
HOMOTOPY T~0RY OF F-SPACES, SPECTRA, 

AND BISIMPLICIAL SETS 

A. K. Bousfield and E. M. Friedlander 

in [Segal I], Graeme Segal introduced the concept of a F-space 

and proved that a certain homotopy category of F-spaces is equivalent 

to the usual homotopy category of connective spectra. Our main pur- 

pose is to show that there is a full-fledged homotopy theory of r- 

spaces underlying Segal's homotopy category. We do this by giving 

F-spaces the structure of a closed model category, i.e. defining 

"fibrations," "cofibrations," and "weak equivalences" for r-spaces so 

that Quillen's theory of homotopical algebra can be applied. Actuall~ 

we give two such structures (3.5, 5.2) leading to a "strict" and a 

"stable" homotopy theory of F-spaces. The former has had applications, 

cf. [Friedlander], but the latter is more closely related to the usual 

homotopy theory of spectra. 

In our work on F-spaces, we have adopted the "chain functor" 

viewpoint of [Anderson]. However, we do not require our F-spaces to 

be "special," cf. §4, because "special" F-spaces are not closed under 

direct limit constructions. We have included in §§4,5 an exposition, 

and slight generalization, of the Anderson-Segal results on the con- 

struction of homology theories from r-spaces, and on the equivalence 

of the homotopy categories of F-spaces and connective spectra. 

To set the stage for our work on F-spaces, we have given in §2 

an exposition of spectra from the standpoint of homotopical algebra. 

We have also included an appendix (§B) on bislmplicial sets, where 

we outline some well-kno~n basic results needed in this paper and 

prove a rather strong fibratlon theorem (B.~) for diagonals of 

bisimplicial sets. We apply B.4 to prove a generalization of 
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Quillen's spectral sequence for a bisimpliclal group. In another 

appendix (§A), we develop some homotopical algebra which we use to con- 

struct our "stable" model categories. 

The paper is organized as follows: 

§i. A brief review of homoto~ical algebra 

§2. Closed model category structures for spectra 

§3. The strict homotopy theory of F-spaces 

§4. The constructian of homology theories from F-spaces 

§5. The stable homotop~ theor~ of F-spaces 

Appendix A. Proper closed model categories 

Appendix B. Bisimplicial sets 

We work "simplicially" and refer the reader to [May i] for the 

basic facts of simplicial theory. 

§i. A brief review of homotopical algebra 

For convenience we recall some basic notions of homotopical alge- 

bra ([Qui!len 1,2]) used repeatedly in this paper. 

Definition i.i ([Quillen 2, p. 233]). A closed model category 

consists of a category C together with three classes of maps in 

called fibrations, cofibrations, and weak equivalences, satisfying 

CMI - CM5 below. A map f in C is called a trivial cofibration if 

f is a cofibration and weak equivalence, and called a trivial fibra- 

tion if f is a fibration ~nd weak equivalence. 

CMI. ~ is closed under finite limits and colimits. 

CM2. For W f ~ X g ) Y in ~ , if any two of f,g, and gf are 

weak equivalences, then so is the third. 

CM3. If f is a retract of g and g is a weak equivalence, 

fibration, or cofibration, then so is f. 

CM4. Given a solid arrow diagram 
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A > X 

B > Y 

where i is a cofibration and p is a fibration, then the filler 

exists if either i or j is a weak equivalence. 

CMS. Any map f can be factored as f = pi and f = qi with i 

trivial eofibration, p a fibration, j a cofibration, and q a 

trivial fibration. 

The above axioms are equivalent to the earlier more complicated 

ones in [Quillen i] and are motivated in part by Example 1.3 below. 

They allow one to "do homotopy theory" in ~ . The hemetopy category 

Ho6 can be obtain from C by giving formal inverses to the weak 

equivalences. More explicitly, the objects of HoG are those of C 

and the set of morphisms, Ho~(X,Y) = [X,Y], can be obtained as 

follows: first choose weak equivalences X' ~ X and Y ~ Y~ where X ~ is 

cofibrant (i.e. ~ ~ X' is a cofibration where ~ ~ is initial) and Y' 

is fibrant (i.e. Y' ~ e is a fibratlon where e~C is terminal); then 

IX,Y] = [X',Y'] and [X',Y'] = ~(X',Y')/~ where ~ is the "homotopy 

relation" ([Quillen i, I.i]). Thus Ho6 is equivalent to the category 

hog whose objects are the fibrant-cofibrant objects of ~ and whose 

maps are homotopy classes of maps in ~. The homotopy relation is 

especially manageable when ~ is a closed simplicial model category 

([Quillen i, 11.2]), i.e. for objects V,W~C there is a natural sim- 

plicial set HOM(V,W) (= HOM~ (V,W)) which has the properties of a func- 

tion complex with vertices corresponding to the maps V ~ W in C . For 

V eofibrant and W fibrant, one then has [V,W] : ~oHOM(V,W). 

It will be convenient to have 

Definition 1.2. A closed model category ~ is proper if whenever 

a square 
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f 
A > C 

v 

B g> D 

is a pushout with i a cofibration and f a weak equivalence, then 

g is a weak equivalence; and whenever the square is a pullback with 

j a fibration and g a weak equivalence, then f is a weak equi- 

valence. 

Some needed results on proper closed model categories are proved 

in Appendix A, and we conclude this review with 

Example 1.3. Let (s.sets) and (s.sets.) denote the categories of 

unpointed and pointed simplicial sets respectively. These are proper 

closed simplicial model categories, where the cofibrations are the in- 

jections, the fibrations are the Kan fibrations, the weak equivalences 

are the maps whose geometric realizations are homotopy equivalences, 

HOM(s.sets)(X,Y)n consists of the maps X × A[n] * Y in (s.sets), and 

HOM(s.sets.)(X,Y)n consists of the maps X A (A[n] U .) . Y in 

(s.sets.). Note that the Kan complexes are the fibrant objects and 

all objects are cofibrant. The associated homotopy categories 

Ho(s.sets) and Ho(s.sets.) are equivalent to the unpointed and pointed 

homotopy categories of CW complexes respectively. For X~(s.sets.) we 

will let ~i x denote ~ilXl where IX1 is the geometric realization of X. 

~2. Closed model category structures for spectra 

To set the stage for our study of F-spaces, we now discuss spec- 

tra from the standpoint of homotopical algebra. Although spectra in 

the sens~of [Kan] admit a closed model category structure (cf. 

[Brown]), these spectra are not very closely related to F-spaces and 

don't seem to form a closed simplicial model category. For our pur- 

poses the appropriate spectra are old-fashioned ones equipped with a 
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suitable model category structure. After developing that structure, 

we show that it gives a stable homotopy theory equivalent to the usual 

one. 

Definition 2.1. A spectrum X consists of a sequence xn¢(s.sets~ 

for n > 0 and maps on: S I ^ ~ . ~+i in (s.sets.), where 

S I = A[l]/A[l]¢(s.sets.). A map f: X . Y of spectra consists of maps 

fn: X n . yn in (s.sets.) for n > 0 such that ~n(l ^ fn) = fn+!an; and 

(spectra) denotes the category of spectra. 

The sphere spectrum S is the obvious spectrum with 

S 0 = S 0 = 4[0] U *, S I = S I, S 2 = S I ^ S I, S 3 = S I ^ S I ^ sl, ... 

For Kc(s.sets) and X~(spectra), X ^ K is the obvious spectrum 

with (X A K) n = X n ^ K for n >_ 0; and for X,Y¢(spectra), HOM(X,Y) is 

the obvious simplicial set whose o-simplices are maps 

X ^ (^In] U *) * Y in (spectra). 

A map f: X . Y in (spectra) is a strict wea k equivalence (resp. 

strict fibration) if fn: X n . yn is a weak equivalence (resp. fibra- 

tion) in (s.sets.) for n >_ O; and f is a strict cofibration if the 

induced maps 

x o -~ yo xn+l Ii s1^~m , >yn+l 
~ ~ ~ SIAx n ~ ~ 

are cofibratlons in (s.sets.) for n ~ 0. (This implies that each 

fn: X n . yn is a cofibration.) We let (spectra) strlct denote the 

category (spectra) equipped with these "strict" classes of maps. 

Proposition 2.2. (spectra) strict is a proper closed simplicial 

model category. 

The proof is straightforward. Of course the associated homotopy 

category Ho(spectra) strict is not equivalent to the usual stable homo- 

topy category because it has too many homotopy types. 
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To obtain the usual stable theory, we call a map f: X ~ Y in 

(spectra) a stable weak equivalence if f.: ~.X ~ ~.Y where 

~.X = ibm ~*+n Xn; and call f a stable cofibration if f is a strict 
~ n 

cofibration. Call X¢(spectra) an n-spectrum if for each n ~ 0 the 

geometric realization ISII ^ Ixnl S IS I ^ Xnl l~nl > Ixn+ll induces 

a weak homotopy equivalence I xnl ~ I xn+ll ISII Then choose a funetor 

Q: (spectra) ~ (spectra) and a natural transformation ~: I ~ Q such 

that ~: X ~ QX is a stable weak equivalence and QX is an ~-spectrum 

for each X¢(spectra). For instance one can let QX be the obvious 

spectrum with 

(QX) n = lim Sing niIxn+i I 

where Sing is the singular functor. Now call f: X ~ Y a stable fibra- 

tion if f is a strict fibration and for n > 0 

x n ~ > (Qx) n 

~fn ~(Qf)n 

is a homotopy fibre square in (s.sets.), cf. A.2. When all the yn are 

connected this is actually equivalent to saying that f is a strict 

fibration with fibre on n-spectrum. Let (spectra) stable denote the 

category (spectra) equipped with stable weak equivalences, stable 

fibrations, and stable cofibrations. 

Theorem 2.3. (spectra) stable is a proper closed simplicial model 

category. 

if 

Proof. The usual arguments of stable homotopy theory show that 
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f 
A > C 

B g> D 

is a pushout in (spectra) with f.: v.A ~ v.C and with each in: A n . B n 

a cofibration in (s.sets.), then g.: v.B ~ w.D; and if the square is 

a pullback with g.: v.B ~ v.D and with each jn: C n D n a fibration in 

(s.sets.) then f.: v.A : v.C. Moreover, a map f: X ~ Y in (spectra) 

is a stable weak equivalence iff Qf: QX ~ QY is a strict weak equiva- 

lence. The result now follows by using Theorem A.7 and the s impll- 

eia!ity criterion S~(b) of [Quillen I, 11.2]. 

Note that our definition of "stable fibration" does not actually 

depend on the choice of Q, because the fibrations in a closed model 

category are determined by the trivial cofibrations. 

2.4. The stable homot0py ~ategory. By 2.5 below, 

Ho(spectra) stable is the usual stable homotopy category; and by model 

category theory, it is equivalent to the "concrete" category 

ho(spectra) stable of fibrant-cofibrant spectra in (spectra) stable and 

homotopy classes of maps. Note that a spectrum X¢(spectra) stable is 

fibra~t iff X is an n-spectrum with each X n a Kan complex, and X 

S I X n X n+l is cofibrant iff each ~: A ~ is an injection. Also, it is 

easy to show that Q induces an equivalence 

Ho(spectra) stable -- ~ Ho(n-spectra) Strict 

where Ho(n-spectra) strict 

Ho(spectra) strict 

is the full subcategory of n-spectra in 

2.5. E~uivalence of various stable homotopy theories 

We wish to show that our model category (spectra) stable gives a 
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homotopy theory equivalent to that for (Kan's spectra) developed in 

[Kan] and [Brown]. Recall that Kan's spectra are like pointed sim- 

plicial sets, except that they have simplices in both positive and 

negative degrees, and have operators d i and s i for all i h 0. They 

arise as "direct limits" of Kan's prespectra, which are sequences 

K0,KI,K2,... in (s.sets.) together with maps SK n * K n+l for n h O. 

Here, S(-) is the "small" suspension functor given in [Kan,2.2]; so 

for K~(s.sets.), the non-basepoint non-degenerate simplices of (SK) i 

correspond to those of Ki_ 1 but have trivial i th faces. 

It is difficult to relate our spectra to Kan's in a purely sim- 

plicial way, because the suspension funetors S(-) and S 1 ^ (-) are 

very different. Thus we will need the intermediate category 

(top. spectra) defined as in 2.1, but using pointed topological spaces 

and the topological suspension. We will also need the category (Kan's 

prespectra) defined as in 2.1, but using the "small" suspension functor 

S(-) as indicated above. Our categories (top. spectra) and (Kan's 

presepctra) differ from those discussed in [Kan], because we put no 

injectivity conditions on the structural maps; but there are still 

adjoint functors 

(spectra) I I > (top. spectra) 
<--~y~g 

II . (Kan's prespectra) <S~s> (Kan's spectra) 

defined as in [}(an, §§3,4], where the upper arrows are the left ad- 

joints. In particular, the realization and singular functors induce 

adjoint functors between (spectra) and (top. spectra), where the 

structural maps are handled using the natural homeomorphism 

IS 1 A K 1 : ISII A IKI for K((s.sets.). We define closed model cate- 

gory structures on (top. spectra) and (Kan's prespectra) by mimicing 

the construction of (spectra) Stable; in the construction for 
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(top. spectra), we use the standard model category structure on 

pointed topological spaces, c.f. [Quillen i, 11.3]. The above pairs 

of adjoint functors all satisfy the hypotheses of [Quillen i, 1.4, 

Th. 3], and thus induce "equivalences of homotopy theories;" in par- 

ticular, the four stable homotopy categories are equivalent. We re- 

mark that, unlike (spectra) and (top. spectra), the categories (Kan's 

prespectra) and (Kan's spectra) do not seem to have reasonable closed 

simplicial model category structures. 

~3. The strict homotopy theory of r-spaces. 

In this section, we introduce F-spaces and verify that they admit 

a "strict" model category structure similar to that of spectra. Not 

only does this "strict" model category structure admit applications 

(cf. [Friedlander]), but also it enables us to subsequently construct 

the "stable" model category structure on the category of r-spaces 

(whose homotopy category is the homotopy category of connected 

spectra). 

We adopt D. Anderson's viewpoint in defining F-spaces. Let F 0 

denote the category of finite pointed sets and pointed maps; r 0 is the 

dual of the category considered by G. Segal [Segal I]. For n ~ O, let 

n + denote the set [0, I .... ,n} with basepoint O~n +. 

Definition 3.1. Let C be a pointed category with initial- 

terminal object *. A r-object over C is a functor A: F 0 * C such 

that A(O +) = ,. A r-space is a F-object over the category (s.sets,) 

of pointed simplicial sets. rOc is the category of r-objects over C. 

The reader should consult [Friedlander], [Segal !] for interesting 

examples of r-topological spaces, F-spaces, and F-varieties. 

For notational convenience, we shall sometimes view a r-object 

over C as a functor from the full subcategory of r 0 whose objects 

are the sets n +, n > O. Such a functor is the restriction of a func- 

tor F 0 * ~ (determined up to canonical equivalence). 
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We begin our consideration of ~O(s.sets.), the category of 

r-spaces, by introducing some categorical constructions. For 

AcrO(s.sets.) and K¢(s.sets.), define AAK ~ TO(s.sets.) by 

(AAK) (n +) = A(n+)AK for n ~_ 0 

and define AK~rO(s.sets.) by 

AK(n +) = A[n+) K for n ~_ 0 

If A, B¢~O(s.sets.), we define HOM(A,B)¢(s.sets.) by 

HOM(A,B)_~ ~ ~ = HomFo (s'sets*) (AA(A[n]~ U .),B).~ 

Definition 3.2. Let in: r~ * r 0 denote the inclusion of the full 

subcategory of all finite sets with no more than n non-basepoint 

elements. Let 

Tn: rO(s.sets.) * r~(s.sets.) 

be the n-truncation functor defined by sending A: r 0 . (s.sets.) to 

A , i  : l"n 0 ~ ( s . s e t s . ) .  The  l e f t  a d j o i n t  o f  T n 
~ n 

Skn: I~nO(s.sets.) * rO(s.sets.) 

A 0 is called the n-skeleton functor and is given for ~¢rn(S.sets .) by 

(SknA) (m +) = colim A ( k + ) .  

k+ m+ ~ 
k<n  

The right adjoint of T n 
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CSk~: F ~ ( s . s e t s . )  * F O ( s . s e t s . )  

is called the n-coskeleton functor and is given for ~[F~(s.sets.) by 

(cskn~)(m+) = lim A(j+). 

m+ j+ ~ 
j<_n 

We shall frequently commit a slight abuse of notation and let 

s~§ cs A s~.Tn(A) - kn denote cs~,Tn(~) for ~(FO(s.sets.) 

Our construction of the strict model category for F-spaces depends 

on the following model category structure for G-equivariant homotopy 

theory for the groups G = E n (the groups of pointed automorphisms of 

n+). For any group G, we let G(s.sets.) denote the category of 

pointed simplicial sets with left G-action (or, equivalently, of sim- 

plicial objects over pointed left G-sets). For X,Y~G(s.sets.), 

HOM(X,Y) denotes the simplicial set defined by 

HOM(X,Y)n = HOmG(s.sets.)(XA(A[n] U * ) , Y )  

where G acts trivially on A[n] U *. 

Proposition 3.3- For any G, the category G(s.sets.) is a proper 

closed simplicial model category when provided with the following 

additional structure: a G-weak equivalence (respectively, a G-fibra- 

tion) is a map f: X ~ Y in G(s.sets.)which is a weak equivalence 

(resp., fibration) in (s.sets.); a G-eofibration is a map f: X ~ Y in 

G(s.sets.) which is injective and for which G acts freely on the 

simplices not in the image of f. 

The proof of Proposition 3.3 is straight-forward; indeed, this 

model category is a case of that defined in [Quillen i, 11.4]. 

The role of En-equivariance is revealed by the following 
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proposition, whose straight-forward proof we omit (the notation of the 

proposition has been chosen to fit the proof of Theorem 3.5). 

0 
Proposition 3.4. For B, X~F~(s.sets.), let Un_l: Tn_IB ~ T n i X 

0 
be a map in Fn_l(s.sets.). A map un: B(n +) ~ X(n +) in (s.sets.) 

a prolongation of u ~ to u: B ~ X in F~(s.sets.) determines if and 

only if u n is a En-equivariant map which fills in the following commu- 

tative diagram in Zn(S.sets.): 

(3.4.~) 

(sklu_ .]B) (n +) -~ B(n +) -~( CSkn_IB) (n +) 
i 

[s~ (u~ ' ~ (u n , cs -I -1 ) 
-l -i) ¢ v 

(Skn_!X) (n +) -~ X(n +) -~ (CSkn_iX) (n +) 

Proposition 3.4 should motivate the following model category 

structure on FO(s.sets.). 

Theorem 3.5. The category of F-spaces becomes a proper closed 

simplicial model category (denoted F0(s.sets.)strict), when provided 

with the following additional structure: a map f: A ~ B(F0(s.sets.) 

is called a strict weak equivalence if f(n+): ~(n +) ~ ~(n +) is a (En-) 

weak equivalence for n ~ i; f: A ~ B is called a strict cofibration 

if the induced map 

(3.5.1) (Sin-i~) (n+) %]Ji A(n+) ? B(n+) 
(s _ A) (n +) - - 

is a En-COfibration for n ~ i; and a map f: A ~ B is called a strict 

fibration if the induced map 

(3.5.2) i(n +) > (csk n IA) (n +) B(n +) 
~ - - (cs~ ~B)(n +) " 

iI--I~ 

is a (En-) fibration for n ~ I. 

This model category structure is similar to that obtained by 
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C. Reedy for simplicial objects over a closed model category, and our 

proof will somewhat resemble his. 

Proof. Because finite limits, finite colimits, and weak equivalences 

in FO(s.sets.) strlct are defined level-wise, CMI and CM2 are immedi- 

ately verified. Similarly, CM9 for FO(s.sets.) strict follows directly 

from CM9 for Zn(S.sets.) for each n > O. 

To prove one half of CM% (we omit the similar proof of the other 

half) for FO(s.sets.) strict, let 

(3.5.3) 

A > X 

B > Y 

be a diagram in FO(s.sets.) strict such that i is a strict trivial 

cofibration and p is a strict fibration. A filler u: B ~ X is con- 

structed inductively by finding fillers u~: TnB ~ Tn~ for the trunca- 

tions Tn(3.5.3) of diagram (3.5.3) for n ~ i. These truncated fillers 

are obtained by applying Propositions 3.3 and 3.4 together w&th the 

facts that (sk ~B)(n +) k~ ~ A(n +) ~ B(n +) is trivial Zn-COfibra- 

~- ~- (s ~i-lf ) " " 

tion and X(n +) ~ (CSkn_l~) (n +) x Y(n +) is a (En-)fibratlon. 
- (esi~_l~) (n +) - 

The second fact is immediate, and the first follows since (Skn_if)(n+). 

(S~_l~)(n+) is a trivial eofibration as in the proof of 3.7 below. 

To prove one half of CM5 (we omit the similar proof of the other 

half), we must factor a map f: A * B in FO(s.sets.) as f = p.i where 

i is a strict trivial cofibration and p is a strict fibration. Sup- 

pose inductively that we have a factorization 

Tn_l~ ~ Tn_IC -~ Tn_IB ¢ TO_!(s.sets.) 
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for some n ~ i. Using the closed model category structure on 

En(S.sets.) given by Proposition 3.3, we obtain a factorization in 

En(S.sets.) 

of the canonical map with ~ a trivial Zn-COfibration and B a fibra- 

tlon. The desired factorization A ~ C ~ B is now obtained by induction 

using 3.4 and the following lemma (whose proof is immediate); the map 

A ~ C is a strict trivial cofibration by a patching argument as in the 

proof of 3.7 below. 

C 0 Lemma 3.6. For ~¢Fn_l(s.sets.), let 

<s~_ic> (n +) -,. K ~ (OSkn_iC)(n+> 

be a factorization in Zn(S.sets .) of the canonical map. Then C pro- 

longs to an object C'~r~(s.sets.) with C'(n +) = K such that the given 

factorization equals the canonical one for C'. 

This completes the proof of CMS, and thus of the fact that 

rO(s.sets.) strict is a closed model category. To prove that 

pO(s.sets.)strict is a simplicial closed model category, it suffices 

to prove for each fibration p: A ~ B in rO(s.sets.) and each cofibra- 
~ 

tlon i: K ~ L in (s.sets) that the induced map in rO(s.sets.) strict 

~: A L ~ A K × B L 
~ ~ BK ~ 

~ 

is a fibration which is trivial whenever either p or i is trivial. 

This follows easily from the closed model category properties of 

(s.sets.), because the maps of type (3.5.2) associated with ~ are 

given by the maps D L ~ D K ~K EL in (s.sets.) induced by 
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D = A(n +) ~ (cs%_l~J(n+) × B(n +) = ~ 
- (cs%iB)(n+) - 

Finally, to prove that FO(s.sets.) strlct is a proper simplicial 

closed model category, it suffices to prove the following lemma and 

then employ the fact that (s.sets.) is a proper closed model category 

(one proceeds level-by-level, since strict weak equivalences are 

determined levelwise). 

Lemma 3.7. If f: A ~ B is a cofibration (resp., fibration) in 

FO(s.sets.) s t r ic t ,  then 

(sk~nA) (n +) -~ (sk~)(n +) (resp., (CSkmA)(n +) -~ (CSkmB)(n+)) 

is a cofibration (resp., fibratlon) in (s.sets.) for all m,n h O. 

Proof. We treat the cofibration case and omit the similar proof 

of the fibration case. Assuming inductively that 

(Skm_l~) (n +) ~ (Skm_iB)(n+) is a cofibration, we will show that 

(sk~A)(n +) ~ (sk~B)(n +) is a cofibration. There is a push-out square 

sk ~A(S) . sk m !A(n +) 

skA(S) ~ skA(n +1 

where S runs through the pointed subsets of n + with exactly m non- 

basepoint elements. Note that for n < m the sums on the left are 

trivial, and for n h m the maps Skm_l~(S ) ~ sk~(S) are equivalent to 

the canonical maps Skm_l~(m +) ~ .A(m+)" The fact that 

Skm~(n +) ~ sk~(n +) is a cofibration now follows from the following 

lemma applied to the natural map from the above push-out square to 
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the analogous push-out square for B. 

3.8. Reedy's patching lemma ([Reedy]). 

Let 

A 2 < A I > A 3 

B 2 < B I • > B 3 

be a diagram in a closed model category, e.g. (s.sets.). If f3 and 

A 2 A~ I B I ~ B 2 are cofibrations (resp. trivial cofibrations), then 

Ires  • 

This follows since the maps 

A2 ~ A3 ~ A2 A~I B3 ~ (A2 ~i BI) B~I B3 ~ B2 B~I B3 

are cofibrations (resp. trivial cofibrations). Of course, there is 

also a dual result. 

We observe in passing that Theorem 3.5 is valid more generally 

for r-objects over certain other pointed model categories C besides 

(s.sets.). To obtain such a generalization, one must be able to im- 

pose a suitable model category structure on the category Zn~ of left 

Zn-objects over ~ for each n ~ i. In general, this may not be 

feasible; however, in favorable cases (e.g., when ~ is Quiilen's 

model category of pointed topological spaces [Quillen i, 11.3]), Zn~ 

has a closed model category structure such that a map f in Zn~ is a 

Zn-fibration if and only if f is a fibration in ~, and f is a 

Zn-weak equivalence if and only if f is a weak equivalence in ~. 

(The Zn-Cofibrations are then determined by closure, and are 
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cofibrations in ~). In these favorable cases, one obtains a closed 

model category rOc strict as in Theorem 3.5. 

Finally, we remark that pO(s.sets.) admits a second reasonable 

"strict" model category structure. This is obtained by [Bousfield- 

Kan, p. 314] and has weak equivalences (resp. fibrations) given by the 

termwise weak equivalences (resp. fibrations). However, our version 

seems to be more useful in applications and allows the symmetric 

groups to play a more explicit role. 

~4. The construction of homology theories from r-spaces 

In this section we give gn exposition, and slight generalization, 

of some results of [Anderson] and [Segal i]. In particular, we show 

that a r-space A induces a generalized homology theory h.(; A) which 

can be directly computed when A is "(very) special" by using A as 

a chain functor. The constructions and proofs in this section will be 

used in §5 to compare ~-spaces with spectra and to develop the "stable" 

model category structure for r-spaces. 

We begin by showing that a r-space A: r 0 ~ (s.sets.) prolongs 

successively to functors A: (sets.) ~ (s.sets.), 

A: (s.sets.) ~ (s.sets.), and A: (spectra) ~ (spectra). For 

We(sets.) define A(W) E(s.sets.) by 

A(W) : colim A(V). 
~ VoW ~ 

V~r 0 

For K¢(s.sets.) define ~Kc(s.sets.) by (~K)n : (~Kn) n for n ~ 0 with 

the obvious face and degeneracy operators. Thus AK is the diagonal of 

the blsimplicial set (AK.)., cf. Appendix B. In order to prolong A 

to spectra, note that for K,L¢(s.sets.) there is a natural simplicial 

map L A ~ AK ~ ~ A(L A K) sending x ^ y~L n ^ (~Kn) n to the image of y 

under the map ~(x ^ --)n: ~(Kn)n ~ ~(Ln ^ Kn)" Now for ~c(spectra) 
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define ~5¢(speetra) by (~)n : ~(sn) with the obvious structural maps 

s I ^ A(x n) -~ A(s I ^ _x n) _~ .A(xn+l) - .  

Finally, for K,L~(s.sets.) and X¢(spectra), there are pairings 

(AK) A L -, A(K A L)¢(s.sets.) 

(AX) a L ~ A(X A L) c(spectra) 

whose definitions are now obvious. In particular, A preserves the 

simplicial homotopy relation for maps in (s.sets.) and (spectra). 

A F-space A determines a spectrum AS where S is the sphere 

spectrum, and we let h.(; A) be the associated homology theory, i.e. 

~.(K; A) = ~.(AS) A K for K¢(s.sets.). An alternative construction of 

~.(K; A) is given by 

(AS) 

Lemma 4.1. If A is a F-space and K~(s.sets.), then the map 

a K ~ ~(~ ^ K) is a stable weak equivalence, cf. 2.3, and thus 

~.(K; A) : colim 7r.+ n A(S n A K). 

The proof is in 4.8. To give an even more direct construction of 

~.(K; A), we must put conditions on A. A F-space A is special if 

the obvious map A(V v W) * AV × AW is a weak equivalence for V,W(F 0. 

This is equivalent to requiring that for n > 1 the map 

~(pl ) × ... × 5pn): §(n +) ~ ~(l +) × ..- × ~(l +) 

is a weak equivalence where Pi: n+ ~ I+ is defined by Pi(i) = i and 

pi(j) = 0 for j ~ i. For A special, 7[oA(I+) is an abelian monold 
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with multiplication 

(P t ) .  X (P2)..TroA(2+) ~.~ > TroA(I+) ~oA(I +) x %A(I +) < : . . 

2 + i + where ~: ~ is defined by ~(0) = 0, ~(i) = i, and ~(2) = i. A 

A is very special if A is special and ~oA(I +) is F-space an 

abelian group. 

The following theorem shows that a very special F-space can be 

used as a chain functor. 

Theorem 4.2. (cf. [Anderson, p. 3], [Segal, i, 1.4]). If 

is a very special F-space and K~(s.sets.), then A(S a K) is an 

n-spectrum and ~.(K; A) ." ~.AK. 

This is an easy consequence of 4.1 and 

A 

then 

Lemma 4.3. If A is a very special T-space and L = K~(s.sets.), 

AL ~ AK ~ A(K/L) 

is a homotopy fibration, i.e. AK maps by a weak equivalence to the 

homotopy theoretic fibre of AK ~ A(K/L). 

Proof. It suffices to show that the bisimplicial square 

satisfies the hypotheses of Theorem B.4. The termwise homotopy fibre 

square condition follows since A is special. The remaining 
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conditions follow by B.3..I, because the maps 

~((~K.).)free ~ ~(~K.). for t ~ i 

v~<A<K./L.).>free ~ v~(K./L.), for t > i 

are fibrations since they are surjective homomorphisms of simplicial 

groups. 

We now wish to generalize Theorem 4.2 to the case of a F-space A 

which is merely special. For such A, the map A(K v L) ~ AK × AL is 

a weak equivalence for K,L¢(s.sets.) by B.2. Thus ~o~K is an abelian 

monoid with multiplication given by 

~AKu~ × ~0 AK~ < = ~0~(K v K) ~* > ~oAX~ 

where ~: K v K ~ K is the folding map. 

Theorem 4.4 (cf. [Segal, 1.4]). Let A be a special F-space and 

Kc(s.sets.). Then A(S ^ K) is an ~-spectrtun above its 0 th term and 

thus ~.(K; A) = v.+IA(S I ^ K). If v0AK is an abelian group, then 

A(S A K) is an a-spectrum and thus ~.(K; A) ," v.AK. 

Proof. Let B be the F-space with B(n +) = A(n + A S I A K) for 

n ~ O, and note that B is very special. Hence BS is an ~-spectrum 

by 4.2, and the first statement follows since BS gives the portion of 

A(S A K) above its 0 th term. The second statement follows similarly 

using the F-space C with C(n +) = A(n + ^ K). 

We now turn to the proof of Lemma 4.1 which asserts that the map 

(AS) A K ~ A(S A K) is a stable weak equivalence. Although our proof 

is somewhat indirect, it allows us to introduce some notions needed 
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in §5. It is based on the following general criterion. 

Lemma 4.5. In a closed simplicial model category ~, e.g. 

(spectra) stable , a map f: A ~ B between cofibrant objects is a weak 

equivalence <~> f*: HOM(B,X) ~ HOM(A,X) is a weak equivalence in 

(s.sets) for all fibrant X~. 

Proof. f is a weak equivalence <=> f*: [B,X] = [A,X] for all 

fibrant X¢C <-~-> f*: [B,X K] = [A,X K] for all K¢(s.sets) and fibrant 

X¢~ <-----> f*: [K, HOM(B,X)] % [K, HOM(A,X)] for all K((s.sets.) and 

fibrant X¢C <-----> f*: HOM(B,X) ~ HOM(A,X) is a weak equivalence for 

all fibrant X~. 

To effectively apply 4.5 in our case we need an adjointness 

lemma. For X,Y¢(spectra) define a F-space ~(X,Y) by 
~ ~ ~ ~ 

¢(X,Y) (V) = HOM(speetra ) (xV, y)~ ~ 

for VEF 0 where X V = X x "'" × Xc(spectra) is the product of copies of 

X indexed by the non-basepoint elements in V. 

Lemma 4.6. For X,Y¢(spectra) and AcFO(s.sets.), there is a 

natural simplicial isomorphism 

HOM(spectra ) (AX,Y)_~ ~ = HOMFo (s'sets*) (A,~(X,Y>>~. 

Proof. For a functor T: F 0 ~ (sets,) with T(0 +) = , and 

We(sets.), there is a natural isomorphism 

W n+ (II ^ Tn +)/. ~> TW 
n>o 

where 
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T(W) = colim T(V) 
VmW 
V(F 0 

and where ~ is the equivalence relation generated by setting 

~.(x) ~*(x) for each ~: m + n + in ~0 and each xcW n+ ~ ~ ^ Tm + using 

~+ ~+ 
^Tin +< ~ Wn + ̂  T + ~ > ^Tn +. 

Thus there is a natural isomorphism 

X n+ AX -" (~ A A(n+))/~ ((spectra) 
-~ n>O " ~ 

and the lemma follows easily. 

To prove 4.1 using 4.5, we need a final technical lemma which will 

also be used in §5- 

Lemma 4.7. Let f: B * C be a map of F-spaces, and let X be a 

spectrum. Then: 

(1) If f is a strict weak equivalence, then so is f.: BX . CX. 

(ii) If f: B(n +) . C(n +) is an injection for each n ~ O, then 

f . :  BX ~ CX i s  a s t r i c t  c o f i b r a t i o n .  

(iii) If X is strictly cofibrant and g: Y . Z is a strict fibra- 

tion of spectra, then g.: ~(X,Y) ~ ~(X,Z) is a strict fibration. 

Proof. Part (i) follows from B.2, and (ii) is reasonably 

straightforward. For (iii), it suffices to show that g. has the right 

lifting property for each strict trivial cofibration f: B . C of 

F-spaces. This follows from 4.6 using (i) and (ii). 

4.8. Proof of 4.1. By 4.7(i) we can assume A is a strictly 
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cofibrant F-space. To show (AS) a K ~ A(S a K) is a stable weak equi- 

valence, it suffices by %.5, 4.6, and 4o7(ii) to show that the map 

HOH(A,~(S ^ K,x)) : HOM(A(S ^ K),x) 

> ~oM((}p ^ x,p : HOM(5~<{,}%) 

is a weak equivalence for each stably fibrant spectrum X. Now ~(SAK, X) 

and @(S,X K) are strictly fibrant by4.7(iii), and it suffices by the dual 

of 4.5 to show that the map ~(S a K,X) ~ ~(S,X K) is a strict weak 

equivalence. This follows by ~.5 since the maps 

(S × ..- x S) A K ~ (S A K) X "'" x (S A K) ¢(spectra) Stable 

are weak equivalence's of cofibrant objects. 

We conclude this section by noting that the functor 

A: (s.sets.) ~ (s.sets.) has homotopy theoretic significance even when 

A is not special. 

Proposition 4. 9 . For A~FO(s.sets.), if f: K ~ L¢(s.sets.) is a 

weak equivalence then so is Af: AK ~ AL. Thus A induces a functor 

HoA: Ho(s.sets.) ~ Ho(s.sets.). 

The proof is very similar to that of 4.1. 

Corollary 4.10. For A~rO(s.sets.), if Kc(s.sets.) 

for some n >_ 0 then so is AK. 

is n-connected 

Proof. This is clear when K i = . for i <_ n, and the general case 

now follows by 4. 9 . 
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~5. The stable homotopy theory of F-spaces 

Foliowing Graeme Segal, we will show that the strict homotopy 

category of very special F-spaces is equivalent to the stable homotopy 

category of connective spectra. Then we will develop a "stable" model 

category structure for F-spaces such that the associated homotopy 

category is equivalent to that of connective spectra. 

By 4.6 there are functors 

(-)~: FO(s.sets.) < > (spectra): ~(~,-) 

with (-)~ left adjoint to %(~,-); 

phism 

indeed, there is a natural isomor- 

~0M(AS,X) : HOM(A,~(S,X)) 

for a F-space A and spectrum X. By 4.7 and the dual of 4.5, 

(-)S preserves weak equivalences and cofibrations in 

FO(s.sets.) strict, while ~(S,-) preserves weak equivalences between 

fibrant objects and fibrations in (spectra] strict . Thus by [Quillen i, 

1.4], there are induced adjoint functors 

Lstrict: HoF0(s.sets.) strict < > Ho(spectra) strict R strict 

where Lstrict(A) = AS for A~HoF0(s.sets.) strict and 

Rstrict(x) = ~(S,X') for X~Ho(spectra) Strict where X ~ X' 

weak equivalence with X' strictly fibrant. Now let 

Ho(v.s. F-spaces) strict ~ HorO(s.sets.) strict 

is a strict 

Ho(c. a-spectra) strict ~ Ho(spectra) Strict 

denote the full subcategories given by the very special F-spaces and 
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the connective ~-spectra respectively, where a spectrum 

connective if ~i X = 0 for i < O. 

X is called 

Theorem 5.1. (cf. [Anderson, pp. 4,5], [Segal i, 1.4]). The 

adjoint functors L strict and R strict restrict to adjoint equivalences 

Lstrict: Ho(v.s. F-spaces) strict < > Ho(c. n-spectra) Strict: R strict. 

Moreover, Ho(c. n-spectra) strict is equivalent to the usual homotopy 

category of connective spectra. 

Proof. The first statement is proved by combining the four facts 

below, and the last follows from 2.4. If A is a very special 

F-space, then AS is a connective n-spectrum by 4.2 and 4.10. If X 

is a strictly fibrant n-spectrum, then ¢(~,~) is a very special 

F-space by 4.5 since the maps S v --- v S ~ S x ''- x S are weak equi- 

valences in (spectra) stable If A is a very special F-space and 

AS ~ X is a strict weak equivalence with X strictly fibrant, then 

the natural map A ~ ~(S,X) is a strict weak equivalence, because both 

A and ~(S,X) are very special and the map 

(~s) ° = ~ ( l  +) ~ ~ ( s , ~ ) ( z  +) = x °c (s°se ts~ )  

is a weak equivalence. Similarly, if A ~ ¢(S,X) is a strict weak 

equivalence for some strictly fibrant connective n-spectrum X, then 

the natural map AS ~ X is a weak equivalence. 

We now wish to use our strict homotopy theory of F-spaces to 

build a corresponding stable theory, just as we previously used our 

strict homotopy theory of spectra to build a stable theory in 2.3. 

Theorem 5.2. The category of F-spaces becomes a closed 
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simplicial model category (denoted FO(s.sehs.) stable) when provided 

with the following additional structure: a map f: A . B~rO(s.sets.) 

is called a stable weak equivalence if f.: ~.AS = ~.BS; f: A ~ B is 

called a stable cofibration if it is a strict cofibration; and 

f: A . B is called a stable fibration if it has the right lifting 

property for the stable trivial cofibrations. 

Following the proof we will say more about stable fibrations in 

5.7. Our proof will rely on the formal machinery developed in Appen- 

dix A. Let Q: (spectra) . (spectra) and 9: I * Q be such that, for 

each spectrum X, ~X: X . QX is a stable weak equivalence and QX is a 

stably fibrant spectrum, cf. ~2. Now define 

T: FO(s.sets.) ~ FO(s.sets.) by TA = @(S,QAS) and let ~: i . T be the 

canonical transformation. Note that for each F-space A, ~A: A . TA 

is a stable weak equivalence and TA is strictly fibrant and very 

special. Using the terminology of Appendix A, the T-equivalences, 

T-cofibratlons, and T-flbrations in FO(s.sets.) strict are the same as 

the stable weak equivalences, stable cofibrations, stable fibrations, 

respectively. Moreover, for 9: i . T, the conditions (A.4) and (A.5) 

clearly hold although (A.6) doesn't, cf. 5-7- Thus by A.8(i) all the 

closed model category axioms hold in FO(s.sets.) stable except possibly 

for the "trivial cofibration, fibration" part of CMS. To verify an 

important case of that part, we use the following substitute for (A.6). 

Lemma 5.3. For a pull-back square 

in r0(s.sets.), suppose 

very special and with 

h 
A > X 

~ k>Y 

j is a strict fibratlon with X and Y 



106 

~o}(l+) ~o_ X(s) J~ ~, ,> ~-oY(S) = ~-oY(1 +) 

onto. If k is a stable weak equivalence, then so is h. 

Proof. For K~(s.sets.) consider the induced square 

A(K.). * x(K.). 

I ,t 
of bisimp!icial sets. As in the proof of 4.3, X(K.). and Y(K.). 

v ~ K.). is fibra- satisfy the ~.-Kan condition and j.: ~o~(K.). ~ ( a 

tion. Thus by B.4 

AK > XK 

BK > YK 

is a homotopy fibre square in (s.sets~), and the lemma follows easily. 

Now using 5.3 in place of (A.6), the argument in A.10 shows that 

if f: X ~ Y is a map in rO(s.sets.) with f.: ~X(S) ~ ~oY(S) onto, 

then f can be factored as f = pi where i is a stable trivial cofi- 

bration and p is a stable fibration. The following lemma will com- 

plete the proof of CMS, and Theorem 5.2 will then follow using the 

criterion SM7(b) of [Quillen i, 11.2]. 

U 

Lemma 5.4. Each map f: A . B in F0(s.sets.) can be factored as 

> C v > B where u.: ~nAS ~ ~0~ is onto and v is a stable fi- 

bration. 
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To prove this (in 5.6) we will first show that the functor 

WO(-)(S): FO(s°sets.) ~ (ab. gps.) 

has a right adjoint. For an abelian group M, let M be the usual 

very special F-space such that M(V)n = M V for VcF 0 and n h O, where 
~ 

~V is the product of copies of M indexed by the non-basepoint ele- 

ments of V. Clearly MS is an Eilenberg-MacLane spectrum of type 
~ ~  

(M,O), and we identify WO~ with M. 

map 

Lemma 5.5. For a F-space A and an abelian group M, the obvious 

H°mF0(s.sets, ) (~'~) ~ H°m(ab. gps.) (VO~ 'M) 

is a bijection. 

with 

Proof. In F0(s.sets.),- let B ~ A be a strict weak equivalence 

B strictly cofibrant. In the square 

Homro ( (A,M) -, HOm(a b 
s.sets.) ~ ~ . gps.) 

HOmrO ( (B,M) ~ HOm(a b 
s.sets.) _ ~ . gps.) 

(~nAS,M) 

the right map is bijective since ~AS ~ ~nBS, and the left map is 

bijective since 

Hom(s.sets. ) (~(n+),M(n+)) : HOm(sets. ) (~o~(n+), Mn+) 

HOm(sets.)(~oB(n+),M n+) = Hom(s.sets.)(~(n+),M(n+)). 
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The lemma now follows since the bottom map of the square is a com- 

posite of bijections 

Hom(B,M) .- > ~0HOM(B,M) = i > ~0HOM(B,~(S,~)) 

:,,> ~oHOM(BS,M~) = 2 > Hom(~aBS,M) 

where i holds by 5.1 and the dual of 4.5, and 2 holds since 

~oHOM(BS,Y~) is the set of homotopy classes from the connective spec- 

trum BS t o  t h e  E i l e n b e r g - M a c L a n e  s p e c t r u m  MS i n  ( s p e c t r a )  s t a b l e  

5.6. Proof of 5.4. It will suffice to inductively construct a 

descending sequence of F-spaces 

B C O C I C 2 C ~ = ~ ~ ~-.-~ ~... 

indexed by the ordinal numbers and such that: f(A) ~ C ~ for all ~; 

the inclusion C ~ c> B is a stable fibration for all ~; and, for 

sufficiently large ~, C ~ = C ~+I and f.: ~AS ~ ~^C~S is onto. Given 

~ C B with f(f) = .C ~, define _C ~+I c B~ by the pull-back 

C ~+I > M ~ 

c~ > (~oc~s) 

where M ~ is the image of f.: ~^AS ~ ~C~S and where the bottom map 

corresponds via 5.5 to the identity on ~C~S. Note that 

C ~+I ~ > C ~ is a stable fibration because M ~ ~> (~oC~S) is one by 

an argument using 5.5, and note that f(A) c C ~+I. Given a limit 

ordinal ~ and given C ~ c B with f(A) c C ~ for all ~ < k, define 
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C ~ ~ B by C ~ 
~ . ~ = N C ~, and note that f(A) < C ~. This completes the 

~<X ~ 

inductive construction of [C~], and the desired properties are easily 

verified. 

This concludes the proof of Theorem 5.2 and we next discuss 

5.7- Stable fibrations of r-spaces. By A.9, a sufficient condi- 

tion for a F-space map f: A ~ B to be a stable fibration is that f 

be a strict fibration and that 

A ~> TA 

be a homotopy fibre square in rO(s.sets.) strict When 

f.: ~NAS ~ ~^BS is onto, this condition is also necessary by the argu- 

ment of A.10; but it is not always necessary. To give an example, 

we first note that an abelian monoid M determines a F-space M with 

M(V)n = M V for V~F 0 and n ~ O. Letting M denote the u~iversal 

abelian group generated by M, we note that the F-space map M ~ M is 

a stable weak equivalence, because ~.MS n ~ > ~.MS n for n ~ i by 

[Spanier, Corollary 5.7]. Now let M be the abelian monoid given by 

M = [n~zln > o] u [o'] 

with the usual addition for the non-negative integers and with 

O' + O' = O, O' + 0 = 0', 0' + n = n for n ~ I. Note that M = Z, and 

let D = [0,0'] ~ M. Using the pull-back square 
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D > 0 

M > Z 

in Fo(S.sets.), one sees that D c > M is a stable fibration although 

it doesn't satisfy the sufficient condition mentioned above. Since 

M ~ Z is a stable weak equivalence and D ~ 0 is not, this square also 

shows that (A.6) fails in our r-space context. 

For the adjoint furlctors 

(-)~: rO(s.sets.) < > (spectra): ~(~,-) 

it is now easy to verify that (-)S preserves weak equivalences and 

cofibrations in FO(s.sets.) stable, while ~(S,-) preserves weak equi- 

valences between fibrant objects and fibrations in (spectra) stable 

Thus by [Quillen i, 1.4] there are induced adjoint functors 

Lstable: HoFO(s.sets.) stable ~ > Ho(spectra) Stable: R stable 

and we let 

Ho(c.spectra) Stable ~ Ho(spectra) Stable 

denote the full subcategory given by the connective spectra. It is 

now easy to prove 

Theorem 5.8. The adjoint functors L stable and R stable restrict 

to adjoint equivalences 

Lstable: HorO(s.sets.)Stable < > Ho(c.spectra) Stable: R stable. 
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Thus the stable homotopy category of r-spaces is equivalent to 

the usual connective homotopy category of spectra. Moreover, it is 

easy to show that T induces an equivalence 

HorO(s.sets.)  s table  = > Ho(v.s. F-spaces) s t r i c t  

just as Q induced an equivalence 

Ho(spectra) Stable -~ > Ho(~-spectra) Strict 

in 2.4. 
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Appendix A. Proper closed model categories 

In this appendix we outline some formal results on proper closed 

model categories (cf. 1.2) which we use in §§2,5 to pass from our 

"strict" to our "stable" model category structures on spectra and 

r-spaces. Some familiar examples of proper closed model categories 

are the (pointed) simplicial sets, (pointed) topological spaces, and 

simplieial groups, all equipped with the standard model structures 

([Quillen i, 11.3]); however, as noted in [Quillen 2, p. 241], some 

closed model categories are not proper. 

Our first result may be viewed as a generalization of the factori- 

zation axiom CM5 (see i.i). 

Proposition A.I. Let ~ be a proper closed model category and 

let f: X , Y in C . For each factorization If] = vu in HoC there is 

a factorization f = ji in C such that i is a cofibration, j is a 

fibration, and the factorization If] = [j][i] is equivalent to 

If] = vu in HoG (i.e. there exists an isomorphism w in Ho~ such 

that wu = [i] and [j]w = v.) 

Proof. First suppose X is cofibrant and Y is fibrant. Then 

choose a fibrant-cofibrant object W¢~ and maps X ~ ~ W B ~ y in 

such that If] = [B][~] and such that this factorization is equivalent 

to [f] = vu in HoG . Using CM5 and the homotopy extension theorem 

([Quillen, HA, Ch. I, p. 1.7]), one then constructs the desired fac- 

torization f = ji. In the general case, choose weak equivalences 

s: X' , X and t: Y . Y' with X' cofibrant and Y' fibrant. Then apply 

the special case to give a factorization tfs = ~ where ~ is a co- 

flbration, e is a fibration, and the factorization 

[f] = ([t]-l[~])([~][s] -I) is equivalent to [f] = vu in HoG . Now, 

using the properness of ~ and CMS, it is not hard to construct the 

desired factorization of f. 
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A.2. Homotopy fibre squares. In a proper closed model category 

~, a commutative square 

A > C 

i I w 
v 

B > D 

is a homotopy fibre square if for some factorization C i 5 W P > D 

of w with i a weak equivalence and p a fibration, the map 

A ~ B ×D W is a weak equivalence. This easily implies that for any 

factorization B J > V ~ > D of v with j a weak equivalence and 

q a fibration, the map A ~ V ×D C is a weak equivalence. Thus in 

our definition we could have replaced "some" by "any" or used v in 

place of w. It is not hard to verify the following expected results. 

In a commutative diagram 

A > C > E 

B > D > F, 

if I and II are homotopy fibre squares, so is the combined square 

III; and if II and III are homotopy fibre squares, so is I. If a map 

between homotopy fibre squares has weak equivalences at the three 

corners away from the upper left, then it has a weak equivalence at 

the upper left. A retract of a homotopy fibre square is a homotopy 

fibre square. 

Although it does not depend on properness, we also need. 

A.3. The model category C Pairs. Let C be a closed model cate- 

gory, and let ~Pairs be the category whose objects are the maps in 
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and whose maps are commutative squares in ~ . A map 

fo 
A 0 > B 0 

AI f,l,> BI 

from i to j in ~Pairs will be called a weak equivalence (resp. 

fibration) if f0 and fl are weak equivalences (resp. fibrations), and 

B 0 ~ B I are cofibra- a cofibration if fo: AO B 0 and (fl,j): AI ~A0 

tlons. (This implies that fl: AI ~ BI is also a cofibration.) One 

easily shows that ~Pairs is a closed model category which is proper 

if ~ is proper. 

We now develop the machinery which allows us to pass from our 

"strict" to our "stable" model category structures on spectra and 

F-spaces. Let C be a proper closed model category, let Q: ~ ~ 

be a functor, and let ~: i ~ Q be a natural transformation. A map 

f: X ~ Y in C will be called a Q-equivalence if Qf: ~X ~ QY is a weak 

equivalence, a Q-cofibration if f is a cofibration, and a Q-fibration 

if the filler exists in each commutative diagram 

A > X 

li ,, tf 
~,Z , / "  V 

/ 

t3 > Y 

where i is a Q-cofibration and Q-equivalence. We wish to show that 

~Q is a proper closed model category, where C Q denotes ~ equipped 

with its Q-equlvalences, Q-cofibrations, and Q-fibrations. For this 

we need: 

(A.4) If f: X ~ Y is a weak equivalence in ~, then so is 
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Qf: QX . QY. 

(A.5) For each XCC the maps ~Qx, Q~x: QX . QQX are weak equi- 

valences in ~ . 

(A.6) For a pull-back square 

h 
A > X 

k 
B > Y 

in C, if j is a Q-fibration and k is a Q-equivalence, then h 

is a Q-equivalence; and the dual condition holds for a push-out square. 

Theorem A.7. Suppose (A.4), (A.5), and (A.6). Then C Q is a 

proper closed model category. Moreover, a map f: X . Y in ~ is a 

Q-fibration <~---> f is a fibration and 

X ~> QX 

y n> Qy 

is a homotopy fibre square in C. 

The proof is completed in A.10 after the following lemmas. In 

our r-space context, (A.6) does not quite hold and we use these lemmas 

directly. 

Lemma A.8. Suppose (A.4). Then: 

(i) ~Q satisfies CMI-CM4 and the "cofibration, trivial fibra- 

tion" part of CMS. 
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(ii) A map f: X ~ Y in C is a trivial fibration in ~Q <~> f is 

a trivial fibration in C . 

(iii) If f: X ~ Y is a fibration in ~ and both ~: X ~ QX and 

~: Y ~ QY are weak equivalences, then f is a Q-fibration. 

Proof. Statement (i) follows using (ii). In (ii), "<~" is 

clear and "~>" follows by first factoring f as f = ji with i a 

cofibration and j a trivial fibration, and then noting that f is 

a retract of j by a lifting argument using the fact that i is a 

Q-equivalence. For (iii), it suffices to show that the filler exists 

in each commutative square 

with 

to f 

A > X 

~ i //7 f 

B---> Y 

i a trivial cofibration in C Q. Viewing this as a map from 

in ~Pairs, we apply A.I and A.3 to factor it as 

A ~ V ....... ~ X 

B > W > Y 

where h is isomorphic to Qi in Ho(~Pairs). Then h is a weak 

equivalence, so we apply CM5 to h and use CM4 to obtain the desired 

filler. 

Now, A.8(iii) easily implies 

Lemma A.9. Suppose (A.4) and (A.5). If f: X . Y is a fibration 

in ~ and 
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X ~,,,,> qX 

Y ~> QY 

is a homotopy fibre square, then f is a Q-fibration. 

A.IO. Proof of A°7. We wish to factor a map f: X ~ Y in C as 

f = ji where j is a Q-fibra~ion and i is a Q-cofibration and 

Q-equivalence. First factor Qf as Qf = vu where u is a weak equi- 

valence and v is a fibration. Then let f = v'u' be the factoriza- 

tion of f induced by ~: X ~ QX and ~: Y ~ QY; and factor u' as 

u' = ki where i is a cofibration and k is a trivial fibration. 

Then the factorization f = (v'k) i has the desired properties, since 

v'k satisfies the hypotheses of A.8(iii) and i is a Q-equivalence 

by (A.4)-(A.6). The "(~" part of A.7 is A.9, and the "~>" part 

follows by using the above procedure to factor f as f = (v'k) i, 

and then noting that f is a retract of v'k. 

Appendix B. Bisimp!icial sets 

For convenience we have gathered here various definitions and 

results on bisimplicial sets which are used elsewhere in this paper. 

Much of this material is we!!-kno~n~, and the main innovation is the 

fibre square theorem (B.4) for diagonals ofbisimp!icial sets. As a 

consequence of that theorem we deduce a generalization of Quillen's 

spectral sequence ([Quillen 3]). 

Let A be the category whose objects are the finite ordered 

sets [m] = [0,i .... ,m] for m ~ 0, and whose morphisms are the non- 

A 0 decreasing maps. A bisimplicial set is a functor A 0 × ~ (sets), 

and these form a category (bis. sets). One can think of a bisimplicial 

set X as a collection of sets Xm, n for m,n ~ 0 together with 
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horizontal and vertical face and degeneracy operators 

h. s h. d~: 
di" Xm, n ~ Xm-l,n" i" Xm, n ~ Xm+l,n' $ Xm, n Xm, n-l' 
V 

sj: Xm, n ~ Xm,n+ I for 0 ~ i ~ m and 0 ~ j ~ n, where the horizontal 

and vertical operators commute, and the usual simplicial identities 

hold horizontally and vertically. 

In practice, many constructions in algebraic topology can be 

achieved by first forming an appropriate bisimplicia! set and then 

applying the diagonal functor 

diag: (bis. sets) . (s.sets) 

where diag X is given by the sets Xm, m for m ~ 0 with operators 

= dhd v = shs v di i i and s i i i ° For example, if K and L are simplieial 

sets, there is an obvious bisimplicial set K × L with 

(K ~ L)m, n = K m × ~, and diag(K ~ L) = K × L. Many other examples are 

given, at least implicitly, in [Artin-Mazur], [Bousfield-Kan, XII], 

[Dress], [May 2], [Segal 2], and elsewhere. Most of these examples 

lead to interesting homotopy or (co) homology spectral sequences. 

The main results for bisimplicial sets involve the relation 

between the vertical simplicial terms and the diagonal, i.e. between 

the Xm, * and diag X. (Of course, there are immediate corollaries with 

"vertical" replaced by "horizontal.") To understand these results one 

should first note that the construction of diag X is deceptively sim- 

ple, and diag X may actually be viewed as the "total complex" or 

"realization" of X. Specifically, let Tot X be the simpllcial set 

obtained from the disjoint union ~ Aim] × Xm, . by identifying the 
~_o 

simplex (a, 8*x)¢A[m] X Xm, . with (8.a,x)~A[n] x Xn, . for each 

8: [m] . [n] in 4. Now the classical Eilenberg-Zilber-Cartier 

theorem ([Dold-Puppe, p. 213]) for bisimplicial abelian groups has 

the following well-known analogue for bisimplicial sets. 
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Proposition B.I. For a bisimplicial set 

simplicial isomorphism ~: Tot X = diag X. 

X, there is a natural 

Proof. The desired map ~: Tot X * diag X is induced by the maps 

A[m] × Xm, * . diag X sending (8*~m,x)~A[m]n × Xm, n to 8*XCXn, n for 

8: In] . [m] in 4- One checks explicitly that ~ is iso whenever 

X = A[m] × A[n], i.e. X is freely generated by an (m,n)-simplex. 

The proposition then follows by a direct limit argument. 

In view of B.I, the following fundamental theorem is not sur- 

prising. 

Theorem B.2. Let f: X . Y be a map of bisimplicial sets such 

that fm,*: Xm,. * Ym,. is a weak equivalence for each m h O. Then 

diag(f): diag X . diag Y is a weak equivalence. 

This was proved in [Bousfield-Kan, p. 335], but a more direct 

proof using a patching argument is in [Tornehave] and [Reedy]. 

The diagonal functor not only preserves termwise weak equivalences 

of bisimplicial sets, but also clearly preserves termwise cofibre 

squares. To state a similar, but more complicated, result for term- 

wise fibre squares, we will need 

B.3. The v.-Kan condition. This is a condition on a bisimp!icial 

set X which holds automatically when each X is connected, and in 
m~w 

many other cases. Roughly speaking, it requires that the vertical 

homotopy groups of X satisfy Kan's extension condition horizontally. 

More precisely, for m,t ~ 1 and a(Xm, 0 consider the homomorphisms 

(dh)*: ~t(Xm,.'a) * ~t(Xm-l,*" dha) 0 < i < m 

where the homotopy groups of a simplicial set are defined to be those 

of its geometric realization. We say X satisfies the ~t-Kan 
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condition at acXm, 0 if for every collection of elements 

[xi¢~t (Xm-l,* "dha) ]i=0, i .... ,k-l, k+l ..... m 

h for which satisfy the compatibility condition (d~).x.! J = (dj-l)*Xi 

i < j, i ~ k, j ~ k, there exists an element x~t(Xm,.,a ) such that 

h 
(di).x = x i for all i ~ k. We say X satisfies the ~.-Kan condition 

if for each m,t ~ i it satisfies the ~t-Kan condition at each acXm, 0- 

To see that X satisfies the w.-Kan condition when each X 
m,~ 

connected, one makes the following two observations. First, if 

a,b~Xm, 0 are in the same component of Xm,., then the ~t-Kan condition 

for X at a is clearly equivalent to that at b. Second, if 

can be expressed as a = s~ .-. s~e for some ecX0,0, then X a~Xm, o 

satisfies the ~t-Kan condition at a for all t ~ i, because any sim- 

plicial group satisfies the ordinary Karl condition. Note also that 

if X,Y¢(bis. sets) are related by a termwise weak equivalence X ~ Y, 

then X satisfies the ~.-Kan condition if and only if Y does. 

It is easy to show that a bisimplicial set X satisfies the 

~.-Kan condition if it has a bisimplicial group structure. To give 

a more general criterion we use the following notation. For a sim- 

plicia! set K and t ~ i, let ~t(K)free denote the set of unpointed 

homotopy classes of maps from a t-sphere to IKI, and let 

B: ~t(K)free ~ ~0 K be the obvious surJection. We call K simple if 

each component of IKI is a simple space. It is now am easy exercise 

to prove 

(B.3.1). Let X be a bisimplicial set with Xm, * simple for 

m ~ O. Then X satisfies the ~.-Kan condition if and only if the 

simplicial map 8: v~(X) free ~ w~X is a fibration for each t a i. 

To state our fibre square theorem, we recall that a commutative 

square 
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A > C 

B---~ D 

of simplicial sets is a homotopy fibre square (see A.2) if for some 

factorization C i > W P > D of w with i a weak equivalence and 

p a (Kan) fibration, the map A . B ×D W is a weak equivalence. Also, 

v X for a bisimpllcial set X, we let vi be the simplicial set with 

(v~X) m = ViXm,.. 

Theorem B.4. Let 

V > X 

W > Y 

be a commutative square of bisimplicial sets such that the terms 

Vm,., Wm,., Xm,., and Ym,* form a homotopy fibre square for each 

m ~ 0. If X and Y satisfy the v.-Kan condition and if 

~X v ~0 Y is a fibration, then 

diag V . diag X 

diag W ~ diag Y 

is a homotopy fibre square. 

Note that the hypotheses on X and Y hold automatically when 

the terms Xm. and Ym,* are all connected. Some other interesting, 

but more specialized, versions of this theorem have been proved in 

[May 2, §12] and [Segal 2]; and some extensions and applications have 
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been obtained by T. Gunnarson in his thesis work. Before starting to 

prove B.4, we apply it to generalize Quillen's spectral sequence for 

bisimplicial groups [Quillen 3]. 

Theorem B.5. Let X be a bisimplicial set satisfying the v.- 

Kan condition, and let .¢X0, 0 be a base vertex (whose degeneracies are 

taken as the basepoints of the sets Xm,n. ) Then there is a first 

quadrant spectral sequence [E~,t]r~ 2 converging to Vs+t(diag X) with 

E 2 h v s,t = VsVt X" The term E r s,t is a set for t + s = 0, a group for 

t + s = i, and an abelian group for t + s ~ 2. Convergence has the 

obvious meaning, e.g. there is an isomorphism of sets E ~ 0,0 = v0 diag X 

and a short exact sequence i * EO, I * Vldiag X * El, 0 * i of groups. 

Proof. By B.2 we can assume each Xm, * is a Kan~mplex, and by 

B.4 there is a homotopy fibre square 

diag(FtX) * diag(PtX) 

• > diag(Pt_l X) 

for t ~ 0 where Pt X is the bisimplicial set given by the tth-Postnikov 

sections of the terms Xm, * (taking P_l X = .), and where Ft% is the 

fibre of Pt X . Pt_l X. Let [E~,t} be the associated spectral sequence 

with E 2 s,t = Vs+tdiag(Ft X)" The convergence result follows since 

diagX . diagPtX is iso in dimensions ~ t and onto elsewhere, and it 

h v X Since = * for n < t, remains to show Vs+tdiag(Ft X) Z VsVt . (FtX)m, n 

v t v t there is a natural blsimplicial map FtX ~ K(vtX, ) where K(vtX , ) is 

given by the minimal Eilenberg-MacLane complexes K(VtXm,.,t). By 

B.2, we now have 
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~s+tdiagFt X ~ ~s+tdiagK(~X,t) 

and the required isomorphism 

h v 
~s+tdiagK(~X,t) z WsWt X 

follows for t ~ 2 from [Dold-Puppe, po 213], and for t = 0 trivially. 

The remaining case t = I will follow by showing v.BG ~ v._iG for a 

simplicial group G, where 

BG = diagK(G.,l).. 

The natural principal fibrations 

K(On, O) -, I,(On,1) -, K(an,1) 

with IL(Gn, I) I = . induce a principal fibration 

G = d i a g K ( G . , O ) .  ~ d i a g L ( G . , 1 ) .  ~ d i agK(G. ,1 )  = BG 

and IdiagL(G.,l).l = * by a/% argument using B.2. Thus ~.BG = W._l G- 

To prove B.4 we need a model category structure on (bis. sets). 

For X,Y¢(bis. sets), let HOM(X,Y) be the simplicial set whose n-sim- 

pliees are the bisimplicial maps X @ A[n] ~ Y where 

(X @ &[hi)m, * = Xm, * x & [ h i .  

Theorem B.6. The category (bis. sets) is a proper closed sim- 

plicial model category when provided with the following additional 

structure: a map f: X ~ Y in (bis. sets) is called a weak equivalence 

if fm,.: Xm,. ~ Ym,* is a weak equivalence in (s.sets) for each m >_ O; 

f is called a cofibration if it is injective; and f is called a 
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fibratlon if fo,*: XO,. * YO,. is a fibration and for each m ~ i the 

slmplieial square 

d 
Xm, . ~ MmX 

Ym,. > MmY 

induces a flbratlon Xm, * . Ym,. ×MmY ~X where (MmX)n is the set of 

h x h x (m + l)-tuples (x 0 ..... x m) io Xm_l, n such that d i j = dj_ I i for i < j, 

a~qd where d: Xm, * . MInX is given by d(x) = (d~x .... ,d~x). 

This theorem follows from [Reedy]; the proof is similar to that 

of 3.5. We remark that if f: X * Y is a fibration in (bis. sets), 

then each fm,.: Xm,. * Ym,. is a fibration in (s.sets), but not con- 

versely. 

Proof of B.4. By CM5 (cf. §i) and B.2, we can suppose that the 

given square 

V--> X 

W~>Y 

is a pull-back with X , Y a fibration and with X,Y fibrant. Since 

the diagonal functor preserves pull-backs, B.4 follows from 

Proposition B.7. Let X,Y¢(bis. sets) be fibrant objects satis- 

fying the ~.-Kan condition, and let f: X ~ Y be a fibration. If 

f.: ~X , ~oVY is a fibration in (s.sets), then so is 

diag f: diagX , dlagY. 

To prove B.7, we begin by noting that the diagonal functor has a 
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left adjoint 

L: (s.sets) . (bis.sets) 

given by 

= colim K i . 
L(K)m'n ([m], [n ]~(  [ i ] ,  [ i ] )  ~x~ 

To construct L(K) more explicitly, we use the bisimplicial map 

c: L(K) ~ K x K adjoint to the diagonal K . K x K. Although c 

not always injective, we have 

is 

Lemma B.8. If K is the simplicial set associated with an 

ordered simplicial complex (cf. [May l, 1.4]), then c: L(K) . K x K 
N 

is an injection onto the blsimplielal subset generated by all 

(X,X)¢K X K. 

Proof. Suppose (~iXl,~iXl) = (82x2,~2x2) in K ~ K where Xl, X 2 

are non-degenerate simpllces of K and 91,~1,82,~2 are maps in A. 

The injectivity of c follows because there exist factorizations 

~i = ?i q' ~i = ~i ~' 92 = ¥2 q, O2 = y2 ~ in A such that ?iXl = ~2x2 . 

(Take YlXl to be the "largest common face" of x I and x2. ) The result 

on the image of c is obvious. 

We next use B.8 to show 

Lemma B.9. Let f: X . Y be a bisimplicial fibration such that 

f.,n: X.,n * Y*,n is a fibration for each n ~0. Then diag f is a 

fibration. 

Proof. It suffices to show that diag f has the right lifting 

property (RLP) for the maps Ak[n] ~ > A[n] with n ~ i and 0 ~ k ~ n, 

where Ak[n] is the simplicial subset of A[n] generated by the faces 
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d i for i ~ k. By adjointness, it now suffices to show that f 

the RLP for the bisimplicial maps LAk[n] , LA[n] with n ~ i and 

0 < k < n. Using B.8 we factor these maps as 

has 

LAk[ n] = > Ak[n] x A[n] = > A[n] x A[n] ~ LA[n] 

and we observe that the left map is a trivial cofibration in 

(bis.sets). The result now follows since f has the RLP for each of 

the factor maps. 

Continuing with the proof of B.7, we must reformulate B.9 using 

"matching" objects. For m > i, 0 ~ s I < ... < s r <_ m, and a bisim- 
(Sl,. -,s r) 

plicial set X, let ~ X denote the "matching" simplicial 

set whose n-slmplices are the r-tuples (xsl,...,Xsr) in Xm_l, n such 

that d~xj = d3_ix i _  for each i < j in Is I ..... Sr}. Also let 

d: Xm,* ~ i ~Sl,...,Sr) x be the simplicial map with 

h x .,d h x) It will be convenient to write --~X d(x) = (ds~ ,.. s for 
^ i r 

0,...,k,... ,m) 
X. 

Le~ma B.IO. Let f: X . Y be a bisimplicial fibration such that 

the square 

Xm,. d > ~X 

/m 
Ym,. d > ~@ 

induces a surjection 
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for m h i and 0 ~ k ! m. Then diag f is a fibration. 

Proof. Since f is a fibration and 

Ak[m] x A[O] ~ > A[m] x A[0] is a cofibration, the map 

Xm,. ~ Ym,* xM/%¢ ~' is a fibration by SM7 in [Quillen I, 11.2], and 

it is onto by ~ur vo-hypothesls. Hence, X., n ~ Y.,n Is a fibration 

for n ~ O, and the result follows from B.9. 

To verify the hypotheses of B.IO in our situation, we need 

Lemma B.II. Let X be a fibrant bisimplicial set satisfying the 

v.-Kan condition, and let a = (aSl .... ,a s ) be a vertex of 

( Sl ..... Sr ) r 
M m X where i ~ r ~ m, O ~ s I < --. < s r ~ m. Then for t ~ 0 

the obvious map 

(Sl' .... Sr) X, , asl) ) 
7rt(M m a) ~ vt(Xm_l,~ x .-- x vt(Xm_l,.,asr 

usl ) 
is an injection whose image consists of the elements ( ,...,Usr 

h u = (d~ i ) for each i < j in [Sl,. s r} More- such that (di) . j _ .u i .., • 

over, d: Xm, * ~ ~Sl'''''Sr) x is a fibration. 

Proof. Using SM7 as in B.IO, one shows that d is a fibration. 

Then the lemma follows by induction on r using the fibre squares 

sl ..... Sr) x > Xm_l, . 

V 

(Sl ..... Sr-i ) ~sl ..... Sr-l) X 
M m X--> 

for r > 2. 

Finally we can give 
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Proof of B.7. Consider the square of simplicial sets 

Xm,. d > ~X 

Ij m'* ]:~f 

d 
Ym,. > 

for m ~ i and 0 ~ k ~ m. For each vertex a~Ym, 0 

d.: vl(Ym, ,a ) ~ Vl(~Y, da) 

we show that 

is onto by using B.II to compute ~l(~,da) and using ~l-Kan condi- 

tion for Y at a. Thus there is an isomorphism 

× ~o(Ym,. x~ ~X) -" VoYm, * ~0~ 7rO~X 

and we conclude that 

is onto by using B.II in the case t = 0 and the hypothesis that 

v X . Vy is a fibration. Now B.7 follows from B.10. u u 
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