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THE HOMOTOPY OF THE KUG-LOCAL EQUIVARIANT SPHERE

SPECTRUM

TANNER N. CARAWAN, REBECCA FIELD, BERTRAND J. GUILLOU, DAVID MEHRLE,
AND NATHANIEL J. STAPLETON

Abstract. We compute the homotopy Mackey functors of the KUG-local equivariant
sphere spectrum when G is a finite q-group for an odd prime q, building on the degree
zero case from [BGS].

1. Introduction

Work of Adams–Baird (unpublished) [Ad] and Ravenel [Ra, Theorems 8.10, 8.15], (cf. [Bo,
Corollaries 4.5, 4.6]) calculates the homotopy groups of the sphere spectrum localized at
complex K-theory.

Both the sphere spectrum S and the complex K-theory spectrum KU admit equivariant
refinements. It is natural to ask if the calculation of Adams–Baird and Ravenel can be done
equivariantly. When q is an odd prime and G is a finite q-group, Bonventre and the third
and fifth authors calculated the homotopy Mackey functor π0LKUGSG of the localization
of the equivariant sphere spectrum SG with respect to equivariant complex K-theory KUG
[BGS, Theorem 1.1]. In this paper, we calculate the remaining homotopy Mackey functors
of this localization: πnLKUGSG for n 6= 0.

Theorem 1.1. Let G be a q-group for an odd prime q, and let ℓ be any integer that is
primitive mod |G|. The homotopy Mackey functors of the KUG-local equivariant sphere
spectrum LKUGSG are as in the table below.

n πnLKUGSG

0 RQ⊗ (Z⊕ Z/2)†

−2 coker
(

RU
ψℓ−1
−−−→ RU

)

⊗Q/Z

8k 6= 0 or 8k + 2 RQ⊗ Z/2

2k − 1 6= −1 RQ⊗ π2k−1LKUS
[

1
q ]⊕ coker

(

RU∧
q {β

k}
ψℓ−1
−−−→ RU∧

q {β
k}
)

otherwise 0

†[BGS, Theorem 1.1]

The structure of the cokernel of ψℓ − 1 is described in Proposition 3.7.

Remark 1.2. These homotopy groups are independent of the choice of ℓ, so long as it is
primitive modulo |G|.
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To perform this computation, we make use of a fiber sequence of equivariant spectra
involving Adams operations. For G any odd q-group and ℓ primitive mod |G|, there is a
fiber sequence

LKUG/qSG −→ (KUG)
∧
q

ψℓ−1
−−−→ (KUG)

∧
q . (1.3)

To use this to understand the homotopy Mackey functors of LKUG/qSG, one must contend

with the action of ψℓ− 1 on the homotopy Mackey functors of KUG. Recall that π∗KUG
∼=

RU [β, β−1], where |β| = 2 and that ψℓ is a ring map with ψℓ(β) = ℓβ. It is not too hard to
see that the kernel of ψℓ− 1: π2kKUG → π2kKUG is trivial for k 6= 0. Thus the question is
really to understand the cokernel of ψℓ− 1. We accomplish this in Section 3, where we give
an explicit description of the values of the Mackey functor coker(ψℓ−1). With these in hand,
we then use the arithmetic fracture square to obtain the global calculation in Section 4.

1.1. Conventions. Throughout this paper, we fix an odd prime q and a finite q-group G.
The integer ℓ will always be assumed to be coprime to the order of G, and at times ℓ will
furthermore be assumed to be primitive modulo |G| = qj . For j > 2, this is equivalent to
requiring j to be primitive modulo q2 (see, for example, [N, Lemma 1.10]).

1.2. Acknowledgements. This work began at an NSF RTG-funded workshop held in Lex-
ington, Virginia in August 2022. We would like to thank Julie Bergner, Nick Kuhn, and
the other organizers of this workshop. We would also like to thank William Balderamma
for numerous helpful discussions.

2. Preliminaries

2.1. Representation rings and Green functors. Recall the following commutative rings
associated to G:

• The complex (resp. rational) representation ring RU(G) (resp. RQ(G)) is the Groth-
endieck group of isomorphism classes of finite-dimensional complex (resp. rational)
G-representations under direct sum. The product is induced by the tensor product
of G-representations.

• The ring of complex-valued class functions Cl(G,C) is the ring of functions G→ C

which are constant on conjugacy classes of elements in G.

These rings are related by the following pair of ring homomorphisms:

RQ(G) RU(G) Cl(G,C)
χ

The first of these homomorphisms is base change fromQ to C, and the second is the character
map. In particular, note that the character map χ : RU(G) → Cl(G,C) is injective and
embeds the complex representation ring as a subring of the ring of class functions. It will
occasionally be convenient to calculate in the image of the character map rather than with
complex representations themselves.

These four commutative rings can all be upgraded to Green functors. We denote the
Green functor versions of these rings by underlining them; for example, RQ is the Green
functor with RQ(G/H) = RQ(H). The same relationships hold among the Green functors
as do among the commutative rings: there is a sequence of Green functor homomorphisms

RQ RU Cl
χ

Let A(G) be the Burnside ring of G, and let A be the Burnside ring G-functor. There
is a Green functor homomorphism A → RQ given levelwise by taking a finite G-set to the
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associated permutation representation. When G is a p-group, the Ritter–Segal theorem
[Ri,Seg2] says that A→ RQ is surjective; we name its kernel J and deduce an isomorphism
A/J ∼= RQ. The ideal J(G) admits a nice description as the ideal of A(G) generated by all
virtual G-sets X such that |Xg| = 0 for all g ∈ G. The article [BGS] uses the notation A/J
throughout, but here we use the simpler notation RQ.

2.2. Equivariant homotopy theory. Let SpG denote the category of genuine equivariant
G-spectra. Examples include the G-equivariant sphere spectrum SG and the G-spectrum of
G-equivariant complex topological K-theory KUG.

The homotopy of genuine G-spectra is naturally Mackey-functor valued. For the primary
spectra in question in this paper, we have

π0SG = A and π∗KUG = RU [β, β−1] with |β| = 2.

If E and X are G-spectra, let LEX denote the Bousfield localization of X at E. In
particular, when E = SG/p and X is any spectrum, this localization is the p-completion of
X , denoted by X∧

p := LSG/pX . If X is already a localization X = LEY , the localization of
X at SG/p may be written

LE/pY = LSG/pLEY.

When E = SG ∧HQ is the rational equivariant sphere, we obtain the rationalization of X ,
denoted X ⊗Q := LHGQ⊗AX .

The p-completion and the rationalization are related by a homotopy pullback square of
G-spectra, called the arithmetic fracture square. When X = LKUGSG, this is the square:

LKUGSG
∏

p LKUG/p
SG

Q⊗ LKUGSG Q⊗
∏

p LKUG/p
SG.

(2.1)

See [DFHH, Proposition 2.2 of Chapter 6] for a general version of the arithmetic square,
from which (2.1) can be deduced. This is a useful tool for computing homotopy of G-spectra.

3. The cokernel of ψℓ − 1 acting on π∗KUG

Recall that for ℓ ∈ Z the Adams operation ψℓ : KUG(X) → KUG(X) is a ring homo-
morphism natural in the G-space X . In this section, we analyze ψℓ − 1 as a map on the
complex representation ring of G and on related objects. Recall Section 1.1: the integer ℓ
will always be assumed to be coprime to the order of G, and at times ℓ will furthermore be
assumed to be primitive modulo |G| = qj . The following is Exercise 9.4 of [Ser].

Lemma 3.1. The Adams operation ψℓ : RU(G) → RU(G) permutes the basis of irreducible
representations if ℓ is coprime to |G|.

Proof. Recall that a class function χ is the character of an irreducible representation if and
only if χ(e) ≥ 0 and 〈χ, χ〉 = 1. On a class function f , the Adams operation ψℓ acts as
ψℓ(f)(g) = f(gℓ). Since ℓ is coprime to |G|, every element has an ℓth root, so that the ℓth
power determines a bijection on G. It follows that the Adams operation preserves the inner
product. �

Lemma 3.2. Suppose that ℓ is coprime to |G|. The Adams operation ψℓ on RU is a
homomorphism of Green functors.
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Proof. The Adams operation ψℓ is a levelwise ring homomorphism, and it is straightforward
that ψℓ commutes with restriction. The main point is to show that ψℓ commutes with
induction of representations. To see this, we can use the character map to embed RU into
the Green functor of class functions. As this is levelwise an injection, it suffices to see that
ψℓ commutes with induction for class functions. Here, the formula (see [Ser, Section 7.2] is

IndGH(f)(g) =
1

|H |

∑

γ∈G,
γ−1gγ∈H

f(γ−1gγ).

As ψℓ(f)(g) = f(gℓ), comparing the formula for ψℓIndGH(f) at g with IndGH(ψ
ℓf) at g, one

finds that they differ only in that the former sums over γ−1gℓγ in H , whereas the latter sums
over γ−1gγ in H . Since the ℓth power is a bijection on H , as in the proof of Lemma 3.1,
the two sums are the same. �

We next consider the endomorphism ψℓ − 1 on RU . This will later appear as the endo-
morphism ψℓ − 1 on the nonnegative homotopy Mackey functors of KUG, whose Z-graded
homotopy Mackey functors are RU [β±1], with β in degree 2. Recall that ψℓ acts on βd as
multiplication by ℓd [A, Proposition 3.2.2].

Proposition 3.3. Suppose that ℓ is coprime to |G|. The Mackey functor homomorphism
ψℓ − 1: RU{βd} → RU{βd} is injective for d > 0.

Proof. This proceeds as the proof of [BGS, Proposition 6.8]. It suffices to show that this
homomorphism is levelwise injective. By Lemma 3.1, ψℓ acts by permuting the basis of
irreducibles in RU(G). If S is the associated permutation matrix, then ψℓ − 1 acts by
ℓdS − I, where I is the identity matrix. To show that this matrix is injective as a linear
transformation, it suffices to show that it has a nonzero determinant.

If d > 0, this is a matrix with integer entries and det(ℓdS − I) ≡ (−1)m (mod ℓ), where
m is the number of rows of S. Therefore, det(ℓdS − I) = aℓ + (−1)m for some a ∈ Z (note
that ℓ ≥ 2). In particular, it is nonzero. �

Remark 3.4. The statement of Proposition 3.3 in the case d = 0 does not hold. Indeed,
[BGS, Proposition 6.7] identifies the kernel of ψℓ − 1 on RU(G) as RQ(G).

The result also holds for negative d, but there ℓ must be invertible in order to define
ψℓ on RU{βd}. We therefore pass to q-completion, as this will be the case in which this
homomorphism is later considered.

Corollary 3.5. Suppose that ℓ is coprime to |G|. The Mackey functor homomorphism
ψℓ − 1: RU∧

q {β
d} → RU∧

q {β
d} is injective for d 6= 0.

Proof. In the case that d is positive, this follows from Proposition 3.3 by flat base change
along Z →֒ Z∧

q . For d < 0, we argue as in Proposition 3.3. First, det(ℓdS−I) = (ℓd)r det(S−

ℓ−dI), where r is the number of rows in the matrix. Now S− ℓ−dI is an integer matrix with
det(S − ℓ−dI) ≡ det(S) (mod ℓ). The permutation matrix S has nonzero determinant, so
ℓdS − I does as well. �

Having considered the kernel, we now turn to the cokernel. In order to get a closed form
answer, we again pass to completions, first completing at q in Proposition 3.7 and then
completing away from q in Proposition 3.11.
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Notation 3.6. We will write cok{d} for the cokernel of ψℓ − 1: RU{βd} → RU{βd}. We
will also write cok∧p {d} = cok{d} ⊗ Z∧

p for the cokernel of ψℓ − 1: RU∧
p {β

d} → RU∧
p {β

d},
and similarly for the q-complete version. When d = 0, we sometimes drop the degree from
the notation and simply write cok or cok∧p .

Proposition 3.7. Let ℓ be primitive mod |G| = qj. The Mackey functor cok∧q {d} is given
at level G/H by:

(a) for d 6= 0,

cok∧q {d}
∼=

⊕

cyclic [C]

Z/

qνq(ℓ
dφ(|C|)−1),

where the direct sum runs over conjugacy classes of cyclic subgroups C of H, ϕ is Euler’s
totient function, and νq is the q-adic valuation. When |C| = qk with k 6= 0, then

νq(ℓ
dϕ(|C|) − 1) = k + νq(d).

(b) for d = 0,

cok∧q
∼=

⊕

cyclic [C]

Z∧
q ,

where the direct sum again runs over conjugacy classes of cyclic subgroups C of H.

The restriction and transfer in the cokernel are inherited from those in RU∧
q .

Proof. The cokernel is computed levelwise; at level G/H , we have

ψℓ − 1: RU(H)∧q {β
d} → RU(H)∧q {β

d}.

By Lemma 3.1, the Adams operation ψℓ permutes the basis of irreducibles of RU(H), and it
continues to do so after flat base change along Z → Z∧

q . As in the proof of Proposition 3.3,

ψℓ− 1 acts by a matrix ℓdS− I, where S is a permutation matrix and I the identity matrix.
Reordering the basis of irreducibles if necessary, this becomes a block-diagonal matrix with
blocks

















−1 ℓd

−1 ℓd

. . .
. . .

−1 ℓd

ℓd −1

















∼

















1

1
. . .

1

ℓdt − 1

















which are equivalent to diagonal matrices as shown above, using a combination of row and
column operations, where t is the number of rows in this block. When d 6= 0, each block
contributes a factor of Z∧

q /(ℓ
dt − 1) to the cokernel. When d = 0, each block contributes a

factor of Z∧
q .

It remains to count the number of blocks and their sizes. Each block corresponds to
a ψℓ-orbit of irreducibles in RU(H). Since RU(H) is a free Z-module of finite rank, we
may base change to C and view the resulting ring as a C[ψℓ]-module. Since the character
map C ⊗ RU(H) → Cl(H,C) is a map of C[ψℓ]-modules and C[ψℓ] is a PID, it suffices to
understand the orbits of the ψℓ action on a basis for class functions. The Adams operation
acts on class functions by ψℓ(f)(g) = f(gℓ). Consider the basis of Cl(H,C) given by the
indicator functions 1[g]. Since ℓ is primitive mod |H |, two indicator functions 1[g] and 1[h]
are in the same ψℓ-orbit if and only if g and h generate conjugate cyclic subgroups of H .
Hence, there are as many ψℓ-orbits as the number of conjugacy classes of cyclic subgroups of
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G. The size of an orbit is the number of generators for a cyclic subgroup; if C is a nontrivial
cyclic subgroup of G with |C| = qk, this is ϕ(qk) = qk − qk−1 = qk−1(q − 1).

Finally, we must understand

Z∧
q
/

(ℓd(q−1)qk−1

− 1)
∼=

Z/

qνq(ℓ
d(q−1)qk−1

−1).

For this, we need to know the largest value r such that ℓd(q−1)qk−1

≡ 1 (mod qr). It helps
to work additively. There is an isomorphism of abelian groups (Z/qr)× ∼= Z/((q − 1)qr−1).
Since ℓ is a generator of (Z/qr)×, it maps to a generator of the right hand side. Since
dqk−1(q − 1) ≡ 0 (mod (q − 1)qr−1) when r ≤ k + vq(d), we have

νq(ℓ
d(q−1)qk−1

− 1) = k + νq(d).

So if C is a nontrivial cyclic subgroup of order qk, then the ψℓ-orbit corresponding to the
conjugacy class of C contributes a factor of

Z∧
q
/

(ℓd(q−1)qk−1) − 1)
∼=

Z/

qk+νq(d).

The trivial cyclic subgroup contributes Z∧
q /(ℓ

d − 1) ∼= Z/qνq(ℓ
d−1). �

Remark 3.8. The formula for the cokernel of ψℓ − 1 in the case d = 0 holds integrally,
before passage to q-completion, as can be seen from the proof.

Levelwise, the formula for cok∧q suggests that it is a quotient of (RQ)∧q . We show in

Example 3.9 that this Mackey functor is not a cyclic A∧
q -module.

Example 3.9. We calculate cok∧q for G = Cq2 . Recall the representation ring Green functor

RU∧
q :

Z∧
q [x]/(x

q2 − 1)

Z∧
q [y]/(y

q − 1)

Z∧
q

x 7→y yk 7→

q−1
∑

i=0

xiq+k

y 7→1 1 7→

q−1
∑

i=0

yi

Here, y is the class of the Cq-representation where the generator acts on the complex plane
by a q-th root of unity, and x is the class of the Cq2 -representation where the generator acts
by a primitive q2 root of unity. Since these are one-dimensional complex representations,
the Adams operation takes y to yℓ and x to xℓ. Hence, the Mackey functor homomorphism
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ψℓ − 1 takes the form

Z∧
q [x]/(x

q2 − 1) Z∧
q [x]/(x

q2 − 1)

Z∧
q [y]/(y

q − 1) Z∧
q [y]/(y

q − 1)

Z∧
q Z∧

q

RU∧
q RU∧

q

res
C
q2

Cq

xk 7→ xkℓ − xk

res
C
q2

Cq
tr

C
q2

Cq

res
Cq
e

yk 7→ ykℓ − yk

tr
C
q2

Cq

res
Cq
etr

Cq
e

0

tr
C
q2

Cq

ψℓ−1

At the Cq-level, the quotient by the image of ψℓ − 1 identifies all nontrivial represen-
tations because ℓ is primitive mod q. At the top level, the quotient places the nontrivial
representations into two classes: the class of x and the class of xq. Hence, the cokernel is:

Z∧
q {1, x, x

q}

Z∧
q {1, y}

Z∧
q

cok∧3







1 0 1

0 1 0













1 0 1

0 1 0



















1 0

0 q

q−1 0













(

1 1

)







1

q−1







This Mackey functor is not free; it contains a copy of the Burnside Mackey functor generated
by the element 1 at the top level, and the quotient by this subfunctor has q-torsion.
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Example 3.10. Let G = C9. Below we present the Mackey functors cok∧3 {1} and cok∧3 {2},
which are the cokernels of ψℓ − 1 on RU∧

3 {β} and RU∧
3 {β

2}, respectively.

Z/3{x3} ⊕ Z/9{x}

Z/3{y}

0

cok∧3 {1}

(

0 1

)







0

3







Z/3{1, x3} ⊕ Z/9{x}

Z/3{1, y}

Z/3

cok∧3 {2}







1 1 0

0 0 1



















1 0

2 0

0 3













(

1 1

)







1

2







In the case of completing at p different from q, it turns out that the cokernel of ψℓ − 1
has a familiar form.

Proposition 3.11. Let ℓ be primitive mod |G| = qj and let p be a prime different from q.
There is an isomorphism of G-Mackey functors

cok∧p
∼= (RQ)∧p .

To prove this proposition, we make use of explicit formulas for the equivalence of cate-
gories [BGS, Proposition 7.6] (originally due to [GM, Theorem A.9 and Proposition A.12]):

Mack(G)(p)
(VH )
−−−→

≃

⊕

(H)

ModZ(p)[WG(H)]. (3.12)

Here, Mack(G)(p) is the localization of the category of G-Mackey functors at p, i.e. Mackey
functors valued in Z(p)-modules rather than abelian groups. The sum on the right hand side
of this equivalence runs over all conjugacy classes of subgroups of G. The functor VH sends
M ∈ Mack(G)(p) to the quotient of M(G/H) by the subgroup generated by transfers from
all proper subgroups of H [BGS, Proposition 7.10].

Proof of Proposition 3.11. Under the equivalence of categories (3.12), (RQ)∧p maps to

VH
(

(RQ)∧p
)

=

{

Z∧
p H cyclic,

0 otherwise

by [BGS, Proposition 7.11]. It suffices to show that cok∧p has isomorphic image under this
equivalence.

If H = Cqk is a cyclic subgroup of G, RU(Cqk)
∧
p
∼= Z∧

p [x]/(x
qk −1). The ideal of transfers

from proper subgroups is generated by transfers from Cqk−1 ; each such transfer is a multiple

of the cyclotomic polynomial φqk (x) = tr
C

qk

C
qk−1

(1). Therefore,

VC
pk
(RU∧

p )
∼= Z∧

p [x]/φqk (x).

See also [TW, Example 6.7].
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If H is not cyclic, there exists a surjection θ : H → Cq × Cq. In Lemma 3.14, we will
show that q ∈ RU(Cq ×Cq) lies in the image of transfers from proper subgroups. A double
coset formula yields the commuting diagram

⊕

C�Cq×Cq

RU(C)
⊕

C�Cq×Cq

RU(θ−1C)

RU(Cq × Cq) RU(H).

θ∗

tr tr

θ∗

Since θ∗ is a ring homomorphism, θ∗(q) = q. This shows that q ∈ RU(H) lies in the image
of transfers from proper subgroups. Since q becomes a unit after p-completion, VH(RU∧

p )

is the quotient of RU∧
p (H) by the unit ideal and therefore vanishes. The rational version of

this statement appears, for example, in [T, Section 9].
We have seen that

VH(RU∧
p ) =

{

Z∧
p [x]/φqk(x) H cyclic and |H | = qk,

0 otherwise,

where φqk (x) is the q
k-th cyclotomic polynomial. Hence, it remains to determine the cokernel

of

Z∧
p [x]/φqk(x)

ψℓ−1
−−−→ Z∧

p [x]/φqk(x) (3.13)

We may write Z∧
p [x]/φqk(x)

∼= Z∧
p {x, x

2, x3, . . . , x(q−1)qk−1

}. The Adams operation ψℓ

cyclically permutes the q − 1 powers of xq
k−1

in this basis. Thus we may decompose

Z∧
p [x]/φqk(x)

∼= A⊕B

as a Z∧
p [ψ

ℓ]-module, where

A = Z∧
p {x

iqk−1

| 1 ≤ i ≤ q − 1}

and

B = Z∧
p {x

n | qk−1 does not divide n, 1 ≤ n < (q − 1)qk−1}.

It then follows that the cokernel of ψℓ − 1 on A gives Z∧
p . We claim that on B the cokernel

vanishes.
Primitivity of ℓ ensures that in RU(Cqk) ∼= Z[x]/(xq

k

− 1), two monomials xn1 and xn2

are in the same ψℓ-orbit if and only if n1 and n2 have the same q-adic valuation, where n1

and n2 are both assumed to be less than qk. It then follows that in the cokernel of ψℓ − 1
on RU(Cqk), the polynomial φqk (x) · x

n is equivalent to q · xn, so long as n is not divisible

by qk−1. Thus in the cokernel of ψℓ− 1 on the quotient ring Z[x]/φqk (x), there is a relation

q · xn = 0 when n is not divisible by qk−1. In particular, after completing at p, which is
different from q, it follows that xn vanishes in the cokernel of ψℓ − 1 on Z[x]/φqk (x).

Hence, cok∧p corresponds to Z∧
p supported on the cyclic subgroups, and under the equiv-

alence of categories, this is the same as (RQ)∧p . Since the equivalence (3.12) preserves and
creates cokernels, we are done. �

Lemma 3.14. The ideal of RU(Cq × Cq) generated by transfers from proper subgroups
contains q.
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Proof. Let H = Cq × Cq. The representation ring of H is isomorphic as a commutative
ring to Z[x, y]/(xq − 1, yq − 1), where x and y are the classes of rotation representations of
the left and right factors, respectively. If K is the subgroup of H generated by an element
(γi, γj) with i 6= 0, then

trHK(1) =

q−1
∑

k=0

(xiyj)k.

We claim that

q =
∑

K≤H

trHK(1)− trHL (1) · trHR (1),

where L is the subgroup generated by (γ, e) and R is the subgroup generated by (e, γ). This
is a calculation. Recall that H has q + 1 distinct subgroups of order q: the subgroup R
generated by (e, γ), and subgroups generated by elements (γ, γj) for j = 0, 1, . . . , q − 1.

∑

K≤H

trHK(1)− trHL (1) · trHR (1)

=

q−1
∑

j=0

trH〈(γ,γj)〉(1) + trHR (1)− trHL (1) · trHR (1)

=

q−1
∑

j=0

trH〈(γ,γj)〉(1) + trHR (1) · (1− trHL (1))

=

q−1
∑

j=0

(

1 + xyj + x2y2j + . . .+ xq−1yj(q−1)
)

+

(

1 + y + y2 + . . .+ yq−1
) (

−x− x2 − . . .− xq−1
)

= q +

q−1
∑

j=0

(

xyj + x2y2j + . . .+ xq−1yj(q−1)
)

−

q−1
∑

k=0

(

xyk + x2yk + . . .+ xq−1yk
)

= q.

The last equality follows by a reindexing, recalling that these equations live in the ring
Z[x, y]/(xq − 1, yq − 1). �

Example 3.15. Let H = C3 × C3, and let L = 〈(γ, e)〉, C = 〈(γ, γ)〉, D = 〈(γ, γ2)〉, and
R = 〈(e, γ)〉 be its four subgroups of order 3. Consider the representation ring Green functor
for C3 × C3. In this Green functor, we have:

trHL (1) = 1 + x+ x2

trHC (1) = 1 + xy + x2y2

trHD(1) = 1 + x2y + xy2

trHR (1) = 1 + y + y2
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We can directly see that 3 is contained in the ideal of RU(H) generated by images of
transfers from proper subgroups of H :

∑

K≤H

trHK(1)− trHL (1) · trHR (1)

=
(

trHL (1) + trHR (1) + trHC (1) + trHD(1)
)

− trHL (1) · trHR (1)

=
(

1 + x+ x2
)

+
(

1 + y + y2
)

+
(

1 + xy + x2y2
)

+
(

1 + x2y + y2x
)

−
(

1 + x+ x2
) (

1 + y + y2
)

=
(

4 + x+ y + x2 + xy + y2 + x2y + y2x+ x2y2
)

−
(

1 + x+ x2 + y + xyx2y + y2 + y2x+ y2x2
)

= 3.

4. The homotopy Mackey functors of LKUGSG

Our strategy for understanding LKUGSG is to use the fracture square (2.1). We begin by
describing the homotopy Mackey functors of the local factors LKUG/pSG, both in the case
p = q and p 6= q, using the work of Section 3. With the local computations in hand, we
then use the long exact sequence

· · · → Q⊗
∏

p

πn+1LKUG/pSG → πnLKUGSG → πnQ⊗ LKUGSG ×
∏

p

πnLKUG/pSG → . . .

(4.1)
arising from the fracture square (2.1) to obtain the homotopy Mackey functors πnLKUGSG.
We will use the fact that the rationalizationQ⊗LKUGSG is the Eilenberg-Mac Lane spectrum
for the rational Mackey functor Q⊗RQ [BGS, Lemma 9.1].

4.1. Local computations for p = q. In this section, we compute the homotopy Mackey
functors for LKUG/qSG. The key tool is the following.

Proposition 4.2 ([BGS, Propositions 5.3, 6.3]). If ℓ is primitive modulo |G|, then the
Adams operation ψℓ : (KUG)

∧
q → (KUG)

∧
q is a well-defined map of G-spectra that partici-

pates in a fiber sequence

LKUG/qSG −→ (KUG)
∧
q

ψℓ−1
−−−→ (KUG)

∧
q . (4.3)

Note that the fiber is independent of ℓ in the fiber sequence above.

Remark 4.4. The original proposition 5.3 in [BGS] contains the assumption that ℓ is
primitive mod |G|, but by [HiKo, Corollary 2.5], in order to show that ψℓ extends to a map
of G-spectra, it suffices to assume that ℓ is coprime to |G| = qk. On the other hand, in
order to identify the fiber as the KUG/q-local equivariant sphere, the additional primitivity
assumption is required.

Since π∗KUG
∼= RU [β, β−1] with β in degree 2, the long exact sequence of homotopy

Mackey functors associated to the fiber sequence (4.3) splits into four-term exact sequences:

0 π2dLKUG/qSG RU∧
q {β

d} RU∧
q {β

d} π2d−1LKUG/qSG 0
ψℓ−1

Thus the homotopy Mackey functors of LKUG/qSG follow from the work of Section 3.
Proposition 3.3 immediately implies the following.

Corollary 4.5. For d 6= 0, π2dLKUG/qSG = 0.



12 T. CARAWAN, R. E. FIELD, B. J. GUILLOU, D. MEHRLE, AND N. J. STAPLETON

The d = 0 case was previously computed:

Proposition 4.6. [BGS, Proposition 6.8] π0LKUG/qSG
∼= (RQ)∧q .

Corollary 4.7. The Mackey functor π2d−1LKUG/qSG is

π2d−1LKUG/qSG
∼= cok∧q {d} = coker

(

RU∧
q {β

d}
ψℓ−1
−−−→ RU∧

q {β
d}
)

.

This cokernel was computed in Proposition 3.7.

Example 4.8. The Mackey functors cok∧3 {1} and cok∧3 {2} were computed for G = C9 in
Example 3.10. According to Corollary 4.7, these agree with the homotopy Mackey functors
π1LKUC9/3

SC9 and π3LKUC9/3
SC9 .

4.2. Local computations for p 6= q. Let p be a prime that does not divide |G| = qk. The
calculation of the nonzero p-local homotopy groups of LKUGSG was done in [BGS]. For an
odd prime p, recall the homotopy groups of LKU/pS as originally calculated by Adams–Baird
[Ad] and Ravenel [Ra] and described more recently in [Z, Equation 2.3.8]:

πnLKU/pS ∼=











Z∧
p if n ∈ {0,−1},

Z/pνp(k)+1 if n = 2k − 1 and (p− 1) | k,

0 otherwise.

For p = 2, the homotopy groups of LKU/2S are in [Z, Equation 2.3.13]:

πnLKU/2S ∼=







































Z∧
2 ⊕ Z/2 if n = 0,

Z∧
2 if n = −1,

Z/2⊕ Z/2 if n ≡ 1 (mod 8),

Z/2 if n ≡ 0, 2 (mod 8), and n 6= 0,

Z/2ν2(k)+3 if n = 4k − 1 and n 6= −1,

0 otherwise.

Proposition 4.9 ([BGS, Proposition 8.5]). Let p 6= q. There is an isomorphism of graded
Green functors

π∗LKUG/pSG
∼= RQ⊗ π∗LKU/pS.

The above is a complete description of the p-complete homotopy Mackey functors of
LKUGSG, but Proposition 3.11 then gives the following description in the case n = −1:

Corollary 4.10. For p 6= q, we have π−1LKUG/pSG
∼= RQ⊗ Z∧

p
∼= cok∧p .

4.3. Local to global reassembly. Here we use the work of Section 4.1 and Section 4.2, in
combination with the long exact sequence (4.1), to deduce the homotopy Mackey functors
πnLKUGSG. The case n = 0 was the focus of [BGS]. The cases n = −1 and n = −2 behave
quite differently from the rest, so we begin by considering the cases of n different from 0,
−1, or −2.

Proposition 4.11. Let n = 2k be different from 0 and −2. Then

π2kLKUGSG
∼= RQ⊗ π2kLKUS ∼= RQ⊗ Z/2

for 2k ≡ 0, 2 (mod 8). This Mackey functor vanishes otherwise.
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Proof. Fix 2k different from 0 and −2. By Corollary 4.5 and Proposition 4.9, we have that
for p any odd prime (including p = q), then π2k

(

LKUG/pSG
)

vanishes. In the case of p = 2,
we have

π2k

(

LKUG/2SG
)

∼=

{

RQ⊗ Z/2 2k ≡ 0, 2 (mod 8),

0 else.

Similarly, we find that π2k+1LKUG/pSG is nonzero (and levelwise finite) only for finitely
many primes p. It follows that Q ⊗

∏

p π2k+1LKUG/pSG vanishes. The result now follows

from (4.1). �

In the case of n odd and different from −1, the answer is stated in terms of the cokernel
of ψℓ − 1, where as usual ℓ is primitive modulo the order of G.

Proposition 4.12. Let 2k − 1 6= −1. Then

π2k−1LKUGSG
∼= RQ⊗ π2k−1LKUS

[

1
q

]

⊕ cok∧q {k}.

Proof. According to Section 4.2, the homotopy Mackey functors of LKUG/pSG are levelwise
finite in degrees 2k and 2k − 1. Corollary 4.5 gives that π2kLKUG/qSG vanishes, while

Corollary 4.7 identifies π2k−1LKUG/qSG with cok∧q {d}. By Proposition 3.7, this is levelwise
finite. �

We now turn our attention to the case n = −1.

Proposition 4.13. π−1LKUGSG = 0.

Proof. By Proposition 3.7(b) and Corollary 4.7, the Mackey functor π−1LKUG/qSG is torsion-
free. The same is true of π−1LKUG/pSG for p 6= q by Section 4.2. It follows that the map

∏

p

π−1LKUG/pSG −→ Q⊗

(

∏

p

π−1LKUG/pSG

)

is injective. The long exact sequence (4.1) then shows that π−1LKUGSG is the cokernel of

Q⊗RQ×
∏

p

π0LKUG/pSG −→ Q⊗

(

∏

p

π0LKUG/pSG

)

,

which may be rewritten as

Q⊗RQ⊕ Z/2⊗RQ⊕
∏

p

(RQ)∧p −→ Q⊗

(

∏

p

(RQ)∧p

)

.

It suffices to show that this is levelwise surjective. As the values of the Mackey functor RQ
are all free abelian groups of finite rank, the result follows from Lemma 4.14. �

Lemma 4.14. Let B be a free abelian group of finite rank. Then the map

f : (Q⊗B)⊕
∏

p

B∧
p −→ Q⊗

(

∏

p

B∧
p

)

defined by

f

(

b0
n
, (bp)

)

=
1

n
(b0 − nbp)

is surjective.

Proof. Left to the reader. �
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Finally, we deal with the case n = −2.

Proposition 4.15. π−2LKUGSG
∼= Q/Z⊗ cok.

Proof. By Corollary 4.5 and Section 4.2, the Mackey functors π−2LKUG/pSG vanish for all
primes p. It follows from the long exact sequence (4.1) that π−2LKUGSG is the cokernel of
the rationalization map

∏

p

π−1LKUG/pSG −→ Q⊗

(

∏

p

π−1LKUG/pSG

)

.

In other words, we have that

π−2LKUGSG
∼= Q/Z⊗

(

∏

p

π−1LKUG/pSG

)

.

By Corollary 4.7 and Corollary 4.10, this may be rewritten as

π−2LKUGSG
∼= Q/Z⊗

(

∏

p

cok∧p

)

.

Each Mackey functor cok∧p is (levelwise) p-local, so that according to Lemma 4.16 we have
an isomorphism

Q/Z⊗

(

∏

p

cok∧p

)

∼=
⊕

p

(

Qp/Zp ⊗ cok∧p
)

∼=
⊕

p

(Qp/Zp ⊗ cok)

∼=

(

⊕

p

Qp/Zp

)

⊗ cok ∼= Q/Z⊗ cok.

�

Lemma 4.16. Suppose for each prime p, Ap is an abelian group such that all primes
different than p act invertibly on Ap. Then

Q/Z⊗

(

∏

p

Ap

)

∼=
⊕

p

(Qp/Zp ⊗ Ap) .

Proof. This follows from the decomposition of Q/Z as
⊕

rQr/Zr as r runs over primes,

the expression of Qr/Zr as colimk Z/r
k, and the fact that tensor product commutes with

colimits. �
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