
C2-EQUIVARIANT STABLE HOMOTOPY FROM REAL MOTIVIC

STABLE HOMOTOPY

MARK BEHRENS AND JAY SHAH

Abstract. We give a method for computing the C2-equivariant homotopy
groups of the Betti realization of a p-complete cellular motivic spectrum over

R in terms of its motivic homotopy groups. More generally, we show that Betti

realization presents the C2-equivariant p-complete stable homotopy category as
a localization of the p-complete cellular real motivic stable homotopy category.
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1. Introduction

Let SH(K) denote the∞-category of motivic spectra over a field K [MV99], whose
equivalences are given by the stable A1-equivalences. This ∞-category has a bi-
graded family of spheres

Si,j := Si−j ∧Gjm
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of topological degree i and motivic weight j. These lead to bigraded homotopy
groups

πKi,jX := [Si,j , X]K .

A motivic spectrum is cellular if it is built from the spheres Si,j using cofiber
sequences and filtered homotopy colimits. A map between cellular spectra is an
stable A1-equivalence if and only if it is a πK∗,∗-isomorphism [DI05]. We shall let
SHcell(K) denote the full subcategory of cellular spectra.

Complex and real Betti realization

If Z is a smooth scheme over C, then its C-points, or Betti realization,

Be(Z) := Z(C)

form a topological space when endowed with the complex analytic topology. The
resulting Betti realization functor

Be : SH(C) Sp

(where Sp denotes the ∞-category of spectra) is called Betti realization [MV99].
Since Be(Si,j) = Si, Betti realization induces a map

Be : πC
i,jX πi Be(X).

This map was well studied by Dugger and Isaksen [DI10] (at the prime 2) and by
Stahn [Sta16] (at odd primes). For a prime p, the p-complete motivic stable stems
has an element

τ ∈ πC
0,−1(S0,0)∧p .

The following result is a direct corollary of the results of Dugger-Isaksen and Stahn

(here, B̂ep(−) denotes p-completed Betti realization).

Theorem 1.1 (see Thm. 8.18). Let X ∈ SH(C) be p-complete and cellular. Then
Betti realization induces an isomorphism of abelian groups

πC
i,jX[τ−1]

∼= πiB̂ep(X),

and thus an equivalence of ∞-categories

B̂ep : SHcell(C)∧p [τ−1] ' Sp∧p .

In the real case, there is a real Betti realization functor

BeR : SH(R) Sp

which arises from associating to a smooth scheme Z over R its topological space of
R-points Z(R), endowed with the real analytic topology. The inclusion

ρ : {±1} Gm

gives an element ρ ∈ πR
−1,−1S

0,0, which becomes an equivalence after real Betti
realization. Bachmann proved the following in [Bac18].
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Theorem 1.2 (see Thm. 8.10). For all X ∈ SH(R), real Betti realization induces
an isomorphism of abelian groups

BeR : πR
i,jX[ρ−1]

∼= πi−j BeR(X),

and moreover1 an equivalence of ∞-categories

SH(R)[ρ−1] ' Sp.

Statement of results

The results discussed above demonstrate that the homotopy groups of the complex
and real Betti realizations of a cellular motivic spectrum can be obtained by local-
izing its motivic homotopy groups, and each of these Betti realization functors is a
localization.

The purpose of this paper is to prove a similar result about the C2-Betti realization
functor

BeC2 : SH(R) SpC2 .

Here, SpC2 denotes the∞-category of genuine C2-spectra. This functor arises from
associating to a smooth scheme Z over R the C2-topological space Z(C), with the
C2-action given by complex conjugation.

For Y ∈ SpC2 , the RO(C2)-graded equivariant homotopy groups are bigraded by
setting

πC2
i,j Y := [S(i−j)+jσ, Y ]C2 ,

where σ is the sign representation. In G-equivariant homotopy theory, one takes
the stable equivalences to be the πH∗ -isomorphisms, where πH∗ denotes the Z-graded
H-equivariant homotopy groups, and H ranges over the subgroups of G. However,
in the case of G = C2, a map in SpC2 is a stable equivalence if and only if it is
a πC2
∗,∗-isomorphism (see the discussion following (6.1)). The C2-equivariant homo-

topy groups of Y can be effectively analyzed from the homotopy pullback (isotropy
separation square) [GM95]

(1.3) Y //

��

Y Φ

��
Y h // Y t

where2

Y h := F ((EC2)+, Y ), (homotopy completion),

Y Φ := Y ∧ ẼC2, (geometric localization),

Y t := (Y h)Φ, (equivariant Tate spectrum).

We let SphC2 denote the full subcategory of SpC2 consisting of homotopically com-
plete spectra, and let SpΦC2 denote the full subcategory consisting of geometrically

1Bachmann’s methods do not rely upon cellularity hypotheses.
2The terminology here comes from the fact that the fixed points Y hC2 , Y ΦC2 , and Y tC2 are

the homotopy fixed points, geometric fixed points, and Tate spectrum of Y , respectively.
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local spectra. The C2-geometric fixed points functor gives an equivalence of ∞-
categories SpΦC2 ' Sp.

Bachmann’s theorem (Theorem 1.2) effectively describes the homotopy theory of

the geometric localization of C2-Betti realization BeC2(−)Φ. This is because

(1) for all X ∈ SH(R), we have

BeR(X) = BeC2(X)ΦC2 ,

(2) geometric localization is given by inverting a := BeC2(ρ) ∈ πC2
−1,−1S

0,0:

(1.4) Y Φ ' Y [a−1].

Thus, Bachmann’s theorem (Theorem 1.2) can be restated in the following way.

Theorem 1.5 (see Thm. 8.24). For all X ∈ SH(R), C2-Betti realization induces
an isomorphism

πR
∗,∗X[ρ−1]

∼= πC2
∗,∗ BeC2(X)Φ,

and an equivalence

BeC2 : SH(R)[ρ−1] ' SpΦC2 .

We are thus left to describe the homotopy theory of the homotopy completion of
the C2-Betti realization.

We first note that a map

f : Y1 Y2

in SphC2 is an equivalence if and only if the underlying map

fe : Y e1 Y e2

of spectra is a non-equivariant equivalence. We therefore first study BeC2(−)e.
Consider the diagram of adjoint functors

(1.6) SH(R)
BeC2 //

ζ∗

��

SpC2

SingC2

oo

ResC2
e

��
SH(C)

Be //

ζ∗

OO

Sp

IndC2
e

OO

Sing
oo

where (ζ∗, ζ∗) are the base change functors associated to the morphism

ζ : Spec(C) Spec(R)

and (ResC2
e , IndC2

e ) are the change of group functors associated to the inclusion

e C2.

We will prove the following theorem, which has also been independently obtained
by Isaksen-Kong-Wang-Xu.
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Theorem 1.7 (see Cor. 8.2). Under the equivalence

ζ∗ζ
∗S0 ' Σ∞+ Spec(C)

the adjunction (ζ∗, ζ∗) induces an equivalence

SH(C) ' ModSH(R)(Σ
∞
+ Spec(C)).

Let Cρ ∈ SH(R) denote the cofiber of ρ ∈ πR
−1,−1S

0,0. Since ζ∗(ρ) is null in

πC
−1,−1S

0,0, there is a map

(1.8) C(ρ) Σ∞+ Spec(C)

which we show is a πR
∗,∗-isomorphism after p-completion (Prop. 8.3). The real

motivic spectrum Σ∞+ Spec(C) is not cellular (Rmk. 8.4), so Cρ may be regarded
as its p-complete cellular approximation. We deduce the following (which was also
independently observed by Isaksen-Kong-Wang-Xu):

Corollary 1.9 (see Cor. 8.6). The adjuction (ζ∗, ζ∗) and equivalence (1.8) induces
an equivalence

SHcell(C)∧p ' ModSHcell(R)∧p
(C(ρ)).

In particular, for X ∈ SHcell(R)∧p there is an isomorphism

πC
∗,∗(ζ

∗X) ∼= πR
∗,∗(X ∧ Cρ).

Combining Corollary 1.9 with Theorem 1.1, we deduce that for X ∈ SHcell(R)∧p ,

πi(B̂eC2
p (X)e) ∼= πR

i,j(X ∧ Cρ[τ−1]).

In particular, τ exists as a self-map

τ : Σ0,−1C(ρ)∧p C(ρ)∧p .

Let C(ρi) denote the cofiber of ρi ∈ πR
−i,−iS

0,0. We will prove:

Theorem 1.10 (see Thm. 7.10 and Prop. 7.11). For each i ≥ 1, there exists a j
so that C(ρi)∧p has a τ j self map

τ j : Σ0,−jC(ρi)∧p C(ρi)∧p .

Our proof of the existence of these τ -self maps at the prime 2 relies on first proving
the existence of their C2-Betti realizations, and then using a theorem of Dugger-
Isaksen to lift the self maps to the real motivic category [DI17a]. Because this
approach involves some analysis of the C2-equivariant stable stems, it may be of
independent interest.

We shall let C(ρi)∧p [τ−1] denote the telescope of this τ j-self map. Define, for X ∈
SH(R)∧p :3

X∧ρ [τ−1] := holim
i

X ∧ C(ρi)[τ−1].

Our main theorem is the following:

3For p odd, it turns out that independent of i, one can take j = 2 in Thm. 1.10 (see Prop. 7.11).
Consequently, X∧ρ has a τ2-self map, and the spectrum X∧ρ [τ−1] can be simply taken to be the

telescope of this τ2-self map on X∧ρ .
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Theorem 1.11 (see Cor. 8.21 and Thm. 8.26). For X ∈ SHcell(R)∧p , the p-

completed C2-Betti realization functor B̂eC2
p induces an isomorphism

πR
∗,∗X

∧
ρ [τ−1]

∼= πC2
∗,∗B̂eC2

p (X)h

and the right adjoint

Cell SingC2 : (SphC2)∧p SHcell(R)∧p

of p-complete, homotopy complete C2-Betti realization is fully faithful.

Thus, Theorems 1.5 and 1.11 combine to express the RO(C2)-graded equivariant

homotopy groups of B̂eC2
p (X)Φ and B̂eC2

p (X)h in terms of the real motivic homotopy
groups of X. By the isotropy separation square (1.3), we just need to be able to

compute πC2
∗,∗B̂eC2

p (X)t (and the maps on homotopy groups) to recover πC2
∗,∗B̂eC2

p (X),
but this is easily accomplished by combining Theorem 8.26 with (1.3) to deduce
(for X cellular and p-complete) an isomorphism4

πC2
∗,∗B̂eC2

p (X)t ∼= πR
∗,∗X

∧
ρ [τ−1][ρ−1].

Finally, we will show that the isotropy separation square (1.3) implies that Theo-
rems 1.5 and 1.11 combine to show that p-complete C2-equivariant stable homotopy
is a localization of real motivic cellular stable homotopy.

Theorem 1.12 (see Thm. 8.22). The right adjoint to p-complete cellular C2-Betti
realization

Cell SingC2 : (SpC2)∧p SHcell(R)∧p

is fully faithful.

We will apply our techniques to compute πC2
∗,∗B̂eC2

2 X from πR
∗,∗X, for X equal to:

(1) (HF2)R, the real motivic mod 2 Eilenberg-MacLane spectrum, with

B̂eC2
2 (HF2)R ' HF2,

the C2-equivariant Eilenberg-MacLane spectrum associated to the constant
Mackey functor F2,

(2) (HZ∧2 )R, the real motivic 2-adic Eilenberg-MacLane spectrum, with

B̂eC2
2 (HZ∧2 )R ' HZ∧2 ,

the C2-equivariant Eilenberg-MacLane spectrum associated to the constant
Mackey functor Z∧2 , and

(3) kgl∧2 , the 2-complete effective cover of the real motivic K-theory spectrum
KGL, with

B̂eC2
2 kgl∧2 ' kR∧2 ,

the 2-complete connective Real K-theory spectrum.

4For p odd, the situation is much simpler, as this Tate spectrum is contractible since 2 = |C2|
is invertible.
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In the case of (HF2)R, the homotopy groups of the C2-Betti realization differ from
the motivic homotopy groups of the original spectrum through the addition of a
notorious “negative cone” (see, for example, [DI17a, Fig. 1]). From the perspective
of the mod 2-Adams spectral sequence, the presence of this “negative cone” makes
the equivariant homotopy of the Betti realizations of the other examples similarly
more complicated than the motivic homotopy of the original spectra. Our theory
organically predicts the presence of the negative cone through a mechanism of local
duality such as that studied in [BHV18], and thus gives a more direct route to
these equivariant computations by starting with the simpler motivic analogs. This
connection with local duality deserves further study.

Relationship to the work of Heller-Ormsby

Heller and Ormsby [HO16], [HO18] also study the relationship between real motivic
and C2-equivariant spectra (and their results extend to other real closed fields), but
their analysis centers around the adjoint pair

c∗R : SpC2 SH(R) :(cR)∗

where c∗R is the equivariant generalization of the constant functor (Def. 8.11).

Namely, Heller and Ormsby show that SpC2 is a colocalization of SH(R) by showing

that c∗R is fully faithful. Their results allow them to compute, for X ∈ SpC2 , integer
graded motivic homotopy groups of c∗RX in terms of the integer graded equivariant
homotopy groups of X.

Our results, by contrast, show that C2-Betti realization exhibits (SpC2)∧p as a lo-
calization of SHcell(R)∧p , and this allows us to compute, for X ∈ SHcell(R)∧p , the

equivariant RO(C2)-graded homotopy groups of B̂eC2
p (X) in terms of the bigraded

motivic homotopy groups of X. Nevertheless, we use the functor c∗R to prove our
localization theorem.

Organization of the paper

The first four sections of this paper are formal. In Section 2, we recall some facts
concerning limits of presentable ∞-categories.

In Section 3, we study Bousfield localizations of symmetric monoidal∞-categories,
their relation to completion, and discuss the interaction of these localizations with
a monoidal Barr-Beck theorem of Mathew-Naumann-Noel [MNN17].

In Section 4, we summarize some facts regarding cellularization in the∞-categorical
context, and the interaction of cellularization with localization and symmetric mon-
oidal structures.

In Section 5, we recall the notion of a recollement of ∞-categories, which is a
formalism for decomposing an ∞-category using two complementary localizations.
We show that to prove an adjunction between two recollements is a localization, it
suffices to check fully faithfullness on the constituents of the recollements.
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In Section 6, we turn to the case of interest and recall some facts about motivic
and equivariant homotopy theory that we will need later.

In Section 7, we show that James periodicity in the 2-primary equivariant stable
stems results from the existence of u-self maps on C(ai)∧2 , where a is the Euler class
of the sign representation. We then use an isomorphism theorem of Dugger-Isaksen
[DI17a] to lift these u-self maps to τ -self maps on C(ρi)∧2 . For an odd prime p, we
explain how the work of Stahn [Sta16] implies that every (p, ρ)-complete R-motivic
spectrum has a τ2-self map.

Section 8 contains all of our main theorems, and their proofs, concerning the local-
izations induced by Betti realization.

Section 9 contains examples, where we take various real motivic spectra, and use our
theory to compute the 2-primary RO(C2)-graded C2-equivariant homotopy groups
of their Betti realizations from their 2-primary motivic homotopy groups. We also
explain how to do these kinds of computations at an odd prime, where the story is
much simpler.
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2. Limits of presentable ∞-categories

We collect some necessary facts about limits in the ∞-category PrL of presentable
∞-categories.

Suppose C• : J PrL is a diagram and let

X =

∫
C• J

be the presentable fibration [Lur09, Dfn. 5.5.3.2] classified by C•. By [Lur09, Prop.
5.5.3.13] and [Lur09, Cor. 3.3.3.2], we have an equivalence

C := lim C• ' Sect(X ) := Funcocart
/J (J,X )

between the limit C of C• and the ∞-category of cocartesian sections of X . Let D
be another presentable ∞-category and suppose that we have an extension

C• : J� PrL

with the cone point sent to D. Then we have an induced adjunction

F : D C :R.
8



Let

X J�

be the presentable fibration classified by C•. In terms of the description of C as
Sect(X ), we may describe F and R more explicitly as follows:

(1) The functor

F : D ' lim C• C ' lim C•
is given by the contravariant functoriality of limits for the inclusion J ⊂ J�.
Thus, under the equivalences Sect(X ) ' D and Sect(X ) ' C, the functor
F : D C corresponds to the functor

F : Sect(X ) Sect(X )

given by restriction of cocartesian sections. In particular, an object x ∈ D
corresponds to the cocartesian section

σ : J� X

determined up to contractible choice by σ(v) = x for v the cone point, and
then F (x) = σ|J .

(2) Let

p : X ⊂ X X v ' D
be the cartesian pushforward to the fiber over the initial object v ∈ J�.
Then for any object σ ∈ C viewed as a cocartesian section of X and x ∈ D,
we have the sequence of equivalences

MapD(x, lim pσ) ' lim MapD(x, pσ(−))

' lim MapC•(F•x, σ(−))

' MapC(Fx, σ),

so there is an equivalence R(σ) ' lim pσ.

3. Localization of symmetric monoidal ∞-categories with respect to
a commutative algebra

Let C, D be presentable stable symmetric monoidal ∞-categories, where we by
default assume that the tensor product commutes with colimits separately in each
variable.

Adjunctions and limits

We say that an adjunction

F : C D :R

is monoidal if F is (strong) symmetric monoidal, in which case R is lax monoidal.

Given a diagram of commutative algebras in C

p : L CAlg(C),
9



we have a canonical monoidal adjunction in PrL

(3.1) φ : ModC(lim
L
p) lim

L
ModC(p(−)) :ψ.

Let R = limL p. For X ∈ ModC(R), the unit map η : X ψφX may be identified
with the canonical map

X lim
i∈L

X ⊗R p(i)

in view of the material in Section 2.

Moreover, for any functor f : K L, by functoriality of limits we have a commu-
tative diagram in PrL

ModC(limL p) limL ModC(p(−))

ModC(limK pf) limK ModC(pf(−)).

φ

φ

Bousfield localization

Recall [Lur09, Dfn. 5.2.7.2] that a localization of an∞-category X is an adjunction

L : X X0 :R

where the right adjoint R is fully faithful. The left adjoint L is the localization
functor.

When X = C is our presentable stable symmetric monoidal ∞-category, we will be
concerned with the special case of Bousfield localization with respect to an object
E ∈ C. We briefly recall this notion to fix terminology.

A map
X Y

in C is an E-equivalence if
E ⊗X E ⊗ Y

is an equivalence. An object X ∈ C is E-null if

X ⊗ E ' 0.

An object X ∈ C is E-local if for every E-equivalence

f : Y Z

the map
f∗ : HomC(Z,X) HomC(Y,X)

is an equivalence; i.e. for every E-null object W ,

HomC(W,X) ' 0.

Let CE ⊆ C denote the full subcategory consisting of the E-local objects. Then CE
is again a presentable stable ∞-category and we have the localization adjunction

LE : C CE :iE .

With the tensor product on CE defined by LE(−⊗−), CE is a symmetric monoidal
∞-category and LE a iE is a monoidal adjunction.
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Example 3.2. Suppose E = C(x) is the cofiber of a map

x : I 1

for 1 ∈ C the unit. Then we also write C∧x for CE and call this ∞-category the
x-completion of C.

Derived completion

If we further suppose that E is a dualizable E∞-algebra A ∈ CAlg(C), then Bous-
field localization can be computed as the A-completion. Specifically, we have the
following.

(1) Let C•(A) be the Amitsur complex on A ([MNN17, Constr. 2.7]). By
[MNN17, Prop. 2.21], for any X ∈ C we have an equivalence

LA(X) ' Tot(X ⊗ C•(A)) ' lim
n∈∆

(X ⊗A⊗n+1).

(2) By [MNN17, Thm. 2.30]5, this equivalence of objects promotes to an equiv-
alence of symmetric monoidal ∞-categories

CA ' Tot ModC(C
•(A)) ' lim

n∈∆
ModC(A

⊗n+1).

Let I denote the fiber of the unit

I ι 1 A

and define

C(ιn) := cofib(ιn : I⊗n 1).

Then there is an equivalence [MNN17, Prop. 2.14]

C(ιn+1) ' Totn(C•(A)).

Note that because the cosimplicial object C•(A) in C canonically lifts to a cosim-
plicial object in CAlg(C), the cofiber C(ιn) obtains the structure of an E∞-algebra
as a limit and the maps

C(ιn+1) C(ιn)

are maps of E∞-algebras.

The completion tower

For our dualizable E∞-algebra A, we wish to re-express the above descent descrip-
tion of CA in terms of an inverse limit over the ∞-categories ModC(C(ιn)).

By 3.1, for all n we have canonical monoidal adjunctions

φn : ModC(C(ιn)) Totn−1 ModC(C
•(A)) :ψn

5Note that even though the hypotheses of [MNN17, 2.26] are otherwise in effect in that section
of the paper, the proof of [MNN17, Thm. 2.30] only uses that A ∈ CAlg(C) is dualizable.
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where the left adjoints φn are compatible with restriction along ∆≤n ⊂ ∆≤m.
Passage to the limit then yields the monoidal adjunction

φ∞ : lim ModC(C(ιn)) Tot ModC(C
•(A)) :ψ∞,

where φ∞{Xn} = {φnXn}. By the universal property of the limit, and using that
C(ιn)-modules are A-local, we also have the monoidal adjunctions

φ : CA lim ModC(C(ιn)) :ψ,

φ′ : CA Tot ModC(C
•(A)) :ψ′

where the second adjunction is the adjoint equivalence of [MNN17, Thm. 2.30].
These adjunctions fit into a commutative diagram

CA lim ModC(C(ιn)) Tot ModC(C
•(A)).

φ

φ′

φ∞

Proposition 3.3. φ a ψ and φ∞ a ψ∞ are adjoint equivalences of symmetric
monoidal ∞-categories.

Proof. It suffices to prove the first statement. We need to show that

(1) The unit id ψφ is an equivalence.
(2) ψ is conservative.

For (1), given any A-local object X the unit map

X ψφX ' limX ⊗ C(ιn) ' TotX ⊗ C•(A)

is already known to be an equivalence. For (2), we first note that φn is fully faithful,
i.e., the unit map id ψnφn is an equivalence. Indeed, for any finite ∞-category
K and functor p : K CAlg(C), if R = limK p and X ∈ ModC(R), then there is
an equivalence

X ' lim
K
X ⊗R p(−).

Now suppose that {Xn} is a object in lim ModC(C(ιn)) such that

ψ{Xn} = limXn ' 0.

Note that since φ∞{Xn} = {φnXn}, for the cosimplicial object φ•X• we have that
Totn(φ•X•) ' ψnφnXn ' Xn, so

ψ′(φ∞{Xn}) = Totφ•X• ' lim
n

Totn(φ•X•) ' lim
n
Xn ' 0.

Therefore, because ψ′ is an equivalence, φ∞{Xn} ' 0. This means that for all n,
φnXn ' 0, so Xn ' ψnφnXn ' 0 and {Xn} ' 0. �

Remark 3.4. We have a commutative diagram of right adjoints

lim ModC(C(ιn)) Tot ModC(C
•(A))

Fun(Zop
≥0, C) Fun(∆, C).

ψ∞

DK
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where DK is the functor that sends a cosimplicial object to its tower of partial to-
talizations. DK implements the equivalence of the ∞-categorical Dold-Kan corre-
spondence ([Lur17, Thm. 1.2.4.1]). We may thus interpret Prop. 3.3 as a monoidal
refinement of the Dold-Kan correspondence, with φ∞ providing an explicit inverse.

We also record a useful corollary of the proof of Prop. 3.3. This result is a companion
to the fact that

−⊗A : CA ModC(A)

is conservative.

Lemma 3.5. For every n, the base-change functor

ModC(C(ιn)) ModC(C(ι)) = ModC(A)

is conservative.

Proof. We showed that the functor φn is fully faithful, and the restriction functor

Totn−1 ModC(C
•(A)) ModC(A)

is clearly conservative. �

The monoidal Barr-Beck theorem

Throughout, let

F : C D :R

be a monoidal adjunction between our presentable symmetric monoidal stable ∞-
categories C and D. We recall the monoidal Barr-Beck theorem of [MNN17], which
will be a key technical device to many of the formal results of this paper.

Theorem 3.6 ([MNN17, Thm. 5.29]). Suppose that F a R satisfies the following
conditions:

(1) R is conservative.
(2) R preserves colimits.
(3) (F,R) satisfies the projection formula: the natural map

R(X)⊗ Y R(X ⊗ F (Y ))

is an equivalence for all X ∈ D, Y ∈ C.

Then there is an equivalence

D ' ModC(R(1D))

and F a R is equivalent to the free-forgetful adjunction.

We may descend Thm. 3.6 to subcategories of local objects.

Lemma 3.7. Let C and D be presentable symmetric monoidal stable∞-categories,
let

F : C D :R
13



be a monoidal adjunction, let E ∈ C be any object and let E′ = F (E). Then the
adjunction F a R induces a monoidal adjunction

F ′ : CE DE′ :R′

between the ∞-categories of E-local and E′-local objects. Moreover:

(1) If R is conservative, then R′ is conservative.
(2) Suppose that (F,R) satisfies the projection formula. Then there is an

equivalence

LER ' R′LE′

and (F ′, R′) satisfies the projection formula. Moreover, if R in addition
preserves colimits, then R′ preserves colimits.

Therefore, we have

ModC(R(1D))E′ ' ModCE (LER(1D))

and F ′ a R′ is the free-forgetful adjunction.

Proof. Because the functor F is strong monoidal, F sends E-equivalences to E′-
equivalences. Therefore, if X is E′-local, then R(X) is E-local, so we may define

R′ : DE′ CE

to be the restriction of R. We may then define

F ′ : CE DE′

by F ′ := LE′F to obtain the induced monoidal adjunction

F ′ : CE DE′ :R′.

For (1), if R is conservative, then because iER
′ = RiE′ , R

′ is conservative. For (2),
if (F,R) satisfies the projection formula, then we have that for any E′-null object
X,

R(X)⊗ E ' R(X ⊗ E′) ' 0,

so R sends E′-equivalences to E-equivalences. Therefore, we have LER ' R′LE′ .
To see that (F ′, R′) satisfies the projection formula, we use the sequence of equiv-
alences

R′(X ⊗DE′ F
′(Y )) ' R′(LE′(iE′X ⊗D F (Y )))

' LER(iE′X ⊗D F (Y )))

' LE(R(iE′X)⊗C Y )

' R′X ⊗CE Y.

Now suppose that R preserves colimits. To see that R′ preserves colimits, suppose
given a diagram X• : J DE′ . Then we have

colimX• ' LE′ colim iE′X•,
14



and we have the sequence of equivalences

R′(colimX•) ' R′LE′ colim iE′X•

' LER colim iE′X•

' colimLERiE′X•

' colimR′LE′iE′X•

' colimR′X•.

Finally, the last statement is a consequence of Thm. 3.6. �

Example 3.8. In Lem. 3.7, let E = C(x) for x as in Example 3.2. Then we see
that

ModC(R(1D))∧x ' ModC∧x (R(1D)∧x ).

We also note a similar result when passing to module categories.

Lemma 3.9. Let A ∈ CAlg(C) and A′ = F (A), and let

F ′ : ModC(A) ModD(A′) :R′

denote the induced monoidal adjunction. Then

(1) If R is conservative, then R′ is conservative.
(2) If R preserves colimits, then R′ preserves colimits.
(3) If R preserves colimits and (F,R) satisfies the projection formula, then

(F ′, R′) satisfies the projection formula.

Proof. Because F ′ and R′ are computed by F and R after forgetting the module
structure, the first two results are clear. For the projection formula, under our
assumptions the natural map

RM ⊗A N R(M ⊗A′ FN)

is equivalent to the geometric realization of the map of simplicial diagrams

RM ⊗A⊗• ⊗N R(M ⊗ (A′)⊗• ⊗ FN),

which is an equivalence in view of the projection formula for (F,R). �

Lifting localizations

For A ∈ CAlg(C) dualizable and

C(ιn+1) = Totn C•(A)

as before, let A′ = F (A) and j = F (ι), so that F (C(ιn)) ' C(jn). We have induced
monoidal adjunctions

Fn : ModC(C(ιn)) ModD(C(jn)) :Rn,

F∞ : CA DA′ :R∞.

We end this section with a result that allows us to lift the property of R1 being
fully faithful to Rn and R∞.

15



Proposition 3.10. Suppose that R preserves colimits, (F,R) satisfies the projec-
tion formula, and R1 is fully faithful. Then Rn is fully faithful for all 1 ≤ n ≤ ∞.

Proof. First suppose n < ∞ and let X ∈ ModD(C(jn)). We need to prove that
the counit εnX is an equivalence. Because the base-change functor − ⊗Cjn A′ is
conservative by Lem. 3.5, it suffices to show that εnX ⊗Cjn A′ is an equivalence. But
by the projection formula for (Fn, Rn) established in Lem. 3.9, this map is equivalent
to the counit εn(X⊗CjnA′). Because X ⊗Cjn A′ is an A′-module, εn(X⊗CjnA′) is lifted

by the counit ε1(X⊗CjnA′), which is an equivalence by assumption. The proof for

the case n =∞ is similar, where we instead use that

−⊗A′ : DA′ ModD(A′)

is conservative and the projection formula for (F∞, R∞) by Lem. 3.7. �

4. Cellularization

In this section, we collect a few technical lemmas that will be applied to study
the ∞-category SHcell(S) of cellular motivic spectra. To begin with, we have the
following variant of [MNN17, Prop. 2.27] (with the same conclusion), where we do
not assume that E is an algebra object of C.

Lemma 4.1. Suppose C is a presentable symmetric monoidal stable ∞-category
and E is a dualizable object in C.

(1) For any object X ∈ C, E∨ ⊗X is E-local. If E∨ ' E ⊗ κ, then E ⊗X is
also E-local.

(2) For any compact object X ∈ C, E∨ ⊗X is compact in CE . If E∨ ' E ⊗ κ,
then E ⊗X is also compact in CE .

(3) If {Xi} is a set of compact generators of C, then {E∨ ⊗ Xi} is a set of
compact generators of CE . Therefore, if C is compactly generated, then CE
is compactly generated.

Proof. (1) Let Z be an E-null object. Then

HomC(Z,E
∨ ⊗X) ' HomC(Z ⊗ E,X) ' 0,

so E∨ ⊗X is E-local. If E∨ ' E ⊗ κ, then

HomC(Z,E ⊗X) ' HomC(Z ⊗ E∨, X) ' HomC(Z ⊗ E ⊗ κ,X) ' 0,

so E ⊗X is E-local.

(2) Observe that the functor

CE C
given by Y 7→ Y ⊗ E preserves colimits ([MNN17, 2.20]). Let

Y• : J CE
16



be a functor and let us write colimYj for the colimit in C and LE(colimYj) for the
colimit in CE . Then we have

HomC(E
∨ ⊗X,LE(colimYj)) ' HomC(X,E ⊗ LE(colimYj))

' HomC(X, colim(E ⊗ Yj))
' colim HomC(X,E ⊗ Yj)
' colim HomC(E

∨ ⊗X,Yj),

so E∨ ⊗X is compact. The second assertion is similar.

(3) This follows as in the proof of [MNN17, 2.27]. �

The following result concerns the existence and basic properties of cellularization.

Lemma 4.2. Let C be a compactly generated stable ∞-category, let S = {Si : i ∈
I} be a small set of compact objects in C, and let C′ be the localizing subcategory
generated by S (i.e., the smallest full stable subcategory containing S that is closed
under colimits).

(1) C′ is compactly generated and is a coreflective subcategory of C (i.e., the
inclusion j : C′ ⊆ C admits a right adjoint). Moreover, if

Cell : C C′

denotes this right adjoint, then Cell also preserves colimits.

(2) Suppose in addition that C is closed symmetric monoidal, the unit 1 ∈ C is
compact and in S, and for all i, i′ ∈ I, we have that Si ⊗ Si′ ∈ S. Then
C′ ⊆ C is a symmetric monoidal subcategory.

(3) Suppose in addition to the assumptions of (2) that each Si is dualizable.
Then for allX ∈ C and Y ∈ C′, the natural map θ : Cell(X)⊗Y Cell(X⊗
Y ) is an equivalence.

Proof. For (1), C′ is compactly generated by definition, so j admits a right adjoint
by the adjoint functor theorem [Lur09, 5.5.2.9]. Moreover, the set S furnishes
a set of compact generators for C′ that are sent to compact objects under j, so
Cell preserves colimits. For (2), because the tensor product ⊗ commutes with
colimits separately in each variable, our assumption ensures that if X,Y ∈ C′ then
X ⊗Y ∈ C′. We may then invoke [Lur17, 2.2.1.2] to see that C′ ⊆ C is a symmetric
monoidal subcategory. For (3), the assumption ensures that C′ is generated by
dualizable objects under colimits. Because Cell commutes with colimits, both the
source and target of θ commute with colimits separately in each variable. We may
thus suppose that Y is a dualizable object in C′, with dual Y ∨. Note that Y ∨ is
also the dual of Y in C. For each generator Si we have that

HomC(Si,Cell(X)⊗ Y ) ' HomC(Si ⊗ Y ∨,Cell(X))

' HomC(Si ⊗ Y ∨, X)

' HomC(Si, X ⊗ Y )

' HomC(Si,Cell(X ⊗ Y )),

17



so θ is an equivalence. �

The following two lemmas describe the interaction of cellularization with Bousfield
localization and passage to module categories.

Lemma 4.3. With the setup of Lem. 4.2(2), let E be a dualizable object in C′.
Then:

(1) If X ∈ C is j(E)-local, then Cell(X) ∈ C′ is E-local.

(2) For X ∈ C, the natural map

Cell(X)⊗ E Cell(X ⊗ j(E))

is an equivalence. Consequently, Cell sends j(E)-equivalences to E-equivalences.

(3) The adjunction
j : C′ C :Cell

induces a monoidal adjunction

j′ : C′E Cj(E) :Cell′

such that Cell′(X) ' Cell(X) for X ∈ Cj(E), j
′(Y ) ' Lj(E)j(Y ) for Y ∈ C′E ,

and the functor j′ is fully faithful.

(4) The functor Cell′ preserves colimits.

(5) Suppose in addition the condition of Lem. 4.2(3). Then for all X ∈ Cj(E)

and Y ∈ C′E , we have the natural equivalence

LE(Cell′(X)⊗ Y ) ' Cell′(LE(X ⊗ Y )).

Consequently, the conclusion of Lem. 4.5 holds with j′ a Cell′ in place of
j a Cell.

Proof. We consider each assertion in turn:

(1) If Y ∈ C′ is E-null, then j(Y ) ∈ C is j(E)-null since the inclusion C′ ⊆ C is
strong monoidal. Then if X ∈ C is j(E)-local, we have for all Y ∈ C′ E-null
that HomC(Y,CellX) ' HomC(Y,X) ' 0, so Cell(X) is E-local.

(2) We write j(E) as E for clarity. It suffices to observe that for all i ∈ I,

HomC(Si,Cell(X)⊗ E) ' HomC(Si ⊗ E∨,Cell(X))

' HomC(Si ⊗ E∨, X)

' HomC(Si, X ⊗ E)

' HomC(Si,Cell(X ⊗ E)).

(3) By (1), Cell : C C′ restricts to a functor

Cell′ : Cj(E) C′E .
Define

j′ : C′E Cj(E)

18



to be the composite

C′E ⊆ C
Lj(E) Cj(E).

Then it is clear that j′ a Cell′, the adjunction is monoidal with respect to
the tensor products LE(−⊗−) and Lj(E)(−⊗−) on C′E and Cj(E), and the
unit map

η : Y Cell′ j′Y

is equivalent to Cell of the unit map

η̂ : Y Lj(E)Y.

Because η̂ is an j(E)-equivalence in C, by (2) we see that Cell(η̂) is an
equivalence.

(4) By Lem. 4.1, {Si ⊗ E∨ : i ∈ I} are a set of compact generators for C′E ,
and are also compact and j(E)-local objects when regarded as being in C.
Therefore, the left adjoint j′ sends compact generators to compact objects,
which implies that the right adjoint Cell′ preserves colimits.

(5) With our additional assumption, the Si ⊗ E∨ constitute a set of compact
dualizable generators of C′E . The proof of Lem. 4.2(3) then applies to j′ a
Cell′.

�

Lemma 4.4. With the setup of Lem. 4.2(3), let A be an E∞-algebra in C and
let A′ := Cell(A) be the resulting E∞-algebra in C′. Then we have an induced
adjunction

j′ : ModC′(A
′) ModC(A) :Cell′

such that j′ is fully faithful and identifies ModC′(A
′) with the localizing subcategory

of ModC(A) generated by SA := {Si ⊗A : i ∈ I}.

Proof. Note that ModC(A) and ModC′(A
′) are compactly generated stable symmet-

ric monoidal ∞-categories, and the set SA′ := {Si⊗A′} furnishes a set of compact
dualizable generators for ModC′(A

′). Because Cell is lax monoidal, it induces a
functor Cell′ : ModC(A) ModC′(A

′) such that the diagram of right adjoints

C′ C

ModC′(A
′) ModC(A)

Cell

U ′

Cell′

U

commutes (where U and U ′ denote the forgetful functors). Since Cell preserves
limits and U,U ′ create limits, Cell′ also preserves limits and therefore admits a left
adjoint j′ such that the diagram of left adjoints

C′ C

ModC′(A
′) ModC(A)

F ′

j

F

j′
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commutes (where F and F ′ denote the free functors), so j(SA′) = SA. It remains
to show that j′ is fully faithful, i.e., that the unit map

η : M Cell′ j′M

is an equivalence for all M ∈ ModC′(A
′). For this, note that Cell′ preserves colimits

since Cell preserves colimits by Lem. 4.2(2) and U,U ′ create colimits, so we may
suppose that M = Si ⊗A′. But then we have

Cell′ j′(Si ⊗A′) = Cell′(Si ⊗A) ' Si ⊗A′

by Lem. 4.2(3), and it is easily checked that η implements this equivalence. �

Finally, we retain the projection formula after cellularization.

Lemma 4.5. With the setup of Lem. 4.2(3), let D be a presentable symmetric
monoidal stable ∞-category and let

F : C D :R

be a monoidal adjunction such that R preserves colimits and (F,R) satisfies the
projection formula. Then CellR preserves colimits and (Fj,CellR) satisfies the
projection formula.

Proof. CellR preserves colimits by Lem. 4.2(2). For the projection formula, we
note that for all X ∈ D and Y ∈ C′,

(CellR)(X)⊗ Y ' Cell(RX ⊗ Y ) ' (CellR)(X ⊗ LY ),

where the first equivalence is by Lem. 4.2(3) and the second by our assumption on
(L,R). �

5. Recollements

Let X be an ∞-category which admits finite limits. Recall [Lur17, A.8], [BG16]
that an ∞-category X is a recollement of two full subcategories U and Z if the
inclusions j∗, i∗ of these subcategories admit left adjoints j∗, i∗:

U X Z
j∗

i∗j∗

i∗

such that:

(1) The subcategories U ,Z ⊆ X are stable under equivalence.
(2) The left adjoints j∗, i∗ are left exact.
(3) The functor j∗i∗ is equivalent to the constant functor at the terminal object.
(4) If f is a morphism of X such that j∗f and i∗f are equivalences, then f is

an equivalence.

The following lemma shows that if X is a recollement of U and Z, then to test
whether a functor into X is a localization, it suffices to check this on U and Z.
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Lemma 5.1. Let C and X be ∞-categories that admit finite limits and suppose
that we have a recollement on X

U X Z
j∗

i∗j∗

i∗

and an adjunction F : C X :R with F also left exact such that

(1) The natural transformation i∗FRj∗ ⇒ i∗j∗ induced by the counit of (F,R)
is an equivalence.

(2) The functor j∗FRi∗ is equivalent to the constant functor at the terminal
object.

(3) The two functors Rj∗ and Ri∗ are fully faithful.

Then R is fully faithful.

Proof. We will show that for any X ∈ X , the counit ε : FRX X is an equiva-
lence. Because i∗ and j∗ are jointly conservative, it suffices to show that i∗ε and
j∗ε are equivalences. Consider the pullback square

X i∗i
∗X

j∗j
∗X i∗i

∗j∗j
∗X.

Applying i∗FR and using that Ri∗ is fully faithful and i∗FRj∗ ' i∗j∗, we obtain a
pullback square

i∗FRX i∗FRi∗i
∗X ' i∗X

i∗FRj∗j
∗X ' i∗j∗j∗X i∗FRi∗i

∗j∗j
∗X ' i∗j∗j∗X

'

'

from which it follows that i∗ε is an equivalence. Applying j∗FR and using that
Rj∗ is fully faithful and j∗FRi∗ ' 0, we obtain a pullback square

j∗FRX j∗FRi∗i
∗X ' 0

j∗FRj∗j
∗X ' j∗X j∗FRi∗i

∗j∗j
∗X ' 0

' '

from which it follows that j∗ε is an equivalence. �

6. Background on motivic and equivariant homotopy theory

The motivic stable homotopy category

Let S be a scheme and let SH(S) denote the symmetric monoidal ∞-category of
motivic P1-spectra over S. Let SHcell(S) be the localizing subcategory of SH(S)
generated by the motivic spheres {Sp,q}. A motivic spectrum E is cellular if it lies
inside SHcell(S). Note that the full hypotheses of Lem. 4.2 apply.
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We recall from [EK19, §2.2] the following facts concerning compact and dualizable
objects and generation in SH(S):

(1) For X an affine smooth scheme over S and q ∈ Z, the motivic P1-spectrum
ΣqX+ is compact; in particular, the bigraded motivic spheres Sp,q are com-
pact. Compactness of the unit then implies that every dualizable object in
SH(S) is compact. Moreover, SH(S) is generated under sifted colimits by
ΣqX+ and is thus compactly generated.

(2) If K is a field of characteristic 0, then every compact object in SH(K) is
dualizable.

We collect a few facts concerning the functoriality of SH(−); see [Hoy17] for a
reference. Let f : T S be a morphism of schemes. We always have a monoidal
adjunction

f∗ : SH(S) SH(T ) :f∗.

The left adjoint f] to f∗ exists if f is smooth. If f is smooth and proper, we have
the duality equivalence

f∗ ' f]Σ−Ωf .

In particular, if f is finite etale, then f∗ ' f] and the adjunction f∗ a f∗ is
ambidextrous. On the other hand, if f is separated and of finite type, we have the
adjunction

f! : SH(T ) SH(S) :f !.

Moreover, f! coincides with f∗ if f is proper. If f is finite etale, we have that
f ! ' f∗. Finally, we have the projection formula

f!(X ∧ f∗(Y )) ' f!(X) ∧ Y.

Euler classes

Let

ρ = ρS : S−1,−1 S0,0

be the map in SH(S) induced by the inclusion

S0,0 = {±1} Gm = S1,1.

The equivariant analog is the element a ∈ πC2
−1,−1S induced by the inclusion

S0 Sσ.

The element a is the C2-Betti realization of the element ρ ∈ πR
−1,−1, and also serves

as the Euler class for the representation σ.

For Y ∈ SpC2 , the cofiber sequence

(6.1) Σ∞+ C2 S0 Σσa Sσ

yields a long exact sequence

· · · πC2
i+1,1Y

a πC2
i Y πei Y · · · .
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It follows that a map of C2-spectra is a stable equivalence if and only if it induces
a an isomorphism on the bigraded homotopy groups πC2

∗,∗, and that, in contrast
to the R-motivic case, every C2-spectrum is stably equivalent to one built from
representation spheres.

The cofiber sequence (6.1) results in an equivalence

(6.2) Ca ' Σ1−σΣ∞+ C2.

More generally, the cofiber sequences

S(iσ)+ S0 Σiσai Siσ

yield equivalences

(6.3) Cai ' Σ1−iσS(iσ)+

and, taking Spanier-Whitehead duals, equivalences

Cai ' (S(iσ)+)∨.

We therefore have, for any Y ∈ SpC2

Y h = F ((EC2)+, Y )

' lim
i
F (S(iσ)+, Y )

' lim
i
Y ∧ C(ai)

' Y ∧a .

(6.4)

Since we have

Y Φ = Y ∧ ẼC2

' colim
i

Y ∧ Siσ

' Y [a−1]

(6.5)

we deduce that the isotropy separation square (1.3) is equivalent to the a-arithmetic
square:

Y //

��

Y [a−1]

��
Y ∧a // Y ∧a [a−1]

Therefore, C2-Betti realization takes the ρ-arithmetic square to the isotropy sepa-
ration square.

η-completion and η-localization at odd primes

Let K be a perfect field. In [Bac18, Lem. 39], Bachmann summarizes relations in
πK∗,∗S

0,0 involving the Hopf map

η ∈ πK1,1S0,0

23



and the element ρ ∈ πK−1,−1S
0,0, after 2 is inverted. Namely, the element6

ε := −ηρ− 1

is the interchange isomorphism

ε : S1,1 ∧ S1,1 S1,1 ∧ S1,1.

Therefore it satisfies ε2 ' 1, and hence for any X ∈ SH(K)[1/2], there is a corre-
sponding decomposition into ±1-eigenspaces

(6.6) πK∗,∗X
∼= πK∗,∗X

− ⊕ πK∗,∗X+.

Here (−)− is the +1 eigenspace, and (−)+ is the −1 eigenspace. We have

πK∗,∗X
− = πK∗,∗X[η−1] = πK∗,∗X[ρ−1]

and on πK∗,∗X
+ multiplication by η and ρ2 is zero.7 We deduce the following propo-

sition.

Proposition 6.7. For any X ∈ SHcell(K)[1/2], we have

X[η−1] ' X[ρ−1]

and the homotopy groups of these spectra are πK∗,∗X
−, and we have

X∧η ' X∧ρ
and the homotopy groups of these spectra are πK∗,∗X

+.

Proof. From the discussion above we deduce that the maps

X[η−1]→ X[ρ−1][η−1]← X[ρ−1]

X∧η → X∧ρ,η ← X∧η

induces isomorphisms on bigraded homotopy groups, and hence are equivalences
since the spectra are cellular. �

Finally we note that for X ∈ SHcell(K)[1/2], since X∧ρ [ρ−1] ' 0, the ρ-arithmetic
square

X //

��

X[ρ−1]

��
X∧ρ // X∧ρ [ρ−1]

yields a topological lift of the decomposition (6.6)

(6.8) X ' X[ρ−1] ∨X∧ρ .

On the other hand, for any Y ∈ SpC2 [1/2], the Tate spectrum Y t is contractible,
and the isotropy separation square reduces to a splitting

(6.9) Y ' Y Φ ∨ Y h.

6Here we are following the convention that ρ = [−1]. Bachmann instead takes ρ = −[−1]

which results in the formula ε = ηρ− 1 in his work.
7When K = R, multiplication by ρ is zero on πR

∗,∗X
+. This follows from the presentation of

the Milnor-Witt ring of R in the introduction of [DI17b].
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The discussion from the previous subsection implies that C2-Betti realization carries
the splitting (6.8) to (6.9).

Motivic and equivariant cohomology

Let (HFp)K denote the mod p motivic Eilenberg-MacLane spectrum over K. We
have by [Voe03], [Voe11], [Sta16]

πK∗,∗(HFp)K =


Fp[τ ], K = C,
F2[τ, ρ], K = R, p = 2,

Fp[τ2], K = R, p odd.

Here, ρ is the Hurewicz image of ρR (and ρC ' 0).

Eilenberg MacLane spectra are stable under base change — in particular, we have

ζ∗(HFp)R = (HFp)C

and the associated map

πR
∗,∗(HFp)R πC

∗,∗(HFp)C

is the quotient by the ideal generated by ρ if p = 2, and the evident inclusion if p
is odd.

The C2-Betti realization of the mod p motivic Eilenberg-MacLane spectrum is
the C2-equivariant Eilenberg-MacLane spectrum HFp associated to the constant

Mackey functor Fp [HO16]:

BeC2(HFp)R ' HFp.

For p = 2 we have

πC2
∗,∗HF2 = F2[u, a]⊕ F2[u, a]

(u∞, a∞)
{θ}

where a is the Hurewicz image of the element a ∈ πC2
−1,−1,

u = BeC2(τ) ∈ πC2
0,−1HF2,

and

θ ∈ πC2
0,2HF2.

For p odd we have

πC2
∗,∗HFp = Fp[u±2]

where

u2 = BeC2(τ2) ∈ πC2
0,−2HFp.
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7. τ-self maps

In this section we will construct τ j-self maps on the spectra C(ρi)∧p . For p = 2, this
will be accomplished in the first three subsections by first constructing the C2-Betti
realizations of the desired self-maps, and then by using a theorem of Dugger-Isaksen
[DI17a] to lift these equivariant self maps to real motivic self maps. For p odd, we
will observe in the last subsection that the work of Stahn [Sta16] implies that every
ρ-complete spectrum has a τ2-self map.

From now until the last subsection of this section, we implicitly assume everything
is 2-complete.

R-motivic and C2-equivariant homotopy groups of spheres

For j ∈ Z, let P∞j denote the stunted projective spectrum given as the Thom
spectrum

P∞j := (RP∞)jξ

where ξ is the canonical line bundle. The Segal conjecture for the group C2 (Lin’s
theorem) [Lin80] implies the following.

Proposition 7.1. There are isomorphisms

πC2
i,j S

0,0 ∼= πi−j([P
∞
j ]∨).

Proof. The Segal conjecture implies that for a finite C2-spectrum Y , the map

Y Y h = F ((EC2)+, Y )

is a (2-adic) equivalence. Using the equivalence

P∞j ' (Sjσ)hC2
,

we have

πC2
i,j = [Si−j ∧ Sjσ, S]C2

∼= [Si−j ∧ Sjσ, F ((EC2)+, S)]C2

∼= [Si−j , F ((EC2)+ ∧ Sjσ, S)]C2

∼= [Si−j , F ((EC2)+ ∧C2
Sjσ, S)]

= πi−j([P
∞
j ]∨).

�

Applying πC2
∗,∗ to the norm cofiber sequence

(7.2) (EC2)+ S0 ẼC2

gives the long exact sequence

· · · πsi−j+1 λi,j πC2
i,j

ΦC2
πsj−i · · ·
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studied by Landweber8 [Lan69]. Using the equivalences

[P∞j ]∨ ' ΣP−j−1
−∞ , [BMMS86, Thm. V.2.14 (iv) ]

S−1 ' P∞−∞, [Lin80]

there is an isomorphism of long exact sequences

(7.3) · · · // πsi−j+1
//

∼=
��

λi,j
∼= //

∼=
��

πC2
i,j

ΦC2 //

∼=
��

πsj−i
//

∼=
��

· · ·

· · · // πi−jP∞−∞ // πi−jP∞−j // πi−j−1P
−j−1
−∞

// πi−j−1P
∞
−∞

// · · · .

where the bottom long exact sequence is the sequence obtained by applying π∗ to
the cofiber sequence

P−j−1
−∞ P∞−∞ P∞−j .

By (6.5), the geometric fixed points map is the a-localization map:

πC2
i,j S

//

ΦC2
%%

πC2
i,j S[a−1]

∼=
��

πi−jS

Thus the groups πC2
∗,∗ consist of a-torsion, and a-towers, where the latter are in

bijective correspondence with the non-equivariant stable stems. The generators of
these a-towers correspond to the Mahowald invariants [BG95].

As explained in [DI17a], Landweber [Lan69] uses James periodicity to show that

the a-torsion in πC2
i,j is periodic in the j direction outside of a certain conic region.

Theorem 7.4 (Landweber). Define

(7.5) γ(m) := #{k : 0 < k ≤ m, k ≡ 0, 1, 2, 4 mod 8}
Outside of the region

j − 1 ≤ i ≤ 2j

there are isomorphisms

(πC2
i,j )a−tors

∼= (πC2

i,j+2γ(i−1))a−tors.

Proof. Outside of the region described, the map

λi,j (πC2
i,j )a−tors

is an isomorphism, and Landweber [Lan69, Thm. 2.4, Prop. 6.1] observed that
James periodicity implies that there is an isomorphism

λi,j ∼= λi,j+2γ(i−1) .

�

Dugger-Isaksen prove the following theorem [DI17a].9

8Here, we have indexed πi,j and λi,j with respect to our bigrading convention, not Landweber’s.
9Belmont-Guillou-Isaksen [BGI20] have recently improved this isomorphism theorem to the

region i ≥ 2j − 4.
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Figure 7.1. The structure of πC2
i,j S

0,0.

Theorem 7.6 (Dugger-Isaksen). C2-Betti realization induces an isomorphism

πR
i,jS

0,0 πC2
i,j S

0,0

for i ≥ 3j − 5.

Figure 7.1 depicts the location of the a-torsion and the a-towers in πC2
∗,∗. The dashed

line marks the region where Dugger-Isaksen proved these groups coincide with the
groups πR

∗,∗ (Theorem 7.6). This cone in Theorem 7.4 is labeled the “non-periodicity
cone” in the figure. Outside of this cone, the map

λi,j (πC2
i,j )a−tors

is an isomorphism.

u-self maps

Since the C2-spectra S1,0 and S1,1 are non-equivariantly equivalent, the equivalence
(6.2) results in a self-equivalence

u : Σ0,−1Ca Ca.
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We denote this map u, and shall refer to it as a u-self map, because it induces the
multiplication by u map on the homology groups

(HF2)∗,∗(Ca) ∼= F2[u±].

We invite the reader to think of a u-self map as analogous to the vn-self maps of
chromatic homotopy theory [Rav92]. For instance, the mod 2i Moore spectrum

admits a vj1-self map for certain values of j which depend on i. We have the
following analog in the present situation.

Theorem 7.7. The C2-spectrum Cai admits a u-self map

u2γ(i−1) : Σ0,−2γ(i−1)

Cai Cai

and this map is an equivalence.

To prove Theorem 7.7 (and the forthcoming Theorem 7.10) we shall need the fol-
lowing lemma.

Lemma 7.8. The spectra Cρi ∈ SH(R) and Cai ∈ SpC2 are E∞-ring spectra.

Proof. The case of Cρi is explained in Remark 8.5. The case of Cai follows from
the fact that C2-Betti realization is monoidal. �

Proof of Theorem 7.7. Using the equivalence 6.3 and the Adams isomorphism, we
have

πC2

k,lCa
i = [Sk−l+lσ,Σ1−iσS(iσ)+]C2

∼= [Sk−l,ΣS(iσ)+ ∧ S(−l−i)σ]C2

∼= [Sk−l,ΣS(iσ)+ ∧C2 S
(−l−i)σ]

∼= πk−lΣP
−l−1
−l−i

and a similar argument yields

(7.9) (HF2)k,lCa
i ∼= (HF2)k−lΣP

−l−1
−l−i .

It follows that

(HF2)∗,∗Ca
i ∼= F2[u±, a]/(ai)

where, under the isomorphism (7.9), the monomial usat is the homology class com-
ing from the (s− 1)-cell of P s+t−1

s+t−i .

By Lemma 7.8, to prove the theorem it suffices to prove that there is an element

u2γ(i−1) ∈ πC2

0,−2γ(i−1)Ca
i

whose Hurewicz image is

u2γ(i−1)

∈ HC2

0,−2γ(i−1)Ca
i.
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Using the commutative diagram

πC2

0,−2γ(i−1)Ca
i

∼= //

��

π2γ(i−1)ΣP 2γ(i−1)−1
2γ(i−1)−i

��

HC2

0,−2γ(i−1)Ca
i
∼=
// H2γ(i−1)ΣP 2γ(i−1)−1

2γ(i−1)−i

relating equivariant and non-equivariant Hurewicz homomorphisms, the result fol-

lows from the fact (see [BMMS86, Thm. V.2.14(v)]) that P 2γ(i−1)−1
2γ(i−1)−i is reducible.

The resulting self-map u2γ(i−1) induces multiplication by u2γ(i−1)

on homology, and
therefore is a homology isomorphism, and hence is a equivalence. �

Note that we make no claims that these u-self maps have any uniqueness or com-
patibility properties.

τττ-self maps

Theorem 7.10. The R-motivic spectrum Cρi admits a τ -self map

τ2γ(i−1) : Σ0,−2γ(i−1)

Cρi Cρi.

Proof. By Lemma 7.8, it suffices to prove that there is an element

τ2γ(i−1) ∈ πC2

0,−2γ(i−1)Cρ
i

whose Hurewicz image is

τ2γ(i−1)

∈ (HF2)0,−2γ(i−1)Cρi ∼= F2[τ, ρ]/(ρi).

By Theorem 7.6, there are isomorphisms in the map of long exact sequences

πR
i,i−2γ(i−1)

ρi
//

∼=
��

πR
0,−2γ(i−1)

//

∼=
��

πR
0,−2γ(i−1)Cρ

i //

��

πR
i−1,i−2γ(i−1)

ρi
//

∼=
��

πR
−1,−2γ(i−1)

∼=
��

πC2

i,i−2γ(i−1)

ai // πC2

0,−2γ(i−1)
// πC2

0,−2γ(i−1)Ca
i // πC2

i−1,i−2γ(i−1)

ai // · · ·πC2

−1,−2γ(i−1)

which, by the 5-lemma, allow us to deduce that there is an isomorphism

πR
0,−2γ(i−1)Cρ

i ∼= πC2

0,−2γ(i−1)Ca
i.

The desired element τ2γ(i−1) can be taken to be an element which corresponds,
under this isomorphism, to the element u2γ(i−1) of Theorem 7.7. �

τ-self maps at an odd prime

In this subsection, everything is implicitly p-complete for a fixed odd prime p.
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Consider the homotopy complete (p-complete) C2-equivariant sphere Sh. We have

πC2

0,kS
h = [Skσ−k, F ((EC2)+, S)]C2

∼= [(EC2)+ ∧ Skσ, Sk]C2

∼= [(EC2)+ ∧C2
Skσ, Sk]

∼= [P∞k , Sk]

∼=

{
Zp, k even,

0, k odd

where the last isomorphism comes from the fact that P∞k is p-adically contractible
if k is odd, and inclusion of the bottom cell

Sk ↪→ P∞k

is a p-adic equivalence if k is even. Define u2 to be a generator of πC2
0,−2S

h. Then
the above calculation implies that

πC2
0,∗S

h ∼= Zp[u±2].

Thus the homotopy groups of any p-complete homotopy complete C2-equivariant
spectrum are u2-periodic.

Proposition 7.11. We have

πR
0,∗S

∧
ρ
∼= Zp[τ2]

and every (p-complete) ρ-complete real motivic spectrum has a τ2-self map. More-
over, we have

B̂eC2
p (τ2) = u2.

Proof. Let BPGL be the odd primary real motivic Brown-Peterson spectrum con-
structed in [Sta16]. By [Sta16, Prop. 2.5], we have

πR
∗,∗BPGL = Zp[τ2, v1, v2, · · · ]

with |vi| = (2pi − 2, pi − 1). Consider the associated (p-complete) real motivic
Adams-Novikov spectral sequence10

ExtBPGL∗,∗BPGL(BPGL∗,∗, BPGL∗,∗)⇒ πR
∗,∗S

∧
η .

Stahn [Sta16] explains the odd primary analog of a recipe of Dugger-Isaksen [DI10],
which allows one to completely construct the motivic Adams-Novikov spectral se-
quence from the classical Adams-Novikov spectral sequence. In particular, using
Proposition 6.7, we are able to deduce the first statement. The second statement
follows by considering the composite (arising from the Hurewicz homomorphism,
the map of [Hoy15], and Betti realization)

Zp[τ2] = πR
0,∗S

∧
ρ → πR

0,∗BPGL→ πR
0,∗(HFp)R → πC2

0,∗HFp = Fp[u±2].

Thm. 4.18 of [HO16] implies that C2-Betti realization maps τ2 to u2. We deduce
that

B̂eC2
p (τ2) = λu2

10For convergence, the argument of [DI10, Sec. 8] shows that this spectral sequence con-
verges to the (HFp)R-completion of the motivic sphere spectrum, which by [HKO11], is the (p, η)-

completion.
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with λ ∈ Z×p . Without loss of generality, we may choose the generator τ2 so that
λ = 1. �

8. The equivariant-motivic situation

The monoidal Barr-Beck theorem for etale base change

For a subgroup H ≤ G, the restriction-induction adjunction

ResGH : SpG SpH :IndGH

satisfies the hypotheses of Thm. 3.6 (c.f. [MNN17, Thm. 5.32]).

Let ζ denote the map

ζ : SpecC SpecR
and consider the induced adjunction

ζ∗ : SH(R) SH(C) :ζ∗.

Note that since the adjunction ζ∗ a ζ∗ is monoidal, we have

SpecC+ = ζ∗1 ∈ CAlg(SH(R)).

With the adjunction ζ∗ a ζ∗ being our main situation of interest, we now make the
analogous observation in the motivic context.

Proposition 8.1. If f : T S is finite etale, then f∗ a f∗ satisfies the hypotheses
of Thm. 3.6, and we have

SH(T ) ' ModSH(S)(f∗1).

Proof. In view of the properties of the base change functors outlined in Section 6,
it only remains to show that f∗ is conservative, so suppose X ∈ SH(T ) such that
f∗X ' 0. Consider the pullback square

T ×S T T

T S.

g

g f

f

Then f∗f∗x ' g∗g∗x ' 0. But g∗g
∗x is a finite coproduct of copies of x, using that

f is finite etale. Hence, x ' 0. �

Corollary 8.2. We have

SH(C) ' ModSH(R)(SpecC+).

The following is the key calculational observation behind this paper.

Proposition 8.3. There is a non-canonical map

C(ρ) SpecC+

which becomes an equivalence after p-completion and cellularization.
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Proof. Let

ξ : S0,0
R SpecC+

be the unit map, which is adjoint to the identity in SH(C). By adjunction, we have

[S−1,−1,SpecC+]R ∼= [S−1,−1, S0,0]C.

But since ρ ' 0 in SH(C), ξ◦ρ is null homotopic. Making a choice of null homotopy,
we obtain a comparison map

α : C(ρ) SpecC+

that we wish to show is a p-complete cellular equivalence. Using the motivic Adams
spectral sequence, it suffices to show that

β : (HFp)R∗,∗(C(ρ)) (HFp)R∗,∗(SpecC+) ∼= πC
∗,∗(HFp)C

is an isomorphism (for p odd, the motivic Adams spectral sequence only converges
to the (p, η)-completion [HO16], but both C(ρ) and SpecC+ are η-complete by
Prop. 6.7).

For p = 2, πR
∗,∗ of the map (HF2)R ζ∗(HF2)C is computed to be the surjection

F2[τ, ρ] F2[τ ], which identifies β as the isomorphism F2[τ, ρ]/ρ ∼= F2[τ ].

For p odd, πR
∗,∗ of the map (HFp)R ζ∗(HFp)C is computed (see [Sta16, Prop. 1.1])

to be the injection Fp[τ2] Fp[τ ]. Using the fact that ρ acts trivially, we deduce

(HFp)R∗,∗Cρ ∼= Fp[τ2]{1, τ}

and we conclude that β is an isomorphism. �

Remark 8.4. We claim that SpecC+ is not cellular in SH(R). Indeed, upon
applying ζ∗, the cofiber sequence

S−1,−1 ρ
S0,0 C(ρ)

becomes

S−1,−1 0 S0,0 ζ∗(C(ρ))

and thus we have

ζ∗(Cρ) ' S0,0 ∨ S0,−1.

But

ζ∗ SpecC+ = ζ∗ζ∗1 = S0,0 ∨ S0,0.

In effect, the presence of the motivic weight forbids SpecC+ from being cellular.

Remark 8.5. Via Prop. 8.3 and Cell being lax monoidal, C(ρ)∧p and therefore
C(ρn)∧p obtain the structure of E∞-algebras in SH(R)∧p .

Corollary 8.6. There is an equivalence

SHcell(C)∧p ' ModSHcell(R)∧p
(C(ρ))
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and we have a diagram of commuting left adjoints

SHcell(R)∧p SH(R)∧p

SHcell(C)∧p SH(C)∧p

ModSHcell(R)∧p
(C(ρ)) ModSH(R)∧p

(SpecC+)

ζ∗ ζ∗

' '

where the horizontal right adjoints are given by the cellularization functor. In
particular, for X ∈ Sp(R)∧p , we have an induced isomorphism

πR
∗,∗X ∧ C(ρ) ∼= πC

∗,∗ζ
∗X.

Proof. Combine Prop. 8.3, Prop. 8.1, Lem. 4.4 with A = Spec(C)+, and Lem. 4.3
for the p-completion. �

Warning 8.7. Cell is not strong monoidal, and indeed one may show that

Cell(SpecC+ ∧ SpecC+) 6' C(ρ)∧2.

Therefore, we don’t have an induced adjunction between SpecC+-local objects in
SH(R)∧p and C(ρ)-local objects in SHcell(R)∧p .

Betti realization

We next relate the motivic to the C2-equivariant situation. We begin by recalling
the Betti realization and constant functors, for which an ∞-categorical reference is
[BH18, §10.2, 11].

Definition 8.8. The complex Betti realization functor

Be : SH(C) Sp

is the unique colimit preserving functor that sends the complex motivic spectrum
Σ∞+ X to Σ∞+ X(C) for X a smooth quasi-projective C-variety, where X(C) is en-
dowed with the analytic topology. Likewise, the C2-Betti realization functor

BeC2 : SH(R) SpC2

is the unique colimit preserving functor that sends the real motivic spectrum Σ∞+ X
to Σ∞+ X(C) for X a smooth quasi-projective R-variety, where X(C) has C2-action
given by complex conjugation. We define p-complete Betti realization functors by

B̂ep(−) := Be(−)∧p ,

B̂eC2
p (−) := BeC2(−)∧p .
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Both Be and BeC2 are symmetric monoidal functors. Let Sing and SingC2 denote
their respective right adjoints, so we have the following diagram of adjoint functors:

(8.9) SH(R)
BeC2 //

ζ∗

��

SpC2

SingC2

oo

ResC2
e

��
SH(C)

Be //

ζ∗

OO

Sp

IndC2
e

OO

Sing
oo

We also have the real Betti realization functor

BeR : SH(R) Sp

that sends Σ∞X+ to Σ∞+ X(R). By definition, ΦC2 BeC2 ' BeR. Bachmann has
also identified his real-etale localization functor

SH(R) Sp

with BeR ([Bac18, §10]). If we let

i∗ : Sp SpC2

denote the right adjoint to geometric fixed points (−)ΦC2 , then it follows that

SingC2 i∗ is fully faithful.

Consider the ρ-inverted motivic sphere S0,0[ρ−1] and the associated localization
SH(S)[ρ−1]. The following main theorem of [Bac18] is essential.

Theorem 8.10 ([Bac18]). There is an equivalence of ∞-categories

SH(S)[ρ−1] ' Sp(Shv(Sper(S))),

where Sper(S) is the real spectrum of S ([Bac18, §3]). In particular, we have

SH(R)[ρ−1] ' Sp

and the following diagram commutes

SH(R)
BeR //

&&

Sp

SH(R)[ρ−1]

'

::

Thus, real Betti realization is localization with respect to ρ.

We recall the definition of the constant functor, and Heller-Ormsby’s equivariant
generalization [HO16].

Definition 8.11. The constant functor

c∗C : Sp SH(C)

is the unique colimit preserving functor that sends S0 to S0,0. The C2-equivariant
constant functor

c∗R : SpC2 SH(R)

is the unique colimit preserving functor that sends S0 = C2/C2+ to S0,0 = SpecR+

and C2/1+ to SpecC+.
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Lemma 8.12. Betti realization splits the constant functor. In other words, we
have equivalences

Be ◦c∗C ' id,

BeC2 ◦c∗R ' id.

Proof. The functors in question preserve colimits, so it suffices to observe that:

(Be c∗C)(S0) = S0,

(BeC2 c∗R)(S0) = S0,

and (BeC2 c∗C)(C2/1+) = C2/1+.

�

Lemma 8.13. The monoidal adjunctions

Be: SH(C) Sp :Sing

BeC2 : SH(R) SpC2 :SingC2

satisfy the hypotheses of Thm. 3.6. Therefore, we have

Sp ' ModSH(C)(SingS0),

SpC2 ' ModSH(R)(SingC2 S0).

Proof. We verify the second statement; the first will follow by a similar argument.
Let us consider the hypotheses in turn:

(1) In view of Lem. 8.12, SingC2 is conservative as it is split by the right adjoint
to the constant functor c∗R.

(2) Note that for X a smooth quasi-projective R-variety, X(R) and X(C) have

the homotopy types of finite CW-complexes, hence BeC2(Σ∞+ X) is compact

in SpC2 . Because the collection of motivic spectra {Σ∞+ X} furnish a set of

compact generators for SH(R), we deduce that SingC2 preserves colimits.
To verify the projection formula

SingC2(A) ∧B ' SingC2(A ∧ BeC2 B),

because both sides preserve colimits in the B variable, it suffices to check
for B = Σ∞+ X. In this case, we need to show that for any W ∈ SH(R), the
comparison map

[W, SingC2(A) ∧B]R [W, SingC2(A ∧ BeC2 B)]R

is an isomorphism. Using that B is dualizable, under adjunction this is
equivalent to

[BeC2(W ) ∧ BeC2(B∨), A]C2 [BeC2(W ), A ∧ BeC2 B]C2

where the conclusion follows because BeC2 B is also dualizable with dual
given by BeC2(B∨).

�
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Using Lem. 3.7, we deduce the following p-complete variant.

Corollary 8.14. For a prime p, we have

Sp∧p ' ModSH(C)∧p
([SingS0]∧p ),

[SpC2 ]∧p ' ModSH(R)∧p
([SingC2 S0]∧p ).

We may also deduce the following cellular variant, which highlights an important
difference between the R- and C-motivic settings.

Corollary 8.15. The adjunction

Be: SHcell(C) Sp :Cell Sing

satisfies the hypotheses of Theorem 3.6, and therefore Betti realization gives an
equivalence

ModSHcell(C)(Cell SingS0) ' Sp.

In particular, we have an equivalence

ModSHcell(C)(Cell SingS0) ' ModSH(C)(SingS0).

In the real case, the adjunction

BeC2 : SHcell(R) SpC2 :Cell SingC2 ,

satisfies these hypotheses after p-completion, giving

(8.16) ModSHcell(R)∧p
([Cell SingC2 S0]∧p ) ' (SpC2)∧p .

Proof. Lem. 4.5 implies every hypotheses of Thm. 3.6 holds for the cellular adjuc-
tions except for the conservativity hypothesis. In the complex case, because c∗C has
essential image in SHcell(C), Cell Sing is conservative. However, in the real case,

c∗R(C2/1+) = SpecC+

is not cellular. Nonetheless, because

(Cell SpecC+)∧p ' C(ρ)∧p (SpecC+)∧p

is sent to an equivalence in (SpC2)∧p , it follows that Cell SingC2 is conservative after
p-completion. �

Remark 8.17. The observation (8.16) is not new — Ricka proves proves this in
[Ric17, Thm. 2.4]. However, Ricka’s version does not have the p-completion. We
believe the subtlety metioned in the proof above may have been overlooked in his
proof, however, and we do not know if (8.16) holds without the p-completion.

Betti realization as a localization

We will now show that in the p-complete setting, both Cell Sing and Cell SingC2 are

fully faithful, implying B̂ep and B̂eC2
p are localizations when restricted to p-complete

cellular motivic spectra.

The complex case, summarized in the following theorem, was essentially proven by
Dugger and Isaksen [DI10] (in the case of p = 2) and Stahn [Sta16] (in the case of
p odd).
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Theorem 8.18. The functor

Cell Sing : Sp∧p SHcell(C)∧p

is fully faithful with essential image consisting of those objects in SHcell(C)∧p on
which multiplication by τ is an equivalence. Therefore, given X ∈ SHcell(C)∧p ,
2-complete Betti realization induces an isomorphism

πC
i,jX[τ−1]

∼= πiB̂ep(X).

Proof. Because we already know that Be a Cell Sing satisfies the hypotheses of
Thm. 3.6, it suffices to compute (S0,0)∧p [τ−1] ' Cell Sing(S0)∧p . But the natural
map

(S0,0)∧p [τ−1] Sing(S0)∧p

is a cellular equivalence by the results of [DI10] and [Sta16]. �

Our strategy will be to formally derive the real case from this, by lifting this local-
ization up the ρ-completion tower, and combining with Bachmann’s Thm. 8.10.

To this end, we consider the isotropy separation recollement on SpC2 given by

SphC2 SpC2 Sp.
j∗

(−)ΦC2(−)h

i∗

Lemma 8.19. We have equivalences of functors

(BeC2 SingC2 i∗(−))h ' 0,

(BeC2 Cell SingC2 i∗(−))h ' 0.

Proof. Because S0,0[ρ−1] is cellular, the essential image of

SingC2 i∗ : Sp SH(R)

is cellular as it is generated as a localizing subcategory by S0,0[ρ−1]. Therefore,

Cell SingC2 i∗ ' SingC2 i∗,

so we may ignore cellularization in the proof. Because for E ∈ SpC2 , Eh ' 0 if and
only if ResC2

e E ' 0, it suffices to show that

ResC2
e BeC2 SingC2 i∗ ' 0.

Because ResC2
e BeC2 ' Be ζ∗ for

ζ : SpecC SpecR,

this follows from the observation that

ζ∗ : SH(R) SH(C)

vanishes on ρ-inverted objects. �

Lemma 8.20. The natural transformations

(BeC2 SingC2 j∗(−))ΦC2 (j∗(−))ΦC2 ,

(BeC2 Cell SingC2 j∗(−))ΦC2 (j∗(−))ΦC2
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induced by the counits of the adjunctions

ε : BeC2 SingC2 id, and

ε′ : Cell BeC2 SingC2 id

are equivalences.

Proof. We first consider the non-cellular assertion. Let X ∈ SphC2 and Y = j∗X.
Since i∗ is fully faithful, it suffices to prove that

i∗
(
[BeC2 SingC2 Y ]ΦC2

)
= ẼC2 ∧ BeC2 SingC2 Y i∗(Y

ΦC2) = ẼC2 ∧ Y

is an equivalence. For this, first note that because ẼC2 = BeC2(S0,0[ρ−1]), using

that BeC2 is strong monoidal and the projection formula we have equivalences

ẼC2 ∧ BeC2 SingC2 j∗(X) ' BeC2(SingC2(X) ∧ S0,0[ρ−1])

' BeC2 SingC2(X ∧ ẼC2)

under which ẼC2 ∧ εY is identified with ε
Y ∧ẼC2

. Next, by Lem. 8.19 and the fact

that SingC2 i∗ is fully faithful, for any Z ∈ Sp the fiber sequence of functors

(EC2)+ ∧ − id ẼC2 ∧ −

applied to BeC2 SingC2 i∗Z yields the equivalence

BeC2 SingC2 i∗Z ẼC2 ∧ BeC2 SingC2 i∗Z ' i∗Z.

In particular, the counit

BeC2 SingC2(X ∧ ẼC2) X ∧ ẼC2

is an equivalence.

Finally, the cellular assertion is proven in the same way, using now that S0,0[ρ−1] is

cellular and BeC2 a Cell SingC2 is a monoidal adjunction that satisfies the projection
formula by Lem. 4.5. �

We have almost assembled all of the ingredients needed to prove Thm. 8.22. In
view of Lem. 5.1, it only remains to prove the full faithfulness of SingC2 on the
Borel part of the recollement, which we turn to now.

Because we have BeC2(C(ρ)) = C(a) for the Euler class

a : S−σ S0

and (SpC2)∧a ' SphC2 (6.4), we obtain the induced adjunction

B̂ehC2
p : SHcell(R)∧p,ρ (SphC2)∧p :Cell SinghC2

as in Lem. 3.7.

Corollary 8.21. The functor Cell SinghC2 is fully faithful.

Proof. Combine Thm. 8.18, Cor. 8.6, and Prop. 3.10. �
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We may now deduce the categorical half of our main theorem, which states that
C2-equivariant Betti realization, when restricted to p-complete cellular real motivic
spectra, is a localization.

Theorem 8.22. Cell SingC2 : (SpC2)∧p SHcell(R)∧p is fully faithful.

Proof. The conditions of Lem. 5.1 apply in view of Lem. 8.19, Lem. 8.20, Bach-
mann’s theorem 8.10, and Cor. 8.21. �

Computing Betti localization

In the complex case, Theorem 8.18 implies that Betti realization can be computed
on p-complete cellular complex motivic spectra by inverting τ ∈ πC

0,−1(S0,0)∧p .

We would like a similar result for the C2-Betti realization of a p-complete cellular
real motivic spectrum. In the real case, for X ∈ SH(R), the isotropy separation
recollement implies that the homotopy type of the p-complete C2-equivariant Betti
realization can then be recovered by the pullback:

(8.23) B̂eC2
p (X) //

��

B̂eC2
p (X)Φ

��
B̂eC2

p (X)h // B̂eC2
p (X)t

Therefore, it suffices to compute B̂eC2
p (X)Φ, B̂eC2

p (X)h, B̂eC2
p (X)t, and the map

B̂eC2
p (X)Φ B̂eC2

p (X)t.

For the geometric localization B̂eC2
p (X)Φ, Bachmann’s theorem 8.10 has the follow-

ing immediate consequence (which does not require p-completion or cellularization).

Theorem 8.24. For X ∈ SH(R), equivariant Betti realization induces an isomor-
phism

πR
∗,∗X[ρ−1]

∼= πC2
∗,∗ BeC2(X)Φ.

Proof. Using Bachmann’s theorem 8.10, we have

πR
i,jX[ρ−1] ∼= πi−j BeR(X)

∼= πi−j BeC2(X)ΦC2

∼= πC2
i,j BeC2(X)Φ.

�

We will now show that if X is p-complete and cellular, the p-complete homotopy

completion B̂eC2
p (X)h can be computed by inverting τ on the ρ-completion tower.

The Tate spectrum B̂eC2
p (X)t may then computed by inverting ρ on the τ -inverted

ρ-completion.
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Let us now describe in detail how to invert τ on the ρ-completion tower. For every
n, we have adjunctions

B̂eC2,n
p : ModSHcell(R)∧p

(C(ρn)) Mod(SpC2 )∧p
(C(an)) :SingC2,n

where SingC2,n is fully faithful by Thm. 8.18 and Prop. 3.10. The self-map τN of
C(ρn)∧p constructed in Section 7 (where we take τN := τ2 there in the case of p
odd) allows us to explicitly compute the resulting localization functor in terms of
τN -localization, as stated in the next lemma.

Lemma 8.25. For X ∈ ModSHcell(R)∧p
(C(ρn)), we have

SingC2,n B̂eC2,n
p X ' X[τ−1

N ].

Thus, the image of the fully faithful right adjoint

SingC2,n : Mod(SpC2 )∧p
(C(an)) ModSHcell(R)∧p

(C(ρn))

consists of those p-complete cellular C(ρn)-modules on which multiplication by τN
is an equivalence.

Proof. For brevity, we implicitly assume everything is p-complete in this proof. We
claim the self-maps τN satisfy

(1) B̂eC2,n
p (τN ) = uN is an self-equivalence of C(an),

(2) C(ρn)[τ−1
N ] ∧C(ρn) C(ρ) ' C(ρ)[τ−1].

Statement (1) is proven in Thm. 7.7 (for p = 2) and Prop. 7.11 (for p odd). For
statement (2), it suffices to show that the composite

Σ0,−NC(ρ) ' Σ0,−NC(ρn) ∧C(ρn) C(ρ)
τN ∧ 1

C(ρn) ∧C(ρn) C(ρ) ' C(ρ)

is equal to τN , up to multiplication by a unit. However, by Cor. 8.6, we have

πR
0,∗C(ρ) ∼= πC

0,∗(S
0,0)∧p

∼= Zp[τ ].

In particular, the Hurewicz homomorphism

πR
0,∗C(ρ) (HFp)R0,∗Cρ ∼= Fp[τ ]

is given by the obvious surjection, and the result follows from the fact that τN
induces multiplication by τN on homology.

By (1), we have a comparison map

C(ρn)[τ−1
N ] SingC2,n(C(an))

adjoint to the equivalence

C(an)[u−1
N ] ' C(an).

After base-change to C(ρ), this map is an equivalence by (2), hence is an equivalence
as − ∧C(ρn) C(ρ) is conservative. Because the adjunctions in question also satisfy
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the hypotheses of Thm. 3.6, we have that

SingC2,n B̂eC2,n
p X ' SingC2,n((B̂eC2,n

p X) ∧C(an) C(an))

' SingC2,n(C(an)) ∧C(ρn) X

' X[τ−1
N ].

�

For p odd, every X ∈ SH(R)∧p has a τ2 self-map on its ρ-completion, and we can
therefore form the telescope

X∧ρ [τ−1] := X∧ρ [τ−2].

For p = 2, because the periodicity of the elements τN increases as n ∞, we
do not have an analogous construction. Nevertheless, given X ∈ SHcell(R)∧p , the
equivalences of Lemma 8.25 allow us to define maps

X ∧ C(ρn)[τ−1
N ] ' SingC2,n B̂eC2,n

p X ∧ C(ρn)

SingC2,n−1 B̂eC2,n−1
p X ∧ C(ρn−1)

' X ∧ C(ρn−1)[τ−1
N ′ ].

We may therefore define

X∧ρ [τ−1] := lim
n
X ∧ C(ρn)[τ−1

N ].

We are now ready to deduce the computational half of our main theorem.

Theorem 8.26. For X ∈ SHcell(R)∧p , we have

Cell SinghC2 B̂ehC2
p X∧ρ ' X∧ρ [τ−1].

and C2-Betti realization induces an isomorphism

πR
∗,∗X

∧
ρ [τ−1]

∼= πC2
∗,∗B̂eC2

p (X)h.

Proof. Since

Cell SinghC2 B̂ehC2
p X∧ρ ' lim

n
SingC2,n B̂eC2,n

p X ∧ C(ρn),

we deduce the first statement from Lemma 8.25. The second statement follows
from the adjunction

πC2
i,j (B̂eC2

p (X)h) = [BeC2 Si,j , B̂eC2
p (X)h]C2

∼= [Si,j ,Cell SingC2 B̂eC2
p (X)h]R

∼= πR
i,jX

∧
ρ [τ−1].

�
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Figure 9.1. Computing πC2
∗,∗HF2 from πR

∗,∗(HF2)R.
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9. Examples

We now demonstrate the effectiveness of our theory by computing the C2-equivariant
homotopy groups of the C2-Betti realizations of some p-complete cellular real mo-
tivic spectra from their motivic homotopy groups.

For p odd, the computational implementation of our theory is straightforward.
Given X ∈ SHcell(R)∧p , we have (6.8)

X ' X[ρ−1] ∨X∧ρ
and we have

πC2
∗,∗B̂eC2

p (X) ' πR
∗,∗X[ρ−1]⊕ πR

∗,∗X
∧
ρ [τ−2].

In the case of p = 2, the computations are more interesting, and we illustrate this
with some examples. In each of these cases, the motivic homotopy groups are less
complicated than the corresponding C2-equivariant homotopy groups.11

We point out that the use of isotropy separation to organize the equivariant homo-
topy of the examples in this section is not new — see, for example, [Gre18].

Mod 2 motivic cohomology

Let (HF2)R ∈ SH(R) denote the mod 2 real motivic Eilenberg MacLane spectrum.
Dugger-Isaksen proved that the motivic complex cobordism spectrum MGL is cel-
lular [DI05]. Work of Hopkins-Morel and Hoyois [Hoy15] implies that (HZ)R (and
hence (HF2)R) is a regular quotient of MGL, and is therefore cellular. Finally,
Heller-Ormsby [HO16, Thm. 4.17] prove that for any abelian group, the C2-Betti
realization of (HA)R is HA, the C2-equivariant Eilenberg-MacLane spectrum asso-
ciated to the constant Mackey functor A, so we have

BeC2(HF2)R ' HF2.

We may therefore apply our theory to compute πC2
∗ HF2.

Recall again that we have [Voe03]

πR
∗,∗(HF2)R = F2[τ, ρ].

Using Thm. 8.10, we have

πC2
∗,∗HF2

Φ ∼= πR
∗,∗(HF2)R[ρ−1]

= F2[τ, ρ±].

Using Thm. 8.26, we have

πC2
∗,∗HF2

h ∼= πR
∗,∗(HF2)R[τ−1]

= F2[τ±, ρ].

11It is worth pointing out that in each of these examples the actual determination of these
motivic homotopy groups is often the result of deep results in motivic homotopy theory, wheras

the corresponding equivariant computations do not depend on similarly deep input.
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Because the Tate spectrum is the geometric localization of the homotopy comple-
tion, we may apply Thm. 8.10 to the above to deduce

πC2
∗,∗HF2

t ∼= πR
∗,∗(HF2)R[τ−1][ρ−1]

= F2[τ±, ρ±].

We may then use the Mayer-Vietoris sequence

· · · πC2
∗+1,∗HF2

t ∂ πC2
∗,∗HF2 πC2

∗,∗HF2
h ⊕ πC2

∗,∗HF2
Φ · · ·

associated to the isotropy separation square (8.23) to deduce:

πC2
∗,∗HF2 = F2[τ, ρ]⊕ F2[τ, ρ]

(τ∞, ρ∞)
{∂ρ−1τ−1}.

The calculation is displayed in Figure 9.1. The motivic homotopy πR
∗,∗(HF2)R is

displayed in the shaded region. In this figure, a dot represents a factor of F2, and
a line represents multiplication by the element ρ. The other three quadrants are
then obtained from this motivic homotopy by inverting τ , ρ, or both τ and ρ.
The resulting equivariant homotopy, deduced from the Mayer-Vietoris sequence, is
displayed in the upper left hand chart (the combination of the shaded and unshaded
regions).

2-adic motivic cohomology

The discussion of the previous subsection also establishes that the 2-adic real mo-
tivic Eilenberg-MacLane spectrum (HZ2)R is cellular (and it is clearly 2-complete).
The coefficients of (HZ2)R are given by (see, for example [Hil11]12):

πR
∗,∗(HZ2)R =

Z2[ρ, τ2]

(2ρ)
.

Again, [HO16, Thm. 4.17] implies that

BeC2(HZ2)R ' HZ2.

We therefore deduce:

πC2
∗,∗HZ2

Φ ∼= πR
∗,∗(HZ2)R[ρ−1]

= F2[τ2, ρ±],

πC2
∗,∗HZ2

h ∼= πR
∗,∗(HZ2)R[τ−2]

=
Z2[τ±2, ρ]

(2ρ)
,

and

πC2
∗,∗HZ2

t ∼= πR
∗,∗(HZ2)R[τ−2][ρ−1]

= F2[τ±2, ρ±].

12Hill computes the homotopy of BPGL〈0〉∧2 , which, by the work of Hopkins-Morel and Hoyois

[Hoy15] is equivalent to HZ2.
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Figure 9.2. Computing πC2
∗,∗HZ2 from πR
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We therefore deduce from the Mayer-Vietoris sequence

πC2
∗,∗HZ2

∼=
Z2[τ2, ρ, 2τ−2k]

(2ρ)
⊕ F2[τ2, ρ]

(τ∞, ρ∞)
{∂ρ−1τ−2}.

Note that there are implicitly defined relations in the above presentation, such as
τ2(2τ−2k) = 2τ−2k+2 and ρ(2τ−2k) = 0.

The calculation is displayed in Figure 9.2. Everything is analogous to the notation
of Figure 9.1, except that there are now boxes in addition to solid dots, which
represent factors of Z2.

The effective cover of 2-adic algebraic K-theory

We now turn our attention to the spectrum kgl, the effective cover of KGL, the
algebraic K-theory spectrum for the reals. In [Hil11], Hill computes the 2-adic
homotopy groups of this spectrum through the identification

kgl∧2 ' BPGL〈1〉∧2 .
In particular, kgl∧2 is cellular. We have

πR
∗,∗kgl

∧
2
∼=

Z2[ρ, 2τ2, τ4, v1]

(2ρ, v1ρ3)

with
|v1| = (2, 1).

Note that, just as in the previous subsection, our presentation has implicitly defined
relations, such as (2τ2)2 = 4τ4.

It is clear from the definition of KGL that we have

BeC2 KGL = KR

where KR is Atiyah’s Real K-theory spectrum, and from [Hea19, Cor. 5.9] we
deduce the connective analog

BeC2 kgl ' kR.
We deduce:

πC2
∗,∗(kR

∧
2 )Φ ∼= πR

∗,∗kgl
∧
2 [ρ−1]

= F2[τ4, ρ±],

πC2
∗,∗(kR

∧
2 )h ∼= πR

∗,∗kgl
∧
2 [τ−4]

=
Z2[ρ, 2τ2, τ±4, v1]

(2ρ, v1ρ3)
,

and

πC2
∗,∗(kR

∧
2 )t ∼= πR

∗,∗(kgl
∧
2 )[τ−4][ρ−1]

= F2[τ±4, ρ±].

We therefore deduce

πC2
∗,∗kR

∧
2
∼=

Z2[ρ, 2τ2, τ4, v1, 2τ
−2k, v1τ

−4k]

(2ρ, v1ρ3)
⊕ F2[τ4, ρ]

(τ∞, ρ∞)
{∂ρ−1τ−4}.
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The calculation is displayed in Figure 9.3. In this figure, dotted lines represent
v1-multiplication.
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