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Abstract. We study the Adams-Novikov spectral sequence in Fp-synthetic
spectra, computing the synthetic analogs of BP and its cooperations to iden-
tify the synthetic Adams-Novikov E2-page, computed in a range with a syn-
thetic algebraic Novikov spectral sequence. We then identify deformations
associated to the Cartan-Eilenberg and algebraic Novikov spectral sequences
in terms of stable comodule categories, categorifying an algebraic Novikov
spectral sequence result of Gheorghe-Wang-Xu. We then apply Isaksen-Wang-
Xu methods in Fp-synthetic spectra to deduce differentials in the synthetic
Adams-Novikov for the sphere, producing almost entirely algebraic computa-
tions through the 45-stem.
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1. Introduction

A prevailing technique in recent work on stable homotopy theory is the categori-
fication of Adams spectral sequences into stable ∞-categories which record both
the homotopy of classical spectra as well as the data of the spectral sequence
pages and differentials. This technique was pioneered following the identifica-
tion of the p-complete cellular motivic category over C with a deformation as-
sociated to the Adams-Novikov spectral sequence based on complex cobordism MU
[GWX21]. These techniques have resulted in numerous theoretical and compu-
tational advancements, including the computation of stable homotopy groups of
spheres ([Isa14], [IWX20a], [Bur20],[BX23]), obstruction theories for multiplicative
structures ([Bur22]), and resolving classical questions about manifolds [BHS19].
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More recently, questions about identifying naturally occurring deformations have
also led to the construction of novel spectral sequences [ABBK23].

1.1. Deformations by Spectral Sequences. The main setting of our paper is
Pstrągowski’s theory of E-synthetic spectra, which serves as a deformation of clas-
sical stable homotopy theory encoding information about the E-Adams spectral
sequence for an Adams-type ring spectrum E. However, historically the deforma-
tion theoretic approach to spectral sequences began first with the realization that
p-complete, cellular stable motivic homotopy theory over C encoded information
about the Adams-Novikov spectral sequence for BP [HKO11], [Ghe18],[Isa19], that
this similarity upgraded to a categorical equivalence [GWX21], and later that its
cellular objects could be constructed with entirely topological input [GIKR22]. For
technical reasons and to avoid stating results differently for the Adams-Novikov, we
will work with BP-synthetic in the present article. Despite this, all of our results
could just as well have worked with C-motivic spectra.

The motivic version of the story may be summarized as follows: there is a self-map
τ of the p-completed motivic sphere spectrum SC which acts on all objects in the
category. The objects for which this map is an equivalence form a subcategory
equivalent to the category of p-complete spectra, this is referred to as the generic
fiber, taking τ = u for any unit u ∈ A1. Alternatively, one could “set τ = 0” by
considering the category of modules over the ring of its cofiber SC/τ (sometimes
denoted Cτ), whose projection from SC is a map of E∞-rings. [Ghe18]. This
category of modules was shown to be equivalent to a derived category of comodules
over the Hopf algebroid BP∗BP [GWX21], and its homotopy groups encode the
E2-page of the Adams-Novikov spectral sequence [Isa19], [Ghe18]. Pstrągowski’s
theory of synthetic spectra [Pst22] then extended the idea of deforming the category
of spectra with respect to the Adams spectral sequence of an arbitrary Adams-type
ring spectrum E. It is this final theory in which we will primarily work, as well as
analogs of the construction in [GIKR22]. We review the salient features of both in
Section 2.1.

1.2. The aNSS and the CESS. A key difference between the identifications of
the special fiber of the C-motivic deformation in [GWX21] and [Pst22] is that the
former proves that the algebraic Novikov spectral sequence (aNSS), a spectral se-
quence for computing the E2-page of the Adams-Novikov spectral sequence (ANSS),
appears as the Fp

mot-Adams spectral sequence for SC/τ . This extra result is a key
input for the computations in [IWX20a] which we review in Section 1.5. One of
the motivations for writing this article was the conjecture, which we prove, that a
similar result can be established for Fp-synthetic spectra and the Cartan-Eilenberg
spectral sequence (CESS). We briefly review the aNSS and CESS at the beginning
of Section 2.5. Our result follows from the identification [Mar83], [Pal01], [Bel20]
of the CESS with the P∗-Adams spectral sequence in Stable(A∗) and the following
general result:

Theorem 1.2.1 (4.1). Let R be an E1-ring spectrum in Sp and X be any spectrum.
The νE(R)-Adams spectral sequence for νEX/τ in SynE is isomorphic to the E∗R-
Adams spectral sequence for E∗X in StableE∗E .

Corollary 1.2.2 (4.5). The BPFp := νFpBP-Adams spectral sequence for νFpX/λ ∈
SynFp

is isomorphic to the Cartan-Eilenberg spectral sequence computing

Ext∗,∗A∗
(Fp,H∗(X))
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associated to the extension of Hopf algebras P∗ → A∗ → E∗. At the level of
E2-pages, the isomorphism looks as follows:

Exts,tP∗
(Fp,Ext

u,∗
E∗

(Fp,H∗(X))) Exts,t−u,t

BP⋆BPFp (BP
Fp
⋆ ,BPFp

⋆ (νFpX/λ))

Exts+u,t
A∗

(Fp,H∗(X)) πt−s−u,t(νFp
X/λ)

CESS

∼=

BPFp−Adams SS

∼=

The choice of grading here is made with respect to the traditional grading of the
CESS: s corresponds to the P∗-filtration degree, t corresponds to internal degree,
and u corresponds to the E∗-filtration degree. We also choose to use the parameter
λ in SynFp

rather than τ . See the discussion in Section 2.2.

This provides the complementary result to [GWX21, Thm. 8.3], with the roles of
BP and Fp reversed. Our methods differ from theirs, however, as we furnish a direct
comparison between cobar-type resolutions using results of [Bel20] which describe
Cartan-Eilenberg spectral sequences as certain Adams spectral sequences in stable
comodules.

1.3. Synthetic ANSS. To emulate the IWX-method in SynFp
, we need the analog

of the motivic Adams spectral sequence in SynFp
. For us, this is the synthetic

Adams-Novikov spectral sequence (synthetic ANSS). Classically, the construction of
the ANSS first starts with the computation of the Hopf algebroid (BP∗,BP∗BP),
originally due to [BP66]. Let BPFp

⋆ := π⋆(νFp
BP) and BP⋆BP

Fp := π⋆(νFp
BP ⊗

νFpBP). We first compute the Fp-synthetic version (BPFp
⋆ ,BP⋆BP

Fp) of this Hopf
algebroid:

Theorem 1.3.1 (3.1.6, 3.2.1). As Z(p)[λ]-algebras,

BPFp
⋆
∼= Z(p)[λ, h, v1, v2, . . .]/(λh = p),

BP⋆BP
Fp ∼= BPFp

⋆ [t1, t2, . . .].

where vi ∈ π2pi−2,2pi−1, ti ∈ π2pi−2,2pi−2, λ ∈ π0,−1, and p ∈ π0,0
∼= Z(p). More-

over, the Hopf algebroid structure maps for BP⋆BP
Fp are completely determined

by the λ-localization functor λ−1 : SynFp
→ Sp.

In particular, the formulas for the structure maps of the Hopf algebroid
(BPFp

⋆ ,BP⋆BP
Fp) are the same as the classical ones up to multiples of λ and h.

For more, see Theorem 3.2.3 and Remark 3.2.4. The algebra structure of the Fp-
synthetic analog of BP∗ is the classical product tensored with Z(p)[λ], except for
the relation λh = p. This relation expresses the fact that modulo λ, h detects p in
Fp-Adams filtration 1.

With this computation at hand, we can identify the E2-page (see Prop. 3.3.1) of
the synthetic ANSS as Ext-groups isomorphic to

Ext∗,∗,∗
BP⋆BPFp (BP

Fp
⋆ ,BPFp

⋆ X).

The synthetic ANSS converges to π⋆(X
∧
BPFp ). The nilpotent completion X∧

BPFp

turns out to be a p-localization (see Theorem A.4.3).

The E2-page of the classical ANSS is difficult to compute and is often studied
via the aNSS. Likewise, for the synthetic ANSS, its E2-page is accessible via the
synthetic algebraic Novikov spectral sequence (synthetic aNSS). We prove that for
the Fp-synthetic sphere spectrum SFp , the synthetic aNSS is a λ-Bockstein spectral
sequence:
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Theorem 1.3.2 (3.4.4). The synthetic algebraic Novikov spectral sequence for
X = SFp

is isomorphic to a λ-Bockstein spectral sequence. In particular, there is
a 1-1 correspondence between classical aNSS differentials dclr (x) = y and synthetic
aNSS differentials dsynr (x) = λr−1y.

Remark 1.3.3. Some authors have used the term rigid (e.g. [BX23]) to describe a
spectral sequence whose classes and differentials are formally determined by another
spectral sequence by adjoining a new parameter τ (or λ) and replacing classes killed
by differentials with τ -torsion. This is equivalent to our usage of the term Bockstein.

This allows us to compute the E2-page of the synthetic ANSS for the sphere using
the classical aNSS for the sphere. We discuss more details of the computation in
Section 8.

1.4. Deformations of the aNSS and the CESS. We also prove new defor-
mation results in the stable homotopy theory of comodules over Hopf algebroids.
Let (Fp[τ ],ABP

⋆ ) denote the BP-synthetic dual Steenrod algebra [Pst22, Sec. 6.2]
at a prime p. Let Stable(Γ)cell denote the smallest full subcategory of Hovey’s
[Hov04] stable comodule category Stable(Γ) for a Hopf algebroid (A,Γ) containing
all spheres and closed under colimits. For what follows, let P∗ := H∗BP, considered
as a commutative algebra object of either Stable(A∗) or Stable(BP∗BP) and for a
symmetric monoidal category C with p-completion, let Cip := Mod(C;1∧

p ).

Using the machinery developed in [BHS20, App. C] and a twisted t-structure
on Stable(Γ) (see Section 5), we “reconstruct” the categories of synthetic stable
comodules by identifying them with Adams spectral sequence-based deformations
(denoted AdR(C), see Definition 2.5.4) analogous to those first studied in [GIKR22].

Theorem 1.4.1 (6.1). The ∞-category of stable comodules over ABP
⋆ is a defor-

mation of Stable(A∗) with respect to the Cartan-Eilenberg spectral sequence for
the extension P∗ → A∗ → E∗ and may be reconstructed by the equivalence:

Stable(ABP
⋆ )cell ≃ AdP∗(Stable(A∗)).

of Stable(A∗)-linear symmetric monoidal stable ∞-categories. This deformation
has a parameter τ whose generic fiber recovers Stable(A∗).

Theorem 1.4.2 (6.2). The ∞-category of stable comodules over BP⋆BP
Fp is a

deformation of Stable(BP∗BP) with respect to the algebraic Novikov spectral se-
quence and may be reconstructed by the equivalence:

Stable(BP⋆BP
Fp)cellip ≃ AdP∗(Stable(BP∗BP)).

of Stable(BP∗BP)-linear symmetric monoidal stable ∞-categories. This deforma-
tion has a parameter λ whose generic fiber recovers Stable(BP∗BP)ip.

The reconstruction aspects of the above results are entirely analogous to the recon-
structions of (SH(C)cell)∧2 and SH(R)AT

ip in [GIKR22] and [BHS20] respectively.
For both categories, we can also provide a new description of the special fibers1

Mod(Stable(ABP
⋆ )cell;Fp[λ]/λ) ≃ Mod(Stable(A∗)

Gr;ECESS
2 )

Mod(Stable(BP⋆BP
Fp)cellip ; (BPFp

⋆ )∧p /τ) ≃ Mod(Stable(BP∗BP)
Gr;EaNSS

2 )

using [BHS20, Prop. C.2]. The algebraic objects over which we are taking modules
are known to be isomorphic, although the underlying categories in which these
modules live are not. It seems likely nonetheless that both of these special fibers

1The ECESS
2 and EaNSS

1 notations are slightly abusive. The precise statements are given in
Theorems 6.1 and 6.2.
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are closely related as specializations of a larger theory described briefly in Remark
3.4.6.

In view of Theorem 1.4.1, it seems likely that a result similar to [BHS19, Thm. A.8]
would recover the Burklund-Xu result [BX23, Thm. 2.8] that the motivic Cartan-
Eilenberg spectral sequence is a τ -Bockstein spectral sequence, though we do not
seek to establish this in the present article.

In the same way that Pstrągowski’s category SynE is a deformation of Sp with
respect to the E-Adams spectral sequence, Theorems 1.4.1 and 1.4.2 say that
Stable(ABP

⋆ )cell is a deformation of Stable(A∗) with respect to the CESS and, up
to a p-completion, Stable(BP⋆BP

Fp)cell is a deformation of Stable(BP∗BP) with
respect to the aNSS. This means that synthetic tools can be used to study the
categories Stable(A∗) and Stable(BP∗BP), just as they have been used to study
Sp.

As a consequence of Lemma 2.7.1, combined with the results Theorem 1.4.1, The-
orem 1.4.2, Corollary 4.5, [GWX21, Thm. 1.17], and [Pst22], the cofiber sequences

Fp[τ ]
τ−→ Fp[τ ]

i−→ Fp[τ ]/τ
q1−→ ΣFp[τ ] ∈ Stable(ABP

⋆ )cell

BPFp
⋆

λ−→ BPFp
⋆

i−→ BPFp
⋆ /λ

q2−→ ΣBPFp
⋆ ∈ Stable(BP⋆BP

Fp)cellip

where BPFp
⋆ is implicitly p-complete, set up correspondences

classes which detect image of

(q1)⋆ : E2(SBP/τ)→ E2(ΣSBP)

for FBP
p -Adams SS in SynBP

 ←→


differentials in the

BPFp -Adams SS

for SFp
/λ ∈ SynFp




classes which detect image of

(q2)⋆ : E2(SFp
/λ)→ E2(ΣSFp

)

for BPFp -Adams SS in SynFp

 ←→


differentials in the

FBP
p -Adams SS

for SBP/τ ∈ SynBP


In the context of Stable(Amot

⋆ ) for the C-motivic dual Steenrod algebra, (q1)⋆ and
algebraic Novikov differentials were determined by [IWX22] up to topological de-
gree 110 at p = 2. We use this to compute Cartan-Eilenberg differentials and to
determine classes which detect the image of (q2)⋆ in Section 7.

1.5. The IWX-Comparison Method. As was shown in [Ghe18], the natural
map SC → SC/τ is one of E∞-rings. The homotopy groups of the former encode the
stable homotopy groups of spheres and the latter’s homotopy groups are isomorphic
to the Adams-Novikov E2-page. Moreover, one can run the Fp

mot-Adams spectral
sequence for both, and get a comparison map from the motivic Adams spectral
sequence to the algebraic Novikov spectral sequence. Because inverting τ in the
motivic Adams spectral sequence recovers the classical Adams spectral sequence
[DI10], this innocuously constructed map allows one to transfer differentials back
and forth between the two spectral sequences. This idea was first used, to great
effect, in [IWX20a] to drastically extend our understanding of the stable homotopy
groups of spheres at the prime 2. We show in Section 8 that our results allow for
similar comparisons to be made between the Adams-Novikov spectral sequence and
the Cartan-Eilenberg spectral sequence.
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1.6. Computational Results. We conclude by using the IWX-method in SynF2

to algebraically compute the 2-primary synthetic Adams-Novikov spectral sequence
for the sphere out to the 45-stem. We take as our input data the Isaksen-Wang-
Xu computation of the algebraic Novikov spectral sequence [IWX22]. Using the
results of Section 3, we can compute the E2-page of the synthetic ANSS with the
synthetic algebraic NSS. It remains to compute differentials in the synthetic Adams-
Novikov spectral sequence. Using the results from Section 4, we know that the
synthetic ANSS for SF2

/λ is isomorphic to the Cartan-Eilenberg spectral sequence
for a particular extension of the Steenrod algebra. In Section 7, we apply the results
from Section 6 to compute the synthetic ANSS for SF2/λ out to the 45-stem. Finally
in Section 8, we compute the synthetic ANSS for SF2

by comparison to the synthetic
ANSS for SF2

/λ.

Organization. In Section 2, we recall the salient features of Pstrągowski’s cat-
egory of synthetic spectra, record some folklore results about the category SynFp

specifically, and review the filtered-object approach to synthetic spectra with an
eye toward the work of [BHS20] on recognizing deformations. Next in Section 3, we
compute the structure of the Fp-synthetic analogs of BP and its Hopf algebroid of
cooperations, leading to an identification of the E2-page of the νFpBP-Adams spec-
tral sequence. We also construct an Fp-synthetic version of the algebraic Novikov
spectral sequence. Section 4 describes spectral sequences for SE/τ in terms of
Adams spectral sequences in stable comodules, allowing us to identify several ex-
amples including the classical Cartan-Eilenberg spectral sequence for the extension

P∗ → A∗ → E∗.

In Section 5, we produce twisted t-structures generally on stable ∞-categories C
with respect to a compact object K ∈ C and an automorphism F : C → C. These
are applied in particular to C = Stable(Γ)cell and C = SyncellE . In Section 6, we
identify the categories of stable comodules over ABP

⋆ and BP⋆BP
Fp as deformations

of their classical analogues by the Cartan-Eilenberg and algebraic Novikov spectral
sequence respectively. In Section 7, we compute the synthetic Adams-Novikov spec-
tral sequence for SF2

/λ through the 45-stem. In Section 8, we apply all previous
results to the computation of the synthetic Adams-Novikov spectral sequence for
the sphere through the 45-stem. In Appendix A, we recall the results of [Man21]
and use them, together with the results of Section 5, to prove completion results
in Stable(Γ)cell and SynFp

for several Hopf algebroids (A,Γ) of interest. In Appen-
dix B, we display Adams charts of the synthetic Adams-Novikov spectral sequences
for SF2/λ and SF2 up to the 45-stem.

1.7. Notations and Conventions. We will work freely with the higher categori-
cal language of [Lur09] and [Lur17]. To avoid clutter, we fix the following notations
and conventions throughout the paper:

(1) When considering graded objects as a whole, we use ∗ to denote a single
grading and ⋆ to denote a bigrading.

(2) We abuse notation to identify an abelian group A with its image under the
Eilenberg Mac-Lane functor, commonly denoted HA. In particular, we will
write Fp for the spectrum HFp, with the exception of denoting Fp-homology
H∗X.

(3) We sometimes refer to the synthetic analog νEX of a spectrum X as XE .
In particular, we do this for FBP

p := νBPFp and BPFp := νFp
BP.

(4) We will write BP⋆BP
Fp for the Hopf algebroid of BPFp -cooperations and

similarly ABP
⋆ for those of Fp

BP.
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2. Recollections on Synthetic Spectra and Filtered Objects

2.1. Synthetic Spectra. Given an Adams-type ring spectrum E [Pst22, Def-
inition 3.14], one can categorify its Adams spectral sequence as Pstrągowski’s
category of synthetic spectra SynE , which is a presentably symmetric monoidal
stable ∞-category. The synthetic construction comes equipped with a functor
νE : Sp→ SynE assigning to each spectrum X its synthetic analog νEX (abbrevi-
ated νX where there is no ambiguity) whose bigraded homotopy groups record both
the original homotopy groups π∗(X) and the E-Adams spectral sequence for X, in
a sense made precise by [BHS19, Appendix A]. We recall some salient features of
νE below, which appear in [Pst22] as Lemmas 4.4 and 4.23 and Corollary 4.28.

Proposition 2.1.1 ([Pst22]). The functor νE : Sp→ SynE

(a) is fully faithful,
(b) preserves filtered colimits,
(c) preserves cofiber sequences X → Y → Z that induce E∗(−) short exact

sequences,
(d) and is lax symmetric monoidal.

Moreover, for any X ≃ colimXα which is a filtered colimit of finite spectra with
finitely generated projective E∗ homology and any Y ∈ Sp, the natural map νEX⊗
νEY → νE(X ⊗ Y ) is an equivalence.

Notation 2.1.2. Such an Xα is said to be E-finite projective [Pst22, Definition
3.13]; the full subcategory of such is denoted SpfpE .

Notation 2.1.3. There is a naturally bigraded family of spheres in SynE which
we denote by St,wE = Σt−wνSw. They induce bigraded suspension functors Σt,w =

(−) ⊗ St,wE and their mapping groups are denoted πt,wX = [St,w, X]. We often
just write SE instead of S0,0E . We will often restrict attention to the subcategory
SyncellE ⊂ SynE which is the smallest subcategory of SynE containing the bigraded
spheres St,w and closed under colimits.

Remark 2.1.4. It has recently been shown in [Law24] that when E is connective
SynE ≃ SyncellE .

Because the functor ν does not commute with the formal suspension in the sta-
ble ∞-categories Sp and SynE , there is an induced universal comparison map
τ : Σ0,−1SE → SE which controls much of the structure of the synthetic cate-
gory. As τ is a self-map of the monoidal unit, it acts all on E-synthetic spectra
τ : Σ0,−1X → X.

Remark 2.1.5. We use the notation τ : Σ0,−1SE → SE in this section when
working with a general Adams-type ring spectrum E. In Section 2.2 and throughout
the rest of this paper, we use λ instead if E = Fp.

Theorem 2.1.6 ([Pst22]). There is a symmetric monoidal and fully faithful functor
Y : Sp → SynE such that the map τ : Σ0,−1Y (X) → Y (X) is an equivalence for
all X. Moreover, all such τ -invertible synthetic spectra are in the essential image
of Y . As a result, Y provides an embedding of spectra inside of SynE consisting of
the τ -invertible objects.
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The functor X 7→ τ−1X is known as the realization functor and is a symmetric
monoidal left adjoint to Y . The effect of inverting τ is often referred to as the generic
fiber of such a deformation of spectra. We now turn to the special fiber obtained
informally by setting τ = 0. Let SE/τ denote the cofiber of τ : Σ0,−1SE → SE .
To state the result, we first recall that to a (graded) Hopf algebroid (A,Γ) there is
an associated category of stable comodules Stable(Γ) constructed by inverting the
homotopy equivalences of chain complexes detected by projectives [Hov04]. The
following is an amalgamation of results in Sections 4.5 and 4.6 of [Pst22]:

Theorem 2.1.7. There is an adjunction

χ∗ : Mod(SynE ;SE/τ) ⇆ Stable(E∗E) : χ∗

whose left adjoint is fully faithful. On synthetic spectra in the image of ν, the
composition χL(− ⊗ SE/τ) corresponds to taking E∗ homology and hence takes
the bigraded shifts of the cofiber of τ to those of the unit of Stable(E∗E), inducing
an equivalence on cellular objects. In addition, there is an isomorphism of abelian
groups

[Σt,wνX, νY/τ ] ∼= Extw−t,w
E∗E

(E∗X,E∗Y ).

We see that the cofiber of τ records the E2 page of the E-Adams spectral sequence.
In fact, the τ -Bockstein spectral sequence encodes the entirety of the E-Adams, see
[BHS19][Thm. 9.19].

2.2. Synthetic Spectra over Fp. When E = Fp, we can make significantly
stronger statements than for general Adams-type homology theories. Because it
is conventional to associate the map τ with motivic (and therefore MU- or BP-
synthetic) homotopy theory, we will write λ for the analogous map in SynFp

. We
recall some results that are special to synthetic spectra over Fp below.

Proposition 2.2.1. The following stronger statements hold for the category of
Fp-synthetic spectra:

(a) the functor νFp
is symmetric monoidal,

(b) and the inclusion Mod(SynFp
;SFp

/λ) ↪→ Stable(A∗) is an equivalence.

Proof. The first observation is that SpfpFp
≃ Spfin where the right-hand side is the

category of finite spectra: the projectivity requirement is trivial for Fp-vector spaces
and finiteness of a spectrum implies the finite generation of its mod p homology.
Because every spectrum is a filtered colimit of finite spectra, (a) follows from Propo-
sition 2.1.1. Statement (b) then follows from the fact that the inclusion is essentially
surjective onto the cellular subcategory and Stable(A∗) is cellular [HPS97][Thm.
2.3.1]. □

2.3. Filtered Models. The results in this section are collected from [GIKR22],
[Hed20], and [BHS20]. Any results not therein are certainly known to experts; we
make no claims of originality. Let Z≥ denote the category of integers with unique
morphisms m → n whenever m ≥ n. Given a category C, a filtered object in C is
the data of a functor

X∗ : Z≥ → C,
and these compile into a category Cfil = Fun(Z≥, C). We may consider a filtered
object to be a diagram in C, and taking colimits yields a functor Re : Cfil → C
known as realization. Assuming that C has a zero object, Re has a collection of
sections Yk, for −∞ < k ≤ ∞, which are determined by:

YkXw =

{
X w ≤ k

0 otherwise
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where the connecting maps are identity where possible and 0 otherwise. This is still
perfectly well defined for k = −∞, but is the 0 functor and, of course, no longer a
section of Re.

Remark 2.3.1. Where we feel notational confusion may be possible, we will write
Refil to distinguish the filtered-realization functor from that of other deformations.

Lemma 2.3.2 ([Gla16]). If C is symmetric monoidal and its tensor product pre-
serves colimits in each variable, then via Day convolution the category Cfil is again
symmetric monoidal, with unit Y01. The tensor product on Cfil will then also
preserve colimits in each variable.

The category of filtered objects also comes equipped with a distinguished autoequiv-
alence [1] : Cfil → Cfil determined by the shift X[1]w = Xw+1 distinct from the for-
mal suspension Σ, which is computed levelwise in Cfil. We will write Σt,w := Σt◦[w].

2.4. Associated Graded and τ . Given a filtered object X ∈ Cfil, we may take
levelwise cofibers of the internal connecting maps to get an object of CGr. This
assignment is functorial and symmetric monoidal. We will denote this functor by
Gr∗ : Cfil → CGr = Fun(Z, C) where Z is the discrete category of natural numbers.
The goal of this section is to understand how we can construct the functor Gr∗ by
tensoring with a certain object 1/τ in Cfil.

Given any filtered object X ∈ Cfil, the internal maps of X compile to give an
important self-map τX : Σ0,−1X → X depicted as:

... ...

Xw+2 Xw+1

Xw+1 Xw

Xw Xw−1

... ...

fw+2

fw+2 fw+1

fw+1 fw

fw+1

fw

where the maps internal to the filtered spectrum are dashed and the components
of τX are solid. The cofiber of τX , which we will denote X/τ , has trivial connect-
ing maps as a filtered object, and little is lost by forgetting this information and
considering X/τ as a graded object in C. We will denote τ1 simply by τ .

Lemma 2.4.1. There is an equivalence τX ≃ idX ⊗ τ so that X/τ ≃ X ⊗ 1/τ . As
graded objects, Gr∗X ≃ X/τ .

Proof. This was known already to [GIKR22] and amounts to the observation that
at the graded level, both constructions are defined to be the cofiber of the same
map. □

It is also valuable to understand the effect of inverting τ on an object.

Lemma 2.4.2. There is an equivalence τ−1X ≃ Y∞(Re(X)).

Proof. This was implicit in [GIKR22] and follows from noting that since colimits
in functor categories are evaluated levelwise, τ−1 acts by taking the same colimit
as Re but in every filtered degree. □

Because the functor Y∞ is a fully faithful embedding of C into Cfil, it is common to
identify the two functors Re and τ−1.
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2.5. Deformations via Filtered Objects. From here on we will assume that C
is presentably symmetric monoidal and that Cfil has been endowed with its Day
convolution symmetric monoidal structure.

Definition 2.5.1 ([BHS20]). A tower functor is a lax monoidal functor T : C → Cfil.

Example 2.5.2. For every E1-ring R in C we can construct a lax monoidal Adams
tower TR : C → Cfil. Explicitly this can be constructed by transporting the cobar
cosimplicial object X ⊗ R•+1 to filtered objects via the ∞-categorical Dold-Kan
correspondence [Lur17, Thm. 1.2.4.1].

We now specialize to the case that C has a t-structure which will remain implicit.
In what follows, denote by ΓR(−) : C → Cfil the functor

X 7→ Tot(τ≥∗(X ⊗R•+1))

We will use the notation X∧
R := Re(ΓR(X)). We often refer to ΓR as the decalage

of the tower in Example 2.5.2. This construction was first considered [GIKR22].

Remark 2.5.3. The usage of the notation X∧
R is slightly abusive. When C = Sp

with its usual t-structure, we see that Re(ΓRX) will only necessarily agree with the
R-nilpotent completion when X is bounded below.

Definition 2.5.4. Given a stably symmetric monoidal C with t-structure and a
En-ring R in C the R-Adams deformation, denoted AdR(C), is defined to be the
stable ∞-category of modules Mod(Cfil; ΓR(1)).

Proposition 2.5.5. With notation as above AdR(C) satisfies the following addi-
tional properties:

(1) The category AdR(C) is En−1-monoidal,
(2) The category of τ -invertible objects Mod(CR, τ−11) is equivalent to

Mod(C,1∧
R).

(3) The t-structure homotopy group spectral sequence of ΓRX/τ encodes the
Adams spectral sequence for πt

∗X starting at E2.

Proof. The observations (1) and (2) were first observed in [GIKR22] and were
proven in general as [BHS20, Prop. C.2]. The claim (3) follows from computations
analogous to [GIKR22, Prop. 3.3] and the general form appears as [BHS20, Cons.
C.9]. □

Remark 2.5.6. The notation AdR(C) comes from the fact that these deformations
encode generalized Adams Spectral Sequences. The even variant of the category
AdMU(Sp) was first studied in [GIKR22], where it was shown to recover the cellular
motivic category over C after 2-completion. More generally, for E an Adams-
Type ring spectrum, the category AdE(Sp) is nearly equivalent to the category of
cellular E-synthetic spectra [BHS20, p. C.22]. Explicitly there is an equivalence
AdE(Sp) ≃ Mod(SyncellE , (SE)∧τ ).

Example 2.5.7. Let C = Stable(A∗) and let R = P∗ as an object in the heart.
Then if we let X = 1 = Fp be the unit in Stable(A∗) we may consider the cofiber
sequence

ΓP∗Fp
τ−→ ΓP∗Fp → ΓP∗Fp/τ → ΣΓP∗Fp

After applying trigraded homotopy groups, the term π−∗,∗,∗ΓP∗Fp/τ may be iden-
tified with the E2-page of the Cartan-Eilenberg spectral sequence as a consequence
of Theorem 6.1.
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Example 2.5.8. Let C = Stable(BP∗BP) and let R = P∗ as an object in the heart.
Then if we let X = 1 = BP∗ be the unit in Stable(BP∗BP) we may consider the
cofiber sequence

ΓP∗BP∗
λ−→ ΓP∗BP∗ → ΓP∗BP∗/λ→ ΣΓP∗BP∗

After applying trigraded homotopy groups, the term π−∗,∗,∗ΓP∗BP∗/λ may be iden-
tified with the E2-page of the algebraic Novikov spectral sequence as a consequence
of Theorem 6.2.

2.6. Recognizing Deformations. Our primary reason for using filtered defor-
mation machinery is the following recognition theorem which is the key lemma
reducing our results in Section 2.5 to algebraic computations.

Definition 2.6.1 ([BHS20]). A 1-parameter deformation pair is a pair of pre-
sentably symmetric monoidal stable ∞-categories (C, Cdef) together with

(a) a symmetric monoidal left adjoint Re : Cdef → C known as the realization,
(b) a symmetric monoidal left adjoint c : C → Cdef providing the deformation

with a C-enrichment,
(c) a homomorphism i : Z→ π0Pic(Cdef),
(d) and a set of compact dualizable {Kα}α∈I for C

such that
(e) The functor c is a section of Re,
(f) The objects i(n) realize to 1C ,
(g) The objects {Kα ⊗ i(n)} generate Cdef as α, n range,
(h) The functor Re induces an equivalence

Map(i(n), i(m))
≃−→ Map(1C ,1 cC)

whenever n ≤ m.

Our interest in deformation pairs comes from the following recognition theorem
which allows us to reconstruct the deformation using filtered objects.

Theorem 2.6.2 ([BHS20]). For any deformation pair (C, Cdef) there is a functor
i∗ : Cdef → Cfil inducing a C-linear symmetric monoidal equivalence

Mod(Cfil, i∗1Cdef
) ≃ Cdef

Which appears as Proposition C.20 in loc. cit.

2.7. Spectral Sequences and τ-Bocksteins. In this section, we recall the con-
struction of the spectral sequence associated with a filtered object. We do this
in order to describe the comparison with the τ -Bockstein. Given a filtered spec-
trum X ∈ Spfil we easily obtain an exact couple by applying the functor π∗ to the
extended diagram

... X2 X1 X0 X−1 X−2 ...

Gr1X Gr0X Gr−1X

and putting E∗,∗ = π∗Gr∗X = π∗,∗(X/τ) and D∗,∗ = π∗X∗ = π∗,∗X. This,
however, is exactly the exact couple used to form the τ -Bockstein by applying π∗,∗
to the cofiber sequence

Σ0,−1X X

X/τ

τ
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as a result, unlike the case of synthetic spectra where the comparison to the τ -
Bockstein is rather involved, it is essentially tautological from the filtered perspec-
tive. In particular, as in [BHS19, Thm. 9.19], there are cofiber sequences

X/τ
τr

−→X/τ r+1 → X/τ r
β−→ ΣX/τ

X
τ−→ X

i−→ X/τ
q−→ ΣX

which satisfy β∗(x) = −y and i∗(z) = z, where dr(x) = τ ry is a τ -Bockstein
differential and z ∈ π∗,∗(X) is a non-τ -divisible element detected by z ∈ π∗,∗(X/τ).
These same constructions generalize to any setting with an appropriate notion of
homology or (multi-graded) homotopy groups. As a result, we have the following
lemma, which is a generalization of [IKLRZ23, Prop. 2.14]:

Lemma 2.7.1. Let C be a stable ∞-category equipped with an exact functor
π⋆ : C → A valued in an abelian category. Then if (Er, dr) is the spectral sequence
associated to the a filtered object X ∈ Cfil and x ∈ π⋆(X/τ) survives to the Er

page, then x supports a τ -Bockstein differential dr(x) = τ ry if and only if in the
sequence

X
τ−→ X

i−→ X/τ
q−→ ΣX

we have that q⋆(x) ∈ π⋆(ΣX) is detected by −τ r−1y.

Proof. Similar to [IKLRZ23, Prop. 2.14], both directions of the proof will use the
following commutative diagram of horizontal cofiber sequences:

X/τ X/τ r+1 X/τ r ΣX/τ

X X X/τ r ΣX

X X X/τ ΣX
qτ i

fτr

τr−1 Id τr−1

β

i Id i

τr

For the forwards direction, since x survives to the Er-page, x lifts to π⋆(X/τ r).
Note that β⋆(x) = −y so that q⋆(x) = τ r−1f(x) is detected by τ r−1i(f(x)) =
τ r−1β(x) = −τ r−1y. For the backwards direction, note that f(x) is detected by
−y so that β(x) = i(f(x)) = −y and, hence, dr(x) = τ ry. □

3. The Synthetic Adams-Novikov Spectral Sequence

For an Fp-synthetic spectrum X, we will let X⋆ := π⋆(X) and X⋆X := π⋆(X ⊗X).
The goal in this section is to compute the bigraded Hopf algebroid (BPFp

⋆ ,BP⋆BP
Fp)

and to give tools for computing the E2-page of the synthetic Adams-Novikov spec-
tral sequence in terms of this Hopf algebroid. Throughout this section, we fix a
prime p.

3.1. Homotopy of the synthetic analogs of BP and BP⊗BP. We first compute
BPFp

⋆ and BP⋆BP
Fp as Z(p)[λ]-algebras. Our strategy is to use the fracture square

(1)

X X∧
λ

X[λ−1] (X∧
λ )[λ

−1]
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for an arbitrary X ∈ SynFp
. Though the existence of this fracture square has likely

been known by experts in synthetic spectra, we reproduce a proof of its existence
generally in SynE by imitating [DFHH14, Section 6]:

Lemma 3.1.1. The commutative square (1) for X ∈ SynE is a pullback square.

Proof. We first show that X ≃ LSEX ≃ L(SE [λ−1]∨SE/λ), where L denotes Bousfield
localization. The first equivalence is obvious. For the second, we show that the class
of SE-acyclics agrees with the class of (SE [λ−1]∨SE/λ)-acyclics. Note that X is SE-
acyclic if and only if X ≃ 0. So immediately, SE-acyclic implies (SE [λ−1]∨ SE/λ)-
acyclic. For the other direction, X being (SE [λ−1] ∨ SE/λ)-acyclic is equivalent to
both X ⊗ SE [λ−1] ≃ X[λ−1] ≃ 0 and X/λ ≃ 0. If X/λ ≃ 0, then λ : X → Σ0,1X is
an equivalence so that X[λ−1] ≃ X. Hence, X ≃ 0.

Since (X/λ)[λ−1] ≃ 0 is true for any synthetic spectrum X, the fracture square
follows from a synthetic version of [DFHH14, Section 6, Prop. 2.2]. □

The most mysterious part of this square is the λ-completion X∧
λ . For synthetic

analogs of ordinary spectra, the λ-completion is straightforward:

Lemma 3.1.2. If Y is a spectrum, there is an equivalence νE(Y )∧λ
≃−→ νE(Y

∧
E ).

Proof. Note that λ-completion is the same as SE/λ-Bousfield localization and νE(Y
∧
E )

is λ-complete by [BHS19, Prop. A.13]. Hence there exists a natural map νE(Y )∧λ →
νE(Y

∧
E ) fitting in the commutative diagram

νE(Y ) νE(Y )∧λ

νE(Y
∧
E )

with the diagonal map being induced by the E-nilpotent completion Y → Y ∧
E . It

suffices to check this is an equivalence after applying (−)/λ. This is true because
the top map becomes an equivalence by definition and because the map Y → Y ∧

E

induces an isomorphism on Adams E2-pages. □

Corollary 3.1.3. If Y is a connective spectrum, there is an equivalence νFp(Y )∧λ
≃−→

νFp(Y
∧
p ).

From now on, we let νY denote νFp
Y . If we want to understand the bigraded

homotopy of νY for a connective spectrum Y , Lemmas 3.1.1, 3.1.2 allow us to
understand π⋆νY in terms of

π⋆νY [λ−1] ∼= π∗Y [λ±1],

π⋆(νY
∧
λ ) ∼= π⋆(ν(Y

∧
p )),

π⋆(νY
∧
λ [λ−1]) ∼= π∗(Y

∧
p )[λ±1],

and the maps between them. The first and third isomorphisms follows from the
equivalence SynFp

[λ−1] ≃ Sp, with πk living in bidegree (k, k). The homotopy of
ν(Y ∧

p ) can be computed using knowledge of the Fp-Adams spectral sequence of Y
and [BHS19, Thm. 9.19]. We do this first for Y = BP:

Lemma 3.1.4. As a Z∧
p [λ]-algebra,

π⋆(ν(BP)
∧
λ)
∼= π⋆(ν(BP

∧
p ))
∼= Z∧

p [λ, h, v1, v2, . . .]/(λh = p)

where vi ∈ π2pi−2,2pi−1 and p ∈ π0,0
∼= Z∧

p .
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Proof. Note first that the Fp-Adams spectral sequence for BP collapses at the E2-
page. Using the νFp-Adams spectral sequence and [BHS19, Thm. A.8], this says
that

νFp
E∗,∗,∗
2

∼= νFp
E∗,∗,∗
∞

∼= Fp[λ, h, v1, v2, . . .].

Passing on to π⋆(−), by [BHS19, Thm. 9.19(4)] we get a surjective Z∧
p [λ]-algebra

map
Z∧
p [λ, h, v1, v2, . . .]→ π⋆(ν(BP

∧
p )).

The relation λh = p must hold because of the isomorphism of short exact sequences

0 π0,1 π0,0 Ext0,0A∗
(Fp,H∗(BP

∧
p )) 0

0 Z∧
p Z∧

p Fp 0

·λ

∼= ∼= ∼=
·p

which induces a surjective map Z∧
p [λ, h, v1, v2, . . .]/(λh = p) → π⋆(ν(BP

∧
p )). By a

dimension count of both sides, this map must be an isomorphism. □

Lemma 3.1.5. As a Z∧
p [λ]-algebra,

π⋆((BP
Fp ⊗ BPFp)∧λ)

∼= π⋆(ν((BP⊗ BP)∧p ))
∼= π⋆((BP

Fp)∧λ)[t1, t2, . . .]

where ti ∈ π2pi−2,2pi−2.

Proof. The proof is very similar to the proof of Lemma 3.1.4, using instead that

νFp
E∗,∗,∗
2

∼= νFp
E∗,∗,∗
∞

∼= Fp[λ, h, v1, . . . , t1, t2, . . .],

where the ti are detected in Adams filtration 0. □

From the classical homotopy of BP and BP∗BP, we easily get that

π⋆(BP
Fp [λ−1]) ∼= Z(p)[λ

±1, v1, v2, . . .],

π⋆((BP
Fp)∧λ [λ

−1]) ∼= Z∧
p [λ

±1, v1, v2, . . .],

π⋆((BP
Fp ⊗ BPFp)[λ−1]) ∼= Z(p)[λ

±1, v1, v2, . . . , t1, t2, . . .],

π⋆((BP
Fp ⊗ BPFp)∧λ [λ

−1]) ∼= Z∧
p [λ

±1, v1, v2, . . . , t1, t2, . . .].

Using this, the previous two lemmas, and Lemma 3.1.1, we can identify BPFp
⋆ and

BP⋆BP
Fp :

Theorem 3.1.6. As Z(p)[λ]-algebras,

BPFp
⋆
∼= Z(p)[λ, h, v1, v2, . . .]/(λh = p),

BP⋆BP
Fp ∼= BPFp

⋆ [t1, t2, . . .].

Proof. By Lemma 3.1.1, this follows directly from the fact that BPFp
⋆ and BP⋆BP

Fp

each fit in pullback squares of Z(p)[λ]-algebras

BPFp
⋆ Z∧

p [λ, h, v1, v2, . . .]/(λh = p)

Z(p)[λ
±1, v1, v2, . . .] Z∧

p [λ
±1, v1, v2, . . .]
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BP⋆BP
Fp Z∧

p [λ, h, v1, v2, . . . , t1, t2, . . .]/(λh = p)

Z(p)[λ
±1, v1, v2, . . . , t1, t2, . . .] Z∧

p [λ
±1, v1, v2, . . . , t1, t2, . . .].

□

3.2. Hopf algebroid structure of (BPFp
⋆ ,BP⋆BP

Fp). Working over the ground
ring Z(p)[λ], we can use Theorem 3.1.6 and the λ-localization map to describe the
remaining Hopf algebroid structure of (BPFp

⋆ ,BP⋆BP
Fp). Because the homotopy

groups of BPFp and BPFp ⊗ BPFp are both λ-torsion free, for all integers k, s we
have inclusions BP

Fp

k,k+s ↪→ BPk and BP
Fp

k,k+sBP
Fp ↪→ BPkBP induced by λ−1 :

SynFp
→ Sp. This implies that the remaining Hopf algebroid structure maps are

entirely determined by their classical analogs:

Proposition 3.2.1. The Z(p)[λ]-module maps

ηL, ηR :BPFp
⋆ → BP⋆BP

Fp

ϵ :BP⋆BP
Fp → BPFp

⋆

∆ :BP⋆BP
Fp → BP⋆BP

Fp ⊗
BP

Fp
⋆

BP⋆BP
Fp

c :BP⋆BP
Fp → BP⋆BP

Fp

associated to the Hopf algebroid (BPFp
⋆ ,BP⋆BP

Fp) are determined completely by
the commuting diagrams

BPFp
⋆ BP∗

BP⋆BP
Fp BP∗BP

λ−1

ηL ηL

λ−1

BPFp
⋆ BP∗

BP⋆BP
Fp BP∗BP

λ−1

ηR ηR

λ−1

BP⋆BP
Fp BP∗BP

BP⋆BP
Fp ⊗

BP
Fp
⋆

BP⋆BP
Fp BP∗BP⊗BP∗ BP∗BP

λ−1

∆ ∆

λ−1

BP⋆BP
Fp BP∗BP

BPFp
⋆ BP∗

λ−1

ϵ ϵ

λ−1

BP⋆BP
Fp BP∗BP

BP⋆BP
Fp BP∗BP

λ−1

c c

λ−1

In particular, the formulas for each of these maps are the same as the classical
ones [Rav03], up to multiples of λ and terms which contain multiples of h instead
of multiples of p. In fact, we can precisely write down these synthetic formulas.
Classically, the formulas for several of these maps are more easily described in terms
of log coefficient generators ln ∈ BP∗ ⊗Q rather than vn. Synthetically, we define
ln ∈ BPFp

⋆ ⊗Q in terms of vn ∈ BPFp
⋆ as follows:
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Definition 3.2.2. Let ln ∈ BP
Fp

2pn−2,2pn−1 ⊗Q for n ≥ 0 be defined recursively as

pl0 = h, pl1 = v1,

pln = vn +
∑

0<i<n

λpi

liv
pi

n−i, n ≥ 2.

The λ-inversion functor λ−1 : BPFp
⋆ ⊗ Q → BP∗ ⊗ Q after tensoring with Q sends

l0 7→ 1 and ln 7→ ln for n ≥ 1. By Proposition 3.2.1 and the formulas in [Rav76]
and [Rav03], we get the following synthetic formulas:

Theorem 3.2.3. On generators vn ∈ BPFp
⋆ , ln ∈ BPFp

⋆ ⊗ Q, and tn ∈ BP⋆BP
Fp ,

the structure maps of Proposition 3.2.1 are determined by the formulas

ηL(vn) = vn,

ηR(ln) =

n∑
i=0

lit
pi

n−i,

ϵ(vn) = 0, ϵ(tn) = 0,∑
i+j=n

li(∆(tj))
pi

=
∑

h+i+j=n

lh(t
ph

i ⊗ tp
h+i

j ),

∑
h+i+j=n

lht
ph

i c(tj)
ph+i

= ln.

Proof. This essentially follows from the formulas in [Rav76] and [Rav03] and a
careful check that the weights of both sides of each formula coincide. □

Remark 3.2.4. Though the formulas for ηR, ∆, and c in Theorem 3.2.3 have no
powers of λ present, powers of λ can pop up when describing those formulas in
terms of vn instead of ln. This is essentially a consequence of the definition of ln in
Definition 3.2.2. For example, working in BPFp

⋆ ⊗Q, the first three values of ηR on
h, v1, and v2 are

ηR(h) = h,

ηR(v1) = v1 + ht1,

ηR(v2) = v2 + ht2 + v1t
p
1 −

λp

p

 p∑
j=0

(
p+ 1

j

)
hp−j+1vj1t

p−j+1
1

 .

If we take p = 2, for example, then via the relation λh = 2, this reduces to

ηR(v2) = v2 + ht2 − 5v1t
2
1 − 2ht31 − 3λv21t1,

which makes sense over Z(2).

3.3. Synthetic Adams-Novikov SS. As a consequence of Theorem 3.1.6, the
Hopf algebroid (BPFp

⋆ ,BP⋆BP
Fp) is flat. In the usual way, this gives a nice identifi-

cation of the E2-page of the BPFp -Adams spectral sequence in terms of Ext groups:

Proposition 3.3.1. Suppose X is an Fp-synthetic spectrum. Then the E2-page of
the BPFp -Adams spectral sequence for X is isomorphic to

E2 = Ext∗,∗,∗
BP⋆BPFp (BP

Fp
⋆ ,BPFp

⋆ X).

Whenever X is bounded below in the sense that there’s an n ∈ Z such πk,wX = 0 for
k < n, the BPFp -Adams spectral sequence turns out to converge to the homotopy of
the p-localization of X. This is analogous to the classical situation, where the BP-
Adams spectral sequence for a connective spectrum converges to the homotopy of
its p-localization. We state the main result here, but defer the proof to Appendix A,
which uses the machinery of [Man21]:
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Theorem 3.3.2. (Theorem A.4.3) For every bounded-below X ∈ SynFp
,

X∧
BPFp ≃ X(p)

where X∧
BPFp denotes BPFp -nilpotent completion and p-localization is taken with

respect to p ∈ π0,0SFp
∼= Z.

3.4. A synthetic algebraic Novikov SS. Classically, the algebraic Novikov spec-
tral sequence (aNSS) is a spectral sequence that tries to compute the E2-page

ANE
s,t
2 = Exts,tBP∗BP(BP∗,BP∗X)

of the Adams-Novikov spectral sequence (ANSS) for a spectrum X. The ANSS E2-
page is the homology of the BP∗BP-cobar complex, which we can filter by powers
of the ideal I := ker(BP∗ → Fp) = (p, v1, v2, . . .). The resulting spectral sequence
is the aNSS and it has E2-page

E2 = Ext∗,∗,∗Gr∗(BP∗BP)(Gr∗(BP∗),Gr∗(BP∗X)),

where Gr∗(−) is the associated graded functor. The pair (Gr∗(BP∗),Gr∗(BP∗BP))
is a Hopf algebroid satisfying Gr∗(BP∗) ∼= Fp[a0, a1, . . .] with ai in bidegree (u, t) =
(1, 2pi−2) and Gr∗(BP∗BP) ∼= Gr∗(BP∗)[b1, b2, . . .] with bj in bidegree (0, 2pj−2),
where u is the algebraic Novikov filtration and t is internal degree. The ai and bj
correspond to vi and tj respectively.

Using the results of Section 3 which identify the Hopf algebroid (BPFp
⋆ ,BP⋆BP

Fp),
we can imitate the construction of the aNSS in SynFp

to get what we call the
synthetic algebraic Novikov spectral sequence (synthetic aNSS). Our main result in
this section is an identification of the synthetic aNSS of the sphere as a λ-Bockstein
spectral sequence. This result implies that the synthetic aNSS and classical aNSS
contain equivalent information. In particular, the E2-page of the synthetic ANSS
can be computed using knowledge of classical aNSS differentials. We do this in
Section 8.

We first define the synthetic algebraic Novikov filtration of BPFp
⋆ , analogous to the

classical one on BP∗.

Definition 3.4.1. Let J := ker(BPFp
⋆ → Fp[τ ]) = (h, v1, v2, . . .) be the kernel of

the map which kills h and all of the vi. We filter BPFp
⋆ and BP⋆BP

Fp by letting
F sBPFp

⋆ = Js · BPFp
⋆ and F sBP⋆BP

Fp = Js · BP⋆BP
Fp .

Immediately, we can identify the associated graded of BPFp
⋆ and BP⋆BP

Fp . It is a
λ-extended version of the classical associated graded of BP and BP∗BP:

Lemma 3.4.2. If Gr∗(−) is the associated graded functor, then

Gr∗(BP
Fp
⋆ ) ∼= Fp[λ, a0, a1, . . .] ∼= Gr∗(BP∗)[λ],

Gr∗(BP⋆BP
Fp) ∼= Gr∗(BP

Fp
⋆ )[b1, b2, . . .] ∼= Gr∗(BP∗BP)[λ].

Remark 3.4.3. Note that here the elements ai live in tridegree (u, t, w) = (1, 2pi−
2, 2pi − 1) and the elements bj live in tridegree (0, 2pn − 2, 2pn − 2), where u is the
synthetic algebraic Novikov filtration, t is internal degree, and w is synthetic weight.
The elements ai and bj correspond to vi and tj respectively.

We can filter the BP⋆BP
Fp -cobar complex in an analogous way to the classical one.

The resulting spectral sequence is the synthetic algebraic Novikov spectral sequence
with E2-page

Ef,u,t,w
2 (X) = Extf,t,w

Gr∗(BP⋆BPFp )
(Gr∗(BP

Fp
⋆ ),Gru(BP

Fp
⋆ X))
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for an Fp-synthetic spectrum X. Scarily enough, this is a quad-graded spectral
sequence with differentials dr : Ef,u,t,w

r → Ef+1,u+r−1,t,w
r , where u denotes the

synthetic algebraic Novikov filtration. Luckily when X = SFp
, we can identify this

spectral sequence as a λ-Bockstein spectral sequence:

Theorem 3.4.4. The synthetic algebraic Novikov spectral sequence for X = SFp

is isomorphic to a λ-Bockstein spectral sequence.

Proof. The proof is similar to the proof of [BX23, Thm. 2.8]. By Lemma 3.4.2, we
have

E∗,∗,∗,∗
2 (SFp)

∼= Ext∗,∗,∗,∗Gr∗(BP∗BP)[λ](Gr∗(BP∗)[λ],Gr∗(BP∗)[λ])

∼= Ext∗,∗,∗Gr∗(BP∗BP)(Gr∗(BP∗),Gr∗(BP∗)[λ])

∼= Ext∗,∗,∗Gr∗(BP∗BP)(Gr∗(BP∗),Gr∗(BP∗))[λ]

where the first isomorphism is a change-of-ring isomorphism along the map

(Gr∗(BP∗)[λ],Gr∗(BP∗BP)[λ])→ (Gr∗(BP∗),Gr∗(BP∗BP))

which kills λ and the second isomorphism holds because Gr∗(BP∗)[λ] is a trivial
Gr∗(BP∗BP)-comodule. For SFp/λ, the E2-page is

E∗,∗,∗,∗
2 (SFp

/λ) ∼= Ext∗,∗,∗Gr∗(BP∗BP)(Gr∗(BP∗),Gr∗(BP∗)),

the classical aNSS E2-page, with a generator x ∈ Extf,u,t living in quad-degree
(f, u, t, u + t). This spectral sequence collapses at the E2-page for degree reasons.
Hence for SFp

, differentials must be of the form dr(x) = λr−1y. There are no
λ-hidden extensions to worry about, so this finishes the proof. □

Classically, via work of Miller [Mil81], the E2-page of the aNSS for the sphere is
isomorphic to the E2-page of the Cartan-Eilenberg spectral sequence associated
with the extension of Hopf algebras P∗ → A∗ → E∗:

Ext∗,∗,∗Gr∗(BP∗BP)(Gr∗(BP∗),Gr∗(BP∗)) ∼= Ext∗,∗P∗
(Fp,Ext

∗
E∗
(Fp,Fp)).

One can prove this [Rav03, Thm. 4.4.4, A1.3.12] by doing a change-of-ring iso-
morphism along the map of Hopf algebroids (Gr∗(BP∗),Gr∗(BP∗BP)) → (Fp,P∗)
and noticing that Gr∗(BP∗) ∼= Ext⋆E∗

(Fp,Fp). Curiously enough, the E2-page of
the synthetic aNSS for X = SFp

corresponds to the E2-page of the C-motivic
Cartan Eilenberg spectral sequence associated to the extension of Hopf algebras
P∗[τ ]→ ABP

⋆ → E∗[τ ]:

Proposition 3.4.5. There is an isomorphism

Ext∗,∗,∗,∗
Gr∗(BP⋆BPFp )

(Gr∗(BP
Fp
⋆ ),Gr∗(BP

Fp
⋆ ))

∼=−→ Ext∗,∗,∗P∗[τ ]
(Fp[τ ],Ext

∗
E∗[τ ](Fp[τ ],Fp[τ ]))

sending λ to τ .

Proof. Consider the composition of maps

(Gr∗(BP
Fp
⋆ ),Gr∗(BP⋆BP

Fp))
∼=−→ (Gr∗(BP∗)[λ],Gr∗(BP∗BP)[λ])

−→ (Fp[λ],P∗[λ])
∼=−→ (Fp[τ ],P∗[τ ])

of Hopf algebroids, where the last map changes coordinates from λ to τ . By change-
of-rings [Rav03, A1.3.12], we get isomorphisms

Ext∗,∗,∗,∗
Gr∗(BP⋆BPFp )

(Gr∗(BP
Fp
⋆ ),Gr∗(BP

Fp
⋆ )) ∼= Ext∗,∗,∗P∗[τ ]

(Fp[τ ],Gr∗(BP∗)[τ ])

∼= Ext∗,∗,∗P∗[τ ]
(Fp[τ ],Ext

∗
E∗[τ ](Fp[τ ],Fp[τ ]))
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where the last isomorphism follows from the fact that

Gr∗(BP∗)[τ ] ∼= Ext∗E∗
(Fp,Fp)[τ ]

∼= Ext∗E∗[τ ](Fp[τ ],Fp[τ ]).

□

Remark 3.4.6. The result of this and [BX23, Thm. 2.8] is that we (almost) have
a Miller square-type diagram of spectral sequences

Ext∗,∗,∗Gr∗(BP∗BP)(Gr∗(BP∗),Gr∗(BP∗))[λ] Ext∗,∗P∗
(Fp,Ext

∗
E∗
(Fp,Fp))[τ ]

Ext∗,∗,∗
BP⋆BPFp (BP

Fp
⋆ ,BPFp

⋆ ) Ext∗,∗,∗ABP
⋆

(Fp[τ ],Fp[τ ])

π⋆(SFp) π⋆(SBP)

∼=

λ−BSS τ−BSS

BPFp−Adams SS FBP
p −Adams SS

This fails to be a Miller square because SFp ∈ SynFp
and SBP ∈ SynBP are in

different categories of synthetic spectra. However, we conjecture this could be
remedied by considering both objects in a category of bisynthetic spectra which
simultaneously deforms the BPFp - and FBP

p -Adams spectral sequences. The authors
intend to produce a model for such a category in future work.

4. Adams spectral sequences for SE/τ-modules

Let R be a ring spectrum and let E be an Adams-type homology theory. In this
section we characterize the νE(R)-based Adams spectral sequence for SE/τ in SynE
and identify it in a more familiar form in the case where (E∗, E∗E) is a Hopf algebra.

Proposition 4.1. The νE(R)-Adams spectral sequence for νEX/τ in SynE is iso-
morphic to the E∗R-Adams spectral sequence for E∗X in StableE∗E .

Proof. The νE(R)-based Adams spectral sequence in SynE is given by applying the
functor HomSynE

(νE(S),−) to the Moore complex for the cosimplicial resolution

∆→ SynE

n 7→ νX ⊗ νR⊗n+1.

Recall that (−)/τ is symmetric monoidal colimit preserving functor from SynE to
StableE∗E with νE(X)/τ ∼= E∗X [Pst22]. So (−)/τ sends the synthetic νE(R)-
Adams resolution to the cosimplicial resolution

∆→ StableE∗E

n 7→ E∗X ⊗ E∗R
⊗n+1

associated to the E∗R-Adams spectral sequence for E∗X in StableE∗E . □

Let Γ be a Hopf algebra over a commutative ring k and let Γ→ Σ be a surjection of
Hopf algebras for which the map Φ := Γ□Σk → Γ is a map of Γ-comodule algebras.
In [BR21] Bruner-Rognes describe a Cartan-Eilenberg type spectral sequence for
such a (not necessarily conormal) Hopf extension Φ → Γ → Σ which they call the
Davis-Mahowald spectral sequence. This spectral sequence was first developed by
Davis-Mahowald where they use it to compute ExtA(2)(M,F2) for A(2)-modules M
using the Davis-Mahowald spectral sequence for the non-normal map A(1)→ A(2)
of Hopf algebras.
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Proposition 4.2 ([Bel20]). If Φ is a Γ-comodule algebra and M is a Γ-comodule
then the Φ-based Adams spectral sequence converging to ExtΓ(k,M) in Stable(Γ)
coincides with the Davis-Mahowald spectral sequence for the Hopf extension Φ →
Γ→ Σ starting at E1-page which has the form

ExtΣ(k,Φ
⊗s⊗M)

where Φ is the coaugmentation ideal. If ExtΣ(k,Φ) is flat as a ExtΣ(k, k)-module
then the E2-page has the form

ExtExtΣ(k,Φ)(ExtΣ(k, k),ExtΣ(k,M))

Remark 4.3. In the category of stable comodules, ExtΓ(M,N) is given as the
homotopy groups of the mapping spectrum between M and N . In analogy with
stable homotopy theory, one might rewrite the E2-page above more recognizably as
Extπ⋆Φ(π⋆(k), π⋆(M)).

Proposition 4.4 ([Bel20]). For Φ→ Γ→ Σ a Hopf extension, the Davis-Mahowald
spectral sequence for Φ → Γ → Σ is isomorphic to the spectral sequence given by
filtering the cobar complex on Γ by

filsCn
Γ = {a1| · · · |an ∈ Cn

Γ : #[(a1, ..., an) ∩G] ≥ s}
for G = ker(Γ→ Σ).

Example 4.5. The νF2
(BP)-Adams spectral sequence for SF2

/λ in SynF2
is iso-

morphic to the Cartan-Eilenberg spectral sequence for the conormal extension

F2[ζ
2
1 , ζ

2
2 , ...]→ F2[ζ1, ζ2, ...]→ E(ζ1, ζ2, ...).

Example 4.6. The νF2
(ko)-Adams spectral sequence for νF2

(tmf)/λ in SynF2
is

isomorphic to the Davis-Mahowald spectral sequence for the Hopf extension

A(2)∗□A(1)∗F2 → A(2)∗ → A(1)∗.

Example 4.7. The νF2(tmf)-Adams spectral sequence for SF2/λ in SynF2
is iso-

morphic to the Davis-Mahowald spectral sequence for the Hopf extension

A∗□A(2)∗F2 → A∗ → A(2)∗.

Example 4.8. The νF2
(Z)-Adams spectral sequence for νF2

(ko)/λ in SynF2
is iso-

morphic to the Davis-Mahowald spectral sequence for the Hopf extension

A(1)∗□A(0)∗F2 → A(1)∗ → A(0)∗.

5. Twisted t-structures of Stable ∞-Categories

Let C be a stable ∞-category with a compact object K. By a twist of C we mean
an automorphism F : C → C. We will notate by Σn,m : C → C the composition
Σn◦Fm. Note that Σn,m will preserve compact objects for all n,m as a composition
of autoequivalences.

Definition 5.1. We say that C is generated by K under bigraded suspensions if
the smallest subcategory of C containing Σn,mK for all n,m ∈ Z and closed under
colimits is C itself.

Remark 5.2. We will mostly be working with cellular subcategories where the
generation assumption is forcibly imposed.

The goal of this section is to construct a “twisted” t-structure on C whose connective
part is detected by the mapping groups [Σn,mK,−]. To this end, fix C, F,K as
described above such that K generates under colimits and put

C≥0 = {X ∈ C | [Σn,mK,X] = 0 whenever n+m < 0}.
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Lemma 5.3. The category C≥0 is the connective part of a t-structure on C as soon
as K ∈ C≥0.

Proof. Write C′≥0 for the closure of the objects Σn,mK, n+m ≥ 0 in C under colimits
and extensions. We claim that C′≥0 ≃ C≥0. Having shown this, the lemma follows
from [Lur17, p. 1.4.4.11]. To prove the equivalence, first observe that C≥0 contains
all of the Σn+mK for n + m ≥ 0. To prove it is closed under colimits it suffices
to show it is closed under arbitrary coproducts and cofibers. For the former, finite
coproducts are immediate. Because all coproducts are filtered colimits of finite
coproducts, we have all coproducts by the compactness of K. That we have all
cofibers follows from the induced long exact sequence. Closure under extensions
follows similarly. As a result we have C′≥0 ⊂ C≥0. To conclude it suffices to show
that the latter category is generated under colimits by the same shifts of K. We
note that C being generated by the shifts is equivalent to asking that X → Y is an
equivalence if and only if the induced

Map(Σn,mK,X)→ Map(Σn,mK,Y )

is an equivalence of spaces for all n,m. Replacing mapping spaces by mapping
spectra it suffices to check that

MapSp(Σ0,mK,X)→ MapSp(Σ0,mK,Y )

is an equivalence for all m. But πkMapSp(Σ0,mK,X) = π0MapSp(Σk,mK,X) so
that it suffices to check for an isomorphism on the mapping groups [Σk,mK,−]. For
X,Y connective, the latter only depends on those where k +m ≥ 0. □

Definition 5.4. The (K,F )-twisted t-structure on C is the t-structure with con-
nective part C≥0 as described above.

In practice, we will drop K,F from the notation. We wish to use twisted t-structures
to apply the nilpotent completion results of [Man21] and for defining deformations
in Section 2.5. The remainder of this section will work to verify his assumptions
laid out in Section 2.1.1 of loc. cit.

Lemma 5.5. The (K,F )-twisted t-structure is left and right complete; i.e., for all
X we have X ≃ limn τ≤nX ≃ colimn τ≥nX.

Proof. By [Lur17, p. 1.2.1.19] it suffices to show that the only object in C≤∞ :=
∩nC≥n is 0. But due to colimit generation, an object X is 0 as soon as [Σn,mK,X] =
0 for all n,m as shown in the proof of Lemma 5.3. The analogous argument applies
for right completeness. □

Lemma 5.6. The truncations τ≥n(−) in the (K,F )-twisted t-structure commute
with filtered colimits.

Proof. Given a filtered diagram Xα we see that the compactness of K implies
that colim τ≥nXα → τ≥n colimXα induces equivalences on [Σn,mK,−] which detect
equivalences as they detect 0. □

We now specialize to the case that C is presentably symmetric monoidal with com-
pact unit and K = 1.

Lemma 5.7. The (K,F )-twisted t-structure on C is multiplicative; i.e., if X ∈ C≥a

and Y ∈ C≥b then X ⊗ Y ∈ C≥a+b.

Proof. The functor − ⊗ Y preserves all colimits and the categories C≥k are closed
under colimits, so that we may reduce to checking on the shifts Σn,mK ⊗ Y for
n+m = b where the claim is clear. □
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Remark 5.8. We will use an extension of the arguments above to the case where C
requires more compact generators than are being used in the t-structure. Suppose
C is generated by objects Σn,m,kK, where m corresponds to twists by the functor F
above and k denotes twists by some new commuting automorphism and the shifts
Σ0,0,kK ∈ C≥0. Then we may run the same arguments as above, replacing mapping
objects with their graded versions in the third shift as necessary.

For computing nilpotent completions in Stable(Γ)cell and SyncellE via Appendix A,
we need to identify the heart of the t-structure of Definition 5.4. The Ext groups
of an object X in the heart vanish except for Extt,tΓ (A,X) or Extt,t,∗Γ (A,X) with
t ∈ Z, depending on whether Γ is graded or bigraded. We first describe notation
for a graded version of these Ext groups when X = A:

Definition 5.9. Let Extt=s
Γ and Extt=s,∗

Γ denote the respective graded and bigraded
rings defined by

(Extt=s
Γ )t = Extt,tΓ (A,A),

(Extt=s,∗
Γ )t,w = Extt,t,wΓ (A,A)

depending on whether Γ is graded or bigraded.

We can identify the heart in terms of Extt=s
Γ -mod and Extt=s,∗

Γ -mod in the case
where the unit A is connective:

Theorem 5.10. Suppose (A,Γ) is a graded or bigraded Hopf algebroid such that
A ∈ Stable(Γ)≥0. Then the functors

Ext∗,∗Γ (A,−) : (Stable(Γ)cell)♡ → Extt=s
Γ -mod

Ext∗,∗,∗Γ (A,−) : (Stable(Γ)cell)♡ → Extt=s,∗
Γ -mod

are equivalences of ∞-categories, where Extt=s
Γ -mod and Extt=s,∗

Γ -mod are consid-
ered as discrete ∞-categories.

To prove this we follow the strategy of [GWX21, Section 3], by showing that
Ext∗,∗Γ (A,−) is fully faithful (Lemma 5.12) and essentially surjective (Lemma 5.13).
To do so, we first need a version of the universal coefficient spectral sequence in
Stable(Γ)cell as a technical tool:

Lemma 5.11. Let π∗,∗ denote Ext−∗,∗
Γ and π∗,∗,∗ denote Ext−∗,∗,∗

Γ . For any

X,Y ∈ Stable(Γ)cell,

there is a conditionally convergent spectral sequence with E2-page

Es,t,w
2 = Exts,t,wπ∗,∗A

(π∗,∗(X), π∗,∗(Y )),

Es,t,w,v
2 = Exts,t,w,v

π∗,∗,∗A
(π∗,∗,∗(X), π∗,∗,∗(Y )).

and differentials

dr : Es,t,w
r → Es+r,t+r−1,w

r ,

dr : Es,t,w,v
r → Es+r,t+r−1,w,v

r ,

converging to either [Σt−s,wX,Y ]Stable(Γ)cell or [Σt−s,w,vX,Y ]Stable(Γ)cell .

Proof. The proof is identical in both cases, we will record the bigraded version. The
proof follows [EKMM97, Thm. IV.4.5] and the subsequent [DI10] almost identically.
Namely, we put K−1 = X and define Ki to be the fiber of a map Fi → Ki−1 where
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Fi is a free A-module and the map is surjective on homotopy. The result is a free
resolution of π∗,∗X by the π∗,∗Fi and a tower in Stable(Γ)cell

X X K0 K1 K2 ...

0 F0 ΣF1 Σ2F2 Σ3F3

.

After applying the spectral mapping functor MapSpStable(Γ)(−, Y ) we observe that the

E1-page will be given by π∗,∗MapSpStable(Γ)(Fi, Y ) split as sums of shifts of π∗,∗Y and
the E2-page is identified with Ext as in [EKMM97]. For conditional convergence,
we observe, as in [DI10], that the colimit of the above tower is contractible as it
has vanishing homotopy and is cellular by construction. □

Our main use of Lemma 5.11 is to prove that Ext∗,∗Γ (A,−) is fully faithful:

Lemma 5.12. Suppose (A,Γ) is a graded or bigraded Hopf algebroid such that
A ∈ Stable(Γ)≥0. Then the functors

Ext∗,∗Γ (A,−) : (Stable(Γ)cell)♡ → Extt=s
Γ -mod

Ext∗,∗,∗Γ (A,−) : (Stable(Γ)cell)♡ → Extt=s,∗
Γ -mod

are fully faithful.

Proof. We first note that for X,Y ∈ (Stable(Γ)cell)♡ and n > 0,

Homπ∗,∗A(π∗,∗(Σ
n,0X), π∗,∗(Y )) = 0 = HomExtt=s

Γ
(π∗,∗(Σ

n,0X), π∗,∗(Y )),

Homπ∗,∗,∗A(π∗,∗,∗(Σ
n,0,0X), π∗,∗,∗(Y )) = 0 = HomExtt=s,∗

Γ
(π∗,∗,∗(Σ

n,0,0X), π∗,∗,∗(Y )),

for degree reasons. Whenever n = 0,

Homπ∗,∗A(π∗,∗(X), π∗,∗(Y )) ∼= HomExtt=s
Γ

(π∗,∗(X), π∗,∗(Y )),

Homπ∗,∗,∗A(π∗,∗,∗(X), π∗,∗,∗(Y )) ∼= HomExtt=s,∗
Γ

(π∗,∗,∗(X), π∗,∗,∗(Y )),

by the assumption that X and Y are in the heart. So to show fully faithful, it
suffices to show that

[Σn,0X,Y ]Stable(Γ)cell → Homπ∗,∗A(π∗,∗(Σ
n,0X), π∗,∗(Y )),

[Σn,0,0X,Y ]Stable(Γ)cell → Homπ∗,∗,∗A(π∗,∗,∗(Σ
n,0,0X), π∗,∗,∗(Y )),

is an isomorphism for n ≥ 0. Whenever n > 0, both sides are equal to 0 since X
and Y are assumed to be in the heart.

To show it’s an isomorphism whenever n = 0, we use the spectral sequence of
Lemma 5.11. Note that Et,t,0

1 and Et,t,0,0
1 for t ≥ 0 are the respective E1-page

degrees which compute the bigraded and trigraded versions of [X,Y ]Stable(Γ)cell .
Since we assume that A is connective, we can choose a free resolution such that
πa,b(Σ

t,0Fs) and πa,b,c(Σ
t,0,0Fs) vanish for a+ b− t < 0. For t > 0,

Et,t,0
1 = Homπ∗,∗A(π∗,∗Σ

t,0Ft, π∗,∗Y )

Et,t,0,0
1 = Homπ∗,∗,∗A(π∗,∗,∗Σ

t,0,0Ft, π∗,∗,∗Y )

are both 0 for degree reasons since Y is in the heart. Then the E1-page is concen-
trated in t = 0 and, for degree reasons, the differentials entering and exiting E0,0,0

1

and E0,0,0,0
1 are 0. Hence the edge homomorphisms

[X,Y ]Stable(Γ)cell → Homπ∗,∗A(π∗,∗(X), π∗,∗(Y ))

[X,Y ]Stable(Γ)cell → Homπ∗,∗,∗A(π∗,∗,∗(X), π∗,∗,∗(Y ))

are isomorphisms, which finishes the proof. □
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Lemma 5.13. The functors

Ext∗,∗Γ (A,−) : (Stable(Γ)cell)♡ → Extt=s
Γ -mod

Ext∗,∗,∗Γ (A,−) : (Stable(Γ)cell)♡ → Extt=s,∗
Γ -mod

are essentially surjective.

Proof. We just need to show that every M ∈ Extt=s
Γ -mod or M ∈ Extt=s,∗

Γ -mod
can be realized as the homotopy of an object in (Stable(Γ)cell)♡. Note that the Ext
groups of the unit F := π♡

0 (A) ∈ (Stable(Γ)cell)♡ satisfy

Ext∗,∗Γ (A,F ) ∼= Extt=s
Γ ,

Ext∗,∗,∗Γ (A,F ) ∼= Extt=s,∗
Γ .

If we have a free resolution of M

· · · → F2 → F1 → F0 →M → 0,

then by taking wedges of F ∈ (Stable(Γ)cell)♡, each Fi can be realized as the
homotopy of an object Zi ∈ (Stable(Γ)cell)♡. By Lemma 5.12, the map F1 → F0

can be realized as Ext groups applied to a map of stable comodules Z1 → Z0.
Consider the cofiber X1 of this map. Its Ext groups satisfy

∞⊕
s=−∞

Exts−k,s
Γ (A,X1) =


coker(F1 → F0) = M, k = 0

ker(F1 → F0) k = 1

0 otherwise,

∞⊕
s=−∞

Exts−k,s,∗
Γ (A,X1) =


coker(F1 → F0) = M, k = 0

ker(F1 → F0) k = 1

0 otherwise.

Then the Ext groups of the truncation τ≤0X1 are exactly isomorphic to M , which
finishes the proof. □

We can imitate the above lemmas and proofs in SyncellE to compute the heart
(SyncellE )♡. We produce the statements without proof, as their proofs are very
similar to those in Stable(Γ)cell:

Lemma 5.14. For any X,Y ∈ SyncellE , there is a conditionally convergent spectral
sequence with E2-page

Es,t,w
2 = Exts,t,wπ∗,∗SE (π∗,∗(X), π∗,∗(Y ))

and differentials
dr : Es,t,w

r → Es+r,t+r−1,w
r

converging to [Σt−s,wX,Y ]Syncell
E

.

Theorem 5.15. The functor

π∗,∗ : (SyncellE )♡ → π0,∗SE-mod

is fully faithful and essentially surjective; i.e. it is an equivalence of ∞-categories.

Remark 5.16. The above result is also shown in [CD24, Theorem 2.2] using Barr-
Beck and monadicity techniques.

We finish this section with a few relevant examples:
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Example 5.17. Suppose (A,Γ) = (Fp,A∗), the dual Steenrod algebra at a prime
p. Note that Stable(A∗)

cell = Stable(A∗) by [HPS97, Thm. 2.3.1]. By a classical
calculation,

Extt,tA∗
(Fp,Fp) = Fp{ht

0}

with t ≥ 0 and h0 ∈ Ext1,1A∗
(Fp,Fp), and the module action corresponds to multi-

plication by powers of h0. Hence

Stable(A∗)
♡ = Fp[h0]-mod,

where we consider Fp[h0] as a graded polynomial ring with |h0| = 1.

Example 5.18. Suppose (A,Γ) = (BP∗,BP∗BP) at a prime p. Note that

Stable(BP∗BP)
cell = Stable(BP∗BP)

by [Hov04, Cor. 6.7]. By a classical calculation,

Extt,tBP∗BP(BP∗,BP∗) =

{
Z(p), t = 0

0, otherwise.

Hence we have that
Stable(BP∗BP)

♡ = (Z(p)-mod)gr.

Example 5.19. Suppose (A,Γ) = (Fp[τ ],ABP
⋆ ) is the BP-synthetic dual Steenrod

algebra at a prime p. This is isomorphic to the C-motivic dual Steenrod algebra
Amot

⋆ up to a doubling of the weight [Pst22]. Then we have

Extt,t,∗ABP
⋆

(Fp[τ ],Fp[τ ]) = Fp[τ ]{ht
0}

with t ≥ 0 and h0 ∈ Ext1,1,0ABP
⋆

, and the module action corresponds to multiplication
by powers of τ and h0. Hence

(Stable(ABP
⋆ )cell)♡ = Fp[τ, h0]-mod,

where we consider Fp[τ, h0] as a bigraded polynomial ring with |τ | = (0,−1) and
|h0| = (1, 0).

Example 5.20. Suppose (A,Γ) = (BPFp
⋆ ,BP⋆BP

Fp) from Section 3 at a prime
p. By Theorem 3.4.4 and the fact that there are no algebraic Novikov spectral
sequence differentials at stem 0, we have that

Extt,t,∗
BP⋆BPFp (BP

Fp
⋆ ,BPFp

⋆ ) =

{
Z(p)[λ], t = 0

0, otherwise.

Hence we have that

(Stable(BP⋆BP
Fp)cell)♡ = Z(p)[λ]-mod,

where we consider Z(p)[λ] as a bigraded polynomial ring with |λ| = (0,−1).

Example 5.21. Consider the category SyncellBP = SynBP of BP-synthetic spectra
with parameter τ . By the classical calculations of Extt=s

BP∗BP = Z(p) and π0S = Z,
we see that

π0,∗(SBP)
∧
τ
∼= Z(p)[τ ],

π0,∗SBP[τ
−1] ∼= Z[τ±1],

π0,∗(SBP)
∧
τ [τ

−1] ∼= Z(p)[τ
±1].



26 JAKE FRANCIS BAER, MAXWELL JOHNSON, AND PETER MAREK

In the fracture square

SBP (SBP)
∧
τ

SBP[τ
−1] (SBP)

∧
τ [τ

−1]

there are no contributions from π1,∗ in the associated long exact sequence of homo-
topy groups so that π0,∗SBP

∼= Z[τ ] and Syn♡BP = Z[τ ]-mod.

Remark 5.22. Interestingly enough, the unit SBP ∈ SynBP is not connective in
this t-structure. Via the long exact sequence in homotopy applied to the fracture
square in Example 5.21, one can calculate that

π−1,wSBP
∼=

{
0, w ≤ 0

Z(p)/Z, w > 0

and τ : π−1,w+1SBP → π−1,wSBP is an isomorphism for w ≥ 1. In particular, each
generator of π−1,w for w ≥ 1 is infinitely τ -divisible. We thank Robert Burklund
for pointing this out to us.

Remark 5.23. The unit SBP ∈ SynBP does become connective if you instead
consider the τ -completion (SBP)

∧
τ ≃ (SBP)(p) or the p-completion (SBP)

∧
p . We

thank William Balderrama for pointing this out to us.

Example 5.24. Consider the category SyncellFp
= SynFp

of Fp-synthetic spectra with
parameter λ. An application of [BHS19, Thm. 9.19] together with the calculations
Extt=s

A∗
= Fp[h0] and π0S = Z gets us

π0,∗(SFp
)∧λ
∼= Z∧

p [λ, h]/(λh = p),

π0,∗SFp
[λ−1] ∼= Z[λ±1],

π0,∗(SFp
)∧λ [λ

−1] ∼= Z∧
p [λ

±1],

where h maps to h0 modulo λ. Again, there are no contributions from π1,∗ in the
long exact sequence of homotopy groups associated with the fracture square. Hence

π0,∗SFp
∼= Z[λ, h]/(λh = p)

and
Syn♡Fp

= Z[λ, h]/(λh = p)-mod.

Remark 5.25. One can check that for SFp ∈ SynFp
, πk,∗SFp = 0 for k < 0 so that,

in fact, SFp
is connective in this t-structure. See Lemma A.4.2.

6. Deformations of Stable Comodule Categories

In this section, we explore deformations of Stable(A∗) and Stable(BP∗BP) associ-
ated with the Cartan-Eilenberg spectral sequence for the extension P∗ → A∗ → E∗
and the algebraic Novikov spectral sequence respectively and identify them with
categories of stable comodules over ABP

∗ and BP⋆BP
Fp . Before doing so, we briefly

review the two spectral sequences.

Let (A,Γ) be a Hopf algebroid and let Comod(Γ) denote its 1-category of comodules.
A comodule C is said to be an extended comodule if it is isomorphic to one of the
form Γ⊗AM for some A-module M . A comodule is said to be a relative injective if
it is a summand of an extended comodule [Rav03, Def. A1.2.7]. Given a comodule
C, a relative injective resolution of C is a long exact sequence

0→ C → C0 → C1 → C2 → ...
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which is split-exact over A and such that all of the Ci are relative injectives. Such
a resolution always exists: one can take the cobar complex

Ci = Γ⊗ Γ̄⊗i ⊗ C

where Γ̄ is the kernel of the augmentation Γ→ A. Given such a C∗ resolving C, the
inclusion Comod(Γ) ↪→ Stable(Γ) of the 1-category of Γ-comodules into Stable(Γ)
as complexes concentrated in degree 0 induces an equivalence C ≃ C∗. As a result,
given any filtration

C∗ ← fil1C∗ ← fil2C∗ ← fil3C∗ ← ...

of the resolution by chain complexes Cj
∗ yields a filtration of C in Stable(Γ). As

is explained in Section 9 of [GWX21], when (A,Γ) = (BP∗,BP∗BP) we may form
the algebraic Novikov spectral sequence as the spectral sequence associated to the
filtration by powers of the ideal I = (p, v1, v2, ...). Explicitly, we put:

(filjC∗)i = Ij−iCi

where C∗ is the cobar complex resolution of BP∗. The authors of [GWX21] proceed
to prove that the Fp

BP-Adams spectral sequence for the cofiber of τ is isomorphic to
the algebraic Novikov spectral sequence, which is isomorphic to the H∗BP-Adams
spectral sequence in Stable(BP∗BP), by demonstrating that this tower of objects
satisfies an axiomatic definition of an Adams resolution in Stable(BP∗BP)[GWX21,
Definition 9.1].

A similar story can be told for the classical CESS. The CESS may be similarly
constructed by taking the cobar resolution C∗ of Fp over A∗ and filtering it by:

(filjC∗)i = Ij−iCi

where

(2) I =

{
(ξ21 , ξ

2
2 , ξ

2
3 , ...) p = 2

(ξ1, ξ2, ξ3, ...) p > 2

generates the positive degree part of the even dual Steenrod algebra. In the same
way, we get a resolution in Stable(A∗) for Fp. From this point of view, both spectral
sequences have a unified construction coming from the Thom reduction BP→ Fp.
Let P∗ := H∗BP. Taking BP-homology, we get the map BP∗BP → P∗. For the
algebraic Novikov, the ideal I = (p, v1, v2, . . .) above is the BP∗-module kernel of
this morphism of Hopf algebras. Taking Fp-homology, we get the map P∗ → A∗.
For the Cartan-Eilenberg one instead looks at the extension of Hopf algebras:

P∗ → A∗ → E∗

where E∗ is exterior on either the ξi (p = 2) or the τi (p > 2). Then the ideal I in
2 is the Fp-module kernel of the second map.

We now proceed to study the promised deformations. In Section 2.3, we recall
how one can associate to an R-Adams spectral sequence in a presentably symmet-
ric monoidal stable ∞-category C with t-structure a deformation AdR(C), closely
related to synthetic spectra when C = Sp. We will make use of the results and
notation of the appendix freely in this section. For a category C with p-completion
(−)∧p , we copy the notation of [BHS20] and write Cip := Mod(C;1∧

p ).

The main results of this section are the identification of two deformations:
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Theorem 6.1 (Cartan-Eilenberg Deformation). There is a Stable(A∗)-linear equiv-
alence of presentably symmetric monoidal stable ∞-categories:

Stable(ABP
⋆ )cell ≃ AdP∗(Stable(A∗)).

with parameter τ whose generic fiber recovers Stable(A∗) and whose special fiber
is given by:

Mod(Stable(ABP
⋆ )cell;Fp[λ]/λ) ≃ Mod(Stable(A∗)

Gr; Gr∗ΓP∗Fp)

where the graded object on the right has homotopy groups isomorphic to ECESS
2 .

Theorem 6.2 (Algebraic Novikov Deformation). There is a Stable(BP∗BP)-linear
equivalence of presentably symmetric monoidal stable ∞-categories:

Stable(BP⋆BP
Fp)cellip ≃ AdP∗(Stable(BP∗BP)).

with parameter λ whose generic fiber recovers Stable(BP∗BP)ip and whose special
fiber is given by:

Mod(Stable(BP⋆BP
Fp)cellip ; (BPFp

⋆ )∧p /τ) ≃ Mod(Stable(BP∗BP)
Gr; Gr∗ΓP∗(BP∗))

where the graded object on the right has homotopy groups isomorphic to EaNSS
2 .

Remark 6.3. After proving the categorical equivalences above, the remainder of
the claims in the above theorems will follow immediately from [BHS20, Prop. C.2].

The above result implicitly requires a t-structure to define the Adams deformations,
which we defined in Section 5. The proof of both results occurs in two stages,
using the technology of [BHS20]. We first demonstrate that both categories are
examples of 1-parameter deformations pairs [BHS20]. Before the proofs, we explain
the following corollaries:

Corollary 6.4. In Stable(ABP
⋆ ), there is a coifber sequence

ΓP∗Fp
τ−→ ΓP∗Fp

i−→ ΓP∗Fp/τ
q1−→ ΣΓP∗Fp

such that the map (q1)⋆ on trigraded homotopy groups induces a map from the E2-
page of the Cartan-Eilenberg spectral sequence to the E2-page of the Fp

BP-Adams
spectral sequence. If x ∈ π∗,∗,∗ΓP∗Fp/τ survives until the Er-page, then x supports
a nonzero differential dCE

r (x) = y if and only if (q1)⋆(x) is detected by −τ r−1y.

Corollary 6.5. In the sequence

ΓP∗BP∗
λ−→ ΓP∗BP∗

i−→ SFp
/λ

q2−→ ΣΓP∗BP∗

the map (q2)⋆ on trigraded homotopy groups induces a map from the E2-page of
the algebraic Novikov spectral sequence to the E2-page of the BPFp -Adams spectral
sequence. If x survives until the Er-page, then x supports a nonzero differential
daNr (x) = y if and only if (q2)⋆(x) is detected by −λr−1y.

Proof of Corollaries 6.4 and 6.5. The categorical equivalences of Theorems 6.1 and
6.2 identify the filtered objects and spectral sequences associated with the objects
in the cofiber sequence. The result then follows from Lemma 2.7.1. □

The above results are used computationally in Section 7. By work of [IWX20a],
[IWX22], the map (q1)⋆ and the aNSS differentials for the sphere were determined
up to stem 110 for p = 2. This allows us to determine the map (q2)⋆ and the CESS
differentials for the sphere up to stem 45.
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We now set about proving the theorems, relying heavily on the machinery discussed
in Section 2.6 originally due to [BHS20]. Our first goal is to prove that the pairs

(Stable(A∗),Stable(ABP
⋆ )cell)

(Stable(BP∗BP),Stable(BP⋆BP
Fp)cell)

are deformation pairs. Define the following morphisms of Hopf algebroids:

ιFp
: A∗ → ABP

⋆

ξi 7→ τ (2
k+1−2)τi−1 (p = 2)

ξi 7→ τ (2p
k−2)bi τi 7→ τ (2p

k−2)τi (p > 2)

ιBP : BP∗BP→ BP⋆BP
Fp

vi 7→ τ2p
i−1vi ti 7→ τ2p

i−2ti

constructed so that we may upgrade them to bigraded homomorphisms after giv-
ing the singly-graded objects bigradings of the form n 7→ (n, 0). These induce
symmetric monoidal left adjoints of stable comodule categories

cFp : Stable(A∗)→ Stable(ABP
⋆ )cell

cBP : Stable(BP∗BP)→ Stable(BP⋆BP
Fp)cell.

via [Hov04, Prop. 2.2.1, Prop. 5.3.1].

Remark 6.6. These particular morphisms of Hopf algebroids were chosen so that
cFp

(Σs,tFp) = Σs,t,0Fp[τ ] and cBP(Σ
s,tBP∗) = Σs,t,0BPFp

⋆ .

The functors Re can be constructed straightforwardly by inverting λ, τ on the ap-
propriate synthetic Hopf algebroids and taking the sub comodules concentrated in
second degree 0, whence the functors ReFp and ReBP. That the functors cFp , cBP

are sections of the realizations follows from the fact that all of these adjoints are
determined by their actions on graded comodules which can be computed explicitly.

We will write iFp
and iBP for the homomorphisms out of Z which send an integer

n to the invertible graded comodules Σ0,0,nFp[τ ] and Σ0,0,nBPFp
⋆ respectively. It

is easy to see that these realize to the appropriate monoidal units Fp and BP∗. It
remains to show the final two axioms of the deformation pair. Here we will solve
the problem of generation by passing to cellular subcategories.

Remark 6.7. Note that Stable(BP⋆BP
Fp)cell and Stable(ABP

⋆ )cell are exactly gen-
erated under colimits by the compact dualizable objects

{Σl,m,01⊗ i(n) | l,m, n ∈ Z}

where i = iBP or iFp
respectively, by definition, so that we have the required

generation statements in the definition of a deformation pair.

Remark 6.8. It seems plausible to us that, as with their more classical analogs
Stable(A∗) and Stable(BP∗BP), the synthetic stable comodules categories are al-
ready cellular. We do not pursue this question here.

Lemma 6.9. The realization functor induces an equivalence:

Map(i(n), i(m))→ Map(1,1)

whenever n ≤ m, i = iBP or iFp , and 1 is either Fp or BP∗
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Proof. The objects i(n) live in the heart, the inclusion of which is fully faithful, so
that the claim can be checked in the 1-category of comodules. □

So far we have confirmed the following:

Corollary 6.10. The pairs of categories

(Stable(A∗),Stable(ABP
⋆ )cell)

(Stable(BP∗BP),Stable(BP⋆BP
Fp)cell)

are deformation pairs.

It now remains to compute the functor i∗ described above. Our approach is similar
to the computation [BHS20, Example C.22]. As in loc. cit., we introduce a p-
completion in the case of BP∗BP. In fact, a completion is used for both results,
and the A case happens to already have a complete unit. The point is that i∗
preserves limits, and so we can commute past it the totalization involved in a
nilpotent completion. This simplifies the computation as we instead work with a
cosimplicial object in terms of P.

For a commutative ring object R, let R•+1 denote the cosimplicial object with
Rn+1 = R⊗(n+1) and coface maps induced by the unit 1 → R. We first identify
two nilpotent completions.

Proposition 6.11. Consider the unit Fp[τ ] ∈ Stable(ABP
⋆ ) and the commutative

ring object
P∗[τ ] = π∗,∗νBP(Fp ⊗ BP) ∈ Stable(ABP

⋆ ).

There is an equivalence

Fp[τ ]
≃−→ (Fp[τ ])

∧
P∗[τ ]

≃ Tot(P∗[τ ]
•+1).

Proof. This is Proposition A.3.6 for X = Fp[τ ]. □

Proposition 6.12. Consider the unit BPFp
⋆ ∈ Stable(BP⋆BP

Fp) and the commu-
tative ring object

P∗[λ] = π∗,∗νFp
(Fp ⊗ BP) ∈ Stable(BP⋆BP

Fp).

The map
BPFp

⋆ → (BPFp
⋆ )∧P∗[λ]

≃ Tot(P∗[λ]
•+1)

is a p-completion.

Proof. This is Corollary A.3.8. □

For the proofs of Theorem 6.1 and Theorem 6.2, we will need some computations
of particular Ext groups. As a reminder, the algebra structure of the BP-synthetic
dual Steenrod algebra ABP

⋆ [Pst22, Section 6.2] at a prime p is as follows:

ABP
⋆
∼=

{
F2[τ, b1, b2, . . . , τ0, τ1, . . .]/(τ

2
i = τ2bi+1), p = 2,

Fp[τ, b1, b2, . . .]⊗Fp ΛFp(τ0, τ1, . . .), p > 2,

where |bk| = (2pk − 2, 2pk − 2) and |τk| = (2pk − 1, 2pk − 2). Note that there is a
conormal extension of bigraded Hopf algebras

P∗[τ ]→ ABP
⋆ → E∗[τ ]

over Fp[τ ] with algebra structures

P∗[τ ] ∼= Fp[τ, b1, b2, . . .]
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for all primes p and

E∗[τ ] ∼=

{
F2[τ, τ0, τ1, . . .]/(τ

2
i ), p = 2

Fp[τ ]⊗Fp ΛFp(τ0, τ1, . . .), p > 2.

In particular, ABP
⋆ □E∗[τ ]Fp[τ ] ∼= P∗[τ ]. Then we have the following lemma:

Lemma 6.13. For m ≥ 0, there is an isomorphism of tri-graded commutative
Fp[τ ]-algebras

Ext∗,∗,∗ABP
⋆

(Fp[τ ],P∗[τ ]
⊗(m+1)) ∼= Fp[τ, a0, a1, . . .]⊗Fp[τ ] (Fp[τ, b1, b2, . . .])

⊗m

where |τ | = (0, 0,−1), |ai| = (1, 2pi − 1, 2pi − 2), and |bk| = (0, 2pk − 2, 2pk − 2).

Proof. This follows from a sequence of isomorphisms:

Ext∗,∗,∗ABP
⋆

(Fp[τ ],P∗[τ ]
⊗(m+1)) ∼= Ext∗,∗,∗ABP

⋆
(Fp[τ ], (ABP

⋆ □E∗[τ ]Fp[τ ])⊗ P∗[τ ]
⊗m)

∼= Ext∗,∗,∗E∗[τ ]
(Fp[τ ],P∗[τ ]

⊗m)

∼= Ext∗,∗,∗E∗[τ ]
(Fp[τ ],Fp[τ ])⊗Fp[τ ] P∗[τ ]

⊗m

∼= Ext∗,∗E∗
(Fp,Fp)[τ ]⊗Fp[τ ] P∗[τ ]

⊗m

where the second isomorphism follows from change-of-rings, the third isomorphism
follows because P∗[τ ]

⊗m is a trivial E∗[τ ]-comodule, and the last isomorphism fol-
lows by doing another change-of-ring isomorphism along the map (Fp[τ ], E∗[τ ]) →
(Fp, E∗) which kills τ and using the fact that Fp[τ ] = Fp ⊗ Z[τ ] is a trivial E∗-
comodule. Note we consider (Fp, E∗) to be bigraded by letting the weight of τi ∈ E∗
coincide with its weight in E∗[τ ]. The result then follows from the classical calcula-
tion

Ext∗,∗E∗
(Fp,Fp) ∼= Fp[a0, a1 . . .]

with degrees as above as in the statement of the lemma. □

Now we will prove an analogous calculation over the Hopf algebroid (BPFp
⋆ ,BP⋆BP

Fp)

from Section 3. Consider the BP⋆BP
Fp -comodule algebra P∗[λ] := νFp

(Fp⊗BP)⋆ ∼=
Fp[τ, t1, t2, . . .]:

Lemma 6.14. For m ≥ 0, there is an isomorphism of tri-graded commutative
Fp[λ]-algebras

Ext∗,∗,∗
BP⋆BPFp (BP

Fp
⋆ ,P∗[λ]

⊗(m+1)) ∼= (Fp[τ, t1, t2, . . .])
⊗m,

where |τ | = (0, 0,−1) and |tk| = (0, 2pk − 2, 2pk − 2).

Proof. We use the synthetic aNSS we constructed in Section 3.4 to compute this
Ext group. The E2-page of the synthetic aNSS for this example is

Ef,t,w,u
2 = Extf,t,w,u

Gr∗(BP∗BP)[λ](Gr∗(BP∗)[λ],Gr∗(P∗[λ]
⊗(m+1))).

We claim that for synthetic algebraic Novikov filtration u > 0, this Ext group
vanishes. This is because for P∗[λ], the ideal J = (h, v1, . . .) ⊂ BPFp

⋆ acts by zero.
Hence Gr∗(P∗[λ]

⊗(m+1)) ∼= P∗[λ]
⊗(m+1) and the synthetic aNSS collapses at E2,

giving us

Ext∗,∗,∗
BP⋆BPFp (BP

Fp
⋆ ,P∗[λ]

⊗(m+1)) ∼= Ext∗,∗,∗,0Gr∗(BP∗BP)[λ](Gr∗(BP∗)[λ],P∗[λ]
⊗(m+1))

∼= Ext∗,∗,∗P∗[λ]
(Fp[λ],P∗[λ]

⊗(m+1))

where the second isomorphism follows by change-of-ring along the morphism of
Hopf algebroids (Gr∗(BP∗)[λ],Gr∗(BP∗BP)[λ]) → (Fp[λ],P∗[λ]) which arises from
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killing off ai ∈ Gr∗(BP∗). These Ext groups vanish in positive filtration. Hence, as
a graded Fp[λ]-algebra

Ext∗,∗,∗
BP⋆BPFp (BP

Fp
⋆ ,P∗[λ]

⊗(m+1)) ∼= HomP∗[λ](Fp[λ],P∗[λ]
⊗(m+1))

∼= HomFp[λ](Fp[λ],P∗[λ]
⊗m)

∼= P∗[λ]
⊗m,

and the result follows. □

Notation 6.15. We write MapCD(X,Y ) for a C-enriched mapping object between
objects in D.

Proof of Theorem 6.1. Let i∗ : Stable(ABP
⋆ )cell → Stable(A∗)

fil be as guaranteed by
[BHS20, Prop. C.20]. For Y ∈ Stable(A∗), let Σn,t,wY denote the filtered object

...→ 0→ 0→ Σn,tY
id−→ Σn,tY → ...

which is 0 in filtered pieces > w. The left adjoint i∗ of i∗ satisfies:

i∗Σn,t,wY ≃ Σn,t,wi∗Y.

Let c! denote the right adjoint to cFp
. There is an identification:

c!Map
Stable(ABP

⋆ )

Stable(ABP
⋆ )

(X,Y ) ≃ Map
Stable(A∗)
Stable(ABP

⋆ )
(X,Y )

For X ∈ Stable(ABP
⋆ ) the nth filtered piece may be extracted as

(i∗X)n ≃ Map
Stable(A∗)
Stable(ABP

⋆ )
(i∗Σ0,0,nFp[τ ], X) ≃ Map

Stable(A∗)
Stable(ABP

⋆ )
(Σ0,0,nFp[τ ], X)

with connecting maps given by τ . Because i∗ preserves limits we will use Proposi-
tion 6.11 to reduce to:

i∗Fp[τ ] ≃ i∗(Tot(P∗[τ ]
•+1)) ≃ Tot(i∗(P∗[τ ]

•+1))

Let τ≥k denote the Whitehead truncation of the t-structure in Example 5.17. For
m ≥ 0, we have an identification

(i∗(P∗[τ ]
m+1))n ≃ Map

Stable(A∗)
Stable(ABP

⋆ )
(Σ0,0,nFp[τ ],P∗[τ ]

m+1)

We claim that (i∗(P∗[τ ]
m+1))n ∈ Stable(A∗)≥k so that there is a factorization of

the natural maps (i∗P∗[τ ]
m+1)n → Y (Pm+1

∗ )n = Pm+1
∗ in Stable(A∗) through the

Postnikov filtration τ≥nPm+1
∗ . This may be seen through an Ext computation:

π−f,t(i∗(P∗[τ ]
m+1)n) = [Σ−f,tFp, c

!(Map
Stable(ABP

⋆ )

Stable(ABP
⋆ )

(Σ0,0,nFp[τ ],P∗[τ ]
m+1))]Stable(A∗)

∼= [Σ−f,t,0Fp[τ ],Map
Stable(ABP

⋆ )

Stable(ABP
⋆ )

(Σ0,0,nFp[τ ],P∗[τ ]
m+1)]Stable(ABP

⋆ )

∼= Extf,t,nABP
⋆

(Fp[τ ],P∗[τ ]
⊗(m+1)).

By Lemma 6.13, we get that

π−∗,∗(i∗(P∗[τ ]
m+1)) ∼= Ext∗,∗E∗

(Fp,Fp)[τ ]⊗Fp[τ ] P∗[τ ]
⊗m,

which happens to coincide with the homotopy groups

π−∗,∗(τ≥∗Pm+1
∗ ) ∼= π−∗,∗(Pm+1

∗ )[τ ] ∼= Ext∗,∗A∗
(Fp,P⊗(m+1)

∗ )[τ ]

∼= Ext∗,∗E∗
(Fp,Fp)[τ ]⊗Fp[τ ] P∗[τ ]

⊗m,

whose generators live in Chow degree (t − f) − n = 0. The homotopy groups
π−f,t(i∗(P∗[τ ]

m+1)n) vanish for t− f < n and this guarantees a factorization

(i∗P∗[τ ]
m+1)∗ → τ≥∗Pm+1

∗

in Stable(A∗)
fil. Because Stable(A∗) = Stable(A∗)

cell, it suffices to check on homo-
topy that this map is an equivalence. The homotopy groups in question are τ -free,
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so we can check this after applying the realization functor Refil : Stable(A∗)
fil →

Stable(A∗). However, (i∗P∗[τ ]
m+1)∗ → τ≥∗Pm+1

∗ realizes to the identity Pm+1
∗ →

Pm+1
∗ , thanks to Lemma 5.5. This clearly induces an isomorphism on homotopy.

Hence we have equivalences of filtered objects

i∗(Fp[τ ]) ≃ Tot(i∗(P∗[τ ]
•+1)) ≃ Tot(τ≥∗(P•+1

∗ )),

and the result follows by applying [BHS20, Prop. C.20]. □

We now turn to the analogous result for Stable(BP⋆BP
Fp).

Proof of Theorem 6.2. Again we have a lax monoidal right adjoint

i∗ : Stable(BP⋆BP
Fp)cell → Stable(BP∗BP)

fil

and we wish to compute (i∗(BP
Fp
⋆ ))∧p ≃ i∗((BP

Fp
⋆ )∧p ). Similar to before, we have an

equivalence
(i∗X)n ≃ c!(Map

Stable(BP⋆BPFp )cell

Stable(BP⋆BPFp )cell
(Σ0,0,nBPFp

⋆ , X))

By Lemma 6.12 we have equivalences

i∗((BP
Fp
⋆ )∧p ) ≃ i∗(Tot(P∗[λ]

•+1)) ≃ Tot(i∗(P∗[λ]
•+1)).

To compute π∗,∗(i∗(P∗[λ]
m+1)) for m ≥ 0, we note that

π−f,t(i∗(P∗[λ]
m+1)n)

= [S−f,t, c!(Map
Stable(BP⋆BPFp )cell

Stable(BP⋆BPFp )cell
(Σ0,0,nBPFp

⋆ ,P∗[λ]
m+1))]Stable(BP∗BP)

∼= [S−f,t,0,Map
Stable(BP⋆BPFp )cell

Stable(BP⋆BPFp )cell
(Σ0,0,nBPFp

⋆ ,P∗[λ]
m+1)]Stable(BP⋆BPFp )cell

∼= Extf,t,n
BP⋆BPFp (BP

Fp
⋆ ,P∗[λ]

⊗(m+1)).

By Lemma 6.14, we get that

π−∗,∗(i∗(P∗[λ]
m+1)) ∼= P∗[λ]

⊗m,

which coincides with the homotopy groups

π−∗,∗(τ≥∗Pm+1
∗ ) ∼= π−∗,∗(Pm+1

∗ )[λ] ∼= Ext∗,∗BP∗BP(BP∗,P⊗(m+1)
∗ )[λ]

∼= P∗[λ]
⊗m.

Similar to the case of Stable(ABP
⋆ )cell, this gives us a factorization

i∗(P∗[λ]
m+1)n → τ≥n(Pm+1

∗ )

which we can check is an equivalence via homotopy groups since Stable(BP∗BP) =
Stable(BP∗BP)

cell. Again, this will be an equivalence since the homotopy is λ-free
and, hence, we have an equivalence of filtered objects

(i∗(BP
Fp
⋆ ))∧p ≃ Tot(τ≥∗(P•+1

∗ )).

After applying [BHS20, Prop. C.20], this finishes the proof. □

7. The Synthetic Adams-Novikov Spectral Sequence for SF2
/λ

In this section, we compute the Adams-Novikov spectral sequence for SF2/λ through
the 45-stem. For this section, we use the shorthands

Ext∗,∗,∗
BP⋆BPFp := Ext∗,∗,∗

BP⋆BPFp (BP
Fp
⋆ ,BPFp

⋆ )

Ext∗,∗,∗
BP⋆BPFp/λ

:= Ext∗,∗,∗
BP⋆BPFp/λ

(BPFp
⋆ /λ,BPFp

⋆ /λ)

Ext∗,∗,∗ABP
⋆

:= Ext∗,∗,∗ABP
⋆

(Fp[τ ],Fp[τ ])

Ext∗,∗,∗ABP
⋆ /τ

:= Ext∗,∗,∗ABP
⋆ /τ

(Fp,Fp)
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Because we use the same names for elements of Er and π⋆ in our computations, we
abuse notation when using Lemma 2.7.1 to analyze the map q : SE/τ → ΣSE for
either E = BP or F2.

7.1. The Synthetic Algebraic-Novikov Spectral Sequence. Theorem 3.1.6
says that

BP⋆BP
F2 ∼= Z(2)[λ, h, v1, . . . , t1 . . .]/(λh = 2), BP⋆BP

F2/λ ∼= F2[h, v1, ..., t1, . . .].

Since BPFp
⋆ is λ-torsion free, Proposition 3.3.1 and a change-of-rings isomorphism

gives us that the E2-page of the Adams-Novikov spectral sequence for SF2
/λ is

isomorphic to Ext∗,∗,∗
BP⋆BPF2/λ

. Recall from Example 4.5 that the Adam-Novikov
spectral sequence for SF2

/λ is isomorphic to the Cartan-Eilenberg spectral sequence
for the conormal extension

F2[ζ
2
1 , ζ

2
2 , ...]→ F2[ζ1, ζ2, ...]→ E(ζ1, ζ2, ...).(3)

The E2-page of this Cartan-Eilenberg spectral sequence is isomorphic to the E2-page
of the algebraic Novikov spectral sequence [Rav03]. The E2-page and differentials
for the algebraic Novikov spectral sequence can be computed by machine [Wan21].

While computer data makes it easy to compute Ext∗,∗,∗
BP⋆BPF2/λ

as a ring, it takes more
work to compute Ext∗,∗,∗

BP⋆BPF2/λ
as a module over Ext∗,∗,∗

BP⋆BPF2 . For this we must first
know something about Ext∗,∗,∗

BP⋆BPF2 . Proposition 3.3.1 gives us that the E2-page of
the Adams-Novikov spectral sequence for SF2

is isomorphic to Ext∗,∗,∗
BP⋆BPF2 .

Proposition 7.1.1. The E2-page of the synthetic Adams-Novikov spectral se-
quence for SF2

is given through the 45-stem in Chart 3.

Proof. We compute Ext∗,∗,∗
BP⋆BPF2 with the synthetic algebraic Novikov spectral se-

quence. By Theorem 3.4.4, the differentials in the synthetic algebraic Novikov spec-
tral sequence are fully determined by differentials in the classical algebraic Novikov
spectral sequence. The classical algebraic Novikov spectral sequence has been com-
puted by machine out to the 110-stem [IWX22]. It remains to compute extensions
in Ext∗,∗,∗

BP⋆BPF2 which are hidden on the synthetic algebraic Novikov E∞-page. Many
of these are hidden extensions in the classical algebraic Novikov spectral sequence
and are recorded in [IWX20b]. The remaining hidden extensions are extensions
between λ-torsion classes and are computed in Section 8. □

7.2. Inclusion and Projection. Since BP⋆BP
F2 is λ-torsion free, multiplication

by λ induces a short exact sequence

0→ BP⋆BP
F2 λ−→ BP⋆BP

F2 → BP⋆BP
F2/λ→ 0.

which induces a long exact sequence

(4)

· · · Ext∗,∗,∗+1
BP⋆BPF2 Ext∗,∗,∗

BP⋆BPF2 Ext∗,∗,∗
BP⋆BPF2/λ

Ext∗−1,∗+1,∗+1
BP⋆BPF2 · · ·

λ i∗

q∗

λ

on Ext groups.

Notation 7.2.1. Let x be in Ext∗,∗,∗
BP⋆BPF2 . We denote an element of Ext∗,∗,∗

BP⋆BPF2/λ

by x if i∗(x) = x. We denote an element of Ext∗+1,∗−1,∗−1
BP⋆BPF2 (S/λ) by x if q∗(x) = x.
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Proposition 7.2.2. The values of the maps

i∗ : Ext∗,∗,∗
BP⋆BPF2 → Ext∗,∗,∗

BP⋆BPF2/λ
q∗ : Ext∗,∗,∗

BP⋆BPF2/λ
→ Ext∗−1,∗+1,∗+1

BP⋆BPF2(5)

through the 45-stem are displayed in Chart 1.

Proof. Corollary 6.5 gives us that if daNr (x) = y in the algebraic Novikov spec-
tral sequence, then q∗(x) = y on the synthetic Adams-Novikov E2-page. Alge-
braic Novikov differentials can be computed by machine [Wan21] [IWX22]. For
example, there is an algebraic Novikov differential daN2 (α8/8) = 2β4/4 so we have
q∗(α8/8) = hβ4/4 on the synthetic Adams-Novikov E2-page. We record this by de-
noting α8/8 by hβ4/4 when considered as an element of Ext∗,∗,∗

BP⋆BPF2/λ
. All values of

q∗ are determined similarly. The values of i∗ are then forced for degree reasons by
inspecting the long exact sequence (4). □

7.3. The Cartan-Eilenberg Spectral Sequence. In this section, we compute
Adams-Novikov differentials for SF2/λ through the 45-stem.

Proposition 7.3.1. Differentials in the Adams-Novikov spectral sequence for SF2
/λ

are displayed in Chart 1 through the 45-stem.

Proof. Recall from Example 4.5 that the Adam-Novikov spectral sequence for SFp/λ
is isomorphic to the Cartan-Eilenberg spectral sequence for the conormal extension
(3).
By Corollary 6.4, it suffices to understand the projection map

q∗ : Ext∗,∗,∗ABP
⋆ /τ

→ Ext∗−1,∗+1,∗+1
ABP

⋆
(6)

in Stable(ABP
⋆ ). The values of the map (6) have been determined through the 110-

stem in [IWX22]. For example, [IWX22] gives us that q∗(h2
1c0) = h2

1c0. Recall that
ExtABP

⋆ /τ is isomorphic to ExtBP⋆BPF2/λ. The class h2
1c0 in ExtABP

⋆ /τ is denoted
by α6/3 in ExtBP⋆BPF2/λ. Therefore there is a differential d3(α6/3) = α2

1c0 in the
Adams-Novikov spectral sequence for SF2/λ. □

Remark 7.3.2. Remark on computing Cartan-Eilenberg differentials by imposing
the relevant filtration in the Curtis algorithm.

7.4. Hidden Extensions. In this section, we compute hidden extensions in the
Adams-Novikov spectral sequence for SF2

/λ.

Proposition 7.4.1. Hidden extensions by 2, α1, and α2/2 in the Adams-Novikov
spectral sequence for SF2

/λ are displayed in Chart 2 through the 45-stem.

Proof. Theorem 2.1.7 gives us that π⋆SF2
/λ is isomorphic to ExtA∗ . The bigraded

ring ExtA∗ can be computed by machine [Bru93]. We can compute extensions in
π⋆SF2/λ which are hidden in the Adams-Novikov spectral sequence by comparison
with ExtA∗ . For example, we have h2

0h2 = h3
1 in ExtA∗ so there is a hidden 2-

extension from 2α2/2 to α3
1 in π⋆SF2

/λ. All other hidden extensions are determined
similarly. □

8. The Adams-Novikov Spectral Sequence for SF2

In this section, we compute the Adams-Novikov spectral sequence for SF2
through

the 45-stem. Up to hidden extensions between λ-torsion classes, the E2-page of
the synthetic Adams-Novikov spectral sequence is computed in Proposition 7.1.1.
We compute differentials and hidden extensions in the synthetic Adams-Novikov
spectral sequence by analyzing the maps

SF2

i−→ SF2
/λ SF2

/λ
q−→ Σ1,−1SF2

.(7)
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Remark 8.0.1. On the Adams-Novikov E2-page the maps in (7) agree with the
maps in (5).

Proposition 8.0.2. On the E2-page of the synthetic Adams-Novikov spectral se-
quence, there are hidden h-extensions from hβ4/4 to λhβ3, from h3β8/8 to λhβ6/2,
and from h3β6/2 to λ2P 2β3.

Proof. The hidden extensions in Proposition 8.0.2 are computed using Proposition
7.2.2 and the fact that the map q∗ is an ExtBP⋆BPF2 -module map. For example,
Proposition 7.2.2 gives us that q∗(hβ4/4) = hβ4/4 and q∗(λhβ3) = λhβ3. Re-
call that in ExtBP⋆BPF2/λ there is a h-extension from hβ4/4 to λhβ3. Since q∗ is
an ExtBP⋆BPF2 -module map there must be a h-extension from hβ4/4 to λhβ3 in
ExtBP⋆BPF2 . All hidden extensions in Proposition 8.0.2 are computed similarly. □

8.1. Synthetic Adams-Novikov Differentials. In this section we describe the
differentials in the synthetic Adams-Novikov spectral sequence through the 45-stem.
In this range, the synthetic Adams-Novikov spectral sequence collapses at the E9-
page.

Proposition 8.1.1. Differentials in the Adams-Novikov spectral sequence for SF2

are displayed in Chart 1 through the 45-stem.

Proof. Through the 45-stem, many synthetic Adams-Novikov differentials are ob-
tained by direct comparison to the Adams-Novikov spectral sequence for SF2

/λ.
This is done by analyzing the maps induced by (7) on Adams-Novikov spectral se-
quences. For example, Proposition 7.2.2 gives us that the classes α2

1c0 and α6/3 in
the Adams-Novikov E2-page take nontrivial values under the map i∗ in (5). Proposi-
tion 7.3.1 gives us that there is a differential d3(α6/3) = α2

1c0 in the Adams-Novikov
spectral sequence for SF2/λ. Since the map i in (7) induces a map of Adams-
Novikov spectral sequences which agrees with i∗ on E2-pages, we have a differential
d3(α6/3) = α2

1c0 in the Adams-Novikov spectral sequence for SF2
. The remaining

differentials are accounted for in Table 1 and are proved in Lemma 8.1.2. □

Lemma 8.1.2. The synthetic Adams-Novikov differentials which can not be ob-
tained by the method in the proof of Proposition 8.1.1 are given in Table 1.

Proof. We compute the differentials in Table 1 by applying the Leibniz rule to
differentials lifted from the Adams-Novikov spectral sequence for SF2

/λ in the proof
of Proposition 8.1.1. For example, Proposition 8.1.1 gives us that there is a synthetic
Adams-Novikov differential d5(∆h2d0) = α2

2/2e
2
0. Proposition 7.1.1 gives us that

there is an α2/2-extension from β7 to λ∆h2d0 on the synthetic Adams-Novikov
E2-page. Therefore the Leibniz rule gives us a differential d5(β7) = λα2/2e

2
0. The

remaining differentials in the first column of Table 1 are proved similarly. The
relations used for proving each differential are given in the second column of Table
1. □

8.2. Hidden extensions. In this section, we compute hidden extensions on the
synthetic Adams-Novikov E∞-page by analyzing the maps

i⋆ : π⋆SF2
→ π⋆SF2

/λ q⋆ : π⋆SF2
/λ→ π⋆SF2

induced on homotopy groups by the maps in (7).

Proposition 8.2.1. Hidden extensions by λ on the synthetic Adams-Novikov E∞-
page are computed through the 45-stem and displayed as cyan lines in Chart 4.
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Differential Proof
d3(Pe0) = α2

1c0d0 β3 · α10/3 = Pe0
d3(Pc0e0) = α4

1β
2
3 c0 · c0 = α2

1β3

d3(P
2e0) = Pα2

1c0β3 α1 · P 2α1β3 = P 2e0
d3(β8/6,2) = λ2α1d1 α1 · β8/6,2 = λ2α4/4α1β5

d3(c0β3e0) = h4
1e

2
0 α2

1 · c0β2
3 = c0β3e0

d3(Pβ3e0) = α2
1c0β

2
3 α2

1 · Pβ2
3 = Pβ3e0

d3(h0c2) = h1h3d1 α1 · hc2 = α2
4/4α1β5

d3(P
2c0e0) = Pα4

1β
2
3 α2

1 · P 2c0β3 = P 2c0e0
d3(P

3e0) = P 2h2
1c0β3 α2

1 · P 3β3 = P 3e0
d3(β

2
3e0) = α2

1c0e
2
0 α2

1 · β3
3 = β2

3e0
d5(β7) = λα2/2e

2
0 α2/2 · β7 = λ∆h2d0

d5(β6/2β3) = α1c0e
2
0 α2/2 · α2

2/2e
2
0 = λα1c0e

2
0 and d5(∆h2d0) = α2

2/2e
2
0

d5(β6/2) = α1β2β4 β3 · α1β2β4 = α3
2/2e

2
0

Table 1. Leibniz rule applications

Proof. To prove hidden extensions by λ, we analyze the long exact sequence induced
on homotopy groups by multiplication by λ. Recall that the map q⋆ above surjects
onto the kernel of multiplication by λ on homotopy. For example, from Proposition
7.1.1 we know that the element Pc0β3 is λ-torsion on the synthetic ANSS E2-page.
Proposition 8.1.1 gives us that Pc0β3 survives the synthetic ANSS and detects an
element in π30,11SF2

. Analyzing Chart 2 and Lemma 7.2.2 shows that there is
nothing in π31,10SF2

/λ which can be sent to Pc0β3 by the map q⋆. So Pc0β3 can
not be λ-torsion so it must support a hidden λ-extension. The only possible target
is α2

1β
2
3 so we have a hidden λ-extension on the synthetic ANSS E∞-page from

Pc0β3 to α2
1β

2
3 . All hidden λ-extensions on Chart 4 are computed similarly. □

Proposition 8.2.2. Hidden extensions by h, α1, and α2/2 on the synthetic Adams-
Novikov E∞-page are computed through the 45-stem and displayed in Chart 4.

Proof. We compute hidden extensions on the synthetic Adams-Novikov E∞-page
by comparison with the homotopy of SF2

/λ. For example, there is an α2/2-extension
from β4 to h2g in the homotopy of SF2/λ. Therefore, there is an analogous hidden
extension in the homotopy of SF2

since β4 and h2g map to these values via the
map i and i preserves multiplication. Most hidden extensions can be obtained in
this way or by propagating such extensions by taking products. There are a few
exceptions, namely an α1-extension from β8/4,2 to λ2c1g and α2/2-extensions from
β6 to λ2α1e

2
0 and from ∆h1d0 to c0e

2
0. These extensions can be obtained from the

analogous extensions in the classical stable stems since their sources and targets
are all λ-periodic. □

Appendix A. Nilpotent Completion in Stable ∞-Categories

The classical E-Adams spectral sequence can be used to compute the homotopy
groups π∗(X

∧
E) of the E-nilpotent completion of a spectrum X. A celebrated result

of [Bou79] relates the E-nilpotent completion to Bousfield localization at E; namely,
the E-nilpotent completion is E-local and the natural map LEX → X∧

E from
the E-localization of X is an equivalence when E is connective, X is bounded-
below, and π0E satisfies certain conditions. In addition, there is an equivalence
LEX ≃ LMπ0EX with localization with respect to the Moore spectrum Mπ0E
of π0E. This is useful because Bousfield localization can be easier to understand
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than nilpotent completion. For example, if E = Fp and X bounded-below, then
LFp

X
≃−→ X∧

Fp
and LFp

X ≃ LS/pX ≃ X∧
p , the p-completion of X.

Recent work of [Man21] generalizes Bousfield’s results from spectra to presentable,
stable∞-categories. Roughly speaking, E is instead a homotopy commutative alge-
bra, connectivity corresponds to the connective part of a t-structure, Moore spectra
correspond to the cofibers and/or localizations of a set of maps, and conditions on
π0E correspond to conditions on π♡

0 E, the object associated to E in the heart of
the t-structure.

In this appendix, we recall the background and precise results of [Man21] and use
them to study examples of nilpotent completion relevant to this paper.

Notation and Assumptions. Throughout we let (C,⊗,1) denote a presentable,
symmetric monoidal stable∞-category C with monoidal product ⊗ and unit object
1 and E a homotopy commutative algebra object of C. These C are equipped with
an accessible t-structure (C≥0, C≤0) with truncation functors τ≥n, τ≤n satisfying the
following (see [Man21, Sec. 2.1.1]):

• the t-structure is left-complete, i.e. limn τ≤nX ≃ X for every X ∈ C;
• 1 ∈ C≥0, i.e. the unit is connective;
• C≥p ⊗ C≥q ⊆ C≥(p+q) for any p, q ∈ Z;
• the truncation functors τ≥n(−) commute with filtered colimits.

In this situation, the heart C♡ gets the structure of a symmetric monoidal ∞-
category and the functor π♡

0 : C → C♡ is symmetric monoidal (see [Man21, Sec.
2.1.3]).

A.1. Adams resolutions and nilpotent completion. Now for every object X ∈
C, we can associate the canonical E-Adams resolution of X. This is done in the
standard way: let E := fib(1 → E) and E

n
:= E

⊗n
. Then the canonical Adams

resolution is a tower

X E ⊗X E
2 ⊗X · · ·

E ⊗X E ⊗ E ⊗X E ⊗ E
2 ⊗X

with cofiber sequences

E
n+1 ⊗X → E

n ⊗X → E ⊗ E
n ⊗X.

Composing successive maps in the Adams tower gives maps E
n ⊗ X → X. For

X = 1, let En := cof(E
n⊗ → 1). There are induced maps En ⊗X → En−1 ⊗X

and we define the E-nilpotent completion X∧
E of X to be the limit

X∧
E := lim(· · · → E2 ⊗X → E1 ⊗X).

Remark A.1.1. When E is an E1-ring, an equivalent definition of the nilpotent
completion can be obtained as the totalization of

X E ⊗X E ⊗ E ⊗X · · ·

which as a coaugmented cosimplicial object we denote by X → E•+1 ⊗ X. Here
the coface maps insert unit maps 1→ E and codegeneracy maps are given by the
multiplication E ⊗ E → E on E.
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A.2. Bousfield Localization. Given a presentably symmetric monoidal stable
∞-category C and an object A ∈ C, one can define the A-Bousfield localization by
taking the Verdier quotient by those objects that vanish after tensoring with A. We
let LA denote the localization functor. The A-nilpotent completion of an object
X is always A-local, inducing a factorization X → LAX → X∧

A. When C = Sp,
Bousfield [Bou79] famously gave very general conditions on which this second map
is an equivalence. This is generalized by [Man21].

Assumption A.2.1. ([Man21, Ass. 4.2.1]) Suppose a homotopy commutative
algebra object E ∈ C satisfies the following:

(1) E ∈ C≥0.
(2) There is a finite set {Ki} and countable set {Lj} of ⊗-invertible objects

in C such that each functor Ki ⊗ (−) and Lj ⊗ (−) sends (co)connective
objects to (co)connective objects, maps fi : Ki → 1 and gj : Lj → 1, and
a morphism of π♡

0 (1)-algebras

φ : (π♡
0 (1)/I)[J−1]→ π♡

0 E,

where I is the ideal of π♡
0 (1) generated by {fi} and J is the collection

{gj}.
(3) The map φ in (2) is an isomorphism.

Remark A.2.2. Item (2) in the above is slightly different in [Man21]. However,
since we are assuming the functors τ≥n commute with filtered colimits, it is equiv-
alent as stated.

The following theorems relate E-localization to E-nilpotent completion:

Theorem A.2.3. ([Man21, Thm. 7.3.5]) Suppose E satisfies Assumption A.2.1
with J = ∅. Then for every bounded-below object X ∈ C≥k, the natural map
LEX → X∧

E is an equivalence.

Theorem A.2.4. ([Man21, Thm. 7.3.8]) Suppose E satisfies Assumption A.2.1
with I = ∅. Then for every bounded-below object X ∈ C≥k, the natural map
LEX → X∧

E is an equivalence.

The following theorems relate E-localization to localization with respect to some
Moore object:

Theorem A.2.5. ([Man21, Thm. 4.3.7]) Suppose E satisfies Assumption A.2.1
with J = ∅. Let Mπ♡

0 E denote C(f1) ⊗ · · · ⊗ C(fr). Then for every bounded-
below object X ∈ C≥k, we have an equivalence

LMπ♡
0 EX ≃ LEX.

The following theorem is not recorded in [Man21]; however, it follows from the same
arguments used to prove [Man21, Thm. 4.3.7]:

Theorem A.2.6. ([Man21]) Suppose E satisfies Assumption A.2.1 with I = ∅.
Let Mπ♡

0 E denote 1[J−1]. Then for every bounded-below object X ∈ C≥k, we
have an equivalence

LMπ♡
0 EX ≃ LEX.

A.3. Application to Stable Comodule Categories. We can now apply the
above results to several examples of interest. In particular, we prove new results
about completions in Stable(Γ) for Hopf algebroids Γ studied in this paper.

As a warm-up, we prove completion results in Stable(A∗) and Stable(BP∗BP).
The authors of this paper were unable to find Stable(BP∗BP) completion results
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elsewhere in the literature and believe this is a new result. To do so, we first need
to prove a lemma concerning the t-structures on Stable(A∗) and Stable(BP∗BP):

Lemma A.3.1. Consider the t-structures on Stable(A∗) and Stable(BP∗BP) de-
scribed in Example 5.17 and Example 5.18. These t-structures satisfy the following:

(1) They are left-complete; i.e. for every object X,

X ≃ lim
n

τ≤nX.

(2) Fp ∈ Stable(A∗)≥0 and BP∗ ∈ Stable(BP∗BP)≥0.
(3) For n,m ∈ Z,

Stable(A∗)≥n ⊗ Stable(A∗)≥m ⊆ Stable(A∗)≥(n+m),

Stable(BP∗BP)≥n ⊗ Stable(BP∗BP)≥m ⊆ Stable(BP∗BP)≥(n+m).

(4) The functor τ≥n(−) commutes with filtered colimits.

Proof. (1) follows from Lemma 5.5, (3) follows from Lemma 5.7, and (4) follows
from Lemma 5.6. (2) follows the fact that A∗ and BP∗BP are connective; i.e.
At = 0 = BPtBP for t < 0 and the counit maps

A∗ → Fp

BP∗BP→ BP∗

are isomorphisms in degree 0. □

The following is not a new result and follows from [Pal01, Prop. 1.4.3]. However,
we reprove it using the machinery of [Man21]:

Proposition A.3.2. Consider the commutative algebra object E = P∗ = H∗BP ∈
Stable(A∗) and the t-structure on Stable(A∗) from Lemma A.3.1. Then for every
bounded-below X ∈ Stable(A∗)≥k,

X∧
P∗
≃ LFp

X ≃ X.

Proof. We first show that Assumption A.2.1 is satisfied. Note that

π−∗,∗(P∗) = Ext∗,∗A∗
(Fp,P∗) ∼= Fp[h0, v1, v2, . . .]

with Ext degree |h0| = (1, 1) and |vi| = (1, 2pi− 1), so that P∗ ∈ Stable(A∗)≥0. By
Example 5.17, the heart of the t-structure on Stable(A∗) is Fp[h0]-mod with

π♡
0 (X)t = Extt,tA∗

(Fp, X).

In particular,

π♡
0 (P∗)∗ = Fp[h0],

π♡
0 (Fp)∗ = Fp[h0].

If we take I = ∅ = J , then we have an isomorphism of Fp[h0]-algebras

Fp[h0] ∼= π♡
0 (Fp)∗

φ−→ π♡
0 (P∗)∗ ∼= Fp[h0].

By Theorem A.2.3 and Theorem A.2.5, this implies that X∧
P∗
≃ LFp

X. The equiv-
alence LFp

X ≃ X follows since Fp is the unit of Stable(A∗). □

Theorem A.3.3. Consider the commutative algebra object E = P∗ = H∗BP ∈
Stable(BP∗BP) and the t-structure on Stable(BP∗BP) from Lemma A.3.1. Then
for every bounded-below X ∈ Stable(BP∗BP)≥k,

X∧
P∗
≃ LBP∗/pX ≃ X∧

p

where p-completion is taken with respect to p ∈ Z(p)
∼= Ext0,0BP∗BP(BP∗,BP∗).
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Proof. We first show that Assumption A.2.1 is satisfied. Note that

π−f,t(P∗) = Extf,tBP∗BP(BP∗,P∗) ∼=

{
Fp, f = t = 0,

0, otherwise.

so that P∗ ∈ Stable(BP∗BP)≥0. Now by Example 5.18, the heart of the t-structure
on Stable(BP∗BP) is (Z(p)-mod)gr with

π♡
0 (X)t = Extt,tBP∗BP(BP∗, X).

In particular, if we take K1 = BP∗ and f1 = p : BP∗ → BP∗ and J = ∅ then
because π♡

0 (BP∗)∗ ∼= Z(p) concentrated in total degree 0, we have an isomorphism
φ of Z(p)-algebras

Fp
∼= π♡

0 (BP∗/p)∗ ∼= (π♡
0 (BP∗)∗)/p

φ−→ π♡
0 (P∗)∗ ∼= Fp.

By Theorem A.2.3 and Theorem A.2.5, this tells us that for X ∈ Stable(BP∗BP)≥k,
X∧

P∗
≃ LBP∗/pX.

All that’s left to show is LBP∗/pX ≃ X∧
p . However, this follows from a sim-

ilar argument to [Bou79, Prop. 2.5] because X∧
p ≃ F (Σ−1,0BP∗/p

∞, X) and
X → F (Σ−1,0BP∗/p

∞, X) is a BP∗/p-localization, where we let BP∗/p
∞ denote

the colimit of the diagram

BP∗/p
p−→ BP∗/p

2 p−→ BP∗/p
3 p−→ · · · .

□

Corollary A.3.4. In Stable(BP∗BP), the unit BP∗ satisfies

(BP∗)
∧
P∗
≃ (BP∗)

∧
p .

In particular, the homotopy groups of the completion satisfy

π−f,t((BP∗)
∧
P∗

) ∼= π−f,t(BP∗)⊗ Z∧
p
∼= Extf,tBP∗BP(BP∗,BP∗)⊗ Z∧

p .

Proof. The first statement follows from the the fact that BP∗ ∈ Stable(BP∗BP)≥0

and Theorem A.3.3. The second statement follows from the fact that

Extf,tBP∗BP(BP∗,BP∗)

is a finitely generated, p-local abelian group for all f, t ∈ Z. □

Now we consider the synthetic versions of Proposition A.3.2 and Theorem A.3.3.
This is useful for the proofs of Proposition 6.11 and Proposition 6.12. Here the
t-structures we use on Stable(ABP

⋆ ) and Stable(BP⋆BP
Fp) are Example 5.19 and

Example 5.20. These t-structures satisfy the conditions needed to study nilpotent
completion:

Lemma A.3.5. Consider the t-structures on Stable(ABP
⋆ ) and Stable(BP⋆BP

Fp)
described in Example 5.19 and Example 5.20. These t-structures satisfy the follow-
ing:

(1) They are left complete.
(2) Fp[τ ] ∈ Stable(ABP

⋆ )cell≥0 and BPFp
⋆ ∈ Stable(BP⋆BP

Fp)cell≥0 .
(3) For p, q ∈ Z,

Stable(ABP
⋆ )cell≥p ⊗ Stable(ABP

⋆ )cell≥q ⊆ Stable(ABP
⋆ )cell≥(p+q)

Stable(BP⋆BP
Fp)cell≥p ⊗ Stable(BP⋆BP

Fp)cell≥q ⊆ Stable(BP⋆BP
Fp)cell≥(p+q).

(4) The functor τ≥n(−) commutes with filtered colimits.
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Proof. (1) follows from Lemma 5.5, (3) follows from Lemma 5.7, and (4) follows
from Lemma 5.6. (2) follows from the fact that

πk,∗(νBPFp ⊗ νBPFp) = (ABP
k,∗) = 0

πk,∗(νFpBP⊗ νFpBP) = BPk,∗BP
Fp = 0

whenever k < 0 and the counit maps

ABP
⋆ → Fp[τ ]

BP⋆BP
Fp → BPFp

⋆

are isomorphisms in bidegree (0, w), for w ∈ Z. □

Theorem A.3.6. Consider the commutative algebra object

E = P∗[τ ] = π∗,∗(νBP(Fp ⊗ BP)) ∈ Stable(ABP
⋆ )

and the t-structure on Stable(ABP
⋆ ) from Lemma A.3.5. Then for every bounded-

below X ∈ Stable(ABP
⋆ )≥k,

X∧
P∗[τ ]

≃ LFp[τ ]X ≃ X.

Proof. We first show that Assumption A.2.1 is satisfied. Note that

π−∗,∗,∗(P∗[τ ]) = Ext∗,∗,∗ABP
⋆

(Fp[τ ],P∗[τ ]) ∼= Ext∗,∗,∗A∗
(Fp,P∗)[τ ]

∼= Fp[τ, h0, v1, v2, . . .]

with Ext degree |h0| = (1, 1, 0) and |vi| = (1, 2pi − 1, 2pi − 2), so that P∗ ∈
Stable(ABP

⋆ )≥0. By Example 5.19, the heart of the t-structure on Stable(ABP
⋆ )

is Fp[τ, h0]-mod with
π♡
0 (X)t,w = Extt,t,wABP

⋆
(Fp[τ ], X).

In particular,

π♡
0 (P∗)∗,∗ = Fp[τ, h0],

π♡
0 (Fp)∗,∗ = Fp[τ, h0].

If we take I = ∅ = J , then we have an isomorphism of Fp[τ, h0]-algebras

Fp[τ, h0] ∼= π♡
0 (Fp[τ ])∗,∗

φ−→ π♡
0 (P∗)∗,∗ ∼= Fp[τ, h0].

By Theorem A.2.3 and Theorem A.2.5, this implies that X∧
P∗[τ ]

≃ LFp[τ ]X ≃ X. □

In the case of Stable(BP⋆BP
Fp), completion with respect to P∗[λ] turns out to also

be a p-completion:

Theorem A.3.7. Consider the commutative algebra object

E = P∗[λ] ≃ π∗,∗(νFp
(Fp ⊗ BP)) ∈ Stable(BP⋆BP

Fp)

and the t-structure on Stable(BP⋆BP
Fp) considered in Lemma A.3.5. Then for

every bounded-below X ∈ Stable(BP⋆BP
Fp)≥k,

X∧
P∗[λ]

≃ L
BP

Fp
⋆ /p

X ≃ X∧
p ,

where p-completion is taken with respect to p ∈ Z(p)
∼= Ext0,0,0

BP⋆BPFp (BP
F
⋆,BP

F
⋆).

Proof. Again we show that Assumption A.2.1 is satisfied. In Lemma 6.14, we
computed the Ext groups of tensor powers of P∗[λ]. In particular, we get that

Extf,t,∗
BP⋆BPFp (BP

F
⋆,P∗[λ]) ∼=

{
Fp[λ], f = t = 0,

0, otherwise,
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so that P∗[λ] ∈ Stable(BP⋆BP
Fp)≥0 and, as a bigraded object, π♡

0,∗,∗(P∗[λ]) ∼=
Fp[λ], with the non-λ-divisible copy of Fp in internal degree 0. Now whenever
t− f = 0, we have that

Extf,t,∗
BP⋆BPFp (BP

F
⋆,BP

F
⋆)
∼=

{
Z(p)[λ], f = t = 0,

0, otherwise,

In particular, this means that π♡
0 (BP

Fp
⋆ )∗,∗ ∼= Z(p)[λ] and π♡

0 (BP
Fp
⋆ /p)∗,∗ ∼= Fp[λ].

Hence if we take K1 = BPFp , f1 = p : BPFp → BPFp , and J = ∅, we get an
isomorphism φ of Z(p)[λ]-algebras

Fp[λ] ∼= π♡
0 (BP

Fp
⋆ /p)∗,∗ ∼= (π♡

0 (BP
Fp
⋆ )∗,∗)/p

φ−→ π♡
0 (P∗[λ])∗,∗ ∼= Fp[λ].

Applying Theorems A.2.3 and A.2.5, we get that for any X ∈ Stable(BP⋆BP
Fp)≥k,

X∧
P∗[λ]

≃ L
BP

Fp
⋆ /p

X. Similar to the proof of Theorem A.3.3, we also get that
L
BP

Fp
⋆ /p

X ≃ X∧
p . □

The unit is connective in Stable(BP⋆BP
Fp) so that we immediately get the following

corollary:

Corollary A.3.8. In Stable(BP⋆BP
Fp), the unit BPFp

⋆ satisfies

(BPFp
⋆ )∧P∗[λ]

≃ (BPFp
⋆ )∧p .

In particular, the homotopy groups of the completion satisfy

πf,t,w((BP
Fp
⋆ )∧P∗[λ]

) ∼= πf,t,w(BP
Fp
⋆ )⊗ Z∧

p
∼= Extf,t,wBP⋆BP(BP

Fp
⋆ ,BPFp

⋆ )⊗ Z∧
p .

A.4. Application to Synthetic Adams-Novikov Spectral Sequence. We end
this appendix by describing what the synthetic Adams-Novikov spectral sequence
for a bounded-below object X ∈ (SynFp

)≥k converges to. Analogous to the classical
Adams-Novikov spectral sequence, it turns out to converge to the p-localization of
X.

Remark A.4.1. In this section, we study examples of our twisted t-structures in
SyncellE which have recently also appeared as examples of the linear t-structures
described in [CD24, Defn. 2.1].

Lemma A.4.2. Consider the t-structure on SynFp
= SyncellFp

described in Exam-
ple 5.24. This t-structure satisfies the following:

(1) It is left complete.
(2) SFp

∈ (SynFp
)≥0.

(3) For n,m ∈ Z,

(SynFp
)≥n ⊗ (SynFp

)≥m ⊆ (SynFp
)≥(n+m).

(4) The functor τ≥n(−) commutes with filtered colimits.

Proof. (1) follows from Lemma 5.5, (3) follows from Lemma 5.7, and (4) follows
from Lemma 5.6. For (2), we need to show that πk,wSFp

= 0 whenever k < 0.
This follows from an application of the νFp-Adams spectral sequence for SFp

. By
[BHS19], νFp

E∗,∗,∗
2 = clE

∗,∗
2 ⊗ Z[τ ]. For k < 0, the classical Adams E2-page for the

sphere is zero, and so the same must be true for νFp
E∗,∗,∗
2 and hence for πk,w((SFp

)∧λ).
The result for πk,wSFp

then follows by inspection of the long exact sequence in
homotopy for the fracture square

SFp (SFp)
∧
λ

SFp
[λ−1] (SFp

)∧λ [λ
−1]
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□

Theorem A.4.3. Consider the commutative algebra object

E = BPFp ∈ SynFp

and the t-structure considered in Lemma A.4.2. Then for every bounded-below
X ∈ (SynFp

)≥k,

X∧
BPFp ≃ X(p)

where p-localization is taken with respect to p ∈ π0,0SFp
∼= Z.

Proof. Again we show that Assumption A.2.1 is satisfied. By Theorem 3.1.6 and
Theorem 5.15,

π♡
0 (BP

Fp)∗ = π0,∗BP
Fp = Z(p)[λ, h]/(λh = p)

so that BPFp ∈ (SynFp
)≥0. By Example 5.24, we know that

π♡
0 (SFp

)∗ = Z[λ, h]/(λh = p).

Localizing at p then implies that

π♡
0 ((SFp)(p))∗ = Z(p)[λ, h]/(λh = p).

Hence if we take I = ∅ and J = Z \ (p) = π0,0 \ (p), then there is an isomorphism
of Z[λ, h]/(λh = p)-algebras

Z(p)[λ, h]/(λh = p) = π♡
0 ((SFp)(p))∗

φ−→ π♡
0 (BP

Fp)∗ = Z(p)[λ, h]/(λh = p).

By Theorems A.2.4 and A.2.6, for X ∈ (SynFp
)≥k we get equivalences

X∧
BPFp ≃ LBPFpX ≃ L(SFp )(p)X.

By [Man21, Prop. 3.4.3.t.2], Bousfield localization at (SFp
)(p) is smashing; i.e.

L(SFp )(p)X → (SFp)(p) ⊗X is an equivalence. From this, it’s clear then that

L(SFp )(p)X ≃ (SFp
)(p) ⊗X ≃ X(p).

□

Corollary A.4.4. For the unit SFp ∈ (SynFp
)≥0, we have isomorphisms

πk,w((SFp
)∧
BPFp ) ∼= πk,w((SFp

)(p)) ∼= πk,w(SFp
)⊗ Z(p).

Proof. The first isomorphism follows from Theorem A.4.3. If we prove that πk,w(SFp
)

is a finitely generated abelian group for all k,w ∈ Z, then the second isomorphism
follows. Note that for k − w ≥ 0, πk,wSFp

∼= πkS, which is finitely generated for all
k. Using the long exact sequence

· · · i−→ Extw−k−1,w
A∗

(Fp,Fp)→ πk,w+1SFp

τ−→ πk,wSFp

i−→ Extw−k,w
A∗

(Fp,Fp)→ · · ·

we see that πk,w+1SFp
sits in a short exact sequence

0→ coker(i)→ πk,w+1SFp
→ ker(i)→ 0.

Inductively, ker(i) ⊂ πk,wSFp
is a finitely generated abelian group and coker(i)

is always a finite abelian group since for each bidegree Extf,tA∗
(Fp,Fp) is a finite

Fp-vector space. Hence πk,w+1SFp must also be finitely generated. □
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Appendix B. Charts

B.1. Charts for SF2
/λ. Chart 1 displays the E2-page of the Adams-Novikov spec-

tral sequence for SF2
/λ with differentials. Chart 2 displays the E∞-page of the

Adams-Novikov spectral sequence for SF2
/λ with hidden extensions. For each fixed

stem and filtration, the synthetic Adams-Novikov spectral sequence for SF2/λ is a
module over F2[h].

Analogous to the charts in [IKLRZ23], we plot classes not only according to their
Adams-Novikov filtration but also with respect to a filtration by powers of h. An
extra convention like this is required because h lives in filtration 0. We indicate the
associated graded of this h-filtration as follows:

B.1.1. Classes.
• An open box indicates a copy of F2[h] in the associated graded object.
• A solid dot indicates a copy of F2[h]/h ∼= F2 in the associated graded

object.

• A solid box k with an inscribed number k indicates a copy of F2[h]/h
k in

the associated graded object.
• A dot or box is colored gray if it is in the image of the inclusion of the

bottom cell.
• A dot or box is colored red if it is detected in projection to the top cell.

B.1.2. Differentials. Cyan lines of negative slope indicate Adams-Novikov differen-
tials. The length of a differential corresponds to the page on which it occurs.

B.1.3. Extensions.
• Short vertical gray lines indicate h-multiplications that are in the image of

inclusion of the bottom cell.
• Short vertical red lines indicate h-multiplications that are detected by pro-

jection to the top cell.
• Gray lines of slope 1 and 1/3 indicate α1 and α2/2 multiplications that are

in the image of inclusion of the bottom cell.
• Red lines of slope 1 and 1/3 indicate α1 and α2/2 multiplications that are

detected by projection to the top cell.
• Yellow lines of slope 1 and 1/3 indicate α1 and α2/2 multiplications that

are hidden in the sense that their sources are detected by the top cell but
their targets are detected by the bottom cell.

• Arrows of slope 1 indicate infinite towers of α1 extensions.
• Orange lines indicate hidden extensions by h, η, and ν.

B.2. Charts for SF2
. Chart 3 displays the E2-page of the Adams-Novikov spec-

tral sequence for SF2 with differentials. Chart 4 displays the E∞-page of the
Adams-Novikov spectral sequence for SF2 with hidden extensions. For each fixed
stem and filtration, the Adams-Novikov spectral sequence for SF2

is a module over
Z(2)[λ, h]/(λh = 2). Similar to the charts for SF2

/λ, we indicate classes by a filtra-
tion by powers of h as follows:

B.2.1. Classes.
• An open box indicates a copy of

Z(2)[λ, h]/(λh = 2)

in the associated graded object.
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• A solid gray dot indicates a copy of

F2[λ] ∼= Z(2)[λ, h]/(λh = 2, h)

in the associated graded object.

• A solid gray box k with an inscribed number k indicates a copy of

Z/2k[λ, h]/(λh = 2, hk) ∼= Z(2)[λ, h]/(λh = 2, hk)

in the associated graded object.
• A solid colored dot indicates a copy of

F2[λ]/λ
r ∼= Z(2)[λ, h]/(λh = 2, h, λr)

in the associated graded object. The value of r is encoded in the color of
the dot, as indicated below.

• A solid colored box with an inscribed k number indicates a copy of

Z/2min{k,r}[λ, h]/(λh = 2, hk, λr) ∼= Z(2)[λ, h]/(λh = 2, hk, λr)

in the associated graded object. The value of r is encoded in the color of
the box, as indicated below.

• We use the following colors for classes:
– Gray dots correspond to λ-free classes.
– Red dots correspond to λ-torsion classes.
– Blue dots correspond to λ2-torsion classes.
– Dark green dots correspond to λ3-torsion classes.

B.2.2. Differentials. Lines of negative slope indicate Adams-Novikov differentials.
The length of the differential corresponds to the page on which it occurs. The color
of a differential indicates which λ-multiple of the target is hit.

• Teal lines hit λ0 = 1 times a generator.
• Magenta lines hit λ times a generator.
• Lime green lines hit λ2 times a generator.
• Purple lines hit λ3 times a generator.

B.2.3. Extensions. Vertical lines and lines of positive slope indicate extensions.
Lines that stay in the same stem indicate multiplication by λ or h. Lines that
change stem by 1 indicate multiplication by α1 (η in homotopy). Lines that change
stem by 3 indicate multiplication by α2/2 (ν in homotopy). The curvature of an
extension has no mathematical meaning and is there for aesthetic reasons. The
color of an extension indicates something particular about the extension:

• Gray, red, blue, and dark green lines indicate non-hidden extensions which
hit λ0 = 1 times a generator. The color corresponds to the λ-torsion (or
freeness) of the target.

• Orange indicates hidden extensions which hit λ0 = 1 times a generator.
• Magenta lines hit λ times a generator. These can be non-hidden or hidden

extensions.
• Lime green lines hit λ2 times a generator. These can be non-hidden or

hidden extensions.
• Purple lines hit λ3 times a generator. In this range, these are only non-

hidden.
• Cyan indicate hidden λ-extensions. These all hit λ0 = 1 times a generator.

Example B.2.4. In the 14-stem of the ANSS for SF2
we have the module displayed

in Figure 3. This notation indicates the Z(2)[λ, h]/(λh = 2)-module with generators
β4/4 and β3 and relations

λhβ4/4 = 0, h2β4/4 = λhβ3, h3β3 = 0.
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β4/4

β3

Figure 3. E2,14
2 (SF2)

Example B.2.5. In the 30-stem of the ANSS for SF2 we have the module displayed
in Figure 4. This notation indicates the Z(2)[λ, h]/(λh = 2)-module with generators
β8/8, β6/2, and P 2β3 and relations

λhβ8/8 = 0, h4β8/8 = λhβ6/2, h5β6/2 = λP 2β3, h3P 2β3 = 0.

β8/8

3

β6/2

4

P 2β3

2

Figure 4. E2,30
2 (SF2

)
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The E∞-page of the synthetic Adams-Novikov spectral sequence for SF2
with hidden extensions
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