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Introduction

This set of notes offers an introduction to the Cartier-Dieudonné theory on commutative
smooth formal groups. The Cartier theory provides a dictionary, translating most questions
about commutative smooth formal groups into questions in linear algebra. The main theorem
3.3 says that the category of smooth commutative formal groups over a commutative ring
k is equivalent to a suitable full subcategory of the category of left modules over a certain
non-commutative ring Cart(k). The equivalence above is a sort of Morita equivalence. When
the ring k is a Zy)-algebra, where p is a prime number, there is a “local version” of the main
theorem, with the ring Cart(k) replaced by a subring Cart,(k) of Cart(k) defined by an
idempotent in Cart(k).

A key role is played by a smooth commutative formal group A, which is a “restricted
version” of the formal completion of the group scheme of universal Witt vectors; see 1.6 for
its definition. This smooth formal group A is in some sense a free generator of the additive
category of smooth commutative formal groups. The ring Cart(k) is the opposite ring of
Endg(A); it is in natural bijection with the set of all formal curves in A.

An excellent presentation of Cartier theory can be found in the booklet [Z] by T. Zink,
where the approach in $2 of [R] is fully developed. We have followed [Z] closely, and we make
no claim whatsoever to the originality of the exposition here. Exercises appear throughout;
they form an integral part of the notes. The readers are advised to try as many of them as
possible. Besides [Z], there are two other standard references for Cartier theory. Lazard’s
monograph [L] is the first complete documentation of Cartier’s theory. Hazewinkel’s treat-
ment [H| employs the technology of the “functional equation lemma”, it is a useful reference,
with 5734ix pages and a good indexing system.

Although the main results of Cartier theory does not depend on the Witt vectors, in
applications the Witt vectors are indispensable. The basic properties of both the ring of
universal Witt vectors and the ring of p-adic Witt vectors can be found in Appendix A; the
exposition there is self-contained. The Witt vectors can also be viewed as being a part of
the Cartier theory, for they are the Cartier module attached to the formal completion G,
of Gy, in the two versions of Cartier theory. The group of universal Witt vectors consists of
all formal curves in Gy,, and the group of p-adic Witt vectors consists of all p-typical formal
curves in G,.

§1. Formal groups

In this section k denotes a commutative ring with 1. The notion of formal groups adopted
here differs slightly from the standard definition, because we consider them as functors on



the category of nilpotent algebras.

(1.1) Definition Let Milp, be the category of all nilpotent k-algebras, consisting of all
commutative k-algebras N without unit such that N™ = 0 for some positive integer n.

(1.1.1) Remark Clearly Nilp, is isomorphic to the category of all augmented k-algebras
k — R 5 k such that the augmentation ideal I = Ker(e) is nilpotent; the isomorphisms are
given by N — k@ N and (R, €) — Ker(e).

(1.1.2) Definition Let ProMNilp, be the category of all filtered projective limits of nilpotent
k-algebras. Every functor G : MNilp, — Gets can be uniquely extended to a functor from
ProNilp to Sets which commutes with filtered projective limits; this extension is also denoted
by G. The analogous statement holds for functors from Milp, to Ab.

Remark As an example, let k[[X1,..., X,]] be the power series ring over k in n variables.
Denote by k[[ X1, ..., X,]]T the subset of k[[X7, ..., X,]] consisting of all power series whose
constant term is 0. Then k[[X7,..., X,]]" is an object in ProNilp,, and

G(R[[X1, ., Xl ") = lim G (Kl[Xu, . Xl /(K XoRIX, L X))

1>1

(1.2) Definition Let G : Dilp, — 2Ab be a functor from Nilp, to the category of all abelian
groups.

(1) The functor G is left exact if it commutes with finite inverse limits and G(0) = (0).
(Actually the latter condition is a special case of the first one: take the inverse limit
over the empty indexing set.)

(2) The functor G is formally smooth if every surjection N; — No in Nilp, induces a
surjection G(N;) — G(N3).

(3) The functor G is right exact if it commutes with finite direct product, and every exact
sequence N3 — Ny — N — 0 in Nilp, induces an exact sequence G(N3) — G(Ng) —
G(N7) — 0 in 2Ab.

(4) The functor G is weakly left exact if G commutes with finite direct product, and if for
every exact sequence
O—>N1—>N21>N3—>O

in Nilp, such that N3 = (0) and Nj is a free k-module, the induced sequence

is exact.



(5) The functor G is half ezact if G commutes with finite direct product, and if for every
exact sequence 0 — N; — N 5 Ny — 0 in Nilp, such that Ny - N = (0), the
group G(N;) operates simply transitively on G(m)~1(£) for every & € G(N,) such that

G(m)~H(&) # 0.
Remark Left exactness implies weak left exactness and half exactness.

(1.2.1) Definition Let k£ be a commutative ring with 1 and let 900 be the category of
k-modules. There is a natural embedding of 900, into Nilp,, endowing each k-module M
the trivial multiplication structure, i.e. M - M = (0). Let G be a functor from MNilp, to Ab
which commutes with finite direct sums. The tangent functor tg : 9Mod, — Mody of G is
defined by restricting G to 9od; and endowing G (M) the natural k-module structure for
any k-module M. The Lie algebra Lie(G) of G is defined to be G(k), where k is regarded as
an object in (Mod)y.

(1.3) Definition A functor G : MNMilp, — Ab from Nilp, to the category of abelian groups
is a commutative smooth formal group if G is left exact, formally smooth, and commutes with
arbitrary direct sums.

(1.3.1) Definition Let k be a commutative ring with 1 and let I be an indexing set.

(i) Let X = (X;):er be aset of variables indexed by the set I. Denote by k[[X]] = k[[X;]]ier
the inverse limit of all formal power series rings k[[X/]];jc; where J runs through all

finite subsets of I. In other words, k[[X]] = k[[X’]] consists of all formal power series
doaaX,  aack, X*=[]xx
fed el

where a runs through all functions « : I — N vanishing outside some finite subset of
I. Elements of k[[X]] = k[[X]] are in bijection with k-valued functions on the set of
all monomials in the variables X.

(ii) Denote by k[[X]]T the augmentation ideal of k[[X]], consisting of all power series
without the constant term. For each m > 1, the quotient k[[X]]T/ (K[[X]]")" is a
nilpotent k-algebra, and k[[X]]T is the filtered inverse limit of the k[[X]]*/ (k[[X]]")"s.

(iii) Denote by AD the functor from MNilp, to Gets such that

ADN) =P N,

el

the set underlying the direct sum of I copies of V. Clearly elements of k[[X (D]] gives
rise to formal functions on AY) i.e. maps from AY) to Al



(1.3.2) Definition Let k be a commutative ring with 1 and let I be a set. A commutative
formal group law on A is morphism g : A x AD — A which provides a commutative
group law on AD, Equivalently, a commutative formal group law is a homomorphism p* :
E[[XD]] — E[[XD YD) which is coassociative, cocommutative, and admits a coinverse.
Often we identify p* with the its restriction to the free topological generators X.

It is easy to see that every commutative formal group law on AD defines a commutative
smooth formal group.

(1.4) Some Examples.

(1.4.1) The formal group G, attached to the additive group:

~

Ga(N) = N,

the additive group underlying the nilpotent k-algebra N.

(1.4.2) The formal group G, attached to the multiplicative group:

~

Gn(N):=1+NC (ke N)* vV N € Nilp,, .

Here (k @ N)* denotes the group of units of the augmented k-algebra k& @ N, so the group
lawis (1+u) - (1+v)=14u~+v+ uv for u,v € N.

(1.5) The Lubin-Tate formal group.

(1.5.1) Let O be a complete discrete valuation ring whose residue field x is a finite field
with ¢ = p® elements, where p is a prime number. Let 7 be a uniformizing element of O.

Recall that a Lubin-Tate formal group law over O is a one-dimensional smooth formal group
G = Spf(O[[X]]) over O with an endomorphism ¢ : G — G such that

H(X):=¢"(X) =7 X +X? (mod (m, X?)).

It is well-known that every polynomial ¢(X) € O[[X]] satisfying the above property uniquely
determines a formal group law ®4(X,Y’) on Al = Spf(O[[X]]) such that ¢(X) defines an
endomorphism of ®4(X,Y’). In fact there is a ring homomorphism « : O — End(®,) such
that a(r) = ¢(X), and ¢(a) induces “multiplication by a” on the Lie algebra, Va € O.
Moreover for any two Lubin-Tate formal groups ®,,, ®4, over O, there exists a unique O-
equivariant isomorphism 1 : ®4, — @4, such that ¥(X) = X (mod X?).



(1.5.2) Let O, 7 be as above, ¢ = Card(O/7Q). Let K be the fraction field of O. Let
X4 X1 X¢
(X)) = =X+ —+—+ € K||X]].
f();n +—+ o+ € K([X]]
Let ®,(X,Y) = f1(fx(X) + f2(Y)). A priori ®,(X,Y) has coefficients in K, but in fact
Q. (X,Y) € O[[X,Y]]. This can be proved directly, or one can use the “functional equation
lemma” on p.9 of [H], since fr(X) satisfies the functional equation

Fo(X) = X + Zf(XY).

It follows that ®,(X,Y) is a one-dimensional formal group law, and f,(X) is the logarithm
of ®,(X,Y). Moreover one checks that the polynomial

$n(X) = f (7 f2(X))
has coefficients in O and satisfies
P(X) =7 X +X? (mod 72*O[[X]]).
Hence ®,(X,Y) is a Lubin-Tate formal group law for (O, 7).

(1.6) Definition We define a “restricted version” of the smooth formal group attached to
the universal Witt vector group, denoted by A:

AN)=1+tk[t]®, N C (k@ N)[t])* ¥V N e Nilp, .

In other words, the elements of A(N) consists of all polynomials of the form 1+ wuy t + uy t +
-+« 4 u,.t" for some r > 0, where u; € N for i = 1,...,r. The group law of A(N) comes
from multiplication in the polynomial ring (k @ N)[t] in one variable ¢. The formal group A
will play the role of a free generator in the category of (smooth) formal groups. When we
want to emphasize that the polynomial 14 Y., u; ¢’ is regarded as an element of A(N), we
denote it by A1+ > .o, wit). -

(1.6.1) Remark (i) It is easy to see that A(k[[X]]") consists of all formal power series
in k[[X,t]] of the form

1+ Z b X" by € k

m,n>1

such that for every m, there exists an integer C'(m) such that b, , = 0 for alln > C(m).

(ii) The formal completion WA of the universal Witt vector group W, defined in §A, is
given by .
WANN)=1+tN[[t]] C (ke N)[[t])* V N e MNilp,.
In particular W (k[[X]]") consists of all power series 1+ 3 b X" b € k
in k[[X,#]]. However, this functor W” does not commute with infinite direct sums in
MNilp,,, so it is not a commutative smooth formal group according to Def. 1.3.

m,n>1

5



(1.6.2) Exercise Prove that for every nilpotent k-algebra N, every element of A(NN) can
be uniquely expressed as a finite product

(1—art) (1 —agt?) - (1 —ant™)

with aq,...,a, € N. Deduce that

A(k[[X]]ﬂz{ H (1 = mn X™ ") | @ € k, YmMmIC,, > 0 8.t amn:0ifnZC’m}

m,n>1

§2. The Cartier ring

(2.1) Definition Let k& be a commutative ring with 1. Let H : Milp, — 2Ab be a functor
from the category of commutative nilpotent k-algebras to the category of abelian groups,
extended to the category of topologically nilpotent k-algebras by filtered inverse limit as in
1.1.2. We say that H is weakly symmetric, or equivalently that H satisfies the weak symmetry
condition, if for every n > 1, the natural map

H((k[Ty, ... TJ5)™) — HK([T1, ..., Ta] )™

induced by the inclusion k[[T},...,T,]]°" < k[[Ty,...,T,]] is an isomorphism. Here S, is
the symmetric group in n letters operating naturally on the power series ring k[[T1, ..., T,]].
Note that K[[Ty,...,T,]]°" is the power series ring generated by the elementary symmetric
polynomials in the variables T3, ..., T,.

(2.1.1) Lemma Let k be a commutative ring with 1. Let H : Yilp, — Ab be a functor.
Suppose that H is left exact, that is H commutes with finite inverse limits. Then H is weakly
symmetric. In particular this is the case if H is a smooth commutative formal group over k.

PROOF. The ring (k[[Ty,...,T,]]7)°" is the fiber product of two ring homomorphisms from
K([Th, ..., To)]" to [1,eq, Kl[Th,...,Tn]]"; one is the diagonal embedding, the other sends
f(T) to (f(I7))ses,. Applying the half-exactness of H to this fiber product, one deduces
(i). The stronger statement (ii) follows from the same argument. &

(2.1.2) Exercise Prove the following stronger version of 2.1.1: If H : Milp, — Ab is
weakly left exact, then H is weakly symmetric. (Hint: Consider the homomorphism « :
KTy, ..., T)]" < K[[Ty, ..., )" — Tlyes, k[[T1, ..., Ta]]* used in the proof of 2.1.1. Let
o’ be the homomorphism of induced by « between the graded k-modules associated to the
source and the target of a. First show that each graded piece of Coker(a/) is a free k-module.)

(2.2) Theorem Notation as in 2.1, and assume that H : MNilp, — Ab satisfies the weak
symmetry condition. Let A = Ay be the functor defined in 1.6. Then the map

Vi : Hom(Ag, H) — H(K[[X]]7)

6



which sends each homomorphism o« : A — H of group-valued functors to the element

a, g (1 —Xt) € H(K[[X]]T) is a bijection.

Remark (i) Thm. 2.2 can be regarded as a sort of Yoneda isomorphism. The inverse of
Yy is given in the proof.

(ii) The formal group A is in some sense a free generator of the additive category of
commutative smooth formal groups, a phenomenon reflected in Thm. 2.2.

PROOF. Suppose that o € Hom(A, H). Given any nilpotent k-algebra N and any element
fit) =14+wut+ugt? + -+ +u, t" € A(N), we explain why the element ay(f) € H(N) is
determined by the element ho ==, (1 —X1) € H(K[[X]]T).

Let Uy, ..., U, be variables. Let § = B¢, : k[[U,...,U,]]t — N be the continuous
k-linear homomorphism such that 8(U;) = (—1)%u;. Let

§ =8, k[[U,...,U)]" — k[Xy,..., X, ]]*

be the continuous homomorphism sending each U; to the i-th elementary polynomial in the
variables X1, ..., X,. Clearly

L= Ut + -4 (=1)"U, t") .

,,,,,,,,,,

in H(k[[Xq,...,X,)]") = H[[Uy,...,U])]") € HK[[X1,...,X.]]T), where ¢; : k[[X]]T —
E[[X1,...,X,]]T is the continuous k-algebra homomorphism sending X to X;. The two
displayed formulas shows how to compute a (f) for any element f(¢) € H(N) in terms of
@xy (1 — Xt). The injectivity of Yp follows.

Conversely, given an element h € H(k[[X]]"), we have to construct a homomorphism
of functors o € Hom(A, H) such that o, (1 — Xt) = h. The argument above provides a
procedure to get an element ay(f) € H(N) for any element f(t) € A(N) for a nilpotent
k-algebra N. Explicitly, for f =1+ uit +ugt> + -+ +u, t" € A(N),

o let B¢, : k[[Un,...,U,]]T — N be the continuous k-linear homomorphism such that
By n(U;) = (—1)'u; for each 1,

o let j, : K[[U,...,U]]" — k[[X1,...,X,]]T be the continuous k-linear injection such
that j(U;) is equal to the i-th elementary symmetric polynomial in X7,..., X,

o let ¢; : K[[X]]T — Kk[[X1,..., X,]]T be the continuous k-linear homomorphism such that
(X)=X;,1=1,...,n, and



o let hy, = hin € HE[Uy,...,Uu]") be the element of H(K[[U,...,Uy,]|*") such that
H(jn)(hn) = 3252y H(1i)(h).

Define ay(f) by

an(f) = H (Bs,) (ﬁf,n>

It is not hard to check that the element an(f) € H(N) is independent of the choice of the
integer n, so that ay(f) is well-defined. This is left as an exercise, as well as the fact that
the collection of maps a defines a functor from Nilp, to Ab.

Lastly, we verify that a(fi + f2) = a(f1) + a(fe) for any fi(t), f2(t) € H(k[[X]]T). It
suffices to check this in the universal case. In other words, it suffices to verify the equality
a(fi+ fo) = a(fi) + a(fe) in H(k[[Uy,..., U, Vi,..., Viu]]T), where fi(t) =1—-Uit+---+
(=1)"U,t" and fo(t) = 1=Vit+---+(=1)"V,t™. As above we may assume that Uy, ..., U,
are the elementary symmetric polynomials in the variables Xy,..., X, and Vi,...,V,, are
the elementary symmetric polynomials in the variables Y7,...,Y,,. Let ¢; (resp. ¢}) be the
continuous homomorphism from k[[X]] to k[[X1,..., X, Y1,..., Y]] such that +;(X) = X;
(resp. 1;(X) =Y}.) Then we have

a(fi) =20y H(u)(h) € H((K[[X]]*)*) = H((K[[X]]")) = H(k[[U]
H H

alfz) = 3278 H(dh)(h) € H((K[[Y]]7)%) = H((K[[Y]]")*) = H(K[[V]]*) € H(k[[U, V]]*)
and
a(fi + f2) ZHQ +§:H HE[X1,. .., X, Y1, ..., Y]] F)Smem

= H((k[[X1, .., Xo, Vi, o Y[ F)5m0m) © H((RIX, YJTF)55) = H(K[[U, V]IT).

We conclude that a(fi + f2) = a(fi) + a(fz).

(2.2.1) Corollary Let h = h(X,t) be an element of A(k[[X]]T), and let & = @}, be the
endomorphism of Ay such that ®yix(1 — Xt) = h(X,t). For each n € N, define power
series "Ap1 (U, ..., Up), oo, Apn(Un, ..., Uy) € K[[Uy, ..., Up)]T by

n

[T h(Xit) = 1+ s (01(X), .o 0u(X)) E 4 o+ Mpn(01(X), - 0u(X)) 27

i=1
where 0;(X) denotes the i-th elementary symmetric polynomial in Xy, ..., X,.

(i) Let N be a nilpotent k-algebra, and let f(t) = 1+ajt+agt?*+---+a,t" be an element
of A,(N). Then ®n(f) = ®pn(f) is given by

On(f) =1+"Ap1(—ur,ugy ..o, (=) up) t+ -+ App(—ur,ug, ..., (—1)"u,) t".



(i) We have "* Ay, 11 (Us, ..., U,,0) =0, and
AL (Ur, . Uy, 0) = "4 4(U, . UL)
for eachi=1,2,--- n.
(iii) Suppose that h(X,t) =1 mod (X™), and let s = []. Then
"Api(Ury...,U,) =0 mod (Uy,...,U,)*
fori=1,...,n.

(iv) In the situation of (i) above, suppose that N™ = (0), then &y n(f) = 0 if h(X,t) =1
mod (X(r—l)n—i-l)‘

PROOF. The statements (i), (ii) are special cases of Thm. 2.2. The statements (iii), (iv) are
easy and left as exercises. N

(2.3) Definition Define Cart(k) to be (End(A))°, the opposite ring of the endomorphism
ring of the smooth formal group Aj. According to Thm. 2.2, for every weakly symmetric
functor H : Milp, — Ab, the abelian group H(k[[X]]") = Hom(Ag, H) is a left module over
Cart(k).

(2.3.1) Definition We define some special elements of the Cartier ring Cart(k), naturally
identified with A(K[[X]]) via the bijection Y = Y} : End(A) = A(k[[X]]") in Thm. 2.2.

(i) V:=Y (1= X"t),n>1,
(i) F, =Y 11 -Xt"),n>1,
(iii) [c] =Y 11 —cXt),c € k.

(2.3.2) Lemma For every positive integer n, denote by ¢, : k[[X]] — k[[X]] the k-algebra
homomorphism which sends X to X"™. For every c € k, denote by . : k[[X]] — k[[X]] the
k-algebra homomorphism which sends X to ¢X. Then for every weakly symmetric functor
H : lp — Ab, we have

Vay = H(én)(v),  [e]v = H(¥e)y
for every v € H(K[[X]]T) and every ¢ € k. Applying the above to A, we get
Vild B =Y 11— c X™t™)
in Cart(k).

Proor. Exercise. g



(2.3.3) Remark Let W be the ring scheme of universal Witt vectors defined in §A. For each
positive integer n we have endomorphisms V,,, F;, of W. Consider the element w(1l=XT)e
/VIV/(Z[[X]]) Then V,(w(l1—=XT)) =w(l—XT"), and F,(w(1—XT)) =w(l—X"T). This
contrasts with the notation used in the Cartier ring: V,, = Y~ 1(1-X"¢), F,, =Y '(1-X T"),
see also Exer. 2.4.2. This kind of ”flipping” is inevitable, since Cart(Z) operates on the right

of W, and we want the same commutation relation of V,,, F,, with the endomorphisms [¢] in
2.4 to hold in all situations.

Remark Often H(¢,)(vy) is abbreviated as v(X™), and H(v.)(vy) is shortened to v(cX).
This is compatible with the standard notation when H is representable as a formal scheme
Spf R, where R is an augmented k-algebra complete with respect to the augmentation ideal.
The elements of H(k[[X]]) are identified with continuous homomorphisms R — k[[X]],
thought of as “formal curves” in Spf R.

(2.3.4) Corollary For every commutative ring with 1 we have

Cart(k) = { > Vi lcom] Fa

m,n>1

Com € k, YVm AC,, > 0 s.t. cmnzoifnZC’m}

PRrRooF. This is a direct translation of Exer. 1.6.2.

(2.3.5) Exercise Let k be a commutative ring with 1 and let n be an integer. Prove that
n is invertible in Cart(k) if and only if n is invertible in k.

(2.3.6) Lemma Suppose that H : Nilp,, — Ab is weakly symmetric. Letn > 1 be a positive
integer. Denote by k[(,] the k-algebra k[T|/(T™ — 1), and let ¢ = (,, be the image of T in
E[T]/(T"—1). Denote by k[C][X=]]* the k[(]-algebra k[C][[X, U /(U"—X)k[C][[X, U]], and
let X be the image of U in k[C)[[X, U]|* /(U™ — X)K[C][[X,U]]. For eachi=0,...,n—1,
let ¢, @ K[ X]]T — E[C[[X*]]" be the homomorphism of k-algebras which maps X to (' X .
Then

1

Jor every v € H(k[[X]]); the equality holds in H(k[C][[X*]]T). Formally one can write the
above formula as F, -y =31 ~(CE X 7).

PROOF. Use Cor. 2.2.1 and the equality [[;_, (1 — CfLX%t"). ]

(2.4) Proposition The following identities hold in Cart(k).
1) Vi=F =1, F,V, =n.
(2) [a] [b] = [ab] for all a,b € k
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3) [ V=V, [c"], Fulel =[] F, forallc €k, alln > 1.

H Vo Vo=V Voo =Voun, B B, = FL By = Fyy for allmyn > 1.

(3)

(4)

(5) F, Vi = Vi Fy if (m,n) = 1.

(6) (VulalFy) - (Via[b]F) = 7 Vinn [a¥b7] Fun, 7 = (m,n), for all a,b € k, m,n > 1.

PROOF. We have seen that Cart(k) operates on the left of the set H(k[[X]]T) of all formal
curves in H for every weakly symmetric functor H : MNilp, — 2Ab. For each of the above
identities for elements in Cart(k), it suffices to check that the effect of both sides of the
equality on the element 1 — Xt € A(k[[X]]"), by Thm. (2.2. The checking for (1)—(5) is
straightforward using 2.3.2 and 2.3.6; it is left to the reader. The statement (6) follows from

(1)—(5). n

(2.4.1) Exercise Let k be a commutative ring with 1 and let W” be the formal completion
of the universal Witt vectors, so that W"(N) =1+ NJ[[T]] C (k@ N)[[T]]*.

(i) Prove that the map which sends every element ® € Endk(WA) to Py (1 — XT)

establishes a bijection between Endk(W/\) with the set of all power series in k[[X, T]
of the form 1+ by X™T™, by, € k.

m,n>1

(i) Show that Endy,(W")°P can be identified with the set of all expressions

Y Vilamn] Fuy amn €k,

m,n>1

such that the endomorphism represented by such a sum sends the element 1 — XT' €
WAK[XT]T) to [[nps1 (1 — @mpX™T™). All identities in Prop. 2.4 hold in the ring

End, (W")°P

(2.4.2) Exercise Let k be a commutative ring with 1. The Cartier ring Cart(k) operates
naturally on the right of the formal group functor Ag. Let N be a nilpotent k-algebra. For
every element a € N, every element ¢ € k and integers m, n > 1, prove that

(i) (1—at™)-V, = (1 —art+)", where r = (m,n).
(i) 1—at™)-F

(iii) (1—at™)-[d=(1—ac™tm).

(iv) Use (i)-(iii) to prove 2.4.

(2.5) Proposition Let k be a commutative ring with 1. )
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(i) The subset S of Cart(k) consisting of all elements of the form

Z ValanFny an € kVn>1

n>1
form a subring of Cart(k).

(ii) The injective map

W(k) = Cart(k), w(a)— > V;la,]F,

n>1

s a homomorphism of rings.

PROOF. Let S’ the subset of the power series ring k[[X, t]] consisting of all elements of the
form 1+ %", a, X™t™ such that a,, € k for all m > 1. Clearly S’ is a subgroup of
the unit group k[[X,t]]* of k[[X,t]]. By definition Cart(k) = A(k[[X]]*) is a subgroup of
E[[X,t]]*, and S = S’ N Cart(k). If follows that S is a subgroup of the additive group
underlying Cart(k). The formula 2.4 (6) implies that the subset S C Cart(k) is stable under
multiplication, hence it is a subring. The definition of multiplication for the universal Witt
vectors in A.1.1 tells us that the bijection in (ii) is an isomorphism of rings. =

Corollary Let A, (U, V) € k[U, V] be polynomials defined by

1-UT)-1-VT)=1-U+WVT)-J[(1 - AU, V)T

n>1

Then for all ¢, co € k we have

[er] + [ea] = [e1 + o] + ) ValAu(er, 2)] Fy
>1
(2.6) Definition The ring Cart(k) has a natural filtration Fil*Cart(k) by right ideals

Fil Cart(k) = {Z > Vinltmnl Fo | tmn €k, Y > §, 3Ch > 084, Gy = 0if 0 > Cm}

m>j n>1

for j > 1. The Cartier ring Cart(k) is complete with respect to the topology given by the
above filtration. Moreover each right ideal Fil’ Cart(k) is open and closed in Cart(k).
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(2.7) EXERCISES.

(2.7.1) Exercise Prove the following statements.
(i) [c] - FiCart(k) C Fil’Cart(k) for all ¢ € k, all j > 1.
(ii) V,, - FilCart(k) C Fil™ Cart(k) for all m,j > 1.
(iii) F, - Fil’Cart(k) C Fil(%wCart(k:) for all n,j > 1.
)

(iv) The right ideal of Cart(k), generated by all elements V,, with n > j, is dense in
FilCart(k).

(v) The quotient Cart(k)/Fil*Cart(k) is canonically isomorphic to k.

(vi) Left multiplication by V; induces a bijection

V; : Cart(k)/Fil*Cart(k) = Fil’Cart(k)/Fil’*'Cart(k) .

(2.7.2) Exercise (i) Show that Cart(k) is a topological ring, i.e. the multiplication is
a continuous map for the topology given by the decreasing filtration Fil*Cart(k) on
Cart(k). (Hint: The point is to show that for any x € Cart(k), the map y +— x -y is
continuous.)

(ii) Show that for any n > 1, there exists x € Cart(k) and y € Fil"Cart(k) such that
x -y ¢ Fil*Cart(k).

(2.7.3) Exercise Let k be a commutative ring with 1.

(i) Show that the right Cart(k)-module T := Cart(k)/Fil*Cart(k) is a free k module with
basis x;, ¢ > 1, where x; :=the image of F; in T

(ii) Show that the right Cart(k)-module 7" is naturally isomorphic to the Lie algebra Lie(A)
of the smooth formal group A over k.

i e free right Cart(k)-module T" in (i) above gives a ring homomorphism
The £ ht Cart(k dule T b h h
p: Cart(k) — M._(k),

where M/_(k) denotes the set of all N>y x N>j-matrices (c;;);j>1 such that each row
has at most a finite number of nonzero entries. The ring M/ _(k) operates on the
right of the k-module k®Nz1 consisting of all row vectors indexed by Ns; with at
most a finite number of non-zero entries, and the natural surjection Cart(k) — T
is equivariant with respect to p. Prove that for each element Vinlamn] Fr €
Cart(k), p(3_,n>1 Vinl@mn] Fr) is the matrix (cj;); j>1 with

1
Cij: E ; CL%7

| (4.7)

m,n>1

) Vi > 1.

S
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(iv) Prove that p is an injection if and only if the natural map k£ — k ®z Q is an injection,
or equivalently k is p-torsion free for every prime number p.

(v) Prove that p is an isomorphism if and only if k is a Q-algebra, or equivalently every
nonzero integer is invertible in k.

(vi) Use (iii) and the properties of the ghost coordinates of the universal Witt vectors to
give another proof of 2.5 (ii). See A.2 for the definition of ghost coordinates.

(2.7.4) Exercise Let p: Cart(k) — M/ (k) be the homomorphism in 2.7.3 (iii).

(i) Show that an element u € Cart(k) is in the subring /I/Iv/(k) if and only if p(u) is a
diagonal matrix in M’_(k).

(ii) Let u be an element of Cart(k). Prove that u induces an isomorphism of A if and only
if u induces an isomorphism on Lie(A).

(iii) Show that p~1(M’_(k)*) = Cart(k)*.

(iv) Let w =} -, Vi[an]F, be an element of W (k) C Cart(k). Prove that w is a unit in
Cart(k) if and only if every sum of the form

.
E i a;
ij=m, i,jEN
is a unit in k, for every integer m > 1.

(v) Show that W (k) N Cart(k)* = W (k)*.

§3. The main theorem of Cartier theory

(3.1) Definition Let k£ be a commutative ring with 1. A V-reduced Cart(k)-module is a
left Cart(k)-module M together with a separated decreasing filtration of M

M =Fil'M D Fi’M D ---Fil"M D Fil"*' o - ..
such that each Fil"M is an abelian subgroup of M and

(i) (M,Fil*M) is complete with respect to the topology given by the filtration Fil*M. In
other words, the natural map Fil"M — lim (Fil"M/Fil"™ M) is a bijection for all n > 1.

m>n
(i) V,,, - Fil"M C Fil"™™ M for all m,n > 1.
(iii) The map V;, induces a bijection V,, : M/Fil?M = Fil" M /Fil"*' M for every n > 1.
(iv) [¢] - FiI"M C Fil"M for all ¢ € k and all n > 1.

14



(v) For every m,n > 1, there exists an r > 1 such that F}, - Fil"M C Fil"M.

(3.1.1) Definition A V-reduced Cart(k)-module (M, Fil*M) is V-flat if M/Fil*M is a flat
k-module. The k-module M /Fil>M is called the tangent space of (M, Fil®M).

(3.1.2) As an example, the free Cart(k)-module Cart(k) has a filtration with

Fil"Cart(k) = » ~ V,,Cart(k),

m>n

making it a V-flat V-reduced Cart(k)-module. Its tangent space is naturally isomorphic to
k[t]. See 2.7.1.

(3.1.3) Exercise Let (M,Fil*M) be a V-reduced Cart(k)-module and let n be a positive
integer.

(i) For each n > 1, the subgroup of M generated by all V,,, - M, m > n is dense in Fil" M.
This follows from 3.1 (i)—(iii).

(ii) If M is a finitely generated left Cart(k)-module, then Fil"M = Fil"Cart(k) - M.

(iii) Prove that M is finitely generated as a left Cart(k)-module if and only if M /Fil*M is
a finitely generated k-module.

(iv) Use 2.7.1 to show that properties (iv), (v) in Def. 3.1 follow from 3.1 (i)—(iii).

(vi) Prove the following strengthened form of 3.1 (v):

E,-FiI"M CFil'=1M Vm,n>1.

(3.1.4) Definition Let H : Milp, — Ab be a formal group functor as in 2.1. The abelian
group M(H) := H(E[[X]]") has a natural structure as a left Cart(k)-module according to
Thm. 2.2 The Cart(k)-module M(H) has a natural filtration, with

Fil"M(H) := Ker(H (K[[X]]") — H (K[[X]]"/X"K[[X]]))
We call the pair (M(H), Fil*M(H)) the Cartier module attached to H.

(3.1.5) Lemma Let H : Nilp, — Ab be a functor which is weakly left exact and right exact
in the sense of 1.2. Then (M(H),Fil*M(H)) is a V-reduced Cart(k)-module. In particular,
this is the case if H is a commutative smooth formal group.
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PRrOOF. Since the functor H is right exact, we have
M(H)/Fil" "M(H) = H(K[[X]]* /X" k[[X]]),

and Fil"M(H) is equal to the image of H(X"k[[X]]) in H(k[[X]]") under the map induced
by the inclusion X"k[[X]] < k[[X]]*. By definition,

M(H) = H(K[[X]]*) = lim H(k[[X]]*/X"k{[z]}) = lim FI"M(H)

n n

Condition (i) follows.

The conditions (ii), (iv) of Definition 3.1 are easy to check; it is also easy to verify
condition (v) of 3.1 holds with » = mn. These are left to the reader as exercises. Here we
check that V;, induces an isomorphism from gr'M(H) to gr"M(H) for every n > 1.

Since H is weakly left exact as well, we have a functorial isomorphism
Fil"M(H) /Fil""'"M(H) = H(X"k[[X]]/ X" E[[X]])
for each n > 1. The isomorphism
RIXT/X2R(IXD) = X([X])/ X R([X]]

in Milp, which sends X to X" induces an isomorphism gr'M(H) = gr*M(H). This isomor-
phism is equal to the map induced by V,,, so (M(H), Fil*M(H)) is V-reduced. n

(3.1.6) Lemma Let H : Nilp;, — Ab be a group-valued functor. If H is exact, i.e. it is

left exact and right exact, then (M(H),Fil*M(H)) is a V-reduced V-flat Cart(k)-module. In
particular, this is the case if H is a commutative smooth formal group.

PrOOF. The tangent functor ty : Mo, — Mod, of H, being the restriction to the category
Mov; of an exact functor, is exact. The map N — Lie(G) ®; N is a right exact functor
from Moo, to Mo0,. These two functors are both right exact, commute with finite direct
sums, and take the same value on the free k-module k, hence these two functors coincide on
the category fpMtoo, of all finitely presented k-modules. So the functor N — Lie(G) @i N
from fpMod, to Mod, is exact, because the tangent functor is. It is well-known that the
last property of Lie(G) = My /Fil>M(H) implies that My /Fil>M(H) if a flat k-module. m

(3.1.7) Exercise Let k be a commutative ring with 1. Let W (k) be the group of universal
Witt vectors with entries in k, endowed with the filtration defined in A.1.3 and the action of
Cart(k) defined in A.3. Prove that (W (k), Fil|*W (k)) is a V-flat V-reduced Cart(k)-module.
(In fact it is the Cartier module attached to G,,.)

(3.1.8) Exercise Let k& be a commutative ring with 1. Let M = Ek[[X]|T, filtered by
Fil"M = X"k[[X]], n > 1. Define operators F,, V,,,[c] on M, n € N5y, ¢ € k as follows:
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o V(s e X™) = Yy X,
° Fn(zm21 Uy X™) = Zle Ny X,
° [C](ZmZI Ay X™) = Zle Ay ™ X™.

Prove that M is a V-reduced V-flat Cart(k)-module. (In fact it is the Cartier module
attached to G,.)

(3.1.9) Lemma Let k — R be a homomorphism between commutative rings with 1. Let
(M, Fil*M) be a V-reduced Cart(k)-module. Denote by Fil*(Cart(R) ®carery M) the tensor

product filtration on Cart(R) @carek) M, such that
Fil"(Cart(R) @cangmM) = Y Image (Fil'Cart(R) @FiV M — Cart(R) @car M)
i5>1,i+5>n

for every n > 1. Let Mg be the completion of the Cart(R) ®caryxy M with respect to the
topology defined by the filtration Fil® (Cart(R) ®Cart(k) M), and let Fil*Mpg be the induced
filtration on Mp.

(i) The pair (Mg, Fil*Mpg) is a V-reduced Cart(R)-module.
(i) If (M,Fil*M) is V-flat, then (Mg, Fil*Mpg) is V-flat.
(iii) Mg/Fil>Mp = R ®, (M/Fil>M).
Proor. Exercise. n
(3.1.10) Exercise Let (M, Fil*M) be a V-reduced Cart(k)-module. Let R = k[e]/(e?). The
projection R — k defines a surjective ring homomorphism Cart(R) — Cart(k), so we can

regard M as a left module over Cart(R). Show that (M, Fil*M) is a V-reduced Cart(R)-
module which is not V-flat.

(3.2) Definition Let M be a V-reduced Cart(k)-module and let @@ be a right Cart(k)-
module.

(i) For every integer m > 1, let Q,,, := Anng(Fil"Cart(k)) be the subgroup of () consisting
of all elements x € @ such that x - Fil"Cart(k) = (0). Clearly we have @)1 C @2 C
Q3 C -

(ii) For each m,r > 1, define Q,,, ® M" to be the image of Q,, ® Fil"M in Q ®@careey M. If
r > mand s > m, then Q,, ®© M" = Q,, ©® M?; see 3.2.1. Hence Q,, © M™ C Q,, © M™"
if m <n.
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(iii) Define the reduced tensor product Q®cart(x)M by

Q@Pcart(tyM = Q @care(y M /( U(Qm ©M™)) .

iv. We say that @) is a torsion right Cart(k)-module if @ = J,, Anng(Fil™Cart(k)).

(3.2.1) Exercise Notation as in 3.2.

(i) For every z € Q,, and every y € Fil"M with n > m, let y; € M and y, € Fil"™ M be
such that y = V"y; + 2. Then 1 ® y = 2 ®@ y2 in Q Rcarek) M.

(ii) Show that Q,, © M" = Q,,, © M?® if r, s > m.
(3.2.2) Exercise Let (M, Fil*M) be a V-reduced Cart(k)-module.
(i) Let N be a nilpotent k-algebra such that N? = (0). Prove that

AN)@carnM = N @y, (M/Fil>M) .

(ii) Prove that A(K[[X]]" /X K[[X]))Bcam M = M/Fil" M.

(3.2.3) Lemma Let 0 — Q' — Q — Q" — 0 be a short exact sequence of torsion right
Cart(k)-modules. Let M be a V-reduced left Cart(k)-module.

(i) The map Q © M — Q" ® M is surjective.
(ii) The sequence Q' @caryM — QRcar(yM — Q" — Rcar(yM — 0 is ezact.
PRrROOF. The statement (ii) follows from (i) and the general fact that
Q,®Cart(k) - Q®Cart(k) - Q,/®Cart(k) — 0

is exact. It remains to prove (i).

Suppose that z” is an element of Anngr(Fil"Cart(k)), and y is an element of Fil" M.
We must show that z” ® y belongs to the image of @ ® M in Q" ®care) M. Pick z € Q
which maps to z” € @”. Because () is torsion, there exists an integer n > m such that
x-Fil"Cart(k) = 0. Write y as y = y; +y2, with y; € Fil"Cart(k)- M and y, € Fil"M. Then
@y =2" @y in Q" Scare(xy M. So the element  ® yo in Q@ © M maps to 2" @ y,. N
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(3.3) Theorem Let k be a commutative ring with 1. Then there is a canonical equivalence
of categories, between the category of smooth commutative formal groups over k as defined
in 1.3 and the category of V-flat V-reduced Cart(k)-modules, defined as follows.

{smooth formal groups over k} — {V-flat V-reduced Cart(k)-mod}
G | M(G) = Hom(A, G)
A®cart (k)M | M

Recall that M(G) = Hom(A, G) is canonically isomorphic to G(X k[[X]]), the group of all
formal curves in the smooth formal group G. The reduced tensor product A@care) M is the
functor whose value at any nilpotent k-algebra N is A(N)®@carer) M -

(3.4) PrOOF OF Thm. 3.3.
The key steps of the proof of are Prop. 3.4.3 and Thm. 3.4.5 below.

(3.4.1) Lemma Let o : (L, Fil*L) — (M, Fil*M) be a homomorphism between V -reduced
Cart(k)-modules, i.e. a(Fil'L) C Fil'M for all i > 1. Then the following are equivalent.

(1) a(Fil'L) = Fil'M for all i > 1.
(il) a(L) =M.
(iii) o : L/Fil>L — M/Fil>M is surjective.

(3.4.2) Exercise Let k£ be a commutative ring with 1. Let I be any set. Denote by
Cart (k) the free Cart(k)-module with basis I. Define a filtration on Cart(k)?) by

Fil'Cart (k)" = (Fil'Cart (k)" .

(i) Show that (Cart(k)D, Fil*Cart(k)) is a V-reduced Cart(k)-module if and only if I
is finite.

—

(ii) Let Cart(k)() be the completion of the filtered module. (Cart(k)"), Fil*Cart(k)")),

with the induced filtration. Prove that Cart(k)() is a V-reduced Cart(k)-module. We
call Cart(k)) the free V-reduced Cart(k)-module with basis I. Formulate a universal
property which justifies this terminology.

(iii) Let @ be a torsion right Cart(k)-module, i.e. @ = J, Anng(Fil"Cart(k)). Prove that
Q®car(r)Cart(k)(?) is naturally isomorphic to Q).

(3.4.3) Proposition Let o : (L,FilI*L) — (M, Fil*M) be a surjective homomorphism be-

tween V -reduced Cart(k)-modules as in Lemma 3.4.1. Let K be the kernel of o, with the

induced filtration Fil' KK = K NFil'L for all i > 1. Then (K,Fil°K) is a V-reduced Cart(k)-
module.
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Proor. Consider the commutative diagram

00— K/Fil’K L/Fil’L M /FiPM ——0

lvn glvn glvn

0 — Fil"K/Fil"™" K —— Fil"L/Fil" ™ L —= Fil" M /Fil" "' M — 0

The top row is exact, because Fil> — Fil>M is surjective. The bottom row is also exact, by a
similar argument. From the five-lemma we see that V,, induces a bijection V,, : K JFiPK =
Fil' K/Fil"*' K for all n > 1. The rest of the conditions for (K, Fil*K) to be V-reduced is

easy. i

(3.4.4) Definition By Prop. 3.4.3, for every V-reduced Cart(k)-module (M, Fil*M), there
exists a free resolution

0; 0; o)
LS L= B LS LS M =0

of M, where each L; is a free V-reduced Cart(k)-modules in the sense of 3.4.2 (ii), each 0; is
compatible with the filtrations, and Ker((? ) = Image(0;4+1) for all ¢ > 0, and 0, is surjective.

Define reduced torsion functors Tor, e t(k)(7, M) by

=—Cart(k) 0; 0i—1

Tor; (Q,M) = i(Q®Cart(k‘)("'_>L LNy NN N 8—1>L0))

for any torsion right Cart(k)-module Q.

Cart(k)

Exercise (i) Prove that the functor Tor, is well-defined.

(ii) Show that every short exact sequence of torsion right Cart(k)-modules gives rise to a
~=—Cart(k
long exact sequence for the functor Tor k),

(iii) Formulate and prove a similar statement for the second entry of the reduced torsion
functor.

(3.4.5) Theorem let k be a commutative ring with 1. Let (M,Fil*M) be a V-reduced
Cart(k)-module. Let N be a nilpotent k-algebra.

(i) Suppose that (M,Fil*M) is V-flat, i.e. M/Fil>M is a flat k-module. Then

Cart (k)
A

Tor, "™ (A(N), M) = (0)

foralli>1.
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(ii) Suppose that N has a finite decreasing filtration
N =Fil'N D Fil’N D --- D Fil*N = (0)
such that each FilV N is an ideal of N, (FiV N)? C Fil'''N and FiV N/FiV ™' N is a flat

~—Cart

k-module for j =1,...,s — 1. Then Tor, (k)(A(N),M) =0 foralli>1.
PROOF OF (i). Choose an s € N such that N* = 0. Then we have a decreasing filtration
A(N) 2 A(N?) 2 -+ 2 ANTH) 2 A(N?) = (0)

of A(N). For each j = 1,2,...,5 — 1 we have A(N7)/A(N'*!) = A(NI/N7*1) as right
Cart(k)-modules, hence it suffices to show that ﬁicart(k)(A(Nj/Nj“),M) = 0 for each
j=1,2,...,s—1. Let L = M be a surjection from a free reduced Cart(k)-module L to M,
and let K be the kernel. Then K is also a V-flat V-reduced Cart(k)-module. Recall from
Exer. 3.2.2 (i) that A(N7 /N7 )@cuiwM =2 (N7 /NIHY) @, (M/Fil?M) for each j = 1. The
long exact sequence attached to the short exact sequence 0 — K — L — M — 0 yields
isomorphisms
Toryy (AN /NI, ) = Tor, AW /N, K) iz 1

and an exact sequence

(N7 /NIy @y (K/FilPK) % (N /NI @y (L/FilPL) — (N7 /NI @ (M/FilPM) — 0

art(k)

such that the kernel of « is isomorphic to ﬂlc (A(N7/N3+1), M). Since M/Fil*M is a
——Cart

flat k-module, we see that Tor, *) (A(N7 /NI M) = 0 for every V-flat V-reduced Cart(k)-
module M. Since K is also V-flat, mga”(’“) (A(N7 /NIt M) = 0 as well. An induction
shows that T—oricart(k)(A(Nj/Nj“),M) =0foralli>1andall j =1,2,...,s — 1. The

statement (i) follows.
PROOF OF (ii) In the proof of (i) above, replace the ideals N7 by Fil/ N. The sequence
(FiV N/FiV I N) @, (K/FiPK) % (FiV N/FiV ' N) @, (L/Fil*L)
— (FIVN/FiV I N) @, (M/Fil>M) — 0
is exact because Fil/ N/Fil’T' N is a flat k-module. The rest of the proof of (ii) is the same
as the proof of (i). =

PrOOF OoF THM. 3.3. Suppose that (M,Fil*M) is a V-flat V-reduced Cart(k)-module.
It follows immediately from Thm. 3.4.5 that G := A@cm(k)M is a smooth formal group.
Conversely given any smooth formal group G, M(G) is V-reduced and V-flat according to
Lemma 3.1.6. By Exer. 3.2.2 (ii), we have a functorial isomorphism

(ABcare M) (K[[X]]") = lim AGK[[X]]"/X"E[[X]))®carp M < M

n

for each V-flat V-reduced Cart(k)-module M.
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To finish the proof, it remains to produce a functorial isomorphism
Ba : ABcartnyM(G) = G

for each commutative smooth formal group GG. For each nilpotent k-algebra N, we have a
natural map ﬁng . A®Cart(k)M(G) — @ such that ﬁG,N : Zz fz®hz — Zz CI)th(fi) € G(N)
in the notation of Cor. 2.2.1, where f; € A(N) and h; € M(G) for each i. The map
Ba.n factors through the quotient A(N)®car@M(G) of A(N) @carsy M(G) by 2.2.1 (iv),
and gives the desired map agn : A(N)®car(eyM(G) — G(N). Since both the source and
the target of Jg are exact and commute with arbitrary direct sums, to show that (g is
an isomorphism for every nilpotent k-algebra N it suffices to verify this statement when
N? = (0) and N is isomorphic to k as a k-module. In that case g is the canonical
isomorphism M(G)/Fi*M(G) = te. o

(3.4.6) Exercise (i) Prove that the equivalence of categories in Thm. 3.3 extends to an
equivalence of categories between the category of V-reduced Cart(k)-modules and the cate-
gory of functors G : Milp,, — Ab which are right exact, weakly left exact, and commute with
arbitrary direct sums.

(ii) Let G : Milp,, — Ab be a functor which satisfies the conditions in (i) above. Let 0 —
N; — Ny — N3 — 0 be a short exact sequence of nilpotent k-algebras such that N3 satisfies
the condition in 3.4.5 (ii). Prove that the sequence 0 — G(N;) — G(N2) — G(N3) — 0 is
short exact.

(3.4.7) Exercise Let M be a V-reduced V-flat Cart(k)-module. Let &’ be a commuta-
tive k algebra with 1. Let M’ = Cart(k’ )@Cart(k)M , defined as the completion of the left
Cart(k)-module Cart(k') @car(r)y M with respect to the filtration given by the image of
Fil*Cart (k") ®cart(ry M in Cart(k') @carer) M, endowed with the induced filtration.

(i) The pair (M’ Fil*M) is V-reduced, and &' ®; (M /Fil>M) = M'/Fil>M’ as k’-modules.
(ii) Prove that there is a canonical isomorphism of functors
A ®cart(y M = @cars(ey M Ay, -
In other words, we have a functorial isomorphism
By AN)@carsy M = AN)QcarewyM' .

for every nilpotent k’-algebra N, compatible with arrows induced by morphisms in

Nilp,.
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84. Localized Cartier theory

In this section we fix a prime number p. Let k be a commutative ring with 1 over Z,).

(4.1) Definition Recall from 2.3.5 that every prime number ¢ # p is invertible in Cart(k).
Define elements ¢, and €, of the Cartier ring Cart(k) for n € N, (n,p) =1 by

n 1
=61 = Y #VnFn— 11 <1—ZV,5F¢>

(n,p)=1 £#£p
n>1 £ prime

1
Ve F,
n P

In the above p is the Mobius function on N>, characterized by the following properties:
w(imn) = p(m)p(n) if (m,n) = 1, and for every prime number ¢ we have p(f) = —1,

u(lt)y =0ifi > 2.
(4.1.1) Proposition The following properties hold.

(i) € =¢p.

(i) D> ea=1

(n,p)=1
n>1

(ili) €,V,, =0, Fhe, =0 for all n with (n,p) = 1.
(iv) €pn® = €pn for all n > 1 with (n,p) = 1.
(V) €pn€pm =0 for all m # n with (mn,p) = 1.
(vi) [c] e, =€, c] and [c] €y = €y [c] for all ¢ € k and all n with (n,p) = 1.
(vil) Fpepn = €pntp, Vo€pn = €pnVp for all n with (n,p) = 1.
PROOF. From 2.4 (1)—(5), one easily deduces that for every prime number ¢ # p we have

1 1 1 1
(1-— ZVZFZ)Vg =0, F(1— va) =0, and(1 — vaf =(1- EVgFg) :

The statements (i) and (iii) follows. Statement (v) is an easy consequence of (iii). The proof

of statement (iv) is an easy computation:
(lvepF )2:ive EyVae,Fy = ~Vie, .
o /népln 2 neptintnepltin = = Vnplin
By 2.4 (4) and (5), the statement (ii) is a consequence of the following telescoping identity:

3" A Vin(1 = TV i =1

m>0

for any prime number ¢ # p.
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To prove (vi), observe first that [c|e, = €,[c] by 2.4 (3); this in turn gives
[c] L [c"] L [c"] [c]
epn = =Vl Fr = =Vaep [ F = €[] -
pn = P o /np P

Statement (vii) is a consequence of the fact that both V,, and F, commute with all V,,, F},
with (n,p) =1. =

(4.1.2) Definition (i) Denote by Cart,(k) the subring €,Cart(k)e, of Cart(k). Note that
€p 1s the unit element of Cart, (k).

(ii) Define elements F,V € Cart,(k) by

F =¢e,F, = Fye, = e, Fpe,, V =¢,V,=Vpe, =¢,Vpe,.

(iii) For every element ¢ € k, denote by (c) the element ¢,[cle, = €,[c] = [c]e, € Cart,(k).

(4.1.3) Exercise Let E(T) € Q[[T]] be the power series

ET) = [ -1 =exp (—Z %)

neN m>0
(n,p)=1 n

(i) Verify the second equality in the displayed formula above for E(T"), and prove that all
coefficients of E(T') lie in Z).

(ii) Recall that the additive group underlying Cart(k) is a subgroup of k[[X, t]]* by defini-
tion. Show that for any element x =3~ V"|ap,|F" in Cart(k) with a,,, € k for
all m,n > 1, the element €,z¢, is represented by the element

E(a, XP" 7" .
IT E¢ )

m,n>1

(4.1.4) Exercise Notation as above. Prove that for any left Cart(k)-module M, the sub-
group €,(M) consists of all elements x € M such that F,, x =0 for all n > 1 with (n,p) = 1.
Elements of M with the above property will be called p-typical elements.

(4.1.5) Exercise Prove the following identities in Cart,(k).

(1) F(a) = (a*) F for all a € k.
(2) (@)V =V (@) for all a € k.
(3) (a) (b) = (ab) for all a,b € k.
(4) FV =p.
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(5) VF =pifand only if p=0in k.

(6) Every prime number ¢ # p is invertible in Cart,(k). The prime number p is invertible
in Cart,(k) if and only if p is invertible in k.

(7) V™ {a)Fm V™) F" = pr Vmrn=r(gP" "pP" Y™ for all a,b € k and all m,n € N,

where 7 = min{m, n}.

(4.2) Definition Let k be a commutative Z,-algebra with 1. Denote by A, the image of
€, in A. In other words, A, is the functor from Milp, to Ab such that

Ap(N) = A(N) - ¢
for any nilpotent k-algebra N.

(4.2.1) Exercise Let E(T) € Z,[[T]] be the inverse of the Artin-Hasse exponential as in
4.1.2.

(i) Prove that for any nilpotent k-algebra N, every element of A,(/V) has a unique expres-
sion as a finite product

i=0
for some m € N, and u; € N fori =0,1,...,m.

(ii) Prove that A, is a smooth commutative formal group over k.

4.2.2) Proposition i) The local Cartier ring Cart,(k) s complete with respect to the
( g P
decreasing sequence of right ideals V'Cart,(k).

(ii) Ewvery element of Cart,(k) can be expressed as a convergent sum in the form
Z V™ amn) F", G € k,¥Ym 3C,, > 0 8.5, apy =0 if n > O,
m,n>0
M a4 UNIQUE Way.

(i) The set of all elements of Cart,(k) which can be represented as a convergent sum of
the form

> V™am)F™,  ap €k

m2>0

is a subring of Cart,(k). The map

wp(a) — Z V™am)F™  a=(ag,a1,a9,...), a; €k Vi>0
m>0
establishes an isomorphism from the ring of p-adic Witt vectors W,(k) to the above

subring of Cart, (k).
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PROOF. Statement (i) and the existence part of statement (ii) are easy and left as an ex-
ercises. To prove the uniqueness part of (ii), according to 4.1.3 it suffices to check that if
(@mn)mmen is a family of elements in &k such that the infinite product

E(a, XP" 7"
IT E¢ )

m,n>1

is equal to 1 in k[[X, t]], then a,, = 0 for all m,n > 1. This follows from the fact that
E(X)=14X (mod (X7)).

The statement (iii) follows from 4.1.5 (7) and the properties of multiplication in the ring
of p-adic Witt vectors. m

(4.2.3) Exercise Let j, : A, — A be the homomorphism of smooth commutative formal
groups over k induced by the inclusion map, and let m, : A — A, be the homomorphism
induced by €,. Let G : Milp, — Ab be a functor. The abelian group Hom(A, G) has a
natural structure as a left module over Cart(k) = End(A ;)°P.

(i) Prove that for every homomorphism h € Hom(A,, G), the composition h o 7, €
Hom(A, G) is a p-typical element of Hom(A, G).

(ii) Prove that the map h +— h o, above establishes a bijection from Hom(A,, G) to the
set of all p-typical elements in Hom(A, G), whose inverse is given by h' +— h' o j,.

(4.2.4) Exercise Prove that Cart,(k) is naturally isomorphic to End(A,)°P, the opposite
ring of the endomorphism ring of End(A,).

(4.2.5) Exercise Let k be a commutative algebra over Z,). Let T be the right Cart,(k)-
module Cart,(k)/V Cart,(k).

(i) Show that there is a natural isomorphism from 7" the Lie algebra of the smooth com-
mutative formal group A, : Milp, — Ab.

(ii) Show that the element x; := the image of F*in T, i =0,1,2,..., form a k-basis of T.

(iii) The basis z;, i € N of the right Cart,(k)-module T defines a ring homomorphism
pp + Carty(k) — My(k), where My(k) consists of all N x N-matrices (c;;); ;», with
at most finitely many non-zero entries in each row, and ¢;; € k for all 7,7 > 0. Let
=3 50 V' @mn) F™ be an element of Cart,(k), am, € k for all m,n > 0. The
entries p,(u); of p,(u) for an element u € Cart,(k) is defined by

xi-u:pr(u)ijxj Vie N.

jEN
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Prove that p,(x) is the matrix (¢;;) whose (4, j)-th entry is given by

Cij = Z P (@i, i)V

r<min{s,j }
for all 4,5 > 0.

(iii) Use the formula in (ii) above to give another proof of 4.2.2 (iii).

(4.3) Definition Let k& be a commutative Z)-algebra.

(i) A V-reduced Cart,(k)-module M is a left Cart,(k)-module such that the map V' : M —
M is injective and the canonical map M — lim (M/V"M) is an isomorphism.

n

(ii) A V-reduced Cart,(k)-module M is V-flat it M/V M is a flat k-module.

(4.3.1) Definition Let I be a set. Denote by Cart,(k)) the direct sum of copies of
Cart,(k) indexed by I. The completion of the free Cart,(k)-module Cart, (k) with respect
to the filtered family of subgroups V:Cart, (k) is a V-reduced Cart,(k)-module, denoted

—

by Cart,(k)(D; we called it the free V-reduced Cart,(k)-module with basis indexed by I.

(4.3.2) Lemma Every element of the subset Cart(k)e, of Cart(k) can be expressed as a
convergent sum

Z Vo, x, € Carty(k) Vn with (n,p) =1
(n,p)=1

for uniquely determined elements x,, € Cart,(k), (n,p) = 1. Conversely every sequence of
elements () mp)=1 in Carty(k) defines an element of Cart(k)ep:

—_

Cart(k)e, = @

PRrROOF. For x € Cart(k)e,, we have

1
T = Z €pn - T = Z Vn(ﬁepanep) )
n,p)=1

(n,p)=1 (n,

» V,, - Cart, (k).

(n,p)

On the other hand, suppose that we have >, Va2, = 0 and x,, € Cart,(k) for alln > 1
with (n,p) = 1. For any m > 1 with (m,p) = 1, we have

0= €pm Z ann = mem
(n,p):l
because €,V, = 0 and F,z,, = 0 for all » > 1 with (r,p) = 1 and all n > 1 with (n,p) = 1.

Hence z,, = 0 since left multiplication by V}, on Cart(k) is injective. &
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(4.3.3) Lemma Let M, be a V-reduced Cart,(k)-module. Let Cart(k)ep@x\)cartp(k)Mp be the
V-adic completion of the tensor product Cart(k)e,®cart, k) Mp, defined as the completion of
Cart(k)ep@cart, (k) Mp with respect to the decreasing family of the subgroups

Image (FﬂiCart(k)ep@Cartp(k)Mp — Cart(k)ep@)cartp(k)Mp)
of Cart(k)ep®@cart, (k) Mp.

i) The completed tensor product Cart(k)e Rt (1) M, is the topological direct sum
P p(k) ¥ p

—_—

@(n’p)zl V, ® M,

of its subgroups V,, @ M,, (n,p) = 1, so that we have a natural bijection between
Cart(k)e,@car, (1) M, and the set of sequences (2,) =1 of elements in M, indezed by
positive integers prime to p.

(ii) Define a decreasing filtration on the completed tensor product by

Fil™ (Cart(k)ep@car, k) M,) = Image (Fil"Cart(k)e, @ M, — Cart(k)e,@cart, 1) Mp) »

the closure of the image of Fil" Cart(k)e, ® M,, m > 1. Then the completed tensor
product Cart(k)e,@car, k)M, is a V-reduced Cart(k)-module.

(iii) The inclusion map M, — Cart(k)ep®Cartp(k)Mp induces an isomorphism
M,/V M, = (Cart(k)e,@car, (it My) /Fil* (Cart(k)€,@car, i M) -
(iv) There is a canonical isomorphism
€p - Cart(k)ep®cartp(k)Mp = M, .
from the set of all p-typical elements in Cart(k:)ep@thp(k)Mp to M.

PrROOF. This Lemma is a corollary of 4.3.2. The isomorphism in (iv) is

€ ( Z Vo ® xy,) — 27,

(nvp)zl

whose inverse is induced by the inclusion. &

(4.3.4) Lemma Let M be a V-reduced Cart(k) module and let M, = €,M be the set of all
p-typical elements in M.
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(i) The canonical map

Do My — M (1)
n>1
(xn)(n,p):l — Z ann (2)
(n,p)=1

s an isomorphism.
(ii) The canonical map Cart(k)ep®c,artp(k)Mp — M is an isomorphism.
PRrROOF. The argument of 4.3.2 proves (i). The statement (ii) follows from (i) and 4.3.3.
Combining 4.3.2, 4.3.3 and 4.3.4, we obtain the following theorem.

(4.4) Theorem Let k be a commutative Zy)-algebra with 1.

(i) There is an equivalence of categories between the category of V-reduced Cart(k)-modules
and the category of V-reduced Cart,(k)-modules, defined as follows.

{ Vreduced Cart(k)-mod} — { V-reduced Cart,(k)-mod}
M : epM

Cart(/f)ep@)(;artp(k)Mp -~ M,

(ii) Let M be a V-reduced Cart(k)-module M, and let M, be the V-reduced Cart,(k)-module
M, attached to M as in (i) above. Then there is a canonical isomorphism M /Fil* M =
M,/V M,. In particular M is V-flat if and only if M, is V-flat. Similarly M is a finitely
generated Cart(k)-module if and only if M,, is a finitely generated Cart,(k)-module.

The next theorem is the local version of the main theorem of Cartier theory. The main
ingredients of the proof occupies 4.5.1-4.5.6, and the end of the proof is in 4.5.7.

(4.5) Theorem Let k be a commutative Zgy-algebra with 1. Then there is a canonical
equivalence of categories, between the category of smooth commutative formal groups over k
as defined in 1.3 and the category of V-flat V-reduced Cart,(k)-modules, defined as follows.

{smooth formal groups over k} —=> {V-flat V-reduced Cart,(k)-mod}
G [ M,(G) = ¢, Hom(A, G)

Ap®Cartp(k)M 1 M

(4.5.1) Lemma Let k be a commutative Zgy)-algebra with 1. Let 3, : L, — M, be a
surjective homomorphism V -reduced Cart(k)-module. Let K, be the kernel of 3,. Let K be
the kernel of

id® B, : Cart(kz)ep@Cartp(k)Lp — Cart(k)ep@)cartp(k)]\/fp

with the induced filtration.
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(i) The Cart,(k)-module K, is V-reduced.

(ii) The pair (K,Fil°*K) is the V-reduced Cart(k)-module which corresponds to K, under
Thm. 4.4.

(iii) The sequence 0 — V'K /VIM — VL/VHL — VIM/VIM — 0 is short exact for
every v > 0.

PrROOF. The argument of 3.4.3 works here as well.

(4.5.2) Corollary Let M, be a V-reduced Cart(k)-module. Then there exists an exact se-

quence

ai az o)
RRGASNY ﬁLllé..._;Lo_%Mp_m

of Cart, (k) modules such that L; is a free V-reduced Cart,(k)-module, and induces an exact
sequence on each V -adically graded piece.

(4.5.3) Definition (1) A torsion right Cart,(k)-module () is a right Cart,(k)-module
such that for every x € @), there exists a natural number n > 0 such that x - V" = 0.

(2) Let @ be a torsion right Cart(k)-module. Let M be a V-reduced Cart,(k)-module
Let L, be a resolution of M by free V-reduced Cart,(k)-modules as in 4.5.2. Define

Torcartp(k (Q,M),i>0, by

=—Cart, (k

Tor, (Q M) = Hi(Q ®cart, (k) L) -

Exercise (i) Show that the continuous torsion functors T—or?art( )(Q, M) are well-defined.

(ii) Let @ be a torsion right Cart,(k)-module and let Car/tp(\k;)(f) be a free V-reduced

Cart,(k)-module with basis indexed by a set I. Prove that @ ®car, k) Cart,(k)U) is
naturally isomorphic to @), the direct sum of copies of the abelian group ) indexed
by 1.

(iii) Show that for any V-reduced Cart,(k)-module M and any short exact sequence
0—=Q1—Q:—Q3—0

of torsion right Cart »(k)-modules, one has a long exact sequence consisting of the

abelian groups Tor, Carty (1 (Qj, M).

(iv) Show that for any torsion right Cart,(k)-module  and any short exact sequence
0 — M, - My — M3 — 0 of V-reduced Cart,(k)-modules, one has a long exact

sequence consisting of the abelian groups Tor, artp(k (Q, M;).
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(v) Show that for any torsion right Cart,(k)-module () and any V- reduced Cart,(k)-module

M, the continuous tensor product Q®car, )M := Tor Cmp (Q, M) is naturally iso-

morphic to @ ®cart, k) M.
(4.5.4) Remark Let @ be a torsion right Cart(k)-module.

(i) The canonical maps

Q ®cart(r) (Cart(k)e,) — Q®care(r)(Cart(k)e,) — Qe

are isomorphisms of torsion right Cart,(k)-modules; denote these canonically isomor-
phic right Cart,(k)-modules by Q,.

(ii) The subset Q¢, of @, the image of right multiplication by €, on @, consists of all
elements = € @) such that z - V,, = 0 for all n > 2 with (n,p) = 1.

(4.5.5) Proposition Let @ be a torsion right Cart(k)-module, and let M be a V-reduced
Cart(k)-module. Let Q, = Q®cark)Cart(k)e,. Let M, = e,M be the V-reduced Cart,(k)-
module consisting of all p-typical elements in M.

(i) The canonical map

Qp Qcart, (k) My = (QRcart(r Cart(k)e,) Qcars, (k) Mp — Q@cart(r) M
18 an isomorphism.

(ii) For alli > 0 the canonical map

Cartp k)( =—Cart(k)

Tor Qp, M) — Tor;

(Q, M)
1s an isomorphism.
PROOF. Since @ is a torsion right Cart(k)-module, the canonical map

Q ®Cart(k) (Cart(k)ep ®Cartp(k) EpM) - QgCart(k) (Cart(k)€p®Cartp(k)6pM)

is an isomorphism, and (i) follows from the associativity of tensor product. To prove (ii), let
L, — M be a resolution of M by free V-reduced Cart(k)-modules. Then €,L, — ¢,M = M,
is a resolution of M, by free V-reduced Cart,(k)-modules. By (i) the natural map

Qp ®Cartp(k) EpLo = Q@Cart(k)M

is an isomorphism of chain complexes, and the statement (ii) follows. =
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(4.5.6) Theorem Let k be a commutative Zy)-algebra with 1. Let N be a nilpotent k-
algebra. Let M, be a V-reduced Cart,(k)- module Let M = Cart(k)e,@M,.

(i) The canonical map
Ap(N) ®cart, (k) Mp — A(N)@cars(ry M
18 an isomorphism.
(ii) Assume either that M, is V-flat, or that N has a finite decreasing filtration
N =Fil'N D Fil’N D --- D Fil*N = (0)
such that each FilV N is an ideal of N, (FiN)? C FiV™' N and Fil! N/FiV*'N is a flat
k-module for j=1,...,s— 1. Then

(Qp? ) = Tor

Cartp Cart(k

Tor (Q,M)=(0) Vi>1.

PRrROOF. The statement (i) is a corollary of 4.5.5 (i). The statement (ii) follows from 4.5.5
(ii) and Thm. 3.4.5. =

(4.5.7) ProoF oF TuM. 4.5. Theorem 4.5 follows from Thm. 4.5.6, Thm. 4.4 and Thm.
3.3. 1

(4.6) Theorem Let k be a commutative Zy-algebra with 1.

(i) Let M be a V-reduced Cart,(k)-module. Assume that there is a family {x;|i € I}
of elements in M indexed by a set I such that M/V M is a free k-module with basis
{z; |1 € I}, where T; denotes the image of x; in M/V M. Then

(i) am; €k Ym>0,Viel

M = Z V™ (ami) Ti (ii) Ym 3 a finite subset J,, C I
TGZIO s.1. Qi — 0 or Zfi ¢ Jm

In other words, every element of M can be written in the form > m>o V™ (am;) x;,
el
satisfying the conditions in the displayed formula above, in a unique way.

(ii) Notation and assumption as in (i) above. There exists uniquely determined elements
amij € k, with (m,i,5) € N x I x I such that

Foz;=) V™(amij)r;, VieIVmeN,
meN
jeI

and for each m > 0 and each i € I, ay,;5 =0 for all j outside a finite subset of I.
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(ili) Let auyij € Wy(k) be a family of elements in W, (k) indexed by N x I x I such that for
each m > 0 and each ¢ € I, there exists a finite subset J,,; C I such that oy,;; = 0
for all j ¢ Jumi. Then the Cart,(k)-module N defined by the short exact sequence
Cart,(k)-modules

0—= L, = Cart, (k)0 Ly = Cart, (k)™ N—=0
fi F@i - Zm,j Vmozmijej
€l Yi

is V-reduced. Here {f;|i € I}, {e;|i € I} are the bases of the two free V-reduced
Cart,(k)-modules Ly, Ly respectively. Moreover the image of the elements {y;|i € I}
in NJVN form a k-basis of N/VN.
PRrROOF. The statement (i) follows from the definition of V-reduced Cart,(k)-modules, and
(ii) follows from (i).
To prove (iii), it suffices to show that the sequence in the displayed formula induces an
exact sequence

0= Li/VLi % Ly/VLy — NJVN — 0

of k-modules, and the elements (¥;);c; form a k-basis of N/VN. Here we used the con-
vention that 7; denotes the image of y; in N/V N; the same convention will be used for
Ly/V Ly and Ly/V Ly. Recall that a typical element w,(c) € W,(k) is identified with the
element > o V™(cp)F™ of Carty(k). For i,j € I, let a;; = wo(agij) € k, so that
agij — wy(ai;,0,0,...) € V(W,(k)). We know that

L/VL = €@ F'fi, L/VL= f Fre

neN,iel neN,icl
o E Tn f. E ' § : " | Ton,
@b( bp; F fz) = bn—l,j_ bm’%j F €.
n>0,iel n>0,j€l iel

The desired conclusion follows from an easy calculation. n

(4.6.1) Remark In the situation of 4.6 (i), (ii), we have a short exact sequence of V-reduced
Cart,(k)-modules

— —

0——L; = Cart, (k) Ly = Cart, (k)@ M 0
fi Fei—3 . V™anij)e;
€t T

The family of equations Fz; =) i V™, i), 0 € I, are called the structural equations
of M for the generators {z;|i € I}.
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(4.7) Proposition Let M, be a V-reduced V-flat Cart,(k)-module. Let k' be a commu-
tative k algebra with 1. Let M) be the V-adic completion of the left Carty(k')-module
Carty (k') @cart, (k) Mp-

(i) The Cart,(k')-module M’ is V-reduced, and k' @y, (M/V M) = M'/VM' as k'-modules.
(ii) For every nilpotent k'-algebra N, there is a canonical isomorphism

Ap(N>®Cartp(k)Mp l) Ap(N)®Cartp(k’)M}/y .

(iii) Suppose that {z;|i € I} is a family of elements in M, such that {z;|i € I} form a
k-basis of M/VM. Let Fa; =3 <o ic; V™ (amij);. i € I be the structural equation
of M w.r.t. the generators {x;|i € I}. Then these equations are also the structural
equations of M' for the generators {1 @ z; |i € I}.

Proor. Exercise. g

(4.8) EXERCISES.

(4.8.1) Exercise Prove that the equivalence of categories in Thm. 4.5 extends to an equiv-
alence of categories between the category of V-reduced V-flat Cart,(k)-modules and the
category of functors G : Milp, — Ab which are right exact, weakly left exact, and commute
with infinite direct sums.

(4.8.2) Exercise Prove that the left ideal Cart(k)e, of Cart(k) consists of all elements
x € Cart(k) such that zV,, = 0 for all n > 2 with (n,p) = 1. (Hint: Prove that z - (1 —¢,) €
Fil™Cart(k) = 0 for all m > 1. Or, use Exer. 2.7.2.)

(4.8.3) Exercise Let x be an element of Cart(k).

(i) Prove that = - ¢, = 0 if and only if x lies in the closure of the sum of left ideals
Z(n,p):l Cart(k)F,. (Hint: Use 2.7.2.)

(ii) Prove that €, - x = 0 if and only if x lies in the convergent sum of right ideals

Z(n,p):l V,Cart (k).

(4.8.4) Exercise Prove that

(i) aijn€kVi,j >0,Vn>1with (n,p) =1,

Cart(k) = ¢ > VHain) ' | (i) vi > 0,30, > 0 5.t agyn = 0if j > C; or
i,5>0

(n,p)=1 n > C;.

In other words, €,Cart(k) is the V-adic completion of the discrete direct sum of the free
Cart,(k)-modules Cart,(k) - F},, where n ranges through all positive integers prime to p.
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(4.8.5) Exercise Show that the canonical maps

Cart(k)e,@car, (v €Cart(k) — Cart(k)
epCart (k) @car, k) €pCart(k) — Cart, (k)

are isomorphisms.

(4.8.6) Exercise Let S be a subset of the set of all prime numbers, and let Zg = Z[%]%S
be the subring of Q generated by Z and all prime numbers ¢ ¢ S. Generalize the results in
this section to the case when the base ring k£ is a commutative algebra over Zg with 1.

(4.8.7) Exercise Assume that k is a field of characteristic p. Let M be a V-reduced
Cart,(k)-module such that dimy(M/VM) = 1. Let e € M be an element of M such that
e ¢ VM, so that M = Cart,(k) - e. Suppose that Fe =) V™an,)e, with a,, € k for all
m > n, and a, # 0.

m>n

n+l_1

(i) Suppose that there exists an element b € k such that b” = a,. Prove that there
exists a generator z of M such that Fo — V"z € V" M. (Hint: Use a generator of
the form (c)e.)

(ii) Assume that k is perfect and there exists an element b € k such that o ~! = a,,.

Prove that there exists a generator y of M such that F'y = V"y.

(4.8.8) Exercise Let k be a field of characteristic p. For i = 1,2, let

M; = Cart,(k)/Cart, (k) - (F = > V™(am)),

m>n;

where a;,, € k for all m > n;, and ny,ny are natural numbers. If n; # ngy, prove that M,
and M, are not isomorphic.

(4.8.9) Exercise Let r > 1 be a positive integer, and let ¢ = p”. Define formal power series
f(X) € Q[[X]] and g(X,Y) € Q[[X, Y]] by

i o= YA

n
n>0 p

g(XY) = fHAX)+ f(Y).

It is well-known that g(X,Y") € Z,)[[X, Y]] is a one-dimensional formal group law, a special
case of the Lubin-Tate formal group law. The formal group law g(X,Y") defines a smooth
commutative formal group G : Milp, » 2Ab. By definition, the Cart(Z))-module M
attached to G is G(Z,)[[X]]*) = Zy)[[X]]T. Let v be the element of M corresponding to
X € L [[X]]T
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(i) Prove that v is a p-typical element of M. (Hint: Change the base ring from Z, to Q.)
ii) Prove that M, := ¢, M is generated by ~.
P P
(iii) Prove that F -y =V""1.~.
(iv) Prove that End(G) = Z,).

(4.8.10) Exercise Let k be a perfect field of characteristic p. Let n be a natural number.
Prove that Cart,(k)/Cart,(k) - (F — V™) is a free W, (k)-module of rank n + 1.

(4.8.11) Exercise Let n > 0 be a natural number. Let & be a field of characteristic p. Let
M = Cart,(k)/Cart,(k) - (F — V™).

(i) If n =0, show that M is a free W, (k)-module of rank one.
(i) Suppose that n > 1, ¢ € k. Prove that (VI(c)F7)- M C pM if j > 2.
(iii) Prove that M is not a free W, (k)-module if n > 1 and k is not perfect.

(4.8.12) Exercise Notation as in 4.8.11. Let k; be the finite subfield of k£ consisting of all
elements = € k such that 2*""" = z. Let Card(k;) = p’.

(i) Show that rln + 1.

(i) Show that Endcaw) (M) is a W,(ki)-module of rank (n + 1).

(iii) Let D = Endcargr)(M) ®z, Qp. Prove that D, is a division algebra.
)

(iv) Prove that the center of D is a totally ramified extension of degree e = ”T“, isomorphic

to @[T1/(T* = p).

(v) Find the Brauer invariant of the division algebra D with center E.

3A. Appendix: Witt vectors

In this appendix we explain the basic properties of the ring W of universal Witt vectors and
the ring W, of p-adic Witt vectors. Both are ring schemes over Z, and W), is a factor of W
over Zy,.

(A.1) Definition The universal Witt vector group W is defined as the functor from the
category of all commutative algebras with 1 to the category of abelian groups such that

—~

W(R) =1+ T R[[T]] C R[[T]]*

for every commutative ring R with 1. It turns out that the W has a natural structure as a
ring scheme. When we regard a formal power series 1+ -, u,, T™ in R[[T]] as an element
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of W(R), we use the notation w(1 + >, u,T™). It is easy to see that every element of

W (R) has a unique expression as

w (H (1 —ame)> .

m>1

Hence W is isomorphic to SpecZ[xy, z2, x3,...| as a scheme; the R-valued point such that
x; — a; is denoted by w(a), where a is short for (aq,as,as,...). In other words, w(a) =

W([Lpz1 (1= amT™))
(A.1.1) Definition The ring structure of W is given by
wl—aT™) - wl=bT") =w((1—a*b*T%)"), wherer = (m,n).

(A.1.2) Exercise (i) Prove that the recipe above for multiplication indeed defines a ring
structure on W. In other words, prove that

(= @y T - w1 — 0, T)) w1 — ay T™) =
wl=ay T") - (W(1 = ay T") - (1l — a3 T™))

for any elements a1, as,a3 € R and any ny,ng,ng > 1.

(ii) Show that ring structure on W is uniquely determined by the requirement that
wl—aT) w(l—=0bT)=w(l—abT)

for every commutative ring R and all elements a,b € R.

(A.1.3) The group scheme W has a decreasing filtration (Fil”W) , where

n>1

Fil"W(R) = w(1 + T" R[[T]]) c W(R).

In terms of the coordinates in §A.1, Fil"W(R) consists of all R-valued points such that the
coordinates 1, . .., z, 1 vanish. For every n, Fil"W(R) is an ideal of W(R). This W (R) is
complete with respect to this filtration, and the addition, multiplication, and the operator
F,,V, defined in A.3 below are continuous with respect to this filtration; see (A.3.1) (9).

(A.2) Definition There is a homomorphism of ring schemes

ghost : W — H A' = Spec k[, Wy, 03, . . .]

m=1
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where the target has the standard ring scheme structure. The coordinates of the map “ghost”

are
Z d - am/ ¢
d|m
Equivalently if we identify an R-valued point r of Spec k[, W2, W3, . . .| with the power series

1+ > %, rT™ € R[[T]] for a commutative ring R, then the map ghost on W is induced
by the operator —t % log:

ghost(w (H (1 —ame)>) = Z Z mal, T = Z Wy (@) T™ .

(A.2.1) Exercise Prove that the map ghost is a homomorphism of ring schemes over Z,
and is an isomorphism over Q.

(A.3) Definition There are two families of endomorphisms of the group scheme w: v,
and F,,, n € N>;. Also for each commutative ring R with 1 and each element ¢ € R we have
an endomorphism [¢] of W Xgpecz Spec R. They are defined as follows

Vi o w(f(T) — w(f(T")
Fy 2 o(f(1) = e, w(f(CTH)  (formally)

[c] = w(f(T) — w(f(cT))

The formula for F,(w(f(T"))) means that F,,(w(f(7"))) is defined as the unique element such
that V,(Fn(w(f (1)) = X¢en, @(F(CT))

(A.3.1) Exercise Prove the following statements.

(1) Va(w(d —aT™) = w(l —aT™), F(w(l —aT™)) = w ((1 —ar T%)T) , Vm,n > 1,

where r = (m,n).

(2) By Fo = Fony, Ve Vo = Vi, Vmyn > 1.

(3) V, =, V, if (m,n) =1.

4) F,Vy,=n,ie F,V,w(l—a,T")=w((1—a,T™)") for all m,n > 1.

(5) Let p be a prime number. Then V, F, = p on W(R) if p =0 in R. Conversely if

V,(1) = V,(F,(1)) = p, then p = 0 in R. (Hint: For the “only if” part, show that
Vo Fpw(l—T)=w(l-1T7).)

(6) F), is a ring homomorphism on W for all n > 1. (Hint: Either verify this statement
for the set of topological generators w(1 — a,, T™), or use the ghost coordinates.)
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(7) 2+ (Vy) = Vo(Fu(z) - y) for all 2,y € W(R).

(8) If a positive integer N is invertible in R, then N is also invertible in W (R).

(9) V,(Fil"W) C Fil™W, F,(Fi"W) C Fill%1W, Fil"W - Fil'W C Fil™>m) )7,
(10) For all c € R, all m,n > 1 and all z € W(R), we have

nwm if njm
0 if n fm
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W ([e] () = " W (), Wi (Fo(2)) = Wi (), and Wy, (Vi (7)) = {

(A.3.2) Exercise Let R be a commutative ring with 1.

(i) Show that every endomorphism & of the group scheme W over R is determined by the
element ®px)(1 — XT) € W(R[X]).

(ii) Prove that every element ¢ € EndR(W) can be expressed as an infinite series in the
form

with a,,, € R for all m,n > 1, and for every m there exists C), > 0 such that a,,, =0
if n > C,,. The elements a,,, € R are uniquely determined by the endomorphism
¢, and every family of elements {a,,} in R satisfying the above condition gives an
endomorphism of W.

(A.4) Definition Over Z,) we define a projector
,u 1
V F, = 1— -V, F,
- X eI (1-39r)
t#p

where ¢ runs through all prime numbers not equal to p. Note that the factors (1 — %‘/g Fy)
commute.

(A.4.1) Exercise Prove that
(i) (1= 3VeFy)Ve=0= F,(1 -V, F,) for all prime number ¢ # p. (Use A.3.1 (4).)
(it) (1= 3VeFy)? =1 — §ViFy.
(iii) €0 Vi=0=Foe, Y{#£p.
)

(iv) €

2 __
P
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(A.4.2) Definition Denote by W, the image of ¢,, i.e. W,(R) := ep(W(R)) for every Zy)-
algebra R. Equivalently, W,(R) is the intersection of the kernels Ker(F;) of the operators
F, on W(R), where ¢ runs through all prime numbers different from p. The functor W), has

a natural structure as a ring-valued functor induced from that of W; see Exer. A.4.5 (3);
it is represented by the scheme SpecZ,)[yo, y1, Y2, - - -, Yn, - - -] according to the computation
below.

(A.4.3) For every Z)-algebra R and every sequence of elements a,, € R, we have

€p (w (H (1-— ame)>> =€ (w (H (1 —apm Tpn)>> =w (H E(ayn Tpn)> ,

where

EX)= J[ @-x"" =exp <—Z i—i) € 14 XZ[[X]]

(n.p)=1 n>0

is the inverse of the classical Artin-Hasse exponential. It follows that the map

[[B> (wcre..) mw (H E(ch””)) € W,(R) = ¢,(W(R))

n=0

establishes a bijection between [[;” R and W,(R). Denote the element w([[~, E(c, T*")) €
W,(R) by w,(c). We have shown that the functor R +— W,(R) is represented by the scheme
Spec kYo, Y1, Y2, - - -], such that the element w,(c) has coordinates ¢ = (co, ¢1, c2, . . .).

(A.4.4) The ghost coordinates on W simplifies greatly when restricted to W,. Most of them
vanish: w0y, (w,(c)) = 0 if m is not a power of p for all ¢. Let wy,(c) = Wy (w,(c)) for all n > 0.
Then

n
wn(g> = Z pnii Cf):—i ;
=0

and ghost(w,(c)) = >o7 wu(c) TP". For each n the map wy(c) — (wn(c)), is a homo-
morphism of ring schemes W, — []5° A'. The endomorphism V), F, of the group scheme

W induces endomorphisms V, F of the group scheme W,. Clearly V(w,(co,c1,ca,...)) =
wy(0, ¢, ¢, ...) for all c.

(A.4.5) Exercise Verify the following statements.
(1) €,(1) -z = €,(z) for all 2 € W(R). (Hint: Use A.3.1 (7).)

(2) &(1) = w(E(T)), ep(1) - 6(1) = (1)

40



(3) ep(z-y) =€y(x) - €y(y) for all z,y € W(R) Hence W,(R) is a subring of W(R) whose

unit element is €,(1).
(4) FV =pon W,(R).

(5) VF =pon Wy(R) if p=0in R. Conversely if V(1) = V(F(1)) = p then p =0 in R.
(Hint: For the “only if” part, show that V F (1) = w(E(T?)), while p = w(E(T)P).

(6) V(Fz-y) =z - Vy for all 7,y € W,(R).
(7) F(zy) = F(z) - F(y) for all 2,y € W,(R).
(8) Flwy(coctcar...)) = wy(cy & .. if p=0in R and ¢; € R for all R.
(9) For each a € R, let (a) := w,(a,0,0,0,...) = w(E(cT)). Then

(@) - wylc) = wylaco, aPer, acy, . ..)
for all c.

(10) w, o F = w4 for all n > 0, and

| pwy ifn>1
w"OV_{o itn=0

(11) F{a) = (a?) for any a € R.

(A.4.6) Exercise The group scheme W has a decreasing filtration Fil"W, n > 0 defined
by Fil"W = V"W (R), that is Fil"W(R) consists of all elements of the form w,(c) such that
¢; = 0 for all © < n. Verify the following properties of this filtration.

(i) For each commutative ring R over Z,, the ring W, (R) is complete with respect to the
filtration Fil*W,(R).

(ii) For each n > 0, Fil"W,(R) is an ideal of W,(R).
(iii) V(Fil"W,(R)) C Fil"™'W,(R) for all n > 0.
(iv) F(Fil"W,(R)) C Fil"'W,(R) for all n > 0.

(A.4.7) Exercise Show that the universal polynomials defining the ring law for IV, all have
coefficients in Z, therefore the ring scheme W), over Z,, has a canonical extension to Z.

(A.4.8) Exercise Suppose that p =0 in R. Prove that the ideal V W,(R) is generated by
p if and only if R is perfect; i.e. the Frobenius map z +— 2P for R is surjective.

(A.4.9) Exercise Suppose that k is a perfect field of characteristic p. Prove that W (k) is
a complete discrete valuation ring with maximal ideal V W (k) = p W (k) and residue field k.
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(A.5) Ramified Witt vectors

Let O is a complete discrete valuation ring such that the residue field is a finite field
with ¢ elements. Let m be a uniformizing element of O. The ring scheme of ramified
Witt vectors W, is similar to the p-adic Witt vectors, but the formal completion of G,,
is replaced by the Lubin-Tate formal group. More precisely, the role of the logarithm of the
Artin-Hasse exponential is played by the power series f(X) := > X7 (1.5.2). Let

n>0 qn
E.(X) = f71(X), the inverse of f,(X); E,(X) has coefficients in O. One can show that
there exist polynomials g;(u,v), i =0,1,2,..., where u = (ug, u1, ug,...), v = (vg, V1, V2, . . .),
such that

S Beun )+ S Bl T = 3 Bl ) T

m>0 m>0 >0

The above family of polynomials g;(u, v) defines a group law on A*>, denoted by W, called
the ramified Witt vectors for (O, 7). The phantom coordinates are

n
— n—i_ q"
W (W) .—E ™l n>0.
1=0

Each wy,, defines a group homomorphism from W, to G,. Moreover there is a canonical
ring scheme structure on W, such that each w;,, is a ring homomorphism from W to Al
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