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A CARTAN-EILENBERG SPECTRAL SEQUENCE FOR A NON-NORMAL

EXTENSION

EVA BELMONT

Abstract. Let Φ ! Γ ! Σ be a conormal extension of Hopf algebras over a commutative
ring k, and let M be a Γ-comodule. The Cartan-Eilenberg spectral sequence

E2 = ExtΦ(k,ExtΣ(k,M)) =⇒ ExtΓ(k,M)

is a standard tool for computing the Hopf algebra cohomology of Γ with coefficients in
M in terms of the cohomology of the pieces Φ and Σ. Bruner and Rognes, generalizing
a construction of Davis and Mahowald, have introduced a generalization of the Cartan-
Eilenberg spectral sequence converging to ExtΓ(k,M) that can be defined when Φ = Γ�Σk

is compatibly an algebra and a Γ-comodule. We offer a concrete cobar-like construction that
fits into their framework, and show how this work fits into a larger story. In particular, we
show that this spectral sequence is isomorphic, starting at the E1 page, to both the Adams
spectral sequence in the stable category of Γ-comodules as studied by Margolis and Palmieri,
and to a filtration spectral sequence on the cobar complex for Γ originally due to Adams.
We obtain a description of the E2 term under an additional flatness assumption. We discuss
applications to computing localizations of the Adams spectral sequence E2 page.

1. Introduction

Suppose Γ is a Hopf algebra over a commutative ring k and we wish to calculate its Hopf
algebra cohomology ExtΓ(k, k). If k = Fp and Γ is a group ring Fp[G], then this cohomology
is by definition the mod-p group cohomology H∗(G,Fp), and a short exact sequence of groups
1 ! N ! G! G/N ! 1 gives rise to a Lyndon-Hochschild-Serre spectral sequence

E∗∗
2 = H∗(G/N,H∗(N,Fp)) =⇒ H∗(G,Fp)

(equivalently Ext∗
Fp[G/N ](Fp,Ext

∗
Fp[N ](Fp,Fp)) =⇒ Ext∗

Fp[G](Fp,Fp)). The analogue for more

general Γ is called the Cartan-Eilenberg spectral sequence (alternatively the extension spec-
tral sequence or the change-of-rings spectral sequence); there are a number of variants that
are defined in various settings.

In the setting described in Cartan and Eilenberg’s classic book (see [CE99, XVI.5(2)4]), one
begins with an algebra map Γ ! Σ and a Γ-module M . Then the composite functor spectral
sequence associated to the functors HomΣ(k,−) ◦HomΓ(Σ,−) has the form

E2 = ExtΣ(k,ExtΓ(Σ,M)) =⇒ ExtΓ(k,M).

Given a normal algebra map i : Φ ! Γ (i.e., the left ideal Γ · i(Φ) is also a right ideal), one
can define a quotient Γ ⊗Φ k that is an algebra. If Σ can be expressed as such a quotient
where Γ is projective as a Φ-module, then one may apply the change of rings theorem to
obtain the more familiar form [CE99, Theorem XVI.6.1]

(1.1) E2 = ExtΣ(k,ExtΦ(k,M)) =⇒ ExtΓ(k,M).
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A Cartan-Eilenberg spectral sequence for a non-normal extension

This reduces to the group cohomology example above in the case when the sequence Φ !

Γ ! Σ is Fp[N ] ! Fp[G] ! Fp[G/N ]. Normality of i, which guarantees the quotient Σ is an
algebra, is the analogue of normality of the subgroup N .

The case where Γ is a Hopf algebra (or Hopf algebroid) is of particular interest to stable
homotopy theory. A detailed account of the Cartan-Eilenberg spectral sequence in the setting
of Hopf algebroids can be found in [Rav86, Appendix A1.3]. The basic setup involves a normal

extension of Hopf algebras, i.e., a sequence of Hopf algebra maps Φ
i
!֒ Γ

π
։ Σ := Γ⊗Φ k such

that i is a normal map of k-algebras, and i and π split over k. The E2 page has the same
form as (1.1). One motivating example is the extension generated by the quotient A! A/β
of the Steenrod algebra obtained by modding out by the action of the Bockstein. Working in
the Hopf algebra setting with more general coefficient comodules, Singer [Sin06, Chapter 4]
identifies the Cartan-Eilenberg spectral sequence as the spectral sequence of a bi-cosimplicial
commutative algebra and describes a general theory of power operations acting on it.

In this paper we assume weaker hypotheses: in particular, Σ need not be an algebra, in which
case the classical E2 page and the first of the composite functors is not even defined. Davis and
Mahowald [DM82] were the first to develop a Cartan-Eilenberg type spectral sequence when
they studied ExtA(2)(M,F2) for A(2)-modules M using the non-normal map A(1) ! A(2) of
Hopf algebras. In this paper we study a generalization of their construction due to Bruner
and Rognes [BR].

As our main application is to the localized cohomology of the dual Steenrod algebra, where
it is more convenient to work with comodules than modules, the rest of this discussion will
pertain to the dual setting to that described above. Henceforth, ExtΓ will denote comodule
Ext—that is, derived functors of Hom in the category of comodules over a Hopf algebra Γ.
The classical Cartan-Eilenberg spectral sequence in this setting has the form

E2 = ExtΦ(k,ExtΣ(k,M)) =⇒ ExtΓ(k,M)

where M is a Φ-comodule and Φ ! Γ ! Σ is a conormal extension of Hopf algebras (i.e., an
extension such that Γ�Σk = k �ΣΓ as sub-vector spaces).

Suppose Γ ! Σ is a surjection of Hopf algebras, and the map Φ := Γ�Σk ! Γ is a map of
Γ-comodule algebras. For a Γ-comodule M , we consider three spectral sequences converging
to Ext∗Γ(k,M).

(1) Given a Γ-comodule resolution of k of the form Φ⊗R0
! Φ⊗R1

! . . . for Γ-comodules
Rn, Bruner and Rognes describe a Cartan-Eilenberg type spectral sequence converging
to Ext∗Γ(k,M).1 While Bruner and Rognes are primarily interested in the case where
Σ is an exterior algebra and the complex Φ⊗R∗ is a minimal resolution, we construct
a resolution Rn = Φ⊗n which, in the case Φ is a coalgebra, reduces to the Φ-cobar
resolution of M . Our construction just depends on a Γ-comodule map Φ ! Γ where Φ
is a Γ-comodule algebra; the presence of Σ such that Φ = Γ�Σk simply gives a more
convenient form for the E1 page.

(2) Margolis [Mar83] and Palmieri [Pal01] have studied the generalized Adams spectral
sequence constructed in the category of stable Γ-comodules, a close cousin of the derived

1The spectral sequence we actually discuss computes CotorΓ(M,N), not ExtΓ(M,N). We gloss over this
difference because these are naturally isomorphic when M = k, which is our main case of interest. An
analogous construction would work for comodule Ext in general, however.
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category of Γ-comodules. If Φ is a Γ-comodule algebra and M is a Γ-comodule, then
the Φ-based Adams spectral sequence in Stable(Γ) for M converges to ExtΓ(k,M).

(3) The third construction is a filtration spectral sequence on the cobar complex on Γ due
to Adams [Ada60]. Though originally studied in the case where Φ ! Γ ! Σ is an
extension of Hopf algebras, the filtration spectral sequence itself may be defined in the
setting here (where Φ is a Γ-comodule algebra) without modification.

The main results of this paper can be summarized as follows.

Theorem 1.1. The spectral sequences (1), (2), and (3) coincide at the E1 page, which has
the form

Es,t1 = ExttΣ(k,Φ
⊗s

⊗M)

where Φ denotes the coaugmentation ideal.

These three constructions have different advantages: since (1) is the spectral sequence asso-
ciated to a bi-cosimplicial commutative algebra, it has power operations due to the general
theory of Sawka [Saw82]. The Adams spectral sequence presentation (2) naturally comes
with an E2 term under an analogue of the classical Adams flatness condition (see Corollary
1.2 below). The filtration spectral sequence presentation (3) is convenient for explicit com-
putations in low degrees. Our comparison theorems enable one to use all of these desirable
properties without regard to a choice of underlying model.

Corollary 1.2. If Ext∗Σ(k,Φ) is flat as a module over Ext∗Σ(k, k), then the spectral sequences
(1), (2), and (3) have E2 page

E∗∗
2

∼= Ext∗ExtΣ(k,Φ)(ExtΣ(k, k),ExtΣ(k,M)).

In Section 2 we give an example of a setting in which the new E2 page is defined but the clas-
sical Cartan-Eilenberg spectral sequence is not; in general, we expect such settings to involve
computing localized Ext groups. Given a non-nilpotent element x ∈ ExtΓ(k, k) whose image
in ExtΣ(k, k) is non-nilpotent, one may localize the entire spectral sequence construction, ob-
taining a spectral sequence that, in good cases, converges to x−1 ExtΓ(k,M) (though we note
that convergence must be checked separately). In many cases of interest, the E2 condition
holds only after inverting x, in which case the E2 page of the localized spectral sequence has
the form

E∗∗
2

∼= Ext∗x−1 ExtΣ(k,Φ)(x
−1 ExtΣ(k, k), x

−1 ExtΣ(k,M)).

(The idea is that the flatness condition may hold for the x-local part of ExtΣ(k,Φ) but not
the torsion part.)

Localized Ext groups have been studied in many contexts, often because the localization
represents the more tractable part of an otherwise complicated Ext group of interest. For
example, Davis and Mahowald’s work on v1-local Ext groups over the Steenrod algebra
[DM88] is an important part of understanding the E2 page of the bo-based Adams spectral
sequence (also see [BBB+18] for a detailed study of the relationship between the v1-periodic
and v1-torsion parts). More generally, for a type n spectrum X, the vn-localized Adams E2

page for X is the algebraic analogue of the chromatic localization π∗(v
−1
n X). In Section 2

we use the techniques of this paper to give a new proof of May and Milgram’s calculation of
the p-towers in the Adams spectral sequence E2 term for a finite spectrum; this calculates
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the E2 page above a line of slope 1
2p−2 . This is a much easier analogue of the author’s study

[Bel19] of a different localization of the Adams E2 page for the sphere at p = 3.

Outline. We begin in Section 2 by discussing the motivating application for this work, a
localization of the Adams E2 page for the sphere. In Section 3, we review the classical
construction of the Cartan-Eilenberg spectral sequence for an extension of Hopf algebras
Φ ! Γ ! Σ, and define a variation (the spectral sequence mentioned in (1)) that makes sense
when Φ is only a Γ-comodule algebra. The main step is to replace the Φ-cobar resolution of
a Φ-comodule M (which does not make sense when Φ does not have a coalgebra structure)
with a Γ-comodule resolution. This amounts to describing a specific resolution Φ ⊗ R∗ for
use in Bruner and Rognes’ construction.

In Section 4, we review Margolis and Palmieri’s Adams spectral sequence, and prove that the
spectral sequence (1) coincides with this one at E1. This extends a remark of Palmieri [Pal01,
§1.4], who notes that the spectral sequence he studies coincides with the Cartan-Eilenberg
spectral sequence in the case that the extension is conormal (the coalgebra analogue of the
normality condition mentioned above).

Section 5 is devoted to comparing the spectral sequences (1) and (3). Adams [Ada60, §2.3]
mentions (without proof) that (3) coincides with the classical Cartan-Eilenberg spectral se-
quence in the case when the latter is defined. A proof of this fact is given in [Rav86, A1.3.16],
attributed to Ossa. Our comparison proof is based on Ossa’s. This involves the use of ex-
plicit formulas for the iterated shear isomorphism and its inverse, which are established in
the appendix.

Acknowledgements. The work in this paper represents part of my thesis work. I am greatly
indebted to Haynes Miller, my graduate advisor, for his guidance and support throughout
this project, and more specifically for an early version of the construction in Section 3.3. I’d
also like to thank Paul Goerss for informing me of the existence of [DM82] and [BR], and
Bruner and Rognes for providing me with a draft of their work on this subject.

2. Application: Localized Adams E2 page

The motivation for the work in this paper was an attempt to calculate a localization of
ExtP (F3,F3), where P = F3[ξ1, ξ2, . . . ] ⊂ A is the dual algebra of reduced powers, using a
Cartan-Eilenberg spectral sequence based on the extension

B := F3[ξ
3
1 , ξ2, ξ3, . . . ] ! P ! F3[ξ1]/ξ

3
1 .

Since B is not a sub-coalgebra of P (e.g. ∆(ξn) = ξ3n−1 ⊗ ξ1 + . . . is not contained in P ⊗P ),
the standard Cartan-Eilenberg spectral sequence is not defined; however, B is a P -comodule
algebra, and so the generalized Cartan-Eilenberg spectral sequence described in this paper
can be used. Furthermore, while the Adams flatness condition in Corollary 1.2 does not hold
for this extension, it does hold after inverting the polynomial class b10 ∈ Ext2

F3[ξ1]/(ξ31)
(F3,F3).

The computation of the resulting localized spectral sequence is the subject of [Bel19] which,
at various points, crucially uses each of the three forms of the spectral sequence discussed in
this paper.
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In the rest of this section we give a complete calculation of a simpler version of this problem,
which recovers a classical result on the rationalization of the sphere as a straightforward
consequence of the techniques in this paper. Recall that the dual Steenrod algebra at p > 2
has the form A = Fp[ξ1, ξ2, . . . ] ⊗ E[τ0, τ1, . . . ], and let a0 = [τ0] ∈ Ext1A(Fp,Fp). This class

survives the Adams spectral sequence ExtA(Fp,Fp) =⇒ π∗S
̂
p and is detected in homotopy

by the multiplication-by-p map (S
p
! S) ∈ π0S. The following result, which should be seen as

the algebraic version of Serre’s calculation [Ser53] of the homotopy of the rationalized sphere,
is originally due to May and Milgram [MM81].

Proposition 2.1. Let M be an A-comodule. For p > 2,

a−1
0 ExtA(Fp,M) = a−1

0 ExtE[τ0](Fp,M).

In particular, the a0-localized Adams E2 page for the sphere is a−1
0 ExtA(Fp,Fp) = Fp[a

±1
0 ].

Proof. Let E[x] denote the exterior algebra over Fp on a class x. The sequence of algebras

C := Fp[ξ1, ξ2, . . . ]⊗ E[τ1, . . . ] ! A! E[τ0]

is not an extension of Hopf algebras, as the diagonal on τn ∈ C does not lie in C⊗C. However,
C = A�E[τ0]Fp is an A-comodule algebra, and so the spectral sequences of Theorem 1.1 are
defined. In particular, we have an E1 page

Es,t1 = ExttE[τ0]
(Fp, C

⊗s
⊗M).

Lemma 2.2. C is free over E[τ0].

Proof. The Milnor diagonal ∆ : A! A⊗A induces a right E[τ0]-coaction given by

ψ(τn) = τn ⊗ 1 + ξn ⊗ τ0

ψ(ξn) = ξn ⊗ 1

and in particular, ξin is primitive for all i and ψ(ξinτn) = ξinτn ⊗ 1 + ξi+1
n ⊗ τ0. We have a

E[τ0]-comodule decomposition of C:

C =

∞⊗

n=1

Fp[ξn, τn]/τ
2
n =

∞⊗

n=1

(
Fp[ξn, τn]/τ

2
n

)

=
∞⊗

n=1

(
Fp{1} ⊕ Fp{ξ

i
n, τnξ

i
n : i ≥ 0}

)

=

∞⊗

n=1

(
Fp{1} ⊕

∞⊕

i=1

Fp{ξ
i
n, ξ

i−1
n τn}

)

where all of the summands Fp{ξ
i
n, ξ

i−1
n τn} are free. Thus, C =

⊗∞

n=1(Fp{1}⊕Fn) = Fp{1}⊕F
for free comodules F and Fn, and hence C is free. �

If F is free over E[τ0], then Ext∗E[τ0]
(Fp, F ) is concentrated in homological degree zero. Thus

Es,t1 = 0 unless s = 0 or t = 0. For degree reasons, the a0-localized Cartan-Eilenberg spectral
sequence

a−1
0 Es,t1 = a−1

0 Ext∗E[τ0]
(Fp, C

⊗s
⊗M) =⇒ a−1

0 ExtA(Fp,M)
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converges. Furthermore, a−1
0 Es,t1 = 0 for s > 0, and the a0-localized spectral sequence

collapses at E1 for degree reasons, giving the isomorphism

a−1
0 E0,∗

1 = a−1
0 Ext∗E[τ0]

(Fp,M) ∼= a−1
0 ExtA(Fp,M). �

3. The Cartan-Eilenberg spectral sequence

3.1. Notation and preliminaries. Throughout the paper, Γ will be a Hopf algebra over a
commutative ring k, and M and N will be Γ-comodules. Coproducts will be denoted by ∆,
and comodule coactions will be denoted by ψ.

Notation 3.1. We write
∑
m′ ⊗m′′ := ψ(m) and

∑
γ′ ⊗ γ′′ := ∆(γ) for m ∈M and γ ∈ Γ

when there is no ambiguity which coaction is in play.

An essential technical point in this paper is the comparison between two different Γ-comodule
structures on a tensor product of Γ-comodules; we use the following nonstandard notation to
clarify which structure is in play at a given time.

Definition 3.2. Let M and N be left Γ-comodules, with coaction denoted by ψ(m) =∑
m′⊗m′′ and ψ(n) =

∑
n′⊗n′′. There are two natural ways to put a Γ-comodule structure

on their tensor product M ⊗ N : the left coaction M ⊗ N ! Γ ⊗ (M ⊗ N) is given by
m⊗ n 7!

∑
m′ ⊗m′′ ⊗ n, and the diagonal coaction is given by m⊗ n 7!

∑
m′n′ ⊗m′′ ⊗ n′′.

To distinguish these, we write M
L

⊗N for the tensor product M ⊗N endowed with the left

Γ-coaction, and M
∆

⊗N for the diagonal coaction.

For a pair of right Γ-comodules one can analogously define the right and diagonal coactions,

denoted
R

⊗ and
∆

⊗, respectively.

These constructions are isomorphic in the following special case:

Lemma 3.3. If M is a left Γ-comodule, there is an isomorphism S : Γ
∆

⊗M ! Γ
L

⊗M (called
the shear isomorphism) given by:

S : a⊗m 7!

∑
am′ ⊗m′′

S−1 : a⊗m 7!

∑
ac(m′)⊗m′′

where c is the antipode on Γ. Analogously, ifM is a right Γ-comodule, there is an isomorphism

Sc :M
∆

⊗ Γ !M
R

⊗ Γ given by:

Sc : m⊗ a 7!

∑
m′ ⊗m′′a

S−1
c : m⊗ a 7!

∑
m′ ⊗ c(m′′)a.

The proof is straightforward. Now suppose Φ = Γ�Σk for a Hopf algebra Σ such that Γ is
injective as a Σ-comodule.

6



A Cartan-Eilenberg spectral sequence for a non-normal extension

Lemma 3.4. Let M be a Γ-comodule. Then Γ�ΣM ⊂ Γ
L

⊗ M inherits a left Γ-comodule

structure, and the shear isomorphism S : Γ
∆

⊗M ! Γ
L

⊗M restricts to an isomorphism

Φ
∆

⊗M
∼=
! Γ�ΣM.

The shear isomorphism Sc :M
∆

⊗ Γ !M
R

⊗ Γ restricts to an isomorphism M
∆

⊗ Φ
∼=
!M �ΣΓ.

Using this, we produce a useful variant of the usual change of rings theorem

ExtΓ(M,Γ�ΣN) ∼= Ext∗Σ(M,N)

(see, e.g., [CE99, §VI.4]).

Corollary 3.5 (Change of rings theorem). Let M be a right Γ-comodule and N a left Γ-
comodule, and let Φ = Γ�ΣN . Then there is an isomorphism

Ext∗Γ(M,Φ
∆

⊗N) ∼= Ext∗Σ(M,N).

Both change of rings statements hold for Cotor in addition to comodule Ext.

3.2. Background: Classical Cartan-Eilenberg spectral sequence. We begin by re-
viewing the classical construction of the Cartan-Eilenberg spectral sequence, expressed in
the language of coalgebras. Following the treatment in [Rav86, A1.3.14], we will describe a
spectral sequence that converges to CotorΓ(M,N). Many other treatments define the Cartan-
Eilenberg spectral sequence in the coalgebra context using comodule Ext, but this does not
matter for our cases of interest due to the isomorphism

HomΓ(k,M) ∼= k �ΓM

which implies ExtΓ(k,M) ∼= CotorΓ(k,M). We choose Cotor because it is easier to work
with: both slots are covariant, and it can be computed using an injective resolution of either
side (just as projective resolutions are more convenient for modules, injective resolutions are
more convenient for comodules).

Given an extension of Hopf algebras

Φ ! Γ ! Σ

over a commutative ring k (so in particular Φ = Γ�Σk), a right Γ-comodule M , and a left
Φ-comodule N , the Cartan-Eilenberg spectral sequence for computing CotorΓ(M,N) arises
from the double complex (Γ-resolution of M)�Γ(Φ-resolution of N). Our choice of injective
resolution is the cobar resolution, which we will describe in some detail because an essential
technical point in our spectral sequence construction comes down to the difference between

two versions of the cobar resolution (
∆

D∗
Γ(N) and

L

D∗
Γ(N)) which are isomorphic via the shear

isomorphism.

7
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Definition 3.6. Define the cobar resolution
L

D∗
Γ(N) of N to be the chain complex associated

to the augmented cosimplicial object

N

≃

��

L

D•
Γ(N) =

(
Γ

L

⊗N
ψ

//

∆
//

Γ
L

⊗ Γ
L

⊗Nεoo

∆1
//

ψ
//

// Γ
L

⊗ Γ
L

⊗ Γ
L

⊗N
ε2oo

ε1oo
. . .

)
.

(3.1)

Here the codegeneracies εi come from applying the coaugmentation ε to the ith spot, and the
coface maps ∆i : Γ

⊗n ⊗N ! Γ⊗n+1 ⊗N for 1 ≤ i ≤ n come from applying ∆ to the ith slot;
the last coface map comes from the coaction ψ : N ! Γ⊗N . For a right Γ-comodule M , let
R

D∗
Γ(M) denote the analogous resolution M ⊗ Γ⊗∗

R

⊗ Γ, and similarly for
R

C∗
Γ(M).

Let the (non-normalized) cobar complex
L

C∗
Γ(M,N) be the complex M �Γ

L

D∗
Γ(N).

There are also normalized versions N
L

D∗
Γ(N) (with terms Γ

L

⊗ Γ
⊗∗

⊗N) and N
L

C∗
Γ(M,N) =

M ⊗ Γ
⊗∗

⊗ N (with terms M �Γ(Γ
L

⊗ Γ
⊗∗

⊗ N)), obtained by applying the normalization
functor N : Ch ! Ch defined on terms by

NAn =

n−1⋂

i=0

ker(di : A
n+1

! An) ⊂ An.

(Here Γ denotes ker(ε : Γ ! k) but we will later also use that symbol to denote the quotient
coker(ηL : k ! Γ).)

For our purposes, the classical Cartan-Eilenberg spectral sequence is the spectral sequence

associated to the double complex N
R

D∗
Γ(M)�ΓN

L

D∗
Φ(N).

(3.2)
...

��

...

��

. . . // (M ⊗ Γ
⊗t

⊗ Γ)�Γ(Φ ⊗ Φ
⊗s

⊗N)
(−1)t1⊗dΦ

//

dΓ⊗1
��

(M ⊗ Γ
⊗t

⊗ Γ)�Γ(Φ⊗ Φ
⊗s+1

⊗N)

dΓ⊗1
��

// . . .

. . . // (M ⊗ Γ
⊗t+1

⊗ Γ)�Γ(Φ⊗ Φ
⊗s

⊗N)
(−1)t+1

1⊗dΦ
//

��

(M ⊗ Γ
⊗t+1

⊗ Γ)�Γ(Φ⊗ Φ
⊗s+1

⊗N)

��

// . . .

...
...

Taking homology in the vertical direction first, one has

Es,t1 = CotortΓ(M, Φ⊗ Φ
⊗s

⊗N)

∼= CotortΓ(M, (Γ�Σk)⊗ Φ
⊗s

⊗N)

∼= CotortΣ(M, Φ
⊗s

⊗N)

where the last isomorphism is by the change of rings theorem. For the spectral sequence
that starts by taking homology in the horizontal direction first, exactness of the functor
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(M ⊗ Γ
⊗t

⊗ Γ)�Γ− gives

E∗,t
1

∼= H∗((M ⊗ Γ
⊗t

⊗ Γ)�Γ(Φ⊗ Φ
⊗∗

⊗N)) ∼= (M ⊗ Γ
⊗t

⊗ Γ)�ΓH
∗(Φ⊗ Φ

⊗∗
⊗N)

and by the exactness of the resolution Φ⊗Φ
⊗∗

⊗N of N , this is concentrated in degree zero

as (M ⊗ Γ
⊗t

⊗ Γ)�ΓN . The E2 page then takes cohomology in the t direction, obtaining
E2

∼= E∞
∼= CotorΓ(M,N). The Cartan-Eilenberg spectral sequence is the vertical-first

spectral sequence, and we have just shown that it has

Es,t1 = CotortΣ(M,Φ
⊗s

⊗N) =⇒ Cotors+tΓ (M,N).

If Φ has trivial Σ-coaction, then we have Es,t1
∼= CotortΣ(M,N)⊗ Φ

⊗s
, whose cohomology is:

E2 = CotorsΦ(k,Cotor
t
Σ(M,N)).

The spectral sequence converges because it is a first-quadrant double complex spectral se-
quence.

Remark 3.7. The E2 page is independent of the Φ-resolution of N and the Γ-resolution of
M , but the E1 page does depend on the Φ-resolution of N .

3.3. Weakening the hypotheses. We define a related construction that makes sense when
Φ is not a coalgebra. More precisely, let Γ be a Hopf algebra and let Φ be a Γ-comodule-
algebra. The main issue with defining an analogue of (3.2) is that the cosimplicial object
L

D•
Φ(N) is not defined, because the coface maps would be defined in terms of the coproduct

on Φ.

To remedy this, we turn to a different construction of the cobar complex which is defined for
unital algebras, and which is isomorphic to Definition 3.6 when we are working with a Hopf

algebra. For a Γ-comodule N , define the resolution
∆

D∗
Γ(N) of N to be the chain complex

associated to the augmented cosimplicial object

N

≃

��

∆

D•
Γ(N) =

(
Γ

∆

⊗N
η2

//

η1
//

Γ
∆

⊗ Γ
∆

⊗Nµoo

η1
//

η3
//

// Γ
∆

⊗ Γ
∆

⊗ Γ
∆

⊗N
µ1oo

µ2oo . . .
)

(3.3)

where the codegeneracies µi are multiplication of the ith and (i + 1)st copies of Γ, and the
coface maps ηi are given by insertion of 1 into the ith spot. Substituting Φ for Γ above, if

N is a Γ-comodule we may still define
∆

D∗
Φ(N), a complex of Γ-comodules free over Φ and

quasi-isomorphic to N .

We can also describe
∆

D•
Φ(N) in a more natural way. Since Φ is a monoid object in ComodΓ, we

can define the category ModΦ of Φ-modules in ComodΓ. There is a free-forgetful adjunction

FΦ : ComodΓ
//

oo ModΦ : U

where FΦ(N) = Φ
∆

⊗N . Then
∆

D•
Φ(N) is the cosimplicial object associated to the monad UFΦ.

9
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Definition 3.8. The (non-normalized) cobar complex
∆

C∗
Γ(M,N) is the complexM �Γ

∆

D∗
Γ(N).

Similarly, define
L

C∗
Γ(M,N) =M �Γ

L

D∗
Γ(N).

Proposition 3.9. The shear isomorphism (Lemma 3.3) gives rise to an isomorphism of

cosimplicial objects
∆

D•
Γ(N) !

L

D•
Γ(N), and hence isomorphisms of chain complexes

∆

D∗
Γ(N) !

L

D∗
Γ(N) and

∆

C∗
Γ(N) !

L

C∗
Γ(N).

In the appendix, we write out explicit formulas for these isomorphisms.

Definition 3.10. If Γ is a Hopf algebra, Φ is a Γ-comodule-algebra, and M and N are
Γ-comodules, define the Cartan-Eilenberg spectral sequence to be the spectral sequence as-
sociated to the double complex

(N
∆

D∗
Γ(M)) �Γ (N

∆

D∗
Φ(N)).

The spectral sequence is unchanged starting at E1 if we replace the complex on the right by
a chain-homotopic one, and in Section 5 we will find it more convenient to use the complex

(3.4)
∆

D∗
Γ(M) �Γ (N

∆

D∗
Φ(N)).

By definition, we have the E1 term

Es,t1 = CotortΓ(M,N
∆

D∗
Φ(N))

and it converges to CotorΓ(M,N) as with the usual construction of the Cartan-Eilenberg
spectral sequence. As in the classical case, if Φ = Γ�Σk for some coalgebra Σ, then by the
version of the change of rings theorem in Corollary 3.5 we may write

(3.5) Es,t1
∼= CotortΓ(M,Φ

∆

⊗ (Φ
⊗s ∆

⊗N)) ∼= CotortΣ(M,Φ
∆

⊗s ∆

⊗N).

In particular, if M = k, then Es,t1
∼= ExttΣ(k,Φ

⊗s
⊗N) and the spectral sequence converges

to ExtΓ(k,N).

Remark 3.11. If Φ did have a coalgebra structure, we can also define the spectral sequence
in Section 3.2, and by Proposition 3.9 the two spectral sequences are isomorphic via the shear
isomorphism.

Remark 3.12. Davis and Mahowald [DM82] studied a Cartan-Eilenberg type spectral se-
quence in the setting Γ = A(2)∗, Σ = A(1)∗ (so Φ = Γ�Σk is not a sub-Hopf algebra of Γ).
Instead of the cobar-inspired resolution described here, they work with a minimal resolution,
which is more convenient for computational purposes. Bruner and Rognes [BR] construct a
spectral sequence converging to ExtΓ(k,N) given the data of a Γ-comodule algebra resolu-

tion of k of the form Φ
∆

⊗R∗ where Φ = Γ�Σk for a Hopf algebra Σ and R∗ is a sequence of
Σ-comodules. They show that their spectral sequence is multiplicative, given suitable mul-
tiplicative properties of R∗. The construction in this section can be seen as a special case

of theirs, where Rn = Φ
∆

⊗n
. Our construction does not use the presentation of Φ as Γ�Σk

except to obtain the nicer form of the E1 page in (3.5).

10
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4. Margolis-Palmieri Adams spectral sequence

4.1. Background: Adams spectral sequence in Stable(Γ). Given a finite spectrum X
and a ring spectrum E, the classical Adams spectral sequence is the spectral sequence ob-
tained by applying π∗(−) to the tower of fibrations

(4.1) X

��

E ∧Xoo

��

E ∧ E ∧Xoo . . .oo

E ∧X

88qqqqqqqqqqq

E ∧E ∧X

77♦♦♦♦♦♦♦♦♦♦♦

where E is the cofiber of the unit map S ! E. If E∗E is flat as an E∗-algebra, then the E2

page is given by ExtE∗E(E∗, E∗X).

This construction makes sense in the context of an arbitrary tensor triangulated category
(C,⊗,1). Given a ring object E and another object X of C, let E be the cofiber of the unit
map 1 ! E. Then one can construct the same tower of fibrations (4.1) and apply the functor
HomC(1,−), giving rise to a spectral sequence which, under favorable conditions, converges
to (a completion of) HomC(1,X).

Following Palmieri [Pal01], we study this generalized Adams spectral sequence in the case
C = Stable(Γ), the category whose objects are unbounded cochain complexes of injective
Γ-comodules and whose morphisms are chain complex morphisms modulo chain homotopy.
The reason to work in this setting is the fact that

HomStable(Γ)(M,N) = ExtΓ(M,N)

for Γ-comodulesM and N (we abuse notation by identifyingM with its image under the func-
tor ComodΓ ! Stable(Γ) given by taking injective resolutions). Thus one can use techniques
from homotopy theory to study Ext groups.

Remark 4.1. The reader may wonder why we have chosen Stable(Γ) instead of the more fa-
miliar derived category D(Γ), as there is also an identification HomD(Γ)(M,N) = ExtΓ(M,N).
The reason is that Stable(Γ) is a better setting for studying localized Ext groups: if x ∈
ExtΓ(k, k) is a non-nilpotent element, M and N are Γ-comodules, and x−1N is the colimit
of multiplication by x in Stable(Γ), then

HomStable(Γ)(M,x−1N) = x−1 ExtΓ(M,N)

but the analogous statement in D(Γ) is not guaranteed to hold. As we care most about the
constructions defined in this paper after localizing at a non-nilpotent element, and so this
property is essential to ensuring that this localization is well-behaved.

The Adams spectral sequence in this setting was first studied by Margolis [Mar83] in the case
where Γ is the dual Steenrod algebra, work which was extended and generalized by Palmieri.
If E ∈ Stable(Γ) is a ring object (for example, a Γ-comodule algebra) and X ∈ Stable(Γ)
we refer to the E-based Adams spectral sequence in Stable(Γ) computing HomStable(Γ)(k,X)
as the E-based Margolis-Palmieri Adams spectral sequence (MPASS). Analogously to the

classical Adams flatness condition, if HomStable(Γ)(k,E
∆

⊗ E) is flat over HomStable(Γ)(k,E),

11



A Cartan-Eilenberg spectral sequence for a non-normal extension

then the E2 page of the MPASS is

(4.2) E2
∼= Ext

HomStable(Γ)(k,E
∆

⊗E)
(HomStable(Γ)(k,E), HomStable(Γ)(k,E

∆

⊗X)).

Palmieri [Pal01, Proposition 1.4.3] identifies finiteness conditions on E and X under which
the MPASS converges to HomStable(Γ)(k,X). The motivating application is the case where Γ
is the dual Steenrod algebra, X = H∗(Y ) for a finite spectrum Y , and E is a subalgebra of
A. Then the MPASS

E2
∼= ExtExtA(k,E⊗E)(ExtA(k,E),ExtA(k,E ⊗H∗Y )) =⇒ ExtA(k,H∗Y )

converges to the E2 page of the Adams spectral sequence for π∗Y .

4.2. Comparison: MPASS vs. Cartan-Eilenberg spectral sequence.

Theorem 4.2. Given a left Γ-comodule-algebra Φ and a left Γ-comodule N , the Cartan-
Eilenberg spectral sequence

∆

Es,∗1 = H∗
( ∆

D∗
Γ(k)�Γ(N

∆

Ds
Φ(N))

)
=⇒ Cotor∗Γ(k,N) ∼= Ext∗Γ(k,N)

coincides starting at E1 with the Φ-based MPASS

Es,∗1 = Ext∗Γ(k,Φ
∆

⊗ Φ
∆

⊗s ∆

⊗N) =⇒ Ext∗Γ(k,N).

Proof. Given a chain complex A∗, let QA denote the quotient chain complex whose terms are

given by QAn = An
/∑n

i=1 im(di : An−1
! An). In particular, Q

∆

D∗
Φ(N) ∼= Φ

∆

⊗ Φ
∆

⊗∗ ∆

⊗N . It
is a general fact (see [GJ09, Theorem III.2.1 and Theorem III.2.4] for the dual version) that

there is an isomorphism of chain complexes N ∗A
∼=
! Q∗A, so instead of the double complex

∆

D∗
Γ(k)�Γ(N

∆

Ds
Φ(N)) we may use

∆

D∗
Γ(k)�Γ(Q

∆

D∗
Φ(N)) = Γ

∆

⊗t+1
�Γ(Φ

∆

⊗ Φ
∆

⊗s ∆

⊗N).

We will express the exact couples for both spectral sequences as coming from applying
ExtΓ(k,−) to fiber sequences in Stable(Γ), and show that there is a quasi-isomorphism
connecting those fiber sequences. We begin by describing the exact couple for the Cartan-
Eilenberg spectral sequence more explicitly. Let T ∗ be the total complex defined by T n =
⊕

s+t=n Γ
∆

⊗t+1
�Γ(Φ

∆

⊗ Φ
∆

⊗s ∆

⊗ N). The Cartan-Eilenberg spectral sequence arises from the
filtration F s on this total complex defined by:

F s0T n =
⊕

s+t=n

s≥s0

Γ
∆

⊗t+1
�Γ(Φ

∆

⊗ Φ
∆

⊗s ∆

⊗N).

For the associated graded we have:

F s0/F s0+1T n = Γ
∆

⊗n−s0+1
�Γ(Φ

∆

⊗ Φ
∆

⊗s0 ∆

⊗N)

H∗(F s0/F s0+1T ∗) = Cotor∗Γ(k,Φ
∆

⊗ Φ
∆

⊗s ∆

⊗N).

12
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By definition, the Cartan-Eilenberg spectral sequence arises from the exact couple

(4.3) H∗(F sT ∗)

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗
H∗(F s+1T ∗)oo

H∗(F s/F s+1T ∗).

66

On the other hand, the MPASS comes from the exact couple obtained by applying the functor
ExtΓ(k,−) to the cofiber sequence

(4.4) Φ
∆

⊗s+1 ∆

⊗N ! (Φ
∆

⊗s ∆

⊗N)[1] ! (Φ
∆

⊗ Φ
⊗s ∆

⊗N)[1].

in Stable(Γ). Since ExtΓ(k,−) ∼= CotorΓ(k,−), this is isomorphic to the exact couple

(4.5) H∗(
∆

D∗
Γ(k)�Γ(Φ

∆

⊗s ∆

⊗N))

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗
H∗(

∆

D∗
Γ(k)�Γ(Φ

∆

⊗s+1 ∆

⊗N))oo

H∗(
∆

D∗
Γ(k)�Γ(Φ

∆

⊗ Φ
∆

⊗s ∆

⊗N))

66

We claim that (4.5) and (4.3) are isomorphic exact couples. For the same reason that

H∗(T ∗) ∼= ExtΓ(k,M), we have H∗(F sT ∗) ∼= ExtΓ(k,Φ
⊗s

⊗M). Moreover, there is a map
∆

D∗
Γ(k)�Γ(Φ

∆

⊗s ∆

⊗M) ! F sT ∗ induced by the unit map Φ
∆

⊗s ∆

⊗N ! Φ
∆

⊗Φ
∆

⊗s ∆

⊗N that induces
this isomorphism in cohomology compatibly with the rest of the exact couple. �

The comparison statement shows that the E2 page of the Cartan-Eilenberg spectral sequence
coincides with the MPASS E2 page (4.2).

Corollary 4.3. If ExtΓ(k,Φ ⊗ Φ) is flat as a module over ExtΓ(k,Φ), then the Cartan-
Eilenberg spectral sequence of Definition 3.10 has E2 term given by

E∗∗
2

∼= Ext∗ExtΓ(k,Φ⊗Φ)(ExtΓ(k,Φ),Ext
∗
Γ(k,Φ

∆

⊗N)).

If Φ = Γ�Σk for some coalgebra Σ, then by the change of rings theorem (Corollary 3.5) this
has the form

E∗∗
2 = ExtExtΣ(k,Φ)(ExtΣ(k, k), ExtΣ(k,N)).

For x ∈ ExtΓ(k, k), the x-localized Cartan-Eilenberg spectral sequence has E2 term

Extx−1 ExtΣ(k,Φ)(x
−1 ExtΣ(k, k), x

−1 ExtΣ(k,N)).

Note that, for the localized spectral sequence, one must additionally check convergence.

5. Cartan-Eilenberg vs. filtration spectral sequence

It is a classical fact [Ada60, §2.3] that the Cartan-Eilenberg spectral sequence associated to
the Hopf extension Φ ! Γ ! Σ computing CotorΓ(M,N) coincides with a filtration spectral

13
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sequence on the cobar complex CΓ(M,N) defined by

F sCnΓ(M,N) = {m[a1| . . . |an]ν ∈ CnΓ(M,N) : #({a1, . . . , an} ∩G) ≥ s}

where
G := ker(Γ ! Σ).

As G is an ideal in Γ and the cobar complex C∗
Γ(k, k) is a ring under the concatenation

product, one can say this filtration of C∗
Γ(M,N) =M ⊗C∗

Γ(k, k)⊗N comes from the G-adic
filtration of C∗

Γ(k, k). In this section, we adopt the notation of the previous sections, but also
impose the additional condition that Φ = Γ�Σk where Γ ! Σ is a map of Hopf algebras.

Let E∗∗
r denote this filtration spectral sequence, and let

∆

E∗∗
r denote the generalized Cartan-

Eilenberg spectral sequence described in Definition 3.10. Adapting an argument for the
classical Cartan-Eilenberg spectral sequence, we will show that these agree starting at r = 1.
As a double complex spectral sequence can be viewed as a filtration spectral sequence on the
total complex, it suffices to show the following:

Theorem 5.1. There is a filtration-preserving chain map

θ :
⊕

s+t=n

(M
∆

⊗ Γ
∆

⊗t+1)�Γ(N
∆

Ds
Φ(N)) −! CnΓ(M,N)

whose induced map of spectral sequences
∆

E∗∗
r ! E∗∗

r is an isomorphism on E1.

We begin by defining the comparison map θ.

Definition 5.2. Let θ̃ denote the composition

θ̃ : (M
∆

⊗ Γ
∆

⊗t+1)�Γ(Φ
∆

⊗s+1 ∆

⊗N)
Sn
c ⊗S

n

−! (M ⊗ Γ⊗t R

⊗ Γ)�Γ(Γ
L

⊗ Γ⊗s ⊗N)
e

−!M ⊗ Γ⊗s+t ⊗N

where Snc is n-fold composition of the shear isomorphism Sc : M
∆

⊗ Γ ! M
R

⊗ Γ, Sn is the

n-fold composition of the iterated shear isomorphism S : Γ
∆

⊗N ! Γ
L

⊗N , and e is given by

(m|a1| . . . |at|a)⊗ (b|b1| . . . |bs|n) 7! ε(ab)m|a1| . . . |at|b1| . . . |bs|n.

Define θ to be the restriction of θ̃ to (M
∆

⊗ Γ
∆

⊗t+1)�Γ(N
∆

Ds
Φ(N)).

In Lemma 5.4, we will show that this restriction lands in (M
∆

⊗ Γ
∆

⊗t+1)�Γ(Γ�ΣG(s)�ΣN),
where

G(s) := G�Σ . . . �ΣG
s

.

We will see that E0,∗
0 (M,N) is easy to describe (and in particular it is easy to show that θ

induces an isomorphism
∆

E0,∗
0 (M,N) ∼= E0,∗

0 (M,N)), and most of the work involves identifying

Es,∗0 (M,N) (for s > 0) with E0,∗
0 (M,N ′) for a different comodule N ′, in a way that is

14
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compatible with a similar identification for
∆

Es,∗0 . More precisely, we will show that there is a
map β of chain complexes making the following diagram commute.
(5.1)

(M
∆

⊗ Γ
∆

⊗∗)�Γ N
∆

D0
Φ(G(s)�ΣN)

1⊗S−1 ∼=
��

∆

E0,∗
0 (M,G(s)�ΣN)

≃

θ
// E0,∗

0 (M,G(s)�ΣN)

≃ β

��

(M
∆

⊗ Γ
∆

⊗∗)�ΓN
∆

Ds
Φ(N)

∆

Es,∗0 (M,N)
θ

// Es,∗0 (M,N)

It suffices to show the following:

(1) θ is a filtration-preserving chain map;

(2) S−1 gives rise to an isomorphism N
∆

D0
Φ(G(s)�ΣN) ! N

∆

Ds
Φ(N);

(3) there exists a chain equivalence β making the diagram commute;

(4) θ is a chain equivalence for s = 0.

(1) says we have written down a filtration-preserving map between total complexes, and (2)–
(4) allow us to use the diagram to show that θ is a chain equivalence for all s ≥ 0. We prove
(1) in Lemma 5.3 and Corollary 5.5, (2) in Corollary 5.6, (3) in Corollary/ Definition 5.9, and
(4) in Proposition 5.11.

Both the structure of the proof and the argument for (2) are adapted from an argument
attributed to Ossa appearing as [Rav86, A1.3.16], showing that the classical Cartan-Eilenberg
spectral sequence coincides with the filtration spectral sequence under discussion. Our proof is
more complicated than Ossa’s original, as the spectral sequence of Definition 3.10 generalizes
the classical Cartan-Eilenberg spectral sequence only after the iterated shear isomorphism has
been applied. It is not natural to describe the cobar filtration spectral sequence after applying
the isomorphism, so we must translate between the two contexts using explicit formulas for
the iterated shear isomorphism.

Lemma 5.3. θ̃ is a chain map
⊕

s+t=n(M
∆

⊗ Γ
∆

⊗t+1)�Γ

∆

Ds
Φ(N) ! CnΓ(M,N).

Proof. Since Sn and Snc are maps of chain complexes of Γ-comodules, there is an induced
map on the tensor product of chain complexes

(M
∆

⊗ Γ
∆

⊗∗+1)⊗ (Φ
∆

⊗∗+1 ∆

⊗N) ! (M ⊗ Γ∗+1)⊗ (Γ⊗∗+1 ⊗N)

and since these are maps of chain complexes of Γ-comodules, this passes to a map on the
cotensor product

(M
∆

⊗ Γ
∆

⊗∗+1)�Γ(Φ
∆

⊗∗+1
∆

⊗N) ! (M ⊗ Γ∗+1)�Γ(Γ
⊗∗+1 ⊗N).

Then θ̃ is formed by post-composing with the map

e : (M ⊗ Γ⊗t+1)�Γ(Γ
⊗s+1 ⊗N) !M ⊗ Γt+s ⊗N

15
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which takes m[a1| . . . |at]at+1 ⊗ b0[b1| . . . |bs]n 7! ε(at+1b0)m[a1| . . . |at|b1| . . . |bs]n. To see this
is a chain map, it suffices to check the following diagram commutes.

(M ⊗ Γ⊗t+1)�Γ(Γ
⊗s+1 ⊗N)

1⊗ε⊗1
//

d double
complex

��

M ⊗ Γ⊗t ⊗ Γ⊗s ⊗N

dcobar

��
(M ⊗ Γ⊗t+1)�Γ(Γ

⊗s+2 ⊗N)
⊕ (M ⊗ Γ⊗t+2)�Γ(Γ

⊗s+1 ⊗N)

1⊗ε⊗1
// M ⊗ Γ⊗t+s+1 ⊗N

This requires keeping track of signs: the double complex differential is dΓ ⊗ 1+ (−1)t1⊗ dΦ,
or more explicitly:

a0[a1| . . . |at]at+1 ⊗ b0[b1| . . . |bs]bs+1 7!

∑

i

(−1)ia0[. . . |a
′
i|a

′′
i | . . . ]at+1 ⊗ b0[b1| . . . |bs]bs+1

+
∑

i

(−1)i+ta0[a1| . . . |at]at+1 ⊗ b0[. . . |b
′
i|b

′′
i | . . . ]bs+1

and the cobar differential is

a0[a1| . . . |at|b1| . . . |bs]bs+1 7!

∑

i

(−1)ia0[a1| . . . |a
′
i|a

′′
i | . . . |b1| . . . |bs]bs+1

+
∑

i

(−1)t+ia0[a1| . . . |at|b1| . . . |b
′
i|b

′′
i | . . . |bs]bs+1.

In particular, notice that, on the bottom left composition, the terms corresponding to
a0[. . . |a

′
t+1]a

′′
t+1 ⊗ b0[. . . ]bs+1 cancel in M ⊗ Γ⊗t+s+1 ⊗ N with the terms corresponding to

a0[. . . ]at+1 ⊗ b′0[b
′′
0| . . . ]bs+1. �

While θ̃ is not filtration-preserving, we will show that its restriction to (M
∆

⊗Γ
∆

⊗t+1)�Γ N
∆

Ds
Φ

is.

Lemma 5.4. The iterated shear map S : Γ
∆

⊗s+1
∆

⊗N ! Γ
L

⊗s+1⊗N restricts to an isomorphism

N
∆

Ds
Φ(N) ! Γ�ΣG(s)�ΣN .

The proof is postponed to the appendix.

Corollary 5.5. θ is filtration-preserving.

Proof. This is a direct consequence of Lemma 5.4. �

Corollary 5.6. There are isomorphisms

N
∆

D0
Φ(G(s)�ΣN) = Φ

∆

⊗ (G(s)�ΣN)
S⊗1
−! Γ�ΣG(s)�ΣN

S−1

−! N
∆

Ds
Φ(N).

This gives the left vertical isomorphism in (5.1).

Our next task is to define the map β in (5.1) and show it is a chain equivalence. Most of
the work for that is done in Lemma 5.8; the next lemma is helpful for that, and the result is
summarized in Corollary/ Definition 5.9.
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Lemma 5.7. For fixed s, there is an isomorphism of complexes F s/F s+1CΓ(M,N) = Es,∗0 (M,N) ∼=
M �ΣE

s,∗
0 (M,Σ)�ΣN .

In particular, Es,∗0 (M,N) only depends on the Σ-coaction on N , not the full Γ-coaction. We
will abuse notation by writing Es,∗0 (M,N) where N has a Σ-coaction and not a Γ-coaction
(specifically, we do this for N = G).

Proof. We begin by showing that F s/F s+1CΓ(M,N) only depends on the Σ-coaction on N :
given x = m[γ1| . . . |γn]ν in F sCΓ(M,N), the term m[γ1| . . . |γn|ν

′]ν ′′ in d(x) is in F s+1 if
ν ′ ∈ G. So, if we write ψ(ν) =

∑
ν ′|ν ′′ for the coaction ψ : N ! Σ ⊗ N , we can say that

d(x) ≡
∑
m[γ1| . . . |γn|ν

′]ν ′′ in F s/F s+1Cn+1
Γ (M,N).

We have an isomorphism ψ : N
∼=
! Σ�ΣN of Σ-comodules, where the coaction on the right

hand side is σ ⊗ ν 7! σ′ ⊗ σ′′ ⊗ ν. This shows that the following diagram commutes

Es,t0 (M,N)
ψ

//

d
��

Es,t0 (M,Σ)�ΣN

d
��

Es,t+1
0 (M,N)

ψ
// Es,t+1

0 (M,Σ)�ΣN

and so there is chain complex isomorphism Es,∗0 (M,N) ∼= Es,∗0 (M,Σ)�ΣN for every s. �

Lemma 5.8 ([Rav86, A1.3.16]). The map

δ : Es−1,∗
0 (M,G) −! Es,∗0 (M,Σ)

m[a1| . . . |as−1]g
✤ // m[a1| . . . |as−1|g

′]g′′.

is a chain equivalence, where
∑
g′⊗g′′ is the image of g ∈ G along the map Γ

∆
! Γ⊗Γ ! Γ⊗Σ.

Proof. We introduce a second filtration F̃ s which is defined only on CΓ(M,Γ):

F̃ sCnΓ(M,Γ) = {m[γ1| . . . |γn]γ : at least s of {γ, γ1, . . . , γn} are in G} 2.

There is a short exact sequence of complexes

(5.2) 0 ! F s/F̃ s+1C∗
Γ(M,Γ) ! F̃ s/F̃ s+1C∗

Γ(M,Γ) ! F̃ s/F sC∗
Γ(M,Γ) ! 0.

Unlike F , the new filtration F̃ preserves the contracting homotopy on C∗
Γ(M,Γ) given by

m[γ1| . . . |γn]γ 7! ε(γ)m[γ1| . . . |γn−1]γn. So F̃
∗CΓ(M,Γ) is contractible, and so is the quotient

complex F̃ ∗/F̃ ∗+1CΓ(M,Γ). The short exact sequence (5.2) gives rise to a long exact sequence
in cohomology, and contractibility of the middle complex means that the boundary map

(5.3) δ : H∗(F̃ s/F sC∗
Γ(M,Γ)) ! H∗(F s/F̃ s+1C∗+1

Γ (M,Γ))

is an isomorphism. We will identify F̃ s/F sC∗
Γ(M,Γ) and F s/F̃ s+1C∗+1

Γ (M,Γ) with the source
and target of the desired map in the lemma statement, and show that δ can be lifted to a
map on chains.

2This is off by one from the grading convention used in [Rav86, A1.3.16].
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Levelwise, we can write

(5.4) F̃ s+1CnΓ(M,Γ) = F s+1CnΓ(M,Γ) + F sCnΓ(M,G)

but this is an abuse of notation—as G is not a Γ-comodule, C∗
Γ(M,G) is not a complex (but

we can still talk about CnΓ(M,G) ⊂ CnΓ(M,Γ) as a sub-module). We will see that this will
cease to be a problem upon passing to the associated graded E0.

For each n, we have

F̃ s/F sC∗
Γ(M,Γ) ∼=

(
F sCnΓ(M,Γ) + F s−1CnΓ(M,G)

)/
F sCnΓ(M,Γ)(5.5)

∼= F s−1/F sCnΓ(M,G)

F s/F̃ s+1C∗+1
Γ (M,Γ) ∼= F sCnΓ(M,Γ)

/(
F s+1CnΓ(M,Γ) + F sCnΓ(M,G)

)
(5.6)

=
(
F sCnΓ(M,Γ)/F s+1CnΓ(M,Γ)

)/
F sCnΓ(M,G)

∼= F s/F s+1CnΓ(M,Σ).

While F sC∗
Γ(M,G) is not a complex, Lemma 5.8 shows that F s−1/F sC∗

Γ(M,G) is a complex,

and the isomorphisms F̃ s/F sCnΓ(M,Γ) ∼= F s−1/F sCnΓ(M,G) and F s/F̃ s+1C∗+1
Γ (M,Γ) ∼=

F s/F s+1CnΓ(M,Σ) extend to isomorphisms of complexes. I claim the boundary map (5.3)
can be identified as the map

H∗(F s−1/F sC∗
Γ(M,G))

δ
−! H∗(F s/F s+1C∗

Γ(Σ, N))

m[a1| . . . |an]g
✤ //

∑
m[a1| . . . |an|g

′]g′′

where
∑
g′|g′′ is the image of g under the right Σ-coaction. As the boundary map, this is

just given by the cobar differential, but in order for m[a1| . . . |an]g to be a cycle, the sum of
all the terms except the one in the formula for δ is in F sCn+1

Γ (M,Γ). Furthermore, I claim
this can be extended to a map on chains:

δ : F s−1/F sC∗
Γ(M,G) −! F s/F s+1C∗

Γ(Σ, N)

m[a1| . . . |an]g
✤ //

∑
m[a1| . . . |an|g

′]g′′.

It suffices to show that the image of m[a1| . . . |an]g ∈ F sC∗
Γ(M,G) lies in F s+1C∗

Γ(M,Σ), and
this holds because g′′ is the (s+ 1)st term in G. �

Using Lemma 5.7, we can write this as a map

Es−1,∗
0 (M,G(s)�ΣN)

= Es−1,∗
0 (M,G)�ΣN

δ
−! Es,∗0 (M,Σ)�ΣN = Es,∗0 (M,Σ�ΣN)

∼=
−! Es,∗0 (M,N)

m[a1| . . . |an]g|ν
✤ //

∑
m[a1| . . . |ang

′]g′′ν ✤ //

∑
m[a1| . . . |an|g]ν.

Corollary/ Definition 5.9. Iterating δ gives rise to a chain equivalence

E0,∗
0 (M,G(s)�ΣN)

δ
−! E1,∗

0 (M,G(s − 1)�ΣN)
δ

−! . . .
δ

−! Es,∗0 (M,N)

sending
m[a1| . . . |an]g1| . . . |gs|ν

✤ // m[a1| . . . |an|g1| . . . |gs]ν.

Let β denote this composition.
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It is now easy to see that (5.1) commutes. Our final task is to show (4) after (5.1); first we
need an easy lemma.

Lemma 5.10. Let Γ be a Hopf algebra and M be an Γ-comodule. Then the coaction ψ :
M ! Γ�ΓM is an isomorphism with inverse T : Γ�ΓM !M sending a⊗m 7! ε(a)m.

Proof. First we check that the coaction ψ lands in the cotensor product Γ�ΓM : we need to
check that ψ(m) =

∑
m′ ⊗m′′ lands in the kernel of ∆ ⊗ 1 − 1 ⊗ ψ : Γ⊗M ! Γ⊗ Γ⊗M .

But
∑

(m′)′ ⊗ (m′)′′ ⊗m′′ −
∑
m′ ⊗ (m′′)′ ⊗ (m′′)′′ = 0 by coassociativity.

Next, we check that T is an inverse. We have Tψ(m) = T (
∑
m′ ⊗ m′′) =

∑
ε(m′)m′′.

This is equal to m by general Hopf algebra properties. For the other composition, we have
ψT (a⊗m) =

∑
ε(a)m′⊗m′′. Since a⊗m is in Γ�ΓM , we have

∑
a⊗m′⊗m′′ =

∑
a′⊗a′′⊗m.

Applying ε·1⊗1 to this, we have
∑
ε(a)m′⊗m′′ =

∑
ε(a′)a′′⊗m =

∑
a⊗m. So ψ◦T = 1. �

Proposition 5.11. θ induces an isomorphism
∆

E0,∗
1 ! E0,∗

1 .

Proof. First notice that we have an isomorphism

F 0/F 1(M ⊗ Γ⊗t ⊗N) ∼=M ⊗ Σ⊗t ⊗N

since m[γ1| . . . |γs]ν is in F 1 if any of the γi’s are in G. On the other hand, we have

H∗(
∆

E0,∗
1 ) = H∗((M

∆

⊗ Γ
∆

⊗t+1)�Γ(Φ
∆

⊗N)) = Cotor∗Γ(M,Φ
∆

⊗N) ∼= Cotor∗Σ(M,N)

by the change of rings isomorphism. In the rest of this proof we make this isomorphism more

explicit, enough to see that the isomorphism
∆

E0,∗
1 ! E0,1

1 is induced by θ.

Since the shear map Γ
∆

⊗ Γ ! Γ
L

⊗ Γ commutes with the map Γ ⊗ Γ
q⊗q
−! Σ ⊗ Σ, we have a

commutative diagram

(M
∆

⊗ Γ
∆

⊗t+1)�Γ(Φ
∆

⊗N)

1
t+2⊗S

��

(M
∆

⊗ Γ
∆

⊗t+1)�Γ(Γ�ΣN)
1⊗qt+1⊗12

//

St
c⊗ε·ε·1

��

(M
∆

⊗ Σ
∆

⊗t+1)�Γ(Γ�ΣN)
∼=

// (M
∆

⊗ Σ
∆

⊗t+1)�ΣN

St+1
c ⊗ε·1

��

F 0/F 1(M ⊗ Γt ⊗N)
∼=

// M ⊗ Σt ⊗N

Note that the left vertical composition is θ, by definition. The middle horizontal composition
is the chain equivalence inducing the change of rings isomorphism Cotor∗Γ(M,Γ�ΣN) ∼=
CotorΣ(M,N). By Lemma 5.10, the right vertical map is St+1

c ⊗ T , an isomorphism. So the
bottom left vertical map is a chain equivalence. The top left vertical map is an isomorphism,
so θ is a chain equivalence. �
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Appendix: The cobar complex and the shear isomorphism

In this appendix we record some technical facts about the iterated shear isomorphism that
are needed for the comparison proof in section 5.

First we need notation for the iterated coproduct.

Definition A.1. For a Hopf algebra Γ and Γ-comodule M , let ∆n denote the iterated co-
product

∆n : Γ
∆
! Γ⊗2 ∆

! . . .
∆
! Γ⊗n+1

and let ψn denote the iterated coaction M
ψn

! Γ⊗n ⊗M . Write
∑
m(1)| . . . |m(n+1) := ψn(m)

and
∑
γ(1)| . . . |γ(n+1) := ∆n(γ). (Note that this notation is well-defined because of coasso-

ciativity.)

For example, ∆(γ) =
∑
γ′|γ′′ =

∑
γ(1)|γ(2), and

∑
∆(γ(1))|γ(2) =

∑
γ(1)|γ(2)|γ(3).

Lemma A.2. The iterated shear isomorphism Sn : Γ
∆

⊗n
∆

⊗M ! Γ
L

⊗ Γ⊗n−1 ⊗M is given by

Sn : x1| . . . |xn|m 7!

∑
x1(1)x2(1) . . . xn(1)m(1)|x2(2) . . . xn(2)m(2)|x3(3) . . . xn(3)m(3)| . . . |m(n+1).

The iterated shear isomorphism Snc :M
∆

⊗ Γ
∆

⊗n
!M ⊗ Γ⊗n−1

R

⊗ Γ is given by

Snc : m|xn| . . . |x1 7!
∑

m(1)|m(2)xn(1)|m(3)xn(2)xn−1(1)| . . . |m(n+1)xn(n)xn−1(n−1) . . . x2(2)x1.

Proof. We prove just the first statement, as the second is analogous. Use induction on n. If
n = 2 this is true by definition of S. Now suppose Sn−1 is given by the formula above. We
can write Sn as the composition

Γ
∆

⊗n ∆

⊗M
Sn−1

−! Γ
∆

⊗ (Γ
L

⊗n−1 ⊗M)
S

−! Γ
L

⊗ (Γ
L

⊗n−1 ⊗M)

and by the inductive hypothesis the first map sends

x1|x2| . . . |xn|m 7!

∑
x1|x2(1)x3(1) . . . xn(1)m(1)|x3(2) . . . xn(2)m(2)| . . . |m(n).

If we write this as x1|y, then the second map sends this to
∑
x1y(1)|y(2); remembering that

the coaction on y just comes from the first component, this is:
∑

x1x2(1)x3(1) . . . xn(1)m(1)|x2(2)x3(2) . . . xn(2)m(2)|x3(3) . . . xn(3)m(3)| . . . |m(n+1). �

Lemma A.3. The iterated inverse shear isomorphism S−n : Γ
L

⊗ Γ⊗n−1 ⊗M ! Γ
∆

⊗n
∆

⊗M is
given by

S−n : x1| . . . |xn|m 7!

∑
x1c(x

′
2)|x

′′
2c(x

′
3)|x

′′
3c(x

′
4)| . . . |x

′′
nc(m

′)|m′′.

The iterated inverse shear isomorphism S−n
c :M ⊗ Γ⊗n−1

R

⊗ Γ !M
∆

⊗ Γ
∆

⊗n is given by

S−n
c : m|xn| . . . |x1 7!

∑
m′|c(m′′)x′n|c(x

′
n)x

′
n−1| . . . |c(x

′
2)x1.
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Proof. Again we only prove the first statement, and again this is by induction on n. If n = 1,
this is the definition of S−1 in Lemma 3.3.

Assume the formula holds for n− 1. Write S−n as the composition

Γ
L

⊗ (Γ
L

⊗n−1 ⊗M)
S−(n−1)

−! Γ
L

⊗ (Γ
∆

⊗n ∆

⊗M)
S−1

−! Γ
∆

⊗ (Γ
∆

⊗n ∆

⊗M)

and by the inductive hypothesis the first map sends

x1|x2| . . . |xn|m 7!

∑
x1|x2c(x

′
3)|x

′′
3c(x

′
4)| . . . |x

′′
nc(m

′)|m′′.

If we write this as x1|y, then the second map sends this to
∑
x1c(y(1))|y(2), which is

∑
x1c

(
(x2c(x

′
3)x

′′
3c(x

′
4) . . . x

′′
nc(m

′)m′′)′
)
|x′′2c(x

′
3)

′′|(x′′3)
′′c(x′4)

′′| . . . |(x′′n)
′′c(m′)′′|(m′′)′′

=
∑

x1c
(
x2(1)c(x3(2))x3(3)c(x4(2))x4(3) . . . c(m(2))m(3)

)
|x2(2)c(x3(1))|x3(4)c(x4(1))|

. . . |xn(4)c(m(1))|m(4)

=
∑

x1c
(
x2(1)ε(x3(2) . . . xn(2)m(2))

)
|x2(2)c(x3(1))|x3(3)c(x4(1))|

. . . |xn(3)c(m(1))|m(3)

=
∑

x1c(x2(1))|x2(2)c(x3(1))|x3(2)c(x4(1))| . . . |xn(2)c(m(1))|m(2).

Here the first equality uses the fact that
∑
c(x′)|c(x′′) =

∑
c(x)′′|c(x)′, the second uses the

fact that c(x′)x′′ = ε(x), and the third uses the fact that
∑
ε(x′)|x′′ =

∑
1|x. �

Lemma A.4. The iterated shear isomorphism S : Γ
∆

⊗∗+1
∆

⊗N ! Γ
L

⊗∗+1 ⊗N restricts to an
isomorphism of chain complexes

(A.7) S : Φ
∆

⊗∗+1 ∆

⊗N ! Γ�Σ . . . �ΣΓ
∗+1

�ΣN.

Proof. For any Γ-comodule M , by Lemma 3.4 the shear isomorphism gives an isomorphism

Φ
∆

⊗N
∼=
! Γ�ΣN , and iterating the shear map gives an isomorphism Φ

∆

⊗s+1
∆

⊗N
∼=
! Γ�Σ . . . �ΣΓ

s+1

�ΣN .

�

Proof of Lemma 5.4. It suffices to check the inclusions S−1(Γ�ΣG(s)�ΣN) ⊂ N
∆

Ds
Φ(N) and

S(N
∆

Ds
Φ(M)) ⊂ Γ�ΣG(s)�ΣN . For the first inclusion, use Lemma A.3 to observe that

S−1(a|g1| . . . |gs|n) =
∑

ac(g′1)|g
′′
1c(g

′
2)|g

′′
2c(g

′
3)| . . . |g

′′
s c(n

′)|n′′(A.8)

and for 1 ≤ i ≤ s we have

µi(
∑
ac(g′1)|g

′′
1c(g

′
2)|g

′′
2c(g

′
3)| . . . |g

′′
s c(n

′)|n′′) =
∑
ac(g′1)|g

′′
1c(g

′
2)| . . . |g

′′
i−1c(g

′
i)g

′′
i c(g

′
i+1)| . . . |n

′′

=
∑
ac(g′1)|g

′′
1c(g

′
2)| . . . |g

′′
i−1ε(gi)c(g

′
i+1)| . . . |n

′′

which is zero since gi ∈ G (and so gi /∈ k). This shows (A.8) is in N
∆

Ds
Φ(N).
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For the other direction, let x0| . . . |xs|n ∈ N
∆

Ds
Φ(N) ⊂ Φ

∆

⊗s+1 ⊗N . By Lemma A.2, we have

(A.9) S(x0| . . . |xs|n) =
∑

x0(1)x1(1) . . . xs(1)n(1)|x1(2) . . . xs(2)n(2)|x2(3) . . . n(3)| . . . |n(s+2).

The goal is to show that each component xk(k+1)xk+1(k+1) . . . xs(k+1)n(k+1) is in G for 1 ≤

k ≤ s. Since Φ is a left Γ-comodule, if x ∈ Φ then ∆j(x) = x(1)| . . . |x(j) and so x(j) ∈ Φ.
By assumption, all of the xi’s are in Φ, and since (A.9) involves the iterated coproduct
∆i+1(xi) = xi(1)| . . . |xi(i+1) for every i, we have xi(i+1) ∈ Φ. If we could guarantee xk(k+1)

were in Φ, then we would be done (since G = ΦΓ). Instead, we show that the terms where
xk(k+1) = 1 sum to zero.

The terms where xk(k+1) = 1 are:

∑
x0(1)x1(1) . . . xk−1(1)xk(1) . . . xs(1)n(1)| . . . |xk−2(k−1)xk−1(k−1)xk(k−1) . . .

(A.10)

|xk−1(k)xk(k)xk+1(k) . . . |xk+1(k+1)xk+2(k+1) . . . | . . . |n(s+2).

The assumption that x0| . . . |xs is in N
∆

Ds
Φ(M) implies that xk−1xk = 0 (this is where we use

the fact that k ≥ 1), and hence

0 = ∆k(xk−1xk) =
∑

xk−1(1)xk(1)| . . . |xk−1(k−1)xk(k−1)|xk−1(k)xk(k).

Observing how ∆(xk−1xk) is embedded in (A.10), we have (A.10) = 0. �
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Birkhäuser Verlag, Basel, 2009. Reprint of the 1999 edition [MR1711612].

[Mar83] H. R. Margolis. Spectra and the Steenrod algebra, volume 29 of North-Holland Mathematical Library.
North-Holland Publishing Co., Amsterdam, 1983. Modules over the Steenrod algebra and the stable
homotopy category.

[MM81] J. P. May and R. J. Milgram. The Bockstein and the Adams spectral sequences. Proc. Amer. Math.
Soc., 83(1):128–130, 1981.

[Pal01] John H. Palmieri. Stable homotopy over the Steenrod algebra. Mem. Amer. Math. Soc.,
151(716):xiv+172, 2001.

[Rav86] Douglas C. Ravenel. Complex cobordism and stable homotopy groups of spheres, volume 121 of Pure
and Applied Mathematics. Academic Press, Inc., Orlando, FL, 1986.

22



A Cartan-Eilenberg spectral sequence for a non-normal extension

[Saw82] John Sawka. Odd primary Steenrod operations in first-quadrant spectral sequences. Trans. Amer.
Math. Soc., 273(2):737–752, 1982.

[Ser53] Jean-Pierre Serre. Groupes d’homotopie et classes de groupes abéliens. Ann. of Math. (2), 58:258–
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