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On lax limits in 8-categories

John D. Berman

June 22, 2020

Abstract

We introduce partially lax limits of 8-categories, which interpo-
late between ordinary limits and lax limits. Most naturally occurring
examples of lax limits are only partially lax; we give examples arising
from enriched 8-categories and 8-operads. Our main result is a for-
mula for partially lax limits and colimits in terms of the Grothendieck
construction. This generalizes a formula of Lurie for ordinary limits
and of Gepner-Haugseng-Nikolaus for fully lax limits.

1 Introduction

Many notions in ordinary category theory can be described in terms of lax
limits in 2-categories: Grothendieck constructions, comma categories, Kleisli
categories, and so on. In theory, this means that a great deal of category
theory reduces to the study of lax limits.

Gepner-Haugseng-Nikolaus [6] have defined lax limits in p8, 2q-categories,
and they have proven that the Grothendieck construction is an example:

Theorem 1.1 ([6] 1.1). Let F : I Ñ Cat8 be a functor with associated
cocartesian fibration

ş
F Ñ I and associated cartesian fibration

ş
F Ñ I.

Then
ş
F is equivalent to the lax colimit of F , and

ş
F is equivalent to the

oplax colimit of F .

In this short paper, we will generalize the notion of lax limit to encom-
pass many other constructions in higher category theory. If C is an p8, 2q-
category, I is an 8-category with some morphisms marked, and F : I Ñ C

is a functor, we will define a partially lax colimit colimlaxpF q, which satisfies
the following universal property:
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• there are morphisms αi : F piq Ñ colimlaxpF q for each i P I;

• there are 2-morphisms αφ : αi ñ αjF pφq for each φ : i Ñ j in I;

• αφ is an equivalence whenever φ is marked.

In particular, any time we write colimlaxpF q, we are implicitly referencing a
marking on the domain of F .

There are also some variants on this idea. If we change the direction of
the 2-morphisms αφ, we obtain an oplax colimit. If we change the direction
of the morphisms αi, we obtain lax and oplax limits.

If all morphisms of I are marked, then all the 2-morphisms are required
to be equivalences, and we recover the ordinary colimit. If no morphisms
of I are marked (or if only the equivalences are marked), then none of the
2-morphisms are required to be equivalences, and we recover the fully lax
colimit.

The author hopes that anyone interested in lax limits will also be inter-
ested in partially lax limits, for the following simple reason:

Most lax limits appearing ‘in nature’ are only partially lax.

In this paper, we offer the following two examples as partial justification,
with the expectation that more will follow:

• (Enriched 8-categories) If V is a monoidal 8-category, there is an
8-category CatV of V-enriched categories. This is constructed (as by
Gepner-Haugseng [5]) in two steps: First, for each set S, we construct
8-categories CatVS of V-enriched categories with a fixed set S of ob-
jects. These assemble into a functor CatV´ : Setop Ñ Cat8. Then

CatV – colimoplaxpCatV´q,

where Setop is marked by surjections.

• (8-operads) Any symmetric monoidal 8-category Cb induces a func-
tor from the category of finite pointed sets

C : Fin˚ Ñ Cat8,

where C xny “ Cˆn, and the maps in Fin˚ describe the monoidal op-
eration. If O is an 8-operad, so that it comes with a functor to Fin˚,
then there is an equivalence of 8-categories

AlgOpCq – limlaxpO Ñ Fin˚
C
ÝÑ Cat8q,

where O is marked by its inert morphisms.
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To understand these examples, we need a way to compute lax limits in Cat8.
This is the subject of our main result:

Theorem (Theorem 4.4). If I is a marked 8-category and F : I Ñ Cat8,
let p :

ş
F Ñ I (respectively q :

ş
F Ñ I) be the associated cocartesian (or

cartesian) fibration. We say that a morphism of
ş
F (or

ş
F ) is marked if

it is p-cocartesian (or q-cartesian) and lies over a marked morphism in I.
Then:

• the lax colimit is the localization of
ş
F at marked morphisms;

• the oplax colimit is the localization of
ş
F at marked morphisms;

• the lax limit is the 8-category of marked sections of p :
ş
F Ñ I;

• the oplax limit is the 8-category of marked sections of q :
ş
F Ñ I.

In the event that no morphisms in I are marked, this theorem reduces to
Theorem 1.1.

Descotte, Dubuc, and Szyld [4] have recently studied partially lax limits
(which they call σ-limits) in 2-categories. They suggest that the theory will
be relevant to the development of 2-topoi. As for as this author knows, their
2018 paper was the first appearance of partially lax limits in print.

We will begin with a discussion of marked 8-categories in Section 2,
then define lax limits in Section 3. We prove our main theorem in Section
4, and finally discuss the two main examples in Section 5.

2 Marked 8-categories

Definition 2.1. A marked category is a category C along with a specified
collection of morphisms, such that all isomorphisms are marked, and any
composition of marked morphisms is marked.

If C,D are marked categories, a functor F : C Ñ D is marked if it sends
marked morphisms to marked morphisms.

There is a 2-category Cat: of marked categories, marked functors, and nat-
ural isomorphisms.

Definition 2.2. A marked 8-category is an 8-category C along with a
marking on the homotopy category hC. The 8-category of marked 8-categories
is Cat:8 “ Cat8 ˆCat Cat

:.

That is, a marked 8-category has some marked morphisms such that:
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• all equivalences are marked;

• given two equivalent morphisms f – g, f is marked if and only if g is;

• marked morphisms are closed under composition;

and marked functors are functors sending marked morphisms to marked
morphisms.

Remark 2.3. There are many ways to construct Cat:8. See [1] 1.14 and
[9] 4.1.7.1.

We will be interested in multiple markings on the same 8-category, so we
use notation like C: to denote a marking on C. The basic examples are:

• For any 8-category C, there is a sharp marking C7, in which all mor-
phisms are marked,

• and a flat marking C5, in which only equivalences are marked;

• If C Ñ D is a cocartesian (respectively cartesian) fibration, there is a
natural marking C6, in which the cocartesian morphisms (respectively
cartesian morphisms) are marked;

• If O is an 8-operad (Lurie [9] writes Ob), there is an inert marking
O§, in which the inert morphisms are marked.

If C:,D: P Cat:
8, we will write Fun:pC:,D:q for the full subcategory of

FunpC,Dq spanned by marked functors.
The sharp and flat markings each promote to functors

p´q7, p´q5 : Cat8 Ñ Cat:
8.

There is also a forgetful functor U : Cat:
8 Ñ Cat8 which forgets the mark-

ing, and a chain of adjunctions p´q5 $ U $ p´q7. Moreover, p´q5 also has a
left adjoint | ´ | : Cat:

8 Ñ Cat8 which preserves finite products ([9] 4.1.7.2).
We regard |C:| informally as the 8-category obtained from C by adjoining

formal inverses to all the marked morphisms.

Example 2.4. If C is any 8-category, then |C5| – C, and |C7| is the geomet-
ric realization, or the 8-groupoid built by adding inverses to all morphisms.

We can compute limits and colimits in Cat:
8 as so:
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Proposition 2.5. Let I be a small 8-category, F : : I Ñ Cat:8 a functor,
and F : I Ñ Cat:8 Ñ Cat8 the composite with the forgetful functor U . Then
colimpF :q – colimpF q and limpF :q – limpF q as underlying 8-categories,
and the markings may be recovered as follows:

1. A morphism φ of colimpF q is marked if there is some i P I such that
F piq Ñ colimpF q sends a marked morphism to one equivalent to φ;

2. A morphism φ of limpF q is marked if for every i P I, φ is sent by
limpF q Ñ F piq to a marked morphism.

Proof. Let colimpF q: be marked as in (1). By construction, the func-
tors F :piq Ñ colimpF q: are marked, so they induce a marked functor e :
colimpF :q Ñ colimpF q:. Since the forgetful functor U : Cat:

8 Ñ Cat8 has
a right adjoint, it preserves colimits, so e is an equivalence of 8-categories.
We need only show the following: If a morphism φ of colimpF q is marked,
then φ is marked in colimpF :q. However, if φ is marked in colimpF q, then
by definition it arises from a marked morphism of F :piq for some i P I,
and since F :piq Ñ colimpF :q is a marked functor, therefore φ is marked in
colimpF :q.

The proof for limits is exactly the same.

Corollary 2.6. The functor p´q7 : Cat8 Ñ Cat:8 preserves small colimits.
Therefore it has a right adjoint which we denote U : : Cat:8 Ñ Cat8.

Explicitly, U :pC:q is the subcategory of C: spanned by the marked morphisms
(and all objects). In conclusion, we have a chain of adjunctions

| ´ | $ p´q5 $ U $ p´q7 $ U :.

3 Lax limits

Lax limits are limits indexed by a twisted arrow category, which we will
review first. Twisted arrow categories are classical, but the analogue for
8-categories is due to Barwick [2].

Definition 3.1. If I is an 8-category, let TwpIq Ñ I ˆ Iop be the right
fibration associated to the functor Mapp´,´q : Iop ˆ I Ñ Top. We call
TwpIq the twisted arrow 8-category of I.
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We may regard TwpIq as follows: objects are morphisms i
f
ÝÑ j in I, and

morphisms f Ñ f 1 are twisted commutative squares

i
f //

��

j

i1
f 1

// j1.

OO

Definition 3.2. If I: is marked and i P I, there is an induced marking on
the undercategory I

:
i{: a morphism is marked if the forgetful functor Ii{ Ñ I

sends it to a marked morphism of I. In the same way, I:
{i is also marked.

Notice that precomposition with any morphism X Ñ Y induces a marked
functor I

:
Y { Ñ I

:
X{, so that the undercategory construction (and similarly

the overcategory construction) is functorial

I
:
´{ : I

op Ñ Cat:
8,

I
:
{´ : I Ñ Cat:

8.

We say an 8-category C is tensored (respectively cotensored) over Cat8 if
there are functors ´b´ : Cat8ˆC Ñ C, respectively r´,´s : Catop8 ˆC Ñ C.

Definition 3.3. Suppose I: is a marked small 8-category, C is an 8-
category, and F : I Ñ C is a functor (of 8-categories). If C is tensored
over Cat8, we define

colimlaxpF q “ colim

˜
TwpIq Ñ Iop ˆ I

|I:
´{

|ˆF

ÝÝÝÝÝÑ Cat8 ˆ C
´b´
ÝÝÝÑ C

¸
,

colimoplaxpF q “ colim

˜
TwpIq Ñ Iop ˆ I

|I
op:
´{

|ˆF

ÝÝÝÝÝÑ Cat8 ˆ C
´b´
ÝÝÝÑ C

¸
.

If C is cotensored over Cat8, we define

limlaxpF q “ lim

˜
TwpIq Ñ Iop ˆ I

|I:
{´

|ˆF

ÝÝÝÝÝÑ Catop8 ˆ C
r´,´s
ÝÝÝÑ C

¸
,

limoplaxpF q “ lim

˜
TwpIq Ñ Iop ˆ I

|Iop:
{´

|ˆF

ÝÝÝÝÝÑ Catop8 ˆ C
r´,´s
ÝÝÝÑ C

¸
.
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Remark 3.4. Such a colimit (respectively limit) over the twisted arrow 8-
category is a coend (respectively end), so we may write for example:

colimlaxpF q “ coendp|I:
´{| b F p´qq;

limlaxpF q “ endpr|I:
{´|, F p´qsq.

However, we won’t say anything about ends and coends; see [6] for more.

Example 3.5. If I5 has the flat marking, then |I5
{´| “ I{´ and |I5

´{| “ I´{,

so the formulas reduce to the formulas for ‘fully’ lax limits in [6].

Proposition 3.6. If I7 has the sharp marking, then

colimlaxpF q – colimoplaxpF q – colimpF q,

limlaxpF q – limoplaxpF q – limpF q.

The proposition reduces to a lemma about the twisted arrow category. We
say that a functor i : A Ñ B is left cofinal if for any F : B Ñ C, colimpF q –
colimpFiq, and right cofinal if the same is true for limits. See [8] 4.1, but
note that Lurie uses ‘cofinal’ where we use ‘left cofinal’.

A functor A Ñ B is right cofinal if and only if Aop Ñ Bop is left cofinal,
so that the two notions are dual.

Lemma 3.7. For any 8-category I, projection onto the first coordinate
π : TwpIq Ñ I is both left and right cofinal.

Proof. Note that TwpIq is highly asymmetric; for example, it often has an
initial object, but almost never has a terminal object. Therefore, the proofs
of left and right cofinality will not be similar.

Left cofinality was proven by Glasman in [7] 2.5; we will sketch the
proof. By Quillen’s Theorem A ([8] 4.1.3.1), it suffices to prove that πi{ “
TwpIq ˆI Ii{ is weakly contractible for each i P I. An object of πi{ is a
diagram i Ñ j Ñ k. Projection onto k describes a functor πi{ Ñ pIi{qop,
and this functor has a right adjoint which sends i Ñ k to i Ñ i Ñ k in πi{.
Since pIi{qop is weakly contractible (as it has a terminal object), so is πi{.

For right cofinality, it suffices to prove that π{i “ TwpIq ˆI I{i is weakly
contractible for each i. An object of π{i is a diagram i Ð j Ñ k. We define
functors F1, F2, F3 : π{i Ñ π{i as follows:

F1pi Ð j Ñ kq “ pi Ð j Ñ jq

F2pi Ð j Ñ kq “ pi Ð j Ñ iq
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F3pi Ð j Ñ kq “ pi Ð i Ñ iq,

where all maps i Ñ i or j Ñ j are the identity. There are natural transfor-
mations id ñ F1 ð F2 ñ F3 given by the vertical maps in the diagram

j

��✄✄
✄✄
✄✄
✄✄

//

��

k

i joo // j

OO

��
j

]]❀❀❀❀❀❀❀❀
//

OO

��

i

i

VV✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲

// i.

OO

This exhibits a homotopy between the identity functor and a constant func-
tor, so π{i is weakly contractible and π is right cofinal.

Proof of Proposition 3.6. By definition, |I7
i{| is the geometric realization of

Ii{, which is contractible since Ii{ has an initial object. Therefore, colimlaxpF q

is the colimit of TwpIq Ñ I
F
ÝÑ C, which is just the colimit of F because

the projection TwpIq Ñ I is left cofinal. The proof for oplax colimits is
identical. Since TwpIq Ñ I is also right cofinal, the proof for lax and oplax
limits is also identical.

4 Lax limits of 8-categories

The 8-category Cat8 is tensored and cotensored over itself via the functors
´ ˆ ´ : Cat8 ˆ Cat8 Ñ Cat8 and Funp´,´q : Catop8 ˆ Cat8 Ñ Cat8. We
are nearly ready to prove our main result, that lax limits and colimits in
Cat8 can be computed explicitly via Grothendieck constructions.

Definition 4.1. Suppose that I: is a marked 8-category and F : I Ñ Cat8
is a functor. We denote by p :

ş
F Ñ I the associated cocartesian fibration

(given by the Grothendieck construction). Then the induced marking
ş
F :

is given as follows: A morphism φ of
ş
F is marked if and only if ppφq is

marked and φ is p-cocartesian.
In exactly the same way there is an induced marking on the associated

cartesian fibration
ş
F : Ñ Iop:.
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Remark 4.2. Given two functors t : I: Ñ J: and F : J Ñ Cat8, Definition
4.1 is chosen so that we have a pullback square of marked 8-categories

ş
Ft: //

��

ş
F :

��
I: // J:.

Example 4.3. If I5 has the flat marking,
ş
F 5 also has the flat marking.

If I7 has the sharp marking,
ş
F 6 has the natural marking for a cocarte-

sian fibration (the marking by cocartesian edges). Thus, the marking
ş
F :

interpolates between the flat marking and the natural marking.

Theorem 4.4. Suppose I: is a small marked 8-category and F : I Ñ Cat
is a functor. Then

colimlaxpF q – |
ş
F :|,

colimoplaxpF q – |
ş
F :|,

limlaxpF q – Fun:
{IpI:,

ş
F :q,

limoplaxpF q “ Fun:
{IoppIop:,

ş
F :q.

Remark 4.5. If I7 has the sharp marking, then the theorem describes how
to compute ordinary limits and colimits in Cat8. This is [8] 3.3.3.2 (for
limits) and [8] 3.3.4.3 (for colimits).

If I5 has the sharp marking, then the theorem simplifies considerably and
describes how to compute fully lax limits and colimits: colimlaxpF q –

ş
F and

limlaxpF q – Fun{IpI,
ş
F q. These are the main results of [6].

Lemma 4.6. Suppose I is a small 8-category and η : F0 Ñ F1 is a natural
transformation of functors I Ñ Cat. If each functor ηi : F0piq Ñ F1piq
is fully faithful, then so is limpηq : limpF0q Ñ limpF1q. Moreover, an object
X P limpF1q is in the essential image of limpηq if and only if limpF1q Ñ F1piq
sends X to an object in the essential image of ηi for each i P I.

Proof. Consider the associated diagram

ş
F

6
0

η˚ //

p0
  ❅

❅❅
❅❅

❅❅
❅

ş
F

6
1

p1
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

I,
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where pi are cocartesian fibrations. Since ηi is fully faithful for each i, so is
η˚. By [8] 3.3.3.2, limpFiq – Fun:

{IpI7,
ş
F

6
i q. Therefore, limpηq is equivalent

to
Fun:

{IpI7,
ş
F

6
0q Ñ Fun:

{IpI7,
ş
F

6
1q,

which is fully faithful as desired.
The maps limpF1q Ñ F1piq are given by evaluating a section at i P I.

Therefore, a section s : I Ñ
ş
F1 lifts to

ş
F0 if and only if spiq P F1piq is in

F0piq Ď F1piq for all i, which proves the second part of the lemma.

Proof of Theorem 4.4. First we prove the theorem for lax colimits. By def-
inition, colimlaxpF q is the colimit of

F lax
c : TwpIq Ñ Iop ˆ I

p
ÝÑ Cat,

where ppi, jq “ |I:
i{|ˆF pjq. Since |´| : Cat: Ñ Cat preserves finite products,

ppi, jq – |I:
i{ ˆ F pjq5|, and therefore F lax

c p´q – |F̄ lax
c p´q|, where

F̄ lax
c : TwpIq Ñ Iop ˆ I

p̄
ÝÑ Cat:

and p̄pi, jq “ I
:
i{

ˆ F pjq5. By Proposition 2.5, colimpF̄ lax
c q is the fully lax

colimit of F , which is the Grothendieck construction
ş
F by Remark 4.5,

and a morphism of
ş
F is marked if and only if it is in the image of a marked

morphism under I:
i{

ˆ F pjq5 Ñ
ş
F for some j Ñ i in TwpIq. These are the

morphisms which are cocartesian over marked morphisms of I.
Therefore, colimpF̄ lax

c q –
ş
F :. Since | ´ | : Cat: Ñ Cat has a right

adjoint, it preserves colimits, so

colimlaxpF q “ colimpF lax
C q – |colimpF̄ lax

C q| – |
ş
F :|.

The proof for oplax colimits is exactly the same. Now we turn to lax limits.
By definition, limlax is the limit of the composite

F lax
ℓ : TwpIq Ñ Iop ˆ I

q
ÝÑ Cat,

where qpi, jq “ Funp|I:
{i|, F pjqq – Fun:pI:

{i, F pjq5q. In particular, consider

the composite

F̄ lax
ℓ : TwpIq Ñ Iop ˆ I

q̄
ÝÑ Cat

where q̄pi, jq “ FunpI{i, F pjqq. Then there is a natural transformation

F lax
ℓ Ñ F̄ lax

ℓ which is a full subcategory inclusion at each j Ñ i in TwpIq. By
the lemma, therefore limlaxpF q “ limpF lax

ℓ q is a full subcategory of limpF̄ lax
ℓ q,

10



which is the fully lax limit. By Remark 4.5, the fully lax limit is the 8-
category of sections of t :

ş
F Ñ I, so we conclude by the lemma that

limlaxpF q Ď Fun{IpI,
ş
F q,

and a section is in limlaxpF q if and only if it sends marked morphisms to
t-cocartesian morphisms.

5 Examples

We will end with two examples of partially lax limits.

5.1 Example: enriched 8-categories

Let V be a monoidal 8-category. For each set S, Gepner-Haugseng [5]
construct an 8-operad OS and define: A V-enriched category with set S of
objects is an AssocS-algebra in V. Then we may write CatVS “ AlgOS

pVq
for the 8-category of V-enriched categories with set S of objects. This
construction is functorial in S,

CatV´ : Setop Ñ yCat,
and the 8-category of all V-enriched categories is defined to be a localization
of the associated cartesian fibration ([5] 5.4.3). By Theorem 4.4, CatV can
be described as an oplax colimit:

Definition 5.1. The 8-category of V-enriched categories is the oplax colimit

CatV – colimoplaxpCatV´q,

where Setop is marked by the surjections.

We will briefly motivate this definition. If C is an enriched category with
set T of objects, and f : S Ñ T is a function, there is an enriched category
f˚C, which is determined essentially uniquely by the property: f˚C has set
S of objects, and there is a fully faithful functor αC : f˚C Ñ C which acts
as f : S Ñ T on the sets of objects. That is, there are triangles

CatVT

f˚

��

##●
●●

●●
●●

●

CatV ,

CatVS

;;✇✇✇✇✇✇✇✇✇
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with natural transformations α going up the triangle. Moreover, if f is
surjective, then each αC is fully faithful and essentially surjective, so we
expect α to be a natural equivalence when f is surjective. In other words,
CatV should satisfy the same universal property as an oplax colimit with
respect to the surjective marking on Set.

This will be described in greater detail in our upcoming work on enriched
8-categories [3].

5.2 Example: algebras over 8-operads

Let Fin˚ denote the category of finite pointed sets. We may think of a
symmetric monoidal 8-category Cb as a functor C : Fin˚ Ñ Cat8 such that
the maps C xny Ñ C “ C x1y exhibit C xny – Cˆn. This is the same property
as Segal’s Γ-spaces; see [9] 2.4.2.2.

Proposition 5.2. If O is an 8-operad and C is a symmetric monoidal
8-category, then the 8-category of O-algebras in C is the lax limit of the
composite

AlgOpCq – limlaxpO Ñ Fin˚
C
ÝÑ Cat8q,

where O is marked by the inert morphisms (defined [9] 2.1.2.3).

Proof. By definition ([9] 2.1.2.7), AlgOpCq – Fun:
{Fin˚

pO§,
ş
Cq. Here § de-

notes the marking by inert morphisms, and
ş
C Ñ Fin˚ is the cocartesian

fibration associated to Fin˚
C
ÝÑÑ Cat8. (Lurie writes Cb instead of

ş
C.) By

Theorem 4.4, this is equivalent to the lax limit described.
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