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MORAVA K-THEORY AND FILTRATIONS BY POWERS

TOBIAS BARTHEL AND PIOTR PSTRĄGOWSKI

Abstract. We prove the convergence of the Adams spectral sequence based on Morava K-
theory and relate it to the filtration by powers of the maximal ideal in the Lubin–Tate ring
through a Miller square. We use the filtration by powers to construct a spectral sequence
relating the homology of the K-local sphere to derived functors of completion and express
the latter as cohomology of the Morava stabilizer group. As an application, we compute the
zeroth limit at all primes and heights.
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1. Introduction

In this paper, which consists of three closely related parts, we investigate the relationship
between the filtration by powers of the maximal ideal in the Lubin–Tate ring and chromatic
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2 TOBIAS BARTHEL AND PIOTR PSTRĄGOWSKI

homotopy theory from several perspectives. In the first part, we focus on Morava K-theories
and their associated Hopf algebroids. In particular, we give an invariant description of their
cohomology and prove its finiteness.

We then establish convergence of the K-based Adams spectral sequence and relate it to the
K-local Adams–Novikov and filtration by powers spectral sequences through a Miller square,
and describe it completely at large enough primes. In the last part, we construct Hopkins’
spectral sequence relating homology of the K-local sphere with derived functors of completion,
and identify the latter with cohomology of the Morava stabilizer group. As an application, we
compute the zeroth limit at all primes and heights.

Main results. A classical approach to the study of an arithmetic problem is to first consider its
reduction to residue fields and to then reassemble the local solutions. Over the p-local integers,
there are just two reside fields, namely the field Q of rational numbers and the finite field Fp

corresponding to the closed point. Informally, these detect, respectively, the torsion-free and
torsion phenomena.

The approach of reducing to residue fields also works very well in stable homotopy theory,
where one is interested in classifying stable homotopy classes of maps between finite complexes.
Identifying a classical field k with the corresponding Eilenberg–MacLane spectrum, we have a
descent spectral sequence of signature

Es,t
2
∼= Exts,tπ∗(k⊗S0k)

(k, k) =⇒ πt−s(S
0
k), (1.1)

where S0
k is the appropriate Bousfield localization. When k = Q, this collapses immediately,

recovering Serre’s calculation that π∗S
0 ⊗Z Q ≃ Q.

The situation is much more complicated when k = Fp, in which case A∗ = π∗(Fp ⊗S0 Fp)
is the dual Steenrod algebra and the above recovers the classical Adams spectral sequence. In
this case, the spectral sequence converges completely, but it does not collapse at any finite page
and there is no known algorithmic way of understanding its structure1. It is arguably the most
important tool for computing the stable homotopy groups of spheres.

A new feature in homotopy theory which is not visible in the algebraic contexts is that,
even p-locally, Q and Fp are not the only residue fields of spectra. Instead, we have an infinite
family of prime fields of “intermediate characteristic”, given by the Morava K-theories K(n) for
0 < n <∞. These are homotopy ring spectra with the properties that

(1) π∗K(n) ≃ k[u±1], where k is a perfect field of characteristic p and u is an invertible
variable of degree |u| = 2 and

(2) the Quillen formal group G0 := Spf(K(n)0(CP
∞)) over k is of finite height n.

One can show that such a homotopy ring spectrum exists for any G0 of finite height over a
perfect field. By a celebrated result of Devinatz, Hopkins, and Smith, together with Q and Fp

these are the only residue fields of p-local spectra.
Morava K-theories are very calculable for at least two distinct reasons:

(1) the coefficients K(n)∗ form a graded field, so that we have an unrestricted Künneth
isomorphism K(n)∗(X ⊗ Y ) ≃ K(n)∗(X)⊗K(n)∗ K(n)∗(Y ) for any X,Y ;

(2) there’s a canonical Poincare duality isomorphism K(n)∗(X) ≃ K(n)∗(X) whenever X is
a π-finite space, in particular a classifying space of a finite group.

The second property, known as ambidexterity, is one way in which K(n) behave as if they were of
characteristic zero, despite K(n)∗ being of positive characteristic. This surprising feature makes
Morava K-theories a powerful tool also in more geometric contexts, such as in the breakthrough
work of Abouzaid and Blumberg on the Arnold conjecture in symplectic topology [AB21].

1A common saying about the classical Adams spectral sequence is “Every differential is a theorem.”
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In the present paper, we set up and analyse the descent spectral sequence associated to the
Morava K-theories. As a first result, we verify that we indeed do have convergence.

Theorem A (7.4, 7.5). The K(n)-based Adams spectral sequence of signature

Exts,tK(n)∗K(n)(K(n)∗,K(n)∗(X)) =⇒ πt−sLK(n)X

is conditionally convergent for any spectrum X and converges completely whenever X is K(n)-
locally dualizable.

At first glance, this result is quite surprising, as each group on the second page of this spectral
sequence for the sphere is torsion, while the abutment π∗LK(n)S

0 is known to contain torsion-free
summands. In particular, this implies that there cannot exist a horizontal vanishing line on any
finite page of the spectral sequence. In order to establish conditional convergence, we instead
reduce to the case of a finite n complex, where such vanishing lines exist. Complete convergence
is the consequence of the degreewise finiteness of the E2-term, which we prove for dualizable
spectra using the Cartan–Eilenberg spectral sequence

Going back to the case of non-localized spectra, the utility of the classical Adams spectral
sequence based on Fp is further amplified when coupled with the Adams–Novikov spectral se-
quence, which is the descent spectral sequence based on the Brown–Peterson spectrum BP . As
one spectacular application, Miller constructs a square relating the two spectral sequences and
compares the differentials to compute the v1-periodic homotopy of Moore spaces, thereby proving
the telescope conjecture at height 1 and for all odd primes [Mil81].

The situation is similar in the case of the K(n)-based Adams, which has a cousin which might
be more familiar to the working chromatic homotopy theorist, namely the K(n)-local En-based
Adams spectral sequence. Here, En denotes the Lubin–Tate spectrum associated to the formal
group G0, parametrizing derived deformations of the latter. We show that the relation between
the two spectral sequences is again governed by a square of spectral sequences of the following
explicit form.

Theorem B (8.8, 8.11). The K(n)-local Miller square associated to (E,K) = (En,K(n)) is of
the form

ExtE∨
∗
E(E∗,

⊕
k m

k/mk+1E∨
∗X)

ExtE∨
∗
E(E∗, E

∨
∗X) ExtK∗K(K∗,K∗X)

π∗LKX,
E−Adams K−Adams

May Mahowald

where the May spectral sequence is obtained from the m-adic filtration of E∨
∗X.

We also identify the Mahowald spectral sequence in the square above with a Cartan–Eilenberg
spectral sequence of a certain extension of Hopf algebroids canonically attached to each Morava
K-theory, see Section 8 for details.

A theorem of Miller relates the d2-differentials in the K-Adams and May spectral sequences,
but at large primes we can say much more. If 2p − 2 > n2 + n, then it is well-known that the
K-local E-based Adams spectral sequence for the sphere collapses at the second page. Using a
variation on the classical argument of Milnor, we equip K∗K at odd primes with an additional
grading which also forces the collapse of the Mahowald spectral sequence.

If follows that at sufficiently large primes, two of the spectral sequences in Miller’s square
collapse, and it is thus natural to expect that the other two can be identified. This is indeed the
case, as we show the following.



4 TOBIAS BARTHEL AND PIOTR PSTRĄGOWSKI

Theorem C (9.23). If 2p− 2 > n2 + n+ 1, then the K-based Adams spectral sequence for S0
K

can be given an additional grading so that it becomes isomorphic to the May spectral sequence

ExtE∨
∗
E(E∗,

⊕

k

m
k/mk+1E∗) =⇒ ExtE∨

∗
E(E∗, E∗) (1.2)

induced by the filtration of E∗ by the powers of the maximal ideal.

Note that one new major phenomenon in intermediate characteristic is that MoravaK-theories
do depend on choices; in particular, on the choice of a formal group. By a result of Lazard, any
two such formal groups of the same height are isomorphic over the separable closure; it follows
that for our purposes all K(n) of the same height are essentially interchangeable, in particular,
they determine the same Adams spectral sequence.

To be more precise, while the Hopf algebroid K(n)∗K(n) depends on the choice of a Morava
K-theory, its category of comodules does not, by a result of Hovey and Strickland [HS05a]. In
the body of the text, we describe a different derivation of this result, identifying the category of
K(n)∗K(n)-comodules with the category Milabs of absolute Milnor modules, which are certain
sheaves on finite spectra, see Section 4. This gives an approach to the Adams spectral sequence
based on MoravaK-theory which only depends on the prime and the height, but no other choices.

On a different note, the completion tower of comodules of the form

. . .→ E∗/m
3 → E∗/m

2 → E∗/m

appearing in Theorem C also leads to a another spectral sequence, first studied by Hopkins and
Sadofsky2. The latter spectral sequence approaches the transchromatic information contained
in LK(n)S

0 through its uncompleted E-homology E∗(LK(n)S
0), as opposed to the homotopy

groups, as we now describe in more detail.
To provide some context, recall that it is known that at large primes there exists an equiva-

lence hSpE ≃ hDper(E∗E) between the homotopy categories of E-local spectra and differential
comodules. Under this equivalence, the limit lim

←−
E∗/m

k in the derived ∞-category corresponds

to the K-local sphere S0
K [Pst18a]; thus, the derived completion of E∗ can be thought of as the

algebraic analogue of the K-local sphere.
At smaller primes, we do not have algebraic models for the homotopy category, but we instead

have a spectral sequence relating the homology groups of the derived completion to E∗(S
0
K).

This spectral sequence, originally due to Hopkins and Sadofsky, was subsequently worked out
by Peterson [Pet20a], adapting the classical construction of the Adams spectral sequence. We
follow a slightly different approach, based on the notion of an adapted homology theory and
Devinatz–Hopkins’ modified Adams spectral sequence [Dev97].

Our construction is closely related to work of Hovey on derived products of comodules [Hov07],
and in fact works in much greater generality, see Section 11. In the case of E-homology, we are
able to express these derived limits as cohomology of the Morava stabilizer group, leading to the
following statement.

Theorem D (11.14, 12.14, 12.12). Let E∗E := π∗(E ⊗ E) be the uncompleted E-homology of
itself, given the unique topology which restricts to the m-adic topology on each finitely generated
E∗-submodule. Then, there exists a canonical isomorphism

Hs
cts(Gn, EtE) ∼= (lim

←−
s

E∗E
E∗/m

k)t

between the continuous cohomology of the Morava stabilizer group and the derived functors of
the limit in E∗E-comodules. Moreover, there exists a spectral sequence of E∗E-comodules of the
form

Es,t
2
∼= Hs

cts(Gn, EtE) =⇒ Et−s(LKS
0) (1.3)

2The construction of Hopkins and Sadofsky is unpublished.
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with differentials ds,tr : Es,t
r → Es+r,t+r−1

r . This spectral sequences converges completely and
collapses at a finite page with a horizontal vanishing line.

The subtle point in this result is the convergence of the spectral sequence, which relies crucially
on the finite virtual cohomological dimension of the Morava stabilizer group. Note that here it
is important to consider the derived sequential limits in the category of comodules as opposed to
ordinary modules over E∗; indeed, in positive degrees the latter all vanish in this case and there
would be no hope of having a convergent spectral sequence.

The above spectral sequence underlies one approach towards Hopkins’ chromatic splitting
conjecture [Pet], [Hov95]. In a nutshell, the latter provides a precise description of the tran-
schromatic behaviour of the K(n)-local sphere; that is, its behaviour under applying chromatic
localizations Lh for intermediate heights 0 ≤ h < n. As such it has been verified for all heights
n ≤ 2 and all primes [SY95, GHM12, Bea17], with a minor modification to the original prediction
at n = p = 2 ([BGH17]). Beyond height 2, the conjecture remains wide open.

The standard way of approaching the splitting conjecture is through an explicit computation
of the homotopy groups of LK(n)S

0. However, as mentioned, its transchromatic information is
also encoded in the uncompleted E-homology, and this is what the spectral sequence (11.15)
abuts to.

Using the identification of derived functors of the limit with continuous cohomology of the
Morava stabilizer group, we are able to compute the zeroth limit at all primes and heights.

Theorem E (14.13). There is a canonical isomorphism

lim
←−E∗E

E∗/m
kE∗ ≃ E∗ ⊗Z Zp

where the limit on the left is taken in the category of E∗E-comodules.

Note that E∗ ⊗Z Zp ≃ E∗(S
0
p), the homology of the p-complete sphere. Thus, the above

result can be interpreted as detecting the conjectured copy of Ln−1S
0
p inside Ln−1S

0
K through

E-homology.
At height one, the Morava stabilizer group is particularly simple, and we are able to compute

all of the derived limits.

Theorem F (15.12). At height n = 1 and any prime, we have

Hs
cts(G1, E∗E) ≃






E∗ ⊗Z Zp when s=0,

E∗ ⊗Z Qp when s=1,

0 otherwise.

Note that the above in particular completely recovers the height one case of the chromatic
splitting conjecture, which states that L0LK(1)S

0 ≃ L0S
0
p⊕L0S

−1
p . The latter can be equivalently

obtained by explicitly computing π∗LKS
0, which if we ignore torsion contains exactly two Zp

summands, one for each sphere. However, the computation of homology gives more precise
information, as the two copies of Zp are isomorphic as abelian groups, but the comodules E∗⊗ZZp

and E∗ ⊗Z Q are not.

Outline of document. We hope that the structure of the document becomes apparent from
the choice of section titles. In brief, the first part of the paper, comprising Section 2 through
Section 6 deals with Morava K-theories, their Hopf algebroids, categories of comodules, and
their cohomology, through the perspective of Milnor modules. We pay special attention to the
(in)dependence of our constructions on the choice of Morava K-theories, and revisit the relation
to continuous cohomology.

The K-based Adams spectral sequence and the finite height Miller square are the topic of
Part 2. We establish convergence properties in Section 7, then construct the finite height Miller
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square, and use it to relate it to the filtration by powers spectral sequence. In Section 10, the
final section of this part, we illustrate our results by going through explicit computations at
height 1.

The third part of the paper consists of Section 11 to Section 15. Here, the focus lies on the
derived category of E∗E-comodules and the construction and study of the inverse limit spectral
sequence. We then give our application to the algebraic chromatic splitting conjecture based on
the connection to the continuous cohomology of the Morava stabilizer group. Each of the two
parts ends with some explicit computations at height one, which we hope elucidate our methods
and results.

Acknowledgements. We would like to thank Agnès Beaudry, Robert Burklund, Mike Hopkins,
Eric Peterson, and Hal Sadofsky for useful conversations related to this work. We acknowledge
the hospitality of the Max Planck Institute for Mathematics in Bonn.

Part 1. Morava K-theories and Milnor modules

In this part of the paper, we study Morava K-theories, which play the role of residue fields of
Lubin–Tate spectra. We describe their Hopf algebroids, categories of comodules, and cohomology.

2. Morava K-theories and their Hopf algebroids

Let κ be a perfect field equipped with a choice of a height n formal group G0. Associated
to this data is the Lubin–Tate ring E0 classifying deformations [LT66]. This is a complete local
W (κ)-algebra such that there exists a non-canonical choice of regular generators inducing an
isomorphism of rings E0 ≃W (κ)Ju1, . . . , un−1K. We write m = (p, u1 . . . , un−1) for the maximal
ideal.

The ring E0 equipped with the universal deformation is Landweber exact and so can be lifted
to a 2-periodic ring spectrum E with E∗ ≃ E0[u

±1] for some unit u ∈ E2, and the property that
the formal group G := Spf(E0(BS1)) is the universal deformation of G0. It is well-known that
E admits a unique E∞-ring structure, functorial in the choice of κ and the formal group, see
[GH05]. More recently, it was proven by Lurie that E arises as a solution to a moduli problem
involving formal groups over E∞-rings, see [Lur18].

The canonical nature of the Lubin–Tate spectrum makes it a good starting point for the study
of chromatic phenomena. Since E0 is local, one would like to construct a spectrum which plays
the role of the residue field of E. Following Hopkins and Lurie [HL17], we make the following
definition.

Definition 2.1. An E1-E-algebra K is a Morava K-theory if the unit map E → K induces an
isomorphism K∗ ≃ E∗/m.

One can show that an algebra satisfying the above conditions always exists, for any Lubin–Tate
spectrum E; in fact:

(1) there are uncountably many Morava K-theories which are not equivalent as E-algebras,
(2) none of which is preferred and
(3) none of which can be promoted to an E2-E-algebra,

see [HL17] for more information.

Warning 2.2. Large parts of the literature are written in terms of the (2pn−2)-periodic spectrum
K(n) with π∗K(n) ≃ Fp[v

±1
n ]; this cannot be a made into a Morava K-theory according to the

above definition as it not 2-periodic. We will not use K(n) in the current work, but in the interest
of completness we collect some results about it in §3 below.
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Throughout the rest of this section, the letter K will denote a choice of a Morava K-theory
in the sense of Definition 2.1.

Remark 2.3. While two different Morava K-theories need not be equivalent as E-algebras, one
can show that they are always equivalent as E-modules [HL17, Corollary 3.6.6]. In particular,
they are always equivalent as spectra.

Observe that we have K∗ ≃ E∗/mE∗ by definition, so K∗ ≃ κ[u±1], which is a graded
field. Note that the first isomorphism is completely canonical, while the second is not, as it
depends on the choice of a unit u ∈ K2. In any case, it follows that the ring spectrum K is
even periodic, and so complex-orientable. The reduction map E0(BS1) → K0(BS1) induces a
canonical isomorphism Spf(K0(BS1)) ≃ G0.

Remark 2.4. It is not strictly necessary to start relative to a chosen Lubin–Tate spectrum.
Instead, one could say that an E1-algebra K in spectra is a Morava K-theory if there exists
an isomorphism K∗ ≃ κ[u±1] with κ a perfect field and such that G0 := Spf(K0(BS1)) is of
finite height. One can show that in this case K can be canonically lifted to an algebra over the
corresponding Lubin–Tate ring spectrum. Thus, we lose no generality by working relative to E.

In this paper, we will be interested in the K-based Adams spectral sequence. By standard
arguments, the E2-page of this spectral sequence has a description in terms of homological algebra
of comodules over the Hopf algebroid K∗K. Thus, we begin by giving a partial description of
the latter.

Our strategy is to exploit the E-algebra structure on K to divide K∗K into two parts, the
first of which admits a convenient interpretation in terms of formal groups and the second of
which is more mysterious, but manageably small. We start with the latter, for which we will
need to work relative to E.

Notation 2.5. If M,N are E-modules, we will write

ME
∗ N := π∗(M ⊗E N)

for their homology relative to E and

M∗
EN := [N,M ]∗E ≃ π−∗FE(N,M)

for their relative cohomology. Here, FE is the internal mapping E-module; that is, the right
adjoint to the tensor product of E-modules.

By usual arguments involving flatness of KE
∗ K over K∗, the map

K ⊗E K → K ⊗E K ⊗E K

induces a K∗-coalgebra structure on KE
∗ K. Note that this is an honest coalgebra structure; that

is, the left and right units coincide, as they are necessarily maps of E∗-algebras, of which K∗ is
a quotient. Together with multiplication, this makes KE

∗ K into a Hopf algebra, which a priori
need not be either commutative nor cocommutative.

Lemma 2.6. The coalgebra structure on KE
∗ K is dual to an exterior algebra on an n-dimensional

vector space V in degree −1. In particular, KE
∗ K is cocommutative.

Proof. Since the coefficients of K form a field, we have an isomorphism of algebras

HomK∗
(KE

∗ K,K∗) ≃ [K,K]E ,

where on the right hand side we have maps of E-modules. One can show that the latter is
always isomorphic to an exterior algebra over a vector space of the needed dimension, see [HL17,
Proposition 6.5.1]. �
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Remark 2.7. Hopkins and Lurie show that KE
∗ K is actually isomorphic to an exterior algebra

as a Hopf algebra, though there is in general no canonical such isomorphism [HL17, Proposition
5.2.4]. In particular, it is also always commutative.

Remark 2.8. As both sides are K∗-vector spaces of dimension 2n, the latter by Lemma 2.6, the
Künneth spectral sequence

Tort,sE∗
(K∗,K∗) =⇒ KE

s+tK

collapses. Indeed, since E0 is regular ring of dimension n, the relevang Tor-groups are canonically
isomorphic to an exterior algebra on n generators.

The second, “understandable” part of K∗K is the image of the canonical map from E∗E,
which can be identified with K∗E. The analogue of this Hopf algebroid for the minimal Morava
K-theory of §3 is denoted in Ravenel’s book by Σ(n), see [Rav03, 6.2].

Notice that since E∗E is flat over E∗, we have canonical isomorphisms

K∗E ≃ K∗ ⊗E∗
E∗E ≃ E∗E/m,

which in turn has the following consequence.

Proposition 2.9. The category of K∗E-comodules is independent of K; more precisely, for any
two choices of Morava K-theories, possibly over different Lubin–Tate spectra, these categories of
comodules are canonically equivalent as symmetric monoidal categories.

Proof. By a result of Hovey–Strickland, see [HS05a, Theorem C], the categories of E∗E-comodules
for varying Lubin–Tate spectra E are canonically equivalent as locally graded symmetric monoidal
categories.

The category ofK∗E-comodules can be identified withK∗-modules in the symmetric moonidal
category ComodE∗E , and K∗ ≃ E∗/m itself is uniquely determined as the minimal quotient of E∗

as a comodule by [HS05a, Theorem D]. Thus, the equivalence of Hovey and Strickland induces
one between categories of K∗E-comodules. �

In fact, we can give a direct algebro-geometric description of this category of comodules. By
standard results about Landweber exact homology theories we have

E∗E ≃ E∗ ⊗BP∗
BP∗BP ⊗BP∗

E∗.

and by again invoking flatness we see that

K∗E ≃ K∗ ⊗BP∗
BP∗BP ⊗BP∗

E∗

Since the ideal In is invariant, we can instead write

K∗E ≃ K∗ ⊗BP∗
BP∗BP ⊗BP∗

K∗.

This is a familiar Hopf algebroid, commutative ring homomorphisms out of which classify pairs
of homomorphisms f1, f2 : K∗ → A together with a strict isomorphism of the resulting formal
groups (f1)

∗
G0 = (f2)

∗
G0. In other words, we have a pullback of algebraic stacks

Spec(K∗E) Spec(K∗)

Spec(K∗) Mω=triv
fg ,

where Mω=1
fg is the moduli of formal groups with a trivialized Lie algebra. The maps from

Spec(K∗) are faithfully flat surjections onto the height n point in this moduli stack, and we
deduce that the groupoid (Spec(K∗), Spec(K∗E)) is its presentation.
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Proposition 2.10. The category of even graded K∗E-comodules is equivalent to the category of
quasi-coherent sheaves over the moduli stack Mn

fg of formal groups of height exactly n.

Proof. By the discussion above, the category of ungraded K∗E-comodules can be identified with
the category of quasi-coherent sheaves over the moduli stackMn,ω=1

fg of formal groups of height
n with trivialized Lie algebra.

The even grading of K∗E corresponds under this equivalence to the Gm-action on the chosen
trivialization of the Lie algebra, so that even graded comodules can be identified with the quasi-
coherent sheaves over the quotient stack

Mn,ω=1
fg �Gm

≃Mn
fg,

which is exactly the claim. �

The above discussion identifies K∗E with familiar objects from the theory of formal groups,
which is why we referred to it above as the “understandable” part of K∗K. The following gives
some control over how these two parts are related.

Lemma 2.11. Consider E ⊗K as an E-module with the module structure inherited only from
the left factor. Then, E ⊗K is equivalent as an E-module to a direct sum of K.

Proof. Since E∗E is flat over E∗, it follows from Corollary 8.5 below that LK(E⊗E) is equivalent
as an E-modules to a K-local direct sum of E. This is a corollary to the work of Hovey and it
is independent of the arguments given here.

Thus, it follows that there is a map
⊕
E → LK(E⊗E) which is an equivalence after applying

− ⊗K. As the relative tensor product − ⊗E K can be computed using the bar construction, it
also takes K-local equivalences of E-modules to equivalences. We deduce that

⊕
K ≃ (

⊕
E)⊗E K ≃ LK(E ⊗ E)⊗E K ≃ E ⊗ E ⊗E K ≃ E ⊗K,

which is what we wanted to show. �

Remark 2.12. Note that one can alternatively consider E ⊗K as an E-module with the module
structure inherited form the right factor. In this case, it is clear that it is a direct sum of K as
an E-module, as it is even a module over the E-algebra K.

Corollary 2.13. Consider K⊗E as an E-module with the module structure inherited only from
the right. Then, the Künneth spectral sequence

TorE∗
(K∗E,K∗) =⇒ π∗((K ⊗ E)⊗E K) ≃ K∗K

in E-modules collapses.

Proof. This is immediate from Lemma 2.11 and Remark 2.8, as the Künneth spectral sequence
depends only on the E-module structure. �

Proposition 2.14. The map K∗E → K∗K is injective, central, and presents the target as a free
K∗E-module of rank 2n.

Proof. To see that the map is central, notice that K ⊗ K is canonically an E ⊗ E-algebra. It
follows that the map E∗E → K∗K is central, and thus so must be its image K∗E ≃ K∗⊗E∗

E∗E.
As a consequence of Corollary 2.13, the Künneth spectral sequence

K∗E ⊗ TorE∗
(K∗,K∗) ≃ TorE∗

(K∗E,K∗) =⇒ K∗K

in E-modules collapses. Since the Tor-groups on the left form a K∗-vector space of dimension
2n, it follows from the above collapse that K∗K has a finite filtration as a K∗E-module such that
the associated graded is free of rank 2n. Thus, K∗K itself must be free of this rank as well. �
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Proposition 2.15. Passing to homotopy groups in the diagram

K ⊗ E K ⊗K

K ⊗E E K ⊗E K

induces an an isomorphism

K∗K ⊗K∗E K∗ ≃ K
E
∗ K.

Proof. Both of the Künneth spectral sequences for K⊗K ≃ (K⊗E)⊗EK and K⊗EK collapse,
as a consequence of Corollary 2.13 and Remark 2.8. Thus, the map K∗K → KE

∗ K is surjective
after passing to associated graded, and so surjective by an inductive argument. The conclusion
follows by observing that K∗⊗K∗E K∗K → KE

∗ K is a surjective map of K∗-vector spaces of the
same dimension. �

We are now ready to assemble the above information. By standard arguments, the pair
(K∗,K∗K) acquires the structure of a Hopf algebroid. More precisely, the two maps K → K⊗K
induce left and right units, both of which are central as a consequence of Proposition 2.14, as
they factor through K∗E. These make K∗K into a K∗-bimodule, and similarly we get a suitable
comultiplication and antipode.

Note that it is common in algebraic topology literature to assume in the definition of a Hopf
algebroid that multiplication is commutative. However, this is not strictly necessary; in our
case, as the units are central, K∗K is a Hopf algebroid in the more general sense of Maltsiniotis
[Mal92]. The category of comodules can be defined in the usual way, it will be monoidal with
the tensor product lifting that of K∗-modules. It need not in general be symmetric monoidal.

Remark 2.16. We believe it is plausible that K∗K is in fact always commutative; it is a finite
algebra over the commutative K∗E with the relative tensor product K∗ ⊗K∗E K∗K ≃ KE

∗ K
also commutative, as a consequence of Remark 2.7. We were, however, not able to resolve this
question. Note that K∗K is automatically commutative if we choose a homotopy commutative
Morava K-theory, as can always be done when p > 2 [HL17, Proposition 3.5.2].

Theorem 2.17. The natural maps

(K∗,K∗E)→ (K∗,K∗K)→ (K∗,K
E
∗ K) (2.18)

form an extension of Hopf algebroids in the sense of Ravenel.

Proof. Since KE
∗ K is a cocommutative, consulting Ravenel’s definition of an extension [Rav03,

§A.1.1], we see that we have to verify that

Ext0KE
∗
K(K∗,K∗) ≃ K∗

and

Ext0KE
∗
K(K∗,K∗K) ≃ K∗E.

The first part is clear, as KE
∗ K is a Hopf algebra, while the second part requires a little bit of

work. If we write

K∗K ≃ π∗(K ⊗K) ≃ π∗(K ⊗E E ⊗K) ≃ KE
∗ (E ⊗K),

then the left KE
∗ K-comodule structure on K∗K given by the quotient map K∗K → KE

∗ K
corresponds to the standard comodule structure

KE
∗ (E ⊗K)→ KE

∗ K ⊗K∗
KE

∗ (E ⊗K)

on the homology KE
∗ (E ⊗K) relative to the ∞-category of E-modules.
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The comodule structure map is determined by the structure of E⊗K as a left E-module with
module structure coming only from the left factor. By Lemma 2.11, E ⊗K is equivalent as an
E-module to a direct sum of K, and so admits a compatible structure of a K-module. Choosing
such a K-module structure determines an isomorphism

KE
∗ (E ⊗K) ≃ KE

∗ K ⊗ π∗(E ⊗K) ≃ KE
∗ K ⊗ E∗K

so that

Ext0KE
∗
K(K∗,K∗K) ≃ Ext0KE

∗
K(K∗,K

E
∗ (E ⊗K)) ≃ Ext0KE

∗
K(K∗,K

E
∗ K ⊗ E∗K) ≃ E∗K

as needed. �

3. Digression: Minimal Morava K-theory

Large parts of the literature on MoravaK-theories are written in terms of the minimal Morava
K-theory spectrum K(n), the unique up to equivalence BP -module with K(n)∗ ≃ Fp[v

±1
n ]. Note

that it is not a Morava K-theory in the sense of Definition 2.1 as it is not 2-periodic, but as a
consequence of nilpotence theorem any Morava K-theory is equivalent as a spectrum to a direct
sum of K(n) [HS98, Lemma 1.8].

Our focus on 2-periodic Morava K-theories stems from our preference for Lubin–Tate spectra
as they admit canonical E∞-structures, unlike the Brown–Peterson spectrum. In this short
section, we collect some results about K(n) to highlight similarities and differences with the
E-algebra version. We do this for completness; these results will not be used elsewhere in the
current work.

It is a result of Robinson that K(n) can be made into an E1-ring spectrum, but there is
no canonical way to do so [Rob89]. A surprising result of Angelveit shows that all choices of
E1-multiplication yield equivalent E1-algebras in spectra [Ang11].

One can also ask about less structured multiplication. By a theorem of Würgler [Wür91], in
the homotopy category hSp of spectra, the spectrum K(n) admits

(1) if p > 2, a unique product K(n)⊗K(n)→ K(n);
(2) if p = 2, exactly two products K(n) ⊗ K(n) → K(n) differing by the symmetry on

K(n)⊗K(n),

which make it into an associative BP -algebra in a way compatible with its BP -module structure
[Wür91, Theorem 1.5].

The ring of cooperations of K(n) has been computed completely [Wür91, Theorem 2.4]. The
map K(n)∗BP → K(n)∗K(n) is injective and we have an isomorphism

K(n)∗BP ≃ K(n)∗[ti]/(vnt
pn

i − v
pi

n ti),

where |ti| = 2pi − 2 for i ≥ 1. At odd primes, this extends to an isomorphism

K(n)∗K(n) ≃ K(n)∗BP ⊗K(n)∗ ΛK(n)∗(τ0, . . . , τn−1),

where the latter factor is an exterior algebra on |τi| = 2pi− 1. When p = 2, we instead have that

K(n)∗K(n) ≃ K(n)∗BP ⊗K(n)∗ K(n)∗[τ0, . . . , τn−1]/(τ
2
i = ti+1).

This is analogous to the variation in the dual Steenrod algebra depending on whether p is even
or odd. Note that the latter computation implies that K(n)∗K(n) is commutative also at p = 2,
despite K(n) not being homotopy commutative. The corresponding question in the 2-periodic
case is open, see Remark 2.16.
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4. Milnor modules

As we have seen in the previous section, there are many different Morava K-theory spectra,
which makes any discussion of this subject dependent on these choices. However, as in the case of
Proposition 2.9, one show that many cohomological invariants are canonical and do not depend
on any choices. In this section, we will make this canonical nature transparent by introducing
an absolute variant of Hopkins and Lurie’s categories of Milnor modules, see [HL17].

Before we work in the absolute case, let us first describe the case relative to a fixed Lubin–Tate
spectrum E. Note that by the uniqueness part of Goerss–Hopkins–Miller, this is the same as
choosing a perfect field equipped with a finite height formal group.

Definition 4.1. We say that an E-module is molecular if it is equivalent to a finite sum of
shifts of Morava K-theories of E, and denote the full subcategory of E-modules on the molecular
objects by Modmol

E .

Remark 4.2. Note that since any two Morava K-theories of E are equivalent as E-modules, the
notion of being molecular does not depend on any choices.

Definition 4.3. The category of E-based Milnor modules is the category

MilE := PΣ(Modmol
E ,Ab)

of additive presheaves of abelian groups on molecular E-modules.

By construction, the category of Milnor modules is a compactly generated Grothendieck
abelian category. Since molecular E-modules are stable under the E-tensor product, it acquires
a non-unital symmetric monoidal structure via left Kan extension. One can show this extends
uniquely to a unital symmetric monoidal structure [HL17, Propositions 4.4.1 and 4.4.10].

The main property of Milnor modules is that it canonically captures cohomology of any
Morava K-theory relative to E, in the following sense.

Proposition 4.4. Let K be a Morava K-theory of E. Then, the left Kan extension of the functor

KE
∗ (−) : Modmol

E → ComodKE
∗
K

which associates to any molecular E-module its relative K-homology induces a monoidal equiva-
lence

MilE ≃ ComodKE
∗
K

between Milnor modules and KE
∗ K-comodules.

Proof. This is [HL17, Corollary 6.4.13], where we replaced the category of modules over K∗
EK

with comodules over its linear dual. �

Corollary 4.5. As a monoidal category, ComodKE
∗
K does not depend on the choice of K, but

only on its corresponding formal group.

Remark 4.6. Note that in the context of Corollary 4.5, the situation is somewhat better than
just saying that the categories ComodKE

∗
K for fixed E and varying K are all equivalent to each

other. In fact, they are all canonically equivalent to a single category which doesn’t depend on
any choices, namely the category of Milnor modules of E.

Remark 4.7. The category MilE is not only canonical, but in a certain sense gives the right
answer even if KE

∗ K-comodules do not. As an example, the restricted Yoneda embedding

y : ModE → MilE ,

which can be thought of as a way of taking relative K-homology without choosing K, is always
a symmetric monoidal functor [HL17, Variant 4.4.11].
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On the other hand, even if K is not homotopy commutative, KE
∗ K is both commutative and

cocommutative so that the category ComodKE
∗
K acquires a symmetric monoidal structure from

K∗-vector spaces. However, in this case the relative K-homology functor

KE
∗ (−) : ModE → ComodKE

∗
K

need not be symmetric monoidal. In fact, one can show that if p = 2 and n > 0, this functor is
never symmetric monoidal, even when restricted to molecular modules. Indeed, any such functor
would induce a symmetric monoidal equivalence ComodKE

∗
K ≃ MilE , which one can show is not

possible at the even prime3.
If K is homotopy commutative, then the above homology theory is canonically symmetric

monoidal so that we have a symmetric monoidal equivalence ComodKE
∗
K ≃ MilE . Informally,

any algebraic structure which one can put on ComodKE
∗
K in a way compatible with the homology

functor from E-modules must already be present in the category of Milnor modules.

Let us now describe the global analogue of this situation, which describes the Adams spectral
sequence in spectra rather than E-modules; alternatively, which describes comodules over K∗K
rather than the relative variant KE

∗ K.
In Miller’s approach to the Adams spectral sequence, the latter is determined by the class of

maps which are K-split; that is, which are split epimorphisms after applying K ⊗−. This only
depends on the structure of K as a spectrum and does not require any coherent multiplication.

As a consequence of the nilpotence theorem, all Morava K-theories at a fixed prime and height
are, as spectra, direct sums of the minimal Morava K-theory spectrum of Section 3. It follows
that they all determine the same class of epimorphisms, and hence isomorphic Adams spectral
sequences. In fact, the class of epimorphisms is enough to describe canonically the abelian
category whose Ext-groups form the E2-page. To do so, we will consider sheaves with respect to
a certain topology, as in the construction of synthetic spectra [Pst18b].

Definition 4.8. The K∗-epimorphism topology on the ∞-category Spfin of finite spectra is the
Grothendieck pretopology in which a covering families {X → Y } consist of a single map such
that K∗X → K∗Y is surjective.

Remark 4.9. A reader familiar with [Pst18b] might recall that in the construction of synthetic
spectra, one works with the site of those finite spectra X such that K∗X is projective as a K∗-
module [Pst18b, Definition 3.12]. Since Morava K-theories are fields, this yields the class of all
finite spectra, as above.

Definition 4.10. The category of absolute Milnor modules is the category

Milabs := ShvΣ(Sp
fin,Ab)

of additive sheaves of abelian groups on finite spectra with respect to the K∗-epimorphism
topology.

The category of absolute Milnor modules is a compactly-generated Grothendieck abelian cate-
gory with a symmetric monoidal structure induced by that of the tensor product of finite spectra.

Remark 4.11. A reader familiar with synthethic spectra will immediately recognize that the
category of Milnor modules can be canonically identified as Milabs ≃ Syn♥

K , the heart of the
stable ∞-category of K-based synthetic spectra of [Pst18b].

The following is the absolute analogue of Proposition 4.4.

3Personal communication with Jacob Lurie.
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Proposition 4.12. If K is a Morava K-theory, then the left Kan extension of the functor

K∗ : Spfin → ComodK∗K

induces a monoidal equivalence

Milabs ≃ ComodK∗K

between absolute Milnor modules and K∗K-comodules.

Proof. This is an instance of [Pst18b, Remark 3.26]. �

As a consequence, we deduce the following result proven earlier by Hovey and Strickland using
slightly different methods [HS05a, §8].

Corollary 4.13. The monoidal category ComodK∗K of K∗K-comodules does not depend on the
choice of Morava K-theory, but only on the prime and height.

Remark 4.14. By the same argument as in the relative case of Remark 4.7, if K is homotopy
commutative, then we have a canonical symmetric monoidal equivalence Milabs ≃ ComodK∗K .

Remark 4.15 (Homological residue fields). In the terminology of Balmer, the category of Milnor
modules is the homological residue field of the tensor-triangulated category of finite spectra at
the prime ideal of spectra of type at least n, see [Bal20], [BC21].

Remark 4.16 (Milnor modules as sheaves). The reader can observe that there is a certain asym-
metry in our definitions of Milnor modules and absolute Milnor modules; namely, in the former
case we use as our indexing category only molecular E-modules and in the latter case we use
all finite spectra. Moreover, in the latter case we use sheaves while in the former presheaves are
already enough.

In fact, this difference is but a trick of light, as there is an alternative description of Milnor
modules which is more in line with the absolute case. Namely, one can show that MilE is

equivalent to the category of sheaves on the ∞-category ModperfE of perfect E-modules with
respect to the KE

∗ (−)-epimorphism topology. Under this topology, the functor

E ⊗− : Spfin → ModperfE

becomes a morphism of sites, so that left Kan extension yields a cocontinuous, symmetric
monoidal functor

Milabs → MilE .

In this sense absolute Milnor modules determine a relative Milnor module, for any choice of E,
justifying the terminology.

Under the equivalences of Proposition 4.4 and Proposition 4.12 the above left Kan extension
corresponds to the forgetful functor

ComodK∗K → ComodKE
∗
K .

The image of the monoidal unit under the corresponding right adjoint can be identified with the
Hopf algebroid K∗E studied previously. As the Adams spectral sequence based on K∗E in the
appropriate derived ∞-categories can be identified with the Cartan–Eilenberg spectral sequence
associated to this extension of Hopf algebroids [Bel20, 1.1], we deduce that the Cartan–Eilenberg
spectral sequence itself can be constructed using only the categories of Milnor modules, so it
only depends on E.
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5. Cohomology

In this section, we establish finiteness properties of the cohomology of K∗K-comodules using
the Cartan–Eilenberg spectral sequence.

We have seen in Theorem 2.17 that we have an extension of Hopf algebroids

(K∗,K∗E)→ (K∗,K∗K)→ (K∗,K
E
∗ K)

which induces a Cartan–Eilenberg spectral sequence of signature

ExtsK∗E(K∗,Ext
s′

KE
∗
K(K∗,K∗)) =⇒ Exts+s′

K∗K
(K∗,K∗),

see [Rav03, A.1.3.14]. This can be thought as approximating the cohomology of K∗K using
simplier pieces, namely the cohomology of K∗E and KE

∗ K. To make best use of this, we need
to begin by understanding the latter two.

We have seen in Section 2 that the Hopf algebroid (K∗,K∗E) is an even graded presentation of
the moduli of formal groups of height exactly n, see Proposition 2.10. To identify its cohomology,
it is convenient to choose a particularly small presentation of the latter moduli stack, which is
what we will do.

Notation 5.1. Let G0 be the Honda formal group law over Fq, where q = pn, and let En be the
associated Lubin–Tate spectrum and Kn a Morava K-theory associated to En. Note that we
have a non-canonical isomorphism

π0En ≃W (Fq)[[u1, . . . , un−1]].

We write Gn ≃ Sn ⋊ Gal(Fq/Fp) for the extended Morava stabilizer group, the automorphism
group of the pair Fq together with G0. By the uniquenses part of Goerss–Hopkins–Miller, the
action of Gn extends to an action on the Lubin–Tate spectrum En.

Lemma 5.2. The association Gn × (Kn)∗En → (Kn)∗ sending an element g ∈ Gn and a
homotopy class Sk → Kn ⊗ En to the homotopy class of the composite

Sk Kn ⊗ En Kn ⊗ En Kn,
id⊗g m

induces an isomorphism mapcts(Gn, (Kn)∗) ≃ (Kn)∗En of algebras between the Kn-homology of
En and continuous functions on the Morava stabilizer group.

Proof. This is a result of Strickland, reduced modulo m [Str00, Theorem 12]. �

One can check that the above isomorphism is compatible with the Hopf algebroid structure,
which is induced from the group structure on Gn and its action on (Kn)∗ ≃ Fq[u

±1], which yields
the following.

Corollary 5.3. For any Morava K-theory K, there is a canonical equivalence of categories
between K∗E-comodules and graded Fq[u

±1]-vector spaces equipped with a continuous action of
the extended Morava stabilizer group Gn.

Proof. We have proven previously in Proposition 2.9 that the category of K∗E-comodules is
indendent of the choice of K. For the particular choice of K = Kn as above, this isomorphism
is induced by Lemma 5.2. �

Remark 5.4. In terms of the equivalence ComodevK∗E ≃ QCoh(Mn
fg) of Proposition 2.10, Corollary 5.3

is a consequence of the fact that the map Fq →M
n
fg classifying the Honda formal group law is

a Galois covering with automorphism group Gn; we refer to [Goe08] for further details.
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Corollary 5.5. For any Morava K-theory, there is a canonical isomorphism

Exts,tK∗E
(K∗,K∗) ≃ H∗

cts(Gn,Fq[u
±1])

between the cohomology of the Hopf algebraid (K∗,K∗E) and the continuous cohomology of the
Morava stabilizer group.

The group Gn ≃ Sn ⋊ Gal(Fq/Fp) is a semidirect product of the automorphism group Sn of
G0 and the Galois group. The former is a p-adic Lie group, in fact a group of units in integers in
a central division algebra over Qp of Hasse invariant 1

n , which gives its excellent cohomological
properties.

The action of the Morava stabilizer group on Fq[u
±1] is easy to describe. The Galois group

acts by its standard action on Fq. The action of Sn factors through the leading coefficient
homomorphism ρ : Sn → F×

q and is determined by the formula s · u = p(s)u for s ∈ Sn. The
kernel of ρ is the strict Morava stabilizer group Sn; it is a pro-p-group acting trivially. Morava
[Mor85] essentially proved:

Theorem 5.6 (Morava). We have isomorphisms of continuous cohomology groups

H∗
cts(Gn,Fq[u

±1]) ≃ H∗
cts(Sn,Fq[u

±1])Gal ≃ H∗
cts(Sn,Fq[u

±1])F
×

q ⋊Gal.

Moreover, these groups are finite in each bidegree. If (p−1) ∤ n, this is a Poincaré duality algebra
over H0

cts ≃ Fp[v
±1
n ] of dimension n2, where vn := up

n−1, in particular their total dimension is
finite.

Proof. These isomorphism are induced by the collapse of the respective Lyndon–Hochschild–Serre
spectral sequences, as neither Gal nor F×

q have any higher cohomology with these coefficients,
the first one by Galois theory and the second one as it is of order coprime to p.

The finiteness statements are due to Lazard, as Sn is a p-adic analytic Lie group of dimension
n2 and so has a finite index subgroup whose cohomology is isomorphic to an exterior algebra
[SW00, Theorem 5.1.5] of dimension n2. If (p − 1) ∤ n, then Sn has no p-torsion, see [Hen98,
Theorem 3.2.1], and so it has the same cohomological dimension as all of its finite index subgroups
[Ser65]. �

Corollary 5.7. For any finite-dimensional K∗E-comodules M,N , the groups Extt,sK∗E
(M,N)

are finite in each bidegree. If (p− 1) ∤ n, then they vanish for s > n2.

Proof. We first claim that any finite-dimensional K∗E-comodule M has an invariant element;
that is, there exists a non-zero map K∗ →M of comodules. Observe that M can be considered
as an E∗E-comodule using restriction along the maps E∗E → K∗E and E∗ → K∗. As M is
finitely generated over E∗, it admits a non-zero map E∗ →M of comodules by a result of Hovey
and Strickland [HS05a, Theorem D]. As the target is m-torsion, the map will factor through a
map K∗ →M of K∗E-comodules, which is what we were looking for.

Observe that the result holds when M = N = K∗ as a combination of Corollary 5.5 and
Theorem 5.6. Since K∗ is a field, it follows that from the above that any finite-dimensional K∗E
comodule can be obtained as an iterated extension of K∗. Thus, the general case is proven by
presenting M,N as such iterated extensions and using the corresponding long exact sequences
of Ext-groups. �

To get hold of the Cartan–Eilenberg spectral sequence, we also need to have some control
over the cohomology of KE

∗ K. By a result of Hopkins and Lurie, see Remark 2.7, the latter
is isomorphic to an exterior algebras as a Hopf algebra and so its cohomology is necessarily a
polynomial ring. In fact, the same authors identify the generators of this polynomial ring, as we
now recall.
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Suppose that x ∈ m is an element of the maximal ideal. We then have a fibre sequence

Σ−1E → E/x→ E

of E-modules which induces a short exact sequence

0→ K∗[−1]→ KE
∗ (E/x)→ K∗ → 0

of KE
∗ K-comodules. Let us denote by ψ(x) the correspoding element of Ext1,−1

KE
∗
K
(K∗,K∗).

Proposition 5.8 (Hopkins–Lurie). The association x 7→ ψ(x) induces a map

m/m2 → Ext1,−1
KE

∗
K
(K∗,K∗)

which extends to an isomorphism of bigraded rings

K∗ ⊗κ Sym∗
κ(m/m

2) ≃ ExtKE
∗
K(K∗,K∗).

Proof. As we show in Proposition 4.4, the category of KE
∗ K-comodules can be identified, as a

monoidal category, with the category of Milnor modules associated to E. It follows that we have

Ext∗KE
∗
K(K∗,K∗) ≃ Ext∗MilE (y(E), y(E)),

the cohomology in Milnor modules, where y(E) is the Milnor module associated to E. For the
right hand side, this isomorphism is [HL17, Proposition 7.2.7]. �

Remark 5.9. If we again let Kn be any Morava K-theory associated to the Honda formal group
over Fq, it follows that the Cartan–Eilenberg spectral sequence for cohomology of the unit has
signature

Hs0
cts(Gn,Fq[u

±1]⊗Fq
Syms1

Fq
(m/m2)) =⇒ Exts0+s1

K∗K
(K∗,K∗)

To determine the action on the symmetric algebra, it is convenient to work in the context of
Milnor modules, as in the proof of Proposition 5.8. The category of Milnor modules MilE is by
construction functorial in automorphisms of E and it it is clear that the association x 7→ ψ(x) is
natural with respect to the action of the Morava stabilizer group. It follows that the action of
Gn on this symmetric algebra is the one induced by its action on the cotangent space m/m2 of
the Lubin–Tate ring.

Using the Cartan–Eilenberg spectral sequence, we can prove the following finiteness statement.

Theorem 5.10. Let M,N be finite-dimensional K∗K-comodules. Then, the group Exts,tK∗K
(M,N)

is finite in each bidegree.

Proof. By replacing N by N ⊗M∨, where M∨ := HomK∗
(M,K∗) is the linear dual, we can

assume that M = K∗. We have a Cartan–Eilenberg spectral sequence of signature

Exts0K∗E
(K∗,Ext

s1
KE

∗
K
(K∗, N)) =⇒ Exts0+s1

K∗K
(K∗, N)

The groups contributing to ExtsK∗K(K∗, N) are those indexed by s0, s1 with s0+s1 = s, of which
there are finitely many. For a fixed s1, the group Exts1

KE
∗
K
(K∗, N) is finite-dimensional over K∗

since both M and KE
∗ K are, and we can compute this Ext-group using the cobar complex. The

finiteness of Exts0K∗E
(K∗,−) applied to these groups follows from Corollary 5.7. �
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6. Milnor filtration

In this section we describe a filtration on K∗K which arises from its module structure over
E, which we call the Milnor filtration. We show that at odd primes this filtration can be
canonically refined to a grading which forces the Cartan–Eilenberg spectral sequence associated
to the extension K∗E → K∗K → KE

∗ K to collapse.

Remark 6.1. This existence of an additional grading at p > 2 is a finite height analogue of
the classical argument involving the Cartan–Eilenberg spectral sequence associated to HFp, see
[Rav03, Theorem 4.3.3].

The Milnor filtration will be induced by a suitable filtration of the spectrum K ⊗K. Before
we work with such objects, we first recall some standard definitions and establish terminology.

A non-negatively filtered spectrum is a functor P• : N → Sp, where we consider the natural
numbers as a partially ordered set. If X is a spectrum, then a filtration on X is a filtered
spectrum P• together with an equivalence lim

−→
P• ≃ X .

Remark 6.2. Note that according to our terminology, any filtered spectrum is canonically a
filtration of its colimit.

To any filtration P• we can attach an associated non-negatively graded spectrum

gr(P•) =
⊕

s

grs(P•)

with the degree s part defined by

grs(P•) := cofib(Ps−1 → Ps),

where P−1 = 0 by convention. The boundary maps

Σ−1grs(P•)→ Ps−1 → grs−1(P•)

make Σ−sgrs(P•) into a chain complex in the homotopy category of spectra. Any filtration has
a corresponding spectral sequence of signature

E1
s,t := πtgrs(Σ

−sP•) =⇒ πs+tX,

where the first differential is induced by the chain complex structure on the associated graded
[Lur16, §1.2.2]. The increasing filtration on π∗X associated to this spectral sequence is given by
the images of maps π∗Ps → π∗X .

There is a natural tensor product on the ∞-category of filtered spectra, given by Day convo-
lution. This has the properties that

(1) if P• and S• are filtrations of X,Y , then P• ⊗ S• is a filtration of X ⊗ Y and
(2) gr(P• ⊗ S•) ≃ gr(P•)⊗ gr(S•), where the latter is the tensor product of graded objects.

In fact, the latter equivalence can be upgraded to an isomorphism in the category of chain
complexes in the homotopy category of spectra, where we consider the latter as symmetric
monoidal with the differential on the tensor product given by the usual Leibniz rule [Rak20,
3.2.15].

Example 6.3. We will need certain special filtrations of E-modules, the main reference here be-
ing Lurie [Lur16, §7.2.1], who works with simplicial objects. By the stable Dold–Kan equivalence,
this is equivalent to working with filtered objects as we do.

If P• is an E-module filtration of some M , then we say P• is E-free if the associated simplicial
object is S-free with respect to the set S = { ΣnE | n ∈ Z }. We say it is an E-resolution if
it is E-free and an S-hypercover. For precise definitions of these terms, see [Lur16, Definition
7.2.1.2.]. The two main facts we will need are that
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(1) if P• is E-free, then the associated graded E-module is levelwise free and
(2) if it is a resolution, then π∗Σ

−ngrn(P•) is a projective resolution of M∗ in E-modules.

Lurie shows that any E-module M admits a resolution, which is unique (as an augmented
simplicial object) up to simplicial homotopy.

If P• is an E-module resolution of M and X is an arbitrary spectrum, then P• ⊗ X is a
filtration of M ⊗X and so we get a spectral sequence whose signature is readily shown to be

E2
t,s := Tors,tE∗

(M∗, E∗X) =⇒ M∗X

This is the Künneth spectral sequence which we previously mentioned in Corollary 2.13.

We are now ready to make the key definition of this section.

Definition 6.4. The Milnor filtration on K∗K ≃ π∗(K ⊗ K) is the filtration induced by the
filtration P• ⊗ P• of K ⊗K, where P• is an E-free resolution of K as an E-module.

In fact, the above filtration is readily identified with a familiar one.

Lemma 6.5. The Milnor filtration coincides with the filtration induced by the Künneth spectral
sequence of signature

Tors,tE∗
(K∗, E∗K) =⇒ Kt+sK.

Proof. The Künneth spectral sequence is induced by the filtration P•⊗K, and the obvious map
P• → K into the constant filtration of the latter induces a comparison map P•⊗P• → P•⊗K of
filtrations of K ⊗K. We claim this induces an isomorphism of spectral sequences starting from
the second page onwards, and hence an isomorphism of filtrations of K∗K.

On the first pages of the corresponding spectral sequences, we are looking at the map

π∗(gr(P•)⊗ gr(P•))→ π∗(gr(P• ⊗K)),

where we have suppressed the suspensions needed to make the above into chain complexes of
graded abelian groups.

Note that if M is an arbitrary E-module, then E∗M ≃ E∗E ⊗E∗
M as E∗E is flat over E∗ so

that the corresponding Künneth spectral sequence collapses. It follows that since each gr(P•) is
levelwise free as an E-module, we can rewrite the above map on first pages of the corresponding
spectral sequences as

π∗gr(P•)⊗E∗
E∗E ⊗E∗

π∗gr(P•)→ π∗gr(P•)⊗E∗
E∗E ⊗E∗

K∗.

The tensor product of the first two factors is a non-negatively graded complex of flat E∗-modules,
so that tensoring with it preserves quasi-isomorphism. As gr∗(P•)→ K∗ is a quasi-isomorphism,
we deduce that so is the map on first pages, ending the argument. �

Corollary 6.6. The Milnor filtration does not depend on the choice of the E-free resolution.

Proof. This is immediate from Lemma 6.5, as any two E-free filtrations P 1
• , P 2

• induce the same
Künneth filtration, as P 1

• ⊗K and P 2
• ⊗K are simplicially homotopic. �

Remark 6.7. By symmetry, Lemma 6.5 implies that the Milnor filtration also coincides with the
filtration induced by the other Künneth spectral sequence, namely that of signature

Tors,tE∗
(K∗E,K∗) =⇒ Kt+sK.

The main advantage of using the Milnor filtration is that its definition is manifestly symmetric,
so that it is easier to work with.
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Note that since the Milnor filtration coincides with the Künneth one, we immediately deduce
that the associated graded object is given by

Tor∗,∗E∗
(K∗, E∗K) ≃ Tor∗,∗E∗

(K∗,K∗)⊗ E∗K,

where the additional grading comes from the external Tor-grading. In particular, the elements
of filtration zero are given by

FMil
0 (K∗K) = E∗K,

the image of the canonical map E∗E → K∗K. As the latter is a sub-Hopf algebroid, this suggests
that the Milnor filtration is compatible with the Hopf algebroid structure. This is indeed the
case, as we will now show.

Lemma 6.8. The Milnor filtration on K∗K is multiplicative.

Proof. We first claim that the multiplication map K⊗K → K lifts to a morphism P•⊗P• → P•

of filtrations.
Observe that since K is an E-algebra, the multiplication factors canonically through a map

K⊗EK → K. Observe that P•⊗EP• is an E-free filtration ofK⊗EK (although not a resolution,
but this is not needed). Then, since P• is an E-module resolution of K, it follows from [Lur16,
Proposition 7.2.1.5] (where C = K) that the map K ⊗E K → K of E-modules lifts to a map
P• ⊗E P• → P• of filtrations. The needed lift of K ⊗K → K is then given as composition

P• ⊗ P• → P• ⊗E P• → P•,

where the first map is the canonical one to the relative tensor product.
We now claim that the multiplication on K⊗K also lifts to a map of corresponding filtrations

of spectra, showing that it respects filtrations on homotopy groups. This product map is given
up to homotopy by the composite

K ⊗K ⊗K ⊗K K ⊗K ⊗K ⊗K K ⊗K
K⊗σ⊗K m⊗m

,

where σ is the twist in the symmetric monoidal structure. This is lifted to a map of filtrations
by

(P• ⊗ P•)⊗ (P• ⊗ P•) P• ⊗ P• ⊗ P• ⊗ P• P• ⊗ P•,
P•⊗σ⊗P• m̃⊗m̃

where m̃ is the lift of the multiplication map constructed above. This ends the argument. �

Theorem 6.9. The Milnor filtration makes K∗K into a filtered Hopf algebroid over K∗.

Proof. We have already checked that the Milnor filtration is preserved by multiplication on K∗K
in Lemma 6.8. Thus, we are left with comultiplication and antipode. The latter is induced by
the twist map K ⊗K, which can be lifted to a map of filtration by the twist on P• ⊗ P•, hence
it preserves the filtration on homotopy groups.

We move on to comultiplication ∆: K∗K → K∗K ⊗K∗
K∗K. This is induced by the map

K ⊗K ≃ K ⊗ S0 ⊗K K ⊗K ⊗K ≃ (K ⊗K)⊗K (K ⊗K),
K⊗u⊗K

where u : S0 → K is the unit and we implicitly use the Künneth isomorphism

π∗((K ⊗K)⊗K (K ⊗K)) ≃ K∗K ⊗K∗
K∗K,

which holds in full generality since K∗ is a field.
As P• is an E-free filtration of K∗, it induces a trivial filtration on K∗, so that the unit factors

through some map S0 → P0. The latter induces a map ũ : S0 → P• of filtrations, where we equip
the sphere with the trivial filtration, which makes it into the monoidal unit of filtered spectra.
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Consider the composite

P• ⊗ P• P• ⊗ P• ⊗ P• P• ⊗K ⊗ P• ≃ (P• ⊗K)⊗K (K ⊗ P•)
P•⊗ũ⊗P•

which by construction lifts the map inducing comultiplication. As the filtrations of K∗K induced
by P• ⊗ K and K ⊗ P• coincide with the Milnor filtration by Lemma 6.5 and Remark 6.7, we
deduce that comultiplication preserves the Milnor filtration as needed. �

We will show that if p > 2 and K∗K is commutative—for example, if K is homotopy
commutative—then the Milnor filtration can be canonically promoted to a grading. We will
prove that the existence of this grading implies that the Cartan–Eilenberg spectral sequence
associated to the extension K∗E → K∗K → KE

∗ K collapses.
Assume that p > 2 and K∗K is commutative, we will first use the Milnor filtration to describe

K∗K completely as an algebra. By Lemma 6.5, the associated graded to the Milnor filtration is
given by

Tor∗,∗E∗
(K∗, E∗K) ≃ Tor∗,∗E∗

(K∗,K∗)⊗ E∗K.

Observe that since FMil
0 (K∗K) ≃ E∗K is in even degree, the external degree one part in the

associated graded object, which is

Tor1E∗
(K∗,K∗)⊗ E∗K,

can be identified with elements of Milnor filtration at most one in K∗K of odd internal degree.
Thus, the inclusion

Tor1E∗
(K∗,K∗) →֒ Tor1E∗

(K∗,K∗)⊗ E∗K,

can be canonically lifted to a unique map

Tor1E∗
(K∗,K∗)→ K∗K.

which reduces to the canonical inclusion relative to elements of Milnor filtration zero. Since
Tor∗,∗E∗

(K∗,K∗) is an exterior algebra on elements of external degree one, when p > 2 this Tor-

algebra is a free commutative K∗-algebra on the vector space Tor1,∗. If K∗K is commutative, it
follows that the above lift uniquely extends to a map of K∗-algebras

Tor∗E∗
(K∗,K∗)→ K∗K.

with the following property.

Proposition 6.10. Let p > 2 and assume that K∗K is commutative. Then, the induced map of
E∗K-algebras

Tor∗E∗
(K∗,K∗)⊗K∗

E∗K → K∗K (6.11)

is an isomorphism.

Proof. By construction, the above map is surjective on the associated graded ofK∗K with respect
to the Milnor filtration. Thus, it is surjective by an inductive argument, and as a surjective map
of free E∗K-modules of the same rank it must be an isomorphism. �

As a consequence of Proposition 6.10, K∗K inherits an additional external grading from the
grading of Tor-groups. This grading can be made explicit, as in the following definition.

Definition 6.12. Let p > 2 and assume that K∗K is commutative. Then, the Milnor grading
on K∗K is the unique algebra grading such that

(1) elements of Milnor filtration zero are of Milnor degree zero and
(2) odd internal degree elements of Milnor filtration at most one are of Milnor degree one.

Lemma 6.13. The Milnor grading is well-defined.
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Proof. This is immediate from Proposition 6.10, as the external grading on the algebra tensor
product is Tor∗E∗

(K∗,K∗)⊗K∗
E∗K is uniquely determined by which elements are of degrees zero

and one. �

Remark 6.14. The increasing filtration associated to the Milnor grading is exactly the Milnor
filtration. Thus, this grading can be considered as a refinement of the latter canonical filtration,
which exists at all primes and with no assumptions on commutativity.

Theorem 6.15. Let p > 2 and assume that K∗K is commutative. Then, the Milnor grading on
K∗K is compatible with comultiplication and antipode, making it into a bigraded Hopf algebroid.

Proof. AsK∗K is generated as an algebra by elements in Milnor degrees zero and one, it is enough
to check that these two degrees are preserved. The subspace of elements of Milnor degree most
one coincides with elements of filtration at most one, which get preserved by comultiplication
and antipode by Theorem 6.9.

Since the ones in Milnor degree zero are precisely those of even internal degree, and the ones
in Milnor degree one are exactly the ones of odd internal degree, we deduce that each degree
gets preserved separately by both comultiplication and antipode. �

Remark 6.16. To see what goes wrong if p = 2, observe that even if K∗K were commutative,
odd degree elements do not have to square to zero and so there need not be a multiplicative
extension of the canonical map Tor1E∗

(K∗,K∗)→ K∗K to a map on the whole Tor-algebra.
One can try to define the Milnor grading at p = 2 directly similarly to Definition 6.12, by

declaring that elements in Milnor degree s are the s-fold products of those in Milnor degree one.
This is bound to fail; the calculations of Würgler in the case of the minimal Morava K-theory
given in Section 3 show that the elements τi of Milnor degree one square to non-zero elements of
Milnor degree zero.

Theorem 6.17. Suppose that p > 2 and that K∗K is commutative. Then, the Cartan–Eilenberg
spectral sequence associated to the extension

K∗E → K∗K → KE
∗ K

collapses on the second page, inducing a canonical isomorphism

ExtK∗K(K∗,K∗) ≃ ExtK∗E(K∗,ExtKE
∗
K(K∗,K∗)).

Proof. Under the given assumptions, K∗K is bigraded using its internal grading and the Milnor
grading of Definition 6.12. This grading is compatible with the above extension, with all of K∗E
of Milnor degree zero.

AsKE
∗ K ≃ ΛK∗

(V ) as Hopf algebras, where V is theK∗-vector subspace of primitive elements,
we have

Ext∗,∗,∗KE
∗
K(K∗,K∗) ≃ SymK∗

(V ∨),

an isomorphism with the symmetric algebra. Here, V ∨ is of homological degree one and Milnor
degree one, and so the whole above Ext-algebra is concentrated on the plane of elements for
which Milnor degree is equal to the homological one.

Since the Cartan–Eilenberg differentials lower the homological degree and preserve the Milnor
degree, we deduce that they are all zero. This gives an isomorphism as above up to passing to
associated graded to the homological filtration, as the extension problems all get trivialized by
the additional grading. �
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Part 2. The K-based Adams spectral sequence

In this part, we study the Adams spectral sequence based on a MoravaK-theoryK at arbitrary
height n and prime p, constructed as part of a finite height analogue of Miller’s square of spectral
sequences. In particular, we establish its (perhaps surprisingly) good convergence properties and
identify it with the filtration by powers spectral sequence, at least for sufficiently large primes
p. We then conclude this part with an illustration of the spectral sequence at heights 1 and odd
primes, already exhibiting the existence of arbitrary long differentials.

Remark 6.18 (Adams spectral sequence based on Milnor modules). We will not proceed in this
way, but one can phrase the K-based Adams spectral sequence entirely in terms of absolute
Milnor modules, following Miller’s observation that the Adams spectral sequence is determined
by the class of K∗-injective maps.

To see this, notice that the restricted Yoneda embedding, followed by a sheafification, gives a
symmetric monoidal functor

y : Sp→ Milabs

which can be considered a Milnor modules-valued homology theory. That is, the functor y takes
cofibre sequences to exact sequences, preserves arbitrary direct sums, and takes the suspension in
spectra to the distinguished auto-equivalence of Milnor modules induced by suspension functor
on Spfin.

By construction, any injective object in Milnor modules can be lifted to a representing object
in spectra, and this allows one to construct a “y-based” Adams spectral sequence based on
injectives, where the E2-terms will be canonically given by Ext-groups in absolute Milnor modules
[PP21]. Through the equivalence of Proposition 4.12, this spectral sequence will be canonically
isomorphic to the K-based Adams spectral sequence for any choice of Morava K-theory.

7. Convergence of the K-based Adams spectral sequence

In this short section, we prove that the K-based Adams spectral sequence is conditionally
convergent for any K-local spectrum, and it converges completely in the dualizable case.

Remark 7.1. As observed in Remark 6.18, the K-based Adams spectral sequence depends only
on the choice of the prime and the height. However, this independence from choices will not be
needed in this section, as the arguments we use apply equally well to any Morava K-theory.

By standard arguments, theK-based Adams spectral sequence is isomorphic to the totalization
spectral sequence obtained by mapping into the canonical K-Adams resolution

X → K ⊗X ⇒ K ⊗K ⊗X ⇛ . . .

Thus, it follows that the K-based Adams spectral sequence converges to the homotopy of the
K-nilpotent completion of X :

Tot(K⊗•+1 ⊗X) := lim
←−s∈∆

K⊗•+1 ⊗X.

Since the totalization is K-local as a limit of K-local spectra, there is a canonical comparison
map from the K-localization of X . Our first task is to determine when this map is an equivalence.

Proposition 7.2. For any spectrum X, the K-nilpotent completion of X is equivalent to the
K-localization of X; that is, the canonical map

LKX → Tot(K⊗•+1 ⊗X) (7.3)

is an equivalence.
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Proof. Since both sides are K-local, it is enough to show that this map is a K∗-isomorphism.
The latter can be checked after tensoring with any non-K-acyclic spectrum as K∗ is a field, so
that we have the Künneth isomorphism, and tensoring with a non-zero K∗-vector space reflects
isomorphisms.

After tensoring with a finite spectrum F (n) of type n, the above map becomes

LK(X ⊗ F (n))→ Tot(K⊗•+1 ⊗X ⊗ F (n)),

as both sides of (7.3) define exact functors in X and so commute with tensoring with a finite
spectrum. Thus, it is enough to check the result holds for X ⊗ F (n).

The proof of the smash product theorem in [Rav92, Chapter 8] shows that S0 is E-prenilpotent;
that is, LES

0 ∈ Thick⊗(E), where Thick⊗(Y ) denotes the smallest full subcategory of Sp which
contains Y , is thick, and is closed under smashing with arbitrary objects in Sp. It follows that

LKF (n) ≃ LEF (n) ∈ Thick⊗(E ⊗ F (n)) ⊆ Thick⊗(K).

In other words, F (n) is K-prenilpotent. By definition, X ⊗ F (n) is thus also K-prenilpotent
for all X ∈ Sp. Therefore, Bousfield’s theorem [Bou79, Theorem 6.10] applies to provide an
equivalence LK(X ⊗ F (n)) ≃ Tot(K⊗•+1 ⊗X ⊗ F (n)), which is what we wanted. �

If X,Y are spectra, then by applying [Y,−] to the canonical K-Adams resolution of X we
obtain the Adams spectral sequence as the totalization spectral sequence. SinceK∗ is a field, K∗Y
is projective over the base ring, so that by standard arguments the resulting spectral sequence
has signature

Es,t
2 (Y,X) ∼= Exts,tK∗K

(K∗Y,K∗X) =⇒ [Y, LKX ]t−s.

Indeed, if we use the canonical Adams resolution, then the first page of the Adams spectral
sequence will be given by the cobar complex, which in the projective case computes the Ext-
groups in comodules [Rav03, Corollary A.1.2.12].

Corollary 7.4. For any K-local spectrum X and any Y , the K-based Adams spectral sequence
converges conditionally in the sense of Boardman to [Y, LKX ].

Proof. The totalization spectral sequence is the spectral sequence induced by the tower of partial
totalizations. Conditional convergence to [−, LKX ] in the sense of Boardman is equivalent to the
natural map from LKX into the limit of this tower being an equivalence, so that the statement
follows from Proposition 7.2. �

Let us write E∗,∗
r (Y,X) for the r-th page of the K-based Adams spectral sequence converging

conditionally to [Y, LKX ], so that we have Es,t
2 (Y,X) ≃ Exts,tK∗K

(K∗Y,K∗X). The differentials
in this spectral sequence are of the form

dr : E
s,t
r (Y,X)→ Es+r,t+r−1

r (Y,X).

In particular, for r > s there are inclusions Es,t
r+1(Y,X) ⊆ Es,t

r (Y,X), and we write

Es,t
∞ (Y,X) = limr E

s,t
r (Y,X).

Let F ∗[Y, LKX ]∗ denote the filtration on [Y, LKX ]∗ induced by the spectral sequence. Follow-
ing Bousfield [Bou79, §6], we say that the K-based Adams spectral sequence for X converges
completely if the canonical maps

[Y, LKX ]∗ ։ lims[Y, LKX ]∗/F
s[Y, LKX ]∗

and
F s[Y, LKX ]∗/F

s+1[Y, LKX ]∗ →֒ Es,s+∗
∞ (Y,X)

are isomorphisms. By the work of Bousfield, see [Bou79, Proposition 6.3], this is equivalent to

the condition that lim1
r>sE

s,t
r (Y,X) vanishes.
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Proposition 7.5. The K-based Adams spectral sequence of signature

Exts,tK∗K
(K∗Y,K∗X) =⇒ [Y, LKX ]t−s.

converges completely for any spectra X and Y with K∗X and K∗Y finite-dimensional.

Proof. By Theorem 5.10, the groups in the E2-term are all finite. Therefore, the system

(Es,t
r (Y,X))r>s

is Mittag-Leffler, so that Bousfield’s convergence criterion [Bou79, Proposition 6.3] applies. �

Remark 7.6. For a spectrum X , the homology K∗X being finite-dimensional is equivalent to X
being K-locally dualizable, see [HS99, Theorem 8.6].

Remark 7.7. In general, the K-based Adams spectral sequence may fail to converge completely
in the sense of Bousfield, see Example 10.7.

8. The finite height Miller square

In his seminal paper [Mil81] on relations between Adams spectral sequences, Miller uses the
relationship between the Adams–Novikov and classical Adams spectral sequences to prove the
telescope conjecture at height one and odd primes. In this section, we apply his axiomatic
framework to the case of Lubin–Tate and Morava K-theory spectra.

In Miller’s framework, one starts with a map A → B of homotopy ring spectra; that is, an
arrow in the category Alg(ho(Sp)). In this context, it is not hard to show that a map X → Y of
spectra which is A-monic, in the sense that A⊗X → A⊗Y is a split inclusion, is also B-monic.
Thus, any B-injective spectrum is also A-injective, see [Mil81, Lemma 2.1].

Definition 8.1 (Miller). A spectrum X is (A,B)-primary if there exists an A-Adams resolution
X → I• such that for each m, the B-Adams spectral sequence computing π∗I

m converges and
collapses on the second page.

When X is (A,B)-primary, Miller constructs a square of spectral sequences

E2
A,B(X)

E2
A(X) E2

B(X)

π∗X
A−Adams B−Adams

May Mahowald

which we will now explain. The terms E2
A(X), E2

B(X) form the second pages of the relevant
Adams spectral sequences, and the bottom two arrows are the corresponding Adams spectral
sequences.

The construction of the other two spectral sequences is more involved, but let us briefly recall
the arguments of Miller. Observe that E2

A(X) arises as homology of the cochain complex π∗I
•,

where I• is an A-Adams resolution as in Definition 8.1. As this cochain complex is given by
homotopy groups, it has an additional filtration given by the B-Adams filtration. By definition,
the term E2

A,B(X) is the cohomology of the associated graded of π∗I
• with respect to this filtra-

tion, and the top left arrow is the associated cohomology of filtered complex spectral sequence,
which Miller calls the May spectral sequence.

If X is primary in the sense of Definition 8.1, the cohomology E2
A,B(X) of the associated

graded of π∗I
• is the same as the cohomology of the complex E2

B(I
•) consisting of the B-Adams

E2-pages of the spectra I•. As all A-split maps are B-split, these E2-pages are related by long
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exact sequences and can be collected into an E1 of an exact couple using that I• is a resolution
of X , yielding a spectral sequence computing E2

B(X). This is the spectral sequence in the top
right corner, which Miller calls the Mahowald spectral sequence.

Remark 8.2. Miller proves that the above diagram of spectral sequences is commutative in the
sense that, after making appropriate choices, the d2-differentials in the May spectral sequence
can be identified with d2-differentials in the B-Adams spectral sequence [Mil81, Theorem 4.2]. In
the case of Morava K-theory and under the assumption that the prime is large enough compared
to the height, we will generalize this result to higher differentials in Proposition 9.13.

Let us give an explicit description of these spectral sequences for Lubin–Tate spectra and
Morava K-theories. Note that in this case, the E-based Adams spectral sequence computes
the E-local homotopy groups, which are quite different from the K-local ones. Thus, to get a
commutative square, we should work internally to K-local spectra.

Our first goal is to show that the K-based Adams spectral sequence has a particularly simple
form for E-modules with flat homotopy groups. To do so, we will reduce to the pro-free case
using the work of Hovey.

Before we proceed, let us recall that the completion functor M∗ 7→ (M∗)
∨
m
:= lim
←−

M∗/m
nM∗

is neither left or right exact, but it has left derived functors Ls : ModE∗
→ ModE∗

. For more
properties of these functors, see [HS99, Appendix B] or [BF15, Appendix A].

Lemma 8.3. Let M∗ be an E∗-module such that TorsE∗
(M∗,K∗) = 0 for s > 0; for example, M∗

can be flat. Then, the completion (M∗)
∨
m

is pro-free.

Proof. This is proven by Hovey in [Hov04c, 1.2]. �

Lemma 8.4. Let M be an E-module such that M∗ is flat over E∗. Then, the K-localization
map M → LKM induces an isomorphism π∗LKM ≃ (M∗)

∨
m

with the completion.

Proof. Hovey constructs for any E-module M a strongly convergent spectral sequence of signa-
ture

LsMt → πt+sLKM.

In the present case, the spectral is concentrated on the zero line by Lemma 8.3, hence the spectral
sequence collapses inducing the needed isomorphism. �

Corollary 8.5. Let M be an E-module such that M∗ is flat. Then, LKM is equivalent as an
E-module to the K-localization of a direct sum of copies of E.

Proof. We have π∗LKM ≃ (M∗)
∨
m

by Lemma 8.4 and (M∗)
∨
m

is pro-free by Lemma 8.3. Choosing
pro-generators of the latter induces a map LK(

⊕
E)→M from a direct sum of shifts of E which

is an equivalence by inspection of homotopy groups. �

Proposition 8.6. If M is an E-module such that M∗ is E∗-flat, then the K-Adams filtration
on M∗ is the m-adic one and the K-based Adams spectral sequence for M converges completely
to π∗LKM := (M∗)

∨
m

and collapses on the second page.

Proof. By flatness we have π∗LKM ≃ (M∗)
∨
m

. Since the m-adic filtration on M∗ is induced
by that of completion, we can replace M by its K-localization. In this case, M is K-locally
equivalent to a direct sum of E by Corollary 8.5. As the Adams spectral sequence of a direct
sum is a direct sum of spectral sequences, we can assume that M = E.

We have a base-change isomorphism

ExtK∗K(K∗E,K∗) ≃ ExtKE
∗
K(K∗,K∗)
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and by Proposition 5.8 a further isomorphism

ExtKE
∗
K(K∗,K∗) ≃ K∗ ⊗κ Sym∗

κ(m/m
2).

Since E0 is regular, Sym∗
κ(m/m

2) can be identified with the associated graded to the m-adic
filtration on E0.

We deduce from the above that the E2-term of the K-based Adams for E is abstractly iso-
morphic to the associated graded of the m-adic filtration on E∗. Moreover, since the E2-term is
concentrated in even Adams degree, we deduce that the Adams spectral sequence collapses.

We are left with showing that the K-based Adams filtration on E∗ coincides with the m-adic
one. Observe that since E → K is a K∗-monomorphism by Proposition 2.14, the elements of
positive Adams filtration are precisely given by mE∗ = ker(E∗ → K∗).

Using compatibility of the Adams filtration with products, we deduce that any element of
m

nE∗ is of Adams filtration at least n. Thus, one filtration is contained in the other. As their
associated gradeds have the same dimension over K∗ by what was said above, we deduce that
the two filtrations must coincide, as needed. �

Proposition 8.7. Let X be a spectrum such that E∨
∗ (X) := π∗LK(E ⊗ X) is pro-free; for

example, such that E∗X is flat. Then, X is (E,K)-primary in the K-local category.

Proof. The implication that E∗X flat implies E∨
∗X pro-free is a combination of Lemma 8.3 and

Proposition 8.6.
Since E∗E is flat over E∗, this in particular implies that E∨

∗ E is pro-free, which can be also
proven directly using evenness, see [HS99, THeorem 8.6]. It follows (as in [BH16, Corollary 1.24],
for example) that

π∗LK(E• ⊗X) ≃ (E∨
∗ E)⊗

∨

E∗
•−1 ⊗∨

E∗
E∨

∗X,

where on the right hand side we have the completed tensor products, which are again pro-free.
This together with Proposition 8.6 implies that the standard K-local E-based Adams resolution

LKX LK(E ⊗X) LK(E ⊗ E ⊗X) . . .

LK(E ⊗M) LK(E ⊗ E ⊗X)

satisfies the primarity condition. �

If E∨
∗X is pro-free, then the E1-page of the K-local E-based Adams spectral sequence is given

by the cobar complex

π∗LK(E• ⊗X) ≃ (E∨
∗ E)⊗

∨

E∗
•−1 ⊗E∗

E∨
∗X.

It follows from Proposition 8.6 that the K-Adams filtration on these homotopy groups coincides
with the filtration by powers of the maximal ideal m; this is the “filtration by powers” appearing
in the title. This has the following consequence.

Corollary 8.8. If E∨
∗X is pro-free, then Miller’s May spectral sequence associated to (E,K)

coincides with the spectral sequence of signature

Exts,tE∨
∗
E(E∗,

⊕
m

n/mn+1E∨
∗X) =⇒ Extt−s

E∨
∗
E(E∗, E

∨
∗X)

obtained by filtering E∨
∗X by powers of the maximal ideal; that is, by m

nE∨
∗X.

Proof. Since Miller’s May spectral sequence is induced by the K-Adams filtration on the ho-
motopy groups of the K-local E-Adams resolution, this is a consequence of Proposition 8.6, as
under the above assumption all of the spectra in the resolution are pro-free. �
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Remark 8.9. The identification of the E2-page of the K-local E-based Adams spectral sequence
is somewhat subtle. However, in the case where E∨

∗X is pro-free, it follows from [BH16] that it
acquires a structure of a suitably complete comodule over E∨

∗ E and that the E2-page is given
by the Ext-groups in comodules as above.

We deduce that the K-local Miller square associated to (E,K) is of the form

ExtE∨
∗
E(E∗,

⊕
m

n/mn+1E∨
∗X)

ExtE∨
∗
E(E∗, E

∨
∗X) ExtK∗K(K∗,K∗X)

π∗LKX,
E−Adams K−Adams

May Mahowald

(8.10)

whenever E∨
∗X is profree. This leaves the question of identifying the Mahowald spectral sequence,

which is not too difficult.

Proposition 8.11. If E∨
∗X is pro-free, then Miller’s Mahowald spectral sequence based on (E,K)

can be identified with the Cartan–Eilenberg spectral sequence associated to the extension of Hopf
algebroids

K∗E → K∗K → KE
∗ K.

Proof. Taking the standard K-local E-Adams resolution

X → LK(E ⊗X)→ LK(E ⊗ E ⊗X)→ . . .

and applying K-homology gives the long exact sequence of comodules of the form

K∗X → K∗E ⊗K∗X → K∗E ⊗K∗
K∗E ⊗K∗

K∗X → . . . .

Applying ExtK∗K(K∗,−) to the above leads to an exact couple which yields the Mahowald
spectral sequence.

Note that from the description of the E1-term we see that this is just the K∗E-based Adams
spectral sequence in the derived category of K∗K-comodules, sometimes called the Margolis–
Palmieri spectral sequence. This is known to be isomorphic to the Cartan–Eilenberg spectral
sequence associated to the extension, see [Bel20, Theorem 4.2]. �

Remark 8.12. We have shown in Theorem 6.17 that if p > 2, then the Cartan–Eilenberg spectral
sequence computing ExtK∗K(K∗,K∗) collapses on the second page. It follows from the isomor-
phism of Proposition 8.11 that the same is true for Miller’s (E,K)-Mahowald spectral sequence
associated to X = S0.

Remark 8.13. Note that applying Proposition 8.11 to the starting terms of the respective spectral
sequences implies in particular that

ExtE∨
∗
E(E∗,

⊕
m

n/mn+1E∗) ≃ ExtE∗K(K∗,ExtKE
∗
K(K∗,K∗)).

This can be proven directly, without resorting to Miller’s work, using Hopkins and Lurie’s cal-
culation of the cohomology of KE

∗ K, which we stated as Proposition 5.8. The key is that since
E0 is regular, we have Symκ(m/m

2) ≃
⊕

m
n/mn+1.

Remark 8.14. If we again pick E = En, the Lubin–Tate spectrum associated to the Honda formal
group law of height n over Fpn , then the relevant Ext-groups appearing in the Miller square can
be described in terms of the cohomology of the Morava stabilizer group, see [BH16, Theorem
4.3]. Keeping this choice of E in mind, we can rewrite the Miller square as
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H∗(Gn,
⊕

m
n/mn+1E∨

∗X)

H∗(Gn, E
∨
∗X) ExtK∗K(K∗,K∗X)

π∗LKX.
E−Adams K−Adams

May Mahowald

Remark 8.15. In the important case of (MU,HFp), the Miller square can also be described
explicitly, see for example [GWX21]. In this context, the Miller square foreshadows the later
development of the Cτ -philosophy of Gheorghe, Isaksen, Wang and Xu which applied motivic
methods to breakthrough results in stable homotopy groups of spheres [IWX20].

9. The K-based Adams spectral sequence at large primes

It is well-known that if p is large compared to the height, then the E-based Adams–Novikov
spectral sequence for the K-local sphere collapses. As the same is true for the Mahowald spectral
sequence, as we have shown in Remark 8.12, we deduce that under these assumptions, two of
the sides of the Miller square of (8.10) represent collapsing spectral sequences.

It is then only natural to expect that the other two sides can be identified up to regrading;
in this section, we show that this is indeed the case. More precisely, we will show that if
2p− 2 > n2 + n+ 1, then the K-based Adams spectral sequence for the sphere is isomorphic to
the filtration by powers spectral sequence

H∗(Gn,
⊕

m
n/mn+1) =⇒ H∗(Gn, E∗),

which we can identify with Miller’s May spectral sequence by Corollary 8.8.

Remark 9.1. Note that a result of Miller [Mil81, Theorem 4.2] relates the d2-s in the May and
K-based Adams spectral sequence, at all primes and heights. Our first approach to this problem
was to try to push Miller’s methods further into higher differentials, hoping that the collapses of
the other two spectral sequences in the square would simplify the situation. This approach was
unsuccessful, and below we use quite different methods.

Remark 9.2. While we will show in this section that at large primes the K-based Adams spectral
sequence admits an algebraic description, it never collapses for n > 0, unlike the Adams–Novikov

spectral sequence. Indeed, the element vn = up
n−1 ∈ Ext0,2p

n−2
K∗K

(K∗,K∗) is never a permanent
cycle, as the K-local sphere is of type 0 and so cannot admit a vn-periodic map.

To prove our comparison result, we will use an algebraicity result for homotopy categories
of E-local spectra at large primes due to the second author, strengthened in recent work with
Patchkoria, which compares it the following algebraic construction.

Notation 9.3. Let us write D(E∗E) for the derived∞-category of the abelian category of comod-
ules. This is a symmetric monoidal stable ∞-category, with monoidal unit given by E∗ itself,
considered as a chain complex concentrated in degree zero. The unit defines for any X ∈ D(E∗E)
its homotopy groups

Exts,t
D(E∗E)(X) := [ΣsE∗[t], X ]D(E∗E).

Notice that the homotopy groups are bigraded, since the abelian category of E∗E-comodules
has an internal grading. This endows the derived ∞-category with two gradings,

(1) the homological one given by the suspension and corresponding above to s and
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(2) the internal one induced from the grading shift functor on ComodE∗E and corresponding
above to t.

In the special case of X being a comodule, considered as an object of the heart, these homotopy
groups encode the E2-term of the E-based Adams spectral sequence in the∞-category of spectra.

Definition 9.4. The periodicity algebra P (E∗) is the E∞-algebra in D(E∗E) determined by the
commutative algebra

E∗[τ
±1],where |τ | = (1,−1)

in chain complexes of comodules, equipped with the zero differential.

Notation 9.5. For brevity, let us write

ModP (E∗) := ModP (E∗)(D(E∗E)).

The following result shows that modules over the periodicity algebra give an algebraic model
for the homotopy category of E-local spectra.

Theorem 9.6. If 2p− 2 > n2 + n, there exists an equivalence

φ : hSpE ≃ hModP (E∗) D(E∗E)

of homotopy categories of E-local spectra and P (E∗)-modules which is moreover compatible with
homology functors in the sense that the following diagram commutes

hSpE hModP (E∗) D(E∗E)

ComodE∗E .

E∗(−) H0

φ

Proof. This is proven under the assumption 2p − 2 > 2(n2 + n) in the second author’s thesis
[Pst18a]. The bound was improved to the one given above in joint work with Patchkoria [PP21].

�

Remark 9.7. Note that as an E1-algebra in D(E∗E), the connective cover of the periodicity
algebra P (E∗) can be identified with the free E1-algebra on the object ΣE∗[−1], and so is
uniquely determined by its homology groups.

The category of modules over P (E∗) (considered only as a stable∞-category) can be identified
with the subcategory of modules over the connective cover spanned by those modules on which
τ acts invertibly. Thus, to define the target of the equivalence of Theorem 9.6, it is not strictly
necessary to work with algebras in chain complexes as in Definition 9.4, but we do so out of
convenience.

Remark 9.8. For any M,N ∈ ModP (E∗) we have an Adams spectral sequence of signature

Exts,t(H0(M),H0(N)) =⇒ [M,N ]t−s,

where on the right hand side we have homotopy classes of maps of P (E∗)-modules.
This observation, due to Franke [Fra], is the starting point for the comparison of ModP (E∗)

to the E-local category. The general form of Franke’s conjecture implies that all stable ∞-
categories admitting a suitably convergent Adams-type spectral sequence of this signature must
have equivalent homotopy categories [PP21].

One of the advantage of P (E∗)-modules over E-local spectra is the existence of the free module
functor

P (E∗)⊗− : D(E∗E)→ ModP (E∗)

(also called the periodicization) which is cocontinuous and symmetric monoidal. The homotopy
groups of free modules can be understood explicitly, as the following shows.
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Remark 9.9. Since the periodicity algebra is a sum of shifts of a unit as an object of the derived
∞-category, the homotopy groups of the free module are simple to understand. More precisely,
for any M ∈ D(E∗E) we have

[P (E∗), P (E∗)⊗E∗
M ]tP (E∗)

≃ [E∗, P (E∗)⊗E∗
M)]t

D(E∗E) ≃
⊕

s

Exts,t−s
E∗E

(E∗,M).

As a consequence, whenever a P (E∗)-module can be written as a periodicization of some M
as above, its homotopy groups acquire an additional grading. Note that any given module can
be written as a periodicization in many different ways and this additional grading depends on
that choice.

Our plan is to use Theorem 9.6 to compare the K-based Adams spectral sequence in E-local
spectra to the one in its algebraic model, and subsequently give an explicit description of the
latter in terms of filtration by powers.

Lemma 9.10. Let X be either the E-local sphere or a Morava K-theory; that is, X = S0
E or

X = K. Then, there exists a canonical isomorphism

φ(X) ≃ P (E∗)⊗E∗
E∗X,

in hModP (E∗), where φ is the algebraicity equivalence of Theorem 9.6.

Proof. It will be convenient to work here with the Johnson-Wilson homology, the p-local Landwe-
ber exact homology theory with

π∗E(n) ≃ Z(p)[v1, . . . , vn−1, v
±1
n ]

Both this ring and E(n)∗E(n) are concentrated in degrees divisible by 2p − 2, which is a key
ingredient in the construction of the equivalence φ [Pst18a, §2].

Choosing coordinates for the Quillen formal group over E∗ such that vi = 0 for i > n we
obtain a classifying map E(n)∗ → E∗ which is faithfully flat and hence

E∗X ≃ E∗ ⊗E(n)∗ E(n)∗X

The induced functor ComodE(n)∗E(n) → ComodE∗E is an equivalence of categories by a result
of Hovey and Strickland [HS05a].

Now suppose that X is a spectrum with E(n)∗X concentrated in degrees divisible by 2p− 2.
Since φ is compatible with taking homology, we have

H0(φ(X)) ≃ E∗X ≃ E∗ ⊗E(n)∗ E(n)∗X

as comodules. By Remark 9.8, we have an Adams spectral sequence

Exts,t(E∗X,E∗X) =⇒ [φ(X), P (E∗)⊗E∗
E∗X ]t−s

Using the equivalence of categories of comodules, we can rewrite the E2-page as

Exts,t(E(n)∗X,E(n)∗X) ≃ Exts,t(E∗X,E∗X)

This vanishes above n2 +n by [Pst18a, Remark 2.5] and is concentrated in degrees t divisible by
2p− 2. Since 2p− 2 > n2 + n by assumption, we deduce that the spectral sequence collapses on
the second page, so that the identity of E∗X descends to an equivalence φ(X) ≃ P (E∗)⊗E∗

E∗X .
This establishes the result for X = S0

E , which has E(n)∗X homology concentrated in degrees
divisible by 2p− 2. If K is a Morava K-theory, then as a consequence of the nilpotence theorem
it is a module over the minimal Morava K-theory of §3 and so equivalent as a spectrum to a
direct sum of K(n). As φ preserves direct sums and

E(n)∗K(n) ≃ K(n)∗ ⊗E(n)∗ E(n)∗E(n)

is concentrated in degrees divisible by 2p− 2, the result follows also for X = K. �
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Remark 9.11. The detour into Johnson-Wilson homology Lemma 9.10 can be avoided, by directly
defining a splitting of order (2p − 2) on the category ComodE∗E by using the equivalence with
quasi-coherent sheaves on the moduli of formal groups of height at most n. We decided against
it, as the degree divisibility argument involving E(n) is classical and well-known.

Let us write Kalg := P (E∗) ⊗E∗
E∗K for the algebraic model for the Morava K-theory

spectrum. Note that its homotopy groups satisfy

πsKalg := [P (E∗),Kalg]
P (E∗)
s ≃ Ks,

so that Kalg is a field object in P (E∗). Consequently, for a map M → N of P (E∗)-modules, the
following two conditions are equivalent:

(1) Kalg ⊗P (E∗) M → Kalg ⊗P (E∗) N is a split monomorphism of P (E∗)-modules or
(2) [N,Kalg]∗ → [M,Kalg]∗ is an epimorphism of graded abelian groups.

This forms a class of monomorphisms and so determines an Adams spectral sequence [PP21,
§3.1].

Definition 9.12. We call the Adams spectral sequence in P (E∗)-modules determined by the
above class of monomorphisms the Kalg-based Adams spectral sequence.

We are now ready to verify the correspondence between the topological and algebraic Adams
spectral sequences; we learned the following elegant argument from Robert Burklund.

Proposition 9.13. If 2p − 2 > n2 + n + 1, then the K-based Adams spectral sequence in SpE
for S0

E is isomorphic to the Kalg-based Adams spectral sequence for P (E∗) in P (E∗)-modules.

Proof. We claim that the equivalence φ of Theorem 9.6 induces an isomorphism of exact couples
leading to these spectral sequences. Both of these are obtained by mapping into suitable towers,
so we have to verify that φ takes a K-Adams resolution of S0

E to a Kalg-Adams resolution of
φ(S0

E)) ≃ P (E∗).

If 2p−2 > n2+n+1, the equivalence φ is compatible with triangulated structures [Pst18a, B.8],
so it remains to show that it identifies K-injectives with Kalg-injectives, as the corresponding
class of monomorphism is then uniquely determined. This follows immediately from Lemma 9.10,
as on both sides each injective is a direct sum of shifts of, respectively, K and Kalg. �

In our case, in Proposition 9.13 we considered a Kalg = P (E∗)⊗ E∗K-based Adams spectral
sequence for the monoidal unit P (E∗). Both objects arise through periodicization, giving us
additional information, which we will now make explicit.

Proposition 9.14. If 2p−2 > n2+n+1, then the K-based Adams spectral sequence for S0
E can

be given an additional grading so that it becomes isomorphic to the E∗K-based Adams spectral
sequence in D(E∗E).

Proof. By Proposition 9.13, the K-Adams spectral sequence in SpE is isomorphic to the Kalg-
based Adams spectral sequence in P (E∗)-modules. The latter is isomorphic to the spectral
sequence induced by the Amitsur resolution

P (E∗)→ Kalg ⇒ Kalg ⊗P (E∗) Kalg ⇛ . . .

which is image of the E∗K-Adams resolution of E∗ in D(E∗E) under the periodicization functor.
The statement follows from the isomorphism of homotopy groups of Remark 9.9 applied to the
exact couple giving rise to the spectral sequence. �

The above result reduces the study of the K-based Adams spectral sequence at large primes
to the study of the algebrac E∗K-based in the derived ∞-category of comodules. The latter
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can be described explicitly in terms of the cohomology of the Morava stabilizer group, with no
assumptions on the prime, which is our next step.

We will need to recall some results on décalage, following Deligne and Levine [Lev15].

Construction 9.15. If X• is a cosimplicial spectrum, we have an associated conditionally conver-
gent spectral sequence

TotE2
s,t := HsπtX

• =⇒ πt−s Tot(X
•).

The décalage of this cosimplicial object is the tower

Decn := Tot(τ≤nX
•)

obtained by totalizing the Postnikov truncations of X . Since limits commute with limits we have

lim
←−

Decn ≃ lim
←−

Tot(τ≤nX
•) ≃ Tot(lim

←−
τ≤nX

•) ≃ Tot(X•).

The above equivalence induces a spectral sequence associated to the tower on the left, which is
a conditionally convergent and of signature

DecE1
s,t := HsπtX

• =⇒ πt−s Tot(X
•).

Levine proves that the evident isomorphisms between the E2-term of the Tot-spectral sequence
and the E1-term of the spectral sequence associated to the décalage extends to an isomorphism
of spectral sequences [Lev15].

In our case, we will be working with cosimplicial objects in D(E∗E), rather than in spectra.
Thus, the role of the Postnikov towers will be played by the truncations in the standard t-structure
on the derived category.

Definition 9.16. Let X• : ∆→ D(E∗E) be a cosimplicial object in the derived ∞-category of
comodules. The homological décalage of X• is the tower

hDecn := Tot(τ≤nX
•),

where τ≤n denotes the truncation in the standard t-structure on the derived ∞-category.

Warning 9.17. Note that if X• is a cosimplicial object in D(E∗E), then the homological décalage
tower induces a spectral sequence obtained by applying Ext(E∗,−). Since Postnikov towers
converge in D(E∗E), this will be conditionally convergent to Ext(E∗,Tot(X

•)).
The layers of the tower are given, up to a shift, by Tot(Hk(X

•)) so that this spectral sequence
has signature

Ext(E∗,Tot(Hk(X
•)) =⇒ Ext(E∗,Tot(X

•)).

This spectral sequence is usually not the same as the one obtained by applying Ext(E∗,−) to
X• itself, because the homological t-structure does not interact in an easy way with E∗-homotopy
groups, unlike in the case of the standard t-structure on the ∞-category of spectra.

Despite the above warning, for a certain restricted class of cosimplicial objets, we do have an
isomorphism between the spectral sequence of a cosimplicial object and its homological décalage.

Lemma 9.18. Let X• : ∆ → D(E∗E) be a cosimplicial object and assume that each Xm is a
direct sum of shifts of objects in the heart, each of which is a cofree E∗E-comodule. Then

F (E∗[t], hDecnX
•) ≃ Decn F (E∗, X

•),

where F (E∗[t],−) is the internal mapping spectrum in D(E∗E). That is, for such cosimplicial
objects, mapping out of E∗[t] takes homological décalage to the spectral one.
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Proof. Since F (E∗,−) preserves totalizations, it is enough to check that F (E∗,−) takes homo-
logical truncations to Postnikov truncations. Since X• is levelwise a direct sum of shifts of cofree
comodules, it is enough to check this in the latter case, where it is clear since Exts(E∗[t], C) = 0
for s > 0 whenever C is cofree. �

Corollary 9.19. The E∗K-based Adams spectral sequence in D(E∗E) has a second page isomor-
phic to the first page of the spectral sequence associated to the homological décalage hDecn(E∗K)⊗•

of the Amitsur resolution.

Proof. Both the Adams spectral sequence and the spectral sequence of the tower are obtained
by applying F (E∗[t],−) (for all t at once) and using the relevant spectral sequence in spectra.
Thus, the result then follows from Levine’s work and Lemma 9.18, since

E∗K
⊗n ≃ (E∗E)⊗n ⊗E∗

K
⊗E∗

n
∗

and

K
⊗E∗

n
∗ ≃ TorE∗

(K∗,K∗)⊗K∗
. . .⊗K∗

TorE∗
(K∗,K∗),

where the right hand side has (n− 1) factors and the unadorned tensor products are the derived
tensor products over E∗. This is a direct sum of shifts of K∗, as needed. �

The idea is now to relate the homological décalage of E∗K to that of K∗.

Lemma 9.20. The morphism K∗ → E∗E ⊗ K∗ ≃ E∗K of algebras in the derived category
of E∗E-comodules induces an isomorphism of spectral sequence associated to the homological
décalage of Amitsur resolutions.

Proof. Since E∗E is flat, for any X ∈ D(E∗E) we have Hn(E∗E ⊗X) ≃ E∗E ⊗ Hn(X). Thus,
the map between the layers of the homological décalage towers is given by applying totalization
to the map

Hn(K
⊗•
∗ )→ E∗E

⊗• ⊗Hn(K
⊗•
∗ ).

The map is obtained by tensoring the map

E⊗•
∗ → E∗E

⊗•,

which is a quasi-isomorphism of levelwise flat cosimplicial comodules with Hn(K
⊗•
∗ ), so it will

be a quasi-isomorphism again. It follows that it is an equivalence after taking totalizations. �

Proposition 9.21. From the second page on, the Adams spectral sequence associated to E∗K is
isomorphic to the spectral sequence obtained from the tower

. . .→ E∗/m
2 → E∗/m,

that is, it is the filtration by powers spectral sequence.

Proof. We know from Corollary 9.19 that this Adams spectral sequence has second page isomor-
phic to the spectral sequence of the homological décalage tower, which is in turn equivalent to
the homological décalage tower associated to the K∗-Adams resolution by Lemma 9.20. Thus, it
is enough to identify the latter.

We’re interested in the cosimplicial object

K∗ ⇒ K∗ ⊗E∗
K∗ ⇛ . . . ,

all tensor products being implicitly derived. Everything here is 2-periodic and concentrated in
even degrees in the internal grading, so that we can instead focus on the cosimplicial object

K0 ⇒ K0 ⊗E0
K0 ⇛ . . . ,



MORAVA K-THEORY AND FILTRATIONS BY POWERS 35

working in the derived category of E0-modules. As an object of the latter, K0⊗E0
K0 is a direct

sum of its homology groups, and we have

H∗(K0 ⊗E0
K0) ≃ TorE0

∗ (K0,K0)

and more generally

H∗(K
⊗E0

n
0 ) ≃ TorE0

∗ (K0,K0)
⊗K0

n−1, (9.22)

where on the left we have the derived tensor product of E0-modules and on the right the ordinary
tensor product of graded K0-modules.

Using that E0 is a regular ring with residue field K0, the canonical isomorphism

Tor1E0
(K0,K0) ≃ (m/m2)∨

with the tangent space extends to a grading-preserving isomorphism

TorE0

∗ (K0,K0) ≃ ΛK0
((m/m2)∨)

with the exterior algebra. This is flat over K0, which is a field, so by standard arguments the
cosimplicial object K⊗•

0 on the right of (9.22) encodes the cobar complex computing

CotorΛK0
((m/m2)∨)(K0,K0) ≃ SymK0

(m/m2) ≃
⊕

n≥0

m
n/mn+1.

Note that this is bigraded using the internal grading of the exterior algebra and the Cotor-grading,
with the summand m

n/mn+1 being concentrated in degrees (n, n).
Using the isomorphism in Equation (9.22) and passing to cohomology, we deduce that

Hs(Hn(K
⊗E0

•
0 )) ≃

{
m

n/mn+1 when s=n,

0 otherwise,

where Hs is the cohomology of the given cosimplicial abelian group. Thus, the totalization

spectral sequence for Hn(K
⊗E0

•
0 ), which we consider as a cosimplicial object of the heart of the

derived ∞-category of E0-modules, collapses and we deduce that

Tot(Hn(K
⊗•
0 )) ≃ Σ−n

m
n/mn+1,

It follows that the graded pieces of the homological décalage filtration of E∗ are given by

fib(Decn → Decn−1) ≃ Tot(ΣnHn(K
⊗•
∗ )) ≃ m

n/mn+1 ⊗E0
E∗

and so by induction the tower itself must be of the claimed form. �

Theorem 9.23. If 2p − 2 > n2 + n + 1, the K-based Adams spectral sequence can be given
an additional grading so that it becomes isomorphic to the spectral sequence induced by applying
ExtE∗E(E∗,−) to the filtration of E∗ given by powers m

nE∗ of the maximal ideal.

Proof. This is a combination of Proposition 9.14 and Proposition 9.21. �

Remark 9.24. If we pick E = En to be the Morava E-theory of the Honda formal group law over
Fpn , then since m

n/mn+1E∗ is m-torsion, we have

Ext∗E∗E(E∗,m
n/mn+1E∗) ≃ H∗

cts(Gn,m
n/mn+1E∗).

Thus, the spectral sequence of Theorem 9.23 is isomorphic to the conditionally convergent spec-
tral sequence

H∗
cts(Gn,m

n/mn+1E∗) =⇒ H∗
cts(Gn, E∗)

obtained by the same filtration of E∗, but in continuous Gn-modules.
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10. Height one K-based Adams spectral sequence at an odd prime

Let us describe how using our methods one obtains an explicit description of the K-based
Adams spectral sequence at n = 1 and p odd. Since in this case

2p− 2 ≥ 4 > 3 = n2 + n+ 1,

Theorem 9.23 and Remark 9.24 imply that the relevant spectral sequence is isomorphic to the
one computing cohomology H∗

cts(Gn, E∗) using the filtration by powers of the maximal ideal,
where E0 is the Lubin–Tate ring of the Honda formal group law.

Notation 10.1. We have E∗ ≃ Zp[u
±1], m = (p) and G1 ≃ Z×

p with the action determined by
λ∗(u) = λu for λ ∈ Zp. We will denote the associated graded of E∗ by

A∗ ≃ Fp[b][u
±1],

with |b| = (0, 1) the equivalence class of p ∈ E0, and |u| = (2, 0), where the first degree is internal
and the second one is coming from the filtration.

The p-adic group Z×
p is topologically cyclic at odd primes, generated by ψ = σ(1 + p) for σ a

primitive (p − 1)-th root of unity. It follows that for a profinite Z×
p -module M , its cohomology

can be computed using the 2-term complex

∂ : M →M, (10.2)

where ∂ = idM − ψ∗.
The complex of (10.2) is a quasi-isomorphic quotient of the standard group cohomology cochain

complex

M → Mapcts(Z
×
p ,M)→ Mapcts(Z

×
p × Z×

p ,M)→ . . . , (10.3)

the quotient map being given by the identity in degree zero and evaluation at the generator
ψ ∈ Z×

p in degree one.
From this explicit description we see that if we equip M with a filtration, the above quotient

map is a quasi-isomorphism of filtered complexes, where we consider both (10.2) and (10.3) with
the filtration induced from that of M . In particular, both filtrations induced isomorphic spectral
sequences.

Remark 10.4. The 2-term complex of (10.2) can be used to directly compute the cohomology
groups H∗

cts(Z
×
p ,Zp[u

±1]), recovering the classical image of J pattern [Lur10, Lecture 35]. Our
goal is not to compute the above groups, which are well-known, but rather analyze the structure
of the spectral sequence associated to filtration by powers of p.

We first determine the cohomology groups of the associated graded A∗. We have ψ∗b = b,
because the latter can be represented by p ∈ E0 which is necessarily acted on trivially, and since
ψ∗u ≡ σu (mod p), we have ψ∗u = [σ]u in the associated graded, where [σ] ∈ Fp is the image of
σ. Thus, in the associated graded we have that ∂(b) = 0 and ∂(uk) is a unit multiple of uk for
(p− 1) ∤ k and zero otherwise. We deduce the following.

Proposition 10.5. The E2-term of the K-based Adams for S0 at n = 1 and p > 2 is given by

Ext∗K∗K(K∗,K∗) ∼= H∗
cts(G1, A∗) ∼= H∗

cts(Z
×
p ,Fp[b][u

±1]) ∼= Fp[b][v
±1
1 ]⊗ Λ(ζ),

where v1 = up−1 is of degree (2p− 2, 0, 0) and ζ is the class of b of degree (0, 1, 1), with the last
degree the cohomological one.

By Remark 9.24, if the K-based Adams is isomorphic to the spectral sequence computing
H∗

cts(Z
×
p ,Zp[u

±1]) induced by the filtration of (10.2) by powers of p, with E2-term as above and
with differentials dr : Er → Er of degree (0, r, 1). We will now analyze this spectral sequence.
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We know that ∂(p) = 0 in E0, so that b is a permanent cycle. The same is true for ζ, for degree
reasons, and we deduce that all of the differentials are both b and ζ-linear, and so the structure
of the spectral sequence is completely determined by what it does on vk1 . One computes with no
difficulty that if we write k = pnm, where p ∤ m, then

∂(u(p−1)k) ≡ unit · pn+1u(p−1)k (mod pn+2)

from which we deduce that

di(v
k
1 ) =

{
0 for i < n+ 1

ζbn+1vk1 for i = n+ 1.
(10.6)

Note that the first computation is also implied by the Leibniz rule for p-th powers. The extension
problems are resolved using multiplication by b, recovering the classical answer that

Hs,t
cts(Z

×
p ,Zp[u

±1]) =





Zp if (s, t) = (0, 0),

Zp{ζ} if (s, t) = (1, 0),

Z/pn+1{ζu(p−1)pnm} if (s, t) = (1, (2p− 2)pnm), where p ∤ m,

0 otherwise,

where {−} denotes a generator of the given group. Thus, the spectral sequence is as in the
following familiar “image of J” pattern

• . . . • . . . • . . . • . . .

• • • • • • • •

•ζb •b2 • • • • • •

•ζ •b •v1ζ •v1b • • • •

•1 •v1 •v2

1

•vp
1

−1 0 2p− 2 . . . . . .

t−s

s

with even longer differentials supported on vp
k

1 for k ≥ 1.
It is interesting to observe that this shows that already at height one, the K-based Adams

spectral sequence has non-zero differentials of arbitrary length.

Example 10.7 (Non-completely convergent K-Adams). Using the above calculation, we can
give an example of a K-local spectrum for which its K-based Adams spectral sequence is
not completely convergent. Note that we know that it is always conditionally convergent by
Proposition 7.2.
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To this end, we will construct a spectrum X for which lim1
r E

0,0
r (X) does not vanish at n = 1

and p > 2. Set λk = 2(p− 1)pk and consider the spectrum

X = LK(1)

⊕

k≥0

S−λk .

In bidegree (s, t) = (0, 0), the E2-page is given by

E0,0
2 (X) ∼=

⊕

k≥0

Fp{v
pk

1 },

where the generators correspond to the maps vp
k

1 : K(n)∗ → K(n)∗S
λk . The formulas for the

differentials of Equation (10.6) show that (up to reindexing) the filtration on E0,0
2 (X) is given

by

. . . ⊂
⊕

k≥2

Fp{v
pk

1 } ⊂
⊕

k≥1

Fp{v
pk

1 } ⊂
⊕

k≥0

Fp{v
pk

1 } = E0,0
2 (X).

Therefore, we obtain an exact sequence

0→ limr E
s,t
r (X)→ E0,0

2 (X) =
⊕

k≥0

Fp{v
pk

1 } →
∏

k≥0

Fp{v
pk

1 } → lim1
r E

s,t
r (X)→ 0.

In particular, we see that limr E
s,t
r (X) = 0, while lim1

r E
s,t
r (X) 6= 0.

Part 3. Homology of inverse limits and the algebraic chromatic splitting conjecture

In the third part of the work, we largely move away from Morava K-theory, and we focus
on homology of K-local spectra. From the perspective of E-local category, K-localization is a
form of completion, and so we first focus on homology of inverse limits, construction a spectral
sequence computing these in the generality of an arbitrary adapted homology theory.

In the case of K-localization, the E2-page of this spectral sequence is given by derived functors
of limits in E∗E-comodules. We describe the latter in terms of cohomology of the Morava
stabilizer group, and use it to compute the zeroth one at all heights and primes. At height one,
we compute these derived functors completely.

11. The homology of inverse limits

We begin with a general review of the context for the construction of the modified Adams
spectral sequence, following the approach of Devinatz and Hopkins [Dev97]. This approach will
then be employed to construct a spectral sequence that computes the homology of inverse limits
in a presentable stable ∞-category.

In particular, this gives rise to a spectral sequence for computing the E-homology of the
inverse limit of a tower of spectra (Xα) from the derived functors of inverse limits of the tower of
E∗E-comodules (E∗Xα), for suitable ring spectra E. The question of when this spectral sequence
converges is subtle, and will be studied in detail in the case of Morava E-theory. The material
in this section is based on unpublished work of Mike Hopkins and Hal Sadofsky.

11.1. Adapted homology theories. In this short section we will recall basic facts about
adapted homology theories. Informally, these are exactly those homology theories which ad-
mit an Adams spectral sequence based on injectives. Everything here is classical, although our
presentation will be most close to [PP21, §2].

A locally graded∞-category is an∞-category equipped with a distinguished autoequivalence
[1]C : C→ C. A locally graded functor f : C→ D is functor equipped with a natural isomorphism
f ◦ [1]C ≃ [1]D ◦ f .
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Definition 11.1. Let C be a stable∞-category, considered as a locally graded∞-category using
the suspension functor, and A an arbitrary locally graded abelian category. We say a locally
graded functor H : C→ A is a homology theory if for any cofibre sequence

X → Y → Z

in C, the induced diagram
H(X)→ H(Y )→ H(Z)

in A is exact in the middle.

Remark 11.2. The requirement that H is locally graded amounts to specifying an isomorphism

H(ΣX) ≃ H(X)[1]

natural in X ∈ C.

In cases of interest to us, H will be Grothendieck in the sense that

(1) C is presentable,
(2) A is Grothendieck abelian and
(3) H preserves arbitrary direct sums.

In particular, this means that A has enough injectives. Any injective object I of A gives rise to
a cohomological functor

HomA(H(−), I) : Cop → A.

Since C is presentable and stable, Brown’s representability theorem holds [PP21, Proposition
2.15], so that there exists some D(I) ∈ HoC representing HomA(H(−), I). It follows that, for
any object X ∈ C, there is a natural equivalence

HomA(H(X), I) ≃ π0 HomC(X,D(I)).

Note that the object D(I) is H-local, in the sense that for any object Y ∈ C with H(Y ) = 0 we
haveHom(Y,D(I)) = 0. Moreover, the identity map onD(I) corresponds under this isomorphism
to a natural counit map H(D(I))→ I.

Definition 11.3. We sayH : C→ A is adapted if the counit map H(D(I))→ I is an equivalence
for any injective I ∈ A.

Example 11.4. Rational homology, viewed as a functor from spectra to graded rational vector
spaces, is an adapted homology theory. In this case, the lift D(V ) of a (graded) Q-vector space
V is the (generalized) Eilenberg–MacLane spectrum HV .

Example 11.5. In contrast to the previous example, mod p homology is not adapted for any p;
indeed, the lift of Fp is HFp, but its mod p-cohomology is the mod p Steenrod algebra Ap which
is larger than Fp.

However, H∗(−,Fp) has more structure: it takes values in the category ComodAp
of graded

Ap-comodules. It turns out that the homology theory

H∗(−;Fp) : Sp→ ComodAp

is adapted.

Remark 11.6. The phenomena visible in Example 11.5 is typical in the sense that asking for H
to be adapted is to ask for A to encode all available homological information. This generalizes
considerably, one can show that any homology theory factors uniquely through an adapted one
followed by an exact comonadic functor of abelian categories [PP21, §3.3]

In fact, the previous example generalizes considerably. Let R be a homotopy commutative
ring spectrum which satisfies the Adams condition, that is, it can be written as a filtered colimit
of finite spectra Xα with the properties that
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(1) R∗Xα is a finitely generated projective R∗-module and
(2) the Künneth map E∗Xα → HomE∗

(E∗Xα, E∗) is an isomorphism.

Note that the second condition follows from the first whenever R can be made E1.
For example, HFp or any Landweber exact homology theory satisfy the Adams condition

[Hov04a, Theorems 1.4.7-9], but HZ does not [GH, Page 17]. This condition guarantees that the
associated Hopf algebroid (R∗, R∗R) is Adams and thus has a well-behaved category of comodules
ComodR∗R; see [Hov04a, Section 1.4] for details.

One way in which the Adams-type condition implies that the category ComodR∗R is well-
behaved also in the topological sense is the following result of Devinatz.

Lemma 11.7 ([Dev97, Theorem 1.5 and Section 2]). Let R be a topologically flat commuta-
tive ring spectrum. For any injective R∗R-comodule I, the identity map on D(I) induces an
isomorphism R∗D(I) ∼= I. In other words, the functor

R0 : Sp→ ComodR∗R

is an adapted homology theory. �

11.2. Construction of the spectral sequence. The starting point of our construction is the
existence of modified Adams towers for any homology theoryH : C→ A. We collect its properties
in the next result:

Lemma 11.8. Consider an adapted homology theory H : C→ A. Let X ∈ C and suppose

0 // H(X) = C0
η0

// I0
τ0

// I1
τ1

// . . .

C0

η0

OO

C1

η1

OO

. . .

is an injective resolution of H(X) in A, where Ci = ker(τi) for all i. There exists a tower of
objects in C over X of the form

X = X0

f0
��

X1
g0

oo

f1
��

X2
g1

oo

f2
��

. . .
g2

oo

Σ0D(I0)

δ0

88q
q

q
q

q
q

Σ−1D(I1)

δ1

88♣
♣

♣
♣

♣
♣

Σ−2D(I2)

δ2

::t
t

t
t

t

. . . ,

where the dotted maps are the boundary maps shifting degree by 1, and such that the following
properties are satisfied for all i:

(1) Xi+1 ≃ fib(fi);
(2) H(Xi) ∼= Ci[−i];
(3) H(fi) = ηi[−i];
(4) H(gi) = 0;
(5) H(δi) is the surjection Ii[−i]→ Ci+1[−i].

If X is H-local, then Xi and D(Ii) are H-local for all i. Moreover, this tower is weakly functorial;
that is, a map X → Y can be extended to a (non-canonical) map of towers (Xi)→ (Yi).

Proof. This lemma is an axiomatization of the results proven in [Dev97, Section 1]. The tower so
constructed consists of H-local spectra as noticed in Section 11.1, while naturality follows from
the naturality of injective resolutions. �

Notation 11.9. We refer to the tower (Xi) constructed in Lemma 11.8 as the modified Adams
tower of X with respect to the adapted homology theory H : C→ A.
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Since the limit lim
←−

Iα of an injective tower of injectives in A is injective, the construction of

the previous subsection yields an object D(lim
←−

Iα) of C. In order to proceed, we need an auxiliary
characterization of injective towers of objects in a Grothendieck abelian category A.

Lemma 11.10. Let A be a Grothendieck abelian category. An object I = (Iα) ∈ AN is injective
if and only if Iα is injective for all α ∈ J and all structure maps in I are split epimorphisms.

Proof. This is proven in [Jan88, Proposition 1.1]. We sketch the argument of the implication we
need. Let j : Nδ → N be the inclusion of the discrete set of natural numbers into the poset of
natural numbers. This induces an adjunction (j∗, j∗) between diagram categories. If I is injective,
then the natural monomorphism I → j∗j

∗I is split. By construction, the structure maps of j∗j
∗I

are projections, so I also has split surjective structure maps, and the claim follows. �

Proposition 11.11. If I = (Iα) ∈ Inj(AN) is an injective tower in A, then there is a preferred
equivalence

D(lim
←−A

Iα)
∼

// lim
←−C

D(Iα).

of objects in C, well-defined up to homotopy.

Proof. For brevity, let us write I∞ := lim
←−A

Iα; note that this is an injective object of A. The

canonical structure maps lim
←−A)

Iα → Iα give arrows

D(I∞)→ D(Iα),

well-defined and compatible up to homotopy. By the Milnor exact sequence, these can be lifted
to a homotopy class of maps

φ : D(I∞) // lim
←−

D(Iα),

in C. We claim this is an equivalence, which we will check by verifying that both sides represent
the same functor in the homotopy category.

Indeed, for any X ∈ C, there are isomorphisms

[X,D(I∞)]∗ ∼= Hom∗
A(H(X), I∞)

∼= lim
←−

Hom∗
A(H(X), Iα)

∼= lim
←−

[X,D(Iα)]∗.

The Milnor sequence associated to the limit lim
←−

D(In) takes the form

0 // lim
←−

1[X,D(In)]∗+1
// [X, lim
←−

D(Iα)]∗ // lim
←−

[X,D(Iα)]∗ // 0. (11.12)

It follows from Lemma 11.10 that the structure maps in the tower

([X,D(Iα)]∗+1) ∼= (Hom∗+1
A

(H(X), Iα))

are split epimorphisms, so the lim
←−

1-term in (11.12) vanishes. Thus, the Yoneda lemma implies
that φ is an equivalence, as claimed. �

The spectral sequence we construct will involve derived functors of the limit, and so we first
establish a consistent notation for these.

Notation 11.13. If A is a Grothendieck abelian category and F : J → A is a diagram, then we
write lim

←−A
F for the limit taken in A itself. Formation of limits defines a functor

lim
←−A

: Fun(J,A)→ A

and we denote its right derived functors by

lim
←−

s

A
F.
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Alternatively, A has an associated derived ∞-category, and we write

lim
←−D(A)

F

for the limit of the composite of F with the inclusion with the heart. These two different notions
of limits, one in A and the other in the derived ∞-category, are related by the formula

lim
←−

s

A
F ≃ H−s(lim←−D(A)

F ),

where on the right hand side we have the homology of an object of the derived ∞-category.
Thus, lim

←−D(A)
F can be thought of as the total derived functor of the limit.

Theorem 11.14. Let H : C→ A be an adapted homology theory. If (Xα) ∈ CN is a tower in C,
then there exists a natural spectral sequence in A of the form

Es,t
2
∼= lim
←−

s

A
H(Xα)[−t]A =⇒ H(lim

←−
Xα)[s− t]A (11.15)

with differentials ds,tr : Es,t
r → Es+r,t+r−1

r .

Proof. If H is adapted, then so is the induced homology theory

H : CN → A
N

between the ∞-categories of towers [PP21, Example 8.24]. Thus, we have Adams resolutions of
towers and we let (Xα

i )i≥0 be a modified Adams tower of (Xα) as in Lemma 11.8.
Taking limits in the Adams resolution of Xα yields a tower in C of the form

lim
←−

Xα
0

f0

��

lim
←−

Xα
1

g0
oo

f1

��

lim
←−

Xα
2

g1
oo

f2

��

. . .
g2

oo

lim
←−

Σ0D(Iα0 )

δ0

77♥
♥

♥
♥

♥
♥

lim
←−

Σ−1D(Iα1 )

δ1

66♥
♥

♥
♥

♥
♥

lim
←−

Σ−2D(Iα2 )

δ2

99s
s

s
s

s
s

. . . .

For brevity, let us write [k] := [k]A : A → A for the internal degree shift. Setting Ds,t
1 =

H(lim
←−

Xα
s )[s − t] and Es,t

1 = H(lim
←−

Σ−sD(Iαs ))[s − t], this induces an exact couple of bigraded
objects in A of the form

D
i1=H(gi)[s−t]

// D

j1=H(fi)[s−t]
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

E,

k1=H(δi)[s−t]

``❆❆❆❆❆❆❆❆

where the maps have bidegree |i1| = (−1,−1), |j1| = (0, 0), and |k1| = (1, 0). The E1-term can
be identified using Proposition 11.11 and Lemma 11.7 as

Es,t
1 = lim

←−
Σ−sD(Iαs )[s− t]

∼= D(lim
←−A

Iαs )[−t] = (lim
←−A

Iαs )[−t]

and d1 = lim
←−A

ταs . This gives the E2-term

Es,t
2
∼= lim
←−

s

A
(H∗X

α)[−t],

as needed. It is clear from this construction and Lemma 11.8 that the resulting spectral sequence
is natural in the tower Xα and that all pages and differentials are in A. �

Warning 11.16. Note that since the local grading [1]A : A → A is an equivalence, it commutes
with derived functors of the limit, and in the spectral sequence of Theorem 11.14 we have

Es,t
2 := lim

←−
s

A
H(Xα)[−t]A ≃ (lim

←−
s

A
H(xα))[−t]A ≃ E

s
2 [−t]A

Thus, the t = 0 line in the spectral sequence already determines the whole E2-page. This is
similar to the case of the Bockstein spectral sequence, which also has a periodic E2-page.
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Remark 11.17. Suppose that (Xα) is a tower under X . Then, the image

im(H(X)) ⊆ lim
←−

0

A
H(Xα)

consists of permanent cycles; that is, it is in the kernel of all the differentials in the spectral
sequence of Theorem 11.14.

To see this, note that the assumption gives a map from the constant tower on X to (Xα),
inducing a map of spectral sequences

lim
←−

s

A
H(X) +3

��

H(X)

��

lim
←−

s

A
H(Xα) +3 H(lim

←−
Xα)

The E2-page of the top spectral sequence is concentrated in

E0,t
2
∼= lim
←−

0

A
H(X)[−t]A ∼= H(X)[−t]A,

so that the spectral sequence collapses. The comparison map is readily identified with the induced
morphism H(X)→ lim

←−A
H(Xα), so the claim follows.

11.3. Derived limits of comodules. We now specialize the above to the case of a homology
theory on spectra corresponding to a ring spectrum of Adams type. In order to study the E2-
term of the spectral sequence of Theorem 11.14, we begin with a general discussion of inverse
limits of comodules over suitable flat Hopf algebroids.

Let (A,Ψ) be an Adams Hopf algebroid in the sense of [Hov04a][1.4.3], so that Ψ is a filtered
colimit of dualizable comodules. We will describe an approach to computing limits in the derived
∞-category D(Ψ) = D(ComodΨ) of comodules by reducing to the case of modules. The forgetful
functor ǫ∗ : ComodΨ → Mod(A) is left adjoint to the extended (or cofree) comodule functor ǫ∗

which sends an A-module M to Ψ ⊗A M . These functors are exact and thus give rise to an
adjunction:

ǫ∗ ⊣ ǫ
∗ : D(Ψ) ⇆ D(A).

In terms of chain complexes, both can be computed levelwise.
The corresponding monad ǫ∗ǫ∗ can be used to construct a resolution of any comodule. Con-

cretely, if M is a Ψ-comodule, then we have the associated cobar complex

0→M → Ψ⊗A M → Ψ⊗A Ψ⊗A M → . . . ,

which is a resolution of M by extended comodules, that is, those of the form ǫ∗N = Ψ⊗AN for
an A-module N .

One way to phrase that the cobar complex is exact is to say that the augmented cosimplicial
object from which it arises, namely

M → Ψ⊗A M ⇒ Ψ⊗A Ψ⊗A M ⇛ . . . , (11.18)

is a limit diagram in the derived ∞-category D(Ψ). Now, since limit diagrams are stable under
levelwise limits, it follows that if (Mi) is a diagram of comodules, then the diagram

lim
←−D(Ψ)

Mi → lim
←−D(Ψ)

Ψ⊗A Mi ⇒ lim
←−D(Ψ)

Ψ⊗A Ψ⊗A Mi ⇛ . . . ,

is also limit, giving an approach to computing lim
←−D(Ψ)

Mi. To see this, notice that since ǫ∗ is a

right adjoint and thus preserves limits, we have

lim
←−D(Ψ)

Ψ⊗A Ni ≃ lim
←−D(Ψ)

ǫ∗Ni ≃ ǫ
∗(lim
←−D(A)

Ni) ≃ Ψ⊗A (lim
←−D(A)

Ni).
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Applying this to the cosimplicial diagram (11.18), we see that we get a limit diagram of the form

lim
←−D(Ψ)

Mi → Ψ⊗A (lim
←−D(A)

Mi) ⇒ Ψ⊗A (lim
←−D(A)

Ψ⊗A Mi) ⇛ . . .

which expresses the limit in the derived category of comodules using only limits taken in the
category of modules. Passing to homology, which encodes the derived functors of the limit in
the categories of A-modules and Ψ-comodules, we deduce the following.

Proposition 11.19. If Mi is a diagram of comodules, then there exists a spectral sequence of
comodules of signature

Es,t
1 := Ψ⊗A lim

←−
s

A
(Ψ⊗At ⊗A Mi) =⇒ lim

←−
s+t

Ψ
Mi.

computing the derived functors of the limit in comodules.

Remark 11.20. Note that in the particular case of sequential inverse limits, that is, diagrams of
the form

. . .→M2 →M1 →M0,

this spectral sequence will collapse after at most two pages, since in this case we have lim
←−

s

A
Ni = 0

for s 6= 0,−1 and any diagram Ni of A-modules.

Remark 11.21. In an even more specific case, let us assume that we work with sequential inverse
limits and that the maps Mn+1 →Mn are all epimorphisms. If that is the case, the same is true
for Ψ⊗A . . .⊗AMn+1 → Ψ⊗A . . .⊗AMn and we deduce using the Mittag-Leffler condition that
all of the lim

←−
1

A
-terms vanish. In this case the spectral sequence of Proposition 11.19 has only one

potentially non-zero differential.
Phrasing it without the use of spectral sequences, we see that in this the diagram of comodules

Ψ⊗A (lim
←−A

Mi)→ Ψ⊗A (lim
←−A

Ψ⊗A Mi)→ . . . ,

is an explicit presentation of the derived limit lim
←−D(Ψ)

Mi as a chain complex.

Example 11.22. Suppose that R is a homotopy commutative ring spectrum of Adams-type. As
R∗ : Sp→ ComodR∗R is an adapted homology theory by Lemma 11.7, Theorem 11.14 specializes
to give a spectral sequence

Es,t
2
∼= lim
←−

s

R∗R
(R∗+tX

α) =⇒ R∗+s+t(limαX
α)

for a tower of spectra (Xα), where the derived functors of the limit are taken in R∗R-comodules.
This is a spectral sequence in R∗R-comodules, so that in particular the E2-page is trigraded.

Passing to internal degree zero, we obtain a more-pleasant looking bigraded spectral sequence

Es,t
2
∼= (lim
←−

s

R∗R
R∗X

α)t =⇒ Rs+t(limαX
α)

Note that in general we cannot rewrite the E2-page as “ lim
←−

s

R∗R
(RtX

α)”, as the derived functors

of the limit are computed in R∗R-comodules, a structure which cannot be restricted to a single
degree.

Warning 11.23. Even for quite reasonable R, such as R = HQ, convergence of the spectral
sequence of Example 11.22 is a subtle problem. For example, let (Mpi) be the tower of mod pi

Moore spectra with the canonical structure maps, and suppose R = HQ. Since

lim(. . . −→Mp2 −→Mp) ≃ S
0
p ,

the p-complete sphere, the abutment of the spectral sequence is non-trivial, while the E2-term
is zero. We will study this question in more detail in the next section in the case of Morava
E-theory.
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Remark 11.24. Same methods as those leading to Example 11.22 have been employed by Hovey
to set up a spectral sequence computing the R-homology of a product of spectra, see [Hov07].
In [Pet20b, Appendix A], a different construction of the spectral sequence of Example 11.22 is
given, based on Adams resolutions rather than modified Adams resolutions.

12. The Morava E-homology of inverse limits

The goal of this section is to study the spectral sequence constructed in Theorem 11.14 in the
special case of (uncompleted) Morava E-homology. In particular, we will identify the E2-page
for the sphere spectrum in terms of the continuous cohomology of the Morava stablizer group
and exhibit conditions on the tower that ensure convergence.

We will work with a particular form of Morava E-theory, which we used previously in §5. For
convenience of the reader, let us fix our notation for the remainder of the current work.

We fix a prime p and a height n > 0 and we let G0 be the Honda formal group law over
Fq := Fpn . We write E for the associated Lubin-Tate spectrum, so that we have a non-canonical
isomorphism

E∗ ≃W (Fpn)Ju1, . . . , un−1K[u
±1].

We write m = (p, u1, . . . , un−1) for the maximal ideal of E0. By Goerss-Hopkins-Miller, the
spectrum E is acted on by the extended Morava stabilizer groupGn := Aut(G0/Fp)⋊Gal(Fq/Fp).

Warning 12.1. We remind the reader that, unless otherwise noted, we work with uncompleted
E-homology, the uncompleted homology cooperations E∗E := π∗(E ⊗ E), and uncompleted
E∗E-comodules.

12.1. Continuous cohomology of filtered colimits. In this subsection, we prove that con-
tinuous cohomology groups of Gn commute with certain filtered colimits. To this end, it will be
useful for us to consider the following variant on the m-adic topology on an E0-module.

Definition 12.2. Let M be an E0-module. The local m-adic topology on M is the linear
topology in which a submodule U ⊆ M is open if for every finitely generated E0-submodule
M ′ ⊆M ,

U ∩M ′ ⊆M ′

is open in the usual m-adic topology on M ′; that is, we have m
nM ′ ⊆ U ∩ M ′ for some n

depending on M ′.

Example 12.3. Suppose that M is finitely generated over E0. Then, the local m-adic topology
on M coincides with the usual m-adic topology.

Example 12.4. Suppose that M is an arbitrary E0-module. Then, we can write M ≃ lim
−→

Mα

as a filtered colimit of finitely generated E0-modules. The local m-adic topology coincides with
the colimit topology if we equip each Mα with its usual m-adic topology.

The importance of the local m-adic topology in our context comes down to the following
observation.

Remark 12.5. Let X be a spectrum. Then, E0X is a continuous Gn-module with respect to its
local m-adic topology. To see this, observe that we can write X ≃ lim

−→
Xα as a filtered colimit of

finite spectra, so that

E0X ≃ lim
−→

E0Xα. (12.6)

Each of E0Xα is a continuous Gn-module when considered with its m-adic topology, and E0X
becomes a topological Gn-module since it has the colimit topology with respect to (12.6)
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We will be interested in the continuous cohomology of Gn with coefficients in an E0-module
equipped with its local m-adic topology. As we will see, this has an elegant description in terms
of cohomologies of its finitely generated submodules. The key is the following lemma.

Lemma 12.7. Let K be a compact Hausdorff topological space and M be an E0-module equipped
with its local m-adic topology. Then, any continuous map f : K → M factors through a finitely
generated submodule. In other words, we have

mapcts(K,M) ≃ lim
−→

mapcts(K,Mα),

where Mα is the poset of finitely generated submodules of M .

Proof. Suppose by contradiction that for every finitely generated submodule M ′, there exists a
k ∈ K such that f(k) 6∈M ′. Proceeding inductively, we produce an increasing sequence

M0 ⊆M1 ⊆M2 ⊆ . . .

of finitely generated submodules and points kn ∈ K such that f(kn) ∈Mn+1, but f(kn) /∈Mn.
We claim that an arbitrary finitely generated submodule N contains at most finitely many of

the f(kn). To see this, let us write M∞ = ∪Mn and consider N ∩M∞; the latter is again finitely
generated, as E0 is noetherian, and its intersection with {f(kn)} is the same as that of N . By
finite generation, we have N ∩M∞ = N ∩Mn for sufficiently large n, proving the claim, as the
latter contains at most n of the f(kn).

Since each finitely generated submodule is Hausdorff, its finite subspaces are closed and dis-
crete and we deduce that T = {f(kn)} is closed and discrete as a subspace of M , as this is
true for its intersection with each finitely generated submodule. This is a contradiction, as
T = f(f−1(T )) must be compact Hausdorff as an image of a closed subspace of K, so it cannot
be both infinite and discrete. �

Proposition 12.8. Let M ≃ lim
−→

Mα be a filtered colimit diagram of E0-modules equipped with
their local m-adic topologies and let K be compact Hausdorff. Then, the induced map

θ : lim
−→

mapcts(K,Mα)→ mapcts(K,M)

is an isomorphism of abelian groups.

Proof. We first show surjectivity of θ. Suppose that f : K → M is a continuous map, by
Lemma 12.7 it factors through a finitely generated submodule N ⊆ M . If we write Nα =
N ×M Mα, then since filtered colimits are exact we have

N ≃ lim
−→

Nα

As N is finitely generated and E0 is noetherian, it is finitely presented and we deduce that there
exists a section N → Nα for some α. Then, the composite

K → N → Nα →Mα

determines the needed element of the filtered colimit.
For injectivity, suppose that we have a continuous map f : K →Mα such that the composite

sα ◦ f : K → M where sα : Mα → M is the canonical map, is zero. By another application of
Lemma 12.7, K factors through a finitely generated submodule Nα ⊆ Mα and we necessarily
have Nα ⊆ ker(sα). As Nα is finitely generated, the second conidtion implies that we can find a
larger index β such that the composite

Nα →Mα →Mβ

is zero. It follows that f determines the zero element of the filtered colimit, as needed. �
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Corollary 12.9. Let M ≃ lim
−→

Mα be a filtered colimit of E0-modules equipped with their local
m-adic topology and compatible continuous Gn-actions. Then,

H∗
cts(Gn,M) ≃ lim

−→
H∗

cts(Gn,Mα).

In particular, for any E0-module N , we have

H∗
cts(Gn, N) ≃ lim

−→
H∗

cts(Gn, Nα).

where the colimit is taken over the poset Nα of finitely generated submodules.

Proof. The continuous cohomology is computed by the standard cochain complex

M → mapcts(Gn,M)→ mapcts(Gn ×Gn,M)→ . . .

of continuous cochains. The statement follows from an application of Proposition 12.8 to each
term separately, as Gn × . . . × Gn is compact Hausdorff and taking cohomology of cochain
complexes commutes with filtered colimits. �

12.2. Inverse limits of E∗E-comodules and continuous cohomology. In this section, we
will give a description of derived functors of the limit

lim
←−

s

E∗E
M/mkM ≃ H−s( lim←−D(E∗E)

M/mkM)

in E∗E-comodules as cohomology of the Morava stabilizer group. The importance of these derived
functors stems from the fact that they form the E2-page of the spectral sequence constructed in
§11.2.

Lemma 12.10. If M is a dualizable E∗E-comodule, then we have a canonical isomorphism

ExtsD(E∗E)(E∗, lim←−D(E∗E)
M/mkM) := π−s HomD(E∗E)(E∗, lim←−D(E∗E)

M/mkM) ≃ Hs
cts(Gn,M)

for any s ≥ 0, where E∗/m
k is the m-adic tower of E∗.

Proof. For brevity, if X ∈ D(E∗E), let us write

Exts(X) := ExtsD(E∗E)(E∗, X) ≃ π−s HomD(E∗E)(E∗, X)

Since we have

HomD(E∗E)(E, lim←−D(E∗E)
M/mkM) ≃ lim

←−
HomD(E∗E)(E∗,M/mkM),

there is a Milnor sequence

0→ lim
←−

1 Exts−1(M/mkM)→ Exts(lim
←−D(E∗E)

M/mkM)→ lim
←−

Exts(M/mkM)→ 0,

where we have omitted subscripts for simplicity and the derived functors of the limit are taken
in abelian groups.

We first claim that the lim
←−

1-term above vanishes. Note that sinceM/mkM is finitely generated
and m-torsion for any k ≥ 1, we have a canonical isomorphism

Ext(M/mkM) ≃ Hs
cts(Gn,M/mkM)

with the cohomology of the Morava stabilizer group. For k = 1, we have a further isomorphism

Ext(M/mM) ≃ ExtE∗E(E∗,K∗ ⊗E∗
M) ≃ ExtE∗K(K∗,K∗ ⊗E∗

M)

and the group on the right is degreewise finite by Corollary 5.7. It follows by induction that
Ext(M∗/m

kM) is degreewise finite for each k ≥ 1. Therefore, the groups Ext(M/mkM) satisfy
the Mittag-Leffler condition as k varies, so that the corresponding lim

←−
1-term vanishes as claimed.
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Consequently, we get a string of isomorphisms

Exts(lim
←−D(E∗E)

M/mkM) ∼= lim
←−

Exts(E∗,M/mkM)

∼= lim
←−

Hs
cts(Gn,M/mkM)

∼= Hs
cts(Gn,M).

Here, the last isomorphism uses that M is m-adically complete as a finitely generated E∗-module,
and that taking continuous cohomology of a finitely generated profinite group commutes with
taking countable inverse limits of finite modules [NSW13, §7]. �

In order to pass from Lemma 12.10 to a description of the derived functors lim
←−

s

E∗E
E∗/m

k,

we have to understand the homology groups of lim
←−D(E∗E)

M/mkM , rather than its homotopy.

To do so, we will make use of the Adams condition, which involves certain filtered colimits. To
commute past the latter, we will need a technical lemma stating that homotopy groups

Exts(E∗,−) := π−s HomD(E∗E)(E∗,−)

preserve certain filtered colimits of bounded complexes. If p > n+ 1, then the monoidal unit of
D(E∗E) is compact, so no boundedness hypotheses are required, but this can fail for general n.
In general, we still have the following result.

Lemma 12.11. Suppose (Lα)α is a filtered system of complexes of E∗E-comodules which are
uniformly bounded above in the standard t-structure on D(E∗E); that is, there exists an N such
that for all s > N and all α we have Hs(Lα) = 0. Then the canonical comparison map

φ : lim
−→
α

Exts(Lα) −→ Exts(lim
−→
α

Lα)

is an isomorphism for any s ∈ Z.

Proof. By shifting the system (Lα)α if necessary, we may reduce to the case of s = 0. In other
words, we have to show that that the canonical map

lim
−→
α

[E∗, Lα] −→ [E∗, lim−→
α

Lα]

between homotopy classes of maps in the derived ∞-category, is an isomorphism.
Since E∗ is connective in the standard t-structure, we can then replace Lα by its connective

cover τ≥0Lα; that is, reduce to the case in which there exists a non-negative integer N such that
Lα has homology concentrated in degrees [0, N ] for all α. By induction and the five-lemma, we
can reduce further to the case that Lα is concentrated in a single non-negative degree [s, s] for
all α.

Summarizing these reduction steps, it remains to prove that the canonical map

lim
−→
α

ExtsE∗E(E∗, Lα) −→ ExtsE∗E(E∗, lim−→
α

Lα)

is an isomorphism for any filtered system of comodules Lα ∈ ComodE∗E . This is clear, these
Ext-groups can be computed by the cobar complex, formation of which commutes with filtered
colimits. �

Proposition 12.12. For any dualizable E∗E-comodule M , there exists a canonical isomorphism

lim
←−

s

E∗E
M/mkM ∼= Hs

cts(Gn, E∗E ⊗E∗
M).

between the derived functors of the limit in comodules and the continuous cohomology of the
Morava stabilizer group with coefficients in E∗E ⊗E∗

M equipped with its local m-adic topology.
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Proof. We have

lim
←−

s

E∗E
M∗/m

kM ≃ H−s(lim←−D(E∗E)
M∗/m

kM)

which we can further rewrite as

H−s(lim←−D(E∗E)
M/mkM) ≃ Exts(E∗E ⊗E∗

lim
←−D(E∗E)

M∗/m
kM),

where the tensor product is the derived one. Writing E∗E ≃ lim
−→

Nα as a filtered colimit of
dualizable comodules, we have

Exts(E∗E ⊗E∗
lim
←−D(E∗E)

M/mkM) ∼= Exts(lim
−→

(N ⊗E∗
lim
←−D(E∗E)

M/mkM))

∼= lim
−→

Exts(N ⊗E∗
lim
←−D(E∗E)

M/mkM)

∼= lim
−→

Exts(lim
←−D(E∗E)

N ⊗E∗
M/mk(N ⊗E∗

M))

∼= lim
−→

Hs
cts(Gn, N ⊗E∗

M)

∼= Hs
cts(Gn, lim−→

N ⊗E∗
M)

∼= Hs
cts(Gn, E∗E ⊗E∗

M).

Here, the first isomorphism uses that the derived tensor product commutes with filtered colimits
and the second one is Lemma 12.11. The third isomorphism uses that tensoring with a dualizable
object commutes with limit, the fourth one is Lemma 12.10 while the fifth one is Corollary 12.9.

�

Remark 12.13. The relationship between derived functors of the limit and derived completion in
the context of comodules over a flat Hopf algebroid is studied further in [BHV20].

12.3. The inverse limit spectral sequence and its convergence. In this subsection, we
study the convergence of the inverse limit spectral sequence based on Morava E-theory and com-
bine the previous results in a spectral sequence computing the (uncompleted) E-homology of
the K-local sphere spectrum from continuous group cohomology with coefficients in the (uncom-
pleted) cooperations E∗E.

Proposition 12.14. If R = E is Morava E-theory and (Xα) ∈ SpNE is a tower of E-local
spectra, then the spectral sequence of Example 11.22 converges conditionally and strongly, and
has a horizontal vanishing line at the Er-page for some r ≥ 2.

Proof. By Lemma 11.8 and assumption on Xα, the modified Adams tower (Xα
i ) is E-local for

all i. Therefore, the proof of the smash product theorem due to Hopkins and Ravenel [Rav92,
Theorem 7.5.6] yields a constant N independent of α such that

gαs ◦ . . . ◦ g
α
s+N−1 : X

α
s+N

// Xα
s

is null for all α; see [HS05b, Theorem 5.10]. Consequently,

gs ◦ . . . ◦ gs+N−1 : lim
←−

Xα
s+N

// lim
←−

Xα
s (12.15)

is null as well, so [Boa99] shows that the spectral sequence is conditionally convergent. Similarly,
we obtain the horizontal vanishing line from (12.15), which in turn gives strong convergence. �

Theorem 12.16. If (Xα) ∈ SpNE is a tower of E-local spectra, then there is a strongly convergent
spectral sequence

Es,t
2
∼= (lim
←−

s

E∗E
E∗X

α)t =⇒ Et−s(lim←−
Xα),
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with a horizontal vanishing line at the Er-page for some r ≥ 2. In particular, this spectral
sequence specializes to:

Hs
cts(Gn, EtE) ∼= (lim

←−
s

E∗E
E∗/m

k)t =⇒ Et−s(LKS
0). (12.17)

Proof. The spectral sequence was constructed in Theorem 11.14, see also Example 11.22, while
the convergence properties were established in Proposition 12.14. The final statement follows by
applying this spectral sequence to a cofinal tower of E-local generalized type n Moore spectra as
in [HS99, Section 4]. The identification of the E2-page in terms of continuous cohomology was
proven in Proposition 12.12. �

Remark 12.18. The spectral sequence (12.17) may be thought of as an E∗-homology version of
the K-local E-based Adams spectral sequence for the sphere, which has signature

Hs
cts(Gn, E∗)t =⇒ π∗LKS

0

and is also strongly convergent. In contrast, working with completed E∗-homology would result in
an isomorphism E∗

∼= E∨
∗ LKS

0 ∼= H∗
cts(Gn, E

∨
∗ E∗). This amply highlights the extra information

contained in the terms H∗
cts(Gn, E∗E).

13. Digression: Cohomology of Gn as Ext in comodules

In Lemma 12.10, we have expressed continuous cohomology of a Morava stabilizer group with
coefficients in a dualizable E∗E-comodule M as homotopy groups of a the derived completion. In
this short section, we will use a form of local duality in the context of comodules to express it as
an Ext-groups between actual comodules, rather than objects of the derived ∞-category. Using
this calculation we will define a comparison map between Ext-groups and continuous cohomology.

Let Ik = (p, v1, . . . , vk−1) be the k-th invariant chromatic ideal in E∗; in particular, In = m.
We define E∗ = E∗/I

∞
0 and then iteratively construct E∗E-comodules via the cofiber sequences

E∗/I
∞
k → v−1

k E∗/I
∞
k → E∗/I

∞
k+1 (13.1)

in D(E∗E). Note that E∗/I
∞
k ≃ lim

−→
E∗/v

l0
0 , . . . , v

lk−1

k−1 , where the colimit is taken over a set of
indices with li →∞. For the constituent pieces, we have the following self-duality result:

Lemma 13.2. In the derived category of E∗E-comodules, the comodule E∗/v
i0
0 , v

i1
1 , . . . , v

ik
k is

self-dual with a shift in the sense that there exists an equivalence

D(E∗/v
i0
0 , v

i1
1 , . . . , v

ik
k ) ≃ Σ−kE∗/v

i0
0 , v

i1
1 , . . . , v

ik
k ,

where DX = F (X,E∗) denotes the monoidal dual.

Proof. We prove this by induction on k, where k = −1 is clear, since E∗ is the monoidal unit.

Now assume that the statement is known for E∗/v
i0
0 , v

i1
1 , . . . , v

ik−1

k−1 . Multiplication by vikk
induces a cofiber sequence

E∗/v
i0
0 , v

i1
1 , . . . , v

ik−1

k−1 → E∗/v
i0
0 , v

i1
1 , . . . , v

ik−1

k−1 → E∗/v
i0
0 , v

i1
1 , . . . , v

ik
k

which after taking duals yields a cofiber sequence

D(E∗/v
i0
0 , v

i1
1 , . . . , v

ik
k )→ D(E∗/v

i0
0 , v

i1
1 , . . . , v

ik−1

k−1 )→ D(E∗/v
i0
0 , v

i1
1 , . . . , v

ik−1

k−1 ).

By the inductive assumption, this sequence can be rewritten as

D(E∗/v
i0
0 , v

i1
1 , . . . , v

ik
k )→ Σk−1E∗/v

i0
0 , v

i1
1 , . . . , v

ik−1

k−1 → Σk−1E∗/v
i0
0 , v

i1
1 , . . . , v

ik−1

k−1 .

The self-map of Σk−1E∗/v
i0
0 , v

i1
1 , . . . , v

ik−1

k−1 → Σk−1E∗/v
i0
0 , v

i1
1 , . . . , v

ik−1

k−1 appearing on the right

cannot be non-zero, since it is a dual to the non-zero class vikk . It follows that it must be itself a
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unit times vikk since there is nothing else in this degree, see for example [Rav86, Thm. 4.3.2(b)].
The assertion then follows. �

Lemma 13.3. If M is a finitely generated E∗E-comodule, then its derived comodule completion
of M is given by

lim
←−D(E∗E)

(M ⊗E∗
E∗/v

k0

0 , . . . , v
kn−1

n−1 ) ≃ lim
←−D(E∗E)

M/vk0

0 , . . . , v
kn−1

n−1 ,

where on the left hand side we have used the derived tensor product of comodules.

Proof. This is proven in [BHV20, Proposition 2.25] �

The next result is an incarnation of local duality for comodules [BHV18, §5], relating local co-
homology (derived torsion) and local homology (derived completion), combined with Lemma 12.10.

Theorem 13.4. Let M be a finitely generated E∗E-comodule. Then, there exists an isomorphism

Extn+s
E∗E

(E∗/I
∞
n ,M) ≃ Hs

cts(Gn,M)

between Ext-groups in comodules and the cohomology of Gn, for any s ≥ 0.

Proof. As noted before, we have E∗/I
∞
n ≃ lim

−→
E∗/v

k0

0 , . . . , v
kn−1

n−1 , where the colimit is taken over
a set of indices with ki →∞. By by the duality equivalence of Lemma 13.2 we have

HomD(E∗E)(lim−→
Σ−nE∗/v

k0

0 , . . . , v
kn−1

n−1 ,M) ≃ HomD(E∗E)(E∗, lim←−D(E∗E)
M⊗E∗/v

k0

0 , . . . , v
kn−1

n−1 ).

In light of the Lemma 13.3, the latter term is equivalent to HomD(E∗E)(E∗, lim←−
M/vk0

0 , . . . , v
kn−1

n−1 ).
It follows that

Extn+s
E∗E

(E∗/I
∞
n ,M) ≃ lim

←−
ExtsE∗E(E∗,M/vk0

0 , . . . , v
kn−1

n−1 ),

up to possible lim
←−

1-terms. However, all of the Ext groups on the right are finite, since M is

finitely generated, so these lim
←−

1-terms vanish. We then deduce as in Lemma 12.10 that

Extn+s
E∗E

(E∗/I
∞
n ,M) ≃ lim

←−
ExtsE∗E(E∗,M/vk0

0 , . . . , v
kn−1

n−1 ) ≃ Hs
cts(Gn,M),

which is what we wanted to show. �

The boundary maps δk : E∗/I
∞
k+1 → ΣE∗/I

∞
k associated with the cofiber sequences (13.1)

compose to give a ‘residue map’ in the derived category:

δ := δn−1 ◦ . . . ◦ δ0 : E∗/I
∞
n → ΣnE∗.

For any finitely generated E∗E-comodule N , the map δ induces a natural map on Ext-groups
that fits, for any s, into a commutative square

ExtsE∗E(E∗, N)
Ext(δ,N)

//

∼=

��

Exts+n
E∗E

(E∗/I
∞
n , N)

∼=

��

[Ndual, E∗]
−s // [Ndual, lim

←−D(E∗E)
E∗/I

k
n ]

−s.

(13.5)

Here, the left vertical isomorphism is by duality, while the right vertical isomorphism is estab-
lished as in the proof of the previous theorem. Unwinding the construction, the bottom horizontal
map is then induced by the canonical completion map E∗ → lim

←−D(E∗E)
E∗/I

k
n.
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Definition 13.6. For a finitely generated E∗E-comodule N , we define the comparison map αN

as the composite

αN : ExtsE∗E(E∗, N)→ Extn+s
E∗E

(E∗/I
∞
n , N) ≃ Hs

cts(Gn, N)

of the map in (13.5) and the isomorphism of Theorem 13.4.

Note that, by construction, the maps αN are natural and compatible with the long exact
sequences of Ext-groups and cohomology.

Remark 13.7. Alternatively, it is possible to define the comparison map αM directly using the
cobar complex. More precisely, one can show that if M is a finitely generated E∗E-comodule,
then the differentials in the cobar complex

M → E∗E ⊗E∗
M → E∗E ⊗E∗

E∗E ⊗E∗
M → . . .

respect the m-adic filtration (even though they are not E∗-linear). The completion of the cobar
complex is exactly the cochain complex computing continuous Gn-cohomology, and the induced
map on homology can be shown to be exactly αM .

14. Algebraic chromatic splitting conjecture

In this penultimate section we use the comparison map of the previous section to compute
the zeroth derived limit as lim

←−
0

E∗E
E∗/m

k ≃ E∗ ⊗Z Zp. This result should be viewed in light

of Hopkins’ algebraic chromatic splitting conjecture, see [Pet, §14], which we briefly review for
context.

Notation 14.1. To simplify notation, ifN is a finitely generatedE∗E-comodule, we will sometimes
use abbreviations Exts(N) := ExtsE∗E(E∗, N) and Hs(N) := Hs

cts(Gn, N).

14.1. The algebraic chromatic splitting conjecture. Motivated by computations in height
2, this conjecture was formulated by Hopkins and recorded later in [Pet, Conjecture 134]4 as
well as [BSS20, Conjecture 6.10], and studied further in [BH18]. To state it, we first recall the
construction of the class ζ ∈ π−1LK(n)S

0 due to Devinatz and Hopkins [DH04, Section 8].

If we write G1
n for the kernel of the determinant map det: Gn → Zp, there is a residual action

of Zp on E
hG1

n
n . For t is a topological generator of Zp, we then obtain a fiber sequence of spectra

LK(n)S
0 // E

hG1

n
n

id−t
// E

hG1

n
n

δ
// LK(n)S

1.

The composition δ ◦ η : S0 → LK(n)S
0 of the unit map with the boundary map gives rise to

an element ζ ∈ π−1LK(n)S
0. In [DH04, Proposition 8.2], Devinatz and Hopkins prove that ζ is

non-trivial as long as the height n > 0.

Conjecture 14.2 (Algebraic chromatic splitting conjecture). For all heights n ≥ 2 and suffi-
ciently large p, there are isomorphisms of E∗E-comodules

lim
←−

s

E∗E
E∗/(p, . . . , vn−2, v

i
n−1)

∼=






E∗/(p, . . . , vn−2) s = 0

v−1
n−1E∗/(p, . . . , vn−2) s = 1

0 otherwise.

Moreover, these isomorphisms are topologically realized by the unit map ι : S0 → LK(n)S
0 and

the map ζ : S−1 → LK(n)S
0, respectively.

4We note that the statement given there contains a typo: the left hand side of the equation should have vn−1

inverted.
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Remark 14.3. As the name suggests, the algebraic chromatic splitting conjecture provides an
algebraic counterpart to Hopkins’ chromatic splitting conjecture [Hov95, Conjecture 4.2] in the
edge case: If the algebraic chromatic splitting conjecture holds at height n and prime p, then the
maps ι and ζ induce a splitting

(ι, ζ) : Ln−1F ⊕ Σ−1Ln−1F ≃ Ln−1LK(n)F

for any finite spectrum F of type n−1. Indeed, the conclusion of the algebraic chromatic splitting
conjecture forces the inverse limit sequence (11.15) for LK(n)F to collapse at the E2-page, thereby
showing (ι, ζ) is an E∗-isomorphism and hence an E-local equivalence.

Example 14.4. In Section 15, we will verify a height 1 variant of the algebraic chromatic
splitting conjecture at any prime, see in particular Theorem 15.12 and also [Pet, §14]. The
appearance of the additional tensor factors is the only reason we excluded the case of height 1
from the statement of the algebraic chromatic splitting conjecture above.

14.2. The comparison map in degree 0. We work with Notation 14.1. Our goal is to study
the comparison map Exts(M) → Hs(M), constructed in Definition 13.6. We will focus on the
particular case when s = 0; note that in this case this map is always injective as both the source
and target are abelian subgroups of M .

Thus, the real question is how far this comparison map is from being surjective. When M is
the monoidal unit, we have the following folklore result of Hopkins.

Lemma 14.5 (Hopkins). We have H0(E∗) ≃ Zp and the map Ext0(E∗) → H0(E∗) is a p-

completion; that is, it induces an isomorphism Zp ⊗Z Ext0(E∗) ≃ H0(E∗).

Proof. The first part is [BG18, Lemma 1.33]. The second part follows from the fact that
Ext0(E∗) ≃ Z(p), as in both cases the relevant invariants are generated by the unit of the
Lubin–Tate ring. �

Lemma 14.6. The map Ext1(E∗)→ H1(E∗) is a monomorphism.

Proof. Since it vanishes rationally, the source of this map is p-torsion. For a given x ∈ Ext1(E∗)
we can thus find a k and y ∈ Ext0(E∗/p

k) so that x can be written as x = δ(y), where δ denotes
the boundary homomorphism. We have a commutative diagram

Ext0(E∗) Ext0(E∗) Ext0(E∗/p
k) Ext1(E∗)

H0(E∗) H0(E∗) H0(E∗/p
k) H1(E∗)

pk
δ

δ

with exact rows. Thus, it is enough to show that if the image ỹ ∈ H0(E∗/p
k) of y can be lifted to

H0(E∗), then y can be lifted to Ext0(E∗). By Lemma 14.5, the latter two groups are isomorphic
to respectively Zp and Z(p).

By multiplying by an appropriate unit σ in the p-adics congruent to 1 modulo pk, and replacing
the chosen lift ỹ ∈ H0(E∗) ≃ Z(p) of x̃ by σỹ, we can assume that ỹ ∈ Z(p). It follows that x can

be lifted to Ext0(E∗), which is what we wanted. �

Our goal is to use an inductive argument, building on the calculation of invariants of E∗ due to
Hopkins and extending it to a larger class of comodules. The starting point will be the following
class.

Definition 14.7. We say a finitely generated E∗E-comodule M is pure if it belongs to the
smallest class of comodules closed under extensions and containing all shifts of E∗.
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Remark 14.8. Any pure M is finitely generated and projective over E∗, and so dualizable. It
follows that if

0→ K →M → N → 0

is a short exact sequence of pure comodules, then it is split over E∗, so that the induced sequence

0→ Ndual →Mdual → Kdual → 0

of linear duals is again exact. We deduce that the class of pure comodules is closed under taking
duals.

Remark 14.9. It is plausible that it follows from the arguments of Hovey and Strickland, who
establish an analogue of the Landweber filtration for E∗E-comodules [HS05a], that all comodules
finitely generated and projective over E∗ are pure in the sense of Definition 14.7. We did not
check whether this is true, as we do not need this fact in our arguments.

Lemma 14.10. The category of E∗E-comodules is generated under colimits by pure comodules.

Proof. Since E ≃ lim
−→

Eα is a filtered colimit of finite spectra, it follows formally that the category

of E∗E-comodules is generated under colimits by shifts of comodules of the form E∗Eα [Hov04a,
Proposition 1.4.4].

Furthermore, we claim that since the Eα only have even cells, the resulting comodules E∗Eα

are pure. Using a cell decomposition of Eα and the associated long exact sequences in homology,
which will be short exact here, we deduce that each E∗Eα is a comodule which can be obtained
using iterated extensions of shifts of E∗ and so is pure. �

Recall that a E∗E-comodule is dualizable if and only if the underlying E∗-module is finitely
generated and projective.

Theorem 14.11. If N is a dualizable E∗E-comodule, then

(1) Ext0(N) is a finitely generated Z(p)-module and

(2) the map αN : Ext0(N) → H0(N) is a p-completion, that is, it induces an isomorphism
Ext0(N)⊗Z Zp ≃ H0(N).

Proof. For N = E∗ or its shifts, this is Lemma 14.5.
We first claim that the result is true for comodules C which are pure in the sense of Definition 14.7.

By induction on rank, we can assume that we have a short exact sequence

0→ E∗ → C → C′ → 0

and that the result already holds for C′. The long exact sequence of Ext-groups implies that
Ext0(C) is a finitely generated module over Z(p). Thus, we have a commutative diagram

0 Zp ⊗ Ext0(E∗) Zp ⊗ Ext0(C) Zp ⊗ Ext0(C′) Zp ⊗ Ext1(E∗)

0 H0(E∗) H0(C) H0(C′) H1(E∗),

where the top row is again exact, since Zp is flat. By induction on rank, counting from the
left, the first and third vertical maps are isomorphisms. By Lemma 14.6, the fourth one is a
monomorphism, as Zp ⊗ Ext1(E∗) ≃ Ext1(E∗) because the latter group is p-torsion. We deduce
that the second one is an isomorphism using the five-lemma, which was our claim.

Now suppose that N is an arbitrary dualizable comodule; by Lemma 14.10 we can find a
surjection C → N from a pure comodule. By taking duals, we can assume that we instead
have a monomorphism N →֒ C, where C is again pure by Remark 14.8. Since we already know
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Ext0(C) and H0(C) are free finitely generated over respectively Z(p) and Zp, we deduce that the

same is true for their submodules Ext0(N) and H0(N), proving (1).
Let us denote the cokernel of N →֒ C by C′. We then have another commutative diagram

0 // Zp ⊗ Ext0(N) //

��

Zp ⊗ Ext0(C) //

��

Zp ⊗ Ext0(C′)

��

0 // H0(N) // H0(C) // H0(C′).

By what we have proven above, the middle map is an isomorphism as well. Since the right one is
injective, we deduce from the four-lemma that the left one is surjective, ending the argument. �

Remark 14.12. One would like to prove that Theorem 14.11 holds for all finitely generated
comodules, rather than only the finite projective ones. It is possible this more general result can
be deduced formally from the projective case, but we were not able to do so.

The key ingredient in the above proof is the calculation of H0
cts(Gn, E∗); it seems likely that the

version for arbitrary comodules would follow from a more general calculation of H0
cts(Gn, E∗/Ik)

by Landweber filtration arguments.

14.3. The comodule completion of Morava E-theory. We now come to the main theorem
of this section. One may view the computation of this inverse limit at all heights and primes as
uniform evidence for the validity for the algebraic chromatic splitting conjecture and hence of
the chromatic splitting conjecture itself.

Theorem 14.13. We have

lim
←−E∗E

E∗/m
k ≃ H0

cts(Gn, E∗E) ≃ E∗ ⊗Z Zp,

where the left hand side is the limit in the category of E∗E-comodules.

Proof. The first isomorphism is an instance of Proposition 12.12. By Corollary 12.9, if Mα is a
filtered diagram of dualizable E∗E-comodules such that lim

−→
Mα ≃ E∗E, then

H0
cts(Gn, E∗E) ≃ lim

−→
H0

cts(Gn,Mα) ≃ Ext0E∗E(E∗,Mα)⊗Z Zp ≃ E∗ ⊗Z Zp

where the second isomorphism is Theorem 14.11. This ends the argument. �

Remark 14.14. Since E∗S
0
p ≃ E∗ ⊗MU∗

MU∗S
0
p ≃ E∗ ⊗ Zp, one can rephrase Theorem 14.13 as

saying that lim
←−

0E∗/m
k ≃ E∗S

0
p , which relates this result to the topological chromatic splitting

conjecture.

Remark 14.15. There is a short exact sequence of E∗E-modules

0 // Σ|vn−1|E∗/In−1

vn−1
// E∗/In−1

// E∗/In // 0.

Applying the functor lim
←−D(E∗E)

E∗/I
k
n ⊗ − and considering the induced long exact sequence in

cohomology, we deduce that vn−1 acts on lim
←−

s

D(E∗E)
E∗/(p, . . . , vn−2, v

i
n−1) injectively for s = 0

and bijectively for s > 0. This provides further evidence for Conjecture 14.2.

15. Cooperations at height one

In the previous section, we discussed the importance of the derived functors of the limit in the
category of comodules and its relation to the chromatic splitting conjecture. In Proposition 12.12,
we gave an explicit formula for these in the form of an isomorphism

lim
←−

s

E∗E
E∗/m

kE∗ ≃ Hs
cts(Gn, E∗E),
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where on the left hand side we have the s-th derived functor of the limit in E∗E-comodules and
the right hand side we have continuous cohomology of the Morava stabilizer group. To make use
of this, we would like to understand E∗E as a Gn-representation; in this section, we will do so
for n = 1.

Warning 15.1. Let us warn the reader again that we are interested in the uncompleted cooper-
ations; that is, E∗E = π∗(E ⊗ E). The description of the completed cooperations

E∨
∗ E := π∗(LK(E ⊗ E)) ≃ (E∗E)∨

m

is well-known, as we have E∨
∗ E ≃ mapcts(Gn, E∗) at any height by a result of Strickland [Str00]

or [Hov04b].

Notation 15.2. Instead of the Honda formal group law, it will be convenient to work with the
multiplicative formal group law over Fp, which we will denote by Γ. This is of height one,
so that the Lubin–Tate ring is isomorphic to the p-adics, with the universal deformation the
multiplicative formal group law over Zp.

By uniqueness part of the Goerss–Hopkins–Miller theorem, the Lubin–Tate spectrum associ-
ated to this universal deformation is given by

E := KU∨
p ,

the p-complete complex K-theory. The action of G1 is given by Adams operations.

Lemma 15.3. There is an isomorphism

E∗E ≃ E∗KU ⊗Z Zp

of G1-representations, where on the right hand side the action is trivial on the Zp-factor.

Proof. We have KU∗ ≃ Z[u±1] and E∗ ≃ KU∗⊗Zp, which is flat over KU∗. It then follows from
flatness that we have an isomorphism

E∗E ≃ E∗KU ⊗Z Zp

induced by the multiplication map

(E ⊗KU)⊗KU E → E ⊗ E

Since this multiplication map is G1-equivariant with respect to the action on the left E factor,
this is in fact an isomorphism of representations. �

Corollary 15.4. There is an isomorphism

Hs
cts(G1, E∗E) ≃ Hs

cts(G1, E∗KU)⊗Z Zp.

Proof. Let us write H∗(M) := H∗
cts(G1,M) for brevity. As Zp is flat, it can be written as a

filtered colimit Zp ≃ Fα of finitely generated, free abelian groups by Lazard’s theorem. We then
have

Hs(E∗E) ≃ Hs(E∗KU ⊗Z Zp) ≃ Hs(lim
−→

E∗KU ⊗Z Fα) ≃ lim
−→

Hs(E∗KU ⊗Z Fα),

where the last equivalence used Corollary 12.9, and further

lim
−→

Hs(E∗KU ⊗Z Fα) ≃ lim
−→

Hs(E∗KU)⊗Z Fα ≃ Hs(E∗KU)⊗Z Zp,

where the first equivalence used additivity of cohomology. �
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It follows from Corollary 15.4 that to understand the cohomology with coefficients in E∗E, it
is enough to understand E∗KU .

As we are working with coefficients in the homology of a spectrum rather than an arbitrary
G1-module, we have a canonical family of invariants. To be more precise, we have a Hurewicz
homomorphism

KU∗ → E∗KU

whose image necessarily consists of G1-invariants. It follows that the cohomology groups

H∗
cts(G1, E∗KU)

are 2-periodic. As they’re also even, as E∗KU is, it is enough to determine the cohomology with
coefficients in E0KU .

Lemma 15.5. The composite

E0KU → E∨
0 KU ≃ E

∨
0 E ≃ mapcts(G1,Zp)

is injective.

Proof. Note that by Landweber exactness we have

E0KU ≃ Zp ⊗Z KU0KU.

This is flat over Zp and we deduce from Proposition 8.6 that the above composite can be identified
with a p-completion map. By a result of Adams, Harris, and Switzer,KU0KU is free as an abelian
group [AHS71]. It follows that the p-completion map

Zp ⊗Z KU0KU → (Zp ⊗Z KU0KU)∨p ≃ (KU0KU)∨p ≃ E
∨
0 E

is injective as needed. �

The completion map of Lemma 15.5 is G1-equivariant, and we deduce that E0KU is naturally
a subrepresentation of mapcts(G1,Zp). On the latter, G1 acts by right multiplication on the
source. Our goal is to describe the given subrepresentation.

By unwrapping the definitions, the map of Lemma 15.5 can be described explicitly. By stan-
dard results about weakly periodic Landweber exact homology theories, KU0KU is the algebra
classifying automorphisms of the multiplicative formal group law. If g ∈ G1 is an automorphisms
over the p-adics, then we can write

g(x) =
∑

i

bi(g)x
i,

where the bi depend continuously on g. The above expression defines an automorphism of the
multiplicative formal group law over mapcts(G1,Zp); this is the automorphism classified by the
injective map

KU0KU → mapcts(G1,Zp).

Combined with Lemma 15.5, this proves the following.

Proposition 15.6. The ring E0KU is the Zp-subalgebra of mapcts(G1,Zp) generated by the

functions bi : G1 → Zp for i ≥ 1 as well as b−1
1 .

As we work with the multiplicative formal group law, these functions bi can be made explicit.
Assume first that a ∈ Z, so that the corresponding multiple of the identity of the multiplicative
formal group law is given by

[a](x) = (1 + x)a − 1 =

∞∑

k>0

(
a

k

)
xk.
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The last expression makes sense even if a is a p-adic integer, where we take
(
a

k

)
=
a(a− 1) . . . (a− k + 1)

k!
,

and the sum is now possibly infinite. One can check that these are automorphisms of the
multiplicative formal group law even if a is p-adic, so that the identification

Z×
p ≃ G1

is given by a 7→ [a](x) =
∑∞

k>0

(
a
k

)
xk. Thus, Proposition 15.6 can be stated in the following

more explicit form.

Proposition 15.7. The algebra E0KU is the Zp-subalgebra of mapcts(G1,Zp) generated by the

functions bi(a) =
(
a
i

)
for i ≥ 1 as well as b−1

1 (a) = 1
a .

Remark 15.8. The functions bi appearing in Proposition 15.7 are well-known to p-adic analysts.
By a fundamental theorem of Mahler, any continuous p-adic function on Zp can be written as
an infinite convergent sum of the bi-s in a unique way [Mah58].

This immediately implies the following calculation.

Proposition 15.9. We have H0
cts(G1, E0KU) ≃ Zp.

Proof. This is immediate from Proposition 15.7, as the only functions G1 → Zp invariant under
translation are the constants. �

To compute higher cohomology groups, it is convenient to observe that they are necessarily
rational.

Lemma 15.10. The groups Hi
cts(G1, E0KU) are rational vector spaces for i > 0.

Proof. Since the inclusion E0KU →֒ mapcts(G1,Zp) is an isomorphism after p-completion, as we
observed in the proof of Lemma 15.5, we deduce that it is an isomorphism modulo p. It follows
that

Hi
cts(G1, E0KU ⊗Zp

Fp) ≃ Hi
cts(G1,mapcts(G1,Fp))

and the right hand side vanishes for i > 0. The long exact sequence of cohomology associated to

0→ E0KU → E0KU → E0KU ⊗Zp
Fp → 0,

where the first map is multiplication by p, gives the required result. �

Proposition 15.11. We have
H1

cts(G1, E0KU) ≃ Qp

and the higher cohomology groups vanish.

Proof. By Lemma 15.10, all cohomology groups of positive degree are rational, so that we can
replace E0KU by Qp ⊗Zp

E0KU without changing these. The cohomology with the coefficients
in the latter can be computed directly.

As each binomial coefficient bi(a) =
(
a
i

)
is a polynomial in a with rational coefficients, we

deduce from Proposition 15.7 that Qp ⊗Zp
E0KU can be identified with the Qp-subalgebra of

mapcts(G1,Qp) generated by b1(a) = a and its inverse.
It follows that there is an isomorphism of representations

Qp ⊗Zp
E0KU ≃ Qp[b

±1],

where b = b1 and the action is determined by g · b = gb for g ∈ G1. This decomposes as a direct
sum of character representations

Qp[b
±1] ≃

⊕

k∈Z

Qp(k),
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where we identify Qp(k) with the subrepresentation generated by bk. It follows that

Hi
cts(G1,Qp[b

±1]) ≃
⊕

k∈Z

Hi
cts(G1,Qp(k)).

Let U ⊆ G1 ≃ Z×
p be a normal subgroup of finite index such that U ≃ Zp. As finite groups

have no rational cohomology, Lyndon–Hochschild–Serre spectral sequence collapses and gives an
isomorphism

Hi(G1,Qp(k)) ≃ Hi(U,Qp(k))
G1/U .

It follows that the cohomology groups vanish above degree 1, as U ≃ Zp is of cohomological
dimension one.

As U ≃ Zp is cyclic as a profinite group, its cohomology can be computed using a two-step
cochain complex, as we did in Section 10. It follows that the only one-dimensional representation
of U over Qp with non-trivial cohomology is the trivial one. As the characters Qp(k) restrict to
non-trivial representations for k 6= 0, we deduce that

H1
cts(G1,Qp[b

±1]) ≃ H1
cts(G1,Qp) ≃ Qp

as claimed. �

Theorem 15.12. At height n = 1 and any prime, we have

Hs
cts(G1, E∗E) ≃





E∗ ⊗Z Zp when s=0;

E∗ ⊗Z Qp when s=1;

0 otherwise.

Proof. As we observed previously that the cohomology with coefficients in E∗E is concentrated
in even internal degrees and 2-periodic, it is enough to establish this in internal degree zero,
where this is a combination of Corollary 15.4, Proposition 15.9 and Proposition 15.11. �

Remark 15.13. As we observed at the beginning, the cohomology groups of Theorem 15.12 co-
incide with derived functors of completion in comodules by Proposition 12.12. Using the latter
perspective, a sketch of calculation of the rationalization of the above groups at p > 2 appears
in a talk by Hopkins, recorded in [Pet, Talk 14]. We were independently informed by Hopkins
that he first made this calculation in the 1990s and that it was part of the motivation towards
the algebraic chromatic splitting conjecture.
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