J. M. Boardman R. M. Vogt

Homotopy Invariant Algebraic Structures on Topological Spaces

Lecture Notes in Mathematics

Edited by A. Dold, Heidelberg and B. Eckmann, Zürich

347

J. M. Boardman

Johns Hopkins University, Baltimore, MD/USA
R. M. Vogt

Mathematisches Institut der Universität des Saarlandes, Saarbrücken/BRD

Homotopy Invariant Algebraic Structures on Topological Spaces

Springer-Verlag
Berlin • Heidelberg • New York 1973

AMS Subject Classifications (1970): 55-02, 55 D 10,55 D 15,55 D 35,55 D 45,55 F35, 18C10, 18 C 15

ISBN 3-540-06479-6 Springer-Verlag Berlin • Heidelberg • New York ISBN 0-387-06479-6 Springer-Verlag New York • Heidelberg • Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks.
Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher.
© by Springer-Verlag Berlin \cdot Heidelberg 1973. Library of Congress Catalog Card Number 73-13427. Printed in Germany.
Offsetdruck: Julius Beitz, Hemsbach/Bergstr.

TABTE OF CONTENTS

Introduction V
Cnapter I Motivation and a nistorical survey 1

1. "Delooping" via the classifying space construction 2
2. A_{∞}-spaces 4
3. $A_{\infty}-\operatorname{maps}$ 8
4. A different approacn 13
5. Some remarks on commutativity 23
Cnapter II Topological-algebraic theories 27
6. Deîinitions 27
7. Free theories 31
8. Intercinange 40
9. Free Θ-spaces and triples 48
10. Spines 57
11. Examples of PROs and PROPs 64
12. Partly nomogeneous theories 68
Cnapter III The bar construction for theories 72
13. The tineory $W \oplus$ 72
14. A filtration of W for $P R O$ and PROPs 76
15. Lifting theorems 83
Cnapter IV Homotopy homomorpnisms 95
16. Maps between Wh-spaces 95
17. Composition and tine nomotopy category. 100
18. Homotopy invariance and homotopy equivalences 109
19. Relating ${ }^{8-m a p s}$ and in-maps to W-inomomorpnisms 120
20. Maps from $W^{B}-$ spaces to B-spaces 126
21. An equivalence of categories 140
22. Homotopy invariance for general theories 145
Cnapter V Structures on based spaces 155
23. Besed tneories 155
24. Based PROs and PROPs 157
25. The based bar construction 158
26. Lifting and extension theorems 163
27. Based nomotopy nomomorpnisms 167
28. Tine based construction M 171
Cnapter VI Iterated loop spaces and actions on classifying spaces 174
29. The classifying space construction 174
30. Actions on the classilying space 189
31. n-îola and inîinite loop spaces 193
32. Homotopy-everytning H-spaces, Dyer-Lashoi operations 201
33. Examples of infinite loop spaces 207
Cnapter VII Homotopy colimits 218
34. Homotopy diagrams 218
35. Homotopy colimits 219
36. Spectral sequences for homotopy colimits 221
37. Homotopy colimits of coverings 223
Appendix 228
38. Compactly generated spaces 228
39. Equivariant coibrations 231
40. Numerable principal G-spaces 239
41. Filtered spaces and iterated adjunction spaces 244
References 254

Originally, we developed the theory or nomotopy invariant structures to obtain a macnine for proving that tine stable groups $0, \mathrm{U}, \mathrm{SO}, \mathrm{SU}, \mathrm{F}$, Top,PL, their various coset spaces, and their classifying spaces are infinite loop spaces. But soon we realized that tne nomotopy invariant structures in themselves were the main subject of our research. The idea of using categories of operators (called PROPs in these notes) and to identify topological spaces with algebraic structures with functors from a suitable PROP to tne category of topological spaces was implicitly contained in a talk of Stasneff given in a seminar of MacLane at the University of Cnicago in 1967. He suggested to look for a topological analogue of the notion of a. PACT as developed by Adams and MacLane [29] and to use it in the theory of infinite loop spaces. Tine topological version of the conjecture following Theorem 25.1 of [29] gave some nope for an application: If a topological PACT, whose nomotopies satisfies all nigner conerence conditions, acts on a space X, then it also acts on its classifying space.

The conerence conditions for nigner nomotopies naturally lead us to consider nomotopy invariance, winc later turned out to be useful for the application to infinite loop spaces.

After we nad announced our results in [8], Beck pointed out to us that our PROPs are just subcategories of topological tneories as known from categorical universal algebra. This motivated us to consider general topological-algebraic theories, too, althougn in most of our investigations we nad to restrict our attention to the previously treated .PROPs, winicn now cropped up as "spines" of theories closely related to the theory of commutative monoids.

Snortly after the appearance of [8] several otiner autnors could snow by different metnods that the stable groups and their classifying spaces listed above are infinite loop spaces. Their approaches avoid the theory of nomotopy invariant structures so that they reach the required result more easily and more directly. Therefore we want to stress tine point that infinite loop spaces are just one field of application of our theory and, as we will show, not the only one.

We briefly want to compare our metnod witn the most interesting otner approacnes to infinite loop spaces. Using nis construction of the classifying space of a category [44], Segal was able to snow that a topological category \mathbb{C} with an appropriate bifunctor $\mathbb{E} \times \mathbb{E} \longrightarrow \mathbb{C}$ gives rise to a spectrum of simplicial spaces, the realizations of which form an infinite loop space [45]. He then snowed that the groups under consideration determine sucn categories and that the associated spectrum makes the group into an infinite loop space. In contrary to this, our metnod is to investigate the internal algebraic-topological structure of the groups and to snow that certain structures, we call them E-structures, cnaracterize infinite loop spaces.

A second direct proof is due to Beck [3]. He also starts with Estructures on topological spaces. He then extends the suspension and loop space functor to adjoint endofunctors of the category of spaces witn E-structures and shows that the front adjunction map $X \rightarrow \Omega S X$ is a weak nomotopy equivalence if the \dot{E}-structure on X makes $\pi_{0}(X)$ into a group.

A tnird approacin, due to May [34], is very closely related to our method. His theory is geared towards applications to Dyer-Lasnof nomology operations. He first develops a theory of operads with free action of the symmetric groups. They are slignt specializations of our PROPs. Then using the operads obtained from our little cube categories Q_{n} and \underline{Q}_{∞} of [8] (see also (2.49) of these notes) and generalizing an nstage classifying space construction of Beck [2], ine was able to prove
a recognition principle for iterated and infinite loop spaces, winch resembles mucn of our recognition principles of chapter VI, §3. His approach nas two advantages over ours. Firstly, tine category of operads has products, winich essentially substitute our tensor products of PROPs. Since the topological and algebraic structures of these products are far more transparent tinan the structure of the tensor products, one need not be reluctant to work with them. Secondly, nis n-stage classifying space construction, winicn is quite interesting in itself, makes an inductive proof of the recognition principle for n-fold loop spaces redundant, althougn the proof of consistency requirements for infinite loop spaces boils down to an argument similar to an induction.

On the otner nand, our approach nas some advantages over May's. First of all, we admit all PROPs and not only PROPs with free actions of the cyclic group, which correspond to $\Sigma-f r e e$ operads. Thus important PROPs, sucn as the PROP 5 associated with the theory of commutative monoids, are allowed in our theory but not in May's. (It nas been known for some time [37] that a connected abelian monoid is of the weak nomotopy type of an infinite loop space). Secondiy, taking PROPs and tensor products instead of operads and products keeps us in cioser connection with general aigebraic-topological theories, so that generaizations to more complicated algebraic structures suggest themselves. Thirdly, once the theory of nomotopy invariant structures has been made available, a few more or less elementary facts of the standard classifying space construction imply a unified proof of the recognition principle for both n-fold and infinite loop spaces. Moreover, for any E-space X, we nave maps preserving the structure up to conerent nomotopies

which are weak homotopy equivalences if the E-structure on X makes $\pi_{0}(X)$ a group, wille in May ${ }^{\prime} s$ approach there are structure preserving maps

$$
\Omega^{n_{B} n_{X}} \stackrel{f}{\rightleftarrows} \bar{B} X \xrightarrow{g}
$$

such that g is a deformation retraction and f is a weak nomotopy equivalence if X is connected. So the maps do not go one way.

Besides the points which allow a direct comparison, we also treat the theory of maps whicin preserve the algebraic-topological structures up to coherent nomotopies in great detail, thus obtaining a delooping result for maps between E-spaces whicn are not quite nomomorpnisms. Moreover, an additional analysis of Milgrams classifying space construction allows us to snow thet the weak nomotopy equivalences above are strict homotopy equivalences for a wider class of topological spaces than CW-complexes. Tnis side of the theory is, of course, unnecessary for the purpose of May's notes, wnich are thougnt of as a basis for the development of a theory of nomology operations; but they are of great interest from the nomotopy point of view.

A short idea of what we are going to do and a recollection of existing results on nomotopy invariant structures on topological spaces is given in chapter I. The second chapter is a self-contained treatment of multi-coloured tineories generalizing constructions of Bénabou [4]. Many ideas of tine section on multi-coloured triples (II,§4) are taken from papers of Beck [2] and otners. In (II, §5) we define the topological analogue of Adams' and Mactane's notion of a PROP and PACT and put them into relation with general theories. We complete the chapter with a list of PROPs, winich will be used in tne cnaracterization and recognition of n-fold and infinite loop spaces, or wion define alge-braic-topological structures occurring in the literature.

In the third chapter we define the bar construction for theories and PROPs and prove its important properties. It is the main tool for the development of the theory of nomotopy invariant structures, which is given in chapter IV. In the first parts of chapter IV we construct categories of spaces with homotopy invariant structures and homotopy classes of maps winich preserve sucn structures up to conerent nomo-
topies. We offer three definitions for such maps, which turn out to be more or less equivalent, and continue to work with two of them. This side of the theory indicates that the last word nas not been spoken yet. Relationsnips of sucn maps to nomomorpnisms are studied in sections 4,5, and 6. The main results on nomotopy invariance are given in section 3. In section 7 we prove a nomotopy invariance result for general theories, thus indicating possible generalizations of our results. Chapter V lists the modifications which are necessary to prove the more important results of cnapter III and IV in the category of based topological spaces.

As a first application of our theory we in cnapter VI study n-fold and infinite loop spaces. We start with a detailed treatment of Milgram's classifying space construction [37] in the frame-work of our theory before we in section 3 prove the recognition principle for $n-$ fold and infinite loop spaces mentioned above. In section 4 we extend this recognition principle to arbitrary E-structures on a space X and snow that X cannot be of the nomotopy type of an abelian monoid if it nas non-trivial Dyer-Lashof operations. We list a number of infinite loop spaces in section 5. Cnapter IV and VI include the proofs of the announcements in [8].

In the final chapter VII we briefly indicate now our theory can be used in otner brancnes of homotopy tneory. We define nomotopy colimits, prove some elementary properties, and illustrate some applications.

A sumarized version of parts of our results has already appeared in [6], and we try to stick to its terminology. The first chapters constitute a vastly improved version of [54]. The second author taker the full responsibility of the present exposition and he is to be blamed for aryptic formulations, frequent violations of standard rules of the Englisin language, and matnematical inaccuracies.

It is our pleasure to thank our friends who in various discussions nelped us to clarify one or the otner point of our theory. In parti-
cular, we are indebted to Jon Beck for explaining to us the notion of an algebraic theory and who pointed out that the nomotopy-everytning H-spaces of [8]are not really nomotopy-everytning H-spaces (compare VI, §4), and to Tammo tom Dieck for suggesting to us the use of numerable principal $G-s p a c e s$ and for many invaluable conversations. We also want to tnank Mrs. Victoria Löfler for ner quick and neat typing of the major part of these notes.

During our research the iirst autnor was partly supported by the National Science Foundation under the grant number GP-19481, wnile the second autnor received partial innancial support from the Studienstiftung des deutscnen Volkes and the Deutscne Forscnungsgemeinscinaft.

I. CHAPTER

MOTIVATION AND HISTORICAL SURVEY

In these notes we study homotopy-associative and homotopy-commutative H-spaces, where the homotopies satisfy "higner coherence conditions", and maps that preserve such structures up to homotopy, and again we require that the homotopies satisfy "higher conerence conditions". For the time being call those H-spaces "structured spaces" and these maps "structured maps". Our aim is to define structures which approximate the structure of a monoid or a commutative monoid and which live in homotopy theory. To make the last remark precise, our structured spaces and maps should satisfy the following statements:

If X is a structured space and $f: X \longrightarrow Y$ a homotopy equivalence, then Y can be structured such that f becomes a structured map.

If $f: X \longrightarrow Y$ is a structured map of structured spaces and g homotopic to f, then g can be structured.

If $\mathrm{f}: \mathrm{X} \longrightarrow \mathrm{Y}$ is a structured map of structured spaces and a homotopy equivalence, then any homotopy inverse can be structured.

We are interested in structures that approximate a monoid structure or the structure of a commutative monoid because a reasonable monoid is of the homotopy type of a loop space and a reasonable commutative monoid of the homotopy type of an infinite loop space. Precise definitions and statements of this remark will follow in this chapter.

We now want to give a short survey of the existing literature on this subject and introduce the main ideas of our approach. Some of the statements of this cnapter will be rather vague and made precise
later on in these notes. In most cases we refrain from giving proofs.
Inroughout these notes we work in the category of k-spaces, i.e. the category of compactly generated spaces (see Appendix I).

1. "DELOOPING" VIA THE CLASSIFYING SPACE CONSTRUCTION

Definition 1.1: An H-space is a topological space X with base point e and a multiplication map $m: X \times X \rightarrow X$ such that e is a homotopy unit, i.e the maps $x \rightarrow m(x, e)$ and $x \rightarrow m(e, x)$ are homotopic to the identity rel(e,e) (Where reasonable we write $x y$ for $m(x, y)$).

If ($X \times X, X \vee X$) has the homotopy extension property, the multiplication map can be deformed to one for which e is a strict unit. Since we are concerned with "homotopy invariant structures" it is more natural to work with homotopy units.

Obviously, the concept of an H-space is a natural generalization of that of a topological group, and since there are many spaces which admit an H-space structure which is not a group structure, e.g. loop spaces, it is worth considering.

Because of the lack of structure, many interesting and important constructions which apply to topological groups cannot be applied to H-spaces. For example, there is no H-space analogue to Milnor's classifying space of a group unless the H-space in question has some additional structure. Such a construction is rather important for algebraic topology, because it implies that any reasonable topological group is of the homotopy type of a loop space, which has further consequences. From the homotopy theoretical point of view, the distinguisning feature is the lack of associativity (and commutativity) rather than the lack of a continuous inverse (see Prop. 1.5 below). So associativity and commutativity, both strict and up to nomotopy, will play a significant role in our development.

A close investigation of Milnor's construction of the classifying
space of a topological group (Milnor [39]) shows that one can do without the existence of a continuous inverse.

Definition 1.2: An H-space with strictly associative multiplication and strict unit is called a monoid.

Proposition 1.3 (Dold-Lashof [16]): If X is a monoid such that right translation is a weak homotopy equivalence, then there is a space $B X$ and a weak homotopy equivalence $X \rightarrow$? $X X$ whicn respects the multiplication up to homotopy.

The condition that rignt translation is a weak homotopy equivalence is necessary. Since $\pi_{0}(\Omega Y)$ is a group for any space Y, the statement can only be true if $\pi_{0}(X)$ is a group. It is easy to see that this implies that rignt translation is even a homotopy equivalence.

Fuchs has modified the Dold-Lashof construction. He obtains a homotopy equivalence and not just a weak one.

Proposition 1.4 (Puchs [22]): If X is a monoid with a nomotopy inverse, then there exists a space $B X$ and a nomotopy equivalence $X \rightarrow \cap B X$.

Proposition 1.3 yields a homotopy equivalence if X is a CW-complex. But in this case, X admits a homotopy inverse, because it is numerably contractible [13; Prop.6.7].

Proposition 1.5 (tom Dieck-Kamps-Puppe [12]): Let Y be a nomotopyassociative H-space such that right translation is a nomotopy equivalence. If Y is numerably contractible then it admits a nomotopy inverse.

We have seen that monoids are closely related to loop spaces. The following result shows that loop spaces are related to topological groups.

Proposition 1.6 (Milnor [39]): If X has the homotopy type of a connected countable CW-complex, then there is a topological group $G(X)$ of the homotopy type of $\Omega \mathrm{X}$.

2. $A_{\infty}-S P A C E S$

The last section showed that monoids may replace the topological groups in homotopy theory. Since the loop space on X is a SDR (= strong deformation retract) of a monoid, namely the Moore-loops on X, we have added a large class of spaces to the class of topological groups. The disadvantage of topological groups and monoids is that they do not live in homotopy theory, i.e. if M is a monoid and $f: M \rightarrow X$ a homotopy equivalence then we cannot expect that X has a monoid structure such that f becomes a nomomorpnism or only a homomorphism up to homotopy.

The "weakest" approxiamtion of a monoid structure which is in homotopy theory is a homotopy-associative H-space structure. Such an H-space is in general far away from being of the homotopy type of a monoid. This motivates to look for richer structures which are better approximations. J. Stasheff solved this problem with inis A_{n}-spaces.

Let us investigate the best nomotopy-invariant approximation, namely a space X of the nomotopy type of a monoid. Then X inherits a nomotopyassociative H-space structure from the monoid via the homotopy equivalences. Let

$$
M_{3}: I \times X^{3} \longrightarrow X
$$

be the canonical associating homotopy (I is the unit interval), and $M_{3}(x, y, z)$ the corresponding path from (xy)z to $x(y z)$. Considering the various ways of associating four factors we obtain five maps from X^{4} to X, each of which is nomotopic to two others by a single application of homotopy associativity. For each quadrupel (x, y, z, w) of elements in X we can construct a loop $S(x, y, z, w)$ in X,

continuous in each variable, and hence a map $S^{1} \times X^{4} \longrightarrow X$. This map can be extended to a map

$$
M_{4}: D^{2} \times X^{4} \longrightarrow X
$$

where D^{2} is a 2-cell with boundary S^{1}. If we take five factors, we can construct a map $S^{2} \times X^{5} \longrightarrow X$ using the multiplication M_{2} and the maps M_{3} and M_{4}. If M_{4} is chosen properly, this maps can be extended to a map

$$
\mathrm{M}_{5}: \mathrm{D}^{3} \times \mathrm{X}^{5} \longrightarrow \mathrm{X}
$$

and so on. We end up with a sequence of maps $M_{n}: D^{n-2} \times X^{n} \rightarrow X$, $n \geq 2$, such that M_{n} extends the map $S^{n-3} \times X^{n} \longrightarrow X$ which is induced by M_{2}, \ldots, M_{1-1}. We can obtain such a sequence of maps for any space of the nomotopy type of a monoid. Later on we shall see that this
 characterization of spaces of the homotopy type of a monoid. To be able to give precise statements, we must know now to obtain the maps $S^{n-3} \times X^{n} \longrightarrow X$ from M_{2}, \ldots, M_{n-1}.

Definition 1.7 (Stasneff [46]): Let K_{i} denote the complex constructed inductivity as follows: $K_{2}=D^{\circ}$, the 0 -cell. Let K_{i} be the cone $C L_{i}$ on I_{i} winich is the union of various copies $\left(K_{r} \times K_{g}\right)_{k}$ of $K_{r} \times K_{s}$,
$x+s=i+1$, corresponding to inserting a pair of parentheses in i
 of copies corresponds to inserting two pairs of parentheses with no overlap or with one as subset of the other.

Examples

One can show [46; Prop. 3] that K_{i} is an (1 - 2)-cell. It will take the place of the ($i-2$)-cell in the definition of an $A_{\infty}-s t r u c t u r e$.

Let $\partial_{l}(r, s): K_{r} \times K_{s} \longrightarrow K_{i}$ denote the inclusion of the copy indexed by $12 \ldots(l l+1 \ldots l+s-1) \ldots i$.

Definition 1.8 (Stasneff [46]): An A_{n}-space ($\left.X ; M_{i}\right\}$) consists of a space X and a collection of maps

$$
M_{i}: K_{i} \times X^{i} \longrightarrow X \quad i=2,3, \ldots, n
$$

such that
(i) M_{2} is a muitipiication with unit
ii) $M_{i}\left(\partial_{l}(r, s)\left(k_{1}, k_{2}\right), x_{1}, \ldots, x_{i}\right)=$
$=M_{r}\left(k_{1}, x_{1}, \ldots, x_{l-1}, M_{s}\left(k_{2}, x_{l}, \ldots, x_{l+s-1}\right), \ldots, x_{i}\right)$ where
$\left(k_{1}, k_{2}\right) \in K_{r} \times K_{s}$.
If M_{i} exists for all $i \geq 2$ and satisfies the conditions (i), (ii), then ($X ;\left\{M_{i}\right\}$) is called an A_{∞}-space.

So an A_{2}-space is an ordinary H-space with strict unit, an $A_{3}-$ space a homotopy-associative H-space with strict unit etc. We are especially interested in A_{∞}-spaces because they turn out to be of the homotopy type of a monoid. Now it is a natural question to ask whether we can do with less than an A_{∞}-structure. Since we know that any space of the nomotopy type of a monoid admits an $A_{\infty}-s t r u c t u r e$, this amounts to asking whether or not an A_{n}-structure extends to an $A_{\infty}-s t r u c t u r e$. Counterexamples were given by Adams [1] and Stssineff [46].

Proposition 1.9 (Adams and Stasheff): If Y is a Moore space of type $(G, 2 p+1)$ where G is an abelian group in which division is possible for all primes q less than the prime p, then Y admits an $A_{p-1}-s t r u c t u r e$ but not an $A_{p}-s t r u c t u r e$.

Stasheff succeeded to generalize the classifying space construction of Dold and Lashof. Using this tool ne could show that any A_{∞}-space is of the homotopy type of a loop space, and hence of a monoid. On the otner hand, it is easy to show that a loop space admits an $A_{\infty}-$ structure. So we obtain

Proposition 1.10 (Stasheff [48]): A connected CW-complex X admits the structure of an A_{∞}-space iff X has the homotopy type of a loop space.

Since Stasheff uses the long exact homotopy sequence of the quasifibration associated with his classifying space construction, he needs the requirement tnat X is a CW-complex. The second disadvantage of his
construction is that he has to use strict units. Building up a monoid with help of the models K_{i}, Adams gave an alternative proof of a stronger result, which makes no use of units.

Proposition 1.11 (Adams, unpublished): If X admits maps $M_{i}: K_{i} X X X X X$ for $i \geq 2$ satisfying 1.8 (ii), then X is a $S D R$ of apace Y with an associative multiplication m such that $m \mid X \times X$ is nomotopic in Y to M_{2}.

Adams original proof is a little tedious. We shall give a simple proof of a stronger version. It turns out that the inclusion map $X \subset Y$ preserves not only the multiplication up to nomotopy but up to homotopy and higher conerence conditions. This leads us to the investigation of maps winich are homomorpinisms up to homotopy and higher coherence conditions.
3. $A_{\infty}-$ MAPS

Definition 1.12: $A \operatorname{map} f: X \longrightarrow Y$ between $A_{n}-\operatorname{spaces}\left(X ;\left\{M_{i}\right\}\right)$ and ($Y ;\left\{N_{i}\right\}$) is called a homomorpinism, if the following diagram commutes for all $i, 2 \leq i \leq n$.

Analogously for nomomorphisms of A_{∞}-spaces.

If we try to define maps between A_{n}-spaces which respect the structure up to homotopy and nigher conerence conditions in the same way as we defined $A_{n}-s t r u c t u r e s, ~ i . e . ~ h o m o t o p y-a s s o c i a t i v e ~ m u l t i p l i c a t i o n s ~$ with higher coherence conditions, the details became more and more complicated with increasing n. For example, respecting an $A_{2}-s t r u c t u r e$
involves a 1-cell

respecting an A_{3}-structure involves a $2-c e l l$ subdivided as a hexagon

respecting an A_{4}-structure involves a 3 -cell whose boundary is subdivided in a complicated way; it contains products of 1-cells H_{2}, 2-celis H_{3} and of copies of the models $\mathrm{K}_{2}, \mathrm{~K}_{3}$ and K_{4}. For a picture see [48;p.53]. So it does not surprise that such maps have not been studied up to now. In fact, maps which respect the structure up to homotopy and higher coherence conditions have been investigated to a larger extend for monoids only, although maps of an A_{n}-space into a monoid are manageable too.

Definition 1.13 (Stasneff [48;p.54]): Let $\left(X ;\left\{M_{i}\right\}\right)$ be an A_{n}-space and Y a monoid. $A \operatorname{map} f: X \longrightarrow Y$ is an $A_{n}-$ map if there exists a family of maps

$$
n_{i}: K_{i+1} \times X^{i} \longrightarrow Y \quad i=1,2, \ldots, n
$$

such that $h_{1}=f$ and

$$
\begin{aligned}
& n_{i}\left(\partial_{l}(r, s)\left(k_{1}, k_{2}\right), x_{1}, \ldots, x_{i}\right)= \\
& = \begin{cases}n_{r}\left(k_{1}, x_{1}, \ldots, x_{l-1}, M_{s}\left(k_{2}, x_{l}, \ldots, x_{l+s-1}\right), \ldots, x_{i}\right) & l<r \\
n_{r-1}\left(k_{1}, x_{1}, \ldots, x_{r-1}\right) n_{s-1}\left(k_{2}, x_{r}, \ldots, x_{i}\right) & l=r\end{cases} \\
& \text { for } r+s=i+2 \text {. }
\end{aligned}
$$

Example: The models of an A_{3}-map f :

If X is a monoid too, its A_{n}-structure is trivial and the face involving $\mathrm{n}_{1}\left(\mathrm{M}_{3}(\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z})\right.$ in the above diagram can be identified to a point so that the model "degenerates" to a cube. In general we get

Definition 1.14: A map $f: X \longrightarrow Y$ between two monoidsis an A_{n}-map if there exists a family of maps

$$
n_{i}: I^{i-1} \times X^{i} \longrightarrow Y \quad i=1,2, \ldots, n
$$

such that $h_{1}=f$ and

$$
\begin{aligned}
& n_{i}\left(t_{1}, \ldots, t_{i-1}, x_{1}, \ldots, x_{i}\right)= \\
& \quad=\left\{\begin{array}{l}
n_{i-1}\left(t_{1}, \ldots, \hat{t}_{j}, \ldots, t_{i-1}, x_{1}, \ldots, x_{j} x_{j+1}, \ldots x_{i}\right) \quad \text { if } t_{j}=0 \\
n_{j}\left(t_{1}, \ldots, t_{j-1}, x_{1}, \ldots, x_{j}\right) n_{i-j}\left(t_{j+1}, \ldots, t_{i}, x_{j+1}, \ldots, x_{i}\right) \text { if } t_{j}=1
\end{array}\right.
\end{aligned}
$$

Example: The models of an A_{3}-map f between monoids:

$$
\begin{gathered}
f(x) f(y z) \\
n_{2}(t, x, y z) \\
n_{1}(x y z) \\
n_{3}\left(t_{1}, t_{2}, x, y, z\right) \\
n_{2}(t, y, z) \\
f(x) f(y) f(z) \\
n_{2}(t, x, y) h_{1}(z)
\end{gathered}
$$

Sugawara [53] was to our knowledge the first to define A_{∞}-maps between monoids winile Stasheff [47] was the first to investigate $A_{n}-m a p s$ between monoids and later [48] between A_{n}-spaces and monoids. They were looking for maps which are no homomorphisms but nevertheless induce maps between the Dold-Lashof ciassifying spaces respectively their n-th approximation. We know that any reasonable $A_{\infty}-s p a c e ~ X ~ h a s ~$ a classifying space $B X$ sucin that X is of the nomotopy-type of $2 B X, i . e$. an A_{∞}-space can be delooped. It seems natural to try the same for $A_{\infty}-$ maps.

Proposition 1.15 (Sugawara [5]]:Let $f: X \longrightarrow Y$ be an A_{∞}-map between monoids. Then f induces maps $f^{\prime}: E(X) \longrightarrow E(Y)$ and $\bar{f}: B(X) \longrightarrow B(Y)$ such that

commutes, where $p(X)$ and $p(Y)$ are the universal quasifibrations of the Dold-Lashof construction.

Stasneff succeeded to proof a similar result for $A_{n}-m a p s$ and the n-the stage of the Dold-Lashof construction.

The most detailed study of $A_{o o}$-maps can be found in an article of Fuchs [21] where the question mentioned above found its complete solution.

Proposition 1.16 (Fucns) : Let connected CW-complexes and nomotopy classes of based maps, and Non n the
 be the Dold-Lashof classifying space functor, and $n: \cos _{h} \longrightarrow \operatorname{DO}_{\mathrm{n}}$ the loop space functor of Moore. Then the following maps are bijective

$$
\begin{aligned}
& \cap B: \operatorname{Mon}_{n}(X, Y) \longrightarrow \operatorname{Ron}_{n}(\cap B X, \cap B Y) \\
& B: \operatorname{Mon}_{n}(X, Y) \longrightarrow \operatorname{ROBS}_{n}(B X, B Y)
\end{aligned}
$$

The first statement in particular shows that $A_{\infty}-m a p s$ can be "delooped". To be precise, let $f: X \longrightarrow Y$ be an A_{∞}-map between monoids and $i(X): X \longrightarrow \Omega B X$ the nomotopy equivalence of Proposition 1.3. Fuchs showed that this map is an A_{∞}-map and that there exists a $\operatorname{map} B f: B X \longrightarrow B Y$ such that the diagram

commutes up to nomotopy.

Althougn the models of an A_{∞}-map are simple tney are still difficult to work with. This became apparent in the following important result of Fuchs.

Proposition 1.17 (Fuchs [21]) : A homotopy equivalence between monoids is an A_{∞}-map iff any inverse is.

In fact, a complete proof of this proposition has never been published, because the details are to messy. So a new approach was necessary, especially if one tried to study A_{∞}-maps between A_{∞}-spaces.

4. A DIFFERENT APPROACH

In this section we want to describe the main points of our constructions whicn will be developed in full generality in the coming chapters. We show how to apply them by giving a simple proof of a stronger version of Proposition 1.11.

There are essentially two ingredients, one coming from categorical aigebra and one from physics. In categorical algebra a monoid structure is not given by an multiplication m : X \times X $\longrightarrow X$ satisfying certain identities, but as foliows:

Definition 1.18: A monoid structure on a space X consists of a family of maps, called operations,

$$
\lambda_{i}: x^{i} \longrightarrow x, \quad i=0,1,2, \ldots
$$

such that
(i) $\lambda_{1}=1_{X}$
(ii) $\lambda_{n} \cdot\left(\lambda_{r_{1}} \times \ldots \times \lambda_{r_{n}}\right)=\lambda_{m}$, where $m=r_{1}+\ldots+r_{n}$

The map λ_{i} corresponds to $\left(x_{1}, \ldots, x_{i}\right) \longrightarrow x_{1} x_{2} \ldots x_{i}$, so that λ_{2} is an associative multiplication with unit $e=\lambda_{0}\left(X^{0}\right)$.

To get a better grip on composites of operations, we consider each λ_{i} as an electrical box with i inputs and one output. (In the general case, we have more than one operation $X^{i} \longrightarrow X$. In this case we label the box by the operation it represents.)

The box representing λ_{0} has no input but an output, A composite operation is obtained by wiring together, e.g. wiring together the operation $\lambda_{2}: X^{2} \longrightarrow X$ and $\lambda_{2} \times \lambda_{3}: X^{5} \longrightarrow X^{2}$ we obtain

So a composite operation is represented by a certain kind of directed planar tree. The edges need not have vertices on both ends; the inputs have no beginning vertex, we call them twigs, the output, called root, has no end vertex. Edges with vertices on both ends are called internal. We call the box representing λ_{0} a stump, and to be able to cope with occuring relations, we introduce the trivial tree which has no vertex

and represents the identity operation $X \longrightarrow X$.
To compute the value of a composite operation represented by a tree with n twigs on an n-tuple $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ we proceed inductively by labelling each edge with a point in X starting with x_{1}, \ldots, x_{n} for the n twigs. At each vertex with k inputs, we apply λ_{k} to the values of the inputs to obtain the label of the output. The value of the composite operation is given by the label of the root.

Examples:

The relations 1.18 (i) and (ii) expressed in tree form read

and each tree with n twigs represents tine same operation as

n twigs

Now let X be of the homotopy type of a monoid. We want to find the collection of operations which are induced by the monoid structure under the nomotopy equivalence, i.e. we look for a sort of $A_{\infty}-s t r u c t u r e$. Combining the operations λ_{i} of the monoid with the homotopy equivalence and its inverse, we obtain operations which we denote for simplicity reasons by λ_{i} too. The only difference is that the relations 1.18 (ii) nold up to nomotopy only (nere we assume that λ_{1} is chosen to be the identity). The trees enable us to give a reasonable description of these homotopies. Before we consider the general situation, let us illustrate what we want to do by an example. We know that the induced multiplication on X is nomotopy associative. Disregarding the stumps, there are three trees with three twigs, namely

(the direction of the edges is given by gravity). We see the outer trees represent the two different ways of multiplying three elements. Instead of joining the left composite operation directly to the rignt one and thus obtaining the associating homotopy we join each of them to the middle tree. We do tnat by giving the internal edges a "length" between 0 and 1 and allow edges of length O to be sinrunk away, i.e. the two vertices of the outer trees are identified to give the midda tree if the internal edge has length 0 .

Definition 1.19: We define the space Wथ' $n, 1$). A point of this space is a tree with n twigs together with a function assigning to each internal edge a real number $t, 0 \leq t \leq 1$, called its length, subject to the relations
(a) Any edge of length 0 may be shrunk away by removing it and amalgamating its two end vertices to form a new vertex;
(b) Any vertex with only one input may be removed. We give the resulting edge the length $t_{1} * t_{2}=t_{1}+t_{2}-t_{1} t_{2}$, where t_{1} and t_{2} are the lengths of the edges above and below this vertex. (Here we assume that the root and the twigs have the fictive length 1.)

Pictorially, the relations are
(a)

$=$

(b)

Each point in $W थ(n, 1)$ is represented by a pair (τ, x) where T is a tree with n twigs and x a point in a k-cube $C(T)$ where k is the number of internal edges of τ. We give $W \boldsymbol{W}(n, 1)$ the obvious quotient topology from the disjoint union of the cubes $C(\tau)$.

The associating homotopy is therefore given by two 1-cubes $C\left(T_{1}\right)$ and $C\left(\tau_{2}\right)$ where τ_{1} and τ_{2} are the two outside trees of the previous example. These two cubes nave common lower faces which are identified with the 0 -cube $C\left(\tau_{3}\right)$ where $\uparrow ;$ is the middle tree of the previous example.

Let us give a pictorial description of what we mean by a w-structure on a space, a different and, may be, clearer definition wili be given in the next chapter.

Definition 1.20: A cherry tree on a space X is a tree (with lengtins) in some space $W \mathfrak{W}(n, 1)$ to each twig of winich is assigned a point of X, which we call a cherry, that is, a cherry tree is a point of some space $W \because(n, 1) \times X^{n}$.

Examples:

(i)

(ii)

Definiton 1.21: A W2-structure on a space X is a continuous map

$$
P: \bigcup_{n=0}^{\infty} \text { Wथ }(n, 1) \times x^{n} \longrightarrow x
$$

from the space of all cherry trees on X to the space X, subject to two conditions,
(c) we can cut down fuliy grown cherry trees without affecting their values;
(d) the value of the trivial cherry tree with cherry x is x (see Expl. (ii)).

Relation (c) demands some explanation: We say a cherry tree is fully grown, if some internal edge has length 1 . To cut it down we replace the subcherry tree sitting on that edge by its value under F, regarded as a cherry in X and the cut branch becomes a twig.

Example:

We now want to connect our definition of a w-space, i.e. a space with a Wथ-structure, with Stasheff's definition of an $A_{\infty}-s p a c e$. We nave pointed out in the beginning of Section 1 that we work with homotopy units ratner than strict ones. They are represented by stumps, because we have a 1-cube

Therefore we can compare the two definitions only if we disregard stumps and units. In this case Stasheff's definition reduces to those structures to which Proposition 1.11 appiies. We leave it to the reader to check that such a structure coincides with a w -structure if we disregard stumps. Let us make this statement precise.

Proposition 1.22: Let $S(n, 1)$ be the subspace of $W \cdot(n, 1)$ of all trees which do not nave stumps. Then the following are equivalent.
(i) There exists a continuous map
$F: \bigcup_{n=0}^{\infty} S थ(n, 1) \times x^{n} \longrightarrow X$
satisfying 1.21 (c) and (d).
(ii) There exist maps $M_{n}: K_{n} \times X^{n} \longrightarrow X$ for $n \geq 0$ satisfying 1.8 (ii).

In fact, one can show that $S\left\{(n, 1)\right.$ is just a subdivided copy of K_{n}, and relation $1.21(\mathrm{c})$ corresponds to $1.8(\mathrm{ii})$.

Example: $S थ(4,1)$ is K_{4} subdivided into five 2-cubes

Before we give a proof of Proposition 1.11, let us illustrate how to define A_{∞}-maps with the aid of trees. We then can formulate Proposition 1.11 in its full strength.

At this stage it would lead too far to define A_{∞}-maps between A_{∞} spaces, or better w-spaces. This will be done in one of the coming chapters. Let us be content with the definition of an A_{∞}-map from a Wu-space to a monoid.

Let $f: X \longrightarrow Y$ be a map from a Wथ-space to a monoid. In order to fit f into our tree description, we consider it as an electrical box with one input and one output

Is x the value of the input, then the value of the output is $f(x)$. We compose this electrical box with the trees of the operations in X and Y as before by wiring together. To be able to decide where the operation takes place, in X or in Y, we give each edge a name X or Y, which we later call the colour of the edge. Because of the relations of a monoid structure, we nave exactly one operation $Y^{n} \longrightarrow Y$ for any n. We make use of this in the definition of the models Ma($n, 1$) for such an A_{∞}-map.

Definition 1.23: A point of $M \mu(n, 1)$ is a tree with n twigs, the root has the name Y while all other edges have the name X. (So the trivial tree does not occur any more because a twig nas name X while a root has name Y.) The internal edges have a length as before and the relations $1.19(a)$ and (b) are the same with the exception that $1.19(b)$ may be applied only of input and output have the name $X, i . e$.

$$
\psi \neq\left\{\begin{array}{l}
X \\
Y
\end{array} \neq \quad \begin{array}{l}
Y
\end{array} \quad\right. \text { (the trivial tree does not occur) }
$$

The topology is defined in a similar manner as in 1.19. A planted cherry tree on (X, Y) is a tree in some space $M थ(n, 1)$ winich has a point of X assigned to each twig.

Definition 1.24: Let X be a Wथ-space whose structure is given by $F: U_{n} W थ(n, 1) \times X^{n} \longrightarrow X$ and Y be a monoid. A wथ-structure on a map $f: X \longrightarrow Y$ is a continuous map

$$
G: \bigcup_{n=0}^{\infty} M \mathscr{i}(n, 1) \times X^{n} \longrightarrow Y
$$

from the space of all planted cherry trees on (X, Y) to Y such that
(c*) we can cut down fully grown trees without affecting their values under G.

Again an explanation of relation (c^{*}) : To cut down a fully grown tree we replace the subtree sitting on an internal edge of length 1 by its value under P, regarded as a cherry in X. The cut branch becomes a twig. (Note that all edges of the subtree nave name X.)

Example:

G

If we want to put our definition in relation to the one of Stasheff, we again run into the trouble that we have nomotopy units instead of the strict units of Stasheff's structures. So to make precise statements, we nave to neglect units. Let $\operatorname{SMM}(n, 1)$ be the subspace of $M \mathscr{M}(n, 1)$ consisting of the trees without stumps. We leave it to the reader to check the following result.

Proposition 1.25: Let X be an \mathbb{S} - space (see 1.22) and hence an A_{∞} space with the exception that $M_{2}: X^{2} \longrightarrow X$ need not have a unit. Let $f: X \longrightarrow Y$ be a map from X to a space Y with an associative multiplication. Then f admits the structure of an A_{∞}-map (see 1.13) iff it admits an SMI-structure.

Example: The model $\operatorname{SM}(3,1)$

We now can formulate and prove a stronger version of Proposition 1.11.

Theorem 1.26: Any SA-space X can be embedded as a $S D R$ in a universal space UX with an associative multiplication. The inclusion i $: X \in U X$ admits an $S M-s t r u c t u r e$ with following universal property: Given a space Y with an associative multiplication and an SMA-map $f: X \longrightarrow Y$, then there exists a unique homomorphism $h: U X \longrightarrow Y$ such that $h \circ i=f$ as SM』-maps. (The SMA-structure of $h \circ i$ is the obvious one.)

There is a similar result involving structures with homotopy units.

Theorem 1.27: For any wat-space X there exists a monoid MX containing X as $S D R$. The inclusion $i: X \subset M X$ admits a watructure with following universal property: If $g: X \longrightarrow Y$ is a Wh-map into a monoid Y, then there exists a unique homomorphism $h: M X \longrightarrow Y$ such that $\operatorname{noi}=g$ as Wथ-maps, where hoi has the obvious wer-structure from i.

Since the proof of Theorem 1.26 is essentially the same as the one of Theorem 1.27 we only prove the latter.

Proof of 1.27: The monoid MX is obtained from the space $\bigcup_{n=0}^{\infty} \operatorname{Ma}(n, 1) \times x^{n}$ by factoring out the relation $1.24\left(c^{*}\right)$, i.e. a fully grown planted cherry tree is equivalent to the cut down one. The monoid structure on MX is given by grafting the ground vertices of two representatives of elements of MX together to form a new ground vertex

This is clearly associative, and the stump

$$
\mid Y
$$

serves as unit. So $M X$ is a monoid. We define the inclusion $i: X \rightarrow M X$
by

$$
i(x)=\left\{_{X}^{X}\right.
$$

and the quotient map $G: \bigcup_{n=0}^{\infty} M \mu(n, 1) \times X^{n} \longrightarrow M X$ endows i with a We-structure. The deforming homotopy $H_{t}: M X \longrightarrow$ MX is given by

For $t=0$, we can shrink away the additionaiedge of the right hand side tree, hence H_{0} is the identity. At $t=1$, we can cut down completely to obtain a tree representing an element in $i(x)$. Because of relation 1.19(b), the homotopy H_{t} leaves $i(X)$ pointwise fixed.

We have pointed out at the end of previous section that A_{∞}-maps are difficult to handle even if the spaces involved are monoids. Our modeis are a little more complicated than the cubes in the definition of Sugawara. So, a priori, there is no reason to assume that our approach makes life easier. Nevertheless, this is the case because our Wa-structures are universal in some sense which we do not want to elaborate on at this stage. Let us say so much as that it of ten is possible to replace a naturally occuring structure on a space by a Wu-structure because of this universality.

5. SOME REMARKS ON COMMUTATIVITY

So far we have investigated spaces of the homotopy type of a monoid. and nence of a loop space. We are interested in a more general question; we want to find conditions on the H-space structure of a space X under which X is of the homotopy type of an n-fold loop space.

An interesting special part of this question is to find conditions under which a space is an infinite loop space.

Definition 1.28: A space X is called an infinite loops space if there exist spaces $X_{n}, n=0,1,2, \ldots$ such that $X_{o}=X$ and $X_{n}=n X_{n+1}$.

Milgram [37] showed that any reasonable commutative monoid is an infinite loop space.

Propsition 1.29 (Milgram): A commutative monoid X is of the weak nomotopy type of an n-fold loop space $n^{n}(Y)$ for $n=1,2,3, \ldots$. Moreover, there is an H-structure on $\cap^{n}(Y)$ such that the weak homotopy equivalence preserves the multiplication up to homotopy.

As in the associative case, the structure of a commutative monoid is a bad one from the view point of homotopy theory for the same reasons as there. So one is interested in structures wich are not quite commutative and which live in homotopy theory. For example, we could search for the weakest structure on a space X such that X is a double loop space. Attempts on this line nave been made by Sugawara[53]. He looked for conditions on a space X such that X has a classifying space which is an H-space. This is somewhat different from our question because we want the classifying space to be a loop space.

Definition 1.30 (Sugawara): A monoid X with unit e is called strongly nomotopy-commutative if there exist maps

$$
C_{n}:\left(I^{n} \times X^{2 n}, I^{n} \times e^{2 n}\right) \longrightarrow(X, e) \quad n=1,2,3, \ldots
$$

such that

$$
C_{1}(0, x, y)=x y \quad C_{1}(1, x, y)=y x
$$

and

$$
\begin{aligned}
& c_{n}\left(t_{1}, \ldots, t_{n}, x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \\
& x_{1} C_{n-1}\left(t_{2}, \ldots, t_{n}, x_{2}, \ldots, x_{n}, y_{1} y_{2}, \ldots, y_{n}\right) \quad t_{1}=0 \\
& c_{n-1}\left(t_{1}, \ldots, t_{i}, \ldots, t_{n}, x_{1}, \ldots, x_{i-1} x_{i}, \ldots, x_{n}, y_{1}, \ldots\right. \text {, } \\
& \left.y_{i} y_{i+1}, \ldots, y_{n}\right) \quad t_{i}=0,1<i<n \\
& c_{n-1}\left(t_{1}, \ldots, t_{n-1}, x_{1}, \ldots, x_{n-1} x_{n}, y_{1}, \ldots, y_{n-1}\right) y_{n} \quad t_{n}=0 \\
& c_{i-1}\left(t_{1}, \ldots, t_{i-1}, x_{1}, \ldots, x_{i-1}, y_{1}, \ldots, y_{i-1}\right) \\
& y_{i} x_{i} C_{n-i}\left(t_{i+1}, \ldots, t_{n}, x_{i+1}, \ldots, x_{n}, y_{i+1}, y_{n}\right) t_{i}=1 \\
& \text { Examples: } \\
& c_{1}(t, x, y)
\end{aligned}
$$

Proposition 1.31 (Sugawara): (a) The loop space $\Omega \mathrm{X}$ of a countable CWcomplex X is strongly homotopy-commutative iff X is an H-space. (b) The Milnor-classifying space of a countable CW-group G is an $H-$ space iff G is strongly homotopy-commutative.

We see that Sugawara requires that the H-spaces are at least associative besides being strongly nomotopy-commutative. This is a condition which does not do for us. To find what we think is the correct structure to work with we again use our tree language, but we have to make some changes. For the definition of a wistructure we took the operations of a monoid structure and replace the relations by homotopies. If we try to do the same for a commutative monoid we cannot restrict our attention to the operations

$$
\lambda_{n}:\left(x_{1}, \ldots, x_{n}\right) \longrightarrow x_{1}+\ldots+x_{n}
$$

because permutations come in in the definition of commutativity wich
reads

commutes, where T interchanges the factors. So we nave to add permutations as operations to our trees and we must impose an additionai relation. The details of this more general construction will be given in the next two chapters.

TOPOLOGICAL-ALGEBRAIC THEORIES

In tins cnapter we introduce the notions from categorical algebra we need. For the sake of topologists our proofs are less formal than a category theorist would like them to be. So we construct adjoint functors explicitly and are even willing to use elements instead of restricting ourselves to formal concepts. Our treatment of categorical algebra is broader than absolutely necessary for the understanding of the following chapters. We wanted to give a self-contained exposition of categorical algebra involving more tnan just one underlying object. Bénabou [4] nas investigated such algebras in the category of sets; we work with topological spaces as underlying objects. Readers who are only interested in the topological aspect of these notes can skip over most of this cnapter. It suifices to read section 1 , the proof of Proposition 2.5 , sections 3,5 , and 6 . We want to remind that we work in the category of compactly generated spaces, wnicn we denote by Fop.

1. DEFINITIONS

Lawvere [25] has formalized the concept of an algebraic theory given by operations and laws witnout existential quantifiers. As examples we have the theories of monoids, groups, rings etc. (whose axioms can be put into the required form), but not the theory of fields. He considers the category of all operations that can be written down in the theory, instead of selecting certain operations that generate the rest.

Each theory contains a distinguisned collection of operations，the set operations：Let

$$
\sigma:\{1,2, \ldots, m\} \longrightarrow\{1,2, \ldots, n\}
$$

be a function and X a topological space．Then there is an operation

$$
\begin{equation*}
\sigma^{*}: X^{n} \rightarrow X^{m} \tag{2.1}
\end{equation*}
$$

given by $\sigma^{*}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{\sigma 1}, \ldots, x_{\sigma m}\right)$ ．Let \mathcal{E} be the category consist－ ing of one finite set n for eacn cardinal n less than infinity and all functions between them．

Definition 2．2：A（finitary）algebraic tineory is a category with ob－ jects $0,1,2, \ldots$ together with a faithful functor $5^{0 p} \rightarrow 0$ preserving objects and products．Call topological－algebraic if eacin set $0(m, n)$ is topologized and if composition and products are continuous（tine lat－ ter means that $\Theta(m, n) \geqslant(m, 1)^{n}$ is a nomeomorpnism）．
A－space is a continuous functor \rightarrow Iop，sucn trat $5^{\circ p} \rightarrow$ Iop preserves products，the image of 1 is called the underlying space． A nomomorpinism between－spaces is a natural transformation between sucin functors．

If ${ }^{(1)}$ and θ_{2} are theories，a theory functor is a continuous functor $\otimes_{1} \rightarrow \otimes_{2}$ sucn that the following diagram commutes

The results of sections $2,3,4$ stay true if we omit tine condition that $5^{\circ p} \rightarrow$ be faithrul（i．e．monic on morpnism sets），but in view of the definition of a－space the case where $5^{\circ} \rightarrow$ is faithful is the only interesting one．

The image of $5^{\circ P}$ in consists of all set operations as described in（2．1）．We call the elements of $0(m, 1)$ tine m－ary operations of $⿴ 囗 十 ⺝ 刂$ ． In abuse of language we often identify a Θ－space with its underlying
space X and say " X admits a ${ }^{(6) s t r u c t u r e " ~ o r ~ " © ~ a c t s ~ o n ~} X$ " or " X is a (e)-space".

Essentially for tine study of maps we need a generalization, namely tineories on several objects. Let K be a set and \mathcal{S}_{K} the category \mathcal{S} over K, whose objects are functions $\underset{i}{ }:[n]=\{1, \ldots, n\} \longrightarrow K$ and whose morpnisms from $\underset{\text { i }}{ }$ to \dot{i} are all functions f making

commute. We often use an alternative description of \mathcal{S}_{K} : Its objects are ordered collections $\left\{k_{1}, \ldots, k_{n}\right\}$ of elements of K and its morphisms are functions $f:\left\{k_{1}, \ldots, k_{n}\right\} \longrightarrow\left\{k_{1}^{\prime}, \ldots, k_{m}^{\prime}\right\}$ such that $f^{-1}\left(k_{r}^{\prime}\right)$ is eitner empty or consists only of elements equal to k_{r}^{\prime}. An object $\underline{i}:[1] \rightarrow K$ is often denoted by its image $k=i(1)$. We call such an object basic. A function $r: K \rightarrow I$ induces a $r_{*}: s_{K}^{o p} \rightarrow S_{L}^{o p}$ given by $r_{*}(\underline{i})=r \cdot \underline{i}$ and $r_{*}(f:[n] \rightarrow[m])=f$.

Definition 2.3: A (finitary) K-coloured algebraic theory is a category (7) with the same objects as \mathcal{E}_{K} togetner with a faitiful functor $\mathcal{S}_{\mathrm{K}}^{\mathrm{op}} \rightarrow$ preserving objects and products. Call Θ topological-algebraic if each set $\Theta(\underline{i}, \underline{j})$ is topologized and if composition and products are continuous (the latter means $\Theta(\underline{i}, \underline{j}) \cong \Theta(\underline{i}, \underline{j}(1)) \times \ldots \times(\underline{i}, \underline{j}(m))$ is a nomeomorphism).
$A \Theta$-space is a continuous functor $\Theta \longrightarrow$ Iop such that $S_{K}^{O p} \rightarrow \Theta \longrightarrow$ Iop preserves products; the images of the basic objects form the collection of its underlying spaces; we nave one for eacn $k \in K$.

A nomomorpnism between Θ-spaces is a natural transformation between sucin functors.

A theory iunctor from a K-coloured theory \otimes_{1} to an L-coloured theory \oplus_{2} is a continuous functor $F: \Theta_{1} \rightarrow \Theta_{2}$ togetner witn a function $\mathrm{f}: \mathrm{K} \longrightarrow \mathrm{L}$ sucn triat

commutes.

Remark: Among category tneorists a coloured theory is better known by the name "sorted theory".

The image of $\Theta_{K}^{O p}$ in Θ induces on a Θ-space operations given again by formula (2.1). We tnerefore call its elements set operations.

If we do not specify the function $f: K \longrightarrow L$ of a tneory functor, we assume that it is the identity.

In any type of theory the set operations nave the useful property that we can pusin them to the rignt. Given $\sigma \in \mathcal{S}_{K}(\underline{i}, \dot{j})$ with $\underset{i}{ }:[m] \rightarrow K$, $\underline{j}:[n] \rightarrow K$ and $a=\left(a_{1}, \ldots, a_{n}\right) \in \Theta(\underline{k}, \underline{j})$ witn $a_{r} \in \Theta(\underline{k}, \underline{j}(r))$ and $b_{r} \in \Theta\left(\underline{k}_{r}, \underline{j}(r)\right), k_{r}:\left[p_{r}\right] \rightarrow K$. Denoting the product bifunctor (1) $x \Theta \rightarrow$ by \oplus we have the following formulae

$$
\begin{align*}
& \sigma^{*} \cdot a=\left(a_{\sigma 1}, \ldots, a_{\sigma m}\right) \tag{2.4}\\
& \sigma^{*} \cdot\left(b_{1} \oplus \ldots \oplus b_{n}\right)=\left(b_{\sigma 1} \oplus \ldots \oplus b_{\sigma m}\right) \cdot \sigma\left(p_{1}, \ldots, p_{n}\right)^{*}
\end{align*}
$$

Here $\sigma\left(p_{1}, \ldots, p_{n}\right) \in \mathcal{S}_{K}\left(U_{i} \underline{k}_{\sigma i}, U_{i} k_{i}\right)$ is given by $\sigma\left(p_{1}, \ldots, p_{n}\right)(r)=p_{1}+p_{2}+\ldots+p_{\sigma}(u)-1+v$
if $r=p_{\sigma 1}+\ldots+p_{\sigma(u-1)}+v$ and $0<v \leq p_{\sigma(u)}$. Loosely speaking, we consider $\Sigma p_{\sigma i}$ as m blocks of $p_{\sigma 1}, \ldots, p_{\sigma m}$ elements and Σp_{i} as n blocks of p_{1}, \ldots, p_{n} elements, and $\sigma\left(p_{1}, \ldots, p_{n}\right)$ maps the $u-t h$ block $p_{\sigma u}$ of $\Sigma p_{\sigma i}$ identically onto the $\sigma(u)$-th block $p_{\sigma u}$ of Σp_{i}. We call $\sigma\left(p_{1}, \ldots, p_{n}\right)$ a block function. Note that $\sigma\left(p_{1}, \ldots, p_{n}\right)$ is a permutation whenever σ is one.

2. FREE THEORTES

In this section we show how to obtain a theory from a set of operations and relations between them.

Define categories sbeories, or spaces, or spaces ${ }^{\circ}$, and sa spaces as follows:

Zheortes is the category of coloured theories and theory functors. or spaces has (ob $\mathcal{S}_{K} \times K$)-graded spaces $\left\{X_{\underline{i}, k}\right\}$, K some set, as objects. A morpnism from an (ob $\sigma_{K} \times K$)-graded space $\left\{X_{\underline{i}, k}\right\}$ to an (ob $\sigma_{I} \times L$)graded space $\left\{Y_{\underline{j}, \ell}\right\}$ is a pair (g, f) where $f: K \longrightarrow L$ is a function and $g:\left\{X_{i, k}\right\} \longrightarrow\left\{Y_{i}, l\right\}$ a continuous graded map sending $X_{i, k}$ to $Y_{f \bullet}, \underline{i}(k) \cdot$
or spaces ${ }^{\circ}$ has ($o b \epsilon_{K} \times K$)-graded spaces ($X_{\underline{i}, K}$) as objects but each $X_{k, k}, k \in K$, is based (recall that $k \in o b ~_{K}$ is the basic object determined by k). The morpisms are defined as for or spaces but are supposed to preserve base points.
Eq spaces is the category of objects in or spaces ${ }^{\circ}$ with an 5_{K}-action and equivariant morpnisms in or aces ${ }^{\circ}$. An \mathcal{S}_{K}-action on an (ob $\mathcal{S}_{\mathrm{K}} \times \mathrm{K}$)graded space $\left\{X_{i}, k\right\}$ is a colloection of maps

$$
a_{\underline{i}, \underline{i}}: X_{\underline{i}, k} \times \sigma_{K}(\underline{i}, \underline{j}) \longrightarrow X_{\underline{i}, k}
$$

such that $a_{\underline{i}, \underline{i}}\left(x, i d_{\underline{i}}\right)=x$ and the following diagram commutes

A morphism (g, f) from an \mathcal{S}_{K}-space $\left\{X_{\underline{i}, k}\right\}$ to an \mathcal{E}_{L}-space $\left\{X_{\underline{p},}\right\}$ in Or paces ${ }^{\circ}$ is called equivariant if
commutes.
We call tine (ob $\mathcal{S}_{K} \times K$)-graded spaces of tine last tnree categories its K-coloured objects.

We also use a more conceptual definition of the last three categories: Let $\overrightarrow{D S_{K}}$ be the subcategory of \mathcal{S}_{K} consisting of all objects and the identity morphisms. An object of so saces can be considered as a K-indexed collection of functors $R_{k}: B S_{K} \rightarrow$ Iop. A morphism from $\left\{R_{k} \mid k \in K\right\}$ to $\left\{Q_{\ell} \mid l \in L\right\}$ is a pair (α, f) consisting of a function $f: K \longrightarrow I$ and a K-indexed collection α of natural transformations $\alpha_{k}: R_{k} \rightarrow Q_{f(k)}{ }^{\circ} f_{*}:$

Or space ${ }^{\circ}$ cen be defined similarly with the exception that we nave to introduce a base point e_{k} in $R_{k}(k)$ and tinat α_{k} nas to preserve tinis base point. Finally, an object of sqaces can be considered as a Kindexed collection of functors $R_{k}: \mathcal{S}_{K} \rightarrow$ Iop such that $R_{k}(k)$ is based. A morpnism from $\left\{R_{k} \mid k \in K\right\}$ to $\left\{Q_{l} \mid l \in L\right\}$ consists of a function $f: K \rightarrow I$ and a collection α of base point preserving natural transformations α_{k}

We have forgetful functors
Igeories $\xrightarrow{U_{1}}$ sq spaces $\xrightarrow{\mathrm{U}_{2}}$ (3r spaces ${ }^{\circ} \xrightarrow{\mathrm{U}_{3}}$ or paces
where U_{2} and U_{3} are the obvious ones while $U_{1} \Theta=\left\{R_{k} \mid k \in K\right\}$, @ ${ }^{@} K-$ coloured theory, is given by $R_{k}(\underline{i})=\Theta(\underline{i}, k)$ and $R_{k}(\sigma)$ is composition on tine right by σ^{*}. The base points are $i d_{k} \in \Theta(k, k)$.

Proposition 2.5: Each functor J_{i} nas a left adjoint F_{i}.

Proof: F_{3} is given by adjoining an extra point wnicn becomes the base point to each space $X_{k, k}$ of $\left(X_{\underline{i}, k}\right)$.

Let $(\alpha, f):\left\{R_{k} \mid k \in K\right\} \rightarrow\left\{Q_{\imath} \mid l \in L\right\}$ be a morphism in or paces ${ }^{\circ}$. Define

$$
F_{2}\left\{R_{k} \mid k \in K\right\}=\left\{\bigcup_{j \in S_{K}} R_{k}(j) \times \sigma_{K}(j,-) \mid k \in K\right\}
$$

and $F_{2}(\alpha, f)=(\beta, f)$ with U

Since $R_{k}(k) \times \mathcal{E}_{K}(k, k) \cong R_{k}(k)$, we can take the base points of the $R_{k}(k)$ as base points of $F_{2}\left\{R_{k} \mid k \in K\right\}$.

The construction of F_{1} is more lengtiny, though straigntforward. For a K-coloured object $\left\{X_{\underline{i}, k}\right\}$ of eq paces we want to construct a Kcoloured theory $@=F_{1}\left\{X_{\underline{i}}, k\right\}$. We consider the points of $X_{\underline{i}, k}$ as the indecomposable operations from i to k. A general operation is acomposite of products (formally written \oplus) of such indecomposable operations. The set operations of © stand, of course, in some relation to the \mathscr{S}_{K}-action on $\left\{X_{\underline{i}, k}\right\}$. More explicitly, a letter from $\underset{\underline{i}}{ }$ to $\underline{j}=\{\mathfrak{j}(1), \ldots, j(p)\}$ is either a formal product $x_{1} \oplus \ldots \oplus x_{p}$ with $x_{q} \in X_{\underline{i}_{q}, \dot{i}}(q), \underline{i}=\underline{i}_{1} \oplus \ldots \oplus \dot{\underline{i}}_{p}$, or an element $\sigma^{*} \in \sigma_{K}^{o p}(\underline{i}, \underline{i})$. A morpinism in from i to j is an equivalence class of words $\left[a_{1}|\ldots| a_{n}\right]$ in letters a_{i} such that source $a_{i}=$ target a_{i+1}, source $a_{n}=\underline{i}$, target $a_{1}=\dot{j}$. The equivalence relation is generated by
(i) $[{\underset{i d}{\underline{i}}}]=[\quad]=\left[e_{\underline{i}(1)} \oplus \ldots \oplus e_{\underline{i}(n)}\right]$, where $\underline{\underline{i}}:[n] \longrightarrow K$ in \boldsymbol{S}_{K} and $e_{k} \in X_{k, k}$ the base point $\left[x \oplus e_{1} \mid e_{2} \oplus y\right]=\left[e_{2}^{\prime} \oplus y \mid x \oplus e_{1}^{\prime}\right]=[x \oplus y]$ for appropriate formal products x and y and formal products $e_{1}, e_{2}, e_{1}^{\prime}, e_{2}^{\prime}$ of base points
(iii) $\left[\sigma^{*} \mid x_{1} \oplus \ldots \oplus x_{n}\right]=\left[x_{\sigma 1} \oplus \ldots \oplus x_{\sigma m} \mid \sigma\left(p_{1}, \ldots, p_{n}\right)^{*}\right]$ for $\sigma^{*} \in \operatorname{mor} \epsilon_{R}^{\circ p}$, $\mathrm{x}_{\mathrm{r}} \in \mathrm{X}_{\underline{i}_{r}}, \mathrm{k}_{\mathrm{r}}, \underline{\underline{i}}_{r}:\left[\mathrm{p}_{\mathrm{r}}\right] \rightarrow \mathrm{K}$ (compare 2.4)
(iv) $\left[\sigma^{*} \mid \pi^{*}\right]=\left[(\pi \circ \sigma)^{*}\right]$
(v) $[x \cdot \sigma]=\left[x \mid \sigma^{*}\right]$ where $x \cdot \sigma$ is the image of (x, σ) under the ${ }^{5} K^{-}$ action on $\left\{X_{\underline{i}, k}\right\}$.
Composition of morpnisms is induced by juxtaposition of words. Relation (i) makes the base points to units, relation (ii) allows us to define a bifunctor \oplus, (i), (iii), and (iv) assure that tine set operations benave correctly, and (v) makes tnem compatible with the $\varsigma_{K}{ }^{-}$ action on $\left\{X_{\underline{i}, k}\right\}$.

For later purposes we want to nave a better grip on the morphisms of Θ. We now give an alternative description of representatives using the tree language developed in Cnapter I. Tnis enables us to do without the relations (ii), (iii), and (iv).

Definition 2.6: A tree from $j:[n] \rightarrow K$ to the basic object k associated witn $\left\{X_{\underline{i}, k}\right\}$ consists of
(a) a finite directed planar tree as known from grapn theory except that the edges need not have vertices on botn ends. Tnere is exactly one edge called the root winicn nas no end vertex, but there may be arbitrarily many edges called twigs with no beginning vertex; all otiner edges are called internal. Eacn vertex nas exactly one outgoing edge (thougn not necessarily an incoming one).
(b) a function assigning to each edge an element of K called its colour. The colours of the twigs are elements from $\underset{i}{ }([n]) \subset K$, the colour of the root is k. This function togetner with the underlying grapn is called the shape of the tree.
(c) a function assigning to eacn vertex, whose incoming edges nave the colours i_{1}, \ldots, i_{n} in clockwise order and whose outgoing edge has the colour l, a point in $X_{i, l}$ called its label, winere $\underset{i}{ }=\left\{i_{1}, \ldots, i_{n}\right\}$. (d) a function assigning to eacn twig a label $\in\{1, \ldots, n\}$ sucn that a twig with label r has the colour $j(r)$.

We allow trivial trees whose underlying grapns consist of one edge
and no vertex. Hence we have one trivial tree from \dot{j} to k for each label $r \in\{1, \ldots, n\}$ with $\underset{j}{ }(r)=k$. A tree consisting of one vertex with no incoming edge is called a stump.

A tree of a given snape is specified by its vertex labels and twig labels and can therefore be considered as a point in some product space $\left(\Pi_{X_{\underline{i}}, l}\right) \times s_{K}(\underline{k}, \underline{j})$ where $\underline{k}=\left\{k_{1}, \ldots, k_{r}\right\}$ is the collection of twig colours taken in clockwise order. The disjoint union of these product spaces defines a topology on the set of all trees from i to k associated with $\left\{X_{\underline{i}, \mathrm{x}}\right\}$.

As in the previous chapter the trees are inspired by the attempt to obtain a general composite operation from a collection of indecomposable operations. Starting with a K-indexed family of topological spaces Z_{k} and topologized collections $X_{i, l}$ of operations $a: Z_{\underline{i}(1)} \times \ldots \times Z_{\underline{i}(r)} \longrightarrow Z_{i}$, a tree from $i=\left\{k_{1}, \ldots, k_{n}\right\}$ to k represents a composite of sucn operations, composed with a set operation. Its source is $Z_{k_{1}} \times \ldots \times Z_{k_{n}}$, its target Z_{k}. The value of this composite on an element $\left(z_{1}, \ldots, z_{n}\right)$ of the source can be computed as follows: We assign to each twig with label $r \in\{1, \ldots, n\}$ the value z_{r}. Inductively we give the outgoing edge of a vertex with label a the value $a\left(y_{1}, \ldots, y_{m}\right)$ if the values of the incoming edges are y_{1}, \ldots, y_{m} in clockwise order. The value of the root is the value of the tree operation on $\left(z_{1}, \ldots, z_{n}\right)$.

Example: (The direction of the graph will always be given by "gravity", i.e. from top to bottom). Let $K=\{X, Y\}$. Given operations a $: X X Y \rightarrow Y$ and $b: X \times X \longrightarrow X$, the tree

represents the operation $c: X X Y X X \longrightarrow Y$ given by $d\left(x_{1}, y, x_{2}\right)=a\left(a\left(x_{1}, y\right), b\left(x_{1}, x_{2}\right)\right)$.

While θ tree represents an operation into a single space, i.e. its target is a basic object, a general operation is represented by a copse:

Definition 2.7: A copse with source $\underline{i}:[n] \rightarrow K$ and target $\underset{\underline{j}}{ }:[m] \rightarrow K$, associated with $\left\{X_{\underline{i}, k}\right\}$, is an ordered collection of m trees whose sources are i and whose targets are $j(1), \ldots, \underline{j}(m)$. The copses with a given source and target innerit a topology from their trees.

We can compose two copses $A_{1}: \underline{i} \longrightarrow \underline{i}$ and $A_{2}: \underline{j} \longrightarrow \underline{l}$ to form a copse $A_{2} O_{1}: \underline{i} \longrightarrow \underline{l}$ by grafting the r-tin tree of tine copse A_{1} to eacn twig of A_{2} with label $r \in\{1, \ldots, m\}$. Tnis defines a continuous associative composition of copses with the copse consisting of m trivial trees with twig labels $1, \ldots, m$ acting as identity of j. Hence the collection of copses associated with $\left\{X_{\underline{i}, k}\right\}$ forms a category Ψ. In fact, Ψ is a K-coloured tineory. The functor

sends $\sigma \in \mathcal{S}_{K}(\underline{i}, \underline{j}), \underline{i}:[n] \longrightarrow K, \underset{j}{j}:[m] \longrightarrow K$, to the copse consisting of n trivial trees with colours $i(r)$ and labels $\sigma(r), r=1, \ldots, n$.

It is evident, that the tree description takes care of the relstions (ii), (iii), (iv). We still nave to account for (i) and (v). The theory (ब) we look for, is the quotient (with the quotient topology) of under the equivalence relation generated by
(2.8) (a) we may remove any vertex labelled by a base point
(b) if $x \in X_{\underline{i}, k}, \sigma \in S_{K}(\underline{i}, \underline{j})$, $\underset{\underline{i}}{ }:[n] \rightarrow K$, $\underset{i}{ }=[m] \rightarrow K$, we may replace tine vertex label $x \cdot \sigma \in X_{j, k}$ by x by cinanging the part of the tree above this vertex: If C_{1}, \ldots, C_{m} are the subtrees on the inputs to $x \cdot \sigma$, we take $C_{\sigma 1}, \ldots, c_{\sigma n}$ as sub-
Θ is a K-coloured theory, the functor $\varsigma_{K}^{O p} \rightarrow \Theta$ is induced by the one for Ψ. The space $X_{i, k}$ can be considered as subspace of $\in(i, k)$ by identifying $x \in X_{\underline{i}, k}, \underline{i}:[n] \longrightarrow K$, with the tree consisting of one vertex only, whose label is x. The labels of the n twigs are 1,..., n

Let Ξ be an L-coloured theory. A theory functor (P, f) : $\infty \rightarrow$ induces a morphism $(g, f):\left\{X_{\underline{i}, k}\right\} \longrightarrow U_{1} \Xi$ in eqspaces by $g(x)=P(x)$. Conversely, since a theory functor $\Theta \longrightarrow \Xi$ is completely determined by its values on the indecomposable elements, a morpinism $(g, f):\left\{X_{i}, k\right\} \rightarrow U_{1} \Xi$ induces a theory functor $(P, f):(\circledast \rightarrow$ by $P(x)=g(x)$. The correspondence $(g, f) \longleftrightarrow(P, f)$ yields a natural bijection

$$
\text { Fheories }\left(F_{1}\left\{X_{\underline{i}, k}\right\}, \Xi\right) \cong \operatorname{Faces}_{\underline{i}, k}\left(\left\{X_{1}\right\}\right)
$$

This completes the proof of Proposition 2.5 .

Remark: If $\left\{X_{\underline{i}, k}\right\} \in \sin$ poces, then $F_{1} \cdot F_{2} \cdot F_{3}\left\{X_{\underline{i}, k}\right\}$ is the category Ψ of copses as constructed above. If $\left\{X_{\underline{i}, k}\right\} \in \operatorname{srgaceg}{ }^{\circ}$ then $F_{1} \cdot F_{2}\left\{X_{i}, k\right\}$ is Ψ modulo the relation (2.8 a).

Definition 2.9: Let $\left\{X_{\underline{i}, k}\right\} \in$ Br spaces, (3r spaces ${ }^{\circ}$, or ©a bpaces. Tine free theory on $\left\{X_{\underline{i}, k}\right\}$ is its image under $F_{1} \cdot F_{2} \cdot F_{3}, F_{1} \cdot F_{2}$, or F_{1} respectively.

If there is no chance of confusion we denote any of the three free functors into Jheories by F and its adjoint by U.

We want to describe the front and back adjunctions
(2.10) $\quad \eta: I d \longrightarrow U F \quad \varepsilon: F U \longrightarrow$ Id

The adjunction map η is induced by the inclusion $X_{i, k} \subset \Psi(\underline{i}, k)$. The
 composite operation in Θ.

Definition 2.11: The composite operation in \times represented by the trivial tree $A: \underline{i} \longrightarrow k$ witn twig label r associated witn $U\left({ }_{*}\right.$ is the set operation $\sigma^{*} \in(\underline{i}, k)$ given $b y(1)=r$. By induction, the composite operation represented by an arbitrary tree $A: \underline{i} \longrightarrow k$ associated with $\mathrm{U} \Theta$ is $\mathrm{x} \circ\left(\mathrm{B}_{1} \quad \ldots \mathrm{~B}_{\mathrm{n}}\right)$, where x is the label of the root vertex and B_{1}, \ldots, B_{n} the previously defined composite operations represented by the n subtrees above the inputs of x. In otner words, a composite operation is obtained by composing the vertex labels (wnich are elements in (\oplus) and the set operations given by tine twig labels.

Let $\left\{X_{\underline{i}, k}\right\}$ and $\left\{R_{\underline{i}, k}\right\}$ be $K-c o l o u r e d ~ o b j e c t s ~ a n d ~ q_{1}, q_{2}:\left\{R_{\underline{i}, k}\right\} \rightarrow U F\left\{X_{\underline{i}, k}\right\}$ be morphisms in \&r spaces, 3 spaces ${ }^{\circ}$, or ©q paces. Passing to tine adjoints we obtain morpinsms of theories

The difference cokernel $r: F\left\{X_{\underline{i}, k}\right\} \longrightarrow \Xi$ of p_{1} and p_{2} exists in Theories, and we say that Ξ is generated by $\left\{X_{i, k}\right\}$ with the relations $\left(q_{1}\left\{R_{\underline{i}, k}\right\}, q_{2}\left\{R_{\underline{i}, k}\right\}\right)$. We call the diagram (2.12) a presentation of Ξ.

Examples: The relations are given by pairs of trees, the maps q_{1}, q_{2} are the projections onto the first respectively the second factor. Instead of writing pairs $\left(A_{1}, A_{2}\right)$ we use $A_{1}=A_{2}$.
(1) A presentation of the theory of abelian monoids.

Since the theory is monocnrome it suffices to specify the generating n-ary operations and the relations between them. We nave a binary operation + and a 0-ary operation, the unit e. These satisfy the relations

(2) A presentation of the theory of groups.

The theory of groups is generated by tiree operations: a binary operation x, a unitary operation i and a constant operation e, satisfying the relations

Proposition 2.13: Each K-coloured theory can be presented as the difference cokernel of free K-coloured theories.

Proof: Given a theory \otimes, let $R_{\underline{i}, k}=\{(x, y) \in F U \Theta(\underline{i}, k) \times F J \Theta(\underline{i}, k) \mid \epsilon(\mathbf{x})=\epsilon(y)\}$ where $\varepsilon:$ FU@ $\longrightarrow @$ is the back adjunction. Then

is a difference cokernel diagram.

Let $\mathbb{5} \mathfrak{t}$ denote the category of small topological categories and continuous functor. A category is called topological if its morpnism sets are topologized and composition is continuous. A functor is called continuous if the induced function of the morpnism spaces is continuous. There is an obvious functor

$$
V: \operatorname{cat} \longrightarrow \operatorname{Grgaces}{ }^{\circ}
$$

sending $\mathbb{C} \in \mathbb{E} a t$ to $\left\{C_{\underline{i}, k}\right\}$ given by

$$
C_{\underline{i}, k}= \begin{cases}\mathbb{c}(l, k) & \text { if } \underset{\underline{i}=(l)}{\emptyset} \\ \text { otnerwise }\end{cases}
$$

The base points are given by the identities in $\mathbb{5}$. Define

where η is the front adjunction (2.10). Hence if is a basic object, l say, $R_{i}{ }_{i}, k$ consists of pairs of trees

otnerwise it is empty. Let $q_{1}, q_{2}:\left\{R C_{\underline{i}, k}\right\} \rightarrow U F\left\{\mathbb{C}_{\underline{i}, k}\right\}$ be the projections. Let $T \mathbb{C}$ be the theory generated by $\left\{C_{\underline{i}, k}\right\}$ with the relations $\left\{R C_{\underline{i}, k}\right\}$. Thus we obtain an embedding functor $T:$ Gai \longrightarrow Ibeories
which enables us to consider small topological categories as theories. Note thet Tr is (obs)-coloured.

3. INTERCHANGE

It has been known for some time that the concept of "interchange" of two structures on a space is fundamental in the study of H-spaces. Take, for example, a space X with two monoid structures m and n. Let $T: X \times X \rightarrow X \times X$ be the interchange factors. If m and n interchange, i.e. if

commutes, then m and n agree and define a commutative monoid structure on X.

We formalize tinis concept.
Let Θ be a K-coloured theory and $F_{2}: \Theta \longrightarrow$ Iop an L-indexed family of Θ-spaces with underlying spaces $\left\{X_{l, k} \mid k \in K\right\}$. Then there is a canonical Θ-space $F: \Theta \longrightarrow$ Iop, called the product Θ-space of the F_{l}, whose collection of underlying spaces is $\left\{\prod_{l \in L} X_{l, k} \mid k \in K\right\}$. Explicitly, F is given on objects $\underset{\text { i }}{ }$: $n] \longrightarrow K$ by

$$
F(\underline{i})=\prod_{p=1}^{n}\left(\prod_{l \in L} X_{l, \underline{i}(p)}\right)
$$

(for $\underset{i}{ }: \emptyset \longrightarrow K$ put $F(\underline{i})=$ single point) and on morpnisms a $: \underline{i} \longrightarrow \underline{j}$, $j:[\mathrm{m}] \longrightarrow \mathrm{K}$ by

$$
\prod_{p=1}^{n}\left(\prod_{l \in L} X_{l, \underline{i}(p)}\right) \cong \prod_{l \in L} F_{l}(\underline{i}) \not \prod_{l \in L} F_{q}(\underline{j}) \cong \prod_{q=1}^{m}\left(\prod_{l \in L} X_{l, \underline{j}}(q)\right)
$$

Definition 2.14: Let Θ_{1} be a K-coloured and Θ_{2} an L-coloured theory. Let $\left\{X_{k, \ell}\right\}$ be a $K \times L$-indexed family of topological spaces such that each subfamily $\left\{X_{k, l} \mid k \in K\right\}$ is the collection of underlying spaces of a Θ_{1}-space F_{l} and each subfamily $\left\{X_{k, l} \mid l \in L\right\}$ the collection of underlying spaces of a Θ_{2}-space G_{k}. We say the Θ_{1} - and Θ_{2}-action on $\left\{X_{i, k}\right\}$ intercnange if each $a: \underline{i} \longrightarrow \underset{j}{j}, \underline{i}:[n] \longrightarrow K, \underset{j}{j}[m] \longrightarrow K$, in the Θ_{1}-action induces a nomomorpnism from the product Θ_{2}-space of $G_{\underline{i}(1)}, \ldots, G_{\underline{i}(n)}$ to the product \otimes_{2}-space of $G_{\underline{j}(1)}, \ldots, G_{i(m)}$. Or, equivalently, if each $b: \underline{u} \rightarrow \underline{v}, \underline{u}:[p] \rightarrow L, \underline{v}:[q] \rightarrow L$, induces
 product Θ_{1}-space of $F_{\underline{v}}(1), \ldots, F_{\underline{v}}(q) \cdot$

Going back to the definition of product Θ-spaces, the actions interchange if following "shuffle" diagram commutes for all a $\in \Theta_{1}$ and all b $\in \oplus_{2}$
(2.15)

The norizontal lines are the operations of $b \in \Theta_{2}$ on the product \oplus_{2} spaces of the $G_{\underline{i}(s)}$ respectively the $G_{\underline{j}(s)}$, the vertical lines give the nomomorpinism induced by a.

In the case where Θ_{1} and Θ_{2} are monocinome theories with underlying space X, the shurfle diagram becomes more transparent. Let $a: X^{n} \rightarrow X^{m}$ be an operation from Θ_{1} and $b: X^{p} \longrightarrow X^{q}$ one from \oplus_{2}. Then (2.15) reads

If we have two theories \oplus_{1} and \oplus_{2}, whose actions on $\left\{X_{k, l}\right\}$ interchange as defined in (2.14), the actions of Θ_{1} and Θ_{2} together with the shuffle relations (2.15) induce an action of a $K \times L$-coioured theory $\otimes_{1} \otimes \otimes_{2}$, wnich we are going to describe, on $\left\{X_{k, l}\right\}$, and each action of $\Theta_{1} \otimes \Theta_{2}$ comes from interchanging actions of Θ_{1} and Θ_{2}. Let $\left\{\mathrm{Y}_{\underline{i},},(\mathrm{k}, \mathrm{l})\right\} \in$ or spaces be the following $K \times I$-coloured object: Let $\underset{i}{ }=\left\{\left(k_{1}, l_{1}\right), \ldots,\left(k_{n}, l_{n}\right)\right\}, \underline{i}_{K}=\left\{k_{1}, \ldots, k_{n}\right\}, \underline{i}_{L}=\left\{l_{1}, \ldots, l_{n}\right\}$.
(a) If $k_{1}=k_{2}=\ldots=k_{n}=k$ and $l_{1}=l_{2}=\ldots=l_{n}=l$, then

$$
Y_{\underline{i},(k, l)}=\Theta_{1}\left(\underline{i}_{K}, k\right) \cup \Theta_{2}\left(\underline{i}_{L}, l\right)
$$

(b) If $l_{1}=\ldots=l_{n}=l$ and (a) does not apply, then $Y_{i},(k, l)=\Theta_{1}\left(\underline{i}_{K}, k\right)$
(c) If $k_{1}=k_{2}=\ldots=k_{n}=k$ and (a) does not apply, then $Y_{\underline{i},(k, l)}=\Theta_{2}\left(\underline{i}_{L}, l\right)$
(d) If neither of (a), (b), (c) apply, then $Y_{\underline{i},(k, l)}=\varnothing$.

The elements of $\left\{Y_{\underline{i},}(k, l)\right\}$ are the generators of $\Theta_{1} \otimes \Theta_{2}$. They are uniquely determined by a pair $(a, r) \in\left(\bigcup_{\underline{i}, k} \Theta_{1}(\underline{i}, k) \times L\right) \cup\left(\bigcup_{j, l} \Theta_{2}(j, l) \times K\right)$. The source of $(a, r) \in \Theta_{1}(\underline{i}, k) \times L$ is
$\left\{\left(k_{1}, r\right), \ldots,\left(k_{n}, r\right)\right\}$ if $i=\left\{k_{1}, \ldots, k_{n}\right\}$, and its target (k, r); similarly for $(a, r) \in \Theta_{2}(j, l) \times K$.
(2.15) We nave the following relations (between the trees of $F\left\{Y_{i,}(k, l)\right.$)
(i) The same as (2.8a): We may remove any vertex labelled by an identity in Θ_{1} or Θ_{2}.
(ii) The same as $(2.8 b):$ If $a \in \Theta_{1}(\underline{i}, k)$ respectively $\Theta_{2}(p, i)$ and $\sigma \in \mathcal{S}_{K}(\underline{i}, \underline{j})$ respectively $S_{L}(\underline{p}, q)$, we may replace the vertex label a. - σ^{*} by a changing the part of the tree above this vertex: If C_{1}, \ldots, C_{m} are the subtrees above the inputs of a• σ^{*} and σ is a. function from $[n]$ to $\left[m\right.$], we take $C_{\sigma 1}, \ldots, C_{\sigma n}$ as subtrees over a.
(iii) The relations of Θ_{1} and Θ_{2} : Any edge joining two vertices wnose labels are botin in Θ_{1} or both in Θ_{2} can be removed. We unite tine two vertices to form a new vertex, whose label is the tree composite in Θ_{1} or Θ_{2} (see 2.11) of the tree consisting of these two vertices and their incoming and outgoing edges (see example below).
(iv) The snuifle relations: Given $a \in \Theta_{1}(\underline{i}, k)$ and $b \in \Theta_{2}(\underline{j}, l)$, $\underline{i}=\left\{k_{1}, \ldots, k_{n}\right\}, \dot{j}=\left\{l_{1}, \ldots, l_{m}\right\}$. Let $\varphi_{n, m}:[n] \times[m] \rightarrow[n \cdot m]$ be the bijection $(p, q) \longmapsto(q-1) n+p$. Let A be the tree with root operation (a, l), the operation $\left(b, k_{r}\right)$ on the r-tin input to (a, l), and label $\varphi_{n, m}(p, q)$ ior the twig with colour $\left(k_{p}, l_{q}\right)$. Let B be
the tree with root operation (b, k), the operation (a, l_{r}) on the r-th input to (b, k), and label $\varphi_{n, m}(p, q)$ for the twig with colour $\left(k_{p}, l_{q}\right)$. Then $A=B$. (See example below).

Illustrations:
(iii) Let $a:\left\{k_{1}, k_{2}, k_{3}\right\} \rightarrow k$ and $b:\left\{k_{4}, k_{5}\right\} \rightarrow k_{2}$ be morpnisms in

$$
c=a \cdot\left(i d_{k_{1}} \oplus b \oplus i d_{k_{3}}\right)
$$

(iv) Given $a:\left\{k_{1}, k_{2}\right\} \rightarrow k$ in Θ_{1} and $b:\left\{l_{1}, l_{2}\right\} \rightarrow i$ in Θ_{2}. Then

$=$

Let $a \operatorname{lob}$ denote the element represented by these trees. Then the penerators (a, l) and (b, k) can be identified witn $\otimes i d_{l}$ and $i d_{k} \otimes b$. Convention: If we do not specify the twig labels of a tree with n twigs, we assume they are 1,...,n in clockwise order.

Examples:

(1) $s_{K}^{o p} \delta_{L}^{o p} \simeq s_{K \times L}^{o p}$ as tneories
(2) If Θ_{m} is the theory of monoids and ${ }^{\infty} \mathrm{cm}$ the one of abelian monoids, tnen

$$
\Theta_{\mathrm{cm}} \cong \Theta_{\mathrm{m}} \otimes \ldots \otimes \Theta_{\mathrm{m}} \quad \mathrm{n} \text { times, } \mathrm{n} \geq 2
$$

A proof in theory language of this classical result can be found in Pareigis [41;p.113,114].

From the relations and the tree calculus we obtain the following identities, (for clarification use the snuffle diagram and note that the norizontal rows are the operations id $\otimes \mathrm{b}$, the vertical ones the operations a id)

$$
\begin{align*}
& a \otimes b=(a \otimes i d) \cdot(i d \otimes b)=(i d \otimes b) \cdot(a \otimes i d) \tag{2.16}\\
& (a \otimes i d) \circ(\bar{a} \otimes i d)=(a \bullet \bar{a}) \otimes i d \\
& (i d \otimes b) \circ(i d \otimes \bar{b})=i d \otimes(b \bullet \bar{b}) \\
& \left(a_{1}, \ldots, a_{m}\right) \otimes\left(b_{1}, \ldots, b_{q}\right)=\left(a_{1} \otimes b_{1}, \ldots, a_{m} \otimes b_{1}, \ldots, a_{1} \otimes b_{q}, \ldots, a_{m} \otimes b_{q}\right)
\end{align*}
$$

where $a, \bar{a}, a_{i} \in \Theta_{1}, b, \bar{b}, b_{j} \in \Theta_{2}$ and $\left(a_{1}, \ldots, a_{m}\right)$ is tine morpinism into $\left\{k_{1}, \ldots, k_{m}\right\}$ induced by the $a_{i} \in \otimes_{1}\left(\underline{p}, k_{i}\right)$. Hence the correspondences $a \longmapsto a \quad i d_{\underline{u}}$ and $b \longmapsto i d_{\underline{i}} b$ induce for eacn $\underline{i} \in o b \Theta_{1}$ and eacn $\underline{\mathrm{u}} \in \mathrm{ob} \Theta_{2}$ functors

Proposition 2.18: The tensor product of theories is commutative and associative up to isomorpinism.

Proof: The correspondence $a \operatorname{id} \longrightarrow$ id $\otimes a, i d \otimes b \longrightarrow b \otimes i d$ induces $a n$ isomorpisism $T: \Theta_{1} \otimes \Theta_{2} \geqslant \Theta_{2} \Theta_{1}$. From (2.16) it is clear that tine correspondence $a \otimes(b \otimes c) \rightarrow(a \otimes b) \otimes c$ induces an isomorpnism, too.

Given a. ($K \times L$) -indexed family $\left\{X_{k, l}\right\}$ of spaces sucn that each $\left\{X_{k, l} \mid k \in K\right\}$ is tine collection of underlying spaces of $a_{1} \Theta_{1}$-space F_{l} and each $\left\{X_{k, l} \mid l \in L\right\}$ one of a. Θ_{2}-space G_{k}. We said that the actions of Θ_{1} and Θ_{2} interchange, if eacn operation b of the Θ_{2}-action induces a nomomorpnism of appropriate product Θ_{1}-spaces obtained from the F_{l}. A different way of expressing this is saying that the $\left\{F_{i} \mid l \in L\right\}$ form a collection of underlying spaces of a Θ_{2}-space in tine category of Θ_{1} spaces. Let us explain this in more detail:

Denote the category of Θ_{1}-spaces and nomomorpnisms by $\mathcal{I}_{0}{ }^{\Theta_{1}}$. Since
a nomomorphism $f: F_{1} \longrightarrow F_{2}$ between two Θ_{1}-spaces is uniquely determined by the maps $f(k): F_{1}(k) \longrightarrow F_{2}(k)$ of the underlying spaces, we can regard $\mathfrak{z o b}^{\Theta_{1}}\left(F_{1}, F_{2}\right)$ as subspace of $\prod_{k \in K} \operatorname{Iop}\left(F_{1}(k), F_{2}(k)\right)$. Tinis makes $\mathcal{I}^{\left(\Theta_{1}{ }^{冈}\right.}{ }^{1}$ into a topological category, and we can define Θ_{2}-spaces in $\operatorname{Iop}^{\Theta_{1}}$ in the same manner as in (2.3) by replacing ron by sop ${ }^{\Theta_{1}}$.
 the functors induce nomeomorpinisms on the morpnism spaces.

Proof: The bijection Junct $\left(\Theta_{1} \times \Theta_{2}, \mathcal{I O D}\right) \cong$ Junct $\left(\Theta_{2}\right.$, Junct $\left.\left(\Theta_{2}, \mathcal{Z} 00\right)\right)$ induces a bijection

$$
\begin{equation*}
\operatorname{Junct}_{\mathrm{p}, \mathrm{p}}\left(\Theta_{1} \times \Theta_{2}, \mathfrak{I}_{0} n\right) \cong \operatorname{Junct}_{p}\left(\Theta_{2}, \mathfrak{J u n c} t_{\mathrm{p}}\left(\Theta_{1}, \mathfrak{I}_{00}\right)\right)=\left(\mathfrak{I}_{0 p}{ }^{\Theta}\right)^{\Theta_{2}} 2 \tag{*}
\end{equation*}
$$

from the category of bifunctors $\Theta_{1} \times \Theta_{2} \longrightarrow$ Iop wich preserve products in eacn argument to the category of product preserving functors from Θ_{2} to the category of product preserving functors $\Theta_{1} \rightarrow$ Iop. Since a. natural transformation between two objects F, G of Junct $p_{p, p}\left(\Theta_{1} \times \Theta_{2}, \mathcal{T} o p\right)$ is uniquely determined by its values on the basic objects $(k, l) \in \Theta_{1} x \Theta_{2}$, we can regard Junct ${ }_{p, p}\left(\Theta_{1} \times \Theta_{2}, \mathfrak{I}_{0 p}\right)(F, G)$ as subspace of
$\pi \quad \operatorname{zop}(F(k, l), G(k, l))$. With this topology (*) becomes an iso$(k, l) \in K \times L$ morphism of topological categories. We further establisn an isomorpnism of topological categories

$$
\mathfrak{I}_{0 p}{ }_{1} \otimes \Theta_{2} \geq \operatorname{Junct}_{p, p}\left(\Theta_{1} \times \Theta_{2}, \mathfrak{I}_{0 p}\right)
$$

The functor $P: \Theta_{1} x \Theta_{2} \rightarrow \Theta_{1} \otimes_{2}$, sending (i, i), $\underline{i}:[n] \rightarrow K$,
 (iv)) and the morpinism (a, b) to $a \otimes$, induces a continuous functor

$$
\begin{aligned}
& \mathrm{P}^{*}: \mathfrak{I}_{0 \mathrm{D}}{ }^{\Theta_{1} \Theta^{\Theta_{2}}} \longrightarrow \text { isunct }{ }_{p, p}\left(\Theta_{1} \times \Theta_{2}, \mathfrak{I}_{0 p}\right) \\
& \text { Since } F \in \mathfrak{I}_{0 p}{ }^{\left(\Theta_{1} \Theta^{\Theta} \Theta_{2}\right.} \text { and } G \in \operatorname{Junc}_{p, p}\left(\Theta_{1} \times \Theta_{2}, \mathfrak{I}_{0 p}\right) \text { are uniquely determined }
\end{aligned}
$$ on objects by their values on the basic objects (k, l) and on morpinisms by their values on $a \boldsymbol{i d}, i d \otimes b$ respectively $(a, i d),(i d, b)$, the functor P^{*} is a bijection on the objects. Furtnermore, we consider

spaces of $(k, l) \in K \times L\left(F_{1}(k, l), F_{2}(k, l)\right)$ so that P^{*} induces nomeomorpinisms of the morphism spaces.

In general, the structure of $\Theta_{1} \otimes_{2}$ is far from clear because the shuffle relations are difficult to handle. Given a morphism a $: i \rightarrow j$, $\underline{i}:[n] \rightarrow K, ~ j:[m] \rightarrow K$ in ω_{1} and $b: \underline{u} \rightarrow \underline{v}, \underline{u}:[p] \rightarrow I$, $\underline{v}:[q] \rightarrow \mathrm{L}$ in Θ_{2}. Let $\pi_{n, p}$ be the permutation

$$
\pi_{n, p}=\varphi_{p, n} \cdot \Phi \cdot \varphi_{n, p}^{-1}:[n \cdot p] \rightarrow[n] \times[p] \rightarrow[p] \times[n] \rightarrow[n \cdot p]
$$

where T interchanges the factors. Then the shuffle relation reads

$$
=\left[\left(a \otimes i d_{\underline{v}}\right) \oplus \ldots \oplus\left(a \otimes i d_{\underline{v} q}\right)\right] \cdot \pi_{q, n}^{*} \cdot\left[\left(i d_{\underline{i} 1} \otimes b\right) \oplus \ldots \oplus\left(i d_{\underline{i n}} \otimes b\right)\right] \bullet \pi_{n, p}^{*}
$$

So eacin morpinism of $\Theta_{1} \otimes \Theta_{2}$ can be written as

$$
\begin{equation*}
a_{1} \circ b_{1} \circ \ldots \circ a_{k} \circ b_{k} \circ \xi^{*} \tag{2.21}
\end{equation*}
$$

where a_{i} is of the form $\left(c_{1} \otimes i d_{l_{1}}\right) \oplus \ldots \oplus\left(c_{r} \otimes d_{l_{r}}\right)$ and b_{i} of the form $\left(i d_{k_{1}} \otimes d_{1}\right) \oplus \ldots \oplus\left(i d_{k_{r}} \otimes d_{r}\right)$, the c and d are morphisms into basic objects in ${ }^{(1)}$ respectively ω_{2} and different from set operations.

Tne permutations $\pi_{n, p}$ cause the difficulties in the attempt to determine the structure of $\Theta_{1} \otimes \otimes_{2}$. In case \otimes_{2} nas 1-ary operations only, i.e. $\Theta_{2}=\mathbb{C}$ is a small topological category considered 9.8 theory, we can nandle the sinuffle relations. If b in (2.20) is a 1-ary operation the four permutations are identities. So any morpnism of $\Theta_{1} \otimes \mathbb{C}$ into a basic object can be written as $\left(a<i d_{l}\right) \bullet\left[\left(i d_{l_{1}} \otimes b_{1}\right) \oplus . . \oplus\left(i d_{k_{r}}^{\otimes} b_{r}\right)\right] \bullet \xi^{*}$ and inence by (2.15 (ii)) as

$$
\left(a \otimes i d_{l}\right) \cdot\left[\left(i d_{l_{1}} \otimes b_{1}\right) \oplus \ldots \oplus\left(i d_{k_{r}} \otimes b_{r}\right)\right]
$$

We obtain

Lemma 2.22: Let Θ be a K-coloured tineory and \mathbb{G} a small topological category. Let $\underset{i}{ }=\left\{\left(k_{1}, l_{1}\right), \ldots,\left(k_{n}, l_{n}\right)\right\} \in o b(\otimes \otimes \mathbb{S})$ and $j=\left\{k_{1}, \ldots, k_{n}\right\} \in o b \in$. Then there is a natural nomeomorphism

$$
(\Theta \otimes \mathbb{v})(\underline{i},(k, l)) \cong \Theta(\underline{j}, k) \times \mathbb{E}\left(l_{1}, l\right) \times \ldots \times \mathbb{E}\left(l_{n}, l\right)
$$

The most interesting example for us is the structure of $\theta \Omega_{n}$ where Ω_{n} is the "linear" category whose objects are $0,1, \ldots, n$, with one morpnism i $\rightarrow j$ if isj and none otnerwise. $A\left(\otimes \varepsilon_{n}\right)$-space is determined by a sequence of -spaces and nomomorphisms (see 2.19)

$$
\mathrm{F}_{0} \longrightarrow \mathrm{~F}_{1} \longrightarrow \mathrm{~F}_{2} \longrightarrow \mathrm{~F}_{\mathrm{n}}
$$

We have one useful general result which helps us to get rid of constant operations. Let 0 denote the unique object $\varnothing \rightarrow K$ in any K-coloured theory.

Lemma 2.23: Let Θ_{1} be a K-coloured and Θ_{2} an L-coloured theory such that $\Theta_{1}(0, k) \neq \varnothing \neq \Theta_{2}(0, l)$ for all $k \in K, l \in L$. Tinen $\left(\Theta_{1} \otimes_{2}\right)(0,(k, l))$ contains exactly one element. Moreover if Θ_{1}^{\prime} and Θ_{2}^{\prime} denote the subtheories of Θ_{1} and Θ_{2} without the constant operations, then $\left(\Theta_{1} \otimes \Theta_{2}\right)\left(i_{2}(k, l)\right)$ is a quotient of $\left(\Theta_{1}^{\prime} \otimes \Theta_{2}^{\prime}\right)(\underline{i},(k, l))$ for $i \neq 0$.

Proof: Let $c \in \Theta_{1}(0, k)$ and $d \in \Theta_{2}(0, l)$. From the shuffle relation we obtain that $c \otimes d=c \otimes i d_{l}=i d_{k} \otimes d$. Given any tree in $\Theta_{1} \otimes \Theta_{2}$, we can prune away all stumps one by one: If an edge joins a vertex labelled c to a vertex labelled $b \in \Theta_{2}$, we replace c by d and compose in Θ_{2} according to 2.15 (iii) to remove that edge. We end up with either a tree without stumps or a tree consisting of a stump only. Since the relations between the trees of $\Theta_{1}^{\prime} \otimes \Theta_{2}^{\prime}$ also nold between the trees of $\Theta_{1} \otimes \Theta_{2}$ the result follows.

4. FREE ©-SPACES AND TRIPLES

Instead of theories many people prefer to work witn triples (e.g. see [2]). Since K-coloured triples up to date nave not been investigated (to the autnors' knowledge), we include this cnapter for the sake of completeness and to put our further constructions into a wider
frame work.
Let $\mathfrak{I}_{0} p_{K}$ denote the category $\mathcal{I o p}_{\mathrm{o}}$ over K , i.e. its objects are continuous maps $X \rightarrow K, X \in o b \mathcal{F}_{0} p$, and its morpnisms from $g: X \longrightarrow K$ to $n: Y \longrightarrow K$ are continuous maps $f: X \longrightarrow Y$ sucn that

commutes. We can identify $\mathcal{I}_{0} p_{K}$ witn the category of K-graded spaces $X=\left\{X_{k} \mid k \in K\right\}$ and grading preserving maps by putting $X_{k}=g^{-1}(k)$ for an object $g: X \rightarrow K$ of $\mathcal{I}_{0} p_{K}$. Topologize $\mathfrak{I}_{0} p_{K}$ by $\mathcal{I}_{0} p_{K}(X, Y)=\prod_{k \in K} \mathcal{I}_{0} p\left(X_{K}, Y_{K}\right)$.

A function $r: K \longrightarrow L$ induces a functor

$$
r_{*}: \tau_{0 p_{\mathrm{K}}} \longrightarrow \boldsymbol{I}_{0} p_{\mathrm{I}}
$$

given on objects $g: X \longrightarrow K$ by $r_{*}(g)=r \cdot g$ and on morpinisms $f: g \rightarrow n$ by $r_{*}(f)=f$. It nas a rignt adjoint

$$
r^{*}: \mathfrak{r o p}_{L} \longrightarrow \mathfrak{I}_{0} p_{K}
$$

sending $\left\{X_{\imath} \mid l \in L\right\}$ to $\left\{X_{r(k)} \mid k \in K\right\}$.
For any K-coloured theory Θ we have a continuous forgetful functor

$$
\mathrm{U}: \tilde{I}_{0} p^{\Theta} \rightarrow \tau_{0} p_{\mathrm{K}}
$$

mapping the Θ-space $G: \Theta \rightarrow$ Iop to the graded space $\{G(k) \mid k \in K\}$.

Defineorem 2.24: The functor U has a continuous left adjoint

$$
F: \boldsymbol{I}_{0} p_{K} \longrightarrow \boldsymbol{I}_{0} p^{\oplus}
$$

The image $F X$ of X is called the free ${ }^{(-s p a c e}$ on X. Moreover, the natural bijection

$$
\mathfrak{I}_{0 p}{ }^{\Theta}(F X, G) \cong \mathcal{I}_{O} p_{K}(X, U G)
$$

is a nomeomorpinism.

Proof: Given $X=\left\{X_{k} \mid k \in K\right\} \in \mathfrak{F o p}_{K}$. For $\underline{\underline{i}}:[n] \rightarrow K$ denote $X_{\underline{i} 1} x^{x} \ldots \times X_{\underline{i n}}$ by $X_{\underline{i}}$ and $f_{\underline{i} 1} \times \ldots \times f_{\underline{i n}}: X_{\underline{i} 1} \times \ldots \times X_{\underline{i n}} \longrightarrow Y_{\underline{i} 1} \times \ldots \times Y_{\underline{i n}}$ by $\dot{r}_{\underline{i}}$. Define

$$
F X(k)=\bigcup_{\underline{i} \in \Theta}(\underline{i}, k) \times \bar{X}_{\underline{i}} / \sim
$$

witn the identification

$$
\left(a \cdot \sigma^{*} ; x_{1}, \ldots, x_{n}\right)=\left(a ; \sigma^{*}\left(x_{1}, \ldots, x_{n}\right)\right),
$$

σ^{*} a set operation (see 2.1). For $b \in(\dot{O}, l)$ define
$F X(b): F X(j 1) \times \ldots \times F X(j m) \longrightarrow F X(l)$ by
$\left[\left(a_{1} ; x_{1}^{1}, \ldots, x_{n_{1}}^{1}\right), \ldots,\left(a_{m} ; x_{1}^{m}, \ldots, x_{n_{m}}^{m}\right)\right] \longmapsto\left[b \circ\left(a_{1} \oplus \ldots \oplus a_{m}\right) ; x_{1}^{1}, \ldots, x_{n_{1}}^{1}, \ldots, x_{1}^{m}, \ldots, x_{n_{m}}^{m}\right]$ These data determine a continuous product preserving functor $\mathrm{FX}:\left(\rightarrow \mathfrak{I}_{\mathrm{op}}\right.$.

Given a morpnism $f: X \longrightarrow Y$ in $\mathfrak{I}_{0} p_{K}$ the maps $i d x f_{\underline{i}}:(\underline{i}, k) \times X_{\underline{i}}-O(\underline{i}, k) \times Y_{i}$ induce a map $F f(k): F X(k) \longrightarrow F Y(k)$, which is continuous in f. The collection $\{F f(k) \mid k \in K\}$ determines a natural transformation $F f: F X \rightarrow F Y$ continuous in f.

Define a continuous natural map

$$
\rho: \mathfrak{I}_{0} p^{0}(F X, G) \rightarrow \mathfrak{I}_{0} p_{K}(X, U G)
$$

by $\rho(g)_{k}(x)=g(k)\left(i d_{k} ; x\right), x \in X_{k}, g: F X \rightarrow G$. Given $f: X \longrightarrow U G$ in Fop p_{K}, let $n(f): F X \longrightarrow G$ be the nomomorpinism induced on the basic object k by tine maps

$$
\begin{aligned}
& \Theta(\underline{i}, k) \times X_{\underline{i}} \longrightarrow G(k) \\
& \left(a ; x_{1}, \ldots, \bar{x}_{n}\right) \longmapsto G(a)\left(f_{\underline{i}}\left(x_{1}, \ldots, x_{n}\right)\right) \\
& \text { Then } x: \mathfrak{I}_{0} p_{K}(X, U G) \rightarrow \mathfrak{I}_{0} p^{(\otimes)}(F X, G) \text { is a continuous inverse of } \rho \text {. }
\end{aligned}
$$

The front and back adjunction $\eta: I d \rightarrow U F$ and $\varepsilon: F U \longrightarrow I d$ of any adjoint pair F, U satisfy [41; p.45]

$$
\begin{aligned}
U \varepsilon \cdot \eta U & =i d_{U} \\
\epsilon F \cdot F \eta & =i d_{F}
\end{aligned}
$$

Setting $T=U F$ and $\mu=U \in F$ we therefore nave commutative diagrams (2.25)

(b)

Definition 2.26: A continuous endofunctor $T: \mathbb{C} \longrightarrow \mathbb{C}$ of a topological
category \mathbb{c} togetner with natural transformations $\eta: I d_{\mathbb{C}} \rightarrow T$ and $H: T \bullet T \rightarrow T$ satisfying (2.25 a,b) is called a (continuous) triple on 5 .

So any K-coloured theory ${ }^{(1)}$ determines a triple (T, η, μ) on $\mathfrak{F}_{0} p_{K}$, which associates to each $X \in o b$ Top $_{K}$ the collection of underlying spaces of tine free -space on X. The natural transformations $\eta X: X \rightarrow T X$ and $\mu X: T T X \rightarrow T X$ are induced by $x \longrightarrow\left(i d_{k} ; x\right), x \in X_{k}$, respectively $\left[b ;\left(a_{1} ; y_{q}\right), \ldots,\left(a_{m}, y_{m}\right)\right] \longmapsto\left[b \cdot\left(a_{1} \oplus \ldots a_{m}\right) ; y_{1}, \ldots, y_{m}\right]$ where y_{r} stands for some n_{r}-tuple $x_{1}^{r}, \ldots, x_{n_{r}}^{r}$ of elements of X.

Definition 2.27: A triple morpnism $(T, \eta, \mu) \rightarrow\left(T^{\prime}, \eta^{\prime}, \mu^{\prime}\right)$ from a triple on $\mathfrak{I}_{0} p_{K}$ to a triple on $\mathfrak{I}_{0} p_{L}$ is a pair (τ, f) consisting of a function $f: K \longrightarrow L$ and a natural transformation $T: f_{*} \cdot T \longrightarrow T^{\prime} \cdot f_{*}$ such tinat
(a)

(b)

commute. Composition of triple morpnisms is defined by $(\rho, g) \circ(\tau, f)=\left(\rho f_{*} \circ g_{*} \tau, g \circ f\right)$. Let $\operatorname{Ir} \mathfrak{f} \boldsymbol{p} \mid$ es denote the category of such triples and triple morpinisms.

A theory functor $(P, f):\left(\oplus \rightarrow \Theta^{\prime}\right.$ determines a triple morpism $(\Phi, \eta, \mu) \longrightarrow\left(T^{\prime}, \eta^{\prime}, \mu^{\prime}\right)$ of the associated triples as follows: Let $(a ; y) \in \Theta(\underline{i}, k) x X_{\underline{i}}$ be a representative of $\left(f_{*} T X\right)_{\eta}$ (this implies $f(k)=l)$. Tinen $\tau X: f_{*} T X \longrightarrow T^{\prime} f_{*} X$ is induced by
$(a ; y) \longmapsto(P a ; y) \in \Theta^{\prime}(f \circ \underline{i}, f(k)) x\left(f_{*} X\right)_{f \circ \underline{i}}$
(recall that $\left(f_{*} X\right)_{f \circ \underline{i}}=\left[U X_{k} \mid f(k)=f(\underline{i} 1)\right] \times \ldots x\left[U X_{k} \mid f(k)=f(\underline{i} n)\right]$). Since $\tau \cdot f_{*} \eta$ maps a representative $x \in X_{k} \subset\left(f_{*} X\right)_{f(k)}$ to (Pid $\left.; x\right)=$ $\left(i d_{f(k)} ; x\right)=\eta^{\prime} f_{*}(x)$, diagram (2.27 a) commutes. The commutativity of
(2.27 b) follows from

This defines us a functor Zheories \longrightarrow Iriples.
Conversely, we can construct a functor $\mathfrak{I r}$ iples \longrightarrow Igeoried.
Given any triple (\mathbb{T}, η, μ) on $\mathfrak{T}_{0} p_{K}$, we obtain a K-coloured theory ${ }^{\infty}$ by
 with $b \in \Theta(\underset{j}{ }, \underline{p}), b: p \longrightarrow T j$ is defined as

$$
\mathrm{b} \circ a: \underline{p} \longrightarrow \mathrm{~b} \underline{\mathrm{j}} \longrightarrow \mathrm{Ta} \mathrm{TT} \underline{\underline{i}} \xrightarrow[\mu \underline{i}]{ }>\mathrm{Ti}
$$

Given $\underline{i} \xrightarrow{a} i \longrightarrow \underline{b} \xrightarrow{c} q$ in (0, associativity of the composition follows from the commutativity of

The commutativity of

snows that $\eta \boldsymbol{j}: \underset{j}{ } \longrightarrow T$ acts as the identity or \dot{j} in Θ. Finally, the set operation corresponding to $\sigma \in \mathcal{S}_{K}(\underset{\sim}{i}, \dot{i})$ is given by the composite

$$
\underline{i} \longrightarrow \sigma \longrightarrow \underset{i}{\underline{i}} \longrightarrow \mathbb{i}
$$

A triple morpnism $(T, f):(T, \eta, \mu) \longrightarrow\left(T^{\prime}, \eta^{\prime}, \mu^{\prime}\right)$ induces a theory
 $a: \underset{j}{ } \longrightarrow T \underline{i}$ in $\mathfrak{I}_{0} p_{K}$, to the morpism of $\theta^{\prime}(f \circ \underline{i}, f \circ \underline{j})$ given by the
composite

$$
f_{* i} \longrightarrow f_{*} f_{*} T \underline{i} \longrightarrow T^{\prime} \underline{i} f_{* i}
$$

The upper sequence in the following commutative diagram represents $P(b \cdot a)$ wile the lower one represents Pb - Pa. Hence P preserves composition

Finally the commutativity of

ensures that P preserves set operations and, in particular, identities.

Proposition 2.28: The dual \otimes op of K -coloured theory Θ is isomorpinic as topological category to the full subcategory of $\mathfrak{F}_{0}{ }^{(3)}$ of the free ©-spaces $F \underline{i}, \underline{i} \in o b \sigma_{K}$.

Proof: The corrempondence $\underset{\sim}{ } \longmapsto \Theta(\underline{i},-)$ and $a \longmapsto \Theta(a,-)$ defines a full embedding $\Theta^{O P} \subset J u n c t\left[\Theta, \mathcal{I}_{0} p\right]$ by the Yoneda lemma [41; p.37]. Since $\otimes_{(1,-)}$ preserves products, this embedding factors through $\mathcal{I}_{0}{ }^{\circledR}$, and it is easy to check that it is a nomeomorpnism on the morpism spaces. We nave natural nomeomorpinisms
(1) nolds by (2.24), (2) is obvious, and (3) follows from the Yoneda lemma. The isomorpnism $@(\underline{i},-) \longrightarrow$ Fi is given on the basic object k by

$$
a \longmapsto\left(a ; k_{1}, \ldots, k_{n}\right)
$$

if $\underline{i}=\left(k_{1}, \ldots, k_{n}\right)$.

Corollary 2.29: The composite functor Theorie\& \longrightarrow Iriples \longrightarrow Igeories is naturally equivalent to the identity.

Proof: Given a theory functor $(P, f): \Theta \longrightarrow \theta^{\prime}$, let $T: f_{*} T \longrightarrow T^{\prime} f_{*}$ be the corresponding triple morpinism, and $(\hat{P}, \hat{f}): \hat{B} \longrightarrow \hat{\theta}$, the theory functor induces by (τ, f). The corollary follows from the commutative diagram

Call a triple finitary if it lies in tine image of zaeories \rightarrow Yriples. Each triple T has an associated finitary triple $T_{f i n}$, namely the image of T under $\mathfrak{F r i p l e s} \longrightarrow$ Igeories \longrightarrow Iriples. Note that

$$
\left(T_{f_{i n}} X\right)_{k}=\bigcup_{\underline{i}} \operatorname{Top}_{K}\left(k, \operatorname{Ti}_{\underline{i}}\right) \times X_{\underline{i}} / \sim
$$

and we can identify $X_{\underline{i}}$ with $\operatorname{Iop}_{K}(\underline{i}, X)$. Tine maps

$$
\begin{aligned}
\operatorname{Iop}_{K}(k, T \underline{i}) \times \operatorname{Iop}_{K}(\underline{i}, X) & \longrightarrow \operatorname{Iop}_{\mathrm{K}}(\mathrm{k}, T \mathrm{TX})=(T X)_{k} \\
(\mathrm{f}, \mathrm{~g}) & \longmapsto(T g \circ f)
\end{aligned}
$$

nence induce a natural transformation $T_{f i n} \rightarrow T$, which is an isomorpinism if T is finitary, but not in general. We obtain

Proposition 2.30: The category zheortes is naturally equivalent to the full subcategory of finitary triples in riples.

If we enlarge sgeories by adding infinitary theories, it becomes naturally equivalent to the whole category $\mathfrak{z r i p l e}$. To define infinitary theories we need the notion of a continuous product. In sop, an
X-indexed product of copies of the space Y is defined to be $\mathfrak{I}_{0} p(X, Y)$. The exponential law

$$
\mathfrak{I}_{\mathfrak{o p}}\left(Z, \mathfrak{I}_{\mathfrak{o p}}(X, Y)\right) \cong \mathfrak{I}_{\mathfrak{o p}}\left(X, \mathfrak{I}_{\mathfrak{o p}}(Z, Y)\right)
$$

generalizes the usual functorial equation of a product $\prod_{\alpha} Y_{\alpha}$. In our case, we have to define continuous products in $\mathfrak{I}_{\mathrm{op}}^{\mathrm{K}}$. The object $K \in \mathfrak{I}_{0} p_{K}$ given by id $: K \longrightarrow K$ substitutes the point object of $\mathfrak{I o p}$. Since

we call Y a Y-indexed product of K in $\mathfrak{I}_{0} p_{K}$.

Definition 2.31: An infinitary K-coloured topological theory is a topological category © with ob $\Theta=0 b \mathfrak{I}_{0} \mathfrak{p}_{\mathrm{K}}$ together with a continuous functor $P: \mathfrak{I}_{0} p_{K}^{o p} \longrightarrow$ preserving objects and products, i.e. the diagram

commutes.
A ©-space is a product preserving functor $G:-\mathfrak{I}_{0} p_{K}$. In particu$\operatorname{lar}, G(X) \cong \mathfrak{I}_{0} p_{K}(X, G(K))$.

It follows directly from the Yoneda lemma that Θ^{Op} is equivalent to the category of free 0 -spaces. Hence $\mathfrak{I r}$ ipleg and the enlarged category zgeories are equivalent by the same argument as above. The equivalence is given by

where $T(X)=\Theta(X,-)$ and $\Theta^{\prime}(X, Y)=\mathfrak{I}_{0} p_{K}\left(Y, T^{\prime} X\right)$.

Because of the strong connection between theories and triples it is no surprise that we can derine the category of T-spaces for a triple T and that it is connected with the category of 0 -spaces of a theory ©.

Definition 2.32: Let T be a triple on $\mathfrak{I}_{0} \mathfrak{p}_{K}$. A T-space consists of an object $X \in \mathcal{I}_{0}{ }_{K}$ and a morpnism $\mathcal{E}: T X \longrightarrow X$ sucn that

commute. X is called the underlying space of (X, S).
A nomomorpnism $(X, \xi) \longrightarrow(Y, g)$ of T-spaces is a morphism $f: X \longrightarrow Y$ such that

commutes. Let $\mathfrak{I o p}^{T}$ denote the topological category of $\mathbb{T}-8 p a c e s$ and nomomorprisms ($\mathcal{I}_{\mathcal{O}}{ }^{T}\left((X, \xi),(Y, \xi)\right.$) is topologized as subspace of $\mathcal{I}_{0} p_{K}(X, Y)$).

Proposition 2.33: Let T be the associated triple of a (finitary) Kcoloured theory ©. Then there exists an isomorpism $R: I_{0}{ }^{(6)} \longrightarrow \mathfrak{I}_{0}{ }^{T}$ of topologized categories such that

U,V underlying
space functors
commutes.

Proof: For a $@$-space G define $R(G)=$ ($U G, U \in$) with the back adjunction $\varepsilon: ~ F U \longrightarrow I d$ (recall that $T=U F$). The inverse of R maps the $T-$ space (X, g) to the Θ-space G for which $G(\underline{i})=X_{\underline{i}}$ and $G(a), a \in \Theta(\underline{i}, \underline{i})$,
is given by the composite

$$
X_{\underline{i}} \xrightarrow[(\eta X)_{\underline{i}}]{ }(T X)_{\underline{i}} \xrightarrow\left[U(F X(a)]{ }(T X)_{\underline{i}} \longrightarrow X_{\underline{j}}\right.
$$

As corollary we obtain a generalization of the classical result that each group is the epimorphic image of a free group．

Corollary 2．34：An object $Z \in \mathcal{I o p}_{K}$ is a ©－space iff the injection $\eta Z: Z \longrightarrow U F Z$ admits a retraction $\xi: U F Z \longrightarrow Z$ wnicn makes

comute（ U ： $\mathfrak{I}_{0} p^{(®)} \longrightarrow \mathcal{I}_{0} p_{K}$ is the underlying space functor，F its left adjoint and η and ε the adjunction maps）．

5．SPINES

We do not know how to nandle general theories．So we restrict at－ tention to those kinds or theories tnat interest us most and in whicin we can work satisfactorily．It is clear from tine interpretation of $\mathbb{Q}^{\circ p}$ as the category of free $⿴ 囗 十$－spaces on the elements of $\mathcal{S}_{\mathbb{R}}$ ，that theo－ ries tend to be inconveniently large．

Let \oplus be a K－coloured theory given by generators $\left\{X_{\underline{i}, k}\right\}$ and rela－ tions $\left\{R_{\underline{i}, k}\right\}$ in or saces．The elements of $\left\{R_{\underline{i}, k}\right\}$ are pairs of trees with vertex labels in $\left\{X_{\underline{i}, k}\right\}$ ．A tree from $\underset{\underline{i}}{ }$ to k with m twigs of co－ lours j_{1}, \ldots, j_{m} and labels $n_{1}, \ldots, n_{m} \in[n]$ determines a morpinism in ϵ_{K} from $\dot{j}=\left\{j_{1}, \ldots, j_{m}\right\}$ to \dot{i} induced by $j_{r} \longrightarrow n_{r} \in[n]$ ．Let \＆be the subcategory of ς_{K} generated under composition and disjoint union \oplus by the morphisms determined by the trees of $\left\{\mathrm{R}_{\underline{\underline{i}}, k}\right\}$ ，and let \mathfrak{B} be the
subcategory of generated under composition and the product bifunctor \oplus by the elements of $\left\{X_{\underline{i}, k}\right\}$ and $\sigma^{\circ p}$. (We assume tinat all these categories nave objects ob Θ_{K}).

Definition 2.35: The subcategory 9 of Θ is called a spine of

An element a of \oplus can be written $a=b \cdot \sigma^{*}$ witn $b \in \mathcal{A}$. If $\sigma \in \mathcal{A m p l i e s}$ that all block functions (see 2.4) associated with ore in a, this decomposition is unique up to the equivalence

$$
\begin{equation*}
\left(b \circ \mu^{*}\right) \circ \sigma^{*}=b \circ(\sigma \circ \mu)^{*} \quad b \in B, \mu \in \theta, \sigma \in \mathcal{E}_{K} . \tag{2.36}
\end{equation*}
$$

Hence there is a continuous bijection

$$
\begin{equation*}
\left(\bigcup_{\dot{i}} \mathfrak{P}(\underline{i}, \underline{r}) \times \mathscr{S}_{\mathbb{K}}(\underline{j}, \underline{i})\right) / \text { relation }(2.36) \longrightarrow(\underline{i}, \underline{r}) \tag{2.37}
\end{equation*}
$$

If this is a nomeomorpinism we can recover from ${ }^{6}$, its topology included. In this case we call B a proper (spine of B.

The products in \otimes are no longer products in B unless $=\sigma_{K}$. Instead we have an associative "product" functor

$$
\oplus: B \times B \rightarrow B
$$

sending the object $(\underline{i}, \underline{j})$ to $\Theta(\underline{i}, \underline{j})=\underline{i} \oplus \underline{j}$, the sum of \underline{i} and $\underset{j}{ }$ in \mathcal{E}_{K}. Tne correspondence $\left(a_{1}, \ldots, a_{n}, \tau\right) \longmapsto\left(a_{1} \oplus \ldots \oplus a_{n}\right) \circ \tau^{*}$ defines a nomeomorpinism

with $r:[n] \rightarrow K$ and the relation
(2.39) $\left(a_{1} \cdot \sigma_{1}^{*}, \ldots, a_{n} \circ \sigma_{n}^{*}, \tau\right) \sim\left(a_{1}, \ldots, a_{n}, \tau \circ\left(\sigma_{1} \oplus \ldots \oplus \sigma_{n}\right)\right)$

If \mathfrak{F} is a proper spine, (2.37) and (2.38) determine a nomeomorpinism
with the relation (2.36) on the left and the relation (2.39) on the right (then, of course, each $\sigma_{i}(\Leftrightarrow)$. At least in the cases we want to consider, namely
(A) contains only the identities of σ_{K}
(B) contains all isomorphisms of \mathcal{S}_{K}
this homeomorphism induces a homeomorpnism

Given a proper Θ-spine B of Θ, a -space is completely determined by a continuous functor $\mathrm{R}: \nrightarrow$ Iod preserving the set operations of and the product functor \oplus, i.e. the diagram

commutes. We call such a functor R a ${ }^{8}$-space and a natural transformation between such functors a nomomorphism of \mathcal{B}^{-1}-spaces. The free Θ_{-} space $F X$ on $X \in \mathfrak{Z}_{0} \mathfrak{p}_{K}$ is given by

$$
F X(k)=\bigcup_{\underline{i}} \mathbb{D}(\underline{i}, k) \times X_{\underline{i}} / \sim
$$

with $\left(a \cdot \mu^{*} ; x_{1}, \ldots, x_{n}\right) \sim\left(a ; \mu^{*}\left(x_{1}, \ldots, x_{n}\right)\right), \mu \in \mathbb{B}$.

Spines of type (A): We investigate proper ©-spines for which consists of identities only. A simple example of a theory with such a spine is the monochrome theory Θ_{m} of monoids. We pay particular attention to the elements $\lambda_{n} \in \oplus_{m}(n, 1)$ corresponding to $z_{1} z_{2} \cdots z_{n} \in F[n]$, the free monoid on n generators z_{1}, \ldots, z_{n} (under the isomorpinism (2.28)), i.e. λ_{n} represents the operation ($\left.z_{1}, z_{2}, \ldots, z_{n}\right) \longrightarrow z_{1} z_{2} \cdots z_{n}$ (nere n denotes the unique object $[n] \longrightarrow \mathbb{K}=\{*\}$). The subcategory $थ$ of Θ_{m} generated under \oplus and composition by the λ_{n} is the required (G)-spine. In view of (2.40), any morphism of \because nas uniquely the form $\lambda_{n_{1}} \oplus \ldots \oplus \lambda_{n_{r}}$. Since relation (2.36) is trivial, any morphism of Θ_{m} is uniquely expressible as $\lambda \cdot \sigma^{*}$ witn $\lambda \in \mathscr{r}$.
\oplus_{m} serves as sort of a terminal object for theories with proper
spines of type (A). Let ${ }^{s}{ }^{s} K$ denote the category winich nas the elements or K as objects and exactly one morpnism between any two objects. Tne
 ject \dot{i} to a basic object k (compare 2.22). Hence given a K-coloured tneory Θ witn proper -spine \mathcal{B}, there exists a unique object-preserv-

Tne above considerations give a cnaracterization of proper a-spines of type (A).

Lemma 2.41: A topological category B is a proper -spine of type (A) of a. K-coloured theory iff $o b B=o b \mathcal{S}_{K}$ and tnere is a strictly associative bifunctor $\oplus: B \times \rightarrow$ sucin that
(a) $\oplus(\underline{i}, \underline{j})=\underline{\underline{i}} \oplus \underline{j}$, the sum in σ_{K}
(b) the correspondence $\left(a_{1}, \ldots, a_{n}\right) \longmapsto a_{1} \oplus \ldots \oplus a_{n}$ yields a homeomorpinism

$$
\bigcup_{\underline{i}_{j}=\underline{i}} B\left(\underline{i}_{\uparrow}, \underline{r}(1)\right) \times \ldots \times \mathscr{}\left(\underline{i}_{n}, \underline{r}(n)\right) \cong \mathfrak{B}(\underline{i}, \underline{r})
$$

Definition 2.42: We call a category satisfying (2.41) a K-coloured PRO (for product functor) and a K-coloured theory Θ naving a PRO as proper spine a split theory over σ_{m}. If the spaces $\overline{3}(\underline{i}, \underline{r})$ are CWcomplexes and the nomeomorpisms (2.41 (b)) and composition are skeletal, we call a CW-PRO.

Note that the morphism spaces $B(\underline{i}, k)$ of morpinisms into a basic object and the composition maps $\left[B\left(\underline{r}_{\eta}, \underline{i}(1)\right) \times \ldots \times B\left(\underline{r}_{n}, \underline{i}(n)\right] \times B(\underline{i}, k) \rightarrow B\left(\underline{r}_{1} \oplus \ldots \oplus \underline{r}_{n}, k\right)\right.$ sending $\left(a_{1}, \ldots, a_{n}, b\right)$ to $b \bullet\left(a_{1} \oplus \ldots \oplus a_{n}\right)$ completely determine tine PRO ${ }^{\text {日 }}$

If Θ is a K-coloured split theory over Θ_{m} with PRO ${ }^{\circ}$, the free Θ-space $F X$ on $X \in \mathcal{I}_{0} p_{K}$ is given by

$$
F X(k)=\bigcup_{\underline{i} \in \Theta} B(\underline{i}, k) \times X_{\underline{i}}
$$

Spines of type (B): Here the theory of commutative monoids Θ_{cm} takes the place of Θ_{m}. Generating morphisms are again the morpnisms λ_{n} representing the operations $\left(z_{1}, \ldots, z_{n}\right) \longrightarrow z_{1}+\ldots+z_{n}$. Since $\lambda_{n} \cdot \pi^{*}=\lambda_{n}$ for all permutations $\pi \in S_{n}$, we also nave to include tine permutations. It is easily verified that the resulting spine may be identified with the category 5 of finite sets as defined in section 1 (not to be confused with the set operations from $\mathcal{E}^{\circ p} \subset \Theta_{\mathrm{cm}}$). An explicit description of the inclusion functor $5 \subset \Theta_{\mathrm{cm}}$ is given as follows: The isomorpnism (2.28) identifies a $\in S(m, n) \subset O(m, 1)^{n}$ with $\left(y_{1}, \ldots, y_{n}\right) \in(F[m])^{n}$, where $y_{r}=z_{i_{1}}+\ldots+z_{i_{q}} \in F[m]$ if $a^{-1}(r)=\left\{i_{1}, \ldots, i_{q}\right\} \subset[m]$. In particular, for a permutation $\pi \in S(m, m)$ we nave $\pi^{-1}=\pi^{*}$.

The abelianization $\Theta_{\mathrm{m}} \longrightarrow \Theta_{\mathrm{cm}}$ identifies $थ \subset \Theta_{\mathrm{m}}$ with the subcategory of 5 of order preserving meps.

As in the non-commutative case, for any K-coloured theory Θ with proper 6 -spine 8 there exists a u ique object-preserving theory func-

A morpnism π : $\underline{i} \longrightarrow$ j of ς_{K}

is in iff $n=m$ and π is a permutation. Hence a morpinism of is given by its source or target and a permutation. If $K=\{*\}$ it is given by a permutation alone. If source or target are clear from the context, we therefore often write $\pi \in S_{n}$ instead of $\pi \in(\underline{i}, \underline{j})$. A Bspine of type (B) nas more structure tnan one of type (A) because of the permutations. The analogue of Lemma 2.41 is

Lemma 2.43: A topological category B is a proper (3-spine of type (B) of a K-coloured theory iff $o b=0 b S_{K}$ and we nave a strictly as-
sociative bifunctor $\Theta: B \times B \rightarrow B$ and an inclusion functor $B \subset$ suen that
(a) $\oplus(\underline{i}, \underline{i})=\underline{i} \oplus \underline{j}$, the sum in \widehat{S}_{K}
(b) Tne correspondence $\left(b_{1}, \ldots, b_{n}, \pi\right) \longmapsto\left(b_{1} \oplus \ldots \oplus b_{n}\right)$. \quad (yields a nomeomorpinism
$\left(\bigcup_{\oplus_{j_{q}}=\dot{j}}^{B}\left(\underline{j}_{1}, \underline{r}(1)\right) \times \ldots \times B\left(\underline{j}_{n}, \underline{r}(n)\right) \times Q(\underline{i}, \underline{i})\right) / \sim \equiv B(\underline{i}, \underline{r})$
where $\left(b_{1} \bullet \pi_{1}, \ldots, b_{n} \Pi_{n}, \pi\right) \sim\left(b_{1}, \ldots, b_{n},\left(\pi_{1} \oplus \ldots \pi_{n}\right) \cdot \pi\right), \pi_{i}, \pi \in \otimes$
(c) $\pi_{1} \oplus \pi_{2} \in \otimes$ is the sum (in σ_{K}) of π_{1} and π_{2}
(d) Given r morpnisms $b_{q}:{\underset{\underline{i}}{q}} \rightarrow \dot{\underline{i}}_{q}$, $\underline{\underline{i}}_{q}:\left[\mathrm{m}_{\mathrm{q}}\right] \rightarrow \mathrm{K}, \dot{\underline{i}}_{\mathrm{q}}:\left[\mathrm{n}_{\mathrm{q}}\right] \rightarrow \mathrm{K}$, and $\pi \in \circledast$. Then
$\pi\left(n_{1}, \ldots, n_{r}\right) \circ\left(b_{1} \oplus \ldots \oplus b_{r}\right)=\left(b_{\pi^{-1}(1)}^{\oplus \ldots \omega_{\pi^{-1}}(r)}\right) \cdot \pi\left(m_{1}, \ldots, m_{r}\right)$
(see (2.4) for the block permutations)

If the reader is disturbed by the π^{-1} in (d) ne snould note that tne inclusion functor $\otimes \subset B$ is given by $\pi \rightarrow\left(\pi^{-1}\right) *$.

Definition 2.44: A category 9 satisfying (2.43) is called a. K-coloured PROP (for product functor and permutations) and a K-coloured theory naving a PROP as proper spine a split theory over Θ_{cm}. If tine spaces $B(\underline{i}, \underline{r})$ are CW-complexes, composition witn permutations cellular and the nomeomorpinisms (2.43(b)) and the composition in skeletal, we call 8 a CW-PROP.

Note that a PROP is completely determined by its morphism spaces $B(\underline{i}, k)$ of morpinisms into a basic object, by the composition of $a \in \mathcal{B}(\underline{i}, k)$ witn a permutation on the rignt, and by the composition maps

$$
\left[B\left(\underline{r}_{1}, \underline{i}(1)\right) \times \ldots \times \dot{B}\left(\underline{r}_{n}, \underline{i}(n)\right)\right] \times B(\underline{i}, k) \longrightarrow\left(\underline{r}_{1} \oplus \ldots \oplus \underline{r}_{n}, k\right)
$$

sending ($\left.a_{1}, \ldots, a_{n}, b\right)$ to $b \cdot\left(a, \oplus \ldots \oplus a_{n}\right)$.
A PROP is a more general concept than a PRO because we can add all
isomorphisms of \mathscr{S}_{K} to make a spine \mathscr{F} of type (A) into a spine ${ }^{\mathfrak{B}}$ of type (B), and we have an inclusion functor $B \subset B^{\prime}$.

Definition 2.45: A functor $F: M \rightarrow P^{\prime}$ of PROPs is called a PROPfunctor if it is continuous, carries basic objects to basic objects, and preserves the product functor \oplus and the permutations. Analogously for PRO-functors.

Obviously, a PROP-functor is the restriction of a theory functor P and completely determines P.

Our principal concern will be E-spaces.

Definition 2.46: A K-coloured PROP B is called a K-coloured E-tneory if each space $\forall(\underline{i}, k), k \in K$, is contractible, in otner words, if $P: 8 \rightarrow 59^{8} \mathrm{~K}$ is topologically a nomotopy equivalence. An object $X \in I_{0} p_{K}$ is called an E-space if it allows a B-action for some $K-$ coloured E-tneory B. (The monocinrome E-spaces are identical with the nomotopy-everything H-spaces of [8]).

Remark: Our whole theory developed in part from the theory of PROPs and PACTs propounded by Adams and MacLane [29]. Their PROPs are essentially the algebraic analogue of ours, and a PACT is the analogue for chain complexes. A Steenrod PACT then corresponds to an E-space.

[^0]
6. EXAMPLES OF PROS AND PROPS

(2.47) The categories 2 and 5 are examples of a CW-PRO and a CW-PROP, which we already nave discussed. The 2 -spaces are exactly the topological monoids and the 5 -spaces exactly the commutative topological monoids.
(2.48) Trivial examples of PROs can be obtained in the following way. If \mathbb{C} is a topological category, we obtain en (ob © -coloured PRO by setting

$$
\mathfrak{B}(\underline{i}, l)=\left\{\begin{array}{l}
\emptyset \text { if } \underline{i} \text { is not a basic object } \\
\mathfrak{c}(k, l) \text { if } \underline{i} \text { is the basic object } k \in o b \mathbb{s}
\end{array} \quad l \in o b \mathbb{C}\right.
$$

Composition is given by the composition in $\sqrt{5}$. Note that is a spine of considered as theory. If \mathfrak{c} nas the discrete topology, a B-space is just a $\sqrt{ }$-diagram of topological spaces. In general, a B-space is a \mathbb{E}-diagram with a topology on the morphisms. If there is no chance of confusion we denote 8 again by .
(2.49) For eacn $n \geq 1$ we define a monocinrome PROP n_{n}, the $n-t h$ littlecube category, wich operates on the n-th loop space $X=\Omega n_{Y}$, the space of all maps $\left(I^{n}, \partial I^{n}\right) \rightarrow(Y, *)$, wnere I^{n} is tine standard n-cube, ∂I^{n} its bounadry, and * the base point of Y. As before, denote the unique object [m] $\rightarrow K=\{*\}$ by m. A point $a \in \square_{n}(m, 1)$ is an ordered collection of m-cubes I_{i}^{n}, linearly embedded in I^{n}, witn disjoint interiors, and with axes parallel to those of I^{n}. Sucn an embedding is uniquely determined by the images in I^{n} of the lowest vertex $(0,0, \ldots, 0)$ and the upper vertex $(1,1, \ldots, 1)$. Hence a is given by a $2 m$-tuple $\left(x_{1}, y_{1}, \ldots, x_{m}, y_{m}\right)$ of points in I^{n}, where x_{i} is the lowest vertex and y_{i} the upper vertex of I_{i}^{n}. We topologize $a_{n}(m, 1)$ as subspace of $I^{2 m n}$. Composition of a witn a permutation $\pi \in 5_{m}$ is given by $a \cdot \pi=\left(x_{\pi 1}, y_{\pi 1}, \ldots, x_{\pi m}, y_{\pi m}\right)$. Let $b_{i} \in a_{n}\left(r_{i}, 1\right), i=1, \ldots, m$, let
$b_{i j}: I^{n} \subset I^{n}$ be the linear embedding of the j-th cube of b_{i} and let $a_{i}: I^{n} \subset I^{n}$ be the linear embedaing of the $i-t n$ cube of a. Then the $r_{1}+\ldots+r_{m}$ linear embeddings of I^{n} into I^{n} winich correspond to $a . \circ\left(b_{1} \notin \ldots \oplus b_{m}\right)$ are given by $a_{1} \cdot b_{11}, \ldots, a_{1} \circ b_{1 r_{1}}, a_{2} \circ b_{21}, \ldots, a_{2} \circ b_{2 r_{2}}, \ldots, a_{m} \circ b_{m 1}, \ldots, a_{m} \circ b_{m r_{m}}$. This defines a continuous composition in Q_{n}.
\mathcal{Q}_{n} acts on X as Iollows: Given $\left(f_{1}, f_{2}, \ldots, f_{m}\right) \in X^{m}$, the map $a\left(f_{1}, \ldots, f_{m}\right): I^{n} \longrightarrow I$ is given by f_{i} on the embedded cube I_{i}^{n} and zero elsewnere.

Let $a \in a_{n}(m, 1), a=\left(x_{1}, y_{1}, \ldots, x_{m}, y_{m}\right)$ witn $x_{i}=\left(x_{i}, \ldots, x_{i n}\right)$, $y_{i}=\left(y_{i 1}, \ldots, y_{i n}\right) \in I^{n}$. The correspondence $a \longmapsto a^{\prime}=\left(x_{1}^{\prime}, y_{1}^{\prime}, \ldots, x_{m}^{\prime}, y_{m}^{\prime}\right)$ with $x_{i}^{\prime}=\left(x_{i 1}, \ldots, x_{i n}, 0\right)$ and $y_{i}^{\prime}=\left(y_{i \uparrow}, \ldots, y_{i n}, 1\right)$ defines an inclusion of PROPs $a_{n} \subset \Omega_{n+1}$. Let a_{∞} be the PROP with $\Omega_{\infty}(m, 1)=\bigcup_{n=1}^{\infty} a_{n}(m, 1)$ with the direct limit topology.

Lemma 2.50: $\mathfrak{Q}_{\infty}(m, 1)$ is contractible for all m; inence \mathfrak{D}_{∞} is an E-category.

Proof: First observe that $\Omega_{n}(m, 1)$ has a very nice product neignbour$\operatorname{nood} N$ in $Q_{n+1}(m, 1)$, namely the set of all points $\left(x_{1}, y_{1}, \ldots, x_{m}, y_{m}\right) \in\left(I^{n+1}\right)^{2 m}$ with $x_{i, n+1}<\frac{1}{2}$ and $y_{i, n+1}>\frac{1}{2}$ for all i. Tinen $N=a_{n}(m, 1) \times\left[0, \frac{1}{2}\right)^{m} \times\left(\frac{1}{2}, 1\right]^{m}$. It follows that $0_{n}(m, 1) \subset a_{n+1}(m, 1)$ is a $S_{m}-N D R$ (see Appendix II). By Lemma A 4.10 (the prefix A refers to the appendix), it suffices to show that $\partial_{n}(m, 1)$ is contractible in $a_{n+1}(m, 1)$. Tine contracting homotopy $H: \Omega_{n}(m, 1) \times I \rightarrow \Omega_{n+1}(m, 1)$ is given by

$$
H_{t}:\left(x_{1}, y_{1}, \ldots, x_{m}, y_{m}\right)=\left(x_{1}(t), y_{1}(t), \ldots, x_{m}(t), y_{m}(t)\right)
$$

wnere

$$
\begin{aligned}
& x_{i}(t)= \begin{cases}\left(x_{i 1}, \ldots, x_{i n}, 2 t(i-1) / m\right) & 0 \leq t \leq \frac{1}{2} \\
\left((2-2 t) x_{i 1}, \ldots,(2-2 t) x_{i n},(i-1) / m\right) & \frac{1}{2} \leq t \leq 1\end{cases} \\
& y_{i}(t)= \begin{cases}\left(y_{i 1}, \ldots, y_{i n}, 1-2 t(1-i / m)\right) & 0 \leq t \leq \frac{1}{2} \\
\left(2 t-1+(2-2 t) y_{i 1}, \ldots, 2 t-1+(2-2 t) y_{i n}, i / m\right) & \frac{1}{2} \leq t \leq 1\end{cases}
\end{aligned}
$$

Originally, we proved that $\mathfrak{\Omega}_{\mathrm{n}}(\mathrm{m}, 1)$ is $(\mathrm{n}-2)$-connected for all m (as indicated in [8]) using results of Fadell and Neuwirth on configuration spaces. Since we only need that $\mathfrak{Q}_{\infty}(m, 1)$ is contractible, we prefer the present more direct and shorter proof. Our original version can be found in [34;cnapter 4].

The E-category \mathfrak{D}_{∞} is quite important because it acts on strict infinite loop spaces.

Definition 2.51: A space Z is called a strict infinite loop space if there exists a sequence of based spaces Z_{i} and based nomeomorpinisms $\omega_{i}: Z_{i} \cong \Omega Z_{i+1}, i=0,1,2, \ldots$ sucn that $Z \cong Z_{0}$.

The exponential law $\operatorname{Iop}\left(\left(I^{n}, \partial I^{n}\right), \operatorname{Iop}((I, \partial I), Z)\right)=\operatorname{Iop}_{0}\left(\left(I^{n}, \partial I^{n}\right) \times(I, \partial I), Z\right)$ deíines nomeomorpinisms $q_{n}: \Omega^{n}\left(\Omega Z_{n+1}\right) \cong \Omega^{n+1} Z_{n+1}$. The w_{i} and q_{i} combine to maps

$$
r_{n}=q_{n-1} \cdot \Omega^{n-1} w_{n-1} \circ \ldots \circ q_{i} * \Omega^{i_{w_{i}}} \circ \ldots \cdot q_{1} \circ \Omega^{1} w_{1} * w_{0}: z \approx \Omega^{n_{Z}}
$$

The action of \mathfrak{Q}_{∞} on Z is now deiined as follows: Given $\bar{a} \in \mathfrak{Q}_{\infty}(m, 1)$ and $\left(z_{1}, \ldots, z_{m}\right) \in Z^{m}$. Let $a \in Q_{n}(m, 1)$ be a representative of \bar{a}. We define

$$
\bar{a}\left(z_{1}, \ldots, z_{m}\right)=r_{n}^{-1}\left(a\left(r_{n} z_{1}, \ldots, r_{n} z_{m}\right)\right)
$$

To snow that this definition is independent of the choice of the representative a, we have to verify that

$$
r_{n}^{-1}\left(a\left(r_{n} z_{1}, \ldots, r_{n} z_{m}\right)\right)=r_{n+1}^{-1}\left(a^{\prime}\left(r_{n+1} z_{1}, \ldots, r_{n+1} z_{m}\right)\right)
$$

where a' is the image of a in $\theta_{n+1}(m, 1)$. Since $r_{n+1}=q_{n} \bullet \Omega^{n} \omega_{n} \circ r_{n}$, tinis amounts to sinowing that

$$
q_{n}\left[\Omega^{n} w_{n}\left(a\left(r_{n} z_{1}, \ldots, r_{n} z_{m}\right)\right)\right]=a^{\prime}\left(r_{n+1} z_{1}, \ldots, r_{n+1} z_{m}\right)
$$

whicn is easily verified. We thus obtain

Proposition 2.52: A strict infinite loop space is an E-space.
(2.53) We next define a PRO 0 whicn acts on loop spaces ΩY. A point
a $\in \mathfrak{O}(m, 1)$ is a $2 m$-tuple $\left(x_{1}, y_{1}, \ldots, x_{m}, y_{m}\right)$ of points in I such that $0 \leq x_{1}<y_{1} \leq \ldots \leq x_{i}<y_{i} \leq \ldots \leq x_{n}<y_{n} \leq 1$. We topologize $\mathfrak{D}(m, 1)$ as subspace of $I^{2 m}$. Considering $\left(X_{1}, y_{1}, \ldots, x_{m}, y_{m}\right)$ as element of $\mathfrak{D}_{1}(m, 1)$, we obtain an inclusion $\mathfrak{Q}(\mathrm{m}, 1) \subset \mathfrak{a}_{1}(\mathrm{~m}, 1)$. Composition in 0 is induced by the composition in 0_{1} so that we have a functor $0 \rightarrow \Omega_{1}$. Since Q_{1} acts on ΩY, so does Ω.

Lemma 2.54: $\mathfrak{O}(\mathrm{m}, \uparrow)$ is contractible for all m.

Proof: The contracting homotopy $\mathfrak{Q}(m, 1) \times I \longrightarrow \mathfrak{Q}(m, \uparrow)$ is given by

$$
\left[\left(x_{1}, y_{1}, \ldots, x_{m}, y_{m}\right), t\right] \rightarrow\left(x_{1}(t), y_{1}(t), \ldots, x_{m}(t), y_{m}(t)\right)
$$

with $x_{i}(t)=(1-t) x_{i}+t(i-1) / m$ and $y_{i}(t)=(1-t) y_{i}+t \cdot i / m$.
(2.54) Our next PRO $\mathscr{\mu}_{\infty}$ acts on A_{∞}-spaces (see 1.8). We use the models $\mathbb{K}_{i}($ see 1.7$)$ for its definition: $\mathscr{\mu}_{\infty}(m, 1)=K_{m}, m=0,1,2, \ldots$, with $K_{0}=K_{1}=*$. In (1.7) we have already defined boundary maps $\partial_{l}(r, s): K_{r} \times K_{s} \longrightarrow K_{i}, r+s=i+1$, wnicin correspond to the copy of $K_{r} \times K_{s}$ in the boundary of K_{i} indexed by $12 \ldots(l l+1 \ldots l+s-1) \ldots 1$. According to [46; §6], one can inductively construct degeneracy maps $s_{j}: K_{i} \longrightarrow K_{i-1}, i \geq 1$, for $1 \leq j \leq i$, satisfying
$\partial_{j}(r, s+t-1) \cdot\left(1 \times \partial_{k}(s, t)\right)=\partial_{j+k-1}(r+s-1, t) \cdot\left(\partial_{j}(r, s) \times 1\right)$
$\partial_{j+s-1}(r+s-1, t) \cdot\left(\partial_{k}(r, s) \times 1\right)=\partial_{k}(r+t-1, s) \cdot\left(\partial_{j}(r, t) \times 1\right) \cdot(1 \times$ twist $)$ $s_{j} \circ s_{k}=s_{k} \cdot s_{j+1} \quad$ for $k \leq j$
$s_{j} \partial_{k}(r, s)= \begin{cases}\partial_{k-1}(r-1, s) \cdot\left(s_{j} \times 1\right) & \text { for } j<k \text { and } r>2 \\ \partial_{k}(r-1, s) \cdot\left(s_{j-s+1} \times 1\right) & \text { for } k+s \leq j \\ \partial_{k}(r, s-1) \cdot\left(1 \times s_{j-k+1}\right) & \text { for } s>2, k \leq j<k+s\end{cases}$
$s_{j} \partial_{k}(i-1,2)=\operatorname{pr}_{1} \quad$ for $1<j=k<i$ and $1<j=k+1 \leq i$
$s_{1} \partial_{2}(2, i-1)=s_{i} \partial_{1}(2, i-1)=p r_{2}$
where pr_{i} is the projection onto the i-tn factor.

We obtain a composition in $थ_{\infty}$ if we specify tine composites

$$
c=a \cdot(\underbrace{1 \oplus \ldots \oplus 1}_{k-1} \oplus b \oplus \underbrace{1 \oplus \ldots \oplus 1}_{n-k})
$$

with $a \in \mu_{\infty}(n, 1)$ and $b \in \mu_{\infty}(m, 1)$. We define

$$
\begin{aligned}
c & =s_{k}(a) \in थ_{\infty}(n-1,1) \quad \text { if } m=0 \\
& =a \quad \text { if } m=1 \\
& =\partial_{k}(n, m)(a, b) \in थ_{\infty}(n+m-1,1) \quad \text { if } m>1
\end{aligned}
$$

Tne identities listed above imply the associativity of the composition.
Stasneff snows [46; Tnm 5, Lemma 7] tnat an A_{∞}-space X admits maps $M_{i}: K_{i} \times X^{i} \longrightarrow X$ for $i=2,3,4, \ldots$ sucn that
(a) $M_{2}(*, e, x)=M_{2}(*, x, e)=x$ for $x \in X,{ }^{*}=K_{2}$, e a distingrisined point of X
(b) for $\left(k_{1}, k_{2}\right) \in K_{r} \times K_{s}, r+s=i+1$, we have

$$
M_{i}\left(\partial_{k}(r, s)\left(k_{1}, k_{2}\right), x_{1}, \ldots, x_{i}\right)=M_{r}\left(k_{1}, x_{1}, \ldots, x_{k-1}, M_{s}\left(k_{2}, x_{k}, \ldots, x_{k+s-1}\right), x_{k+3}, \ldots, x_{i}\right)
$$

(c) for $k \in K_{i}$ and $i>2$, we nave

$$
M_{i}\left(k, x_{1}, \ldots, x_{j-1}, e, x_{j+1}, \ldots, x_{i}\right)=M_{i-1}\left(s_{j}(k), x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{i}\right)
$$

The adjoints $K_{i} \rightarrow \operatorname{Iop}\left(X^{i}, X\right)$ of the M_{i} define an action of μ_{∞} on X.
If X is an $A_{n}-s p a c e$, we have such maps M_{i} for $2 \leq i \leq n$. Hence the subPRO $थ_{n}$ of $\mathscr{2}_{\infty}$ generated under composition and $*$ by the morpinisms in $थ_{\infty}(m, 1), 0 \leq m \leq n$, acts on an A_{n}-space.

For future use we note [46; Prop.3] that $\mathfrak{q}_{\infty}(\mathrm{m}, 1)$ is contractible for all m and $\vartheta_{n}(m, 1)$ for all $m s n$.

7. PARTLY HOMOGENEOUS THEORIES

We introduced coloured theories mainly for the purpose of studying maps between monocinrome Θ-spaces. Given two monoids X and Y and a nomomorpism $f: X \longrightarrow Y$, we can construct an $\because \in \mathbb{Q}_{1}$-space $F: \mathscr{U} \otimes \mathbb{B}_{1} \rightarrow$ Iop sucn that $F \mid \mu \otimes\{0\}$ derines the monoid structure on X and $F \mid \mathscr{A} \otimes\{1\}$ the monoid structure on Y (Recall that δ_{1} is the category with objects 0,1 and one morpnism from 0 to 1 . We denote the sub-
category consisting of the object i by $\{i\})$. Now $\mathbb{A} \otimes \Omega_{1}$ is $\{0,1\}-$ coloured, and we have exactly one morphism $\{0,1\} \rightarrow\{1\}$ (see (2.22)). It is mapped by F to $g: X X Y \rightarrow Y$ given by $g(x, y)=f(x) \cdot y \cdot A l-$ though such "mixed" maps occur naturally, it sometimes seems desirable to allow only operations $X^{n} \rightarrow X, X^{n} \rightarrow Y$, and $Y^{n} \rightarrow Y$ for the study of maps from X to Y. In the literature this restriction always has been made. For tinis purpose we define partly nomogeneous theories.

Let $H_{L} G_{K \times I}$ be the full subcategory of $S_{K \times L}$ consisting of all objects $\underset{i}{ }:[n] \rightarrow K \times L$ sucn that (projection) $0 \underset{i}{i}:[n] \rightarrow K \times L \longrightarrow L$ is constant.

Definition 2.55: A (finitary) L-nomogeneous (K K I) -coloured theory is a topological category with ob $\Theta=o b H_{L} \mathcal{S}_{\mathrm{K} \times \mathrm{L}}$ togetner with an object and product preserving functor $H_{L} \mathcal{S}_{\mathrm{KxL}}^{\mathrm{op}} \rightarrow$. Again we assume tnat $\Theta\left(\underline{i}, \dot{\underline{L}}_{1} \oplus \ldots \oplus \underline{j}_{n}\right)$ is nomeomorpnic to $\Theta\left(\underline{i}, \dot{\underline{I}}_{1}\right) \times \ldots \times \oplus\left(\underline{\underline{i}}, \dot{\underline{i}}_{n}\right)$. Tine definitions for a Θ-space and a nomomorpism of 0 -spaces are analogue to those of (2.3). A theory functor from a L-nomogeneous (K $\mathrm{K} \times \mathrm{L}$) -coloured theory Θ_{1} to a N-homogeneous ($M \times N$)-coloured theory Θ_{2} consists of functions $f: K \longrightarrow M, g: L \longrightarrow N$, and a continuous functor $F: \oplus_{1} \rightarrow @_{2}$ such that

commutes.

Here again we denote tine product by \oplus. In contrary to ininomogeneous theories, \oplus is not a bifunctor on a partly nomogeneous tineory because it is not everywnere defined, but it benaves like a bifunctor where it is defined.

Note that (2.55) is more general tnan (2.3) because it contains the innomogeneous theories, just put $I=\{*\}$. If $K=\{*\}$, we call a

L-nomogeneous theory completely nomogeneous.
Any ($K \times I$)-coloured theory Θ nas a L-nomogeneous part, denoted by ${ }^{H_{L}}{ }^{\oplus}$, namely the full subcategory of all objects coming from $H_{L} \mathcal{S}_{K \times L}^{o p}$. If \mathfrak{c} is e topological category, we frequently denote the (ob $\mathbb{\sigma}$)-homogeneous part of $\Theta \otimes \mathbb{Q}$ by $\mathrm{H}_{\mathbb{\Sigma}}(\otimes \otimes)$.

Interchange, free Θ-spaces, PROs and PROPs can be defined for the partly nomogeneous version in an analogous manner and similar results nold. We just want to mention one fact. The bifunctor \oplus for PROs and PROPs coming from the product bifunctor of the enveloping theories is not everywnere defined for partly nomogeneous PROs and PROPs. On objects, $\dot{i} \oplus \dot{\mathcal{L}}$ exists whenever it exists in $H_{L} \mathcal{S}_{K \times L}$, and $f \oplus g$ exists for $f \in \mathscr{B}(\underline{i}, \underline{p}), g \in B(\underline{j}, \underline{q})$ wnenever $\underline{i} \oplus \underset{j}{j}$ and $\underline{p} \oplus$ exist. If Θ is defined, it benaves in the same manner as for ordinary PROs and PROPs.
(2.56) Example: Let $K=\{*\}$ and $L=\{0,1\}$. We construct a L-homogeneous ($K \times I_{1}$)-coloured PRO B which defines A_{∞}-maps between monoids (see (1.14)). There are exactly two objects $[n] \rightarrow K x I$ in \Rightarrow for $n>0$, namely one for each object in L. Denote the one corresponding to 0 by n° and the one corresponding to 1 by n^{1}. Define $B\left(m^{0}, 1^{\circ}\right)=\left\{\lambda_{m}\right\}$,
 sisting of all objects $0,1^{\circ}, 2^{\circ}, \ldots$ and $0,1^{1}, 2^{1}, \ldots$ are copies of the PRO थ. It remains to define the compositions

$$
\begin{aligned}
& \mu_{m} \cdot\left[\left(t_{1}^{1}, \ldots, t_{r_{1}}^{1}\right) \oplus \ldots \oplus\left(t_{1}^{m}, \ldots, t_{r_{m}}^{m}\right)\right]=\left(t_{1}^{1}, \ldots, t_{r_{1}}^{1}, 1, t_{1}^{2}, \ldots, t_{r_{2}}^{2}, 1, t_{1}^{3}, \ldots, 1, t_{1}^{m}, \ldots, t_{r_{m}}^{m}\right) \\
& \left(t_{1}, \ldots, t_{m}\right) \cdot\left(\lambda_{r_{1}} \oplus \ldots \oplus \lambda_{r_{m+1}}\right)=(\underbrace{0, \ldots, 0}_{r_{1}-1}, t_{1}, \underbrace{0, \ldots, 0}_{r_{2}-1}, t_{2}, 0, \ldots, t_{m}, \underbrace{0,1}_{r_{m+1}, \ldots, 0})
\end{aligned}
$$

According to (1.14), a map $f: X \longrightarrow Y$ between monoids is an $A_{\infty}-$ map if there are maps $F_{i}: I^{i-1} \times X^{i} \rightarrow Y$ such tinat $F_{1}=f$ and
$F_{i}\left(t_{1}, \ldots, t_{i-1}, \ldots, x_{1}, \ldots, x_{i}\right)= \begin{cases}F_{i-1}\left(t_{1}, \ldots, t_{j}, \ldots, t_{i-1}, x_{1}, \ldots, x_{j} x_{j+1}, \ldots, x_{i}\right) & \text { if } t_{j}=0 \\ F_{j}\left(t_{1}, \ldots, t_{j-1}, x_{1}, \ldots, x_{j}\right) F_{i-j}\left(t_{j+1}, \ldots, t_{i}, x_{j+1}, \ldots, x_{i}\right) & \text { if } t_{j}=1\end{cases}$
Hence the adjoints of F_{i} define an action H of \mathscr{F} such that $H^{(\beta)}\left(1^{0}, 1^{1}\right)$)=\{f\},
and vice versa. If $f: X \longrightarrow Y$ is only an A_{n}-map between monoids, we can define an action of a subcategory B^{\prime} of B on (X, Y) extending f and the monoid structures, \boldsymbol{B}^{\prime} is generated under composition and \oplus by the two copies of μ in B and the morpisms of $B\left(m^{0}, 1^{1}\right)$ for $m \leq n$.

We note that the morphism spaces of g are contractible and so are the morpinism spaces of \mathcal{B}^{\prime} into basic objects witn exception of $\mathcal{B}^{\prime}\left(\mathrm{m}^{\circ}, 1\right)$ for $m>n$.

THE BAR CONSTRUCTION FOR THEORIES

In Cnapter I we defined e structure we wnich is a monoid structure up to conerent nomotopies. In this chapter we generalize the process $थ \longmapsto$ Wथ to general theories ©. We need results from nomotopy theory, which are not directly connected with the development of our theory and therefore proved in an appendix. Recall that we refer to the appendix with the prefix A.

1. THE PHEORY W@

 the forgetful functor, and F : or pace —— Igeorles the free functor. Starting point for the construction of $W @$ is the category $F U$ © of copses associated with U@ (see II; §2). To each internal edge of a tree of FU@ we associate a real number in $I=[0,1]$, called its length. A tree of a given snape λ can be considered as a point of a topological space $(\pi \otimes(\underline{i}, k)) \times \mathcal{S}_{K}(\underline{i}, \underline{j})($ see $D e r . ~ 2.6 \mathrm{ff})$; and if λ has r internal edges, a. tree of snape λ with lengtins can be considered as a point of the topologice.l space

$$
M_{\lambda}=(\pi \Theta(\underline{i}, k)) \times \sigma_{K}(\underline{i}, \underline{j}) \times I^{r}
$$

We impose three kinds of relations on the space of trees with lengtins: (3.1 a) We may remove any vertex labelled by an identity of ${ }^{(0)}$: We give tine resulting edge the lengtn $t_{1} * t_{2}=t_{1}+t_{2}-t_{1} t_{2}$, where t_{1} and
t_{2} are the lengtins of the edges below and above this vertex (By convention, the roots and twigs have lengtins 1)

$\left(3.1\right.$ b) We may replace any vertex label a o σ^{*} by a, by changing the part of the tree above this vertex 2.8 in (2.8(b)), but for trees with lengtins.

(3.1 c) We may remove any edge of lengtin 0 : We unite tine vertices at the two ends to form a new vertex, whose label is the tree composite in ${ }^{(6)}$ of the tree consisting of the two vertices and their incoming and outgoing edges (compare I,§4)

$=$

where $c=a \cdot\left(i d_{k_{1}} \oplus \ldots \oplus i d_{k_{i-1}} \oplus b \oplus i d_{k_{i+1}} \oplus \ldots \oplus i d_{k_{n}}\right)$ if the incoming edges of a nave the colours k_{1}, \ldots, k_{n} and b sits on the $i-\operatorname{th}$ edge.
$W @(\underline{i}, \underline{i})$ is the space of all copses on $U \Theta$ with lengths modulo these three relations. We compose two copses with lengtins by taking their composite in $\mathrm{FU} \circledast$ (see 2.7 ff) and giving the new internal edges ob-
tained by grafting the roots of the rignt copse to the twigs of the left one the lengtin 1 . This makes W into a tineory.
($3.1 \mathrm{a*}$) In relation (3.1 a) we could replace $t_{1} * t_{2}=t_{1}+t_{2}-t_{1} t_{2}$ by $t_{1} * t_{2}=\max \left(t_{1}, t_{2}\right)$. Unless stated otherwise our results nold for both definitions of $t_{1} * t_{2}$.

Remark 3.2: For the definition of $W \circledast$ we used that the unit internal I with multiplication $*$ is monoid. We can make the same construction for an arbitrary monoid M witn multiplication * and unit e naving an
 We then give each internal edge a lengtin in M, each root a length in $u * M$ and each twig a length in $M * u$ (nence the trivial trees nave lengtins in $u_{*} M_{*} u$). The relations (3.1) are the same in the M-version with 0 in (3.1 c) replaced by e. When we compose we give the new internal edge obtained by grafting a twip of lengtn t_{1} to a root of length t_{2} tine lengtn $t_{1} * t_{2}$. Of course, most of our results do not nold for a general M; we nave to impose more restrictions.

Proposition 3.3: W : Ebeorieg $->$ Ibeories is a functor.

Proof: Immediate.

Let W° be the composite of the free and the forgetful functor Igeorieg \longrightarrow Gq spaces \longrightarrow Ibeories, tinen $W^{\circ} \Theta$ is obtained from $F U \Theta$ by imposing tine relations ($3.1 \mathrm{a}, \mathrm{b}$) forgetting the lengtins. Hence we can include.$^{\circ} \Theta$ in $W @$ as the subcategory represented by trees wiose internal edges all have lengtin 1 . We obtain

Proposition 3.4: The inclusion Iunctors $i \Theta$: $W^{\circ} \Theta \subset W^{\infty} \Theta$ define a natural transiomation $i: W^{\circ} \rightarrow W$.

The back adjunctions $\epsilon \otimes: W^{\circ} \Theta \longrightarrow \Theta$ extend to a natural transformation $\varepsilon: W \longrightarrow$ Id Ibeories since it is compatible with the relations (3.1).

Definition 3.5: Tine natural functor $\varepsilon=\epsilon \Theta: W \Theta \rightarrow \Theta$ is called the augmentation of Θ. The composite maps $\Theta(\underline{i}, k) \underset{\eta}{ } \mathcal{W}^{0} \Theta(\underline{i}, k) \subset W \Theta(\underline{i}, k)$, where η is the front adjunction, are called the standard section of Θ.

Proposition 3.6: If we use (3.1 a*) instead of (3.1 a), the augmentation functor $\varepsilon: W \otimes \rightarrow \infty$ is topologically a nomotopy equivalence. In fact, there is a fibrewise strong deformation retraction of $W @(\underline{i}, k)$ into the standard section, i.e. a strong deformation retraction H_{t} sucin that $\varepsilon \circ H_{t}=\varepsilon$ for all $t \in I$.

Proof: H_{t} replaces each edge lengtn u by tu, where t runs from 1 to 0.

Relation (3.1 b) shows that for K-coloured spist theories Θ over ${ }^{(3)} \mathrm{cm}$ or Θ_{m} with spine \mathfrak{B} we need only consider trees whose vertex labels lie in ${ }^{\Re}$. We deduce that $W \oplus$ is again a split tineory over Θ_{cm} respectively Θ_{m}. If B is a PROP the canonical spine W of W consists of all copses witn vertex labels in B sucn that all elements of $\{1, \ldots, n\}$ occur as twig labels in trees with n twigs, subject to the relations ($3.1 \mathrm{a}, \mathrm{c}$) and relation (3.1 b), but only for permutations. If B is a PRO, the spine W^{W} consists of all copses with vertex labels in buch tnat eacn tree with n twigs nas the twig labels 1,2,..., n in clockwise order. Consequently, twig labels may be omitted. The relations are ($3.1 \mathrm{a}, \mathrm{c})$, relation (3.1 b) becomes redundant.

So if we refer to relation (3.1 b) in connection with PROPs, we from now on assume thet the set operations are permutations. In connection with PROs we will omit it.

We restrict our attention to the more general case of a PROP. The necessary modifications for PROs are made easily. Just neglect all group actions whicn will be defined for PROPs in the following.
(3.7) In view of (3.1 c) we assume from now on that for any K-coloured PROP or PRO B, to wnicn the functor W is applied, eacn pair $\left(\mathfrak{B}(k, k),\left\{i d_{k}\right\}\right), k \in K$, is a NDR (cf. Appendix II).

In order to be able to treat tine partly nomogeneous case simultaneously we takea ($K \times L$) -coloured PROP ${ }^{3}$. We consider both wha HW $=H_{L} W^{W 8}$. Recall that the partly nomogeneous case is more generai because it includes the inhomogeneous one (take $L=\{*\}$) and also the completely nomogeneous one (take $K=\{*\}$). Nevertneless, we start considering the case wh, because it is easier. The generalization to HW

We define the r-skeleton subcategory $W^{r_{B}}$ of W^{3} as generated under composition by copses whose trees nave at most r internal edges, consider the space M_{λ} of all trees of a given sinape λ in W, i.e. the trees of M_{λ} have the same underlying grapins and the same edge colours (see 2.6). Recall tinat M_{λ} nas the form

$$
M_{\lambda}=I^{r} \times \prod_{j}{ }^{\mathfrak{B}}\left(\underline{i}_{j}, k_{j}\right)^{m(j)} \times S_{n}
$$

if λ nas r internal edges, n twigs and $m(j)$ vertices with labels in ${ }^{B}\left(\underline{i}_{j}, k_{j}\right), k_{j} \in K x L$, because a tree of a given snope is specified by its edge lengths, its twig labels winich are a permutation of $\{1, \ldots, n\}$, and its vertex labels.
(3.8) An element of M_{λ} represents a morpnism of W^{r-1} iff one of the following conditions nold
(i) Some vertex label is an identity (for then (3.1 a) applies)
(ii) Some internal edge nas length 0 (for then (3.1 0) applies)
(iii) Some internal edge nas length 1 (for then the tree decomposes)

Let $N_{\lambda} \subset M_{\lambda}$ be tne subspace of all points satisfying one of these conditions. It remains to account for relation (3.1 b). Let Λ be the set of all tree snapes winich can be obtained from λ by an iterated application of (3.1 b). We call Λ the sinape orbit of λ. We have a natural group G^{\prime} acting on $M_{\Lambda}=\bigcup_{\lambda \in \Lambda} M_{\lambda}$, winich acts on the summand M_{λ} as follows: The group S_{r} permutes the coordinates of I^{r}, the group S_{n} acts on the set S_{n} of twig labellings by composition on the rignt, the group $S_{m}(j)$ permutes the factors of $B\left(\underline{i}_{j}, k_{j}\right)^{m(j)}$, and $\left(S_{q}\right)^{m(j)}$ a.lso acts on $B\left(\underline{i}_{j}, k_{j}\right)^{m(j)}$ if $\underline{i}_{j}:[q] \rightarrow K \times I_{\text {, }}$, by the action of S_{q} on ${ }^{B}\left(\underline{i}_{j}, K_{j}\right)$ by composition on the rignt. Let G be the subgroup of G^{\prime} generated by all elements g winich map M_{λ} into itself and for winich the trees $g(A)$ and A are related by a single application of (3.1 b). We call G tine symmetry group of the sinape λ. The space N_{λ} is an invariant subspace of M_{λ}, and the map $\left.N_{\lambda} \rightarrow W^{r-1} \mathcal{B}_{(i}, k\right)$ sending trees to their corresponding morpinisms factors tinrougn a map

$$
v_{\lambda}: N_{\lambda} / G \longrightarrow W^{r-1} \mathfrak{g}(\underline{i}, k)
$$

Lemma 3.9: (a) $W^{r} B(\underline{i}, k)$ is obtained from $W^{r-1} B(\underline{i}, k)$ by adoining spaces M_{λ} / G relative to N_{λ} / G with attacning map v_{λ}, one for each shape orbit of snapes with r internal edges.
(b) W (\mathbf{i}, k) is the colimit $\left(=\right.$ direct limit) of the $W^{r}(\underline{i}, k)$
(c) If each $B(\underline{i}, k)$ is Hausdorff, so are $W^{r} B(\underline{i}, k)$ and $W B(\underline{i}, k)$
(d) If \mathfrak{B} is a CW-PROP, so are $W^{P} B$ and W^{W}

Proof: (a) Since the identities of 8 are closed (3.7), each N_{λ} is closed in M_{λ}, and nence $W^{r-1}(\underline{i}, k)$ closed in $W^{r_{g}}(\underline{i}, k)$. Hence $U \subset W^{r_{B}}(\underline{i}, k)$ is closed iff it is closed in $W^{r-1} \mathfrak{B}(\underline{i}, k) U_{v_{\lambda}} M_{\lambda} / G$. (b) By the argument of (a), $W^{r_{B}(\underline{i}, k)}$ is closed in W (i,k). Given
$\left.U \subset W^{(1, k}\right)$ sucin that $U \cap W^{r}(\underline{i}, k)$ is closed for all r and let V be the set of representing trees of U, then $V \cap M_{\lambda}$ is closed for all λ. Hence V and therefore U is closed.
(c) It follows from (A 2.3) and (A 2.4) that (M_{λ}, N_{λ}) is a G-NDR. Consequently ($M_{\lambda} / G, N_{\lambda} / G$) is a NDR. The result now follows from (A 4.1). (d) Use that ($M_{\lambda} / G, N_{\lambda} / G$) is a $C W$-pair and v_{λ} is skeletal.

The most direct way to construct PROP-functors from w to a PROP © is to construct a PROP-Functor from the PROP of copses with edge lengtins (see $\S 1$) to wich factors through the relations (3.1) modified for PROPs. Let M_{λ} be as above. Composition witn permutations π on the rignt is given by replacing a twig labelling s by π^{-1} 。 5 . (Recall that composition on the rignt with π corresponds to composition with the set operation $\left(\pi^{-1}\right)^{*}$). This rignt action of S_{n} on M_{λ} commutes witin the G-action, so that v_{λ} actually is a. S_{n}-equiveriant map. A PROP-functor $\mathcal{I} \longrightarrow \mathbb{C}$ has to be equivariant with respect to tine symmetric groups. It induces a PROP-functor wh $\rightarrow \sqrt{ } \rightarrow$ provided it factors througn (3.1 a, c) and the G-actions. To avoid considering the G-action and the S_{n}-action on M_{λ} independently we combine the two. We decompose M_{λ} as

$$
M_{\lambda}=\bigcup_{\xi \in S_{n}} I^{r} \times \prod_{j} \forall\left(\underline{i}_{j}, k_{j}\right)^{m(j)} \times \xi
$$

and we denote the summand associated with ξ by $P_{\lambda, \xi^{*}}$. An element $g \in G$ maps $P_{\lambda, \xi}$ onto some $P_{\lambda, \eta}$, and η is of the form $\eta=5 \cdot \theta\left(g^{-1}\right)$, where $\theta\left(g^{-1}\right)$ is a permutation wnicin only depends on g. The correspondence $g \longmapsto \theta(g)$ yields a nomomorpinism

$$
\theta: G \longrightarrow S_{n}
$$

Put $P_{\lambda}=P_{\lambda, i d}$ and define a G-action on P_{λ} by taking the composite

$$
P_{\lambda} \times G \longrightarrow M_{\lambda} \longrightarrow P_{\lambda}
$$

whose first map is the G-action on M_{λ} and wnose second map is induced by the homeomorpnisms $P_{\lambda, 5} \rightarrow P_{\lambda}$ winich forget the S_{n}-coordinate.

Hence $A \in P_{\lambda}$ and $g(A) \circ \theta(g) \in P_{\lambda, \theta\left(g^{-1}\right)}$ are related by iterated applications of (3.1 b).

Let $S_{\underline{i}}$ denote the subgroup of isomorpnisms of $\mathcal{S}_{K \times L}(\underline{i}, \underline{i})$. Then $S_{\underline{i}}$ acts on the rignt of $\mathfrak{B}(\underline{i}, k)$ by composition. We note for future use
 P_{λ}.

If i is the source of the trees of P_{λ} and k their target, we can derine a G-action on $\mathbb{C}(\underline{i}, k)$ for any PROP \mathfrak{c} by

$$
g(a)=a \cdot \theta\left(g^{-1}\right)
$$

If we put $Q_{\lambda, \xi}=N_{\lambda} \cap P_{\lambda, \xi}$ and $Q_{\lambda}=N_{\lambda} \cap P_{\lambda}$, we nave a G-equivariant "characteristic" map

$$
u_{\lambda}:\left(P_{\lambda}, Q_{\lambda}\right) \rightarrow\left(W^{r_{B}}(\underline{i}, k), W^{r-1} \mathfrak{B}(\underline{i}, k)\right)
$$

sending trees to their corresponding morpinsms. It snould be stressed that the G-action on P_{λ} is not the restriction of the G-action on M_{λ}. Composing the image of u_{λ} with all elements of S_{n} from the rignt, we account for all morpinisms represented by tine elements of M_{Λ}, and as λ runs tinrougn a complete set of representatives of shape orbits, we account for all morpinsms of WB.

The treatment of the L-nomogeneous case differs only slightly. Let us call k_{1} the $K-c o l o u r ~ a n d k_{2}$ the $L-c o l o u r$ of $k=\left(k_{1}, k_{2}\right) \in K \times L$. We only consider tree sinapes λ for winich the twigs nave all the same $L-$ colour, because exactly such trees represent morpinisms in HWM. Let M_{λ} be as before. The elements of M_{λ} satisfying (3.8) (i) or (ii) represent morpnisms in H^{r-1}, but not necessarily those satisfying (3.8) (iii), because the tree mignt not decompose into representatives of morphisms in HWB. It does decompose "correctly" if there is acollection of edges of lengths 1 whicn separates tine tree into a copse and a tree whose twigs have the same L-colour. To deal with this phenomenon we refine our filtration. Let $H W^{r}, q_{B}$ be the subcategory of

HW generated under composition by copses whose trees represent elements of $\mathrm{HW}^{r-1} B$ or have exactly r internal edges of which at least
 sequently, let $M_{\lambda, q}$ be the subspace of those trees of M_{λ} which have at least $r-q$ edges of lengtins $1, P_{\lambda, \xi, q}=P_{\lambda, \xi} \cap M_{\lambda, q}$ and $P_{\lambda, q}=P_{\lambda, i d, q}$.
(3.8*) An element of $M_{\lambda, q}$, $q \geq 0$, represents an element of $H W^{r}, q-1_{B}$
 mutations) iff one of the following conditions nolds:
(i) Some vertex label is an identity
(ii) Some internal edge nas length 0
(iii) There is a collection of edges of lengths 1 which separates the tree into a copse and a tree whose twigs all nave the same Lcolour
(iv) There are more than $r-q$ internal edges of lengtins 1. The first three cases characterize the elements of $M_{\lambda, q}$ representing morpinisms in $H W^{r-1}$. Let $Q_{\lambda, q}$ be the set of all elements of $P_{\lambda, q}$ satisfying one oi the conditions (3.8*). Tne G-action on P_{λ} restricts to a G-action on the pair $\left(P_{\lambda, q}, Q_{\lambda, q}\right)$, and we again nave G-equivariant cnaracteristic maps

$$
u_{\lambda, q}:\left(P_{\lambda, q}, Q_{\lambda, q}\right) \longrightarrow\left(H W^{r}, q_{\mathfrak{B}}(\underline{i}, k), H W^{r}, q-1_{B}(\underline{i}, k)\right)
$$

An analogue of Lemma 3.9 for the L-nomogeneous case can be proved in the same manner.

Let \mathbb{s} be a topological category with finite products. Let $X_{1}, X_{2}, \ldots, X_{n} \in$ ob \mathbb{E}. A permutation $\pi \in S_{n}$ defines a map

$$
\pi: x_{\pi 1} \times \ldots \times x_{\pi n} \longrightarrow X_{1} \times \ldots x_{n}
$$

the obvious shuffle corresponding to the set operation (π^{-1})*. For each $k \in K$ we take an object X_{k} of \mathfrak{c} and define $X_{\underline{i}}$ for $i_{i}=\left\{i_{1}, \ldots, i_{n}\right\}$ to be the object $X_{i_{1}} \times \ldots X_{i_{n}}$. We then nave a G-action on $\mathbb{C}\left(X_{\underline{i}}, Y\right)$ by $g(a)=a \cdot \theta\left(g^{-1}\right)$.

Definition 3.11: Let \mathbb{S} and \mathbb{S}^{\prime} be topological categories with finite products, let B be a partly nomogeneous PROP and $\mathscr{B l}^{\prime}$ a partly nomogeneous PRO. A functor $F: \mathbb{C} \longrightarrow \mathbb{S}^{\prime}$ is called multiplicative if it is continuous and preserves products. A functor $G: B \rightarrow \mathbb{S}$ is called multiplicative if it is continuous, maps \oplus to the product bifunctor x, and preserves permutations. A functor $H: \mathcal{B}^{\prime} \rightarrow \mathbb{S}^{\prime}$ is called multiplicative if it is continuous and carries \oplus to x. The last two cases are equivalent to saying that G is a \mathscr{B}-space and H a \boldsymbol{B}^{\prime}-space in \mathbb{C}.

Lemma 3.12: Let © be a topological category with finite products and \mathfrak{B} be a. (KxL)-coloured PROP as above.
(a) Given a multiplicative functor $F: H W^{r}, \mathrm{q}^{-1} \boldsymbol{1}_{8} \longrightarrow \mathbb{C}$ and a collection of G-equivariant maps $f_{\lambda}: P_{\lambda, q} \longrightarrow \mathbb{C}\left(F_{\underline{i}}, F(k)\right)$ extending $F \cdot\left(u_{\lambda, q} \mid Q_{\lambda, q}\right)$, one for eacn shape orbit of trees with r internal edges, then there is a unique multiplicative functor $F^{\prime}: H^{r}, q_{\mathfrak{B}} \longrightarrow \mathbb{v}$ tnat extends F and satisfies $F^{\prime} \circ u_{\lambda, q}=f_{\lambda}$ for all λ.
(b) Suppose given for eacn r and eacn $q>0$ a multiplicative functor $F_{r, q}: H W^{r, q_{B}} \longrightarrow\left(s\right.$ sucn that $F_{r, q-1}=F_{r, q} \mid H W^{r}, q-1_{\mathcal{B}}$ (nere put $\mathrm{F}_{\mathrm{r}, \mathrm{o}}=\mathrm{F}_{\mathrm{r}-1, \mathrm{r}-1}$). Then there exists a unique multiplicative functor $F: H W B \rightarrow \mathbb{E}$ sucin that $F \mid H W^{r}, q_{B}=F_{r, q}$ for all r and q. (c) Botin (a) and (b) also nold if we replace © by a PROP and the word multiplicative functor by PROP-functor.

Proof: (a) Since F^{\prime} nas to be multiplicative, a representative $A \in P_{\lambda, \xi}, q$ nas to be mapped to $f_{\lambda}\left(A \cdot \xi^{-1}\right)$. This determines a map ori the space or all representing trees of $H W^{r}, q_{B}$. Since the f_{λ} are equivariant, extend F 。 $\left(u_{\lambda, q} \mid Q_{\lambda, q}\right)$, and eacn decomposable morpinism of $P_{\lambda, q}$ lies in $Q_{\lambda, q}$ this map factors througn a functor $H W^{r}, q_{\mathcal{B}} \longrightarrow \mathbb{G}$, the required functor F^{\prime}.
(b) is an immediate consequence of the nomogeneous version of (3.7 b). The proof of (c) uses the same arguments.

Remark: A similar result, with no group actions, nolds for PROs.

Definition 3.13: A family of functors $H(t): \mathbb{S} \longrightarrow \mathcal{D}, t \in I$, of topological categories is called a nomotopy of functors if $H(t)(e)$ is independent of t İor all e \in ob \mathbb{S} and the functions $\mathfrak{c}\left(e, e^{\prime}\right) \times I \longrightarrow \mathcal{D}\left(H(0)(e), H(0)\left(e^{\prime}\right)\right)$ given by $(f, t) \longmapsto H(t)(f)$ are continuous.

Let us state a irst application of (3.12). Given a subcategory of $H W B$, we denote tine space of all elements of $P_{\lambda, q}$ winicn represent a morpinism in $\sqrt{5}$ by $D_{\lambda, q}$. We call $\sqrt{3}$ an admissible subcategory if eacn $D_{\lambda, q}$ is closed in $P_{\lambda, q}$ and each pair ($P_{\lambda, q}, Q_{\lambda, q} \cup D_{\lambda, q}$) is a $G-N D R$ and if $a \cdot b$ or $a \oplus b$ are in \mathfrak{b} tinen so are a and b.

Proposition 3.14: Let be an admissible subcategory of HW . Suppose given a multiplicative functor F from HWB to a topological category (with finite products and a nomotopy of multiplicative functors $H(t): ⿹ \rightarrow \mathbb{C}$ sucn that $H(O)=F \mid S$. Then there exists a nomotopy of muitiplicative functors $F(t): H W B \rightarrow T$ extending $H(t)$ and F. Tine same nolds if we substitute $\sqrt{5}$ by a PROP and use PROP-functors.

Proof: Let $\mathrm{F}^{-1, q}(\mathrm{t})$ be any nomotopy of multiplicative functors from $H W^{-1}, q_{B}$ to 5 extending $H(t) \mid H W^{-1}, q_{B} \cap D$. Inductively suppose we nave deîined a nomotopy of multiplicative functors $\mathrm{F}^{\mathrm{r}, \mathrm{q}-1}(\mathrm{t})$: $\mathrm{HW}^{\mathrm{r}, \mathrm{q}-1} \mathrm{~B} \rightarrow \mathbb{C}$ extending the restriction of $H(t)$ to $H W^{r}, q^{-1} B \cap \mathcal{D}$. Using (3.12) we only nave to deíine a nomotopy of G-equivariant maps $f_{\lambda}(t): P_{\lambda, q} \rightarrow \mathbb{C}\left(F^{r}, q-1(t)(\underline{i}), F^{r, q-1}(t)(k)\right)$ extending $F \cdot u_{\lambda, q}$ for $t=0$ and $F^{r}, q^{-1}(t) \cdot\left(u_{\lambda, q} \mid D_{\lambda, q^{\prime \prime}} Q_{\lambda, q}\right)$. Tnis is possible because \mathcal{D} is admissible.

3. LIFTING THEOREMS

Let B be a (K×L)-coloured PROP as in the previous section. We first sinow that the augmentation functor $\varepsilon: H W \longrightarrow H$ is a homotopy equivalence. Since $H^{W} \subset W^{B}$ and $H B \subset$ are full subcategories, this follows from

Proposition 3.15: For each object $\underset{\text { i }: ~}{[n]} \rightarrow K \times L$ of B and each $k \in K \times I$ the $\operatorname{map} \epsilon: W(\underline{i}, k) \longrightarrow B(\underline{i}, k)$ is a S_{n}-equivariant nomotopy equivalence with the standard section as nomotopy inverse. If the identities of \mathscr{F} are isolated, the S_{n}-equivariant deformation H_{t} of W月 (i,k) into the standard section can be chosen to be fibrewise.

If we use relation ($3.1 \mathrm{a}^{*}$), the statement follows from the proof of (3.6), but not so if we use (3.1 a). The following proof works for botin cases.

Proof: We filter W (i,k) by the subspaces F_{r} of morpinisms represented by trees with at most r internal edges. An element of M_{λ} represents a morphism in F_{r-1} iff (3.8)(i) or (ii) nolds. Let R_{λ} be the subspace of M_{λ} of those elements. We know from (A 2.4) that R_{λ} is a G-equivariant $S D R$ of M_{λ}. Hence R_{λ} / G is a $S D R$ of M_{λ} / G. The S_{n}-action on M_{λ} given by $\pi: P_{\lambda, \xi} \longrightarrow P_{\lambda, \pi} \mathcal{1}_{0}$ g makes R_{λ} / G into an S_{n}-equivariant $S D R$ of M_{λ} / G. Since F_{r} is obtained from F_{r-1} by attaching M_{λ} / G by the obvious S_{n}-equivariant map $R_{\lambda} / G \longrightarrow F_{k-1}$, tine space F_{r-1} is an S_{n}-equivariant $S D R$ of F_{r}. It follows from (A 4.5) that the standard section F_{o} is a S_{n}-equivariant $S D R$ of $W B(i, k)$.

If A nes isolated identities, we may restrict our attention to the space of those trees which do not nave an identity as vertex label, because this space is open and closed in the space of all trees. We then can take the deformation H_{t} of the proof of (3.6).

Definition 3.16: Let $\sqrt{5}$ and \mathfrak{T} be topological categories. A continuous functor $F: \mathbb{C} \longrightarrow D$ is called a nomotopy equivalence if it is bijective on objects and each $F: \mathbb{C}(X, Y) \rightarrow \mathfrak{D}(F X, F Y)$ is a nomotopy equivalence. If \mathbb{C} and \mathfrak{D} are PROPs or topological categories with finite products and F a PROP-functor or multiplicative, we call F an equivariant equivalence if it is bijective on objects and each $F: \mathbb{C}(X, Y) \rightarrow \mathfrak{D}(F X, F Y)$ is an equivariant nomotopy equivalence. We call F a fibred nomotopy equivalence (equivariant fibred equivalence) if eacn $F: \mathbb{C}(X, Y) \rightarrow \mathcal{D}(F X, F Y)$ nas a (equivariant) section and there is a (equivariant) strong deformation retraction $H_{t}: \mathbb{C}(X, Y) \longrightarrow \mathbb{C}(X, Y)$ into the section such that $F \circ H_{t}=F$ for all $t \in I$.

We use the following theorem to replace naturally occurring PROPs by the artificial bar construction PROP WB.

Theorem 3.17 (Lifting Theorem): Given a diagram consisting of a (K×L)colured PROP 8 , L-nomogeneous ($K \times L$) -coloured PROPs 5 and \mathfrak{V}, an admis-

sible subcategory \mathfrak{B} of $\mathrm{H}_{\mathrm{L}} \mathrm{W}$, PROP-functors F and G, a continuous functor H^{\prime} and a nomotopy of functors $K^{\prime}(t): B \rightarrow \mathbb{C}$ from $F \circ(\varepsilon \mid \mathfrak{B})$ to $G \bullet H^{\prime}$, botn preserving objects, $\boldsymbol{\oplus}$, and permutations. We assume
(i) $G: D \longrightarrow \mathbb{G}$ is an equivariant equivalence for all i and k
$O R$ (ii) $G: \mathcal{B} \longrightarrow \mathbb{C}$ is a nomotopy equivalence and each $\mathbb{B}(\underline{i}, k)$ is a numerable principal ${\underset{\underline{i}}{ }}^{-s p a c e}$ (see Appendix III) for all \underline{i} and k .

Then:
(A) There exists a PROP-functor $H: H_{L} W B \rightarrow B$ and a nomotopy of PROPfunctors $K(t): H_{L} W^{\prime} \longrightarrow \mathbb{E}$ from $F \circ \epsilon$ to $G \circ H$ extending H^{\prime} and $K^{\prime}(t)$.
(B) Given two PROP-functors $H_{0}, H_{1}: H_{L} W^{W} \longrightarrow \mathcal{D}$ and a nomotopy of functors $L^{\prime}(t): B \rightarrow \mathcal{B}$ irom $H_{o} \mid \mathfrak{B}$ to $H_{1} \mid \mathfrak{B}$ preserving \oplus and permutations. Furtner given nomotopies of PROP-functors $K_{0}(t), K_{4}(t): H_{W} W^{B} \longrightarrow \mathbb{C}$ from $F \cdot \varepsilon$ to $G \circ H_{o}$ respectively from $F \bullet \varepsilon$ to $G \bullet H_{1}$ and a nomotopy of nomotopies $K^{\prime}\left(t_{1}, t_{2}\right): \mathfrak{B} \longrightarrow \mathbb{T},\left(t_{1}, t_{2}\right) \in I^{2}$, preserving \oplus and permutations, sucn that $K^{\prime}\left(0, t_{2}\right)=K_{o}\left(t_{2}\right)\left|\mathfrak{B}, K^{\prime}\left(1, t_{2}\right)=K_{1}\left(t_{2}\right)\right| \mathfrak{B}$, $K^{\prime}\left(t_{1}, 0\right)=F \cdot(\varepsilon \mid B)$, and $K^{\prime}\left(t_{1}, 1\right)=G \cdot L^{\prime}\left(t_{1}\right)$. Then there exists a nomotopy of PROP-functors $L(t): H_{L} W B \rightarrow \mathcal{D}$ from H_{0} to H_{1} and a homotopy of homotopies of PROP-functors $K\left(t_{1}, t_{2}\right): H_{L} W \longrightarrow \mathbb{C}$ extending L^{\prime} and K^{\prime} and such that $K\left(t_{1}, 0\right)=F \cdot \varepsilon$ and $K\left(t_{1}, 1\right)=L\left(t_{1}\right)$. In particular, H of part (A) is unique up to a nomotopy of functors.

Proof: We construct H and $K(t)$ by induction on the skeleton subcategories of HWB using Lemma 3.12. Suppose we nave defined H and $K(t)$ on $H W^{r}, q^{-1} \mathcal{B}^{3}$. To extend, we need G-equivariant maps $n_{\lambda, q}: P_{\lambda, q} \longrightarrow \mathcal{D}(\underline{i}, k)$ and G-equivariant homotopies $k_{\lambda}(t): P_{\lambda, q} \longrightarrow \mathbb{C}(\underline{i}, k)$, already given on $Q_{\lambda, q} \cup V_{\lambda, q}$ and satisfying $k_{\lambda}(0)=F \cdot \varepsilon \cdot u_{\lambda, q}$ and $k_{\lambda}(1)=G \circ h_{\lambda}$, one for each snape λ of a complete set of sinape orbits of trees in $H^{2} \%$. These maps are provided by Theorem A 3.5. To be able to apply the second part of this theorem, we nave to verify that $P_{\lambda, q}$ is a numerable principle G-space. Let $\mathfrak{U}(\underline{i}, k)=\left\{U_{r}\right\}$ be a $S_{\underline{i}}$-numerable open covering of $\mathfrak{B}(\underline{i}, k)$ with numeration $\lambda_{U_{r}}: \mathfrak{B}(\underline{i}, k) \rightarrow I$. Recall that $P_{\lambda, q}=I_{q}^{r} \times \Pi_{l} \mathfrak{g}\left(\underline{i}_{l}, k_{l}\right) \times\{i d\}$, where $I_{q}^{r} \subset I^{r}$ is tine subspace of all points with at least $r-q$ coordinates of value 1. The G-numerable cover m of $P_{\lambda, q}$ consists of the open sets $W=I_{q}^{r} \times \Pi_{l} U_{l} \times\{i d\}$ with $U_{l} \in U\left(\underline{i}_{l}, k_{l}\right)$ and has the numeration

$$
\begin{aligned}
\lambda_{W}: & I_{q}^{r} \times \Pi_{\imath} P\left(\underline{i}_{\imath}, k_{l}\right) \times\{i d\} \rightarrow I \\
& \left(\underline{t}, b_{1}, \ldots, b_{n}, i d\right) \longmapsto \lambda_{U_{1}}\left(b_{1}\right) \cdot \ldots \cdot \lambda_{U_{n}}\left(b_{n}\right)
\end{aligned}
$$

If $g W \cap W=\varnothing$ for $g \in G$, $W \in M$, and $\lambda_{g W}(g x)=\lambda_{W}(x), x \in W$, tinen $P_{\lambda, q}$ is a numerable principal $G-$ space by (A 3.2). An element $g \in G$ permutes some of tine coordinates of I_{q}^{r} and some of the factors $\Pi_{l} B\left(\underline{i}_{l}, k_{q}\right)$. Moreover, there is at least one factor $\mathfrak{B}(\underline{i}, k)$ which is kept fixed in itself under g but changed by a permutation $\pi \in S_{\underline{i}}$. Since $B(\underline{i}, k)$ is a numerable principal $S_{\underline{i}}-\operatorname{space}\left(U \cdot \Pi^{*}\right) \cap U=\varnothing$ for $U \in U(\underline{i}, k)$. Hence $g W \cap W=\varnothing$. Since λ_{W} is defined factorwise, we obviously nave $\lambda_{g W}(g x)=\lambda_{W}(x)$.

The proof of part (B) is analogous. Just replace the pair $\left(P_{\lambda, q}, Q_{\lambda, q} \cup V_{\lambda, q}\right)$ by tine product $\left(P_{\lambda, q}, Q_{\lambda, q} \cup V_{\lambda, q}\right) \times(I, \partial I)$ and observe that $n_{\lambda}: P_{\lambda, q} \times I \longrightarrow \mathcal{D}(\underline{i}, k)$ and the nomotopy $k_{\lambda}\left(t_{\lambda}\right): P_{\lambda, q} \times I \rightarrow \mathbb{G}\left(i_{2} k\right)$ are already given on $P_{\lambda, q} \times \partial I U\left(Q_{\lambda, q}{ }^{\prime} V_{\lambda, q}\right) x I$ and that $k_{\lambda}(0)(x, t)$ nas to be $F \circ \varepsilon \circ u_{\lambda, q}(x)$ for all $t \in I$.

Remark 3.18: The theorem is stili true, by the same proof, if we replace \mathbb{C} and \mathfrak{D} by topological categories with finite products naving tine same objects and all PROP-functors by multiplicative functors. Then, in addition, we nave to assume that $G: \mathcal{D} \longrightarrow \mathbb{G}$ preserves objects.

Remark 3.19: By tine same proof we can actually snow a slight generalization of the lifting theorem, winicn nas some practical value. If we only assume that $G: \mathfrak{D}(\underline{i}, k) \rightarrow \mathbb{G}(\underline{i}, k), \underline{i}:[n] \rightarrow K \times L$, is an equivariant nomotopy equivalence for $n s r$, or an ordinary nomotopy equivalence and eaci $\mathcal{B}(\underline{i}, k)$ is a numerable principal S_{i}-space for $n \leq r$, winile all the otner assumptions are kept, we can "extend" H^{\prime} and $K^{\prime}(t)$ over the PROP-subcategory $Q_{L}^{r^{W}}$ of $H_{L} W^{\text {B }}$ generated by the morpinisms of $\mathrm{H}_{\mathrm{L}} \mathrm{WY}(\underline{i}, \mathrm{k})$, $\underline{\underline{i}}:[\mathrm{n}] \rightarrow \mathrm{KxI}$, with $\mathrm{n} \leqslant \mathrm{r}$.

The results (3.17), (3.18) without group actions hold for PROs.

One would obviously like to nave $G \cdot H=F \cdot \varepsilon$. This is in general not possible, but under additional assumptions on F and G we can achieve this.

Theorem 3.20: Given a commutative diagram with a ($K \times I$)-coloured PROP \mathfrak{B}, L-nomogeneous ($K \times L$) -coloured PROPs \mathbb{E} and \mathcal{D}, an admissibie subcate-

gory \mathfrak{B} of $H^{W} \mathcal{B}$, PROP-functors F and G, and a continuous functor H^{\prime} preserving objects, \oplus, and permutations. We assume
(i) G is an equivariant fibred equivalence
(ii) each $i d_{k} \in \mathfrak{g}(k, k), k \in K \times I$, has a closed neignbournood X_{k} such tinet $\left(X_{k},\left\{i d_{k}\right\} \cup f r X_{k}\right)$ is a $N D R$ and $F\left(X_{k}\right)=\left\{i d_{k}\right\} \subset \mathbb{L}(k, k)$. (fr= frontier in $B(k, k))$

Then:

(A) There exists a PROP-functor $H: H_{L} W^{W B} \longrightarrow$ extending H^{\prime} such that $G \bullet H=F \bullet \varepsilon$
(B) Given two PROP-functors $H_{0}, H_{1}: H_{J}, W B$ and a homotopy of PROPfunctors $K^{\prime}(t): \mathfrak{B} \longrightarrow \sqrt{ } \rightarrow$ from $H_{o} \mid \mathfrak{B}$ to $H_{g} \mid \mathfrak{B}$ sucin tinat $G \bullet H_{0}=F \bullet \varepsilon=G \bullet H_{1}$ and $G \cdot K^{\prime}(t)=F \cdot(\epsilon \mid \mathfrak{B})$, there exists an extension $K(t): H_{H} W \nrightarrow \mathcal{D}$ of $K^{\prime}(t)$ from H_{o} to H_{1} sucn tinat $G \bullet K(t)=F \cdot \varepsilon$. In particular, H or part (A) is unique up to a nomotopy of PROP-functors.

Proof: For the proof of the theorem a filtration different from the skeleton filtration seems to be more suited: Let $Y_{k}=X_{k}-\left(\left\{i d_{k}\right\} \cup\right.$ fr $\left.X_{k}\right)$. Let $F_{p, q}$ be the subcategory of H_{L} Whenerated under composition by
copses whose trees represent elements in \mathfrak{B} or nave r internal edges of winich at least $r-q$ nave length 1 and t vertices with labels in the Y_{k} 's, $r+t s p$. Since $F_{p, q}$ is a closed sub-PROP, it is easy to check that HW is the direct limit of the $F_{p, q}$. We define F_{-1} to be the subPROP generated by B and the identities of HW\%. Let λ be a tree shape, a a collection of t vertices of λ whose labels lie in the $g(k, k)$'s, and β a collection of $r-q$ internal edges. Let $R_{\lambda, \alpha, \beta}$ be the subspace of all points of $P_{\lambda, q}$ for winich each vertex of a has a label in some X_{k} and each edge of β has length 1 . We consider only those spaces $R_{\lambda, \alpha, \beta}$ which do not lie completely in $\nabla_{\lambda, q}$ or $Q_{\lambda, q}$ and observe that the elements of $R_{\lambda, \alpha, \beta} \cap R_{\lambda, \alpha}, \beta$, represent morpinisms of some lower filtration if α^{\prime} and β^{\prime} also nave t and $r-q$ elements. An element of the group G may map $R_{\lambda, \alpha, \beta}$ onto some $R_{\lambda, \alpha^{\prime}, \beta}$. We take one space in each orbit of spaces under G. Let G^{\prime} be the subgroup of G whose elements map the collections α and β into themselves. The space $R_{\lambda, \alpha, \beta}$ is of the form $I^{q} \times X \times 2$, where I^{q} specifies the lengths of the internal edges not in β, X is an α-indexed product of spaces X_{k}, and Z is the space of the remaining vertex labels of λ. Then $A \in R_{\lambda, \alpha, \beta}$ represents an element of lower filtration iff $A \in R_{\lambda, \alpha, \beta}^{\prime}=\partial I^{q} \times X \times Z U I^{q} \times Y \times Z$, where Y is the (closed) subspace of those points of X with at least one coordinate in some $\left\{i d_{k}\right\}$ is fr X_{k}. Note that, the action of G^{\prime} on $R_{\lambda, \alpha, \beta}$ permutes the coordinates of I^{q} and X but does not change them, in contrary to the coordinates of Z. The functor H to be constructed is defined already on F_{-1}. Similarly to the proof of (3.17) we inductively have to construct G^{\prime}-equivariant maps $f=f, \alpha, \beta: R_{\lambda, \alpha, \beta} \longrightarrow \mathcal{D}(i, k)$ already given on $R_{\lambda, \alpha, \beta}^{\prime}$ such that $G \cdot f=F \cdot \varepsilon \cdot\left(u_{\lambda, q} \mid R_{\lambda, \alpha, \beta}\right)$. For part (B) we have to define G^{\prime}-equivariant maps in $: R_{\lambda, \alpha, \beta^{x I}} \rightarrow \mathfrak{D}(\underline{i}, k)$ already given on $R_{\lambda, \alpha, \beta^{x}} \partial I \cup R_{\lambda, \alpha, \beta}^{\prime} \times I$ sucn that $G \cdot n(x, t)=$ $=F \cdot \varepsilon \cdot\left(u_{\lambda, q} \mid R_{\lambda, \alpha, \beta}\right)(x)$. Botin maps are provided by our next lemma.

Lemma 3.21: Suppose (X,A) is a G-NDR, B,Y,Z are G-spaces, G operates
on I^{n} by permuting factors and

is a commutative diagram of G-equivariant maps with the diagonal action on the products and q, q^{\prime} projections. Suppose there is an equivariant section s of p and an equivariant nomotopy $H: i d_{Y}{ }^{*} s \cdot p$ such that $p \cdot H_{t}=p$ for all $t \in I$. Then there exists an extension n : $X \times B \times I^{n} \longrightarrow Y$ of f such that $p \cdot n=g \cdot q$.

Proof: Define an equivariant map $F^{\prime}:\left(A \times B \times I^{n} U X \times B \times \partial I^{n}\right) \times I \rightarrow Y$ by $F(x, b, u, t)=$ $H_{t}(f(x, b, u))$. Then $F^{\prime}(x, b, u, 1)=s \cdot p \cdot f(x, b, u)$ is independent of u. Hence F^{\prime} factors througn an equivariant map $F: A \times B \times C I^{n} U X \times B \times C \partial I^{n} \longrightarrow Y$ where C denotes the unreduced cone functor. Let $i: I^{n} \subset C I^{n}$ denote the standard inclusion. Define a map $k: I^{n} \times I \longrightarrow C I^{n}$ as follows: Each point of $I^{n} \times I$ lies in 3 unique line segment from $z=\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}, 1\right)$ to a point $(x, t) \in I^{n} \times 0 \| \partial I^{n} \times I$. Map z to tine cone point and (x, t) to $i(x)$ and the rest of line segment linearly (nere we identify $C I^{n}$ with the join of $I^{n} \times 0$ and $\left(\frac{1}{2}, \ldots, \frac{1}{2}, 1\right)$ in $\left.\mathbb{R}^{n+1}\right)$. Let

$$
K=F \cdot(\dot{d} \times k): A \times B \times I^{n} \times I \cup X \times B \times \partial I^{n_{n}} \times I \cup X \times B \times I^{n^{n}} \times 1 \rightarrow Y .
$$

Since k is symmetric in the coordinates of I^{n} and F is equivariant, so is K. Since $p \circ F^{\prime}(x, b, u, t)=p \circ f(x, b, u)=g(x, b)$ and $k\left(\partial I^{n} \times I U I^{n} \times 1\right)=C D I^{n}$, we have $p \cdot K(x, b, u, t)=g(x, b)$. Furthermore $K(x, b, u, 0)=\mathbb{F}(x, b, u, 0)=f(x, b, u)$. Since (X, A) and (I^{n}, ∂, I^{n}) are equivariant NDRs, there exists an equivariant retraction $r^{\prime}: X \times I^{n} \times I \rightarrow\left(A \times I^{n} \cup X \times \partial I^{n}\right) \times I \cup X \times I^{n} \times 1$, which we extend to an equivariant retraction

$$
r: X \times B \times I^{n^{n}} \mathbf{I} \longrightarrow A \times B \times I^{n} \times I \cup X \times B \times \partial I^{n_{x}} \cup \cup X \times B \times I^{n^{n}} 1
$$

by taking the identity on the factor B. Define $n: X \times B \times I^{n} \longrightarrow Y$ by $n(x, b, u)=K \cdot r(x, b, u, 0)$. Let $r^{\prime}(x, u, 0)=\left(x^{\prime}, u^{\prime}, t\right)$. Then n extend s
f, is equivariant and

$$
p \cdot n(x, b, u)=p \cdot K\left(x^{\prime}, b, u^{\prime}, t\right)=g\left(x^{\prime}, b\right)=g(x, b)=g \cdot q(x, b, u)
$$ because g factors througn g'.

Remark 3.22: The condition (iii) on F in Theorem 3.20 nolds in particular if \mathfrak{B} nas isolated identities.

Condition (3.20 (iii)) is actually no serious nindrance if we allow to cnange B a bit. Let \mathcal{B}^{\prime} be the following PROP: $\mathrm{B}^{\prime}(\underline{\mathrm{i}}, \mathrm{k})=\mathbb{B}(\underline{i}, \mathrm{k})$
 $\oplus_{\text {i }}$ denote composition and \oplus in ${ }^{\bullet}$. Composition on the rignt with permutations is the same as in B. Furtner, if $b \& I \subset \mathcal{B}^{\prime}(k, k)$ for any k, and a_{i} are morpinisms into basic objects of \boldsymbol{b}^{\prime}, we define $b \cdot\left(a_{1} \oplus \ldots \oplus a_{n}\right)=$ $=b{ }_{B}^{\circ}\left(a_{1}^{\prime} \oplus_{B B} \ldots \oplus_{B B} a_{n}^{\prime}\right)$ with $a_{i}^{\prime}=i \alpha_{k}$, if $a_{i} \in I \subset B^{\prime}(k, k)$, and $a_{i}^{\prime}=a_{i}$ otnerwise. If $b=t \in I \subset \mathcal{B}^{\prime}(k, k)$, we define $b \cdot a=t_{*} u(\operatorname{see}(3.1))$ if $a=u \in I \subset \mathscr{P}(k, k)$ and $b \cdot a=a$ otherwise. This determines the PROP \boldsymbol{g}^{\prime} completely. Tnere is a PROP functor $\varepsilon^{\prime}: B^{\prime} \longrightarrow B$ given by $\varepsilon^{\prime}(a)=i d_{k}$ if $a \in I \subset \mathcal{F}^{\prime}(k, k)$ and $\epsilon^{\prime}(a)=$ a otnerwise. The correspondence $t^{\prime}(a)=a$ defines an equivariant non-functorial section $\mathfrak{I}^{\prime}: 8 \rightarrow$ B', $^{\prime}$, and by sininking the attacned wiskers we obtain an equivariant fibrewise deformation of $\mathcal{B}^{\prime}(\underline{i}, k)$ into the section.

Given a diagram of PROPs as in (3.20) with the difference that B is an admissible subcategory of H_{L} W' and the condition (iii) is dropped, there exists a PROP-functor $H: H W^{\prime} \rightarrow D^{\prime}$ extending H^{\prime} sucn that $G \circ H=F \cdot \bar{\varepsilon}$, where $\bar{\epsilon}$ is the composite $\varepsilon^{\prime} \cdot \varepsilon\left(B^{\prime}\right): H W B '^{\prime} \rightarrow H^{\prime \prime} \rightarrow H^{\prime}$. The analogue to (3.20 B) also nolds. The reason for this is that the composite functor $F \circ \varepsilon^{\prime}$ satisfies requirement (iii) and (3.20) can be applied witn B replaced by B^{\prime} and F by $F \cdot \epsilon^{\prime}$. We snould remark that tnese considerations remain true even if $\left.(B)(k, k),\left\{i d_{k}\right\}\right)$ is not a NDR.
${ }^{H} L^{W}$ ' also supplies an example that (3.20) is not true if we drop condition (iii). Consequently we cannot expect to obtain commutativity
in Theorem 3.17. Suppose we nave used relation (3.1 a*) for the defi-
 topically trivial by (3.6). If condition (iii) of Theorem 3.20 could be dropped, we would have a commutative diagram of PROP-functors

by (3.20 A). This is in general impossible by following consideration: Let $\left\{(B), I^{\prime} \mathcal{B}^{\prime}\right)$ denote the standard sections. Then $\varepsilon\left(B^{\prime}\right) \cdot H \cdot \mathfrak{H}(B)$ defines a section of ε^{\prime} whicn preserves identities. Since $\varepsilon^{\prime} \mid B^{\prime}(k, k)$ is tne identity outside the attacned wisker and since $0 \in I \subset \mathcal{B}^{\prime}(k, k)$ is the new identity in A^{\prime}, this section can only be continuous if the identities of B are isolated (in winch case, of course, (3.20 (iii)) nolds).

A more pictorial description of a whaction on an object $X \in \mathfrak{F}_{0} p_{K}$ is sometimes useful. Ratner than give maps from Wh($\underset{\underline{i}, k)}{ }$ to $\mathcal{F} 0 p\left(X_{\underline{i}}, X_{k}\right)$ we consider the maps $W(\underline{i}, k) \times X_{\underline{i}} \rightarrow X_{k}$ using the full adjointness in the category of k-spaces.

Definition 3.23: A cherry tree on $X \in \mathcal{F o p}_{K}$ is a representing tree of a morpnism in W B with a point of X_{k} instead of a twig label assigned to eacn twig of colour K. We call this point a cherry.

The set of all cnerry trees nas an obvious topology: Let $T(\underline{i}, k), \underline{i}:[n] \rightarrow K$, denote the space of all representing trees of $W^{\mathcal{B}}(\underline{i}, k)$. Tnen tine space of all cherry trees is the disjoint union or all spaces

$$
\mathrm{TQX}_{k}=\bigcup_{\underline{i} \in B} T(\underline{\underline{i}}, k) \times \underline{X}_{\underline{i}} / \sim \quad, k \in \mathbb{K}
$$

with $\left(A \cdot \sigma^{*}, x\right)=\left(A, \sigma^{*}(x)\right)$ wnere $A \in T(\underline{i}, k), \sigma \in S_{\underline{i}}$, and $x \in X_{\underline{i}}$.

Examples:

a trivial cnerry tree
The proof of the following lemma is trivial.

Lemma 3.24: Let be a K-coloured $P R O P$ and $X \in I_{0}$. Then X admits a Wh-action iff there are continuous functions $F_{k}: T \mathcal{B X}_{k} \rightarrow X_{k}$ factoring througn the rollowing relations
$(a)=(3.1$ a) for cherry trees
$(b)=(3.1 \mathrm{~b})$ for chexry trees and permutations only, the cherries are permuted with the twigs.
$(c)=\left(\begin{array}{ll}3.1 & c\end{array}\right)$
$(d)=F_{k}(\underset{\mid x}{Q})=x, \quad x \in X_{k}$
(e) if the tree A witn root colour k nas an edge of length 1 coloured
l so that $A=A_{1} \circ A_{2}$, then $F_{k}\left(A ; x_{1}, \ldots, x_{n}\right)=F_{k}\left(A_{1} ; x_{1}, \ldots, x_{p}, y, x_{q+1}, \ldots, x_{n}\right)$, where $y=F_{q}\left(A_{2} ; x_{p+1}, \ldots, x_{q}\right)$, and $\left(x_{p+1}, \ldots, x_{q}\right)$ and $\left(x_{1}, \ldots, x_{n}\right)$ are the cnerries of A_{2} and A in clockwise order.

The relations (a), (b), (c) substitute the relations (3.1) for trees, relation (d) implies that identities act as identities, and relation (e) ensures that composite operations are preserved.

We close this cnapter with an application of the lifting theorem.

Proposition 3.25: (a) The loop space ΩY can be made a Wथ-space, na-
turally in Y, i.e. a map $f: Y \longrightarrow Z$ gives rise to a Wथ-nomomorpnism $\Omega f: \Omega Y \longrightarrow \Omega Z$.
 $Q^{\circ}{ }^{\circ}{ }^{W Q}=W थ$.
(c) An A_{n}-map, $2 \leq n \leq \infty$, between monoids X and Y is a $Q_{\mathfrak{O}_{1}}^{n} W\left(\mathscr{U} \otimes \mathbb{B}_{1}\right)$-space, wich extends the wथ-action induced on X and Y by $\varepsilon(\mu):$ Wथ $\longrightarrow थ$ (recall, a monoid is an \because-space).

These results are an immediate consequence of the results of chapter II, §6 and 7, the lifting theorem and Remark 3.19.

Remark 3.26: The usual loop space $\Omega Y=\mathfrak{I o p}((I, \partial I),(Y, *))$ is not a monoid, but the functor Ω preserves product. J.C. Moore modified tine definition of a loop space in order to obtain a monoid structure. Moore's loop space $\Omega_{M} Y$ is the space of all pairs $(\omega, a) \in Y^{\mathbb{R}} \times \mathbb{R}$ with $a \geq 0$ and $\omega: \mathbb{R} \longrightarrow Y$ a map satisfying $w(t)=*$, the base point of Y, for $t \leq 0$ or tra. (As usual, $Y^{\mathbb{R}}=I_{00}(\mathbb{R}, Y)$ with the function space topology). $\Omega_{M} Y$ is a monoid under the multiplication defined by $\left(w_{1}, a_{1}\right) \cdot\left(w_{2}, a_{2}\right)=\left(w, a_{1}+a_{2}\right)$, wnere

$$
\omega(t)= \begin{cases}\omega_{1}(t) & \text { if } 0 \leq t \leq a_{1} \\ \omega_{2}\left(t-a_{1}\right) & \text { if } a_{1} \leq t \leq a_{2}\end{cases}
$$

The usual loop space ΩY is a deformation retract of $\Omega_{M} Y$. A deformation $H_{s}: \Omega_{M} Y \rightarrow \Omega_{M} Y$ is given by

$$
H_{s}(w, a)= \begin{cases}\left(w_{,}, a+s-s a\right) & a \leq 1 \\ \left(\omega_{s}, a+s-s a\right) & a \geq 1\end{cases}
$$

witn $\omega_{s}(t)=w(a t /(a+s-a s))$. The functor Ω_{M} nas in contrary to Ω the disadvantage that it does not preserve products. It is easy to see tinat no loop space functor L, i.e. a functor L such that $L Y \approx \Omega Y$ for all $Y \in$ ob Iop, can preserve products and be monoid-valued: For otnerwise ILY would admit an action of $\Theta_{m} \otimes \Theta_{m} \cong \Theta_{c m}$, and a result or Dold
and Thom [17; Satz 7.1] asserts that any path connected commutative monoid nas the weak homotopy type of a product of Eilenberg-MacLane spaces, whicn is obviously not the case in general for $\Omega^{2} Y$.

We sinould remark that we are not able to prove an analogue of the lifting theorem for arbitrary theories, because the set operations induced by epimorphisms mess up the skeleton filtration. Tinis is the main reason why we restrict our attention to PROPs and PROs.

HOMOTOPY HOMOMORPHISMS

1. MAPS BETWEEN WM-SPACES

Let \mathfrak{F} be a K-coloured PROP. Homomorpinisms as maps between ${ }^{W}$-spaces will not do, because if we change the collection of underlying maps $f_{k}: X_{k} \longrightarrow Y_{k}$ of a nomomorpinism by a nomotopy to maps g_{k}, the g_{k} do not define a nomomorpism in general. We have already seen that a whstructure is a \mathfrak{B}-structure up to nomotopy and all conerence conditions, because the relations of hold in W W to homotopy and the morpism spaces of ${ }^{\text {W }}$ have the same nomotopy type as those of \mathfrak{B}. Similarly we can substitute a nomomorphism by a nomomorpism up to nomotopy and all conerence conditions. Since a $\mathcal{B} \otimes \ell_{1}$ action derines a nomomorphism of ${ }^{\mathfrak{B}}$-spaces, the construction W suggests to take a. $W\left(\mathscr{B} \otimes \mathbb{R}_{1}\right)$-action on (X, Y) extending the given WB-actions on X and Y as maps between whspaces. Before we give a rigorous definition, we nave to make some notational conventions:

We denote an element b in the standerd section of w by its counter image in ${ }^{3}$. But we note that the standard section is not a functor and that is is not a subcategory of Wh.

Recall that Ω_{n} is the category witn objects $0,1, \ldots, n$ and exactly one morpinism from p to q if $p \leqslant q$ and none otherwise. If c is the morpiism Irom 0 to 1 in Ω_{1}, we denote the morpnism id $\alpha_{k} \subset \in W\left(B \otimes \Omega_{1}\right)((k, 0),(k, 1))$ by j_{k}. If 8 is monocnrome we may drop the index k. The inctusion functors $W \mathcal{W} \subset W\left(B \otimes \Omega_{1}\right)$ replacing vertex labels by b $\otimes i d_{o}$ respectively
$b * i d_{1}$ will be denoted by d^{1} respectively d°.
A WH-space will from now on be signified by a pair (X, α), where $\alpha: W B \rightarrow$ Iop is a W-space with $X \in \mathcal{I o p}_{K}$ as underlying space.

Definition 4.1: Let (X, α) and (Y, β) be WB-spaces. A nomotopy nomomorpinism, for snort a B-map, from (X, α) to (Y, β) is a $W\left(\mathcal{B} \mathbb{Q}_{\gamma}\right)$-space $\rho: W\left(B \otimes \mathbb{Q}_{1}\right) \rightarrow$ Iob sucin that $\rho \cdot d^{\circ}=\beta$ and $\rho \cdot d^{1}=\alpha$. The morpinism $\rho(j)=\left\{\rho\left(j_{k}\right) \mid k \in K\right\}$ in $I_{0} p_{K}$ is called the underlying map or carrier of ρ. We write a ${ }^{B-m a p}$ as pair (f, ρ) where f is the underlying map of ρ.

The definition of a b-map can be modified in several ways. Our definition allows operations $X X Y \longrightarrow Y$ and one could argue that we are not really interested in mixed products nor in factorizations of morpinisms througn them. In chapter II, §7, we nave already indicated tnat partly nomogeneous categories are tine adequate tool for tinis modification. Let $H W\left(\otimes \mathbb{R}_{1}\right)=H_{\mathfrak{Q}_{1}} W\left(\otimes \otimes \mathbb{Q}_{1}\right)$.

Definition 4.2: Let (X, α) and (Y, β) be WB-spaces. A nomogeneous nomotopy nomomorpinism, for short a n^{-1}-map, from (X, α) to (Y, β) is a pair (f, p) where $p: \operatorname{HW}\left(\& \mathcal{R}_{1}\right) \rightarrow \mathfrak{I}_{0} p$ is a $\operatorname{HW}\left(\mathscr{B} \otimes \mathcal{B}_{1}\right)$-space and $f=\left\{\rho\left(j_{k}\right) \mid k \in K\right\} \in \operatorname{mor} \mathfrak{I}_{0} p_{K}$ sucin that $\rho \cdot d^{\circ}=\beta$ and $\rho \cdot d^{1}=\alpha$.

Compared to $W\left(B \otimes B_{1}\right)$, the category $H W\left(B \otimes \Omega_{1}\right)$ has several drawbacks as we have already mentioned in (II, §7) and (III, §2). Nevertineless, the lifting theorem proves that they are manageable. The main objection one could nave is that $\operatorname{HW}\left(\mathcal{B} \otimes \mathbb{R}_{1}\right)$ is artificial. For example, let 2^{0} denote the object $[2] \rightarrow\{*\} \times\{0,1\}$ whose image is $(*, 0)$ and 1^{1} the object $[1] \rightarrow\{*\} \times\{0,1\}$ whose image is $(*, 1)$, then disregarding 0 -ary operations tine space $\operatorname{HW}\left(थ \otimes \Omega_{1}\right)\left(2^{0}, 1^{1}\right)$ is

The vertex $t=1$ represents the operation $(x, y) \longmapsto f(x y)$ and the vertex $u=v=1$ the operation $(x, y) \longmapsto f(x) f(y)$. One would expect a copy of I divided in the middle instead. We obtain a copy I from our model by restricting tine square to its diagonal. This leads to a third definition of maps. We define a subcategory $\operatorname{LW}\left(\otimes \mathbb{Q}_{1}\right)$ of $\operatorname{HW}\left(\mathbb{B}_{1}\right)$ sucn that $b \in \operatorname{LW}\left(\mathbb{Q}_{1}\right)$ decomposes in $\operatorname{LW}\left(B \mathbb{B}_{1}\right)$ iff it decomposes in $W\left(B Q_{1}\right)$ - so it does not nave one of the drawbacks of $\operatorname{HW}\left(\mathscr{B}_{1}\right)$ - and moreover the morpnism spaces are the intuitively correct ones. Altnougn $\operatorname{LW}\left(\notin \mathbb{Q}_{q}\right)$ is manageable it is too complicated to work witn.

Definition 4.3: (inductive) We call a tree in $\operatorname{HW}\left(8 \otimes_{q}\right)$ level if it nas no or one vertex, or if the following nolds: When we stretch the tree by dividing all its edge lengtins by the lengtin of its longest edge, so as to produce some edges of lengtn 1 and a decomposition of the tree in $W\left(B \mathbb{R}_{1}\right)$, we require this decomposition to be a decomposition into level trees. Let $\operatorname{LW}\left(\mathbb{A} \mathbb{Q}_{1}\right)$ be the subcategory of $\operatorname{HW}\left(\mathcal{B} \otimes_{\mathbb{R}_{1}}\right)$ generated by level trees.

Note in particular that the decomposition has to be a decomposition into trees of $\mathrm{HW}\left(\mathcal{B}_{1}\right)$. It follows thet the t-edge and the diagonel of the square are the only level trees in the space of the previous example. We now can define a third type of map between Wh-spaces using $\operatorname{LW}\left(B \mathbb{R}_{1}\right)$ instead of $\mathrm{HW}\left(\theta \Omega_{1}\right)$.

Since $\operatorname{LW}\left(\otimes \mathbb{R}_{1}\right)$ is too complicated, we will only consider maps as
defined in (4.1) and (4.2). In some sense it does not matter which sort of maps we take, as our next result will snow. Before we state it, let us give a reason why we work with 8 -maps and in-maps. In spite of the drawbacks of $\mathrm{HW}\left(\circledast \mathbb{Q}_{\mathcal{1}}\right)$ a $\mathrm{n} B-m a p$ occasionally nas advantages
 site of a ${ }^{B-m a p}$ or $n^{B-m a p}$ with nomomorpisms. Tinis is not quite true for \mathfrak{B}-maps.

Definition 4.4: Let $f:(X, \alpha) \rightarrow(Y, \beta)$ and in $:(Z, Y) \rightarrow(W, \delta)$ be nomomorphisms of W-spaces. Let $(g, \rho):(Y, \beta) \rightarrow(Z, Y)$ be a B-map, and $(p, \pi):(Y, \beta) \rightarrow(Z, y)$ a in \rightarrow-map. Define composites $(g \circ f, \bar{\rho})=(g, \rho) \cdot f$, $(p \circ f, \bar{\pi})=(p, \pi) \circ f$, and $\left(n \circ p, \pi^{\prime}\right)=$ in $\circ(p, \pi)$ as follows: Let $a \in W\left(B \otimes \Omega_{1}\right)(\underline{i}, k)$ and $b \in H_{\Omega_{1}} W\left(B \Omega_{1}\right)(\underline{j}, k)$. Tinen $\bar{\rho}(a), \bar{\pi}(b)$, and $\pi^{\prime}(b)$ are given by α, β, γ, or δ unless k nas $\mathscr{£}_{1}$-colour 1 , and at least one $i_{r} \in \underline{i}=\left\{i_{1}, \ldots, i_{n}\right\}$ or eacn $j_{r} \in \underset{I}{ }=\left\{j_{1}, \ldots, j_{n}\right\}$ has $\Omega_{1}-\operatorname{colour} 0$. In this case we define

$$
\begin{aligned}
& \bar{\rho}(a)=\rho(a) \cdot\left(f_{1}^{\prime} \times \ldots \times f_{n}^{\prime}\right) \\
& \bar{\pi}(b)=\pi(b) \cdot f^{n} \\
& \pi^{\prime}(b)=n \cdot \pi(b)
\end{aligned}
$$

where $f_{r}^{\prime}=i d_{Z}$ respectively f if i_{r} nas $B_{1}-c o l o u r 1$ or 0 . We call the so-defined composites the canonical composites of a ${ }^{8}$-map or nib-map witn a nomomorpinism.

Remark 4.5: We cannot in general define a composite $n \circ(g, \rho)=\left(n \circ g, \rho^{\prime}\right)$, for let $\rho(a): Y \times Z \longrightarrow Z$ be the action of a particular a $\in W\left(\otimes_{0}\right)$ under ρ. Then $\rho^{\prime}(a)$ is a map $Y X W \longrightarrow W$ wnicn we cannot obtain from n and $\rho(a)$. All we get is that the required map $\rho^{\prime}(a)$ nas to make the squere

commute. So we say that ($\mathrm{n} \cdot \mathrm{g}, \mathrm{o}^{\prime}$) is a canonical composite $\mathrm{n} \cdot(\mathrm{g}, \mathrm{\rho})$ if the following nolds: Let a $\in \mathcal{W}\left(\mathfrak{B} \not \Omega_{1}\right)(\underline{i}, l)$ where l has \mathbb{B}_{1}-colour 1 , let $y_{r}=z_{r} \in X_{k}$ if $\underline{i}(r)=(k, 0) \in K \times O b \varepsilon_{1}$, and $y_{r} \in Y_{k}$ and $z_{r}=h\left(y_{r}\right)$ if $\underline{i}(r)=(k, 1)$. Then

$$
\rho^{\prime}(a)\left(z_{1}, \ldots, z_{n}\right)=n\left(\rho(a)\left(y_{1}, \ldots, y_{n}\right)\right)
$$

Proposition 4.6: Given a map of wh-spaces $f:(X, \alpha) \longrightarrow(Y, \beta)$. Then
(a) fadmits a ${ }^{\mathfrak{B}-m a p}$ structure iff it admits a $\mathrm{n}^{\mathfrak{B}}$-map structure
(b) f admits a n^{9}-map structure iff it admits a level-tree map structure, at least if the category $\operatorname{LW}\left(B \Omega_{1}\right)$ is constructed by using relation (3.1 a*).
 structure it admits a n^{B}-map structure, wnich implies that it admits a level-tree map structure.
Conversely given a functor $\rho: \operatorname{LW}\left(B \mathcal{B}_{1}\right) \longrightarrow \mathfrak{I}_{0} b$ such that $\rho \cdot \alpha^{1}=\alpha$ and $\rho \cdot d^{\circ}=\beta$. The restriction of the deformation H_{t} of (3.6) stays inside $\operatorname{LW}\left(\mathscr{B} \mathbb{R}_{1}\right)$. Therefore we can apply the lifting theorem with $G=\varepsilon: \operatorname{LW}\left(\notin \mathbb{R}_{1}\right) \longrightarrow H\left(B \mathbb{R}_{1}\right), \mathfrak{B}=\operatorname{LW}\left(\otimes \otimes_{1}\right)$ and H^{\prime} the identity. Hence there exists a retraction functor $R: H W\left(B \Omega_{1}\right) \longrightarrow \operatorname{LW}\left(\mathbb{B} \mathfrak{\Omega}_{1}\right)$ and therefore an extension of ρ to $\operatorname{HW}\left(B \otimes B_{1}\right)$.
Now suppose $(f, \rho):(X, \alpha) \rightarrow(Y, \beta)$ is a $n^{2}-$ map. Let \mathcal{D} be the subcategory of $W\left(\notin \mathbb{l}_{1}\right)$ generated under composition and \oplus by the morpisisms of $\operatorname{HW}\left(\mathcal{B} \otimes \mathfrak{R}_{1}\right)$. Then ρ extends to an action $\bar{\rho}: \mathcal{D} \longrightarrow \mathcal{I} O p$. Let $\varepsilon: D \longrightarrow B \otimes \mathbb{B}_{1}$ be the restriction of the augmentation $W\left(B \otimes \Omega_{1}\right) \rightarrow B \otimes \Omega_{1}$. We show that each morpism space $\mathfrak{D}(\underline{i}, k)$, $\underline{i}=\left\{i_{1}, \ldots, i_{n}\right\}$ can be deformed equivariantly into a suitable section of $\varepsilon \mid \mathcal{D}(\underline{i}, k)$. If all $i_{r} \in \underline{i}$ and k have the same Ω_{1}-colour the derormation is given by Prop. 3.15. Suppose that k has \mathbb{Q}_{1}-colour 1 and at least one i_{r} the B_{1}-colour 0 . Then each representing tree of an element of $\mathcal{D}(\underline{i}, k)$ can be decomposed in D into $A \cdot\left(C_{1} \oplus \ldots \oplus C_{n}\right) \cdot g^{*}$, where A is a tree whose
twigs all nave Ω_{1}-colour 1 (A may be the identity), the twigs of each tree G_{i} all have the same \mathbb{B}_{1}-colour O or 1 , and ξ is a permutation. The deformation is defined in steps. We first sinrink all edges of $\mathbb{Q}_{1}-$ colour 0 using the deformation of Prop. 3.15. We end in the space T of all morpinisms of $\mathcal{D}(\underline{i}, k)$ representable by trees whose internal edges all nave Ω_{1}-colour 1. The next step replaces each twig of colour ($k, 0$), $k \in K$, by

$$
\left\{_{t} \left\lvert\, \begin{array}{l}
(k, 0) \\
j_{k} \\
(k, 1)
\end{array}\right.\right.
$$

where t runs from 0 to 1 . Finaily we sirink all internal edges winich are not the outgoing edge of a vertex with label \dot{j}_{k}, using the deformation of (3.15). All three deformations stay inside $\mathcal{D}(\underline{i}, k)$. The composite deformation deforms $\mathcal{D}(\underline{i}, k)$ equivariantly into a subspace whicn is mapped nomeomorpnically onto $\mathcal{B} \mathfrak{Q}_{\mathcal{1}}(\underline{i}, k)$ by ε. We now apply the innomogeneous lifting theorem with \mathfrak{B} generated by $a^{1} W^{W} \cup d^{o}{ }^{o} W^{B} \cup\left\{j_{K} \mid K \in K\right\}$ and H^{\prime} the inclusion. (We cannot take $\mathcal{B}=\mathcal{D}$ because an indecomposable $a \in \operatorname{mor} \mathcal{B}$ could be decomposable in $W\left(B \mathbb{B}_{1}\right)$). If $H: W\left(B \mathbb{R}_{1}\right) \rightarrow \mathcal{D}$ is an extension of H^{\prime}, then $\bar{\rho} \cdot H$ derines a \mathfrak{B}-map structure on f

2. COMPOSITION AND THE HOMOTOPY CATEGORY

Unfortunately we cannot take 8 -maps or $\mathrm{n}^{38-m a p s}$ as morpisms in a category for lack oi a definition of the composite of two morphisms, unless we are in the situation of Def. 4.4. The phenomenon is seen at its simplest in the case of n n-maps $f: X \longrightarrow Y$ end $g: Y \longrightarrow Z$ between monoids. There we are given nomotopies $H: f \cdot \lambda_{2} \sim \lambda_{2} \cdot(f \oplus f)$ and $K: g \cdot \lambda_{2} \approx \lambda_{2} \cdot(g \oplus g)$. We deduce that $n \cdot \lambda_{2} \sim \lambda_{2} \cdot(h \oplus i n)$, where $\mathrm{n}=\mathrm{g} \circ \mathrm{f}$, but not by any homotopy that is going to make composition
associative.
Instead of a category we can define a simplicial class naving Wspaces are vertices and B-maps respectively n-maps as 1 -simplexes.

Observe that a functor $\Omega_{n} \longrightarrow \Omega_{m}$ is uniquely determined by an order-preserving map of the sets of objects $\{0,1, \ldots, n\} \rightarrow\{0,1, \ldots, m\}$. Let $\delta_{n}^{i}: \varepsilon_{n-1} \rightarrow \mathfrak{l}_{n}$ and $\sigma_{n}^{i}: \mathfrak{g}_{n+1} \rightarrow \varepsilon_{n}, i=0,1, \ldots, n$, be the functors corresponding to the maps

$$
\{0,1, \ldots, n-1\} \ni j \longmapsto\left\{\begin{array}{ll}
j & j<i \\
j+1 & j \geq i
\end{array} \in\{0,1, \ldots, n\}\right.
$$

respectively

$$
\{0,1, \ldots, n+1\} \ni j \longmapsto\left\{\begin{array}{ll}
j & j \leq i \\
j-1 & j>1
\end{array} \in\{0, \ldots, n\}\right.
$$

Definition 4.7: We define simplicial classes $\boldsymbol{R}_{\mathfrak{B}}$ and $\boldsymbol{R}_{\mathrm{n} \text { g }}$ by taking as n-simplexes all $W\left(\mathscr{B} \otimes \Omega_{n}\right)$-spaces $W\left(\mathscr{B} \mathscr{R}_{n}\right) \longrightarrow \mathcal{I}_{0}$ respectively all $H_{\mathscr{R}_{n}} W\left(B \mathscr{R}_{n}\right)$-spaces $H_{\Omega_{n}} W\left(B \mathcal{R}_{n}\right) \rightarrow$ Iop. The face and degeneracy operations d^{i} and s^{i} in Ω_{β} and $R_{n \theta}$ are given by $d_{n}^{i}(\alpha)=\alpha \cdot W\left(I d \otimes \delta_{n}^{i}\right)$ and $s_{n}^{i}(\alpha)=\alpha \cdot W\left(I d \otimes \sigma_{n}^{i}\right)$.

Recall that d^{i} and s^{i} nave to satisfy following identities which follow from the dual formulae for δ_{n}^{i} and σ_{n}^{i} :

$$
\begin{aligned}
& d^{i} d^{j}=d^{j-1} d^{i} \\
& s^{i} s^{j}=s^{j+1} s^{i} \\
& d^{i} s^{j}= \begin{cases}s^{j-1} d^{i} & i<j \\
i d & i, i-1=j \\
s^{j} d^{i-1} & i>j+1\end{cases}
\end{aligned}
$$

In order to simplify the notation we give an alternative description of the representing trees of $W\left(B \otimes_{n}\right)$. In general, a tree is given by its underlying grapin and its twig and vertex labels, because
the vertex labels determine the edge colours (we identify the trivial trees with the trees naving exactly one vertex and an identity as vertex label). In our case, each vertex label has the form a 0 and $b \in \mathscr{R}_{n}$ is uniquely determined by its source and target. So if we specify the $\mathfrak{B}_{\mathrm{n}}$-colours of tine incoming and outgoing edges of this vertex and use only the \mathfrak{B}-part a of $a b$ as vertex label we can recover tine original vertex label and nence the original tree. We use this new description, which works for all categories $\mathcal{B} \otimes$, where \mathbb{C} is a discrete topological category witn at most one morpnism between any two objects. Given a $W(\Re \otimes \subseteq)$-space ρ we also frequently colour tree edges by the underlying space $\rho((k, c))$ instead of ($k, c)$.

Definition 4.8: A simplicial class \mathfrak{R} satisfies the restricted Kan condition if given $(n-1)$-simplexes $x_{0}, x_{1}, \ldots, x_{r-1}, x_{r+1}, \ldots, x_{n}$, where $0<r<n$, sucn that $d^{j-1} x_{i}=d^{i} x_{j}$ for $0 \leq i<j \leq n$, $i, j \neq r$, then there exists an n-simplex x such that $d^{i} x=x_{i}$ for $i \neq r$. In other words, \mathfrak{R} satisfies the usual Kan extension condition, except that the omitted face in the data is not allowed to be the first or the last.

Our next result implies tinat tine simplicial classes $\boldsymbol{r}_{\boldsymbol{B}}$ and $a_{n B}$ are good substitutes for categories.

Tneorem 4.9: The simplicial classes R_{5} and $s_{n B}$ satisfy the restricted Kan condition.

Proof: Since the argument is the same in botn cases with exception that we use $H_{\Omega_{n}} W\left(\mathscr{B} \Omega_{n}\right)$ for $a_{n} B$ instead of $W\left(B \Omega_{n}\right)$, we only prove tine statement for $\boldsymbol{\rho}_{3}$. Suppose we are given ($n-1$)-simplexes $\rho_{0}, \ldots, \rho_{r-1}, \rho_{r+1}, \ldots, \rho_{n}: W\left(\mathscr{B} \otimes \mathfrak{a}_{n-1}\right) \rightarrow$ Iop for $r \neq 0, n$ sucn tinat $d^{j-1} \rho_{i}=d^{i} \rho_{j}$ for $0 \leq i<j \leq n$. Let \mathcal{c} be the subcategory of $W\left(B \otimes \Omega_{n}\right)$ generated under composition and \oplus by the "faces" $d^{i} W\left(B \otimes \Omega_{n}\right)$, $i \neq k$, the
images of $W\left(B \otimes Q_{n-1}\right)$ under $W\left(I \alpha \delta_{n}^{i}\right)$. So $d^{i} W\left(B \otimes \Omega_{n}\right)$ is the subcategory of trees containing no edge coloured i. Define a multiplicative functor $\bar{\rho}: \mathbb{C} \longrightarrow \mathcal{I o p}_{0}$ by $\bar{\rho} \mid \mathrm{d}^{i_{W}}\left(\mathfrak{B} \mathbb{R}_{n}\right)=\rho_{i}$. (Tnis is possible since $W\left(\operatorname{Id} \delta_{n}^{i}\right)$ is an inclusion). We show that there is a multiplicative retraction functor $W\left(\otimes \mathbb{R}_{n}\right) \rightarrow \mathbb{C}$.

Consider the pairs of spaces $\left(W\left(\otimes \Omega_{n}\right)(\underline{i}, k), \mathbb{C}(\underline{i}, k)\right)$. We deform $W\left(\& \Omega_{n}\right)(\underline{i}, k)$ equivariantly into $\mathbb{C}(\underline{i}, k)$ in steps. We first sinrink all internal edges coloured 0 by the deformation of Prop. 3.15. We next replace eacn twig coloured 0 by

(k is the $B-c o l o u r$ of the twig determined by the vertex label at its bottom) where t runs from 0 to 1 (compare the proof of 4.6). At the end of this deformation the tree can be decomposed into a tree with no edge of colour 0 and a copse with no edge or colour n and nence represents a morpinism of \mathfrak{c}. Therefore tine composite nomotopy deforms $W\left(\mathscr{B} \otimes \Omega_{n}\right)(\underline{i}, k)$ into $\mathbb{C}(\underline{i}, k)$, keeping $\mathbb{C}(\underline{i}, k)$ inside $\mathbb{C}(\underline{i}, k)$. So the inclusion functor $i: \subset \in\left(B \otimes \Omega_{n}\right)$ is an equivariant equivalence and nence, by Prop. 3.15, the composite $\in i: \mathbb{G} \rightarrow B \otimes Q_{n}$, too. We now apply the lifting theorem (3.17) witn $\mathfrak{B}=\mathbb{C}$ and H^{\prime} the identity to obtain a retraction functor $R: W\left(B \Omega_{n}\right) \rightarrow$. The n-simplex $\rho=\bar{\rho} \cdot R$ satisfies $d^{i}(\rho)=\rho_{i}, i \neq r$, as desired.

Theorem 4.9 provides us with all we need. Given \mathfrak{B}-maps or $\mathrm{n}^{\mathfrak{B}}$-maps $(f, \rho):(X, \alpha) \rightarrow(Y, \beta)$ and $(g, x):(Y, \beta) \rightarrow(Z, \gamma)$ there is a 2simplex $\sigma: W\left(B \otimes \mathbb{Q}_{2}\right) \rightarrow \mathfrak{I}_{0} p$ respectively $\sigma: H_{\mathfrak{R}_{2}} W\left(B \otimes_{2}\right) \rightarrow \mathcal{I}_{0}$ sucn that $d^{0}(\sigma)=x$ and $d^{2}(\sigma)=\rho$. Tine third edge $d^{1}(\sigma): W\left(B \otimes \Omega_{p}\right) \longrightarrow$ Iop respectively $H_{\Omega_{1}} W\left(B \otimes \Omega_{1}\right) \rightarrow \mathcal{I}_{0}$, whicn is some $B-m a p$ or $n-m a p$ $(n, \pi):(X, \alpha) \rightarrow(Y, \beta)$, is called a composite of f and g. Of course,
this composite need not be unique.

Definition 4.10: Given any simplicial class s satisiying the restricted Kan condition, we call two edges f end g in g nomotopic and write $f \geqslant g$, if there is a 2 -simplex σ with $d^{2}(\sigma)=f, d^{1}(\sigma)=g$ and $d^{0}(\sigma)$ is degenerate. Tnis implies in particular tnat $d^{i}(f)=d^{i}(g), i=0,1$.

From now on we assume that any simplicial class we consider satisfies the condition that any collection of edges with given end points forms a set.

Lemma 4.11: The notion of nomotopy is an equivalence relation on the set of all edges witn given end points.

Proposition 4.12: Let a be a simplicial class satisiying the restricted Kan condition. Then there is a category, the iundamentai category of r, which nas the vertices of q as objects and the nomotopy classes of edges f with $d^{0} f=y$ and $d^{1} f=x$ as morpnisms from x to y.

The proofs of tinese results are fairly standard (compare the theory of the fundamental groupoid of a Kan complex). We include them for the sake of completeness.

Proof of 4.11:

(a) Given an edge f, then there are 2 -simplexes σ and T suen that $d^{\circ}(\sigma)$ and
d=degenerate

$d^{2}(\tau)$ are degenerate, and $d^{1}(\sigma)=d^{2}(\sigma)=d^{0}(\tau)=d^{1}(\tau)=\hat{1}$, namely
$\sigma=s^{1}(f)$ and $\tau=s^{\circ}(f)$. Hence $f=f$. (For the diagrams note that the face d^{i} is opposite the vertex i).
(b) Suppose $f=g$. By assumption and part (a), the faces d°, d^{2}, and d^{3} of tine following 3 -simplex are given.

Hence we can fill in the 3 -simplex by the extension condition, and the face d^{1} provides a nomotopy $g=f$.
(c) Suppose $f^{\sim} \mathrm{c}^{2} \mathrm{n}$. By assumption and part (a), tine faces d^{0}, d^{1}, d^{3} of the following 3 -simplex are given

Hence we can fill in the 3 -simplex by tine extension condition, and the face d^{2} provides a nomotopy $f=$ in.

Proof of 4.12: We define composition in the same way as for $\begin{aligned} & \text {-maps. }\end{aligned}$ Given edges $f: x \longrightarrow y$ and $g: y \longrightarrow z$, there exists a 2-simplex σ with $d^{o} \sigma=g$ and $d^{2} \sigma=f$. We call $d^{1} \sigma=n: x \rightarrow z$ a composite of f and g.
(a) If in and k are composites of f and g, then $n=k$: The faces d^{0}, d^{2}, and d^{3} of the following 3 -simplex are given, the last two by the assumption that n and k are composites of f and g.

Hence we can fill in the 3 -simplex, and d^{1} defines a nomotopy in $=k$. (b) $f, g: x \rightarrow y$ are nomotopic iff tnere exists a 2 -simplex σ with $d^{1}(\sigma)=g, d^{0}(\sigma)=f$, and $d^{2}(\sigma)$ penerate: One way the faces d^{0}, d^{1}, d^{3} of the first simplex, the otner way the faces d^{0}, d^{2}, d^{3} of the second simplex are given.

We fill in, and the faces d^{2} respectively d^{1} give the required result. (c) Given $f, f^{\prime}: x \longrightarrow y$ and $g, g^{\prime}: y \longrightarrow z$ sucn that $f \geq f^{\prime}$ and $g \geq g^{\prime}$. Then $g \bullet f=g^{\prime} \bullet f^{\prime}$: Consider

The faces d^{0} and d^{3} are given by assumption and part (b). If in is a composite of f and g, then d^{2} is given, we can fill in and find, that in is a composite of f^{\prime} and g^{\prime}.
$(d) n \bullet(g \bullet f) \approx(n \bullet g) \cdot f$ if defined: The faces d^{0}, d^{1}, and d^{3} of the following simplex are given.

We fill in and find that $n \cdot(g \cdot f)$ serves as composite of f with $h \circ g$. So we have defined an associative composition of the nomotopy classes of edges of R with $S^{\circ}(x)$ as identity of x.

We denote tine fundamental categories of $\Omega_{B B}$ and $R_{n B}$ by $\operatorname{map} p_{B}$ respec-
 topy classes, in the simplicial sense, of $\begin{aligned} & \text {-maps respectively } n \text {-maps. }\end{aligned}$ There is a more obvious definition or nomotopy, which in the case of A_{∞}-maps can be iound in the literature (e.g. [21]). We could call two B-maps [n月-maps] $(f, \rho),(g, x):(X, \alpha) \rightarrow(Y, \beta)$ nomotopic if there is a. nomotopy througn B-maps [in-maps] from ρ to x. Tine next result sinows that the two notions coincide.

Lemma 4.13: Two \mathfrak{B}-maps [in-maps] $(f, \rho),(g, x):(X, \alpha) \longrightarrow(Y, \beta)$ are nomotopic in the simplicial sense iff there is a nomotopy througn B- $_{\text {- }}$ $\operatorname{maps}\left[n^{B-m a p s}\right]\left(\hat{n}_{t}, H_{t}\right):(X, \alpha) \longrightarrow(Y, \beta)$ witn $H_{o}=\rho$ and $H_{1}=x$.

Proof: Again we only prove the B-map case because the proof for n is completely analogous.

Suppose there is a homotopy of multiplicative functors H_{t} as stated. Let \mathfrak{F} be the subcategory of $W\left(\mathcal{B} \otimes \mathfrak{R}_{2}\right)$ generated by the faces $d^{i} W\left(\notin \mathbb{R}_{2}\right)$. We identify $\alpha^{i} W\left(\otimes \Omega_{2}\right)$ with $W\left(B \Omega_{1}\right)$ using $W\left(I d \otimes \sigma^{j}\right)$, where $j=0$ if $i=0$ and $j=1$ if $i=1,2$. Define a nomotopy of multiplicative functors $K_{t}: \mathcal{D} \longrightarrow$ Iop by

$$
\begin{aligned}
& K_{t} \mid d^{0} W\left(\notin \mathbb{R}_{2}\right)=\rho: W\left(B \otimes \Omega_{1}\right) \rightarrow \mathfrak{I}_{0 p} \\
& K_{t} \mid d^{1} W\left(B \otimes \mathbb{R}_{2}\right)=H_{t}: W\left(B \otimes \mathbb{B}_{1}\right) \rightarrow \mathfrak{I}_{0 p} \\
& K_{t} \mid d^{2} W\left(B \otimes \mathbb{R}_{2}\right)=s^{0}(\alpha): W\left(B \otimes \Omega_{1}\right) \rightarrow I_{00}
\end{aligned}
$$

Tine functor $F=s^{\circ}(\rho): W\left(B \otimes \Omega_{2}\right) \rightarrow \mathfrak{F}_{0} p$ extends K_{0}. By (3.14), there exists a inomotopy of multiplicative functors $F_{t}: W\left(B \Omega_{2}\right) \longrightarrow I_{0 p}$ extending K_{t} and F. By part (b) of the proof or (4.12), the functor $F_{1}: W\left(B \otimes \mathbb{R}_{2}\right) \rightarrow \mathcal{I}_{0}$ provides the required simplicial nomotopy.

Conversely, suppose $(f, \rho)=(g, x)$. Then there is an action $\sigma: W\left(\otimes \otimes_{2}\right) \rightarrow \mathcal{I}_{0} p$ such that $d^{0}(\sigma)=\rho, d^{1}(\sigma)=x$, and $d^{2}(\sigma)=s^{0}(\alpha)$. Let \mathbb{C} be the quotient category of $W\left(B \mathcal{Q}_{2}\right)$ by following additional
relation on the trees:
A tree A whose root inss Ω_{2}-colour 1 is related to $A^{\prime} \cdot\left(\theta_{1} \oplus \ldots a_{n}\right)$, where A^{\prime} is obtained from A by cnanging all edge colours to 1 , $a_{i}=i d(k, 1)$ if the $i-t h$ twig of A nas $\operatorname{colour}(k, 1)$, and

$$
a_{i}=j_{k}=\left.\quad \oint_{1}\right|_{k}
$$

if the i-th twig of A nas colour $(k, 0)$.
Let \mathfrak{D} be the full sub-PROP of \mathbb{C} consisting of all objects
$\underline{i}=\left\{i_{1}, \ldots, i_{r}\right\}$ such that the A_{2}-colour of each i_{q} is or 2 . Since $d^{2}(\sigma)=s^{\circ}(\alpha)$, the action σ factors tincougn s and nence induces an action $\tau: \mathcal{D} \longrightarrow$ Iop. The functor $s^{\circ}: W\left(\otimes \otimes_{2}\right) \longrightarrow W\left(\otimes Q_{1}\right)$ also factors througin \mathbb{S} and induces a functor $\pi: \mathcal{D} \longrightarrow W\left(B \otimes_{1}\right)$. Define two functors $H_{0}, H_{1}: W\left(B \Omega_{1}\right) \rightarrow \mathcal{D}$. The runctor H_{0} is induced by $d^{1}: W\left(B \otimes \Omega_{1}\right) \rightarrow W\left(刃 \otimes \Omega_{2}\right)$. The functor H_{1} maps trees whose edges nave all colour 0 or all colour 1 by d^{1} too. Now let A be a tree with root colour 1 and at least one twig oí colour O. Then H_{1} maps A to $A^{\prime} \cdot\left(a_{1} \oplus \ldots \oplus a_{n}\right)$ where A^{\prime} is obtained irom A by cnanging edge colours 0 to 1 and 1 to 2 and wnere

$$
a_{i}=\left\{\begin{array}{cccccc}
i d \\
(k, 2) & \text { î́ the } i-\operatorname{tn} \text { twig of A nas colour }(k, 1) \\
j_{k} & \text { if the } " & " & " & " & "(k, 0)
\end{array}\right.
$$

Because of tne additional relation H_{1} is a functor. Note that
$\tau \cdot H_{0}=\sigma \cdot d^{1}=x$ and $\tau \cdot H_{1}=\sigma \cdot d^{0}=\rho$. If $\bar{\varepsilon}=\varepsilon \cdot \pi: 5 \longrightarrow W\left(B \otimes \Omega_{1}\right) \rightarrow B \otimes \Omega_{1}$, then $\bar{\varepsilon} \cdot H_{0}=\bar{\epsilon} \cdot H_{1}=\varepsilon$, because $\pi \cdot H_{0}=i d=\pi \cdot H_{1} \cdot$ Provided that $\bar{\epsilon}$ is an equivariant equivalence, we can apply part (B) of the iifting theorem (3.17) witn $B=d^{o} W\left(B B_{1}\right) \cup d^{1} W\left(B Q_{1}\right)$ and $L^{\prime}(t)=H_{0} \mid \mathfrak{B}$ to obtain a nomotopy of PROP-functors $H_{t}: W\left(\otimes \otimes_{1}\right) \rightarrow \mathcal{D}$ from H_{o} to H_{1} with $H_{t} \mid \mathfrak{B}=H_{o}(B)$. Then $\tau \cdot H_{t}$ is the required nomotopy througn b-meps from (\hat{I}, ρ) to ($g, x)$.

To snow that $\bar{\varepsilon}$ is an equivariant equivalence, we deform eacn space
$\mathcal{B}(\underline{i}, k)$ equivariantly into a suitable section of $\bar{\varepsilon}$. If k nas the $\mathbb{B}_{2}-$ colour 0 , then eacn $i_{r} \in \underline{i}=\left\{i_{1}, \ldots, i_{n}\right\}$ nas B_{2}-colour 0 and $\mathcal{D}(\underline{i}, k) \cong W\left(\otimes \Omega_{1}\right)(\underline{i}, k)$ with $\bar{\varepsilon}=\varepsilon$. Hence (3.15) provides the deformation. Suppose k has Ω_{2}-colour 2 , then we first snrink all internal edges of colour 2 using the deformation of (3.15). We then replace each incoming edge of colour $l, l=0,1$

of tine root vertex by

where t runs from 0 to 1. Because of the additional relation we end in the space of all trees whose internal edges all nave colour 1. Now snrink all internal edges of these trees using the deformation of (3.15).
3. HOMOTOPY INVARIANCE AND HOMOTOPY EQUIVALENCES

We first show that admitting the structure of a B-map or n-map is an invariance of the nomotopy class.

Proposition 4.14: Let $(f, \rho):(X, \alpha) \rightarrow(Y, \beta)$ be a B-map [n^{β}-map] and $g: X \rightarrow Y$ a morpinism of $\mathscr{T o p}_{K}$ nomotopic to f, i.e. for each $k \in K$ there is a nomotopy $f_{k} \rightarrow g_{k}$. Tinen g admits a B-map [ng-map]structure $(g, x):(X, \alpha) \rightarrow(Y, \beta)$ sucn tinat $(f, \rho)=(g, x)$.

Proof: Let $\mathfrak{V} \subset W\left(\otimes \otimes_{1}\right)$ be the subcategory generated under composition and \oplus by $d^{0} W\left(B \otimes \Omega_{q}\right), d^{1} W\left(B \otimes \Omega_{q}\right)$ and $\left\{j_{k} \mid k \in K\right\}$. Define a multiplicative functor $H(t): B \rightarrow I_{0 p}$ by $H(t)\left|\alpha^{D} W\left(B \otimes \Omega_{1}\right)=\beta, H(t)\right| d^{1} W\left(B \otimes_{1}\right)=a$, and $H(t)\left(j_{k}\right)=h_{k}(t)$ where $n_{k}(t)$ is any nomotopy $f_{k}=g_{k}$. By Prop. 3.14, there exists an extension $F(t)$ or $H(t)$ sucn that $F(0)=0$. Each $F(t)$ defines a B-map from (X, α) to (Y, β), and $x=F(1)$ has g as carrier. Hence $(f, \rho) \approx(g, x)$ by (4.13). The proof for n-maps is the same.

Corollary 4.15: Given B-maps or $n \mathcal{B}$-maps $(f, o):(X, \alpha) \rightarrow(Y, \beta)$ and $(g, x):(Y, \beta) \rightarrow(Z, \gamma)$. Tnen there is a composite $(n, \eta):(X, \alpha) \rightarrow(Z, \gamma)$ of (f, ρ) and ($g, x)$ sucn that $h=g \circ f$.

Proof: Let ($n^{\prime}, \eta^{\prime}$) be any composite of (f, ρ) and ($\left.g, \beta\right)$. Then there is an action $\sigma: W\left(\mathfrak{B}_{2}\right) \rightarrow \mathfrak{I}_{0} p$ with $d^{\circ}(\sigma)=\beta, d^{1}(\sigma)=\eta^{\prime}$, and $d^{2}(\sigma)=\rho$. Hence
is a nomotopy from $g_{k} \circ f_{k}$ to n_{k}^{\prime}. Now apply (4.14).

We next investigate the question now mucn of a WB-structure on $X \in \mathscr{I}_{0} p_{K}$ survives if we change X by a nomotopy equivalence.

Let \mathcal{G} be the category $9{ }^{\prime}$, \dot{I} two objects 0 and 1 such tinat each morpnism space contains exactly one element. So an \mathfrak{J}-space is a homeomorpinsm $X_{0} \cong X_{1}$.

Lemma 4.16: Suppose $p: X \longrightarrow Y$ is a nomotopy equivalence in Iop ${ }_{K}$. Tnen p carries a $W\left(K \otimes \mathcal{Y}\right.$)-structure (or a $W \mathcal{F}-s t r u c t u r e ~ i n ~ I_{o} p_{K}$ instead of Iop), where we consider K as the category with K as set of objects
and only identity morpinisms.

Proof: Since the identities of $K \otimes 3$ are isolated, we need only consider trees whicn are simplified by relation (3.1 a). So the trees in question are vertical linear trees with edges coloured alternately X_{k} and $Y_{k}($ for $(k, 0)$ and $(k, 1))$. Let \mathbb{G}_{r} be the subcategory of $W(K \odot 1)$ generated by all trees with root colour X_{k}, some k, and at most $r-1$ internal edges, or with root colour Y_{k}, some k, and at most r inter-

Suppose we are given an action of $\mathbb{E}_{2 n}$. To extend over $\mathbb{E}_{2 n+1}$ we need the actions of the trees

where A stands for a tree with twig colour Y_{k}, root colour X_{k}, and $2 n$ internal edges, winich we represent by its edge lengths as a point in $I^{2 n}$. Hence we require maps

$$
f_{k}: I^{2 n_{x Y_{k}}} \rightarrow X_{k} \quad n_{k}(t): I^{2 n_{x Y_{k}}} \rightarrow Y_{k}
$$

which are already given on $\partial I^{2 n} x Y_{k}$, because $x \in I^{2 n}$ represents a morpinism in $\mathbb{c}_{2 n}$ iff $x \in \partial I^{2 n}$. Now $n_{k}(0)$ is known in terms of $⿷_{2 n}$ because of relation (3.1 c), and we require $n_{k}(1)=p_{k} \circ f_{k}$. The maps f_{k} and $n_{k}(t)$ are provided by (A 3.5).

Similarly extend from $\mathbb{E}_{2 n+1}$ to $\mathbb{S}_{2 n+2}$.

This categorical description of a nomotopy equivalence turns out to be useful for the study of homotopy equivalent WB-spaces. Let

$$
d^{0}, d^{1}: W \rightarrow W(\mathscr{Y} \longrightarrow \mathfrak{Y}) \quad u, v: W\left(\mathscr{B} \not \mathfrak{Q}_{1}\right) \longrightarrow W(\mathscr{F})
$$

and the corresponding partly nomogeneous versions be the functors in-
duced by $\bar{d}^{\circ}, \bar{d}^{1}: \Omega_{0} \rightarrow \Im$, where $\bar{d}^{0}(0)=1, \bar{d}^{1}(0)=0$, and $\bar{u}, \bar{v}: \Omega_{1} \rightarrow 9$, where $\bar{u}(i)=i, i=0,1$ and $\bar{v}(0)=1, \bar{v}(1)=0$.

Lemma 4.17: Given an action $\rho: W(B \otimes \Im) \rightarrow \operatorname{Iop}\left[\rho: H_{\mathcal{G}} W(B \otimes \Im) \longrightarrow\right.$ Iop] tinen $\rho \cdot u$ and $\rho \cdot V: W\left(B \otimes_{1}\right) \rightarrow I_{o p}\left[H_{B_{1}} W\left(B \otimes_{1}\right) \rightarrow I_{0 p}\right]$ are B-maps [$n^{B-m a p s], ~ w h i c h ~ a r e ~ n o m o t o p y ~ i n v e r s e ~ t o ~ e a c h ~ o t h e r, ~ i . e . ~ \rho e u ~ r e p r e-~}$ sents an isomorpinism in the category $\mathbb{R a} p_{\mathcal{B}}$ [$\mathbb{R a}_{\mathrm{n} B}$] whose inverse is represented by $\rho \cdot v$.

Proof: Again we only prove the statement for b-maps. We nave to define actions $\mu, \nu: W\left(B \otimes \Omega_{2}\right) \rightarrow$ Iop sucn that $d^{\circ}(\mu)=\rho \cdot v, d^{2}(\mu)=\rho \cdot u$, $d^{0}(\nu)=\rho \cdot u, d^{2}(\nu)=\rho \cdot v$ and $d^{1}(\mu)$ and $d^{1}(\nu)$ are degenerate.

Let $k, l: \Omega_{2} \longrightarrow g$ be given by $k(i)=0, l(i)=1$ for $i=0,2$ and $k(1)=1, \eta(1)=0$. Tnen $\mu=\rho \cdot W(I d \otimes k)$ and $v=\rho \cdot W(I d \otimes l)$ are actions as required.

We now pass to the main results of this section.

Theorem 4.18: Let \mathfrak{D} be a sub-PROP of \mathcal{B} sucn that each ($B(\underline{i}, k), \mathcal{B}(\underline{i}, k))$ is an $S_{i}-N D R$, and let $p: X \longrightarrow Y$ be a nomotopy equivalence in $\mathfrak{I}_{0} p_{K}$. Suppose (Y, β) is a W^{B}-space and p admits a $W(D \otimes Y)$-structure ρ^{\prime} such that $\rho^{\prime} \cdot d^{0}=\beta \mid W D$. Tnen there exists an extension $\rho: W(B \otimes \Im) \longrightarrow \mathcal{I} p$ of ρ^{\prime} sucn that $\rho \cdot d^{\circ}=\beta$. The same nolds for the partly nomogeneous version.

Theorem 4.19: Let \mathfrak{D} be a sub-PROP of B sucin that ($\mathfrak{B}(\underline{i}, k), \mathcal{D}(\underline{i}, k)$) is an $S_{\underline{i}}-N D R$. Suppose $(p, \pi):(X, \alpha) \longrightarrow(Y, \beta)$ is a $\quad \rightarrow$-map whose underlying map p is a nomotopy equivalence in $\mathfrak{F}_{0} p_{K}$ and suppose p admits a $W(\mathcal{D} \odot)$-structure ρ^{\prime} such tinat $\rho^{\prime} \circ\left(u \mid W\left(\mathcal{D} \Omega_{1}\right)\right)=\pi \mid W\left(\mathcal{D} \otimes \Omega_{1}\right)$. Then there is an extension $\rho: W(B \otimes \Im) \rightarrow I_{0} p_{K}$ of ρ ' sucn that $\rho \cdot u=\pi$. The same nolds for tine partly nomogeneous version.

Before we prove the theorems let us deduce some important consequenсея.

Corollary 4.20: Let $\left(X, \alpha^{\prime}\right)$ be a W-space and (Y, β) a W-space such that (X, α^{\prime}) and ($Y, \beta \circ 1$) are nomotopy equivalent as WD-spaces (i : WD \subset W is the inclusion functor). Then the WD-action on X extends to a $W \mathcal{B}$-action α and the D-nomotopy equivalence $\left(X, \alpha^{\prime}\right) \longrightarrow(Y, \beta \cdot i)$ to a nomotopy equivalence $(X, \alpha) \longrightarrow(Y, \beta)$ of WB-spaces.

Proof: By assumption tnere is a $\mathfrak{D}-\operatorname{map}\left(p, \pi^{\prime}\right):(X, \alpha) \longrightarrow(Y, \beta \cdot i)$ whose underlying map is a homotopy equivalence. By (4.16), padmits a $W(K \odot \mathcal{J})$-structure. Now apply (4.19) witn $\mathcal{D}=K$ to extend π^{\prime} to an action $\rho^{\prime}: W(\mathcal{D} \otimes \Im) \rightarrow$ Iop, wnich in turn can be extended to an action $\rho: W(\mathfrak{O} \odot \mathcal{J}) \rightarrow$ Fop sucn that $\rho \cdot d^{\circ}=\beta$, by (4.18). Tnen $\alpha=\rho \cdot d^{1}$ is the required w-structure on X.

Corollary 4.21: Let $(p, \pi):(X, \alpha) \rightarrow(Y, \beta)$ be a B-map and p a nomotopy equivalence. Let q be any nomotopy inverse of p carrying a bap structure $\left(q, x^{\prime}\right):(Y, \beta \circ i) \rightarrow(X, \alpha \circ i)$, whicn is nomotopy inverse to ($p, \pi \bullet(i \otimes i d))$. Tnen $\left(q, x^{\prime}\right)$ can be extended to a $B-m a p(q, x):(Y, \beta) \rightarrow(X, x)$ which is nomotopy inverse to (p, π). The same nolds for in-maps.

Proof: The action π can be extended to an action $\rho: W(\mathbb{O}) \rightarrow$ Sop by (4.16) and (4.19). Hence tnere exists a nomotopy inverse ($q^{\prime}, x^{\prime \prime}$) of (p, π) namely $x^{\prime \prime}=\rho \bullet v$. In particular, $\rho \cdot i: W(D \cup \mathcal{O}) \rightarrow$ Iob provides a nomotopy inverse (q^{\prime}, g^{\prime}) of ($p, \pi \cdot i$), winich nes to be nomotopic to (q , x^{\prime}). By (4.13), there is a nomotopy through 0 -maps $\left(q_{t}, s_{t}\right):(Y, \beta \circ i) \longrightarrow(X, \alpha \circ i) \operatorname{with}\left(q_{0}, s_{o}\right)=\left(q^{\prime}, s\right)$ and $\left(q_{p}, s_{p}\right)=\left(q^{\prime}, x^{\prime}\right)$. Let $B \subset W\left(B \Omega_{1}\right)$ be the subcategory generated under \oplus and composition by $d^{i} W \neq i=0,1$, and $W\left(\mathcal{B} \otimes \Omega_{1}\right)$. Tnen $\left(q_{t}, s_{t}\right)$ and the constant nomotopies on α and β define a nomotopy $H(t): \mathfrak{B} \rightarrow \mathfrak{I}_{0} p$ of multiplicative
functors sucn that $x^{\prime \prime}$ extends $H(0)$. By (3.14), there is a 8 -map $(q, x):(Y, \beta) \rightarrow(X, \alpha)$ extending $\left(q, x^{\prime}\right)$ and nomotopic to ($\left.q^{\prime}, x^{\prime \prime}\right)$.

Remark: Corollary 4.21 includes a result of Fucns [21, Satz 4.1] (see also (1.17) of these notes). Moreover, we provide the inirst complete proof of this result available in the literature.

To prove the theorems, we seek to give p a $W(B) \mathcal{O})$-structure, where we are in effect given the action of a sub-PROP © of $W(B)$) We extend by applying the lifting theorem (3.17) witn $B=\mathbb{S}$ to obtain a retraction functor $W(B \otimes \Im) \rightarrow \mathbb{C}$, for winicn we need only snow that the restriction of the augmentation $\varepsilon: W(B) \rightarrow \mathcal{B}) \longrightarrow \mathcal{B}$ to \mathbb{S} is an equivariant equivalence. We only prove tine theorems for the innomogeneous version, because they are similar for the nomogeneous one. To make the argument more transparent we denote the elements of \mathbb{C} often by their images under the given actions. For example, the colours $(k, 0)$ and $(k, 1)$ are identified with X_{k} and Y_{k} and simply denoted by X and Y, and the trees

with $p_{k}: X_{k} \rightarrow Y_{k}$ are often denoted by p and q. We again label the vertices by elements in \mathcal{B}. In view of (4.16) we can assume that $\mathcal{D} \subset \mathcal{B}$ contains all identities. To make life easier we prove

Lemma 4.22: Let 5 be a sub-PROP of $W(B \otimes 3)$ containing $W(K \otimes \Im)$. Then $\varepsilon: \mathbb{C}(\underline{\underline{i}}, k) \rightarrow(B \otimes \mathcal{O})(\underline{i}, k)$ is an equivariant nomotopy equivalence provided it is one for $\underset{\underline{i}}{ }=\left\{i_{1}, \ldots, i_{n}\right\}$ and k such that k and each i_{r} nes \mathfrak{J}-colour 1.

Proof: Substitute eacn X-coloured twig of a tree in an arbitrary
morphism space $\mathbb{E}(\underline{i}, k)$ by

where t runs from 0 to 1. Similarly substitute a X-coloured root by

$$
\begin{aligned}
& 1 \|_{\mathrm{X}} \begin{array}{l}
\text { Qid } \\
\mathrm{t} \\
\mathrm{Y} \\
\mathrm{id} \\
X
\end{array}
\end{aligned}
$$

This deforms $\mathbb{C}(\underline{i}, k)$ into the subspace of trees of the form

$$
v \circ A \cdot\left(u_{1} \oplus \ldots \oplus u_{n}\right)
$$

where $v=q$ if k nas colour X and $v=i d$ otnerwise, $u_{r}=p$ if i_{r} nas colour X and $u_{r}=i d$ otnerwise, and A is a tree whose root and twigs all nave colour Y. By assumption, ϵ is an equivariant nomotopy equivalence on trie space of all trees A.

Proof of 4.18: Take © to be tine subcategory of $W(B \otimes J)$ generated by $W(\mathcal{D} \otimes \mathfrak{J})$ and $d^{\circ}(W \mathcal{W})$. Then \subseteq satisfies the requirements for B in Theorem 3.17, and ρ^{\prime} and β define an action $\mathfrak{c} \rightarrow$ Iop. To show that $\varepsilon: \mathbb{C} \rightarrow \mathcal{O}$ is an equivariant equivalence, we take a space $\mathbb{c}(\underline{i}, k)$ whose trees have only Y-coloured root and twigs and contract all internal X-edges using the deformation of (3.15). Tnis deforms $\mathbb{C}(\underset{i}{ }, k)$ into the subspace of all trees with no X-edge, i.e. into W (i,k), which is what we need.

Proof of 4.19: Tnis case is considerably more complicated. Take © to
be tine subcategory of $W(B)$) generated by $W(D) \mathcal{S})$ and $u\left(W\left(B \mathbb{R}_{1}\right)\right)$. Then \mathbb{E} satisfies the requirements for \mathfrak{B} in Theorem 3.17, ρ ' and π define an action $\mathbb{C} \rightarrow \mathfrak{F}_{0} p$. For the proof that $\epsilon: \mathbb{C} \longrightarrow \mathcal{G}$ is an equivariant equivalence, we modify the description of $W(B \otimes B)$.

The vertices

are called p-vertices and q-vertices. Any otner vertex not labelled by an identity is called e-vertex. We consider trees that nave only two kinds of vertices:
(i) p-vertices and q-vertices (winicn imply cnanges of the 9 -colour)
(ii) vertices in which all incoming edges have the same g-colour as tine outgoing edge.

The relations among these trees are the same as (3.1) with the exception that edges or lengtn 0 with an e-vertex on one end and a p-or q-vertex on the otner cannot be sinrunk. Instead, we nave the notion of "pusning a p-vertex (or similarly a q-vertex) up tnrough an evertex": Given an edge of lengtin 0 with an e-vertex at the top and a p-vertex at the bottom. We replace the p-vertex below the e-vertex by k p-vertices just above the e-vertex, separated from it by edges of length 0 , one for each incoming edge to the e-vertex.

Then $W(B)$ is the quotient of the space of these representing trees modulo the relations (3.1) with the above modification of (3.1 c).

This can be seen as follows: Any representing tree can in a canonical way be brougnt into a tree of this form by introducing redundant edges of lengths 0 with extra p-vertices and q-vertices. If an incoming edge of length t of an e-vertex nas the wrong colour, X say, we substitute it by

$$
\}_{0}^{t} \int_{0}^{x}
$$

Similarly, use q, if the wrong colour is Y. Starting at the root vertex and working upwards we can cinange eacn representing tree inside its equivalence class to one of the required form.

The set of all e-vertices divides into two classes: b-vertices are those with labels $a \in B-B$, and d-vertices with $a \in \mathcal{D}, a \neq i d$. In terms of the alternative description of $W(\mathcal{F} \otimes)$, the trees that lie in \mathfrak{c} are precisely those that satisfy the separation condition: In the directed edge path between any q-vertex and any b-vertex, there is an edge of lengtin 1 .

We filter $W(B)$. In view of (4.22), we only consider trees whose twigs and root inge colour Y. Define the neight of any vertex of a. tree to be the number of vertices between it and the root, and the e-neignt as the number of these that are e-vertices. For $j=0,1,2, \ldots$ let m_{j} be the number of p-vertices and q-vertices with e-neignt exactly j, and let n be the number of e-vertices in a tree. Then order the tree sinapes lexicograpnically according to the sequences ($n, m_{0}, m_{1}, m_{2}, \ldots$). This ordering is not as infinite as it looks, because $m_{j}=0$ for $j>n$. We obtain an induced filtration F_{ν} of $W(B)$, which nas the advantage that it strictly reduces by the application of any relation ($3.1 \mathrm{a}, \mathrm{c}$) in the modified form. To make the definition compatible witn the topology we nave to allow identities as "degenerate" e-vertices. If $\mu<\nu$ in the above ordering, it is easy to see, that the inclusion
of the representing trees of F_{μ} into the space of representing trees of F_{ν} is a closed equivariant cofibration. Hence it suffices to show (a) Let F be the space of trees of a given shape in with order $\left(n, m_{0}, m_{1}, \ldots\right)$, some $m_{j} \neq 0$, and $F^{*} \subset F$ the subspace of trees of lower filtration. Then F^{\prime} is an equivariant $S D R$ of F.
(b) Let R be the space of all trees of $\operatorname{order}(n, 0,0, \ldots), n=1,2, \ldots$, then $\varepsilon \mid R$ is an equivariant nomotopy equivalence.

Statement (b) holds, because R is the space of representing trees of Wh. The idea for the proof of (a) is the following: Since roots and twigs have colour Y, there is at least one q-vertex between a p-vertex and a twig above it. Move all p-vertices as nign as possible, to cancel out the q-vertices. This reduces $\mathbb{C}(\underline{i}, k)$ to W (\underline{i}, k), which is what we need.

Consider the space of trees of a given shape with Y-root and no X-twigs and suppose the shape nas ordering (n, m_{0}, m_{1}, \ldots) with some $m_{j} \neq 0$. Let k be the minimal neignt of $a \operatorname{p-vertex}$ and let P_{1}, \ldots, P_{r+s} denote the p-vertices of neignt k. Tneir e-neignt is alsok. Hence $m_{j}=0$ for $j<k$, and $m_{k} \geq r+s$. We first assume that $k>0$. Let u_{i} be the length of the incoming edge of P_{i}, and v_{i} the length of the outgoing edge. To take care of the separation condition we induct on the number of P_{i} such that u_{i} or v_{i} is 1 . To be precise, we refine the filtration: Let F be the space of all trees we are considering at present. Let F_{r} be the subspace of those trees such that at least r of P_{1}, \ldots, P_{r+s} (index them P_{1}, \ldots, P_{r}) have an incoming or outgoing edge of length 1. Then $\left(F_{r-1}, F_{r}\right)$ is an equivariant $N D R$. Let $J=I \times 1 U 1 \times I \subset I^{2}$. Then F_{r} nas the form $J^{r} \times\left(I^{2}\right)^{s} \times H$, where J^{r} is the space of lengtins ($u_{1}, v_{1}, \ldots, u_{r}, v_{r}$), $\left(I^{2}\right)^{s}$ is the space of lengtins $\left(u_{r+1}, v_{r+1}, \ldots, u_{r+s}, v_{r+s}\right)$ and H is a large product of copies $\geqslant(j, l)$ and I taking care of all other parameters. To obtain the elements of $F_{r} \cap \mathbb{C}$, we restrict the $H-c o o r d i n a t e$ to lie in a certain subspace H^{\prime} (depending on r) of H. What we want is an equivariant strong deformation retraction of $F_{r} \cap \mathbb{t}$ into
$Q=F_{r+1} \cap \mathbb{C} U\left\{a l l\right.$ elements of $F_{r} \cap \mathbb{C}$ related to a tree of lower ordering\}. A tree lies in this space if its H-coordinate lies in a certain subspace $H^{\prime \prime}$ of H^{\prime}, if $\left(u_{i}, v_{i}\right) \in J$ for some $i>r$, or if any $u_{i}=0$ (but not if some $v_{i}=0!$, because we then cannot reduce inside our modified space of representatives). Hence Q is of the form $Q=J^{r} \times\left(I^{2}\right)^{s} \times H^{\prime \prime} \cup D\left(J^{r} \times\left(I^{2}\right)^{s}\right) \times H^{\prime}$, where $D\left(J^{r} \times\left(I^{2}\right)^{s}\right) \subset J^{r} \times\left(I^{2}\right)^{s}$ is tine subspace of all points $\left(u_{1}, v_{1}, \ldots, u_{r+s}, v_{r+s}\right)$ with some $u_{i}=0$ or some $u_{j}=1$ or $v_{j}=1$ for $j>r$. We require an equivariant strong deformation retraction

$$
r: J^{r} \times\left(I^{2}\right)^{s} \times H^{\prime} \rightarrow J^{r} \times\left(I^{2}\right)^{s} \times H^{\prime \prime} \cup D\left(J^{r} \times\left(I^{2}\right)^{s}\right) \times H^{\prime}
$$

Now H^{\prime} and $H^{\prime \prime}$ are unions of subproducts of H, where we substitute certain factors $\mathcal{B}(\underline{j}, l)$ by $\mathfrak{D}(\underline{j}, l)$ and I by 0 or 1 , and $H^{\prime \prime}$ is the subspace of H^{\prime} obtained by substituting a factor $B(l, l)$ or $B(l, l)$ by an identity or a suitable factor I by 0 . Since $\left(\mathbb{T}(k, k),\left\{i d_{k}\right\}\right)$ is a $N D R$, $\left(H^{\prime}, H^{\prime \prime}\right)$ is an equivariant $N D R$. Since $\{(0,1)\}$ is a SDR of J and since $J U O X I$ is a $S D R$ of I^{2}, the space $D\left(J^{r} \times\left(I^{2}\right)^{s}\right)$ is an equivariant $S D R$ of $J^{r} x\left(I^{2}\right)^{s}$. Hence r exists. This settles the case $k>0$. If k is large enough, e.g. $k>n$, we have no p-vertices left and nence no q-vertices. Therefore we are in the situation (b) as desired.

If $k=0$, the root vertex is a p-vertex and the space of all trees of this type in \mathbb{C} is of the form $I \times H^{\prime}$, where I is the space of lengtins u of the incoming edge to the root vertex, and H^{\prime} takes care of all otner paramaters. A tree in $I x H^{\prime}$ is related to a tree of lower ordering if its H^{\prime}-coordinate lies in some subspace $H^{\prime \prime}$ of H^{\prime} as above or if $u=0$. Since ($H^{\prime}, H^{\prime \prime}$) is an equivariant $N D R$, there is an equivariant strong deformation retraction

$$
I \times H^{\prime} \longrightarrow O \times H^{\prime} U I \times H^{\prime \prime}
$$

as required. Tinis completes the proof of (4.19).

4. RELATING ${ }^{\text {B-MAPS AND }}$ H-MAPS TO W-HOMOMORPHISMS

Since ${ }^{B}$-maps and n-maps are difficult to work witn, it is desirable to substitute them by nomomorpinisms.

Theorem 4.23: For any Wh-space (X, α) there exists a W - apace $U(X, \alpha)=\left(U X, \alpha^{*}\right)$, a s-map $\left(q_{\alpha}, \xi_{\alpha}\right):(X, \alpha) \rightarrow U(X, \alpha), \quad$ and $a \operatorname{ng}-\operatorname{map}\left(q_{\alpha}, \eta_{\alpha}\right):(X, \alpha) \rightarrow U(X, \alpha)$ sucn thet
(a) The map q embeds X as $S D R$ into UX.
(b) Any $B-\operatorname{map}(f, p):(X, \alpha) \longrightarrow(Y, \beta)$ is a canonical composite in the sense of (4.5) of $\left(q_{\alpha}, \xi_{\alpha}\right)$ and a unique W-inomomorpinism in $U(X, \alpha) \rightarrow(Y, \beta)$. (c) Any $n \rightarrow-m a p(i, p):(X, \alpha) \rightarrow(Y, \beta)$ is the canonical composite in $\left(q_{\alpha}, \eta_{\alpha}\right)$ of a unique W^{W}-nomomorpinism in $: U(X, \alpha) \rightarrow(Y, \beta)$ and (q, η). (d) If we change (f, ρ) inside its nomotopy class, then the induced nomomorphism in stays inside its nomotopy class.

Althougn the definition of a nomotopy of nomomorpisms is obvious let us state it.

Definition 4.24: Let B be a PROP. Two nomomorpinisms $n_{0}, n_{1}: X \longrightarrow Y$ of 8 -spaces are called homotopic if there is a homotopy of nomomorpnisms $n_{t}: X \longrightarrow Y$ from n_{0} to n_{1}.

Remark: Since the composite of a B-map and a WB-homomorphism is in general only defined up to nomotopy, part (b) is not particularly useful.

Proof of the theorem:

For $\underline{i}=\left\{i_{1}, \ldots, i_{n}\right\} \in$ ob B, let $\underline{i}^{\varepsilon}=\left\{\left(i_{1}, \varepsilon\right), \ldots,\left(i_{n}, \varepsilon\right)\right) \in$ ob $\left(B \otimes_{1}\right)$, $\varepsilon=0,1$. Define
(4.25) $\quad(U X)_{k}=\bigcup_{\underline{i} \in O b 刃} H W\left(B \otimes B_{1}\right)\left(\underline{i}^{0}, k^{1}\right) \times X_{\underline{i}} / \sim$
with $\left(c \cdot a ; x_{1}, \ldots, x_{n}\right) \sim\left(c ; a\left(x_{1}, \ldots, x_{n}\right)\right), c \in \operatorname{HW}\left(B \otimes \mathfrak{B}_{1}\right)\left(\dot{i}^{0}, k^{1}\right)$, $a \in \operatorname{HW}\left(\mathscr{B} \otimes \Omega_{1}\right)\left(\underline{i}^{0}, \underline{j}^{0}\right)$. Here we identiry a with its image under
 $a *$ by

$$
\mathrm{b}\left[\left(\mathrm{c}_{1} ; \underline{x}_{1}\right), \ldots,\left(c_{r} ; \underline{x}_{r}\right)\right]=\left[\mathrm{b} \circ\left(c_{1} \oplus \ldots \oplus c_{r}\right) ; \underline{x}_{1}, \ldots, \underline{x}_{r}\right]
$$

where $b \in W^{B}$ is identified with its image under $d^{0}: W^{\&} \longrightarrow \operatorname{HW}\left(\otimes \mathfrak{l}_{1}\right)$ and \underline{x}_{i} stands for $x_{i 1}, \ldots, x_{i n_{i}}$.
 as subcategory of $W\left(B \Omega_{1}\right)$. The functors α and $\alpha *$ determine ξ_{α} on $d^{\circ} W_{B}$ and $d^{1} W^{\text {WP }}$. On elements $d \in W\left(\mathscr{B} \otimes \Omega_{1}\right)(\underline{r}, l)$ where $\underline{r}=\left\{r_{1}, \ldots, r_{n}\right\}$ contains at least one element with Ω_{1}-colour 0 and 2 nas $\mathfrak{\Omega}_{1}$-colour 1 , the action ξ_{α} is given by

$$
\begin{equation*}
d\left(y_{1}, \ldots, y_{n}\right)=\left(d \cdot\left(a_{1} \oplus \ldots \oplus a_{n}\right) ; z_{1}, \ldots, z_{n}\right) \tag{4.26}
\end{equation*}
$$

where

$$
\left(a_{i}, z_{i}\right)= \begin{cases}\left(i d_{k}, y_{i}\right) & \text { if } r_{i}=(k, 0) \in \mathbb{K} \times o b \Omega_{1} \\ \left(c_{i}, \underline{x}_{i}\right) & \text { if } r_{i}=(k, 1) \in K \times o b \Omega_{1} \text { and } y_{i}=\left(c_{i} ; \underline{X}_{i}\right) \in(U X)_{k}\end{cases}
$$

The underlying map $q_{\alpha}=\left\{q_{k}: X_{k} \rightarrow(U X)_{k}\right\}$ is given by $q_{k}(x)=\left(j_{k} ; x\right)$. Recall that j_{k} is represented by the tree

Proof of (b): For a ${ }^{18-m a p}(f, \rho):(X, \alpha) \longrightarrow(Y, \beta)$ define a Wh-nomomorphism in : $U(X, \alpha) \longrightarrow(Y, \beta)$ by

$$
\begin{equation*}
\dot{n}(c ; \underline{x})=\rho(c)(\underline{x}) \tag{4.27}
\end{equation*}
$$

The nomomorpnism in : UX $\longrightarrow Y$ necessarily nas to satisfy (4.27), because it expresses the condition that (f, p) be a canonical composite n• $\left(q_{\alpha}, 5_{\alpha}\right)$ for elements $c \in \operatorname{HW}\left(\otimes B_{1}\right)$. It remains to check that condition (4.5) is satisfied for a $\in W\left(\mathcal{B}_{1}\right)(\underline{r}, l)$ with \underline{x} and l as above. Let $y_{i}=w_{i} \in X_{k}$ î $r_{i}=(k, 0)$ and $y_{i}=\left(c_{i}, \underline{X}_{i}\right), w_{i}=n\left(c_{i} ; \underline{x}_{i}\right)$ if
$r_{i}=(k, 1)$. Then

$$
\rho(a)\left(w_{1}, \ldots, w_{n}\right)=n\left(g(a)\left(y_{1}, \ldots, y_{n}\right)\right)
$$

because

$$
\begin{aligned}
n\left(\xi(a)\left(y_{1}, \ldots, y_{n}\right)\right) & =\dot{n}\left(a \cdot\left(a_{1} \oplus \ldots \oplus a_{n}\right) ; z_{1}, \ldots, z_{n}\right) \text { witin } a_{i}, z_{1} \text { as in (4.26) } \\
& =\rho\left(a \cdot\left(a_{1} \oplus \ldots a_{n}\right)\right)\left(z_{1}, \ldots, z_{n}\right) \\
& =\rho(a)\left(\rho\left(a_{1}\right)\left(z_{1}\right), \ldots, \rho\left(a_{n}\right)\left(z_{n}\right)\right) \\
& =\rho(a)\left(w_{1}, \ldots, w_{n}\right)
\end{aligned}
$$

Proof of $(c):$ The in $B-m a p\left(q_{\alpha}, \eta_{\alpha}\right):(X, \alpha) \rightarrow U(X, \alpha)$ is given by
 nomomorpinism in as in (4.27).

Proof of (d): Let $\left(f_{o}, \rho_{o}\right)=\left(f_{1}, \rho_{q}\right)$. Then there is a nomotopy througn $B-m a p s \rho_{t}:(X, \alpha) \rightarrow(Y, \beta)$. Define the nomotopy througn nomomorpinisms by $n_{t}(c ; \underline{x})=\rho_{t}(c)(\underline{x})$. Of course, this works also for n - ${ }^{\prime}$-maps.

Proof of (a): As usually when working with deformations we use the tree language. So we first express UX in terms of trees. As in the previous section we call an edge of Ω_{1}-colour 0 an X-edge or X-coloured and an edge of Ω_{1}-colour 1 a Y-edge or Y-coloured. Then UX is the space of all trees with a Y-root, all twigs are X-twigs and to each twig of K-colour k is assigned e. cnerry in X_{k} subject to the relations (compare (3.24))
(4.28) $(a)=(3.1 a)$
$(b)=(3.1 \mathrm{~b})$ for permutations. The cnerries are permuted along with the twigs.
$(c)=(3.1 c)$
(d) if the tree A nas an X-edge of lengtn 1 so that $A=A_{1}{ }^{\circ} A_{2}$, then

$$
\left(A ; x_{1}, \ldots, x_{n}\right) \sim\left(A_{1} ; x_{1}, \ldots, x_{p}, y, x_{q+1}, \ldots, x_{n}\right)
$$

> where $y=\alpha\left(A_{2}\right)\left(x_{p+1}, \ldots, x_{q}\right)$, and $\left(x_{p+1}, \ldots, x_{q}\right)$ and $\left(x_{1}, \ldots, x_{n}\right)$ are the cherries of A_{2} and A in clockwise order.

We filter each space (UX) k by subspaces F_{n} of trees naving at most n internal edges. In a similar manner as for Lemma 3.9 we can show (4.29) (a) (UX) k is the direct limit of the subspaces F_{n}
(b) ($\left.F_{n+1}, F_{n}\right)$ is a NDR
(c) if each $\mathfrak{B}(\underset{i}{ }, k$) is Hausdorff, so is each (UX) k
(d) if B is a CW-PROP, then (UX) k is a CW-complex.

The deformation $U X \rightarrow X$ is constructed in two steps. Let MX \subset UX be tine subspace of all trees having no internal Y-edge.

Step 1: Deform UX into MX. For tinis it suffices to deform $\mathrm{F}_{\mathrm{n}} U$ MX into $F_{n-1} U M X$. Let $Q \times I^{k} \times I^{l} \times X_{i}$ be a space of trees A in UX, where Q is the space of vertex labels, I^{k} and I^{l} the spaces of lengtins of X-edges and Y-edges, and $X_{\underline{i}}$ the space of cnerries. We intend to sinrink the Y-edges of A. Let $D Q \subset Q$ be tine subspace of elements which can be reduced by (4.28 a) and let $L I^{l} \subset I^{2}$ be tine union of lower faces. Then $A \in Q \times I^{k} \times I^{l} \times X_{\underline{i}}$ represents an element of lower filtration iff

$$
A \in D Q \times I^{k} \times I^{l} \times X_{\underline{i}} \cup Q \times \partial I^{k} \times I^{l} \times X_{\underline{i}} \cup Q \times I^{k} \times L I^{l} \times X_{\underline{i}}
$$

On $D Q$ and on the lower faces of $I^{k} \times I^{l}$ we may reduce A by (4.28 a and c) while we may reduce it by (4.28 d) on the upper faces of I^{k}. So we need an equivariant (because of (4.18 b)) strong deformation retraction

$$
Q \times I^{k} \times I^{l} \times X_{\underline{i}} \rightarrow D Q \times I^{k} \times I^{l} \times X_{\underline{\underline{i}}} \quad \| Q \times \partial I^{k} \times I^{l} \times X_{\underline{\underline{i}}} \cup Q \times I^{k} \times L I^{l} \times X_{\underline{i}},
$$

which exists by (A 2.4) for $l>0$.
Step 2: Next deform MX into X. Note that the subspace X of $M X$ consists of the elements represented by the trees

where x is a cnerry. Substitute the roots of trees in MX by

where t runs from 0 to 1. For $t=1$, relation (4.28 d) applies and reduces the tree to one in X. Because of (4.28 a), the points of X are kept fixed under the deformation.

Let Qom wh denote the category of WB-spaces and nomotopy classes of WB-nomomorpnisms. We are going to derine runctors

$$
\operatorname{Ita}_{\mathfrak{B}}<-\oint_{\mathrm{WB}} \longrightarrow \mathrm{~J}^{\top}>\operatorname{TRap}_{\mathrm{n} \mathcal{B}}
$$

Let $f:(X, \alpha) \rightarrow(Y, \beta)$ be a W Whomomorpinism. Define a $B-m a p$ Jf $=$ $\left(f^{\prime}, f_{*}\right):(X, \alpha) \rightarrow(Y, \beta)$ by $f_{*} \mid d^{1} W \neq \alpha$ and on $a \in W\left(B \otimes_{1}\right)(\underline{i}, k)$, where k nas Ω_{1}-colour 1 , by $f_{*}(a)=\beta\left(s^{\circ}(a)\right) \cdot\left(n_{1} \times \ldots \times n_{n}\right)$ with $n_{r}=i d_{Y}$ if $\underline{i}(r)=(l, 1)$ and $n_{r}=f_{\ell}$ if $\underset{i}{ }(r)=(l, 0)$. The definition of the induced n-map $\left(f, f_{*}^{\prime}\right)$ is the same. It is immediate from the definitions that J and J^{\prime} preserve identities. It remains to cneck that they preserve composition:

Lemma 4.30: Let $f:(X, \alpha) \rightarrow(Y, \beta)$ and $g:(Y, \beta) \rightarrow(Z, \gamma)$ be WBhomomorphisms. Then $\left(g \cdot f,(g \circ f)_{*}\right)$ is a composite $B-m a p\left(g, g_{*}\right) \cdot\left(f, f_{*}\right)$. The analogous result nolds for in-maps.

Proof: Define $\rho: W\left(B \otimes \Omega_{2}\right) \rightarrow \mathcal{T o p}$ by $\rho \mid d^{2} W\left(B \Omega_{2}\right)=f_{*}$ and on morpiisms a. $\in W\left(B \otimes \mathbb{B}_{2}\right)(\underline{i}, k)$ where k nas ε_{2}-colour 2 by $\rho(a)=\gamma\left(s^{0} s^{0}(a)\right)\left(h_{1} \times \ldots \times n_{n}\right)$ witn

$$
\hat{n}_{r}= \begin{cases}i d_{Z_{l}} & \text { if } \underline{i}(r)=(l, 2) \in K \times o b \Omega_{2} \\ g_{l} & \text { if } \underline{i}(r)=(l, 1) \in K \times \circ b \Omega_{2} \\ g_{l} \cdot f_{l} & \text { if } \underline{i}(r)=(l, 0) \in K \times \circ b \Omega_{2}\end{cases}
$$

Then $\rho \cdot d^{0}=g_{*}, \rho \cdot d^{1}=(g \cdot f)_{*}$ and $\rho \cdot d^{2}=f_{*}$. Hence $(g \cdot f)_{*}=g_{*} \bullet f_{*}$ as ${ }^{\mathfrak{B}}$-map. The proof for $\mathrm{n}^{\boldsymbol{D}}$-maps is the same.

As a direct consequence of Theorem 4.23 we obtain

Proposition 4.31: The functors J and J^{\prime} have fully faitnful left adjoints

$$
\mathrm{U}: \operatorname{map}_{\mathfrak{B}} \longrightarrow \$_{0 m_{W B}} \quad \mathrm{U}^{\prime}: \operatorname{map}_{\mathrm{nB}} \longrightarrow \$_{0 \mathrm{~m}_{\mathrm{WB}}}
$$

i.e. there is a natural bijection $\operatorname{map}_{\mathfrak{B}}((X, \alpha),(Y, \beta)) \cong=\operatorname{mom}_{W \mathcal{A}}(U(X, \alpha),(Y, \beta))$ and the function $U: \operatorname{map}_{\mathfrak{g}}\left((X, \alpha),(Y, \beta) \longrightarrow \operatorname{sim}_{\mathfrak{g}}(U(X, \alpha), U(Y, \beta))\right.$ is bijective; and analogously for U '.

Proof: On objects, U and U^{\prime} are given by the construction of (4.23) and on morpinisms by

We use the universal property of $\left(q_{\alpha}, \xi_{\alpha}\right)$. Since $U(\hat{f}, \rho)$ is unique, it follows that U is a functor. By (4.23 b), it is left adjoint to J with

$$
\left(q_{\alpha}, \xi_{\alpha}\right):(X, \alpha) \rightarrow\left(U X, \alpha^{*}\right)=J U(X, \alpha)
$$

as front odjunction. Since the (q_{α}, s_{α}) are isomorphisms, U is fully faithful by adjoint functor nonsense. The proof for U^{\prime} is the same.

```
As a corollary we obtain
```

Proposition 4.32: The inclusion functor i : $H W\left(B \otimes \Omega_{1}\right) \subset W\left(B \otimes B_{1}\right)$ induces a functor $H: \operatorname{Rap}_{\mathcal{B}} \longrightarrow \mathbb{R a p}_{\mathrm{n} B}$, which is an isomorpinism of categories.

Proof: Let $j: H W\left(B \mathbb{R}_{2}\right) \subset W\left(B \otimes \mathbb{R}_{2}\right)$ be the inclusion. Let $\sigma: W\left(B \mathbb{R}_{2}\right) \rightarrow \mathcal{F o p}_{0}$ define a nomotopy between two $B-m a p s(f, 0)$ and $\left(f^{\prime}, \rho^{\prime}\right)$ and $T: W\left(B \otimes B_{2}\right) \rightarrow \mathfrak{I}_{0}$ p a composite $(g \cdot f, \lambda)$ of two $B-m a p s$ (g, x) and (f, ρ). Then $\sigma \cdot j$ deîines a nomotopy between ($f, \rho \cdot i$) and ($f^{\prime}, \rho^{\prime} \cdot i$) and $\tau \cdot j$ shows that $(g \cdot \hat{I}, \lambda \circ i)$ is a composite of $(g, x \cdot i)$ and ($f, \rho \cdot i$). Hence H is indeed a functor.

Let $(f, p):(X, \alpha) \rightarrow(Y, \beta)$ be a B-map. By construction, the induced Wh-nomomorpinism in $: U(X, \alpha) \rightarrow(Y, \beta)$ of Theorem 4.23 is the same for the $B-m a p(f, \rho)$ and the $n B-m a p(f, \rho \cdot i)$. By definition, $U^{\prime}(X, \alpha)=$ $U(X, \alpha)=\left(U X, \alpha^{*}\right)$. The morphism $U[f, \rho]$, where $[f, \rho]$ denotes the homotopy class of (f, p), is represented by the w-inomomorpnism h induced by a composite $\left(q_{\alpha} \cdot f, \lambda\right)$ of (f, ρ) and $\left(q_{\alpha}, \xi_{\alpha}\right)$ winile $U^{\prime}[f, \rho \circ i]$ is represented by the $W^{W B}$-nomomorpnism n^{\prime} induced by a composite ($q_{\alpha} \cdot I^{\prime}, \lambda^{\prime}$) of ($f, \rho \cdot i$) and $\left(q_{\alpha}, \eta_{\alpha}\right)$. By construction, $\eta_{\alpha}=\xi_{\alpha}$.i. Hence ($\left.q_{\alpha} \bullet f, \lambda \cdot i\right)$ is a composite of ($\hat{I}, \rho \circ i$) and $\left(q_{\alpha}, \eta_{\alpha}\right)$, and in also represents U'[f,p•i]. We therefore nave a commutative diagram

whicn implies the proposition.
5. MAPS FROM W8-SPACES TO 8 -SPACES

Any b-space Y is canonically a. Whospe by means of $\varepsilon: W B \rightarrow B$. Hence we nave a good concept of maps from a wh-space to a $\mathfrak{B}-$ space, and tinis is one type of maps we study in this section. On the other hand, the edge lengths are irrelevant in the given whaction on Y. This suggests considering the quotient of $W\left(B \&_{1}\right)$ in wion the action of any tree is independent of the lengtns of its Y-edges, wich might
as well be 0 . Since we work witn a. W-space X and $\mathrm{B}_{\mathrm{B}} \mathrm{B}$-space Y , we feel that in this connection it seems reasonable to s.void mixed products $X X Y$ althougn we can treat those, too. So we stick to a sort of homogeneous version. Let us make this precise: In general, we consider sequences of maps

$$
x_{0} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{n-1} \rightarrow x_{n}
$$

where X_{0}, \ldots, X_{n-1} are w-spaces and X_{n} is a \because-space. We allow mixed terms of X_{0}, \ldots, X_{n-1}, but products including X_{n} nave only factors X_{n}.

Let $\left(\mathbb{S}\right.$ be the full subcategory of $W\left(\circledast \Omega_{n}\right)$ consisting of all objects $\underline{i}=\left\{i_{1}, \ldots, i_{r}\right\}$ where the Ω_{n}-colour of any i_{p} is less than n or i_{1}, \ldots, i_{r} all nave ε_{n}-colour n. Define $W_{r}\left(\theta \varepsilon_{n}\right)$ to be the quotient category of \mathfrak{c} under the following additional relation on the trees.
(4.33) a tree A is related to the tree obtained from A by changing the lengtins of all X_{n}-edges to 0 (X_{n}-edges $=$ edges of $\Omega_{n}{ }^{-}$ colour n).

In view of this relation, we need only consider trees wnich nave no X_{n}-edge witn exception of possibly tine root. We call such trees target reduced or simply reduced.

The inclusion functors $d^{i}: W\left(B \otimes \Omega_{n-1}\right) \rightarrow W\left(\otimes \otimes_{n}\right)$, $0 \leq i \leq n$, induce inclusion functors

$$
\begin{aligned}
& d^{i}: W_{r}\left(B \otimes \Omega_{n-1}\right) \rightarrow W_{r}\left(B \otimes \Omega_{n}\right) \quad 0 \leq i<n \\
& d^{n}: W\left(B \otimes \varepsilon_{n-1}\right) \rightarrow W_{r}\left(B \otimes \varepsilon_{n}\right)
\end{aligned}
$$

Derinition 4.34: Let (X, α) be a Wh-space and (Y, β) a 8 -space. A reduced $\beta-\operatorname{map}(f, p):(X, \alpha) \rightarrow(Y, \beta)$ consists of an action $\rho: W_{r}\left(B \otimes \mathbb{R}_{1}\right) \rightarrow \mathfrak{I}_{0} p$ and its underlying map $f: X \rightarrow Y$ in $I_{0} p_{K}$ such that $\rho \cdot d^{1}=\alpha: W B \rightarrow I_{O p}$ and $\rho \cdot d^{\circ}=\beta: B \rightarrow I_{0 p}$.

Observe that $\mathrm{H}_{\Omega_{1}} \mathrm{~W}_{\mathrm{r}}\left(\mathcal{B} \otimes \mathfrak{\Omega}_{1}\right)=W_{r}\left(B \otimes \mathfrak{\Omega}_{1}\right)$ and $W_{r}(B)=B$.
Before we investigate reduced $\mathfrak{B - m a p s}$ let us prove a variant of

Theorem 4.20 for our usual definition of B-maps.

Theorem 4.35: For any W^{-1}-space (X, α) there exists a B-space $N(X, a)=$
 $\left(p_{\alpha}, \eta_{\alpha}\right):(X, \alpha) \rightarrow\left(N X, \alpha^{*} \cdot \varepsilon\right)$, where $\varepsilon: W^{B} \rightarrow B$ is the augmentation, sucn that
(a) The map p_{α} is a nomotopy equivalence in $T_{0} p_{K}$.
 is a canonical composite in the sense of (4.5) of (p_{α}, g_{α}) and a unique nomomorpnism of β-spaces $N(X, \alpha) \rightarrow(Y, \beta)$
(c) Any nB-map $(i, p):(X, \alpha) \longrightarrow(Y, \beta \cdot \varepsilon)$, where (Y, β) is a B-space, is tine canonical composite of $\left(p_{\alpha}, \eta_{\alpha}\right)$ and a unique B-nomomorpinism n $: N(X, \alpha) \rightarrow(Y, \beta)$
(d) If we change (i, ρ) inside its nomotopy class, then the induced nomomorpnism in stays inside its nomotopy class.

Proof: The B-space $N X=\left\{N X_{k}\right\}$ is the quotient of UX under tine following relation:
(4.36) (c.a; $\left.x_{1}, \ldots, x_{n}\right) \sim\left(\varepsilon(c) \cdot a ; x_{1}, \ldots, x_{n}\right) \quad \varepsilon=$ augmentation $c \in \operatorname{HW}\left(B \otimes B_{1}\right)\left(\underline{j}^{1}, k^{1}\right), \quad a \in \operatorname{HW}\left(B \otimes \mathbb{Q}_{1}\right)\left(\underline{i}^{0}, \dot{j}^{1}\right)$ with the notation of (4.25). The B-structure on $N X$ is given by

$$
\mathrm{b}\left[\left(c_{1} ; \underline{x}_{1}\right), \ldots,\left(c_{r} ; \underline{x}_{r}\right)\right]=\left[(\mathfrak{b}) \cdot\left(c_{1} \oplus \ldots \oplus c_{r} ; \underline{x}_{1}, \ldots, \underline{x}_{r}\right]\right.
$$

where $t: B \rightarrow W B H W\left(B \Omega_{1}\right)$ is the composite of the standard section and the functor d°. By (4.36),

$$
\left[:\left(b_{1} \cdot b_{2}\right) \cdot\left(c_{1} \oplus \ldots \oplus c_{r}\right) ; \underline{x}_{1}, \ldots, \underline{x}_{r}\right] \sim\left[\mathfrak{l}\left(b_{1}\right) \cdot t\left(b_{2}\right) \cdot\left(c_{1} \oplus \ldots \oplus c_{r}\right) ; \underline{x}_{1}, \ldots, \underline{x}_{r}\right]
$$

 $\left(p_{\alpha}, \eta_{\alpha}\right)$ are induced by the corresponding maps (X, α) \rightarrow (UX, α^{*}). Tine B-nomomorpinism in $: N(X, \alpha) \rightarrow(Y, \beta)$ is defined as in (4.23) and part (b), (c), and (d) are proved in the same manner as in (4.23), only tine argument of part (a) is different. We will prove it at a later stage.

As an immediate consequence of (4.35) and (4.21) we nave the forlowing generalization of the theorem of Adams (see 1.11).

Tneorem 4.37: A space $X \in I_{0} p_{K}$ admits a W-structure iff it is of the nomotopy type of a B-space. Precisely, if X is of the nomotopy type of a ${ }^{B}$-space then it admits a. Wh-structure sucn that the nomotopy equivalence carries a B-map structure and any W-space X is nomotopy

 a | |
| :---: |
| -map structure. |

Using reduced -maps we singll construct a B-space MX for any WBspace X containing X as $S D R$, whicn is more closely related to Adams' construction.

Let $90 m_{i 8}$ be the category of B-spaces and nomotopy classes of nomomorpnisms. Define functors

$$
\operatorname{Map}_{\mathfrak{B}}<-\operatorname{Som}_{\mathfrak{B}} \longrightarrow J^{\prime}>\operatorname{Map}_{\mathrm{nB}}
$$

on objects by $(X, \alpha) \rightarrow(X, \alpha \circ \varepsilon)$. A representing nomomorpnism $B O_{1} \longrightarrow \mathcal{I}_{0} p$ is mapped to its composition with the augmentation $W\left(B \Omega_{1}\right) \rightarrow B \otimes \Omega_{1} \rightarrow$ Iop. Since a composite in $\Omega_{0} m_{3}$ is given by a functor $\mathscr{B} \Omega_{2} \rightarrow Z_{0 p}$ the derinition is functorial. Extending the cor-
 in the same way as in the proof of (4.31), we obtain

Proposition 4.38: The functors N and N^{\prime} are leit adjoint to J and J^{\prime}. Moreover, they are fully faitinful.

We now return to reduced B-maps. To be able to work with them we need variants of the extension result (3.14) and tne lifting theorem (3.17). We want to prove them using the analogue of Lemma 3.12 for reduced trees. Define $W_{r}^{p}\left(\otimes \mathbb{Q}_{n}\right)$ as the subcategory of $W_{r}\left(\theta \mathbb{Q}_{n}\right)$ gene-
rated by reduced trees with at most p internal edges. Let P_{λ} be a space of reduced trees of snape λ with p internal edges as defined in (III, §2). Considered as representative of $W^{p}\left(\theta \otimes_{n}\right)$, a tree A in P_{λ} decomposes only if it is related to a tree of lower filtration p, i.e. A must lie in Q_{λ}. This is different for $W_{r}^{p}\left(B A_{n}\right)$. If λ nas no edge of 8_{n}-colour n, then $A \in P_{\lambda}$ represents a decomposable element of $W_{r}\left(B \Omega_{n}\right)$ iff $A \in Q_{\lambda}$. But ir λ nas a root of colour n and q incoming edges to the root vertex, then a tree in P_{λ} decomposes canonically as the composite of some morpinism $b \in W_{r}^{O}\left(B \Omega_{n}\right)$ with twigs and root of colour n and a copse of q trees with roots of colour n and an identity as

This requires a modification of Lemma 3.12 (a). Let $\mathrm{T}_{\mathrm{n}} \subset \mathrm{ob}\left(B \otimes_{\mathrm{n}}\right)$ be the subset of all objects $\underset{i}{ }=\left\{i_{1}, \ldots, i_{q}\right\}$ such that each i_{r} has ${ }^{8} n^{-c o l o u r ~} n$. Call a sinape orbit essential if its snapes belong to reduced trees with no edge of Ω_{n}-colour n unless the space of labels of the root vertex is of the form $B(k, k), k \in K$. For such a snape λ define $P_{\lambda}^{\prime}=P_{\lambda}$ if λ has no edge of $\theta_{n}-\operatorname{colour} n$, and $P_{\lambda}^{\prime} \subset P_{\lambda}$ is the subspace of all trees whose root vertex label is id ${ }_{k}$ if λ nas an n-coloured root and the space of root vertex labels is $B(k, k)$.

Lemma 3.12*: Let be a topolonical category witn finite products and let $\mathfrak{B} \subset W_{r}\left(B \otimes \Omega_{n}\right)$ be the rull subcategory of objects in T_{n}. (a) Given multiplicative iunctors $F: W_{r}^{p-1}\left(B \otimes \mathbb{R}_{n}\right) \rightarrow \mathbb{C}$ and $H: D \rightarrow \mathbb{D}$ whicn coincide on $W_{r}^{p-1}\left(\mathcal{B} \otimes \Omega_{n}\right) \cap \mathcal{D}$, and a colloection of G-equivariant maps $f_{\lambda}: P_{\lambda}^{\prime} \rightarrow \mathbb{E}(F \underline{i}, F(k))$ extending $F \circ\left(u_{\lambda} \mid Q_{\lambda} \cap P_{\lambda}^{\prime}\right)$, one ior eacn
essential snape orbit. Then there is a unique multiplicative functor $F^{\prime}: W_{r}^{p}\left(\theta \Omega_{n}\right) \rightarrow \mathbb{S}$ extending F, coinciding with H on $\mathcal{D} \cap W_{r}^{p}\left(\notin \Omega_{n}\right)$, and satisfying $F^{\prime} \cdot\left(u_{\lambda} \mid P_{\lambda}^{\prime}\right)=f_{\lambda}$ for all λ considered. The same nolds for the ℓ_{n}-homogeneous case if we replace P_{λ}^{\prime} by $P_{\lambda, q}^{\prime}$. (b) Suppose given multiplicative functors $H: D \longrightarrow \mathbb{C}$ and $F_{p}: W_{r}^{p}\left(B \otimes \Omega_{n}\right) \longrightarrow \mathbb{E}$, one for each $p>0$, such that F_{p} coincides with H on $W_{r}^{p}\left(B \otimes \Omega_{n}\right) \cap \mathcal{D}$ and with F_{p-1} on $W_{r}^{p-1}\left(\mathscr{\theta} \otimes \Omega_{n}\right)$. Then there exists a unique multiplicative functor $F: W_{r}\left(B \otimes \Omega_{n}\right) \longrightarrow \mathbb{S}$ such that $F \mid \mathcal{B}=H$ and $F \mid W_{r}^{p}\left(B \otimes \Omega_{n}\right)=F_{p}$. A similar result nolds for the ℓ_{n}-nomogeneous case.
(c) Botn (a) and (b) nold ir we replace 5 by a PROP and the word "multiplicative functor" by "PROP-functor".

Proof: Let λ be a snape of reduced trees witn Ω_{n}-root. A tree A in P_{λ} decomposes canonically and continuously into b • A ' as illustrated above. Define $f_{\lambda}: P_{\lambda} \longrightarrow \mathbb{C}$ by $f_{\lambda}(A)=H(b) \cdot f\left(A^{\prime}\right)$ where $f\left(A^{\prime}\right)$ is given by the f_{λ} of the assumption. This defines G-equivariant maps $f_{\lambda}: P_{\lambda} \rightarrow \mathbb{E}(F \underline{i}, F(k))$, one for each shape orbit of reduced trees and compatible with relation (4.32). Now proceed as in the proof of Lemme 3.12 .

Using Lemma 3.12* instead of (3.12), we obtain the following variants of the extension proposition and the lifting theorem (we state them in the generality needed altnougn more general results hold).

Lemma 4.39: Let $\mathcal{D} \subset \mathrm{W}_{\mathrm{r}}\left({ }^{\boldsymbol{B}} \otimes 8_{\mathrm{n}}\right)$ be a subcategory with the following properties
(a) If $\mathrm{x} \in \mathscr{D}$ is of the form $\mathrm{x}=\mathrm{y} \cdot \mathrm{z}$ or $\mathrm{x}=\mathrm{y} \oplus \mathrm{z}$, then y and z are in \mathbb{D}.
(b) The full subcategory of $W_{r}\left(\not \otimes \ell_{n}\right)$ of objects in T_{n} is contained in 0 .
(c) $D_{\lambda} \cap P_{\lambda}^{\prime}$ is closed in P_{λ}^{\prime} and $\left(P_{\lambda}^{\prime},\left(D_{\lambda} \cup Q_{\lambda}\right) \cap P_{\lambda}^{\prime}\right)$ is a $G-N D R$ for
all essential λ (we use the notation of (3.14) and (3.12*)).
Suppose given a multiplicative functor F from $W_{r}\left(\theta \mathbb{R}_{n}\right)$ to a topological category witn finite products and a nomotopy of multiplicative functors $H(t): D \longrightarrow \sqrt{D}$ such that $H(O)=F \mid D$, then there exists a. nomotopy of multiplicative functors $F(t): W_{r}\left(B \Omega_{n}\right) \rightarrow \mathbb{C}$ extending F and $H(t)$.

The same nolds for the Ω_{n}-nomogeneous version if we substitute $D_{\lambda} \cup Q_{\lambda} \subset P_{\lambda}^{\prime}$ by $D_{\lambda, q} \cup Q_{\lambda, q} \subset P_{\lambda, q}^{\prime}$.

Lemma 4.40: Given a diagram consisting of a. K-coloured PROP \mathfrak{B}, a (Kxob\& n_{n}-coloured PROP \mathbb{C}, a sub-PROP \mathfrak{B} of $W_{r}\left(B \Omega_{n}\right)$ generated by some

of the faces $d^{i_{W}}{ }_{r}\left(\otimes \Omega_{n}\right)$, PROP-functors F and H^{\prime}, and a nomotopy of PROP-functors $K^{\prime}(t): B \rightarrow B \mathcal{B}_{n}$ from $\varepsilon \mid \mathfrak{B}$ to $F^{\prime} \circ H^{\prime}$. Let $B^{\prime} \subset \mathfrak{B}$ and $\mathbb{S}^{\prime} \subset \mathbb{T}$ be the full subcategories winose objects lie in T_{n}. We require (a) F is an equivariant equivalence and on \mathbb{S}^{\prime} an isomorpinism (b) $H^{\prime} \mid B^{\prime}=F^{-1} \cdot\left(\varepsilon \mid B^{\prime}\right)$

Tinen there exists a PROP-functor $H: W_{r}\left(B \Omega_{n}\right) \rightarrow \mathbb{C}$ and a nomotopy of PROP-functors $K(t): W_{r}\left(B \mathbb{R}_{n}\right) \rightarrow \mathbb{S}$ from ε to $F \cdot H$ extending H^{\prime} and $K(t)$. Moreover, any two such extensions H_{o} and H_{1} of H^{\prime} are nomotopic througn a nomotopy of PROP-runctors $H(t): W_{r}\left(B \in \varepsilon_{n}\right) \rightarrow ⿷$ such that $H(t) \mid B=H^{\prime}$.

The same holds for the $\mathfrak{a}_{\mathrm{n}}$-nomogeneous version.

Proof: To be able to apply Lemma 3.12^{*} we substitute \mathfrak{B} by the sub-PROP \mathcal{D} of $W_{r}\left(B \Omega_{n}\right)$ generated by B and the full subcategory of $W_{r}\left(\mathscr{B} \mathbb{Q}_{n}\right)$
whose objects are in T_{n}. The functor H^{\prime} is substituted by $H^{\prime \prime}: \mathcal{D} \rightarrow \mathbb{C}$ given on \mathfrak{B} by H^{4} and on by $\mathrm{F}^{-1} \cdot(\varepsilon \mid \mathbb{F})$. We now proceed as in the proof of (3.17) using (3.12*) instead of (3.12).

In analogy to (IV; §2) we define

Definition 4.41: Two reduced $\mathfrak{B - m a p s}(f, p),(g, x):(X, \alpha) \longrightarrow(Y, \beta)$ from a ${ }^{2}$-space (X, α) to a ${ }^{8}$-space (Y, β) are called nomotopic, if tnere is an action $\sigma: W_{r}\left(\not \otimes \mathcal{R}_{2}\right) \longrightarrow$ zop sucn that $d^{\circ}(\sigma)=\rho, d^{1}(\sigma)=\boldsymbol{x}$, and $\mathrm{d}^{2}(\sigma)=s^{0}(\alpha)$.

Definition 4.42: Let (X, α) and (Y, β) be Wh-spaces and (Z, γ) be a B^{B} space. A reduced B-map $(n, \lambda):(X, \alpha) \longrightarrow(Z, \gamma)$ is called a composite of the $\mathfrak{B}-\operatorname{map}\left[\mathrm{n}^{B}-\operatorname{map}\right](\mathrm{f}, \rho):(X, \alpha) \longrightarrow(Y, \beta)$ with the reduced B-map $(g, x):(Y, \beta) \longrightarrow(Z, \gamma)$, if there exists an action $\sigma: W_{r}\left(\theta \Omega_{2}\right) \longrightarrow I_{0} p$ $\left[\sigma: H_{r}\left(\mathcal{B} \otimes \Omega_{2}\right) \rightarrow I_{0} p\right]$ sucn that $d^{0}(\sigma)=x, d^{1}(\sigma)=\lambda$, and $d^{2}(\sigma)=\rho$.

If we apply the proof of Lemma 4.13 to reduced trees, we obtain

Lemma 4.43: There exist actions $\sigma: W_{r}\left(B \otimes \Omega_{2}\right) \longrightarrow \mathfrak{I}_{0} p\left[\sigma: W_{r}\left(B \otimes \Omega_{2}\right) \rightarrow \mathfrak{Z}_{0} p\right]$ with $d^{\circ}(\sigma)=\rho, d^{1}(\sigma)=x, d^{2}(\sigma)=s^{\circ}(\alpha)$ iff there is a nomotopy through reduced ${ }^{1}$-maps $H(t): W_{r}\left(A \Omega_{1}\right) \longrightarrow I_{o p}$ from (X, α) to (Y, β), where $\beta=d^{\circ}{ }^{\circ}(\sigma)$, such tinat $H(0)=\rho$ and $H(1)=x$.

Corollary 4.44: (a) The notion of nomotopy of reduced 9 -maps is an equivalence relation.

The proof of Theorem 4.9 also carries over to give

Lemma 4.45: Let $\mathbb{C} \subset W_{r}\left({ }^{\left(\otimes \theta_{n}\right)}\right.$ be the sub-PROP generated by the faces $d^{i} W_{r}\left(囚 \otimes \Omega_{n}\right), i=0,1, \ldots, k-1, k+1, \ldots, n$ with $k \neq 0, n$. Then there exists
a. retraction PROP-functor

$$
W_{r}\left(\mathscr{B} \otimes \mathfrak{B}_{n}\right) \longrightarrow \mathfrak{C}
$$

The same nolds for the \mathbb{R}_{n}-homogeneous version.

```
As in (IV,2) this implies
```

Proposition 4.46: Given a $B-m a p\left[h^{\beta}-\operatorname{map}\right](f, p):(X, \alpha) \rightarrow(Y, \beta)$ and a reduced $\mathfrak{B - m a p}(g, x):(Y, \beta) \rightarrow(Z, \gamma)$. Then there exists a composite reduced \mathfrak{B}-map $(\mathrm{n}, \lambda):(X, \alpha) \rightarrow(Z, \gamma)$ of (f, ρ) and (g, x), and its nomotopy class depends only on the nomotopy classes of (f,o) and (g,x).

As a second application of Lemma 4.39 , we can carry out the proof oŕ (4.14) ror reduced categories and obtain

Proposition 4.47: Let $(f, \rho):(X, \alpha) \rightarrow(Y, \beta)$ be a reduced B-map and $g: X \longrightarrow Y$ a morpnism in $\mathfrak{I}_{0} p_{K}$ nomotopic to f. Then g carries a reduced \mathfrak{B}-map structure $(g, x):(X, \alpha) \longrightarrow(Y, \beta)$ sucn tinat $(f, \rho) \simeq(g, x)$.

Corollary 4.48: Given a. B-map $[\mathrm{n} \beta$-map] $(\mathrm{f}, \mathrm{p}):(X, \alpha) \rightarrow(Y, \beta)$ and 3 reduced $B-\operatorname{map}(g, x):(Y, \beta) \rightarrow(Z, \gamma)$. Then there exists a composite reduced $B-$ map $(i, \lambda):(X, \alpha) \rightarrow(Z, y)$ of (f, ρ) and (g, x) sucn that $\mathrm{n}=\mathrm{g} \bullet \mathrm{f}$.

We next prove the analogue of (4.34) for reduced $\begin{aligned} & \text {-maps. In contrary }\end{aligned}$ to Theorem 4.34, part (a) can be sinown easily, and we shall see that (4.34 a) is a consequence of this result.

Theorem 4.49: For any W B-space (X, α) there exists a \quad-space $M(X, \alpha)=$ (MX, $\bar{\alpha}$) and a reduced β-map $\left(i_{\alpha}, \nu_{\alpha}\right):(X, \alpha) \rightarrow M(X, \alpha)$ sucin that
(a) The map $i_{\alpha}: X \rightarrow$ MX embeds X as $S D R$ into MX
(b) Any reduced $B-\operatorname{map}(f, \rho):(X, \alpha) \rightarrow(Y, \beta)$ is the canonical compo-
aite of $\left(f_{\alpha}, \nu_{\alpha}\right)$ and a unique B-homomorphism $h: M(X, \alpha) \longrightarrow(Y, \beta)$. (c) If we change (f, p) inside its nomotopx class, the induced b-nomomorpinism in stays inside its homotopy class.

Proof: Define $M X=\left\{M_{k}\right\}$ by

$$
\begin{equation*}
M X_{k}=\bigcup_{\underline{i} \in \mathcal{B}} W_{r}\left(B \Omega_{1}\right)\left(\underline{i}^{0}, k^{1}\right) \times X_{\underline{i}} / \sim \tag{4.50}
\end{equation*}
$$

with $\left(c \cdot a ; x_{1}, \ldots, x_{n}\right) \sim\left(c ; a\left(x_{1}, \ldots, x_{n}\right)\right), c \in W_{r}\left(B B_{1}\right)\left(\underline{j}^{0}, k^{1}\right)$,
 that $d^{\circ}: B \rightarrow W_{r}\left(B \mathbb{Q}_{1}\right)$ is an inclusion functor. Define

$$
b\left[\left(c_{1} ; \underline{x}_{1}\right), \ldots,\left(c_{n} ; x_{n}\right)\right]=\left[b \cdot\left(c_{1} \oplus \ldots \oplus c_{n}\right) ; \underline{x}_{1}, \ldots, \underline{x}_{n}\right]
$$

$b \in \mathscr{B}$. The canonical maps $W_{r}\left(B \otimes \Omega_{1}\right)\left(\underline{i}^{0}, k^{1}\right) \times X_{\underline{i}} \rightarrow M_{k}$ derine a reduced $\mathfrak{B}-\operatorname{map}\left(i_{\alpha}, \nu_{\alpha}\right):(X, \alpha) \rightarrow M(X, \alpha)$ wnose underlying map i is given by

in cherry tree notation.
Given a reduced B-map $(f, \rho):(X, \alpha) \rightarrow(Y, \beta)$, the induced B-nomomorponism in $: M(X, \alpha) \rightarrow(Y, \beta)$ is given by

$$
n(c ; \underline{x})=\rho(c)(\underline{x})
$$

It is the unique nomomorpnism satisfying (f, ρ) $=n \cdot\left(i_{\alpha}, \nu_{\alpha}\right)$ with the canonical composition on the rignt. In view of Lemma 4.43, a cnange of (f, ρ) by a nomotopy cnanges ρ by a nomotopy of functors and nence in by a nomotopy througn nomomorpinisms. It remains to prove (a): As in the proof of (4.23), we express MX in terms of cherry trees. Then MX is the space of all reduced cnerry trees, i.e. reduced trees whose roots have Ω_{1}-colour 1 , whose twigs nave Ω_{1}-colour 0 , and there is a cherry in X_{k} assigned to eacn twig of K-colour k. On this space we
have tine relations (4.28), but for reduced trees only:
(a) $=3.1$ (a)
$(b)=3.1$ (b) for permutations only, and the cherries are permuted atong with the twigs
$(c)=3.1(c)$
(d) If a reduced tree A nas an internal edge of lengtin 1, i.e. A decomposes into $A_{1} \circ A_{2}$, then $\left(A ; x_{1}, \ldots, x_{n}\right) \sim\left(A_{1} ; x_{1}, \ldots, x_{p}, y, x_{q+1}, \ldots, x_{n}\right)$ where $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(x_{p+1}, \ldots, x_{q}\right)$ are the cherries of A and A_{2} in clockwise order, and $y=\alpha\left(A_{2}\right)\left(x_{p+1}, \ldots, x_{q}\right)$.

The deformation retraction $M X \rightarrow X$ is given by step 2 of the proof of (4.23 a).

If $B=\mu$, the PRO belonging to the theory of monoids, and (X, α) is a WM-space then $(X, \alpha) \rightarrow(M X, \bar{\alpha})$ is essentially the construction of Adams mentioned in chapter I.

Let

be tine functors previously defined. Using (4.46) and (4.49 b), we cen extend tine correspondence $(X, \alpha) \longrightarrow M(X, a)$ to functors $M: \operatorname{Map} \rightarrow-\mathfrak{S O m}_{B}$ and $M^{\prime}: \operatorname{map}_{n B} \longrightarrow \mathfrak{E q m}_{\mathrm{B}}$ in the same way as in the proof of (4.31).

We now want to compare the functors N and N^{\prime} with M and M^{\prime}. In view of Proposition 4.32 we restrict our attention to N^{\prime} and M^{\prime}. Recall that N^{\prime} is left adjoint to the functor $J^{\prime}: \mathscr{S o m}_{\mathfrak{B}} \longrightarrow$ Mang. The front adjunction

$$
\eta: I d \longrightarrow J^{\prime} N^{\prime}
$$

is given by the B-maps $\left(p_{\alpha}, \eta_{\alpha}\right):(X, \alpha) \rightarrow(N X, \alpha * \in)=J^{\prime} N^{\prime}(X, \alpha)$. For any $\mathrm{n}^{B}-\mathrm{map}(\mathrm{f}, \mathrm{p}):(\mathrm{X}, \alpha) \rightarrow(\mathrm{Y}, \beta)$ we nave a diagram where r is induced by the universal property or η and the reduced $B-m a p$ (i,v) is considered as ng-map.

Since the backward squares commute, so does the front square because of the universal property of η_{α}. Hence

$$
r: N^{\prime} \longrightarrow M^{\prime}
$$

is a natural transformation. We want to show that it is a natural
equivalence. By (4.49 b) there is a \mathfrak{B}-nomomorpinism $s_{\alpha}: M^{\prime} V^{\prime} N^{\prime}(X, a) \rightarrow N^{\prime}(X, \alpha)$ induced by

because the identity is apparently a reduced map. The nomomorpnism

$$
s_{\alpha} \bullet M^{\prime}\left(p_{\alpha}, \eta_{\alpha}\right): M^{\prime}(X, \alpha) \rightarrow M^{\prime} J^{\prime} N^{\prime}(X, \alpha) \rightarrow N^{\prime}(X, \alpha)
$$

is an inverse of r_{α} in $\operatorname{lom}_{n B}$ because

$$
\begin{aligned}
J^{\prime}\left(s_{\alpha} \cdot M^{\prime}\left(p_{\alpha}, \eta_{\alpha}\right) \cdot r_{\alpha}\right) \cdot\left(p_{\alpha}, \eta_{\alpha}\right) & =J^{\prime} s_{\alpha} \bullet J^{\prime} M^{\prime}\left(p_{\alpha}, \eta_{\alpha}\right) \cdot\left(i_{\alpha}, \nu_{\alpha}\right) \\
& =J^{\prime} s_{\alpha} \cdot(i, \nu) \cdot\left(p_{\alpha}, \eta_{\alpha}\right) \\
& =\left(p_{\alpha}, \eta_{\alpha}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
J^{\prime}\left(r_{\alpha} \cdot s_{\alpha} \cdot M^{\prime}\left(p_{\alpha}, \eta_{\alpha}\right)\right) \cdot\left(i_{\alpha}, \nu_{\alpha}\right) & =J^{\prime} r_{\alpha} \cdot J^{\prime} s_{\alpha} \cdot(i, \nu) \cdot\left(p_{\alpha}, \eta_{\alpha}\right) \\
& =J^{\prime} r_{\alpha} \cdot\left(p_{\alpha}, \eta_{\alpha}\right) \\
& =\left(i_{\alpha}, \nu_{\alpha}\right)
\end{aligned}
$$

so that $s_{\alpha} \cdot M^{\prime}\left(p_{\alpha}, \eta_{\alpha}\right) \cdot r_{\alpha}$ and $r_{\alpha} \cdot s_{\alpha} \circ M^{\prime}\left(p_{\alpha}, \eta_{\alpha}\right)$ are in the same nomo-
topy class as the identities by (4.35 c) and (4.49 b).
So we nave proved

Proposition 4.51: M : $\operatorname{map}_{\mathfrak{B}} \longrightarrow 50 \mathrm{~m}_{\mathfrak{B}}\left[\mathrm{M}^{\prime}: \operatorname{Map}_{\mathrm{nB}} \rightarrow 50 \mathrm{~m}_{\mathfrak{B}}\right]$ is left ad-
 $r(X, \alpha): N(X, \alpha) \rightarrow M(X, \alpha)$ derines natural equivalences $r: N \rightarrow M$ and $r^{\prime}: N^{\prime} \longrightarrow M^{\prime}$.

The front and back adjunction of the adjoint pair ($\mathrm{M}^{\prime}, J^{\prime}$) are given by $\left(i_{\alpha}, \nu_{\alpha}\right):(X, \alpha) \rightarrow J^{\prime} M^{\prime}(X, \alpha)$ of (4.49) and the nomomorpnisms $\mu(Y, \beta): M^{\prime} J^{\prime}(Y, \beta) \rightarrow(Y, \beta)$ determined by the diagram

They are related to the front and back adjunction of (N^{\prime}, J^{\prime}) by r^{\prime}. In particular, we nave a commutetive diagram of maps

for eacn whospace (X, α). Since r_{α} and i_{α} are nomotopy equivalences, r_{α} is a nomotopy equivalence, wich fills the gap left in the proof of (4.35).

Evidently, $r(X, \alpha): N(X, \alpha) \rightarrow M(X, \alpha)$ is induced by the projections $\pi: H W\left(B \otimes \mathbb{B}_{1}\right)\left(\underline{\underline{i}}^{0}, k^{1}\right) \rightarrow W_{r}\left(B \otimes \mathbb{Q}_{1}\right)\left(\underline{i}^{0}, k^{1}\right)$. If $\operatorname{Rma} p_{\mathfrak{B}}\left((X, \alpha), J^{\prime}(Y, \beta)\right)$ denotes the set of nomotopy classes of reduced β-maps $(X, \alpha) \longrightarrow(Y, \beta)$, we therefore nave a commutative diagram

and Proposition 4.51 implies

Corollary 4.52: The projection functors $\pi_{1}: W\left(B \otimes_{1}\right) \rightarrow W_{r}\left(\theta \Omega_{1}\right)$ and $\pi_{2}: H W\left(\theta B_{1}\right) \rightarrow W_{r}\left(B \Omega_{1}\right)$ induce bijections

In particular, any B-map or n-map into a ${ }^{B}$-space is nomotopic to a reduced 8 -map.

Remark: One mignt be tempted to dualize Theorem 4.35 and 4.49. That is, given a W^{B}-space (X, α), one mignt want to construct a ${ }^{\text {b }}$-space $\left(V X, \alpha^{\prime}\right)$ and $a \operatorname{nb}-\operatorname{map}(p, x):\left(V X, \alpha^{\prime} \bullet \varepsilon\right) \rightarrow(X, \alpha)$ sucin that any ing$\operatorname{map}(f, p):(Y, \beta \bullet \varepsilon) \rightarrow(X, \alpha)$ from $a-\operatorname{space}(Y, \beta)$ to (X, α) factors uniquely as

where $\mathrm{n}:(\mathrm{Y}, \beta) \longrightarrow\left(\mathrm{VX}, \alpha^{\prime}\right)$ is a B-nomomorpism. More precisely, (f, ρ) is the canonical composite of (p, x) and a B-nomomorpinism. The following example snows tnat this is not possible in general. Let $B=\mathscr{U}$, the PRO belonging to the theory of monoids, let (X,a) be a werpace, (U, μ) a monoid and $(p, x):(U, \mu \cdot \epsilon) \rightarrow(X, \alpha)$ an $\mu-m a p$. Then (p, x) fails to nave the required universal property: Suppose $(\hat{I}, \rho):(Y, \beta \circ \epsilon) \rightarrow(X, \alpha)$ is an $\mu-m a p$. Let C be the cyclic monoid on one generator c and $i_{y}: C \longrightarrow(Y, \beta)$ the nomomorpinism defined by $i_{y}(c)=y$ for some $y \in Y$. If (p, x) were universal, ($\left.i, p\right)$ lifts to a nomomorpnism $n:(Y, \beta) \rightarrow(U, \mu)$, and $n \cdot i_{y}$ is the unique nomomorpnism
lifting the canonical composite $(f, \rho) \cdot i_{y}: C \longrightarrow(X, \alpha)$. As y varies, the collection of $n \mathcal{P}$-maps $(f, 0)$ - i_{y} determine n and therefore the whole structure of (f, p) uniquely, winch is absurd, because the adjoints

$$
H W\left(2 \otimes \Omega_{1}\right)\left(n^{0}, 1^{1}\right) \times Y^{n} \rightarrow X
$$

 are not determined by the $(f, \rho){ }^{\prime} i_{y}$ on the elements $\left(a ; y_{1}, \ldots, y_{n}\right)$, where a is indecomposable and not each y_{i} of the form $y_{i}=z_{i}$ with z fixed for all i.

6. AN EQUIVALENCE OF CATEGORIES

In this section we snow that the categories $\mathbb{R a p}_{\mathcal{B}}$ and $\mathbb{R a n}_{\mathrm{n} B}$ are equivalent to a category of fractions of the category sor of o-spaces and 8 -inomomorpinisms.

Let \mathfrak{s} be an arbitrary category and Σ a class of morpisms in \mathbb{C}. The category of iractions \mathbb{C} / Σ (see [23]) has the same objects as \mathbb{C}. Its morpnisms are words in words in following generators
(a) the morpinisms of \mathbb{C}
(b) a morpinism $\bar{g}: X \longrightarrow Y$ for eacn morpinism $g: Y \longrightarrow X$ in Σ.

The relations are
(i) $[\hat{I} \mid g]=[\hat{I} \cdot g] \quad$ in $\hat{I}, \underline{g} \in \operatorname{mor} \mathbb{s}$
(ii) $[g \mid \bar{g}]=i d,[\bar{g} \mid g]=i d$
(iii) [id] = id

There is a canonical functor $P=P_{\Sigma}: \mathbb{\Sigma} \longrightarrow \mathbb{C} / \Sigma$ whicn is the identity on objects and whicn sends a morpnism f to its equivalence class in $\mathbb{\Sigma} / \Sigma$. The functor P nas the universal property that given a functor $F: \mathbb{S} \longrightarrow \mathcal{D}$ sucn that $F(g)$ is an isomorpnism in \mathfrak{D} for eacn $g \in \Sigma$, there exists a unique Iunctor $G: \mathbb{E} / \Sigma \longrightarrow \mathcal{D}$ sucn that $G \cdot P=F$.

In our case we take $\Sigma \subset \operatorname{Mor}_{\text {B }}$ or $T \subset \varliminf_{\text {M }}$ to be tine class of all nomomorpnisms respectively of all nomotopy classes of nomomorpinsms, whose underlying meps are nomotopy equivalences in Top ${ }_{K}$. The following proposition is an immediate consequence of the results of the previous section (see also [23; Prop. 1.3,p.7]).

Proposition 4.53: The functor $P \circ M^{\prime}: \mathbb{R a p}_{n B} \longrightarrow 90 m_{B} \rightarrow 90 m_{B B} / T$ is an equivalence of categories.

Proof: If $f \in T$, then $J^{\prime}(I)$ is an isomorphism in Rap p_{n} by (4.21). Hence tnere exists a unique functor $F: \oint_{0} m_{B-} / T \rightarrow \operatorname{DRap}_{n B}$ such that $F \circ P=J^{\prime}$. The front adjunction $v: I d \rightarrow J^{\prime} \circ M^{\prime}=F \cdot\left(P \circ M^{\prime}\right)$ is a natural equivalence, and the back adjunction $\mu: M^{\prime} \circ J^{\prime} \rightarrow$ Id induces a natural equivalence $P_{\mu}:\left(P \bullet M^{\prime}\right) \cdot J^{\prime} \rightarrow I d$, because each $\mu(Y, \beta)$ is a nomotopy equivalence considered as morpnism or $\mathcal{I}_{\mathrm{o}}^{\mathrm{K}}$.

If $f \in \operatorname{Mor}_{B}$ is a nomotopy equivalence as morpnism in $\mathcal{I}_{0} p_{K}$, tinen
 sending each b-nomomorpism to its nomotopy class. Hence there is a unique functor

$$
G: \operatorname{mor}_{\mathrm{B}} / \Sigma \longrightarrow \operatorname{map}_{\mathrm{n} \theta}
$$

sucn that $G \cdot P=J^{\prime} \bullet H$. More interesting, but considerably harder to prove is

Proposition 4.54: The functor $G: \operatorname{Mor} A / \Sigma \longrightarrow \operatorname{Rap}_{n} B$ is an equivalence of categories.

Proof: Again tine adjoint pair (M^{\prime}, J^{\prime}) plays an essential role. Consider

where H^{\prime} is the functor induced by H. Using the universal property of P_{Σ} we find that $G=F \circ H^{\prime}$.
Claim: The Iunctor P_{T} - M^{\prime} iactors through Mor ${ }_{B} / \Sigma$
Proof: By (4.49), eacn reduced B-map $(f, \rho):(X, \alpha) \rightarrow(Y, \beta)$ induces a unique 8 -nomomorpnism in $: M(X, \alpha) \rightarrow(Y, \beta)$, sucn that (\hat{r}, ρ) is the canonical composite in $\circ\left(i_{\alpha}, \nu_{\alpha}\right)$. Suppose $\left(f^{\prime}, \rho^{\prime}\right):(X, \alpha) \rightarrow(Y, \beta)$ is a reduced B-map nomotopic to ($f, 0$) and in' its induced θ-nomomorphism. Suppose we knew that $P_{\Sigma}(n)=P_{\Sigma}\left(h^{\prime}\right)$, we could deirine a functor

$$
R: \operatorname{map}_{\mathrm{n} \mathfrak{B}} \longrightarrow \operatorname{Mor}_{\mathfrak{B}} / \Sigma
$$

by $R(X, \alpha)=M(X, \alpha)$ on objects, and on $n \beta$-maps $(g, x):(X, \alpha) \longrightarrow(Z, y)$ by $R(g, \mu)=P_{\Sigma}(r)$, where r is the \mathscr{B}-nomomorpnism induced by some composite of (g, x) and $\left(i_{\gamma}, \nu_{Y}\right)$. By our supposition, this definition is independent of the choice of the representative (g, x) and of the composite. Using the universal property of (i_{α}, ν_{α}) we find that R is a functor, and evidently $H^{\prime} \bullet R=P \cdot M^{\prime}$.

Let $u_{k} \in \operatorname{HW}_{r}\left(\mathscr{B} \oplus \Omega_{2}\right)$ be the morpinism

If it is clear from the context, we drop the index k. Let \sqrt{s} be the quotient category of $\mathrm{HW}_{\mathrm{r}}\left(\Delta \otimes_{2}\right.$) modulo the relation (compare the proof of (4.13)):

A tree A whose root has g_{2}-colour 1 and whose twigs have Ω_{2}-colour 0 is related to $A^{\prime} 。(u \oplus \ldots \oplus u)$ where A^{\prime} is obtained from A by changing the \mathfrak{B}_{2}-colour of all edges to 1 .

For any W^{B}-space (X, α) let $Q(X, \alpha)=\left(Q X, \alpha^{\prime}\right)$ be the \mathfrak{B}-space with

$$
Q X_{k}=\bigcup_{\underline{i} \in \mathscr{B}} \underline{\Sigma}\left(\underline{i}^{0}, k^{2}\right) \times X_{\underline{i}} / \sim
$$

with the relation

$$
\begin{equation*}
\left(A_{1} \circ A_{2} ; x_{1}, \ldots, x_{n}\right) \sim\left(A_{1} \circ(v \oplus \ldots \oplus v) ; a\left(A_{2}^{\prime}\right)\left(x_{1}, \ldots, x_{n}\right)\right) \tag{*}
\end{equation*}
$$

where A_{1} and A_{2} represent morphisms in \mathbb{C}, and $A_{2}^{\prime}=A_{2}$ and ($\vee \oplus \ldots \oplus v$) $=$ id if the twigs of A_{1} have Ω_{2}-colour 0 winle A_{2}^{\prime} is obtained from A_{2} by changing the Ω_{2}-colour of all edges to 0 and $(v \oplus \ldots \oplus v)=(u \oplus \ldots \oplus u)$ if the twigs of A_{1} nave Ω_{2}-colour 1 . Note that \Rightarrow is contained in \mathbb{C} as the subcategory of all objects \underline{i}^{2}, $\underline{i} \in \mathscr{O}$ (as usually, $\underline{\underline{I}}^{2}=\left\{\left(i_{1}, 2\right), \ldots,\left(i_{n}, 2\right)\right\}$ $\in B \otimes \Omega_{2}$ for $\left.i=\left\{i_{1}, \ldots, i_{n}\right\} \in B\right)$. The $B-s t r u c t u r e$ on $Q(X, \alpha)$ is given by

$$
b\left[\left(c_{1} ; \underline{x}_{1}\right), \ldots,\left(c_{n} ; \underline{x}_{n}\right)\right]=\left(b \circ\left(c_{1} \oplus \ldots \oplus c_{n}\right) ; \underline{x}_{1}, \ldots, \underline{x}_{n}\right)
$$

Define 0 -nomomorpinisms $i_{0}, i_{1}: M(X, \alpha) \rightarrow Q(X, \alpha)$ and $r: Q(X, \alpha) \rightarrow M(X, \alpha)$ on representatives by

$$
\begin{aligned}
& i_{o}\left(A ; x_{1}, \ldots, x_{n}\right)=\left(A^{\prime} ; x_{1}, \ldots, x_{n}\right) \\
& i_{1}\left(A ; x_{1}, \ldots, x_{n}\right)=\left(A^{\prime \prime} \cdot(u \oplus \ldots \oplus u) ; x_{1}, \ldots, x_{n}\right) \\
& r\left(B ; x_{1}, \ldots, x_{n}\right)=\left(B^{\prime} ; x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

where A^{\prime} is obtained from A by changing the root colour from 1 to 2, and $A^{\prime \prime}$ from A by changing the root colour from 1 to 2 and the colour of all other edges from 0 to 1 . The tree B^{\prime} is obteined from B by changing the colours 2 and 1 of the edges to 1 respectively 0 . Then $r \cdot i_{0}=i d=r \cdot i_{1}$. We nave an inclusion $j: X \rightarrow Q(X, a)$ given by

$$
x \longmapsto\left(A_{k} ; x\right), x \in X_{k} \text { witn } A_{k}=\left.\quad\right|_{1} ^{0} \begin{aligned}
& i d_{k} \\
& \text { leng tin } 1 \\
& i d_{k}
\end{aligned}
$$

Then $j=i_{1}{ }^{\prime} i_{\alpha}$. Now $j(X)$ is a SDR of $Q(X, \alpha)$. The deformation is given by substituting the roots of the representing trees of $Q(X, \alpha)$ at time t by

At $t=0$, we nave the identity, and at $t=1$ relation (*) reduces the element to one in $j(X)$. Moreover $j(X)$ is kept pointwise ifixed throughout the deformation. Since i_{α} is a nomotopy equivalence, so is i_{1} and nence r and i_{o}.

Now given two reduced β-maps $\left(f_{l}, \rho_{l}\right):(X, \alpha) \rightarrow(Y, \beta), l=0,1$, winch are nomotopic. Then there exists an action $\sigma: H W_{r}\left(\theta \mathfrak{R}_{2}\right) \rightarrow I_{o p}$ sucn that $d^{o}(\sigma)=\rho_{1}, d^{1}(\sigma)=\rho_{0}$ and $d^{2}(\sigma)=s^{\circ}(\alpha)$. Tinis action σ induces a \notin-nomomorpism $F: Q(X, \alpha) \rightarrow(Y, \beta)$ by

$$
F\left(A ; x_{1}, \ldots, x_{n}\right)=\sigma(A)\left(x_{1}, \ldots, x_{n}\right)
$$

If $n_{l}: M(X, \alpha) \rightarrow(Y, \beta)$ is the B-nomomorpinism induced by (I_{l}, ρ_{l}), then $\mathrm{n}_{\imath}=\mathrm{F} \circ \mathrm{i}_{\imath}, \eta=0,1$. Now

$$
P_{\Sigma}\left(n_{0}\right)=P_{\Sigma}(F) \circ P_{\Sigma}\left(i_{0}\right)=P_{\Sigma}(F) \circ P_{\Sigma}\left(1_{1}\right)=P_{\Sigma}\left(h_{i}\right)
$$

because $P_{\Sigma}\left(i_{0}\right)$ and $P_{\Sigma}\left(i_{1}\right)$ are both inverses of $P_{\Sigma}(r)$. This proves the olaim.

The natural equivalence $I d \longrightarrow F \circ\left(P_{T} \circ M^{\prime}\right)=F \circ H^{\prime} \circ R=G \circ R$ of the previous proposition provides the first equivalence. We can cnoose representing nomomorpinisms $\mu_{\beta}: R G(Y, \beta)=M^{\prime} J^{\prime}(Y, \beta) \rightarrow(Y, \beta)$ of the back adjunction $\mu_{\beta}: M^{\prime} J^{\prime}(Y, \beta) \rightarrow(Y, \beta)$ of the adjoint pair (M', $\left.J^{\prime}\right)$ sucin that $I \alpha_{(Y, \beta)}$ is the canonical composite $I \alpha=J^{\prime} x_{\beta} \cdot \vee J^{\prime}(Y, \beta)$. Given a ${ }^{B}$-nomomorpism in $:(Y, \beta) \rightarrow(Z, Y)$ define $M^{\prime} J^{\prime}$ n to be the $\mathcal{B O}^{-}$ nomomorpinism induced by the canonical composite $\nu^{\prime}(Z, \gamma) \cdot n$. Using tnis representative $M^{\prime} J^{\prime} n \in \operatorname{Mor}_{\beta}$ it is easy to check that the x_{β} constitute a. natural transformation $R \bullet G \longrightarrow$ Id. Since $v^{\prime}(Y, \beta)$ is a.
nomotopy equivalence on the underlying spaces, so is x_{β}. Hence $R \bullet G \longrightarrow I d$ is a natural equivalence.

Corollary 4.55: Since $\mathbb{P a}_{\mathbb{B}}$ is isomorphic to $\mathbb{R a} p_{n B}$, the results (4.53) and (4.54) nold for $\operatorname{map}_{\mathfrak{B}}$, too.

Proposition 4.54 to some extent generalizes a result of Malraison [31] who by sligntly different means proved that the category $\$$ monoids and homotopy classes of A_{∞}-maps (see (1.14)) is isomorpinic (and not just equivalent) to the category of fractions $\operatorname{mon} / \Sigma$, where TRon is the category of monoids and nomomorphisms and Σ is the class of homomorpnisms winich are nomotopy equivalences. By (3.25), the category $\left\{\right.$ is essentially the full subcategory of $\mathbb{R a p}_{\text {nथ }}$ or all थ-spaces (= monoids).

7. HOMOTOPY INVARIANCE FOR GENERAL THEORIES

In $\S 5$ we showed that each WB-space can be embedded as a. SDR into a ${ }^{B}$-space. Tine PROPs W, ${ }^{W}$ and 9 are related by the equivariant equivalence $\varepsilon: W B \rightarrow B$. We want to generalize this result by substituting WB and B by general theories Θ_{1} and Θ_{2} and the functor ε by a theory functor winch is a homotopy equivalence on each morpnism space. So we are aiming towards a result of the nature that for reasonable tineories Θ_{1} and Θ_{2} every reasonable Θ_{1}-space embeds as a SDR of a Θ_{2}-space. We restrict our attention to monocinome theories and leave it to the reader to make the necessary modifications for the general case. As usual, n denotes tine unique object [n] $\longrightarrow *$ and S_{k} the group of permutations of $[k]$.

Definition 4.56: A morpinism $b \in(k, 1)$ is called non-degenerate if
it does not nave tine form $b=c \cdot \sigma^{*}$ with $\sigma:[l] \rightarrow[k]$ a proper monomorpinism. The theory Θ is called proper if each morpinism $b \in \Theta(k, 1)$ inas the form $b=c \cdot \sigma^{*}$ with c non-degenerate and σ a monomorpism, uniquely up to the equivalence $\left(c \circ \pi^{*}\right) \cdot\left(\sigma \cdot \pi^{-1}\right)^{*}=c \cdot \sigma^{*}$ for permutations π.

The following result snows that all interesting theories are proper ones.

Iemma 4.57: (a) Let Θ be a theory sucn that $b \circ \sigma^{*}=c \circ \sigma^{*}$ for $b, c \in \Theta(0,1)$ implies $b=c$. Then each morphism $f \in \Theta(k, 1)$ is of the Iorm $f=g \cdot \sigma^{*}$ with g non-degenerate and σ a monomorpism. If $g \cdot \sigma^{*}=$ g^{\prime} - T^{*} with g and g^{\prime} non-degenerate, then there is a permutation $\pi \quad$ with $g=g^{\prime} \cdot \pi^{*}$.
(b) If in addition $b \cdot \sigma^{*}=b \circ \tau^{*}$ for $b \in \Theta(1,1)$ and σ, T monomorpinisms implies $\sigma=\tau$, then Θ is proper
(c) Let Θ be a theory sucn that for eacn composite b• $\sigma^{*}=c \cdot \tau^{*}$ with b, c non-degenerate and $\sigma: p \rightarrow n, \tau: q \longrightarrow n$ monic there exist monomorpinisms $\mu: l \longrightarrow p$ and $v: l \longrightarrow q$ and a morpinism $d \in \Theta(l, 1)$ such tinat $b=d \cdot \mu^{*}, c=d \bullet \nu^{*}$ and $\sigma \cdot \mu=T \bullet \nu$. Tnen Θ is proper.

All interesting theories.satisfy (c), because given an operation a $: A \times B \times C \rightarrow X$ which factors througn the projections $A \times B \times C \rightarrow B \times C$ and $A \times B \times C \rightarrow A \times B$, then it factors through the projection $A \times B \times C \rightarrow B$ in all interesting cases.

Proof: Obviously, any morpinism a $\in \Theta(n, 1)$ can be decomposed as $a=b \cdot \sigma^{*}$ witn b non-degenerate and $\sigma: p \longrightarrow n$ a monomorpinism. Let $\mathrm{a}=c \circ \tau^{*}$ be anotner sucn decomposition witn $\tau: q \longrightarrow \mathrm{n}$. Proof (a): If $p=q=0$, then $\sigma=\tau$ and $b=c$ by assumption. So suppose $0<p \geq q$. Then tnere is an epimorpnism $\mu: n \rightarrow p$ such that
$\mu \circ \sigma=i d$. Hence

$$
b=b \cdot \sigma^{*} \cdot \mu^{*}=c \cdot \tau^{*} \bullet \mu^{*}=c \circ(\mu \circ \tau)^{*}
$$

Since b is non-degenerate, $\mu \bullet \tau: q \longrightarrow p$ is an epimorpnism. Hence $p=q$ and $\mu \bullet \tau$ is an isomorpinism.

Prooi (b): Using the notation of (a) we nave to snow that $\tau=\sigma \circ \mu \circ \tau$, because then $b=c \cdot \pi^{*}$ and $\sigma=\tau \cdot \pi^{-1}$ with $\pi=\mu \cdot \tau$, winich we nave snown to be a permutation. If $p=q=1$ this follows from

$$
c \cdot \tau^{*}=b \cdot \sigma^{*}=c \cdot(\sigma \cdot \mu \cdot \tau)^{*}
$$

and the assumption. So suppose $p=q>1$. If $\sigma([p])=\tau([p])$, then tnere is a permutation $\rho:[p] \longrightarrow[p]$ sucn that $T=\sigma \cdot \rho$. Hence

$$
\tau=\sigma \circ \rho=\sigma \circ \mu \bullet \sigma \circ \rho=\sigma \circ \mu \circ \tau
$$

If $\sigma([p]) \neq \tau([p])$, there exists $i \in[p]$ sucin that $i \in \sigma([p])-\tau([p])$. Since $p>1$, we can choose the epimorpinism μ sucn that $\mu^{-1}(\mu(i))=\{i\}$, so that μ - T is not a permutation, wnicn is a contradiction. Proof (c): By assumption, there are monomorpinisms $\mu: l \longrightarrow p$ and $\nu: l \longrightarrow q$ and a morpnism $d \in \Theta(l, 1)$ sucn thet $b=d \cdot \mu^{*}, c=d \cdot \nu^{*}$ and $\tau \circ \nu=\sigma \cdot \mu$. Since b and c are non-degenerate, μ and v are isomorpinisms. It follows that $b=c \cdot \pi^{*}$ and $\sigma=\tau \cdot \pi^{-1}$ with $\pi=\mu \cdot \nu^{-1} \cdot \square$

Let $D \Theta(n, 1) \subset \Theta(n, 1)$ denote the subspace of degenerate morpisms and $\Delta_{k} X \subset X^{k}$ the diagonal

Theorem 4.58: Let Θ_{1} and Θ_{2} be monocincome proper theories and (X, α) a. Θ_{1}-space. Suppose
(a) each finite product of spaces $\Theta_{1}(k, 1), X$ and a single space $\Theta_{2}(l, 1)$ is paracompact
(b) $(\Theta(1,1),\{i d\})$ and $\left(\Theta_{2}(1,1),\{i d\}\right)$ are NDRs
(c) $\left(\Theta(r, 1)^{k}, \Delta_{k} \Theta_{1}(r, 1)\right)$ are $S_{k} \times S_{r}-N D R$ wnere S_{k} acts by permuting tine factors and S_{r} by componentwise composition on the rignt
(d) $\left(\Theta_{i}(r, 1), D \Theta_{i}(r, 1)\right)$ are $S_{r}-N D R s$ and for each fixed monomorpinism
$\sigma:[k] \longrightarrow[r]$, the injective map $b \longmapsto b \bullet \sigma^{*}, b \in \Theta_{i}(k, 1)$ is a nomeomorpinism onto a closed subspace of $\Theta_{i}(r, 1), i=1,2$.
(e) $\left(X^{k}, \Delta_{k} X\right)$ is a. $S_{k}-N D R$

Then given a theory functor $F: \Theta_{1} \rightarrow \Theta_{2}$ winich is a homotopy equivalence on each morpinism space, there exists a Θ_{2}-space (Y, α^{*}) containing X as a. SDR.

Proof: The augmentation $\varepsilon: W \Theta_{1} \longrightarrow \Theta_{1}$ allows us to regard X as $W \Theta_{1}-$ space. Replace X by tine universal Θ_{1}-space $M(X, \alpha \circ \varepsilon)$, the analogue of the construction of $\$ 5$ for theories. As snown in (4.49), we can embed X as a $S D R$ into $M X$. The required Θ_{2}-space Y looks like MX, except that the label of the root vertex lies in Θ_{2} instead of Θ_{1}. But let us give precise descriptions. As for PROPs, we can define theories $W_{r}\left(\Theta_{1} \odot \mathbb{R}_{1}\right)$ by adding the extra relation that the lengtin of an internal edge of B_{1}-colour 1 of a representing tree may be cinanged to 0 to the relations ($3.1 \mathrm{a}, \mathrm{b}, \mathrm{c}$) . Then Θ_{1} is contained in $W_{r}\left(\Theta_{1} \Theta_{1}\right)$ as the full subcategory of all objects n^{1}. Now the construction of MX carries over. Let T_{λ} denote the space of all trees of sinape λ wnose edges all have \mathbb{Q}_{1}-colour 0 except of the root, winich inas \mathbb{Q}_{1}-colour 1 . Let n_{λ} denote the source of λ. Then

$$
\operatorname{MX}=\bigcup_{\lambda} T_{\lambda} \times X^{n} \lambda / \sim
$$

with the relations
$(a)=(3.1 \mathrm{a})$. It does not apply to the root vertex because of the change of colour
$(b)=(3.1 \mathrm{~b})$, but for cherry trees, i.e. the cherries are affected by the set operations in the same way as the twigs
$(c)=(3.1 \mathrm{c})$
(d) if the cinerry tree A has an edge of length 1 , then tine subtree B with cnerries y_{1}, \ldots, y_{r} sitting on this edge may be replaced by the cinerry $[\alpha \bullet \varepsilon(B)]\left(y_{1}, \ldots, y_{r}\right)$

Let T_{λ}^{\prime} be obtained from T_{λ} by replacing the space of root vertex
labels $\Theta_{1}(k, 1)$ by $\Theta_{2}(k, 1)$. Then

$$
Y=\bigcup_{\lambda} T_{\lambda}^{\prime} \times X^{n} \lambda / \sim
$$

with the relations (a), (b), (d) above and (c) substituted by (c') any edge of lengtin 0 whicn does not meet tine root vertex may be shrunk as in (c), while an incoming edge of length 0 to the root vertex may be sinrunk as follows: We substitute the vertex label, a say, above that edge by $F(a)$ and then sinrink as described in (3.1 c).

The \oplus_{2}-action on Y is defined on representing cherry trees by

$$
b\left(A_{1}, \ldots, A_{n}\right)=B
$$

where B is obtained from A_{1}, \ldots, A_{n} by identifying their root vertices. Then the date of B is given by A_{1}, \ldots, A_{n} except of the root vertex label winich is $b \cdot\left(a_{1} \oplus \ldots \oplus a_{n}\right)$ if a_{1}, \ldots, a_{n} are the root vertex labels of A_{1}, \ldots, A_{n}. For example,

This definition coincides with the definition of the $\Theta_{1}-s t r u c t u r e ~ o f ~$ MX if $\Theta_{1}=\Theta_{2}$. There are again inclusions

$$
i: X \longrightarrow M X
$$

$j: X \longrightarrow Y$

and as in (4.49) one shows that X is a SDR of MX. Define a map $f:(M X, X) \rightarrow(Y, X)$ by substituting tine vertex label b of a representing cinerry tree of $M X$ by $F(b)$ to obtain a representing cinerry tree of Y. Note that \hat{i} is a nomomorpinism of Θ_{1}-spaces if we give Y the
$囚_{1}$-structure induced by F. Suppose we know
Claim 1: j is a cofibration
Claim 2: $f: M X \longrightarrow Y$ is a homotopy equivalence
Then $j=f \cdot i: X \longrightarrow Y$ is a nomotopy equivalence and cofibration, and nence X a $S D R$ of Y. (see $[14 ;(3.7)])$.

To prove the claims we filter the spaces $M X$ and Y by the subspaces M_{k} and Y_{k} of cherry trees winicn are related to a cherry tree with at most k edges. The spaces of all cnerry trees of $M X$ and Y of a given snape λ with k edges are of the forms

$$
Z_{1}=\Theta_{1}(r, 1) \times P \quad \text { and } \quad Z_{2}=\Theta_{2}(r, 1) \times P
$$

where $\Theta_{1}(r, 1)$ and $\Theta_{2}(r, 1)$ are the spaces of root vertex labels and P is the space of all cnerry trees of $M X$ witn snape λ, ignoring the root vertex label. Let $Q \subset P$ be the subspace of trees winich can be reduced by the relations to a tree with less edges. On the root vertex (whose label we ignore) of a tree in P we nave various subtrees sitting. Assume there are m trivial cherry trees, i.e. trees of the form

(perinaps $m=0$), and n_{i} non-trivial trees of snape λ_{i} forming spaces $\Theta_{1}\left(k_{i}, 1\right) \times P_{i}$, where $\Theta_{1}\left(k_{i}, 1\right)$ again is the space of root vertex labels. Then

$$
P=X^{m} \times \prod_{i}\left(I \times \Theta_{1}\left(k_{i}, 1\right) \times P_{i}\right)^{n_{i}}
$$

where I parameterizes the length of the edge from P_{i} to the root vertex of P. Let G_{i} denote the symmetry group of the snape λ_{i} and $Q_{i} \subset P_{i}$ the subspace of trees winicn can be reduced by the relations. The symmetry group G of P is $S_{m} \times \prod_{i} H_{i}$ wnere $H_{i}=G_{i} \ S_{n_{i}}$, the wreath product of G_{i} and $S_{n_{i}}$ (for a derinition see Appendix II). A tree A of P lies in Q iff it satisfies one of the following conditions
(i) any two coordinates in X coincide (because then we can reduce A by (b))
(ii) any I-coordinate is 0 or 1 (because then (c),(c') or (d) applies)
(iii) any $\oplus_{1}\left(k_{i}, 1\right)$-coordinate is degenerate or an identity (because then (a) or (b) applies)
(iv) any P_{i}-coordinate lies in Q_{i}
(v) two $\left(\operatorname{Ix} \otimes_{1}\left(k_{i}, 1\right) \times P_{i}\right)$-coordinates are in the same G_{i}-orbit (because then (b) applies)

Examples to (iii) and (v): Let $\sigma:\{1,2\} \longrightarrow\{1,2,3\}$ map 1 to 3 and 2 to 1 and let $\tau:\{1,2,3\} \rightarrow\{1,2\}$ map 1,3 to 2 and 2 to 1 . Then

It is not difficult to show that each representing tree in the spaces Z_{1} and Z_{2} is related to a tree to which (i), ..., (v) does not apply, uniquely up to relation (b) but for permutations only. This is precisely the situation we dealt with in chapter III.

The group G permutes the r incoming edges to the root vertex of P. Hence there is a homomorpinism $G \longrightarrow S_{r}$ making $\otimes_{1}(r, 1)$ and $\otimes_{2}(r, 1)$ into G-spaces. We will show later

Claim 3: $\left(\oplus_{i}(r, 1) \times P, D \oplus_{i}(r, 1) \times P U \oplus_{i}(r, 1) \times Q\right), i=1,2$, are $G-N D R s$ Claim 4: $\otimes_{i}(r, 1) \times P-\left(D \Theta_{i}(r, 1) \times P \cup \Theta_{i}(r, 1) \times Q\right), i=1,2$, is a numerable principal G-space

Claim 5: $F:\left(\Theta_{1}(r, 1), D \Theta_{1}(r, 1)\right) \rightarrow\left(\Theta_{2}(r, 1), D \Theta_{2}(r, 1)\right)$ is an ordinary nomotopy equivalence of pairs

Then MX and Y are proper iterated adjunction spaces because they are obtained by adjoining spaces

$$
\left(\left(\oplus_{i}(r, 1) \times P\right) / G, \quad\left(D \oplus_{i}(r, 1) \times P U \oplus_{i}(r, 1) \times Q\right) / G\right) \quad i=1,2
$$

to M_{k-1} respectively Y_{k-1}, one for eacin snape orbit λ with k edges, and these pairs are NDRs by claim 3. Since $X \subset Y_{2}$ is a cofibration, claim 1 follows. In view of (A 4.4) it suffices to snow that each map $f_{k}=f \mid M_{k}: M_{k} \rightarrow Y_{k}$ is a homotopy equivalence. We prove this by induction, starting with $M_{1}=\Theta_{1}(0,1)$ and $Y_{1}=\Theta_{2}(0,1)$. The inductive step follows from (A 4.7) the assumptions of wich nold if claims 3, 4,5 are true and the equivariant map

$$
f^{\prime}: D \Theta_{1}(r, 1) \times P \cup \Theta_{1}(r, 1) \times Q \rightarrow D \Theta_{2}(r, 1) \times P \cup \Theta_{1}(r, 1) \times Q
$$

induced by F is an ordinary nomotopy equivalence. But by claim 5, Fxid: $\left(\Theta_{1}(r, 1) \times P, D \Theta_{1}(r, 1) \times P U \Theta_{1}(r, 1) \times Q\right) \rightarrow\left(\Theta_{2}(r, 1) \times P, D \Theta_{2}(r, 1) \times P U \Theta_{2}(r, 1) \times Q\right)$ is a nomotopy equivalence of pairs.

Proof of claim 3: By assumption, $\left(\Theta_{i}(r, 1), D \Theta_{i}(r, 1)\right)$ is a G-NDR. By (A 2.5) it suffices to show that (P, Q) is a $G-N D R$. We prove this by induction starting with a shape λ with one edge only, the root, i.e. $P=Q=\varnothing$. For the inductive step, consider for given shape λ with k edges the pair

$$
(P, Q)=\left(X^{m}, \Delta^{\prime} X^{m}\right) \times \prod_{i}\left(\left(\operatorname{Ix} \Theta_{1}\left(k_{i}, 1\right) \times P_{i}\right)^{n}, R_{i}\right)
$$

where $\Delta^{\prime} X^{m}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in X^{m} \mid x_{i}=x_{j}\right.$ for some $\left.i \neq j\right\}$ and $R_{i} \subset\left(\operatorname{Ix} \otimes_{1}\left(k_{i}, 1\right) \times P_{i}\right)^{n_{i}}$ is the subspace of all elements satisfying (ii),(iii), (iv) or (v). By (A 2.8) and assumption (e), ($X^{m}, \Delta^{\prime} X^{m}$) is a $S_{m}-N D R$. So by (A 2.4) it suffices to snow that $\left(\left(\operatorname{Ix@} @_{1}\left(k_{i}, 1\right) \times P_{i}\right)^{n_{i}}, R_{i}\right)$ is a $G_{i}\left(S_{n_{i}}-N D R\right.$. We use the following
Observation: G acts freely on $P-Q$

Proof: Suppose $g A=A$ for $A \in P-Q$ and $g \in G, g \neq$ identity. Then two $\left(\operatorname{Ix} \otimes_{1}\left(k_{i}, 1\right) \times P_{i}\right)$-coordinates of A are in the same G_{i}-orbit for some i or two X-coordinates of A coincide, which is a contradiction.

Let $V_{i} \subset \operatorname{Ix} \mathcal{O}_{1}\left(k_{i}, 1\right) \times P_{i}$ be the subspace of all elements satisfying (ii), (iii) or (iv). Then G_{i} acts freely on $\operatorname{Ix} \bigotimes_{1}\left(k_{i}, 1\right) \times P_{i}-V_{i}$. By induction nypotnesis, $\left(P_{i}, Q_{i}\right)$ is a $G_{i}-N D R$, by assumption $(b),(d)$ and (A2.7) the pair $\left(\Theta_{1}\left(k_{i}, 1\right), D^{\prime} \Theta_{1}\left(k_{i}, 1\right)\right)$ is a $G_{i}-N D R$ where $D^{\prime} \Theta_{1}\left(k_{i}, 1\right)=$ $D \otimes\left(k_{i}, 1\right) \cup\left\{i d_{1}\right\}$ if $k_{i}=1$ and $D \Theta\left(k_{i}, 1\right)$ otnerwise. Hence, by the product theorem for cofibrations, ($\left.\operatorname{Ix} \mathbb{W}_{1}\left(k_{i}, 1\right) \times P_{i}, V_{i}\right)$ is a $G_{i}-N D R$. By assumption (c) and the product theorem $\left(\left(\operatorname{Ix} \Theta_{1}\left(k_{i}, 1\right) \times P_{i}\right)^{2}, \Delta_{i}\left(I \times \Theta_{1}\left(k_{i}, 1\right) \times P_{i}\right)\right)$ is a $\left(S_{i} \times G_{i}\right)-N D R$. Hence, by (A 2.10), the pair $\left(\left(\operatorname{Ix} \Theta_{1}\left(k_{i}, 1\right) \times P_{i}\right)^{n_{i}}, R_{i}\right)$ is a $G_{i} \backslash S_{n_{i}}-N D R$.

Proof of claim 4: We know that G is finite and operates freely on $\Theta_{i}(r, 1) \times P-\left(D \Theta_{i}(r, 1) \times P U \Theta_{i}(r, 1) \times Q\right)$. Moreover, there is a map $u: \Theta_{i}(r, 1) \times P \longrightarrow I$ such that $u^{-1}(0)=D \Theta_{i}(r, 1) \times P U \Theta_{i}(r, 1) \times Q$ because of claim 3. By assumption (a), the space $\Theta_{i}(r, 1) \times P$ is paracompact. So claim 4 follows from (A 3.8).

Proof of claim 5: The proof proceeds by induction starting with $r=0$ where $D \Theta_{1}(r, 1)=D \Theta_{2}(r, 1)=\varnothing$. For each subset $A \subset[r]$ or k elements, $k<r$, let $\sigma_{A}:[k] \rightarrow[r]$ be the order preserving monomorpinism with image A. Let

$$
D_{\mathrm{k}}=\left\{b \cdot \sigma^{*} \in @_{1}(r, 1) \mid \sigma:[k] \rightarrow[r] \text { injective }\right\} \subset \otimes_{1}(r, 1)
$$

Denote the subspace of $\otimes_{1}(r, 1)$ of all elements of tine form $b \cdot \sigma_{A}^{*}$ by B_{A}. Then

$$
D_{k}=\bigcup_{|A|=k} B_{A} \text { and } B_{A} \cap B_{A^{\prime}} \subset D_{k-1} \text { for } A \neq A^{\prime},|A|=\left|A^{\prime}\right|=k
$$

($|\mathrm{A}|=$ cardinality of A) because $\Theta_{\mathcal{1}}$ is proper. Hence D_{K} can be obtained from D_{k-1} by successively adjoining spaces ($B_{A}, B_{A} \cap D_{k-1}$) one for each subset $A \subset[r]$ with k elements. The same nolds for Θ_{2};
we denote tine corresponding spaces by the same symbol with dash. Obviously $F: D_{0}=\theta_{1}(0,1) \cong \theta_{2}(0,1)=D_{0}^{\prime}$. Assume inductively, that $F: D_{k-1} \sim R_{k-1}^{\prime}$. By assumption (d), composition with σ_{A}^{*} induces homeomorphisms

$$
\left(\otimes_{1}(k, 1), D \Theta_{1}(k, 1)\right) \cong\left(B_{A}, B_{A} \cap D_{k-1}\right),\left(\Theta_{2}(k, 1), D \otimes_{2}(k, 1)\right) \cong\left(B_{A}^{\prime}, B_{A}^{\prime} \cap D_{k-1}^{\prime}\right)
$$

Hence, by assumption (d) and induction nypothesis,

$$
F:\left(B_{A}, B_{A} \cap D_{k-1}\right)=\left(B_{A}^{\prime}, B_{A}^{\prime} \cap D_{k-1}^{\prime}\right)
$$

and ($\left.B_{A}, B_{A} \cap D_{k-1}\right)$, ($B_{A}^{\prime}, B_{A}^{\prime} \cap D_{k-1}^{\prime}$) are NDRs. By (A 4.6), we find that $F: D_{k}=D_{k}^{\prime}$. Hence $F: D @_{\uparrow}(r, 1)=D_{r-1}=D_{r-1}^{\prime}=D \oplus_{2}(r, 1)$ and nence

$$
F:\left(\Theta_{1}(r, 1), D \oplus_{1}(r, 1)\right) \approx\left(\Theta_{2}(r, 1), D \oplus_{2}(r, 1)\right)
$$

is a homotopy equivalence of pairs by (A 4.3).

Remark: Actually, we have proved a little more than stated in the theorem. We have constructed a Θ_{2}-space Y wnich we can consider as a \otimes_{1}-space because of the functor F, and the inclusion $j: X \longrightarrow Y$ carries the structure of a reduced $@_{1}$-map.

Presumably most of the results of cnapter IV can be generalized to arbitrary theories under assumptions similar to those of Theorem 4.58. But as we see from the proof of (4.58), the details are formidable.

V. Chapter

STRUCTURES ON BASED SPACES

One of the main applications of our theory will be the classification of the algebraic topological structures of iterated loop spaces. These spaces live naturally in the category $\boldsymbol{x}_{0}{ }^{\circ}$ of based topological spaces and based maps. Therefore we have to modify our constructions to cover this case.

1. BASED THEORIES

Let X be a topological space and K a set. Then X^{+}is X with a disjoint point $\{*\}$ a.ttached, which serves as base point, and $X+K$ tine disjoint union of X and K. Let \mathcal{S}_{K}° denote the category whose objects are functions $\underline{i}=(\underline{i}, i d):[n]+K \longrightarrow K$ and whose morphisms from \underline{i} to $\underset{j}{ }$ are all functions σ making

commute. A basic object in ϵ_{K}^{0} is a function $[1]+K \rightarrow K$. Since this function is tine identity on the second summand it is uniquely determined by the image k of $1 \in[1]$. Hence we often denote it by k. Then $\underline{i}:[n]+K \longrightarrow K$ is the categorical sum of the basic objects $\underline{i}(1), \ldots, \underline{i}(n)$.

Let $\mathfrak{I}_{0} p_{K}^{0}$ denote the category of K-graded spaces in $\mathfrak{I}_{0}{ }^{\circ}$. An object $X \in \mathfrak{I}_{0} p_{K}^{\circ}$ determines a product preserving functor $\left(\mathcal{S}_{K}^{0}\right)^{\circ p} \longrightarrow \mathfrak{I}_{0} p^{o}$ sending the object \underline{i} to $X_{\underline{i}}=X_{\underline{i}(1)} \times \ldots \times X_{\underline{i}}(n)$ and the morpinism $\sigma: \underline{i} \longrightarrow \underline{i}$ in σ_{K}^{0} to $\sigma^{*}: X_{\underline{i}} \rightarrow X_{\underline{i}}$

$$
\sigma^{*}\left(x_{1}, \ldots, x_{m}\right)=\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

winere $X_{\sigma}(r)=* \in X_{k}$ if $\sigma(r)=k \in K \subset[m]+K$ (we always denote base points by *). We see that there are additional set operations.

The sets $\mathcal{S}_{\mathrm{K}}^{0}$ (i,j) are canonically based, the base point being the function $\underline{i}:[n]+K \rightarrow K \subset[m]+K$. The corresponding set operation is the constant map in $\mathcal{I}_{0} p^{\circ}\left(X_{\underline{j}}, X_{\underline{i}}\right)$.

A function $f: K \rightarrow L$ induces a functor $f_{*}: \mathcal{S}_{K}^{O} \rightarrow \mathcal{S}_{L}^{0}$ and hence a functor $f_{*}^{o p}:\left(\mathcal{S}_{K}^{o}\right)^{o p} \longrightarrow\left(\mathcal{S}_{L}^{\circ}\right)$ op. If $\underline{i}=\left(\underline{i}^{\prime}, i d\right):[n]+K \longrightarrow K$ is an object and $\sigma=\left(\sigma^{\prime}, i d\right):[n]+K \longrightarrow[m]+K$ a morphism from i to j in $\mathcal{S}_{\mathrm{K}}^{0}$, then $\hat{i}_{*}(\underline{\underline{i}})=\left(f \cdot \underline{i}^{\prime}, i d_{L}\right)$ and $\hat{f}_{*}(\sigma)=\left(\left(i d_{[m]}+\tilde{f}\right) \cdot \sigma^{\prime}, i d_{L}\right)$.

Definition 5.1: A (finitary) based K-coloured topological-algebraic theory is a category Θ with $o b=o b 5_{K}^{\circ}$ togetner with a faithful functor $\left(S_{K}^{0}\right)^{o p} \rightarrow$ preserving objects and products. Tine latter means that $\Theta(\underline{i}, \underline{j}) \cong(\underline{i}, \underline{i}(1)) \times \ldots \times \Theta(\underline{i}, \underline{j}(m))$ is a based nomeomorpism where the base points are the images of the base points of $\left(\mathcal{S}_{\mathrm{K}}^{0}\right)^{\mathrm{op}}$. $A \Theta-$ space is a continuous functor $\Theta \rightarrow \mathfrak{I}_{0} p^{\circ}$ such that $\left(\mathcal{S}_{K}^{0}\right)^{o p} \rightarrow \rightarrow$ Iop $_{0}$ preserves products. The images of the basic objects determine an object in $x_{0} p_{\mathrm{K}}^{\circ}$, the underlying space.
A homomorpinism between Θ-spaces is a natural transformation of such functors.

A theory functor from a K-coloured theory Θ_{1} to an L-coloured theory B_{2} is a continuous functor $\mathrm{F}: \oplus_{1} \longrightarrow \oplus_{2}$ togetner with a function $f: K \longrightarrow I$ sucn that

commutes.

2. BASED PROs AND PROPs

Denote the 0-ary set operation in $5_{K}^{\circ}(k, 0)$ by ω_{k}.
In contrary to the unbased case we consider four types of spines: Besides the PROs and PROPs, a notion winich makes sense for based theories too, we consider "based" PROs and PROPs which are spines with respect to the subcategory of 5_{K}° generated under \oplus and composition by the w_{k} respectively the w_{k} and the isomorpisms. The reason is that for a based monoid and a based abelian monoid one usually assumes that the identity is the base point, i.e. the O-ary operation λ_{0} including the unit coincides with the 0-ary set operation ω. Hence a. based PROP is a category \mathfrak{B} with bifunctor $\oplus: B \times B \rightarrow B$ as defined in (2.43) with G substituted by the subcategory of S_{K}° generated under \oplus and composition by isomorpinisms and the ω_{k}. The axioms (2.43) (a),...(d) hold too with the appropriate modification of (2.43 d). The definition of a based PRO is analogous.

Let us give an example where the additional set operation $\omega:[1]^{+} \rightarrow[0]^{+}$causes changes. Since μ does not contain set operations the unbased free monoid on a space X is the disjoint union $\bigcup_{n=0}^{\infty} X^{n}$. In the based case, we have a single set operation left.
Hence tin based free monoid on a based space X is

$$
\bigcup_{n=0}^{\infty} X^{n} / \sim
$$

wnere $\left(x_{1}, \ldots, x_{n}\right) \sim\left(x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{n}\right)$ if $x_{i}=*$ and $(x) \sim *$ if $x=*$, because if $x_{i}=*$, then $\left(x_{1}, \ldots, x_{n}\right)=(\operatorname{id} \oplus \omega \oplus i d) *\left(x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{n}\right)$. (Here \widehat{x} means delete x).

3．THE BASED BAR CONSTRUCTION

The bar construction for unbased theories carries over to based tneories with the following modifications：The trees nave again edges with colours in K and lengths in I，and vertex labels in the appro－ priate morpinism spaces of $⿴ 囗 大$ ，but its twigs are labelled by elements in $[\mathrm{n}]+\mathrm{K}$ ，if it represents a morphism with source $i:[n]+K \rightarrow K$ ， instead of elements in［ n ］only．If we nave m twigs，the twig labels then define a morpnism $[m]+K \longrightarrow[n]+K$ in S_{K}^{O} ，whicn stands for a set operation．The relations among the trees of $W^{b} \Theta$（ b for＂based＂）are the same as relations（3．1）with the following modification of（3．1 b）： （5．2）Let $\sigma:[n]+K \rightarrow[m]+K$ be a morpinism in S_{K}^{o} ．We may replace any vertex label $a \cdot \sigma^{*}$ by a ，by cnanging tine part of the tree above tinis vertex：

where $C_{\sigma r}$ is a single twig with label（and colour）k if $\sigma(r)=k \in K \subset[m]+K$ ．

If each space $\Theta(0, k)$ has only one element，i．e．the 0 －ary operations are set operations，then $W^{b} \oplus(O, k)$ also nas only one element．Moreover， a．t stumps may be pruned away by sinrinking their outgoing edge．We use relations（b）and（a）for this．In terms of operations this im－ plies that in any $W^{b} \Theta-s p a c e ~ t h e ~ b a s e ~ p o i n t s ~ b e n a v e ~ l i k e ~ s t r i c t ~ i d e n-~$ tities．

We again specialize to PROs and PROPs．In the case of unbased PROs and PROPs，there are，of course，no cnanges．So let be a K－coloured based PROP（for based PROs the construction is similar）and denote
the 0 -ary set operation in $\mathfrak{B}(0, k)$ by w_{k}^{*}. Then $W^{b_{\mathcal{B}}}$ is the quotient of W月 (here we consider ω_{k}^{*} as an ordinary 0 -ary operation) modulo the relation
(5.3) a stump
$\left.\right|_{k} ^{\omega_{k}^{*}} \quad$ may be sinrunk
$W^{b_{B}}$ is the correct spine of the theory $W^{b}{ }^{(6)}$ obtained from the based theory Θ associated to $\$$.

Since all 0-ary operations on a based \mathfrak{B}-space coincide it seems to be reasonable to restrict the attention to PROs and PROPs naving a.t most one 0 -ary operation $0 \longrightarrow k$ for each $k \in K$. If \mathfrak{B} is an unbased PROP satisfying this condition, then W ($0, k$) nevertheless may nave many 0-ary operations. We introduce two modifications of the construction W that correct this. Define W 'B to be the quotient of wodulo the relation
(5.4) two trees without twigs naving the same root colour coincide, and define $W^{\prime \prime \prime}$ b to be the quotient of $W^{\text {B }}$ modulo the relation (5.5) any stump may be shrunk.

Then $W^{\prime} P(0, k)$ has at most one element and $W^{W} B(0, k)=\mathfrak{B}(0, k)$.
The basic difference between W^{\prime} and $W^{\prime \prime}$ is best illustrated with an example. Let $\mathfrak{B}=\boldsymbol{\varkappa}$. In $W \mathfrak{W}(1,1)$ we have a representing tree

giving a path from e.x to x, i.e. tine base point e of a w'थ-space X is a nomotopy unit, while in w"थ this tree coincides with

$$
\lambda_{1}=i d
$$

which means that in a $W=2$-space the base point e is a strict unit.

Convention: When dealing witn constructions W^{\prime} and $W^{\prime \prime}$, we consider the O-ary set operation of a based PROP as ordinary 0-ary operation, thus obtaining an unbased PROP. For actions on based spaces this does not make any difference.

With this convention, we find that for a based PROP with $B(O, k)=\left\{\omega_{k}\right\}$ for all $k \in K$ the categories $W^{b_{B}}$ and $W^{\prime \prime} B$ coincide. But $W^{\prime \prime} B$ has also some relevance in the unbased case.

Let X be an object in $\mathcal{I o p}_{K}^{0}$ and let a be an action of an unbased K-coloured $\operatorname{PROP} B$. We nave $\mathcal{B}(0, k) \approx W B(0, k)$ by the standard section, i.e. $\mathcal{B}(O, k)$ is the subspace of all stumps. Tine action α induces maps

$$
\hat{a}_{k}: \theta(0, k) \subset w \theta(0, k) \rightarrow X_{k}
$$

Theorem 5.6: (a) If the maps \hat{a}_{k} are nomotopic to the constant maps to * ϵX_{k}, then the action α is nomotopic through actions to an action β of W on X sucn that $\beta(B(0, k))=*$ for all $k \in K$
(b) Let B be a K -coloured PROP . (As always, we assume that
$\left(B(k, k),\left\{i d_{k}\right\}\right)$ is a NDR for all $\left.k.\right)$ Let $\pi: W^{M} \longrightarrow$ W"B be the projection and $\mathfrak{B} \subset W^{\prime \prime} B$ a subcategory sucin tinat $\mathfrak{B}(0, k)=W^{\prime \prime} B(0, k)$ for all $k \in O b B$ and $\pi^{-1}(B) \subset W B$ is an admissible subcategory. Assume we are given a homotopy of actions $a(t): W B \rightarrow$ Iop on $X \in \mathcal{I}_{0} p_{K}$ satisfying
(i) $\hat{\alpha}_{k}(t)=\hat{\alpha}_{k}(0)$ for all $t \in I$
(ii) $\hat{a}_{k}(0): \phi(0, k) \subset W B(0, k) \rightarrow X_{k}$ is a closed cofibration for all $k \in K$ and $t \in I$
(iii) $\alpha(t) \mid \pi^{-1}(B)$ factors througn π
(iv) $\alpha(t)$ factors througn π for $t=0$ [or $t \in \partial I$, or (iv) is empty] Then there exists a homotopy $\beta\left(t_{1}, t_{2}\right):$ WB $\rightarrow \mathcal{I}_{0} p_{K}$ through nomotopies of actions sucn that
(i) $\beta(t, 0)=\alpha(t)$
(ii) $\beta\left(t_{1}, t_{2}\right) \mid \pi^{-1}(B)=\alpha\left(t_{1}\right)$ for all t_{2}
(iii) $\beta\left(t_{1}, t_{2}\right)=\alpha\left(t_{1}\right)$ for $t_{1}=0$ [or $t_{1} \in \partial I$, or (iii) is empty]
(iv) $\beta(t, 1)$ isctors through π
(v) $\hat{\beta}_{k}\left(t_{1}, t_{2}\right)=\hat{\alpha}_{k}(0)$ for all $t_{1}, t_{2} \in I$

Under suitable nypotneses this result makes unbssed wh-actions to based $W^{\prime \prime} B-a c t i o n s$. We nave stated it in greater generality than we need for this purpose, but we will use the full generality later.

Proof: Part (a) follows immediately from (3.14) with the subcategory (D) generated by the morpinisms of $B(0, k), k \in K$.

Tine nomotopy $\beta\left(t_{1}, t_{2}\right)$ of part (b) is constructed inductively. We use the cnerry tree definition of an action (cf.3.24) and induct on the number of vertices and the number of cherries. Tine induction starts from the requirement that the trivial cherry tree with cherry x nas value x and $a \operatorname{stump} b$ has value $\hat{\alpha}(0)(b)$. For the inductive step from $r-1$ to r we consider a space P of trees of a given sinape λ with n twigs, $n \leq r$, and $r-n$ vertices. We convert P into a space of trees or filtration r by attacning to eacn twig a cnerry or convert it into a stump of lengtin t and some label in $B(0, k), k=$ twif colour. By (3.24 e) a. stump b of lengtin must be equivalent to the appropriate cherry $\hat{\alpha}(0)(b)$. To take care of thia we introduce

$$
Y_{k}=P(0, k) \times I \cup X_{k} /\left((b, 1) \sim \hat{x}_{k}(0)(b)\right)
$$

Let Y_{k}^{\prime} be the image of $B(0, k) \times I$ and $Y_{k}^{\prime \prime}=8(0, k) \times\{0\}$. What we look for is a nomotopy

$$
H: P \times Y_{k_{1}} \times \ldots \times Y_{k_{n}} \times I \times I \rightarrow X_{l}
$$

where k_{1}, \ldots, k_{n} are the n colours of the twigs of λ and i the colour of its root. By induction, $H\left(A, y_{1}, \ldots, y_{n}, u_{1}, u_{2}\right)$ is already determined iff one of the following nolds
(i) A lies in the subspace $Q=P$ of trees tnat simplify by (3.24 (a) or (c)), or decompose and nence simplify by (3.24 e), or thet re-
present an element of $\pi^{-1}(\mathfrak{B})$. (Note that A represents a tree of $\pi^{-1}(B)$ iff any tree obtained from A by converting a twig to a stump of arbitrary length represents a tree of $\pi^{-1}(V)$, because $\mathfrak{B}(0, k)=W M(0, k)$ for $k \in \mathfrak{B})$
(ii) some y_{i} lies in some $Y_{k}^{\prime \prime}$, because then we have a stump of length 0 wnich can be shrunk
(iii) some y_{i} lies in some Y_{k}^{\prime} and $u_{2}=1$, by the requirement on $\beta\left(u_{1}, 1\right)$ (iv) $u_{2}=0$
(v) $u_{1}=0$ [or $u_{1} \in \partial I$, or (v) is empty] (Denote this subspace of I by I^{\prime}, i.e. $I^{\prime}=\{0\}$ or ∂I or \varnothing)

Let G be the symmetry group of the shape λ. The action of G on the twigs makes $Y=Y_{k_{1}} \times \ldots \times Y_{k_{n}}$ into a G-space. We will snow that there is an equivariant retraction of PXYXIXI onto the subspace of elements satisfying one of the conditions (i),..., (v) so that the induction can proceed. We already know that (P, Q) is a G-NDR. Let Z^{\prime} and $Z "$ be the subspace of $y \in Y$ with some y_{i} in some Y_{k}^{\prime} respectively $Y_{k}^{\prime \prime}$. Now ($Y_{k}^{\prime}, Y_{k}^{\prime \prime}$) is nomeomorpicic to $(O, K) \times I, B(0, k) \times U)$ so that $Y_{k}^{\prime \prime}$ is a SDR of Y_{k}^{\prime}. We prove later

Claim: $Z^{\prime \prime}$ is an equivariant $S D R$ of Z^{\prime}
From the product formula for equivariant SDRs we obtain that $Z^{\prime} \times I^{\prime} \times I$ U $Z{ }^{\prime} \times I \times \partial I$ リ $Z \prime \times I \times I$ is an equivariant $S D R$ of $Z \times I \times I$ and that Z'xIXI U YXI'XI U YXIXO is an equivariant SDR of YXIXI, the latter because $\{0\} \subset I$ is a $S D R$ and ($Y \times I, Z^{\prime \prime} \times I$ If YXI') is a $G-N D R$. Hence $Z Z^{\prime \prime} \times I \times I U Z Z^{\prime} X X 1$ U YXI'XI UYXIXO is an equivariant $S D R$ or $Y \times I X I$ and
 we had to snow.

It remains to prove the claim: Let V_{r} be the subspace of points in Y with at least $n-r$ coordinates in some Y_{k}^{*}. Consider the pair ($\left.\mathrm{V}_{\mathrm{r}} \mathrm{UZ"}^{\prime \prime}, \mathrm{V}_{\mathrm{r}-1} U Z^{\prime \prime}\right)$. Then ($\left.\mathrm{V}_{\mathrm{r}} U Z^{\prime \prime}\right)-\left(\mathrm{V}_{\mathrm{r}-1} U Z^{\prime \prime}\right)$ consists of a collection of spaces homeomorpnic to copies

$$
\left(Y_{l_{1}}^{\prime}-Y_{l_{1}}^{\prime \prime}\right) \times \ldots \times\left(Y_{l_{n-r}}^{\prime}-Y_{l_{n-r}^{\prime}}^{\prime \prime}\right) \times\left(Y_{m_{1}}-Y_{m_{1}}^{\prime}\right) \times \ldots \times\left(Y_{m_{r}}-Y_{m_{r}}^{\prime}\right)
$$

after a suitable sinuffle of coordinates, $\left\{l_{1}, \ldots, l_{n-r}\right\} \cup\left\{m_{1}, \ldots, m_{r}\right\}=$ $\left\{k_{1}, \ldots, k_{n}\right\}$, on which the nomomorphic image G^{\prime} (determined by the coordinate shuffle) of the subgroup of G acts which keeps this space invariant. Let $U \subset Y_{l_{1}}^{\prime} X \ldots Y_{l_{n-r}}^{\prime}$ be the subspace of all points having some coordinate in some $Y_{l_{i}}^{\prime \prime}$ and $W \subset Y_{m_{1}} \times \ldots \times Y_{m_{r}}$ the subspace of all points having some coordinate in some $Y_{m_{i}}^{\prime}$. Then

$$
U^{U} \times Y_{m_{1}} \times \ldots \times Y_{m_{r}} U Y_{l_{1}}^{\prime} \times \ldots \times Y_{l_{n-r}}^{\prime} \times W=Y_{l_{1}}^{\prime} \times \ldots \times Y_{l_{n-r}}^{\prime} \times Y_{m_{1}} \times \ldots \times Y_{m_{r-1}} \cap\left(V_{r-U} U Z^{\prime \prime}\right)
$$

is a G'-equivariant $S D R$ of $Y_{l_{1}}^{\prime} X \ldots X Y_{l_{n-r}}^{\prime} \times Y_{m_{1}} \times \ldots X Y_{m_{r}}$ by (A 2.4). By induction, $V_{0} U Z^{\prime \prime}$ is an equivariant $S D R$ of $Z^{\prime}=V_{n-1} U^{\prime \prime}$. But $V_{0} \cap Z^{\prime \prime}$ is an equivariant $S D R$ of V_{0}, again by ($A 2.4$). Hence $Z^{\prime \prime}$ is an equivariant $S D R$ of $V_{0} U Z^{\prime \prime}$.

By a similar argument, one can also prove a partly homogeneous version of this theorem.

The following result, which can be proved in the same manner as the first part of (4.13), indicetes now we will apply Theorem 5.6.

Lemma 5.7: Let $\alpha_{t}: W \rightarrow$ Iov be a homotopy of actions on $X \in \mathcal{I}_{0} \boldsymbol{p}_{K}$. Then $i d_{X}$ carries the structure of a B-map from $\left(X, \alpha_{0}\right)$ to (X, α_{1}). The same holds for the partly homogeneous case.

4. LIFTING AND EXTENSION THEOREMS

When dealing with W we usually nave to assume

Assumption 5.8: $B(0, k)$ has at most one element for all k.

For based actions this is no restriction, as we nave seen before. Since $W^{b_{8}}$ coincides witn $W^{\prime \prime}$ ior a based PROP satisfying (5.8) and since it guffices to study PROPs satisfying (5.8) wnen we consider
based actions, the case $W^{b_{B}}$ is covered by the case $W^{\prime \prime \prime}$.
Recall that we have filtered each space W (\underline{i}, k) by subspaces F_{r} of morphisms represented by trees with at most r internal edges. This filtration induces a filtration F_{r}^{\prime} of $W^{\prime} B(\underline{i}, k)$ and $F_{r}^{\prime \prime}$ of $W^{\prime \prime}(\underline{i}, k)$. Let P be the space of trees of a given shape λ with r internal edges and G its symmetry group. Then a tree A of P represents an element of F_{r-1} iff one of the following holds (5.9)(a) Some vertex label is an identity
(b) some internal edge has lengtn 0
(c) there is an internal edge of length 1 having a subtree with at least one internal edge and with source 0 above it (because then the additional relation applies)

The tree A of P represents an element of $F_{r-1}^{\prime \prime}$ iff one of the following nolds
(5.10)(a) some vertex label is an identity
(b) some internal edge has lengtn 0
(c) A has a stump and $r \geq 1$.

Let $Q^{\prime} \subset P$ and $Q " \in P$ be the subspace of those elements satisfying (5.9) respoctively (5.10). Then (P, Q^{\prime}) and ($P, Q^{\prime \prime}$) are equivariant NDRs.

Proposition 5.11: The augmentation $\varepsilon: W B \rightarrow$ induces an equivariant equivalence $\varepsilon "$: $W^{\prime \prime} B \rightarrow$ and, provided satisfies (5.8), an equivariant equivalence $\varepsilon^{\prime}: W^{\prime} B \longrightarrow B$.

Proof: We obtain F_{r}^{\prime} and $F_{r}^{\prime \prime}$ from F_{r-1}^{\prime} and $F_{r-1}^{\prime \prime}$ by attaching spaces (P, Q^{\prime}) and ($P, Q^{\prime \prime}$) (cf. 3.15). As in (3.15) it suffices to snow that $Q^{\prime} \subset P$ and $Q^{\prime \prime} \subset P$ are equivariant SDRs. Since $\{0\} \in I$ is an $S D R$, this is clear for ($\mathrm{P}, \mathrm{Q}^{\prime \prime}$) by (A 2.4). For ($\mathrm{P}, \mathrm{Q}^{\prime}$) this holds for the same reason if the shape λ has no stumps. If it has a stump and $r \geq 1$ then the stump
is an internal edge. Let \bar{P} be the space obtained from P by deleting the coordinate giving the length of the stump, so that $P=\bar{P} \times I$. Then Q^{\prime} is of the form $Q^{\prime}=\bar{P} \times O U \bar{Q} \times I$, where \bar{Q} is a suitable subspace of \bar{P}. Hence $\left(P, Q^{\prime}\right)=(\bar{P}, \bar{Q}) \times(I, O)$ so that Q^{\prime} is an equivariant $S D R$ of P by (A 2.4).

For $W^{\prime 8}$ and any partly nomogeneous version we nave a lifting theorem

Theorem 5.12: The lifting theorems (3.17) and (3.20) also nold if we substitute $H_{L} W^{W A}$ by $H_{L} W^{\prime B}$ provided all PROPs involved satisfy (5.8).

Proof: Let $P: H_{L} W^{W} \longrightarrow H_{L}{ }^{W}{ }^{\prime B}$ be the projection functor. Then there exist extensions $H: H_{L} W^{\text {B }} \rightarrow \mathcal{D}$ of $H^{\prime}: P^{-1}(\mathfrak{B}) \rightarrow 5$ and $K_{t}: H_{L} W B \rightarrow \mathbb{C}$ of $K_{t}^{\prime}: P^{-1}(B) \longrightarrow \mathbb{C}$ which factor througn $H_{L^{\prime}} W^{\prime}$, , because \mathbb{S} and \mathfrak{D} have at most one 0-ary operation.

For the same reasons we nave a nomotopy extension theorem for $W^{\prime} B$.

Tneorem 5.13: Proposition 3.14 also nolds if we substitute H_{L} W8 by

Since we work witn functors into sop ${ }^{\circ}$ the actions are automatically based. The Theorems 5.12 and 5.13 snow that we may well restrict to PROPs and PROs satisfying (5.8) and substitute W b by W 'B when we work witn based actions. The results of IV, $\S 1,2,3$ carry over with exception of (4.16), on winich the nomotopy invariance results rely. The based analogue of (4.16) can be proved for well-pointed spaces X, i.e. each pair ($X_{k}, *$) is a NDR (see (5.16)), so that we obtain the nomotopy invariance results for well-pointed spaces. Since there is noting spectacular about $W^{\prime \prime}$, we concentrate on $W^{\prime \prime}$ from now on.
(3.17) does not imply a lifting theorem for $W^{\prime \prime}$, because indecomposable trees in W^{B} may well represent a morpinism in $W^{\prime \prime} B$ wich can be decomposed into some morpnism of W " and a sum of 0-ary operations and identities. Fortunately, we nave an adequate substitute for (3.17).

Theorem 5.14: Suppose given a diagram

of categories and functors satisfying the assumptions of (3.17). We suppose furtiner that $\mathfrak{B}(0, k)$ contains $\mathcal{B}(0, k)$ and that $H^{\prime}: B(0, k) \subset \mathfrak{B}(0, k) \rightarrow \mathfrak{F}(0, k)$ is a closed cofibration for all $k \in K$. Let $p: S \rightarrow$ Iop be an action on $X \in \mathcal{I}_{0} p_{K \times I}$ sucn that each $\hat{\rho}_{k}: ⿹(O, k) \rightarrow X_{k}$ is a closed cofibration. Then there is an action $x: H_{I} W H B \rightarrow$ Iob on X extending the multiplicative functor $\rho \circ \mathrm{H}^{\prime}: \mathfrak{B} \longrightarrow$ Iop.

Proof: We prove the nomogeneous version. Let $\pi: W^{\prime} \rightarrow W^{\prime \prime} B$ be the projection. Then $B^{\prime}=\pi^{-1} \mathfrak{B}$ satisfies the assumptions of (3.17) so that there is an extension $H: W^{B} \rightarrow \mathcal{D}$ of $H^{\prime} \circ \pi: B^{\prime} \rightarrow$. Now apply (5.6) with $\alpha(t)=\rho \cdot H$ to obtain the required action x.

The partly nomogeneous version follows from the partly homogeneous analogue of (5.6).

In a similar manner we can also prove a nomotopy extension result.

Theorem 5.15: Let $\mathfrak{B C} \mathcal{H}_{L} W^{\prime \prime \prime}$ be an admissible subcategory of H_{L} W"B such that $\mathfrak{B}(0, k) \subset \mathfrak{B}(0, k)$ for all $k \in K$. Let $\rho: H_{L} W M B \rightarrow$ Iop be an action on $X \in \mathcal{I o p}_{K \times L}$ and $\alpha(t): B \rightarrow I_{0 p}$ a nomotopy of multiplicative functors sucin that $a(0)=\rho \mid \mathfrak{B}, \hat{a}_{k}(t)=\hat{x}_{k}(0): \mathfrak{B}(0, k) \subset \mathfrak{B}(0, k) \rightarrow X_{k}$ for
all $t \in I$, and $\hat{\alpha}_{k}(0)$ is a closed cofibration. Then there is a homotopy of actions of $H_{L} W^{\prime \prime B}$ on X extending ρ and $\alpha(t)$.

Proof: Using the notation of the proof of (5.6), we nave an extension $\beta(t)$ of $\alpha(t) \circ \pi: \pi^{-1}(\mathfrak{B}) \longrightarrow \operatorname{Iop}$ to $H_{L} W$ such that $\beta(0)=0 \cdot \pi$. We deform $\beta(t)$ relative to $\pi^{-1}(\mathfrak{B})$ by (5.6) keeping $\beta(0)$ fixed and obtain an action winicn factors tinrough $H_{L} W^{\prime \prime B}$.

5. BASED HOMOTOPY HOMOMORPHISMS

If we deal with based actions of unbased PROs and PROPs, we can define based ${ }^{3}$-maps and n-maps as in chapter IV. Since the lifting theorem (3.17) and the homotopy extension theorem (3.14) can be used for based actions of unbased PROPs and PROs, the results of chapter IV, $\S 1,2,3$ carry over as long as they do not rely on Lemma 4.16. This lemma is substituted by

Lemma 5.16: Let $p: X \longrightarrow Y$ be a morphism of $\mathcal{I}_{0} p_{K}^{\circ}$ which is an unbased nomotopy equivalence and suppose tinat X and Y are well-pointed. Then p admits a based $W(K \otimes Y)$-action.

The proof proceeds as the proof of (4.16) with the exception that tine maps

$$
f_{k}: I^{2 n_{x Y_{k}}} \rightarrow X_{k} \quad n_{k}: I \times I^{2 n_{x Y_{k}}} \rightarrow Y_{k}
$$

to be constructed in the inductive step are not only given on $\partial I^{2 n_{x}} Y_{k}$ respectively $\left(O X I^{2 n_{U I X}} I^{2 n}\right) \times Y_{k}$ in advance, but also on $I^{2 n_{x\{*\} \subset I}}{ }^{2 n_{x Y}}{ }_{k}$ and $I \times I^{2 n_{x}}\{*\} \in I x I^{2 n_{x}} Y_{k}$. Again (A 3.5) provides the required maps, because $\left(I^{2 n_{x}} Y_{k}, \partial I^{2 n_{x}}{ }_{k} U I^{2 n_{x}}\left\{_{*}\right\}\right)$ is a NDR.

Hence for an unbased PROP ${ }^{\circ}$ we explicitly obtain

Theorem 5.17: The simplicial class $R_{B}^{O}\left[R_{h B}^{O}\right]$ whose n-simplexes are based $W\left(B \otimes \Omega_{n}\right)$-actions $\left[\mathcal{H}_{n}\left(B \otimes \Omega_{n}\right)\right.$-actions] satisfies tine restricted Kan condition. Hence tine category $\operatorname{map}_{B}^{\circ}$ [Map $\mathrm{n}_{\mathrm{B}}^{0}$] of based WB-spaces and simplicial homotopy classes of based B-maps [n^{B}-maps] exists.

Proposition 5.18: Two based $B-\operatorname{maps}\left[n^{\beta}\right.$-maps] $\left(f_{i}, \rho_{i}\right):(X, \alpha) \longrightarrow(Y, \beta)$, $i=0,1$, are simplicially homotopic iff there is nomotopy through based B-maps $\left[n^{B-m a p s}\right]\left(f_{t}, o_{t}\right):(X, \alpha) \longrightarrow(Y, \beta)$ from $\left(f_{0}, \rho_{0}\right)$ to ($\left.f_{1}, \rho_{1}\right)$.

Proposition 5.19: Let $(f, \rho):(X, \alpha) \rightarrow(Y, \beta)$ be a based 8 -map [nBmap] and $f=g$. Then g admits a structure x of a based B-map [n-map] sucn that (f, p) and (g, x) are nomotopic.

Theorem 5.20: Let $50 B$ be a sub-PROP such that $(B(\underline{i}, k), 0(\underline{i}, k)$) is a $S_{i}-N D R$ for all i and k in D, and let $p: X \rightarrow Y$ be a nomotopy equi-
 $j: W\left(\mathbb{D} \otimes \mathfrak{Q}_{1}\right) \subset W\left(B \otimes \mathfrak{Q}_{1}\right)\left[H W\left(\mathcal{B} \otimes \mathfrak{Q}_{1}\right) \subset \mathrm{HW}\left(\otimes \mathfrak{R}_{1}\right)\right]$ be the inclusion functors
(a) If (X, α^{\prime}) is a based WB-space, (Y, β) a based WB-space, and $\left(p, \rho^{\prime}\right):(X, \alpha) \rightarrow(Y, \beta \circ i)$ a based $\mathcal{D}-\operatorname{map}\left[n^{D}-m a p\right]$, then we can extend α^{\prime} to a based $W^{B-a c t i o n} \alpha$ on X and ρ^{\prime} to a based $B-m a p$ [n-map] $(p, p):(X, \alpha) \rightarrow(Y, \beta)$
(b) If $(p, \rho):(X, \alpha) \rightarrow(Y, \beta)$ is a based B-map [in-map], then any nomotopy inverse based \mathfrak{D}-map $\left[n^{\mathfrak{D}}-\operatorname{map}\right]\left(\mathrm{q}, x^{\prime}\right):(Y, \beta \circ i) \rightarrow(X, \alpha \circ i)$ of $(p, p o j)$ can be extended to a nomotopy inverse $(q, x):(Y, \beta) \rightarrow(X, \alpha)$ of (p, p).

To cover tine case of based PROPs, we also study maps of W"ib-spaces.
 an action $x: W^{\prime \prime}\left(\otimes \mathbb{Q}_{1}\right) \rightarrow$ Iop with $d^{\circ}(x)=\beta$ and $d^{1}(x)=\alpha$. The homogeneous version is deined analogously. The results of $I V, \S 1,2$
carry over provided we only consider actions $\alpha: W " \Subset \longrightarrow$ Jop respectively their partly homogeneous analogues, a an arbitrary unbased PROP, on objects $X \in \mathcal{Z o p}_{K}$ satisfying

Assumption 5.21: The induced maps $\hat{\alpha}_{k}: \mathbb{C}(0, k) \subset W^{\prime \prime} \mathbb{C}(0, k) \rightarrow X_{k}$ are closed cofibretions.

This assumption is in particular satisfied if each space $\mathfrak{c}(0, k)$ nas at most one element b_{k} and α is an action on a well-pointed object $X \in \mathcal{I o p}_{K}^{\circ}$ whose base points are the images of

$$
\hat{a}_{k}\left(b_{k}\right): * \rightarrow X_{k}
$$

if $\mathbb{C}(0, k) \neq \varnothing$. Note that α is then automatically a based action, provided each $\mathbb{C}(0, k)$ has exactly one element.

Explicitly, we nave

Theorem 5.22: Let be an arbitrary PROP. The restricted Kan condition
 actions $\left[H_{Q_{n}} W^{\prime \prime}\left(8 \otimes \mathbb{\Omega}_{n}\right)\right.$-actions] satisfying (5.21). Hence the category
 classes of [homogeneous] ${ }^{\prime \prime \prime}$-maps satisfying (5.21) exists.
 $i=0,1$, are simplicially nomotopic iff there is a homotopy $\left(f_{t}, \rho_{t}\right):(X, \alpha) \longrightarrow(Y, \beta)$ through $B{ }^{\prime \prime}$-maps [ibn-maps] from (f_{0}, ρ_{o}) to $\left(f_{1}, \rho_{1}\right)$, provided all actions satisfy (5.21).

The proof is not a direct translation of (4.13) to our case, because we do not have a uniqueness part in (5.14). If $\left.\pi: W\left(B \otimes_{1}\right) \rightarrow W^{H\left(A B Q_{1}\right.}\right)$ is the projection, then we know that the $B-m a p s\left(f_{0}, \rho_{0} \pi\right)$ and $\left(f_{1}, \rho_{1} \cdot \pi\right)$ are homotopic by a homotopy througn B-maps (f_{t}, x_{t}). By (5.6) we can deform x_{t} to a nomotopy which factors througn π inducing the required
homotopy through 80 -maps from (f_{0}, ρ_{0}) to (f_{1}, ρ_{1}). The homogeneous version is proved in the same manner.
 underlying map p is a homotopy equivalence in $\mathfrak{I}_{0} p_{K}$. Let $\mathbb{D C B}$ be a subPROP such that $(\mathbb{B}(\underline{i}, k), \mathfrak{D}(\underline{i}, k))$ is an $S_{\underline{i}}-N D R$ for all \underline{i} and k. Denote the inclusions $W^{\prime \prime D} \subset W^{\prime \prime}$, and $W^{\prime \prime}\left(\Omega \otimes \Omega_{1}\right) \subset W^{\prime \prime}\left(B \otimes \Omega_{1}\right)\left[H_{\Omega_{1}} W^{\prime \prime}\left(D \otimes \Omega_{1}\right) \subset H_{\Omega_{1}} W^{\prime \prime \prime} \otimes \Omega_{1}\right]$ by i and j and let $\left(q, \kappa^{+}\right):(Y, \beta \cdot i) \longrightarrow(X, \alpha \cdot i)$ be a homotopy inverse D"-map [h"-map] of ($p, \rho \cdot j$). Assume all actions satisfy (5.21). Then
 which is homotopy inverse to (p, p) and satisfies (5.21).

Unfortunately the proof of (4.18) has to be changed to work for B"-maps because the category c^{5} used in the proof does not necessarily contain the spaces $B(0, k)$. We indicate the modifications for the special case we need.

Theorem 5.25: Let 8 be a PROP sucin that each $B(O, k)$ has exactly one element. Let $\mathbb{X C B}$ be a sub-PROP as in (5.24) and let $p: X \longrightarrow Y$ be a homotopy equivalence of well-pointed spaces in $x_{0} p_{\mathbb{Z}}^{\circ}$. If (X, α^{\prime}) is a based W"J-space, (Y, β) a based W"'g-space, and ($\left.p, \rho^{\prime}\right):\left(X, \alpha^{\prime}\right)->(Y, \beta \circ i)$ a based $\mathfrak{V} "$-map [$n \mathfrak{D}$ "-map], we then can extend a ' to a based W " α on X and ρ^{\prime} to a based $\mathfrak{B}^{n-m a p}\left[n^{\mathfrak{B}}\right.$-map] $(p, o):(X, \alpha) \longrightarrow(Y, \beta)$.
 where $\pi_{B g}: W^{3} \longrightarrow W^{\prime \prime}$ is the projection, extending the based \mathfrak{D}-map $\left(X, \alpha^{\prime} \cdot \pi_{\mathfrak{D}}\right) \rightarrow\left(Y, \beta \cdot i \cdot \pi_{\mathfrak{D}}\right)$. Since $\hat{\rho}_{(k, 0)}^{\prime \prime}$ and $\hat{\rho}_{(k, 1)}^{\prime \prime}$ are the inclusions of the base point, which are closed cofibrations, we can deform ρ " to a based $\mathfrak{B n}$-map $(X, \alpha) \longrightarrow(Y, \beta)$ by (5.6). The homogeneous version is proved analogously.

6. THE BASED CONSTRUCTION M

We define reduced based B-maps and reduced 11 -maps in a fasion analogous to chapter IV. They enjoy the same properties as in the unbased case with the modifications listed in the previous section. Therefore, one mignt expect that the based equivalent of the construction M of (4.49) can easily be obtained. This is not the case! Let \mathfrak{B} be an unbased PROP and (X,a) a based $B-$ space, then $M(X, \alpha)$ as defined in (4.49) is a ${ }^{B}$-space but it is not based. If we take the base point of X as base point of $M(X, \alpha)$ then the B-action does not preserve base points. By imposing new relations we can make $M(X, \alpha)$ into a based B-space naving the correct universal property, but tinen it is not of the nomotopy type of X eny more, winch is insufficient for us.

The situation is different for based PROPs (or PROs). Since we may restrict our attention to based PROPs naving exactly one 0-ary operation, we may as well treat the case $W^{\prime \prime}$.

Let $W_{r}^{\prime \prime}\left(B \otimes \Omega_{1}\right)$ be the quotient of $W_{r}\left(\otimes \Omega_{1}\right)$ obtained by sinrinking all stumps, and let (X, α) be a $W^{\prime \prime} B-$ space. Define $M^{\prime \prime}(X, \alpha)=\left\{M^{\prime \prime} X_{k}\right\}$ by

$$
\begin{align*}
& M^{\prime \prime} X_{k}=\bigcup_{\underline{i} \in b} W_{r}^{n}\left(B \otimes \Omega_{1}\right)\left(\underline{i}^{0}, k^{1}\right) \times X_{\underline{i}} / \sim \tag{5.26}\\
& \left(c \circ a ; x_{1}, \ldots, x_{n}\right) \sim\left(c ; \alpha(a)\left(x_{1}, \ldots, x_{n}\right)\right)
\end{align*}
$$

$c \in W_{r}^{\prime \prime}\left(B \otimes Q_{1}\right)\left(\underline{j}^{0}, k^{1}\right)$ and $a \in W_{r}^{\prime \prime}\left(B \otimes Q_{1}\right)\left(\underline{i}^{0}, j^{0}\right)$ (the upper index specifies the a_{1}-colour).

In terms of cinerry trees $M^{\prime \prime}(X, a)$ is the quotient of $M(X, a)$ by adding the relation

$$
\begin{equation*}
\left(A ; y_{1}, \ldots, y_{n}\right) \sim\left(A^{\prime} ; y_{1}, \ldots, y_{n}\right) \tag{5.27}
\end{equation*}
$$

if A^{\prime} is obtained from A by sinrinking stumps.
As a consequence of this relation we obtain

$$
\left(A ; y_{1}, \ldots, y_{n}\right) \sim\left(A^{\prime} ; y_{1}, \ldots, y_{i}, b(*), y_{i+1}, \ldots, y_{n}\right)
$$

if A nas a stump b between its $i-t h$ and $(i+1)-s t$ twig and A^{\prime} is ob-
tained by converting this stump to a twig.

Theorem 5.28: Let B be a PROP and (X, a) a $W^{m B}$-space. Then there is a reduced ${ }^{B n-m a p}\left(i_{\alpha}, \nu_{\alpha}\right):(X, \alpha) \longrightarrow M^{n}(X, \alpha)$ sucn that
(a) i_{α} embeds X a.s $S D R$ into $M^{\prime \prime}(X, \alpha)$
(b) any reduced \quad "-map $(f, \rho):(X, \alpha) \rightarrow(Y, \beta)$ is the canonical composite of $\left(i_{\alpha}, \nu_{\alpha}\right)$ and a unique \mathcal{B}-nomomorpism $M^{\prime \prime}(X, \alpha) \longrightarrow(Y, \beta)$
(c) if $(f, \rho):(X, \alpha) \rightarrow(Y, \beta)$ is a reduced $日 "-m a p$ and each $\hat{\alpha}_{k}$ and $\hat{\beta}_{k}$ is a closed cofibration, the nomotopy class of the induced nomomorpinism $n: M^{\prime \prime}(X, \alpha) \rightarrow(Y, \beta)$ depends only on the simplicial nomotopy class of ($f, 0$).

The proof is as for Theorem 4.49.

The construction $M^{\prime \prime}$ gives actually a little more. If (X, α) is a WHB-space such that each $\hat{\alpha}_{k}: \theta(0, k) \rightarrow X_{k}$ is an inclusion and $A \in \mathcal{I}_{0} p_{K}$ is the collection of images of the $\hat{\alpha}_{k}$, the action α on X makes A into a B-space and the inclusion i_{α} restricted to A is a B homomorpinism. This has relevance for the based case:

Corollary 5.29: Let B be a K-coloured PROP sucn tinat eacn $B(O, k)$ has exactly one element and let (X, α) be a W W-space such that each $\hat{\alpha}_{k}: g(0, k) \rightarrow X_{k}$ is a closed cofibration. Denote the image of \hat{a}_{k} by x_{k}. Then tinere is a based $B-s p a c e(Y, \beta$) and an unbased reduced $B-\operatorname{map}(f, p):(X, \alpha) \rightarrow(Y, \beta)$ whose underlying map consists of maps of pairs $f_{k}:\left(X_{k}, X_{k}\right) \rightarrow\left(Y_{k}, *\right)$, winich embeds X_{k} into Y_{k} as SDR.

Proof: By (5.6) we can homotop α to a wh"-action $\bar{\alpha}$ keeping $\hat{\alpha}_{k}(*)$ fixed. Take $Y=M^{\prime \prime}(X, \bar{\alpha})$ with base points given by $B(0, k) \subset Y_{k}$. By (5.7) and (5.28) there is an unbased reduced 8 -map

$$
(f, 0):(X, \alpha) \xrightarrow{\left(i d_{X}, n\right)}(X, \bar{a}) \xrightarrow{\left(i_{\bar{a}}, \nu_{\bar{x}}\right)} M^{\prime \prime}(X, \bar{a})
$$

$f=i_{\alpha}$, with the required properties.

In view of (5.28 c) we also snow

Lemma 5.30: Let be a PROP and (X, α) a. W"B-space such that each $\hat{\alpha}_{k}$ is a closed cofibration. Then each inclusion $B(0, k) \subset M " X_{k}$ is a closed cofibration.

Proof: We filter $M^{\prime \prime}(X, \alpha)$ by subspaces $M_{r}^{\prime \prime}$ of elements represented by a reduced cnerry tree with m vertices and n cherries, $m+n \leq r$. An element of the space P of all cnerry trees witn m vertices and n cherries, $m+n=r$, represents an element of filtration $r-1$ iff a vertex is labelled by an identity, or an internal edge nas lengtn 0 or 1 or supports a stump, or a cnerry lies in tine image of some $\hat{\alpha}_{k}$. I $\hat{I} Q$ is the space of these cinerry trees, $\operatorname{tnen}(P, Q)$ is a $N D R$ so that ($M_{r}^{\prime \prime}, M_{r-1}^{\prime \prime}$) is a $N D R$ (A 4.1). Since $M_{1}^{\eta}=\bigcup_{k} B(0, k)$, the result follows (A 4.1).

VI. Cnapter

ITERATED LOOP SPACES AND ACTIONS ON CLASSIFYING SPACES

It is the aim of this chapter to show that E-spaces (see 2.46) coincide with infinite loop spaces. As an application we prove that the stable groups $O, U, S O, S U, T O p, F$ and their $c l a s s i f y i n g ~ s p a c e s ~ a r e ~$ infinite loop spaces. For this purpose we investigate how much structure on a space X can be transferred to its classifying space $B X$ if there is any.

1. THE CLASSIFYING SPACE CONSTRUCTION

In this chapter 2 denotes the PRO associated with the theory 0_{m} of monoids. Recall that $\mathrm{Mor}_{\mathrm{g}}$ is the category of monoids and homomorphisms and lom_{9} the category of moinoids and homotopy classes of homomorphisme.

Let G be any monoid with unit e. Consider G not as an $\mathfrak{d}-$ space but as a monochrome PRO by putting $\otimes(1,1)=G$ and $(n, 1)=\varnothing$ for $n \neq 1$. Composition is given by the multiplication in G. Take a single point P with its unique Westructure and apply the construction M of (4.49). Note that M is defined even if (G,e) is not a NDR so that condition (3.7) is not satisfied for the PRO . The space EG=MP is a contractible free G-space. Contractibility follows from (4.49 a) and freeness from the definition of the (Gaction on MP.

Definition 6.1:We call EG the universal space and $B G=E G / G$ the classifying space of the monoid G.

Let us give direct descriptions of $E G$ and $B G$. The representing cherry trees of $E G$ are linear and vertical, and may be specified by giving in order, going up the tree, the vertex labels and edge lengtis as $\left(g_{0}, t_{1}, g_{1}, t_{2}, g_{2}, \ldots, g_{k}\right), g_{i} \in G, t_{i} \in I$. We nave tine relations

(b) $\left(g_{0}, t_{1}, g_{1}, \ldots, g_{k}\right)=\left(g_{0}, t_{1}, \ldots, t_{i-1}, g_{i-1} \circ g_{i}, t_{i+1}, \ldots, g_{k}\right) t_{i}=0$
$(c) \quad\left(g_{0}, t_{1}, g_{1}, \ldots, g_{k}\right)=\left(g_{0}, t_{1}, \ldots, g_{i-1}\right) \quad t_{i}=1$
Here we use $t_{*} t^{\prime}=t+t^{\prime}-t t^{\prime}$ and not $t_{*} t^{\prime}=\max \left(t, t^{\prime}\right)$. Hence

$$
E G=\bigcup_{k=0}^{\infty} G^{k+1} \times I^{k} / \sim
$$

Relation (a), (b), and (c) stand for relations (3.1 a), (3.1 c), and (4.49 d). Note that $\left(g_{0}, t_{1}, \ldots, g_{k}\right)$ stands for the representative $\left[\left(g_{0}, j\right), t_{1},\left(g_{1}, i d_{0}\right), t_{2}, \ldots,\left(g_{k}, i d_{0}\right) ; *\right]$ with $P=\{*\},\left(g_{i}, h_{i}\right) \in G \Omega_{1}$, and $j: 0 \rightarrow 1$ in Ω_{1}.

The contraction $H_{t}: E G \longrightarrow E G$ is given by

$$
H_{t}\left(g_{0}, t_{1}, g_{1}, \ldots, g_{k}\right)=\left(e, t, g_{0}, t_{1}, g_{1}, \ldots, g_{k}\right)
$$

t running from 0 to 1, and the G-action $G x E G \rightarrow E G$ by

$$
\left[g,\left(g_{0}, t_{1}, g_{1}, \ldots, g_{k}\right)\right] \longmapsto\left(g \circ g_{0}, t_{1}, g_{1}, \ldots, g_{k}\right)
$$

Consequently

$$
B G=\bigcup_{k=0}^{\infty} G^{k} \times I^{k} / \sim
$$

with $G^{\circ}=\{e\}$ and the relations
(6.3)
(a.) $\left(t_{1}, g_{1}, t_{2}, \ldots, g_{k}\right)= \begin{cases}\left(t_{1}, g_{1}, t_{2}, \ldots, g_{k-1}\right) & g_{k}=e \\ \left(t_{1}, g_{1}, \ldots, g_{i-1}, t_{i} * t_{i+1}, g_{i+1}, \ldots, g_{k}\right) g_{i}=e, i<k\end{cases}$
(b) $\left(t_{1}, g_{1}, t_{2}, \ldots, g_{k}\right)= \begin{cases}\left(t_{2}, g_{2}, t_{3}, \ldots, g_{k}\right) & t_{1}=0 \\ \left(t_{1}, g_{1}, \ldots, t_{i-1}, g_{i-1} \bullet g_{i}, t_{i+1}, \ldots, g_{k}\right) & t_{i}=0, i>0\end{cases}$
(c) $\left(t_{1}, g_{1}, t_{2}, \ldots, g_{k}\right)=\left(t_{1}, g_{1}, \ldots, g_{i-1}\right)$

$$
t_{j}=1
$$

We use the obvious convention, that () = (e). The projection pG : EG \longrightarrow BG is given by

$$
p G\left(g_{o}, t_{1}, g_{1}, \ldots, g_{k}\right)=\left(t_{1}, g_{1}, \ldots, g_{k}\right)
$$

A homomorphism $f: G \longrightarrow H$ of monoids induces maps $E f: E G \longrightarrow E H$ and $B f: B G \longrightarrow B H$ by $E f\left(g_{0}, t_{1}, \ldots, g_{k}\right)=\left(f\left(g_{0}\right), t_{1}, \ldots, f\left(g_{k}\right)\right)$ and $B f\left(t_{1}, g_{1}, \ldots, g_{k}\right)=\left(t_{1}, f\left(g_{1}\right), \ldots, f\left(g_{k}\right)\right)$, winich makes E and B into functors

$$
E, B: \operatorname{Mor}_{2} \longrightarrow \mathfrak{I}_{\mathrm{OD}}
$$

and p into a natural transformation of functors. If $f_{t}: G \longrightarrow H$ is a. homotopy througn nomomorpinisms, then $E f_{t}$ and $B f_{t}$ are nomotopies $E f_{0}=E f_{\uparrow}$ respectively $B f_{0}=\mathrm{Bf}_{1}$. Hence we can pass to the nomotopy categories and obtain functors

$$
\overline{\mathrm{E}}, \overline{\mathrm{~B}}: \wp_{0 \mathrm{~m}_{थ}} \longrightarrow \operatorname{Ion}_{\mathrm{n}}
$$

Our functors E and B coincide with Milgram's classifying space functors $[37]: \operatorname{Let} \Delta^{n}=\left\{\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{R}^{n} \mid 0 \leq u_{1} \leq \ldots s u_{n} \leq 1\right\}$, the Euclidean n-simplex. Define

$$
E^{\prime} G=\bigcup_{k=0}^{\infty} G^{k+1} \times \Delta^{k} / \sim
$$

with the relations
(6.4)
(a) $\left(g_{0}, u_{1}, g_{1}, \ldots, g_{k}\right)= \begin{cases}\left(g_{0}, u_{1}, g_{1}, \ldots, g_{k-1}\right) & \text { if } g_{k}=e, k>0 \\ \left(g_{0}, u_{1}, \ldots, g_{i-1}, u_{i+1}, g_{i+1}, \ldots, g_{k}\right) & \text { if } g_{i}=e, 0<i<k\end{cases}$
(b) $\left(g_{0}, u_{1}, g_{1}, \ldots, g_{k}\right)= \begin{cases}\left(g_{0} \bullet g_{1}, u_{2}, g_{2}, \ldots, g_{k}\right) & \text { if } u_{1}=0 \\ \left(g_{0}, u_{1}, \ldots, g_{i-1}, u_{i+1}, g_{i} \circ g_{i+1}, u_{i+2}, \ldots, g_{k}\right) i f u_{i}=u_{i+1} \\ \left(g_{0}, u_{1}, \ldots, u_{k-1}, g_{k-1}\right) & \text { if } u_{k}=1\end{cases}$

Tnere is a G-action on $E^{\prime} G$ given by $g \cdot\left(g_{0}, u_{1}, \ldots, g_{k}\right)=\left(g \cdot g_{0}, u_{1}, \ldots, g_{k}\right)$

Definition 6.5: We call E'G Milgram's universal space of G and $B^{\prime} G=E^{\prime} G / G$ Milgram's classifying space of G.

We can extend E^{\prime} and B^{\prime} to functors $\operatorname{Ror}_{\mathscr{U}} \rightarrow$ Iop in tine same manner as E and B.

Proposition 6.6: There is a natural equivariant homemorphism EG \rightarrow E'G. Consequently, the functors E and E^{\prime} and the functors B and B^{\prime} are naturally isomorpinic.

Proof: Define a map $n: E G \longrightarrow$ E'G on representatives by $\operatorname{n}\left(g_{0}, t_{1}, g_{1}, \ldots, g_{k}\right)=\left(g_{0}, u_{1}, g_{1}, \ldots, g_{k}\right)$ where $u_{i}=t_{1} * t_{2} * \ldots * t_{i}$. Tinen relation (6.2 a) corresponds to (6.4 a), and relation (6.2 b) and $(6.2 \mathrm{c})$ correspond to (6.4 b). The inverse of n is given by

$$
\left(g_{0}, u_{1}, g_{1}, \ldots, g_{k}\right) \longmapsto\left(g_{0}, t_{1}, g_{1}, \ldots, g_{k}\right)
$$

with $t_{1}=u_{1}$ and $t_{i}=\left(u_{i}-u_{i-1}\right) /\left(1-u_{i-1}\right)$ for $i>1$, with the convention that $0 / 0=1$.

Remark: If we use $t_{1} * t_{2}=\max \left(t_{1}, t_{2}\right)$ instead, there is no such nomeomorphism.

Proposition 6.7: The functors E and B preserve products.

Proof: It is well-known (see [30] or [50]) that the functors E' and B^{\prime} preserve products.

Next we will snow that the functor B preserves nomotopy equivalences. Since we later on need this result for monoids in the category of H spaces, where H is a discrete group, we work in the category of $H-$ spaces. An H-monoid is a monoid G together with an action of H on G sucn that $g \longmapsto \ln \cdot g, g \in G, n \in H$ is a monoid homomorphism for all $h \in H$.

Then EG and BG admit H-actions
$h \cdot\left(g_{0}, t_{1}, g_{1}, \ldots, g_{k}\right)=\left(h \cdot g_{0}, t_{1}, n \cdot g_{1}, \ldots, h \cdot g_{k}\right) \quad$ and
$h \cdot\left(t_{1}, g_{1}, t_{2}, \ldots, g_{k}\right)=\left(t_{1}, n \cdot g_{1}, t_{2}, \ldots, n \cdot g_{k}\right)$
and $p: E G \longrightarrow B G$ is H-equivariant.
The functors E and B and accordingly \bar{E} and \bar{B} are canonically filtered: Put $E_{i} G={ }_{n=0}^{\dot{U}} G^{n+1} \times I^{n} / \sim$ and $B_{i} G=\underline{U}_{0}^{i} G^{n} \times I^{n} / \sim$ with the relations (6.2) and (6.3). Let $p_{i} G: E_{i} G \longrightarrow B_{i} G$ be the projections.

Lemma 6.8: (a) $E G=\underline{\longrightarrow} \mathrm{lim}_{i} G$ and $B G=\underline{\lim _{i}} B_{i}$
(b) If (G, e) is an $H-N D R$, then $E_{i} G \subset E_{i+1} G \subset E G$ and $B_{i} G \subset B_{i+1} G \subset B G$ are closed H-equivariant cofibrations. Hence, since $E_{o} G=G$ and $B_{o} G=(e)=*$, the pairs ($E G, G$) and ($B G, *$) are NDRs.

Proof: By now standard.

Lemma 6.9: Let G_{1} and G_{2} be H-monoids such that (G_{1},e) and (G_{2},e) are H-NDRs. Let $f: G_{1} \rightarrow G_{2}$ be an equivariant nomomorpnism. Then
(a) if f is an equivariant homotopy equivalence, so is Bf
(b) if f is an equivariant closed cofibration, so is $B f$
(c) if f is a closed equivariant cofibration and equivariant nomotopy equivalence, tinen $B f$ embeds $B G_{1}$ as equivariant $S D R$ in $B G_{2}$
(d) if G_{1} and G_{2} are Hausdorff and f is a weak nomotopy equivalence, then $B G_{1}$ and $B G_{2}$ are Hausdorff and $B f$ is a weak nomotopy equivalence.

Proof: $B G$ is an iterated adjunction space in the category of H-spaces obtained by adjoining spaces ($G^{n} \times I^{n}, D^{n}{ }_{G \times I^{n}}^{n} \cup G^{n} \times \partial I^{n}$) winere $D^{n} G \subset G^{n}$ is the subspace of points naving a coordinate e. Part (b) follows from (A 4.9). For part (a) the map $f:\left(G_{1}, e\right) \rightarrow\left(G_{2}, e\right)$ is an equivariant nomotopy equivalence of pairs inducing a nomotopy equivalence of pairs

$$
\left(G_{1}^{n} \times I^{n}, G_{1}^{n} \times \partial I^{n} \cup D^{n_{G}} \times I^{n}\right) \rightarrow\left(G_{2}^{n} \times I^{n}, G_{2}^{n} \times \partial I^{n} \cup D^{n_{G}} \times I^{n}\right)
$$

Hence (a) follows from (A 4.6) and (A 4.4). Part (c) follows from (a) and (b) and the equivariant version of [14;(3.7)]. For part (d) it suffices to show that the map

$$
r: G_{1}^{n} \times \partial I^{n} \cup D^{n_{G_{1}} \times I^{n}} \rightarrow G_{2}^{n} \times \partial I^{n} \cup D^{n_{G}} \times I^{n}
$$

is a weak homotopy equivalence and then apply (A 4.8). Again, by (A 4.8), it suffices tp prove that f induces a weak homotopy equivalence $D^{n_{G}} \rightarrow D^{n_{G}}$ because $G^{n} \times \partial I^{n} \cup D^{n}{ }_{G \times I} I^{n}$ is obtained from $G^{n} \times \partial I^{n}$ by attaching ($D^{n_{G \times I}}{ }^{n}, D^{n_{G \times}} I^{n}$). Since $D^{n_{G}}$ is obtained from $G^{n-1} \times\{e\}$ by attaching ($D^{n-1} G \times G, D^{n-1} G x\{e\}$) this follows from (A 4.8) by induction on n.

Let $\Omega: \mathfrak{I}_{0}{ }^{\circ} \rightarrow \mathfrak{I}_{0} p^{\circ}$ be the loop space functor and $L: \mathfrak{I}_{0} p^{\circ} \rightarrow \mathfrak{I}_{0}{ }^{\circ}{ }^{0}$ the based patin space functor, i.e. $L(X)=\{w: I \rightarrow X \mid w(0)=*\}$. For a monoid G we take e $\in G$ as base point and (e) as base point for $E G$ and $B G$. Then E and B may be considered as functors

$$
E, B: \mathbb{R o r}_{\mathfrak{U}} \longrightarrow \mathfrak{Z}_{0 p^{\circ}}
$$

By (2.53) and (3.25), we may interpret Ω as functor

$$
\Omega: \operatorname{Iop}^{\circ} \rightarrow \operatorname{Map}_{2}^{0}
$$

into the category of based W-spaces and based \mathfrak{y}-maps. The end point projection $\pi: L X \longrightarrow X$ is a fibration with fibre $M X$. There is a natural map of pairs

$$
j G:(E G, G) \longrightarrow(L B G, \Omega B G)
$$

defined by $\left[j G\left(g_{0}, t_{1}, g_{1}, \ldots, g_{k}\right)\right](t)=\left(1-t, g_{0}, t_{1}, \ldots, g_{k}\right)$ making the diagram

commute.

Proposition 6.10: The maps $j G: G \longrightarrow$ @BG carry a natural थ-map structure defining a natural transformation from the functor $J: \mathbb{R o r}_{\mathfrak{A}} \rightarrow \operatorname{Map}_{\mathfrak{U}}$ induced by the augmentation $\varepsilon: W \mathscr{M} \rightarrow \mathscr{U}$ to the functor $\Omega B: \mathbb{M o r}_{\mathscr{U}} \rightarrow \operatorname{Map}_{\mathscr{\mu}}$. If (G, e) is a NDR, this m-map structure is nomotopic through थ-maps with carrier jG to a based e-map structure.

Proof: Let \mathfrak{a} be the PRO of example (2.53) and $\rho: W 川 \longrightarrow 0$ a PRO functor, winich exists by (2.54) and the lifting theorem. We know that there is a based action of 0 and nence of wथ on loop spaces. Let $L^{0}{ }^{0} G$ be the subspace of LEG of all patins w with $w(1) \in E_{o} G=G$. Recall that

$$
\mathfrak{Q}(\mathrm{n}, 1)=\left\{\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right) \in \mathbb{R}^{2 n_{n}} \mid 0 \leq \mathrm{x}_{1}<\mathrm{y}_{1} \leq \mathrm{x}_{2}<\mathrm{y}_{2} \leq \ldots \leq \mathrm{x}_{\mathrm{n}}<\mathrm{y}_{\mathrm{n}} \leq 1\right\}
$$

Using the G-action on EG we define a based 0-action and hence a based Wथ-action on $L^{\circ} E G$ by

$$
\left[\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)\left(w_{1}, \ldots, w_{n}\right)\right](t)= \begin{cases}g_{1} g_{2} \ldots g_{i-1} w_{i}\left(\frac{t-x_{i}}{y_{i}-x_{i}}\right) & t \in\left[x_{i}, y_{i}\right] \\ g_{1} g_{2} \ldots g_{i}(e) & t \in\left[y_{i}, x_{i+1}\right]\end{cases}
$$

where $g_{i}=w_{i}(1), y_{0}=0$ and $x_{n+1}=1$.
We give jG an थ-map structure by exnibiting it as composite of an $थ$-map $\mathrm{kG}: \mathrm{G} \longrightarrow \mathrm{L}^{\circ} \mathrm{EG}$ and a. Wथ-nomomorpinism $\mathrm{rG}: \mathrm{L}^{\mathrm{O}} \mathrm{EG} \longrightarrow$ תBG. The projection $p: E G \longrightarrow B G$ induces a based map LEG \longrightarrow LBG which maps $I^{\circ}{ }^{\text {EG }}$ into $\Omega B G$ defining rG. Since the 0 -action on $\Omega B G$ is given by

$$
\left[\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)\left(w_{1}, \ldots, w_{n}\right)\right](t)= \begin{cases}w_{i}\left(\frac{t-x_{i}}{y_{i}-x_{i}}\right) & t \in\left[x_{i}, y_{i}\right] \\ (e) & t \in\left[y_{i}, x_{i+1}\right]\end{cases}
$$

it is clear that rG is a based Ω-homomorpism and nence a based Wथnomomorphism.

We define the \mathfrak{U}-map $k G$ using the cherry tree description (3.24) for an action α of $W\left(\mathscr{A} \otimes \mathfrak{R}_{1}\right.$) on the 2 -coloured space $\left\{G, L{ }^{\circ} E G\right\}$. On cherry trees whose edges have colour G or colour $L^{\circ}{ }^{\circ} E G$ only, the action α is given by the wistructures on G respectively $L^{\circ} E G$. On cherry trees having edges of both colours we define a by induction on the number k of internal edges. Since $थ(m, 1)$ consists of a single point
for each m, the space of all cherry trees of a given shape with n twigs and k internal edges is of the form $X_{1} \times \ldots \times X_{n} \times I^{k}$, where X_{i} is a copy of G or $L^{\circ}{ }^{\text {EG }}$ and $X_{1} \times \ldots \times X_{n}$ is the space of cherries. Moreover, we may restrict our attention to cherry trees containing no identity. For $k=0$, we define

$$
f: X_{1} \times \ldots \times X_{n} \times I^{0} \times I \longrightarrow E G
$$

by $f\left(x_{1}, \ldots, x_{n}, t\right)=\left(e, 1-t, q\left(x_{1}\right) \cdot \ldots \cdot q\left(x_{n}\right)\right)$ with $q\left(x_{i}\right)=x_{i}$ if $X_{i}=G$ and $q\left(x_{i}\right)=w(1)$ if $x_{i}=\omega \in L^{\circ} E G$. This defines the based action $k G$ on cherry trees with no internal edge. Inductively, we nave to find a map $f: X_{1} \times \ldots \times X_{n} \times I^{k} \times I \longrightarrow$ EG wnich is already given on $X_{1} \times \ldots \times X_{n} \times \partial I^{k} \times I$ and which satisfies
(a) $f\left(x_{1}, \ldots, x_{n}, s, 0\right)=(e)$
(b) $f\left(x_{1}, \ldots, x_{n}, s, 1\right)=\left(q\left(x_{1}\right) \cdot \ldots \cdot q\left(x_{n}\right)\right) \in E_{0}^{G}$

For the second statement f in addition has to satisfy (c) $f(*, \ldots, *, s, t)=(e) \quad *=$ base point. Since EG can be contracted by a nomotopy which is natural in G we can find an extension for the first statement which is natural in G. If (G, e) is a NDR then (e) $\subset \Omega E G \subset L^{0}{ }^{0} G$ are closed cofibrations by [9;p.57], [52; Tnm. 12], and Lemma (6.8). Let $X=X_{1} \times \ldots \times X_{n}$ and $* \in X$ its base point. Let $f^{\prime}: X \times I^{k+1} \longrightarrow E G$ be the map just constructed. We inductively look for a map $\mathrm{f}: \mathrm{XXI}^{\mathrm{k}+1} \longrightarrow$ EG satisfying (a), (b), (c) and a nomotopy $\hat{n}_{t}: f=f^{\prime}$ winich is given by induction on $X x \partial I^{k+1}$. So we really want a map

$$
\mathrm{H}: X \times I^{\mathrm{k}+1} \times I \longrightarrow E G
$$

which is already given on $X \times \partial I^{k+1} \times I$ リ $X \times I^{k+1} \times 1 U * \times I^{k+1} \times 0$. Since EG is contractible we can extend $H \mid * x \partial I^{k+2}$ to $* x I^{k+2}$ and then extend $H \mid X \times I^{k+1} \times O U\left(X \times \partial I^{k+1} U * \times I^{k+1}\right) \times I$ to the whole of $X \times I^{k+1} \times I$, which is possible because ($X \times I^{k+1}, X \times \partial I^{k+1} U * \times I^{k+1}$) is a NDR.

Corollary 6.11: The maps $j G: G \longrightarrow$ OBG deifine a natural transformation

$\Omega \overline{\mathrm{B}}: \overline{\mathrm{Om}}_{\boldsymbol{\mu}} \longrightarrow \operatorname{TRO} \mathrm{p}_{\boldsymbol{\mu}}$.

Definition 6.12: A space X is called numerably contractible if it has a numerable nullnomotopic covering, i.e. there is a covering $u=\left\{U_{\alpha} \mid \alpha \in A\right\}$ and maps $u_{\alpha}: X \longrightarrow I$ such that
(a) each $x \in X$ nas a neighbournood W such that $u_{\alpha}(W)=0$ for all but finitely many $a \in A$
(b) $\sum_{\alpha \in A} u_{\alpha}(x)=1$ for all $x \in X$
(c) $u_{\alpha}^{-1}(0,1] \subset U_{\alpha}$
(d) the inclusions $U_{\alpha} \rightarrow X$ are nullinomotopic

Example 6.13: Any CW-complex is numerably contractible [13; Prop.6.7]

We now prove the main result of this section.

Theorem 6.14: Let G be a numerably contractible monoid such that (G, θ) is a NDR and $\pi_{0}(G)$ is a group under the multiplication of G. Tinen $j G: G \longrightarrow \Omega B G$ is a based nomotopy equivalence.

Proof: Let $\bar{G}=(G U I) /(e \sim 0)$ and extend the monoid structure of G to \bar{G} by $t \cdot g=g \cdot t=e$ and $t \cdot u=$ tu for $g \in G$ and $t, u \in I$. Then $1 \in I$ is the unit of \bar{G}. The map $f: \bar{G} \longrightarrow G$ defined by $g \longmapsto g, g \in G$, and $t \longmapsto e, t \in I$, is a homomorpinism and a based nomotopy equivalence (A 4.3). By naturality, we have a commutative diagram of topological spaces

whose vertical maps are based nomotopy equivalences (Use that $(X, *) \longrightarrow(Y, *)$ is a based nomotopy equivalence provided $X \longrightarrow Y$ is a
homotopy equivalence and $(X, *),(Y, *)$ cofibred (see A 4.3)). Hence it suffices to prove the result for G.

Our aim is to find a commutative diagram

in which p^{\prime} is an n-fibration, i.e. a map naving the weak covering nomotopy property in the sense of Dold [13], and the vertical maps are inomotopy equivalences. Inductively, we construct a sequence of spaces $E_{o} \subset E_{1} \subset E_{2} \subset \ldots$ and n-fibrations $q_{i}: E_{i} \rightarrow B_{i} \bar{G}$ naving the following properties
(a) $E_{i} \bar{G} \subset E_{i}$, and $E_{i} \subset E_{i+1}$ is an inclusion of pairs $\left(E_{i}, E_{i} \bar{G}\right) \subset\left(E_{i+1}, E_{i+1} \bar{G}\right)$ such that

commute
(b) $\left(E_{i+1}, E_{i}\right)$ is a NDR
(c) there are deformation retractions $r_{i}: E_{i} \longrightarrow E_{i} \bar{G}$ and $d_{i}^{b}: q_{i}^{-1}(b) \rightarrow(p G)^{-1}(b)$ for $a l l b \in B_{i} \bar{G}$ sucn that

commute.

We start with $E_{0}=E_{0} \bar{G}=\bar{G}$ and suppose inductively that we nave constructed E_{k-1}. Let $B=B_{k} \bar{G}$ and $A=B_{k-1} \bar{G} \subset B$. Tnen B is obtained from A by adjoining $\bar{G}^{k} \times I^{k}$ modulo the points $A^{\prime}=D^{k} \bar{G} \times I^{k} U \bar{G}^{k} \times \partial I^{k}$ with
$D^{k} \bar{G}=\left\{\left(g_{1}, \ldots, g_{k}\right) \in \bar{G}^{k} \mid\right.$ some g_{i} is the identity $\left.\uparrow \in I \subset \bar{G}\right\}$, and $E_{k} \bar{G}$ obtained from $E_{k-1} \bar{G}$ by adjoining $\bar{G}^{k+1} \times I^{k}$ modulo $\bar{G} \times A^{\prime}$. Let Y be obtained from E_{k-1} by attacning $\bar{G}^{k+1} \times I^{k}$ by the map $\bar{G} \times A^{\prime} \rightarrow E_{k-1} \bar{G} \subset E_{k-1}$. Define a $\operatorname{map} q: Y \rightarrow B$ by $q \mid E_{k-1}=q_{k-1}$ and $q \mid E_{k} \bar{G}=p_{k} \bar{G}$. For $U \subset B$ denote $q^{-1}(U)$ by Y_{U} and $q \mid Y_{U}: Y_{U} \longrightarrow U$ by q_{U}.

If $Q=\left\{\left(g_{1}, \ldots, g_{k}\right) \in \bar{G}^{k} \mid\right.$ some $\left.g_{i} \in I \subset \bar{G}, g_{i}>\frac{3}{4}\right\}$, then $V^{\prime}=Q \times I^{k} U \bar{G}^{k} \times\left(\left[0, \frac{1}{4}\right) U\left(\frac{3}{4}, 1\right]\right)$ is a nalo of A^{\prime} in $\bar{G}^{k} \times I^{k}$ inducing a nalo V of A. Since ∂I is a SDR of $\left[0, \frac{1}{4}\right) \cup\left(\frac{3}{4}, 1\right]$, the space A^{\prime} is an $S D R$ of V^{\prime} and nence A an $S D R$ of V. Let $\rho: V \rightarrow A$ be the deformation retraction, then ρ is covered by a deformation retraction $\bar{\rho}: Y_{V} \rightarrow Y_{A}$, i.e. we nave a commutative diagram Consider the diagram

where Y, is the pullback and $r: Y_{V} \longrightarrow Y$, is induced by $\bar{\rho}$ and q_{V}. Take E_{k} to be the double mapping cylinder of the maps $Y_{V} \subset Y$ and r, and take $q_{k}: E_{k} \rightarrow B_{k} \bar{G}$ to be tine map given by q on $Y U Y_{V} \times I$ and by q^{\prime} and $Y^{\prime} \cdot \operatorname{By}[12 ;(17.8)]$ we find
(i) q_{k} is an n-fibration
(ii) Y is an $S D R$ of E_{k}
(iii) Y_{A} is an SDR of $\left(E_{k}\right)_{A}$ over A
(iv) Y_{B-A} is an SDR of $\left(E_{k}\right)_{B-A}$ over $B-A$
provided we can show
$(a) q_{A}: Y_{A} \rightarrow A$ and $q_{B-A}: Y_{B-A} \longrightarrow B-A$ are $n-r i b r a t i o n s$
(β) $V-A$ is numerably contractible
(γ) for $a l l b \in V-A$ the $\operatorname{map} \overline{0}_{b}: Y_{b} \longrightarrow Y_{\rho(b)}$ is a nomotopy equivalence. The properties (i),..., (iv) imply (a),..., (c): The composite inclusion $E_{k-1} \subset Y \subset E_{k}$ satisfies (a). Since ($\left.\bar{G}^{k+1} \times I^{k}, \bar{G} \times A^{\prime}\right)$ is a NDR so is (Y, E_{k-1}) and hence $\left(E_{k}, E_{k-1}\right)$. By (ii) there is a deformation retraction $f: E_{k} \longrightarrow Y$. Define a deformation retraction $n: Y \longrightarrow E_{k} \bar{G}$ by
$\mathrm{n} \mid \mathrm{E}_{\mathrm{k}-1}=\mathrm{r}_{\mathrm{k}-1}$ and $\mathrm{n} \mid \mathrm{E}_{\mathrm{k}} \bar{G}=\mathrm{id}$. Then $\mathrm{n} \cdot f=\mathrm{r}_{\mathrm{k}}$ is the required deformation retraction. Suppose $b \in B_{k-1} \bar{G}=A$, then there is a deformation retraction $u: q_{k}^{-1}(b) \rightarrow q^{-1}(b)$ by (iii). Since $q^{-1}(b)=q_{k-1}^{-1}(b)$, we can put $d_{k}^{b}=d_{k-1}^{b}$. . If $b \in B_{k} \bar{G}-B_{k-1} \bar{G}=B-A$, tnen (iv) provides a deformation retraction $d_{k}^{b}: q_{k}^{-1}(b) \longrightarrow g^{-1}(b)=(p G)^{-1}(b)$.

We now verify $(\alpha),(\beta),(y)$. Since $q_{A}=q_{k-1}$ and since q_{B-A} is the projection $\bar{G} \times \bar{G}^{k} \times I^{k} \longrightarrow \bar{G}^{k} \times I^{k}$, botn maps are $n-f i b r a t i c n s$. If $b \in V-A$ then $Y_{b}=\bar{G} \times\{b\}$. By construction, $\bar{\rho}(g, b)$ is represented by $\left(g \circ g^{\prime}(b), p(b)\right) \in(p G)^{-1}(\rho b) \geq \bar{G} \times\{\rho(b)\}$ witn $g^{\prime}(b) \in \bar{G}$ depending on b. Since \bar{G} is numerably contractible and $\pi_{0}(\bar{G})$ is a group, rigint translation is a nomotopy equivalence $[12 ;(12.7)]$. Hence

$$
\bar{\rho}_{\mathrm{b}}: Y_{\mathrm{b}}=(\mathrm{pG})^{-1}(\rho b) \subset Y_{\rho(b)}=\left(E_{k-1}\right)_{\rho(b)}
$$

By induction nypothesis the inclusion $(p G)^{-1}(o b) \subset\left(E_{k-1}\right){ }_{p}(b)$ is nomotopy equivalence. It remains to check (β): We cover $V^{\prime}-A^{\prime}$ by the sets $V_{o}=\left\{\left(t_{1}, g_{1}, \ldots, t_{k}, g_{k}\right) \mid\right.$ some $g_{i} \in\left(\frac{3}{4}, 1\right) \subset \bar{G}$ or some $\left.t_{i} \in\left(0, \frac{1}{4}\right)\right\}$ and $V_{1}=\left\{\left(t_{1}, g_{1}, \ldots, t_{k}, g_{k}\right) \mid\right.$ some $g_{i} \in\left(\frac{3}{4}, 1\right) \subset \bar{G}$ or some $\left.t_{i} \in\left(\frac{3}{4}, 1\right)\right\}$. Then $\left(\bar{G}^{k}-D^{k} \bar{G}\right) \times\left(\frac{1}{8}, \frac{1}{8}, \ldots, \frac{1}{8}\right)$ is a SDR of V_{0} and $\left(\bar{G}^{k}-D^{k} \bar{G}\right) \times\left(\frac{7}{8}, \frac{7}{8}, \ldots, \frac{7}{8}\right)$ a SDR of V_{1}. Since $\bar{G}^{k}-D^{k} \bar{G}$ is nomotopy equivalent to G^{k} and G is numerably contractible, so are V_{o} and $V_{1}(A 4.11)$. Define a map $V: V^{\prime}-A^{\prime} \rightarrow I$ by

$$
v\left(t_{1}, g_{1}, \ldots, t_{k}, g_{k}\right)=\prod_{i=1}^{k} \min \left[2 \max \left(t_{i}-\frac{1}{4}, 0\right), 1\right]
$$

Tren $\left(V_{0}, V_{1}\right)$ is a numerable covering of $V^{\prime}-A^{\prime}$ with numeration ($1-v, v$). Hence $V^{\prime}-A$ ' and therefore $V-A$ are numerably contractible.
 $E_{o} \bar{G} \subset q^{-1}(e)$ are SDRs. Unfortunately, q micht not be an n-fibration. To correct tinis, let TE be the telescope of the E_{n} and $T B$ the telescope of the $B_{n} \bar{G}$, i.e.

$$
T E=E_{0} \times[0,1] \cup E_{1} \times[1,2] \cup E_{2} \times[2,3] \cup \ldots
$$

topologized as subspace of Ex \mathbb{R}. The maps q_{i} induce a map $u: T E \rightarrow T B$ and if we take (e) $\in B_{0} \bar{G}$ as basepoint, tinen $\bar{G}=u^{-1}(e)$. The composite
$\operatorname{maps} E_{i} \times[i, i+1] \rightarrow E_{i} \subset E$ induce a map $k E: T E \rightarrow E$ and similarly for $T B$ giving rise to a commutative diagram

where i is the inclusion of \bar{G} in $q^{-1}(e)$. The map is a nomotopy equivalence by (c). By (A 4.4) the maps $k E$ and $k B$ are nomotopy equivalences, too. Let $P=\bigcup_{i=0}^{\infty} E_{i}$ and $Q=\bigcup_{i=0}^{\infty} B_{i} \bar{G}$ be tine disjoint unions. Tine maps $E_{i} \subset E_{i+1}$ and $B_{i} \bar{G} \subset B_{i+1} \bar{G}$ induce endomorpnisms $f: P \longrightarrow P$ and $g: Q \longrightarrow Q$. It is easy to see that $T E$ is nomeomorpnic to $P \times I /(x, 1) \sim(f x, 0)$ and similarly for TB. Consider P and Q embedded in $P x I$ and $Q x I$ at neigint $\frac{1}{2}$. Let $A=\{(x, 0) \in Q x I / \sim\}$ and $V=\left\{(x, t) \in Q x I / \sim \left\lvert\, t \in\left[0, \frac{1}{3}\right) \cup\left(\frac{2}{3}, 1\right]\right.\right\}$. Tnen TB-A $=Q \times(0,1)$ and $A=\bigcup_{i=0}^{\infty} B_{i} \bar{G}$. Hence $u_{A}=\bigcup_{i=0}^{\infty} q_{i}: T E A \rightarrow A$ and $u_{T B-A}=\left(\bigcup_{i=0}^{\infty} q_{i}\right) \times i d: T E_{T B-A}=P x(0,1) \rightarrow Q \times(0,1)=T B-A$ are $n-$ fibrations. V-A is nomotopy equivalent to Q and nence is numerably contractible. We nave a canonical deiormation retraction $0: V \rightarrow A$ whicn is covered by the corresponding canonical deformation retraction $r: T E_{V} \longrightarrow T E_{A}$ which by (c) is a nomotopy equivalence on eacn iibre.
By $[12 ;(17.8)]$ there is a
commutative diagram
$\bar{G} \quad \stackrel{j}{\subset} \quad v^{-1}(e)$
$\cap \quad \cap$

whose norizontal maps are nomotopy equivalences such that v is an n-fibration. We end up with a commutative diagram

in winch v and π are $h-f i b r a t i o n s, ~ \pi$ being the well-known path space fibration. We know of all horizontal maps witn exception of $j \bar{G}: \bar{G} \longrightarrow \Omega B \bar{G}$ that they are nomotopy equivalences, and since the inclusions of the base points are cofibrations, they are based homotopy equivalences. By the naturality of Puppe's h-fibration sequence [12; §14], the maps j, i and $j \bar{G}$ induce a nomotopy equivalence $v^{-1}(e) \sim \Omega B \bar{G}$. Hence $j \bar{G}: \bar{G}=\Omega B G$.

Corollary 6.15: Let G be a monoid winich is Hausdorff such that (G, e) is a NDR and $\pi_{0}(G)$ is a group under the multiplication of G. Then $j G$ is a weak nomotopy equivalence.

Proof: Let Epl denote the category of semisimplicial sets, Sin : Sop \rightarrow Spl the singular functor and $R: S p l \rightarrow$ Iop the topological realization functor. Since we work witn compactly generated spaces, R - Sin preserves products so that $R \circ \operatorname{Sin}(G)$ is a monoid. It is well-known that the back adjunction $\varepsilon: R \cdot \operatorname{Sin} \rightarrow I d_{\text {Fop }}$ induces isomorphisms of homotopy groups. By naturality, we nave a commutative diagram

Since $\pi_{0} R S i n(G)$ is a group and RSin(G) a CW-complex, jRSin(G) is a. nomotopy equivalence by (6.14). Since Ω and B preserve weak nomotopy equivalences, $\Omega B \varepsilon(G)$ is a weak nomotopy equivalence.

Let Y be a based space and $M_{M} Y$ tine Moore loop space on Y (cf.3.26). There is a canonical natural map $e Y: B_{M}{ }_{M} \longrightarrow Y$ given by

$$
e Y\left(t_{1}, x_{1}, t_{2}, x_{2}, \ldots, t_{k}, x_{k}\right)=w\left(\Sigma_{i=1}^{k}\left(1-t_{1} t_{2}^{*} \ldots t_{i}\right) a_{i}\right)
$$

where $x_{i}=\left(w_{i}, a_{i}\right) \in \Omega_{M} Y$ and $\left(\omega, \Sigma_{i} a_{i}\right)=x_{1} \cdot x_{2} \cdot \ldots \cdot x_{k}$. The composite

carries an $थ$-map structure, because $j \Omega_{M} Y$ and ReY do. It sends the Moore loop (w, a) to the loop $v: I \longrightarrow Y$ given by $v(t)=\omega(t a)$. It is well-known that this is a nomotopy equivalence [12;p.179].

Proposition 6.16: If Y has the nomotopy type of a connected CW-complex the natural map eY : $\mathrm{B} \Omega_{\mathrm{M}} \mathrm{Y} \longrightarrow \mathrm{Y}$ is a nomotopy equivalence.

Proof: Since $\mathrm{Ba}_{\mathrm{M}} \mathrm{Y}$ and Y have the nomotopy type of a CW-complex, it suffices to show that $\mathrm{e} Y$ is a weak nomotopy equivalence. By (6.15), $j \Omega_{M} Y: \Omega_{M} Y \longrightarrow \Omega B \Omega_{M} Y$ and hence $\Omega e Y$ are weak nomotopy equivalences. Hence eY is a weak nomotopy equivalence, because Y is connected.

The results (6.9 d) of p. 178 and (6.15) of p. 187 remain true if we drop the word "Hausdorff". For the proofs then use (A 4.8 b) and the following variant of (A 4.8 a):

If X and Y are properly filtered spaces and if $f: X \longrightarrow Y$ is a. filtered map sucn that each f_{n} is a weak nomotopy equivalence, then f is a weak nomotopy equivalence.

Proof: f induces a map Tf : TX $\longrightarrow T Y$ of the telescopes $T X$ and $T Y$ associated with the filtrations of X and Y. Since X and Y are properly filtered, it suffices to show that if is a weak nomotopy equivalence. Let $T_{0} X \subset T_{1} X \subset \ldots$ be the filtration of $T X$ by partial telescopes. Then $\pi_{i}(T X)=\xrightarrow{\text { lim }} \pi_{i}\left(T_{n} X\right)$. Since $\left(T f \mid T_{n} X\right): \pi_{i}\left(T_{n} X\right) \xlongequal{\cong} \pi_{i}\left(T_{n} Y\right)$, the map $\mathbb{T f}$ induces isomorpinisms of nomotopy groups.

We close this section with another elementary result on classifying spaces.

Lemma 6.17: Let G be a numerably contractible monoid sucn that (G, e) is a $N D R$. Tnen $B G$ is numerably contractible.

Proof: Since ($G^{n} \times I^{n}, D^{n} G \times I^{n}$ נ $G^{n} \times \partial I^{n}$) is a $N D R$ and $G^{n} \times I^{n}$ is numerably contractible (A 4.11), $B G$ is numerably contractible (A 4.12).

2. ACTIONS ON THE CLASSIFYING SPACE

```
    We can extend the notion of a classifying space from monoids to
WM-spaces by taking the composite
```



```
as classifying space functor. Here M is the functor of (4.49). Note that the unit eधMX is a natural base point so tinat \(M\) can be interpreted as functor into \(\$ 0 \mathrm{~m}_{\mathfrak{H}}^{0}\) instead of \(\$ 0 \mathrm{~m}_{\mathfrak{A}}\). This definition makes the functor \(M\) important for our further investigations.
```

Lemma 6.18: (MX,e) is a NDR for any Wथ-space X.

Proof: MX is an iterated adjunction space filtered by the subspace $M_{n} X$ of reduced cinerry trees naving at most n internal edges. The pairs $\left(M_{n+1} X, M_{n} X\right)$ and nence $\left(M X, M_{0} X\right)$ are NDRs. Recall that

is the unit of $M X$. Since $\left(M_{0} X, e\right)$ is a NDR, so is (MX,e).

Lemma 6.19:(a) (BMX,*) is a NDR for any Wu-space X.
(b) BMX is numerably contractible if X is

Proof: (a) follows from (6.18) and (6.8) winile (b) follows from (6.17),
(6.18) and $(A 4.11)$ because $X \sim M X$.

As an immediate application we find that for a well-pointed monoid (G,e) the spaces $B M G$ and $B G$ are nomotopy equivalent. Indeed, the back adjunction $r: M G \rightarrow G(s e e 4.49 \mathrm{ff})$ is a monoid nomomorphism and a nomotopy equivalence so that $\mathrm{Br}: B M G \approx B G$ by (6.9).

Tne functor $M: N a p_{थ} \longrightarrow 50 m_{9}^{\circ}$ can be lifted to a functor $\bar{M}: \operatorname{Mor}_{\text {WU }} \longrightarrow \operatorname{Mor}_{\mathfrak{a}}^{O}$ such that

commutes. P and P^{\prime} denote the canonical projections. If $f: X \longrightarrow Y$ is a Wथ-nomomorpinism, then $\bar{M} f: M X \longrightarrow M Y$ is tine nomomorpinism determined on cherry trees by

$$
\bar{M} \tilde{f}\left(A ; x_{1}, \ldots, x_{n}\right)=\left(A ; f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)
$$

Note that $\bar{M} f$ is the unique nomomorpinism induced by the canonical composite of f and the universal reduced \mathscr{U}-map $Y \rightarrow M Y$.

Let B be a K-coloured $P R O P$ (for PROs the argument is analogous) and X a (Wथ \otimes)-space. By (2.19) we can consider X as 8 -space in the category of $W \because$-spaces so that $b \in B(\underline{i}, k)$ derines a wथ-nomomorphism $b: X_{\underline{i}} \rightarrow X_{k}$ inducing a monoid nomomorpnism $\overline{M b}: M\left(X_{\underline{i}}\right) \rightarrow M\left(X_{k}\right)$ and nence a based map $B \overline{M b}: B M\left(X_{i}\right) \rightarrow B M X X_{k}$. By construction, $B \bar{M} b$ is continuous in $b \in B(\underline{i}, k)$. Unfortunately, the maps $B \bar{M} b$ do not combine to a based action on $B M X=\left\{\operatorname{BM}\left(X_{k}\right) \mid k \in K\right\} \in \mathcal{I}_{0} p_{K}^{\circ}$, because \bar{M} does not preserve products. Indeed, remark (3.26) snows that there is no product preserving functor $M:$ Mor $_{W} \rightarrow$ Mor $_{\mathfrak{A}}$ sucn that $M Y=Y$ for all Wथ-spaces Y.

Let $X=\left\{X_{k}, \alpha_{k}\right\}, k \in K$, be a collection of WU-spaces and $j:[p] \rightarrow K$
an object of S_{K}. By (II; §3) the product Wथ-space (X_{i}, α_{j}) is defined on objects $n \in W!$ by $a_{j}(n)=\left(X_{j}\right)^{n}$ and on morpnisms $b: m \longrightarrow n$ by the composite

$$
\left(x_{j}\right)^{m} \cong\left(x_{j 1}\right)^{m} \times \ldots \times\left(x_{j p}\right)^{m} \xrightarrow{\alpha_{j 1}(b) \times \ldots \times \alpha_{j p}(b)}\left(x_{j 1}\right)^{n} \times \ldots \times\left(x_{j p}\right)^{n} \Rightarrow\left(x_{j}\right)^{n}
$$

The representing reduced cherry trees of $M\left(X_{i}\right)$ are of the form

$$
\begin{aligned}
& \left(A ; z_{1}, \ldots, z_{n}\right) \text { with } z_{r}=\left(x_{r 1}, \ldots, x_{r p}\right) \in x_{j} \text {. Tine correspondence } \\
& \left(A ; z_{1}, \ldots, z_{n}\right) \mapsto\left[\left(A ; x_{11}, x_{21}, \ldots, x_{n 1}\right), \ldots,\left(A ; x_{1 p}, x_{2 p}, \ldots, x_{n p}\right)\right]
\end{aligned}
$$

defines a monoid nomomorpisism

$$
n_{j}: M\left(X_{j}\right) \longrightarrow(M X)_{j}=M X_{i 1} \times \ldots \times M X_{j p}
$$

the unique nomomorpnism induced by the product of $W_{r}\left(\mathcal{O}_{1} \otimes \mathfrak{q}_{1}\right)$-actions

$$
\left(i_{\alpha_{j 1}} \times \ldots \times i_{\alpha_{j p}}, v_{\alpha_{j 1}} \times \ldots \times v_{\alpha_{j p}}\right):\left(X_{i}, \alpha_{j}\right) \longrightarrow M\left(X_{j 1}, \alpha_{i 1}\right) \times \ldots \times M\left(X_{j p}, \alpha_{j p}\right)
$$

where $\left(i_{\alpha_{k}}, \nu_{\alpha_{k}}\right):\left(X_{k}, \alpha_{k}\right) \rightarrow M\left(X_{k}, \alpha_{k}\right)$ is the universal reduced μ-map of (4.49). The isomorphism subgroup S_{i} of $\mathcal{S}_{K}(\dot{j}, \dot{i})$ acts on $M\left(X_{j}\right)$ and $(M X)_{j}$ by permuting factors and n_{j} is S_{j}-equivariant.

Lemma 6.20: $n_{\dot{j}}$ embeds $M\left(X_{j}\right)$ as S_{j}-equivariant SDR in ($\left.M X\right)_{j}$ such that $\left((M X)_{j}, M\left(X_{j}\right)\right)$ is an $S_{j}-N D R$.

Proof: By definition, $n_{j}{ }^{\circ} i_{\alpha_{j}}=\left(i_{\alpha_{j 1}} \times \ldots \times i_{\alpha_{j p}}\right)$. Since $i_{\alpha_{j}}$ and ($i_{\alpha_{j 1}} \times \ldots \times i_{\alpha_{j p}}$) are equivariant nomotopy equivalences (see proof of 4.49), the map n_{j} is an equivariant nomotopy equivalence. So we only have to snow that it is an equivariant closed cofibration. A p-tuple of reduced cherry trees $\left(A_{1}, \ldots, A_{p}\right) \notin(M X)_{j}$ lies in $M\left(X_{j}\right)$ iff the A_{i} nave the same snapes if we neglect the edge colours and the same edge lengtins up to the relation ($4.49 \mathrm{a}, \mathrm{c}, \mathrm{d}$). Note that the snape uniquely determines the vertex labels because $\mathfrak{V}(n, 1)$ nas exactly one element and that (4.49 b) does not apply because \mathfrak{A} is a PRO. Moreover, we may restrict our attention to reduced cherry trees having no vertex representing an identity so that (4.49 a) becomes redundant. We snow
by induction on the product filtration of (MX) ${ }_{j}$ given by the filtration of M that there is an equivariant retraction

$$
r:(M X)_{i} \times I \longrightarrow(M X)_{j} \times O \cup M\left(X_{i}\right) \times I
$$

So suppose inductively thet r nas been given on $M_{q_{1}}\left(X_{i 1}\right) \times \ldots \times M_{q_{p}}\left(X_{j p}\right) \times I$ for $q_{1}+\ldots+q_{p}<n$. Let $\lambda_{1}, \ldots, \lambda_{p}$ be snapes with q_{1}, \ldots, q_{p} internal edges, $q_{1}+\ldots+q_{p}=n$ and colours $\dot{j}(1), \ldots, j(p)$. The space of all $p-$ tuples of reduced cinerry trees of shape $\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ in (MX) ${ }_{j}$ is of the form $\prod_{i=\uparrow}^{p} Y_{i} \times I^{q_{i}}$ where Y_{i} is the space of cherries of the $i-t h$ tree. An element $\left(A_{1}, \ldots, A_{p}\right) \in \prod_{i=1}^{p} Y_{i} \times\left(I_{i-\partial I^{q_{i}}}\right)$ lies in $M\left(X_{j}\right)$ iff the sinapes $\lambda_{1}, \ldots, \lambda_{p}$ of A_{1}, \ldots, A_{p} coincide disregarding edge colours and the lengtins of corresponding edges in the A_{i} are the same, so that $q_{1}=q_{2}=\ldots=q_{p}=q$ and $\left(A_{1}, \ldots, A_{p}\right) \in \prod_{i=1}^{p} Y_{i} \times \Delta I^{q}$ wnere $\Delta I^{q} \subset I^{q p}$ is the diagonal. The group S_{i} acts on p-tuples of sinapes $\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ of cnerry trees in (MX) $\underset{j}{ }$ by permuting iactors. Let H be the subgroup leaving ($\lambda_{1}, \ldots, \lambda_{p}$) fixed.
Case 1: At least two of the $\lambda_{1}, \ldots, \lambda_{p}$ are different neglecting edge colours. Then we need a H-equivariant retraction

$$
\left(\Pi_{Y_{i} \times I}{ }^{q_{i}}\right) \times I \rightarrow\left(\Pi_{i} \times I^{q_{i}}\right) \times 0 \cup\left(\Pi_{i} \times \partial I^{q_{i}}\right) \times I
$$

Case 2: The λ_{i} coincide disregarding edge colours. Then we need a $H-$ equivariant retraction

Botin retractions exist because ($I^{q}, \partial I^{q}$) is a. NDR and ($I^{p q}, \partial I^{p q} \cup \Delta I^{q}$) is a $S_{p}-N D R$. We extend to filtration n by making this process for a complete set of representatives of S_{j}-orbits of $\operatorname{sinapes}\left(\lambda_{1}, \ldots, \lambda_{p}\right)$.

Proposition 6.21: Let 3 be a. K-coloured PROP (or PRO) and X a (Wis B)space. Then BMX admits a besed w-action.

Proof: Define a K-coloured PROP by taking as $\mathbb{S}(\underline{i}, k)$ the space of all pairs $(b, f), b \in B(\underline{i}, k)$ and $f:(B M X)_{\underline{i}} \rightarrow B M X_{k}$ a based map sucn that
tine composite

$$
B M\left(X_{\underline{i}}\right) \xrightarrow[B n_{\underline{i}}]{ } B(M X)_{\underline{i}} \cong(B M X)_{\underline{i}} \longrightarrow B M X_{k}
$$

is $B \bar{M} b$, with the subspace topology of $B(\underline{i}, k) \times \mathcal{T o p}^{\circ}\left((B M X)_{i}, B M X X_{k}\right)$. Composition in \mathbb{E} is given by the composition in and in Jop. The projection $(b, f) \longmapsto f$ defines a based action of \mathcal{S} on BMX and the projection $(b, f) \longmapsto b$ a PROP-functor $P: \subseteq \longrightarrow B$. By (6.9) and (6.20), $B M\left(X_{\underline{I}}\right)$ is an $S_{\underline{i}}$-equivariant $S D R$ of ($\left.B M X\right)_{\underline{i}}$. Denote tine retraction $(B M X)_{i} \rightarrow B M\left(X_{\underline{i}}\right)$ by r. Let $n_{t}:(B M X)_{\underline{i}} \rightarrow(B M X)_{\underline{i}}$ be the equivariant deformation with $n_{0}=i d$ and $n_{1}={B n_{\underline{i}}}^{\circ} r$. Tnen $P: \mathbb{C}(\underline{i}, k) \rightarrow B(\underline{i}, k)$ nas an equivariant section $Q: B(\underline{i}, k) \rightarrow(\underline{i}, k)$ defined by $Q(b)=$ $(b, B \bar{M} b \circ r)$, and there is an equivariant deformation $(b, f) \longmapsto\left(b, f \circ n_{t}\right)$ into this section. Hence, by the lifting theorem, there exists a PROPfunctor $W^{W} \rightarrow \mathbb{C}$ making $B M X$ into a based W B-space.
3. $n-F O L D$ AND INFINITE LOOP SPACES

Let D_{1} be the first little-cube category of example (2.49) and $\tau: D \subset D_{1}$ the sub-PRO of example (2.53). The unique functor $Y: \mathcal{O} \rightarrow$ of is a nomotopy equivalence. Hence there is a PRO-functor $P: W \geqslant \rightarrow D$ sucn thet $\gamma \circ P=\varepsilon(N)$. Since the composite of augmentations
 $Q: W थ \rightarrow W(W थ)$ sucn that $\varepsilon(\because) \cdot \varepsilon(W थ) \cdot Q=\varepsilon(\mu)$. From the uniqueness part of (3.20) it follows that $\epsilon(W 9) \cdot Q \leadsto I d_{\text {W9 }}$ tinrougn functors. Let B be a $K-c o l o u r e d$ PROP (or PRO) and $i_{k}: W M \rightarrow W$ and $j_{k}: \mathcal{O}_{1} \rightarrow 0_{1} \otimes \mathbb{B}$ the canonical inclusions (2.17). Then we nave for each $k \in K$ PRO-functors

$$
n_{k}: W i_{k} \circ Q: W Q \rightarrow W(W \Re \otimes) \quad \rho_{k}: W j_{k} \circ W \tau \circ W P \circ Q: W 9 \rightarrow W\left(Q_{1} \otimes \mathcal{A}\right)
$$

Definition 6.22: Iet B be a K-coloured PROP and $X \in \mathcal{F}_{0} b_{K}$. Two WB-actions α and β on X are called equivalent, if tnere exists a 8 -map
$\left(i d_{X}, \mu\right):(X, \alpha) \rightarrow(X, \beta)$.

From (5.7) we obtain

Lemma 6.23: If $\alpha_{t}:$ WB \longrightarrow Iop is a nomotopy of WB-actions on X then α_{0} and α_{1} are equivalent.

Theorem 6.24: Let B be a K-coloured PROP (or PRO) and $X=\left\{\left(X_{k}, \alpha_{k}\right) \mid k \in K\right\}$ a family of Wh-spaces. Consider the statements
(a) $\operatorname{BMX}=\left\{\operatorname{BM}\left(\mathrm{X}_{\mathrm{k}}\right) \mid k \in K\right\}$ admits a based WB-action
(b) Up to equivalence of Wr-actions, tine Wor-actions on the X_{k} come from a $W\left(W \mathscr{O}\right.$) -action on X via x_{k}.
(c) Up to equivalence of WM-actions, the Wथ-actions on the X_{k} come from a $W\left(\Omega_{1} \otimes B\right)-a c t i o n$ on X via ρ_{k}.
Tnen we nave the following implications: $(c) \Rightarrow(b) \Rightarrow$ (a). Moreover, if for all $k \in K$ the space X_{k} is numerably contractible, x_{k} induces a group structure on $\pi_{0}\left(X_{k}\right)$, and $B(0, k)$ nas exactly one element, then (c) nolds if BMX admits a (not necessarily based) wh-action.

Proof: (c) $\Rightarrow(b)$ because $j_{k} \cdot T \cdot P=((T \circ P) \otimes I d) \circ i_{k}$. Hence $\rho_{k}=$ $W((T \cdot P) \otimes I d) \cdot x_{k}$ and $W((T \cdot P) \otimes I d)$ induces the required $W(W \otimes \otimes B)$-action on X.
$(b) \Rightarrow(a):$ By assumption, there is a $W(W \mathscr{O} \otimes)$-structure η on X and there are \because-maps $\left(i d_{X_{k}}, \mu_{k}\right):\left(X_{k}, \alpha_{k}\right) \rightarrow\left(X_{k}, \eta \bullet u_{k}\right)$. By (4.49), there is $a(W \mathscr{A}(3)$-space $(Y, \bar{\eta})$ and a nomotopy equivalence $g:(X, \eta) \rightarrow(Y, \bar{\eta})$ carrying a (WQ日)-map structure. If $\beta_{k}=\bar{\eta} \circ \varepsilon(W 2 \theta) \cdot x_{k}$ tinen $g_{k} \cdot f_{k}:\left(X_{k}, \alpha_{k}\right) \rightarrow\left(Y_{k}, \beta_{k}\right)$ carries an $ワ-m a p$ structure. Since $\varepsilon\left(W \Perp\right.$ (8) $\cdot x_{k}=i_{k} \cdot \varepsilon(W थ) \cdot Q \propto i_{k}$, the Wथ-structure β_{k} on Y_{k} is equivalent to the $W \mu-s t r u c t u r e ~ \bar{\eta} \cdot i_{k}$. Consequently, there are $\{-m a p s$ $\left(\mathrm{n}_{\mathrm{k}}, \xi_{\mathrm{k}}\right):\left(\mathrm{X}_{\mathrm{k}}, \alpha_{\mathrm{k}}\right) \rightarrow\left(\mathrm{Y}_{\mathrm{k}}, \bar{\eta} \cdot{i_{k}}\right)$ which are nomotopy equivalences. By (6.21), $B M(Y, \bar{\eta})$ admits a based $W^{\mathcal{B}}-$ structure. Since $B M X \approx B M(Y, \bar{\eta})$ by
(6.9) and both spaces are well-pointed, BMX admits a based wb-action by (5.20).

Proof of the last part: By (5.6 a) and (5.29) there is a based $\mathfrak{B - s p a c e}$ (Z, η) and a based nomotopy equivalence $f: B M X \rightarrow Z$, because BMX is connected and well-pointed. Since the loop space functor Ω preserves products and since Ω_{1} acts on loop spaces, there is an action β of Ω_{1} on $\Omega B M X$ and δ of $\Omega_{1} \otimes$ on ΩZ making $\Omega f: \Omega B N X \longrightarrow \Omega Z$ into a Ω_{1}-nomomorpnism and via T. P into a Wو-nomomorpinism. By (4.49), (6.10) and (6.14) there is a composite of \because-maps
$n_{k}:\left(X_{k}, \alpha_{k}\right) \rightarrow M\left(X_{k}, \alpha_{k}\right) \rightarrow\left(\Omega B M\left(X_{k}\right), \beta \circ \tau \circ P\right) \xrightarrow{\Omega f} \quad\left(\Omega Z_{k}, \delta \circ j_{k} \circ \tau \circ P\right)$ which is a homotopy equivalence. For any homotopy inverse $g: \Omega Z \rightarrow X$ of in there exists a $W(\mathbb{D} \otimes \mathcal{B})$-action λ on X making g into $a\left(\mathbb{Q}_{1} \otimes \mathcal{B}\right)$-map $\left(\Omega Z, \delta \circ \varepsilon\left(Q_{1} \otimes B\right)\right) \rightarrow(X, \lambda)$ by (4.20). Since $j_{k} \circ T \circ P \circ \varepsilon(W \mathfrak{U})=\varepsilon\left(Q_{1} \otimes B\right) W\left(j_{K} \cdot T \bullet P\right)$, tine composite $g_{k} \circ \hat{n}_{k}$ is an μ-map from ($X_{k}, \alpha_{k} \circ \varepsilon($ Wथ) \circ Q) to $\left(X_{k}, \lambda \circ W\left(j_{k} \cdot \tau \circ P\right) \circ Q\right)$. Hence, by (4.14), the two WH-structures on X_{k} are equivalent. Since $\varepsilon(W थ) \circ Q \simeq I d$, the actions $\alpha_{k} \circ \varepsilon(W थ) \circ Q$ and α_{k} on X_{k} are equivalent. So λ is the required $W\left(Q_{1} \otimes B\right)$-action.

Definition 6.25: A map $f: X \rightarrow Y$ of based topological spaces is called $n-f \circ$ ld loop map, $0 \leq n \leq \infty$, if there exist based maps of based spaces $f_{i}: X_{i} \longrightarrow Y_{i}, i=0,1, \ldots, n$, and $n_{i}: X_{i-1} \longrightarrow \Omega X_{i}$ and $k_{i}: Y_{i-1} \rightarrow \Omega Y_{i}, i=1,2, \ldots, n$ sucn that $\hat{f}=f_{0}$, each n_{i} and k_{i} is an unbased nomotopy equivalence, and

commutes up to a based nomotopy. We call f an n-fold based loop map if eacn n_{i} and k_{i} is a based nomotopy equivalence and a strict n-fold loop map if each h_{i} and k_{i} is a based nomeomorphism and the diagrams
commute. A based space X is called n-fold loop space [n-fold based loop space, strict n fold loop space] if id X is an n-fold loop map [n-fold based loop map, strict n-fold loop map].

Definition 6.26: Two [based] maps $f: X \rightarrow Y$ and $g: X^{\prime} \rightarrow Y^{\prime}$ are called [based] homotopy equivalent if there are [based] homotopy equivalences $n: X \sim X^{\prime}$ and $k: Y \neq Y^{\prime}$ sucn tnat

commutes up to [based] nomotopy.

In (2.49) we nave constructed actions $u_{n}=\mu_{n}(X)$ of ν_{n}, tine n-tin little cube PROP on $\Omega^{n} Y$, natural witn respect to based maps $g: X \rightarrow Y$. Moreover, we have constructed inclusion PROP-functors ${ }^{m}{ }_{n}: \mathfrak{v}_{m} \subset \mathfrak{v}_{n}$ for $n \geq m$ sucn that

$$
\mu_{n}{ }^{m} n=\mu_{m}
$$

Hence, if $i_{\infty}^{n}: \Omega_{n} \subset \square_{\infty}$ is the inclusion into the direct limit, $\mu_{\infty} \frac{n}{n}=\mu_{n}$.

Recall that $\mathfrak{Q}_{\mathrm{n}}(\mathrm{r}, 1)=\left\{\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}, \ldots, \mathrm{x}_{\mathrm{r}}, \mathrm{y}_{\mathrm{r}}\right) \in\left(I^{n}\right)^{2 r} \mid\right.$ the x_{i} are the lowest and y_{i} the upper vertices of r linearly embedded n-cubes in I^{n} with disjoint interior and axes parallel to those of $\left.I^{n}\right\}$. Define PROP-functors $F_{n}: Q_{1} \rightarrow D_{n}$ and $G_{n}: Q_{n-1} \rightarrow D_{n}$ by $F_{n}\left(x_{1}, y_{1}, \ldots, x_{r}, y_{r}\right)=\left(x_{1}^{\prime}, y_{1}^{\prime}, \ldots, x_{r}^{\prime}, y_{r}^{\prime}\right)$ and $G_{n}\left(v_{1}, w_{1}, \ldots, v_{r}, w_{r}\right)=$ $=\left(v_{1}^{\prime}, w_{1}^{\prime}, \ldots, v_{r}^{\prime}, w_{r}^{\prime}\right)$ with $x_{i}^{\prime}=\left(x_{i}, 0, \ldots, 0\right), y_{i}^{\prime}=\left(y_{i}, 1, \ldots, 1\right)$, $v_{i}^{\prime}=\left(0, v_{i 1}, \ldots, v_{i n-1}\right)$, and $w_{i}^{\prime}=\left(1, w_{i 1}, \ldots, w_{i n-1}\right)$ if $v_{i}=\left(v_{i 1}, \ldots, v_{i n-1}\right)$ and $w_{i}=\left(w_{i 1}, \ldots, w_{i n-1}\right)$. Then F_{n} and G_{n} combine to a PROP-functor

$$
\pi_{n}: 0_{1} \otimes 0_{n-1} \rightarrow 0_{n}
$$

determined on generators by $\pi_{n}(a \otimes i d)=F_{n}(a)$ and $\pi_{n}(i d \theta b)=G_{n}(b)$.

Since $\mathfrak{i}_{n+1}^{n} \cdot F_{n}=F_{n+1}$ and $i_{n+1}^{n} \cdot G_{n}=G_{n+1} \cdot n_{n}^{n-1}$, we nave $\pi_{n+1} \cdot\left(I d \& n_{n}^{n-1}\right)=$ ${ }^{\mathrm{i}} \mathrm{n}+1$. π_{n}. Since for k -spaces finite products commute with indentifications, $\underset{n}{\text { lim }}\left[\left(\Omega_{1} \bullet a_{n}\right)(r, 1)\right]=\left(a_{1} \oplus a_{\infty}\right)(r, 1)$, and the π_{n} induce a PROP-functor

$$
\pi_{\infty}: n_{1} \bullet n_{\infty} \longrightarrow n_{\infty}
$$

Let
be the data of an n-fold loop map, $0 \leq n \leq \infty$. We identify the functors $\eta^{m} \cdot n$ with \cap^{m+1} by the exponential map (of 2.49) Then

$$
\eta^{m-1} \hat{n}_{m} \cdot \cap^{m-2} n_{m-1}: \cdots \cdot n_{1}: x_{0} \longrightarrow \cap^{m_{x_{m}}}
$$

Let $f: X \longrightarrow Y$ be homotopy equivalent to the n-fold loop map f_{0}

Denote $\imath^{m-1} n_{m} \cdot \ldots \cdot n_{1} \cdot n$ by p_{m} and $\cap^{m-1} k_{m} \cdot \ldots \cdot k_{1} \cdot k$ by g_{m}.

Theorem 6.27: If $f: X \longrightarrow Y$ is nomotopy equivalent to an n-fold loop map, $0 \leq n \leq \infty$, then X and Y admit w_{n}-structures α and β and
f a. \cap_{n}-map structure $(f, \nu):(X, \alpha) \longrightarrow(Y, \beta)$ such that $\left(p_{m}, q_{m}\right)$ carries a. $\left(0_{m} \otimes \Omega_{1}\right)$-map structure

$$
\left(f, v \cdot W\left(i_{n}^{m} \otimes I d\right)\right) \longrightarrow\left(\Omega_{f_{m}},\left(\mu_{m} \otimes I d\right) \cdot e\left(a_{m} \otimes B_{1}\right)\right)
$$

msn
In particular, if X is an n-fold loop space, $0 \leq n \leq \infty$, then X admits a $W \square_{n}$-structure a sucn that $p_{m}: X \longrightarrow n^{m} X_{m}$ carries a. σ_{m}-map struc$\operatorname{ture}\left(X, \alpha \cdot i_{n}^{m}\right) \longrightarrow\left(\Omega^{m} X_{m}, \mu_{m} \cdot \varepsilon\left(\mathfrak{v}_{m}\right)\right)$.

Proof: We proceed by induction on m. The nomotopy commutative
square

determines a $W\left(\Omega_{1} \otimes \Omega_{1}\right)=W\left(Q_{0} \otimes_{1} \otimes \Omega_{1}\right)$-action such that (n, k) carries a $\left(Q_{0} \otimes \Omega_{1}\right)$-map structure from f to f_{0}. For the inductive step we are given a $W\left(\Omega_{m-1} \otimes \beta_{1}\right)$-structure ν_{m-1} on f such that (p_{m-1}, q_{m-1}) admits a $\left(\cap_{m-1} \otimes \Omega_{1}\right)$-map structure

$$
\left(f, v_{m-1}\right) \longrightarrow(\overbrace{}^{m-1} f_{m-1},\left(u_{m-1} \otimes I d\right) \cdot \varepsilon\left(\Omega_{m-1} \Omega_{1}\right))
$$

We want to extend ν_{m-1} to a $W\left(\Omega_{m} \Omega_{1}\right)$-structure. Since

commutes up to based nomotopy, it is given by a based $W\left(\mathbb{R}_{1} \otimes_{1}\right)$ action inducing a. $0_{m-1} \otimes W\left(\theta_{1} \otimes 8_{1}\right)$-action.

$$
\begin{aligned}
& ?^{m-1} X_{m-1} \xrightarrow{2^{m-1} f_{m-1}}>n^{m-1} Y_{m-1}
\end{aligned}
$$

Now id $\varepsilon\left(\Omega_{1} \otimes \Omega_{1}\right): a_{m-1} \otimes W\left(a_{1} \otimes \varepsilon_{1}\right) \longrightarrow a_{m-1} \otimes \Omega_{1} \otimes \Omega_{1}$ is an equivariant nomotopy equivalence. We apply (3.17) with g generated by $W\left(\cap_{m-1} \odot \Omega_{1} \odot 0\right) \cup W\left(\Omega_{m-1} \odot \Omega_{1} \odot 1\right) \cup\left\{\infty_{1}, \Omega_{2}\right)$ with φ_{i} being the image of $i d_{0} \operatorname{ld}_{i} \odot j, j: 0 \longrightarrow 1$ in $\&_{1}$, under the standard section
 is given on generators by (Id $\cap \eta$) $\varepsilon\left(\mathcal{D}_{m-1} \Omega_{1} \otimes \Omega_{1}\right.$) witn $\eta: \Omega_{1} \otimes_{1} \longrightarrow$ $W\left(\sigma_{1} a_{1}\right)$ the standard section. We obtain a $\left(a_{m-1} \Omega_{1}\right)$-map

$$
(\overbrace{}^{m-1} \hat{I}_{m-1},\left(u_{m-1} \otimes I d\right) \cdot \varepsilon\left(\Omega_{m-1} \otimes Q_{1}\right)) \longrightarrow\left(\eta^{m} f_{m},\left(\mu_{m} \cdot \varepsilon_{m}^{m-1} \otimes I d\right) \cdot \varepsilon\left(\cap_{m-1} \otimes Q_{1}\right)\right)
$$

witn underlying maps ($\eta^{m-1} h_{m}, \eta^{m-1} k_{m}$). Hence (p_{m}, q_{m}) carries a $\left(\Omega_{\mathrm{m}-1} \otimes \Omega_{1}\right)$-map structure

$$
\left(f, \nu_{m-1}\right) \longrightarrow(\overbrace{f_{m}},\left(\mu_{m} \cdot t_{m}^{m-1} \otimes I d\right) \cdot \varepsilon\left(\mathbf{a}_{m-1} \odot \Omega_{1}\right))
$$

Since ($p_{m} q_{m}$) is a pair of nomotopy equivalences, we can extend ν_{m-1} oy (4.20) to a $\left(\Omega_{m} \Omega_{1}\right)$-map structure ν_{m} on $\hat{\mathrm{r}}$ such that $\nu_{m} \cdot W\left(t_{m}^{m-1} \cap I d\right)=v_{m-1}$ and tine $\left(a_{m-1} \otimes \Omega_{1}\right)$-map structure of $\left(p_{m}, q_{m}\right)$ to a $\left(0_{\mathrm{m}} \otimes \Omega_{1}\right)$-map structure

$$
\left(f, \nu_{\mathrm{m}}\right) \longrightarrow(\overbrace{}^{\mathrm{m}} \mathrm{f}_{\mathrm{m}}, \mu_{\mathrm{m}} \cdot \varepsilon\left(\mathfrak{D}_{\mathrm{m}} \otimes \mathfrak{\Omega}_{1}\right))
$$

If n is finite, take $\nu=\nu_{n}$. If n is infinite, the ν_{m} induce an action ν of $W\left(Q_{\infty} \otimes \Omega_{1}\right)=\xrightarrow{\text { lim }} W\left(\Omega_{n} \otimes \Omega_{1}\right)$ on f with the required properties.

Corollary 6.28: Suppose $\hat{I}: X \rightarrow Y$ is nomotopy equivalent to an n-fold loop map, $0 \leq n \leq \infty$, as in (6.27). Then f admits a Ω_{n}-map structure $(f, v):(X, \alpha) \longrightarrow(Y, \beta)$ wnich is a composite of a_{n}-maps $(f, \nu)=(u, \eta) \cdot\left(\eta^{n_{f}} f_{n},\left(\mu_{n} \otimes I d\right) \cdot \varepsilon\left(\Omega_{n} \otimes \Omega_{1}\right)\right) \cdot(v, \xi)$ where $f(u, \eta):(X, \alpha) \rightarrow\left(\eta^{n_{X}}{ }_{n}, \mu_{n} \cdot \epsilon\left(\Omega_{n}\right)\right)$ and $(v, \xi):\left(\Omega^{n_{Y_{n}}} \cdot \mu_{n} \cdot \varepsilon\left(\Omega_{n}\right)\right) \longrightarrow(Y, \beta)$ are nomotopy equivalences of WO_{n}-spaces.

Proof: By (6.27) we are given a $W\left(O_{n} \otimes \Omega_{1} \otimes \Omega_{1}\right)$-structure whose restriction to $W\left(\Omega_{n} \Omega_{1} \otimes 0\right)$ is ν and to $W\left(\Omega_{n} \otimes \mathfrak{Q}_{1} \otimes 1\right)$ is $\left(\mu_{n} \otimes I d\right) \cdot \varepsilon\left(\Omega_{n} \otimes \Omega_{1}\right)$. The restrictions to $W\left(Q_{n} \otimes i \otimes \Omega_{1}\right), i=0, \uparrow$, give p_{n} and q_{n} structures of Ω_{n}-maps $\left(p_{n}, \eta\right)$ and $\left(q_{n}, \xi^{\prime}\right)$. The two inclusions $W\left(\Omega_{n} \otimes \Omega_{2}\right) \rightarrow W\left(\Omega_{n} \Omega_{1} \Omega_{1}\right)$ given by $F_{i}: \Omega_{2} \longrightarrow \Omega_{1} \otimes \Omega_{1}=\Omega_{1} \times \Omega_{1}, F_{i}(0)=(0,0), F_{0}(1)=(0,1), F_{1}(1)=(1,0)$, $F_{i}(2)=(1,1), i=0,1$, snow tinat $\left(\Omega_{n_{n}},\left(\mu_{n} \otimes I d\right) \cdot \epsilon\left(\Omega_{n} \otimes \Omega_{1}\right)\right) \cdot\left(p_{n}, \eta\right)=\left(q_{n}, \xi^{\prime}\right) \cdot(f, \nu)$. Take $(u, \eta)=\left(p_{n}, \eta\right)$ and (v, ξ) any nomotopy inverse of ($\left.q_{n}, j^{\prime}\right)$.

Originally we proved this corollary for n-fold loop spaces by substituting an n-fold loop space by a strict n-iold loop space, $n \leq \infty$, and tnen using the results of (2.49). Indeed, by a refinement oin a
result of May [32; Tnm.6] one can show (see [7] for a proof).

Proposition 6.29: An infinite loop space ($X_{0}, X_{1}, X_{2}, \ldots$) is homotopy equivalent to a strict infinite loop space provided the X_{i} are wellpointed.

There is also a converse to Tneorem 6.27. Let

$$
\xi_{k}=W \mathbf{t}_{k}^{1} \cdot W(\tau \cdot Q) \cdot Q: W थ \rightarrow W(W थ) \rightarrow W \Omega_{1} \rightarrow W \Upsilon_{k}
$$

Theorem 6.30: Let (X, α) and (Y, β) be numerably contractible won ${ }^{-}$ spaces, $0 \leq n \leq \infty$, sucn that α and β induce proup structures on $\pi_{0} X$ and $\pi_{0} Y$ respectively and let $(\hat{I}, \eta):(X, \alpha) \longrightarrow(Y, \beta)$ be a $\cap_{n}-m a p$. Tnen f is nomotopy equivalent to an n-fold based loop map

sucn that
(a) I and II commute strictly, $X_{0}=2 B M\left(X, \alpha \cdot \xi_{n}\right), Y_{O}=2 B M\left(Y, \beta \cdot \xi_{n}\right)$
(b) eacin \hat{I}_{i} admits a \square_{n-i} map structure $\left(f_{i} \eta_{i}\right):\left(X_{i}, \alpha_{i}\right) \longrightarrow\left(Y_{i}, \beta_{i}\right)$
(c) n_{i} admits an $\mathscr{\mu - m a p}$ structure $\left(X_{i-1}, \alpha_{i-1} \cdot \xi_{n-i+1}\right) \rightarrow\left(\cap X_{i}, \mu_{1} \cdot \tau \cdot P\right)$ and $n=j M\left(X, \alpha \cdot \xi_{n}\right)$. Similarly for k_{i} and k.

Proof: $\eta \cdot W\left(\pi_{n} \otimes I d\right): W\left(O_{1} \cap_{n-1} \otimes \mathbb{B}_{1}\right) \longrightarrow W\left(\Omega_{n} \otimes \Omega_{1}\right) \longrightarrow$ Iop makes f to a $\left(a_{1} \odot a_{n-1}\right)$-map. By (6.24), BMf admits a $a_{n-1}-$ map structure $B M X \longrightarrow B M Y$. Take $X_{1}=B M X, Y_{1}=B M Y$ and $I_{1}=B M f$. If we cnoose Mf sucn that

commutes and put $n=j M X \cdot i_{X}$ and $k=j M Y \cdot i_{Y}$, then (a) nolds. Suppose
inductively that X_{i}, Y_{i} are connected and numerably contractible for $1 \leqslant i<m$ and that f_{i}, n_{i}, k_{i} with the required properties are found for $1 \leq i<m$. Take $X_{m}=B M\left(X_{m-1}, \alpha_{m-1}{ }^{\circ} g_{n-m+1}\right)$ and Y_{m} analogous. Since f_{m-1} admits Ω_{n-m+1} map structure and nence via $W\left(\pi_{n-m+1} I d\right) a\left(\Omega_{1} \Omega_{n-m}\right)$ map structure, $f_{m}=B M f_{m-1}$ admits a a_{n-m} map structure $\left(f_{m}, \eta_{m}\right):\left(X_{m}, x_{m}\right) \rightarrow\left(Y_{m}, \beta_{m}\right)$. Define n_{m} and k_{m} by

Then (a) and (c) are satisfied. By induction nypotnesis jMX ${ }_{m-1}$ and $j^{j M Y} \mathrm{~m}_{\mathrm{m}}$ are based nomotopy equivalences (6.14). Since the classifying space of a monoid is connected, X_{m} and Y_{m} are connected, and by (6.19) botn are numerably contractible, so that induction can proceed. If $n=\infty$, we use $\pi_{\infty}: \square_{1} \oplus \square_{\infty} \rightarrow n_{\infty}$ instead of $\pi_{n} \cdot$.

4. HOMOTOPY-EVERYTHING H-SPACES, DYER-LASHOF OPERATIONS

In [8], we called an E-space (cf. 2.46) a nomotopy-everytining H space motivated by the idea that an E-space satisfies all conerence conditions one can tink of. Tinis is not quite the case as we sinall see in this section. We start with identifying E-map structures, i.e. actions of two-coloured PROPs admitting a PROP-functor $\longrightarrow S \mathbb{R}_{1}$ and naving contractible morpnism spaces (for see II, §5).

Theorem 6.31: An E-map $(f, \xi):(X, \alpha) \rightarrow(Y, \beta)$ is nomotopy equivalent to an infinite based loop map sucn that (6.30 (a), (b), (c)) nold pro-
vided X and Y are numerably contractible and α and β induce group structures on $\pi_{0} X$ and $\pi_{0} Y$ respectively. Conversely, any map homotopy equivalent to an infinite loop map admits an E-map structure.

Proof: Let \& be a two-coloured PROP admitting a PROP-functor $P: \mathbb{C} \rightarrow \Omega_{1}$ and noving contractible morpinism spaces. Then P is a nomotopy equivalence. For the first part we only have to show that there is a PROP-functor $W\left(\mathfrak{D}_{\infty} \Omega_{1}\right) \rightarrow$ and apply (6.30). Each space $\sigma_{n}(m, 1), 0 \leq n<\infty$, is paracompact being a subspace of $I^{2 \mathrm{mn}}$. Hence $\mathfrak{D}_{\infty}(\mathrm{m}, 1)$ is paracompact as epimorpinic image of a disjoint union of paracompact spaces by a closed map (e.g. see $[18 ; p .165]$). Since $\mathfrak{o}_{\infty}(\mathrm{m}, 1)$ is also S_{m}-free it is a numerable principal S_{n}-space by (A 3.8). Apply (3.17) with $\mathfrak{D}=\mathbb{C}, \mathfrak{C}=\mathscr{S} \mathfrak{R}_{1}, \mathfrak{B}=\mathfrak{Q}_{\infty} \mathfrak{R}_{1}$, and $\mathfrak{B}=\varnothing$.

Conversely, a map nomotopy equivalent to an infinite loop map admits a θ_{∞}-map structure by (6.27). But σ_{∞} is an E-category by (2.50) so the.t

$$
(0 \bullet I d) \cdot \varepsilon\left(0_{\infty} \odot \Omega_{1}\right): W\left(0_{\infty} \Omega_{1}\right) \rightarrow 5 \Omega_{1}
$$

is the required PROP-functor winin is a nomotopy equivalence. Here $0: 0_{\infty} \rightarrow S$ is the unique PROP-functor.

Remark: The important results (6.27), (6.30), (6.31) can, of course, be extended from maps to arbitrary diagrams by substituting \mathbb{R}_{1} by a suitable indexing category.

Putting some of our results together we obtain the following

Proposition 6.32: If is a monochrome PRO with contractible morphism spaces and X a \boldsymbol{X}-space, then X is nomotopy equivalent to a monoid.

Proof: The unique PRO-functor $P: B \rightarrow$ is a homotopy equivalence. Hence, by the lifting theorem (3.17) for PROs, there is a PRO-functor
$R: W M$ making X into a Wथ-space. But a Wa-space is fomotopy equivalent to an $\frac{2}{}$-space, which is a monoid, by (4.49).

This result becomes false if we replace $\mathfrak{\sharp}$ by 5 . We cannot expect to replace an E-space by an S-space, or commutative monoid, because the k-invariants of a commutative monoid disappear [17;Satz 7.1], but there are E-spaces with non-trivial k-invariants. The essential difference between the two situations becomes clear if we go back to the split theories defined by PROs or PROPs (cf.(2.42), (2.44)). If is a PRO with contractible morpinism spaces and θ the associated split theory, then the unique theory functor $\Theta \longrightarrow \Theta_{m}$ is a nomotopy equivalence. If $\$$ is a PROP with contractible morpinsm spaces, then the unique theory functor $P: \Theta \longrightarrow \oplus_{\mathrm{cm}}$ associated witn $\mathfrak{H} \rightarrow \sigma$ need not be a nomotopy equivelence: Let $\lambda_{n} \in \Theta_{c m}(n, 1)$ be the operation

$$
\lambda_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1}+x_{2}+\ldots x_{n}
$$

tinen $\delta(n, 1)=\left\{\lambda_{n}\right\}$. Recall that $\Theta(n, 1)$ is obtained from 8 by

$$
\theta(n, 1)=\bigcup_{K} B(k, 1) \times \sigma(k, n) / \sim
$$

with the relation $\left(b \bullet \pi^{*}, \sigma\right) \sim(b, \sigma \bullet \pi), \sigma \in S(k, n), \pi \in \mathcal{S}_{k} \in S(k, k)$ a permutation (see (2.37)). The functor P is given by

$$
P(b, \sigma)=\lambda_{k} \cdot \sigma^{*} \quad b \in \mathfrak{B}(k, 1)
$$

Let $\sigma_{k} \in 5(k, 1)$ be the set map $\sigma_{k}:[k] \rightarrow[1]$. Tinen $\lambda_{k} \cdot \pi^{*}=\lambda_{k}$ and $\sigma_{k} \cdot \pi=\sigma_{k}$ for $\pi \in S_{k}$. Hence $P^{-1}\left(\lambda_{k} \cdot \sigma_{k}^{*}\right)$ is nomeomorpicic to the orbit space $B(k, 1) / S_{k}$, which in general is not contractible. So the following is a more correct definition of a nomotopy-everyting H-space.

Definition 6.33: A topological space X is called a homotopy-everything H-space if it is a - space for a theory admitting a theory functor $\Theta \longrightarrow \Theta_{\mathrm{cm}}$ wnich is a nomotopy equivalence.

Theorem (4.58) shows that a nomotopy-everytining H-space X is nomo-
topy equivalent to a commutative monoid if the space X and the morphism spaces ($n, 1$) of its defining theory satisfy certain, not particularly restrictive, point set topological assumptions.

We now will show that Dyer-Lasnof operations are connected with obstructions to the existence of nomotopy-everyting H-structures. Let ${ }_{B}$ be a monocinrome E-category. Fix an element $m_{2} \in \mathcal{B}(2,1)$ and define $m_{p} \in \mathcal{G}(p, 1), p \geq 2$, inductively by $m_{p}=m_{2}\left(m_{p-1} \oplus i d\right)$. Let G be a discrete group and EG any contractible numerable principal G-space. To stay inside the setting of Dyer and Lasnof we take EG to be the realization of the simplicial complex determined by the partially ordered set $\{(g, n) \mid g \notin G, n$ a non-negative integer $\}$ with the ordering ($g, n) \leq\left(g^{\prime}, n^{\prime}\right)$ if $g=g^{\prime}$ and $n=n^{\prime}$ or if $n<n^{\prime}$ (i.e. EG nas the elements (g, n) as vertices and a p-simplex with vertices $\left(g_{0}, n_{0}\right), \ldots,\left(g_{p}, n_{p}\right)$ iff $\left.\left(g_{0}, n_{0}\right) \underset{\neq}{<}\left(g_{1}, n_{0}\right) \underset{\neq}{<} \cdots\left(g_{p}, n_{p}\right)\right)$. There is a s_{p}-equivariant map

$$
\theta_{p}: E S_{p} \longrightarrow \nrightarrow(p, 1) \quad p>2
$$

sucn that $\theta_{p}(e, 0)=m_{p}$, where $e \in S_{p}$ is the unit. (We could take θ_{p} to be tine composite
witn a suitable equivariant nomotopy equivalence $E S_{p}=O_{\infty}(p, 1)$.
Let π be the cyclic group of order p with generator T and let W be the complex

$$
\ldots \xrightarrow{\partial} \boldsymbol{Z}[\pi] \xrightarrow{\partial} \boldsymbol{Z}[\pi] \xrightarrow{\partial} \boldsymbol{Z}[\pi] \xrightarrow{\partial} \ldots \xrightarrow{\partial} \underset{\boldsymbol{Z}}{ }[\pi] \xrightarrow{\partial} \underset{\mathbb{Z}}{ }[\pi] \xrightarrow{\varepsilon} \boldsymbol{Z}
$$

where $\mathbb{Z}[\pi]$ is the group ring of π. Tinen W_{i} has a single π-generator $e_{i}, i \geq 0$, and we derine

$$
\begin{align*}
\partial e_{2 i+1} & =(T-1) e_{2 i} \\
\partial e_{2 i+2} & =\left(1+T+\ldots+T^{p-1}\right) e_{2 i+1} \\
\varepsilon\left(e_{0}\right) & =1
\end{align*}
$$

The Eilenberg-Zilber map defines a chain map

$$
F: W o_{\mathbb{Z}[\pi]^{C}}(X)^{p} \longrightarrow C_{*}\left(E \pi x_{\pi} X^{p}\right)
$$

for any space X with the obvious $\mathbb{Z}[\pi]$-action on $C_{*}(X)^{p}$ and $\pi-a c t i o n$ on X^{p}. Moreover, we can choose F such that

$$
F\left(e_{o} \odot x_{1} \odot \ldots \odot x_{p}\right)=\left((e, 0), x_{1}, \ldots, x_{p}\right)
$$

If X admits a \mathfrak{B}-space structure α tnen α, θ_{p}, and tine inclusion $E \Pi \subset E S{ }_{p}$ derine a map

$$
\varphi_{p}: E \pi x_{\pi} X^{p} \longrightarrow X
$$

Ine Dyer-Lasnof operations on $H_{*}\left(X ; \mathbb{Z}_{p}\right)$ are then defined by

$$
\begin{aligned}
Q_{i}^{(p)}: H_{j}\left(X ; \mathbb{Z}_{p}\right) & \longrightarrow H_{p j+i}\left(X ; \mathbb{Z}_{p}\right) \\
x & \longmapsto \varphi_{p} \cdot F\left(e_{i} \Theta_{\pi} x^{p}\right)
\end{aligned}
$$

where we write $e_{i} \theta_{\pi} x^{p}$ for the nomology class in $H_{*}\left(W \sigma_{\pi} C_{*}(X)^{p} ; \boldsymbol{Z}_{p}\right)$ represented by tnis cycle. We list a few elementary properties
(6.34) (a.) $Q_{i}^{(p)}$ is a nomomorpinism
(b) $Q_{0}^{(p)}(x)=x^{p}$, the multiplication on $H_{*}\left(X ; \boldsymbol{Z}_{p}\right)$ is induced by m_{2}.
(c) If ∂_{p} is the nomology Bockstein operator of the sequence $0 \rightarrow \boldsymbol{Z}_{\mathrm{p}} \rightarrow \boldsymbol{Z}_{\mathrm{p}} 2 \rightarrow \boldsymbol{Z}_{\mathrm{p}} \rightarrow 0$ then $Q_{2 i-1}^{(p)}=\partial_{\mathrm{p}} Q_{2 i}^{(p)}$
(d) $Q_{2}^{(p)}=0: H_{j}\left(X ; \mathbb{Z}_{p}\right) \rightarrow H_{j p+2 i}\left(X ; \mathbb{Z}_{p}\right)$ unless $2 i=(2 k-j)(p-1)$

For a proof see [19]. In view of (d) one usually puts

$$
\begin{aligned}
& Q_{(p)}^{i}=c_{p, i} \cdot Q_{(2}(p) \\
& \left.Q_{(2)}^{i}\right)=Q_{i-j}^{(2)}: H_{j}\left(X ; \mathbb{Z}_{2}\right) \rightarrow H_{j}\left(X ; \mathbb{Z}_{p}\right) \rightarrow H_{j+2 i}\left(X ; \mathbb{Z}_{2}\right)
\end{aligned}
$$

For further properties of $Q^{i}(p)$ we refer to the fundamental paper of Dyer and Lasnof [19] and the recent papers of May, for example [33].

We call the map $\rho_{p} \pi$-commutative if it is independent of the $E \pi-$
coordinate. Then ϕ_{p} factors as

$$
\varphi_{p}: E_{\pi \times} x^{p} \longrightarrow x^{p} / \pi \xrightarrow{\bar{\varphi}} x
$$

and the Dyer-Lasinof operations are trivial with exception of $Q_{0}^{(p)}(x)=x^{p}$.
Let $\Delta X \subset X^{p}$ be the diagonal copy of X in X^{p}. Then ΔX is precisely the set of fixed points of π. By restriction, φ_{p} induces a map

$$
{ }^{\delta} \mathrm{p}: B \pi \times X \longrightarrow X
$$

witn $B \pi=E \pi / \pi$ the classifying space of π.

Lemma 6.35: Suppose X^{p} is paracompact and ($X^{p}, \Delta X$) is a $\pi-N D R$. Then φ_{p} is nomotopic to a π-commutative map iff δ_{p} is nomotopic to a map which is independent of the $B \pi$-coordinate.

Proof: Obviously, if φ_{p} is nomotopic to a π-commutative map, then, by restriction, δ_{p} is nomotopic to a map which is independent of the $B \pi$-coordinate. Conversely, given a nomotopy $n_{t}: \delta_{p}=f: B \pi X X \longrightarrow X$ with f independent of the $B \pi-c o o r d i n a t e . ~ S i n c e ~(~(~ X ~ ' ~ i n ~) ~ i s ~ a ~ \pi-N D R, ~$ ($E_{\pi x_{\pi}} X^{p}$, $B \pi x \Delta X$) is a NDR so that φ_{p} is nomotopic to an extension f^{\prime} of f. We show that f ' is homotopic to a π-commutative map. The projection $E \pi X\left(X^{p}-\Delta X\right) \rightarrow\left(X^{p}-\Delta X\right)$ is an ordinary nomotopy equivalence of numerable principal π-spaces (A 3.8). Hence $q: E_{\pi x}\left(X^{p}-\Delta X\right) \rightarrow\left(X^{p}-\Delta X\right) / \pi$ is a nomotopy equivalence (A 3.4). Moreover, since q is a fibre bundle map, there is a section s of q and a nomotopy $l_{t}: i d \approx s \cdot q$ such that $q \cdot l_{t}=q$ for all $t\left[13\right.$; Tnm. 6.1]. Since ($X^{p}, \Delta X$) is a $\pi-N D R$, there is an equivariant map $u: X^{p} \longrightarrow I$ and an equivariant nomotopy $r_{t}: X^{p} \rightarrow X$ sucn that $\Delta X=u^{-1}(0), r_{0}(x)=x$ for all $x \in X^{p}, r_{t}(y)=y$ for all $y \in \Delta X$ and all $t \in I$, and $r_{1}(x) \in \Delta X$ for $x \in U=u^{-1}[0,1)$. Define $f_{t}, k_{t}: E \pi x_{\pi} X^{p} \rightarrow X$ by $k_{t}(e, x)=f^{\prime}\left(e, r_{t}(x)\right)$ and

$$
f_{t}(e, x)= \begin{cases}k_{t} \cdot l_{\max (2 u(x) t-1,0)}(e, x) & (e, x) \in E \pi x_{\pi}\left(x^{p}-\Delta X\right) \\ k_{t} & (e, x) \in E \pi x_{\pi} \Delta X\end{cases}
$$

Then $f_{0}=k_{0}=f^{\prime}$ and f_{1} is independent of the Er-coordinate because
$k_{1}(e, x)$ is independent of the $E \pi-c o o r d i n a t e$ for $x \in U$, and $l_{t}(e, x) \in E \pi x_{\pi} U$ if $x \in U$, and because l_{1} is independent of the En-coordinate.

Now suppose X is a nomotopy-everytining H-space with PROP \mathbb{C} and associated split theory Θ. Since the unique theory functor $\Theta \rightarrow 冈_{\mathrm{cm}}$ is a nomotopy equivalence, the spaces $\mathfrak{c}(k, 1) / S_{k}$ are contractible. Since ${ }^{8}$ p factors as

$$
{ }^{\delta}{ }_{p}: B \pi \times X \longrightarrow B S_{p} \times X \longrightarrow \mathbb{C}(p, 1) \times_{S_{p}} X \rightarrow \mathbb{E}(p, 1) x_{S_{p}} X^{p} \rightarrow X
$$

and $\mathbb{E}(p, 1) x_{S_{p}} X=\left(\mathbb{C}(p, 1) / S_{p}\right) \times X$, it is independent of the $B \pi-c o o r d i n a t e$ so that all Dyer-Lasnof operations with exception of $Q_{0}^{(p)}$ are trivial for all primes p.

5. EXAMPLES OF INFINITE LOOP SPACES

In this section we describe a method of imposing E-structures on some well-known H-spaces. Since our examples will satisfy the assumptions of (6.31), we obtain a number of infinite loop spaces.

Consider the category 89 of real inner-product spaces of countable (algebraic) dimension and linear isometric maps between them. Then each object of $\mathfrak{Q g}$ is isomorpinic to \mathbb{R}^{∞} with orthonormal base $\left\{e_{1}, e_{2}, e_{3}, \ldots\right\}$ or one of $\pm t s$ subspaces \mathbb{R}^{n} with base $\left\{e_{1}, \ldots, e_{n}\right\}$. We topologize AGobş by giving its finite dimensional subspaces the metric topology and A itself the direct limit topology of the diagram of its finite dimensional subspaces. The morphism sets $\Omega \mathcal{G}(A, B)$ obtain the k-function space topology (Appendix I).

Iemma 6.36: $09\left(V, \mathbb{R}^{\infty}\right)$ is contractible for all V $⿻$ (obs \mathcal{F}.

Proof: Let $i_{1}, i_{2}: V \rightarrow V \oplus V$ be the inclusions onto the first respectively second summand. If $\left\{v_{i}\right\}$ is an ortinonormal basis of V then

$$
f_{t}\left(v_{i}\right)=\frac{1}{2 t^{2}-2 t+1}\left[(1-t)\left(v_{i}, 0\right)+t\left(0, v_{i}\right)\right]
$$

is a nomotopy through isometries from i_{1} to i_{2}. By applying the GramScnmidt ortinogonalization process to

$$
g_{t}\left(e_{n}\right)=(1-t) e_{n}+t e_{2 n}
$$

we obtain a nomotopy through isometries from $i d_{\mathbb{R}^{\infty}}$ to $g: \mathbb{R}^{\infty} \longrightarrow \mathbb{R}^{\infty}$ given by $g\left(e_{n}\right)=e_{2 n}$. Finally, let $n: \mathbb{R}^{\infty} \longrightarrow \mathbb{R}^{\infty} \mathbb{R}^{\infty}$ be the isometry

$$
n\left(e_{2 n}\right)=\left(e_{n}, 0\right) \quad n\left(e_{2 n-1}\right)=\left(0, e_{n}\right)
$$

let $k: V \rightarrow \mathbb{R}^{\infty}$ be a fixed isometry, and $i \in \Omega G\left(V, \mathbb{R}^{\infty}\right)$ arbitrary. Then $i=n^{-1} \cdot n \cdot i \underset{g_{t}}{n^{-1}} \cdot n \cdot g \cdot i=n^{-1} \cdot i_{1} \cdot i=n^{-1} \cdot(i \oplus k) \cdot i_{1} \underset{f_{t}}{n^{-1}} \cdot(i \oplus k) \cdot i_{2}=n^{-1} \cdot(k \in k) \cdot i_{2}$ is continuous in i and contracts $8 \Im\left(V, \mathbb{R}^{\infty}\right)$ to the point $\mathrm{n}^{-1} \cdot(\mathrm{k} \oplus \mathrm{k}) \cdot \mathrm{i}_{2} \cdot$
 a. symmetric monoidal category in the sense of Eilenberg-Kelly [20].

Definition 6.37: A symmetric-monoidal category \sqrt{s} consists of the following data:
(i) a category ©
(ii) a functor $0: 5 \times \mathbb{5} \rightarrow \mathbb{E}$
(iii) an object I of \mathbb{s}
(iv) natural isomorpinisms $r=r_{A}: A \odot I \rightarrow A$

$$
\begin{aligned}
& l=l_{A}: I \odot A \rightarrow A \\
& a=a_{A B C}:(A \odot B) \odot C \rightarrow A \odot(B \odot C) \\
& c=c_{A B}: A \odot B \rightarrow B \odot A
\end{aligned}
$$

These data satisfy the following axioms:
(a) $l_{I}=r_{I}: I O I \longrightarrow I$
(b) $c_{A B} \cdot c_{B A}=i d: B \odot A \rightarrow B \odot A$
(c) The following diagrams commute

Given symmetric categories $\mathbb{C}=(\mathbb{C}, \odot, I, r, l, a, c)$ and $\widehat{\mathbb{C}}=(\widehat{\mathbb{C}}, \widehat{\mathfrak{C}}, \widehat{I}, \hat{r}, \hat{\imath}, \hat{a}, \hat{c}) a$ symmetric monoidal functor

$$
\mathbb{T}=\left(\mathbb{T}, \omega, \omega^{0}\right): \mathfrak{S} \longrightarrow \widehat{\mathbb{S}}
$$

consists of
(i) a functor $T: \mathbb{E} \longrightarrow \widehat{\mathbb{G}}$
(ii) a natural transformation $\omega=\omega_{A B}: \mathbb{T A} \widehat{\odot} T B \longrightarrow \mathbb{T}(A \odot B)$
(iii) a morpnism $w^{\circ}: \hat{I} \longrightarrow T I$
sucn that the following diagrams commute

If $T=\left(T, \omega, \omega^{\circ}\right)$ and $\widehat{T}=\left(\widehat{T}, \hat{w}^{\circ}, \hat{w}^{\circ}\right)$ are two symmetric monoidal functors then a monoidal transformation

$$
\eta: T \longrightarrow \hat{T}
$$

is a natural transformation $\eta: T \longrightarrow \hat{T}$ such that the following diagrams commute

It is now a result of MacLane [28] and Kelly [24] that the isomorpinisms r, l, a, and c are conerent. Rougnly speaking, this means that all diagrams obtained from them, their inverses, and constructions involving id and \boldsymbol{O} are commutative.

For us the interesting example of a symmetric monoidal category is \&J with the direct sum functor $\boldsymbol{\oplus}$ and the canonical isomorpinisms r, l, a,c. Recall that the inner product of $A \oplus B$ is given by

$$
\left\langle(a, b),\left(a^{\prime}, b^{\prime}\right)\right\rangle_{A \oplus B}=\left\langle a, a^{\prime}\right\rangle_{A}+\left\langle b, b^{\prime}\right\rangle_{B}
$$

Otner examples of symmetric monoidal categories of importance for us are the categories $\mathcal{Z}_{0 p}, \mathbb{M o r}_{2}$, and the category $\mathcal{S p l}$ of semisimplicial sets with their canonical product birunctors. Since tine classifying space functor $B: \operatorname{Mor}_{9} \rightarrow \mathfrak{I o p}_{\mathrm{O}}$ and the geometric realization functor $\mathrm{R}: 5_{p l} \longrightarrow$ Iop preserve products(we work with k-spaces), they are in
a canonical way symmetric monoidal functors.

The following result explains the importance of symmetric monoidal functors for the construction of examples of infinite loop spaces.

Theorem 6.38: Any symmetric monoidal structure ($80,0, I, r, l, a, c$) with ocontinuous on $8 \mathfrak{J}$ determines an E-category \mathbb{F}, any continuous symmetric monoidal functor $\Omega 3 \longrightarrow$ Iop induces an $E-s t r u c t u r e ~ o n$ $T \mathbb{R}^{\infty}$, and any monoidal transformation $\eta: T \rightarrow \hat{T}$ induces an \mathbb{F}-space nomomorphism $\mathrm{TI}^{\infty} \longrightarrow$ TIR $^{\infty}$.

Proof: Let ${ }_{0}^{n} \mathbb{R}^{\infty}=R^{\infty} \odot \ldots \odot \mathbb{R}^{\infty}$, n times, with a fixed cnoice of bracketing. Put $\mathbb{C}(n, 1)=B \mathfrak{Z}\left(\mathbb{\eta} \mathbb{R}^{\infty}, \mathbb{R}^{\infty}\right)$. The isomorpinisms c extend uniquely to an action of S_{n} on $\varnothing \mathbb{R}^{\infty}$, denoted by $(\xi, b) \longmapsto b \cdot \xi^{*}, \xi \in S_{n}$. The other morpinism spaces of are given by

$$
\mathbb{E}(n, r)=n_{1}+\ldots+n_{r}=n \quad \mathbb{E}\left(n_{1}, 1\right) \times \ldots \times \mathbb{E}\left(n_{r}, 1\right) \times S_{n} / \sim
$$

witin $\left(b_{1} \cdot \pi_{1}{ }^{*}, \ldots, b_{r} \cdot \pi_{r}^{*}, g\right) \sim\left(b_{1}, \ldots, b_{r}, 5 \cdot\left(\pi_{1} \oplus \ldots \oplus \pi_{r}\right)\right), \pi_{i} \in S_{n_{i}}$. The elements ξ represent the set operations. Hence composition with $\xi^{*}=(i d, \ldots, i d, \xi)$ on the left is fixed by (2.43) and determined in general by

$$
a \cdot\left(b_{1}, \ldots, b_{r}, \xi\right)=a \cdot\left(b_{1} \odot \ldots \odot b_{r}\right) \cdot \xi^{*} \quad a \in \mathbb{F}(r, 1)
$$

with the composition in $8 \mathcal{J}$ on the rignt.

Let $\eta:\left(T, \omega, \omega^{0}\right) \longrightarrow\left(\hat{T}, \hat{\omega}, \hat{\omega}^{0}\right)$ be a monoidal transformation of symmetric monoidal functors. Define an $E-a c t i o n a: E \rightarrow \mathcal{I}_{0} p$ on $T \mathbb{R}$ by

$$
\begin{aligned}
a\left(b_{1}, \ldots, b_{r}, \xi\right): & \left(T \mathbb{R}^{\infty}\right)^{n} \xrightarrow{\xi^{*}}>\left(T \mathbb{R}^{\infty}\right)^{n} \xrightarrow{\left(\omega^{n}, \ldots, \omega^{n}\right)} T\left(\stackrel{0}{0}^{n} \mathbb{R}^{\infty}\right) \times \ldots \times T\left(0^{n^{r}} \mathbb{R}^{\infty}\right) \\
& \xrightarrow{\left(T b_{1}, \ldots, T b_{r}\right)}\left(T \mathbb{R}^{\infty}\right)^{r}
\end{aligned}
$$

for $\left(b_{1}, \ldots, b_{r}, \xi\right) \in \mathbb{E}(n, r), b_{i} \in \mathbb{C}\left(n_{i}, 1\right)$. Here $\omega^{n}:\left(T \mathbb{R}^{\infty}\right)^{n} \rightarrow T\left(\mathbb{n}^{\infty}\right)$
is a suitable composite of ω or ω°. The conerence conditions ensure tnat α is a multiplicative functor. Similary define an E-Structure on $\hat{T} \mathbb{R}^{\infty}$. Tnen $\eta: T \mathbb{R}^{\infty} \longrightarrow \hat{T} \mathbb{R}^{\infty}$ is obviously an -space nomomorphism.

Remark: (a) To obtain E-spaces is suffices to construct a symmetric monoidal functor $83 \longrightarrow$ Spl, because composition with the geometric realization gives a symmetric monoidal functor $\mathbb{B} \longrightarrow \longrightarrow$ Iop.
(b) If a symmetric monoidal functor $T: 8 \mathfrak{J} \longrightarrow$ Iop happens to be monoid valued, then we can follow it by the classifying space functor B to obtain another symmetric monoidal functor.

We now list a number of infinite loop spaces and infinite loop maps. For this we construct symmetric monoidal functors ($\mathrm{T}, \infty, \omega^{\circ}$). As monoidal structure on 83 we take ${ }^{(}$. We define T and ω for finite dimensional inner product spaces and extend them to all of 8 a by taking direct limits over the diagrams of finite dimensional subspaces. Since $A \oplus$ - and $X X-, A \in \mathcal{B}, X \in \mathcal{I} O p$ or Spl preserve direct limits,this suffices.
(6.39) Examples: The unit I of \oplus in 83 is \mathbb{R}°.
(a) $T A=O(A)$, the orthogonal group of $A . A s \omega: T A \times T B \rightarrow T(A \subset B)$ take the Whitney sum: $\omega(f, g)=f \oplus g: A \oplus B \longrightarrow A \oplus B, f \in O(a), g \in O(B)$. Since $O\left(\mathbb{R}^{\circ}\right)$ consist of one point, $\omega^{\circ}: * \longrightarrow O\left(\mathbb{R}^{\circ}\right)$ is uniquely determined. Then $O\left(\mathbb{R}^{\infty}\right)$ is the stable orthogonal group 0 . Since 0 is numerably contractible and $\pi_{0}(0)$ is the cyclic group Z_{2} under Whitney sum, 0 is an infinite loop space with multiplication given by Wnitney sum. In matrix form it reads

$$
\begin{aligned}
0\left(\mathbb{R}^{\mathbf{n}}\right) \times 0\left(\mathbb{R}^{\mathbb{m}}\right) & \longrightarrow 0\left(\mathbb{R}^{\mathrm{n}+\mathrm{m}}\right) \\
\mathrm{M} & , \quad \mathrm{~N}
\end{aligned} \begin{aligned}
& \longmapsto\left(\begin{array}{cc}
\mathrm{M} & 0 \\
0 & \mathrm{~N}
\end{array}\right)
\end{aligned}
$$

(b) $T A=U(A \otimes \mathbb{C})$, the unitary group of $A \mathbb{C}(\mathbb{C}$ denotes the complex numbers). Again ω is Whitneysum and ω^{0} the unique map $* \rightarrow T\left(\mathbb{R}^{\circ}\right)$.

Then $T \mathbb{R}^{\infty}$ is the stable unitary group U. Since U is connected and numerably contractible, it is an infinite loop space with multiplication given by Whitney sum.
(c) $T A=\operatorname{Sp}(A \otimes H)$, the symplectic group of $A \otimes I H$ (IH denotes the quaternions). Again ω is Whitney sum and ω° the unique map $x \rightarrow T\left(\mathbb{R}^{\circ}\right)$. Then $T \mathbb{R}^{\infty}$ is the stable symplectic group $S p$. Since $S p$ is connected and numerably contractible, it is an infinite loop space with respect to the Whitney sum-E-structure.
(d) $T A=S O(A)$, the special orthogonal group of A. Take w to be the Whitney sum. The stable group $S O=T \mathbb{R}^{\infty}$ is connected and numerably contractible. Hence $S O$ is an infinite loop space.
(e) $T A=F(A)$, the space of based nomotopy equivalences of the sphere S^{A}, which is the one-point compactification $A u \infty$ of A, with ∞ as base point. The Whitney sum takes here the form of the smasin product since $S^{A} A S^{B} \cong S^{A} B$. The Whitney sum multiplication makes $\pi_{0}(F)$ into the cyclic group \mathbb{Z}_{2}. Since F is numerably contractible, it is an infinite loop space.
(\vec{I}) TA $=$ space of nomeomorphisms of A. Take w to be Whitney sum. Then $T \mathbb{R}^{\infty}$ is an E-space with $\pi_{0}\left(T \mathbb{R}^{\infty}\right)=\mathbb{Z}_{2}$, but we do not know whether or not \mathbb{T}^{∞} is numerably contractible. So we follow T by the composite

$$
\mathcal{I}_{0 p} \xrightarrow[\operatorname{Sin}]{ } S_{p i \longrightarrow} \quad \mathcal{I}_{0} p
$$

where Sin associates with $X \in \mathcal{Z} p$ its singular complex. Since both preserve products, they are symmetric monoidal functors. Then R-Sin ($T \mathbb{R}^{\infty}$) is the stable group Top. It is an infinite loop space, because it is a CW-complex.
(g)SU and the orientation preserving versions of (e) and (f) are infinite loop spaces under Wnitney sum.
(n) We can do to examples (a),..., (e), (g) what we have done in (f): We follow T by the symmetric monoidal functor $R \cdot S i n$. The resulting
stable groups $R \cdot S i n T \mathbb{R}^{\infty}$ are all infinite loop spaces. Tine back adjunction $R \cdot S i n \longrightarrow I d_{Z_{0 p}}$ is a monoidal transformation so that $R \cdot S i n T \mathbb{R}^{\infty} \longrightarrow T \mathbb{R}^{\infty}$ is a nomomorpinism of E-spaces and nence nomotopy equivalent to an infinite loop map. Moreover, in all of our examples with exception of (f) it is a nomotopy equivalence so tinat $R \cdot S i n \mathbb{R}^{\infty}$ and $P \mathbb{R}^{\infty}$ are nomotopy equivalent by infinite loop maps.
(k) In all examples (a),...,(g) the spaces $T(A)$ are monoids under composition. Moreover, they are well pointed (in (f) take R.Sin $T(A)$) and numerably contractible. Hence $B T(A)$, A finite dimensional, B the classifying space functor, defines anotner symmetric monoidal functor T^{\prime} making $T^{\prime}\left(\mathbb{R}^{\infty}\right)$ into an infinite loop space under Whitney sum
(l) We identify \mathbb{C} witn \mathbb{R}^{2} and \boldsymbol{H} with $\mathbb{C}^{2}=\mathbb{R}^{4}$. Also identify A and $A \odot \mathbb{R}^{1}$. Then the canonical inclusions $\mathbb{R}^{1} \subset \mathbb{C}=\mathbb{R}^{2} \subset \mathbb{I H}=C^{2}$ define monoidal transformations

making tine diagram commute. Since $O\left(\mathbb{R}^{\infty} \oplus \mathbb{R}^{n}\right) \cong O\left(\mathbb{R}^{\infty}\right)=0$, the monoidal transformations make the canonical inclusion maps

$$
0 \subset \mathrm{U} \subset \mathrm{~S}_{\mathrm{p}} \subset 0
$$

to infinite loop maps under Writney sum.
(m) Since any orthogonal transformation of A is a homeomorpinism and any homeomorpinism induces a based homotopy equivalence of S^{A}, we nave inclusions

$$
O(A) \subset \text { nomeomorpnisms of } A \subset F(A)
$$

whicn define monoidal transformations. Passing to the topological realization of the singular complexes we find thet the canonical maps

$$
0 \subset T o p \subset F
$$

are infinite loop maps under Winitney sum
(n) Since all inclusion maps listed are monoid homomorphisms, we may again pass to the classifying spaces and find that the canonical maps

$$
\mathrm{BO} \longrightarrow \mathrm{BU} \longrightarrow \mathrm{BSp} \longrightarrow \mathrm{BO} \longrightarrow \mathrm{TOp} \rightarrow \mathrm{~F}
$$

are infinite loop maps.
(0) Let $\left(T_{1}, \omega_{1}, w_{1}^{0}\right),\left(T_{2}, w_{2}, w_{2}^{0}\right): B j \longrightarrow \mathfrak{I}_{0} p$ be group valued symmetric monoidal functors and $\eta: T_{1} \longrightarrow T_{2}$ a monoidal transformation which is a nomomorphism. Define $T_{3} A=T_{2} A / T_{1} A$ the factor set, A finite dimensional. Then ω_{1} and ω_{2} induce a natural transformation $\omega_{3}: T_{3} A \times T_{3} B \rightarrow T_{3}(A \oplus B)$ and ω_{1}^{0}, w_{2}^{0} a map $* \rightarrow T_{3}(I)$. We obtain a symmetric monoidal functor T_{3} and $T_{3}\left(\mathbb{R}^{\infty}\right)$ is an E-space As application we obtain tnat the coset spaces Top/O, Top/Sp, Top/ $\mathrm{J}, \mathrm{O} / \mathrm{Sp}, \mathrm{O} / \mathrm{U}, \mathrm{Sp} / \mathrm{U}, \mathrm{Sp} / \mathrm{O}$, and $\mathrm{U} / 0$ are infinite loop spaces under Winitney sum.

Since the projectionsT ${ }_{2} A \rightarrow T_{3} A=T_{2} A / T_{1} A$ induce a monoidal transformation the various canonical maps Top \rightarrow Top/O, etc. are infinite loop maps.
(p) Suppose $\left(T_{1}, w_{1}, w_{1}^{o}\right),\left(T_{2}, \omega_{2}, w_{2}^{o}\right): 83 \longrightarrow$ Iop are monoid valued and $\eta:\left(T_{1}, w_{1}, w_{1}^{0}\right) \rightarrow\left(T_{2}, w_{2}, w_{2}^{0}\right)$ is a monoidal transformation and nomomorphism. Then define $T_{3} A$, A finite dimensional, to be the nomotopy theoretic fibre of the map

$$
\mathrm{BT}_{1} \mathrm{~A} \longrightarrow \mathrm{Br}_{2} \mathrm{~A}
$$

induced by η. There is a canonical map $\omega_{3}: T_{3} A \times T_{3} B \rightarrow T_{3}(A \oplus B)$ making

commute, because the nomotopy theoretical fibre construction preserves products. The maps ω_{1}^{0} and ω_{2}^{0} induce a unique map $w_{3}^{0}: * \longrightarrow T_{3}\left(\mathbb{R}^{\circ}\right)$. Hence $T_{3} \mathbb{R}^{\infty}$ is an E-space. As application, we obtain that $F / T o p=\xrightarrow{\text { lim }}$ (nomotopy theoretic fibre of $B \operatorname{Top}(n) \longrightarrow B P(n))$ is an infinite loop space under Whitney sum and the canonical map

$$
\mathrm{F} / \text { Top } \longrightarrow \mathrm{BTop}
$$

is an infinite loop map.

There is anotiner symmetric monoidal structure on 83 given by the tensor product. Unfortunately, we have no examples to apply it to, the reason being that it is very difficult to arrange a commutative diagram

if $A \not \subset A^{\prime}$ and $B \varsubsetneqq B^{\prime}$. If one for example tries $T(A)=O(A)$ with $w(f, g)=f o g$, then the diagram does not commute because $(f \oplus i d) \otimes(g \oplus i d) \neq(f \otimes g) \oplus i d$. If one wants to snow that $O, U, B O$, and $B U$ are infinite loop spaces under the tensor product structure, one should use the theory of G. Segal [45] instead of trying to define a tensor product E-structure. A detailed treatment can be found in [7].

We have seen that Theorem 6.38 enables us to show that most of the stable groups winich are of interest in the topology of manifolds are infinite loop spaces under Whitney sum structure. Our macinine fails if we want to impose an E-structure on PL. The reason is that we kept too close to the linear group. Contrary to what one might think, tine action of the general linear group is not linear. Let $\sigma: \Delta^{k} \longrightarrow G L(n, R)$ be a singular simplex. It determines a map $\Delta^{k} \times \mathbb{R}^{n} \longrightarrow \Delta^{k} \times \mathbb{R}^{n}$, which is piecewise linear iff σ is a constant
map. We therefore fail to find enougn homotopies to make the program work. The remedy is to use a PL machine instead, and forget isometries. We do not want to go into detail here and refer to [7].

HOMOTOPY COLIMITS

Abstract

To illustrate tinat our tneory has more applications than just loop spaces we show that it gives rise to a more or less satisfactory definition of homotopy colimits. We only sketch our results; a more detailed treatment including homotopy limits will appear in [56].

1. HOMOTOPY DIAGRAMS

Let \mathbb{C} be an arbitrary small category sucin tinat each pair ($\left.\mathbb{C}(A, A),\left\{i d_{A}\right\}\right)$ is a NDR. We consider 5 as an ob \mathbb{E}-coloured PRO (cf. example 2.48), i.e. we nave only 1 -ary operations.

Definition 7.1: A nomotopy-ธ-diagram, or n匹-diagram for snort, is a WE-space, i.e. a continuous functor WE \rightarrow Iop.

Example: Let c be the category given by the commutative diagram

Then $W \mathbb{C}(A, B)$ and $W \subseteq(B, C)$ consist of a single point, while $W(A, C)$ is a unit interval, and a W(s-space is a nomotopy commutative diagram

As maps between inc-diagrams we use \mathbb{C}-maps. Since $\sqrt{5}$ has only 1-ary
 of inc-diagrams and s-maps.

2. HOMOTOPY COLIMITS

By (4.51), there is a functor

$$
M: \operatorname{map}_{\mathbb{C}} \longrightarrow \mathfrak{\$ 0 m}_{\mathfrak{c}}
$$

Whicn is left adjoint to the obvious functor $J: \operatorname{Som}_{\mathbb{C}} \rightarrow \mathbb{R a p} \mathbb{C}_{\mathbb{C}}$. By definition, $\$_{\sqrt{c}}$ is the category of \mathbb{s}-diagrams in the usual sense, i.e. continuous functors $\mathbb{S} \rightarrow$ Iop, and of nomotopy classes of homomorpnisms. Let

$$
K: I o p_{n} \rightarrow \mathrm{I}_{\mathbb{N}}
$$

be the functor assisning to each space X of the nomotopy category tine constant \mathbb{S}-diagram on X (i.e. eacn morpnism of \mathcal{S} is mapped to $i d_{X}$). It is well-known that K is a rignt adjoint of the functor

$$
\underline{\lim }_{n}: \operatorname{som}_{\mathfrak{c}} \longrightarrow \operatorname{sop}_{n}
$$

induced by the colimit functor $\underset{\rightarrow}{\lim }: \mathbb{R o r}_{\mathbb{E}} \rightarrow$ Iop.

Definition 7.2: The homotopy colimit functor $n \underline{\text { lim }}:$ Maps \longrightarrow Iop $_{5}$ is defined to be tine composite functor lim $_{n}$. M.

Theorem 7.3: The nomotopy colimit functor is left adjoint to the obVious functor $\mathbb{I o p}_{\mathrm{n}} \rightarrow \operatorname{map}_{\mathscr{S}}$ assigning to $X \in \mathcal{I}_{0} p_{n}$ the constant hsdiagram on X.

This result justifies the notation "nomotopy colimit", because, as mentioned above, it has the same universal property as the usual colimit functor, which is the left adjoint of the constant diagram
functor $\operatorname{Iop} \rightarrow \operatorname{Mor}_{5}$.

Examples:

(1) If \mathfrak{c} is the infinite linear category

$$
0 \longrightarrow 1 \longrightarrow 3 \longrightarrow
$$

then a sequence of spaces and maps

$$
x_{0} \longrightarrow x_{1} \longrightarrow x_{2} \longrightarrow x_{3} \longrightarrow \ldots
$$

determines a n®-diagram whose nomotopy colimit contains the Milnor telescope (cf. proof of (A 4.10)) of tinis sequence as a SDR. :
(2) If is a topological category witn exactly one object. Tinen its morphism space is a topological monoid G. Let D be the constant nodiagram on a space with exactly one point. Tnen, by (VI §1), MD is nomeomorpnic to $E G$ and n-lim D to $B G$ the total space and base space of Milgram's classifying space construction for G.
(3) Let \mathbb{c} be the category

Tnen a nts-diagram is a diagram

of topological spaces and $h-l \underline{\text { lim }} D$ is the double mapping cylinder $Z(f, g)$. Hence $h-\lim _{\longrightarrow} D$ is the mapping cone of f if $C=*$ and the (unreduced) suspension ΣA if $B=*=C$.

The based case is obtained by a slight modification. We adjoin a O-ary operation to eacn object of C witn the obvious definition of composition. Its action is the inclusion of the base point. The based nomotopy colimit is then $\xrightarrow{\text { lim }} \mathrm{M}^{\prime \prime} \mathrm{D}$ witn $\mathrm{M}^{\prime \prime}$ of (V, §6).
(4) Let $\mathbb{5}$ be the category

and

a ne-diagram. Then n-lim D is the mapping torus of f and g.

The examples show that nomotopy colimits crop up in many places in nomotopy tneory.

3. SPECTRAL SEQUENCES FOR HOMOTOPY COLIMITS

Since $\sqrt{5}$ nas only 1-ary operations, it is easy to give a direct definition of h-lim D for a $n(\mathbb{L}-$ diagram D. The representing trees of MD are linear and vertical, and may be specified by giving in order, going up the tree the vertex labels and edge lengtins and finally the cinerry as

$$
\left(g_{0}, t_{1}, g_{1}, t_{2}, \ldots, g_{k} ; x\right)
$$

$g_{0} \circ \ldots \cdot g_{k}: A \longrightarrow B$ is defined in $\mathbb{E}, t_{i} \in I$, and $x \in D(A)$. The \mathbb{E}-action on MD is given

$$
g\left(g_{0}, t_{1}, \ldots, g_{k} ; x\right)=\left(g \bullet g_{0}, t_{1}, \ldots, g_{k} ; x\right)
$$

Tris © -action nas to be factored out to obtain $n-\underline{\text { lim }} D=\underline{\text { lim }} M D . D e-$ fine $\mathbb{E}_{n}(A, B)=\left\{\left(f_{1}, f_{2}, \ldots, f_{n}\right) \in(\operatorname{mor} \mathbb{E})^{n} \mid f_{1} \circ \ldots \circ f_{n}: A \longrightarrow B\right.$ is derined in © \mathbb{E} with the subspace topology of (mor $\sqrt[5]{ })^{n}$. If $n=0$, define

$$
v_{0}(A, B)=\left\{\begin{array}{cl}
\left\{\text { id }_{A}\right\} & \text { if } B=A \\
\varnothing & \text { otherwise }
\end{array}\right.
$$

Then

$$
n-\lim _{\longrightarrow} D=\bigcup_{A, B \in E} \bigcup_{n=0}^{\infty} \sigma_{n}(A, B) \times I^{n} \times D(A) / \sim
$$

with the relations
$\left(t_{1}, f_{1}, t_{2}, f_{2}, \ldots, t_{n}, f_{n} ; a\right)= \begin{cases}\left(t_{1}, f_{1}, \ldots, f_{i-1}, t_{i} * t_{i+1}, f_{i+1}, \ldots, f_{n} ; a\right) & \text { if } f_{i}=i d, i<n \\ \left(t_{1}, f_{1}, \ldots, t_{n-1}, f_{n-1} ; a\right) & \text { if } f_{n}=i d \\ \left(t_{1}, f_{1}, \ldots, t_{i-1}, f_{i-1} \bullet f_{i}, t_{i+1}, \ldots, f_{n} ; a\right) & \text { if } t_{i}=0, i>1 \\ \left(t_{2}, f_{2}, \ldots, t_{n}, f_{n} ; a\right) & \text { if } t_{1}=0 \\ \left(t_{1}, f_{1}, \ldots, f_{i-1} ; D\left(f_{i}, t_{i+1}, \ldots, f_{n}\right)(a)\right) & \text { if } t_{i}=1\end{cases}$
(recall that $t_{1}{ }^{*} t_{2}=t_{1}+t_{2}-t_{1} t_{2}$). The filtration on MD nence induces a filtration $F D$ of $n-l_{i m} D$ by the images $F_{p} D$ of $\bigcup_{A, B \in S} \bigcup_{n=0}^{p} \mathbb{S}_{n}(A, B) \times I^{n} \times D(A)$ in h-lim D.

Let k_{*} be an arbitrary nomology and k^{*} an arbitrary conomology theory. Since a $n \mathbb{s}$-diagram $D: W \mathbb{C} \rightarrow$ Iop is a \mathbb{E}-diagram up to coherent homotopies and k_{*} and k^{*} are homotopy functors, the functors

$$
k_{q} \circ D, k^{q} \circ D: W \mathbb{S} \rightarrow \mu b=\text { abelian groups }
$$

factor througn $\varepsilon: W \leftarrow \longrightarrow \mathbb{C}$, the augmentation. In other words, the composites

$$
k_{q} \circ D \cdot \eta, k^{q} \cdot D \cdot \eta: \mathbb{E} \rightarrow W ⿷ \rightarrow \mathfrak{I}_{0} p \rightarrow \vartheta b
$$

where η is the standard section (III, 3.5) are functors, although η is not.

For a proof of the following result we refer the reader to [56].

Theorem 7.5: Let be a small category witn discrete morphism spaces, k_{*} a homology and k^{*} a cohomology theory, both additive. Then $E_{p, q^{2}}^{2} D \xlongequal[\lim ^{(p)}]{ }\left(k_{q} D \eta\right)$ in the spectral sequence $\left\{E^{r} D\right\}$ derived from the k_{*} exact couple of the filtration of $h-\underline{l i m} D$ and $E_{2}^{p, q_{D}} \underset{\lim ^{(p)}\left(k^{q} D \eta\right)}{ }$ in the spectral sequence $\left\{E_{r} D\right\}$ derived from the k^{*} exact couple of tine filtration of $n-\underset{\longrightarrow}{\lim } D . \operatorname{Here} \underset{(p)}{\lim (p)}$ and denote the p-tn left derived of $\xrightarrow{\lim }$ and the $p-t h$ rignt derived of lim.

This spectral sequence generalizes some well-known results: Let $\sqrt{5}$ be the infinite linear category of $\S 2$, Example 1, and D:

$$
X_{0} \xrightarrow{f_{0}} X_{1} \xrightarrow{f_{1}} X_{2} \xrightarrow{f_{2}} \ldots
$$

a sequence of spaces. Let k^{*} be an arbitrary additive cohomology theory. Then the spectral sequence $\left\{\mathrm{E}_{\mathrm{r}} \mathrm{D}\right\}$ converges and collapses, giving rise to a short exact sequence

$$
0 \longrightarrow \lim ^{(1)} k^{q-1} D \longrightarrow k^{q}(\underset{\sim}{n-l i m} D) \longrightarrow \lim ^{q} D \longrightarrow
$$

If the f_{i} are cofibrations, then $n-l i m$ is nomotopy equivalent to $\xrightarrow{\text { lim }} D$, and we obtain Milnor's lim ${ }^{(1)}$-Lemma [40].

Let © be the category $\ll \longrightarrow$ • and D:

$$
B<\xrightarrow{f} A \xrightarrow{f}
$$

a inc-diagram. The again the k^{*} spectral sequence converges and collapses giving rise to an exact sequence

$$
\ldots \longrightarrow k^{q-1} A \longrightarrow k^{q}(Z(f, g)) \longrightarrow k^{q} B \oplus k^{q} C \longrightarrow k^{q} A \longrightarrow k^{q+1}(Z(f, g)) \rightarrow \ldots
$$

If one of the maps, f say, is a cofibration, tinen the double mapping cylinder is of the nomotopy type of $B U_{g} C$ and we obtain the MayerVietoris sequence.

Analogous results hold for nomology theories k_{*}.

4. HOMOTOPY COLIMITS OF COVERINGS

G. Segal [44] associated witn eacn covering of a topological space its nomotopy colimit and used tris construction for a classification tneorem for very general types of bund les. The essential step in this study was to sinow that the nomotopy colimit of a numerable covering is naturally homotopy equivalent to the original space (recall that according to Dold [13] a covering $u=\left(U_{\lambda} \mid \lambda \in \Lambda\right)$ of X is numerable if there exists a locally finite partition of unity on $X,\left(v_{\mu}:\left.X \rightarrow I\right|_{\mu} \in M\right)$
such that the covering $B=\left(v_{\mu}^{-1}(0,1] \mid \mu \in M\right)$ is a refinement of $\left.u\right)$. Using Segal's result, tom Dieck [11] proved the following theorem.

Theorem 7.6: Let $\mathfrak{U}=\left(U_{\alpha} \mid \alpha \in A\right)$ and $\mathfrak{B}=\left(V_{\alpha} \mid \alpha \in A\right)$ be numerable coverings of X and Y. For any non-empty subset $\sigma \subset A$ put $U_{\sigma}=\bigcap_{\alpha \in \sigma} U_{\alpha}$. Let $f: X \rightarrow Y$ be a map winicn carries each $U_{\sigma}, \sigma \in A$ finite, into V_{σ} by a nomotopy equivalence. Then f is a homotopy equivalence.

This result nas a number of interesting consequences which we shall not discuss here. In the remainder of this section we give a detailed proof of Segal's result and show that the theorem is then an immediate consequence of our theory. As always before, we work in the category of k-spaces, but Segal's result is true for arbitrary topological spaces (by a similar type of argument using that the partition of unity is locally finite).

Segal's homotopy colimit of a covering $u=\left(U_{\alpha} \mid \alpha \in A\right)$ of X is defined as

$$
\mathrm{Bu}=\bigcup_{\sigma_{0} \subset \ldots \subset \sigma_{\mathrm{n}}} \mathrm{U}_{\sigma_{\mathrm{n}}} \times \Delta^{\mathrm{n}} / \sim \quad, \sigma_{\mathrm{n}} \subset \mathrm{~A} \text { finite, non-empty }
$$

witn the relations
$\left(\sigma_{0}, u_{1}, \sigma_{1}, \ldots, u_{n}, \sigma_{n} ; x\right)=\left(\sigma_{0}, u_{1}, \sigma_{1}, \ldots, \hat{u}_{i}, \hat{\sigma}_{i}, \ldots, u_{n}, \sigma_{n} ; x\right)$ if $\sigma_{i-1}=\sigma_{i}$ or

$$
u_{i-1}=u_{i}
$$

where $u_{0}=0 \leq u_{1} \leq \ldots \leq u_{n} \leq 1=u_{n+1} \in \Delta^{n}, x \in U_{\sigma_{n}}$ and \wedge means "delete".
Our version of the homotopy colimit in of the covering u is the nomotopy colimit of the commutative diagram of spaces $U_{\sigma}, \sigma \subset$ A finite non-empty, and inclusions $U_{\sigma} \subset U_{\tau}$ whenever $\tau \subset \sigma$. Hence

$$
n u=U_{\sigma_{0}} \subset \ldots \sigma_{\sigma_{n}} U_{\sigma_{n}} \times I^{n} / \sim
$$

witn
$\left(\sigma_{0}, t_{1}, \sigma_{1}, \ldots, t_{n}, \sigma_{n} ; x\right)= \begin{cases}\left(\sigma_{0}, t_{1}, \ldots, \sigma_{i-1}, t_{i} * t_{i+1}, \sigma_{i+1}, \ldots, t_{n}, \sigma_{n} ; x\right) & \text { if } \sigma_{i-1}=\sigma_{i}, i<n \\ \left(\sigma_{0}, t_{1}, \ldots, t_{n-1}, \sigma_{n-1} ; x\right) & \text { if } \sigma_{n-1}=\sigma_{n} \\ \left(\sigma_{0}, t_{1}, \ldots, \widehat{\sigma}_{i-1}, \widehat{t}_{i}, \ldots, \sigma_{n} ; x\right) & \text { if } t_{i}=0 \\ \left(\sigma_{0}, t_{1}, \ldots, \sigma_{i-1} ; x\right) & \text { if } t_{i}=1\end{cases}$
Note that the pair $\left(\sigma_{i-1}, \sigma_{i}\right)$ stand for the unique inclusion $U_{\sigma_{i}}{ }^{U} U_{\sigma_{i-1}}$ in our diagram.

The map $\left(\sigma_{0}, t_{1}, \sigma_{1}, \ldots, t_{n}, \sigma_{n} ; x\right) \longmapsto\left(\sigma_{0}, u_{1}, \sigma_{1}, \ldots, u_{n}, \sigma_{n} ; x\right)$ witn $u_{i}=t_{1} * t_{2} * \ldots * t_{i}$ is a natural nomeomorpinism

$$
n \mathfrak{n u} \cong \mathrm{Bu}
$$

(cf. 6.6). We now simplify the simplicial structure of Bll. In terms of barycentric coordinates, the relations for Bu read
$\left(b_{o}, \sigma_{0}, b_{1}, \sigma_{1}, \ldots, b_{n}, \sigma_{n} ; x\right)= \begin{cases}\left(b_{0}, \sigma_{0}, \ldots, \hat{b}_{i}, \hat{\sigma}_{i}, \ldots, \sigma_{n} ; x\right) & \text { if } b_{i}=0 \\ \left(b_{0}, \sigma_{0}, \ldots, \sigma_{i-1}, b_{i}+b_{i+1}, \sigma_{i+1}, \ldots, \sigma_{n} ; x\right) & \text { if } \sigma_{i}=\sigma_{i+1}\end{cases}$
$b_{i} \geq 0, \quad \sum b_{i}=1$.
Give the indexing set A of the covering a well-ordering and define

$$
M u=\bigcup_{\alpha_{0}<\ldots<\alpha_{n}}\left(U_{\alpha_{0}} \cap \ldots \cap U_{\alpha_{n}}\right) \times \Delta^{n} / \sim \quad \alpha_{i} \in A
$$

with
$\left(b_{0}, a_{0}, b_{1}, \ldots, b_{n}, a_{n} ; x\right)=\left(b_{0}, \alpha_{0}, \ldots, \hat{b}_{i}, \hat{\alpha}_{i}, \ldots, a_{n} ; x\right)$ if $b_{i}=0$
It is readily seen that $B H$ is just the barycentric subdivision of MU, so that BU and MU are naturally nomeomorphic.

Proposition 7.7 (Segal): The canonical map

$$
\pi: M U \rightarrow x, \quad\left(b_{0}, a_{0}, \ldots, b_{n}, a_{n} ; x\right) \longmapsto x
$$

nas a section wicn embeds X as a $S D R$ in $M U$.

Proof: We may assume that there is a locally finite partition of unity on $X,\left\{\lambda_{\alpha}: X \longrightarrow I \mid \alpha \in A\right\}$ with tne indexing set of the cover u.

For $\mathrm{x} \in \mathrm{X}$, there is a finite number of indices $\alpha_{0}<\alpha_{1}<\ldots<\alpha_{\mathrm{n}}$ such that $\lambda_{\alpha_{i}}(x) \neq 0$. To obtain the section $s: X \longrightarrow$ Mu of π map

$$
x \longmapsto\left(\lambda_{\alpha_{0}}(x), a_{o}, \ldots, \lambda_{a_{n}}(x), a_{n} ; x\right)
$$

If $y=\left(b_{0}, \sigma_{0}, \ldots, b_{m}, \sigma_{m}:, x\right) \in M U$ and $s \pi(y)=\left(v_{0}, a_{0}, \ldots, v_{n}, a_{n} ; x\right)$, then y and $s \pi(y)$ are points in the simplex $x \times \Delta^{r}$, spanned by ($\gamma_{0}, \ldots, r_{r}$), the ordered collection of elements in $\left(\sigma_{o}, \ldots, \sigma_{m}\right) \cup\left(\alpha_{o}, \ldots, \alpha_{n}\right)$. Hence we can deform MU linearly into the section. It remains to cneck continuity. Let MA be the space associated with the A-indexed covering $\left\{\mathrm{V}_{\alpha}=*\right\}$ of a single point. There is a canonical map $\rho: M H \longrightarrow$ MA, given by $\left(b_{0}, a_{0}, \ldots, b_{n}, a_{n} ; x\right) \longmapsto\left(b_{0}, a_{0}, \ldots, b_{n}, a_{n} ; *\right)$. Then

$$
(\pi, \rho): M u \longrightarrow X \times M A
$$

is injective. To snow that it is an inclusion we nave to prove that a function $f: C \rightarrow$ MU from a compact Hausdorff space C to MU is continuous, provided (π, ρ) • f is continuous (because we work witn k-spaces). Since C is compact and MA is a simplicial complex, $f C$ is contained in a. finite subcomplex. Hence it suffices to snow that (π, ρ) is an inclusion for finite coverings u. In tinis case, MA can be tnougnt of as a subcomplex of the standard m-Simplex whose vertices are indexed by the elements of A. Let

$$
p: \bigcup_{\alpha_{0}<\ldots<\alpha_{n}}\left(U_{a_{0}} \cap \ldots \cap U_{\alpha_{n}}\right) \times \Delta^{n} \rightarrow M u
$$

be the identification map and $V \subset$ Mu closed. Denote $p^{-1} V \cap\left(U_{\alpha_{0}} \cap \ldots \cap U_{\alpha_{n}}\right) \times \Delta^{n}$ by $V\left(\alpha_{0}, \ldots, a_{n}\right)$. If $\left.\overline{V\left(\alpha_{0}, \ldots, \alpha_{n}\right.}\right)$ is the closure of $V\left(\alpha_{0}, \ldots, \alpha_{n}\right)$ in
 of the $\overline{V\left(\alpha_{o}, \ldots, \alpha_{n}\right)}$ is closed in $X x \Delta^{m}$ because it is finite. Hence MU is a subspace of $X \times \Delta^{m}$ and therefore of $X \times M A$. We obtain a diagram

with $\varphi=\rho \circ \mathrm{s}$. The section s and the deformation H of Mu into the section are continuous if φ and the deiormation (π, p) 。H are continuous. If C is a compact Hausdorff space and $r: C \longrightarrow X$ is continuous, then $\varphi \cdot r(C)$ lies in a finite subcomplex of MA and the composition of $\varphi \cdot r$ with the barycentric coordinate functions is just the collection of $\operatorname{maps}\left\{\lambda_{\alpha} \bullet r \mid \alpha \in A\right\}$. Consequently $\varphi \cdot r$ and nence φ are continuous. Similarly, one can prove the continuity of H by restriction to a finite subcomplex of MA.

Proof of Theorem 7.6: Let be the dual of the category of finite non-empty subsets of A and inclusions. The coverings U of X and B of Y give rise B-diagrams with vertices $U_{\alpha_{0}} \cap \ldots \cap U_{\alpha_{n}}$ respectively $V_{\alpha_{0}} \cap \ldots \cap V_{\alpha_{n}}$ for the finite subset $\left\{\alpha_{0}, \ldots, \alpha_{n}\right\} \subset A$ and inclusions as morphisms. The map $\hat{\mathrm{I}}: \mathrm{X} \rightarrow \mathrm{Y}$ is tinen a nomomorphism of B -diagrams whose underlying maps are homotopy equivalences. Hence we have a commutative diagram

in which inf is a nomotopy equivalence by (4.21) and $\pi_{\mathfrak{U}}$ and $\pi_{\mathfrak{B}}$ are nomotopy equivalences by (7.7).

1. COMPACTLY GENERATED SPACES

The category \mathfrak{I} of topological spaces and continuous maps is inconvenient for the study of algebraic structures on spaces mainly for two reasons: The exponential law does not hold in general, and a product of two identifications need not be an identification. Steenrod [49] proposed the category \mathbb{C} of compactly generated Hausdorff spaces as a convenient locus for dealing with these questions. Its objects are Hausdorff spaces X sucn tnat $U \subset X$ is open provided $U \cap C$ is open in C for each compact subspace C of X. Tnis category nas two defects namely it does not automatically contain all the subspaces and quotient spaces of its spaces and nence not the usual colimits. The second defect evaporates if one drops the Hausdorif condition. However, the trouble with subspaces remains.

Here we propose the category of compactly generated spaces, denoted by Iop, as a good category for our purposes. We only list the definitions and propositions. Detailed proofs and furtner results can be found in [55].

Definition 1.1: A k-space is a topological space X such that $U \subset X$ is open whenever $r^{-1}(U)$ is open in C for every map $r: C \longrightarrow X$ from a compact Hausdorff space C into X. The category of $k-s p a c e s$ and continuous maps is denoted by Jop.

Every topological space X has a finer topology making it into a
$k-s p a c e k X: A d d$ to $i t s$ open sets all subsets U satisfying the condition of Definition 1.1. Obviously, $k X=X$ if X is ak-space.

Proposition 1.2: The correspondence $X \rightarrow k X$ defines a functor $k: \mathcal{I} \longrightarrow \mathcal{I} O p$, which is right adjoint to the inclusion $I_{0} p \subset \mathfrak{I}$. Hence k preserves limits.

Proposition 1.3: Let D be a small diagrem of k-spaces and lim D, fim D its colimit and limit in \mathfrak{x}. Then $\underset{\longrightarrow}{\lim } D$ is $a k-s p a c e$ and $\underset{\sim}{l} D$ and k (lim $D)$ are the colimit and limit of D in Iop.

Corollary 1.4: Quotient spaces of k-spaces are k-spaces.

Unfortunately, limits of k-spaces have to be retopologized. This applies in particular to products. Let $X \times Y$ denote the cartesian product and $X x_{k} Y=k(X X Y)$ the retopologized product of X and Y.

Proposition 1.5: Let X and Y be $k-s p a c e s$ and suppose eacn point of Y nas a base of compact neignbournoods. Then $X \times Y=X \times{ }_{k} Y$.

Hence the notion of homotopy of continuous mappings does not change and the functor k preserves nomotopy.

As an immediate consequence of the definitions one nas that the maps of compact Hausdorff spaces into X factor througn $i d: k X \longrightarrow X$. This implies

Proposition 1.6: The identity map $k X \rightarrow X$ induces isomorpisms for nomotopy groups and singular nomology and conomology groups.

As mentioned before, subspaces of k-spaces need not be k-spaces. But we nave

Proposition 1.7: Let X be $a k-s p a c e$ and A a subspace of X.
(a) If A is open or closed, then A is a k-space.
(b) Let Z be $a k$-space. A function $f: Z \longrightarrow k A$ is continuous iff tine composite $Z \xrightarrow{f} k A \subset X$ is continuous.

Part (b) snows that $k A \subset X$ nas tine universal property for k-spaces which characterises the relative topology of A in X in the category of all topological spaces.

For topological spaces X and Y let $C O(X, Y)$ be the space of all continuous maps from X to Y with the compact-open topology and $C(X, Y)=$ $=k(C O(X, Y))$. If X and Y are k-spaces, we also denote $C(X, Y)$ by $\operatorname{Iop}(X, Y)$.

Proposition 1.8: If Y is a k-space, tnen the evaluation map $e_{Y, Z}: C(Y, Z) x_{k} Y \longrightarrow Z$, defined by $e_{Y, Z}(f, Y)=f(y)$, is continuous.

Proposition 1.9 (Exponential law): Let X and Y be k-spaces. Then the correspondence $f \longrightarrow e_{Y, Z} \cdot\left(f \times i d_{Y}\right)$ determines a natural nomeomorpnism

$$
C(X, C(Y, Z)) \equiv C\left(X x_{k} Y, Z\right)
$$

This result has a number of consequences.

Proposition 1.10: Let X be a k-space
(a) Tine functor $\mathfrak{I}_{0} p(X,-): \mathfrak{I}_{0} p \rightarrow \mathfrak{I}_{0} p$ preserves limits. In particular

$$
\operatorname{Iop}\left(X, Y x_{k} Z\right) \cong \operatorname{Iop}(X, Y) x_{k} \operatorname{Iop}(X, Z)
$$

(b) The functor $-x_{k} X: Z_{0} \longrightarrow$ Kop preserves colimits.
(c) The functor $I_{0 p}(-, X): I_{0 p} \rightarrow$ Iop transfers colimits to limits.

Corollary 1.11: If $p: X \longrightarrow X$, and $q: Y \longrightarrow Y$, are identificetion maps of k-spaces, then $p x_{k} q: X x_{k} Y \longrightarrow X^{\prime} x_{k} Y^{\prime}$ is an identification map.

Proposition 1.12: If X and Y are k-spaces, then composition of maps induces a continuous map

$$
C(Y, Z) x_{k} C(X, Y) \longrightarrow C(X, Z)
$$

Our last statement snows that Top is sufficiently large:

Proposition 1.13: Iop contains the category $\mathbb{E}(9)$ of compactly generated Hausdorff spaces.

2. EQUIVARIANT COFIBRATIONS

In this chapter we need not restrict ourselves to k-spaces. The results hold in the category of all topological spaces as well as in the category of k-spaces.

Let G be a topological group. An equivariant map $i: A \longrightarrow X$ is called an equivariant cofibration or G-cofibration, if for all equivariant maps $I: X \rightarrow Z$ and $H: A X I \longrightarrow Z$ (witn trivial G-action on I) such that $H(a, 0)=f \cdot i(a)$ for $a \in A$ there exists an equivariant map $F: X \times I \longrightarrow Z$ sucn that $F \cdot(i x i d)=H$ and $F(x, 0)=f(x)$ for $x \in X$.

As in the non-equivariant case (e.g. see [12; (1.17)]) one can snow that a G-cofibration nas to be an inclusion. So we also say that (X, A) is G-cofibered or that (X, A) nas tine $G-H E P$ (nomotopy extension property).

Again as in tine non-equivariant case ([52; Tinm. 2 and Lemme 4]) one shows

Proposition 2.1: Let X be a G-space and $A \subset X$ an invariant subspace. Then the following statements are equivalent
(a) (X,A) is G-cofibred
(b) $X \times 0 \cup A X I$ is an equivariant retract of $X \times I$
(c) Tnere exists an equivariant map $u: X \rightarrow I$ sucin tinet $A \subset u^{-1}(0)$ and an equivariant homotopy $H: X \times I \rightarrow X$ such that

$$
\begin{array}{ll}
H(x, 0)=x & x \in X \\
H(a, t)=a & a \in A, t \in I \\
H(x, t) \in A & \text { for } t>u(x)
\end{array}
$$

If in addition A is an equivariant $S D R$ of X, we may assume that $u(x)<1$ for a.ll $x \in X$.

Let A be an invariant subspace of a G-space X. We say that (X, A) is an equivariant $N D R$ (neignbournood deformation retract) or G-NDR if there is a G-map $u: X \longrightarrow I$ and a $G \rightarrow$ nomotopy $H: X X I \rightarrow X$ such that $A=u^{-1}(0)$ and

$$
\begin{array}{ll}
H(x, 0)=x & x \in X \\
H(a, t)=a & a \in A, t \in I \\
H(x, 1) \in A & \text { for } u(x)<1
\end{array}
$$

If (X, A) is $G \rightarrow c o f i b r e d$ and A closed in X, then the conditions on u and H in (2.1 c) imply tinat $H(x, u(x)) \in A$ winenever $u(x)<1$ and nence $u^{-1}(0)=A$. Hence (X, A) is a $G-N D R$. Conversely, the proof of [51; Thm. 2] also works for the equivariant case and shows that (X, A) is $G-c o f i b r e d$ if (X, A) is a $G-N D R$. Hence we nave

Proposition 2.2: Let A be a closed invariant subspace of a G-space X. Then (X, A) is $G-c o f i b r e d \operatorname{iff}(X, A)$ is a $G-N D R$.

As a direct consequence we nove

Lemma 2.3: If i $: A \subset X$ is a G-cofibration, then
(a) $i / G: A / G \subset X / G$ is a cofibration
(b) If $H \in G$ is a subgroup, tnen i $: A \subset X$ is a H-cofibration.

Proof: (a) follows directly from the definition and (b) from (2.1 b).

As a consequence of (2.1 c), the proof for the non-equivariant case [52;Thm. 6] of the following result carries over.

Proposition 2.4: Let G, H be topological groups and suppose (X, A) is G-cofibred, (Y, B) is H-cofibred, and A is closed in X. Then the product pair

$$
(X, A) \times(Y, B)=(X \times Y, A \times Y \cup X \times B)
$$

is ($G \times H$)-cofibred. If in addition A [or $B]$ is an equivariant $S D R$ of X [or Y], then $A X Y U X X Y$ is a $(G X H)$-equivariant $S D R$ of $X \times Y$.

Corollary 2.5: Let (X,A) and (Y,B) be G-cofibred and A closed in X, then $(X X Y, A X Y \cup X X B)$ is G-cofibred under the diagonal action.

Proof:Use (2.4) and (2.3 b).

Recall from (2.43 d) that the action of the symmetric group from the left on X^{n} is our cases given by

$$
\pi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{\pi^{-1}}^{1}, \ldots, x_{\pi^{-1}}^{n}\right)
$$

If X is a G-space, then X^{n} admits an action of the wreath product $G \ S_{n}$ (our definition of the wreath product differs slightly from the usual one).

Let G be an arbitrary topological group. Define tine wreath product

$$
G\} S_{n}=\left\{(f, \pi) \mid f:[n] \longrightarrow G, \pi \in S_{n}\right\}
$$

with the topology of $G^{n} \times S_{n}$. The continuous multiplication is given by

$$
\left(f_{1}, \pi_{1}\right) \cdot\left(\hat{f}_{2}, \pi_{2}\right)=\left(n, \pi_{1} \cdot \pi_{2}\right)
$$

with $n(i)=f_{1}(i) \cdot f_{2}\left(\pi_{1}^{-1}(i)\right)$.
If X is a G-space, we nave an action of $G S_{n}$ on X^{n} given by

$$
(f, \pi) \cdot\left(x_{1}, \ldots, x_{n}\right)=\left(f(1) \cdot x_{\pi}^{-1}, \ldots, f(n) \cdot x_{\pi^{-1}}\right)
$$

The non-equivariant proof of (2.4) generalizes to give

Proposition 2.6: Suppose (X,A) is a G-NDR. Let Y_{r} be the subspace of all points in X^{n} naving at least r coordinates in A. Then (X^{n}, Y_{r}) is a $G \backslash S_{n}-N D R$. If, in addition, A is a G-equivariant $S D R$ of X, then Y_{r} is a $G\left(S_{n}\right.$-equivariant $S D R$ of X^{n}.

Proof: Let $u: X \longrightarrow I$ be the G-map and $H: X \times I \longrightarrow X$ the G-nomotopy of (2.1 c) for (X, A). Since A is closed, $H(x, u(x)) \in A$ whenever $u(x)<1$. Let M and M_{i} be the set of all subsets of cardinality r of $[n]=\{1,2, . ., n\}$ respectively [n]-\{i\}. Then

$$
\begin{aligned}
& \nabla\left(x_{1}, \ldots, x_{n}\right)=\min \left(u\left(x_{i_{1}}\right)+\ldots+u\left(x_{i_{r}}\right) \mid\left\{i_{1}, \ldots i_{r}\right\} \in M\right) \\
& F\left(x_{1}, \ldots, x_{n}, t\right)=\left(y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

witn $y_{i}=H_{i}\left(x_{i}, \min \left(t, u\left(x_{i_{1}}\right)+\ldots+u\left(x_{i_{r}}\right) \mid\left\{i_{1}, \ldots, i_{r}\right\} \in M_{i}\right)\right)$ are $\left.G\right\} S_{n^{-}}$ equivariant maps satisfying (2.1 c) for ($\mathrm{X}^{\mathrm{n}}, \mathrm{Y}_{\mathrm{r}}$).

Utilizing an idea of Lillig [27] we generalize Proposition 2.3. Let A be an arbitrary subspace of a. G-space X. The subgroup $S t(A)=\{g \in G \mid g a \in A$ for all $a \in A\}$ is called the stabilizer of A.

Theorem 2.7: Let G be a topological group. Let A be an invariant subspace of the G-space X and suppose $A=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ with A_{i} closed in X. Suppose G also acts on the set $[n]=\{1,2, \ldots, n\}$ such that $g \cdot A_{i}=A_{g i}$ for all $g \in G$ and $i \in[n]$. The $G-a c t i o n ~ o n[n]$ induces a G-action on the set of all subsets of [n]. For a subset $\sigma \subset[n]$ let $A_{\sigma}=\bigcap_{i \in \sigma} A_{i}$ and let $H_{\sigma}=\operatorname{St}(\sigma)$. Then (X, A) is a $G-N D R$ if each pa.ir $\left(X, A_{\sigma}\right)$ is a $H_{\sigma}-N D R$ for all sunsets $\sigma \neq \varnothing$ of $[n]$.

Proof: Let P_{k} be the set of all subsets of [n] with cardinality k. If
l is the cerdinality of P_{k} define

$$
X_{k}=\bigcup_{\sigma \in P_{k}} A_{\sigma} \quad Y_{k}=X \times \Delta^{l-1} / \sim \quad k>0
$$

witn $(x, t) \sim\left(x, t^{\prime}\right)$ for $x \in X_{k+1} \subset X$ and $t, t^{\prime} \in \Delta^{l-1}$. Tinen X_{k} is a closed invariant subspace of X. Starting witn X_{n}, we inductively show that $\left(X, X_{k}\right)$ is a $G-N D R$ for $k>0$, wicn will prove the theorem.

Suppose we know that $\left(X, X_{k+1}\right)$ is a $G-N D R$ for some $k, 1 \leq k<n$. Cnoose a. representative σ in eacn G-orbit D of P_{k} and for eacn $\alpha \in \mathcal{O}$ a $g_{\alpha} \in G$ such that $g_{\alpha} \alpha=\sigma$ and $g_{\sigma}=i d$. Since $\left(X, A_{\sigma}\right)$ is an $H_{\sigma}-N D R$ there is an H_{σ}-equivariant map $\mathrm{v}_{\sigma}: \mathrm{X} \rightarrow \mathrm{I}$ witn $\mathrm{v}_{\sigma}^{-1}(0)=\mathrm{A}_{\sigma}$ and an H_{σ}-equivariant retraction

$$
r_{\sigma}: X \times I \longrightarrow A_{\sigma} \times I \text { if } X \times 0
$$

We define a map $u: P_{k} \times X \rightarrow I$ sucn tinat $u^{-1}(0) \cap\{x\} \times X=\{\alpha\} \times A_{\alpha}$ and $u(\alpha, x)=u(g \alpha, g x)$ for all $g \in G$ by putting $u(\alpha, x)=v_{\sigma}\left(g_{\alpha} x\right)$ if α is in the orbit represented by σ. If $\beta=g \alpha$, tinen $g_{\beta} g g_{\alpha}^{-1} \sigma=\sigma$, so that $g_{\beta}{g g_{\alpha}^{-1} \in H_{\sigma} \text {. Hence }}^{\text {. }}$

$$
u(a, x)=v_{\sigma}\left(g_{\alpha} x\right)=v_{\sigma}\left(\left(g_{\beta} g g_{\alpha}^{-1}\right) g_{\alpha} x\right)=u(g x, g x)
$$

Index the barycentric coordinates of Δ^{l-1} by the elements of P_{k}. The G-action on P_{k} then determines a G-action on Δ^{l-1}, and the diagonal G-action on $X \times \Delta^{l-1}$ defines a G-action on Y_{k}. Define a map $j_{k}: X \rightarrow Y_{k}$ by

$$
j_{k}(x)=\left(x, t_{\sigma_{1}}(x), \ldots, t_{\sigma_{l}}(x)\right) \quad\left\{\sigma_{1}, \ldots, \sigma_{l}\right\}=P_{k}
$$

where

$$
t_{\sigma}(x)=\frac{\left(T u(\alpha, x) \mid \alpha \in P_{k}-\{\sigma\}\right)}{\sum_{\sigma \in P_{k}}\left(T u(\alpha, x) \mid \alpha \in P_{k}-\{\sigma\}\right)}
$$

is the barycentric coordinate indexed by $\sigma \in P_{k}$. One easily cinecks that j_{k} is continuous and equivariant.

If α is in the orbit represented by σ, define

$$
r_{\alpha}: X \times I \longrightarrow A_{\alpha} \times I \cup X \times 0
$$

by $r_{\alpha}(x, y)=g_{\alpha}^{-1} r_{\sigma}\left(g_{\alpha} x\right)$. Then r_{α} is a H_{α}-equivariant retraction, because $H_{\alpha}=g_{\alpha}^{-1} H_{\sigma} g_{\alpha}$.

The symmetric group S_{\imath} acts on Δ^{l-1} by permuting tine barycentric coordinates. Obviously the inclusion of the O-skeleton $\Delta_{0}^{l-1} \subset \Delta^{l-1}$ is an S_{l}-cofibration and nence a G-cofibration. By (2.4), the pair $\left(X \times \Delta^{l-1}, X_{k+1} \times \Delta^{l-1}!X \times \Delta_{o}^{l-1}\right)$ is a $G-N D R$. Hence tinere is a G-retraction $p: X \times \Delta^{l-1} \times I \longrightarrow X \times \Delta^{l-1} \times 0 \cup X \times \Delta_{0}^{l-1} \times I \cup X_{k+1} \times \Delta^{l-1} \times I$

Define an equivariant map

$$
f: X \times \Delta^{l-1} \times 0 \cup X \times \Delta_{0}^{l-1} \times I \cup X_{k+1} \times \Delta^{l-1} \times I \longrightarrow X \times 0 \cup X_{k} \times I
$$

$$
\text { by } f(x, u, 0)=(x, 0) \quad x \in X, u \in \Delta^{l-1}
$$

$$
\begin{array}{ll}
f(x, \alpha, t)=r_{\alpha}(x, t) & x \in X, \alpha \in \Delta_{o}^{l-1}, t \in I \\
f(x, u, t)=(x, t) & x \in X_{k+1}, u \in \Delta^{l-1}, t \in I
\end{array}
$$

Then fop: $X \times \Delta^{l-1} \times I \rightarrow X \times 0 \| X_{k} \times I$ factors througn the identification $X \times \Delta^{\imath-1} \times I \rightarrow Y_{k} \times I$ inducing a G-equivariant map $q: Y_{k_{k}} \times I \rightarrow X \times O U X_{k} \times I$. Then

$$
q \cdot\left(j_{k} \times i d\right): X \times I \rightarrow X \times 0 \cup X_{k} \times I
$$

is a G-equivariant retraction. Hence $\left(X, X_{k}\right)$ is a $G-N D R$.

As a. consequence of (2.7) we nave

Proposition 2.8: Let $\Delta_{k} X \subset X^{k}$ denote the diagonal and $\Delta^{\prime} X^{k} \subset X^{k}$ the fat diagonal, i.e. the subspace of all points (x_{1}, \ldots, x_{k}) for winich two coordinates agree. Suppose $\left(X^{k}, \Delta_{k} X\right)$ is an $S_{k}-N D R$ for all $k \leq n$. Tnen $\left(X^{n}, \Delta^{\prime} X^{n}\right)$ is an $S_{n}-N D R$.

Proof: Let M be the set of partitions of [n] into less than n subsets. For an arbitrary partition P of $[n]$ let $A(P)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n} \mid\right.$ $x_{i}=x_{j}$ if i and j lie in the same element of $\left.P\right\}$. Then

$$
\Delta^{\prime} X^{n}=\bigcup_{P \in M} A(P)
$$

Any intersection $A\left(P_{1}\right) \cap \ldots \cap A\left(P_{r}\right)$ is another space $A(Q)$ and $S t(A(Q))=$
$=S t(Q)=S t\left(\left\{P_{1}, \ldots, P_{r}\right\}\right)$ under the obvious action of S_{n} on M. Suppose Q has k_{r} elements of cardinality r. Tnen $A(Q)$ is nomeomorphic to $\left(\Delta_{1} X\right)^{k_{1}} \times \ldots x\left(\Delta_{n} X\right)^{k} n$ with $\Delta_{1} X=X$, and $S t(A(Q))$ mapped to $S_{1} \backslash S_{k_{1}} \times \ldots \times S_{n} \backslash S_{k_{n}}$ under this nomeomorpinism ($S_{i} \ S_{k}$ is the trivial group for $k=0)$. By (2.4) and (2.5), the pair $\left(X^{n},\left(\Delta_{1} X^{k}\right)^{k} \times \ldots x\left(\Delta_{n} X\right)^{k} n^{n}\right)$ is an $\left(S_{1} \backslash S_{k_{1}} \times \ldots x S_{n}\left\{S_{k_{n}}\right)-N D R\right.$. By the following lemma, ($X^{n}, A(Q)$) is a $S t(A(Q))-N D R$, so that $\left(X^{n}, \Delta^{\prime} X^{n}\right)$ is an $S_{n}-N D R$ by (2.7).

Lemma 2.9: Let A and B be arbitrary subspaces of a G-space X. Let $\varphi: G_{1}=G_{2}$ be an isomorpnism of subgroups of G and assume that (X, A) is G_{1}-cofibred. Suppose there is a nomeomorpnism $f: X \longrightarrow X$ such that $f(A)=B$ and $f(g x)=\varphi(g) f(x)$ for $x \in X$ and $g \in G_{1}$. Tinen (X,B) is G_{2}-cofibred.

Prooí: If $r: X X I \longrightarrow X \times O U A x I$ is E_{G}-retraction then
is a G_{2}-retraction.

We also need a strange generalization of (2.8). Let G be a finite discrete group and X be a G-space. Let A be an invariant subspace of X. Put

$$
D=\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n} \mid g x_{i}=x_{j} \text { for some } g \in G, i \neq j, \text { or some } x_{i} \in A\right\}
$$

Proposition 2.10: Suppose $\left(X^{k}, \Delta_{k} X\right)$ is an $\left(S_{k} \times G\right)$-NDR for all $k \leq n$, the pair (X, A) is a $G-N D R$, and G acts freely on $X-A$. Then (X^{n}, D) is a $\mathrm{G}\left\{\mathrm{S}_{\mathrm{n}}-\mathrm{NDR}\right.$.

We prove this result in steps: Suppose $k \leq n$ and $X-A \neq \varnothing$.
Step 1: Let $Y_{k}=\left\{\left(x_{1}, \ldots x_{k}\right) \in X^{k} \mid\right.$ all x_{i} are in the same G-orbit $\} U A^{k}$. Tnen (X^{k}, Y_{k}) is a $G\left(S_{k}-N D R\right.$.

Proof: The space Y_{k} is the union of the spaces

$$
Y\left(g_{2}, g_{3}, \ldots, g_{k}\right)=\left\{\left(x, g_{2} x, g_{3} x, \ldots, g_{k} x\right) \mid x \in X\right\} \cup A^{k} \quad g_{i} \in G,
$$

and $Y\left(g_{2}, g_{3}, \ldots, g_{k}\right) \cap Y\left(g_{2}^{\prime}, g_{3}^{\prime}, \ldots, g_{k}^{\prime}\right)=A^{n}$ if $\left(g_{2}, g_{3}, \ldots, g_{k}\right) \neq\left(g_{2}^{\prime}, g_{3}^{\prime}, \ldots, g_{k}^{\prime}\right)$, because G acts freely on $X-A$. By (2.6), the pair (X^{k}, A) is a $G\left(S_{k}-N D R\right.$. Hence, by (2.7), we only nave to show that each pair ($X^{k}, Y\left(g_{2}, \ldots, g_{k}\right)$) is a $H-N D R$, where $H=S t\left(Y\left(g_{2}, \ldots, g_{k}\right)\right)$. Define a nomeomorpinism $f: X^{k} \longrightarrow X^{k}$ witn $f\left(\Delta_{k} X \cup A^{k}\right)=Y\left(g_{2}, \ldots, g_{k}\right)$ by

$$
\hat{i}\left(x_{1}, \ldots, x_{k}\right)=\left(x_{1}, g_{2} x_{2}, \ldots, g_{k} x_{k}\right)
$$

and an isomorphism $\varphi: G \times S_{k} \geqslant \mathrm{H}$ by

$$
\varphi(g, \pi)=(n, \pi) \in H \subset G\left\{S_{k}\right.
$$

witn $n(i)=g_{i} \cdot g \cdot g_{\pi}^{-1}(i)$ witn $g_{1}=i d . \operatorname{Tnen} f\left(\Delta_{k} X\right)=X\left(g_{2}, \ldots, g_{k}\right)=$ $=\left\{\left(x, g_{2} x, \ldots, g_{k} x\right) \mid x \in X\right\}, f\left(A^{k}\right)=A^{k}$, and $f\left(\Delta_{k} X \cap A^{k}\right)=X\left(g_{2}, \ldots, g_{k}\right) \cap A^{k}$. Since (X^{k}, A^{k}) is a $G\left(S_{k}-N D R\right.$ by (2.6) and $\left(X^{k}, \Delta_{k} X\right)$ is a $\left(G \times S_{k}\right)-N D R$, and since $\left(X^{k}, \Delta X_{k} \cap A^{k}\right)=\left(X^{k}, \Delta_{k} A\right)$ is a $G\left\{S_{k}-N D R\right.$ because (X, A) is a $G-N D R,(2.7)$ and (2.9) imply tnat $\left(X^{k}, Y\left(g_{2}, \ldots, g_{k s}\right)\right)$ is an H-NDR. Step 2: (X^{n}, D) is a $G\left\{S_{n}-N D R\right.$
We proceed as in the proof of (2.8). Let M be the set of all partitions of $[n]$ into $n-1$ subsets and let $V=\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n} \mid\right.$ some $\left.x_{i} \in A\right\}$. Tinen

$$
D=\bigcup_{P \in M}(Y(P) U V)
$$

where $Y(P)=\left\{\left.\left(x_{1}, \ldots, X_{n}\right) \in X^{n}\right|_{X_{i}}=g x_{j}\right.$ for some $g \in G$ if i and j are in the same element of $P\}$. An intersection of spaces $Y(P) U V$ is just anotiner space $Y(P) \cup V$. By (2.7) the result nolds if eacn ($\left.X^{n}, Y(P) \cup V\right)$ is a $S t(Y(P))$ NDR. Suppose P has k_{r} elements of cardinality r. Then

$$
Y(P) U V \cong\left(Y_{1}\right)^{k}{ }^{k} \times \ldots \times\left(Y_{n}\right)^{k} n \cup V
$$

and $S t(Y(P))$ corresponds to $\left(G\left(S_{1}\right) \backslash S_{k_{1}} \times \ldots x\left(G S_{n}\right)\right\} S_{k_{n}}$ under this nomeomorpnism. By (2.6), the pair $\left(X^{n}, V\right)$ is a $G\left\{S_{n}-N D R\right.$ and $\left(X^{n},\left(Y_{1}\right)^{k_{1}} \times \ldots \times\left(Y_{n}\right)^{k} n\right)$ a. $\left[\left(G\left\{S_{1}\right)\right\} S_{k_{1}} \times \ldots x\left(G S_{n}\right)\left\{S_{k_{n}}\right]-N D R\right.$. The intersection $\left(Y_{1}\right)^{k_{1}}{ }^{n} \ldots \times\left(Y_{n}\right)^{k_{n}} \cap V$ can be written as union of A^{n} and

Abstract

products of spaces Y_{r} and A^{k}. Since the family of spaces consisting of A^{n} and products of spaces Y^{r} and A^{k} is closed under intersection, $\left(Y_{1}\right)^{k_{1}} \times \ldots \times\left(Y_{n}\right)^{k_{n}} \cap V$ is a $\left[\left(G \backslash S_{1}\right) \backslash S_{k_{1}} \times \ldots \times\left(G \backslash S_{n}\right) \backslash S_{k_{n}}\right]-N D R$ by (2.6) and (2.7). Hence, by (2.7) and (2.8) the pair ($\left.X^{n}, Y(P) \cup V\right)$ is a $\mathrm{St}(\mathrm{Y}(\mathrm{P}))-\mathrm{NDR}$.

3. NUMERABLE PRINCIPAL G-SPACES

In this section we work in the category of all topological spaces. The results incld in the category of k-spaces, too.

Let G be an arbitrary topological group. We call a space X a numerable principal G-space if X is a free $G-s p a c e$ and the projection $X \longrightarrow X / G$ is a numerable principal G-bundle in the sense of Dold [13].

Lemma 3.1: A space X is a numerable principal G-space iff there is a numerable cover $U=\left\{U_{\alpha} \mid \alpha \in A\right\}$ of X (see VII, §4) by G-invariant subspaces with equivariant numeration (i.e. equivariant partition of unity subordingte to u) such that there are equivariant maps $r_{\alpha}: U_{\alpha} \longrightarrow G$ for all $U_{\alpha} \in U$.

Proof: \Rightarrow Let $p: X \rightarrow X / G$ be the projection and $B=\left\{V_{\alpha} \mid \alpha \in A\right\}$ a numerable cover of X / G over which p is locally trivial. Define $u=\left\{p^{-1}\left(V_{\alpha}\right)\right\}$, a numeration $\left\{f_{\alpha}\right\}$ by $f_{\alpha}=\nu_{\alpha} \cdot p$ wnere $\left\{\nu_{\alpha}\right\}$ is a numeration of \mathfrak{B}, and $r_{\alpha}: p^{-1}\left(V_{\alpha}\right) \cong G \times V_{\alpha} \xrightarrow{\text { proj }} G$.
$\in \operatorname{Let} B=\left\{p\left(U_{\alpha}\right), \alpha \in A\right\}$. Then B is a cover of X / G. The \hat{i}_{α} induce maps $v_{\alpha}: X / G \longrightarrow I$ defining a numeration of B. It remains to snow that p is locally trivial over \mathfrak{B}. Now $p^{-1} p U_{\alpha}=U_{\alpha}$ since U_{α} is G-equivariant. So we have to find a G-iomeomorpnism

making the triangle commute. Define $n(x)=\left(r_{\alpha}(x), p(x)\right)$. The inverse k of n is given by $(g, p(x)) \longmapsto g \cdot r_{\alpha}(x)^{-1} \cdot x$, which is a well defined function. It remains to check the continuity of k. Let $Y=r_{\alpha}^{-1}(i d) \subset U_{\alpha}$. Then k factors as

$$
G \times p U_{\alpha} \xrightarrow{i d \times u} G \times Y \xrightarrow{ } U_{\alpha}
$$

witn $u(p(x))=r_{\alpha}(x)^{-1} \cdot x$ and $v(g, y)=g \cdot y$. Evidently v is continuous, and it remains to snow the continuity of u. But u is induced by the $\operatorname{map} U_{\alpha} \longrightarrow Y$ given by $x \longmapsto r_{\alpha}(x)^{-1}$, wnich is continuous.

This result implies

Lemma 3.2: (a) If G is a discrete group, then X is a numerable principal G-space iff X has an open cover $U=\left\{U_{\alpha} \mid \alpha \in \mathbb{A}\right\}$, with a subordinate partition of unity $\left\{f_{\alpha}: X \longrightarrow I \mid \alpha \in A\right\}$ sucn tinat for all $g \in G$ different from the identity, $g U_{\alpha} \cap U_{\alpha}=\varnothing$, and $g U_{\alpha}$ is some $U_{\beta} \in U$, and $f_{\beta}(g x)=f_{\alpha}(x)$, $x \in X$.
(b) If G is a finite discrete group, then X is a numerable principal G-space iff X has an open cover $u=\left\{U_{\alpha} \mid \alpha \in A\right\}$ with a subordinate partition of unity, such that $g U_{\alpha} \cap U_{\alpha}=\varnothing$ for all $g \in G$ different from the identity.

Proof: Part (a) is an immediate consequence of Lemma 3.1. Now suppose we nave a cover u of X as described in (b). Enlarge it to an open cover B of X by taking all subsets $g \cdot U_{\alpha}, g \in G$. If $\left\{f_{\alpha}: X \rightarrow I\right\}$ is the partition of unity subordinate to u, enlarge it to a partition of unity subordinate to B by associating the map

$$
x \longmapsto \frac{1}{|G|} f_{\alpha}\left(g^{-1} x\right) \quad|G|=\text { order of } G
$$

with the element $g \quad U_{\alpha}$ of \mathfrak{B}. Then \mathfrak{B} and its partition of unity satisfy (a).

Lemma 3.3: If $f: X \longrightarrow Y$ is a $G-m a p$ and Y a numerable principal $G-$ space, then so is X. In particular, any invariant subspace of a numerable principal G-space is a numerable principal G-space.

Proof: Let $B=\left\{V_{\alpha} \mid \alpha \in A\right\}$ be an invariant numerable cover of Y with numeration $\left\{f_{\alpha}\right\}$ and equivariant maps $r_{\alpha}: V_{\alpha} \rightarrow G$ associated with Y. Then $\left\{f^{-1}\left(V_{\alpha}\right), f_{\alpha} \circ f, r_{\alpha} \circ f\right\}$ makes X into a numerable principal G-space.

Lemma 3.4: Let $r: X \rightarrow Y$ be a G-map from a G-space X to a numerable principal G-space Y. Tnen r is an equivariant nomotopy equivalence iff it is an ordinary nomotopy equivalence.

Proof: By Lemma 3.3, botin X and Y are numerable principal G-spaces. Consider

By [10; Lemma 2, Bemerkung], idxr is an equivariant nomotopy equivalence, and by $[10 ;$ Lemma 4], the projections are equivariant nomotopy equivalences.

[^1]Tneorem 3.5: Given a diagram of $G-s p a c e s$ and $G-m a p s$

and a G-inomotopy $H_{A}: n \mid A \approx p \circ f_{A}$. Assume that (X,A) is G-cofibred.
Then tnere is a G-map $f: X \rightarrow Y$ extending f_{A} and a G-nomotopy $H: i n \sim p$ f extending H_{A} provided
(a) p is an equivariant nomotopy equivalence
$O R \quad(b) p$ is an ordinary nomotopy equivalence and $X-A$ is a numerable principal G-space.

Proof: Replace p by the equivariantly nomotopy equivalent G-fibration $q: E \longrightarrow Z$, where $E=\left\{(\omega, y) \in Z^{I} x Y \mid w(1)=p(y)\right\}$ and $q(\omega, y)=\omega(0)$. The G-action on E is given by $g(\omega, y)=(g \cdot \omega, g \cdot y)$, where $(g \cdot w)(t)=g \cdot w(t)$. Let $r: F \longrightarrow X$ be the G-fibration over X induced by $n, i . e$. $F=\left\{(x, w, y) \in X \times Z^{I} \times Y \mid w(0)=n(x), w(1)=p(y)\right\}$ and $r(x, w, y)=x$.

Define $k: A \longrightarrow F$ by $k(a)=\left(a, \omega_{a}, I_{A}(a)\right)$ with

$$
\omega_{a}(t)= \begin{cases}\ln (a) & 0 \leq t \leq \frac{1}{2} \\ H_{A}(a, 2 t-1) & \frac{1}{2} \leq t \leq 1\end{cases}
$$

Then k is an equivariant section of r over A. The theorem is proved if we can extend k to an equivariant section of r over X.

Since (X, A) is G-cofibred, there is an equivariant map $u: X \longrightarrow I$ and a G-nomotopy $K: X x I \longrightarrow X$ sucin that $A \subset u^{-1}(0), K(x, 0)=x, K(a, t)=a$ for ail $a \in A$ and $t \in I$, and $K(x, 1) \in A$ for $x \in u^{-1}[0,1)$. Put $U=u^{-1}[0,1)$. Extend k to an equivariant section of r over U by $k(x)=\left[x, \omega_{X}, f_{A}(K(x, 1))\right]$ with

$$
v_{x}(t)=\left\{\begin{array}{ll}
n(K(x, 2 t)) & 0 \leq t \leq \frac{1}{2} \\
H_{A}(K(x, 1), 2 t-1) & \frac{1}{2} \leq t \leq 1
\end{array} \quad x \in U\right.
$$

We claim now and prove later:
Let $r_{X-A}: F_{X-A} \longrightarrow X-A$ be the restriction of r to $F_{X-A}=r^{-1}(X-A)$. Then r_{X-A} has an equivariant section s^{\prime}, and there is a G-nomotopy $\mathrm{L}: \mathrm{F}_{\mathrm{X}-\mathrm{A}} \times \mathrm{I} \rightarrow \mathrm{F}_{\mathrm{X}-\mathrm{A}}$ from the identity to $\mathrm{s}^{\prime} \cdot \mathrm{r}_{\mathrm{X}-\mathrm{A}}$ such that $r_{X-A}(L(e, t))=r_{X-A}(e)$ for all $e \in F_{X-A}$ and $t \in I$.

The required equivariant sections s of r over X is then given by

$$
s(x)= \begin{cases}s^{\prime}(x) & x \in X-U \\ L(k(x), \max [2 u(x)-1,0] & x \in U-A \\ k(x) & x \in A\end{cases}
$$

We now prove the claim: q is a G-fibration and a homotpy equivalence. By [13; Cor.6.2], there is a section \bar{q} of q and a nomotopy $Q: i d_{E} \sim \bar{q} \cdot q$ such that $q \cdot Q(e, t)=q(e)$. Botn \bar{q} and Q are equivariant if p is an equivariant homotopy equivalence. Define a section $\overline{\mathrm{r}}: \mathrm{X} \longrightarrow \mathrm{F}$ of r and a nomotopy $R: F X I \longrightarrow F$ from $i d_{F}$ to $\bar{r} \cdot r$ by $\bar{r}(x)=(x, \bar{q} \cdot n(x))$ and $R(x, e, t)=(x, Q(e, t))$, efE. Then $r \cdot R(x, e, t)=r(x, e)$ for all ($x, e) \in F$ and $t \in I$. Botn \bar{r} and R are equivariant if \bar{q} and Q are, i.e. if p is an equivariant nomotopy equivalence, and provide the section and nomotopy of the claim. If p is an ordinary homotopy equivalence, then $r_{X-A}: F_{X-A} \longrightarrow X-A$ is a $G-f i b r a t i o n ~ a n d ~ a ~ h o m o t o p y ~ e q u i v a l e n c e ~ b e-~$ cause of the existence of $\overline{\mathrm{T}}$ and K . Since $\mathrm{X}-\mathrm{A}$ is a numerable principal G-space, r_{X-A} is an equivariant nomotopy equivalence (Lemma 3.4). By the equivariant version of [13; Cor. 6.2] the equivariant section and the homotopy of the claim exist.

Proposition 3.6: Let $p:(X, A) \longrightarrow(Y, B)$ be an equivariant map of pairs of G-spaces such that $p_{A}=p \mid A: A \longrightarrow B$ is an equivariant nomotopy equivalence and $p: X \longrightarrow Y$ is an ordinary homotopy equivalence. Suppose $X-A$ and $Y-B$ are numerable principal G-spaces and (X,A), (Y, B) are G-cofibred. Then any equivariant nomotopy inverse q_{B} of p_{A} can be extended to an equivariant nomotopy inverse q of p and any equivariant homotopy $H_{B}: i d_{B} \approx p_{A} \cdot q_{B}$ to an equivariant homotopy $H: i d_{Y}=p \bullet q$.

Proof: Let i : $B \subset Y$ be the inclusion. By part (b) of the previous theorem, there is an equivariant extension $q: Y \longrightarrow X$ of q_{B} and $H: Y \times I \longrightarrow Y$ of $i \cdot H_{B}$ such that $H: i d_{Y}=p \cdot q$. Hence $\left(p, p_{A}\right) \circ\left(q, q_{B}\right)=i d$ equivariantly as maps of pairs. Analogously, we can find an extension $\bar{p}: X \longrightarrow Y$ of p_{A} sucin tinat $\left(q, q_{B}\right) \cdot\left(\bar{p}, p_{A}\right)=$ id equivariantly as maps of pairs. Hence

$$
\left(q, q_{B}\right) \cdot\left(p, p_{A}\right)=\left(q, q_{B}\right) \cdot\left(p, p_{A}\right) \cdot\left(q, q_{B}\right) \cdot\left(\bar{p}, p_{A}\right)=\left(q, q_{B}\right) \cdot\left(\bar{p}, p_{A}\right)=i d
$$ equivariantly as maps of pairs.

Corollary 3.7: Let X be a G-space and A an invariant subspace. Suppose that (X,A) is G-cofibred, that $A \subset X$ is a nomotopy equivalence, and $X-A$ is a numerably principal G-space. Then A is an equivariant SDR of X.

Proof: Apply the previous proposition to the inclusion ($A, A) \subset(X, A)$ with $q_{B}=i d_{A}$ and H_{B} the constant nomotopy.

Lemma 3.8: If X is a paracompact G-space, $A \subset X$ a subspace such tinat G acts freely on $X-A$, and $u: X \rightarrow I$ a map with $A=u^{-1}(0)$, then X-A is a numerable principal G-space provided G is a compact Lie group.

Proof: $X-A$ is an F_{σ}, i.e. a countable union of closed subspaces of X, and nence paracompact [36]. Since $X-A$ is normal, the projection $p: X-A \rightarrow(X-A) / G$ is a principal fibre bundle (e.g. see [5; p.88]). Since p is closed, ($X-A) / G$ is paracompact [18; p.165].

4. FIITERED SPACES AND ITERATED ADJUNCTION SPACES

As in the previous sections the results of this section hold in
the category of all topological spaces as well as in the category of k-spaces.

Let G be an arbitrary topological group. A filtration of a G-space X is an increasing sequence of invariant subspaces

$$
\emptyset=X_{-1} \subset X_{0} \subset X_{1} \subset \cdots
$$

with X as colimit (direct limit). Given such a sequence, we call X a filtered G-space. If each $\left(X_{n}, X_{n-1}\right)$ is G cofibred, we call X properly filtered. A filtered G-map is a G-map $f: X \longrightarrow Y$ of filtered G-spaces sucn that $f\left(X_{n}\right) \subset Y_{n}$. We denote $f \mid X_{n}: X_{n} \rightarrow Y_{n}$ by r_{n}. A filtered space is called an iterated adjunction G-space if X_{n} is obtained from X_{n-1} by adjoining a $G-s p a c e A_{n}$ relative to an invariant subspace B_{n} by an equivariant map. We say, X_{n} is obtained from X_{n-1} by adjoining (or attacining) (A_{n}, B_{n}). If each $\left(A_{n}, B_{n}\right)$ is G-cofibred, we call X a proper iterated adjunction G-space.

We list a few elementary properties

Lemma 4.1: (a) A proper iterated adjunction G-space is properly filtered.
(b) If X is a properly filtered G-space, tnen each (X, X_{n}) is G-cofibred.
(c) If Y is obtained from X by attaching a $N D R$ (A, B), then Y is Hausdorff if X and A are.
(d) If X is a properly filtered spece and each X_{n} is Hausdorff, then so is X .

Proof:

is a push-out diagram in the category of G-spaces. Hence $X_{n-1} \subset X_{n}$ is a G-cofibration if $A_{n} \subset B_{n}$ is a G-cofibration. If (A_{n}, B_{n}) is a NDR, then there is a map $u: A_{n} \longrightarrow I$ witn $u^{-1}(0)=B_{n}$. Using this one readily checks that X_{n} is Hausdorff if A_{n} and X_{n-1} are.

Now suppose X is a properly filtered $G-s p a c e$. We construct a re-
 to construct compatible G-retractions $r_{k}: X_{k} \times I \rightarrow X_{k} \times 0 U X_{n} \times I$ for $k \geq n$ (Use [12; Satz 1.16 and Satz 1.19] to snow that the subspace $X \times O \cup X_{n} \times I$ is the colimit of the subspaces $X_{k} \times O U X_{n} \times I$). The retractions r_{k} are obtained inductively by

$$
r_{k}=\left(i d U r_{k-1}\right) \circ r: X_{k} \times I \longrightarrow X_{k} \times 0 \cup X_{k-1} \times I \longrightarrow X_{k} \times 0 \text { } 1 X_{n} \times I
$$ where r is the G-retraction of $\left(X_{k}, X_{k-1}\right)$. For the continuity of r_{k} use [12; Satz 1.1.9] observing tinat $X_{k} \times 0 \cup X_{n} \times I$ is a retract of $X_{k} \times I$, because composites of cofibrations are cofibrations.

For a proof of (d) see [49; Tnm. 9.4].

It is well-known that a filtered map $f: X \rightarrow Y$ of properly filtered spaces is a nomotopy equivalence provided each $f_{n}: X_{n} \longrightarrow Y_{n}$ is a. homotopy equivalence. Usually one proves tinis using the Milnor telescope construction [9; IV,§5]. We give an alternative proof in tine category of G-spaces, the intermediate results of wnich we will need for other purposes.

Lemma 4.2: Given a commutative diagram of G-spaces

where i and j are G-cofibrations and f and g are G-nomotopy equivalences. Let $\overline{\mathrm{I}}$ be a G-nomotopy inverse of f and $n_{t}: i d_{A}=f \cdot \bar{f} a G-n o m o t o p y$. Then there is a G-nomotopy inverse \bar{g} of g extending \bar{f} and a G-nomotopy $k_{t}: i d_{B^{\prime}} \sim g \circ \bar{g}$ extending $n_{t}, i \cdot e .\left(k_{t}, n_{t}\right):\left(i d_{B^{\prime}}, i d_{A^{\prime}}\right)=(g \bullet \bar{g}, f \circ \bar{f})$ in the category of pairs of G-spaces.

Proof: Apply Theorem 3.5 to the diagram

and the nomotopy $j \cdot h_{t}: i d_{B^{\prime}} \mid A^{\prime}=j=j \cdot f \circ \bar{f}=g \cdot j \cdot \overline{\hat{f}}$ to obtain the required extensions.

Corollary 4.3: Given the assumptions of Lemma 4.2, the G-map $(g, f):(B, A) \rightarrow\left(B^{\prime}, A^{\prime}\right)$ is a G-nomotopy equivalence in the category of pairs of G-spaces.

Proof: $\operatorname{Let}(\bar{g}, \bar{f}):\left(B^{\prime}, A^{\prime}\right) \rightarrow(B, A)$ and $\left(k_{t}, n_{t}\right):\left(i d_{B^{\prime}}, i A_{A}\right) \sim(g \circ \bar{g}, f \cdot \bar{f})$ be the map and G-nomotopy of pairs of (4.2). Applying the lemme once again to the pair $(\bar{g}, \overline{\mathrm{f}})$, we obtain a $G-m a p$ of pairs ($\left.\mathrm{g}^{\prime}, \mathrm{f}^{\prime}\right):(B, A) \rightarrow\left(B^{\prime}, A^{\prime}\right)$ and a G-inomotopy of pairs (id,$\left.i d_{A}\right)=\left(\bar{g} \circ g^{\prime}, \overline{\bar{I}} \circ f^{\prime}\right)$. By general nonsense, (g, f) is a G-inomotopy equivalence of pairs (cf. the proof of (3.6)).

Theorem 4.4: Let $\hat{I}: X \longrightarrow Y$ be a filtered $G-m a p$ of property filtered G-spaces sucn that each $f_{n}: X_{n} \longrightarrow Y_{n}$ is a G-nomotopy equivalence. Then f is a G-nomotopy equivalence.

Proof: Using Lemma. 4.3, we inductively construct nomotopy inverse $g_{n}: Y_{n} \rightarrow X_{n}$ extending g_{n-1} and nomotopies $H_{n}(t): i d_{Y_{n}} \sim f_{n} \cdot g_{n}$ extending $H_{n-1}(t)$. Taking the colimit we obtain a G-map $g: Y \longrightarrow X$ and a G-nomotopy $H(t): f \circ g=i d_{Y}$. Apply tine same procedure to the filtered map g to obtain a G-map in : X $\longrightarrow Y$ and a G-homotopy $K: i d_{X}=g \cdot n$. As in (3.6), we find thet f is a G-nomotopy equivalence.

Theorem 4.5: Let X be a properly filtered G-space such that each X_{n} is an equivariant $S D R$ of X_{n+1}. Tnen each X_{n} is an equivariant $S D R$ of X.

Proof: By the equivariant version of [14; 3.7] it suffices to snow that $\left(X, X_{n}\right)$ is G-cofibred and the inclusion $X_{n} \subset X$ is a G-nomotopy equivalence. The first requirement follows from (4.1) and tine second from (4.4) if we consider X_{n} as trivially filtered by itself.

We now investigate conditions wincn make maps of iterated adjunction spaces to ifiltered nomotopy equivalences.

Proposition 4.6: Let Y and Y^{\prime} be G-spaces obtained from X and X^{\prime} by adjoining (A, B) and $\left(A^{\prime}, B^{\prime}\right)$ by maps $f: B \rightarrow X$ and $g: B^{\prime} \rightarrow X^{\prime}$ respectively. Suppose (A, B) and (A^{\prime}, B^{\prime}) are G-cofibred. Given a commutative diagram of G-maps

whose vertical maps are G-nomotopy equivalences. Then tine induced map $r:(Y, X) \rightarrow\left(Y^{\prime}, X^{\prime}\right)$ is a $G-n o m o t o p y ~ e q u i v a l e n c e ~ o f ~ p a i r s . ~$

Proof: Let Z and Z^{\prime} be the double mapping cylinders of the norizontal sequences. E.g. Z is obtained by identifying tine mapping cylinders Z_{f} and Z_{i} along their common subspace B. Fix a nomotopy inverse $\bar{\tau}$ of l and nomotopies $\bar{\tau} \cdot \imath \simeq i d_{B}, l \cdot \bar{\imath} \sim i d_{B}$, The pairs (η, l) and (k, l) induce G-nomotopy equivalences $Z_{f} \longrightarrow Z_{g}$ and $Z_{i} \longrightarrow Z_{j}$ and a map $r^{\prime}: Z \longrightarrow Z^{\prime}$. Since tine inclusions $Z_{f} \supset B \subset Z_{i}$ and $Z_{g} \supset B^{\prime} \subset Z_{j}$ are $G-c o f i b r a t i o n s$, the map \bar{l} and the nomotopies can be extended by (4.2) to G-maps of triads $p, q:\left(Z, Z_{f}, Z_{i}\right) \rightarrow\left(Z^{*}, Z_{g}, Z_{j}\right)$ and G-homotopies of triads $p \bullet r^{\prime} \leadsto i d$ and $r^{\prime} \bullet q \leadsto i d$. Hence, by general nonsense, $r^{\prime}:\left(Z_{f}, Z_{i}\right) \rightarrow\left(Z^{\prime}, Z_{f}, Z_{j}\right)$ is a G-nomotopy equivalence of triads. Since i and j are G-cofibrations, the natural projections $\left(Z, Z_{f}\right) \rightarrow(Y, X)$ and $\left(Z^{\prime}, Z_{g}\right) \rightarrow\left(Y^{\prime}, X^{\prime}\right)$ are $G-n o m o t o p y$ equivalences of pairs. Since
$r:(Y, X) \longrightarrow\left(Y^{\prime}, X^{\prime}\right)$ is induced by r^{\prime}, it is a G-nomotopy equivalence of pairs.

We also need a strange generalization of this result.

Proposition 4.7: Let Y and Y^{\prime} be spaces obtained from X and $X '$ by adjoining (A, B) and $\left(A^{\prime}, B^{\prime}\right)$ by maps $f: B \longrightarrow X$ and $g: B^{\prime} \rightarrow X^{\prime}$ respectively (no G-action). Let (K,L) and (K^{\prime}, L^{\prime}) be G-cofibred pairs such that $K-L$ and $K^{\prime}-I^{\prime}$ are numerable principal G-spaces and ($K / G, L / G$) $=(A, B)$ and $\left(K^{\prime} / G, L^{\prime} / G\right)=\left(A^{\prime}, B^{\prime}\right)$. Given a commutative diagram of maps

with q a $G-m a p$ and n, q^{\prime}, q ordinary nomotopy equivalences. Then the induced map $r:(Y, X) \rightarrow\left(Y^{\prime}, X^{\prime}\right)$ is a nomotopy equivalence of pairs.

Proof: Consider X and X^{\prime} as trivial $G-s p a c e s . ~ L e t ~ Z ~ a n d ~ Z^{\prime}$ be the $G-$ spaces obtained from X and X^{\prime} by adjoining (K, L) respectively (K^{\prime}, L^{\prime}). Then q and in induce a $G-m a p ~ p:(Z, X) \rightarrow\left(Z^{\prime}, X^{\prime}\right)$, which is an ordinary nomotopy equivalence of pairs. By (4.1) the pairs (Z, X) and (Z^{\prime}, X^{\prime}) are G-cofibred. Since $Z-X$ and $Z^{\prime}-X^{\prime}$ are numerable principal G-spaces and $p: X \rightarrow X '$ is a G-nomotopy equivalence, p is a G-nomotopy equivalence of pairs by (3.6). Passing to the orbit spaces we find that $r:(Y, X) \longrightarrow\left(Y^{\prime}, X^{\prime}\right)$ is a nomotopy equivalence of pairs.

We nave a similar result for weak nomotopy equivalences.

Proposition 4.8: (a) If X and Y are filtered T_{1}-spaces and $f: X \rightarrow Y$ a filtered map such that each f_{n} is a weak nomotopy equivalence, then f is a weak nomotopy equivalence
(b) Let Y and Y^{\prime} be spaces obtained from X and X ' by adjoining (A, B) and (A^{\prime}, B^{\prime}) by maps $f: B \longrightarrow X$ and $g: B^{\prime} \longrightarrow X^{\prime}$ respectively. Suppose (A, B) and (A^{\prime}, B^{\prime}) are cofibred. Given a diagram of maps

whose vertical maps are weak nomotopy equivalences. Then the induced $\operatorname{map} r: Y \longrightarrow Y^{\prime}$ is a weak homotopy equivalence.

Proof: Part (a) follows from the fact that $\pi_{i} X=\lim \pi_{i} X_{n}[17 ;(2.14)]$. For part (b) let Z and $Z '$ be the double mapping cylinders of the norizontal sequences. Then the triple (n, l, k) induces a map $r^{\prime}: Z \rightarrow Z^{\prime}$, which is a weak homotopy equivalence by [35; Tnm.6]. The canonical projections $Z \longrightarrow Y$ and $Z^{\prime} \longrightarrow Y^{\prime}$ are nomotopy equivalences because i and j are cofibrations. Hence r is a weak nomotopy equivalence.

Proposition 4.9: Let $f: X \longrightarrow Y$ be a filtered G-map of filtered G-spaces. Assume that tine maps $X_{n-1} \subset X_{n}, Y_{n-1} \subset Y_{n}$, and $f: X_{n} \longrightarrow Y_{n}$ are closed G-coftemations. Then f is a closed G-cofibretion if $X_{n} \cap Y_{n-1}=X_{n-1}$.

Proof: We construct inductively a G-retraction $Y \times I \longrightarrow X X I \cup Y x 0$. In the inductive step we neve a $G-r e t r a c t i o n ~ Y_{n-1} \times I \longrightarrow_{n-1} \times 0 \cup X_{n-1} \times I$ so that we need a G-retraction

$$
q: Y_{n} \times I \rightarrow\left(Y_{n-1} \cup X_{n}\right) \times I \cup Y_{n} \times 0
$$

Since $X_{n} \cap Y_{n-1}=X_{n-1}$ and $\left(Y_{n}, X_{n-1}\right)$ is a $G-N D R$, the pair $\left(Y_{n}, Y_{n-1} \cup X_{n}\right)$ is a $G-N D R$ by (2.7). Hence the required $G-r e t r a c t i o n ~ e x i s t s . ~$

Proposition 4.10: Let X be a properly filtered space such that each X_{n-1} is contractible in X_{n}. Then X is contractible.

Proof: Inductively, derine spaces Y_{n}, inclusions $X_{n} \subset Y_{n}$, and retractions $q_{n}: Y_{n} \longrightarrow X_{n}$. Put $X_{o}=Y_{o}$ and $Y_{n}=X_{n} \cup C Y_{n-1} / \sim$, where $C Y_{n-1}$ is the (unreduced) cone on Y_{n-1} and $X_{n-1} \subset X_{n}$ is identified with $X_{n-1} \subset Y_{n-1} \subset C Y_{n-1}$. The retraction $q_{n}: Y_{n} \longrightarrow X_{n}$ is given by

$$
\mathrm{CY}_{\mathrm{n}-1} \xrightarrow{\mathrm{Cq}} \mathrm{n}_{\mathrm{n}-1} \mathrm{CX} \mathrm{n}_{\mathrm{n}-1} \xrightarrow{\mathrm{n}} \mathrm{X}_{\mathrm{n}}
$$

where n is the contracting nomotopy. Let Y be the colimit of the Y_{n}. Then the inclusions $X_{n} \subset Y_{n}$ and the retractions $Y_{n} \rightarrow X_{n}$ define filtered maps $i: X \subset Y$ and $q: Y \longrightarrow X$ such thet $q \cdot i=i d_{X}$. We show that Y is contractible.

First note that $j_{n-1}: Y_{n-1} \subset Y_{n}$ and the inclusion of the cone point $\left\{\mathrm{y}_{\mathrm{n}}\right\} \subset \mathrm{CY} \mathrm{Y}_{\mathrm{n}-1} \subset \mathrm{Y}_{\mathrm{n}}$ are cofibrations and that $Y_{\mathrm{n}-1}$ is contractible in Y_{n} to the cone point. For any sequence Σ of spaces and maps

$$
A_{0} \xrightarrow{p_{0}} A_{1} \xrightarrow{p_{1}} A_{2} \xrightarrow{p_{2}} A_{3} \longrightarrow \ldots
$$

define $T_{n} \Sigma$, inclusions $A_{n} \subset T_{n} \Sigma \subset T_{n+1} \Sigma$, and retractions $r_{n}: T_{n} \Sigma \rightarrow A_{n}$ inductively. Put $T_{0} \Sigma=A_{0}$ and $T_{n} \Sigma=T_{n-1} \Sigma \cup Z_{p_{n-1}} / \sim$, where $A_{n-1} \subset T_{n-1} \Sigma$ is identified with $A_{n-1} \subset Z_{p_{n-1}}$, the mapping cylinder of p_{n-1}. The retraction r_{n} is the composite

$$
T_{n} \Sigma \longrightarrow Z_{p_{n-1}} \longrightarrow A_{n}
$$

whose first map is induced by r_{n-1} and the second is the standard retraction of the mapping cylinder. The colimit $T \Sigma$ of the $T_{n} \Sigma$ is called the telescope of Σ.

The $T_{n} \Sigma$ define a proper filtration of $T \Sigma$. The r_{n} are nomotopy equivalences and they induce a map r from $T \Sigma$ to the colimit A of Σ. If Σ deŕines a proper filtration of A, i.e. if each p_{i} is a cofiltration,
then $r: T \Sigma \longrightarrow A$ is a nomotopy equivalence by (4.4).
Consider the sequences

$$
\begin{aligned}
& \Sigma_{1}: Y_{0} \stackrel{j_{0}}{\stackrel{ }{c}} Y_{1} \stackrel{j_{1}}{c} Y_{2} \stackrel{j_{2}}{\subset} \ldots \\
& \Sigma_{2}: Y_{0} \xrightarrow{c_{0}} Y_{1} \xrightarrow{c_{1}} Y_{2} \xrightarrow{c_{2}}
\end{aligned}
$$

where c_{i} is the constant map to the cone point $\left\{y_{i+1}\right\}$. We nave shown that $j_{k} \sim c_{k}$. It is well-known (and can easily be deduced from (3.5) and (4.2)) that if $f=g: A \longrightarrow B$ there is a nomotopy equivalence of pairs $\left(Z_{f}, A\right)=\left(Z_{g}, A\right)$. Hence tnere is a filtered map in $: T \Sigma_{1} \rightarrow T \Sigma_{2}$ such that each n_{n} is a nomotopy equivalence, wnence $Y=T \Sigma_{1}=T \Sigma_{2}$. Filter $T \Sigma_{2}$ differently: Put $Q_{0}=Y_{0}=T_{0} \Sigma_{2}, Q_{1}=C Y$ with the obvious inclusion of the cone point y_{1}. Inductively, let $Q_{n}=Q_{n-1} \cup C Y_{n-1} / \sim$ with the cone point y_{n-1} in Q_{n-1} identified witn $y_{n-1} \in Y_{n-1} \subset C Y{ }_{n-1}$. Again we nave the inclusion $\left\{y_{n}\right\} \subset Q_{n}$ of the cone point.

Since $\left\{y_{n}\right\} \subset Y_{n} \subset C Y_{n}$ are cofibrations, the Q_{i} define ε proper filtration of $T \Sigma_{2}$. The Q_{i} are obviously contractible. Hence, by (4.4), $T \Sigma_{2}=$ point, nence Y and therefore X are contractible.

We close tinis cnapter with some results on numerably contractible spaces. For a derinition see (6.12).

Lemma 4.11: (a) If Y dominates X and Y is numerably contractible then so is X. In particular, numerable contractibility is a nomotopy type invariant.
(b) A finite product of numerably contractible spaces is numerably contractible.
(c) Let X be a properly filtered space sucn tinat eacin X_{n} is numerably
contractible. Then so is X.

For proofs and further references see [43].

Proposition 4.12: Let X be a proper iterated adjunction space such that the spaces A_{n} which are attacined are numerably contractible. Then X is numerably contractible.

Proof: By (4.1) and (4.11) it suffices to snow that each X_{n} is numerably contractible. Suppose inductively that X_{n-1} is numerably contractible. Tine subspaces $U=X_{n-1} \cup B_{n} \times[0,1)$ and $V=A_{n} \cup B x(0,1]$ of the double mapping cylinder Z of $X_{n-1} \ll B_{n} \subset A_{n}$ form a numerable covering of Z. By (4.11 a), botin U and V and nence Z are numerably contractible. Since $Z=X_{n}$, also X_{n} is numerably contractible.

1. J.F. Adams: The sphere considered as an H-space mod p (Quart. J. Math. Oxford Ser.(2),12 (1961), 52-60)
2. J. Beck: On H-spaces and infinite loop spaces (Category Theory, Homology Theory, Their Applications III, Lecture Notes in Matn. 99 (1969), 139-153, Springer Verlag)
3. J. Beck: Classifying spaces for nomotopy-everything H-spaces (Hspaces, Neuchatel (Suisse), Aô̂t 1970, Lecture Notes in Matin. 196 (1971), 54-62, Springer Verlag)
4. J. Bénabou: Structures algébriques dans les catégories (Thèse, Fac.Sci., U. de Paris, 1966)
5. G.E. Bredon: Introduction to compact transformation groups (Academic Press, New York 1972)
6. J.M. Boardman: Homotopy structures and the language of trees (Proceedings of the Summer Institute on Algebraic Topology, University of Wisconsin (1970), 37-58, Amer. Math. Soc.)
7. J.M. Boardman: Infinite loop spaces (to appear in Bull. Amer. Matn. Soc.)
8. J.M. Boardman, R.M. Vogt: Homotopy-everytining H-spaces (Bull. Amer. Matin. Soc. 74 (1968), 1117-1122)
9. Th. Bröcker, T. tom Dieck: Kobordismentheorie (Lecture Notes in Matin. 178 (1970), Springer Verlag)
10. T. tom Dieck: Glättung äquivarianter Homotopiemengen (Arch. Math. 20 (1969), 288-295)
11. T. tom Dieck: Partitions of unity in nomotopy theory (Compositio math. 23 (1971), 159-167)
12. T. tom Dieck, K.H. Kamps, D. Puppe: Homotopietheorie (Lecture Notes in Math. 157 (1970), Springer Verlag)
13. A. Dold: Partitions of unity in the theory of fibrations (Ann. of Matn. 78 (1963) , 223-255)
14. A. Dold: Halbexakte Homotopierunktoren (Lecture Notes in Matn. 12 (1966), Springer Verlag)
15. A. Dold: Die Homotopieerweiterungseigenschaft ist eine lokale Eigenschaift (Inventiones Math. 6 (1968), 185-189)
16. A. Dold, R.K. Lashof: Principal quasifibrations and fibre homotopy equivalence of bundles (Illinois J. of Matn. 3 (1959), 285-305)
17. A. Dold, R. Thom: Quasifaserungen und unendliche symmetriscine Produkte (Ann. of Matn. 67 (1958), 239-281)
18. J. Dugundji: Topology (Allan and Bacon, Boston 1966)
19. E. Dyer, R.K. Lashof: Homology of iterated loop spaces (Amer. J. Ma.tn. 84 (1962), 35-88)
20. S. Eilenberg, G.M. Kelly:Closed categories (Proc. Conf. Categ. Alg. (La Jolla, 1965), 421-562, Springer Verlag 1966)
21. M. Fucns: Verallgemeinerte Homotopie-Homomorpnismen und klassifizierende Räume (Math. Annalen 161 (1965), 197-230)
22. M. Fucns: A modified Dold-Lasnof construction that does classify H-principal fibrations (Math. Annalen 192 (1971), 328-340)
23. P. Gabriel, M. Zisman: Calculus of fractions and nomotopy theory (Ergebnisse der Matnematik und inrer Grenzgebiete 35, Springer Verlag 1967)
24. G.M. Kelly: On Maclane's condition for coherence of natural associativities, commativities, etc. (J. Algebra 1 (1964), 397-402)
25. F.W. Lawvere: Functional semantics of algebraic theories (Proc. Nat. Acad. Sci. USA 50 (1963), 869-872)
26. F.W. Lawvere: Functional semantics of algebraic theories (Dissertation, Columbia University (1963))
27. J. Lillig: A union theorem of cofibrations (Arch. Math. to appear)
28. S. Maclane: Natural associativity and commutativity (Rice Univ. Studies 49 (1963), 28-46)
29. S. MacLane: Categorial algebra (Bull. Amer. Math. Soc. 71 (1965), 40-106)
30. S. MacLane: The Milgram bar construction as a tensor product of functors (The Steenrod Algebra and Its Applications, Lecture Notes in Matin. 168 (1970), 135-152, Springer Verlag)
31. P.J. Malraison, Jr: An equivalence of categories (Preprint)
32. J.P. May: Categories of spectra and infinite loop spaces (Gategory Theory, Homology Theory, and Their Applications III, Lecture Notes in Matin. 99 (1969), 448-479, Springer Verlag)
33. J.P. May: Homology operations on infinite loop spaces (Proceedings of the Summer Institute on Algebraic Topology, University of Wisconsin (1970), 171-185, Amer. Math. Soc.)
34. J.P. May: The geometry of iterated loop spaces (Lecture Notes in Ma.tin. 271 (1972), Springer Verlag)
35. M. McCord: Singular nomology groups and nomology groups of finite topological spaces (Duke Matn. J. 33 (1966), 465-474)
36. E. Michael: A note on paracompact spaces (Proc. Amer. Matin. Soc. 4 (1953), 831-838)
37. R.J. Milgram: The bar construction and abelian H-spaces (Illinois J. of Math. 11 (1967), 242-250)
38. J. Milnor: Construction of universal bundles I (Ann. of Matn. 63 (1956), 272-284)
39. J. Mi hnor: Construction of universal bunães II (Ann. of Matn. 63 (1956), 430-436)
40. J. Milnor: On axiomatic nomology tneory (Pacific J. of Math. 12 (1962), 337-341)
41. B. Pareigis: Kategorien und Funktoren (Verlag B.G. Teubner, Stuttgart 1969)
42. D. Puppe: Homotopiemengen und inre induzierten Abbildungen I
(Matn. Zeitscnrift 69 (1958), 299-344)
43. D. Puppe: Some well known weak homotopy equivalences are genuine nomotopy equivalences (Symposia Matematica Vol.V, Istituto

Nazionale di Alta Matematica (1970), 363-374)
44. G.B. Segal: Classifying spaces and spectral sequences (Publ. Matin.

Inst. des Hautes Etudes Scient. (Paris) 34 (1968), 105-112)
45. G.B. Segal: Categories and conomology theories (To appear)
46. J.D. Stasineff: Homotopy associativity of H-spaces I (Trans. Amer. Math. Soc. 108 (1963),275-292)
47. J.D. Stasheff: Homotopy associativity of H-spaces II (Trans. Amer. Matin. Soc. 108 (1963), 293-312)
48. J.D.Stasheff: H-spaces from a nomotopy point of view (Lecture Notes in Math. 161, (1970), Springer Verlag)
49. N. Steenrod: A convenient category of topological spaces (Michigan Matn. J. 14 (1967), 133-152)
50. N. Steenrod: Milgram's classifying space of a topological group (Topology 7 (1968), 349-368)
51. A. Strøm: Note on cofibrations (Matn. Scand. 19 (1966), 11-14)
52. A. Str申m: Note on cofibrations II (Matn. Scand. 22 (1968), 130-142)
53. M. Sugawara: On the nomotopy-commutativity of groups and loop spaces (Mem. Coll. Sci. Univ. Kyoto Ser. A. 33 (1960), 257-269)
54. R.M. Vogt: Categories of operators and H-spaces (Dissertation, University of Warwick, Coventry (1968))
55. R.M. Vogt: Convenient categories of topological spaces for homotopy theory (Arcin. Math. 22 (1971), 545-555)
56. R.M. Vogt: Homotopy limits and colimits (To appear in Math. Zeitscinrift)

[^0]: Spines innerit the notion of intercnonge from their envelopping theories. One observation is of importance. Given spines B, ${ }^{\prime}$, each
 (see Example 2, section 3).

[^1]: We now prove the nomotopy extension lifting property (HELP) of a nomotopy equivalence.

