A C_2-EQUIVARIANT ANALOG OF MAHOWALD’S THOM SPECTRUM THEOREM

MARK BEHRENS AND DYLAN WILSON

ABSTRACT. We prove that the C_2-equivariant Eilenberg-MacLane spectrum associated with the constant Mackey functor F_2 is equivalent to a Thom spectrum over $\Omega^\rho S^{\rho+1}$.

1. INTRODUCTION

Let μ be the Möbius bundle over S^1, regarded as a virtual bundle of dimension 0. The mod 2 Moore spectrum is the Thom spectrum

$$M(2) \cong (S^1)^\mu.$$

The classifying map for μ extends to a double loop map

$$\tilde{\mu} : \Omega^2 S^3 \to BO.$$

Mahowald proved the following theorem [Mah77]:

Theorem 1.1 (Mahowald). There is an equivalence of spectra

$$(\Omega^2 S^3)^\mu \tilde{\cong} H F_2.$$

The bundle μ may also be regarded C_2-equivariant virtual bundle over S^1, by endowing both S^1 and the bundle with the trivial action. Since $B_{C_2} O$ is an equivariant infinite loop space [Ati68], the classifying map for μ extends to an Ω^ρ-loop map

$$\tilde{\mu} : \Omega^\rho S^{\rho+1} \to B_{C_2} O.$$

Here, ρ is the regular representation of C_2. The purpose of this paper is to prove the following.

Theorem 1.2. There is an equivalence of C_2-spectra

$$(\Omega^\rho S^{\rho+1})^{\mu} \tilde{\cong} H F_2.$$

(Here, F_2 denotes the constant Mackey functor with value F_2.)

Acknowledgements. Many tricks in this paper have been independently discovered by Doug Ravenel, and the first author’s involvement in this project is an outgrowth of mathematical discussions with Agnés Beaudry, Prasit Bhattacharya, Dominic Culver, Doug Ravenel, and Zhouli Xu. The authors also benefited from valuable input from Mike Hill. The first author was supported by NSF grant DMS-1611786.

(Date: August 16, 2017)
Conventions. Equivariant objects in this paper either live in Top^{C_2}, the category of C_2-spaces, or Sp^{C_2}, the category of genuine C_2-spectra. In both of these categories, the equivalences are those equivariant maps which induce equivalences on both C_2-fixed points and underlying fixed points. We let H denote the Eilenberg-Maclane spectrum $H\mathbb{F}_2$, with underlying spectrum $H := H\mathbb{F}_2$. We use H_* and $\pi_*^{C_2}$ to denote $RO(C_2)$-graded homology and homotopy groups (i.e. not the Mackey functors) of C_2-equivariant spaces and spectra, and H_* and π_* to denote the ordinary homology and homotopy groups of non-equivariant spaces and spectra. We let σ denote the sign representation of C_2, and let $\rho = 1 + \sigma$ denote the regular representation. For a representation V, $S(V)$ denotes the unit sphere in V, and S^V denotes its one point compactification, and $|V|$ denotes its dimension.

2. Equivariant preliminaries

Euler class. Let a denote the Euler class in $\pi_{-2}^{C_2} S$, given geometrically by the inclusion

$$S^0 \hookrightarrow S^\sigma.$$

There is a cofiber sequence

$$C_2^+ \rightarrow S^0 \hookrightarrow S^\sigma$$

so the cofiber of a is stably given by

$$Ca \cong \Sigma^{-1} C_2^+.$$

The transfer induces a map

$$u : S^{1-\sigma} \xrightarrow{\text{tr}} \Sigma^{-1} C_2^+ \cong Ca$$

which serves as a Thom class for the representation σ:

$$u : S^1 \rightarrow Ca \wedge S^\sigma.$$

For $X \in \text{Sp}^{C_2}$, we have

$$\pi_k^{C_2}(X) \cong \pi_k(X^{C_2}),$$

$$\pi_V^{C_2}(X \wedge Ca) \cong \pi_{|V|}(X^e).$$

Said differently,

$$\pi_\ast^{C_2} X \wedge Ca \cong \pi_\ast X^e[u^\pm].$$

Tate square. We will let

$$X^h := F(EC_{2^+}, X),$$

$$X^\Phi := X \wedge \widetilde{EC}_2$$

denote the homotopy completion and geometric localization of X, respectively. The fixed points of X^h are the homotopy fixed points of X, and the fixed points of X^Φ
are the geometric fixed points of \(X\). \(X\) is recovered from these approximations by the pullback ("Tate square") [GM95]

\[
\begin{array}{c}
X \rightarrow X^\Phi \\
\downarrow \quad \downarrow \\
X^h \rightarrow X^t
\end{array}
\]

where the spectrum \(X^t\) is the equivariant Tate spectrum

\(X^t := (X^h)^\Phi\).

Note that a generalization of the argument establishing (2.2) yields an equivalence

\[\Sigma^{k\sigma - 1}C(a^k) \simeq S(k\sigma)_+\]

Taking a colimit, we see that we have

\[\operatorname{hocolim}_k \Sigma^{k\sigma - 1}C(a^k) \simeq EC_2^+,
\]

\[\operatorname{hocolim}_k S^{k\sigma} \simeq EC_2.\]

It follows that homotopy completion and geometric localization can be reinterpreted as \(a\)-completion and \(a\)-localization:

\[X^h \simeq X^a_\wedge,
\]

\[X^\Phi \simeq X[a^{-1}].\]

In this manner, the Tate square is equivalent to the "\(a\)-arithmetic square"

\[
\begin{array}{c}
X \rightarrow X[a^{-1}] \\
\downarrow \quad \downarrow \\
X^a_\wedge \rightarrow X^a_\wedge [a^{-1}]
\end{array}
\]

Using (2.3), the \(a\)-Bockstein spectral sequence takes the form

\[\pi_* (X^a)[u^\pm, a] \Rightarrow \pi_*^{C_2} (X^h).\]

The \(a\)-Bockstein spectral sequence can be regarded as an \(RO(C_2)\)-graded version of the homotopy fixed point spectral sequence (see [HM17, Lem. 4.8]).

The mod 2 Eilenberg-MacLane spectrum. We have [HK01]

\[\pi_*^{C_2} H = \mathbb{F}_2 [a, u] \oplus \frac{\mathbb{F}_2 [a, u]}{(a^x, u^x)} \{\theta\}\]

where

\[|u| = 1 - \sigma,
\]

\[|\theta| = 2\sigma - 2.\]

The \(a\)-\(u\) divisible factor in \(\pi_* H\) is best understood from the Tate square, using

\[\pi_*^{C_2} H^h \simeq \mathbb{F}_2 [a, u^\pm],
\]

\[\pi_*^{C_2} H^\Phi \simeq \mathbb{F}_2 [a^\pm, u].\]
Actually, the second isomorphism lifts to an equivalence
\[H^{\Phi C_2} \simeq H[a^{-1}u] := \bigvee_{i \geq 0} \Sigma^i H \]
so we have
\[H^\Phi X \simeq H_a(X^{\Phi C_2})[a^\pm, u] \]
and, restricting the grading to trivial representations, we get
\[(2.4) \quad H^\Phi X \simeq H_a(X^{\Phi C_2})[a^{-1}u]. \]

By applying \(\pi^C_{V^2} \) to the map
\[H \wedge X \to H \wedge X \wedge Ca \]
we get a homomorphism
\[(2.5) \quad \Phi^e : H_V(X) \to H_{|V|}(X^e). \]

Taking geometric fixed points of a map
\[S^V \to H \wedge X \]
gives a map
\[S^{V^2} \to H^{\Phi C_2} \wedge X^{\Phi C_2} \]
Using (2.4) and passing to the quotient by the ideal generated by \(a^{-1}u \), we get a homomorphism
\[(2.6) \quad \Phi^{C_2} : H_V(X) \to H_{|V^2|}(X^{\Phi C_2}). \]

A useful lemma. Our main computational lemma is the following.

Lemma 2.7. Suppose that \(X \in \text{Sp}^C \) and suppose that \(\{b_i\} \) is a set of elements of \(H_*(X) \) such that

1. \(\{\Phi^e(b_i)\} \) is a basis of \(H_*(X^e) \), and
2. \(\{\Phi^{C_2}(b_i)\} \) is a basis of \(H_*(X^{\Phi C_2}) \).

Then \(H_*(X) \) is free over \(H_* \), and \(\{b_i\} \) is a basis.

Proof. The set \(\{b_i\} \) corresponds to a map
\[H \wedge \bigvee S_{\{b_i\}} \to H \wedge X. \]

Assumption (1) implies this map is an equivalence upon applying \(\Phi^e \), while assumption (2) implies this map is an equivalence upon applying \(\Phi^{C_2} \). The result follows. \(\square \)

3. Homology of \(\rho \)-loop spaces

We spell out some specific algebraic structure carried by the equivariant homology of a \(\rho \)-loop space. A more detailed and general study of this algebraic structure will appear in [Hil].
Products. Suppose \(X = \Omega \rho Y \in \text{Top}^{C_2} \) is a \(\rho \)-loop space. Then \(X \) is in particular a 1-loop space, and is therefore an equivariant \(H \)-space with product

\[
m : X \times X \to X.
\]

However, the \(\sigma \)-loop space structure also endows \(X \) with a twisted product related to the transfer. Namely, let

\[
S^\sigma \to S^\sigma / S^0 \simeq C_2^+ \wedge S^1
\]

be the pinch map. This gives rise to a twisted product

\[
\tilde{m} : N^x \Omega Y \to \Omega^\sigma Y
\]

where

\[
N^x Z := \text{Map}(C_2, Z) = Z \times Z / C_2
\]

is the norm (with respect to Cartesian product). In particular, there is a map

(3.1)

\[
\tilde{m} : N^x \Omega^2 Y \to X.
\]

Upon applying fixed points to the map (3.1), we get an additive transfer

(3.2)

\[
t : X^e \to X^{C_2}.
\]

In homology, the \(H \)-space structure give rise to a product

\[
m : H^Y X \otimes H^W X \to H^Y + W X.
\]

Using the equivariant commutative ring spectrum structure of \(H \) [Ull13], the twisted product \(\tilde{m} \) gives rise to a “norm map” (see [BH15, Thm. 7.2])

\[
n : H_k X^e \to H_{k \rho} X.
\]

Dyer-Lashof operations. \(X \) has even more structure: \(X \) is an \(E_\rho \)-algebra [GM17]. Specifically, regard \(S(\rho) \) as a \(C_2 \times \Sigma_2 \)-space where \(C_2 \) acts on \(\rho \) and \(\Sigma_2 \) acts antipodally. Then the \(E_\rho \)-structure gives a map

\[
S(\rho) \times_{\Sigma_2} X^{\Sigma_2} \to X.
\]

Note that \(H \) is itself an \(E_\rho \)-ring spectrum, because it is actually an equivariant commutative ring spectrum, so \(H \wedge X_+ \) is an \(E_\rho \)-ring in \(H \)-modules. Given \(x \in H^Y(X) \), represented by a map

\[
x : S^V \to H \wedge X_+,
\]

there is an induced composite

\[
H \wedge S(\rho)_+ \wedge_{\Sigma_2} S^{2V} \xrightarrow{1 \wedge 1 \wedge x \wedge x} H \wedge S(\rho)_+ \wedge_{\Sigma_2} (H \wedge X_+)^{\Sigma_2} \xrightarrow{-} H \wedge H \wedge X_+ \xrightarrow{-} H \wedge X_+ \xrightarrow{-} H \wedge X_+
\]

(where the unlabeled maps come from the \(E_\rho \)-ring and \(H \)-module structure of \(H \wedge X_+ \)). Applying \(\pi_{C_2}^* \), we get a total power operation

\[
\mathcal{T}(x) : \tilde{H}_*(S(\rho)_+ \wedge_{\Sigma_2} S^{2V}) \to \tilde{H}_* X.
\]

For the purposes of this paper we will be only concerned with the case of \(V = k\rho - \sigma \).

We will need the following lemma.
Lemma 3.3. We have the following identification of the C_2-fixed point space of the extended power:

$$(S(\rho)_+ \wedge_{\Sigma_2} S^{2(kp-\sigma)})^{C_2} \approx S^{2k-1} \vee S^{2k}.$$

Proof. The extended power can be identified with the Thom complex of the equivariant vector bundle

$$S(\rho) \times_{\Sigma_2} \mathbb{R}^{2(kp-\sigma)} \to S(\rho)/\Sigma_2.$$

The fixed points is the Thom complex of the fixed point bundle. Thinking of $S(\rho)$ as the unit circle in \mathbb{C}, with C_2 acting by conjugation, the fixed points of the base are given by

$$[S(\rho)/\Sigma_2]^{C_2} = \{[1], [i]\}.$$

The bundle has fiber $\mathbb{R}^{2(kp-\sigma)}$ over $[1]$, and because Σ_2 acts with the antipodal action mixed with the interchange action, the fiber over $[i]$ is given by

$$\mathbb{R}^{p(kp-\sigma)} = \mathbb{R}^{(2k-1)p}.$$

The result follows.

Proposition 3.4. We have

$$\widetilde{H}_* S(\rho)_+ \wedge_{\Sigma_2} S^{2(kp-\sigma)} \cong \widetilde{H}_* \{e_{2kp-\sigma-1}, e_{2kp-\sigma}\}.$$

Proof. Theorem 2.15 of [Wil17] implies there is a cofiber sequence

$$S^{2k-2\sigma} \to S(\rho)_+ \wedge_{\Sigma_2} S^{2(kp-\sigma)} \to S^{2kp-1}.$$

There are two possibilities for the long exact sequence in \widetilde{H}_*: either (a) the connecting homomorphism sends ι_{2k-1} to zero, or (b) the connecting homomorphism sends it to $\theta_{2kp-2\sigma}$. Only possibility (b) is compatible with Lemma 3.3 from geometric fixed point considerations. The result follows.

Thus we get a pair of Dyer-Lashof operations

$$Q^{kp} : \widetilde{H}_{kp-\sigma} X \to \widetilde{H}_{2kp-\sigma} X,$$

$$Q^{kp-1} : \widetilde{H}_{kp-\sigma} X \to \widetilde{H}_{2kp-\sigma-1} X$$

given by the formulas

$$Q^{kp}(x) := \mathcal{P}(x)(e_{2kp-\sigma}),$$

$$Q^{kp-1}(x) := \mathcal{P}(x)(e_{2kp-\sigma-1}).$$

Remark 3.5. If X is actually an equivariant infinite loop space, then $\widetilde{H}_* X$ has an action by equivariant Dyer-Lashof operations [Wil17], and these operations agree with those defined in that paper.
Compatibility with fixed points. The compatibility of all this structure with the maps Φ^e and Φ^{C_2} of (2.5) and (2.6) is summarized as follows.

Products: Note that X^e is an E_2-algebra, and X^{C_2} is an E_1-algebra. The maps Φ^e and Φ^{C_2} are algebra homomorphisms.

Norms: The following diagram commutes:

$$
\begin{array}{ccc}
H_k X^e & \xrightarrow{t} & H_k X^e \\
\downarrow{\scriptstyle n} & \searrow{\scriptstyle Sq} & \\
H_k X^{C_2} & \xrightarrow{\Phi^{C_2}} & H_k X^{C_2}
\end{array}
$$

Here t is the transfer (3.2) and Sq is the squaring map.

Dyer-Lashof operations: The following diagrams commute, where $\epsilon = 0, 1$:

$$
\begin{array}{ccc}
H_{k\rho-\sigma} X & \xrightarrow{\Phi^e} & H_{2k-1} X^e \\
\downarrow{\scriptstyle Q^k} & & \downarrow{\scriptstyle Q^{2k-\epsilon}} \\
H_{2k\rho-\sigma-\epsilon} X & \xrightarrow{\Phi^e} & H_{4k-2-\epsilon} X^e
\end{array}
$$

$$
\begin{array}{ccc}
H_{k\rho-\sigma} X & \xrightarrow{\Phi^{C_2}} & H_k X^{C_2} \\
\downarrow{\scriptstyle Q^k} & & \downarrow{\scriptstyle Sq} \\
H_{2k\rho-\sigma} X & \xrightarrow{\Phi^{C_2}} & H_{2k} X^{C_2}
\end{array}
$$

4. Homology of $\Omega^p S^{p+1}$

Theorem 4.1. There is an additive isomorphism (of H_\ast-modules)

$$H_\ast \Omega^p S^{p+1} \cong H_\ast \otimes E[t_0, t_1, \ldots] \otimes P[e_1, e_2, \ldots]$$

with

$$|t_i| = 2^i \rho - \sigma,$$

$$|e_i| = (2^i - 1) \rho.$$

Proof. Note that we have

$$H_6 \Omega^2 S^3 = \mathbb{F}_2[x_1, x_2, \ldots]$$

with

$$|x_i| = 2^i - 1.$$

Here x_1 is the fundamental class t_1, and

$$x_i := Q^{2^i} Q^{2^{i-1}} \cdots Q^2 x_1.$$
Define $t_0 \in H_* \Omega^p S^{p+1}$ to be the fundamental class, and define the other “generators” e_i and t_i by
\[
e_i := n(x_i),
\]
\[
t_i := Q^{2^i} Q^{2^{i-1}} \cdots Q^p t_0.
\]
Consider the product
\[
t^e_k := t_0^{e_0} t_1^{e_1} \cdots e_k^{e_k}, \quad t_i := Q^2 Q Q^{2i} \cdots Q^p t_0.
\]
with $e_i \in \{0, 1\}$ and $k_i \geq 0$. We compute
\[
\Phi^p(t^e_h) = x_1^{2k_1 + \epsilon_1} x_2^{2k_2 + \epsilon_1} \cdots .
\]
Mapping out of the cofiber sequence (2.1) gives a fiber sequence
\[
\Omega N \Omega S^{p+1} \to \Omega^p S^{p+1} \to \Omega S^{p+1} \xrightarrow{=} N \Omega S^{p+1}.
\]
Upon taking fixed points we get a fiber sequence
\[
\Omega^2 S^3 \to (\Omega^p S^{p+1})^C_2 \to \Omega S^2 \text{null} \to \Omega S^3.
\]
In particular there is an equivalence
\[
(\Omega^p S^{p+1})^C_2 \simeq \Omega S^2 \times \Omega^2 S^3.
\]
and we have
\[
H_*(\Omega^p S^{p+1})^C_2 \cong P[y] \oplus P[t(x_1), t(x_2), \ldots]
\]
where y is the image of the fundamental class under the map
\[
S^1 \to (\Omega^p S^{p+1})^C_2.
\]
It follows that
\[
\Phi^C_2(t^e_h) = y^{e_0 + 2\epsilon_1 + 4\epsilon_2 + \cdots} t(x_1)^{k_1} t(x_2)^{k_2} \cdots .
\]
Thus the set
\[
\{t^e_h\} \subset H_* \Omega_\ast X
\]
satisfies the hypotheses of Lemma 2.7, and the result follows. \hfill \square

5. The equivariant Mahowald theorem

In order to prove Theorem 1.2 we will need to establish a Thom isomorphism
\[
H_* (\Omega^p S^{p+1}) \cong H_* \Omega^p S^{p+1}.
\]
We will do so in two steps. Recall that an E_ρ-algebra is just a spectrum X equipped with a map $S^0 \to X$. Let Free$^*_{E_\rho} : \text{Alg}_{E_\rho}(Sp^{C_2}) \to \text{Alg}_{E_\rho}(Sp^{C_2})$ denote a homotopical left adjoint to the forgetful functor. An explicit model for this functor is the homotopy pushout of E_ρ-algebras:
\[
\begin{array}{c}
\text{Free}^*_{E_\rho}(S^0) \longrightarrow \text{Free}^*_{E_\rho}(X) \\
\downarrow \hspace{1cm} \downarrow \\
S^0 \longrightarrow \text{Free}^*_{E_\rho}(X)
\end{array}
\]
We will need the following theorem.

Theorem 5.1. Let \(f : X \to B_{C^2}O \) classify a virtual bundle of dimension zero and denote by \(\tilde{f} : \Omega^p \Sigma^p X \to B_{C^2}O \) the associated \(\Omega^p \)-map. Then there is a canonical equivalence of \(E_\rho \)-algebras in \(Sp_{C^2} \)

\[
\text{Free}^*_E (X^f) \cong (\Omega^p \Sigma^p X)^{\tilde{f}}.
\]

Proof. Combine the equivariant approximation theorem [GM17, RS00] with Theorem IX.7.1 and Remark X.6.4 of [LMSM86]. □

Remark 5.2. The non-equivariant version of Theorem 5.1 was first observed by Mark Mahowald, and then proven by Lewis. A nice modern account in the non-equivariant setting via universal properties can be found in [AB14].

Proposition 5.3. There is a Thom isomorphism

\[
H_*(\Omega^p S^{p+1}) \cong H_* \Omega^p S^{p+1}.
\]

Proof. Let \(\text{Free}^*_E, H : \text{Alg}_{E_\rho} (\text{Mod}_H) \to \text{Alg}_{E_\rho} (\text{Mod}_H) \) denote a homotopical left adjoint to the forgetful functor. Along with the previous theorem, we will need two facts:

1. \(H \wedge (-) : Sp_{C^2} \to \text{Mod}_H \) is symmetric monoidal.
2. There is a Thom isomorphism \(H \wedge (S^1)^\mu \cong H \wedge S^1_\mu \).

The proposition is now proved by the following string of equivalences:

\[
H \wedge (\Omega^p \Sigma^p S^1)^{\tilde{\mu}} \cong H \wedge \text{Free}^*_E ((S^1)^\mu) \quad \text{by Theorem 5.1}
\]
\[
\cong \text{Free}^*_E, H (H \wedge (S^1)^\mu) \quad \text{by (1)}
\]
\[
\cong \text{Free}^*_E, H (H \wedge S^1_{\mu}) \quad \text{by (2)}
\]
\[
\cong H \wedge \text{Free}^*_E, H (S^1_{\mu}) \quad \text{by (1)}
\]
\[
\cong H \wedge \Omega^p \Sigma^p S^1_{\mu}.
\]

□

Proof of Theorem 1.2. The Thom class is represented by a map

\[
(\Omega^p S^{p+1})^{\tilde{\mu}} \to H.
\]

We wish to show this map is an isomorphism on \(H_* \). The homology of \(H \) is the \(C_2 \)-equivariant Steenrod algebra, computed in [HK01] to be

\[
H \wedge H = H_* [\tau_0, \tau_1, \ldots, \xi_1, \xi_2, \ldots] / (\tau_i^2 = (u + a\tau_0) \xi_{i+1} + a\tau_{i+1})
\]

with

\[
|\tau_i| = 2^i \rho - \sigma,
\]
\[
|\xi_i| = (2^i - 1) \rho.
\]

It suffices to show it is surjective, since the two homologies are abstractly isomorphic and of finite type. Observe that the composite

\[
M(2) \cong (S^1)^\mu \to (\Omega^p S^{p+1})^{\tilde{\mu}} \to H
\]
hits τ_0. Everything is hit then, by [Wil17, Thm. 5.4]. □

References

[Mah77] Mark Mahowald, A new infinite family in π_{2s}^s, Topology 16 (1977), no. 3, 249–256. MR 0445498

