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Abstract. We give a complete description of the E1-term of the v2-local as
well as g-local algebraic tmf resolution.
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1. Introduction

Let bo denote the connective real K-theory spectrum. Mahowald and his collabo-
rators used the bo resolution (aka the bo-based Adams spectral sequence) to study
stable homotopy groups to great effect. Specifically, they computed the image of
the J-homomorphism [DM89], proved the 2-primary height 1 telescope conjecture
[Mah81], [LM87], computed the unstable v1-periodic homotopy groups of spheres
[Mah82], and applied homotopy theoretic methods to a variety of geometric prob-
lems [DGM81].
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The spectrum bo has two distinct advantages that lend itself to these applications
at the prime 2. Firstly, π0bo is torsion free and π∗bo is Bott periodic (i.e. v1-
torsion free), so it is equipped to detect the zeroth and first layers of the chromatic
filtration. Secondly, v1-periodic homotopy at the prime 2 is more complicated than
at odd primes, and this is witnessed by the elements η and η2 generating additional
anomalous torsion [Ada66]. These elements and their v1-multiples are detected by
the bo-Hurewicz homomorphism

πs∗ → π∗bo.

At chromatic height 2, the 2-primary stable stems have a vast collection of anoma-
lous torsion, and a significant portion of this v2-periodic torsion is detected by the
spectrum tmf of topological modular forms (see [BMQ21]). As such the tmf resolu-
tion represents a significant upgrade to the bo resolution. Indeed, partial analysis of
the tmf resolution has resulted in numerous powerful results [BHHM08], [BHHM20],
[BBB+21], [BMQ21].

For a spectrum X, the tmf resolution of X is the tower of cofiber sequences

(1.1) X

��

Σ−1tmf ∧X

��

oo Σ−2tmf
∧2 ∧X

��

oo · · ·oo

tmf ∧X Σ−1tmf ∧ tmf ∧X Σ−2tmf ∧ tmf
∧2 ∧X

Here tmf is the cofiber of the unit

S → tmf → tmf.

Applying π∗ to the tower above results in the tmf-based Adams spectral sequence

tmfEn,t1 (X) = πt(tmf ∧ tmf
∧n ∧X)⇒ πt−nX.

Ultimately, the successful applications of the tmf-resolution so far have been limited
by our ability to compute the E1-page of the tmf-based Adams spectral sequence
— computations to date have relied on computations of the E1-page in certain
regions. Unlike the bo case, we are not able to completely compute this E1 page
for X = S. The goal of this paper is to make a significant step towards rectifying
this deficiency.

The computations of the E1-page that have been successfully performed used the
classical Adams spectral sequence. We focus our attention at the prime 2. Recall
that for a connective spectrum Y , the mod 2 Adams spectral sequence (ASS) takes
the form

assEs,t2 (Y ) = Exts,tA∗(F2, H∗Y )⇒ πt−sY
∧
2

where H∗ denotes mod 2 homology and A∗ is the dual Steenrod algebra. The E1-
term of the tmf-resolution than can then itself be approached by computing the
ASS’s

assEs,t2 (tmf ∧ tmf
n ∧X)⇒ πt−s(tmf ∧ tmf

n ∧X) = tmfEn,t−s1 (X).

In practice, given the computation of the E2-pages, these Adams spectral sequences
can be completely computed, as the majority of the differentials can be deduced
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from the Adams spectral sequence for tmf (as computed in [BR22]). The tmf-
resolution can then be studied through the Miller square [Mil81]

assEs,t2 (tmf ∧ tmf
n ∧X)

ASS +3

alg tmf res

��

tmfEn,t−s1 (X)

tmf res

��
assEs+n,t2 (X)

ASS
+3 πt−s−nX∧2

Here, the left side of the square is the algebraic tmf-resolution, the analog of the
tmf-resolution obtained by applying ExtA∗ to (1.1). The starting point is therefore
the computation of the E1-page of the algebraic tmf resolution of the sphere

assEs,t2 (tmf ∧ tmf
n
).

Analogous to the case of the bo-resolution and theBP 〈2〉-resolution [Mah81] [Cul19],
we propose the following conjecture.

Conjecture 1.2. The map

assEs,t2 (tmf ∧ tmf
n
)→ v−1

2
assEs,t2 (tmf ∧ tmf

n
)

is injective for s > 0.

This conjecture is consistent with computations in low degrees (see, for instance,
[BOSS19]). It implies a good-evil decomposition of the tmf-resolution of the sphere,
analogous to that of [BBB+20], [BBB+21].

In this paper we give a complete computation of

v−1
2

assE∗,∗2 (tmf ∧ tmf
n
).

We now summarize the main results.

For a graded Hopf algebra Γ over k, let DΓ denote Hovey’s stable homotopy cate-
gory of Γ-comodules. Briefly, DΓ is similar to the derived category, with the chief
difference that weak equivalences are defined to be the πΓ

∗,∗-isomorphisms, where

for a Γ-comodule M , the homotopy groups πΓ
∗,∗ are defined to be

πΓ
n,s(M) := Exts,s+nΓ (k,M).

For M ∈ DΓ, we let Σn,sM denote a shift in internal degree by s + n and in
cohomological degree by s, so we have

πΓ
k,l(Σ

n,sM) = πΓ
k−n,l−s(M)

and

[Σn,sk,M ]Γ = πΓ
n,s(M).

For a spectrum X, we shall let

X ∈ DA∗
denote the object associated to the mod 2 homology H∗X. In this notation the
ASS takes the form

assEs,t2 (X) = πA∗t−s,s(X)⇒ πt−sX
∧
2 .
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Since tmf = (A�A(2))∗ [Mat16] (where A(2) is the subalgebra of the mod 2 Steenrod
algebra generated by Sq1, Sq2, and Sq4), we have a change of rings isomorphism

(1.3) πA∗∗,∗(tmf ⊗M) ∼= π
A(2)∗
∗,∗ (M)

for any M ∈ DA∗ . Therefore the E1-term of the algebraic tmf-resolution takes the
form

assE∗,∗2 (tmf ∧ tmf
∧n

) ∼= π
A(2)∗
∗,∗ (tmf

⊗n
).

There is a decomposition [BHHM08]

(1.4) tmf
⊗n '

⊕
i1,...,in>0

Σ8(i1+···+in)boi1 ⊗ · · · ⊗ boin

in DA(2)∗ , where boi denotes the homology of the ith bo-Brown-Gitler spectrum
(see Section 2).

For an object M ∈ DA(2)∗ , the localization v−1
2 M denotes the localization of M

with respect to the element

v8
2 ∈ πA(2)∗

48,8 (F2),

so we have

v−1
2

assE∗,∗2 (tmf ∧ tmf
∧n

) ∼= π
A(2)∗
∗,∗ (v−1

2 tmf
⊗n

).

We will prove

Theorem 1.5 (see Corollary 8.6 and (2.9)). There are equivalences in DA(2)∗

v−1
2 bo2j ' Σ8jv−1

2 boj ⊕ Σ8j+8,1v−1
2 boj−1,

v−1
2 bo2j+1 ' v−1

2 Σ8jboj ⊗ bo1.

The splittings of (1.4) and Theorem 1.5 inductively imply that in DA(2)∗ the objects

v−1
2 tmf

⊗n
split as a wedge of bigraded suspensions of v−1

2 bo⊗k1 . We are left with
identifying these explicitly.

To this end we will introduce an object

TMF0(3) ∈ DA(2)∗

which serves as an algebraic version of the tmf-module TMF0(3) (the theory of
topological modular forms associated to the congruence subgroup Γ0(3) < SL2(Z)),
and prove

Theorem 1.6 (Proposition 5.1 and 5.2). There are splittings in DA(2)∗

v−1
2 bo⊗3

1 ' 2Σ16,1v−1
2 bo1 ⊕ Σ24,2TMF0(3),

TMF0(3)⊗ bo1 ' Σ24,3TMF0(3)⊕ Σ40,6TMF0(3).

The splittings of Theorem 1.6 imply that the objects v−1
2 bo⊗k1 split in DA(2)∗ as

a direct sum of bigraded suspensions of copies of v−1
2 F2, v−1

2 bo1, v−1
2 bo⊗2

1 , and
TMF0(3).

Putting this all together, we have the following theorem (see Corollary 8.7 for a
more precise formulation).
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Theorem. There is a splitting of

v−1
2 tmf

⊗n ∈ DA(2)∗

into a well-described sum of various bigraded suspensions of

• v−1
2 F2,

• v−1
2 bo1,

• v−1
2 bo⊗2

1 ,
• TMF0(3).

The most subtle step to all of this is the first equivalence of Theorem 1.5. Indeed
an explicit exact sequence (see (2.5)) of [BHHM08] implies that v−1

2 bo2j is built

from v−1
2 Σ8jboj and v−1

2 Σ8j+8,1boj−1 in DA(2)∗ . The hard part is showing that
the attaching map between these two components is trivial. This is accomplished
by showing that if this attaching map is non-trivial, then it is non-trivial after

g-localization where g is the generator of π
A(2)∗
20,4 (F2). We then prove the g-local

attaching map is trivial (see Corollary 8.5 and Theorem 9.3), strengthening the
results of [BBT21].

Theorem. There is a splitting of

g−1tmf
⊗n ∈ DA(2)∗

into a well-described sum of various bigraded suspensions of

• g−1F2,
• g−1bo1,
• g−1bo⊗2

1 .

The v2-local results of this paper may be applied to understand the TMF-resolution,
where

TMF = tmf[∆−1].

Namely, there are localized ASS’s

π
A(2)∗
∗,∗ (v−1

2 tmf
⊗s ⊗X)⇒ π∗(TMF ∧ TMF

∧s ∧X)∧2 .

Our v2-local results also may be used to understand the v2-localized algebraic tmf
resolution

v−1
2 π

A(2)∗
∗,∗ (tmf

⊗n ⊗M)⇒ v−1
2 πA∗∗,∗(M).

Here, the v2-localized Ext groups v−1
2 πA∗∗,∗ are as defined in [MS87].

The g-local results of this paper may be applied to understand g-local Ext over the
Steenrod algebra, using the g-local algebraic tmf-resolution

π
A(2)∗
∗,∗ (g−1tmf

⊗n ⊗M)⇒ g−1πA∗∗,∗(M).
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Organization of the paper. In Section 2 we reduce the study of tmf to the
bo-Brown-Gitler comodules boj . We review exact sequences which relate these

comodules to bo⊗k1 . Upon v2-localization, we show that these exact sequences give

complete decompositions of v−1
2 boj in terms of bigraded suspensions of v−1

2 bo⊗k1

for various k, provided certain obstructions ∂j′ vanish for j′ ≤ j/2.

In Section 3 we review the structure of π
A(2)∗
∗,∗ (bo⊗k1 ) for 0 ≤ k ≤ 4. These will form

the computational input for the rest of the paper.

In Section 4 we construct TMF0(3) ∈ DA(2)∗ , our algebraic analog of TMF0(3),
and establish some basic properties.

In Section 5 we prove a few key splitting theorems that inductively give complete
decompositions of bo⊗k1 ∈ DA(2)∗ into indecomposable summands. Provided the

obstructions ∂j′ vanish, we therefore get complete decompositions of v−1
2 boj .

In Section 6 we define certain generating functions which conveniently allow for
algebraic computation of the putative decompositions of v−1

2 boj .

In Section 7 we explain the analogs of the v2-local decompositions of boj and bo⊗k1

in the g-local category. The decompositions of g−1boj depend on the vanishing of
certain obstructions ∂′j .

Section 8, we prove our main result: the obstructions ∂j and ∂′j vanish for all j.

This results in a complete decomposition of v−1
2 tmf

⊗n
and g−1tmf

⊗n
.

In Section 9, we relate our g-local results to the computations of Bhattacharya,
Bobkova, and Thomas [BBT21], providing a strengthening of their results.

In Appendix A, we discuss a stable splitting of bo∧3
1 and its relationship with

Theorem 1.6.

Acknowledgments. The results of this paper were made possible with the as-
sistance of the computational Ext software of R. Bruner and A. Perry, and the
computer algebra systems Fermat and Sage. The first author was supported by
NSF grants DMS-1547292 and DMS-2005476.

2. bo-Brown-Gitler comodules

In this section we reduce the analysis of v−1
2 tmf

⊗n
to the analysis of v2-local bo-

Brown-Gitler comodules. These are A∗-comodules which are the homology of the
bo-Brown-Gitler spectra constructed by [GJM86]. Mahowald used integral Brown-
Gitler spectra to analyze the bo resolution [Mah81]. The bo-Brown-Gitler comod-
ules play a similar role in the algebraic tmf resolution [BHHM08], [MR09], [DM10],
[BOSS19], [BHHM20], [BMQ21].

Endow the mod 2 homology of bo

bo ∼= A�A(1)∗ = F2[ζ4
1 , ζ

2
2 , ζ3, . . .]
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(where ζi denotes the conjugate of ξi ∈ A∗) with a multiplicative grading by declar-
ing the weight of ζi to be

(2.1) wt(ζi) = 2i−1.

The ith bo-Brown-Gitler comodule is the subcomodule

boi ⊂ A�A(1)∗

spanned by monomials of weight less than or equal to 4i.

For an object M ∈ DA(2)∗ , let

DM = HomF2
(M,F2)

be its F2-linear dual. We record the following useful result.

Proposition 2.2. There is an equivalence

v−1
2 Dbo1 ' Σ−16,−1v−1

2 bo1.

Proof. This follows from the short exact sequence

0→ bo1 → A(2)�A(1)∗ → Σ17Dbo1 → 0.

�

Our interest in the bo-Brown-Gitler comodules stems from the fact that there is a
splitting of A(2)∗-comodules [BHHM08, Cor. 5.5]:

(2.3) tmf ∼=
⊕
i≥0

Σ8iboi

where Σ8jboj is spanned by the monomials of

tmf = A�A(2)∗ = F2[ζ8
1 , ζ

4
2 , ζ

2
3 , ζ4, . . .]

of weight 8j. We therefore have a splitting of A(2)∗-comodules

(2.4) tmf
⊗n ∼=

⊕
i1,...,in>0

Σ8(i1+···+in)boi1 ⊗ · · · ⊗ boin .

The object

Σ8(i1+···+in)boi1 ⊗ · · · ⊗ boin ∈ DA(2)∗

can be inductively built from bo⊗k1 by means of a set of exact sequences of A(2)∗-
comodules which relate the boi’s [BHHM08, Sec. 7]:

0→ Σ8jboj → bo2j → A(2)�A(1)∗ ⊗ tmfj−1 → Σ8j+9boj−1 → 0,(2.5)

0→ Σ8jboj ⊗ bo1 → bo2j+1 → A(2)�A(1)∗ ⊗ tmfj−1 → 0.(2.6)

Here, tmfj is the jth tmf-Brown-Gitler comodule — it is the subcomodule of tmf
spanned by monomials of weight less than or equal to 8j.

Remark 2.7. Technically speaking, as is addressed in [BHHM08, Sec. 7], the
comodules

A(2)�A(1)∗ ⊗ tmfj−1

in the above exact sequences have to be given a slightly different A(2)∗-comodule
structure from the standard one arising from the tensor product. However, this
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different comodule structure ends up being Ext-isomorphic to the standard one.
As the analysis of this paper only requires

v−1
2 A(2)�A(1)∗ ⊗ tmfj−1 ' 0,

g−1A(2)�A(1)∗ ⊗ tmfj−1 ' 0,

and these equivalences hold for the non-standard comodule structures, the reader
can safely ignore this subtlety.

Since

v−1
2 A(2)�A(1)∗ ⊗ tmfj−1 ' 0,

The exact sequences (2.5) and (2.6) give rise to a cofiber sequence in DA(2)∗

(2.8) Σ8jv−1
2 boj → v−1

2 bo2j → Σ8j+8,1v−1
2 boj−1

and an equivalence

(2.9) Σ8jv−1
2 boj ⊗ bo1 ' v−1

2 bo2j+1.

Thus, (2.8) and (2.9) inductively build

v−1
2 boi ∈ DA(2)∗

out of v−1
2 bo⊗k1 .

The connecting homomorphism of the cofiber sequence (2.8)

(2.10) ∂j : v−1
2 Σ8j+8,1boj−1 → v−1

2 Σ8j+1,−1boj

is the obstruction to the cofiber sequence being split. We will prove in Section 8
that the connecting homomorphism ∂j = 0 for all j, so we have

(2.11) v−1
2 bo2j ' v−1

2 Σ8jboj ⊕ v−1
2 Σ8j+8,1boj−1.

3. The groups π
A(2)∗
∗,∗ (bok1)

In the previous section we related the comodules boj to the comodules bo⊗k1 . We
now review the structure of

π
A(2)∗
∗,∗ bo⊗k1

for 0 ≤ k ≤ 4.

In order to give names to the v0-torsion-free generators of π
A(2)∗
∗,∗ (bo⊗k1 ), we re-

view the corresponding v0-local computations. The entire structure of the v0-local
algebraic tmf resolution is given in [BMQ21] (see also [BOSS19]).

Observe that we have

(3.1) v−1
0 π

A(2)∗
∗,∗ (F2) = F2[v±0 , v

4
1 , v

2
2 ].

Note that c4, c6 ∈ (tmf∗)Q are detected in the v0-localized ASS by v4
1 and v3

0v
2
2 ,

respectively.

We have (regarding bo1 as a subcomodule of A�A(2)∗)

v−1
0 π

A(2)∗
∗,∗ (bo1) = F2[v±0 , v

4
1 , v

2
2 ]{ξ̄8

1 , ξ̄
4
2}
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We therefore have an isomorphism

(3.2) v−1
0 π

A(2)∗
∗,∗ (bo⊗k1 ) ∼= F2[v±0 , v

4
1 , v

2
2 ]⊗ F2{ξ̄8

1 , ξ̄
4
2}⊗k.

To make for more compact notation, we will use bars to denote elements of tensor
powers:

(3.3) x1| · · · |xn := x1 ⊗ · · · ⊗ xn.

π
A(2)∗
∗,∗ (F2) : (Figure 3.1)

All of the elements are c4 = v4
1-periodic, and v8

2-periodic. Exactly one v4
1 multiple

of each element is displayed with the • replaced by a ◦. Observe the wedge pattern
beginning in t − s = 35. This pattern is infinite, propagated horizontally by h2,1-
multiplication and vertically by v1-multiplication. Here, h2,1 is the name of the
generator in the May spectral sequence of bidegree (t− s, s) = (5, 1), and h4

2,1 = g.

π
A(2)∗
∗,∗ (bo⊗k1 ), for k = 1, 2, 3, 4 : (Figures 3.2, 3.3, 3.4, 3.5)

Every element is v8
2-periodic. However, unlike π

A(2)∗
∗,∗ (F2), not every element of

these Ext groups is v4
1-periodic. Rather, it is the case that either an element

x ∈ ExtA(2)∗(bo⊗k1 ) satisfies v4
1x = 0, or it is v4

1-periodic. Each of the v4
1-periodic

elements fit into families which look like shifted and truncated copies of π
A(1)∗
∗,∗ (F2),

and are labeled with a ◦. We have only included the beginning of these v4
1-periodic

patterns in the chart. The other generators are labeled with a •. A � indicates a
polynomial algebra F2[h2,1]. Elements which are v0-torsion-free are named in these
charts using (3.2), in the bar notation of (3.3).

4. An algebraic model of TMF0(3)

The spectrum TMF0(3) is an analog of TMF associated to the moduli of elliptic
curves with with Γ0(3)-structures introduced and studied by Mahowald and Rezk
[MR09]. In fact, Mahowald and Rezk proposed three different connective spectra
whose E(2)-localizations are TMF0(3) (also see [DM10]).

We will emulate [MR09, DM10] in the category of DA(2)∗ to construct the TMF0(3).

Lemma 4.1. The composite

Σ6,2F2
h2
2−→ F2 ↪→ Σ7Dbo1

extends to a map

h̃2
2 : Σ6,2bo1 → Σ7Dbo1.

Our algebraic model of TMF0(3) is defined to be

TMF0(3) := v−1
2 (Σ24,3Dbo1 ∪h̃2

2

Σ24,4bo1).

Figure 4.1 shows a computation of the homotopy of Dbo1 ∪h̃2
2

Σ0,1bo1. In this

figure, the solid dots correspond to Dbo1 and the open dots correspond to bo1.
One convenient way of accessing the homotopy of Dbo1 is from the short exact
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Figure 3.5. π
A(2)∗
∗,∗ (bo⊗4

1 ).



THE STRUCTURE OF THE v2-LOCAL ALGEBRAIC tmf RESOLUTION 15

sequence in the proof of Proposition 2.2. A chart of π
A(2)∗
∗,∗ (TMF0(3)) is displayed

in Figure 4.2.

Lemma 4.2. Any map

f : TMF0(3)→ TMF0(3)

which is the identity on π
A(2)∗
0,0 is an equivalence.

Proof. Let 1TMF0(3) ∈ π
A(2)∗
0,0 (TMF0(3)) denote the generator. The π

A(2)∗
∗,∗ (F2)-

module structure implies f is the identity on g · 1TMF0(3) and v4
2h1. It follows from

h2 linearity that f is the identity on x17 (see Figure 4.2). Therefore f is the identity
on v4

2h1x17. It follows from h0, h1, h2, and v4
1 linearity that f is an isomorphism

on v−1
0 π

A(2)∗
∗,∗ (TMF0(3)). Here we must use the fact that the v0-localization of f is

a map of v−1
0 π∗,∗(F2)-modules. It then follows that f is a π

A(2)∗
∗,∗ -isomorphism. �

We have the following algebraic version of the Recognition Principle of Davis-
Mahowald-Rezk (see [MR09, Prop. 7.2]).

Theorem 4.3 (Recognition Principle). Suppose that X ∈ DA(2)∗ satisfies

(4.4) π
A(2)∗
∗,∗ (X) ∼= π

A(2)∗
∗,∗ (TMF0(3))

where the above isomorphism preserves v0, h1, h2, v4
1, v0v

2
2, v8

2, v4
2h1, and g mul-

tiplications. Then there is an equivalence

X ' TMF0(3).

Proof. Let

x17 : Σ17,3F2 → X

represent the generator of π
A(2)∗
17,3 (X). Since

π
A(2)∗
17,4 (X) = π

A(2)∗
19,4 (X) = π

A(2)∗
23,4 (X) = 0,

there exists an extension of x17 to a map

Σ24,3Dbo1 → X.

Since

π
A(2)∗
23,5 (X) = π

A(2)∗
27,5 (X) = π

A(2)∗
29,5 (X) = π

A(2)∗
30,5 (X) = 0

there exists a further extension of this map to a map

Σ24,3Dbo1 ∪ Σ24,4bo1 → X.

The conditions on the isomorphism (4.4) imply that X ' v−1
2 X. Thus the map

above localizes to a map

v−1
2 (Σ24,3Dbo1 ∪ Σ24,4bo1)→ X.

The conditions on the isomorphism (4.4) then force the map above to be a π
A(2)∗
∗,∗ -

isomorphism. �



16 M. BEHRENS, P. BHATTACHARYA, AND D. CULVER

Figure 4.1. Computing the homotopy of Dbo1 ∪h̃2
2

Σ0,1bo1.
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For us, a weak ring object in DA(2)∗ is an object R ∈ DA(2)∗ with a unit

u : F2 → R

and a multiplication

m : R⊗R→ R

such that the two composites

R⊗ F2
1⊗u−−−→ R⊗R m−→ R,

F2 ⊗R u⊗1−−−→ R⊗R m−→ R

are equivalences.

Proposition 4.5. TMF0(3) is a weak ring object in DA(2)∗ .

Proof. We shall need to imitate the “first model” of [MR09], [DM10]. Start with
the A∗-comodule Y described in [DM10, Thm. 2.1(a)]. Then the method of proof
for [DM10, Thm. 2.1(b)] shows that there exists a map

h̃0h2 : Σ3,2Y → F2

in DA∗ extending h0h2, so we can take the cofiber

X := F2 ∪h̃0h2
Σ4,1Y .

Regarding this cofiber as an object of DA(2)∗ , define

R := v−1
2 X ∈ DA(2)∗ .

We will show (a) R ' TMF0(3) and (b) R is a ring object of DA(2)∗ .

For (a), we will compute π
A(2)∗
∗,∗ (R). To this end, we observe that the methods of

the proof of [DM10, Thm. 2.1(c)] show that there is a map

f : X → A(2)�A(1)∗

which extends the inclusion F2 ↪→ A(2)�A(1)∗. Let C be the cofiber of f :

(4.6) X
f−→ A(2)�A(1)∗ → C.

Then the proof of [DM10, Thm. 2.1(d)] shows that

π
A(2)∗
∗,s (A(2)∗ ⊗ C) ∼=

{
Σ4A(2)/A(2)(Sq4,Sq5 Sq1)∗, s = 0,

0, s > 0.

as an A(2)∗-comodule. The A(2)∗-based Adams spectral sequence for C then col-
lapses to give an isomorphism

πA(2)∗
n,s (C) ∼= Exts+n,sA(2)∗

(F2,Σ
4A(2)/A(2)(Sq4,Sq5 Sq1)∗).

These Ext groups were computed in [DM10, Thm. 2.9]. The cofiber sequence (4.6)
gives an equivalence

R ' Σ−1,1v−1
2 C.

We see by inspection of Davis-Mahowald’s Ext computation alluded to above that
there is an isomorphism

π
A(2)
∗,∗ (Σ−1,1v−1

2 C) ∼= π
A(2)∗
∗,∗ (TMF0(3))
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satisfying the hypotheses of the Recognition Principle (Theorem 4.3). We deduce
that there is an equivalence

TMF0(3) ' R.

We now just need to prove R is a ring object in DA(2)∗ . For this we imitate the
proof of [DM10, Thm. 2.1(e)]. Namely, consider the composite

m : X ⊗X f⊗f−−−→ A(2)�A(1)∗ ⊗A(2)�A(1)∗
µ−→ A(2)�A(1)∗.

By the cofiber sequence (4.6), the map m lifts to a map

m : X ⊗X → X

if the composite

X ⊗X m−→ A(2)�A(1)∗ → C

is null. In the proof of [DM10, Thm. 2.1(e)], it is established using Bruner’s Ext
software that

[X ⊗X,C]A(2)∗ = 0.

Therefore, the lift m exists. Since it is a lift of m, it is the identity on the bottom
cell. It follows that the composites

X ⊗ F2 ↪→ X ⊗X m−→ X,

F2 ⊗X ↪→ X ⊗X m−→ X

are the identity on the bottom cell. It follows from Lemma 4.2 that after v2-
localization, the composites

R⊗ F2 ↪→ R⊗R m−→ R,

F2 ⊗R ↪→ R⊗R m−→ R

are equivalences. Thus m gives R the structure of a weak ring object. (In fact, the
analog of Lemma 4.2 holds for X, and so X is also a weak ring object.) �

5. Splitting bo⊗k1

In this section we prove our main v2-local splitting theorems, which will be the
basis of all of our subsequent v2-local decomposition results.

Proposition 5.1. There is a splitting

v−1
2 bo⊗3

1 ' 2Σ16,1v−1
2 bo1 ⊕ Σ24,2TMF0(3).

Proof. Since we are working in characteristic 2, there is a decomposition

bo⊗3
1 ' (bo⊗3

1 )hC3 ⊕B
where C3 acts by cyclically permuting the terms, and we have

π
A(2)∗
∗,∗ ((bo⊗3

1 )hC3) = π
A(2)∗
∗,∗ (bo⊗3

1 )C3 .

It is easily checked, using the names of the generators in Figure 3.4, that there is
an isomorphism

v−1
2 π

A(2)∗
∗,∗ ((bo⊗3

1 )hC3) ∼= π
A(2)∗
∗,∗ (TMF0(3)).
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A direct application of the Recognition Principle (Theorem 4.3) shows that

v−1
2 (bo⊗3

1 )hC3 ' Σ24,2TMF0(3).

Let

x16 : Σ16,1F2 → bo⊗2
1

correspond to the generator of π
A(2)∗
16,1 (bo⊗2

1 ). Then the composite

Σ16,1v−1
2 bo1 ⊕ Σ16,1v−1

2 bo1
x16⊗1⊕1⊗x16−−−−−−−−−→ v−1

2 bo⊗3
1 → v−1

2 B

is seen to be a π
A(2)∗
∗,∗ -isomorphism, hence an equivalence. �

Proposition 5.2. There is a splitting

TMF0(3) ∧ bo1 ' Σ24,3TMF0(3)⊕ Σ40,6TMF0(3).

Proof. Tensoring the splitting of Proposition 5.1 with bo1, we have

v−1
2 bo⊗4

1 ' 2Σ16,1v−1
2 bo⊗2

1 ⊕ Σ24,2TMF0(3) ∧ bo1.

Examination of π
A(2)∗
∗,∗ (bo⊗4

1 ) (Figure 3.5) reveals that

π
A(2)∗
∗,∗ (v−1

2 bo⊗4
1 ) '

2π
A(2)∗
∗,∗ (Σ16,1v−1

2 bo⊗2
1 )⊕ πA(2)∗

∗,∗ (Σ48,5TMF0(3))⊕ πA(2)∗
∗,∗ (Σ64,8TMF0(3)).

It follows that there is an isomorphism

π
A(2)∗
∗,∗ (TMF0(3) ∧ bo1) ∼= π

A(2)∗
∗,∗ (Σ24,3TMF0(3))⊕ πA(2)∗

∗,∗ (Σ40,6TMF0(3)).

Moreover, one can check form the π
A(2)∗
∗,∗ (F2)-module structure of π

A(2)∗
∗,∗ (bo⊗4

1 ) that
the isomorphism preserves multiplication by

v0, v
4
1 , v0v

2
2 , v

8
2 , h1, h2, g, v

4
2h1.

The map

Σ24,3F2 ⊕ Σ40,6F2 → TMF0(3) ∧ bo1

which maps the two generators in gives rise to a map of TMF0(3)-modules

Σ24,3TMF0(3)⊕ Σ40,6TMF0(3)→ TMF0(3) ∧ bo1.

One can then use π
A(2)∗
∗,∗ (F2)-module structures to determine that this map is an

isomorphism on π
A(2)∗
∗,∗ . �

Remark 5.3. Propositions 5.1 and 5.2 allow one to inductively compute a splitting
of v−1

2 bo⊗k1 in DA(2)∗ as a sum of suspensions of v−1
2 bo1, v−1

2 bo⊗2
1 and TMF0(3).

For example, we have

v−1
2 bo⊗4

1 ' (2Σ16,1v−1
2 bo1 ⊕ Σ24,2TMF0(3))⊗ bo1

2Σ16,1v−1
2 bo⊗2

1 ⊕ Σ24,2TMF0(3)⊗ bo1

2Σ16,1v−1
2 bo⊗2

1 ⊕ Σ48,5TMF0(3)⊕ Σ64,8TMF0(3).
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In the next case, we can further simplify the answer using v8
2 periodicity.

v−1
2 bo⊗5

1 ' (2Σ16,1v−1
2 bo⊗2

1 ⊕ Σ48,5TMF0(3)⊕ Σ64,8TMF0(3))⊗ bo1

' 2Σ16,1v−1
2 bo⊗3

1 ⊕ Σ48,5TMF0(3)⊗ bo1 ⊕ Σ64,8TMF0(3)⊗ bo1

' 4Σ32,2v−1
2 bo1 ⊕ 2Σ40,3TMF0(3)⊕ Σ72,8TMF0(3)

⊕ 2Σ88,11TMF0(3)⊕ Σ104,14TMF0(3)

' 4Σ32,2v−1
2 bo1 ⊕ Σ24TMF0(3)⊕ 4Σ40,3TMF0(3)⊕ Σ56,6TMF0(3).

We similarly may compute

v−1
2 bo⊗6

1 ' 4Σ32,2v−1
2 bo⊗2

1 ⊕ Σ48,3TMF0(3)⊕ 5Σ64,6TMF0(3)

⊕ 5Σ32,1TMF0(3)⊕ Σ48,4TMF0(3).
(5.4)

Finally, we will find the following splitting to be useful.

Proposition 5.5. There is a splitting

TMF0(3)
⊗2 ' TMF0(3)⊕ Σ0,−1TMF0(3)⊕ Σ16,2TMF0(3)⊕ Σ32,5TMF0(3).

Proof. Smashing the splitting of Proposition 5.1 with itself, and applying Proposi-
tion 5.2 and v8

2-periodicity, we have

v−1
2 bo⊗6

1 ' 4Σ32,2bo⊗2
1 ⊕ 4Σ40,3bo1 ⊗ TMF0(3)⊕ Σ48,4TMF0(3)

⊗2

' 4Σ32,2bo⊗2
1 ⊕ 4Σ64,6TMF0(3)⊕ 4Σ80,9TMF0(3)⊕ Σ48,4TMF0(3)

⊗2

' 4Σ32,2bo⊗2
1 ⊕ 4Σ64,6TMF0(3)⊕ 4Σ32,1TMF0(3)⊕ Σ48,4TMF0(3)

⊗2
.

On the other hand, by (5.4), we have

v−1
2 bo⊗6

1 ' 4Σ32,2v−1
2 bo⊗2

1 ⊕ Σ48,3TMF0(3)⊕ 5Σ64,6TMF0(3)

⊕ 5Σ32,1TMF0(3)⊕ Σ48,4TMF0(3).

Making use of π
A(2)∗
∗,∗ (F2) module structures, we deduce that there is an isomorphism

π
A(2)∗
∗,∗ (TMF0(3)

⊗2
) ∼=

π
A(2)∗
∗,∗ (Σ0,−1TMF0(3)⊕ Σ16,2TMF0(3)⊕ Σ−16,−3TMF0(3)⊕ TMF0(3))

∼= π
A(2)∗
∗,∗ (Σ0,−1TMF0(3)⊕ Σ16,2TMF0(3)⊕ Σ32,5TMF0(3)⊕ TMF0(3))

of π
A(2)∗
∗,∗ (F2)-modules. Since TMF0(3)

⊗2
is a TMF0(3)-module, we can extend the

π
A(2)∗
∗,∗ (TMF0(3))-module generators of π

A(2)∗
∗,∗ (TMF0(3)

⊗2
) to a map

Σ0,−1TMF0(3)⊕ Σ16,2TMF0(3)⊕ Σ32,5TMF0(3)⊕ TMF0(3)→ TMF0(3)
⊗2

which is a π
A(2)∗
∗,∗ -isomorphism, hence an equivalence. �
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6. Generating functions

In this section we will describe a useful combinatorial way of computing decompo-
sitions of v−1

2 bo⊗k1 and v−1
2 boj .

We will represent the objects of DA(2)∗ of the form

(6.1) Σ8i1,j1v−1
2 bo⊗k11 ⊗ TMF0(3)

⊗l1 ⊕ · · · ⊕ Σ8in,jnv−1
2 bo⊗kn1 ⊗ TMF0(3)

⊗ln

by elements of Z[s±, t±, x, y]:

ti1sj1xk1yl1 + · · ·+ tinsjnxknyln .

Propositions 5.1, 5.2, and v2-periodicity impose some relations on this polynomial
ring — we therefore work in the quotient ring

(6.2) R := Z[s±, t±, x, y]/(x3 = 2t2sx+ t3s2y, xy := t3s3y + t5s6y, t6s8 = 1).

Note that these relations imply

y2 = y + s−1y + t2s2y + t4s5y.

This relation reflects the splitting of Prop 7.3.

We may use the relations of R to reduce xk to a sum of monomials whose terms
are of the form tisjx, tisjx2, and tisjy. These reduced forms of xk correspond to
splittings of v−1

2 bo⊗k1 . For example, the splitting (5.4) corresponds to the expression

x6 = 5s6t8y + s4t6y + s3t6y + 5st4y + 4s2t4x2

in R. Table 1 shows the reduced forms of xk in R for k ≤ 16.

In light of Propositions 2.2 we can also compute the duals of objects of the form
(6.1) represented as an element of R via the ring map:

D : R→ R

t 7→ t−1

s 7→ s−1

x 7→ t−2s · x
y 7→ s · y

Note the formula D(y) = sy is forced by the relations of R. We note however that
Proposition 5.1 and Proposition 2.2 can be used to deduce that v−1

2 DTMF0(3) '
Σ0,1TMF0(3).

Now assume that the connecting morphisms ∂j (2.10) are trivial for for 1 ≤ j ≤
j0. (We will eventually prove ∂j is always zero in Theorem 8.1.) Then we can

inductively define elements of R which encode the splitting of v−1
2 boj for j ≤ 2j0+1.

These are the bo-Brown-Gitler polynomials, introduced in [BHHM20, Sec. 8]. Their
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x3 = s2t3y + 2st2x
x4 = s5t6y + t2y + 2st2x2

x5 = s6t7y + 4s3t5y + t3y + 4s2t4x
x6 = 5s6t8y + s4t6y + s3t6y + 5st4y + 4s2t4x2

x7 = 6s7t9y + s6t9y + 14s4t7y + s2t5y + 6st5y + 8s3t6x
x8 = 20s7t10y + 7s5t8y + 7s4t8y + 20s2t6y + st6y + t4y + 8s3t6x2

x9 = 8s7t11y + s6t9y + 48s5t9y + s4t9y + 8s3t7y + 27s2t7y + 27t5y
+16s4t8x

x10 = s7t12y + 35s6t10y + 35s5t10y + s4t8y + 75s3t8y + 9s2t8y
+9st6y + 75t6y + 16s4t8x2

x11 = 10s7t11y + 166s6t11y + 10s5t11y + 44s4t9y + 110s3t9y + s2t9y
+s2t7y + 110st7y + 44t7y + 32s5t10x

x12 = 154s7t12y + 154s6t12y + s5t12y + 11s5t10y + 276s4t10y
+54s3t10y + 54s2t8y + 276st8y + 11t8y + t6y + 32s5t10x2

x13 = 584s7t13y + 65s6t13y + s6t11y + 208s5t11y + 430s4t11y
+12s3t11y + 12s3t9y + 430s2t9y + 208st9y + t9y + 65t7y + 64s6t12x

x14 = 638s7t14y + 13s6t14y + 77s6t12y + 1014s5t12y + 273s4t12y
+s3t12y + s4t10y + 273s3t10y + 1014s2t10y + 77st10y + 13st8y + 638t8y
+64s6t12x2

x15 = 350s7t15y + s6t15y + 14s7t13y + 911s6t13y + 1652s5t13y
+90s4t13y + 90s4t11y + 1652s3t11y + 911s2t11y + 14st11y + s2t9y
+350st9y + 2092t9y + 128s7t14x

x16 = 104s7t16y + 440s7t14y + 3744s6t14y + 1261s5t14y + 15s4t14y
+15s5t12y + 1261s4t12y + 3744s3t12y + 440s2t12y + st12y + 104s2t10y
+2563st10y + 2563t10y + t8y + 128s7t14x2

Table 1. Reduced expressions for xk in R corresponding to de-
compositions of v−1

2 bo⊗k1 .

definition comes from (2.9) and (2.11).

f0 := 1,

f1 := x,

f2j+1 := tjx · fj ,
f2j := tjfj + tj+1s · fj−1.

(6.3)

Table 2 shows reduced expressions for fj in R for j ≤ 16.

7. g-local computations

We will now consider the g-local bo-Brown-Gitler comodules, for

g = h4
2,1 ∈ πA(2)∗

20,4 (F2).

The g-local results of this section will be crucial for the main result of Section 8.
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f1 = x
f2 = tx+ st2

f3 = tx2

f4 = st3x+ t3x+ st4

f5 = t3x2 + st4x
f6 = t4x2 + st5x+ s2t6

f7 = s2t7y + 2st6x
f8 = st6x2 + st7x+ t7x+ st8

f9 = st7x2 + t7x2 + st8x
f10 = t8x2 + s2t9x+ 2st9x+ s2t10

f11 = s2t11y + st9x2 + 2st10x
f12 = st10x2 + t10x2 + s2t11x+ st11x+ s2t12

f13 = s2t13y + st11x2 + s2t12x+ 2st12x
f14 = s2t14y + st12x2 + s2t13x+ 2st13x+ s3t14

f15 = s5t17y + t13y + 2st13x2

f16 = s3t16y + st14x2 + 2s2t15x+ st15x+ t15x+ st16

Table 2. Reduced expressions for fj in R.

Because the terms A(2)�A(1)∗ ⊗ tmfj−1 in (2.5) and (2.6) are g-locally acyclic in
DA(2)∗ , we have cofiber sequences

(7.1) Σ8jg−1boj → g−1bo2j → Σ8j+8,1g−1boj−1

∂′j−→ Σ8j+1,−1g−1boj

and equivalences

(7.2) g−1bo2j+1 ' Σ8jg−1boj ⊗ bo1.

We therefore get a g-local story completely analogous to the v2-local story, except
much easier, because there are no ‘TMF0(3)’-terms.

Proposition 7.3. There is a splitting

g−1bo⊗3
1 ' 2Σ16,1g−1bo1.

Proof. This follows the proof of Proposition 5.1, except the situation is simpler
because

g−1(bo⊗3
1 )hC3 ' 0

since g−1π
A(2)∗
∗,∗ (bo⊗3

1 )C3 is zero by inspection. �

We also have the following g-local analog of Proposition 2.2, whose proof is identical.

Proposition 7.4. We have

g−1Dbo1 ' Σ−16,−1g−1bo1.

Thus we may analyze the decompositions of g−1boj by means of generating func-
tions analogous to Section 6. In light of Proposition 7.3, instead of working in the
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ring R, we work in the ring

R′ := Z[s±, t±, x]/(x3 = 2t2sx).

By Proposition 7.4, we may encode g-local Spanier-Whitehead duality by the func-
tion

D : R′ → R′

s 7→ s−1

t 7→ t−1

x 7→ t−2s−1x

Define elements f ′j ∈ R′ by the same inductive definition (6.3) used to define the
elements fj ∈ R. A simple induction reveals the following.

Lemma 7.5. The elements f ′j ∈ R′ take the form

f ′j =

{∑
i(ai,js

itj + bi,js
itj−1x+ ci,js

itj−2x2), j even,∑
i(bi,js

itj−1x+ ci,js
itj−2x2), j odd,

for ai,j , bi,j , ci,j ∈ N.

8. The attaching maps ∂j and ∂′j

Theorem 8.1. The attaching maps ∂j (2.10) and ∂′j (7.1) are zero for all j.

Proof. Write the exact sequence (2.5) as a splice of two short exact sequences

0
''

0

K
++

33

0 // Σ8jboj
// bo2j

88

// A(2)�A(1)∗ ⊗ tmfj−1
// Σ8j+9boj−1

// 0

and let

Σ8jboj → bo2j → K
α−→ Σ8j+1,−1boj

Σ8j+8,1boj−1
β−→ K → A(2)�A(1)∗ ⊗ tmfj−1 → Σ8j+9boj−1
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be the cofiber sequences in DA(2)∗ induced from these short exact sequences. Then
we have the following commutative diagram in DA(2)∗ .

Σ8j+8,1v−1
2 boj−1

∂j

))
'

v−1
2 β

//

��

v−1
2 K

v−1
2 α

//

��

Σ8j+1,−1v−1
2 boj

��
Σ8j+8,1v−1

2 g−1boj−1
'

v−1
2 g−1β

// v−1
2 g−1K

v−1
2 g−1α

// Σ8j+1,−1v−1
2 g−1boj

Σ8j+8,1g−1boj−1

∂′j

55

OO

'
g−1β

// g−1K

OO

g−1α

// Σ8j+1,−1g−1boj

OO

We therefore have

(8.2) g−1∂j = v−1
2 ∂′j .

Now, Assume inductively that ∂k and ∂′k are zero for k < j. Then for k < 2j + 1,

v−1
2 bok and g−1bok decomposes in DA(2)∗ as a sum of terms corresponding to the

terms of fk and f ′k, respectively. Note that we have

∂j ∈ πA(2)∗
7,2 (v−1

2 D(boj−1)⊗ boj),

∂′j ∈ πA(2)∗
7,2 (g−1D(boj−1)⊗ boj).

It follows from Lemma 7.5 that

D(f ′j−1) · f ′j =
∑
i

(αis
ix+ βis

it−1x2)

for αi, βi ∈ N, and therefore

(8.3) g−1D(boj−1)⊗ boj '
⊕
i

(αiΣ
0,ig−1bo1 + βiΣ

−8,ig−1bo⊗2
1 ).

Note that there is a map of rings

φ : R′ → R

sending s to s, t to t, and x to x. We have

fk ≡ φ(f ′k) mod y.

We therefore have

D(fj−1) · fj =
∑
i

(αis
ix+ βis

it−1x2) +
∑
k,l

γk,ls
ktly.

It follows that we have
(8.4)

v−1
2 D(boj−1)⊗ boj '

⊕
i

(αiΣ
0,iv−1

2 bo1 + βiΣ
−8,iv−1

2 bo⊗2
1 )⊕

⊕
k,l

Σ8l,kTMF0(3).

Note that
π
A(2)∗
8m+7,n(TMF0(3)) = 0
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for all n,m, so the the only potential non-zero components of ∂j under the decom-
position (8.4) are the components

(∂j)
(1)
i ∈ π7,2−i(αiv

−1
2 bo1),

(∂j)
(2)
i ∈ π15,2−i(βiv

−1
2 bo⊗2

1 ).

Similarly, let

(∂′j)
(1)
i ∈ π7,2−i(αig

−1bo1),

(∂′j)
(2)
i ∈ π15,2−i(βig

−1bo⊗2
1 )

denote the components of ∂′j under the splitting (8.3).

Note that the splittings (8.3) and (8.4) are compatible under the maps

g−1D(boj−1)⊗ boj → v−1
2 g−1D(boj−1)⊗ boj ← v−1

2 D(boj−1)⊗ boj

since g−1TMF0(3) ' 0, and by (8.2) ∂′j and ∂j map to the same element of

π
A(2)∗
7,2 (v−1

2 g−1D(boj−1)⊗ boj).

We therefore deduce that under the maps

αig
−1bo1 → αiv

−1
2 g−1bo1 ← αiv

−1
2 bo1,

βig
−1bo⊗2

1 → βiv
−1
2 g−1bo⊗2

1 ← βiv
−1
2 bo⊗2

1

we have

v−1
2 (∂′j)

(1)
i = g−1(∂j)

(1)
i ,

v−1
2 (∂′j)

(2)
i = g−1(∂j)

(2)
i .

However, direct inspection of π
A(2)∗
∗,∗ (bo1) and π

A(2)∗
∗,∗ (bo⊗2

1 ) reveals:

• The maps

π
A(2)∗
7,s (g−1bo1) ↪→ π

A(2)∗
7,s (v−1

2 g−1bo1)←↩ πA(2)∗
7,s (v−1

2 bo1),

π
A(2)∗
15,s (g−1bo⊗2

1 ) ↪→ π
A(2)∗
15,s (v−1

2 g−1bo⊗2
1 )←↩ πA(2)∗

15,s (v−1
2 bo⊗2

1 )

are injections for all s.

• We have

π
A(2)∗
7,s (g−1bo1) = 0,

π
A(2)∗
15,s (g−1bo⊗2

1 ) = 0

for s ≥ 1.

• We have

π
A(2)∗
7,s (v−1

2 bo1) = 0,

π
A(2)∗
15,s (v−1

2 bo⊗2
1 ) = 0

for s ≤ 1.
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It follows that we must have

(∂j)
(1)
i = 0,

(∂′j)
(1)
i = 0,

(∂j)
(2)
i = 0,

(∂′j)
(2)
i = 0.

�

Corollary 8.5. We have

g−1bo2j ' Σ8jg−1boj ⊕ Σ8j+8,1g−1boj−1.

Therefore, if we write f ′j in the form

f ′j =
∑
i

(ai,js
itj + bi,js

itj−1x+ ci,js
itj−2x2)

then we have

g−1boj '
⊕
i

(ai,jΣ
8j,ig−1F2 ⊕ bi,jΣ

8(j−1),ig−1bo1 ⊕ ci,jΣ
8(j−2),ig−1bo⊗2

1 ).

Corollary 8.6. We have

v−1
2 bo2j ' Σ8jv−1

2 boj ⊕ Σ8j+8,1v−1
2 boj−1.

Therefore, if we write fj in the form

fj =
∑
i

(ai,js
itj + bi,js

itj−1x+ ci,js
itj−2x2) +

∑
k,l

dj,k,ls
ktly

then we have

v−1
2 boj '

⊕
i

(ai,jΣ
8j,iv−1

2 F2 ⊕ bi,jΣ8(j−1),iv−1
2 bo1 ⊕ ci,jΣ8(j−2),iv−1

2 bo⊗2
1 )

⊕
⊕
k,l

dk,lΣ
8l,kTMF0(3).

Corollary 8.7. Consider the element

h := tf1w + t2f2w
2 + t3f3w

3 · · · ∈ R[[w]].

Write the coefficient of wj in hn as∑
i

(a
(n)
i,j s

it2j + b
(n)
i,j s

it2j−1x+ c
(n)
i,j s

it2j−2x2) +
∑
j,k,l

d
(n)
k,l s

ktly

then the weight 8j summand of v−1
2 tmf

⊗n
decomposes as⊕

i

(a
(n)
i,j Σ16j,iv−1

2 F2 ⊕ b(n)
i,j Σ16j−8,iv−1

2 bo1 ⊕ c(n)
i,j Σ16j−16,iv−1

2 bo⊗2
1 )

⊕
⊕
k,l

d
(n)
j,k,lΣ

8l,kTMF0(3).
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9. Applications to the g-local algebraic tmf-resolution

Consider the quotient Hopf algebra C∗ := F2[ζ2]/(ζ4
2 ) of A(2)∗, with

πC∗∗,∗(F2) = F2[v1, h2,1].

The second author, Bobkova, and Thomas computed the P 1
2 -Margolis homology

of the tmf-resolution, and in the process computed the structure of A�A(2)⊗n∗ as
C∗-comodules. From this one can read off the Ext groups

h−1
2,1π

C∗
∗,∗(tmf⊗n)

(see [BMQ21, Thm. 3.12]).

The groups h−1
2,1π

C∗∗,∗ are closely related to the groups g−1π
A(2)∗
∗,∗ . In [BMQ21,

Cor. 3.11], it is proven that for M ∈ DA(2)∗ , there is a v8
2 Bockstein spectral

sequence

(9.1) h−1
2,1π

C∗
∗,∗(M)⊗ F2[v8

2 ]⇒ g−1π
A(2)∗
∗,∗ (M).

In this section we would like to explain how Corollary 8.5 can be used to compute

g−1π
A(2)∗
∗,∗ (tmf⊗n). By relating this to [BBT21], we will show that in the case of

M = tmf⊗n, the spectral sequence (9.1) collapses (Theorem 9.3).

We follow [BMQ21] in our summary of the results of [BBT21]. The coaction of C∗
is encoded in the dual action of the algebra E[Q1, P

1
2 ] on tmf⊗n. Define elements

xi,j = 1⊗ · · · ⊗ 1⊗ ζi+3︸︷︷︸
j

⊗1⊗ · · · ⊗ 1,

ti,j = 1⊗ · · · ⊗ 1⊗ ζ4
i+1︸︷︷︸
j

⊗1⊗ · · · ⊗ 1

in tmf⊗n.

For an ordered set

J = ((i1, j1), . . . , (ik, jk))

of multi-indices, let

|J | := k

denote the number of pairs of indices it contains. Define linearly independent sets
of elements

TJ ⊂ tmf⊗n

inductively as follows. Define

T(i,j) = {xi,j}.
For J as above with |J | odd, define

TJ,(i,j) = {z · xi,j}z∈TJ ,
TJ,(i,j),(i′,j′) = {Q1(z · xi,j)xi′,j′}z∈TJ ∪ {Q1(z · xi′,j′)xi,j}z∈TJ .

Let

NJ ⊂ tmf⊗n

denote the F2-subspace with basis

Q1TJ := {Q1(z)}z∈TJ .
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While the set TJ depends on the ordering of J , the subspace NJ does not.

Finally, for a set of pairs of indices

J = {(i1, j1), · · · , (ik, jk)}
as before, define

xJ tJ := xi1,j1ti1,j1 · · · · · xik,jktik,jk .

The following is can be read off of the computations of [BBT21].

Theorem 9.2 (Bhattacharya-Bobkova-Thomas). As modules over F2[h±2,1, v1], we
have

h−1
2,1π

C∗
∗,∗(tmf⊗n∗ ) =

F2[h±2,1]⊗
(
F2[v1]{xJ′tJ′}J′ ⊕

⊕
|J| odd

NJ{xJ′tJ′}J∩J′=∅

⊕
⊕

|J|6=0 even

F2[v1]/v2
1 ⊗NJ{xJ′tJ′}J∩J′=∅

)
where J and J ′ range over the subsets of

{(i, j) : 1 ≤ i, 1 ≤ j ≤ n}
and v1 acts trivially on NJ for |J | odd.

We now explain how the equivalences

g−1bo2j ' Σ8jg−1boj ⊕ Σ8j+8,1g−1boj−1,

g−1bo2j+1 ' Σ8jg−1boj ⊗ bo1

are related to Theorem 9.2. This analysis comes from the definitions of the maps
of (2.5) and (2.6) in [BHHM08]. For a set J of indices of the form

J = {(i1, 1), · · · , (ik, 1)},
define J + ∆ to be the set

J + ∆ = {(i1 + 1, 1), · · · , (ik + 1, 1)}.
Then the induced maps on homotopy are determined by:

π
A(2)∗
∗,∗ (Σ8jg−1boj)→ π

A(2)∗
∗,∗ (g−1bo2j)

NJ{xJ′tJ′} 7→ NJ+∆{xJ′+∆tJ′+∆}

π
A(2)∗
∗,∗ (Σ8j+8,1g−1boj−1 → π

A(2)∗
∗,∗ (g−1bo2j)

NJ{xJ′tJ′} 7→ h2,1 ·NJ+∆{x1,1t1,1xJ′+∆tJ′+∆}

π
A(2)∗
∗,∗ (Σ8jg−1boj ⊗ bo1) = π

A(2)∗
∗,∗ (g−1bo2j+1)

NJ∪{(1,2)}{xJ′tJ′} 7→ N(J+∆)∪{(1,1)}{xJ′+∆tJ′+∆}.
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We have (with g = h4
2,1)

π
A(2)∗
∗,∗ (g−1F2) = F2[h±2,1, v1, v

8
2 ],

π
A(2)∗
∗,∗ (g−1bo1) = F2[h±2,1, v1, v

8
2 ]/(v1){t1,1},

π
A(2)∗
∗,∗ (g−1bo⊗2

1 ) = F2[h±2,1, v1, v
8
2 ]/(v2

1){Q1(x1,1x1,2)}.

Corollary 8.5 therefore implies the following extension of Theorem 9.2.

Theorem 9.3. As modules over F2[h±2,1, v1, v
8
2 ], we have

g−1π
A(2)∗
∗,∗ (tmf⊗n∗ ) =

F2[h±2,1, v
8
2 ]⊗

(
F2[v1]{xJ′tJ′}J′ ⊕

⊕
|J| odd

NJ{xJ′tJ′}J∩J′=∅

⊕
⊕

|J|6=0 even

F2[v1]/v2
1 ⊗NJ{xJ′tJ′}J∩J′=∅

)
where J and J ′ range over the subsets of

{(i, j) : 1 ≤ i, 1 ≤ j ≤ n}
and v1 acts trivially on NJ for |J | odd.

Appendix A. A splitting of bo∧3
1

The v2-local splitting of Proposition 5.1 comes from a stable splitting of bo∧3
1 in-

duced by an idempotent decomposition of the identity element

1 = f1 + f2 + e ∈ Z(2)[Σ3]

as described in Remark A.2. More precisely, if we set

Fi := hocolim{bo∧3
1

fi−→ bo∧3
1

fi−→ . . . }
for i ∈ {1, 2} and

E := hocolim{bo∧3
1

e−→ bo∧3
1

e−→ . . . },
using the evident permutation action of Σ3 on bo∧3

1 , then it is easy to see that

(A.1) bo∧3
1 ' F1 ∨ F2 ∨ E.

In fact, F1, F2 and E are finite spectra and their mod 2 cohomology as a Steenrod
module can be easily computed using the cocommutativity of Steenrod operations
and a Künneth isomorphism (see [Rav92, Appendix C]). For the purposes of this
paper, we only need their underlying A(2)-module structure which we record in the
format of a Bruner module definition file [BEM17, Apx. A] (see Figure A.1 and
Figure A.2)

Remark A.2. In the group ring Z(2)[Σ3], the identity element 1 can be written as
a sum of idempotent elements

f1 =
1 + (1 2)− (1 3)− (1 2 3)

3
, f2 =

1 + (1 3)− (1 2)− (1 3 2)

3
and

e =
1 + (1 2 3) + (1 3 2)

3
.
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20

0 2 3 4 6 6 7 7 8 9 9 10 10 11 12 13 13 14 15 16

0 2 1 1

0 3 1 2

0 4 1 3

0 6 1 4

0 7 1 6

1 1 1 2

1 4 1 5

1 5 1 7

1 6 1 8

1 7 1 9

2 4 1 7

2 6 1 10

2 7 1 12

3 2 1 4

3 3 1 6

3 4 1 8

3 5 1 9

3 6 1 12

4 1 1 6

4 4 1 11

4 5 1 13

4 6 1 14

4 7 1 15

5 1 1 7

5 2 1 8

5 3 1 9

5 4 1 12

6 2 1 9

6 4 1 13

6 6 1 16

6 7 1 17

7 2 1 10

7 3 1 12

8 1 1 9

8 2 1 12

8 4 1 14

8 5 1 15

8 6 1 17

9 4 1 15

9 6 1 18

9 7 1 19

10 1 1 12

10 4 1 16

10 5 1 17

11 1 1 13

11 2 1 14

11 3 1 15

11 4 1 17

12 4 1 17

12 6 1 19

13 2 1 16

13 3 1 17

13 4 1 18

13 5 1 19

14 1 1 15

14 2 1 17

15 2 1 18

15 3 1 19

16 1 1 17

17 2 1 19

18 1 1 19

Figure A.1. The A(2)-module structure of H∗(F1) ∼= H∗(F2) as
an input file for Bruner’s program

Remark A.3. Note that f1 and f2 are conjugates and therefore, F1 ' F2.

Bruner’s program is capable of computing the action of π
A(2)∗
∗,∗ (F2) on π

A(2)∗
∗,∗ (M∨),

where M∨ is the F2-linear dual of a finite A(2)-module M . Therefore, it can
be used for verifying the details necessary in the proof of Proposition 5.1 and
Proposition 5.2.

Remark A.4. Using Bruner’s program and Figure 4.2 one can easily verify

v−1
2 π

A(2)∗
∗,∗ (H∗(E)) ∼= π

A(2)∗
∗,∗ (Σ24,2TMF0(3)).

Then by Theorem 4.3 we get Σ24,2TMF0(3) ' v−1
2 H∗(E) in DA(2)∗ .

Remark A.5 (A different proof of Proposition 5.1). LetM1 denote the first integral
Brown-Gitler module. It consists of three F2-generators {x0, x2, x3} where |xi| = i
such that

Sq2(x0) = x2 and Sq1(x2) = x3.
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24

0 4 6 7 8 10 10 11 11 12 12 13 13 14 14 15 16 17 17 18 18 19 20 21

0 4 1 1

0 6 1 2

0 7 1 3

1 2 1 2

1 3 1 3

2 1 1 3

2 4 2 5 6

2 5 2 7 8

3 4 2 7 8

3 6 2 11 12

4 2 2 5 6

4 3 2 7 8

4 4 2 9 10

4 5 2 11 12

4 6 2 13 14

4 7 1 15

5 1 1 7

5 2 1 10

5 3 2 11 12

5 4 2 13 14

5 5 1 15

6 1 1 8

6 2 1 10

6 3 2 11 12

6 4 2 13 14

6 5 1 15

7 2 1 11

7 3 1 14

7 4 1 15

7 6 2 17 18

8 2 1 12

8 3 1 14

8 4 1 15

8 6 2 17 18

9 2 1 13

9 3 1 15

9 4 1 16

9 5 2 17 18

9 6 2 19 20

9 7 1 21

10 1 2 11 12

10 2 1 14

10 4 1 16

10 5 2 17 18

10 6 2 19 20

10 7 1 21

11 1 1 14

11 4 1 17

11 5 1 20

11 6 1 21

12 1 1 14

12 4 1 18

12 5 1 20

12 6 1 21

13 1 1 15

13 4 1 19

13 5 1 21

13 6 1 22

13 7 1 23

14 4 1 20

14 6 1 22

14 7 1 23

15 2 2 17 18

15 4 1 21

15 6 1 23

16 1 2 17 18

16 2 2 19 20

16 3 1 21

16 4 1 22

16 5 1 23

17 1 1 20

17 2 1 21

17 4 1 23

18 1 1 20

18 2 1 21

18 4 1 23

19 1 1 21

19 2 1 22

19 3 1 23

20 2 1 22

20 3 1 23

21 2 1 23

22 1 1 23

Figure A.2. The A(2)-module structure of H∗(E) as an input
file for Bruner’s program

It is tedious but straightforward to check that there is a short exact sequence

0→ H∗(Σ17bo1) −→ Σ4A(2)�A(1)⊗M1 −→ H∗E → 0

of A(2)-modules. This short exact sequence translates into an DA(2)∗ -equivalence

v−1
2 H∗(F1) ∼= H∗(F2) ' Σ16,1v−1

2 bo1

which, along with Remark A.4 and (A.1), gives yet another proof of Proposition 5.1.
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