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INTRODUCTION 

OriginalLy, we developed the theory of homotopy invariant structures 

to obtain a machine for proving that the stable groups O,U,SO,SU,F, 

Top,PL, their various coset spaces, and their classifying spaces are 

infinite Loop spaces. But soon we realized that t~e homotopy invariant 

structures in themselves were the main subject of our research. The 

idea of using categories of operators (called PROPs in these notes) 

and to identify topological spaces with algebraic structures with func- 

tors from a suitable PROP to the category of topotogicaA spaces was 

implicitly contained in a talk of Stasheff given in a seminar of Mac- 

Lane at the University of Chicago in 1967. He suggested to look for a 

topological analogue of the notion of a PACT as developed by Adams and 

MacLane [29] and to use it in the theory of infinite loop spaces. The 

topological version of the conjecture following Theorem 25.1 of [29] 

gave some hope for an application: If a topotogicat PACT, whose homo- 

topies satisfies al~ higher coherence conditions, acts on a space X, 

then it also acts on its classifying space. 

The coherence conditions for higher homotopies naturally Lead us 

to consider homotopy invariance, which Later turned out to be useful 

for the application to infinite loop spaces. 

After we had announced our results in [8], Beck pointed out to us 

that our PROPs are just subcategories of topological theories as known 

from categorical universal algebra. This motivated us to consider gene- 

ral topological-algebraic theories, too, although in most of our in- 

vestigatiomwe had to restrict our attention to the previously treated 

• PROPs, which now cropped up as "spines" of theories closely related 

to the theory of commutative monoids. 



VI 

Shortly after the appearance of [8] several other anthors could snow 

by different methods that the stable groups and their classifying spa- 

ces listed above are infinite loop spaces. Their approaches avoid the 

theory of homotopy invariant structures so that they reach the requir- 

ed result more easily and more directly. Therefore we want to stress 

the point that infinite loop spaces are just one field of application 

of our theory and, as we will show, not the only one. 

We briefly want to compare our method with the most interesting 

other approaches to infinite loop spaces. Using his construction of 

the classifying space of a category [44], Segal was able to show that 

a topological category ~ with an appropriate bifunctor g x ~ --> 

gives rise to a spectrum of simplicial spaces, the realizations of 

which form an infinite loop space [45]. He then showed that the groups 

under consideration determine such categories and that the associated 

spectrum makes the group into an infinite loop space. In contrary to 

this, our method is to investigate the internal algebraic-topological 

structure of the groups and to show that certain structures, we call 

them E-structures, characterize infinite Loop spaces. 

A second direct proof is due to Beck [3]. He also starts with E- 

structures on topological spaces. He then extends the suspension and 

loop space functor to adjoint endofunctors of the category of spaces 

with E-structures and shows that the front adjunction map X---> ~SX is 

a weak nomotopy equivalence if the E-structure on ~ makes no(X) into 

a group. 

A third approach, due to May [34], is very closely related to our 

method. His theory is geared towards applications to Dyer-Lashof homo- 

bogy operations. He first develops a theory of operads with free action 

of the symmetric groups. They are slight specializations of our PROPs. 

Then using the operads obtained from our little cube categories ~n 

and Q_~ of [8] (see also (2.49) of these notes) and generalizing an n- 

stage classifying space construction of Beck [2], he was able to prove 
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a recognition principle for iterated and infinite loop spaces, which 

resembles much of our recognition principles of chapter VI, §3. His 

approach has two advantages over ours. Firstly, the category of operads 

has products, which essentially substitute our tensor products of FROPs. 

Since the topological and algebraic structures of these products are 

far more transparent than the structure of the tensor products, one 

need not be reluctant to work with them. Secondly, his n-stage classi- 

fying space construction, which is quite interesting in itself, makes 

an inductive proof of the recognition principle for n-fold loop spaces 

redundant, although the proof of consistency requirements for infinite 

loop spaces boils down to an argument similar to an induction. 

On the other hand, our approach has some advantages over May's. 

First of all, we admit all PROPs and not only PROPs with free actions 

of the cyclic group, which correspond to E-free operads. Thus impor- 

tant PROPs, such as the PROP ~ associated with the theory of commuta- 

tive monoids, are allowed in our theory but not in May's. (It has been 

known for some time [37] that a connected abeiian monoid is of the 

weak homotopy type of an infinite Loop space). Secondly, taking PROPs 

and tensor products instead of operads and products keeps us in closer 

connection with general algebraic-topological theories, so that gene- 

rs/~izations to mo~complicated algebraic structures suggest themselves. 

Thirdly, once the theory of homotopy invariant structures has been made 

available, a few more or tess elementary facts of the standard classi- 

fying space construction imply a unified proof of the recognition 

principle for both n-fold and infinite loop spaces. Moreover, for any 

E-space X, we have maps preserving the structure up to coherent homo- 

topies 

~ n B n x  < Q n - I B n - I x  < . . . . . .  < QBX < X , 

which are weak homotopy equivalences if the E-structure on X makes 

No(X) a group, while in May's approach there are structure preserving 

maps 
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~nBnx ~ f ~X g > X 

such that g is a deformation retraction and f is a weak nomotopy equi- 

valence if X is connected. So the maps do not go one way. 

Besides the points which aLLow a direct comparison, we also treat 

the theory of maps which preserve the algebraic-topoLogicaL structures 

up to coherent homotopies in great detaiL, thus obtaining a deLooping 

result for maps between E-spaces which are not quite homomorphisms. 

Moreover, an additional analysis of MiLgrams classifying space con- 

struction aLLows us to show that the weak homotopy equivalences above 

are strict homotopy equivalences for a wider c%ass of topoLogicaL 

spaces than CW-compLexes. This side of the theory is, of course, un- 

necessary for the purpose of May's notes, which are thought of as a 

basis for the development of a theory of homology operations; but they 

are of great interest from the homotopy point of view. 

A short idea of what we are going to do and a recoLLection of exist- 

ing results on homotopy invariant structures on topoLogicaL spaces is 

given in chapter I. The second chapter is a seLf-contained treatment 

of multi-coLoured theories generalizing constructions of B@nabou [4]. 

Many ideas of the section on muLti-coLoured triples (II,§4) are taken 

from papers of Beck [2] and others. In (II,§5) we define the topoLo- 

gicaL analogue of Adams' and MacLene's notion of a PROP and PACT and 

put them into relation with general theories. We complete the chapter 

with a List of PROPs, which wiLL be used in the characterization and 

recognition of n-foLd and infinite Loop spaces, or which define aLge- 

braic-topoLogicaL structures occurring in the Literature. 

In the third chapter we define the bar construction for theories 

and PROPs and prove its important properties. It is the main toot for 

the development of the theory of homotopy invariant structures, which 

is given in chapter IV. In the first parts of chapter IV we construct 

categories of spaces with homotopy invariant structures and homotopy 

classes of maps which preserve such structures up to coherent homo- 
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topies. We offer three definitions for such maps, which turn out to 

be more or Less equivalent, and continue to work with two of them. 

This side of the theory indicates that the last word has not been spo- 

ken yet. Relationships of such maps to homomorphisms are studied in 

sections 4,5, and 6. The main results on homotopy invariance are given 

in section 3. In section 7 we prove a homotopy invariance result for 

general theories, thus indicating possible generalizations of our re- 

sults. Chapter V lists the modifications which are necessary to prove 

the more important results of chapter III and IV in the category of 

based topological spaces. 

As a first application of our theory we in chapter VI study n-fold 

and infinite Loop spaces. We start with a detailed treatment of Mil- 

gram's classifying space construction ~373 in the frame-work of our 

theory before we in section 3 prove the recognition principle for n- 

fold and infinite loop spaces mentioned above. In section 4 we extend 

this recognition principle to arbitrary E-structures on a space X and 

show that X cannot be of the nomotopy type of an abelian monoid if it 

has non-trivial Dyer-Lashof operations. We List a number of infinite 

Loop spaces in section 5. Chapter IV and VI include the proofs of the 

announcements in E8~. 

In the final chapter VII we briefly indicate how our theory can be 

used in other branches of homotopy theory. We define homotopy colimits, 

prove some elementary properties, and illustrate some applications. 

A summarized version of parts of our results has a~ready appeared 

in E6], and we try to stick to its terminology. The first chapters 

¢~nstitute a vastly improved version of E54]. The second author takes 

the full responsibility of the present exposition a~ he is to be 

blamed for cryptic formulations, frequent violatioasof standard 

rules of the English Language, and mathematical inaccuracies. 

It is our pleasure to thank our friends WhO in various discussions 

helped us to clarify one or the other point of our theory. In parti- 
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cuLar, we are indebted to Jon Beck for exptainin~ to us the notion of 

an at~ebraic theory and who pointed out that the homotopy-everythin~ 

H-spaces of [8]are not realty homotopy-everythin~ H-spaces (compare 

VI,§4), and to Tammo tom Dieck for suggesting to us the use of numer- 

abte principa~ G-spaces and for many invaluable conversations. We a~so 

want to thank Mrs. Victoria LSff~er for her quick and neat typin~ of 

the major part of these notes. 

Durin~ our research the first author was partty supported by the 

Nationat Science Foundation under the ~rant number GP-19481, whi~e 

the second author received partiat financiat support from the Studien- 

stiftun~ des deutschen Vo~kes and the Deutsche Forscnun~s~emeinschaft. 
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I. CHAPTER 

MOTIVATION AND HISTORICAL SURVEY 

In these notes we study homotopy-associative and homotopy-commutat- 

ive H-spaces, where the homotopies satisfy "higher coherence condit- 

ions", and maps that preserve such structures up to homotopy, and again 

we require that the homotopies satisfy "higher coherence conditions". 

For the time being call those H-spaces "structured spaces" and these 

maps "structured maps". Our aim is to define structures which approxim- 

ate the structure of a monoid or a commutative monoid and which live 

in homotopy theory. To make the last remark precise, our structured 

spaces and maps should satisfy the following statements: 

If X is a structured space and f : X --> Y a homotopy equivalence, 

then Y can be structured such that f becomes a structured map. 

If f : X --~ Y is a structured map of structured spaces and g homo- 

topic to f, then g can be structured. 

If f : X m> y is a structured map of structured spaces and a homo- 

topy equivalence, then any homotopy inverse can be structured. 

We are interested in structures that approximate a monoid structure 

or the structure of a commutative monoid because a reasonable monoid 

is of the homotopy type of a loop space and a reasonable commutative 

monoid of the homotopy type of an infinite Loop space. Precise definit- 

ions and statements of this remark will follow in this chapter. 

We now want to give a short survey of the existing Literature ~n 

this subject and introduce the main ideas of our approach. Some of 

the statements of this chapter will be rather vague and made precise 
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Later on in these notes. In most cases we refrain from giving p~oofs. 

Throughout these notes we work in the category of k-spaces, i.e. 

the category of compactly ~enerated spaces (see Appendix I). 

1.  "DELOOPING" VIA THE CLASSIFYING SPACE CONSTRUCTION 

Definition 1.1: An H-space is a topoLogicaL space X with base point e 

and a multiplication map m : X x X --> X such that e is a homotopy unit, 

i.e the maps x * m(x,e) and x - m(e,x) are homotopic to the identity 

ret(e,e) (Where reasonable we write xy for m(x,y)). 

If (X × X, XVX) has the homotopy extension property, the muLtipLic- 

ation map can be deformed to one for which e is a strict unit. Since 

we are concerned with "homotopy invariant structures" it is more natur- 

aL to work with homotopy units. 

ObviousLy, the concept of an H-space is a natural generalization of 

that of a topoLogicaL group, and since there are many spaces which ad- 

mit an H-space structure which is not a group structure, e.g. loop 

spaces, it is worth considering. 

Because of the lack of structure, many interesting and important 

constructions which apply to topological groups cannot be applied to 

H-spaces. For example, there is no H-space analogue to MiLnor's cLassi- 

fying space of a group unless the H-space in question has some addition- 

aL structure. Such a construction is rather important for algebraic 

topology, because it implies that any reasonable topoLogicaL group is 

of the homotopy type of a Loop space, which has further consequences. 

From the homotopy theoretical point of view, the distinguishing feature 

is the lack of associativity (and commutativity) rather than the Lack 

of a continuous inverse (see Prop. 1.5 below). So associativity and 

commutativity, both strict and up to homotopy, will play a significant 

role in our development. 

A close investigation of Milnor's construction of the classifying 
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space of a topological group (Milnor [39]) shows that one can do with- 

out the existence of a continuous inverse. 

Definition 1.2: An H-space with strictly associative multiplication 

and strict unit is called a monoid. 

Proposition 1.3 (Dold-Lashof [16]):IfX ~amonoid such that right trans- 

lation is a weak homotopy equivalence, then there is a space BX and a 

weak homotopy equivalence X --> QBX which respects the multiplication 

up to homotopy. 

The condition that right translation is a weak homotopy equivalence 

is necessary. Since ~o(QY) is a group for any space Y, the statement 

can only be true if no(X) is a group. It is easy to see that this im- 

plies that right translation is even a homotopy equivalence. 

Fuchs has modified the DoLd-Lashof construction. He obtains a homo- 

topy equivalence and not just a weak one. 

Proposition 1.4 (Fuchs [22]): If X is a monoid with a nomotopy inverse, 

then there exists a space BX and a homotopy equivalence X --> OBN. 

Proposition 1.3 yields a homotopy equivalence if X is a CW-compLex. 

But in this case, X admits a homotopy inverse, because it is numerabLy 

contractible [13; Prop.6.7]. 

Proposition 1.5 (tom Dieck-KamDs-Puppe [12]): Let Y be a homotopy- 

associative H-space such that right translation is a homotopy equival- 

ence. If Y is numerably contractible then it admits e nomotopy in- 

verse. 

We have seen that monoids are closely related to loop spaces. The 

following result shows that Loop spaces are related to topological 

groups. 
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Proposition 1.6 (Milnor [39]): If X has the homotopy type of a connected 

countable CW-compLex, then there is a topological group G(X) of the 

homotopy type of QX. 

2. A -SPACE8 

The last section showed that monoids may replace the topological 

groups in homotopy theory. Since the Loop space on X is a SDR(=stroag 

deformation r~tract) of a monoid, namely the Moore-Loops on X, we have 

added a Large class of spaces to the class of topological groups. The 

disadvantage of topological groups and monoids is that they do not live 

in homotopy theory, i.e. if M is a monoid and f : M D> X a homotopy 

equivalence then we cannot expect that X has a monoid structure such 

that f becomes a homomorphism or only a homomorphism up to homotopy. 

The "weakest" approxiamtion of a monoid structure which is in homo- 

topy theory is a homotopy-associative H-space structure. Such an H-space 

is in general far away from being of the homotopy type of a monoid. 

This motivates to look for richer structur~wnich are better approxim- 

ations. J. Stasheff solved this problem with his An-spaces. 

Let us investigate the best homotopy-invariant approximation, namely 

a space X of the homotopy type of a monoid. Then X inherits a homotopy- 

associative H-space structure from the monoid via the homotopy equi- 

valences. Let 

M 3 : I x X 3 ~ X 

be the canonical associating homotopy (I is the unit interval), and 

M3(x,y,z) the corresponding path from (xy)z to x(yz). Considering the 

various ways of associating four factors we obtain five maps from X 4 

to X, each of which is homotopic to two others by a single application 

of homotopy associativity. For each quadrupel (x,y,z,w) of e~ements 

in X we can construct a loop S(x,y,z,w) in X, 



- 5 - 

S(x,y,z,w): (xy)(zw) 

Ms(x,y,zw)/~~(xY'z'w) 

x N 3 ( y , z , w )  M 3 ( x , y , z )  w 

x((yz)~) Ms(x,yz,w) (x(yz))w 
continuous in each variable, and hence a map S I × X 4 > X. This map 

can be extended to a map 

M 4 : D 2 × X 4 > X 

where D 2 is a 2-ce~t with boundary S I. If we take five factors, we can 

construct a map S 2 x X 5 > X using the multiplication M 2 and the maps 

M 3 and M 4. If M 4 is chosen property, this maps can be extended to a 

map 

M 5 : D 3 × X 5 > X 

and so on. We end up with a sequence of maps M n : D n-2 × X n > X, 

n ~ 2, such that M n extends the map S n-3 × X n > X which is induced 

by M2,..., Mn_ I. We can obtain such a sequence of maps for any space 

of the homotopy type of a monoid. Later on we shalt see that this 

structure , which we cai~ an A -structure, ~eads to a homotopy-invariant 

characterization of spaces of the homotopy type of a monoid. To be able 

to give precise statements, we must know how to obtain the maps 

S n-3 × X n > X from M2,..., Mn_ I. 

Definition 1.7 (Stasheff [46]): Let K i denote the complex constructed 

inductivity as fo~tows: K 2 = D ° , the O-ce~. Let K i be the cone CL i 

on L i which is the union of various copies (K r x Ks) k of K r x K s , 
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r + s = i + S , corresponding to inserting a pair of parentheses in i 

symbols I 2 .... (k k + I ... k + s - I) .... i. The intersection 

of copies corresponds to inserting two pairs of parentheses with no 

overlap or with one as subset of the other. 

Examples 

K 2 

K3 (I'2)3 123 It23) 

I(2(34)) 

I(234) 

I((23)4) 

(12)(34) 

34) 

1234 ~ ((12)3)4 

One can show [46; Prop. 3] that K i is an (i - 2)-ceLb. It wiit take 

the p~ace of the (i - 2)-cell in the definition of an A -structure. 

Let 8L(r,s) : K r × K s > K i denote the inclusion of the copy in- 

dexed by 1 2 ... (% ~ + 1 ... b + s - I) ... i. 

Definition 1.8 (Stasneff [46]): An An-space (X; [Mi}) consists of a 

space X and a cobbection of maps 

M i : K i x ~ > X i = 2,3,..., n 

such that 

(i) M 2 is a mubtipbication with unit 



-7 - 

ii) Mi(~L(r,s)(kl,k2),Xl ..... x i) = 

= Mr(kl,Xl, .... xi_1,Ms(k2,x L ..... X~s_1) , .... xi) where 

(kl,k 2) 6 K r × K s • 

If M. exists for aLL i > 2 and satisfies the conditions (i),(ii), then 
1 

(X;{Mi}) is ca%Led an A -space. 

So an A2-space is an ordinary H-space with strict unit, an A 5- 

space a homotopy-associative H-space with strict unit etc. We are 

especiaLLy interested in A -spaces because they turn out to be of the 

homotopy type of a monoid. Now it is a natural question to ask whether 

we can do with Less than an A -structure. Since we know that any space 

of the homotopy type of a monoid admits an A -structure, this amounts 

to asking whether or not an An-structure extends to an A -structure. 

CounterexampLes were given by Adams [I~ and $t~sheff [46J. 

Proposition 1.9 (Adams and Stasheff): If Y is a Moore space of type 

(G,2p + I) where G is an abeLian group in which division is possible 

for aLL primes q Less than the prime p, then Y admits an Ap_1-structure 

but not an A -structure. 
P 

Stasheff succeeded to generalize the classifying space construction 

of DoLd and Lashof. Using this toot he could show that any A -space 

is of the homotopy type of a Loop space, and hence of a monoid. On 

the other hand, it is easy to show that a Loop space admits an A - 

structure. So we obtain 

Proposition 1.10 (Stasheff [48]): A connected CW-compiex X admits the 

structure of an A -space iff X has the homotopy type of a Loop space. 

Since Stasheff uses the Long exact homotopy sequence of the quasi- 

fibration associated with his classifying space construction, he needs 

the requirement tnat X is a CW-cempLex. The second disadvantage of his 
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construction is that he has to use strict units. Bui%ding up a monoid 

with he%p of the mode%s Ki, Adams gave an alternative proof of a 

stronger result, which makes no use of units. 

Proposition 1.11 (Adams, unpublished): If X admits maps Mi:Ki× Xl---> X 

for i > 2 satisfying 1.8(ii), then X is a SDR of a space Y with an 

associative multiplication m such that ml~ × X is nomotopic in Y to 

M 2 . 

Adams original proof is a little tedious. We sha~ give a simple 

proof of a stronger version. It turns out that the inclusion map X~Y 

preserves not only the mu~tip%ication up to nomotopy but up to homo- 

topy and higher coherence conditions. This ~eads us to the investigat- 

ion of maps wnich are homomorphisms up to homotopy and higher coherence 

conditions. 

3. A-MAPS 

Definition 1.12: A map f : X > Y between An-spaces (X;[Mi]) and 

(Y;[Ni]) is called a homomorphism, if the foltowing diagram commutes 

for aL% i, 2 < i < n. 
M. 

Ki x X i i -> X 

[" 1 I xf i f 

Ki x yi Ni > y 

AnaLogously for homomorphisms of A -spaces. 

If we try to define maps between An-spaces which respect the struct- 

ure up to homotopy and higher coherence conditions in the same way as 

we defined An-structures, i.e. homotopy-associative mu%tipbications 

with higher coherence conditions, the detai%s became more and more 

comp%icated with increasing n. For example, respecting an A2-structure 



-9 - 

involves a l-celL 

f(xy) ' H2(x,y ) • (fx)(fy) 

respecting an A3-structure involves a 2-cell subdivided as a hexagon 

f(x(yz) / 

f(x)f(yz) 

f(M3(x,y,z)) 

H~(x,y,z) 

N3(fx,fy,fz) 

~xy)z) 

~ xy, z) 

/ f(xy)f(z) 

respecting an A4-structure involves a 3-ceLL whose boundary is sub- 

divided in a complicated way; it contains products of l-ceLLs H 2, 

2-ceLss H 3 and of copies of the models K 2, K 3 and K 4. For a 

picture see [48;p.53]. So it does not surprise that such maps have 

not been studied up to now. In fact, maps which respect the structure 

up to homotopy and higher coherence conditions have been investigated 

to a Larger extend for monoids only, although maps of an An-space into 

a monoid are manageable too. 

Definition 1.1~ (Stasheff [~;D.54]): Let (X;[Mi]) be an An-space and 

Y a monoid. A map f : X > Y is an An-ma P if there exists a family 

of maps 

h i : Ki+ I x X i > Y i = 1,2,..., n 

such that h I = f and 
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hi(8 t(r,s)(kl,k2),Xl ..... x i) = 

= lhr(k1'Xl ..... xl_1,Ms(k2,x I ..... xl+s_ 1) ..... x i) 

[ hr_1(kl,X I .... Xr_l)hs_1(k2,Xr ..... x i) 

for r + s = i + 2. 

L < r 

t =r 

ExampLe: The models of an A3-ma~ f: 

h1(x):f(x) 
f(xy). 

h2(t,x,Y) 
• f(x)f(y) 

f(x)f(y)f(z) 

h 1 ( x ) h 2 ( t , y ~ x , y ) h l ( Z )  

h3(k,x,y,z) 

f(x(yz)) h1(M3(t,x,y,z ) f((x ~ ' ' -~ y)z) 

If X is a monoid too, its A -structure is trivial and the face in- n 

vobving hl(M3(t,x,y,z) in the above diagram can be identified to a 

point so that the model "degenerates" to a cube. In general we get 

Definition 1.14: A map f : X 

if there exists a family of maps 

h i : i i-I × X i 

such that h I = f and 

> Y between two monoi~ is an An-ma p 

> Y i = 1,2, .... n 
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hi(t I ..... ti_1,x I ..... x i) = 

I . ,x. x. ,...xi) if tj=0 = hi-1(tl ..... ~j .... ti-1'Xl .... ~ j+1 

[hj(t I .... tj_l,X 1 ..... xj)hi_j(tj+ I ..... ti,xj+ I ..... xi)if tj=1 

ExampLe: The models of an A3-ma p f between monoids: 

h1(x)=f(x) 

f (xy), , f(x) f(y) 
h2(t,x,Y) 

h1(x)h2(t,Y,Z) 
f(x)f(yz) f(x)f(y)f(z) 

h2(t,x,Yz) h3(t I ,t 2,x,y,z) h2(t,x,y)h1(z) 

f(xyz) f(xy)f(z) 
h2(t,xy,z) 

Su~awara [~]~astoourknowtedge the first to define A -maps between 

monoids while Stasheff [47] was the first to investigate An-maps 

between monoids and Later [48] be+ween An-spaces and monoids. 

They were Looking for maps which are no homomorphisms but nevertheless 

induce maps between the DoLd-Lashof classifying spaces respectively 

their n-th approximation. We know that any reasonable A -space X has 

a classifying space BX such that X is of the homotopy-type of QBX, i.e. 

an A -space can be deLooped. It seems naturat to try the same fer A - 

maps. 

Proposition 1.15 (Su~awara[5~):L~ f : X 

monoids. Then f induces maps f': E(X) 

such that 
E(X) f' 

p(X)[ 

B(X) 

> Y be an A -map between 

> E(Y) and ~ : B(X) > B(Y) 

> E(Y) 
~p(Y) 

> B(Y) 
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commutes, where p(X) and p(Y) are the universal quasifibrations of the 

Dobd-Lashof construction. 

Stasneff succeeded to proof a similar result for An-maps and the 

n-the stage of the DoLd-Lashof construction. 

The most detailed study of A -maps can be found in an article of 

?uchs [2~] where the question mentioned above found its complete 

solution. 

Proposition I.]6 (Fuchs) : Let ~h be the category of based con- 

nected CW-compLexes and homotopy classes of based maps, and ~en h the 

category of monoids and homotopy classes of A~-maps. Let B:~onhn>~ h 

be the Dotd-Lashof classifying space functor, and O : ~h > ~nh 

the Loop space functor of Moore. Then the foLLowing maps are bijective 

OB : Eonh(X,Y) > ~O~h(OBX,DBY) 

B : U2Onh(X,Y) ~h(BX,BY) 

The first statement in particular shows that A -maps can be 

"detooped". To be precise, Let f : X > Y be an A -map between 

monoids and i(X) : X > OBX the homotopy equivalence of Proposition 

1.3. Fuchs showed that this map is an A -map and that there exists a 

map Bf : BX > BY such that the diagram 

f X > Y 

i(X) I i i(Y) 

OBf DBX > QBY 

commutes up to homotopy. 

ALthough the models of an A -map are simple they are still difficult 

to work with. This became apparent in the foLLowing important result 

o f  F u c h s .  



-13- 

Proposition 1.17 (?uchs [21]) : A homotopy equivalence between monoids 

is an A -map iff any inverse is. 

In fact, a complete proof of this proposition has never been 

published, because the details are to messy. So a new approach was 

necessary, especially if one tried to study A -maps between A -spaces. 

4. A DI?FERENT APPROACH 

In this section we want to describe the main points of our con- 

structions which wiLL be developed in fuL~ generality in the coming 

chapters. We show how to apply them by giving a simple proof of a 

stronger version of Proposition 1.11. 

There are essentially two ingredients, one coming from categorical 

algebra and one from physics. In categorical algebra a monoid structure 

is not given by an muLtipLication m : X x X > X satisfying certain 

identities, but as foLLows: 

Definition 1.18: A monoid structure on a space X consists of a family 

of maps, cabled operations, 

~i : xi > X, i = 0,I,2,... 

such that 

( i )  X 1 = I x 

(ii) k n o (kr1×... x krn) = ~m' where m = r I + ... + r n 

The map k i corresponds to (Xl, .... x i) > XlX 2 ... xi, so that X 2 

is an associative multiplication with unit e = ko(X°). 

To get a better grip on composites of operations, we consider each 

ki as an e~ectricaL box with i inputs and one output. (In the general 

case, we have more than one operation X i > X. In this case we 

Label the box by the operation it represents.) 
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i inputs I 

ki : ~O : ' 

1 output 

The box representing ~o has no input but an output. A composite 

operation is obtained by wiring together, e.g. wiring together the 

operation X 2 : X 2 .... > X and ~2 × X3 : x5 > X2 we obtain 

So a composite operation is represented by a certain kind of directed 

planar tree. The edges need not have vertices on both ends; the in- 

puts have no beginning vertex, we call them twigs, the output, called 

root, has no end vertex. Edges with vertices on both ends are catted 

internal. We call the box representing X o a stump, and to be able to 

cope with occuring relations, we introduce the trivial tree which has 

no vertex 

and represents the identity operation X > X. 

To compute the value of a composite operation represented by a tree 

with n twigs on an n-tupte (x I ..... Xn) ~ X n we proceed inductively by 

Labelling each edge with a point in X starting with x I .... ,x n for the 

n twigs. At each vertex with k inputs, we apply ~k to the values of 

the inputs to obtain the Label of the output. The value of the com- 

posite operation is given by the Label of the root. 

Examptes : 

Xl x~ Xl x2 x xl x2 

XlX2 

(XlX2)X 3 k3(XlX2,X~,X4) x e(xlx 2) 
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The relations 1.18 (i) and (ii) expressed in tree form read 

t--t 
and each tree with n twigs represents the same operation as 

~ n twigs 

Now Let X be of the homotopy type of a monoid. We want to find the 

coLLection of operations which are induced by the monoid structure 

under the homotopy equivalence, i.e. we Look for a sort of A -structure. 

Combining the operations X i of the monoid with the homotopy equivaL- 

ence and its inverse, we obtain operations which we denote for simptic- 

ity reasons by ~i too. The only difference is that the relations 

1.18 (ii) hold up to homotopy only (here we assume that Xl is chosen 

to be the identity). The Ix~es enabte us to give a reasonable description 

of these homotopies. Before we consider the general situation, Let us 

it%ustrate what we want to do by an example. We know that the induced 

muLtipLication on X is homotopy associative. Disregarding the stumps, 

there are three trees with three twigs, namely 

x I x 

(XlX2)X 3 X 5(Xl ,x 2,x 3) 

X X 
2 3 

x1(x2x 3 ) 

(the direction of the edges is given by gravity). We see the outer 

trees represent the two different ways of muLtipLying three elements. 

Instead of joining the Left composite operation directly to the right 

one and thus obtaining the associating homotopy we join each of them 

to the middle tree. We do that by giving the internal edges a "~ength" 

between 0 and I and aLLow edges of Length 0 to be shrunk away, i.e. 

the two vertices of the outer trees are identified to give the middle 

tree if the iuternaL edge has Length O. 
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Definition 1.19: We define the space W~(n,1). A point of this space 

is a tree with n twigs together with a function assigning to each 

internal edge a real number t, 0 ~ t ~ 1, caLLed its Length, subject 

to the relations 

(a) Any edge of Length 0 may be shrunk away by removing it and 

amalgamating its two end vertices to form a new vertex; 

(b) Any vertex with only one input may be removed. We give the resuLt- 

ing edge the Length t I * t 2 = t I + t 2 - tlt 2, where t I and t 2 are 

the Lengths of the edges above and below this vertex. (Here we 

assume that the root and the twigs have the fictive Length 1.) 

(a) 

PictoriaLLy, the relations are 

0 ,- 

f" 

I I I I 

-I I I 
t I 

t 2 
t1* t 2 

Each point in W~(n,1) is represented by a pair (~,x) where T is a 

tree with n twigs and x a point in a k-cube C(~) where k is the number 

of internal edges of T. We give W~(n,1) the obvious quotient topology 

from the disjoint union of the cubes C(T). 

The associating homotopy is therefore given by two l-cubes C(T I) 

and C(~ 2) where ~1 and T 2 are the two outside trees of the previous 

example. These two cubes have common Lower faces which are identified 

with the 0-cube C(TS) where ~3 is the middle tree of the previous 

C(T I ) C(T 3) C(~ 2) 

t----} " u'= I t=0=u 

examp Le. 
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Let us give a pictorial description of what we mean by a W~-struct- 

ure on a space, a different and, may be, clearer definition will be 

given in the next chapter. 

Definition 1.20: A cherry tree on a space X is a tree (with tengths) 

in some space W~(n,1) to each twig of which is assigned a point of X, 

which we caLL a cherry, that is, a cherry tree is a point of some 

space W~(n,1) x X n. 

Examp L e s : 

(i) (ii) (iii) 

Definiton 1.21: A W~-structure on a space X is a continuous map 

U~ xn F : n=o W~(n,1) x .> X 

from the space of aLL cherry trees on X to the space X, subject to 

two conditions, 

(c) we can cut down fuLLy grown cherry trees without affecting 

their values; 

(d) the value of the trivia~ cherry tree with cherry x is x 

(see ExpL. (ii)). 

ReLation (c) demands some explanation: We say a cherry tree is 

fuLLy grown, if some internal edge has Length I. To cut it down we 

replace the subcherry tree sitting on that edge by its value under F, 

regarded as a cherry in X and the cut branch becomes a twig. 



- 1 8 -  

Exampte: 

We now want to connect our definition of a W~-space, i.e. a space 

with a W~-structure, with Stasheff's definition of an A -space. We 

have pointed out in the beginning of Section I that we werk with 

homotopy units rather than strict ones. They are represented by stumps, 

because we have a l-cube 

t = I 
e • x • 

t = 0 
• x 

t t 
Therefore we can compare the two definitions only if we disregard 

stumps and units. In this case Stasheff's definition reduces to those 

structures to which Proposition 1.11 applies. We Leave it to the 

reader to check that such a structure coincides with a W~-structure if 

we disregard stumps. Let us make this statement precise. 

Proposition 1.22: Let S~(n,1) be the subspace of W~(n,1) of aLL trees 

which do not have stumps. Then the foLLowing are equivalent. 

(i) There exists a continuous map 

F : U S~(n,1) x X n > X 
n=o 

satisfying 1.21 (c) and (d). 

Gi) There exist maps M n : K n x X n > X for n ~ 0 satisfying 1.8(ii). 

In fact, one can show that S~(n,1) is just a subdivided copy of K n, 

and relation 1.21(c) corresponds to 1.8(ii). 
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ExampLe: S~(4,1) is K 4 subdivided into five 2-cubes 

Before we give a proof of Proposition 1.11, Let us iLLustrate how 

to define A -maps with the aid of trees. We then can formulate Pro- 

position 1.11 in its fuLL strength. 

At this stage it would Lead too far to define A -maps between A - 

spaces, or better W~-spaces. This wiLL be done in one of the coming 

chapters. Let us be content with the definition of an A -map from a 

W~-space to a monoid. 

Let f : X ~ Y be a map from a W~-space to a monoid. In order to 

fit f into our tree description, we consider it as an eLectricaL box 

with one input and one output 

X 

Y 

Is x the value of the input, then the value of the output is f(x). We 

compose this eLectricaL box with the trees of the operations in X and 

Y as before by wiring together. To be able to decide where the opera- 

tion takes place, in X or in Y, we give each edge a name X or Y, which 

we Later caLL the coLour of the edge. Because of the relations of a 

monoid structure, we have exactly one operation yn ~ Y for any n. 

We make use of this in the definition of the models M~(n,1) for such 

an A~-map. 
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Definition 1.23: A point of M~(n,1) is a tree with n twigs, the root 

has the name Y while aLL other edges have the name X.(So the trivial 

tree does not occur any more because a twig has name X while a root 

has name Y.) The internal edges have a Length as before and the re- 

Lations 1.19(a) and (b) are the same with the exception that 1.19(b) 

may be applied only of input and output have the name X, i.e. 

t t x X ~ ~ Y (the trivial tree does not occur) 
Y 

The topology is defined in a similar manner as in 1.19. A planted 

cherry tree on (X,Y) is a tree in some space M~(n,1) which has a point 

of X assigned to each twig. 

Definition 1.24:Let X be a W~-space whose structure is given by 

: Un W~l(n,S) × X n > X and Y be a monoid. A W~-structure on a F 

map f : X > Y is a continuous map 

G : U M~(n,1) × X n > Y 
n=o 

from the space of aLL planted cherry trees on (X,Y) to Y such that 

(c*) we can cut down fuLLy grown trees without affecting their 

values under G. 

Again an explanation of relation (c*): To cut down a fuLLy grown 

tree we replace the subtree sitting on an internal edge of Length I 

by its value under F, regarded as a cherry in X. The cut branch be- 

comes a twig. (Notethat aLL edges of the subtree have name X.) 
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ExampLe: 

G I X ~ y l  ,wnere x = F [Vl 
If we want to put our definition in relation to the one of Stasheff, 

we again run into the trouble that we have homotopy units instead of 

the strict units of Stasheff's structures. So to make precise state- 

ments, we have to neglect units. Let SM~(n,I) be the subspace of 

M~(n,1) consisting of the trees without stumps. We leave it to the 

reader to check the foLLowing result. 

Proposition 1.25: Let X be an S~-space (see 1.22) and hence an A - 

space with the exception that M 2 : X 2 > X need not have a unit. 

Let f : X > Y be a map from X to a space Y with an associative 

muLtipLication. Then f admits the structure of an A -map (see 1.13) 

iff it admits m~SM~-structure. 

Example: The model SM~(3,1) 

U = I =I 

v = I r = I 

We now can formulate and prove a stronger version of Proposition 1 .11 .  
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Theorem 1.26: Any S~-space X can be embedded as a SDR in a 

universal space UX with an associative muLtipLication. The inclusion 

i : X ~- UX admits an SM~-structure with foLLowing universal property: 

Given a space Y with an associative muLtipLication and an SM~-map 

f : X > Y, then there exists a unique homomorphism h : U X > Y 

such that hoi = f as SM~-maps. (The S~-structure of h oi is the 

obvious one.) 

There is a similar result involving structures with homotopy units. 

Theorem 1.27: Fcr any W~-space X there exists a monoid MX containin~ 

X as SDR. The inclusion i : X ~ MX admits a W~-structure with foLLow- 

ing universal property: If g : X > Y is a W~-map into a monoid Y, 

then there exists a unique homomorphism h : MX > Y such that h@i=g 

as W~-maps, where h oi has the obvious W~-structure from i. 

Since the proof of Theorem 1.26 is essentiaLLy the same as the one 

of Theorem 1.27 we only prove the latter. 

Proof of 1.27: The monoid MX is obtained from the space 

U~=o M~(n,1) × X n by factoring out the relation 1.24(c*), i.e. a 

fully grown planted cherry tree is equivalent to the cut down one. 

The monoid structure on MX is given by grafting the ground vertices 

of two representatives of elements of MX together to form a new ground 

vertex 

This is cLearLy associative, and the stump 

l, 
serves as unit. So MX is a monoid. We define the inclusion i : X -->MX 
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i(x) : 

and the quotient map G : U ~ ~O~(n,1) × X n 
n--o 

W~-structure. The deforming homotopy H t : MX 

> MX endows i with a 

> MX is given by 

For t = O, we can shrink away the add~ionaLedge of the right hand side 

tree, hence H o is the identity. At t = I, we can cut down compLeteLy 

to obtain a tree representing an element in i(X). Because of relation 

1.19(b), the homotopy H t Leaves i(X) pointwise fixed. | 

We have pointed out at the end of previous section that A -maps 

are difficult to handle even if the spaces involved are monoids. Our 

models are a LittLe more complicated than the cubes in the definition 

of Sugawara. So, a priori, there is no reason to assume that our ap- 

proach makes Life easier. Neverthetess, this is the case because our 

W~-structures are universal in some sense which we do not want to 

elaborate on at this stage. Let us say so much as that it often is 

possible to replace a naturaLLy occuring structure on a space by a 

W~-structure because of this universality. 

5. SOME REMARKS ON COMMUTATIVITY 

So far we have investigated spaces of the homotopy type of a monoid~ 

and hence of a Loop space. We are interested in a more general 

question; we want to find conditions on the H-space structure of a 

space X under which X is of the homotopy type of an n-foLd Loop space. 
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An interesting special part of this question is to find conditions 

under which a space is an infinite Loop space. 

Definition 1.28: A space X is called an infinite loops space if there 

exist spaces Xn, n = 0,I,2,... such that X o = X and X n ~ qXn+ I. 

Mil~ram [37] showed that any reasonable commutative monoid is an in- 

finite Loop space. 

Propsition 1.29 (MiIKram): A commutative monoid X is of the weak 

homotopy type of an n-foLd loop space on(Y) for n = 1,2,3 ..... More- 

over, there is an H-structure on on(y) such that the weak homotopy 

equivalence preserves the multiplication up to homotopy. 

As in the associative case, the structure of a commutative monoid 

is a bad one from the view point of homotopy theory for the same 

reasons as there. So one is interested in structures which are not 

quite commutative and which Live in homotopy theory. For example, we 

could search for the weakest structure on a space X such that X is a 

double Loop space. Attempts on this Line have been made by Sugawara~53]. 

He looked for conditions on a space X such that X has a classifying 

space which is an H-space. This is somewhat different from our question 

because we want the classifying space to be a loop space. 

Definition 1.30 (Su~awara): A monoid X with unit e is caLLed strongly 

homotopy-commutative if there exist maps 

C n : (I n × X 2n I n × e 2n) > (X,e) n = 1,2,3,. 
t "" 

such that 

and 

C1(O,x,y) = xy c1(1,x,y) -- yx 
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Cn(t I , .... tn,X I ..... Xn,Y I ..... Yn ) 

XiCn_1(t 2 ..... tn,X2,...,Xn,YlY 2 .... ,Yn ) 

Cn_1(t I, .... t i, .... tn,Xl,...,Xi_lX i, .... Xn,Y I, .... 

yiYi+ I ..... yn ) ti= O, 

Cn_1(t I ..... tn_1,xl,...,Xn_iXn,Y I ..... Yn_1)Yn 

Ci_1(t I ..... ti_1,x I ..... xi_1,Y I .... ,Yi_1 ) 

Examp Le s : 
xy • 

t I 

YlXlX2Y2 

CI(t,xlx2,Yl)Y 2 

t I =0 

1<i<n 

tn=O 

YiXiCn_i(ti+ I .... ,tn,Xi+ I ..... Xn,Yi+1,Yn)t i = I 

~(t,x,y) 
yx 

YlXlCI( t ,x2,Y2 ) YlXlY2X 2 

C2(t I ,t2,x I ,x2,Y I ,Y2 ) C1(t,xl,Yl)Y2X2 

XlX2YlY2 xiC1(t,x2,yly2) XlYlY2X2 )t2 

Proposition 1.31 (Sugawara): (a) The Loop space QX of a countable CW- 

complex X is strongly homotopy-commutative iff X is an H-space. 

(b) The MiLnor-cLassifying space of a countable CW-group G is an H- 

space iff G is strongly homotopy-commutative. 

We see that Sugawara requires that the H-spaces are at Least 

associative besides being strongly homotopy-commutative. This is a 

condition which does not do for us. To find what we think is the 

correct structure to work with we again use our tree Language, but we 

have to make some changes. For the definition of a W~-structure we 

took the operations of a monoid structure and replace the relations 

by homotopies. If we try to do the same for a commutative monoid we 

cannot restrict our attention to the operations 

~n : (Xl .... 'Xn) > Xl + "'" + Xn 

because permutations come in in the definition of commutativity which 
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reads 

T Xx X >Xx X 

X 

commutes, where T interchanges the factors. So we have to add permut- 

ations as operations to our trees and we must impose an additiona~ 

relation. The detai~s of this more genera~ construction wi~ be given 

in the next two chapters. 



II. CHAPTER 

TOPOLOGICAL-ALGEBRAIC THEORIES 

In this chapter we introduce the notions from categorical algebra 

we need. For the sake of topoLogists our proofs are Less formal than 

a category theorist would Like them to be. So we construct adjoint 

functors explicitly and are even willing to use elements instead of 

restricting ourselves to formal concepts. Our treatment of categorical 

algebra is broader than absolutely necessary for the understanding of 

the following chapters. We wanted to give a self-contained exposition 

of categorical algebra involving more than just one underlying object. 

B~nabou [4] has investigated such algebras in the category of sets; 

we work with topological spaces as underlying objects. Readers who are 

only interested in the topological aspect of these notes can skip over 

most of this chapter. It suffices to read section I, the proof of Pro- 

position 2.5, sections 3, 5, and 6. We want to remind that we work in 

the category of compactly generated spaces, which we denote by ~o~. 

I. DEFINITIONS 

Lawvere [25] has formalized the concept of an algebraic theory 

given by operations and Laws without existential quantifiers. As exam- 

ples we have the theories of monoids, groups, rings etc. (whose axioms 

can be put into the required form), but not the theory of fields. He 

considers the category of all operations that can be written down in 

the theory, instead of selectin~ certain operations that generate the 

rest. 
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Each theory contains a distinguished coLLection of operations, the 

set operations: Let 

: [1,2 ..... m] > [1,2 ..... n] 

be a function and X a topoLogicaL space. Then there is an operation 

(2.1) ~* : xn ~> X m 

given by ~*(x I .... ,x n) = (x 1 ..... x m). Let ~ be the category consist- 

ing of one finite set n for each cardinal n Less than infinity and aLL 

functions be%ween them. 

Definition 2.2: A (finitary)algebraic theory is a category @ with ob- 

jects 0,1 ,2,... together with a faithful functor ~op __> @ preserving 

objects and products. CaLL @ topoLogicaL-aLgebraic if each set @(m,n) 

is topotogized and if composition and products are continuous (the Lat- 

ter means that @(m,n) ~- @(m,1) n is a homeomorphism). 

A @-space is a continuous functor @ ---> ~o~, such that ~op __>8__>~0~ 

preserves products, the image of I is caLLed the underlying space. 

A homomorphism between @-spaces is a natural transformation between 

such functors. 

If @I and @2 are theories, a theory functor is a continuous functor 

@I m> @2 such that the following diagram commutes 

~op 

/ \  
@1 ' @2 

The results of sections 2,3,4 stay true if we omit the condition 

that ~op __> @ be faithful (i.e. monic on morphism sets), but in view 

of the definition of a @-space the case where ~op __> @ is faithful 

is the only interesting one. 

The image of ~op in @ consists of aLL set operations as described 

in (2.1). We caLL the elements of @(m,1) the m-ary operations of @. 

In abuse of Language we often identify a @-space with its underlying 
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space X and say "X admits a @-structure" or "@ acts on X" or "X is a 

@-space". 

Essentially for the study of maps we need a generalization, namely 

theories on several objects. Let K be a set and ~K the category ~ over 

K, whose objects are functions i : In] = ~I ..... n}--> K and whose 

morphisms from i_ to ~ are all functions f making 

[n ]  f > [m] 

K 

commute. We often use an alternative description of ~K: Its objects 

are ordered collections {k 1, .... k n} of elements of K and its morphisms 

are functions f : [k I ...,kn}~> {k I ., m } such that f-1(k~) is 

either empty or consists only of elements equal to k' An object r" 

: [I~ --> K is often denoted by its image k = ~(I). We call such an 

object basic.A function r : K ~> L induces a r. : ~P ~> ~P given 

by r.(i) = r. ! and r.(f : In] --> [mJ) = f. 

Definition 2.3: A (finitary) K-cotoured algebraic theory is a category 

@ with the same objects as ~K together with a faithful functor 

~P --> @ preserving objects and products. Call @ topological-algebraic 

if each set @(~,~) is topologized and if composition and products are 

continuous (the latter means @(!,~) ~ @(!,~(I)) x ... x @(!,~(m)) is 

a homeomorphism). 

A @-space is a continuous functor @--> ~0~ such that ~P___>@m>~0~ 

preserves products; the images of the basic objects form the collection 

of its underlying spaces; we have one for each k(K. 

A homomorphism between @-spaces is a natural transformation between 

such functors. 

A theory functor from a K-coloured theory @I to an L-coloured theory 

@2 is a continuous functor F : @I m> @2 together with a function 

f : K ~> L such that 
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commutes. 

op f. > ~p 
~K 

81 > @2 

Remark: Among category theorists a coLoured theory is better knewn by 

the name "sorted theory". 

The image of ~P in 8 induces on a 8-space operations given again 

by formula (2.1). We therefore caLL its elements set operations. 

If we do not specify the function f : K --> L of a theory functor, 

we assume that it is the identity. 

In any type of theory the set operations have the useful property 

that we can push them to the right. Given ~ (~K(~,~) with ~ : [mJ--~K, 

: In] --> K and a = (a I ..... an) (@(k,~) with a r (@(~,~(r)) and 

b r (8(kr,l(r)), k r : [pr ] --> K. Denoting the product bifunctor 

@ x 8 --> 8 by ~ we have the following formulae 

(2.4) ~*o a = (a i ..... a m) 

s*o (b I@... ~b n) = (b le... @b~m). ~(Pl ..... Pn )* 

Here S(Pl ..... Pn ) ( 5K(~ " ~i'~]i ~i ) is given by 

S(Pl ..... pn ) (r) = Pl + P2 + "'" + Ps(u)-1 + v 

if r = P~I + "'" + Ps(u-1) + v and 0 < v ~ P~(u)" Loosely speaking, we 

consider ~ Poi as m blocks of pal,...,pom elements and Z Pi as n 

blocks of Pl .... 'Pn elements, and q(Pl ..... pn ) maps the u-th block 

P~u of E P~i identically onto the ~(u)-th block P~u of E Pi" We call 

a(pl ..... pn ) a block function. Note that s(P1' .... pn ) is a permutation 

whenever ~ is one. 
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2. FREE THEORIES 

In this section we show how to obtain a theory from a set of opera- 

tions and relations between them. 

Define categories ~eorle4, @r ~ace~, @r ~ace~ °, and ~q ~Qce~ 

as fottows: 

• ~eor|¢~ is the category of cotoured theories and theory functors. 

@r ~ac¢~ has (ob ~K × K)-graded spaces[X!,k} , K some set, as objects. 

A morphism from an (ob ~K × K)-graded space IX!, k] to an (ob ~L × L)- 

graded space ITS, t] is a pair (g,f) where f : K --> L is a function 

and g : [Xi,k]--> [Yl, t} a continuous graded map sending X!, k to 

Yf o ! , f ( k ) "  
@r ~p~ce~ ° has  (ob  ~K × K ) - g r a d e d  s p a c e s  (Xi_,k) a s  o b j e c t s  bu t  each  

X k , k , k 6 K ,  i s  b a s e d  ( r e c a l l  t h a t  k ~ ob ~K i s  t h e  b a s i c  o b j e c t  d e t e r -  

mined by k ) .  The morph i sms  a r e  d e f i n e d  as  f o r  @r ~ a c e ~  bu t  a r e  s u p -  

posed  to  p r e s e r v e  b a s e  p o i n t s .  

~q ~ace~ is the category of objects in @r ~ace~ ° with an ~K-action 

and equivariant morphisms in @r ~ce~ °. An ~K-action on an (ob~ k × K)- 

graded space [Xi, k) is a cotLoection of maps 

a i . : x ~K (i,j) > _,~l x±, k - x i ,  k 
such that ai_,i(x,id i) = x and the fottowing diagram commutes 

Xi, k x ~K(i,j) x ~K(j,_~) a..xid > Xi,k x ~K(~,_~) 
-- !,i 

id x composition a. t ~,_ 

.> X ! , k  
Xi ,  k × ~ K ( ! , ! )  

a±,i 

A morphism (g,f) from an ~K-space [X~, k} 

@r ~aceg ° is catted equivariant if 

xi, k × ~K(±,i) 

g x f. 

Yf- ±,f(k) x ~L(f- ±,f o A) 

to an ~L-space [X~, t] 

action 

action 

X j, k 

g 

> Yf. j,f(k) 

in 
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commutes. 

We call the (oh ~K x K)-graded spaces of the Last three categories 

its K-cotoured objects. 

We also use a more conceptual definition of the Last three cate- 

gories: Let ~K be the subcategory of ~K consisting of all objects 

and the identity morphisms. An object of @r ~ace~ can be considered 

as a K-indexed collection of functors R k : ~K ~> ~oD. A morphism 

from [Rklk£K) to [QLJL(L] is a pair (a,f) consisting of a function 

f : K ~> L and a K-indexed collection a of natural transformations 

a k : R k --> qf(k) ° f.: 

~K f* > ~L 

@r ~pace~ ° can be defined similarly with the excepiion that we have 

to introduce a base point e k in Rk(k) and that a k has to preserve this 

base point. Finally, an object of ~q ~ace~ can be considered as a K- 

indexed collection of functors R k : ~K n> ~o~ such that Rk(k) is 

based. A morphism from [RkJk~K} to (QLIL~L} consists of a function 

f : K --> L and a collection ~ of base point preserving natural trans- 

formations ~k 
f~ 

~SK '> ~L 

We have forgetful functors 
U I U 2 U 3 

~ ¢ o r t e ~  > ~q ~pace~ > @r ~pace~ ° > @r ~pace~  

where U 2 and U 3 are the obvious ones while UIe = [Rklk~K}, @ a K- 

coLoured theory, is given by R k (~) = @(~,k) and Rk(~) is composition 

on the right by G*. The base points are id k ~ @(k,k). 
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Proposition 2.5: Each functor U i has a Left adjoint F i. 

Proof: F 3 is given by adjoining an extra point which becomes the base 

point to each space Xk, k of (X~,k). 

Let (a,f) : [Rklk~K} --> [QLI~L] be a morphism in @r ~ac¢~ °. De- 

fine 

F2[Rklk(K} = [ U Rk(i) x ~K(~,-)Ik(K} 
~e K 

and F2(a,f) = (8,f) withUak(i)×f * 

Since Rk(k) × ~K(k,k) ~ Rk(k), we can take the base points of the 

Rk(k) as base points of F2[Rklk(K}. 

The construction of F I is more Lengthy, though straightforward. 

For a K-coLoured object [X~, k] of ~q g~aceg we want to construct a K- 

coLoured theory @ = FI{X~,k}. We consider the points of X~, k as the 

indecomposabte operations from i to k. A general operation is a com- 

posite of products (formalLy written ~) of such indecomposabLe ope- 

rations. The set operations of @ stand, of course, in some relation 

to the ~K-action on [X~,k]. More expLicitLy, a Letter from ~ to 

= {~(1) ..... ~(p)} is either a format product x 1@... @Xp with 

Xq (X~q,~(q), ~ = ~I @ "'" Q~p' or an element ~* (~P(~,~). A morph- 

ism in @ from ~ to ~ is an equivalence c~ass of words [all...la n] in 

Letters a i such that source a i = target ai+ I, source a n = ~, target 

a I = ~. The equivalence relation is ~enerated by 

(i) [id!] = [ ] = [e!(1)@...@e!(n)], where ! : [n] ~> K in ~ K 

and e k ( Xk, k the base point 
! ! 

(ii) [x @ e11e2@Y] = [e2~Ylx@e I] = [x~y] for appropriate formal 
! ! 

products x and y and formal products el,e2,el,e 2 of base points 
op 

(iii) [q*Ix I @... ®x n] = EXcl @... @XamlC(P I ..... pn )*] for ~*(mor~K ' 

Xr ( X~r,k r' ~r : [Pr ] ~> K (compare 2.4) 

(iv) [~*l~*J = [(~°~)*] 
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(v) Ex • oS = [xlc* ] where x • ~ is the image of (x,o) under the ~K- 

action on {X~,k}. 
Composition of morphisms is induced by juxtaposition of words. ReLa- 

tion (i) makes the base points to units, relation (ii) aLLows us to 

define a bifunctor O, (i), (iii), and (iv) assure that the set opera- 

tions behave correctly, and (v) makes them compatible with the ~K- 

action on [X~,k}. 

For Later purposes we want to have a better grip on the morphisms 

of 8. We now give an alternative description of representatives using 

the tree Language developed in Chapter I. This enables us to do with- 

out the relations (ii), (iii), and (iv). 

Definition 2.6: A tree from ~ : [nl --> K to the basic object k asso- 

ciated with [Xi, k} consists of 

(a) a finite directed planar tree as known from graph theory except 

that the edges need not have vertices on both ends. There is exact- 

Ly one edge caLLed the root which has no end vertex,but there may 

be arbitrarily many edges caLLed twigs with no beginning vertex; 

aLL other edges are caLLed internaL. Each vertex has exactly one 

outgoing edge (though not necessarily an incoming one). 

(b) a function assigning to each edge an element of K caLLed its 

coLour. The coLours of the twigs are elements from ~(En])c K, the 

coLour of the root is k. This function together with the underLy- 

ing graph is caLLed the shape of the tree. 

(c) a function assigning to each vertex, whose incoming edges have the 

coLours il,..,i n in clockwise order and whose out~oing edge has 

the coLour L, a point in XI, L caLLed its LabeL, where l=[il,..,in}. 

(d) a function assigning to each twig a Label ~ [I .... ,n} such that 

a twig with Label r has the coLour ~(r). 

We a%tow trivial trees whose underlying graphs consist of one edge 
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and no vertex. Hence we have one trivial tree from ~ to k for each 

Label r 6 [I, .... n} with ~(r) = k. A tree consisting of one vertex 

with no incoming edge is called a stump. 

A tree of a given shape is specified by its vertex labels and twig 

LabeLs and can therefore be considered as a point in some product space 

(~X~,L)x ~K(~,~) where k = [k I ..... k r} is the coLLection of twig 

cotours taken in clockwise order. The disjoint union of these product 

spaces defines a topology on the set of all trees from ~ to k associat- 

ed with [X!,k]. 

As in the previous chapter the trees are inspired by the attempt 

to obtain a general composite operation from a coLLection of indecom- 

posabte operations. Starting with a K-indexed family of topological 

spaces Z k and topoLogized collections X!, L of operations 

a : Zi(1) x ... x Z!(r) > ZL, a tree from ~ = [k I ..... k n] to k re- 

presents a composite of such operations, composed with a set operation. 

Its source is Zkl x ... x Zkn, its target Z k. The value of this com- 

posite on an element (z I ..... z n) of the source can be computed as fol- 

Lows: We assign to each twig with Label r ( [I ..... n] the value z r. 

InductiveLy we give the outgoing edge of a vertex with Label a the 

value a(y I ..... ym ) if the values of the incomin~ edges are yl,...,ym 

in clockwise order. The value of the root is the value of the tree 

operation on (z I ..... Zn). 

ExampLe: (The direction of the ~raph wiLL always be given by "gravity", 

i.e. from top to bottom). Let K = IX,Y}. Given operations a : XxY-~ Y 

and b : XxX m> X, the tree 

I 2 I 3 
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represents the operation c : XxYxX ----> Y given by ~)=a(~), b(~)). 

~niLe 8 tree represents an operation into a single space, i.e. its 

target is a basic object, a general operation is represented by a 

copse: 

Definition 2.7: A copse with source ! : [n] --> K and tar~et~:[m]-~ 

associated with [Xi,k) , is an ordered collection of m trees whose 

sources are ~ and whose targets are ~(I) ..... ~(m). The copses with a 

given source and target inherit a topology from their trees. 

We can compose two copses A I : ~ n> ~ and A 2 : ~--> ~ to form a 

copse A 2e A I : ~ ~> ~ by grafting the r-th tree of the copse A I to 

each twig of A 2 with babel r ~ [1,...,m]. This defines a continuous 

associative composition of copses with the copse consisting of m tri- 

vial trees with twig LabeLs 1,...,m acting as identity of ~. Hence 

the coLLection of copses associated with [X~,k] forms a category ~. 

In fact, ~ is a K-coLoured theory. The functor 

~P > 

sends s ~ ~K(!,~), ! : [n] ---> K, ~ : [m] --> K, to the copse consist- 

ing of n trivia% trees with co%ours !(r) and LabeLs s(r), r=1,. ',n. 

It is evident, that the tree description takes care of the relations 

(ii), (iii), (iv). We stiLL have to account for (i) and (v). The theory 

8, we Look for, is the quotient (with the quotient topology) of ~ un- 

der the equivalence relation ~enerated by 

(2.8) (a) we may remove any vertex LabeLLed by a base point 

(b) if x ~ X!,k, G ~ ~K(!,~) , ! : [n] n> K, ~ = [m] --> K, we 

may replace the vertex Label x. a ~ X~, k by x by changing 

the part of the tree above this vertex: If CI,...,C m are the 

subtrees on the inputs to x. ~, we take Cal,...,Can as sub- 



- 37 - 

trees over x. 

@ is a K-coloured theory, the functor ~P ~> @ is induced by the 

one for 7. The space Xi, k can be considered as subspace of @(i,k) by 

identifying x ( Xi_,k, i_ : [n] ---> K, with the tree consisting of one 

vertex only, whose label is x. The LabeLs of the n twigs are 1,...,n 
2 

I \:ii~" " ' "P  

Let ~ be an L-coloured theory. A theory functor (P,f) : @ ~> E in- 

duces a morphism (g,f) : [X~,k}---> U I ~ in ~q~ace~ by g(x) = P(x). 

Conversely, since a theory functor ® ~> E is completely determined 

by its values on the indecomposabLe elements, a morphism 

(g,f) : [X~,k}~> U I ~ induces a theory functor (P,f) : @ ~> E by 

P(x) = g(x). The correspondence (g,f) <~> (P,f) yields a natural bi- 

jection 

This completes the proof of Proposition 2.5. | 

Remark: If [X~, k} ( @r ~ace~, then F I ° F 2- F3[X~, k) is the category 

of copses as constructed above. If [X~,k) ( @r ~ace~ ° then 

F I • F2{X~,k) is ~ modulo the relation (2.8 a). 

Definition 2.9: Let [Xi, k} ( @r s~ace~, Dr ~ace~ °, or ~q ~ace~. The 

free theory on [X~, k] is its image under F I • F 2o F3 , F 1 . F2, or F I 

respectively. 

If there is no chance of confusion we denote any of the three free 

functors into ~eorle~ by F and its adjoint by U. 

We want to describe the front and back adjunctions 
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(2.10) ~ : Id ---~ UF ¢ : FU ~> Id 

The adjunction map ~ is induced by the inclusion X~, k c ~(~,k). The 

adjunction map ¢ : FU@ ~> 8 for any theory @ is given by taking the 

composite operation in @. 

Definition 2.11: The composite operation in @ represented by the tri- 

vial tree A : ~ ~> k with twig Label r associated with U@ is the set 

operation s* (8(~,k) given by ~(I) = r. By induction, the composite 

operation represented by an arbitrary tree A : ~--> k associated with 

U8 is xo(B 1 ... Bn), where x is the tabeL of the root vertex and 

BI,...,B n the previously defined composite operations represented by 

the n subtrees above the inputs of x In other words, a composite ope- 

ration is obtained by composin~ the vertex LabeLs (which are elements 

in @) and the set operations given by the twig LabeLs. 

Let [X~, k} and [R~, k} be K-coLoured objects and ~,q2,[~_.~-->UF[Xi~ 

be morphisms in @r ~ace~, ~r ~ce~ °, or ~q ~ace~. Passing to the 

adjoints we obtain morphisms of theories 

Pl 
(2.12) F[Ri ,k  ] ) F[Xi k] 

P2 

The difference cokerneL r : ~[X~,k]--> ~ of Pl and P2 exists in 

• ~¢oricg, and we say that ~ is generated by [X~, k} with the relations 

(q1[R~,k], q2[R~,k}). We caLL the diagram (2.12) a presentation of ~. 

ExampLes: The retations are given by pairs of trees, the maps ql,q2 

are the projections onto the first respectively the second factor. In- 

stead of writing pairs (A1,A2) we use A I = A 2. 

(I) A presentation of the theory of abeLian monoids. 

Since the theory is monochrome it suffices to specify the generating 

n-ary operations and the relations between them. We have a binary ope- 

ration + and a O-ary operation, the unit e. These satisfy the relations 
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I 2 2 3 
1 1 1 2 2 1 ~ / "~, 1 ~ /  I "y  "y" 

= ; = ; = 

(2) A presentation of the theory of greups. 

The theory of groups is generated by three operations: a binary ope- 

ration x, a unitary operation i and a constant operation e, satisfy- 

ing the relations 

I 2 2 3 I 

~ X 3 1 X ~  e ~  i i~x] Te 
= ; = ; = 

( a b ) c  = a ( b c )  ea  = a 8,-18. = e 

Proposition 2.13: Each K-coLoured theory can be presented as the dif- 

ference cokernel of free K-cotoured theories. 

Proof: Given a theory 8,  Let Ri, k = [(x,y)(FUS(i,k)xFUS(i,k)l~(x)=c(y)} 

where ¢ : FU8 ~ ® is the back adjunction. Then 

Pl 
?US ¢ F[R!, k} • • 8 

P2 

is a difference cokernet diagram. | 

Let ~at denote the category of small topological categories and 

continuous functor. A category is called topological if its morphism 

sets are topologized and composition is continuous. A functor is catt- 

ed continuous if the induced function of the morphism spaces is con- 

tinuous. There is an obvious functor 
o V : Cat > @r ~ace~ 

sending C ~ Cat to [C~, k} given by 

{:(L,k) if ~ = (,) 

C ~ ' k  = o t h e r w i s e  
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The base poin~are given by the identities in ~. Define 

{ [(~g o ~f,~(go f))( UFV~ × UFV~Ig ° f : L --> k in ~] if !=(L) 

RC~'k= ~ otherwise 

where ~ is the front adjunetion (2.10). Hence if i is a basic object, 

% say, RC~, k~ consists of pairs of trees 

L 

k' 
~f 

og 

L 

k 
~of 

otherwise it is empty. Let ql,q2 : {RC~, k} --> UF{C~, k} be the pro- 

jections. Let Tg be the theory generated by [C~, k} with the relations 

[RC~,k}. Thus we obtain an embedding functor 

T : E a t  > ~eorle* 

which enabtes us to consider smart topo%ogica% categories as theories. 

Note that T~ is (ob ~)-cotoured. 

3. INTERCHANGE 

It has been known for some time that the concept of "interchange" 

of two structures on a space is fundamenta~ in the study of H-spaces. 

Take, for example, a space X with two monoid structures m and n. Let 

T : X x X --> X x X be the interchange factors. If m and n interchange, 

i.e. if 

mxm 
X x  X x  X x  X > X x  X 

l idx Tx id 1 
Xx Xx Xx X n 

I n×n 
X x X m > X  
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commutes, then m and n agree and define a commutative monoid structure 

on X. 

We formalize this concept. 

Let 8 be a K-coloured theory and F L : @ --> ~o~ an L-indexed family 

of @-spaces with underlying spaces [Zt,klk(K]. Then there is a canoni- 

cal @-space F : @ ~> ~0~, called the product @-space of the F L, whose 

collection of underlying spaces is [ IT XL k Ik~K}" ExplicitLy, F is 
L(L ' 

given on objects ! : In] ~> K by 

n 
F(!) = V ( IT x l , ! (p) )  

p=1 l(L 

(for ~ : ~ ~> K put ~(~) = single point) and on morphisms a : ~--->~, 

j : [m] ~> K by 

n m 
]I" ( 7[ X~, i (p ) )~  ~ F l ( i )  ~Fl(a) > " ~ t ( ~ ) ~  ]~ (~-(LXL,~(q)) 
p=l l(L -- l(L ~(L q=1 

Definition 2.14: Let 81 be a K-co~oured and @2 an L-cotoured theory. 

Let [Xk, L] be a K×L-indexed family of topoLogicaL spaces such that 

each subfamily [Xk,Llk(K] is the coLLection of underlying spaces of 

a @l-space F L and each subfamily [Nk,LII(L} the colleqtion of under- 

lying spaces of a @2-space G k. We say the @ 1 - and ®2-action on [Xi, k] 

interchange if each a : ~ m> ~, ~ : [n] --> K, ~ : [m] m> K, in the 

@l-action induces a homomorphism from the product ®2-space of 

G~(1) ..... G~(n) to the product 82-space of G~(1) ..... G~(m). Or, equi- 

vaLentLy, if each b : ~ ~> X, ~ : [p] --> L, ~ : [q] D> L, induces 

a homomorphism from the product 81-space of F (i) ..... F (p) to the 

product @l-space of F (i) ..... ~ (q). 

Going back to the definition of product @-spaces, the actions in- 

terchange if foLLowing "shuffle" diagram commutes for all a ( 81 and 

all b ( @ 2 
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(2 .15)  
p n n n q n 

t=lT[ ( s=17[ X.!(s) ,£( t )')~- s=lTr G., s) ( u ) l t  TrG±, s, (b) *'' ' >s=l]T Gi(_ s ) ( v)~- t~'__ 1 ( s~-__ 1Xi (s),v(t)) 

II ii 
P q 
?u(t)(i) ~TF t)(i) 

t=1 - t=1 v( - 

Tr?u(t) (a) ~rFv(t) (a) [ 

P q 

t~__ IPU(t) (j) t~= IPV(t) (j) 

II II 
p m m m q m 

> ~r G.(s)(~)-~ ~r (~l~(S) ,v(t) )  "11- ( Y x. _ ))~- If G4¢s ) (u )  ]rG.i.( (b)  t= l  s=l ~L (s ) 'u ( t  s=l " '  s) s=l ~ t= l  = - 

The horizontal lines are the operations of b ( 82 on the product @2- 

spaces of the G~(s) respective%y the G~(s), the vertica% %ines give 

the homomorphism induced by a. 

In the case where @I and 82 are monochrome theories with under%y- 

ing space X, the shuff%e diagram becomes more transparent. Let 

a : xn--> X m be an operation from @1 and b : X p --> X q one from 82" 

Then (2.15) reads 

(Xn)P _~ (xP) n 

[ ap 

(xm) p ~ (xP) m 

b n 

b m 

> (xq) n ~ (xn) q 

aq 

> (xq) m ~ (xm) q 

If we have two theories @I and @2' whose actions on [Xk, %} inter- 

change as defined in (2.14), the actions of 81 and @2 together with 

the shuffle relations (2.15) induce an action of a KxL-co%oured theory 

@I @82' which we are going to describe, on [Xk,%], and each action of 

@I ®82 comes from interchangin~ actions of 81 and 82 . Let 

[Y~,(k,%)} ~ @r ~ace~ be the fo%bowin~ KxL-co%oured object: 

Let ! = ~ki,% I) ..... (kn'bn)}' ~K = [kl ..... kn}, !L = {11 ..... %n }" 

(a) If k I = k 2 = ... = k n = k and b I = % 2 ..... % n = %, then 
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Yi,(k,t ) = @1(lK,k) U 82(iL,L) 

(b) If L 1 ..... t n = t and (a) does not apply, then Yi,(k,L)=81(i__K~) 

(c) If k I = k 2 = ... = k n = k and (a) does not apply, then 

Y!,(k,L ) = @2(!L,L) 

(d) If neither of (a),(b),(c) apply, then Y!,(k,L ) = ~. 

The elements of [Y!,(k,L)} are the generators of 8 I®82 . They are 

uniquely determined by a pair Ca,r) ( (U @1(!,k)xL)U( U @2(J,L)xK). 
! , k  i,l 

The source of Ca,r) ( ®1(!,k)×L is 

[(kl,r) ..... (kn,r)} if !=[k I ..... kn} , and its target (k,r); similarly 

for ( a , r )  ( ®2(j,L)X K. 

(2.15) We have the following relations( between the trees of F[~,0}~ 

(i) The same as (2.8a): We may remove any vertex labelled by an iden- 

tity in @I or @2" 

(ii) The same as (2.8b): If a (@1(i,k) respectively 82(£,L) and 

(~K(~,~) respectively ~L(~,~), we msy replace the vertex Label 

a° q* by a cnenging the part of the tree 8bove this vertex: If 

CI,...,C m are the subtrees above the inputs of 8 @ q* and o is a 

function from In] to [m], we take Cql,...,Con 8s subtrees over 8. 

(iii) The relations of 81 and @2: Any edge joining two vertices whose 

Labels are both in 81 or both in @2 csn be removed. We unite the 

two vertices to form a new vertex, whose LsbeL is the tree com- 

posite in @I or @2 (see 2.11) of the tree consisting of these 

two vertices and their incoming end outgoing edges (see example 

below). 

(iv) The snuffle relations: Given a ( 8 1 ( ~ , k )  and b (82(~,L), 

! = [k I ..... kn}, i = [%1 ..... tin]. Let ~n,m : [n]x[m] --> In-m] 

be the bijection (p,q) , > (q-1)n+p. Let A be the tree with root 

operation (a,%), the operation (b,k r) on the r-th input to (e,L), 

and Label ~n,m(p,q) for the twig with co%our (kp,%q). Let B be 
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the tree with root operation (b,k), the operation (a,L r) on the 

r-th input to (b,k), and Label Sn,m(p,q) for the twig with coLour 

(kp,tq). Then A = B. (See example below). 

l~Lustrations: 

(iii) Let a : [kl,k2,k 3] - - >  k and b : [k4,k 5) - - >  k 2 be morphisms in 

@1 " Then , , / 

(k4'~ bb k5,~) I ~2,L) " ~ )  

. / . '  = 

( ~ J  I(k,L) l(k,L) 
c=a@ (idk1@ b @idk3) 

(iv) Given a : [kl,k 2} --> k in 81 and b : [LI,L 2} --> L in @2" Then 

1 3 2 4 I 2 3 4 

Let a@b denote the element represented by these trees. Then the gene- 

rators (s,L) and (b,k) can be identified with s @id L and id k@b. 

Convention: If we do not specify the twi~ Labels of a tree with n 

twi~s, we assume they are S .... ,n in clockwise order. 

Examples: 

op ~p op 
(I) ~K ® ~ ~KxL as theories 

If @m is the theory of monoids and @cm the one of abetian monoids, (2) 
t h e n  

@cm - 8m @''" ®Sm n times, n ~ 2 

A proof in theory Language of this cLassicaL result can be found in 

Pareigis [41;p.113,114]. 
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From the relations and the tree caicuLus we obtain the foLbowin~ 

identities, (for clarification use the shuffle diagram and note that 

the horizontal rows are the operations id®b, the vertical ones the 

operations a ®id) 

(2.16) a®b = (a ®id).(id~b) = (i~®b)o(a®id) 

(a®i~o(~ ®id) = (a, ~) ®id 

(id ®b)o(id @2) = id@(b ~) 

( a I .... ~m)@(b I ..... bq) = (a I @b I ..... am@b I ..... ~ ® bq ..... am®b q) 

where a,~,a i ( 81' b,~,bj ( 82 and (a I ..... a m ) is the morphism into 

(k I .... ,k m} induced by the a i (@1(~,ki). Hence the correspondences 

a ~--> a®id u and b w--> id i@b induce for each ~ ( ob 81 and each 

( ob 82 functors 

"> @1 ® @2 < @2 (2.17) @I R u Qi 

Proposition 2.18: The tensor product of theories is commutative and 

associative up to isomorphism. 

Proof: The correspondence a®id --> id®a, id@b n> b®id induces an 

isomorphism T : 81 ® @2 ~ @2 @81" From (2.16) it is clear that the cor- 

respondence a ®(b®c) n> (a@b)@c induces an isomorphism, too. 

Given a (KxL)-indexed family [Xk, t} of spaces such that each 

[Xk,Llk~K} is the collection of underlying spaces of a @l-space F L and 

each [Xk,LIt~L} one of a 82-space G k. We said that the actions of 81 

and 82 interchange, if each operation b of the 82-action induces a ho- 

momorpnism of appropriate product ®l-spaces obtained from the F L. A 

different way of expressin~ this is sayin~ that the [F~IL(L} form a 

coLbection of underLyin~ spaces of a 82-space in the category of @l- 

spaces. Let us explain this in more detaiL: 

@I Denote the category of @l-spaces and homomorphisms by ~e~ . Since 
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a homomorphism f : F I --> ?2 between two 81-spaces is uniquely deter- 

mined by the maps f(k) : F1(k) --> F2(k) of the underlying spaces, we 

can regard ~0~81(?I,F 2) as subspace of 1[ ~o~(F1(k),F2(k)). This 
81 k(K 

makes ~o~ into a topoLogicaL category, and we can define @2-spaces 
81 81 

in ~o~ in the same manner as in (2.3) by rep~acin~ ~o~ by ~o~ 

81882 81 82 
Proposition 2.19: ~o~ ~ (~o~ ) as topoLogicaL categories, i.e. 

the functors induce homeomorphisms on the morphism spaces. 

Proof:Tne bijection ~unci(81x®2,~o~) ~ 3unct(@2,Sunc:(@2,~o~)) induces 

a bijection 
81)82 ( . )  

3unct ,~(81x82,~o~)  ~ 3uncl (®2,~unc1~(81,~o~) )  = (~o~ 

from the category of bifunotors 81×82 --> ~o~ which preserve products 

in each argument to the category of product preservin~ functors from 

@ 2 to the category of product preservin~ functors 81 --> ~oD. Since 

a natural transformation between two objects F,G of ~unctD,D(81x82,~) 

is uniquely determined by its values on the basic objects (k,L)6 ~x82, 

we can regard ~u,ct,~(81xe2,~o~)(?,G) as subspace of 

]I" ~o~(F(k,L),G(k,~)). With this topology (*) becomes an iso- 
(k,~)~Kx~ 
morphism of topological categories. We further establish an isomorph- 

ism of topoLogicaL categories 
81 ® 82 

• o~ ~ ~u .c l~ ,~(® lX®2,~o~)  

The f u n c t o r  P : 81 x 82 - - >  81 ® 82, sendin~ ( ! , A ) ,  ! : In ]  - - >  K, 
: [m] --> L, to the object (ix~)o -I : In. m] ~> KxL (see 2.15 

-- n,m 

(iv)) and the morphism (a,b) to a®b, induces a continuous functor 
@1 @ 82 

81 ® 82 ~'~ 
Since F 6 ~o~ and G (~unc~b,~(®1x82,~o~) are uniquely determined 

on objects by their values on the basic objects (k,L) and on morphisms 

by their values on a®id,id@b respectively (a, id),(id,b), the funo- 

tor P* is a bijection on the objects. Furthermore, we consider 
81 @ @ 2 

~o~ (21,F2) and ~unct(81xe2,~o~)(F1 ~ P,F 2 ~ P) s.s the same sub- 
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spaces of ]I" (F1(k,t),F2(k,l)) so that P* induces homeomorphisms 
(k, %) (KxL 

of the morphism spaces. | 

In general, the structure of 81@82 is far from clear because the 

shuffle relations are difficult to handle. Given a morphism a : i_--~i, 

i : [n] --> K, j : [m] --> K in @1 and b : u --> v, u : [p] --> L, 

v : [q] --> L in 82 . Let Wn, p be the permutation 

= ~ .T.m -1 : [n.p] --> [n]×[p] --> [pS×[n] --> [n.p] Nn,p p,n n,p 

where T interchanges the factors. Then the shuffle relation reads 

(2.20) aeb=~j~no [(id~1@b)e... @(idim@b) ] o Nm,p* o [(a@id u_1)~). . .@(a ®idu_ p ) ] 

= [(a@idvl) e... ~a@idvq)] ° ,~ o [(idi_ I @b) e...•(idi_ n @ b) ] • Wn ,p 

So each morphism of @i@@2 can be written as 

(2.21) a Ioblo . . . oakObkO~* 

where a i is of the form (c 1®id~1)@... @(Cr®idlr) and b i of the form 

(idk1@dl)@... @(id k @dr), the c and d are morphisms into basic ob- 
r 

jects in @I respectively @2 and different from set operations. 

The permutations ~ cause the difficulties in the attempt to de- n,p 

termine the structure of @I @@2" In case @2 has 1-ary operations only, 

i.e. @2 = g is a sma~Z topological category considered as theory, we 

can handle the shuffle relations. If b in (2.20) is a 1-ary operation 

the four permutations are identities. So any morphism of @l@g into 

a basic object can be written as (a@id~)o[(id I ®bl)@...@(idkr@br)]O~* 
I 

and hence by (2.15 (ii)) as 

(a ®idl)o[(idll@bl)@)... ~('Idkr@ br)] 

We obtain 

Lemma 2.22: Let @ be a K-coloured theory and ~ a small topological 

category. Let !=[(k1,11) ..... (kn,ln)]~ ob(@®~) and i=[k I ..... k~6 ob 8. 

Then there is a natural homeomorphism 

( 8 ® ~ ) ( ! , ( k , 1 ) )  ~ @(i ,k)x  ~ ( l l , ~ ) x  . . .  X ~ ( l n , ~ )  
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The most interesting example for us is the structure of @@£n 

where £n is the "Linear" category whose objects are 0,1,...,n, with 

one morphism i --> j if i~j and none otherwise. A (@@Sn)-Space is 

determined by a sequence of @-spaces and homomorphisms (see 2.19) 

F o > F I > F 2 > ... > F n 

We have one useful general result which helps us to get rid of 

constant operations. Let 0 denote the unique object @ --> K in any 

K-coLoured theory. 

Lemma 2.23: Let 81 be a K-coLoured and @2 an L-coLoured theory such 

that @1(O,k) ~ ~ @ @2(O,L) for all k~K,L~L. Then (@I @82 )(O'(k'L)) 

contains exact%y one element. Moreover if 81 and 82 denote the sub- 

theories of 81 and 82 without the constant operations, then (@1®@~k,L)) 

is a quotient of (81 ®82 )(!'(k'L)) for !+O. 

Proof: Let c ~ @1(0,k) and d ~ @2(O,L). From the shuffle relation we 

obtain that c@d = c@id L = i$® d. Given any tree in @I @82' we can 

prune away all stumps one by one: If an edge joins a vertex Labelled 

c to a vertex Labelled b ~ @2' we replace c by d and compose in @2 

according to 2.15 (iii) to remove that edge. We end up with either a 

tree without stumps or a tree consisting of a stump only. Since the 

relations between the trees of 81'@@2' also hold between the trees of 

@I @82 the result follows. 

4. FREE @-SPACES AND TRIPLES 

Instead of theories many people prefer to work with triples (e.g. 

see E2~). Since K-coLoured triples up to date have not been investi- 

gated (to the authors' knowledge), we include this chapter for the 

sake of completeness and to put our further constructions into a wider 
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frsme work. 

Let ~o~ K denote the category ~o~ over K, i.e. its objects are con- 

tinuous maps X --> K, X ( ob ~o~, and its morphisms from g : X ---> K 

to h : Y --> K are continuous maps f : X --> Y such that 

f 
~( >Y \ /  

K 

commutes. We can identify ~o~ K with the category of K-~raded spaces 

X = [Xklk(K] and grading preservin~ maps by puttin~ X k = g-l(k) for 

an object g : X --> K of ~o~ K. Topo;o~ize  ~OpK by ~OPK(X,Y)= ~ ~o~(~,~.). 
k(K 

A function r : K --> L induces a functor 

r. : ~op K --> ~op L 

given on objects g : X --> K by r.(g) = r o ~ and on morphisms f:g-~h 

by r.(f) = f. It has a right adjoint 
. 

r : ~o~ L --> ~op K 

sending [Xb[t(L] to [Xr(k) Ik(K]. 

For any K-co~oured theory @ we have a continuous forgetfu~ functor 

® 
U : ~op ---> ~op K 

mapping the @-space G : @ --> ~op to the ~raded space [G(k)[k(K}. 

Defineorem 2.24: The functor U has a continuous ~eft sdjoint 

@ 
F : %o~ K ~> ~op 

The image FX of X is ca~ed the free @-space on X. Moreover, the na- 

tura~ bijection 

~o~8(FX,G) ~ ~OPK(X,UG) 

i s  a homeomorphism. 

Proof: Given X = [Xklk(K} ( ~OpK. For ! : [n] --> K denote ~ix...×Xin 
w 

by X i and filx...Xfin : Xilx...XXin --> YilX...XYin by fi" Define 

FX(k) : U ~(i,k) x xi/~ 
i(@ 
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with the identification 

(a o g*; X 1 . . . . .  x n) = (a; ~*(x I . . . . .  Xn)), 

s* a set operation (see 2.1). For b (8(~,%) define 

FX(b) : FX(il) x ... x FX(~m) --> FX(L) by 

1) ..... 1 1 m m ] m m )] ~__>[b o (a10...@am); x I ..... xnl ..... Xl ..... Xnm [(al;x I ..... x~ (am;X 1 ..... Xnm 

These data determine a continuous product preserving functor 

FX : @ --> Top. 

Given a morphism f : X --> Y in ~op K the maps idxq:@(~k)xXi--~×Y i 

induce a map Ff(k) : FX(k) --> FY(k), which is continuous in f. The 

co%~ection [Ff(k) Ik(K} determines a natura% transformation Ff:FX~ FY 

continuous in f. 

Define a continuous natural map 

p : ~op@(FX,G) --> TOPK(X,UG) 

by p(g)k(X) = g(k)(idk;X), X(Xk, g : FX --> G. Given f : X --> UG in 

TOPK, Let ~(f) : FX --> G be the homomorphism induced on the basic 

object k by the maps 

~ ( i , k )  × x i > G(k) 

(a;x I ..... Xn) J > G(a)(fi(x I ..... Xn)) 

Then ~ : ~OpK (X,UG) --> ~opS(FX,G) is a continuous inverse of p. | 

The front and back adjunction ~ : Id --> U? and ¢ : FU---> Id of 

any adjoint pair F,U satisfy [41; p.45] 

Ue o ~U = id U 

eFoF~ = id F 

Setting T = UF and u = U ~ F we therefore have commutative diagrams 

(2 .25)  

(a) T~ > T oT < ~T T (b) T" T" T Tu > ToT 

T ToT U >T 

Definition 2.26: A continuous endofunctor T : • ~> • of a topo%ogicat 
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category ~ together with natural transformations ~ : Id~ --> T and 

: T o T --> T satisfying (2.25 a,b) is catted a (continuous) triple 

on E. 

So any K-coLoured theory @ determines a triple (T,~,U) on ~O~K, 

which associates to each X ( ob ~O~K the collection of underlying 

spaces of the free @-space on X. The natural transformations ~X:X--*TX 

and ~X : TTX --> TX are induced by x~--> (idk; x), x(X k, respectively 

[b;(al; yl ) ..... (am,Ym) ] ~--> [b. (a I@ ... ~am);y I ..... ym ] where Yr 

stands for some nr-tuple x~ ..... x~ of elements of X. 
r 

Definition 2.27: A triple morphism (T,~,~) --> (T',~',~') from a triple 

on ~OpK to a triple on ~o~ L is a pair (~,f) consisting of a function 

f : K --> L and a natural transformation T : f.oT --> T'. f. such that 

f .  

f.. T 
(a) (b) f.oT- T f*~ > f.-T 

T'° f.. T 

I T'T 
T'. T'of. ~'f* > T'of. 

commute. Composition of triple morphisms is defined by 

(p,g) o (T,f) = (pf.- g.T,g of). Let ~rl~le~ denote the category of 

such triples and triple morphisms. 

A theory functor (P,f) : @ --> @' determines a triple morphism 

(T,~,~) --> (T',o',u') of the associated triples as foLLows: Let 

(a;y) (@(~,k) x X i be a representative of (f.TX) L (this implies 

f(k) = l). Then TX : f.TX --> T'f.X is induced by 

(a;y) * > (Pa;y) (@'(f.!,f(k)) x (f.X)fo i 

(recall that (f.X)f Q i = [UXklf(k) = f(!1)]x'''x[UXklf(k) = f(±n)]). 
Since T. f.~ maps a representative x(X k c (f.X)f(k) to (Pidl;x) = 

(idf(k);X) = ~'f.(x), diagram (2.27 a) commutes. The commutativity of 
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(2.27 b) fo%iows from 

[b;(al;Y I) ..... (am;Y m) 

[Pb ; (%;yi) , ... ,(am; y m) ] 

I T'~ 
[Pb ; (Pa I ;yl) ..... (Pam; y m) ] 

f.u > [b o (ale... eam);y I ..... Ym l 

1, 
EP(b° (a l®..i,am));yl . . . . .  Ym] 

utf. > [Pb-(Pa]e...@Pam);y ] ..... Ym ] 
This defines us a functor ~eorle~ > Xri~le~. 

Conversety, we can construct a functor ~ri~le~ > ~georl¢~. 

Given any triple (T,~,u) on ~ODK, we obtain a K-co%oured theory @ by 

putting @(!,~) = %°DK(~,T!)" The composite of a (@(!,~), a : i -> T ! 

with b ~ @(i,£), b : ~--> T i is defined as 

boa : 2 T  > T i V >  TT± ui > T± 

Given ! a > ~ b > £ c > ~ in 8, associativ~ty of the composition 

fottows from the commutativity of 

> Tp > TTj > TTTi > TTi q c Tb TTa -- Tui_ -- 

Tp ~ >  TTj uj > Tj Ta -> TTi ui > Ti 

The commutativity of 

i ~ >  T! P ' ~  i j 

Tj ~ >  TT i ~i > T± Tj T~j > TT2. 

shows that ~ : ~--> T~ acts as the identity of ~ in 8. Finabty, the 

set operation corresponding to ~ (~K(~,~) is given by the composite 

i ~ > ~ ni > T~ 

A tripbe morphism (T,f) : (T,o,u) --> (T',~',~') induces a theory 

functor (P,f) : @ --> 8' of the associated theories. It maps a (@(~,~), 

a : ~--> T~ in ~o~ K, to the morphism of @'(f@ ~,f o~) given by the 
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composite 

f*~ f.a > f.T~ Ti > T'f.~ 

The upper sequence in the foLLowing commutative diagram represents 

P(b o a) while the Lower one represents Pb @Pa. Hence P preserves com- 

position 

f.TTi > f.Ti f*P f~. > f*Ti f-TT~-- > "f.ui - ~  

~ ' f ~  ~--W~a > T'f~Ti  ~ >  ~ ' T ' f . i  

FinalLy the commutativity of 

~'f*~T'f.~ 

ensures that P preserves set operations and, in particular, identities. 

Proposition 2.28: The dual @op of a K-coloured theory @ is isomorphic 

as topoLogicaL category to the full subcategory of ~op @ of the free 

@-spaces Fi, i ( ob ~K" 

Proof: The correBpondence ~--> @(~,-) and a ~--> @(a,-) defines a full 

embedding @opc Gnnct[@,~o~] by the Yoneda lemma [41; p.37]. Since 

@(~,-) preserves products, this embedding factors through ~0~ @, and 

it is easy to check that it is a homeomorphism on the morphism spaces. 

We have natural homeomorphisms 

T°~@(F!,G)(~)T°~K(!,UG)(~)G(!)(~)T°~@(@(!,-),G) 

(I) holds by (2.24), (2) is obvious, and (3) follows from the Yoneda 

%emma. The isomorphism @(~,-) --> F~ is given on the basic object k 

by 

a~ > (a; k I ..... k n) 

if ! = (k I ..... kn)- | 
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CoroLLary 2.29: The composite functor T~eorie~ 

is naturaLLy equivalent to the identity. 

> T r f ~ I e ~ - - - . - > T ~ e o r t e ~  

Proof: Given a theory functor (P,f) : @ m> @. Let • : f.T ~> T'f. 

be the corresponding triple morphiem, and (~,f) : $ ~> $' the theory 

functor induces by (T,f). The coroLLary foLLows from the commutative 

diagram 

~(!,Jl) = Z°PK(J,Ti) ~- ~ o ~ @ ( F , i , F i )  -~ @(i,j) 

Zo ~L ( f.j, f.Ti) P 

(,±). 

$'(f~i~f~j) = TOPL(f.j,T'f.i) -~ Zop@'(F'f.j,F'f.i) -~ @'(f.!,f.J) | 

CaLL a triple finitary if it Lies in the image of ~¢orie~--~'Iple~. 

Each triple T has an associated finitary triple Tfi n, namely the image 

of T under ~rlple~ ~ ~eorle~ ~ ~r[~le~. Note that 

(Tfi n X) k = U ~OPK(k,T!)x Xi/~ 
i 

and we can identify X i with ~O~K(~,X). The maps 

XOPK(k,T ~) × XO~K(~,X) > XOPK(k,TX) = (TX) k 

( f , g )  , > (Tg o f )  

hence induce a natural transformation Tfin --> T, which is an iso- 

morphism if T is finitary, but not in generaL. We obtain 

Proposition 2.30: The category ~eorle¢ is naturaLLy equivalent to 

the fuLL subcategory of finitary triples in ~rl)leg. | 

If we enlarge ~ g e o r i e S  by adding infinitary theories, it becomes 

naturaLLy equivalent to the WhOLe category ~rt~le~. To define infini- 

tary theories we need the notion of a continuous product. In Xo~, an 
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X-indexed product of copies of the space Y is defined to be ~o~(X,Y). 

The exponential Law 

• o ~ ( Z , ~ o ~ ( X , Y ) )  ~ ~ o ~ ( X , ~ o ~ ( z , Y ) )  

generalizes the usual functoriat equation of a product ~a Ya. In our 

case, we have to define continuous products in ~o~ K. The object 

K ~ ~O~K given by id : K --> K substitutes the point object of ~o~. 

Since 

Xo~P(x,Y)=XO~K(Y,X)~F~o~(Yk,Xk)~ ~ ~o~(Yk,~O~(Xk,k))~O~K(Y,~k(K,X~ 
k(K k(K =~O~K(y,%~ 

we caLL Y a Y-indexed product of K in ~o~ K. 

Definition 2.31: An infinitary K-coLoured topoLogicaL theory is a to- 

poLogicaL category @ with ob @ = ob ~o~ K together with a continuous 

op functor P : ~O~K --> @ preserving objects and products, i.e. the 

diagram 

op op 
-~ ,~O~K (X ~:O~K (X,Y) XO~K(Y ,K) 

@(X,Y) ~- ~O~K(Y,@(X,K)) 
commutes. 

A @-space is a product preserving functor G : @ --> ~o~ K. 

Lar, G(X) ~ ~O~K(X,G(K)). 

In particu- 

It follows directly from the Toneda lemma that @ °p ~s equivalent 

to the category of free @-spaces. Hence ~rl~le~ and the enlarged cate- 

gory • ~eorle~ are equivalent by the same argument as above. The equi- 

valence is given by 

• ~ e o r l e ~  > ~ r i ~ l e ~  > ~ o r i e ~  

@ ! > T T'~ > @' 

where T(X) = @(X,-) and @'(X,Y) = ~O~K(Y,T'X). 
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Because of the strong connection between theories and triptes it is 

no surprise that we can define the category of T-spaces for a triple 

T and that~ connected with the category of @-spaces of a theory 8. 

Definition 2.32:Let T be a triple on ~o~ K. A T-space consists of an 

object X 6 ~e~ K and a morphism E : TX ~> X such that 

X ~]X > TX TTX u3[ -> TX 

x TX ~ > X 

commute. X is caLLed the underlying space of (X,~). 

A homomorphism (X,E) ~ (Y,~) of T-spaces is a morphism f : X ~ Y 

such that 

TX Tf > TY 

X > Y  

commutes. Let ~o~ T denote the topoLogicaL category of T-~Qce~ and 

homomorphisms (~o~T((x,~),(Y,~)) is topoLo~ized as subspace of ~e~K(~ 

Proposition 2.33: Let T be the associated triple of a (finitary) K- 

coLoured theory 8. Then there exists an isomorphism R : ~o~ @J> ~0~ T 

of topoLogized categories such that 

@ R T 
• o~ > ~o!o 

• ol3 K 

U,V undertying 
space functors 

commutes. 

Proof: For a @-space G define R(G) = (UG,U¢) with the back adjunction 

: FU --> Id (recaLL that T = UF). The inverse of R maps the T- 

space (X,~) to the @-space G for which G(~) = X i and G(a),a ~ @(~,~), 
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is given by the composite 

. Xi (oX) i (TX)i U(FX(a)~ (TX)~ g~ .> X 

As corollary we obtain a generaAization of the c~assical result 

that each group is the epimorphic image of a free group. 

Corollary 2.34: An object Z ( ~o~ K is a @-space iff the injection 

~Z : Z --> UFZ admits a retraction ~ : UFZ ~> Z which makes 

@ 
commute (U : ~o~ 

UFUFZ > UFZ 

UPZ .> Z 

~eft adjoint and ~ and ¢ the adjunction maps). 

> ~o~ K is the underlying space functor, F its 

! 

5. SPINES 

We do not know how to handle Eeneral theories. So we restrict at- 

tention to those kinds of theories that interest us most and in WhiCh 

we can work satisfactorily. It is clear from the interpretation of 

@op as the category of free @-spaces on the elements of ~K' that theo- 

ries tend to be inconveniently barge. 

Let @ be a K-coioured theory ~iven by ~enerators [X~, k] and reba- 

tions [Ri, k] in @r ~ace~. The ebements of [R i k ] are pairs of trees 

with vertex babebs in [X!,k]. A tree from ! to k with m twigs of co- 

hours Jl ..... Jm and babels nl, .... n m 6 [n] determines a morphism in 

~K from ~ = [Jl ..... Jm ] to ! induced by Jr --> nr ~ [n]. Let @ be the 

subcategory of ~K generated under composition and disjoint union 

by the morphisms determined by the trees of [Ri,k], and bet ~ be the 
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subcategory of @ generated under composition and the product bifunctor 

@ by the elements of IX!, k] and @op. (We assume that aLL these cate- 

gories have objects ob ~K ). 

Definition 2.35: The subcate~ory ~ of @ is caLLed a @-spine of 8. 

An element a of @ can be written a = b. c* with b~. If ~(@ implies 

that aLL block functions (see 2.4) associated with c are in @, this 

decomposition is unique up to the equivalence 

(2.36) (bo ~*) o c* = b o (a. ~)* beg, U~@, ~K" 

Hence there is a continuous bijection 

(2.37) ( U ~(~,E) x ~K(~,!))/retation (2.36) --> @(!,~) 
i 

If this is a homeomorphism we can recover 8 from ~, its topology in- 

cluded. In this case we caLL • a proper @-spine of O. 

The products in ® are no Longer products in ~ unless @ = ~K" In- 

stead we have an associative "product" functor 

: ~ x ~ --> 

sending the object (!,i) to ~(!,~) = ! @ ~, the sum of ! and ~ in ~K" 

The correspondence (a I ..... an,T ) ~--> (a I@... ~an) • ~* defines a ho- 

meomorphism 

(2.38) h : U ~ 8(~ l ,Z(1))x . . -xe(~n,E(n))xSK(~, i ) /~  ~ 8( ! ,~)  

with r : In] ~> K and the relation 

(2.39) (a1° c~ ..... ana On'~) ~ (al ..... an'T° (~I @''" @On )) 

If ~ is a proper spine, (2.37) and (2.38) determine a homeomorphism 

U ~(~,~)X~K(~,!)/~ ~ U U ~(~l,~(1))x...×~(~n,~(n))x~i._)/~ 
i eiq=i 

with the relation (2.36) on the Left and the re%atlon (2.39) on the 

right (then, of course, each ci(@). At Least in the cases we want to 

consider, namely 
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(A) @ contains only the identities of ~K 

(B) @ contains aLL isomorphisms of ~K 

this homeomorphism induces a homeomorphism 

(2.40) ~(p_,r) ~- U U ~(J1,r(1))x.--x~(Jn,r(n))x@(~,P_)/re1~tion(2-39) 

Given a proper @-spine ~ of @, a @-space is completely determined 

by a continuous functor R : ~ --> ~o~ preserving the set operations 

of @ and the product functor ~, i.e. the diagram 

~ x ~8 ~ > ~  

I RxR IR 
× 

~Co~p x ~;o~p > ~o!o 

commutes. We caLL such a functor R a B-space and a natural transfor- 

mation between such functors a homomorphism of g-spaces. The free 8- 

space FX on X(~O~K is given by 

FX(k) = U~(!,k) × xi/- 
i 

with (ao U*; x I ..... Xn) - (a; u*(x I ..... Xn)), ~(@. 

Spines of t,ype (A): We investigate proper @-spines for which @ con- 

sists of identities only. A simple example of a theory with such a 

spine is the monochrome theory @m of monoids. We pay particular at- 

tention to the elements kn(®m(n,1) corresponding to ZlZ2...z n( Fin], 

the free monoid on n generators Zl,...,z n (under the isomorphism 

(2.28)), i.e. k n represents the operation (Zl,Z 2, .... Zn)--> ZlZ2...z n 

(here n denotes the unique object [n] --> K = [*}). The subcategory 

of @m generated under @ and composition by the k n is the required 

@-spine. In view of (2.40), any morphism of ~ has uniquely the form 

kn1~ ... ~k n . Since relation (2.36) is trivial, any morphism of @m 
r 

is uniquely expressible as k- q* with k(~. 

@m serves as sort of a terminal object for theories with proper 
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spines of type (A). Let $~K denote the category which has the elements 

of K as objects and exactly one morphism between any two objects. The 

subcategory ~ ® ~i K of @m @R~K has exsctLy one morphism from any ob- 

ject i to a basic object k (compare 2.22). Hence Riven a K-coLoured 

theory @ with proper @-spine ~, there exists a unique object-preserv- 

ing theory functor P : @ --> @m @S~K such that p-1(~®~K) = ~. 

The above considerations Rive a characterization of proper @-spines 

of type (A). 

Lemma 2.41: A topoLogicaL category B is a proper @-spine of type (A) 

of e K-coLoured theory iff ob ~ = ob ~K and there is a strictly as- 

sociative bifunctor ~: ~ x ~ ~ ~ such that 

(a) ~(!,~) = !~, the sum in ~K 

(b) the correspondence (e I ..... an) ~--> a I@ ...@an yields a homeo- 

morphism 

U ~(!l,~(1))x--.x~(!n,E(n)) ~ ~(!,E) 
@!j=! 

Definition 2.42: We caLL e category ~ satisfying (2.41) a K-coLoured 

PRO (for product functor) end a K-coLoured theory @ having a PRO as 

proper spine a split theory over @m" If the spaces ~(~,~) are CW- 

complexes and the homeomorphisms (2.41 (b)) and compositioB are ske- 

LetaL, we caLL ~ e CW-PRO. 

Note that the morphism spaces ~(~,k) of morphisms into a basic ob- 

ject and the composition maps K~1,i!1))x...x~(~n,!~)Sxe~)-->~(~10...@_rn, k) 

sending (a I ..... an,b) to b .(a1~...@a n) compLeteLy determine the 

PRO 8. 

If @ is a K-coLoured split theory over @m with PRO $, the free 

@-space FX on X ( ~O~K is given by 

FX(k) : U ~(!,k) x X i 
i(@ 
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Spines of type (B): Here the theory of commutative monoids @cm takes 

the place of 8m" Generating morphisms are again the morphisms ~n re- 

presenting the operations (z I ..... Zn) --> z I + ... + z n. Since 

k no n* = k n for all permutations w ( Sn, we also have to include the 

permutations. It is easily verified thst the resulting spine may be 

identified with the category ~ of finite sets as defined in section 

I (not to be confused with the set operations from ~op c 8cm ). An ex- 

plicit description of the inclusion functor ~ c 8em is given as fol- 

Lows: The isomorphism (2.28) identifies a (~(m,n) c 8(m,I) n with 

(Yl ..... Yn ) ( (P[m]) n, where Yr = zl I" + ... + z i ( P[m] if 
q 

-I 
a (r) = [i I ..... iq] c [m]. In particular, for a permutation w (~(m,m) 

-I we have ~ = ~*. 

> identifies ~/ c @ with the subcate- The abeLianization @m 8cm m 

gory of ~ of order preserving maps. 

As in the non-commutative case, for any K-cotoured theory @ with 

proper @-spine ~ there exists a unique object-preservin~ theory func- 

tor P : 8 --> 8cm ® $~K such that p-1(~®~K ) = ~. 

A morphism ~ : i_ --> j of ~K 

[hi n > [m] \ /  
K 

is in @ iff n=m and ~ is a permutation. Hence a morphism of @ is 

given by its source or target and a permutation. If K = [*] it is 

given by a permutation atone. If source or target are clear from the 

context, we therefore often write w 6 S n instead of ~ (@(~,~). A @- 

spine of type (B) has more structure than one of type (A) because of 

the permutations. The analogue of Lemma 2.41 is 

Lemma 2.43: A topotogicat category @ is a proper @-spine of type (B) 

of a K-coLoured theory iff ob ~ = ob ~K and we have a strictty as- 
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sociative bifunctor @: ~ x ~ --> ~ and an inclusion functor @ c 

such that 

(a) @(!,~) = !e~, the sum in ~K 

(b) The correspondence (b I ..... bn,~) ~--> (b I@... ~bn) o ~ yields a 

homeomorphism 

( [J ~(~1,[(1))x...x ~(~n,Z(n))x @(!,~))/~ ~ ~(i,r) 
~iq=i 

where (b I • ~I ..... bn °~n '~) ~ (bl ..... bn'(~1 @ "'" ~n ) " ~)' ~i '~(~ 

(c) Wl @n2 ( @ is the sum (in ~K ) of n I and ~2 

(d) Given r morphisms bq : --qi --> Zq,' !q : [m s] --> K, /q : [nq]--> K, 

and ~ ( @. Then 

w(n I ..... nr)@(b1@...@br ) = (b -I @'''@b -I ) " n(ml ..... mr) 
(~) (r)  

(see (2.4) for the brock permutations) i 

If the reader is disturbed by the -I in (d) he should note that 

the inctusion functor @ c ~ is ~iven by ~ --> ( -I).. 

Definition 2.44: A category ~ satisfying (2.43) is catted a K-cotoured 

PROP (for product functor and permutations) and a K-cotoured theory 

having a PROP as proper spine a split theory over 8cm. If the spaces 

~(i,r) are CW-comp~exes, composition with permutations celtu~ar and 

the homeomorphisms (2.43 (b)) and the composition in ~ skeletal, we 

c a . ~ %  ~ a CW-PROP. 

Note that a PROP ~ is comptete%y determined by its morphism spaces 

~(!,k) of morphisms into a basic object, by the composition of 

a £ ~(!,k) with a permutation on the right, and by the composition 

maps 

[~(~I '!(I))×'''× ~(~n '!(n))] × ~(!'k) > ~(~I @''" @~n 'k) 

sending (a I ..... an,b) to b o(a I@ ... @an). 

A PROP is a more genera t concept than a PRO because we can add at~ 
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isomorphisms of ~K to make a spine ~ of type (A) into a spine ~' of 

type (B), and we have an inclusion functor ~ c ~ 

Definition 2.45: A functor ? : • --> ~' of PROPs is aalled a PROP- 

functor if it is continuous, carries basic objects to basic objects, 

and preserves the product functor ~ and the permutations. Analogously 

for PRO-functors. 

Obviously, a PROP-functor is the restriction of a theory functor 

P and completely determines P. 

Our principal concern will be E-spaces. 

Definition 2.46: A K-coLoured PROP ~ is called a K-coloured E-theory 

if each space ~(!,k), k(K, is contractible, in other words, if 

P : ~ --> ~®~K is topologically a homotopy equivalence. An object 

X 6 ~O~K is cat~ed an E-space if it a~Iows a ~-action for some K- 

co~oured E-theory ~. (The monochrome E-spaces are identical with the 

homotopy-everything H-spaces of [8]). 

Remark: Our whole theory developed in part from the theory of PROPs 

and PACTs propounded by Adams and MacLane [29~. Their PROPs are es- 

sentially the a~gebraic analogue of ours, and a PACT is the analogue 

for chain complexes. A Steenrod PACT then corresponds to an E-space. 

Spines inherit the notion of interchange from their enveloppin~ 

theories. One observation is of importance. Given spines ~,¢', each 

a PRO or a PROP, then ~®~' is a PROP because @m@@m~@m@~m~m@~m~@cm 

(see Example 2, section 3). 
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6. EXAMPLES OF PROs AND PROPs 

(2.47) The categories S and ~ are examples of a CW-PRO and a CW-PROP, 

which we already have discussed. The ~-spaces are exactly the topolo- 

gical monoids and the ~-spaces exactly the commutative topological 

monoids. 

(2.48) Trivial examples of PROs can be obtained in the following way. 

If • is a topoLogica~ category, we obtain an (ob ~)-co~oured PRO by 

setting 

I @ if ! is not a basic object 

~(!'t) = [g(k,L) if ! is the basic object k ( ob 

Composition is given by the composition in ~. Note that ~ is a spine 

of g considered as theory. If g has the discrete topology, a ~-space 

is just a ~-diagram of topological spaces. In general, a ~-space is a 

~-diagram with a topology on the morphisms. If there is no chance of 

confusion we denote ~ again by g. 

(2.49) For each n~1 we define a monochrome PROP O n , the n-th Little- 

cube category, which operates on the n-th Loop space X = Qny, the 

space of all maps (In,BI n ) --> (Y,*), where I n is the standard n-cube, 

8I n its bounadry, and * the base point of Y. As before, denote the 

unique object [m] --> K = [*} by m. A point a ~ On(m,1) is an ordered 

co~Lection of m n-cubes I~, Linearly embedded in I n , with disjoint 

interiors, and with axes parallel to those of I n . Such an embedding 

is uniquely determined by the images in I n of the Lowest vertex 

(0,0 ..... 0) and the upper vertex (1,1 ..... 1). Hence a is given by a 

2m-tupte (xl,Yl,...,Xm,Ym) of points in I n , where x i is the Lowest 

vertex and Yi the upper vertex of I~.i We topoLogize ~n(m, I) as sub- 

space of 12mn. Composition of a with a permutation n 6 ~ is given 
m 

by a • w = (x 1,Ynl ..... x m,Ynm). Let bi(~n(ri,1), i=I ..... m, Let 
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b.. : I n c I n be the ~inear embedding of the j-th cube of b. and ~et 

a. : I n c I n be the tinear embedding of the i-th cube of a. Then the i 

r1+...+r m ~inear embeddings of I n into I n which correspond to 

a..(bl~..@bm) are given by ~ ' h l  ..... al°blr1'a2°b21 ..... a2"b2r2 . . . .  am°bml .... a ~ , % .  
This defines a continuous composition in ~n" 

O n acts on X as follows: Given (f1'f2 ..... fm )( Xm' the map 

a(f I .... fm ) : I n --> I is given by fi on the embedded cube I n and 

zero etsewhere. 

Let a (On(m,1) , a = (xl,Y I ..... Xm,Y m) with x i = (Xil ..... Xin), 
! ! ! ! 

Yi = (Yil ..... Yin ) ( In" The correspondence a ~--> a'=(xl,Y I ..... Xm,Y m) 

with x.~ = (Xil ..... Xin,O) and y~. = (Yil ..... Yin,1) defines an inclu- 

sion of PROPs 8 n c On+ I. Let ~ be the PROP with O~(m,!) = 0 On(m,1) 
n=1 

with the direct ~imit topology. 

Lemma 2.50: ~(m,1) is contractible for a~l m; hence ~ is an E-cate- 

gory. 

Proof: First observe that On(m,1) has a very nice product neighbour- 

hood N in ~n+1(m,1), namety the set of at~ points (Xl, ~ ..... Xm,Ym)((In+1) 2m 

I 1 I m (½,1]m. 
with Xi,n+ 1 < ~ and Yi,n+1 > ~ for a~t i. Then N--4~n(m,1)x[O, ~) x 

It follows that 8n(m,1)c On+1(m,1) is a Sm-NDR (see Appendix If). By 

Lemma A 4.10 (the prefix A refers to the appendix), it suffices to 

show that On(m,1) is contractible in On+1(m,1). The contracting homo- 

topy H : On(m,1) × I --> On+1(m,1) is given by 

H t : (xl,Y I ..... Xm,Y m) = (x1(t),Y1(t) ..... Xm(t),Ym(t)) 

where 

[ ( X i l  . . . . .  X i n , 2 t ( i - 1 ) / m )  O<t<~ El(t) 
( ( 2 - 2 t ) x i l  . . . . .  ( 2 -2 t )X in ,  ( i -1 ) /m ) ~ t ~ l  

(Y i l  . . . . .  Y in '  I-2t(1-i/m)) O~t~  2 
Y i ( t )  = (2t_1+(2_2t)Yi1 . . . . .  2t-1+( 2-2 t )Y in ,  i /m) ~ t < l  
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Originatly, we proved that On(m,1) is (n-2)-connected for aLL m 

(as indicated in [8]) usin~ results of FadeL% and Neuwirth on con- 

figuration spaces. Since we onby need that O (m,1) is contractib%e, 

we prefer the present more direct and shorter proof. Our original ver- 

sion can be found in [34;chapter 4]. 

The E-category ~ is quite important because it acts on strict in- 

finite Loop spaces. 

Definition 2.51: A space Z is caLted a strict infinite Loop space if 

there exists a sequence of based spaces Z i and based homeomorphisms 

~Zi+ I i=0 1 2 such that Z ~ Z . ~i : Zi - ' ' ' '''" o 

The exponential taw ~e~((In,sIn),~o~((I,81),Z))~o~((In,eIn)x(I,~I),Z) 

defines homeomorphisms qn : ~n(~Zn+1) ~ Dn+1 - Zn+ I. The ~i and qi com- 

bine to maps 

= Qn-1 a o ~1~i~...oq 1° 01~I~ ° : Z ~ OnZn r n qn_l a Wn_ 1 .--°q i 

The action of ~ on Z is now defined as fo~tows: Given ~ ( ~ (m,1) 

and (z I ..... Zm)6 Z m. Let a (~n(m,1) be a representative of ~. We de- 

fine 

~(z I ..... z m) = rn1(a(rnZl ..... rnZm)) 

To show that this definition is independent of the choice of the re- 

presentative a, we have to verify that 

-I a' 
rn1(a(rnZl ..... rnZm)) = rn+1( (rn+IZ I ..... rn+iZm)) 

where a' is the image of a in On+1(m,1). Since rn+1=q~flnwn@rn, this 

amounts to showinE that 

qn[OnI~n(a(rnZl ..... rnZm))] = a'(rn+iZ 1 ..... rn+iZm), 

which is easily verified. We thus obtain 

Proposition 2.52: A strict infinite Loop space is an E-space. | 

(2.53) We next define a PRO ~ which acts on Loop spaces ~Y. A point 
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a (O(m,I) is a 2m-tupLe (xl,Y I ..... Xm,Y m) of points in I such that 

0 g x I < Yl g "'" ~ xi < Yi g "'" g Xn < Yn g I. We topologize O(m,I) 

as subspace of 12m. Considering (xl,Y I ..... Xm,Y m) as element of ~i~,I), 

we obtain an inclusion ~(m,1) ~ O1(m,I). Composition in ~ is induced 

by the composition in O I so that we ha~e a functor O ~> ~I" Since 

O I acts on OY, so does O. 

Lemma 2.54: O(m,I) is contractible for all m. 

Proof: The contracting homotopy O(m,1)x I - - >  0(m,I) is given by 

[(xl,Y I ..... Xm,Ym),t] --> (x1(t),Y1(t) ..... Xm(t),Ym(t)) 

with xi(t) = (1-t)x i + t(i-1)/m and Yi(t) = (1-t)y i + t" i/m. | 
\ 

(2.54) Our next PRO • acts on A -spaces (see 1.8). We use the models 

~i (see 1.7) for its definition: ~ (m,1) = K m, m=0,I,2, .... with 

K ° = K I = *. In (1.7) we have already defined boundary maps 

~L(r,s) : K r x K s --> K i, r+s = i+I, which correspond to the copy of 

K r x K s in the boundary of K i indexed by 1 2...(L l+1...l+s-1 ...i. 

According to [46; §6], one can inductively construct degeneracy maps 

• --> i~I for 1~j~i satisfying sj : K i Ki_ I , , 

8j(r,s+t-1)o(IXak(s,t)) = 8j+k_1(r+s-l,t)o(Sj(r,s)xl) 

8j+s_1(r+s-l,t)@(3k(r,s)xl) = 3k(r+t-l,s)o(Sj(r,t)xl)o(Ixtwist) 

for kgj sj@ s k = s k° sj+ I 

8k_1(r-1,s).(sjxl) for j<k and r>2 

SjSk(r,s ) = 1~k(r-l,s)-(Sj_s+l×1) for k+s~j 

I 
~Sk(r,s-1)~Ixsj_k+1) for s>2, k~j<k+s 

SjSk(i-1,2) = pr I for 1<j = k<i and 1<j = k+Igi 

s182(2,i-I) = si81(2,i-I) = pr 2 

where pr i is the projection onto the i-th factor. 
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We obtain a composition in ~oo if we specify the composites 

c = a. 

k-1 n-k 

with a (~oo(n,1) and b ( ~ (m,1). We define 

c = sk(a) ( ~ (n-1,1) if m=O 

= a if m=1 

= ~k(n,m)(a,b) ( ~ (n÷m-1,1) if m>1 

The identities tisted above imply the associativity of the composition. 

Stasheff shows E46; Thm 5, Lemma 7] that an A~o-space X admits maps 

M. : K. x X i --> X for i=2,3,4 .... such that 
1 1 

(a) M2(*,e,x) = M2(*,x,e) = x for x(X, *=K2, e a distinguished point QfX 

(b) for (k 1,k 2) ( K r x K s , r+s = i+I, we have 

M i ( 5k  ( r ,  s ) ( k 1 , k 2 ) ,  x 1 . . . . .  x i ) = Mr (k l ,X  1 . . . . .  Xk_  1 , M s ( k 2 , x k  . . . . .  ~k+s_ l ) ,Xk+s, . . ,x t )  

(c) for k(K i and i>2 , we have 

M i (k,x I ..... xj_ I ,e~j +I ..... xi) = Mi-1 (sj (k),x I ..... xj_1, xj +I ..... xi ) 

The adjoints K i --> ~op(xi,x) of the M i define an action of • on X. 

If X is an An-space, we have such maps M i for 2gign. Hence the sub- 

PRO ~n of ~oo generated under composition and @ by the morphisms in 

~(m,1), Ogmgn, acts on an An-space. 

For future use we note [46; Prop.3] that ~oo(m,1) is contractible 

for aLt m and ~n(m,1) for aLL m~n. 

7. PARTLY HOMOGENEOUS THEORIES 

We introduced coLoured theories mainly for the purpose of study- 

ing maps between monochrome @-spaces. Given two monoids X and Y and 

a homomorphism f : X --> Y, we can construct an ~®£s-space 

F : ~@91 --> ~0~ such that PI~@[O} defines the monoid structure on 

X and FI~@[I) the menoid structure on Y (Recatt that 91 is the cate- 

gory with objects 0,1 and one morphism from 0 to I. We denote the sub- 
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category consisting of the object i by [i}). Now ~®91 is [ 0 , 1 } -  

coLoured, and we have e x a c t l y  one morphism {0 ,1)  - - >  {1]  (see ( 2 . 2 2 ) ) .  

It is mapped by F to g : X x Y --> Y given by g(x,y) = f(x) • y. AL- 

though such "mixed" maps occur naturally, it sometimes seems desirable 

to allow only operations X n --> X, X n --> Y, and yn__> y for the 

study of maps from X to Y. In the Literature this restriction always 

has been made. For this purpose we define partly homogeneous theories. 

Let HL~Kx L be the full subcategory of ~KxL consisting of all ob- 

jects i : Kn] --> KxL such that (projection) o i : In3 ---> KxL --> L 

is constant. 

Definition 2.55: A (finitary) L-homogeneous (KxL)-coLoured theory is 

a topological category @ with ob 8 = ob HL~Kx L together with an ob- 

op --> 8. Again we assume ject and product preserving functor HL~Kx L 

that 8(i,lle ... ®~n ) is homeomorphic to 8(!,~1)x...x 8(!,~n). The 

definitions for a 8-space and a homomorphism of e-spaces are analogue 

to those of (2.3). A theory functor from a L-homogeneous (KxL)-cotour- 

ed theory 81 to a N-homogeneous (MxN)-co%oured theory 82 consists of 

functions f : K --> M, g : L --> N, and a continuous functor F:~-~82 

such that 

commutes. 

HL~Kx L ( fx g ). > HN~Mx N 

F 
@1 > 82 

Here again we denote the product by @ . In contrary to inhomo~ene- 

ous theories, @ is not a bifunctor on a partly homogeneous theory be- 

cause it is not everywhere defined, but it behaves Like a bifunctor 

wnere it is defined. 

Note that (2.55) is more general than (2.3) because it contains 

the inhomogeneous theories, just put L = [*). If K = [*}, we call a 
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L-homogeneous theory completely homogeneous. 

Any (K×L)-cotoured theory @ has a L-homogeneous part, denoted by 

op HL@, namely the fu~t subcate~ory of atl objects coming from HL~Kx L. 

If ~ is a topological category, we frequently denote the (ob ~)-homo- 

geneous part of @®~ by H~(@~). 

Interchange, free @-spaces, PROs and PROPs can be defined for the 

partly homogeneous version in an analogous manner and similar resu%ts 

ho~d. We just want to mention one fact. The bifunctor @ for PROs and 

PROPs coming from the product bifunctor of the enveloping theories is 

not everywhere defined for partly homogeneous PROs and PROPs. On ob- 

jects, ~@~ exists whenever it exists in HL~K× L, and feg exists for 

f (~(~,~), ~ (@(~,~) whenever ~@~ and ~0~ exist. If Q is defined, 

it behaves in the same manner as for ordinary PROs and PROPs. 

(2.56) Example: Let K = [*} and L = [0,1}. We construct a L-homogene- 

ous (K×L)-cotoured PRO @ which defines A -maps between monoids (see 

(1.14)). There are exactly two objects [n] --> KxL in @ for n>O, name- 

ly one for each object in L. Denote the one corresponding to 0 by n ° 

and the one corresponding to 1 by n I. Define @(m°,1 °) = [km], 

~(mI,11) = [~m }, @(m°,11) = I m-1. So the full subcategories of @ con- 

sisting of all objects 0,1°,2°,... and 0,11,21,... are copies of the 

PRO ~. It remains to define the compositions 

m m m 
~m*[(t11 . . . .  ' r ItI )@'"@(tl .... ~m "]=~]~ "t11 .... tlrl 'I ti"'2 ,t 2~,I,t~ .... 1,t I ,..,t mrm) 

( t  1 . . . .  tin). (Xrl® ... @krm+q) = ( O ~ O , t . , O ,  ~- -~O' t2 'O . . . .  t~,O~ ~--~--~0) 
r I -I r2-I rm+1- I 

According to (1.14), a map f : X --> Y between monoids is an A -map 

if there are maps F i : Ii-lx X i --> Y such that F 1 = f and 

~Fi_1(t I .... t~j .... ti_ 1 ,x I .... x j xj +I .... xi ) if tj = 0 
Fi( t I 

I .F.(t., ,t .,x., ,x )F (t ., ,t ,x.., if tj=1 ~ ~ "" j-~ , "" j i-j j+1 "" i ~+, ""xi) 

Hence the adjoints of Pi define an action H of @ such that H('~(1°,11))=[f], 
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and vice versa. If f : X --> Y is only an An-ma p between monoids, we 

can define an action of a subcategory 9' of ~ on (X,Y) extending f 

and the monoid structures. 9' is generated under composition 8nd 

by the two copies of ~ in • and the morphisms of ~(m°,11) for m~n. 

We note that the morphism spaces of ~ are contractible and so are 

the morphism spaces of ~' into basic objects with exception of ~'(m°,1~ 

for m>n. 



III CHAPTER 

THE BAR CONSTRUCTION FOR THEORIES 

In Chapter I we defined a structure W~ which is a monoid structure 

up to coherent homotopies. In this chapter we generalize the process 

~--> W~ to genera~ theories 8. We need results from homotopy theory, 

which are not directly connected with the development of our theory 

and therefore proved in an appendix. Reca~i that we refer to the ap- 

pendix with the prefix A. 

1. THE THEORY W@ 

Let @ be a K-coloured theory, let U : %geor|e~ > @r ~aceg be 

the forgetfu~ functor, and F : @r g~ace~ --> ~eorle~ the free functor. 

Starting point for the construction of W@ is the category FU@ of copses 

associated with U® (see II; §2). To each interna~ edge of a tree of 

FU@ we associate a real number in I = [0,1], ca~ed its length. A tree 

of a given shape ~ can be considered as a point of a topological space 

(~ ®(~,k))× ~K(~,~) (see Def. 2.6 ff); and if k has r internal edges, 

a tree of shape k with ten, the can be considered as a point of the 

topological space 

M x : ( ~ ( i , k ) ) x  ~K(±,i)× I r 

We impose three kinds of relations on the space of trees with ~engths: 

(3.1 a) We may remove any vertex %abetted by 8_~n_n identity of @: We give 

the resulting edge the ~en~th t1.t2=t1+t2-tlt2 , where t I and 
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t 2 are the lengths of the edges below and above this vertex 

(By convention, the roots and twigs have lengths I) 
, 

t 2 

! 
i d  = ~ 1 " t 2  

(3.1 b) W_~e may replace any vertex label a.a* by a, by changing the 

part of the tree above this vertex as in (2.8 (b)), but for 

trees with Lengths. 

(3.1 c) We may remove any edge of Length O: We unite the vertices at 

the two ends to form a new vertex, WhOSe ~abeL is the tree 

composite in @ of the tree consistin~ of the two vertices and 

their incoming and outgoin~ edges (compare I,§4) 

II II 
where c = a,(idk10 ... O'Idki_1~ b ~idki+1" ® ... @idkn) if the 

incomin~ edges of a have the cotours kl,...,k n and b sits on 

the i-th edge. 

W@(~,~) is the space of all copses on U@ with lengths modulo these 

three relations. We compose two copses with lengths by takin~ their 

composite in FU@ (see 2.7ff) and givin~ the new internal edges ob- 
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tained by grafting the roots of the right copse to the twigs of the 

left one the length I. This makes W@ into a theory. 

(3.1 a*) In relation (3.1 a) we couid replace t1*t2=t1+t2-tlt2 by 

t1*t2=max (tl,t2). Unless stated otherwise our results hold for both 

definitions of t1*t 2. 

Remark 3.2: For the definition of W@ we used that the unit internal 

I with multipTication . is a monoid. We can make the same construction 

for an arbitrary monoid M with mu%tiplicstion . end un~ e having an 

idempotent u+e. (For I with multiplication * this idempotent is 16I). 

We then give each internal edge a tenwth in M, each root a length in 

u*M and each twig a length in M.u (hence the triviab trees have 

lengths in u.M.u). The relations (3.1) ere the same in the M-version 

with 0 in (3.1 e) replaced by e. ~nen we compose we wive the new in- 

terna~ edge obtained by graftin~ a twi~ of ~ength t I to a root of 

length t 2 the length tl.t 2. Of course, most of our results do not 

hold for a generat M; we have to impose more restrictions. 

Proposition 3.3: W : ~eorle~--> ~eorle~ is a functor. 

Proof: Immediate. | 

Let W ° be the composite of the free and the forgetful functor 

• ~eorie~ > ~q ~ace~ > ~eorie~, then we@ is obtained from FU@ 

by imposing the relations (3.1 a,b) forwetting the lenwths. Hence we 

can include .W°8 in W® as the subcate~ory represented by trees whose 

internal edges all have length I. We obtsin 

Proposition 3.4: The inclusion functors i® : W°@ c W® define a. na- 

tural transfomation i : W ° --> W. 
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The back adjunctions ¢@ : W°@ --> @ extend to a natural transfor- 

mation ~ : W~> Id~¢orie~ since it is compatible with the relations 

(3.1). 

Definition 3.5: The natural functor ¢=¢@ : W@ m> @ is called the 

_ > w°~(i,k) c w~(i,k) augmentation of ®. The composite maps @(i,k) ~ _ , 

where ~ is the front adjunction, are called the standard section of @. 

Proposition 3.6: If we use (3.1 a*) instead of (3.1 a), the augmen- 

tation funetor ¢ : W@ m> @ is topolo~icatLy a homotopy equivalence. 

In fact, there is a fibrewise strong deformation retraction of W@(~,k) 

into the standard section, i.e.a, strong deformation retraction H t 

such that ¢ o H t = ¢ for aL~ t ( I. 

Proof: H t replaces each edge Length u by tu, where t runs from I to 

O. | 

ReLation (3.1 b) shows that for K-coLoured split theories @ over 

@cm or @m with spine @ we need only consider trees whose vertex la- 

bels Lie in @. We deduce that W@ is again a split theory over @cm 

respectively ®m" If @ is a PROP the canonical spine W~ of W@ consists 

of all copses with vertex Labels in @ such that a.%t elements of [I,,.,~ 

occur a.s twig La.be~s in trees with n twins, subject to the relations 

(3.1 a, c) and reba.tion (3.1 b), but only for permutations. If @ is a 

PRO, the spine W~ consists of all copses with verte~ labels in @ such 

that each tree with n twigs has the twi~ Labels 1,2,...,n in c~ock- 

wise order. Consequently, twin ~abels may be omitted. The relations 

are (3.1 a, e), relation (3.1 b) becomes redundant. 

So if we refer to relation (3.1 b) in connection with PROPs, we 

from now o__nn assume that the set operations are permutations. In con- 

nection with PROs we will omit it. 
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2. A FILTRATION OF W~ FOR PROs AND PROPs 

We restrict our attention to the more genera$ case of a PROP. The 

necessary modifications for PROs are made easily. Just neglect a,$1 

group actions which wi%$ be defined for PROPs in the fo$$owing. 

(3.7) In view of (3.1 c) we assume from now on that for any K-cotour- 

ed PROP o_~r PRO @, to which the functor W i_~s applied, each 

($(k,k),[idk]),k(K, is a NDR (cf. Appendix II). 

In order to be able to treat the partly homogeneous case simul- 

taneously we takea (KxL)-co~oured PROP $. We consider both W~ and 

HW~ = HLW~. Recall that the partly homogeneous case is more ~eneraA 

because it includes the inhomogeneous one (take L=[*}) and also the 

completely homogeneous one (take K={*}). Nevertheless, we start con- 

sidering the case W~3, because it is easier. The genersAization to 

HW~ then follows without too much difficulties. 

We define the r-skeleton subcate~ory wr~ of W~ as ~enerated under 

composition by copses whose trees have at most r internal edges, con- 

sider the space M k of aL~ trees of a Riven shape k in W~, i.e. the 

trees of Mk have the same undertyin~ ~raphs and the same edge cotours 

(see 2.6). Recall that M~ has the form 

M k = I r x ~j ~(!j,kj)m(J)x S n 

if k has r internal edges, n twi~s and m(j) vertices with Labels in 

@(!j,kj), kj ( KxL, because a tree of a ~iven shape is specified by 

its edge Lengths, its twin %abels which are a permutation of [1,..,n}, 

and its vertex Labels. 

(3.8) An element of M k represents a morphism of wr-1~ iff one of the 

following conditions hold 

(i) Some vertex Labe% is an identity (for then (3.1 a) applies) 
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(ii) Some internal edge has Length 0 (for then (3.1 c) applies) 

(iii) Some internal edge has Length I (for then the tree decomposes) 

Let N k c Mk be the subspace of a l l  points satisfying one of these 

conditions. It remains to account for relation (3.1 b). Let A be the 

set of all tree shapes which can be obtained from k by an iterated 

application of (5.1 b). We call A the shape orbit of k. We have a 

natural group G' acting on M A = U MX, which acts on the summand M 
k~A k 

as foLLows: The group S r permutes the coordinates of I r, the group 

S n acts on the set S n of twi~ LabeLLings by composition on the right, 

the group Sm(j) permutes the factors of ~(!j,kj) m(j), and (Sq) m(j) 

also acts on ~(!j,kj) m(j) if --Ji" : [q] n> KxL, by the action of Sq on 

~(!j,kj) by composition on the right. Let G be the subgroup of G' ~e- 

nerated by at% elements g which map M x into itself and for which the 

trees g(A) and A are related by a single application of (3.1 b). We 

call G the symmetry group of the shape k. The space N k is an invariant 

subspace of M k, and the map N k --> wr-1~(~,k) sendin~ trees to their 

corresponding morphisms factors threugh a map 

v k : Nk/G > wr-l~(i,k) 

Lemma 3.9: (a) wr~(~,k) is obtained from wr-1~(~,k) by adjoininc 

spaces Mk/G relative to Nk/G with attaching map vk, one for each 

shape orbit of shapes with r internal edges. 

(b) W~(~,k) is the colimit (= direct limit) of the wr~(~,k) 

(c) If each ~(~,k) is Hausdorff, so are wr~(~,k) and W~(~,k) 

(d) If B is a CW-PROP, so are wrB end W~ 

Proof: (a) Since the identities of ~ are closed (3.7), each N k is 

closed in M k, and hence wr-1~(~,k) closed in wr~(~,k). Hence 

U c wr~(i,k) is closed iff it is closed in wr-1~(i,k) Mk/G. 
_ _ Uv k 

(b) By the argument of (a), wr~(~,k) is closed in W~(~,k). Given 
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U c W~(!,k ) such that U 0 Wr~(!,k) is closed for all r and let V be 

the set of representing trees of U, then V D M l is closed for all k. 

Hence V and therefore U is closed. 

(c) It follows from (A 2.3) and (A 2.4) that (Mk,N k) is a G-NDR. Con- 

sequently !Mk/G,Nk/G) is a NDR. The result now follows from (A 4.1). 

(d) Use that (Mk/G,Nk/G) is a CW-pair and V k is skeletal. 

The most direct way to construct PROP-functors from WB to a PROP 

is to construct a PROP-Functor from the PROP of copses with edge 

lengths • (see §I) to ~ which factors through the relations (3.1) mo- 

dified for PROPs. Let Mk be as above. Composition with permutations 

-I 
on the right is given by replacing a twig Labelling ~ by n o ~. 

(Recall that composition on the right with n corresponds to composi- 

tion with the set operation (-I).). This right action of S n on M k 

commutes with the G-action, so that v k actually is a Sn-equivarian~ 

map. A PROP-functor ~ --> ~ has to be equivariant with respect to the 

symmetric groups. It induces a PROP-functor WB --> ~ provided it fac- 

tors through (3.1 a, c) and the G-actions. To avoid considerin~ the 

G-action and the Sn-action on Mk independently we combine the two. 

We decompose M k as 

M k = U I r × ~(i~j)m(J)x 
(S n J 

and we denote the summand associated with ~ by Pk,~" An element g(G 

and ~ is of the form ~=~,e(g-1), where maps Pk,~ onto some Pk,~' 

e(g -I) is a permutation which only depends on g. The correspondence 

g ~--> ~(g) yields a homomorphism 

Put Pk = Pk,id 

e : G ~ >  S n 

and define a G-action on Pk by t ak in~  the composi te  

Pk x G > Mk - - ' >  Pk 

whose first map is the G-action on M k and whose second map is induced 

by the homeomorphisms PX,~ --> Pk which forget the Sn-COordinate. 
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Hence A~P~ and g(A)o e(g) ~ Pk,e(g_1) are re~ated by iterated appli- 

cations of (3.1 b). 

Let 8 i denote the subgroup of isomorphisms of ~KxL(~,~). Then S i 

acts on the right of ~(~,k) by composition. We note for future use 

Lemma 3.10: If each ~(~,k) is a free Si-space, then G acts freely on 
m 

If ~ is the source of the trees of P~ and k their target, we can 

define a G-action on ~(~,k) for any PROP ~ by 

~(a )  = a -  8(~ -1 )  

If we put Q~,~ = N X O P~,~ and QX= N~ D P~, we have a G-equivariant 

"characteristic" map 

u k : (Pk,Qk)~> (wr~(!,k),Wr-1$(!,k)) 

sending trees to their corresponding morphisms. It should be stressed 

that the G-action on PX is not the restriction of the G-action on Mk. 

Composing the image of uk with all elements of S n from the right, we 

account for all morphisms represented by the elements of M A, and as 

X runs through a complete set of representatives of shape orbits, we 

account for all morphisms of W~. 

The treatment of the L-homogeneous case differs only slightly. Let 

us call k I the K-colour and k 2 the L-colour of k = (kl,k2)~ KxL. We 

only consider tree shapes k for which the twi~s have all the same L- 

colour, because exactly such trees represent morphisms in HW~. Let 

Mk be as before. The elem~mts of M x satisfyin~ (3.8) (i) or (ii) re- 

present morphisms in Hwr-I~, but not necessarily those satisfying 

(3.8) (iii), because the tree might not decompose into representatives 

of morphisms in HW~. It does decompose "correctly" if there is a col- 

lection of edges of lengths I which separates the tree into a, copse 

and a tree whose twigs have the same L-colour. To deal with this phe- 

nomenon we refine our filtration. Let Hwr'q~ be the subcate~ory of 
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HW~ generated under composition by copses whose trees represent ele- 

ments of Hwr-I~ or have exactly r internal edges of wnich at Least 

r-q have Length I. Note that HWr'°@ = Hwr-I~ and Hwr'r$ = Hwr~. Con- 

sequentty, Let Mk, q be the subspace of those trees of M k which have 

at Least r-q edges of Lengths I, Pk,~,q = Pk,~ N MX, q and Pk,q = Pk,id,q" 

(3.8*) An element of Mk,q, q~O, represents an element of Hwr'q-l~ 

(by convention Hwr'-I~ = Hwr-I~ and HW-I~ contains exactly the per- 

mutations) iff one of the following conditions holds: 

(i) Some vertex Label is an identity 

(ii) Some internal edge has Length 0 

(iii) There is a collection of edges of Lengths I which separates 

the tree into a copse and a tree whose twigs all have the same L- 

colour 

(iv) There are more than r-q internal edges of Lengths I. 

The first three cases characterize the elements of MX, q representin~ 

morphisms in Hwr-I~. Let Qx,q be the set of all elements of Pk,q 

satisfying one of the conditions (3.8*). The G-action on Pk restricts 

to a G-action on the pair (Px,q,Qk,q), and we again have G-equivariant 

characteristic maps 

uk, q : (Pk,q,Qk,q) > (Hwr,q~(i,k),Hwr,q-1~(i,k)) 

An analogue of Lemma 3.9 for the L-homogeneous case can be proved in 

the same manner. 

Let ~ be a topological category with finite products. Let 

X I,X2,...,X n ( ob ~. A permutation w ( S n defines a map 

... > X I  x x X : X i x x Xwn """ n 

the obvious shuffle corresponding to the set operation (n-l) *. For 

each k(K we take an object X k of • and define X i for i=[i I .... ,i n ] to 

be the object X i x...x X. . We then have a G-action on ~(Xi,Y) by 
I I In 

g(a) = a- e(g- ). 
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Definition 3.11: Let ~ and ~' be topological categories with finite 

products, Let ~ be a partly homogeneous PROP and ~' a partly homo- 

geneous PRO. A functor F : • --> ~' is catted muLtipLicative if it 

is continuous and preserves products. A functor G : • --> • is called 

muLtipticative if it is continuous, maps ~to the product bifunctor 

x, and preserves permutations. A functor H : B' --> ~' is called muL- 

tipLicative if it is continuous and carries ~ to x. The Last two cases 

are equivalent to sayin~ that G is a ~-space and H a ~'-space in ~. 

Lemma 3.12: Let ~ be a topological category with finite products and 

be a (K×L)-co%oured PROP as above. 

(a) Given a muttipLicative functor F : Hwr'q-1~ > ~ and a collection 

of G-equivariant maps fk : Pk,q --> ~(Fi,F(k)) extending F. (Uk,qlQk,q), 

one for each shape orbit of trees with r internal edges, then there 

is a unique muttiplicative functor F' : Hwr'qB --> ~ that extends F 

and satisfies F'° U~,q = fx for a~% X. 

(b) Suppose given for each r and each q>O a muLtipLicative functor 

IHwr'q-l~ (here put Fr, q : Hwr'q~ --> ~ such that Fr,q_ I = Fr, q 

Fr, o = Fr_1,r_1). Then there exists a unique muLtipLicative functor 

F : HWB --> ~ such that FIHwr'qB = Fr, q for all r and q. 

(c) Both (a) and (b) also hold if we replace ~ by a PROP and the word 

muLtipLicative functor by PROP-functor. 

Proof:(a) Since F' has to be muLtipLicative, a representative A(Pk,~, q 

has to be mapped to fk(A~ ~-I). This determines a map of the space of 

all representing trees of Hwr'q~. Since the fk are equivariant, ex- 

tend F o (Uk,qIQ~,q), and each decomposable morphism of PX,q Lies in 

this map factors through e functor Hwr'q~ --> G, the required Q~,q 

functor F'. 

(b) is an immediate consequence of the homogeneous version of (3.7 b~ 

The proof of (c) uses the same erguments. | 
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Remark: A similar resutt, with no ~roup actions, holds for PROs. 

Definition 3.13: A famity of functors H(t) : ~ m> ~, t~l, of topo- 

logical categories is cabled a homotopy of functors if H(t)(e) is in- 

dependent of t for art e ~ ob G and the functions 

• (e,e') x I --->~(H(O)(e),H(O)(e')) ~iven by (f,t) ~--> H(t)(f) are 

continuous. 

Let us state a first application of (3.12). Given a subcategory 

of HV~, we denote the space of a lt etements of P~,q which represent 

a morphism in ~ by Dk,q. We call ~ an admissible subcategory if each 

DX, q is closed in PX,q and each pair (Px,q,Qk,q U Dk,q) is a G-NDR 

and if a • b or a@b are in D then so are a and b. 

Proposition 3.14: Let D be an admissibte subcate~ory of HW~. Suppose 

given a muttiplicative functor F from HW~ to a topolo~icat category 

with finite products and a homotopy of muttipticative functors 

H(t) : ~ ~ ~ such that H(O) = FI~. Then there exists a homotopy of 

muttipticative functors F(t) : HW~ ---> ~ extendin~ H(t) and F. The 

same holds if we substitute ~ by a PROP and use PROP-functors. 

Proof: Let ?-1'q(t) be any homotopy of muttipticative functors from 

HW-I'q~ to ~ ex~endin~ H(t)IHW-1'q$ O D. Inductivety suppose we have 

defined a homotopy of multipticat~ve funetors Fr'q-1(t) : Hwr'q-1~--> 

extending the restriction of H(t) to Hwr'q-1$ 0 ~. Using (3.12) we 

onty have to define a homotopy of G-equivariant maps 

f~(t) : P~,q m> ~(Fr,q-1(t)(!),Fr,q-1(t)(k) ) extendin~ ?O~,q~X-t=Osnd 

Fr'q-1(t)o(Uk,qlD~,qU Q~,q). This is possible because ~ is admissib~e.~ 
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3. LIFTING THEOREMS 

Let • be a (KxL)-coloured PROP as in the previous section. We 

first show that the augmentation functor ¢ : HWB --> H~ is a homotopy 

equivalence. Since HWB c W~ and ~ c • are full subcategories, this 

follows from 

Proposition 3.15: For each object ~ : [hi --> KxL of B and each 

k ( K×L the map ¢ : W~(~,k) --> ~(~,k) is a Sn-equivariant homotopy 

equivalence with the standard section as homotopy inverse. If the 

identities of B are isolated, the Sn-equivariant deformation H t of 

WB(~,k) into the standard section can be chosen to be fibrewise. 

If we use relation (3.1 a*), the sts tement follows from the proof 

of (3.6), but not so if we use (3.1 a). The following proof works for 

both cases. 

Proof: We filter W~(~,k) by the subspaces F r of morphisms represented 

by trees with at most r internal edges. An element of Mk represents 

a morphism in Fr_ I iff (3.8)(i) or (ii) holds. Let R~ be the subspace 

of Mk of those elements. We know from (A 2.4) that R~ is a G-equivari- 

ant SDR of M x. Hence Rx/G is a SDR of Mx/G. The Sn-action on Mk ~iven 

by ~ : PX,E --> Pk,N-I ~ makes RX/G into an Sn-equivariant SDR of 

Mk/G. Since F r is obtained from Fr_ I by attaching Mk/G by the obvious 

Sn-equivariant map Rk/G --> Fk_ S , the space Fr_ I is an Sn-equivariant 

SDR of F r. It follows from (A 4.5) that the standard section F o is a 

Sn-equivariant SDR of W~(~,k). 

If ~ has isolated identities, we may restrict our attention to the 

space of those trees which do not have an identity as vertex label, 

because this space is open and closed in the space of art trees. We 

then can take the deformation H t of the proof of (3.6). 
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Definition 3.16: Let ~ and ~ be topological categories. A continuous 

functor F : g m> ~ is called a homotopy equivalence if it is bijective 

on objects and each F : ~(X,Y) m> ~(FX,FY) is a homotopy equivalence. 

If g and ~ are PROPs or topological categories with finite products 

and F a PROP-functor or multiplicative, we call F an equivariant e~ui- 

valence if it is bijective on objects and each F : g(X,Y) ~> ~(FX,FY) 

is an equivariant homotopy equivalence. We call F a fibred homotopy 

equivalence (equivariant fibred equivalence) if each F: g(X,~-->~FX,F~ 

has a (equivariant) section and there is a (equivariant) strong de- 

formation retraction H t : g(X,Y) ~> ~(X,Y) into the section such 

that Fo H t = F for all t~I. 

We use the following theorem to replace naturally occurring PROPs 

by the artificial bar construction PROP WB. 

Theorem 3.17 (Lifting Theorem): Given a diagram consisting of a (KxL)- 

coLured PROP ~, L-homogeneous (KxL)-coLoured PROPs g and ~, an admis- 

HL~ > 

sible subcategory ~ of HLWB, PROP-functors F and G, a continuous 

functor H' and a nomotopy of functors K'(t) : ~ --> ~ from F o(¢I~) 

to G- H', both preserving objects, 0, and permutations. We assume 

(i) G : D --> g is an equivariant equivalence for all ! and k 

OR (ii) G : ~ --> g is a homotopy equivalence and each ~(!,k) is a 

numerable principal Si-space (see Appendix III) for all ~ and 

k. 
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Then: 

(A) There exists a PROP-functor H : HLW@ --> ~ and a homotopy of PROP- 

functors K(t) : HLW~ ~> ~ from Fo ~ to G oH extending H' and 

K'(t). 

(B) Given two PROP-functors Ho,H I : HLW~ --> ~ and a homotopy of func- 

tors L'(t) : ~ --> ~ from HoI~ to HII~ preserving @ and permuta- 

tions. Further given homotopies of PROP-functors ~($,~($:HLW~--> 

from F. ¢ to G o H ° respectively from F o c to G oH 1 and a homotopy 

of homotopies K'(tl,t2) : S --> G, (tl,t2) ( 12, preserving • 

and permutations, such that K'(O,t2)=Ko(t2)IB,K'(J,t2)=K1(t2)l@, 

K'(t1,0) = F -(cl~), and K'(t1,1 ) = G- L'(tj). Then there exists 

a homotopy of PROP-functors L(t) : HLWB --> ~ from H o to H I and 

a homotopy of homotopies of PROP-functors K(tl,t 2) : HLWB --> 

extending L' and K' and such that K(tI,0)=F. e and K(t1,1)=L(tl). 

In particular, H of part (A) is unique up to a homotopy of func- 

tors. 

Proof: We construct H and K(t) by induction on the skeleton subcate- 

gories of HW~ using Lemma 3.12. Suppose we have defined H and K(t) on 

' . , --> ~(i,k) HW r q-1~ To extend we need G-equivariant maps h~,q : Pk,q 

--> ~(~,k) already given and G-equivariant homotopies kk(t) : P~,q 

on Qk,q U Vk, q and satisfying k~(O)=F- c-uk, q and k~(1)=G o h~, one 

for each shape k of a complete set of shape orbits of trees in Hwr~. 

These maps are provided by Theorem A 3.5. To be able to apply the 

second part of this theorem, we have to verify that P~,q is a numer- 

able principle G-space. Let U(~,k) = CU r } be a Si-numerabLe open 

covering of @(~,k) with numeration X U : @(~,k) --> I. Recall that 
r 

PX,q = Iqr xJNL @(~t,kL)x lid}, where I rq c I r is the subspace of all 

points with at Least r-q coordinates of value 1. The G-numerable 

r cover ~ of Pk,q consists of the open sets W = Iq x~LUL x lid] with 

U l (~(~,kt) and has the numeration 
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k W : I rq x~% ~(i L_ ,k$) × [id] ~> I 

(!,bl,...,bn,id) ~--> ku1(bl)'.-.'kUn(bn) 

If gW D W = ~ for g(G, W ( ~, and kgW(gx) = kw(X) , x(W, then Pk,q is 

a numerable principal G-space by ~ 3.2). An e$ement g(G permutes some 

of the coordinates of I r and some of the factor8 ~L $(!l'kl ) More- q 

over, there is at Least one factor ~(!,k) which is kept fixed in it- 

self under g but changed by a permutation ~ ( S i. Since ~(!,k) is a 

numerable principab St-space (U- ~*) 0 U = ~ for U (U(!,k). Hence 

gW fq W = ~. Since X W is defined factorwise, we obviously have 

~gw(gX) = ~w(X). 

The proof of part (B) is analogous. Just replace the pair 

(Pk,q,Qk,q U Vk, q) by the product (Pk,q,Qk,q U Vk, q) × (I,SI) and ob- 

serve that hk: Pk,q x I ~> ~(!,k) and the hOmotopy kk(t~:Pk,qXI--> ~k) 

U V k x I and that kx(O)(x t) are already given on Pk,q x 81 !J (Qk,q ,q) 

has to be F o ¢oUk,q(X) for all t~I. 

Remark 3.18: The theorem is still true, by the same proof, if we re- 

place g and ~ by topological categories with finite products having 

the same objects and all PROP-functors by mu~tipticative functors. 

Then, in additiO~wehave to assume that G : ~ ~> • preserves objects. 

Remark 3.19: By the same proof we can actually show a slight generali- 

zation of the Lifting theorem, which has some practical value. If we 

only assume that G : ~(~,k) --> ~(~,k), ~ : In] --> KxL, is an equi- 

variant homotopy equivalence for ngr, or an ordinary homotopy equi- 

valence and each B(~,k) is a numerable principal St-space for n~r, 

while all the other assumptions are kept, we can "extend" H' and K'(t) 

over the PROP-subcategory Q~W~ of HLW~ generated by the morphisms of 

HLW~(~,k), ~ : In] --> KxL, with n~r. 



- 87 - 

The results (3.17), (3.18) without group actions hold for PROs. 

One would obviously Like to have G, H = F- c. This is in general 

not possible, but under additional assumptions on F and G we can 

achieve this. 

Theorem 3.20: Given a commutative diagram with a (KxL)-coLoured PROP 

9, L-homogeneous (KxL)-coLoured PROPs ~ and ~, an admissible subcate- 

HL~ P > 

gory B of HW~, PROP-functors F and G, and a continuous functor H' 

preserving objects, ~, and permutations. We assume 

(i) G is an equivariant fibred equivalence 

(ii) each id k ~ ~(k,k), k ~ KxL, has a closed neighbourhood X k such 

that (Xk,{idk}U fr Xk) is a NDR and F(X k) = [idk}C ~(k,k). (fr= 

frontier in B(k,k)) 

Then: 

(A) There exists a PROP-functor H : HLWB --> ~ extending H' such that 

G°H = Fo~ 

(B) Given two PROP-functors Ho,H I : HLWB m> ~ and a homotopy of PROP- 

functors K'(t) : ~ m> ~ from Hol$ to H II~ such that G-Ho=F-¢=G-H I 

and G-K'(t) = F -(¢IB), there exists an extension K(t):HLW~---~ 

of K'(t) from H ° to H I such that G-K(t) = F-e. In particular, 

H of part (A) is unique up to a homotopy of PROP-functors. 

Proof: For the proof of the theorem a filtration different from the 

skebeton filtration seems to be more suited: Let Yk=~k-([id~U frXk ). 

Let Fp,q be the subcategory of HLW~ generated under composition by 
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copses whose trees represent elements in B or have r internal edges 

of which at least r-q have length 1 and t vertices with labels in the 

Yk'S, r + t ~ p. Since Fp,q is a closed sub-PROP, it is easy to check 

that HWB is the direct Limit of the Fp,q. We define F_I to be the sub- 

PROP generated by ~ and the identities of HWB. Let k be a tree shape, 

a a collection of t vertices of ~ WhOSe labels lie in the ~(k,k)'s, 

and 6 a collection of r-q internal edges. Let R~,a, B be the subspace 

of aLL points of P~,q for which each vertex of a has a Label in some 

X k and each edge of ~ has length I. We consider only those spaces 

Rk,~,6 which do not lie completely in V~,q or Qk,q and observe that 

the elements of R~,a,6 D Rk,a,,~ , represent morphisms of some Lower 

filtration if a' and 6' also have t and r-q elements. An element of 

the group G may map R~, a,~ onto some R~,a,,6,. We take one space in 

each orbit of spaces under G. Let G' be the subgroup of G whose ele- 

ments map the coLLections a and ~ into themselves. The space RX,a, 6 

is of the form I q × X × Z, where I q specifies the Lengths of the in- 

ternal edges not in 6, X is an a-indexed product of spaces X k, and Z 

is the space of the remaining vertex labels of X. Then A ~ RX,~,~ re- 

presents an element of Lower filtration iff A~R~,a,~=sIqxx×zuIq×Y×Z, 

where Y is the (cLosed) subspace of those points of X with at Least 

one coordinate in some lid k] ~ fr X k. Note that, the action of G' on 

Rk,a, ~ permutes the coordinates of I q and X but does not change them, 

in contrary to the coordinates of Z. The functor H to be constructed 

is defined already on F_I. SimiLarly to the proof of (3.17) we in- 

ductively have to construct G'-equivariant maps f=f~,a,~:Rk,a,~>~) 

already given on R~,~,6 such that G o f = F -e -(Uk,qlRk,a,6). For part 

(B) we have to define G'-equivariant maps h : Rk,a,~×I ~> ~(~,k) 

already given on R~,6,~x 8I U R~,a, ~ '  x I such that G-h(x,t) = 

= F , eo(U~,qlR~,a,~)(x). Both maps are provided by ~r next lemma. 

Lemma 3.21: Suppose (X,A) is a G-NDR, B,Y,Z are G-spaces, G operates 
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on I n by permuting factors and 

. q' A x B x In U X x B x 8I n c X x B x I n q > X x B > B 

Y P >Z 

is a commutative diagram of G-equivariant maps with the diagonat 

action on the products and q,q' projections. Suppose there is an 

equivariant section s of p and an equivariant homotopy H : idy ~ s • p 

such that p-H t = p for all t(I. Then ~nere exists an extension 

h : X × B × In---> Y of f such that p -h = ~ ° q. 

Proof:Define an equivariant map F':(AxBxl n U XxBxSln)xl --> Yby F<x,b,u,t)= 

Ht(f(x,b,u)). Then F'(x,b,u,1) = s-p-f(x,b,u) is independent of u. 

Hence F' factors through sn equivariant map F:AxBxC~U XxBxcsIn--> Y 

where C denotes the unreduced cone functor. Let i : In c CI n denote 

the standard inclusion. Define a map k : I n x I --> CI n as fottows: 

,.1 1 1 .,,, 
Each point of I n x I ties in a unique Line segment from z=~7, ~ .... ,7,,/ 

to a point (x,t)( I n x 0 lj 8I n x I. Map z to the cone point and (x,t) 

to i(x) and the rest of fine segment linear%y (here we identify CI n 

with the join of I n x 0 and (½ ..... ½,1) in ]Rn+l). Let 

K = F , (Jdxk) : AxBxlnxI U XxBxslnxl U XxB×Inxl --> Y. 

Since k is symmetric in the coordinates of I n and F is equivariant, 

so is K. Since p o F'(x,b,u,t) = p o f(x,b,u) = ~(x,b) and k(81~IUInxl)=CSI n 

we have p-K(x,b,u,t) = g(x,b). Furthermore K(x,b,u,O)=F(x,b,u,0)=~x,hu~ 

Since (X,A) and (In,8,I n) are equivariant NDRs, there exists an 

equivariant retraction r' : xxInxI --> (AxI n U ](xsIn)xI U xxInxl, 

which we extend to an equivariant retraction 

r : XxBxInxl --> AxBxInxI U XxBx3InxI U XxBxInxl 

by taking the identity on the factor B. Define h : ~xBxI n --> Y by 

h(x,b,u) = K- r(x,b,u,O). Let r'(x,u,O) = (x',u',t). Then h extends 
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f, is equivariant and 

p " h(x,b,u) = p "K(x',b,u',t) = ~(x',b) = ~(x,b) = g °q(x,b,u) 

because g factors through g'. | 

Remark 5.22: The condition (~ii) on F in Theorem 3.20 holds in parti- 

cular if • has isolated identities. 

Condition (3.20 (iii)) is actually no serious hindrance if we al- 

low to chan~e 9 a bit. Let 9' be the foltowin~ PROP: 9'(~,k) = 9(~,k) 

if ~@k and 8'(k,k) = 9(k,k) U I/~ where 9(k,k) • id k ~ 16I. Let °8 and 

~9 denote composition and @ in 9. Composition on the right with per- 

mutations is the same as in 8. Further, if b ~ I c 8'(k,k) for any k, 

and a i are morphisms into basic objects of 9', we define b.(a1@...®a~= 

= (a I an) . a' b °8 ~ 8  " ' "  @9 ' w i t h  e ]  = i d  k ,  i f  a ( I c 9 ' ( k , k )  a n d  = a i 
"I I ' i 

otherwise. If b = t 6 I c 9'(k,k), we define b-a = t.u (see(3.1)) 

if a = u ~ I ~ 8(k,k) and b -a = a otherwise. This determines the 

PROP 9' completely. There is a PROP functor ¢' : 9' --> 9 given by 

¢'(a) = id k if a ( ! c 8'(k,k) and ¢'(a) = a otherwise. The corres- 

pondence ~'(a) = a defines an equivariant non-functorial section 

~' : 9 --> 9', and by shrinking the attached whiskers we obtain an 

equivariant fibrewise deformation of 8'(i,k) into the section. 

Given a diagram of PROPs as in (3.20) with the difference that 

is an admissible subcategory of HLW~' and the condition (iii) is 

dropped, there exists a PROP-functor H : HW~' --> ~ extending H' such 

that G oH = Fo ?, where [ is the composite ¢'- ¢(9') : HW~'--> HS'~H~. 

The analogue to (3.20 B) also holds. The reason for this is that the 

composite functor F o ¢' satisfies requirement (iii) and (3.20) can be 

applied with 8 replaced by 9' and P by F- ¢'. We should remark that 

these considerations remain true even if (9(k,k),[idk}) is not a NDR. 

HLW~' also supplies an example that (3.20) is not true if we drop 

condition (iii). ConsequentLy we cannot expect to obtain commutativity 
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in Theorem 3.17. Suppose we have used relation (3.1 a*) for the defi- 

nition of WB'. Then ¢(~') : HW~' q> H~' is equivariantLy fibre homo- 

topically trivial by (3.6). If condition (iii) of Theorem 3.20 could 

be dropped, we would have a commutative diagram of PROP-functors 

HLW~ H > HLW~ , 

¢ ( ~] HL~ ' 

HL ~ Id > HL ~ 

by (3.20 A). This is in general impossible by following consideration: 

Let ~(~),~(~') denote the standard sections. Then ¢(~') oH - ~(~) de- 

fines a section of ¢' which preserves identities. Since ¢'l~'(k,k) is 

the identity outside the attached whisker and since 0 ~ I c ~'(k,k) 

is the new identity in ~', this section can only be continuous if the 

identities of ~ are isolated (in which case, of course, (3.20 (iii)) 

holds). 

A more pictorial description of a ~S-action on an object X ~ ~O~K 

is sometimes useful. Rather than ~ive maps from WB(~,k) to ~o~(Xi,X k) 

_ ~> X k using the full adjointness we consider the maps W~(i,k) × ~i 

in the category of k-spaces. 

Definition 3.23: A cherry tree on X 6 ~o~ K is a representing tree of 

a morphism in W~ with a point of X k instead of a twig label assigned 

to each twig of cotour K. We call this point a cherry. 

The set of aLL cherry trees hss an obvious topology: Let 

T(~,k), ~ : In] ~> K, denote the space of all representin~ trees of 

W~(~,k). Then the space of all cherry trees is the disjoint union of 

all spaces 
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~x k = U ~(±,k) x Xi/~ , kCK 

with (A ° q*,x) = (A,q*(x)) where A (T(!,k) , o 6 S!, and x ( X A. 

ExampLes: 

a b 

b~4X t~ 
t~a3 

k5~ a trivia% cherry 
tree 

The proof of the following %emma is triviaL. 

no cherries 

because 

stumps 

Lemma 3.24: Let ~ be a K-coloured PROP and X 6 ~o~ K. Then X admits a 

'~-action iff there are continuous functions F k : TSX k --> X k factor- 

ing through the fotlowing relations 

(a) = (3.1 a) for cherry trees 

(b) = (3.1 b) for cherry trees and permutations on~y, the cherries 

are permuted with the twigs. 

(c )  = (3 .1  c) 

( e )  i f  t h e  t r e e  A w i t h  r o o t  c o L o u r  k h a s  a n  e d g e  o f  t e n ~ t h  1 c o t o u r e d  

; so  t h a t  A = A 1 o A 2 ,  t h e n  P k ( A ; X l  . . . . .  X n ) = P k ( ~ ;  ~ . . . . .  ~ , X q +  1 . . . .  X n ) ,  

w h e r e  y = P t ( A 2 ; X p + l  . . . . .  Xq) ,  and  (Xp+ 1 . . . . .  Xq) and  ( x  1 , . . . .  x n)  

are the cherries of A 2 and A in clockwise order. 

The relations (a),(b),(c) substitute the relations (3.1) for trees, 

retation (d) impties that identities act as identities, and re$ation 

(e) ensures that composite operations are preserved. | 

We close this chapter with an application of the Liftin~ theorem. 

Proposition 3.25: (a) The Lopp space ~Y can be made a WS-space, na- 
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turalLy in Y, i.e. a map f : Y --> Z ~ives rise to a W~-homomorphism 

Of : QY - - >  OZ. 

(b) An An-space , 2gng~, is a Qnw~-space (see (3.19)). Note that 

QTW~ = W~. 

(c) An An-map, 2~n~, between monoids X and Y is a Qn W(~®£1)-space, 
£I 

which extends the W~-action induced on X and Y by ¢(~) : W~ ~> ~ (re- 

cal~, a monoid is an ~-space). 

These results are an immediate consequence of the results of chap- 

ter II,§6 and 7, the lifting theorem and Remark 3.19. 

Remark 3.26: The usua~ loop space ~Y = ~o~((I,~I),(Y,.)) is not a 

monoid, but the functor O preserves product. J.C. Moore modified the 

definition of a loop space in order to obtain a monoid structure. 

Moore's ~oop space ~M Y is the space of all pairs (~,a)~ yIRx ~ with 

a~O and ~ : IR--> Y a map satisfying u(t) =., the base point of Y, 

for t~O or t~a. (As usual, y~R= ~o~(IR,Y) with the function space to- 

pology). ~MY is a monoid under the multiplication defined by 

(u1,a1)-(~2,a2) = (u,al+a 2 , where 

~1(t) if O~t~a I 
u(t) = 

~2( t-al if a1~t~a 2 

The usual ~oop space OY is a deformation retract of OMY. A deformation 

H s : OMY --> OMY is given by 

~s (~'a) = I(~'a+s-sa) a ~ l  

[ (u s,a+s-sa) a ~ l  

with Us(t ) = u(at/(a+s-as)). The functor ~M has in contrary to ~ the 

disadvantage that it does not preserve products. It is easy to see 

that n_£ ~oop space functor L, i.e. a functor L such that LY ~ OY for 

all Y ~ ob ~o~, can preserve products and be monoid-valued: For other- 

wise LLY would admit an action of 8 m@e m ~ @cm' and a result of Do~d 
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and Thom [17; Satz 7.1] asserts that any path connected commutative 

monoid has the weak homotopy type of a product of EiLenberg-MacLane 

spaces, which is obviously not the case in general for O2y. 

We should remark that we are not able to prove an analogue of the 

lifting theorem for arbitrary theories, because the set operations in- 

duced by epimorphisms mess up the skeleton filtration. This is the 

main reason why we restrict our attention to PROPs and PROs. 



IV Chapter 

HOMOTOPY HOMOMORPHISMS 

I. MAPS BETWEEN WB-SPACES 

Let 9 be a K-cotoured PROP. Homomorphisms as maps between W~-spaces 

wiLL not do, because if we change the coLLection of underlying maps 

fk : Xk --> Yk of a homomorphism by a homotopy to maps gk' the gk do 

not define a homomorphism in generaL. We have already seen that a WB- 

structure is a 9-structure up to homotopy and aLL coherence conditions, 

because the relations of 9 hold in WB up to homotopy and the morphism 

spaces of W~ have the same homotopy type as those of 9. SimiLarLy we 

can substitute a homomorphism by a homomorphism Up to homotopy and aLL 

coherence conditions. Since a 9 ®£1 action defines a homomorphism of 

9-spaces, the construction W suggests to take a W(9 @£1)-action on 

(X,Y) extending the given W~-actions on X and Y as maps between WB- 

spaces. Before we give a rigorous definition, we have to make some 

notational conventions: 

We denote an element b in the standard section of W~ by its coun- 

ter image in 9. But we note that the standard section is not a functor 

and that 9 is not a subcategory of W~. 

RecaLL that £n is the category with objects 0,1,...,n and exactly 

one morphism from p to q if p~q and none otherwise. If c is the morph- 

ism from 0 to I in 91, we denote the morphism id k® c ~ W(9 ®£i)((k,@,@,I)) 

by Jk" If 9 is monochrome we may drop the index k. The inclusion 

functors W~ c W(9 @£i) repLa~mg vertex tabe1~ b by b®id o respectively 
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b@id I wiLL be denoted by d I respectively d °. 

A W~-space witi from now on be signified by a pair (X,a), where 

a : W~ --> ~o~ is a ~-space with X ( ~op K as undertying space. 

Definition 4.1: Let (X,a) and (Y,~) be W~-spaces. A homotopy homomorph- 

ism, for short a @-map, from (X,a) to (Y,~) is a W($ @91)-space 

d ° d I 0 : W(~ @91) --> ~o~ such that 0 • = ~ and 0" = a. The morphism 

p(j) = [0(jk)Ik~K} in ~OpK is called the underlying map or carrier 

of 0- We write a ~-map as pair (f,0) where f is the underlying map of 

p. 

The definition of a ~-map can be modified in seversA ways. Our de- 

finition allows operations XxY --> Y and one could argue that we are 

not really interested in mixed products nor in factorizations of 

morphisms through them. In chapter II, §7, we have already indicated 

that partly homogeneous categories are the adequate toot for this mo- 

dification. Let HW(~ ®91) = H s W($®£I ) . 
I 

Definition 4.2: Let (X,a) and (Y,B) be W~-spaces. A homogeneous homo- 

topy homomorphism, for short a h~-map, from (X,m) to (Y,~) is a pair 

(f,~) where p : HW(~®91) --> ~o~ is a HW(~®£1)-space and 

. = d I f = [p(jk) Jk~K} ~ mor ~O~K such that 0 d ° ~ and p. = a. 

Compared to W(~ ®B1), the category HW(~®91) has several drawbacks 

as we have already mentioned in (II, §7) and (III, §2). Nevertheless, 

the lifting theorem proves that they are manageable. The main object- 

ion one could have is that HW(~@~I ) is artificial. For example, ~et 

2 ° denote the object [2] --> [*]x[O,1} whose image is (.,0) and 11 the ob- 

ject [I] --> [*}x[0,1}whose image is (.,I), then disregarding O-sty 

operations the space HW(~®91)(2°,I I ) is 
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u=O 

tit t=O 

v=1 

o V 1 1 

v=O 

u=1 

The vertex t = I represents the operation (x,y) ~ f(xy) and the 

vertex u = v = I the operation (x,y) ~---> f(x)f(y). One woutd expect 

a copy of I divided in the middte instead. We obtain a copy I from 

our modet by restricting the square to its diagonat. This reads to 

a third definition of maps. We define a subcategory LW(~@S I) of 

HW(~ ®£i ) such that b ( LW(~ ®91) decomposes in LW(~ ®91 ) iff it de- 

composes in W(B®91)- so it does not have one of the drawbacks of 

HW($®£I )- and moreover the morphism spaces are the intuitively 

correct ones. A~though LW(~®£1) is mana~eabte it is too compticated 

to work with. 

Definition 4.3: (inductive) We catb a tree in HW(~ @£i ) fever if it 

has no or one vertex, or if the fottowing hotds: ~nen we stretch the 

tree by dividing art its edge ten~ths by the tength of its tongest 

edge, so as to produce some edges of ten~th I and a decomposition of 

the tree in W(B @£i ), we require this decomposition to be a decompo- 

sition into fever trees. Let LW(~@£1 ) be the subcategory of HW(~ ®£i ) 

generated by fever trees. 

NQte in particular that the decomposition hss to be a decomposition 

into trees of HW(~ ®~i). It fottows that the t-edge and the diagonal 

of the square are the onty teve% trees in the space of the previous 

example. We now can define a third type of map between W~-spaees 

using LW(~ ®£i ) instead of HW(~I ). 

Since LW($@91 ) is too compticated, we wit~ onty consider maps as 
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defined in (4.1) and (4.2). In some sense it does not matter which 

sort of maps we take, as our next result wiLL show. Before we state 

it, Let us give a reason why we work with B-maps and hB-maps. In spite 

of the drawbacks of HW(~ ®91) a h~-map occasionally has advantages 

over a ~-map. One would expect that it is easy to define the compo- 

site of a B-map or h~-map with homomorphisms. This is not quite true 

for B-maps. 

Definition 4.4: Let f :(X,a) --> (Y,B) and h : (Z,y) --> (W,8) be 

homomorphisms of W~-spaces. Let (g,0) : (Y,B) --> (Z,y) be a B-map, 

and (p,w) : (y,~) I> (Z,y) a. hB-map. Define composites (gof, p-~=~,p).f, 

(p o f,~) = (p,w) o f, and (h o p,~') = h • (p,w) as follows: Let 

a ( W(B @B1)(!,k) and b ( H£ W(~ @91)(~,k). Then ~(a),~(b), and w'(b) 
I 

are given by a,~,y, or 8 unless k has £1-coLour I, and at least one 

i r ( ~ = {i I ..... i n] or each Jr ( ~ = [Jl ..... jn } has Bl-COLOUr O. In 

this case we define 

~ ( a )  = O(a) ° ( f ~ × . . . x f ~ )  

F (b )  = ~ ( b ) :  fn  

where f'r = id Z respectively f if ir has £1-cotour I or O. We ca~t the 

so-defined composites the canonical composites of a B-map o_rr hB-map 

with a homomorphism. 

Remark 4.5: We cannot in ~enerat define a composite h o (g,p) = (ho ~,p'), 

for Let p(a) : YxZ ---> Z be the action of a particular a ( W(B ®£i ) 

under 0. Then p'(a) is a map YxW ~> W which we cannot obtain from h 

and p(a). All we get is that the required map p'(a) has to make the 

square p(a) 
XxY > Y 

XxZ p'(a) > Z 
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commute. So we say that (h • g,0') is a canonical composite h .(g,p) 

if the following holds: Let a { W(~ ®Sl)(i,L) where L has S1-coLour I, 

Let Yr = Zr ~ Xk if i(r) = (k,O) ~ K×ob 91, and Yr 6 Yk and z r = h(y r) 

if !(r) = (k,1). Then 

p'(a)(z I ..... z n) = h(p(a)(y I ..... Yn ) ) 

Proposition 4.6: Given a map of W~-spaces f : (X,a) --> (Y,~). Then 

(a) f admits a Y-map structure iff it admits a bY-map structure 

(b) f admits a bY-map structure iff it admits a level-tree map struct- 

ure, at least if the category LW(~ ®91 ) is constructed by using 

relation (3.1 a*). 

Proof: LW(Y ®91) c HW(Y @91) c W(Y ®91). Hence if f admits a Y-map 

structure it admits a h~-map structure, which implies that it admits 

a LeveL-tree map structure. 

Conversely given a funetor 0 : LW(~@~I ) --> ~0~ such that p . d I = 

and p • d ° = ~. The restriction of the deformation H t of (3.6) stays 

inside LW(Y ®91). Therefore we can apply the lifting theorem with 

G = e : LW(~®~I ) --> H(Y®~I ), ~ = LW(Y~gl ) and H' the identity. 

Hence there exists a retrsction functor R : HW(Y ®91) ~ LW(Y ®91) 

and therefore an extension of p to HW(@ ®~I ). 

Now suppose (f,p) : (~,a) --> (Y,8) is a h~-map. Let ~ be the sub- 

category of W(~®BI ) generated under composition and ~by the morphisms 

of HW(Y ®91). Then p extends to an action ~ : ~ --> ~0p. Let 

c : $ --> ~ ® 91 be the restriction of the augmentation W(@®~)-->@®S 1. 

We show that each morphism space 'D(!,k), ! = [i I ..... in] can be de- 

formed equivariantLy into a suitable section of cl~(!,k). If all 

i r 6 ~ and k have the same Sl-COlOUr the deformation is given by 

Prop. 3.15. Suppose that k has Sl-COLOUr I and at Least one i r the 

B1-coLour 0. Then each representing tree of an element of ~(!,k) can 

be decomposed in ~ into A ° (C 10... @Cn)- ~*, where A is a tree whose 
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twigs at% have Sl-COLOUr I (A may be the identity), the twigs of each 

tree C i all have the same B1-coLour O or I, and ~ is a permutation. 

The deformation is defined in steps. We first shrink a~t edges of £1- 

colour O using the deformation of Prop. 3.15. We end in the space T 

of abt morphisms of ~(i,k) representable by trees whose internai 

edges all have £1-cobour I. The next step replaces each twig of co,our 

(k,O), k~K, by 

(k,O) 

tl(~1) 

where t runs from O to 1. Finally we shrink art internal edges which 

are not the outgoing edge of a vertex with label Jk' using the 

deformation of (3.15). Art three deformations stay inside ~(~,k). The 

composite deformation deforms ~(~,k) equivariantly into a subspace 

which is mapped homeomorphicatly onto ~@£i(~,k) by ¢. We now apply 

the inhomogeneous lifting theorem with ~ generated by dIw~ud°W~U[Jklk~ 

and H' the inclusion. (We cannot take ~ = ~ because an indecomposable 

a ~ mor ~ could be decomposable in W(~@£I)). Tf H : W(~ ®£i ) ~> 

is an extension of H', then ~ o H defines a B-map structure on f. | 

2. COMPOSITION AND THE HOMOTOPY CATEGORY 

Unfortunately we cannot take g-maps or h~-maps as morphisms in a 

category for back of a definition of the composite of two morphisms, 

unless we are in the situation of Def. 4.4. The phenomenon is seen at 

it8 simplest in the case of h~-maps f : X --> Y and g : Y --> Z be- 

tween monoids. There we are given homotopies H : f . ~2 ~ k2 " (f @ f) 

and K : g ° X2 ~ k2 "(g @ g)" We deduce that h. k 2 ~ ~2" (h@h), where 

h = g o f, but not by any homotopy that is going to make composition 
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associative. 

Instead of a category we can define a simpticiat class having W~- 

spaces are vertices and B-maps respectivety h~-maps as l-simplexes. 

Observe that a functor Sn --> Sm is uniquely determined by an 

order-preserving map of the sets of objects {0,1,...,n}-->[0,1,...,m}. 

Let 8 i : ~> £n and ~ : 9n+I n Sn-1 --> S n, i = 0,1 ...,n, be the 

funetors corresponding to the maps 

j j< i  
{o,I ..... n-l} mj ~--> ~ [O,~ ..... n} 

j+1 jmi 

respectivety 

[0,I ..... n+l] B j ~--> I j j~i 
( j-1 j>1 

{o ..... n} 

Definition 4.7: We define simpLiciat classes ~ and ~h@ by taking as 

n-simplexes all W($ ®£n)-Spaces W($ ®Bn) --> ~o~ respectively all 

H£ W(@®£n)-Spaces H£ W($@£n ) --> ~o~. The face and degeneracy ope- 

n di si n i W(Id®8~) and rations and in ~ and ~n~ are Riven by dn(a) = a • 

s~(a) = ~, W(Id®~). 

Recall that d i and s i have to satisfy fottowin~ identities which 

follow from the dual formulae for 6 i and ~: n 

did j = dJ-ld i i<j 

sls J = sJ+Is i i~j 

"sJ-ld i i<j 

dls ~ = id i,i-1=j 

sJd i-I i>j+1 

In order to simplify the notation we give an alternative descrip- 

tion of the representing trees of W(~ ®Bn). In general, a tree is 

given by its underlying graph and its twig and vertex labels, because 
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the vertex LabeLs determine the edge colours (we identify the trivial 

trees with the trees having exactly one vertex and an identity as 

vertex label). In our case, each vertex label has the form a@b and 

b ( £n is uniquely determined by its source and target. So if we spe- 

cify the £n-COlOUrS of the incomin~ and outgoing edges of th~s vertex 

and use only the ~-part a of a®b as vertex label we can recover the 

original vertex label and hence the original tree. We use this new 

description, which works for all categories ~ ®~, where • is a dis- 

crete topological category with at most one morphism between any two 

objects. Given a W(~®~)-spa.ce p we also frequently colour tree edges 

by the underlying space p((k,c)) instead of (k,c). 

Definilion 4.8: A simplicial class ~ satisfies the restricted Ken con- 

dition if given (n-1)-simplexes Xo,X I ..... Xr_1,Xr+ I ..... Xn, where 

0<r<n, such that dJ-lx. = dix. for 0~i<j~n, i,j@r, then there exists l j 

an n-simplex x such that dlx = x i for i@r. In other words, • satis- 

fies the usual Ken extension condition, except that the omitted face 

in the data is not allowed to be the first or the last. 

Our next result implies that the simpliciaL classes ~ and ~h~ are 

good substitutes for categories. 

Theorem 4.9: The simplicial classes e~ and ~h~ satisfy the restricted 

Kan condition. 

Proof: Since the argument is the same in both cases with exception 

that we use HBnW(~@£n ) for ~h~ instead of W(~@Sn), we only prove 

the statement for e~. Suppose we are given (n-1)-simplexes 

Po ..... Pr-1'Pr+1 ..... Pn : W(~®£n_1 ) --> ~o~ for r # 0,n such that 

i for 0~i<j,n. Let ~ be the subcate~ory of W(~ ®£n ) ge- dJ-lpi = d pj 

nerated under composition and @ by the "faces" diW(~®Sn), i @ k, the 
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images of W(~@£n_1) under W(Id®8~). So diW(~@£n ) is the subcategory 

of trees containing no edge cotoured i. Define a multip~icative functor 

: ~ ~> ~o~ by ~IdiW(~®£n ) = 0i. (This is possible since W(Id@8~) 

is an inclusion). We show that there is a multiplicative retraction 

functor W(~@Bn) ~> ~. 

Consider the pairs of spaces (W(~®Bn)(~,k),~(~,k)). We deform 

W(~@£n)(~,k) equivariantly into ~(~,k) in steps. We first shrink a~ 

internal edges coloured O by the deformation of Prop. 3.15. We next 

replace each twig eoloured 0 by 

(k is the S-co,our of the twig determined by the vertex ~abeb at its 

bottom) where t runs from 0 to I (compare the proof of ¢.6). At the 

end of this deformation the tree can be decomposed into a tree with 

no edge of colour 0 and a copse with no edge of colour n and hence 

represents a morphism of ~. Therefore the composite homotopy deforms 

W(~@£n)(i,k) into ~(!,k), keeping ~(!,k) inside ~(!,k). So the in- 

cbusion functor i : ~ c W(~®£n ) is an equiveriant equivalence and 

hence, by Prop. 3.15, the composite ¢ ° i : ~ ~> ~ ®£n' too. We now 

appty the ~ifting theorem (3.17) with ~ = ~ and H' the identity to 

obtain a retraction functor R : W($ ®Bn) ~> ~. The n-simplex p=~. R 

satisfies di(p) = Pi' i ~ r, as desired. 

Theorem 4.9 provides us with all we need. Given ~-maps or h~-maps 

(f,p) : (X,a) --> (Y,p) and (g,~) : (Y,~) --> (Z,y) there is a 2- 

simplex ~ : W(~@£2 ) m> ~op respectively ~ : H£ W(~ @£2 ) ~> ~op 
2 

such that d°(a) = ~ and d2(o) = p. The third edge ~ ~(~:W(~@£~--> ~o# 

respectively H£ W(~®£I ) --> ~o~, which is some g-map or h~-map 
I 

(h,~) : (X,a) --> (Y,p), is called a_ composite of f and g. Of course, 



- 1 0 4  - 

this composite need not be unique. 

Definition 4.10: Given any simpticia~ c~ass ~ satisfying the restrict- 

ed Kan condition, we call two edges f and g in ~ homotopic and write 

f ~ g, if there is a 2-simplex a with d2(a) = f, d1(a) = g and d°(G) 

is degenerate. This implies in particular that di(f) = di(g), i=0,I. 

?tom now on we assume that any simpliciat class we consider satis- 

fies the condition that any cottection of edges with given end points 

forms a set. 

Lemma 4.11: The notion of homotopy is an equivalence relation on the 

set of a~ edges with given end points. 

Proposition 4.12: Let ~ be a simpticiat class satisfying the restrict- 

ed Kan condition. Then there is a category, the fundamental category 

of ~, which has the vertices of ~ as objects and the nomotopy classes 

of edges f with d°f = y and dlf = x as morphisms from x to y. 

The proofs of these results are fairly standard (compare the theory 

of the fundamental groupoid of a Kan complex). We include them for the 

sake of completeness. 

Proof of 4.11: 

(a) Given an edge f, then there are 2-simplexes a amd • such that d°(@and 

I I 
d=degenerate / a ~  J ~  d ~ ¢ ~  

0 2 0 > 2 
f f 

d2(T) are degenerate, and d1(~) = d2(a) = d°(T) = di(¢) = f, namely 
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= sl(f) and T = s°(f). Hence f ~ f.(For the diagrams note that the 

face d i is opposite the vertex i). 

(b) Suppose f ~ g. By assumption and part (a), the faces d°,d 2, and 

d 3 of the foLLowing 3-simpLex are given. 

92 

Hence we can fiLL in the 3-simpLex by the extension condition, and 

the face d I provides a homotopy g ~ f. 

(c) Suppose f ~ g ~ h. By assumption and part (a), the faces d°,dl,d 3 

of the foLLowing 3-simpLex are given 

0 >2 

Hence we can fill in the 3-simpLex by the extension condition, and 

the face d 2 provides a homotopy f ~ h. | 

Proof of 4.12: We define composition in the same way as for ~-maps. 

Given edges f : x --> y and g : y --> z, there exists a 2-simpLex 

with d°a = g and d2a = f. We caLL d1~ = h : x --> z a_ composite of f 

and g. 

(a) If h end k are composites of f end g, then h ~ k: The faces d°,d 2, 

and d 3 of the foLLowing 3-simpLex are given, the Last two by the as- 

sumption that h and k are composites of f and g. 

3 

0 2 
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Hence we can fitt in the 5-simplex, and d I defines a homotopy h ~ k. 

(b) f,g : x --> y are homotopic iff there exists a 2-simplex ~ with 

d1(a) = g, d°(a) = f, and d2(a) generate: One way the faces d°,dl,d 3 

of the first simplex, the other way the faces d°,d2,d 3 of the second 

simplex are given. 

f f 

We fill in, and the faces d 2 respectively d I give the required result. 

(c) Given f,f' : x --> y and g,g' : y --> z such that f ~ f' and g ~ ~. 

Then g. f ~ g' • f': Consider 

O .> 2 
f, 

The faces d ° and d 3 are Riven by assumption and part (b). If h is a 

composite of f and g, then d 2 is given, we can fill in and find, that 

h is a composite of f' and g' 

(d) h • (g • f) ~ (h. ~) o f if defined: The faces d°,d I, and d 3 of the 

following simplex are given. 

5 

0 > 2 gof 

We fill in and find that h ° (g o f) serves as composite of f with hog. 

So we have defined an associative composition of the homotopy 

classes of edges of ~ with s°(x) as identity of x. 
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We denote the fundamental categories of 95 and 9h~ by ~ap~ respec- 

tively ~a~h~" Their objects are WB-spaces and their morphisms homo- 

topy classes, in the simpLiciaL sense, of S-maps respectively h%-maps. 

There is a more obvious definition of homotopy, which in the case of 

A -maps can be found in the Literature (e.g. [21]). We could call two 

~-maps [h~-maps] (f,p),(g,~) : (X,a) --> (Y,~) nomotopic if there is 

a homotopy through ~-maps [h~-maps] from p to ~. The next result shows 

that the two notions coincide. 

Lemma 4.13: Two ~-maps [h~-mapsl (f,p),(g,~) : (X,a) --> (Y,#) are 

homotopic in the simpLicial sense iff there is a homotopy through ~- 

maps [h~-maps] (ht,Ht) : (X,a) --> (Y,p) with H o = p and ~I = ~" 

Proof: Again we only prove the B-map c a s e  because the proof for h$ is 

completely analogous. 

Suppose there is a homotopy of mULtiplicative functors H t as stated. 

Let ~ be the subcategory of W(~@£2 ) ~enerated by the faces diW(~ ®£2 ) . 

We identify diW(~®£2) with W(~®£I ) usin~ W(Id@~J), where j = 0 if 

i = 0 and j = I if i = 1,2. Define a homotopy of muLtiplicative func- 

tots K t : ~ --> ~o~ by 

K t l d ° W ( ~ ® ~ 2  ) = p : w ( ~ ® ~ l )  - - > ~ o ~  

KtldIw($®£ 2) = H t : W(B®£ I) --> ~o# 

Kt}d2W(~®£2 ) = s ° ( = )  : W(~®£I ) - - >  ~0~ 

The functor F = s°(p) : W(~@92 ) --> ~o# extends K o. By (5.14), there 

exists a homotopy of mu~tiplicative functors F t : W(~®92 ) ~> ~op 

extending K t and F. By part (b) of the proof of (4.12), the functor 

F I : W(~@£2) --> ~o# provides the required simpLicial homotopy. 

Conversely, suppose (f,p) ~ (~,~). Then there is an action 

: W(~@92) ---> ~0~ such that d°(~) = p, d1(q) = ~, and d2(~) = s°(a). 

Let • be the quotient category of W(~®£2) by following additional 



- 1 0 8  - 

relation on the trees: 

A tree A whose root has £2-cotour I is rebated to A'-(a I ®...@an), 

where A' is obtained from A by chan~in~ at~ edge cobours to I, 

a I = id(k if the i-th twig of A has cotour (k,1) and • ,I) 

• = Jk = a I 

if the i-th twig of A has colour (k,O). 

Let % be the full sub-PROP of g consisting of all objects 

= [i I ..... i r] such that the £2-cotour of each iq is 0 or 2. Since 

d2(G) = s°(a), the action ~ factors through ~ and hence induces an 

action T : ~ --> ~0~. The functor s ° : W(@@92 ) --> W(@@91 ) also 

factors through ~ and induces a functor n : ~ --> W($ @91). Define 

two functors H o, H I : W(~ ®91 ) --> ~. The functor H o is induced by 

d I : W(~®91) ---> W(~®92). The functor H I maps trees whose edges 

have a~t cotour 0 or all colour I by d I too. Now Let A be a tree with 

root colour I and at least one twig of cotour O. Then H I maps A to 

A' o (a I @... @a n ) where A' is obtained from A by changin~ edge cotours 

0 to 1 and I to 2 and where 

id(k,2 if the i-th twi~ of A has colour (k,1) 

ai = Jk if the " " " " " " (k,O) 

Because of the additional relation H I is a functor. Note that 

d I H 1 d ° 9®£ 1 ~®91 T ° H ° = ~ o = ~ and T o = ~- = p. If ~=¢-~:~-->W( ) ~> , 

then ~. H ° = ~ • H I = ¢, because w o Ho = id = ~ • H I. Provided that 

is an equivariant equivalence, we can apply part (B) of the lifting 

theorem (3.17) with ~ = d°W(~@91 ) U dIw(~ ®91 ) and L'(t) = Hol~ to 

obtain a homotopy of PROP-functors H t : W(~@91 ) ~> ~ from H o to H I 

with Htl~ = Ho(~). Then T " H t is the required homotopy through ~-maps 

from (f,p) to (g,~). 

To show that ~ is an equivariant equivalence, we deform each space 
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~(~,k) equivariantLy into a suitable section of ~. If k has the g2- 

coLour 0, then each i r ~ ~ = [i I ..... i n } has ~2-coLour 0 and 

~(~,k) ~ W($®91)(~,k) with ~ = ¢. Hence (3.15) provides the deforma- 

tion. Suppose k has ~2-coLour 2, then we first shrink atl internal 

edges of coLour 2 using the deformation of (3.15). We then replace 

each incoming edge of coLour L, L = 0,1 

u I 
L u = Length 

of the root vertex by 

uIL 
id k 

where t runs from 0 to I. Because of the additional relation we end 

in the space of aLL trees whose internal edges aLL have coLour 1. Now 

shrink aLL internat edges of these trees using the deformation of 

(3.15). I 

3. HOMOTOPY INVAR!ANCE AND HOMOTOPY EQUIVALENCES 

We first show that admittin~ the structure of a ~-map or h~-map 

is an invariance of the homotopy class. 

Proposition 4.14: Let (f,p) : (X,a) --> (Y,~) be a ~-map [h$-map] and 

g : X --> Y a morphism of ~O~K homotopic to f, i.e. for each k~K there 

is a homotopy fk ~ gk" Then g admits a S-map [h~-map]structure 

(g,~) : (X,a) --> (Y,?) such that (f,p) ~ (g,~). 
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Proof: Let ~ ~ W(~®91) be the subcategory generated under composition 

and ~ by d°W(@®£1 ) , dIw(~ @91 ) and [jklk(K]. Define a mu~tipLicative 

functor H(t) : ~ --> ~0~ by H(t)Id°W(~®91 ) = ~, H(t)IdIw(~@£1 ) = a, 

and H(t)(Jk) = hk(t ) where hk(t) is any homotopy fk ~ ~k" By Prop. 

3.14, there exists an extension F(t) of H(t) such that F(O) = p. Each 

F(t) defines a ~-map from (X,a) to (Y,~), and ~ = F(1) has g as carrier. 

Hence (f,p) ~ (g,~) by (4.13). The proof for h~-maps is the same. 

Corollary 4.15: Given ~-maps or he-maps (f,0) : (X,a) --> (Y,~) and 

(g,~) : (Y,~) ~> (Z,y). Then there is a composite (h,q) : (X,a)--> (Z,y) 

of (f,p) and (g,~) such that h = g of. 

Proof: Let (h',~') be any composite of (f,p) and (g,~). Then there is 

an action ~ : W(~ ®92) --> ~oD with d°(v) = ~, d1(a) = ~', and 

d2(a) = p .  Hence 
P 

0 

id k 
t(I t I 

bid k 
2 

L 
is a homotopy from gk* fk to h i. Now apply (4.14). I 

We next investigate the question how much of a W~-structure on 

X ( ~O~K survives if we change X by a homotopy equivalence. 

Let ~ be the category $~I of two objects 0 and I such that each 

morpnism space contains exactly one element. So an ~-epace is a homeo- 

morphism X o X I. 

Lemma 4.16: Suppose p : X --> Y is a homotopy equivalence in ~o~ K. 

Then p carries a W(K®~)-structure (or a W~-structure in ~O~K instead 

of ~op), where we consider K as the category with K as set of objects 
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and only identity morphisms. 

Proof: Since the identities of K@$ are isolated, we need only con- 

sider trees which are simplified by relation (3.1 a). So the trees in 

question are vertical Linear trees with edges coloured alternately X k 

and Yk (for (k,O) and (k,1)). Let ~r be the subcategory of W(K@3) 

generated by all trees with root cotour X k, some k, and at most r-1 

internal edges, or with root cotour Yk ' some k, and at most r inter- 

nal edges. The homotopy equivalence p defines an action ~o --> ~o~. 

Suppose we are given an action of ~2n" To extend over ~2n+I we need 

the actions of the trees 

where A stands for a tree with twig colour Yk' root colour X k, and 

2n internal edges, which we represent by its edge lengths as a point 

in 12n. Hence we require maps 

fk : 12nXYk --> Xk hk(t) : I2n×Yk --> Yk 

which are already given on 812nxYk , because x~I 2n represents a morph- 

ism in G2n iff x(SI 2n. Now hk(O) is known in terms of @2n because of 

relation (3.1 c), and we require hk(1) = Pk ° fk" The maps fk and hk(t) 

are provided by (A 3.5). 

Similarly extend from G2n+1 to @2n+2" 

This categorical description of a homotopy equivalence turns out 

to be useful for the study of homotopy equivalent W~-spaces. Let 

d°,d I : w~ - - >  w(~®~) u,v : w(~®~ I) -->w(~®3) 

and the corresponding partly homogeneous versions be the functors in- 
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duced by ~°,E1 : ~o ~> S, where E°(0) : I, ~J(0) = 0, and ~,V:£I-~$, 

where ~(i) = i, i = 0,1 and V(O) = I, V(1) = 0. 

Lemma 4.17: Given an action p : W(@®$) ~> ~op [0 : HsW(@@$)--> ~op]  

- W(~@~I ) ~ >  ~o~] are ~-maps then 0 u and P • v : W(~®~S) ~ >  ~o~ [H~] 

[h~-maps], which are homotopy inverse to each other, i.e. p ~u repre- 

sents an isomorphism in the category ~a~ [~a~h~] whose inverse is 

represented by p. v. 

Proof: Again we only prove the statement for a-maps. We have to de- 

fine actions U,v : W(~@92) ~> ~o~ such that d°(~) = p ,v, d2(~) = p.u, 

d°(v) = p o u, d2(v) = p. v and d1(~) and d1(v) are degenerate. 

Let k,L : £2 ~> ~ be given by k(i) = O, t(i) = I for i = 0,2 and 

k(1) = I, L(1) = 0. Then U = p • W(Id@k) and v = p • W(Id @L) are 

actions as required. I 

We now pass to the main results of this section. 

Theorem 4.18: Let ~ be a sub-PROP of • such that each (~(~,k),~(~,k)) 

is an S.-NDR and Let p : X b> y be a homotopy equivalence in ~o~ K. 
I 

Suppose (Y,~) is a W~-space and p admits a W(~@S)-structure o' such 

that P'" dO = ~JW~. Then there exists an extension p : W(~®S)b> ~o~ 

of p' such that p • d ° = ~. The same holds for the partly homogeneous 

version. 

Theorem 4.19: Let ~ be a sub-PROP of ~ such that (~(~,k),~(~,k)) is 

an Si-NDR. Suppose (p,w) : (X,a) --> (Y,~) is a ~-map whose underLy- 

ing map p is a homotopy equivalenc e in ~O~K and suppose p admits a 

W(~®$)-structure p' such that P' • (uJW(~®91) ) = wlW(~@£1 ) . Then 

there is an extension p : W($®~) m> ~OPK of p' such that p • u = w. 

The same holds for the partly homogeneous version. 
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Before we prove the theorems let us deduce some important consequen- 

ces . 

C~roLLary 4.20: Let (X,a') be a W~-space and (Y,~) a W~-space such 

that (X,a') and (Y,~ o i) are homotopy equivalent as W~-spaces 

(i : W~ ~ WB is the inclusion functor), Then the W~-action on X ex- 

tends to a WB-action a and the ~-homotopy equivalence (X,a') ~> (Y,~.i) 

to a homotopy equivalence (X,a) ~> (Y,~) of W~-spsces. 

Proof: By assumption there is a ~-map (p,N') : (X,a) ~> (Y,~- i) 

whose underlying map is a homotopy equivalence. By (4.16), p admits a 

W(K®3)-structure. Now apply (4.19) with ~ = K to extend w' to an 

action p' : W(~®$) ~> ~0~, which in turn can be extended to an action 

p : W(@@3) ~> ~o~ such that p. d ° = ~, by (4.18). Then a = p . d I is 

the required WB-structure on X. | 

Corollary 4.21: Let (p,~) : (X,a) ---~ (Y,6) be a @-map and p a homo- 

topy equivalence. Let q be any homotopy inverse of p carrying a ~-map 

structure (q,~') : (Y,~ o i) ~> (X,a a i), which is homotopy inverse 

to (p,N @ (i®id)). Then (q,~') can be extended to a @-map (q,~):(Y,8)~(X,~ 

which is homotopy inverse to (p,u). The same holds for h@-maps. 

Proof: The action ~ can be extended to an action p : W(@@3) ~> Xo~ 

by (4.16) and ($.19). Hence there exists a homctopy inverse (q',~") 

of (p,n) namely ~" = p ov. In particular, p.i : W(~®3) --> ~o~ pro- 

vides a homotopy inverse (q',E) of (p,~- i), which has to be homo- 

topic to (q ,~'). By (4.13), there is a homotopy through 9-maps 

(qt,~t) : (Y,~. i) M> (X,a o i) with (qo,~o) = (q',~) and (q1,~=~,~'). 

Let ~ c W(B®91 ) be the subcategory generated under @ and composition 

by diW~, i = 0,1, and W(~®91). Then (qt,~t) and the constant homo- 

topies on a and p define a homotopy H(t) : B ~> Xo~ of multipticative 
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functors such that ~" extends H(O). By (5.14), there is a g-map 

(q,~) : (Y,~) --> (X,a) extendin~ (q,~') and homotopic to (q',~"). 

Remark: Corollary 4.21 includes a result of Fucns [21, Smtz 4.1] (see 

also (1.17) of these notes). Moreover, we provide the first complete 

proof of this result available in the literature. 

To prove the theorems, we seek to ~ive p a W($®3)-structure, where 

we are in effect given the action of a sub-PROP ~ of W(@®3). We ex- 

tend by applying the Lifting theorem (3.17) with ~ = ~ to obtain a 

retraction functor W(~®S) --> ~, for which we need only show that 

the restriction of the augmentation ¢ : W($®$) --> ~®~ to ~ is an 

equivariant equivalence. We only prove the theorems for the inhomo- 

geneous version, because they are similar for the homogeneous one. 

To make the argument more transparent we denote the elements of 

often by their images under the given actions. For example, the colours 

(k,O) and (k,1) are identified with X k and Yk and simply denoted by 

X and Y, and the trees 

° t Pk = idk 
I 

and qk = idk 
O 

with Pk : Xk --> Yk are often denoted by p and q. We a~ain label the 

vertices by elements in 9. In view of (4.16) we can assume that ~c 

contains all identities. To make life easier we prove 

Lemma 4.22: Let ~ be a sub-PROP of W(B~S) containing W(K@3). Then 

¢ : ~(i,k) --> (9@3)(!,k) is an equivariaht homotopy equivalence 

provided it is one for ! = [i I ..... i n] and k such that k and each i r 

has ~-colour I. 

Proof: Substitute each X-coLoured twi~ of a tree in an arbitrary 
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morphism space ~(i,k) by 

X 

q~id 

t Y 

~id 

1 X 

where t runs from 0 to I. SimiLarly substitute a X-coLoured root by 

I 'X 

~id 
t Y  

~id 
X 

This deforms ~(~,k) into the subspace of trees of the form 

vo A- (Ulm ... eu n) 

where v = q if k has coLour X and v = id otherwise, u r = p if i r has 

co%our X and u = id otherwise, and A is a tree WhOSe root and twigs 
r 

all have coLour Y. By assumption, c is an equivariant homotopy equi- 

valence on the space of all trees A. 

Proof of 4.18: Take ~ to be the subcate~ory of W(~ ®~) generated by 

W(~®~) and d°(W~). Then ~ satisfies the requirements for B in Theorem 

3.17, and p' and # define an action ~ --> ~o#. To show that ¢ : ~-->~®S 

is an equivariant equivalence, we take a space ~(~,k) whose trees 

have onty Y-coLoured root and twigs and contract all internat X-edges 

using the deformation of (3.15). This deforms ~(~,k) into the sub- 

space of all trees with no X-edge, i.e. into W~(~,k), which is what 

we need. 

Proof of 4.19: This c a s e  is considerably more complicated. Take ~ to 
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be the subcategory of W(~®~) generated by W(~@5) and u(W(~ @£I)). 

Then ~ satisfies the requirements for ~ in Theorem 3.17, O' and N de- 

fine an action ~ --> ~o~. For the proof that ~ : ~ --> B@~ is an 

equivariant equivatence, we modify the description of W(B@3). 

The vertices 

d and d 

are catted p-vertices and q-vertices.Any other vertex not tabeLted by 

an identity is catted e-vertex. We consider trees that have onty two 

kinds of vertices: 

(i) p-vertices and q-vertices (which impty chan~es of the ~-cotour) 

(ii) vertices in which atL incomin~ edges have the same $-cotour as 

the outgoing edge. 

The relations among these trees are the same as (3.1) with the excep- 

tion that edges of Length O with an e-vertex on one end and a p- or 

q-vertex on the other cannot be shrunk. Instead, we have the notion 

of "pushing a p-vertex (or simiLarty a q-vertex) up through an e- 

vertex": Given an edge of length O with an e-vertex at the top and a 

p-vertex at the bottom. We replace the p-vertex betow the e-vertex by 

k p-vertices just above the e-vertex, separated from it by edges of 

Length O, one for each incoming edge to the e-vertex. 

X 

X ~e~vert e x 

pushing up  

ertex 

Then W(~®3) is the quotient of the space of these representing trees 

modulo the relations (3.1) with the above modification of (3.1 c). 
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This can be seen as follows: Any representing tree can in a canonical 

way be brought into a tree of this form by introducing redundant edges 

of lengths O with extra p-vertices and q-vertices. If an incoming edge 

of Length t of an e-vertex has the wrong coLour, X say, we substitute 

it by 

I 

O 
I 

SimiLart~ use q, if the wrong colour is Y. Starting at the root vertex 

and working upwards we can change each representing tree inside its 

equivalence class to one of the required form. 

The set of all e-vertices divides into two classes: b-vertices are 

those with labels a ( • - ~, and d-vertices with a ~ ~, a ~ id. In 

terms of the alternative description of W(~@$), the trees that Lie 

in ~ are precisely those that satisfy the separation condition: In the 

directed edge path between any q-vertex and any b-vertex, there is an 

edge of Length I. 

We filter W(~®S). In view of (4.22), we only consider trees waose 

twigs and root have colour Y. Define the height of any vertex of a 

tree to be the number of vertices between it and the root, and the 

e-height as the number of these that are e-vertices. For j = O,1,2 .... 

Let mj be the number of p-vertices and q-vertices with e-height exact- 

Ly j, and let n be the number of e-vertices in a tree. Then order the 

tree shapes Lexicographically according to the sequences (n,mo,ml,m2,..). 

This ordering is not as infinite as it looks, because mj = O for j>n. 

We obtain an induced filtration F~ of W(~®3), which has the advan- 

tage that it strictly reduces by the application of any relation 

(3.1 a,c) in the modified form. To make the definition compatible with 

the topology we have to allow identities as "degenerate" e-vertices. 

If p<v in the above ordering, it is easy to see, that the inclusion 
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of the representing trees of F into the space of representing trees 

of F v is a closed equivariant cofibration. Hence it suffices to show 

(a) Let F be the space of trees of a given shape in • with order 

(n,mo,m I .... ), some mj ~ O, and F' c F the subspace of trees of Lower 

filtration. Then F' is an equivariant SDR of F. 

(b) Let R be the space of aLL trees of order (n,0,O,...), n = 1,2 .... , 

then ¢IR is an equivariant homotopy equivalence. 

Statement (b) holds, because R is the space of representing trees of 

W~. The idea for the proof of (a) is the foLLowing: Since roots and 

twigs have coLour Y, there is at Least one q-vertex between a p-ver- 

tex and a twig above it. Move aLL p-vertices as high as possible, to 

cancel out the q-vertices. This reduces ~(~,k) to W~(~,k), which is 

what we need. 

Consider the space of trees of a given shape with Y-root and no 

X-twigs and suppose the shape has orderin~ (n,mo,m I .... ) with some 

mj + O. Let k be the minimal height of a p-vertex and Let P1,..,Pr+s 

denote the p-vertices of height k. Their e-height is also k. Hence 

mj = 0 for j<k, and mk~r+s. We first assume that k>O. Let u i be the 

Length of the incoming edge of Pi' and v i the Length of the outgoin~ 

edge. To take care of the separation condition we induct on the num- 

ber of Pi such that u i or v i is I. To be precise, we refine the fiL- 

tration: Let F be the space of aLL trees we are considering at present. 

Let F r be the subspace of those trees mtr~h1~oat atLeast r of P1,..,Pr+s 

(index them PI ..... Pr ) have an incoming or outgoing edge of Length I. 

Then (Fr_I,F r) is an equivariant NDR. Let J = Ixl U I×I c 12. Then F r 

has the form Jr×(12)SxH, where jr is the space of ~en~ths (~,~ .... Ur,Vr), 

(I2) s is the space of Lengths (Ur+1,Vr+1,...,Ur+s,Vr+ s) and H is a 

Large product of copies ~(~,L) and I taking care of atL other para- 

meters. To obtain the elements of F D ~, we restrict the H-coordinate 
r 

to tie in a certain subspace H' (dependin~ on r) of H. Wnat we want 

is an equivariant strong deformation retraction of F r 0 ~ into 
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Q = Fr+ I D ~ U [all elements of F r D • related to a tree of Lower or- 

dering). A tree Lies in this space if its H-coordinate Lies in a cer- 

tain subspace H" of H', if (ui,vi)( J for some i>r, or if any u i = 0 

(but not if some v i = 0!, because we then cannot reduce inside our 

modified space of representatives). Hence Q is of the form 

Q = Jr×(I2)SxH" U D(jr×(I2)S)xH ', where D(jrx(I2) s) c Jr×(I2)S is the 

subspace of all points (Ul,Vl,...,Ur+s,Vr+s) with some u i = 0 or some 

uj = I or vj = I for j>r. We require an equivariant strong deformation 

retraction 

r : Jr×(I2)SxH' --> jrx(I2)SxH" U D(jrx(I2)S)xH ' 

Now H' and H" are unions of subproducts of H, where we substitute 

certain factors ~(~,t) by ~(~,L) and I by 0 or I, and H" is the sub- 

space of H' obtained by substitutin~ a factor ~(L,L) or ~(L,L) by an 

identity or a suitable factor I by O. Since (~(k,k),[idk]) is a NDR, 

(H',H") is an equivariant NDR. Since [(0,1)] is a SDR of J and since 

J U OxI is a SDR of 12, the space D(jrx(I2) s) is an equivariant SDR 

of jrx(I2)S. Hence r exists. This settles the case k>O. If k is Large 

enough, e.g. k>n, we have no p-vertices Left and hence no q-vertices. 

Therefore we are in the situation (b) as desired. 

If k=O, the root vertex is a p-vertex and the space of all trees 

of this type in ~ is of the form IxH', where I is the space of Lengths 

u of the incoming edge to the root vertex, and H' takes care of all 

other parameters. A tree in IxH' is related to a tree of lower order- 

ing if its H'-coordinate ties in some subspace H" of H' as above or 

if u=O. Since (H',H") is a n  equivariant NDR, there is an equivariant 

strong deformation retraction 

IxH' --> OXH' U IXH" 

as required. This completes the proof of (4.19). i 
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4. RELATING @-MAPS AND hB-MAPS TO WB-HOMOMORPHISMS 

Since B-maps and h@-maps are difficult to work with, it is desir- 

able to substitute them by homomorphisms. 

Theorem 4.23: Por any WB-space (X,a)~uereexists a W@-~2 U(X,~=(UX,a*),a 

@-map (~,~ : ~,~-->U(X,a), and a h@-map (qa,~a) : (X,a) --> U(X,a) 

such that 

(a) The map q embeds X as SDR into UX. 

(b) Any @-map (f,0) : (X,a) --> (Y,6) is a canonical composite in the 

sense of (4.5) of (gu,~a) and a unique W@-homomorphism h :~X,a)-->(~. 

(c) Any h@-map (f,p) : (X,a) --> (Y,6) is the canonical composite 

h. (gu,~a) of a unique WB-homomorphism h : U(X,a) --> (Y,6) and (q,~). 

(d) If we change (f,0) inside its homotopy class, then the induced 

homomorphism h stays inside its homotopy class. 

ALthough the definition of a homotopy of homomorphisms is obvious 

Let us state it. 

Definition 4.24: Let @ be 8 PROP. Two homomorphisms ho,h I : X --> Y 

of @-spaces are caLLed homotopic if there is a homotopy of homomorph- 

isms h t : X --> Y from h ° to h I. 

Remark: Since the composite of a B-map and a W~-homomorphism is in 

general only defined up to homotopy, part (b) is not particuLarLy 

usefuL. 

Proof of the theorem: 

For ! = [i I ..... i n ] ( ob @, ~et !¢=[(il,c) .... (in,C))( ob (B @91) , 

¢ = 0,1. Define 

(4.25) (UX) k = U HW(@ @ 91)(~°,k1)xXi/~ 
i~ob~ 
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with (c. a; x I ..... Xn)~(c; a(x I ..... Xn)), c ( HW(B @~i)(~°,kI), 

a ( HW(B @B1)(~°,~°). Here we identify a with its image under 

a : W~ --> ~o~, the W~-structure on X. We ~ive UX ( ~O~K a W~-structure 

a* by 

b[(Cl; ~1 ) ..... (Cr; ~r )] = [b o (c I @...@Cr); ~I ..... ~r ] 

where b ( W~ is identified with its image under d ° : W~ --> HW(B®£1 ) 

and ~i stands for Xil .... ,Xin i. 

To define the B-map (qa,~a) : (X,a) --> (UX,a*) consider HW(B®£1) 

as subcategory of W(B@91). The functors a and a* determine ~a on 

d°W~ and dIw~. On elements d (W(@@£1)(~,t) where E = [rl ..... rn] 

contains at least one element with £1-cotour O and L has £1-cotour I, 

the action ~a is given by 

(4.26) d(y I ..... yn ) = (d- (a I @...@an); z I ..... z n) 

where 

I (idk,Y i) if ri=(k,O)(Kxob91 

(ai'zi) = ((ci,xi) if ri=(k,1)(Kxob£ I and yi=(~;~i)((~ 

The underlying map qa = ~qk : Xk --> (UU()k] is given by qk(x) = (Jk;X). 

Reca~ that jklsr~ememt~the tree 

Xlid k 

UX 

Proof of (b): For a Y-map (f,p) : (X,a) --> (Y,~) define a W~-homo- 

morphism h : U(X,a) --> (Y,B) by 

(4.27) h(c; ~) = p(c)(~) 

The homomorphism h : UX --> Y necessarily has to satisfy (4.27), be- 

cause it expresses the condition that (f,p) be a canonical composite 

h. (qa,~a) for elements c (HW(B@£1). It remains to check that con- 

dition (4.5) is satisfied for a (W(@®£1)(~,I) with ~ and t as above. 

Let Yi = wi(Xk if r i = (k,O) and Yi = (ci'~i)' wi = h(ci;~i) if 
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r. = (k,1). Then 
1 

p(a)(w I ..... w n) = h(~(a)(y I ..... Yn )) 

because 

h(~(a)(y I ..... yn) ) = h(a.(a I @... @an);Z I ..... Zn) with a i, ~ as in(4.26) 

= p(a.(a I @ ... @an))(z I ..... z n) 

= p(a)(p(al)(z I) ..... P(an)(Zn)) 

= p(a)(w I ..... w n) 

Proof of (c): The h~-map (qa,~a) : (X,a) --> U(X,a) is given by 

~alHW($ ®91). For any h~-map (f,p) : (X,a) --> (Y,p) define the W~- 

homomorphism h as in (4.27). 

Proof of (d): Let (fo,Po) ~ (fl,Pl). Then there is a homotopy through 

• -maps Pt : (X,a) --> (Y,~). Define the homotopy through homomorphisms 

by ht(e; ~) = Pt(c)(~). Of course, this works also for h~-maps. 

Proof of (a): As usuatLy when working with deformations we use the 

tree Language. So we first express UX in terms of trees. As in the 

previous section we caLL an edge of 91-coLour O an X-edge or X-coLour- 

ed and an edge of 91-cotour I a Y-edge or Y-cotoured. Then UX is the 

space of aLt trees with a Y-root, all twigs are X-twigs and to each 

twig of K-coLour k is assigned a cherry in X k subject to the relations 

(compare (3.24)) 

(4.28) (a) = (3.1 a) 

(b) = (3.1 b) for permutations. The cherries are permuted along 

with the twigs. 

(c) : (3.1 c) 

(d) if the tree A has an X-edge of Length I so that A = AIOA 2, 

then 

(A; x I ..... Xn)~(A1; x I ..... Xp,y,Xq+ I ..... x n) 
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where y = a(A2)(Xp+ I ..... Xq), and (Xp+ I ..... Xq) and 

(x I .... ,Xn) are the cherries of A 2 and A in clockwise 

order. 

We filter each space (UX)k by subspaces F n of trees having at most 

n internal edges. In a similar manner as for Lemma 3.9 we can show 

(4.29) (a) (UX) k is the direct limit of the subspaces F n 

(b) (Fn+I,F n) is a NDR 

(c) if each ~(!,k) is Hausdorff, so is each (UX) k 

(d) if ~ is a CW-PROP, then (b-X) k is 8 CW-compLex. 

The deformation UX --> X is constructed in two steps. Let MX c UX 

be the subspace of aLL trees having no internal Y-edge. 

Step I: Deform UX into MX. For this it suffices to deform F n U MX into 

Fn_ I U MX. Let QxIkxILxXi be 8 space of trees A in UX, where Q is the 

space of vertex LabeLs, 7 k and I L the spaces of lengths of X-edges 

and Y-edges, and X i the space of cherries. We intend to shrink the 

Y-edges of A. Let DQ c Q be the subspace of elements which can be re- 

duced by (4.28 a) and Let LI L c I L be the union of Lower faces. Then 

A ( QxIkxIL×Xi represents an element of Lower filtration iff 

A ( DQxIkxlLxXi U Qx~IkxILxXi U QxIkxLIlxX i 

On DQ and on the Lower faces of Ik×I L we may reduce A by (4.28 a and 

c) white we may reduce it by (4.28 d) on the upper faces of I k. So we 

need an equivariant (because of (4.18 b)) stron~ deformation retrac- 

tion 

QxIkxILxXi ~> DQ×IkxILxXi q] Qx~Ik×ItxXi U Q×IkxLI%xXi 

which exists by (A 2.4) for L>O. 

Step 2: Next deform ME into X. Note that the subspace X of MX con- 

sists of the elements represented by the trees 

d 
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where x is a cherry. Substitute the roots of trees in MX by 

yI id 

where t runs from 0 to I. For t = I, relation (4.28 d) applies and 

reduces the tree to one in X. Because of (4.28 a), the points of X 

ere kept fixed under the deformation. 

Let ~OmW~ denote the category of W~-speces and homotopy classes of 

W~-homomorphism8. We are ~oin~ to define functors 

~a~ < j ~omw~ ~ j, > ~a~h~ 

Let f : (X,a) --> (Y,~) be a W~-homomorphism. Define a ~-map Jf = 

(f,f.) : (X,a) --> (Y,~) by f. ldlw~ = a she on 8 6 W(m ®91)(±,k), 

where k has 91-co%our I, by f.(a) = ~(s°(a)).(hlx...×hn ) with hr=idyL 

if !(r) = (l,1) and h r = fL if !(r) = (t,O). The definition of the 

induced h~-map (f,f~) is the same. It is immediate from the definitions 

that J and J' preserve identities. It remains to check that they pre- 

serve composition: 

Lemma 4.30: Let f : (X,a) --> (Y,~) and ~ : (Y,~) --> (Z,y) be W~- 

homomorphisms. Then (g- f,(~ o f).) is a composite ~-map (g,~.).(f,f.). 

The analogous result holds for h~-mape. 

Proof: Define p : W(~®92) --> ~o~ by pld2W(~®£) = f. and on morph- 

isms a ( W(B®92)(!,k ) where k has 92-coLour 2 by p(8)=y(s°#(~) (~x...xh n) 

with idzL if i(r) = (L,2)( K×ob 92 

h r = g% if i(r) = (l,1)( Kxob 92 

gt ° fL if i(r) = (L,0)( Kxob 92 
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Then p • d ° = g., p - d I = (g. f). and p • d 2 = f.. Hence (g o f). = g..f. 

as g-map. The proof for h~-maps is the same. 

As a direct consequence of Theorem 4.23 we obtain 

Proposition 4.31: The functors J and J' have fuSSy faithfu~ Seft ad- 

joints 

U : ~ a p ~  > ~omw~ U' : ~QPh~ > ~°mw~ 

i.e. there is a naturat bijection ~ap~((X,a),(Y,~))~0mw~(U(X,a),(Y,~)) 

and the function U : ~op~((X,a),(Y,p) ~> ~om~(U(X,a),U(Y,~)) is bi- 

jective; and analogously for U' 

Proof: On objects, U and U' are ~iven by the construction of (4.23) 

and on morphisms by 

(% ,~a) 
( x , ~ )  > u ( x , ~ )  

I 

1 ' (f,p) IU(f,p) 

(q[B'g[B) (Y, [3) > U(Y, ~B) 

We use the universa~ property of (qa,~a). Since U(f,p) is unique, it 

follows that U is a functor. By (4.23 b), it is ~eft adjoint to J 

with 

(%,~) : (x,~) --> (ux,~*) = Ju(x,~) 

as front adjunction. Since the (qa,ga) are isomorphisms, U is futly 

faithfuT by adjoint functor nonsense. The proof for U' is the same. I 

As a corollary we obtain 

Proposition 4.32: The inctusion functor i : HW(B@91 ) a W(~@91) in- 

duces a functor H : ~a~ > ~Oph~, which is an isomorphism of cate- 

gories, 



- 126 - 

Proof: Let j : HW(~ ®g2 ) c W(~®B2 ) be the inctusion. Let 

: W(~ ®92 ) --> ~o~ define a homotopy between two ~-maps (f,p) and 

(f',~') and • : W(~®B2 ) --> ~o~ a composite (g° f,~) of two ~-maps 

(g,~) and (f,0). Then o • j defines a homotopy between (f,p • i) and 

(f',p'.i) and • . j shows that (g • f,k o i) is a composite of (g,~ • i) 

and (f,p • i). Hence H is indeed a functor. 

Let (f,p) : (X,a) --> (Y,~) be a ~-map. By construction, the in- 

duced W~-homomorphism h : U(X,a) --> (Y,G) of Theorem 4.23 is the same 

for the ~-map (f,D) and the h$-map (f,0 • i). By definition, U'(X,a) = 

U(X,a) = (UX,a*). The morphism U[f,~], where If,o] denotes the homo- 

topy class of (f,p), is represented by the W~-homomorphism h induced 

by a composite (qa" f,k) of (f,~) and (qa,~a) white U'[f,~ -i] is re- 

presented by the W~-homomorphism h' induced by a composite (qa-f,k') 

of (f,o • i) and (qa,~). By construction, ~a = ~a" i. Hence (qaof,k.i) 

is a composite of (f,~ o i) and (qa,~a) , and h also represents U'[f,0oi]. 

We therefore have a commutative diagram 

~ ( ( x , a ) ,  (Y, ~) ) ~o%~(u(x,~),(Y,[3)) 

11 
~O~h~((X,~) , (Y,~))  ~ ~Omw~(U'(X,~),(Y,~)),  

which imp%ies the proposition. J 

5. MAPS FROM W~-SPACES TO ~-SPACES 

Any S-space Y is canonicatty a W~space by means of ¢ : W~ --> ~. 

Hence we have a good concept of maps from a W~-space to a ~-space, 

and this is one type of maps we study in this section. On the ether 

hand, the edge tengths are irretevant in the given W~-action on Y. 

This suggests considering the quotient of W(~®~I ) in which the action 

of any tree is independent of the Lengths of its Y-edges, which might 
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as well be O. Since we work with a W~-space X and a g-space Y, we 

feel that in this connection it seems reasonable to avoid mixed pro- 

ducts X×Y although we can treat those, too. So we stick to a sort of 

homogeneous version. Let us make this precise: In general, we con- 

sider sequences of maps 

X ° --> X I --> ... --> Xn_ I --> Xn 

where Xo,...,Xn_ I are W~-spaces and X n is a g-space. We allow mixed 

terms of Xo,...,Xn_ I, but products includin~ X n have only factors X n. 

Let • be the full subcategory of W($ ®~n ) consisting of all objects 

= [i I .... ,i r] where the Sn-COlOUr of any ip is less than n or 

i I ..... i r all have 9n-COlOUr n. Define Wr(~®£n ) to be the quotient 

category of • under the following additional relation on the trees. 

(4.33) a tree A is related to the tree obtained from A by changing 

the lengths of all Xn-ed~es to 0 (Xn-edges = edges of S n- 

colour n). 

In view of this relation, we need only consider trees which have no 

Xn-edge with exception of possibly the root. We call such trees tar- 

get reduced or simply reduced. 

The inclusion functors d i : W(~ @ Sn_ I) --> W(g @£n ), 0~i~n, induce 

inclusion functors 

d i : Wr(g@£n_1) --> Wr(~@£n ) 0~i<n 

d n : W(~@£n_1 ) --> Wr(g @£n ) 

Definition 4.34: Let (X,a) be a W~-space and (Y,~) a g-space. A re- 

duced S-map (f,p) : (X,a) --> (Y,~) consists of an action 

p : Wr(g@91 ) --> ~op and its underlying map f : X --> Y in ~OpK such 

that p. d I = a : W~ ~ ~o~ and p. d ° = ~ : B --> ~op. 

Observe that H£1Wr(@@91 ) = Wr(~@91 ) and Wr(@) = @. 

Before we investigate reduced ~-maps Let us prove a variant of 
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Theorem 4.20 for our usual definition of ~-maps. 

Theorem 4.35: ?or any W~-space (X,a) there exists a ~-space N(X,a) = 

(NX,a*) and a ~-map (pa,~a) : (X,a) ~> (NX,a*o ¢) and a h~-map 

(pa,~a) : (X,a) ~> (NX,a*. ¢), where ¢ : W~ m> ~ is the augments- 

tion, such that 

(a) The map Pa is a homotopy equivalence in ~0~ K. 

(b) Any m-map (f,p) : (X,a) ~> (Y,B ° ¢), where (Y,~) is a ~-space, 

is a canonical composite in the sense of (4.5) of (pa,~a) and a unique 

homomorphism of ~-spaces N(X,a) ~> (Y,8) 

(c) Any h~-map (f,p) : (X,a) ~ (Y,~ o ¢), where (Y,~) is a ~-space, 

is the canonical composite of (pa,~a) and a unique ~-homomorphism 

h : N(X,~) I >  ( y , ~ )  

(d )  I f  we chan~e ( f , p )  i n s i d e  i t s  homotopy  c l a s s ,  t h e n  t h e  i n d u c e d  

homomorphism h s t a y s  i n s i d e  i t s  homotopy  c l a s s .  

Proof: The ~-space NX = {NX k} is the quotient of UX under the foLLow- 

ing relation: 

(4.36) (c o a; x I ..... x n) ~ (¢(c) • a; x I ..... Xn) ¢=augmentation 

c E HW(~ @91)(~I,kI), a ~ HW(~ ®£i)(!°,~ I) with the notation of (4.25). 

The ~-structure on NX is given by 

b[(Cl; ~I ) ..... (Or; ~r )] = [(~b)'(c1@ "''@°r; ~I ..... ~r ] 

where : : ~ --> US --> HW(~@91) is the composite of the standard 

section and the functor d ° . By (4.36), 

E~(bl ° b2 ) ° (cl ® "'" ®°r);~l ..... ~r ]~[~ (bl)':(b2)°(cle'''@c~;~1 .... ~r ] 

so that this is indeed a ~-structure. The ~-map (pa,~a) and h~-map 

(pa,qa) are induced by the corresponding maps (X,a) m> (UX,a*). The 

~-homomorphism h : N(X,a) ~> (Y,~) is defined as in (4.23) and part 

(b),(e), and (d) are proved in the same manner as in (4.23), only the 

argument of part (a) is different. We will prove it at a later stage.| 
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As an immediate consequence of (4.35) and (4.21) we have the fo~- 

Lowing generalization of the theorem of Adsms (see 1.11). 

Theorem 4.37: A space X ( ~o~ K admits a ~-structure iff it is of the 

homotopy type of a ~-space. PreciseLy, if X is of the homotopy type 

of a ~-space then it admits a W~-structure such that the homotopy 

equivalence carries a ~-map structure and any ~-space X is homotopy 

equivalent to a ~-space NX such that the homotopy equivalence carries 

a ~-map structure. 

Using reduced ~-maps we shall construct a ~-space MX for any W~- 

space X containing X as SDR, which is more c~oseLy re~ated to Adams' 

construction. 

Let ~om~ be the category of ~-spaces and homotopy ctasses of homo- 

morphisms. Define functors 

~ <- j ~om~ j, > ~a~h~ 

on objects by (X,a) --> (X,a o c). A representin~ homomorphism 

@91 --> ~o~ is mapped to its composition with the augmentation 

W(~®£I ) --> $ ®£i --> ~o~. Since s composite in ~om@ is ~iven by a 

functor ~@g2 --> ~o~ the definition is functoriaL. Extending the cor- 

respondence X --> NX to functors N : ~Q~ --> ~om$ and N':~a~h~--> ~om~ 

in the same way as in the proof of (4.31), we obtain 

Proposition 4.38: The functors N and N' are Left adjoint to J and J' 

Moreover, they are futLy faithfut. J 

We now return to reduced ~-maps. To be ab%e to work with them we 

need variants of the extension result (3.14) and the tiftin~ theorem 

(3.17). We want to prove them using the ana%o~ue of Lemma 3.12 for 

reduced trees. Define W~(~@£n ) as the subcate~ory of Wr(~®£n ) gene- 
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rated by reduced trees with at most p internal edges. Let Pk be a space 

of reduced trees of shape k with p internal edges as defined in (III, 

§2). Considered as representative of wP(B ®£n ), a tree A in Pk decom- 

poses only if it is re~ated to a tree of tower filtration p, i.e. A 

must Lie in QK" This is different for W~($ @Sn). If k has no edge of 

Bn-COLOUr n, then A 6 Pk represents a decomposable element of Wr(~ ®B n) 

iff A 6 Qk" But if k has a root of coLour n and q incomin~ edges to 

the root vertex, then a tree in Pk decomposes canonicaLLy as the com- 

posite of some morphism b 6 W~(~ ®Bn) with %wi~s and root of coLour 

n and a copse of q trees with roots of coLour n and an identity as 

babel of the root vertex: 

s ql 

m I m 2 mq 
I m2 q 

= ' . . . . . . .  • @ . . . . . . .  • 

~ o  id id id 
n| bY n n n 

This requires a modification of Lemma 3.12 (a). Let T n cob (3 ®£n ) 

be the subset of all objects i = [i I ..... iq] such that each i r has 

Sn-COLOUr n. CaLL a shape orbit essential if its shapes belong to re- 

duced trees with no edge of Sn-COLOUr n unless the space of LabeLs of 

the root vertex is of the form ~(k,k), k~K. For such 8 shape k define 
! I 

Pk = Pk if k has no edge of Bn-COLOUr n, and PX c Pk is the subspace 

of aLL trees whose root vertex Label is id k if k has an n-coLoured 

root and the space of root vertex LabeLs is '~(k,k). 

Lemma 3.12": Let ~ be a topoLogicaL category with finite products and 

bet ~ c Wr(~@£n) be the fuLL subcate~ory of objects in T n- 

(a) Given muLtipLicative functors F : wP-1(~®£n ) --> ~ and H : ~ -> r 

which coincide on W~-1(~®£n ) n D, and a coLtoection of G-equivariant 

! I 
maps fx : Pk --> ~(F~,F(k)) extendin~ F o (uklQ k N Pk), one for each 
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essential shape orbit. Then there is a unique muLtipLicative functor 

F' : W~(%QSn) --> ~ extending F, coinciding with H on ~ 0 W~(~@Sn) , 

and satisfying F'o(uklP~) = fk for all k considered. The same holds 

for the £n-homogeneous case if we replace Pk by Pk,q" 

(b) Suppose given muLtiplicative functors H : ~ --> • and 

: W~(~®£n ) --> g, one for each p>O, such that Fp coincides with Fp 

H on W~(%®£n) 0 ~ and with Fp_ I on W~-I(~ ®£n )'. Then there exists a 

unique muLtipLicative functor ? : Wr(~®S n) --> • such that FI~ = H 

and FIW~(~@Sn) = Pp. A similar result holds for the Sn-homogeneous 

case. 

(c) Both (a) and (b) hold if we replace ~ by a PROP and the word "mu%- 

tip~icative functor" by'TROP-functor". 

Proof: Let k be a shape of reduced trees with £n-rOot. A tree A in 

Pk decomposes canonically and continuously into b. A' as illustrated 

above. Define fk : Pk n> ~ by fk(A) = H(b).f(A') where f(A') is Riven 

by the fk of the assumption. This defines G-equivariant maps 

fk: Pk --> ~(F~,F(k)), one for each shape orbit of reduced trees and 

compatible with relation (4.32). Now proceed as in the proof of Lemma 

3.12. | 

Using Lemma 3.12" instead of (3.12), we obtain the following vari- 

ants of the extension proposition and the Lifting theorem (we state 

them in the generality needed although more general results hold). 

Lemma 4.39: Let ~ c Wr(~@£n) be a subcategory with the following 

properties 

(a) If x ( ~ is of the form x = yo z or x = y@z, then y and z are imP. 

(b) The full subcate~ory of Wr(~@£n ) of objects in T n is contained 

in ~. 

(c) D k 0 P~ is closed in P~ and (P~,(D k U Qk) N P{) is a G-NDR for 
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a % t  essential k (we use the notation of (3.14) and (3.12")). 

Suppose given 8 muLtipticative functor F from Wr(~@ ~n ) to a topo- 

logical category ~ with finite products and a homotopy of muLtipLi- 

cative functors H(t) : ~ ---> ~ such that H(0) = FI~, then there exists 

a nomotopy of mu%tipLicative functors F(t) : Wr(~ @fin ) --> ~ extendin~ 

F and H(t). 

The same holds for the ~n-homogeneous version if we substitute 

D k U Qk c Pk by Dk, q U Qk,q c Pk,q" | 

Lemma 4.40: Given a diagram consistin~ of a K-coLoured PROP ~, a 

(K×Ob~n)-COtoured PROP ~, a sub-PROP ~ of Wr(~®~n ) ~enerated by some 

Wr(~ ® ~n ) 

@~n 

of the faces diWr(~®~n) , PROP-functors F and H', and a homotopy of 

PROP-functors K'(t) : ~ --> ~ ®Bn from ¢I~ to F oH'. Let ~' c ~ and 

6' c ~ be the fuLL subcategories WhOSe objects Lie in T n. We require 

(a) F is an equivariant equivalence and on 6' an isomorphism 

(b) H' I~' : F -1" (¢I~') 

Then there exists a PROP-functor H : Wr(~ @~n ) --> • and a homotopy 

of PROP-functors K(t) : Wr($®~n ) --> • from ¢ to F- H extending H' 

and K(t). Moreover, any two such extensions H ° and H I of H' are homo- 

topic through a homotopy of PROP-functors H(t) : Wr(~ ®~n) --> ~ such 

that H(t)l~ = H'. 

The same holds for the Bn-homogeneous version. 

Proof:To be able to apply Lemma 3.12" we substitute ~ by the sub-PROP 

of Wr(~®~n ) generated by ~ and the fuLL subcategory • of Wr(~ O~ n) 
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WhOSe objects are in T n. The functor H' is substituted by H" : ~ --> 

given on ~ by H' and on ~ by F-I-(¢I~). We now proceed as in the proof 

of (3.17) using (3.12") instead of (3.12). | 

In anatogy to (IV; §2) we define 

Definition 4.41: Two reduced ~-maps (f,p),(g,~) : (X,a) --> (Y,~) from 

a W~-space (X,a) to a ~-space (Y,8) are caLted homotopic, if there is 

d I an action o : Wr(~ @92 ) --> ~0~ such that d°(o) = p, (0) = ~, and 

d2(a) : s ° (~ ) .  

Definition 4.42: Let (X,a) and (Y,~) be WB-spaces and (Z,y) be a 9- 

space. A reduced ~-map (h,~) : (X,a) --> (Z,y) is ca~Led a cpmposite 

of the g-map [h~-map] (f,o) : (X,a) --> (Y,B) with the reduced ~-map 

(g,~) : (Y,~) --> (Z,y), if there exists an action c : Wr(~ ®92 ) --> ~op 

[c : HWr(~®92 ) --> ~op] such that d°(o) = ~, d1(o) = k, and d2(G)=p. 

If we appty the proof of Lemma 4.13 to reduced trees, we obtain 

Lemma 4.43: There exist actions o : Wr(~@£2 ) 4> ~0p Ko : HW(~®B2)$~o~] 

with d°(o) = 0, d1(o) = ~,d2(o) = s°(a) iff there is a homotopy through 

reduced S-maps H(t) : Wr(~®£ I) --> ~o~ from (X,a) to (Y,~), where 

= d°d°(o), such that H(O) = p and H(1) = ~. J 

CorotLa~y 4.44: (a) The notion of homotopy of reduced ~-maps is an 

equivatence retation. | 

The proof of Theorem 4.9 atso carries over to Rive 

Lemma 4.45: Let ~ c Wr(~®£n) be the sub-PROP ~enerated by the faces 

diWr(~®gn), i = 0,1, .... k-l,k+1, .... n with k ~ O,n. Then there exists 
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a retraction PROP-functor 

Wr(~ ®~n ) - > 

The same holds for the £n-homogeneous version. 

As in (IV,2) this impbies 

Proposition 4.46: Given a ~-map Eh~-map] (f,0) : (X,a) --> (Y,~) and 

a reduced ~-map (g,~) : (Y,~) --> (Z,y). Then there exists a composite 

reduced ~-map (h,k) : (X,a) ~> (Z,y) of (f,0) and (g,~), and its ho- 

motopy class depends only on the homotopy classes of (f,0) and (g,~)-I 

As a second application of Lemma 4.39, we can carry out the proof 

of (4.14) for reduced categories and obtain 

Proposition 4.47: Let (f,p) : (X,a) --> (Y,~) be a reduced B-map and 

g : X --> Y a morphism in Xo~ K homotopic to f. Then g carries a re- 

duced @-map structure (~,~) : (X,a) --> (Y,~) such that (f,p) ~ (g,~).~ 

Corollary 4.48: Given a ~-map [h~-map] (f,p) : (X,a) --> (Y,~) and a 

reduced ~-map (E,~) : (Y,~) --> (Z,y). Then there exists a. composite 

reduced ~-map (h,k) : (X,a) --> (Z,y) of (f,p) and (g,~) such that 

h : g, f. 

We next prove the analogue of (4.34) for reduced ~-maps. In contrary 

to Theorem 4.34, part (a) can be shown easily, and we shall see that 

(4.34 a) is a consequence of this result. 

Theorem 4.49: For any W~-space (X,a) there exists a ~-sPace M(X,a) = 

(MX,~) and a reduced ~-map (ia,v a) : (X,a) --> M(X,a) such that 

(a) The map i s : X --> MX embeds X as SDR into NX 

(b) Any reduced @-map (f,P) : (X,~) --> (Y,~) is the canonical compo- 
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mite of (f ,~a) and a unique ~-homomorphism h : M(X,a) --> (Y,~). 

(c) If we change (f,o) inside its homotopx class, the induced ~-homo- 

morphism h stays inside its homotopy class. 

Proof: Define MX = [MX k} by 

(4.50) MX k : U Wr(~ @91)(i°,kI)× Xi/~ 
i ~ 
-- .o I 

with (c, a; x I ..... Xn) ~ (c; a(x I ..... Xn)) , c E Wr(~ ®91)(~ ,k ), 

a ~ Wr(~@£1)(~°,~°). For the definition of the ~-structure on MX note 

that d ° : ~ --> Wr(~®91 ) is an inclusion functor. Define 

b[(Cl;~1) ..... (Cn;Xn)] = [b'(c le ... eCn);~ I ..... ~n ] 

b(~. The canonical maps Wr(~ @£1)(~°,kl)x X i --> FIX k define a reduced 

~-map (ia,va) : (X,a) --> M(X,a) whose underlying map i is Riven by 

x , > ~ 1  X~Xk 

d k 

in cherry tree notation. 

Given a reduced ~-map (f,p) : (X,a) --> (Y,~), the induced ~-homo- 

morphism h : M(X,a) --> (Y,~) is given by 

h(c; ~) = p(c)(~) 

It is the unique homomorphism satisfying (f,p) = h. (i ,v a) with the 

canonicat composition on the riEnt. In view of Lemme 4.43, a chan~e 

of (f,D) by a homotopy chan~es p by a homotopy of functors and hence 

h by a homotopy throuEh homomorphisms. It remains to prove (a): As in 

the proof of (4.23), we express MX in terms of cherry trees. Then ND( 

is the space of all reduced cherry trees, i.e. reduced trees whose 

roots have £1-cotour I, whose twigs have 91-cotour O, and there is a 

cherry in X k assigned to each twig of K-coLour k. On this space we 
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have the relations (4.28), but for reduced trees only: 

(a) = 3.1 (a) 

(b) = 3.1 (b) for permutations only, and the cherries are permuted 

along with the twigs 

(c) = 3.1 (c) 

(d) If a reduced tree A has an interna~ edge of ~ength I, i.e. A de- 

composes into A1o A2, then (A; x I ..... Xn)~(A1;x1,..,xp,y,Xq+1,..,x n) 

where (Xl,...,Xn) and (Xp+ I ..... Xq) are the cherries of A and A 2 

in c~ockwise order, and y = a(A2)(Xp+1,...,Xq). 

The deformation retraction M~ --> ~ is given by step 2 of the proof 

of (4.23 a). 

If ~ = ~, the PRO belongin~ to the theory of monoids, and (X,a) is 

a WN-space then (X,a) ---> (M~,~) is essentially the construction of 

Adams mentioned in chapter I. 

Let 

be the functors previousty defined. Using (4.46) and (4.49 b), we can 

extend the correspondence (X,a) --> M(X,a) to functors M :~Q~--> ~om~ 

and M' : ~Q~hY --> ~0m~ in the same way as in the proof of (4.31). 

We now want to compare the functors N and N' with M and M'. In view 

of Proposition 4.32 we restrict our attention to N' and M'. Reca%% 

that N' is teft adjoint to the functor J' : ~omy --> ~Q~y. The front 

adjunction 

: Id --> J'N' 

is given by the Y-maps (pa,~a) : (X,a) --> (NX,a*. ¢) = J'N'(X,a). 

For any h~-map (f,p) : (X,a) --> (Y,~) we have a diagram where r is 

induced by the universal property of ~ and the reduced Y-map (i,v) is 

considered as h~-mep. 
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' ( x , a )  J ' M ' ( X , a )  < ~ g , r a  g N' 

J'M' (Y, B) ~7" I'N' (g,8) 
J'r 8 

Since the backward squares commute, so does the front square because 

of the universa% property of ~. Hence 

r : N' ---> M' 

is a naturat transformation. We want to show that it is a natura~ 

equivalence. By (4.49 b) there is a ~-homomorphism s a : M'J'N'(X#)-->N'(X#) 

induced by 

J ' N '  (X,a)  ( i , v )  > J 'M'  J ' N '  (X,c~) 

J'N'(X,a) 

because the identity is apparentty a reduced map. The homomorphism 

s a - M'(pa,qa) : M'(X,a) --> M'J'N'(X,a) --> N'(X,a) 

is an inverse of r a in ~Omh~ becsnse 

J'(s a • M'(pa,~a) • r a) • (pa,~a) = j,sa°J,M,(pa,~ a) • (ia,v a) 

= J's a. (i,v) o(pa,~ a) 

= (p~) 

and 

J'(r a, s a. M'(pa,~a)) • (i ,v ) = J'r a- J's a • (i,v) ° (pa,~a) 

• (p ~ ) = J'ra a a 

= (i,v) 

so that s a. M'(pa,~a) -r a and rao s a o M'(pa,~a) are in the same homo- 
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topy class as the identities by (4.35 c) and (4.49 b). 

So we have proved 

Proposition 4.51: M : ~a~ ~> ~om~ [M' : ~h~ ~> ~om~] is Left ad- 

joint to J : ~om~ ~ ~a~ [J' : ~om~ ~> ~a~h~]. Moreover 

r(X,a) : N(X,a) ~ M(X,a) defines natural equivalences r : N ~ M 

and r' : N' ~ M'. 

The front and back adjunction of the adjoint pair (M',J') are given 

by (ia,v a) : (X,a) --~ J'M'(X,a) of (4.49) and the homomorphisms 

U(Y,~) : M'J'(Y,~) --> (Y,~) determined by the diagram 

J,(Y,~) ~j,<y,~) > J,M,J,(Y,~) 

J'(Y,~) 

(Y,~)( ~om~ 

They are related to the front snd bsck adjunction of (N',J') by r'. 

In particular, we have a commutative dia~r8m of maps 

Pa 
X > NX 

N-X 

for each W~-space (X,a). Since r a and i a are homotopy equivalences, 

r is a homotopy equivalence, which fiLLs the Rap Left in the proof 

of (4.35). 

EvidentLy, r(X,a) : N(X,a) ~> M(X,a) is induced by the projections 

: HW(~®fll)(i°,k I) --> Wr(~@91)(i°,kl). If Rmap~((X,a),J'(Y,#)) de- 

notes the set of homotopy classes of reduced ~-maps (X,a) --> (Y,#), 

we therefore have a commutative diagram 
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m~ ~h~ ((X,~) ,J' (Y, ~) ) 

R m a p ~ ( ( X , a )  , J '  (Y, ~3) ) 

and Proposition 4.51 implies 

[r(X,a)* 

Corollary 4.52: The projection functors Wl : W(~®~1 ) ~> Wr(~@BI ) 

and ~2 : HW(~@~I) ~> Wr(~®~l) induce bijections 

~a~$((X,a),J(Y,~)) <N-V~ Rmap~((X,a),J'(Y,~)) ~-~> ~a~h~((X,a),J'~,~) 

In particular, any ~-map or h~-map into a ~-space is homotopic to a 

reduced ~-map. 

Remark: One might be tempted to duaLize Theorem 4.35 snd 4.49. That 

is, given a WB-space (X,a), one might want to construct a ~-space 

(VX,~') and a h~-map (p,~) : (TX,~' • ¢) ~> (X,a) such that any h~- 

map (f,0) : (Y,~ , e) ~> (X,a) from a ~-space (Y,~) to (X,a) factors 

uniquely as 

J'(Y,~) 
J'h/ k(f,~) 

J , ( v - x , a , )  (p ,~ )  > ( x , a )  

where  h : (Y ,~ )  ~ >  (V-X,a ' )  i s  a ~ - h o m o m o r p h i s m .  More p r e c i s e l y ,  ( f , o )  

i s  t h e  c a n o n i c a l  e o m p o s i t e  o f  ( p , ~ )  and a ~ - h o m o m o r p h i s m .  The f o L t o w -  

ing example shows that this is not possible in ~eneral. Let ~=~ , the 

PRO betongin~ to the theory of monoids, tet (X,a) be a W~-space, 

(U,~) a monoid and (p,~) : (U,u • c) ---~ (X,a) an N-map. Then (p,~) 

fails to have the required universat property: Suppose 

(f,0) : (Y,~ ° ~) --> (X,a) is an N-map. Let C be the cyclic monoid 

on one generator c and i : C ~ (Y,~) the homomorphism defined by 
Y 

iy(C) = y for some y(Y. If (p,~) were universaL, (f,o) lifts to a 

homomorphism h : (Y,~) --> (U,u), and h o i is the unique homomorphism 
Y 
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~ifting the canonicat composite (f,0) Q iy : C --> (X,a). As y varies, 

the co~ection of h~-maps (f,0) " iy determine h and therefore the 

wno~e structure of (f,p) uniquety, which is absurd, because the ad- 

joints 

HW(~®f11)(n°,11)× yn __> X 

(n denotes the unique object [n] --> .) of p : HW(~®f11)(n°,11)-->~0~(Yn,~ 

are not determined by the (f,P)" iy on the e~ements (a; yl,...,yn ), 
r. 

where a is indecomposabte and not each Yi of the form Yi = z I with z 

fixed for a~ i. 

6. AN EQUIVALENCE OF CATEGORIES 

In this section we show that the categories ~Q~ and ~a~h~ are 

equivalent to a category of fractions of the category ~orB of ~-spaces 

and ~-homomorphisms. 

Let ~ be an arbitrary category and ~ a crass of morphisms in ~. 

The category of fractions ~/E (see [23]) has the same objects as ~. 

Its morphisms are words in words in fot~owin~ ~enerators 

(a) the morphisms of 

(b) a morphism ~ : X --> Y for each morphism g : Y --> X in E. 

The retations are 

(i) [fl~] = If° g] if f,~ ~ mor 

(ii) [~I~] = id, [~I~] = id 

(iii) [id] : id 

There is a canonicat functor P = PE : ~ --> ~/E which is the identity 

on objects and which sends a morphism f to its equivatence c%ass in 

~/E. The functor P has the universal property that ~iven a functor 

F : $ --> ~ such that P(g) is an isomorphism in ~ for each ~Z, there 

exists a unique functor G : ~/E --> ~ such that G o P = F. 
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/X 
G 

In our case we take Z c ~ors or T ~ ~oms to be the class of all 

homomorphisms respectively of all homotopy classes of homomorphisms, 

whose underlyin~ maps are homotopy equivalences in ~0~K. The following 

proposition is an immediate consequence of the results of the previous 

section (see also [23; Prop. 1.3,p.7]). 

Proposition 4.53: The functor P oM, : ~a~h~ --> ~om~ --> ~0m~/T is an 

equivalence of categories. 

Proof: If fgT, then J'(f) is an isomorphism in ~h~ by (4.21). Hence 

there exists a unique functor F : $om~/T --> ~a~h~ such that Pop = J,, 

The front adjunction ~ : Id --> J,o M' = F • (P- M') is a natura~ equi- 

valence, and the back adjunction ~ : M'o J' --> Id induces a natural 

equivalence P~ : (P- M')o J' ~> Id, because each ~(Y,~) is a homo- 

topy equivalence considered as morphism of ~O~K. I 

If f ( ~or~ is a homotopy equivalence as morphism in ~O~K, then 

J,o H(f) is an isomorphism, where H : ~or~ --> $om~ is the functor 

sending each ~-homomorphism to its homotopy class. Hence there is a 

unique functor 

such that Go p = J,o H. More interesting, but considerably harder to 

prove is 

Proposition 4.54: The functor G : ~or~/E --> ~a~h~ is a n  equivalence 

of categories. 
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Proof: Again the adjoint pair (M',J') plays a n  essential role. Con- 

sider 

H ~om~ <' ~or~ 

~om~/T < H' ~or~/~ 

where H' is the functor induced by H. Using the universal property 

of PE we find that G = F o H' 

Claim: The functor PT o M' factors through ~or~/E 

Proof: By (4.49), each reduced ~-map (f,p) : (X,a) --> (Y,~) induces 

a unique ~-homomorphism h : M(X,a) --> (Y,~), such that (f,p) is the 

canonical composite ho (i ,va). Suppose (f',p') : (X,a) --> (Y,~) is 

a reduced ~-map homotopic to (f,o) and h' its induced ~-homomorphism. 

Suppose we knew that Pz(h) = PE(h'), we could define a functor 

R : ~h~ --> ~or~/~ 

by R(X,a) = M(X,a) on objects, and on h~-maps (g,~) : (X,a) --> (Z,v) 

by R(g,~) = Pz(r), where r is the ~-homomorphism induced by some com- 

posite of (g,~) and (iy,v¥). By our supposition, this definition is 

independent of the choice of the representative (~,~) and of the com- 

posite. Using the universal property of (ia,v a) we find that R is a 

functor, and evidently H' o R = P o M'. 

Let u k 6 HWr(~®S2 ) be the morphism 

° t u k = id k 

I 

If it is clear from the context, we drop the index k. Let ~ be the 

quotient category of HWr(~@~2 ) modulo the relation (compare the proof 

of (4.15)): 
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A tree A whose root has ~2-colour 1 and whose twigs have @2-co%our 0 

is related to A'.(uO... @u) where A' is obtained from A by changing 

the S2-colour of all edges to I. 

For any W~-space (X,a) let Q(X,a) = (QX,m') be the B-space with 

Qx~ = U~(i°,~2)× xi/~ 
i ~B 

with the re%ation 

! 

(*) (A I o A2; x I ..... Xn) ~ (A I o (ve... @v); a(A2)(x I ..... Xn)) 

! 
where A I and A 2 represent morphisms in ~, and A 2 = A 2 and (v@...@v)= 

I 
id if the twigs of A I have S2-co%our 0 wni%e A 2 is obtained from A 2 

by changing the B2-co%our of a%% edges to 0 and (v@...@v)=(u@...@u) 

if the twigs of A I have S2-co%our I. Note that @ is contained in • as 

the subcategory of a%% objects ~2, ~ (as usua%%y,!2={(i1,2) .... (in,2)] 

@ ®~2 for ~ = [i I ..... i n } ~ B). The B-structure on Q(X,a) is given 

by 

b[(Cl; ~i ) ..... (Cn; ~n )] = (bo (Cle ... ~Cn); ~I ..... ~n ) 

Define @-homomorphisms io,i I : M(X,a) --> Q(X,a) and r :Q(X,~ -> M(X~) 

on representatives by 

io(A; x I ..... x n) = (A'; x I ..... x n) 

i1(A ; x I ..... x n) = (A"o(U@... @u); x I ..... x n) 

r(B; x I ..... x n) = (B'; x I ..... x n) 

where A' is obtained from A by changing the root co%our from I to 2, 

and A" from A by changing the root co%our from I to 2 and the co%our 

of a%% other edges from 0 to I. The tree B' is obtained from B by 

changing the co%ours 2 and I of the edges to I respective%y 0. Then 

r • i o = id = r- i I. We have an inc%usion j : X --> Q(X,a) given by 

1 x ~--> (Ak;X), x(X k with A k = id k 

11length I 21idk 
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Then j = i I • i a. Now j(X) is a SDR of Q(X,a). The deformation is given 

by substitutin~ the roots of the representin~ trees of Q(X,a) at time 

t by 11t 
id 

2 

At t = O, we have the identity, and st t = 1 relation (*) reduces the 

eSement to one in j(X). Moreover j(X) is kept pointwise fixed throu~h- 

out the deformation. Since i a is a homotopy equivalence, so is i I and 

hence r and i . 
O 

Now given two reduced ~-maps (fL,pb) : (X,a) --> (Y,~), L = 0,1, 

which are homotopic. Then there exists an action o : HWr(~@~2) -> ~o~ 

such that d°(G) = 0 I, d1(~) = 0 ° and d2(~) = s°(a). This action 

induces a ~-homomorphism F : Q(X,a) --> (Y,~) by 

F(A; x I ..... x n) = o(A) (x I ..... x n) 

If h L : M(X,a) --> (Y,B) is the ~-homomorphism induced by (fL,0L), 

then hl = FoiL, L = 0,1. Now 

Pz(ho) = PZ(F)o Pz(io)= P~(F)oPz(~I) = Pz(hl) 

because PE(io) and PE(il) are both in,erses of Pz(r). This proves 

the claim. 

The natural equivalence Id --> F o (PT °M') = F o H' o R = G oR of 

the previous proposition provides the first equivalence. We can choose 

representin~ homomorphisms ~ : RG(Y,~) = M'J'(Y,~) --> (Y,~) of the 

back adjunction ~ : M'J'(Y,~) --> (Y,B) of the adjoint pair (M',J') 

such that Id(y,~) is the canonical composite Id = J'~6 o ~J'(Y,~). 

Given a ~-homomorphism h : (Y,~) --> (Z,¥) define M'J'h to be the B- 

homomorphism induced by the canonical composite vJ'(Z,y) o h. Using 

this representative M'J'h ( ~or~ it is easy to check that the ~ con- 

stitute a natural transforms.tion Ro G --> Id. Since vJ'(Y,~) is a. 
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homotopy equivalence an the underlying spaces, so is ~. Hence 

R o G ~> Id is a natural equivalence. 

Corollary 4.55: Since ~a~ is isomorphic to ~a~h ~, the results (4.53) 

and (4.54) hold for ~a~, too. J 

Proposition 4.54 to some extent ~eneraLizes a result of Malraison 

[31] who by slightly different means proved that the category ~ of 

monoids and homotopy classes of A -maps (see (1.14)) is isomorphic 

(and not just equivalent) to the category of fractions ~on/E, where 

~en is the category of monoids and homomorphisms and E is the class 

of homomorphisms which are homotopy equivalences. By (3.25), the cate- 

gory ~ is essentially the full subcate~ory of ~a~h ~ of all ~-spaces 

(= monoids). 

7. HOMOTOPY INVARIANCE FOR GENERAL THEORIES 

In §5 we showed that each WB-space csn be embedded as a SDR into 

a g-space. The PROPs WB and ~ are related by the equivariant equiva- 

Lence e : WB --> ~. We want to generalize this result by substituting 

W~ and ~ by ~eneraL theories 81 and 82 and the functor ¢ by a theory 

functor which is a homotopy equivalence on each morphism space. So 

we are aiming towards a result of the nature that for reasonable theo- 

ries 81 and @2 every reasonable 81-space embeds as a SDR of a @2-space. 

We restrict our attention to monochrome theories and Leave it to the 

reader to make the necessary modifications for the general case. As 

usuaL, n denotes the unique object [n] ~ * and S k the group of per- 

mutations of [k]. 

~efinition 4.56: A morphism b (@(k,1) is catted non-degenerate if 
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it does not have the form b = coG* with ~ : ELI --> Ek] a proper 

monomorphism. The theory @ is catted proper if each morphism b (@(k,]) 

has the form b = c • G* with c non-degenerate and ~ a monomorphism, 

uniquely up to the equivalence (c o ~*).(a --I). = c °a* for permuta- 

tions ~. 

The foLLowing result shows that all interesting theories are proper 

ones. 

Lemma 4.57: (a) Let 8 be a theory such that b o~* = c . s* for 

b,c { ®(0,1) implies b = c° Then each morphism f (@(k,1) is of the 

form f = g ° G* with g non-degenerate and ~ a menomorphism. If g. ~*= 

g'o T* with g and g' non-degenerate, then there is a permutation 

with g = g'. ~* 

(b) If in addition b • a* = b o T* for b (@(1,1) and G,T monomorphisms 

implies a=T , then @ is proper 

(c) Let 8 be a theory such that for each composite b . ~* = c .T* with 

b, c non-degenerate and ~ : p --> n, T : q --> n monic there exist 

monomorphisms ~ : L --> p and v : L ---> q and a morphism d (@(L,]) 

such that b = d • ~*, c = d. ~* and G.~ = T o v. Then @ is proper. 

ALL interesting theories,satisfy (c), because given an operation 

a : AxBxC --> X which factors through the projections AxBxC --~ BxC 

and AxBxC --> AxB, then it factors through the projection AxBxC --> B 

in all interesting cases. 

Proof: Obviously, any morphism a ~ 8(n,1) can be decomposed as 

a = b • ~* with b non-degenerate and G : p ---> n a monomorphism. Let 

a = c @ T* be another such decomposition with T : q --> n. 

Proof (a): If p = q = 0, then q = T and b = c by assumption. So sup- 

pose 0~p~q. Then there is an epimorphism a : n --> p such that 
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o ~ = id. Hence 

b = b ° a*- U* = c o T*. U* = c o (~ o T)* 

Since b is non-degenerate, U ° T : q --> p is an epimorphism. Hence 

p = q and ~Q T is an isomorphism. 

Proof (b): Using the notation of (a) we have to show that T = a ° ~ o T, 

-I 
because then b = c°w* and ~ = • , ~ with ~ = U .T, which we have 

shown to be a permutation. If p = q = I this fo%%ows from 

c-T* = b-a* = c .(ao~ .T)* 

and the assumption. So suppose p = q > 1. If a([p]) = T([p]), then 

there is a permutation 0 : [p] ~ [p] such %hat • = a o p. Hence 

T =Go D = G o  ~ o  G o p  = G o ~ o T  

If a([p]) ~ T(Ep]), there exists i ~ [p] such that i ~ a(Ep]) - ~([P]). 

Since p > I, we can choose the epimorphism ~ such that ~-1(U(i))=[i], 

so that ~. • is not a permutation, which is a contradiction. 

Proof (c): By assumption, there are monomorphisms ~ : ~ --> p and 

v : t --> q and a morphism d ~ @(%,I) such that b = do U*, c = d o v* 

and T o v = a o ~. Since b and c are non-degenerate, ~ and v are iso- 

morphisms. It fo~%ows that b = c-w* and a = T° -I with n = U • v-1. 

Let D®(n,1) c ®(n,1) denote the subspace of degenerate morphisms 

and AkX c X k the diagonal 

Theorem 4.58: Let @I and @2 be monochrome proper theories and (X,a) 

a @l-space. Suppose 

(a) each finite product of spaces @i(k,I), X and a sing%e space @2(~,I) 

is paracompact 

(b) (@(1,1),lid]) and (@2(1,1),[id]) are NDRs 

(c) (@(r,1)k,Ak@1(r,1)) are SkXSr-NDRs where S k ac~by permuting the 

factors and S r by componentwise composition on the right 

(d) (®i(r,1),D®i(r,1)) are Sr-NDRs and for each fixed monomorphism 
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q : [k] --> [r], the injective map b ~--> b • ~*, b (@i(k,1) is a 

homeomorphism onto a ctosed subspace of @i(r,1), i = 1,2. 

(e) (xk,Ak X) is a Sk-NDR 

Then given a theory functor F : @I --> @2 which is a homotopy equi- 

valence on each morphism space, there exists a @2-space (Y,a*) con- 

taining X as a SDR. 

Proof: The augmentation ¢ : W81 --> @I allows us to regard X as W@ l- 

space. Replace X by the universal @l-space M(X,a o ¢), the analogue 

of the construction of §5 for theories. As shown in (4.49), we can 

embed X as a SDR into MX. The required @2-space Y Looks Like MX, ex- 

cept that the %abel of the root vertex ties in @2 instead of 81 . But 

%el us give precise descriptions. As for PROPs, we can define theories 

Wr(@ I®91 ) by adding the extra relation that the Length of an inter- 

naL edge of 91-co%our I of a representing tree may be changed to 0 

to the relations (3.1 a,b,c). Then 81 is contained in Wr(@ I® 91 ) as 

the full subcategory of a%% objects n I. Now the construction of MX 

carries over. Let T k denote the space of at% trees of shape k WhOSe 

edges a%% have 91-cotour O except of the root, wnich has 91-coLour I. 

Let n k denote the source of k. Then 

n k 
= U T ×X 

with the relations 

(a) = (3.1 a). It does not apply to the root vertex because of the 

change of co%our 

(b) = (3.1 b), but for cherry trees, i.e. the cherries are affected 

by the set operations in the same way as the twigs 

(c) = (3.1 c) 

(d) if the cherry tree A has an edge of Length I, then the subtrse 

B with cherries yl,...,y r sitting on this edge may be replaced by the 

cherry [a - ¢(B)] (Yl ..... Yr ) 
! 

Let T k be obtained from T k by reptacing the space of root vertex 
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Labels @i(k,I) by @2(k,I). Then 

, xnk/~ Y = UTx x 

with the relations (a),(b),(d) above and (e) substituted by 

(c') any edge of length 0 which does not meet the root vertex may be 

shrunk as in (c), while an incoming edge of length 0 to the root ver- 

tex may be shrunk as follows: We substitute the vertex label, a say, 

above that edge by F(a) and then shrink as described in (3.1 c). 

The @2-action on Y is defined on representing cherry trees by 

b(A I ..... A n) = B 

where B is obtained from AI,...,A n by identifying their root vertices. 

Then the data of B is given by A I .... ,A n except of the root vertex 

label which is b o (a I@... Qan) if al,...,a n are the root vertex la- 

bels of A ,...,An. For example 

c d 

t u 
b 

MX if @I = ~2" There are again intrusions 

i : X >MX 

x ! ~~d 

j :X >Y 

x 

and as in (4.49) one shows that X is a SDR of MX. Define a map 

f : (M](,X) --> (Y,X) by substituting the vertex label b of a repre- 

senting cherry tree of M~ by F(b) to obtain a representing cherry 

tree of Y. Note that f is a homomorphism of @l-spaces if we give Y the 

This definition coincides with the definition of the @l-structure of 
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@l-structure induced by F. Suppose we know 

Claim I: j is a cofibration 

Claim 2: f : MX --> Y is a homotopy equivatence 

Then j = f • i : X --> Y is a homotopy equivalence and cofibration, 

and hence X a SDR of Y. (see [14; (3.7)]). 

To prove the ctaims we filter the spaces MX and Y by the subspaces 

M k and Yk of cherry trees which are related to a cherry tree with at 

most k edges. The spaces of sat cherry trees of MX and Y of a given 

shape k with k edges are of the forms 

Z I = 81(r,I) x P and Z 2 = 82(r,I) x P 

where @I(r,I) and @2(r,I) are the spaces of root vertex labels and 

P is the space of all cherry trees of MY with shape k, ignoring the 

root vertex labeL. Let Q c P be the subspace of trees which can be 

reduced by the relations to a tree with tess edges. On the root ver- 

tex (whose tabet we ignore) of a tree in P we have various subtrees 

sitting. Assume there are m trivial cherry trees, i.e. trees of the 

form 

(perhaps m = O), and n i non-triviat trees of shape X i forming spaces 

@1(ki,1) x Pi' where 81(ki,I) a~ain is the space of root vertex ~abets. 

Then 

n. 

P = x m x ]T(I x ~1(ki,1) x Pi ) ~ 
i 

where I parameterizes the tength of the edge from Pi to the root ver- 

tex of P. Let G i denote the symmetry ~roup of the shape k i and Qi~Pi 

the subspace of trees which can be reduced by the relations. The sym- 

metry group G of P is S m x IT H. where H i = Gi~ Sn., the wreath pro- 
i 1 & 

duct of G. and S (for a definition see Appendix II). A tree A of P 
l n i 

ties in Q iff it satisfies one of the following conditions 
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(i) any two coordinates in X coincide (because then we can reduce 

A by (b)) 

(ii) any l-coordinate is 0 or 1 (because then (c),(c') or (d) applies) 

(iii) any 81(ki,1)-coordinate is degenerate or an identity (becs.use 

then (a) or (b) applies) 

(iv) any Pi-coordinate Lies in qi 

(v) two (IX@l(ki,1)xPi)-coordinates are in the same Gi-orbit (be- 

cause then (b) applies) 

Examples to (iii) and (v): Let ~ : [1,2) --> [1,2,3~ map I to 3 and 

2 to I and Let T : [1,2,3} --> [1,2) map 1,3 to 2 and 2 to I. Then 

~ a,~* relation (b) 

relation (b) 

It is not difficult to show that each representing tree in the 

spaces Z I and Z 2 is related to a tree to which (i),...,(v) does not 

apply, uniquely up to relation (b) but for permutations only. This is 

precisely the situation we dealt with in chapter IIl. 

The group G permutes the r incoming edges to the root vertex of P. 

Hence there is a homomorphism G --> S r making @i(r,I) and @2(r,I) in- 

to G-spaces. We will show later 

CLaim 3: (@i(r,1)xP, Dei(r,1)xP U @i(r,1)xQ), i = 1,2, are G-NDRs 

CLaim 4: @i(r,S)xP - (D@i(r,1)×P U @i(r,1)xQ), i = 1,2, is a numerable 

principal G-space 
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CLaim 5: F : (81(r,1), D81(r,1)) --> (82(r,I), D82(r,1)) is an ordi- 

nary homotopy equivalence of pairs 

Then HX and Y are proper iterated adjunction spaces because they 

are obtained by adjoining spaces 

( ( S i ( r , t ) x P ) / G ,  (DSi( r ,1)xP U @i(r,1)xQ)/G) i = 1,2 

to Mk_ 1 respectively Yk-1' one for each shape orbit k with k edges, 

and these pairs are NDRs by claim 3. Since X c Y2 is a cofibratlon, 

claim I follows. In view of (A 4.4) it suffices to show that each map 

fk = flMk : Mk --> Yk is a homotopy equivalence. We prove this by in- 

duction, starting with M I = 81(0,1 ) and YI = 82(0'I)" The inductive 

step follows from (A 4.7) the assumptions of which hold if claims 3, 

4,5 are true and the equivariant map 

f '  : D81(r,1)xP U 81(r,1)xQ ~ >  D82(r,1)xP U 81(r,1)xQ 

induced by F is an ordinary homotopy equivalence. But by claim 5, 

Fxid : (8 l ( r ,1 )xP,D8 l(r,1)xPu81(r,1)xq)->(82(r,1)xP,o82(r,1)xPu@2(r,1)xQ) 

is a homotopy equivalence of pairs. 

Proof of claim 3:By assumption, (Si(r,1), DSi(r,1)) is a G-NDR. By 

(A 2.5) it suffices to show that (P,Q) is a G-NDR. We prove this 

by induction starting with a shape k with one edge only, the root, 

i.e. P = Q = ~. For the inductive step, consider for a given shape 

with k edges the pair 

n. 

(P,Q) = (xm,A,Xm)x ~ ((l×81(ki,1)×P i) I,R i) 
i 

where A'X m = [(Xl,..~[Xm)( xmlxi = xj for some i ~ j} and 

R i c ( I X @ l ( k i , 1 ) x P i )  1 i s  t he  subspace  o f  a l l  e l e m e n t s  s a t i s f y i n g  

(ii),(iii),(iv) or (v). By (A 2.8) and assumption (e), (xm,~'X m) is 
n. 

a Sm-NDR. So by (A 2 .4 )  i t  s u f f i c e s  to  show t h a t  ( ( I x 8 1 ( k i , 1 ) x P  i )  1,R i )  

is a Git Sni-NDR. We use the foltowin~ 

O b s e r v a t i o n :  G a c t s  f r e e l y  on P-Q 
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Proof: Suppose gA = A for A ( P-Q and g(G, g + identity. Then two 

(I×@1(ki,1)xPi)-coordinates of A are in the same Gi-orbit for some i 

or two X-coordinates of A coincide, which is a contradiction. 

Let V i c Ix@1(ki,1)xP i be the subspace of a%% elements satisfying 

(ii),(lii) or (iv). Then G i acts freely on Ix@1(ki,1)xP i - V i. By in- 

duction hypothesis, (Pi,Qi) is a Gi-NDR, by assumption (b),(d) and 

(A 2.7) the pair (@1(ki,1),D'@1(ki,1)) is a Gi-NDR where D'@1(ki,1)= 

D@(ki,1) U [idl) if k i = I and D@(ki,1) otherwise. Hence, by the pro- 

duct theorem for cofibrations, (Ix@1(ki,1)xPi,V i) is a Gi-NDR. By as- 

sumption (c) and the product theorem ((Ix@1(ki,1)xPi)l,Al(Ix@1(ki,1)x~)) 

is a (SlxGi)-NDR. Hence, by (A 2.10), the pair ((Ix@1(ki,1)xPi)ni,Ri) 

is a Gil Sn.-NDR. 
1 

Proof of claim 4: We know that G is finite and operates freely on 

8i(r,1)xP - (D@i(r,1)xP U @i(r,1)xQ). Moreover, there is a map 

u : @i(r,1)xP --> I such that u-l(0) = D@i(r,1)xP U @i(r,1)×Q because 

of claim 3. By assumption (a), the space @i(r,1)×P is paracompact. 

So claim 4 follows from (A 3.8). 

Proof of claim 5: The proof proceeds by induction starting with r = 0 

where D@1(r,1) = D@2(r,1) = ~. For each subset A c [r] of k elements, 

k<r, let ~A : [k~ --> [r~ be the order preserving monomorphism with 

image A. Let 

D k = [b • ~'6 @1(r,1)I~ : [k~ --> [r~ injective~ c @i(r,I) 

Denote the subspace of @i(r,I) of all elements of the form b . ~ by 

B A . Then 

U B A and B A D BA, c Dk_ I for A~A', IAI = IA'I = k D k = IAI= k 

(IAI = cardinaLity of A) because @I is proper. Hence D k can be ob- 

tained from Dk_ I by successively adjoining spaces (B A, B A D Dk_ I) 

one for each subset A c [rJ with k elements. The same holds for 82; 
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we denote the corresponding spaces by the same symbol with dash. Ob- 

viously F :Do-~ @I(0,I)-~@2(0,I~D' o. Assume inductively, that F :D.~_I~R '~_I_- 
@ 

By assumption (d), composition with a A induces homeomorphisms 

, , , , m,, t ! t ) (81(k,1) D@l(k,1)) -~ (B A BAODk_I) , (82(k 1),D@2(k 1)) - (BA,BADDk_ 1 

Hence, by assumption (d) and induction hypothesis, 

! ! D ! F : (BA,B A n Dk_1) ~ (BA,B A 0 k_1 ) 

' ' D' ) are NDRs By (A 4.6), we find that and (BA,B A 0 Dk_ I), (BA,B A 0 k-1 

F : D k ~ D'k. Hence F : D@1(r,1) = Dr_ I ~ D'r_1 = D@2(r,1) and hence 

2 : ( @ l ( r , 1 ) , D @ l ( r , 1 ) ) ~  (82(r ,1) ,D@2(r ,1))  

is a homotopy equivalence of pairs by (A 4.3). i 

Remark: Actuatly, we have proved a little more than stated in the 

theorem. We have constructed a @2-space Y which we can consider as a 

®l-space because of the functor F, and the inclusion j : X --> Y car- 

ries the structure of a reduced @l-map. 

Presumably most of the results of chapter IV can be generalized 

to arbitrary theories, under assumptions similar to those of Theorem 

4.58. But as we see from the proof of (4.58), the details are formid- 

able. 



V. Chapter 

STRUCTURES ON BASED SPACES 

One of the main applications of our theory wiLL be the cLassifi- 

cation of the algebraic topological structures of iterated Loop spaces. 

These spaces Live naturally in the category ~o~ ° of based topological 

spaces and based maps. Therefore we have to modify our constructions 

to cover this case. 

I. BASED THEORIES 

Let X be a topological space end K a set. Then X + is X with a dis- 

joint point [*} attached, which serves as base point, and X+K the dis- 

o denote the category whose objects are joint union of X and K. Let ~K 

functions ~ = (~',id) : [n]+K --> K and whose morphisms from ~ to 

are all functions a making 

K 

O commute. A basic object in ~K is a function [I]+K --> K. Since this 

function is the identity on the second summand it is uniquely deter- 

mined by the image k of 1([I]. Hence we often denote it by k. Then 

i : [n]+K --> K is the categorical sum of the basic objects 

i( 1 ) ..... i(n). 
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O Let ~O~K denote the category of K-graded spaces in ~o~ °. An object 

o determines a product preserving functor (~)op __> ~opo send- X ( ~O~K 

ing the object ! to X i = Xi(1)x...xX!(n) and the morphism ~ : i ~> 

o . ~>X. in ~K to e* : XJl ! 

O'*(X 1 . . . . .  X m) = (Xo(1 )  . . . . .  Xo(n ) )  

where Xa(r) = * ( X~ if a(r) = k(K c [m]+K (we always denote base 

points by .). We see that there ere additional set operations. 

O . . The sets ~K(I_,]~) are canonically based, the base point being the 

function i : [n]+K --> K c [m3+K. The corresponding set operation is 

o X the constant map in Zo~ (~,Xi). 

O __> O 
A function f : K --> L induces a functor f. : ~K ~L and hence 

_o, op ~. op _ i' a functor fop : (~K) ---> (~) . If i = ( ,id) : [n]+n ~> K is an 

object and s = (s',id) : [n]+K --> [m]+K a morphism from i_ to ~ in 

o ((id[m ] ~K' then f.(i) = (f" i',id L) and f.(s) = +f).o',idL). 

Definition 5.1: A (finitary) based K-coLoured topological-algebraic 

O theory is a category @ with ob @ = ob ~K together with a faithful 

functor (~)op __> @ preserving objects and products. The Latter means 

that 8(~,~) ~ e(±,A(1))x...xe(!,A(m)) is a based homeomorphism where 

the base points are the images of the base points of (~)op. 

A @-space is a continuous functor @ --> ~oD ° such that (~-->@-->Zo# ° 

preserves products. The images of the basic objects determine an ob- 

O ject in ZO#K , the underLyin~ space. 

A homomorphism between 8-spaces is a natural transformation of such 

functors. 

A theory functor from a K-coloured theory @I to an L-coLoured theory 

@2 is a continuous functor E : @I --> @2 together with a function 

f : K --> L such that 
op 

f. 

81 > 8 2 
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commutes. 

2. BASED PROs AND PROPs 

Denote the O-ary set operation in ~(k,O) by ~k" 

In contrary to the unbased case we consider four types of spines: 

Besides the PROs and PROPs, a notion WhiCh makes sense for based 

theories too, we consider "based" PROs and PROPs which are spines 

o generated under @ and composi- with respect to the subcategory of ~K 

tion by the ~k respectively the ~k and the isomorphisms. The reason 

is that for a based monoid and a based abe~ian monoid one usually as- 

sumes that the identity is the base point, i.e. the O-ary operation 

k ° including the unit coincides with the O-ary set operation ~. Hence 

a based PROP is a category ~ with bifunctor @ : ~x~ m> ~ as defined 

o generated under in (2.43) with G substituted by the subcategory of ~K 

and composition by isomorphisms and the ~k" The axioms (2.43) 

(a), .... (d) ho~d too with the appropriate modification of (2.43 d). 

The definition of a based PRO is analogous. 

Let us give an example where the additional set operation 

: [13 + m> [03 + causes changes. Since ~ does not contain set opera- 

tions the unbased free monoid on a space X is the disjoint union 

II xn ~n=O In the based case, we have a single set operation Left. 

Hence the based free monoid on a based space X is 

n~__O xn/~ 

) if x i = * and (x) ~ . if x =., where (x I ..... Xn)~(x I ..... x i ..... x n 

because if x i = *, then (x I ..... Xn)=(idew @id)*(x I ..... ~i ..... Xn)" 

(Here x means detete x). 
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3. THE BASED BAR CONSTRUCTION 

The bar construction for unbased theories carries over to based 

theories with the following modifications: The trees have a~ain edges 

with coLours in K and Lengths in I, and vertex Labels in the appro- 

priate morphism spaces of 8, but its twigs are Labelled by elements 

in [n]+K, if it represents a morphism with source ! : [n]+K --> K, 

instead of elements in [n3 only. If we have m twigs, the twig Labels 

o which stands for a set then define a morphism [m]+K --> [n]+K in ~K' 

operation. The relations among the trees of wb@ (b for "based") are 

the same as relations (3.1) with the following modifies.Lion of (3.1 b): 

o We may replace any (5.2) Let ~ : [n]+K --> [m]+K be a morphism in ~K" 

vertex Label 8. o ~* by a, by ehangin~ the part of the tree above this 

vertex: 

where C 
~r 

is a single twig with Label (and co%our) k if s(r)=k6Kc[m]+K. 

If each space 8(0,k) has only one element, i.e. the 0-ary operations 

are set operations, then wb®(0,k) also has only one element. Moreover, 

all stumps may be pruned away by shrinking their outgoing edge. We 

use relations (b) and (a) for this. In terms of operations this im- 

plies that in any wbe-spa.ce the base points behave Like strict iden- 

tities. 

We again specialize to PROs and PROPs. In the case of unbased PROs 

and PROPs, there are, of course, no chan~es. So Let ~ be a K-cotoured 

based PROP (for based PROs the construction is similar) and denote 
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* Then wb~ is the quotient of the O-ary set operation in ~(O,k) by ~k" 

W~ (here we consider w* k as an ordinary O-ary operation) modulo the re- 

lation 

(5.3) a stump I~ ~ may be shrunk 

I 

wb~ is the correct spine of the theory wb@ obtained from the based 

theory 8 associated to ~. 

Since aLL O-ary operations on a based ~-space coincide it seems to 

be reasonable to restrict the attention to PROs and PROPs having at 

most one O-ary operation 0 m> k for each kgK. If ~ is an unbased 

PROP satisfying this condition, then WB(O,k) nevertheless may have 

many O-ary operations. We introduce two modifications of the construc- 

tion W that correct this. Define W'~ to be the quotient of ~ modulo 

the retation 

(5.4) two trees without twigs having the same root coLour coincide, 

and define W"~ to be the quotient of ~#~ modulo the relation 

(5.5) any stump may be shrunk. 

Then W~(O,k) has at most erie element and W"~(O,k) = ~(O,k). 

The basic difference between W' and W" is best ittustreted with an 

example. Let ~ = N. In W'~(1,1) we have s representin~ tree 

t 

giving a path from e. x to x, i.e. the base point e of a W'~-space X 

is a homotopy unit, white in W"N this tree coincides w~th 

X1=id 

whicl~ means that in s, W"~-space the base point e is a strict unit. 



- 1 6 0 -  

Convention: ~nen dealing with constructions W' and W", we consider 

the O-ary set operation of a based PROP as ordinary O-ary operation, 

thus obtaining an unbased PROP. For actions on based spaces this does 

not make any difference. 

With this convention, we find that for a based PROP with ~0,k)=[~# 

for aL$ k(K the categories wb~ and W"8 coincide. But W"~ has a$8o 

some reSevance in the unbased case. 

0 
Let X be an object in ~0~ K and tet a be an action of an unbased 

K-co$oured PROP 8. We have ~(O,k) a W~(0,k) by the standard section, 

i.e. 9(O,k) is the subspace of aSt stumps. The action a induces maps 

~k : ~(0,k) ~ W~(0,k) --> X k 

A 
Theorem 5.6: (a) If the maps Xk are homotopic to the constant maps 

to . ~ X k, then the action a is homotopic through actions to an action 

of ~ on X such that B(~(0,k)) = * for a~l k(K 

(b) Let B be a K-coLoured PROP. (As always, we assume that 

(B(k,k),[idk]) is a NDR for aLL k.) Let w : W9 --> W"~ be the project- 

ion and ~ c W"~ a subcate~ory such that ~(O,k) = W"~(0,k) for a~ 

k ~ ob ~ and -I(~) a ~3 is an admissible subcategory. Assume we are 

given a homotopy of actions a(t) : W~ --> ~o~ on X ( ~O~K satisfying 

(i) ak(t) = ak(O) for art t(I 

3(O,k) ~ W~(0,k) --> X k is a closed cofibration for at~ (ii) ~k(O) : 

k~K and t(I 

(iii)a(t)l~-1(~) factors through 

(iv) m(t) factors through ~ for t = 0 [or tg~I, or (iv) is empty] 

Then there exists a homotopy ~(tl,t 2) : W~ --> X0~K through homotopies 

of actions such that 

(i) ~(t,O) = ~(t) 

(ii) # ( t 1 , t 2 ) l ~ - 1 ( ~ )  = a ( t l )  f o r  alt t 2 
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(iii) fl(tl,t 2) = a(t I) for t I = 0 [or t1($l, or (iii) is empty] 

(iv) ~(t,1) factors through 

(v) ^ ^ ~k(tl,t2) = ak(O) for a~ tl,t2(I 

Under suitabte hypotheses this resutt makes unbased W@-actions to 

based W"@-actions. We have stated it in greater generality than we 

need for this purpose, but we will use the fu%~ ~enera%ity later. 

Proof: Part (a) foltows immediately from (3.14) with the subcateEory 

generated by the morphisms of ~(O,k), k(K. 

The homotopy ~(tl,t2) of part (b) is constructed inductively. We 

use the cherry tree definition of an action (cf.3.24) and induct on 

the number of vertices and the number of cherries. The induction starts 

from the requirement that the trivial cherry tree with cherry x 

has value x and a stump b has vaAue ~(O)(b). For the inductive step 

from r-1 to r we consider a space P of trees of a ~iven shape ~ with 

n twigs, n~r, and r-n vertices. We convert P into a space of trees of 

filtration r by attaching to each twig a cherry or convert it into a 

stump of len~th t and some babel in ~(O,k), k = twi~ colour. By (3.24 e) 

a stump b of length I must be equivalent to the appropriate cherry 

~(O)(b). To take care of this we introduce 

Yk = ~(O,k)xI U Xk/((b,1)~k(O)(b)) 

Let Y' " = ~(O,k)x[O} ~nat we took for k be the image of ~(O,k)xl and Yk 

is a homotopy 

H : PXYklX...×YknXIXI ~> X~ 

where kl,...,k n are the n colours of the twigs of k and I the colour 

of its root. By induction, H(A,Yl,...,Yn,Ul,U 2) is already determined 

iff one of the following holds 

(i) A lies in the subspace Q ~ P of trees that simplify by (3.24 (a) 

or (c)), or decompose and hence simplify by (3.24 e), or that re- 



- 162 - 

present an element of - 1 ( ~ ) .  (Note that A represents a tree of 

-I 
(~) iff any tree obtained from A by converting a twig to a 

stump of arbitrary length represents a tree of ~-I(V), because 

~ ( O , k )  = W"~(O,k )  f o r  k ~ )  

" because then we have a stump of Length (ii) some Yi ties in some Yk' 

0 which can be shrunk 

! 

(iii) some Yi lies in some Yk and u 2 = I, by the requirement on ~(uI,1) 

(iv) u 2 = o 

(v) u I = 0 [or u1(~I, or (v) is empty] (Denote this subspace of I 

by I', i.e. I' = [0) or 8I or @) 

Let G be the symmetry group of the shape X. The action of G on the 

twigs makes Y = YklX...XYk into a G-space. We wi%~ show that there is 
n 

an equivariant retraction of PxY×I×I onto the subspace of elements 

satisfying one of the conditions (i) ..... (v) so that the induction can 

proceed. We already know that (P,Q) is a G-NDR. Let Z' and Z" be the 

f 
" NOW (Yk,Y~) ' respectively Yk subspace of ygY with some Yi in some Yk 

is homeomorphic to (B(O,k)×I,~(O,k)xu) so that Y~ is a SDR of Yk" We 

prove later 

Claim: Z" is an equivariant SDR of Z' 

From the product formula for equivariant SDRs we obtain that 

Z'xI'xI U Z'xIxSI U Z"xIxI is an equivariant SDR of Z'xIxI and that 

Z'xIxI U YxI'xI U YxIxO is an equivariant SDR of YxIxI, the tatter 

because [O}cI is a SDR and (YxI,Z'xI U YxI') is a G-NDR. Hence 

Z"xIxI U Z'xIxl U YxI'xI UYxIxO is an equivariant SDR of YxIxI and 

hence Px(Z"xIxI !J Z'xIxl U YxI'xI U YxIxO)19 QxYxIxI of PxYxIxI, what 

we had to show. 

It remains to prove the claim: Let V r be the subspace of points 

t 
in Y with at least n-r coordinates in some Yk" Consider the pair 

(VrUZ",Vr_IUZ"). Then (VrUZ")-(Vr_IUZ") consists of a collection of 

spaces homeomorphic to copies 

(Y%1-Y~1 x(Yln-r Y%n-r ml " -Y' -Z' )x .x ) ' " )x . .  ' " )x (Yml . (Ymr " - -  m r 
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after a suitable shuffle of coordinates, [l I .... ln_r]U[m I .... m r] = 

[k 1, .... kn], on which the homomorphic image G' (determined by the co- 

ordinate shuffle) of the subgroup of G acts which keeps this space 

yV invariant. Let U c 11 x'''xYln-r be the subspace of all points having 

" and W c YmlX...xY mr the subspace of all some coordinate in some YLi 

points having some coordinate in some Y' . Then 
m i 

UXYmlX...XYmr U Y~I x...xY~n_rxw = Y'llX...XY~n_r×YmlX...XYmrO(VIUZ") 

is a G'-equivariant SDR of Y'LIX...xY L'n_rxYml x...xYmr by (A 2.4). By 

induction, V oUZ'' is an equivariant SDR of Z' = V n_IUZ". But VoOZ" is 

an equivariant SDR of V o, a~ain by (A 2.4). Hence Z" is an equivari- 

ant SDR of V UZ". f o 

By a similar argument, one can also prove a partly homogeneous 

version of this theorem. 

The following result, which can be proved in the same manner as 

the first part of (4.13), indicates how we will apply Theorem 5.6. 

Lemma 5.7: Let s t : W~ --> ~o~ be a homotopy of actions on X ( ~0~ K. 

Then id X carries the structure of a B-map from (X,m o) to (X,al). The 

same holds for the partly homogeneous case. | 

4. LIFTING AND EXTENSION THEOREMS 

~nen dealing with W'~ we usually have to assume 

Assumption 5.8: ~(O,k) has at most one element for all k. 

For Based actions this is no restriction, as we have seen before. 

Since wbe coincides with W"~ for a based PROP ~ satisfyin~ (5.8) and 

since it suffices to study PROPs satisfyin~ (5.8) when we consider 
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based actions, the case wb~ is covered by the case W"~. 

Recall that we have filtered each space W~(i,k) by subspaces F r of 

morphisms represented by trees with at most r internal edges. This 

" of W"~(i,k) ' of W'~(i,k) and ? r filtration induces a filtration F r _ 

Let P be the space of trees of a given shape X with r internal edges 

and G its symmetry group. Then a tree A of P represents an element of 

F' iff one of the following holds r-1 

(5.9)(a) Some vertex Label is an identity 

(b) some internal edge has Length O 

(c) there is an internal edge of Length 1 havin~ a subtree with at 

Least one internal edge and with source O above it (because then 

the additional relation applies) 

The tree A of P represents an ebement of F" iff one of the follow- r-1 

ing holds 

(5.10)(a) some vertex Label is an identity 

(b) some internal edge has Length 0 

(c) A has a stump and r~1. 

Let Q'cP and Q"cP be the subspace of those elements satisfyin~ 

(5.9) respectively (5.10). Then (P,Q') and (P,Q") are equivariant 

NDR s. 

Proposition 5.11: The augmentation c : ~B - - >  $ induces an equivariant 

equivalence ~" : W"~ --> ~ and, provided ~ satisfies (5.8), an equi- 

variant equivalence c' : W'~ --> 9. 

Proof: We obtain ?'r and F r'' from F'r_1 and F"r_1 by attaching spaces 

(P,Q') and (P,Q") (cf. 3.15). As in (3.15) it suffices to show that 

Q'~P and Q"~P are equivariant SDRs. Since [O]cI is an SDR, this is 

clear for (P,Q") by (A 2.4). For (P,Q') this holds for the same reason 

if the shape k has no stumps. If it has a stump and r~1 then the stump 
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is an internal edge. Let ~ be the spsce obtained from P by deleting 

the coordinate giving the Length of the stump, so that P = ~xI. Then 

Q' is of the form Q' = ~xO U ~xl, where ~ is a suitable subspace of 

~. Hence (P,Q') = (~,Q)x(I,O) so that Q' is an equivariant SDR of P 

by (~ 2.4). | 

For W'~ and any partly homogeneous version we have a Lifting theo- 

rem 

Theorem 5.12: The Lifting theorems(3.17) and (3.20) also hold if we 

substitute HL~B by HLW'$ provided all PROPs involved satisfy (5.8). 

Proof: Let P : HLW~ --> HLW'S be the projection functor. Then there 

exist extensions H : HLW~ --> ~ of H' : p-1(B) __> ~ and ~:HLWB --> 

of K~ : p-1(B) --> ~ which factor through HLW'~, because G and D have 

at most one O-ary operation. I 

For the same reasons we have a homotopy extension theorem for W'~. 

Theorem 5.15: Proposition 5.14 also holds if we substitute HLW~ by 

HLW'~ and ~ by ~o~ °. I 

Since we work with functors into ~o~ ° the actions are automaticaLLy 

based. The Theorems 5.12 and 5.13 show that we may weLL restrict to 

PROPs and PROs satisfying (5.8) and substitute W~ by W'~ when we work 

with based actions. The results of IV, §1,2,3 carry over with except- 

ion of (4.16), on which the homotopy invariance results rely. The based 

analogue of (4.16) can be proved for weLL-pointed spaces X, i.e. each 

pair (Xk,*) is a NDR (see (5.16)), so that we obtain the homotopy in- 

variance results for welL-pointed spaces. Since there is nothing spec- 

tacubar about W'~ we concentrate on W"B from now on. 
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(3.17) does not imply a Liftin~ theorem for W"~, because indecom- 

posabLe trees in W~ may weLL represent a morphism in W"~ which can be 

decomposed into some morphism of WB" and a sum of O-ary operations 

and identities. FortunateLy, we have an adequate substitute for (3.17). 

Theorem 5.1~: Suppose given a diagram 

HL~ F ~ ~ 

of categories and functors satisfyin~ the assumptions of (3.17). We 

suppose further that B(O,k) contains ~(O,k) and that H':$(O~)c~(O~)->~Q~ 

is a closed cofibration for aLL k(K. Let 0 : ~ --> ~o~ be an action 

^ ~(O,k) --> X k is a closed cofibration. on X 6 ~O~KxL such that each Ok : 

Then there is sn action ~ : HLW"~ --> ~o~ on ~ extending the muLtipLi- 

cative functor p. H' : ~ --> ~0~. 

Proof: We prove the homogeneous version. Let n : WB --> W"$ be the 

projection. Then B' = -IB satisfies the assumptions of (3.17) so that 

there is an extension H : W~ --> ~ of H'o~ : ~' --> ~. Now apply (5.6) 

with a(t) = Do H to obtain the required action ~. 

The partly homogeneous version foLLows from the partly homogeneous 

analogue of (5.6). I 

In a similar manner we can also prove a homotopy extension result. 

Theorem 5.15: Let BCHLW"~ be an admissible subcategory of HLW"~ such 

that ~(O,k) c ~(O,k) for all k~K. Let p : HLW"~ --> ~o~ be an action 

on X ~ ~O~KxL and a(t) : B --> ~o~ a homotopy of muLtipLicative func- 

^ ^ 0 ~(O,k) c ~(O,k) --> X k for tors such that a(O) = ~I~, ak(t) = ak( ) : 
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aLL t(I, and ak(O) is a closed cofibration. Then there is a homotopy 

of actions of HLW"~ on X extending 0 and a(t). 

Proof: Using the notation of the proof of (5.6), we have an extension 

8(t) of a(t) o ~ : -I(~) __> ~o~ to HLW~ such that 8(0) = 0" ~. We 

deform 8(t) relative to -I(~) by (5.6) keeping 8(0) fixed and obtain 

an action which factors through HLW"~. I 

5. BASED HOMOTOPY HOMOMORPHISMS 

If we deal with based actions of unbased PROs and PROPs, we can 

define based ~-maps and h~-maps as in chapter IV. Since the Lifting 

theorem (3.17) and the homotopy extension theorem (3.14) can be used 

for based actions of unbased PROPs and PROs, the results of chapter 

IV, §1,2,3 carry over as Lon~ as they do not rely on Lemma 4.16. This 

Lemma is substituted by 

O Lemma 5.16: Let p : X --> Y be a morphism of ~o~ K which is an un- 

based homotopy equivalence and suppose that X and Y are weLL-pointed. 

Then p admits a based W(K®~)-action. 

The proof proceeds as the proof of (4.16) with the exception that 

the maps 

fk : I2nXYk --> Xk hk : IxI2nXYk -> Yk 

to be constructed in the inductive step are not only ~iven on 812nXYk 

respectively (OxI2nUIxSI2n)XYk in advance, but also on I2nx~*}cI2nXYk 

and IxI2nx~*)cIxI2nXYk . Again (A 3.5) provides the required maps, be- 

cause (I2nXYk,~I2nXYkUI2nxl.}) is a NDR. I 

Hence for an unbased PROP ~ we expLicitLy obtain 
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Theorem 5.17: The simpticiat class eo ~o [ hB ] whose n-simpLexes are based 

W(~®Bn)-actions [H~n(S®~n)-actions] satisfies the restricted Kan 

condition. Hence the category ~Q~ [mQ~S ] of based ~-spacee and eim- 

pticiat homotopy classes of based ~-maps [h~-mape] exists. I 

Proposition 5.18: Two based S-maps [h~-maps] (fi,0i) : (X,a) ~ (Y,~), 

i = O,1, are simpLiciaLLy homotopic iff there is homotopy through 

based S-maps [h~-maps] (ft,0t) : (X,a) --> (Y,6) from (fo,0o) to (~,01). I 

Proposition 5.19: Let (f,0) : (X,a) --> (Y,p) be a based S-map [hS- 

map] and f ~ g. Then g admits a structure ~ of a based S-map [h~-map] 

such that (f,p) and (g,x) are homotopic. I 

Theorem 5.20: Let ~S be a sub-PROP such that (~(~,k),~(~,k)) is a 

Si-NDR for aLL ~ and k in ~, and Let p : X --> Y be a homotopy equi- 

valence of weLL-pointed spaces in ~o~. Let i : W~ c W~ and 

j : W(~®~l) c W(~®~I) [HW(~®~I) c HW(S ®~i) ] be the inclusion 

functors 

(a) If (X,a') is a based W~-space, (Y,p) a based W~-space, and 

(p,p') : (X,a) --> (Y,8 oi) a based ~-map [hD-map], then we can ex- 

tend a' to a based WB-action a on X and p' to a based S-map [h~-map] 

(p,p) : (x,~) --> (Y,~) 

(b) If (p,p) : (X,a) --> (Y,p) is a based S-map [hS-map], then any 

homotopy inverse based ~-map [h~-map] (q,~'):(Y,~,i)-->(X,aoi) of 

(p,poj) can be extended to a homotopy inverse (q,~) : (Y,8) --> (X,a) 

of (p,0). | 

To cover the case of based PROPs, we also study maps of W"~-spaces. 

We define a ~"-map from a W"~-space (X,a) to a W"~-space (Y,p) to be 

an action ~ : W"(S@~I) --> ~o~ with d°(x) = p and d1(~) = a. The 

homogeneous version is defined anaLogousLy. The results of IV, §1,2 
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carry over provided we only consider actions a : W"~ --> ~o~ respec- 

tive%y their partly homogeneous analogues, • an arbitrary unbased 

PROP, on objects X ~ ~O~K satisfying 

Assumption 5.21: The induced maps ~k : ~(O,k) c W"~(O,k) --> X k are 

closed cofibrations. 

This assumption is in particular satisfied if each space ~(O,k) 

has at most one element b k and a is an action on a weLt-pointed ob- 

o ject X ~ ~OpK whose base points are the images of 

ak(b k) : . --> X k 

if ~(O,k) $ ~. Note that a is then automatica%ly a based action, pro- 

vided each ~(O,k) has exactly one element. 

Expticitt~ we have 

Theorem 5.22: Let $ be an arbitrary PROP. The restricted Kan condition 

" F~" - holds for the simpticia% class ~ L h~J whose n-simpLexes are W"(~@~n)- 

actions [H~nW"(B@~n)-actions] satisfying (5.21). Hence the category 

~o~ " [~a~h ~] of W"~-spaces satisfying (5.21) and simpticia% homotopy 

classes of [homogeneous] ~"-maps satisfying (5.21) exists. | 

Proposition 5.23: Two ~"-maps [h~"-mapsS (fi,0i) : (X,a) --> (Y,~), 

i = 0,1, are simpLiciaLLy homotopic iff there is a homotopy 

(ft,Pt) : (l,a) --> (Y,~) through ~"-maps [h~"-maps] from (fo,0o) to 

(fl,01), provided aLL actions satisfy (5.21). 

The proof is not a direct translation of (4.13) to our case, because 

we do not have a uniqueness part in (5.14). If ~ : W(~@~I ) --> W"~@~ 

is the projection, then we know that the ~-maps (fo,0oo~) and (~,01-~ 

are homotopic by a homotopy through ~-maps (ft,~t). By (5.6) we can 

deform ~t to a homotopy which factors through u inducing the required 
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homotopy through ~"-maps from (fo,0o) to (fs,01). The homogeneous 

version is proved in the same manner. I 

Theorem 5.24: Let (P,0) : (X,m) --> (Y,8) be a ~"-map [h@"-map] whose 

underlying map p is a homotopy equivalence in XO~K. Let ~k:@ be a sub- 

PROP such that (~(~,k),~(~,k)) is an Si-NDR for all ~ and k. Denote 

the inclusions W"~ c W"~ and W"(B @~1 ) c W"(~ @ ~i ) [H~sW"(~@~IW~@@~ ~ 

by i and j and Let (q,~') : (Y,8 ° i) --> (X,a.i) be a homotopy inverse 

~"-map Kh~"-map] of (P,0 • J). Assume all actions satisfy (5.21). Then 

(q,~') can be extended to a ~"-map [h@"-map] (q,~) : (Y,fl) --> (X,a) 

which is homotopy inverse to (P,0) and satisfies (5.21). I 

Unfortunately the proof of (4.18) has to be chan~ed to work for 

~"-maps because the category • used in the proof does not necessarily 

contain the spaces ~(O,k). We indicate the modifications for the spe- 

cial case we need. 

Theorem 5.25: Let B be a PROP such that each ~(O,k) has exactly one 

element. Let ~kz~ be a sub-PROP as in (5.24) and Let p : X --> Y be a 

o If (X,a') homotopy equivalence of welt-pointed spaces in XO~K. 

is a based W"~-space, (Y,B) a based W"B-space, and (p,0'):(X,a')-->(Y,~,i) 

a based ~"-map [h~"-map], we then can extend a' to a based WB"-action 

a on X and p' to a based ~"-map [h~"-map] (P,0) : (X,a) --> (Y,fl). 

Proof: By (5.20), there is a based ~-map (p,~") : (X,a") --> (Y,fl. N@) 

where n, B : ~ --> W"$ is the projection, extending the based ~-map 

(X,~'. ~) -->(Y,p o i o u~). Since ~(k,O) and ,I) are the inclusions 

of the base point, which are closed cofibrations, we can deform p" to 

a based @"-map (X,a) --> (Y,fl) by (5.6). The homogeneous version is 

proved analogous ty. 
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6. THE BASED CONSTRUCTION M 

We define reduced based ~-maps and reduced ~"-maps in a fashion 

analogous to chapter IV. They enjoy the same properties as in the un- 

based case with the modifications Listed in the previous section. 

Therefore, one might expect that the based equivalent of the con- 

struction M of (4.49) can easily be obtained. This is not the case! 

Let ~ be an unbased PROP and (X,~) a based @-space, then M(X,a) as 

defined in (4.49) is a ~-space but it is not based. If we take the 

base point of X as base point of M(X,a) then the @-action does not 

preserve base points. By imposin~ new relations we can make M(X,a) 

into a based @-space having the correct universal property, but then 

it is not of the homotopy type of X any more, which is insufficient 

for us. 

The situation is different for based PROPs (or PROs). Since we may 

restrict our attention to based PROPs having exactly one O-ary opera- 

tion, we may as welt treat the case W"@. 

Let W~(~®91) be the quotient of Wr(~®91 ) obtained by shrinking 

aLL stumps, and Let (X,a) be a W"@-space. Define M"(X,a)=[M"X k) by 

M"X k = ~J W~(#@gl)(!°,kl)xxi/~ 

(5.26) 

(c. a;x I ..... Xn)~(c;a(a)(x I ..... Xn)) 

c(W~(~ ® Sl)(l°,k I) and a(W~(~ ®£i)(!°,j °) (the upper index specifies 

the Sl-COlOUr). 

In terms of cherry trees M"(X,a) is the quotient of M(X,a) by add- 

ing the relation 

(5.27) (A;y I .... ,yn)--(A';y I ..... yn ) 

if A' is obtained from A by shrinking stumps. 

As a consequence of this relation we obtain 

(A;y I ..... yn)~(A';y I ..... Yi,b(*),Yi+1 ..... Yn ) 

if A has a stump b between its i-th and (i+1)-st twig and A' is ob- 
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tained by converting this stump to s twig. 

Theorem 5.28: Let 3 be a PROP and (X,a) a W"~-space. Then there is a 

reduced ~"-map (ia,va) : (X,a) ~> M"(X,a) such that 

(a) i embeds X as SDR into M"(X,a) 

(b) any reduced ~"-map (f,o) : (X,a) ~> (Y,6) is the canonical com- 

posite of (ia,v a) and a unique ~-homomorphism M"(X,a) ~> (Y,8) 

(c) if (f,o) : (X,a) ~> (Y,8) is a reduced ~"-map and each ~k and 

~k is e. closed cofibration, the homotopy class of the induced 

homomorphism h : M"(X,~) ~> (Y,~) depends only on the simpLiciaL 

homotopy class of (f,0). 

The proof is as for Theorem 4.49. I 

The construction M" gives actually a LittLe more. If (X,a) is a 

A 
W"~-space such that each a k : ~(O,k) ~> X k is an inclusion and 

A ( ~O~K is the collection of images of the ak, the action a on X 

makes A into a ~-space and the inclusion i a restricted to A is a ~- 

homomorphism. This has relevance for the based case: 

Corollary 5.29: Let $ be a K-coLoured PROP such that each ~(O,k) has 

exactly one element and Let (X,a) be a W~-space such that each 

a k : ~(O,k) B> X k is a closed cofibration. Denote the image of~k 

by x k. Then there is a based ~-space (Y,B) and an unbased reduced 

~-map (f,o) : (X,a) q> (Y,~) whose underlying map consists of maps 

of pairs fk : (Xk'Xk) B> (Yk '*)' which embeds X k into Yk as SDR. 

Proof: By (5.6) we can homotop a to a W~"-action ~ keeping ak( ) fixed. 

Take Y = M"(X,~) with base points ~iven by 8(O,k) c Yk" By (5.7) and 

(5.28) there is a n  unbased reduced 8-map 

(idx,~) (i~,v~) Z"(X,~) 
(f,0) : (x,~) -> (x,~) > , 
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f = ia, with the required properties. 

In view of (5.28 c) we also show 

Lemma 5.30: Let @ be a PROP and (X,a) a W"B-space such that each a k 

is a ctosed cofibration. Then each inclusion @(O,k) c M"X k is a closed 

cofibration. 

Proof: We fitter M"(X,a) by subspaces M" of elements represented by 
r 

a reduced cherry tree with m vertices and n cherries, m+n~r. An eLe- 

ment of the space P of aLL cherry trees with m vertices and n cherries, 

m+n=r, represents an element of fittration r-1 iff a vertex is LabetLed 

by an identity, or an internat edge has ten~th 0 or I or supports a 

A 
stump, or a cherry Lies in the image of some a k. If Q is the space of 

these cherry trees, then (P,Q) is a NDR so that fM" M" ) is a NDR r' r-1 

(A 4.1). Since M S = U k ~(O,k), the result foLLows (A 4.1). I 



VI. Chapter 

ITERATED LOOP SPACES AND ACTIONS ON CLASSIFYING SPACES 

It is the aim of this chapter to show that E-spaces (see 2.46) 

coincide with infinite Loop spaces. As an application we prove that 

the stable groups O,U,SO,SU,Top,F and their classifying spaces are 

infinite Loop spaces. For thi~purpose we investigate how much struc- 

ture on a space X can be transferred to its classifying space BX if 

there is any. 

I. THE CLASSIFYING SPACE CONSTRUCTION 

In this chapter ~ denotes the PRO associated with the theory @m of 

monoids. RecaLL that ~or~ is the category of monoids and homomorphisms 

and ~om~ the category of moinoids and homotopy classes of homomorphisms. 

Let G be any monoid with unit e. Consider G not as an ~-space but 

as a monochrome PRO @ by putting @(1,1) = G and @(n,1) = ~ for n~1. 

Composition is given by the muLtipLication in G. Take a single point 

P with its unique W@-structure and apply the construction M of (4.49). 

Note that M is defined even if (G,e) is not a NDR so that condition 

(3.7) is not satisfied for the PRO @. The space EG=MP is a contractible 

free G-space. ContractibiLity foLLows from (4.49 a) and freeness from 

the definition of the @-action on MP. 

Definition 6.1:We caLL EG the universal space and BG=EG/G the cLassi- 

fying space of the monoid G. 
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Let us give direct descriptions of EG and BG. The representing 

cherry trees of EG are Linear and verticaL, and may be specified by 

giving in order, going up the tree, the vertex LabeLs and edge Lengths 

as (go,tl,gl,t2,g2 .... ,gk),gi(G,ti(I. We have the relations 

(6.2) I 
(a) (go,tl,gl ..... gk ) = 

(b) (go,tl,gl ..... gk ) = 

(c) (go,tl,gl .... ,gk) = 

(go,tl,gl ..... tk_1,gk_1) gk=e, k~O 

( g o , t 1  ..... gi_l,ti*ti+l,gi+l,.,g~=e,0~k 

(go,t1 ..... ti_l,gi_l"gi,ti+l,..,g ~ ti=O 

(go,tl ..... gi_1 ) ti=1 

Here we use t.t' = t+t'-tt' and not t.t' = max (t,t'). Hence 

EG = k__~O Gk+1×Ik/~ 

ReLation (a),(b), and (c) stand for relations (3.1 a),(3.1 c), and 

(4.49 d). Note that (go,tl,...,gk) stands for the representative 

[(go,J),t1,(gl,ido),t 2 ..... (gk,ido);.] with P=[.], (gi,hi)(G@~1, and 

j : 0--> I in ~ 1. 

The contraction H t : EG --> EG is Riven by 

Ht(go't1'gl ..... gk ) = (e't'go't1'gl ..... gk ) 

t running from 0 to I, and the G-action GxEG --> EG by 

[ g ' ( g o ' t l ' g l  . . . . .  gk )] ~ >  ( g ° g o ' t l ' g l  . . . . .  gk ) 
ConsequentLy 

BG = 

with G°=[e] and the relations 

(6.3) 

(~) 

(b) 

k~=0Gkxlk/~ 

I(tl,gllt ..... gk_l ) gk =e 

(tl,gl,t 2 ..... gk ) = [(tl,g I .... gi_1,ti*ti+1,gi+1 .... gk ) gi=e, i<k 

(tl,gl,t2 ..... gk ) = l(t2'g2't3 gk ) t1=0 

L(tl,g I ..... ti_1,gi_1"gi,ti+1 .... gk ) ti=0,i~O 
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(C) (tl,gl,t 2 ..... gk ) = (t1,~ 1 ..... ~i_I ) ti=1 

We use the obvious convention, that ( ) = (e). The projection 

pG : EG --> BG is Riven by 

pG(go,tl,g I ..... gk ) = (t1,~ I ..... gk ) 

A homomorphism f : G --> H of monoids induces maps Ef : EG --> EH 

and Bf : BG --> BE by Ef(~o,t I ..... gk) = (f(go),tl ..... f(gk )) and 

Bf(tl,g I ..... gk) = (tl,f(gl) ..... f(gk)), which makes E and B into 

functore 

E,B : ~or~ --> ~ob 

and p into a natural transformation of functors. If ft 

a. homotopy through homomorphisms, 

Ef o ~ Ef I respectively Bf ° = Bf I. 

categories and obtain functors 

: G - - > H  is 

then Ef t and Bf t are homotopies 

Hence we can pass to the homotopy 

E,B : Dom~]--> ~o~ h 

Our functors E and B coincide with MiLgram's classifying space 

functors [37]: Let A n = [(u I ..... Un)6IRnlogu1~...~Ungl], the Euctidean 

n-simpLex. Define 

E'G = kVO Gk+lxAk/~ 

with the relations 

(6.4) 

(a) (go,Ul,gl . . . . .  gk ) 

~(go'U1'g1'''''~k-1 ) if gk=e, k>0 

go'U1''''~i-1'ui+1'gi+1''''gk )if gi =e'O<i<k 

Ii goog I,u2,~2 .... ~k ) if u1=0 

(b) (go,Ul,gl ..... gk ) = ~o,Ul .... ~i_1,Ui+l,giogi+1,ui+2 .... g~ifui=ui+ I 

~o,Ul,..,Uk_ 1,gk_1 ) if Uk=1 

There is a G-action on E'G given by g,(~o,Ul .... gk)=(gOgo,Ul .... gk ) 
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Definition 6.5: We caLL E'G MiLgram's universal space of G and 

B'G=E'G/G Mitgram's classifying space of G. 

We can extend E' and B' to functors ~or~ - - >  ~o# in the same manner 

as E and B. 

Proposition 6.6: There is a natural equivariant homemorphism EG --> E'G. 

ConsequentLy, the functors E and E' and the functors B and B' are na- 

turaLLy isomorphic. 

Proof: Define a map h : EG --> E'G on representatives by 

h(go,tl,g 1, .... gk ) = (go,Ul,gS .... ,gk ) where u i = t1*t2....*t i. Then 

relation (6.2 a) corresponds to (6.4 a), and relation (6.2 b) and 

(6.2 c) correspond to (6.4 b). The inverse of h is given by 

(go,Ul,gl .... gk ) ~-'-> (go,tl,gl ..... gk ) 

with t1=u I and t i = (ui-ui_1)/(1-ui_ I) for i>I, with the convention 

that 0/0=1. | 

Remark:If we use t1* t 2 = max(ts,t2) instead, there is no such homeo- 

morphism. 

Proposition 6.7: The functors E and B preserve products. 

Proof: It is weLL-known (see [30] or [50]) that the functors E' and 

B' preserve products, i 

Next we will show that the functor B preserves homotopy equivalences. 

Since we Later on need this result for monoids in the category of H- 

spaces, where H is a discrete group, we work in the category of H- 

spaces. An H-monoid is a monoid G together with an action of H on G 

such that g ~--> h.g, g(G, h(H is a monoid homomorphism for aLL h(H. 
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Then EG and BG admit H-actions 

h ' ( g o , t l , g  1 . . . . .  gk ) = ( h . g o , t l , h . g  1 . . . . .  h . g  k )  

h.(tl,gl,t 2 ..... gk ) = (tl,h.~1,t 2 ..... h'g k) 

and 

and p : EG --> BG is H-equivariant. 

The functors E and B and accordingly ~ and ~ are ca nonicatty filter- 
i i 

ed: Put EiG = n~O Gn+IxIn/~ and BiG = n~O GnxIn/~ with the relations 

(6.2) and (6.3). Let pi G : EiG ~> BiG be the projections. 

Lemma 6.8: (a) EG = Li T EiG and BG = ti~ BiG 

(b) If (G,e) is an H-NDR, then EiC~nEi+IC~CEG and BiC~nBi+IC~nBG are 

closed H-equivariant cofibrations. Hence, since EoG=G and BoG=(~=*, 

the pairs (EG,G) and (BG,,) are NDRs. 

Proof: By now standard. I 

Lemma 6.9: Let G I and G 2 be H-monoids such that (G1,e) and (G2,e) are 

H-NDRs. Let f : G I --> G 2 be an equivariant homomorphism. Then 

(a) if f is an equivariant homotopy equivalence, so is Bf 

(b 

(c 

(d 

if f is an equivariant ctosed cofibration, so is Bf 

if f is a closed equivariant cofibration and equivariant homotopy 

equivalence, then Bf embeds BG I as equivariant SDR in BG 2 

if G I and G 2 are Hausdorff and f is a weak homotopy equivalence, 

then BG I and BG 2 are Hausdorff and Bf is a weak homotopy equivalence. 

Proof: BG is an iterated adjunction space in the category of H-spaces 

obtained by adjoining spaces (GnxIn,DnGxIn U GnxsI n) where DnG c G n 

is the subspace of points havin~ a coordinate e. Part (b) foLtows from 

(A 4.9). For part (a) the map f : (G1,e) --> (G2,e) is an equivariant 

homotopy equivalence of pairs inducin~ a homotopy equivalence of pairs 

(G~x n n --> (G~xln,G~x~l n U DnG2xl n) I ,G1xSI n U DnG1xI n) 
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Hence (a) foLLows from (A 4.6) and (A 4.4). Part (c) follows from (a) 

and (b) and the equivariant version of [14;(3.7)]. For part (d) it 

suffices to show that the map 

r : G~x~I n U DnG1xl n --> G~x~l n U DnG2xI n 

is a weak homotopy equivalence snd then apply (A 4.8). Again, by (A 4.8), 

it suffices tp prove that f induces a weak homotopy equivalence 

DnGI --> DnG2 because GnxsI n U DnGxI n is obtained from GnxsI n by at- 

taching (DnGxIn,DnGx~In). Since DnG is obtained from Gn-lx[e] by at- 

taching (Dn-IGxG,Dn-IGx{e}) this foLLows from (A 4.8) by induction 

on n. I 

Let Q : Zo~ ° --> Zo~ ° be the Loop space functor and L : ZOO°--> Z0~ ° 

the based path space functor, i.e. L(X) = [~ :I--> XI~(0)=*}. For a 

monoid G we take e~G as base point and (e) as base point for EG and 

BG. Then E and B may be considered as functors 

o E,B : ~or~  > ~o~ 

By (2.53) and (3.25), we may interpret f as functor 

f : ~o~ ° --> ~a~ 

into the category of based W~-spaces and based ~-maps. The end point 

projection ~ : LX --> X is a f~bration with fibre fiX. There is a na- 

tural map of pairs 

jG : (EG,G) --> (LBG,flBG) 

defined by [jG(go,tl,g I ..... gk)](t ) = (1-t,go,t I ..... gk ) making the 

diagram 

EG ~G > LBG 

BG 

commute. 
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Proposition 6.10: The maps jG : G ~> OBG carry a natural ~-map struc- 

ture definin~ a natural transformation from the functor J:~or~ --> ~a~ 

induced by the augmentation ~ : W~ ~> ~ to the functor GB:~or~--> ~a~. 

If (G,e) is a NDR, this ~-map structure is homotopic through ~-maps 

with carrier jG to a based ~-map structure. 

Proof: Let ~ be the PRO of example (2.53) and O : W~ ~> ~ a PRO 

functor, which exists by (2.54) and the rifting theorem. We know that 

there is a based action of 8 and hence of W~ on Loop spaces. Let L°EG 

be the subspace of LEG of aLL paths ~ with ~(I)( EoG = G. RecaLL that 

~(n,1) [(Xl 'Yl 'Xn'Yn )(m 2nl = ,.. O~x1<Yl~X2<Y2 ~. .~Xn<Yngl} 

Using the G-action on EG we define a based 8-action and hence a based 

W~-action on L°EG by 

[(xl,Y I .... Xn,Yn)(~ I .... ~n)](t) = 

where gi = wi(1)' Yo =0 and Xn+1=1. 

~t-x i 

~ig2 .. .gi (e) 

t([xi,Y i ] 

t([Yi,Xi+ I] 

We give jG an ~-map structure by exhibiting it as composite of an 

~-map kG : G B> LOEG and a W~-homomorphism rG : L°EG m> OBG. The 

projection p : EG m> BG induces a based map LEG --> LBG which maps 

L°EG into ~BG defining rG. Since the ~-action on ~BG is given by 

I ,t_x i ) t~[xi,Y i] 
[(xl,Y I .... Xn,Yn)(~ 1 .... ~n)](t) = ~i~Yi----~ i 

(e) t~[Yi,Xi+ I] 

it is clear that rG is a based ~-homomorphism and hence a based W~- 

homomorphism. 

We define the ~-map kG usin~ the cherry tree description (3.24) 

for an action a of W(~@~I ) on the 2-coLoured space [G,L°EG]. On 

cherry trees whose edges have coLour G or coLour L°EG only, the action 

a is given by the W~-structures on G respectiveLy L°EG. On cherry 

trees having edges of both cotours we define a by induction on the 

number k of internal edges. Since ~(m,1) consists of a single point 
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for each m, the space of aLL cherry trees of a given shape with n 

twigs and k internal edges is of the form X1x...XXnXIk, where X i is a 

copy of G or L°EG and XIx...×X n is the space of cherries. Moreover, 

we may restrict our attention to cherry trees containing no identity. 

For k=O, we define 

f : XlX...XXnXI°×I --> EG 

by f(x I, .... Xn,t)=(e,l-t,q(Xl).....q(Xn)) with q(xi)=x i if Xi=G and 

q(xi)=w(1) if xi=~ ~ L°EG. This defines the based action kG on cherry 

trees with no internal edge. InductiveLy, we have to find a map 

f : X1x...×XnxIkxI --> EG which is already given on XlX...XXnXSIkxI 

and which satisfies 

(a) f(x I ..... Xn,S,O) = (e) 

(b) f(x I ..... Xn,S,1 ) = (q(Xl).....q(Xn))~ EoG 

For the second statement f in addition has to satisfy 

(c) f(. ..... .,s,t) = (e) . = base point. 

Since EG can be contracted by a homotopy which is natural in G we can 

find an extension for the first statement which is natural in G. If 

(G,e) is a NDR then (e) c OEG c L°EG are closed cofibrations by 

[9;p.57], [52; Thm. 12], and Lemma (6.8). Let X = XlX...xX n and . ~ X 

its base point. Let f' : XxI k+1 --> EG be the map just constructed. 

We inductively Look for a map f : XxI k+1 --> EG satisfying (a),(b),(c) 

and a homotopy h t : f ~ f' which is given by induction on Xx~I k+1 . So 

we reaLLy want a map 

H : xxIk+lxI --> EG 

which is already given on XxsIk+IxI U xxIk+Ixl U .xIk+lxo. Since EG 

is contractible we can extend HI.×81 k+2 to *xI k+2 and then extemd 

Hlx×Ik+Ixo U (XxSI k+l U *xIk+l)xI to the whole of xxIk+lxI, which is 

possible because (xxIk+1,XxSI k+1U *xI k+1) is a NDR. E 

CoroLLary 6.11: The maps jG : G --> OBG define a natural transformation 
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from the canonical functor J : ~om~ --> @a~ to the functor 

Definition 6.12: A space X is caLLed numerabty contractible if it has 

a numerable nuLLhomotopic covering, i.e. there is a covering 

U = [Uala(A} and maps u a : X --> I such that 

(a) each x(X has a neighbourhood W such that us(W) = 0 for aLL but 

finitely many a(A 

(b) E us(x) = I for aLL x(X 
aCA 

(C) u~1(0,1] c U 
(d) the inclusions U --> X are nutLhomotopic 

ExampLe 6.13: Any CW-compLex is numerabty contractible [13; Prop.6.7] 

We now prove the main result of this section. 

Theorem 6.14: Let G be a numerabty contractible monoid such that (G,e) 

is a NDR and Uo(G) is a group under the muLtipLication of G. Then 

jG : G --> ~BG is a based homotopy equivalence. 

Proof: Let ~ = (GUI)/(e~O) and extend the monoid structure of G to 

by t.g = g-t = e and t.u = tu for g(G and t,u(I. Then S(I is the unit 

of ~. The map f : ~--> G defined by g ~--> g, g(G, and t ~---> e, tEI, 

is a homomorphism and a based homotopy equivalence (A 4.3). By natura- 

Lity, we have a commutative diagram of topoLogicaL spaces 

If IO Bf 

G jG > QBG 

WhOSe vertical maps are based homotopy equivalences (Use that 

(X,*) --> (Y,*) is a based homotopy equivalence provided X --> Y is a 
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homotopy equivalence and (X,*),(Y,*) cofibred (see A 4.3)). Hence it 

suffices to prove the result for ~. 

Our aim is to find a commutative diagram 

B' < P' E' o F' 

B~ < pG Eg o 

in which p' is an h-fibration, i.e. a map having the weak covering 

homotopy property in the sense of DoLd [13], and the vertical maps 

are homotopy equivalences. InductiveLy, we construct a sequence of 

spaces E o c E I ~ E 2 c ... and h-fibrations qi : Ei --> Bi~ having the 

foLLowing properties 

(a) Ei~ c Ei, and E i c Ei+ I is an inclusion of pairs (Ei,Ei~)c(Ei~,Ei~) 

such that 

E i c E i+i EiG ~ E i 

Bi~ c Bi+IG Bi~ 

commute 

(b) (Ei+I,E i) is a NDR 

(c) there are deformation retractions r. : E. --> E.~ and 
l 1 1 

d b - i : qi 1(b) --> (PG)-I(b) for aLL b ( Bi~ such that 

E i El+ I q l(b) q IIb) 

ril tri+1 and d~.~ /d b b(Bj~c Bi~ 

E.~l c Ei+IG-- (pG)-1(b) 

commute. 

We start with E o = Eo~ = ~ and suppose inductively that we have 

constructed Ek_ 1. Let B = Bk~ and A = Bk_1~ c B. Then B is obtained 

from A by adjoining ~kxI k modulo the points A' = Dk~×I k U ~kxsIk with 
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Dk~ = {(gl ..... ~k )( [kl some ~i is the identity I(I c ~], and Ek~ ob- 

tained from Ek_1~ by adjoining ~k+IxIk modu%o ~xA'. Let Y be obtained 

from Ek_ I by attaching ~k+IxIk by the map ~xA' --> Ek_1~ c Ek_ I. Define 

a, map q : Y --> B by qlEk_ I = qk-1 and qlEkG = pk ~. For U c B denote 
-1 

q (U) by YU and qlY U : YU --> U by qu" 

If Q = [(gl ..... gk )( ~kl some gi(l c ~,~i > ~}, then 

V' = Qxl k U Gkx([O,¼)U(¼,1]) is a halo of A' in ~kx!k inducin~ a halo 

I 3 V of A. Since 8I is a. SDR of [O,[)U([,I], the space A' is an SDR of 

V' and hence A an SDR of V. Let o : V --> A be the deformation re- 

traction, then O is covered by a deformation retraction ~ : YV --> YA' 

i.e. we have a commutative diagram Consider the diagram 

YV o > YA YV r '> Y' P' > YA 

V P >A V >A 

where Y' is the puLtba.ck and r : YV --> Y' is induced by ~ and qv" 

Take E k to be the double mappin~ cylinder of the maps YV c Y and r, 

and take qk : Ek --> Bk~ to be the map ~iven by q on Y U YvXI and by 

q' and Y'. By [12;(17.8)] we find 

(i) qk is an h-fibration 

(ii) Y is an SDR of E k 

(iii) YA is an SDR of (Ek) A over A 

(iv) YB-A is an SDR of (Ek)B_ A over B-A 

provided we can show 

(a) qA : YA --> A and qB-A : YB-A --> B-A are n-fibrations 

(~) V-A is numerabLy contractible 

(V) for a~L bgV-A the map ~b : Yb --> Y0(b) is a homotopy equivalence. 

The properties (i) ..... (iv) imply (a) ..... (c): The composite inclusion 

Ek_1C Y c E k satisfies (a). Since (~k+IxIk,~xA,) is a NDR so is (Y,Ek_ 1) 

and hence (Ek,Ek_1). By (ii) there is a deformation retraction 

f : E k --> Y. Define a deformation retraction h : Y --> Ek~ by 
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hJEk_ I = rk_ I and hIEk~ = id. Then h • f = r k is the required deforma- 

tion retraction. Suppose b(Bk_1~ = A, then there is a deformation re- 

traction u : qk1(b) --> q-1(b) by (iii). Since q-1(b) = qk!1(b), we 

can put d kb = dk_Ib ou. If b(Bk~-B k_1 ~ = B-A, then (iv) provides a de- 

b 1( > -1  formation retraction d k : qk b) -- ~ (b) = (pG)-1(b). 

We now verify (a),(~),(V). Since qA = qk-1 and since qB-A is the 

projection ~x~kxI k --> GkxIk, both maps are h-fibrations. If b(V-A 

then Yb = ~x[b}. By construction, ~(g,b) is represented by 

(g° g'(b),0(b))((pG)-1(0b) ~ ~x{0(b)} with g'(b)(~ depending on b. 

Since ~ is numerabty contractible and no(R) is a group, right trans- 

Lation is a homotopy equivalence [12;(12.7)]. Hence 

~b : Yb ~ (PG)-I(0b) c Yp(b) = (Ek-1)0(b) 

By induction hypothesis the inclusion (pG)-l(ob) c (Ek_1)0(b) is homo- 

topy equivalence. It remains to check (6): We cover V'-A' by the sets 

V o = {(tl,g I ..... tk,gk)Isome ~i((~,1)c ~ or some ti((0,~)} and 

V I = {(tl,g I ..... tk,gk)Isome gi((~,1)c ~ or some ti((~,1)}. Then 

=k k-- 1 1 I and (~k-DkG)x(V 7 (G -D G)x(~,~ ..... ~) is a SDR of V o ~ , S  . . . .  ) a SDR 

of V I . Since ~k-DkG is homotopy equivalent to G k and G is numerabLy 

contractible, so are V ° and V I CA 4.11). Define a map v : V'-A'~> I 

by 
k 

v(tl'gl ..... tk'gk) = ~i=I min [2 max(t~¼,0),l] 

Then (Vo,V I) is a numerable covering of V'-A' with numeration (1-v,v). 

Hence V'-A' and therefore V-A are numerabLy contractible. 

Let E = ti_i~m n E n and q = tim n qn : E --> B~. By (c), E~ c E and 

Eo~ c q-1(e) are SDRs. Unfortunately, q might not be an h-fibration. 

To correct this, Let TE be the telescope of the E and TB the tete- n 

scope of the Bn~ , i.e. 

TE = EoX[0,1 ] U E1x[1,2] U E2x[2,3] U ... 

topotogized as subspace of Ex]R . The maps qi induce a map u : TE -->TB 

and if we take (e)(Bo~ as basepoint, then ~ = u-1(e). The composite 
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maps Eix[i,i+1] --> E i c E induce a 

map kE : TE --> E and similarly 

for TB givinE rise to a commutative diagram 
q 

TE 

TB 

kE 

kB 

> q-1(e) 

• > E 

-> B~ 

where i is the inclusion of ~ in q-1(e). The map is a homotopy equi- 

valence by (c). By (A 4.4) the maps kE and kB are homotopy equivalences, 

too. Let P = iUoEi and Q = iUO~E be the disjoint unions. The maps 

E i c El+ I and BiE c Bi+1~ induce endomorphisms f : P --> P and 

g : Q --> Q. It is easy to see that TE is homeomorphic to PxI/(x,9~(fx,@ 

and similarly for TB. Consider P and Q embedded in PxI and QxI at 

I I 2 
height 7" Let A = [(x,O)( Q×I/~} and V = [(x,t)6 Q×I/~It([O,~)U(~,I]}. 

Then TB-A = Qx(0,1) and A = i~O BiG" Hence u A = i~0 qi : TEA --> A 

and UTB_A = (i~O= qi)×id : TETB_A = P×(0,1) --> Qx(0,1) = TB-A are h- 

fibrations. V-A is homotopy equivalent to Q and hence is numerab%y 

contractible. We have a canonical deformation retraction o : V --> A 

which is covered by the correspondin~ canonical deformation retraction 

J 
c 

r : TE V --> TE A which by (c) 

is a homotopy equivalence on each fibre. 

By [12;(17.8)] there is a 

commutative diagram TE c 

TB 

whose horizontal maps are homotopy equivalences such that v is an 

h-fibration. We end up with a commutative diagram 

-I J E i > q-1(e ) < i E jE > nBE v (e) < 

n n n n n 

T <, TE - - >  E < EE jE ,,> LB~ 

TB TB - - - >  BE B g - -  BE 

v-1(e) 

n 

T 
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in which v and ~ are h-fibrations, u being the well-known path space 

fibration. We know of all horizontal maps with exception of 

j~ : ~--> QB~ that they are homotopy equivalences, and since the in- 

clusions of the base points are cofibrations, they are b~sed homotopy 

equivalences. By the naturatity of Puppe's h-fibration sequence [12; 

§14], the maps j,i and j~ induce a homotopy equivalence v-1(e) ~ ~BG. 

Hence j~ : ~ ~ QBG. I 

Corollary 6.15: Let G be a monoid which is Hausdorff such that (G,e) 

is a NDR and ~o(G) is a group under the multiplication of G. Then jG 

is a weak homotopy equivalence. 

Proof: Let ~I denote the category of semisimpticial sets, 

Sin : ~o~ --> ~! the singular functor and R : ~I --> Xo~ the topo- 

Logical realization functor. Since we work with compactly generated 

spaces, Ro Sin preserves products so that Ro Sin(G) is a monoid. It 

is well-known that the back adjunction c : R • Sin --> Id~o ~ induces 

isomorphisms of homotopy groups. By naturality, we have a commutative 

diagram 

RSin(G) 

~(G) 

G 

~RSin(G) 

jg 

> ~BRSin(G) 

~B¢(G) 

> ~B(G) 

Since ~oRSin(G) is a group and RSin(G) a CW-compLex, jRSin(G) is a 

homotopy equivalence by (6.14). Since G and B preserve weak homotopy 

equivalences, OB~(G) is a weak homotopy equivalence, l 

Let Y be a based space and OMY the Moore loop space on Y (cf.3.26). 

There is a canonical natural map eY : BONY --> Y ~iven by 

k 
eY(tl,xl,t2,x 2 ..... tk,x k) = ~(Ei=1(1-t1*t2*...*ti)ai) 

where x i = (~i,ai)( OM Y and (~,Eiai) = Xl. X2.....x k. The composite 
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J~M Y OeY 
~MY > ~B~MY -> ~Y 

carries an ~-map structure, because jOMY and OeY do. It sends the 

Moore Loop (~,a) to the loop v : I --> Y given by ~(t) = ~(ta). It is 

well-known that this is a homotopy equivalence [12;p.179]. 

Proposition 6.16: If Y has the homotopy type of a connected CW-complex 

the natural map eY : BdMY --> Y is a homotopy equivalence. 

Proof: Since BqMY and Y have the homotopy type of a CW-compLex, it 

suffices to show that eY is a weak homotopy equSvaLence. By (6.15), 

jQM Y : ~M Y --> QBQMY and hence ~eY are weak homotopy equivalences. 

Hence eY is a weak homotopy equivalence, because Y is connected. I 

The results (6.9 d) of p. 178 and (6.15) of p. 187 remain true 

if we drop the word "Hausdorff". For the proofs then use (A 4.8 b) 

and the following variant of (A 4.8 a): 

If X and Y are properly filtered spaces and if f : X --> Y is a 

filtered map such that each fn is a weak homotopy equivalence, then 

f is a weak homotopy equivalence. 

Proof: f induces a map Tf : TX --> TY of the telescopes TX and TY 

associated with the filtrations of X and Y. Since X and Y are proper- 

ty filtered, it suffices to show that Tf is a weak homotopy equiv- 

alence. Let ToXcTIXC... be the filtration of TX by partial telescopes. 

Then ni(TX) = Lim > wi(TnX). Since (TflTnX ~ : wi(Tn X) ~ wi(TnY), 

the map Tf induces isomorphisms of homotopy ~roups. 

We close this sec~on with another elementary result on classifyin~ 

spaces. 
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Lemma 6.17: Let O be a numerabLy contractible monoid such that (G,e) 

is a NDR. Then BG is numerabLy contractible. 

Proof: Since (GnxIn,DnGxI n U GnxsI n) is a NDR and GnxI n is numerabLy 

contractible (A 4.11), BG is numerabLy contractible (A 4.12). 

2. ACTIONS ON THE CLASSIFYING SPACE 

We can extend the notion of a classifying space from monoids to 

W~I-spaces by taking the composite 

BM : ~ > ~om~ > ~op ° 

as classifying space functor. Here M is the functor of (4.49). Note 

that the unit e(MX is a naturaA base point so that M can be interpret- 

ed as functor into ~om~ instead of ~om~. This definition makes the 

functor M important for our further investigations. 

Lemma 6.18: (MX,e) is a NDR for any W~-space X. 

Proof: MX is an iterated adjunction space filtered by the subspace 

MnX of reduced cherry trees havin~ at most n internal edges. The pairs 

(Mn+IX,MnX) and hence (MX,MoX) are NDRs. Recall that 

'I 
is the unit of MX. Since (MoX,e) is a NDR, so is (FIX,e). 

Lemma 6.19:(a) (BMX,.) is a ~DR for any W~-space X. 

(b) BMX is numerab~y contractible if X is 

Proof: (a) follows from (6.18) and (6.8) while (b) follows from (6.17), 
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(6.18) and (A 4.11) because X ~ =.m 

As an immediate app%ication we find that for a we%L-pointed monoid 

(G,e) the spaces BMG and BG are homotopy equiva%ent. Indeed, the back 

adjunction r : MG h> G (see 4.49 ff) is a monoid homomorphism and a 

homotopy equiva%ence so that Br : BMG ~ BG by (6.9). 

The functor M : ~a~N --> $om~ can be %ifted to a functor 

: ~orwN --> ~or~ such that 

~orw~ / M > ~or~ 

~ a ~  M >  ~om~ 1 

commutes. P and P' denote the canonical projections. If f : X --> Y is 

a W~-homomorphism, then Mf : MX --> MY is the homomorphism determined 

on cherry trees by 

Mf(A;x I ..... x n) = (A;f(x I) ..... f(Xn)) 

Note that Mf is the unique homomorphism induced by the canonica% com- 

posite of f and the universat reduced N-map Y --> MY. 

Let B be a K-coLoured PROP (for PROs the argument is analogous) 

and X a (WN® 8)-space. By (2.19) we can consider X as ~-space in the 

category of WN-spaces so that bg~(i,k) defines a WN-homomorphism 

b : X i --> X k inducing a monoid homomorphism Mb : M(~ i) h> M(Xk ) and 

hence a based map BMb : BM(X i) --> BM~X k. By construction, BMb is con- 

tinuous in b6~(!,k). Unfortunate%y, the maps BMb do not combine to a 

O 
based action on BMX = {BM(Xk)Ik~K}6 ~o~ K, because M does not preserve 

products. Indeed, remark (5.26) shows that there is no product pre- 

servin~ functor M : ~orw~ --> ~or N such that MY ~ Y for a~ Wg~-spaces 

Y. 

Let X = [Xk,ak},k(K, be 8 collection of W~-spaces and j : [p] -> K 
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an object of ~K" By (II;§3) the product W~-space (X~,a i) is defined 

on objects n(W~! by mi(n) = (X~) n and on morphisms b : m ~> n by the 

composite 

(xi)m-~(Xil)mx .x(X~p) m a~1(b)x'''xa~p (b) .. > (X~l)nx x(X )n~(x )n . . . .  ~ - - . ~  

The represen~n~ reduced cherry trees of M(X i) are of the form 

(A;Zl, .... Zn) with z r = (Xrl ..... Xrp)( X i. The correspondence 

(A;z I .... z n) ~--> [(A;x11,x21 .... Xnl) .... (A;Xlp,X2p ..... Xnp)] 

defines a monoid homomorphism 

h i : M(X~) - - >  (]~E~') i = MX i lX , . . xM3( ip  

the unique homomorphism induced by the product of Wr(!l~B1)-actions 

(i j lX...xi ~jp,v~jlx...xvajp) : (Xi,a i) --> M(Xil,ail)X...xM(Xip,aip) 

where (iak,Vak) : (Xk,~k) - - >  M(Xk,~ k) is the universa~ reduced ~-map 

of (4.49). The isomorphism subgroup S i of ~K(i,~) acts on M(X~) and 

(MX) i by permuting factors and h i is Si-equivariant. 

Lemma 6.20: h i embeds M(X~) as S~-equivariant SDR in (MX)~ such that 

((MX)i,M(Xi)) is an S~-NDR. 

Proof: By definition, h I. o iai = (i jlX...xi~jp). Since ia~ and 

(lajlX" . . . x i  JP) are equivariant homotopy equivalences (see proof of 

4.49), the map h. is an equivariant homotopy equivalence. So we only 
A 

have to show that it is an equivariant ctosed cofibration. A p-tupte 

of reduced cherry trees (A I ..... Ap)g (MX)~ lies in M(Xi) iff the A i 

have the same shapes if we neglect the edge colours and the same edge 

lengths up to the relation (4.49 a,c,d). Note that the shape uniquely 

determines the vertex ~abels because ~I(n,1) has exactly one element 

and that (4.49 b) does not apply because ~ is a PRO. Moreover, we may 

restrict our attention to reduced cherry trees havin~ no vertex re- 

presenting an identity so that (4.49 a) becomes redundant. We show 
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by induction on the product filtration of (MX)~ given by the fibtra- 

tion of M that there is an equivariant retraction 

r : (MX)~xI --> (MX)ixO U M(Xi)xI 

8o suppose inductively that r has been ~iven on Mq1(Xl1)x..xMq~X~p)XI 

for ql+...+qp<n. Let k1,...,Xp be shapes with ql,...,qp internal 

edges, q1+...+qp = n and colours i(I) ..... ~(p). The space of al~ p- 

tuples of reduced cherry trees of shape (k 1 .... ,kp) in (MX)~ is of 

the form ~[ p YixI qi where Y. is the space of cherries of the i-th i=I 1 

tree. An element (A I ..... Ap)(~iP I= Yi×(lqi-~I qi) ties in M(X~) iff the 

shapes k I, .... ~p of AI,...,A p coincide disregarding edge co%ours and 

the lengths of correspondin~ edges in the A i are the same, so that 

ql = q2 = "'" = qp = q and (A 1 ..... Ap)( ~iPiYixAI q =  where AI q c I qp 

is the dia~onat. The group SI acts on p-tuples of shapes (k I ..... kp) 

of cherry trees in (MX)~ by permuting factors. Let H be the subgroup 

Leaving (kl ..... kp) fixed. 

Case I: At least two of the kl ..... kp are different neglecting edge 

colours. Then we need a H-equivariant retraction 

(~YixIqi)xI --> (~YixIqi)xO U ([Yix~Iqi)xI 

Case 2: The k i coincide disre~ardin~ edge co%ours. Then we need a H- 

equivariant retraction 

(~Yi)xIPqxl ->(~Yi)xlPqx0 'J (~Yi)x(3IPq U AIq)xI 

Both retractions exist because (lq,~l q) is a NDR and (~Pq,~l pq U AI q) 

is a, S -NDR. We extend to filtration n by makin~ this process for a 
P 

complete set of representatives of S4-orbitsa of shapes (kl,...,kp).~. 

Proposition 6.21: Let $ be a K-co%oured PROP (or PRO) and X a (W~I®8)- 

space. Then BMX admits a based W~-action. 

Proof: Define a K-cotoured PROP G by takin~ a s  G(~,k) the space of a%l 

pairs (b,f), b(~(~,k) and f : (BMX) i --> BMY k a based map such that 
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the composite 

BM(Xi) Bh > B(~)i ~ (B~)i f > ~MXk 

is BMb, with the subspace topo%o~y of @(!,k)×~oD°((BMg()i,BMXk ). Com- 

position in ~ is given by the composition in ~ and in Xo~ °. The pro- 

jection (b,f) ~--> f defines a based action of ~ on BMX and the pro- 

jection (b,f) ~--> b 8 PROP-functor P : ~ ---> ~. By (6.9) and (6.20), 

BM(~) is an Si-equivariant SDR of (BM3() i. Denote the retraction 

(BM]() i --> BM(X i) by r. Let h t : (BMX) i --> (BNCX) i be the equivariant 

.@ r. Then P : g(i,k) --> ~(i,k) deformation with h ° = id and h I = Bn _ _ 

has an equivariant section Q : ~(~,k) --> ~(~,k) defined by Q(b) = 

(b,BMb@ r), and there is an equivariant deformation (b,f) w--> (b,f@ht) 

into this section. Hence, by the tiftin~ theorem, there exists a PROP- 

functor W~ --> ~ making BMX into a based WS-space. I 

3. n-FOLD AND INFINITE LOOP SPACES 

Let O1 be the first tittte-cube category of exampte (2.49) and 

: O c 91 the sub-PRO of exampte (2.53). The unique functor y : O --> q! 

is a homotopy equivalence. Hence there is a PRO-functor P : W~! --> 

such that V o P = c(~). Since the composite of augmentations 

¢(~)o ¢(W~) : W(We~) --> ~ is a homotopy equivatence, there is a functor 

Q : W~ --> W(W~) such that c(~)- ~(W~I)° Q = c(~). From the uniqueness 

part of (3.20) it follows that ~(W~I)- Q ~ Idw~ ~ through functors. Let 

be a K-cotoured PROP (or PRO) and i k : W~ --> W~I®B and ~: ~i-->~I@ 

the canonica% inctusions (2.17). Then we have for each k(K PRO-functors 

~k : Wik° Q : W~ --> W(W~®~) Ok : WJk oWT o WPo Q : W~I -> W(~I®~ 

Definition 6.22:Let ~ be a K-cotoured PROP and X ( ~o~ K. Two W~-actions 

a and 8 on X are caL%ed equivalent, if there exists a ~-map 
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(idx,u) : (X,~) --> (X,~). 

From (5.7) we obtain 

Lemma 6.23: If a t : W~ --> ~o~ is a homotopy of W~-actions on X then 

a o and a I are equiveAent. 

Theorem 6.24: Let ~ be a K-cotoured PROP (or PRO) and X=[(Xk,ak)]kfK} 

a family of W~l-spaces. Consider the statements 

(a) BMX = [BM(Xk)IkfK} admits a based WS-action 

(b) Up to equivalence of Wg~-actions, the W~1-actions on the X k come Ercm 

a W(W~®8)-action on X via ~k" 

(c) Up to equivalence of WT-actions, the W~-actions on the X k come 

from a W(O1@~)-action on X via o k. 

Then we have the foLLowing implications: (c) ~ (b) ~ (s). Moreover, 

if for aLL kfK the space X k is numerabLy contractible, a k induces a 

group structure on ~o(Xk), and 8(O,k) has exactly one element, then 

(c) ho~ds if BMX admits a (not necessarily based) W~-action. 

Proof: (c) ~ (b) because Jk" T • P =~. P)@Id) o i k. Hence Ok = 

W((~. P)@Id)° ak and W~T. P)@Id) induces the required W(W~@~)-action 

on X. 

(b) ~ (a): By assumption, there is a W(W~®~)-structure ~ on X and 

there are 7-maps (idXk,ak) : (Xk,ak) --> (Xk, ~ -~k ). By (4.49), there 

is a (W~®B)-space (Y,~) and a homotopy equivalence ~ : (X,o) --> (Y,~) 

carrying a (W~®~)-map structure. If ~k = ~° ¢(W~I®~)o ~k then 

gk. fk : (Xk,a k) ~> (Yk,~k) carries an ,I-map structure. Since 

¢(W~@~)o ak = ik° e(W~). Q ~ i k, the W~-structure ~k on Yk is equi- 

valent to the W~-structure ~ oi k. ConsequentLy, there are ~I-maps 

(hk,~k) : (Xk,a k) ~> (Yk, ~, ik) which are homotopy equivalences. By 

(6.21), BM(Y,~) admits a based W~-structure. Since BMX ~ BM(Y,~) by 
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(6.9) and both spaces are weL~-pointed, BMX admits a based W@-action 

by (5.2O). 

Proof of the Last part: By (5.6 a) and (5.29) there is a based ~-space 

(Z,~) and a based homotopy equivalence f : BM~ --> Z, because BF[X is 

connected and weLL-pointed. Since the Loop space functor ~ preserves 

products and since O I acts on Loop spaces, there is an action ~ of O I 

on OBMX and 8 of ~I @ ~ on ~Z makin~ Of : OBMX --> ~Z into a O1-homo- 

morphism and via • o P into a W~-homomorphism. By (4.49),(6.10) and 

(6.14) there is s composite of ~-maps 

h k : (Xk,~ k) --> M(Xk,~ k) --> (~BM(Xk), ~ oT.P) nf > (~Zk,8OJk°T°p) 

which is a homotopy equivalence. For any homotopy inverse g : OZ -> X 

of h there exists a W(O®@)-action X on X making g into a (0 l@~)-map 

(OZ,8 o ¢(~1 @ @)) --> (X,k) by (4.20). Since JkO~Opoe(W~)=¢(OI®@)W(~-¢o~, 

the composite gk° h k is an ~-map from (Xk,a k~ ¢(W~l) o Q) to 

(Xk,k , W(j ko • ~ P) ~ Q). Hence, by (4.14), the two W~-structures on 

X k are equivalent. Since ¢(W~) o Q ~ Id, the actions akO¢(W~) o Q and 

a k on X k are equivalent. So X is the required W(OI® @)-action. I 

Definition 6.25: A map f : X --> Y of based topoLogicaL spaces is 

caLLed n-foLd %oop map, O~n~, if there exist based maps of based 

spaces fi : Xi --> Yi' i=0,I, .... n, and h i : Xi_ 1 --> QX i and 

ki : Yi-1 --> ~Yi' i=1,2, .... n such that f=fo' each h i and k i is an 

unbased homotopy equivaLencejand 

fi-1 

~ f .  
fiX. i > ~qy. 

I ! 

commutes up to a based homotopy. We caLL f an n-foLd based Loop map 

if each h i and k i is a based homotopy equivalence and a strict n-foLd 

Loop map if each h i and k i is a based homeomorphism and the diagrams 
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commute. A based space X is called n-fold loop space [n-fold based 

hoop space, strict n-foLd loop space] if id X is an n-foLd ~oop map 

[n-foLd based loop map, strict n-fold loop map]. 

Definition 6.26: Two [based] maps f : X ~> Y and g : X' ~> Y' are 

cal~ed [based] homotopy equivalent if there are [based] homotopy 

equivalences h : X ~ X' and k : Y ~ Y' such that 

f X .> Y 

.i I, 
X' g > Y' 

commutes up to [based] homotopy. 

In (2.49) we have constructed actions u n = Un(X) of O n , the n-th 

~ittLe cube PROP on anY, natura~ with respect to based maps g : X -->Y. 

m 
Moreover, we have constructed inclusion PROP-functors ~n : Om c ~n 

for n~m such that 

m 

Unt n = u m 

Hence, if ~ : O n ~ O is the inclusion into the direct Limit, 

n 
U~:~ = On" 

Reca~ that On(r,1) = [(xl,Yl,X2,Y 2 ..... Xr,Yr)((In)2r I the x i are 

the ~owest and Yi the upper vertices of r Linearly embedded n-cubes 

in I n with disjoint interior and axes paraLbeL to those of In}. De- 

fine PROP-functors F n : O1 ~> On and G n : On-1 ~> On by 
! ! ! ! 

Fn(Xl,Y I ..... Xr,Y r) = (xl,Y I ..... Xr,Yr) and Gn(Vl,Wl ..... Vr,Wr) = 

' ' ' ' ' , o  , o )  = ( y i , 1  . . , 1 ) ,  = . ) with x i = (x i . . . . . .  (Vl,Wl,-. ,vr,w r 

v~i = (O'Vil .... ,Vin_J), and w!1 = (1,Wil . . . . . .  ,Win_l) if vi=(Vil . ,Viu_l) 

and w i = (Wil ..... Win_l). Then F n and G n combine to a PROP-functor 

~n : O1@~n-I --> On 

determined on generators by ~n(a.®id) = Fn(a) and ~n(id®b) = Gn(b). 
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n .F n and n n-1 n-1 
~n+1 = ?n+1 ~n+1.Gn=Gn+1.~n ~we have ~n+1.(Id®~n )= Since 

n ~n+l " ~n" S ince  f o r  k - s p a c e s  f i n i t e  p r o d u c t s  commute w i t h  i n d e n t i -  

fications, ;i~ [(~I@~n)(r'1)] = (9 I®~ )(r,1), and the ~n induce 
n 

a PROP-functor 

~ , :  t~ 1 @ ~ ,  > ~,~ 

Let 
f. 

q 

ni+1 i+I 
Ofi+ I 

OXi+ I -> OYi+ I 

i = 0,I,...,n-I 

be the data of an n-fold Loop map, o~n~. We identify the functors 

qm.o with Qm+1 by the exponential map (cf 2.49) Then 

... ~ m E qm-]hm.Om-2hm_1~ .h]: X o Q m 

Let f:X > Y be homotopy equivalent to the n-foLd Loop map fo 

f X >Y 

Xo > Yo 

Denote om-lhm.....hl.h by Pm and qm-lkm.....kl.k by gm" 

Theorem 6.27: If f:X--> Y is homotopy equivalent to an n-foLd Loop 

map, o ~ n ~, then X and Y admit W~n-Structures a and ~ and 

f a On-ma p structure (f,~):(X,a)m> (Y,~) such that (pm,qm) carries 

a (~m®£1)-ma p structure 

(f,v.W(~nm@Id)) > (Omfm,(~m @Id).c(~m@~1)) m~n 

In particular, if X is an n-foLd Loop space, O~n~, then X admits 

a WOn-Structure a such that Pm:X > OmXm carries a ~m -map struc- 

ture ( X , a . ~ )  > (OmXm,Wm.C(Om)). 

Proof: We proceed by induction on m. The homotopy commutative 
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square 

X f >Y 

X. o .>y 
o o 

determines a W(91@ 91)= W(9o@@1@91)-aetion such that (h,k) carries 

a (9 o®91)-ma p structure from f to fo" For the inductive step we 

are given a W(~m_1@ 91)-structure Vm_ I on f such that (Pm_l,qm_1) 

admits a (9m_1@91)-ma p structure 

(f,Vm_ I) > (qm-lfm_l,(~m_l@Id).C(~m_1@@1)) 

We want to extend Vm_ 1 to a W(9m@91)-structure. Since 

fm-1 
Xm-1 > Ym-1 

hm I J km 
Ofm i 

OXm > qYm 

commutes up to based homotopy, it is given by a based W(9 1 ® 91)- 

action inducing a Om_1tmW~91@91)-action. 
fro-l> om-Ixm_ I Ore-lyre_ I 

qm-lhm [ 1 qm-lkm 
omf 

QmXm m .> qmYm 

Now id@¢(g1@@1):Om_1®W(91~91 ) > 0m_i®91®91 is an 
equ iva r ian t  homotopy equiva%ence. We app%y (3.17)  with@ ~enerated 

by W(.~m_ 1® 9 1 0 0 )  U W(~m_ 1@91 @ 1)U[~ 1 ~ 2 )  w i th  ~i  bein~ the image 

of id0@idi@ j,j:O > I in ~I' under the standard section 

~m_i®@i®@i > W(~m_1@91®@1). The functor H':~ > ~m_1@W(@1~1) 

is given on generators by (Id~) .C(~m_1@£i@91) with ~:£i®91 > 

W(g1@9 I) the standard section. We obtain a (Qm_1@Q1)-map 
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m-1 
(qm-1.lm_1,(Um_1@id).c(~m_1@91))__> (qmfm,(#mO: m ®Id).~(~ m_I@91)) 

with underlying maps (qm-lhm, qm-lkm). Hence (pm,qm) carries a 

'[~m-1 @91)-map structure 
m-1 

(f,Vm_ I) > (Omfm,(Um.: m ®Id)'g(~m_l@£1)) 

'.Since (pmjqm) is a pair of homotopy equivalences, we can extend Vm_ 1 

by (4.20) to a (~m®£1)-map structure v m on f such that 

m-1 Id" ~m "W(~m ® ) = Vm_ I and the (Om_ I®91)-ma p structure of (pm,qm) 

to a (Om@Q1)-ma p structure 

(f,v m) 

If n is finite, take v= v n" 

'~ of W(0~@01)=. ~im 

Qm 
> ( fm' ~m'e(nm @91)) 

If n is infinite, the ~m induce an action 

__> W(On@91) on f with the required properties. I 

!~oroLLary, 6.28: Suppose f : X --> Y is homotopy equivalent to an 

n-fo%d Loop map, 0 ~ n ~ ~ , as in (6.27). Then f admits a On-map 

structure (f,v): (X,a) > (Y,~) which is a composite of On-maps 

~f,v) =~,~).(Onfn , (Un@Id) .C(On@gS)).(v,~) where 

~u,~):(X,a)--> (OnXn,~n.e(On)) and (v,~):(qnYn.~n-e(On))--> (Y,~) 

are homotop~ equivaLenCes of WOn-Spaces. 

?roof: By (6.27) we are given a W(On@91®91)-structure whose restric- 

tion to W(~ n®91 @0) is v and to W(O n®91 @1) is (~n@Id)'¢(On ®~I )" 

The restrictions to W(O n@i@91), i = 0,1, give Pn and qn structures 

of On-maps (pn,~) and (qn,~'). The two inclusions W(On@92)-->W(~n®BI@gS) 

given by Fi: 92---> 9 I®91 = 91~91, Fi(O)=(O,O),Fo(1)=(O,I),FI(1)=(I,0), 

Fi(2)=(1,1), i=0,1, show that (Onfn,(~n®Id).e(~n®@1))-(pn,~)=(qm,~').(f,v). 

Take (u,~)=(pn,~) and (v,~) any homotopy inverse of (qn,~'). | 

OriginaLLy we proved this coroLLary for n-foLd Loop spaces by 

substituting an n-foLd Loop space by a strict n-foLd Loop spaee,n~, 

and then using the results of (2.¢9). Indeed, by a re$inement oS a 
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result of May [32; Thm.6] one can show (see [7] for a proof). 

Proposition 6.29: An infinite Loop space (Xo,XI,X 2 .... ) is homotopy 

equivalent to a strict infinite Loop space provided the Xiare welL- 

pointed. | 

There is also a converse to Theorem 6.27. Let 

~k = W ~  • W(T.Q).  Q : w~ > w ( w ~ ) - - >  wn I - - >  wn k 

Theorem 6.30: Let (X,a) and (Y,8) be numerabty contractible W~ n- 

spaces, 0 ~ n = ~, such that a and 8 induce Eroup structures on 

nO X and nO Y respectively and Let (f,~):(X,a) > (Y,8) be a On-mS p . 

Then f is homotopy equivatent to an n-foLd based Loop map 
f i-I 

Xi-1 > Yi-1 

QX. l > OY. 
1 1 

i=1,2,...,n 

f X >Y 

h I II k 

IXo fo >Yo 

such that 

(a) I and II commute strictly, XO= OBM(X,a.~n),Yo= OBM(Y,~.~n ) 

(b) each fi admits a On_i-ma p structure (f~i):(Xi,ai)-->(Yi,~i) 

(c) h i admits an N-map structure (Xi_1,ai_1.~n_i+l)-->(OXi,~l.T.P) 

and h = jM(X,a.~n). SimiLarly for k i and k. 

Proof: ~.W(w n@Id):W(O I®~n_I ®91) > W(On @£I ) > ~o~ makes f to a 

(7 l@~n_1)-map. By (6.24), BMf admits a On_1-ma p structure BMX-->BMY. 

Take X I = BMX, YI = BMY and fl = BMf. If we choose Mf such that 

f X, >Y 

i X D O~ 

MX--~> MY 

commutes and put h = jMl.i x and k = jMY.iy, then (a) holds. Suppose 
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inductively that Xi,Y i are connected and numerabty contractible for 

I ~i < m and that fi,hi,ki with the required properties are found 

for I ~i < m. Take Xm=BM(Xm_1,~m_1.~n_m+ I) and Ym analogous. Since 

fm-1 admits ~n_m+l-map structure and h@nce via W(~n_m+1@I~) a (~1@~n_m)- 

map structure, fm=BMfm_1 admits a On_m-map structure (fm,~m):(Xm,~m,~ ~. 

Define h m and k m by 

h 
m 

fm- I 
Xm-1 > Ym-1 

n N 

Mfm- 1 
~VEXm_ I -> M~m_ i 

_ 

J~ nBMfm I 
~BMXm_ I > OBMYm_ I 

k 
m 

Then (a) and (c) are satisfied. By induction hypothesis jM](m_ I and 

JMYm_ I are based homotopy equivalences (6.14). Since the classifying 

space of a monoid is connected, X m and Ym are connected, and by (6.19) 

both are numerably contractible, so that induction can proceed. If 

n--~, we use ~ : ~I@~ --> ~ instead of ~n'~ 

4. HOMOTOPY-EVERYTHING H-SPACES, DYER-LASHOF OPERATIONS 

In [8], we catted an E-space (cf. 2.46) a homotopy-everything H- 

space motivated by the idea that an E-space satisfies all coherence 

conditions one can think of. This is not quite the case as we shaLL 

see in this section. We start with identifying E-map structures, i.e. 

actions of two-cotoured PROPs ~ admittin~ a PROP-functor • --> ~® ~I 

and having contractible morphism spaces (for ~ see II, §5). 

Theorem 6.31: An E-map (f,~) : (X,a) --> (Y,~) is homotopy equivalent 

to an infinite based loop map such that (6.30 (a),(b),(c)) hold pro- 
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vided X and Y are numerabLy contractible and a and 8 induce group 

structures on Uo X and Wo Y respectively. Conversely, any map homotopy 

equivalent to an infinite loop map admits an E-map structure. 

Proof: Let ~ be a two-cotoured PROP admitting a PROP-functor 

P : ~ --> ~@91 and having contractible morphism spaces. Then P is a 

homotopy equivalence. For the first part we only have to show that 

there is a PROP-functor W(~@ 91) --> ~ and apply (6.30). Each space 

On(m,S), 0 ~ n < ~, is paracompact being a subspace of 12mn. Hence 

~ (m,1) is paracompact as epimorphic image of a disjoint union of para- 

compact spaces by a closed map (e.g. see [18;p.165]). Since ~(m,S) 

is also Sm-free it is a numerable principal Sn-space by (A 3.8). Apply 

(3.17) with ~=~, ~--~®~i, ~=~@~I' and ~=~. 

Conversely, a map homotopy equivalent to an infinite loop map ad- 

mits a ~o~-map structure by (6.27). But ~ is an E-category by (2.50) 

so that 

(p®Id)-~(~@Q I) : W(~@9 1 ) ---> ~®QI 

is the required PROP-functor which is a homotopy equivalence. Here 

0 : ~ --> ~ is the unique PROP-functor. | 

Remark: The important results (6.27), (6.30),(6.31) can, of course, 

be extended from maps to arbitrary diagrams by substituting 91 by a 

suitable indexing category. 

Putting some of our results together we obtain the following 

Proposition 6.32: If ~ is a monochrome PRO with contractible morphism 

spaces and X a ~-space, then X is homotopy equivalent to a monoid. 

Proof: The unique PRO-functor P : ~ --> ~ is a homotopy equivalence. 

Hence, by the lifting theorem (3.17) for PROs, there is a PRO-functor 
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R : W~ --> B making X into a W~-space. But a W~-spsce is homotopy 

equivalent to an ~-space, which is a monoid, by (4.49). I 

This result becomes fatse if we reptace ~ by ®. We cannot expect 

to replace an E-space by an ~-space, or commutative monoid, because 

the k-invariants of a commutative monoid disappear [17;Satz 7.1], but 

there are E-spaces with non-triviaL k-invariants. The essential dif- 

ference between the two situations becomes clear if we go back to the 

sprit theories defined by PROs or PROPs (cf.(2.42),(2.44)). If ~ is a 

PRO with contractible morphism spaces and @ the associated split theory, 

then the unique theory functor @ --> 8m is a homotopy equivaLance. If 

is a PROP with contractibte morphism spaces, then the unique theory 

functor P : 8 ---> @cm associated with ~ --> ~ need not be a homotopy 

equivalence: Let Xn(Scm(n,S) be the operation 

Xn(X I ..... x n) = x1+x2+...Xn 

then $(n,I) = [kn ). Recall that @(n,1) is obtained from ~ by 

8 ( n , 1 )  = ~ ( k , ] )  x ~ ( k , n ) / ~  

with the relation (b o ~*,c) ~ (b,c o ~), c(~(k,n), ~(~k~-~(k,k) a per- 

mutation (see (2.37)). The functor P is given by 

P ( b , ~ )  = x k .  o* b ~ ( k , 1 )  

Le t  O k ( ~ ( k , 1 )  be  t h e  s e t  map o k : [k ]  - - >  [ 1 ] .  Then  k k • ~* = k k a nd  

o k *  ~ = o k f o r  ~(S  k .  Hence  P - l ( k  k ,  ~ )  i s  homeomorph ic  to  t h e  o r b i t  

s p a c e  ~ ( k , ] ) / S k ,  w h i c h  i n  g e n e r a l  i s  n o t  c o n t r a c t i b l e .  So t h e  f o l L o w -  

i n g  is a more correct definition of a homotopy-everything H-space. 

Definition 6.33: A topotogicat space X is catted a homotopy-everything 

H-space if it is a @-space for a theory @ admitting a theory functor 

@ --> @ which is a homotopy equivalence. 
cm 

Theorem (4.58) shows that a homotopy-everything H-space X is homo- 
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topy equivalent to a commutative monoid if the space X and the morph- 

ism spaces @(n,1) of its defining theory satisfy certain, not parti- 

cularly restrictive, point set topological assumptions. 

We now wilt show that Dyer-Lashof operations are connected with 

obstructions to the existence of homotopy-everythin~ H-structures. Let 

be a monochrome E-category. Fix an element m2~@(2,1) and define 

mp~@(p,1), p~2, inductively by mp=m2(mp_ I @id). Let G be a discrete 

group and EG any contractible numerable principal G-space. To stay in- 

side the setting of Dyer and Lashof we take EG to be the realization 

of the simpliciaL complex determined by the partially ordered set 

[(g,n) Ig~G, n a non-negative integer) with the orderin~ (g,n) ~ (g',n') 

if g=g' and n=n' or if n<n' (i.e. EG has the elements (g,n) as ver- 

tices and a p-simplex with vertices (go,no) ..... (~p,np) iff 

(go,no) ~ (gl,no) ~ .-. ~ (gp,np)). There is a Sp-equivariant map 

: ESp --> @(p,1) p~2 

such that ~(e,O)=mp, where e(Sp is the unit. (We could take % to be 

the composite 

ESp > ~(p,1) stand, section .> W~ (p,1) ~Uf-~> @(p,1) 

with a suitable equivariant homotopy equivalence ESp ~(p,1). 

Let w be the cyclic group of order p with ~enerator T and let W 

be the complex 

. . .  ~ > Z[~] ~ >Z[~] a >Z[~] ~ > ... ~ >~[~]~-->Z[~-~ 

wherel[~] is the group ring of ~. Then W i has a single ~-generator 

ei, i~0, and we define 

3e2i+I = (T-1)e2i i ~0 

3e2i+2 = (I+T+...+TP-1)e2i+I 
e(eo)= I 

The Eilenberg-Zilber map defines a chain map 
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F : W@Z[~]C.(x)P > C.(E~× X p) 

for any space X with the obvious Z[N]-action on C.(X) p and ~-action 

on X p. Moreover, we can choose F such that 

~(e oox 1@...oxp) = ((e,O),x I ..... Xp) 

If X admits a ~-space structure a then a, ~,and the inclusion EwCESp 

define a map 

~p : E~×X p > X 

~he Dyer-Lashof operations on H.(X;~) are then defined by 

Q P> Hj(x; ) > Hpj+i(x %) 

x I > ~p • F(e i @Nx p) 

where we write e i @Nx p for the homology class in H.(W @NC.(x)P;~p) 

represented by this cycle We list a few elementary properties 

(6.34) (a) Q~P) is a homomorphism 

(b) Q~P)(x) = x p, the multiplication on H.(X;~) is induced 

by m 2 . 

(c) If 8p is the homology Bockstein operator of the sequence 

0 -->Zp -->Zp2 -->~p --> 0 then ~2i-ln(P) = ~pQ2i(P) 

(d) Q~) = 0 : Hj(X; Zp) --> Hjp+2i(X; ~p) unless 2i= (2k-~-I) 

For a proof see [19]. In view of (d) one usually puts 

• ~(p) . 
Q~p) = Cp,i" ~(2i-j~(p-1) : Hj(X;~) --> Hj+2i(p_1)(X; ~) p~2 

Q 2) : : Hj(x;Z2) _> Hi+j(x; 2) 
i For further properties of Q(p) we refer to the fundamental paper of 

Dyer and Lashof [19] and the recent papers of May, for example [33]. 

We call the map Wp ~-commutative if it is independent of the E~- 
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coordinate. Then $ factors as 
P 

~p : Ew×wxP > xP/w ~ > X 

(P) x x p and the Dyer-Lashof operations are trivial with exception of Qo ( ): " 

Let AX ~_X p be the diagonal copy of X in X p. Then AX is precisely 

the set of fixed points of w. By restriction, ~p induces a map 

: BwxX > X 
P 

with Bw = E~/~ the classifying space of w. 

Lemma 6.35: Suppose X p is paracompact and (xP,Ax) is a w-NDR. Then 

~p is nomotopic to a w-commutative map iff 8p is homotopic to a map 

which is independent of the Bw-coordinate. 

Proof: ObviousLy, if ~p is homotopic to a w-commutative map, then, by 

restriction, 8p is homotopic to a map which is independent of the 

Bw-coordinate. ConverseLy, given a homotopy h t : 8p f: BwxX ~> X 

with f independent of the Bw-coordinate. Since (xP,Ax) is a w-NDR, 

(EwxwxP, B~×AX) is a NDR so that ~p is homotopic to an extension f' 

of f. We show that f' is homotopic to a w-commutative map. The pro- 

jection Ewx(xP-Ax) --> (xP-Ax) is an ordinary homotopy equivalence of 

numerable principal w-spaces (A 3.8). Hence q : Ewxw(XP-Ax)-->(xP-&x)/~ 

is a homotopy equivalence (A 3.4). Moreover, since q is a fibre bundle 

map, there is a section s of q and a homotopy t t : id ~ s • q such that 

q @ L t = q for aLL t [13; Thm. 6.1]. Since (xP,Ax) is a w-NDR, there 

is an equivariant map u : X p --> I and an equivariant homotopy 

r t : X p --> X such that AX = u-1(O), ro(X) = x for aLL x~X p, ~@) = y 

for aLL y~AX and aLL tgI, and r1(x)~AX for x~U = u-lEo,I). Define 

ft,kt : Ewx X p ~> X by kt(e,x) = f'(e,rt(x)) and 

{ kt ft(e,x) = " tmax(2u(x)t_l,0)(e,x) (e,x)(E~xn(xP-~x) 
k t (e,x)£ENxw~X 

Then fo = ko = f' and fl is independent of the Ew-coordinate because 
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k1(e,x) is independent of the E~-coordinate for x(U, and Lt(e,x)(Ewx~U 

if x6U, and because L I is independent of the E~-coordlnate. | 

Now suppose X is a homotopy-everythin~ H-space with PROP ~ and as- 

sociated split theory @. Since the unique theory functor @ --> @cm is 

8 homotopy equivalence, the spaces ~(k,1)/S k are contractible. Since 

6 factors as 
P 

6p : BnxX --> BSpXX --> ~(p,1)x S X --> ~(p,1)x S X p --> X 
P P 

and $(p,1)x S X = (~(p,1)/Sp)XX, it is independent of the B~-coordinate 

so that all Dyer-Lashof operations with exception of Q p) are trivia% 

for all primes p. 

5. EXAMPLES 0F INFINITE LOOP SPACES 

In this section we describe a method of imposing E-structures on 

s~ome well-known H-spaces. Since our examples will satisfy the assump- 

tions of (6.31), we obtain a number of infinite loop spaces. 

Consider the category ~$ of real inner-product spaces of countable 

(aLgebraic) dimension and Linear isometric maps between them. Then 

each object of ~$ is isomorphic to ]A~ with orthonormal base 

[el,e2,e3,...] or one of its subspaces ]A n with base [e I ..... en). We 

topologize A~obg$ by giving its finite dimensional subspaces the metric 

topology and A itself the direct Limit topology of the diagram of its 

finite dimensional subspaces. The morphism sets ~S(A,B) obtain the 

k-function space topology (Appendix I). 

Lemma 6.36: ~(V,]R ~) is contractible for art V~obg$. 

Proof: Let il,i 2 : V --> V@V be the inclusions onto the first re- 

spectively second summand. If Iv i] is an orthonormat basis of V then 
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= I [(1_t)(vi,0)+t(O,vi) ] 
ft(vi ) 2t2_2t+1 

is a homotopy through isometries from i I to i 2. By applying the Gram- 

Schmidt orthogonaLization process to 

gt(en) = (1-t)en+te2n 

we obtain a homotopy through isometries from idlR~ to g : ]R~--> ]R = 

given by g(e n) = e2n. Finally, bet h : IR=--> JR=@ ]R~ be the iso- 

metry 

h(e2n) = (en,O) h(e2n_ 1) = (O,en), 

let k : V --> IR = be a fixed isometry, and i(B~(V,]R~) arbitrary. Then 

• ~ .i 2 = h-1. i = h-l-h-i gt h-1 h°g-i = n -I il.i = n-1-(i@k)°il h-1.(i@k) (k@k).i 2 

is continuous in i and contracts ~3(V, IR~) to the point h -I. (k@~°i 2.1 

We next consider bifunctors Q: ~ × ~ --> ~ which make B~ into 

a symmetric monoidal category in the sense of Eitenberg-KebLy [20]. 

Definition 6.37: A symmetric-monoidat category ~ consists of the for- 

Lowing data: 

(i) a category 

(ii) a functor ®: ~ × • --> 

(iii) an object I of 

(iv) naturat isomorphisms r = r A : A O I --> A 

~ = LA : I ~ A ~> A 

a = aAB C : (A Q B)®C --> A~(B @ C) 

c = CAB : A ~ B --> B @ A 

These data, satisfy the fo~towing axioms: 

(a) l I = r I : I O I --> I 

(b) CAB-CBA = id : B O A --> B ® A 

(c) The following diagrams commute 
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(AeB)®I a > A®(B~)I) \/or 
A®B 

(I ®A) ®B a > I e(AeB) 

A®B 

(A®I)®B a > Ae(I@B) 

A®B 

((AeB)®C)eD a®id > (A®(BOC))QD a > A®((BQC)eD) 

(AOB) O(C®D) >Ae(Be(e®D))  
e. 

(A6B)OC a > A®(B®C) c > (B®C)eA 

c ~)id I la 

> Be(A®C) > B®(C®A) (B ~)A) E) C a id®c 

Given symmetric categories ~=(~,®,I,r,t,a,c) and ~=(~,8,~,~,~,~,8) a 

symmetric monoida% functor 

: (T,,~,~ °) : ~-->~ 

consists of 

(i) a functor T : ~ --> 

(ii) a natural transformation w = ~AB : TA~TB --> T(AOB) 

(iii) a morphism o : ~ __> TI 

such that the foLLowing diagrams commute 

TI0~A ~ > T(IeA) TA~TI ~ > T(Ael) ~"°6idl 1 TL id @0u° I I Tr 

STA ~ >~A TAel >~A 
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(TASTB) STC a >TA&(TBS~C) 

"~id I tid~- 
T(A OB) 6 TC TA ~T(B O C) 

e ( ( A e B )  e C )  ea  > T ( A e ( B ~ C ) )  T(AOB) Te> T(BOA) 

= = ,~ ) are two symmetric monoidaL functors 

then a monoidat transformation 

: T-->~ 

A 
is a natural transformation ~ : T --> T such that the following dia- 

grsms commute 

TA6TB ~ >T(AoB) 
? 

~"~'~ ~I ~A6~B ~ -> ~(A®B) 

It is now a result of MacLane [28] and Kelly [24] that the iso- 

morphisms r,L,a, and c are coherent. Roughly speaking, this means that 

all diagrams obtained from them, their inverses)and constructions in- 

volving id and O are commutative. 

For us the interesting example of a symmetric monoidat category is 

~ with the direct sum functor • and the canonical isomorphisms r,t, 

a,c. Recall that the inner product of A@B is given by 

((a,b),(a',b'))A@ B = (a,a') A + (b,b') B 

Other examples of symmetric monoidat categories of importance for us 

are the categories ~o~, ~or~, and the category ~I of semisimpLiciat 

sets with their canonical product bifunctors. Since the classifying 

space functor B : ~or~ --> ~o~ and the geometric realization functor 

R : ~I --> ~o~ preserve products(we work with k-spaces), they are in 
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a canonicat way symmetric monoidat functors. 

The fottowing resutt exptains the importance of symmetric monoidat 

functors for the construction of examptes of infinite toop spaces. 

Theorem 6.38: Any symmetric monoida~ structure (9~,O, I,r,~,a,c) 

with~continuous on 9~ determines an E-category ~, any continuous 

symmetric monoida~ functor 9~ > ~o~ induces an ~-structure on 

T~R =, and any monoida~ transformation ~ : T m> ~ induces an @-space 

homomorphism TIR ~ > ~]R ~. 

Proof: Let ~ ~ = R~...OIR ~ , n times, with a fixed choice of 

bracketing. Put ~(n,1) = 95(~ ~=,IR=). The isomorphisms c extend 

uniquety to an action of S n on ~ IR ~, denoted by (~,b)~--> b.~*,~ S n. 

The other morphism spaces of ~ are given by 

• (n,r) = n1+..U+nr= n ~(n1'1)x'"x~(nr'l)XSn/~ 

with (bl.~ I*, . . . . . . .  ,br-~r*,~)~ (b1~, ,br,~-(~1@.. @~r)),~ i ~ Sni. 

The etements ~ represent the set operations. Hence composition with 

~* = (id ..... id,~) on the teft is fixed by (2.43) and determined in 

generat by 

a.(b I ..... br,~)=a.(ble... Obr).~* a (~(r,1) 

with the composition in 9~ on the right. 

L e t  n : ( T , ~ , w ° ) ~ >  (~  ^ ^ o  ,~,w ) be a monoida~ transformation of 

symmetric monoidat functors. Define an E-action a:~ m>~o~ on T~ by 

n I 
a(b I ..... br,~):(T]R=) n ~* >(T]R=) n (~ 

(Tb I ..... Tbr) > • ( ~ m ~ )  r 

n 

k n . . . .  ~ T(~S:m~)x . ,  .×T(®rm~) 

for (b I ..... br,~) £ ~(n,r), bi~ ~ai,1 ) . Here ~n:(TIR~) n--> T(~IR ~) 



- 2 1 2  - 

is a suitable composite of ~ or o. The coherence conditions ensure 

that a is a muttipticative fun~tor. SimiLary define an E-Structure 

on ~ .  Then o:T~ > ~]R ~ is obviously an @-space homomorphiem. I 

Remark: (a) To obtain ~-spaces is suffices to construct a symmetric 

monoidaL functor 9~ > ~[, because composition with the geometric 

realization gives a symmetric monoidaL functor ~3 > ~o~. 

(b) If a symmetric monoidaL functor T : ~3 > ~o~ happens to be 

monoid valued, then we can follow it by the classifying space functor 

B to obtain another symmetric monoidaL functor. 

We now List a number of infinite Loop spaces and infinite Loop 

maps. For this we construct symmetric monoidaL functors (T,W,~°). As 

monoidaL structure on 98 we take @. We define T and ~ for finite 

dimensional inner product spaces and extend them to all of ~ hy 

taking direct Limits over the diagrams of finite dimensional subspaces. 

Since A@- and X×-,A~8,X~ ~o~ or ~! preserve direct Limits,this suffices. 

(6.39) ExampLes:The unit I ofOin 9a is IR ° 

(a) TA = O(A), the orthogonat group of A. As ~:TA x TB --> T(AeB) take 

the ~nitney sum: ~(f,g) = f@g:A@B m> A@B, f~O(a),g~O(B). Since 

O(]R °) consist of one point, o:$ m> 0(~o) is uniquely deter- 

mined. Then O(]R ~) is the stable orthogonat group O. Since O is 

numerably contractible and No(O) is the cyclic group Z 2 under 

~nitney sum, 0 is an infinite Loop space with multiplication 

given by ~nitney sum. In matrix form it reads 

O(m n) ×0 (m m) > 0 (~n+m) 

~) TA = U(A@ ~ ), the unitary group of A@~ ~denotes the complex 

numbers). Again w is ~nitneysum and ~o the unique map ~--> T(]R°). 
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Then T~ is the stable unitary group U. Since U is connected and 

numerabLy contractible, it is an infinite Loop space with 

muLtipLication given by Whitney sum. 

(c)TA = Sp(A@~), the sympLectic group of A@]H (IH denotes the 

quaternion~). Again ~ is ~nitney sum and o the unique map ,m>T(]R°). 

Then T]R ~ is the stable sympLectic group Sp. Since Sp is connected 

and numerabLy contractible, it is an infinite Loop space with re- 

spect to the ~nitney sum-E-structure. 

(d)TA = SO(A), the special orthogonaL group of A. Take • to be the 

~nitney sum. The stable group SO = T~ is connected and numerab%y 

contractible. Hence SO is an infinite Loop space. 

(e)TA = F(A), the space of based homotopy equivalences of the sphere 

S A, which is the one-point compactification Au~ of A, with ~ as 

base point. The ~nitney sum m takes here the form of the smasa 

product sin~ sAAs B ~ S A@B. The ~nitney sum muLtipLibation makes 

NO(F) into the cyclic groupZ 2. Since F is numerabLy contractible, 

it is an infinite Loop space. 

(f)TA = space of homeomorphisms of A. Take ~ to be ~nitney sum. Then 

(T~ ~) =Z2, but we do not know whether TIR is an E-space with ~o 

or not T~ is numerabLy contractible. So we foLLow T by the 

composite 

• op Sin > ~! R > ~o~ 

where Sin associates with X ~ ~oD its singular complex. Since 

both preserve products, they are symmetric monoidaL functors. 

Then R.Sin (TIR ~) is the stable group Top. It is an infinite Loop 

space, becsuse it is a CW-compLex. 

(g)SU and the orientation preserving versions of (e) and (f) are 

infinite Loop spaces under ~nitney sum. 

(h)We can do to examples (a) ..... (e),(g) what we have done in (f): 

We foLLow T by the symmetric monoidaL functor RoSin. The resulting 
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stable groups R.Sin T~ are all infinite loop spaces. The back 

adjunction R.Sin -> id~o ~ is a monoidal transformation so 

that R.Sin TB > T~ is a homomorphism of E-spaces and 

hence homotopy equivalent to an infinite loop map. Moreover, 

in all of our examples with exception of (f) it is a homotopy 

equivalence so that R.Sin T~and T~ ~ are homot?py equivalent 

by infinite Loop maps. 

(k) In aL% examples (a) ..... (g) the spaces T(A) are monoids under 

composition. Moreover, they are well pointed (in (f) take 

R.Sin T(A)) and numerabLy contractibte. Hence BT(A), A finite 

dimensional, B the classifying space functor~defines another 

symmetric monoidaL functor T' making T'(~ ~) into an infinite 

Loop space under ~nitney sum 

(L) We identify ~ with • 2 and ~ with C2= ~4. ALso identify A and 

A@IR I Then the canonical inclusions IRlc C = IR2cIH = C 2 

define monoida~ transformations 

O(A) > U(A®¢) -> Sp(A@~) 

0 ( A ® ~  ~ 0 (AO:~  4) 

making the diagram commute. Since 0(~@IR n) ~ 0(~ ~) =0, the 

monoida~ transformations make the canonical inclusion maps 

OcUcS cO 
P 

to infinite Loop maps under ~nitney sum. 

(m) Since any orthogonal transformation of A is a homeomorphism and 

any homeomorphism induces a based homotopy equivalence of S A, we 

have inclusions 

O(A) c homeomorphisms of Ac F(A), 

which define monoidaL transformations. Passing to the topological 

realization of the singular complexes we find that the canonical 

maps 
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O c Top c F 

are infinite Loop maps under ~nitney sum 

(n) Since aLL inclusion maps Listed are monoid homomorphisms, we 

may again pass to the classifying spaces and find that the 

canonical maps 

BO --~ BU m~ BSp m~ BO --~ Top ~ F 

are infinite loop maps. 

O (o) Let (TI,~I,~ ~ ),(T2,~2,~2):98 ~ ~o~ be group valued symmetric 

monoidal functors and ~:T I ~ T 2 a monoidaL transformation 

which is a homomorphism. Define T3A = T2A/TI A the factor set, 

A finite dimensionaL. Then ~I and w 2 induce a natural trans- 
O O 

formation Eu3: T3A ×T3B ~ T 3 (A@B) and ~I' w2 a map * m~ T3(I). 

We obtain a symmetric monoidal functor T 3 and T 3 (IR~is an E-space 

As application we obtain that the coset spaces Top/O, Top/Sp, 

Top/U, O/Sp, O/U, Sp/U, Sp/O, and U/O are infinite Loop spaces 

under ~nitney sum. 

Since the projectionsT2A~T3A = T2A/T1A induce a monoidaL trans- 

formation the various canonical maps Top ~ Top/O, etc. are 

infinite loop maps. 

(p) Suppose (TI,~I,~), (T2, w2,~ ~ ): 98 --> ~op are monoid valued 

and q:(Tl,~1,~ ~) --~ (T2,~2,~) is a monoidaL transformation 

and homomorphism. Then define T3A, A finite dimensional, to be 

the homotopy theoretic fibre of the map 

BTIA ~BT2A 

induced by ~. There is a canonical map ~3:T3 A ×T3B ~ T 3 (A @ B) 

making ~3 T3A  T3B 
BTIA iBT] B 

BT2A ×BT2B 

• ~ T 3 ( A O B )  

• ~- B T I ( A  ® B )  

.~ BT2(A e B )  
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commute, because the homotopy theoretical fibre construction 

o and o preserves products. The maps ~I 92 induce a unique map 

O ~3 : * --~ T3 (~o). Hence T3~ is an E-space. As application, 

we obtain that F/Top = Lim > (homotopy theoretic fibre of 

BTop(n) > BF(n)) is an infinite Loop space under ~aitney sum 

and the canonical map 

F/Top > BTop 

is an infinite Loop map. 

There is anoth~symmetric monoidaL structure on ~ given by the 

tensor product. Unfortunately, we have no examples to apply it to, 

the reason being that it is very difficult to arrange a commutative 

diagram 

T(A) × T(B) ~ -> T(AOB) 

T ( A ' ) ×  T ( ~ ' )  ~ -> T ( A ' ® B ' )  

if A~A' and ByB' If one for example tries T(A) = O(A) with 

~(f,g) = f@g, then the diagram does not commute because 

(f@id) @ (g@id) ~ (f®g)@id. If one wants to show that O, U, BO, 

and BU are infinite loop spaces under the tensor product structure, 

one should use the theory of G. Segal [45] instead of tryin~ to 

define a tensor product E-structure. A detailed treatment can be 

found in [7]. 

We have seen that Theorem 6.38 enables us to show that most of 

the stable groups which are of interest in the topology of manifolds 

are infinite loop spaces under ~nitney sum structure. Our machine 

fails if we want to impose an E-structure on PL. The reason is that 

we kept too close to the Linear group. Contrary to what one might 

think, the action of the general linear group is not linear. Let 

A k ~: > GL(n,R) be a singular simplex. It determines a map 

Ak × ~R n > &k ×~R n, which is piecewise linear iff o is a constant 
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map. We therefore fail to find enough homotopies to make the program 

work. The remedy is to use a PL machine instead, and forget isome- 

tries. We do not want to go into detait here and refer to [7]. 



VII. Chapter 

HOMOTOPY COLIMITS 

To iLLustrate that our theory has more applications than just Loop 

spaces we show that it gives rise to a more or Less satisfactory de- 

finition of homotopy coLimits. We only sketch our results; a more de- 

tailed treatment including homotopy Limits wilt appear in E56J. 

I. HOMOTOPY DIAGRAMS 

L~t ~ be an arbitrary smaLL category such that each pair (~(A,A),~idA)) 

is a NDR. We consider E as an ob E-coLoured PRO (cf. example 2.48), 

i.e. we have only 1-ary operations. 

Definition 7.1: A homotopy-E-diagram, or h~-diagram for short, is a 

WE-space, i.e. a continuous functor W~ --~ ~op. 

ExampLe: Let E be the category given by the commutative diagram 

Then W~(A,B) and WE(B,C) consist of a single point, while W~(A,C) is 

a unit intervaL, and a WE-space is a homotopy commutative diagram 

xl 
3 
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As maps between hg-diagrams we use ~-maps. Since ~ has only 1-ary 

operations, W(~®91 ) = W(~x91) , (see 2.22). We have the category ~a~g 

of h~-diagrams and ~-maps. 

2. HOMOTOPY COLIMITS 

By (4.51), there is a funetor 

which is Left adjoint to the obvious functor J : ~om~--> ~o~. By 

definition, ~om~ is the category of g-diagrams in the usual sense, 

i.e. continuous functors ~ --> ~o~, and of homotopy classes of homo- 

morphisms. Let 

K : ~o~ h ~> ~om~ 
be the functor assigning to each space X of the homotopy category the 

constant ~-diagram on X (i.e. each morphism of ~ is mapped to idx). 

It is well-known that K is a right adjoint of the functor 

lim__.n : ~om~ ~> XODh 

induced by the colimit funetor lim : ~or~--> ~oD. 

Definition 7.2: The homotopy coLimit functor h-Li~ : ~ap~ ---> ~o~ is 

defined to be the composite functor ~i_~hO M. 

Theorem 7.3: The homotopy coLimit functor is Left adjoint to the ob- 

vious functor ~O~h --> ~a~ assignin~ to X ( ~o~ h the constant h~- 

diagram on X. 

This result justifies the notation "homotopy coLimit", because, as 

mentioned above, it has the same universal property as the usual co- 

Limit functor, which is the Left adjoint of the constant diagram 
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functor Xo~ --> ~or~. 

Examptes: 

(I) If ~ is the infinite Linear category 

0 >I >2 >3 > ... 

then a sequence of spaces and maps 

X o > X I > X 2 > X 3 > ... 

determines a h~-diagram whose homotopy coLimit contsins the MiLnor 

telescope (cf. proof of (A 4.10)) of this sequence as a SDR. 

(2) If @ is a topological category with exactly one object. Then its 

morphism space is a topo~ogica~ monoid G. Let D be the constant h@- 

diagram on a space with exactly one point. Then, by (VI §1), MD is 

homeomorphic to EG and h-bi~ D to BG the total space and base space 

of MiLgram's c~assifying space construction for G. 

(3) Let ~ be the category 

Then a hG-diagram is a diagram 

D: B < f A g > C 

of topological spaces and h-~im D is the double mapping cylinder Z(f,g). 

Hence h-Li~ D is the mapping cone of f if C = * and the (unreduced) 

suspension EA if B = * = C. 

The based case is obtained by a s~i~ht modification. We adjoin a 

O-ary operation to each object of C with the obvious definition of 

composition. Its action is the inclusion of the base point. The based 

homotopy coLimit is then Lim M"D with M" of (V, §6). 

(4) Let ~ be the category 
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and f 

D : 

a h~-diagram. Then h-Li~ D is the mapping torus of f and g. 

The examples show that homotopy coLimits crop up in many places in 

homotopy theory. 

3. SPECTRAL SEQUENCES FOR HOMOTOPY COLIMITS 

Since ~ has onty 1-ary operations, it is easy to Rive a direct de- 

finition of h-tim D for a h~-diagram D. The representing trees of MD 

are Linear and verticat, and may be specified by giving in order, go- 

ing up the tree the vertex Labels and edge Lengths and finally the 

cherry as 

(go,tl,gl,t2 . . . . .  gk;x) 

go°....gk : A --> B is defined in ~, ti~I, and xED(A). The ~-action 

on MD is given 

g(go,tl ..... gk;X) = (g-go,tl ..... gk;X) 

This ~-action has to be factored out to obtain h-Lip D = li~ MD. De- 

fine ~n(A,B) = [(fl,f2 ..... fn) E(mor ~)nlflo...of n : A --> B is defined 

in ~} with the subspace topoto~y of (mot ~)n. If n=O, define 

f [ i d  A } i f  B=A 
~o(A,B) = 

otherwise 

Then 
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with the relations 

(7 .4)  

( t l , A , t 2 , f  2 . . . . .  t n , f n ;a )  = 

h-~i___~m D = U 0 ~n ( A , B ) x I n x D ( A ) / ~  
A,B(~ n=O 

"(t l ' f l  . . . .  f i - l '  t i * t i + l '  ~+1 . . . .  fn ;a) 
!(t1¢1 .... % - I ' ~ - 1 ; a )  

( t l ' f l  . . . .  t i - l ' f i - l "  f i ' t i + l  ' ; '~fn ;a)  
( t 2 ' ~  . . . .  t n ' f n  ;a) 

~(tl ' f l  . . . .  f i -  1; D ( f i ' t i  +1 .. . .  fn )(a )) 

if fi=id, i<n 

if f =id 
n 

if ti=O, i>S 

if ts=O 

if ti=l 

(recaLL that t1*t 2 = tl+t2-tlt2). The filtration on MD hence induces 

a filtration FD of h-tim D by the images F D of U ~l~o~n(A,B)xInx~ 
---* P A,B(~ 

in h-Lim D. 

Let k. be an arbitrary homology and k* an arbitrary cohomoLogy 

theory. Since a hG-dia~ram D : WG --> ~o~ is a G-diagram up to co- 

herent homotopies and k. and k* are homotopy functors, the functors 

k o D, kqo D : W~ --> ~b = abetian groups q 

factor through ¢ : W~ ~> ~, the augmentation. In other words, the 

composites 

kqO D- ~, k q° Do ~ : ~ --> W~ --> ~o~ ~> ~b 

where ~ is the standard section (III, 3.5) are functors, although 

is not. 

For a proof of the fotLowin~ result we refer the reader to K56]. 

Theorem 7.5: Let ~ be a smaLL category with discrete morphism spaces, 

k. a homology and k* a cohomotogy theory, both additive. Then 

E 2 D ~ ti~(P)(kqD~) in the spectral sequence [ErD) derived from the 
P,q 

k. exact couple of the filtration of h-Lip D and E~'qD ~ ~im(P)(kqDq) 

in the spectral sequence [ErD} derived from the k* exact couple of the 

filtration of h-tim D. Here Lim (p) and Lim (p) denote the p-th Left 

derived of Li~ and the p-tn right derived of ti+~m. 
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This spectral sequence generalizes some welt-known resutts: 

Let ~ be the infinite linear category of §2, Example I, and 

f fl f2 
D: X o o > X1 > X2 ~ >  "'" 

a sequence of spaces. Let k* be an arbitrary additive cohomoLogy 

theory. Then the spectral sequence [ErD} converges and collapses, 

giving rise to a short exact sequence 

0 > Lim(1)kq-ID > kq(h-lim D) > Lim kqD > 0 

If the fi are cofibrations, then h-Lim D is homotopy equivalent to 

lim D, and we obtain Milnor's lim(1)-Lemma [40]. 

Let ~ be the category.<~ • > • and 

D: B < f A ~ > C 

a hG-diagram. The again the k* spectral sequence converges and cob- 

lapses giving rise to an exact sequence 

... > kq-lA > kq(Z(f,g)) > kqBekqC > kqA --> kq+1(Z~,~)-->... 

If one of the maps, f say, is a cofibration, then the double mapping 

cylinder is of the homotopy type of BUg C and we obtain the Mayer- 

Vietoris sequence. 

Analogous results hold for homology theories k.. 

4. HOMOTOPY COLIMITS OF COVERINGS 

G. Segal [44] associated with each covering of a topotogicaA space 

its homotopy coLimit and used this construction for a classification 

theorem for very ~enera% types of bundles. The essential step in this 

study was to show that the homotopy coLimit of a numerabte covering is 

naturally homotopy equivalent to the original space (recall that ac- 

cording to Dold [13] a coverin~ ~ = (Uklk6A) of X is numerable if there 

exists a Locally finite partition of unity on X, (v : X --> IIu6M) 
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such that the covering ~ = (v~1(O,1]l~(M) is a refinement of U). Using 

Segab's result, tom Dieck [11] proved the following theorem. 

Theorem 7.6: Let ~=(Uala(A) and ~=(Vala6A) be numerable coverings of 

U a Let f:X-> Y X and Y. ?or any non-empty subset ~ c A put U = a6~ " 

be a map which carries each U ,s c A finite, into V by a homotopy 
O 

equivalence. Then f is a homotopy equivalence. 

This result has a number of interestin~ consequences which we 

shall not discuss here. In the remainder of this section we give a 

detailed proof of SegaL's result and show that the theorem is then an 

immediate consequence of our theory. As always before, we work in the 

category of k-spaces, but SegaL's result is true for arbitrary topo- 

Logical spaces (by a similar type of argument using that the partition 

of unity is Locally finite). 

SegaL's nomotopy coLimit of a covering ~ = (Uala(A) of X is de- 

fined as 

BU = U U xAn/~ , a n c A finite, non-empty 
aoC...c~ n an 

with the relations 

(ao,Ul,q I ..... Un,~nlX ) = (~o,U1,~1 ..... ~i,~i ..... Un,~n;X) if~_1=~ ior 

~_l=Ui 

where Uo=OgUlg...~Ung1=Un+1( A n x(U n andA means "deLete" 

Our version of the homotopy coLimit h~ of the coverin~ Q is the 

homotopy coLimit of the commutative diagram of spaces U ,a c A finite 

c U whenever Too. Hence non-empty, and inclusions U ° 

h~ = U U xln/~ 

qoC...a~n ~n 

with 
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(°o'tl 'ql ..... t n, o n; x ) = 

(qo'tl ..... °i-1'ti*ti+1' gi+1 ..... tn ~n ;x) 

(Oo't I ..... tn-1' ~n-1 ;x ) 

( °o ' t l  . . . .  '~"l-1 '~ i  ..... o n ; x )  

(~o,tl ..... oi_1;x) 

if oi_1=oi , i<n 

if On_1=On 

if ti=O 

if ti=1 

Note that the pair (ai_1,g i) stand for the unique inc%usion U cU 
°i ~i-1 

in our diagram. 

The map (Co,t1,ql .... ,tn,On;X ) w--> (Oo,Ul,ql, .... Un,~n;X) with 

ui=t1*t2*...*t i is a natura% homeomorphism 

hU ~ BU 

(cf. 6.6). We now simp%ify the simp%icia% structure of B~i. In terms 

of barycentric coordinates, the re%ations for B~ read 

{ (bo, % .... b i, a i .... a n ;x) i f b i =0 

(b°'~°'b1'ql .... bn'gn;X) = (bo,a o .... ci_1,bi+bi+1,gi+ I .... On;X) if ci=ci+ I 

bi~O, Ebi=1. 

Give the indexing set A of the covering a we%t-ordering and define 

NU = U (u n . . . n u ~  )×an/- aiEA 
ao<...<a n o n 

with 

(bo,ao,bl, .... bn,an;X ) = (bo,a ° ..... bi,a i ..... an;X) if bi=O 

It is readi%y seen that BU is just the barycentric subdivision of 

M,I, so that BU and MU are natura%%y homeomorphic. 

Proposition 7.7 (Sega%): The canonica% map 

: MU --> X, (bo,a ° ..... bn,an;X) ~--> x 

has a section which embeds X as a SDR in M~. 

Proof: We may assume that there is a LocatLy finite partition of 

unity on X, {k s : X ~> I IaEA} with the indexing set of the cover ~. 
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?or x(X, there is a finite number of indices ao<a1<...<~n such that 

k a.(x)~O. To obtain the section s : X --> MU of u map 
I 

x ~--> (k a (x),a ° ..... ka (x)'an;X) 
O n 

If y = (bo,~ o ..... bm,qm:,X)~ MU and s~(y) = (Vo,~ o ..... Vn,an;X), then 

y and su(y) are points in the simplex x×A r, spanned by (Yo' .... Yr )' 

the ordered coLLection of elements in (qo .... ,~m ) U (a o ..... an). Hence 

we can deform MU LinearLy into the section. It remains to check con- 

tinuity. Let MA be the space associated with the A-indexed covering 

[Va=*} of a single point. There is a canonical map o : MU ---> MA, 

given by (bo,a ° ..... bn,an;X ) v--> (bo,ao,...,bn,an;.). Then 

(~,0) : MU --> XxMA 

is injective. To show that it is an inclusion we have to prove that 

a function f : C ---> M~ from a compact Hausdorff space C to M~ is con- 

tinuous, provided (w,0). f is continuous (because we work with k-spaces). 

Since C is compact and NA is a simplicial complex, fC is contained in 

a finite subcompLex. Hence it suffices to show that (w,p) is an in- 

clusion for finite coverings ~. In this case, MA can be thought of 

as a subcompLex of the standard m-SimpLex whose vertices are indexed 

by the elements of A. Let 

P : U oU~ )x~ n - - >  MU 
a o < . . . < a  n (UaoO' ' "  n 

be the  i d e n t i f i c a t i o n  map and V c M~ c l o s e d .  Denote p-~n(UaO.. .N%~An 
0 n 

by V(a o ..... an). If V(a o ..... an) is the closure of V(a o ..... a n ) in 

, A n . The union XxA n then V(a o ..... a n ) = V(ao,...,an)D(UaoO...OUan)× 

of the V(ao,...,a n) is closed in X×A m because it is finite. Hence MU 

is a subspace of XxA m and therefore of X×MA. We obtain a diagram 

x /(-,o) 
( i d , ~ )  ~ X×MA . . 1 - - ~ r o  j 
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with ~ = p o s. The section s and the deformation H of MU into the 

section are continuous if ~ and the deformation (~,0). H are continuous. 

If C is a compact Hausdorff space and r : C --> X is continuous, then 

• r(C) Lies in a finite subcompLex of MA and the composition of ~ ° r 

with the barycentric coordinate functions is just the collection of 

maps [h a- rla(A}. Consequent%y ~ - r and hence ~ are continuous. Simi- 

Lar%y, one can prove the continuity of H by restriction to a finite 

subcomplex of MA. | 

Proof of Theorem 7.6: Let ~ be the dual of the category of finite 

non-empty subsets of A and inclusions. The coverings ~ of X and ~ of 

Y give rise B-diagrams with vertices UaoO...DUan respectively 

VaoD...OVan for the finite subset [a o ..... an]C A and inc%usions as 

morphlsms. The map f : X --> Y is then a homomorphism of ~-diagrams 

whose underlying maps are homotopy equivsLences. Hence we have a com- 

mutative diagram 

hf hU > h~ 

nU I I n~ 
X >Y 

f 

in which hf is a homotopy equivatence by (4.21) and ~ and ~ are 

homotopy equivalences by (7.7). 



Appendix 

I. COMPACTLY GENERATED SPACES 

The category ~ of topoLogicaL spaces and continuous maps is in- 

convenient for the study of algebraic structures on spaces mainly for 

two reasons: The exponential Law does not hold in generaL, and a pro- 

duct of two identifications need not be an identification. Steenrod 

[49] proposed the category ~@ of compactly generated Hausdorff spaces 

as a convenient Locus for dealing with these questions. Its objects 

are Hausdorff spaces X such that U c X is open provided U D C is open 

in C for each compact subspace C of X. This category has two defects 

namely it does not automaticaLLy contain aLL the subspaces and quo- 

tient spaces of its spaces and hence not the usual coLimits. The se- 

cond defect evaporates if one drops the Hausdorff condition. However, 

the trouble with subspaces remains. 

Here we propose the category of compactly generated spaces, de- 

noted by ~o~, as a good category for our purposes. We only List the 

definitions and propositions. DetaiLed proofs and further results can 

be found in [55]. 

Definition 1.1: A k-space is a topoLogicaL space X such that U c X is 

open whenever r-1(U) is open in C for every map r : C b> X from a 

compact Hausdorff space C into X. The category of k-spaces and con- 

tinuous maps is denoted by ~o~. 

Every topoLogicaL space X has a finer topology making it into a 
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k-space kX : Add to its open sets all subsets U satisfying the con- 

dition of Definition 1.1. Obviously, kX = X if X is a k-space. 

Proposition 1.2: The correspondence X m> kX defines a functor 

k : • m> ~o~, which is right adjoint to the inclusion ~op c ~. Hence 

k preserves limits. 

Proposition 1.3: Let D be a sma%t diagram of k-spaces and ~i~ D, i~ D 

its coLimit and limit in ~. Then li~ D is a k-space and Li~ D and 

k(~im D) are the coLimit and Limit of D in ~o~. 

Corollary 1.4: Quotient spaces of k-spaces are k-spaces. 

Unfortunately, Limits of k-spaces have to be retopologized. This 

applies in particular to products. Let X x Y denote the cartesian pro- 

duct and X x k Y = k(XxY) the retopotogized product of X and Y. 

Proposition 1.5: Let X and Y be k-spaces and suppose esch point of Y 

has a base of compact neighbourhoods. Then X x Y = X x k Y. 

Hence the notion of homotopy of continuous mappings does not chsn~e 

and the functor k preserves homotopy. 

As an immediate consequence of the definitions one has that the 

maps of compact Hausdorff spaces into X factor through id : kX ----> X. 

This implies 

Proposition 1.6: The identity map kX --> X induces isomorphisms for 

homotopy groups and singular homology and cohomology groups. 

As mentioned before, subspaces of k-spaces need not be k-spaces. 

But we have 
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Proposition 1.7: Let X be a k-space and A a subspace of X. 

(a) If A is open or closed, then A is a k-space. 

(b) Let Z be a k-space. A function f : Z --> kA is continuous iff the 

f composite Z > kA c X is continuous. 

Part (b) shows that kA c X has the universal property for k-spaces 

wnich characterises the relative topology of A in X in the category 

of aLL topoLogicaL spaces. 

For topoLogica% spaces X and Y Let CO(X,Y) be the space of aLL con- 

tinuous maps from X to Y with the compact-open topology and C(X,Y) = 

= k(CO(X,Y)). If X and Y are k-spaces, we a%so denote C(X,Y) by 

Xo~(X,Y) .  

Proposition 1.8: If Y is a k-space, then the evaluation map 

ey, z : C(Y,Z) x k Y --> Z, defined by ey,z(f,y) = f(y), is continuous. 

Proposition 1.9 (Exponential Law): Let X and Y be k-spaces. Then the 

correspondence f --> ey, Z • (f ×idy) determines a natural homeomorphism 

C(X,C(Y,Z) )  ~ C(X x k Y,Z) 

This result has a number of consequences. 

Proposition 1.10: Let X be a k-space 

(a) The functor ~oD(X,-) : ~o~ --> ~oD preserves Limits. In particular 

~o~(X,YXkZ) ~ ~o~(X,Y) x k ~o~(X,Z)  

(b) The functor - x k X : ~o~ --> %o~ preserves co%imits. 

(c) The functor ~oD(-,X) : ~oD --> %o~ transfers coLimits to timits. 

CorolLary 1.11: If p : X --> X' and q : Y --> Y' are identification 

maps of k-spaces, then p x k q : X x k Y --> X' x k Y' is an identifica- 

tion map. 
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Proposition 1.12: If X and Y are k-spaces, then composition of maps 

induces a continuous map 

C(Y,Z) ×k C(X,Y) > C(~,Z) 

Our ~ast statement shows that ~o~ is sufficiently large: 

Proposition 1.13: ~o~ contains the category ~@ of compactly generated 

Hausdorff spaces. 

2. EQUIVARIANT COFIBRATIONS 

In this chapter we need not restrict ourselves to k-spaces. The 

results ho%d in the category of al~ topo~ogical spaces as we%L as in 

the category of k-spaces. 

Let G be a topologica~ group. An equivariant map i : A --> X is 

cal%ed an equivariant cofibration or G-cofibration, if for al~ equi- 

variant maps f : X --> Z and H : AxI ~ Z (with trivia~ G-action on 

I) such that H(a,O) = f. i(a) for a(A there exists an equivariant map 

F : XxI --> Z such that F, (i × id) = H and F(x,O) = f(x) for x(X. 

As in the non-equivariant case (e.g. see [12; (1.17)]) one can 

show that a G-cofibration hss to be an inclusion. So we abso say that 

(X,A) is G-cofibered or that (X,A) has the G-HEP (homotopy extension 

property). 

Again as in the non-equivariant case ([52; Thm. 2 and Lemma 4]) one 

shows 

Proposition 2.1: Let X be a G-space and A c X an invariant subspace. 

Then the fo%towing statements are equiva%ent 

(a) (X,A) is G-cofibred 

(b) XxO U AxI is an equivariant retract of XxI 
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(c) There exists an equivariant map u : X ~ >  I such that A c u-1(O) 

and an equivariant homotopy H : XxI --> X such that 

H(x,O) = x x~X 

H(a,t) = a a(A, t(I 

H(x,t) ( A for t>u(x) 

If in addition A is an equivariant SDR of X, we may assume that 

u(x)<1 for a l l  x(X. 

Let A be an invariant subspace of a G-space X. We say that (X,A) 

is an e~uivariant NDR (neighbourhood deformation retract) or G-NDR if 

there is a G-map u : X --> I and a G-homotopy H : XxI --,> X such that 

A = u-1(O) and 

H ( x , O )  = x x ( X  

H(a,t) = a a.~A,  t(I 

H(X,I) ~ A for u(x)<1 

If (X,A) is G-cofibred and A c~osed in X, then the conditions on 

u and H in (2.1 c) impty that H(x,u(x)) ( A whenever u(x)<1 and hence 

-I 
u (0) = A. Hence (X,A) is a G-NDR. Conversely, the proof of [51; 

Thm. 2] atso works for the equivariant case and shows that (X,A) is 

G-cofibred if (X,A) is s G-NDR. Hence we have 

Proposition 2.2: Let A be a closed invariant subspace of a G-space X. 

Then (X,A) is G-cofibred iff (X,A) i8 a G-NDR. | 

As a direct consequence we have 

Lemma 2.3: If i : A c X is a G-cofibration, then 

(a) i/G : A/G m X/G is a cofibration 

(b) If H ~ G is a subgroup, then i : A c X is a H-cofibration. 
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Proof: (a) foLtows directly from the definition and (b) from (2.1 b).~ 

As a consequence of (2.1 c), the proof for the non-equivariant 

case [52;Thm. 6] of the foLLowing result carries over. 

Proposition 2.4: Let G,H be topoLogicaL groups and suppose (X,A) is 

G-cofibred, (Y,B) is H-cofibred, and A is closed in X. Then the pro- 

duct pair 

( x , A )  x ( Y , B )  = (XxY, A×Y ~j XxB) 

is (GxH)-cofibred. If in addition A [or B] is an equivariant SDR of 

X [or Y], then AxY U XxY is a (GxH)-equivariant SDR of XxY. 

CoroLLary. 2.5: Let (X,A) and (Y,B) be G-cofibred and A closed in X, 

then (XxY, AxY U XxB) is G-cofibred under the diagonal action. 

Proof:Use (2.4) and (2.3 b). J 

RecaSL from (2.43 d) that the action of the symmetric group from 

the Left on X n is our cases given by 

N(x I . . . . .  x n) = (X -1 ,X ) 
1'''" -I 

n 

If X is a G-space, then X n admits an action of the wreath product 

G~ S n (our definition of the wreath product differs sLightLy from the 

usual one). 

Let G be an arbitrary topotogica.t group. Define the wreath product 

G] S n = [(f,~)If : [n] --> G, ~ ~ S n} 

with the topology of G n x S n. The continuous muLtipLication is given 

by 

( f l , W l ) ' ( f 2 , w  2) = ( h , W l - ~  2) 

with h(i) = f1(i) • f2(w~1(i)). 

If X is a G-space, we have an e ction of G~ S n on X n given by 
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(f,~).(x I ..... x n) = (f(1). x -I ..... f(n).x -I ) 
1 ~ n 

The non-equivariant proof of (2.4) generalizes to give 

Proposition 2.6: Suppose (X,A) is a G-NDR. Let Yr be the subspace of 

all points in X n having at Least r coordinates in A. Then (xn,Yr) is 

a G ~ Sn-NDR. If, in addition, A is a G-equivariant SDR of X, then Yr 

is a G~ Sn-equivariant SDR of X n. 

Proof: Let u : X --> I be the G-map and H : XxI --> X the G-homotopy 

of (2.1 c) for (X,A). Since A is closed, H(x,u(x)) ( A whenever u(x)<1. 

Let M and M i be the set of all subsets of cardinaLity r of [n]=[1,2,..~] 

respectively [n]-[i}. Then 

v(x I ..... Xn) = min (u(xil)+...+ u(x i )l[i I .... ir](M) 
r 

P(xl ..... Xn't) = (Yl ..... Yn ) 

with Yi = Hi(xi'min(t'u(xil )+'''+ u(xi )I[ii ..... it} (Mi)) are G~ S n- 
r 

equivariant maps satisfying (2.1 c) for (xn,Yr). H 

UtiLizing an idea of LiLlig [27] we ~eneralize Proposition 2.3. 

Let A be an arbitrary subspace of a G-space X. The subgroup 

St(A) = [g(Glga(A for all a(A] is called the stabilizer of A. 

Theorem 2.7: Let G be a topological group. Let A be an invariant sub- 

space of the G-space X and suppose A = A I U A 2 U ... U A n with A i 

closed in X. Suppose G also acts on the set In] = [1,2 ..... n] such 

that g.A = A for all g(G and i ( [n]. The G-action on [n] induces l gl 

a G-action on the set of all subsets of In]. For a subset q c In] 

let A = ~ A. and let H = St(~). Then (X,A) is a G-NDR if each 

pair (X,A a) is a H -NDR for all sunsets o ~ ~ of In]. 

Proof: Let Pk be the set of all subsets of In] with cardinality k. If 
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% is the cardina%ity of Pk define 

X k = ~ A Yk = X x ~-I/~, k>O 
o ~ p  k 

with (x,t) ~ (x,t') for x ( ik+ 1 c X and t,t' ( A %-I. Then X k is a 

c~osed invariant subspace of X. Starting with Xn, we inductivety show 

that (X,Xk) is a G-NDR for k>O, which wi%% prove the theorem. 

Suppose we know that (X,Xk+I) is a G-NDR for some k, Igk<n. Choose 

8 representative o in each G-orbit O of Pk and for each a60 a gagG 

such that g a = s and ga = id. Since (X,A) is an H -NDR there is an 

H -equivariant map v : X --> I with v-1(O) = A and an H -equivariant 

retraction 

r : XxI --> A xI !] XxO 

We d e f i n e  a map u : PkXX - - >  I s u c h  t h a t  u - l ( O )  n [ ~ ] × X  = [ a ] × A  a a n d  

u(a,x) = u(g~,gx) for at% ~(G by puttin~ u(a,x) = v (~ x) if a is in 

-I 
the orbit represented by ~. If p = ~u, then ~p~a "~ = ~' so that 

-I 
g~gg~ (H . Hence 

u(a,x) : v(~(gax) : v(y((gsgg; 1)max ) : u(ga,~x) 

Index the barycentric coordinates of A t-1 by the elements of Pk" 

The G-action on Pk then determines a G-action on At-l, and the dia- 

t-1 
gonat G-action on Xxa defines a G-action on Yk" Define a map 

Jk : X--> Yk by 

Jk(X) : (x,t 1(x),''',t~(x)) [cI ..... ct]=Pk 

where 

to(x) = (zlr u(=, x) l=(Pk-{~} ) (1¢ u(~,x)l~(Pk-{ c} ] 
o ( P k  

is the barycentric coordinate indexed by ~(Pk" One easity checks that 

Jk is continuous and equiveriant. 

If ~ is in the orbit represented by o, define 

ro~ : XxI --> AaxI U XxO 
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by ra(x,y) = ~Irq(gax). Then r a is a Ha-equivariant retraction, be- 

-I cause Ha= ga H~ga" 

t-1 The symmetric ~roup S t acts on A by permutin~ the barycentric 

coordinates. Obviously the inctusion of the O-sketeton ~t-Ic ~t-1 is o 

an S t - c o f i b r a t i o n  and hence a G - c o f i b r a t i o n .  By ( 2 . 4 ) ,  the p a i r  

t - l )  is a G-NDR. Hence there is a G-retraction (XxA  "b-1 , X k + l X t ~ t - 1 ,  J XxA o 

p : Xx&t-lxI - - >  Xx&l'-lxo U Xx&t-lxI  U Xk+lX/Xt-lx r 
O 

Define an equivariant map 

f : Xx&t-lxo U XXAo~-IxI U Xk+IXAt-lxI--> XxO U XkXI 

by f(x,u,O) = (x,O) x(X, u(~ ~-I 

, ( t - 1  
f(x,a,t) = ra(x t) x(X, a A o , t(I 

f(x,u,t) = (x,t) X(Xk+1, u(A t-1 , t(I 

t-1 Then f o p : XxA xI --> XxO U XkXI factors through the identification 

XxA~-IxI --> Yk×I inducing a G-equivariant map q : Yk×I --> X×O U XkXI. 

Then 

q • (JkXid) : XxI --> XxO U XkXI 

is a G-equivariant retraction. Hence (X,X k) is a G-NDR. 

As a consequence of (2.7) we have 

Proposition 2.8: Let AkX~X k denote the diagonal and A'xkcx k the fat 

diagonaL, i.e. the subspace of aLL points (x I ..... Xk) for which two 

coordinates agree. Suppose (xk,Ak X) is an Sk-NDR for art k~n. Then 

(xn,A'X n) is an S -NDR. 
n 

Proof: Let M be the set of partitions of [n] into ~ess than n 

subsets. For an arbitrary partition P of [hi tet A(P)=[(xI,,.,Xn)(Xnl 

x i = xj if i and j lie in the same element of P}. Then 

A'xn = ~.~ A(P) 
P(M 

Any intersection A(PI)O...DA(Pr) is another space A(Q) and St(A(Q))= 
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= St(Q) = St([P I .... ,Pr ]) under the obvious action of S n on N. Sup- 

pose Q has k elements of cardinaLity r. Then A(Q) is nomeomorphic to 
kl x r k 

(~I X) ...x (&n X) n with AIX = X, and St(A(Q)) mapped to 

under this homeomorphism (S~ S,. is the trivial $1~ SklX'' 'XSn~ Skn ± ~ k kn) 
group for k=O). By (2.4) and (2.5), the pair (xn,(A1 X) Ix...X(~n X) 

is an ($I~ SklX...XSn~ S k )-NDR. By the following Lemma, (xn,A(Q)) is 
n 

a St(A(Q))-NDR, so that (xn,&'X n) is an Sn-NDR by (2.7). 

Lemma 2.9: Let A and B be arbitrary subspaces of a G-space X. Let 

: GlmG 2 be an isomorphism of subgroups of G and assume that (X,A) 

is G1-cofibred. Suppose there is a homeomorphism f : X --> X such 

that f(A) = B and f(gx) = ~(g)f(x) for x~X and g~G I. Then (X,B) is 

G2-cofibred. 

Proof: If r : XxI --> XxO U AxI is m G1-retrsction then 

Xxl > XxI > X×O U AxI > XxO U BxI 
f-lxi d r fxid 

is a G2-retraction. 

We al.so need a strange generalization of (2.8). Let G be a finite 

discrete group and X be a G-space. Let A be an invariant subspace of 

X. Put 

D = [(x I ..... Xn)EXnlKxi = xj for some ~G, i@j, or some xiEA}. 

Proposition 2.10: Suppose (Xk,AkX) is an (SkXG)-NDR for all k~n, the 

pair (X,A) is a G-NDR, and G acts freely on X-A. Then (Xn,D) is a 

G ~ Sn-NDR. 

We prove this result in steps: Suppose k~n and X-A@@. 

Step I: Let Yk = [(xl .... Xk)6Xk I all x i are in the same G-orbit}U A k. 

TheD (xk,Yk) is a GI Sk-NDR. 



- 238 - 

Proof: The space Yk is the union of the spaces 

Y(g2,g3 ..... gk ) = [(x,g2x,g3x ..... gkx)Ix(X}U A k gi(G, 

! T I ! ! ! 

and Y(g2,g 3 ..... gk) 0 Y(g2,g 3 ..... gk ) = A n if (~2,g3,.,g~(g2,g3 .... gk ), 

because G acts freely on X-A. By (2.6), the pair (xk,A) is a GI~-NDR. 

Hence, by (2.7), we only have to show that each pair (xk,Y(g2 .... gk )) 

is a H-NDR, where H = St(Y(g 2, .... gk)). Define a homeomorphism 

f : X k --> X k with f(AkX U A k) = Y(~2 ..... gk ) by 

f(x I ..... x k) = (xl,g2x2 ..... gkXk ), 

and an isomorphism m : G×S k ~ H by 

®(~,.) = ( h , . )  ~ H ~ ~ s k 

-I .... gk) = with h(i) = gi.g.gn_1(i) with gl = id. Then f(AkX)=X(g 2, 

= [(x,g2x ..... gkx) Ix(X}, f(A k) = A k, and f(AkX O Ak)=x(g2 .... gk)O A k. 

Since (xk,A k) is a G[ Sk-NDR by (2.6) and (xk,Ak X) is a (GXSk)-NDR, 

and since (xk,AXkDA k) = (xk,Ak A) is a G~Sk-NDR because (X,A) is a 

G-NDR, (2.7) and (2.9) imply that (xk,y(g2 ..... gk )) is an H-NDR. 

Step 2: (Xn,D) is a GI Sn-NDR 

We proceed as in the proof of (2.8). Let M be the set of at~ parti- 

tions of In] into n-1 subsets and let V = [(x I, .... Xn)(Xnlsome xi(A}. 

Then 

D = U (Y(P)UV) 
P(M 

where Y(P) = [(x I ..... Xn)(Xn[xi = ~xj for some ~(G if i and j are in 

the same element of P]. An intersection of spaces Y(~UVis just another 

space~UV. By (2.7) the result holds if each (xn, y(~uv) is a St(Y(P))- 

NDR. Suppose P has k r elements of cardinality r. Then 
k I k 

Y(P)UV ~- (YI) ×...X(Yn ) n U V 

X...X(G~ Sn) ~ under this and St(Y(P)) corresponds to (G~S 1) \ Skl Skn 

homeomorphism. By (2.6), the pair (xn,v) is 8 G~ Sn-NDR and 
n k. k 

(X ,(YI ) 7x...×(Y n) n) a [(kG~SI)ISklX...×(G~Sn)ISkn]-NDR. The in- 
k I 

tersection (YI) x...×(yn ) n O V can be written as union of A n and 
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products of spaces Y and A k. Since the family of spaces consisting 
r 

of A n and products of spaces yr and A k is closed under intersection, 

(y1)klx .X(Yn )kn O V is a [(G ~S 1)ISkl .. x...x(G]S n) ]Skn]-NDR by 

(2.6) and (2.7). Hence, by (2.7) and (2.8) the pair (xn,Y(P)bV) is a 

St(Y(P))-NDR. 

3. NUMERABLE PRINCIPAL G-SPACES 

In this section we work in the category of all topological spaces. 

The results hcLd in the category of k-spaces, too. 

Let G be an arbitrary topological Kroup. We call a space X a numer- 

able principal G-space if X is a free G-space and the projection 

X --> X/G is a numerable principal G-bundle in the sense of DoLd [13]. 

Lemma 3.1: A space X is a numerable principal G-space iff there is a 

numerable cover ~ = [UsIsEA] of X (see VII,§4) by G-invariant subspaces 

with equivariant numeration (i.e. equivariant partition of unity sub- 

ordinate to U) such that there are equivariant maps r S : U s --> G for 

all U ~U. 

Proof: ~ Let p : X --> X/G be the projection and ~ = [Vala~A] a numer- 

able cover of X/G over which p is Locally trivial. Define ~=[p-l(v)], 

a numeration [fa] by fa = ~a" p where [v a] is a numeration of ~, and 

-1(V S proj> G. r : p ) ~ G x V S 

@ Let B = [p(Us),s~A). Then ~ is a cover of X/G. The fs induce maps 

v : X/G --> I defining a numeration of ~. It remains to show that p a 

is Locally trivial over B. Now p-lpu S = U S since U S is G-equivariant. 

So we have to find a G-homeomorphism 
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G x p(U a) < h U 

PU a 

making the triangle commute. Define h(x) = (ra(x),p(x)). The inverse k 

of h is given by (g,p(x)) ~-> g • re(x) -1.x, which is a wek~ dmfined 

function. It remains to check the continuity of k. Let Y=rjS(id)cU a. 

Then k factors as 

idxu v G x pU a > GxY > U a 

with u(p(x)) = ra(x)-S.x and v(g,y) = g. y. EvidentLy v is continuous, 

and it remains to show the continuity of u. But u is induced by the 

map U a --> Y given by x ~--> re(x) -1 , which is continuous. I 

This result implies 

Lemma 3.2: (a) If G is a discrete group, then X is a numerable prin- 

cipal G-space iff X has an open cover ~ = [Uala(A}, with a subordinate 

partition of unity (fa : X --> Ila(A} such that for aLL g(G different 

from the identity, gUaDUa= ~, and gU a is some US(U, and fs(gx)=fa(x), 

x(X. 

(b) If G is a finite discrete group, then X is a numerable principal 

G-space iff X has an open cover U = [Uala(AS with s subordinate par- 

tition of unity, such that gUaNU a = ~ for aLL g(G different from the 

identity. 

Proof: Part (a) is an immediate consequence of Lemma 3.1. Now suppose 

we have a cover U of X as described in (b). EnLarge it to an open 

cover ~ of X by taking aLL subsets g°Ua,g(G. If [fa : X --> I} is the 

partition of unity subordinate to U, enlarge it to a partition of 

unity subordinate to ~ by associating the map 
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with the element g 

~y (a).  | 

x ~-->~ fa(gqlx) IGI = order of G 

U of S. Then ~ and its partition of unity satis- 

Lemma 3.3: If f : X --> Y is a G-map and Y a numerable principal G- 

space, then so is X. In particular, any invsriant subspace of a numer- 

able principal G-space is a numerable principal G-space. 

Proof: Let ~ = [ValaffA] be an invariant numerable cover of Y with 

numeration [fa} and equivariant maps r a : V a --> G associated with Y. 

Then [f-1(Va!,fa-f,ra,f] makes X into a numerable principal G-space.~ 

Lemma 3.4: Let r : X --> Y be a G-map from a G-space X to a numerable 

principal G-space Y. Then r is an equivariant nomotopy equivalence iff 

it is an ordinary homotopy equivalence. 

Proof: By Lemma 3.3, both X and Y are numerable principal G-spaces. 

Consider 

EGxX 

l p r o j  

X 

idx r 

r 

> EGxY 

proj 

.> Y 

By [10; Lemma 2, Bemerkung], idxr is a n  equivariant homotopy equi- 

valence, and by [10; Lemma 4], the projections are equivariant homo- 

topy equivalences. 

We now prove the homotopy extension tiftin~ property (HELP) of a 

h o m o t o p y  e q u i v a l e n c e .  

Theorem 3.5: Given a diagram of G-spaces and G-maps 
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Y - P >Z 

A ~ X 

and a G-homotopy H A : hlA ~ p o fA" Assume that (X,A) is G-cofibred. 

Then there is a G-map f : X ---> Y extending fA and a G-homotopy 

H : h ~ p o f extending H A provided 

(a) p is an equivariant homotopy equivalence 

OR (b) p is an ordinary homotopy equivaAence and X-A is a numerab%e 

principaA G-space. 

Proof: Replace p by the equivariantty homotopy equivaAent G-fibration 

q : E --> Z, where E = [(~,y)E ZIxyI:~(1) = p(y)] and q(~,y)--~(0). The 

G-action on E is given by g(~,y) = (g .~,~. y), where (g. ~)(t)=g-~(t). 

Let r : F m> X be the G-fibration over X induced by h, i.e. 

F = [(x,~,y)E X x Z I x YI~(O) = h(x),w(1)=p(y)] and r(x,~,y) = x. 

F >E 

X >Z 

Y 

Define k : A --> F by k(a) = (a,~a,fA(a)) with 

l h(a) O~t~½ 

~a(t) = HA(a,2t-1) ½~t~1 

Then k is an equivariant section of r over A. The theorem is proved 

if we can extend k to an equivariant section of r over X. 

Since (X,A) is G-cofibred, there is an equivariant map u : X --> I 

and a G-homotopy K : XxI ---> X such that Acu-1(O),K(x,O)=x,K(a,t)=a 

for art aEA and tel, and K(x,I)E A for xEu-1[0,1). Put U = u-I[0,I). 

Extend k to a.n equivariant section of r over U by k(x)=[X,Wx,fA(K(x,1))] 

with [ h ( K ( x , 2 t ) )  O~t~ 

'~x(t) = I HA(K(x,1),2t-I ) ~t~1 xEU 
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We claim now and prove Later: 

Let rx_ A : FX_ A --> X-A be the restriction of r to PX-A = r-1(X-A)" 

Then rx_ A has an equivariant section s', and there is a G-homotopy 

L : FX-A x I --> FX_ A from the identity to s'- rx_ A such that 

rX_A(L(e,t)) = rX_A(e) for all efFx_ A and tfl. 

The required equivariant sections s of r over X is then given by 

I s'(x) x(X-U 
s(x) = L(k(x),maxE2u(x)-1,0S x(U-A 

k(x) x~A 

We now prove the claim: q is a G-fibration and a homotpy equivalence. 

By E13; Cor.6.2~, there is a section ~ of q and a homotopy Q : idE~.q 

such that q • Q(e,t) = q(e). Both ~ and Q are equivariant if p is an 

equivariant homotopy equivalence. Define a section ~ : X --> F of r 

and a homotopy R : FxI --> F from id F to ~ • r by ~(x) = (x,~, h(x)) 

and R(x)e,t) = (x,Q(e,t)), eEE. Then r -R(x,e,t) = r(x,e) for all 

(x,e)(F and t(I. Both ~ and R are equivsriant if ~ snd Q are, i.e. if 

p is an equivariant homotopy equivalence, and provide the section and 

homotopy of the claim. If p is an ordinary homotopy equivalence, then 

rx_ A : FX_A--> X-A is a G-fibration and a homotopy equivalence be- 

cause of the existence of ~ and R. Since X-A is a numerable principal 

G-space, rx_ A is an equivariant ho~otopy equivalence (Lemma 3.4).By the 

equivariant version of [13; Cor. 6.2] the equivariant section and the 

homotopy of the claim exist. 

Proposition 3.6: Let p : (X,A) --> (Y,B) be an equivariant map of 

pairs of G-spaces such that PA = plA : A--> B is an equivariant homo- 

topy equivalence and p : X ~ Y is an ordinary homotopy equivalence. 

Suppose X-A and Y-B are numerable principal G-spaces and (X,A),(Y,B) 

are G-cofibred. Then any equivariant homotopy inverse qB of PA can be 

extended to en equivariant homotopy inverse q of p and any equivar~ant 

homotopy H B : id B ~ PA ° qB to an equivariant homotopy H : idy ~ p -q. 
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Proof: Let i : B c Y be the inclusion. By part (b) of the previous 

theorem, there is an equivariant extension q : Y --> X of qB and 

H : YxI --> Y of i- H B such that H : idy ~ p- q. Hence (p,pA)o(q,qB)~id 

equivariant%y as maps of pairs. Analogously, we can find an extension 

: X --> Y of PA such that (q,qB).(~,pA) ~ id equivariantLy as maps 

of pairs. Hence 

(q,qB).(p,pA) ~ (q,qB)-(p,pA).(q,qB)-(p,pA) ~ (q,qB)-(~,pA) ~ id 

equivariantly as maps of pairs. 

Corollary 3.7: Let X be a G-space and A an invariant subspace. Sup- 

pose that (X,A) is G-cofibred, that A c X is a homotopy equivalence, 

and X-A is a numerabty principal G-space. Then A is an equivariant 

SDR of X. 

Proof: Apply the previous proposition to the inclusion (A,A) c (X,A) 

with qB = idA and H B the constant homotopy. J 

Lemma 3.8: If X is a paracompact G-space, A c X a subspace such that 

G acts freely on X-A, and u : X --> I a map with A = u-1(O), then 

X-A is a numerable principal G-space provided G is a compact Lie group. 

Proof: X-A is an F, i.e. a countable union of closed subspaces of X, 

and hence pars compact [36]. Since X-A is normal, the projection 

p : X-A --> (X-A)/G is a principal fibre bundle (e.~. see [5; p.88]). 

Since p is closed, (X-A)/G is paracompact [18; p.165]. 

4. FILTERED SPACES AND ITERATED ADJUNCTION SPACES 

As in the previous sections the results of this section hold in 
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the category of all topoLogicaL spaces as weLL as in the category of 

k-spaces. 

Let G be an arbitrary topoLogicaL group. A filtration of a G-space 

X is an increasing sequence of invarisnt subspaces 

= X_I c X O c X I c ... 

with X as coLimit (direct Limit). Given such a sequence, we caLL X a 

filtered G-space. If each (Xn,Xn_ I) is G-cofibred, we caLL X properly 

filtered. A filtered G-map is a G-map f : X --> Y of filtered G-spaces 

--> Y by fn" A filtered such that f(X n) c Yn" We denote fix n : X n n 

space is caLLed an iterated ad~unction G-space if X n is obtained from 

Xn_ I by adjoining a G-space A n relative to an invariant subspace B n 

by an equivariant map. We say, X n is obtained from Xn_ I by adjoining 

(or attaching) (An,Bn). If each (An,Bn) is G-cofibred, we caLL X a 

proper iterated adjunction G-space. 

We List a few elementary properties 

Lemma 4.1: (a) A proper iterated adjunction G-space is properly ~Ltered. 

(b) If X is a property filtered G-space, then each (X,X n) is G-cofibred. 

(c) If Y is obtained from X by attaching a NDR (A,B), then Y is Haus- 

dorff if X and A are. 

(d) If X is a properly filtered space and each X n is Hausdorff, then 

so is X. 

Proof: B c A 

in ~n 
Xn_ I c X n 

is a push-out diagram in the category of G-spaces. Hence Xn_ I c X n is 

a G-cofibration if A n c B n is a G-cofibration. If (An,B n) is a NDR, 

then there is a map u : A n --> I with u-l(0) = B n. Using this one 

readily checks that X n is Hausdorff if A n and Xn_ I are. 
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Now suppose X is a properly filtered G-space. We construct a re- 

traction r : XxI --> XxO U XnXI. Since XxI = ~i~ (XkXI) it suffices 

to construct compatible G-retractions r k : XkXI --> XkXO H XnXI for 

k~n (Use [12; Satz 1.16 and Satz 1.19] to show that the subspace 

XxO U XnXI is the co~imit of the subspaces XkXO U XnXI). The retract- 

ions r k are obtained inductively by 

r k = (id U rk_ I) o r : XkXl > Xk×O U Xk_1×I > XkXO U XnXl 

where r is the G-retraction of (Xk,Xk_1). For the continuity of r k 

use [12; Satz 1.1.9] observin~ that Xk×O U XnXI is a retract of Xk×l, 

because composites of cofibrations are cofibrations. 

For a proof of (d) see [49; Tnm. 9.4]. 

It is weLL-known that a filtered map f : X --> Y of properly fitter- 

ed spaces is a homotopy equivalence provided each fn : Xn --> Yn is 

a homotopy equivalence. UsuaLLy one proves this using the Mi%nor te%e- 

scope construction [9; IV,§5]. We ~ive an slternative proof in the 

category of G-spaces, the intermediate results of which we wiLL need 

for other purposes. 

Lemma 4.2: Given a commutative diagram of G-spaces 

f 
A -> A' 

B g >B' 

where i and j are G-cofibrations and f and g are G-homotopy equivalences. 

Let T be a G-homotopy inverse of f and h t : idA, ~ f - T a G-homotopy. 

Then there is a G-homotopy inverse ~ of g extending ~ and a G-homotopy 

k t : idB, ~ g- ~ extending ht, i.e. (kt,h t) : (idB,,idA,) ~ (g- g,fo~) 

in the category of pairs of G-spaces. 

Proof: AppLy Theorem 3.5 to the diagram 
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B g > B' 

i. ~I Iid 

J A' ~ B' 

and the homotopy j - h t : idB, IA' = j ~ j • f oT = g - i o T to obtain 

the required extensions, i 

Corollary 4.3: Given the assumptions of Lemma 4.2, the G-map 

(g,f) : (B,A) --> (B',A') is a G-homotopy equivalence in the category 

of pairs of G-spaces. 

Proof= Let (~,Y) : (B',A') ---> (~,A) and (~t,ht) :(idB,,id~)~(g.E,f.Y) 

be the map and G-homotopy of pairs of (4.2). Applying the ~emma once 

again to the pair (g,T), we obtain a G-map of pairs (g',f'):(B,A)-->(B',A') 

and a G-homotopy of pairs (ida,id A ) ~ (~ o g,,~ o f,). By ~enera~ non- 

sense, (g,f) is a G-homotopy equivalence of pairs (cf. the proof of 

(3.6)). | 

Theorem 4.4: Let f : X --> Y be a filtered G-map of property filtered 

---> Y is a G-homotopy equivalence. G-spaces such that each fn : Xn n 

Then f is a G-homotopy equivalence. 

\ 
Proof: Using Lemma 4.3, we inductively construct homotopy inverse 

gn : Yn -> Xn extending gn-1 and homotopies Hn(t) : idy ~ fn" gn 
n 

extending Hn_1(t). Taking the cotimit we obtain a G-map g : Y --> X 

and a G-homotopy H(t) : fog ~ idy. Apply the same procedure to the 

filtered map g to obtain a C-map h : X ~ Y and a G-homotopy 

K : id X ~ g.h. As in (3.6), we find that f is a G-homotopy equivalence.| 

Theorem 4.5: Let X be 8 properly filtered G-space such that each X n 

is an equivariant SDR of Xn+ I. Then each X n is an equivariant SDR of X. 
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Proof: By the equivariant version of [14; 3.7] it suffices to show 

that (X,Xn) is G-cofibred and the inclusion X n c X is a G-homotopy 

equivalence. The firet requirement follows from (4.1) and the second 

from (4.4) if we consider X n as trivially filtered by itself. 

We now investigate conditions which make maps of iterated adjunction 

spaces to filtered homotopy equivalences. 

Proposition 4.6: Let Y and Y' be G-spaces obtained from X and X' by 

adjoining (A,B) and (A',B') by maps f : B ---> X and g : B' --> X' 

respectively. Suppose (A,B) and (A',B') are G-cofibred. Given a com- 

mutative diagram of G-maps 

X< B c A 

X'<. B' c A' 
g j 

whose vertical maps are G-homotopy equivalences. Then the induced map 

r : (Y,X) --> (Y',X') is a G-nomotopy equivalence of pairs. 

Proof: Let Z and Z' be the double mapping cylinders of the horizontal 

sequences. E.g. Z is obtained by identifying the mapping cylinders 

Zf and Z i along their common subspace B. Fix a homotopy inverse T of 

I and homotopies T • I ~ idB, L -i ~ idB,. The pairs (h,l) and (k,L) 

induce G-homotopy equivalences Zf --> Z and Zi--> Zj and a map 

o B' ~ Z are r' : Z --> Z' Since the inclusions Zf o B c Z i and Zg j 

G-cofibrations, the map ~ and the homotopiee can be extended by (4.2) 

to G-maps of triads p,q : (Z,Zf,Zi) --> (Z',Zg,Zj) and G-homotopies 

of triads p- r' ~ id and r' o q ~ id. Hence, by general nonsense, 

r' : (Z,Zf,Z i) --> (Z',Zf,Zj) is a G-homotopy equivalence of triads. 

Since i and j are G-cofibrations, the natural projections (Z,Zf)-->(Y,X) 

and (Z',Zg) --> (Y',X') are G-homotopy equivalences of pairs. Since 
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r : (Y,X) --> (Y',X') is induced by r', it is a G-homotopy equivatence 

of pairs. 

We also need a strange generalization of this result. 

Proposition 4.7: Let Y and Y' be spaces obtained from X and X' by 

adjoining (A,B) and (A',B') by maps f : B ~> 3( and ~ : B' m> X' 

respectively (no G-action). Let (K,L) and (K',L') be G-cofibred pairs 

such that K-L and K'-L' are numerable principal G-spaces and (K/G,L/G) 

= (A,B) and (K'/G,L'/G) = (A',B'). Given a commutative diagram of maps 

X <- f B < proj L c K 

X'< g B'< proj L' c K' 

with q a G-map and h,q',q ordinary nomotopy equivalences. Then the 

induced map r : (Y,X) --> (Y',X') is a homotopy equivalence of pairs. 

Proof: Consider X and X' as trivial G-spaces. Let Z and Z' be the G- 

spaces obtained from X and X' by adjoining (K,L) respectively (K',L'). 

Then q and h induce a G-map p : (Z,X) ~ (Z',X'), which is an ordi- 

nary homotopy equivalence of pairs. By (4.1) the pairs (Z,X) and (Z',X') 

are G-cofibred. Since Z-X and Z'-X' are numerable principal G-spaces 

and p : X --> X' is a G-homotopy equivalence, p is a G-homotopy equi- 

valence of pairs by (3.6). Passing to the orbit spaces we find that 

r : (Y,X) m> (Y',X') is a homotopy equivalence of pairs. 

We have a similar resutt for weak homotopy equivalences. 

Proposition 4.8: (a) If X and Y are fittered T1-spaces and f : X --> Y 

a filtered map such that each fn is a weak homotopy equivalence, then 

f is a weak homotopy equivalence 
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(b) L~ Y and Y' be spaces obtained from X and X' by adjoining (A,B) 

and (A',B') by maps f : B--> X and ~ : B' --> X' respectively. Suppose 

(A,B) and (A',B') are cofibred. Given a diagram of maps 

f X< 

X ' <  , g 

i 
B c A 

J 
B' c A' 

wnose vertical maps are weak homotopy equivalences. Then the induced 

map r : Y --> Y' is a weak homotopy equivalence. 

Proof: Part (a) foLLows from the fact that NiX = Lim NiXn [17;(2.14)]. 

?or part (b) Let Z and Z' be the double mapping cylinders of the 

horizontal sequences. Then the triple (h,L,k) induces a map r':Z-->Z', 

which is a weak homotopy equivalence by [35; Thm.6]. The canonical 

projections Z --> Y and Z' --> Y' are homotopy equivalences because 

i and j are cofibrations. Hence r is a weak homotopy equivalence. 

Proposition 4.9: Let f : X --> Y be a filtered G-map of filtered 

G-spaces. Assume that the maps Xn_ I c Xn, Yn-1 c Yn' and f : Xn--> Yn 

are closed O-~sbi~tions. Then f is a closed G-caflbration if XnOYn_1=Xn_1 • 

Proof: We construct inductively a G-retraction Yxl --> Xxl U YxO. In 

the inductive step we have a G-retraction Yn_iXI --> Yn_iXO U Xn_sXI 

so that we need a G-retraction 

q : Yn xI --> (Yn-s U Xn)Xl U YnX0 

Since X n N Yn-1 = Xn-1 and (Yn,Xn_1) is a G-NDR, the pair (Yn,Yn_IUX~ 

is a G-NDR by (2.7). Hence the required G-retraction exists. 

Proposition 4.10: Let X be a properly filtered space such that each 

Xn_ 1 is contractible in X n. Then X is contractible. 
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Proof: InductiveLy, define spaces Yn' inclusions X n c Yn' and re- 

m> Xn" Put X = Y and Yn = Xn U CYn_I/~, where tractions qn : Yn o o 

CYn_ I is the (unreduced) cone on Yn-1 and Xn_ I c X n is identified 

with Xn_ I c Yn_1 ~ CYn_ I . The retrsction qn : Yn m> Xn is given by 

Cqn-1 h 
CYn_ I > CXn_ I -> X n 

where h is the contracting homotopy. Let Y be the coLimit of the Yn" 

Then the inclusions X n c Yn and the retractions Yn m> X n define fiL- 

tered maps i : X c Y and q : Y --> X such that qo i = id X. We show 

that Y is contractible. 

First note that Jn-1 : Yn-1 c Yn and the inclusion of the cone 

point [yn ] c CYn_ 1 c Yn are cofibrations and that Yn-1 is contractible 

in Yn to the cone point. For any sequence E of spaces and maps 

Po Pl P2 
A o > A I > A 2 > A 3 > ... 

define TnE, inclusions A n c ThE c Tn+IE , and retractions rn: TnE --> A n 

inductively. Put ToE = A o and TnE= Tn_1E U /~, where ZPn_1 An-lCTn-IE 

is identified with An_ I c Z , the mapping cylinder of Pn-1" The 
Pn-1 

retraction r n is the composite 

TnZ ~ Z ~ . >  A 
Pn-1 n 

whose first map is induced by rn_ I and the second is the standard re- 

traction of the mapping cylinder. The colimit TE of the TnE is caL~ed 

the telescope of E. 

,Zol 
A ° A I o A I A2 o A I A2 

TIE=Zpo T2E T3E 

The ThE define a proper filtration of TE. The r n are homotopy equi- 

valences and they induce a map r from TE to the colimit A of E. If 

defines a proper filtration of A, i.e. if each Pi is a cofiltrstion, 
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then r : TE --> A is a homotopy equivalence by (4.4). 

Consider the sequences 

Jo Jl J2 
El: Yo c YI c Y2 c ... 

c I c 2 
~2: Yo co > YI > Y2 > 

where c i is the constant map to the cone point [Yi+1 ]. We have shown 

that Jk " Ck" It is well-known (and can easily be deduced from (3.5) 

and (4.2)) that if f - g : A m> B there is a homotopy equivalence 

of pairs (Zf,A) ~ (Zg,A). Hence there is a filtered map h : TEI --> TE 2 

such that each h n is a homotopy equivalence, whence Y - TEI " TE 2. 

Filter TE 2 differently: Put Qo = Yo = TOE2' QI = CYo with the obvious 

inclusion of the cone point YI" Inductively, Let Qn = Qn-1U CYn_I/- 

with the cone point Yn-! in Qn-1 identified with Yn_1 ( Yn-1 c CYn_ 1. 

Again we have the inclusion [yn ] c Qn of the cone point. 

~ Y l  ~ Y 2  ~ Y 3  

Yo Yo YI 
Q1 Q2 Q3 Y2 

Since [yn ] c Yn c CY n are cofibrstions, the Qi define 8 proper fil- 

tration of TZ 2. The Qi are obviously contractible. Hence, by (4.4), 

TE 2 - point, hence Y and therefore X are contractible. 

We close this chapter with some results on numerabty contractible 

spaces. For a definition see (6.12). 

Lemma 4.11: (a) If Y dominates X and Y is numerabLy contractible then 

so is X. In particular, numerable contractibility is a homotopy type 

invariant. 

(b) A finite product of numerabLy contractible spaces is numerably 

contractible. 

(c) Let X be a properly filtered space such that each X n is numerabLy 
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contractible. Then so is X. 

For proofs and further references see [43]. 

Proposition 4.12: Let X be a proper iterated adjunction space such 

that the spaces A n which are attached are numerab%y contractible. Then 

X is numerabty contractible. 

Proof: By (4.1) and (4.11) it suffices to show that each X n is numer- 

ably contractible. Suppose inductively that Xn_ 1 is numerably contract- 

ibte. The subspaces U = Xn_ I U BnX[0,1) and V = A n U Bx(0,1] of the 

c A form a numerable cover- double mapping cylinder Z of Xn_ I < B n n 

ing of Z. By (4.11 a), both U and V and hence Z are numerab%y contract- 

ible. Since Z ~ Xn,also X n is numerably contractible. R 
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