B2

(X2)→ Γc
B1×B2

(X1 ⊼X2).

For Y1 ⊂ X1 and Y2 ⊂ X2, there are natural maps

(B.1.12) Γc
B1

(X1, Y1) ∧ Γc
B2

(X2, Y2)→ Γc
B1×B2

(X1 ⊼X2, Y1 × Y2).

These maps are associative and unital. When X1 is a parametrized G1-space and
X2 is a parametrized G2-space, these are maps of (G1 ×G2)-spaces.

We now turn to the analogous definitions for parametrized spectra.

Definition B.12. For a parametrized spectrum X, the parametrized spectrum of
sections ΓB(X) is defined by the spacewise application of the space of sections:

(B.1.13) (ΓB(X))V = ΓB(XV ).

Equivalently, this can again be described as p∗X where p : B → ∗ is the canonical
map. The parametrized spectrum of compactly supported sections and compactly
supported sections relative to a closed subspace A ∈ B are defined analogously.

The fact that spacewise application of these functors on ex-spaces yields functors
on orthogonal spectra requires verification of compatibility with suspension; see for
example [MS06, 11.4.1] for this kind of argument.

Proposition B.11 has the following analogue in the stable setting.

Proposition B.13. For parametrized spectra X1 and X2 over base spaces B1 and
B2 respectively, there is a natural map

(B.1.14) Γc
B1

(X1) ∧ Γc
B2

(X2)→ Γc
B1×B2

(X1 ⊼X2).

For Y1 ⊂ X1 and Y2 ⊂ X2, there are natural maps

(B.1.15) Γc
B1

(X1, Y1) ∧ Γc
B2

(X2, Y2)→ Γc
B1×B2

(X1 ⊼X2, Y1 ∧ Y2).

These maps are associative and unital.
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We record the interaction of the cotensor with the spectrum of sections.

Lemma B.14. Let A be a G-space and X a parametrized orthogonal G-spectrum
over B. Then there is an adjunction homeomorphism

(B.1.16) F (A,Γc
B(X)) ∼= Γc

B(FB(A,X)).

�

Next, we recall an equivariant interpretation of the spectrum of sections. Given
an orthogonalG-spectrumX , the Borel construction provides an associated parametrized
spectrum EG+ ∧G X → BG, with fibers equivalent to X .

Proposition B.15. Let X be an orthogonal G-spectrum. Then there is a natural
equivalence

(B.1.17) F (EG+, X)G ≃ ΓBG(EG+ ∧G X).

�

We now recall how to compute derived functors of spaces and spectra of sections
using the point-set models. In our context, the basic slogan is that when working
with ex-fibrations, the various spaces of sections are homotopically well-behaved.
For compactly supported sections, correct statements require some additional hy-
potheses to control the point-set topology of the base spaces, mostly surrounding
normality hypotheses to permit arguments involving the construction of homo-
topies. For simplicity, we state the results for the absolute cases of the spaces and
spectra of sections and compactly supported sections; we leave the relative cases to
the reader.

Lemma B.16. Let X → Y be a fiberwise weak equivalence of ex-fibrations over a
locally compact Hausdorff space B. Then the natural maps

(B.1.18) ΓB(X)→ ΓB(Y ) and Γc
B(X)→ Γc

B(Y )

are weak equivalences of spaces.
Let X → Y be a stable equivalence of parametrized spectra that are spacewise

ex-fibrations over a locally compact Hausdorff space B. Then the natural maps

(B.1.19) ΓB(X)→ ΓB(Y ) and Γc
B(X)→ Γc

B(Y )

are stable equivalences of spectra.

Next, we turn to the question of the interaction of spaces of sections with ho-
motopy colimits in the category of parametrized spectra. We have the following
excision result.

Theorem B.17. Suppose that U and V are normal subsets of a locally compact
Hausdorff space B. Then there are homotopy pullback squares of spaces

(B.1.20)

ΓU (X) ΓU∪V (X)

ΓU∩V (X) ΓV (X)
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and when X is an ex-fibration there are homotopy pullback squares of spaces

(B.1.21)

Γc
U (X) Γc

U∪V (X)

Γc
U∩V (X) Γc

V (X).

The analogous results for parametrized spectra hold.

We have the following result about filtered colimits.

Proposition B.18. Suppose we have a filtered diagram of parametrized spaces {fi}
indexed by a filtered category D. If each fi is an ex-fibration and each space Bi is
normal, then the natural map

(B.1.22) Γc
hocolimD Bi

(hocolim
D

fi)→ hocolim
D

Γc
Bi
(fi)

and the natural map

(B.1.23) Γc
hocolimD Bi

(hocolim
D

fi)→ Γc
hocolimD Bi

(f̃)

are weak equivalences, where f̃ is an ex-fibrant replacement of hocolimDi
fi. The

analogous result for parametrized spectra holds. �

In our applications, we will sometimes need to compute spaces of sections for
parametrized spaces that are quasifibrations but not fibrations. Recall that a map
p : E → B is a quasifibration if the canonical map p−1(b) → Fp from the fiber to
the homotopy fiber is a weak equivalence for each b ∈ B. Although not explicitly
phrased in terms of a lifting condition, this amounts to a lifting criterion up to a
homotopy. The natural map from a quasifibration to the associated path fibration
(or more generally an ex-fibrant replacement in the model structure on parametrized
spaces) is a fiberwise weak equivalence, essentially by definition.

Quasifibrations are sufficient for computing the fiberwise derived homotopy groups
of a parametrized space or spectrum. However, in general, quasifibrations can not
be used to compute the space of sections; rather, it is standard to define the space
of sections of a quasifibration in terms of the associated fibration. Nonetheless, it
is possible to give conditions under which the space of sections of a quasifibration
have the correct homotopy type.

Proposition B.19. Suppose that we have a pushout diagram of parametrized spaces

(B.1.24)

(f01 : E01 → B01) (f0 : E0 → B0)

(f1 : E1 → B1) (f : E → B)

such that one of the maps B01 → B0 or B01 → B1 is a cofibration and the maps
f01, f0, and f10 are ex-fibrations.

Then the map f is an ex-quasifibration and the natural map

(B.1.25) ΓB(E)→ ΓB(Ẽ)

is a weak equivalences, where f̃ : Ẽ → B is a fibration equivalent to f . If B01, B0,
and B1 are normal spaces then the natural map

(B.1.26) Γc
B(E)→ Γc

B(Ẽ)
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is a weak equivalence.

Proof. The fact that f is an ex-quasifibration is essentially classical; see e.g., [Pup74].
To see that f has homotopically meaningful sections, we argue as follows. A section
of f is precisely a pair (s0, s1) of sections of f0 and f1 that coincide on B01; i.e.,
the space of sections ΓB(f) is the pullback

(B.1.27) ΓB(f) ∼= ΓB0(f0)×ΓB01 (f12)
ΓB1(f1).

Without loss of generality, we assume that B01 → B0 is a cofibration. Then the
map of section spaces ΓB0(f0) → ΓB01(f01) is a fibration, and so the pullback in
Equation (B.1.27) is a homotopy pullback. By the gluing lemma, this implies the

natural map ΓB(f)→ ΓB(f̃) is a weak equivalence. For the case of compactly sup-
ported sections, the normality assumption allows us to run an essentially analogous
argument. �

More generally, we have the following statement, which is a consequence of the
previous results by the standard induction over homotopy pushouts along latching
maps.

Proposition B.20. Suppose that we have a homotopy colimit diagram of parametrized
spaces {fi : Ei → Bi} indexed by a discrete Reedy category D. If each fi is an ex-
fibration and each space Bi is normal, then the natural map

(B.1.28) Γc
hocolimD Bi

(hocolim
D

fi)→ holim
D

Γc
Bi
(fi)

is a weak equivalence and the natural map

(B.1.29) Γc
hocolimD Bi

(hocolim
D

fi)→ holim
D

Γc
hocolimD Bi

(f̃)

is a weak equivalence, where f̃ is an ex-fibrant replacement of hocolimDi
fi. The

analogous result for parametrized spectra holds. �

B.2. Multiplicative orientations and the equivariant complex cobordism
spectrum. The purpose of this section is to establish the facts we need from
the theory of equivariant multiplicative complex orientations of vector bundles.
Although the general theory of equivariant orientations is very complicated, the
situation for equivariant complex bundles (i.e., (G,U(n))-bundles, where G acts
by complex bundle maps) is much simpler. We begin by describing a specific
model of the classifying space for equivariant complex bundles that encodes the
multiplicative structure, which arises from the theory of diagrammatic spaces. See
for example [BCS10, Sch09, SS12, SS19, Sch18b] for more detailed treatments of
this theory.

B.2.1. Grassmanians and diagram spaces. Consider a complete complex G-universe
U . Often we will take

(B.2.1) U = Ũ ⊗R C

for a complete real universe Ũ .

Definition B.21. Let IUG denote the category of finite-dimensional complex vector
spaces in U and complex isometries. This category is symmetric monoidal under
direct sum, with unit the vector space {0}.

Moreover, there is the following external product:
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Lemma B.22. For groups G1 and G2 and complex universes U1 and U2, respec-
tively, there are external product maps

(B.2.2) I
U1

G1
× I

U2

G2
→ I

U1⊕U2

G1×G2
.

These maps are associative in the sense that the diagrams

(B.2.3)

I
U1

G1
× I

U2

G2
× I

U3

G3
I
U1⊕U2

G1×G2
× I

U3

G3

I
U1

G1
× I

U2⊕U3

G2×G3
I
U1⊕U2⊕U3

G1×G2×G3

commute. �

Note that U1 ⊕ U2 is not typically a complete (G1 × G2)-universe even if we
assume that U1 and U2 are complete universes. However, for a complete universe
U12, there will be a contractible space of isometries U1 ⊕ U2 → U12. An arbitrary
isometry will not necessarily compatible with the symmetric monoidal structure,
but sometimes the system of isometries can be made compatible with direct sum.
For example, as discussed in Lemma A.54, we can construct such a monoidal sys-
tem when working with complete universes obtained as direct sums of the regular
representation. Recall that for any group G we write UC(G) = ρG ⊗ C∞ for the
G-universe which is the infinite direct sum of copies of the regular representation
equipped with a natural inner product.

Corollary B.23. For groups G1 and G2 and complex universes U1 and U2, respec-
tively, there are external product maps

(B.2.4) I
U1

G1
× I

U2

G2
→ I

U1⊕U2

G1×G2
.

These maps are associative in the sense that the diagrams

(B.2.5)

I
UC(G1)
G1

× I
UC(G2)
G2

× I
UC(G3)
G3

I
UC(G1×G2)
G1×G2

× I
UC(G3)
G3

I
UC(G1)
G1

× I
UC(G2×G3)
G2×G3

I
UC(G1×G2×G3)
G1×G2×G3

commute. �

We will work with a model of spaces defined in terms of diagrams on these
indexing categories, and construct a model of the cartesian product that has the
property that commutative monoids encode E∞ spaces.

Definition B.24. An IUG-space is a continuous functor from IUG to spaces. We
denote the category with objects the IUG-spaces and morphisms the natural transfor-
mations by IUG − Top.

The Day convolution product (regarding the category of spaces as symmetric
monoidal under the cartesian product) makes the category of IUG-spaces into a
symmetric monoidal category. The monoidal unit is given by the constant IUG-space
at a point, and the symmetric monoidal product can be described by the formula

(B.2.6) (X ⊠ Y )(V ) = colim
W1⊕W2

∼=V
X(W1)× Y (W2).
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By construction, the universal property of this monoidal product is that a map
X ⊠ Y → Z of IUG-spaces is specified by the data of maps

(B.2.7) X(W1)× Y (W2)→ Z(W1 ⊕W2).

There is also an external product on IG-spaces, defined as follows.

Definition B.25. Fix groups G1 and G2 and corresponding universes U1 and U2.
Let X be an I

U1

G1
-space and Y be an I

U2

G2
-space. Then the external product ⊠̄ is an

I
U1⊕U2

G1×G2
-space defined via the assignment

(B.2.8) (V1, V2) 7→ X(V1)× Y (V2).

and the left Kan extension.

The external multiplication naturally arises from the pairing

(B.2.9)
(
I
U1

G1
− Top

)
×
(
I
U2

G2
− Top

)
→ I

U1⊕U2

G1×G2
− Top,

and so Lemma B.22 implies that the external product is associative. Morever, given
an isometry U1⊕U2 → U12, we can take the left Kan extension to produce a functor

(B.2.10) I
U1⊕U2

G1×G2
− Top→ I

U12

G1×G2
.

The left Kan extension will take a monoidal system of diagrams to a monoidal
external product of diagram categories, and so using Corollary B.23, we can arrange
for such an external product for complete universes when working with the regular
representation universes.

We now turn to the relationship between the category IUG−Top and the category
of G-spaces.

Lemma B.26. The homotopy colimit induces a lax monoidal functor

(B.2.11) hocolim
IU
G

: IUG − Top→ T G

There is a model structure on IUG − Top in which the weak equivalences are
detected by equivalences after passage to the homotopy colimit; this is obtained by
localizing the obvious levelwise model structure, i.e., the projective model structure,
at these maps. We do not require any details about these model structures, so we
do not discuss this further herein.

Note that the homotopy colimit is not a symmetric monoidal functor, although it
does preserve suitable E∞ operad actions. It is however monoidal, which suffices for
our applications. Another key aspect of the situation is that there is a homotopical
right adjoint to the homotopy colimit functor which has good point-set properties
and in particular is also a monoidal functor, which we will denote by RU

G (e.g.,
see [Sch09, §4.2] for a discussion in the symmetric case).

Both the homotopy colimit and the families R
(−)
(−) of functors are compatible with

the external product.
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Proposition B.27. For groups G1 and G2 and universes U1 and U2 respectively,
the diagrams

(B.2.12)

(IU1

G1
− Top)× (IU2

G2
− Top) T G1 × T G2

I
U1⊕U2

G1×G2
− Top T G1×G2

hocolim
I
U1
G1

× hocolim
I
U2
G2

hocolim
I
U1⊕U2
G1×G2

and

(B.2.13)

T G1 × T G2 (IU1

G1
− Top)× (IU2

G2
− Top)

T G1×G2 I
U1⊕U2

G1×G2
− Top

R
U1
G1

×R
U2
G2

R
U1⊕U2
G1×G2

commute.

Note that the homotopy colimit is also compatible with the left Kan extension
along an isometry I

U1

G1
× I

U2

G2
→ IG1×G2U12; there are induced maps

(B.2.14) hocolim
I
U1
G1

X × hocolim
I
U1
G1

Y → hocolim
I
U1⊕U2
G1×G2

X ⊠ Y → hocolim
I
U12
G1×G2

X ⊠ Y,

which are associative if the system of isometries has been chosen to be associative.
In particular, we have the following corollary:

Corollary B.28. For groups G1 and G2 and universes U1 and U2 respectively, the
diagram

(B.2.15)

(I
U(G1)
G1

− Top)× (I
U(G2)
G2

− Top) T G1 × T G2

I
U(G1×G2)
G1×G2

− Top T G1×G2

hocolim
I
U(G1)
G1

× hocolim
I
U(G2)
G2

hocolim
I
U(G1×G2)
G1×G2

commutes.

The point of this framework is that constructions of the Thom spectrum functor
and the theory of orientations that are strictly multiplicative are easiest to formulate
in terms of such diagramatic models of spaces. We now give models of the classifying
space of complex vector bundles in this formalism. Our treatment is derived from
the pioneering approach of [LMSM86, §X], and influenced by the modern adaptation
in [Sch18b, §6.1].

Definition B.29. Let V be a finite-dimensional complex vector space in a complex
universe U . We denote by BUG(q, V ⊗ U) the G-space of complex q-dimensional
planes in V ⊗U . Let EUG(q, V ⊗U) denote the tautological bundle over BUG(q, V ⊗
U), i.e. the G-space of pairs (Z, z) with Z ∈ BUG(q, V ⊗ U) and z ∈ Z. There is
a natural map

(B.2.16)
EUG(q, V ⊗ U)→ BUG(q, V ⊗ U)

(Z, z) 7→ Z.
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We define IUG-spaces via the formulas
(B.2.17)

BUG(V ) =
∐

q

BUG(q, V ⊗ U) and EUG(V ) =
∐

q

EUG(q, V ⊗ U).

Remark B.30. In the rest of the paper, we have used the notation EG to denote
a specific construction of a free G-space whose underlying space is contractible,
namely the two-sided bar construction B(G,G, ∗). While our notation for the the
total space of the tautological bundle over BUG(q, V ⊗U) is potentially confusing,
it is consistent with the standard literature on models of the cobordism spectra.

The standard isomorphisms

(B.2.18) (V1 ⊗ U)⊕ (V2 ⊗ U) ∼= (V1 ⊕ V2)⊗ U

specified by

(B.2.19) (v1 ⊗ u), (v2 ⊗ u′) 7→ (v1, v2)⊗ (u, u′)

induce a multiplicative structure on these spaces, as follows.

Lemma B.31. The IUG-spaces BUG(−) and EUG(−) are commutative monoids and
the projection map EUG(−) → BUG(−) is a map of monoids (and also a vector
bundle with varying fibers, i.e., a vector bundle at each point of IUG). �

The corresponding homotopy colimits are topological monoids in spaces; we write
these as follows.

(B.2.20) BUG(U) = hocolim
V ∈IUG

BUG(V ) and EUG(U) = hocolim
V ∈IUG

EUG(V ).

As G varies, the Grassmanians are compatible with the external multiplication.

Lemma B.32. There is a natural external multiplicative structure on BUG(−)
induced by the maps

(B.2.21) BUG1(V1)×BUG2(V2)→ BUG1×G2(V1 ⊕ V2).

This external multiplication is associative and unital in the evident sense. Moreover,
BUG1×G2(−) is a BUG1(−)-BUG2(−) bimodule and the external multiplication is
a map of bimodules.

Proof. The external multiplication is induced by the maps

(B.2.22)

BUG1(|V1|, V1 ⊗ U1)×BUG2(|V2|, V2 ⊗ U2)

BUG1×G2(|V1|+ |V2|, (V1 ⊕ V2)⊗ (U1 ⊕ U2))

induced by the direct sum of planes and the inclusions

(B.2.23) U1 → U1 ⊕ U2 and U2 → U1 ⊕ U2.

The bimodule structure on BUG1×G2(−) is induced by the maps

(B.2.24)

BUG1(|V1|, V1 ⊗ U1)×BUG1×G2(|V12|, V12 ⊗ (U1 ⊕ U2))

BUG1×G2(|V1|+ |V12|, ((V1 ⊕ {0})⊕ V12)⊗ (U1 ⊕ U2)
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and the corresponding maps on the other side. To see that the external product is
a bimodule map, we need to verify that the diagram
(B.2.25)

BUG1(|V1|, V1 ⊗ U1)×BUG1(|V ′
1 |, V ′

1 ⊗ U1)×BUG2(|V2|, V2 ⊗ U2) BUG1(|V1|+ |V ′
1 |, (V1 ⊕ V ′

1 )⊗ U1)×BUG2(|V2|, V2 ⊗ U2)

BUG1(|V1|, V1 ⊗ U1)×BUG1×G2(|V ′
1 |+ |V2|, (V ′

1 ⊕ V2)⊗ (U1 ⊕ U2)) BUG1×G2(|V1|+ |V ′
1 |+ |V2|, ((V1 ⊕ V ′

1)⊕ V2)⊗ (U1 ⊕ U2)).

commutes. This amounts to checking that the diagram of vector spaces
(B.2.26)

(V1 ⊗ U1)× (V ′
1 ⊗ U1)× (V2 ⊗ U2) (V1 ⊕ V ′

1)⊗ U1)× (V2 ⊗ U2)

(V1 ⊗ U1)× ((V ′
1 ⊕ V2)⊗ (U1 ⊕ U2)) ((V1 ⊕ V ′

1)⊕ V2)⊗ (U1 ⊕ U2))

commutes, which can be verified by chasing elements. �

Since the homotopy colimit is a monoidal functor, the external multiplication
passes to the associated classifying spaces.

Proposition B.33. On passage to homotopy colimits, we obtain associative and
unital systems of products

(B.2.27) BUG1(U1)×BUG2(U2)→ BUG1×G2(U1 ⊕ U2).

that are associative in the sense that the diagrams
(B.2.28)

BUG1(U1)×BUG2(U2)×BUG3(U3) BUG1×G2(U1 ⊕ U2)

BUG1(U1)×BUG2×G3(U2 ⊕ U3) BUG1×G2×G3(U1 ⊕ U2 ⊕ U3)

commute. The monoid BUG1×G2(U1⊕U2) is a BUG1(U1)-BUG2(U2) bimodule, and
these external products are maps of bimodules. �

We now consider the categories of spaces over BUG(−) and BUG(U); these
inherit products from the multiplicative structures on BUG(−).
Definition B.34. Let G be a finite group and U a universe. We define IUG −
Top /BUG(−) to be the category of IUG-spaces over BUG(−). This category inherits
an “internal” multiplicative structures from the commutative I-monoid structure on
BUG(U), i.e., the product is specified by the maps

(B.2.29) X(V )× Y (W )→ BUG(V )×BUG(W )→ BUG(V ⊕W ).

There is an external multiplicative structures via the evident maps

(B.2.30) X ⊠ Y → BUG1(U1)⊠BUG2(U2)→ BUG1×G2(U1 ⊕ U2),

where X is an object of IU1

G1
and Y is an object of IU1

G1
. (This can also be described

levelwise in terms of the cartesian product, via the universal property of ⊠.)
Analogously, we have the categories T G/BUG(U), which have analogous internal

and external multiplicative structures. The latter is specified by the maps

(B.2.31) X × Y → BUG1(U1)×BUG2(U2)→ BUG1×G2(U1 ⊕ U2).
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The functors RG
U induce multiplicative comparisons between these categories as

follows.

Theorem B.35. The functor RU
G induces a monoidal functor

(B.2.32) RU
G : GTop /BUG(U)→ IUG − Top /BUG(−)

that is compatible with the external multiplicative structures in the sense that the
diagrams
(B.2.33)

T G1/BUG1(U1)× T G2/BUG2(U2) T G1×G2 Top /BUG1×G2(U1 ⊕ U2)

I
U1

G1
− Top /BUG1(−)× I

U2

G2
− Top /BUG2(−) I

U1⊕U2

G1×G2
− Top /BUG1×G2(−).

commute and the evident associativity diagrams also commute. �

This shortcut allows to easily apply multiplicative orientation theory to space-
level data, provided that we are willing to ignore the symmetric aspect of the
monoidal structure. Since in our current application we only have an associative
orientation, this is no real limitation.

B.2.2. Complex orientations and trivializations. We now turn to discuss the appli-
cation of complex orientations to the trivialization of complex bundles. We begin
with a brief discussion of how trivialization relates to orientations from the per-
spective of parametrized spectra. (See [MS06, 20.5] for a more detailed exposition
of this perspective.) For a space B, denote by Sn

B the ex-space over B with total
space Sn × B, fiber Sn, and basepoint section given by the canonical basepoint of
Sn. Let k denote an associative ring spectrum. As explained in [MS06, 20.5.5],
a k-orientation of a spherical fibration f : E → B with fiber Sn gives rise to a
trivialization in the form of an equivalence of parametrized spectra

(B.2.34) E ∧ k→ Sn
B ∧ k.

The argument from this perspective is quick and insufficiently known, so we explain
it here. LetMf denote the Thom space of f . The standard notion of a k-orientation
is given by a Thom class µ ∈ kn(Mf) that is a unit when restricted to the fibers
of f . Now, the Thom class is represented by a map Σ∞Mf → Sn ∧ k, and by
adjunction this is the same thing as a map of parametrized spectra

(B.2.35) Σ∞
B E → Sn

B ∧ k.

Here we are using the fact that the Thom spectrum functor can be described as
the pushforward of a stable spherical fibration along the map to B → ∗. Smashing
with k on the right and composing with the multiplication, we have a map

(B.2.36) Σ∞
B E ∧ k→ Sn

B ∧ k ∧ k→ Sn
B ∧ k

of parametrized spectra over B, and the hypothesis that the Thom class restricts
to a unit on the fibers is precisely equivalent to the statement that this map is an
equivalence.

We need a multiplicative model of this trivialization equivalence in the equivari-
ant context. We will denote by MUG the homotopical complex oriented cobordism
spectrum for the group G and MUPG the periodic variant. We work with specific
models of these spectra which we now define.



334 M. ABOUZAID AND A.J. BLUMBERG

Definition B.36. Let U be a complete real universe. The periodic equivariant
complex bordism orthogonal G-spectrum MUPG has V th space (for V an indexing
space in U)

(B.2.37) MUPG(V ) = Map(SiV , TUG(V ⊗R C)),

where TUG(−) denotes the Thom space of the bundle EUG(−) → BUG(−). The
monoidal structure on TUG(−) endows MUPG with the structure of a commutative
ring orthogonal G-spectrum.

Remark B.37. The looping in the definition of MUPG ensures that we obtain
an orthogonal spectrum; we could alternatively work with a “unitary spectrum”
indexed on complex representations, but it is simpler not to develop this theory
explicitly.

The spectrum MUPG is Z-graded (in the sense of Section A.2), where the nth
piece MUPn

G is built from the the Thom spaces of the nth part of the corresponding
grading on BUG; i.e., it is comprised of the Thom spaces associated to the spaces
BUG(|V |+ n, V ⊗ U), which we denote by TUn

G(−).

Lemma B.38. The orthogonal G-spectrum MUPG is the underlying spectrum of
a Z-graded orthogonal G-spectrum (MUPG)

• specified by

(B.2.38) MUPn
G(V ) = Map(SiV , TUn

G(V ⊗R C).

The graded orthogonal G-spectrum MUPG is a commutative monoid in Z-graded
spectra.

Evaluating at 0 yields an orthogonal G-spectrum MUP 0
G that is a model for the

usual equivariant complex bordism spectrum MUG.

Definition B.39. The homotopical complex equivariant bordism spectrum MUG is
the commutative ring orthogonal G-spectrum obtained as MUP 0

G.

We have the following periodicity, usually referred to as “complex stability”; this
is a form of the Thom isomorphism, specialized to G-representations (regarded as
trivial bundles over ∗). For any complex representation V , there is a map

(B.2.39) MUPG → ShV MUPG

specified simply by passage to Thom spaces from the evident map

(B.2.40) BUG(|W |,W ⊗ U)→ BUG(|W |+ |V |, (W ⊕ V )⊗ U)

induced from the map W → W ⊕ V specified by w 7→ (w, 0). Here recall that
ShV denotes the V -shift functor; see Definition A.14. Observe that this map is
independent of the representation V , in the following sense:

Lemma B.40. Let f : V → V ′ be an isometric isomorphism of complex represen-
tations of G. Then the diagram

(B.2.41)

MUPG ShV MUPG

ShV ′ MUPG
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commutes. Furthermore, for V ⊂W , the diagram

(B.2.42)

MUPG ShW−V MUPG ShW−V ShV MUPG

ShW MUPG

commutes.

The following proposition can be deduced from [LMSM86, X.5.3]; in this form,
it is close to the statement [Sch18b, 6.1.14], although that discussion is for the real
analogue.

Proposition B.41. Let V be a finite-dimensional complex G-representation. There
is a zig-zag of weak equivalences

(B.2.43) MUPG ShV MUPG SV ∧MUPG,

where the lefthand map is the canonical comparison of the suspension and shift
functors. The map MUPG → ShV MUPG is degree −|V | with respect to the Z-
grading. �

This property is sometimes referred to as complex stability in the literature. The
following easy lemma records a key fact about the complex stability zig-zag.

Lemma B.42. Let V be a finite-dimensional complex G-representation. The zig-
zag of weak equivalences in Equation (B.2.43) is comprised of maps of spectra with
U(V ) action, where U(V ) acts on SV ∧ (−) and ShV (−) through the action on V
and acts trivially on MUPG.

Proof. The map SV ∧ X → ShV X is equivariant with respect to isometries of V
by construction; it is specified by the structure map SV ∧ X(W ) → X(V ⊕W ),
which is O(V )×O(W )-equivariant. The map MUPG → ShV MUPG lands at 0 in
V component, and is therefore equivariant since the U(V )-action on ShV MUPG

fixes 0; this is the content of Lemma B.40. �

Restricting to MUP 0
G, we get a zig-zag which trivializes the G-action (and the

U(V ) action) on the suspension coordinate.

Corollary B.43. Let V be a finite-dimensional complex G-representation. There
is a zig-zag of weak equivalences
(B.2.44)

S|V | ∧MUP 0
G ShR|V | MUP 0

G MUP
|V |
G ShV MUP 0

G SV ∧MUP 0
G

of orthogonal G-spectra. �

Lemma A.18 and the definition of the map MUPG → ShV MUPG imply that
the complex stability zig-zags of Corollary B.43 are externally multiplicative.

Proposition B.44. For G1 and G2 finite groups and V1 and V2 representations,
we have commutative diagrams

(B.2.45)

SV1MUP 0
G1
∧ SV2MUP 0

G2
SV1⊕V2MUP 0

G1×G2

ShV1 MUP 0
G1
∧ ShV2 MUP 0

G2
ShV1⊕V2 MUP 0

G1×G2
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and

(B.2.46)

MUP
|V1|
G1
∧MUP

|V2|
G2

ShV1 MUP 0
G1
∧ ShV2 MUP 0

G2

MUP
|V1|+|V2|
G1×G2

ShV1⊕V2 MUP 0
G1×G2

.

We now discuss the generalization to arbitrary complex bundles. To discuss this,
we need to review the construction of the Thom spectrum functor in the context
of IUG-spaces. This idea goes back to [May77], which predated the definition of
orthogonal spectra; see [Sch09, 8.5] for a modern exposition.

Given a map of IUG-spaces X → BUG(−), we can form the pullback

(B.2.47)

Q EUG(V )

X(V ) BUG(V )

and from this pass to Thom spaces to obtain the V th space of a Thom spectrum
functor that lands in orthogonal G-spectra. Because the Thom space functor is
multiplicative, this construction is as well.

Definition B.45. The Thom spectrum construction yields a functor

(B.2.48) M : IUG − Top /BUG(−)→ SpG .

This functor is lax monoidal and externally multiplicative.

Proof. The verification that M is a lax monoidal functor to SpG follows the lines
of the arguments given in, for example, [SS19]. The external multiplicativity is a

consequence of the fact that given a I
U1

G1
-space X1 over BUG1(−) and I

U2

G2
-space X2

over BUG2(−), the diagram

(B.2.49)

X1(V1)×X2(V2) (X1⊠̄X2)(V1 ⊕ V2)

BUG1(V1)×BUG2(V2) (BUG1⊠̄BUG2)(V1 ⊕ V2)

commutes. �

For arbitrary complex G-vector bundles with fiber V , we have a multiplicative
Thom isomorphism defined as follows. Such a bundle with base B is determined
up to contractible choice by a classifying map

(B.2.50) ξ : B → BUG(|V |, V ⊗ U)→ BUG(U).

The Thom diagonal is then classified by the map B → B ×B over BUG(U) where
the second map is the composite of the projection and f . The complex orientation
determines a map Mξ →MUG, and so we obtain the composite

(B.2.51) Mξ∧MUG → Σ∞
+ B∧Mξ∧MUG → Σ∞

+ B∧MUG∧MUG → Σ∞
+ B∧MUG.

Since Mξ is equivalent to Σ−V Tξ, where Tξ denotes the Thom space of ξ, this then
yields the following Thom isomorphism equivalence:
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Proposition B.46. For a complex G-bundle ξ with fiber SV , there is a natural
equivalence

(B.2.52) Tξ ∧MUG → ΣV
+Bξ ∧MUG

that is externally multiplicative in the sense that give a G1-bundle ξ1 and a G2-
bundle ξ2, the diagram
(B.2.53)

(Tξ1 ∧MUG1) ∧ (Tξ2 ∧MUG2) (ΣV1
+ Bξ1 ∧MUG1) ∧ (ΣV2

+ Bξ2 ∧MUG2)

T (ξ1 ∧ ξ2) ∧MUG1×G2 ΣV1⊕V2
+ (B1 ×B2) ∧MUG1×G2

commutes.

Proof. This follows from the external multiplicativity of MUG, the fact that the
Thom spectrum functor is externally multiplicative, and the compatibility of the
complex orientation with the multiplicative structure (by definition). �

It is also useful to have a version of the Thom isomorphism that untwists the
action on the fiber, using the construction above.

Proposition B.47. Let ξ be a finite-dimensional complex G-bundle with base Bξ

and fiber V . Then there is a zig-zag of weak equivalences

(B.2.54) MUPG ∧ Σ∞
+ Bξ ShV MUPG ∧ Σ∞

+ Bξ Tξ ∧MUPG,

where the lefthand map is the canonical comparison of the suspension and shift
functors and the righthand map is the Thom isomorphism map induced by the Thom
diagonal. The map MUPG → ShV MUPG is degree −|V | with respect to the Z-
grading (and the righthand map has degree 0). �

We can derive from this the following analogue of Corollary B.43.

Theorem B.48. Let ξ be a finite-dimensional complex G-bundle with base Bξ and
fiber V . Then there is a natural zig-zag of externally multiplicative weak equivalences
of orthogonal G-spectra

(B.2.55) Tξ ∧MUP 0
G ≃ Σ

|V |
+ Bξ ∧MUP 0

G,

where Tξ denotes the Thom space of the spherical fibration associated to ξ.

B.3. Rigidifying spheres. In this section, we explain how to use the Thom iso-
morphism to discretize a topologized category of complex vector spaces.

Definition B.49. Let S VectC be the enriched category of stable complex vector
spaces, with

• objects specified by pairs of finite-dimensional complex vector spaces (I, V )
equipped with an inner product, and
• morphisms consisting of a complex embedding f : V0 → V1 preserving the
inner product, and an isomomorphism

(B.3.1) I1 ∼= I0 ⊕ V ⊥
f .

The morphisms are topologized using the topology on the space of linear isometries.
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The category SVectC is a monoidal category, with monoidal structure given by
the direct sum

(B.3.2) (I0, V0)⊕ (I1, V1)→ (I0 ⊕ I1, V0 ⊕ V1)

and unit the pair ({0}, {0}). (The monoidal product is also clearly an enriched
functor.)

Lemma B.50. There is an enriched functor

(B.3.3) ΨS : S VectC → Sp

specified on objects by the assignment (I, V ) 7→ F (SV , (SI)mfib) and which on mor-
phisms is given by the map

(B.3.4)

F (SV0 , (SI0)mfib)→ F (SV0 ∧ SV ⊥
f , (SI0)mfib ∧ SV ⊥

f )

→ F (SV0 ∧ SV ⊥
f , (SI0)mfib ∧ (SV ⊥

f )mfib)

→ F (SV0 ∧ SV ⊥
f , (SI0 ∧ SV ⊥

f )mfib)→ F (SV1 , (SI1)mfib)

obtained by smashing with the identity on V ⊥
f .

Remark B.51. Note that the endomorphisms of any object of SVectC are given by
a product of unitary groups. This product acts on the target of the functor side
via the inclusions U(n)→ F (n).

The functor ΨS is lax monoidal, via the natural map induced by the smash
product
(B.3.5)

F (SV0 , (SI0)mfib) ∧ F (SV1 , (SI1)mfib)→ F (SV0 ∧ SV1 , (SI0)mfib ∧ (SI1)mfib)

→ F (SV0⊕V1 , (SI0⊕I1)mfib)

and the unit map

(B.3.6) S0 ∼= F (S0, S0)→ F (S0, (S0)mfib) ∼= (S0)mfib.

Now let k be a cofibrant associative ring spectrum that equipped with a multi-
plicative complex orientation. Smashing with k yields a lax monoidal functor

(B.3.7) Ψk : S VectC → k-mod

specified on objects as (I, V ) 7→ F (SV , (SI)mfib)∧ k and with morphisms as above.
On the other hand, we have a functor

(B.3.8) Ψdisc : S VectC → k-mod

specified on objects as (I, V ) 7→ S[|I| − |V |] ∧ k, which we describe as follows.

Definition B.52. Let Z̃ be the category with objects pairs (n,m) with n,m ∈ N

and morphisms (n,m)→ (n′,m′) specified by m < m′ and n′ = n+ (m′ −m); i.e.,
there is a morphism precisely when n−m = n′ −m′.

The category Z̃ is monoidal, with unit (0, 0) and product given by

(B.3.9) (n,m)⊕ (n′,m′) = (n+ n′,m+m′).

There is a natural functor

(B.3.10) SVectC → Z̃
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specified on objects by (I, V ) 7→ (|I|, |V |) and on morphisms by taking a morphism

(I0, V0)→ (I1, V1) to the unique map (|I0|, |V0|)→ (|I1|, |V1|) in Z̃. Moreover, this
functor is clearly lax monoidal.

In addition, there is a functor

(B.3.11) Z̃→ k-mod

specified on objects by (n,m) 7→ S[n −m] ∧ k and on morphisms as the identity
map. This functor is also lax monoidal, via the associative multiplication map

(B.3.12) S[n−m]∧S[n′ −m′]→ S[(n−m) + (n′ −m′)] = S[(n+ n′)− (m+m′)]

and the unit map S→ S[0].
We now define the lax monoidal functor

(B.3.13) Ψdisc : S VectC → Z̃→ k-mod

as the composite of the functors in Equations (B.3.10) and (B.3.11); on objects this
takes (I, V ) to S[|I| − |V |] ∧ k.

The goal of the remainder of this section is to construct a zig-zag of natural
equivalences between the functors Ψ and Ψdisc, which we will do in stages. First,
observe that we can construct a functor

(B.3.14) Ψ0
disc : S VectC → k-mod

that factors through Z̃ as follows. The functor Ψ0
disc is specified on objects by

the assignment (I, V ) 7→ F (S|V |,S[|I|]) ∧ k and on morphisms by assigning to a
morphism (I0, V0)→ (I1, V1) the map
(B.3.15)

F (S|V0|,S[|I0|]) ∧ k→ F (S|V0| ∧ S|V ⊥
f |,S[|I0|] ∧ S|V ⊥

f |) ∧ k

→ F (S|V1|,S[|I0|] ∧ S|V ⊥
f |) ∧ k→ F (S|V1|,S[|I0|] ∧ S[|V ⊥

f |]) ∧ k

→ F (S|V1|,S[|I1|]) ∧ k.

This functor is evidently lax monoidal, using the isomorphisms S|V | ∧ S|W | ∼=
S|V⊕W | and the natural maps S[V ] ∧ S[W ]→ S[V ⊕W ].

There is a natural weak equivalence Ψdisc → Ψ0
disc induced by the natural map

(B.3.16) S[|I| − |V |]→ F (S|V |,S[|I|])

which is the adjoint of the composite

(B.3.17) S[|I| − |V |] ∧ S|V | → S[|I| − |V |] ∧ S[|V |]→ S[|I|].
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To check this is a natural transformation, we need to verify that the diagram

(B.3.18)

S[|I0| − |V0|] F (S|V0|,S[|I0|])

F (S|V0| ∧ S|V ⊥
f |,S[|I0|] ∧ S|V ⊥

f |)

F (S|V1|,S[|I0|] ∧ S|V ⊥
f |)

F (S|V1|,S[|I0|] ∧ S[|V ⊥
f |])

S[|I1| − |V1|] F (S|V1|,S[|I1|]).

commutes. First, observe that the map

(B.3.19) S[|I0| − |V0|]→ F (S|V0| ∧ S|V ⊥
f |,S[|I0|] ∧ S|V ⊥

f |)

that arises as the adjoint of the map

(B.3.20) S[|I0| − |V0|] ∧ S|V0| ∧ S|V ⊥
f | → S[|I0|] ∧ S|V ⊥

f |

makes the diagram

(B.3.21)

S[|I0| − |V0|] F (S|V0|,S[|I0|])

F (S|V0| ∧ S|V ⊥
f |,S[|I0|] ∧ S|V ⊥

f |)

commute. This reduces the question to showing that the diagram

(B.3.22)

S[|I0| − |V0|] F (S|V1|,S[|I0|] ∧ S|V ⊥
f |)

F (S|V1|,S[|I0|] ∧ S[|V ⊥
f |])

S[|I1| − |V1|] F (S|V1|,S[|I1|]).

commutes. Next, observe that the diagram

(B.3.23)

S[|I0| − |V0|] F (S|V1|,S[|I0|] ∧ S|V ⊥
f |)

F (S|V1|,S[|I0|] ∧ S[|V ⊥
f |])
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commutes by consideration of the adjoints. Therefore, it suffices to consider the
diagram

(B.3.24)

S[|I0| − |V0|] F (S|V1|,S[|I0|] ∧ S[|V ⊥
f |])

S[|I1| − |V1|] F (S|V1|,S[|I1|]).

Next, observe that the diagram
(B.3.25)

S[|I0| − |V0|] F (S[|V0|] ∧ S[|V ⊥
f |],S[|I0|] ∧ S[|V ⊥

f |]) F (S[|V1|],S[|I0|] ∧ S[|V ⊥
f |])

S[|I1| − |V1|] F (S[|V0|] ∧ S[|V ⊥
f |],S[|I1|]) F (S[|V1|],S[|I1|]).

commutes by the associativity of the multplication on {S[−]}. Thus, we are reduced
to consideration of the diagram

(B.3.26)

F (S[|V1|],S[|I0|] ∧ S[|V ⊥
f |]) F (S|V1|,S[|I0|] ∧ S[|V ⊥

f |])

F (S[|V1|],S[|I1|]) F (S|V1|,S[|I1|]),

which is clear. It is tedious but straightforward to verify in an analogous fashion
that the natural transformation is compatible with the monoidal structures.

Next, we have a functor

(B.3.27) Ψ1
disc : S VectC → k-mod

that factors through Z̃, specified on objects by the assignment

(B.3.28) (I, V ) 7→ F (S|V |, (S|I|)mfib) ∧ k

and on morphisms by assigning to a morphism (I0, V0)→ (I1, V1) the map

(B.3.29)
F (S|V0|, (S|I0|)mfib) ∧ k→ F (S|V0| ∧ S|V ⊥

f |, (S|I0|)mfib ∧ S|V ⊥
f |) ∧ k

→ F (S|V1|, (S|I1|)mfib) ∧ k.

This functor is evidently lax monoidal. There is a zigzag of natural transformations
through weak equivalences induced by the evident maps
(B.3.30)

F (S|V0|, (S|I0|)mfib) F (S|V0|, (S[|I0|])mfib) F (S|V0|,S[|I0|]).

Again, it is straightforward to check that this zigzag is monoidal.
Finally, we need to compare Ψ1

disc to Ψ. It is at this point that we use the
complex orientation on k in order to discretize the topology on the category. Re-
call from Section B.2 that the Thom isomorphism implies that for each complex
representation V , there is a zig-zag of equivalences

(B.3.31) SV ∧MUG ≃ S|V | ∧MUG



342 M. ABOUZAID AND A.J. BLUMBERG

which are monoidal and U(V )-equivariant, where we give S|V | the trivial U(V )-
action. Since k is complex oriented (see Section B.4), we obtain analogous equiva-
lences

(B.3.32) SW ∧ k . . . S|W | ∧ k.

Combining the equivalence

(B.3.33) F (SW , (S0)mfib) ∧ k . . . F (S|W |, (S0)mfib) ∧ k

with the natural equivalences

(B.3.34) F (SW , (S0)mfib) ∧ SV → F (SW , (SV )mfib)

and

(B.3.35) F (Sn, (S0)mfib) ∧ Sm → F (Sn, (Sm)mfib).

to specify an enriched zigzag of monoidal natural transformations through weak
equivalences.

Putting everything together, we obtain the following comparison theorem.

Theorem B.53. There is an enriched zigzag of monoidal natural transformations
through weak equivalences connecting Ψk and Ψdisc.

B.4. Morava K-theory. Fix a prime p. The chromatic filtration of the p-local
stable category mirrors the height filtration on the moduli stack of formal group
laws. The filtration is controlled by a variety of cohomology theories; the associated
graded is related to certain cohomology theories known as the Morava K-theories,
which play an essential role in our work.

Specifically, for each n ∈ N, there exists a periodic cohomology theory repre-
sented by a spectrum K(n); we suppress the prime p from the notation. When
n = 0, we understand K(n) to be the spectrum HQ representing rational ordinary
cohomology. When n > 0, the coefficients of K(n) are specified by the formula

(B.4.1) K(n)∗ ∼= Fp[v
±
n ],

where |vn| = 2(pn − 1).
The spectra K(n) have remarkable properties, the most salient of which we

summarize here:

(1) The spectra K(n) are associative ring spectra. Note however that they are
not E2 (or even homotopy commutative when p = 2); on the other hand,
the coefficients are evidently always graded commutative.

(2) For each n > 0, K(n) is a graded field in the sense that any K(n)-module
is free, i.e., is a wedge of shifts of K(n). (In fact, any graded field in spectra
must be equivalent to a K(n).)

(3) For spaces X and Y , there is a Kunneth isomorphism

(B.4.2) K(n)∗(X × Y ) ∼= K(n)∗(X)⊗K(n)∗ K(n)(Y ).

(4) For any finite group G, there is an isomorphism

(B.4.3) K(n)∗(BG) ∼= K(n)∗(BG)

of finite-rank modules [Rav82].
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This last property can be interpreted as the statement that the Tate fixed-point
spectrum K(n)tG is trivial for any finite group G [GS96].

Fix a compact Lie group G. Let X be an orthogonal G-spectrum. We have the
usual cofiber sequence of G-spaces

EG+ → S0 → ẼG,

where the first map collapses EG to the non-basepoint in S0. There is also a
natural map γ : X → F (EG+, X) induced from the collapse map EG+ → S0 and
the homeomorphism F (S0, X) ∼= X . Combining γ with the cofiber sequence above,
we obtain the diagram

(B.4.4) X ∧ EG+
//

≃ γ∧id

��

X //

γ

��

X ∧ ẼG

γ∧id

��

F (EG+, X) ∧ EG+
// F (EG+, X) // F (EG+, X) ∧ ẼG.

(Note that since X → F (EG+, X) is an underlying equivalence, the lefthand ver-
tical map is always a weak equivalence.)

Passing to G-fixed points on the bottom, we have the cofiber sequence

(F (EG+, X) ∧ EG+)
G → XhG → (F (EG+, X) ∧ ẼG)G,

and when G is finite we can identify

(F (EG+, X) ∧EG+)
G ≃ XhG.

Therefore, for G-finite we have the commutative diagram

XhG

��

// XG

��

// (ẼG ∧X)G

��

XhG
// XhG // XtG.

Thus the norm map XhG → XhG is homotopic to the map

(B.4.5) X ∧ EG+ → X → F (EG+, X)

induced by the collapse map EG+ → S0.
A useful observation about the homotopical properties of XtG is that this is an

invariant of the “Borel” homotopy type. That is, (−)tG preserves G-maps that
are underlying equivalences. In particular, we will be interested in taking non-
equivariant spectra regarded as G-trivial orthogonal G-spectra as input; i.e., IU

R∞X
for cofibrant X . (Classically, this is often written as i∗X .)

Setting X = K(n), the vanishing of K(n)tG implies that the norm map XhG →
XhG is a weak equivalence, and so we have

(B.4.6) K(n) ∧BG+ ≃ XhG → XhG ∼= F (BG+,K(n)).

Since the Tate spectrum functor is lax monoidal, another consequence of the van-
ishing of K(n)tG is the following more general vanishing result.

Corollary B.54. Let G be a finite group. For any K(n)-module M , M tG ≃ ∗.
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B.5. The existence of K(n) orientations. We regard as fixed for the body of
the paper for each prime p and n > 0 a choice of a point-set model of K(n) that
is an associative ring orthogonal spectrum; we denote this by k, as we have in the
body of the paper. By obstruction theory [Ang11], one can construct uncountably
many A∞ MU -algebra structures on k. We can parametrize these in terms of
formal group law data, but for all practical purposes it doesn’t matter as long as
we fix one. Thus, we always have an A∞ orientation MU → k, i.e., a multiplicative
complex orientation of k, which we represent as a map of orthogonal ring spectra
MU → k.

Remark B.55. When p is odd, following Rudyak [Rud98] we can consider the com-
posite

(B.5.1) MSO→ BP →MU → k,

where the map MSO → BP is given by the classical decomposition of MSO into
a wedge of shifts of BP [Wil82] and the map BP → MU is the usual map. The
map BP → MU is E4 [BM05, ] and the map MU → k is A∞ as observed above.
Direct inspection shows that the projection MSO → BP is a map of ring spectra
in the stable category, and then by obstruction theory we can promote this map to
an E2 map [CM15]. Therefore, at an odd prime, the composite MSO → k is an
A∞ map; i.e., k admits an A∞ MSO orientation.

At the prime 2, the situation is different and this kind of argument does not ap-
pear to apply. Specifically, in this case, MSO splits as a wedge of certain Eilenberg-
Mac Lane spectra, but these do not obviously map to k.

We now construct the equivariant complex orientation for k. First, note that
MUG is “split” in the sense that there is a natural map IU

R∞MU → MUG of ring
spectra which is an equivalence when the G-action is forgotten. This is a shadow
of the global equivariant structure that MUG possesses.

Warning B.56. When applied to cofibrant spectra or associative ring orthogonal
spectra, the point-set functor IU

R∞ computes the classical derived functor denoted
i∗. However, the behavior of I

U
R∞ on cofibrant commutative ring orthogonal spectra

is different; the functor does not coincide with IU
R∞ on the underlying module. As a

consequence, in what follows we will tacitly replace MU by a cofibrant associative
ring orthogonal spectrum.

As a first consequence, if X is a free G-space, there is an equivariant equivalence

(B.5.2) (IUR∞MU) ∧X →MUG ∧X.

In particular, if R is a complex oriented orthogonal ring spectrum, then for a free
G-space X there is a zigzag

(B.5.3) MUG ∧X ← (IUR∞MU) ∧X → (IUR∞R) ∧X

in which the backward arrow is a weak equivalence.
To arrange for the trivialization of complex representations to apply to k, we

consider the MUG-module version of k defined as the (derived) smash product

(B.5.4) kG = MUG ∧IR∞MU IR∞k.

The spectrum kG has underlying spectrum equivalent to k and is again split; there
exists a natural map IU

R∞k→ kG of associative ring orthogonal G-spectra induced
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as the map

(B.5.5) IUR∞k ∼= IUR∞MU ∧IU
R∞MU IUR∞k→MUG ∧IU

R∞MU IUR∞k.

For free G-spaces X , there is again a natural equivalence IU
R∞k ∧X → kG ∧X .

The equivariant complex orientation data that we require is now specified by the
map of associative orthogonal ring spectra

(B.5.6) MUG →MUG ∧IU
R∞MU I

U
R∞MU →MUG ∧IU

R∞MU I
U
R∞k,

obtained by base-change applied to the complex orientation of k.

Appendix C. The Adams and Spanier-Whitehead equivalences

The goal of this appendix is to describe models of equivariant Spanier-Whitehead
duality, the Adams isomorphism, and the norm map that are suitably functorial
and multiplicative to carry out the comparisons described in the body of the pa-
per. Our ultimate objective is to prove Proposition 7.54, which asserts there is
a natural zig-zag of Π-equivariant equivalences connecting the spectral category
C∗(BG,ℱX̄ |Z

N

(X̄ |Z, k)−V −d) and the spectral category BX̄ |Z−V−d ∧ k of virtual

cochains. After assembling the necessary intermediate results, we summarize the
proof of that comparison in Section C.5. Because it does not play a significant role
in any of our constructions, we suppress discussion of the Π-equivariance through-
out the work of this appendix.

C.1. A review of the Wirthmuller and Adams isomorphisms. We begin by
giving an abstract discussion of the Wirthmuller and Adams isomorphisms. Our
actual implementation (in the remainder of this section) involves a specific choice
of models adapted to our application.

For a group G, a subgroup H ⊂ G, and an H-space X , there is a natural map
of spaces

(C.1.1) G+ ∧H X → FH(G+, X)

specified by the assignment that takes (g, x) to the function given as

(C.1.2) g̃ 7→
{
g̃gx g̃g ∈ H

∗ otherwise.

This map of spaces gives rise to a corresponding map of orthogonal G-spectra,
which is a stable equivalence; this is the point-set realization of the Wirthmuller
isomorphism, which is the name for the derived equivalence between the left and
right adjoints to the forgetful functor iH∗ from G-spaces to H-spaces.

We will also use a relative variant of this Wirthmuller map defined as follows.
For a group G and a subgroup H ⊂ G, we have a map of G-spaces

(C.1.3) G+ ∧H F (H+, S
0)→ F (G+, S

0)

specified by the assignment that takes (g, γ) to the function given as

(C.1.4) g̃ 7→
{
γ(g̃g) g̃g ∈ H

∗ otherwise.
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Equivalently, this is specified by the H-map from F (H+, S
0) to F (G+, S

0) that is
the extension by 0. The space-level map of Equation (C.1.3) induces a spectrum-
level map

(C.1.5) G+ ∧H F (H+,S)→ F (G+,S).

We now turn to a discussion of the Adams isomorphism, which is more subtle.
The Adams isomorphism for a normal subgroupH ⊂ G relates two functors defined
on the subcategory of H-free objects in SpUG. Here recall the definition of an H-free
spectrum. Let EFH denote the classifying space for the family of subgroups such
that the intersection with H is trivial; this is determined up to homotopy by the
requirement that

(C.1.6)

{
(EFH)K ≃ ∗ K ∩H = {e}
(EFH)K = ∅ K ∩H 6= {e}.

For example, when H = G, EFH is a model of EG. A canonical model of EFH

can be constructed using Elmendorf’s theorem [Elm83].

Definition C.1. An orthogonal G-spectrum X is H-free if the natural map

(C.1.7) EFH ∧X → X

is an equivalence.

For example, the category of G-free spectra is the Borel equivariant category. In
analogy with the discussion in Section A.1.9, we can equivalently describe the full

subcategory of H-free spectra in SpUG as the category SpU
H

G of orthogonal G-spectra
on the universe UH .

For H ⊂ G a normal subgroup, the orbits (−)H determine a functor

(C.1.8) (−)H : SpU
G → SpU

H

G/H ,

and the H-fixed points (−)H determine a functor

(C.1.9) (−)H : SpU
G → SpU

H

G/H .

The Adams isomorphism asserts that when restricted to the category of H-free
spectra in SpUG, these functors are naturally equivalent as the next theorem asserts.
For its statement, to compute the derived H-fixed points, we fibrantly replace in
the complete universe U (rather than universe UH).

Theorem C.2. There is a derived natural transformation

(C.1.10) (−)H → (−)H

that is a weak equivalence when restricted to the full subcategory of H-free spectra
in SpU

G.

Example C.3. When H = G, this implies a natural equivalence

(C.1.11) EG+ ∧G X ≃ (QUX)G.

We will need a point-set model of this equivalence. As preparation for construct-
ing this, it is useful to recall the framework for the classical proof of the Adams
isomorphism; see [LMSM86, II.7]. Take N ⊂ G to be a normal subgroup, and
let ρ : G → G/N be the quotient map. Let Γ = G ⋊ N denote the semidirect
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product with respect to the conjugation action. There are natural homomorphisms
θ, ǫ : Γ→ G specified by the assignments

(C.1.12) θ(g, n) = gn ǫ(g, n) 7→ g.

There is an isomorphism ker(ǫ) ∼= N ; we will denote this subgroup of Γ by Ñ . In
fact, Γ/G ∼= N as Γ-sets, where the action of Γ on N is the evident combination of
conjugation by G and the action of N on itself by left multiplication, i.e., (g,m)n =
g(mn)g−1.

Remark C.4. The reason to introduce the semidirect product action is that in
general X ∧N N cannot be given a G-action which makes it homeomorphic to X
as a G-space or spectrum. On the other hand, there is always a homeomorphism

(C.1.13) θ∗X ∧Ñ N ∼= X

as G-spaces or spectra.

The core of the Adams isomorphism is the transfer τ : S→ Σ∞+N in Γ-spectra
associated to the collapse map N → ∗ (regarded as a map of Γ-sets). Specifically,

given an N -free G-spectrum X , we can produce an equivalent Ñ -free Γ-spectrum
on a complete Γ-universe; denote this spectrum by X̃ . The Adams isomorphism is
then induced by the transfer

(C.1.14) τ : X̃ → N+ ∧ X̃,

as follows. Passing to orbit spectra with regard to Ñ , we obtain a map

(C.1.15) τ/Ñ : ρ∗X/N ∼= X̃/Ñ → (N+ ∧ X̃)/Ñ ∼= X

of G-spectra on the complete universe, where we are implicitly pushing forward
from the N -fixed universe to the complete universe. Since ρ∗ is the left adjoint of
the functor (−)N , this is equivalent to a map of G/N -spectra

(C.1.16) X/N → XN .

The theorem is now that this map is an equivalence. Once again, we emphasize that
in order to compute the codomain of this map, we require a fibrant replacement
of X with respect to the complete universe. The statement is wildly false if we do
not use the derived fixed points in SpUG, as the example of the spectrum Σ∞G+

demonstrates.
Understanding the functoriality and multiplicative properties of the Adams iso-

morphism therefore boils down to studying the behavior of the transfer map τ . It
is not hard to verify that the transfer commutes with the external smash prod-
uct in the homotopy category (e.g., see [LMSM86, III.5.10]). Our work requires
rigidifying this structure. One way to do this is to enlarge the category to keep
track of the embeddings required for the Pontryagin-Thom construction; this is the
kind of approach that is taken in Cohen’s description of Atiyah duality as an E∞

map [Coh04]. Although it would be possible to take the same tack here, we take a
different approach that avoids the need for tracking this data, in part by working
on the other side of the Wirthmuller isomorphism.

We now describe various technical underpinnings of the approach we take. First,
we consider the model of the transfer expressed as S→ FΓ(N+,S) to obtain a map

(C.1.17) X̃ → X̃ ∧ FΓ(N+,S).
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Passing to orbits and taking the adjoint again yields the Adams map, now written
as

(C.1.18) X/N → (X̃ ∧ FΓ(N+,S)/N)N .

The transfer S → FΓ(N+,S) is evidently strictly multiplicative in the sense that
the diagram
(C.1.19)

SΓ1 ∧ SΓ2 SΓ1×Γ2

FΓ1((N1)+,SΓ1) ∧ FΓ2((N2)+,SΓ2) FΓ1×Γ2((N1 ×N2)+,SG1×G2)

commutes, where we are working in point-set categories of orthogonal G-spectra.
We decorate the sphere spectrum in the top row to indicate the category of spectra
involved.

Next, we recall the following convenient point-set model of the Adams isomor-
phism, due to Schwede [Sch19, §8]. We are going to focus on the case where N = G,
in which case the semidirect product Γ is simply G × G. That is, we work with
orthogonal spectra with commuting left and right G actions, which we call biequiv-
ariant. We write Gr when considering the right action and omit any subscript from
the notation when considering the left action.

Lemma C.5. For an orthogonal G-spectrum X, the tensor G+∧X is a biequivari-
ant spectrum. Passing to derived G-fixed points produces a G-spectrum (QU(G+ ∧
X))G.

There is a natural map

(C.1.20) α1(G,U) : (QU (G+ ∧X))G ∧G EG+ → (QU (X ∧ EG+))
G

induced by the action of G on EG. On the other hand, the Wirthmuller isomor-
phism yields a comparison

(C.1.21) α2(G,U) : (QU (G+ ∧X))G ∧G EG+ → (QUF (G,X))G ∧G EG+.

Finally, there is a natural map

(C.1.22) α3(G,U) : EG+ ∧G X ∼= X ∧G EG+ → (QUF (G,X))G ∧G EG+

induced by the natural map X → (F (G,X))G, which is a map of orthogonal G-
spectra when X is biequivariant.

Putting this together, we can give the following point-set model of the Adams
isomorphism.

Definition C.6. Let X be an orthogonal G-spectrum. The Adams zig-zag is the
comparison of EG+ ∧G X and (QU (X ∧ EG+))

G constructed as the composite of
α1, α2, and α3.

The statement of the Adams isomorphism is that the Adams zig-zag is a weak
equivalence.

Theorem C.7. The Adams zig-zag is through weak equivalences. Thus, when X
is a G-free orthogonal G-spectrum, the zig-zag represents a natural isomorphism in
the stable category between XhG and XG.
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Next, we discuss the multiplicativity of the maps in the Adams zig-zag. All
of these facts are essentially consequences of the fact that Q(−)(−) is externally

multiplicative and (−)H is externally lax monoidal.

Lemma C.8. Given an orthogonal G1-spectrumX1 and an orthogonal G2-spectrum
X2, there are natural product maps

(C.1.23)

(QU1(G1,+ ∧X1))
G1 ∧G1 EG1,+ ∧ (QU2(G2,+ ∧X2))

G2 ∧G2 EG2,+

(QU1⊕U2((G12)+ ∧ (X1 ∧X2)))
G12 ∧G12 EG12,+

µ

and

(C.1.24)

(QU1(X1 ∧EG1,+))
G1 ∧ (QU2(X2 ∧ EG2,+))

G2

(QU1⊕U2((X1 ∧X2) ∧EG12,+))
G12 ,

µ′

where we write G12 = G1 ×G2. These product maps are compatible with α1(−,−)
in the sense that

(C.1.25) µ′ ◦ (α1(G1,U1) ∧ α1(G2,U2)) = α1(G1 ×G2,U1 ⊕ U2) ◦ µ.

Moreover, the evident associativity and unitality diagrams commute as well.

Lemma C.9. Given an orthogonal G1-spectrum X and an orthogonal G2-spectrum
X2, there are natural product maps
(C.1.26)(

(QU1(G1,+ ∧X1))
G1 ∧G1 EG1,+

)
∧
(
(QU2(G2,+ ∧X2))

G2 ∧G2 EG2,+

)

(QU1⊕U2(G12,+ ∧ (X1 ∧X2)))
G12 ∧G12 EG12,+

and

(C.1.27)

(
(QU1F (G1, X1))

G1 ∧G1 EG1,+

)
∧
(
(QU2F (G2, X2))

G2 ∧G2 EG2,+

)

(QU1⊕U2F (G12, X1 ∧X2))
G12 ∧G12 EG12,+,

where we write G12 = G1×G2. These products maps are compatible with α2(−,−)
in the sense that

(C.1.28) µ′ ◦ (α2(G1,U1) ∧ α2(G2,U2)) = α2(G1 ×G2,U1 ⊕ U2) ◦ µ.

Moreover, the evident associativity and unitality diagrams commute as well.
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Proof. This result ultimately depends on the fact that the Wirthmuller map is
externally multiplicative in the sense that the diagram

(C.1.29)

((G1)+ ∧X1) ∧ ((G2)+ ∧X2) F ((G1)+, X1) ∧ F ((G2)+, X2)

(G12)+ ∧ (X1 ∧X2) F ((G12)+, X1 ∧X2)

commutes as a diagram of orthogonal G12-spectra. �

Lemma C.10. Given an orthogonal G1-spectrumX1 and an orthogonal G2-spectrum
X2, there are natural product maps

(C.1.30)

(EG1,+ ∧G1 X1) ∧ (EG2,+ ∧G2 X2)

EG12,+ ∧G12 (X1 ∧X2)

and

(C.1.31)

EG1,+ ∧G1 (QU1F (G1, X1))
G1 ∧ EG2,+ ∧G2 (QU2F (G2, X2))

G2

EG12,+ ∧G12 (QU1⊕U2F (G12, X1 ∧X2))
G12

where we write G12 = G1 ×G2. These product maps are compatible with α3(−,−)
in the sense that

(C.1.32) µ′ ◦ (α3(G1,U1) ∧ α3(G2,U2)) = α3(G1 ×G2,U1 ⊕ U2) ◦ µ.

Putting this all together, we summarize in the following proposition.

Proposition C.11. The Adams zig-zag is compatible with the external smash prod-
uct of spectra.

In the remainder of this appendix, we will establish a pointwise model for the
functoriality of the Adams isomorphism with respect to change of groups. This
depends in part on the functoriality of the Wirthmuller isomorphism, and is clearly
more complicated than simple functoriality in the category of equivariant spectra;
given a map f : (G,X)→ (G′, Y ), there is a zig-zag

(C.1.33) F (G+, X) F (G+, f
∗Y ) F (G′

+, Y )

of orthogonal G-spectra.

C.2. Fibrewise mappings spaces. As discussed in Section 7.3.1, functoriality
for Spanier-Whitehead duality isomorphism with respect to covering maps is con-
veniently expressed using a notion of fibrewise Spanier-Whitehead duality; we will
employ the same approach to express the functoriality of Adams isomorphisms, so
we introduce the relevant fibrewise spaces in this section.
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C.2.1. Construction of fibrewise mapping spaces. Let G be a finite group and N ⊆
G a normal subgroup. Fix a complete universe U and let Y be an orthogonal G-
spectrum. We shall consider Y as an orthogonal Γ-spectrum θ∗Y indexed on the
universe θ∗U . As in the discussion surrounding Remark C.4, we write Ñ for the
normal subgroup {1, n} ⊂ Γ which isomorphic to N . There is an action of Γ on N
specified by the assignment (g, n)x 7→ gnxg−1.

Definition C.12. For each spectrum k, the spectrum of maps from Y to k over
Y/N is the orthogonal G-spectrum ℱY/N (Y, k), indexed on the universe U , given
by

(C.2.1) ℱY/N (Y, k) ≡ θ∗Y ∧Ñ F (N+, k
mfib),

where the G-action is induced by the canonical isomorphism Γ/Ñ ∼= G and the
action of G on F (N+, k

mfib) is induced by the G-action on N .

This spectrum is intended as a model of the total space of the “bundle” Y →
Y/N , where we are working with the Spanier-Whitehead dual of N . To compare
to the usual construction, we will make use of the duality stable equivalence

(C.2.2) η : Σ∞N+ → F (N+,S),

constructed as in Equation (C.1.1) but regarded as a map of Γ-spectra.

Example C.13. If X is a based G-space, then the spectrum ℱΣ∞X/N (Σ∞X,S) may
be interpreted as the total space of the fibrewise Spanier-Whitehead dual of X over
X/N . Indeed, if we ignore equivariance, the space assigned by this spectrum to a
finite-dimensional real vector space W receives a natural map from

(C.2.3) θ∗X ∧Ñ Map(N+, S
W ) ∼= ℳapX/N (X,SW ),

where the right hand side is the space of fibrewise maps from X to SW over X/N ,
and SW denotes the space over X/N with total space the product SW × X/N
and structure map the evident projection. Recall that this space is constructed
by first considering the space ℳap′

X/N (X,SW ) of fibrewise unbased maps from X

to SW × X/N . Since the map X → X/N is open, this space is weak Hausdorff
(see [Lew85, Proposition 1.5]) and admits a closed section consisting of basepoint-
valued maps, whose quotient is ℳapX/N (X,SW ). See e.g., [MS06, 1.3.7] for a more
general discussion of such mapping spaces.

The passage to fiberwise mapping spectra is multiplicative in the following sense.

Lemma C.14. Let Y1 be an orthogonal G1-spectrum and let Y2 be an orthogonal
G2-spectrum. For normal subgroups N1 ⊆ G1 and N2 ⊆ G2, there are natural
product maps of G1 ×G2-spectra

(C.2.4) ℱY1/N1
(Y1, k) ∧ℱY2/N2

(Y2, k)→ ℱ(Y1∧Y2)/(N1×N2)(Y1 ∧ Y2, k)

that are associative and unital.

Proof. The pairings in question are induced by the natural maps
(C.2.5)

Y1∧Ñ1
F (N1,+, k

mfib)∧Y2∧Ñ2
F (N2,+, k

mfib)→ Y1∧Y2∧ ˜(N1×N2)
F (N1,+∧N2,+, k

mfib)

where here we are using the fact that there is an evident natural isomorphism of
groups

(C.2.6) (G1 ⋊H1)× (G2 ⋊H2) ∼= (G1 ×G2)⋊ (H1 ×H2).
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Associativity is straightforward to verify using the associativity of the external
smash product and the pairings on mapping spectra. For unitality, observe that
S ∧ẽ F (e+, k

mfib) ∼= kmfib. �

To construct our comparison zig-zag, we begin with the following observation:

Lemma C.15. Let Y be an N -free G-spectrum. There are natural G-maps

(C.2.7) Y ∧ k ℱY/N (Y, k) ((θ∗Y ) /Ñ) ∧ k,≃

where the indicated map is an equivalence.

Proof. The left arrow (which is an equivalence) is induced by the composition

(C.2.8) Y ∧ k→ ((θ∗Y ) ∧Ñ N+) ∧ k→ (θ∗Y ) ∧Ñ F (N+, k
mfib),

where the map N+ ∧ k → F (N+, k
mfib) is the duality map η. The right arrow

is induced by the map k → F (N+, k
mfib) induced by the projection N+ → S0

(regarded as a map of Γ-spaces). �

The above construction has the correct derived functors when Y is a cofibrant
N -free G-spectrum. Next, assume that V is a finite-dimensional G-representation,
and define the desuspended mapping space as follows:

(C.2.9) ℱY/N (Y, k)−V ≡ Σ−V
(
θ∗Y ∧Ñ F (N+, k

mfib)
)
.

We can immediately deduce the following refinement of Lemma C.15.

Corollary C.16. There are natural G-maps

(C.2.10) Σ−V Y ∧ k ℱY/N (Y, k)−V Σ−V ((θ∗Y ) /Ñ) ∧ k
≃

where the indicated map is an equivalence. �

We now consider the interaction of this construction with the Borel construction

(C.2.11) BY −V ≡ EG+ ∧G (Σ−V Y ).

Let us denote by J the quotient G/N , and consider a J-representation V . We will
also tacitly write V to denote the pullback G-representation p∗V induced by the
projection p : G→ J . As above, the map N+ ∧k→ F (N+, k

mfib) induces a natural
map

(C.2.12)

BY −V ∧ k→ ℱEY/N (EY, k)−V /G

EG+ ∧G (Σ−V Y ) ∧ k→ EG+ ∧G (Σ−V (θ∗Y ∧Ñ F (N+, k
mfib)))

→ (Σ−V
(
θ∗(EG+ ∧ Y ) ∧Ñ F (N+, k

mfib)
)
)/G

where the notation EY denotes EG+ ∧ Y . On the other hand, using the identifi-
cation ((EY )/N)/J ∼= BY , we have a map

(C.2.13) BY −V ∧ k = EG+ ∧G Y −V ∧ k→ ℱBY ((EY )/N, k)−V /J,

constructed as follows: unpacking the notation, the target of our desired map is

(C.2.14) ℱBY ((EY )/N), k)−V /J =
(
Σ−V ((EG+ ∧N Y )) ∧J̃ F (J+, k)

)
/J,

where J̃ is the subgroup {(1, j) | j ∈ J} of J ⋉ J ∼= J × J .
The map in question is thus simply the map

(C.2.15)
BY −V ∧ k = ((EG+ ∧N Y )/J)−V ∧ k→

(
Σ−V ((EG+ ∧N Y ) ∧J̃ F (J+, k)

)
/J
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induced by the duality map J+ ∧ k→ F (J+, k
mfib) and passage to J-orbits.

Next, we consider the map

(C.2.16) (EY )/N ≡ EG+ ∧N Y → EJ+ ∧N Y/N ≡ E(Y/N)

induced by the projections EG → EJ and Y → Y/N , where the second identifi-
cation uses the fact that N acts trivially on both EJ and Y/N . This induces the
horizontal arrows in the following commuting diagram:

(C.2.17)

ℱBY ((EY )/N, k) ℱB(Y/N)(E(Y/N), k)

(EY )/N ∧J̃ F (J+, k) E(Y/N) ∧J̃ F (J+, k).

= =

Similarly, the fact that N acts trivially on F (J+, k) yields an isomorphism

(C.2.18) (EY )/N ∧J̃ F (J+, k)→ EY ∧G̃ F (J+, k),

whose composition with the adjoint of the projection G+ → J+ yields a map

(C.2.19)

ℱBY (EY, k) ℱBY ((EY )/N, k)

EY ∧G̃ F (G+, k) (EY )/N ∧J̃ F (J+, k).

= =

Finally, we have a map

(C.2.20) ℱEY/N (EY, k)−V → ℱBY (EY, k)−V .

Writing this out, this is the map
(C.2.21)
EY ∧Ñ F (N+, k

mfib) ∼= EY ∧G
(
G+ ∧Ñ F (N+, k

mfib)
)
→ EY ∧G̃ F (G+, k

mfib)

induced by the relative Wirthmuller map from Equation (C.1.5):

(C.2.22) G+ ∧Ñ F (N+, (k)
mfib)→ F (G+, (k)

mfib).

Putting this all together, we have the following result summarizing the situation,
which expresses the functoriality of the these fiberwise mapping spectra and records
the fact that they have the correct homotopy type pointwise.

Lemma C.17. The following diagram of orthogonal spectra commutes, and the
arrows between spectra in the first two rows are equivalences.
(C.2.23)

BY −V ∧ k ℱBY (EY, k)−V /G BY −V ∧ k

ℱBY ((EY )/N, k)−V /J ℱ(EY )/N (EY, k)−V /G

BY −V ∧ k

BY/N−V ∧ k ℱB(Y/N)(E(Y/N), k)−V /J BY/N−V ∧ k

�



354 M. ABOUZAID AND A.J. BLUMBERG

We now turn to describing the functorial and multiplicative properties of these
constructions, which will allow us to assemble them into spectral categories.

C.2.2. Functoriality of fibrewise mapping spaces over BY . To express the functori-
ality of the fiberwise mapping spaces and the coherent comparisons that we require,
it is useful to define a category which encodes the key aspects of the functoriality.

Definition C.18. Let Sp−Vect
eq denote the category with

(1) Objects the triples (G, Y, V ), where G is a finite group, Y a cofibrant or-
thogonal G-spectrum, and V a finite-dimensional G-inner product space.

(2) Morphisms f : (G, Y, V )→ (G′, Y ′, V ′) given by
(a) a surjection f : G→ G′ with kernel G⊥

f acting freely on Y ,

(b) a G-equivariant isometric embedding V → V ′ with cokernel V ⊥
f ,

(c) and a G-equivariant map

(C.2.24) SV ⊥
f ∧ Y → f∗Y ′.

Remark C.19. Our interest in this category arises from the existence of a natural
functor from the category of cubes of Kuranishi charts

�ChartK → Sp−Vect
eq(C.2.25)

σ 7→ (Gσ, Xσ|Zσ, Vσ),(C.2.26)

as discussed in Equation (7.3.62).

The category Sp−Vect
eq admits a natural monoidal structure.

Proposition C.20. The category Sp−Vect
eq is a symmetric monoidal category with

the product of (G0, Y0, V0) and (G1, Y1, V1) given by

(C.2.27) (G0 ×G1, Y0 ∧ Y1, V0 ⊕ V1)

and unit ({e}, ∗, {0}). �

We also need a refinement of the category Sp−Vect
eq .

Definition C.21. Let Sp−Vect
eq,Sub denote the category with:

(1) Objects the quadruples (G, Y, V,N) where (G, Y, V ) is an object of Sp−Vect
eq

and N ⊆ G is a subgroup that acts freely on Y/G⊥
f .

(2) Morphisms f : (G0, Y0, V0, N0) → (G1, Y1, V1, N1) specified by a morphism

f : Sp−Vect
eq such that N1 ⊆ f(N0).

The category Sp−Vect
eq,Sub also admits a natural monoidal structure extending the

one on Sp−Vect
eq,Sub.

Proposition C.22. The category Sp−Vect
eq is a symmetric monoidal category with

the product of (G0, Y0, V0, N0) and (G1, Y1, V1, N0) given by

(C.2.28) (G0 ×G1, Y0 ∧ Y1, V0 ⊕ V1, N0 ×N1)

and unit ({e}, ∗, {0}, {0}). The evident forgetful functor

(C.2.29) Sp−Vect
eq,Sub → Sp−Vect

eq

is strong symmetric monoidal. �
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We now begin to express the functoriality of our constructions in terms of these
indexing categories. We begin with the Borel construction, which plays a central
role in the definition of the virtual cochains.

Definition C.23. The Borel construction defines a lax monoidal functor

Sp−Vect
eq → Sp(C.2.30)

(G, Y, V ) 7→ BY −V ,(C.2.31)

which corresponds to the first column of Equation (C.2.23), in the sense that the
arrow BY −V → B(Y/N)−V is the image under this functor of the morphism

(C.2.32) (G, Y, V )→ (G/N, Y/N, V )

specified by the canonical surjections G→ G/N and Y → Y/N along with the map
induced by the identity map V → V .

Our goal is to assemble the pointwise comparisons

(C.2.33) BY −V → ℱBY (EY, k)−V /G

into functorial comparisons. However, consideration of the functoriality of the
assignment

(C.2.34) (G, Y, V ) 7→ ℱBY (EY, k)−V /G

(as reflected in the second column in (C.2.23)) makes it clear that we need to en-

large the domain category from Sp−Vect
eq in order to capture the functoriality of the

comparison. Thus, we use the twisted arrow category TwSp−Vect
eq . In the back-

ground here is the comparison between functors out of the twisted arrow category
and spans; see Section A.8, specifically Theorem A.177.

First, using the evident projection map

(C.2.35) Tw Sp−Vect
eq → Sp−Vect

eq

which assigns to each arrow its source, we can regard the assignment

(C.2.36) (f : (G, Y, V )→ (G′, Y ′, V ′)) 7→ BY −V

as a functor from TwSp−Vect
eq to spectra. We now turn to the fiberwise mapping

spectra.

Notation C.24. Given an arrow f : (G, Y, V )→ (G′, Y ′, V ′), we write

(C.2.37) (EY )f ≡ EY/G⊥
f = EG+ ∧G⊥

f
Y.

Via the isomorphism G/G⊥
f
∼= G′, the spectrum (EY )f admits a natural action of

G′, and we write

(C.2.38) BYf = (EY )f/G
′.

Given a G-representation V , we have an orthogonal G′-spectrum

(C.2.39)
ℱ(BY )f ((EY )f , k)

−V ≡ Σ−V (EY )f ∧G̃′ F (G′
+, k)

∼= (Σ−V EY )f ∧G̃′ F (G′
+, k),

where here we are regarding V as aG′-representation via the G-embedding V → V ′.
We will consider the assignment

(C.2.40) f 7→ ℱ(BY )f ((EY )f , k)
−V /G′ ≡

(
(EY )f ∧G̃′ F (G′

+, k)
)
/G′
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for each arrow f in Sp−Vect
eq . For the proof of the next result, it is convenient to

write Yf for the quotient Y/G⊥
f .

Lemma C.25. Let f0 and f1 be maps in Sp−Vect
eq . Each factorization

(C.2.41)

(G0, Y0, V0) (G′
0, Y

′
0 , V

′
0)

(G1, Y1, V1) (G′
1, Y

′
1 , V

′
1)

f0

g

f1

h

induces a map

(C.2.42) ℱBY0((EY )f0 , k)
−V0 → ℱBY1((EY )f1 , k)

−V1

of orthogonal G′
1-spectra.

Proof. The map is a composition of several maps which we now define. First, since
there is an isomorphism

(C.2.43) (EY )f0
∼= (EY )f1◦g/G

⊥
h ,

we have an induced map
(C.2.44)
(EY )f0 ∧G̃′

0

F (G′
0,+, k)→ (EY )f1◦g ∧G̃′

1

F (G′
0,+, k)→ (EY )f1◦g ∧G̃′

1

F (G′
1,+, k),

which yields a map

(C.2.45) ℱBY0((EY )f0 , k)
−V0 → ℱBY0((EY )f1◦g, k)

−V0

after desuspension. Next, observe that the map G0 → G1 induces a surjection
G⊥

f1◦g
→ G⊥

f1
; as in Equation (C.2.16), this yields a map

(C.2.46)
(EY )f1◦g = (EG0,+ ∧ Y0)/G

⊥
f1◦g

→
(
(EG0,+ ∧ Y0)/G

⊥
g

)
= ((EY )g)f1/G

⊥
f1 .

Passing to fibrewise mapping spaces gives

(C.2.47) ℱBY0((EY )f1◦g, k)
−V0 → ℱBY0((EYg)f1 , k)

−V0 .

Next, the splitting V1
∼= V0 ⊕ V ⊥

g induces a map
(C.2.48)

F (SV0 , (EYg)f1 ∧G̃′
1
F (G′

1,+, k
mfib))→ F (SV1 , SV ⊥

g ∧ (EYg)f1 ∧G̃′
1
F (G′

1,+, k
mfib))

by smashing with SV ⊥
g on both sides. Composing with the natural map

(C.2.49)
SV ⊥

g ∧ (EYg)f1 = SV ⊥
g ∧

(
(EG0,+ ∧ Y0)/G

⊥
g

)
/G⊥

f1

→ (EG1,+ ∧ SV ⊥
g ∧ (Y0/G

⊥
g ))/G

⊥
f1 = (E(SV ⊥

g ∧ Yg))f1 ,

yields

(C.2.50) ℱBYg
((EYg)f1 , k)

−V0 → ℱ
B(S

V ⊥
g ∧Yg)

(E(SV ⊥
g ∧ Yg)f1 , k)

−V1 .

Finally, we have a map SV ⊥
g ∧ Yg → Y1 induced by the map SV ⊥

g ∧ Y0 → Y1 and
the fact that G⊥

g acts trivially on Y1. This map induces a map

(C.2.51) ℱ
B(S

V ⊥
g ∧Yg)

(E(SV ⊥
g ∧ Yg)f1 , k)

−V1 → ℱBY1((EY )f1 , k)
−V1 .
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The desired map is then obtained as the composition of the maps constructed
above. �

The assignment of Lemma C.25 is functorial; passing to orbits over G′
1 yields

the following essential result.

Corollary C.26. The assignment

(C.2.52) f 7→ ℱ(BY )f ((EY )f , k)
−V /G′ ≡

(
(EY )f ∧G′ F (G′

+, k)
)
/G′

defines a lax monoidal functor

(C.2.53) Tw Sp−Vect
eq → Sp .

Proof. We begin by considering the composition in the case of the diagram

(C.2.54)

(G0, Y0, V0) (G′
0, Y

′
0 , V

′
0)

(G1, Y1, V1) (G′
0, Y

′
0 , V

′
0)

(G1, Y1, V1) (G′
1, Y

′
1 , V

′
1),

f0

g

id

h◦f1

id

f1

h

which we need to compare with

(C.2.55)

(G0, Y0, V0) (G′
0, Y

′
0 , V

′
0)

(G2, Y2, V2) (G′
2, Y

′
2 , V

′
2).

f0

g

f1

h

The map determing by the bottom square in Equation (C.2.54) is the map

(C.2.56) ℱBY1((EY )h◦f1 , k)
−V1 → ℱBY1((EY )f1 , k)

−V1

specified in Equation (C.2.44) above; the other terms in the composite of Lemma C.25
are the identity. In contrast, for the top square in Equation (C.2.54), the arrow
induced by Equation (C.2.44) is the identity map. The associated map is the com-
posite of the map

(C.2.57) ℱBY0((EY )f0 , k)
−V0 → ℱBY0((EYg)h◦f1 , k)

−V0

of Equation (C.2.47), the map

(C.2.58) ℱBYg
((EYg)h◦f1 , k)

−V0 → ℱ
B(S

V ⊥
g ∧Yg)

(E(SV ⊥
g ∧ Yg)h◦f1 , k)

−V1

of Equation (C.2.50), and

(C.2.59) ℱ
B(S

V ⊥
g ∧Yg)

(E(SV ⊥
g ∧ Yg)h◦f1 , k)

−V1 → ℱBY1((EY )h◦f1 , k)
−V1

of Equation (C.2.51). Checking that the composite coincides with the map as-
sociated to Equation (C.2.55) is now an exercise in commuting orbits past each
other.

Checking the compatibility of composition of a pair of maps of the form (id, h0)
and (id, h1) is a straightforward commutation of orbits, as follows. All maps are
induced simply by Equation (C.2.44) above. So for the composite, we have the
maps

(C.2.60) ℱBY0((EY )f0 , k)
−V0 → ℱBY0((EY )f1 , k)

−V0
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and

(C.2.61) ℱBY0((EY )f1 , k)
−V0 → ℱBY0((EY )f2 , k)

−V0 ,

which we are comparing to the map

(C.2.62) ℱBY0((EY )f0 , k)
−V0 → ℱBY0((EY )f2 , k)

−V0 .

These coincide because the composite isomorphism

(C.2.63) (EY )f0
∼= (EY )f1/G

⊥
h0
∼=

(
(EY )f2/G

⊥
h1

)
/G⊥

h0

is the same as the isomorphism (EY )f0
∼= (EY )f2/G

⊥
h0◦h1

.
To check the composition associated to a pair of maps of the form (g0, id) and

(g1, id), we use the fact that given a composite

(C.2.64) (G0, Y0, V0) (G1, Y1, V1) (G2, Y2, V2),
g0 g1

the splittings V2
∼= V0⊕V ⊥

g1◦g0 and V2
∼= V1⊕(V1)

⊥
g0
∼= V0⊕(V0)

⊥
g1⊕(V1)

⊥
g0 coincide in

the sense that the data specifies a canonical identification V ⊥
g1◦g0

∼= (V0)
⊥
g1 ⊕ (V1)

⊥
g0 .

Checking the compatibility of the composition of the maps associated to (g, h)
and (id, h′) essentially follows from the work we have already done, and so we can
conclude that the assignment indeed specifies a functor.

The fact that this is a lax monoidal functor follows from Lemma C.14, the
compatibility of orbits with the external monoidal product, and the compatibility
of the splittings of the representations with the product. �

We now realize the maps in the first two columns of Diagram (C.2.23) as the
following comparison of functors on the twisted arrow category.

Lemma C.27. There is a zig-zag of lax monoidal natural transformations through
equivalences connecting the functors BY −V ∧k and ℱBY ((EY )f , k)

−V /G′ on TwSp−Vect
eq .

Proof. First, we construct the pointwise comparison and show it is a weak equiv-
alence. For an object (f : (G0, Y0, V0)→ (G′

0, Y
′
0 , V

′
0)) in TwSp−Vect

eq , there is a
natural weak equivalence

(C.2.65) BY −V
0 ∧ k→ ℱBY0((EY )f , k)

−V /G′
0,

induced as follows. Writing this out, this is a weak equivalence
(C.2.66)

(EG0,+ ∧ (Σ−V0Y0))/G0 →
(((

EG0,+ ∧ (Σ−V0Y0)
)
/G⊥

f

)
∧G′

0
F (G′

0,+, k)
)
/G′

0.

Recall from Equation (C.2.12) that we can construct this weak equivalence using
the isomorphism (Y0/G

⊥
f )/G

′
0
∼= Y0/G0.

Next, we show that given a morphism

(C.2.67)

(G0, Y0, V0) (G′
0, Y

′
0 , V

′
0)

(G1, Y1, V1) (G′
1, Y

′
1 , V

′
1).

f0

g

f1

h
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the diagram

(C.2.68)

BY −V0
0 ℱBY0((EY )f0 , k)

−V0/G′
0

BY −V1
1 ℱBY1((EY )f1 , k)

−V1/G′
1

commutes. To see this, we use the description of natural transformations from
Lemma A.175. From this perspective, the data of the natural transformation is
specified by commutative diagrams

(C.2.69)

BY −V0
0 ℱ(BY )f0

((EY )f0 , k)
−V0/G′

0

ℱ(BY )f1◦g
((EY )f1◦g, k)

−V0/G′
1

associated to the factorization f0 = g ◦ (h ◦ f1) ◦ id and

(C.2.70)

BY −V0
0 ℱ(BY )f1◦g

((EY )f1◦g, k)
−V0/G′

1

BY −V1
1 ℱ(BY )f1

((EY )f1 , k)
−V1/G′

1

associated to the factorization (f1 ◦ g) = id ◦f1 ◦ g.
Writing it out, the top square is the diagram

(C.2.71)

(EG0,+ ∧ (Σ−V0Y0))/G0

(((
EG0,+ ∧ (Σ−V0Y0)

)
/G⊥

f

)
∧G′

0
F (G′

0,+, k)
)
/G′

0

(((
EG0,+ ∧ (Σ−V0Y0)

)
/G⊥

f1◦g

)
∧G′

1
F (G′

1,+, k)
)
/G′

1,

where the vertical map is induced by Equation (C.2.44). To see that this commutes,
note that the vertical map is induced by the isomorphism (EY )f0

∼= (EY )f1◦g/G
⊥
h

and the horizontal maps by the isomorphisms

(C.2.72) (Y0/G
⊥
f0)/G

′
0
∼= Y0/G0 and (Y0/G

⊥
f1◦g)/G

′
1
∼= Y0/G0.

The bottom square is the diagram
(C.2.73)

(EG0,+ ∧ (Σ−V0Y0))/G0

(((
EG0,+ ∧ (Σ−V0Y0)

)
/G⊥

f1◦g

)
∧G′

1
F (G′

1,+, k)
)
/G′

1

(EG1,+ ∧ (Σ−V1Y1))/G1

(((
EG1,+ ∧ (Σ−V1Y1)

)
/G⊥

f1

)
∧G′

1
F (G′

1,+, k)
)
/G′

1.

The horizontal maps are induced by the isomorphisms

(C.2.74) (Y0/G
⊥
f1◦g)/G

′
1
∼= Y0/G0 and (Y0/G

⊥
f1)/G

′
1
∼= Y1/G1.

and the vertical maps are clearly compatible with these maps. �

The same arguments also establish the following small extension of this result.
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Lemma C.28. There is a zig-zag of lax monoidal natural transformations through
equivalences

(C.2.75) BY −Vf ∧ k ≃ℱBY ((EY )f , k)
−Vf /G′

on TwSp−Vect
eq .

C.2.3. Functoriality of fibrewise mapping spaces over intermediate quotients. We
now expand the discussion above to the setting of the twisted arrow category
TwSp−Vect

Sub . Given an arrow (G, Y, V,N)→ (G′, Y ′, V ′, N ′) in Sp−Vect
Sub , we consider

the orthogonal G′-spectrum

(C.2.76) f 7→ ℱEYf/N ′(EYf , k)
−V ≡ (EY )f ∧Ñ ′ F (N ′

+, k)

where we again write Yf for the quotient of Y with respect to the kernel G⊥
f of

G→ G′.
We again will show that this assignment induces a functor from the twisted arrow

category.

Lemma C.29. Each factorisation

(C.2.77)

(G0, Y0, V0, N0) (G′
0, Y

′
0 , V

′
0 , N

′
0)

(G1, Y1, V1, N1) (G′
1, Y

′
1 , V

′
1 , N

′
1)

f0

g

f1

h

induces a natural map of G′
1-spectra:

(C.2.78) ℱEYf0
/N ′

0
(EYf0 , k)

−Vf0 → ℱEYf1
/N ′

1
(EYf1 , k)

−Vf1

Proof. We have a natural map Vf0 → Vf1 , with complement V ⊥
g . By adjunction, it

suffices to construct a map

(C.2.79) SV ⊥
g ∧ℱEYf0

/N ′
0
(EYf0 , k)→ ℱEYf1

/N ′
1
(EYf1 , k).

Recall that EYf0
∼= EY0/G

⊥
f0
. Factoring f0 = h ◦ f1 ◦ g, we obtain the isomorphism

EYf0
∼= EYg/G

⊥
h◦f1

. Since the data of the map g specifies a map SV ⊥
g ∧ (EY )g →

EY1, we have a natural map

(C.2.80)

SV ⊥
g ∧ℱ(EY )f0/N

′
0
((EY )f0 , k)

ℱ
(S

V ⊥
g ∧(EY )g)/(h◦f1)−1N ′

0

((SV ⊥
g ∧ (EY )g)/G

⊥
h◦f1

, k).

Thus, it suffices to construct a map from the target to ℱ(EY )f1/N
′
1
((EY )f1 , k).

We have a natural map

(C.2.81) SV ⊥
g ∧ (EY )g → EY1 → (EY )f1 ,

so it suffices to show that this map descends to the quotients. This follows from
the inclusion h−1(N ′

0) ⊂ N ′
1, and the isomorphisms:

(C.2.82) (EY )f1/N
′
1 ≡ EY1/f

−1
1 (N ′

1) (EY )f0/N
′
0 ≡ (EY )g/(g ◦ f1)−1(N ′

0).

The result is a map

(C.2.83) (SV ⊥
g ∧ (EY )g)/(h◦ f1)−1N ′

0 → (SV ⊥
g ∧ (EY )g)/f

−1
1 (N ′

1)→ (EY )f1/N
′
1.
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The first map induces

(C.2.84)

ℱ
((S

V ⊥
g ∧(EY )g)/(h◦f1)−1N ′

0

((SV ⊥
g ∧ (EY )g)/G

⊥
h◦f1

, k)

ℱ
((S

V ⊥
g ∧(EY )g)/f

−1
1 N ′

1

((SV ⊥
g ∧ Yg)/G

⊥
h◦f1

, k),

while the identification (SV ⊥
g ∧ (EY )g)/f

−1
1 (N ′

1) = (SV ⊥
g ∧ (EY )g)/G

⊥
f )/N

′
1, to-

gether with the second map induce

(C.2.85) ℱ
((S

V ⊥
g ∧(EY )g)/f

−1
1 N ′

1

((SV ⊥
g ∧ (EY )g)/G

⊥
f1 , k)→ ℱ(EY )f1/N

′
1
((EY )f1 , k).

To complete the comparison, the evident inclusion G⊥
f1
→ G⊥

h◦f1
yields a projec-

tion

(C.2.86) (SV ⊥
g ∧ (EY )g)/G

⊥
f1 → (SV ⊥

g ∧ (EY )g)/G
⊥
h◦f1 ,

so that we have a map

(C.2.87)

ℱ
((S

V ⊥
g ∧(EY )g)/f

−1
1 N ′

1

((SV ⊥
g ∧ (EY )g)/G

⊥
h◦f1

, k)

ℱ
((S

V ⊥
g ∧(EY )g)/f

−1
1 N ′

1

((SV ⊥
g ∧ (EY )g)/G

⊥
f1
, k).

Altogether, the composition of Equations (C.2.84), (C.2.85), and (C.2.87), together
with Equation (C.2.80) yields the result. �

The relative map constructed in Lemma C.29 is compatible with the absolute
map in the following sense.

Lemma C.30. Given a factorization

(C.2.88)

(G0, Y0, V0, N0) (G′
0, Y

′
0 , V

′
0 , N

′
0)

(G1, Y1, V1, N1) (G′
1, Y

′
1 , V

′
1 , N

′
1)

f0

g

f1

h

in which N0 = N1 = N ′
0 = N ′

1 = {e}, the associated morphism of spectra from
Lemma C.29 coincides with the morphism of Lemma C.25.

Passing to quotients and using essentially the same arguments as in the proof of
Corollary C.26, we obtain the following proposition recording the functoriality of
the relative construction.

Lemma C.31. The assignment

(C.2.89)
Tw Sp−Vect

eq,Sub → Sp

f 7→ ℱ(EY )f/N ′((EY )f , k)
−Vf /G′.

specifies a lax monoidal functor. �
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Now, using the forgetful functor

(C.2.90) TwSp−Vect
eq,Sub → TwSp−Vect

eq ,

we can pull back the functor ℱBY ((EY )f , k)
−V /G′ from Equation (C.2.40). This

permits the following comparison.

Proposition C.32. There is a lax monoidal equivalence

(C.2.91) ℱ(EY )f/N ′((EY )f , k)
−Vf /G′ ⇒ ℱBY ((EY )f , k)

−Vf /G′

of functors

(C.2.92) Tw Sp−Vect
eq,Sub → Sp .

Proof. Working pointwise, we have a map

(C.2.93)
ℱ(EY )f/N ′((EY )f , k)

−Vf → ℱBY ((EY )f , k)
−Vf

Σ−Vf (EY )f ∧Ñ ′ F (N ′
+, k)→ Σ−Vf (EY )f ∧G̃′ F (G′

+, k)

induced as in the construction of the map in Equation (C.2.20); passing to orbits
yields the transformation of the statement. The commutative diagram

(C.2.94)

Σ−Vf (EY )f ∧Ñ ′ F (N ′
+, k) Σ−Vf (EY )f ∧G̃′ F (G′

+, k)

Σ−Vf (EY )f Σ−Vf (EY )fid

≃ ≃

shows that the comparison is a pointwise equivalence. Moreover, it is straightfor-
ward to check that it is compatible with the external monoidal structure. To see
that this is a natural transformation, we need to verify that given a factorization
f0 = h ◦ f1 ◦ g in Sp−Vect

eq,Sub, the associated diagram

(C.2.95)

ℱ(EY0)f0/N
′
0
((EY0)f0 , k)

−Vf0 /G′
0 ℱBY0((EY0)f0 , k)

−Vf0 /G′
0

ℱ(EY1)f1/N
′
1
((EY1)f1 , k)

−Vf1 /G′
1 ℱBY1((EY1)f1 , k)

−Vf1 /G′
1

commutes. When the subgroups Ni and N ′
i are trivial, this reduces to the absolute

case. The result now follows from the compatibility of the relative Wirthmuller
maps with composition. Specifically, expanding the notation we have the diagram
(C.2.96)

Σ−Vf0 (EY0)f0 ∧Ñ ′
0

F (N ′
0,+, k)/G

′
0 Σ−Vf0 (EY0)f0 ∧G̃′

0

F (G′
0,+, k)/G

′
0

Σ−Vf1 (EY1)f1 ∧Ñ ′
1
F (N ′

1,+, k)/G
′
1 Σ−Vf1 (EY1)f1 ∧G̃′

1
F (G′

1,+, k)/G
′
1,

and one concludes that this commutes since the diagram

(C.2.97)

F (N ′
0,+, k)/G

′
0 F (G′

0,+, k)/G
′
0

F (N ′
1,+, k)/G

′
1 F (G′

1,+, k)/G
′
1

commutes. �
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Remark C.33. To connect to our high-level outline, note that the combination of
the above result with Lemma C.27 effectively yields a lift of Lemma C.17 to the
level of lax monoidal functors.

Finally, we combine this functor with the monoidal fibrant replacement functor.

Lemma C.34. The assignment

f 7→ QU(G′)ℱ(EY )f/N ′((EY )f , k)
−Vf /G′(C.2.98)

specifies a lax monoidal functor TwSp−Vect
eq,Sub → Sp equipped with a natural equiva-

lence

(C.2.99) ℱ(EY )f/N ′((EY )f , k)
−Vf /G′ → QU(G′)ℱ(EY )f/N ′((EY )f , k)

−Vf /G′

Proof. The properties of the comparison follow from the argument for the func-
toriality of fibrant replacement (Proposition A.58) and the natural transformation
Id→ QU(−). The key point is that in the construction of Equation (C.2.78), the do-
main inherits a G′

1-structure via pullback along the given projection G′
1 → G′

0. As
a consequence, this comparison is compatible with the functoriality of the fibrant
replacement functor, and the desired result follows upon passage to orbits. �

C.3. The Adams isomorphism via bi-equivariant spectra. In this section,
we continue the comparison to the virtual cochains by applying a suitably func-
torial and multiplicative model of the Adams isomorphism. The key observation
is that the model of the Adams isomorphism constructed as a zig-zag in Defini-
tion C.6 becomes functorial with respect to the choice of group after passing to the
appropriate twisted arrow category.

C.3.1. Right fixed points and left quotients. Recall from the discussion preceding
Definition C.6 that a biequivariant G-spectrum is an orthogonal spectrum with
commuting left and right G actions. We continue to write Xr when considering the
right action and abusively omit any subscript from the notation when considering
the left action. Note that the category of spectra with left action is naturally iso-
morphic to the category of spectra with right action, with isomorphism provided by
the identity on the underlying spectrum, and the action obtained by precomposing
the original action with the inverse map G → G. Equivalently, a biequivariant
orthogoanl G-spectrum is an orthogonal G×G-spectrum.

Clearly, the notion of biequivariance is compatible with the external smash prod-
uct (recall Section A.1.1):

Lemma C.35. If X1 is a biequivariant G1-spectrum and X2 is a biequivariant
G2-spectrum, then X1 ∧X2 is a biequivariant G1 ×G2-spectrum.

Given a G-spectrum X , the spectrum G+ ∧X is naturally a biequivariant spec-
trum with the diagonal left action and the right action which is trivial on X . The
natural map

(C.3.1) G+ ∧X → (G+ ∧X)r

specified by (g, x) 7→ (g, g−1x) is a weak equivalence of G-spectra. Similarly, the
composite

(C.3.2) G+ ∧X → X ∧ S0 → X

is a map of bi-equivariant spectra, where we give the target X the trivial right
G-action.
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To apply this observation in our setting, we introduce the following definitions.

Definition C.36. For an arrow

(C.3.3) f : (G, Y, V,N)→ (G′, Y ′, V ′, N ′)

in Sp−Vect
eq,Sub, we define the biequivariant orthogonal G′-spectrum

(C.3.4) (EY )f ∧Ñ ′ F (N ′
+, k

mfib) ∧ F (G′
r,+,S

mfib)

where the left G′-action is given by the diagonal and the right G′-action is non-
trivial only on F (G′

r,+,S
mfib).

Desuspending as before, we have:

Definition C.37. For an arrow f in Sp−Vect
eq,Sub, we define

(C.3.5) ℱ(EY )f/N ′∧G′/N ′((EY )f ∧G′
+, k)

−Vf ≡
F (SVf , ((EY )f ∧Ñ ′ F (N ′

+, k
mfib) ∧ F (G′

r,+,S
mfib))mfib)

as a biequivariant orthogonal G′-spectrum.

Analogues of the arguments for Lemma C.31 shows that this assignment of spec-
tra assembles into a functor on the twisted arrow category TwSp−Vect

eq,Sub:

Lemma C.38. The assignment

(C.3.6) f 7→ ℱ(EY )f/N ′∧G′/N ′((EY )f ∧G′
+, k)

−Vf

specifies a functor

(C.3.7) Tw Sp−Vect
eq,Sub → Sp .

�

We then have the following comparison.

Lemma C.39. There is a natural biequivariant map

(C.3.8)

QU(G′)ℱ(EY )f/N ′∧G′/N ′((EY )f ∧G′, k)−Vf

F (G′,QU(G′
r)
ℱ(EY )f/N ′((EY )f , k)

−Vf )

that induces a natural transformation of functors from TwSp−Vect
eq,Sub.

Proof. By adjunction, we obtain a map
(C.3.9)

ℱ(EY )f/N ′∧G′/N ′((EY )f ∧G′
+, k)

−Vf

= F (SVf , ((EY )f ∧Ñ ′ F (N ′
+, k

mfib) ∧ F (G′
+,S

mfib))mfib)

→ F (G′
+, F (SVf , ((EY )f ∧Ñ ′ F (N ′

+, k
mfib))mfib)

= F (G′
+,ℱ(EY )f/N ′((EY )f , k)

−Vf ).

The desired map now arises by applying the canonical map

(C.3.10) QU(G′)F (A,B)→ F (A,QU(G′)B)

described in Equation (A.1.79). This comparison clearly has the desired functori-
ality, using the proof of Proposition A.58. �
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Given any biequivariant spectrum X , we will write XGr
to denote the quotient

with respect to the right G-action. Regarding G as the subgroup 1 × G ⊂ G × G
makes it evident that XGr

has a residual left G-action. Analogously, XG has a
residual right G-action. The construction

(C.3.11) X 7→ (XG)Gr

that first passes to fixed points with respect to the left G-action and then quotients
with respect to the residual right G-action then yields a spectrum. The following
proposition records the functoriality of this construction in our context.

Proposition C.40. For an arrow f : (G, Y, V,N) → (G′, Y ′, V ′, N ′) in Sp−Vect
eq,Sub,

the assignments

(C.3.12) f 7→ (QU(G′)ℱ(EY )f/N ′∧G′/N ′((EY )f ∧G′, k)−Vf )G
′

)/G′
r

and

(C.3.13) f 7→ QU(G′)ℱ(EY )f/N ′((EY )f , k)
−Vf )/G′

specify lax monoidal functors TwSp−Vect
eq,Sub → Sp. �

The functoriality and multiplicativity of the comparison map in Lemma C.39
then yields the following.

Corollary C.41. There is a lax monoidal natural transformation

(QU(G′)ℱ(EY )f/N ′∧G′/N ′((EY )f ∧G′, k)−Vf )G
′

)/G′
r(C.3.14)

⇒ QU(G′)ℱ(EY )f/N ′((EY )f , k)
−Vf )/G′(C.3.15)

of functors from TwSp−Vect
eq,Sub → Sp.

Proof. For any orthogonal G′-spectrum A, we have a natural level-wise homeomor-
phism

(C.3.16)
(
F (G′, A)G

′
)
r

∼= A.

Applying this pointwise to the functors in question yields the homeomorphism
(C.3.17)

(F (G′,QU(G′)ℱ(EY )f/N ′((EY )f , k)
−Vf )G

′

)r ∼= QU(G′)ℱ(EY )f/N ′((EY )f , k)
−Vf

which implies the result by passing to quotients; the desired functoriality is evident.
�

C.3.2. Swapping the order of fixed points and quotients. For any biequivariant or-
thogonal G-spectrum X , the interchange of colimits and limits yields a natural
comparison map.

Lemma C.42. Let X be a biequivariant G-spectrum. Then there is a natural map
of spectra

(C.3.18) (XG)Gr
→ (XGr

)G.

To construct a derived version of this interchange map, we need to consider the
biequivariant structure of the fibrant replacement functor.

Lemma C.43. Let X be a biequivariant orthogonal G-spectrum. Let U be a G-
universe, considered as a biequivariant universe having trivial right G-action. Then
the fibrant replacement QUX is a biequivariant orthogonal G-spectrum. �
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Because the right action on U is trivial, we have the following commutation
result.

Lemma C.44. Let X be a biequivariant orthogonal G-spectrum and U a G-universe.
Then there is a natural map

(C.3.19) (QUX)/Gr → QU (X/Gr)

of orthogonal G-spectra. The map is externally multiplicative in the sense that
for a G1-spectrum X1, G1-universe U1, G2-spectrum X2, and G2-universe U2, the
diagram
(C.3.20)

(QU1X1)/(G1)r ∧ (QU2X2)/(G2)r QU1(X1/(G1)r) ∧ QU2(X2/(G2)r)

QU12((X1 ∧X2))/(G1 ×G2)r) QU12((X1 ×X2)/(G1 ×G2)r)

commutes.

Proof. Whenever A and B are G-spectra so that A has trivial G-action, there are
natural maps

(C.3.21) F (A,B)/G→ F (A,B/G) and A ∧G B ∼= A ∧ (B/G).

Specializing to the case of QUX , this implies that for each V there are natural
maps

(C.3.22)

(
hocolim

W∈U
ΩW⊗V X((W ⊕ R)⊗ V )

)
/Gr

hocolim
W∈U

ΩW⊗V (X((W ⊕ R)⊗ V )/Gr) ,

using the fact that orbits commute with homotopy colimits and that the right
action of G is trivial on the representations V and W . These maps are compatible
with the structure maps and so assemble into maps of orthogonal G-spectra. The
external multiplicativity now follows from the monoidality of orbits with respect
to the external product and the lax monoidal structure of the fibrant replacement
functor. �

Next, we consider the quotient

(C.3.23)
(
(EY )f ∧Ñ ′ F (N ′

+, k
mfib) ∧ F (G′

r,+,S
mfib)

)
/G′

r.

Since G′
r only acts on the smash factor F (G′

r,+,S
mfib), there is an equivalence

(C.3.24) ℱ(EY )f/N ′((EY )f , k) ≡ (EY )f ∧Ñ ′ F (N ′
+, k

mfib)

→
(
(EY )f ∧Ñ ′ F (N ′

+, k
mfib) ∧ F (G′

r,+,S
mfib)

)
/G′

r

induced by the equivalence

(C.3.25) S ∼= G′
r,+/G

′
r F (G′

r,+,S
mfib)/G′

r.
≃

We can now construct the following comparison as a consequence of Lemma C.44
and Corollary C.41.
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Lemma C.45. The interchange of fixed points and quotients defines lax monoidal
transformations

(C.3.26)

(
QU(G′)ℱ(EY )f/N ′∧G′/N ′((EY )f ∧G′, k)−Vf

)G′

/G′
r

⇒
(
QU(G′)(ℱ(EY )f/N ′∧G′/N ′((EY )f ∧G′, k)−Vf /G′

r)
)G′

⇐
(
QU(G′)ℱ(EY )f/N ′((EY )f , k)

−Vf
)G′

of functors from TwSp−Vect
eq,Sub to Sp. �

C.4. The norm map for virtual cochains. We now complete the zig-zag of
comparisons by using the norm map. Fix a finite group G. For a spectrum k, recall
that the norm map is specified as the composite

(C.4.1) EG+ ∧ k→ k→ F (EG+, k),

where the maps are induced by the projection EG→ ∗. Passing to derived G-fixed
points (i.e., via fibrant replacement), we have the maps

(C.4.2) (QU(EG+ ∧ k))G → (QUk)G → (QUF (EG+, k))
G.

The norm map is externally multiplicative.

Proposition C.46. Let G1 and G2 be finite groups and assume that k is an asso-
ciative ring orthogonal spectrum. Then the following diagram commutes
(C.4.3)

(EG1,+ ∧ k) ∧ (EG2,+ ∧ k) k ∧ k F (EG1,+, k) ∧ F (EG2,+, k)

(EG1 × EG2)+ ∧ (k ∧ k) k ∧ k F ((EG1 × EG2)+, k ∧ k)

(EG1 × EG2)+ ∧ k k F ((EG1 × EG2)+, k).

�

Because the variance of the functors on the different sides of the norm map
is different, to express the functoriality of the norm map once again requires the
twisted arrow category.

Lemma C.47. The assignments

(C.4.4) f 7→ EG+ ∧ Yf ∧ k and f 7→ F (EG′
+, Yf ∧ k)

specify functors TwSp−Vect
eq → Sp. �

In this setting, we have a generalized norm map

(C.4.5) EG+ ∧ Yf → Yf → F (EG′
+, Yf )

which specifies a natural transformation of functors from TwSp−Vect
eq → Sp. The

verification that this is a natural transformation amounts to a check that associated
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to a factorization f0 = h ◦ f1 ◦ g, the diagram

(C.4.6)

EG0,+ ∧ Yf0 F (EG′
0,+, Yf0)

EG1,+ ∧ Yf0 F (EG′
0,+, Yf0)

EG1,+ ∧ Yf1 F (EG′
1,+, Yf1)

commutes.
We now integrate the norm map into a description of the virtual cochains. Recall

that given a map f : (G, Y, V )→ (G′, Y ′, V ′), we have a natural map

(C.4.7) (EY )f ≡ (EG+ ∧ Y )/G⊥
f → EG′

+ ∧ (Y/G⊥
f ) ≡ E(Yf ).

Since by hypothesis G⊥f acts freely on Y , this map is a weak equivalence. Com-
posing this with the norm map

(C.4.8) EG′
+ ∧ k→ k→ F (EG′

+, k)

yields a composite

(C.4.9)

ℱ(EY )f/N ′((EY )f , k)
−Vf ≡ F (SVf , ((EG+ ∧ Y )/G⊥f ) ∧

Ñ ′ F (N ′
+, k

mfib))

→ F (SVf , (EG′
+ ∧ Yf ) ∧Ñ ′ F (N ′

+, k
mfib))

→ F (SVf , Yf ∧Ñ ′ F (N ′
+, k

mfib))

→ F (SVf , F (EG′
+, Yf ∧Ñ ′ F (N ′

+, k
mfib)))

∼= F (EG′
+,ℱYf/N ′(Yf , k)

−Vf ).

This composition induces a weak equivalence on fixed points when the norm
does.

Lemma C.48. The natural map of Equation (C.4.9) induces a weak equivalence
of orthogonal spectra on passage to derived G′-fixed points when k is a Morava
K-theory spectrum.

Proof. It suffices to show that the composite
(C.4.10)

(EG′
+ ∧ Yf ) ∧Ñ ′ F (N ′

+, k
mfib)→ Yf ∧Ñ ′ F (N ′

+, k
mfib)→ F (EG′

+, Yf ∧Ñ ′ F (N ′
+, k

mfib))

induces a weak equivalence on derived G′ fixed points, which follows from consid-
eration of the commutative diagram
(C.4.11)

(EG′
+ ∧ Yf ) ∧Ñ ′ F (N ′

+, k
mfib) Yf ∧Ñ ′ F (N ′

+, k
mfib) F (EG′

+, Yf ∧Ñ ′ F (N ′
+, k

mfib))

(EG′
+ ∧ Yf ) ∧Ñ ′ (N

′
+ ∧ kmfib) Yf ∧Ñ ′ (N

′
+ ∧ kmfib) F (EG′

+, Yf ∧Ñ ′ (N
′
+ ∧ kmfib)

(EG′
+ ∧ Yf ) ∧ kmfib) Yf ∧ kmfib F (EG′

+, Yf ∧ kmfib).

≃ ≃ ≃

≃ ≃ ≃
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The bottom horizontal maps are equivalences on derived G′-fixed points by hypoth-
esis and the vertical maps are equivalences by Atiyah duality. Therefore, we can
conclude that the top horizontal maps are equivalences. �

The key result of this subsection is that the pointwise comparison of Lemma C.48
is compatible with the functoriality in the twisted arrow category. To set this up,
we need to first establish the functoriality of each side of the comparison. The
following proposition records this for the two terminal terms in the comparison
composite; the argument is again essentially the same as for Lemma C.31.

Proposition C.49. The assignments

(C.4.12) f 7→
(
QU(G′)ℱ(EY )f/N ′((EY )f , k)

−Vf
)G′

and

(C.4.13) f 7→
(
QU(G′)F (EG′

+,ℱYf/N ′(Yf , k)
−Vf )

)G′

are functors TwSp−Vect
eq,Sub → Sp. �

Now we have the following comparison.

Lemma C.50. The comparison of Equation (C.4.9) induces a lax monoidal natural
transformation

(
QU(G′)ℱ(EY )f/N ′((EY )f , k)

−Vf
)G′

⇒
(
QU(G′)F (EG′

+,ℱYf/N ′(Yf , k)
−Vf )

)G′

(C.4.14)

of functors from TwSp−Vect
eq,Sub → Sp.

Proof. To see that this is a natural transformation, given a factorization f0 =
h ◦ f1 ◦ g, we need to show that the diagram
(C.4.15)

QU(G′
0)
F (SVf0 , (EYf0 ∧Ñ ′

0
F (N0′,+, k

mfib))G
′
0 QU(G′

0)
F (SVf0 , F (EG′

0,+, Yf0 ∧Ñ ′
0
F (N ′

0,+, k
mfib)))G

′
0

QU(G′
1)
F (SVf1 , (EYf1 ∧Ñ ′

1
F (N ′

1,+, k
mfib))G

′
1 QU(G′

1)
F (SVf1 , F (EG′

1,+, Yf1 ∧Ñ ′
1
F (N ′

1,+, k
mfib)))G

′
1

commutes. This follows from the discussion surrounding Equation (C.4.6); the es-
sential point is that although the term F (SVf , Yf ∧Ñ ′F (N ′

+, k
mfib)) in the pointwise

comparison is not a functor in TwSp−Vect
eq,Sub, the generalized norm map nonetheless

specifies a natural transformation because the composite

(C.4.16)

QU(G′)F (SVf , (EG′
+ ∧ Yf ) ∧Ñ ′ F (N ′

+, k
mfib))G

′

QU(G′)F (SVf , F (EG′
+, Yf ∧Ñ ′ F (N ′

+, k
mfib)))G

′

is compatible with composition. The fact that the transformation is monoidal
follows from the fact that all of the constituent functors (the smash product of
function spectra, passage to orbits, fibrant replacement functor) and the norm map
(by Proposition C.46) are externally monoidal. �



370 M. ABOUZAID AND A.J. BLUMBERG

Lemma C.48 now implies that when the norm map is an equivalence, this com-
parison transformation is an equivalence. Assembling everything, we have the fol-
lowing result which implements the last piece of the comparison with the virutal
cochains.

Theorem C.51. When k is a Morava K-theory spectrum, there are lax monoidal
equivalences

(
QU(G′)ℱ(EY )f/N ′((EY )f , k)

−Vf
)G′

⇒
(
QU(G′)F (EG′

+,ℱYf/N ′(Yf , k)
−Vf )

)G′

(C.4.17)

⇐ F (EG′,ℱYf/N ′(Yf , k)
−Vf )G

′

(C.4.18)

≡ C∗(BG′,ℱYf/N ′(Yf , k)
−Vf )(C.4.19)

of functors on TwSp−Vect
eq,Sub.

Proof. The top arrow was constructed above in Lemma C.50 and is an equiva-
lence by Lemma C.48. The middle (left-pointing) arrow is induced by the natural
transformation id → QU(G′); this is lax monoidal by Corollary A.59 and is a weak
equivalence because the homotopy fixed points only depend on the Borel homotopy
type. �

C.5. The comparison of the virtual cochains. Finally, we can assemble the
comparisons of the preceding subsections into zig-zags of lax monoidal natural trans-
formations of functors from TwSp−Vect

eq,Sub to the category of orthogonal spectra. Note
that although we have ignored the Π-action throughout this section, all of the trans-
formations are evidently Π-equivariant because of the rigidity of the Π-action. By
Lemma C.28, there is a zig-zag of lax monoidal natural transformations through
equivalences connecting the functors

(C.5.1) BY −Vf ∧ k ≃ ℱBY ((EY )f , k)
−Vf /G′.

(Here we are tacitly pulling back along the projection TwSp−Vect
eq,Sub to Tw Sp−Vect

eq .)
Next, by Proposition C.32 there is a lax monoidal equivalence

(C.5.2) ℱ(EY )f/N ′((EY )f , k)
−Vf /G′ ⇒ ℱBY ((EY )f , k)

−Vf /G′.

Lemma C.34 establishes a lax monoidal equivalence

(C.5.3) ℱ(EY )f/N ′((EY )f , k)
−Vf /G′ → QU(G′)ℱ(EY )f/N ′((EY )f , k)

−Vf /G′,

and Corollary C.41 produces a lax monoidal equivalence

(QU(G′)ℱ(EY )f/N ′∧G′/N ′((EY )f ∧G′, k)−Vf )G
′

)/G′
r(C.5.4)

⇒ QU(G′)ℱ(EY )f/N ′((EY )f , k)
−Vf )/G′(C.5.5)

Next, Lemma C.45 implies that we have lax monoidal equivalences

(C.5.6)

(
QU(G′)ℱ(EY )f/N ′∧G′/N ′((EY )f ∧G′, k)−Vf

)G′

/G′
r

⇒
(
QU(G′)(ℱ(EY )f/N ′∧G′/N ′((EY )f ∧G′, k)−Vf /G′

r)
)G′

⇐
(
QU(G′)ℱ(EY )f/N ′((EY )f , k)

−Vf
)G′
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Finally, Theorem C.51 establishes a zig-zag of equivalences

(
QU(G′)ℱ(EY )f/N ′((EY )f , k)

−Vf
)G′

⇒
(
QU(G′)F (EG′

+,ℱYf/N ′(Yf , k)
−Vf )

)G′

(C.5.7)

⇐ F (EG′,ℱYf/N ′(Yf , k)
−Vf )G

′

(C.5.8)

≡ C∗(BG′,ℱYf/N ′(Yf , k)
−Vf ).(C.5.9)

Appendix D. Morse theory and homotopy types

Our goal in this section is to reprove from our perspective the result of Cohen,
Jones, and Segal [CJS95, Section 5], which asserts that the homotopy type associ-
ated to natural (relative) framings of the moduli spaces of gradient flow trajectories
of a Morse function on a closed smooth manifold M agrees with the (stable) homo-
topy type of M .

D.1. Morse-theoretic setup. Let (f, g) be a a Morse-Smale pair consisting of a
Morse function f and a metric g on a closed smooth manifold M . For each pair
(x, y) of critical points, let T (x, y) denote the compactified moduli space of gradient
flow lines of f , converging at −∞ to x and at +∞ to y. There are natural inclusions

yx
z

Figure 16. Elements of the moduli spaces of flow lines T (x, y)
and T (x,M) for the function given by projection to the horizontal
line. The element of T (x,M) lies in the image of the stratum
T (x, z)× T (z,M).

of codimension 1 boundary strata

T (x, y)× T (y, z)→ T (x, z),(D.1.1)

which yields a flow category T (f) with objects the set of critical points. The Morse-
Smale assumption implies that the morphism spaces T (x, y) admit global Kuranishi
charts with trivial group G and trivial obstruction space V .

For expository purposes, it is convenience to arrange for the moduli spaces to
be smooth. We thus work in the setup introduced by Burghelea and Haller [BH01]
and revisited by Wehrheim in [Weh12]: assume that the metric g is flat near each
critical point and that the function f takes the standard form

∑
x2
i −

∑
y2j in local

flat coordinates. As proved in [BH01, Theorem 1] the moduli spaces T (x, y) acquire
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natural smooth structures as manifolds with corners. Under these assumptions, we
will prove the following result using the framework of this paper.

Proposition D.1. The category T (f) lifts to a complex oriented Kuranishi flow
category. The corresponding homotopy type CM∗(f ; k) is well-defined over any
complex oriented spectrum k, and is equivalent to the spectrum of ordinary chains
C∗(M ; k).

The proof occupies the remainder of this Appendix.

Remark D.2. Although it is not relevant for this paper, the following may be of
interest to the reader: in the next section we shall in fact reprove that T (f) is a
framed flow category in the sense of [CJS95], which implies that the condition that
k be complex oriented can be dropped from the above statement.

D.2. Stable framings of moduli spaces. Let T (x,M) and T (M, y) denote the
moduli spaces of negative (i.e., with domain (−∞, 0])) and positive (with domain
[0,+∞)) half-gradient flow lines; in the first case, this is a compactification of
the ascending manifold of x, and in the second case, this is a compactification of
the descending manifold. These are smooth contractible manifolds with corners
equipped with evaluation maps

(D.2.1) T (x,M)→M ← T (M, y).

The tangent space of T (x,M) at the constant flow lines is canonically isomorphic
to the positive-definite subspace of the Hessian matrix of f and x, which we denote
V +
x . We shall fix:

(D.2.2) An identification of TT (x,M) with V +
x which is the identity at the

constant flow line.

For each critical point x, consider the embedding

(D.2.3) T (x, y)× T (y,M)→ T (x,M)

of a codimension 1 boundary stratum. Given a sufficiently small constant ǫ, we
define a function to R on a neighbourhood of this stratum which assigns to every
flow line γ the quantity

(D.2.4) e−Ty(γ) ∈ [0,∞)

where Ty(γ) is the length of unique interval in the domain of γ, whose endpoints
map to the level sets f(y)±ǫ. The key point of the flatness assumption of the metric
near the critical points is that it ensures that the moduli space can be equipped
with a smooth structure so that this map is the projection to the collar direction
near the stratum T (x, y)×T (y,M). In this way, we obtain a short exact sequence

(D.2.5) TT (x, y)⊕ TT (y,M)→ TT (x,M)→ ℓy,

where ℓy is a real line canonically isomorphic to R. A choice of Riemannian metric

on T (x,M) then determines an isomorphism

(D.2.6) TT (x,M) ∼= TT (x, y)⊕ ℓy ⊕ TT (y,M).

Using the choice fixed in Equation (D.2.2), we obtain a stable trivialisation

(D.2.7) TT (x, y)⊕ ℓy ⊕ V +
y
∼= V +

x

of the tangent bundle of TT (x, y) (relative the vector spaces V +
x and V +

y ⊕ ℓy).
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We now consider the restriction of this bundle to the boundary strata of the
moduli spaces of gradient flow lines: given a triple of critical points x, y, and z, we
have a commutative diagram

(D.2.8)

T (x, y)× T (y, z)× T (z,M) T (x, y)× T (y,M)

T (x, z)× T (z,M) T (x,M),

where each map is an inclusion of a codimension 1 stratum. Choosing a Riemannian
metric on these manifolds so that the inclusions are isometric embeddings yields a
commutative diagram
(D.2.9)

TT (x, y)⊕ ℓy ⊕ TT (y, z)⊕ ℓz ⊕ TT (z,M) TT (x, y)⊕ ℓy ⊕ TT (y,M)

TT (x, z)⊕ ℓz ⊕ TT (z,M) TT (x,M),

of isomorphisms of tangent spaces.
Using our given stable trivializations, we conclude:

Corollary D.3. The stable trivializations from Equation (D.2.7) fit in the following
commutative diagram

(D.2.10)

TT (x, y)⊕ ℓy ⊕ TT (y, z)⊕ ℓz ⊕ V +
z TT (x, y)⊕ ℓy ⊕ V +

y

TT (x, z)⊕ ℓz ⊕ V +
z V +

x .

�

Comparing with Definition 4.61, we conclude that we have constructed a complex
oriented Kuranishi presentation of T (f).
Proposition D.4. The constructions above specify a complex oriented Kuranishi
presentation of T (f), where Π is the trivial group. The data consists entirely of
global charts with trivial isotropy, and where the complex vector bundle (and the
obstruction bundle) appearing in the definitions are both trivial.

It should be clear at this stage that our construction amounts to producing
compatible (relative) framings of the moduli spaces in the sense of [CJS95], which
is the data required to build a stable homotopy type over the sphere spectrum S.

D.3. Computation of the Morse homotopy type. We begin by extending the
category T (f) to a slightly larger category T (f,M) and producing a corresponding
Kuranishi flow category.

Definition D.5. The category T (f,M) has:

• Objects consisting of the critical points of f , together with a new terminal
object which we denote by M .
• Morphisms specified by setting the endomorphisms of M to be a point and
morphisms from x to M are given by the moduli spaces T (x,M), with the
new compositions given by Equation (D.2.3).
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In Equation (D.2.2), we have already chosen trivialisations of the moduli spaces
of descending gradient flow lines, so that the category T (f,M) also lifts to a Ku-
ranishi flow category with complex orientation and trivial group Π, and with trivial
isotropy and obstruction bundle; to use precisely the same context, we add a copy
of a real line V +

M
∼= R to the two sides, to get

(D.3.1) V +
M ⊕ TT (x,M) ∼= R⊕ V +

x .

We shall consider a homotopy type associated to this category which corresponds
to a functor whose value at M is M+ ∧ k. To formulate this, consider the following
consequence of the results of this paper:

Lemma D.6. There is a spectral bimodule representing an equivalence between
C∗

rel∂(T (f,M),Ωk) and the category T (f,M)−d ∧ k, whose objects are those of

T (f,M), and whose morphisms are

T (x, y)−d ∧ k ≡ SV +
y ∧ S−V +

x ∧ T (x, y)+ ∧ k(D.3.2)

T (x,M)−d ∧ k ≡ SV +
M ∧ S−V +

x ∧ T (x,M)+ ∧ k.(D.3.3)

Proof. The construction follows the procedure of Sections 7 and 8.3, and results in
a comparison with the category of virtual cochains constructed in Section 5, whose
morphisms are given by Definition 5.2. In this case, these morphisms are:

SV +
y ∧ S−V +

x ∧ (T (x, y)+)mfib ∧ k(D.3.4)

SV +
M ∧ S−V +

x ∧ (T (x,M)+)
mfib ∧ k,(D.3.5)

where we use the fact that the reduced degree vanishes because we are working
with a trivial group Π. Now the monoidal natural transformation id → (−)mfib

yields a DK-equivalence between the spectral category in Equation (D.3.2) and
the spectral category in Equation (D.3.4). �

We denote by T (f)−d the full spectral subcategory of T (f,M)−d with objects
the critical points of f . The virtual fundamental chain of the Morse flow category
T (f) is obtained from the Spanier-Whitehead duality equivalence of the relative
cochains with T (f)−d, together with the functor

(D.3.6) δf : T (f)−d ∧ k→ k−mod

which assigns SV +
x ∧k to each critical point x, and is given at the level of morphisms

by the projection from T (x, y) to a point. Specifically, the functor is given by the
map

(D.3.7)

SV +
y ∧ S−V +

x ∧ T (x, y)+ ∧ k

SV +
y ∧ S−V +

x ∧ k

F (SV +
x , SV +

y ∧ k)

Fk(S
V +
x ∧ k, SV +

y ∧ k).



ARNOLD CONJECTURE AND MORAVA K-THEORY 375

It is straightforward to check that this composite is compatible with the composi-
tion.

We extend this to a functor

(D.3.8) δf,M : T (f,M)−d ∧ k→ k−mod,

which assigns to the terminal object M the chains SV +
M ∧M+ ∧ k. The action of

morphisms is given by the map

SV +
x ∧ SV +

M ∧ S−V +
x ∧ T (x,M)+ ∧ k→ SV +

M ∧M+ ∧ k,(D.3.9)

obtained by pairing positive and negative spheres against each other, together with
the evaluation map from T (x,M) to M .

Proof of Proposition D.1. The restriction δM of δf,M to the full spectral subcate-
gory of T (f,M)−d consisting of the terminal object induces a comparison

(D.3.10) |δM | → |δf,M |,
since we can regard δf,M as specifying categorical continuation data in the sense of
Definition 3.71.

Next, observe that we have an equivalence

(D.3.11) |δM | ≃ SV +
M ∧M+ ∧ k,

as |δM | is specified over a poset with one object plus ∞ (recall part (2) of Exam-
ple 3.24). Since by Theorem 3.76 the cofiber of the map in Equation (D.3.10) can
be identified with the Kan suspension of |δf |, we have a cofiber sequence

(D.3.12) SV +
M ∧M+ ∧ k→ |δf,M | → Σ|δf |.

As a consequence, it will suffice to show that |δf,M | ≃ ∗; then there is an induced
equivalence

(D.3.13) |δf | → SV +
M ∧M+ ∧ k.

We will construct a different filtration on |δf,M | to show that it is contractible.
For each pair (a, b) of real numbers, consider the spectral category

(D.3.14) T (f,M)[a,b]

consisting of all critical points x such that a ≤ f(x) ≤ b, together with the terminal
object M , with morphisms between critical points given as before, and morphisms
from x to M given by the quotient

(D.3.15) T (f,M)[a,b](x,M) ≡ T (x,M)/f−1((−∞, a]),

where f is defined on the space of flow lines starting at x via the evaluation map
to M . The composition

(D.3.16) T (f,M)[a,b](x, y) ∧ T (f,M)[a,b](y,M)→ T (f,M)[a,b](x,M)

is defined as the composition in T (f,M) composed with the projection onto the
quotient.

We now consider the functor

(D.3.17) δf,M[a,b] : T (f,M)[a,b] ∧ k→ k−mod,
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defined on objects as

(D.3.18) δf,M[a,b](x) =

{
δf,M (x) x ∈ [a, b]

(M≤b/M≤a)+ ∧ k x = M.

Here to specify the action on morphisms we are using the fact that the evaluation
map from the descending manifolds of critical points of value ≤ b is well-defined in
this space.

For a ≤ b there exist coherent zig-zags representing natural transformations

(D.3.19) δf,M[−∞,b](x)→ δf,M[−∞,a](x)

and so we obtain a filtration on |δf,M | with associated graded consisting of terms

equivalent to |δf,M[a,b] |. (The construction of the filtration here in terms of zig-zags

is precisely analogous to the construction of the filtration by action discussed in
Section 3.)

We will show that for a sufficiently fine filtration the associated graded of |δf,M |
with respect to this filtration is contractible and therefore by induction so is |δf,M |.
Since we can assume without loss of generality that all critical points have distinct
values of f , we can reduce to considering the associated graded homotopy type

|δf,M[a,b] | for a window [a, b] containing a single critical point x.

This homotopy type is computed over a poset with two objects M and x plus
an additional terminal object, where the virtual fundamental chain maps M to

(D.3.20) M[a,b] ≡ f−1((−∞, a])/f−1((−∞, b])

and the critical point x to SVx . At the level of morphisms, Morse theory implies
that the map

(D.3.21) T (f,M)[a,b] →M[a,b]

is an equivalence, from which we deduce that the morphism from x to M in
C∗

rel∂(T (f,M),Ωk) induces an equivalence

(D.3.22) C∗
rel∂(T (f,M),Ωk)(x,M) ∧ δf,M[a,b](x)→ δf,M[a,b](M).

As a consequence, the computation of part (iii) of Example 3.24 shows that |δf,M[a,b] |
is contractible. �
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Birkhäuser Boston, Boston, MA, 1995. 9.2
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