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1. Introduction

1.1. Overview

1.1.1. Partial adjunction
The main goal of this paper is to make Hinich’s enriched Yoneda embedding in the ∞-categorical setting 

from [10] into a natural transformation. We work in the framework of enriched ∞-categories as developed 
in [10,11,3,6]. These sources differ in notation, and we introduce our notation throughout the paper. For 
brevity, henceforth we use the term (enriched) category to mean an (enriched) ∞-category, and a 2-category 
to mean an (∞, 2)-category. Throughout this paper we fix a presentably monoidal category V ∈ Alg(PrL).

For every V-enriched category C0 ∈ CatV and a presentably V-tensored category D ∈ LModV(PrL), Hinich 
defined an (unenriched) category of V-functors FunV(C0, D) ∈ PrL. Using this, he defined a presentably V-
tensored category of enriched presheaves PV(C0) := FunVrev(Cop

0 , V) ∈ LModV(PrL). One of the main results 
of [10] is the construction of a V-enriched Yoneda embedding

よV : C0 → PV(C0),

namely, an object of FunV(C0, P
V(C0)) ∈ PrL, satisfying the enriched Yoneda lemma. However, this map is 

not shown to be natural in C0, which is the central question of the present paper.
In a sequel paper [11], Hinich shows that his enriched Yoneda embedding enjoys the following universal 

property:

Theorem 1.1 ([11, 6.4.4]). Let C0 ∈ CatV. Then, for every D ∈ LModV(PrL), composition with the enriched 
Yoneda embedding induces an equivalence

(よV)∗ : FunL
V(PV(C0),D) ∼−→ FunV(C0,D).

This almost exhibits よV as a unit of an adjunction, but there are two problems:

(1) FunV(C0, D) is not the hom in any category (note that C0 is V-enriched while D is V-tensored).
(2) C0 is small while D is large.

To solve Problem (1), we use the fact that presentably V-tensored categories produce V-enriched cate-
gories, as was first proven in [3, Corollary 7.4.9], and made functorial in the work of Heine [6]. Letting ̂CatV
denote the (huge) category of large V-enriched categories, a special case of Heine’s result reads as follows:

Theorem 1.2 ([6, Corollary 6.13]). There is a functor

χ : LModV(PrL) → ̂CatV

witnessing the source as a (non-full non-wide) subcategory of the target.

We shall also use [6, Theorem 1.10], showing that for every C0 ∈ CatV and D ∈ LModV(PrL) there is an 
equivalence FunV(C0, D)� ∼= homV(C0, χ(D)), where the right hand side denotes the space of morphisms in 
̂CatV. Combining these result, in Proposition 2.13 we conclude that there is an isomorphism of spaces
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homL
V(PV(C0),D) ∼−→ homV(C0, χ(D)),

where the left hand side denotes the underlying space of FunL
V(PV(C0), D).

To deal with Problem (2), we recall that one can define adjoints partially, namely an adjoint and a 
(co)unit map defined only on a full subcategory (or, more generally, relative to a functor), see Definition 3.1. 
Furthermore, we recall the folklore result that (partial) adjoints can be constructed point-wise, as we show 
in Proposition 3.5.

With these results in mind, we deduce our first main result:

Theorem A (Theorem 3.6). The functor χ : LModV(PrL) → ̂CatV has a partial left adjoint PV : CatV →
LModV(PrL) with partial unit agreeing with the enriched Yoneda embedding.

In particular, for every f : C0 → D0 in CatV, we get an induced V-linear left adjoint f! : PV(C0) → PV(D0), 
and an isomorphism f!よ

V ∼=よVf , as explained in Proposition 3.8.

1.1.2. Atomics–presheaves adjunction
In a somewhat different direction, we study atomic objects, a finiteness condition on objects of presentably 

V-tensored categories. We show that this condition is closely related to the enriched Yoneda embedding, 
and, in particular, gives another solution for Problem (2), leading to a (non-partial) adjunction.

Let C ∈ LModV(PrL), and let X ∈ C. The functor − ⊗X : V → C is a V-linear left adjoint functor. We 
say that X is atomic if the right adjoint homV(X, −) is itself a left adjoint and the canonical lax V-linear 
structure on it is strong (see Definition 5.4). These objects form a small full V-subcategory Cat ⊂ χ(C). We 
show that the construction C �→ Cat is functorial in internally left adjoint functors, that is, V-linear left 
adjoint functors L : C → D ∈ LModV(PrL) whose right adjoint is itself a left adjoint and the canonical lax 
V-linear structure on it is strong. Namely, we obtain a functor

(−)at : LModV(PrL)iL → CatV.

As a key example, in Proposition 5.17 we show that for any C0 ∈ CatV and X ∈ C0, the image よV(X) ∈
PV(C0) is atomic. To see this, recall that by the enriched Yoneda lemma homV(よV(X), −) is given by 
evaluation at X, which preserves (co)limits and is V-linear, as we show in Proposition 4.24. Therefore, we get 
a factorization of the enriched Yoneda embedding through the atomics よV : C0 → PV(C0)at. Furthermore, 
we show that the functoriality of PV obtained in Theorem A sends V-functors to internally left adjoints, 
namely, restricts to a functor

PV : CatV → LModV(PrL)iL.

Our second main result is that the partial adjunction of Theorem A restricts accordingly:

Theorem B (Theorem 5.20). There is an adjunction

PV : CatV � LModV(PrL)iL :(−)at

with unit agreeing with the enriched Yoneda embedding.

In particular, for every f : C0 → D0 in CatV, the V-linear left adjoint f! : PV(C0) → PV(D0), is internally 
left adjoint, and thus admits a right adjoint f� : PV(D0) → PV(C0) which is itself a V-linear left adjoint. 
Using this, in Corollary 5.23 we show that f�(G)(X) ∼= G(f(X)). We warn the reader that this does not 
imply that f� is the functor given by pre-composition, see Subsection 1.3.1 for further discussion.
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1.1.3. 2-categorical structures
In our discussion of atomic objects and their relation to the enriched Yoneda embedding, we use certain 2-

categorical aspects of the theory of enriched categories and tensored categories. Notably, we have considered 
the condition for a V-linear left adjoint functor to be internally left adjoint, which we show has a particularly 
simple 2-categorical interpretation.

In Definition 4.12 we recall that the category of V-tensored categories and lax V-linear functors enhances 
to a 2-category LModlax

V . We show that a 1-morphism in that 2-category is a left adjoint, if and only if it is 
strong V-linear and left adjoint (on the underlying category). This result is a special case of a more general 
result we deduce from Lurie’s work on relative adjunctions and [8], concerning the 2-category Monlax

O

of O-monoidal categories and lax O-monoidal functors for some operad O, which may be of independent 
interest.

Proposition 1.3 (Proposition 4.11). The left adjoints in Monlax
O are the lax O-monoidal functors that are 

strong and fiber-wise left adjoint.

The category LModV(PrL) also enhances into a 2-category, which by the above result is a full 2-
subcategory LModV(PrL) ⊂ ( ̂LModlax

V )L of the left adjoints in the large version of the 2-category 
LModlax

V . Furthermore, using the above result again, we see that internally left adjoints are precisely 
the left adjoint morphisms in the 2-category LModV(PrL).

As explained in [5, Construction 8.2], by [3, Proposition 5.7.16], the category of V-enriched categories also 
enhances to a 2-category CatV. Furthermore, by [5, Theorem 8.3], the functor χ of Theorem 1.2 enhances to a 
2-functor. Using these results we also deduce the following result, which may be of independent interest, and 
is closely related to [6, Theorem 1.2]. Here a 2-functor is called 2-fully faithful if it induces an isomorphism 
on hom categories, i.e. if it exhibits the source as a full 2-subcategory of the target.

Theorem C (Corollary 4.19, Corollary 5.3). The functor χ enhances to a 2-fully faithful 2-functor

χ : LModV(PrL) → (̂CatV)L.

Taking left adjoints again we get the 2-fully faithful 2-functor

χ : LModV(PrL)iL → (̂CatV)LL.

In particular, for f : C0 → D0 in CatV, since f! : PV(C0) → PV(D0) is internally left adjoint, we get a 
corresponding double adjunction χ(f!) 	 χ(f�) 	 χ(f�) in ̂CatV.

Remark 1.4. The 2-categorical enhancement of χ mentioned above is not incorporated in the published 
version of Heine’s paper [6]. However, it does appear in a newer (and in an older) version of the paper 
available on arXiv [5], which we cite for this result.

1.2. Relation to previous work

This paper shares many of the ideas on atomic objects developed in our previous paper with Tomer 
Schlank, most notably [2, Theorem D]. To avoid the usage of enriched categories, in our previous paper we 
work over a mode M, that is, an idempotent algebra in PrL. The key feature of modes is that LModM(PrL)
is a full subcategory of PrL, namely, a left adjoint functor is automatically (and uniquely) M-linear. This 
allowed us, for example, to simplify the definition of X being atomic to having homM(X, −) : C → M

commute with colimits (and thus automatically M-linear). Particularly, in the previous paper we have 
ignored the M-enriched structure on the category of atomic objects. In addition, we worked with unenriched 
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presheaves and the unenriched Yoneda embedding, further tensored with M. In particular, [2, Theorem D]
is a weaker statement than the main results of the present paper in these respects.

On the other hand, in the unenriched context, the two different functorialities of presheaves and nat-
uralities of the Yoneda embedding were shown to coincide, contrary to the enriched case of the present 
paper (see the discussion in Subsection 1.3.1). In addition, our goal in the previous paper was different. 
The unenriched presheaves functor is endowed with a symmetric monoidal structure, and through the ad-
junction, this makes the atomics functor lax symmetric monoidal, and the Yoneda a symmetric monoidal 
natural transformation. In the present paper we do not deal with the multiplicative structure (though see 
the discussion in Subsection 1.3.4).

1.3. Further questions

We now list several further questions left open, which we expect have a positive answer, but we do not 
know how to approach.

1.3.1. Naturality for pre-composition
The first question is closely related to [14] and [9, Corollary F], which deal with the case V = S.
Recall that using the universal property of PV(C0), we deduced Theorem A, assembling PV into a functor, 

and the enriched Yoneda embedding into a natural transformation. In addition, we saw that f! has a right 
adjoint f�, and we showed that f�(G)(X) ∼= G(f(X)).

The construction of PV(C0) as enriched functors from Cop
0 to V shows that it admits another functoriality 

in C0. More specifically, [10, 6.1.4] implies that it assembles into a functor PV : CatV → (PrR)op, sending 
f to f∗ : PV(D0) → PV(C0) given by pre-composition, admitting a left adjoint f?, commonly spelled “f
lower what”. Note that this functoriality does not a priori give the V-tensored structure. Also note that 
f�(G)(X) ∼= G(f(X)) ∼= f∗(G)(X), however it is not clear that this holds naturally in X, G or C0.

Furthermore, Hinich’s construction of the enriched Yoneda embedding, as described for example in [11, 
8.4.1], seems to interact with the f∗, and thus f?, functoriality, but we don’t know how to extract naturality 
from his results.

Question 1.5. Can the f? functoriality be extended to V-modules? Can the enriched Yoneda embedding be 
made natural for the f? functoriality? Do these agree with the f! functoriality and naturality of the enriched 
Yoneda embedding?

1.3.2. Heine’s and Hinich’s enriched Yoneda embeddings
In [6], Heine also defines an enriched Yoneda embedding よV

Heine : C0 → χ(PV(C0)) by different means. As 
we explain in Section 6, the main results of this paper hold for this version as well, producing an adjunction

PV
Heine : CatV � LModV(PrL)iL :(−)at

with unit agreeing with Heine’s enriched Yoneda embedding. The uniqueness of adjoints implies that there 
is a natural isomorphism ψ : PV ∼−→ PV

Heine, together with an isomorphism ψよV ∼= よV
Heine. On the other 

hand, by construction, point-wise we have PV
Heine(C0) = PV(C0), so we get an automorphism ψC0 : PV(C0) →

PV
Heine(C0) = PV(C0). It is not clear to us that this automorphism is the identity. Showing this is equivalent 

to showing that these two versions of the enriched Yoneda embedding coincide.

Question 1.6. Do the enriched Yoneda embeddings constructed by Hinich and Heine coincide? Namely, is 
the above automorphism the identity?
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1.3.3. ̂Cat-enrichment
Recall that χ enhances to a 2-functor. Furthermore, the universal property of the enriched Yoneda em-

bedding of Theorem 1.1 is originally stated for functor categories, though one of the sides is not constructed 
as the ̂Cat-enriched hom in a category. This leads to the following question:

Question 1.7. Can the (partial) adjunctions be made ̂Cat-enriched?

1.3.4. Multiplicative structure
For simplicity, assume that V is presentably symmetric monoidal. [6, Theorem 7.19] enhances χ into a 

symmetric monoidal functor. Via the adjunction, it may be possible to endow PV with an oplax symmetric 
monoidal structure, either by making the subfunctor (−)at lax symmetric monoidal and using the main 
result of [8], or by proving a version of it for partial adjunctions and directly applying to PV. Analogously to 
the case of V = S, one would expect the resulting oplax symmetric monoidal structure on PV to be strong, 
and thus make the adjunction symmetric monoidal. Assuming this, for any operad O, we get that if C0 is 
O-monoidal, then PV(C0) and the enriched Yoneda embedding are endowed with an O-monoidal structure.

Separately, in [11, 8.3 and 8.4], Hinich studies the multiplicative structure of enriched presheaves and 
the enriched Yoneda embedding. In particular, under the above assumptions, he endows PV(C0) and the 
enriched Yoneda embedding with an O-monoidal structure. He further proves an O-monoidal version of the 
universal property of Theorem 1.1.

Question 1.8. Can the adjunction be made symmetric monoidal? Does the induced O-monoidal structure on 
PV(C0) and the enriched Yoneda embedding agree with those constructed by Hinich?
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pointing several subtle missing components in earlier drafts, and suggesting corrections for some of them. 
Finally, I thank the anonymous referee for their careful reading and helpful comments.

2. Generalities on enriched categories

In this section we review some generalities on enriched categories, their relationship to tensored categories, 
and the enriched Yoneda embedding. We shall not delve into the details of the constructions, as most of 
them will not play a role in the present paper, but rather only the formal properties of the resulting objects.

2.1. Enriched categories and tensored categories

Definition 2.1. We denote the (large) category of V-enriched categories, defined in [10, 7.1.2], by CatV. For 
C0, D0 ∈ CatV, we denote the space of V-functors between them by homV(C0, D0) ∈ S. Similarly, we let 
̂CatV be the (huge) category of large V-enriched categories.

V-enriched categories are closely related to categories tensored over V, as was first proven in [3, Corollary 
7.4.9], and made functorial in the work of Heine. Indeed, Heine constructs the category ωLModlax

V (denoted 
ωLModV there) of weakly V-tensored categories and lax V-linear functors, and a full subcategory ωLModcl,lax

V

thereof on the closed weakly V-tensored categories.
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Theorem 2.2 ([6, Theorem 1.5]). There is an equivalence

χ : ωLModcl,lax
V

∼−→ CatV.

Considering the large version of this equivalence, one can restrict the source to the subcategory with 
objects presentable categories with V-action commuting with colimits (which are automatically closed) and 
morphisms the (strong) V-linear left adjoint functors.

Definition 2.3. We define the category of presentably V-tensored categories to be PrLV := LModV(PrL). For 
C, D ∈ PrLV, we denote the space of V-linear left adjoint functors between them by homL

V(C, D) ∈ ̂S, which 
is the space of objects of the category FunL

V(C, D) ∈ ̂Cat.

Corollary 2.4 ([6, Corollary 6.13]). There is a functor

χ : PrLV → ̂CatV,

witnessing the source as a (non-full non-wide) subcategory of the target.

Remark 2.5. In [6, Theorem 1.2] Heine uses the notation PrLV for the image of the inclusion above.

For C ∈ PrLV, this constructs χ(C) ∈ ̂CatV, both of which have the same underlying category and thus 
space of objects.

2.2. Enriched Yoneda lemma and weighted colimits

In [10,11] Hinich constructs enriched presheaves and the enriched Yoneda embedding, which we recall in 
this subsection.

We begin with Hinich’s model for the category of V-functors from a V-enriched category to a V-tensored 
category. In Hinich’s model, a V-enriched category C0 ∈ CatV is an algebra in some operad constructed from 
the space of objects C�

0 (see [10, 3.1.1]). For a presentably V-tensored category D ∈ PrLV, Hinich endows the 
(unenriched) category of functors Fun(C�

0 , D) with a left module structure over this operad (see [10, 6.1.1]). 
In particular, one can consider left C0-modules, arriving at the following definition.

Definition 2.6 ([10, 6.1.3]). Let C0 ∈ CatV and D ∈ PrLV, then the category of V-functors from C0 to D is 
defined to be

FunV(C0,D) := LModC0(Fun(C�
0 ,D)) ∈ PrL.

We note that FunV(C0, D) is indeed presentable. To see this, note that Fun(C�
0 , D) is an (unen-

riched) presheaf category, and thus is presentable by [12, Proposition 5.5.3.6]. Then, the module category 
FunV(C0, D) is also presentable by [13, Corollary 4.2.3.7].

Definition 2.7 ([10, 6.2.2]). Let C0 ∈ CatV. The V-tensored category of V-enriched presheaves is defined to 
be

PV(C0) := FunVrev(Cop
0 ,V) ∈ PrLV.

Remark 2.8. V is a V-V-bimodule in PrL. One of the V-module structures is used to define the presentable 
category of Vrev-enriched functors, and the other is used to endow the resulting category with a V-module 
structure.
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Remark 2.9. In [6] Heine gives an a priori different, although very similar, definition of V-functors and V-
enriched presheaves. Nevertheless, [7] shows that his definitions agree with Hinich’s definition, and henceforth 
we use them interchangeably.

We now record the main results about Hinich’s enriched Yoneda embedding. We remark that in [10, 
6.2.7], Hinich proves his version of the enriched Yoneda lemma, very closely related to (1) of Theorem 2.10. 
However, the form described below is somewhat different, and relies on a definition of homV and the 
evaluation at X that were not introduced thus far. We postpone these definitions to Definition 4.20 and 
Definition 4.23, and the proof to Proposition 4.25, but include the statement here for completeness of the 
exposition. Note that (1) (as well as (2)) will not be used before Section 5.

Theorem 2.10 ([10,11]). Let C0 ∈ CatV. Then, there is a V-enriched Yoneda embedding V-functor

よV : C0 → PV(C0),

that is, an object of FunV(C0, P
V(C0)). For every D ∈ PrLV, there is a weighted colimit functor

colim(−)
C0

(−) : PV(C0) × FunV(C0,D) → D.

These satisfy the following properties:

(1) For every X ∈ C0, the functor homV(よV(X), −) : PV(C0) → V agrees with evaluation at X as V-linear 
functors.

(2) colim(−)
C0

(−) commutes with colimits in both arguments separately, and commutes with the V-action in 
the first argument.

(3) There is an equivalence

(よV)∗ : FunL
V(PV(C0),D) � FunV(C0,D) : colim(−)

C0
(−).

Proof. よV is constructed in [10, 6.2.4]. (1) is deferred to Proposition 4.25, though see [10, 6.2.7]. colim(−)
C0

(−)
is constructed in [11, 6.2.3], where (2) is explained. (3) is [11, 6.4.4]. �

Heine shows that FunV(C0, D) is closely related to the hom in V-enriched categories via χ (see also [10, 
6.3.6]). We recall a special case of Heine’s result as follows:

Proposition 2.11 ([6, Theorem 1.10]). Let C0 ∈ CatV and D ∈ PrLV, then there is an equivalence

FunV(C0,D)� ∼= homV(C0, χ(D))

natural in C0 and D. Namely, there is a natural isomorphism between the functors

(CatV)op × PrLV
i×χ−−→ (̂CatV)op × ̂CatV homV−−−−→ ̂S

and

(CatV)op × PrLV
FunV(−,−)−−−−−−−→ Cat (−)�−−−→ S ⊂ ̂S

We use this to transform the enriched Yoneda embedding to a morphism in ̂CatV, and deduce a universal 
property similar to (3) of Theorem 2.10 where both the source and the target are the hom in some category.



S. Ben-Moshe / Journal of Pure and Applied Algebra 228 (2024) 107625 9
Definition 2.12. We denote by the same notation the enriched Yoneda embedding V-functor よV : C0 →
χ(PV(C0)), corresponding to the enriched Yoneda embedding under the equivalence FunV(C0, P

V(C0))� ∼=
homV(C0, χ(PV(C0))).

Proposition 2.13. Let C0 ∈ CatV and D ∈ PrLV, then the composition

homL
V(PV(C0),D)

χ−→ homV(χ(PV(C0)), χ(D)) (よV)∗−−−−→ homV(C0, χ(D))

is an equivalence.

Proof. Naturality in the PrLV coordinate of Proposition 2.11 shows that for C0 ∈ CatV and D, E ∈ PrLV we 
get a commutative square:

homL
V(E,D) homV(χ(E), χ(D))

hom(FunV(C0,E)�,FunV(C0,D)�) hom(homV(C0, χ(E)),homV(C0, χ(D)))

χ

∼

Using the exponential adjunction we get a commutative square:

homL
V(E,D) × FunV(C0,E)� homV(χ(E), χ(D)) × homV(C0, χ(E))

FunV(C0,D)� homV(C0, χ(D))

χ

◦ ◦

∼

Taking E = PV(C0), and picking the point よV ∈ FunV(C0, P
V(C0))�, we get a commutative square:

homL
V(PV(C0),D) homV(χ(PV(C0)), χ(D))

FunV(C0,D)� homV(C0, χ(D))

χ

(よV)∗ (よV)∗

∼

The left morphism is an equivalence by applying (−)� to (3) of Theorem 2.10. Thus, the left-bottom 
composition is an equivalence, and by the commutativity of the diagram, so is the upper-right composition, 
concluding the proof. �

3. Partial adjunction

In this section we prove Theorem A, namely the naturality of the enriched Yoneda embedding. To do so, 
we first define (unenriched) partial adjunctions. Then, we show the folklore result that (partial) adjoints can 
be constructed point-wise, from which the naturality of the enriched Yoneda embedding follows immediately.

Definition 3.1. Let L : C0 → D0 be a functor, and i : E0 → D0 another functor. The data of a partial right 
adjoint (of L relative to i) is a functor R : E0 → C0 and a natural transformation ε : LR ⇒ i called the 
partial counit, such that for every X ∈ C0 and Y ∈ E0 the composition

homC0(X,RY ) L−→ homD0(LX,LRY ) εY ◦−−−−→ homD0(LX, iY )

is an isomorphism. A partial left adjoint with a partial unit is defined dually, by taking (−)op.
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Remark 3.2. What we call a partial adjunction is typically called a relative adjunction. However, in Section 4
we use the distinct concept of relative adjunctions developed by Lurie. To avoid confusion, we call what is 
typically called a relative adjunction a partial adjunction.

Remark 3.3. In this paper we only use the notion of a partial adjunction when i : E0 → D0 is an inclusion 
of a full subcategory. In this case, one can think of R as an adjoint defined only partially on D0, justifying 
the name.

Remark 3.4. Unlike in a standard adjunction, a partial adjunction is not a symmetric concept. Particularly, 
note that there is no partial unit (in fact, L and R can not be composed in the other direction).

Proposition 3.5. Let L : C0 → D0 be a functor, and i : E0 → D0 another functor. Assume that for every 
Y ∈ E0 we are given an object RY ∈ C0 and a morphism εY : LRY → iY , such that for every X ∈ C0 the 
composition

homC0(X,RY ) L−→ homD0(LX,LRY ) εY ◦−−−−→ homD0(LX, iY )

is an isomorphism. Then, R and ε assemble into the data of a partial right adjoint.

Proof. Consider the functor R̃ : D0 → P(C0) given by the composition

D0
よD0−−−→ P(D0)

L∗
−−→ P(C0),

which sends Z ∈ D0 to homD0(L(−), Z) : Cop
0 → S.

Let Y ∈ E0. Consider the natural transformation

homC0(−, RY ) L−→ homD0(L(−), LRY ) εY ◦−−−−→ homD0(L(−), iY ) = R̃(iY ). (1)

By assumption, it is an isomorphism at every X ∈ C0, and thus it is a natural isomorphism. Namely, the 
presheaf R̃(iY ) ∈ P(C0) is representable by RY ∈ C0. In other words, the composition R̃i : E0 → P(C0)
lands in the essential image of the (unenriched) Yoneda embedding よC0 : C0 → P(C0). As the Yoneda 
embedding is fully faithful, we get an induced functor R : E0 → C0, together with a natural isomorphism 
よC0R

∼= R̃i = L∗よD0i of functors E0 → P(C0).
By construction, R agrees with RY at every Y ∈ E0. Furthermore, the natural isomorphism at Y is 

given by (1), constructed via εY . We now extract the partial counit ε : LR ⇒ i. Consider the following 
composition:

よD0LR
(1)∼= (LR)!よE0

(2)⇒ (LR)!R∗よC0R

(3)∼= (LR)!R∗L∗よD0i

∼= (LR)!(LR)∗よD0i

(4)⇒よD0i.

(1) is naturality of the (unenriched) Yoneda embedding. (2) is the fact that R is a functor, giving 
homE0(−, −) ⇒ homC0(R(−), R(−)), which by exponential adjunction is the same as よE0 ⇒ R∗よC0R. (3) 
is the isomorphism よC R ∼= L∗よD i. (4) is the counit of the adjunction (LR)! 	 (LR)∗. Thus, we have 
0 0
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constructed a natural transformation よD0LR ⇒よD0i. Since よD0 is fully faithful, this induces a natural 
transformation ε : LR ⇒ i. Recall that the isomorphism used at step (3) is given at Y ∈ E0 by (1), which 
shows that ε indeed agrees with εY . �

Theorem 3.6. The functor χ : PrLV → ̂CatV has a partial left adjoint PV : CatV → PrLV with partial unit 
よV : id|CatV → χPV, agreeing with enriched presheaves and enriched Yoneda embedding.

Proof. This follows immediately from Proposition 2.13 and (the dual statement to) Proposition 3.5. �

Definition 3.7. For f : C0 → D0 a morphism in CatV, we denote the induced morphism in PrLV by 
f! : PV(C0) → PV(D0).

An instance of the naturality of the enriched Yoneda embedding is the following:

Proposition 3.8. Let f : C0 → D0. Then, よV
D0

f ∼= χ(f!)よV
C0

in homV(C0, χ(PV(D0))). Similarly, よV
D0

f ∼=
f!よ

V
C0

in FunV(C0, P
V(D0)) of Definition 2.6.

Proof. The first part is an immediate application of the adjunction of Theorem 3.6. For the second part, 
recall from Proposition 2.11 that there is a natural isomorphism homV(−, χ(−)) ∼= FunV(−, −)�. Recall 
that in Definition 2.12 we have defined よV

C0
∈ homV(C0, χ(PV(C0))) to be the map corresponding to 

よV
C0

∈ FunV(C0, P
V(C0)) via this isomorphism, and similarly for D0. By applying the naturality of the 

isomorphism in the target to the morphism f!, we get that χ(f!)よV
C0

∈ homV(C0, χ(PV(D0))) corresponds 
to f!よ

V
C0

∈ FunV(C0, P
V(D0)). Similarly, by applying the naturality of the isomorphism in the source to 

the morphism f , we get that よV
D0

f ∈ homV(C0, χ(PV(D0))) corresponds to よV
D0

f ∈ FunV(C0, P
V(D0)). 

Thus, under the natural isomorphism, the isomorphism よV
D0

f ∼= χ(f!)よV
C0

corresponds to an isomorphism 
よV

D0
f ∼= f!よ

V
C0

. �

4. 2-categorical structures

In this section we study certain 2-categorical aspects of enriched categories and tensored categories. 
The first main result of this section is Proposition 4.11, showing that a lax O-monoidal functor between 
O-monoidal categories is a left adjoint in the 2-category Monlax

O , if and only if it is strong O-monoidal and 
fiber-wise left adjoint. This is proven by applying Lurie’s [13, §7.3.2 Relative Adjunctions] to the 2-categories 
constructed in [8]. From this, we deduce Corollary 4.14, the corresponding result for lax V-linear functors 
between V-tensored categories. Then, after recalling that in [5, Theorem 8.3] Heine shows that χ is a 2-
functor, we deduce Corollary 4.19, our second main result, which says that χ enhances to a 2-fully faithful 
2-functor χ : PrL

V → (̂CatV)L. Finally, in Proposition 4.25 we finish the proof of (1) of Theorem 2.10.

4.1. Adjunctions in O-monoidal categories

Definition 4.1 ([8, Definition 3.1.7]). Let B be a category. Denote by Cocartlax
B the 2-category of cocartesian 

fibrations over B and functors over B.

We shall not recall the precise definition of this 2-category (for which we refer the reader to [8, Definition 
3.1.7]), rather, let us recall its objects, 1-morphisms and 2-morphisms.

Proposition 4.2. Cocartlax
B has

• objects: cocartesian fibrations q : C → B,
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• 1-morphisms: functors over B, namely, a 1-morphism from q : C → B to p : D → B is a functor F : C → D

and a natural isomorphism pF ∼= q,
• 2-morphisms: natural transformations over B, namely, a 2-morphism from F to G is a natural transfor-

mation α : F ⇒ G and an identification of the natural transformation q ∼= pF
pα=⇒ pG ∼= q with idq, i.e. 

exhibiting the following square as commutative:

pF pG

q q

pα

��

Proof. By construction, the underlying category of the 2-category Cocartlax
B is the full subcategory of 

Cat/B on the cocartesian fibrations, which explains the objects and the 1-morphisms. For the 2-morphisms, 
we recall that as explained in [8, Observation 3.1.9], a 2-morphism is commutative diagram of the form:

C× [1] D

B

q p

ᾱ

Under the exponential adjunction, ᾱ : C × [1] → D corresponds to the natural transformation α : F ⇒ G, 
and the isomorphism pᾱ ∼= q corresponds to the identification pα ∼= idq. �

Lemma 4.3. A 2-morphism in Cocartlax
B given by α : F ⇒ G together with an identification pα ∼= idq is 

invertible if and only if α is invertible.

Proof. Clearly, if the 2-morphism is invertible then in particular α is. For the other direction, assume that 
α has an inverse α−1 : G ⇒ F . We shall enhance it to an inverse 2-morphism in Cocartlax

B . Consider the 
following diagram:

pF pG pF

q q q

� ��

pα pα−1

The identification pα ∼= idq is precisely an (invertible) 3-morphism in Cat making the left square commute. 
The outer square commutes as pα−1pα ∼= idpF

∼= idq. Thus, by composing the outer square with the inverse 
of the left square, we get commutativity data for the right square. This makes α−1 into a 2-morphism in 
Cocartlax

B , which by construction is the required inverse. �

Our next goal is to understand left adjoints in the 2-category Cocartlax
B , achieved in Proposition 4.8. 

To that end, we shall employ Lurie’s [13, §7.3.2 Relative Adjunctions]. The definitions and results in that 
section are phrased for cartesian fibrations and right adjoints, which by taking (−)op correspond to our case 
of cocartesian fibrations and left adjoints, as we present here.

First, we recall that in a 2-category, we say that a 1-morphism L : X → Y is a left adjoint if there exists 
a 1-morphism R : Y → X and two 2-morphisms u : idX ⇒ RL and c : LR ⇒ idY satisfying the zigzag 
identities, namely

(R uR=⇒ RLR
Rc=⇒ R) ∼= idR, (L Lu=⇒ LRL

cL=⇒ L) ∼= idL.

We also recall that to check that L is a left adjoint, we can check a weaker condition:
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Lemma 4.4 ([15, 2.1.11]). In any 2-category, a 1-morphism L : X → Y is a left adjoint if and only if there 
exist a 1-morphism R : Y → X and 2-morphisms u : idX ⇒ RL and c : LR ⇒ idY such that the zigzag 
morphisms

R
uR=⇒ RLR

Rc=⇒ R, L
Lu=⇒ LRL

cL=⇒ L

are invertible (in which case there exists a possibly different 2-morphism c̃ : LR ⇒ idY for which the zigzag 
identities hold).

Proof. The proof of [15, 2.1.11] works in an arbitrary 2-category, although stated in the context of functors 
between (∞-)categories. �

Definition 4.5 ([13, Definition 7.3.2.2]). Let

C D

B

q p

L

be a commutative diagram of categories. We say that L admits a relative right adjoint if L has a (non-
relative) right adjoint R : D → C, and the counit map c : LR ⇒ idD satisfies the condition that pc : pLR ⇒ p

is an equivalence.

Remark 4.6. The definition of [13, Definition 7.3.2.2] is via the two equivalent conditions of [13, Proposition 
7.3.2.1]. First, we note that these are phrased for admitting a relative left adjoint, but the theory is symmetric 
via taking (−)op. Second, Lurie assumes that p and q are categorical fibrations, but every functor is equivalent 
to a categorical fibration, so this assumption can be dropped. Finally, and most importantly, we note that 
our definition clearly implies condition (1) and is implied by condition (2) in [13, Proposition 7.3.2.1], and 
thus is also equivalent to them.

Proposition 4.7. A 1-morphism L : C → D over B in Cocartlax
B is a left adjoint if and only if L admits a 

relative right adjoint.

Proof. If L is a left adjoint in Cocartlax
B then it clearly admits a relative right adjoint. For the other direction, 

assume that L admits a relative right adjoint, and we shall show that it is a left adjoint in CocartlaxB . Let 
R : D → C, u : idC ⇒ RL and c : LR ⇒ idD be the (non-relative) adjunction data, such that pc is an 
equivalence. Note that the equivalence pL ∼= q and pc together provide an equivalence qR ∼= pLR ∼= p, 
making R into a 1-morphism in Cocartlax

B . Moreover, the fact that pc is an equivalence and the canonical 
commutativity of the square

pLR p

p p

pc

pc

makes c into a 2-morphism from LR to idD in Cocartlax
B . In the rest of the proof we make u into a 

2-morphism as well, and show that L is a left adjoint using Lemma 4.4.
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We begin by making u into a 2-morphism. Consider the following diagram:

pL pLRL pL

q q q

pLu pcL

�� �

The upper composition is p(−) applied the zigzag morphism, which is equivalent to idpL, thus making the 
outer square commute. The right square canonically commutes. Thus, by composing the outer square with 
the inverse of the right square, we get commutativity data for the left square as well. In other words, we 
obtained an identification of pLu with idq. The identification pL ∼= q thus shows that we got an identification 
of qu with idq, making u into a 2-morphism.

By Lemma 4.4, to see that L is a left adjoint in Cocartlax
B it suffices to check that the zigzag morphisms 

corresponding to these 2-morphisms are invertible. By Lemma 4.3, a 2-morphism in Cocartlax
B is invert-

ible if and only if the underlying natural transformations are invertible. Indeed, the underlying natural 
transformations are simply

R
uR=⇒ RLR

Rc=⇒ R, L
Lu=⇒ LRL

cL=⇒ L

which are invertible (in fact, equivalent to the identities) by the assumption that u and c are a unit and a 
counit for a (non-relative) adjunction L 	 R. �

The following is a recast of [13, Proposition 7.3.2.6] in an appropriate 2-category.

Proposition 4.8. The left adjoints in Cocartlax
B are those functors over B that preserve cocartesian mor-

phisms and are fiber-wise left adjoint

(Cocartlax
B )L = CocartL-fw

B .

Proof. By Proposition 4.7, a 1-morphism L between two cocartesian fibrations is a left adjoint if and only 
if it admits a relative right adjoint. Thus by (the (−)op of) [13, Proposition 7.3.2.6], L is a left adjoint if and 
only if it preserves locally cocartesian morphisms and is fiber-wise left adjoint. By [12, Proposition 2.4.2.8], 
locally cocartesian morphisms and cocartesian morphisms coincide, concluding the proof. �

Remark 4.9. There is a possible alternative route to Proposition 4.8. Recall that [8, Theorem E] shows that 
Cocartlax

B
∼= Funlax(B, Cat), where the right hand side denotes the 2-category of functors and lax natural 

transformations. Additionally, [4, Theorem 4.6] shows that for any 2-categories X, Y, the left adjoints in 
Funlax(X, Y) are those lax natural transformations which are strong and point-wise left adjoint. Combined, 
this would imply Proposition 4.8. However, the definition of Funlax in [8] and [4] rely on two different models 
of the Gray tensor product, which to the best of our knowledge were not shown to be equivalent so far, and 
thus this does not constitute a complete proof.

In the rest of the subsection we follow the notations of [8, 3.4] for operads. Namely, an operad O is a 
functor O → Fin∗ (satisfying certain properties), whereas in [13], it is typically denoted by O⊗.

Definition 4.10 ([8, Definition 3.4.1]). Let O be an operad. Let Monlax
O ⊂ Cocartlax

O be the 1-full 2-
subcategory on the O-monoidal categories and lax O-monoidal functors (i.e. functors over O preserving 
cocartesian morphisms lying over inert morphisms).

The following is a recast of [13, Corollary 7.3.2.7] in an appropriate 2-category.
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Proposition 4.11. The left adjoints in Monlax
O are those lax O-monoidal functors that are strong and fiber-

wise left adjoint

(Monlax
O )L = MonL-fw

O .

Proof. For the first direction, note that a left adjoint in Monlax
O is in particular a left adjoint in Cocartlax

O , 
thus it is strong O-monoidal (preserves all cocartesian morphisms) and fiber-wise left adjoint.

For the second direction, let L : C → D over O in MonL-fw
O . As MonL-fw

O ⊂ CocartL-fw
O = (Cocartlax

O )L, 
there is a right adjoint R : D → C over O in Cocartlax

O with some unit and counit. Since Monlax
O is a 1-full 

2-subcategory of Cocartlax
O , all we need to show is that the right adjoint is in Monlax

O , whence the unit 
and counit are also automatically there. Namely, we need to know that R : D → C is lax O-monoidal, which 
follows from the construction, as explained in [13, Corollary 7.3.2.7]. �

4.2. Tensored categories

As explained in [6, Lemma 3.54], the category ωLModlax
V is enhanced to a 2-category, and thus so is its 

full subcategory LModlax
V . We repeat the construction in more detail, building on the definitions above. See 

also [1, Definition 2.14] for a closely related discussion.
We recall the operad Assoc classifying an associative algebra, and the operad LM classifying an asso-

ciative algebra and a left module over it. Consider the monoidal category V as an object in Mon(Cat) ∼=
MonAssoc ⊂ Monlax

Assoc. This leads us to the following:

Definition 4.12. We define the 2-category of V-tensored categories and lax V-linear functors to be 
LModlax

V := {V} ×Monlax
Assoc

Monlax
LM. Similarly, we denote by ̂LModlax

V the (huge) 2-category of large 
V-tensored categories and lax V-linear functors.

Definition 4.13. We define the 2-category of closed V-tensored categories and lax V-linear functors to be the 
full 2-subcategory LModcl,lax

V ⊂ LModlax
V on those V-tensored categories on which the V-action is closed, 

and similarly for the large version ̂LModcl,lax
V .

As a particular case of Proposition 4.11, we deduce the following, which is an “if and only if” version of 
[13, Example 7.3.2.8 and Remark 7.3.2.9] phrased in an appropriate 2-category.

Corollary 4.14. The left adjoints in LModlax
V are those lax V-linear functors that are strong V-linear and 

left adjoint (on the underlying category)

(LModlax
V )L = LModL-fw

V .

Proof. The result follows from Proposition 4.11 by taking O = LM, and pulling back over V. In more detail, 
consider the following diagram:

(LModlax
V )L (Monlax

LM)L

{V}L (Monlax
Assoc)L

{V} Monlax

�

Assoc
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The bottom square is a pullback square because the lower right morphism is an inclusion of a 2-subcategory, 
and the lower left morphism is the map from a point to itself. The upper square is a pullback square, because 
(−)L commutes with limits, as it is given by hom from the walking adjunction. Therefore, the outer square 
is also a pullback square. We thus finish by Proposition 4.11. �

Remark 4.15. Definition 4.12 and Corollary 4.14 work for an arbitrary monoidal category V, without needing 
to assume that it is presentably monoidal.

We now enhance PrLV of Definition 2.3 to a 2-category.

Definition 4.16. We define the 2-category of presentably V-tensored categories to be the 1-full 2-subcategory 
PrL

V := LModV(PrL) ⊂ ̂LModlax
V on the objects and morphisms of PrLV.

Proposition 4.17. There is a full 2-subcategory inclusion

PrL
V ⊂ ( ̂LModcl,lax

V )L.

Proof. First, we claim that there is a full 2-subcategory inclusion

PrL
V = LModV(PrL) ⊂ ̂LModcl,L-fw

V .

It is indeed an inclusion, since a presentably V-tensored category is automatically closed, and morphism 
in both categories are the V-linear functors that are left adjoint on the underlying category. Second, by 
Corollary 4.14, the target is ( ̂LModcl,lax

V )L, which finishes the argument. �

4.3. Tensored categories to enriched categories

We recall that CatV can be enhanced into a 2-category, as explained for example in [5, Construction 
8.2]. Indeed, by [3, Proposition 5.7.16], the functor Alg(PrL) → PrL given by V �→ CatV is lax symmetric 
monoidal. Since V is a S-module in PrL, we get that CatV is a Cat-module in PrL as well, which indeed 
models a 2-category (for example via χ).

Definition 4.18. We denote the 2-category of V-enriched categories by CatV.

In [5, Theorem 8.3], Heine shows that χ of Theorem 2.2 enhances to a 2-equivalence

χ : ωLModcl,lax
V

∼−→ CatV.

Using this we deduce the following:

Corollary 4.19. The functor from Corollary 2.4 enhances to a 2-fully faithful 2-functor

χ : PrL
V → (̂CatV)L.

Proof. Consider the large version of the 2-equivalence above, namely ω ̂LModcl,lax
V

∼−→ ̂CatV, and restrict 
it to the full 2-subcategory ̂LModcl,lax

V . Taking left adjoints and using Proposition 4.17, we get the 2-fully 

faithful 2-functor PrL
V ⊂ ( ̂LModcl,lax)L → (̂CatV)L. �
V
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4.4. Evaluation and enriched Hom in tensored categories

In this subsection, we introduce homV in the presentably V-tensored context and show that it satisfies 
expected properties for adjunction in Proposition 4.21 (see also Remark 4.22 for the connection to adjunction 
in V-enriched categories). With this definition in mind, we finish the proof of (1) of Theorem 2.10 in 
Proposition 4.25.

Let C ∈ PrLV. We have an equivalence of categories FunL
V(V, C) ∼−→ C given by evaluation at 1V. Recall 

from Proposition 4.17 that there is a full 2-subcategory inclusion PrL
V ⊂ ( ̂LModcl,lax

V )L. Thus, passing to 
right adjoint, gives us a map FunL

V(V, C) → Funlax-V(C, V)op. Composing the two and taking (−)op, we get 
Cop → Funlax-V(C, V).

Definition 4.20. We let homV(−, −) : Cop × C → V to be the functor corresponding to the above under the 
exponential adjunction. By construction, it is lax V-linear in the second argument.

Namely, this construction sends X to the lax V-linear functor homV(X, −) : C → V, right adjoint to the 
V-linear left adjoint − ⊗X : V → C.

Proposition 4.21. Let L : C → D ∈ PrLV be a V-linear left adjoint functor, and let R : D → C denote its right 
adjoint. Then there is a natural isomorphism

homV(L(−),−) ∼= homV(−, R(−))

of functors Cop ×D → V lax V-linear in the second coordinate.

Proof. Indeed, consider the following diagram:

C FunL
V(V,C) Funlax-V(C,V)op

D FunL
V(V,D) Funlax-V(D,V)op

L L◦− −◦R

∼

∼

The left square commutes by passing to the right adjoints and noting that evaluation at 1V commutes 
with post-composition. To see that the right square commutes, recall that the horizontal morphisms were 
constructed by the full 2-subcategory inclusion PrL

V ⊂ ( ̂LModcl,lax
V )L and passing to the right adjoints, and 

the vertical morphisms are also adjoints in the same category, so the commutativity is the fact that the 
right adjoint of a composition is the composition of the right adjoints in reverse order. �

Remark 4.22. We note that Proposition 4.21 is in the context of presentably V-tensored categories, and 
not that of V-enriched categories. One of the main features of χ is that the V-enrichment of χ(C) is given 
by homV(X, Y ), as is shown in [3, Corollary 7.4.9]. By Corollary 4.19, the adjunction L 	 R produces an 
adjunction χ(L) 	 χ(R) in ̂CatV. One might expect that this adjunction provides a natural isomorphism 
similar to the one of Proposition 4.21 for the V-enriched hom’s of χ(C) and χ(D). However, we do not 
provide such a natural isomorphism, nor show its compatibility with the one constructed above.

Let C0 ∈ CatV, X ∈ C0 and D ∈ PrLV. Recall from Definition 2.6 that FunV(C0, D) := LModC0(Fun(C�
0 ,

D)). Consider i : pt → C�
0 choosing X, and the following diagram:

D Fun(pt,D) Fun(C�
0 ,D) LModC0(Fun(C�

0 ,D))
i!

∗

free
i forget
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Here the dashed arrows are the left adjoints of the solid arrows. Also recall from Definition 2.7 that if 
we replace C0 by Cop

0 and let D = V, the V-functor category is PV(C0). Moreover, in this case the three 
categories in the diagram are presentably V-tensored and the two left adjoint functors are V-linear, as in 
[10, 6.2.3]. Via Proposition 4.17, the right adjoints are canonically lax V-linear.

Definition 4.23. Let C0 ∈ CatV, X ∈ C0 and D ∈ PrLV be as above. We define the evaluation at X functor 
evalX : FunV(C0, D) → D by evalX := i∗ ◦ forget. For the case evalX : PV(C0) → V, it is canonically lax 
V-linear.

Proposition 4.24. Let C0 ∈ CatV and D ∈ PrLV, and consider FunV(C0, D) ∈ PrL. Then evalX commutes with 
(co)limits (i.e. (co)limits are computed level-wise), and are jointly conservative over all X. For PV(C0) ∈
PrLV, the lax V-linear structure on evalX is strong (i.e., the V-action is level-wise).

Proof. Recall that evalX = i∗ ◦ forget. The functor forget commutes with all (co)limits by [13, Corollary 
4.2.3.3 and Corollary 4.2.3.5] as the forgetful from modules, while i∗ commutes with (co)limits as they are 
computed level-wise in (unenriched) functor categories.

The forgetful from modules is always conservative by [13, Corollary 4.2.3.2], and the evaluation at X
functors Fun(C�

0 , D) → D are jointly conservative.
For the case of PV(C0), the V-action is by construction given level-wise, as explained in [10, 6.2.3]. �

Finally, we are in position to prove our variant of Hinich’s enriched Yoneda lemma, appearing as (1) of 
Theorem 2.10.

Proposition 4.25. Let C0 ∈ CatV, then homV(よV(X), −) ∼= evalX as lax V-linear functors, and in particular 
homV(よV(X), −) is also strong V-linear.

Proof. We need to show that homV(よV(X), −) ∼= evalX as lax V-linear functors. By construction, this is 
equivalent to showing that − ⊗よV(X) ∼= free ◦i! as V-linear functors. Consider the following diagram:

V Fun(Cop,�
0 ,V) LModC

op
0

(Fun(Cop,�
0 ,V))

S Fun(Cop,�
0 , S)

−⊗1V hom(1V,−) −⊗1V hom(1V,−)

i!

i∗

i!

i∗

free

forget

Here the dashed arrows are the left adjoints of the solid arrows. Clearly, the solid square commutes, and 
thus, the dashed square obtained by passing to left adjoints also commutes.

By [10, 6.2.6], we have that よV(X) ∼= free((− ⊗ 1V) ◦よ(X)), where here よ(X) ∈ Fun(Cop,�
0 , S) is the 

image of X under the (unenriched) Yoneda embedding. Applying the naturality of the (unenriched) Yoneda 
embedding to i : pt → S, and noting that よ : pt → S sends よ(pt) = pt, we get that よ(X) = よ(i(pt)) ∼=
i!(よ(pt)) ∼= i!(pt). Using the commutativity of the dashed square above, we conclude that

よV(X) ∼= free((−⊗ 1V) ◦よ(X)) ∼= free((−⊗ 1V) ◦ i!(pt)) ∼= free(i!1V).

Since free and i! are V-linear functors, we finally get that

−⊗よV(X) ∼= −⊗ free(i!1V) ∼= free ◦i!(−⊗ 1V) ∼= free ◦i!

as V-linear functors, concluding the proof. �
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5. Atomic objects, presheaves and Yoneda

In this section, building on the 2-categorical results of the previous section, we study internally left adjoint 
functors and atomic objects, and connect them to the enriched Yoneda embedding.

We begin in Definition 5.1 by defining internally left adjoints between presentably V-tensored categories. 
Namely, V-linear left adjoint functors, whose right adjoints are also left adjoint and their canonical lax 
V-linear structure is strong. Following this, in Definition 5.4 we define a finiteness condition called being 
atomic. We say that X in C ∈ PrLV is atomic if − ⊗X : V → C is internally left adjoint, that is, if homV(X, −)
commutes with colimits and is V-linear. For instance, in the case V = Sp, this coincides with condition of 
being compact. From the definition, internally left adjoints send atomic objects to atomic objects. The key 
technical result of this section is Proposition 5.16, giving a converse result under the assumption that the 
source category is generated from the atomics under weighted colimits.

Next, in Proposition 5.17 we show that よV(X) is atomic in PV(C0), and in Proposition 5.18 we show 
that together they generate PV(C0) under weighted colimits. This allows us to use Proposition 5.16 to prove 
Theorem 5.20, the main result of this section. This result says that the partial adjunction of Theorem 3.6
restricts to a (non-partial) adjunction between the enriched presheaves functor and taking the atomics, with 
the unit being (the factorization through the atomics of) the enriched Yoneda embedding.

5.1. Internally left adjoints

Definition 5.1. A V-linear left adjoint functor is called internally left adjoint if it is left adjoint in the 2-
category PrL

V. We denote the wide 2-subcategory on the internally left adjoint functors by PriL
V := (PrL

V)L. 
For C, D ∈ PriL

V , we denote the category of V-linear internally left adjoint functors between them by 
FuniL

V (C, D) ∈ ̂Cat and the corresponding homiL
V (C, D) ∈ ̂S.

Note that for any V-linear left adjoint functor L : C → D, Proposition 4.17 shows that it admits a lax 
V-linear right adjoint R : D → C.

Proposition 5.2. A V-linear left adjoint functor L : C → D is internally left adjoint if and only if the lax 
V-linear right adjoint R : D → C is strong and itself a left adjoint.

Proof. As above, R is a morphism in ̂LModcl,lax
V between objects of the 2-subcategory PrL

V, and the 
condition is that it is in fact a morphism in that 2-subcategory. By Proposition 4.17, PrL

V is a full 2-
subcategory of ( ̂LModcl,lax

V )L, thus the condition is that R is a morphism in that 2-subcategory. The result 
then follows from Corollary 4.14. �

Taking left adjoints in Corollary 4.19, we immediately get:

Corollary 5.3. χ restricts to a 2-fully faithful 2-functor

χ : PriL
V → (̂CatV)LL.

5.2. Atomic objects

Definition 5.4. Let C ∈ PrLV. We say that X ∈ C is atomic if the functor − ⊗ X : V → C is internally left 
adjoint. We denote the full V-subcategory on the atomic objects by Cat ⊂ χ(C).

Example 5.5. The unit 1V ∈ V is always atomic, because − ⊗ 1V is the identity functor.
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Example 5.6 ([2, Proposition 2.8]). In the case V = Sp, atomic objects coincide with compact objects.

Recall that for C ∈ PrLV, there is an equivalence FunL
V(V, C) ∼−→ C given by evaluation at 1V, with inverse 

sending X to − ⊗X : V → C. Thus, immediately from the definition, we deduce the following:

Proposition 5.7. Evaluation at 1V induces an equivalence FuniL
V (V, C) ∼−→ Cat.

Since the right adjoint of − ⊗X : V → C is homV(X, −) : C → V, the following follows immediately from 
Proposition 5.2.

Proposition 5.8. An object X ∈ C is atomic if and only if homV(X, −) : C → V preserves colimits and the 
lax V-linear structure is strong.

Proposition 5.9. The atomics are a small V-enriched category.

Proof. The argument is identical to [2, Proposition 2.9]. We repeat the details for the convenience of the 
reader.

Let κ be a regular cardinal such that the unit 1V is κ-compact, namely hom(1V, −) : V → S commutes 
with κ-filtered colimits. We show that all atomic objects are κ-compact. Let C ∈ PrLV and let X ∈ C be 
atomic. By Proposition 5.8, homV(X, −) : C → V commutes with κ-filtered colimits. Since hom(X, −) ∼=
hom(1V ⊗X, −) ∼= hom(1V, homV(X, −)), we get that hom(X, −) also commutes with κ-filtered colimits, 
i.e. X is κ-compact. We have shown that Cat ⊆ Cκ, the latter being a small category, concluding the 
proof. �

Proposition 5.10. Let L : C → D be an internally left adjoint, i.e. a morphism in PriLV , then it sends atomics 
to atomics. Thus, the V-functor χ(L) : χ(C) → χ(D) factors to a V-functor L : Cat → Dat.

Proof. Let X ∈ Cat. Then, since L is V-linear, we have a natural isomorphism − ⊗ LX ∼= L(− ⊗ X) of 
functors V → D. Since both − ⊗X and L are internally left adjoints, so is − ⊗ LX, i.e. LX is atomic as 
required. �

Recall that Cat is a full V-subcategory of χ(C), thus Cat → χ(C) is a subobject (indeed, the space of 
maps to Cat is exactly the subspace of maps to χ(C) that land in Cat). Furthermore, by Proposition 5.10, 
the restriction of internally left adjoint functors to the atomics factor through the atomics. Thus, by [14, 
Proposition A.1], this assembles into an induced subfunctor, which furthermore lands in CatV ⊂ ̂CatV.

Definition 5.11. We denote the induced subfunctor of atomics by

(−)at : PriLV → CatV,

equipped with a natural transformation (−)at ⇒ χ|PriLV of functors PriLV → ̂CatV.

Definition 5.12. Let C ∈ PrLV. We say that a collection of atomic objects B ⊆ Cat are atomic generators, if 
C is generated from B under weighted colimits. If such B exists, we say that C is molecular.

Remark 5.13. We note that this definition a priori differs from our definition of molecular in [2] (where we 
work over a mode). We expect that closure under weighted colimits coincides with closure under colimits 
and the V-action, but we are unaware of a proof of this statement. Such a result would make the connection 
transparent.
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We now wish to prove a converse to Proposition 5.10 under the assumption that the source is molecular. 
To that end, we begin with the following.

Definition 5.14. Let I ∈ CatV and C ∈ PrLV, and fix f ∈ FunV(I, C). By (2) of Theorem 2.10, the functor 
colim(−)

I (f) : PV(I) → C is colimit preserving, i.e. a left adjoint, and V-linear. We denote the lax V-linear 
right adjoint by

homV(f(−),−) : C → PV(I).

Lemma 5.15. There is a natural isomorphism of lax V-linear functors

evali ◦ homV(f(−),−) ∼= homV(f(i),−).

Proof. Observe that we have an equivalence of V-linear left adjoint functors

colim(−)
I (f) ◦ (−⊗よV(i)) = colim(−⊗よV(i))

I (f)
(1)∼= −⊗ colimよ

V(i)
I (f)

(2)∼= −⊗ f(i),

where (1) follows from (2) of Theorem 2.10, and (2) follows from (3) of Theorem 2.10. Passing to the lax 
V-linear right adjoints, we get

homV(よV(i),homV(f(−),−)) ∼= homV(f(i),−).

We finish by recalling that homV(よV(i), −) is the evaluation at i by (1) of Theorem 2.10. �

Proposition 5.16. Let L : C → D be in PrLV. If C is molecular and L sends a collection of atomics generators 
B ⊂ Cat to atomic objects of D, then L is internally left adjoint.

Proof. We adapt the proof of [2, Proposition 2.14]. We wish to show that R : D → C, the right adjoint of L, 
is itself a left adjoint and that the lax V-action is strong. Thus, it suffices to show that for any v ∈ V and 
Y : I → D, the canonical map v ⊗ colimI RYi → R(v ⊗ colimI Yi) is an isomorphism. By the (unenriched) 
Yoneda lemma in the category C, this is equivalent to checking that for every X ∈ C the map

hom(X, v ⊗ colim
I

RYi) → hom(X,R(v ⊗ colim
I

Yi)) (2)

is an isomorphism. We will in fact show the stronger statement that

homV(X, v ⊗ colim
I

RYi) → homV(X,R(v ⊗ colim
I

Yi)) (3)

is an isomorphism, which implies the previous statement by taking hom(1V, −). Let A ⊂ C be the collection 
of objects X for which it is an isomorphism, and we will show that A = C.

We first show that B ⊂ A. Let X ∈ B. By Proposition 4.21, the following diagram commutes, and both 
vertical maps are isomorphisms:

v ⊗ colimI homV(X,RYi) homV(X, v ⊗ colimI RYi) homV(X,R(v ⊗ colimI Yi))

v ⊗ colimI homV(LX, Yi) homV(LX, v ⊗ colimI Yi)

� �
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The upper-left morphism is an isomorphism because X is atomic, and similarly the bottom morphism is 
an isomorphism because LX is atomic since X ∈ B and L sends B to atomic objects. This shows that the 
upper-right morphism is an isomorphism as well.

We now show that A is closed under weighted colimits. Let J ∈ CatV, W ∈ PV(J), and f ∈ FunV(J, C)
a V-functor landing in A ⊂ C. We show that X := colimW

J (f) is in A. By definition, homV(f(−), −) : C →
PV(J) is the lax V-linear right adjoint of colim(−)

J (f) : PV(J) → C. Thus, by Proposition 4.21 we have a 
natural isomorphism of functors C → V

homV
C(X,−) = homV

C(colimW
J (f),−) ∼= homV

PV(J)(W, homV(f(−),−)).

Thus it suffices to check that the map

homV
C(f(−), v ⊗ colim

I
RYi) → homV

C(f(−), R(v ⊗ colim
I

Yi)) ∈ PV(J)

is an isomorphism. By Proposition 4.24, the evaluation at j ∈ J are jointly conservative, so it suffices to 
check that the map is an isomorphism after evaluation at every j. By Lemma 5.15, this means that we need 
to check that

homV(f(j), v ⊗ colim
I

RYi) → homV(f(j), R(v ⊗ colim
I

Yi))

is an isomorphism, which holds since by assumption f lands in A.
Recall that B are atomic generators of C, and we have shown that B ⊂ A and that A is closed under 

weighted colimits, thus A = C, as required. �

5.3. Atomics–presheaves adjunction

Proposition 5.17. Let C0 ∈ CatV, then the enriched Yoneda embedding lands in the atomic objects, yielding 
a V-functor よV : C0 → PV(C0)at.

Proof. Recall from Proposition 5.8 that よV(X) is atomic if and only if homV(よV(X), −) : PV(C0) → V

preserves colimits and the lax V-linear structure is strong. By (1) of Theorem 2.10, this V-functor is the 
evaluation at X, concluding the proof by Proposition 4.24. �

We thus get an induced natural transformation よV : id ⇒ PV(−)at of functors CatV → CatV.

Proposition 5.18. The category PV(C0) is molecular, with the image of the enriched Yoneda embedding as 
atomic generators.

Proof. By Proposition 5.17, the image of よV are atomic in PV(C0). The fact that PV(C0) is generated 
from the image of enriched Yoneda embedding under weighted colimits is [11, 6.3.1], recalled as (3) of 
Theorem 2.10. �

Proposition 5.19. The functor PV : CatV → PrLV of Theorem 3.6 lands in PriLV .

Proof. Let f : C0 → D0 be a V-functor, and we need to show that f! : PV(C0) → PV(D0) is internally left 
adjoint. Recall from Proposition 5.18 that PV(C0) is molecular with the image of よV

C0
as atomic generators. 

As in Proposition 3.8, naturality of the enriched Yoneda embedding says that よV
D0

f ∼= f!よ
V
C0

. Thus, f!
sends the image of よV

C0
to the image of よV

D0
which are atomic in PV(D0). Thus, f! sends a collection of 

atomic generators to atomic objects, so it is internally left adjoint by Proposition 5.16. �
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Theorem 5.20. The partial adjunctions of Theorem 3.6 restricts to an adjunction

PV : CatV � PriLV :(−)at

with unit the enriched Yoneda embedding よV : id ⇒ PV(−)at.

Proof. We need to check that for any C0 ∈ CatV and D ∈ PriLV , the map

homiL
V (PV(C0),D) (−)at−−−→ homV(PV(C0)at,Dat) (よV)∗−−−−→ homV(C0,D

at) (4)

is an equivalence. Recall that

homL
V(PV(C0),D)

χ−→ homV(χ(PV(C0)), χ(D)) (よV)∗−−−−→ homV(C0, χ(D)) (5)

is an equivalence. Furthermore, both the first and last spaces in (4) are a collection of connected compo-
nents of the first and last spaces in (5), showing that the composition in (4) is an inclusion of connected 
components.

To finish the argument, we need to show that the composition in (4) hits every connected component. To 
that end, let f : C0 → Dat be a V-functor. We can post-compose it with the inclusion V-functor Dat → D, 
and using (5) we get f̃ : PV(C0) → D in PrLV. It is left to show that f̃ is internally left adjoint. Recall that 
the image of the enriched Yoneda embedding forms a collection of atomic generators by Proposition 5.18. 
Furthermore, by construction, f̃(よV(X)) = f(X) ∈ Dat is atomic. Thus, we have shown that f̃ sends a 
collection of atomic generators to atomics, so it is indeed internally left adjoint by Proposition 5.16. �

We extend our notations from Definition 3.7:

Definition 5.21. For f : C0 → D0 a morphism in CatV, consider the internally left adjoint functor 
f! : PV(C0) → PV(D0). It has a right adjoint in PrL

V, i.e. a V-linear left and right adjoint functor 
denoted f� : PV(D0) → PV(C0). This functor thus has a further lax V-linear right adjoint denoted 
f� : PV(C0) → PV(D0).

Using Corollary 5.3 we get the composition

χPV : CatV PV

−−→ PriLV
χ−→ (̂CatV)LL,

allowing to pass the (double) adjunction to ̂CatV.

Corollary 5.22. For f : C0 → D0 a morphism in CatV, we get a double adjunction χ(f!) 	 χ(f�) 	 χ(f�) in 
̂CatV.

Corollary 5.23. Let f : C0 → D0 in CatV, then f�(G)(X) ∼= G(f(X)).

Proof. By Proposition 3.8 we have f!よ
V ∼=よVf in FunV(C0, P

V(D0)). We thus get

f�(G)(X) ∼= homV(よV(X), f�(G)) ∼= homV(f!(よV(X)), G) ∼= homV(よV(f(X)), G) ∼= G(f(X)),

where the first and last steps follow from the enriched Yoneda lemma of (1) of Theorem 2.10, the second 
step is by Proposition 4.21, and the third step is by the isomorphism above. �
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6. Heine’s enriched Yoneda embedding

Independently of Hinich’s enriched Yoneda embedding, Heine defines an enriched Yoneda embedding as 
well, which satisfies the exact same universal property appearing in Proposition 2.13.

Theorem 6.1 ([6, Theorem 1.11, Definition 5.3]). Let C0 ∈ CatV. There is a V-natural transformation 
よV

Heine : C0 → χ(PV(C0)). For every D ∈ PrLV, the composition

homL
V(PV(C0),D)

χ−→ homV(χ(PV(C0)), χ(D)) (よV
Heine)

∗

−−−−−−→ homV(C0, χ(D))

is an equivalence.

We remark that this does not show that Hinich’s and Heine’s enriched Yoneda embeddings agree as 
functors. Rather, they are identified only up to an automorphism, that is, there exist some automorphism 
ψC0 : PV(C0) ∼−→ PV(C0) and ψC0よ

V ∼= よV
Heine. The question of whether ψC0 is the identity is equivalent 

to the question of whether the two versions of the enriched Yoneda embedding coincide (see also Subsec-
tion 1.3.2).

We now explain that the main results of this paper hold for Heine’s enriched Yoneda embedding as well, 
which in particular makes ψC0 natural in C0. We begin by observing that the two versions of the enriched 
Yoneda embedding agree point-wise. In particular, Heine’s version also satisfies the enriched Yoneda lemma.

Proposition 6.2. For every X ∈ C0, there is an isomorphism よV
Heine(X) ∼= よV(X). In particular, 

homV(よV
Heine(X), −) : PV(C0) → V is given by evaluation at X.

Proof. Consider the composition

C�
0
よ−→ Fun(Cop,�

0 , S) 1V⊗−−−−−→ Fun(Cop,�
0 ,V) free−−→ LModC

op
0

(Fun(Cop,�
0 ,V)) = PV(C0).

By [10, 6.2.6] and [6, Discussion under Remark 5.6], よV(X) and よV
Heine(X) (respectively) are the image of 

X under this composition.
The second part then follows from (1) of Theorem 2.10. �

Note that this shows that for every X ∈ C0, the automorphism ψC0 is the identity on よV(X), but this 
does not imply that ψC0 is the identity functor on the image of よV.

We move on to extending the main results of the paper to Heine’s enriched Yoneda embedding. The 
proofs in Section 3 and Section 5 have relied on the universal property of Proposition 2.13 and the enriched 
Yoneda lemma of (1) of Theorem 2.10 for よV. These two results also hold for よV

Heine by the above. We also 
used weighted colimits, and their relationship with the enriched Yoneda embedding appearing in (2) and 
(3) of Theorem 2.10. However, this was only used in the proof of Proposition 5.18, whose statement is about 
the image of the enriched Yoneda embedding which is the same for よV and よV

Heine by Proposition 6.2, and 
in the proof of Lemma 5.15, whose statement does not involve the enriched Yoneda embedding. Thus, we 
see that the results of Section 3 and Section 5 hold for Heine’s enriched Yoneda embedding as well. Notably, 
the analogue of Theorem 5.20 gives an adjunction

PV
Heine : CatV � PriLV :(−)at

with unit Heine’s enriched Yoneda embedding よV
Heine : id ⇒ PV

Heine(−)at.
The uniqueness of left adjoints shows that there is a natural isomorphism ψ : PV → PV

Heine compatible 
with the unit maps, i.e., with the two versions of the enriched Yoneda embedding. Since by construction 
PV

Heine is point-wise given by PV(C0), evaluating ψ at C0 reproduces ψC0 : PV(C0) → PV
Heine(C0) = PV(C0).
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