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The 𝑣1-periodic part of the Adams spectral sequence at an

odd prime

by

Michael Joseph Andrews

Submitted to the Department of Mathematics
on April 29, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

We tell the story of the stable homotopy groups of spheres for odd primes at chromatic
height 1 through the lens of the Adams spectral sequence. We find the “dancers to a
discordant system.”

We calculate a Bockstein spectral sequence which converges to the 1-line of the
chromatic spectral sequence for the odd primary Adams 𝐸2-page. Furthermore, we
calculate the associated algebraic Novikov spectral sequence converging to the 1-line
of the 𝐵𝑃 chromatic spectral sequence. This result is also viewed as the calculation
of a direct limit of localized modified Adams spectral sequences converging to the
homotopy of the 𝑣1-periodic sphere spectrum.

As a consequence of this work, we obtain a thorough understanding of a collection
of 𝑞0-towers on the Adams 𝐸2-page and we obtain information about the differentials
between these towers. Moreover, above a line of slope 1/(𝑝2−𝑝−1) we can completely
describe the 𝐸2 and 𝐸3-pages of the mod 𝑝 Adams spectral sequence, which accounts
for almost all the spectral sequence in this range.

Thesis Supervisor: Haynes Miller
Title: Professor of Mathematics
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Chapter 1

Introduction

1.1 The stable homotopy groups of spheres

Algebraic topologists are interested in the class of spaces which can be built from

spheres. For this reason, when one tries to understand the continuous maps between

two spaces up to homotopy, it is natural to restrict attention to the maps between

spheres first. The groups of interest

𝜋𝑛+𝑘(𝑆
𝑘) = {homotopy classes of maps 𝑆𝑛+𝑘 −→ 𝑆𝑘}

are called the homotopy groups of spheres.

Topologists soon realized that it is easier to work in a stable setting. Instead,

one asks about the stable homotopy groups of spheres or, equivalently, the homotopy

groups of the sphere spectrum

𝜋𝑛(𝑆0) = colim𝑘 𝜋𝑛+𝑘(𝑆
𝑘).

Calculating all of these groups is an impossible task but one can ask for partial

information. In particular, one can try to understand the global structure of these

groups by proving the existence of recurring patterns. These patterns are clearly

visible in spectral sequence charts for calculating 𝜋*(𝑆0) and this thesis came about
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because of the author’s desire to understand the mystery behind these powerful dots

and lines, which others in the field appeared so in awe of. It tells the story of the

stable homotopy groups of spheres for odd primes at chromatic height 1, through the

lens of the Adams spectral sequence.

1.2 Calculational tools in homotopy theory

The Adams spectral sequence (ASS) and the Adams-Novikov spectral sequence (ANSS)

are useful tools for homotopy theorists. Theoretically, they enable a calculation of the

stable homotopy groups but they have broader utility than this. Much of contempo-

rary homotopy theory has been inspired by analyzing the structure of these spectral

sequences.

The ASS has 𝐸2-page given by the cohomology of the dual Steenrod algebra 𝐻*(𝐴)

and it converges 𝑝-adically to 𝜋*(𝑆0). The ANSS has as its 𝐸2-page the cohomology

of the Hopf algebroid 𝐵𝑃*𝐵𝑃 given to us by the 𝑝-typical factor of complex cobordism

and it converges 𝑝-locally to 𝜋*(𝑆0).

The ANSS has the advantage that elements constructed using non-nilpotent self

maps occur in low filtration. This means that the classes they represent are less likely

to be hit by differentials in the spectral sequence and so proving such elements are

nontrivial in homotopy often comes down to an algebraic calculation of the 𝐸2-page.

The ASS has the advantage that such elements have higher filtration and, therefore,

less indeterminacy in the spectral sequence. For this reason, among others, arguing

with both spectral sequences is fruitful.

𝐻*(𝑃 ;𝑄) CESS +3

alg.NSS

��

𝐻*(𝐴)

ASS

��
𝐻*(𝐵𝑃*𝐵𝑃 ) ANSS +3 𝜋*(𝑆

0)

(1.2.1)

The relationship between the two spectral sequences is strengthened by the exis-

tence of an algebra 𝐻*(𝑃 ;𝑄), which serves as the 𝐸2-page for two spectral sequences:
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the Cartan-Eilenberg spectral sequence (CESS) which converges to 𝐻*(𝐴), and the

algebraic Novikov spectral sequence (alg.NSS) converging to 𝐻*(𝐵𝑃*𝐵𝑃 ). We will

say more about the algebra 𝐻*(𝑃 ;𝑄) shortly. For now it will be a black box and we

will give the relevant definitions in the next section.

Continuing our comparison of the two spectral sequences for calculating 𝜋*(𝑆0),

we note that the ASS has the advantage that its 𝐸2-page can be calculated, in a

range, efficiently with the aid of a computer. The algebra required to calculate the

𝐸2-page of the ANSS is more difficult. For this reason, the chromatic spectral sequence

(𝑣-CSS) was developed in [12] to calculate the 1 and 2-line.

⨁︀
𝑛≥0𝐻

*(𝑃 ; 𝑞−1
𝑛 𝑄/(𝑞∞0 , . . . , 𝑞

∞
𝑛−1))

𝑞-CSS +3

alg.NSS

��

𝐻*(𝑃 ;𝑄)

alg.NSS

��⨁︀
𝑛≥0𝐻

*(𝐵𝑃*𝐵𝑃 ; 𝑣−1
𝑛 𝐵𝑃*/(𝑝

∞, . . . , 𝑣∞𝑛−1))
𝑣-CSS +3 𝐻*(𝐵𝑃*𝐵𝑃 )

In [10, §5], Miller sets up a chromatic spectral sequence for computing 𝐻*(𝑃 ;𝑄).

To distinguish this spectral sequence from the more frequently used chromatic spectral

sequence of [12], we call it the 𝑞-CSS. At odd primes, Miller [10, §4] shows that the

𝐸2-page of the ASS can be identified with 𝐻*(𝑃 ;𝑄) and so he compares the 𝑞-CSS

and the 𝑣-CSS to explain some differences between the Adams and Adams-Novikov

𝐸2-terms. He also observes that it is almost trivial to calculate the 1-line in the 𝐵𝑃

case ([12, §4]), but notes that it is more difficult to calculate the 1-line of the 𝑞-CSS.

The main result of this thesis is a calculation of the 1-line of the 𝑞-CSS, that is, of

𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ).

The most interesting application of this work is a calculation of the ASS, at odd

primes, above a line of slope 1/(𝑝2 − 𝑝 − 1). We note that as the prime tends to

infinity, the fraction of the ASS described tends to 1. As a consequence of this work,

we are able to describe, for the first time, differentials of arbitrarily long length in the

ASS.
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1.3 Some 𝐵𝑃*𝐵𝑃 -comodules and the corresponding

𝑃 -comodules

Our main result is the calculation of a Bockstein spectral sequence converging to

𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ), the 1-line of the chromatic spectral sequence for 𝐻*(𝑃 ;𝑄). First,

we recall how 𝑃 , 𝑄 and related 𝑃 -comodules are defined. They come from mimicking

constructions used in the chromatic spectral sequence for 𝐻*(𝐵𝑃*𝐵𝑃 ) and so we also

recall some relevant 𝐵𝑃*𝐵𝑃 -comodules. 𝑝 is an odd prime throughout this thesis.

Recall that the coefficient ring of the Brown-Peterson spectrum 𝐵𝑃 is a polynomial

algebra Z(𝑝)[𝑣1, 𝑣2, 𝑣3, . . .] on the Hazewinkel generators.

𝑝 ∈ 𝐵𝑃* and 𝑣𝑝
𝑛−1

1 ∈ 𝐵𝑃*/𝑝
𝑛

are 𝐵𝑃*𝐵𝑃 -comodule primitives and so we have 𝐵𝑃*𝐵𝑃 -comodules 𝑣−1
1 𝐵𝑃*/𝑝,

𝐵𝑃*/𝑝
∞ = colim(. . . −→ 𝐵𝑃*/𝑝

𝑛 𝑝−→ 𝐵𝑃*/𝑝
𝑛+1 −→ . . .), and

𝑣−1
1 𝐵𝑃*/𝑝

∞ = colim(. . . −→ (𝑣𝑝
𝑛−1

1 )−1𝐵𝑃*/𝑝
𝑛 𝑝−→ (𝑣𝑝

𝑛

1 )−1𝐵𝑃*/𝑝
𝑛+1 −→ . . .).

By filtering the 𝐵𝑃 cobar construction by powers of the kernel of the augmentation

𝐵𝑃* −→ F𝑝 we obtain the algebraic Novikov spectral sequence

𝐻*(𝑃 ;𝑄) =⇒ 𝐻*(𝐵𝑃*𝐵𝑃 ).

𝑃 = F𝑝[𝜉1, 𝜉2, 𝜉3, . . .] is the polynomial sub Hopf algebra of the dual Steenrod algebra

𝐴 and

𝑄 = gr*𝐵𝑃* = F𝑝[𝑞0, 𝑞1, 𝑞2, . . .]

is the associated graded of 𝐵𝑃*; 𝑞𝑛 denotes the class of 𝑣𝑛. Similarly to above, we

have 𝑃 -comodules 𝑞−1
1 𝑄/𝑞0, 𝑄/𝑞∞0 and 𝑞−1

1 𝑄/𝑞∞0 and there are appropriate algebraic

Novikov spectral sequences (the first three vertical spectral sequences in figure 1-2).
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1.4 Main results

We have a Bockstein spectral sequence, the 𝑞−1
1 -Bockstein spectral sequence (𝑞−1

1 -BSS)

coming from 𝑞0-multiplication:

[︂
𝐻*(𝑃 ; 𝑞−1

1 𝑄/𝑞0)
[︁
𝑞0

]︁]︂
/𝑞∞0 =⇒ 𝐻*(𝑃 ; 𝑞−1

1 𝑄/𝑞∞0 ).

Our main theorem is the complete calculation of this spectral sequence, and this, as

we shall describe, tells us a lot about the Adams 𝐸2-page.

The key input for the calculation is a result of Miller, which we recall presently.

Theorem 1.4.1 (Miller, [10, 3.6]).

𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0) = F𝑝[𝑞±1

1 ]⊗ 𝐸[ℎ𝑛,0 : 𝑛 ≥ 1]⊗ F𝑝[𝑏𝑛,0 : 𝑛 ≥ 1].

Here ℎ𝑛,0 and 𝑏𝑛,0 are elements which can be written down explicitly, though their

formulae are not important for the current discussion. To state the main theorem in

a clear way we change these exterior and polynomial generators by units.

Notation 1.4.2. For 𝑛 ≥ 1, let 𝑝[𝑛] = 𝑝𝑛−1
𝑝−1

, 𝜖𝑛 = 𝑞−𝑝
[𝑛]

1 ℎ𝑛,0, and 𝜌𝑛 = 𝑞1−𝑝
[𝑛+1]

1 𝑏𝑛,0.

We have 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0) = F𝑝[𝑞±1

1 ]⊗ 𝐸[𝜖𝑛 : 𝑛 ≥ 1]⊗ F𝑝[𝜌𝑛 : 𝑛 ≥ 1].

We introduce some convenient notation for differentials in the 𝑞−1
1 -BSS.

Notation 1.4.3. Suppose 𝑥, 𝑦 ∈ 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0). We write 𝑑𝑟𝑥 = 𝑦 to mean that

for all 𝑣 ∈ Z, 𝑞𝑣0𝑥 and 𝑞𝑣+𝑟0 𝑦 survive until the 𝐸𝑟-page and that 𝑑𝑟𝑞𝑣0𝑥 = 𝑞𝑣+𝑟0 𝑦. In this

case, notice that 𝑞𝑣0𝑥 is a permanent cycle for 𝑣 ≥ −𝑟.

𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0) is an algebra and with the notation just introduced differentials

are derivations, i.e. from differentials 𝑑𝑟𝑥 = 𝑦 and 𝑑𝑟𝑥′ = 𝑦′ we deduce that 𝑑𝑟(𝑥𝑥′) =

𝑦𝑥′ + (−1)|𝑥|𝑥𝑦′.

Using .
= to denote equality up to multiplication by an element in F×

𝑝 , we are now

ready to state the main theorem.
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Theorem 1.4.4. In the 𝑞−1
1 -BSS we have two families of differentials. For 𝑛 ≥ 1,

1. 𝑑𝑝[𝑛]𝑞
𝑘𝑝𝑛−1

1
.

= 𝑞𝑘𝑝
𝑛−1

1 𝜖𝑛, whenever 𝑘 ∈ Z− 𝑝Z;

2. 𝑑𝑝𝑛−1𝑞
𝑘𝑝𝑛

1 𝜖𝑛
.

= 𝑞𝑘𝑝
𝑛

1 𝜌𝑛, whenever 𝑘 ∈ Z.

Together with the fact that 𝑑𝑟1 = 0 for 𝑟 ≥ 1, these two families of differentials

determine the 𝑞−1
1 -BSS.

We describe the significance of this theorem in terms of the Adams spectral se-

quence 𝐸2-page. To do so, we need to recall how the 1-line of the chromatic spectral se-

quence manifests itself in 𝐻*(𝐴). In the following zig-zag, 𝐿 is the natural localization

map, 𝜕 is the boundary map coming from the short exact sequence of 𝑃 -comodules

0 −→ 𝑄 −→ 𝑞−1
0 𝑄 −→ 𝑄/𝑞∞0 −→ 0, and the isomorphism 𝐻*(𝑃 ;𝑄) ∼= 𝐻*(𝐴) is the

one given by Miller in [10, §4].

𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ) 𝐻*(𝑃 ;𝑄/𝑞∞0 )𝐿oo 𝜕 // 𝐻*(𝑃 ;𝑄) 𝐻*(𝐴)

∼=oo (1.4.5)

If an element of 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ) is a permanent cycle in the 𝑞-CSS, then we can

lift it under 𝐿 and map via 𝜕 (and the isomorphism) to 𝐻*(𝐴). If there is no lift of

an element of 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ) under 𝐿 then it must support a nontrivial chromatic

differential.

We now turn to figure 1-1. Recall that 𝑞0 is the class detecting multiplication by 𝑝

in the ASS. Figure 1-1 displays selected “𝑞0-towers” in the ASS at the prime 3; most

of these are visible in the charts of Nassau [14]. In the range displayed, we see that

there are “principal towers” in topological degrees which are one less than a multiple

of 2𝑝− 2 and “side towers” in topological degrees which are two less than a multiple

of 𝑝(2𝑝 − 2). Under the zig-zag of (1.4.5) (lifting uniquely under 𝜕 and applying 𝐿)

we obtain 𝑞0-towers in 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ). The principal towers are sent to 𝑞0-towers

which correspond to differentials in the first family of 1.4.4. The side towers are sent

to 𝑞0-towers which correspond to differentials in the second family of 1.4.4. In the

ASS, in the range plotted, there are as many differentials as possible between each
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Figure 1-1: The relevant part of 𝐻𝑠,𝑡(𝐴) when 𝑝 = 3, in the range 175 < 𝑡− 𝑠 < 218,
with a line of slope 1/(𝑝2− 𝑝− 1) = 1/5 drawn. Vertical black lines indicate multipli-
cation by 𝑞0. The top and bottom of selected 𝑞0-towers are labelled by the source and
target, respectively, of the corresponding Bockstein differential. Red arrows indicate
Adams differentials up to higher Cartan-Eilenberg filtration.
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principal tower and its side towers. Some permanent cycles are left at the top of each

principal tower. They detect 𝑣1-periodic elements in the given dimension.

Almost all of what we have described about figure 1-1 is true in general.

In each positive dimension 𝐷 which is one less than a multiple of 2𝑝− 2 there is a

“principal tower.” As long as 𝑁 = (𝐷+ 1)/(2𝑝− 2) is not a power of 𝑝, the principal

tower maps under the zig-zag (1.4.5) to the 𝑞0-tower corresponding to the Bockstein

differential on 𝑞𝑁1 . If 𝑁 = (𝐷+1)/(2𝑝−2) is a power of 𝑝, so that 𝐷 = 𝑝𝑛(2𝑝−2)−1

where 𝑛 ≥ 0, the principal tower has length 𝑝𝑛 and it starts on the 1-line at ℎ1,𝑛.

This is a statement about the existence of chromatic differentials: for 𝑛 ≥ 1, there

are chromatic differentials on the 𝑞0-tower corresponding to the Bockstein differential

on 𝑞𝑝
𝑛

1 .

In each positive dimension 𝐷 which is two less than a multiple of 𝑝(2𝑝− 2) there

are “side towers.” If 𝑝𝑛 is the highest power of 𝑝 dividing 𝑁 = (𝐷+ 2)/(2𝑝− 2), then

there are 𝑛 side towers. In most cases, the 𝑗th side tower (we order from higher Adams

filtration to lower Adams filtration) maps under the zig-zag (1.4.5) to the 𝑞0-tower

corresponding to the Bockstein differential on 𝑞𝑁1 𝜖𝑗. However, if 𝑁 = (𝐷+2)/(2𝑝−2)

is a power of 𝑝 so that 𝐷 = 𝑝𝑛(2𝑝− 2)− 2 where 𝑛 ≥ 1, the 𝑛th side tower has length

𝑝𝑛−𝑝[𝑛] and it starts on the 2-line at 𝑏1,𝑛−1; for 𝑛 ≥ 2, there are chromatic differentials

on the 𝑞0-tower corresponding to the Bockstein differential on 𝑞𝑝
𝑛

1 𝜖𝑛.

To make the assertions above we have to calculate some differentials in a Bockstein

spectral sequence for 𝐻*(𝑃 ;𝑄). We omit stating the relevant result here.

We have not described all the elements in 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ). The remaining ele-

ments line up in a convenient way but to be more precise we must talk about the

localized algebraic Novikov spectral sequence (loc.alg.NSS)

𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ) =⇒ 𝐻*(𝐵𝑃*𝐵𝑃 ; 𝑣−1

1 𝐵𝑃*/𝑝
∞).

This is also important if we are to address the Adams differentials between principal

towers and their side towers.

Theorem 1.4.4 allows us to understand the associated graded of the 𝐸2-page of the
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loc.alg.NSS with respect to the Bockstein filtration. Since the Bockstein filtration is

respected by 𝑑loc.alg.NSS
2 : 𝐻𝑠,𝑢(𝑃 ; [𝑞−1

1 𝑄/𝑞∞0 ]𝑡) −→ 𝐻𝑠+1,𝑢(𝑃 ; [𝑞−1
1 𝑄/𝑞∞0 ]𝑡+1) we have a

filtration spectral sequence (𝑞0-FILT)

𝐸0(𝑞0-FILT) = 𝐸∞(𝑞−1
1 -BSS) =⇒ 𝐸3(loc.alg.NSS).

Theorem 1.4.4 enables us to write down some obvious permanent cycles in the 𝑞−1
1 -

BSS. The next theorem tells us that they are the only elements which appear on the

𝐸1-page of the 𝑞0-FILT.

Theorem 1.4.6. 𝐸1(𝑞0-FILT) has an F𝑝-basis given by the following elements.

{︂
𝑞𝑣0 : 𝑣 < 0

}︂
∪
{︂
𝑞𝑣0𝑞

𝑘𝑝𝑛−1

1 : 𝑛 ≥ 1, 𝑘 ∈ Z− 𝑝Z, −𝑝[𝑛] ≤ 𝑣 < 0

}︂
∪
{︂
𝑞𝑣0𝑞

𝑘𝑝𝑛

1 𝜖𝑛 : 𝑛 ≥ 1, 𝑘 ∈ Z, 1− 𝑝𝑛 ≤ 𝑣 < 0

}︂

This theorem tells us that the 𝑑2 differentials in the loc.alg.NSS which do not

increase Bockstein filtration kill all the 𝑞0-towers except those corresponding to the

differentials of theorem 1.4.4. This is precisely what we meant when we said that “the

remaining elements line up in a convenient way.” Once theorem 1.4.6 is proved, the

calculation of the remainder of the loc.alg.NSS is straightforward because one knows

𝐻*(𝐵𝑃*𝐵𝑃 ; 𝑣−1
1 𝐵𝑃*/𝑝

∞) by [12, §4].

We now turn to the Adams differentials between principal towers and their side

towers, which is the motivation for drawing figure 1-2. In [11], Miller uses the square

analogous to (1.2.1) for the mod 𝑝 Moore spectrum to deduce Adams differentials

(up to higher Cartan-Eilenberg filtration) from algebraic Novikov differentials. The

algebraic Novikov spectral sequence he calculates is precisely the one labelled as the

𝑣1-alg.NSS in figure 1-2 and this is the key input to proving theorem 1.4.6. We can use

the same techniques to deduce Adams differentials for the sphere from differentials in

the alg.NSS. We make this statement precise (see also, [2, S8]).
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𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0)

𝑣1-alg.NSS

��

// 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 )

loc.alg.NSS

��

𝐻*(𝑃 ;𝑄/𝑞∞0 )

��

𝐿oo 𝜕 // 𝐻*(𝑃 ;𝑄)

alg.NSS

��

CESS +3 𝐻*(𝐴)

ASS

��

∼=
xx

𝐻*(𝐵𝑃*𝐵𝑃 ; 𝑣−1
1 𝐵𝑃*/𝑝) // 𝐻*(𝐵𝑃*𝐵𝑃 ; 𝑣−1

1 𝐵𝑃*/𝑝
∞) 𝐻*(𝐵𝑃*𝐵𝑃 ;𝐵𝑃*/𝑝

∞)𝐿oo 𝜕 // 𝐻*(𝐵𝑃*𝐵𝑃 ) ANSS +3 𝜋*(𝑆
0)

Figure 1-2: Obtaining information about the Adams spectral sequence from the Miller’s 𝑣1-algebraic Novikov spectral sequence.
Having calculated the 𝑞−1

1 -BSS, Miller’s calculation of the 𝑣1-alg.NSS allows us to calculate the loc.alg.NSS. Above a line of
slope 1/(𝑝2 − 𝑝 − 1) the 𝐸2-page of the loc.alg.NSS is isomorphic to the 𝐸2-page of the alg.NSS. Thus, our localized algebraic
Novikov differentials allow us to deduce unlocalized ones, which can, in turn, be used to deduce Adams 𝑑2 differentials up to
higher Cartan-Eilenberg filtration.
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Theorem 1.4.7 (Miller, [11, 6.1]). Suppose 𝑥 ∈ 𝐻𝑠,𝑢(𝑃 ;𝑄𝑡). Use the identification

𝐻*(𝐴) = 𝐻*(𝑃 ;𝑄) to view 𝑥 as lying in 𝐻𝑠+𝑡,𝑢+𝑡(𝐴). Then we have

𝑑ASS
2 𝑥 ∈

𝑡+1⨁︁
𝑖≥0

𝐻𝑠+𝑖+1,𝑢+𝑖(𝑃 ;𝑄𝑡−𝑖+1) ⊂ 𝐻𝑠+𝑡+2,𝑢+𝑡+1(𝐴),

where the zero-th coordinate is 𝑑alg.NSS
2 𝑥 ∈ 𝐻𝑠+1,𝑢(𝑃 ;𝑄𝑡+1).

Moreover, the map 𝜕 : 𝐻*(𝑃 ;𝑄/𝑞∞0 ) −→ 𝐻*(𝑃 ;𝑄) is an isomorphism away from

low topological degrees, since 𝐻*(𝑃 ; 𝑞−1
0 𝑄) = F𝑝[𝑞±1

0 ] and we have the following result

concerning the localization map L.

Proposition 1.4.8. The localization map

𝐿 : 𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞∞0 ]𝑡) −→ 𝐻𝑠,𝑢(𝑃 ; [𝑞−1
1 𝑄/𝑞∞0 ]𝑡)

is an isomorphism if (𝑢+ 𝑡) < 𝑝(𝑝− 1)(𝑠+ 𝑡)− 2. In particular, the localization map

is an isomorphism above a line of slope 1/(𝑝2 − 𝑝− 1) when we plot elements in the

(𝑢− 𝑠, 𝑠+ 𝑡)-plane, the plane that corresponds to the usual way of drawing the Adams

spectral sequence.

The upshot of all of this is that as long as we are above a particular line of

slope 1/(𝑝2 − 𝑝 − 1), the 𝑑2 differentials in the loc.alg.NSS can be transferred to 𝑑2

differentials in the unlocalized spectral sequence (the alg.NSS), and using theorem

1.4.7 we obtain 𝑑2 differentials in the Adams spectral sequence. In fact, we can do

even better. Proposition 1.4.8 states the isomorphism range which one proves when

one chooses to use the bigrading (𝜎, 𝜆) = (𝑠 + 𝑡, 𝑢 + 𝑡). We can also prove a version

which makes full use of the trigrading (𝑠, 𝑡, 𝑢) and this allows one to obtain more

information. In particular, it allows one to show that the bottom of a principal tower

in the Adams spectral sequence always supports 𝑑2 differentials which map to the last

side tower.

To complete the story we discuss the higher Adams differentials between principal

towers and their side towers. Looking at figure 1-1 one would hope to prove that if a
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principal tower has 𝑛 side towers, then the 𝑗th side tower is the target for nontrivial

𝑑𝑛−𝑗+2 differentials. We have just addressed the case when 𝑗 = 𝑛 and one finds that in

the loc.alg.NSS everything goes as expected. The issue is that theorem 1.4.7 does not

exist for higher differentials. For instance, 𝑑alg.NSS
2 𝑥 = 0, simply says that 𝑑ASS

2 𝑥 has

higher Cartan-Eilenberg filtration. In this case 𝑑alg.NSS
3 𝑥 lives in the wrong trigrading

to give any more information about 𝑑ASS
2 𝑥. Instead, we set up and calculate a spectral

sequence which converges to the homotopy of the 𝑣1-periodic sphere spectrum

𝑣−1
1 𝑆/𝑝∞ = hocolim(. . . −→ (𝑣𝑝

𝑛−1

1 )−1𝑆/𝑝𝑛
𝑝−→ (𝑣𝑝

𝑛

1 )−1𝑆/𝑝𝑛+1 −→ . . .).

This is the localized Adams spectral sequence for the 𝑣1-periodic sphere (LASS-∞)

𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ) =⇒ 𝜋*(𝑣

−1
1 𝑆/𝑝∞).

This spectral sequence behaves as one would like with respect to differentials between

principal towers and their side towers (i.e. in the same way as the loc.alg.NSS) and

moreover, the zig-zag of (1.4.5) consists of maps of spectral sequences, which enables

a comparison with the Adams spectral sequence. It is this calculation that allows

us to describe differentials of arbitrarily long length in the ASS. They come from

differentials between primary towers and side towers. We find such differentials in

the LASS-∞, sufficiently far above the line of slope 1/(𝑝2− 𝑝− 1), and transfer them

across to the ASS.

In order to set up the LASS-∞ we prove an odd primary analog of a result of

Davis and Mahowald, which appears in [6]. This is of interest in its own right and we

state it below.

In [1] Adams shows that there is a CW spectrum 𝐵 with one cell in each positive

dimension congruent to 0 or −1 modulo 𝑞 = 2𝑝 − 2 such that 𝐵 ≃ (Σ∞𝐵Σ𝑝)(𝑝).

Denote the skeletal filtration by a superscript in square brackets. We use the following

notation.

Notation 1.4.9. For 1 ≤ 𝑛 ≤ 𝑚 let 𝐵𝑚
𝑛 = 𝐵[𝑚𝑞]/𝐵[(𝑛−1)𝑞].
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The following theorem allows a very particular construction of a 𝑣1 self-map for

𝑆/𝑝𝑛+1.

Theorem 1.4.10. The element 𝑞𝑝
𝑛−𝑛−1

0 ℎ1,𝑛 ∈ 𝐻𝑝𝑛−𝑛,𝑝𝑛(𝑞+1)−𝑛−1(𝐴) is a permanent

cycle in the Adams spectral sequence represented by a map

𝛼 : 𝑆𝑝
𝑛𝑞−1 𝑖 // 𝐵𝑝𝑛

𝑝𝑛−𝑛
𝑓 // 𝐵𝑝𝑛−1

𝑝𝑛−𝑛−1
// . . . // 𝐵𝑛+2

2

𝑓 // 𝐵𝑛+1
1

𝑡 // 𝑆0.

Here, 𝑖 comes from the fact that the top cell of 𝐵[𝑝𝑛𝑞−1]/𝐵[(𝑝𝑛−𝑛−1)𝑞−1] splits off, 𝑡

is obtained from the transfer map 𝐵∞
1 −→ 𝑆0, and each 𝑓 is got by factoring a

multiplication-by-𝑝 map.

Moreover, there is an element 𝛼̃ ∈ 𝜋𝑝𝑛𝑞(𝑆/𝑝
𝑛+1) whose image in 𝐵𝑃𝑝𝑛𝑞(𝑆/𝑝) is

𝑣𝑝
𝑛

1 , and whose desuspension maps to 𝛼 under

𝜋𝑝𝑛𝑞−1(Σ
−1𝑆/𝑝𝑛+1) −→ 𝜋𝑝𝑛𝑞−1(𝑆

0).

1.5 Outline of thesis

Chapter 2 is an expository chapter on spectral sequences. A correspondence approach

is presented, terminology is defined, and we say what it means for a spectral sequence

to converge. In chapter 3 we introduce all the Bockstein spectral sequences that we

use and prove their important properties, namely, that differentials in the 𝑄-BSS and

the 𝑞∞0 -BSS coincide, and that the differentials in the 𝑞−1
1 -BSS are derivations.

Chapter 4 contains our first important result. After finding some vanishing lines

we examine the range in which the localization map𝐻*(𝑃 ;𝑄/𝑞∞0 )→ 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 )

is an isomorphism. We do this from a trigraded and a bigraded perspective.

Chapter 5 contains our main results. We calculate the 𝑞−1
1 -BSS and find some

differentials in the 𝑄-BSS. We address the family of differentials corresponding to the

principal towers using an explicit argument with cocycles. The family of differentials

corresponding to the side towers is obtained using a Kudo transgression theorem. A

combinatorial argument gives the 𝐸∞-page of the 𝑞−1
1 -BSS.
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Chapter 6 contains the calculation of the localized algebraic Novikov spectral se-

quence. The key ingredients for the calculation are the combinatorics used to describe

the 𝐸∞-page of the 𝑞−1
1 -BSS and Miller’s calculation of the 𝑣1-algebraic Novikov spec-

tral sequence.

In chapter 7 we construct representatives for some permanent cycles in the Adams

spectral sequence using the geometry of stunted projective spaces and the transfer

map.

In chapter 8 we set up the localized Adams spectral sequence for the 𝑣1-periodic

sphere (LASS-∞), calculate it, and demonstrate the consequences the calculation

has for the Adams spectral sequence for the sphere. Along the way we construct

a modified Adams spectral sequence for the mod 𝑝𝑛 Moore spectrum and the Prüfer

sphere. We lift the permanent cycles of the previous chapter to permanent cycles in

these spectral sequences and we complete the proof of the last theorem stated in the

introduction.

In the appendices we construct various maps of spectral sequences and check the

convergence of our spectral sequences.
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Chapter 2

Spectral sequence terminology

Spectral sequences are used in abundance throughout this thesis. Graduate students

in topology often live in fear of spectral sequences and so we take this opportunity to

give a presentation of spectral sequences, which, we hope, shows that they are not all

that bad. We also fix the terminology which is used throughout the rest of the thesis.

All of this chapter is expository. Everything we say is surely documented in [3].

2.1 A correspondence approach

The reader is probably familiar with the notion of an exact couple which is one of the

most common ways in which a spectral sequence arises.

Definition 2.1.1. An exact couple consists of abelian groups 𝐴 and 𝐸 together with

homomorphisms 𝑖, 𝑗 and 𝑘 such that the following triangle is exact.

𝐴

𝑗

��

𝐴
𝑖oo

𝐸

𝑘

;;

Given an exact couple, one can form the associated derived exact couple. Iterating

this process gives rise to a spectral sequence. Experience has led the author to

conclude that, although this inductive definition is slick, it disguises some of the
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important features that spectral sequences have and which are familiar to those who

work with them on a daily basis. Various properties become buried in the induction

and the author feels that first time users should not have to struggle for long periods

of time to discover these properties however rewarding that process might be.

An alternative approach exploits correspondences. A correspondence 𝑓 : 𝐺1 −→

𝐺2 is a subgroup 𝑓 ⊂ 𝐺1 × 𝐺2. The images of 𝑓 under the projection maps are the

domain dom(𝑓) and the image im(𝑓) of the correspondence. We can also define the

kernel of a correspondence ker (𝑓) ⊂ dom(𝑓).

We will find that the picture becomes clearer, especially once gradings are intro-

duced, when we spread out the exact couple:

. . . 𝐴oo

��

𝐴oo . . .𝑖oo 𝐴𝑖oo

𝑗

��

. . .oo

𝐸

𝑘

;;

𝐸

Let 𝜋 : 𝐸×𝐴×𝐴×𝐸 −→ 𝐸×𝐸 be the projection map. Then we make the following

definitions.

Definition 2.1.2. For each 𝑟 ≥ 1 let

̃︀𝑑𝑟 = {(𝑥, 𝑥̃, 𝑦, 𝑦) ∈ 𝐸 × 𝐴× 𝐴× 𝐸 : 𝑘𝑥 = 𝑥̃ = 𝑖𝑟−1𝑦 and 𝑗𝑦 = 𝑦}

and 𝑑𝑟 = 𝜋( ̃︀𝑑𝑟). Let 𝑑0 = 𝐸 × 0 ⊂ 𝐸 × 𝐸.

𝑥̃ . . .�𝑖oo 𝑦�𝑖oo
_

𝑗

��
𝑥

8
𝑘

;;

𝑦

Since 𝑖, 𝑗, 𝑘 and 𝜋 are homomorphisms of abelian groups ̃︀𝑑𝑟 and 𝑑𝑟 are subgroups of

𝐸×𝐴×𝐴×𝐸 and 𝐸×𝐸, respectively. In particular, 𝑑𝑟 : 𝐸 −→ 𝐸 is a correspondence.

We note that 𝑑0 is the zero homomorphism and that 𝑑1 = 𝑗𝑘.
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Notation 2.1.3. We write 𝑑𝑟𝑥 = 𝑦 if (𝑥, 𝑦) ∈ 𝑑𝑟.

We have the following useful observations.

Lemma 2.1.4.

1. For 𝑟 ≥ 1, 𝑑𝑟𝑥 is defined if and only if 𝑑𝑟−1𝑥 = 0, i.e.

(𝑥, 0) ∈ 𝑑𝑟−1 ⇐⇒ ∃𝑦 : (𝑥, 𝑦) ∈ 𝑑𝑟.

2. For 𝑟 ≥ 1, 𝑑𝑟0 = 𝑦 if and only if there exists an 𝑥 with 𝑑𝑟−1𝑥 = 𝑦, i.e.

(0, 𝑦) ∈ 𝑑𝑟 ⇐⇒ ∃𝑥 : (𝑥, 𝑦) ∈ 𝑑𝑟−1.

We note that the first part of the lemma says that dom(𝑑𝑟) = ker (𝑑𝑟−1) for 𝑟 ≥ 1.

The second part of the lemma has the following corollary.

Corollary 2.1.5. For 𝑟 ≥ 1, the following conditions are equivalent:

1. 𝑑𝑟𝑥 = 𝑦 and 𝑑𝑟𝑥 = 𝑦′;

2. 𝑑𝑟𝑥 = 𝑦 and there exists an 𝑥′ with 𝑑𝑟−1𝑥
′ = 𝑦′ − 𝑦.

It is also immediate from the definitions that the following lemma holds.

Lemma 2.1.6. Suppose 𝑟 ≥ 1 and that 𝑑𝑟𝑥 = 𝑦. Then 𝑑𝑠𝑦 = 0 for any 𝑠 ≥ 1.

Spectral sequences consist of pages.

Definition 2.1.7. For 𝑟 ≥ 1, let 𝐸𝑟 = ker 𝑑𝑟−1/ im 𝑑𝑟−1. This is the 𝑟th page of the

spectral sequence.

One is often taught that a spectral sequence begins with an 𝐸1 or 𝐸2-page and

that one obtains successive pages by calculating differentials and taking homology.

We relate our correspondence approach to this one presently.
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We have a surjection 𝐸𝑟 −→ ker 𝑑𝑟−1/
⋃︀
𝑠 im 𝑑𝑠, an injection

⋂︀
𝑠 ker 𝑑𝑠/ im 𝑑𝑟−1 −→

𝐸𝑟, and the preceding lemmas show that 𝑑𝑟 defines a homomorphism allowing us to

form the following composite which, for now, we call 𝛿𝑟.

𝐸𝑟 −→ ker 𝑑𝑟−1/
⋃︁
𝑠

im 𝑑𝑠 −→
⋂︁
𝑠

ker 𝑑𝑠/ im 𝑑𝑟−1 −→ 𝐸𝑟.

We have an identification of the 𝐸𝑟+1-page as the homology of the 𝐸𝑟-page with

respect to the differential 𝛿𝑟. We will blur the distinction between the correspondence

𝑑𝑟 and the differential 𝛿𝑟, calling them both 𝑑𝑟.

We note that the 𝐸1 page is 𝐸. Our Bockstein spectral sequences have convenient

descriptions from the 𝐸1-page and so we use the correspondence approach. Conse-

quently, all our differentials will be written in terms of elements on the 𝐸1-page. Our

topological spectral sequences have better descriptions from the 𝐸2-page. The corre-

spondence approach also allows us to write all our formulae in terms of elements of

the 𝐸2-pages.

Here is some terminology that we will use freely throughout this thesis.

Definition 2.1.8. Suppose 𝑑𝑟𝑥 = 𝑦. Then 𝑥 is said to survive to the 𝐸𝑟-page and

support a 𝑑𝑟 differential. 𝑦 is said to be the target of a 𝑑𝑟 differential, to be hit by a

𝑑𝑟 differential, and to be a boundary. If, in addition, 𝑦 /∈ im 𝑑𝑟−1, then the differential

is said to be nontrivial and 𝑥 is said to support a nontrivial differential.

Definition 2.1.9. Elements of
⋂︀
𝑠 ker 𝑑𝑠 are called permanent cycles.

We write 𝐸∞ for
⋂︀
𝑠 ker 𝑑𝑠/

⋃︀
𝑠 im 𝑑𝑠, permanent cycles modulo boundaries, the

𝐸∞-page of the spectral sequence.

Note that lemma 2.1.6 says that targets of differentials are permanent cycles or,

said another way, elements that are hit by a differential survive to all pages of the

spectral sequence. In particular, note that we use the word hit, not kill.
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2.2 Convergence

The purpose of a spectral sequence is to give a procedure to calculate an abelian

group of interest 𝑀 . This procedure can be viewed as having three steps, which we

outline below, but first, we give some terminology.

Definition 2.2.1. A filtration of an abelian group 𝑀 is a sequence of subgroups

𝑀 ⊃ . . . ⊃ 𝐹 𝑠−1𝑀 ⊃ 𝐹 𝑠𝑀 ⊃ 𝐹 𝑠+1𝑀 ⊃ . . . ⊃ 0, 𝑠 ∈ Z.

The associated graded abelian group corresponding to this filtration is the graded

abelian group
⨁︀

𝑠∈Z 𝐹
𝑠𝑀/𝐹 𝑠+1𝑀 .

The 𝐸∞-page of a spectral sequence should tell us about the associated graded of

an abelian group 𝑀 we are trying to calculate. In particular, the 𝐸∞-page should be

Z-graded, so we consider the story described in the previous section, with the added

assumption that 𝐴 and 𝐸 have a Z-grading 𝑠, that 𝑖 : 𝐴𝑠+1 −→ 𝐴𝑠, 𝑗 : 𝐴𝑠 −→ 𝐸𝑠

and 𝑘 : 𝐸𝑠 −→ 𝐴𝑠+1. We can redraw the exact couple as follows.

. . . 𝐴𝑠oo

��

𝐴𝑠+1
oo . . .

𝑖oo 𝐴𝑠+𝑟
𝑖oo

𝑗

��

. . .oo

𝐸𝑠

𝑘

::

𝐸𝑠+𝑟

We see that 𝑑𝑟 has degree 𝑟 and so 𝐸∞ becomes Z-graded. In all the cases we consider

in the thesis the abelian group 𝑀 we are trying to calculate will be either the limit

or colimit of the directed system {𝐴𝑠}𝑠∈Z.

We now describe the way in which a spectral sequence can be used to calculate

an abelian group 𝑀 .

1. Define a filtration of 𝑀 and an identification 𝐸𝑠
∞ = 𝐹 𝑠𝑀/𝐹 𝑠+1𝑀 between the

𝐸∞-page of the spectral sequence and the associated graded of 𝑀 .

2. Resolve extension problems. Depending on circumstances this will give us either

𝐹 𝑠𝑀 for each 𝑠 or 𝑀/𝐹 𝑠𝑀 for each 𝑠.
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3. Recover 𝑀 . Depending on circumstances this will either be via an isomorphism

𝑀 −→ lim𝑠𝑀/𝐹 𝑠𝑀 or an isomorphism colim𝑠𝐹
𝑠𝑀 −→𝑀 .

In all the cases we consider, 𝑀 will be graded and the filtration will respect this

grading. Thus, the associated graded will be bigraded. Correspondingly, the exact

couple will be bigraded. There are three cases which arise for us. We highlight how

each affects the procedure above.

1. Each case is determined by the way in which the filtration behaves.

(a) 𝐹 0𝑀 = 𝑀 and
⋂︀
𝐹 𝑠𝑀 = 0.

(b) 𝐹 0𝑀 = 0 and
⋃︀
𝐹 𝑠𝑀 = 𝑀 .

(c)
⋃︀
𝐹 𝑠𝑀 = 𝑀 and keeping track of the additional gradings the identifica-

tion in the first part of the procedure becomes 𝐸𝑠,𝑡
∞ = 𝐹 𝑠𝑀𝑡−𝑠/𝐹

𝑠+1𝑀𝑡−𝑠;

moreover, for each 𝑢 there exists an 𝑠 such that 𝐹 𝑠𝑀𝑢 = 0.

2. The way in which we would go about resolving extension problems varies ac-

cording to which case we are in.

(a) 𝑀/𝐹 0𝑀 = 0 so suppose that we know 𝑀/𝐹 𝑠𝑀 where 𝑠 ≥ 0. The first

part of the procedure gives us 𝐹 𝑠𝑀/𝐹 𝑠+1𝑀 and so resolving an extension

problem gives 𝑀/𝐹 𝑠+1𝑀 . By induction, we know 𝑀/𝐹 𝑠𝑀 for all 𝑠.

(b) 𝐹 0𝑀 = 0 so suppose that we know 𝐹 𝑠+1𝑀 where 𝑠 < 0. The first part of

the procedure gives us 𝐹 𝑠𝑀/𝐹 𝑠+1𝑀 and so resolving an extension problem

gives 𝐹 𝑠𝑀 . By induction, we know 𝐹 𝑠𝑀 for all 𝑠.

(c) This is similar to (2b). Fixing 𝑢, there exists an 𝑠0 with 𝐹 𝑠0𝑀𝑢 = 0. Sup-

pose that we know 𝐹 𝑠+1𝑀𝑢 where 𝑠 < 𝑠0. The first part of the procedure

gives us 𝐹 𝑠𝑀𝑢/𝐹
𝑠+1𝑀𝑢 and so resolving an extension problem gives 𝐹 𝑠𝑀𝑢.

By induction, we know 𝐹 𝑠𝑀𝑢 for all 𝑠. We can now vary 𝑢.

3. In case (𝑎) we need an isomorphism 𝑀 −→ lim𝑠𝑀/𝐹 𝑠𝑀 . In cases (𝑏) and (𝑐)

we have an isomorphism colim𝑠𝐹
𝑠𝑀 −→𝑀 .
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When we say that our spectral sequences converge we ignore whether or not we

can resolve the extension problems. This is paralleled by the fact that, when making

such a statement, we ignore whether or not it is possible to calculate the differentials

in the spectral sequence. The point is, that theoretically, both of these issues can be

overcome even if it is extremely difficult to do so in practice. We conclude that the

important statements for convergence are given in stages (1) and (3) of our procedure

and we make the requisite definition.

Definition 2.2.2. Suppose given a graded abelian group 𝑀 and a spectral sequence

𝐸*
* . Suppose that 𝑀 is filtered, that we have an identification 𝐸𝑠

∞ = 𝐹 𝑠𝑀/𝐹 𝑠+1𝑀

and that one of the following conditions holds.

1. 𝐹 0𝑀 = 𝑀 ,
⋂︀
𝐹 𝑠𝑀 = 0 and the natural map 𝑀 → lim𝑠𝑀/𝐹 𝑠𝑀 is an isomor-

phism.

2. 𝐹 0𝑀 = 0 and
⋃︀
𝐹 𝑠𝑀 = 𝑀 .

3.
⋃︀
𝐹 𝑠𝑀 = 𝑀 , if we keep track of the additional gradings then we have 𝐸𝑠,𝑡

∞ =

𝐹 𝑠𝑀𝑡−𝑠/𝐹
𝑠+1𝑀𝑡−𝑠, and for each 𝑢 there exists an 𝑠 such that 𝐹 𝑠𝑀𝑢 = 0.

Then the spectral sequence is said to converge and we write 𝐸𝑠
1

𝑠
=⇒ 𝑀 or 𝐸𝑠

2
𝑠

=⇒ 𝑀

depending on which page of the spectral sequence has the more concise description.

It would appear that the notation 𝐸𝑠
1

𝑠
=⇒ 𝑀 is over the top since 𝑠 appears twice,

but once other gradings are recorded it is the 𝑠 above the “ =⇒ ” that indicates the

filtration degree.

Suppose that 𝐸𝑠
1

𝑠
=⇒ 𝑀 (or equivalently 𝐸𝑠

2
𝑠

=⇒ 𝑀). We have some terminol-

ogy to describe the relationship between permanent cycles and elements of 𝑀 .

Definition 2.2.3. Suppose that 𝑥 is a permanent cycle defined in 𝐸𝑠
𝑟 (usually 𝑟 = 1

or 𝑟 = 2) and 𝑧 ∈ 𝐹 𝑠𝑀 . Then we say that 𝑥 detects 𝑧 or that 𝑧 represents 𝑥, to mean

that the image of 𝑥 in 𝐸𝑠
∞ and the image of 𝑧 in 𝐹 𝑠𝑀/𝐹 𝑠+1𝑀 correspond under the

given identification 𝐸𝑠
∞ = 𝐹 𝑠𝑀/𝐹 𝑠+1𝑀 .

Suppose that 𝑥 ∈ 𝐸𝑠
𝑟 detects 𝑧 ∈ 𝐹 𝑠𝑀 . Notice that 𝑥 is a boundary if and only

if 𝑧 ∈ 𝐹 𝑠+1𝑀 .
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Chapter 3

Bockstein spectral sequences

In this chapter, we set up all the Bockstein spectral sequences used in this thesis and

prove the properties that we require of them.

3.1 The Hopf algebra 𝑃 and some 𝑃 -comodules

Throughout this thesis 𝑝 is an odd prime.

Definition 3.1.1. Let 𝑃 denote the polynomial algebra over F𝑝 on the Milnor gen-

erators {𝜉𝑛 : 𝑛 ≥ 1} where |𝜉𝑛| = 2𝑝𝑛 − 2. 𝑃 is a Hopf algebra when equipped with

the Milnor diagonal

𝑃 −→ 𝑃 ⊗ 𝑃, 𝜉𝑛 ↦−→
𝑛∑︁
𝑖=0

𝜉𝑝
𝑖

𝑛−𝑖 ⊗ 𝜉𝑖, (𝜉0 = 1).

Definition 3.1.2. Let 𝑄 denote the polynomial algebra over F𝑝 on the generators

{𝑞𝑛 : 𝑛 ≥ 0} where |𝑞𝑛| = 2𝑝𝑛 − 2. 𝑄 is an algebra in 𝑃 -comodules when equipped

with the coaction map

𝑄 −→ 𝑃 ⊗𝑄, 𝑞𝑛 ↦−→
𝑛∑︁
𝑖=0

𝜉𝑝
𝑖

𝑛−𝑖 ⊗ 𝑞𝑖.

We write 𝑄𝑡 for the sub-𝑃 -comodule consisting of monomials of length 𝑡.

Note that the multiplication on 𝑄 is commutative, which is the same as graded
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commutative since everything lives in even degrees. We shall see later that 𝑡 is the

Novikov weight. Miller [10] also refers to 𝑡 as the Cartan degree.

𝑞0 is a 𝑃 -comodule primitive and so 𝑄/𝑞0 and 𝑞−1
0 𝑄 are 𝑃 -comodules.

Definition 3.1.3. Define𝑄/𝑞∞0 by the following short exact sequence of 𝑃 -comodules.

0 // 𝑄 // 𝑞−1
0 𝑄 // 𝑄/𝑞∞0 // 0

𝑄/𝑞∞0 is a 𝑄-module in 𝑃 -comodules.

We find that 𝑞1 ∈ 𝑄/𝑞0 is a comodule primitive so we may define 𝑞−1
1 𝑄/𝑞0 which

is an algebra in 𝑃 -comodules. We may also define 𝑞−1
1 𝑄/𝑞∞0 , a 𝑄-module in 𝑃 -

comodules, but this requires a more sophisticated construction, which we now outline.

Definition 3.1.4. For 𝑛 ≥ 1, 𝑀𝑛 is the sub-𝑃 -comodule of 𝑄/𝑞∞0 defined by the

following short exact sequence of 𝑃 -comodules. 𝑀𝑛 is a 𝑄-module in 𝑃 -comodules.

0 // 𝑄 // 𝑄⟨𝑞−𝑛0 ⟩ //𝑀𝑛
// 0.

Lemma 3.1.5. 𝑞𝑝
𝑛−1

1 : 𝑀𝑛 −→𝑀𝑛 is a homomorphism of 𝑄-modules in 𝑃 -comodules.

Definition 3.1.6. For each 𝑘 ≥ 0 let 𝑀𝑛(𝑘) = 𝑀𝑛. 𝑞−1
1 𝑀𝑛 is defined to be the

colimit of the following diagram.

𝑀𝑛(0)
𝑞𝑝

𝑛−1

1 //𝑀𝑛(1)
𝑞𝑝

𝑛−1

1 //𝑀𝑛(2)
𝑞𝑝

𝑛−1

1 //𝑀𝑛(3)
𝑞𝑝

𝑛−1

1 // . . .

Definition 3.1.7. We have homomorphisms 𝑞−1
1 𝑀𝑛 −→ 𝑞−1

1 𝑀𝑛+1 induced by the

inclusions 𝑀𝑛 −→𝑀𝑛+1. 𝑞−1
1 𝑄/𝑞∞0 is defined to be the colimit of following diagram.

𝑞−1
1 𝑀1

// 𝑞−1
1 𝑀2

// 𝑞−1
1 𝑀3

// 𝑞−1
1 𝑀4

// . . .

Notation 3.1.8. If Q is a 𝑃 -comodule then we write Ω*(𝑃 ;Q) for the cobar con-

struction on 𝑃 with coefficients in Q. In particular, we have

Ω𝑠(𝑃 ;Q) = 𝑃
⊗𝑠 ⊗Q
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where 𝑃 = F𝑝 ⊕ 𝑃 as F𝑝-modules. We write [𝑝1| . . . |𝑝𝑠]𝑞 for 𝑝1 ⊗ . . .⊗ 𝑝𝑠 ⊗ 𝑞. We set

Ω*𝑃 = Ω*(𝑃 ;F𝑝).

We recall (see [10, pg. 75]) that the differentials are given by an alternating sum

making use of the diagonal and coaction maps. We also recall that if Q is an algebra in

𝑃 -comodules then Ω*(𝑃 ;Q) is a DG-F𝑝-algebra; if Q′ is a Q-module in 𝑃 -comodules

then Ω*(𝑃 ;Q′) is a DG-Ω*(𝑃 ;Q)-module.

Definition 3.1.9. If Q is a 𝑃 -comodule then𝐻*(𝑃 ;Q) is the cohomology of Ω*(𝑃 ;Q).

We remark that in our setting 𝐻*(𝑃 ;Q) will always have three gradings. There

is the cohomological grading 𝑠. 𝑃 and its comodules are graded and so we have an

internal degree 𝑢. The Novikov weight 𝑡 on 𝑄 persists to 𝑄/𝑞0, 𝑞−1
0 𝑄, 𝑄/𝑞∞0 , 𝑞−1

1 𝑄/𝑞0,

and 𝑞−1
1 𝑄/𝑞∞0 .

Later on, we will use an algebraic Novikov spectral sequence. From this point of

view, right 𝑃 -comodules are more natural (see [2], for instance). However, Miller’s

paper [10] is such a strong source of guidance for this work that we choose to use left

𝑃 -comodules as he does there.

3.2 The 𝑄-Bockstein spectral sequence (𝑄-BSS)

Applying 𝐻*(𝑃 ;−) to the short exact sequence of 𝑃 -comodules

0 // 𝑄
𝑞0 // 𝑄 // 𝑄/𝑞0 // 0

gives a long exact sequence. We also have a trivial long exact sequence consisting of

the zero group every three terms and 𝐻*(𝑃 ;𝑄) elsewhere. Intertwining these long

exact sequences gives an exact couple, the nontrivial part, of which, looks as follows
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(𝑣 ≥ 0).

𝐻𝑠,𝑢(𝑃 ;𝑄𝑡−𝑣)

��

𝐻𝑠,𝑢(𝑃 ;𝑄𝑡−𝑣−1)oo . . .
𝑞0oo 𝐻𝑠,𝑢(𝑃 ;𝑄𝑡−𝑣−𝑟)

𝑞0oo

��
𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞0]

𝑡−𝑣)⟨𝑞𝑣0⟩

𝜕

66

𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞0]
𝑡−𝑣−𝑟)⟨𝑞𝑣+𝑟0 ⟩

Here 𝜕 raises the degree of 𝑠 by one relative to what is indicated and the powers

of 𝑞0 are used to distinguish copies of 𝐻*(𝑃 ;𝑄/𝑞0) from one another.

Definition 3.2.1. The spectral sequence arising from this exact couple is called the

𝑄-Bockstein spectral sequence (𝑄-BSS). It has 𝐸1-page given by

𝐸𝑠,𝑡,𝑢,𝑣
1 (𝑄-BSS) =

⎧⎪⎨⎪⎩𝐻
𝑠,𝑢(𝑃 ; [𝑄/𝑞0]

𝑡−𝑣)⟨𝑞𝑣0⟩ if 𝑣 ≥ 0

0 if 𝑣 < 0

and 𝑑𝑟 has degree (1, 0, 0, 𝑟).

The spectral sequence converges to 𝐻*(𝑃 ;𝑄) and the filtration degree is given by

𝑣. In particular, we have an identification

𝐸𝑠,𝑡,𝑢,𝑣
∞ (𝑄-BSS) = 𝐹 𝑣𝐻𝑠,𝑢(𝑃 ;𝑄𝑡)/𝐹 𝑣+1𝐻𝑠,𝑢(𝑃 ;𝑄𝑡)

where 𝐹 𝑣𝐻*(𝑃 ;𝑄) = im(𝑞𝑣0 : 𝐻*(𝑃 ;𝑄) −→ 𝐻*(𝑃 ;𝑄)) for 𝑣 ≥ 0. The identification

is given by lifting an element of 𝐹 𝑣𝐻*(𝑃 ;𝑄) to the 𝑣th copy of 𝐻*(𝑃 ;𝑄) and mapping

this lift down to 𝐻*(𝑃 ;𝑄/𝑞0)⟨𝑞𝑣0⟩ to give a permanent cycle.

Remark 3.2.2. One can describe the 𝐸1-page of the 𝑄-BSS more concisely as the

algebra 𝐻*(𝑃 ;𝑄/𝑞0)[𝑞0]. The first three gradings (𝑠, 𝑡, 𝑢) are obtained from the grad-

ings on the elements of 𝐻*(𝑃 ;𝑄/𝑞0) and 𝑞0; the adjoined polynomial generator 𝑞0 has

𝑣-grading 1, whereas elements of 𝐻*(𝑃 ;𝑄/𝑞0) have 𝑣-grading 0.

Notation 3.2.3. Suppose 𝑥, 𝑦 ∈ 𝐻*(𝑃 ;𝑄/𝑞0). We write 𝑑𝑟𝑥 = 𝑦 to mean that for

every 𝑣 ≥ 0, 𝑞𝑣0𝑥 survives to the 𝐸𝑟-page, 𝑞𝑣0𝑦 is a permanent cycle, and 𝑑𝑟𝑞
𝑣
0𝑥 =
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𝑞𝑣+𝑟0 𝑦. In this case, 𝑥 is said to support a 𝑑𝑟 differential. If one of the differentials

𝑑𝑟𝑞
𝑣
0𝑥 = 𝑞𝑣+𝑟0 𝑦 is nontrivial, then 𝑥 is said to support a nontrivial differential.

Lemma 3.2.4. Suppose 𝑥, 𝑦 ∈ 𝐻*(𝑃 ;𝑄/𝑞0). Then 𝑑𝑟𝑥 = 𝑦 in the 𝑄-BSS if and only

if there exist 𝑎 and 𝑏 in Ω*(𝑃 ;𝑄) with 𝑑𝑎 = 𝑞𝑟0𝑏 such that their images in Ω*(𝑃 ;𝑄/𝑞0)

are cocycles representing 𝑥 and 𝑦, respectively.

Proof. Suppose that 𝑑𝑟𝑥 = 𝑦 in the 𝑄-BSS. By definition 2.1.2 there exist 𝑥̃ and 𝑦

fitting into the following diagram.

𝐻𝑠+1,𝑢(𝑃 ;𝑄𝑡−1) . . .
𝑞0oo 𝐻𝑠+1,𝑢(𝑃 ;𝑄𝑡−𝑟)

𝑞0oo

��
𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞0]

𝑡))

𝜕
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𝐻𝑠+1,𝑢(𝑃 ; [𝑄/𝑞0]
𝑡−𝑟)

𝑥̃ . . .�𝑞0oo 𝑦�𝑞0oo
_

��
𝑥

.

𝜕

66

𝑦

Let 𝐴 ∈ Ω*(𝑃 ;𝑄/𝑞0) be a representative for 𝑥 and ̃︀𝐵 ∈ Ω*(𝑃 ;𝑄) be a representative

for 𝑦. There exists an ̃︀𝐴 ∈ Ω*(𝑃 ;𝑄) representing 𝑥̃, and an 𝑎′ and 𝛼′ fitting into the

following diagram.

Ω*(𝑃 ;𝑄)
𝑞0 //

��

Ω*(𝑃 ;𝑄) //

𝑑

��

Ω*(𝑃 ;𝑄/𝑞0)

��
Ω*(𝑃 ;𝑄)

𝑞0 // Ω*(𝑃 ;𝑄) // Ω*(𝑃 ;𝑄/𝑞0)

𝑎′ � //
_

��

𝐴_

��̃︀𝐴 � // 𝛼′ � // 0

Moreover, there exists ̃︀𝐶 ∈ Ω*(𝑃 ;𝑄) such that ̃︀𝐴 = 𝑞𝑟−1
0
̃︀𝐵 + 𝑑 ̃︀𝐶. Let 𝑎 = 𝑎′ − 𝑞0 ̃︀𝐶.
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We see that 𝑎, like 𝑎′, gives a lift of 𝐴, and that

𝑑𝑎 = 𝛼′ − 𝑞0𝑑 ̃︀𝐶 = 𝑞0( ̃︀𝐴− 𝑑 ̃︀𝐶) = 𝑞0(𝑞
𝑟−1
0
̃︀𝐵) = 𝑞𝑟0 ̃︀𝐵.

Taking 𝑏 = ̃︀𝐵 completes the “only if” direction.

The “if” direction is clear.

3.3 The 𝑞∞0 -Bockstein spectral sequence (𝑞∞0 -BSS)

Applying 𝐻*(𝑃 ;−) to the short exact sequence of 𝑃 -comodules

0 // 𝑄/𝑞0 // 𝑄/𝑞∞0
𝑞0 // 𝑄/𝑞∞0 // 0

gives a long exact sequence. We also have a trivial long exact sequence consisting

of the zero group every three terms and 𝐻*(𝑃 ;𝑄/𝑞∞0 ) elsewhere. Intertwining these

long exact sequences gives an exact couple, the nontrivial part, of which, looks as

follows (𝑣 < 0).

𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞∞0 ]𝑡−𝑣+𝑟)

��

𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞∞0 ]𝑡−𝑣+𝑟−1)oo . . .
𝑞0oo 𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞∞0 ]𝑡−𝑣)

𝑞0oo

𝜕

��
𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞0]

𝑡−𝑣+𝑟)⟨𝑞𝑣−𝑟0 ⟩

66

𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞0]
𝑡−𝑣)⟨𝑞𝑣0⟩

Here 𝜕 raises the degree of 𝑠 by one relative to what is indicated and the powers of

𝑞0 are used to distinguish copies of 𝐻*(𝑃 ;𝑄/𝑞0) from one another.

Definition 3.3.1. The spectral sequence arising from this exact couple is called the

𝑞∞0 -Bockstein spectral sequence (𝑞∞0 -BSS). It has 𝐸1-page given by

𝐸𝑠,𝑡,𝑢,𝑣
1 (𝑞∞0 -BSS) =

⎧⎪⎨⎪⎩𝐻
𝑠,𝑢(𝑃 ; [𝑄/𝑞0]

𝑡−𝑣)⟨𝑞𝑣0⟩ if 𝑣 < 0

0 if 𝑣 ≥ 0

and 𝑑𝑟 has degree (1, 0, 0, 𝑟). The spectral sequence converges to 𝐻*(𝑃 ;𝑄/𝑞∞0 ) and
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the filtration degree is given by 𝑣. In particular, we have an identification

𝐸𝑠,𝑡,𝑢,𝑣
∞ (𝑞∞0 -BSS) = 𝐹 𝑣𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞∞0 ]𝑡)/𝐹 𝑣+1𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞∞0 ]𝑡)

where 𝐹 𝑣𝐻*(𝑃 ;𝑄/𝑞∞0 ) = ker (𝑞−𝑣0 : 𝐻*(𝑃 ;𝑄/𝑞∞0 ) −→ 𝐻*(𝑃 ;𝑄/𝑞∞0 )) for 𝑣 ≤ 0. The

identification is given by taking a permanent cycle in 𝐻*(𝑃 ;𝑄/𝑞0)⟨𝑞𝑣0⟩, mapping it

up to 𝐻*(𝑃 ;𝑄/𝑞∞0 ) and pulling this element back to the 0th copy of 𝐻*(𝑃 ;𝑄/𝑞∞0 ).

Remark 3.3.2. One can describe the 𝐸1-page of the 𝑞∞0 -BSS more concisely as the

𝐻*(𝑃 ;𝑄/𝑞0)[𝑞0]-module [︂
𝐻*(𝑃 ;𝑄/𝑞0)

[︁
𝑞0

]︁]︂
/𝑞∞0 .

Notation 3.3.3. Suppose 𝑥, 𝑦 ∈ 𝐻*(𝑃 ;𝑄/𝑞0). We write 𝑑𝑟𝑥 = 𝑦 to mean that for

all 𝑣 ∈ Z, 𝑞𝑣0𝑥 and 𝑞𝑣0𝑦 survive until the 𝐸𝑟-page and that 𝑑𝑟𝑞𝑣0𝑥 = 𝑞𝑣+𝑟0 𝑦. In this case,

notice that 𝑞𝑣0𝑥 is a permanent cycle for 𝑣 ≥ −𝑟 and that 𝑞𝑣0𝑦 is a permanent cycle

for all 𝑣 ∈ Z.

Again, 𝑥 is said to support a 𝑑𝑟 differential. If one of the differentials 𝑑𝑟𝑞𝑣0𝑥 = 𝑞𝑣+𝑟0 𝑦

is nontrivial, then 𝑥 is said to support a nontrivial differential.

3.4 The 𝑄-BSS and the 𝑞∞0 -BSS: a relationship

Suppose that 𝑥 ∈ 𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞0]
𝑡), 𝑦 ∈ 𝐻𝑠+1,𝑢(𝑃 ; [𝑄/𝑞0]

𝑡−𝑟). 3.2.3 and 3.3.3 give

meanings to the equation 𝑑𝑟𝑥 = 𝑦 in the 𝑄-BSS and the 𝑞∞0 -BSS, respectively. It

appears, a priori, that the truth of the equation 𝑑𝑟𝑥 = 𝑦 depends on which spectral

sequence we are working in. The following lemma shows that this is not the case.

Lemma 3.4.1. Suppose 𝑥, 𝑦 ∈ 𝐻*(𝑃 ;𝑄/𝑞0). Then 𝑑𝑟𝑥 = 𝑦 in the 𝑄-BSS if and only

if 𝑑𝑟𝑥 = 𝑦 in the 𝑞∞0 -BSS.

Proof. Suppose that 𝑑𝑟𝑥 = 𝑦 in the 𝑄-BSS. By lemma 3.2.4, we find that there

exist 𝑎 and 𝑏 in Ω*(𝑃 ;𝑄) with 𝑑𝑎 = 𝑞𝑟0𝑏 such that their images in Ω*(𝑃 ;𝑄/𝑞0) are

cocycles representing 𝑥 and 𝑦, respectively. Let 𝑎 and 𝑏 be the images of 𝑎 and 𝑏 in

Ω*(𝑃 ;𝑄/𝑞0), respectively.
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Then we have

Ω*(𝑃 ;𝑄/𝑞0) //

��

Ω*(𝑃 ;𝑄/𝑞∞0 )
𝑞0 //

𝑑

��

Ω*(𝑃 ;𝑄/𝑞∞0 )

��
Ω*(𝑃 ;𝑄/𝑞0) // Ω*(𝑃 ;𝑄/𝑞∞0 )

𝑞0 // Ω*(𝑃 ;𝑄/𝑞∞0 )

𝑎/𝑞𝑟+1
0

� //
_

��

𝑎/𝑞𝑟0_

��
𝑏 � // 𝑏/𝑞0

� // 0

and so

𝐻*(𝑃 ;𝑄/𝑞∞0 ) . . .
𝑞0oo 𝐻*(𝑃 ;𝑄/𝑞∞0 )

𝑞0oo

𝜕

��
𝐻*(𝑃 ;𝑄/𝑞0)

55

𝐻*(𝑃 ;𝑄/𝑞0)

{𝑎/𝑞0} . . .
𝑞0oo {𝑎/𝑞𝑟0}

𝑞0oo

𝜕
��

𝑥 = {𝑎}

55

𝑦 = {𝑏}

giving 𝑑𝑟𝑥 = 𝑦 in the 𝑞∞0 -BSS.

We prove the converse using induction on 𝑟. The result is clear for 𝑟 = 0 since,

by convention, 𝑑0 is zero for both spectral sequences. For 𝑟 ≥ 1 we have

𝑑𝑟𝑥 = 𝑦 in the 𝑞∞0 -BSS

=⇒ 𝑑𝑟−1𝑥 = 0 in the 𝑞∞0 -BSS (Lemma 2.1.4)

=⇒ 𝑑𝑟−1𝑥 = 0 in the 𝑄-BSS (Induction)

=⇒ 𝑑𝑟𝑥 = 𝑦′ in the 𝑄-BSS for some 𝑦′ (Lemma 2.1.4)

=⇒ 𝑑𝑟𝑥 = 𝑦′ in the 𝑞∞0 -BSS (1st half of proof)

=⇒ 𝑑𝑟−1𝑥
′ = 𝑦′ − 𝑦 in the 𝑞∞0 -BSS for some 𝑥′ (Corollary 2.1.5)

=⇒ 𝑑𝑟−1𝑥
′ = 𝑦′ − 𝑦 in the 𝑄-BSS (Induction)

=⇒ 𝑑𝑟𝑥 = 𝑦 in the 𝑄-BSS (Corollary 2.1.5)
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which completes the proof.

3.5 The 𝑞−1
1 -Bockstein spectral sequence (𝑞−1

1 -BSS)

We can mimic the construction of the 𝑞∞0 -BSS using the following short exact sequence

of 𝑃 -comodules.

0 // 𝑞−1
1 𝑄/𝑞0 // 𝑞−1

1 𝑄/𝑞∞0
𝑞0 // 𝑞−1

1 𝑄/𝑞∞0 // 0 (3.5.1)

Definition 3.5.2. The spectral sequence arising from this exact couple is called the

𝑞−1
1 -Bockstein spectral sequence (𝑞−1

1 -BSS). It has 𝐸1-page given by

𝐸1(𝑞
−1
1 -BSS) =

[︂
𝐻*(𝑃 ; 𝑞−1

1 𝑄/𝑞0)
[︁
𝑞0

]︁]︂
/𝑞∞0

and 𝑑𝑟 has degree (1, 0, 0, 𝑟). The spectral sequence converges to 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 )

and the filtration degree is given by 𝑣. In particular, we have an identification

𝐸𝑠,𝑡,𝑢,𝑣
∞ (𝑞−1

1 -BSS) = 𝐹 𝑣𝐻𝑠,𝑢(𝑃 ; [𝑞−1
1 𝑄/𝑞∞0 ]𝑡)/𝐹 𝑣+1𝐻𝑠,𝑢(𝑃 ; [𝑞−1

1 𝑄/𝑞∞0 ]𝑡)

where, as in the 𝑞∞0 -BSS, 𝐹 𝑣 = ker 𝑞−𝑣0 for 𝑣 ≤ 0. The identification is given by

taking a permanent cycle in 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0)⟨𝑞𝑣0⟩, mapping it up to 𝐻*(𝑃 ; 𝑞−1

1 𝑄/𝑞∞0 )

and pulling this element back to the 0th copy of 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ).

We follow the notational conventions in 3.3.3.

We notice, that as a consequence of lemma 3.4.1, a 𝑑𝑟-differential in the 𝑞∞0 -BSS

can be validated using only elements in Ω*(𝑃 ;𝑀𝑟+1) (see definition 3.1.4). The same

can be said of the 𝑞−1
1 -BSS and the proof is similar. The following lemma statement

makes use of the connecting homomorphism in the long exact sequence coming from

the short exact sequence of 𝑃 -comodules

0 // 𝑞−1
1 𝑄/𝑞0 // 𝑞−1

1 𝑀𝑟+1
𝑞0 // 𝑞−1

1 𝑀𝑟
// 0.
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Lemma 3.5.3. Suppose that 𝑥, 𝑦 ∈ 𝐻*(𝑞−1
1 𝑄/𝑞0) and that 𝑑𝑟𝑥 = 𝑦 in the 𝑞−1

1 -BSS.

Then there exist 𝑥̃ ∈ 𝐻*(𝑃 ; 𝑞−1
1 𝑀1) and 𝑦 ∈ 𝐻*(𝑃 ; 𝑞−1

1 𝑀𝑟) with the properties that

𝑥̃ = 𝑞𝑟−1
0 𝑦, and under the maps

𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0)

∼=−→ 𝐻*(𝑃 ; 𝑞−1
1 𝑀1), 𝜕 : 𝐻*(𝑃 ; 𝑞−1

1 𝑀𝑟) −→ 𝐻*(𝑞−1
1 𝑄/𝑞0),

𝑥 is mapped to 𝑥̃, and 𝑦 is mapped to 𝑦, respectively. We summarize this situation by

saying that 𝑑𝑟𝑥 = 𝑦 in the 𝑀𝑟+1-zig-zag.

Proof. The result is clear for 𝑟 = 1 and so we proceed by induction on 𝑟. For 𝑟 > 1

we have

𝑑𝑟𝑥 = 𝑦 in the 𝑞−1
1 -BSS

=⇒ 𝑑𝑟−1𝑥 = 0 in the 𝑞−1
1 -BSS (Lemma 2.1.4)

=⇒ 𝑑𝑟−1𝑥 = 0 in the 𝑀𝑟-zig-zag (Induction)

=⇒ 𝑑𝑟𝑥 = 𝑦′ in the 𝑀𝑟+1-zig-zag for some 𝑦′ (Lemma 2.1.4)

=⇒ 𝑑𝑟𝑥 = 𝑦′ in the 𝑞−1
1 -BSS

=⇒ 𝑑𝑟−1𝑥
′ = 𝑦′ − 𝑦 in the 𝑞−1

1 -BSS for some 𝑥′ (Corollary 2.1.5)

=⇒ 𝑑𝑟−1𝑥
′ = 𝑦′ − 𝑦 in the 𝑀𝑟-zig-zag (Induction)

=⇒ 𝑑𝑟𝑥 = 𝑦 in the 𝑀𝑟+1-zig-zag (Corollary 2.1.5)

which completes the proof.

We note the following simple result.

Lemma 3.5.4. In the 𝑞−1
1 -BSS we have 𝑑𝑝𝑛−1𝑞

±𝑝𝑛
1 = 0.

Proof. One sees that 𝑞±𝑝
𝑛

1 /𝑞𝑝
𝑛

0 ∈ Ω*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ) is a cocycle.

We have an evident map of spectral sequences

𝐸*,*,*,*
* (𝑞∞0 -BSS) −→ 𝐸*,*,*,*

* (𝑞−1
1 -BSS).
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3.6 Multiplicativity of the BSSs

The 𝑄-BSS is multiplicative because Ω*(𝑃 ;𝑄) −→ Ω*(𝑃 ;𝑄/𝑞0) is a map of DG

algebras.

Lemma 3.6.1. Suppose 𝑥, 𝑥′, 𝑦, 𝑦′ ∈ 𝐻*(𝑃 ;𝑄/𝑞0) and that 𝑑𝑟𝑥 = 𝑦 and 𝑑𝑟𝑥′ = 𝑦′ in

the 𝑄-BSS. Then

𝑑𝑟(𝑥𝑥
′) = 𝑦𝑥′ + (−1)|𝑥|𝑥𝑦′.

Here |𝑥| and |𝑦| denote the cohomological gradings of 𝑥 and 𝑦, respectively, since

every element of 𝑃 , 𝑄 and 𝑄/𝑞0 has even 𝑢 grading.

Proof. Suppose 𝑑𝑟𝑥 = 𝑦 and 𝑑𝑟𝑥′ = 𝑦′.

Lemma 3.2.4 tells us that there exist 𝑎, 𝑎′, 𝑏, 𝑏′ ∈ Ω*(𝑃 ;𝑄) such that their images

in Ω*(𝑃 ;𝑄/𝑞0) represent 𝑥, 𝑥′, 𝑦, 𝑦′, respectively, and such that 𝑑𝑎 = 𝑞𝑟0𝑏, 𝑑𝑎′ = 𝑞𝑟0𝑏
′.

The image of 𝑎𝑎′ ∈ Ω*(𝑃 ;𝑄) in Ω*(𝑃 ;𝑄/𝑞0) represents 𝑥𝑥′ and the image of

𝑏𝑎′ + (−1)|𝑎|𝑎𝑏′ ∈ Ω*(𝑃 ;𝑄)

in Ω*(𝑃 ;𝑄/𝑞0) represents 𝑦𝑥′ + (−1)|𝑥|𝑥𝑦′. Since 𝑑(𝑎𝑎′) = 𝑞𝑟0(𝑏𝑎
′ + (−1)|𝑎|𝑎𝑏′), lemma

3.2.4 completes the proof.

Corollary 3.6.2. We have a multiplication

𝐸𝑠,𝑡,𝑢,𝑣
1 (𝑄-BSS)⊗ 𝐸𝑠′,𝑡′,𝑢′,𝑣′

1 (𝑄-BSS) −→ 𝐸𝑠+𝑠′,𝑡+𝑡′,𝑢+𝑢′,𝑣+𝑣′

1 (𝑄-BSS)

restricting to the following maps.

ker 𝑑𝑟 ⊗ im 𝑑𝑟 //

��

im 𝑑𝑟

��

⋂︀
𝑠 ker 𝑑𝑠 ⊗

⋃︀
𝑠 im 𝑑𝑠 //

��

⋃︀
𝑠 im 𝑑𝑠

��
ker 𝑑𝑟 ⊗ ker 𝑑𝑟 // ker 𝑑𝑟

⋂︀
𝑠 ker 𝑑𝑠 ⊗

⋂︀
𝑠 ker 𝑑𝑠 //

⋂︀
𝑠 ker 𝑑𝑠

im 𝑑𝑟 ⊗ ker 𝑑𝑟 //

OO

im 𝑑𝑟

OO

⋃︀
𝑠 im 𝑑𝑠 ⊗

⋂︀
𝑠 ker 𝑑𝑠 //

OO

⋃︀
𝑠 im 𝑑𝑠

OO
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Thus we have induced maps

𝐸𝑠,𝑡,𝑢,𝑣
𝑟 (𝑄-BSS)⊗ 𝐸𝑠′,𝑡′,𝑢′,𝑣′

𝑟 (𝑄-BSS) −→ 𝐸𝑠+𝑠′,𝑡+𝑡′,𝑢+𝑢′,𝑣+𝑣′

𝑟 (𝑄-BSS)

for 1 ≤ 𝑟 ≤ ∞. Moreover,

𝐸𝑠,𝑡,𝑢,*
∞ (𝑄-BSS)⊗ 𝐸𝑠′,𝑡′,𝑢′,*

∞ (𝑄-BSS) −→ 𝐸𝑠+𝑠′,𝑡+𝑡′,𝑢+𝑢′,*
∞ (𝑄-BSS)

is the associated graded of the map

𝐻𝑠,𝑢(𝑃 ;𝑄𝑡)⊗𝐻𝑠′,𝑢′(𝑃 ;𝑄𝑡′) −→ 𝐻𝑠+𝑠′,𝑢+𝑢′(𝑃 ;𝑄𝑡+𝑡′).

Lemma 3.4.1 means that we have the following corollary to the previous lemma.

Corollary 3.6.3. Suppose 𝑥, 𝑥′, 𝑦, 𝑦′ ∈ 𝐻*(𝑃 ;𝑄/𝑞0) and that 𝑑𝑟𝑥 = 𝑦 and 𝑑𝑟𝑥′ = 𝑦′

in the 𝑞∞0 -BSS. Then

𝑑𝑟(𝑥𝑥
′) = 𝑦𝑥′ + (−1)|𝑥|𝑥𝑦′.

The 𝑞∞0 -BSS is not multiplicative in the sense that we do not have a strict analogue

of corollary 3.6.2. This is unsurprising because𝐻*(𝑃 ;𝑄/𝑞∞0 ) does not have an obvious

algebra structure. However, we do have a pairing between the 𝑄-BSS and the 𝑞∞0 -BSS

converging to the 𝐻*(𝑃 ;𝑄)-module structure map of 𝐻*(𝑃 ;𝑄/𝑞∞0 ).

An identical result to lemma 3.6.1 holds for the 𝑞−1
1 -BSS.

Lemma 3.6.4. Suppose 𝑥, 𝑥′, 𝑦, 𝑦′ ∈ 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0) and that 𝑑𝑟𝑥 = 𝑦 and 𝑑𝑟𝑥′ = 𝑦′

in the 𝑞−1
1 -BSS. Then

𝑑𝑟(𝑥𝑥
′) = 𝑦𝑥′ + (−1)|𝑥|𝑥𝑦′.

Proof. Suppose that 𝑑𝑟𝑥 = 𝑦 in the 𝑞−1
1 -BSS. We claim that for large enough 𝑘 the

elements 𝑞𝑘𝑝
𝑟

1 𝑥 and 𝑞𝑘𝑝
𝑟

1 𝑦 lift to elements 𝑋 and 𝑌 in 𝐻*(𝑃 ;𝑄/𝑞0) with the property

that 𝑑𝑟𝑋 = 𝑌 in the 𝑞∞0 -BSS.

By lemma 3.5.3, we have 𝑥̃ and 𝑦 demonstrating that 𝑑𝑟𝑥 = 𝑦 in the 𝑀𝑟+1-zig-zag.

Using definition 3.1.6 and the fact that filtered colimits commute with tensor products

and homology, we can find a 𝑘 such that 𝑞𝑘𝑝
𝑟

1 𝑥 and 𝑞𝑘𝑝
𝑟

1 𝑦 lift to 𝑋 ∈ 𝐻*(𝑃 ;𝑄/𝑞0) and
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̃︀𝑌 ∈ 𝐻*(𝑃 ;𝑀𝑟), respectively, and such that their images in 𝐻*(𝑃 ;𝑀1) coincide. Let

𝑌 ∈ 𝐻*(𝑃 ;𝑄/𝑞0) be the image of ̃︀𝑌 . Then 𝑌 lifts 𝑞𝑘𝑝
𝑟

1 𝑦 and 𝑑𝑟𝑋 = 𝑌 in the 𝑞∞0 -BSS,

proving the claim.

Suppose that 𝑑𝑟𝑥 = 𝑦 and 𝑑𝑟𝑥′ = 𝑦′ in the 𝑞−1
1 -BSS. For large enough 𝑘, we obtain

elements 𝑋, 𝑋 ′, 𝑌 and 𝑌 ′ lifting 𝑞𝑘𝑝
𝑟

1 𝑥, 𝑞𝑘𝑝
𝑟

1 𝑥′, 𝑞𝑘𝑝
𝑟

1 𝑦 and 𝑞𝑘𝑝
𝑟

1 𝑦′, respectively, and

differentials 𝑑𝑟𝑋 = 𝑌 and 𝑑𝑟𝑋 ′ = 𝑌 ′ in the 𝑞∞0 -BSS. The previous corollary gives

𝑑𝑟(𝑋𝑋
′) = 𝑌 𝑋 ′ + (−1)|𝑋|𝑋𝑌 ′.

Mapping into the 𝑞−1
1 -BSS and using lemma 3.5.3 we obtain

𝑑𝑟(𝑞
2𝑘𝑝𝑟

1 (𝑥𝑥′)) = 𝑞2𝑘𝑝
𝑟

1 (𝑦𝑥′ + (−1)|𝑥|𝑥𝑦′)

in the 𝑀𝑟+1-zig-zag. Dividing through by 𝑞2𝑘𝑝
𝑟

1 completes the proof.
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Chapter 4

Vanishing lines and localization

In this chapter we prove some vanishing lines for 𝐻*(𝑃 ;Q) with various choices of Q.

We also analyze the localization map 𝐻*(𝑃 ;𝑄/𝑞∞0 ) −→ 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ).

4.1 Vanishing lines

We make note of vanishing lines for 𝐻*(𝑃 ;Q) in the cases (see section 3.1 for defini-

tions)

Q = 𝑄/𝑞0, 𝑞
−1
1 𝑄/𝑞0, 𝑀𝑛, 𝑞

−1
1 𝑀𝑛, 𝑄/𝑞

∞
0 , 𝑞

−1
1 𝑄/𝑞∞0 .

Notation 4.1.1. We write 𝑞 for |𝑞1| = 2𝑝− 2.

Definition 4.1.2. For 𝑠 ∈ Z≥0 let 𝑈(2𝑠) = 𝑝𝑞𝑠 and 𝑈(2𝑠 + 1) = 𝑝𝑞𝑠 + 𝑞 and write

𝑈(−1) =∞.

In [10] Miller uses the following result.

Lemma 4.1.3. 𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞0]
𝑡) = 0 when 𝑢 < 𝑈(𝑠) + 𝑞𝑡.

Since 𝑞1 has (𝑡, 𝑢) bigrading (1, 𝑞) we obtain the following corollary.

Corollary 4.1.4. 𝐻𝑠,𝑢(𝑃 ; [𝑞−1
1 𝑄/𝑞0]

𝑡) = 0 when 𝑢 < 𝑈(𝑠) + 𝑞𝑡.

Lemma 4.1.5. For each 𝑛 ≥ 1, 𝐻𝑠,𝑢(𝑃 ; [𝑀𝑛]𝑡) = 0 whenever 𝑢 < 𝑈(𝑠) + 𝑞(𝑡+ 1).
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Proof. We proceed by induction on 𝑛.

The previous corollary together with the isomorphism 𝐻*(𝑃 ;𝑄/𝑞0) ∼= 𝐻*(𝑃 ;𝑀1)

gives the base case.

The long exact sequence associated to the short exact sequence of 𝑃 -comodules

0 −→ 𝑀1 −→ 𝑀𝑛+1
𝑞0−→ 𝑀𝑛 −→ 0 shows 𝐻𝑠,𝑢(𝑃 ; [𝑀𝑛+1]

𝑡) is zero provided that

𝐻𝑠,𝑢(𝑃 ; [𝑀1]
𝑡) and 𝐻𝑠,𝑢([𝑀𝑛]𝑡+1) are zero. Since 𝑢 < 𝑈(𝑠) + 𝑞(𝑡 + 1) implies that

𝑢 < 𝑈(𝑠) + 𝑞((𝑡+ 1) + 1) the inductive step is complete.

Corollary 4.1.6. For Q = 𝑀𝑛, 𝑞
−1
1 𝑀𝑛, 𝑄/𝑞

∞
0 , or 𝑞−1

1 𝑄/𝑞∞0 we have

𝐻𝑠,𝑢(𝑃 ;Q𝑡) = 0 whenever 𝑢 < 𝑈(𝑠) + 𝑞(𝑡+ 1).

Notation 4.1.7. We write (𝜎, 𝜆) for (𝑠+ 𝑡, 𝑢+ 𝑡).

Since (𝑞 + 1)𝑠− 1 ≤ 𝑈(𝑠) we have the following corollaries.

Corollary 4.1.8. For Q = 𝑄/𝑞0 or 𝑞−1
1 𝑄/𝑞0 we have

𝐻𝑠,𝑢(𝑃 ;Q𝑡) = 0 whenever 𝜆− 𝜎 < 𝑞𝜎 − 1.

Corollary 4.1.9. For Q = 𝑀𝑛, 𝑄/𝑞
∞
0 , 𝑞

−1
1 𝑀𝑛, or 𝑞−1

1 𝑄/𝑞∞0 we have

𝐻𝑠,𝑢(𝑃 ;Q𝑡) = 0 whenever 𝜆− 𝜎 < 𝑞(𝜎 + 1)− 1.

Lemma 4.1.10. For 𝑛 ≥ 1, 𝐻𝑠,𝑢(𝑃 ; [𝑀𝑛]𝑡) −→ 𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞∞0 ]𝑡) is

1. surjective when 𝜆− 𝜎 = 𝑝𝑛−1𝑞 and 𝜎 ≥ 𝑝𝑛−1 − 𝑛.

2. injective when 𝜆− 𝜎 = 𝑝𝑛−1𝑞 − 1 and 𝜎 ≥ 𝑝𝑛−1 − 𝑛+ 1;

Proof. The previous corollary tells us that 𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞∞0 ]𝑡) = 0 when 𝜆− 𝜎 = 𝑝𝑛−1𝑞

and 𝜎 ≥ 𝑝𝑛−1. The following exact sequence completes the proof.

𝐻𝑠−1,𝑢(𝑃 ; [𝑄/𝑞∞0 ]𝑡+𝑛) // 𝐻𝑠,𝑢(𝑃 ; [𝑀𝑛]𝑡) // 𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞∞0 ]𝑡) // 𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞∞0 ]𝑡+𝑛)
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4.2 The localization map: the trigraded perspective

In this section we analyze the map 𝐻*(𝑃 ;𝑄/𝑞∞0 ) −→ 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ). In particular,

we find a range in which it is an isomorphism. The result which allows us to do this

follows. Throughout this section 𝑠 ≥ 0. Recall definition 4.1.2.

Proposition 4.2.1 ([10, pg. 81]). The localization map

𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞0]
𝑡) −→ 𝐻𝑠,𝑢(𝑃 ; [𝑞−1

1 𝑄/𝑞0]
𝑡)

1. is injective if 𝑢 < 𝑈(𝑠− 1) + (2𝑝2 − 2)(𝑡+ 1)− 𝑞;

2. is surjective if 𝑢 < 𝑈(𝑠) + (2𝑝2 − 2)(𝑡+ 1)− 𝑞.

This allows us to prove the following lemma which explains how we can transfer

differentials between the 𝑞∞0 -BSS and the 𝑞−1
1 -BSS.

Lemma 4.2.2. Suppose 𝑢 < 𝑈(𝑠)+(2𝑝2−2)(𝑡+2)−𝑞 so that proposition 4.2.1 gives a

surjection 𝐸𝑠,𝑡,𝑢,*
1 (𝑞∞0 -BSS)→ 𝐸𝑠,𝑡,𝑢,*

1 (𝑞−1
1 -BSS) and an injection 𝐸𝑠+1,𝑡,𝑢,*

1 (𝑞∞0 -BSS)→

𝐸𝑠+1,𝑡,𝑢,*
1 (𝑞−1

1 -BSS).

Suppose 𝑥 ∈ 𝐸𝑠,𝑡,𝑢,*
1 (𝑞∞0 -BSS) maps to 𝑥 ∈ 𝐸𝑠,𝑡,𝑢,*

1 (𝑞−1
1 -BSS) and that 𝑑𝑟𝑥 = 𝑦 in

the 𝑞−1
1 -BSS. Then, in fact, 𝑦 lies in 𝐸𝑠+1,𝑡,𝑢,*

1 (𝑞∞0 -BSS) and 𝑑𝑟𝑥 = 𝑦 in the 𝑞∞0 -BSS.

Proof. We proceed by induction on 𝑟. The result is true in the case 𝑟 = 0 where

𝑑0 = 0 and the case 𝑟 = 1 where 𝑑𝑟 is a function. Suppose 𝑟 > 1. Then

𝑑𝑟𝑥 = 𝑦 in the 𝑞−1
1 -BSS

=⇒ 𝑑𝑟−1𝑥 = 0 in the 𝑞−1
1 -BSS (Lemma 2.1.4)

=⇒ 𝑑𝑟−1𝑥 = 0 in the 𝑞∞0 -BSS (Induction)

=⇒ 𝑑𝑟𝑥 = 𝑦′ in the 𝑞∞0 -BSS for some 𝑦′ (Lemma 2.1.4)

=⇒ 𝑑𝑟𝑥 = 𝑦′ in the 𝑞−1
1 -BSS (Map of SSs)

=⇒ 𝑑𝑟−1𝑥
′ = 𝑦′ − 𝑦 in the 𝑞−1

1 -BSS for some 𝑥′ (Corollary 2.1.5)

=⇒ 𝑑𝑟−1𝑥
′ = 𝑦′ − 𝑦 in the 𝑞∞0 -BSS (Induction)

=⇒ 𝑑𝑟𝑥 = 𝑦 in the 𝑞∞0 -BSS (Corollary 2.1.5)
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We remark that the statement about 𝑦 lying in 𝐸𝑠+1,𝑡,𝑢,*
1 (𝑞∞0 ) is actually trivial: the

map 𝐸𝑠+1,𝑡,𝑢,*
1 (𝑞∞0 -BSS) −→ 𝐸𝑠+1,𝑡,𝑢,*

1 (𝑞−1
1 -BSS) is an isomorphism since 𝑠 ≥ 0 implies

𝑈(𝑠) < 𝑈(𝑠+ 1).

Corollary 4.2.3. 𝐸𝑠,𝑡,𝑢,*
∞ (𝑞∞0 -BSS) −→ 𝐸𝑠,𝑡,𝑢,*

∞ (𝑞−1
1 -BSS) is

1. injective if 𝑢 < 𝑈(𝑠− 1) + (2𝑝2 − 2)(𝑡+ 2)− 𝑞;

2. surjective if 𝑢 < 𝑈(𝑠) + (2𝑝2 − 2)(𝑡+ 2)− 𝑞.

Proof. Suppose 𝑢 < 𝑈(𝑠) + (2𝑝2− 2)(𝑡+ 2)− 𝑞 and that 𝑦 ∈ 𝐸𝑠+1,𝑡,𝑢,*
∞ (𝑞∞0 -BSS) maps

to zero in 𝐸𝑠+1,𝑡,𝑢,*
∞ (𝑞−1

1 -BSS). This says that 𝑑𝑟𝑥 = 𝑦 for some 𝑥 in 𝐸𝑠,𝑡,𝑢,*
1 (𝑞∞0 -BSS).

By the previous lemma 𝑑𝑟𝑥 = 𝑦, which says that 𝑦 is zero in 𝐸𝑠+1,𝑡,𝑢,*
∞ (𝑞∞0 -BSS). This

proves the first statement when 𝑠 > 0. For 𝑠 = 0, the result is clear since it holds at

the 𝐸1-page and the only boundary is zero.

Suppose 𝑢 < 𝑈(𝑠)+(2𝑝2−2)(𝑡+2)−𝑞 and we have an element of 𝐸𝑠,𝑡,𝑢,*
∞ (𝑞−1

1 -BSS).

We can write this element as 𝑥 for 𝑥 ∈ 𝐸𝑠,𝑡,𝑢,*
1 (𝑞∞0 -BSS). Moreover, since 𝑑𝑟𝑥 = 0 for

each 𝑟 the previous lemma tells us that each 𝑑𝑟𝑥 = 0 for each 𝑟, i.e. 𝑥 is a permanent

cycle, as is required to prove the second statement.

Proposition 4.2.4. The localization map

𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞∞0 ]𝑡) −→ 𝐻𝑠,𝑢(𝑃 ; [𝑞−1
1 𝑄/𝑞∞0 ]𝑡)

1. is injective if 𝑢 < 𝑈(𝑠− 1) + (2𝑝2 − 2)(𝑡+ 2)− 𝑞;

2. is surjective if 𝑢 < 𝑈(𝑠) + (2𝑝2 − 2)(𝑡+ 2)− 𝑞.

Proof. We have 𝐻*(𝑃 ;Q) =
⋃︀
𝑣 𝐹

𝑣𝐻*(𝑃 ;Q) and 𝐹 0𝐻*(𝑃 ;Q) = 0 when Q = 𝑄/𝑞∞0

or 𝑞−1
1 𝑄/𝑞∞0 and so the result follows from the previous corollary.

4.3 The localization map: the bigraded perspective

Recall the bigrading (𝜎, 𝜆) of definition 4.1.7. We prove the analogues of the results

of the last section with respect to this bigrading.
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Proposition 4.3.1 ([10, 4.7(𝑎)]). The localization map

𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞0]
𝑡) −→ 𝐻𝑠,𝑢(𝑃 ; [𝑞−1

1 𝑄/𝑞0]
𝑡)

1. is a surjection if 𝜎 ≥ 0 and 𝜆 < 𝑈(𝜎 + 1)− 𝑞 − 1;

2. is an isomorphism if 𝜎 ≥ 0 and 𝜆 < 𝑈(𝜎)− 𝑞 − 1.

Corollary 4.3.2. The localization map

𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞0]
𝑡) −→ 𝐻𝑠,𝑢(𝑃 ; [𝑞−1

1 𝑄/𝑞0]
𝑡)

1. is a surjection if 𝜆 < 𝑝(𝑝− 1)𝜎 − 1, i.e. 𝜆− 𝜎 < (𝑝2 − 𝑝− 1)𝜎 − 1;

2. is an isomorphism if 𝜆 < 𝑝(𝑝− 1)(𝜎 − 1)− 1,

i.e. 𝜆− 𝜎 < (𝑝2 − 𝑝− 1)(𝜎 − 1)− 2.

Proof. Consider 𝑔(𝜎) = 𝑝(𝑝− 1)𝜎 − 𝑈(𝜎) for 𝜎 ≥ 0. We have 𝑔(1) = 𝑝(𝑝− 3) + 2 ≥

0 = 𝑔(0) and 𝑔(𝜎 + 2) = 𝑔(𝜎). Thus 𝑝(𝑝− 1)𝜎 − 𝑈(𝜎) ≤ 𝑝(𝑝− 3) + 2 and so

𝑝(𝑝− 1)(𝜎 − 1)− 1 ≤
[︁
𝑈(𝜎) + 𝑝(𝑝− 3) + 2

]︁
− 𝑝(𝑝− 1)− 1 = 𝑈(𝜎)− 𝑞 − 1.

Together with the previous proposition, this proves the claim for 𝜎 ≥ 0.

When 𝜎 < 0, 𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞0]
𝑡) = 0 and so the localization map is injective. We

just need to prove that 𝐻𝑠,𝑢(𝑃 ; [𝑞−1
1 𝑄/𝑞0]

𝑡) = 0 whenever 𝜆− 𝜎 < (𝑝2 − 𝑝− 1)𝜎 − 1

and 𝜎 < 0. We can only have [(𝜆− 𝜎) + 1]/(𝑝2 − 𝑝− 1) < 𝜎 < 0 if (𝜆− 𝜎) + 1 < 0.

But then [(𝜆 − 𝜎) + 1]/𝑞 < 𝜎 < 0 and the vanishing line of corollary 4.1.8 gives the

result.

This allows us to prove bigraded versions of all the results of the previous subsec-

tion. In particular, we have the following proposition.
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Proposition 4.3.3. The localization map

𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞∞0 ]𝑡) −→ 𝐻𝑠,𝑢(𝑃 ; [𝑞−1
1 𝑄/𝑞∞0 ]𝑡)

1. is a surjection if 𝜆 < 𝑝(𝑝− 1)(𝜎 + 1)− 2, i.e. 𝜆− 𝜎 < (𝑝2 − 𝑝− 1)(𝜎 + 1)− 1;

2. is an isomorphism if 𝜆 < 𝑝(𝑝− 1)𝜎 − 2, i.e. 𝜆− 𝜎 < (𝑝2 − 𝑝− 1)𝜎 − 2.
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Chapter 5

Calculating the 1-line of the 𝑞-CSS;

its image in 𝐻*(𝐴)

This chapter contains our main result. We calculate the 𝑞−1
1 -BSS

[︂
𝐻*(𝑃 ; 𝑞−1

1 𝑄/𝑞0)
[︁
𝑞0

]︁]︂
/𝑞∞0

𝑣
=⇒ 𝐻*(𝑃 ; 𝑞−1

1 𝑄/𝑞∞0 ).

In the introduction we discussed “principal towers” and their “side towers.” Our

presentation of the results is divided up in this way, too.

5.1 The 𝐸1-page of the 𝑞−1
1 -BSS

Our starting place for the calculation of the 𝑞−1
1 -BSS is a result of Miller in [10] which

gives a description of 𝐸1(𝑞
−1
1 -BSS).

Definition 5.1.1. Denote by 𝑃 ′ the Hopf algebra obtained from 𝑃 by quotienting

out the ideal generated by the image of the 𝑝-th power map 𝑃 −→ 𝑃 , 𝜉 ↦−→ 𝜉𝑝.

We can make F𝑝[𝑞1] into an algebra in 𝑃 ′-comodules by defining 𝑞1 to be a comod-

ule primitive. The map 𝑄/𝑞0 −→ 𝑄/(𝑞0, 𝑞2, 𝑞3, . . .) = F𝑝[𝑞1] is an algebra map over

the Hopf algebra map 𝑃 −→ 𝑃 ′. Thus, we have the following induced map.

Ω*(𝑃 ; 𝑞−1
1 𝑄/𝑞0) −→ Ω*(𝑃 ′;F𝑝[𝑞±1

1 ]) (5.1.2)
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Theorem 5.1.3 (Miller, [10, 4.4]). The map 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0) −→ 𝐻*(𝑃 ′;F𝑝[𝑞±1

1 ]) is

an isomorphism.

[𝜉𝑛] and
∑︀𝑝−1

𝑗=1
(−1)𝑗−1

𝑗
[𝜉𝑗𝑛|𝜉𝑝−𝑗𝑛 ] are cocycles in Ω*(𝑃 ′) and so they define elements

ℎ𝑛,0 and 𝑏𝑛,0 in 𝐻*(𝑃 ′;F𝑝). The cohomology of a primitively generated Hopf algebra

is well understood and the following lemma is a consequence.

Lemma 5.1.4. 𝐻*(𝑃 ′;F𝑝) = 𝐸[ℎ𝑛,0 : 𝑛 ≥ 1]⊗ F𝑝[𝑏𝑛,0 : 𝑛 ≥ 1].

Corollary 5.1.5. 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0) = F𝑝[𝑞±1

1 ]⊗𝐸[ℎ𝑛,0 : 𝑛 ≥ 1]⊗ F𝑝[𝑏𝑛,0 : 𝑛 ≥ 1]. The

(𝑠, 𝑡, 𝑢) trigradings are as follows.

|𝑞1| = (0, 1, 2𝑝− 2), |ℎ𝑛,0| = (1, 0, 2𝑝𝑛 − 2), |𝑏𝑛,0| = (2, 0, 𝑝(2𝑝𝑛 − 2)).

For our work it is convenient to change these exterior and polynomial generators

by units.

Notation 5.1.6. For 𝑛 ≥ 1, let 𝑝[𝑛] = 𝑝𝑛−1
𝑝−1

, 𝜖𝑛 = 𝑞−𝑝
[𝑛]

1 ℎ𝑛,0, and 𝜌𝑛 = 𝑞−𝑝·𝑝
[𝑛]

1 𝑏𝑛,0.

Let 𝑝[0] = 0 and note that we have 𝑝[𝑛+1] = 𝑝𝑛 + 𝑝[𝑛] = 𝑝 · 𝑝[𝑛] + 1 for 𝑛 ≥ 0.

Corollary 5.1.7. 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0) = F𝑝[𝑞±1

1 ] ⊗ 𝐸[𝜖𝑛 : 𝑛 ≥ 1] ⊗ F𝑝[𝜌𝑛 : 𝑛 ≥ 1]. The

(𝑠, 𝑡, 𝑢) trigradings are as follows.

|𝑞1| = (0, 1, 2𝑝− 2), |𝜖𝑛| = (1,−𝑝[𝑛], 0), |𝜌𝑛| = (2, 1− 𝑝[𝑛+1], 0).

We make note of some elements that lift uniquely to 𝐻*(𝑃 ;𝑄/𝑞0).

Lemma 5.1.8. The elements

1, 𝑞2𝑝
𝑛−1

1 𝜖𝑛, 𝑏1,0 = 𝑞𝑝1𝜌1, 𝑞
2𝑝𝑛

1 𝜌𝑛 ∈ 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0)

have unique lifts to 𝐻*(𝑃 ;𝑄/𝑞0). The same is true after multiplying by 𝑞𝑛1 as long as

𝑛 ≥ 0.
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Proof. We use proposition 4.2.1. The (𝑠, 𝑡, 𝑢) trigradings of the elements in the lemma

are

(0, 0, 0), (1, 2𝑝𝑛−1 − 𝑝[𝑛], 2𝑞𝑝𝑛−1), (2, 0, 𝑞𝑝), (2, 2𝑝𝑛 − 𝑝[𝑛+1] + 1, 2𝑞𝑝𝑛),

respectively. In each case (𝑠, 𝑡, 𝑢) satisfies 𝑢 < 𝑈(𝑠 − 1) + (2𝑝2 − 2)(𝑡 + 1) − 𝑞 and

𝑢 < 𝑈(𝑠) + (2𝑝2 − 2)(𝑡+ 1)− 𝑞; the key inequalities one needs are 𝑞 < 2𝑝2 − 2 and

2𝑞𝑝𝑛−1 < (2𝑝2 − 2)(2𝑝𝑛−1 − 𝑝[𝑛] + 1)− 𝑞. (5.1.9)

The latter inequality is equivalent to (𝑝 + 1)𝑝[𝑛] < 2𝑝𝑛 + 𝑝, which holds because

𝑝 ≥ 3. Since 𝑞 < 2𝑝2 − 2 multiplication by a positive power of 𝑞1 only makes things

better.

5.2 The first family of differentials, principal towers

5.2.1 Main results

Notation 5.2.1.1. We write .
= to denote equality up to multiplication by an element

in F×
𝑝 .

The main results of this section are as follows. The first concerns the 𝑞−1
1 -BSS

and the second gives the corresponding result in the 𝑄-BSS.

Proposition 5.2.1.2. For 𝑛 ≥ 1 and 𝑘 ∈ Z − 𝑝Z we have the following differential

in the 𝑞−1
1 -BSS.

𝑑𝑝[𝑛]𝑞
𝑘𝑝𝑛−1

1
.

= 𝑞𝑘𝑝
𝑛−1

1 𝜖𝑛

Proposition 5.2.1.3. Let 𝑛 ≥ 1. We have the following differential in the 𝑄-BSS.

𝑑𝑝𝑛−1𝑞𝑝
𝑛−1

1
.

= ℎ1,𝑛−1

Moreover, if 𝑘 ∈ Z− 𝑝Z and 𝑘 > 1, 𝑑𝑝[𝑛]𝑞
𝑘𝑝𝑛−1

1 is defined in the 𝑄-BSS.
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5.2.2 Quick proofs

The differentials in the 𝑞−1
1 -BSS are derivations (lemma 3.6.4) and 𝑑𝑝[𝑛]𝑞

−𝑝𝑛
1 = 0

(lemma 3.5.4). This means that proposition 5.2.1.2 follows quickly from the following

sub-proposition.

Proposition 5.2.2.1. For 𝑛 ≥ 1 we have the following differential in the 𝑞−1
1 -BSS.

𝑑𝑝[𝑛]𝑞
𝑝𝑛−1

1
.

= 𝑞𝑝
𝑛−1

1 𝜖𝑛

This is the consuming calculation of the section. Supposing this result for now,

we prove proposition 5.2.1.3.

Proof of proposition 5.2.1.3. The formula 𝑑
(︁

[ ]𝑞𝑝
𝑛−1

1

)︁
= [𝜉𝑝

𝑛−1

1 ]𝑞𝑝
𝑛−1

0 in Ω*(𝑃 ;𝑄), to-

gether with lemma 3.2.4 proves the first statement.

By lemma 3.4.1, we can verify the second statement in the 𝑞∞0 -BSS. We have

𝑞𝑣0𝑞
𝑘𝑝𝑛−1

1 ∈ 𝐸0,𝑘𝑝𝑛−1+𝑣,𝑘𝑞𝑝𝑛−1,𝑣
1 (𝑞∞0 -BSS)

and we will show that 𝑞−𝑝
[𝑛]−1

0 𝑞𝑘𝑝
𝑛−1

1 survives to the 𝐸𝑝[𝑛]-page. Proposition 5.2.1.2 and

lemma 4.2.2 say that it is enough to verify that (𝑠, 𝑡, 𝑢) = (0, 𝑘𝑝𝑛−1− 𝑝[𝑛]− 1, 𝑘𝑞𝑝𝑛−1)

satisfies 𝑢 < 𝑈(𝑠) + (2𝑝2 − 2)(𝑡 + 2) − 𝑞. Since 𝑞 < 2𝑝2 − 2 the worst case is when

𝑘 = 2 where the inequality is (5.1.9).

5.2.3 The proof of proposition 5.2.2.1

We prove proposition 5.2.2.1 via the following cocycle version of the statement.

Proposition 5.2.3.1. For each 𝑛 ≥ 1, there exist cocycles

𝑥𝑛 ∈ Ω0(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ), 𝑦𝑛 ∈ Ω1(𝑃 ; 𝑞−1

1 𝑄/𝑞0)

such that

1. 𝑞𝑝
[𝑛]−1

0 𝑥𝑛 = 𝑞−1
0 𝑞𝑝

𝑛−1

1 ,
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2. 𝑦𝑛 = 𝑞0𝑑(𝑞−1
0 𝑥𝑛),

3. the image of 𝑦𝑛 in Ω1(𝑃 ′;F𝑝[𝑞±1
1 ]) is (−1)𝑛−1[𝜉𝑛]𝑞−𝑝

[𝑛−1]

1 .

In the expression 𝑞0𝑑(𝑞−1
0 𝑥𝑛), 𝑞−1

0 𝑥𝑛 denotes the element of Ω0(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ) with

the following two properties:

1. multiplying by 𝑞0 gives 𝑥𝑛;

2. the denominators of the terms in 𝑞−1
0 𝑥𝑛 have 𝑞0 raised to a power greater than

or equal to 2.

Thus, 𝑞0𝑑(𝑞−1
0 𝑥𝑛) gives a particular representative for the image of the class of 𝑥𝑛

under the boundary map 𝜕 : 𝐻0(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ) −→ 𝐻1(𝑃 ; 𝑞−1

1 𝑄/𝑞0) coming from the

short exact sequence (3.5.1).

To illuminate the statement of the proposition we draw the relevant diagrams.

Ω0(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ) Ω0(𝑃 ; 𝑞−1

1 𝑄/𝑞∞0 )
𝑞𝑝

[𝑛]−1
0oo

𝑞0𝑑(𝑞
−1
0 (−))

��
Ω0(𝑃 ; 𝑞−1

1 𝑄/𝑞0)

��

55

Ω1(𝑃 ; 𝑞−1
1 𝑄/𝑞0)

��
Ω0(𝑃 ′;F𝑝[𝑞±1

1 ]) Ω1(𝑃 ′;F𝑝[𝑞±1
1 ])

𝑞−1
0 𝑞𝑝

𝑛−1

1 𝑥𝑛
�𝑞𝑝

[𝑛]−1
0oo

_

𝑞0𝑑(𝑞
−1
0 (−))

��
𝑞𝑝

𝑛−1

1_

��

,
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𝑦𝑛_

��

𝑞𝑝
𝑛−1

1 (−1)𝑛−1[𝜉𝑛]𝑞−𝑝
[𝑛−1]

1

Passing to cohomology and using theorem 5.1.3, we see that the proposition implies

that 𝑑𝑝[𝑛]𝑞
𝑝𝑛−1

1 = (−1)𝑛−1𝑞−𝑝
[𝑛−1]

1 ℎ𝑛,0
.

= 𝑞𝑝
𝑛−1

1 𝜖𝑛, as required.
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We note that for the 𝑛 = 1 and 𝑛 = 2 cases of the proposition we can take

𝑥1 = 𝑞−1
0 𝑞1, 𝑦1 = [𝜉1], 𝑥2 = 𝑞−𝑝−1

0 𝑞𝑝1 − 𝑞−1
0 𝑞−1

1 𝑞2, 𝑦2 = [𝜉2]𝑞
−1
1 + [𝜉1]𝑞

−2
1 𝑞2.

Sketch proof of proposition 5.2.3.1. We proceed by induction on 𝑛. So suppose that

we have cocycles 𝑥𝑛 and 𝑦𝑛 satisfying the statements in the proposition. Write 𝑃 0𝑥𝑛

and 𝑃 0𝑦𝑛 for the cochains in which we have raised every symbol to the 𝑝th power. We

claim that:

1. 𝑃 0𝑥𝑛 and 𝑃 0𝑦𝑛 are cocyles;

2. 𝑞𝑝
[𝑛+1]−2

0 𝑃 0𝑥𝑛 = 𝑞−1
0 𝑞𝑝

𝑛

1 ;

3. 𝑃 0𝑦𝑛 = 𝑞0𝑑(𝑞−1
0 𝑃 0𝑥𝑛).

Since 𝑦𝑛 maps to (−1)𝑛−1[𝜉𝑛]𝑞−𝑝
[𝑛−1]

1 in Ω1(𝑃 ′;F𝑝[𝑞±1
1 ]) and 𝜉𝑝𝑛 is zero in 𝑃 ′, 𝑃 0𝑦𝑛

maps to 0. By theorem 5.1.3, we deduce that there exists a 𝑤𝑛 ∈ Ω0(𝑃 ; 𝑞−1
1 𝑄/𝑞0)

with 𝑑𝑤𝑛 = 𝑃 0𝑦𝑛. We summarize some of this information in the following diagram.

Ω*(𝑃 ; 𝑞−1
1 𝑄/𝑞0) // Ω*(𝑃 ; 𝑞−1

1 𝑄/𝑞∞0 ) // Ω*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 )

𝑤𝑛_

𝑑

��

𝑞−1
0 𝑃 0𝑥𝑛

� //
_

𝑑

��

𝑃 0𝑥𝑛

𝑃 0𝑦𝑛
� // 𝑞−1

0 𝑃 0𝑦𝑛

Let 𝑥𝑛+1 = 𝑞−1
0 𝑃 0𝑥𝑛− 𝑞−1

0 𝑤𝑛, a cocycle in Ω0(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ) and 𝑦𝑛+1 = 𝑞0𝑑(𝑞−1

0 𝑥𝑛+1),

a cocycle in Ω1(𝑃 ; 𝑞−1
1 𝑄/𝑞0). We claim that:

1. 𝑞𝑝
[𝑛+1]−1

0 𝑥𝑛+1 = 𝑞−1
0 𝑞𝑝

𝑛

1 ;

2. 𝑦𝑛+1 = 𝑞0𝑑(𝑞−1
0 𝑥𝑛+1);

3. the image of 𝑦𝑛+1 in Ω1(𝑃 ′;F𝑝[𝑞±1
1 ]) is (−1)𝑛[𝜉𝑛+1]𝑞

−𝑝[𝑛]

1 .
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The first claim follows from the claim above that 𝑞𝑝
[𝑛+1]−2

0 𝑃 0𝑥𝑛 = 𝑞−1
0 𝑞𝑝

𝑛

1 , since then

𝑞𝑝
[𝑛+1]−1

0 𝑥𝑛+1 = 𝑞𝑝
[𝑛+1]−1

0 [𝑞−1
0 𝑃 0𝑥𝑛 − 𝑞−1

0 𝑤𝑛] = 𝑞𝑝
[𝑛+1]−2

0 𝑃 0𝑥𝑛 = 𝑞−1
0 𝑞𝑝

𝑛

1 . The second

claim holds by definition of 𝑦𝑛+1.

In order to convert the sketch proof into a proof we must prove the first three

claims and the final claim. The next lemma takes care of the first two claims.

Lemma 5.2.3.2. Suppose that 𝑥 ∈ Ω0(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ) and 𝑦 ∈ Ω1(𝑃 ; 𝑞−1

1 𝑄/𝑞0) are

cocycles. Then 𝑃 0𝑥 and 𝑃 0𝑦 are cocyles, too. Moreover, 𝑞𝑝
[𝑛]−1

0 𝑥 = 𝑞−1
0 𝑞𝑝

𝑛−1

1 implies

𝑞𝑝
[𝑛+1]−2

0 𝑃 0𝑥 = 𝑞−1
0 𝑞𝑝

𝑛

1 .

Proof. The result is clear for 𝑃 0𝑦 since Fr : 𝑃 −→ 𝑃 , 𝜉 ↦−→ 𝜉𝑝 is a Hopf algebra map

and 𝑞−1
1 𝑄/𝑞0 −→ 𝑞−1

1 𝑄/𝑞0, q ↦−→ q𝑝 is an algebra map over Fr.

Suppose that 𝑥 and 𝑃 0𝑥 involve negative powers of 𝑞0 at worst 𝑞−𝑛0 and that 𝑥

involves negative powers of 𝑞1 at worst 𝑞−𝑘1 . Then we have the following sequence of

injections (recall definitions 3.1.4 through 3.1.7).

Ω*(𝑃 ;𝑀𝑛(𝑘)) // Ω*(𝑃 ;𝑀𝑛(𝑘𝑝)) // Ω*(𝑃 ; 𝑞−1
1 𝑀𝑛) // Ω*(𝑃 ; 𝑞−1

1 𝑄/𝑞∞0 )

𝑞𝑘𝑝
𝑛−1

1 𝑥 � // 𝑥 � // 𝑥

𝑞𝑘𝑝
𝑛

1 𝑃 0𝑥 � // 𝑃 0𝑥 � // 𝑃 0𝑥

Since 𝑥 is a cocycle in Ω0(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ), 𝑞𝑘𝑝

𝑛−1

1 𝑥 is a cocycle in Ω0(𝑃 ;𝑀𝑛(𝑘)). Thus,

𝑞𝑘𝑝
𝑛

1 𝑃 0𝑥 is a cocycle in Ω0(𝑃 ;𝑀𝑛(𝑘𝑝)) and 𝑃 0𝑥 is a cocycle in Ω0(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ). Also,

𝑞𝑝
[𝑛]−1

0 𝑥 = 𝑞−1
0 𝑞𝑝

𝑛−1

1 =⇒ 𝑞𝑝·𝑝
[𝑛]−𝑝

0 𝑃 0𝑥 = 𝑞−𝑝0 𝑞𝑝
𝑛

1 =⇒ 𝑞𝑝·𝑝
[𝑛]−1

0 𝑃 0𝑥 = 𝑞−1
0 𝑞𝑝

𝑛

1 .

The proof is completed by noting that 𝑝 · 𝑝[𝑛] − 1 = 𝑝[𝑛+1] − 2.

The next lemma takes care of the third claim.

Lemma 5.2.3.3. Suppose 𝑥 ∈ Ω0(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ) is a cocycle and that

𝑞0𝑑(𝑞−1
0 𝑥) = 𝑦 ∈ Ω1(𝑃 ; 𝑞−1

1 𝑄/𝑞0).

Then 𝑞0𝑑(𝑞−1
0 𝑃 0𝑥) = 𝑃 0𝑦 ∈ Ω1(𝑃 ; 𝑞−1

1 𝑄/𝑞0).
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Proof. Suppose that 𝑞−1
0 𝑥 and 𝑞−𝑝0 𝑃 0𝑥 involve negative powers of 𝑞0 at worst 𝑞−𝑛0 and

that 𝑞−1
0 𝑥 involves negative powers of 𝑞1 at worst 𝑞−𝑘1 . Then we have the following

sequence of injections (recall definitions 3.1.4 through 3.1.7).

Ω*(𝑃 ;𝑀𝑛(𝑘)) // Ω*(𝑃 ;𝑀𝑛(𝑘𝑝)) // Ω*(𝑃 ; 𝑞−1
1 𝑀𝑛) // Ω*(𝑃 ; 𝑞−1

1 𝑄/𝑞∞0 )

𝑞𝑘𝑝
𝑛−1

1 𝑞−1
0 𝑥 � // 𝑞−1

0 𝑥 � // 𝑞−1
0 𝑥

𝑞𝑘𝑝
𝑛

1 𝑞−𝑝0 𝑃 0𝑥 � // 𝑞−𝑝0 𝑃 0𝑥 � // 𝑞−𝑝0 𝑃 0𝑥

We have

𝑑(𝑞𝑘𝑝
𝑛

1 𝑞−𝑝0 𝑃 0𝑥) = 𝑃 0𝑑(𝑞𝑘𝑝
𝑛−1

1 𝑞−1
0 𝑥) ∈ Ω1(𝑃 ;𝑀𝑛(𝑘𝑝))

and so

𝑑(𝑞−𝑝0 𝑃 0𝑥) = 𝑞−𝑘𝑝
𝑛

1 𝑑(𝑞𝑘𝑝
𝑛

1 𝑞−𝑝0 𝑃 0𝑥) = 𝑃 0

[︂
𝑞−𝑘𝑝

𝑛−1

1 𝑑(𝑞𝑘𝑝
𝑛−1

1 𝑞−1
0 𝑥)

]︂
= 𝑃 0𝑑(𝑞−1

0 𝑥)

(5.2.3.4)

in Ω1(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ). We obtain

𝑞0𝑑(𝑞−1
0 𝑃 0𝑥) = 𝑞0𝑑(𝑞𝑝−1

0 (𝑞−𝑝0 𝑃 0𝑥)) = 𝑞𝑝0𝑑(𝑞−𝑝0 𝑃 0𝑥) = 𝑃 0(𝑞0𝑑(𝑞−1
0 𝑥)) = 𝑃 0𝑦

where the penultimate equality comes from the preceding observation.

Proof of proposition 5.2.3.1. We are just left with the final claim, that the image of

𝑦𝑛+1 in Ω1(𝑃 ′;F𝑝[𝑞±1
1 ]) is (−1)𝑛[𝜉𝑛+1]𝑞

−𝑝[𝑛]

1 .

Recall that 𝑦𝑛+1 is defined to be 𝑞0𝑑(𝑞−1
0 𝑥𝑛+1) and that 𝑥𝑛+1 is 𝑞−1

0 𝑃 0𝑥𝑛 − 𝑞−1
0 𝑤𝑛.

We summarize this in the following diagram.

Ω*(𝑃 ; 𝑞−1
1 𝑄/𝑞0) // Ω*(𝑃 ; 𝑞−1

1 𝑄/𝑞∞0 ) // Ω*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 )

𝑞−1
0 𝑥𝑛+1 = 𝑞−2

0 𝑃 0𝑥𝑛 − 𝑞−2
0 𝑤𝑛

� //
_

𝑑

��

𝑥𝑛+1

𝑦𝑛+1
� // 𝑞−1

0 𝑦𝑛+1
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When considering the image of 𝑦𝑛+1 in Ω1(𝑃 ′;F𝑝[𝑞±1
1 ]) we can ignore contributions

arising from 𝑞−2
0 𝑃 0𝑥𝑛 since (5.2.3.4) gives

𝑑(𝑞−2
0 𝑃 0𝑥𝑛) = 𝑞𝑝−2

0 𝑃 0𝑑(𝑞−1
0 𝑥𝑛)

and so all terms involve a 𝜉𝑗 raised to a 𝑝-th power. Let

𝑤′
𝑛 = 𝑤𝑛 + (−1)𝑛𝑞−𝑝

[𝑛]

1 𝑞𝑛+1 ∈ Ω0(𝑃 ; 𝑞−1
1 𝑄/𝑞0)

so that

−𝑞−2
0 𝑤𝑛 = (−1)𝑛𝑞−2

0 𝑞−𝑝
[𝑛]

1 𝑞𝑛+1 − 𝑞−2
0 𝑤′

𝑛 ∈ Ω0(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ).

As an example, we recall that

𝑥1 = 𝑞−1
0 𝑞1, 𝑦1 = [𝜉1], 𝑥2 = 𝑞−𝑝−1

0 𝑞𝑝1 − 𝑞−1
0 𝑞−1

1 𝑞2, 𝑦2 = [𝜉2]𝑞
−1
1 + [𝜉1]𝑞

−2
1 𝑞2;

we have

𝑤1 = 𝑞−1
1 𝑞2, 𝑤

′
1 = 0, 𝑤2 = 𝑞−2𝑝−1

1 𝑞𝑝+1
2 − 𝑞−𝑝−1

1 𝑞3, 𝑤
′
2 = 𝑞−2𝑝−1

1 𝑞𝑝+1
2 .

We consider the contributions from the two terms in the expression for −𝑞−2
0 𝑤𝑛

separately.

Lemma 5.2.3.5. The only term of 𝑑(𝑞−2
0 𝑞−𝑝

[𝑛]

1 𝑞𝑛+1), which is relevant to the image

of 𝑦𝑛+1 in Ω1(𝑃 ′;F𝑝[𝑞±1
1 ]), is [𝜉𝑛+1]𝑞

−1
0 𝑞−𝑝

[𝑛]

1 .

Proof. Recall definitions 3.1.4 and 3.1.6. We have a 𝑃 -comodule map

𝑀2(𝑝
[𝑛−1] + 1) −→ 𝑞−1

1 𝑀2 ⊂ 𝑞−1
1 𝑄/𝑞∞0 , 𝑞−2

0 𝑞𝑝−1
1 𝑞𝑛+1 ↦−→ 𝑞−2

0 𝑞−𝑝
[𝑛]

1 𝑞𝑛+1.

Under the coaction map 𝑄 −→ 𝑃 ⊗𝑄, we have

𝑞𝑝−1
1 ↦−→

∑︁
𝑖+𝑗=𝑝−1

(−1)𝑖𝜉𝑖1 ⊗ 𝑞𝑖0𝑞
𝑗
1 and 𝑞𝑛+1 ↦−→

∑︁
𝑟+𝑠=𝑛+1

𝜉𝑝
𝑠

𝑟 ⊗ 𝑞𝑠.
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Under the coaction map 𝑞−1
0 𝑄 −→ 𝑃 ⊗ 𝑞−1

0 𝑄, we have

𝑞−2
0 𝑞𝑝−1

1 𝑞𝑛+1 ↦−→
∑︁

𝑖+𝑗=𝑝−1

∑︁
𝑟+𝑠=𝑛+1

(−1)𝑖𝜉𝑖1𝜉
𝑝𝑠

𝑟 ⊗ 𝑞𝑖−2
0 𝑞𝑗1𝑞𝑠

so that under the coaction map 𝑞−1
1 𝑄/𝑞∞0 −→ 𝑃 ⊗ 𝑞−1

1 𝑄/𝑞∞0 , we have

𝑞−2
0 𝑞−𝑝

[𝑛]

1 𝑞𝑛+1 ↦−→
∑︁

𝑖+𝑗=𝑝−1

𝑖=0,1

∑︁
𝑟+𝑠=𝑛+1

(−1)𝑖𝜉𝑖1𝜉
𝑝𝑠

𝑟 ⊗ 𝑞𝑖−2
0 𝑞

𝑗−𝑝(𝑝[𝑛−1]+1)
1 𝑞𝑠.

We know that terms involving 𝑞−2
0 must eventually cancel in some way so we ignore

these. Because we are concerned with an image in Ω1(𝑃 ′;F𝑝[𝑞±1
1 ]) we ignore terms

involving 𝜉𝑗’s raised to a power greater than or equal to 𝑝 and terms involving 𝑞𝑗’s

other than 𝑞1 and 𝑞0. Since 𝑛 ≥ 1, we are left with the term corresponding to 𝑠 = 0,

𝑟 = 𝑛+ 1, 𝑖 = 0 and 𝑗 = 𝑝− 1: it is 𝜉𝑛+1 ⊗ 𝑞−1
0 𝑞−𝑝

[𝑛]

1 .

The proof of proposition 5.2.3.1 is almost complete. We just need to show that

𝑑(𝑞−2
0 𝑤′

𝑛) contributes nothing to the image of 𝑦𝑛+1 in Ω1(𝑃 ′;F𝑝[𝑞±1
1 ]). Recall that

𝑤′
𝑛 = 𝑤𝑛 + (−1)𝑛𝑞−𝑝

[𝑛]

1 𝑞𝑛+1 ∈ Ω0(𝑃 ; 𝑞−1
1 𝑄/𝑞0)

and that 𝑑𝑤𝑛 = 𝑃 0𝑦𝑛.

Denote by 𝑃 ′′ the Hopf algebra obtained from 𝑃 by quotienting out the ideal

generated by the image of the map 𝑃 −→ 𝑃 , 𝜉 ↦−→ 𝜉𝑝
2 .

Lemma 5.2.3.6.

𝑑𝑤′
𝑛 = 𝑃 0𝑦𝑛 + (−1)𝑛

∑︁
𝑖+𝑗=𝑛+1

𝑖,𝑗≥1

[𝜉𝑝
𝑗

𝑖 ]𝑞−𝑝
[𝑛]

1 𝑞𝑗 ∈ Ω1(𝑃 ; 𝑞−1
1 𝑄/𝑞0)

is in the kernel of the map 𝑃 ⊗ 𝑞−1
1 𝑄/𝑞0 −→ 𝑃 ′′ ⊗ F𝑝[𝑞±1

1 ].

Proof. By the inductive hypothesis 𝑦𝑛 ≡ (−1)𝑛−1[𝜉𝑛]𝑞−𝑝
[𝑛−1]

1 modulo the kernel of

𝑃 ⊗ 𝑞−1
1 𝑄/𝑞0 −→ 𝑃 ′ ⊗ F𝑝[𝑞±1

1 ]. So 𝑃 0𝑦𝑛 ≡ (−1)𝑛−1[𝜉𝑝𝑛]𝑞−𝑝
[𝑛]+1

1 modulo the kernel of
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𝑃 ⊗ 𝑞−1
1 𝑄/𝑞0 −→ 𝑃 ′′⊗F𝑝[𝑞±1

1 ]. (−1)𝑛−1[𝜉𝑝𝑛]𝑞−𝑝
[𝑛]+1

1 cancels with the 𝑗 = 1 term of the

summation in the lemma statement.

Corollary 5.2.3.7. For each monomial 𝑊 of 𝑤′
𝑛 not equal to a power of 𝑞1, there

exists a 𝑗 > 1 such that 𝑞𝑝𝑗 divides 𝑊 .

Proof. The map 𝑞−1
1 𝑄/𝑞0 −→ 𝑃 ⊗ 𝑞−1

1 𝑄/𝑞0 −→ 𝑃 ⊗ F𝑝[𝑞±1
1 ] takes

𝑞𝑘1𝑛1
· · · 𝑞𝑘𝑟𝑛𝑟

↦−→ 𝜉𝑘1𝑝𝑛1−1 · · · 𝜉
𝑘𝑟𝑝
𝑛𝑟−1 ⊗ 𝑞

∑︀
𝑘𝑖

1

and so it is injective with image F𝑝[𝜉𝑝1 , 𝜉
𝑝
2 , 𝜉

𝑝
3 , . . .] ⊗ F𝑝[𝑞±1

1 ]. One sees that elements

𝑞𝑘1𝑛1
· · · 𝑞𝑘𝑟𝑛𝑟

with 𝑟 ≥ 2, 1 = 𝑛1 < . . . < 𝑛𝑟, 𝑘1 ∈ Z, 𝑘2, . . . , 𝑘𝑟 ∈ {1, 2, . . . , 𝑝− 1} are not

sent to ker (𝑃 −→ 𝑃 ′′) ⊗ F𝑝[𝑞±1
1 ]. By the previous lemma, each monomial of 𝑤′

𝑛 not

equal to a power of 𝑞1 must contain some 𝑞𝑗 (𝑗 > 1) raised to a power greater than

or equal to 𝑝.

Since powers of 𝑞1 ∈ Ω0(𝑃 ; 𝑞−1
1 𝑄/𝑞0) are cocycles we can assume that 𝑤𝑛 and 𝑤′

𝑛

do not contain powers of 𝑞1 as monomials.

Suppose no power of 𝑞1 worse than 𝑞−𝑘𝑝1 appears in 𝑤′
𝑛. Making use of the map

(see definitions 3.1.4 and 3.1.6)

Ω*(𝑃 ;𝑀2(𝑘)) −→ Ω*(𝑃 ; 𝑞−1
1 𝑀2) ⊂ Ω*(𝑃 ; 𝑞−1

1 𝑄/𝑞∞0 ), 𝑞−2
0 𝑞𝑘𝑝1 𝑤

′
𝑛 ↦−→ 𝑞−2

0 𝑤′
𝑛

we see that it is sufficient to analyze 𝑑(𝑞−2
0 𝑞𝑘𝑝1 𝑤

′
𝑛). Viewing 𝑞𝑘𝑝1 𝑤′

𝑛 as lying in Ω0(𝑃 ;𝑄),

we care about terms of 𝑑(𝑞𝑘𝑝1 𝑤
′
𝑛) involving a single power of 𝑞0. From the previous

corollary we see that the boundary of every monomial in 𝑤′
𝑛 will involve terms which

consist of either a 𝜉𝑗 raised to a power greater than or equal to 𝑝 or a 𝑞𝑗 with 𝑗 > 1.

We conclude that the contribution from 𝑑(𝑞−2
0 𝑤′

𝑛) is zero in Ω1(𝑃 ′;F𝑝[𝑞±1
1 ]).

Proving the part of proposition 5.3.1.2 which is left to section 5.3.4 relies heavily

on the ideas used in the previous proof. One may like to look ahead to that proof

while the ideas are still fresh.
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5.3 The second family of differentials, side towers

5.3.1 Main results

The main results of this section are as follows. The first concerns the 𝑞−1
1 -BSS and

the second gives the corresponding result in the 𝑄-BSS.

Proposition 5.3.1.1. For 𝑛 ≥ 1 and 𝑘 ∈ Z we have the following differential in the

𝑞−1
1 -BSS.

𝑑𝑝𝑛−1𝑞
𝑘𝑝𝑛

1 𝜖𝑛
.

= 𝑞𝑘𝑝
𝑛

1 𝜌𝑛

Proposition 5.3.1.2. Let 𝑛 ≥ 1. Then 𝑞𝑝
𝑛

1 𝜖𝑛 ∈ 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0) lifts to an element

𝐻*(𝑃 ;𝑄/𝑞0) which we also denote by 𝑞𝑝
𝑛

1 𝜖𝑛. We have the following differential in the

𝑄-BSS.

𝑑𝑝𝑛−𝑝[𝑛]𝑞
𝑝𝑛

1 𝜖𝑛
.

= 𝑏1,𝑛−1

Moreover, if 𝑘 ∈ Z and 𝑘 > 1, 𝑑𝑝𝑛−1𝑞
𝑘𝑝𝑛

1 𝜖𝑛 is defined in the 𝑄-BSS.

5.3.2 Quick proofs

The differentials in the 𝑞−1
1 -BSS are derivations (lemma 3.6.4) and 𝑑𝑝𝑛−1𝑞

±𝑝𝑛
1 = 0

(lemma 3.5.4). This means that proposition 5.3.1.1 follows quickly from the following

sub-proposition.

Proposition 5.3.2.1. For 𝑛 ≥ 1 we have the following differential in the 𝑞−1
1 -BSS.

𝑑𝑝𝑛−1𝑞
𝑝𝑛(𝑝+1)
1 𝜖𝑛

.
= 𝑞

𝑝𝑛(𝑝+1)
1 𝜌𝑛

In this subsection, we prove this proposition assuming the following Kudo trans-

gression theorem.

Recall lemma 5.1.8, which says that 𝑞𝑝
𝑛−1(𝑝+1)

1 𝜖𝑛 and 𝑞
𝑝𝑛(𝑝+1)
1 𝜌𝑛 have unique lifts

to 𝐻*(𝑃 ;𝑄/𝑞0). We denote the lifts by the same name.

Proposition 5.3.2.2 (Kudo transgression). Suppose 𝑥, 𝑦 ∈ 𝐻*(𝑃 ;𝑄/𝑞0), 𝑥 has co-

homological degree 0, 𝑦 has cohomological degree 1, and that 𝑑𝑟𝑥 = 𝑦 in the 𝑄-BSS.
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Then we have 𝑑(𝑝−1)𝑟𝑥
𝑝−1𝑦

.
= ⟨𝑦⟩𝑝, where ⟨𝑦⟩𝑝 will be defined in the course of the

proof.

Moreover, ⟨𝑞𝑝
𝑛−1(𝑝+1)

1 𝜖𝑛⟩𝑝 = 𝑞
𝑝𝑛(𝑝+1)
1 𝜌𝑛 in 𝐻*(𝑃 ;𝑄/𝑞0).

The Kudo transgression theorem is the consuming result of this section. Supposing

it for now, we prove proposition 5.3.2.1 and proposition 5.3.1.2, save for the claim

about 𝑑𝑝𝑛−𝑝[𝑛]𝑞
𝑝𝑛

1 𝜖𝑛.

Proof of proposition 5.3.2.1. Proposition 5.2.1.2, proposition 5.2.1.3 and lemma 5.1.8

tells us that

𝑑𝑝[𝑛]𝑞
𝑝𝑛−1(𝑝+1)
1

.
= 𝑞

𝑝𝑛−1(𝑝+1)
1 𝜖𝑛

in the 𝑄-BSS. By the Kudo transgression theorem we have

𝑑𝑝𝑛−1𝑞
𝑝𝑛(𝑝+1)
1 𝜖𝑛

.
= 𝑞

𝑝𝑛(𝑝+1)
1 𝜌𝑛

in the 𝑄-BSS and hence (lemma 3.4.1), the 𝑞−1
1 -BSS.

Proof of part of proposition 5.3.1.2. By lemma 3.4.1, we can verify the last statement

in the 𝑞∞0 -BSS. We have

𝑞𝑣0𝑞
𝑘𝑝𝑛

1 𝜖𝑛 ∈ 𝐸1,𝑘𝑝𝑛−𝑝[𝑛]+𝑣,𝑘𝑞𝑝𝑛,𝑣
1 (𝑞∞1 -BSS).

Consider the case 𝑣 = −𝑝𝑛. By proposition 5.3.1.1 and lemma 4.2.2, it is enough to

show that (𝑠, 𝑡, 𝑢) = (1, 𝑘𝑝𝑛− 𝑝[𝑛]− 𝑝𝑛, 𝑘𝑞𝑝𝑛) satisfies 𝑢 < 𝑈(𝑠) + (2𝑝2− 2)(𝑡+ 2)− 𝑞.

The worst case is when 𝑘 = 2 where the inequality is implied by (5.1.9).

5.3.3 A Kudo transgression theorem

Suppose given a connected commutative Hopf algebra P, a commutative algebra Q in

P-comodules, and suppose that all nontrivial elements of P and Q have even degree.

In order to prove proposition 5.3.2.2, we mimic theorem 3.1 of [9] to define natural

operations

𝛽𝑃 0 : Ω0(P;Q) −→ Ω1(P;Q).
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Once these operations have been defined and we have observed their basic properties

the proof of the Kudo transgression proposition follows quickly.

The reader should refer to [10, pg. 75-76] for notation regarding twisting mor-

phisms and twisted tensor products. We write 𝜏 for the universal twisting morphism

instead of [ ].

The first step towards proving the existence of the operation 𝛽𝑃 0 is to describe a

map

Φ : 𝑊 ⊗ Ω*(P;Q)⊗𝑝 −→ Ω*(P;Q),

which acts as the 𝜃 appearing in [9, theorem 3.1]. This can be obtained by dualizing

the construction in [9, lemma 11.3]. Conveniently, this has already been documented

in [5, lemma 2.3].

0 // Q //

𝜓Q 𝑖0

��

0 //

𝑖1

��

0 //

𝑖2

��

. . .

0 // P⊗Q
𝑑 //

𝜖⊗1 𝑟0

��

P⊗P⊗Q
𝑑 //

𝑟1

��

P⊗P⊗P⊗Q
𝑑 //

𝑟2

��

. . .

0 // Q // 0 // 0 // . . .

Consider the diagram above. The top and bottom row are equal to the chain complex

consisting of Q concentrated in cohomological degree zero and the middle row is the

chain complex P ⊗𝜏 Ω*(P;Q). We have the counit 𝜖 : P −→ F𝑝 and the coaction

𝜓Q : Q −→ P ⊗Q. The definition of a P-comodule gives 1 − 𝑟𝑖 = 0. We also have

1− 𝑖𝑟 = 𝑑𝑆 + 𝑆𝑑 where 𝑆 is the contraction defined by

𝑆(𝑝0[𝑝1| . . . |𝑝𝑠]𝑞) = 𝜖(𝑝0)𝑝1[𝑝2| . . . |𝑝𝑠]𝑞.

[Note that just for this section 𝑞 no longer means 2𝑝− 2.]

Let 𝐶𝑝 denote the cyclic group of order 𝑝 and let 𝑊 be the standard F𝑝[𝐶𝑝]-free

resolution of F𝑝 (see [5, definition 2.2]). We are careful to note that the boundary map
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in 𝑊 decreases degree. Following Bruner’s account in [5, lemma 2.3], we can extend

the multiplication map displayed at the top of the following diagram and construct

Φ, a 𝐶𝑝-equivariant map of DG P-comodules (with Φ(𝑊𝑖⊗ [P⊗𝜏 Ω*(P;Q))⊗𝑝]𝑗) = 0

if 𝑝𝑖 > (𝑝− 1)𝑗).

Q⊗𝑝 //

𝑒0⊗𝑖⊗𝑝

��

Q

𝑖

��
𝑊 ⊗ (P⊗𝜏 Ω*(P;Q))⊗𝑝 Φ // P⊗𝜏 Ω*(P;Q)

Precisely, we make the following definition.

Definition 5.3.3.1.

Φ : 𝑊 ⊗ (P⊗𝜏 Ω*(P;Q))⊗𝑝 −→ P⊗𝜏 Ω*(P;Q)

is the map obtained by applying [5, lemma 2.3] to the following set up:

1. 𝑟 = 𝑝, 𝜌 = ⟨(1 2 · · · 𝑝)⟩ = 𝐶𝑝 and 𝒱 = 𝑊 ;

2. (𝑅,𝐴) = (F𝑝,P), 𝑀 = 𝑁 = Q and 𝐾 = 𝐿 = P⊗𝜏 Ω*(P;Q);

3. 𝑓 : 𝑀⊗𝑟 −→ 𝑁 is the iterated multiplication Q⊗𝑝 −→ Q.

Let’s recall the construction. Bruner defines

Φ𝑖,𝑗 : 𝑊𝑖 ⊗ [P⊗𝜏 Ω*(P;Q)⊗𝑝]𝑗 −→ P⊗𝜏 Ω𝑗−𝑖(P;Q)

inductively. The gradings here are all (co)homological gradings.

As documented in [16, pg. 325, A1.2.15] there is a natural associative multiplica-

tion

(P⊗𝜏 Ω*(P;Q))⊗Δ (P⊗𝜏 Ω*(P;Q)) −→ P⊗𝜏 Ω*(P;Q)

𝑝[𝑝1| · · · |𝑝𝑠]𝑞 · 𝑝′[𝑝′1| · · · 𝑝′𝑡]𝑞′ =
∑︁

𝑝𝑝′(0)[𝑝1𝑝
′
(1)| · · · |𝑝𝑠𝑝′(𝑠)|𝑞(1)𝑝′1| · · · |𝑞(𝑡)𝑝′𝑡]𝑞(𝑡+1)𝑞

′.

(5.3.3.2)
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Here,
∑︀
𝑝′(0) ⊗ · · · ⊗ 𝑝′(𝑠) ∈ P⊗(𝑠+1) is the 𝑠-fold diagonal of 𝑝′ ∈ P and

∑︀
𝑞(1) ⊗ · · · ⊗

𝑞(𝑡+1) ∈ P⊗𝑡⊗Q is the 𝑡-fold diagonal of 𝑞 ∈ Q. Also, ⊗Δ denotes the internal tensor

product in the category of P-comodules as in [10, pg. 74]; one checks directly that

the multiplication above is a P-comodule map.

Iterating this multiplication gives a map

(P⊗𝜏 Ω*(P;Q))⊗𝑝 −→ P⊗𝜏 Ω*(P;Q)

which determines Φ0,*.

Suppose we have defined Φ𝑖′,𝑗 for 𝑖′ < 𝑖. Since Φ𝑖,𝑗 = 0 for 𝑗 < 𝑖 we may suppose

that we have defined Φ𝑖,𝑗′ for 𝑗′ < 𝑗. We define Φ𝑖,𝑗 using 𝐶𝑝-equivariance, the

adjunction

P-comodules
forget // F𝑝-modules
𝑃⊗(−)

oo 𝑓 � // 𝑓

and the contracting homotopy

𝑇 =

𝑝∑︁
𝑖=1

(𝑖𝑟)𝑖−1 ⊗ 𝑆 ⊗ 1𝑝−𝑖.

In particular, we define ̃︂Φ𝑖,𝑗 on 𝑒𝑖 ⊗ 𝑥 by

̃︂Φ𝑖,𝑗 = ([𝑑Φ𝑖,𝑗−1]
∼ − [Φ𝑖−1,𝑗−1(𝑑⊗ 1)]∼)(1⊗ 𝑇 ).

Our choice of Φ is natural in P and Q because we specified the multiplication

determining Φ0,* and the contracting homotopy 𝑇 in a natural way.

Φ restricts to a natural 𝐶𝑝-equivariant DG homomorphism

Φ : 𝑊 ⊗ Ω*(P;Q)⊗𝑝 −→ Ω*(P;Q).

In the proof of proposition 5.3.2.2 we need the fact that Φ interacts nicely with

P-comodule primitives.
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Definition 5.3.3.3. Suppose that 𝑥 ∈ P⊗𝜏Ω*(P;Q) and that 𝑞 ∈ Q is a P-comodule

primitive. We write 𝑞𝑥 for 𝑥 · 1[]𝑞.

Lemma 5.3.3.4. Suppose that 𝑞 ∈ Q is P-comodule primitive. Then

Φ(𝑒𝑖 ⊗ 𝑞𝑖1𝑥1 ⊗ · · · ⊗ 𝑞𝑖𝑝𝑥𝑝) = 𝑞
∑︀

𝑗 𝑖𝑗Φ(𝑒𝑖 ⊗ 𝑥1 ⊗ · · · ⊗ 𝑥𝑝).

Proof. A special case of formula (5.3.3.2) gives

𝑝′[𝑝′1| · · · |𝑝′𝑠]𝑞′ · 1[]𝑞 = 𝑝′[𝑝′1| · · · |𝑝′𝑠]𝑞′𝑞.

Since 𝑞 ∈ Q is a P-comodule primitive we also obtain

1[]𝑞 · 𝑝′[𝑝′1| · · · 𝑝′𝑡]𝑞′ = 𝑝′[𝑝′1| · · · |𝑝′𝑡]𝑞′𝑞;

left and right multiplication by 1[]𝑞 agree. This observation proves the 𝑖 = 0 case of

the result since Φ0,*(𝑒0 ⊗ − ⊗ . . . ⊗ −) is equal to the map (P ⊗𝜏 Ω*(P;Q))⊗𝑝 −→

P⊗𝜏 Ω*(P;Q). We can now make use of the inductive formula

̃︂Φ𝑖,𝑗 = ([𝑑Φ𝑖,𝑗−1]
∼ − [Φ𝑖−1,𝑗−1(𝑑⊗ 1)]∼)(1⊗ 𝑇 ).

𝜓Q, 𝜖 ⊗ 1, and 𝑆 commute with multiplication by 𝑞 and so 1 ⊗ 𝑇 commutes with

multiplication by 1⊗𝑞𝑖1⊗ . . .⊗𝑞𝑖𝑝 . By an inductive hypothesis we can suppose Φ𝑖,𝑗−1

and Φ𝑖−1,𝑗−1 have the required property. It follows that 𝑑Φ𝑖,𝑗−1 and Φ𝑖−1,𝑗−1(𝑑 ⊗ 1)

have the required property. The same is true of their adjoints and so the result holds

for the adjoint of Φ𝑖,𝑗 and thus for Φ𝑖,𝑗 itself.

We finally define 𝛽𝑃 0 : Ω0(P;Q) −→ Ω1(P;Q) and note a couple of its properties.

One should read the proof of [9, theorem 3.1]; this definition mimics that of 𝛽𝑃0 :

𝐾0 → 𝐾−1. In particular, we take 𝑞 = 𝑠 = 0 and the reader will note that we omit a

𝜈(−1) in our definition.

Definition 5.3.3.5. Let 𝑎 ∈ Ω0(P;Q). We define 𝛽𝑃 0𝑎 ∈ Ω1(P;Q) as follows.
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1. Let 𝑏 = 𝑑𝑎 ∈ Ω1(P;Q).

2. We define 𝑡𝑘 ∈ Ω*(P;Q)⊗𝑝 for 0 < 𝑘 < 𝑝.

In the following two formulae juxtaposition denotes tensor product.

Write 𝑝 = 2𝑚+ 1 and define for 0 < 𝑘 ≤ 𝑚

𝑡2𝑘 = (𝑘 − 1)!
∑︁
𝐼

𝑏𝑖1𝑎2𝑏𝑖2𝑎2 · · · 𝑏𝑖𝑘𝑎2

summed over all 𝑘-tuples 𝐼 = (𝑖1, . . . , 𝑖𝑘) such that
∑︀

𝑗 𝑖𝑗 = 𝑝− 2𝑘.

Define for 0 ≤ 𝑘 < 𝑚

𝑡2𝑘+1 = 𝑘!
∑︁
𝐼

𝑏𝑖1𝑎2 · · · 𝑏𝑖𝑘𝑎2𝑏𝑖𝑘+1𝑎

summed over all (𝑘 + 1)-tuples 𝐼 = (𝑖1, . . . , 𝑖𝑘+1) such that
∑︀

𝑗 𝑖𝑗 = 𝑝− 2𝑘 − 1.

3. Define 𝑐 ∈ 𝑊 ⊗ Ω*(P;Q)⊗𝑝 by

𝑐 =
𝑚∑︁
𝑘=1

(−1)𝑘 [𝑒𝑝−2𝑘−1 ⊗ 𝑡2𝑘 − 𝑒𝑝−2𝑘 ⊗ 𝑡2𝑘−1] ,

so 𝑑𝑐 = −𝑒𝑝−2 ⊗ 𝑏𝑝 [9, 3.1(8)].

4. 𝛽𝑃 0𝑎 is defined to be Φ𝑐.

Naturality of 𝛽𝑃 0 follows from the naturality of Φ. Using the observation made

in part (3) of the definition we immediately obtain the following lemma.

Lemma 5.3.3.6. Let 𝑎 ∈ Ω0(P;Q). Then 𝑑(𝛽𝑃 0𝑎) = −Φ(𝑒𝑝−2 ⊗ (𝑑𝑎)𝑝).

Moreover, we make the following definition.

Definition 5.3.3.7. Given 𝑏 ∈ Ω1(P;Q), we define ⟨𝑏⟩𝑝 to be the element

Φ(𝑒𝑝−2 ⊗ 𝑏𝑝) ∈ Ω2(P;Q).
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If 𝑦 ∈ 𝐻1(P;Q) is represented by 𝑏, then ⟨𝑦⟩𝑝 ∈ 𝐻2(P;Q) is defined to be the class

of ⟨𝑏⟩𝑝.

The fact that ⟨𝑦⟩𝑝 is well-defined is used in [9, definition 2.2].

We are now ready to prove the first statement in the proposition.

Proof of the first part of proposition 5.3.2.2. By lemma 3.2.4 there exists 𝑎 and 𝑏 in

Ω*(𝑃 ;𝑄) with 𝑑𝑎 = 𝑞𝑟0𝑏 such that their images 𝑎 and 𝑏 in Ω*(𝑃 ;𝑄/𝑞0) are cocycles

representing 𝑥 and 𝑦, respectively.

Consider 𝛽𝑃 0𝑎. To get a grasp on what this element looks like we need to go back

to definition 5.3.3.5. Since 𝑑𝑎 = 𝑞𝑟0𝑏 we should stare at the definition but replace 𝑏 by

𝑞𝑟0𝑏. We note that the sum defining 𝑐 involves 𝑡1, . . . , 𝑡2𝑚. 𝑡2𝑚 is given by

(𝑚− 1)!
𝑚−1∑︁
𝑖=0

𝑎2𝑖(𝑞𝑟0𝑏)𝑎
2𝑚−2𝑖.

There are only single (𝑞𝑟0𝑏)’s in each term, whereas the terms in the sums defining

𝑡1, . . . , 𝑡2𝑚−1 all involve at least two (𝑞𝑟0𝑏)’s. By lemma 5.3.3.4, 𝛽𝑃 0𝑎 is divisible by

𝑞𝑟0 and the image of 𝐴 = (𝛽𝑃 0𝑎)/𝑞𝑟0 in Ω1(𝑃 ;𝑄/𝑞0) is a unit multiple of the image of

Φ(𝑒0 ⊗ 𝑡2𝑚)/𝑞𝑟0 in Ω1(𝑃 ;𝑄/𝑞0). This latter image is equal to

𝐴 = (𝑚− 1)!
𝑚−1∑︁
𝑖=0

𝑎2𝑖 𝑏 𝑎2𝑚−2𝑖,

where juxtaposition now denotes multiplication.

On the other hand, lemma 5.3.3.6, lemma 5.3.3.4 and definition 5.3.3.7 give

𝑑(𝛽𝑃 0𝑎)
.

= Φ(𝑒𝑝−2 ⊗ (𝑞𝑟0𝑏)
𝑝) = 𝑞𝑝𝑟0 Φ(𝑒𝑝−2 ⊗ 𝑏𝑝) = 𝑞𝑝𝑟0 ⟨𝑏⟩𝑝.

Letting 𝐵 = 𝑑(𝛽𝑃 0𝑎)/𝑞𝑝𝑟0 gives 𝑑𝐴 = 𝑞
(𝑝−1)𝑟
0 𝐵, and the image 𝐵 of 𝐵 in Ω2(𝑃 ;𝑄/𝑞0)

is a unit multiple of ⟨𝑏⟩𝑝, which represents ⟨𝑦⟩𝑝.

The formula for 𝐴 above, shows that it represents a unit multiple of 𝑥𝑝−1𝑦 and so

we deduce from lemma 3.2.4 that 𝑑(𝑝−1)𝑟𝑥
𝑝−1𝑦

.
= ⟨𝑦⟩𝑝.
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To complete the proof of proposition 5.3.2.2 we need the following lemma.

Lemma 5.3.3.8. Let P be the primitively generated Hopf algebra F𝑝[𝜉]/(𝜉𝑝) where

the degree of 𝜉 is even. Let ℎ and 𝑏 be classes in 𝐻*(P;F𝑝) which are represented in

Ω*P by [𝜉] and
𝑝−1∑︁
𝑗=1

(−1)𝑗−1

𝑗
[𝜉𝑗|𝜉𝑝−𝑗],

respectively. Then ⟨ℎ⟩𝑝 .
= 𝑏.

Proof. This follows from remarks 6.9 and 11.11 of [9]. Beware of the different use

of notation: our ⟨𝑦⟩𝑝 is May’s 𝛽𝑃 0𝑦 and May defines ⟨𝑦⟩𝑝 using the ∪1-product

associated to Ω*P.

Finishing the proof of proposition 5.3.2.2. The previous lemma gives ⟨ℎ𝑛,0⟩𝑝
.

= 𝑏𝑛,0 in

𝐻*(F𝑝[𝜉𝑛]/(𝜉𝑝𝑛);F𝑝). Since 𝑞1 is primitive, definition 5.3.3.7 and lemma 5.3.3.4 show

that

⟨𝑞𝑝
𝑛−1(𝑝+1)

1 𝜖𝑛⟩𝑝 = ⟨𝑞𝑝
𝑛−𝑝[𝑛−1]

1 ℎ𝑛,0⟩𝑝
.

= 𝑞𝑝
𝑛+1−𝑝·𝑝[𝑛−1]

1 𝑏𝑛,0 = 𝑞
𝑝𝑛(𝑝+1)
1 𝜌𝑛

in 𝐻*(F𝑝[𝜉𝑛]/(𝜉𝑝𝑛);F𝑝[𝑞±1
1 ]). We use naturality to transfer the required identity from

𝐻*(F𝑝[𝜉𝑛]/(𝜉𝑝𝑛);F𝑝[𝑞±1
1 ]) to 𝐻*(𝑃 ;𝑄/𝑞0). We have homomorphisms

𝐻*(F𝑝[𝜉𝑛]/(𝜉𝑝𝑛);F𝑝[𝑞±1
1 ]) // 𝐻*(𝑃 ′;F𝑝[𝑞±1

1 ]) 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0)oo 𝐻*(𝑃 ;𝑄/𝑞0).oo

The first is induced by the inclusion F𝑝[𝜉𝑛]/(𝜉𝑝𝑛) −→ 𝑃 ′. Theorem 5.1.3 tells us that

the second is an isomorphism. Lemma 5.1.8 says that 𝑞𝑝
𝑛−1(𝑝+1)

1 𝜖𝑛 and 𝑞𝑝
𝑛(𝑝+1)

1 𝜌𝑛 have

unique lifts to 𝐻*(𝑃 ;𝑄/𝑞0). This completes the proof.

5.3.4 Completing the proof of proposition 5.3.1.2

We are left to show that 𝑑𝑝𝑛−𝑝[𝑛]𝑞
𝑝𝑛

1 𝜖𝑛
.

= 𝑏1,𝑛−1 for 𝑛 ≥ 1. The 𝑛 = 1 case

𝑑𝑝−1𝑞
𝑝−1
1 ℎ1,0

.
= 𝑏1,0
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is given by proposition 5.3.1.1 and lemma 5.1.8 or by noting the following formula in

Ω*(𝑃 ;𝑄) and using lemma 3.2.4.

𝑑

[︃
𝑝−1∑︁
𝑗=1

(−1)𝑗

𝑗
[𝜉𝑗1]𝑞

𝑗−1
0 𝑞𝑝−𝑗1

]︃
=

𝑝−1∑︁
𝑗=1

(−1)𝑗−1

𝑗
[𝜉𝑗1|𝜉

𝑝−𝑗
1 ]𝑞𝑝−1

0

Suppose that for some 𝑛 ≥ 1 we have 𝑎𝑛 ∈ Ω1(𝑃 ;𝑄) and 𝑏𝑛 ∈ Ω2(𝑃 ;𝑄), such that

1. 𝑎𝑛 maps to (−1)𝑛[𝜉𝑛]𝑞𝑝
𝑛−𝑝[𝑛]

1 in Ω1(𝑃 ′;F𝑝[𝑞1]);

2. 𝑏𝑛 maps to
∑︀𝑝−1

𝑗=1
(−1)𝑗−1

𝑗
[𝜉𝑗𝑝

𝑛−1

1 |𝜉(𝑝−𝑗)𝑝
𝑛−1

1 ] in Ω2(𝑃 ;𝑄/𝑞0);

3. 𝑑𝑎𝑛 = 𝑞𝑝
𝑛−𝑝[𝑛]

0 𝑏𝑛.

𝑃 0𝑎𝑛 lies in the injectivity range of proposition 4.2.1 and so using theorem 5.1.3

together with the diagram below we see that Ω*(𝑃 ;𝑄/𝑞0) −→ Ω*(𝑃 ′;F𝑝[𝑞1]) induces

an injection on homology in this tridegree.

𝐻*(𝑃 ;𝑄/𝑞0) //

��

𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0)

∼=

��
𝐻*(𝑃 ′;F𝑝[𝑞1]) // 𝐻*(𝑃 ′;F𝑝[𝑞±1

1 ])

We note that 𝑃 0𝑎𝑛 maps to zero in Ω1(𝑃 ′;F𝑝[𝑞1]), and so, because Ω*(𝑃 ;𝑄) −→

Ω*(𝑃 ;𝑄/𝑞0) is surjective, we can find a 𝑤𝑛 ∈ Ω0(𝑃 ;𝑄) such that 𝑑𝑤𝑛 = 𝑃 0𝑎𝑛 in

Ω1(𝑃 ;𝑄/𝑞0). In particular, 𝑃 0𝑎𝑛 − 𝑑𝑤𝑛 is divisible by 𝑞0. Let

𝑎𝑛+1 =
𝑃 0𝑎𝑛 − 𝑑𝑤𝑛

𝑞0
.

We claim that 𝑎𝑛+1 and 𝑏𝑛+1 = 𝑃 0𝑏𝑛 ∈ Ω*(𝑃 ;𝑄) satisfy the following conditions.

1. 𝑎𝑛+1 maps to (−1)𝑛+1[𝜉𝑛+1]𝑞
𝑝𝑛+1−𝑝[𝑛+1]

1 in Ω1(𝑃 ′;F𝑝[𝑞1]);

2. 𝑏𝑛+1 maps to
∑︀𝑝−1

𝑗=1
(−1)𝑗−1

𝑗
[𝜉𝑗𝑝

𝑛

1 |𝜉
(𝑝−𝑗)𝑝𝑛
1 ] in Ω2(𝑃 ;𝑄/𝑞0);

3. 𝑑𝑎𝑛+1 = 𝑞𝑝
𝑛+1−𝑝[𝑛+1]

0 𝑏𝑛+1.
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The second condition is clear. To see the last condition, note that 𝑑𝑎𝑛 = 𝑞𝑝
𝑛−𝑝[𝑛]

0 𝑏𝑛

implies 𝑑𝑃 0𝑎𝑛 = 𝑞𝑝
𝑛+1−𝑝·𝑝[𝑛]

0 𝑃 0𝑏𝑛 = 𝑞𝑝
𝑛+1−𝑝[𝑛+1]+1

0 𝑏𝑛+1, and so

𝑑𝑎𝑛+1 = 𝑑

(︃
𝑃 0𝑎𝑛 − 𝑑𝑤𝑛

𝑞0

)︃
=
𝑑𝑃 0𝑎𝑛
𝑞0

= 𝑞𝑝
𝑛+1−𝑝[𝑛+1]

0 𝑏𝑛+1.

For the first condition, we note that 𝑃 0𝑎𝑛 will not contribute to the image of 𝑎𝑛+1 in

Ω1(𝑃 ′;F𝑝[𝑞1]). Moreover, since

𝑑𝑤𝑛 = 𝑃 0𝑎𝑛 = (−1)𝑛[𝜉𝑝𝑛]𝑞𝑝
𝑛+1−𝑝·𝑝[𝑛]

1

in 𝑃 ′′ ⊗ F𝑝[𝑞1], we see, as in the proof of proposition 5.2.3.1, that the only relevant

term of 𝑤𝑛 is (−1)𝑛𝑞𝑝
𝑛+1−𝑝[𝑛+1]

1 𝑞𝑛+1, and that it contributes (−1)𝑛+1[𝜉𝑛+1]𝑞
𝑝𝑛+1−𝑝[𝑛+1]

1

to −𝑞−1
0 𝑑𝑤𝑛.

The proof is complete by induction and lemma 3.2.4.

5.4 The 𝐸∞-page of the 𝑞−1
1 -BSS

In this subsection we obtain all the nontrivial differentials in the 𝑞−1
1 -BSS. The main

result is simple to prove as long as one has the correct picture in mind; otherwise,

the proof may seem rather opaque. Figure 5-1 on page 77 displays some of Christian

Nassau’s chart [14] for 𝐻*(𝐴) when 𝑝 = 3. His chart tells us about the object we are

trying to calculate in a range by proposition 4.2.4 and the facts that

𝐻*(𝑃 ;𝑄/𝑞∞0 )/
[︁
F𝑝 [𝑞0]/𝑞∞

]︁
= 𝐻*(𝑃 ;𝑄)/

[︁
F𝑝 [𝑞0]

]︁
and 𝐻*(𝑃 ;𝑄) = 𝐻*(𝐴). A 𝑞0-tower corresponds to a differential in the 𝑄-BSS. Labels

at the top of towers are the sources of the corresponding Bockstein differentials; labels

at the bottom of towers are the targets of the corresponding Bockstein differentials.

We note that the part of figure 5-1 in gray is not displayed in Nassau’s charts and is

deduced from the results of this chapter.

Recall from corollary 5.1.7 that 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0) is an exterior algebra tensored
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with a polynomial algebra, and so we have a convenient F𝑝-basis for it given by

monomials in 𝑞1, the 𝜖𝑛’s and the 𝜌𝑛’s. We introduce the following notation.

Notation 5.4.1. Suppose given 𝐼 = (𝑖1, . . . , 𝑖𝑟), 𝐽 = (𝑗1, . . . , 𝑗𝑠), 𝐾 = (𝑘1, . . . , 𝑘𝑠)

such that 𝑖1 > . . . > 𝑖𝑟 ≥ 1, 𝑗1 > . . . > 𝑗𝑠 ≥ 1, and 𝑘𝑎 ≥ 0 for 𝑎 ∈ {1, . . . , 𝑠}. We

write

1. 𝜖[𝐼]𝜌[𝐽,𝐾] for the monomial 𝜖𝑖1 · · · 𝜖𝑖𝑟𝜌𝑘1𝑗1 · · · 𝜌
𝑘𝑠
𝑗𝑠

;

2. 𝑛[𝐼] for
∑︀

𝑐 𝑝
𝑖𝑐−1;

3. 𝐼− for (𝑖1, . . . , 𝑖𝑟−1) if 𝑟 ≥ 1;

4. 𝐾− for (𝑘1, . . . , 𝑘𝑠 − 1) if 𝑠 ≥ 1 and 𝑘𝑠 ≥ 1.

Notice that the indexing of a monomial in the 𝜖𝑖’s and 𝜌𝑗’s by 𝐼, 𝐽 and 𝐾 is

unique once we impose the additional condition that 𝑘𝑎 ≥ 1 for each 𝑎 ∈ {1, . . . , 𝑠}.

Moreover,
{︁
𝑞𝑁1 𝜖[𝐼]𝜌[𝐽,𝐾]

}︁
gives a basis for 𝐻*(𝑃 ; 𝑞−1

1 𝑄/𝑞0).

We have the following corollary to proposition 5.2.1.2 and proposition 5.3.1.1 and

we shall see that it completely describes all the nontrivial differentials in the 𝑞−1
1 -BSS.

Corollary 5.4.2. Suppose given 𝐼 = (𝑖1, . . . , 𝑖𝑟), 𝐽 = (𝑗1, . . . , 𝑗𝑠), 𝐾 = (𝑘1, . . . , 𝑘𝑠)

such that 𝑖1 > . . . > 𝑖𝑟 ≥ 1, 𝑗1 > . . . > 𝑗𝑠 ≥ 1, and 𝑘𝑎 ≥ 1 for 𝑎 ∈ {1, . . . , 𝑠}.

Suppose 𝑟 ≥ 1, that either 𝑠 = 0, or 𝑠 ≥ 1 and 𝑖𝑟 ≤ 𝑗𝑠, and that 𝑘 ∈ Z−𝑝Z. Then

we have the following differential in the 𝑞−1
1 -BSS.

𝑑𝑝[𝑖𝑟 ]

[︃
𝑞𝑘𝑝

𝑖𝑟−1

1 𝜖[𝐼−]𝜌[𝐽,𝐾]

]︃
.

= 𝑞𝑘𝑝
𝑖𝑟−1

1 𝜖[𝐼]𝜌[𝐽,𝐾] (5.4.3)

Suppose 𝑠 ≥ 1, that either 𝑟 = 0, or 𝑟 ≥ 1 and 𝑖𝑟 > 𝑗𝑠, and that 𝑘 ∈ Z. Then we

have the following differential in the 𝑞−1
1 -BSS.

𝑑𝑝𝑗𝑠−1

[︃
𝑞𝑘𝑝

𝑗𝑠

1 𝜖[𝐼]𝜖𝑗𝑠𝜌[𝐽,𝐾−]

]︃
.

= 𝑞𝑘𝑝
𝑗𝑠

1 𝜖[𝐼]𝜌[𝐽,𝐾] (5.4.4)

Proof. By proposition 5.2.2.1, proposition 5.3.1.1, lemma 2.1.6 and lemma 3.6.4

we see that 𝑞
𝑛[𝐼]
1 𝜖[𝐼]𝜌[𝐽,𝐾] is a permanent cycle. In the first case lemma 3.5.4
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gives 𝑑𝑝[𝑖𝑟 ]𝑞
−𝑛[𝐼−]
1 = 0 and so the differential 𝑑𝑝[𝑖𝑟 ]𝑞

𝑘𝑝𝑖𝑟−1

1
.

= 𝑞𝑘𝑝
𝑖𝑟−1

1 𝜖𝑖𝑟 completes the

proof. In the second case lemma 3.5.4 gives 𝑑𝑝𝑗𝑠−1𝑞
−𝑛[𝐼]
1 = 0 and so the differential

𝑑𝑝𝑗𝑠−1𝑞
𝑘𝑝𝑗𝑠

1 𝜖𝑗𝑠
.

= 𝑞𝑘𝑝
𝑗𝑠

1 𝜌𝑗𝑠 completes the proof.

The content of the next proposition is that the previous corollary describes all of

the nontrivial differentials in the 𝑞−1
1 -BSS.

Proposition 5.4.5. The union

{1} ∪ {𝑥 : 𝑥 is a source of one of the differentials in corollary 5.4.2}

∪ {𝑦 : 𝑦 is a target of one of the differentials in corollary 5.4.2}

is a basis for 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0). Moreover, the sources and targets of the differentials

in corollary 5.4.2 are distinct and never equal to 1.

Proof. We note that for any 𝑁 ̸= 0, 𝑞𝑁1 is the source of a differential like the one in

(5.4.3).

Take 𝐼, 𝐽 and 𝐾 as in (5.4.3). We wish to show that 𝑞𝑁1 𝜖[𝐼]𝜌[𝐽,𝐾] is the source or

target of one of the differentials in corollary 5.4.2. There are three cases (the second

case is empty if 𝑖𝑟 = 1):

1. 𝑁 = 𝑘𝑝𝑖𝑟−1 for some 𝑘 ∈ Z− 𝑝Z.

2. 𝑁 = 𝑘𝑝𝑖𝑟+1−1 for some 𝑘 ∈ Z− 𝑝Z and some 𝑖𝑟+1 ≥ 1 with 𝑖𝑟 > 𝑖𝑟+1.

3. 𝑁 = 𝑘𝑝𝑖𝑟 for some 𝑘 ∈ Z.

In the first case, 𝑞𝑁1 𝜖[𝐼]𝜌[𝐽,𝐾] is the target of the differential (5.4.3). In the second

case, 𝑞𝑁1 𝜖[𝐼]𝜌[𝐽,𝐾] is the source of a differential like the one in (5.4.3). In the third

case, 𝑞𝑁1 𝜖[𝐼]𝜌[𝐽,𝐾] is the source of a differential like the one in (5.4.4).

These cases are highlighted in figure 5-1 when 𝑝 = 3, 𝐼 = (3), and 𝐽 and 𝐾 are

empty. The three cases are:

1. 𝑁 = 9𝑘 for some 𝑘 ∈ Z− 3Z.

2. 𝑁 = 3𝑖−1𝑘 for some 𝑘 ∈ Z− 3Z and some 𝑖 with 1 ≤ 𝑖 < 3.
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Figure 5-1: The relevant part of 𝐻𝑠,𝑡(𝐴) when 𝑝 = 3, in the range 175 < 𝑡− 𝑠 < 219.
Vertical black lines indicate multiplication by 𝑞0. The top and/or bottom of selected
𝑞0-towers are labelled by the source and/or target, respectively, of the corresponding
Bockstein differential.
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3. 𝑁 = 27𝑘 for some 𝑘 ∈ Z.

The first case is highlighted in blue when 𝑘 = 5; the second case is highlighted in

orange and we see both the cases 𝑖 = 1 and 𝑖 = 2 occurring; the last case is highlighted

in red when 𝑘 = 2.

Take 𝐼, 𝐽 and 𝐾 as in (5.4.4). We wish to show that 𝑞𝑁1 𝜖[𝐼]𝜌[𝐽,𝐾] is the source

or target of one of the differentials in corollary 5.4.2. There are two cases:

1. 𝑁 = 𝑘𝑝𝑗𝑠 for some 𝑘 ∈ Z.

2. 𝑁 = 𝑘𝑝𝑖𝑟+1−1 for some 𝑘 ∈ Z− 𝑝Z and some 𝑖𝑟+1 ≥ 1 with 𝑖𝑟+1 ≤ 𝑗𝑠.

In the first case, 𝑞𝑁1 𝜖[𝐼]𝜌[𝐽,𝐾] is the target of the differential (5.4.4). In the second

case, 𝑞𝑁1 𝜖[𝐼]𝜌[𝐽,𝐾] is the source of a differential like the one in (5.4.3).

These cases are highlighted in figure 5-1 when 𝑝 = 3, 𝐼 is empty, 𝐽 = (2) and

𝐾 = (1). The two cases are:

1. 𝑁 = 9𝑘 for some 𝑘 ∈ Z.

2. 𝑁 = 3𝑖−1𝑘 for some 𝑘 ∈ Z− 3Z and some 𝑖 with 1 ≤ 𝑖 ≤ 2.

The first case is highlighted in blue when 𝑘 = 5 and 𝑘 = 6; the second case is

highlighted in orange and we see both the cases 𝑖 = 1 and 𝑖 = 2 occurring.

Since the empty sequences 𝐼, 𝐽 and𝐾 together with those satisfying the conditions

in (5.4.3) or (5.4.4) make up all choices of 𝐼, 𝐽 and 𝐾, and since
{︁
𝑞𝑁1 𝜖[𝐼]𝜌[𝐽,𝐾]

}︁
gives a basis for 𝐻*(𝑃 ; 𝑞−1

1 𝑄/𝑞0) (corollary 5.1.7), we have proved the first claim.

Careful inspection of the previous argument shows that this also proves the second

claim.

This proposition allows us to determine an F𝑝-basis of 𝐸∞(𝑞−1
1 -BSS). We use the

following lemma.

Lemma 5.4.6. Suppose we have an indexing set 𝐴 and an F𝑝-basis

{1} ∪ {𝑥𝛼}𝛼∈𝐴 ∪ {𝑦𝛼}𝛼∈𝐴
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of 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0) such that each 𝑥𝛼 supports a differential 𝑑𝑟𝛼𝑥𝛼 = 𝑦𝛼. Then we

have an F𝑝-basis of 𝐸∞(𝑞−1
1 -BSS) given by the classes of

{︁
𝑞𝑣0 : 𝑣 < 0

}︁
∪
{︁
𝑞𝑣0𝑥𝛼 : 𝛼 ∈ 𝐴, −𝑟𝛼 ≤ 𝑣 < 0

}︁
.

In the above statement, we intend for 1, the 𝑥𝛼’s and the 𝑦𝛼’s to be distinct as in

proposition 5.4.5.

Proof. Let 𝑣 < 0. We see make some observations.

1. 𝐸*,*,*,𝑣
1 ∩

⋃︀
𝑠<𝑟 im 𝑑𝑠 has basis {𝑞𝑣0𝑦𝛼 : 𝛼 ∈ 𝐴, 𝑟𝛼 < 𝑟}.

2. {𝑞𝑣0𝑦𝛼 : 𝛼 ∈ 𝐴, 𝑟𝛼 = 𝑟} is independent in 𝐸*,*,*,𝑣
1 /

(︀
𝐸*,*,*,𝑣

1 ∩
⋃︀
𝑠<𝑟 im 𝑑𝑠

)︀
.

3. 𝐸*,*,*,𝑣
1 ∩

⋂︀
𝑠<𝑟 ker 𝑑𝑠 has basis

{︁
𝑞𝑣0

}︁
∪
{︁
𝑞𝑣0𝑥𝛼 : 𝛼 ∈ 𝐴, 𝑟𝛼 ≥ min{𝑟,−𝑣}

}︁
∪
{︁
𝑞𝑣0𝑦𝛼 : 𝛼 ∈ 𝐴

}︁
.

4. 𝐸*,*,*,𝑣
∞ = (𝐸*,*,*,𝑣

1 ∩
⋂︀
𝑠 ker 𝑑𝑠) / (𝐸*,*,*,𝑣

1 ∩
⋃︀
𝑠 im 𝑑𝑠) has basis

{︁
𝑞𝑣0

}︁
∪
{︁
𝑞𝑣0𝑥𝛼 : 𝛼 ∈ 𝐴, 𝑟𝛼 ≥ −𝑣

}︁
.

We see that 𝑞𝑣0 is a basis element for 𝐸*,*,*,𝑣
∞ for all 𝑣 < 0 and that 𝑞𝑣0𝑥𝛼 is a basis

element for 𝐸*,*,*,𝑣
∞ as long as −𝑟𝛼 ≤ 𝑣 < 0. This completes the proof.

We state the relevant corollary, a description of the 𝐸∞-page in the next section.

Of course, this allows us to find a basis of 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ) if we wish.

5.5 Summary of main results

We have completely calculated the 𝑞−1
1 -BSS.

Theorem 5.5.1. In the 𝑞−1
1 -BSS we have two families of differentials. For 𝑛 ≥ 1,

1. 𝑑𝑝[𝑛]𝑞
𝑘𝑝𝑛−1

1
.

= 𝑞𝑘𝑝
𝑛−1

1 𝜖𝑛, whenever 𝑘 ∈ Z− 𝑝Z;
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2. 𝑑𝑝𝑛−1𝑞
𝑘𝑝𝑛

1 𝜖𝑛
.

= 𝑞𝑘𝑝
𝑛

1 𝜌𝑛, whenever 𝑘 ∈ Z.

Together with the fact that 𝑑𝑟1 = 0 for 𝑟 ≥ 1, these two families of differentials

determine the 𝑞−1
1 -BSS.

Corollary 5.5.2. 𝐸∞(𝑞−1
1 -BSS) has an F𝑝-basis given by the classes of the following

elements.

{︁
𝑞𝑣0 : 𝑣 < 0

}︁
∪

{︃
𝑞𝑣0𝑞

𝑘𝑝𝑖𝑟−1

1 𝜖[𝐼−]𝜌[𝐽,𝐾] : 𝐼, 𝐽,𝐾, 𝑘 satisfy (5.4.3), −𝑝[𝑖𝑟] ≤ 𝑣 < 0

}︃

∪

{︃
𝑞𝑣0𝑞

𝑘𝑝𝑗𝑠

1 𝜖[𝐼]𝜖𝑗𝑠𝜌[𝐽,𝐾−] : 𝐼, 𝐽,𝐾, 𝑘 satisfy (5.4.4), 1− 𝑝𝑗𝑠 ≤ 𝑣 < 0

}︃

We have also obtained useful information about the 𝑄-BSS.

Lemma 5.5.3. The elements

1, 𝑞2𝑝
𝑛−1

1 𝜖𝑛, 𝑞
2𝑝𝑛

1 𝜌𝑛 ∈ 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0)

have unique lifts to 𝐻*(𝑃 ;𝑄/𝑞0). The same is true after multiplying by 𝑞𝑛1 as long as

𝑛 ≥ 0.

We give the lifts the same name.

Theorem 5.5.4. Let 𝑛 ≥ 1. We have the following differentials in the 𝑄-BSS.

1. 𝑑𝑝𝑛−1𝑞𝑝
𝑛−1

1
.

= ℎ1,𝑛−1;

2. 𝑑𝑝[𝑛]𝑞
𝑘𝑝𝑛−1

1
.

= 𝑞𝑘𝑝
𝑛−1

1 𝜖𝑛, whenever 𝑘 ∈ Z− 𝑝Z and 𝑘 > 1;

3. 𝑑𝑝𝑛−𝑝[𝑛]𝑞
𝑝𝑛

1 𝜖𝑛
.

= 𝑏1,𝑛−1;

4. 𝑑𝑝𝑛−1𝑞
𝑘𝑝𝑛

1 𝜖𝑛
.

= 𝑞𝑘𝑝
𝑛

1 𝜌𝑛, whenever 𝑘 ∈ Z and 𝑘 > 1.
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Chapter 6

The localized algebraic Novikov

spectral sequence

In this chapter we calculate the localized algebraic Novikov spectral sequence

𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 )

𝑡
=⇒ 𝐻*(𝐵𝑃*𝐵𝑃 ; 𝑣−1

1 𝐵𝑃*/𝑝
∞).

6.1 Algebraic Novikov spectral sequences

Recall that the coefficient ring of the Brown-Peterson spectrum 𝐵𝑃 is the polyno-

mial algebra Z(𝑝)[𝑣1, 𝑣2, 𝑣3, . . .] on the Hazewinkel generators. Moreover, 𝐵𝑃*𝐵𝑃 =

𝐵𝑃*[𝑡1, 𝑡2, 𝑡3, . . .] together with 𝐵𝑃* defines a Hopf algebroid [13, §2].

𝐵𝑃* admits a filtration by invariant ideals, powers of 𝐼 = ker (𝐵𝑃* −→ F𝑝),

and we have 𝑄 = gr*𝐵𝑃*. Moreover, this allows us to filter the cobar construction

Ω*(𝐵𝑃*𝐵𝑃 ) by setting 𝐹 𝑡Ω𝑠(𝐵𝑃*𝐵𝑃 ) = 𝐼 𝑡Ω𝑠(𝐵𝑃*𝐵𝑃 ), and we have

gr𝑡Ω𝑠(𝐵𝑃*𝐵𝑃 ) = Ω𝑠(𝑃 ;𝑄𝑡).

In this way we obtain the algebraic Novikov spectral sequence

𝐸𝑠,𝑡,𝑢
1 (alg.NSS) = 𝐻𝑠,𝑢(𝑃 ;𝑄𝑡)

𝑡
=⇒ 𝐻𝑠,𝑢(𝐵𝑃*𝐵𝑃 );
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𝑑𝑟 has degree (1, 𝑟, 0). This makes sense of the terminology “Novikov weight.”

One motivation for using the algebraic Novikov spectral is to make comparisons

with the Adams spectral sequence, and so we reindex it:

𝐸𝑠,𝑡,𝑢
2 (alg.NSS) = 𝐻𝑠,𝑢(𝑃 ;𝑄𝑡)

𝑡
=⇒ 𝐻𝑠,𝑢(𝐵𝑃*𝐵𝑃 )

and the degree of 𝑑𝑟 is (1, 𝑟 − 1, 0).

𝑝 ∈ 𝐵𝑃* is a 𝐵𝑃*𝐵𝑃 -comodule primitive and so 𝐵𝑃*/𝑝
𝑛 and 𝑝−1𝐵𝑃* are 𝐵𝑃*𝐵𝑃 -

comodules; define 𝐵𝑃*/𝑝
∞ by the following exact sequence of 𝐵𝑃*𝐵𝑃 -comodules.

0 // 𝐵𝑃* // 𝑝−1𝐵𝑃* // 𝐵𝑃*/𝑝
∞ // 0

We find that 𝑣𝑝
𝑛−1

1 ∈ 𝐵𝑃*/𝑝
𝑛 is a 𝐵𝑃*𝐵𝑃 -comodule primitive and so we may define

𝐵𝑃*𝐵𝑃 -comodules 𝑣−1
1 𝐵𝑃*/𝑝

𝑛 and 𝑣−1
1 𝐵𝑃*/𝑝

∞ by mimicking the constructions in

section 3.1.

By letting 𝐹 𝑡Ω𝑠(𝐵𝑃*𝐵𝑃 ; 𝑣−1
1 𝐵𝑃*/𝑝

∞) = 𝐼 𝑡Ω𝑠(𝐵𝑃*𝐵𝑃 ; 𝑣−1
1 𝐵𝑃*/𝑝

∞) and reindex-

ing, as above, we obtain the localized algebraic Novikov spectral sequence (loc.alg.NSS)

𝐸𝑠,𝑡,𝑢
2 (loc.alg.NSS) = 𝐻𝑠,𝑢(𝑃 ; [𝑞−1

1 𝑄/𝑞∞0 ]𝑡)
𝑡

=⇒ 𝐻𝑠,𝑢(𝐵𝑃*𝐵𝑃 ; 𝑣−1
1 𝐵𝑃*/𝑝

∞).

It has a pairing with the unlocalized algebraic Novikov spectral sequence converging

to the 𝐻*(𝐵𝑃*𝐵𝑃 )-module structure map of 𝐻*(𝐵𝑃*𝐵𝑃 ; 𝑣−1
1 𝐵𝑃*/𝑝

∞). Moreover, it

receives a map from the 𝑣1-algebraic Novikov spectral sequence (𝑣1-alg.NSS)

𝐸𝑠,𝑡,𝑢
2 (𝑣1-alg.NSS) = 𝐻𝑠,𝑢(𝑃 ; [𝑞−1

1 𝑄/𝑞0]
𝑡)

𝑡
=⇒ 𝐻𝑠,𝑢(𝐵𝑃*𝐵𝑃 ; 𝑣−1

1 𝐵𝑃*/𝑝).

6.2 Evidence for the main result

In the introduction, we discussed “principal towers” and their “side towers” but said

little about the other elements in 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ). Figure 6-1 is obtained from fig-

ure 5-1 by removing principal towers and their side towers. We see that the remaining
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𝑞501 𝜖2𝜖1
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𝑞511 𝜖2𝜖1

Figure 6-1: A part of 𝐻𝑠,𝑡(𝐴) when 𝑝 = 3, in the range 175 < 𝑡 − 𝑠 < 219. Vertical
black lines indicate multiplication by 𝑞0. The top and/or bottom of selected 𝑞0-towers
are labelled by the source and/or target, respectively, of the corresponding Bockstein
differential.
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𝑞0-towers come in pairs, arranged perfectly so that there is a chance that they form an

acyclic complex with respect to 𝑑2. Moreover, the labelling at the top of the towers

obeys a nice pattern with respect to this arrangement. The pattern of differentials

we hope for can be described by the following equations.

𝑞481 𝜖3 ↦−→ 𝑞481 𝜌2, 𝑞
51
1 𝜖3 ↦−→ 𝑞511 𝜌2, 𝑞

49
1 𝜖2 ↦−→ 𝑞491 𝜌1, 𝑞

50
1 𝜖2 ↦−→ 𝑞501 𝜌1, 𝑞

51
1 𝜖2𝜖1 ↦−→ 𝑞511 𝜖1𝜌1.

In each case, this comes from replacing an 𝜖𝑛+1 by 𝜌𝑛, which resembles a theorem of

Miller.

Theorem 6.2.1 (Miller, [11, 9.19]). In the 𝑣1-alg.NSS

𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0)

𝑡
=⇒ 𝐻*(𝐵𝑃*𝐵𝑃 ; 𝑣−1

1 𝐵𝑃*/𝑝)

we have, for 𝑛 ≥ 1, 𝑑2𝜖𝑛+1
.

= 𝜌𝑛.

This is precisely the theorem enabling the calculation of this chapter, which shows

that the 𝑑2 differentials discussed above do occur in the loc.alg.NSS.

6.3 The filtration spectral sequence (𝑞0-FILT)

Corollary 5.5.2 describes the associated graded of the 𝐸2-page of the loc.alg.NSS with

respect to the Bockstein filtration. Since

𝑑loc.alg.NSS
2 : 𝐻𝑠,𝑢(𝑃 ; [𝑞−1

1 𝑄/𝑞∞0 ]𝑡) −→ 𝐻𝑠+1,𝑢(𝑃 ; [𝑞−1
1 𝑄/𝑞∞0 ]𝑡+1)

respects the Bockstein filtration, we have a filtration spectral sequence (𝑞0-FILT)

𝐸𝑠,𝑡,𝑢,𝑣
0 (𝑞0-FILT) = 𝐸𝑠,𝑡,𝑢,𝑣

∞ (𝑞−1
1 -BSS)

𝑣
=⇒ 𝐸𝑠,𝑡,𝑢

3 (loc.alg.NSS).

The main result of this section is a calculation of the 𝐸1-page of this spectral sequence.

Recall corollary 5.5.2.
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Theorem 6.3.1. 𝐸1(𝑞0-FILT) has an F𝑝-basis given by the following elements.

{︂
𝑞𝑣0 : 𝑣 < 0

}︂
∪
{︂
𝑞𝑣0𝑞

𝑘𝑝𝑛−1

1 : 𝑛 ≥ 1, 𝑘 ∈ Z− 𝑝Z, −𝑝[𝑛] ≤ 𝑣 < 0

}︂
∪
{︂
𝑞𝑣0𝑞

𝑘𝑝𝑛

1 𝜖𝑛 : 𝑛 ≥ 1, 𝑘 ∈ Z, 1− 𝑝𝑛 ≤ 𝑣 < 0

}︂

We prove the theorem via the following proposition.

Proposition 6.3.2. Fix, 𝑖, 𝑗 ≥ 1.

𝑑𝑞0-FILT
0 : 𝐸𝑠,𝑡,𝑢,𝑣

∞ (𝑞−1
1 -BSS) −→ 𝐸𝑠+1,𝑡+1,𝑢,𝑣

∞ (𝑞−1
1 -BSS)

restricts to an operation on the subspaces with bases given by the classes of the ele-

ments {︁
𝑞𝑣0 : 𝑣 < 0

}︁
,{︃

𝑞𝑣0𝑞
𝑘𝑝𝑖𝑟−1

1 𝜖[𝐼−]𝜌[𝐽,𝐾] : 𝐼, 𝐽,𝐾, 𝑘 satisfy (5.4.3), 𝑖𝑟 = 𝑖, −𝑝[𝑖] ≤ 𝑣 < 0

}︃
,

and{︃
𝑞𝑣0𝑞

𝑘𝑝𝑗𝑠

1 𝜖[𝐼]𝜖𝑗𝑠𝜌[𝐽,𝐾−] : 𝐼, 𝐽,𝐾, 𝑘 satisfy (5.4.4), 𝑗𝑠 = 𝑗, 1− 𝑝𝑗 ≤ 𝑣 < 0

}︃
.

Moreover, the respective homology groups have bases given by the elements

{︁
𝑞𝑣0 : 𝑣 < 0

}︁
,

{︃
𝑞𝑣0𝑞

𝑘𝑝𝑖−1

1 : 𝑘 ∈ Z− 𝑝Z, −𝑝[𝑖] ≤ 𝑣 < 0

}︃
,

and {︃
𝑞𝑣0𝑞

𝑘𝑝𝑗

1 𝜖𝑗 : 𝑘 ∈ Z, 1− 𝑝𝑗 ≤ 𝑣 < 0

}︃
.

Proof. Each of the maps in the exact couple defining the 𝑞−1
1 -BSS comes from a map

of algebraic Novikov spectral sequences. This means that if 𝑥 ∈ 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0) and

𝑞𝑣0𝑥 ∈ 𝐸∞(𝑞−1
1 -BSS) then 𝑑𝑞0-FILT

0 (𝑞𝑣0𝑥) = 𝑞𝑣0𝑑
𝑣1-alg.NSS
2 𝑥. We understand 𝑑𝑣1-alg.NSS

2 by
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theorem 6.2.1. For the rest of the proof we write 𝑑0 for 𝑑𝑞0-FILT
0 .

𝑑0(𝑞
𝑣
0) = 0 and so the claims concerning {𝑞𝑣0 : 𝑣 < 0} are evident.

First, fix 𝑖 ≥ 1 and consider

𝑥 = 𝑞𝑣0𝑞
𝑘𝑝𝑖−1

1 𝜖[𝐼−]𝜌[𝐽,𝐾]

where 𝐼, 𝐽,𝐾 and 𝑘 satisfy (5.4.3), 𝑖𝑟 = 𝑖, and −𝑝[𝑖] ≤ 𝑣 < 0. If 𝑟 = 1 then 𝑑0(𝑥) = 0

so suppose that 𝑟 > 1 and let 𝑐 ∈ {1, . . . , 𝑟 − 1}. We wish to show that replacing 𝜖𝑖𝑐

by 𝜌𝑖𝑐−1 in 𝑥 gives an element 𝑥′ of the same form as 𝑥. This is true because

𝑥′ = 𝑞𝑣0𝑞
𝑘𝑝𝑖−1

1 𝜖[𝐼 ′−]𝜌[𝐽 ′, 𝐾 ′]

where 𝐼 ′, 𝐽 ′, 𝐾 ′ are determined by the following properties.

1. 𝜖[𝐼 ′−]𝜌[𝐽 ′, 𝐾 ′] is obtained from 𝜖[𝐼−]𝜌[𝐽,𝐾] by replacing 𝜖𝑖𝑐 by 𝜌𝑖𝑐−1;

2. 𝑟′ = 𝑟 − 1, 𝑖′1 > . . . > 𝑖′𝑟′ = 𝑖;

3. 𝑗′1 > . . . > 𝑗′𝑠′ ≥ 1;

4. 𝑘′𝑎 ≥ 1 for all 𝑎 ∈ {1, . . . , 𝑠′}.

In particular, 𝑖′𝑟′ = 𝑖 and 𝐼 ′, 𝐽 ′, 𝐾 ′ and 𝑘 satisfy (5.4.3) because 𝑠′ ≥ 1, and 𝑗𝑠 ≥ 𝑖𝑟 = 𝑖

and 𝑖𝑐 > 𝑖𝑟 = 𝑖 implies that 𝑗′𝑠′ ≥ 𝑖 = 𝑖′𝑟′ . Since 𝑑0 is a derivation, this observation

shows that 𝑑0 induces an operation on the second subspace of the proposition. The

claim about the homology is true because the complex(︃
𝐸[𝜖𝑛 : 𝑛 > 𝑖]⊗ F𝑝[𝜌𝑛 : 𝑛 ≥ 𝑖] : 𝜕𝜖𝑛+1 = 𝜌𝑛

)︃

has homology F𝑝.

Second, fix 𝑗 ≥ 1 and consider

𝑦 = 𝑞𝑣0𝑞
𝑘𝑝𝑗

1 𝜖[𝐼]𝜖𝑗𝜌[𝐽,𝐾−]
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where 𝐼, 𝐽,𝐾 and 𝑘 satisfy (5.4.4), 𝑗𝑠 = 𝑗, and 1− 𝑝𝑗 ≤ 𝑣 < 0.

First, we wish to show the term obtained from applying 𝑑0 to 𝜖𝑗 is trivial. If 𝑗 = 1

then 𝑑0(𝜖𝑗) = 0 so suppose, for now, that 𝑗 > 1. Replacing 𝜖𝑗 by 𝜌𝑗−1 gives

𝑦′ = 𝑞𝑣0𝑞
(𝑘𝑝)𝑝𝑗−1

1 𝜖[𝐼 ′]𝜌[𝐽 ′, 𝐾 ′]

where 𝐼 ′, 𝐽 ′, 𝐾 ′ are determined by the following properties.

1. 𝜖[𝐼 ′]𝜌[𝐽 ′, 𝐾 ′] = 𝜖[𝐼]𝜌[𝐽,𝐾−]𝜌𝑗−1;

2. 𝐼 ′ = 𝐼;

3. 𝑗′1 > . . . > 𝑗′𝑠′ = 𝑗 − 1;

4. 𝑘′𝑎 ≥ 1 for all 𝑎 ∈ {1, . . . , 𝑠′}.

𝑠′ ≥ 1 and either 𝑟 = 𝑟′ = 0, or 𝑟 = 𝑟′ ≥ 1 and 𝑖′𝑟′ = 𝑖𝑟 > 𝑗𝑠 = 𝑗 > 𝑗 − 1 = 𝑗′𝑠′ , so

we see that 𝐼 ′, 𝐽 ′, 𝐾 ′ and 𝑘′ = 𝑘𝑝 satisfy (5.4.4). This shows that 𝑦′ is the source

of a (5.4.4) 𝑞−1
1 -Bockstein differential, i.e. zero in 𝐸∞(𝑞−1

1 -BSS) = 𝐸0(𝑞0-FILT). We

deduce that when applying 𝑑0 the only terms of interest come from applying 𝑑0 to

the 𝜖[𝐼]𝜌[𝐽,𝐾−] part of 𝑦.

If 𝑟 = 0 then 𝑑0(𝑦) = 0 so suppose that 𝑟 > 0 and let 𝑐 ∈ {1, . . . , 𝑟}. We wish to

show that replacing 𝜖𝑖𝑐 by 𝜌𝑖𝑐−1 in 𝑦 gives an element 𝑦′′ of the same form as 𝑦.

𝑦′′ = 𝑞𝑣0𝑞
𝑘𝑝𝑗

1 𝜖[𝐼 ′]𝜖𝑗𝜌[𝐽 ′, 𝐾 ′
−]

where 𝐼 ′, 𝐽 ′, 𝐾 ′ are determined by the following properties.

1. 𝜖[𝐼 ′]𝜌[𝐽 ′, 𝐾 ′
−] is obtained from 𝜖[𝐼]𝜌[𝐽,𝐾−] by replacing 𝜖𝑖𝑐 by 𝜌𝑖𝑐−1;

2. 𝑟′ = 𝑟 − 1 and 𝑖′1 > . . . > 𝑖′𝑟′ ;

3. 𝑗′1 > . . . > 𝑗′𝑠′ = 𝑗;

4. 𝑘′𝑎 ≥ 1 for all 𝑎 ∈ {1, . . . , 𝑠′}.
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𝑖𝑐 ≥ 𝑖𝑟 > 𝑗𝑠 = 𝑗 ensures that condition (3) can be met. 𝑠′ ≥ 𝑠 ≥ 1 and either 𝑟′ = 0 or

𝑟′ ≥ 1 and 𝑖′𝑟′ ≥ 𝑖𝑟 > 𝑗𝑠 = 𝑗 = 𝑗′𝑠′ . Thus, 𝐼 ′, 𝐽 ′, 𝐾 ′ and 𝑘 satisfy 5.4.4 and 𝑦′′ has the

same form as 𝑦. Since 𝑑0 is a derivation, this shows that 𝑑0 induces an operation on

the third subspace of the proposition. The claim about the homology is true because(︃
𝐸[𝜖𝑛 : 𝑛 > 𝑗]⊗ F𝑝[𝜌𝑛 : 𝑛 ≥ 𝑗] : 𝜕𝜖𝑛+1 = 𝜌𝑛

)︃

has homology F𝑝.

6.4 The 𝐸∞-page of the loc.alg.NSS

One knows that 𝐻*(𝐵𝑃*𝐵𝑃 ; 𝑣−1
1 𝐵𝑃*/𝑝

∞) is nonzero, only in cohomological degree 0

and 1. 𝐻0(𝐵𝑃*𝐵𝑃 ; 𝑣−1
1 𝐵𝑃*/𝑝

∞) is generated as an abelian group by the elements

{︃
1

𝑝𝑛
: 𝑛 ≥ 1

}︃
∪

{︃
𝑣𝑘𝑝

𝑛−1

1

𝑝𝑛
: 𝑛 ≥ 1, 𝑘 ∈ Z− 𝑝 Z

}︃
.

These are detected in the loc.alg.NSS by the following elements of 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞∞0 ).

{︂
1

𝑞𝑛0
: 𝑛 ≥ 1

}︂
∪
{︂
𝑞𝑘𝑝

𝑛−1

1

𝑞𝑛0
: 𝑛 ≥ 1, 𝑘 ∈ Z− 𝑝 Z

}︂

An element of order 𝑝 in 𝐻1(𝐵𝑃*𝐵𝑃 ; 𝑣−1
1 𝐵𝑃*/𝑝

∞) = Z/𝑝∞ is given by the class of

−𝑝−1𝑣−1
1 [𝑡1] ∈ Ω1(𝐵𝑃*𝐵𝑃 ; 𝑣−1

1 𝐵𝑃*/𝑝
∞)

in 𝐻1(𝐵𝑃*𝐵𝑃 ; 𝑣−1
1 𝐵𝑃*/𝑝

∞), which is detected by 𝑞−1
0 𝜖1 in the loc.alg.NSS. Theo-

rem 6.3.1, degree considerations, and the fact that each 𝑞𝑣0 is a permanent cycle in

the loc.alg.NSS, allow us to see that there are permanent cycles in the loc.alg.NSS,

which are not boundaries, which are detected in the 𝑞0-FILT spectral sequence by the

elements {︃
𝑞𝑣0𝜖𝑛 : 𝑛 ≥ 1, 1− 𝑝𝑛 ≤ 𝑣 < 0

}︃
.
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These elements must detect the elements of 𝐻1(𝐵𝑃*𝐵𝑃 ; 𝑣−1
1 𝐵𝑃*/𝑝

∞). In summary,

we have the following proposition.

Proposition 6.4.1. 𝐸∞(loc.alg.NSS) has an F𝑝-basis given by the following elements.

{︂
𝑞𝑣0 : 𝑣 < 0

}︂
∪
{︂
𝑞𝑣0𝑞

𝑘𝑝𝑛−1

1 : 𝑛 ≥ 1, 𝑘 ∈ Z− 𝑝Z, −𝑛 ≤ 𝑣 < 0

}︂
∪

{︃
𝑞𝑣0𝜖𝑛 : 𝑛 ≥ 1, 1− 𝑝𝑛 ≤ 𝑣 < 0

}︃

Here, 𝑞𝑣0𝜖𝑛 denotes the element of 𝐸3(loc.alg.NSS) representing 𝑞𝑣0𝜖𝑛 ∈ 𝐸1(𝑞0-FILT).

Using theorem 6.3.1 together with this result, we see that the only possible pattern

for the differentials between a principal tower and its side towers, in the loc.alg.NSS,

is the one drawn in figure 1-1.
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Chapter 7

Some permanent cycles in the ASS

Our calculation of the 𝑞−1
1 -BSS gives information about the Adams 𝐸2-page via the

zig-zag (1.4.5). Our calculation of the loc.alg.NSS gives information about Adams 𝑑2

differentials in a similar way (figure 1-2). We would like to learn about higher Adams

differentials, but first, we say what we can about some permanent cycles in the Adams

spectral sequence. We show that for each 𝑛 ≥ 0, 𝑞𝑝
𝑛−𝑛−1

0 ℎ1,𝑛 is a permanent cycle in

the Adams spectral sequence and we give a homotopy class representing it. This is

the odd primary analogue of a result of Davis and Mahowald appearing in [6].

7.1 Maps between stunted projective spaces

The maps we construct to represent the classes 𝑞𝑝
𝑛−𝑛−1

0 ℎ1,𝑛 make use of maps we have

between skeletal subquotients of (Σ∞𝐵Σ𝑝)(𝑝). The analog of these spectra at 𝑝 = 2 are

the stunted projective spaces R𝑃𝑚
𝑛 and so we use the same terminology. Throughout

this thesis we write 𝐻 for 𝐻F𝑝, the mod 𝑝 Eilenberg-Mac Lane spectrum.

In [1] Adams shows that there is a CW spectrum 𝐵 with one cell in each positive

dimension congruent to 0 or −1 modulo 𝑞 = 2𝑝 − 2 such that 𝐵 ≃ (Σ∞𝐵Σ𝑝)(𝑝). In

particular, 𝐵 is built up from many copies of the mod 𝑝 Moore spectrum 𝑆/𝑝. The

maps we construct between stunted projective spaces all come from the fact that

multiplication by 𝑝 is zero on 𝑆/𝑝 (since 𝑝 is odd). For this reason, we emphasize the

filtration by the copies of 𝑆/𝑝 over the skeletal filtration, and writing a superscript in
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square brackets to denote the skeletal filtration, we use the following notation.

Notation 7.1.1. Write 𝐵 for the spectrum of [1, 2.2]. For 𝑛 ≥ 0 let 𝐵𝑛 = 𝐵[𝑛𝑞] and

for 1 ≤ 𝑛 ≤ 𝑚 let 𝐵𝑚
𝑛 = 𝐵𝑚/𝐵𝑛−1. Notice that 𝐵0 = * and so 𝐵𝑛 = 𝐵𝑛

1 . For 𝑛 > 𝑚

let 𝐵𝑚
𝑛 = *.

We now proceed to construct compatible maps between stunted projective spaces

of Adams filtration one. All proofs will be deferred until the end of the section.

Lemma 7.1.2. For each 𝑛 ≥ 1 there exists a unique map 𝑓 : 𝐵𝑛 −→ 𝐵𝑛−1 such that

the left diagram commutes. Moreover, the center diagram commutes so that the right

diagram commutes.

𝐵𝑛

𝑝

""

𝑓

��
𝐵𝑛−1 𝑖 // 𝐵𝑛

𝐵𝑛 𝑖 //

𝑝

""

𝐵𝑛+1

𝑓

��
𝐵𝑛

𝐵𝑛 𝑖 //

𝑓

��

𝐵𝑛+1

𝑓

��
𝐵𝑛−1 𝑖 // 𝐵𝑛

For 1 ≤ 𝑛 ≤ 𝑚 the filler for the diagram

𝐵𝑛 𝑖 //

𝑓

��

𝐵𝑚+1 𝑗 //

𝑓

��

𝐵𝑚+1
𝑛+1

��
𝐵𝑛−1 𝑖 // 𝐵𝑚 𝑗 // 𝐵𝑚

𝑛

is unique and we call it 𝑓 . The collection of such 𝑓 are compatible.

For 1 ≤ 𝑛 ≤ 𝑚 the filler for the diagram

𝐵𝑛−1 𝑖 //

𝑝

��

𝐵𝑚 𝑗 //

𝑝

��

𝐵𝑚
𝑛

��
𝐵𝑛−1 𝑖 // 𝐵𝑚 𝑗 // 𝐵𝑚

𝑛

is unique and so equal to 𝑝.
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The following diagrams commute for the appropriate values of 𝑚 and 𝑛.

𝐵𝑚+1
𝑛+1

𝑓

��

𝑝

��
𝐵𝑚
𝑛

𝑖𝑗 // 𝐵𝑚+1
𝑛+1

𝐵𝑚
𝑛

𝑖𝑗 //

𝑝

��

𝐵𝑚+1
𝑛+1

𝑓

��
𝐵𝑚
𝑛

𝐵𝑚
𝑛+1

𝑖

��

𝑝 // 𝐵𝑚
𝑛+1

𝐵𝑚+1
𝑛+1

𝑓 // 𝐵𝑚
𝑛

𝑗

OO
𝐵𝑚+1
𝑛+1

𝑓 // 𝐵𝑚
𝑛

𝑖

��
𝐵𝑚+1
𝑛

𝑗

OO

𝑝 // 𝐵𝑚+1
𝑛

We wish to analyze the Adams filtrations of the maps that we have just con-

structed. First, we describe spectra which are more convenient than those appearing

in the relevant 𝐻-canonical Adams towers, and for this we need to recall the structure

of 𝐻*(𝐵+) = 𝐻*(𝐵Σ𝑝).

Proposition 7.1.3 ([1, 2.1]). Let 𝑖 : 𝐶𝑝 −→ Σ𝑝 be the inclusion of a Sylow subgroup.

1. 𝐻*(𝐵𝐶𝑝) = 𝐸[𝑥]⊗ F𝑝[𝑦] where |𝑥| = 1, |𝑦| = 2 and 𝛽𝑥 = 𝑦.

2. 𝐻*(𝐵Σ𝑝) = 𝐸[𝑥𝑞−1]⊗ F𝑝[𝑦𝑞] where (𝐵𝑖)*(𝑥𝑞−1) = 𝑥𝑦𝑝−2 and (𝐵𝑖)*(𝑦𝑞) = 𝑦𝑝−1.

Notation 7.1.4. For 𝑘 ≥ 1 write 𝑒𝑘 for 𝑥𝑞−1𝑦
𝑘−1
𝑞 ∈ 𝐻𝑘𝑞−1(𝐵). Use the same notation

for the corresponding elements in 𝐻*(𝐵𝑚
𝑛 ).

Definition 7.1.5. For 1 ≤ 𝑛 ≤ 𝑚 define 𝐵𝑚
𝑛 ⟨1⟩ by the following cofibration sequence.

𝐵𝑚
𝑛 ⟨1⟩ // 𝐵𝑚

𝑛

(𝑒𝑛,...,𝑒𝑚) //
⋁︀𝑚
𝑛 Σ𝑘𝑞−1𝐻

Let 𝐵0⟨1⟩ = * and for 𝑛 ≥ 1 let 𝐵𝑛⟨1⟩ = 𝐵𝑛
1 ⟨1⟩.

For 1 ≤ 𝑛 ≤ 𝑚, we have the following square of cofibration sequences.

𝐵𝑛−1⟨1⟩ 𝑖 //

��

𝐵𝑚⟨1⟩ 𝑗 //

��

𝐵𝑚
𝑛 ⟨1⟩

��
𝐵𝑛−1 𝑖 //

��

𝐵𝑚 𝑗 //

��

𝐵𝑚
𝑛

��⋁︀𝑛−1
1 Σ𝑘𝑞−1𝐻 //

⋁︀𝑚
1 Σ𝑘𝑞−1𝐻 //

⋁︀𝑚
𝑛 Σ𝑘𝑞−1𝐻
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The purpose of the spectra just defined is highlighted by the following lemma.

Lemma 7.1.6. A map to 𝐵𝑚
𝑛 can be factored through 𝐵𝑚

𝑛 ⟨1⟩ if and only if it can be

factored through 𝐻 ∧𝐵𝑚
𝑛 = fib(𝐵𝑚

𝑛 −→ 𝐻 ∧𝐵𝑚
𝑛 ).

The following lemma shows that the maps we have constructed between stunted

projective spaces have Adams filtration one.

Lemma 7.1.7. For each 𝑛 ≥ 1 there exists a unique map 𝑔 : 𝐵𝑛 −→ 𝐵𝑛−1⟨1⟩ such

that the left diagram commutes. Moreover, the right diagram commutes.

𝐵𝑛

𝑓

��

𝑔

zz
𝐵𝑛−1⟨1⟩ // 𝐵𝑛−1

𝐵𝑛 𝑖 //

𝑔

��

𝐵𝑛+1

𝑔

��
𝐵𝑛−1⟨1⟩ 𝑖 // 𝐵𝑛⟨1⟩

For 1 ≤ 𝑛 ≤ 𝑚 the filler for the diagram

𝐵𝑛 𝑖 //

𝑔

��

𝐵𝑚+1 𝑗 //

𝑔

��

𝐵𝑚+1
𝑛+1

��
𝐵𝑛−1⟨1⟩ 𝑖 // 𝐵𝑚⟨1⟩ 𝑗 // 𝐵𝑚

𝑛 ⟨1⟩

is unique and we call it 𝑔. For 1 ≤ 𝑛 ≤ 𝑚 the following diagram commutes.

𝐵𝑚+1
𝑛+1

𝑔

{{

𝑓

��
𝐵𝑚
𝑛 ⟨1⟩ // 𝐵𝑚

𝑛

Before proving all the lemmas above, we make a preliminary calculation.

Lemma 7.1.8. For 𝑚,𝑛 ≥ 1 [Σ𝐵𝑛−1, 𝐵𝑚
𝑛 ] = 0, [Σ𝐵𝑛, 𝐵𝑚

𝑛 ] = 0, [Σ𝐵𝑛, 𝐵𝑚
𝑛 ⟨1⟩] = 0.

Proof. The results are all obvious if 𝑚 < 𝑛 so suppose that 𝑚 ≥ 𝑛.

The first follows from cellular approximation; the third does too, although we will

give a different proof.
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Cellular approximation gives [Σ𝐵𝑛, 𝐵𝑚
𝑛 ] = [Σ𝐵𝑛

𝑛 , 𝐵
𝑛
𝑛 ] = [Σ𝑆/𝑝, 𝑆/𝑝]. We have an

exact sequence

𝜋2(𝑆/𝑝) −→ [Σ𝑆/𝑝, 𝑆/𝑝] −→ 𝜋1(𝑆/𝑝)

and 𝜋1(𝑆/𝑝) = 𝜋2(𝑆/𝑝) = 0, which gives the second identification.

Since [Σ𝐵𝑛,
⋁︀𝑚
𝑛 Σ𝑘𝑞−2𝐻] = 0, [Σ𝐵𝑛, 𝐵𝑚

𝑛 ⟨1⟩] −→ [Σ𝐵𝑛, 𝐵𝑚
𝑛 ] is injective and this

completes the proof.

Proof of lemma 7.1.2. 𝑓 exists because the composite𝐵𝑛 𝑝−→ 𝐵𝑛 −→ 𝐵𝑛
𝑛 = Σ𝑛𝑞−1𝑆/𝑝

is null. 𝑓 is unique because [𝐵𝑛,Σ−1𝐵𝑛
𝑛 ] = 0.

Since [𝐵𝑛,Σ−1𝐵𝑛+1
𝑛+1 ] = 0 the map 𝑖* : [𝐵𝑛, 𝐵𝑛] −→ [𝐵𝑛, 𝐵𝑛+1] is injective and so

commutativity of the following diagram gives commutativity of the second diagram

in the lemma.

𝐵𝑛 𝑖 //

𝑝

��

𝐵𝑛+1

𝑓

��
𝑝

��

𝐵𝑛

𝑖

��
𝐵𝑛 𝑖 // 𝐵𝑛+1

Uniqueness of the fillers is given by the facts [Σ𝐵𝑛, 𝐵𝑚
𝑛 ] = 0 and [Σ𝐵𝑛−1, 𝐵𝑚

𝑛 ] = 0,

respectively.

We turn to compatibility of the collection {𝑓 : 𝐵𝑚+1
𝑛+1 −→ 𝐵𝑚

𝑛 }. We already have

compatibility of the collection {𝑓 : 𝐵𝑛 −→ 𝐵𝑛−1}, i.e. the following diagram in the

homotopy category commutes.

𝐵1 //

𝑓

��

𝐵2 //

𝑓

��

. . . // 𝐵𝑛 𝑖 //

𝑓

��

𝐵𝑛+1 //

𝑓

��

. . .

* // 𝐵1 // . . . // 𝐵𝑛−1 𝑖 // 𝐵𝑛 // . . .

For concreteness, suppose that we a have pointset level model for this diagram in

which each representative 𝑖 : 𝐵𝑛−1 −→ 𝐵𝑛 is a cofibration between cofibrant spectra.

By a spectrum, we mean an 𝑆-module [7], and so every spectrum is fibrant. The

95



“homotopy extension property” that 𝑆-modules satisfy says that we can make any of

the squares strictly commute at the cost of changing the right map to a homotopic

one. By proceeding inductively, starting with the left most square, we can assume

that the representative 𝑓 ’s are chosen so that each square strictly commutes. Let

𝑓 : 𝐵𝑚+1
𝑛+1 −→ 𝐵𝑚

𝑛 be obtained by taking strict cofibers of the appropriate diagram.

The homotopy class of 𝑓 provides a filler for the diagram in the lemma and so is equal

to 𝑓 . It is clear that the 𝑓 ’s are compatible and so the 𝑓 ’s are compatible.

The deductions that each of the final four diagrams commute are similar and rely

on the uniqueness of the second filler. We’ll need the fourth diagram so we show this

in detail. We have a commuting diagram.

𝐵𝑛−1 //

𝑖

��

𝐵𝑚+1 //

=

��

𝐵𝑚+1
𝑛

𝑗

��
𝐵𝑛 //

𝑓

��

𝐵𝑚+1 //

𝑓

��

𝐵𝑚+1
𝑛+1

𝑓

��
𝐵𝑛−1 //

=

��

𝐵𝑚 //

𝑖

��

𝐵𝑚
𝑛

𝑖

��
𝐵𝑛−1 // 𝐵𝑚+1 // 𝐵𝑚+1

𝑛

The vertical composites in the first two columns are 𝑝 and so the third is too.

Proof of lemma 7.1.6. 𝐻*(𝐵𝑚
𝑛 ) is free over 𝐸[𝛽] with basis 𝑒𝑛, . . . , 𝑒𝑚. This basis

allowed us to construct the top map in the following diagram.

𝐵𝑚
𝑛

(𝑒𝑛,...,𝑒𝑚) //

��

⋁︀𝑚
𝑛 Σ𝑘𝑞−1𝐻

⋁︀𝑚
𝑛 Σ𝑘𝑞−1(1,𝛽)

��

𝐻 ∧𝐵𝑚
𝑛

≃ //
⋁︀𝑚
𝑛

(︂
Σ𝑘𝑞−1𝐻 ∨ Σ𝑘𝑞𝐻

)︂

We have a map (1, 𝛽) : 𝐻 −→ 𝐻 ∨ Σ𝐻 which is used to construct the map on the
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right. Since the target of this map is an 𝐻-module we obtain the bottom map and

one can check that this is an equivalence. Thus, we obtain the map of cofibration

sequences displayed at the top of the following diagram.

𝐵𝑚
𝑛 ⟨1⟩ //

��

𝐵𝑚
𝑛

(𝑒𝑛,...,𝑒𝑚) //

=

��

⋁︀𝑚
𝑛 Σ𝑘𝑞−1𝐻

≃∘

[︂⋁︀𝑚
𝑛 Σ𝑘𝑞−1(1,𝛽)

]︂
��

𝐻 ∧𝐵𝑚
𝑛

//

��

𝐵𝑚
𝑛

//

=

��

𝐻 ∧𝐵𝑚
𝑛[︂⋁︀𝑚
𝑛 Σ𝑘𝑞−1(1,*)

]︂
∘≃

��
𝐵𝑚
𝑛 ⟨1⟩ // 𝐵𝑚

𝑛

(𝑒𝑛,...,𝑒𝑚) //
⋁︀𝑚
𝑛 Σ𝑘𝑞−1𝐻

The bottom right square is checked to commute and so we obtain the map of cofibra-

tion sequences displayed at the bottom. This diagram shows that a map to 𝐵𝑚
𝑛 can

be factored through 𝐵𝑚
𝑛 ⟨1⟩ if and only if it can be factoring through 𝐻 ∧𝐵𝑚

𝑛 ; this is

also clear if one uses the more general theory of Adams resolutions discussed in [11].

[One sees that (𝑒𝑛, . . . , 𝑒𝑚) is an 𝐻*-isomorphism in dimensions which are strictly

less than (𝑛 + 1)𝑞 − 1 so 𝐵𝑚
𝑛 ⟨1⟩ is ((𝑛 + 1)𝑞 − 3)-connected and hence (𝑛𝑞 + 1)-

connected.]

Proof of lemma 7.1.7. We have [𝐵𝑛,Σ𝑛𝑞−2𝐻] = 0 and so the map

[︃
𝐵𝑛,

𝑛−1⋁︁
1

Σ𝑘𝑞−1𝐻

]︃
−→

[︃
𝐵𝑛,

𝑛⋁︁
1

Σ𝑘𝑞−1𝐻

]︃

is injective. Since 𝑖𝑓 = 𝑝 and 𝑝 = 0 on 𝐻, the following diagram proves the existence

of 𝑔.

𝐵𝑛

𝑓

��
𝐵𝑛−1⟨1⟩ // 𝐵𝑛−1 //

𝑖

��

⋁︀𝑛−1
1 Σ𝑘𝑞−1𝐻

��
𝐵𝑛 //

⋁︀𝑛
1 Σ𝑘𝑞−1𝐻
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Uniqueness of 𝑔 is given by the fact that [𝐵𝑛,
⋁︀𝑛−1

1 Σ𝑘𝑞−2𝐻] = 0.

Since [𝐵𝑛,
⋁︀𝑛

1 Σ𝑘𝑞−2𝐻] = 0 the map [𝐵𝑛, 𝐵𝑛⟨1⟩] −→ [𝐵𝑛, 𝐵𝑛] is injective and so

commutativity of the following diagram gives commutativity of the second diagram.

𝐵𝑛

𝑖

**
𝑔

��

𝑓

��

𝐵𝑛+1 𝑔 //

𝑓

��

𝐵𝑛⟨1⟩

��

𝐵𝑛−1⟨1⟩ //

𝑖

))

𝐵𝑛−1

𝑖

))
𝐵𝑛⟨1⟩ // 𝐵𝑛

The filler is unique because, by lemma 7.1.8, [Σ𝐵𝑛, 𝐵𝑚
𝑛 ⟨1⟩] = 0. The final diagram

commutes because we have the following commutative diagram and a uniqueness

condition on 𝑓 as a filler.

𝐵𝑛 𝑖 //

𝑔

��
𝑓

  

𝐵𝑚+1

𝑔

��
𝑓

~~

𝐵𝑛−1⟨1⟩

��

𝑖 // 𝐵𝑚⟨1⟩

��
𝐵𝑛−1 𝑖 // 𝐵𝑚

7.2 Homotopy and cohomotopy classes in stunted

projective spaces

Throughout this thesis we write 𝐴 = 𝐻*𝐻 for the dual Steenrod algebra, and 𝐴* =

𝐻*𝐻 for the Steenrod algebra.

To construct the homotopy class representing 𝑞𝑝
𝑛−𝑛−1

0 ℎ1,𝑛 in the Adams spectral
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sequence we make use of a homotopy class in 𝜋𝑝𝑛𝑞−1(𝐵
𝑝𝑛

𝑝𝑛−𝑛). First, we analyze the

algebraic picture and identify the corresponding 𝐴-comodule primitive. Recall 7.1.4.

Notation 7.2.1. For 𝑘 ≥ 1 write 𝑒𝑘 for the class in 𝐻𝑘𝑞−1(𝐵) dual to 𝑒𝑘 ∈ 𝐻𝑘𝑞−1(𝐵).

Use the same notation for the corresponding elements in 𝐻*(𝐵
𝑚
𝑛 ).

Lemma 7.2.2. For each 𝑛 ≥ 0, 𝑒𝑝𝑛 ∈ 𝐻𝑝𝑛𝑞−1(𝐵) is an 𝐴-comodule primitive.

Proof. The result is clear when 𝑛 = 0, since 𝐻𝑘(𝐵) = 0 for 𝑘 < 𝑞 − 1. Assume from

now on that 𝑛 > 0.

Since the (co)homology of 𝐵 is concentrated in dimensions which are 0 or −1

congruent to 𝑞, the dual result is that 𝑃 𝑖𝑒𝑗 = 0 whenever 𝑖, 𝑗 > 0 and 𝑖+ 𝑗 = 𝑝𝑛.

Let 𝑖 : 𝐶𝑝 −→ Σ𝑝 be the inclusion of a Sylow subgroup. Since (𝐵𝑖)* is injective

it is enough to show that the equation is true after applying (𝐵𝑖)*. Writing this out

explicitly, we must show that

𝑃 𝑖(𝑥𝑦(𝑝−1)𝑗−1) = 0 whenever 𝑖, 𝑗 > 0 and 𝑖+ 𝑗 = 𝑝𝑛.

Writing 𝑃 for the total reduced 𝑝-th power we have 𝑃 (𝑥) = 𝑥 and 𝑃 (𝑦) = 𝑦 + 𝑦𝑝 =

𝑦(1 + 𝑦𝑝−1). Suppose that 𝑖, 𝑗 > 0 and that 𝑖+ 𝑗 = 𝑝𝑛. Then

𝑃 (𝑥𝑦(𝑝−1)𝑗−1) = 𝑥𝑦(𝑝−1)𝑗−1(1+𝑦𝑝−1)(𝑝−1)𝑗−1 = 𝑥𝑦(𝑝−1)𝑗−1

(𝑝−1)𝑗−1∑︁
𝑘=0

(︂
(𝑝− 1)𝑗 − 1

𝑘

)︂
𝑦(𝑝−1)𝑘

which gives

𝑃 𝑖(𝑥𝑦(𝑝−1)𝑗−1) =

(︂
(𝑝− 1)𝑗 − 1

𝑖

)︂
𝑥𝑦(𝑝−1)𝑝𝑛−1

as long as 𝑖 ≤ (𝑝 − 1)𝑗 − 1 and 𝑃 𝑖(𝑥𝑦(𝑝−1)𝑗−1) = 0 otherwise. We just need to show

that

𝑝

⃒⃒⃒⃒ (︂
(𝑝− 1)(𝑝𝑛 − 𝑖)− 1

𝑖

)︂
whenever 0 < 𝑖 ≤ (𝑝 − 1)(𝑝𝑛 − 𝑖) − 1. The largest value of 𝑖 for which we have

𝑖 ≤ (𝑝 − 1)(𝑝𝑛 − 𝑖) − 1 is (𝑝 − 1)𝑝𝑛−1 − 1 so write 𝑖 = 𝑠𝑝𝑘 for 0 ≤ 𝑘 < 𝑛 and 𝑠 ̸≡ 0

(mod 𝑝). Let 𝑚 = (𝑝 − 1)(𝑝𝑛 − 𝑖) − 1 so that we are interested in
(︀
𝑚
𝑖

)︀
. 𝑚 − 𝑖 ≡ −1
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(mod 𝑝𝑘+1) and so when we add 𝑚− 𝑖 to 𝑖 in base 𝑝 there is a carry. An elementary

fact about binomial coefficients completes the proof.

The relevant topological result is given by the following proposition.

Proposition 7.2.3. For each 𝑛 ≥ 0, 𝑒𝑝𝑛 ∈ 𝐻𝑝𝑛𝑞−1(𝐵
𝑝𝑛

𝑝𝑛−𝑛) is in the image of the

Hurewicz homomorphism.

Proof. The result is clear for 𝑛 = 0, since we have the map 𝑆𝑞−1 −→ Σ𝑞−1𝑆/𝑝 = 𝐵1
1 .

For 𝑛 ≥ 1, setting 𝜖 = 0, 𝑖 = 𝑛+ 1, 𝑗 = 𝑝𝑛− 𝑛− 1 and 𝑘 = 𝑖𝑞− 1 in [4, 2.9(𝑣)] shows

that

𝑍 = 𝐵[𝑝𝑛𝑞−1]/𝐵[(𝑝𝑛−𝑛−1)𝑞−1]

has reductive top cell and we have an “include-collapse” map 𝑍 −→ 𝐵𝑝𝑛

𝑝𝑛−𝑛.

To construct the homotopy class representing 𝑞𝑝
𝑛−𝑛−1

0 ℎ1,𝑛 in the Adams spectral

sequence we also make use of the transfer map.

Definition 7.2.4. Write 𝑡 : 𝐵∞
1 −→ 𝑆0 for the transfer map of [1, 2.3(𝑖)] and let 𝐶

be the cofiber of Σ−1𝑡.

We need to analyze the affect of 𝑡 algebraically.

Notation 7.2.5. We have a cofibration sequence 𝑆−1 −→ 𝐶 −→ 𝐵. Abuse notation

and write 𝑒𝑘 and 𝑒𝑘 for the elements in 𝐻*(𝐶) and 𝐻*(𝐶) which correspond to the

elements of the same name in 𝐻*(𝐵) and 𝐻*(𝐵). Write 𝑈 and 𝑢 for the dual classes

in 𝐻*(𝐶) and 𝐻*(𝐶) corresponding to generators of 𝐻−1(𝑆−1) and 𝐻−1(𝑆
−1).

Lemma 7.2.6. Suppose 𝑛 ≥ 0. Then 𝑒𝑝𝑛 ∈ 𝐻𝑝𝑛𝑞−1(𝐶) is mapped to 1⊗ 𝑒𝑝𝑛
.

+ 𝜉𝑝
𝑛

1 ⊗𝑢

under the 𝐴-coaction map.

Proof. First, let’s introduce some notation which will be useful for the proof. Write

Sq𝑘𝑞𝑝 and Sq𝑘𝑞+1
𝑝 for 𝑃 𝑘 and 𝛽𝑃 𝑘, respectively. Recall that the Steenrod algebra 𝐴*

has a F𝑝-vector space basis given by admissible monomials

ℬ = {Sq𝑖1𝑝 · · · Sq𝑖𝑟𝑝 : 𝑖𝑗 ≥ 𝑝𝑖𝑗+1, 𝑖𝑗 ≡ 0 or 1 (mod 𝑞)}.
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We claim that Sq𝑝
𝑛𝑞
𝑝 𝑈

.
= 𝑒𝑝

𝑛 , and that 𝑏𝑈 = 0 for any 𝑏 ∈ ℬ of length greater than 1.

Here, length greater than one means that 𝑟 > 1 and 𝑖𝑟 > 0.

By lemma 7.2.2 we know that 𝑒𝑝𝑛 is mapped, under the coaction map, to 1⊗𝑒𝑝𝑛 +

𝑎 ⊗ 𝑢 for some 𝑎 ∈ 𝐴. If we can prove the claim above then we will deduce that

𝑎
.

= 𝜉𝑝
𝑛

1 .

Take an element 𝑏 = Sq𝑖1𝑝 · · · Sq𝑖𝑟𝑝 ∈ ℬ of length greater than one. Let 𝑘 = ⌊𝑖𝑟−1/𝑞⌋

so that either 𝑖𝑟−1 = 𝑘𝑞 or 𝑘𝑞 + 1 and Sq𝑖𝑟−1
𝑝 = 𝑃 𝑘 or 𝛽𝑃 𝑘. We have

𝑖𝑟−1 ≥ 𝑝𝑖𝑟 =⇒ 𝑖𝑟−1 − 1 ≥ 𝑝𝑖𝑟 − 1 > (𝑝− 1)𝑖𝑟 − (𝑝− 1) = 𝑞(𝑖𝑟 − 1)/2

and so 2𝑘 ≥ 2(𝑖𝑟−1−1)/𝑞 > 𝑖𝑟−1 = |Sq𝑖𝑟𝑝 𝑈 |. Since Sq𝑖𝑟𝑝 𝑈 comes from the cohomology

of a space we deduce that 𝑃 𝑘Sq𝑖𝑟𝑝 𝑈 = 0. Thus, Sq𝑖𝑟−1
𝑝 Sq𝑖𝑟𝑝 𝑈 = 0 and 𝑏𝑈 = 0, which

verifies the second part of the claim.

We are left to prove that 𝑃 𝑝𝑛𝑈
.

= 𝑒𝑝
𝑛 for each 𝑛 ≥ 0. First, we prove the 𝑛 = 0

case 𝑃 1𝑈
.

= 𝑒1. This statement is equivalent to the claim that

𝑆𝑞−1 = 𝐵1
1 −→ 𝐵∞

1
𝑡−→ 𝑆0

is detected by a unit multiple of ℎ1,0 in the Adams spectral sequence. By cellular

approximation a generator of 𝜋𝑞−1(𝐵
∞
1 ) is given by 𝑆𝑞−1 = 𝐵1

1 −→ 𝐵∞
1 . By definition

𝑡 : 𝐵∞
1 −→ 𝑆0 is an isomorphism on 𝜋𝑞−1. By low dimensional calculations a generator

of 𝜋𝑞−1(𝑆
0) is detected by ℎ1,0. This completes the proof of the 𝑛 = 0 case.

To prove that 𝑃 𝑝𝑛𝑈
.

= 𝑒𝑝
𝑛 it is enough to show that 𝛽𝑃 𝑝𝑛𝑈

.
= 𝛽𝑒𝑝

𝑛 . Notice that

|𝛽𝑒1| = 𝑞 and so

𝛽𝑒𝑝
𝑛

= (𝛽𝑒1)𝑝
𝑛

= 𝑃 𝑝𝑛−1𝑞/2 · · ·𝑃 𝑝𝑞/2𝑃 𝑞/2𝛽𝑒1
.

= 𝑃 𝑝𝑛−1𝑞/2 · · ·𝑃 𝑝𝑞/2𝑃 𝑞/2𝛽𝑃 1𝑈.

We are left with proving that 𝑃 𝑝𝑛−1𝑞/2 · · ·𝑃 𝑞/2𝛽𝑃 1𝑈
.

= 𝛽𝑃 𝑝𝑛𝑈 . We induct on 𝑛, the
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result being trivial for 𝑛 = 0. Suppose it is proven for some 𝑛 ≥ 0. Then we have

𝑃 𝑝𝑛𝑞/2 · · ·𝑃 𝑞/2𝛽𝑃 1𝑈
.

= 𝑃 𝑝𝑛𝑞/2𝛽𝑃 𝑝𝑛𝑈

.
= (𝛽𝑃 𝑝𝑛+𝑝𝑛𝑞/2 + elements of ℬ of length greater than 1)𝑈

= 𝛽𝑃 𝑝𝑛+1

𝑈,

which completes the inductive step and the proof of the lemma.

7.3 A permanent cycle in the ASS

We are now ready to prove the main result of the chapter.

Theorem 7.3.1. The element 𝑞𝑝
𝑛−𝑛−1

0 ℎ1,𝑛
.

= {[𝜏0]𝑝
𝑛−𝑛−1[𝜉𝑝

𝑛

1 ]} ∈ 𝐻𝑝𝑛−𝑛,𝑝𝑛(𝑞+1)−𝑛−1(𝐴)

is a permanent cycle in the Adams spectral sequence represented by the map

𝛼 : 𝑆𝑝
𝑛𝑞−1 𝑖 // 𝐵𝑝𝑛

𝑝𝑛−𝑛
𝑓 // 𝐵𝑝𝑛−1

𝑝𝑛−𝑛−1
// . . . // 𝐵𝑛+2

2

𝑓 // 𝐵𝑛+1
1

𝑡 // 𝑆0.

Here, 𝑖 comes from proposition 7.2.3, 𝑓 comes from lemma 7.1.2, and 𝑡 is the restric-

tion of the transfer map.

Proof. By lemma 7.1.2 the following diagram commutes.

𝑆𝑝
𝑛𝑞−1

𝑖
$$

𝛼

++𝐵𝑝𝑛

𝑝𝑛−𝑛
𝑓 // 𝐵𝑝𝑛−1

𝑝𝑛−𝑛−1
// . . . // 𝐵𝑛+2

2

𝑓 // 𝐵𝑛+1
1

//

𝑖

��

𝑆0

𝐵𝑝𝑛

1

𝑗

OO

𝑝𝑝
𝑛−𝑛−1

// 𝐵𝑝𝑛

1

𝑖

��
𝐵∞

1

𝑡

MM

We look at the maps induced on 𝐸2-pages.

By definition, 𝑖 : 𝑆𝑝
𝑛𝑞−1 −→ 𝐵𝑝𝑛

𝑝𝑛−𝑛 is represented in the Adams spectral sequence
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by 𝑒𝑝𝑛 ∈ 𝐻0,𝑝𝑛𝑞−1(𝐴;𝐻*(𝐵
𝑝𝑛

𝑝𝑛−𝑛)), and by lemma 7.2.2, this element is the image of

𝑒𝑝𝑛 ∈ 𝐻0,𝑝𝑛𝑞−1(𝐴;𝐻*(𝐵
𝑝𝑛

1 )). Moreover,

𝑞𝑝
𝑛−𝑛−1

0 · 𝑒𝑝𝑛 ∈ 𝐻𝑝𝑛−𝑛−1,𝑝𝑛(𝑞+1)−𝑛−2(𝐴;𝐻*(𝐵
∞
1 )).

𝑡* : 𝐸2(𝐵
∞
1 ) −→ 𝐸2(𝑆

0) is described by the geometric boundary theorem. The cofi-

bration sequence 𝑆−1 −→ 𝐶 −→ 𝐵 induces a short exact sequence of 𝐴-comodules.

The boundary map obtained by applying 𝐻*(𝐴;−) is the map induced by 𝑡.

0 // Ω*(𝐴;𝐻*(𝑆
−1)) // Ω*(𝐴;𝐻*(𝐶)) // Ω*(𝐴;𝐻*(𝐵)) // 0

[𝜏0]
𝑝𝑛−𝑛−1𝑒𝑝𝑛

� //
_

·
��

[𝜏0]
𝑝𝑛−𝑛−1𝑒𝑝𝑛

[𝜏0]
𝑝𝑛−𝑛−1[𝜉𝑝

𝑛

1 ] � // [𝜏0]
𝑝𝑛−𝑛−1[𝜉𝑝

𝑛

1 ]𝑢

Thus, by using lemma 7.2.6, we see that

𝑡*(𝑞
𝑝𝑛−𝑛−1
0 · 𝑒𝑝𝑛)

.
= 𝑞𝑝

𝑛−𝑛−1
0 ℎ1,𝑛 ∈ 𝐻𝑝𝑛−𝑛,𝑝𝑛(𝑞+1)−𝑛−1(𝐴).

This almost completes the proof. There is a subtlety, however. A map of filtration

degree 𝑘 only gives a well-defined map on 𝐸𝑘+1 pages. To complete the proof we break

the rectangle appearing in the first diagram up into (𝑝𝑛 − 𝑛− 1)2 squares. We have

demonstrated this for the case when 𝑝 = 5 and 𝑛 = 1 below.

𝐵5
4

𝑓 // 𝐵4
3

𝑓 // 𝐵3
2

𝑓 // 𝐵2
1

𝑖

��

𝑒5
� // ? � // ? � // ?_

��
𝐵5

3

𝑓 //

𝑗

OO

𝐵4
2

𝑓 //

𝑗

OO

𝐵3
1

5 //

𝑖

��

𝑗

OO

𝐵3
1

𝑖

��

𝑒5
� //_

OO

? � //
_

OO

? � //
_

��

_

OO

?_

��
𝐵5

2

𝑓 //

𝑗

OO

𝐵4
1

5 //

𝑗

OO

𝑖

��

𝐵4
1

5 //

𝑖

��

𝐵4
1

𝑖

��

𝑒5
� //_

OO

? � //
_

OO

_

��

? � //
_

��

?_

��
𝐵5

1
5 //

𝑗

OO

𝐵5
1

5 // 𝐵5
1

5 // 𝐵5
1 𝑒5

� //_

OO

𝑞0 · 𝑒5 � // 𝑞20 · 𝑒5
� // 𝑞30 · 𝑒5
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Each square involves two maps of Adams filtration zero in the vertical direction and

two maps of Adams filtration one in the horizontal direction. Each square commutes

by lemma 7.1.2 and the maps induced on 𝐸2-pages are well-defined. This completes

the proof.
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Chapter 8

Adams spectral sequences

In this chapter we set up and calculate the localized Adams spectral sequence for

the 𝑣1-periodic sphere. Along the way we construct Adams spectral sequences for

calculating the homotopy of the mod 𝑝𝑛 Moore spectrum 𝑆/𝑝𝑛, the Prüfer sphere

𝑆/𝑝∞ = hocolim(𝑆/𝑝
𝑝 // 𝑆/𝑝2

𝑝 // 𝑆/𝑝3 // . . .),

and we prove the final theorem stated in the introduction.

8.1 Towers and their spectral sequences

In this section we introduce some essential concepts and constructions: towers (defi-

nition 8.1.4), the smash product of towers and the spectral sequences associated with

them. We provide important examples, which will be useful for the construction of

the modified Adams spectral sequence for 𝑆/𝑝𝑛 and for verifying its properties. We

also recall the main properties of the Adams spectral sequence.

Notation 8.1.1. We write S for the stable homotopy category.

Definition 8.1.2. Write Ch(S ) for the category of non-negative cochain complexes

in S . An object 𝐶∙ of this category is a diagram

𝐶0 𝑑 // 𝐶1 // . . . // 𝐶𝑠 𝑑 // 𝐶𝑠+1 // . . .
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in S with 𝑑2 = 0. An augmentation 𝑋 −→ 𝐶∙ of a cochain complex 𝐶∙ ∈ Ch(S ) is

a map of cochain complexes from 𝑋 −→ * −→ . . . −→ * −→ * −→ . . . to 𝐶∙.

Notation 8.1.3. Let Z denote the category with the integers as objects and hom-sets

determined by: |Z(𝑛,𝑚)| = 1 if 𝑛 ≥ 𝑚, and |Z(𝑛,𝑚)| = 0 otherwise. Write Z≥0 for

the full subcategory of Z with the non-negative integers as objects.

Definition 8.1.4. An object {𝑋𝑠} of the diagram category S Z≥0 is called a sequence.

A system of interlocking cofibration sequences

𝑋0

��

. . .oo 𝑋𝑠−1
oo

��

𝑋𝑠
oo

��

𝑋𝑠+1
oo

��

. . .oo

𝐼0

<<

𝐼𝑠−1

;;

𝐼𝑠

;;

𝐼𝑠+1

;;

in S is called a tower and we use the notation {𝑋, 𝐼}. Notice that a tower {𝑋, 𝐼} has

an underlying sequence {𝑋𝑠} and an underlying augmented cochain complex 𝑋0 −→

Σ∙𝐼∙.

A map of towers {𝑋, 𝐼} −→ {𝑌, 𝐽} is a compatible collection of maps

{𝑋𝑠 −→ 𝑌𝑠} ∪ {𝐼𝑠 −→ 𝐽𝑠}.

The following tower is important for us.

Definition 8.1.5. We write {𝑆0, 𝑆/𝑝} for the tower in which each of the maps in the

underlying sequence is 𝑝 : 𝑆0 −→ 𝑆0. The underlying augmented cochain complex

is 𝑆0 −→ Σ∙𝑆/𝑝, where each differential is given by a suspension of the Bockstein

𝛽 : 𝑆/𝑝 −→ 𝑆1 −→ Σ𝑆/𝑝.

Definition 8.1.6. Suppose that {𝑋, 𝐼} is a tower. Then by changing {𝑋, 𝐼} up to an

isomorphism we can find a pointset model in which each 𝑋𝑠+1 −→ 𝑋𝑠 is a cofibration

between cofibrant 𝑆-modules [7] and 𝐼𝑠 is the strict cofiber of this map. We say that

such a pointset level model is cofibrant.
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By taking a cofibrant pointset level model {𝑆0, 𝑆/𝑝}, we can construct another

tower by collapsing the 𝑛-th copy of 𝑆0.

Definition 8.1.7. Let {𝑆/𝑝𝑛−*, 𝑆/𝑝} be the tower obtained in this way.

𝑆/𝑝𝑛

��

𝑆/𝑝𝑛−1𝑝oo

��

𝑆/𝑝𝑛−2𝑝oo

��

. . .oo 𝑆/𝑝oo

��

*oo

��

*oo

��

. . .oo

𝑆/𝑝

==

𝑆/𝑝

<<

𝑆/𝑝

>>

𝑆/𝑝

AA

*

CC

*

BB

To construct the multiplicative structure on the modified Adams spectral sequence

for 𝑆/𝑝𝑛 we need to make sense of smashing towers together. A modern version of [5,

definition 4.2] is as follows.

Definition 8.1.8. Suppose {𝑋, 𝐼} and {𝑌, 𝐽} are towers and that we have chosen

cofibrant models for them. Let

𝑍𝑠 = colim𝑖+𝑗≥𝑠
0≤𝑖,𝑗≤𝑠

𝑋𝑖 ∧ 𝑌𝑗.

The indexing category in this colimit is a full subcategory of Z×Z and the notation

only indicates the objects. Let

𝐾𝑠 =
⋁︁
𝑖+𝑗=𝑠

0≤𝑖,𝑗≤𝑠

𝐼 𝑖 ∧ 𝐽 𝑗.

We have maps 𝑍𝑠+1 −→ 𝑍𝑠 and 𝑍𝑠 −→ 𝐾𝑠, which give a cofibrant model for the smash

product of towers {𝑋, 𝐼} ∧ {𝑌, 𝐽} = {𝑍,𝐾}. Moreover, the underlying augmented

cochain complex of {𝑋, 𝐼}∧{𝑌, 𝐽} is the tensor product of the underlying augmented

cochain complexes of {𝑋, 𝐼} and {𝑌, 𝐽}.

Note that the definition of {𝑋, 𝐼} ∧ {𝑌, 𝐽} depends on the choice of cofibrant

models for {𝑋, 𝐼} and {𝑌, 𝐽}, but the following proposition shows that it is well-

defined up to isomorphism.
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Proposition 8.1.9. Suppose we have maps of towers

{𝑋, 𝐼} −→ {𝒳 , ℐ}, {𝑌, 𝐽} −→ {𝒴 ,𝒥 }.

Then there exists a map of towers {𝑋, 𝐼}∧ {𝑌, 𝐽} −→ {𝒳 , ℐ}∧ {𝒴 ,𝒥 } such that the

underlying map on augmented cochain complexes is the tensor product[︃(︁
𝑋0 → Σ∙𝐼∙

)︁
−→

(︁
𝒳0 → Σ∙ℐ∙

)︁]︃
∧

[︃(︁
𝑌0 → Σ∙𝐽∙

)︁
−→

(︁
𝒴0 → Σ∙𝒥 ∙

)︁]︃
.

Writing down the proof of the proposition carefully is a lengthy detour. I assure

the reader that I have done this. Indeed, in the draft of my thesis all details were

included and this will remain available on my website. However, I do not want the

content of my thesis to be concerned with such technical issues. The point is that a

map of towers restricts to a map of sequences. On the cofibrant pointset level models,

we only know that each square commutes up to homotopy, but each homotopy is

determined by the map on the respective cofiber and this is part of the data of the

map of towers. Since the 𝑍𝑠 appearing in definition 8.1.8 is, in fact, a homotopy

colimit, we can define maps 𝑍𝑠 −→ 𝒵𝑠 using these homotopies. One finds that this

provides a map of sequences compatible with the tensor product of the underlying

maps of augmented cochain complexes.

As an example of a smash product of towers and a map of towers, we would like

to construct a map (recall definition 8.1.5)

{𝑆0, 𝑆/𝑝} ∧ {𝑆0, 𝑆/𝑝} −→ {𝑆0, 𝑆/𝑝} (8.1.10)

extending the multiplication 𝑆0 ∧ 𝑆0 −→ 𝑆0. Using the terminology of [5, 11], we

see that {𝑆0, 𝑆/𝑝} is the 𝑆/𝑝-canonical resolution of 𝑆0. Moreover, [5, 4.3(b)] tells us

that {𝑆0, 𝑆/𝑝} ∧ {𝑆0, 𝑆/𝑝} is an 𝑆/𝑝-Adams resolution. Thus, the following lemma,
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which is given in [11], means that it is enough to construct a map

(︂
𝑆0 → Σ∙𝑆/𝑝

)︂
∧
(︂
𝑆0 → Σ∙𝑆/𝑝

)︂
−→

(︂
𝑆0 → Σ∙𝑆/𝑝

)︂
. (8.1.11)

Lemma 8.1.12. Suppose {𝑋, 𝐼} and {𝑌, 𝐽} are 𝐸-Adams resolutions. Then any

map of augmented cochain complexes
(︁
𝑋0 → Σ∙𝐼∙

)︁
−→

(︁
𝑌0 → Σ∙𝐽∙

)︁
extends to a

map of towers.

The following lemma shows that we can construct the map (8.1.11) by using the

multiplication 𝜇 : 𝑆/𝑝∧𝑆/𝑝 −→ 𝑆/𝑝 on every factor appearing in the tensor product.

Lemma 8.1.13. The following diagram commutes, where 𝜇 : 𝑆/𝑝 ∧ 𝑆/𝑝 −→ 𝑆/𝑝 is

the multiplication on the ring spectrum 𝑆/𝑝.

𝑆/𝑝 ∧ 𝑆/𝑝 (𝛽∧𝑆/𝑝,𝑆/𝑝∧𝛽) //

𝜇

��

(Σ𝑆/𝑝 ∧ 𝑆/𝑝) ∨ (𝑆/𝑝 ∧ Σ𝑆/𝑝)

Σ(𝜇,𝜇)

��
𝑆/𝑝

𝛽 // Σ𝑆/𝑝

Proof. 𝑆/𝑝 ∧ 𝑆/𝑝 = 𝑆/𝑝 ∨ Σ𝑆/𝑝 and so to check commutativity of the diagram it is

enough to restrict to each factor. We are then comparing maps in [Σ𝑆/𝑝,Σ𝑆/𝑝] =

[𝑆/𝑝, 𝑆/𝑝] and [𝑆/𝑝,Σ𝑆/𝑝]. Both groups are cyclic of order 𝑝 and generated by 1 and

𝛽, respectively. Since 1 and 𝛽 are homologically non-trivial, the lemma follows from

the fact that the diagram commutes after applying homology.

Our motivation for constructing the map (8.1.10) was, in fact, to prove the fol-

lowing lemma.

Lemma 8.1.14. The exists a map of towers

{𝑆/𝑝𝑛−*, 𝑆/𝑝} ∧ {𝑆/𝑝𝑛−*, 𝑆/𝑝} −→ {𝑆/𝑝𝑛−*, 𝑆/𝑝}

(recall definition 8.1.7) compatible with the map of (8.1.10).
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Proof. Take the cofibrant pointset level model for {𝑆0, 𝑆/𝑝} which was used to define

{𝑆/𝑝𝑛−*, 𝑆/𝑝} and consider the underlying map of sequences of (8.1.10). We use the

“homotopy extension property” that 𝑆-modules satisfy, just like in the proof of lemma

7.1.2. It says that we can make any of the squares in the map of sequences strictly

commute at the cost of changing the left map to a homotopic one. The homotopy

we extend should be the one determined by the map on cofibers. By starting at the

(2𝑛 − 1)-st position, we can make the first (2𝑛 − 1) squares commute strictly. One

obtains the map of the lemma by collapsing out the 𝑛-th copy of 𝑆0 in {𝑆0, 𝑆/𝑝}.

For us, the purpose of a tower is to a construct spectral sequence.

Definition 8.1.15. The {𝑋, 𝐼}-spectral sequence is the spectral sequence obtained

from the exact couple got by applying 𝜋*(−) to a given tower {𝑋, 𝐼}. For 𝑠 ≥ 0, it

has

𝐸𝑠,𝑡
1 ({𝑋, 𝐼}) = 𝜋𝑡−𝑠(𝐼

𝑠) = 𝜋𝑡(Σ
𝑠𝐼𝑠)

and 𝐸∙,𝑡
1 = 𝜋𝑡(Σ

∙𝐼∙) as chain complexes. It attempts to converge to 𝜋𝑡−𝑠(𝑋0).

The filtration is given by 𝐹 𝑠𝜋*(𝑋0) = im(𝜋*(𝑋𝑠) −→ 𝜋*(𝑋0)). Given an element

in 𝐹 𝑠𝜋*(𝑋0) we can obtain a permanent cycle by lifting to 𝜋*(𝑋𝑠) and mapping this

lift down to 𝜋*(𝐼𝑠).

Smashing together towers enables us to construct pairings of such spectral se-

quences.

Proposition 8.1.16 ([5, 4.4]). We have a pairing of spectral sequences

𝐸𝑠,𝑡
𝑟 ({𝑋, 𝐼})⊗ 𝐸𝑠′,𝑡′

𝑟 ({𝑌, 𝐽}) −→ 𝐸𝑠+𝑠′,𝑡+𝑡′

𝑟 ({𝑋, 𝐼} ∧ {𝑌, 𝐽}).

At the 𝐸1-page the pairing is given by the natural map

𝜋𝑡−𝑠(𝐼
𝑠)⊗ 𝜋𝑡′−𝑠′(𝐽𝑠

′
) ∧ // 𝜋(𝑡+𝑡′)−(𝑠+𝑠′)(𝐼

𝑠 ∧ 𝐽𝑠′) // 𝜋(𝑡+𝑡′)−(𝑠+𝑠′)(𝐾
𝑠+𝑠′),

where 𝐾 is as in definition 8.1.8. If all the spectral sequences converge then the pairing

converges to the smash product ∧ : 𝜋*(𝑋0)⊗ 𝜋*(𝑌0) −→ 𝜋*(𝑋0 ∧ 𝑌0).
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People often only talk about the Adams spectral sequence for a spectrum 𝑋 from

the 𝐸2-page onwards. Our definition gives a functorial construction from the 𝐸1-page.

Recall again, from [5, 11], the definition of the 𝐻-canonical resolution.

Notation 8.1.17. We write {𝐻∧*
, 𝐻 [*]} for the 𝐻-canonical resolution of 𝑆0. Here

we mimic the notation used in [2], and intend for 𝐻 [𝑠] to mean 𝐻 ∧ 𝐻∧𝑠. The 𝐻-

canonical resolution for a spectrum 𝑋 is obtained by smashing with the tower whose

underlying augmented cochain complex has augmentation 𝑋 −→ 𝐶∙ given by the

identity; we write {𝐻∧*
, 𝐻 [*]} ∧𝑋.

Definition 8.1.18. Suppose 𝑋 is any spectrum. The Adams spectral sequence for 𝑋

is the {𝐻∧*
, 𝐻 [*]} ∧𝑋-spectral sequence.

The 𝐸1-page of the Adams spectral sequence can be identified with the cobar

complex Ω∙(𝐴;𝐻*(𝑋)) and there exists a map of towers

{𝐻∧*
, 𝐻 [*]} ∧ {𝐻∧*

, 𝐻 [*]} −→ {𝐻∧*
, 𝐻 [*]}

such that the induced pairing on 𝐸1-pages is the multiplication on Ω∙(𝐴). This gives

the following properties of the Adams spectral sequence for 𝑋, which we list as a

proposition.

Proposition 8.1.19. The Adams spectral sequence is functorial in 𝑋 and it has

𝐸1-page given by Ω∙(𝐴;𝐻*(𝑋)). We have a pairing of Adams spectral sequences

𝐸𝑠,𝑡
𝑟 (𝑋)⊗ 𝐸𝑠′,𝑡′

𝑟 (𝑌 ) −→ 𝐸𝑠+𝑠′,𝑡+𝑡′

𝑟 (𝑋 ∧ 𝑌 )

which, at the 𝐸1-page, agrees with the following multiplication (see [10, pg. 76]).

Ω∙(𝐴;𝐻*(𝑋))⊗ Ω∙(𝐴;𝐻*(𝑌 )) −→ Ω∙(𝐴;𝐻*(𝑋)⊗Δ 𝐻*(𝑌 )) = Ω∙(𝐴;𝐻*(𝑋 ∧ 𝑌 ))

Providing 𝑋 is 𝑝-complete the Adams spectral sequence for 𝑋 converges to 𝜋*(𝑋) in

the sense of definition 2.2.2, case 1. If each Adams spectral sequence converges then

the pairing above converges to the smash product ∧ : 𝜋*(𝑋)⊗ 𝜋*(𝑌 ) −→ 𝜋*(𝑋 ∧ 𝑌 ).
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8.2 The modified Adams spectral sequence for 𝑆/𝑝𝑛

When one starts to calculate 𝐻*(𝐴;𝐻*(𝑆/𝑝)), the Adams 𝐸2-page for the mod 𝑝

Moore spectrum, the first step is to describe the 𝐴-comodule 𝐻*(𝑆/𝑝). It is the subal-

gebra of 𝐴 in 𝐴-comodules given by 𝐸[𝜏0]. In particular, it has a nontrivial 𝐴-coaction.

For 𝑛 ≥ 2, 𝐻*(𝑆/𝑝
𝑛) has trivial 𝐴-coaction which means that 𝐻*(𝐴;𝐻*(𝑆/𝑝

𝑛)) is two

copies of the Adam 𝐸2-page for the sphere. We would like the 𝐸2-page to reflect that

fact that the multiplication by 𝑝𝑛-map is zero on 𝑆/𝑝𝑛. This is the case when we set

up the modified Adams spectral sequence for 𝑆/𝑝𝑛.

Recall 8.1.17 and definition 8.1.7.

Definition 8.2.1. The modified Adams spectral sequence for 𝑆/𝑝𝑛 (MASS-𝑛) is the

{𝐻∧*
, 𝐻 [*]} ∧ {𝑆/𝑝𝑛−*, 𝑆/𝑝}-spectral sequence.

Smashing the maps of towers (recall lemma 8.1.14)

{𝐻∧*
, 𝐻 [*]} ∧ {𝐻∧*

, 𝐻 [*]} −→ {𝐻∧*
, 𝐻 [*]},

{𝑆/𝑝𝑛−*, 𝑆/𝑝} ∧ {𝑆/𝑝𝑛−*, 𝑆/𝑝} −→ {𝑆/𝑝𝑛−*, 𝑆/𝑝}

and composing with the swap map, we obtain a map of towers

[︁
{𝐻∧*

, 𝐻 [*]} ∧ {𝑆/𝑝𝑛−*, 𝑆/𝑝}
]︁∧2
−→ {𝐻∧*

, 𝐻 [*]} ∧ {𝑆/𝑝𝑛−*, 𝑆/𝑝}

extending the multiplication 𝑆/𝑝𝑛∧𝑆/𝑝𝑛 −→ 𝑆/𝑝𝑛. By proposition 8.1.16, the MASS-

𝑛 is multiplicative.

We turn to the structure of the 𝐸1-page. First, we note that the underlying chain

complex of {𝑆/𝑝𝑛−*, 𝑆/𝑝} is a truncated version of Σ∙𝑆/𝑝:

𝑆/𝑝
𝛽 // Σ𝑆/𝑝

𝛽 // Σ2𝑆/𝑝 // . . . // Σ𝑛−1𝑆/𝑝 // * // * // . . .

Definition 8.2.2. Write B∙ for 𝐻*(Σ
∙𝑆/𝑝) and B(𝑛)∙ for the homology of the com-

plex just noted. Write 1𝑗, 𝜏0,𝑗 for the F𝑝-basis elements of B𝑗, and also for their images
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in B(𝑛)𝑗. Note that 1𝑗 and 𝜏0,𝑗 are zero in B(𝑛) for 𝑗 ≥ 𝑛.

Since Σ∙𝑆/𝑝 and its truncation are ring objects in Ch(S ) we see that B∙ and

B(𝑛)∙ are DG algebras over 𝐴. Moreover, using the same identification used for the

Adams 𝐸1-page, we see that 𝐸∙,*
1 (MASS-𝑛) = Ω∙(𝐴;B(𝑛)∙), as DG algebras. This

cobar complex has coefficients in a DG algebra. Such a set up is described in [10].

To describe the 𝐸2-page we need the following theorem and lemma.

Theorem 8.2.3 ([10, pg. 80]). For any differential 𝐴-comodule M∙ which is bounded

below we have a homology isomorphism

Ω∙(𝐴;M∙) −→ Ω∙(𝑃 ;𝑄⊗𝜃 M∙).

Here, 𝜃 is a twisting homomorphism 𝐸 −→ 𝑄; 𝐸 is the exterior part of 𝐴 and 𝜃 takes

1 ↦−→ 0, 𝜏𝑛 ↦−→ 𝑞𝑛, and 𝜏𝑛1 · · · 𝜏𝑛𝑟 ↦−→ 0 when 𝑟 > 1.

Lemma 8.2.4. We have a homology isomorphism

Ω∙(𝑃 ;𝑄⊗𝜃 B(𝑛)∙) −→ Ω∙(𝑃 ;𝑄/𝑞𝑛0 ).

Moreover, this is a map of differential algebras.

Proof. A short calculation in 𝑄⊗𝜃 B(𝑛)∙ shows that

𝑑(𝑞 ⊗ 1𝑗) = 0 and 𝑑(𝑞 ⊗ 𝜏0,𝑗) = 𝑞0𝑞 ⊗ 1𝑗 − 𝑞 ⊗ 1𝑗+1.

[A sign might be wrong here but the end result will still be the same.] Define a map

𝑄⊗𝜃 B(𝑛)∙ −→ 𝑄/𝑞𝑛0

by 𝑞 ⊗ 1𝑗 ↦−→ 𝑞𝑗0𝑞 and 𝑞 ⊗ 𝜏0,𝑗 ↦−→ 0. This is a map of differential algebras over 𝑃 ,

where the target has a trivial differential. In addition, it is a homology isomorphism

and so the Eilenberg-Moore spectral sequence completes the proof.

113



We should keeping track of the gradings under the maps we use:

𝐸𝜎,𝜆
1 (MASS-𝑛) =

⨁︁
𝑖+𝑗=𝜎

Ω𝑖,𝜆(𝐴;B(𝑛)𝑗)

−→
⨁︁
𝑖+𝑗=𝜎
𝑠+Ξ=𝑖
𝑢+Ξ=𝜆

Ω𝑠,𝑢(𝑃 ;𝑄Ξ ⊗𝜃 B(𝑛)𝑗)

−→
⨁︁
𝑠+𝑡=𝜎
𝑢+𝑡=𝜆

Ω𝑠,𝑢(𝑃 ; [𝑄/𝑞𝑛0 ]𝑡).

We summarize what we have proved.

Proposition 8.2.5. The modified Adams spectral sequence for 𝑆/𝑝𝑛 (MASS-𝑛) is a

multiplicative spectral sequence with 𝐸1-page Ω∙(𝐴;B(𝑛)∙) and

𝐸𝜎,𝜆
2 (MASS-𝑛) =

⨁︁
𝑠+𝑡=𝜎
𝑢+𝑡=𝜆

𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞𝑛0 ]𝑡).

We also make note of a modified Adams spectral sequence for 𝐵𝑃 ∧ 𝑆/𝑝𝑛, which

receives the 𝐵𝑃 -Hurewicz homomorphism from the MASS-𝑛.

Definition 8.2.6. The modified Adams spectral sequence for 𝐵𝑃 ∧𝑆/𝑝𝑛 (MASS-BP-

𝑛) is the {𝐻∧*
, 𝐻 [*]}∧𝐵𝑃 ∧{𝑆/𝑝𝑛−*, 𝑆/𝑝}-spectral sequence, where 𝐵𝑃 denotes the

tower whose underlying augmented cochain complex has augmentation 𝐵𝑃 −→ 𝐶∙

given by the identity.

In the identification of the 𝐸1 and 𝐸2-page of this spectral sequence B∙ is replaced

by 𝐻*(𝐵𝑃 ∧ Σ∙𝑆/𝑝) = 𝑃 ⊗Δ B∙. By using a shearing isomorphism, we obtain the

following proposition.

Proposition 8.2.7. The modified Adams spectral sequence for 𝐵𝑃 ∧ 𝑆/𝑝𝑛 (MASS-

BP-𝑛) is a multiplicative spectral sequence with 𝐸1-page Ω∙(𝐴;𝑃 ⊗Δ B(𝑛)∙) and

𝐸𝜎,𝜆
2 (MASS-BP-𝑛) = 𝐸𝜎,𝜆

∞ (MASS-BP-𝑛) = [𝑄/𝑞𝑛0 ]𝜎,𝜆−𝜎.
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8.3 The modified Adams spectral sequence for 𝑆/𝑝∞

The cleanest way to define our modified Adams spectral sequence for the Prüfer sphere

involves defining a reindexed MASS-𝑛. To make sense of the reindexing geometrically,

we extend our definition of sequences and towers.

Definition 8.3.1. An object {𝑋𝑠} of the diagram category S Z is called a Z-sequence.

A system of interlocking cofibration sequences

. . . 𝑋𝑠−1
oo

��

𝑋𝑠
oo

��

𝑋𝑠+1
oo

��

. . .oo

𝐼𝑠−1

;;

𝐼𝑠

;;

𝐼𝑠+1

;;

in S , where 𝑠 ∈ Z, is called a Z-tower and we use the notation {𝑋, 𝐼}. A Z-tower

is said to be bounded below if there is an 𝑁 ∈ Z such that 𝐼𝑠 = * for 𝑠 < 𝑁 . Notice

that a Z-tower {𝑋, 𝐼} has an underlying Z-sequence {𝑋𝑠}.

A map of Z-towers {𝑋, 𝐼} −→ {𝑌, 𝐽} is a compatible collection of maps

{𝑋𝑠 −→ 𝑌𝑠} ∪ {𝐼𝑠 −→ 𝐽𝑠}.

We can still smash together bounded below Z-towers and they still give rise to a

spectral sequence.

Definition 8.3.2. Let {𝑆/𝑝min{−*,𝑛}, 𝑆/𝑝} be the bounded below Z-tower obtained

from {𝑆/𝑝𝑛−*, 𝑆/𝑝} by shifting it 𝑛 positions to the left.

Definition 8.3.3. The reindexed Adams spectral sequence for 𝑆/𝑝𝑛 (RASS-𝑛) is the

{𝐻∧*
, 𝐻 [*]} ∧ {𝑆/𝑝min{−*,𝑛}, 𝑆/𝑝}-spectral sequence.

Recall definition 3.1.4. We see immediately from proposition 8.2.5 that

𝐸𝜎,𝜆
2 (RASS-𝑛) =

⨁︁
𝑠+𝑡=𝜎
𝑢+𝑡=𝜆

𝐻𝑠,𝑢(𝑃 ; [𝑀𝑛]𝑡).
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Moreover, there are maps of bounded below Z-towers

{𝑆/𝑝min{−*,𝑛}, 𝑆/𝑝} −→ {𝑆/𝑝min{−*,𝑛+1}, 𝑆/𝑝},

which give maps of spectral sequences from the RASS-𝑛 to the RASS-(𝑛+1). Chasing

through the identification of the 𝐸2-pages one see that the map at 𝐸2-pages is induced

by the inclusion 𝑀𝑛 −→𝑀𝑛+1.

Definition 8.3.4. The modified Adams spectral sequence for 𝑆/𝑝∞ (MASS-∞) is the

colimit of the reindexed Adams spectral sequences for 𝑆/𝑝𝑛. It has

𝐸𝜎,𝜆
2 (MASS-∞) =

⨁︁
𝑠+𝑡=𝜎
𝑢+𝑡=𝜆

𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞∞0 ]𝑡).

There are some technicalities to worry about when taking the colimit of spectral

sequences. We resolve such issues in appendix B.

By definition, we have a map of spectral sequences from the RASS-𝑛 to the MASS-

∞. Lemma A.4 provides the following corollary to lemma 4.1.10.

Corollary 8.3.5. The map 𝐸𝜎,𝜆
∞ (RASS-(𝑛 + 1)) −→ 𝐸𝜎,𝜆

∞ (MASS-∞) is surjective

when 𝜆− 𝜎 = 𝑝𝑛𝑞 and 𝜎 ≥ 𝑝𝑛 − 𝑛− 1.

8.4 A permanent cycle in the MASS-(𝑛 + 1)

In order to localize the MASS-(𝑛+ 1) we need to find a permanent cycle detecting a

𝑣1-self map

𝑣𝑝
𝑛

1 : 𝑆/𝑝𝑛+1 −→ Σ−𝑝𝑛𝑞𝑆/𝑝𝑛+1.

The following theorem provides such a permanent cycle.

Theorem 8.4.1. The element 𝑞𝑝
𝑛

1 in 𝐻0,𝑝𝑛𝑞(𝑃 ; [𝑄/𝑞𝑛+1
0 ]𝑝

𝑛
) is a permanent cycle in

the MASS-(𝑛+ 1).

Proof. By definition, the RASS-(𝑛+1) is obtained by reindexing the MASS-(𝑛+1) and

so it is equivalent to prove that 𝑞𝑝
𝑛

1 /𝑞
𝑛+1
0 ∈ 𝐻0,𝑝𝑛𝑞(𝑃 ; [𝑀𝑛+1]

𝑝𝑛−𝑛−1) is a permanent
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cycle in the RASS-(𝑛+1). Lemmas 4.1.10 and A.4 show that it is enough to prove that

𝑞𝑝
𝑛

1 /𝑞
𝑛+1
0 ∈ 𝐻0,𝑝𝑛𝑞(𝑃 ; [𝑄/𝑞∞0 ]𝑝

𝑛−𝑛−1) is a permanent cycle in the MASS-∞. The map

of spectral sequences induced by Σ−1𝑆/𝑝∞ −→ 𝑆0 (proposition A.1) is an isomor-

phism in this range and so we are left with showing that 𝜕(𝑞𝑝
𝑛

1 /𝑞
𝑛+1
0 ) = 𝑞𝑝

𝑛−𝑛−1
0 ℎ1,𝑛

is a permanent cycle in the ASS, but this is the content of theorem 7.3.1.

Pick a representative for 𝑞𝑝
𝑛

1 in 𝜋𝑝𝑛𝑞(𝑆/𝑝𝑛+1). Using the map of spectral sequences

from the MASS-(𝑛+1) to the MASS-BP-1 and the fact that 𝑞𝑝
𝑛

1 in𝑄/𝑞0 has the highest

monomial weight, i.e. modified Adams filtration, among elements of the same internal

degree, we see that the image of the chosen representative in 𝐵𝑃*(𝑆/𝑝) is 𝑣𝑝
𝑛

1 . Thus,

tensoring up any representative for 𝑞𝑝
𝑛

1 to a self-map 𝑣𝑝
𝑛

1 : 𝑆/𝑝𝑛+1 −→ Σ−𝑝𝑛𝑞𝑆/𝑝𝑛+1

defines a 𝑣1 self-map. Corollary 8.3.5 tells us that it is possible to refine our choice of a

representative for 𝑞𝑝
𝑛

1 so that it maps to the 𝛼 of theorem 7.3.1 under Σ−1𝑆/𝑝𝑛+1 → 𝑆0.

This completes the proof of the final theorem stated in the introduction.

8.5 The localized Adams spectral sequences

Since 𝑞𝑝
𝑛−1

1 is a permanent cycle in the MASS-𝑛, multiplication by 𝑞𝑝
𝑛−1

1 defines a

map of spectral sequences, which enables us to make the following definition.

Definition 8.5.1. The localized Adams spectral sequence for 𝑣−1
1 𝑆/𝑝𝑛 (LASS-𝑛) is

the colimit of the following diagram of spectral sequences.

𝐸*,*
* (MASS-𝑛)

𝑞𝑝
𝑛−1

1 // 𝐸*,*
* (MASS-𝑛)

𝑞𝑝
𝑛−1

1 // 𝐸*,*
* (MASS-𝑛)

𝑞𝑝
𝑛−1

1 // . . .

It has

𝐸𝜎,𝜆
2 (LASS-𝑛) =

⨁︁
𝑠+𝑡=𝜎
𝑢+𝑡=𝜆

𝐻𝑠,𝑢(𝑃 ; [𝑞−1
1 𝑄/𝑞𝑛0 ]𝑡).

Since the MASS-𝑛 is multiplicative, the differentials in the LASS-𝑛 are derivations.
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The following diagram commutes when 𝑟 = 2.

𝐸*,*
𝑟 (RASS-𝑛)

𝑞𝑝
𝑛

1 //

��

𝐸*,*
𝑟 (RASS-𝑛)

��
𝐸*,*
𝑟 (RASS-(𝑛+ 1))

𝑞𝑝
𝑛

1 // 𝐸*,*
𝑟 (RASS-(𝑛+ 1))

Taking homology, we see, inductively, that it commutes for all 𝑟 ≥ 2. This means

that we have maps of spectral sequences between reindexed localized Adams spectral

sequences for 𝑣−1
1 𝑆/𝑝𝑛 and so we can make the following definition.

Definition 8.5.2. The localized Adams spectral sequence for the 𝑣1-periodic sphere

(LASS-∞) is the colimit of the apparent reindexed localized Adams spectral sequences

for 𝑣−1
1 𝑆/𝑝𝑛. It has

𝐸𝜎,𝜆
2 (LASS-∞) =

⨁︁
𝑠+𝑡=𝜎
𝑢+𝑡=𝜆

𝐻𝑠,𝑢(𝑃 ; [𝑞−1
1 𝑄/𝑞∞0 ]𝑡).

8.6 Calculating the LASS-∞

Our calculation of the LASS-∞ imitates that of the loc.alg.NSS. First, we note some

permanent cycles in the MASS-∞ and LASS-∞.

Proposition 8.6.1. For 𝑛 ≥ 1 and 𝑘 ≥ 0, 𝑞𝑘𝑝
𝑛−1

1 /𝑞𝑛0 is a permanent cycle in the

MASS-∞. For 𝑛 ≥ 1 and 𝑘 ∈ Z, 𝑞𝑘𝑝
𝑛−1

1 /𝑞𝑛0 is a permanent cycle in the LASS-∞.

Proof. In the first case, 𝑞𝑘𝑝
𝑛−1

1 is permanent cycle in the MASS-𝑛 and so 𝑞𝑘𝑝
𝑛−1

1 /𝑞𝑛0

is a permanent cycle in the RASS-𝑛 and the MASS-∞. In the second case, 𝑞𝑘𝑝
𝑛−1

1 is

permanent cycle in the LASS-𝑛 and the same argument gives the result.

Corollary 5.5.2 describes the associated graded of the 𝐸2-page of the LASS-∞

with respect to the Bockstein filtration and we claim that

𝑑2 : 𝐸𝜎,𝜆
2 (LASS-∞) −→ 𝐸𝜎+2,𝜆+1

2 (LASS-∞)
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respects the Bockstein filtration.

Note that 𝑞0 ∈ 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞𝑛0 ) is a permanent cycle in the LASS-𝑛. Because 𝑑2

is a derivation in the LASS-𝑛, multiplication by 𝑞0 commutes with 𝑑2. Thus, we find

the same in the reindexed localized Adams spectral sequences for 𝑣−1
1 𝑆/𝑝𝑛 and hence,

in the LASS-∞, too. This verifies the claim.

We conclude that we have a filtration spectral sequence (𝑞0-FILT2)

𝐸𝜎,𝜆,𝑣
0 (𝑞0-FILT2) =

⨁︁
𝑠+𝑡=𝜎
𝑢+𝑡=𝜆

𝐸𝑠,𝑡,𝑢,𝑣
∞ (𝑞−1

1 -BSS)
𝑣

=⇒ 𝐸𝜎,𝜆
3 (LASS-∞).

Our calculation of this spectral sequence comes down to the calculation of the 𝐸1-page

of the 𝑞0-FILT spectral sequence made in proposition 6.3.1.

In appendix A we show that each of the maps in the exact couple defining the

𝑞−1
1 -BSS comes from a map of localized Adams spectral sequences. This means that

if 𝑥 ∈ 𝐻*(𝑃 ; 𝑞−1
1 𝑄/𝑞0) and 𝑞𝑣0𝑥 ∈ 𝐸∞(𝑞−1

1 -BSS) then 𝑑𝑞0-FILT2
0 (𝑞𝑣0𝑥) = 𝑞𝑣0𝑑

LASS-1
2 𝑥. The

𝑆/𝑝 analog of theorem 1.4.7 therefore tells us that

𝑑𝑞0-FILT2
0 :

⨁︁
𝑠≥𝑠
𝑠+𝑡=𝜎
𝑢+𝑡=𝜆

𝐸𝑠,𝑡,𝑢,𝑣
∞ (𝑞−1

1 -BSS) −→
⨁︁
𝑠≥𝑠+1
𝑠+𝑡=𝜎+2
𝑢+𝑡=𝜆+1

𝐸𝑠,𝑡,𝑢,𝑣
∞ (𝑞−1

1 -BSS)

and that if 𝑥 lies in a single trigrading, then

𝑑𝑞0-FILT2
0 (𝑞𝑣0𝑥) ≡ 𝑞𝑣0𝑑

𝑣1-alg.NSS
2 𝑥 = 𝑑𝑞0-FILT

0 (𝑞𝑣0𝑥)

up to terms with higher 𝑠-grading. Thus, using a filtration spectral sequence with

respect to the 𝑠-grading we deduce from proposition 6.3.1 that there is an F𝑝-vector

space isomorphism

𝐸𝜎,𝜆,𝑣
1 (𝑞0-FILT2) ∼=

⨁︁
𝑠+𝑡=𝜎
𝑢+𝑡=𝜆

𝐸𝑠,𝑡,𝑢,𝑣
1 (𝑞0-FILT).

In appendix B the LASS-∞ is shown to converge to 𝜋*(𝑣−1
1 𝑆/𝑝∞). Moreover, since
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the localized Adams-Novikov spectral for 𝜋*(𝑣−1
1 𝑆/𝑝∞) is degenerate and convergent

(the height 1 telescope conjecture is true), we know precisely what group the LASS-∞

converges to. From the bound on the size of the 𝐸3-page given by our knowledge of

𝐸1(𝑞0-FILT2) we can deduce the following proposition.

Proposition 8.6.2. For 𝑟 ≥ 3, there exist isomorphisms

𝐸𝜎,𝜆
𝑟 (LASS-∞) ∼=

⨁︁
𝑠+𝑡=𝜎
𝑢+𝑡=𝜆

𝐸𝑠,𝑡,𝑢
𝑟 (loc.alg.NSS)

compatible with differentials.

𝐸∞(LASS-∞) has an F𝑝-basis given by the classes of the following elements.

{︂
𝑞𝑣0 : 𝑣 < 0

}︂
∪
{︂
𝑞𝑣0𝑞

𝑘𝑝𝑛−1

1 : 𝑛 ≥ 1, 𝑘 ∈ Z− 𝑝Z, −𝑛 ≤ 𝑣 < 0

}︂
∪

{︃
𝑞𝑣0𝜖𝑛 : 𝑛 ≥ 1, 1− 𝑝𝑛 ≤ 𝑣 < 0

}︃

Here, 𝑞𝑣0𝜖𝑛 denotes an element of 𝐸3(LASS-∞) corresponding to the element of the

same name in 𝐸3(loc.alg.NSS) (see proposition 6.4.1).

8.7 The Adams spectral sequence

The following two corollaries show that our calculation of the LASS-∞ has implica-

tions for the Adams spectral sequence.

First, lemma A.4 provides the following corollary to proposition 4.3.3.

Corollary 8.7.1. The localization map 𝐸𝜎,𝜆
3 (MASS-∞) −→ 𝐸𝜎,𝜆

3 (LASS-∞)

1. is a surjection if 𝜆 < 𝑝(𝑝− 1)(𝜎 + 1)− 2, i.e. 𝜆− 𝜎 < (𝑝2 − 𝑝− 1)(𝜎 + 1)− 1;

2. is an isomorphism if 𝜆− 1 < 𝑝(𝑝− 1)(𝜎 − 1)− 2,

i.e. 𝜆− 𝜎 < (𝑝2 − 𝑝− 1)(𝜎 − 1)− 2.
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Using the map of spectral sequences induced by Σ−1𝑆/𝑝∞ −→ 𝑆0 (proposition

A.1) we obtain the following corollary.

Corollary 8.7.2. 𝐸𝜎,𝜆
3 (ASS) ∼= 𝐸𝜎−1,𝜆

3 (LASS-∞) if 𝜆− 𝜎 < (𝑝2 − 𝑝− 1)(𝜎 − 2)− 3

and 𝜆− 𝜎 > 0.

The line of the corollary just stated is drawn in green in figure 1-1.

One has to be careful when discussing higher differentials in the Adams spectral

sequence. Here is what we know:

∙ There are permanent cycles at the top of each principal tower, the images of the

following elements under the map 𝜕 : 𝐻*(𝑃 ;𝑄/𝑞∞0 ) −→ 𝐻*(𝑃 ;𝑄) ∼= 𝐻*(𝐴).

{︂
𝑞𝑣0𝑞

𝑘𝑝𝑛−1

1 : 𝑛 ≥ 1, 𝑘 ∈ Z− 𝑝Z, 𝑘 ≥ 1, −𝑛 ≤ 𝑣 < 0

}︂

Every other element in a principal tower supports a nontrivial differential.

∙ An element of a side tower in the Adams spectral sequence cannot be hit by a

shorter differential than the corresponding element of the LASS-∞.

∙ A non-permanent cycle in a principal tower in the Adams spectral sequence

above the line of the previous corollary supports a differential of the expected

length.

∙ A non-permanent cycle in a principal tower in the Adams spectral sequence

cannot support a longer nontrivial differential than the corresponding element

of the LASS-∞, but perhaps it supports a shorter one than expected, leaving

an element of a side tower to detect a nontrivial homotopy class.

Looking at the charts of Nassau [14], we cannot find an example of the final

phenomenon, but the class 𝑏1,0 ∈ 𝐸2,𝑝𝑞
2 (ASS) gives a related example. [Similarly, one

could consider the potential 𝑝 = 3 Arf invariant elements.] We describe this example

presently.
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Under the isomorphism 𝐸2,𝑝𝑞
2 (ASS) ∼= 𝐸1,𝑝𝑞

2 (MASS-∞), 𝑏1,0 is mapped to an ele-

ment detected by 𝑞−(𝑝−1)
0 𝑞𝑝1𝜖1 in the 𝑞∞0 -BSS. Under the localization map this element

maps to an element of 𝐸1,𝑝𝑞
2 (LASS-∞) detected by 𝑞−(𝑝−1)

0 𝑞𝑝1𝜖1 in the 𝑞−1
1 -BSS.

The element

𝑥 = 𝑞−𝑝−1
0 𝑞𝑝1 − 𝑞−1

0 𝑞−1
1 𝑞2 ∈ 𝐻0,𝑝𝑞(𝑃 ; [𝑞−1

1 𝑄/𝑞∞0 ]−1) ⊂ 𝐸−1,𝑝𝑞−1
2 (LASS-∞)

is detected by 𝑞−𝑝−1
0 𝑞𝑝1 in the 𝑞−1

1 -BSS. Our calculation of the LASS-∞ shows that

𝑑2𝑥 ∈ 𝐸1,𝑝𝑞
2 (LASS-∞) is nonzero. Moreover, we find that 𝐸1,𝑝𝑞

2 (LASS-∞) = F𝑝 so

that a unit multiple of 𝑥 maps via 𝑑2 to the localization of 𝑏1,0. This demonstrates

the well-known fact that 𝛽 ∈ 𝜋𝑝𝑞−2(𝑆
0) is not 𝑣1-periodic.
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Appendix A

Maps of spectral sequences

The most difficult result of this appendix is the following proposition.

Proposition A.1. There are maps of spectral sequences

RASS-𝑛 //

��

ASS

=

��

Σ−1𝑆/𝑝𝑛 //

��

𝑆0

=

��
MASS-∞ //

=

��

ASS

��

induced by Σ−1𝑆/𝑝∞ //

=

��

𝑆0

��
MASS-∞ //MASS-1 Σ−1𝑆/𝑝∞ // 𝑆/𝑝.

At 𝐸2-pages we get the maps by taking the connecting homomorphisms in the long

exact sequences got by applying 𝐻*(𝑃 ;−) to the following short exact sequences of

𝑃 -comodules (recall definition 3.1.4).

0 // 𝑄 //

=

��

𝑄⟨𝑞−𝑛0 ⟩ //

��

𝑀𝑛
//

��

0

0 // 𝑄 //

��

𝑞−1
0 𝑄 //

/𝑞0

��

𝑄/𝑞∞0 //

=

��

0

0 // 𝑄/𝑞0 // 𝑄/𝑞∞0
𝑞0 // 𝑄/𝑞∞0 // 0
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The previous proposition was required in the proof of theorem 8.4.1, which was

necessary to construct the LASS-𝑛 and the LASS-∞. We record, for completeness,

the following lemma.

Lemma A.2. There are maps of spectral sequences

MASS-(𝑛+ 1) −→ MASS-𝑛 induced by 𝑆/𝑝𝑛+1 −→ 𝑆/𝑝𝑛

MASS-𝑛 −→ MASS-BP-𝑛 induced by 𝑆/𝑝𝑛 −→ 𝐵𝑃 ∧ 𝑆/𝑝𝑛

RASS-𝑛 −→ RASS-(𝑛+ 1) induced by 𝑆/𝑝𝑛
𝑝−→ 𝑆/𝑝𝑛+1

RASS-𝑛 −→ MASS-∞ induced by 𝑆/𝑝𝑛 −→ 𝑆/𝑝∞

MASS-(𝑛+ 1) −→ MASS-(𝑛+ 1) induced by 𝑆/𝑝𝑛+1
𝑣𝑝

𝑛

1−→ Σ−𝑝𝑛𝑞𝑆/𝑝𝑛+1

MASS-𝑛 −→ LASS-𝑛 induced by 𝑆/𝑝𝑛 −→ 𝑣−1
1 𝑆/𝑝𝑛

RASS-(𝑛+ 1) −→ RASS-(𝑛+ 1) induced by 𝑆/𝑝𝑛+1
𝑣𝑝

𝑛

1−→ Σ−𝑝𝑛𝑞𝑆/𝑝𝑛+1

MASS-∞ −→ LASS-∞ induced by 𝑆/𝑝∞ −→ 𝑣−1
1 𝑆/𝑝∞

To calculate the LASS-∞ we used the 𝑞0-FILT2 spectral sequence. To calculate

𝐸1(𝑞0-FILT2) we required the following proposition.

Proposition A.3. There are maps of spectral sequences induced by the following

cofibration sequences.

𝑆/𝑝 −→ 𝑆/𝑝∞ −→ 𝑆/𝑝∞

𝑣−1
1 𝑆/𝑝 −→ 𝑣−1

1 𝑆/𝑝∞ −→ 𝑣−1
1 𝑆/𝑝∞

At 𝐸2-pages the maps are the ones in the exact couples defining the 𝑞∞0 -BSS and the

𝑞−1
1 -BSS, respectively.

Often we have a map of spectral sequences and we know that on a given page,

at various bidegrees, we have surjections and injections. The following lemma tells

us that if we have a map of spectral sequences, a 𝑑𝑟-differential, and that the map

on the 𝐸𝑟-pages is a surjection at the source of the differential and an injection at

the target of the differential, then we have a surjection and an injection at the same

positions on the 𝐸𝑟+1-page. The proof is a diagram chase.
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Lemma A.4. Suppose 𝐶∙ −→ 𝐷∙ is a map of cochain complexes (in abelian groups),

that 𝐶𝑛 −→ 𝐷𝑛 is surjective and 𝐶𝑛+1 −→ 𝐷𝑛+1 is injective. Then 𝐻𝑛(𝐶∙) −→

𝐻𝑛(𝐷∙) is surjective and 𝐻𝑛+1(𝐶∙) −→ 𝐻𝑛+1(𝐷∙) is injective.

We now turn to the proofs of the two propositions.

Proof of proposition A.1. The map RASS-𝑛 −→ MASS-∞ is given by definition. The

map ASS −→ MASS-1 is just a normal map of Adams spectral sequences induced by

𝑆0 −→ 𝑆/𝑝. The difficult map to construct is the one induced by Σ−1𝑆/𝑝𝑛 −→ 𝑆0.

We turn to this presently.

The idea is to start with the connecting homomorphism corresponding to the short

exact sequence of 𝑃 -comodules 0 −→ 𝑄 −→ 𝑄⟨𝑞−𝑛0 ⟩ −→𝑀𝑛 −→ 0, and try to realize

it geometrically.

Consider the following short exact sequence of cochain complexes in 𝐴-comodules.

0 //

��

0 //

��

0 //

��

. . . // 0 //

��

F𝑝 //

��

0

��
0 //

��

Σ−𝑛𝐸[𝜏0,−𝑛] //

��

Σ−𝑛+1𝐸[𝜏0,−𝑛+1]
//

��

. . . // Σ−1𝐸[𝜏0,−1]
//

��

F𝑝 //

��

0

��
0 // Σ−𝑛𝐸[𝜏0,−𝑛] // Σ−𝑛+1𝐸[𝜏0,−𝑛+1]

// . . . // Σ−1𝐸[𝜏0,−1]
// 0 // 0

The suspensions indicate cohomological degree. The first complex is concentrated in

cohomological degree 0 and is just F𝑝. The last complex is a shifted version of B(𝑛)∙,

which we call B−(𝑛)∙. We call the middle complex C(𝑛)∙. We will show that the

connecting homomorphism of interest is the same as the connecting homomorphism

corresponding to the short exact sequence of differential 𝐴-comodules

0 −→ F𝑝 −→ C(𝑛)∙ −→ B−(𝑛)∙ −→ 0.

Recall lemma 8.2.4 which helped us to identify the 𝐸2-page of the MASS-𝑛. We
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used a map

𝑄⊗𝜃 B(𝑛)∙ −→ 𝑄/𝑞𝑛0

defined by 𝑞 ⊗ 1𝑗 ↦−→ 𝑞𝑗0𝑞 and 𝑞 ⊗ 𝜏0,𝑗 ↦−→ 0. Similarly, we have maps making the

following diagram commute.

0 // 𝑄⊗𝜃 F𝑝 //

��

𝑄⊗𝜃 C(𝑛)∙ //

��

𝑄⊗𝜃 B−(𝑛)∙ //

��

0

0 // 𝑄 // 𝑄⟨𝑞−𝑛0 ⟩ //𝑀𝑛
// 0

Theorem 8.2.3 was also important in identifying the 𝐸2-page of the MASS-𝑛. Using it

again, together with the maps just defined, we find that we have a diagram of cochain

complexes.

0 // Ω∙(𝐴;F𝑝) //

��

Ω∙(𝐴;C(𝑛)∙) //

��

Ω∙(𝐴;B−(𝑛)∙) //

��

0

0 // Ω∙(𝑃 ;𝑄) // Ω∙(𝑃 ;𝑄⟨𝑞−𝑛0 ⟩) // Ω∙(𝑃 ;𝑀𝑛) // 0

Each of the vertical maps is a homology isomorphism and so we can calculate the

connecting homomorphism of interest using, instead, the connecting homomorphism

associated with 0 −→ F𝑝 −→ C(𝑛)∙ −→ B−(𝑛)∙ −→ 0.

The connecting homomorphism for this short exact sequence can be described

even more explicitly than is usual. Lifting under the map C(𝑛)∙ � B−(𝑛)∙ can done

using the unique 𝐴-comodule splitting B−(𝑛)∙ →˓ C(𝑛)∙, which puts a zero in the F𝑝
spot. Similarly, the map F𝑝 →˓ C(𝑛)∙ has a unique 𝐴-comodule splitting C(𝑛)∙ � F𝑝.

The diagram on the next page realizes the cochain complexes F𝑝, C(𝑛)∙, and

B−(𝑛)∙ geometrically. We note that the first cochain complex comes from the tower

𝑆0 whose underlying Z-sequence is 𝑆0 in nonpositive degrees, * in positive degrees,

with identity structure maps where possible. The last cochain complex is the under-

lying cochain complex of {𝑆/𝑝min{−*,𝑛}, 𝑆/𝑝}, one of the towers used to construct the
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RASS-𝑛.

* //

��

* //

��

* //

��

. . . // * //

��

𝑆0 //

��

*

��
* //

��

Σ−𝑛𝑆/𝑝 //

��

Σ−𝑛+1𝑆/𝑝 //

��

. . . // Σ−1𝑆/𝑝 //

��

𝑆0 //

��

*

��
* // Σ−𝑛𝑆/𝑝 // Σ−𝑛+1𝑆/𝑝 // . . . // Σ−1𝑆/𝑝 // * // *

Label these cochain complexes in S by the same names as the cochain complexes

obtained by applying 𝐻*(−) and recall the underlying cochain complex Σ∙𝐻 [∙] of the

canonical 𝐻-resolution of 𝑆0. The snake lemma for calculating the connecting the

homomorphism is realized geometrically by the following composite.

[︂
Σ∙𝐻 [∙] ∧B−(𝑛)∙

]︂𝜎
𝑠 //

[︂
Σ∙𝐻 [∙] ∧ C(𝑛)∙

]︂𝜎
𝑑 //

[︂
Σ∙𝐻 [∙] ∧ C(𝑛)∙

]︂𝜎+1
𝑟 //

[︂
Σ∙𝐻 [∙]

]︂𝜎+1

Here, 𝑠 and 𝑟 denote the respective splittings at the level of underlying spectra, 𝑑

is the differential in the cochain complex Σ∙𝐻 [∙] ∧ C(𝑛)∙, and we have used that

Σ∙𝐻 [∙] ∧ F𝑝 = Σ∙𝐻 [∙].

To get the map of spectral sequences we just need to define a map of Z-towers

{𝑆/𝑝min{−*,𝑛}, 𝑆/𝑝} −→ 𝑆0, which pairs with {𝐻∧*
, 𝐻 [*]} to give the composite above.

Such a map of Z-towers has nonzero degree: it raises cohomological degree by 1. The

underlying map of Z-sequences takes Σ−1𝑆/𝑝𝑗 to 𝑆0 via the composite

Σ−1𝑆/𝑝𝑗 −→ Σ−1𝑆/𝑝∞ −→ 𝑆0

and the map on underlying cochain complexes is the map B−(𝑛)∙ −→ F𝑝 which, on

homology, takes 𝜏0,−1 to 10. This completes the construction of the map of spectral

sequences RASS-𝑛 −→ ASS induced by Σ−1𝑆/𝑝𝑛 −→ 𝑆0.
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Since the maps of towers we use are compatible with the maps

{𝑆/𝑝min{−*,𝑛}, 𝑆/𝑝} −→ {𝑆/𝑝min{−*,𝑛+1}, 𝑆/𝑝},

the maps just constructed pass to the colimit to give the map MASS-∞ −→ ASS

induced by Σ−1𝑆/𝑝∞ −→ 𝑆0. The map MASS-∞ −→ MASS-1 can be obtained by

composition with the map ASS −→ MASS-1.

Proof of proposition A.3. The map of spectral sequences induced by the connecting

map Σ−1𝑆/𝑝∞ −→ 𝑆/𝑝 was constructed in the previous proposition. The map in-

duced by 𝑆/𝑝 −→ 𝑆/𝑝∞ is the map MASS-1 ∼= RASS-1 −→ MASS-∞.

The maps MASS-(𝑛 + 1) −→ MASS-𝑛 induced by 𝑆/𝑝𝑛+1 −→ 𝑆/𝑝𝑛 can be rein-

dexed to give maps RASS-(𝑛 + 1) −→ RASS-𝑛 of nonzero degree. Taking a colimit

we obtain the map MASS-∞ −→ MASS-∞ induced by 𝑝 : 𝑆/𝑝∞ −→ 𝑆/𝑝∞.

We turn to the localized version. The map induced by 𝑣−1
1 𝑆/𝑝 −→ 𝑣−1

1 𝑆/𝑝∞ is

obtained in an identical manner to the unlocalized one, passing through a reindexed

localized Adams spectral sequence for 𝑣−1
1 𝑆/𝑝. Similarly, for the map 𝑝 : 𝑣−1

1 𝑆/𝑝∞ −→

𝑣−1
1 𝑆/𝑝∞, the maps RASS-(𝑛 + 1) −→ RASS-𝑛 localize to give maps of reindexed

localized Adams spectral sequences, and we can take a colimit.

Finally, for the connecting homomorphism we recall that the map RASS-𝑛 −→

MASS-1 is constructed using the map of towers {𝑆/𝑝min{−*,𝑛}, 𝑆/𝑝} −→ 𝑆0 −→ 𝑆/𝑝,

which makes use of the connecting homomorphism Σ−1𝑆/𝑝∞ −→ 𝑆/𝑝. Each of the

maps RASS-𝑛 −→ MASS-1 localizes. The collection of localized maps is compatible

and so defines the requisite map LASS-∞ −→ LASS-1.

128



Appendix B

Convergence of spectral sequences

In this appendix we check that each of the spectral sequences used in this thesis

converges in the sense of definition 2.2.2. In particular, we describe how to deal with

the technicalities associated with taking the colimits of spectral sequences that appear

in the definition of the MASS-∞, the LASS-𝑛, and the LASS-∞.

In definition 8.1.15 we define the filtration of 𝜋*(𝑋0) that is relevant for the {𝑋, 𝐼}-

spectral sequence, and we describe a detection map

𝐹 𝑠𝜋𝑡−𝑠(𝑋0)/𝐹
𝑠+1𝜋𝑡−𝑠(𝑋0) −→ 𝐸𝑠,𝑡

∞ ({𝑋, 𝐼}).

This takes care of the filtration and detection map for the MASS-𝑛 and we will verify

case 1 of definition 2.2.2 to prove the following proposition.

Proposition B.1. The MASS-𝑛 converges to 𝜋*(𝑆/𝑝𝑛).

Moreover, the filtration associated with the RASS-𝑛 is obtained by reindexing the

filtration associated with the MASS-𝑛, and our proof will verify case 3 of definition

2.2.2 to give the following corollary.

Corollary B.2. The RASS-𝑛 converges to 𝜋*(𝑆/𝑝𝑛).

Delaying the proof of these results for now, we note that we have not even defined

the filtration or detection map for the MASS-∞, the LASS-𝑛, and the LASS-∞. We
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carefully discuss the situation for the MASS-∞ by turning straight to the proof of

the following proposition.

Proposition B.3. The MASS-∞ converges to 𝜋*(𝑆/𝑝∞).

Proof. The purpose of a convergent spectral sequence is to identify the associated

graded of an abelian group with respect to some convergent filtration. Thus, the

most immediate aspects of the MASS-∞ to address are the associated filtration, the

𝐸∞-page and the relationship between the two.

We have injections 𝐹 𝜎𝜋*(𝑆/𝑝
𝑛) −→ 𝜋*(𝑆/𝑝

𝑛), where the 𝐹 denotes the filtration

associated with the RASS-𝑛. Since, the maps 𝑝 : 𝑆/𝑝𝑛 −→ 𝑆/𝑝𝑛+1 used to define

𝑆/𝑝∞ are compatible with these filtrations, and filtered colimits preserve exactness,

we obtain an injection colim𝑛𝐹
𝜎𝜋*(𝑆/𝑝

𝑛) −→ colim𝑛𝜋*(𝑆/𝑝
𝑛) = 𝜋*(𝑆/𝑝

∞). We define

𝐹 𝜎𝜋*(𝑆/𝑝
∞) = im

(︂
colim𝑛 𝐹

𝜎𝜋*(𝑆/𝑝
𝑛) −→ 𝜋*(𝑆/𝑝

∞)

)︂
.

When we say that the MASS-∞ is the colimit of the reindexed Adams spectral

sequences for 𝑆/𝑝𝑛 we mean that

𝐸𝜎,𝜆
𝑟 (MASS-∞) = colim𝑛 𝐸

𝜎,𝜆
𝑟 (MASS-𝑛)

for each 𝑟 ≥ 2. Since filtered colimits commute with homology we have identifications

𝐻𝜎,𝜆(𝐸*,*
𝑟 (MASS-∞), 𝑑𝑟) = 𝐸𝜎,𝜆

𝑟+1(MASS-∞) for each 𝑟 ≥ 2, which justifies calling the

MASS-∞ a spectral sequence.

Staying true to definition 2.1.9, the 𝐸∞-page of the MASS-∞ is given by the

permanent cycles modulo the boundaries. However, we had another choice for the

definition of the 𝐸∞-page:

𝐸𝜎,𝜆
∞ (MASS-∞) = colim𝑛 𝐸

𝜎,𝜆
∞ (MASS-𝑛).

We show that the two definitions coincide presently.

The vanishing line of corollary 4.1.9 ensures that, for large 𝑟 depending only on

(𝜎, 𝜆), not on 𝑛, we have maps 𝐸𝜎,𝜆
𝑟 (RASS-𝑛) −→ 𝐸𝜎,𝜆

𝑟+1(RASS-𝑛). Moreover, 𝑛 is
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allowed to be ∞. Thus,

𝐸𝜎,𝜆
∞ (MASS-∞) = colim𝑟>>0 𝐸

𝜎,𝜆
𝑟 (MASS-∞)

= colim𝑟>>0 colim𝑛 𝐸
𝜎,𝜆
𝑟 (RASS-𝑛)

= colim𝑛 colim𝑟>>0 𝐸
𝜎,𝜆
𝑟 (RASS-𝑛)

= colim𝑛 𝐸
𝜎,𝜆
∞ (RASS-𝑛).

The vanishing line makes sure that an element of the RASS-𝑛 cannot support longer

and longer differentials as it is mapped forward into subsequent reindexed Adams

spectral sequences, without eventually becoming a permanent cycle.

This observation is what allows us to make an identification

𝐹 𝜎𝜋𝜆−𝜎(𝑆/𝑝∞)/𝐹 𝜎+1𝜋𝜆−𝜎(𝑆/𝑝∞) = 𝐸𝜎,𝜆
∞ (MASS-∞).

Providing we have proved the previous corollary, that the RASS-𝑛 converges, we have

the following short exact sequence.

0 −→ 𝐹 𝜎+1𝜋𝜆−𝜎(𝑆/𝑝𝑛) −→ 𝐹 𝜎𝜋𝜆−𝜎(𝑆/𝑝𝑛+1) −→ 𝐸𝜎,𝜆
∞ (MASS-𝑛) −→ 0 (B.4)

Taking colimits gives another short exact sequence. By our definition of 𝐹 𝜎𝜋*(𝑆/𝑝
∞),

and the fact that the right term can be identified with 𝐸𝜎,𝜆
∞ (MASS-∞), that short

exact sequence gives the requisite identification.

We are just left with showing that
⋃︀
𝜎 𝐹

𝜎𝜋*(𝑆/𝑝
∞) = 𝜋*(𝑆/𝑝

∞) and that for each

𝑢, there exists a 𝜎 with 𝐹 𝜎𝜋𝑢(𝑆/𝑝
∞) = 0. For the first part we note that

⋃︁
𝜎
𝐹 𝜎𝜋*(𝑆/𝑝

∞) = im

(︂
colim𝜎 colim𝑛 𝐹

𝜎𝜋*(𝑆/𝑝
𝑛) −→ 𝜋*(𝑆/𝑝

∞)

)︂
= im

(︂
colim𝑛 colim𝜎 𝐹

𝜎𝜋*(𝑆/𝑝
𝑛) −→ 𝜋*(𝑆/𝑝

∞)

)︂
= im

(︂
colim𝑛 𝜋*(𝑆/𝑝

𝑛) −→ 𝜋*(𝑆/𝑝
∞)

)︂
= 𝜋*(𝑆/𝑝

∞).
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For the second part, we use both the vanishing line of corollary 4.1.9 and the con-

vergence of the RASS-𝑛 again. They tell us that 𝐹 𝜎𝜋𝜆−𝜎(𝑆/𝑝𝑛) is zero for 𝜎 > 𝐾

where

𝐾 =
(𝜆− 𝜎) + 1

𝑞
− 1.

𝐾 is independent of 𝑛, so 𝐹 𝜎𝜋𝜆−𝜎(𝑆/𝑝∞) = 0 for 𝜎 > 𝐾.

The vanishing line makes sure that if an element of 𝜋*(𝑆/𝑝𝑛) has infinitely many

filtration shifts as it is mapped forward into subsequent Moore spectra, then it must

map to zero in 𝜋*(𝑆/𝑝∞).

We have proved that the MASS-∞ convergences in accordance with definition

2.2.2, case 3.

Since the convergence of the LASS-𝑛 and LASS-∞ are similar we address them

presently.

Proposition B.5. The LASS-(𝑛+ 1) converges to 𝜋*(𝑣−1
1 𝑆/𝑝𝑛+1).

Proof. This is essentially the same proof as just given for the MASS-∞. We just need

to make a few remarks.

First, we have not said precisely what we mean by 𝑣−1
1 𝑆/𝑝𝑛+1. Theorem 8.4.1 tells

us that 𝑞𝑝
𝑛

1 is a permanent cycle in the MASS-(𝑛+1). Thus it detects some homotopy

class, which we call

𝑣𝑝
𝑛

1 : 𝑆0 −→ Σ−𝑝𝑛𝑞𝑆/𝑝𝑛+1.

Since 𝑆/𝑝𝑛+1 is a ring spectrum, we can “tensor up” to obtain a 𝑣1 self-map, which

we give the same name

𝑣𝑝
𝑛

1 : 𝑆/𝑝𝑛+1 −→ Σ−𝑝𝑛𝑞𝑆/𝑝𝑛+1.

𝑣−1
1 𝑆/𝑝𝑛+1 is the homotopy colimit of the diagram

𝑆/𝑝𝑛+1
𝑣𝑝

𝑛

1 // Σ−𝑝𝑛𝑞𝑆/𝑝𝑛+1
𝑣𝑝

𝑛

1 // Σ−2𝑝𝑛𝑞𝑆/𝑝𝑛+1
𝑣𝑝

𝑛

1 // Σ−3𝑝𝑛𝑞𝑆/𝑝𝑛+1 // . . .

By construction we have 𝜋*(𝑣−1
1 𝑆/𝑝𝑛+1) = (𝑣𝑝

𝑛

1 )−1𝜋*(𝑆/𝑝
𝑛+1). This is what allows us
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to use the multiplicative structure of the MASS-n to localize the spectral sequence as

opposed to constructing maps of towers.

Let [𝜎, 𝑘] = 𝜎 + 𝑝𝑛𝑘 and [𝜆, 𝑘] = 𝜆 + 𝑝𝑛(𝑞 + 1)𝑘. The vanishing line of corollary

4.1.9 is parallel to the multiplication-by-𝑞𝑝
𝑛

1 -line and this ensures that for large 𝑟,

depending only on (𝜎, 𝜆), not 𝑘, we have maps

𝐸[𝜎,𝑘],[𝜆,𝑘]
𝑟 (MASS-(𝑛+ 1)) −→ 𝐸

[𝜎,𝑘],[𝜆,𝑘]
𝑟+1 (MASS-(𝑛+ 1)).

Thus, just as in the previous proof we have an identification

𝐸𝜎,𝜆
∞ (LASS-(𝑛+ 1)) = colim𝑘 𝐸

[𝜎,𝑘],[𝜆,𝑘]
∞ (MASS-(𝑛+ 1)).

where the maps in the system are multiplication by 𝑞𝑝
𝑛

1 .

The proof of convergence is now the same as for the MASS-∞. We define

𝐹 𝜎𝜋𝑢(𝑣
−1
1 𝑆/𝑝𝑛+1) = im

(︂
colim𝑘 𝐹

[𝜎,𝑘]𝜋𝑢+𝑝𝑛𝑞𝑘(𝑆/𝑝
𝑛+1) −→ 𝜋𝑢(𝑣

−1
1 𝑆/𝑝𝑛+1)

)︂
,

where the 𝐹 on the right hand side of the equation denotes the MASS-(𝑛+1) filtration.

We verify convergence in accordance with definition 2.2.2, case 3.

Proposition B.6. The LASS-∞ converges to 𝜋*(𝑣−1
1 𝑆/𝑝∞).

Proof. The proof is exactly the same as for the MASS-∞. We define

𝐹 𝜎𝜋*(𝑣
−1
1 𝑆/𝑝∞) = im

(︂
colim𝑛 𝐹

𝜎𝜋*(𝑣
−1
1 𝑆/𝑝𝑛) −→ 𝜋*(𝑣

−1
1 𝑆/𝑝∞)

)︂
,

where the 𝐹 on the right hand side of the equation denotes a reindexed localized

Adams filtration; we use the convergence and vanishing lines of the reindexed localized

Adams spectral sequences for 𝑣−1
1 𝑆/𝑝𝑛 instead of the convergence and vanishing lines

for the RASS-𝑛. The only subtlety is taking the colimit of the short exact sequence

analogous to (B.4). This is intertwined with the issue of defining of 𝑣−1
1 𝑆/𝑝∞.

Corollary 3.8 of [8] tells us that there exists integers 𝑖1, 𝑖2, 𝑖3, . . . such that the
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following diagrams commute.

𝑆/𝑝𝑛

[︀
𝑣𝑝

𝑛−1

1

]︀𝑝𝑖𝑛
//

𝑝

��

Σ−𝑖𝑛𝑝𝑛𝑞𝑆/𝑝𝑛

𝑝

��
𝑆/𝑝𝑛+1

[︀
𝑣𝑝

𝑛

1

]︀𝑖𝑛
// Σ−𝑖𝑛𝑝𝑛𝑞𝑆/𝑝𝑛+1

This means that 𝑝 : 𝑆/𝑝𝑛 −→ 𝑆/𝑝𝑛+1 induces a map 𝑝 : 𝑣−1
1 𝑆/𝑝𝑛 −→ 𝑣−1

1 𝑆/𝑝𝑛+1.

𝑣−1
1 𝑆/𝑝∞ is the homotopy colimit of the diagram

𝑣−1
1 𝑆/𝑝

𝑝 // 𝑣−1
1 𝑆/𝑝2 // . . . // 𝑣−1

1 𝑆/𝑝𝑛
𝑝 // 𝑣−1

1 𝑆/𝑝𝑛+1 // . . .

Moreover, the diagram below commutes, where the filtrations are those of the RASS-𝑛

and RASS-(𝑛+ 1).

𝐹 𝜎𝜋*(𝑆/𝑝
𝑛)

[︀
𝑣𝑝

𝑛−1

1

]︀𝑝𝑖𝑛
//

𝑝

��

𝐹 𝜎+𝑖𝑛𝑝𝑛𝜋*(𝑆/𝑝
𝑛)

𝑝

��
𝐹 𝜎𝜋*(𝑆/𝑝

𝑛+1)

[︀
𝑣𝑝

𝑛

1

]︀𝑖𝑛
// 𝐹 𝜎+𝑖𝑛𝑝𝑛𝜋*(𝑆/𝑝

𝑛+1)

Thus, 𝑝 : 𝑣−1
1 𝑆/𝑝𝑛 −→ 𝑣−1

1 𝑆/𝑝𝑛+1 respects the reindexed localized Adams filtrations.

The proof convergence of the loc.alg.NSS follows the same chain of ideas as for

the LASS-∞.

Lemma B.7. The loc.alg.NSS converges to 𝐻*(𝐵𝑃*𝐵𝑃 ; 𝑣−1
1 𝐵𝑃*/𝑝

∞).

Proof. This is essentially the same proof as for the LASS-∞. The following algebraic

Novikov spectral sequence converges in accordance with definition 2.2.2, case 1.

𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞𝑛0 ]𝑡)
𝑡

=⇒ 𝐻𝑠,𝑢(𝐵𝑃*𝐵𝑃 ;𝐵𝑃*/𝑝
𝑛)

This is because the 𝐼-adic filtration of Ω*(𝐵𝑃*𝐵𝑃 ;𝐵𝑃*/𝑝
𝑛) is finite in a fixed internal
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degree: 𝐹 ⌈𝑢/𝑞⌉+𝑛Ω*,𝑢(𝐵𝑃*𝐵𝑃 ;𝐵𝑃*/𝑝
𝑛) = 0. Because we have a vanishing line parallel

to the multiplication-by-𝑞𝑝
𝑛−1

1 -line, we deduce that each

𝐻𝑠,𝑢(𝑃 ; [𝑞−1
1 𝑄/𝑞𝑛0 ]𝑡)

𝑡
=⇒ 𝐻𝑠,𝑢(𝐵𝑃*𝐵𝑃 ; 𝑣−1

1 𝐵𝑃*/𝑝
𝑛)

converges in accordance with definition 2.2.2, case 3.

After the reindexing that occurs in constructing

𝐻𝑠,𝑢(𝑃 ; [𝑞−1
1 𝑄/𝑞∞0 ]𝑡)

𝑡
=⇒ 𝐻𝑠,𝑢(𝐵𝑃*𝐵𝑃 ; 𝑣−1

1 𝐵𝑃*/𝑝
∞)

the vanishing lines for these spectral sequences become independent of 𝑛 and so we

conclude convergence in accordance with definition 2.2.2, case 3.

We now go back to the proof of the first proposition.

Proof of proposition B.1. We are in case 1 of definition 2.2.2. We need to check the

following conditions.

∙ The map 𝐹 𝜎𝜋*(𝑆/𝑝
𝑛)/𝐹 𝜎+1𝜋*(𝑆/𝑝

𝑛) −→ 𝐸𝜎,*
∞ (MASS-𝑛) appearing in definition

8.1.15 is an isomorphism.

∙
⋂︀
𝜎 𝐹

𝜎𝜋*(𝑆/𝑝
𝑛) = 0 and the map 𝜋*(𝑆/𝑝𝑛) −→ lim𝜎 𝜋*(𝑆/𝑝

𝑛)/𝐹 𝜎𝜋*(𝑆/𝑝
𝑛) is an

isomorphism.

We will appeal to [15, theorem 3.6] but first we need to relate our construction of the

MASS-𝑛 to the one given there.

Suppose {𝑋, 𝐼} and {𝑌, 𝐽} are towers and that we have chosen cofibrant models

for them. Write 𝐹 (−,−) for the internal hom functor in 𝑆-modules [7] and 𝑄 for a

cofibrant replacement functor. Then we obtain a zig-zag

colim𝑖+𝑗≥𝜎
0≤𝑖,𝑗≤𝜎

𝑋𝑖 ∧ 𝑌𝑗
∼←− hocolim𝑖+𝑗≥𝜎

0≤𝑖,𝑗≤𝜎
𝑋𝑖 ∧ 𝑌𝑗 −→ hocolim𝑖+𝑗≥𝜎

0≤𝑖,𝑗≤𝜎
𝐹 (𝑄𝐹 (𝑌𝑗, 𝑆

0), 𝑋𝑖).

As long as each 𝑌𝑗 is finite, this will be an equivalence. Taking {𝑋, 𝐼} to be {𝐻∧*
, 𝐻 [*]}

and {𝑌, 𝐽} to be {𝑆/𝑝𝑛−*, 𝑆/𝑝}, we that our MASS-𝑛 is the same as the one in [15,
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definition 2.2] when one uses the dual of {𝑆/𝑝𝑛−*, 𝑆/𝑝} in the source.

𝑝𝑗 is zero on 𝑆/𝑝𝑗 and so [15, proposition 1.2(a)] tells us 𝑆/𝑝𝑗 is 𝑝-adically cocom-

plete. Moreover, each 𝑆/𝑝𝑗 is finite and connective. Thus, [15, theorem 3.6] applies

(after suspending once): the first bullet point holds and
⋂︀
𝜎 𝐹

𝜎𝜋*(𝑆/𝑝
𝑛) = 0. More-

over, the vanishing line of corollary 4.1.9 gives a vanishing line for the MASS-𝑛, and

so we see that for each 𝑢, there exists a 𝜎 with 𝐹 𝜎𝜋𝑢(𝑆/𝑝
𝑛) = 0. We conclude that

the map 𝜋*(𝑆/𝑝𝑛) −→ lim𝜎 𝜋*(𝑆/𝑝
𝑛)/𝐹 𝜎𝜋*(𝑆/𝑝

𝑛) is an isomorphism, as required.

Proof of corollary B.2. We are in case 3 of definition 2.2.2 by the previous argument.

It is far easier to show that the other spectral sequences we use converge.

Lemma B.8. The 𝑄-BSS, the 𝑞∞0 -BSS and the 𝑞−1
1 -BSS converge.

Proof. The relevant filtrations are given in 3.2.1, 3.3.1 and 3.5.2, as are the identifi-

cations 𝐸𝑣
∞ = 𝐹 𝑣/𝐹 𝑣+1. For the 𝑄-BSS we are in case 1 of definition 2.2.2:

𝐹 0𝐻*(𝑃 ;𝑄) = 𝐻*(𝑃 ;𝑄) and 𝐹 𝑡+1𝐻𝑠,𝑢(𝑃 ;𝑄𝑡) = 0

and so the requisite conditions hold. For the 𝑞∞0 -BSS and the 𝑞−1
1 -BSS we are in case

2 of definition 2.2.2.

Corollary B.9. The 𝑞0-FILT and 𝑞0-FILT2 spectral sequence converge to the 𝐸3-

pages of the loc.alg.NSS and the LASS-∞, respectively.

Proof. Since the 𝑞−1
1 -BSS converges in accordance with definition 2.2.2, case 2, one

finds that this means the 𝑞0-FILT and 𝑞0-FILT2 spectral sequences do, too.

For our final convergence proof we need the following lemma.

Lemma B.10. Fix (𝜎, 𝜆). There are finitely many (𝑠, 𝑡, 𝑢) with 𝑠+ 𝑡 = 𝜎, 𝑢+ 𝑡 = 𝜆

and 𝐻𝑠,𝑢(𝑃 ; [𝑞−1
1 𝑄/𝑞0]

𝑡) nonzero.
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Proof. Multiplication by 𝑞1 defines an isomorphism

⨁︁
𝑠+𝑡=𝜎
𝑢+𝑡=𝜆

𝐻𝑠,𝑢(𝑃 ; [𝑞−1
1 𝑄/𝑞0]

𝑡) −→
⨁︁

𝑠+𝑡=𝜎+1
𝑢+𝑡=𝜆+𝑞+1

𝐻𝑠,𝑢(𝑃 ; [𝑞−1
1 𝑄/𝑞0]

𝑡).

Thus, it is equivalent to ask the question for (𝜎+ 𝑛, 𝜆+ 𝑛(𝑞+ 1)). By corollary 4.3.2

we can choose 𝑛 so that

⨁︁
𝑠+𝑡=𝜎+𝑛

𝑢+𝑡=𝜆+𝑛(𝑞+1)

𝐻𝑠,𝑢(𝑃 ; [𝑄/𝑞0]
𝑡) −→

⨁︁
𝑠+𝑡=𝜎+𝑛

𝑢+𝑡=𝜆+𝑛(𝑞+1)

𝐻𝑠,𝑢(𝑃 ; [𝑞−1
1 𝑄/𝑞0]

𝑡)

is an isomorphism. Nonzero elements in the left hand side have 𝑠, 𝑡 ≥ 0. There are

finitely many (𝑠, 𝑡, 𝑢) with 𝑠+ 𝑡 = 𝜎 + 𝑛 and 𝑠, 𝑡 ≥ 0 and so the result follows.

This shows that the spectral sequence argument alluded to in the proof of [11,

theorem 4.8] is valid. It also allows us to prove the following lemma.

Proposition B.11. The 𝑠-filtration spectral sequence of section 8.6 converges to

𝐸1(𝑞0-FILT2).

Proof. To show that the spectral sequence converges in accordance with definition

2.2.2, case 1, we just need to show that for each (𝜎, 𝜆, 𝑣), there are finitely many

(𝑠, 𝑡, 𝑢) with 𝑠+ 𝑡 = 𝜎, 𝑢+ 𝑡 = 𝜆 and 𝐸𝑠,𝑡,𝑢,𝑣
∞ (𝑞−1

1 -BSS) nonzero. This follows from the

fact that for each (𝜎, 𝜆, 𝑣), there are finitely many (𝑠, 𝑡, 𝑢) with 𝑠 + 𝑡 = 𝜎, 𝑢 + 𝑡 = 𝜆

and 𝐻𝑠,𝑢(𝑃 ; [𝑞−1
1 𝑄/𝑞0]

𝑡−𝑣) nonzero.
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