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THE QUOTIENT CRITERION FOR SYZYGIES IN
EQUIVARIANT COHOMOLOGY FOR ELEMENTARY ABELIAN
2-GROUP ACTIONS

SERGIO CHAVES

ABSTRACT. Let G be a elementary abelian 2-group and X be a manifold with
a locally standard action of G. We provide a criterion to determine the syzygy
order of the G-equivariant cohomology of X with coefficients over a field of
characteristic two using a complex associated to the cohomology of the face
filtration of the manifold with corners X /G. This result is the real version of
the quotient criterion for locally standard torus actions developed in [I6].

1. INTRODUCTION

Let G be a compact Lie group and X be a G-space. The G-equivariant coho-
mology of X with coefficients over a field k is defined as the singular cohomology of
the Borel construction [5] H(X;k) = H*(Xg;k). It inherits a canonical module
structure over the cohomology of the classifying space H*(BG;k) of G.

If the restriction map HA(X;k) — H*(X;k) is surjective, the G-equivariant
cohomology is a free module over H*(BG;k) as a consequence of the Leray-Hirsch
theorem. In this case, we say that X is G-equivariantly formal over k. The con-
verse also holds when extra assumptions over G are considered. For example, if G
is connected, it is a direct consequence of the Eilenberg-Moore spectral sequence
associated to the fibration X — X — BG, and a discussion for nilpotent actions
of any G can be found in [2] §4.1]. Examples of equivariantly formal spaces over
Q include smooth compact toric varieties and quasitoric manifolds [I1], symplectic
manifolds with Hamiltonian torus actions [4] and G-spaces with vanishing odd ra-
tional cohomology when G is connected. Moreover, when cohomology with rational
coefficients is considered, the ring H*(BG; Q) becomes a polynomial ring in n gen-
erators sitting in even degrees. In this case, a G-space X is equivariantly formal if
and only if its equivariant cohomology fits in a long exact sequence

(1.1) OHHE}(X;Q)HF1H~~F”

of free H*(BG;Q)-modules F; for 1 < j < n by the Hilbert Syzygy Theorem. This
equivalence motivates the study of syzygies in equivariant cohomology started in
[1] for torus actions.

Recall that a finitely generated module M over a commutative ring R is a j-th
syzygy if there is an exact sequence

(1.2) 0> M—F - —F,
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of free modules Fj for 1 < k < j. In [I, Thm.5.7], the authors showed that
the syzygy order of the equivariant cohomology of a space with a torus action is
equivalent to the partial exactness of the Atiyah-Bredon with rational coefficients.
This sequence was firstly discussed in [3] [6] and it is defined in the following way:
Let T = (S')" be a torus and X be a T-space. The filtration of X by its orbit
dimensions Xg = XT <€ X; € --- € X,, = X induces a complex

(1.3) 0— Hi(X) - HA(XT) - H*"(X1,Xg) = -+ — H*™(X,,, X, 1)

that is referred nowadays as the Atiyah-Bredon sequence of the T-space X.

The characterization of syzygies via the partial exactness of the sequence can
be extended to any compact connected Lie group G over the rationals by restriction
of the action to a maximal torus 7' € G [15] and to any elementary abelian p-group
G, over a field of characteristic p by transfer and restriction of the action under
the inclusion G, < T [2].

Another remarkable characterization of syzygies in equivariant cohomology for
torus actions is the quotient criterion for locally standard actions developed in [16].
Recall that these actions are modeled by the standard representation of T = (S!)™
on C". Such characterization is given as follows: for a locally standard smooth
action on a T-manifold X, the quotient space M = X /T is a nice manifolds with
corners and the syzygy order of the T-equivariant cohomology of X it is determined
by the topology of filtration of M by its faces. In particular, this result recovers
the equivariant formality over Q of compact smooth toric varieties, torus manifolds
and quasi-toric manifolds.

In this paper, we discuss locally standard torus actions modeled by the standard
representation of G = (Z/2Z)™ on R™ and cohomology with coefficients over a field
of characteristic 2, that we refer as the “real version” of the torus case. We use the
characterization of syzygies via the Atiyah-Bredon sequence for elementary abelian
2-groups and the description of the Ext modules of the equivariant homology as
the cohomology of the Atiyah-Bredon complex as discussed in [2] analogously to
the torus actions case [I6]. The main result of this document is the following.

Let G = (Z/2Z)™ be a elementary abelian 2-group and let X be a compact
manifold of dimension m > n with a locally standard action of G. Then M = X /G
becomes a m-manifold with n-corners (Definition and for any face P < M we
consider the complex

B(P)= @ H*(Q,Q)

QcP
rank Q=1

with differential induced by the connecting homomorphism of the cohomological
long exact sequence associated to the triple (Q, 0Q, 0Q\(P\0P)). The syzygy or-
der of the G-equivariant cohomology of X is determined by the vanishing of the
cohomology of the complex B*(P) for any P in certain range as we state in the
following theorem.

Theorem 1.1. Let k be a field of characteristic two and 1 < j < n. H{(X;k) is
a j-th syzygy over H*(BG;K) if and only if for any face P of the manifold with
corners M = X /G we have that H'(B*(P)) = 0 for any i > max(rank P — j,0).

As consequence of this result, we immediately recover the equivariant formality
for G-spaces whose orbit space and its faces are contractible; for example, the
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real locus of quasitoric manifolds whose orbit space is a simple polytope. This
also provides a criterion to compute the syzygy order of the (Z/2Z)™-manifolds
constructed in [19], [21].

This document is organized as follows: In section [2| we review equivariant coho-
mology for elementary abelian 2-groups (or 2-tori) and provide a characterization
of syzygies in terms of decomposition of the subgroups of the 2-torus. In Section
[3] we review the concept of manifolds with corners and in Section [] we discuss lo-
cally standard 2-torus actions, provide a proof of the main results and discuss some
consequences of them.

Acknowledgments. 1 would like to thank Matthias Franz for his ideas and collab-
oration on this work, as well as his comments on earlier versions of this document.
I am also grateful to Christopher Allday, Matthias Franz and Volker Puppe for
sharing an earlier copy of [2] with me. This work is based on the author’s doctoral
thesis.

2. REMARK ON SYZYGIES IN EQUIVARIANT COHOMOLOGY FOR 2-TORUS ACTIONS

In this section, we review the characterization of syzygies in equivariant coho-
mology for actions of a group G =~ (Z/27Z)™ isomorphic to a 2-torus of rank n and
cohomology with coefficient over a field of characteristic two k. We will omit the
coefficient k in our notation for cohomology.

We start by reviewing the construction of the Atiyah-Bredon sequence for 2-
torus actions. The relation between syzygies in G-equivariant cohomology and the
Atiyah-Bredon sequence, the G-equivariant homology and the equivariant Poincaré
duality has been developed in [2] where the authors generalize analogous results
from the torus case [I]. Let G be a 2-torus of rank n and X be a G-space. The i-th
G-equivariant skeleton of X is the space X; defined as the union of orbits of size at
most 2! for —1 < i < n. The skeletons of X give rise to a filtration

g=X1cXos--cX, =X
called the G-orbit filtration of X. This filtration induces a complex
0 — HE(X) — HE(Xo) » HET (X1, Xo) — -+ = HE™ (X, Xo1)

which is called the G-Atiyah-Bredon sequence of X and it will be denoted by
ABE(X). We will show a characterization of syzygies in terms of the exactness
of the Atiyah-Bredon sequence ABr(X¥) for any decomposition G =~ K x L analo-
gously to [16] §3]. As the G-equivariant cohomology is a module over the polynomial
ring H*(BG), we first review the following algebraic remark.

Remark 2.1. Let S be a polynomial ring over some field in n-variables of positive
degree, and let m be the mazimal homogeneous ideal of S. For a graded finitely
generated S-module M, the length of a maximal M-sequence of elements in m is
denoted by depthg M. It is related to the Ext functor via the formula

depthg M = min{k : Ext2 % (M, S)}.

See [13, Prop.A1.16]. On the other hand, the depth of M and the syzygy order of
M are related as follows: M is a j-th syzygy over S if and only if for any prime
ideal p € S, depthg M, > min(j,dim Sy) [7, §16.E].

Now we proceed to prove the following result.
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Lemma 2.2.  Let X be a G-space. The G-equivariant cohomology H(X) is a
J-th syzygy over R if and only if for any decomposition G =~ K x L into two tori K
and L it holds that

depthy, Hf (X*) > min(j,rank L).

Proof. The proof given in [16, Prop.3.3] is purely algebraic and carries over to our
setting. It mainly uses the characterization of syzygies via depth as in Remark
and that one can restrict only to the prime ideals corresponding to those arisen as
the kernel of the restriction map H*(BG) — H*(BK) for any subgroup K < G.
Compare with [2| Lem.8.1]. O

The next proposition uses the G-equivariant homology of X and the equivariant
extension of the Poincaré duality for 2-torus actions. See [2] for a wider discussion
on equivariant homology and the equivariant Poincaré duality.

Proposition 2.3. Let X be a G-manifold and j = 0. Then H*(X) is a j-th syzygy
if and only if H(AB}(XX)) = 0 for any subgroup K occurring as an isotropy
subgroup in X where L = G/K and i > max(rank L — j,0).

Proof. The proof from the torus case [I6, Cor.3.4] can be also adapted to our
setting. As discussed in [2, Thm.8.3], we may also assume that k = Fo. Let
K be a subgroup of G. Then X¥ is a closed submanifold of X by the tubular
neighbourhood theorem. For a connected component Y < X ¥ there is a principal
orbit G/G, where z € Y, so K € G, as subgroup. Set K/ = G,. L' = G/K' and
write rank K’ = rank K + k for some integer k > 0. Using Lemma [2.2| we get
depthp, HE(Y) = depthp, HF (XX

= depthy, HF (X)) +k

> min(j,rank L') + k > min(j, rank L).
Following [2, Thm.8.9] and analogous to [T, Thm.4.8] for the torus case, we have
that the cohomology of the G-Atiyah-Bredon complex of X is isomorphic to the
ext of the equivariant homology of X; namely, H'(AB%(X)) =~ Exty(HS (X), R)
for any ¢ > 0. This implies that

depthp, HF(X*) = min{i : ExtE™ " (H} (XX),Rp) # 0}

= min{i : H**"*L={(AB¥(X¥)) # 0}

by combining also the equivariant Poincaré duality isomorphism HS (X) =~ H%(X).

Therefore, depthp, Hf (X*) > min(j,rank L) if and only if H'(AB}(X*))
0 for all 4 > max(rank L — 7, 0).

O

We finish this section with the following result (compare with [I6, Prop.3.3]).

Proposition 2.4. If H%(X) is a j-th syzygy over R then so is Hf (XX) over R,
for any subgroup K < G and complementary subgroup L < G. Furthermore, L can
be canonically identified with the quotient G/K.

Proof. Let K € G, Y = XX and L be a complementary subgroup to K. We will
show that the condition of Lemma holds for H (Y). Let K’ < L and choose
a complementary subgroup L' € L of K’ in L. Notice that Ky ~ K x K’ is a
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complementary subgroup of L' in G, and we have that Y& = (XK)K' — xKo,
Applying then Lemma [2.2] to the subgroup Ky < G, we get that

depthp, Hi (YK = depthyp , Hf, (X50) > min(j, rank L)

showing that H}(Y) is a j-th syzygy over Ry, again by Lemma O

3. REMARK ON MANIFOLDS WITH CORNERS

In this section we review the notion of manifolds with corners that generalizes
the concept of manifolds and manifolds with boundary in the classical setting. They
were firstly developed in [9] and [I2] in differential geometry and have been used in
transformation groups on smooth manifolds [I7], cobordism [I8] and toric topology

Recall that a topological manifold of dimension n is locally modeled by R"”, a
manifold with boundary is modeled by the half space [0, 0] x R"~! and a manifold
with corners with be modeled by the intersection of (zero or more) half spaces in
R™ as we state in the following definition.

Definition 3.1. Let M be a paracompact Hausdorff space and m = n = 0 be
integers. We say that M is an m-manifold with n-corners if M has an atlas
{(Ui,p:)} where v;: U; — V; is a homeomorphism of U; onto an open subset V;
or Ry = [0,00)" x R™™™ and the map ¢; o <p;1: 0 (U; nUj) — pi(U; nU;) is
the restriction of a diffeomorphism between open sets in R™ for all i, j.

Even though we provide a general definition, in this document we will only
discuss compact spaces for simplicity. Examples of manifolds with corners include
manifolds, manifolds with boundary and convex simple polytopes. More interesting
examples of spaces that are manifolds with corners are given by the following figures:
the teardrop and the eye-shaped space.

FIGURE 1. Examples of manifold with corners: Teardrop and Eye-
shaped figure

For any m-manifolds with n-corners M, the boundary dM becomes a (m — 1)-
manifold with (n — 1)-corners. Moreover, we can filter M in the following way. For
any z = (z,y) € Ry, n, let ¢, be the number of zero coordinates of z in [0,00)". If
M is an m-manifold with n-corners, then ¢, is well-defined for any x € M. We say
that F'is a facet of M if I is the closure of a connected component of the subspace
M; = {x e M: ¢, = 1}. Notice that F'is an (m — 1)-dimensional submanifold with
boundary of M and | Jp .ot F' = 0M. Moreover, any finite intersection of facets
ﬂle F; is either empty, or a disjoint union of submanifold of M of codimension k.
Analogously, a face of M of codimension k is defined as the closure of a connected
component of the subspace My = {x € M : ¢, = k}.
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Remark 3.2. Any manifold with corners become a filtered space by setting X; =
Ur<i Mn—i, so X; consists of all faces of codimension at least n —i. In particular,
Xo=M, and X,, = M.

For example, a face of Ry, , = [0,00)™ x R™~™ of codimension k is the subspace
Ar ={(z,y) e Ryt x; =0 fori ¢ I} for some I < {1,...,n}, |I| = k.

Definition 3.3. Let M be a manfold with corners. We say that M 1is a nice
manifold with corners if for any face P of M there are exactly k-facets Fy,<, Fy
such that P is a connected component of the intersection ﬂle F;.

For example, in the spaces from Figure [3] we have that the teardrop is a 2-
manifold with 2-corners that is not nice but the eye-shaped figure it is a nice
2-manifolds with 2-corners. For our interests, we will focus on nice manifolds with
corners as they generalize the notion of simple polytopes in toric topology as they
will show up as the orbit space of locally standard actions as discussed in the
following section.

4. THE QUOTIENT CRITERION FOR LOCALLY STANDARD 2-TORUS ACTIONS

In this section we discuss locally standard 2-torus actions on manifolds as their
quotients will be nice manifolds with corners and then we will prove the quotient
criterion for these particular actions analogously to [16] for locally standard torus
actions. Recall that we are considering cohomology with coefficients over a field k
of characteristic two and we will omit it in our notation.

We start by reviewing the standard action on R™. Let G be a 2 torus of rank
n with n < m. The standard action of G on R™ is defined as follows: Identifying
Z/27 = {1}, we have a canonical action of G on R™ given by

(glv'uagn) : (xlw"vmnaanrla"'vxm) = (glxlu~"7gnxnaxn+17"‘vmm)

and thus the quotient space R™/G = R, ,, = [0,0)" x R™™™ is a manifold with
corners. This leads to the following definition.

Definition 4.1. Let G be a 2-torus of rank n and X be a G-manifold of dimension
m with m = n. A G-standard chart (U, o) of x € X is a G-invariant open neigh-
bourhood U of x in X and a G-equivariant homeomorphism ¢: U — V on some
G-invariant open set V.S R™ (with the standard action defined above). We say
that X is a locally standard G-manifold (or that the G-action is locally standard)
if X has an atlas {(U;, p;)} consisting of standard charts such that the change of
coordinates p; o cpj_l c @i (UinU;) — ¢i(U; nU;j) is a G-equivariant diffeomorphism
foralli,j.

Under these assumptions, one can check that the quotient space M = X/G
becomes an m-manifold with n-corners. Let m: X — X/G denote the quotient
map. For any subspace A € X/G we write 7~(A) = X*; however, we will identify
X© with its image in X /G.

Let P be a face of M. Notice that all points in X lying over the interior of
P have a common isotropy group Gp < G. We denote by G5 = G/Gp which
is isomorphic to a complementary 2-torus of Gp in G. Also, we write rank P =
rank G%. Observe that X* = 7~1(P) is a connected component of X“? and the
set X7\ — XP\ X is the open subset of X where G% acts freely. This implies
that
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(4.1) He (XT, XP) = H*(P,0P).

*
P

For two faces P, Q of X/G we write P =1 Q if P € @ and rank Q = rank P+ 1.
If F <7 X/G, then XT is a closed submanifold of X of codimension 1 and we
denote by Np its normal bundle. For any face P < F', consider Er p the vector
bundle over XF\?F obtained as the pullback of Np under the inclusion of XF\F
on X¥. Under the inclusion (X, XF) — (Ep,p,E%P), the equivariant Thom

class of Ep p induces a class in the equivariant cohomology e p € Hé(X P xop ).
Finally, we denote by tp p € H*(BG,) the restriction of er p under the inclusion
(pt, &) — (XP,XP). Notice that tz p is the equivariant Euler class of the G-
equivariant line bundle over a point which corresponds to the generator of H*(BGp)
in H(BGp).

Remark 4.2. For any face P of X/G, consider the k-algebra Rp = H*(BGp).
Then P is a connected component of the intersection ﬂPgFglx/G F and thus X*
is a connected component of the intersection ﬂPgFQIX/G X¥. Moreover, for any
point x € XP\P | there is an isomorphism Gp =~ HPgFglx/G GF by looking to a
standard chart of x in X. This implies that tp p is a basis for the vector space
HY(BGp) which extends to an isomorphism of algebras

Rp ~ k[tF,P PcC Fcy X/G]
If P<c Q, Go < Gp and we have a canonical map ppg: Rp — Rg. It follows

from the naturality of the Euler class and the above remark that ppg(trp) =
trg if Q < F and 0 otherwise. Now we will proceed to prove the following lemma.

Proposition 4.3. Let P be a face in X/T.
(i) The composition
¢p: H*(P,0P) = Hi, (XF, XP) — HE(XP, XF)
P
induces a map Yp: H*(P,0P) ® Rp — HE(XT, X)) which is an isomor-

phism of graded vector spaces.

(i) If P <1 Q the following diagram

H*(P,0P)® Rp —“2— HA(XP, X0P)

5®pp@i l&
H**1(Q,0Q) ® Rg —% HEM (X, X°0)
is commutative where ¢ is the connecting homomorphism arisen from the co-
homology long exact sequence of the triple (Q, 0Q, 0Q\(P\@P)).
Proof. To prove the first claim, notice that the map
¢p: H*(P,0P) = Hfs (XP, Xy - HE(XP, XT)
is the composite of the isomorphism and the map in equivariant cohomology

induced by the canonical projection G — G% = G/Gp. Suppose that Fy,..., Fy
are the facets containing P. Using (i), we can define a map

Yp: H*(P,0P)® Rp — HE(XT, XP)
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by setting Yp(a @t p-- tp"p) = dp(a)er’ p---ep p. On the other hand, we
have an isomorphism of algebras

p: HE(XP,XP) » Rp ® Hgx (X7, X7) — H*(P,0P) ® Rp

by choosing a splitting of G = G p x G%. In particular, for ey p € HY(XT, XF), we
have that p(ep,p) S IT[O(]D7 6P)®(Rp)1 @Hl(P, 0P)®(Rp)0 = (Rp)l @Hl(P, 0P)
As tp p is the restriction of ep p to Rp we have then that p(erp) = trpp + ap for
some ar € H'(P,0P). Using this computation we get that for a € H*(P,dP) it
holds that

potbp(a@tp p -tk p) = plop(a)ep p - ep! p)
= (a®1)p(er, p)™ - pler, p)™
=(a®)(1®tp p+ar,®1)™ - - (1Qtp, p+1®@ap,)"*
— B )+

where S consists of sum of terms in H*(P,0P) ® H*(Rp) whose elements in the

second factor are of degree lower than mj + --- 4+ my; therefore, we obtained that
p o ¥p is bijective and so is ¥p.

Finally, to prove (iii), we need to check that d1p(a®tp' p - 13" p) = Yo (6(a)®
prQ(tr' p ®tRkp)). As the maps ¢p, g arise from natural constructions, they
commute with §. Furthermore, since ppg(tp,p) is either tp o if Q@ S F or zero
otherwise, we only need to prove that d(Ser p) is either §(8)erp g if Q < F or zero

otherwise. Recall that ¢ arises from the connecting homomorphism 6: H*(P,0P) =~
H*(0Q, 0Q\(P\0P)) — H*(Q, 0Q) which induces the map

§: HE(XP, XP) = HE(XOQ XOPQ)y , getl(xQ x9Q),

In the case P < @, by the Thom isomorphism theorem we have isomorphisms
HEH(XPVOP) = HA(XP,XP) and HEY N(X9\9Q) ~ HE(XY, X99) induced by
the multiplication by er p and er g respectively. As both epp and er ¢ are re-
strictions of the equivariant Euler class of the normal bundle N¥', we have that
d(Ber,p) = d(B)er,g. In the second case, we have that er p is then the restric-
tion of the Euler class of the normal bundle of X” in X® as P <; Q. By the
Thom-Gysin exact sequence we have that § vanishes precisely in the multiples of
Er.pP- O

For a face P of X /G, the filtration by its faces leads to an spectral sequence
with Fp-term given by
EYY= @ H'Q,0Q) = H*(P)
QcP
rank Q=1
the columns of this spectral sequence give rise to a complex that will be denoted
by BY(P). This complex will be related to the Atiyah-Bredon sequence discussed
at the beginning of this section and it will provide a criterion to the syzygies in G-
equivariant cohomology as it is shown in the following theorem which is analogous
to [16, Thm.1.3] for the torus case.

Theorem 4.4. Let X be a G-manifold with a locally standard action of a 2-torus
G. Then HY:(X) is a j-th syzygy over H*(BG;k) if and only if for any face P
of the manifold with corners M = X /G we have that H'(B*(P)) = 0 for any
i > max(rank P — j,0)
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Proof. Let @ be a face of X/G. We define the element to = [[ocpe, x/gtro €
Rg. These elements induce an isomorphism of vector spaces Rg = (—BQQ p Rptp.
On the other hand, by Proposition [{.3] there is an isomorphism of vector spaces
H*(Q,0Q)®Rg — HE(X?, X9) compatible with the differentials. We have then
an isomorphism

(4.2) @ H*QQ)®Re= @ HEX,XD).
Q:rank Q=1 Q:rank Q=1

Noticing that the i-th equivariant skeleton of X is given by X' = U xP =

P
rank P=1

U X we see that the last term of 1) is the i-th term of the Atiyah-

rank 5:1'-&-1 )
Bredon sequence AB{,(X) and so there is an isomorphism (with an appropriate
degree shift)

P P H*Q,0Q)@Rptp= P B(P)QRptp = ABL(X)

Q P PcX/G
rank Q=i QSP

compatible with the differentials. Therefore, H*(AB%(X)) = @ pe /¢ H'(B*(P))®
Rptp.

From Proposistion we have that Hj(X) is a j-th syzygy if and only if
Hi(ABai (XF)) = 0 for all faces P and i > max(rank P — 5,0). The isomorphism
above shows that this condition is equivalent to the vanishing of H*(B*(P)) for all
P and i > max(rank P — 4,0). O

We will use this criterion to construct syzygies in G-equivariant cohomology for
2-torus actions. The dimension of a manifold with a locally standard action of a
2-torus is constrained to the rank of the torus. In fact, if G = (Z/2Z)" and X is a
G-manifold with a locally standard action of G and X% # ¢, then dim X > r. In
fact, if the action is locally standard, then X is a submanifold of codimension at
least r and there can not be any fixed points if dim X < r.

Example 4.5. If X is a manifold with a locally standard action of Z/2Z, then the
orbit space M = X /G is a manifold with boundary. Conversely, any manifold with
boundary can be realized as the orbit space of the manifold X = (M u M)/0M
with the involution induced by the map M u M — M u M that swaps factors.
The action is locally standard on X as it can be seen as the reflection along the
hyperplane where oM lies and so X = oM.

Theorem [£.4] translates in this case on the statement that X is G-equivariantly
formal if and only if the map H*(0M) — H*TY(M,0M) is surjective, or equiv-
alently, the map H* (M) — H*(0M) induced by the inclusion is injective. For
example, if M = S! x [0,1] is a cylinder, then the map H*(M) — H*(0M) is
injective and so the manifold X is G-equivariantly formal. Then X is homeomor-
phic to the torus S' x S' and the involution is given by the axis reflection on one
Sl factor.

On the other hand, M does not need to be orientable; for example, if M is
the Mobius strip, then M can be realized as the orbit space of a Klein bottle X.
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Moreover, the map induced in cohomology by the inclusion M — M is the zero
map and thus Theorem implies that H(X) is not equivariantly formal.

Let G = Z/27Z x Z/27Z and let M be a nice manifold with corners locally diffeo-
morphic to R” x [0,00)2. Then the face lattice of M consists of facets F' (of rank 1)
and faces P of rank 0. Suppose that X is a (n+2)-manifold with a locally standard
action of G. From Theorem [{.4] we have the following cases.

e Hi(X) is a 2-nd syzygy (or equivariantly formal) if and only if for any
facet F' the map H*(0F) — H*'L(F,0F) is surjective and the sequence
@p H*(P) - @p H*TY(F,0F) — H***(M,0M) — 0 is exact at the
second and third position.

e H}(X) is a 1-st syzygy if and only if for any facet ' the map H*(0F) —
H**1(F, 0F) is surjective and the sequence @@ p H*(P) — @, H**1(F,0F) —
H*T2(M,0M) — 0 is exact only at the third position. If the latter holds,
the sequence is exact also at the second position.

Example 4.6. Let M be the 1-simplex {(z1,22) € Ry, 21 + 22 < 1, 21,22 > 0}
The manifold X = X/ ~ can be taken as the real projective space RP? as shown
in the following figure.

Since M and its faces are contractible it is easy to check that the G-equivariant
cohomology of X is a free module by looking at the complex B*(P) described
above. Similarly, the action of G on X can be represented as the reflection along
the main diagonals on the square. Therefore, X¢ consists of 3 points and thus
b(X) = b(X“) = 3 confirming the result obtained from the quotient criterion.

To construct a space whose equivariant cohomology is torsion-free but not free,
we need to consider an action of a 2-torus of rank at least 3. Following [14, Lemma
7.1], let us start with the following manifold with corners

M = {(u, 2) € ([0,00] x R?)® : |2|® + |wi]® = 1,u1 + ug + uz = 0}

and ¢ = 1,2,3, where R, denotes the non-negative real numbers. Then M is
a smooth manifold with corners locally diffeomorphic to [0,00)% x R. The pro-
jection M — (R?)3 of the first component induces a homeomorphism between
M and the subspace of (R?) consisting of these triples (uq,us,us) such that
max{|uy|, luz|, |us|} < 1 and w3 + ug + uz = 0. The latter space describes the
configuration of triangles (including degenerate triangle) in R? with sides of length
at most 1. Therefore, M is homeomorphic to the intersection of a 6-dimensional ball
with a linear subspace of codimension 2 and thus M is topologically a 4-dimensional
ball. In particular, oM =~ S3 and H*(M,0M) =~ H*(5*). Now we will look at the
face decomposition of M.
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e M has exactly one face P of rank zero. Namely, it is given by those elements
(u, z) € M such that z; = 0, and then u; € S* for all 4. Since one of the u’s
entries depends on the other two, P can be identified with the manifold

P = {(u1,uz,u3) € (St uy + ug +uz = 0} = {(x,y) € S* x S': |z —y| = 1}

P then is the configuration space of equilateral triangles in R? with one
vertex in the origin and two over the circle. Each of these configurations
is determined by a rotation of any of the pairs (1,e™3) or (1,e"/3). In
particular, this implies that P =~ S' 1 S'. Thus we have that H(P) =
H'(P) =k®k and it is zero in any other degree.

e M has three faces of rank 1. Namely, @12, Q13 and Q23 where );; consists
of the pairs (u,z) € M such that z; = z; = 0. We identify Q;; with the
manifold with boundary

Q={(z,y)e S x 5" : [z —y| <1}

In terms of configuration spaces, this consists of isosceles triangles with
one vertex in the origin, two over the circle and whose base is of length at
most 1 (Here we allow the degenerate triangle). We can show that there is
a homeomorphism @Q = S' x I given by a rotation of the pairs (1, e“’r/g) eQ
where —1 < ¢t < 1. Computing the relative cohomology H*(Q, P) of the
cylinder relative to the boundary we see that H'(Q, P) =~ H?(Q,P) ~ k
and it is zero in other degrees.

e M has three facets (of rank 2). Namely, Fy, Fy, F3 where F; consists of the
pairs (u,z) € M such that z; = 0. We identify F; with the manifold with
corners

F={(z,y)eS" x Dy : |z —y| <1}

This space describes the configuration of triangles with one side of length
1, and two of length at most 1. Each of these configurations is determined
by a rotation of the pairs (1, se’™/3) € F where 0 < s <1and —1 <t < 1.
Then F is homeomorphic to S x I x I = S! x Dy. Looking at the relative
cohomology H*(F,dF) of the solid torus with respect to its boundary (the
torus) we find that H?(F,0F) =~ H3(F,0F) =~ k and it is zero in other
degrees.

The face lattice of M is then
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Consider the manifold
X ={(z,u) € (R x R :|2|* + |ui|> = 1,u1 + ug + uz = 0}

with the locally standard action of G on X given by multiplication on the variables
z;. Then X is G-locally standard manifold and X/G = M. We will see that the
G-equivariant cohomology of X is a first syzygy but not a second syzygy using
Theorem It is a first syzygy as the maps

H*(P) » H*"'(Q, P)
H*(Q;,P)® H*(Qx, P) — H*Y(F;, 0F;),

3
P H*(F;, 0F;) - H**' (M, 0M)
i=1
are surjective as it can be seen by using the explicit computation of these groups
mentioned above. On the other hand, H}(X) is not a second syzygy as the sequence
3 3
P H*(Q;,0Q;) —» P H* ' (F;,0F;) — H***(M,0M) — 0
j=1 i=1
is not exact at the second position; that is, H*(B*(M)) # 0. In fact, the complex
B*(M) takes the form
k> k®>—>0—0
when # = 1. The map k* — k? is given by (a,b,¢) = (a +b,a + ¢, b + ¢) which is of
rank 2 and then H?(B*(M)) # 0.

We constructed a 4-dimensional manifold X with an action of G = (Z/2Z)3 such
that the equivariant cohomology H(X) is torsion-free but not free as H*(BG)-
module. The manifold X realizes the smallest possible dimension where a manifold
with a locally standard action of a 2-torus G whose equivariant cohomology is
torsion-free but not free exists. As we previously discussed, if rank G < 2 then being
free is equivalent to being torsion-free in equivariant cohomology, so the minimal
example should occur when rank G = 3. On the other hand, if the dimension of a
manifold is the same as the rank of the torus, its G-equivariant cohomology is free
if and only if it is torsion-free [16] §7.2]; therefore, we must have that dim X > 3.

The generalization of this space is discussed in [20] which is the real version
of the big Polygon spaces introduced in [I4]. These spaces allow us to construct
syzygies of higher order in equivariant cohomology for 2-torus actions [20] and also
for torus actions with a compatible involution [I0].
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