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1. INTRODUCTION

Let bo denote the connective real K-theory spectrum. Mahowald and his collabo-
rators used the bo resolution (aka the bo-based Adams spectral sequence) to study
stable homotopy groups to great effect. Specifically, they computed the image of
the J-homomorphism [DM89], proved the 2-primary height 1 telescope conjecture
[Mah81], [LM8T], computed the unstable v;-periodic homotopy groups of spheres
[Mah82], and applied homotopy theoretic methods to a variety of geometric prob-

lems [DGMSI].
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The spectrum bo has two distinct advantages that lend itself to these applications
at the prime 2. Firstly, mpbo is torsion free and w.bo is Bott periodic (i.e. ;-
torsion free), so it is equipped to detect the zeroth and first layers of the chromatic
filtration. Secondly, vi-periodic homotopy at the prime 2 is more complicated than
at odd primes, and this is witnessed by the elements 1 and n? generating additional
anomalous torsion [Ada66]. These elements and their v;-multiples are detected by
the bo-Hurewicz homomorphism

T, — Ty bo.

At chromatic height 2, the 2-primary stable stems have a vast collection of anoma-
lous torsion, and a significant portion of this vs-periodic torsion is detected by the
spectrum tmf of topological modular forms (see [BMQ21]). As such the tmf resolu-
tion represents a significant upgrade to the bo resolution. Indeed, partial analysis of
the tmf resolution has resulted in numerous powerful results [BHHMOS|, [BHHM20],
[BBBT21], [BMQ21].

For a spectrum X, the ¢tmf resolution of X is the tower of cofiber sequences

(1.1) X S 1%mf A X S-2%mt A X
tmf A X = 1tmf A tmf A X S 2tmf A tmf A X

Here tmf is the cofiber of the unit
S — tmf — tmf.
Applying 7, to the tower above results in the tmf-based Adams spectral sequence

f prt(X) = oy (tmf AtmE A X) = m_p X.

Ultimately, the successful applications of the tmf-resolution so far have been limited
by our ability to compute the E-page of the tmf-based Adams spectral sequence
— computations to date have relied on computations of the Ej-page in certain
regions. Unlike the bo case, we are not able to completely compute this F; page
for X = S. The goal of this paper is to make a significant step towards rectifying
this deficiency.

The computations of the E;-page that have been successfully performed used the
classical Adams spectral sequence. We focus our attention at the prime 2. Recall
that for a connective spectrum Y, the mod 2 Adams spectral sequence (ASS) takes
the form

W EYNY) = Ext% (Fa, H.Y) = m_ Y3
where H, denotes mod 2 homology and A, is the dual Steenrod algebra. The E;-

term of the tmf-resolution than can then itself be approached by computing the
ASS’s

@ss 3 (tmf A tmf A X) = m_(tmf A tmf ' A X) = EET8 (X)),

In practice, given the computation of the Fo-pages, these Adams spectral sequences
can be completely computed, as the majority of the differentials can be deduced
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from the Adams spectral sequence for tmf (as computed in [BR22]). The tmf-
resolution can then be studied through the Miller square [Mil81]

@55 5t (tmf A Tl A X) =222 tmf gt =s ()
alg tl"l"lf res tm\hres
4
s+n,t
assE; n (X) ? 7Tt—s—nXé\

Here, the left side of the square is the algebraic tmf-resolution, the analog of the
tmf-resolution obtained by applying Ext4, to (1.1). The starting point is therefore
the computation of the F1-page of the algebraic tmf resolution of the sphere

ass 5 (tmf A tmf ).

Analogous to the case of the bo-resolution and the BP(2)-resolution [Mah8&1] [Cull9],
we propose the following conjecture.

Conjecture 1.2. The map
@ss St (tmf A tmf ) — vyt B (tmf A tmf)

is injective for s > 0.

This conjecture is consistent with computations in low degrees (see, for instance,
[BOSS19]). It implies a good-evil decomposition of the tmf-resolution of the sphere,
analogous to that of [BBBT20|, [BBB™21].

In this paper we give a complete computation of
vy L 2% By (tmf A tmf").
We now summarize the main results.
For a graded Hopf algebra I" over k, let Dr denote Hovey’s stable homotopy cate-
gory of I'-comodules. Briefly, Dr is similar to the derived category, with the chief

difference that weak equivalences are defined to be the w£7*—isomorphisms, where
for a I'-comodule M, the homotopy groups 7r£,* are defined to be

mr (M) := Ext2* " (k, M).

For M € Dr, we let ¥™*M denote a shift in internal degree by s + n and in
cohomological degree by s, so we have
W/E,Z(EN’SM) = ﬂ—ll;‘fn,lfs(M)
and
[=™%k, M]r = m, (M).
For a spectrum X, we shall let
X €Dy,

denote the object associated to the mod 2 homology H,.X. In this notation the
ASS takes the form

CLSSESJ(X) = ﬂ—f&s,s(i) = 7Tt—sX2/\~
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Since tmf = (AfA(2)). [Matl6] (where A(2) is the subalgebra of the mod 2 Steenrod
algebra generated by Sq', Sq?, and Sq4)7 we have a change of rings isomorphism

(1.3) s (tmf ® M) = 72" (M)

for any M € Dy4,. Therefore the E;-term of the algebraic tmf-resolution takes the

form .
assE;’*(tmf A tmf n) ~ W:&)g)* (@@n)

There is a decomposition [BHHMOS]
(1.4) @@m ~ @ Z8(i1+~--+in)mil ® -+ ®bo

Q1,000 >0

in

in D4 ()., where bo; denotes the homology of the ith bo-Brown-Gitler spectrum
(see Section [2)).

For an object M € Dy(2),, the localization v;lM denotes the localization of M

with respect to the element
A(2).
v € 7T48(,8) (F2),

so we have R o
vy LS ER (bmf Atmf ) & we P (v tmf ).

We will prove
Theorem 1.5 (see Corollary and (2.9)). There are equivalences in D 42y,
U;lmzj ~ Zgjvg_lmj &) 28j+8,1051mj_1,

-1 o =108
Vg mzjud—vg X @j ®@1-

The splittings of (L.4) and Theorem|L.5inductively imply that in D 4z), the objects
vy 1@@% split as a wedge of bigraded suspensions of vy 1@?’9 We are left with

identifying these explicitly.

To this end we will introduce an object

TMF((3) € Da(g),

which serves as an algebraic version of the tmf-module TMF((3) (the theory of
topological modular forms associated to the congruence subgroup I'g(3) < SL2(Z)),
and prove

Theorem 1.6 (Proposition and . There are splittings in D (2,
vy tho? ~ 25161y Tho, @ B2H2TMF,(3),
TMF((3) ® bo, ~ 223 TMF(3) @ B4OCTMF(3).

The splittings of Theorem imply that the objects vy 1@?’“ split in Dy(g), as
a direct sum of bigraded suspensions of copies of vy 'Fy, v 'bo,, vy 'ho¥?, and
TMF,(3).

Putting this all together, we have the following theorem (see Corollary for a
more precise formulation).
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Theorem. There is a splitting of
_1——®n
vy tmf € DA(Q)*
into a well-described sum of various bigraded suspensions of

’L}Q_l]Fg}
vglml;
vy 'bof”,
TMFy(3).

The most subtle step to all of this is the first equivalence of Theorem Indeed
an explicit exact sequence (see 1| of [BHHMOS] implies that vy 1@% is built
from vy '$%bo; and vy 'E¥+81bo; | in Dy(s),. The hard part is showing that
the attaching map between these two components is trivial. This is accomplished
by showing that if this attaching map is non-trivial, then it is non-trivial after
g-localization where g is the generator of 772(%(51 *(F3). We then prove the g-local
attaching map is trivial (see Corollary and Theorem , strengthening the
results of [BBT21].

Theorem. There is a splitting of
g_lﬁm € Da2).

into a well-described sum of various bigraded suspensions of

o g 'Fy,
L4 9_1@17
° gilm?Q.

The vs-local results of this paper may be applied to understand the TMF-resolution,
where

TMF = tmf[A™1].
Namely, there are localized ASS’s
72 (7 8mf ® X) = 7 (TMF ATME ™ A X)3.

Our vsy-local results also may be used to understand the vs-localized algebraic tmf
resolution
v;lﬂﬁf)*(@@n OM)= v;lw,‘?’;(M).

Here, the vy-localized Ext groups v, 'm: are as defined in [MS87].

*, %

The g-local results of this paper may be applied to understand g-local Ext over the
Steenrod algebra, using the g-local algebraic tmf-resolution

wﬁf)*(g’1@®"®M) égflﬁﬁl(Ml
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Organization of the paper. In Section [2] we reduce the study of tmf to the
bo-Brown-Gitler comodules bo;. We review exact sequences which relate these
comodules to @?k . Upon vs-localization, we show that these exact sequences give
complete decompositions of v5 1b0j in terms of bigraded suspensions of vy 1@?’“
for various k, provided certain obstructions 0;: vanish for j' < j/2.

In Sectionwe review the structure of Wﬁ 9)* (@j@k) for 0 < k < 4. These will form

the computational input for the rest of the paper.

In Section {4 we construct TMF((3) € D4(q),, our algebraic analog of TMF(3),
and establish some basic properties.

In Section 5] we prove a few key splitting theorems that inductively give complete
decompositions of @?k € Dy(g), into indecomposable summands. Provided the
obstructions d;, vanish, we therefore get complete decompositions of v, 1@j.

In Section [6] we define certain generating functions which conveniently allow for
algebraic computation of the putative decompositions of v, 1@j.

In Section [7| we explain the analogs of the vs-local decompositions of bo; and @?k
in the g-local category. The decompositions of g_lmj depend on the vanishing of
certain obstructions ;.

Section (8} we prove our main result: the obstructions 9; and 8; vanish for all j.

This results in a complete decomposition of vy 1Emf>" and g‘ltmf®n.

In Section [9] we relate our g-local results to the computations of Bhattacharya,
Bobkova, and Thomas [BBT21], providing a strengthening of their results.

In Appendix we discuss a stable splitting of bof3 and its relationship with
Theorem [L.6

Acknowledgments. The results of this paper were made possible with the as-
sistance of the computational Ext software of R. Bruner and A. Perry, and the
computer algebra systems Fermat and Sage. The first author was supported by
NSF grants DMS-1547292 and DMS-2005476.

2. bo-BROWN-GITLER COMODULES

In this section we reduce the analysis of v5 1@@)” to the analysis of ve-local bo-
Brown-Gitler comodules. These are A,-comodules which are the homology of the
bo-Brown-Gitler spectra constructed by [GIM86]. Mahowald used integral Brown-
Gitler spectra to analyze the bo resolution [Mah81]. The bo-Brown-Gitler comod-
ules play a similar role in the algebraic tmf resolution [BHHMOS], [MR09], [DM10],
[BOSS19], [BHHM20], [BMQZ21].

Endow the mod 2 homology of bo
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(where (; denotes the conjugate of &; € A,) with a multiplicative grading by declar-
ing the weight of (; to be

(2.1) wt(¢;) = 2071
The ith bo-Brown-Gitler comodule is the subcomodule
bo, C AJ A1)«
spanned by monomials of weight less than or equal to 4.
For an object M € Dy(o),, let
DM = Homg, (M,F5)
be its Fao-linear dual. We record the following useful result.

Proposition 2.2. There is an equivalence

-1 ~ 3 —16,-1 1
vy " Dbo; ~ X vy " bO;.

Proof. This follows from the short exact sequence
0 — bo, — A(2)/A(1), — X" Dbo, — 0.
O

Our interest in the bo-Brown-Gitler comodules stems from the fact that there is a
splitting of A(2).-comodules [BHHMO0S, Cor. 5.5]:

(2.3) tmf 2 (H %o,
i>0
where ZSj@j is spanned by the monomials of
m = A//A(2)* = F?[Clga C§7 C§?<47 .- ]
of weight 8j. We therefore have a splitting of A(2).-comodules
(2.4) @@on o~ @ Es(i1+~-»+in)mil ®---®bo; .

01500y >0

The object
28(11+..4+’Ln)mi1 R ® min, S DA(2)*

can be inductively built from bo®* by means of a set of exact sequences of A(2),-
comodules which relate the bo,’s [BHHMOS, Sec. 7]:

(2.5) 0 — X%bo; — boy; — A(2) J A(1). ® tmf; |, — ¥ bo, | =0,
(2.6) 0 — X%bo; ® bo; — boy;,; — A(2) /A1), ® tmf; , — 0.

Here, mj is the jth tmf-Brown-Gitler comodule — it is the subcomodule of tmf
spanned by monomials of weight less than or equal to 8;.

Remark 2.7. Technically speaking, as is addressed in [BHHMOS8, Sec. 7], the
comodules

A2)JA(1). © tuf,
in the above exact sequences have to be given a slightly different A(2).-comodule
structure from the standard one arising from the tensor product. However, this
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different comodule structure ends up being Ext-isomorphic to the standard one.
As the analysis of this paper only requires

vy LA(2) J A(1). © tmf;_y =~ 0,
9 "AQ2) JAQ1). @ tmf; ; =0,

and these equivalences hold for the non-standard comodule structures, the reader
can safely ignore this subtlety.

Since

vy LA(2)  A(1). ® tmf;_y =0,
The exact sequences (2.5)) and (2.6) give rise to a cofiber sequence in D 4(2),
(2.8) 5% 05 bo; — vy 'boy; — ¥ Tho,
and an equivalence
(2.9) 28%;1@]- ® boy ~ 02_1@2j+1.
Thus, (2.8) and (2.9)) inductively build

v;lmi € DA(Q)*

out of v;lm?k.

The connecting homomorphism of the cofiber sequence ([2.8)
(2.10) 9; vy 'S bo, | — 0y TEIHE T,

is the obstruction to the cofiber sequence being split. We will prove in Section
that the connecting homomorphism 9; = 0 for all j, so we have

(2.11) 3 "oy ~ vy ' S¥bo; ® vy 'E¥ ¥ bo, .

3. THE GROUPS o 2" (bol)

In the previous section we related the comodules @j to the comodules m‘?k . We
now review the structure of
for 0 < k < 4.

In order to give names to the vg-torsion-free generators of 7r;4, iz)*(@?k), we re-
view the corresponding vg-local computations. The entire structure of the vg-local
algebraic tmf resolution is given in [BMQ21] (see also [BOSS19)]).

Observe that we have

(3.1) valwﬁg)* (Fy) = Fo[vT, v}, v3].

Note that c4,c6 € (tmf,)g are detected in the vp-localized ASS by vi and v3v3,
respectively.

We have (regarding bo; as a subcomodule of A/ A(2).)

_1_A(2). o =
vy 'l (boy) = Falvi, of, v{E], €3}
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We therefore have an isomorphism
(32) o 'L (bof) = Falo, of, v3] ® Fa &, £3}°F.

To make for more compact notation, we will use bars to denote elements of tensor
powers:

(3.3) i |zn =2 @ @ Xy,

wﬁf)*(]&) : (Figure

All of the elements are ¢4 = v{-periodic, and v§-periodic. Exactly one v{ multiple
of each element is displayed with the e replaced by a o. Observe the wedge pattern
beginning in ¢ — s = 35. This pattern is infinite, propagated horizontally by hg 1-
multiplication and vertically by vi-multiplication. Here, hy; is the name of the
generator in the May spectral sequence of bidegree (t — s,s) = (5,1), and hé,l =g.

wﬁg)*(m?k), for k =1,2,3,4: (Figures

Every element is v§-periodic. However, unlike 71;4, Sﬂz)*(]l‘?g)7 not every element of

these Ext groups is vi-periodic. Rather, it is the case that either an element
T € ExtA(g)*(@?k) satisfies vix = 0, or it is v{-periodic. Each of the vi-periodic
elements fit into families which look like shifted and truncated copies of Wﬁil)* (F9),
and are labeled with a o. We have only included the beginning of these v}{-periodic
patterns in the chart. The other generators are labeled with a e. A [ indicates a
polynomial algebra Fa[hs 1]. Elements which are vo-torsion-free are named in these

charts using (3.2)), in the bar notation of ([3.3)).

4. AN ALGEBRAIC MODEL OF TMF((3)

The spectrum TMF((3) is an analog of TMF associated to the moduli of elliptic
curves with with T'o(3)-structures introduced and studied by Mahowald and Rezk
[MRO9]. In fact, Mahowald and Rezk proposed three different connective spectra
whose F(2)-localizations are TMF(3) (also see [DM10]).

We will emulate [MR09, DM10] in the category of D 4(9), to construct the TMFq(3).

Lemma 4.1. The composite

2
»02F, "2, B, <y %7 Dbo,

extends to a map

h3 : %%?bo;, — ¥ Dbo;.

Our algebraic model of TMF((3) is defined to be
TMF(3) := vy ' (5**° Dbo; U $***bo;).
2

Figure shows a computation of the homotopy of Dbo, Uh~§ %%1ho,. In this

figure, the solid dots correspond to Dbo; and the open dots correspond to bo;.
One convenient way of accessing the homotopy of Dbo, is from the short exact
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sequence in the proof of Proposition A chart of 7r§3 2. (TMF((3)) is displayed

in Figure [£.2]
Lemma 4.2. Any map
£ : TMFg(3) — TMFy(3)

which is the identity on 7r64,(()2)* is an equivalence.

Proof. Let lrnp,3) € wégQ)*(TMFo(S)) denote the generator. The wﬁf)*(l&)-
module structure implies f is the identity on g - 11y, (3) and vihy. It follows from

hs linearity that f is the identity on x17 (see Figure. Therefore f is the identity

on vihix7. It follows from hg, hi, he, and v} linearity that f is an isomorphism
on valm’:g)* (TMFy(3)). Here we must use the fact that the vg-localization of f is

a map of vy 17r*7*(IE"“Q)—modules. It then follows that f is a 7'(':3 iz)*—isomorphism. O

We have the following algebraic version of the Recognition Principle of Davis-
Mahowald-Rezk (see [MRQ9, Prop. 7.2]).

Theorem 4.3 (Recognition Principle). Suppose that X € D (o), satisfies
(4.4) Tl (X) 2wl (TMF(3))

where the above isomorphism preserves vy, hi, ha, vi, vov3, v§, vihi, and g mul-
tiplications. Then there is an equivalence

X ~ TMF,(3).

Proof. Let
217 : B10F, — X

represent the generator of wﬁ(’?* (X). Since
mird (X) = migy " (X) = mg " (X) =0,
there exists an extension of x17 to a map
2*3Dbo; — X.
Since
Ty (X) = myry (X) = mg s (X) = myg )" (X) =0
there exists a further extension of this map to a map
»243Dbo, U X**bo, — X.

The conditions on the isomorphism (4.4) imply that X ~ Uy !X, Thus the map
above localizes to a map

vy 1 (2*3 Dbo, U X*%bo,) — X.
The conditions on the isomorphism 1D then force the map above to be a W*Ai,(f)*—
isomorphism. [
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FIGURE 4.1. Computing the homotopy of Dbo; U »%1ho,.
2
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X

FIGURE 4.2. 703" (TMF(3)).
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For us, a weak ring object in D y(3), is an object R € D42y, with a unit
u: ]F2 — R

and a multiplication
m:RQR— R

such that the two composites
RoF, 2 RO R ™ R,
Fo®R“2L RoOR™ R
are equivalences.

o

Proposition 4.5. TMF((3) is a weak ring object in D 4(2)

Proof. We shall need to imitate the “first model” of [MRQ9], [DM10]. Start with
the A,-comodule Y described in [DMI0, Thm. 2.1(a)]. Then the method of proof
for [DM10, Thm. 2.1(b)] shows that there exists a map

hohs : 5*7Y = Fy
in Dy, extending hohgo, so we can take the cofiber
— 4,1
X =T, Um XY,
Regarding this cofiber as an object of D 4(y),, define
R:= ’U;li S ’DA(Q)*.
We will show (a) R ~ TMF(3) and (b) R is a ring object of D 42), .
For (a), we will compute 77;4752)*(1%). To this end, we observe that the methods of
the proof of [DM10, Thm. 2.1(c)] show that there is a map
f:X = AR2)JAM).
which extends the inclusion Fo < A(2)/ A(1).. Let C be the cofiber of f:
(4.6) XL A@) /A0). — C.
Then the proof of [DMI0, Thm. 2.1(d)] shows that
$1A(2)/A(2)(Sq", 8q”Sq' )., s=0
Wﬁgn(m)*@cw{o B/ACS S Sa')es 8 =0
) S .

as an A(2).-comodule. The A(2).-based Adams spectral sequence for C then col-
lapses to give an isomorphism

Tl (C) = Extiyy (Fa, £ A(2)/A(2)(Sq*, Sa® Sa*).).

These Ext groups were computed in [DM10, Thm. 2.9]. The cofiber sequence (|4.6)
gives an equivalence

R~y "ty lC.
We see by inspection of Davis-Mahowald’s Ext computation alluded to above that
there is an isomorphism

AP (E by 1) 2 7 (TMF (3))
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satisfying the hypotheses of the Recognition Principle (Theorem [4.3). We deduce
that there is an equivalence
TMFy(3) ~ R.

We now just need to prove R is a ring object in D 4(z),. For this we imitate the
proof of [DM10, Thm. 2.1(e)]. Namely, consider the composite

e X o X L2 A@2) JA(1). ® A(2) /A1), L AQ2) A1),
By the cofiber sequence (4.6]), the map m lifts to a map
m: XX - X

if the composite

XX A2)/AQ). = C
is null. In the proof of [DMI10, Thm. 2.1(e)], it is established using Bruner’s Ext
software that

(X ®X,Cla@), =0.

Therefore, the lift m exists. Since it is a lift of 7, it is the identity on the bottom
cell. Tt follows that the composites

FoX > XXX

are the identity on the bottom cell. It follows from Lemma that after vs-
localization, the composites

R®Fy - R®R S R,
F;@ R~ R®R SR

are equivalences. Thus m gives R the structure of a weak ring object. (In fact, the
analog of Lemma holds for X, and so X is also a weak ring object.) O

5. SPLITTING boP¥

In this section we prove our main ws-local splitting theorems, which will be the
basis of all of our subsequent vs-local decomposition results.

Proposition 5.1. There is a splitting
vy ho?? ~ 29161y Tho, @ N2H2TMF,(3).

Proof. Since we are working in characteristic 2, there is a decomposition
bof” = (boi”)"” @ B
where C5 acts by cyclically permuting the terms, and we have
il (o)) = w L (bof*) .

It is easily checked, using the names of the generators in Figure [3.4] that there is
an isomorphism

vy T (bof?)C) = i) (TMF (3)).
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A direct application of the Recognition Principle (Theorem shows that
U;l(m(lg?))hc:g ~ 224’2TMF0(3).

Let
16 - 216’1F2 — bioi®2

correspond to the generator of 7r‘146(’21)* (bo$?). Then the composite

— — R1BI® — —
216,11}2 1@1 D 216,11}2 lml Z16 z16 o 1@(13)3 N vy 1B

. A2). . . .
is seen to be a 7T*7S¢ )*—1somorph1sm, hence an equivalence. ([l

Proposition 5.2. There is a splitting
TMF(3) A bo, ~ 243 TMF(3) @ 2405TMF(3).

Proof. Tensoring the splitting of Proposition with bo;, we have
vy bt ~ 29161 1hoP? @ %242 TMF((3) A bo, .

Examination of Wﬁ@* (boP*) (Figure reveals that

w7 (v o) =
2 (D (21615 1102) @ 7D (RIS TMF(3)) @ wi ) (SOHSTMF, (3)).
It follows that there is an isomorphism
723+ (TMF(3) Aboy ) 22 7o @+ (S243TMF(3)) & P (D406 TMF, (3)).
Moreover, one can check form the 7r;47 @- (F2)-module structure of Wﬁiz)* (bo$*) that
the isomorphism preserves multiplication by
Vo, vilv UO”%& ”US, hlv h27 9, Ughl-

The map
»243F, @ 2406F, — TMF(3) A bo,

which maps the two generators in gives rise to a map of TMF(3)-modules

SHATMF(3) & 21O TMFy(3) — TMFo(3) A bo,.

One can then use 7r§3 g)*(Fg)—module structures to determine that this map is an
isomorphism on 7r§3 5?)*. O

Remark 5.3. Propositions[5.1]and [5.2]allow one to inductively compute a splitting
of v{lm?k in Dy(2), as a sum of suspensions of vy 'bo,, vz_l@fﬁ and TMF((3).
For example, we have
vy bt ~ (281%1y; o, @ 242 TMF((3)) @ bo,
25161y hof? @ B2 TMF,(3) ® bo,

250105 bof” & N TTMFy(3) & S TME( (3).
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In the next case, we can further simplify the answer using v§ periodicity.

U;lm?s ~ (2216,11};1@(12)2 P 248’5TMF0(3) D 264,8TMF0(3)) ®m1
~ 251611 hoP3 @ BASSTMF(3) ® bo, @ L4 TMF,(3) ® bo,
~ 45322y, ho, @ 28403 TMF(3) @ S>3 TMF,(3)

© 2888 TMF(3) @ 104 H4TMEF ) (3)

~ 45322y bo; @ S TMF(3) @ 453 TMFy(3) @ S TMFy(3).

We similarly may compute

vy 1hof0 ~ 452322y oD% @ DASSTMF(3) @ 5X4TMF, (3)

5.4
(54 © 583 TMF(3) @ S84 TMF,(3).

Finally, we will find the following splitting to be useful.
Proposition 5.5. There is a splitting

TMFy(3)%? ~ TMFy(3) & %~ 'TMF(3) & L'02TMF(3) & £ TMF(3).

Proof. Smashing the splitting of Proposition [5.1] with itself, and applying Proposi-
tion and v§-periodicity, we have

vy 'boP® ~ 4332210 ®? @ 452193 bo, ©® TMF(3) @ L84 TMF(3)®°
~ 45322hoP? g ANOHOTMF (3) @ 40309 TMF,(3) & B4 4TMF,(3)?
~ 45322ho%? @ ANOHOTMF(3) @ 48°2 TMF,(3) @ B4 4TMF,(3)>.

On the other hand, by (5.4), we have
vy 1hof0 ~ 452322y 1hoP? @ DS TMF(3) @ 5X4TMF, (3)
@ 583 TMF(3) @ S84 TMF,(3).

Making use of Wﬁ&z)* (F2) module structures, we deduce that there is an isomorphism

m (TMF,(3)%%) 2

T @ (20 ITMF (3) @ B2 TMF (3) @ £ 16 3TMF(3) @ TMF,(3))
~ 72 (20 ITMF(3) @ D102 TMF(3) @ S325TMF, (3) @ TMF,(3))

of wﬁ,(f)* (F3)-modules. Since TMF((3)%? is a TMFg(3)-module, we can extend the

wﬁg)* (TMF((3))-module generators of 775‘,9)* (TMF;(3)%?) to a map

0-ITMF(3) @ S92 TMF(3) & S°*5TMF(3) & TMFq(3) — TMF,(3)%?

N A(2), . . .
which is a w*}i )*—1somorphlsm, hence an equivalence. [
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6. GENERATING FUNCTIONS

In this section we will describe a useful combinatorial way of computing decompo-
sitions of vy 'bo{?* and vgl@j.

We will represent the objects of D42, of the form
(6.1) T8Iy ThoPR @ TMF(3)%" @ - - - @ B8 dnps ThoPFn @ TMF,(3)®"
by elements of Z[s*,t*, x, y|:

tirghighiyh o g fin gin gphngln,

Propositions and vy-periodicity impose some relations on this polynomial
ring — we therefore work in the quotient ring

(6.2) R:=Z[sT 5 x,y]/(z® = 2t%sx + 1357y, xy = 353y + 750y, 155 = 1).
Note that these relations imply

y? =y + sty + 22y + t1sPy.
This relation reflects the splitting of Prop|7.3

We may use the relations of R to reduce z* to a sum of monomials whose terms
are of the form t'sx, t's7z2, and t's’y. These reduced forms of z* correspond to
splittings of vy lm?k. For example, the splitting (5.4]) corresponds to the expression

2% = 5558y + 540y + 3ty + bstty + 452122
in R. Table [1| shows the reduced forms of z* in R for k < 16.

In light of Propositions [2.2] we can also compute the duals of objects of the form
(6.1) represented as an element of R via the ring map:

D:R—R

ts ¢!

s st

x>t %51

y—=s-y

Note the formula D(y) = sy is forced by the relations of R. We note however that
Proposition and Proposition can be used to deduce that v;lDTMFO(i%) ~
LOITMF(3).

Now assume that the connecting morphisms 0; are trivial for for 1 < j <
Jjo. (We will eventually prove 9; is always zero in Theorem [8.1}) Then we can
inductively define elements of R which encode the splitting of v5 "bo; for j < 2j0+1.
These are the bo-Brown-Gitler polynomials, introduced in [BHHM20, Sec. 8]. Their
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= sty + 25tz
s5t5y + 2y + 2st%2?
sStTy + 4530y + 13y + 4524w
5558y + 540y + s3t5y + Bstty + 4s%t1x?
6577y + s5t% + 14s*7y + $2t°y + 6st°y + 8535z
205710y + 75218y + Ts* By + 205210y + stOy + thy + 8531622
= 85Tty + s5t% + 4855t% + s*t%y + 8s3tTy + 277y + 2710y
+1654t82
20 = T2y 4+ 3555t10y 4+ 3557410y + 4By + 75533y + 952t8y
+9st5y + 75ty + 1654822
'l = 1057ty 4+ 16650ty + 1055t 1y 4 44549y + 110537y + s2t%
+5%tTy + 110st7y + 447y + 32551102
12 = 1548712y + 1545512y + 512y + 11°t10y + 2765410y
+5453t10y 4 54528y + 2765t3y + 113y + 0y + 32551022
'3 = 584s7t13y + 6555t13y + sty 4 2085ty + 43054ty
+1283tMy + 1253t% + 43052t% + 208st%y + t9y + 65ty + 645°t12x
't = 638sTtMy + 1355ty + 7755112y 4 10145°t12y + 2735412y
+5312y + 5410y + 27353110y 4 10145210y + 77510y + 13s5t3y + 6388y
+6455t1222
215 = 35057ty + s5t10y + 145713y + 9115513y + 165255113y
+90s%t13y 4+ 9054ty + 165283t Ly + 91152ty + 14st!ly + s2t%y
+350st%y + 2092ty + 128s7t!4x
216 = 1045710y 4 4405714y + 374450114y + 1261s°t 4y + 15514y
+1555t12y 4+ 1261512y + 37445312y + 44052112y + st2y + 1045210y
+2563st10y + 256310y + 18y + 128571422

8 8 8 8 8 8 8
© 0w N o ;e W

TABLE 1. Reduced expressions for z¥ in R corresponding to de-
compositions of vy 1b70$§>k-'

definition comes from and .
fo:=1,
fi=z,
fojrr =t fj,
foj =t f+ T s fiq.

Table [2| shows reduced expressions for f; in R for j < 16.

(6.3)

7. g-LOCAL COMPUTATIONS

We will now consider the g-local bo-Brown-Gitler comodules, for
g=h3y €mypgy (Fa).

The g-local results of this section will be crucial for the main result of Section
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i = =«

fo = tx+st?

f3 = ta?

fi = stlz4+t3x+ st
fs = t3a?+stix

fo = t*a?+ stz + 520

fr = %7y + 25tz
fs = stér?+stTx+t7x + std
fo = stz +t7x?+ stz
fio = 1822 + s%t%z + 2st%x + s2¢10
fii = %My + st922 + 25t102
fio = st1022 441042 4 g2y 4 gplly 4 62412
fiz = %Py + sttla? 4 2122 + 25t
fia = %My + st122? 4 s2tB3x 4+ 25t13x 4 3¢
fis = sttty + B3y + 251322
fie = 30y + stlha? 4+ 252400 + stldz + t102 + st16

TABLE 2. Reduced expressions for f; in R.

Because the terms A(2) / A(1), ® tmf; ; in (2.5) and (2.6)) are g-locally acyclic in
D (2)., we have cofiber sequences
. . 0’ .
71 28] 71m4 N 71m N 28j+8,1 71b70'_ _J> 28j+1,71 71b70'
g J g 27 g j—1 9 J
and equivalences
(7.2) 97 'boy; 1y = X¥g "ho; @ bo, .
We therefore get a g-local story completely analogous to the vs-local story, except
much easier, because there are no ‘TMF(3)’-terms.

Proposition 7.3. There is a splitting

g~ 'bof? =~ 25151 g " bo,.

Proof. This follows the proof of Proposition [5.1) except the situation is simpler
because

g7 (o) ~ 0
—1_A(2)«

since g~ 'miy " (bo?)¢ is zero by inspection. O

We also have the following g-local analog of Proposition 2.2} whose proof is identical.

Proposition 7.4. We have
gilel ~ 2716,71971m1.

Thus we may analyze the decompositions of gilmj by means of generating func-
tions analogous to Section [6] In light of Proposition [7.3] instead of working in the
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ring R, we work in the ring
R = Z[sT t*, x]/ (2 = 2%s2).

By Proposition [7.4] we may encode g-local Spanier-Whitehead duality by the func-
tion

D:R - R
S S

ts ¢!

1

=t 257y

Define elements f; € R’ by the same inductive definition (6.3) used to define the
elements f; € R. A simple induction reveals the following.

Lemma 7.5. The elements f; € R' take the form

- Zi(ai,js"'ﬁ: + bmsitj_.la.: + ¢ js't9722%),  jeven,
J Zi(bi,jsltjilx + CiJ’Sltinl‘Q), 7 odd,

fO’f‘ al-yj,bi’j,ciwj e N.

8. THE ATTACHING MAPS 0; AND 0}

Theorem 8.1. The attaching maps 0; and 0; are zero for all j.

Proof. Write the exact sequence (2.5 as a splice of two short exact sequences

0 0
\K/
—

A(2)//A(1)* ®@j71 — 28]‘—&-9@]'71 — 0

0— Esj@j 9@%

and let

Esjmj — mzj — K% ESj-H’_l@j

28j+8,1b70j_1 LNy ‘gt A2)JAD)« @ tmf, | — Engrgmj—l
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be the cofiber sequences in D 42y, induced from these short exact sequences. Then
we have the following commutative diagram in D4, -

9j
8j+8,1,,—1 ~ -1 8j+1,—1, —1
X Uy mj—l ) Kfl)z:] ) mj
l vy B l vy J/
28j+8,1 —1b0 U g -1K > 28i+1,—-1 -1 —1b0

—j—1 vyl 71,6’ 1 -1

w .

28j+8,1g71b70j 1 >g 1K 5 28J+1
W
9
We therefore have
- -1
(8.2) 905 =030
Now, Assume inductively that 0 and ), are zero for k < j. Then for k < 2j + 1,

v;l@k and g~ 'bo, decomposes in D4(2), as a sum of terms corresponding to the
terms of fi and f7, respectively. Note that we have

0; € 7;152)*( ng(@j—l) ® bo;),
9 € m75”" (97" D(bo,_,) ® bo;).
It follows from Lemma [T.5] that
D(fj_1) - f; = Z(Oéisiff + Bis't ™ a?)

for ay, B; € N, and therefore
(8.3) g 'D(bo; ;) ®bo; ~ @(aiZo’igflml + B; X819 1boP?).
Note that there is a map of rings
¢:R - R
sending s to s, t to ¢, and = to z. We have
fr=0(fr) mody.
We therefore have

D(fi-1) - f; =Y (ais'w + Bis't ™' a®) + Y yeas™ty.

7 k,l
It follows that we have
(8.4)
vy 'D(bo; ) ® bo; ~ EP(:X%"v; 'bo, + B; 5% vy 'bof?) & @D T FTMF, (3).
i k,l
Note that

@) (TMF,(3)) = 0
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for all n,m, so the the only potential non-zero components of d; under the decom-
position are the components

(07)8" € 772 i(@iv5 "boy),
(9);” € mi5 2-i(Bivy 'bof?).
Similarly, let
(35')1('1) € m72—i(ig~'boy),
()7 € 152-4(Big ™ "bof?)
denote the components of J; under the splitting .
Note that the splittings and are compatible under the maps
QilD(@j—ﬁ ® bo; — Uz_lgle(@j—l) ® bo; < ”2_1D(@j—1) ® bo;
since g7 TMF((3) ~ 0, and by lb 9; and 9; map to the same element of
mrs " (vy g7 D(bo; ) ® bo)).
We therefore deduce that under the maps
;g 'bo, — avy tg 1 bo, + vy 'boy,
Big~'bof? — Bivy 'g bof? « Bivg 'bof?
we have
o))",
1),

vy (@)Y =
vy ()P =

J

g
g

However, direct inspection of 7o * (bo ) and 7TAS<2)*(bO®2) reveals:

e The maps

77;4,22)*( “'bo )‘_”T;‘(Q) (”2 g 1b01) Ty (2)*( _1@1)7
A2)., — A2)s, — A(2),, —

T2 (g7 hof?) < w2 (03 g hof?) > min vy 'hof?)

are injections for all s.

e We have
o (g7 hoy) = 0,
7715(2)*( _1@?2) 0

for s > 1.

e We have

7@ (15 1bo, ) =
T2 (v 'hof?)

for s <1.
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It follows that we must have

Corollary 8.5. We have
971@2]‘ ~ ESjgflbioj @ 28j+8,1971@j_1.
Therefore, if we write fJ’ in the form
fi= Z(aivjsitj + b, 8" e e st 2a?)
i

then we have

g—lmj ~ @(ai’jzsj’ig_l]FQ EB bi,jES(j_l)ﬂ;g_lml EB Ci,j28(j_2)7ig_1m(1®2)~

i
Corollary 8.6. We have
vglm% ~ Esjvglmj o 28j+8,1,u271b70j71-
Therefore, if we write f; in the form
fi= Z(ai,jsitj + b s e s T 22) + Z dj sty
i k,l

then we have

Uglmj ~ @(aiJZSj,iU;le @ bi,jZS(j—l),ivglbiol o Ci’jES(j—Z),ivglm(lg%

i

& P dy S5 FTMF (3).
k.l

Corollary 8.7. Consider the element
h = tfiw + 2 fow? + 1 fyw® - - € R[[w]].
Write the coefficient of w9 in h" as
Z(ag?sitzj + bgz)sit%*lm + CZ(Z) sit2j72:1:2) + Z d,(:l)sktly
i Jiksl

then the weight 8§ summand of v;lﬁgm decomposes as

@(agz)Elﬁj’ivgng o bgz)zlﬁj—g,ivglml ® 053)216j—16,ivglm§§)2)
i
& @ d\) SEFTME (3).
k.l
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9. APPLICATIONS TO THE ¢-LOCAL ALGEBRAIC tmf-RESOLUTION

Consider the quotient Hopf algebra C, := F2[(2]/((3) of A(2), with
ﬂgi(]}?g) = FQ[’Ul, h271].

The second author, Bobkova, and Thomas computed the Pj-Margolis homology
of the tmf-resolution, and in the process computed the structure of A/ A(2)%" as
C,-comodules. From this one can read off the Ext groups

h2 17T* *(tmf®n)
(see [BMQ21], Thm. 3.12]).

The groups hy, iwf; are closely related to the groups g 17r* iz)*. In [BMQ21]

Cor. 3.11], it is proven that for M € Dy(2)., there is a v§ Bockstein spectral
sequence

(9.1) hy in ¥ (M) @ Fo[u§] = g~ al ) (M),

In this section we would like to explain how Corollary [8:5] can be used to compute

g_17rA(2)*( tmf®™). By relating this to [BBT21], we will show that in the case of
M = tmf®", the spectral sequence 1) collapses (Theorem .

We follow [BMQ21] in our summary of the results of [BBT2I]. The coaction of C
is encoded in the dual action of the algebra E[Q1, P3] on tmf®". Define elements
Ti;=1Q - ®1QG43®1IQ---®1,

~
J
tij=l® - ®1le(, 0l a1
~
J

in tmf®".

For an ordered set
J=((i1,41)s -, (ks Jr))
of multi-indices, let
|J] =k

denote the number of pairs of indices it contains. Define linearly independent sets
of elements

TJ C m@n
inductively as follows. Define

Tii.g) = {zi}-
For J as above with |J| odd, define

Thg = {2+ ijtzeTs,
T1G). 50 = {Q1(z - @i )i j baer, U{Q1(2 - 2ir j )i }oeT, -

Let

NJ C m@n
denote the Fo-subspace with basis

Q177 = {Q1(2)}ze7;-
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While the set T; depends on the ordering of J, the subspace N; does not.

Finally, for a set of pairs of indices
J = {(i17j1)7 Tty (Zlmjk)}
as before, define
Tty 1= Tiggitin gy Tiggtin e
The following is can be read off of the computations of [BBT21].

Theorem 9.2 (Bhattacharya-Bobkova-Thomas). As modules over Fo [h;l,m], we
have

hy i (tmtP") =

Folhy,] ® (Fz[vl]{zwtw}w & P NAwststinr=o
|J] odd

& P Faln]vie NJ{!EJ/tJ'}JmJ'_@>
| J]#0 even
where J and J' range over the subsets of
{(i,j) :1<i,1<j<n}

and vy acts trivially on Ny for |J| odd.

We now explain how the equivalences
9_1@2]‘ ~ ESjg_lej & 28j+8’1g_1@j717
97 'boy;j 4y = X¥ g bo; @ bo,

are related to Theorem [9.2] This analysis comes from the definitions of the maps
of (2.5) and (2.6) in [BHHMOS]. For a set J of indices of the form

J = {(ih 1)a Tty (/Lku 1)}7
define J 4+ A to be the set
J+A={(i1+1,1), -, (i + 1,1}
Then the induced maps on homotopy are determined by:
T (29 o)) — w7 (97 boy))

NJ{.TJ/tJ/} — N,]+A{xJ’+AtJ/+A}

7T;475<2)*(28j+8,1971mj_1 _> 7T>)1<47>(k2)*(g71b702j)

Ni{zptp} = hon - Nypa{ziatiizpoatyoat

ol (89 bo; @ boy) = 717" (97 hoyj )

Nyoraaptrrtyy = Nusayoqanizreatyiat.
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We have (with g = h3 ;)
TP (g71Fy)
7 (g7 bo,)

7" (g7 bof?)

]FQ[th:,l? U1, ’Ug],
]FQ[hQi,h U1, vg]/(vl){tlyl}a
]F2[h2i,17 U1, Ug]/(v%){Ql(ml,lxl,Q)}-

Corollary therefore implies the following extension of Theorem

Theorem 9.3. As modules over Fy [h;l,vl,vg], we have
g ' wl (tmf ") =

]FQ[h;l, 1}3] ® (FQ[vl]{xJ/tJ/}J/ D @ NJ{xJ/tJ/}JmJ/:@
|J] odd

o P Fz[vl]/vf®NJ{$J/tJ/}JmJ'—®>
| J]#0 even

where J and J' range over the subsets of
{(,7) + 1<4,1<j<n}
and vy acts trivially on Ny for |J| odd.

APPENDIX A. A SPLITTING OF bo}?

The wy-local splitting of Proposition comes from a stable splitting of bo{\3 in-
duced by an idempotent decomposition of the identity element
L=f1+f+ecZplXs]

as described in Remark More precisely, if we set

F; := hocolim{bo/* BN bo}? Sy .}
for i € {1,2} and

E := hocolim{bo}® -5 bot® = ...},
using the evident permutation action of 33 on bo{\g’7 then it is easy to see that
(A1) bo}® ~ Fy vV Fy V E.

In fact, Fy, F5 and E are finite spectra and their mod 2 cohomology as a Steenrod
module can be easily computed using the cocommutativity of Steenrod operations
and a Kiinneth isomorphism (see [Rav92l, Appendix C]). For the purposes of this
paper, we only need their underlying A(2)-module structure which we record in the
format of a Bruner module definition file [BEM17, Apx. A] (see Figure and

Figure [A.2)
Remark A.2. In the group ring Z,)[¥3], the identity element 1 can be written as
a sum of idempotent elements

14 (12)—(13)—(123)
- 3

f 1+(13)—(12)—(132)

and

7f2:

L_1r(23) 4132

3
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20

02346677899 1010 11 12 13 13 14 15 16

0211 471 15 10 4 1 16
0312 10 5 1 17
0413 5117
0614 5218 1111 13
0716 53109 11 2 1 14
11 3 1 15
541 12
1112 11 4 1 17
et 64113 261 19
1618 66116
1719
67117 1321 16
2417 791 10 13 31 17
26110 731 12 13 41 18
27112 1351 19
8119
i
3316 841 14
3418 85115
3519 861 17 15 2 1 18
36112 15 31 19
941 15
4116 961 18 16 1 1 17
4 41 11 97 119
451 13 17 2 1 19
46114 10 1 1 12 181119

FIGURE A.1. The A(2)-module structure of H*(Fy) & H*(F3) as
an input file for Bruner’s program

Remark A.3. Note that f; and f; are conjugates and therefore, Fy ~ F5.

Bruner’s program is capable of computing the action of 7Tf’ - (Fs) on wﬁg)* (MVY),
where MV is the Fa-linear dual of a finite A(2)-module M. Therefore, it can
be used for verifying the details necessary in the proof of Proposition [5.1] and

Proposition [5.2]
Remark A.4. Using Bruner’s program and Figure [£.2] one can easily verify
0y 't (H(B)) = 7@ (S242TMF (3)).

Then by Theorem we get R242TMF(3) ~ vy 'H,(E) in Dy, .

Remark A.5 (A different proof of Proposition. Let M; denote the first integral
Brown-Gitler module. It consists of three Fao-generators {xo, 2,23} where |x;| = ¢
such that

Sq*(x0) = 22 and Sq¢' (z2) = x3.
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04678 10 10 11 11 12 12 13 13 14 14 15 16 17 17 18 18 19 20 21

0411 76 2 17 18 136 1 22
0612 137 1 23
0713 821 12
831 14 14 4 1 20
1212 84115 14 6 1 22
313 862 17 18 14 7 1 23
2113 921 13 15 2 2 17 18
24256 931 15 154121
25278 941 16 15 6 1 23
952 17 18
34278 96219 20 16 1 2 17 18
3621112 97121 16 2 2 19 20
16 3 1 21
42256 10 1 2 11 12 16 4 1 22
43278 1021 14 16 5 1 23
4 4 2 9 10 10 4 1 16
4521112 10 5 2 17 18 17 1 1 20
46213 14 10 6 2 19 20 172121
47115 107121 17 4 1 23
5117 1111 14 18 1 1 20
52110 11 4 1 17 182121
5321112 11 5 1 20 18 4 1 23
54213 14 11 6 1 21
55115 191121
1211 14 19 2 1 22
6118 12 4 1 18 19 3 1 23
62110 12 5 1 20
6321112 12 6 1 21 202122
64213 14 20 3 1 23
651 15
1311 15 21 2123
72111 134 1 19
73114 135121 221123
741 15

FIGURE A.2. The A(2)-module structure of H*(E) as an input
file for Bruner’s program

It is tedious but straightforward to check that there is a short exact sequence
0 — H*(X'boy) — S*A2) JA(1) @ My — H*E — 0
of A(2)-modules. This short exact sequence translates into an D 4(9), -equivalence
vy "H,(F)) & H,(Fy) ~ %51 ho,
which, along with Remarkand (A.1)), gives yet another proof of Proposition
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