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ON EXACT ∞-CATEGORIES AND THE THEOREM OF THE

HEART

CLARK BARWICK

Abstract. The new homotopy theory of exact ∞-categories is introduced
and employed to prove a Theorem of the Heart for algebraic K-theory (in the
sense of Waldhausen). This implies a new compatibility between Waldhausen
K-theory and Neeman K-theory. Additionally, it provides a new proof of the
Dévissage and Localization Theorems of Blumberg–Mandell, new models for
the G-theory of schemes, and a proof of the invariance of G-theory under
derived nil-thickenings.
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0. Introduction

In this paper, we prove (Th. 6.1) that a stable homotopy theory whose trian-
gulated homotopy category admits a bounded t-structure has the same algebraic
K-theory (in the sense of Waldhausen) as that of its heart. This is the Theorem
of the Heart of the title. This result, which apparently has been expected by some
experts for some time, has nevertheless gone unproved.

This theorem does, however, have an important predecessor. For 20 years Amnon
Neeman has advanced the algebraic K-theory of triangulated categories [15, 16, 17,
18, 19, 20, 21, 22, 23] as a way of extracting K-theoretic data directly from the
triangulated homotopy category of a stable homotopy theory. As an approximation
to Waldhausen K-theory, this form of K-theory has well-documented limitations:
a beautiful example of Marco Schlichting [24] shows that Waldhausen K-theory
can distinguish stable homotopy theories with equivalent triangulated homotopy
categories. Nevertheless, the most impressive advance in the algebraic K-theory
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2 CLARK BARWICK

of triangulated categories is Neeman’s Theorem of the Heart [18, 19, 22], which
expresses an equivalence between the Neeman K-theory of a triangulated category
T equipped with a bounded t-structure and the Quillen K-theory of its heart T ♥.

Neeman’s proof of his Theorem of the Heart is lengthy and difficult to read, so
much so that it even generated a small controversy (see Neeman’s discussion in [15,
pp. 347–353]). The proof of our Theorem of the Heart, by contrast, is mercifully
short, conceptually appealing, and logically independent of Neeman’s. Consequently
we regard Th. 6.1 and its proof as a conclusive answer to Problem 76 of his survey
[23].

To prove our result, we introduce a natural homotopy-theoretic generalization of
Quillen’s notion of an exact category, which we call an exact ∞-category (Df. 3.1).
Because this notion involves a compatibility between certain homotopy limits and
certain homotopy colimits, it is virtually impossible (or at the very least hideously
inconvenient) to express in the more classical language of categories-with-weak-
equivalences. Therefore we have to employ concepts from higher category theory
— in particular, the theory of Waldhausen ∞-categories, whose theory we studied
in pitiless detail in [3].

The key idea from [3] is that algebraic K-theory is a homology theory for ∞-
categories. In fact, algebraic K-theory is the analogue of stable homotopy theory in
this context. The behavior of these categorified homology theories under duality is
the key phenomenon that makes our proof of the Theorem of the Heart work. More
precisely, when algebraic K-theory is restricted to exact ∞-categories, it enjoys
a self-duality (Cor. 5.16.1). This self-duality is then used in conjunction with our
∞-categorical Fibration Theorem [3, Pr. 10.12] to prove the following.

Theorem (Heart). If A is a stable ∞-category equipped with a bounded t-structure,
then the inclusion of the heart A ♥ ⊂ A induces a K-theory weak equivalence

K(A ♥) ≃ K(A ).

This result is one of the very few general statements in algebraic K-theory that is
capable of providing K-theory equivalences that do not arise from equivalences of
the ∞-categories themselves. (The only other example of such a general result we
know of this kind is Quillen’s Dévissage Theorem.)

The full strength of the conceptual apparatus constructed here and in [3] is
necessary for this proof to work. In view of Schlichting’s “no-go theorem” [24, Pr.
2.2], our use of the Fibration Theorem makes it impossible for a proof at all similar
to the one presented here to be adapted to the context of triangulated categories.
On the other hand, there are other proposed versions of algebraic K-theory for ∞-
categories (most notably that of Blumberg, Gepner, and Tabuada [6]) that restrict
attention to stable ∞-categories or the like. These versions of K-theory just won’t
help for this problem: in fact, it isn’t possible even to express the relevant cases
of self-duality with this or any other form of K-theory that splits arbitrary cofiber
sequences.

Let us underscore that this is not a new proof of an old theorem. Schlichting’s
example shows that there is no a priori reason to expect Neeman’s Theorem of the
Heart to say anything about Waldhausen K-theory. Nevertheless, our main result
does yield a comparison between Neeman’s K-theory and Waldhausen K-theory.
Indeed, the conjunction of Neeman’s Theorem of the Heart and Th. 6.1 implies that
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the Waldhausen K-theory of a stable ∞-category A agrees with the Neeman K-
theory of its triangulated homotopy category T = hA (the variant denotedK(wT )
in [23]), whenever the latter admits a bounded t-structure (Cor. 6.4.1). This verifies
a conjecture of Neeman [19, Conj. A.5] for such stable homotopy theories.

This paper ends with a discussion of some immediate corollaries of the main
theorem, which we include mostly as proof of concept.

— We give new models for the G-theory of schemes in terms of the perverse
coherent sheaves of Arinkin, Bezrukavnikov, and Deligne (Ex. 7.1).

— We also give a new, short proof of the Dévissage and Localization Theorems
of Blumberg–Mandell [7] (Pr. 8.3 and Th. 8.7), which immediately yields
a host of useful fiber sequences in the algebraic K-theory of ring spectra
(Ex. 8.8). More interesting examples can be found in our paper with Tyler
Lawson [4].

— Finally, we show that the G-theory of spectral Deligne–Mumford stacks (in
the sense of Lurie) is invariant under derived thickenings (Pr. 9.2).

Acknowledgments. I thank Andrew Blumberg and Mike Mandell for very helpful
conversations about this paper. I also thank Dustin Clausen for helpful remarks
about a previous version of this paper. I am very grateful to Benjamin Antieau
for noticing that overzealous revision botched the proof of the main theorem in a
earlier version of this paper. Finally, I thank the anonymous referee for a genuinely
helpful report.

1. Preliminaries

We use higher categories systematically in this paper. In particular, we are in-
terested in ∞-categories whose i-morphisms for i ≥ 2 are all invertible. These days,
it is fashionable to call these (∞, 1)-categories or even just ∞-categories. There are
very many models for the homotopy theory of ∞-categories in this sense, and they
are all equivalent in an essentially unique fashion, up to orientation — see Toën
[26] or Lurie [12] or Barwick–Schommer-Pries [5].

In this paper, we employ the homotopy theory of quasicategories developed by
Joyal [8, 9] and then further by Lurie [11]. These are simplicial sets C in which any
inner horn x : Λmk C (m ≥ 2 and 1 ≤ k ≤ m− 1) admits a filler x : ∆m C.
When we use the phrase “∞-categories” in this text, we will be referring to these.

One point that is perhaps not so obvious is the notion of a subcategory of an
∞-category.

1.1. Recollection ([11, §1.2.11]). A subcategory of an ∞-category A is a simplicial
subset A′ ⊂ A such that for some subcategory (hA)′ of the homotopy category hA,
the square

A′ A

N(hA)′ N(hA)

is a pullback diagram of simplicial sets. In particular, note that a subcategory of
an ∞-category is uniquely specified by specifying a subcategory of its homotopy
category. Note also that any inclusion A′ A of a subcategory is an inner fibration
[11, Df. 2.0.0.3, Pr. 2.3.1.5].
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We will say that A′ ⊂ A is a full subcategory if (hA)′ ⊂ hA is a full subcategory.
In this case, A′ is uniquely determined by the set A′

0 of vertices of A′, and we say
that A′ is spanned by the set A′

0.
We will say that A′ is stable under equivalences if the subcategory (hA)′ ⊂ hA

above can be chosen to be stable under isomorphisms. Note that any inclusion
A′ A of a subcategory that is stable under equivalences is a categorical fibration,
i.e., a fibration for the Joyal model structure [11, Cor. 2.4.6.5].

The natural inputs for algebraic K-theory are what we call Waldhausen ∞-
categories:

1.2. Recollection ([3, Df. 2.7]). A Waldhausen ∞-category (C ,C†) consists of an
∞-category C equipped with a subcategory C† ⊂ C that contains all the equiva-
lences. A morphism of C† will be said to be ingressive or a cofibration. These data
are then required to satisfy the following conditions.

(1.2.1) The ∞-category C contains a zero object — i.e., an object that is both
initial and terminal [11, Df. 1.2.12.1 and Rk. 1.2.12.6].

(1.2.2) For any zero object 0, any morphism 0 X is ingressive.
(1.2.3) Pushouts [11, §4.4.2] of cofibrations exist and are cofibrations.

A functor C D between Waldhausen ∞-categories is said to be exact if it
carries cofibrations to cofibrations and preserves both zero objects and pushouts of
cofibrations.

The examples one may have in mind here includes the nerve of an ordinary
exact category in the sense of Quillen (in which the ingressive morphisms are the
admissible monomorphisms), the nerve of a category with cofibrations in the sense
of Waldhausen [] (in which the ingressive morphisms are the cofibrations), any
∞-category with a zero object and all finite colimits (in which any morphism is
ingressive).

In a sense, the defining property of algebraic K-theory is that it splits cofiber
sequences. We’ll discuss this point in more detail later. For now, let us explain what
cofiber sequences are.

1.3. Definition. In a Waldhausen ∞-category, a cofiber sequence is a pushout
square

X ′ X

0 X ′′

in which X ′ X is ingressive and 0 is a zero object. We call X X ′′ the cofiber
of the cofibration X ′ X .

We also have the dual notion of a coWaldhausen ∞-category.

1.4. Recollection ([3, Df. 2.16]). A coWaldhausen ∞-category (C ,C †) consists
of an ∞-category C equipped with a subcategory C † ⊂ C that contains all the
equivalences. A morphism of C † will be said to be egressive or a fibration. These
data are then required to satisfy the following conditions.

(1.4.1) The ∞-category C contains a zero object.
(1.4.2) For any zero object 0, any morphism X 0 is egressive.



ON EXACT ∞-CATEGORIES AND THE THEOREM OF THE HEART 5

(1.4.3) Pullbacks [11, §4.4.2] of fibrations exist and are fibrations.

A functor C D between coWaldhausen ∞-categories is said to be exact if
it carries fibrations to fibrations and preserves both zero objects and pullbacks of
fibrations.

In other words, coWaldhausen ∞-categories are precisely the opposites of Wald-
hausen ∞-categories. In fact, Waldhausen and coWaldhausen ∞-categories and
exact functors organize themselves into ∞-categories Wald∞ and coWald∞, and
the formation of the opposite∞-category restricts to an equivalence of∞-categories

Wald∞
∼ coWald∞

[3, Nt. 2.13, Nt. 2.17, and Pr. 2.18].

1.5. Definition. In a coWaldhausen ∞-category, a fiber sequence is a pullback
square

X ′ X

0 X ′′

in which X X ′′ is egressive and 0 is a zero object. We call X ′ X the fiber
of the fibration X X ′′.

2. Additive ∞-categories

In effect, an exact ∞-category will be a Waldhausen ∞-category C that is also
a coWaldhausen ∞-category, with two additional properties: first, fiber sequences
and cofiber sequences in C must coincide; and second, C must be additive.

This notion of additivity is similar to the notion of additivity for ordinary cate-
gories. Recall from [3, Df. 4.5] the following.

2.1. Recollection. Suppose C is an ∞-category. Then C is said to admit finite
direct sums if the following conditions hold.

(2.1.1) The ∞-category C admits a zero object.
(2.1.2) The ∞-category C has all finite products and coproducts.
(2.1.3) For any finite set I and any I-tuple (Xi)i∈I of objects of C, the map

∐
XI

∏
XI

in hC — given by the maps φij : Xi Xj , where φij is zero unless i = j,
in which case it is the identity — is an isomorphism.

If C admits finite direct sums, then for any finite set I and any I-tuple (Xi)i∈I of
objects of C, we denote by

⊕
XI the product (or, equivalently, the coproduct) of

the Xi.

Suppose C an ∞-category that admits direct sums. Then the homotopy category
hC is easily seen to admit direct sums as well. Moreover, the mapping spaces in
C admit the natural structure of a homotopy-commutative H-space: for any mor-
phisms f, g ∈ MapC(X,Y ), one may define f + g ∈ MapC(X,Y ) as the composite

X
∆

X ⊕X
f ⊕ g

Y ⊕ Y
∇

Y.
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2.2. Definition. An ∞-category C that admits finite direct sums will be said to
be additive if its homotopy category hC is additive; i.e., if for any two objects X
and Y , the monoid π0 MapC(X,Y ) is a group.

2.3. Remark. An ∞-category C with direct sums is additive just in case, for any
objects X and Y , the shear map

MapC(X,Y )×MapC(X,Y ) MapC(X,Y )×MapC(X,Y )

in the homotopy category of Kan simplicial sets that is given informally by the
assignment (f, g) (f, f + g) is an isomorphism. Note in particular that additivity
is a condition, not additional structure.

2.4. Example. Clearly the nerve of any ordinary additive category is an additive
∞-category. Similarly, any stable ∞-category is additive.

3. Exact ∞-categories

Now we are ready to define exact ∞-categories.

3.1. Definition. Suppose C an ∞-category, and suppose C† and C † two subcate-
gories of C . Call a morphism of C† ingressive or a cofibration, and call a morphism
of C † egressive or a fibration.

(3.1.1) A pullback square

X Y

X ′ Y ′,

is said to be ambigressive if X ′ Y ′ is ingressive and Y Y ′ is egressive.
Dually, a pushout square

X Y

X ′ Y ′,

is said to be ambigressive if X Y is ingressive and X X ′ is egressive.
(3.1.2) The triple (C ,C†,C

†) is said to be an exact ∞-category if it satisfies the
following conditions.
(3.1.2.1) The underlying ∞-category C is additive.
(3.1.2.2) The pair (C ,C†) is a Waldhausen ∞-category.
(3.1.2.3) The pair (C ,C †) is a coWaldhausen ∞-category.
(3.1.2.4) A square in C is an ambigressive pullback if and only if it is an

ambigressive pushout.
(3.1.3) In an exact ∞-category, an exact sequence is a cofiber/fiber sequence

X ′ X

0 X ′′;

we will abuse notation by writing

X ′ X X ′′
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for this square.

3.2. Remark. Note that in an exact ∞-category, a morphism of an exact ∞-
category is egressive just in case it appears as the cofiber of an ingressive morphism,
and, dually, a morphism of an exact ∞-category is ingressive just in case it appears
as the fiber of an egressive morphism. Indeed, any cofiber of an ingressive morphism
is egressive, and any egressive morphism is equivalent to the cofiber of its fiber. This
proves the first statement; the second is dual. Consequently, the class of cofibrations
in an exact ∞-category specifies the class of fibrations, and vice versa.

3.3. Example. (3.3.1) The nerve NC of an ordinary category C can be endowed
with a triple structure yielding an exact ∞-category if and only if C is
an ordinary exact category, in the sense of Quillen, wherein the admissible
monomorphisms are exactly the cofibrations, and the admissible epimor-
phisms are exactly the fibrations. To prove this, one may observe that the
“minimal” axioms of Keller [10, App. A] simply are the axioms listed above.

(3.3.2) At the other extreme, any stable ∞-category is an exact ∞-category in
which all morphisms are both egressive and ingressive, and, conversely, any
∞-category that can be regarded as an exact category with the maximal
triple structure (in which any morphism is both ingressive and egressive) is
a stable ∞-category.

3.4. Example. We may interpolate between these two extremes. Suppose A a
stable ∞-category equipped with a t-structure, and suppose a, b ∈ Z.

(3.4.1) The ∞-category A[a,+∞) := A≥a admits an exact ∞-category structure, in
which every morphism is ingressive, but a morphism Y Z is egressive
just in case the induced morphism πaX πaY is an epimorphism of A ♥.

(3.4.2) Dually, the ∞-category A(−∞,b] := A≤b admits an exact ∞-category struc-
ture, in which every morphism is egressive, but a morphism X Y is
ingressive just in case the induced morphism πbX πbY is a monomor-
phism of A ♥.

(3.4.3) We may intersect these subcategories to obtain the full subcategory

A[a,b] := A≥a ∩ A≤b ⊂ A ,

and we may intersect the subcategories of ingressive and egressive mor-
phisms described to obtain the following exact ∞-category structure on
A[a,b]. A morphism X Y is ingressive just in case the induced morphism

πbX πbY is a monomorphism of the abelian category A ♥. A morphism
Y Z is egressive just in case the induced morphism πaX πaY is an
epimorphism of A ♥.

3.5. Example. Yet more generally, suppose A a stable ∞-category, and suppose
C ⊂ A any full additive subcategory that is closed under extensions. Declare a
morphism X Y of C to be ingressive just in case its cofiber in A lies in C .
Dually, declare a morphism Y Z of C to be egressive just in case its fiber in A

lies in C . Then C is exact with this triple structure.

3.6. Remark. Thomason and Trobaugh called a triple (C,C†, C
†) of ordinary cat-

egories with direct sums whose nerves satisfy conditions (3.1.2.2-4) a category with
bifibrations [25, Df. 1.2.2]. Include additivity, and this is precisely the notion of
an ordinary exact category. (As an aside, we remark that the theory of exact ∞-
categories we delve into here really uses the additivity condition; without it, one
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would be unable to ensure that exact ∞-categories form a full subcategory of Wald-
hausen ∞-categories.)

When a class of weak equivalences is included, Thomason and Trobaugh used
the term biWaldhausen category [25, Df. 1.2.4]. This notion still does not require
additivity. However, suppose A a complicial biWaldhausen category [25, Df. 1.2.11]
that is closed under the canonical homotopy pullbacks and canonical homotopy
pushouts of [25, Df. 1.1.2] in the sense of [25, Df. 1.3.5] such that the mapping
cylinder and cocylinder functors of [25, Df. 1.3.4] satisfy [25, Df. 1.3.1.5] and its
dual. Then the relative nerve [3, Df. 1.5] of (A, wA) is clearly a stable ∞-category.
Consequently, every example of a category with cofibrations and weak equivalences
that Thomason and Trobaugh study [25, §§2–11] is actually nothing more than a
model for some stable ∞-category.

4. Exact functors between exact ∞-categories

4.1. Definition. Suppose C and D two exact ∞-categories. A functor F : C D

will be said to be exact if it preserves both cofibrations and fibrations and if F is ex-
act both as a functor of Waldhausen∞-categories and as a functor of coWaldhausen
∞-categories.

We denote by FunExact∞(C ,D) the full subcategory of Fun(C ,D) spanned by
the exact functors C D .

This definition, when set against with the definition of exact functor of Waldhausen
categories (Rec. 1.2), appears to overburden the phrase “exact functor” and to
create the possibility for some ambiguity; however, in Pr. 4.8 we will see that in
fact no ambiguity obtains.

For now, let us construct the ∞-category of exact ∞-categories.

4.2. Notation. Denote by Exact∆∞ the following simplicial category. The objects

of Exact∆∞ are small exact ∞-categories; for any two exact ∞-categories C and

D , let Exact∆∞(C ,D) be the maximal Kan complex ιFunExact∞
(C ,D) contained

in FunExact∞(C ,D). We write Exact∞ for the simplicial nerve [11, Df. 1.1.5.5] of

Exact∆∞.

4.3. Remark. We could have equally well defined Exact∞ as the full subcategory
of the pullback

Wald∞ ×Cat∞
coWald∞

spanned by the exact ∞-categories.

We have already remarked that the formation of the opposite of a Waldhausen
∞-category defines an equivalence

Wald∞
∼ coWald∞.

Since exact ∞-categories are defined by fitting together the structure of a Wald-
hausen ∞-category and a coWaldhausen ∞-category in a self-dual manner, we
obtain the following.

4.4. Lemma. The formation of the opposite restricts to an autoequivalence

op: Exact∞ ∼ Exact∞.
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This permits us to dualize virtually any assertion about exact ∞-categories.
We now set about showing that the inclusion Exact∞ Wald∞ is fully faith-

ful. For this, we use in a nontrivial way the additivity condition for exact ∞-
categories. In particular, this additivity actually guarantees a greater compatibility
between pullbacks and pushouts and between fibrations and cofibrations than one
might at first expect.

4.5. Lemma. In an exact ∞-category, a pushout square

X Y

X ′ Y ′,

in which the morphism X Y is ingressive is also a pullback square. Dually, a
pullback square

X Y

X ′ Y ′,

in which the morphism Y Y ′ is egressive is also a pushout square.

Proof. We prove the first statement; the second is dual. SinceX ′ Y ′ is ingressive,
we may form the cofiber

X ′ Y ′

0 Z ′,

which is an ambigressive square. Hence the square

X Y

0 Z ′,

is also ambigressive, whence we conclude that

X Y

X ′ Y ′,

is a pullback square. �

The next pair of lemmas give a convenient way to replace pushout squares with
exact sequences.

4.6. Lemma. For any exact sequence

X ′ i
X

p
X ′′
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of an exact ∞-category C, the object W formed as the pushout

X ′ X

X W

is a direct sum X ⊕X ′′. Dually, the object V formed as the pullback

V X

X X ′′

is a direct sum X ′ ⊕X.

Proof. We prove the first assertion; the second is dual. Choose a fibrant simplicial
category D whose nerve is equivalent to C. Now for any object T , the shear map

MapD(X,T )×MapD(X,T )
∼ MapD(X,T )×MapD(X,T )

induces an equivalence
(4.6.1)

(MapD(X,T )×MapD(X,T ))×
h
id×i⋆,(MapD(X,T )×MapD(X′,T )),id×0

(
MapD(X,T )×∆0

)

(MapD(X,T )×MapD(X,T ))×
h
i⋆×i⋆,(MapD(X′,T )×MapD(X′,T )),∆ MapD(X

′, T ),

∼

where:

— i⋆ denotes the map MapD(X,T ) MapD(Z, T ) induced by i : X ′ X ,
— 0 denotes a vertex ∆0 MapD(X

′, T ) corresponding to a zero map, and
— ∆ denotes the diagonal map.

The source of (4.6.1) is the product of MapD(X,T ) with the space of squares of
the form

X ′ X

0 T,

i

in C, and the target is equivalent to the space of squares of the form

X ′ X

X T

i

i

in C. Consequently, the map (4.6.1) specifies an equivalence

MapD(X,T )×MapD(X
′′, T ) ∼ Map(W,T ).

This equivalence is clearly functorial in T , so it specifies an equivalenceW ∼ X ⊕X ′′.
�
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4.7. Lemma. In an exact ∞-category, suppose that

X Y

X ′ Y ′,

i

p q

i′

is either a pushout square in which X Y is ingressive or a pullback square in
which Y Y ′ is egressive. Then the morphism

(
−p

i

)
: X X ′ ⊕ Y

is ingressive, the morphism

(i′ q) : X ′ ⊕ Y Y ′

is egressive, and these maps fit into an exact sequence

X X ′ ⊕ Y Y ′.

Proof. We prove the assertion for pushout squares; the other assertion is dual. We
form a diagram

X X ′ 0

V V ′ Y ′

Y Y ′ Z

in which every square is a pullback square. By the previous lemma, V ′ is a direct
sum X ′ ⊕ Y ′, and V is a direct sum X ⊕ Y ′. The desired exact sequence is the top
rectangle. �

4.8. Proposition. The following are equivalent for a functor ψ : C D between
two ∞-categories with exact ∞-category structures.

(4.8.1) The functor ψ carries cofibrations to cofibrations, it carries fibrations to
fibrations, and as a functor of exact ∞-categories, ψ is exact.

(4.8.2) The functor ψ carries cofibrations to cofibrations, and as a functor of Wald-
hausen ∞-categories, ψ is exact.

(4.8.3) The functor ψ carries fibrations to fibrations, and as a functor of coWald-
hausen ∞-categories, ψ is exact.

Proof. It is clear that the first condition implies the other two. We shall show that
the second implies the first; the proof that the third condition implies the first is
dual. So suppose ψ preserves cofibrations and is exact as a functor of Waldhausen
∞-categories. Because a morphism is egressive just in case it can be exhibited as a
cofiber, ψ preserves fibrations as well. A pullback square

X Y

X ′ Y ′

i

p q

i′
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in which p : X X ′ and q : Y Y ′ are egressive can be factored as

X X ′ ⊕ Y Y

X ′ X ′ ⊕ Y ′ Y ′

(

−p
i

)

p id⊕q

pr2

q

(− id

i′

) pr2

in which all three rectangles are pullbacks. By the previous lemma, the left hand
square is an ambigressive pullback/pushout, so when we apply ψ, we obtain a
diagram

ψX ψX ′ ⊕ ψY ψY

ψX ′ ψX ′ ⊕ ψY ′ ψY ′

(−ψp
ψi

)

ψp id⊕ψq

pr2

ψq

(− id

ψi′

) pr2

in which the right hand square is easily seen to be a pullback, and the left hand
square, being an ambigressive pushout, is also an ambigressive pullback. �

4.8.1. Corollary. The forgetful functors

Exact∞ Wald∞ and Exact∞ coWald∞

are fully faithful.

In particular, we may say that a Waldhausen ∞-category C “is” an exact ∞-
category if it lies in the essential image of the forgetful functor Exact∞ Wald∞,
and we will treat this forgetful functor as if it were an inclusion. Since this functor
is fully faithful, this is not a significant abuse of terminology. We make sense of
the assertion that a coWaldhausen ∞-category “is” an exact ∞-category in a dual
manner.

4.9. The essential image of the forgetful functor Exact∞ Wald∞ is spanned
by those Waldhausen ∞-categories that satisfy the following three criteria.

(4.9.1) The underlying ∞-category is additive.
(4.9.2) The class of morphisms that can be exhibited as the cofiber of some cofi-

bration is closed under pullback.
(4.9.3) Every cofibration is the fiber of its cofiber.

The essential image of the forgetful functor Exact∞ coWald∞ is described in
a dual manner.

5. Theories and duality

Algebraic K-theory is a particular example of what we called an additive theory
in [3]. In effect, additive theories are the natural homology theories for Waldhausen
∞-categories. To tell this story, it is necessary to recall some pleasant facts about
the ∞-categories Wald∞ and coWald∞.

5.1. Recollection. In particular, the ∞-category Wald∞ (and hence also the ∞-
category coWald∞) enjoys a number of excellent formal properties. We showed in
[3, Pr. 4.6] that it admits direct sums, and we also showed in [3, Pr. 4.7] that
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it is compactly generated [11, Df. 5.5.7.1] in the sense that every Waldhausen
∞-category is in fact the filtered union of its finitely presented Waldhausen sub-
categories (that is, of Waldhausen subcategories that are compact as objects of
Wald∞).

Furthermore, suppose X : Λ Wald∞ a diagram ofWaldhausen∞-categories.
The limit limX is computed by forming the limit in Cat∞ [11, Cor. 3.3.3.2] and
then declaring a morphism to be ingressive if its image in each Xα is so [3, Pr.
4.3]. Similarly, if Λ is filtered, then the colimit colimX is computed by forming the
colimit in Cat∞ [11, Cor. 3.3.4.3] and then declaring (colimX )† to be the union
of the images of the ∞-categories Xα,† [3, Pr. 4.4].

Since the ∞-categories Wald∞ and coWald∞ are equivalent, it is clear that
all these properties are enjoyed by the latter as well as the former. We’ll denote
by Wald

ω
∞ (respectively, by coWald

ω
∞) the full subcategory of Wald∞ (resp.,

coWald∞) spanned by the finitely presented Waldhausen ∞-categories (resp., the
finitely presented coWaldhausen ∞-categories).

These formal properties can be regarded as analogues of a few of the formal
properties enjoyed by the ordinary category V(k) of vector spaces: vector spaces
are of course additive, and any vector space is the union of its finite-dimensional
subspaces. Furthermore, the underlying set of a limit or filtered colimit of vector
spaces is the limit or filtered colimit of the underlying sets.

We will only be interested in functors on Wald∞ or coWald∞ that are (1)
trivial on the zero Waldhausen ∞-category, and (2) are completely determined by
their values on finitely presented Waldhausen ∞-categories.

5.2. Recollection ([3, Df. 7.1]). A theory φ : Wald∞ Kan is a functor that
preserves terminal objects and filtered colimits.

Similarly, a theory φ : coWald∞ Kan is a functor that preserves terminal
objects and filtered colimits.

5.3. Notation. Denote by Thy (respectively, Thy∨) the full subcategory of the
∞-category Fun(coWald∞,Kan) spanned by the theories.

5.4. Example. The most important example of a theory (in either sense) is the
moduli space of objects functor C ιC . Here ιC denotes the largest Kan complex
contained in C [11, Pr. 1.2.5.3].

Of course there is a canonical equivalence between theories on Waldhausen ∞-
categories and theories on coWaldhausen ∞-categories.

5.5. Definition. For any theory φ : Wald∞ Kan, the dual theory φ∨ is the
composite φ ◦ op: coWald∞ Kan. This construction clearly yields an equiva-
lence of ∞-categories Thy ∼ Thy∨.

Now we are prepared to define the key notion of an exact duality on a theory φ.

5.6. Definition. An exact duality on a theory φ is an equivalence

η : φ|Exact∞
∼ φ∨|Exact∞

of the ∞-category Fun(Exact∞, E ).

5.7. Example. Suppose ρ : Cat∗∞ Kan a functor from the ∞-category Cat∗∞
of pointed ∞-categories to Kan that preserves the terminal object and filtered
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colimits. Then an equivalence ρ ∼ ρ ◦ op induces an exact duality on the composite

Wald∞ Cat∗∞ Kan.

For instance, the functor ι : Cat∗∞ Kan admits an equivalence ι ∼ ι ◦ op;
consequently, the theory ι : Wald∞ Kan admits an exact duality.

A general theory doesn’t reflect much about the (co)Waldhausen structure. Ad-
ditive theories are much more sensitive. To talk about them, we have to recall our
construction of F and S .

5.8. Recollection. In [3, §5] we defined, for any Waldhausen ∞-category C , an
∞-category F (C ) and a full subcategory S (C ) ⊂ F (C ). An object of F (C ) is a
pair (m,X) consisting of a natural number m and a sequence

X0 · · · Xm

of cofibrations of C ; a morphism (m,X) (n, Y ) of F (C ) consists of a morphism
η : n m of ∆ and a commutative diagram

Xη(0) · · · Xη(n)

Y0 · · · Yn

of C . The full subcategory S (C ) ⊂ F (C ) is the one spanned by those pairs (m,X)
such that X0 is a zero object of C .

The assignment (m,X) m defines functors

pC : F (C ) N∆op and qC : S (C ) N∆op.

Let us write Fm(C ) := p−1
C

(m) and Sm(C ) := q−1
C

(m).
The first basic fact to understand about these functors is that they are cocartesian

fibrations [11, Df. 2.4.2.1]; that is, there are functors

F∗(C ) : N∆op Cat∞ and S∗(C ) : N∆op Cat∞

(the functors that classify pC and qC , [11, Df. 3.3.2.2]) and equivalences Fm(C ) ≃
Fm(C ) and Sm(C ) ≃ Sm(C ) such that for any morphism η : n m of ∆, the
space of morphisms (m,X) (n, Y ) of F (C ) (respectively, of S (C )) that cover
η is equivalent to the space of morphisms η!X Y , where η! is shorthand notation
for the image of η under F∗(C ) (resp., S∗(C )). In particular, for any object X of
p−1

C
(m) (resp., q−1

C
(m)), there exists a special edge — called a cocartesian edge —

from X to η!X .
The functor F∗(C ) is easy to describe: it carries m to the full subcategory of

Fun(∆m,C ) spanned by those functors X : ∆m C such that each morphism
Xi Xi+1 is ingressive; the functoriality in m is obvious here. The functor S∗(C )
is a tad trickier to describe: morally, it carries m to the full subcategory of Fm(C )
spanned by those objects X such that X0 is a zero object, and a map η : n m

of ∆ induces a functor Sm(C ) Sn(C ) that carries an object X to the object

0 Xη(1)/Xη(0) · · · Xη(n)/Xη(0).

One can opt to make compatible choices of these quotients to rectify this into an
actual functor of ∞-categories, or, alternately, one can forget about S∗(C ) and
stick with the cocartesian fibration S (C ) N∆op. In [27], Waldhausen opted
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for the former; in [3], we opted for the latter. Which approach one chooses to take
is largely a matter of taste or convenience; conceptually, there is no difference.

In [3, Cor. 5.20.1], we show that the left adjoints Fm(C ) Sm(C ) to the in-
clusions Sm(C ) FmC fit together overN∆op to make a natural transformation
F∗(C ) S∗(C ).

The next significant thing to understand about F (C ) N∆op and S (C ) N∆op

is that they are what we have called Waldhausen cocartesian fibrations [3, Df. 3.20].
That is, there are subcategories

F (C )† ⊂ F (C ) and S (C )† ⊂ S (C )

such that for any m ≥ 0, the pairs

(Fm(C ),Fm(C ) ∩ F (C )†) and (Sm(C ),Sm(C ) ∩ S (C )†)

are Waldhausen ∞-categories, and for any morphism η : n m of ∆, the functors

η! : Fm(C ) ≃ Fm(C ) Fn(C ) ≃ Fn(C ) and η! : Sm(C ) ≃ Sm(C ) Sn(C ) ≃ Sn(C )

are exact functors of Waldhausen∞-categories. In effect, a morphism (m,X) (n, Y )
of either F (C ) or S (C ) will be declared ingressive just in case the morphism
n m is an isomorphism and the diagram

X0 · · · Xm

Y0 · · · Ym

has the property that for any integer 0 ≤ i ≤ j ≤ m, the natural morphism
Yi ∪

Xi Xj Yj (whose source is the pushout in the ∞-categorical sense, of course)
is ingressive. We show that F (C ) N∆op and S (C ) N∆op are Waldhausen
cocartesian fibrations in [3, Pr. 5.11 and Th. 5.20]. Consequently, the functors that
classify these fibrations can be lifted to simplicial Waldhausen ∞-categories

F∗(C ) : N∆op Wald∞ and S∗(C ) : N∆op Wald∞

Dually, for any coWaldhausen ∞-category D , we obtain coWaldhausen cartesian
fibrations

F
∨(D) := F (Dop)op N∆ and S

∨(D) := S (Dop)op N∆.

The functors that classify these fibrations are simplicial coWaldhausen∞-categories

F∨
∗ (D) : N∆op coWald∞ and S∨

∗ (D) : N∆op coWald∞.

5.9. Definition ([3, Df. 7.5]). A theory φ : Wald∞ Kan will be said to be
additive if for any Waldhausen ∞-category C , the simplicial space

φ ◦ S∗(C ) : N∆op Kan

is a group object in the sense of [11, Df. 7.2.2.1]. That is, for any m ≥ 0, the map

φ ◦ Sm(C )

m∏

i=1

φ ◦ S{i−1,i}(C )

is an equivalence, and the monoid π0(φ ◦ S1(C )) is a group. Write Add for the full
subcategory of Thy spanned by the additive theories.
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Dually, a theory φ : coWald∞ Kan will be said to be additive just in case
it is the dual theory of an additive theory Wald∞ Kan. That is, φ is additive
just in case, for any coWaldhausen ∞-category C , the simplicial space

φ ◦ S∨
∗ (C ) : N∆op Kan

is a group object. Write Add∨ for the full subcategory of Thy∨ spanned by the
additive theories.

5.10. Recollection. The main theorems of [3] are (1) that there exist what we call
the fissile derived ∞-category Dadd(Wald∞) and a functor

Wald∞ Dadd(Wald∞)

an equivalence

Exc(Dadd(Wald∞),Kan) ≃ Add,

where Exc denotes the ∞-category of reduced excisive functors that preserve sifted
colimits [3, Th. 7.4 and 7.6], and (2) that the suspension in Dadd(Wald∞) of a
Waldhausen ∞-category C is given by a formal colimit colimS∗(C ) [3, Cor. 6.9.1].
As a consequence, we deduced one may use the Goodwillie differential to find the
best additive approximation to a theory φ:

D(φ)(C ) ≃ colim
m→∞

Ωm|φ ◦ S∗ · · ·S∗(C )|(N∆op)m ,

where | · |(N∆op)m denotes the colimit of an m-simplicial space [3, Th. 7.8]. The
functor D then defines a left adjoint to the inclusion Thy Add.

Dually, the inclusion Add∨ Thy∨ admits a left adjoint D∨, given by the
formula

D∨(φ)(C ) ≃ colim
m→∞

Ωm|φ ◦ S∨
∗ · · ·S∨

∗ (C )|(N∆op)m .

The purpose of the remainder of this section is to describe a circumstance in
which an exact duality on a theory φ descends to an exact duality on Dφ, and
to show that these conditions obtain when φ = ι, giving a functorial equivalence
K(C ) ≃ K(C op) for exact ∞-categories C .

So suppose φ a theory with an exact duality. Note that (D(φ))∨ is by construction
equivalent to D∨(φ∨), so such a result can be thought of as giving an equivalence
D(φ) ≃ D∨(φ∨) on exact ∞-categories.

Consequently, for an exact ∞-category C , we aim to produce a kind of duality
between the Waldhausen cocartesian fibration S (C ) N∆op and the coWald-
hausen cartesian fibration S ∨(C ) N∆.

More precisely, we will construct a functor S̃∗(C ) : N∆op Cat∞ such that

on the one hand, S̃∗ classifies the cocartesian fibration S (C ) N∆op, and on

the other, the composite of S̃∗ with the functor op: N∆op N∆op given by
[n] [n]op is a straightening of the cartesian fibration S ∨(C ) N∆.

In order to do this, we introduce thickened versions S̃ , S̃ ∨ of the constructions
S , S ∨.

5.11. Notation. Let M̃ be the following ordinary category. The objects are triples
(m, i, j) consisting of integers 0 ≤ i ≤ j ≤ m, and a morphism (n, k, ℓ) (m, i, j)
is be a morphism φ : [m] [n] of ∆ such that k ≤ φ(i) and ℓ ≤ φ(j).

We declare an edge (n, k, ℓ) (m, i, j) of NM̃ to be ingressive if the underlying
edge m n of ∆ is an isomorphism and if ℓ = j. Dually, we declare an edge
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(n, k, ℓ) (m, i, j) of NM̃ to be egressive if the underlying edge m n of ∆ is

an isomorphism and if i = k. We writeNM̃† for the subcategory ofNM̃ consisting of

the ingressive morphisms, and we write NM̃† for the subcategory of NM̃ consisting
of the egressive morphisms.

The fiber of the functor NM̃ N∆op over a vertex n ∈ N∆op is the arrow
∞-category O(∆n) := Fun(∆1,∆n).

Now the functor NM̃ N∆op is a cartesian fibration, and so its opposite

NM̃op N∆ is a cocartesian fibration. Furthermore, one verifies easily that for
any morphism η : n m, the induced functor

η! : O(∆n) O(∆m)

is the obvious one, and it preserves both ingressive and egressive morphisms.

5.12. Construction. If C is a Waldhausen ∞-category, write F̃ (C ) for the sim-
plicial set over N∆op satisfying the following universal property, which follows the
general pattern set in [11, Cor. 3.2.2.13]. We require, for any simplicial set K and
any map σ : K N∆op, a bijection

Mor/(N∆op)(K, F̃ (C )) ∼= MorsSet(2)((K ×N∆op NM̃,K ×N∆op (NM̃)†), (C ,C†)),

functorial in σ. Here, the category sSet(2) is the ordinary category of pairs (X,A)
of simplicial sets X equipped with a simplicial subset A ⊂ X . (Note that since
the functor of K on the right hand side carries colimits to limits, the simplicial set

F̃ (C ) does indeed exist.) By [3, Pr. 3.18], the map F̃ (C ) N∆op is a cocartesian
fibration.

Dually, if C is a coWaldhausen ∞-category, write F̃∨(C ) for the simplicial set
over N∆ satisfying the following universal property. We require, for any simplicial
set K and any map σ : K N∆, a bijection

Mor/N∆(K, F̃
∨(C )) ∼= MorsSet(2)((K ×N∆ NM̃op,K ×N∆ (NM̃†)op), (C ,C †)),

functorial in σ. By the dual of [3, Pr. 3.18], the map F̃∨(C ) N∆ is a cartesian
fibration, and it is clear that

F̃
∨(C ) ∼= F̃ (C op)op.

The objects of the∞-category F̃ (C ) may be described as pairs (m,X) consisting
of a nonnegative integer m and a functor X : O(∆m) C that carries ingressive

morphisms to ingressive morphisms. Dually, the objects of the ∞-category F̃∨(C )
may be described as pairs (m,X) consisting of a nonnegative integer m and a func-
tor X : O(∆m)op C that carries egressive morphisms to egressive morphisms.

Now if C is a Waldhausen ∞-category, we let S̃ (C ) ⊂ F̃ (C ) denote the full
subcategory spanned by those pairs (m,X) such that for any integer 0 ≤ i ≤ m,
the object X(i, i) is a zero object of C , and for any integers 0 ≤ i ≤ k ≤ j ≤ ℓ ≤ m,
the square

X(i, j) X(i, ℓ)

X(k, j) X(k, ℓ)

is a pushout. Dually, if C is a coWaldhausen ∞-category, let S̃ ∨(C ) ⊂ F̃∨(C )
denote the full subcategory spanned by those pairs (m,X) such that for any integer
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0 ≤ i ≤ m, the object X(i, i) is a zero object of C , and for any integers 0 ≤ i ≤
k ≤ j ≤ ℓ ≤ m, the square

X(k, ℓ) X(k, j)

X(i, ℓ) X(i, j)

is a pullback. Since ambigressive pullbacks and ambigressive pushouts coincide, we
deduce that

S̃
∨(C ) ∼= S̃ (C op)op.

5.13. Notation. As in [3], the constructions above yield functors

S̃ : Wald∞ Cat∞,/N∆op and S̃
∨ : coWald∞ Cat∞,/N∆.

The functor M M̃ given by the assignment (m, i) (m, 0, i) induces a natural

transformation S̃ S over N∆op and a natural transformation S̃ ∨ S ∨

over N∆.
Furthermore, we can pass to the functors that classify these fibrations to obtain

functors

S̃∗ : Wald∞ Fun(N∆op,Cat∞) and S̃∨
∗ : coWald∞ Fun(N∆op,Cat∞).

For any Waldhausen ∞-category (respectively, any coWaldhausen ∞-category) C ,

the simplicial category S̃∗(C ) : N∆op Cat∞ (resp., S̃∨
∗ (C ) : N∆op Cat∞)

carries an object m to the full subcategory

S̃m(C ) ⊂ Fun(O(∆m),C ) (resp., S̃∨
m(C ) ⊂ Fun(O(∆m)op,C ) ).

spanned by those diagrams X such that for any integer 0 ≤ i ≤ m, the object
X(i, i) is a zero object of C , and for any integers 0 ≤ i ≤ k ≤ j ≤ ℓ ≤ m, the
square

X(i, j) X(i, ℓ)

X(k, j) X(k, ℓ)

is an ambigressive pushout (resp., for any integers 0 ≤ i ≤ k ≤ j ≤ ℓ ≤ m, the
square

X(k, ℓ) X(k, j)

X(i, ℓ) X(i, j)

is an ambigressive pullback).

In light of the uniqueness of limits and colimits in ∞-categories [11, Pr. 1.2.12.9],
one readily has the following.

5.14. Proposition. Suppose C a Waldhausen ∞-category. Then the functor

S̃ (C ) N∆op



ON EXACT ∞-CATEGORIES AND THE THEOREM OF THE HEART 19

is a cocartesian fibration, and the map S̃ (C ) S (C ) defined above is a fiber-
wise equivalence over N∆op. Dually, if C is a coWaldhausen ∞-category, then the
functor

S̃
∨(C ) N∆

is a cartesian fibration, and the map S̃ ∨(C ) S ∨(C ) defined above is a fiberwise
equivalence over N∆.

5.15. In particular, we can use the equivalence of the previous proposition to endow,
for any Waldhausen ∞-category (respectively, any coWaldhausen ∞-category) C ,

the ∞-category S̃ (C ) (resp., S̃ ∨(C )) with the structure of a Waldhausen ∞-

category. That is, let us declare a morphism X Y of S̃ (C ) (resp., of S̃ ∨(C ))
ingressive (resp., egressive) just in case its image in S (C ) (resp., in in S ∨(C )) is
so. Observe that under this definition, X Y is ingressive (resp., egressive) just
in case each of the morphisms X(i, j) Y (i, j) of C is so.

Consequently, the constructions S̃ and S̃∨ yield functors

S̃ : Wald∞ Fun(N∆op,Wald∞) and S̃∨ : coWald∞ Fun(N∆op, coWald).

Now suppose C an exact ∞-category. Since ambigressive pushouts and ambi-
gressive pullbacks coincide in C , it follows that there is a canonical equivalence

(S̃∗ ◦ op)|Exact∞
≃ (S̃∨

∗ )|Exact∞
,

where op: N∆op ∼ N∆op is the opposite automorphism of N∆op. We therefore
deduce the following.

5.16. Theorem. Suppose E an ∞-topos. For any pointed functor ρ : Cat∗∞ E∗

that preserves filtered colimits, an equivalence ρ ∼ ρ ◦ op induces a canonical exact
duality on the Goodwillie additivization Dρ.

Proof. The equivalence ρ ∼ ρ ◦ op, combined with the equivalence S̃∗ ◦ op ≃ S̃∨
∗ ,

yields an equivalence

|ρ ◦ S̃∗| ≃ |ρ ◦ S̃∗ ◦ op| ∼ |ρ ◦ op ◦ S̃∗ ◦ op| ≃ |ρ∨ ◦ S̃∨
∗ |. �

Applying this result to the functor ι yields the following.

5.16.1. Corollary. Algebraic K-theory admits an exact duality,

6. Theorem of the heart

In this section, we show that the Waldhausen K-theory of a stable ∞-category
with a bounded t-structure agrees with the K-theory of its heart. Amnon Nee-
man has provided an analogous result for his K-theory of triangulated categories
[24]; given Neeman’s result, our result here may be alternatively summarized as
saying that the Waldhausen K-theory of a stable ∞-category A with a bounded
t-structure agrees with Neeman’s K-theory of the triangulated homotopy category
T = hA (denoted K(wT ) in [23]); this verifies a conjecture posed by Neeman [19,
App. A] for such stable homotopy theories.

In this section, suppose E a small stable ∞-category equipped with a bounded
t-structure (E≤−1, E≥0). Our objective is to prove the following

6.1. Theorem (Heart). The inclusions E♥ E≥0 and E≥0 E induce equiv-
alences

K(E♥) ∼ K(E≥0) and K(E≥0) ∼ K(E).
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The fact that the inclusions induce isomorphisms K0(E
♥) ∼= K0(E≥0) ∼= K0(E)

is well known and trivial. Consequently, appealing to the Cofinality Theorem of
[3, Th. 10.11] (which states that idempotent completions induce equivalences on
the connected cover of K-theory), we may therefore assume that E is idempotent
complete. We now set about proving that the higher K-groups of E♥ and E agree.

Our proof is quite straightforward. The first main tool is the following.

6.2. Theorem (Special Fibration Theorem, [3, Pr 10.12]). Suppose C a compactly
generated ∞-category containing a zero object, suppose L : C D an accessible
localization, and suppose the inclusion D C preserves filtered colimits. Assume
also that the class of all L-equivalences of C is generated (as a strongly saturated
class) by the L-equivalences between compact objects. Then L induces a pullback
square of spaces

K(Eω) K(Cω)

∗ K(Dω),

where Cω and Dω are equipped with the maximal pair structure, and Eω ⊂ Cω is
the full subcategory spanned by those objects X such that LX ≃ 0.

As a consequence of [11, Cor. 5.5.7.4 and Pr. 5.5.7.8], we proved in [3, Cor 10.12.2]
that the functor τ≤−1 induces a pullback square

K(E≥0) K(E)

∗ K(Emax

≤−1),

of spaces, where the ∞-categories that appear are equipped with their maximal
Waldhausen structure — i.e., the one in which every morphism is ingressive. (For
E≥0 and E, the Waldhausen structure described in Ex. 3.4 is the maximal Wald-
hausen structure, but this is very much not the case for E≤−1.)

We now claim that the K-theory of the maximal Waldhausen ∞-category Emax

≤−1.

Indeed, we may apply [3, Cor. 8.2.1] to the ∞-category E≤−1; this will ensure that
the functor

Σ∞
E≤−1

: Emax

≤−1 S̃p (E≤−1)
max

induces an equivalence on K-theory. Note that the suspension functor on E≤−1 is
the composite τ≤−1 ◦ΣE . Since the t-structure is bounded, it therefore follows that
Σ∞
E≤−1

is equivalent to the constant functor at 0.

6.3. Warning. Note that this argument applies only to the maximal Waldhausen
∞-category Emax

≤−1. The K-theory of the Waldhausen structure on E≤−1 of Ex. 3.4
— in which a morphism is ingressive just in case it induces a monomorphism on
π−1 — will turn out to agree with the K-theory of E.

Consequently, the inclusion E≥0 E induces an equivalence

K (E≥0) ∼ K(E),

and we are left with showing that the map K(E♥) K(E≥0) is an equivalence.
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For this, we take opposites. The opposite ∞-category Eop is endowed with the
dual t-structure, with (Eop)≤−n = (E≥n)

op
. Consider the functor

τ≤−1 = (τ≥1)
op : (E≥0)

op = (Eop)≤0 (Eop)≤−1 = (E≥1)
op.

Our claim is that it induces a pullback square

(∗)

K((Eop)♥) K((Eop)≤0)

0 K((Eop)max

≤−1),

where the ∞-categories that appear are equipped with the Waldhausen structure
in which a morphism is ingressive just in case it induces a monomorphism (in Eop)
on π0 (and in particular, the Waldhausen structure on (Eop)≤−1 is maximal).

Of course K((Eop)max

≤−1) vanishes just as K(Emax

≤−1) vanishes. Consequently, if we

verify that (∗) is a pullback, we will deduce that the mapK((Eop)♥) K((Eop)≤0)
is an equivalence, and in light of Cor. 5.16.1, which allows us to pass between a
Waldhausen ∞-category and its opposite under K-theory, the proof of Th. 6.1 will
be complete.

To prove that (∗) is a pullback, we cannot simply appeal to the Special Fibration
Theorem, because the Waldhausen ∞-categories that appear have non-maximal
pair structures. Instead, we must appeal to what we have called the Generic Fi-
bration Theorem II; this is the ∞-categorical variant of Waldhausen’s celebrated
Fibration Theorem. Unfortunately, this means that we will have to check some
technical hypotheses, but there is no escape.

6.4. Theorem (Generic Fibration Theorem II, [3, Th. 9.24]). Suppose C a Wald-
hausen ∞-category, and suppose that wC is a subcategory of C that satisfies the
following conditions.

(6.4.1) Every equivalence of C lies in wC.
(6.4.2) The morphisms of wC satisfy (the ∞-categorical analogue of) Waldhausen’s

gluing axiom. That is, for any cofibrations U V and X Y and any
cube

U V

U ′ V ′

X Y

X ′ Y ′

in which the top and bottom faces are pushout squares, if U X, V Y
and U ′ X ′ all lie in wC, then so does V ′ Y ′.

(6.4.3) There are enough cofibrations in the following sense. The three functors

wC ∩C† wC, wFun(∆1, C) ∩ Fun(∆1, C)† w Fun(∆1, C),

and

wF1(C) ∩ F1(C)† wF1(C)
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are all weak homotopy equivalences, where cofibrations of Fun(∆1, C) are
defined objectwise, and wFun(∆1, C) and wF1(C) are also defined object-
wise.

Now denote by Cw ⊂ C the full subcategory spanned by those objects X such that
the cofibration 0 X lies in wC, and declare a morphism therein to be ingressive
just in case it is so in C. Denote by B∗(C,wC) the simplicial ∞-category whose ∞-
category of m-simplices is the full subcategory Bm(C,wC) ⊂ Fun(∆m, C) spanned
by those sequences of edges

X0 X1 · · · Xm

with the property that each Xi Xj lies in wC; declare a morphism of Bm(C,wC)
to be a cofibration just in case it is so objectwise. Then Cw is a Waldhausen ∞-
category, and B∗(C,wC) is a simplicial Waldhausen ∞-category, and the obvious
functors induce a fiber sequence of spaces

K(Cw) K(C)

∗ |K(B∗(C,wC))| .

Here of course | · | denotes the geometric realization.

We apply this theorem to the Waldhausen ∞-category (Eop)≤0 along with the
subcategory w((Eop)≤0) consisting of those morphisms X Y such that the
induced morphism τ≤−1X τ≤−1Y is an equivalence. It is an easy matter to
check the gluing axiom in this setting. To show that we have enough cofibrations,
let us employ the following construction: factor any morphism f : X Y of wC
as

X Xf Y,

where Xf is the fiber of the natural map Y τ≤0(Y/X), where Y/X is the cofiber
of f . This construction defines a deformation retraction Fun(∆1, wC) Fun(∆1, wC ∩ C†)
of the inclusion Fun(∆1, wC ∩ C†) Fun(∆1, wC). It follows from the functorial-
ity of this construction that it also defines a deformation retraction of the inclusions

Fun(∆1, wFun(∆1, C) ∩ Fun(∆1, C)†) Fun(∆1, wFun(∆1, C)),

and

Fun(∆1, wF1(C) ∩ F1(C)†) Fun(∆1, wF1(C)).

Consequently, these maps are all homotopy equivalences.
So Th. 6.4 now ensures that we have a pullback square

K((Eop)♥) K((Eop)≤0)

0 |K(B∗((E
op)≤0, w(E

op)≤0))| ,

and it remains only to identify the cofiber term. Now it follows from [3, Pr. 10.10]
that, in the situation of Th. 6.4, the geometric realization |K(B∗(C,wC))| can
be identified with Ω|wS∗(C)|, where wSm(C) ⊂ Sm(C) is the subcategory whose
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morphisms are weak equivalences. Consequently, to identify K((Eop)max

≤−1) with the
geometric realization

|K(B∗((E
op)≤0, w(E

op)≤0))| ,

it is enough to show that the functor

p : wSm((Eop)≤0) ιSm((Eop)max

≤−1)

induced by τ≤−1 is a weak homotopy equivalence. Let us show that the inclusion

i : ιSm((Eop)max

≤−1) ιSm((Eop)≤0) ⊂ wSm((Eop)≤0)

defines a homotopy inverse. Since τ≤−1 is a localization functor, we obtain for
every m ≥ 0 a natural equivalence p ◦ i ≃ id. In the other direction, the natural
transformation id τ≤−1 induces a natural transformation id i ◦ p. Hence i
and p are homotopy inverse. �

Amnon Neeman’s Theorem of the Heart now implies the following, which verifies
some cases of his conjecture [19, Conj. A.5].

6.4.1. Corollary. For any idempotent-complete stable ∞-category A , if the trian-
gulated homotopy category T = hA admits a bounded t-structure, then we have
canonical equivalences

K(A ) ≃ K(T ♥) ≃ K(wT ).

7. Application: Abelian models for the algebraic G-theory of

schemes

A trivial application of the Theorem of the Heart applies to is that the K-
theory of an abelian category A agrees with the K-theory of its bounded derived
∞-category Db(A) [25, 1.11.7]. However, tilting theory provides other bounded t-
structures on the ∞-category Db(A). The K-theory of the heart of any of these
t-structures will agree with the K-theory of A. Let us explore one class of examples
now.

7.1. Example. Suppose X a noetherian scheme equipped with a dualizing complex
ωX ∈ Db(Coh(X)). Then Arinkin and Bezrukavnikov [1], following Deligne, con-
struct a family of t-structures on Db(Coh(X)) in the following manner. (Here we
use cohomological grading conventions, to maintain compatibility with [1].) Write
Xtop for the for the underlying topological space of X , and define dim: Xtop Z

a map such that i!xωX is concentrated in degree − dim(x). Suppose p : Xtop Z

a function — called a perversity — such that for any points z, x ∈ Xtop such that
z ∈ {x}, one has

p(x) ≤ p(z) ≤ p(x) + dim(x)− dim(z).

Let Dp≥0 ⊂ Db(Coh(X)) be the full subcategory spanned by those complexes
F such that for any point x ∈ Xtop, one has i!xF ∈ D≥p(x)(OX,x); dually, let
Dp≤0 ⊂ Db(Coh(X)) be the full subcategory spanned by those complexes F such
that for any point x ∈ Xtop, one has ix,⋆F ∈ D≤p(x)(OX,x). Then (Dp≥0,Dp≤0)
define a bounded t-structure on Db(Coh(X)) [1, Th. 3.10].

The algberaic K-theory of the heart Dp,♥ of this t-structure now coincides with
the G-theory of X . Let us list two special cases of this.

(7.1.1) Suppose S a set of prime numbers. Let ES be the full subcategory of
Db(Coh(Z)) generated under extensions by the objects

Z, {Z/p | p ∈ S}, {Z/p[1] | p /∈ S}.
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Then ES is an abelian category whoseK-theory coincides with the K-theory
of Z.

(7.1.2) For any noetherian scheme with a dualizing complex ωX ∈ Db(Coh(X)),
the K-theory of the abelian category of Cohen–Macaulay complexes (i.e.,
those complexes F ∈ Db(Coh(X)) such that the complex

DF := RMorOX (F, ωX)

is concentrated in degree 0, [28, §6]) agrees with the G-theory of X .

8. Application: A theorem of Blumberg–Mandell

In this section, we give a new proof of the theorem of Blumberg–Mandell [7] that
establishes a localization sequence

K(π0E) K(e) K(E)

for any suitable even periodic E1 ring spectrum E with π0E regular noetherian,
where e denotes the connective cover of E. In light of [3, Pr. 13.16], the key point
is the identification of the fiber term; this is the subject of this section.

Recall [14, Pr. 8.2.5.16] that a connective E1 ring Λ is said to be left coherent if
π0Λ is left coherent as an ordinary ring, and if for any n ≥ 1, the left π0Λ-module
πnΛ is finitely presented.

A left module M over a left coherent E1 ring Λ is almost perfect just in case
πmM = 0 for m≪ 0 and for any n, the left π0Λ-module πnM is finitely presented
[14, Pr. 8.2.5.17].

8.1.Definition. Suppose Λ a left coherent E1 ring, and supposeM a left Λ-module.
We say that M is truncated if πmM = 0 for m ≫ 0. We say that M is coherent if
it is almost perfect and truncated. Write Coh

ℓ
Λ ⊂ Mod

ℓ
Λ for the full subcategory

spanned by the coherent modules, and write G(Λ) for K(CohℓΛ).

8.2. Warning. In general, it is not the case that a perfect Λ-module is coherent;
consequently, the usual Poincaré duality map K G for discrete rings does not
have an obvious analogue for E1 rings.

It turns out that G-theory is not a new invariant of E1 rings, since we have the
following new proof of the Dévissage Theorem of Blumberg–Mandell [7].

8.3. Proposition. For any coherent E1 ring Λ, the inclusion NMod
ℓ,fp
π0Λ

CohℓΛ
of the nerve of the category of finitely presented π0Λ-modules induces an equivalence

G(π0Λ) ∼ G(Λ).

Proof. We note that CohℓΛ is the full subcategory of the ∞-category of almost
perfect Λ-modules spanned by those that are bounded for the t-structure given by
[14, Pr. 8.2.5.18]. Furthermore, [14, Pr. 8.2.5.11(2)] applies to ensure that CohℓΛ
is idempotent complete. Consequently, the Theorem of the Heart applies, and the

proof is complete once one observes that the heart Coh
ℓ,♥
Λ can be identified with

NMod
ℓ,fp
π0Λ

[14, Rk. 8.2.5.19]. �

Consequently, from the point of view of “brave new algebra,”G-theory is a relatively
coarse invariant.

Now we hope to compare the G-theory of an E1 ring to the K-theory of the ∞-
category of truncated perfect modules. This requires a weak regularity hypothesis,
which we formulate now.
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8.4. Definition. Let us say that a coherent E1 ring Λ is almost regular if any
truncated, almost perfect Λ-module has finite Tor dimension.

8.5. Example. If the graded ring π∗Λ has finite Tor-dimension (e.g., if π∗Λ is a
regular noetherian ring), then the Tor spectral sequence ensures that Λ is almost
regular.

The following result is now an immediate consequence of [14, Pr. 8.2.5.23(4)]

8.6. Proposition. Suppose Λ a coherent E1 ring that is almost regular. Then

the ∞-category Perf
ℓ,b
Λ of perfect truncated left Λ-modules coincides with the ∞-

category CohℓΛ of coherent left Λ-modules.

Assembling all this, we obtain the following formulation of the Localization The-
orem of [7].

8.7. Theorem. Suppose Λ a coherent E1 ring spectrum that is almost regular,
and suppose L : Mod

ℓ(Λ) Mod
ℓ(Λ) smashing Bousfield localization with the

property that a left Λ-module M is L-acyclic just in case it is truncated. (Note that
in this case, L is automatically a finite localization functor.) Then there is a fiber
sequence of spaces

G(π0Λ) K(Λ) K(L(Λ)),

Of course when π0Λ is regular, the fiber term can be identified with K(π0Λ).

8.8. Example. Here are some examples of fiber sequences resulting from this the-
orem.

(8.8.1) Consider the Adams summand L with its canonical E∞ structure; its con-
nective cover ℓ admits a canonical E∞ as well [2]. The fiber sequence above
becomes

K(Z) K(ℓ) K(L).

(8.8.2) Similarly, one can use the E∞ structure on complex K-theory KU and on
its connective cover to obtain

K(Z) K(ku) K(KU).

(8.8.3) For any perfect field k of characteristic p > 0 and any formal group Γ of
height n over k, consider the Lubin–Tate spectrumE(k,Γ) with its canonical
E∞ structure and its connective cover e(k,Γ) with its induced E∞ structure
[2]. In this case, the fiber sequence above becomes

K(W(k)[[u1, . . . , un−1]]) K(e(k,Γ)) K(E(k,Γ)).

(8.8.4) Given any E1 structure on Morava K-theory K(n) and a compatible one
on its connective cover k(n), one has a fiber sequence

K(Fp) K(k(n)) K(K(n)).

9. Application: G-theory of spectral Deligne–Mumford stacks

The purpose of this final very brief section is simply to note that the G-theory of
locally noetherian spectral Deligne–Mumford stacks is insensitive to derived struc-
ture.



26 CLARK BARWICK

9.1. Definition. For any spectral Deligne–Mumford stack X , we write Coh(X )
for the stable ∞-category of coherent sheaves on X [13, Df. 2.6.20], i.e., those
quasicoherent sheaves that are almost perfect and locally truncated. Write G(X )
for the algebraic K-theory of Coh(X ).

Now the Theorem of the Heart, combined with [13, Rk. 2.3.20], instantly yields
the following.

9.2. Proposition. For any locally noetherian spectral Deligne–Mumford stack X

with underlying ordinary Deligne–Mumford stack X0, the embedding

NCoh(X0) Coh(X )

induces an equivalence

G(X0) ∼ G(X ).

Roughly speaking, just as G-theory is invariant under ordinary nilpotent thicken-
ings, it turns out that G-theory is invariant under derived nilpotent thickenings as
well.
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