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INTRODUCTION

Originally, we developed the theory of nomotopy invariant structures
to obtain a machine for proving tnat tne stable groups 0,0,S0,SU,F,
Top,PL, their various coset spaces, and their classifying spaces are
infinite loop spaces. But soon we realized tnat tne homotopy invariant
structures in tnemselves were the main subject of our research. The
idea of using categories of operators (called PROPs in these notes)
and to identify topological spaces witn algebraic structures with func-
tors from a suitable PROP to the category of topological spaces was
implicitly contained in a talk of Stasheff given in a seminar of Mac-
Lane at tne University of Chicago in 1967. He suggested to look for a
topological analogue of the notion of a PACT as developed by Adams and
MacLane [29] and to use it in the theory of infinite loop spaces. The
topological version of the conjecture following Theorem 25.1 of [29]
gave some nope for an application: If a topological PACT, whose homo-
topies satisfies all higher conerence conditions, acts on a space X,
then it also acts on its classifying space.

The conerence conditions for nigner nomotopies naturally lead us
to consider nomotopy invariance, wnich later turned out to be useful
for the application to infinite loop spaces.

After we nad announced our results in [8], Beck pointed out to us
that our PROPs are just subcategories of topological theories as known
from categorical universal algebra, This motivated us to consider gene-
ral topological-algebraic theories, too, although in most of our in-
vestigatiors we had to restrict our attention to the previously treated
-PROPs, wnich now cropped up as "spines" of theories closely related

to the theory of commutative monoids.



VI

Snortly after the appearance of [8] several other authors could show
by different metnods that the stable groups and their classifying spa-
ces listed above are infinite loop spaces. Their approaches avoid the
theory of nomotopy invariant structures so that they reach the requir-
ed result more easily and more directly. Therefore we want to stress
the point that infinite loop spaces are just one field of application
of our theory and, as we will show, not the only one.

We briefly want to compare our method witn the most interesting
otner approacnes to infinite loop spaces. Using nis construction of
tne classifying space of a category [44], Segal was able to show that
a topological category € with an appropriate bifunctor €x § —C¢C
gives rise to a spectrum of simplicial spaces, thne realizations of
which form an infinite loop space [45]. He then snowed that the groups
under consideration determine such categories and that the associated
spectrum makes the group into an infinite loop space. In contrary to
this, our method is to investigate the internal algebraic-topological
structure of the groups and to show that certain structures, we call
them E-structures, characterize infinite loop spaces.

A second direct proof is due to Beck [3]. He also starts with E-
structures on topological spaces. He tnen extends the suspension and
loop space functor to adjoint endofunctors of the category of spaces
witn E-structures and shows that the front adjunction map X — QSX is
a weak homotopy equivalence if the ﬁ—structure on X makes wo(X) into
a group.

A third approach, due to May [34], is very closely related to our
method. His theory is geared towards applications to Dyer-Lasnof nomo-
lLogy operations. He first develops a theory of operads with free action
of the symmetric groups. They are slignt specializations of our PROPs.
Then using the operads obtained from our little cube categories Qn
and Q_ of [8] (see also (2.49) of these notes) and generalizing an n-

stage classifying space construction of Beck [2], he was able to prove
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a recognition principle for iterated and infinite loop spaces, wnich
resembles much of our recognition principles of chapter VI, §3. His
approach has two advantages over ours. Firstly, the category of operads
has products, which essentially substitute our tensor products of PRCPs.
Since the topological and algebraic structures of these products are
far more transparent than the structure of the tensor products, one
need not be reluctant to work with them. Secondly, his n-stage classi-
fying space construction, which is quite interesting in itself, makes
an inductive proof of the recognition principle for n-fold loop spaces
redundant, although the proof of consistency requirements for infinite
loop spaces boils down to an argument similar to an induction.

On the othner hand, our approacn nas some advantages over May's.
First of all, we admit all PROPs and not only PROPs with free actions
of the cyclic group, which correspond to ~free operads. Thus impor-
tant PROPs, such as the PROP & associated with the theory of commuta-
tive monoids, are allowed in our theory but not in May's. (It has been
known for some time [%7] that a connected abelian monoid is of thne
weak nomotopy type of an infinite loop space). Secondly, taking PROPs
and tensor products instead of operads and products keeps us in closer
connection with general algebraic-topological theories, so that gene-
ratizations to morecomplicated algebraic structures suggest themselves.
Thirdly, once the theory of nomotopy invariant structures has been made
available, a few more or less elementary facts of the standard classi-
fying space construction imply a unified proof of the recognition
principle for both n-fold and infinite loop spaces. Moreover, for any
E-space X, we have maps preserving the structure up to conerent nomo-
topies

n-1_n-1

QPR < QTR TR e L. v, < OBX <

X,
which are weak homotopy equivalences if the E-structure on X makes
nO(X) a group, while in May's approach there are structure preserving

maps
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aBex f g X

such that g is a deformation retraction and f is a weak nomotopy equi-

valence if X is connected. So the maps do not go one way.

Besides the points which allow a direct comparison, we also treat
the theory of maps which preserve the algebraic-topdogical structures
up to coherent nomotopies in great detail, thus obtaining a delooping
result for maps between E-spaces whicn are not quite homomorpnisms.
Moreover, an additional analysis of Milgrams classifying space con-
struction allows us to show that the weak homotopy equivalences above
are strict nomotopy equivalences for a wider class of topological
spaces than CW-complexes. This side of the theory is, of course, un-
necessary for the purpose of May's notes, wnich are thought of as a
bagis for the development of a theory of homology operations; but they
are of great interest from the nomotopy point of view,

A short idea of what we are going to do and a recollection of exist-
ing results on nomotopy invariant structures on topological spaces is
given in chapter I. The second chapter is a self-contained treatment
of multi-coloured theories generalizing constructions of Bénabvou [4].
Many ideas of the section on multi-coloured triples (II,§4) are taken
from papers of Beck [2] and others. In (II1,8§5) we define the topolo-
gical analogue of Adams' and Maclane's notion of a PROP and PACT and
put them into relation with general theories. We complete the chapter
with a list of PROPs, wnich will be used in the characteriza®tion and
recognition of n-fold and infinite loop spaces, or which define alge-
braic-topological structures cccurring in the literature.

In the third chapter we define the bar construction for theories
and PROPs and prove its important properties. It is the main tool for
the development of the theory of homotopy invariant structures, which
is given iﬁ chapter IV. In the first parts of chapter IV we construct
categories of spaces with homotopy invariant structures and homotopy

classes of maps wnich preserve such structures up to coherent nomo-



IX

topies. We offer three definitions for such maps, which turn out to

be more or less equivalent, and continue to work with two of them.
This side of the theory indicates that the last word has not been spo-
ken yet. Relationships of such maps to nomomorpnisms are studied in
sections 4,5, and 6. The main results on homotopy invariance are given
in section 3. In section 7 we prove a hnomotopy invariance result for
general theories, thus indicating possible generalizations of our re-
sults. Chapter V lists the modifications which are necessary to prove
the more important results of chapter IIT and IV in the category of
based topological spaces.

As a first application of our theory we in chapter VI study n-fold
and infinite loop spaces. We start with a detailed treatment of Mil-
gram's classifying space construction [%7] in the frame-work of our
theory before we in section 3 prove the recognition principle for n-
fold and infinite loop spaces mentioned above. In section 4 we extend
this recognition principle to arbitrary E-structures on a space X and
show that X cannot be of the homotopy type of an abelian monoid if it
has non-trivial Dyer-Lashof operations. We list a number of infinite
loop spaces in section 5. Chapter IV and VI include the proofs of the
announcements in [8].

In the final chapter VII we briefly indicate how our theory can be
used in other branches of homotopy theory. We define homotopy colimits,
prove some elementary properties, and illustrate some applications.

A summarized version of parts of our results has already appeared
in [6], and we try tc stick to its terminology. The first chapters
constitute a vasily improved version of [54]. The second author takes
the full responsibility of the present exposition and he is to he
blamed for oryptic formulations, frequent violations. of standard
rules of the English language, and matnematical inaccuracies.

It is our pleasure to thnank our friends wno in various discussions

nelped us to clarify one or the othner point of our theory. In parti-



cular, we are indebted to Jon Beck for explaining to us the notion of
an algebraic theory and who pointed out that the homotopy-everytning
H-spaces of [8Jlare not really nomotopy-everything H-spaces (compare
VI,§4), and to Tammo tom Dieck for suggesting to us the use of numer-
able principal G-spaces and for many invaluable conversations. We also
want to thank Mrs. Victoria Léffler for ner quick and neat typing of
the major part of tnese notes.

During our research the first author was partly supported by the
National Science Foundation under the grant number GP-19481, while
the second author received partial financial support from the Studien-

stiftung des deutscnen Volkes and tne Deutscne FPorscnungsgemeinscnaft.



I. CHAPTER

MOTIVATION AND HISTORICAL SURVEY

In these notes we study homotopy-associative and homotopy-commutat-
ive H-spaces, where the homotopies satisfy "higher coherence condit-
ions", and maps that preserve such structures up to homotopy, and again
we require that the homotopies satisfy "higher coherence conditions".
For the time being call those H-spaces "structured spaces" and these
maps "structured maps". Our aim is to define structures which approxim-
ate the structure of a monoid or a commutative monoid and which live
in homotopy theory. To make the last remark precise, our structured
spaces and maps should satisfy the following statements:

If X is a structured space and f : X —> Y a homotopy equivalence,
then Y can be structured such that f becomes a structured map.

If f : X —>Y is a structured map of structured spaces and g homo-
topic to f, then g can be structured.

If f 3 X —> Y is a structured map of structured spaces and a homo-

topy equivalence, then any homotopy inverse can be structured.

We are interested in structures that approximate a monoid structure
or the structure of a commutative monoid because a reasonable monoid
is of the homotopy type of a loop space and a reasonable commutative
monoid of the homotopy type of an infinite loop space. Precise definit-
ions and statements of this remark will follow in this chapter.

We now want to give a short survey of the existing literature en
this subject and introduce the main ideas of our approach. Some of

the statements of this cnapter will be rather vague and made precise



later on in these notes. In most cases we refrain from giving proofs.
Phroughout these notes we work in the cotegory of k-spaces, i.e.

the category of compactly generated spaces (see Appendix I).

1. "DELOQPING" VIA THE CLASSIFYING SPACE CONSTRUCTION

Definition 1.1: An Hespace is a topological space X with base point e

and a multiplication map m : X x X —> X such that e is a homotopy unit,
i.e the maps x - m(x,e) and x = m(e,x) are homotopic to the identity
ret(e,e) (Where reasonable we write xy for m(x,y)).

If (¥ x X, XvX) has the homotopy extension property, the multiplic-
ation map can be deformed to one for which e is a strict unit. Since
we are concerned with "homotopy invariant structures" it is more natur-
al to work with homotopy units.

Obviously, the concept of an H-space is a natural generalization of
that of a topological group, and since there are many spaces which ad-
mit an H-space structure which is not a group structure, e.g. loop
spaces, 1t is worth considering.

Because of the lack of structure, many interesting and important
constructions which apply to topological groups cannot be applied to
H-spaces. For example, there is no H-space analogue to Milnor's classi-
fying space of a group'unless the H-space in question has some addition-
al structure. Such a construction is rather impertant for algebraic
topology, because it implies that any reasonable topological group is
of the homotopy type of a loop space, which has further consequences.
From the homotopy theoretical point of view, the distinguishing feature
is +the lack of associativity (and commutativity) rather than the lack
of a continuous inverse (see Prop. 1.5 below). So associativity and
commutativity, both strict and up to homotopy, will play a significant
role in our development.

A close investigation of Milnor's construction of the classifying
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space of a topological group (Milnor [39]) shows that one can do with-

out the existence of a continuous inverse.

Definition 1.2: An H-space with strictly associative multiplication

and strict unit is called a monoid.

Proposition 1.3 (Dold-Lashof [16]): If X is a monoid such that right trans-

lation is a weak homotopy equivalence, then there is a space BX and a
weak homotopy equivalence X —> NBX which respects the multiplication

up to homotopy.

The condition that right translation is a weak homotopy equivalence
is necessary. Since no(OY) is a group for any space Y, the statement
can only be true if WO(X) is a group. It is easy to see that this im-
plies that right translation is even a homotopy equivalence.

Fuchs has modified the Dold-Lashof construction. He obtains a homo-

topy equivalence and not just a weak one.

Proposition 1.4 (PFuchs [22]): If X is a monoid with a nomotopy inverse,

then there exists a space BX and a nomotopy equivalence X —> OBX.

Proposition 1.3 yields a homotopy equivalence if X is a CW-complex.
But in this case, X admits a homotopy inverse, because it is numerably

contractible {13; Prop.6.7].

Proposition 1.5 (tom Dieck-Kamps-Puppe [12]}: Let Y be a homotopy-

agssociative H-space such that right translation is a homotopy equival-
ence, If ¥ is numerably contractible then it admits 2 nomotopy in-

verse,

We have seen that monoids are closely related to loop spaces. The
following result shows that loop spaces are related to topological

groups.
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Proposition 1.6 (Milnor[39]): If X has the homotopy type of a connected

countable CW-complex, then there is a topological group G{(X) of the

homotopy type of QX.

2. A_-SPACES

The last section showed that monoids may replace the topological
groups in homotopy theory. Since the locp space on X is a SDR({=strmg
deformation retract) of a monoid, namely the Moore-loops on X, we have
added a large class of spaces to the class of topological groups. The
disadvantage of topological groups and monoids is that they do not live
in homotopy theory, i.e, if M is a monoid and £ : M —> X a homotopy
equivalence then we cannot expect that X has a monoid structure such
that f becomes a homomorpnism or only a homomorphism up to homotopy.

The "weakest" approxiamtion of a monoid structure which is in homo-
topy theory is a homotopy-associative H-space structure. Such an H-space
is in general far away from being of the nomotopy type of a monoid.
This motivates to look for richer structures which are better approxim-
ations. J. Stasheff solved this problem with his An—spaces.

Let us investigate the best homotopy-invariant approximation, namely
a space X of the homotopy type of a monoid. Then X inherits a homotopy-
agssociative H-space structure from the monoid via the homotopy equi-
valences. Let

M, : Ix X’ —> X

3
be the canonical associating homotopy (I is the unit interval), and

M3(x,y,z) the corresponding path from (xy)z to x{yz). Considering the
various ways of associating four factors we obtain five maps from X4
to X, each of which is homotopic to two others by a single application

of homotopy associativity. For each gquadrupel (x,y,z,w) of elements

in X we can construct a loop S(x,y,z,w) in X,
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S(x,7,2,w): (xy)(zw)
MB(X,y,ZW) MB(XY7Z:W)
(x(y(zw)) ({xy)e)w
X.MB(y,z,w) MB(x,y,z)-w
x((yz)w) M (x,y2,w) (x(yz))w

4

. R y . 1 L
continuous in each variable, and hence a map S x X' —> X. This map

can be extended to a map

4

x X' —>X

where D2 is a 2-cell with boundary S1. Jf we take five factors, we can

2 5

construct a map S x X —> X using the multiplication M2 and the maps

M3 and M4. If M4 is chosen properly, this maps can be extended to a
map

M. D3 X X5 —> X

5

and so on. We end up with a sequence of maps Mn : Dn"2 x X% —> X,
n-3

n > 2, such that M extends the map S x X® —> X which is induced

by M M

-y We can obtain such a segquence of maps for any space

Dreses
of the homotopy type of a monoid. Later on we shall see that this
structure , which we call an A_-structure, leads to a homotopy-invariant
characterization of spaces of the homotopy type of a monoid. To be able
to give precise statements, we must know how to obtain the maps

n

sy X —> X from M M

greces My g

Definition 1.7 (Stasheff [461): Let K, denote the complex constructed

inductivity as follows: K2 = DO, the O-cell. Let Ki be the cone CLi

on Li which is the union of various copies (Kr X Ks)k of Kr X Ks,
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r+s =1+ 1, corresponding to inserting a pair of parentheses in i
symbolts 12 .... (k X +1 ,.. k+8 -1) ,.,.. i. The intersection
of copies corresponds to inserting two pairs of parentheses with no

overlap or with one as subset of the other.

Examples
K2 .
K3 -— —
(12)3 123 1(23)
(12)(34)

(12)(34)

1(2(34)) ((12)3)4
1(234) (123)4
1((23)4) 1(23)4 (1(23))4

One can show [46; Prop. 3] that X, is an (1 - 2)-cell. It will take
the place of the (i - 2)-cell in the definition of an A_—-structure.
Let aL(r,s) H Kr X Ks — Ki denote the inclusion of the copy in-

dexed by 1 2 ... (V1 +1 ...V +8~1) ... 1.

Definition 1.8 (Stasnef® [46]): An A -space (x; {Mi}) consists of a

space X and a collection of maps

M, : K, X T — X i =2,3,..., 10

sucn that

(i) M, is a multiplication with unit
2
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ii) Mi(aL(r,s)(k1,kz),x1,..., Xi) =

= Mr(kA1 ,X,],..., le’_,] ,Ms(kz,xl,..., XL+S—1)’...’ Xi) where
(kT’kZ) € Kr X KS'
If M, exists for all i > 2 and satisfies the conditions (i),(ii), then

(X;{Mi}) is called an A _-space.

So an Az-space is an ordinary H-space with striect unit, an A3—
space a homotopy-associative H~space with striect unit etc. We are
especially interested in A_-spaces because they turn out to be of the
homotopy type of a monoid. Now it is a natural question to ask whether
we can do with less than an A_-structure. Since we know that any space
of the homotopy type of a monoid admits an A_-structure, this amounts
to asking whether or not an A -structure extends to an A -structure.

Counterexamples were given by Adams [1] and Stssheff [46].

Proposition 1.9 (Adams and Stasheff): If Y is a Moore space of type

(G,2p + 1) where G is an abelian group in which division is possible
for all primes ¢ less than the prime p, then Y admits an Ap_1-structure

but not an Ap-structure.

Stasheff succeeded to generalize the classifying space construction
of Dold and Lashof. Using this tool he could show that any A_-space
is of the homotopy type of a loop space, and hence of a monoid. On
the other hand, it is easy to show that a loop space admits an A_-

structure. So we obtain

Proposition 1.10 (Stasheff [48]): A connected CW-complex X admite the

structure of an A_-space iff X has the homotopy type of a loop space.

Since Stasheff uses the long exact homotopy sequence of the quasi-
fibration associated with his classifying space construction, he needs

the requirement tnat X is a CW-complex. The second disadvantage of his



construction is that he has to use strict units. Building up a monoid
with help of the models Ki’ Adams gave an alternative proof of a

stronger result, which makes no use of units.

Proposition 1.11 (Adams, unpublished): If X admits maps M, :K;x X X

for i > 2 satiafying 1.8(ii), then X is a SDR of a space Y with an
associative multiplication m such that m|{¥X x X is nomotepic in Y to

MZ‘

Adams original proof is a little tedious. We shall give a simple
proof of a stronger version. It turns out that the inclusion map X<¥’
preserves not only the multiplication up to homotopy but up to nomo-
topy and higher coherence conditions. This leads us to the investigat-
ion of maps which are homomorphisms up to homotopy and higher coherence

conditions.

3. A -MAPS

Definition 1.12: A map £ : X —> Y between A -spaces (X;{Mi}) and

(Y;{Ni}) is called a homomorphism, if the following diagram commutes

for all i, 2 <1i < n.

i
\1 cel [f
. N.
Kx ¥ ——2 >y

Analogously for nomomorphisms of A_-spaces.

If we try to define maps between An—spaces which respect the struct-
ure up to homotopy and higher coherence conditions in the same way as
we defined An~structures, i.e. homotopy-associative multiplications
with higher coherence conditions, the details became more and more

complicated with increasing n. For example, respecting an Az—structure



involves a 1-cell

f(xy) * T, (X,y) * (fx)(fy)

respecting an A3—structure involves a 2-cell subdivided as a hexagon

f(M3(nyyZ))

f(x(yz) £((xy)z)
HZ(X,YZ) HZ(XY,Z)
f(x)f(yz) HS(x,y,z) f(xy)f(z)

f(x)H,(y,2) Hy(x,y)f(z2)

f(x)(£(y)f(2))

(£(x)f(y))£(2)
N3(fx,fy,fz)

respecting an A4-structure involves a 3-cell whose boundary is sub-
divided in a complicated way; it contains products of 1-cells H2,
2~-cells H3 and of copies of the models K2, K3 and K4. For a

picture see [48;p.53]. So it does not surprise that such maps have

not been studied up to now. In fact, maps which respect the structure
up to homotopy and higher coherence conditions have been investigated
to a larger extend for monoids only, although maps of an An—space into

a monoid are manageable too.

Definition 1.13 (Stasheff (48;p.54]): Let (X;{Mi}) be an A -space and
Y a monoid. A map f : X —> Y is anAn—maE if there exists a family

of maps
n, : x X' — > ¥ i=1,2,..., 1

i i+

such that h1 = f and
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hi(al;(r’s)(k'l ’kz) 1X1 y e .’Xi) =
- {hr(k1’x1,-0-yxt_1)Ng(k29xLy-0v,XL+S_1)y-~-vxi) 1 <r
LINIPIC SRS SYRRENS SUPD) JEIPI 0S¥ SRR 3 1=r

forr +s =1 + 2,

Example: The models of an A3-map f:

h1(x)=f(x)

f(xy) + f(x)f(y)
hz(t,x,y)

f(x)£(y)f(2)

h1(x)h2(t,y,z) hz(thyY)h1(z)

f(x)f(yz) f(xy)f(z)
hs(k,x,y,z)

hz(t,x,Mz(y,Z)) hz(t,MZ(x,y),z)

f(x(yz)) f({xy)z)

h1(M3(t’X’YyZ)

If X is a monoid too, its An—structure is trivial and the face in-
volving h1(M3(t,x,y,z) in the above diagram can be identified to a

point so that the model "degenerates" to a cube., In general we get

Definition 1.14: A map f : X —> Y between two monoidsis an An—map

if there exists a family of maps

x X8 —> Y i

]

1,2,ce., 1

such that h1 = f and
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hi(t1""’ti—1’x1""’xi) =
h £ i
) i_1(t1,...,tj,...,ti_1,x1,...,xj xj+1,...xi) if %,=0
Bytyyeeesty goXqree s Xy s ghene by0Xy g0 ee, Xy )1E b=

Example: The models of an A3—map f between monoids:

hw(x)=f(x)

f(xy)e> o £(x)f(y)
n,(t,%,y)

n (x)n,(t,5,2)

f(x)f(yz) f(x)f(y)f(z)
hz(t,x,yz) h3(t1,t2,x,y,z) hz(t,x,y)hq(z)
f(xyz) f(xy)f(z)

h,(t,xy,z)

Sugawara [53] was to cur knowledge the first to define A _-maps between
monoids while Stasheff [47] was the first to investigate An—maps
between monoids and later [48] between An—spaces and monoids.

They were looking for maps which are no homomorphisms but nevertheless
induce maps between the Dold-Lashof classifying spaces respectively
their n-th approximation. We know that any reasonable A _-space X has

a classifying space BX such that X is of the homotopy-type of 2BX, i.e.
an A_-space can be delooped. It seems natural to try the same for A~

maps.

Proposition 1.15 (Sugawara({5ilet f : X —> Y be an A_-map between

monoids. Then f induces maps f': E(X) —> E(Y) and T : B(X) —> B(Y)

sucn that
fl

E(X) > B(Y)

p(X)l l p(Y)
B(X) > B(Y)
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commutes, where p(X) and p(Y) are the universal quasifibrations of the

Dold-Lashof construction.

Stasheff succeeded to proof a similar result for An—maps and the
n~-the stage of the Dold-Lashof construction.

The most detailed study of A_-maps can be found in an article of
Fuchs [21] where the question mentioned above found its complete

solution.

Proposition 1.16 (Fuchs) : Let s&sh be the category of based con-

nected CW-complexes and homotopy classes of based maps, and 'monh the
category of monoids and homotopy classes of A_-maps. Leti B:monﬁ—éyﬁmﬁh
be the Dold-Lashof classifying space functor, and 7 : cmsh———> ﬂnnh

the loop space functor of Moore. Then the following maps are bijective

0B monh(X,Y) ——————> Mor, (2BX,0BY)

B : monh(x,Y) —_— Smﬁh(BX,BY)

The first statement in particular shows that A_-maps can be
"delooped”. To be precise, tet £ : X —> Y be an A _-map between
monoids and i(X) : X ——> 0NBX the homotopy equivalence of Proposition
1.3. Fuchs showed that this map is an A_-map and that there exists a

map Bf : BX ——> BY such that the diagram

X £ > ¥

i(x)l l i(Y)
OB

OBX > OBY

commutes up to nomotopy.

Although the models of an A _-map are simple they are still difficult
to work with. This became apparent in the following important result

of Fuchs.
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Proposition 1.17 (Fuchs[21D : A homotopy equivalence between monoids

is an A_-map iff any inverse is.

In fact, a complete proof of this proposition has never bheen
published, because the details are to messy. So a new approach was

necessary, especially if one tried to study A_-maps between A _-spaces,

4. A DIFFERENT APPROACH

In this section we want to describe the main points of our con-
structions which will be developed in full generality in the coming
chapters. We show how to apply them by giving a simple proof of a
stronger version of Proposition 1.11,

There are essentially two ingredients, one coming from categorical
algebra and one from physics. In categorical algebra a monoid structure
is not given by an multiplication m : X x X —> X satisfying certain

identities, but as follows:

Definition 1.18: A monocid structure on a space X consists of a family

of maps, called operations,

xi:x1—>x, i=0,1,2,...

such that

(1) ay = 1
(1ii) Ay -(xr1x... X xrn) = Ay, Wnere m = T, + ... + T,
The map Ai corresponds to (x1,...,xi) —> XX, ... X3, SO that XZ

is an associative multiplication with unit e = XO(XO).

To get a better grip on compositgs of operations, we consider each
A; as an electrical box with i inputs and one output. (In the general
case, we have more than one operation Xi —> X, In this case we

label the box by the operation it represents.)
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i inputs

1 output

The box representing Ao has no input but an output. A composite
operation is obtained by wiring together, e.g. wiring together the

operation i, : X2 —> X and Ao X Ag 3 X5 — X° we obtain

(YY) -

So a composite operation is represented by a certain kind of directed
planar tree. The edges need not have vertices on both ends; the in-

puts have no beginning vertex, we call them twigs, the output, called
root, has no end vertex. Edges with vertices on both ends are called
internal. We call the box representing ), a stump, and to be able to
cope with occuring relations, we introduce the trivial tree which has

no vertex *

and represents the identity operation X —> X.

To compute the value of a composite operation represented by a tree
with n twigs on an n-tuple (x1,...,xn) € X7 we proceed inductively by
labelling each edge with a point in X starting with x;,...,x, for the
n twigs. At each vertex with k inputs, we apply A to the values of
the inputs to obtain the label of the output. The value of the com-
posite operation is given by the label of the root.

Examples:
X4 % %, X5 X, X

]

3 ¥z Xy
2 X.'XZ X.X

(x1x2)x3 x3(x1x2,x5,x4)

>4
@
—~~
o
ol
[A]
~r
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The relations 1.18 (i) and (ii) expressed in tree form read

and each tree with n iwigs represents the same operation as

n twigs

Now let X be of the homotopy type of a monoid. We want to find the
collection of operations which are induced by the monoid structure
under the homotopy equivalence, i.e. we look for a sort of A_-structure.
Combining the operations Ay of the monoid with the homotopy equival-—
ence and its inverse, we obtain operations which we denote for simplic-
ity reasons by Ay too. The only difference is that the relations
1.18 (ii) hold up to homotopy only (here we assume that A is chosen
to be the identitﬁ.The trees enable us to give a reasonable description
of these homotopies. Before we consider the general situation, let us
illustrate what we want to do by an example. We know that the induced
multiplication on X is homotopy associative. Disregarding the stumps,

there are three trees with three twigs, namely

X.] X X2 X3

(x1x2)x3 xﬁ(x1,x2,x3) x1(x2x3

(the direction of the edges is given by gravity). We see the outer
trees represent the two different ways of multiplying three elements.
Instead of joining the left composite operation directly to the right
one and thus obtaining the associating homotopy we join each of them
to the middle tree. We do that by giving tne internal edges a "length"
between O and 1 and allow edges of length O to be shrunk away, i.e.
the two vertices of the outer trees are identified to give the middle

tree if the imternal edge has lengthn O.
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Definition 1.19: We define the space W%{n,1). A point of this space

is a tree with n twigs together with a function assigning to each

internal edge a real number t, 0 < t < 1, called its length, subject

to the relations

(a) Any edge of length O may be shrunk away by removing it and
amalgamating its two end vertices to form a new vertex;

(b) Any vertex with only one input may be removed. We give the result-
ing edge the length ty * t2 =t, + t2 - t1t2, where t, and t, are

the lengths of the edges above and below this vertex. (Here we

assume that the root and the twigs have the fictive length 1.)

Pictorially, the relations are

(a) (v)

~. |0. Ju— | — t. %t

Facn point in W¥(n,1) is represented by a pair (7,x) where T is a
tree with n twigs and x a point in a k-cube C(7) where k is the number
of internal edges of 7. We give Wi(n,1) the obvious quotient topology

from the disjoint union of the cubes C(1).

The associating homotopy is therefore given by two 1-cubes C(TT)
and C(Tz) where 7, and T, are the two outside trees of the previous
example. These two cubes have common lower faces which are identified
with the O-cube C(Tj) where Ty is the middle tree of the previous

examp le,

e(r,) o(r ) o(r,)

t=0=u

t Y

u
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Let us give a pictorial description of whnat we mean by a Wy-struct-
ure on a space, a different and, may be, clearer definition will be

given in the next chapter.

Definition 1.20: A cherry tree on a space X is a tree (with lengths)

in some space Wi(n,1) to each twig of which is assigned a point of X,

which we call a cherry, that is, a cherry tree is a point of some

space Wi(n,1) x ) Gl

Examples:

(1) e 6 (ii) (iii)
(Z)

—_
N

Definiton 1.21: A Wl-gstructure on a space X is a continuous map

F: L}

from the space of all cherry trees on X to the space X, subject to

o3

n
o W(n,1) X X —————> X

two conditions,
{(c) we can cut down fully grown cherry trees without affecting
their values;
(d4) the value of the trivial cherry tree with cherry x is x

(see Bxpl. (ii)).

Relation (c¢) demands some explanation: We say a cherry tree is
fully grown, if some internal edge has length 1. To cut it down we
replace the subcherry itree sitiing on that edge by its value under F,

regarded as a cherry in X and the cut branch becomes a twig.
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Example:

@ ® () ©

F a = F , where x =F

We now want to connect our definition of a Wil-space, i.e. a space

with a W¥-structure, with Stasheff's definition of an A _-space. We
have pointed out in the beginning of Section 1 that we work with
homotopy units rather than strict ones. They are represented by stumps,

because we have a 1-cube

Therefore we can compare the two definitions only if we disregard
stumps and units. In this case Stasheff's definition reduces to those
structures to which Proposition 1.11 applies. We leave it to the

reader {0 check that such a structure coincides with a W¥ —structure if

we disregard stumps. Let us make this statement precise.

Proposition 1.22: Let S28(n,1) be the subspace of Wa{n,1) of all trees

which do not have stumps. Then the following are eguivalent.

(i) There exists a continuous map

F Lj su(n,1) x X —— X
n=o
satiafying 1.21 (c¢) and (d).
{ii) There exist maps Mo K x X* — X for n > 0 satisfying 1.8(ii).

In fact, one can show that S#(n,1) is just a subdivided copy of K,

and relation 1.271(c) corresponds to 1.8(ii).
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Example: S%(4,1) is K4 subdivided into five 2-cubes

Before we give a proof of Proposition 1.11, let us illustrate how
to define A _-maps with the aid of trees. We then can formulate Pro-
position 1.11 in its full strength.

At this stage it would lead tco far to define A_-maps between A_ -
spaces, or better Wl-spaces. This will be done in one of the coming
chapters. Let us be content with the definition of an A_-map from a
Wi-space to a monoid.

Let £f : X —> Y be a map from a Wi-apace to a monoid. In order to
fit f into our tree description, we consider it as an electrical box
with one input and one output

X
Y

Is x the value of the input, then the value of the output is f(x). We
compose this electrical box with the trees of the operations in X and
Y as before by wiring together. To be able to decide where the opera-
tion takes place, in X or in Y, we give each edge a name X or Y, which
we later call the colour of the edge. Because of the relations of a
monoid structure, we have exactly one operation ™ —> Y for any n.

We make use of this in the definition of the models M#{n,1) for such
an A,-map.
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Definition 1.2%: A point of M#(n,1) is a tree with n twigs, the root

has the name Y while all other edges have the name X.(So the trivial
tree does not occur any more because a twig has name X while a root
has name Y.) The internal edges have a length as before and the re-
lations 1.19(a) and {b) are the same with the exception that 1.19(b)
may be applied only of input and output have the name X, i.e.
X
X £ # Y (the trivial tree does not occur)
Y
The topology is defined in a similar manner as in 1.19. A planted
cherry tree on (X,Y) is a tree in some space M¥(n,1) which has a point

of X assigned to each twig.

Definition 1.24:Let X be a Wi-space whose structure is given by

F :[}n wialn,1) x ¥ — > X and Y be a monoid. A Wl-structure on a

map f : X —> Y is a continuous map
o0
¢:J Mu(n,1) x X — > ¥
n=o

from the space of all planted cherry trees on (X,Y) to Y such that
(c*) we can cut down fully grown trees without affecting their
values under G.

(d*) G X = f(x)

Y

Again an explanation of relation {c*): To cut down a fully grown
tree we replace the subtree sitting on an internal edge of length 1
by its value under F, regarded as a cherry in X. The cut branch be-

comes a twig. (Notethat all edges of the subtree have name X.)



= G X X , where x =TF

If we want to put our definition in relation to the one of Stasheff,
we again run into the trouble that we have homotopy units instead of
the strict units of Stasheff's structures. So to make precise state-
ments, we have to neglect units. Let SM%¥(n,1) be the subspace of
Mi(n,1) consisting of the trees without stumps. We leave it to the

reader to check the following result.

Proposition 1.25: Let X be an S¥%-space (see 1.22) and hence an A_-

space with the exception that M2 : X2 ——> X need not have a unit.
Let £ : X —> Y be 2 map from X to a space Y with an associative
multiplication. Then f admits the structure of an A_-map (see 1.13)

iff it admits an SMA-structure.

Example: The model SMY(3,1)

We now can formulate and prove a stronger version of Proposition 1.11.
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Theorem 1.26: Any SA-space X can be embedded as a SDR in a
universal space UX with an associative multiplication., The inclusion
i + X< UX admits an SMg-structure with following universal property:
Given a space Y with an associative multiplication and an SMd-map

f : X ——> Y, then there exists a unique homomorphism h : UX —> Y
such that hei = f as SMi-maps. (The SMi-structure of hei is the
obvious one.)

There is a similar result involving structures with homotopy units.

Theorem 1.27: TFor any Wi-space X there exists a monoid MX containing

X as SDR. The inclusion i : X< MX admits a Wi-structure with follow-
ing universal property: If g ¢+ X —> Y is a Wi-map into a monoid Y,
then there exists a unique homomorphism h : MX ——> Y such that hei=g

as W@-maps, where hei has the obvious Wd-structure from i.

Since the proof of Theorem 1.26 is essentially the same as the one

of Theorem 1.27 we only prove the latter.

Proof of 1.27: The monoid MX is obtained from the space

LJn:o Ma({n,1) x & by factorinmg out the relation 1,24(c*), i.e. a

fully grown planted cherry tree is equivalent to the cut down one.
The monoid structure on MX is given by grafting the ground vertices

of two representatives of elements of MX together to form a new ground

vertex
A1 A2 B1 32 B3 A1 A2 B1 B2 B3
X X X
X ] X 7
Y Y Y

This is clearly associative, and the stump

E

serves as unit. So MX is a monoid. We define the inclusion i : X —>MX
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by
i(x) = X
Y

and the quotient map G : ij MI(n,1) x X —> MX endows i with a
n=o
W¥%structure. The deforming homotopy Hy ¢ M —> MX is given by

A B

X

4 t|X

Y
For t = 0, we can shrink away the additionaledge of the right hand side
tree, hence Ho is the identity. At t = 1, we can cut down completely
to obtain a tree representing an element in i(X), Because of relation

1.19(b), the homotopy H, leaves i(X) pointwise fixed. I

We have pointed out at the end of previous section that A _-maps
are difficult to handle even if the spaces involved are monoids., Our
models are a little more complicated than the cubes in the definition
of Sugawara. So, a priori, there is no reason to assume that our ap-
proach makes life easier., Nevertheless, this is the case because our
Wid-structures are universal in some sense which we do not want to
elaborate on at this stage. Let us say so much as that it often is
possible to replace a naturally occuring structure on a space by a

Wl~structure because of this universality.

5. SOME REMARKS ON COMMUTATIVITY

So far we have investigated spaces of the homotopy type of a monocid
and nence of a loop space. We are interested in a more general
question; we want to find conditions on the H-space structure of a

space X under which X is of the homotopy type of an n-fold loop space,.
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An interesting special part of this question is to find conditions

under which a space is an infinite loop space.

Definition 1.28: A space X is called an infinite loops space if there

exist spaces Xn, n = 90,1,2,... such that Xo = X and Xn = an+1

Milgram [37] showed that any reasonable commutative monoid is an in-

finite loop space.

Propsition 1.29 (Milgram): A commutative monoid X is of the weak

homotopy type of an n-fold loop space a™Y) for n = 1,2,3,... . More-
over, there is an H-structure on 72™(Y) such that the weak homotopy

equivalence preserves the multiplication up to homotopy.

As in the associative case, the structure of a commutative monoid
is a bad one from the view point of homotopy theory for the same
reasons as there. So one is interested in structures which are not
quite commutative and which live in homotopy theory. For example, we
could search for the weakest structure on a space X such that X is a
double loop gpace. Attempts on this line have been made by Sugawarab3].
He looked for conditions on a space X such that X has a classifying
space which is an H-space. This is somewhat different from our question

because we want the classifying space to be a loop space.

Definition 1.30 (Sugawara): A monoid X with unit e is called strongly

nomotopy-~commutative if there exist maps

c, + (1™ x X2, 10y &2y 5 (3,e) n=1,2,3,...
such that

¢,(0,x,y) = xy c,(1,x,y) = yx

and
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Cn(t1,...,tn,x1,...,xn,y1,...,yn)

X1Cn_1(t2,...,tn,x2,...,xn,y1y2,...,yn) t, =0

Cn_1(t1,...,ti,...,tn,x1,...,xi_1xi,..-,xn,y1y---,
YiVi41001¥n) $,=0, 1<1i<n

PG PR RIS SPES SRS SUDE S5 SERPRES SURDL N t, =0

Ci_1(t1,...,ti_1,x1,...,xi~1,y1,...,yi_1)

75%5Cnei (49

1
-

""’tn’xi+1""’xn’yi+1’yn)ti -

Examples: CT(t,x,y)

Xy - X

t
1 ¥.%,C.(%,%5,¥,)
NPT IER N 17171 m20v 2 Y4%X4Y 0%,
01(t,x1x2,Y1)}'2 02(t1,t2,x1,xz,Y.1,y2) 01(12,7{1 rY1)Y2X2

X X,¥ .Y X Y Y%, 2

1729172 x101(t,x2,y1y2) 1V 19 2%

Proposition 1.%1 (Sugawara): (a) The loop space QX of a countable CW-

complex X is strongly homotopy-commutative iff X is an H-space.
(b) The Milnor-classifying space of a countable CW-group G is an H-

space iff G is strongly homotopy-commutative.

We see that Sugawara requires that the H-spaces are at least
associative besides being strongly homotopy-commutative. This is a
condition which does not do for us. To find what we think is the
correct structure to work with we again use our tree language, but we
have to make some changes., For the definition of a Wil-gtructure we
took the operations of a monoid structure and replace the relations
by homotopies. If we try to do the same for a commutative monoid we

cannot restrict our attention to the operations

> X, t ... + X

A, 2 (xj,...,xn) ]

n n

because permutations come in in the definition of commutativity which
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reads

> X x X

op) Ao

commutes, where T interchanges the factors. So we have to add permut-
ations as operations to our trees and we must impose an additional
relation. The details of this more general construction will be given

in the next two chapters.



I1. CHAPTER

TOPOLOGICAL-ALGEBRAIC THEORIES

In this chapter we introduce the notions from categorical algebra
we need. For the sake of topologists our proofs are less formal than
a category theorist would like tnem to be. So we construct adjoint
functors explicitly and are even willing to use elements instead of
restricting ourselves to formal concepts. Qur treatment of categorical
algebra is broader than absolutely necessary for the understanding of
the following chapters. We wanted to give a self-contained exposition
of categorical algebra involving more tnan just one underlying object.
Bénabou [4] has investigated such algebras in the category of sets;
we work with topological spaces as underlying objects. Readers who are
only interested in the topological aspect of these notes can skip over
most of tnis chapter. It surfices to read section 1, the proof of Pro-
position 2.5, sections 3, 5, and 6. We want to remind that we work in

the category of compactly generated spaces, wnich we denote by Iop.

1. DEFINITIONS

Lawvere [25] has formalized the concept of an algebraic theory
given by operations and laws without existential quantifiers. As exam-
ples we have the theories of monoids, groups, rings etc. (whose axioms
can be put into the required form), but not the theory of fields. He
considers the category of all operations tnat can be written down in
the theory, instead of selecting certain operations that generate the

rest.



- 28 -

Each theory contains a distinguished collection of operations, the

set operations: Let
o : {1,2,...,m}

> {112’---911}

be a function and X a topological space. Then there is an operation

n

(2.1) g% ¢ X7 —> X"

given by o*(x1,...,xn) = (x01,...,x ). Let © be the category comsist-

om
ing of one finite set n for eacn cardinal n less than infinity and all

functions between them.

Definition 2.2: A (finitary) algebraic theory is a category 8 with ob-

jeets 0,1,2,... together with a faithful functor c°? > ¢ preserving

objects and products. Call 8 topological-algebraic if each set 8(m,n)

is topologized and if composition and products are continuous (the lat-
ter means that 8(m,n) = @(m,1)" is a nomeomorphism).
A B®-space is a continuous functor 8 —> Top, such that &°P —> 8 —>%o0p

preserves products, the image of 1 is called the underlying space.

A nomomorpnism between @-spaces is a natural transformation between
such functors.

If ®1 and 82 are theories, a tneory functor is a continuous functor

@1 —_—> 62 sucn that the following diagram commutes
8, —— @2
The results of sections 2,3,4 stay true if we omit the condition
that 6°P —> @ be faithful (i.e. monic on morpnism sets), but in view
of the definition of a @-space the case where °? —> @ is faitnful
is the only interesting one,
The image of 6°P in ® consists of all set operations as described

in (2.1). We call the elements of ®(m,1) the m-ary operations of 8.

In abuse of language we often identify a ®-space with its underlying
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space X and say "X admits a @-structure" or "® acts on X" or "X is a
8-space",

Essentially for the study of maps we need a generalization, namely
theories on several objects. Let K be a set and GK the category © over
K, whose objects are functions i : [n] = {1,...,n}—> K and wnose
morpnisms from i to j are all functions f making

[n] £ > [m]

I,

d

commute. We often use an alternative description of GK: Its objects
are ordered collections {k1""’kn} of elements of K and its morphisms
are functions f : [kqy,...,k }—> [k},...,k!} such that £ (k) is
either empty or consists only of elements equal to k;. An object

i : [1] — K is often denoted by its image k = i(1). We call such an
object basic.A function r : K —> L induces a r, : 6% —> &P given

K L
by ry(i) = rei and r,(f : [n] —> [(m]) = £.

Definition 2.%: A (finitary) K-coloured algebraic theory is a category

® with the same objects as &, togetner with a faithful functor

K
GEP —> @ preserving objects and products. Call ® topological-algebraic

if each set ®(i,i) is topologized and if composition and products are
continuous (tne latter means @(i,j) = @(i,j(1)) x ... x 8(i,j(m)) is

a nomeomorphism).

A ®-space is a continuous functor &—> Top such that Sgp —> 0 —> Top
preserves products; the images of the basic objects form the collection

of its underlying spaces; we have one for each k€K.

A homomorpnism between 8-spaces is a natural transformation between

such functors.

A theory functor from a K-coloured theory &, to an L-coloured theory

®2 is a continuous functor F : &, —> @, together with a function

1 2

o

f : K —> L such that
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op Tx op
SK —_— > T
L

—_—
8, 8

commutes,

Remark: Among category theorists a coloured theory is better known by

the name "sorted theory".

The image of Sgp in ® induces on a @-space operations given again
by formula (2.1). We therefore call its elements set operstions.
If we do not specify the function f : K —> 1 of a theory functor,

we assume that it is the identity.

In any type of theory the set operations nave the useful property
that we can push them to the right. Given o € SK(i,i) with i : [m)—K,
j:[n] — X and a = (a1,...,an) € 8(k,j) witn a, € 8(k,j(r)) and
b € @(gr,l(r)), k, : [p,] —> K. Denoting the product bifunctor
& x ® —> 8 by @ we have the following formulae

cm)
o*o(b.le...@bn) = (bc1$...$bom) -c(p1,...,pn)*

(2.4) c*oa=(a01,...,a

Here o(p1,...,pn) € 6K(L£ gci,LJi gi) is given by

o(Pyreeespy) (1) =Py + Dy + wee + Py g Y
if r = Py1 + ... + po(u—1) + vand O < v < po(u). Loosely speaking, we
consider ¥ P,y @8 MW blocks of Pyqree=rPgp elements and T p; as n
blocks of PyseeesPy elements, and 0(p1,---,pn) maps the u-th block

P of T Pysi identically onto the o(u)-th block Pou of ¥ Py We call

ou
c(p1,...,pn) a block function. Note that o(p1,...,pn) is a permutation

whenever o is omne.
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2. FREE THEORIES

In this section we show how to obtain a theory from a set of opera-
tions and relations between them.

Define categories Theories, Gr Spaces, Gr epuceap, and §q #paces
as follows:
Theories is tne category of coloured theories and theory functors.
@r spaces has (ob Sy X K)-graded spaces{Xi’k}, K some set, as objects.
A morphism from an (ob Sy X K)-graded spa;e {Xi,k} to an (ob Sy X L)-
graded space {YJ,L} is a pair (g,f) where f : E —> L is a function
and g : {Xi’k}—_> {Yi’L} a continuous graded map sending Xl’k to

Troi,f(x)"

®r 8paces® nas (ob &, x K)-graded spaces (Xi k) as objects but each
Pl |

K

X k€K, is based (recall that k € ob &, is the basic object deter-

k,k’ X
mined by k). The morphisms are defined as for @r g$paces but are sup-
posed to preserve base points.

€q 3paced is the category of objects in Gr Gpaceso with an 6K-action
and equivariant morphisms in &r apaceﬁo. An 6K~action on an (obEk x K)-
graded space {Xi,k} is a colloection of maps
ai’i : Xi,k X SK(i,i) _— Xi’k

such that a, i(x,idi) = x and the following diagram commutes
—,— —

Y % SlLod) x S (D) —g—ag i (DD
id xcomposition ai’l
X

Xi,k X SK(l’l) C > Lk
-—-’——

A morphism (g,f) from an Sp-space {Xiak} to an ©;-space [XR’L} in

Gr épuceﬁo is called equivariant if
action

> X .

Xk X Sg(Ld) i,k

gxf, g

action

Yf'_j_._,f(k) X GL(f'i,f°l) >Yf'_‘1,f(k)
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commutes.

We call the (ob 6; x K)-graded spaces of the last three categories

its K-coloured objects.

We also use a more conceptual definition of the last three cate-
gories: Let ®6K be the subcategory of SK consisting of all objects
and the identity morphisms. An object of @r $paced can be considered

as a K-indexed collection of functors R P86, —> Top. A morphism

k POk
from {RklkEK} to {QL|L€L} is a pair (a,f) consisting of a function

f : K—> L and a K-indexed collection a of natural transformations

a, : R —> Qf(k)° iyt

%
Sy > B8,
Sy
By T Qe (k)
Top

Gr spuceso can be defined similarly with tne excepition that we have
to introduce a base point ey in Rk(k) and that Qe nas to preserve this
base point. Finally, an object of @ $paces can be considered as a K-
indexed collection of functors R, : & —> Top such that Rk(k) is
based., A morphism from {Rk|k€K} to [QLILGL} consists of a function

f : R —>1 and a collection a of base point preserving natural trans-

Ty
Sk > St
Sy
Rk > Qf(k)
Top
We have forgetful functors

U U o U3
> §q 8paces > @r 4pacesd > @r 8pacesd

formations oy

Iheories

where U2 and U3 are the obvious ones while U,® = [RkaEK}, ® a K-
coloured theory, is given by R, (i) = 8(i,k) and Rk(o) is composition

on the right by o*. The base points are idy, € o(k,k).
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Proposition 2.5: Each functor Ui has a left adjoint Fi.

Proof: F3 is given by adjoining an extra point which becomes the base
point to each space Xk,k of (Xivk)'

Let (a,f) : {Rk[k€K} —_— {QL|1€L} be a morphism in Gr spuceio. De-
fine

PR (kek} = { U R (§) x &.(3,-) keK)
2k R k K
JEGK

and F2(a,f) = (B,f) with

Ua (J)xfy
B, : U R, (J)x §(],1) LS
bq S k Gk

U q (£ e Dx& (fo j,f oi)k,{Q, [LEL}
i, (k) S, Dkl

Since Rk(k) X 6K(k,k) == Rk(k)’ we can take the base points of the
Rk(k) as base points of Fz{RklkEK}.
The construction of F1 is more lengthy, though straightforward.
For a K-coloured object {Xi k} of ®q $paced we want to construct a K-
X
coloured theory ® = F,{X. }. We consider the points of X. as the
1M 7iLk i,k
indecomposable operations from 1 to k. A general operation is a com-
posite of products (formally written @) of such indecomposable ope-
rations. Tne set operations of ® stand, of course, in some reltation
to the Gp-action on {Xi k}' More explicitly, a letter from i to
Lo
j=1{3(1),...,3(p)} is either a formal product x1$...®xp with

x. € X,

i o= 4 : op/ s -
q 1q’i(Q)' i=1,8 ...eg@, or an element o* € G (i,j). A morpn

ism in ® from i to j is an equivalence class of words [a1|...|an] in

letters ay such that source a; = target a,

1417 source a, = i, target

a, = j. Tne equivalence relation is generated by
(j—) [1d_1‘] = [ :] = [e.j;(1)0...$e

and e € Xk,k
(i1) [(x & e1|62®y] = [eé$y|x ee;] = [x@y] for appropriate formal

i(n)]’ where i : [n] —> K in SK

the base point

products x and y and formal products e1,e2,e;,eé of base points

(i11) [o*|x, ®...®x,] = [x_,®... ®x  [o(p,,...,py)*] for o*€ morsgp,
x, € Xir’kr, i, : [p ] —K (compare 2.4)
(iv) (o*|n*] = [({moeao)*]
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(v) [x + o] = [x|o*] where x + o is the image of (x,0) under the Gp-
action on {Xi,k}‘

Composition of mo;phisms is induced by juxtaposition of words. Rela-
tion (i) makes the base points to units, relation (ii) allows us to
define a bifunctor @, (i), (iii), and (iv) assure that the set opera-
tions benave correctly, and (v) makes them compatible with the Sy~
action on {Xivk}'

For later purposes we want to have a better grip on the morphisms
of ®. We now give an alternative description of representatives using
tne tree language developed in Chapter I. This enables us to do with-

out the relations (ii), (iii), and (iv).

Definition 2.6: A tree from j : [n] —> K to the basic object k asso-

ciated with {xi,k} consists of

(a) a finite d;rected planar tree as known from grapn theory except
tnat the edges need not have vertices on botn ends. Tnere is exact-
ly one edge called the root wnich nas no end vertex,but there may
be arbitrarily many edges called twigs with no beginning vertex;
all other edges are called internal. Each vertex has exactly one
outgoing edge (tnougn not necessarily an incoming one).

(b) a function assigning to each edge an element of K called its
colour. The colours of the twigs are elements from i([n])c K, the
colour of the root is k. This function together with the underly-
ing graph is called the gnape of the tree.

(¢) a function assigning to each vertex, wnose incoming edges have the
colours i1,..,in in clockwise order and whose outgoing edge has
the colour 1, a point in Xi,L called its label, wnere i={i1""inL

(d) a function assigning to eaZh twig a label € {1,...,n} such that

a twig with label r has the colour j(r).

We allow trivial trees whose underlying graphs consist of one edge
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and no vertex., Hence we have one trivial tree from j to k for each
label r € {1,...,n} with j(r) = k. A tree consisting of one vertex
with no incoming edge is called a stump.

A tree of a given snape is specified by its vertex labels and twig
labels and can therefore be considered as a point in some product space
(“'Xi’L)x GK(K,J) where k = {k1,...,kr} is the collection of twig
colours taken in clockwise order. The disjoint union of these product
spaces defines a topology on the set of all trees from j to k associat-
ed with {Xl,k}.

As in the previous chapter the trees are inspired by the attempt
to obtain a general composite operation from a collection of indecom-
posable operations. Starting with a K-indexed family of topological
spaces Zk and topologized collections Xi,L of operations
a : Zi(1) X eas X Zi(r) —> 7, a tree_from i= {k1,...,kn} to k re-
prese;ts a composit; of sucn operations, composed with a set operation.
Its source is Zk1 X eea X an, its target Zk' The value of this com-
posite on an element (Z1"“’Zn) of the source can be computed as fol-
lows: We assign to each twig with label r € {1,...,n} the value z_.
Inductively we give the outgoing edge of a vertex witn label a the
value a(y1,...,ym) if the values of the incoming edges are ¥ ,...,¥,

in clockwise order. The value of the root is the value of the tree

operation on (z1,...,zn).

Example: (The direction of the graph will always be given by "gravity",
i.e. from top to bottom). Let K = {X,Y}. Given operations a : XxY¥—= Y

and b : XxX —> X, the tree
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represents the operation ¢ : XxYxX —> Y given by cﬁgga%)=&@bﬁgﬂ,b@ﬁﬂé».
While a tree represents an operation into a single space, i.e. its

target is a basic object, a general operation is represented by a

copse:

Definition 2.7: A copse with source i : [(n] —> K and target j:[m]—=K,

associated with {Xi k}’ is an ordered collection of m trees whose
Lo
sources are i and whose targets are j(1),...,j{m). The copses with a

given source and target innerit a topology from their trees.

We can compose two copses A1 : i —> ] and A2 : J —> 1 to form a
copse A26 A1 t 1 —> 1 by grafting the r-th tree of the copse A, to
each twig of A2 with label r € {1,...,m}. This defines a continuous
associative composition of copses with the copse consisting of m tri-
vial trees with twig labels 1,...,m acting as identity of J. Hence
the collection of copses associated with {Xi,k} forms a category Y.

In fact, ¥ is a K-coloured theory. The func;or
6§p _ ¥
sends g € GK(i,i), i:[n) —K, j: [m] — K, to the copse consist-

ing of n trivial trees with colours i(r) and labels o(r), r=1,...,n.

It is evident, that the tree description takes care of the relations
(ii), (iii), (iv). We still have to account for (i) and (v). The theory
8, we look for, is the gquotient (with the guotient topology) of ¥ un-
der the equivalence relation generated by
(2.8) (a) we may remove any vertex labelled by a base point

(p) if x € xi’k, o € sK(_i_,i), i:[n] — K, j=[m] —K, we
may repL;ce the vertex label x. g € Xi’k by x by changing
the part of the tree above this vertex: If 01,...,0 are the

m
subtrees on the inputs to x .o, we take 001,...,Ccn as sub-
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trees over x.

® is a K-coloured theory, the functor Sgp ~—> ® is induced by the

one for ¥, The space Xi  can be considered as subspace of @(i,k) by
=
i

identifying x € Xi K’ : [n] —> K, with the tree consisting of one
=

vertex only, whose label is x. The labels of the n twigs are 1,...,n

Let 2 be an L-coloured theory. A theory functor (P,f) : ® —> = in-
duces a morphism (g,f) : [Xi,k}__> U, & in @qdpoces by g(x) = P(x).
Conversely, since a theory ;unctor ® — = is cbmpleteLy determined
by its values on the indecomposable elements, a morpnism
(g,f) : {Xi,k}—_> U, & induces a theory functor (P,f) : 8 —> = by
P(x) = g(x;. The correspondence (g,f) <—> (P,f) yields a natural bi-
jection

Theories (F1{Xi,k},a) >~ ®q 8paced ({Xi,k} ,U13)

This completes the proof of Proposition 2.5. B
Remark: If {Xiik} € Gr 8paces, tnen F, e F2° FB{Xi,k} is the category
¥ of copses as constructed above., If {Xi k} € Gr spoccéo then

o

F.ePF {X. .} is ¥ modulo the relation (2.8 a).
1" Fol%y

Definition 2.9: Let {Xi k} € ® 8paced, Or spaces’, or & dpaces. The

free theory on {Xi’k} is its image under F,eF,° F;, F e F,y, or F,

respectively.

If tnere is no chance of confusion we denote any of the three free
functors into Theoried by ¥ and its adjoint by U.

We want to describe the front and back adjunctions
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(2.10) n : Id —> UF e : FU —> 14

The adjunction map n is induced by the inclusion Xi x © ¥Y(i,k). The
” ="

adjunction map ¢ : FU® —> @ for any theory 6@ is given by taking the

composite operation in @.

Definition 2.11: The composite operation in @ represented by the tri-

vial tree A : I —> k with twig label r associated with U@ is the set
operation o* € ®(i,k) given by o{1) = r. By induction, the composite
operation represented by an arbitrary tree A : i —> k associated with
UB is Xo(B1 e Bn), wnere x is the label of tne root vertex and
B1”"’Bn the previously defined composite operations represented by
the n subtrees above the inputs of x. In other words, a composite ope-
ration is obtained by composing the vertex labels (which are elements

in ®) and the set operations given by the twig labels.

Let {Xivk} and {Ri:k} be K-coloured objects and q?q2’&§)9"*>wai)J
be morphisms in @r 3$paces, Gr Spocego, or @ 8paced, Passing to the
adjoints we obtain morpnisms of theories

(2.12) Pq

_———
PRy ) ——————= P ]
The difference cokernel r : F{Xi k}——> Z of p, and p, exists in
?

Theories, and we say that E is generated by {Xi k} with the relations
)

(a4{Ry 4}y aolRy }). We call tne diagram (2.12) a presentation of =.
) ="

Examples: The relations are given by pairs of trees, the maps Q4595
are the projections onto the first respectively the second factor. In-
stead of writing pairs (A1,A2) we use A, = A,.

(1) A presentation of the theory of abelian monoids.

Since the theory is monochrome it suffices to specify the generating
n-ary operations and the relations between them. We have a binary ope-

ration + and a O-ary operation, the unit e. These satisfy the relations
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1 2 2 3
1 1 1 2 2 1 1
€ + 7 +
+ = | H Y = Y H + = +

(2) A presentation of the theory of groups.

The theory of groups is generated by three operations: a binary ope-
ration x, a unitary operation i and a constant operation e, satisfy-
ing the relations

1 2 2 3

(ab)e = a(be) ea = a

Proposition 2.13: Each K-coloured theory can be presented as the dif-

ference cokernel of free XK-coloured theories.

Proof: Given a theory ®, let Ry y = {(x,y)€PUB(i,k)xFUB(L,K)|e(® =¢(y)}

where € : FU® —> @ is the back adjunction. Then

Py .
—_—
F{Ri,k} UG —— > @

is a difference cokernel diagram. R

Let €at denote the category of small topological categories and
continuous functor. A category is called topological if its morphism
sets are topologized and composition is continuous. A functor is call-
ed continuous if the induced function of the morphism spaces 1s con-
tinuous. There is an obvious functor

V: €t ——> Gr Qbaceso
sending € ¢ Gat to {ci,k} given by
C- {G(L,k) if 1= (1)

ik o] otherwise
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Tne base pointsare given by the identities in €. Define
{(ngenf,n{gef))e UFVE x UFVE|gef : 1 —> k in &} if i=(1)
RC, .=

ik s R
= # otherwise

where n is the front adjunction (2.10). Hence if i is a basic object,

1 say, RCi X consists of pairs of trees
=7

otnerwise it is empty. Let gq,,q, : {Rci,k} — UF{Ci,k} be the pro-
jections. Let T§€ be the theory generat;d by [Ci,k} ;ith the relations
{Rci,k}' Thus we obtain an embedding functor -

B T : €t —> Theories
wnich enables us to consider small topological categories as theories.

Note that T¢ is (ob &)-coloured.

3. INTERCHANGE

It has been known for some time that the concept of "interchange"
of two structures on a space is fundamental in the study of H-spaces.
Take, for example, a space X with two monoid structures m and n. Let
T : X x X —>X x X be the interchange factors. If m and n interchange,
i.e. if

Xx X x Xx X

—_— X
lidexid
Ix X x X x X n
X

lnxn

X x X >
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commutes, then m and n agree and define a commutative monoid structure
on X.

We formalize this concept.

Let ® be a K~-coloured theory and Fyot ® —> Top an L-indexed family
of ®-spaces with underlying spaces {XL,k|k€K}’ Then there is a canoni-

cal ®-space F : ® —> Top, called the product ®-space of the FL’ wnose

collection of underlying spaces is { W Xy kaEK}. Explicitly, F is
1L€L ’

given on objects i : [n] —> K by

n
P(i) = T .
v pTL Gl Fuaey)

(for i : § —> K put F(i) = single point) and on morphisms a : i —j,

j ¢+ [m] — K by

Tr(i)~T
~ 1 1) = ;E1(JELXL,1(Q))

Definition 2.14: Let @1 be a K-coloured and @2 an L-coloured theory.

Let {Xk L} be a KxL-indexed family of topological spaces such that
’
each subfamily {Xk leGK} is the collection of underlying spaces of
b
a @,-space F, and each subfamily {Xk LILEL} the collection of under-
1
lying spaces of a @2—space Gk. We say tne @1— and ®2—action on {Xi,k}
interchange if each a : i —> j, i : [n] — K, ] : [m] —> K, in the
@1—action induces a homomorpnism from tne product @2—space of
G1(1)”"’G1(n) to tne product @z—space of Gi(1),...,Gi(m). Or, egui-

valently, if each b ¢t u —> v, u

[p] —> 1, ¥ : [q) —> L, induces

a nomomorphism from the product ®,-space of Fu(1)""’ ) to the

F
u(p
product ®1—space of FX(1),...,FX(q).
Going back to the definition of product @-spaces, the actions in-
terchange if following "shuffle" diagram commutes for all a ¢ @1 and

all b € ®2
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(2.15)
P n
JLCT Xie), u<t>>“ MRTORE o TTG1<s>(V> W(LT i(e)y(+))

I I

Y q .
Tr1F2(t)(l) t'[:T"]Fz(t)(i)
p . q .
E1F3(t)(l) tT=r1Fl(t)(‘l)

lI I

T!-1(STT1X1(S) u(t)) Tr1 .‘l(s)(u) -"-—(Tl(s) on1 i(s)(z)—tv1(anx.1(s):z(t))

Tne norizontal lines are the operations of b € ®2 on the product @2—

spaces of tne Gi(s) respectively the Gi(s)' the vertical lines give

the homomorpnism induced by a.
In the case where 8, and ®2 are monocnrome theories with underly-

ing space X, the shuffle diagram becomes more transparent. Let

n

a: Xt —> X ve an operation from @1 and b : X —> X% one from @2.

Then (2.15) reads

(XHP = (XY 0> (xH)? = (xM)
b

lap l al

(xHP = (P e (x> (x™

If we nave two theories @1 and @2, wnose actions on {Xk 1’} inter-
’

change as defined in (2.14), the actions of @1 and @2 together with

the shuffle relations (2.15) induce an action of a KxL-coloured theory
®,88@,, which we are going to describe, on {Xk L}' and eacn action of
’

®1®®2 comes from interchanging actions of @1 and @2. Let

{Y. } € @ spaces be tne following KxL-coloured object:
i,(k,1)
Let i = {(k1,l1),...,(kn,1,n)}, igp = {k1,...,kn}, ip = {11,...,Ln}.

(a) If ky =k, = ... =k =kand 1, =1, =... =1 =1, then
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(v) If£ 1

]
i
o~
It

] cee =1 1 and (a) does not apply, then Yi,(k,L)=®1(iqu

(e) It k1

1]
=
I
1}

k =k and (a) does not apply, then

1,06, 7 %lip V)
(d) If neitner of (a),(b),(c) apply, then Y, (y 4y = g.

The elements of {Yi,(k,L)} are the generators of 8,®8,. They are

uniquely determined by =z pair (a,r) ¢ ((} @1(1,k)xL)U([J @2{j,1)xK).
i,k il
The source of (a,r) € @1(1,k)xL is

{(k1,r),...,(kn,r)} if i:{k1,...,kn}, and its target (k,r); similarly
for (a,r) € @2(1,L)x K.

(2.15) We have the following relations( between the trees of F{%Loguh

(i) The same as (2.8a): We may remove any vertex labelled by an iden-
tity in @1 or ®2.

(ii) The same as (2.8b): If a € @1(i,k) respectively @2(E,L) and
o € SK(i,i) respectively 6L(B’9)' we may replace the vertex label
a e 0% by a changing tne part of tne tree above this vertex: If
C1""’Cm are the subtrees above the inputs of a eo* and o is a
function from [n] to [m], we take 001,...,Ccn as subtrees over a.

(ii1) The relations of @1 and @2: Any edge joining two vertices whnose
labels are botn in @1 or botn in @2 can be removed. We unite the
two vertices to form a new vertex, wnose label is tne tree com-
posite in @, or 8, (see 2,11) of the tree consisting of these
two vertices and their incoming and outgoing edges (see example
below).

(iv) The shuffle relations: Given a ¢ @1(i,k) and b € ®2(i,1),
i= {k1,...,kn}, j= {L1,...,lm}. Let wn,m : [n)x[m] —> [n* m]
be the bijection (p,q) +—> (gq-1)n+p. Let A be the tree witn root
operation (a,l), the operation (b'kr) on tne r-th input to (a,1),

and label 9, m(p,q) for the twig with colour (kp,Lq). Let B be
. H
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the tree witn root operation (b,k), the operation (a,Lr) on the
r-th input to (b,k), and label ®, m(p,q) for the twig witn colour

(kp,Lq). Tnen A = B. (See example below).

Iilustrations:
(iii) Let a : {k1,k2,k3} —>k and b : [k4,k5} —> k, be morpnisms in

@1. Tnen

c=a o (idk1@ b Gidk3)

(iv) Given a : {k —> % in ®, and b : {L1,L2} —> 1 in @,. Then

Let a ®b denote the element represented by these trees. Then the gene-
rators (a,l) and (b,k) can be identified witn o @idy and idk®b.
Convention: If we do not specify the twig labels of a tree witn n

twigs, we assume they are 1,...,n in clockwise order.

Examples:
(1) egpe erF = SIC()SL as theories

(2)y 1f ®, is the theory of monoids and @, the one of abelian monoids,
then

®Cm=—'®m®...®®m n times, n 2 2
A proof in theory language of this classical result can be found in

Pareigis [41;p.11%,114].
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From tne relations and the tree calculus we obtain tne following
identities, (for clarification use the shuffle diagram and note that
the norizontal rows are tne operations id ®b, the vertical ones the
operations a ®id)

(2.16) 2a@®b = (a@®id)°(id®b) = (id®Db)e(a @id)

(a@id)e(3 @id) = (a«2a) @id

(id ®b)o(id ®b) = id®(be®)

(a1,...,am)®(b1,...,bq) = (31®b1,...,a,me‘z)1,...,zaL1 @bq,...,amabq)
where a,E,ai €o,, b,'S,bj € @, and (a1,...,am) is the morphism into
{k1,...,km} induced by the a; € @1(B,ki). Hence the correspondences
a h+>ziaidu and b —> idiQIJinduce for eacn 1 € ob @1 and each

u € ob @2 functors

(2.17) 0, —x—> 9,88, <

s
|

Proposition 2.18: Tne tensor product of theories is commutative and

associative up to isomorpnism.

Proof: The correspondence a @id —> id@a, 1d @b —> b @id induces an
isomorpnism T : ®1®®2 £ ®2®®1. From (2.16) it is clear that the cor-

respondence 2 @(b®c) —> (a®b)@c induces an isomorpnism, too. [ |

Given a (KxL)-indexed family {Xk,L} of spaces such that each
{Xk’LIKEK} is tne collection of underlying spaces of a ®,-space F, and
eachn {Xk’LILEL} one of a @2-space Gk‘ We said that thne actions of 8,
and ®2 intercnange, if eacn operation b of the @2—action induces a ho-
momorpnism of appropriate product @1—spaces obtained from tne FL‘ A
different way of expressing tnis is saying that the {FL]LEL} form a
collection of underlying spaces of a ®2—space in the category of @1-
spaces. Let us explain this in more detail:

®
Denote the category of @1—spaces and nomomorpnisms by Top 1. Since
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a nomomorphism f : F, —> F2 between two @1—spaces is uniquely deter-

;
mined by the maps f(k) : F1(k) —_ Fg(k) of the underlying spaces, we
[C)

can regard oy 1(F1,F2) as subspace of 1 Iop(F1(k),F2(k)). This
® k€K

makes Top ! into 'a topological category, and we can define @2—spaces
) ®
in Toyp ! in tne same manner as in (2.3) by replacing Tov by Top 1.

@10®2 @1 @2
Proposition 2.19: Tovp = (Top ) as topological categories, i.e.

the functors induce nhomeomorpnisms on tne morpnism spaces.

Proof:The bijection 8unct(@1x® Top) = 8unct(®2,8unct(®2,zob)) induces

2 1
a bijection

®, @
1,72
Gunctn’n(®1x®2,lon) = Gunctb(®2,8unctn(®1,IOD)) = (Toyp ) (%)

from the category of bifunctors ®1x® —> Yoy wnicn preserve products

2
in eacn argument to the category of product preserving functors from
@2 to tne category of product preserving functors @1 -——> ¥op. Since
a natural transformation between two objects F,G of Bunct D(@1x®2,2‘np)
’
is uniquely determined by its values on the basic objects (k,1)€ @x@z,
we can regard Bunct, p(®1x®2,Iop)(F,G) as subspace of
k4

m Top(F(k,1),6(k,1)). With tnis topology (*) becomes an iso-
(k,L)€KxL
morpnism of topological categories. We further establish an isomorph-
ism of topological categories

®1®®2
Top ~ aunctb’b(®1x®2,lop)
The functor P : 8, x 0, —> ®,®0,, sending (i,j), i : [n] — K,
j : Im] —> L, to the object (ixj)e w;1m : [n.m] —> KxL (see 2.15
b
(iv)) and the morphism (a,b) to a ®b, induces a continuous functor
8,00
1 2

P* 1 oy _— iunctp,n(®1x®2,top)

®1e ®2
Since F € Tovp

and G € ﬁunctb,b(®1x®2,xon) are uniquely determined
on objects by their values on the basic objects (k¥,1) and on morphisms
by tneir values on a®id,id @b respectively (a, id),(id,b), the func-
tor P* is a bijection on tne objects. Furthermore, we consider

.8
L 9199 ‘ _
Tov (F1,F2) and Bunctn,p(®1x®2,lob)(F1° P,F, o P) as tne same sub
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spaces of T (F1(k,1,),F2(k,L)) so that P* induces homeomorpnisms
(¥,1)€XxL
of the morpnism spaces. |

In general, the structure of @1®@2 is far from clear because the

shuffle relations are difficult to handle. Given a morphism a : 1—],

i:[n] —K, j: [m] —Kin ®, and b : u —> v, u : [p] — 1,
v :[gq] — 1L in @2. Let ™ be the permutation

p

1.9, ¢ [nep] —> [n)x[p] —> [plx[n] —> [np]

=9

"n,p p,n°

wnere T interchanges the factors. Then the shuffle relation reads
J— ° > : ° * . .

(2.20) aob—nq,m [(1dj_1®b)$...$(1dim®b)] ", p° [(a®1dg1)®...6(a®1du_p)]
_ R R . o (4 x
—[(a®1d11)$. . .®(a®1d!q)] "a,n [(1d_i_1®b)e. . .e(idinQb)] *Th,p

So each morpnism of ®1®®2 can be written as

(2.21) aseb.e .. .0a 0b of ¥

wnere a, is of the form (¢, ®id, )& ... &(c_®id, ) and b. of the form

i 1 L1 r Lr i
(idk ®d1)$ Q(idk ®dr), the ¢ and d are morphisms into basic ob-
1 r

jects in @1 respectively @2 and different from set operations.

The permutations ™ P cause the difficulties in the attempt to de-
termine the structure of ®1®®2. In case @2 has 1-ary operatioms only,
i.e. @2 = € is a small topological category considered as theory, we
can nandle the shuffle relations. If b in (2.20) is a 1-ary operation
the four permutations are identities. So any morphism of @186 into
a basic object can be written as (asid]’)o[(idl ®b1)$...e(idl&‘ebr)]o§*

1
and nence by (2.15 (ii)) as
(a GidL)o[(idL10 b1)0 e e(ider br)]
We obtain

Lemma 2.22: Let @ be a K-coloured thneory and & a small topological
category. Let _i_=[(k1,L1),...,(kn,Ln)}E ob(® @) and _j_:{k1,...,kn}€ ob @,
Then there is a natural homeomorphism

(8@6)(1,(k,1)) = 0(1,k)x €(1,,)x ... x (1 ,1) |
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The most interesting example for us is the structure ofé?@ﬁn
wnere Qn is the "linear" category wnose objects are 0,1,...,n, with
one morphism i —> J if i<j and none otherwise, A (@@Qn)—space is
determined by a sequence of ®-gpaces and nomomorphisms (see 2.19)

1'-‘o > F1

> F2 > ., —— Fn

We have one useful general result which helps us to get rid of
constant operations. Let O denote the unique object § —> K in any

K~coloured theory.

Lemma 2.23: Let @1 be a K-coloured and @2 an L-coloured theory such
that @1(O,k) 0% @2(0,1.) for all k€K, l€L. Then (81082)(0,(1(,1,))
contains exactly one element. Moreover if @; and ®£ denote the sub-
theories of ®, and ®, without the constant operations, then @%@GQQJkJ)

is a quotient of (@1'®®2')(1,(k,1)) for ito.

Proof: Let c € @1(O,k) and d € @2(O,L). From the shuffle relation we
obtain that c®d = c@idL = i%@ d. Given any tree in @1382, we can
prune away all stumps one by one: If an edge joins a vertex labelled
c to a vertex labelled b € @2, we replace c by d and compose in @2
according to 2.15 (iii) to remove that edge. We end up with either a
tree without stumps or a tree consisting of a stump only. Since the
relations between the trees of @1'®®2' also hold between the trees of

8,88, tne result follows. |

4. FREE 8-SPACES AND TRIPLES

Instead of theories many people prefer to work with triples (e.g..
see [2]). Since K-coloured triples up to date nave not been investi-
gated (to the authors' knowledge), we include this chapter for the

sake of completeness and to put our further constructions into a wider
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frame work.
Let IopK denote the category Top over K, i.e. its objects are con-
tinuous maps X —> K, X € ob Yon, and its morpnisms from g : X —> K

ton : Y —>K are continuous maps f : X —> Y sucn that

commutes. We can identify IopK witn the category of K-graded spaces
X = {Xk|k€K] and grading preserving meps by putting X, = g_1(k) for
an object g : X —> K of Topy. Topologize Topy by IopK(X,Y)=JIKIoM§e%g
A function r : K —> L induces a functor
Ty ¢ IopK —_—> IopL
given on objects g : X —> K by r,(g) = re g and on morphisms f:g—>h
by r (f) = f. It has a right adjoint
r* : IopL —_ IopK
sending {X,[l€L} to {Xr(k)IkGK}.
For any K-coloured theory ® we have a continuous forgetful functor
U XOp® _ IopK

mapping the ®-space G : ® —> Top to the graded space [G(k)|k€K}.

Defineorem 2.24: The functor U has a continuous left adjoint
@

Fo: IopK —> Zop
Tne image FX of X is called the free ®-space on X. Moreover, tne na-
tural bijection

Top®(FX,0) = Topy(X,UG)

is a homeomorphism.

Proof: Given X = {Xk|k€K} € Topy. For i : [n] —> K denote %gx."xxin

by Xi and fi1x"'Xfip : Xi1x...xxln — Yi1x...xY; by f.. Define
(e = U oe(i,x) x x,/~
i¢® =
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witn tne identification
(8 o 0%; x1,...,xn) = (a3 o*(x1,...,xn)},
oc* a set operation (see 2.1). For b € 8(j,1l) define
FX(b) : PX(j1) x ... x FX(jm) —> FX(1) by
m

1 1 m 1 1 m
[(a1;x1 ,...,xn1),...,(am;x1 ,...,xﬂ )]»—>[bo(a10...0am);x1,...,xn1,...,x1,...,xn
m

]

m
These data determine a continuous product preserving functor

FX ¢+ 8 —> ZTop.

Given a morphism f : X —> Y in Top, the maps idxfize(i_,k)xxi— @(g,léin
induce a map Ff(k) : FX(kx) —> FY(k), which is contiﬂ;ous in ;. The B
collection {Ff(k)|k¢K} determines a natural transformation Pf:FX— FY
continuous in f.

Define a continuous natural map

p ot Icp@(FX,G) —_ IopK(X,UG)
by 0(g)y (%) = g(k)(id,3x), x€X,, g : FX —> G. Given f : X —> UG in
XOpK, let »(f) : FX —> G be the nomomorphism induced on the basic
object k by the maps
8(1i,k) x X; —> 6(k)
(83%y1 e 1xy) —> 6(8) (£ (xy, 00 00xy))

Then = : Topy (X,U6) —> Iop@(FX,G) is a continuous inverse of p. I

The front and back adjunction n : Id —> UF and ¢ : FU—> Id of
any adjoint pair F,U satisfy [41; p.45]
Ue o U = idy

cFoFn = idy

Setting T = UF and u = Ue¢ F we therefore have commutative diagrams

(2.25)

(2) T In_ . T o < nT T (b) TeTer Tu > PoM
A l“ e T iu; u ] 1;

Definition 2.26: A continuous endofunctor T : € —> §& of a topological
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category € together with natural transformations n : Ids —> T and
u: TeT —> T satisfying (2.25 a,b) is called a (continuous) triple

on €.

So any K-coloured tneory & determines a triple {(T,n,u) on Topy,
wnich associates to each X € ob IopK the collection of underlying
spaces of the free 8-space on X. The natural transformations nX:X—TX
and puX : TTX —> TX are induced by x +—> (idk; x), x€X,, respectively
[b;(a1; Y1),-A-,(am,ym)] —> [be (a19... Qam);y1,...,ym] where y
stands for some nr—tupLe xf,...,xz of elements of X.

Tr

Definition 2.27: A triple morphnism (T,n,u) —> (T',n',u') from a triple

on IopK to a triple on Top, is a pair (7,f) consisting of a function

f : XK —> L and a natural transformation 1 : f,eT —> T'e £, such that

a b f
(a) £, (B) g emer s > f,oT
fun l
TT
£y T
Tlef,oT T
n'fy Ttef, lrln.r
1
TteTlef, Blfx > Plef,

commute. Composition of triple morpnisms is defined by
(p,g)e (7,f) = (pf, e gyT,g of). Let Iriples denote the category of

such triples and triple morphisms.

A theory functor (P,f) : 8 —> @' determines a triple morphism
(T,n,u) —> (P',n',u') of the associated triples as follows: Let
(asy) € 8(i,kx) x X; be a representative of (f*TX)m (this implies
f(k) = 1). Then TX_: £ ,TX —> T'f,X is induced by

(a3y) +————> (Pa3y) € 8'(fei,f(k)) x (f*X)fe 5
(recall that (f,X);,; = U, [ £(x) = £(11)1x. . x[UX [ £(k) = fz_i_n)]).
Since T f,n maps a r;presentative x€X, < (f*x)f(k) to (Pidl;x) =

(id ;x) = n'f (%), diagram (2.27 a) commutes. The commutativity of
(k) * g
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(2.27 b) follows from

[b;(31;y1),---,(3m;ym)] T> [bo(a1$...oam);y1,...,ym]

lTT
(Po;(ay39), (o 57,)]

T [P(be (a@...Oam));y1 ,...,ym]

(P05 (Pa 3y, os(Poy5¥y) ) ——g—> [Pbe(Pa,@...6Pa, )iy ysee ¥y ]

This defines us a functor Theories

> Xriples,

Conversely, we can construct a functor Iripled > Tgeorted,
Given any triple (T,n,u) on IopK, we obtain a K-coloured theory @ by
putting 8(1,]) = IopK(i,Ti). The composite of a € ®(1,j), a :+ J —> Ti

with b € 8(j,p), b : p —> Tj is defined as

bba:R ) >T_j_-—-Ta_>TTi-—ui—->Ti

Given 1 2 > 3 b > P € > q in ®, associativity of the composition

follows from the commutativity of

e~ > "Ml —rz— "ML —mpr~ TR

J’C luj_ luT_i_ ) lui

Tp T> T 5] > T.j. Ta > TTi T> Ti

The commutativity of

i——mn

IR

T ——> TTL > 7i Ti > 7T

Tng
snows that nj : j —> Tj acts as tne identity of j in 8. Finally, the

set operation corresponding to o € GK(i,i) is given by the composite

i > 1]

> T
g 4 nl
A triple morpnism (v,f) : (T,n,u) —> (T',n',u"') induces a theory
functor (P,f) : 8 —> @' of the associated tneories. It maps a € 8(i,j),

ai: j——>T"Ti in IopK, to the morphism of 8'(fei,f o j) given by the
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composite

fud —5 7§11 1 T
Thne upper sequence in tne following commutative diagram represents
P(bea) while the lower one represents Pb ¢ Pa. Hence P preserves com-
position

R e B e L o M —

M A
Ti T'f,d

T3 TTi /////z
uf,i

T'fd _Tl"'fﬁ> T f,T1 —m—> T'T' 4

Finally the commutativity of

. ]
fund ¥

f*_i_ f*G > f*-l/v lTl
s

o € 6(1,])
T'f.d

ensures that P preserves set operations and, in particular, identities.

Proposition 2.28: The dual 8°? of a K-coloured theory @ is isomorphic

as topological category to the full subcategory of tope of the free

8-spaces Fi, 1 € ob GK.

Proof: The correspondence i +—> 8(i,-) and a —> ®(a,-) defines a full
embedding 8P < 3unct[®,¥op] by the Yoneda lemma [47; p.37]. Since
8(i,-) preserves products, this embedding factors througn Iop@, and

it is easy to check that it is a homeomorpnism on the morphism spaces.
We nave natural homeomorpnisms

Top®(F1,6) = Top,(1,U6) = 6(1) = Top®(0(1,-),0)
(1) (2)

(1) holds by (2.24), (2) is obvious, and (3) follows from the Yoneda
lemma. The isomorphism @(i,—) —> Fi is given on the basic object k
by

a ———> (a; k1""’kn)

Lok ). ]
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Corollary 2.29: The composite functor Theoried —> Tripled —>Theoried

is naturally equivalent to the identity.

Proof: Given a theory functor (P,f) : 8 —> 8', let v : f,T —> T'f,
be the corresponding triple morpnism, and (3,£) : 8§ — ' the theory

functor induces by (tr,f). The corollary follows from the commutative

diagram
A . s me B, 0. e PR
8(1,5) = Topg(3,Ti) = Top (Fi,Fi) = 8(i,])
|-
? Too (£,1,1,11) P
(i)
81 (§i8d) = Tovp(£,4,T'1,1) = Top® (P11, J,F'e,1) = 8'(£,5,5,3) |

Call a triple finitary if it lies in the image of Ibeorle8—>rﬂpke.
Each triple T has an associated finitary triple Tfin’ namely the image

of T under Iriples —> Theoried —> Trinles. Note that

(Tosq X)) = (1) Topy (1, 24)x X, /~

and we can identify X; witn IopK(i,X). The maps
Topg(k,Ti) x Topg(i,X) ——> Topy(k,TX) = (TX)
(f,g) p—> (Tg = f)

nence induce a natural transformation Tfi —> T, which is an iso-

n
morphnism if T is finitary, but not in general. We obtain

Proposition 2.30: The category ITheoried is naturally equivalent to

tne full subcategory of finitary triples in Triples. |

If we enlarge Theoried by adding infinitery theories, it becomes
naturally equivalent to the whole category Iriples. To define infini-

tary theories we need the notion of a continuous product. In Top, an
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X-indexed product of copies of the space Y is defined to be Top(X,Y).
The exponential law
Top(2,Top(X,Y)) > Top(X,Top(2,Y))
generalizes the usual functorial equation of a product 1{ Ya' In our
case, we nave to define continuous products in IopK. The object
K € IopK given by id : K —> K substitutes the point object of ZFop.
Since
ToppP (X, ¥)=Topy (Y,X)= T Top(¥y, %, )= T Top(¥,,Top(Xy k) =Topy(Y,Top(K,X)
K X k' k k k K
k€K k€K >,
=To pK(Y’wa (X,K))
we call Y a Y-indexed product of K in IonK.

Definition 2.31: An infinitary K-coloured topological theory is a to-

pological category ® with ob ® = ob Tovg together with a continuous
functor P : Iopgp —> 8 preserving objects and products, i.e. the

diagram

Top2P(X,Y) = Top, (Y,TopoP(X,X)
K K X

] -

8(X,Y) IonK(Y,G(X,K))

I3

commutes,
A ®-gpace is a product preserving functor G : & —> IopK. In particu-
lar, G(X) = IopK(X,G(K)).

It follows directly from the Yoneda lemma that e°P is equivalent
to the category of free @-spaces. Hence Iriples and the enlarged cate-
gory Theoried are equivalent by the same argument as above. The equi-
valence is given by
Theoried — > Tripled ———> Theories
® ———> T Tt —> 8'

where T(X) = 8(X,-) and 8'(X,Y) = xopK(Y,T'X).
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Because of tne strong connection between theories and triples it is
no surprise that we can define the category of T-spaces for a triple

T and thatitis connected with tne category of @-spaces of a theory 8.

Definition 2.32:Let T be a triple on IonK. A T-gpace consists of an

object X € IopK and a morpnism & : TX —> X such that

y — % ooy prx —8E o g
\ j; Tgl lg
X T —— > X

commute. X is called the underlying space of (X,2).

A homomorpnism (X,8) —> (Y,Z) of T-spaces is a morphism f : X —> Y

sucn that

P — L o opy
T
X — L 5y

commutes. Let IopT denote tne topological category of T-d4paced$ and

homomorphisms (zopT((X,g),(Y,g)) is topologized as subspace of IopKOCﬂ)

Proposition 2.33: Let T be the associated triple of a {finitary) K-
T

coloured theory @. Then thnere exists an isomorphism R :Iop®——> Toyp

of topologized categories such that

\B\\\\ v U,V underlying
space functors

commutes.

Proof: For a @-space G define R(G) = (UG,Ue) with the back adjunction
€ : PU —> Id (recall that T = UF). The inverse of R maps the T-

space (X,£) to the ®-space G for which G(i) = X; and G(a),a € 8(4i,]),
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is given by the composite

As corollary we obtain a generalization of the classical result

that each group is the epimorphic image of a free group.

Corollary 2.34: An object Z ¢ IopK is a ®-space iff the injection

nZ : 2 —> UFZ admits a retraction € : UFZ —> 7 wnich makes

UFUFZ ——Ue?Z—-—> UFrZ
UFg g
UFZ > 7
g
commute (U : Iop® — IopK is the underlying space functor, F its

left adjoint and n and ¢ the adjunction maps). ]

5. SPINES

We do not know how to nhandle general theories. So we restrict at-
tention to tnose kinds of theories tnat interest us most and in which
we can work satisfactorily. It is clear from the interpretation of
8°P as the category of free ®-spaces on the elements of SK, that theo-
ries tend to be inconveniently large.

Let ® be a K-coloured theory given by generators {Xi,k} and rela-
tions {Ri,k} in ®r 8paced. The elements of {Ri,k} are ;airs of trees
with verzex labels in {Xi,k}' A tree from i t; k with m twigs of co-
lours j1""’jm and Labezs Nyyeses € [n] determines a morphism in
&, from j = {31,...,jm} to i induced by j, —>n, € [n]. Let ® be the
subcategory of 6K generated under composition and disjoint union &

by the morphisms determined by the trees of {Ri k}’ and let B be the

b
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subcategory of 8 generated under composition and the preoduct bifunctor

® by the elements of {Xi k} and 6°P?. (We assume that all these cate-
=0

gories nave objects ob GK).

Definition 2.35: The subcategory B of ® is called a 8-spine of 8.

An element a of ® can be written a = beg* with b€8, If €8 implies
that all block functions (see 2.4) associated with ¢ are in @, this
decomposition is unique up to the equivalence
(2.36) (bepu*)eog* =boe(geu)* b€B, u€s, oGy .
Hence there is a continuous bijection

(2.37) (U 3(3,x) x 8(j,1))/retation (2.36) —> 8(1,r)
i

If this is a nomeomorpnism we can recover 8 from B, its topology in-

cluded. In this case we call 3 a proper @-spine of @.

The products in ® are no longer products in B unless @ = SK. In-
stead we have an associative "product" functor
®: 8 x8 —>38
sending thne object (i,]) to ®&(i,j) = i ® j, the sum of 1 and j in Sy -

The correspondence (a1,...,an,7) — (aTQ... ean)o v* defines a no-

meomorphism

(2.38) n = U U e(i,,z(1))x...x8(f,,r(n))x6(j,1)/~ = 8(i,r)
i &=

with r : [(n] —> K and the relation

(2.39) (a1 s 0¥,...,8 0 or’;,'r) ~ (a,l,...,an,'ro (o1 D @on))

If 8 is a proper spine, (2.37) and (2.38) determine a homeomorphism

U sp.oixsp(p,1)/~= U U 305,,2000)x. . o8(3,,2(n) ngii)/~
2 i &i;=3

with the relation (2.36) on tne left and the relation (2.39) on the

right (then, of course, each oi€®). At least in the cases we want to

consider, namely
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(A) ® contains only the identities of Sy
(B) @ contains all isomorphisms of GK

this homeomorphism induces a homeomorphism

(2.40) 3(p,r) = U U%(11,5(1))X---x%(,j_n,r_(n))x@(,i.p)/rewﬁon(&w)
i &ig=]

Given a proper @-spine B of ®, a ®-space is completely determined
by a continuous functor R : 8 —> oy preserving the set operations

of 8 and the product functor @, i.e. the diagram
B x 8 —D >3
leR lR
Top X Top ——> Top

commutes. We call such a functor R a B-space and a natural transfor-
mation between such functors a homomorpnism of B-spaces. The free 8-
space FX on XEIopK is given by

rx() = Us(i,x0) x x /~
3 i

with (a e p*; x1,...,xn) ~ (aj u*(x1,...,xn)), uEG.

Spines of type (A): We investigate proper ®-spines for wnhich @ con-

sists of identities only. A simple example of a theory with such a
spine is the monochnrome theory @m of monoids. We pay particular at-
tention to the elements A ¢ @m(n,1) corresponding to z;2,...2, € F(n],
the free monoid on n generators ZyseresZy (under the isomorphism
(2.28)), i.e. A, Tepresents the operation (z1,22,...,zn)——> ZyTpeeeZy
(here n denotes the unique object [n] —> K = {*}). The subcategory

% of @m generated under @ and composition by thne xn is the required
@-spine. In view of (2.40), any morphism of % nas uniquely tne form
Xn1e»...$xnr. Since relation (2.36) is trivial, any morphism of &
is uniquely expressible as L« g* with A€,

@m gerves as sort of a terminal object for theories with proper
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spines of type (A). Let 38, denote tne category wnich nas the elements
of K as objects and exactly one morpnism between any two objects. The
subcategory 4 @ f}eK of @mg _"geK nas exactly one morpnism from any ob-
ject i to a basic object k (compare 2.22). Hence given a K-coloured
theory ® with proper 8-spine B, there exists a unique object-preserv-
ing tneory functor P : @ —> 8_@ 34, such that P_1(91@35K) =3,

The above considerations give a characterization of proper G-spines

of type (4A).

Lemma 2.41: A topological category 8 is a proper ®-spine of type (4)

of a K-coloured tneory iff ob B3 = ob 6K and thnere is a strictly as-

sociative bifunctor &: 8 x 3 —> 8 guch that

(a) ®(i,]) = i@, the sum in S

(b) the correspondence (a,1 s e ,an) — a1e ...ean yields a homeo-
morpnism

eiuﬂmg,2(1))X-..x%(1n,£(n)) = 8(i,r) ]
it

Definition 2.42: We call a category 3 satisfying (2.41) a K-coloured

PRO (for product functor) and a K-coloured theory ® having a PRO eas
proper spine a split theory over 8,- If the spaces B8(i,r) are CW-
complexes and the homeomorphisms (2.47 (b)) and composition are ske-

letal, we call 8 a CW-PRO.

Note tnat the morphism spaces E(i,k) of morpnisms into a basic ob-
ject and the compositiéon maps [8(31,i_(1))x...xB(_I_'n,i(n)JXB(i_,k) —> 3(316...e£n,k)
sending (a1,...,an,b) to b °(a1e...ean) completely determine the
PRO 38,

If ® is a K-coloured split theory over ®m with PRO B, the free
B-gpace FX on X ¢ IopK is given by

PX(k) = U B(i,k) x X

i€® =
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Spines of type (B): Here the theory of commutative monoids ®cm takes

tne place of @m. Generating morphisms are again the morphisms xn re-
presenting the operations (z1,...,zn) —> 1z, ...+ oz Since

A_oT¥ = L, for all permutations w € Sn’ we also have to include the
permutations. It is easily verified that the resulting spine may be
identified with the category © of finite sets as defined in section

1 (not to be confused with the set operations from 6°p c @cm). An ex-
plicit description of the inclusion functor & < ®cm is given as fol-
lows: The isomorpnism (2.28) identifies a ¢ &(m,n) < 8(m,1)™ with
(y1,...,yn) € (F[m])n, where y = zi1 + ol +zg € F(m] if

a_1(r) = {11,...,iq} < [m]. In particular, for a germutation m € &(m,m)
we have n | = m*,

Tne abelianization ®m —> 8,4 identifies 9 < @m with the subcate-
gory of & of order preserving maps.

As in the non-commutative case, for any K-coloured theory ® with
proper @-spine 8 there exists a unique cbject-preserving theory func-
tor P : @ —> 8__ @38, sucn that P~ (S®Ja.) = B.

A morpnism m : i —> j of 6K

[n] —~———> [m)

i i
K
is in @ iff n=m and ©m is s permutation. Hence a morpnism of & is
given by its source or target and a permutation. If K = {*} it is
given by a permutstion atone. If source or target are clear from the
context, we therefore often write m € S instead of m € 8(i,j). A &-
spine of type (B) nas more structure tnan one of type (A) because of

the permutations. The analogue of Lemma 2.471 is

Lemma 2.4%: A topological category B is a proper G-spine of type (B)

of a K-coloured theory iff ob 3 = ob GK and we have a strictly as-
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gociative bifunctor @: 8 x 83 —> B8 and an inclusion functor @ c 8

sucn that

(a)®(i,j) = i®j, the sum in Sy

{(b) The correspondence (b1,...,bn,ﬂ) —> (b, @... ebn)e m yields a
nomeomorpnism

( .U B(i,z(1))x..x 8(3 ,r(n))x 8(1,1))/~ = 8(i,r)
®j,=d

where (b1e Tyseuesb

n°nn,ﬂ) ~ (b1,...,bn,(n1e ...enn) em), Tri,rr€©

(e) T, ®m, €8 is the sum (in GK) of m, and m,
(d) Given r morpnisms bq : iq —_ iq’ lq : [mq] —> K, iq : [nq]-—> K,
and m € @. Then

w(n1,...,nr)°(b1$...ebr) = (b .. @b _,

.8
7 (1) m (r)
(see (2.4) for the block permutations) [ ]

) on(m1,...,mr)

If the reader is disturbed by the L (d) ne should note that

tne inclusion functor @ — % is given by m —> (ﬁ_1)*.

Definition 2.44: A category B satisfying (2.43) is called a K-coloured

PROP (for product functor and permutations) and a K-coloured theory

naving a PROP as proper spine a split theory over @c If the spaces

o
8(i,r) are CW-complexes, composition with permutations cellular and
the nomeomorphisms (2.43% (b)) and the composition in B skeletal, we

call B a CW-PROP.

Note that a PROP 8 is completely determined by its morphism spaces
B(i,k) of morpnisms into a basic object, by the composition of
a € %(i,k) witn a permutation on the right, and by tne composition
maps
(8(r;,i(1))x.0ux 8(z ,i(n))] x B(i,k) —> B(r, @...81 ,k)
sending (a1,...,an,b) to b a(a1e... Qan).

A PROP is a more general concept than a PRO because we can add all
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isomorphisms of SK to make a spine 8 of type (A) into a spine B' of

type (B), and we have an inclusion functor 8 c 8’

Definition 2.45: A functor F : 8 —> B' of PROPs is called a PROP-

functor if it is continuous, carries basic objects to basic objects,
and preserves the product functor @ and the permutations. Analogously

for PRO-functors.
Obviously, a PROP-functor is the restriction of a theory functor
P and completely determines P.

Our principal concern will be E-spaces.

Definition 2.46: A K-coloured PROP B8 is called a K-coloured E-theory

if each space 8(i,k), k€K, is contractible, in other words, if

P:3 —> SQSSK is topologically a nomotopy equivalence. An object
X € IopK is called an E-space if it allows a B-action for some K-
coloured E-theory B. (Tne monochrome E-spaces are identical with the

homotopy-everything H-spaces of [8]).

Remark: Our whole theory developed in part from the theory of PROPs
and PACTs propounded by Adams and MacLlane [29]. Their PROPs are es-
sentially the algebraic asnalogue of ours, and a PACT is the analogue

for chain complexes. A Steenrod PACT then corresponds to an E-space.

Spines innerit the notion of interchange from their envelopping
theories. One observation is of importance. Given spines 3,8', each
a PRO or a PROP, then 3@®8' is a PROP because ®m@®m§®m°@cma@cm°@cme®an
(see Example 2, section 3).



- 64 -

6. EXAMPLES OF PROs AND PROPs

(2.47) The categories % and S are examples of a CW-PRC and a CW-PROP,
which we already have discussed. The U-spaces are exactly the topolo-
gical monoids and the S-spaces exactly the commutative topological

monoids.

(2.48) Trivial examples of PROs can be obtained in the following way.
If € is a topological category, we obtain an {ob &)-coloured PRO by

setting
# if i is not a basic object

8(i,1) = L€ob &
&€(k,l) if i is the basic object k € ob €

Composition is given by the composition in €. Note that B is a spine
of € considered as theory. If € has the discrete topology, a B-space
ig just a €-diagram of topological spaces. In general, a B-space is a
C-diagram witn a topology on the morphisms. If there is no chance of

confusion we denote B again by €.

(2.49) For each n21 we define a monochrome PROP Dn, the n-th little-

cube category, wnich operates on the n-tnh loop space X = QnY, the

space of all maps (1™,31™) —> (Y,*), where I" is the standard n-cube,
31" its bounadry, and * the base point of Y. As before, denote the
unique object [m] —> K = {*} by m. A point a ¢ Dn(m,1) is an ordered
collection of m n-cubes I?, linearly embedded in In, witn disjoint

D Such an embedding

interiors, and witn axes parallel to those of I
is uniquely determined by the images in I? of the lowest vertex
(0,0,...,0) and the upper vertex (1,1,...,1). Hence a is given by a
2m-tuple (x1,y1,...,xm,ym) of points in In, wnere Xy is the lowest
vertex and y, the upper vertex of I?. We topologize Dn(m,1) as sub-
space of IZmn- Composition of a with a permutation m € Gm is given

by aem = (xn1,yn1,...,xﬂm,ynm). Let D, € On(ri,1), i=1,...,m, let
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b,. : 1%

1J

a; 1% < 1™ be the linear embedding of the i-th cube of a. Then the

c I" be the linear embedding of the j-th cube of bi and let
ry*te.otr) linear embeddings of 1™ into I™ wnich correspond to
a.o(b1a..ebm) are given by a‘l'h11"“’a1°b1r1’32°b21""'a2°b2r2"‘"am°bm1""am°?nzx‘n‘
This defines a continuous composition in 9.

O, acts on X as rollows: Given (f1,f2,...,fm)€ ¥™, the map

n

a(fj,...,fm) : I7 —> 1 is given by fi on the embedded cube I? and

zero elsewnere.

)y

1
¥y = (yi1""’yin) € 1. The correspondence a —> a'=(x%,yv.",xé,yé)

Let a ¢ Qn(m,1), a = (x1,y1,...,xm,ym) with x; = (Xi1""’xin
PR 1 1 - .
with x; = (xi1,...,xin,0) and y, = (yiT""’yin’1) defines an inclu-

o0
sion of PROPs 8 < 9 ,. Let 9, be the PROP with 9 (m,1) =J£1 Dn(m,T)

1
with the direct limit topology.

Lemma 2.50: ©_(m,?1) is contractible for all m; hence ©_ is an E-cate-

gory.

Proof: Pirst observe that Sn(m,1) has a very nice product neighbour-

nood N in © n+h2m

n+1(m,1), namely the set of all points (x1,y1,...,xm,ym)€(l

with x. and y. > % for all i. Then N=Sn0mﬂX[Q%I&(%J]m.

1
i,n+1 <7 i,n+1
It follows that Sn(m,1)c Dn+1(m,1) is a S_-NDR (see Appendix II). By
Lemma A 4.10 (the prefix A refers to the appendix), it suffices to

snow that Sn(m,1) is contractible in Dn+1(m,1). The contracting homo-

topy H : Sn(m,1) X T —> nn+1(m,1) is given by

Hy ¢ (x1,y1,...,xm,ym) = (x1(t),y1(t),...,xm(t),ym(t))

wnere
e - (Xgq0eeorx;,28(i-1)/m) OStS%
' ((2-28)x 1,000, (2-20)x, o (3-1)/m)  3sts1
g (4) = (yi1,...,yin,1—2t(1—i/m)) OStS%
1

(26-1+(2-2%)y, 4, - - -, 24-1+(2-2%)y, . 1/m) %St51 (]
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Originally, we proved that Qn(m,1) is (n-2)-connected for all m
(as indicated in [8]) using results of Fadell and Neuwirth on con-
figuration spaces. Since we only need that 9 _(m,1) is contractible,
we prefer the present more direct and shorter proof. Our original ver-
sion can be found in [34;chapter 4].

The E-category 8 is quite important because it acts on strict in-

finite loop spaces.

Definition 2.51: A space Z is called a strict infinite loop space if

there exists a sequence of based spaces Zi and based homeomorphisms

wy ot Zi 2= QZi+1’ i=0,1,2,... such that Z == Zo'

The exponential law Top((I™,3I™),Top((I,3I),2))=Top((I™,3T™(I,31),2)

ot ; L . A ~ ont1 . _
defines homeomorphisms q, Q (an+1) >~ Q Zn+1’ The W, and q; com
bine to maps
_ n-1 i 1, . ~ oh
Tn T Gpo1 0 Wp %0yt GTwgte.eegy e Qwgew, 2 2 o= 077,

The action of 9 on 7 is now derined as follows: Given a ¢ 9_(m,1)
and (z1,...,zm)€ 2%, Tet a ¢ Sn(m,1) be a representative of a. We de-
fine

5(21,...,zm) (a(r z1,...,rnzm))
To show that this definition is 1ndependent of the choice of the re-
presentative a, we have to verify that
(a(r 121 TpZ )) n+1(a (r IRLPRRTRFS SO m))

. . s ; . _ n -
where a' is the image of a in 8n+1(m,1). Since r  .=q e w °r , this
amounts to snowing that

n
qn[ﬂ mn(a(rnz1,...,rnzm))] = a'(r ne1Z17 00 TpyZy ),

wnicn 1s easily verified. We thus obtain

Proposition 2.52: A strict infinite loop space is an E-space. |

(2.5%) We next define a PRO © which acts on loop spaces QY. A point
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a € 9(m,1) is a 2m-tuple (x1,y1,...,xm,ym) of points in I such that
02 xy<yys ...s%x <y;s...5%x <y, < 1. We topologize 9(m,1)
as subspace of 1%m, Considering (x1,y1,...,xm,ym) as element of DﬁmﬂL
we obtain an inclusion ©(m,1) < 81(m,1). Composition in © is induced
by the composition in 01 so that we have 8 functor 8 —> 91. Since

81 acts on QY, so does 9.

Lemma 2.54: 9(m,1) is contractible for all m.

Proof: The contracting homotopy 9(m,1)x I —> O(m,1) is given by
L%y g0 e s Xy ¥g) s8] —> (x1(8),54(8) oo wuxp (1), 37,(4))
with x,(t) = (1-t)x; + $(i-1)/m and y;(t) = (1-t)y; + ¢ «i/m. R
\

(2.54) Our next PRO 9 acts on A_-spaces (see 1.8). We use the models
X (see 1.7) for its definition: ¥_(m,1) = K, m=0,1,2,..., with

Ko = K1

*, In (1.7) we have already defined boundary maps

BL(r,s) : K. x X; —> Ky, r+s = i+1, which correspond to the copy of

K. x Kg in the boundary of K; indexed by I 2...(v 11 bes=1) 0L W
According to [46; §6], one can inductively construct degeneracy maps

S. ¢ Ki —> K

3 iz1, for 1sj<i, satisfying

i-1?
aj(r,s+t—1)o(1xak(s,t)) = aj+k_1(r+s—1,t)o(aj(r,s)x1)

aj+s_1(r+s—1,t)o(ak(r,s)x1) = ak(r+t—1,s)o(aj(r,t)x1)o(1xtwist)

Sjo Sy T Sy e Sj+1 for ksj
ak_1(r—1,s)o(ij1) for j<k and r>2
sjak(r,s) = ak(r—1,s)-(sj_s+1x1) for k+ssj

ak(r,s-1)(1xsj_k+1) for s>2, ksj<k+s

sjak(i—1,2) = pry for 1<j = k<i and 1<j = k+1<i

i

$,9,(2,i-1) = 8;3,(2,i-1) = pr,

where pry is the projection onto the i-tn factor.
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We obtain a composition in ¥ if we specify the composites

c=sae(ld... 0780 01®... 01
ey
- n_

with e € % _(n,1) and b € ¥_(m,1). We define

(e}
i

= sk(a) €94 (n-1,1) if m=0

= a if m=1

Ul

ak(n,m)(a,b) € 4 _(n+m-1,1) if m>1
The identities listed above imply the associativity of the composition.
Stasheff shows [46; Thm 5, Lemma 7] that an A_-space X admits maps
M, : K, x XX —> X for i=2,3,4,... such that
(a) My(*,e,x) = My(*,x,e) = x for x€X, *=K,, e a distinguished point of X
(v) for (kT,kz) € K. x K, r+s = i+1, we nave
1"!3._(51{(1',5)(1(1 ,kz) I S ,xi) = N&‘(k1’x1""’xk-1’Ms(kZ’xk’""xk+s—‘|)’xk+e’"’xi)
(c) for k€K, and i>2 , we have
Mi(k,x1,... ,xj_1,e,xj+1,...,xi) = Mi_1(sj(k),x1,...,xj_1 ,xj+1 , ...,xi)
The adjoints Ki —_ Zop(Xl,X) of the Mi define an action of ¥_ on X.
If X is an An-space, we have such maps Mi for 2<i<n. Hence the sub-
PRO €, of #_ generated under composition and @ by the morpnisms in
Y _(m,1), Osmsn, acts on an A -space.
For future use we note [46; Prop.3] that %m(m,1) is contractible

for all m and ﬂn(m,1) for all msn.

7. PARTLY HOMOGENEQUS THEORIES

We introduced coloured theories mainly for the purpose of study-
ing maps between monocnrome 8-spaces. Given two monoids X and Y and
a homomorphism f : X —> Y, we can construct an ﬂeih—space
F : 4@8, —> Top such that Plu® {0} defines the monoid structure on
X and F|u® {1} the monoid structure on Y (Recall that 9, is the cate-

gory with objects 0,1 and one morphism from O to 1. We denote the sub-
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category consisting of thne object i by {i}). Now ueg, is {0,1]}-
coloured, and we nave exactly one morpnism {0,1} —> {1} (see (2.22)).
It is mapped by F to g : X x Y —> Y given by g(x,y) = f(x) +y. Al-
though such "mixed" maps occur naturally, it sometimes seems desirable
to allow only operations P — X, p G Y, and Y® —> Y for the
study of maps from X to Y. In the literature this restriction always
has been made. For this purpose we define partly nomogeneous theories.
Let HLSKXL be the full subcategory of erL consisting of all ob-
jects 1 : [n] —> KxL such that {(projection)e i : [n] —> KxL —> L

is constant.

Definition 2.55: A (finitary) L-nomogeneous (KxL)-coloured theory is

a topological category @ with ob 8 = ob HLerL togetner with an ob-
ject and product preserving functor HLsgfL —> 8. Again we assume
that @(i,i1$ ...Gjﬂ) is nomeomorpnic to @(1,11)x...x ®(i,in). The
definitions for a @-space and a nomomorpnism of ®-spaces are analogue

to those of (2.3). A theory functor from a L-homogeneous {(KxL)-colour-

ed theory @1 to a N-nomogeneous (MxN)-coloured theory @2 consists of
functions f : K —> M, g : L —> N, and a continuous functor F:@Hé>®2

such that

(fxg)
HLGKXL > H, S

N"MxN
P
8, > 8,

commutes.

Here again we denote the product by & . In contrary to innomogene-
ous theories, ® is not a bifunctor on a partly homogeneous tneory be-
cause it is not everywhere defined, but it benaves like a bifunctor
wnere it is defined.

Note that (2.55) is more general than (2.3) because it contains

the innomogeneous theories, just put L = {*}. If K = {*}, we call a
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L-homogeneous theory completely nomogeneous.

Any (KxL)-coloured theory ® has a L-homogeneous part, denoted by
HL®’ namely the full subcategory of all objects coming from HLGEEL.
If € is a topological category, we frequently denote the (ob §€)-homo-
geneous part of @ @§ by Hs((@g@).

Interchange, free ®-spaces, PROs and PROPs can be defined for the
partly homogeneous version in an analogous manner and similar results
nold, We just want to mention one fact. The bifunctor & for PROs and
PROPs coming from the product bifunctor of the enveloping theories is
not everywnere defined for partly homogeneous PROs and PROPs. On ob-
jects, 1®j exists whenever it exists in HLSKXL’ and feg exists for
f €98(i,p), g € 8(],q) whenever i® ] and p®g exist. If ® is defined,

it behaves in thne same manner as for ordinary PROs and PROPs.

(2.56) Example: Let K = {*} and L = {0,1}. We construct s L-homogene-
ous (KxL)-coloured PRO 8 which defines A _-maps between monoids (see
(1.14)). There are exactly two objects [n] —> KxL in 8 for n>0, name-
ly one for each object in L. Denote the one corresponding to O by n°
and the one corresponding to 1 by n'. Define B8(m®,1°) = {km],
8(m',17) = T 3(n°,1") = T™ ", So the full subcategories of ® con-
sisting of all objects 0,1°,2°,... and 0,1',2",... are copies of the

PRO %, It remains %o define the compositions

1 1 m 2 2 3 m m
um.ut1,”,tq)ou.ech P.n% )= (t1“., r,’ t1“.,t%£1,tv..ﬂ,t1".,tr)
m
. @ ... =(0,..,0 yees0,%,,0,..,t ,0,..,0
(tq, m)o(jﬁe ean+1) ( :S 'tys0 & LU L1)
T &) T+1

According to (1.14), a map £ : X —> Y between monoids is an A _—map

if there are maps F, : 1375 x1 —> Y sucn that F, = f and

o)
t.yee,t > SETIFD FP &

3 1 3 J+1,.,xi) if tj=o

B, y(tpeer

Fi(t1, ..,E_.],.. 2Xq s oo ,Xi):

F(t1,.., XqpeerXy )F (t

51 iy ;]+1""ti’xj+1""xi> if tj=1

Hence the adjoints of F, define an action H of 8 such that m@ﬁ{ﬂ»=ﬁh
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and vice versa. If f : X —> Y is only an An-map between monoids, we
can define an action of a subcategory B8' of B on (X,Y) extending f
and the monoid structures, B' is generated under composition and @
by the two copies of % in B and the morpnisms of %(m°,11) for m<n.

We note that the morphism spaces of B are contractible and so sre
the morphism spaces of B8' into basic objects with exception of ﬁ'(mOJB

for m>n.



IIT CHAPTER

THE BAR CONSTRUCTION FOR THEORIES

In Chapter I we defined a structure Wd which is 2 monoid structure
up to conerent nomotopies. In this chapter we generalize the process
¥ —> WY to general theories 8. We need results from homotopy theory,
wnich are not directly connected with the development of our theory
and therefore proved in an appendix. Recall that we refer to the ap-

pendix with the prefix A.

1. THE THEQORY W®

Let ® be a K-coloured theory, let U : ITheories —> &r 4apaces be
the Torgetful functor, and F : ®r 4paces —> Theoried the free functor.
Starting point for the construction of W@ is the category FU® of copses
associated with U® (see II; §2). To each internal edge of a tree of
FU® we associate a real number in I = [0,1], called its length. A tree
of a given shape A can be considered as a point of a topological space
(T e(i,k))x GK(i,i) (see Def. 2.6 ff); and if X\ has r internal edges,
a tree of snaspe X\ with lengths can be considered as a point of the
topological space

M, = (T 8(i,k))x & (i,1)x 17

We impose three kinds of relations on the space of trees with lengtns:

(3.1 a) We may remove any vertex lsbelled by an identity of 8: We give

the resulting edge the length t1*t2=t1+t2—t1t2, where t1 and
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t2 are the lengths of the edges below and above this vertex

(By convention, the roots and twigs have lengths 1)

t

id = t1*t2

1

We may replace any vertex label a eo* by a, by changing the

part of the tree above this vertex ss in (2.8 (b)), but for

trees with lengthns,

C1 02 cm Co‘l C02 ...................... Ccm

8 eag* = a

We may remove any edge of length O: We unite the vertices at

the two ends to form a new vertex, wnose label is the tree
composite in ® of the tree consisting of the two vertices and

their incoming and outgoing edges (compare I,§4)

3 : L

where ¢ = a ¢ (id, @ ...®1d ® beid
Ky i Ki 41

incoming edges of a have the colours k1""’kn and b sits on

® ... Qidk ) if the
n

the i-th edge.

We(i,j) is the space of all copses on U@ with lengths modulo these

three relations. We compose two copses with lengths by taking their

composite in FU® (see 2.7ff) and giving the new internal edges ob-
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tained by grafting the roots of the rignt copse to the twigs of the
left one the length 1. This makes W® into a theory.

(3.1 a*) In relation (3.1 a) we could replace tyxt, =t +t,-t, 1, by
t1*t2=max (t1,t2). Unless stated otherwise our results hold for bothn

definitions of t1*t2.

Remark 3.2: For the definition of W8 we used tnat the unit internal

I with multiplication x is = monoid. We can make tne same construction
for an arbitrary monoid M with multiplication x 2and unit e naving an
idempotent ute. (For I with multiplication x this idempotent is 1€I).
We then give each internal edge 2 lengtn in M, each root a length in
uxM and each twig a length in Mxu (hence the trivial trees hnave
lengths in uxM«u). Tne relations (%.1) are tne same in tne M-version
with O in (3.1 c) replaced by e. Wnen we compose we give the new in-
ternal edge obtained by grafting a twig of length t, to a root of
length t2 the lengthn t1*t2. 0f course, most of our results do not

nold for a general M; we nave to impose more restrictions.

Proposition 3.%: W : Theoried—> Iheories is a functor.

Proof: Immediate. .

Let W° be the composite of the free and tne forgetful functor
Theoriea—> @y 4paced —> Iheories, tnen w°@ is obtained from FU®
by imposing the relations (3.1 s,b) forgetting the lengths. Hence we
can include .W°® in W8 as the subcategory represented by trees whose

internal edges all nave lengtn 1. We obtain

Proposition 3.4: The inclusion functors i@ : woe < W8 define a na-

" . . o
tural transfomation i : W~ @ —> W,
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The back adjunctions e® : w°8 —> @ extend to a natural transfor-

mation ¢ : W—> IdIgeor(ee gince it is compatible with the relations
(3.1).

Definition 3.5: The natural functor ¢=¢® : W8 —> ® is called the

augmentation of ®. The composite maps @(i,k) _ﬁ_> Wo@(i,k) < we(i,k),

where n is the front adjunction, are called the standard section of @.

Proposition 3.6: If we use (3.1 a*) instead of (3.1 a), the augmen-

tation functor ¢ : W& —> ® is topologically a homotopy equivalence.
In fact, there is a fibrewise strong deformation retraction of We(i,k)
into the standard section, i.e. a strong deformation retraction Ht

sucn that e o Ht = ¢ for all t € I.

Proof: Ht replaces eacn edge length u by tu, where t runs from 1 to

o. I

Relation (3.1 b) shows that for K-coloured split theories @ over
®cm or 8, with spine 8 we need only consider trees wnose vertex la-
bels tie in B, We deduce that W8 is again a split theory over ®cm
respectively ®m. If 8 is a PROP tne canonical spine W8 of W@ consists
of all copses with vertex labels in B sucn that all elements of {,.,n}
occur as twig labels in trees with n twigs, subject to the relations
(3.1 a, ¢) and relation (3.1 b), but only for permutations. If B is a
PRO, the spine W8 consists of all copses with vertek labels in 8 such
that each tree with n twigs has tne twig labels 1,2,...,n in clock-
wise order. Consequently, twig labels may be omitted. The relations
are (3.1 a, c¢), relation (3.1 b) becomes redundant.

So if we refer to relation (3.1 b) in connection with PROPs, we

nection with PRO=s we will omit it.
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2. A FILTRATION OF W8 FOR PROs AND PROPs

We restrict our attention to the more general case of a PROP. The
necessary modifications for PROs are made easily. Just neglect all

group actions whicn will be defined for PROPs in tne following.

ed PROP or PRO 8, to wnich the functor W is applied, each pair

(%(k,k),{idk}),k€K, is a NDR (cf. Appendix II).

In order to be able to treat the partly nomogeneous case simul-
taneously we takea (KxL)-coloured PROP 8. We consider both W9 and
HW8 = HLW%. Recall that the partly homogeneous case is more general
because it includes the inhomogeneous one (take L={*}) and also the
completely nomogeneous one {(take K={*}). Nevertneless, we start con-
sidering the case W8, because it is easier. The generalizétion to
HW8 then follows without too much difficulties.

We define the r-skeleton subcategory W8 of WB as generated under
composition by copses whose trees have at most r internal edges, con-

sider the space M, of all trees of a given shape A in WB, i,e. the

A
trees of MA have the same underlying grapns and the same edge colours

(see 2.6). Recall that M, nas the form

_ 1T Bl m( j)
M, =1 xTTj 8(1.k,) x S,

if A has r internal edges, n twigs and m(j) vertices witn labels in
B(ij’kj)’ kj € KxL, because a tree of a given shape is specified by
its edge lengths, its twig labels which are a permutation of {1,..,n},
and its vertex labels.

g iff one of the

(3.8) An element of MX represents a morpnism of wr
following conditions hold

(i) Some vertex label is an identity (for then (3.1 a) applies)
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(ii) Some internal edge has lengtn O (for then (3.1 c) applies)

(1ii) Some internal edge nas lengtn 1 (for then the tree decomposes)

Let Nh c Mk be the subspace of all points satisfying one of these
conditions. It remains to account for relation (3.1 b). Let A be the
set of all tree shapes which can be obtained from : by an'iterated
application of (3.1 b). We call A the shape orbit of A. We have a
natural group G' acting on MA = J?i MX’ wnich acts on the summand Mx
as follows: The group Sr permutes the coordinates of Ir, the group
Sn acts on the set Sn of twig labellings by composition on the rignt,
the group sm(j) permutes the factors of %(lj,kj)m(j), and (Sq)m(j)
also acts on %(1j,kj)m(j) if 13
ﬁ(ij,kj) by composition on the right. Let G be the subgroup of G' ge-

[q] —> KxL, by the action of Sq on

nerated by all elements g wnicn map Mx into itself and for which the

trees g(A) and A sre related by a single application of (3.1 b). We

call G the symmetry group of the shape A. The space NX is an invariant

subspace of M,, and the map N, —> wr_1%(i,k) sending trees to their

1N A
corresponding morphisms factors througn a map

v N, /6 ——> wr_1%(1,k)

A

Lemma 3.9: (a) wr%(i,k) is obtained from wr_1%(i,k) by adjoining

spaces Mk/G relative to NX/G with attaching map v, , one for each

X,
shape orbit of shapes with r internal edges.

(v) W8(1i,k) is the colimit (= direct limit) of the Wrﬁ(i,k)
(¢) If each 8(i,k) is Hausdorff, so are Wr%(i,k) and W8(i,k)

is a - , 80 are r% and W8
(a) It B8 CW-PROP W

Proof: (a) Since the identities of B8 are closed (3.7), each Nk is
closed in M,, and hence Wr—1%(i,k) closed in Wrﬂ(i,k). Hence
Uc w8(i,k) is closed iff it is closed in wr‘jﬁ(i,k)va M, /G.

(b) By the argument of (a), W'B(i,k) is closed in W8(i,k). Given
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U < w8(i,k) sucn that U N Wr%(i,k) is closed for all r and let V be
the set of representing trees of U, then V N Ml is closed for all ).
Hence V and therefore U is closed.

(e) It follows from (A 2.3) and (A 2.4) that (MA’NA) is a G-NDR. Con-
sequently (MX/G’NX/G) is a NDR. The result now follows from (A 4.1).

(4) Use that (M,/6,N,/G) is a CW-pair and v, is skeletal. ]

The most direct way to construct PROP-functors from W8 to a PROP €
is to construct a PROP-Functor from the PROP of copses with edge
lengths T (see §1) to § which factors througn the relations (3.1) mo-

dified for PROPs. Let M, be as above. Composition witn permutafions

A
7 on the rignt is given by replacing a twig labelling £ by n e g.
(Recall that composition on the right with © corresponds to composi-
tion with the set operation (n_1)*). This rignt action of S —on M,
commutes witn the G-action, so that Vi actually is a Sn—equivariant
map. A PROP-functor ¥ —> § has to be eguivariant with respect to the
symmetric groups. It induces a PROP-functor W8 —> & provided it fac-
tors through (3.1 a, c) and the G-actions. To avoid considering the

G-action and the Sn—action on M, independently we combine tne two.

A
We decompose Mk as

kS gte}s o Tg%(%’kj)m(j)x ¢
n
and we denote the summand associated with £ by Px,g' An element g€G
maps Px,g onto some Px’n, and n is of tne form r|=§ee(g—1), where
e(g~1) is a permutation which only depends on g. The correspondence
g —> 8{g) yields a homomorphism
9 : G —> Sn

Put PX =P and define a G-action on PA by taking the composite

A,id

Px X G > Mh > Pk

whose first map is the G-action on MX and whose second map is induced

by the homeomorpnisms PX —_ Px wnich forget the Sn—coordinate.
’

g
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Hence A€P, and g(h)e 8(g) € P, o(g-1) 2T related by iterated appli-
cations of (3.1 b).

Let Si denote the subgroup of isomorpnisms of 6KxL(i’i)' Then Si

acts on the rignt of B(i,k) by composition. We note for future use

Lemma 3.10: If each %(1,k) is a free Si—space, then G acts freely on
r,. 1
If 1 is the source of the trees of P, and k their target, we can
define a G-action on €(i,k) for any PROP & by
-1
g(a) = a-08(g )

If we put Q = Nk n Px,g and sz NA n Px, we have a G-equivariant

A,E
"characteristic" map
w, o (P,,Q,) —> (WB(L,k), W7 8(1,k))

sending trees to their corresponding morpnisms. It snould be stressed
that the G-action on Px is not the restriction of the G-action on MX.

Composing the image of u, with all elements of Sn from the rignt, we

A
account for all morpnisms represented by the elements of M,, and as

A runs through a complete set of representatives of snape orbits, we
account for all morphisms of Wd.

The treatment of the L-nomogeneous case differs only sltightly. Let
us call k, the K-colour and k, the L-colour of k¥ = (k1,k2)€ KxL. We
only consider tree shapes A for which the twigs have all the same L-
colour, because exactly such trees represent morpnisms in HWB. TLet

M, be as before. The elemcnts of M, satisfying (%3.8) (i) or (ii) re-

A
present morpnisms in HWT—1$, but not necessarily those satisfying
(%.8) (iii), because the tree might not decompose into representatives
of morphisms in HWB. It does decompose "correctly" if there is a col-
lection of edges of lengths 1 which separates the tree into a copse

and a tree wnose twigs have the same L-colour. To deal with this phe-

nomenon we refine our filtration. Let HW ’38 be the subcategory of
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HW8 generated under composition by copses whose trees represent ele-

r-1

ments of HW" '8 or have exactly r internal edges of which at least

r—Tﬁ

r—-q have length 1. Note that HW' ’°8 = HW and HW’'T8 = HW'B. Con-

sequently, let Mk a be the subspace of those trees of Mx which have
b

at least r-q edges of lengths 1, Px,g,q = Px,g n Mx,q and Px,q = dedgf

q20, represents an element of er,q—1$

1

(3.8%) An element of M,

»q’
1 r-1

(by convention HW '’ '8 = HW' '8 and HW '8 contains exactly the per-

mutations) iff one of the following conditions nolds:

(i) Some vertex label is an identity

(ii) Some internal edge nas length O

(iii) There is a collection of edges of lengths 1 which separates
the tree into a copse and a tree wnose twigs all nave the same IL-
colour

(iv) There are more than r-q internal edges of lengths 1.

The first three cases characterize the elements of MX q representing
14

™13, Tet Q, q be the set of all elements of P
1]

morpnisms in HW
iy A,q

satisfying one of the conditions (3.8*). The G-action on Px restricts

to a G-action on the pair (Px q,Q ), and we again have G-equivariant

A,q
characteristic maps

. — Tr,q : r,q—‘1 3
gt (B 00 ) —— (I3, BT 9B (1, 0))

An anaslogue of Lemma 3.9 for the L-nomogeneous case can be proved in
the same manner,
Let € be a topological category with finite products. Let

X1,X2,...,Xn € ob €. A permutation w € Sn defines a map

m: X X «ee X X — X1 X wee X Xn

1 mn
the obvious shuffle corresponding to the set operation (n—1)*. For

eacn k€K we take an object Xk of € and define Xi for i={i1,...,in} to
be the object X; x...x X; . We then have a G-action on G(Xi,Y) by

-1 n =

gla) =a-e(g ).
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Definition 3.11: Let & and €' be topological categories with finite

products, let 8 be a partly nomogeneous PROP and 83' a partly homo-

geneous PRO. A functor P : € —> @' is called multiplicative if it

is continuous and preserves products. A functor G : 8 —> € is called
multiplticative if it is continuous, maps @& to the product bifunctor

X, and preserves permutations. A functor H : B8' —> §' is called mul-
tiplicative if it is continuous and carries & to x. The last two cases

are equivalent to saying that G is a B-space and H a B3'-space in €.

Lemma 3.12: Let € be a topological category with finite products and

B8 be a (KxL)-coloured PROP as above.

r,q-1

(a) Given a multipticative functor F : HW 3 —> & and a collection

of G-equivariant maps f, : P)\’q —> &(Fi,F(k)) extending F . (uk,q‘QMq)’
one for each shape orbit of trees with r internal edges, tnen there

is a unique multiplicative functor F' : HWT*%8 —> & that extends F
and satisfies F'e u)\’q = fx for all a.

(b) Suppose given for each r and each q>0 a multiplicative functor
gt AW '98 —> § such that Fooqot *,q-1

Fr,o = Fr—1,r—1)'

F : HW8 —> § such that F|HW ’%8 = F. o for all r and q.

(¢) Both (a) and (b) also hold if we replace & by a PROP and the word

= Fr,quW 8 (here put

Then there exists a unique multiplicative functor

multiplicative functor by PROP-functor.

Proof:(a) Since F' has to be multiplicative, a representative AEPX £.q
y 2
has to be mapped to fX(Ab §_1). This determines a map of the space of
all representing trees of AW 98, Since the fA are equivariant, ex-
tend F «(ux,qu
Q

\ q)’ and eacn decomposable morpnism of PA q lies in
b s

\,q this map factors through a functor T 98 —> €, the required
functor F'.
(b) is an immediate consequence of tne homogeneous version of (3.7 bh

The proof of (c¢) uses tne same arguments. ]
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Remark: A similar result, witnh no group actions, holds for PROs.

Definition %.1%: A family of functors H(t) : € —> D, t€I, of topo-

logical categories is called a homotopy of functors if H(t)(e) is in-

dependent of t for all e € ob € and the functions
le,e') x T —> D(H(0)(e),H(0)(e')) given by (f,t) > H(t)(f) are

continuous.

Let us state a first application of (%.12). Given a subcategory ®

of HWB, we denote tne space of all elements of PX q wnicn represent
3

a morphism in ® by DX q° We call ® an admissible subcategory if eachn
’

is closed in P, q and each pair <Px,q’Q U nyq) is a G-NDR

Dy.q A,q
and if ae¢ b or 2a@b are in ® then so are a and b.

Proposition 3.14: Let ® be an admissible subcategory of HWB. Suppose

given a multiplicative functor F from HWB to a topological category
€ with finite products and a nomotopy of multiplicative functors
H(t) : ® —> €& such that H(O) = P|®. Then there exists a homotopy of
muitiplicative functors F(t) : HWB —> & extending H(t) and F. The

game nolds if we substitute € by a PROP and use PROP-functors.

Proof: Let F_j’q(t) be any nomotopy of multiplicative functors from

w109 to & extending H(t)|Hw—1’q$ N 9, Inductively suppose we have

r,q-1

defined a nomotopy of multiplicative functors Fr,q—1(t) : HW 3—> §

r,q-1

extending tne restriction of H(t) to HW 3 N D, Using (3.12) we

only have to define a homotopy of G-equivariant maps
£00) + By o —> &P 9TN(4) (1), 727 (4)(K)) extending Fou | 2w =0 end
b

X,
Fr’q_1(t)o(u D, U Q ). Tnis is possible because D is admissible. ]}
A,q'TA,q A,q
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3. LIFTING THEOREMS

Let B be a (KxL)-coloured PROP as in the previous section. We
first show that the augmentation functor ¢ : HWB —> HB is a homotopy
equivalence. Since HW8 — W8 and HB < 8 are full subcategories, this

follows from

Proposition 3.15: For each object i : [n] —> KxL of 8 and each

k € KxL the map ¢ : WB(i,k) —> B(i,k) is a S,-equivariant homotopy
equivalence witn the standard section as nomotopy inverse. If the
identities of B are isolated, the Sn—equivariant deformation Ht of

W8(i,k) into the standard section can be chosen to be fibrewise.

If we use relation (3.1 a*), the statement follows from the proof
of {3.6), but not so if we use (3.1 a). The following proof works for

botn cases.

Proof: We filter Wﬁ(l,k) by the subspaces Fr of morphisms represented
by trees with at most r internal edges. An element of Mk represents

e morphism in F iff (3.8)(1i) or (ii) nolds. Let R, be the subspace

r-1
of M, of those elements. We know from (A 2.4) that R, is a G-equivari-

ant SDR of M, . Hence RK/G is a SDR of MX/G' The S -action on M, given

by nm : P > P

A2 T a,mT e
MK/G. Since F_ is obtained from F_ _, by attaching MK/G by the obvious

makes Rx/G into an S -equivariant SDR of

Sn—equivariant map RK/G —_ Fk—1’ the space Fr—1 is an Sn—equivariant
SDR of F_. It follows from (A 4.5) tnat tne standard section F_ is 2
Sn—equivariant SDR of wB(i,k).

If 8 has isolated identities, we may restrict our attention to the
space of those trees which do not have an identity as vertex label,
because this space is open and closed in the space of all trees. We

then can take the deformation Ht of the proof of (3.6). .
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Definition 3.16: Let € and ® be topological categories. A continuous

functor ¥ : € —> 9 is called a homotopy equivalence if it is bijective

on objects and each F : €(X,Y) —> ®(FX,FY) is a nomotopy equivalence.
If € and ® are PROPs or topological categories with finite products

and F a PROP-functor or multiplicative, we call F an equivariant equi-

valence if it is bijective on objects and each F : &(X,Y) —> ®(FX,FY)

is an equivariant nomotopy equivalence. We call F a fibred homotopy

equivalence (equivariant fibred equivalence) if each F: §(X,Y) —>3(FX,FY)

nas a (equivariant) section and there is a (equivariant) strong de-
formation retraction Hy ¢ &(X,Y) —> &(X,Y) into the section such
that Fe Ht = F for all t€I.

We use the following theorem to replace naturally occurring PROPs

by the artificial bar construction PROP W3.

Pheorem 3.17 (Lifting Theorem): Given a diagram consisting of a (KxL)-

colured PROP B, IL-homogeneous (KxL)-coloured PROPs € and 9, an admis-

sible subcategory B of HLWB, PROP-functors F and G, a continuous

functor H' and a homotopy of functérs K'(t) : 8 —> & from F o (¢|8)

to GeH', both preserving objects, ®, and permutations. We assume
(i) 6 : ® —> § is an equivariant equivalence for all i and k

OR (i) @

9 —> € is a nomotopy equivalence and each 8(i,k) is a
numerable principal Si—spaCe (see Appendix III) for all i and

k.
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Then:

(A) There exists a PROP-functor H : HLW3 —> 9 and a homotopy of PROP-
functors K{%t) : HLW% —> § from Foe to ¢ eH extending H' and
K(t).

(B) Given two PROP-functors Hy,H, : H W8 —> 9 and a homotopy of func-
tors L'(t) : 8 —> 9 from HO\% to H1l% preserving @ and permuta-
tions. Purther given homotopies of PROP-functors Kﬁﬁ%K{ﬁ:}&yﬁ—c>G
from Fe g to G eHo respectively from Fe e to G oH1 and a homotopy
of nomotopies K'(t1,t2): g —> G,(t1,t2) € IZ, preserving @
and permutations, such that K'(O,t2)=Ko(t2)lﬂ,K'(1,t2)=K1(t2)|%,
K'(t1,0) =Pe(c|B), and R'(ty,1) = Ge L'(t4). Then there exists
a nomotopy of PROP-functors IL(t) : HiW8 —> 9 frbm Hy to Hy and
a homotopy of homotopies of PROP-functors K(t1,t2) : Hi W8 —> ¢
extending L' and K' and such that K(t1,0)=Fo ¢ and K(t1,1)=L(t1).
In particular, H of part (A) is unique up to a homotopy of func-

tors.

Proof: We construct H and K(t) by induction on the skeleton subcate-

gories of HWS using Lemma 3.12. Suppose we have defined H and K(t) on

awt 9718, 1o extend, we need G-equivariant maps h, q° P, N —> 9(i,k)
b r
and G-equivariant homotopies kx(t) : Py q > ¢(i,k), already given
’
on Qk,q U Vl,q and satisfying kl(0)=F- seuy o and kk(1)=Go h,, one

for each shape . of a complete set of shape orbits of trees in HW'B,
These maps are provided by Theorem A 3.5. To be able to apply the
second part of this theorem, we nave to verify that nyq is a numer-
able principle G-space. Let U(i,k) = {Ur} be a Si—numerable open

covering of B(i,k) with numeration A : 8(i,k) —> I. Recall that

U

r
T . . ) r . .
}?)\,q = Iq X“L %(ll’kl)x {id}, wnere Ii c I~ is the subspace of all

points with at least r-q coordinates of value 1. The G-numerable

cover T of PA q consists of the open sets W = Ig xTrLUL x {id} with
b

U, € u(iL,kL) and has the numeration
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A Ig xTy 8(i,,ky) x {id} —> T

Wi
)

(£,04,.00,b,,id) —> xU1(b1)- ceerg (b

n
If gWn W =g for g¢G, W € ®, and xgw(gx) = kw(x), x€W, then Pl,q is
a numerable principal G-space by (A 3.2). An element g€¢G permutes some
of the coordinates of Ig and some of the factors ﬂ} %(il,kl). More-
over, there is at least one factor %(i,k) which is kept fixed in it-
self under g but changed by a permutation m € Si' Since %(i,k) is a
numerable principal S, -space (Uen*) N U = ] fo; U ¢ u(i,k). Hence

gW N W= @g. Since Ay is defined factorwise, we obviously have
kgw(gx) = kw(x).
The proof of part (B) is analogous. Just replace the pair

P
( A,q’Qx,q

gerve that nk: Px,q

are already given on P, q 3T u (Q

U Vx,q) by the product (Px,q’Qx,q U v, )x (I,3I) and ob-

A,q

x I =—> B(i,k) and the homotopy k)\(tg:P)\ oI &4,k
’

x,q "V th) x I and that kx(o)(x,t)

has to be Feo cou, q(x) for all t¢I. J§ .

Remark 3.18: The tneorem is stiil true, by the same proof, if we re-
place € and D by topological categories witn finite products having
the same objects and all PROP-functors by multiplicative functors.

Then, in addition,we have to assume that G : ® —> § preserves objects.

Remark 3.19: By the same proof we can actually show a slight generali-
zation of the lifting theorem, which has some practical value. If we
only assume that G : ®(i,k) —> &(i,k), i : [n] —> ExL, is an equi-
variant nomotopy egquivalence for ns<r, or an ordinary nomotopy equi-
valence and each 8(i,k) is a numerable principal Si-space for nsr,
wnile all the other assumptions are kept, we can ";%tend" H' and K'(t)

over the PROP-subcategory QrWE of H,WB generated by the morphisms of
L L

HLW%(E,k), i : [n)] —> KxL, with nsr.
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The results (%.17), (3%.18) without group actions hold for PROs.

One would obviously like to nave Ge H = Pee, This is in general
not possible, but under additional assumptions on F and G we can

acnieve this.

Theorem 3.20: Given a commutative diagram with a (ExL)-coloured PROP

8, L-homogeneous (KxL)-coloured PROPs € and ®, an admissible subcate-

B

I~

W3 )

| |

B ———F—-> iy

gory B of HWB, PROP-functors F and G, and a2 continuous functor H'

preserving objects, @, and permutations. We assume

(i) & is an equivariant fibred equivalence

(ii) each ig, ¢ 8(k,k), k € KxL, has a closed neighbourhood X, such
that (Xk,{idk}u fr Xk) is a NDR and F(Xk) = {idk}c 6(k,k). (fr=
frontier in B(k,k))

Then:

(A) There exists a PROP-functor H : HLW% —> 9 extending H' such that
GeH =Foce

(B) @iven two PROP-functors Ho’H1 : HLW$ —> 9 and a homotopy of PROP-
functors K'(t) :+ 8 —> 9 from H |8 to Hy|B such that GeH =Fee=GeH,
and G<«K'(t) = F «(e|B), there exists an extension Kﬁﬁ:ﬂﬂw-—4> b))

of XK'(t) from H, to H, sucn that G *K(t) = Fee. In particular,

H of part (A) is unique up to a nomotopy of PROP-functors.

Proof: For the proof of the theorem a filtration different from the
skeleton filtration seems to be more suited: Let Yk:XE(ﬁdQU frX,).

Let Fp q be the subcategory of HLW% generated under composition by
?
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copses wnose trees represent elements in % or have r internal edges
of wnhich at least r-q nave lengtn 1 and t vertices with labels in the

Yk's, r+t s p. Since F is a closed sub-PROP, it is easy to check

P,q

that HWB is the direct limit of the P We define F_1 to be the sub-

p,q°
PROP generated by B and the identities of HWB. Let A be a tree shape,

a a collection of t vertices of A whose labels lie in the 3(k,k)'s,

and B a collection of r-q internal edges. Let R be the subspace

)\’G"B
of all points of PA q for which each vertex of a has a label in some
’

Xk and each edge of B has lengtn 1. We consider only those spaces

R or Q and observe tnat

A,q A,q
represent morpnisms of some lower

wnich do not lie completely in V
Aya, B

the elements of RX nR

!G'QB X’a"B'
filtration if a' and B' also have t and r-q elements. An element of

the group G may map Rx a,B onto some R We take one space in
s ’

A,at,pgte
each orbit of spaces under G. Let G' be the subgroup of G whose ele-
ments map the collections a and f into themselves. The space Rx,a,B
is of the form I% x X x 2, where I% specifies the lengths of the in-
ternal edges not in B, X is an a-indexed product of spaces Xk’ and Z
is tne space of the remaining vertex labels of %. Then A € R)\,a’B re-

presents an element of lower filtration iff A€R! =anxXxZUIquxZ,

a, B
where Y is the (closed) subspace of those points of X with at least

one coordinate in some {idk} " fr X, . Note that, the action of G' on
Rx,a,B permutes the coordinates of 1% and X but does not change them,
in contrary to the coordinates of Z. The functor H to be constructed

is defined already on F_,. Similarly to the proof of (3.17) we in-
ductively have to construct G'-equivariant maps f=fk,a’B:RX’a,B——>>®ng)

already given on R! such that Gef = Foe -(ux qu ). For part
’

Ay, B
(B) we have +to define G'-equivariant maps h : R

A,a,B

N, = (LK)
x I such that Geh(x,t) =

already given on Rk x 3T U R{

s0, B Q. , B
,B)(X)' Both maps are provided by our next lemma. .

= FPeeslu |R

A,q'Th

Lemma 3.21: Suppose (X,A) is a G-NDR, B,Y,Z are G-spaces, G operates
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on 1% by permuting factors and

1
AxBxTPUXxBxoal® ¢ ¥ xBx 1 —% >3x¥x BB

Y 2 > 7,

is a commutative diagram 6f G-equivariant maps with the diagonal
action on the products and q,q' projections. Suppose there is an
equivariant section s of p and an equivariant nomotopy H :idY > geDp
such tnat p °Ht = p for altl t€I. Then there exists an extension

h:Xx Bx I —> 7Y of f such that pshn = gegq.

Proof:Define an equivariant map P! :(AxBxIrl UXxBxaIn)x I— Yy Px,bu,t)=
Ht(f(x,b,u)). Then F'(x,b,u,1) = sep o f(x,b,u) is independent of u.
Hence F' factors through an equivariant map F:AxBfo“JXxBﬂBfn—-> Y
wnere C denotes tne unreduced cone functor. Let i : I™ < CI™ denote

Ty 1 — cI® as follows:

the standard inclusion. Define a map k : I
Eacn point of 1" x I lies in a unique line segment from zzﬁgéyu”%uﬂ
to a point (x,t)€¢ T® x 01y 3I™ x I. Map z to the cone point and (x,t)
to i(x) and the rest of line segment linearly (here we identify c1®

n+1t
).

with the join of T% x 0 and (%,...,%,1) in R Tet

K = Po(dxk) : AxBxI™T U XxBx3IPxI U XxBxI™1 —> Y.

Since k is symmetric in the coordinates of 1® and F is equivariant,

so is K. Since pe F'(x,b,u,t) = pe £(x,b,u) = z(x,b) and k(3IXIUT™X)=CaT",

we have pe K(x,b,u,t) = g(x,b). Purtnermore K(x,b,u,0)=F(xbu,0)=x,bu.
Since (X,A) and (1™,3,T™) are equivariant NDRs, there exists an

equivariant retraction r' : XxITxI —> (ax1™ 1y ¥x3T™xT U XxIPx1,

wnich we extend to an equivariant retraction
r 1 XxBxI™xI —> AxBxI™xI U XxBxaI™xT U XxBxI™x 1

by taking the identity on the factor B. Define h : ¥xBxI® —> Y by

n(x,b,u) = K -« r(x,b,u,0). Let r'{(x,u,0) = (x',u',t). Tnen n extends
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f, is equivariant and
P 'h(x,b,u) = P°K(X',b,u',t) = g(x',b) = E’,'(X,b) = g 'q(x’b1u)

because g factors througn g'. 1

Remark 3.22: Tne condition (ii) on P in Theorem 3.20 nolds in parti-

cular if B has isolated identities.

Condition (3.20 (iii)) is actually no serious hindrance if we al-
low to change B a bit. Let B' be the following PROP: 3'(i,k) = 3(i,k)
if ifk and B'(k,k) = 8(k,k) U I/~ wnere B(k,k)3id, ~ 1€I. Let °5 and
$ﬁ denote composition and @ in 8. Composition on the rignt with per-
mutations is the same as in 8, Furtner, if b § I < 8'{k,k) for any k,
and a; are morphnisms into basic objects of B', we define b-(a1ou.o%2=
= b vyla, @ ... Oga’) witn o] = id

if ay €I 8'(k,k), and a; = a,

k’ i

otherwise. If b = t ¢ T c 8'(k,k), we define besa = txu (see(3.1))
if a = u € I = 8(k,k) and bea = a otherwise. This determines the
PROP 8! completely. There is a PROP functor €' : 8' —> B given by
et(a) = id, if a € I < 8'(k,k) and ¢'(a) = & otherwise. The corres-
pondence t'(a) = a defines an equivariant non-functorial section

1' : 8 —> 8', and by snrinking the attacned whiskers we obtain an
equivariant fibrewise deformation of B'(i,k) into the section.

Given a diagram of PROPs as in (3.20) with the difference that 3
is an admissible subcategory of HLWB' and the condition (iii) is
dropped, there exists a PROP-functor H : HWB' —> D extending H' sucn
that G eH = Fe ¢, where € is the composite e'e ¢(8') : HWB'—> HB'>H3B.
The analogue to (3.20 B) also holds. The reason for this is that the
composite functor F o c¢' satisfies requirement (iii) and (%3.20) can be
applied with 8 replaced by 8' and F by Fe c¢'. We should remark that
tnese considerations remain true even if (3(k,k),[idk}) is not a NDR.

H Ww8' also supplies an example that (%.20) is not true if we drop

condition {iii). Consequently we cannot expect to obtain commutativity
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in Theorem 3.17. Suppose we nave used relation (3.1 a*) for the defi-
nition of WB', Then e(8') : HW8' —> HB' is equivariantly fibre homo-
topically trivial by (3.6). If condition (iii) of Theorem 3.20 could

be dropped, we would have a commutative diagram of PROP-functors

H )]
HLW% > HLWE'
le(w
e(®) H B
‘ 1d
HL% > HLﬂ

by (3.20 A). This is in general impossible by following consideration:
Let 1(8),1(8') denote the standard sections. Tnen ¢(B') ¢H « 1(B8) de~-
fines a section of ¢' which preserves identities. Since e'l%'(k,k) is
tne identity outside the attached wnisker and since O € I < B'(k,k)
is the new identity in B', this section can only be continuous if the
identities of B8 are isolated (in wnich case, of course, (%.20 (iii))
holds).

A more pictorial description of a WB-action on an object X € IopK
is sometimes useful. Rather than give maps from W8(i,k) to Iop(Xi,Xk)
we consider the maps WB(i,k) x X; —> X, using the full adjointn;ss

in the category of k-spaces.

Definition 3.23%: A cherry tree on X € topK is a representing tree of

a morpnism in W8 with a point of X, instead of a twig label assigned

k
to each twig of colour K. We call this point & cherry.

Thne set of all cherry trees has an obvious topology: Let
T(i,k), i : [n] —> K, denote the space of all representing trees of
Wﬁ(l,k). Then the space of all cnerry trees is the disjoint union of

all spaces
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mx, = U 20i,%) x x,/~ , K€K
ied T i

with (Aeo*,x) = (A,0%(x)) wnhere A € T(i,k), o ¢ S;» and x € Xi'

Examples:

N\ no cherries
k k3 c because
stumps

a trivial cherry
tree

Tne proof of the following lemma is trivial.

Lemma 3.24: Let B be a K-coloured PROP and X € IopK. Tnen X admits a
W8-action iff there are continuous functions Fk : T%Xk —_— Xk factor-
ing througn the following relations

(a) = (3.1 a) for cherry trees

(b) = (3.1 b) for cherry trees and permutations only, the cherries

are permuted with the twigs.

(e) = (3.1 ¢)

() Fk(%]ﬂ(, x€X,

(e) if the tree A with root colour k has an edge of lengtn 1 coloured

]

L so that A = Aj°A,, then Fk<A;x1""’Xn>:Fk(AﬁXP"'JbQ“xq+V"’xn)’

where y = FL(AE;X .,xq), and (x ...,Xq) and (XT,...,Xn>

p+1’t p+1’

are tne cherries of A2 and A in clockwise order.

The relations (a),(b),(c) substitute the relations {(3.1) for trees,
relation (d) implies that identities act as identities, and relation
(e) ensures that composite operations are preserved. I

We close tnis chapter with an application of the lifting theorem.

Proposition %.25: (a) The loop space QY can be made a Wd-space, na-
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turally in Y, i.e. amap f : Y —> 7 gives rise to a Wi-nomomorpnism
af : QY — Q7.

(b) An A -space, 2snse, is a anm—space (see (3.19)). Note that

QWY = wal,

{(¢) An A -map, 2$n<w~, between monoids X and Y is a Q§1W(9I®Q1)-space,
wnich extends the Wd-action induced on X and Y by e(%) : W —> 9 (re-

call, a monoid is an ¥-space).

These results are en immediate consequence of the results of chap-

ter IT1,86 and 7, the lifting theorem and Remark 3,19,

Remark %.26: The usual loop space QY = Top((I,d3I),(Y,%)) is not a
monoid, but the functor Q preserves product. J.C. Moore modified the
definition of a loop space in order to obtain a monoid structure.
Moore's loop space QuY is the space of all pairs (w,a)€ TRx B witn
az0 and w : R—> Y a map satisfying w(t) = s, the base point of Y,

for t<0 or tza. (As usual, YE{= Too(IR,Y) with the function space to-

pology). QMY is a monoid under tne multiplication defined by

(w1,a1)-(w2,az) = (w,a1+a2), where
w,(t) if O<t<a
w(t) _ 1 1
wz(t—aT) if a;st<a,

The usual loop space QY is a deformation retract of QMY. A deformation

HS : QMY —_ QMY is given by

(w,a+s-sa) a<
Hs(w)a) =

(ws,a+s—sa) 221
with ws(t) = w(at/(a+s-as)). The functor Qy has in contrary to Q the
disadvantage that it does not preserve products. It is easy to see

that no loop space functor L, i.e. a functor L such that LY = QY for

all Y € ob Top, can preserve products and be monoid-valued: For other-

wise LLY would admit an action of ®m8>®m = 8 and a result of Dold

cm’
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and Thom [17; Satz 7.1] asserts that any path connected commutative
monoid has the weak homotopy type of a product of Eilenberg-Maclane

spaces, which is obviously not the case in general for OZY.

We should remark that we are not able to prove an analogue of the
lifting theorem for arbitrary theories, because the set operations in-
duced by epimorphisms mess up the skeleton filtration. This is the

main reason why we restrict our attention to PROPs and PROs.



IV Chapter

HOMOTOPY HOMOMORPHISMS

1. MAPS BETWEEN WB8-SPACES

Let B be a K-coloured PROP. Homomorphisms as maps between WB-spaces
will not do, because if we change the collection of underlying maps
fk : Xk —_— Yk of a homomorphism by a nomotopy to maps Eyes the Zie do
not define a homomorpnism in general. We have already seen that s WB-
structure is a B-structure up to homotopy and all coherence conditions,
because the relations of B hold in W8 up to homotopy and the morphism
spaces of W8 have the same homotopy type as those of 8. Similarly we
can substitute 2 nomomorphism by a homomorphism up to homotopy and all
coherence conditions. Since a B @:31 action defines a nomomorphism of
B-spaces, the construction W suggests to take a W(3 ®531)-action on
(X,Y) extending the given WB-actions on X and Y as maps between WB-
spaces. Before we give a rigorous definition, we have to make some
notational conventions:

We denote an element b in tne standard section of W8 by its coun-
ter image in 8. But we note that the standard section is not a functor
and that 8 is not a subcategory of wB.

Recall tnat Qn is the category with objects 0,71,...,n and exactly
one morpnism from p to g if ps<g and none otherwise. If ¢ is the morph-
ism from O to 1 in 8,, we denote the morpnism id, @ c € W(3 ®8)((k,0k,1)
by jk‘ If 8 is monochrome we may drop the index k. The inctusion

functors w8 c W(3B ®$31) replacing vertex labels b by b@id respectively
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b@id1 wiltl be denoted by d1 respectively a°.
A WB-space will from now on be signified by a pair (X,a), where

a 3 WB —> Top is a WB-space with X € Top, as underlying space.
K

Definition 4.1: Let (X,a) and (Y,8) be WB-spaces. A nomotopy nomomorpn-—

ism, for short a B-map, from (X,a) to (Y,B) is a W(3 ®Q1)—space

p : W(B®L,) —> Tov such that pe d® = B and p-d1 = a. The morphism
o(3) = {p(jk)|k€K} in Topy is called the underlying map or carrier

of p. We write a B-map as pair (f,p) where f is the underlying map of
0.

The definition of a B-map can be modified in several ways. Our de-
finition allows operations XxY —> Y and one could argue that we are
not really interested in mixed products nor in factorizations of
morpnisms through tnem. In chapter II, §7, we nave already indicated
that partly homogeneous categories are the adequate tool for this mo-

dification. Let HW(®B 091) = Hy w(%agq).
1

Definition 4.2: Let (X,a) and (Y,8) be WB-spaces. A homogeneous homo-

topy homomorphism, for short a h®-map, from (X,a) to (Y,B) is a pair
(f,p) wnere p : Hw(ﬂ3®91) —> %op is a HW(ﬂ@QQ-space and

£ = [p(J,)|K€EK} € mor Top, such that p+d® = B and p. S

Compared to W(3 391), the category HW(%@&H) has several drawbacks
as we have already mentioned in (II, §7) and (III, §2). Nevertheless,
the Vifting theorem proves that they are manageable. The main object-
ion one could nave is that HWCB@S%) is artificial. For example, let

1theob—

2° denote the object [2] —> {*}x{0,1} whose image is (,0) and 1
ject [1] —> [ *}x{0,1}whose image is (=*,1), then disregarding O-ary

operations the space HW(UA@® 8 )(20,11) is
1
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t=1 t=0 v=0

The vertex t = 1 represents tne operation (x,y) ——> f{xy) and the
vertex u = v = 1 the operation (x,y) > f(x)f(y). One would expect
a copy of I divided in the middle instead. We obtain a copy I from
our model by restricting tne square to its diagonal. This leads to

a third definition of maps. We define a subcategory Lw(3 831) of
HW(3 ®Q1) sucn that b ¢ LW(3 091) decomposes in LW(B 891) iff it de-
composes in W(B®Q1)- so it does not nave one of the drawbacks of
HW(EQQQ' —/ and moreover the morpnism spaces are the intuitively
correct ones. Although LWCB@XH) is manageable it is too complicated

to work with.

Definition 4.%: (inductive) We call a tree in HW(® 091) level if it

nas no or one vertex, or if the following nolds: When we stretcn the
tree by dividing all its edge lengths by the length of its longest
edge, so as to produce some edges of length 1 and a decomposition of
the tree in W(3B 8531), we require this decomposition to be a decompo-
sition into ltevel trees. Let LW(#8 @81) be the subcategory of HW(® 091)

generated by level trees.

Note in particular that the decomposition nas to be a decomposition
into trees of HW(ZBQQQ. It follows that the t-edge and the diagonal
of the square are the only level trees in the space of the previous
example. We now can define a third type of map between WB-spaces
using LW(3 081) instead of HW(8®2,).

Since Lw(ﬂ4sﬁ1) is too complicated, we will only consider maps as



- 98 -

defined in (4.1) eand (4.2). In some sense it does not matter wnich
sort of maps we take, as our next result will show. Before we state
it, ltet us give a reason wny we work with 3-maps and n8-maps. In spite
of the drawbacks of HW(3B @Q1) a nB-map occasionally has advantages
over a B-map, One would expect that it is easy to define the compo-
site of a B-map or nB-map witn homomorphisms. This is not quite true

for B-maps.

Definition 4.4: Let f :(X,a) —> (¥,8) and n : (Z,y) —> (W,8) be

homomorphisms of W8-spaces. Let (g,0) : (Y,B) —> (Z,y) be a B-map,
and (p,7) : (Y,B) —> (Z,vy) a nB-map. Define composites (gof,p)=(g,p0)* T,
(pof,7) = (p,m) ef, and (hep,n') = he(p,m) as follows: Let

a € W%@QQ(Lk)amibG H Mﬂeﬁﬂ(ix).Thm1RaLFHﬂ,andn%b)

Q
1

are given by a,B,y, or 8 unless k has 91—colour 1, and at least one

i, €ei-= {11,...,in} or eacn j_. € j = {j1,...,jn} has g,-colour 0. In

this case we define

o(a)

7(b)

p(a) e (fix...xf})

m(b) o £

m'(b)= nemn(b)

-t

where f.= idZ respectively f if ir has 91—coLour 1 or 0. We call the

so-defined composites the canonical composites of a B-map or hB-map

with a homomorpnism.

Remark 4.5: We cannot in general define a composite h e (g,p) = (hag,0),
for let p(a) : YxZ —> 7 be the action of a particular a € W(3 091)
under p. Then p'(a) is a map YxW —> W which we cannot obtain from hn

and p(a). ALl we get is that the required map p'(a) has to make the

sgquare
a XxY o(a) > Y
lidxh lh
Xx 7 > 7

p'(a)
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commute. S0 we say that (nh eg,p') is a canonical composite h «(g,p)

if the following holds: Let a € W(3 091)(1,L) where 1 has 8,-colour 1,

let y, =2z, € X if i(r) = (k,0) € Kxob 8,, and y_ €Y, and z = h(yr)

if i(r) = (k,1). Then

p'(a)(z1,...,zn) = h(O(a-)(y1v"'!yn))

Proposition 4.6: Given a map of WB-spaces f : (X,a) —> (Y,8). Then

(a) f admits a B-map structure iff it admits a hB-map structure
(b) £ admits a hB-map structure iff it admits a level-tree map struct-
ure, at least if the category LW(3 991) is constructed by using

relation (3.1 a*).

Proof: LW(® 091) < HW(® 091) < W(3 @31). Hence if f admits a B-map
structure it admits a hB-mep structure, wnich implies that it admits
a LeyeL—tree map structure.

Conversely given a funetor p : LWU3®Q1) —> Top such that p -d1 =a

and p e d°

= B. The restriction of the deformation H, of (%3.6) stays
inside LW(3 ®8,). Therefore we cen apply the lifting theorem witn

G =¢: IN(Be@g,) —> H(3®3,), 3 = LW(83®0,) and H' the identity.
Hence there exists a retraction functor R : HW(B GSH) —> LW(® ®E1)
and therefore an extension of p to HW(Beﬂq).

Now suppose (f,p) : (¥X,a) —> (Y,B) is a nB-map. Let ¥ be the sub-
categoéy of W(8 ®Q1) generated under composition and @ by the morphisms
of HW@3®Q1). Then p extends to an action p : ® —> Top. Let

e : 9 —>B@8, be the restriction of tne augmentation W(Beg)—>308,.
We show that each morphism space 9(i,k), i = {i1""’in} can be de-—
formed equivariantly into a suitable section of ¢|9(i,k). If all

ir € 1 and k nave the same 31—coLour the deformation is given by
Prop. 3.15. Suppose that k has 91—coLour 1 and at least one ir the

QT-coLour 0. Then each representing tree of an element of 9(i,k) can

be decomposed in 9 into A."(C.l ®... eCn)- g%, wnere A is a tree whose
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twigs all nave g,-colour 1 (A may be the identity), the twigs of each
tree Ci all have the same 81—coLour 0 or 1, and € is a permutation.
The deformation is defined in steps. We first shrink all edges of 8,-
colour O using the deformation of Prop. 3.15. We end in tne space T

of all morphisms of S(i,k) representable by trees whose internal

edges all have 91-coLour 1. The next step replaces eacn twig of colour

(k,0), k€K, by
(k,0)

I
B (x,1)

where t runs from O to 1. Finaily we shrink all internal edges which
are not the outgoing edge of a vertex with label jk, using the
deformation of (3.15). All three deformations stay inside ®(i,k). The
composite deformation deforms ®(i,k) equiveriantly into a subspace
which is mapped homeomorphically ontoiBQSH(i,k) by €. We now apply
the inhomogeneous lifting theorem with B generated by d1w%Ud°W%UUk&€K}
and H!' the inclusion. {We cannot take B = D becsuse an indecomposable
a € mor ® could be decomposable in W(B®Q1)). If H : w(8081) —> 9

is an extension of H', then p o H defines a B3-map structure on f. [ |
p

2. COMPOSITION AND THE HOMOTOPY CATEGORY

Unfortunately we cannot tske B-maps or n8-maps as morphisms in a
category for lack of a definition of the composite of two morphisms,
unless we are in the situation of Def. 4.4. The phenomenon is seen at
its simplest in the case of n¥-maps f ¢+ X —> Y and g : ¥ —> 7 be-
tween monoids. There we are given nomotopies H : f e Ao = Ay e (faf)
and K : gel, = A,*(g@g). We deduce that he X, > A, e (n@n), where

h = gef, but not by any homotopy that is going to meke composition
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associative.
Instead of a category we can define a simplicial class naving W8-
spaces are vertices and B-maps respectively nB-maps as 1-simplexes.
Observe that a functor 8, — 8, is uniquely determined by an
order-preserving map of the sets of objects {0,1,...,n}—>{0,1,...,m}.

i, i,
Let 6n HER] —_— Qn and o : 8

a i1 — 8, 1 = 0,1,...,n, be the

n-1

functors corresponding to the maps

jo <
{c,1,...,n~1} 33 —> ¢ {0,1,...,n}
j+t j=i
respectively
jo st
{0,1, ..,n+1}13 j —> € {0,...,n}
-1 >

Definition 4.7: We define simplicial classes R and Rh% by taking as

n-simplexes all W(3 ®Qn)—spaces W(3 an) —> Top respectively all

N W(*B@Qn) —> Top. The face and degeneracy ope-

HQnW(ﬂi ® Qn)-spaces H ;
rations d and s’ in Ry and R 4 are given by d;(a) =a -W(Bi®6;) and

i,y L i
sn(a) = Wﬁdwon).

Recall that d' and s® have to satisfy following identities which

o o N . o i i
follow from the dual formulae for 6n and o

n:
atad = g3 7qd 1<j
sisj = sj+1si i<)
s97 141 i<j
alsd = {ia i,1-1=3
g9q* i>j+1

In order to simplify the notation we give an alternative descrip-
tion of the representing trees of W(ﬂt&ﬂn). In genersal, a tree is

given by its underlying graph and its twig and vertex labels, because
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the vertex labels determine the edge colours (we identify the trivial
trees with the trees having exactly one vertex and an identity as
vertex label). In our case, each vertex label has the form a@b and

b ¢ Qn is uniquely determined by its source and target. So if we spe-
cify the Qn—coLours of the incoming and outgoing edges of this vertex
and use only the B-part a of a @b as vertex label we can recover the
original vertex label and hence the original tree. We use this new
description, wnicn works for all categories B@® &, where € is a dis-
crete topological category witn at most one morpnism between any two
objects. Given a W(B® C)-space p we also frequently colour tree edges

by the underlying space p((k,c)) instead of (k,c).

Definition 4.8: A simplicial class R satisfies the restricted Xan con-

dition if given (n-1)-simplexes S SERRREE SUPES .1X,, where

r+1?°°
O<r<n, such tnat d3_1xi = dlxj for Osi<jsn, i,j$r, then there exists
an n-simplex x sucn that dtx = x5 for i#r. In other words, R satis-
fies the usual Kan extension condition, except tnat the omitted face

in the data is not allowed to be the first or the last.

Our next result implies that the simplicial classes Ry and R.p ere

good substitutes for categories.

Theorem 4.9: The simplicial classes Rg and Rh% sgtisfy the restricted

Kan condition.

Proof: Since the argument is the same in botn cases with exception

that we use Hy W(meﬁn) for R, 4 instead of W(BQQn), we only prove
n
tne statement for RB' Suppose we are given (n-1)-simplexes

PoreresPp12PpyqreeerPy ¢ W(%G»BH_T) —> Top for r £ O,n sucn that

qd-? ;= dlpj for Osi<jsn. Let & be the subcategory of W(3 @Qn) ge~—
nerated under composition and @ by the "faces" diw(%c>8n), i + k, the

p
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images of W(i‘ieﬁn_,l) under W(Id@éi). So diw(fﬂaﬁn) is the subcategory
of trees containing no edge coloured i. Define a multiplicative functor
P : € —> Top by 'p'ldiw(%esn) = ;. {(This is possible since W(Id®6i)
is an inclusion). We show that thnere is a multtiplicative retraction
functor W(3 Qﬂn) —> §.

Consider the pairs of spaces (w(%4@2n)(i,k),6(i,k)). We deform
w(%eszn)(;,k) equivariantly into &€(i,k) in steéps. We first shrink all
internal edges coloured O by the deformation of Prop. 3.15. We next

replace eacn twig coloured O by

; de
(k is the B-colour of the twig determined by the vertex label at its
bottom) where t runs from O to 1 (compare the proof of 4.6). At tne
end of this deformation the tree can be decomposed into a tree with
no edge of colour O and a copse with no edge of colour n and hence
represents a morpnism of €. Therefore the composite homotopy deforms
WUB@QB)(i,k) into €(i,k), keeping &(i,k) inside €(i,k). So the in-
clusion functor i : € < WUBQQD) is an equivariant equivalence and
hence, by Prop. 3%.15, the composite ¢+ i1 : § —> 38 82n, too. We now
apply the lifting theorem (3.17) with B8 = € and H' the identity to
obtain a retraction functor R : W(3 @Qn) —> §&. The n-simplex p=p « R
satisfies di(p) = py, 1 £ r, as desired. ||

Theorem 4.9 provides us with all we need. Given B-maps or nB-maps
(f,p) : (X,a) —> (Y,B) and {(g,n) : (Y,8) —> (Z,y) there is a 2-

simplex o : W(® QBZ) —> Top respectively o : H, W(B QBZ) —> Top

Y]

2
suci that d%°(o) = x and d%(g) = p. The third edge d1(o):w(ﬂoeg—> Top
respectively HQ w(m@s%) —> Top, which is some B-map or hB-map

(n,m) : (X,a) —> (Y,B), is called a composite of f and g. Of course,
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this composite need not be unique,.

Definition 4.10: Given any simplicial class ® satisfying tne restrict-

ed Kan condition, we call two edges f and g in R® nomotopic and write
f = g, if there is a 2-simplex ¢ with dz(c) = f, d1(o) = g and d°(0)

is degenerate. This implies in particular tnat 4 (f) = d'(g), i=0,1.
From now on we assume that any simplicial class we consider satis-
fies the condition that any collection of edges with given end points

forms a set.

Lemma 4.11: The notion of nomotopy is an equivalence relation on tne

set of all edges witn given end points.

Proposition 4.12: Let @ be a simplicial class satisfying the restrict-

ed Kan condition. Then there is a category, the fundamental category

of &, which has the vertices of ® as objects and the nhomotopy classes

of edges f with a°r = y and d1f = x as morpnisms from x to y.

The proofs of tnese results are fairly standard (compare the theory
of the fundamentsl groupoid of a Kan complex). We include them for the

sake of completeness.

Proof of 4.11:

(a) Given an edge f, tnen tnere are 2-simplexes ¢ and T such that d%o) and

d=degenerate

0 > 2 0 > 2
f f

Hy

dZ(T) are degenerate, and d1(0) = d2(0) =d%7) = d1(T) = f, namely
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o = s1(f) and 7 = s°(f). Hence f = f.(For the diagrams note that the
face d' is opposite the vertex i).
(b) Suppose f >~ g. By assumption and part (a), the faces do,d2, and

a’ of the following 3-simplex are given,

3
la
T 1 d
Lo 8\
0 > 2
g

Hence we can fill in the 3-simplex by the extension condition, and

the face d1 provides a nomotopy g > f.

(c) Suppose f >~ g >~ h. By assumption and part (a), the faces do,d1,d3

of the following 3-simplex are given

PZSN

Hence we can fill in the 3-simplex by the extension condition, and

the face d2 provides a homotopy f = h. |

Proof of 4.12: We define composition in the same way as for B-maps.
Given edges f :+ x —> y and g : y —> z, there exists a 2-simplex ¢
with % = g and 4% = f. We call d'g =hn : x —> z a composite of f
and g.

(a) If h end k are composites of f and g, then h >~ k: The faces do,d2

and d3 of the following 3-simplex are given, the last two by the as-

sumption that h and k are composites of f and g.
3
fe
1

/f'\K;
0 n 2
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Hence we can fill in the 3-simplex, and d1 defines a homotopy n = k.
{b) £, + x —> y are nomotopic iff there exists a 2-simplex o with
d1(o) =g, d°0) = £, and dz(c) generate: One way the faces do,d1,d3

2

of the first simplex, the other way tne faces do,d ,d3 of the second

simplex are given.

We fill in, and the faces d2 respectively d‘I give the required result.
(c) Given f,f' : X —> y and g,g' : y —> z such that f =~ f' and g >~ g

Then gef >~ g'e f': Consider

0 > 2

The faces d° and d° are given by assumption and part (b). If n is a
composite of f and g, then d2 is given, we can fill in and find, that
h is a composite of f' and g'.

(4) ne(gef) > (neg)ef if defined: Tne faces a°,d', and d° of the

following simplex are given.

3
he(gef) 1'
ry

We fill in and find that he (g +f) serves as composite of f with heg.
So we nave defined an associative composition of the homotopy

classes of edges of & with s®(x) as identity of x. B
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We denote the fundamental categories of R33 and Rh% by ﬁap% respec-
tively naphﬁ. Their objects are WB-spaces and their morphnisms homo-
topy classes, in the simplicial sense, of B-maps respectively nB-maps.
There is a more obvious definition of homotopy, whicn in the case of
A _-maps can be found in the literature (e.g. [21]). We could call two
B-maps [h®-maps] (f,p),(g,r) : (X,a) —> (Y,8) homotopic if there is
a homotopy through B-mesps [hB-maps] from p to x. The next result shows

that the two notions coincide.

Lemma 4.1%: Two 8-maps (nB-maps] (f,p),(g,x) : (X,a) —> (Y,B) are
homotopic in the simplicial sense iff there is a homotopy through B-

maps [hB-maps] (ht’Ht) : (X,a) —> (Y,B) witn Hy = o and Hy = x.

Proof: Again we only prove the B-map case because the proof for h3 is
completely analogous.

Suppose there is a homotopy of multiplicative functors Ht as stated.
Let © be tne subcategory of W(3 992) generated by the faces diw(iﬂ 982).
We identify d'W(3eg,) witn W(3®8,) using W(ld@o’), wnere j = 0 if
i=0and j=11i1if i = 1,2. Define a nomotopy of multiplicative func-

tors LG ® —> Top by

K, |a%W(®®2,) = p : W(Be2,) —> Top

H

‘E ) . D ———
Kyla w(s®@s,) g ¢ W(B®8,) —> Top

K, |a%W(3®8,) = s°(a) : W(B®Q,) —> Top

The functor F = s%(p) : W@BQQZ) —> Top extends K . By (3.14), there

exists a homotopy of multiplicative functors F, : W(Egﬂz) —> Top

t

extending K, and F. By part (b) of the proof of (4.12), the functor

F, s W(%@QZ) —> Yop provides the required simplicial nomotopy.
Conversely, suppose (f,p) = (g,t). Then there is an action

o : W(B®8,) —> Top such that d%o) = p, d'(0) = x, and d%(s) = 8%°a).

Let € be the quotient category of WCBQBZ) by following additional
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relation on the trees:
A tree A whose root has Qz—col,our 1 is related to A'a(a,1 0...$an),
where A' is obtained from A by cnanging all edge colours to 1,

a. = id if the i-th twig of A nhas colour (k,1), and
i (k,1)

g = i = id,

if the i-th twig of A nas colour (k,0).

Let ® be the full sub-PROP of € consisting of all objects
is= {11,...,ir} sucn tnat the 8,-colour of eacn iq is 0 or 2. Since
d2(c) = s%a), the action ¢ factors tnrougn & and nence induces an
action T : ® —> Tgp. The functor s° : W(B ®82) —> W(B @91) also
factors through € and induces a functor m : ® —> W(3 QQT). Define
two functors HO, H1 : W(B 9531) —> 9P, The functor Ho is induced by
al W(?BQS!.I) —_ W(%QQZ). Tne functor H, maps trees whose edges
have all colour O or all colour 1 by d1 too. Now let A be a tree with
root colour 1 and at least one twig of colour O. Then K, maps A %o

At e 0110... ean) where A' is obtained from A by changing edge colours

0O to 1 and 1 to 2 and wnere

. { id(k,z) if the i-tn twig of A has colour (k,1)

* jy ~ if the " moomom o " (k,0)
Because of the additional relation H, is a functor. Note that

TeH =oced =xandTeH, =o-d% = p. If S=e-m:D—>W(BEY) —> BoY,
then € «H_ = € «H; = ¢, because me H = id = me H,. Provided that €
is an equivariant equivalence, we can apply part (B) of the lifting
theorem (3.17) with 8 = a°W(3®8,) U a'W(B®8,) and L'(t) = H |8 to
obtain a nomotopy of PROP-functors H, : WOB®91) —> 9 from H_ to H,
with Ht|% = Ho(ﬂ). Then T «H, is the required homotopy througn 8-maps
from (f,p) to (g,x).

To show that € is an equivariant equivalence, we deform eacn space
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9(i,k) equivariantly into a suitable section of ¢, If k has the @,-
colour O, then each ir €i= {i1,...,in} has Qz-coLour 0 and

?(i,k) = w(3 @91)(1,1{) with € = ¢. Hence (3.15) provides the deforma-
tion. Suppose k has 82-colour 2, then we first shrink all internal

edgea of colour 2 using the deformation of (3.15)., We then replace

eacn incoming edge of colour 1, 1 = 0,1

ufl u = length

of the root vertex by

ull
idy
)1

wnere t runs from 0 to 1. Because of the additional relation we end
in the space of all trees whose internal edges all have colour 1. Now

shrink all internal edges of these trees using the deformation of

(3.15). R

3. HOMOTOPY INVARIANCE AND HOMOTOPY EQUIVALENCES

We first show that admitting the structure of a B-map or nB-map

is an invariance of the homotopy class.

Proposition 4.14: Let (f,p) : (X,a) —> (Y,B) be a B-map [nB-map] and

g t X —> Y a morphism of IopK nomotopic to £, i.e. for each k€K there
is a nomotopy fk = gy Then g admits a B-map [h¥-map]structure

(g,) 2 (X,a) —> (Y,B) such that (f,p) ~ (g,x).



- 110 -

Proof: Let ® < w@3091) be the subcategory generated under composition
and @ by dow(ﬂagp, d1w(iﬂ @91) and {jklkEK} . Define a multiplicative
functor H(t)

and H(+)(3;)

..

D —> Top by H(t)|a®W(Bea,) = B, H(t)|d W(B@e,) = a,

1

hk(t) wnere hk(t) is any homotopy f, > g.. By Prop.
3.14, there exists an extension F(t) of H(t) such that F(O) = p. Each
F(t) defines a 8-map from (X,a) to (Y,B), and x = F(1) has g as carrier.

Hence (f,p) > {g,x) by (4.13). The proof for nB-maps is the same. [ |

Corollary 4.15: Given B-maps or n8-maps (f,p) : (X,a) —> (Y,B) and

(g,x) ¢« (Y,8) —> (Z,y). Then there is a composite (n,n) : (X,a)—=>(Z,)

of (f,p) and (g,n) such that h = g of.

Proof: Let (h',n') be any composite of (f,p) and (g,B). Then there is

an action o : W{(3 982) —> Top with d%0) = 8, d1(o) = n', and

m

0

dz(o) = p. Hence

$id
o |t]1 * eI

?id
5 k
L J

is a nomotopy from g, e f, to n'. Now apply (4.14). §

We next investigate the question how much of a WB-structure on
X € IopK survives i1f we change X by a homotopy equivalence.

Let ¥ be the category BAN of two objects O and 1 such that each
morpnism space contains exactly one element., So an J-space is a homeo-

morpnism XO £ X1.

Lemma 4.16: Suppose p : X —> Y is a homotopy equivalence in IopK.
Then p carries a W(K®93)-structure (or a W3-structure in Topy instead

of Top), wnere we consider K as thne category witn K as set of objects
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and only identity morpnisms.

Proof: Since the identities of K@% are isolated, we need only con-
sider trees which are simplified by relation (3.1 a). So the trees in
gquestion are vertical linear trees with edges coloured alternstely Xk
and Y, (for (k,0) and (k,1)). Let €. be the subcategory of WEK®9y)
generated by all trees with root colour Xk, some k¥, and at most r-1
internal edges, or with root colour Yk , some kX, and at most r inter-
nal edges. The nomotopy equivalence p defines an action @o —> Top.

Suppose we are given an action of 52n' To extend over € we need

2n+1

the actions of the trees

. — Al —

where A stands for a tree with twig colour Yk’ root colour Xk’ and
2n internal edges, wnich we represent by its edge lengths as a point
in IZn‘ Hence we require maps

2n .
£ @ ITXY, —> X nk(t) : I

2ank —> ¥,

which are already given on aIzan because x€Izn represents a morph-

k’
ism in GZn iff x€612n. Now hk(o) is known in terms of SZn because of
relation (3.1 c¢), and we reguire hk(1) = py ° £ . The maps fy and hk(t)
are provided by (A 3.5).

Similarly extend from &, .. to €, ... [ |

This categorical description of a nomotopy equivalence turns out

to be useful for the study of homotopy equivalent WB-spaces. Let
a%,a" : w8 —> W(B@9) u,v : W(B@e,) —> W(383)

and the corresponding partly homogeneous versions be the functors in-
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duced by d°,37 : 8, —> 3, wnere ao°(o) =1, Eﬂ(o) = 0, and E,?:Q1e>3,

wnere u(i) = i, i = 0,1 and ¥(0) =1, ¥(1) = 0.

Lemma 4.17: Given an action p : W(B3®9Y) —> Top [p : HF}W($®3)—> Top ]
then peu and pev : W(Beﬁ1) —> Top [HQ1W(B 091) —> Top)] are B-maps
[hB-maps), which are homotopy inverse to each other, i.e. p e¢eu repre-
sents an isomorphism in the category Rapy [naphﬁj wnose inverse is

represented by pe v,

Proof: Again we only prove the statement for B-maps. We have to de-
fine actions u,v : W(3®8,) —> Tov» such that a°(u) = p e v, a°(n) = ooy,
a°(v) = pou, d2(v) = pe v and d1(u) and d1(v) are degenerate.

Let k,1 : 8, —> 3 be given by k(i) = 0, W(i) =1 for i = 0,2 and
k(1) =1, 1(1) = 0. Thenu = p+ W(Id®k) eand v = pe W(Id ®1) are

actions as required. .
We now pass to the main results of tnis section.

Theorem 4.18: Let ® be a sub-PROP of B such that each (8(i,k),9(i,k))
is an Si—NDR, and ltet p : X —> Y be a homotopy equivalence in IopK.
Suppose_(Y,B) is a WB-space and p admits a W(®®3J)-structure o' such
that p'e a° = B|WD. Then there exists an extension p : W(3®3)—> ZTop
of p' such that pe a° = B. The same holds for the partly homogeneous

version.

Tneorem 4.19: Let ® be a sub-PROP of B such that (8(i,k),®(i,k)) is
an S;-NDR. Suppose (p,m) : (X,a) —> (Y,B) is a B-map whose underly-
ing ;ap p is a homotopy equivalence in topK and suppose p admits a
W(D® §)-structure p' such that p' e (u|w(®e91)) = n]W(®®Q1). Then
there is an extension p : W(3B3®Y) —> IopK of p' sucn that peu = 1.

The same nolds for the partly homogeneous version.
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Before we prove the theorems let us deduce some important consequen-

ces,

Coroltary 4.20: Let (X,a') be a Wd-space and (Y,B) a WB-space such

that (X,a') and (Y,Be i) are nomotopy equivalent as WD-apaces
(i : W9 < w8 is the inclusion functor), Then the Wd-action on X ex-
tends to a WB-action a and the ®-homotopy equivalence (X,a') —> (Y,Be1)

to a homotopy equivalence (X,a) —> (Y,8) of WB-spaces.

Proof: By assumption there is a ®-map (p,n') : (X,a) —> (Y, 1)

wnose underlying map is a homotopy equivalence. By (4.16), p admits a
W(K ®3)-structure. Now apply (4.19) witn ® = K to extend w' to an
action p' : W(®¥®3) —> Top, which in turn can be extended to an action
o : W(B@3) —> Top such that pe d° = B, by (4.18). Thena = pod  is

the required WB-structure on X. I

Corollary 4.21: Let (p,7) : (X,a) —> (Y,B) be a B-map and p a homo-

topy equivalence. Let q be any nomotopy inverse of p carrying a P-map
structure {g,x') : {(Y,Bei) —> (X,a e i), which is nomotopy inverse
to (p,me (i®id)). Then (q,x') can be extended to a B-map (q,n):(Y,8)=>(X,3)

which is nomotopy inverse to (p,m). The same holds for hB-maps.

Proof: Tne action m can be extended to an action p : W(B®3) —> Top
by (4.16) and (4.19). Hence tnere exists a nomotopy inverse {(q',x")

of (p,m) namely " = pev., In particular, pei : W(D®3) —> Iov pro-
vides a homotopy inverse (q',2) of (p,me i), wnich has to be homo-
topic to (q ,x'). By (4.13), there is a homotopy through D-maps
(a4-84) &+ (Y,Be i) —> (X,aei) with (q,,8_) = (a',8) and (gp8)=@n').
Let 8 < W(3 691) be the subcategory generated under @ and composition
by a'W8, i = 0,1, and W(D@2,). Taen (a;,8,) and the constant nomo-

topies on a and B define a homotopy H(t) : 8 —> Tov of multiplicative
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functors such that x" extends H(0). By (3.74), there is a B-map

(q,x) : (Y,8) —> (X,a) extending (q,x') and nomotopic to (q',x"). f

Remark: Corollary 4.21 includes a result of Fucns [21, Satz 4.1] (see
also (1.17) of these notes). Moreover, we provide the first complete

proof of this result available in the literature.

To prove the theorems, we seek to give p a W(8 ®3)-structure, where
we are in effect given the action of a sub-PROP §& of W(83@3). We ex~-
tend by applying the lifting theorem (3%.17) with 8 = € to obtain a
retraction functor W(B®3) —> &, for wnicn we need only show that
the restriction of the augmentation ¢ : W(B3®3) —> B®3 to € is an
equivariant equivalence. We only prove the tneorems for tne inhomo-
geneous version, because they are similar for the homogeneous one.

To make the argument more transparent we denote the elements of €

often by their images under the given actions. For example, the colours

(k,0) and (k,1) are identified with X, and Y, and simply denoted by
X and Y, and the trees
0 1
P = idk and qk = idk
1 0

with Py ¢ Xk —_ Yk are often denoted by p and q. We again label the
vertices by elements in 8, In view of (4.16) we can assume that Dc 3

contains all identities. To mske life easier we prove

Lemma 4.22: Let & be a sub-PROP of W(B®3) containing W(K®3). Then
¢ : §(1,k) —> (38®3)(i,k) is an equivariant homotopy equivalence
provided it is one for i = {i1,...,in} and k such that k and each i,

nas J-colour 1.

Proof: Substitute each X-coloured twig of a tree in sn arbitrary
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morphism space €(1i,k) by

llid

pid

wnere t runs from O to 1. Similarly substitute a X-coloured root by

11X

This deforms €(i,k) into the subspace of trees of the form

veohe (u1e ...eun)

wnere v = g if k has colour X and v = id otherwise, U, =P if ir has
colour X and u, = id otherwise, and A is a tree whose root and twigs

all have colour Y. By assumption, ¢ is an equivariant homotopy equi-

valence on the space of all trees A. .

Proof of 4.18: Take € to be the subcategory of W(B ®3) generated by

W(®®3) and d°(WB). Then & satisfies the requirements for 8 in Theorem
3.17, and p' and B define an action § —> Iop. To show that e : € 5> B8J
is an equivariant equivalence, we take 2 space €(i,k) whose trees

have only Y-coloured root and twigs and contract all internal X-edges
using the deformation of (3.15). This deforms €(i,k) into the sub-
space of all trees with no X-edge, i.e. into W8(i,k), which is what

we need. .

Proof of 4.19: This case is considerably more complicated. Take € to
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be the subcategory of W(B®3) generated by W(¥®3J) and u(w(3 891)).
Then € satisfies the requirements for 8 in Theorem 3.17, p' and m de-
fine an action € —> Top. For the proof that ¢ : € —> 3Q®TF is an
equivariant equivalence, we modify the description of WB®3).

The vertices

X Y
id and id
Y X

are called p-vertices and q-vertices.Any otner vertex not labelled by
en identity is called e-vertex. We consider trees that have only two
kinds of vertices:
(i) p-vertices and gq-vertices (wnich imply changes of the 3-colour)
(ii) vertices in whnich all incoming edges have the same §-colour as
the outgoing edge.
The relations among these trees are tne same as (3.7) with the excep-
tion that edges of length O with an e-vertex on one end and a p~ or
q-vertex on the otner cannot be shrunk. Instead, we nave the notion
of "pushing a p-vertex (or similarly a q-vertex) up through an e-
vertex": Given an edge of length O with an e-vertex at the top and a
p-vertex at the bottom. We replace the p-vertex below the e-vertex by
k¥ p-vertices just above tne e-vertex, separated from it by edges of

length O, one for each incoming edge to tne e-vertex.

X X
e-vertex N
X|o pushing up ’
P e-vertex
Y Y

Then W(B® ) is the quotient of the space of thnese representing trees

modulo the relations (3.1) with the above modification of (3.1 ¢).
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This can be seen as follows: Any representing tree can in a canonical
way be brought into a tree of this form by introducing redundant edges
of lengths O with extra p-vertices and q-vertices., If an incoming edge
of length t of an e-vertex has the wrong colour, X say, we substitute

it by

Simitarly, use q, if the wrong colour is Y. Starting at the root vertex
and working upwards we can change each representing tree inside its
equivalence class to one of the required form.

The set of all e-vertices divides into two classes: b-vertices are
those with labels a € 8 - 9, and d-vertices with a € D, a + id. In
terms of tne alternative description of W(B3®3), the trees that lie

in € sre precisely those that satisfy the separation condition: In thne

directed edge path between any q-vertex and any b-vertex, there is an
edge of length 1.

We filter W(3@3). In view of (4.22), we only consider trees whose
twigs and root nave colour Y. Define the height of any vertex of a
tree to be the number of vertices between it and the root, and the
e-neight as the number of these that are e-vertices. For j = 0,1,2,...
let mj be the number of p-vertices and g-vertices with e-heignt exact-
1y j, and let n be the number of e-vertices in a tree. Then order the
tree shapes lexicographically according to the sequences (n,mo,m1,m2,..).
This ordering is not as infinite as it looks, because m'j = 0 for j>n.
We obtain an induced filtration LN of W(B@3), which has the advan-
tage that it strictly reduces by the application of any relation
(3.1 a,c) in the modified form. To make the definition compatible with
the topology we nave to allow identities as "degenerate" e-vertices,

If u<v in the above ordering, it is easy to see, that the inclusion
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of the representing trees of Fu into the space of representing trees
of FV is a closed equivariant cofibration. Hence it suffices to show
(a) Let ¥ be the space of trees of a given shape in €& with order
(n,mo,mj,...), some mj £ 0, and P! ¢ T the subspace of trees of lower
filtraetion. Then FP' is an equivariant SDR of F.
(v) Let R be the space of all trees of order (n,0,0,...), n = 1,2,...,
then ¢|R is an equivariant homotopy equivalence.
Statement (b) holds, because R is the space of representing trees of
W8, The idea for the proof of (a) is the following: Since roots and
twigs have colour Y, there is at least one g-vertex between a p-ver-
tex and a twig above it. Move all p-vertices as high as possible, to
cancel out the q-vertices. This reduces &(i,k) to W8(i,k), wnich is
wnat we need,

Consider the space of trees of a given shape with Y-root and no

X-twigs and suppose the shape nas ordering (n,mo,mq,...) with some

mj + 0. Let k¥ be the minimal neight of a p-vertex and let P1""Pr+s

denote the p-vertices of height k. Their e-heignt is also k. Hence

mj = 0 for j<k, and m, 2T+s. We first assume that k>0. Let uy be the

length of the incoming edge of Pi’ and vy the length of the outgoing
edge. To take care of the separation condition we induct on the num-
ber of Pi sucn that u; or vy is 1. To be precise, we refine the fil-
tration: Let F be the space of all trees we are considering at present.

Let Fr be the subspace of those trees such that at least r of P1”"Pr+s

(index them P1""’Pr) nave an incoming or outgoing edge of length 1.

Then (F Fr) is an equivariant NDR. Let J = Ix1 U 1xI < 12. Then Fr

r-1’
has the form er(Iz)st, where J¥ is the space of lengths ﬁﬁaﬁ””urag),

(12)S is the space of lengths (u yeee,l ) and H is a

r+1'Vr+1 r+8’ 'r+s

large product of copies B(i,b) and T taking care of all other para-
meters. To obtain the elements of Fr N €, we restrict the H-coordinate
to lie in a certain subspace H' (depending on r) of H. What we want

is an equivariant strong deformetion retraction of Fr n & into
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Q=F

41 N & U {all elements of Fr N § related to a tree of lower or-

dering}. A tree lies in this space if its H-coordinate lies in a cer-
tain subspace H" of H', if (ui,vi)G J for some i>r, or if any u; = 0
(but not if some vy = 0!, because we then cannot reduce inside our
modified space of representatives). Hence Q is of the form

Q = IT(T12)5H" U D(ITx(T2)%)xH', where D(ITx(12)%) = J%x(1%)° is the

subspace of all points (u1,v1,...,ur+s,vr+s) with some u; = O or some
uj =1 or vj = 1 for j>r. We require an equivariant strong deformation
retraction

r ot I5%(12)%xH —> JTx(T12)SxH" U D(ITX(I2)S)xH"
Now H' and H" are unions of subproducts of H, wnhere we substitute
certain factors 8(j,1) by ®(j,1) and I by O or 1, and H" is the sub-
space of H' obtained by substituting a factor B(1,1l) or ®(1,1) by an
identity or a suitable factor I by 0. Since (@(k,k),{idk}) is a NDR,
(H',H") is an equivsriant NDR. Since {(0,1)} is a SDR of J and since
J U OxI is a SDR of IZ, the space D(er(I2)s) is an equivariant SDR
of er(I2)S. Hence r exists. This settles the case k¥x>0. If k is large
enough, e.g. k>n, we have nc p-vertices left and hence no g-vertices,
Therefore we are in the situation (b) as desired.

If k=0, the root vertex is a p-vertex and the space of all trees
of this type in € is of the form IxH', where I is the space of lengths
u of the incoming edge to the root vertex, and H' takes care of all
other paramaters. A tree in IxH' is related to a tree of lower order-
ing if its H'-coordinate lies in some subspace H" of H' as above or
if u=0. Since (H',H") is an equivariant NDR, there is an equivariant

strong deformation retraction
IxH' —> OxH' U IxH"

as required. This completes the proof of (4.19). l



- 120 -

4. RELATING B-MAPS AND n8-MAPS TO W8-HOMOMORPHISMS

Since 8-maps and nB-maps are difficult to work with, it is desir-

able to substitute them by homomorphnisms.

Theorem 4.23%: For any W8-gspace (X,a) there exists a WB-apme U(X,a)=(UXa¥), a
B--map (qu,ga) : X,0) —> U(X,a), and a nB-map (qa,r\a) : (X,2) —> U(X,a)
sucn that

(a) The map q embeds X as SDR into UX.

(v) Any B-map (f,p) : (X,a) —> (Y,B) is a canonical composite in the
sense of (4.5) of (qa,ga) and a unique W8-nomomorphism h : UX,a)—> (Y,B.
(c) Any nB-map (f,p) : (X,a) —> (Y,B) is the canonical composite

he (qa,na) of a unique W8-homomorpnism h : U(X,a) —> (Y,8) and (q,n).
(d) If we cnange (f,p) inside its nomotopy class, then the induced

homomorphnism n stays inside its homotopy class.

Although the definition of a homotopy of homomorphisms is obvious

let us state it.

Definition 4.24: Let B be s PROP. Two nomomorphisms ho,h1 : X —> X

of B-gpaces are called homotopic if there is a homotopy of homomorpn-

isms n, : X —>Y from ng to n,.
Remark: Since the composite of a B-map and a WB-homomorphism is in
general only defined up to nomotopy, part (b) is not particularly

useful.

Proof of the theorem:

For i = {iy,...,i )} € ob B, let i®={(i,,e),..,(i ,e))€ ob (3 @1,),
e = 0,1, Define

(4.25) (U0, = _ywﬁw(wosﬁ(f,ﬁ)xxi/..
ifo =



- 121 -

with {c e a; x.‘,...,xn)—v(c; a(x1,...,xn)), c € HW(B 881)(io,k1),

a € HW(3B 831)(10,_3_0). Here we identify a with its image under

a : W8 —> Top, the WB-structure on X. We give UX ¢ Topy 2 W8 -structure
a* by

bl(eys x9)seeesle; 2 0] = [be(cy @@ ) XyyeeerX,]

where b € W8 is identified with its image under a° : w8 —> HW($®Q1)
and .Y stands for xi1""’xini'

To define the B-map (qa,ga) : (X,a) —> (UX,a*) consider HW(E®81)
as subcategory of W(3®Q1). The functors a and a* determine ga on
d°B8 and d'W8. On elements d € W(%QSH)(;,L) where r = {r1,...,rn}

containg at least one element with Q1—ooLour 0 and 1 has Q1—coLour 1,

the action s is given by
(4.26) d(y1,...,yn) = (de (a10...$an); z1,...,zn)

wnere
(id,,y;)  if ry=(k,0)€Rxobg,

(a,,z.) =
it (ci,zi) if ri=(k,1)€Kxob£!1 and yi=(ci;§i)€(wqK

Tne underlying map q = {qk 2 X, —> (UX)k} is given by qk(x) = (jk;x).
Recall that jk is represented by the tree

X

1dk

UX

Proof of (b): For a B-map (f,p) : (X,a) —> (Y,B) define a W8-homo-

morphism n : U(X,a) —> (Y,B) by
(4.27) n(e; x) = p(e)(x)

The homomorphism h : UX —> Y necessarily has to satisfy (4.27), be-
cause it expresses the condition that (f,p) be a canonical composite
he (qa,ga) for elements c € HW(‘8091). It remains to check that con-
dition (4.5) is satisfied for a ¢ W(EBOQ1)(_1:,L) with r and 1 as above.

Let y; = w;€X if r; = (x,0) and ¥y = (ci,gi), w, = h(ci;gt_i) if
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r; = (k,1). Then

p(a)(w1 yees ywn) = h(g(a)(tﬁ ,--uyn))

because

1)

h(g(a)(y1,...,yn)) ‘n(a.(a1 ®... ean);z.l,...,zn) with a;,% as in{4.26)

"

plas(a,0... 82 ))(z),..0,2)
p(a)(e(a)(zy),.ce,0la )(z))

p(a)(wy,eee,wy)

]

1}

Proof of (c): Tne hB-map (qa,na) : (X,a) —> U(X,a) is given by
ga|Hw(% 991). For any n8-map (f,p) : (X,a) —> (Y,B) define the WB-

nomomorphism n as in (4.27).

Proof of (d): Let (fo,po) = (f1,91). Then there is a homotopy through
B-maps Py (X,a) —> (Y,B). Define the homotopy through homomorphisms

by ht(C; x) = pt(c)(z). O0f course, this works also for hB-maps.

Proof of (a): As usually when working with deformations we use the
tree language. So we first express UX in terms of trees. As in the
previous section we call an edge of 91-coLour 0 an X-edge or X-colour-
ed and an edge of 91—coLour 1 a Y-edge or Y-coloured. Then UX is the
space of all trees with a Y-root, all twigs are X-twigs and to each
twig of K-colour k is assigned a cherry in Xk subject to the relations

(compare (3.24))

(4.28) (a)
(v)

(3.1 a)

(3.1 b) for permutations. The cherries are permuted along
with the twigs.

(e) = (3.1 ¢)

(d) if the tree A has an X-edge of length 1 so that A = Ajed,,
then

(A x1,...,xn)~(A1; xw,...,xp,y,xq+1,...,xn)



- 123 -

where v = a(Az)(xp+1,...,xq), and (xp+1,...,xq) and
(x4,...,%,) are the cherries of A, and A in clockwise
order.
We filter each space (UX)k by subspaces F of trees having at most
n internal edges. In a similar manner as for Lemma 3.9 we can show
(4.29) (a) (Ux)k is the direct limit of the subspaces F
(v) (Fn+1’Fn) is a NDR
(c) if each 8(i,k) is Hausdorff, so is each (UX)k
(d) if 8 is a CW-PROP, then (UX)k is a CW-complex.
The deformation UX —> X is constructed in two steps. Let MX < UX
be the subspace of all trees having no internal Y-edge.
Step 1: Deform UX intoc MX. For this it suffices to deform Fn U MX into
Fhoq U MX. Let QkaxILxXi be a space of trees A in UX, where Q is the
space of vertex labels, ;k and IL the spaces of lengths of X-edges
and Y-edges, and Xi the space of cherries. We intend to shrink the

Y-edges of A. Let DQ < Q be the subspace of elements which can be re-

duced by (4.28 a) and let LIL o IL be tne union of lower faces. Then

A <€ QkaxILxXi represents an element of lower filtration iff

1 k -1

A € DOxTFxI¥xx, U exaTFxT E

k
xXi U QxI"xLI XXi

e

On DQ and on the lower faces of I xIL we may reduce A by (4.28 a and
c) while we may reduce it by (4.28 d) on the upper faces of 1%, S0 we
need an equivariant (because of (4.18 b)) strong deformation retrac-

tion

1 1

xI¥xT XX, —> DOxIFXI X, 11 QTFxI'xx, U exI¥xnrxx;

which exists by (A 2.4) for 1>0.
Step 2: Next deform MX into X. Note that the subspace X of MX con-

sists of the elements represented by the trees

id
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where x is a cherry. Substitute the roots of trees in MX by

o
U
>4

[

=%

where t runs from O to 1. For t = 1, relation (4.28 d) applies and
reduces the tree to one in X. Because of (4.28 a), the points of X

are kept fixed under the deformation. .

Let S)omwQS denote the category of W8-gpaces and nomotopy classes of

WB-nomomorpnisms. We are going to define functors

Map% <___j—_"_ bomwSa ————jT——> muph%
Let £ : (X,a) —> (Y,B) be a WB-nomomorpnism. Define a B-map Jf =
(£,£,) : (X,a) —> (¥,B) by £,/a'W8 = a and on s € W(B®8,)(i,k),
where k nas 8,-colour 1, by f,(a) = 8(s%(a))e(hn x...xh ) with h_=id
1 * 1 n r YL
if i(r) = (1,7) and hr = fL if i(r) = (1,0). The definition of the
induced nB-map (f,f}) is the ssme. It is immediate from the definitions

that J and J' preserve identities. It remains to check that tney pre-~

serve composition:

Lemma 4.30: Let £ : (X,a) —> (Y,8) and g : (Y,B) —> (Z,y) be WB-
homomorphisms. Then (g e f,(gef),) is a composite B-map (g,gy)e(f,fy).

The analogous result holds for hB-maps.

Proof: Define p : W(B @QZ) —> Top by p\dzw(‘li®112 = f, and on morph-
isms a € w(%enz)(i,k) where k nas 8,-colour 2 by o(2)=y(%"(a) (h,]x...x‘nn)
with

id, if i(r) = (1,2)¢ Kxob 2,
y 1

h = g1 if i(r) = (1,1)€ Kxob 8,

gy ° fL if i(r) (1,0)€ Kxob 2,
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Then p - a° = g,, » cal = (g+f)y and p » a? = fy. Hence (gof)y = gyof,

as B-map. The proof for nB-maps is the same. .
As a direct consequence of Theorem 4.23 we obtain

Proposition 4.31: The functors J and J' have fully faithful left ad-

joints

U Mopy —> Qomy gt mnphm —> Qomyy
i.e. there is a natural bijection map%((x,a),(Y,B))ebomwﬁ(U(X,a),(Y,B))
and the function U : ﬂupﬁ((x,a),(Y,B) —_— Qomﬁ(U(X,a),U(Y,B)) is bi-

jective; and analogously for U'.

Proof: On objects, U and U' are given by the construction of (4.23)

and on morphisms by

(X,a) (%54 > U(X,a)
(£,0) 100, 0)
(rrey %8580 L v e

We use the universal property of (qa’ga)‘ Since U{(f,p) is unique, it
follows that U is a functor. By (4.23% b), it is left adjoint to J
with

(gq:8y) @ (X,a) =—> (UX,a*) = JU(X,a)
as front adjunction. Since the (qa,ga) are isomorphisms, U is fully

faithful by adjoint functor nonsense. The proof for U' is the same. I
As a corollary we obtain

Proposition 4.32: The inclusion functor i : HW(3 ®Q1) c W(B 881) in-

duces a functor H : Mapy —> m°ph%’ wnich is an isomorpnism of cate-

gories.
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Proof: Let j : HW(8®8,) c W(B®8,) be the inclusion. Tet

g : W(B ®92) —> Top define a homotopy between two B-maps (f,p) 2nd
(f',p') and T : w(%ssz) —> ¥op a composite (ge f,A) of two B-maps
(g,x) and {(f,p). Then ¢ « j defines a homotopy between (f,p «i) and
(f',p'si) and T+ j sinows that (gef,\A i) is a composite of (g,x ¢ i)
and (f,p e i). Hence H is indeed a functor.

Let (f,p) : (X,a) —> (Y,B) be a B-map. By construction, the in-
duced WB-homomorphism n : U(X,a) —> (Y¥,B) of Theorem 4.23 is the same
for the B-map (f,p) and the nB-map (f,p «i). By definition, U'(X,a) =
U(X,a) = (UX,a*). The morphism U[f,p], wnere [f,p] denotes the homo-
topy class of (f,p), is represented by the W8-homomorpnism h induced
by a composite (qa-f,x) of (f,p) and (qa,ga) wnile U'[f,p i) is re-
presented by the WB-nomomorphnism h' induced by a2 composite (qa-f,k')

of (f,p+ i) and (qa,na). By construction, n

g = Eq ¢ 1. Hence (qaof,koi)

is a composite of (f,pe¢ i) and (q_,n.), and n also represents U'[f,pei].
o’

We therefore nave a commutative diagram
Mapg ((X,a),(¥,B)) = Romg(U(X,a),(Y,8))

H

I}

mupnﬁ((xva)y(Y’B)) bomw(U'(Xya)y(YyB))’

wnicn implies the proposition. .

5. MAPS FROM WB-SPACES T0 B3-SPACES

Any B-space Y is canonically a WB-—space by means of ¢ : W8 —> 8,
Hence we have a good concept of maps from a WB-space to a B-space,
and tnis is one type of maps we study in this section. On the other
hand, the edge lengths are irrelevant in the given W8-action on Y.
This suggests considering the quotient of w(%1281) in which the action

of any tree is independent of the lengths of its Y~edges, which might
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as well be 0. Since we work with a WB-space X and a B-space Y, we
feel that in this connectipn it seems reasonable to aveoid mixed pro-
ducts XxY although we can treat those, too. So we stick to a sort of
homogeneous version. Let us make this precise: In general, we con-

sider sequences of maps

X, =X, —> ... —>X

where XO,...,X are W8-spaces and Xn is a B-gpace. We allow mixed

n-1
terms of Xo”"’Xn—1’ but products including Xn have only factors Xn.

Let € be the full subcategory of W(3 aﬂn) consisting of all objects
i-= {11,...,ir} where the ¢ -colour of any ip is less than n or

iy5-+.,i, all have 8 -colour n. Define Wr(ﬂssag to be the quotient

category of € under the following additional relation on the trees.

(4.33) a tree A is related to the tree obtained from A by changing
the lengtns of all Xn—edges to O (Xn—edges = edges of Qn—
colour n).

In view of this relation, we need only consider trees wnich nave no

Xn-edge with exception of possibly the root. We call such trees tar-

get reduced or simply reduced.

The inclusion functors dl : w(meen_1) —> W(B Qﬁn), O0<isn, induce
inclusion functors

i, .
a- wr(ﬁssgn_1) —_— wr(i%@nn) 0<i<n

qn . Wees, ,) —> W (3es)

Definition 4.34: Let (X,a) be a WB-gpace and (Y,B) a 8-space. A re-

duced 8-map (f,o0) : (X,a) —> (Y,B) consists of an action

p: W, (B3@8,) —> Top and its underlying map £ : X —> ¥ in Topy such

that pe d1 =q ¢ W8 —> Jop and p e a® = B : 38 —> Top.

Observe that Hg1wr(55@Q1) = W.(8®9,) and W (B) = 3.

Before we investigate reduced B-meps let us prove a variant of
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Theorem 4.20 for our usual definition of B-meps.

Theorem 4.3%5: For any WB-space (X,a) there exists a B-space N(X,a) =
(NX,a*) and a B-map (pa,ga) : (X,a) —> (NX,a*e ¢) and a hB-map
(pyomy) : (X,0) —> (NX,a*.¢c), where ¢ : W8 —> B is the augmenta-
tion, sucn that

(2) The map p, is a homotopy equivalence in Top,.

(b) Any B-map (f,p) : (X,a) —> (Y,Be¢), wnere (Y,B) is a B-space,
is a canonical composite in the sense of (4.5) of (pa,ga) and a unique
nomomorpnism of B-spaces N(X,a) —> (Y,B)

(¢) Any nB-map (f,p) : (X,a) —> (Y,B-c¢), wnere (Y,B) is a B-space,
is the canonical composite of (pa,qa) and a unique B-homomorphism

h : N(X,2) — (Y,B)

(a) If we change (f,p) inside its nomotopy class, then the induced

nomomorpnism n stays inside its homotopy class.

Proof: Tne B-space NX = {NXk} is the quotient of UX under tne follow-
ing relation:
(4.%6) (cea; X1""’Xn) ~ (e(c) « a; x1,...,xn) ¢=augmentation
c € HW(B3®9,)(3 k'), a ¢ HW(B®2,)(i% 3") with the notation of (4.25).
Tne B-structure on NX is given by

bl(eqs xq),..0,(e 5 x )] = [(t)e(cy®...@C5 Xqy...,X,]
where ¢ : 3 —> W8 —> HW(B 091) is the composite of the standard
section snd tne functor d°. By (4.36),

[t(b1o bz)o(c1e e Gcr);£1,...,Er]~[t(b1)ot(bQG&He.uO%g;EV.”zr]
so that this is indeed a B-structure. The B-map (pa,ga) and h8-map
(pa’na) are induced by the corresponding maps (X,a) —> (UX,a*). The
B-pnomomorpnism n : N(X,a) —> (Y,8) is defined as in (4.23) and part

(v),(c), and (d) are proved in the same manner as in (4.23), only the

argument of part (a) is different. We will prove it at a later stage.'
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As an immediate consequence of (4.35) and (4.21) we have the fol-

lowing generalization of the theorem of Adams (see 1.11).

Theorem 4.37: A space X € IopK admits a WB8-structure iff it is of the
homotopy type of a B-space. Precisely, if X is of the hnomotopy type
of a B-gpace then it edmits a WB-structure sucn that the homotopy
equivalence carries a B-map structure and any W8-space X is homotopy
equivalent to a B-space NX such tnat the nomotopy equivalence carries

a B-map structure. .

Using reduced 3-maps we snall construct a B8-space MX for any WB-
space X containing X as SDR, which is more closely related to Adams'

construction.

Let Qomy be the category of B-spaces and nomotopy classes of homo-

morpnisms, Define functors

UJtupQ3 < T born,B 3T > maph$
on objects by (X,a) —> (X,a s ¢). A representing nomomorpnism
93831 —> Jop is mapped to its composition with the augmentation
w(3® 91) —> 83 ®8, —> Top. Since » composite in Romy is given by =
functor 8@92 —> Top the derfinition is functorial. Extending the cor-
respondence X —> NX 1o functors N : Dapg —> Romy and N':muph%—> Qomg

in tne same way as in the proof of {4.31), we obtain

Proposition 4.38: The functors N and N' are left adjoint to J and J'.

Moreover, they are fully faitnful. |

We now return to reduced B-maps. To be able to work witn tnem we
need variants of the extension result (3.14) and the lifting theorem
(3.17). We want to prove them using the analogue of Lemma 3.12 for

reduced trees. Define wlli(% ®Qn) as the subcategory of Wr("B QQn) gene-—
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rated by reduced trees witn at most p internal edges. Let Pl be a space
of reduced trees of shape A with p internal edges as defined in (IITI,
§2). Considered as representative of WP(3 Qﬂrg, a tree A in P, decom-
poses only if it is related to a tree of lower filtration p, i.e. A
must lie in Qk' Tnis is different for Wg(ﬁ ssn). If A has no edge of
Qn—coLour n, then A € Px represents a decomposable element of Wr(ﬁ esn)
iff A € QX. But if A has a root of colour n and q incoming edges to

the root vertex, tnen a tree in Px decomposes canonically as the com-
posite of some morphnism b € wg(% esn) with twigs and root of colour

n and s copse of g trees witn roots of colour n and an identity as

label of the root vertex:

r 1
A, A, Aq
m1 m2 mq
= @ ® - (22
° tid Pid Pid
n n n y

-

This requires a modification of Lemma 3.12 (a). Let T, < ob (8 @Sn)
be the subset of all objects i = {i1,...,iq] sucn that eacn ir has
Qn—coLour n., Call a shape orbit essential if its shapes belong to re-
duced trees with no edge of Qn—coLour n unless the space of labels of
the root vertex is of the form B(k,k), k€K. For such a snape A define
Pi = Px if A has no edge of Qn—colour n, and P{ = Px is the subspace

of all trees whose root vertex label is idk if A has an n-coloured

root and tne space of root vertex labels is B(k,k).

Lemma 3.12%: Let § be a topological category with finite products and

let ® c Wr($<89n) be tne full subcategory of objects in T .

(a) Given multiplicative functors F : w£_105®8n) —>§and H:® —>¢
wnich coincide on w£_1($eiag N D, and a colloection of G-equivariant

maps f, : Pi —> §(Fi,P(k)) extending F °(uX|QA n Pi), one for each
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essential shape orbit. Then there is 2 unigue multiplicative functor
F'o: wﬁ(ﬂesn) —> § extending F, coinciding with H on ® n Wi(8388 ),
and satisfying F'o(uklP{) = f, for all A considered. The same holds
for the Qn—homogeneous case if we replace P{ by Pi,q.
(b) Suppose given multiplicative functors H : ® —> & and

Fp : w£($8>9n) —> @, one for eacn p>0, sucn that Fp coincides withn
H on wg(m@en) N9 and with Fp_1 on WI;_1(% ann)'. Then there exists a
unique multiplicative functor F : wr(%ann) —> § such that FI‘-D =H
and FIWEOB@S%Q = Fp. A similar result nolds for the Qn—homogeneous
case,

(¢) Both (2) 2nd (b) hold if we replace € by 2 PROP and the word "mul-

tiplicative functor" by'"PROP-functor".

Proof: Let A be a shape of reduced trees with 8 -root. A tree A in

Pk decomposes canonically and continuously into be A' as illustrated
above. Define f, : P, —> € by fk(A) = H(b)ef(A') where f(A') is given
by the fk of the assumption. This defines G-equivariant maps

fxz Px —> €(Fi,F(k)), one for each shape orbit of reduced trees and

compatible with relation (4.32). Now proceed as in the proof of Lemms

3,12, 1

Using Lemma 3.12% instead of (3.12), we obtain the following vari-
ants of the extension proposition and tne lifting tneorem (we state

them in the generality needed although more general results hold).

Lemma 4.39: Let ©® < Wr(%taﬁn) be a subcategory with the following
properties

(a) If x € ® is of the form x = yez or X = y®z, then y and z are In 9,
(b) The full subcategory of Wrﬂieﬂn) of objects in T is contained

in D,

1 . - 1 1 1 . _ ~
(e) D, N By is closed in P, and (PX’(DX ] QX) n PX) is a G-NDR for
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all essential A (we use tne notation of (3.14) and (3.12*%)).

Suppose given a multiplicative functor F from WrCBQ Qn) to a topo-
logical category € witnh finite products and a homotopy of multipli-
cative functors H(t) : ® —> § such that H(0) = F|D, then there exists
a nomotopy of multiplicative functors F(t) : Wr(8 Qﬁn) —> § extending
F and H(t).

The same nolds for the Qn—homogeneous vergion if we substitute
1 t
Dy UQ S B by Dy (UQ o CB . |
Lemma 4.40: Given a diagram consisting of a K-coloured PROP 3, a

(Kxobsn)—coLoured PROP €, a2 sub-PROP R of wr(a<®9n) generated by some

of the faces diWr(ﬂai%g, PROP-functors F and H', and a nomotopy of
PROP-functors K'(t) : 3 —> B @8  from €|B to PoH'. Let 8" < 8 and
§' < € be the full subcategories whose objects lie in Tn' We require
(a) P is an equivariant equivalence and on €' an isomorpnism

(b) H'|B' = F '« (c|8")

Then there exists a PROP-functor H : Wr(ﬁ @Qn) —> § and a homotopy
of PROP-functors K(t) : wr(%csn) —> ¢ from ¢ to FeH extending H'
and K(t). Moreover, any two such extensions Ho and H1 of H' are nomo-
topic through a homotopy of PROP-functors H(t) : Wr(ﬂ aen) —> € such
that H(t)|8 = H'.

Tne same holds for the Qn—homogeneous version.

Proof:To be able to apply Lemma 3.12* we substitute 8 by the sub-PROP
D of W, (83®8 ) generated by 8 and the full subcategory @ of W (3 eg )
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whose objects are in Tn. The functor H' is substituted by H": 9 — €
given on 8 by H' and on & by F—1-(e|€). We now proceed as in the proof
of (%.17) using (3.12*) instead of (3.12). |

In snalogy to (IV; §2) we define

Definition 4.41: Two reduced B-maps (f,p),(g,n) : (X,a) —> (Y,B) from

a W8-space (X,a) to a B-space (Y,B) are called homotopic, if there is
an action o : Wr(% 602) —> Top such that d°(a) = p, d1(c) = xn, and
dz(c) = s%a).

Definition 4.42: Let (X,a) and (Y,B) be WB-spaces and (Z,y) be a 8-

space. A reduced B-map (h,r) : (X,a) —> (2,y) is called a composite
of the 8-map [nB-map] (f,p) : (X,a) —> (Y,B) with the reduced B-map
(gn) + (Y,8) —> (2,y), if there exists an action o: W_(® @g,) —> Top

(o : er(% @92) —> Top] such that d°(o) = x, d1(0) = i, and d2(c)=p.
If we apply the proof of Lemma 4.13 to reduced trees, we obtain
Lemma 4,43: There exist actions o : Wr(13®$32) —~—> Top [0 er(ﬂoﬁz)éxop]
with d%(q) = p, d1(o) = u,dz(o) = 8%a) iff there is a nomotopy tnrough
reduced B-maps H(t) : Wr(ﬂeﬁ1) —> Top from (X,a) to (Y,B), wnere

8 = a°3°(g), such tnat H(O) = p and H(1) = x.

Corollary 4.44: (a) The notion of homotopy of reduced B-maps is an

equivalence relation. |
The proof of Theorem 4.9 also carries over to give

Lemma 4.45: Let € < wr("8®szn) be the sub-PROP generated by the faces

a'w (8®e ), 1 = 0,1,...,k-1,k+1,...,n with k % O,n. Then tnere exists
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a retraction PROP-functor

> §

w.(3@8 )

The same holds for the Qn—homogeneous version. .
As in (IV,2) this implies

Proposition 4.46: Given a B-map [hB-map] (f,o) : (X,a) —> (¥,8) and

a reduced B-map (g,x) : (Y,B) —> (Z,y). Then there exists a composite
reduced 8-map (n,r) : (X,a) —> (Z,y) of (f,p) and (g,x), and its ho-

motopy class depends only on the homotopy classes of (f,p) and (g,x).l

As a second application of Lemms 4.39, we can carry out the proof

of (4.14) for reduced categories and obtain

Proposition 4.47: Let (f,p) : (¥X,a) —> (Y,B) be a reduced B-map and

g ¢ X —>Y 2 morpnism in topK nomotopic to f. Then g carries a re-

duced B-map structure (g,1) : (X,a) —> (Y,B) such tnat (£,p) = (g,x).}

Corollary 4.48: Given a B-map [h8-map] (f,p) : (X,a) —> (Y,B) and a

reduced 8-map (g,x) : (Y,B) —> (Z,y). Then there exists a composite
reduced B8-mep (h,r) : (X,a) —> (Z,y) of (f,p) and (g,n) such that
h=gof..

We next prove the analogue of (4.34) for reduced B8-maps. In contrary
to Theorem 4.3%4, part (a) can be shown easily, and we shall see that

(4.34 2) is a consequence of this result.

Theorem 4.49: For any WB-space (X,1) there exists a B-space M(X,a) =
(MX,a) and a reduced B-map (ia,va) : (X,a) —> M(X,a) sucn that
(a) The map i, + X —> MX embeds X as SDR into MX

(b) Any reduced B-map (f,p) : (X,a) —> (Y,B) is the canonical compo-
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aite of (fa’va) and a unique ®-homomorphism h : M(X,a) —> (Y,8).
(e) If we change (f,p) inside its nomotopx class, the induced B-homo-

morphism h stays inside its homotopy class.

Proof: Define MX = {MXk} by

(4.50) me, = U w_(s ®8,) (1% % )x X/~
iem T - L
i ] N 0 1
with (ce aj x1,...,xn) ~ (c3 a(x1,...,xn)), c € Wr(% 091)(lo,k ),
a € W,(889,)(i°,i%). For the definition of the B-structure on MX note

that a° : 8 —> Wr(il ®Q1) is an inclusion functor. Define
b[(C1;§1),...,(Cn;Xn)] = [bO(C,'Q ---ecn);§1,---,§n]

b€B, The canonical maps WrU3QQ1)(iO,k1)x X; —> MX, define a reduced

B-map (ia’va) : (X,a) —> M(X,a) wnose underlying map i is given by

X —_ x€X

o

-

in cherry tree notation.

Given a reduced B-map (f,p) : (X,a) —> (Y,B), the induced B-nomo-
morphism h : M(X,a) —> (Y,B) is given by

n{c; x) = ple)(x)

It is the unique homomorpnism satisfying (f,p) = ne (ia,va) witn the
canonical composition on the rignt. In view of Lemma 4.43%, a change
of (f,p) by 2 homotopy changes p by a nomotopy of functors and hence
h by a2 homotopy through nomomorpnisms. It remains to prove (a): As in
the proof of (4.23), we express MX in terms of cherry trees. Then MX
is the space of all reduced cherry trees, i.e. reduced trees wnose
roots have QT—COLour 1, wnose twigs nhave Q1—coLour 0, and tnere is a

cherry in Xk assigned to each twig of K-colour k. On this space we
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have the relations (4.28), but for reduced trees only:
(a) 3.1 (a)
(b)

]

3.1 (b) for permutations only, and the cherries are permuted
along with the twigs

(c) = 3.1 (c)

(d) If a reduced tree A has an internal edge of length 1, i.e. 4 de-
composes into A e A,, thnen (A; x1,...,xn)~(A1;x1,..,xp,y,xq+1,..,xn)

where (x1,...,xn) and (x ,...,xq) are the cherries of A and 4,

p+1
in clockwise order, and y = a(Az)(xp+1,...,xq).
The deformation retraction MX —> X is given by step 2 of the proof

of (4.23 a). 1

If 8 = ¥, the PRO belonging to the theory of monoids, and (X,a) is
a Wd-space tnen (X,a) —> (MX,a) is essentially the construction of

Adams mentioned in chapter I.

Let
Rapy <3 Somy —57 > Tapg
be the functors previously defined. Using (4.46) and (4.49 b), we can
extend the correspondence (X,a) —> M(X,a) to functors M :Mapy—> Lomy
and M' : Tap,y —> Qomy in the same wey as in tne proof of (4.31).

We now want to compare the functors N and N' with M and M'. In view
of Proposition 4.32 we restrict our attention to N' and M'. Recall
that N' is left adjoint to the functor J' : Qomy —> Mapgy. The front
ad junction

n: Id —> J'N'

is given by the B-maps (pq,na) : (X,a) —> (NX,a*e ¢) = J'N'(X,a).
For any nB-map (f,p) : (X,a) —> (Y,B) we have a diagram where r is
induced by tne universal property of n and the reduced B-map (i,v) is

considered as hB-mep.
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(X,a)
(f,0) pa'na)
JM' (X,a) < T J'NY(X,a)
a
JM*(f,p) (Y, B) J'N'(f,0)

V w
JtM(Y,B) IR (Y,8)

Since the backward squares commute, so does the front square because

of the universal property of Ny * Hence
r : Nt — M!
is a natural trensformation. We want to show that it is a natural

equivatence. By (4.49 b) there is a B-nomomorpaism s : MITNY X)) — WX p)

induced by

J'N'(X,a) > J'M'J'N'(X,a)

(1,v)
1
Id I's,
J'N'(X,a)
because the identity is apparently a reduced map. The homomorpnism

s, e M'(p ,n) + M (X,a) —> M'I'N'(X,a) —> N'(X,a)

is an inverse of Ty in Qomh% because

It (s, * M'(p,,m,) e xy) e (p,ong) = I's e d M (p )« (i,v,)

J's, ¢ (1,v) e (p,,m,)

1

(pg 1y )

and

It (ry e sy e M (py,m,)) e (d,v ) = d'r e T's o (1,v) e (pysmy)

' L ]
J'r, (pgsmy)

Y 1 o ] 3 7 T —
so that s ¢ M (pa’na) * Ty and r s oM (pa,na) are in tne same nomo
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topy class as the identities by (4.35 ¢) and (4.49 b).

S0 we have proved

Proposition 4.51: M : Rapy —> Romy [M' : Map, 5 —> Qomy] is left ad-

joint to J : Romy —> Mapy [J* Qomy —> Map,

nmj‘ Moreover

r(X,a) : N(X,a) —> M(X,a) defines natural equivalences r : N —> M

and r* : N' —> M', |}

The front and back adjunction of tne adjoint pair (M',J') are given
by (ia,va) : (X,a) —> J™M'(X,a) of (4.49) and the nomomorphisms

u(Y,p) = MmJ*'(y,p) —> (Y,B) determined by the diagram

J'(Y,8) ngT?ng——> J'M I (Y,B)

I 'U(Yyﬁ) (Y7B)€ bomg

J'(Y,8)

They are related to the front and back adjunction of (N',J') by x'.

In particular, we nave a commutative diagram of maps

P
X —% > NX
Rﬁ
MX
for eacnh WB-space (X,a). Since r, and i are homotopy equivalences,
r_is a homotopy equivalence, wnicn fills the gap left in the proof

[04
of (4.35).

Evidently, r(X,a) : N{(X,a) —> M(X,a) is induced by tne projections
mo: EW(3®9,)(1%k") —> w_(8@8,)(1% k'), I Rmapg((X,a),d'(¥,B)) de-
notes the set of nomotopy classes of reduced B3-maps (X,a) —> (Y,B),

we therefore have a commutative diagram
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14

ﬁubhﬁ((xya),J'(Y,B)) bomm(N'(Xra)y(Y,B))

m* r{X,a)*

v

Rmapy ((X,a),d'(Y,B)) Qomg (M'(X,a),(Y,8))

and Proposition 4,51 implies

Corollary 4.52: The projection functors m, : W(3®@g,) —> Wr(ﬂﬁiﬁ)

and m, : HW(‘BOQ1) —_ Wr(%®Q1) induce bijections

‘map%((xya) 1J(Y’B)) <TT1* Rmapg((xya) yJ'(Y)B))

7 Rapyp((Xa),I100)
In particular, any B3-map or n8-map into a B-space is nomotopic to a

reduced ﬁ—map.l

Remark: One might be tempted to dualize Theorem 4.35 and 4.49. That
is, given a WB8-space (X,a), one might want to construct a B-space

(VX,a') and a n8-map (p,x) : (VX,a'e e¢) -—> (X,a) such that any hB-
map {f,p) ¢ (Y,Bee) —> (X,a) from a B-space (Y,B) to {X,a) factors

uniquely as

J'(Y,B)

J:y// \\\<i,o)

JY(VX,a') —Tijzj——> (X,a)

wnere h : (Y,B) —> (VX,a') is a B-homomorphism. More precisely, (f,p)
is the canonical composite of (p,n) and & B-nomomorpnism. The follow-
ing example snows that this is not possible in general. Let 83=%, the
PRO belonging to the theory of monoids, let (X,a) be a Wid-space,

(U,n) a monoid and (p,x) : (U,uee) —> (X,a) an ¥-map, Then (p,x)
fails to hnave tne required universal property: Suppose

(f,0) : (Y,Boe) —> (X,a) is an %-map. Let C be the cyclic monoid

on one generator c¢ and iy : ¢ —> (Y,B) the nomomorphism defined by
iy(c) = y for some y€Y. If (p,x) were universal, (f,p) lifts to a

nomomorpnism n : (Y,8) —> (U,u), and n e iy is the unique homomorphism
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lifting the canonical composite (f,p) o iy : ¢ —> (X,a). As y varies,
tne collection of n8-maps (f,o) oiy determine h and therefore the
whole structure of (f,p) uniquely, wnich is absurd, because the ad-
joints

HW(u®8,)(n°,1")x Y? —> X

(n denotes the unique object [n] —> «x) of p : HW(Q!O91)(n°,11)—>Iop(Yn,X)
are not determined by thne (f,p)e iy on tne elements (a; y1,...,yn),

T,
wnere a is indecomposable and not each ¥y of tne form y; = 2 1 with z

fixed for all i.

6. AN EQUIVALENCE OF CATEGORIES

In this section we show tnat the categories mapE and ']Jtunhia are
equivalent to a category of fractions of tne category Rory of B-spaces
and 8-homomorphisms.

Let €@ be an arbitrary category and T a class of morpnisms in €.
The category of fractions &/f (see [23]) has thne same objects as €.
Its morpnisms are words in words in following generators
(a) the morphisms of €
(b) a morphism g : X —> Y for each morpnism g : Y —> X in Z.

The relations are

(i) (flg] [feg)] if f,g € mor €
(1i) [glg] = 14, [Zlg) = id

(iii) [id] = ia

]

There is a canonical functor P = PZ : § —> §/T which is the identity
on objects and wnich sends a morpnism f to its equivalence class in
G/Z. The functor P nas tne universal property that given a functor

F : § —> 9 sucn that F(g) is an isomorpnism in ® for eacn g€¢Z, there

exists a unique functor G : §/r —> ® such that Ge¢P = F.
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In our case we take T c morB or T c Qomy to be the class of all
nomomorpnisms respectively of all nomotopy classes of nomomorpnisms,
wnose underlying maps are homotopy equivalences in XopK. The following
proposition is an immediate consequence of the results of the previous

section (see also [23%; Prop. 1.%,p.7]).

Proposition 4.53: The functor PoM' : Rap,, —> Qomy —> bomm/T is an

equivalence of categories.

Proof: If €T, tnen J'(f) is an isomorphism in Rop, g bY {4.21). Hence
tnere exists a unique functor F : bomﬂ/T —_ maphm sucn that FeP = J',
The front adjunction v : Id —> J'e M' = F e (PeM!') is a natural equi-
valence, and the back adjunction py : M'e J' —> Id induces a natural
equivalence Pu : {(Pe M')e J' —> Id, because each u{Y,B) is a homo-

topy equivalence considered as morpnism of IopK. I

If £ € Mory is a nomotopy equivalence as morpnism in IopK, then
J'e H(f) is an isomorpnhism, whnere H : JJlortB —_— bomm is tne functor
sending each B-homomorpnism tc its homotopy class. Hence there is a

unique functor
G : Dory/s —> Map, g

sucn that Ge P = J'e H., More interesting, but considerably harder to

prove is

Proposition 4.54: The functor G : morﬂ/z _— muphﬂ is an equivalence

of categories.
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Proof: Again the adjoint pair (M',J') plays an essential role. Con-

gider

Qomy < I mor28

/ \

Qomy /T < Tory/T

where H' is thne functor induced by H. Using the universal property
of PE we find that G = Fe H',

Claim: The functor Bpe M' factors througn Rorg/E

Proof: By (4.49), eacn reduced B-map (f,p) : (X,a) —> (Y,B) induces
a unique B-homomorphism n : M{(X,a) —> (Y,B8), such that (f,p) is the
canonical composite ne (ia,va). Suppose (f',p') : (X,a) —> (Y,B) is

a reduced B-map nomotopic to (f,p) and h' its induced B-homomorphism.

Suppose we knew that Pz(h) = Pz(h'), we could define a functor

R : ‘Illap.nm —_ morm/Z

by R(X,a) = M(X,a) on objects, and on nB-maps (g,x) : (X,a) —> (Z,v)
by R(g,x) = Pz(r), where r is the B-homomorpnism induced by some com-—
posite of (g,x) and (iy,vy). By our supposition, tnis definition is
independent of the cnoice of the representative (g,tx) and of tne com-
posite. Using the universal property of (ia’va) we find that R is a
functor, and evidently H'eR =P « M'.

Let u, € er(%asg) be the morphism

If it is clear from the context, we drop the index k. Let € be the
quotient category of HWTOBGQZ) modulo the relation (compare the proof

of (4.13)):
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A tree A whose root has Qz—colour 1 and whose twigs have 82~colour 0
is related to A'e(u®...®u) where A' is obtained from A by changing
the Qz—coLour of all edges to 1.

For any Wd-space (X,a) let Q(X,a) = (QX,a') be the B-space with

ax, = Us(1°,6%)x x,/~
i¢® e

with the relation
(%) (Byohys Xqseenx)) ~ (Ao (Va... @V); a(Aé)(x1,---,Xn))

where A1 and A2 represent morphisms in €, and Aé = A2 and (v@...@v)=
id if the twigs of A1 have Qz—colour 0 while Aé is obtained from A2
by changing the 8,-colour of all edges to O and (ve...0v)=(ud...0u)
if the twigs of A1 have Qz—cotour 1. Note that B is contained in € as
the subcategory of all objects 12, i€® (as usually,izz{(i1,2)”.Kin,a}
€5B®Q2 for i = {i1,...,in} € 8). The B-structure on Q(X,a) is given
by

blley; Xq)yeensle 3 )] = (boe(ci@... ®C,)5 XqseeerXy)
Define B-nomomorpnisms i_,i, : M(X,a) —> Q(X,a) and r : Q(X,a) — MZXa)

on representatives by

io(A; x1,...,xn) = (A'; x1,...,xn)

i1(A; x1,...,xn) = (A" (ue@®... ®u); x1,...,xn)

)

It

r{B; x1,...,xn) (B'; b SRR
where A' is obtained from A by changing the root colour from 1 to 2,
and A" from A by changing the root colour from 1 to 2 and the colour
of all other edges from O to 1. The tree B' is obtained from B by

changing the colours 2 and 1 of tne edges to 1 respectively O. Then

r 'io =1id = r -11. We have an inclusion j : X —> Q(X,a) given by
0
X —> (Ak;X), XGXk witn Ak = idk
" 1engtn 1
1dk

2
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Then j = i e i . Now j(X) is a SDR of Q(X,a). The deformation is given

a
by substituting the roots of the representing trees of Q(X,x) at time

t by

id

At t = 0, we nave the identity, and at t = 1 relation (*) reduces the
element to one in j{X). Moreover j{X) is kept pointwise fixed througn-
out the deformation. Since ia is a nomotopy equivalence, so is i1 and
nence r and io.

Now given two reduced B-maps (fL’DL) : (X,a) —> (Y,B), 1 = 0,1,
wnich are homotopic. Then there exists an action o : er(81992)—> Toyp
such that d°(g) = oqs d1(o) = p, and d2(o) = s%a). This action ¢

induces a ®-homomorphism P : Q(X,a) —> (Y,B) by

P(A; x1,...,xn) = o(A) (xT,...,x )

n
If g ¢ M(X,a) —> (Y,B) is the B-homomorphism induced by (fL’pL)’
then 'nL = Fo iL’ 1 =0,1. Now
Po(ng) = Po(F) e Po(i )= Po(PePo(1,) = Po(hy)

because Pz(io) and P2(11) are both invarses of Pz(r). This proves
the claim.

The natursl equivalence Id —> F °(PT oM') = FoeH'so R = G R of
the previous proposition provides the first equivalence. We can choose
representing homomorpnisms ng RG(Y,B) = M'J'(Y,8) —> (Y,B) of the
back adjunction bg M'J'(Y,B8) —> (Y,8) of the adjoint pair (M',J')
such that Id(Y,B) is the canonical composite Id = J'KB e vJ'(Y,B).
Given a B-nomomorphism n : (Y,B) —> (Z,y) define M'J'h to be the B-
homomorphism induced by the canonical composite vJ'(Z,y) eh. Using
this representative M'J'h ¢ Mory it is easy to check that the “ﬁ con-

stitute a natural transformation Re ¢ —> Id. Since vJ'(Y,B) is a
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homotopy equivalence on the underlying spaces, so is nB. Hence

Re G —> Id is a natural equivalence. I

Corotlary 4.55: Since Mapy is isomorphic to Rap,g, the results (4.53)
and (4.54) nold for Mapy, too. I

Proposition 4.54 to some extent generalizes a result of Malraison
[31] whe by slightly different means proved that the category & of
monoids and nhomotopy classes of A -maps (see (1.14)) is isomorphic
(and not just equivalent) to the category of fractions Mon/%, where
Ton is the category of monoids and nomomorphisms and £ is the class
of homomorphisms which are nomotopy equivalences. By (3.25), the cate-
gory ® is essentially the full subcategory of maphm of all %-spaces

(= monoids).

7. HOMOTOPY INVARTANCE FOR GENERAL THEORIES

In §5 we showed that each W8-space can be embedded as a SDR into
a B-gpace. The PROPs WB and B are related by the equivariant equiva-
lence ¢ : W8 —> B, We want to generalize this result by substituting
W8 and B by general theories 8, and 8, and the functor e¢ by a theory
functor wnich is a homotopy equivalence on each morphnism space. So
we are aiming towards a result of tne nature that for reasonable tneo-
ries @, and @2 every reasonable ®,-space embeds as a SDR of a @,-space.
We restrict our attention to monocnrome theories and leave it to the
reader to make the necessary modifications for the general case. As
usual, n denotes thne unique object [n] —> * and Sk the group of per-

mutations of [kJ].

Definition 4.56: A morphism b € 8(k,1) is called non-degenerate if
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it does not nave the form b = ceg* with ¢ ¢ [1] —> [k] a proper
monomorphism. The theory ® is called proper if each morphism b € 8(k,1)
has the form b = ¢ o 0¥ with ¢ non-degenerate and o a monomorphism,
uniquely up to the equivalence (cemn¥*)e(o ﬂﬂ_1)* = ¢ e 0% for permuta-

tions m.

The following result shows that all interesting theories are proper

ones.

Lemma 4.57: (a) Let ® be a theory such that boeg* = ¢ o o* for

b,c € 8(0,1) implies b = ¢, Then each morphism f ¢ ®(k,1) is of the
form £ = geo* with g non-degenerate and o a monomorphism. If goe g¥*=
g'e T* with g and g' non-degenerate, then there is a permutation

m with g = g'e ¥,

(b) If in addition beg* = bert* for b € ®(1,1) and o,T monomorphisms
implies o=7 , then ® is proper

(c) Let ® be a theory sucn that for each composite beog* = c oT* with
b, ¢ non-degenerate and ¢ : p —> n, T : @ —> n monic there exist
monomorphisms w : L —> p and v : L —> q and a morphism 4 € @(1,1)

such that b = depu*, ¢ = deVv* and cew = Te v, Tnen ® is proper.

All interesting theories.satisfy (c), because given an operation
a 1 AxBxC —> X which factors through the projections AxBxC —> BxC
and AxBxC —> AxB, then it factors through the projection AxBxC —> B

in all interesting cases,

Proof: Obviously, any morpnism a € ®&(n,1) can be decomposed as

a = beg* with b non-degenerate and ¢ : p —> n a monomorpnism. Let
8 = CceT*¥ be another such decomposition with v : ¢ —> n.

Proof (a): If p=9q =20, then g =1 and b = ¢ by assumption. So sup-

pose O<p2q. Tnen tnere is an epimorpnism u : n —> p such that
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M eo = id. Hence
b = beog*e u*¥ = coT¥o u¥ =00(uo"|')*

Since b is non-degenerate, weT : q -——> p is an epimorpnism. Hence

P =q and we T is an isomorpnism.

Proof (b): Using the notation of (a) we have to show that T = geperT,
because then b = cenm* gnd g = T e n—1 with m = 4 eT, wnich we have

shown to be a permutation. If p = g = 1 this follows from

CeT¥*¥ = b e g* =0'(0°|J. oT)*
and the assumption. So suppose p = q > 1. If o([p]) = 7([pl), then

there is a permutation p : [p] — [p] such that T = g e p. Hence
T =000 = 0odegep = golloT

If o(L[pl) % 7([p]l), there exists i € [p] such that i € o([p]) - 7([p]).
Since p > 1, we can choose the epimorphnism u sucn that u—1(u(i))={i],
80 that uwe T is not a permutation, wnich is a contradiction.

Proof (c): By assumption, there are monomorpnisms u : 1 —> p and

Vv : 1 —>q and a morpnism & € ®&(1,1) such that b = deu*, ¢c = de v*

and TeV = geu. Since b and ¢ are non-degenerste, u and vV are iso-

]

morphisms. It follows that b = cen* and 0 = Te oV with 0 = " ov_1..
Let D8(n,1) < 8(n,1) denote the subspace of degenerate morphisms

and AkX c x¥ the diagonal

Tneorem 4.58: Let ®, and @, be monochrome proper theories and (X,a)

a @1—space. Suppose

(a) each finite product of spaces ®1(k,1), X and a single space ®2(L,1)

is paracompact

(v) (@(1,1),{id}) and (@2(1,1),{id}) are NDRs

(e) (@(r,1)k,Ak®1(r,1)) are S, xS -NDRs where 8, actsby permuting the
factors and Sr by componentwise composition on the right

(a) (@i(r,1),D®i(r,1)) are S ,-NDRs and for each fixed monomorphism
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o : [k] —> [r], the injective map br—> beg*, b € Oi(k’1) is a
homeomorpnism onto a closed subspace of Oi(r,1), i=1,2.
k R
(e) (X ,AkX) is a 5, -NIR
Then given a theory functor F : @1 —_ @2 wnhich is a homotopy equi-
valence on each morphism space, there exists a @2—spaoe (Y,a*) con-

taining X as a SDR.

Proof: The augmentation ¢ : W8, —> 8, allows us to regard X as We,-
space. Replace X by the universal 8,-space M(X,a e ¢), the analogue
of the construction of §5 for theories. As shown in (4.49), we can
embed X as a SDR into MX. The required ®2—space Y looks like MX, ex-
cept that tne label of the root vertex lies in @2 instead of 81. But
let us give precise descriptions. As for PROPs, we can define theories
Wr(@1QQ1) by adding the extra relation that the lengtn of an inter-
nal edge of 91—coLour 1 of a representing tree may be changed to O

to the relations (3.1 a,b,c). Tnen @, is contained in Wr(®1aﬁ1) as
the full subcategory of all objects n1. Now tne construction of MX
carries over. Let Tk denote the space of all trees of shape A\ whose
edges all have 91-colour 0 except of the root, wnich nas 91—coLour 1.

Let n, denote the source of A. Then

n
mx = U r.xx M
A
x
with the relations
(a) = (3.1 a). It does not apply to the root vertex because of the
change of colour
(b) = (3.1 b), but for cherry trees, i.e. the cherries are affected
by the set operations in the same way as the twigs
(e} = (3.1 ¢)
(d) if the cherry tree A has an edge of length 1, then the subtree
B with cherries Yyseees¥n sitting on this edge may be replaced by the
cherry [a e ¢(B)] (y1,...,yr)

Let Ti be obtained from T, by replacing the space of root vertex

X
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labels @1(k,1) by @2(k,1). Thnen
n
v=Um xx /%~
A

with the relations (a),{b),{d) above and (c) substituted by

(c!') any edge of length O wnich does not meet the root vertex may be
shrunk as in (e¢), while an incoming edge of length O to the root ver-
tex may be shrunk as follows: We substitute the vertex label, a say,
above that edge by F(a) and then shrink as described in (3.1 c).

The @2—action on Y is defined on representing cherry trees by
b(A1,...,A ) =B
where B is obtained from A1,A..,An by identifying their root vertices.

Then the data of B 1s given by A1""’An except of the root vertex

label which is boe 0119....ean) if Bqs-ees8y BTE the root vertex la-

bels of A1,...,An. For example,

Tnis definition coincides with the definition of the @1—structure of

MX if ®1 = @2. There are sgain inclusions

i:X > MX j ¢« X > Y

X ——> %34 X /> #i4

and as in (4.49) one shows that X is a SDR of MX. Define a map
f: (MX,X) — (Y,X) by substituting the vertex label b of a repre-
senting cherry tree of MX by F(b) to obtain a representing cherry

tree of Y. Note that f is a nomomorphism of @1—spaces if we give Y the
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@1-structure induced by F. Suppose we know
Claim 1: j is a cofibration
Claim 2: £ : MX —> Y is a homotopy equivalence
Then j = fei : X —> Y is a nomotopy equivalence and cofibration,
and hence X a SDR of Y. (see [14; (3.7)]).

To prove the claims we filter the spaces MX and Y by the subspaces
Mk and Yk of cherry trees which are related to a cherry tree with at
most k edges. The spaces of all cherry trees of MX and Y of a given

shape A with k edges are of the forms

Z1 = ®1(r,1) x P and Z, = 8,(r,1) x P

2 2
where ®1(r,1) and @2(r,1) are the spaces of root vertex labels and
P is the space of all cherry trees of MX with shape A, ignoring the
root vertex label. Let Q € P be the subspace of trees which can be
reduced by the relations to a tree with less edges. On the root ver-
tex (whose label we ignore) of a tree in P we have various subirees
gitting. Assume there are m trivial cherry trees, i.e. trees of the

form

(perhaps m = 0), and ny non-trivial trees of shape ki forming spaces
@1(ki,1) x P, wnere ®1(ki’1> again is tne space of root vertex labels.
Then

m

n.
_ 1
P = x®« Til'(I x @(k;,1) x P,)

where I parameterizes the length of the edge from Pi to the root ver-
tex of P, Let Gi denote the symmetry group of the shape xi and QiCPi
the subspace of trees which can be reduced by the relations. The sym-
metry group G of P is Sm X 'g Hi wnere Hi = Gil Sni, the wreath pro-
duct of G, and Sni (for a definition see Appendix II). A tree A of P
lies in Q iff it satisfies one of the following conditions
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(1) any two coordinates in X coincide (because then we can reduce
A by (v))

(ii) any I-coordinate is 0 or 1 (because then (c),{c') or (d) applies)

(iii) any ®1(ki,1)—coordinate is degenerate or an identity (because
then (a) or (b) applies)

(iv) any P,-coordinate lies in Q

(v) two (Ix@1(ki,1)xPi)—coordinates are in the same G,-orbit (be-
cause then (b) applies)

Examples to (iii) and (v): Let ¢ : {1,2} —> {1,2,3} map 1 to 3 and

2 to 1 and let 7 : {1,2,3} —> {1,2} map 1,3 to 2 and 2 to 1. Then

IL| A2 A3 A3 A1
— t3 t1
relation (b)
a
A2 A1
—) u t
relation (b)
8 oT*

It is not difficult to show that each representing tree in the

spaces %, and Z_ is related to a tree to which (i),...,(v) does not
1

2
apply, uniquely up to relation (b) but for permutations only. This is
precisely the situation we dealt with in chapter ITI.

The group G permutes the r incoming edges to the root vertex of P.
Hence there is a homomorphism ¢ —> 5 making 8,(r,1) and Gz(r,1) in-
to G-spaces. We will show later
Claim 3: (@i(r,1)xP, D@i(r,1)xP U @i(r,1)xQ), i =1,2, are G-NDRs
Claim 4: Qi(r,1)xP - (D@i(r,1)xP U Si(r,1)xQ), 4+ = 1,2, is e numerable

prinecipal G-space
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Claim 5: 7 : (@1(r,1), D®1(r,1)) — (Gz(r,1), D@z(r,1)) is an ordi-

nary homotopy equivalence of pairs

Then MX and Y are proper iterated adjunction spaces because they

are obtained by adjoining spaces
((8;(r,1)xP)/6, (DOy(r,1)xP U 8;(r,1)xQ)/6) i=1,2

to Mk_1 respectively Yk—1’ one for each shape orbit A with k edges,
and these pairs are NDRs by claim 3, Since X < Y2 is a cofibration,
claim 1 follows. In view of (A 4.4) it suffices to show that each map
fk = f|Mk : Mk —_— Yk is a nomotopy equivalence. We prove this by in-
duction, starting with M, = ®1(O,1) and Y, = @2(0,1). The inductive
atep follows from (A 4.7) the assumptions of which nold if claims 3,

4,5 are true and the equivariant map

£ o D®1(r,1)xP U 8,(r,1)xQ —> D@z(r,1)xP u @1(r,1)xQ
induced by F is an ordinary homotopy equivalence. But by claim 5,
Fxid : (@1(r,1)xP,D®1(r,1)xPu®1(r,1)xQ)—>(@2(r;wme®zo;ﬂxPu®2ﬁgnxQ)

is a nomotopy equivalence of pairs.

Proof of claim 3:By assumption, (@i(r,1), D@i(r,1)) is a G-NDR. By

(A 2.5) it suffices to show that (P,Q) is a G-NDR. We prove this
by induction starting with a shape A with one edge only, tne root,
i.e. P = Q = #. For the inductive step, consider for a given shape A

with k edges tne pair
n.
(P,Q) = (x",a'x™)x T ((1x®,(k;,1)xP;) *,R)
i

where A'X" = [(xqee,x)e Xmlxi = X for some i % j} and

R; (Ix®1(ki,1)xPi) 1is the subspace of all elements satisfying

(ii),(ii1),(iv) or (v). By (A 2.8) and assumption (e), (x@ a'x™) is

n.
a 8 -NDR. So by (A 2.4) it suffices to show that «Ix®1(ki,1)xPi) 1,R.)

1
is & G, | S, -NDR. We use tie following
i ni

Observation: G acts freely on P-Q
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Proof: Suppose gA = A for A € P-Q and g€G, g + identity. Then two
(Ix®1(ki,1)xPi)—coordinates of A are in the same G -orbit for some i
or two X-coordinates of A coincide, which is a contradiction.

Let Vi < Ix@1(ki,1)xPi be the subspace of all elements satisfying
(ii),(4ii) or (iv). Then G, acts freely on Ix®1(ki,1)xPi - V;. By in-
duction nypothesis, (Pi,Qi) is a G;-NDR, by assumption (v),(d) and
(A 2.7) the pair (@1(ki,1),D'®1(ki,1)) is 2 G;-NDR where D'®1(ki,1)=
D@(ki,1) U {id1} if k; = 1 and D@(ki,1) otherwise. Hence, by the pro-
duct tneorem for cofibrations, (Ix®1(ki,1)xPi,Vi) is 2 G;-NDR. By as-
sumption (c) and the product theorem ((Ix®1(ki,1)xPi)L,AL(Ix®4kiﬂ)xI9)
is a (S,xG;)-NDR. Hence, by (A4 2.10), the pair ((Ix®1(ki,1)xPi)ni,Ri)
is 2 64 Sni—NDR.

Proof of cleim 4: We know thaet G is finite and operates freely on

@i(r,1)xP - (D@i(r,1)xP U ®i(r,1)xQ). Moreover, there is a map
u @i(r,1)xP —> T such that u_1(0) = D@i(r,1)xP U ®i(r,1)xQ because
of claim 3, By assumption (a), the space @i(r,1)xP is paracompact.

So claim 4 follows from (4 3.8).

Proof of claim 5: The proof proceeds by induction starting with r = O

where D®1(r,1) = D@Z(r,T) = ¢. FPor each subset A c [r] of k elements,
k<r, let oyt (k] —> [r] be the order preserving monomorphism with
image A. Let

Dy = {beo*€ @1(r,1)lc : [x] —> [r] injective}l < ®1(r,1)
Denote the subspace of @1(r,1) of all elements of the form boe cz by
BA‘ Then

L) B and B
Al=x *

D, = | 4 N By © Dy for AfAr, |A] = |A'] = K
(]Al = cardinality of A) because @1 is proper. Hence Dk can be ob-
tained from D, _, by successively adjoining spaces (Bys By N Dk—1)

one for each subset A < [r] with k¥ elements. The same nolds for @2;
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we denote the corresponding spaces by the same symbol with dash. Ob-
viously F:D = 01(0,1)282(0,‘!)=D('). Assume inductively, that P :Dk-th:—‘l .

By assumption (d), composf%ion with UZ induces homeomorphisms

(8,(k,1),08,(k,1)) = (B,,B,ND, ), (8,(k,1),D8,(k,1)) = (B,,B,nD_,)

Hence, by assumption (d) and induction hypothesis,

''n D

1
F: (B,,B, N D) ~ (B,,B,

]
k—1)
and (BA,BA n Dk_1), (BA,BA n D§~1) are NDRs. By (A 4.6), we find that

mD'

. D \ . —_
F : D > Dy . Hence F : D8,(r,1) =D 1

1 = D@Z(r,1) and hence

F (@1(1',1),])@1(1‘,1)) = (@2(1',1),D@2(I‘,1))

is a homotopy equivalence of pairs by (A 4.3). I

Remark: Actually, we have proved a little more than stated in the
theorem. We have constructed a Bz-space Y which we can consider as a
®1—space because of the functor ¥, and the inclusion j : X —> Y car-

ries the structure of a reduced @1—map.

Presumebly most of the results of cnapter IV can be generalized
to arbitrary theories under assumptions similar tc those of Theorem

4.58. But as we see from the proof of (4.58), the details are formid-

able.



V. Chapter

STRUCTURES ON BASED SPACES

One of the main applications of our theory will be the classifi-
cation of the algebraic topological structures of iterated loop spaces.
These spaces live naturally in the category Iopo of based topological
spaces and based maps. Therefore we have to modify our constructions

to cover this case.

1. BASED THEORIES

Let X be a topological space and K a set. Then X% is X with a dis-
joint point {x} attached, which serves as base point, and X+K the dis-
joint union of X and K. Let GE denote the category whose objects are
functions i = (i',id) : [n]+K —> X and wnose morpnisms from i to j

are all functions o making

[n]+K K/;i/53J+K

. . . o . ~ R . s
commute. A basic object in GK is a function [1]+K —> K. Since this
function is thne identity on the second summand it is uniquely deter-
mined by the image k of 1€[1]. Hence we often denote it by k. Then
i : [n]+K —> K is the categorical sum of the basic objects

(1), eee,i(n).
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Let Iopg denote the category of K-graded spaces in Iopo. An object
X € Iopg determines a product preserving functor (Gg)OP —> Top° send-
ing the object i to X, = Xi(1)x...xXi(n) and the morphism ¢ : i —> j

i
. o . . .
in 6K to oF : Xi > Xi

c*(xq,...,xm) = (x0(1),...,xo(n))

wnere Xo(p) = % € X, if ol(r) k€K c [m]+K (we always denote base
points by %). We see that there are additional set operations.

The sets Gg(i,i) are canonically based, the base point being the
function i : [n]+K —> K < [m]+K. The corresponding set operation is
the constant map in Iopo(Xi,Xi).

A function f : K —> L ind;ces a functor f, : SE _— Sg and hence
a functor £3° : (&) —> (62)°P. 1f i = (i',id) : [n]+K —> K is an
object and ¢ = (0',id) : [n]+Kk —> [m]+K 2 morphism from i to j in

&g, thnen £,(i) = (fe i',id;) and f,(0) = (14 +E)e0’,1dp).

Definition 5.1: A (finitary) based K-coloured topological-algebraic

theory is a category 8 with ob 8 = ob Sg together with a faithful
functor (SE)OP —> @ preserving objects and products. The latter means
that 0(i,]) = (1i,i(1))x...x8(i,j(m)) is a based homeomorphism where
the base points are the images of the base points of (SE)OP.

. . o} s o 0
A @-gpace is a continuous functor ® —> Top such that @&fpd>0-4>xop

preserves products. The images of the basic objects determine an ob-

ject in Zopg, the underlying space.

A nomomorphism between @-spaces is a natural transformation of such

functors.

A theory functor from a K-coloured theory @1 to an L-coloured theory

8, is a continuous funector F : &, — ®2 together with a function

f : K —> 1 such that

op
f
0,0p * 040p
(62)°P ——e> (s€>
8, — = >0

1 2
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commutes.

2. BASED PROs AND PROPs

Denote the O-ary set operation in GE(k,O) by wy .

In contrary to the unbased case we consider four types of spines:
Besides the PROs and PROPs, a notion which makes sense for based
theories too, we consider "based" PROs and PROPs which are spines
with respect to the subcategory of GE generated under @& and composi-
tion by the Wy respectively the Wy and the isomorphisms. The reason
is that for a based monoid znd a based abelian monoid one usually as-
sumes that the identity is the base point, i.e. the O-ary operation
Ao including the unit coincides with the O-ary set operation w. Hence
a based PROP is a category B with bifunctor @ : B3x83 —> B as defined
in (2.43) with G substituted by the subcategory of SE generated under
@ and composition by isomorphisms and the Wy e The axioms (2.43)
(a),...,(d) hold too with the appropriate modification of (2.43 d).

The definition of a based PRO is analogous.

Let us give an example where the additional set operation
+ + . . .
w : [1] —> [0]  causes changes. Since % does not contain set opera-
tions the unbased free monoid on a space X is the disjoint union

hnd n

n=0 X”. In the based case, we nave a single set operation left.

Hence the based free monoid on a based space X is
Uy
n=0 X/
where (x1,...,xn)~(x1,...,3%}...,xn) if x; = » and (x) ~ » if x = «,

. . . . A
because if x, = *, then (x1,...,xn)=(1d®u)01d)*(x1,...,xi,...,xn).

(Here X means delete x).
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2. THE BASED BAR CONSTRUCTION

The bar construction for unbased theories carries over to based
theories with the following modifications: The trees nave again edges
witn colours in K and lengths in I, and vertex labels in the appro-~
priate morpnism spaces of ®, but its twigs are labelled by elements
in [n]+X, if it represents a morphism with source i : [n]+K —> K,
instead of elements in {n] only. If we have m twigs, the twig labels
then define a morpnism [m]+4K —> [n]+K in Gg, which stands for a set

b@ (b for "based") are

operation. The relations among the trees of W
the same as relations (3.1) with the following modification of (3.1 b):
(5.2) Let o : [n]+K —> [m]+K be a morphism in Sg. We may replace any
vertex label a eco* by a, by changing the part of the tree above tnis

vertex:

o2 on

a eg* a

wnere C_. is a single twig with label (and colour) k if o(r)=keXc[m]+K.

If each space ®(0,k) has only one element, i.e. the O-ary operations
are set operations, then Wb®(0,k) also has only one element. Moreover,
all stumps may be pruned away by shrinking their outgoing edge. We
use relations (b) and (a) for this. In terms of operations this im-
plies that in any Wb®—space the base points behave like strict iden-
tities.

We again specialize to PROs and PROPs. In the case of unbased PROs
and PROPs, there are, of course, no changes. So let 8 be a K-coloured

based PROP (for based PROs the construction is similar) and denote
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the O-ary set operation in 8(0,k) by w;. Then WPB is tne quotient of

W8 (here we consider w; as an ordinary O-ary operation) modulo the re-

lation
(5.3) a stump w; may be shrunk
k
wb% is the correct spine of the theory Wb® obtained from the based

theory €@ associated to 8.

Since all O-ary operations on a based B-space coincide it seems to
be reasonable to restrict the attention to PROs and PROPs having at
most one O-ary operation 0 —> k for each k€K. If B is an unbased
PROP satisfying this condition, tnen WB(0,k) nevertheless may have
many O-ary operations. We introduce two modifications of the construc-
tion W that correct this. Define W'3 to be the quotient of W8 modulo
the relation
(5.4) two trees witnout twigs having the same root colour coincide,
and define W"® to be the quotient of W8 modulo the relation
(5.5) any stump may be shrunk.

Then W'B(0,k) has at most one element and W"3{0,k) = 8{0,k).
The basic difference between W' and W" is best illustrated with an

example. Let 3 = 9. In W'¥(1,1) we have a representing tree

giving a path from e. x to X, i.e. tne base point e of a W'd-space X

is a homotopy unit, while in W'Y this tree coincides witn

=id

which means tnat in = W"d-space the base point e is a strict unit.
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Convention: Wnen dealing with constructions W' and W", we consider
the O-ary set operation of a based PROP as ordinary O-ary operation,
thus obtaining an unbased PROP. Por actions on based spaces this does

not make any difference.

With this convention, we find that for a based PROP with HOJQ:[&Q
for all k€K the categories Wbﬁ and W"8 coincide. But W"3 nhas also
some relevance in the unbased case.

Let X be an object in Iop% and let a be an action of an unbased
K~-coloured PROP 8. We have 83(0,k) = W8(0,k) by the standard section,

i.e. 8(0,k) is the subspace of all stumps. The action a induces maps

A

3, : 8(0,k) < W8(0,k) —> X

k

Tneorem 5.6: (a) If thne maps Qk are homotopic to the constant maps

to = € Xk’ then the action a is nomotopic through actions to an action
B of WB on X such that B8(3(0,k)) = % for all k€K

(b) Let B be a K-coloured PROP. (As always, we assume that
(3(k,k),{idk]) is a NDR for all k.) Let m : W8 —> W"8 be the project-
ion and B c W"8 a subcategory such that 8(0,k) = W"8(0,k) for all

k € ob B8 and n—ﬂ(%> c W8 is an admissible subcategory. Assume we are
given a homotopy of actions a(t) : W8 —> Top on X € Top, satisfying
(1) Q) =, (0) for all teT

(ii) .(0) : 8(0,k) = w8(0,k) —> X,_ is a closed cofibration for all
k k
k€K and t¢€I

(iii)a(t)|n_1(%) factors througn m
g

(iv) a(t) factors through m for t = O [or t€3I, or (iv) is empty)

Then there exists a homotopy B(t1,t2) : W8 —> Top, through homotopies
of actions such that

(1) 8(%,0) = a(t)

(11) B(ty,t,) 77 (8) = a(t,) for all t,
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(iii) B(t1,t2) = a(t1) for t, = 0 [or t,€3I, or (iii) is empty]
(iv) B(t,1) factors tanrough w

A A
(v) Bk(t1,t2) = ak(O) for all t,,t,¢I

2(
Under suitable nypotneses tnis result makes unbased WB-actions to
based W"B8-actions. We nave stated it in greater generality than we

need for this purpose, but we will use the full generality later.

Proof: Part (a) follows immediately from (3.14) with the subcategory
® generated by thne morpnisms of 3(0,k), k¢K.
Tne nomotopy B(t1,t2) of part (b) is constructed inductively. We

use the cherry tree definition of an action (cf.3.24) and induct on

tne number of vertices and the number of chnerries. The induction starts

from the requirement tnat the trivial cherry tree with cherry x

nas value x and a stump b has value 2{0){b). TFor the inductive step
from r-1 to r we consider a space P of trees of a given shape A with
n twigs, nsr, and r-n vertices. We convert P into a space of trees of
filtration r by attaching to eacn twig a2 cherry or convert it into a
stump of lengtn t and some label in 8(0,k), k = twig colour. By (3.24
a stump b of length 1 must be equivalent to the appropriate cherry

A
a(0){b). To take care of this we introduce

Y, = 8(0,k)xI U Xk/((b,1)~3k(o)(b))

\]

Let Y, be tne image of B(0,k)xT and Yﬂ = 8(0,k)x{0}. What we look for

is a nomotopy

H: PxYk x...xYk xIxI —> XL

1 n
wnere k1""’kn are tne n colours of the twigs of » and 1 the colour

of its root. By induction, H(A,y1,...,yn,u1,u2) is already determined
iff one of the following holds
(i) 4 lies in the subspace Q — P of trees that simplify by (3.24 (a)

or (c¢)), or decompose and nence simplify by (3.24 e), or tnat re-

e)
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present an element of n_1(8). (Note that A represents a tree of
n—1(%) iff any tree obtained from A by converting a twig to a
stump of arbitrary length represents a tree of n‘1(v), because

8(0,k) = WB(0,k) for kem)

(ii) some ¥y lies in some Y;, because tnen we nave a stump of length
0 wnich can be shrunk

(iii) some y; lies in some Yé and u, = 1, by the requirement on B(u1ﬂ)

(iv} u, =0

(v) u, = 0 [or u, €3I, or (v) is empty] (Denote this subspace of I
by I', i.e. I' = {0} or 3I or @)

Let G be the symmetry group of the shape A. The action of G on the
twigs makes Y = Yk1x"'XYkn int& a G-space, We will snow that there is
an equivariant retraction of PxY¥xIxI onto the subspace of elements
satisfying one of the conditions (i),...,(v) so that the induction can
proceed. We already know that (P,Q) is a G-NDR. Let Z' and Z" be tne
subspace of y€Y with some y; in some Yé respectively Y;. Now (YQ,Y;)

is homeomorphic to (3{0,k}xI,8{0,k)xu) so that Yy is a SDR of Y, . We

1
K
prove later

Claim: Z" is an equivariant SDR of 2

From the product formula for equivariant SDRs we obtain that
Z'xI'xI U Z'xIxdI 1) Z"xIxI is an equivariant SDR of Z'xIxI and that
Z'xIxI U ¥xI'xI U ¥YxIx0 is an equivariant SDR of YxIxI, the latter
because {0}cI is 2 SDR and (¥YxI,Z'xI U ¥YxI') is a G-NDR. Hence
Z"xIxI U Z'xIx1 U ¥xI'xI U¥xIxO is an equivariant SDR of YxIxI and
hence Px(Z"xIxI U Z'xIx1 U YxI'xI U YxIx0)y QxY¥xIxI of PxY¥xIxI, what
we had to show.

It remains to prove the claim: Let Vr be tne subspace of points
in Y with at least n-r coordinates in some Y;. Consider the pair
(VrUZ",Vr_1UZ"). Then (VrUZ")—(Vr_1UZ") consists of a collection of
spaces homeomorpnic to copies

(Y{1-Y{1)x...x(yi =YY (Y Yo Ox...x (Y -Y' )
7 My

m
n-r n-r r r



- 163 -

after a suitable shuffle of coordinates, {L1,..,Ln_r}u[m1,..,mr} =
{k1,...,kn}, on which the homomorphic image G' (determined by the co-
ordinate shuffle) of the subgroup of G acts which keeps this space
invariant. Let U c Y{ x...in be the subspace of all points having
some coordinate in some Y{. aﬁ&rw < Ym1x...xY the subspace of all
points having some coordin;te in some Yéi. Thez

UXY X...xY._ U Y! x...x¥!  xW =Y, x...x¥! o xY_ x...xY_ n(v_uzm
m, m., Y L 1, boor My m, -l

A

is a G'-equivariant SDR of Y, X...xYy XY x...xY by (A 2.4). By
1 n-r 1 b

induction, VOUZ" is an equivariant SDR of Z' = Vn_1UZ". But VOOZ“ is

an equivariant SDR of V,, again by (A 2.4). Hence Z" is an equivari-

ant SDR of V,uz". [

By a similar argument, one can also prove a partly homogeneous
version of this theorem.
The following result, which can be proved in the same manner as

the first part of (4.13), indicates how we will apply Theorem 5.6.
Lemma 5.7: Let a, @ W8 —> Tov be a homotopy of actions on X € Tovg.

Then idy carries the structure of a 8-map from (X,ao) to (X,a1). The

same holds for the partly homogeneous case. '

4, LIFTING AND EXTENSION THECREMS

Wnen dealing with W'8 we usually have to assume

Assumption 5.8: 8(0,k) has at most one element for all k.

For based actions this is no restriction, as we have seen before.
Since wbs coincides with W"8 ror a based PROP B satisfying (5.8) and

since it suffices to study PROPs satisfying (5.8) wnen we consider
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based actions, the case bi is covered by the case W"3,

Recall that we have filtered each sgpace w%(i,k) by subspaces Fr of
morphisms represented by trees with at most r internal edges. This
filtration induces a filtration F! of w'8(i,k) and B! of W"8(1i,k).
Let P be the space of trees of a given shape A with r internal edges
and G its symmetry group. Then a tree A of P represents an element of

F!

r-q 1ff one of the following holds

(5.9)(a) Some vertex label is an identity

(b) some internal edge has length O

(c) there is an internal edge of length 1 having a subtree with at
least one internal edge and with source O above it (because then

the additional relation applies)

The tree A of P represents an element of FL._q iff one of the follow-
ing holds
(5.10)(a) some vertex label is an identity
(b) some internal edge has length O
(c) A has a stump and rz1.

Let Q'<P and Q"CP be the subspace of those elements satisfying
(5.9) respectively (5.10). Then (P,Q') and (P,Q") are equivariant
NIDRs.

Proposition 5.11: The augmentation ¢ : W8 —> 8 induces an equivariant

equivalence ¢" : W"8 —> B and, provided B satisfies (5.8), an equi-
variant equivalence e¢' : W'3 —> B8,

Proof: We obtain F) and F.. from ¥/ _, and FL._q by attaching spaces

1
(P,Q') and (P,Q") (ef. 3.15). As in (3.15) it suffices to show tnat
Q'cP and Q"<P are equivariant SDRs. Since {0}cI is an SDR, tnis is
clear for (P,Q") by (A 2.4). For (P,Q') this hnolds for the same reason

if the shape X nas no stumps. If it has a stump and rz1 then the stump
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is an internal edge. Let P be the space obtained from P by deleting

the coordinate giving the length of the stump, so that P = PxI. Then
Q' is of the form Q' = Px0 U QxI, where § is a suitable subspace of

F. Hence (P,Q') = (P,Q)x(I,0) so that Q' is an equivariant SDR of P

by (4 2.4). [ ]

For W'8 and any partly homogeneous version we have a lifting theo-

rem

Theorem 5.12: The lifting theorems(3.17) and (3.20) also hold if we

substitute H; W8 by HLW'% provided all PROPs involved satisfy (5.8).

Proof: Let P : HLWE _— HLW'B be the projection functor. Then there
exist extensions H : H W8 —> 9 of H' : P—1(%) —> D and K :H W8 —> ¢
of K} : P~ 1(8) —> € which factor through HyW'B, because € and I have

at most one O-ary operation. I
For the same reasons we have a homotopy extension theorem for W'S.

Theorem 5.13: Proposition 3.14 also nholds if we substitute HLW% by
H{W'8 and € by Tov®. ]

Since we work witn functors into Iopo the actions are automatically
based. The Theorems 5.12 and 5.13 show that we may well restrict to
PROPs and PROs satisfying (5.8) and substitute W8 by W'8 when we work
with based actions. The results of IV, §1,2,3 carry over with except-
ion of (4.16), on which the nomotopy invariance results rely. The based
analogue of (4.16) can be proved for well-pointed spaces X, i.e. each
pair (Xk,*) is a NDR (see (5.16)), so that we obtain the homotopy in-
variance results for well-pointed spaces. Since there is notning spec-

tacular about W'3 we concentrate on W"8 from now on.
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(%3.17) does not imply a Vifting theorem for W"3, because indecom-
posable trees in W8 may well represent a morphism in W"83 which can be
decomposed into some morpnism of W8" and a sum of O-ary operations

and identities. Fortunately, we have an adequate substitute for (3.17).

Theorem 5.14: Suppose given a diagram

3

t
n :::::::H~§“*“~$E
1y
Hy W® K'(t) o
e"
HLiﬂ F > §

of categories and functors satisfying the assumptions of (3.17). We
suppose furtner that B8(0,k) contains 3(0,k) and that H':3(0k)<8(0k)—->AQK
is a closed cofibration for all k€K. Let p : ® —> Top be an action

on X € IoprL such that each Sk : 9(0,k) —> Xk is a closed cofibration.
Then there is an action x : HLW"B —> Top on X extending the multipli-

cative functor pe H' : 3 —> Tovp.

Proof: We prove the nomogeneous version. Let m : W8 ——> W"B be the
projection, Then B' = n-1% satisfies the assumptions of (3.17) so that
there is an extension H : W8 —> 9 of H'em : B8' —> D, Now apply (5.6)
with a(t) = pe H to obtain the required action x.

The partly homogeneous version follows from the partly homogeneous

analogue of (5.6). l
In a similar manner we can also prove a homotopy extension result.

Theorem 5.15: Let %CHLW"B be an admissible subcategory of HLW"B such
that 8(0,k) < 8(0,k) for all k¢€K. Let p : H{W"8 —> Top be an action
on X € IoprL and a(t) : 8 —> Top a homotopy of multiplicative func-

tors sucn tnat a(0) = p|B®, §.(t) =2.(0) : 8(0,k) < 8(0,k) —> X, for
K K X
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all t€I, and Gk(o) is a closed cofibration. Then there is a homotopy

of actions of H;W"8 on X extending p and al(t).

Proof: Using the notation of the proof of (5.6), we have an extension

B(t) of a(t)erm : n (B) —> Top to H.W8 such that B(0) = perm. We

L
deform B(t) relative to w_1(%) by (5.6) keeping B(0) fixed and obtain

an action whicn factors through HLW"E. .

5. BASED HOMOTOPY HOMOMORPHISMS

If we deal with based actions of unbased PROs and PROPs, we can
define based B-maps and hB-maps as in chapter IV. Since the lifting
theorem (3.17) and the homotopy extemsion theorem (%.14) can be used
for based actions of unbased PROPs and PROs, the results of chapter
IV, §1,2,% carry over as long as they do not rely on Lemma 4.16, This

lemma is substituted by

Lemma 5.16: Let p : X —> Y be a morphism of zopg wnich is an un-
based homotopy equivalence and suppose that X and Y are well-pointed.

Then p admits a based W(K®3)-action.

The proof proceeds as the proof of (4.16) with the exception that

the maps

, Tén . o 2n —
fk N xYk > Xk n IxT xYk > Yk

to be constructed in the inductive step are not only given on alzank
respectively (OsznUIxalzn)xYk in advance, but also on Iznx{ﬂclzank
and Isznx{*}chIzank. Again (A 3.5) provides the required maps, be-

cause (Izank,alzankulznx{*}) is a NDR. l

Hence for an unbased PROP B we explicitly obtain
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Theorem 5.17: The simplicial class Rg [Rﬁﬁj whose n-simplexes are based
w(%eﬂn)-actions [Hg (Eeﬁn)—actions] satisfies the restricted Kan

n
condition. Hence the category mupg [mupgﬁj of based W8-spaces and sim-

plicial homotopy classes of based 8-maps [h8-maps) exists.l

Proposition 5.18: Two based B-maps [hd-maps] (fi,pi): (X,a) —> (Y,8),

i =20,1, are simplicially homotopic iff there is homotopy through

based B-maps [hB-maps] (ft’ot) : (X,a) —> (Y,B) from (fo,po) to U@pp.l

Proposition 5.19: Let (f,p) : (X,a) —> (Y,B) be a based 8-map [hB-

map] and f >~ g. Then g admits a structure » of a based 8-map [hB-map]

such that (f,p) and (g,x) are homotopic. l

Theorem 5.20: Let 9B be a sub-PROP such that (3(i,k),®(i,k)) is a

Si-NDR for all i and k¥ in ®, and let p : X —> Y be a homotopy equi-

Q
K
jo: w(®®s31) c w(Mm1) [HW(’DQQ.l) c HW(3B @91)3 be the inclusion

valence of well-pointed spaces in oo Let i : WO ¢ W8 and

functors

(a) If (X,a') is a based Wd-space, (Y,B) a based WB-space, and

(p,p') ¢ (X,0) —> (Y,Bo1i) a based D-map [hD-map], then we can ex-—
tend a' to a based WB-action a on X and p' to a based 8-map [n8-map]
(pyo) : (X,a) —> (¥,8)

(v) If (p,p) ¢ (X,2) —> (Y,B) is 2 based B-map [hB-map], then any
homotopy inverse based D-map [hD-map] (qg,u'):(Y,Bei)—>(X,x0i) of
(p,poj) can be extended to a homotopy inverse (g,x) : (Y,B) —> (X,a)

of (p,0). |

To cover the case of based PROPs, we also study maps of W"B-spaces.
We define a B"-map from a W"B-space (X,a) to a W'B-space (Y,B) to be
an action w : W"(*B@Q‘]) —> Top with d°(x) = B and d1(x) = a. The

homogeneous version is defined analogously. The results of IV, §1,2
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carry over provided we only consider actions a : W'@ —> Iop respec-
tively their partly homogeneous snalogues, € an arbitrary unbased

PROP, on objects X € IopK satisfying

Assumption 5.21: The induced maps Qk : 8(0,k) ¢ W&(0,k) —> X, are

closed cofibrations.

This assumption is in particular satisfied if each space &(0,k)
has at most one element bk and o« is an action on a well-pointed ob-

jeet X € Iopg whose base points are the images of

A
ak(bk) HER Xk

if €(0,k) 4 #. Note that a is then automatically a based action, pro-
vided each §(0,k) has exactly one element.

Explicitly, we have

Theorem 5.22: Let 3 be an arbitrary PROP. The restricted Kan condition
holds for the simplicial class R% [Rgﬁ] whose n-simplexes are W“(%Q%Q—
actions [HQRW"OBQQn)-actions] satisfying (5.21). Hence the category
mnpg [mapgﬁj of W"B-spaces satisfying (5.21) and simplicial homotopy

classes of [homogeneous] B"-maps satisfying (5.21) exists. ||

Propogition 5.23: Two 83"-maps [n8"-maps] (fi,pi) : (X,a) —> (Y,B),

i = 0,1, are simplicially homotopic iff there is a homotopy
(ft’pt) : (X,a) —> (Y,8) through B3"-maps [hB"-maps] from (fo,po) to
(f1,p1), provided all actions satisfy (5.21).

The proof is not a direct translation of (4.13) to our case, because
we do not have a uniqueness part in (5.14). If 7 : w(s®91) — W"(!30531)
is the projection, then we know that the B-maps (fo,poon) and (ﬁPDT‘")
are nomotopic by a homotopy through B3-maps (ft,xt). By (5.6) we can

deform "y to a nomotopy which factors through m inducing the required
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homotopy through B3"-maps from (fo,po) to (f1,p1). The homogeneous

version is proved in the same manner. l

Theorem 5.24: Let (p,p) : (X,a) —> (Y,B) be a 9"-map [(h8"-map] whose
underlying map p is a homotopy eguivalence in IopK. Let <3 be a sub-
PROP such that (8(i,k),®(i,k)) is an S;-NDR for all i and k. Denote

the inclusions W"® — W"8 and W"(D@Q1)_c wr (3 GQ1) [HQ1W"(9081)CHE1W‘@OQ1)]
by i and j and let {g,x') : (Y,8¢ i) —> (X,aei) be a homotopy inverse
D'-map [hD"-map] of (p,p o j). Assume all actions satisfy (5.21). Then
(q,t') can be extended to a B"-map [h8"-map] (a,x) : (Y,B) — (X,a)

which is homotopy inverse to (p,p) and satisfies (5.21).'

Unfortunately the proof of (4.18) has to be changed to work for
B8"-maps because the category € used in the proof does not necessarily
contain the spaces 3(0,k). We indicate the modifications for the spe-

cial case we need.

Theorem 5.25: Let 3 be a PROP sucn that each 8(0,k) has exactly one
element. Tet DB be a sub-PROP as in (5.24) and let p : X —> Y be a
homotopy equivalence of well-pointed spaces in Iopg. If (X,a')

is a based W"D-space, (Y,B) a based W"8-space, and (p,p'):(X,a')—=>(Y,Be1)
a based ®"-map [h®"-map], we then can extend a' to a based WB"-action

o on X and p' to a based 8"-map [h®"-map] (p,o) : (X,a) —> (Y,B).

Proof: By (5.20), there is a based B-map (p,p") : (X,a") —> (Y,Bo my)
where my : W8 —> W"3 is the projection, extending the based D-map

s . AN AY - Y s
(X,at. ng) —>(Y,Be1iemy). Since °(x,0) and B(x, 1) are the inclusions
of the base point, which are closed cofibrations, we can deform p" to
a based B"-map (X,o) —> (Y,B) by (5.6). Tne homogeneous version is

proved analogously. I
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6. THE BASED CONSTRUCTION M

We define reduced based 3-maps and reduced 3"-maps in a fashion
analogous to chapter IV. They enjoy the same properties as in the un-
based case witn the modifications listed in the previous section.
Therefore, one might expect that the based equivalent of the con-
struction M of (4.49) can easily be obtained. This is not the case!
Let 3 be an unbased PROP and (X,a) a based B8-space, then M(X,a) as
defined in (4.49) is a 8-space but it is not based. If we take the
base point of X as base point of M(X,x) then the B-action does not
preserve base points. By imposing new relations we can make M(X,a)
into a based 8-space having the correct universal property, but then
it is not of the homotopy type of X any more, which is insufficient
for us.

The situation is different for based PROPs (or PROs). Since we may
restrict our attention to based PROPs having exactly one O-ary opera-
tion, we may as well treat the case W"D,

Let w;(%eg1) be the quotient of wr(ﬂg Q1) obtained by shrinking
all stumps, and let (X,a) be a W"B-gpace. Define M"(X,a):{M"Xk} by

MOX, = pw;(3@g1)(g°,k1)xxi/~
(5.26) i =
(c na;x1,...,xn)~(c;a(a)(x1,...,xn))
cEW;(iB®91)(j_°,k1) and 2€w(3 ®Q1)(1o,j°) (the upper index specifies
the 91—coLour).

In terms of cherry trees M"(X,a) is the quotient of M(X,a) by add-
ing the relation
(5.27) (R3340 5T )~(AY 57400 0hTy)
if A' is obtained from A by shrinking stumps.

As a consequence of this relation we obtain

(A;y1 s e -vyn)"‘(A' ;Y-, y e e vyi,b(*)yyi+1 ysece ,Yn)

if A has a stump b between its i-th and (i+1)-st twig and A' is ob-
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tained by converting this stump to a twig.

Theorem 5.28: Let 8 be a PROP and (X,a) a W'"8-space. Then there is a

reduced B"-map (ia,va) : (X,a) —> M"(X,a) such that

(a) i, embeds X as SDR into M"(X,a)

(b) any reduced 3"-map (f,p) : (X,a) —> (Y¥,B8) is the canonical com-
posite of (ia,va) and s unique 3-nomomorphism M"(X,a) —> (Y,8)

(e) if (f,0) : (X,a) —> (Y,B) is a reduced B"-map and each Gk and
@k is a closed cofibration, the nomotopy class of the induced
homomorphism h : M"(X,a) —> (Y,B) depends only on the simplicial

homotopy class of (f,p).
The proof is as for Theorem 4.49.'

The construction M" gives actually a little more. If (X,x) is a

W"8-gpace sucnh that each X, : 3(0,k) —> X, is an inclusicn and

k k
A € Topy is tne collection of images of tne G, , tne action a on X
makes A into a B-space and the inclusion ia restricted to A is a B-

homomorphism. This has relevance for the based case:

Corollary 5.29: Let B be a K-coloured PROP sucn that each 8(0,k) has

exactly one element and let (X,a) be a WB-space such that each

Gk : 8(0,k) —> Xk is a closed cofibration. Denote the image of‘gk

by Xy Then there is a based B-space (Y,B8) and an unbased reduced
B-map (f,p) : (X,a) —> (Y,B) whose underlying map consists of maps

of pairs f : (Xk,xk) —_— (Yk,*), whicn embeds X, into Y, as SDR.

Proof: By (5.6) we can homotop a to a W8"-action & keeping‘gk(*) fixed.

Take Y = M"(X,a) with base points given by 8(0,k) = Y By (5.7) and

K
{(5.28) there is an unbased reduced 3-map

(1dy,x) (3

)
(f,0) : (X,a) ————> (X,a)

-V
2T o ome(x,3) ,
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f = ia’ witn the required properties. l
In view of (5.28 c) we also show

Lemma 5.30: Let ® be a PROP and (X,a) a W'"8-aspace such that each Qk
is a closed cofibration. Then each inclusion 3(0,k) c M"Xk is a closed

cofibration.

Proof: We filter M"(X,a) by subspaces M; of elements represented by

a reduced cherry tree witn m vertices and n cherries, m+nsr, An ele-
ment of the space P of all cherry trees with m vertices and n cherries,
m+n=r, represents an element of filtration r-1 iff a vertex is labelled
by an identity, or an internal edge nas length O or 1 or supports a
stump, or a cnerry lies in the image of some Qk. If Q is the space of
these cherry trees, tnen (P,Q) is a NDR so that (M;,M;_1) is a NDR

(4 4.1). since My = U_38(0,x), tae result follows (& 4.1). ||



VI. Chapter

ITERATED LOOP SPACES AND ACTIONS ON CLASSIFYING SPACES

It is the aim of this chapter to show tnat E-spaces (see 2.46)
coincide with infinite loop spaces., As an application we prove that
the stable groups 0,U,S0,5U,Top,F and their classifying spaces are
infinite loop spaces. For this purpose we investigate how much struc-
ture on a space X can be transferred to its classifying space BX if

there is any.

1. THE CLASSTFYING SPACE CONSTRUCTION

In this chapter o denotes the PRO associated with the theory em of

monoids. Recall that Mer, is the category of monoids and homomorphisms

4
and mn'n“u the category of moinoids and homotopy classes of homomorphisms.
Let G be any monoid with unit e. Consider G not as an U-space but

as a monochrome PRO @ by putting ®(1,1) = ¢ and &(n,1) = § for n#il.
Composition is given by the multiplication in G. Take a single point

P with its unique W@-structure and apply the construction M of (4.49).
Note that M is defined even if (G,e) is not a NDR so that condition
(3.7) is not satisfied for the PRO ®. The space EG=MP is a contractible

free G-space. Contractibility follows from (4.49 a) and freeness from

the definition of the @-action on MP.

Definition 6.1:We call EG the universal space and BG=EG/G the classi-

fying space of the monoid G.
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Let us give direct descriptions of EG and BG. The representing
cherry trees of EG are linear and vertical, and may be specified by
giving in order, going up the tree, the vertex labels and edge lengths

as (go,t1,g1,tz,gz,...,gk),gi€G,ti€I. We nave the relations

(6.2) _
(govt1!g1)""tk_1!gk_1) gk"e! k>o

(a) (8. stasBaseensrg) =
FYATEL-SERERRT o
(BortyreeesBy_1ob5%85, 1481, 9008y §=,0<Kk

(V) (Egrtqr8yseeergy) =  (Bortyreeerty 1081 1285085,q000980 470
(e) (Byrt11810ecerBy) =  (ggrtyreeergy ) ty=1
Here we use txt' = t+t'-tt' and not t«t' = max (t,t'). Hence

EG = kEL P LY

Relation (a),(b), and (c¢) stand for relations (3.1 a),(3.1 ¢), and
(4.49 d). Note that (go,t1,...,gk) stands for the representative
[(gotj)yt11(g1rido)ytzr--io(gk’ido);*] with P={*}, (gi’hi)€G°91’ and
j+0—>11ing,.

The contraction H, : EG —> EG is given by
Ht(govt11g1)---9gk) = (e’trgo’t1vg1!---vgk)
t running from 0 to 1, and the G-action GxEG —> EG by
[gr(g°9t1rg17"-,gk)] —> (g °go.t1,g1,---,gk)
Consequently
_ U ek k
BG = Yy GxIT/~
with G®={e]} and the relations

(6.3)
) ) (t189 %5008y y) Bi=e
(a (t g % vo ey & =
1 ’ 1 y 2, r k »
(t1,g1,_..,gi‘1,ti*ti+1,gi+1,..,gk) gi=e,1<k

(t ' & !t v---sg) t1=o
(b) (t1’g1,t2,...,gk) = 2 2 3 k

(Bas@areverts 298 _108:sti asesrg ) t.=0,i>0
191 i-1'%1-1"21" "i+1 k i
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(C) (t17g1’t2v---1gk) = (t1yg1y---’g ) ti=1

i-1
We use the obvious convention, that ( ) = (e). The projection

pG ¢ EG —> BG is given by

pG(goyt1yg1v---1gk) = (t1vg19---ygk)

A homomorphism f : G —> H of monoids induces maps Ef : EG —> EH
and Bf : BG —> BH by Ef(go,t1,...,gk) = (f(ge),tq,...,f(gk)) and
Bf(t1,g1,...,gk) = (t1,f(g1),...,f(gk)), which makes E and B into

functors

E,B : Mor, —> Tobp

A
and p into a natural transformation of functors. If ft : G —>H is
a homotopy through nomomorphisms, then Eft and Bft are homotopies

Efo == Ef1 respectively Bfo = Bf1. Hence we can pass to the nomotopy

categories and obtain functors

E,B : Qomy —> Tony

Our functors E and B coincide with Milgram's classifying space
functors [37]: Let a" = {(u1,...,un)EIRnlOSu1S...SunS1}, the Euclidean

n-simplex. Define

with the relations

(6.4) , 3
(go,u1,g1,...,gk_1) if g =e, k>0

() (g Uy, qseeerdy)
RLARRRRE ) .
° g (8o UqseerBy gl 1085 10008 ) i gy=e,0<i<k

(go°21yu2;£29--,gk> if u1=0
(1b) (go,u1,g1,---,gk) = (,ezo,u1,..,;zi_1,ui+1,giogiﬂ,ui+2,..,g.‘giﬁfui=ui+,I
(go'u1""uk—1’gk—1) if uk=1

There is a G~action on E'G given by g-(go,u1,..,gk)=(gago,u1,..,gk)
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Definition 6.5: We call E'G Milgram's universal space of G and

B'G=E'G/G Milgram's classifying space of G.

We can extend E' and B' to functors nnrm —> Top in the same manner

as E and B.

Proposition 6.6: There is a natural equivariant homemorpnism EG —> E'G.

Consequently, the functors E and E' and the functors B and B' are na-

turally isomorpnic.

Proof: Define a map h : EG —> E'G on representatives by
h(go,t1,g1,...,gk) = (go,u1,g1,...,gk) where u; = ty*tox...xt, . Then
relation (6.2 a) corresponds to (6.4 a), and relation (6.2 b) and

(6.2 ¢) correspond to (6.4 b). The inverse of h is given by

(go,u1,g1, --,gk) — (govt19g1v---1gk)
with t,=u, and ti = (ui—ui_1)/(1—ui_1) for i>1, with the convention

that 0/0=1. |}

Remark:If we use t1* tz = max(t1,t2) instead, there is mo such homeo-

morphism,

Proposition 6.7: The functors E and B preserve products.

Proof: It is well-known (see [3%0] or [50]) that the functors E' and

B' preserve products. l

Next we will show that the functor B preserves homotopy equivalences.
Since we later on need this result for monoids in the category of H-
spaces, where H is a discrete group, we work in the category of H-
spaces. An H-monoid is a monoid G together with an action of H on G

such that g +~—> h.g, g€G, h€H is a monoid homomorphism for all h€H.
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Then EG and BG admit H-actions

[}

h-(go,t1,g1,...,gk) (h-go,t1,h-g1,...,h-gk) and
h'(t1vg1vt2i---ygk) = (t1vh‘g1’t2v-"rh'gk)
and p : EG —> BG is H-equivariant.

The functors E and B and accordingly E and B are canonically filter-

s

i
. _ n+l_.n _ n .n, .
ed: Put E.G = égo ¢ 'xI%/~ and B;G = nQO G'xI"/~ with the relations

(6.2) and (6.3), Let p;G : E;G —> B.,G be the projections.

Lemma 6.8: (a) EG = lig E.G and BG = lig BiG
(b) If (G,e) is an H-NDR, then E,GE, ,G<EG and B,GcB,  4GcBG are
closed H-equivariant cofibrations. Hence, since EOG=G and BOG=(®=*,

the pairs (EG,G) and (BG,«) are NDRs.
Proof: By now standard.l

Lemma 6.9: Let G, and G, be H-monoids such that (G1,e) and (Gz,e) are

H-NDRs, Let f : Gy —> G2 be an equivariant homomorphism. Then

(a) if f is an equivariant homotopy equivalence, so is Bf

(b) if f is an equivariant closed cofibration, so is Bf

(c¢) if f is a closed equivariant cofibration and equivariant homotopy
equivalence, tnen Bf embeds BG1 as equivariant SDR in BG2

(a) if G1 and G2 are Hausdorff and f is a weak nomotopy equivalence,

then BG, and BG2 are Hausdorff and Bf is a weak homotopy equivalence.

Proof: BG is an iterated adjunction space in the category of H-spaces
obtained by adjoining spaces (anIn,DnGxIn U anaIn) wnere DG < "

is the subspace of points having a coordinate e. Part (b) follows from
(A 4.9). For part (a) the map f : (G1,e) —_— (Gz,e) is an equivariant

homotopy equivalence of pairs inducing &z nomotopy equivalence of pairs

(G?xIn,G?xaIn u D6, xI") —> (G’Z‘xln,(}gxaln 1 DnszIn)
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Hence (a) follows from (A 4.6) and (A 4.4). Part (c) follows from (a)
and (b) and the equivariant version of {143;(3.7)]. Por part (d) it
suffices to show that the map

r 1 Gxa1™ u DG, xTT —> oxa1™ uy DG xI"
is a weak homotopy equivalence and then apply (A 4.8). Again, by (A 4.8),
it suffices tp prove that f induces a2 weak homotopy equivalence
DnG1 —_— DnG2 because G™x3I® U D"GxI™ is obtained from G"x3I™ by at-
taching (DPGx1%,D"6x2I™). Since DG is obtained from G 'x{e} by at-
taching (Dn—1GxG,Dn—1Gx{e}) this follows from (A 4.8) by induction

on n. .

Let Q : Iopo —_ Iopo be the loop space functor and L :Iop°—> Iopo
the based path space functor, i.e. L{X) = {w : I —> X|w(0)=x}. For a
monoid G we take e€G as base point and (e) as base point for EG and

BG. Then E and B may be considered as functors
E,B : noru-——+ Iobo

By (2.53) and (%.25), we may interpret Q as functor
Q1 Top° — mupg

into the category of based Wi-spaces and based U-maps. The end point
projection m ¢ IX —> X is a fibration with fibre OQX. There is a ns-

tural map of pairs
(E6,6) —> (IBG,0BG)

defined by [JjG(g ,ty,84500.,8,)1(%) = (1—t,go,t1,...,gk) making the

diagram

B¢ ——46 > 1me

LN

commute.
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Proposition 6.10: The maps jG : G —> QBG carry a natural ¥-map struc-

ture defining a natural transformation from the functor J:Ymorm — ‘mc«p‘AI
induced by the augmentation ¢ : WY —> % +to the functor ﬁB:monu—> ﬂup%.

If (G,e) is a NDR, this %-map structure is homotopic through ¥-maps

with carrier jG to a based %-map structure.

Proof: Let O be the PRO of example (2.53) and p : W4 —> 9 a PRO
functor, wnich exists by (2.54) and the lifting theorem. We know that
there is a based action of © and hence of W¥ on loop spaces. Let 1.°EG

be the subspace of LEG of all patns w with w(1)¢€ EOG = G. Recall that
2n
a(n,1) = {(x1,y1,..,xn,yn)€ﬂi |05x1<y1SX2<y2$...5xn<yn51}

Using the G-action on EG we define a based D-action and hence a based

Wi-action on L°EG by
t-x.

1
g1g2"'gi-1‘”i(§;?§i) telxy,75]

g8, -8;(e) telyy x5 ,4]

[(X1,y1,--,Xn,yn)(w1,«o,wn)](t) = %
1

where g; = wi(1), ¥,=0 and x =1.

n+1

We give jG an ¥-map structure by exhibiting it as composite of an
d-map kG : G —> L°EG ana = Wid-homomorpnism rG : 1°EG —> QBG. The
projection p : EG —> BG induces a based map LEG ——> LBG wnhich maps

L°EG into OBG defining rG. Since the D-action on QBG is given by

t—x3

[(xy 0¥ re e ooy ) oryeesm )1(8) =4 1 9175
1791 n’’n 1 n

(e) tely; 0% 4q]

) teElxy,yy]

it is clear that rG is a based Q~-homomorpnism and nence a based Wi-
nomomorphism.

We define the %-map kG using the cherry tree description (3.24)
for an action a of WUHQE1) on the 2-coloured space {¢,1°EG}. On
cherry trees whose edges nave colour G or colour 1°EG only, the action
a is given by the Wi-structures on G respectively 1°EG. On cherry
trees having edges of botn colours we define a by induction on the

number k of internal edges. Since %(m,1) consists of a single point
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for each m, the space of all cherry trees of a given shape with n
twigs and k internal edges is of the form X1x...xanIk, where Xi is a
copy of G or 1L°EG and X.‘x...xXn is the space of cherries. Moreover,
we may restrict our attention to cherry trees containing no identity.

For k=0, we define

£ 3 X,x.. XX XTI —> EG
by f(x1,...,xn,t)z(e,1—t,q(x1)‘...-q(xn)) with q(xi)=xi if X;=6 and
q(xi)=w(1) if x,=» € 1°EG. This defines the based action kG on cherry
trees with no internal edge. Inductively, we have to find a map

£ XTx...xanIkxI —> EG wnich is already given on X1x...xanaIkxI

and which satisfies

(a) £(xq,...r%,,8,0) = (e)

(®) £(xy,...5x,8,1) = (a(x)) ... a(x)))€ E 6

For the second statement f in addition has to satisfy

(e) fl%yeee,x,8,t) = (&) x = base point.

Since EG can be contracted by a homotopy which is natural in G we can
find an extension for the first statement whicn is natural in G. If

(¢,e) is a NDR then (e) — QEG < L°EG are closed cofibrations by

[9;p.57], [52; Tom. 12], and Lemma (6.8). Let X = X,x...xX, and x € X

its base point. Let f' : Xka+1 —> EG be the map just constructed.
We inductively look for a map f : 1" — Eg satisfying (2),(b),(c)
and a homotopy ht : £ >~ f' whien is given by induction on anIk+1. So

we really want a map

Ho: xxI¥t %1 — Ee

which is already given on Xx3T¥''xI 1 XxI¥*'x1 u wxI¥']

2

x0. Since EG

to *ka+2 and then extend
k+

is contractible we can extend Hl*xaIk+

HXxT5 %0 U (xxaT¥ ™1 U *sxT¥*)xT to the whole of XxI¥''xI, wnich is

possible because (Xka+1,anIk+1 U *ka+1) is a NDR. [J

Corollary 6.11: The maps jG : G —> QBG define a natural transformation
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from the canonical functor J : Som, —> i!mp‘21 to the functor

4

a8 : %om, —> Rapy .

bl

Definition 6.12: A space X is called numerably contractible if it has

a numerable nullhomotopic covering, i.e. there is a covering

U = {Ua|a€A} and maps u : X —> I such that
(a) each x¢X has a neighbournood W such that ua(W) = 0 for all but
finitely many a€4

(v) ¢ ua(x) = 1 for all x¢X
a €A

(¢) u7'(0,1] < U,

(d) the inclusions U, —> X are nullnomotopic

Example 6.13: Any CW-complex is numerably contractible [13; Prop.6.7]
We now prove the main result of this section.

Theorem 6.14: Let G be a numerably contractible monoid such that (G,e)

is a NDR and no(G) is a group under the multiplication of G. Then

JjG :+ G —> QBG is a based homotopy equivalence,

Proof: Let G = (GUI)/(e~0) and extend the monoid structure of G to T
-t

by t-g = g = e and t-u = tu for g€G and t,u€I. Then 1€I is the unit
of G. The map f : § —> G defined by g —> g, g¢G, and t > e, t€I,
is a homomorpnism and a based homotopy equivalence (A 4.3). By natura-

lity, we have a commutative diagram of topological spaces

3 G > QB§
1f aBf
G 16 > QBG

whose vertical maps are based homotopy equivalences (Use that

(X,*) —> (Y,+) is a based homotopy equivalence provided X —> Y is a
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homotopy equivalence and (X,*),(Y,*) cofibred (see A 4.3)). Hence it

suffices to prove the result for .

Our aim is to find a commutative diagram

B! <Rl @ )

L

BY < P6 ____ F 5

Q| -— =

in which p' is an h-fibration, i.e. a map having the weak covering
homotopy property in the sense of Dold [13], and the vertical maps
are nomotopy equivalences. Inductively, we construct a sequence of
spaces Eo o E1 < E2 C ... and n-fibrations Q4 Ei —_— BiG having the
following properties

(a) E € c E,, and E < E;,q is an inclusion of pairs (E ,E G)C(lﬂ’ 1.HG')
such that
Ei < Ei+1 EiG c Ei
94 9349 and  piG a3
BiE < By 4G B,G
commute
(p) (Ei+1,Ei) is a NDR
(¢) there are deformation retractions Ty ¢ Ei _ EiE and
d? : q;1(b) —_— (pG)_1(b) for all b ¢ B.§ such that
B, = B, (b) <
r, T and \\\u l// beB T BT
E;C < By 4T (p6) ™" (®)
commute.

We start with Eo = EOE = G and suppose inductively that we have

constructed Ek-1' Let B = B .G and A = B 15 < B. Then B is obtained

K K-
from A by adjoining G5xI¥ modulo the points A' = D¥GxT¥ U T¥x3I¥ witn
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5 = {(g1,...,gk)€ §k| some g, is tne identity 1€I < T}, and Ek§ ob-

k+1X k

tained from E,_,G by adjoining & I* modulo GxA'. Let Y be obtained

from E,_, by attaching AR

by the map GxA' —> E,_,G < E,__,. Define
amap q : Y —> B by q|Ek_1 = q,_4 and q|Ek§ = pkE. For U c B denote
-1
a (U) by Y, and q[YU 2 Yy —> U by qy.
K ~ 3 .
If Q= {(gys-+.,8 €T | some g€l < B,g,> Z}’ then
vt = ox1f U @kx([o,l)u(%,1]) is a nalo of A' in G¥xT¥ inducing a halo
V of A. Since 3T is a SDR of [o,% u(%,w], tne space A' is an SDR of
V' and hence A an SDR of V. Let p ¢+ V —> A be the deformation re-

traction, then p is covered by a deformation retraction D ¢ YV - YA’

i.e. we have a commutative diagram Consider the diagram
-_— r pl
YV 0 ~ YA YV > Y > YA
qv qA qV q' qA
o
v o .t Vo —————> A

wnere Y' is the pullback and r : Yy —> Y' is induced by ? and Qy-

Take Ek to be the double mapping cylinder of the maps Y, < Y and r,

\
and take g : B —> Bkﬁ to be the map given by q on Y U YyxI and by
Q' and Y'., By [12;(17.8)] we find

(i) g is an n-fibration

(ii) Y is an SDR of Ek

(iii) Y, is an SDR of (Ek)A over A

(iv) Yy_, is an SDR of (Ek)B_A over B-A

provided we can show

(a) gy : ¥, —> A and dg_p : Yp_, —> B-A are n-fibrations

(B) V-2 is numerably contractible

(v) for all beV-A the map Eb : Yb —_ Yp(b) is a homotopy equivalence.
The properties (i),...,(iv) imply (a),...,(c): The composite inclusion
E,_,cYc E, satisfies (2). Since (§k+1ka,§xA') is a NDR so is (Y,Ek_p
and hence (Ek’Ek-1)' By (ii) there is a deformation retraction

f Ek ~—> Y. Define a deformation retraction n : Y —> E

G by
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BBy

tion retraction. Suppose bEBk_1G = A, then there is a deformation re-

r,_4 and n|E,G = id. Then h «f = r, is the required deforma-

traction u : q;1(b) _— q‘1(b) by (iii). Since q_1(b) = q;11(b), we
can put 4 = 4 ,eu. If beB G-B,_,T = B-A, then (iv) provides a de-
formation retraction dE : q£1(b) — g—1(b) = (pG)_1(b).

We now verify (a),(8),(y). Since 9 = Q_4 2nd since qp_, is the
projection GxTxI¥ —> TxT¥, botn maps are n-fibraticns. If bEV-A
then Y, = Gx{bl. By construction, o5(g,b) is represented by
(go g'(b),p())e(p6) (pb) = Gx{o(b)} with g'(b)¢T depending on b.
Since § is numerably contractible and nO(E) is a group, rignt trans-

lation is a homotopy equivalence [123;(12.7)]. Hence
- -1
Db : Yb = (pG) (Qb) < Yp(b) = (Ek—1)o(b)
By induction hypothesis the inclusion (pG)—1(ob) c (Ek-1)p(b) is homo-
topy equivalence. It remains to cneck (B): We cover V'-A' by the sets
- 1
v, = {(t1,g1,...,tk,gk)|some giE(%,1)c ¢ or some t,;€(0,7)} and
v, = {(t1,g1,...,tk,gk)lsome gi€(%,1)c T or some tiG(%,1)}. Then
=k ke 11 1y . <k kv T 7T 7
(G"-D G)X(gvg’---:g) is a SDR of V_ and (G -D G)x(gvg’---’g) a SDR
of V1. Since Ek—Dka is nomotopy equivalent to Gk and G is numerably

contractible, so are VO and V1 (A 4.11). Define a map v : V'-A'—> 1

by

=

. 1
v(t1,g1,...,tk,gk) =-“i=1 min [2 max(tf-Z,O),1]

Then (VO,V1) is a numerable covering of V'-A' with numeration (1-v,v).
Hence V'-A' and therefore V-A are numerably contractible.

Let E = lim E and ¢ = lim q : E —> BG. By (c), EG = E and
EOE c q_1(e) are SDRs. Unfortunately, q might not be an h-fibration.
To correct tnis, let TE be the telescope of the En and TB the tele-

scope of the BnE’ i.e,
TE = on[o,1} U Ex[1,2) U Epx[2,3] U ...

topologized as subspace of ExIR. The maps 93 induce a map u : TE —TB

and if we take (e)GBOE a5 bagepoint, then § = u-j(e). The composite
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maps Eix[i,i+1} —_— Ei < E induce a 5 1 - q—1(e)
map kE : TE —> E and similarly n n
for TB giving rise to a commutative diagram XE
TE > E
u 1 lq
8 —XB > 57

where i is the inclusion of € in q-1(e). The map is a homotopy equi-
valence by (c); By (A 4.4) the maps kE and kB are homotopy equivalences,
too. Let P = iQOEi and Q = JQQEEE be the disjoint unions. The maps

E;, c E;,, and Bia - Bi+16 induce endomorpnisms f : P —> P and

g : Q —>Q. It is easy to see that TE is homeomorphic to PxI/(x,7)~(fx,0)
and similarly for TB. Consider P and Q embedded in PxI and QxI at
neignt 5. Let A = {(x,0)€ x1/~} and V = ((x, 1) 2§1/~|t<[o,l)u(%,1]}.

Then TB-A

W

ox(0,1) and & = .U B.G. Hence u, = U TE, —> A

120 120 %4 A
e = (Yo 94 rpp = Px(0,1) —> Qx(0,1) = TB-A are h-

fibrations. V-A is nomotopy equivalent to Q and hence is numerably

and u )xid : TE

contractible. We have a canonical deformation retraction o : V —> A

wnich is covered by the corresponding canonical deformation retraction

r : TE, —> TE, which by (c¢) _ J _
v A G c v 1(e)

is a nomotopy equivalence on each fibre.

. N n
By [12;(17.8)] there is a
commutative diagram TE c T

\i}\\“ ,///4;//
B

whose norizontal maps are nomotopy equivalences such tnat v is an

h-fibration. We end up with a commutative diagram

e Ne) «—d— § 1 5 qMe) «—t— T A% anT
n n n n n

= & —

T < T > F < EG > LBG

tv lu Lq IPE 1"
TB TB > BG BG BG
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in which v and m are h-fibrations, m being the well-known path space
fibration. We know of all horizontal maps with exception of

j& :+ § —> QBT that they are homotopy equivalences, and since the in-
clusions of tne base points are cofibrations, they are based homotopy
equivalences. By the naturality of Puppe's n-fibration sequence [12;
§14], the maps j,i and jG induce a homotopy eguivalence v-1(e)= QBGE.

Hence jG : G = QBG. l

Corollary 6.15: Let G be a monoid which is Hausdorff such that (G,e)

is a NDR and WO(G) is a group under tne multiplication of G. Then jG

is a weak homotopy equivalence.

Proof: Let Spl denote the category of semisimplicial sets,

Sin : Top —> GSp! the singular functor and R : Spl —> Top the topo-
logical realization functor. Since we work with compactly generated

spaces, Re Sin preserves products so that Re Sin(G) is a monoid. It

is well-known that the back adjunction ¢ : Re Sin —> IdIop induces

isomorphisms of homotopy groups. By naturality, we have a commutative

diagram
RSin(G) IRSin(6) . gppsin(q)
e(G) QBe(6)
¢ iG > QB(G)

Since WORSin(G) is a group and RSin(G) a CW-complex, jRSin(G) is a
homotopy equivalence by (6.14). Since Q and B preserve weak homotopy

equivalences, QBe(G) is a weak homotopy eguivalence. l

Let Y be a based space and OMY the Moore loop space on Y (cf.3.26).

There is a canonical natural map eY : BQMY —> Y given by
k
eY(t1,x1,t2,x2,...,tk,xk) = w(Ei=1(1—t1*t2*...*ti)ai)

where x; = (wi,ai)é QyY and (w,ziai) = X4 Xy +.. X, . The composite
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Y
M QeY
QMY —— QBQMY —_— > QY

carries an %-map structure, because jQMY and QeY do. It sends the
Moore loop (w,a) to the loop v : I —> Y given by v(t) = w(ta). It is

well-known that this is a nomotopy equivalence [12;p.179].

Proposition 6.16: If Y nas the nomotopy type of a connected CW-complex

the natural map eY : BQMY —> Y is a homotopy eguivalence,.

Proof: Since BQMY and Y have the homotopy type of a CW-complex, it
suffices to show that eY is a weak homotopy equivalence. By (6.15),
jQMY : QMY —_— QBQMY and hence QeY are weak homotopy equivalences.

Hence eY is a weak homotopy equivalence, because Y is connected. I

The results (6.9 d) of p. 178 and (6.15) of p. 187 remain true
if we drop the word "Hausdorff", For the proofs then use (A 4.8 b)

and tne following variant of (A 4.8 a):

If X and Y are properly filtered spaces and if f : X —> Y is a
filtered map sucn that eacn fn is a weak nomotopy egquivalence, tnen

f is a weak nomotopy equivalence.

Proof: f induces a map Tf : TX —> TY of the telescopes TX and TY
associated with the filtrations of X and Y. Since X and Y are proper-
1y filtered, it suffices to show that Tf is a weak homotopy equiv-
alence. Let TOXCTTXC.‘. be the filtration of TX by partial telescopes.
Then m, (TX) = lim _ w; (T X). Since (T£|T X) : m (T, X) = w; (T ¥),

tne map Tf induces isomorpnisms of nomotopy groups.

We close this section with another elementary result on classifying

spaces.
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Lemma 6.17: Let G be a numerably contractible monoid such that (G,e)

is a NDR. Then BG is numerably contractible.

Proof: Since (¢™xI,D"exI™ U ¢™xaI™) is a NDR and G™xI" is numerably

contractible (A 4.11), BG is numerably contractible (A 4.12).

2. ACTIONS ON THE CLASSIFYING SPACE

We can extend the notion of a classifying space from monoids to

Wil-spaces by tsking the composite

BM 3 m“”m > Qom >3 Iopo

o
Pl
as classifying space functor. Here M is the functor of (4.49). Note
that the unit e€MX is 2 natural base point so that M can be interpret-
ed as functor into bom§ instead of bomm. This definition makes the
functor M important for our further investigations.

Lemma 6.18: (MX,e) is a NDR for any Wid-space X.
Proof: MX is an iterated adjunction space filtered by the subspace

MnX of reduced cherry trees having at most n internal edges. The pairs

(Mn+1X’MnX) and hence (MX,MOX) are NDRs. Recall that

T

is the unit of MX. Since (MOX,e) is a NDR, so is (MX,e).

Lemma 6.19:(a) (BMX,x) is a NDR for any Wel-space X.

(b) BMX is numerably contractible if X is

Proof: (a) follows from (6.18) and (6.8) wnile (b) follows from (6.17),
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(6.18) and (A 4.11) because X ~ MX. ||

As an immediate application we find that for a well-pointed monoid
(G,e) the spaces BMG and BG are nomotopy equivalent. Indeed, the back
adjunction r : MG —> G (see 4.49 ff) is a monoid homomorphism and a

homotopy equivalence so that Br : BMG = BG by (6.9).

The functor M : map” —_— bomg can be lifted to a functor

M Rov o > morﬁ such that
M 0
BtormI >4 morm
P P!
iUlcsp“u M 5 Somg

commutes. P and P' denote the canonical projections. If f : X —> Y is
a Wd-homomorphism, then Mf : MX —> MY is the homomorphism determined

on cherry trees by
ﬁf(A;x1,...,xn) = (A;f(x1),...,f(xn))

Note that Mf is the unique homomorpnism induced by the canonical com-

posite of £ and the universal reduced ¥Y-map ¥ —> MY.

Let B be a K-coloured PROP (for PROs the argument is analogous)
and X a (Wu4@® 8)-space. By (2.19) we can consider X as B-space in the
category of Wi-spaces so tnat bEB(i,k) defines a WY-nomomorphism
b X, —> X inducing a monoid nomomorpnism Mb : M(Xi) —_— M(Xk) and
hence—a based map BMb : BM(Xi) —> BMX, . By construct;on, BMb is con~
tinuous in b€E(i,k). Unfortu;ately, the maps BMb do not combine to a
based action on BMX = {BM(Xk)|k€K}€ topg, because M does not preserve
products. Indeed, remark (3.26) shows that there is no product pre-
serving functor M : Mor

—> Mor, sucn that MY ~ Y for all Wi-spaces

WY U

Y.

Let X = {Xk,ak},kéK, be a collection of Wd-spaces and j : [p] — K
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an object of & . By (11;8%) the product Wid-space (Xi,ai) is defined
on objects newa by ai(n) = (Xi)n and on morphisms b : m —> n by the
composite
aL.{P)x...xa. (Db)
X)X, ) .. x (X, )® —dh JLE > (Xu ) ™ ox (X )P a(x )P
(X)™(X;) (%3) (g0 e X (g =(X)

The representing reduced cherry trees of M(Xi) are of the form

(A;z1,...,zn) with z = (xr1,...,x

rp)€ Xi. The correspondence

(A324500,2,) —> [(A;xﬂ,xm,--,xm),--,(A;x1p,x2p,---,x )]

np

defines a monoid homomorphnism

ni : M(Xi) —_ (MX)i = MX11X"'XMXip

the unigue nomomorpnism induced by the product of Wr(91891)-actions

(iOL XeeoXi ,V XXV, K (Xi’ai) —> M(X

. [o AN .
* 3 ip

IX oo oxM(X,
J1 Jp

FREGFY Frsee

where (ia Vo ) e (Xk,ak) —_ M(Xk,ak) is the universal reduced %-map

of (4.49). The isomorphism subgroup Si of 6K(i’i) acts on M(Xi) and
(MX)i by permuting factors and hi is Sl—equivariant.

Lemma 6.20: hi embeds M(Xi) as Si—equivariant SDR in,(MX)i sucn that
MX).,M(X. is an S.-NDR.
(( )l ( l)) i

Proof: By definition, nio i, = (i,lj1)<...x1aj ). Since i, . and

(ia.1x...xi . ) are equivariznt nomotopy equivalences (see proof of
4.4%), the map hi is an equivariant nomotopy equivalence. So we only
nhave to show that it is an equivariant closed cofibration. A p-tuple
of reduced chnerry trees (A1,...,Ap)€ (MX)i lies in M(Xi) iff the Ay
have the same snapes if we neglect the edge colours and the same edge
lengths up to the relation (4.49 a,c,d). Note tnat the shape uniquely
determines the vertex labels because %(n,1) nas exactly one element
and that (4.49 b) does not apply because ¥ is a PRO, Moreover, we may

restrict our attention to reduced cherry trees having no vertex re-

presenting an identity so that (4.49 a) becomes redundant. We show
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by induction on the product filtration of (MX)-i given by the filtra-
tion of M that there is an equivariant retraction
r : (MX).xI —> (MX).x0 U M(X.)xTI
( );L ( )_1 (1

So suppose inductively that r has been given on M (Xi1)x..qu_(X.)xI

Q1 AP
for q1+...+qp<n. Let x1,...,xp be shapes with q1,...,qp internal
edges, Qqbevetqy = n and colours j(1),...,j(p). The space of all p-

tuples of reduced cherry trees of shape (x1,...,xp) in (MX)i is of
the form 1Ti£1 Yiqu1 where Yi is the space of cherries of the i-th

P
tree. An element (A1,...,Ap)€Tf-i=1

of A1""’Ap coincide disregarding edge colours and

v.x(1%1-31%) ties in M(X,;) iff tne
shapes x1,...,xp
the lengths of corresponding edges in thne Ai are the same, so that
- - - - p q q ap
9 =9y T eee = qp = q and (A1,...,Ap)€ 1Ti=1YixAI where AI* c I
is the diagonal. Tne group Sl acts on p-tuples of shapes (A1,...,hp)
of cherry trees in (MX)-i by permuting factors. Let H be tne subgroup
leaving (x1,...,xp) fixed.
Case 1: At least two of the x1,...,xp are different neglecting edge

colours. Then we need a H-equivariant retraction
a; a4, qy
(TTYixI IXT —> (WY xI *)x0 U (MY xdI *)xI

Case 2: The xi coincide disregarding edge colours. Then we need a H-

equivariant retraction
(WY OxTPNT =>(T v, )x1P%0 1 (T Y )x(a1Pd 1y a1)x1

Both retractions exist because (1%,3I%) is a NDR and (1P%9,31P% y A1)
is a Sp—NDR. We extend to filtration n by making this process for a

complete set of representatives of Si~orbits of snapes (A1,...,xp).l

Proposition 6.21: Let 8 be a XK-coloured PROP (or PRO) and X a (Wi@8)-

space. Then BMX admits a based WB-gction.

Proof: Define a K-~coloured PROP § by taking as @(1,k) the space of all

pairs (b,f), b€8(i,k) and f : (BMX)i —> BMX, a based map sucn that
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the composite

is BMb, with the subspace topology of B(i,k)xzopo((BMX)i,BMXk). Com-
position in € is given by the composition in 8 and in I:po. The pro-
jection (b,f) > f defines a based action of € on BMX and tne pro-
jection (b,f) > b a PROP-functor P : € —> 8. By (6.9) and (6.20),
BM(XQ is an S,-equivariant SDR of (BMX)i. Denote the retraction

(BMi}i —_ BM?Xi) by r. Let h, : (BMX)i———> (BMX)i be the equivariant
defor;ation with h, = id and h, = Bn, o« r. Then P : &(i,k) —> 8(4i,k)
has an equivariant section Q : 8(1,k7 —> &(i,k) defined by Q(b) =
(b,BMb e r}, and there is an equivariant deformation (b,f) > (b,foht)
into tnis section. Hence, by the lifting theorem, thnere exists a PROP-

functor W8 —> € making BMX into a based WB-space. l

3. n-FOLD AND INFINITE LOOP SPACES

Let O, be tne first little-cube category of example (2.49) and
T : 9 C 81 the sub-PRO of example (2.5%). The unique functor y : 9 —> 9
is a nomotopy equivalence. Hence there is a PRO-functor P : Wi —> 9
sucn that yo P = ¢(%). Since the composite of augmentations
e(U)e e(Wa) : W(Wa) —> o is a nomotopy equivalence, there is g functor
Q : Wd —> W(Wa) such that e(%)e ¢(WN) « Q = ¢(¥U). From the uniqueness
part of (3.20) it follows that e(Wi)e Q = Idy, tnrougn functors. Let

8 be a K-coloured PROP (or PRO) and i Wi —> Wi®38 and j:9,->93,83

k

the canonical inclusions (2.17). Then we nave for each k€K PRO-functors

M 2 Wipe Q WU —> W(Wwu®3s) O * Wi eWT o WPoQ : WY —> W(Q1®8)

Definition 6.22:Let 8 be a K-coloured PROP and X ¢ IonK. Two W8-actions

c and B on X are called eguivalent, if there exists a 3-map
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(idxyu) : (X,a) —= (X,B).
From (5.7) we obtain

Lemma 6.23: If ay ¢ W8 —> Iop is a homotopy of WdB-actions on X then

a, and o, are equivalent.

Theorem 6.24: Let 8 be a K-coloured PROP (or PRO) and X={(Xk,ak)|k€K}

a family of Wid-spaces, Consider the statements

(a) BMX = {Bm(xk)!k€K} admits a based W8-action

(b) Up to equivalence of Wi-actions, tne Wi-actions on the X, come fram
a W(Wi®3)-action on X via e e

(c) Up to equivalence of Wd-actions, the Wi-actions on the Xk come
from a w(01er8)—action on X via O

Then we nave the following implications: (c¢) = (b) =» (a). Moreover,

if for all k€K tne space Xk is numeradbly contractible, %y induces a

group structure on no(Xk), and 3(0,k) has exactly one element, then

(¢) holds if BMX admits a (not necessarily based) WB-action.

Proof: (c) = (b) because j s TP =((ro P)gId) oi,. Hence p =

Wir o P)@IA) o %, and W((r « P)@Id) induces the required W(Wy¢ ®3)-action
on X.

(v) = (a): By assumption, there is a W({Wu®3)-structure n on X and
there are Y-maps (idxk,uk) : (Xk,ak) — (Xk,n onk). By (4.49), there
is a (Wu®38)-space (Y,n) and a homotopy equivalence g : (X,n) — (Y,7n)
carrying a (WiI®3)-map structure. If By = Noe(Wi@s)e ) then

gk°fk : (Xk,ak) —_— (Yk,Bk) carries an Y-map structure. Since
c(WI®@B)o u

o c(Wd)e Q =~ the Wi-structure B, on Y, is equi-

x =k T
valent to the Wiu-structure n vik. Consequently, there are d-maps
(hy,8y) = (Xk,ak) — (Yk,ﬁ »i,) wnich are homotopy equivalences. By

(6.21), BM(Y,n) admits a based W3-structure. Since BMX = BM(Y,n) by
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(6.9) and both spaces are well-pointed, BMX admits a based WB-action
by (5.20),

Proof of tne last part: By (5.6 a) and (5.29) there is a based B-space

(Z,n) and a based homotopy equivalence f : BMX —> Z, because BMX is
connected and well-pointed. Since the loop space functor O preserves
products and since 01 acts on loop spaces, there is an action B of 31
on OBMX and 6§ of Q1ef8 on QZ making Qf : QBMX —> QZ into a 01—homo—
morphism and via Te P into a Wi-nomomorpnism. By (4.49),(6.10) and

(6.14) tnere is a composite of %-maps

Qf

hy (Xk,ak) —> M(X k) —_— (QBM(Xk),B o7 o P) > (QZ oTeP)

x'® PSRRI
which is a homotopy equivalence. For any homotopy inverse g : QZ — X
of h there exists a W(D®8B)-action » on X making g into a (01®ﬂ)—map
(02,6 o (0, ®8)) —> (X,\) by (4.20). Since jkoTaPne(Wﬂ)=e(D183)W(%{Tem,
the composite By © hk is an ¥-map from (Xk,ako e(Wi) e Q) to

(Xk,ke W(jk- TeP)e Q). Hence, by (4.14), the two Wd-structures on

X, are equivalent. Since e(Wu)e Q ~ Id, the actions akee(wu) ¢« Q and

@, on Xk are equivalent. So A is the required w(m1e 8)-action. l

Definition 6.25: A map f : X —> Y of based topological spaces is

called n-fold loop map, Osn<ee, if there exist based maps of based
spaces fi : Xi _ Yi, i=0,1,...,n, and hi : Xi—1 —_> QXi and

k. Y.

—> QY., i= . n ti f= h h, a A | .
i i-1 Yl, i=1,2, ,n such that f fo’ each ng and kl is an

unbased hnomotopy egquivalence,and

Iy
Xjog — > ¥i
nl ki
Qf.
X, ——t > QY.
1 1

commutes up to a based nomotopy. We call f an n-fold based loop map

if each ny and ki is a based homotopy equivalence and a strict n-fold

loop map if each hi and ki is a based nomeomorphism and the diagrams
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commute. A based space X is called n-fold loop space [n-fold based

Loop space, strict n-fold loop space] if idX is an n-fold loop map

[n-fold based loop map, strict n-fold loop map].

Definition 6.26: Two [based] maps f : X —> Y and g : X' —> Y' are

called [based] homotopy equivalent if there are [based] homotopy

equivalences n : X >~ X' and k : Y >~ Y' such that

X > Y
Xt — & = oy
commutes up to [based] homotopy.
In (2.49) we have constructed actions up = un(X) of 9, the n-th

little cube PROP on QnY, natural with respect to based maps g ¢t X —=> Y.
Moreover, we have constructed inclusion PROP-funciors tg H Dm c Qn

for n>m sucn that

0=
“atn T Hm
Hence, if 12 : ) < 9, 1s the inclusion into tne direct limit,

n ——
Hoolon = Mo

21‘!

Recall that Qn(r,1) = {(x1,y1,xz,yz,...,xr,yr)€(1n) the x; are

the lowest and ¥y the upper vertices of r linearly embedded n-cubes
in I™ with disjoint interior =snd axes parallel to those of In}. De-

fine PROP-functors Fp+ 9% —> 9 and G : 90 —> 8, by

n-1

] L} 1 ¥ -
Fn(x1,y1,...,xr,yr) = (x1,y1,...,xr,yr) and Gn(v1,w1,...,v ,W_) =

r’’'r
= (V;,W"I,..-,V:;,W;) with x]!. = (xiroy-"yo)y Yi = (yi11a"'11)1
1 ' . _
vy o= (O’vi1""’vin—1)’ and w; = (1’wi1""’win—1) if vi_(vi1""thb4)
and w, = (wi1""’win—1)' Then F, and G combine to a PROP-functor

T, 8188&_1 —> Q

n n

determined on generators by rrn(aeid) = Fn(a) and rrn( id@b) = Gn(b).
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n

Since the

we nave T

n-1 n-1y_
n+1"'n » ne1t (1881 )=

— n —
‘P = Fpyq and 19,6 =C

t§+1 L S Since for k-spaces finite products commute with indenti-

fications, lim [(QTQQn)(rJ)] = (S.IQ 9_)r,1), and the m, induce
n
a PROP-functor

m_.: 0105%0———> Qe

o0

Let
fi
Xi >Y1
hi+1 k. i=o0,%,...,n-1
ar i+1
i+
RSP > 0y 49

be the data of an n-fold loop map, osnsw., We identify the functors

A™.n with ™' by the exponential map (cf 2.49) Tnen

- . o N
2" m1 o0l Xo —> X,

Let f:X —> Y be homotopy equivalent to the n-fold loop map fo

T

X > Y
h[ lk
g —
X Yo
1 m-1

Denote Y™ 'n *...ehiyen by ppoand Q

n K +enookq ok by Q.

Theorem 6.27: If f:X—> Y is homotopy equivalent toc an n-fold loop

map, 0 sn <o, then X and Y admit wnn—structures a and B and
f 8 9 -map structure (f,v):(X,a)—> (Y,8) such that (pm,qm) carries
a (0m091)—map structure
(£,v-W(1p@Td)) —> (2"f ,(u @Td) (0, ®8,)) msn
In particular, if X is an n-fold loop space, Osnse, then X admits
a Wﬁn—structure a sucn that pm:X———> Qme carries a Qm -map struc-—

m m
ture (X,Q'tn) —> (0 Xm,um-e(nm)).

Proof: We proceed by induction on m. Tne homotopy commutative
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square

v

(=
Hy
< ———
-

X—0
o) [¢]

determines a W(g1@ 91)= w(00031gg1)-action such that (n,k) carries
a (000g1)—map structure from f to fo. For the inductive step we

are given a W(Qm_1@ 91)-structure vp_q on f sucn that (p

)

m-1,9m-1
admits a (Qm_19 91)—map structure

m-1
(f,vm_1 )_> ((2 fm_»]’(um_1°Id)‘€(Dm_1°Q1))

We want to extend Vo1 toa w(ﬂme g1)-structure. Since

fm—‘l
m-1 > Ym-1
m km
nf
m
QXm > QYm

commutes up to based nomotopy, it is given by a based W(Q1QQ1)—

action inducing a Dm_1aw(g1gn1)—action.
Ly

m-1 m-1 m=-1
Q Xm—1——___—__—__> o] Ym_1
m-1. m-1
9] ny 0 km
m
af
m m m
Q Xm > Ym

Now id®c(9,®2,):0, ®@W(a,®8,)

> 8m—1®"1®‘!1 is an
equivariant homotopy equivalence. We apply (3.17) with 8 generated
by w(nm_1@ 8, ®0)y w(am_1o 2, 01)u{co1 ,"’2) with @, being tne image
of id00 idiQ j,j:0——> 1 in [P under the standard section

O, 1@8,@8,—> W(9,_.89,®8,). The functor H':3—> 9 .eW(2,e8,)

is given on generators by (Ide n) -e(i)m_1ag1@n1) with n:g,®8,—>

w(ig1 091) the standard section. We obtain a (arn—‘l° 91)—map
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-1 -1
(A" g (uy @Td)-e(0,_i88,))—> (2Tt ,(u -im T ®Td)-e(0 _je2,))

with underlying maps (Qm_1hm, Om_1km). Hence (pm,qm) carries a
(Qm_1391)—map structure

1@Id)-e(am_1 @8,))

m—
(fyvm_»]) —_— (memy(u- m

m"?
Since (pmﬂm) is a pair of homotopy equivalences, we can extend vm_1
oy (4.20) to a ﬁ%ngﬂ1)-map structure v on f such that

m-1
am.w(;m ®Ild) = v

n-1 @nd the (Qm_TQQT)—map structure of (pm,qm)

to a (Omo 91)—map structure
m
(f’\)m) —_— (Q fm, Um'e(smegll))

If n is finite, take v= Voo If n is infinite, the vm induce an action

v of W(Q”001)=-Lim > w(nn@sh) on f with the required properties. l

Corollary 6.28: Suppose £ : X —> Y is nomotopy eguivalent to an

n-fold loop map, 0 s n < e , as in (6.27). Then f admits a 9 -map
structure (f,v): (X,a) —> (Y,8) which is a composite of 9,-maps
(f,v) =(um)'(0nfn, (unﬁld) -e(8n091))-(v,§) where

fu,n):(X,a)—> (ann,un-e(an)) and (v,g):(QnYn-un-e(Dn))——> (v,8)

are homotopy equivalentes of WDn—spaces.

Proof: By (6.27) we are given a w(9n091®£}1)—structure whose restric-
tion to W(o,®8,@0) is v and to W(9 @8, ®71) is (b, ®Id)-c(2, @84).
The restrictions to W(Sneias1), i=0,1, give Pn and Q, structures
of 9 -maps (pnrn) and (qn,g'). The two inclusions W(stﬂz)—>w(ﬂn891eﬂ1)
given by Fi: g2’_> 91091 = 91“91’ Fi(0)=(0,0),F0(1)=(0,1),F1(1)=(1,O),

)]
P, (2)=(1,1), 1=0,1, show that ("f,,(u eTd)-e(2,88:))+(py,n)=(ay,8)(£,v).

Take (u,n)=(pn,n3 and (v,£) any nomotopy inverse of (qn,i' . l

Originally we proved this corollary for n-fold loop spaces by
substituting an n-fold loop space by a strict n-fold loop space,nse,

and tnen using the results of (2.49). Indeed, by a refinement of a
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result of May [32; Thm.6] one can show (see [7] for a proof)

Proposition 6.29: An infinite loop space (XO,X1,X2,...) is homotopy
equivalent to a strict infinite loop space provided the Xiare well-

pointed. fJ

There is also a converse to Tneorem 6.27. Let

1
B = Wiy » W(Teq)s Q : Wu > W(WY) —> Wa, —> WO

k
Theorem 6.30: Let (X,x) and (Y,8) be numerably contractible Wﬁn—

spaces, O £ n < e, such that a and B induce group structures on
myX and w,Y respectively and let (f,n):(X,a)—> (Y,8) be a O, -map.

Tnen f is nomotopy equivalent to an n-fold based loop map

~

I,

i-1 T
X3 LI Xe—
n I ki i=1,2,...,n n 1T k
ar. £
ax oy X P>y
i i 0 0

sucn tnat

(a) I and II commute strictly, Xo= QBM(X,a‘gn),YO= QBM(Y,B-gn)
(b) each f; admits a 9 .-map structure (fﬂni):(xi’ai)__>(Yi’Bi)
(c) by admits an ¥-map structure (X4 _q025 98 541)
and n = jM(x,aogn). Similarly for k; and k.

—>(0X,

1;“1'T'P)

Proof: n-w(nneId):w(01oﬁn_1091)—> w(sanon1)—> Top makes f to a

(01QE%P4)—map. By (6.24), BMf admits a 9,_q-map structure BMX—>BMY.

Take X1 = BMX, Y1= BMY and f1: BMf, If we cnoose Mf sucn that

—L v
1Xﬂ ﬂﬁ_

commutes and put n = jMX-ix and k = jMY-iY, then (a) nolds. Suppose
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inductively that Xi,Yi are connected and numerably contractible for
1 €1 < m and that fi,hi,ki with the required properties are found

for 1 <i < m. TPake Xm=BM(X ) and Y analogous. Since

n-1"%m-1"%n-m+1

fpq admits 9 . -map structure and hénce via W(nn_m+1OId) a (9,0 Qn_m)-

map structure, f =BMf _, admits a O,_p~mep structure (fm,nm)ixmﬁgé{%wﬁg.

Define hm and km by

f
m-1
Xm—1 > Ym 1
n n
Mf
P m-1
A MEp—1 > MYy g Xn
jl lj
OBME _,

QBMX__ > QBMY_

1 1

Then (a) and (c) are satisfied. By induction hypothnesis MX_, and
JMY _, are based homotopy equivalences (6.14). Since the classifying
space of a monoid is connected, X, and Y are connected, and by (6.19)
botn are numerably contractible, so that induction can proceed. If

n=ec, we use m_ 3 8109‘” —> 9 instead of Wn‘l

4. HOMOTOPY-EVERYTHING H-SPACES, DYER-LASHOF OPERATIONS

In [8], we called an E-space (cf. 2.46) a nomotopy-everything H-
space motivated by the idea that an E-space satisfies all coherence
conditions one can tnink of. This is not quite the case as we shall
see in tnis section. We start with identifying E-map structures, i.e.
actions of two-coloured PRCPs & admitting a PROP-functor € ——:>’55081

and having contractible morphism spaces (for S see II, §5).

Theorem 6.31: An E-map (f£,8) : (X,a) —> (Y,8) is nomotopy equivalent

to an infinite based loop map such that (6.30 (a),(b),(ec)) hold pro-
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vided X and Y are numerably contractible and a and B induce group
structures on noX and nOY respectively. Conversely, any map homotopy

equivalent to an infinite loop map admits an E-map structure.

Proof: Let € be a two-coloured PROP admitting a PROP-functor
P: ¢ —> 582, and naving contractible morpnism spaces. Then P is a
nomotopy equivalence. For the first part we only have to show that
there is a PROP-functor W(9_@ 31) -—> @& and apply (6.30). Each space
Sn(m,1), 0 £ n < e, ig paracompact being a subspace of IZmn. Hence
9, (m,1) is paracompact as epimorphic image of a disjoint union of para-
compact spaces by a closed map (e.g. see [18;p.165]). Since 9_(m,1)
is also S -free it is a numerable principal S -space by (A 3.8). Apply
(3.17) with 9=¢, ¢=6@9,, 8-0_88,, and B=f.

Conversely, a map nomotopy equivelent to an infinite loop map ad-
mits a 9_-map structure by (6.27). But 9_ is an E-category by (2.50)

so that
(p@Id)ec(n, @2,) : W(O 082,) —> S@¢,

is the required PROP-functor which is a homotopy equivalence. Here

6t 9. —>6 is the unigque PROP-functor. |

o

Remark: The important results (6.27), (6.30),(6.31) can, of course,
be extended from maps to arbitrary diagrams by substituting 2, by a
suitable indexing category.

Putting some of our results together we obtain the following

Proposition 6.32: If 8 is a monochrome PRO with contractible morphism

spaces and X a B-apace, then X is homotopy equivalent to a monoid.

Proof: The unique PRO-functor P : 8 —> 9 is a homotopy equivalence.

Hence, by the lifting theorem (3.17) for PROs, there is a PRO-functor
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R : Wi —> 8B making X into a Wii-space. But a W¥-space is homotopy

equivalent to an Y-space, which is a monoid, by (4.49). '

This result becomes false if we replace ¥ by S. We cannot expect
to replace an E-space by an S-space, or commutative monoid, bhecause
the k-invariants of a commutative monoid disappear [17;Satz 7.1], but
there are E-spaces with non-trivial k-invariants. The essential dif-
ference between the two situations becomes clear if we go back to the
split theories defined by PROs or PROPs (cf.(2.42),(2.44)). If 8 is a
PRO with contractible morphism spaces and ® the associated split theory,
then the unique theory functor & —> @m is a nomotopy equivalence. If
% is a PROP with contractible morphism spaces, then the unique theory
functor P : & —> @cm associated with 3 —> & need not be a homotopy

equivalence: Let xn€®cm(n,1) be the operation

xn(x1,...,xn) = XXyt Xy

then 5(n,1) = {xn}. Recall that @8(n,1) is obtained from B3 by

o(n,1) = Us(x,1) x e(k,n)/~
with the relation (ben*,q) ~ (b,0em), 0€68(k,n), néskcs(k,k) a per-
mutation (see (2.37)). The functor P is given by

P(b,s) = Ao 0¥ be8(Xk,1)

Let ok€6(k,1) be the set map o, : [k] —> [1]. Then Xy em* = A, and
Op*™ = 0p for nESk. Hence P_1(xk- c;) is homeomorpnic to the orbit
space %(k,1)/sk, which in general is not contractible. So the follow-

ing is a more correct definition of a nomotopy-everything H-space.

Definition 6.33: A topological space X is called a homotopy-everything

H-space if it is a B®-space for a theory & admitting a theory functor

/& —> ®cm which is a homotopy equivalence.

Theorem (4.58) shows that a homotopy-everything H-space X is homo-




- 204 -

topy equivalent to a commutative monoid if the space X and the morph-
ism spaces ®(n,1) of its defining theory satisfy certain, not parti-
cularly restrictive, point set topological assumptions.

We now will show that Dyer-Lashof operations are connected with
obstructions to the existence of nomotopy-everytning H-structures. Let
3 be a monochrome E-category. Fix an element m2€%(2,1) and define

mp(%(p,1), p22, inductively by m_=m ®id). Let G be a discrete

) 2(mp-1
group and EG any contractible numerable principal G-space. To stay in-
side the setting of Dyer and Lashof we take EG to be the realization
of the simplicial complex determined by the partially ordered set
{{g,n)|g€G, n 2 non-negative integer} witn the ordering (g,n) < (g',n')
if g:g; and n=n' or if n<n' (i.e. EG has the elements (g,n) as ver-
tices and a p-simplex with vertices (go,no),...,(gp,np) iff

(go,no) ; (g1,no) < ... < (gp,np)). There is a Sp-equivariant map

g ¢ BS, —> 8(p,1) p=22

sucn thnat gb(e,0)=mp, where e€Sp is the unit. (We could take Qp to be

the composite

Esp > Dw(p’1) stand. section > wgw(p’1) 1ifTt > 8(p, 1)

with a suitable equivariant homotopy equivalence Esp= 9 (p,1).
Let m be the cyclic group of order p witn generator T and let W
be the complex
e, 2 Z[n) i->l[rr] —a—>z[n] 2. 2 Z[n]—a—>l[n]-e—>l
wnere Z[n] is the group ring of m. Tnen wi has a single m-generator
e i>20, and we define
dep5.9 = (T=Tleyy
= p-1
depi,p = (1+4T+...+T )eZi+1
e(eo)= 1

Tne Eilenberg-Zilber map defines a chain map
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. P ____ p
F : WOZEWJC*(X) > C*(Enxﬁx )
for any space X with the obvious Z[n]-action on C*(X)p and w-action

on Xp. Moreover, we can cnoose F such that

F(eo.x1o .xp) = ((e,O),x1,...,xp)

If X admits a 8-space structure a then a, %,and the inclusion En<:ESp
define a map
?p : Enxﬁxp —> X
Tne Dyer-Lashof operations on H*(X;Zb) are then defined by
(p) . S ;
Qi H H,](X’IP) = Hpj+i(X’zp)
x —> o ¢ Fle; o.x")
wnere we write e, anp for the nomology class in H,(W QﬂC*(X)p; Ip)

represented by this cycle. We list a few elementary properties

(6.%4) (a) Qgp) is a nomomorphism
(v) Qgp)(x) = xP, the multiplication on He(X;Z) is induced
by My
(¢) If ap is the homology Rockstein operator of tne sequence
0 —> lp —> 22 —> Zp —> 0 then Qg11?21 = apQin))

(d) Qé};) -0 : Hj(X; zp) —_ (X; Zp) unless 2i= (2k-){p-1

ij+21

For a proof see [19]. In view of (d) one usually puts
(p) . . —_ ; 2
°,1 " A2i-g)(p-1) F L) > Hypy (o)) pF

i
U

It

i
%U2)
For further properties of Q%p) we refer to the fundamental paper of

Dyer and Lasnof [19] and tne recent papers of May, for example [33].

We call the map $p nm-commutative if it is independent of tne Em-
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coordinate. Then wp factors as

?, Enx XP ——> xP/n > x

and tne Dyer-Lashof operations are trivial with exception of Qgp)b0=xg
Let AX <XP be the diagonal copy of X in XP. Then AX is precisely

the set of fixed points of n. By restriction, mp induces a map

§ ¢ BaxX —> X
P TT X

with Bm = En/m the classifying space of m.

Lemma 6.35: Suppose XP is paracompact and (XP,aX) is a nw-NDR. Then
wp is nomotopic to a m-commutative map iff 6p is homotopic to a map
wnicn is independent of the Bw-coordinate.

Proof: Obviously, if wp is homotopic to a m-commutative map, then, by
restriction, 6p is nomotopic to a map wnich is independent of the
Br-coordinate. Conversely, given a homotopy ht : 6p=f: BrxX —> X

with f independent of the Bm-coordinate. Since (XP,AX) is a w-NDR,
(Enanp, BrxAX) is a NDR so that Py is homotopic to an extension f!'

of f. We show that f' is homotopic to a n-commutative map. Tne pro-
jection Emx(XP-aX) —> (XP-AX) is an ordinary nomotopy equivalence of
numerable principal m-spaces (A 3.8). Hence q : EnanéLAX)e>(XP—AXVn

is a homotopy equivalence (A 3.4). Moreover, since q is a fibre bundle
map, there is a section s of q and a homotopy Lt : id >~ s e q such that
q oLt =q for all t [(1%3; Tnm. 6.1]. Since (Xp,AX) is a m-NDR, there

is an equivariant map u : X —> I and an equivariant nomotopy

r, : X —> X sucn that AX = u_1(0), ro(x) = x for all x€xP, rt®)= ¥

t
for all y€AX and all t€I, and r1(x)€AX for x¢<U = u_1[0,1). Define

£k ot Enx"Xp —> X by kt(e,x) = f'(e,rt(x)) and

tlem) < kt- Lmax(Zu(x)t—1,O)(e’x) (e,x)€Enxn(Xp—AX)
£t B

k (e,x)€EﬂxﬂAX

t

Tnen f = k = f' and f, is independent of tne En-coordinate because
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k1(e,x) is independent of the Em-coordinate for x€U, and LtG%xXEﬂxﬂU

if x€U, and because L1 is independent of the En—coordinate.l

Now suppose X is a nhomotopy-everytning H-space with PROP € and as-
sociated split theory ®. Since the unique theory functor 8 —> ®cm is
a nomotopy equivalence, the spaces G(k,1)/Sk are contractible. Since

Gp factors as

. _ . _ P __
5, + BmxX —> BS xX >s(p,1)xspx >s(p,1)xspx > X

and G(p,1)xs X = (G(p,1)/Sp)xX, it is independent of the Bm-coordinate
so that all Dyer-Lasnof operations with exception of Qgp) are trivial

for all primes p.

5. EXAMPLES OF INFINITE LOOP SPACES

In this section we describe a method of imposing E-structures on
zome well-known H-spaces. Since our examples will satisfy the assump-
tions of (6.31), we obtain a number of infinite loop spaces,

Consider the category @3 of real inner-product spaces of countable
(algebraic) dimension and linear isometric maps between them. Then
each object of @3 is isomorphic to R” with ortnonormal base
{81’92’33”"} or one of itts subspaces RT with base {e1,...,en}. We
topologize A€obQY by giving its finite dimensional subspaces the metric
topology and A itself the direct timit topology of the diagram of its
finite dimensional subspaces. The morphism sets 23(A,B) obtain the

k-function space topology (Appendix I).
Lemma 6.%6: 23(V,IR”) is contractible for all V€obeg.

Proof: Let i1,12 : V—> VeV be the inclusions onto the first re-

gspectively second summand. If {Vi} is an orthonormal basis of V then
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1
ft(vi) = ;;FjE;:; [(1—t)(Vi,O)+t(O,Vi)]

is a homotopy through isometries from 11 to iz. By applying the Gram-

Scnmidt orthogonalization process to

gt(en) = (1-t)e +te,
we obtain a homotopy through isometries from idmoo to g R —> R”
. Pinally, let h : R —> R ® R° be the iso-

given by g(en) = e,

metry
h(ezn) = (envo) h(ezn_1) = (olen))
let k + V —> IR" be a fixed isometry, and i€e3(V,IR") arbitrary. Then
i =h lehei > n lehegei = n 'ed,ed = n e (i@K)ei, = ne(i@k)ei, =n" o (kek)ei
= g4 geol = 10t = 14 2 2

is continuous in i and contratts 93(V,1R™) to the point h™ ' (k@K ei,.

We next consider bifunctors @: 23 x 23 —> ¢J wnich make 8% into

a symmetric monoidal category in the sense of Eilenberg-Kelly [20].

Definition 6.37: A symmetric-monoidal category € consists of the fol-

lowing data:

(1) a category €

(ii) a functor @: € x § —> &
(iii) an object I of &

(iv) natural isomorpnisms r = AOI — A

a
V=1, : T@A— 4

a = a,ps ¢ (A@BoeC — A6(B O C)

¢ = Cpp * A@B —> B A
These data satisfy the following axioms:
(a) LI =T ¢ Il —1
(b) Cpp °Cpp = id : B®OA — BO A

(e¢) The following diagrams commute
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(L0B)OT 2= A (BEI) (I0A) @B 2> I o(A©B)

r ider 1 6id 1

AGB AOB

(LOI) @B 2> A o(I ®B)
r@eid id @1

A®B

((A0B) o¢) @D 22314 5 (4 6(BBC)) D —2—> 4 B((B ©C) ®D)

A\ s

(19B) ©(C®D) ————> A0(BO(C D))

(,eB)OC —2 > 1 @(BOC) —S—> (BOC)OA

c ®id la

(BQA)QC T—> BO(AOC) —id—oc—> BO(CQA)

Cal-3

Given symmetric categories 6=(¢,®,I,r,l,a,c) and &=(%,8,1,%,1,5,8) 2
g

symmetric monoidal functor

T = (T,w,0°%) : & — (5

consists of
(1) a functor T : 6 —> &

(ii) a natural transformation w = w TAST8 —> T(A®B)

AB ¢
0

(iii) a morphism #° : T —> 77T

sucn that tne following diagrams commute

TT&TA 2> 7(T @A) TADTI 2> T(AOT)

2°® idI l T id 6w°I l Tr
~ A
r

78T > 18 A BT > TA
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-~ ~
(TA3TB) 81C 22— TA B(TBSTC) TABTB —> TBHTA
wéidl kdﬁw
T(A®B) B 1TC TABT(BOC) w ®
w w
[ l r '
M(A®B) ©C) —2 > 7(A0 (BOC)) MAOB) 2> T(BOA)

~

If T =(?,0,0°) and T = (1,5,8°) are two symmetric monoidal functors

then a monoidal transformation

n: T —> ?

is a natural transformation n : T —> 6 such that the following dia-

grams commute

TABTBE —2—> 7(A@B)

o} TI
'f</’,,ou\‘ln n 6nl R ln
1

468 —2 > T(A03B)

It is now a result of MacLane [28] and Kelly [24] that the iso-
morpnisms r,l,a, and ¢ are coherent. Roughly speaking, this means that
all diagrams obtained from them, their inverses,and constructions in-

volving id and ® are commutative.

For us the interesting example of a symmetric monoidal category is
23 with the direct sum functor @ and the canonical isomorphisms r,1,

a,c. Recall that the inner product of A®B is given by
<(a’b)’(a"b')>AGB = (a,a‘>A + <b,b'>B

Other examples of symmetric monoidal categories of importance for us
are the categories Top, ﬂorm, and the category Sp! of semisimplicial
sets with their canonical product bifunctors. Since the classifying
space functor B : Morg —> Top and the geometric realization functor

R : Spl —> Top preserve products(we work with k-spaces), they are in
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a canonical way symmetric monoidal functors.

The following result explains the importance of symmetric monocidal

functors for the construction of examples of infinite loop spaces.

Theorem 6.38: Any symmetric monoidal structure (83,0, I,r,l,a,c)

with ® continuous on 83 determines an E-category &, any continuous
symmetric monoidal functor 23 —> oy induces an §-structure on
TR”, and any monoidal transformation n : T —> T induces an &-space
- oo A -]

nomomorphism TR ——> TIR .,

Proof: Let % R = Rwo...QIRno , n times, with a fixed choice of
bracketing. Put &(n,1) = 93(® R™,1R™). The isomorpnisms c extend
uniquely to an action of Sn on 8>H{m, denoted by (8 ,b)—> beE* g€ Sn‘

Tne other morphism spaces of € are given by

&(n,r) = n e(n1,1)x...xe(nr,1)xsn/~

1+. .l:‘+nr= n

with (byemy*,...,0 -nr*,§)~ (b1:,...,br,§-(n1e... enr)),ni € sni.

T
The elements & represent the set operations. Hence composition with
g* = (id,...,id,) on the left is fixed by (2.43) and determined in
general by

a-(b1,...,br,§)=a-(b10...ebr)-g* a € &(r,1)

with the composition in @3 on the rignt.

Let n:(T,w,0°)—> (@,&,Go) be a monoidal transformation of

symmetric monoidal functors. Define an E-action a:& —>¥gp on TR” by

n1 n n n
..,br,g):(TIR“’)n L ry?r o ..o ILT(OHR‘”)x...xT(e;;rIR‘”)
(Tb1,...,Tbr)

al(b

1
> (1R™)T

for (by,...,b.,8) € &(n,r), b€ €@ ,1) . Here o (TR ) E—> (R T)
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is a suitable composite of w or ©°. The conerence conditions ensure
that a is a multiplicative functor. Similary define an E-Structure

A oo -]
on TIR . Tnen n:TDl“L——> aﬂi is obviously an &-space homomorphism.l

Remark: (a) To obtain G-spaces is suffices to construct a symmetric
monoidal functor 83— Spl, because composition with the geometric
realization gives a symmetric monoidal functor 83 —> Top.

{(b) If a symmetric monoidal functor T : 83 —> Tob happens to be
monoid valued, then we can follow it by the classifying space functor

B to obtain another symmetric monoidal functor.

We now list a number of infinite loop spaces and infinite loop
maps. For this we construct symmetric monoidal functors (T,w,wc). As
monoidal structure on 93 we take @. We define T and w for finite
dimensional inner product spaces and extend them to all of 83 hy
taking direct limits over the diagrams of finite dimensional subspaces.

Since A@- and Xx-,A€Q93,X€ Top or Spl preserve direct limits ,this suffices,

(6.39) Examples: The unit I of @ in @3 is ®°.

(a) TA = 0(A), the orthogonal group of A. As w:TA x TB —> T(AeB) take
the Wnitney sum: w(f,g) = feg:AeB —> A®B, £€0(a),g€0(B). Since
0(IR°) consist of one point, 0% % —> O(R®) is uniquely deter-—
mined. Then O(IR”) is the stable orthogonal group O. Since O is
numerably contractible and no(O) is the cyclic group 12 under
Wnitney sum, O is an infinite loop space with multiplication
given by Wnitney sum. In matrix form it reads

n+m
)

o(R™) xo0 (R™) >0 (R

M o)
M , ¥ t——> \O0 N
) TA = Ua® € ), the unitary group of Ae€ (Cdenotes the complex

numbers). Again ® is Whitneysum and ®° the unique map #—> T(RP%).
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Then TR is the stable unitary group U. Since U is connected and
numerably contractible, it is an infinite loop space with
multiplication given by Whitney sum.

(c)TA = Sp(A®@MH ), the symplectic group of A@IH (IH denotes the

® the unique map ¥ —>T(IR°).

quaternions ). Againw is Whitney sum and w
Then TIR™ is the stable symplectic group Sp. Since Sp is connected
and numerably contractible, it is an infinite loop space with re~
spect to the Whitney sum-E-structure.

(d)TA = S50(A), the special orthogonal group of A. Take w to be the
Wnitney sum. The stable group SO = TR” is connected and numerably
contractible. Hence SO is an infinite loop space.

(e)TA = F(4A), the space of based homotopy equivalences of the sphere
SA, which is the one-point compactification Auve of A, with = as
base point. The Whitney sum ®w takes here the form of the smash

product since St sB = gheB

3 . The Wnitney sum multiplization makes
no(F) into the cyclic group 22. Since F is numerably contractible,
it is an infinite loop space.

(f)TA = space of homeomorphisms of A. Take w to be Wnitney sum. Then

TR” is an E-space with no(TIRm) =Z,, but we do not know whether

2 ?
or not TR is numerably contractible. So we follow T by the
composite

> Gpl

Top > Top

Sin R
wnere Sin associates with X € Top its singular complex. Since
botn preserve products, they are symmetric monoidal functors.
Thnen ReSin (TIR™") is the stable group Top. It is an infinite loop
space, because it is a CW-complex.

(g)SU a2nd the orientation preserving versions of (e) and (f) are
infinite loop spaces under Wnitney sum.

(n)We can do to examples (a),...,(e),(g) what we have done in (f):

We follow T by the symmetric monocidal functor R-Sin. The resulting
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stable groups R-Sin TR” are all infinite loop spaces. The back
adjunction R.Sin —> Idzop is a monoidal transformation so
that R-Sin TR —> TR is a nomomorphism of E-spaces and
hence nomotopy equivalent to an infinite loop map. Moreover,

in all of our examples with exception of (f) it is a homotopy
equivalence so that R:Sin TR and *R” are homotopy equivalent
by infinite loop maps,

(k) In all examples (a),...,{(g) the spaces T(A) are monoids under
composition. Moreover, they are well pointed (in (f) take
R+Sin T(A)) and numerably contractible. Hence BT(A), A finite
dimensional, B the classifying space functor,defines another
symmetric monoidal functor T' making T'(R°) into an infinite

loop space under Whitney sum

2 4

(1) We identify € with R ° and B with €%= R". Also identify A and

A@R’'. Then tne canonical inclusions TR '« € = R°CTH = C°

define monoidal transformations

0(A) —— U(A®C) —————— > Sp(AG®E)

}

O(A®@R?) — > o(A@m*)
making the diagram commute. Since (R RY) = o(R”) =0, the

monoidal transformations make the canonical inclusion maps

QcU=S_ <O
P

to infinite loop maps under Wnitney sum.
(m) Since any orthogonal transformation of A is a homeomorphism and
any nomeomorphism induces a based homotopy equivalence of SA, we

nave inclusions
0(A) < nomeomorphisme of Ac F(A),

wnicn define monoidal transformations. Passing to the topological
realization of the singular complexes we find that the canonical

maps



(n)

(o)

(p)
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O c Top c F
are infinite loop maps under Whitney sum
Since all inclusion maps listed are monoid homomorphisms, we
may again pass to the classifying spaces and find that the

canonical maps
BO —> BU —> BSp —> BO —> Top —> F

are infinite locop maps.

Let (T1,m1,w? ),(Tz,wz,wg):ﬁﬁ —> Top be group valued symmetric
monoidal functors and n:T1 —_ T2 a monoidal transformation

wnicn is a homomorphism. Define T3A = T2A/T1A the factor set,

A finite dimensional. Then W, and w, induce a natural trans-
formation 03 TBA XT3B _— ‘I‘3 (A®B) and m?, wg a map * —> T3(I).
We obtain a éymmetric monoidal functor T3 and T3(IR“3is an E-space
As application we obtain that the coset spaces Top/0, Top/Sp,
Top/U, 0/Sp, 0/U, Sp/U, Sp/0, and U/0 are infinite loop spaces
under Whitney sum.
Since tne projectionsT

A—>T A = TZA/T1A induce a monoidal trans-

2 3
formation the various canonical maps Top —> Top/0, etc. are
infinite loop maps.

Suppose (T1,w1,w$ ), (TZ’ wz,wg ): 83 —> ZTop are monoid valued
and n:(T1,w1,w?) — (Tz,wz,mg) is a monoidal transformation

and nomomorphism. Then define T3A’ A finite dimensional, to be
the homotopy theoretic fibre of the map

> BT2A

induced by n. There is a canonical map wjoBA XT3B —_ T3 (A ® B)

BT1A

making W
T5A XTBB — > 1, (A@B)
}
BT1A xBT.]B —_— BT1(A ®3B)

}

BT2A xBT,B ——————> BTZ(AOB)
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commute, because the nomotopy theoretical fibre construction
preserves products. The maps m? and wg induce a unique map

wg 2 X —> Ty (R®). Hence TBEiw is an E-space. As application,
we obtain that F/Top = lim _ (homotopy theoretic fibre of
BTop(n) ——> BF(n)) is an infinite loop space under Whitney sum
and the canonical map

F/Top —> BTop

is an infinite loop map.

There is another symmetric monoidal structure on 83 given by tne
tensor product. Unfortunately, we have no examples to apply it to,
the reason being that it is very difficult to arrange a commutative
diagram

W

P(A) x T(B) > T(A @B)

W

T(A*)x T(B') > T(A'®B')

if ASA' and BEB'. If one for example tries T(4) = O(A) with
w(f,g) = f@g, then the diagram doés not commute because

(f®id) @ (g@id) # (feg)®id. If one wants to show that O, U, BO,
and BU are infinite loop spaces under the tensor product structure,
one should use the theory of G. Segal [45] instead of trying to

define a tensor product E-structure. A detailed treatment can be

found in [7].

We nave seen that Theorem 6.38 enables us to show tnat most of
the stable groups wnich are of interest in the topology of manifolds
are infinite loop spaces under Wnitney sum structure. Our machine
fails if we want to impose an E-structure on PL, The reason is that
we kept too close to the linear group. Contrary to what one might
tnink, the action of the general linear group is not linear. Let

bl Ak —> GL(n,R) be a singular simplex. It determines a map

k k

n n .. . . . . . R
A" x M —> A" xR, which is piecewise linear iff ¢ is a constant
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map. We tnerefore fail to find enough homotopies to make the program
work. The remedy is to use a PL machine instead, and forget isome-

tries. We do not want to go into detail here and refer to [7].



VII. Chapter

HOMOTOPY COLIMITS

To illustrate that our theory has more applications than just loop
spaces we show that it gives rise to a more or less satisfactory de-
finition of homotopy colimits. We only sketch our results; a more de-

tailed treatment including homotopy limits will appear in [56].

1. HOMOTOPY DIAGRAMS

Let € be an arbitrary small category such that each pair (G(A,ALH@Q)
is a NDR. We consider & as an ob &-coloured PRO (cf. example 2.48),

i.e. we have only 1-ary operations.

Definition 7.1: A homotopy-&-diagram, or nE~diagram for short, is a

WE-space, i.e. a continuous functor W& —> Top.

Example: Let € be the category given by the commutative diagram
/f.B

. |

\nhC

Then W§(A,B) and W&(B,C) consist of a2 single point, while W&(A,C) is

g

a unit interval, and a WE&-space is a homotopy commutative diagram
X2

X //’L
1\){3
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As maps between h€-diagrams we use E-maps. Since €& has only l-ary

operations, WUE&SH) = W(Gxﬁj), (see 2.22). We nave the category Rap o

of hG-diagrams and §-maps.

2. HOMOTOPY COLIMITS

By (4.51), there is a functor
M mapg _— S:ornG

which is left adjoint to tne obvious functor J : bomg —_ maps. By
definition, bnm(s is the category of €-diagrams in the usual sense,
i.e. continuous functors & —> Top, and of homotopy classes of homo-

morphisms. Let
K : Ioph —_— RQome

be the functor assisning to each space X of the homotopy category tne
constant §-diagram on X (i.e. each morphism of & is mapped to idX).

It is well-known that X is a right adjoint of the functor
ligh P Rome —> Tod,

induced by the colimit functor Lig : Qor. —> Zov.

€

Definition 7.2: The homotopy colimit functor h—LiR 2 Mape —> ZopG is

defined to be tne composite functor lig o M.

Theorem 7.3: The homotopy colimit functor is left adjoint to the ob-
vious functor Top,, —> Rape assigning to X € Tovp, tne constant h&-

diagram on X.

This result justifies the notation "homotopy colimit", because, as
mentioned above, it has thne same universal property as the usual co-

1imit functor, which is the left adjoint of the constant diagram
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functor ITop —> mors.

Examples:

(1) If & is the infinite linear category

0 > 1 > 2 > 3 > aee
then a sequence of spaces and maps

Xo —> X, —> X2 _— X3 —_— ...

determines a n€-diagram wnose homotopy colimit contains the Milnor

telescope (cf. proof of (A 4.10)) of this sequence as a SDR.

2
(2) If ® is a topological category with exactly one object. Then its
morphism space is a topological monoid G. Let D be the constant h8-
diagram on a space with exactly one point. Then, by (VI §1), MD is

nomeomorphic to EG and h—yig D to BG the total space and base space

of Milgram's classifying space construction for G.

(3) Let & be the category

s < . > e

Then a h€-diagram is a diagram

f

D: B < A —E >

of topological spaces and h‘EiE D is tne double mapping cylinder Z{f,g).
Hence h-lim D is the mapping cone of f if C = * and the (unreduced)
suspension YA if B = » = C,

The based case is obtained by a slight modification. We adjoin a
O-ary operation to each object of C with the obvious definition of
composition. Its action is the inclusion of the base point. The based

homotopy colimit is then lim M"D with M" of (v, §6).

(4) Let € be the category
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and b

a n€-diagram. Then h—Lig D is the mapping torus of f and g.

The examples show that nomotopy colimits crop up in many places in

nomotopy tneory.

3, SPECTRAL SEQUENCES FOR HOMOTOPY COLIMITS

Since € has only 1-ary operations, it is easy to give a direct de-
finition of h-lim D for a h€-diagram D. The representing trees of MD
are linear and vertical, and may be specified by giving in order, go-
ing up the tree the vertex labels and edge lengths and finally the

cherry as

(go$t11g1 ytzs e e !gk;x)

Bo® o8 ! A —> B is defined in G, ti€I, and x¢D{A). The G-action

on MD is given

glg tyyeeesg 3x) = (gog staseee, 8 3X)
o’ k o’ 'y

This G-action nas to be factored out to obtain h-lim D = limg MD. De-

fine € (4,B) = {(f,f,,...,f )€(mor &) f,e...0f  + A —> B is defined

2’ n

in €} with the subspace topology of (mor &)®. If n=0, define
{id,} if B=A

s (A,B) =
° @  otherwise

Then
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n-1im D = U D €, (4,B)xI"xD(4) /~

- A,B€S n=0

with the relations

(7.4) (bTyseefy_qoby®by o8 qoennfysa)  AiF £=1d, i<n
(tysfqsenrty _40f _q32) if £ =id

(t1,f1,t2,f2,...,tn,fn;a)= (t1,f1,..,t f. °f.,ti+1,;.,f ja) if ti=0, i>1

i-1"7i-1 i n
(tZ’fZ""tn’fn;a) if t1=O
(t1,f1,..,fi_1;D(fi,ti+1,..,fn)(a)) if ;=1

(recall that t1*t2 = t1+t2—t1t2). The filtration on MD hence induces
1Y
a filtration FD of h-lim D by the images F_D of U Ue (4, BT (A
A,B€€ n=0
in h-~lim D,
Let k, be an arbitrary homology and k* an arbitrary conomology

theory. Since a h€-diagram D : WE -—> Iop is a €-diagram up to co-

nerent homotopies and ¥, and k* are nomotopy functors, the functors
kqe D, x%oD : W§ —> ub = abelian groups

factor through ¢ : W& —> &, the augmentation. In other words, the

composites
kg Do, k2eDon : § —> WE —> Top —> Ub

where n is the standard section (III, 3.5) are functors, although n
is not.

For a proof of tne following result we refer tne reader to [56].

Theorem 7.5: Let € be a small category with discrete morphism spaces,

k, a homology and k* a cohomology theory, both additive. Then
2

Pyq ()
k, exact couple of the filtration of h—L;g D and Eg’qD £ kig p (qun)

ES D = Eiﬂ(p)(kqbn) in the spectral sequence {ETD} derived from the
in the spectral sequence {ErD} derived from the k* exact couple of the
filtration of n-lim D. Here Lim(p) and Lim(p) denote the p-th left

- —_— -—

derived of lim and the p-tn right derived of lim. |J
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This spectral sequence generalizes some well-known results:

Let € be the infinite linear category of §2, Example 1, and
£ JE‘.I f

. o 2
D: X, > X, > X, > ...

a sequence of spaces. Let k* be an arbitrary additive cohomology
theory. Then the spectral sequence {ErD} converges and collapses,

giving rise to a short exact sequence

0

> 0

L (1),.a-1 Qs o d
> kig k D ——> k (n—ylg D) > lig kD

If the fi are cofibrations, then h-lim D is nomotopy equivalent to
EEE D, and we obtain Milnor's li (1)-Lemma [40].

&——
Let € be the category s < . > + and

f

D: B < A g >¢

a hG-diagram. The again the k* spectral sequence converges and col-

lapses giving rise to an exact sequence
ve. —> x0T — 5 xY2(1,2)) —> xIBoKkIC —> k%4 —> ) —. ..

If one of the maps, f say, is a cofibration, then the double mapping
cylinder is of the nomotopy type of B Ug C and we obtain the Mayer-
Vietoris sequence.

Analogous results hold for homology theories k,.

4, HOMOTOPY COLIMITS OF COVERINGS

G. Segal [44] associated with each covering of a topological space
its nomotopy colimit and used this construction for a classification
theorem for very general types of bundles. The essential step in this
study was to show that the homotopy colimit of a numerable covering is
naturally homotopy equivalent to the original space (recall that ac-
cording to Dold [13] a covering U = (UX!XEA) of X is numerable if there

exists a locally finite partition of unity on X, (Vu : X —> I|ueM)
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such that the covering 3 = (v;1(0,1}|u€M) is a refinement of U). Using

Segal's result, tom Dieck [11] proved the following theorem.

Theorem 7.6: Let u=(Ua|aEA) and 3=(Va|a€A) be numerable coverings of
X and Y. For any non-empty subset o < A put UG = J}O Ua‘ Let f:X—=> Y
be a map wnicn carries each Uo,c < A finite, into Vo by & nomotopy

equivalence., Then f is a homotopy equivalence.

This result has a number of interesting consequences which we
shall not discuss here. In the remainder of this section we give a
detailed proof of Segal's result and show that the theorem is then an
immediate consequence of our theory. As always before, we work in the
category of k-spaces, but Segasl's result is true for arbitrary topo-
logical spaces (by a similar type of argument using that the partition
of unity is locally finite).

Segal's nomotopy colimit of a covering U = (UalaEA) of X is de-

fined as
BU = U U xa®/~ , 0. c A finite, non-empt
o n ¥
R n
with the relations
A .
(0411q 30 50 ee sty 0,5%) = (oo,u1,o1,...,ui,?i,...,un,cn;x)Jf 0;_4=0; OF
Y17y
where uonSu1S...Sun51=un+1€ An, x€UC and A means "delete".

n
Our version of the homotopy colimit hU of the covering U is the

homotopy colimit of the commutative diagram of spaces Uo’c c A finite

non-empty, and inclusions UO ot UT whenever 7Co. Hence

hid = U UO )(In/~

with
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(g sbqpennsOy_qob5% b5 4005 qrenerty G5%)  if 04 _4=0;, i<n
oy (Ggrbqsmee sty _p qp_q3%) if o,_4=0,
(%pt‘pc‘l’-"ytnycn!x) =
o~
(0 5575+ ++503 _ 15 By 32001 O 5 %) if t,=0
(oo,t1,...,oi_1;x) if t=1

Note that the pair (01_1,01) stand for the unique inclusion U0 CUG
i 94-1
in our diagram.
The map (oo’t1’01""’tn’°n;x) — (oo,u1,o1,...,un,0n;x) with

ui=t1*t2*...*ti is a2 natural homeomorphism
nl = BU

(ef. 6.6). We now simplify the simplicial structure of Bi. In terms

of basrycentric coordinates, the relations for BU read

~AA .
(bo,oo,..,bi,oi,..,cn;x) if b;=0
(b _,3,9,,0:,..,b_,0 3x) =

o™ 1’1" "n’"n’ .
(bo,oo,..,ci_1,bi+bi+1,oi+1,..,cn;x) if 04=04 4

biZO, Zbi=1.

Give the indexing set A of the covering a well-ordering and define

MU = U (U, n...nu, Yx o™ /o o €A
ao<...<a.n o} n
with
NN A
(bo’ao’bW""’bn’an;x) = (bo,ao,...,bi,ai,...,an;x) if b,=0

It is readily seen that BU is just the barycentric subdivision of

M1, so that BU and MU are naturally homeomorphic.

Proposition 7.7 (Segal): The canonical map

mT: M4 — X, (bo,a yeeesb ,an;x) —> x

[¢] n

has a section which embeds X as a SDR in Mu,

Proof: We may assume that there is a locally finite partition of

unity on X, {ka t X =—=> T [a€A} with the indexing set of the cover U.
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For x€X, there is a finite number of indices ao<a1<...<an such that

Ay {x)40. To obtain the section s : X —> M4 of n map
i

x> (g (Khageeesdy (0),a,3%)

Ify = (bo,c b ,om:,x)€ MU and sn(y) = (vo,a

ot Py ,...,vn,an;x), then

o
y and sr(y) are points in the simplex xxAT, spanned by (Yo""’Yr)’
the ordered collection of elements in (oo,...,om) U (ao,...,an). Hence
we can deform MU linearly into the section. It remains to check con-
tinuity. Let MA be the space associated with the A-indexed covering
{Va=*} of a single point. There is a canonical map p : MU —> MA,

given by (bo,ao,...,b ,an;x) — (bo,ao,...,bn,an;*). Then

n

(m,p) : MU —> XxMA

is injective. To show that it is an inclusion we have to prove that

a function f :+ C —> MU from a compact Hausdorff space C to MU is con-
tinuous, provided (m,p) e f is continuous (because we work with k-spaces).
Since C is compact and MA is a simplicial complex, fC is contained in

a finite subcomplex. Hence it suffices to show that (n,p) is an in-
clusion for finite coverings U, In this case, MA can be thought of

as a subcomplex of the standard m-Simplex whose vertices are indexed

by the elements of A. Let

n

p : U (U, ..Uy Ixa™ —> mu
a0<...<an 0 n
be the identification map and V < MU closed. Denote ﬁJVﬂG&ﬂ."ﬂqlkﬁn
o n

by V(ao,...,an). If VZao,...,an5 is the closure of V(ao,...,an) in
n . . .

XxA™, then V(ao,...,an) = Viao,...,an5ﬂ(Uaoﬂ...ﬂUan)xAn. The union

of the Viao,...,ani is closed in XxA™ because it is finite. Hence MU

is a subspace of ¥xA™ and therefore of XxMA. We obtain a diagram

/Mu i
X kn,p) X

(18,8) ~— 3, ma Toj
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with ® = pe s. The section s and the deformation H of MU into the
section are continuous if ¥ snd the deformation (m,p) ¢ H are continuous.
If C is a compact Hausdorff space and r : C —> X is continuous, then
per(C) lies in a finite subcomplex of MA and the composition of Yer
with the barycentric coordinate functions is just the collection of
maps {kao rla€A}. Consequently ® o r and hence ¥ are continuous. Simi-
larly, one can prove the continuity of H by restriction to a finite

subcomplex of MA. l

Proof of Theorem 7.6: Let B be the dual of the category of finite

non-empty subsets of A and inclusions. The coverings U of X and 3 of
Y give rise B-diagrams with vertices Ua ﬂ...ﬂUa respectively

v n...nv for the finite subset {a _,...,a_J}c A and inclusions as
a, an 0 n

morphisms. The map £ : X —> Y is then & homomorphism of 8-diagrams

whose underlying maps are homotopy equivalences. Hence we have a com-

mutative diagram
ot —BL 5 g

TTu m

X T > Y

in which hf is a homotopy equivalence by (4.21) and my and m, are

homotopy equivalences by (7.7). ]



Appendix

1. COMPACTLY GENERATED SPACES

The category I of topological spaces and continuous maps is in-
convenient for the study of algebraic structures on spaces mainly for
two reasons: The exponential law does not hold in general, and a pro-
duct of two identifications need not be an identification. Steenrod
{49] proposed the category €8 of compactly generated Hausdorff spaces
as a convenient locus for dealing with these questions. Its objects
are Hausdorff spaces X such that U < X is open provided U N C is open
in C for each compact subspace C of X. This category has two defects
namely it does not automatically contain all the subspaces and quo-
tient spaces of its spaces and hence not the usual colimits., The se-
cond defect evaporates if one drops the Hausdorff condition. However,
the trouble with subspaces remains.

Here we propose the category of compactly generated spaces, de-
noted by Top, as a good category for our purposes. We only list the
definitions and propositions. Detailed proofs and further results can

be found in [55].

Definition 1.71: A k-space is a topological space X such that U c X is

open whenever r"1(U) is open in C for every map r : C —> X from a
compact Hausdorff space C into X. The category of k-spaces and con-

tinuous maps is denoted by ZToyp.

Every topological space X has a finer topology making it into a
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k-space kX : Add to its open sets all subsets U satisfying the con-

dition of Definition 1.1, Obviously, kX = X if X is a k-space.

Proposition 1.2: The correspondence X —> kX defines a functor

k : T —> Top, which is right adjoint to the inclusion Top < T. Hence

k preserves limits.

Proposition 1.3: Let D be a small diagrsm of k-spaces and Lig D, 1im D

its colimit and limit in Z. Then lip D is a k-space and lip D and

k(lim D) are the colimit and limit of D in Top.

Corollary 1.4: Quotient spaces of k-spaces are k-spaces.

Unfortunately, limits of k-spaces have to be retopologized. This
applies in particular to products. Let X x Y denote the cartesian pro-
duct and X x, Y = k(XxY) the retopologiged product of X and Y.

Proposition 1.5: Let X and Y be k-spaces and suppose eacn point of Y

nas a base of compact neighbourhoods. Then X x ¥ = X Xy Y.

Hence the notion of homotopy of continuous mappings does not change
and the functor k preserves nomotopy.

As an immediate consequence of the definitions one has tnat the
maps of compact Hausdorff spaces into X factor througn id : kX —> X.

This implies

Proposition 1.6: The identity map kX —> X induces isomorpnisms for

nomotopy groups and singular nomology and conomology groups.

As mentioned before, subspaces of k-spaces need not be k-spaces.

But we nave
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Proposition 1.7: Let X be a k-space and A a subspace of X.

(a) If A is open or closed, then A is a k-space.

{b) Let 2 be a k-space. A function f : 2 —> kA is continuous iff the
f

composite Z > kA < X is continuous.

Part (b) shows that kA < X has the universal property for k-spaces
wnich characterises the relative topology of A in X in the catego;y
of all topological spaces.

Por topological spaces X and Y let CO(X,Y) be the space of all con-
tinuous maps from X to Y with the compact-open topology and C(X,Y) =
= ¥(c0o(X,Y)). If X and Y are k-spaces, we also denote C(X,Y) by
Top(X,Y).

Proposition 1.8: If Y is a k-space, then the evaluation map

ey g ¢ c(Y,2) X, Y —> 7, defined by eY’Z(f,y) = f(y), is continuous.

Proposition 1.9 (Exponential law): Let X and Y be k-spaces. Then tne

correspondence f —> ey g7 o (f xidY) determines a natural nomeomorphism
’

C(XsC(YyZ)) = C(X Xk Y,Z)
This result has a number of consequences.

Proposition 1.10: Let X be a k-space

(a) The functor Top(X,~) : Top —> Top preserves limits. In particular
Iob(X,Yka) = Top(X,Y) Xy Top(X,2)
he functor - X s Top —> Top preserves colimits.
(b) The funct . limit

(c) The functor Top(-,X) : Top —> Top transfers colimits to limits.

Corollary 1.11: If p : X —> X* and g ¢+ ¥ —> Y' are identification

maps of k-spaces, then p Xpe a8 X Xy Y —> X! Xy Y' is an identifica-

tion map.
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Proposition 1.12: If X and Y are k-spaces, then composition of maps

induces a continuous map

c(Y,z) Xy c(X,Y) —> ¢(X,2)
Our last statement shows that Top is sufficiently large:

Proposition 1.13: Top contains the category €8 of compactly generated

Hausdorff spaces,

2. EQUIVARIANT COFIBRATIONS

In this chapter we need not restrict ourselves to k-spaces. The
results hold in the category of all topological spaces as well as in
the category of k-spaces.

Let G be a topological group. An equivariant map i : A —> X is

called an equivariant cofibration or G-cofibration, if for all equi-

variant maps £ : X —> Z and H : AxI —> Z (with trivial G-action on
I) such that H(a,0) = fe i(a) for a€¢A there exists an equivariant map
F : XxI —> 7 such that Pe (i x 1d) = H and F(x,0) = f(x) for x€X.

As in the non-equivariant case (e.g. see [12; (1.17)]) one can
snow that a G-cofibration has to be an inclusion. So we also say that
(X,A) is G-cofibered or that (X,A) has tne G-HEP (homotopy extension
property).

Again as in the non-equivariant case ([52; Thm 2 and Lemms 41) one

shows

Proposition 2.1: Let X be a G-space and A < X an invariant subspace.

Then the following statements are equivalent
(a) (X,A) is G-cofibred

(b) XxO0 U AxI is an equivariant retract of XxI
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(¢) There exists an equivariant map u : X —> I such that A u—1(0)

and an equivariant homotopy H : XxI —> X such that

H(x,0) = x x€X
H(a,t) = a a€h, t€I
H(x,t) € & for t>u(x)

If in addition A& is an equivariant SDR of X, we may asssume that

u(x)<1 for all x¢x. 0

Let A be an invariant subspace of a G-space X. We say that (X,A)
is an equivariant NDR (neighbourhood deformation retract) or G-NDR if
there is a G-map u : X —> I and a G-homotopy H : XxI —> X such that

A= u—1(o) and

H(x,0) = x x€X
H(a,t) = a a€hA, te€T
H(x,1) € A for u(x)<1t

If (X,A) is G-cofibred and A closed in X, then the conditions on
u and H in (2.1 ¢) imply that H(x,u(x)) € A whenever u(x)<1 and hence
u_1(0) = A. Hence (X,A) is a G-NDR. Conversely, the proof of [51;
Thm. 2] also works for the equivariant case and shows that (X,A) is

G-cofibred if (X,A) is a G-NDR. Hence we have

Proposition 2.2: Let A be a closed invariant subspace of a G-space X.

Then (X,A) is G-cofibred iff (X,A) is a G-NDR. [}

As a direct consegquence we nave

Lemma 2.%: If i ¢+ Ac X is a G-cofibration, then

(a) i/G : A/G = X/G is a cofibration

(b) If H<= G is a subgroup, tnen i : A = X is a H-cofibration.
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Proof: (a) follows directly from the definition and (b) from (2.1 b).l

As a consequence of (2.1 c), the proof for the non-equivariant

case [52;Thm. 6] of the following result carries over.

Proposition 2.4: Let G,H be topological groups and suppose (X,A) is

G-cofibred, (Y,B) is H-cofibred, and A is closed in X. Tnen the pro-
duct pair

(X,A) x (Y,B) = (XxY, AxY U XxB)
is (GxH)-cofibred. If in addition A [or B] is an equivariant SDR of

X [or Y], then AxY U XxY is a (GxH)~equivariant SDR of XxY. l

Corollary 2.5: Let (X,A) and (Y,B) be G-cofibred and A closed in X,

then (XxY, AxY U XxB) is G-cofibred under the diagonal action.
Proof:Use (2.4) and (2.3 b).

Recall from (2.4% d) that the action of the symmetric group from
the left on X" is our cases given by

)

M(Xy,e00,x ) = (X _
1 "n n e X g

T on
If X is a G-space, then X" admits an action of the wreath product

Gl Sn (our definition of the wreatn product differs slightly from the
usual one).

Let G be an arbitrary topological group. Define the wreath product
¢ls, = ((£,M)|f : [n] —> 6, m € S}

witn the topology of 6™ x Sn‘ The continuous multiplication is given
by

(f1 ,ﬁ1)'(f2,ﬂ2> = (h9ﬂ1'n2)
with n(i) = £,(1) + £,(n] (1)).

If X is a G-space, we have an action of GI Sn on X" given by
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(f,TT)'(X.],-..,Xn) = (f(1) * X _11v--~’f(n)'x -1 )
2 o n

The non-~equivariasnt proof of (2.4) generalizes to give

Proposition 2.6: Suppose (X,A) is a G-NDR. Let Y. be the subspace of

all points in X% having at least r coordinates in A. Then (Xn,Yr) is
a GI Sn—NDR. If, in addition, A is a G-equivariant SDR of X, then Yr

is a 6] S -equivariant SDR of X".

Proof: Let u : X —> I be the G-map and H : XxI —> X the G-homotopy
of (2.1 ¢) for (X,A). Since A is closed, H(x,u(x)) € A whenever u{x)<1.
Let M and Mi be the set of all subsets of cardinality r of [(n]1={1,2,..n}

respectively [(n]-{i}. Then
v(x1,...,xn) = min (u(xi1)+...+ u(xir)l{i1,...ir}€ M)
F(x1,...,xn,t) = (y1,---,yn)

with y, = Hi(xi,min(t,u(xi 4.4+ u(xi )I{i1,...,ir} € Mi)) are G S,
1

equivariant maps satisfying (2.1 ¢) for (Xn,Yr). |

Utilizing an idea of Lillig [27] we generalize Proposition 2.3.
Let A be an arbitrary subspace of a G-space X. The subgroup

St(4A) = {g€Glgach for all a€A} is called the stabilizer of A.

Theorem 2.7: Let G be a topological group. Let A be an invariant sub-
space of the G-space X and suppose A = A.l V] A2 U ... U An with Ai
closed in X. Suppose G also acts on the set [n] = {1,2,...,n} such
that g-Ai = Agi for all g€G and i € [n]. The G-action on [n] induces
a G-action on the set of all subsets of [n]. For a subset o < [n]

let A = (] 4; and let H_ = St(s). Then (X,A) is a G-NDR if each
pair (X,A;§Gis a H_-NDR for all sunsets ¢ £ @ of [n].

Proof: Let Pk be the set of all subsets of [n] with cardinality k. If
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1 is the cerdinality of Pk define
1-1
, = UJa Y =X x A/~ k>0
k o] k
GéPk

1-1

with (x,t) ~ (x,t') for x € X < X and t,t' € A . Then X, is a

k+1
closed invariant subspace of X. Starting with Xn’ we inductively show
that (X,Xk) is a G-NDR for k>0, wnicn will prove the theorem.

Suppose we know that (X,Xk+1) is a G-NDR for some k, 1sk<n., Choose

8. representative o in each G-orbit © of P, and for each a¢® a ga€G

k
such that ga = o and g_ = id. Since (X,AU) is an H_-NDR there is 2n
Hg—equivariant map v _ : X —> I with v;1(0) = Ao and an Ho—equivariant
retraction

r : XxI —> A xI 1J Xx0
o o

We define a map u : Py xX —> I such that u-1(O) N {a}xx = {a}an and
u(a,x) = u(gr,gx) for all g€G by putting ula,x) = vq(gax) if a is in
tne orbit represented by 5. If B = ga, then gsgg;1q = g, 80 that

-1
ngga € Ho' Hence

u(a,x) = v _(g,x) = vo((gﬂgg;1)gQX) = u(gz,gx)

1-1

Index the barycentric coordinates of A by thne elements of Pk’

The G-action on Pk then determines a G-action on AL—1, and the dia-

gonal G-action on XXAL_1 defines a G~action on Yk’ Define a map
jk : X —> Yk by
Jk(x) = (X,to‘](X)’...’to],(X)) {01v-°°,OL}=Pk

wnere

t (x) = X wa,x)|aeP -{o})
o - (r u(a,x)laGPk-ic})
OEPk

is the barycentric coordinate indexed by c€Pk. One easily checks tnat
jk is continuous and equivariant.

If a is in the orbit represented by o, define

Ty F xI —> AaxI 13 Xx0
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-1 . R . . :
by ra(x,y) = g, ro(gax). Then r, is a H -equivariant retraction, be-
-1
cause Ha— g, Hoga.

Tne symmetric group SL acts on AL—1 by permuting the barycentric

coordinates. Obviously the inclusion of the O-skeleton Ag—1c av! s
an SL-cofibration and nence a G-cofibration. By (2.4), the pair
(XXAL_1,Xk+1XAL_1U XXAZ‘1) is a G-NDR. Hence there is a G-retraction

1-1 1-1 1-1 1-1
p : XxA xI —> XxA x0 U XXAO xI U Xk+1xA xI

Define an equivariant map

. -1 1-1 1-1
f : XxA x0 U XXAO xI U XkaA xI—> XxQ U kaI
by £(x,u,0) = (x,0) x€X, ueav”’
f(x,a,t) = r (x,1t) x€X, a€A$_1, €T
1-1
f(x,u,t) = (x,t) X€X, 10 WEAT, t€T

Then fep : XxAL_1xI —> Xx0 U kaI factors through the identification

XXAL_1XI —_— kaI inducing a G-equivariant map q : kaI —> Xx0 U kaI.

Tnen

a (§xid) : XXI —> Xx0 U X xT

k
is a G-equivariant retraction. Hence (X,Xk) is a G-NDR. N

As = consegquence of (2.7) we nave

Proposition 2.8: Let 8,XcX* denote the diagonal and A'X*cX* tne fot

diagonal, i.e. the subspace of all points (x1,...,xk) for which two
coordinates agree., Suppose (Xk,AkX) is an Sk—NDR for all k<n. Then

(x®,0'x®) is an S, -NDR.

Proof: Let M be the set of partitions of [n] into less than n

subsets. For an arbitrary partition P of [n] let A(P):{(x1,..,xn)€xn|

x; = xj if 1 and j lie in the same element of P}. Then
a'x™ = U a(p)
PEM

Any intersection A(P1)ﬂ...ﬂA(Pr) is another space A{Q) and St(4A(Q))=
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= 8+(Q) = St({P1,...,Pr}) under the obvious action of S  on M. Sup-
pose Q has k_ elements of cardinality r. Then A(Q) is nomeomorphic to
(8, X) T x (A x)kn with 4,X = X, and St(A(Q)) mapped to

11 S x...xS 1 S, under this homeomorphism (S 1 S, is the trivial
group for k=0). By (2.4) and {2.5), the pair (X" ,(A X) 1x...x(A X) n)
is an 811 Sk1x...xSn1_Skn)—NDR. By the following lemma, (X2, 4(Q)) is
a St(A(Q))-NDR, so tnat (X™,s'x™) is an 5,-NDR by (2.7). |

Lemma 2.9: Let A and B be arbitrary subspaces of a G-~space X. Let
[ G13G2 be an isomorphism of subgroups of G and assume that (X,4)
is G1—cofibred. Suppose there is a homeomorphism f : X —> X such
that f(A) = B and f(gx) = 9(g)f(x) for x€X and g€G,. Then (X,B) is

Gz—cofibred.

Proof: If r : XxI —> Xx0 U AxI is s G1—retraction then
XxI —T]—.—_> XxI T> Xx0 U AxI __f;-]:_—d-__> Xx0 U BxI
f 'xid

is a Gz—retraction. .

We also need a strange generalization of (2.8). Let G be a finite
discrete group and X be a G-space. Let A be an invariant subspace of

X. Put

D = {(xT,...,xn)€Xn]gxi = X for some g€G, i%j, or some xi€A}.

Proposition 2.10: Suppose (Xk,AkX) is an (Ska)—NDR for all k<n, the

pair (¥,A) is a G-NDR, and G acts freely on X-A. Then (x2,D) is a
G s, -NDR.

We prove this result in steps: Suppose ksn and X-A4f.
k . X . k
Step 1: Let Y, = {(x1,...xk)€X | all x; are in the same G-orbit}u A”.
Then (X*,Y,) is a ¢ ]S, -NDR.
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Proof: The space Y. is the union of the spaces

k

k
Y(gZ’gﬁ"”’gk) = {(x’ggxigBX,--cvgkx)IXGX}U A giGG’

and Y(gy,85,evv18) N Y(g),g5,enesgy) = A 5E (gp08srmr8F (88500 18y )
because G acts freely on X-A. By (2.6), the pair (Xk,A) is a GlSk—NDR.
Hence, by {(2.7), we only have to show that each pair (Xk,Y(gz,..,gk))
is a H~NDR, where H = St(Y(gz,...,gk)). Define a nomeomorpnism

£ x¥ —> x* witn £(a X U 45) = ¥(g,,....8,) by

f(x1,...,xk) = (x1,g2x2,...,gkxk),
and an isomorphism @ : GxSk = H by
®(g,m) = (n,m) € He 6| S,

with h(i) = gi-g-g;11(i) with g, = id. Then f(AkX)=X(g2,...,gk) =

k k

= ((x,8,%, v 0, %) |x€X}, £(4%) = A%, and £(a,X n 1Y =X(g,,..,g, )0 A",
Since (X¥,4¥) is a ¢) 5,-NDR by (2.6) and (Xk,AkX) is a (GxS,)-NDR,
and since (Xk,AXkﬂAk) = (Xk,AkA) is a G'[Sk—NDR because (X,A) is a
G-NDR, (2.7) and (2.9) imply thet (X¥,¥(g,,...,g,)) is an H-NDR.

Step 2: (X",D) is a G S,-NDR

We proceed as in the proof of (2.8). Let M be the set of all parti-
tions of [n] into n-1 subsets and let V = {(x1,...,xn)€ansome xi€A}.
Then

p= U (v(p)uv)
PEM

where Y(P) = {(xq,...,xn)O{n[xi = gx. for some g€G if i and j are in

J
the same element of P}. An intersection of spaces Y(PUVis just another
space XPUV. By (2.7) the result nolds if eacn (X,Y(BUV) is a St(Y(P))-
NDR. Suppose P has kr elements ofkcardinaliti r. Then

TPV = (Y,) x...x(¥) “u vy
and St(Y(P)) corresponds to (G\S1)\Sk‘lx...x((}l Sn)l S, under this
nomeomorphism. By (2.6), the pair (x2,v) is a ¢\ Sn—NDRnand
(xn,(Y1)k1x...x£Yn)kn) a [§G1_31)1 Sk1x...x(G 1sn) lskn]-NDR. The in-

tersection (Y1) 1x...x(Yn) m 1 ¥ can be written as union of A" and
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products of spaces Yr and Ak. Since the family of spaces consisting

of A™ and products of spaces Y' and Ak

is closed under intersection,
k
1 .
(Y)) 'x.oox(Y) "N Visa [(G-151)‘\sk1x...x(e'1sn) ]Skn]—NDR by
(2.6) and (2.7). Hence, by (2.7) and (2.8) the pair (P YP)LY) is a

st(¥(?))-Nor.

3., NUMERABLE PRINCIPAL G-SPACES

In this section we work in the category of all topological spaces.

The results hcld in the category of k-spaces, too.

Let G be an arbitrary topological group. We call a space X a numer-

able principal G-space if X is a free G-space and the projection

X —> X/G is a numerable principal G-bundle in tne sense of Dold [13].

Lemma %.7: A space X is a numerable principal G-space iff there is a
numerable cover U = {Ua|a€A} of X (see VII,§4) by G-invariant subspaces
with equivariant numeration (i.e. equivariant partition of unity sub-
ordinate to U) such that tnere are equivariant maps L Ua —> G for

all U_c€l,
a

Proof: =» Let p : X —> X/G be the projection and B = {ValaGA} a numer-—

able cover of X/G over which p is locally trivial. Define u:{p—1(Va)},

a numeration {fa} by fa = vao P where {va} is a numeration of B, and
—— ~ _proj

T, VP (Va) = G X Va > G.

& Let B = {p(Ua),aEA}. Then B is a cover of X/G. The f, induce maps

v(1 : X/G —> 1 defining a numeration of 8. It remains to snow that p

is locally trivial over 3. Now p—1pUa = Ua since Ua is G-equivariant.

So we have to find a G-homeomorpnism
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n

G x p(Ua) € Ua
proj p
pU,
making the triangle commute. Define h(x) = (ra(x),p(x)). The inverse k

of h is given by (g,p(x)) =—> g - r_(x)”+x, which is a well defined
function. It remains to check tne continuity of k. Let Y=r] (1d)cU_.
Then k¥ factors as

idxu v
G x pUa _—> Xy —> Uo.

with u(p(x)) = ratﬂ_1-x and v{g,y) = g- y. Evidently v is continuous,
and it remains to show the continuity of u. But u is induced by the

map U, —> ¥ given by x —> ra(x)—1, which is continuous. N
This result implies

Lemma 3.2: (a) If G is a discrete group, then X is a numerable prin-
cipal G-space iff X has an open cover U = {Ua|a€A}, with a subordinate
partition of unity {fa : X —> I|a€A} such that for all g€G different
from the identity, gU NU = g, and gU, is some Useu, and fB(gx)=fa(x),
x€X.

(v) If G is a finite discrete group, then X is a numerable principal
G-space iff X has an open cover U = {Ua|aEA} wifh a subordinate par-
tition of unity, such that gUanUa = @ for all géG different from the

identity.

Proof: Part (a) is an immediate consequence of Lemma 3.1. Now suppose
we have a cover U of X as described in (b). Enlarge it to an open
cover B of X by teking all subsets g-Ua,gGG. If {fa : X —> I} is the
partition of unity subordinate to U, enlarge it to a partition of

unity subordinate to B by associating the map
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X —> T%T fa(gt1x) |G| = order of G

with the element g Ua of 8. Then B and its partition of unity satis-

fy (a). §

Lemma 3.3: If f : X —> Y is a G-map and Y a numersble principal G-
space, then so is X. In particular, any invariant subspace of a numer-

able principal G-space is a numerable principal G-space.

Proof: Let 8 = {ValaEA} be an invariant numerable cover of Y with
numeration {fa} and equivariant maps T, ¢ Va —> ¢ associated with Y.

Then {f—1(Va2,fa°f,raof] makes X into a numerable principal G-space.ll

Lemma 3.4: Let r : X —> Y be a G-map from a G-space X to a numerable
principal G-space Y. Tnen r is an equivariant nomotopy egquivalence iff

it is an ordinary nomotopy equivalence.

Proof: By Lemma 3.3, both X and Y are numerable principal G-spaces.
Consider

EGxX

TaXT > EGxY

proj proj

X > Y
T

By [10; Lemma 2, Bemerkung], idxr is an equivariant nomotopy equi-
valence, and by [10; Lemma 4], the projections are equivariant homo-

topy equivalences. |

We now prove tne nomotopy extension Vifting property (HELP) of a

nomotopy equivalence.

Tneorem 3.5: Given a diagram of G-spaces and G-maps
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and a G-nomotopy H, : n|A = pef,. Assume that (X,A) is G-cofibred.
Then there is a G-map f : X —> Y extending fA and a G-homotopy
H:h =‘p° f extending HA provided

(a) p is an equivariant homotopy equivalence
OR (b) p is an ordinary homotopy equivalence and X-A is a numerable

principal G-space.

Proof: Replace p by the equivariantly homotopy equivalent G-fibration
q: E—>12, where E = {(w,y)€ 2xY|2(1) = p(y)} and q(w,y)=6(0). The
G-action on E is given by g(w,y) = (g -w,z +y), wnere (g -w)(t)=g-2(t.
Let r : F —> X be the G-fibration over X induced by n, i.e.

F o= {(x,0,7)€ X x 27 x Y|w(0) = n(x),w(1)=p(y)} and r(x,w,y) = x.

F > B Y
/ «[r [q/
A = X 1 > 7

Define k : A —> F by k(a) = (a,wa,fA(a)) with

n(a) OStS%
wa(t) = 1
HA(a,2t—1) St

Then k is an equivariant section of r over A. The theorem is proved
if we can extend k¥ to an equivariant section of r over X.

Since (X,A) is G-cofibred, there is an equivariant map u : X —> 1
and a G-homotopy K : XxI —> X such thnat Acu_1(o),K(x,O)=x,K(a,t)=a
for all 2€A and t€I, and K(x,1)€ A for x€u  [0,1). Put U = u [0,1).
Extend k to an equivariant section of r over U by k(x):[x,wX,fA(K(x,1»]
witn

n(X(x,2t)) OStS%

p = xX€U
v (%) H,(K(x,1),2¢-1) %St51
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We claim now and prove later:

Let ry_, : Fx_, —> X-A be the restriction of r to Fy_, = r_1(X—A).
Then Ty_a nas an equivariant section s', and there is a G-homotopy
L2 Py px I —>Fg , from the identity to s'=ry , such that

rX_A(L(e,t)) = rX_A(e) for all e€F and t€I.

X-A
The required equivariant sections s of r over X is then given by

s'(x) x€X-U
s(x) = L(k(x),max[2u(x)~1,0] =x€U-A
k(x) X€A

We now prove the claim: g is a G-fibration and a homotpy equivalence.
By [13; Cor.6.2], there is a section g of q and a homotopy Q : idE*Ecq
such that q * Q(e,t) = q(e). Both q and Q are equivariant if p is an
equivariant homotopy equivalence. Define a section ¥ : X —> F of r
and a nomotopy R : FxI —> F from idy to Ter by T(x) = (x,9 « b(x))
and R(x,e,t) = (x,Q(e,t)), e€E. Then r «R(x,e,t) = r(x,e) for all
(x,e)€F and t€I. Both T and R are equivariant if g and Q are, i.e. if
p is an equivariant nomotopy equivalence, and provide tne section and
nhomotopy of tne claim. If p is an ordinary homotopy equivalence, then
Ty_a ¢ FX—A —> X-A is a G-fibration and a homotopy equivalence be-
cause of the existence of T and R. Since X-A is a numerable principal
G-space, Ty_a is an equivariant nemotopy equivalence (Lemma 3.4).By the
equivariant version of [13; Cor. 6.2] the equivariant section and the

homotopy of the claim exist. [ ]

Proposition %3.6: Let p : (X,A) —> (Y,B) be an equivariant map of

pairs of G-spaces such that Py = plA ¢+ A —> B is an eguivariant homo-
topy equivalence and p : X —> Y is an ordinary homotopy equivalence.
Suppose X-A and Y-B are numerable principal G-spaces and (X,4),(Y,B)
are G-cofibred. Then any equivariant nomotopy inverse ag of p, can be
extended to an equivariant homotopy inverse g of p and any equivariant

homotopy HB : idB = Py dp to an equivariant nomotopy H : idY ~ peg.
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Proof: Let i : B< Y be the inclusion. By part (b) of the previous
theorem, there is an equivariant extension q : Y —> X of ap and

H: ¥IXI —> Y of i Hy such that H : idy > pegq. Hence (p,pA)a(q,qB)*id
equivariantly as maps of pairs. Analogously, we can find an extension

P : X —>7Y of p, such that (q,qB)-(f,pA) = id equivariantly as maps

of pairs. Hence
(a,ap)*(p,py) = (a,a5)*(p,p,)+(a,q5)(P,py) = (a,ap)+(P,p,) ~ 1id

equivariantly as maps of pairs. [ |

Corollary 3.7: Let X be a G-space and A an invariant subspace. Sup-

pose that (X,A) is G-cofibred, that A = X is a homotopy equivalence,
and X-A is a numerably principal G-space. Then A is an equivariant

SDR of X.

Proof: Apply the previous proposition to the inclusion (A,A) < (X,A)

with i = idA and HB the constant homotopy. '

Lemma 3.8: If X is a paracompsct G-space, A © X a subspace such that
G acts freely on X~-A, and u : X —> I a map with A = u_1(0), then

X-A is a numeradble principal G-space provided G is a compact Lie group.

Proof: X-A is an Fo, i.e. a countable union of closed subspaces of X,
and hence paracompact [36]. Since X-A is normal, the projection
p : X-A —> (X-4)/G is a principal fibre bundle (e.g. see [5; p.88]).

Since p is closed, (X-A)/G is paracompact [18; p.165]. I

4. FILTERED SPACES AND TITERATED ADJUNCTION SPACES

As in the previous sections the results of this section hold in
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the category of all topological spaces as well as in the category of
k-spaces.
Let G be an arbitrary topological group. A filtration of a G-space

X is an increasing sequence of invariant subspaces

g = X_1 c XO = X1 C v

with X as colimit (direct limit). Given such a sequence, we call X a

filtered G-space., If each (Xn’xn—1) is G-cofibred, we call X properly

filtered. A filtered G-map is & G-map f : X —> Y of filtered G-spaces

such that f(Xn) < Yn. We denote f|Xn : Xn — Yn by . A filtered

space is called an iterated adjunction G-space if Xn is obtained from

Xn_1 by adjoining a G-space An relative to an invariant subspace Bn
by an equivariant map. We say, Xn is obtained from Xn_1 by adjoining
(or attaching) (An,Bn). If each (An,Bn) is G-cofibred, we call X a

proper iterated adjunction G-space.

We tist a few elementary properties

Lemma 4.1: (a) A proper iterated adjunction G-space is properly filtered.

{b) If X is a properly filtered G-space, then each (X,Xn) ig G-cofibred.

(¢) If Y is obtained from X by attaching a NDR (A,B), then Y is Haus-
dorff if X and A are.

(d) If X is a properly filtered space and each X, is Hausdorff, then

so is X.
Proof: B c A
—_— 1'n ln
Xn—1 < Xn

is a push-out diagram in the category of G-spaces. Hence Xn-1 c Xn is
a G-cofibration if A < B, is a G-cofibration. If (An,Bn) is a NDR,
then there is a map u : An —> 1 with u_1(0) = Bn. Using this one

readily cnecks that X, is Hausdorff if Ay and X _, are.
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Now suppose X is a property filtered G-space. We construct a re-
traction r ¢ XxI —> Xx0 U X xI. Since XxI = lig (kaI) it suffices
to construct compatible G-retractions Ty kaI —_ kaO U anI for
k2n (Use [12; Satz 1.16 and Satz 1.19] to show that the subspace
Xx0 U anI is the colimit of the subspaces kao 1 anI). The retract-

ions r, are obtained inductively by

T XxI —=> X

k

1]

(id U _4)er 2 X xO U X, _xI —> X, x0 U X xI

k ¥
wnere r is tne G-retraction of (Xk’xk—1)' For tne continuity of Ty
use [12; Satz 1.1.9] observing that kao 9] anI is a retract of kaI,
because composites of cofibrations are cofibrations.

For a proof of (d) see [49; Thm. 9.4]. |

It is well-known that a filtered map f : ¥ —> Y of properly filter-

ed spaces is a homotopy equivalence provided each fn : Xn —_ Yn is

a homotopy equivalence. Usually one proves tnis using the Milnor tele-
scope construction [9; IV,§5]. We give an slternative proof in the
category of G-spaces, the intermediate results of wnhich we will need

for other purposes.

Lemms _4.2: Given a commutative diagram of G-spaces

f > At

J
._.._&____._> B!

tﬂ(—————H =

where i and j are G-cofibrations and f and g are G-homotopy equivalences.
Let T be a G-nomotopy inverse of f and oy @ id,, > f « T a G-nomotopy.
Then there is a G-homotopy inverse g of g extending T and a G-homotopy

¥k id

P g < 8° £ extending ng, i.e. (kt’ht) : (idB.,idA,) ~ (geg,fof)

in the category of pairs of G-spaces.

Proof: Apply Thneorem 3.5 to the diagram
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Al =~ B!

and the nomotopy je h, : idB,|A' = j~3jefeT =geieT to obtain

the required extensions. l

Corollary 4.%: Given the assumptions of Lemma 4.2, the G-map

(g,f) + (B,A) —> (B',A') is a G-homotopy equivalence in the category

of pairs of G-spaces.

Proof: Let (g,f) : (B',A') —> (B,A) and (kt’ht> :(idB”idN)m(g.g,fof)
be the map and G-homotopy of pairs of (4.2). Applying the lemms once
again to the pair (g,T), we obtain a G-map of pairs (g',f":(B,A)—>(B"A")
and a G-nomotopy of pairs (idg,id,) = (g og',Tef')., By general non-
sense, (g,f) is a G-nomotopy equivalence of pairs (cf. tne proof of

(3.6)). 1

Tneorem 4.4: Let £ : X —> Y be a filtered G-map of property filtered
G-spaces such that each fn : X, —> Yn is a G-homotopy equivalence.

Tnen f is a G-homotopy equivalence.

\
Proof: Using Lemme 4.3, we inductively construct homotopy inverse

g, * Y —> X extending g _, and homotopies Hn(t) :‘idYnm fo 8

n T

extending Hn_1(t). Taking the colimit we obtain a G-map g : ¥ —> X
and a G-homotopy H(%) : fe g =~ idy. Apply the same procedure %o the
filtered map g to obtain a G-map h : X —> Y and a G-homotopy

K : idX ~ gen. As in (3.6), we find that f is a G-nomotopy equivalence.l

Tneorem 4.5: Let X be a properly filtered G-space such that each Xn

is an equivariant SDR of Xn . Tnen each Xn is an equivariant SDR of X.

+1
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Proof: By the equivariant version of [14; 3.7] it suffices to show
that (X,Xn) is G-cofibred and the inclusion X < X is a G-homotopy
equivalence. The first requirement follows from (4.1) and the second

from (4.4) if we consider X, as trivially filtered by itself. [ |

We now investigate conditions which make maps of iterated adjunction

spaces to filtered homotopy equivalences.

Proposition 4.6: Let Y and Y' be G-spaces obtained from X and X' by

adjoining (A,B) and (A',B') by maps f : B—> X and g : B' —> X'
respectively. Suppose (A,B) and (A',B') are G-cofibred. Given a com-

mutative disgram of G-maps
X <—— 3B ? A
h 1 X

I'—_— B! At
g

e

wnose vertical maps are G-homotopy equivalences. Then the induced map

r: (¥Y,X) — (Y',X') is a G-nomotopy equivalence of pairs.

Proof: Let Z and Z' be the double mapping cylinders of the norizontal
sequences. E.g. 2 is obtained by identifying the mapping cylinders
Zf and Zi along their common subspace B. Fix a nomotopy inverse T of

1 and nhomotopies Tel >~ id_, LT ~ id The pairs (h,1l) and (k,1l)

B'*
—_ Zg and Zi__> Zj and a map

B’
induce G-nomotopy equivalences Zf
r' : Z —> 7', Since the inclusions Zf 2 BcC Zi and Zg 2 B' < Zj are
G-cofibrations, the map T and the nomotopies can be extended by (4.2)
to G-maps of triasds p,q : (Z,Zf,Zi) —_— (z*,zg,zj) and G-nomotopies

of triads pe r' = id and r'e° q > id. Hence, by general nonsense,

r' o (Z,Zf,Zi) —> (Z',Zf,Zj) is a G-nomotopy equivalence of triads.
Since i and j are G-cofibrations, the natural projections (Z,Zf)—>(Y,X)

and (Z',Zg) —> (Y',X') are G-homotopy equivalences of pairs. Since
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r: (Y,X) —> (Y',X') is induced by r', it is a G-nomotopy equivalence

of pairs. l

We also need a strange generalization of this result.

Proposition 4.7: Let Y and Y' be spaces obtained from X and X' by

adjoining (A,B) and (A',B') by maps f : B~> X and g : B' —> X'

respectively (no G-action). Let (K,L) and (X',L') be G-cofibred pairs
such thet K-I and K'-L' are numerable principal G-spaces and (K/G,L/G)
= (A,B) and (X'/G,L'/G) = (A',B'). Given a commutative diagram of maps

x <— % B<—2PRroJ 1 < x

n q' q

X< £ Bl< proj ' - X!

with ¢ 2 G-map and h,q',q ordinary nomotopy equivalences. Tnen the

induced map r : (Y¥,X) —> (Y',X') is a nomotopy equivalence of pairs.

Proof: Consider X and X' as trivial G-spaces. Let Z and Z' be the G-
spaces obtained from X and X' by sdjoining (K,L) respectively (XK',L').
Then q and nh induce a G-map p : (Z2,X) —> (2',X'), which is an ordi-
nary homotopy equivalence of pairs. By (4.1) the pairs (%,X) and (Z',X')
are G-cofibred. Since Z-X and Z'-X' are numersble principal G-spaces

and p ¢+ X —> X' is a G-nomotopy equivalence, p is a G-nomotopy equi-
valence of pairs by (3.6). Passing to the orbit spaces we find that

r: (¥Y,X) —> (Y',X') is a homotopy equivalence of pairs. ]
We have a similar result for weak homotopy egquivalences.

Proposition 4.8: (a) If X and Y are filtered T1—spaces and f : X = Y

a filtered map such that each fn is a weak nomotopy equivalence, tnen

f is a weak nomotopy equivalence
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(b) Let Y and Y' ©be spaces obtained from X and X' by adjoining (A,B)
and (A',B') by maps f :+ B—> X and g : B' —> X' respectively. Suppose

(A,B) and (A',B') are cofibred, Given a diagram of maps

i
x<—3Lf 3 c A
n 1 Kk

J
X'<euf _ p c A

whose vertical maps are weak homotopy equivalences. Then the induced

map r : Y —> Y' is a weak homotopy equivalence.

Proof: Part (a) follows from the fact that niX = lim nan [173(2.14)].
For part (b) let 2 and Z' te the double mapping cylinders of the
horizontal sequences. Then the triple (h,l,k) induces a map r':Z;>Z',
which is a weak homotopy equivalence by [35; Thm.6]. The canonical
projections Z —> Y and Z' —> Y' are nomotopy equivalences because

i and j are cofibrations. Hence r is a weak homotopy equivalence. [ |

Proposition 4.9: Let f : X —> Y be a filtered G-map of filtered

G-spaces. Assume that the maps Xn c Xn, Y c Yn' and f : Xn——> Yn

-1 n-1

are closed G-cofiwations. Then f is a closed G-cofibration if XnﬂYn_ =X

1 n=1"

Proof: We construct inductively a G-retraction ¥xI —> XxI U ¥x0. In
the inductive step we nave a G-retraction Y _,xI —> Y _,x0 U X, ,xI

so that we need a G-retraction
q : ¥ xI —> (Yn_1 U Xn)xI U Y x0

Since X N Y =X and (Yn’xn—1) is a G-NDR, the pair (Yh,In_1UXJ

n-1 n-1

is a G-NDR by (2.7). Hence the required G-retraction exists. l

Proposition 4.10: Let X be a properly filtered space such that each

X1 1s contractible in X . Then X is contractible.
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Proof: Inductively, define spaces Yn, inclusions Xn c Yn’ and re-

tractions q : Y, —> X . Put X =Y and Y =X U CYn_1/~, where

CY, 4 is the (unreduced) cone on Y, qend X _,c X, is identified
with Xn-1 c Yn_1c CY The retraction q, Y —> Xn is given by

n-1° n

Cq .
n-1 . ox B> x

Ty — n-1 " n

where h is tne contracting homotopy. Let Y be the colimit of the Yn.
Then the inclusions Xn < Yn and the retractions Yn —_ Xn define fil-
tered maps 1 : X <Y and g : Y ~—> X such that qe 1 = idX. We show
that ¥ is contractible.

First note tnat jn__1 t Y < Yn and the inclusion of the cone

n-1

point {yn} c CY, 4 <Y, are cofibrations and that Y is contractible

n-1
in Yn to the cone point. For any sequence £ of spaces and maps

P p p
0 1 2
AO > A1 > A2 > A3 > e
define TnZ, inclusions An c TnZ c Tn+12, and retractions Tt TnZ - An
inductively. Put T ¥ = A  and T £ = T 4T U Z /~, wnere A _.cT _,%

Pn-1

is identified witn An-1 c Z , the mapping ecylinder of Pp_1* The
n-1

retraction T, is the composite

T~2——>72 —_ A
n P4 n

wnose first map is induced by Th_1 and the second is the standard re-
traction of the mapping cylinder. Thne colimit TE of the TnZ is called

the telescope of =.

Po

AO A,

T,5=Z T
pO

The Tnz define a proper filtration of TE. Thne r, are nomotopy equi-
valences and they induce a map r from TT to the colimit A of T. If T

defines a proper Tiltration of A, i.e. if each Py ig a cofiltration,
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then r : TS —> A is a nomotopy equivalence by (4.4).

Consider the sequences

Jo Jq do
gt YO c YT c Y2 < e
c c c
. 0 1 2
Zs YO > Y1 > Y2 >

where cy is the constant map to the cone point {yi+1}. We have shown
that j, =~ ¢y . It is well-known (and can easily be deduced from (3.5)
and (4.2)) that if f >~ g : A —> B there is a nomotopy equivalence

of pairs (Zf,A) - (Zg,A). Hence there is a filtered map h : TT, —> 1%,
such that each hn is a homotopy equivalence, wnence Y > T21 == TZZ.

Filter T22 differently: Put Qo =Y = TOZZ, Q1 = CYO witnh the obvious

0
inclusion of the cone point ¥q- Inductively, let Qn = Qn—1 U CYn_1/~
with the cone point y, _, in Q 4 identified with y _,¢€ Y 4 <SCY 4

Again we have tine inclusion {yn} < Qn of the cone point.

Since {yn} © Y, < CY are cofibrations, the Q; define & proper fil-
tration of T¥,. The Q; are obviously contractible. Hence, by (4.4),

T22 >~ point, nence Y and therefore X are contractible. .

We close this chnapter with some results on numerably contractible

spaces. For a definition see (6.12).

Lemma 4.11: (&) If Y dominates X and Y is numerably contractible then
so is X. In particular, numerable contractibility is a homotopy type
invariant.

(b) A finite product of numerably contractible spaces is numerably
contractible.

(c) Let X be a properly filtered space such that each X, is numerably
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contractible. Then so is X.

For proofs and further references see [43]. N

Proposition 4.12: Let X be a proper iterated adjunction space such

that the spaces An which are attached are numerably contractible. Then

X is numerably contractible.

Proof: By (4.1) and (4.11) it suffices to show that each X, is numer-
ably contractible. Suppose inductively that Xn_1 is numerably contract-

ible. The subspaces U = X U an[0,1) and V = A U Bx(0,1] of the

n-1
double mapping cylinder Z of Xn_1 L Bn < An form a numerable cover-
ing of Z. By (4.11 a), botn U and V and hence Z are numerably contract-

ible. Since Z =~ Xn,also Xn is numerably contractible. I
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