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NON-TRIVIAL EXTENSIONS IN EQUIVARIANT COHOMOLOGY

WITH CONSTANT COEFFICIENTS

SAMIK BASU, SUROJIT GHOSH

Abstract. In this paper, we prove some computational results about equivariant coho-
mology over the cyclic group Cpn of prime power order. We show that there is an inductive
formula when the dimension of the Cp-fixed points of the grading is large. Among other
calculations, we also show the existence of non-trivial extensions when n ≥ 3.

1. Introduction

The equivariant stable homotopy category has a rich structure coming from the desus-
pension along representation spheres. This equips equivariant cohomology groups with a
grading over the virtual representations RO(G). The resulting structure is usually difficult
to compute even in the case of ordinary cohomology. Their computations give interesting
results and also have surprising consequences.

The coefficients of ordinary cohomology are Mackey functors, and the important ones
are the Burnside ring Mackey functor A, and the constant Mackey functor Z. For the

group Cp, the RO(Cp)-graded commutative rings π
Cp

−⋆
HA ∼= H⋆

Cp
(S0;A) was computed by

Lewis [10], and analogous results for Z, Z/p were computed by Stong and Lewis. There

are computations for a few other groups (see [3], [4], [15] [9]), however, for most ones, even
among Abelian groups, very little is known.

In this paper, we study the Mackey functors π
Cpn

−α HZ ∼= Hα
Cpn

(S0;Z) for α ∈ RO(Cpn),

which form the additive structure for equivariant cohomology over the group Cpn . We prove
the following result.

Theorem A. If |αCp | ≤ −2n + 2 or |αCp | ≥ 2n, the Mackey functor Hα
Cpn

(S0;Z) can be

computed directly from the Mackey functor HαCp

C
pn−1

(S0;Z). (see Table 4.1)

We also point out various computations of these Mackey functors not covered by the
above theorem. The formulas that appear here are mostly written as a direct sum of those
of the form ZT and BT,S , a notation inspired from [8]. A consequence of these results are
the complete calculation of the additive structure for the group Cp2 (see Table 5.1). A new
feature of these groups starting from n ≥ 2 is the existence of aλ-periodic classes. For the
group Cp, the classes were either part of a polynomial algebra or were aλ-torsion.

In these computations, we also point out a non-trivial extension of Mackey functors.
These extensions first occur in the case n = 3, and hence also for higher n. In cohomology
over the Burnside ring A, one has extensions A[d] for the group Cp of the form 0 → 〈Z〉 →
A[d] → Z → 0, that occur in the additive structure. On the other hand, over Z coefficients,
the Mackey functors occuring in the additive structure over Cp are a direct sum of those
of the form ZT and BT,S. For the group Cpn , many special cases have been shown to be of
this type (see for example [8, Theorem 5.7]). However, we point out through examples that
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2 SAMIK BASU, SUROJIT GHOSH

this does not happen in general, and in these cases, the aλi
-multiplication gives non-trivial

extensions.

1.1. Organization. In Section 2, we recall some preliminaries on equivariant cohomology,
and their computational methods. In Section 3, we discuss the category of Z-modules, and
their extensions, constructing important examples used in later sections. In Section 4, we
compute the equivariant cohomology at large Cp-fixed points. In Section 5, we compute the
equivariant cohomology over Cp2 and use them to point out the non-trivial extensions.

Notation 1.2. Throughout this paper, G denotes the cyclic group Cpn of order pn, where
m is odd, and g denotes a fixed generator of G. For an orthogonal G-representation V ,
S(V ) denotes the unit sphere, D(V ) the unit disk, and SV the one-point compactification
∼= D(V )/S(V ).

2. Equivariant cohomology

Ordinary cohomology theories are defined for Abelian groups, and these are represented
by spectra with homotopy concentrated in degree 0. In the equivariant world, the analogous
role is played by Mackey functors. In this section we briefly recall their definition, and relate
them to equivariant cohomology (see [12] for details).

The Burnside category BurnG is the category with objects finiteG-sets and each morphism
set MorBurnG(S, T ) is the group completion of the hom-set of spans between S and T in the
category of finite G-sets. It is a fact that BurnG is self dual, that is, the duality map
D : BurnG → Burn

op
G that is identity on objects and switches the legs of the spans, is an

isomorphism of categories.

Definition 2.1. A functor M : BurnopG → Ab from Burnside category into Abelian groups
is called Mackey functor.

In this paper we restrict our attention to G = Cpn . For the remainder of the paper
G will always refer to this group. Explicitly, a G-Mackey functor1 M is a collection of
commutative WG(H)-groups M(G/H) one for each subgroup H ≤ G, each accompanied
by transfer trHK : M(G/K) → M(G/H) and restriction resHK : M(G/H) → M(G/K) for
K ≤ H ≤ G such that

(1) trHJ = trHJ trKJ and resHJ = resKJ resHK for all J ≤ K ≤ H.
(2) trHK(γ.x) = trHK(x) for all x ∈ M(G/K) and γ ∈ WH(K).

(3) γ. resHK(x) = resHK(x) for all x ∈ M(G/H) and γ ∈ WH(K).
(4) resHK trJK(x) =

∑

γ∈WH (K) γ. tr
K
J∩K(x) for all subgroups J,H ≤ K.

We will often write M(H) for M(G/H).
A morphism between two Mackey functors is given by natural transformations. We

denote the category of Mackey functors of the group G, by MackG. It is a fact that
MackG is an Abelian category. The Burnside ring Mackey functor is representable func-
tor BurnG(−,G/G). This is denoted by A. For an Abelian group C, the constant Mackey
functor C is described as C(G/H) = C with the resHK = Id, and trHK = multiplication by
[H : K]. Following Lewis [10], the data of a Mackey functor for the group Cp may be
organized in a diagram as demonstrated below.

Z⊕ Z

[ 1 p ]
��

Z

Id
��

A : Z :

Z

[01]

VV

Z

p

VV

1This is a simplification in the case G is Abelian. Otherwise the double coset formula (4) has a slightly
more complicated expression.
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The top row gives the value of the Mackey functor at Cp/Cp, and the bottom row gives
the Mackey functor at Cp/e. For the groups Cpn , there are analogous diagrams arranged
vertically with n+ 1 different levels.

Example 2.2. For a G-spectrum X, the equivariant homotopy groups forms a Mackey
functor πn(X), defined by the formula

πn(X)(G/H) := πn(X
H).

For a Mackey functor M one may define an Eilenberg-MacLane spectrum [6] HM such
that πn(HM) is concentrated in degree 0 where it is the Mackey functor M . This constructs
a RO(G)-graded cohomology theory by the formula

Hα
G(X;M ) ∼= Ho-G-spectra (X,ΣαHM).

Recall that RO(G) denotes the group completion of the monoid of irreducible represen-
tations of G. A general element α ∈ RO(G) can be represented as a formal difference
α = V − W for G-representations V,W. For a unitary representation V of G, we de-
note by SV the one-point compactification of V . Analogously for a virtual representation
α = V −W , Sα denotes the G-spectrum Σ−WSV . Using the functor G/H 7→ X ∧ G/H+,
the cohomology groups are part of a Mackey functor denoted by Hα

G(S
0;M ).

One may put a symmetric monoidal structure on the category MackG by using the box
product. For two Mackey functors M and N ∈ MackG, the box product M�N is the left
Kan extension of tensor product of Abelian groups along the functor × : BurnopG ×Burn

op
G →

Burn
op
G given by (S, T ) 7→ S×T. The Burnside ring Mackey functor A plays the role of unit

object in the symmetric monoidal structure of MackG.

Definition 2.3. A (commutative) Green functor for G, is a (commutative) monoid in the
symmetric monoidal category MackG defined as above.

Both A and Z are examples of commutative Green functors. Given a commutative Green
functor R, an R-module is a Mackey functor M equipped with µM : R�M → M satisfying
the usual relations.The category of R-modules will be denoted by R-ModG. This in turn
has the structure of a symmetric monoidal category with the induced box product. For
a commutative Green functor R, the corresponding equivariant cohomology has a graded
commutative ring structure.

Notation 2.4. The representation ring RO(Cpn) is generated by the trivial representation

1, and the 2-dimension representation λ(k) given by the rotation by the angle 2πk
pn for

k = 1, · · · , p
n−1
2 . Denote the representation λ(pm) by λm. Write RO0(Cpn) ⊂ RO(Cpn) of

those α such that the dimension of α is zero.

We now describe some equivariant cohomology classes in H⋆

G (S0;Z)(G/G) ∼= πG
−⋆

(HZ).
The generators used are defined in [7, Section 3] which we now recall.

Definition 2.5. Let V be a G-representation. We have the G-map S0 → SV 2 which induces

S0 → SV ∧ S0 → SV ∧HZ

which we call aV ∈ HV
G(S

0;Z). If V is an oriented G-representation, a choice of orientation
gives a class

uV ∈ H
V−dim(V )
G (S0;Z) ∼= Z.

2This is given by the inclusion of {0,∞} ⊆ SV .
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We also have relations among these generators namely uV uW = uV⊕W and aV aW =
aV⊕W . It follows that these classes are products of uλ(m) and aλ(m) for 0 ≤ m < n. These
classes satisfy relations

(2.6) pn−iaλi
= 0,

and

(2.7) uλi
aλj

= pj−iuλj
aλi

if i < j.

Definition 2.8. Observe that the map a : Sλi → Sλj for i < j < n, described as the map

on one-point compactifications induced by z 7→ zp
j−i

, satisfies a ◦ aλi
= aλj

. This class is
denoted by aλj/λi

. In the case j = n, this construction also makes sense and gives a class

which after multiplication with uλi
gives pn−i, so it is denoted [pn−iu−1

λi
].

In this notation, for G = Cp, the equivariant cohomology of S0 in gradings n + mλ0 is
given by (see [10], [15])

H ·+·λ0
Cp

(S0;Z)(Cp/Cp) ∼= Z[uλ0 , aλ0 ]⊕j≥1 Z{[pu
−j
λ0

]} ⊕j,k≥1 Σ
−1Z/p{u−j

λ0
a−k
λ0

}.

For G = Cpn , the ringH
⋆

Cpn
(S0;Z)(Cpn/Cpn) in gradings which are combinations of integers

and positive multiples of λi is described as [8, Remark 4.6]

Z[aλ0 , uλ0 , · · · , aλn−1 , uλn−1 ]/(p
n−iaλi

, uλi
aλi+k

− pkuλi+k
aλi

, i, k ≥ 0).

Notation 2.9. Recall [13] for H ≤ G, there is the restriction functor

↓GH : MackG → MackH

given by ↓GH (N)(H/L) := N(G ×H H/L) where N ∈ MackG and L ≤ H. Given a Mackey
functor M , one defines HomL(M,Z) as the composition of the functors

Burn
op
G

D // Burnop
G

M // Ab
HomZ(−,Z) // Ab

and similarly ExtL(M,Z) as the composition of the functors

Burn
op
G

D // BurnopG
M // Ab

Ext1
Z
(−,Z)

// Ab .

We often denote ExtL(M,Z) by ME. The Mackey functor HomL(Z,Z) has the same groups
as Z with the restriction and transfer maps switched and is denoted by Z∗.

These Mackey functors play crucial role in the equivariant analog of the universal coeffi-
cient theorem discussed below along the lines of [1].

2.10. Anderson duality. Let IQ and IQ/Z be the spectra representing the cohomology

theories given by X 7→ Hom(πG
−∗(X),Q) and X 7→ Hom(πG

−∗(X),Q/Z) respectively. The
natural map Q → Q/Z induces the spectrum map IQ → IQ/Z, and the homotopy fibre is
denoted by IZ. For a G-spectrum X, the Anderson dual IZX of X, is the function spectrum
Fun(X, IZ). For X = HZ, one easily computes IZHZ ∼= Σ2−λ0HZ.

In general, for G-spectra E, X, and α ∈ RO(G), there is short exact sequence

(2.11) 0 → ExtL(Eα−1(X),Z) → IZ(E)α(X) → HomL(Eα(X),Z) → 0.

In particular, for E = HZ and X = S0, we have the equivalence Eα(X) ∼= H−α
G (S0;Z).

Therefore, one may rewrite (2.11) as

(2.12) 0 → ExtL(H
3−λ0−α
G (S0;Z),Z) → Hα

G(S
0;Z) → HomL(H

2−λ0−α
G (S0;Z),Z) → 0
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for each α ∈ RO(G).

Anderson duality provides a relation in the equivariant cohomology ring of S0. A naive
method to give another such relation is to build up SV using a filtration such that the
filtration quotients are computable, and then use this to relate Hα

G(S
0) to Hα−V

G (S0). This
method is commonly used (see for example [10], [3], [4]). More explicitly, for each m ≤ n,
we have homotopy cofibration sequences in Cpn-spectra,

(2.13) Cpn/Cpm+

1−g
→ Cpn/Cpm+ → S(λm)+

and

(2.14) S(λm)+ → S0 → Sλm .

Here g is a chosen generator for the quotient group Cpn/Cpm .
For a non-negative integer 0 ≤ k ≤ n, and a Mackey functor M ∈ MackC

pk
define

Θk : MackC
pk

→ MackCpn
as

Θk(M)(G/H) =

{

Z(G/H) ⊗Z M(Cpk/Cpk) if Cpk ⊆ H

M(Cpk/H) otherwise.

The restrictions and transfers are clear from this description. In similar fashion, we define
another functor Θ∗

k : MackC
pk

→ MackCpn
as

Θ∗
k(M )(G/H) =

{

Z∗(G/H) ⊗Z M(Cpk/Cpk) if Cpk ⊆ H

M(Cpk/H) otherwise.

Proposition 2.15. For each non-negative integer m ≤ n, M ∈ MackCpn
, and α ∈ RO(Cpn),

there is short exact sequence

0 → Θ∗
m(Hα−1

Cpm
(S0; ↓p

n

pm M)) → Hα
Cpn

(S(λm)+;M) → Θm(Hα
Cpm

(S0; ↓p
n

pm M)) → 0

in MackCpn
.

Proof. The cofiber sequence (2.13) yields the cohomology long exact sequence

· · ·Hα−1
Cpn

(Cpn/Cpm+)
// Hα

Cpn
(S(λm)+) // Hα

Cpn
(Cpn/Cpm+)

(1−g)∗// Hα
Cpn

(Cpn/Cpm+) · · ·

An immediate computation gives ker((1 − g)∗) ∼= Θm(Hα
Cpm

(S0; ↓p
n

pm M)) and the cokernel

of (1− g)∗ is Θ∗
m(Hα−1

Cpm
(S0; ↓p

n

pm M)). (See Proposition 4.3. and §4.5 in [4] for an analogous

computation.) Hence the result follows. �

Example 2.16. Observe that Θ0(C) for an Abelian group C is the constant Mackey functor
C, while Θ∗

0(C) is the dual C∗. In Proposition 2.15, Hα
e (S

0;Z) is 0 for |α| 6= 0, and Z for
|α| = 0. It follows that

(2.17) Hα
Cpn

(S(λ0)+;Z) ∼=











Z if |α| = 0

Z∗ if |α| = 1

0 otherwise.

For each m < n, consider the following long exact sequence in cohomology associated to
(2.14)
(2.18)(m)

· · ·Hα+λm−1
Cpn

(S(λm+)) // Hα
Cpn

(S0)
·aλm// Hα+λm

Cpn
(S0) // Hα+λm

Cpn
(S(λm+)) · · ·
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At m = 0, (2.17) implies that multiplication by aλ0 is an isomorphism unless |α| = −2,−1, 0.
At |α| = −2, multiplication by aλ0 is injective while at |α| = −1, 0, multiplication by aλ0

is surjective. The injectivity at |α| = −1 requires some additional argument which is
essentially the same as [4, Proposition 4.5].

3. Z-modules & extensions involving them

In this section, we discuss the category of Z-modules and a few particular Z-modules that
are important in the rest of the paper. Along the way we study certain extensions in the
additive category Z-ModG. We first note that the Z-modules satisfy an additional condition
on the restriction and transfer maps.

Remark 3.1. For any M ∈ Z-ModG, tr
H
K resHK equals the multiplication by index [H : K]

for K ≤ H ≤ G [14, Theorem 4.3].

This condition puts certain restriction on which Mackey functors may actually be Z-
modules. One such example is the lemma below.

Lemma 3.2. If M is a Z-ModG satisfying M(G/e) = 0, then M(G/H) ⊗Z Q = 0 for all
H ≤ G.

Proof. Applying Remark 3.1 to each x ∈ M(G/H), |H|x = trHe resHe (x) = trHe (0) = 0. This
implies each element in M(G/H) is torsion. �

We now interpret Lemma 3.2 for equivariant cohomology with Z-coefficients.

Corollary 3.3. Let α ∈ RO(G) \RO0(G), then the Mackey functor Hα
G(S

0;Z) is torsion.

Proof. Note that the Mackey functors Hα
G(S

0;Z) are all Z-modules. For α with |α| 6= 0,

one sees Hα
G(S

0;M)(G/e) ∼= H̃ |α|(S0;M (G/e)), hence is zero. By Lemma 3.2, the result
follows. �

We now observe that M ∈ Z-ModG satisfying M (G/e) = 0, then HomL(M,Z) = 0.
Applying this fact to Corollary 3.3 using (2.12), we note

(3.4) |α| 6= 0 =⇒ Hα
Cpn

(S0;Z) ∼= ExtL(H
3−λ0−α
Cpn

(S0;Z),Z).

The following proposition allows us to reduce the grading from RO(Cpn) to the linear
combinations of λk.

Proposition 3.5 ([15], Proposition 4.25). There is an equivalence HZ ∧ Sλ(pk) ≃ HZ ∧

Sλ(rpk) whenever p ∤ r.

The above implies the existence of invertible classes in HZ-cohomology in grading λ(pk)−
λ(rpk) for p ∤ r. One may make a coherent choice of these units, so that the HZ-cohomology
is, up to some units and their inverses, the part which lies in the graded pieces given by
linear combinations of 1, λ0, · · · , λn−1. From now onwards, we assume that α ∈ RO(G)
means that α = c+

∑

k≥0 akλk.

Definition 3.6. Let S ⊆ n := {1, · · · , n}. Denote by ZS the Mackey functor

ZS(Cpn/H) = Z for H ≤ Cpn ,

res
C

pi

C
pi−1

= pχS(i) for 1 ≤ i ≤ n.

Here χS is the characteristic function on S.

We note that Z∅ = Z, and Zn = Z∗. For subsets S ⊆ T ⊆ n, there is a unique map
fT,S : ZT → ZS such that it is the identity at Cpn/e

3. Then the Mackey functor structure

3If S * T , there is no Mackey functor morphism from ZT → ZS which induces identity at Cpn/e.
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suggests fT,S(Cpn/Cpk) is the multiplication by pαT\S,k , where αT\S,k := #((T \ S) ∩ k).
Denoting the cokernel of fT,S by BT,S, we get a exact sequence

(3.7) 0 → ZT → ZS → BT,S → 0.

where the Mackey functor BT,S is given by

BT,S(Cpn/Cpk) =
Z

pαT\S,kZ
, res

C
pk

C
pk−1

=

{

p if k ∈ S

1 if k ∈ Sc,
tr

C
pk

C
pk−1

=

{

1 if k ∈ S

p if k ∈ Sc.

For k ≤ min(S ∪ T ), we readily observe that BT,S = BT∪k,S∪k. Applying the functor

HomL(−,Z) to the short exact sequence (3.7) yields the long exact sequence

HomL(BT,S,Z) → HomL(ZS,Z) → HomL(ZT ,Z) → ExtL(BT,S,Z) → ExtL(ZS ,Z) · · ·

One readily observes that the first and last terms of the long exact sequence above are zero,
which simplifies the expression to the short exact sequence

0 → ZSc → ZT c → ExtL(BT,S,Z) → 0.

Comparing the short exact sequence above with (3.7), we deduce ExtL(BT,S ,Z) = BSc,T c.

Proposition 3.8. Let M be a torsion free Z-module for the group Cpn that fits into the
short sequence

0 → ZS → M → BS,T → 0.

Then, there is an isomorphism M ∼= ZT of Z-modules.

Proof. Since M is torsion free, that is, for each 0 ≤ k ≤ n, the Abelian group M(Cpn/Cpk)
has no torsion. Thus M(Cpn/Cpk)

∼= Z. Therefore, there is a subset T ′ ⊆ n such that
M ∼= ZT ′ , and then the cokernel of ZS → M is BS,T ′ . However from the formula of BS,T

we easily observe that, BS,T ′
∼= BS,T implies T = T ′. �

We demonstrate an exact sequence as in Proposition 3.8 using Mackey functor diagrams
for the group Cp3 .

Z

p

��

p3 // Z

1

��

// Z/p3

1
��

Z∗ : Z

p

��

1

\\

p2

**Z : Z

1

��

p

\\

++
B3,∅ : Z/p2

1

��

p

ZZ

Z

p

��

1

\\

p // Z

1

��

p

\\

// Z/p

1

��

p

ZZ

Z

1

\\

1 // Z

p

\\

// 0

p

ZZ

Proposition 3.9. Let k ≤ n.
1) A map f : Bn,k

c → B1,∅ is uniquely determined by f(Cpn/Cp).

2) If f(Cpn/Cp) is an isomorphism, then Ker(f) ∼= B1
c
,1+k

c, and Coker(f) ∼= B{k+1},∅.

Proof. The proof relies on a careful examination of the restriction and transfer maps of
Bn,k

c . These are given by

Bn,k
c(Cpn/Cpr) =

Z

pmin(r,k)Z
, res

Cpr

C
pr−1

=

{

1 if r ≤ k

p if r > k,
tr

Cpr

C
pr−1

=

{

p if r ≤ k

1 if r > k.
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The unique extension of f from level Cpn/Cp is guaranteed by the fact that the restriction
maps in B1,∅ are the identity above this level. If f(Cpn/Cp) is an isomorphism, we have

f(Cpn/Cpl) is

{

onto if l ≤ k

0 if l ≥ k + 1.

This implies the required conclusion about the cokernel of f . Note that the part of f
between the levels Cpn/Cpk and Cpn/Cpk+1 may be described as

ker(f) Bn,k
c B1,∅

Z/pk

1
��

∼= // Z/pk

p

��

0 // Z/p

1
��

Z/pk−1{p}

p

TT

// Z/pk

1

TT

f(Cpn/Cpk
)
// Z/p

0

TT

Therefore, ↓p
n

pk+1 ker(f) ∼= B1
c
,∅. The part of this Mackey functor above the level Cpn/Cpk+1

is unchanged, that is, same with Bn,k
c . Hence the result follows. �

3.10. Pullback Mackey functors. The Z-modules may also be defined as Abelian
group-valued functors M : BZop

G → Ab. The category BZG has finite G-sets as objects
and MorBZG

(S, T ) := MorG(Z[S],Z[T ]) (see [15, Proposition 2.15]). Suppose N is a normal

subgroup of G. The quotient map G → G/N induces φ : BZop
G/N → BZop

G . Define Φ∗
N :

Z-ModG/N → Z-ModG as Φ∗
N(M ) := Lanφ(M), the left Kan extension of M along φ. For

G = Cpn we write, Φ∗
pm for Φ∗

Cpm
. The Mackey functor Φ∗

NM is given by the formula

(3.11)

Φ∗
NM(G/H) := colim

(G/H→G/L)∈MorBG

M((G/N)/(L/N)) =

{

M((G/N)/(H/N)) if N ⊆ H

M((G/N)/(N/N)) if H ⊂ N.

and the restriction resNe is Id. From this formula, we note that Φ∗
p commutes with ExtL on

the Z-modules which are 0 at Cpn/e.

Example 3.12. The formula above implies Φ∗
NZ ∼= Z. Also, Φ∗

pm(BT,S)
∼= BT (m),S(m) ,

where T (m) is the image of T under the map n−m → n given by r 7→ r +m.

We now point out a non-trivial extension of Z-modules that arise in equivariant coho-
mology computations over Cp2 .

Z/p

0

��

// Z⊕ Z/p
[

1 0
1 0

]

��

// Z

1

��
B2,{2} : Z/p

0

��

1

ZZ

,,
T (2) : Z⊕ Z/p

[

p 0
]

��

[

p 0
−1 1

]

ZZ

++Z{1} : Z

p

��

p

\\

0

ZZ

// Z

[

1
0

]ZZ

// Z

1

]]
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A change of basis gives another isomorphic form of T (2) occuring in the diagram above.

Z⊕ Z/p
[

1 0
0 0

]

��
Z⊕ Z/p

[

p 0
]

��

[

p 0
0 1

]
ZZ

Z

[

1
−1

]ZZ

This generalizes to Cpn Mackey functors T (n) obtained by repeating top part of the diagram
above. This gives a non-trivial extension of Mackey functors

0 → Bn,1
c → T (n) → Z1 → 0.

4. Computations for large Cp-fixed point dimensions

This section deals with computations of Hα
Cpn

(S0,Z) when the dimension of the Cp-fixed

points of α is large. More precisely, we prove that if |αCp | ∈ (−2n + 2, 2n)c, then the

Mackey functor Hα
Cpn

(S0;Z) can be computed explicitly in terms of |α| and HαCp

C
pn−1

(S0;Z)

(see Table 4.1). We now drop Z in the notation to write Hα
Cpn

(S0) for Hα
Cpn

(S0;Z), and
throughout assume n ≥ 2.

Lemma 4.1. Let α ∈ im(RO(Cpn/Cpm) → RO(Cpn)). Then there is an equivalence

Hα
Cpn

(S0) ∼= Φ∗
pm(H

α
Cpm

Cpn/Cpm
(S0)).

Proof. The hypothesis implies that α and hence, also S−α are Cpm-fixed. Suppose q : Cpn →
Cpn/Cpm , which induces adjunctions [11, Proposition V.3.10]

{q∗(S−α
Cpm

),HZ}Cpn ∼= {S−α
Cpm

,HZCpm}Cpn/Cpm .

The result now follows from HZCpm ≃ HZ, and a calculation of the restriction and transfers
as in the proof of [4, Proposition 6.12]. �

Now apply Lemma 4.1 together with the fact that there are invertible classes in degree
λ(rpk) − λ(pk) for p ∤ r. This implies that the conclusion is valid once |αK | are all equal
for K ≤ Cpm . Further applying the techniques of Example 2.16, the hypothesis may be
weakened to the fact |αK | are all of the same sign for K ≤ Cpm.

Proposition 4.2. Suppose α ∈ RO(Cpn) such that the collection of numbers |α
C

pk | for

k ≤ m, are either all 0 or are all of the same sign, then Hα
Cpn

(S0) ∼= Φ∗
pm(H

α
Cpm

Cpn/Cpm
(S0)).

We now readily deduce that in a range of degrees, the cohomology is 0, starting from the
fact that for the trivial group, the cohomology is 0 if the degree is non-zero.

Proposition 4.3. Let α ∈ RO(Cpn).
(a) If |αCpm | positive for all m, or negative for all m, then, Hα

Cpn
(S0) ∼= 0.

(b) If |αCpm | ≤ 1 for all m, then, Hα
Cpn

(S0) ∼= 0.

(c) For α odd satisfying |αCpm | < 1 =⇒ |αH | ≤ 1 ∀ Cpm ⊆ H, Hα
Cpn

(S0) ∼= 0.

Proof. Proposition 4.2 directly implies (a). For (b), the result follows from (3.4) and (a) as,
|α| ≤ −1, |αH | ≤ 1 =⇒ |(3 − λ0 − α)H | > 0 for all H. But for |α| = 1, |(3 − λ0 − α)| = 0,
and all the other fixed point dimensions are > 0. Using (2.18)(0) along with (a) imply

H3−λ0−α
Cpn

(S0) ∼= Z∗, so that ExtL is trivial. Hence (b) follows.
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For (c), Example 2.16 implies that aλ0 multiplication is an isomorphism if |α| 6= −1 and is
surjective if |α| = −1. We now assume that (c) is true for G = Cpk , k < n. For |α| > 0 and

|αCp | > 0, Proposition 4.2 applies to prove the result. For |α| > 0 and |αCp | < 0, using the

aλ0-multiplication, we get a surjective map from Hβ
Cpn

(S0) with |β| < 0 and |βC
pl | = |αC

pl |

for l > 1, so that Proposition 4.2 implies the result again. In the remaining cases, using the
aλ0-multiplication, it suffices to prove for |α| = −1, |αCp | = 1. The proof is now completed
by repeated applications of Proposition 4.2 and Anderson duality(3.4) as

Hα
Cpn

(S0) ∼= ExtL(H
3−λ0−α
Cpn

(S0),Z) ∼= ExtL(Φ
∗
pH

3−αCp

C
pn−1

(S0),Z) ∼= Φ∗
pH

αCp−λ0
C

pn−1
(S0) ∼= 0.

�

Proposition 4.3 has many applications in showing that certain even equivariant cell com-
plexes have free cohomology. Examples include complex projective spaces and Grassman-
nians [10], [3], and linear actions on simply connected 4-manifolds [2].

Proposition 4.4. Suppose α ∈ RO0(Cpn) satisfying |αC
pk | > 0 for k > 1. Then,

Hα
Cpn

(S0) ∼=















Z
1−

|αCp |
2

c if 4− 2n ≤ |αCp | ≤ 0

Z if |αCp | ≤ 2− 2n

Z∗ if |αCp | ≥ 2.

Proof. From the proof of Proposition 4.3 (b), observe that Hα
Cpn

(S0) ∼= Z∗ for |αCp | > 0.

We use induction on F (α) = 1− |αCp |
2 . We now assume the result for F (α) < k, and prove

this first for those with F (α) = k ≤ n.

Let β ∈ RO0(Cpn) with |β
C

pk | > 0 for k > 1. Note that F (β + λ1 − λ0) = F (β)− 1 and
β+λ1−λ0 ∈ RO0(Cpn), so that it satisfies the induction hypothesis. Hence, using (2.18)(0)
for index β + λ1 − λ0, we obtain the long exact sequence

· · ·Hβ+λ1−1
Cpn

(S(λ0)+) → Hβ+λ1−λ0

Cpn
(S0) → Hβ+λ1

Cpn
(S0) → Hβ+λ1

Cpn
(S(λ0)+) · · ·

In the above, we have (2.17) Hβ+λ1

Cpn
(S(λ0)+) = 0 and Hβ+λ1−1

Cpn
(S(λ0)+) = Z∗. The term

Hβ+λ1−λ0

Cpn
(S0) ∼= Z

F (β)−1
c . Hence (3.7), Hβ+λ1

Cpn
(S0) ∼= B

n,F (β)−1
c . Making use of (2.18)(1),

we obtain

0 // Hβ+λ1−1
Cpn

(S(λ1)+) //

(by 2.15)

Hβ
Cpn

(S0) // Hβ+λ1

Cpn
(S0) // Hβ+λ1

Cpn
(S(λ1)+) · · ·

(by 2.15)

Z1
c B

n,F (β)−1
c B1,∅

The identifications at the two ends of the sequence are Hβ+λ1

Cpn
(S(λ1)+) ∼= Θ1(B1,∅)

∼= B1,∅,

andHβ+λ1−1
Cpn

(S(λ1)+) ∼= Θ∗
1(Z) ∼= Z1

c . Proposition 3.9 computes the kernel ofHβ+λ1

Cpn
(S0) →

Hβ+λ1

Cpn
(S(λ1)+) as B1

c
,F (β)

c . Hence we deduce the short exact sequence

(4.5) 0 → Z1
c → Hβ

Cpn
(S0) → B

1
c
,F (β)

c → 0.

Using (2.18)(0) and Corollary 4.2, it follows Hβ
Cpn

(S0) → Hβ
Cpn

(S(λ0)+) ∼= Z is injective,

hence Hβ
Cpn

(S0) is torsion free. Thus (4.5) along with Proposition 3.8 imply the middle

term Hβ
Cpn

(S0) ∼= Z
F (β)

c .
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If F (α) = n, then by the above computation Hα
Cpn

(S0;Z) ∼= Z. Working as above we get,

Hα+λ0
Cpn

(S0) ∼= Bn,∅ (using (2.18)(0)), and that the kernel Bn,∅ → B1,∅ is B1
c
,∅. Analogously

we obtain Hα−λ1+λ0
Cpn

(S0) ∼= Z. �

|α| even Hα
Cpn

(S0) |α| odd Hα
Cpn

(S0)

|α| > 0, |αCp | ≤ −2n+ 2 Bn,∅⊕Φ∗
p(H

αCp

C
pn−1

(S0)) |α| < 0, |αCp | ≤ −2n+ 3 Φ∗
p(H

αCp

C
pn−1

(S0))

|α| = 0, |αCp | ≤ −2n+ 2 Z⊕ Φ∗
p(H

αCp

C
pn−1

(S0)) |α| > 0, |αCp | ≤ −2n+ 3 Φ∗
p(H

αCp

C
pn−1

(S0))

|α| < 0, |αCp | ≤ −2n+ 2 Φ∗
p(H

αCp

C
pn−1

(S0)) |α| > 0, |αCp | ≥ 2n+ 1 Φ∗
p(H

αCp

C
pn−1

(S0))

|α| 6= 0, |αCp | ≥ 2n Φ∗
p(H

αCp

C
pn−1

(S0)) |α| < 0, |αCp | ≥ 2n+ 1 Bn,∅⊕Φ∗
p(H

αCp

C
pn−1

(S0))

|α| = 0, |αCp | ≥ 2n Z∗ ⊕ Φ∗
p(H

αCp

C
pn−1

(S0))

Table 4.1. Formula for Hα
Cpn

(S0) at large Cp-fixed points.

Incorporating the values obtained in Proposition 4.4 into the long exact sequence (2.18)(0),
we derive

Corollary 4.6. Suppose α ∈ RO(Cpn) satisfying |αH | > 0 for all H 6= Cp. Then,

Hα
Cpn

(S0;Z) ∼=















B
n,1−

|αCp |
2

c if 4− 2n ≤ |αCp | ≤ 0

Bn,∅ if |αCp | ≤ 2− 2n

0 if |αCp | ≥ 2.

We next use the multiplicative structure to derive a computation with |α| = 0 and |αCp |
a sufficiently large negative number.

Theorem 4.7. If α ∈ RO0(Cpn) with |αCp | ≤ −2n + 2, then the torsion-free part of
Hα

Cpn
(S0) is Z, and there is a decomposition

Hα
Cpn

(S0) ∼= Z⊕ Φ∗
p(H

αCp

C
pn−1

(S0)).

For |α| < 0 and |αCp | ≤ −2n+ 2 even, Hα
Cpn

(S0) ∼= Φ∗
p(H

αCp

C
pn−1

(S0)).

Proof. The last statement follows from Proposition 4.2. In the rest of the proof, we use the

H⋆

Cpn
(S0)-module structure on H⋆

Cpn
(S(λ0)+) which we denote by µS(λ0). The multiplica-

tion in H⋆

Cpn
(S0) is denoted by µ.

Proposition 4.4 implies that Hα
Cpn

(S0) ∼= Z for α ∈ RO0(Cpn) satisfying |αH | > 0 for all

H 6= e, Cp and |αCp | ≤ 2 − 2n. Let β ∈ RO0(Cpn) satisfying |βCp | = 0 and |βH | ≤ 0 for
all H 6= e, Cp. Applying Anderson duality (2.12) and Propositions 4.4, 4.3 (a), we deduce

Hβ
Cpn

(S0;Z) ∼= Z.

We have the commutative diagram (π : S(λ0)+ → S0 is the map induced by adding
disjoint base-points to S(λ0) → ∗ )

Z ∼= Hα
Cpn

(S0)�ZH
β
Cpn

(S0)

π∗�ZZ
��

µ // Hα+β
Cpn

(S0)

π∗

��

Z ∼= Hα
Cpn

(S(λ0)+)�ZH
β
Cpn

(S0)
µS(λ0) // Hα+β

Cpn
(S(λ0)+) ∼= Z
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Note that π∗�ZZ and µS(λ0) are isomorphisms, so that µ is a section for π∗ up to isomor-
phism. This yields the decomposition (using (2.18)(0))

Hα+β
Cpn

(S0) ∼= Z⊕Hα+β−λ0

Cpn
(S0,Z) ∼= Z⊕ Φ∗

p(H
(α+β)Cp

C
pn−1

(S0,Z))(by Corollary 4.2).

Hence the result follows as for each H 6= e, Cp, |(α+ β)H | can be made arbitrary. �

For α odd positive case, the following is a direct consequence of Theorem 4.7.

Corollary 4.8. Suppose α ∈ RO(Cpn) satisfying |α| > 0 odd and |αCp | ≤ −2n + 3, then

Hα
Cpn

(S0) ∼= Φ∗
p(H

αCp

C
pn−1

(S0)).

Proof. From Example 2.16, it suffices to prove for |α| = 1. Then by (2.18)(0), one obtains

· · ·Hα−1
Cpn

(S0)

(by Theorem 4.7)

// Hα−1
Cpn

(S(λ0)+) // Hα−λ0
Cpn

(S0) // Hα
Cpn

(S0) // Hα
Cpn

(S(λ0)+) · · ·

Z⊕ Φ∗
p(H

αCp−1
C

pn−1
(S0,Z)) Z Z∗

The map Hα−1
Cpn

(S0) → Hα−1
Cpn

(S(λ0)+) has a section according to the proof of Theorem

4.7. Thus, there is an isomorphism Hα−λ0
Cpn

(S0)
∼=
→ Hα

Cpn
(S0). The result follows from

Hα−λ0
Cpn

(S0) ∼= Φ∗
p(H

αCp

C
pn−1

(S0)) using Corollary 4.2. �

The following corollary is a direct consequence of the Anderson duality and Theorem 4.7.

Corollary 4.9. The Mackey functor Hα
Cpn

(S0) ∼= Z∗ ⊕ Φ∗
p(H

αCp

C
pn−1

(S0)) if |α| = 0 and

|αCp | ≥ 2n.

Proof. Using Theorem 4.7 and Corollary 4.8, the short exact sequence (2.12) turns out to
be

0 → Φ∗
p(H

3−αCp

C
pn−1

(S0))E → Hα
Cpn

(S0) → Z∗ → 0.

The map Z∗ ∼= Hα+λ0−1
Cpn

(S0) → Hα
Cpn

(S0) in (2.18)(0) serves as a splitting for this sequence.

Applying (3.4) to H3−αCp

C
pn−1

(S0), we obtain the result using the identifications in Example

2.16. �

The following result is readily deduced from Corollary 4.8 and Anderson duality (3.4)

Corollary 4.10. Suppose α ∈ RO(Cpn) satisfying |α| < 0 even and |αCp | ≥ 2n, then

Hα
Cpn

(S0) ∼= Φ∗
p(H

αCp

C
pn−1

(S0)).

The following result is obtained by applying (2.18)(0) to the results of Theorem 4.7.

Corollary 4.11. Suppose α ∈ RO(Cpn) satisfying |α| > 0 even and |αCp | ≤ −2n+ 2, then

Hα
Cpn

(S0) ∼= Bn,∅ ⊕ Φ∗
p(H

αCp

C
pn−1

(S0)).

Proof. From Example 2.16, it suffices to assume |α| = 2. We then have the following
reduction of (2.18)(0)

0 → Z∗ → Z⊕ Φ∗
p(H

αCp

C
pn−1

(S0)) → Hα
Cpn

(S0) → 0.

As Z∗ is generated by transfers on the element 1 ∈ Z = Z∗(Cpn/e), the image of Z∗ →

Z⊕Φ∗
p(H

αCp

C
pn−1

(S0)) sits inside Z, uniquely defined by the fact that it is an isomorphism at

Cpn/e. The result follows as the cokernel of Z∗ → Z is Bn,∅. �
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For the group Cp, the equivariant cohomology ring (in grading n + mλ0) consists of a

polynomial algebra Z[uλ0 , aλ0 ], plus modules Z{[pu−j
λ0

]} and Z/p{u−j
λ0

a−k
λ0

}. The latter part
are all aλ0-torsion, and the former part gives a region where multiplication by aλ0 is injective,

but we do not have any aλ0-periodic pieces. For n ≥ 2, the Mackey functor Φ∗
p(H

αCp

C
pn−1

(S0))

forms a aλ0-periodic piece as observed in the proofs of Theorem 4.7 and Corollary 4.11,
and in Corollary 4.9 and Corollary 4.10. Using Lemma 4.1, this also constructs aλi

-periodic
pieces over Cpn whenever n ≥ i+ 2.

Example 4.12. For the group Cp2 , an example where aλ0-periodicity occurs is in degrees
2λ1 + cλ0, where the periodic piece is the Mackey functor B{2},∅ which is Z/p at Cp2/Cp2 ,
and 0 at other levels. The Mackey functor in degree 2λ1 − 2λ0 is demonstrated in Table
4.2, where the symbols for the generating classes are written alongside. The class [p2u−2

λ0
]

is aλ0-torsion, and the periodic piece is represented in degree 2λ1 by a2λ0
a2λ1/λ0

= a2λ1
. This

construction easily generalizes so that over Cpn for n ≥ 2, the class anλ1
is aλ0-periodic, and

for n ≥ i+ 2, an−i
λi+1

is aλi
-periodic.

Mackey functor diagram Generating elements

Z⊕ Z/p

[p 0]
��
Z

p

��

[

1
0

]ZZ

Z

1

\\

u2λ1
[p2u−2

λ0
], (aλ1/λ0

)2 − u2λ1
[p2u−2

λ0
]

[pu−2
λ0

]

1

Table 4.2. Formula for H2λ1−2λ0
C

p2
(S0).

Note that ExtL(Bn,∅,Z) ∼= Bn,∅, hence (3.4) along with Corollary 4.11 readily implies

Corollary 4.13. For an element α ∈ RO(Cpn) satisfying |α| < 0 odd and |αCp | ≥ 2n + 1,

Hα
Cpn

(S0) ∼= Bn,∅ ⊕ Φ∗
p(H

αCp

C
pn−1

(S0,Z)).

5. Examples of non-trivial extensions

In this section, we compute the coefficient Mackey functor H⋆

C
p2
(S0;Z) completely, and

using that we observe non-trivial extensions for the group Cpn when n ≥ 3. The ring

structure of H⋆

C
p2
(S0;Z)(Cp2/Cp2) is completely determined in [15] using the Tate square.

Our computations follow mainly from the general results of §4. For Cp, the Z-cohomology
has the following additive structure [5, Corollary B.10]

(5.1) Hα
Cp

(S0;Z) ∼=































Z if |α| = 0, |αCp | ≤ 0

Z∗ if |α| = 0, |αCp | > 0

B1,∅ if |α| > 0, |αCp | ≤ 0 even

B1,∅ if |α| < 0, |αCp | ≥ 3 odd

0 otherwise.
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5.2. The additive structure of Cp2 cohomology. We compute the Mackey functors

Hα
C

p2
(S0;Z) for each α ∈ RO(Cp2). The entire computation is summarized in Table 5.1.

|α| even & positive Hα
C

p2
(S0) |α| = 0 Hα

C
p2
(S0)

|αCp | > 0, |αC
p2 | > 0 0 |αCp | ≤ 0, |αC

p2 | ≤ 0 Z
|αCp | > 0, |αC

p2 | ≤ 0 B1
c
,∅ |αCp | > 0, |αC

p2 | > 0 Z∗

|αCp | = 0, |αC
p2 | ≤ 0 B2,∅ |αCp | ≥ 4, |αC

p2 | ≤ 0 B1
c
,∅⊕Z∗

|αCp | = 0, |αC
p2 | > 0 B2,1

c |αCp | = 2, |αC
p2 | ≤ 0 Z1

|αCp | < 0, |αC
p2 | > 0 B2,∅ |αCp | = 0, |αC

p2 | > 0 Z1
c

|αCp | ≤ 0, |αCp2 | ≤ 0 B2,∅ |αCp | < 0, |αCp2 | > 0 Z
|α| odd & negative Hα

C
p2
(S0) |α| even & negative Hα

C
p2
(S0)

|αCp | ≤ 1, |αCp2 | ≤ 1 0 |αCp | ≥ 4, |αCp2 | ≤ 0 B1
c
,∅

|αCp | ≤ 1, |αC
p2 | > 1 B1

c
,∅ otherwise 0

|αCp | = 3, |αC
p2 | > 1 B2,∅ |α| odd & positive Hα

C
p2
(S0)

|αCp | = 3, |αC
p2 | ≤ 1 B1,∅ |αCp | ≤ −1, |αC

p2 | > 1 B1
c
,∅

|αCp | ≥ 5 B2,∅ otherwise 0

Table 5.1. Formula for Hα
C

p2
(S0;Z).

Theorem 5.3. The Mackey functors Hα
C

p2
(S0;Z) are as demonstrated in Table 5.1.

Proof. The starting point is the application Proposition 4.2 to (5.1), which gives the result
whenever |α| and |αCp | are either both 0, or both have the same sign. The remaining cases
with |α| = 0 follow from Proposition 4.4, Theorem 4.7, and Corollary 4.9. For |α| > 0 odd,
apart from the above, the remaining follow from Corollary 4.8. Applying Anderson duality
(3.4) to the cases with |α| > 0 odd, we obtain the computations for |α| < 0 even.

We next consider the case |α| > 0 even. Summarizing the results from §4, we note that

other than |αCp | = 0, |αC
p2 | ≤ 0, the results follow from Proposition 4.2, Corollary 4.6 and

Corollary 4.11. Using the calculations in Example 2.16, it suffices to consider |α| = 2, in
which case we already have computed the cohomology at the grading α− λ0 to be Z (5.1).
The short exact sequence

0 → Z∗ → Hα−λ0
C

p2
(S0;Z) → Hα

C
p2
(S0;Z) → 0.

computes Hα
C

p2
(S0) ∼= B2,∅. Finally for |α| < 0 odd, the result follows from Anderson

duality (3.4). �

5.4. Examples of non-trivial extensions. We now point out cohomology computations
where the Mackey functors which arise are not a direct sum of copies of ZT and BT,S. We

start by assuming n ≥ 3 and α ∈ RO0(Cpn) satisfying |αCp | = 2n − 2 and |αH | ≤ 0 for all
H 6= e, Cp. By Proposition 2.15, there is a short exact sequence

(5.5) 0 → Bn,1
c ∼= Θ∗

1(B1) → Hα
Cpn

(S(λ1)+;Z) → Θ1(Z1)
∼= Z1 → 0

in MackCpn
. At each level Cpn/H, the short exact sequence (5.5) splits as the right end

is free. We note that there does not exists any splitting in MackCpn
. For if it did, then

↓p
n

p2
Hα

Cpn
(S(λ1)+;Z) ∼= B2,1

c ⊕ Z1. Now we may apply (2.18)(1) substituting the values

from Table 5.1 to obtain the following exact sequence

0 → B1
c
,∅ → Z∗ ⊕B1

c
,∅ → B2,1

c ⊕ Z1 → Hα−λ1+1
C

p2
(S0) → 0.
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The restriction res
C

p2

Cp
in B2,1

c is 0 and in Z1 is divisible by p, on the other hand, the

restriction in Hα−λ1+1
C

p2
(S0) ∼= B2,∅ (Table 5.1) is the usual quotient Z/p2 → Z/p. Thus, the

short exact sequence (5.5) does not split in MackCpn
.

Assuming (5.5) does not split, a direct computation implies that up to isomorphism,
Hα

Cpn
(S(λ1)+) has only one choice which we call T (n). The groups are given by

T (n)(Cpn/H) ∼=

{

Z⊕ Z/p if H 6= e

Z if H = e,

and the restrictions and transfers are given by

res
C

pi

C
pi−1

=















(

1 0

0 0

)

for 2 ≤ i ≤ n

(

p 0
)

for i = 1.

and tr
C

pi

C
pi−1

=























(

p 0

0 1

)

for 2 ≤ i ≤ n

(

1

−1

)

for i = 1.

Now, we restrict out attention to the group Cp3 and α ∈ RO0(Cp3) satisfying |αCp | = 4,

|αC
p2 | ≤ 0, and |αC

p3 | ≤ 0. Consider the long exact sequence

(5.6) · · ·Hα−λ1
C

p3
(S0) → Hα

C
p3
(S0) → Hα

C
p3
(S(λ1)+) → Hα−λ1+1

C
p3

(S0) → Hα+1
C

p3
(S0) · · ·

From (3.4) and Proposition 4.3 (a), we get Hα−λ1
C

p3
(S0) ∼= 0. Using (3.4), we obtain

Hα−λ1+1
C

p3
(S0) ∼= ExtL(H

2−λ0+λ1−α
C

p3
(S0),Z), which is BE

3,1
c
∼= B1,∅ by Corollary 4.6. Finally,

Hα+1
C

p3
(S0) = 0 by Proposition 4.3 (b). Thus (5.6) reduces to the short exact sequence

0 → Hα
C

p3
(S0) → T (3) → B1,∅ → 0.

A direct computation of the kernel of the map T (3) → B1,∅ gives

Z⊕ Z/p
[

1 0
0 0

]

��
Z⊕ Z/p

[p 0]
��

[

p 0
0 1

]
ZZ

Z

p

��

[

1
−1

]ZZ

Z

1

\\
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Applying a change of basis ǫ1 7→ ǫ1−ǫ2 and ǫ2 7→ ǫ2 at Cp3/Cp2 , we may rewrite the Mackey
functor above as

Z⊕ Z/p
[

1 0
1 0

]

��
Hα

C
p3
(S0) : Z⊕ Z/p

[p 0]
��

[

p 0
−1 1

]

ZZ

Z

p

��

[

1
0

]
ZZ

Z

1

\\

Note that ↓p
3

p2
Hα

C
p3
(S0) ∼= Z∗ ⊕B1

c
,∅ as in Table 5.1. We now look at (5.6)

0 → Hα+λ0−1
C

p3
(S(λ0)+) → Hα

C
p3
(S0) → Hα+λ0

C
p3

(S0) → Hα+λ0
C

p3
(S(λ0)+) ∼= 0.

and put in the values to get

Z

p

��

[

p
−1

]

// Z⊕ Z/p
[

1 0
1 0

]

��

// Z/p2

1
��

0 // Z

p

��

1

VV
[

1
0

]

// Z⊕ Z/p

[p 0]
��

[

p 0
−1 1

]
YY

// Z/p

p

YY

��

// 0,

Z

p
��

1

VV

1 // Z

p
��

[

1
0

]ZZ

// 0

��

TT

Z

1

VV

1 // Z

1

VV

// 0

VV

a non-trivial extension. One may compute and check that Hα
C

p3
(S0) does not split as a

direct sum of Mackey functors of the type ZT and BT,S .

Mackey functor diagram Generating elements

Z⊕ Z/p
[

1 0
1 0

]

��
Z⊕ Z/p

[p 0]
��

[

p 0
−1 1

]
ZZ

Z

p

��

[

1
0

]ZZ

Z

1

\\

(aλ1/λ0
)2, p.(aλ1/λ0

)2 − u2λ1
[p3u−2

λ0
]

u2λ1
[p2u−2

λ0
], (aλ1/λ0

)2 − u2λ1
[p2u−2

λ0
]

[pu−2
λ0

]

1

Table 5.2. Formula for H2λ1−2λ0
C

p3
(S0).
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Example 5.7. An example of α as the above is 2λ1 − 2λ0. The diagram (Table (5.2))
compares the Mackey functor diagram with the corresponding generating classes.

References

[1] D. W. Anderson, Universal coefficient theorems for k-theory. 1969.
[2] S. Basu, P. Dey, and A. Karmakar, Equivariant homology decompositions for definite 4-manifolds,

2021.
[3] S. Basu and S. Ghosh, Computations in Cpq-Bredon cohomology, Math. Z., 293 (2019), pp. 1443–1487.
[4] , Equivariant cohomology for cyclic groups of square-free order, 2020. available at

https://arxiv.org/abs/2006.09669.
[5] K. K. Ferland, On the RO(G)-graded equivariant ordinary cohomology of generalized G-cell complexes

for G = Z/p, ProQuest LLC, Ann Arbor, MI, 1999. Thesis (Ph.D.)–Syracuse University.
[6] J. P. C. Greenlees and J. P. May, Equivariant stable homotopy theory, in Handbook of algebraic

topology, North-Holland, Amsterdam, 1995, pp. 277–323.
[7] M. A. Hill, M. J. Hopkins, and D. C. Ravenel, On the nonexistence of elements of Kervaire

invariant one, Ann. of Math. (2), 184 (2016), pp. 1–262.
[8] M. A. Hill, M. J. Hopkins, and D. C. Ravenel, The slice spectral sequence for certain RO(Cpn)-

graded suspensions of HZ, Bol. Soc. Mat. Mex. (3), 23 (2017), pp. 289–317.
[9] I. Kriz and Y. Lu, On the RO(G)-graded coefficients of dihedral equivariant cohomology, Math. Res.

Lett., 27 (2020), pp. 1109–1128.
[10] L. G. Lewis, Jr., The RO(G)-graded equivariant ordinary cohomology of complex projective spaces

with linear Z/p actions, in Algebraic topology and transformation groups (Göttingen, 1987), vol. 1361
of Lecture Notes in Math., Springer, Berlin, 1988, pp. 53–122.

[11] M. A. Mandell and J. P. May, Equivariant orthogonal spectra and S-modules, Mem. Amer. Math.
Soc., 159 (2002), pp. x+108.

[12] J. P. May, Equivariant homotopy and cohomology theory, vol. 91 of CBMS Regional Conference Series
in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC;
by the American Mathematical Society, Providence, RI, 1996. With contributions by M. Cole, G.
Comezaña, S. Costenoble, A. D. Elmendorf, J. P. C. Greenlees, L. G. Lewis, Jr., R. J. Piacenza, G.
Triantafillou, and S. Waner.

[13] P. Webb, A guide to Mackey functors, in Handbook of algebra, Vol. 2, vol. 2 of Handb. Algebr.,
Elsevier/North-Holland, Amsterdam, 2000, pp. 805–836.

[14] T. Yoshida, On G-functors. II. Hecke operators and G-functors, J. Math. Soc. Japan, 35 (1983),
pp. 179–190.

[15] M. Zeng, Equivariant Eilenberg-MacLane spectra in cyclic p-groups, 2017. available at
https://arxiv.org/abs/1710.01769.

Email address: samik.basu2@gmail.com; samikbasu@isical.ac.in

Stat-Math Unit, Indian Statistical Institute, B. T. Road, Kolkata-700108, INDIA.

Email address: surojitghosh89@gmail.com; surojit.ghosh@ma.iitr.ac.in

Department of Mathematics, Indian Institute of Technology, Roorkee-247667, INDIA

https://arxiv.org/abs/2006.09669
https://arxiv.org/abs/1710.01769

	1. Introduction
	2. Equivariant cohomology
	3. Z-modules & extensions involving them
	4. Computations for large Cp-fixed point dimensions
	5. Examples of non-trivial extensions
	References

