THE COHOMOLOGY OF THE MOD 2 STEENROD ALGEBRA DOI:10.11582/2021.00077

ROBERT R. BRUNER AND JOHN ROGNES

Abstract

A minimal resolution of the mod 2 Steenrod algebra in the range $0 \leq s \leq 128,0 \leq t \leq 184$, together with chain maps for each cocycle in that range and for the squaring operation $S q^{0}$ in the cohomology of the Steenrod algebra.

This article describes the archived dataset [8], available for download at the NIRD Research Data Archive https://archive.sigma2.no. Please refer to the dataset and this article by their digital object identifier DOI:10.11582/2021.00077.

Contents

1. Introduction 1
2. The resolution 2
3. Products 6
4. Chain maps 8
5. Toda brackets 10
6. $\quad S q^{0}$ 11
7. A canonical basis for $\operatorname{Ext}_{\mathcal{A}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ 12
8. Concordance 14
9. Operators 22
10. Validity 25
11. Machine processing of the data 25
References 26

1. Introduction

Let \mathcal{A} denote the classical mod 2 Steenrod algebra over \mathbb{F}_{2}. This archive contains
(1) a minimal resolution of \mathbb{F}_{2} over \mathcal{A} in internal degrees $t \leq 184$ and cohomological degrees $s \leq 128$,
(2) chain maps lifting each member in the resulting basis for $\operatorname{Ext}_{\mathcal{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ in this range, and
(3) a chain map which gives the Hopf algebra squaring operation

$$
S q^{0}: \operatorname{Ext}_{\mathcal{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathcal{A}}^{s, 2 t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

This document describes the files containing this information. The resolution was produced by the first author's software ext, version 1.9.3. This is contained in the file ext.1.9.3.tar.gz. The remaining contents of the top level directory are a copyright notice, a listing (1s-1R.txt) of the files herein, and a directory A.

[^0]

Figure 1. $\operatorname{Ext}_{\mathcal{A}}^{s, n+s}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right), 0 \leq n \leq 16,0 \leq s \leq 8$

The directory A has a subdirectory S-184 which contains the data and a directory src containing the source code for a C program not included in ext.1.9.3.tar.gz. This program writes a script to create all possible cocycles.

The resolution together with the chain maps give $\operatorname{Ext}_{\mathcal{A}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ as an algebra. It is worth pointing out that the minimal resolution and the chain maps contain vastly more information than this. Much secondary and higher order structure is available from this data, as well. The discussion of Toda brackets (Massey products) below, and the data contained in the file himults are examples: the file himults contains information about products by elements of cohomological degree 1 obtained without use of chain maps, while the Toda brackets files are produced from the chain maps without reference to any null-homotopies.

The package ext is designed to produce minimal resolutions

$$
0 \longleftarrow M \stackrel{d_{0}}{\longleftarrow} C_{0} \stackrel{d_{1}}{\longleftarrow} C_{1} \stackrel{d_{2}}{\longleftarrow} \cdots \stackrel{d_{S}}{\leftrightarrows} C_{S}
$$

and

$$
0 \longleftarrow N \stackrel{d_{0}}{\longleftarrow} D_{0} \stackrel{d_{1}}{\longleftarrow} D_{1} \stackrel{d_{2}}{\longleftarrow} \cdots \stackrel{d_{S}}{\leftrightarrows} D_{S}
$$

for any finite \mathcal{A}-modules M and N and to lift cocycles $x \in \operatorname{Ext}_{\mathcal{A}}^{s_{0}, t_{0}}(M, N)$, represented as \mathcal{A}-homomorphisms $x: C_{s_{0}} \longrightarrow \Sigma^{t_{0}} N$, to chain maps $\left\{C_{s_{0}+s} \longrightarrow \Sigma^{t_{0}} D_{s}\right\}_{s}$. The exposition here is focused on the case $M=N=\mathbb{F}_{2}$, and the range $0 \leq s \leq 128$, $0 \leq t \leq 184$, but at various points it may be useful to remember the extra generality of the code.

2. The resolution

Let us write

$$
0 \longleftarrow \mathbb{F}_{2} \stackrel{d_{0}}{\longleftarrow} C_{0} \stackrel{d_{1}}{\longleftarrow} C_{1} \stackrel{d_{2}}{\leftarrow} \cdots \stackrel{d_{128}}{\longleftarrow} C_{128}
$$

for our minimal resolution. It is significant that minimality allows us to identify $\operatorname{Hom}_{\mathcal{A}}^{t}\left(C_{s}, \mathbb{F}_{2}\right)=\operatorname{Hom}_{\mathcal{A}}\left(C_{s}, \Sigma^{t} \mathbb{F}_{2}\right)$ with $\operatorname{Ext}_{\mathcal{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$.

Since our resolution is limited to the range $0 \leq s \leq 128$ and $0 \leq t \leq 184$, it is simply an initial segment of a resolution. For brevity, we shall nonetheless call

Figure 2. $\operatorname{Ext}_{\mathcal{A}}^{s, n+s}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right), \quad 16 \leq n \leq 32,0 \leq s \leq 12$
it "the resolution" and write Ext for that part of $\operatorname{Ext}_{\mathcal{A}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ which lies in this range. The resolution is described by the following files.
(1) Def. This file defines the \mathcal{A}-module \mathbb{F}_{2} as the module which is 1-dimensional over \mathbb{F}_{2} with its sole generator in degree 0 .
(2) MAXFILT. This contains the maximum cohomological degree, $S=128$, through which the resolution is calculated.
(3) Shape. This file describes the \mathcal{A}-modules C_{s}. Its first entry, 128, gives the maximum cohomological degree S. This is followed by the 129 integers $\operatorname{dim}_{\mathcal{A}}\left(C_{s}\right)$ for $s=0,1, \ldots, 128$. This is followed by the internal degree of each of these generators, first for C_{0}, then for C_{1}, up to C_{128}. This data determines Ext as a bigraded \mathbb{F}_{2} vector space.

We write $s_{-} g$ or s_{g} for the cocycle dual to the 0 -indexed $g^{\text {th }}$ generator of C_{s}. Thus, $0_{0} \in \operatorname{Ext}_{\mathcal{A}}^{0,0}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ is the unit $1: C_{0} \longrightarrow \mathbb{F}_{2}$ dual to the \mathcal{A}-module generator of C_{0}, while $1_{i} \in \operatorname{Ext}_{\mathcal{A}}^{1,2^{i}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ is the "Hopf map" $h_{i}: C_{1} \longrightarrow \Sigma^{2^{i}} \mathbb{F}_{2}$ dual to the \mathcal{A}-module generator of C_{1} which d_{1} sends to $S q^{2^{i}}$. When we need to refer to the \mathcal{A}-module generators of C_{s}, we shall write them as s_{g}^{*} or s_g*.
(4) Diff.s and hDiff.s for each $s, 0 \leq s \leq 128$. These files contain the differentials d_{s} for $0 \leq s \leq 128$. The file Diff.s contains the elements $d_{s}\left(s_{g}^{*}\right)$, for $g=0,1, \ldots$ in that order. Each is preceded by its internal degree. The file Diff.s is written in a condensed format which takes the least space possible for the formats legible to the program ext. The files hDiff.s are

Figure 3. $\operatorname{Ext}_{\mathcal{A}}^{s, n+s}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right), 32 \leq n \leq 48,0 \leq s \leq 16$
provided as "humanly readable Diff files", and write the differentials using the Milnor basis. A couple of examples should suffice to show how to read them. The file hDiff. 1 starts

8
184
1

1
011 i(1).

2

1
021 i(2).
which should be read as saying that the \mathbb{F}_{2}-dimension of C_{1} is 8 , that the part of the resolution given here is complete through internal degree 184, and that
(a) generator 1_{0}^{*} lies in degree 1 , and $d_{1}\left(1_{0}^{*}\right)=S q^{1}\left(0_{0}^{*}\right)$,
(b) generator 1_{1}^{*} lies in degree 2 , and $d_{1}\left(1_{1}^{*}\right)=S q^{2}\left(0_{0}^{*}\right)$,
(c) generator 1_{2}^{*} lies in degree 4 , and $d_{1}\left(1_{2}^{*}\right)=S q^{4}\left(0_{0}^{*}\right)$, et cetera.

In the file hDiff.2, the fifth entry, i.e., the entry for $d_{2}\left(2_{4}^{*}\right)$, is
9

3
084 i(8) $(2,2)$.
174 i(7) $(4,1)(0,0,1)$.
$311 \mathrm{i}(1)$.

This says that 2_{4}^{*} has internal degree 9 , and that

$$
\begin{aligned}
d_{2}\left(2_{4}^{*}\right)= & \left(S q^{8}+S q^{(2,2)}\right)\left(1_{0}^{*}\right) \\
& +\left(S q^{7}+S q^{(4,1)}+S q^{(0,0,1)}\right)\left(1_{1}^{*}\right) \\
& +S q^{1}\left(1_{3}^{*}\right)
\end{aligned}
$$

Here, the initial 3 in the description of $d_{2}\left(2_{4}^{*}\right)$ says that $d_{2}\left(2_{4}^{*}\right)$ is the sum of three terms, and the subsequent lines describe those terms. The first line, "0 $84 \mathrm{i}(8)(2,2)$.", tells us that the first term is a multiple of 1_{0}^{*} with the degree 8 coefficient $S q^{8}+S q^{(2,2)}$. The number 4 here is the $\mathbb{F}_{2^{-}}$ dimension of \mathcal{A} in degree 8 , and is used by the program ext to determine the amount of space which must be allocated. Note that elements of the Steenrod algebra are written in the Milnor basis, not the admissible basis ${ }^{1}$
(5) Ext-A-F2-F2-0-184.tex and Ext-A-F2-F2-0-184.pdf. These are "charts" in the usual "Adams chart" format showing the resolution together with the action of the elements h_{0}, h_{1} and h_{2}. The program chart included in ext.1.9.3 allows one to make charts like this for any box $s_{l o} \leq s \leq s_{h i}$, $t_{l o} \leq t \leq t_{h i}$. It is also possible to simply use the TikZ command clip to extract desired sections from the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ file we provide.

In these charts, each cocycle s_{g} is represented by a filled circle with the sequence number, g, written to its left, as in Figures 1 to 3 . For example, in bidegree $(n, s)=(15,5)$ we see that $5_{4}=h_{1} \cdot 4_{3}$ and $5_{5}=h_{0} \cdot 4_{4}$.
(6) S-184.tex and S-184.pdf. These give a stem-by-stem list of the results together with the products by the h_{i}.
(7) Maxt and himults. These are generated by the program report included in ext.1.9.3 and are used by the chart and vsumm commands to create the Adams charts and the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ summary. The file Maxt records, for each cohomological degree s, the degree t through which Diff.s is complete.

[^1]The file himults records the h_{i} products using the observation cited in the first paragraph of Section 5 to extract this from the Diff.s files. The format of each entry is
s g s0 g0 i
meaning that the product $h_{i} \cdot\left(s_{0}\right)_{g_{0}}$ contains the term s_{g}. For example, in bidegree $(t-s, s)=(78,8)$ we have the lines
8607334
8607344
8607561
8607581
8617334
8617344
8617483
8617561
8617571
8617600
862726
8627354
8627610
saying that

$$
\begin{aligned}
h_{0} \cdot 7_{60} & =8_{61} \\
h_{0} \cdot 7_{61} & =8_{62} \\
h_{1} \cdot 7_{56} & =8_{60}+8_{61} \\
h_{1} \cdot 7_{57} & =8_{61} \\
h_{1} \cdot 7_{58} & =8_{60} \\
h_{3} \cdot 7_{48} & =8_{61} \\
h_{4} \cdot 7_{33} & =8_{60}+8_{61} \\
h_{4} \cdot 7_{34} & =8_{60}+8_{61} \\
h_{4} \cdot 7_{35} & =8_{62} \\
h_{6} \cdot 7_{2} & =8_{62},
\end{aligned}
$$

while the other products $h_{i} \cdot\left(s_{0}\right)_{g_{0}}$ in this bidegree are zero. This is used by chart to draw the lines representing h_{0}, h_{1} and h_{2} products.

3. Products

We compute products in Ext by composing chain maps. Suppose the classes $x \in \operatorname{Ext}_{\mathcal{A}}^{s_{0}, t_{0}}(N, P)$ and $y \in \operatorname{Ext}_{\mathcal{A}}^{s_{1}, t_{1}}(M, N)$ are represented by cocycles

$$
x: D_{s_{0}} \longrightarrow \Sigma^{t_{0}} P \quad \text { and } \quad y: C_{s_{1}} \longrightarrow \Sigma^{t_{1}} N
$$

Then $\Sigma^{t_{1}} x \circ y_{s_{0}}$ is a cocycle representing the product $x y$, where $\left\{y_{s}\right\}_{s}$ is a chain map lifting y. The chain map with components $\Sigma^{t_{1}} x_{s} \circ y_{s+s_{0}}$ is a lift of this cocycle.

In our situation, $M=N=P=\mathbb{F}_{2}$ and $E_{s}=D_{s}=C_{s}$. In this case, the composite $\Sigma^{t_{1}} x \circ y_{s_{0}}$ is determined by recording those generators $\left(s_{0}+s_{1}\right)_{g}^{*}$ of $C_{s_{0}+s_{1}}$ which are mapped nontrivially. When the cocycle x is $\left(s_{0}\right)_{g_{0}}$, dual to a generator $\left(s_{0}\right)_{g_{0}}^{*}$ of $C_{s_{0}}=D_{s_{0}}$, the list of such generators is the set of those whose image under $y_{s_{0}}$ contains a term $1 \cdot\left(s_{0}\right)_{g_{0}}^{*}$, since all other terms will be sent to $0 \in \mathbb{F}_{2}$ by $\left(s_{0}\right)_{g_{0}}$. The program collect in the ext package gleans this information from the chain map files described in the next section and organizes it into the file A/S-184/all. products.

Each line in the file all. products has the form

$$
\begin{array}{lllll}
\mathrm{s} & \mathrm{~g} & \left(\begin{array}{ll}
\mathrm{s} 0 & \mathrm{~g} 0
\end{array} \quad \mathrm{~F} 2\right) & \mathrm{s} 1 _g 1
\end{array}
$$

which means that the chain map lifting the cocycle $\left(s_{1}\right)_{g_{1}}$, applied to the basis element s_{g}^{*}, contains the term $1 \cdot\left(s_{0}\right)_{g_{0}}^{*}$.

Proposition 3.1. $\left(s_{0}\right)_{g_{0}} \cdot\left(s_{1}\right)_{g_{1}}$ is the sum of all such s_{g}.
The file all.products is organized so that each paragraph lists, for a cocycle s_{g}, all such pairs $\left(s_{0}\right)_{g_{0}},\left(s_{1}\right)_{g_{1}}$ with the $\left(s_{0}\right)_{g_{0}}$ in increasing order L^{2}

To compute $\left(s_{0}\right)_{g_{0}} \cdot\left(s_{1}\right)_{g_{1}}$ it is best to start by noting which s_{g} span the bidegree containing the product, so as not to miss a term. For example, consider the products landing in Ext ${ }^{7,7+37}$. This bidegree is 2 -dimensional, spanned by 7_{13} and 7_{14}. The entries in the file all. products for these two cocycles are

7	13	(0	0	F2)	7_13
7	13	(1	1	F2)	6_14
7	13	(1	2	F2)	6_13
7	13	(1	3	F2)	6_10
7	13	(2	3	F2)	5_13
7	13	(3	9	F2)	4_6
7	13	(4	6	F2)	3_9
7	13	(5	13	F2)	2_3
7	13	(6	10	F2)	1_3
7	13	(6	13	F2)	1_2
7	13	(6	14	F2)	1_1
7	14	(0	0	F2)	7_14
7	14	(1	0	F2)	6_15
7	14	(1	3	F2)	6_10
7	14	(2	0	F2)	5_17
7	14	(5	17	F2)	2_0
7	14	(6	10	F2)	1_3
7	14	(6	15	F2)	1_0

This says that

$$
\begin{aligned}
7_{13} & =0_{0} \cdot 7_{13}=1_{1} \cdot 6_{14}=1_{2} \cdot 6_{13}=2_{3} \cdot 5_{13}=3_{9} \cdot 4_{6} \\
7_{14} & =0_{0} \cdot 7_{14}=1_{0} \cdot 6_{15}=2_{0} \cdot 5_{17} \\
7_{13}+7_{14} & =1_{3} \cdot 6_{10} .
\end{aligned}
$$

Eliminating redundant cases and using the traditional notations $h_{i}=1_{i}, h_{0}^{s}=s_{0}$, $t=6_{14}, n=5_{13}, r=6_{10}, c_{1}=3_{9}, f_{0}=4_{6}, x=5_{17}$, these two paragraphs say that the two elements $h_{1} t=h_{2}^{2} n=c_{1} f_{0}$ and $h_{0}^{2} x$ span Ext ${ }^{7,7+37}$, that $h_{3} r=h_{1} t+h_{0}^{2} x$,

[^2]and that all other products landing in this bidegree are 0 . The h_{0}, h_{1} and h_{2} products in this bidegree can be seen in the chart shown in Figure 3. (The original definitions of f_{0} did not distinguish between f_{0} and $f_{0}+h_{1}^{3} h_{4}$. We eliminate this ambiguity by defining $f_{0}=S q^{1}\left(c_{0}\right)$. It is shown in 6 that $S q^{1}\left(c_{0}\right)=4_{6}$.)

Remark 3.2. Cocycles s_{g} whose paragraph in all.products has only a single entry, $0_{0} \cdot s_{g}$, are clearly indecomposable. There are 912 of these in the range calculated, lying in filtrations 1 through 61 . However, to identify all the indecomposables, simple textual work is insufficient: we must calculate $\mathfrak{m} / \mathfrak{m}^{2}$, where \mathfrak{m} is the maximal ideal of Ext. For example Ext ${ }^{7,7+133}$ is spanned by $7_{124}, 7_{125}$ and 7_{126} with products $h_{3} \cdot 6_{97}=7_{124}+7_{125}$ and $h_{1} \cdot 6_{107}=7_{126}$. Thus, 7_{124} and 7_{125} project to the same nonzero element of $\mathfrak{m} / \mathfrak{m}^{2}$. Similarly, $h_{4} \cdot 8_{114}=9_{178}+9_{179}$ with each term indecomposable, but equal to one another modulo decomposables.

4. Chain maps

A cocycle s_{g} of internal degree t is an \mathcal{A}-module homomorphism $s_{g}: C_{s} \longrightarrow$ $\Sigma^{t} \mathbb{F}_{2}$. Using ext this can be lifted to a chain map of bidegree (s, t),

$$
\left\{C_{s+s_{0}} \longrightarrow \Sigma^{t} C_{s_{0}} \mid 0 \leq s_{0} \leq s+s_{0} \leq 128\right\}
$$

The data describing the cocycle s_{g} and our chain map lifting the cocycle are in the subdirectory s_g of the directory S-184 containing the resolution. The relevant files are as follows.
(1) maps and subdirectories A/S-184/s_g. In A/S-184, the file maps is a list of all the cocycles s_{g}. Each of these has a subdirectory A/S-184/s_g which contains the cocycle's definition, the chain map lifting it, and data derived from this.

In order to study various aspects of the resolution it may be useful to focus on a smaller set of maps. The package ext has utilities, such as collect, which operate on such lists. For example, the invocation
./collect somemaps someproducts
would create a file named someproducts containing all products by maps listed in somemaps.
(2) $\mathrm{s} _\mathrm{g} / \mathrm{Def}$. This file contains the definition of the cocycle s_{g}. If the internal degree of s_{g} is t, the file $s_{-} g / D e f$ will contain

```
s t F2 F2 s_g 1
```


g

1
001 x80
The reader who simply wants to use this data will not need the following discussion of cocycle definition files, but for completeness, here is the meaning of these entries.

Reading them in order, it says that $s_{g}: C_{s} \longrightarrow \Sigma^{t} \mathbb{F}_{2}$ is stored in the subdirectory s_g and maps exactly one generator of C_{s} nontrivially, namely generator number g, sending it to the unique nontrivial element of \mathbb{F}_{2}, which is the \mathbb{F}_{2} basis element numbered 0 . The format of a general cochain $x: C_{s} \longrightarrow \Sigma^{t} N$, where C_{*} is a resolution of M, is
s t M N x n
g1
$\mathrm{x}(\mathrm{g} 1)$

```
g2
x(g2)
gn
x(gn)
```

This specifies the values in N of x on the n generators numbered g_{1} through g_{n}. Generators of C_{s} which are not mentioned are mapped to 0 . This defines a cocycle iff it can be lifted to a chain map iff it can be lifted over the first stage, $d_{1}: D_{1} \longrightarrow D_{0}$, of a resolution of N. Thus, the process of lifting can be used to check that a cochain x is a cocycle. By minimality of the resolutions we produce, all cochains $x: C_{s} \longrightarrow \Sigma^{t} \mathbb{F}_{2}$ are cocycles.

For example, if N is 4 -dimensional over \mathbb{F}_{2}, with basis elements 0 to 3 in degrees $0,1,1$, and 2, respectively, and a cochain $x: C_{5} \longrightarrow \Sigma^{12} N$ had nonzero values $x\left(5_{3}\right)=1+2$ and $x\left(5_{6}\right)=3$, the cochain definition file $x / D e f$ would be

512 M N x 2

3

2
101 x80
201 s0.
6

1
301 i(0).
Here, "0 1×80 ", "0 $1 \mathrm{~s} 0 . "$ and "0 $1 \mathrm{i}(0)$." are three different ways to write the unit $1 \in \mathcal{A}_{0}$. The initial " 01 " in each says that they describe an element of \mathcal{A}_{0}, which is 1 -dimensional over \mathbb{F}_{2}. The first, "x80", uses hexadecimal notation to express the binary vector with a 1 in its first (and only) entry. The second, "s0." lists the sequence number, 0 , of the coordinates whose entries are 1 rather than 0 . The third, "i(0).", writes the operation in Milnor basis form: $S q^{0}=1 \in \mathcal{A}_{0}$. We could (and usually do) write the same information in the form

512 M N x 2

3

2
101 x80
201 x80

6

1
301 x80
for simplicity and uniformity.
(3) s_g/Map and s_g/Map.aug. The ext package writes the chain map lifting the cocycle s_{g} in the file s_{-g} /Map. This file is simply a list of entries of the form
s0 g0 0
meaning that s_{g} sends s0_g0* to 0 , or
s0 g0
x
where x is the representation, in the manner discussed in item (4) of Section 2, of the nonzero image of $\mathrm{s} 0-\mathrm{g} 0 *$ under the chain map lifting s_{g}. The entries in the Map file do not have to occur in any particular order. There is a program, checkmap s, which determines the elements, if any, mapping to filtration $\leq s$ which are not yet present in the Map file. This has been used to verify the completeness of the data we present here.

The file s_g/Map.aug is extracted from the Map file by applying the augmentation $\mathcal{A} \longrightarrow \mathbb{F}_{2}$, i.e., by discarding all terms $a \cdot s_{g}^{*}$ in which $a \in \mathcal{A}$ has positive degree. The information in this file is used by collect to compile the file all. products described in the previous section.
(4) s_g/brackets and s_g/brackets.sym. These are discussed in the next section.

5. Toda brackets

Products $h_{i} \cdot s_{g}$ can be calculated directly from the resolution without computing either of the chain maps lifting h_{i} or s_{g}. Precisely, $h_{i} \cdot s_{g}$ is the sum of those $(s+1)_{g_{1}}$ such that $d_{s+1}\left((s+1)_{g_{1}}^{*}\right)$ contains the term $S q^{2^{i}} \cdot s_{g}^{*}$. In a similar way, having computed the chain maps, we are now able to evaluate all Toda brackets \sum^{3} of the form $\left\langle h_{i},\left(s_{0}\right)_{g_{0}},\left(s_{1}\right)_{g_{1}}\right\rangle$.
Proposition 5.1. If $h_{i} \cdot\left(s_{0}\right)_{g_{0}}=0$ and $\left(s_{0}\right)_{g_{0}} \cdot\left(s_{1}\right)_{g_{1}}=0$ then the Toda bracket $\left\langle h_{i},\left(s_{0}\right)_{g_{0}},\left(s_{1}\right)_{g_{1}}\right\rangle$ contains the sum of all those s_{g} such that the chain map lifting $\left(s_{1}\right)_{g_{1}}$ applied to s_{g}^{*} contains a term $S q^{2^{i}} \cdot\left(s_{0}\right)_{g_{0}}^{*}$.

Conceptually, products by elements of cohomological degree 1 are visible in the resolution reduced modulo \mathfrak{m}^{2}, while brackets with first entry of cohomological degree 1 are visible in the chain maps reduced modulo \mathfrak{m}^{2}. This data is extracted from the Map file and placed in the files brackets and brackets.sym. The files contain the same information, but brackets.sym is easier for a human to read. Each entry in s1_g1/brackets.sym will have the form
s_g in < hi, g0, s1_g1 >
Since the filtration s of the bracket is $1+s_{0}+s_{1}-1=s_{0}+s_{1}$, we deduce that the middle entry is $\mathbf{s} 0 _\mathrm{g} 0$ with $s_{0}=s-s_{1}$.

As with products, it is important to remember that the value of the bracket is the sum of all the s_{g} which appear, so that it is important to survey all the possible terms in the relevant bidegree before reaching conclusions.

We also hold the point of view that it is sufficient to produce one element of the bracket, with the other elements being obvious from the known indeterminacy. We also note that the brackets.sym file is simply recording information about the chain map, and that it is the responsibility of the user to check whether the bracket is defined.

For example, the first few entries in 1_0/brackets.sym are

[^3]2_23 in <h7, 0, 1_0 >
2_8 in < h4, 0, 1_0 >
2_1 in < h0, 1, 1_0 >
2_5 in < h3, 0, 1_0 >
3_3 in $\left\langle\mathrm{h} 3,0,1 _0\right\rangle$
3_3 in < h1, 3, 1_0 >
Since $h_{0} h_{7} \neq 0$ and $h_{0} h_{4} \neq 0$, the first two brackets are not defined. The third says that $h_{1}^{2}=2_{1} \in\left\langle h_{0}, h_{1}, h_{0}\right\rangle$, a familiar consequence of Hirsch's formula $y\left(x \cup_{1} x\right) \in$ $\langle x, y, x\rangle$. The next two are also not defined. Following that we find $c_{0}=3_{3} \in$ $\left\langle h_{1}, h_{2}^{2}, h_{0}\right\rangle$.

6. $S q^{0}$

In general, the cocommutative Hopf algebra Steenrod operations

$$
S q^{i}: \operatorname{Ext}_{\mathcal{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathcal{A}}^{s+i, 2 t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

are computationally quite expensive (9 , Problem Session] and [6]). However, the two extremes, $S q^{s}: \mathrm{Ext}^{s, t} \longrightarrow \mathrm{Ext}^{2 s, 2 t}$ and $S q^{0}: \mathrm{Ext}^{s, t} \longrightarrow \mathrm{Ext}^{s, 2 t}$ are easily calculated using ext. The first is simply the squaring operation $S q^{s}(x)=x^{2}$ for $x \in$ $\mathrm{Ext}^{s, t}$, which we have already discussed. At the other extreme, in 17, Proposition 11.10], it is shown that the operation $S q^{0}$ can be calculated by $S q^{0}\left(\left[a_{1}|\ldots| a_{s}\right]\right)=$ $\left[a_{1}^{2}|\ldots| a_{s}^{2}\right]$ in the cobar complex for the dual Steenrod algebra. This implies that if $\Phi \mathcal{A}_{*}$ is the double of the dual Steenrod algebra, in which the degrees of all the elements are doubled, then $S q^{0}: \operatorname{Ext}_{\mathcal{A}_{*}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \rightarrow \operatorname{Ext}_{\mathcal{A}_{*}}^{s, 2 t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ is induced by the degree-preserving Hopf algebra homomorphism $F: \Phi \mathcal{A}_{*} \rightarrow \mathcal{A}_{*}$ that sends $\Phi \xi_{i}$ to ξ_{i}^{2} for each $i \geq 1$. Dually, it is induced by the degree-preserving Hopf algebra homomorphism $V: \mathcal{A} \longrightarrow \Phi \mathcal{A}$ that sends an "even" Milnor basis element $S q^{\left(2 r_{1}, \ldots, 2 r_{k}\right)}$ to $\Phi S q^{\left(r_{1}, \ldots, r_{k}\right)}$, and other Milnor basis elements to 0 . Restricting along this homomorphism gives

$$
S q^{0}: \operatorname{Ext}_{\mathcal{A}}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{\Phi \mathcal{A}}^{s, 2 t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \longrightarrow \operatorname{Ext}_{\mathcal{A}}^{s, 2 t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)
$$

A slight modification of the computer code that calculates chain maps can compute this: a program startsq0 computes the restriction $V_{s-1}(d(x))$ for each generator $x=s_{g}^{*}$ in the minimal \mathcal{A}-module resolution $\left(C_{*}, d\right)$ of \mathbb{F}_{2}, and the same program that computes lifts for chain maps then solves for an element $V_{s}(x)$ satisfying $d\left(V_{s}(x)\right)=$ $V_{s-1}(d(x))$. We recover $S q^{0}$ as $\operatorname{Hom}_{\mathcal{A}}\left(V_{*}, \mathbb{F}_{2}\right)$. This inductive calculation is begun by setting $V_{0}\left(0_{0}^{*}\right)=0_{0}^{*}$, so that $S q^{0}(1)=1$. (This discussion is quoted from our proof of Proposition 11.26 in 7 .)

The files involved are
(1) dosq0 and maps.sq0. The first is a script to run the computation of the lifts, while the second tells which subdirectory contains the map $S q^{0}$.
(2) S-184/Sq0/Map and S-184/Sq0/Map.aug. This contains the data defining the chain map V and its reduction modulo the augmentation ideal $\mathfrak{m} \subset \mathcal{A}$, respectively. This latter defines the dual of the map $S q^{0}$.
(3) all.sq0. This contains the data in the Sq0/Map.aug file in the format of the all.products file. For example, its entries

0	0	$($	0	0	F2)	Sq0
1	1	$($	1	0	F2)	Sq0
1	2	$($	1	1	F2)	Sq0
\cdots						
3	9	$($	3	3	F2)	Sq0
\cdots						
3	19	$($	3	9	F2)	Sq0

3	34	$($	3	19	F2)	Sq0
\ldots						
3	55	$($	3	34	F2)	Sq0
\cdots						
4	16	$($	4	5	F2)	Sq0
4	19	$($	4	6	F2)	Sq0

show that

$$
\begin{gathered}
S q^{0}(1)=S q^{0}\left(0_{0}\right)=0_{0}=1, \\
S q^{0}\left(h_{0}\right)=S q^{0}\left(1_{0}\right)=1_{1}=h_{1}, \\
S q^{0}\left(h_{1}\right)=S q^{0}\left(1_{1}\right)=1_{2}=h_{2}, \\
\cdots \\
S q^{0}\left(c_{0}\right)=S q^{0}\left(3_{3}\right)=3_{9}=c_{1}, \\
\cdots \\
S q^{0}\left(c_{1}\right)=S q^{0}\left(3_{9}\right)=3_{19}=c_{2}, \\
\cdots \\
S q^{0}\left(c_{2}\right)=S q^{0}\left(3_{19}\right)=3_{34}=c_{3}, \\
\cdots \\
S q^{0}\left(e_{0}\right)=S q^{0}\left(4_{5}\right)=4_{16}=e_{1} \text { and } \\
S q^{0}\left(f_{0}\right)=S q^{0}\left(4_{6}\right)=4_{19}=f_{1} .
\end{gathered}
$$

Later we find

| 6 | 102 | $($ | 6 | 33 | F2) |
| :--- | :--- | :--- | :--- | :--- | :--- | Sq0

which reminds us that these files are the dual, i.e., chain level, data. In Ext, these say

$$
\begin{aligned}
S q^{0}\left(A_{0}+A_{0}^{\prime}\right)=S q^{0}\left(6_{32}\right) & =6_{103}+6_{104} \\
S q^{0}\left(A_{0}\right)=S q^{0}\left(6_{33}\right) & =6_{102}+6_{103}, \text { and hence } \\
S q^{0}\left(A_{0}^{\prime}\right)=S q^{0}\left(6_{32}+6_{33}\right) & =6_{102}+6_{104}
\end{aligned}
$$

This information is used in Section 8 to organize Ext into "families" linked by $S q^{0}$.

7. A canonical basis For $\operatorname{Ext}_{\mathcal{A}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$

The traditional, and by now familiar, notation for the elements of Ext starts in a systematic fashion, with the elements

$$
h_{i}, P^{k} h_{1}, P^{k} h_{2}, c_{i}, P^{k} c_{0}, d_{i}, P^{k} d_{0}, e_{i}, P^{k} e_{0}, f_{i}, g_{i}, i, j, k, \ldots,
$$

but becomes somewhat chaotic as the calculations are extended into higher bidegrees. In the next section, we propose some ways of extending this notation in a methodical fashion, but they do not suffice to give names to elements of a basis for Ext even in the range we consider here, let alone for all of Ext.

In contrast, our s_{g} form a well-defined canonical basis for Ext, which we now describe. First, we totally order the terms $S q^{R} s_{g}^{*}$ of $C_{s, t}$ by

$$
S q^{R} s_{g}^{*}<S q^{R^{\prime}} s_{g^{\prime}}^{*}
$$

iff
(1) $g<g^{\prime}$, or
(2) $g=g^{\prime}$ and $S q^{R}<S q^{R^{\prime}}$, where the Milnor basis elements $S q^{R}$ are given reverse lexicographic order: $\left(r_{1}, r_{2}, \ldots\right)<\left(r_{1}^{\prime}, r_{2}^{\prime}, \ldots\right)$ iff for some $k, r_{k}<r_{k}^{\prime}$ and $r_{i}=r_{i}^{\prime}$ for all $i>k$. Thus,

$$
\begin{aligned}
& (n)<(n-3,1)<(n-6,2)<\cdots \\
& <(n-7,0,1)<(n-10,1,1)<\cdots<(n-14,0,2)<(n-17,1,2)<\cdots \\
& \quad<(n-15,0,0,1)<(n-18,1,0,1)<\cdots<(n-22,0,1,1)<\cdots
\end{aligned}
$$

Each nonzero element $x \in C_{s, t}$ then has a leading term LT x, which is the lowest term in x.

In the totally ordered basis $\left\{S q^{R} s_{g}^{*}\right\}$ of a given bidegree (s, t), the decomposable elements, those with $\operatorname{deg}\left(S q^{R}\right)>0$, form an initial segment which is followed by the generators s_{g}^{*} of bidegree (s, t).

We can now inductively define our canonical basis as follows. We start with the bases $\left\{0_{0}^{*}\right\}$ for C_{0} and $\left\}\right.$ for C_{s} with $s>0$. We may inductively assume given the basis for C_{s} in degrees less than t, and for C_{s-1} in degrees less than or equal to t.

Step 1: Generating the image and kernel.
$\operatorname{Im}_{s, t}$ will be a totally ordered list of pairs $(x, d x)$ with the leading terms of the $d x$ in strictly increasing order. $\operatorname{Ker}_{s, t}$ will be a list of terms x. Both are initially empty.

Consider the terms $S q^{R} s_{g}^{*}$ in order. Let $x=S q^{R} s_{g}^{*}$ and compute $d x=S q^{R} d\left(s_{g}^{*}\right)$. Then, while $d x \neq 0$, if $L T(d x)=L T(d y)$ for a pair $(y, d y) \in \operatorname{Im}_{s, t}$, replace x by $x-y$ and $d x$ by $d x-d y$. If not, add $(x, d x)$ to $\operatorname{Im}_{s, t}$ and proceed to the next decomposable term. If, instead $d x=0$, add x to the end of the list $\operatorname{Ker}_{s, t}$.

Note that the leading term of $d x$ will be increased each time we replace $d x$ by $d x-d y$ until it either becomes 0 or has a leading term not already found among the $d y$ in $\operatorname{Im}_{s, t}$.

Step 2: Adding new generators.
We may inductively assume given $\operatorname{Ker}_{s-1, t}$. For each $x \in \operatorname{Ker}_{s-1, t}$, in order, let $c=x$. Then, while $L T(x)=L T(d y)$ for some pair $(y, d y) \in \operatorname{Im}_{s, t}$, replace x by $x-d y$. If this process terminates with $L T(x) \neq 0$, add a new generator s_{g}^{*} with $d\left(s_{g}^{*}\right)=c$, then add a new pair (z, x) to $\operatorname{Im}_{s, t}$, where z is the difference of s_{g}^{*} and those y whose images $d y$ were subtracted from c to get the final x with a new leading term. If the process terminates with $x=0$, do nothing.

Remark 7.1. We could choose, at this second step, to let $d\left(s_{g}^{*}\right)=x$ and add the pair $\left(s_{g}^{*}, x\right)$ to $\operatorname{Im}_{s, t}$. The ext code prior to the year 2000 used that algorithm. Experience shows that the bases s_{g} obtained from the algorithm described here have $h_{i} \cdot s_{g}$ monomial far more frequently than those produced by the old algorithm. The Wayne State Research Report [4] used the older algorithm. The first difference visible in Ext charts lies in bidegree $(9,9+23)$. In the new algorithm, $h_{1} 8_{3}=9_{4}$ and $h_{0} 8_{4}=9_{5}$. In the older algorithm, $h_{0} 8_{4}=9_{5}$ also, but $h_{1} 8_{3}=9_{4}+9_{5}$.

The change alters the resolution much earlier, and can be seen by doing hand calculations in low degrees. In the old algorithm, $d\left(2_{1}^{*}\right)=S q^{(0,1)} \cdot 1_{0}^{*}+S q^{2} \cdot 1_{1}^{*}$, while the new algorithm gives $d\left(2_{1}^{*}\right)=S q^{3} \cdot 1_{0}^{*}+S q^{2} \cdot 1_{1}^{*}$.

8. Concordance

In this section, we present the relation between our s_{g} basis and the notation used by other works on the cohomology of the Steenrod algebra. In the process, we make a natural extension to the traditional notation using $S q^{0}$.

The existing names are based on Tangora's calculation of the E_{∞} term of the May spectral sequence in 19 and on Chen's Lambda algebra computation of $\mathrm{Ext}^{s}=$ $\operatorname{Ext}_{\mathcal{A}}^{s}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ for $s \leq 5$ in 10 .

There is some indeterminacy in the translation between our names and both the May spectral sequence names and Chen's Lambda algebra names.

In the case of the May spectral sequence, elements of the E_{∞}-term of the May spectral sequence only determine elements of Ext up to classes of higher May filtration. In Table 1 we indicate this by giving the indeterminacy of the May spectral sequence name in parentheses. For example, in bidegree ($5,5+62$), the May spectral sequence definition of $H_{1}(0)$ (written H_{1} in [19]) defines the coset $5_{32}+\left\langle 5_{33}, 5_{34}\right\rangle$. We denote this, in our table, by writing $32(33,34)$ in the column giving the sequence number of the element.

The indeterminacy in relating Chen's Lambda algebra element names to ours stems from the lack of a direct comparison between the two complexes. There are five such cases which we discuss in Remark 8.4 Except for T_{0}, which is beyond the range of Tangora's May spectral sequence calculation, this indeterminacy is the same as that due to the May spectral sequence. In the case of T_{0}, the indeterminacy is entirely due to the lack of a direct comparison between the Lambda algebra and our minimal resolution. For $T_{0}, Q_{3}(0)$ and $H_{1}(0)$, the indeterminacy could be eliminated if we knew certain h_{i}-multiples, as noted in Remark 8.4 .

The preprint $\sqrt{13}$ of Isaksen-Wang-Xu studies the Adams spectral sequence through $t-s \leq 95$. They adopt some of Tangora's notation for Ext, augmented and regularized by the use of operators which they call M, Δ and Δ_{1}. The operator $M x=\left\langle g_{2}, h_{0}^{3}, x\right\rangle$, though it is also sometimes used when this bracket is not defined. The operators Δ and Δ_{1} are given by products with non-permanent cycles b_{03}^{2} and b_{13}^{2}, respectively, in the E_{2}-term of the May spectral sequence. This is analogous to Tangora's definition ${ }^{4} P x=\left(b_{02}\right)^{2} x$. They are precursors of Toda brackets discussed in Section 9 in the sense that, when the brackets are defined, they often compute them. In fact, each could be interpreted as two of three distinct brackets which must sum to zero by the Jacobi identity. We discuss these brackets in Section 9 .

In a few bidegrees they encounter classes with no name under this system. They adopt the notation $x_{n, s}$ for such a class if it is the unique such class in bidegree $(s, s+n)$. In bidegree $(10,10+94)$ there are two such classes which they call $x_{94,10}$ and $y_{94,10}$.
8.1. Cohomological degrees up to 5. Recall the theorems of Wang and Palmieri:

Theorem $8.1([20]$ and 18$])$. For $s<4$, the homomorphism $S q^{0}: \mathrm{Ext}^{s} \longrightarrow \mathrm{Ext}^{s}$ is injective. When $s=4$, its kernel is $\left\langle h_{0}^{4}\right\rangle$.

This makes the " $S q^{0}$-families" $\left\{x, S q^{0}(x),\left(S q^{0}\right)^{2}(x), \ldots\right\}$ especially useful in low cohomological degrees.
Remark 8.2. Because $h_{1}^{4}=0, S q^{0}:$ Ext $^{5} \longrightarrow$ Ext 5 must send the nonzero elements h_{0}^{5} and $h_{0}^{4} h_{i}, i \geq 4$, to 0 . In the range we have calculated, the only other element in its kernel is $P h_{2}$, reflecting $S q^{0}\left(P h_{2}\right)=h_{3} g=0$.

Chen (10, Theorem 1.2 and Theorem 1.3]) gives a complete description of Ext ${ }^{s}$ for $s \leq 5$, building on the work of Adams [1], Wang 20] and Lin [16.

[^4]Theorem 8.3 ([10, Theorems 1.2 and 1.3]). An \mathbb{F}_{2}-base for the indecomposable elements in cohomological degrees $s \leq 5$ is as follows. In each, i runs over all $i \geq 0$.

```
Ext \(^{1}: h_{i}\).
\(\mathrm{Ext}^{3}: c_{i}\).
\(\operatorname{Ext}^{4}: d_{i}, e_{i}, f_{i}, g_{i+1}, p_{i}, D_{3}(i)\) and \(p_{i}^{\prime}\).
\(\operatorname{Ext}^{5}: P h_{1}, P h_{2}, n_{i}, x_{i}, D_{1}(i), H_{1}(i), Q_{3}(i), K_{i}, J_{i}, T_{i}, V_{i}, V_{i}^{\prime}\) and \(U_{i}\).
```

Note that V_{0}^{\prime} and U_{0} are in the 252 and 260 stems, respectively, so are beyond the range of our computation. For each of the other families in these lists, at least the first member of the family lies in the range of our calculations. Chen adopts the notation $D_{1}(i)$, et cetera, for the $i^{\text {th }}$ member of a $S q^{0}$-family in order to avoid double subscripts. We extend this practice into higher cohomological degrees as noted in the next section. In each family except $\left\{g_{1}=g, g_{2}, \ldots\right\}$, the family starts with the $0^{\text {th }}$ element.

Since Chen's list is (mostly) in terms of $S q^{0}$-families, we need only consider the first member of each family in order to establish the relation between his classes and ours. Thirteen of the families start in a bidegree which is 1-dimensional over \mathbb{F}_{2}, so that the correspondence is clear for them. The remaining families are f_{i}, n_{i}, $H_{1}(i), Q_{3}(i)$ and T_{i}, and we consider each of these individually.

Remark 8.4.

(1) It is long established practice to define $f_{0}=S q^{1} c_{0}$, because that allows us to take advantage of H_{∞} ring spectrum relations and differentials. We do not know whether Chen's definition of f_{0} in terms of the Lambda algebra equals this or $f_{0}+h_{1}^{3} h_{4}$.
(2) We choose n_{0} to be the h_{0}-annihilated class in bidegree $(5,5+31)$. According to Chen's unpublished preprint [11, Thm. 1.7] this agrees with his Lambda algebra definition of n_{0}.
(3) In two remaining cases, $H_{1}(0)$ and $Q_{3}(0)$, their May spectral sequence definition specifies a coset they must lie in. Chen's Lambda algebra classes with these names lie in the specified cosets. The precise elements in these cosets are determined by the classes $h_{0} H_{1}(0), h_{4} H_{1}(0)$ and $h_{3} Q_{3}(0)$. (That this suffices can be checked using all.products.) These three products are shown to be zero in Chen's [11, Thm. 1.7]. Thus, the May spectral sequence indeterminacy for $H_{1}(0)$ and $Q_{3}(0)$ is the indeterminacy reported in Table 1, but Chen's unpublished results allow the more precise correspondence $H_{1}(0)=5_{32}, Q_{3}(0)=5_{39}, H_{1}(1)=5_{81}$ and $Q_{3}(1)=5_{91}$.
(4) The remaining case, T_{0}, has only Chen's Lambda algebra definition from [10. The precise indecomposable element in this bidegree is determined by the values of $h_{1} T_{0}$ and $h_{4} T_{0}$. As above, that these suffice can be checked using all. products and both are shown to be zero in Chen's 11, Thm. 1.7]. The indeterminacy reported in Table 1 is the set of decomposables, but Chen's unpublished results allow the more precise correspondence $T_{0}=5_{93}$.
8.2. Cohomological degrees greater than 5. In higher cohomological degrees, names for the elements of Ext come from Tangora's 1970 calculation [19] of the E_{∞}-term of the May spectral sequence. His Appendix 1 lists its indecomposables in the range $t-s \leq 70$ (omitting classes of the form $P^{k} a$). In three cases, known hidden extensions between the associated graded and Ext allow us to ignore these elements. These are $s=h_{0} r, S_{1} \in\left\langle h_{1} x^{\prime}, h_{0} R_{1}\right\rangle$ and $g_{2}^{\prime} \in\left\langle h_{1} B_{21}, h_{0}^{2} B_{4}(0)\right\rangle$.

Some elements named by Tangora have $S q^{0}$ which is decomposable. In those cases we keep Tangora's (often unsubscripted) notation. Others appear to be the start of $S q^{0}$-families, with indecomposable members in the range of our calculation.

In these cases, we add a subscript 0 or suffix (0) to Tangora's name for the class, except for the g_{i} family, which starts with $g_{1}=g$.

For unsubscripted elements that start $S q^{0}$-families, like Tangora's m or A, we adopt the usual $a_{i+1}=S q^{0}\left(a_{i}\right)$ notation for the subsequent elements of the family. For subscripted elements like the B_{i} or H_{1} we use Chen's suffix notation, $Z(i+1)=$ $S q^{0}(Z(i))$, to avoid collision with other names used by Tangora. The suffix notation is also applied for $C, C^{\prime \prime}$ and G, due to the prior presence of classes C_{0} and G_{0}.

Collisions would occur because subscripts in Tangora's subscripted capital letter classes do not indicate membership in a $S q^{0}$-family. In particular, the B_{1} through B_{5}, the C and C_{0}, et cetera, are not related by $S q^{0}$. Nor are q in the 32 -stem and q_{1} in the 64 -stem related in this manner. This is solved by Chen's $Z(i)$ notation.

If there is indeterminacy in the s_{g} name for the first member of a $S q^{0}$-family, it is generally inherited by the subsequent members. $X_{2}(1), E_{1}(1), C_{0}(1), G_{21}(1)$ and $B_{4}(1)$ are exceptions: $S q^{0}$ annihilates the indeterminacy in the descriptions of $X_{2}(0), E_{1}(0), C_{0}(0), G_{21}(0)$ and $B_{4}(0)$.

We have not listed all the indecomposable s_{g} which can be described using the Adams periodicity operators, but we have included those listed in Tangora's list of indecomposables. Similarly, we have not listed all the indecomposable s_{g} which can be described using Isaksen's "Mahowald operator" $M(x)=\left\langle g_{2}, h_{0}^{3}, x\right\rangle$, but we have noted that seven classes in Tangora's list, $B_{1}, B_{2}, B_{3}, B_{21}, B_{22}, B_{23}$ and G_{11} could be so described using the modified operator $M^{\prime}(x)=\left\langle h_{0}, h_{0}^{2} g_{2}, x\right\rangle$. See Section 9 for further discussion of how to use our data to extend this into the full range of our calculation.

In a very few cases the indeterminacy reported in Table 1 is greater than the inherent indeterminacy in a May spectral sequence definition. These are the bidegrees $(t-s, s)=(63,7),(67,9)$ and $(66,10)$, where there are two indecomposables in the same bidegree, and possibly $(t-s, s)=(141,5)$, where we do not know a May spectral sequence definition of the indecomposable class.

Table 1: Concordance between indecomposable s_{g} and other notations. Elements s_{g} for which we do not have a traditional name are omitted.

$t-s$	s	g	Tangora, Chen	Note
0	1	0	h_{0}	1
1	1	1	h_{1}	2
3	1	2	h_{2}	2
7	1	3	h_{3}	2
15	1	4	h_{4}	2
31	1	5	h_{5}	2
63	1	6	h_{6}	2
127	1	7	h_{7}	2
8	3	3	c_{0}	1
19	3	9	c_{1}	2
41	3	19	c_{2}	2
85	3	34	c_{3}	2
173	3	55	c_{4}	2
14	4	3	d_{0}	1
17	4	5	e_{0}	1

Table 1: Concordance between indecomposable s_{g} and other notations.

$t-s$	s	g	Tangora, Chen	Note
18	4	6	f_{0}	3
20	4	8	g_{1}	1
32	4	13	d_{1}	2
33	4	14	p_{0}	1
38	4	16	e_{1}	2
40	4	19	f_{1}	2
44	4	22	g_{2}	2
61	4	26	$D_{3}(0)$	1
68	4	32	d_{2}	2
69	4	33	p_{0}^{\prime}	1
70	4	34	p_{1}	2
80	4	40	e_{2}	2
84	4	44	f_{2}	2
92	4	48	g_{3}	2
126	4	53	$D_{3}(1)$	2
140	4	65	d_{3}	2
142	4	67	p_{1}^{\prime}	2
144	4	69	p_{2}	2
164	4	79	e_{3}	2
172	4	84	f_{3}	2
9	5	1	$P h_{1}$	1
11	5	2	$P h_{2}$	1
31	5	13	n_{0}	4
37	5	17	x_{0}	1
52	5	30	$D_{1}(0)$	1
62	5	$32(33,34)$	$H_{1}(0)$	5
67	5	38	n_{1}	2
67	5	39(38)	$Q_{3}(0)$	6
79	5	50	x_{1}	2
109	5	75	$D_{1}(1)$	2
125	5	77	K_{0}	1
128	5	80	J_{0}	1
129	5	81(82, 83)	$H_{1}(1)$	2
139	5	90	n_{2}	2
139	5	91(90)	$Q_{3}(1)$	2
141	5	93(94, 95)	T_{0}	7
156	5	108	V_{0}	1
163	5	115	x_{2}	2
30	6	10	r_{0}	1
32	6	12	q	1
36	6	14	t_{0}	1
38	6	16	y	3

Table 1: Concordance between indecomposable s_{g} and other notations.

$t-s$	s	g	Tangora, Chen	Note
50	6	27	$C(0)$	1
54	6	30	$G(0)$	1
58	6	31	D_{2}	1
61	6	$32+33$	A_{0}^{\prime}	8
61	6	33	A_{0}	8
64	6	38	$A_{0}^{\prime \prime}$	1
66	6	40	r_{1}	2
78	6	56	t_{1}	2
106	6	87	$C(1)$	2
114	6	92	$G(1)$	2
128	6	102	$A_{1}+h_{2} K_{0}=A_{1}^{\prime}+h_{0} J_{0}$	9
134	6	110	$A_{1}^{\prime \prime}$	2
138	6	115	r_{2}	2
162	6	156	t_{2}	2
16	7	3	$P c_{0}$	1
23	7	5	i	1
26	7	6	j	1
29	7	7	k	1
32	7	10	ℓ	1
35	7	12	m_{0}	1
46	7	20	$B_{1}(0)=M^{\prime} h_{1}$	1
48	7	22(23)	$B_{2}(0)=M^{\prime} h_{2}$	10
57	7	27	$Q_{2}(0)$	1
60	7	29	$B_{3}=M^{\prime} h_{4}$	1
63	7	33(35)	$X_{2}(0)$	11
63	7	$34(33,35)$	C^{\prime}	11
66	7	40(41)	$G_{0}(0)$	12
77	7	56	$m_{1}+h_{1} 6_{53}$	2
99	7	85	$B_{1}(1)$	2
103	7	90(91)	$B_{2}(1)$	2
121	7	101	$Q_{2}(1)+h_{6} D_{2}$	2
133	7	124	$X_{2}(1)+h_{3} 6_{97}+h_{1} 6_{107}$	13
133	7	125	$X_{2}(1)+h_{1} 6_{107}$	13
139	7	137(138)	$G_{0}(1)$	2
161	7	184	$m_{2}+h_{2} 6_{149}+h_{2} h_{7} n$	2
22	8	3	$P d_{0}$	1
25	8	5	$P e_{0}$	1
46	8	20	N	1
62	8	$32+33(34)$	$E_{1}(0)$	14
62	8	33(34)	$C_{0}(0)$	14
68	8	43(44)	$G_{21}(0)$	15
69	8	46	$P D_{3}(0)$	16

Table 1: Concordance between indecomposable s_{g} and other notations.

$t-s$	s	g	Tangora, Chen	Note
132	8	$139+140$	$C_{0}(1)+h_{2}^{2} 6_{97}$	2
132	8	140	$E_{1}(1)$	2
144	8	176	$G_{21}(1)+h_{1}^{3} h_{7} d_{0}$	2
17	9	1	$P^{2} h_{1}$	1
19	9	2	$P^{2} h_{2}$	1
39	9	18	u	1
42	9	19	v	1
45	9	20	w	1
60	9	29(30)	$B_{4}(0)$	17
61	9	31	X_{1}	1
67	9	39(40)	$C^{\prime \prime}(0)$	18
67	9	40(39)	X_{3}	18
67	9	39, 40	$C^{\prime \prime}(0), X_{3}$	18
129	9	145	$B_{4}(1)+h_{2} 8_{118}$	2
143	9	$197(199+200)$	$C^{\prime \prime}(1)$	2
41	10	14	z	1
53	10	18	x^{\prime}	1
54	10	19(20)	R_{1}	19
56	10	22(21)	Q_{1}	20
59	10	24	$B_{21}=M^{\prime} d_{0}$	1
62	10	$27(28,29)$	R	21
62	10	28(29)	$B_{22} \ni M^{\prime} e_{0}$	21
64	10	32(33)	q_{1}	22
65	10	34	$B_{23}(0)=M^{\prime} g_{1}$	1
66	10	$35+36$	B_{5}	23
66	10	35 or 36	D_{2}^{\prime}	23
66	10	36	$P D_{2}$	16
69	10	40	$P A_{0}$	1
140	10	$196+197$	$B_{23}(1)+h_{1} 9_{178}$	24
24	11	3	$P^{2} c_{0}$	1
34	11	7	$P j$	1
67	11	35(36)	C_{11}	25
30	12	3	$P^{2} d_{0}$	1
33	12	5	$P^{2} e_{0}$	1
25	13	1	$P^{3} h_{1}$	1
27	13	2	$P^{3} h_{2}$	1
47	13	14	Q	26
47	13	$14+15$	$Q^{\prime}=Q+P u$	26
47	13	15	$P u$	26
50	13	16	$P v$	1
65	13	29(28)	R_{2}	27
68	13	$30(31)$	$G_{11}=M^{\prime} i$	28

Table 1: Concordance between indecomposable s_{g} and other notations.

$t-s$	s	g	Tangora, Chen	Note
69	13	32	W_{1}	1
64	14	23	$P Q_{1}$	16
70	17	$26(27)$	R_{1}^{\prime}	29
69	18	20	$P^{2} x^{\prime}$ (ill-defined)	30
$8 k+1$	$4 k+1$	1	$P^{k} h_{1}$	31
$8 k+3$	$4 k+1$	2	$P^{k} h_{2}$	$\overline{31}$
$8 k+8$	$4 k+3$	3	$P^{k} c_{0}$	31
$8 k+14$	$4 k+4$	3	$P^{k} d_{0}$	31
$8 k+17$	$4 k+4$	5	$P^{k} e_{0}$	$\overline{31}$
$8 k+23$	$4 k+7$	5	$P^{k} i$ (for k even)	31
$8 k+26$	$4 k+7$	6	$P^{k} j$ (for k even)	$\overline{31}$
$8 k+26$	$4 k+7$	7	$P^{k} j$ (for k odd)	$\overline{31}$
$8 k+39$	$4 k+9$	18	$P^{k} u$ (for k even)	31
$8 k+39$	$4 k+9$	15	$P^{k} u$ (for k odd)	$\overline{31}$
$8 k+42$	$4 k+9$	19	$P^{k} v$ (for k even)	$\overline{31}$
$8 k+42$	$4 k+9$	16	$P^{k} v$ (for k odd)	$\overline{31}$

Notes:
(1) There is a unique nonzero element in this bidegree.
(2) This is $S q^{0}$ of an element we have already identified.
(3) We choose to let $f_{0}=S q^{1}\left(c_{0}\right)$ and $y=S q^{2}\left(f_{0}\right)$, which are shown in 6 to be 4_{6} and 6_{16}, respectively.
(4) This is the unique nonzero element in this bidegree whose h_{0} multiple is 0 .
(5) The May spectral sequence definition of $H_{1}=H_{1}(0)$ has indeterminacy spanned by $5_{33}=h_{1} D_{3}$ and $5_{34}=h_{0}^{3} h_{5}^{2}$, so that $H_{1}(0)$ must be the indecomposable 5_{32} modulo them. The Lambda algebra class which Chen defines as $H_{1}(0)$ in [10] satisfies $h_{0} H_{1}(0)=0$ and $h_{4} H_{1}(0)=0$, according to Chen's preprint [11, Thm. 1.7], eliminating the possible summands 5_{34} and 5_{33}, respectively.
(6) The May spectral sequence definition of $Q_{3}=Q_{3}(0)$ has indeterminacy spanned by $5_{38}=n_{1}$, so that $Q_{3}(0)$ must be 5_{39} modulo 5_{38}. The Lambda algebra class which Chen defines as $Q_{3}(0)$ in 10 satisfies $h_{3} Q_{3}(0)=0$, according to Chen's preprint [11, Thm. 1.7], eliminating the possible summand 538 .
(7) The indecomposable T_{0} must be the indecomposable 5_{93} modulo the decomposables $5_{94}=h_{7} d_{0}$ and $5_{95}=h_{1} d_{3}$. If $T_{0}=5_{93}+\alpha 5_{94}+\beta 5_{95}$, then $h_{1} T_{0}=\alpha 6_{126}$ while $h_{4} T_{0}=\beta 6_{145}$. These products are both zero according to Chen's preprint [11, Thm. 1.7], so that $T_{0}=5_{93}$.
(8) Tangora 19] shows $h_{0} A=h_{2} D_{2}$, hence $A=6_{33}$. He also shows $h_{0}^{2} A^{\prime}=0$, so that $A^{\prime}=6_{32}+6_{33}$. We write them as A_{0} and A_{0}^{\prime}, since $S q^{0}$ is nonzero on both.
(9) $A_{1}=S q^{0}\left(A_{0}\right)=6_{102}+6_{103}$ and $A_{1}^{\prime}=S q^{0}\left(A_{0}^{\prime}\right)=6_{102}+6_{104}$, while $6_{103}=h_{2} K_{0}$ and $6_{104}=h_{0} J_{0}$.
(10) The May spectral sequence definition of B_{2} has indeterminacy $7_{23}=h_{0}^{2} h_{5} e_{0}$, so that $B_{2} \in\left\{7_{22}, 7_{22}+7_{23}\right\}$. The value of $M^{\prime} h_{2}$ is exactly the same set.
(11) Bidegree $(7,7+63)$ is spanned by the two indecomposables 7_{33} and 7_{34} together with $7_{35}=h_{0}^{6} h_{6}$. We have $h_{2} 7_{33}=0$ and $h_{2} 7_{34}=8_{41}$. In the May spectral sequence there are indecomposables C^{\prime} and X_{2}. Tangora [19] reports that $h_{2} C^{\prime}=h_{0} G_{0}$ is nonzero, and does not list $h_{2} X_{2}$ as a nonzero value. Granting that $h_{2} X_{2}=0$, it follows that $C^{\prime} \equiv 7_{34}$ modulo $\left\langle 7_{33}, 7_{35}\right\rangle$ and $X_{2} \equiv 7_{33}$ modulo 7_{35}. Since $S q^{0}\left(7_{33}\right)$ is indecomposable, we write $X_{2}=X_{2}(0)$. We do not know whether $S q^{0}\left(C^{\prime}\right)$ is indecomposable; if it is we should set $C^{\prime}=C^{\prime}(0)$ and note that $C^{\prime}(1) \equiv X_{2}(1)$ modulo decomposables.
(12) Bidegree $(7,7+66)$ is spanned by the indecomposable 7_{40} and $7_{41}=h_{0} r_{1}$. Hence, the indecomposable $G_{0}=G_{0}(0)$ must be 7_{40} modulo 7_{41}.
(13) Since $S q^{0}\left(7_{34}\right)=7_{124}+7_{125}=h_{3} 6_{97}$, we see that 7_{124} and 7_{125} are congruent modulo decomposables, but are each indecomposable. Then $S q^{0}\left(7_{33}\right)=7_{125}+h_{1} 6_{107}$ shows that $7_{125}=S q^{0}\left(7_{33}\right)+h_{1} 6_{107}$ and that $7_{124}=S q^{0}\left(7_{33}\right)+h_{1} 6_{107}+h_{3} 6_{97}$.
(14) Bidegree $(8,8+62)$ is spanned by the two indecomposables 8_{32} and 8_{33} together with $8_{34}=h_{0}^{6} h_{5}^{2}$. Tangora lists indecomposables C_{0} and E_{1}, together with $h_{0}^{6} h_{5}^{2}$. He reports $h_{1} E_{1} \neq 0$ and (implicitly) $h_{1} C_{0}=0$. He also reports $h_{2} C_{0} \neq 0$ and (implicitly) $h_{2} E_{1} \equiv 0$ modulo $h_{0}^{2} h_{3} D_{2}$. This implies $E_{1} \equiv 8_{32}+8_{33}$ modulo 8_{34} and $C_{0} \equiv 8_{33}$ modulo 8_{34}. We set $E_{1}(0)=E_{1}$ and $C_{0}(0)=C_{0}$ since $S q^{0}\left(E_{1}\right)=8_{140}$ and $S q^{0}\left(C_{0}\right)=8_{139}+8_{140}+8_{141}+8_{142}$ are indecomposable.
(15) Bidegree $(8,8+68)$ is spanned by the indecomposable 8_{43} and the decomposable $8_{44}=h_{0} h_{3} A_{0}^{\prime}$. Hence, the indecomposable G_{21} must be 8_{43} modulo 8_{44}.
(16) This is the unique element in the bracket $\left\langle h_{3}, h_{0}^{4},-\right\rangle$.
(17) The May spectral sequence definition of $B_{4}=B_{4}(0)$ has indeterminacy spanned by $9_{30}=h_{0}^{2} B_{3}$, so that $B_{4}(0)$ must be the indecomposable 9_{29} modulo 9_{30}
(18) Bidegree $(9,9+67)$ is spanned by the two indecomposables 9_{39} and 9_{40}. We have $h_{0} 9_{39}=0, h_{0} 9_{40}=10_{37}, h_{2} 9_{39}=10_{41}$ and $h_{2} 9_{40}=0$. In the May spectral sequence, there are indecomposables $C^{\prime \prime}$ and X_{3}. The relations reported by Tangora 19 have $h_{0} X_{3} \neq 0$ and $h_{2} C^{\prime \prime} \neq 0$. It follows that $C^{\prime \prime} \equiv 9_{39}$ modulo 9_{40} and $X_{3} \equiv 9_{40}$ modulo 9_{39}, but, of course, $C^{\prime \prime} \neq X_{3}$. Since $S q^{0}\left(C^{\prime \prime}\right)$ is indecomposable, we write $C^{\prime \prime}=C^{\prime \prime}(0)$. We do not know whether $S q^{0}\left(X_{3}\right)$ is indecomposable; if it is we should set $X_{3}=X_{3}(0)$ and note that $C^{\prime \prime}(1) \equiv X_{3}(1)$ modulo decomposables.
(19) Bidegree $(10,10+54)$ is spanned by the indecomposable 10_{19} and the decomposable $10_{20}=h_{0}^{2} h_{5} i$, while Tangora's calculation has this bidegree spanned by $h_{0}^{2} h_{5} i$ and R_{1}. Hence, R_{1} must be 10_{19} modulo 10_{20}.
(20) Bidegree $(10,10+56)$ is spanned by the indecomposable 10_{22} and the decomposable $10_{21}=g_{1} t_{0}$, while Tangora's calculation has this bidegree spanned by $g t$ and Q_{1}. Hence, Q_{1} must be 10_{22} modulo 10_{21}.
(21) Bidegree $(10,10+62)$ is spanned by the decomposable $10_{29}=h_{1} X_{1}=P G$ together with the indecomposables 10_{27} and 10_{28}. In the May spectral sequence it is spanned by R, B_{22} and $P G$, in order of May filtration, so that B_{22} is defined modulo $P G$, while R is only defined modulo the other two. The relation $h_{0} B_{22}=d_{0} B_{2}$ holds in the May spectral sequence by [19]. Since $h_{0} 10_{28}=d_{0} B_{2}$, while $h_{0} 10_{27}$ is not divisible by d_{0} in Ext, B_{22} must be 10_{28} modulo 10_{29}. Since R is linearly independent of B_{22} and $P G$, it must be 10_{27} modulo $\left\langle 10_{28}, 10_{29}\right\rangle$.
(22) Tangora's q_{1} in $(10,10+64)$ is not $S q^{0}(q)$, which is instead the decomposable $6_{46}=S q^{0}\left(6_{12}\right)=h_{2} Q_{3}(0)$. The May spectral sequence definition of q_{1} has indeterminacy $10_{33}=h_{0}^{2} h_{3} Q_{2}(0)=h_{1}^{2} E_{1}(0)$ so that q_{1} is 10_{32} modulo 10_{33}.
(23) Bidegree ($10,10+66$) is spanned by the two indecomposables 10_{35} and 10_{36}. We have $h_{0}\left(10_{35}+10_{36}\right)=h_{1} B_{23}(0)=h_{2}^{2} B_{4}(0)$, while $h_{0}^{2} 10_{35}=h_{0}^{2} 10_{36}=$ $12_{32}=h_{1}^{2} q_{1}$. In the May spectral sequence, there are indecomposables D_{2}^{\prime} and B_{5}. The relations reported by Tangora 19 include $h_{0} B_{5}=h_{1} B_{23}=$ $h_{2}^{2} B_{4}$, which require $B_{5}=10_{35}+10_{36}$. We then have $D_{2}^{\prime}=10_{35}$ or 10_{36}. In any case $\left\langle D_{2}^{\prime}, B_{5}\right\rangle=\left\langle 10_{35}, 10_{36}\right\rangle$.
(24) $B_{23}(1)=S q^{0}\left(B_{23}(0)\right)=10_{196}+10_{197}+10_{199}$ and $10_{199}=h_{1} 9_{178}=h_{1} 9_{179}$. Both 10_{196} and 10_{197} are indecomposable.
(25) Bidegree $(11,11+67)$ is spanned by the indecomposable 11_{35} and $11_{36}=$ $h_{0}^{2} X_{3}=h_{0} h_{3} B_{4}(0)=i g_{2}=r_{0} x_{0}$. Hence, the indecomposable C_{11} must be 11_{35} modulo 11_{36}.
(26) Bidegree $(13,13+47)$ is spanned by the indecomposables 13_{14} and 13_{15}, while Tangora's calculation has this bidegree spanned by $P u$ and Q with $h_{1} Q \neq 0$. The brackets file shows that $P u=\left\langle h_{3}, h_{0}^{4}, u\right\rangle=13_{15}$. Since $h_{1} 13_{14}=h_{1} 13_{15}$, we must have $Q=13_{14}$. Tangora defines $Q^{\prime}=Q+P u$.
(27) Bidegree $(13,13+65)$ is spanned by the indecomposable 13_{29} and the decomposable $13_{28}=g_{1} w=r_{0} m$, while Tangora's calculation has this bidegree spanned by $g w$ and R_{2}. Hence, R_{2} must be 13_{29} modulo 13_{28}.
(28) Bidegree $(13,13+68)$ is spanned by the indecomposable 13_{30} and the (highly) decomposable $13_{31}=h_{0}^{5} G_{21}=h_{0} h_{5} d_{0} i$. Hence, the indecomposable G_{11} must be 13_{30} modulo 13_{31}. This coset is $M^{\prime} i$ since 13_{31} is in the indeterminacy of $M^{\prime} i$.
(29) Bidegree $(17,17+65)$ is spanned by the indecomposable 17_{26} and the decomposable $17_{27}=d_{0}^{2} v$, while Tangora's calculation has this bidegree spanned by $P e_{0} w=d_{0}^{2} v$ and R_{1}^{\prime}. Hence, R_{1}^{\prime} must be 17_{26} modulo 17_{27}.
(30) Bidegree $(18,18+69)$ is spanned by the indecomposable $18{ }_{20}$ together with $18_{21}=P(g z)$. Tangora writes $P^{2} x^{\prime}=\left\langle h_{4}, h_{0}^{8}, x^{\prime}\right\rangle$ for an indecomposable in this bidegree, but this is not defined as a Toda bracket, since $h_{0}^{8} x^{\prime} \neq 0$.
(31) By Adams periodicity $P^{k} h_{1}=(4 k+1)_{1}, P^{k} h_{2}=(4 k+1)_{2}, P^{k} c_{0}=(4 k+3)_{3}$, $P^{k} d_{0}=(4 k+4)_{3}$ and $P^{k} e_{0}=(4 k+4)_{5}$. Likewise, $P^{k} i=(4 k+7)_{5}$, $P^{k} j=(4 k+7)_{6}, P^{k} u=(4 k+9)_{18}$ and $P^{k} v=(4 k+9)_{19}$ for k even, and $P^{k} j=(4 k+7)_{7}, P^{k} u=(4 k+9)_{15}$ and $P^{k} v=(4 k+9)_{16}$ for k odd.

9. Operators

In this section, we describe the files P.txt, P2.txt, P4.txt and MM.txt, in which we collect the data needed to compute the Adams periodicity operators P^{k}, $k=1,2,4$, and Isaksen's Mahowald operator M, then make some general remarks about such operators.
9.1. Adams and Mahowald operators. These are defined by
(1) $P x=\left\langle h_{3}, h_{0}^{4}, x\right\rangle$,
(2) $P^{2} x=\left\langle h_{4}, h_{0}^{8}, x\right\rangle$,
(3) $P^{4} x=\left\langle h_{5}, h_{0}^{16}, x\right\rangle$ and
(4) $M x=\left\langle g_{2}, h_{0}^{3}, x\right\rangle$.

Isaksen's Mahowald operator $M x=\left\langle g_{2}, h_{0}^{3}, x\right\rangle$ is not of the form that it is immediately evident in the brackets.sym files, but its variant $M^{\prime}(x)=\left\langle h_{0}, h_{0}^{2} g_{2}, x\right\rangle$ is. Both contain $\left\langle h_{0} g_{2}, h_{0}^{2}, x\right\rangle$, when defined.

Recall from Proposition 5.1 that, if defined, the bracket $\left\langle h_{i},\left(s_{0}\right)_{g_{0}},\left(s_{1}\right)_{g_{1}}\right\rangle$ is the sum of those s_{g} with $s=s_{0}+s_{1}$ such that the file s1_g1/brackets.sym contains a line
s_g in < hi, g0, s1_g1 >
Thus, the values of the operators P, P^{2}, P^{4} and M^{\prime} are recognized by the presence of lines
(1) s_g in < h3, 0, s1_g1 >
(2) s_g in $\langle\mathrm{h} 4,0$, s1_g1 >
(3) s_g in < h5, 0, s1_g1 >
(4) s_g in < h0, 21, s1_g1 >
with $s=s_{1}+4, s=s_{1}+8, s=s_{1}+16$ or $s=s_{1}+6$, respectively. For M^{\prime}, we note that $6_{21}=h_{0}^{2} g_{2}$.

The files P.txt, P2.txt, P4.txt and MM.txt collect this information from all the map files, together with information about products needed in determining the domain of definition and the indeterminacy. Each file starts with a short header describing the operator and the file's organization, then has three sections:
(a): values of the brackets,
(b): nonzero products which obstruct existence of the bracket, and
(c): nonzero products which give the indeterminacy.

In general, the indeterminacy in a bracket $\langle a, b, c\rangle$ is $a($ Ext $)+($ Ext $) c$. However, the brackets P, P^{2}, P^{4} and M^{\prime} have indeterminacy $a($ Ext $)$. For the periodicity operators, this is because Ext ${ }^{4,12}$, Ext 8,24 and Ext ${ }^{16,48}$ are zero, so that (Ext) $c=0$ in the relevant bidegree. For $M^{\prime}=\left\langle h_{0}, h_{0}^{2} g_{2},-\right\rangle$, it is because $\mathrm{Ext}^{6,51}=\left\langle h_{0} h_{5} d_{0}\right\rangle$, so that $(\mathrm{Ext}) c$ is contained in $a(\mathrm{Ext})=h_{0}(\mathrm{Ext})$ in the relevant bidegree.

For example, the file P.txt starts
\% Adams operator P, in the range t\le184
\%
$\%$ (a) Brackets $P x=\langle h 3, h 0 \wedge 4, x\rangle$.
\% (b) Nonzero products h0^4 * x, obstructing existence.
\% (c) Nonzero products h3 * y, giving indeterminacy.
\% (a) Brackets $P x=\langle h 3, h 0 \wedge 4, x\rangle$.
5_1 in $\left\langle\mathrm{h} 3,0,1 _1\right\rangle$
5_2 in < h3, 0, 1_2 >
5_5 in < h3, 0, 1_3 >
6_1 in < h3, 0, 2_1 >
From the first three lines in part (a) we see that, if they are defined, $P h_{1}=5_{1}$, $P h_{2}=5_{2}$ and $P h_{3}=5_{5}=h_{0}^{4} h_{4}$, modulo their indeterminacy. To determine whether they are defined, we look at part (b), which starts
\% (b) Nonzero products h0^4 * x, obstructing existence.

5	0	$($	4	0	F2)
5	5	$($	1	0	F2)
$1 _4$					
5	14	$($	4	0	F2)
5	35	$1 _5$			
5	79	$($	4	0	F2)
6	0	$1 _6$			
6	4	0	F2)	$1 _7$	
			$2 _0$		

We see that there are no lines ending in 1_1, 1_2 or 1_3, so that h_{0}^{4} annihilates all three of these. Thus $P h_{1}, P h_{2}$ and $P h_{3}$ are all defined, but $P h_{0}, P h_{4}, \ldots$, are not.

Next, we consider the indeterminacy, which equals the h_{3} multiples in the bidegree of the bracket. The bidegrees in question are $\mathrm{Ext}^{5,5+9}=\left\langle 5_{1}\right\rangle$, $\mathrm{Ext}^{5,5+11}=\left\langle 5_{2}\right\rangle$ and Ext ${ }^{5,5+15}=\left\langle 5_{4}, 5_{5}\right\rangle$. We look at part (c) to see the h_{3} multiples among these. We find
\% (c) Nonzero products h3 * y, giving indeterminacy.

| 2 | 4 | $($ | 1 | 3 | F2) |
| :--- | :--- | :--- | :--- | :--- | :--- | $1_{1} 0$

Since we do not find $5_{1}, 5_{2}, 5_{4}$ or 5_{5} among the h_{3}-multiples, the indeterminacy is 0 .

For an example of a possible bracket which is, in fact, undefined, consider the entry
8_91 in < h3, 0, 4_48 >
in part (a). This does not mean that $P\left(4_{48}\right)=8_{91}$ because in part (b) we find that $h_{0}^{4} \cdot 4_{48}=8_{77} \neq 0$:

```
8 77 ( 4 0 F2) 4_48
```

Finally, for an example with nontrivial indeterminacy, in part (a) we find an entry
6_5 in $\langle\mathrm{h} 3,0,2$ _ 5 >
so that $6_{5} \in P\left(2_{5}\right)$, but in part (c) we find
65 ($\begin{array}{llll}1 & \text { F2) 5_1 }\end{array}$
showing that $6_{5}=h_{3} \cdot 5_{1}$ is in the indeterminacy. Hence $P\left(2_{5}\right)=\left\{0,6_{5}\right\}$. (We have $6_{5}=h_{1}^{2} d_{0}=h_{3} P h_{1}=c_{0}^{2}$.)
9.2. General remarks. We finish this section with some observations about operators like those we have just considered. Defining $P x=\left(b_{02}\right)^{2} x$ in the May spectral sequence is justified by the differential $d_{4}\left(b_{02}^{2}\right)=h_{0}^{4} h_{3}$ (19 , Prop. 4.3]). However, this accounts for only part of the definition of a Massey product or Toda bracket. It is simplest 5^{5} to discuss this in terms of Massey products in a commutative differential graded algebra over \mathbb{F}_{2} like the E_{r} terms of the May spectral sequence.

Consider classes a, b and x satisfying $a b=b x=x a=0$. The Jacobi identity says that

$$
0 \in\langle a, b, x\rangle+\langle b, x, a\rangle+\langle x, a, b\rangle .
$$

If we choose A, U and V such that $d(A)=a b, d(U)=b x$ and $d(V)=x a=a x$, then we have
(1) $A x+a U \in\langle a, b, x\rangle$,
(2) $U a+b V \in\langle b, x, a\rangle$ and
(3) $A x+b V \in\langle b, a, x\rangle=\langle x, a, b\rangle$.

[^5]Approximating the bracket $\langle a, b, x\rangle$ by $A x$, in those cases where $A x$ is a cycle, fails to distinguish between $\langle a, b, x\rangle$ and $\langle b, a, x\rangle=\langle x, a, b\rangle$. These differ by $\langle b, x, a\rangle=$ $\langle a, x, b\rangle$.

This can lead to greater indeterminacy and to anomalies like Tangora's observation [19, Note 3, p. 48] that $h_{5} i$ is annihilated by h_{0}^{3}, but $P\left(h_{5} i\right)$, if defined to be $\left(b_{02}\right)^{2} h_{5} i$, has $h_{0}^{9} \cdot\left(b_{02}\right)^{2} h_{5} i \neq 0$. In fact, consulting P.txt we see that $P\left(h_{5} i\right)=P\left(8_{26}\right)=0$ with zero indeterminacy.

By using only the precisely defined brackets we limit the indeterminacy and get the advantages of their good formal behavior.

Finally, let us point out two other operators which may be of use. They are
(1) the complex Bott periodicity operator $v_{1}(x)=\left\langle h_{0}, h_{1}, x\right\rangle$, which acts on h_{1}-annihilated classes such as the unit in $\operatorname{Ext}_{E\left(Q_{0}, Q_{1}\right)}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \Longrightarrow \pi_{*} k u$, and
(2) the mod 2 complex Bott periodicity operator $v_{1}^{\prime}(x)=\left\langle h_{1}, h_{0}, x\right\rangle$, which acts on h_{0}-annihilated classes.
In the universal example, the Adams spectral sequence for $\pi_{*}\left(S \cup_{2} e^{1} \cup_{\eta} e^{2}\right), v_{1}\left(0_{0}\right)$ is an h_{1}-annihilated class which supports an infinite h_{0}-tower, while $v_{1}^{\prime}\left(0_{0}\right)$ is an h_{0}-annihilated class which supports h_{1}^{2}-multiplication. These are visible in the brackets.sym files in the form
s_g in < h0, 1, s1_g1 >
and
s_g in < h1, 0, s1_g1 >
respectively.

10. Validity

Several checks have been run to test the validity of the data.
(1) After the resolution was computed, a separate computation was done to check that $d^{2}=0$.
(2) A check of the \mathbb{F}_{2}-dimension of the kernel and image at each step, to ensure that the image at each step has the same dimension as the kernel at the previous step. This checks exactness when combined with the check that $d^{2}=0$.
(3) A check that the Map files are complete. If this were not true, an element s_{g} missing from s1_g1/Map might not be reported in all.products as a term in a product $\left(s_{0}\right)_{g_{0}} \cdot\left(s_{1}\right)_{g_{1}}$ even when it belongs there.
(4) A check that the Map files do define chain maps, i.e., that the maps m they specify do satisfy $d m=m d$.

11. Machine processing of the data

Modern computer languages are adept at processing text. Nonetheless, the raw data which is used to produce all.products and brackets.sym is provided in the files s_g/Map. aug and s_g/brackets, since this raw data may be easier to process by a computer program. Examples should suffice to make clear the translation.

The entry which is reported as

$$
24\left(\begin{array}{cccc}
1 & 3 & \text { F2) } & 1 _0
\end{array}\right.
$$

in all.products is derived from the line in 1_0/Map.aug which says
243
as the rest of the data can be deduced from the map 1_0.
Similarly, the entries

2_8 in < h4, 0, 1_0 >
2_1 in < h0, 1, 1_0 >
2_5 in < h3, 0, 1_0 >
in 1_0/brackets.sym are derived from the lines in 1_0/brackets which say
28160
2111
2580
Here, the third entries in each line, 16, 1 and 8 , are the internal degrees of the elements h_{4}, h_{0} and h_{3}.

Finally, the entries in Sq0/Map.aug have the form
210
231
252
meaning that $S q^{0}\left(2_{0}\right)$ contains 2_{1}, that $S q^{0}\left(2_{1}\right)$ contains 2_{3}, and that $S q^{0}\left(2_{2}\right)$ contains 2_{5}.

References

[1] J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20-104, DOI 10.2307/1970147.
[2] Robert R. Bruner, Calculation of large Ext modules, Computers in geometry and topology (Chicago, IL, 1986), Lecture Notes in Pure and Appl. Math., vol. 114, Dekker, New York, 1989, pp. 79-104.
[3] Robert R. Bruner, Ext in the nineties, Algebraic topology (Oaxtepec, 1991), Contemp. Math., vol. 146, Amer. Math. Soc., Providence, RI, 1993, pp. 71-90, DOI 10.1090/conm/146/01216.
[4] Robert R. Bruner, The cohomology of the mod 2 Steenrod algebra: A computer calculation, Research Reports, vol. 37, Wayne State University, 1997.
[5] Robert R. Bruner, Some root invariants and Steenrod operations in $\operatorname{Ext}_{A}\left(F_{2}, F_{2}\right)$, Homotopy theory via algebraic geometry and group representations (Evanston, IL, 1997), Contemp. Math., vol. 220, Amer. Math. Soc., Providence, RI, 1998, pp. 27-33, DOI 10.1090/conm/220/03092.
[6] Robert Bruner, Christian Nassau, and Sean Tilson, Steenrod operations and A-module extensions. arXiv:1909.03117v3.
[7] Robert R. Bruner and John Rognes, The Adams Spectral Sequence for Topological Modular Forms, Mathematical Surveys and Monographs, vol. 253, American Mathematical Society, Providence, RI, 2021.
[8] Robert R. Bruner and John Rognes, The cohomology of the mod 2 Steenrod algebra (2021), https://doi.org/10.11582/2021.00077 [Dataset]. Norstore.
[9] Alejandro Adem, Jon Carlson, Stewart Priddy, and Peter Webb (eds.), Group representations: cohomology, group actions and topology, Proceedings of Symposia in Pure Mathematics, vol. 63, American Mathematical Society, Providence, RI, 1998.
[10] Tai-Wei Chen, Determination of $\operatorname{Ext}_{\mathcal{A}}^{5, *}(\mathbb{Z} / 2, \mathbb{Z} / 2)$, Topology Appl. 158 (2011), no. 5, 660689, DOI 10.1016/j.topol.2011.01.002.
[11] Tai-Wei Chen, The structure of decomposable elements in $\operatorname{Ext}_{\mathcal{A}}^{6, *}(\mathbb{Z} / 2, \mathbb{Z} / 2)$ (2012), preprint.
[12] Daniel C. Isaksen, Stable stems, Mem. Amer. Math. Soc. 262 (2019), no. 1269, viii+159, DOI 10.1090/memo/1269.
[13] Daniel C. Isaksen, Guozhen Wang, and Zhouli Xu, More stable stems (2020). arXiv:2001.04511.
[14] Daniel C. Isaksen, The Mahowald operator in the cohomology of the Steenrod algebra (2020). arXiv:2001.01758.
[15] Daniel C. Isaksen, Guozhen Wang, and Zhouli Xu, Stable homotopy groups of spheres (2020). arXiv:2001.04247.
[16] Wen-Hsiung Lin, $\operatorname{Ext}_{A}^{4, *}(\mathbb{Z} / 2, \mathbb{Z} / 2)$ and $\operatorname{Ext}_{A}^{5, *}(\mathbb{Z} / 2, \mathbb{Z} / 2)$, Topology Appl. 155 (2008), no. 5, 459-496, DOI 10.1016/j.topol.2007.11.003.
[17] J. Peter May, A general algebraic approach to Steenrod operations, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod's Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970), Lecture Notes in Mathematics, Vol. 168, Springer, Berlin, 1970, pp. 153-231.
[18] J. H. Palmieri, The Lambda algebra and Sq^{0}, Proceedings of the School and Conference in Algebraic Topology, Geom. Topol. Monogr., vol. 11, Geom. Topol. Publ., Coventry, 2007, pp. 201-216.
[19] Martin C. Tangora, On the cohomology of the Steenrod algebra, Math. Z. 116 (1970), 18-64, DOI 10.1007/BF01110185.
[20] John S. P. Wang, On the cohomology of the mod-2 Steenrod algebra and the non-existence of elements of Hopf invariant one, Illinois J. Math. 11 (1967), 480-490.

Department of Mathematics, Wayne State University, USA
Email address: robert.bruner@wayne.edu
Department of Mathematics, University of Oslo, Norway
Email address: rognes@math.uio.no

[^0]: Date: 26 September 2021.
 2010 Mathematics Subject Classification. 16E30, 16E40, 18G10, 18G15, 55S10, 55T15.

[^1]: ${ }^{1}$ The small " i " indicates that the notation is internal to the programs defining the Steenrod algebra. The main body of the code will compute minimal resolutions for any connected augmented \mathbb{F}_{2}-algebra, and the other notations for coefficients are generic notations for bitstrings which are independent of the algebra (see Section 4 for some discussion of formats " x " and " s ").

[^2]: ${ }^{2}$ To be precise, the new program collect. JR, included in the directory S-184, sorts the entries in this manner. It will replace the old collect in the next release of the ext package. References to collect here should generally be interpreted to refer to the improved collect. JR.

[^3]: ${ }^{3}$ We take the point of view that secondary products with respect to composition should be called Toda brackets while secondary products in a DGA should be called Massey products. By the usual device of considering the DGA of endomorphisms of a chain complex, the two are equivalent.

[^4]: ${ }^{4}$ Tangora 19. pp. 32 and 48] notes that this is not always equal to the periodicity operator $P x=\left\langle h_{3}, h_{0}^{3}, x\right\rangle$. For example see 19 . Note 3 on p. 48].

[^5]: ${ }^{5}$ An idealistic treatment would instead consider Toda brackets of chain maps, or Massey products in $\operatorname{End}\left(C_{*}\right)$, which is homotopy commutative but not commutative.

