
SOME CALCULATIONS WITH MILNOR HYPERSURFACES AND AN
APPLICATION TO GINZBURG’S SYMPLECTIC BORDISM RING

ANDREW BAKER

Introduction

In this note we present some formulæ in complex bordism associated to Milnor hypersurfaces
which we then apply to prove the surjectivity of a certain homomorphism

σ : ΩSym
∗ −→ MU∗(CP∞)

whose domain is the symplectic bordism ring of V. L. Ginzburg [2]. As Ginzburg proved σ to
be injective, this establishes it to be an isomorphism, a result first proved by J. Morava [3]
by a more topological argument. We also make some observations on the associated homology
theory. For the benefit of topologists, we remark that the notion of manifold with symplectic
structure is distinct from that of manifold with normal reduction to some compact symplectic
group Sp(N) ⊂ U(N). The resulting bordism ring ΩSym

∗ may not be the homotopy ring of a
Thom complex since there is apparently no transversality theory for such symplectic manifolds;
the more familiar symplectic bordism ring is of course the homotopy of the Thom spectrum
MSp.

For background notation and basic notions of complex bordism we refer to Adams [1].

This material came about as a result of correspondence with Jack Morava on his preprint [3]
and is part of joint work with him. I would like to thank the Isaac Newton Institute for support
whilst this note was written, also Charles Thomas for discussions on symplectic and contact
manifolds.

1. The complex bordism of Milnor hypersurfaces

We will us the notations

X +
MU

Y = FMU (X, Y )

for the formal group sum of X and Y , and [−1]MU (X) for the formal group inverse of X.
We recall that for r, s > 0, the Milnor hypersurface Hr,s is the degree 1 hypersurface dual to

the 1st Chern class of the line bundle η∗r ⊗ η∗s −→ CPr ×CPs. This is an algebraic submanifold
which is a Kähler manifold whose symplectic form ωr,s is obtained by restricting that of CPr ×
CPs. Such a hypersurface gives rise to a map Hr,s −→ CP∞ and hence a bordism class

hr,s = [Hr,s −→ CP∞] ∈ MU2(r+s−1)(CP∞).

We will use the generating function

h(X, Y ) =
∑

r,s>0

hr,sX
rY s.
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We will also consider the bordism class of Hr,s as a stably complex manifold, [Hr,s] ∈ MU2(r+s−1).
Let [CPn] ∈ MU2n denote the bordism class of CPn and

CP(T ) =
∑

n>0

[CPn]Tn.

Let

cpn = [CPn [−1]−−→ CP∞] ∈ MU2n(CP∞)

denote the bordism class of the map [−1] : CPn −→ CP∞ classifying the dual canonical line
bundle η∗n, and

cp(T ) =
∑

n>0

cpnTn.

If we choose orientations according to the discussion in the Appendix (rather than follow-
ing Adams [1]), then cpn is the image of the MU-homology fundamental class (CPn)MU in
MU∗(CP∞) under the homomorphism [−1]∗ induced by [−1]. Let βMU

n (n > 0) be the standard
MU∗-module generator for MU∗(CP∞) and

βMU (T ) =
∑

n>0

βMU
n Tn.

Let β̃MU
n be defined by the generating function

β̃MU (T ) =
∑

n>0

β̃MU
n Tn = βMU ([−1]MU (T )).

Then the β̃MU
n (n > 0) form an MU∗-basis for MU∗(CP∞) is characterised by

cMU
1 (η∗) ∩ β̃MU

n = β̃MU
n−1

for n > 1. Notice that we also have

(1.1) β̃MU
n = (−1)nβMU

n + (MU∗-linear combination of βMU
i with i < n).

Theorem 1.1. The series h(X, Y ) is given by

h(X, Y ) = CP(X)CP(Y )(X +
MU

Y )β̃(X +
MU

Y ).

Proof. By definition, the MU-homology fundamental class of Hr,s maps to

cMU
1 (η∗r ⊗ η∗s) ∩ (CPr × CPs)MU ∈ MU2(r+s−1)(CPr × CPs).

This fundamental class can be mapped to the element hr,s of MU∗(CP∞) using the classifying
map for the line bundle η∗r ⊗ η∗s . In this way we obtain

h(X, Y ) = µ∗
(
cMU
1 (η∗ ⊗ η∗) ∩ (cp(X)⊗ cp(Y ))

)

= µ∗


cMU

1 (η∗ ⊗ η∗) ∩
∑

r,s>0

cpr ⊗ cpsX
rY s




where the µ : CP∞ × CP∞ −→ CP∞ denotes the product in CP∞. From the Equation (4.1) of
the Appendix we have

(1.2) cp(T ) = CP(T )β̃MU (T ).

and hence

(1.3) cpn =
∑

06k6n

[CPk]β̃MU
n−k,
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From [4] we have the identities

βMU (X)βMU (Y ) = βMU (FMU (X,Y )),(1.4)

βMU (X)−1 = βMU (FMU ([−1]MUX),(1.5)

from which we deduce

µ∗
(
βMU (X)⊗ βMU (Y )

)
= βMU (X +

MU
Y ).(1.6)

Combining these results we obtain

h(X, Y ) = CP(X)CP(Y )µ∗
(
cMU
1 (η∗ ⊗ η∗) ∩ β̃MU (X)⊗ β̃MU (Y )

)

= CP(X)CP(Y )µ∗
(
FMU (cMU

1 (η∗)⊗ 1, 1⊗ cMU
1 (η∗)) ∩ β̃MU (X)⊗ β̃MU (Y )

)

= CP(X)CP(Y )(X +
MU

Y )β̃MU (X +
MU

Y ),

where the last line follows from an easy formal series calculation. ¤

We can make some immediate deductions from this result. First we can determine the
coefficient of β̃MU

r+s−1 in the expansion

hr,s = Cr,s,0β̃
MU
r+s−1 + Cr,s,1β̃

MU
r+s−2 + · · ·+ Cr,s,r+s−2β̃

MU
1 + [Hr,s].

We have

(1.7) Cr,s,0 =
(

r + s

r

)
.

This can be seen by ignoring all terms in the expansion for h(X,Y ) involving elements of MU2n

for n > 0.
Second we can determine the ordinary homology Hurewicz image h[Hr,s] modulo decompos-

ables in H∗(MU,Z). To do this we ignore all the terms involving β̃MU
n for n > 0, and work in

H∗(MU,Z) which contains MU∗ as the image of the monomorphic Hurewicz homomorphism

h : MU = π∗(MU) −→ H∗(MU,Z).

Working modulo decomposables in H∗(MU ;Z), we have
∑

r,s>0

[Hr,s]XrY s ≡ CP(X)CP(Y )(X +
MU

Y )

≡ CP(X)CP(Y )

(
X + Y −

∑

k>0

[CPk]
(k + 1)

(
(X + Y )k+1 −Xk+1 − Y k+1

))

≡ (CP(X) + CP(Y ))(X + Y )−
∑

k>0

[CPk]
(k + 1)

(
(X + Y )k+1 −Xk+1 − Y k+1

)

≡ CP(X)X + CP(Y )Y −
∑

r,s>1

(
r + s

r

)
[CPr+s−1]

(r + s)
XrY s,

and hence,

(1.8) h[Hr,s] ≡




−

(
r + s

r

)
[CPr+s−1]

(r + s)
if r, s > 1,

0 otherwise.

Thus for example,

h1,n = (n + 1)β̃MU
n + · · ·+ [H1,n].(1.9)
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and in MU∗,

[H1,n] ≡ 0 (mod decomposables).(1.10)

Using Milnor’s Criterion for polynomial generators of MU∗, we may deduce the following
result which should be compared that of [1].

Proposition 1.2. For each n > 0, there is a Z-linear combination of the elements

[Hr,n+1−r] (1 6 r 6 n− 1)

which provides a polynomial generator for MU∗.

2. Determination of Ginzburg’s symplectic bordism ring

In this section we give a proof of a result of J. Morava’s [3] which completes the programme
begun by V. L. Ginzburg [2] to compute the symplectic bordism ring ΩSym

∗ .
In [2], Ginzburg defines a homomorphism of graded rings

σ : ΩSym
∗ −→ MU∗(CP∞);

[Mn, ω] 7−→ [Mn fω−→ CP∞],

where for the manifold with symplectic form ω, fω denotes the classifying map for the complex
line bundle λω −→ Mn whose 1st Chern class is the cohomology class represented by the 2-form
ω/2πi. He shows that σ is injective and we will prove that it is also surjective, thus establishing
the following result of [3].

Theorem 2.1. The map σ is an isomorphism.

Proof. It suffices to show that for each prime p, the localization

σ(p) : (ΩSym
2n )(p) −→ MU2n(CP∞)(p)

is an isomorphism. We will establish this by induction on n.
Consider the elements cp1 and X = [T ωT−→ CP∞] in im σ, where (T, ωT) is any complex elliptic

curve with its canonical symplectic form. The case n = 1 follows as in [3], since [CP1] = cp1−X.
Now suppose that (imσ2k)(p) = MU2k(CP∞)(p) whenever k < n. We have three distinct

cases.
Case A: p - (n + 1);
Case B: n + 1 = p;
Case C: p|(n + 1) > p.

By Proposition 1.2, there is an element

qn = Qn +
∑

06j6n−1

Cjβ
MU
n−j ∈ imσ2n,

where Qn is a polynomial generator for MU∗ and Cj ∈ MU2j . By the induction hypothesis,
each of the terms Cjβ

MU
n−j with 1 6 j 6 (n− 1) is in imσ, hence the element q′n = Qn + C0β

MU
n

lies in this image too. We will deal with each of these cases separately.
Case A: The element h1,n has the form

h1,n ≡ (n + 1)β̃MU
n (mod imσ),

by Equations (1.8) and (1.9) together with the inductive hypothesis. But then working p-locally,
we can subtract a suitable multiple of h1,n from q′n to obtain an element of the form Qn modulo
decomposables in imσ(p), and this is still a polynomial generator for (MU∗)(p).
Case B: The element Xp−1 lies in imσ and it is easily checked that

Xp−1 = (p− 1)!βMU
p−1 + Y1β

MU
p−2 + · · ·+ Yp−2β

MU
1
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for suitable Yk ∈ MU2k. As (p − 1)! is a p-local unit, we can subtract a multiple of Xp−1 from
q′p−1 to see that Qp−1 lies in imσ(p).
Case C: The element cpn lies in imσ, and by Milnor’s Criterion, [CPn] (mod decomposables) is
divisible by p. Hence, by Equation (1.3), we see that some multiple ucpn together with suitable
elements elements of form Akβ

MU
n−k, Ak ∈ MU2k, can be subtracted from q′n to give an element

of form
Qn + u[CPn] ∈ imσ(p),

which is a polynomial generator for (MU∗)(p).
Hence in all three cases we obtain a polynomial generator for (MU∗)(p) of degree 2n which

lies in imσ(p). By Equations (1.3) and (1.1) we also have

βMU
n ≡ ±cpn (mod imσ(p)),

so since cpn ∈ im σ, we have the inductive step. ¤

3. The homology theory defined by symplectic bordism

Given a reasonable space X, we can consider a mapping of a symplectic manifold (Mn, ω)
into X, f : (Mn, ω) −→ X. There is a notion of bordism for such mappings, and on passage
to bordism classes we obtain a Z-graded functor ΩSym

∗ (X), which is a homology theory when
thought of as a functor in the variable X. A standard argument shows that this functor has the
form

ΩSym
∗ (X) ∼= (MU ∧ CP∞+ )∗(X) = MU∗(CP∞+ ∧X)

since for the case of X being a point, this is correct. There is a dual cohomology theory for
which

(ΩSym)∗(X) ∼= (MU ∧ CP∞+ )∗(X) = [X,MU ∧ CP∞+ ]∗.
These theories are multiplicative, with obvious geometric interpretations of products making
use of the ring spectrum MU together with the fact that CP∞ is an H-space. At the level of
the representing spectra, we have a map of ring spectra

MU ' MU ∧ S0 −→ MU ∧ CP∞+ ,

where we use the inclusion of a point in CP∞ to generate the map S0 −→ CP∞. We remark
that this homology theory can be defined using the fact that MU∗(CP∞) is a free MU∗-module,
and therefore

MU∗(CP∞) ⊗
MU∗

MU∗(X)

is a homology theory as a functor of the space X, and similarly for the cohomology theory.
Now the cohomology theory (MU ∧ CP∞+ )∗( ) is complex oriented in the sense of [1]. Indeed,

as we shall see, there are two very natural orientations for the universal line bundle η −→ CP∞.
The first comes from the natural orientation xMU : CP∞ ' MU(1) −→ Σ2MU followed by the
map of ring spectra MU −→ MU ∧ CP∞+ mentioned above. The second orientation arises as the
map

ySym : CP∞ ' MU(1) ∆̃−→ MU(1) ∧ CP∞+
xMU∧Id−−−−−→ Σ2MU ∧ CP∞+ ,

where ∆̃ : MU(1) −→ MU(1) ∧ CP∞+ is the diagonal which sends a point V in the fibre over
P ∈ CP∞ to the equivalence class of the pair (V, P ), and the basepoint in the domain to
the basepoint in the codomain. For the space CP∞ we have the following descriptions of the
cohomology ring.

(3.1) (ΩSym)∗(CP∞) ∼= MU∗(CP∞)[[xMU ]] = MU∗(CP∞)[[ySym]].

Proposition 3.1. In the ring (ΩSym)∗(CP∞) we have the relation

ySym = βMU (xMU )xMU .
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Proof. We calculate using the identity

[X,MU ∧ Y ]∗ ∼= HomMU∗(MU∗(X),MU∗(Y ))

from [1], which holds for any space X with MU∗(X) being MU∗-projective. Then for X = Y =
CP∞ we can represent (xMU )m by the homomorphism

(xMU )m
∗ : MU∗(CP∞) −→ MU∗(CP∞);

βMU
n 7−→

{
1 if n = m,

0 otherwise.
(3.2)

On the other hand, the map ∆̃ induces

∆̃∗ : MU∗(MU(1)) −→ MU∗(MU(1) ∧ CP∞+ ) ∼= MU∗(MU(1)) ⊗
MU∗

MU∗(CP∞);

βMU
n 7−→

∑

16k6n

βMU
k ⊗ βMU

n−k.

Hence, ySym is represented by the homomorphism

ySym
∗ : βMU

n 7−→ βMU
n−1

Using Equation (3.2), it is now easy to see that we have

ySym
∗ =

∑

16m

βMU
m−1(x

MU )m
∗

from which the desired result follows. ¤

Related to these orientations are two formal group laws, one of which is the image of the
universal one on MU∗, the other less familiar and given by

(3.3) FSym(X,Y ) = βMU (FMU (X, Y ))FMU (X, Y ).

Of course the power series βMU (X)X provides a strict isomorphism

FMU −→ FSym.

The orientation ySym appears to be strongly connected with symplectic (co)bordism. For exam-
ple, using a symplectic analogue Quillen’s interpretation of cobordism classes in X as manifolds
mapped into X (see [5]), we can interpret the orientation ySym restricted to CPn as the cobor-
dism class of the inclusion map jn : (CPn−1, ω) −→ CPn where the domain has the standard
symplectic structure on CPn−1. We record the following fact about the logarithm of FSym. Let
cp(d)

m ∈ MU2m(CP∞) denote the bordism class of the map [d] : CPm −→ CP∞ classifying the
line bundle ηd

m −→ CPm.

Proposition 3.2. The logarithm of the formal group law FSym is the series

logSym X =
∑

n>1

cp(−n)
n−1

n
Xn.

Proof. By Proposition 3.1 we have

expSym Z = βMU (expMU Z) expMU Z

where expF denotes the inverse of the logarithm logF of a formal group law (here of course we
are forced to work over the rational algebra MU∗(CP∞)⊗Q). By Lagrange Inversion (see [1])
we obtain for the coefficients of logarithm series

logSym X =
∑

n>1

λSym
n Xn
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the identity

λSym
n =

1
n

[
βMU (expMU Z)−n

(expMU Z)n

]

Z−1

.

Using standard residue calculus arguments together with the formal identity

d
dW

logMU W = CP(W ),

we see that this agrees with
1
n

[
CP(W )βMU (W )−nW−n

]
W−1 =

1
n

[
CP(W )βMU ([−n]MUW )W−n

]
W−1 ,

where [d]MU denotes the d-series for the formal group law FMU and we use by a generalization
of Equation (1.4),

(3.4) βMU (X)d = βMU ([d]MUX) (d ∈ Z).

Now let us investigate the bordism classes cp(d)
m . These are captured in the generating function

∑

m>1

cp(d)
m−1

m
Xm = CP(X)βMU ([d]MUX) = CP(X)βMU (X)d.

obtained form Equation (3.4).
Taking m = n and d = −n, we obtain

cp(−n)
n−1 = nλSym

n

as desired. ¤

Of course, the logarithm for FMU is

logMU X =
∑

n>1

[CPn−1]
n

Xn.

The stable cooperation algebra for this theory is

(MU ∧ CP∞+ )∗(MU ∧ CP∞+ ) = MU∗(CP∞) ⊗
MU∗

MU∗MU ⊗
MU∗

MU∗(CP∞)

= MU∗(CP∞) ⊗
MU∗

[Bk : k > 1] ⊗
MU∗

MU∗(CP∞),(3.5)

where we use the two distinct units

MU∗
ηL−→ MU∗MU

ηR←− MU∗

to define the two-sided tensor products; note that these units extend to ring homomorphisms

MU∗(CP∞)
ηL−→ (MU ∧ CP∞+ )∗(MU ∧ CP∞+ )

ηR←− MU∗(CP∞).

The element Bk ∈ MU2kMU = MU2k(MU) is the standard generator of [1] pushed into the ring
(MU ∧ CP∞+ )∗(MU ∧ CP∞+ ) by using the map MU −→ MU ∧ CP+. Let βL

k and βR
k denote the

images of βSym
k under the left and right units. As a (left) algebra over MU∗(CP∞) we have

(3.6) (MU ∧ CP∞+ )∗(MU ∧ CP∞+ ) = MU∗(CP∞)[Bk, β
R
k : k > 1]/(relations),

where the relations are those satisfied by the βMU
k in MU∗(CP∞) which can be encoded in the

generating function identity Equation (1.4).
There is another set of generators BSym

k ∈ (MU ∧ CP∞+ )∗(MU ∧ CP∞+ ) which arise from the
formal group law FSym. The two series B(T ) =

∑
k>0 BkT

k and BSym(T ) =
∑

k>0 BSym
k T k

satisfy

(3.7) BSym(βL(B(T ))B(T )) = βR(B(T ))B(T ).
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Dually, we can describe stable operations as elements of

(MU ∧ CP∞+ )∗(MU ∧ CP∞+ ) ∼= HomMU∗(CP)((MU ∧ CP∞+ )∗(MU ∧ CP∞+ ),MU∗(CP∞)).

Thus for example, we have elements SSym
n (n > 1) defined by requiring that they be derivations

over MU∗(CP∞) and satisfy

SSym
n (BSym

m ) =

{
1 if m = n,

0 else.
(3.8)

SSym
n (βR

m) = 0(3.9)

There are also elements with similar property except that the rôles of BSym
k and βR

k are inter-
changed in Equation (3.8).

4. Appendix: Orientations in complex projective spaces

In this Appendix, we discuss the choice of (complex) orientations in projective spaces. The
need for this arises from the fact that the choices of orientation and almost complex structure
for CPn made in [1] (a reference widely used by topologists), although convenient for topological
purposes, are not the natural ones in algebraic geometry. One reason why this point is usually
ignored is that these different choices give rise to the same complex bordism class! We will
elucidate these points and describe the conventions used in this work.

Let V denote a complex vector space of dimension (n + 1). Then as usual we define the
projective space of V by

CP(V ) = (V − {0})/C×,

which has the structure of complex analytic manifold since the (left) action ofC× on V0 = V−{0}
is analytic and free. Of course, we may view CP(V ) as the set of lines in V . There is a
tautological holomorphic line bundle ηV −→ CP(V ) for which the fibre over [x] ∈ CP(V ) is
given by

(ηV )[x] = {zx : z ∈ C}.
This bundle is also given up to isomorphism as

V0 ×
C×
Cχ −→ CP(V ),

where Cχ denotes C with the action of C× by the character χ : C× −→ C× for which

χ(z) = z−1.

The problem with this bundle is that although it is holomorphic it has no global holomorphic
sections. On the other hand, its dual η∗V −→ CP(V ) can be described up to isomorphism as

V0 ×
C×
C −→ CP(V ),

where this time we take the natural action of C× on C. This bundle is also holomorphic and
admits many holomorphic sections. Indeed, we have

Γhol(CP(V ), η∗V ) ∼= V ∗,

where under this isomorphism, a linear form σ ∈ V ∗ corresponds to the section s for which

s([x])(zx) = σ(zx).

More generally, setting

ηk
V =

{
η⊗k

V if k > 0,

(η∗V )⊗−k if k 6 0,
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we have

Γhol(CP(V ), ηk
V ) =

{
0 if k > 0,

Sym(−k)(V ∗) if k 6 0,

where Symm(W ) denotes the mth symmetric power of the vector space W . In algebraic
and complex analytic geometry, the bundle ηk

V is usually denoted OCP(V )(−k); for example,
OCP(V ) = OCP(V )(0) is the structure sheaf and agrees with the trivial bundle. It is a standard
result that the holomorphic tangent bundle of CP(V ) satisfies

TCP(V ) +OCP(V ) = (n + 1)OCP(V )(1),

hence stably we get
TCP(V ) ' (n + 1)η∗V ,

which should be compared with [1] where the identification

TCP(V ) ' (n + 1)ηV ,

is given.
To choose an orientation for CP(V ) in ordinary cohomology H∗(CP(V );R), we take the dual

of
c1(η∗V )n = (−1)nc1(ηV )n

under the duality isomorphism

H∗(CP(V );R) = HomR(H∗(CP(V );R), R).

Note that [1] chooses the dual of c1(ηV )n.
In fact, Adams’ choices can be ‘explained’ as those obtained as follows. On fixing a basis

v1, . . . , vn+1 for V , together with the dual basis v∗1, . . . , v
∗
n+1 of V ∗, the standard isomorphism

V
∼=−→ V ∗ given by ∑

i

civi ←→
∑

i

civ
∗
i

induces a (real) analytic diffeomorphism CP(V ) ∼= CP(V ∗) under which the bundles ηV and
ηV ∗ correspond. Moreover, it is easily seen that our above choice for orientation on CP(V ∗)
corresponds to Adams’ choice on CP(V ) under this diffeomorphism. A calculation of Chern
numbers in ordinary cohomology also shows that the bordism classes [CP(V )], [CP(V ∗)] ∈ MU2n

agree, hence Adams’ choices for CP(V ) also lead to this same class.
In complex cobordism MU∗( ), the difference between this approach and that of Adams

becomes more pronounced. If we follow Adams and set xMU = cMU
1 (ηV ), then the fundamental

class (CP(V ))MU for CP(V ), based on our choice of orientation and dual to cMU
1 (η∗V )n, satisfies

(CP(V ))MU = cMU
1 (η∗V ) ∩ (CP(V + C))MU ∈ MU2n(CP(V )),

since the section zC ∈ Γhol(CP(V + C), η∗V +C) which is determined by

zC(v, t) = t

vanishes on CP(V ) ⊂ CP(V + C). It is easy to see that the fundamental class for CPn =
CP(Cn+1) can be read off from the generating function

(4.1)
∑

n

(CPn)Tn = CP(T )βMU ([−1]MUT )

rather than CP(T )βMU (T ). If we apply the map classifying η∗n to (CPn)MU , the dual to the
canonical line bundle ηn, we obtain the class cpn ∈ MU2n(CP∞) which is exactly the same
element as Adams obtains for the image of his choice of fundamental class [CPn]MU under the
map classifying ηn.
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