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Abstract. Let G be a elementary abelian 2-group and X be a manifold with
a locally standard action of G. We provide a criterion to determine the syzygy

order of the G-equivariant cohomology of X with coefficients over a field of

characteristic two using a complex associated to the cohomology of the face
filtration of the manifold with corners X{G. This result is the real version of

the quotient criterion for locally standard torus actions developed in [16].

1. Introduction

Let G be a compact Lie group and X be a G-space. The G-equivariant coho-
mology of X with coefficients over a field k is defined as the singular cohomology of
the Borel construction [5] H˚GpX;kq “ H˚pXG;kq. It inherits a canonical module
structure over the cohomology of the classifying space H˚pBG;kq of G.

If the restriction map H˚GpX;kq Ñ H˚pX;kq is surjective, the G-equivariant
cohomology is a free module over H˚pBG;kq as a consequence of the Leray-Hirsch
theorem. In this case, we say that X is G-equivariantly formal over k. The con-
verse also holds when extra assumptions over G are considered. For example, if G
is connected, it is a direct consequence of the Eilenberg-Moore spectral sequence
associated to the fibration X Ñ XG Ñ BG, and a discussion for nilpotent actions
of any G can be found in [2, §4.1]. Examples of equivariantly formal spaces over
Q include smooth compact toric varieties and quasitoric manifolds [11], symplectic
manifolds with Hamiltonian torus actions [4] and G-spaces with vanishing odd ra-
tional cohomology when G is connected. Moreover, when cohomology with rational
coefficients is considered, the ring H˚pBG;Qq becomes a polynomial ring in n gen-
erators sitting in even degrees. In this case, a G-space X is equivariantly formal if
and only if its equivariant cohomology fits in a long exact sequence

(1.1) 0 Ñ H˚GpX;Qq Ñ F1 Ñ ¨ ¨ ¨Fn

of free H˚pBG;Qq-modules Fj for 1 ď j ď n by the Hilbert Syzygy Theorem. This
equivalence motivates the study of syzygies in equivariant cohomology started in
[1] for torus actions.

Recall that a finitely generated module M over a commutative ring R is a j-th
syzygy if there is an exact sequence

(1.2) 0 ÑM Ñ F1 Ñ ¨ ¨ ¨ Ñ Fj
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of free modules Fk for 1 ď k ď j. In [1, Thm.5.7], the authors showed that
the syzygy order of the equivariant cohomology of a space with a torus action is
equivalent to the partial exactness of the Atiyah-Bredon with rational coefficients.
This sequence was firstly discussed in [3] [6] and it is defined in the following way:
Let T “ pS1qn be a torus and X be a T -space. The filtration of X by its orbit
dimensions X0 “ XT Ď X1 Ď ¨ ¨ ¨ Ď Xn “ X induces a complex

(1.3) 0 Ñ H˚T pXq Ñ H˚T pX
T q Ñ H˚`1pX1, X0q Ñ ¨ ¨ ¨ Ñ H˚`npXn, Xn´1q

that is referred nowadays as the Atiyah-Bredon sequence of the T -space X.
The characterization of syzygies via the partial exactness of the sequence 1.3 can

be extended to any compact connected Lie group G over the rationals by restriction
of the action to a maximal torus T Ď G [15] and to any elementary abelian p-group
Gp over a field of characteristic p by transfer and restriction of the action under
the inclusion Gp Ď T [2].

Another remarkable characterization of syzygies in equivariant cohomology for
torus actions is the quotient criterion for locally standard actions developed in [16].
Recall that these actions are modeled by the standard representation of T “ pS1qn

on Cn. Such characterization is given as follows: for a locally standard smooth
action on a T -manifold X, the quotient space M “ X{T is a nice manifolds with
corners and the syzygy order of the T -equivariant cohomology of X it is determined
by the topology of filtration of M by its faces. In particular, this result recovers
the equivariant formality over Q of compact smooth toric varieties, torus manifolds
and quasi-toric manifolds.

In this paper, we discuss locally standard torus actions modeled by the standard
representation of G “ pZ{2Zqn on Rn and cohomology with coefficients over a field
of characteristic 2, that we refer as the “real version” of the torus case. We use the
characterization of syzygies via the Atiyah-Bredon sequence for elementary abelian
2-groups and the description of the Ext modules of the equivariant homology as
the cohomology of the Atiyah-Bredon complex as discussed in [2] analogously to
the torus actions case [16]. The main result of this document is the following.

Let G “ pZ{2Zqn be a elementary abelian 2-group and let X be a compact
manifold of dimension m ě n with a locally standard action of G. Then M “ X{G
becomes a m-manifold with n-corners (Definition 3.1) and for any face P ĎM we
consider the complex

BipP q “
à

QĎP
rankQ“i

H˚pQ, BQq

with differential induced by the connecting homomorphism of the cohomological
long exact sequence associated to the triple pQ, BQ, BQzpP zBP qq. The syzygy or-
der of the G-equivariant cohomology of X is determined by the vanishing of the
cohomology of the complex BipP q for any P in certain range as we state in the
following theorem.

Theorem 1.1. Let k be a field of characteristic two and 1 ď j ď n. H˚GpX;kq is
a j-th syzygy over H˚pBG;kq if and only if for any face P of the manifold with
corners M “ X{G we have that HipB˚pP qq “ 0 for any i ą maxprankP ´ j, 0q.

As consequence of this result, we immediately recover the equivariant formality
for G-spaces whose orbit space and its faces are contractible; for example, the
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real locus of quasitoric manifolds whose orbit space is a simple polytope. This
also provides a criterion to compute the syzygy order of the pZ{2Zqn-manifolds
constructed in [19], [21].

This document is organized as follows: In section 2 we review equivariant coho-
mology for elementary abelian 2-groups (or 2-tori) and provide a characterization
of syzygies in terms of decomposition of the subgroups of the 2-torus. In Section
3 we review the concept of manifolds with corners and in Section 4 we discuss lo-
cally standard 2-torus actions, provide a proof of the main results and discuss some
consequences of them.

Acknowledgments. I would like to thank Matthias Franz for his ideas and collab-
oration on this work, as well as his comments on earlier versions of this document.
I am also grateful to Christopher Allday, Matthias Franz and Volker Puppe for
sharing an earlier copy of [2] with me. This work is based on the author’s doctoral
thesis.

2. Remark on syzygies in equivariant cohomology for 2-torus actions

In this section, we review the characterization of syzygies in equivariant coho-
mology for actions of a group G – pZ{2Zqn isomorphic to a 2-torus of rank n and
cohomology with coefficient over a field of characteristic two k. We will omit the
coefficient k in our notation for cohomology.

We start by reviewing the construction of the Atiyah-Bredon sequence for 2-
torus actions. The relation between syzygies in G-equivariant cohomology and the
Atiyah-Bredon sequence, the G-equivariant homology and the equivariant Poincaré
duality has been developed in [2] where the authors generalize analogous results
from the torus case [1]. Let G be a 2-torus of rank n and X be a G-space. The i-th
G-equivariant skeleton of X is the space Xi defined as the union of orbits of size at
most 2i for ´1 ď i ď n. The skeletons of X give rise to a filtration

H “ X´1 Ď X0 Ď ¨ ¨ ¨ Ď Xr “ X

called the G-orbit filtration of X. This filtration induces a complex

0 Ñ H˚GpXq Ñ H˚GpX0q Ñ H˚`1
G pX1, X0q Ñ ¨ ¨ ¨ Ñ H˚`nG pXn, Xn´1q

which is called the G-Atiyah-Bredon sequence of X and it will be denoted by
AB˚GpXq. We will show a characterization of syzygies in terms of the exactness
of the Atiyah-Bredon sequence ABLpX

Kq for any decomposition G – KˆL analo-
gously to [16, §3]. As the G-equivariant cohomology is a module over the polynomial
ring H˚pBGq, we first review the following algebraic remark.

Remark 2.1. Let S be a polynomial ring over some field in n-variables of positive
degree, and let m be the maximal homogeneous ideal of S. For a graded finitely
generated S-module M , the length of a maximal M -sequence of elements in m is
denoted by depthSM . It is related to the Ext functor via the formula

depthSM “ mintk : Extn´kS pM,Squ.

See [13, Prop.A1.16]. On the other hand, the depth of M and the syzygy order of
M are related as follows: M is a j-th syzygy over S if and only if for any prime
ideal p Ď S, depthSp

Mp ě minpj,dimSpq [7, §16.E].

Now we proceed to prove the following result.
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Lemma 2.2. Let X be a G-space. The G-equivariant cohomology H˚GpXq is a
j-th syzygy over R if and only if for any decomposition G – K ˆL into two tori K
and L it holds that

depthRL
H˚LpX

Kq ě minpj, rankLq.

Proof. The proof given in [16, Prop.3.3] is purely algebraic and carries over to our
setting. It mainly uses the characterization of syzygies via depth as in Remark 2.1,
and that one can restrict only to the prime ideals corresponding to those arisen as
the kernel of the restriction map H˚pBGq Ñ H˚pBKq for any subgroup K Ď G.
Compare with [2, Lem.8.1]. �

The next proposition uses the G-equivariant homology of X and the equivariant
extension of the Poincaré duality for 2-torus actions. See [2] for a wider discussion
on equivariant homology and the equivariant Poincaré duality.

Proposition 2.3. Let X be a G-manifold and j ě 0. Then H˚pXq is a j-th syzygy
if and only if HipAB˚LpX

Kqq “ 0 for any subgroup K occurring as an isotropy
subgroup in X where L “ G{K and i ą maxprankL´ j, 0q.

Proof. The proof from the torus case [16, Cor.3.4] can be also adapted to our
setting. As discussed in [2, Thm.8.3], we may also assume that k “ F2. Let
K be a subgroup of G. Then XK is a closed submanifold of X by the tubular
neighbourhood theorem. For a connected component Y Ď XK , there is a principal
orbit G{Gx where x P Y , so K Ď Gx as subgroup. Set K 1 “ Gx. L1 “ G{K 1 and
write rankK 1 “ rankK ` k for some integer k ě 0. Using Lemma 2.2 we get

depthRL
H˚LpY q ě depthRL

H˚LpX
K1q

“ depthR1L H
˚
L1pX

K1q ` k

ě minpj, rankL1q ` k ě minpj, rankLq.

Following [2, Thm.8.9] and analogous to [1, Thm.4.8] for the torus case, we have
that the cohomology of the G-Atiyah-Bredon complex of X is isomorphic to the
ext of the equivariant homology of X; namely, HipAB˚GpXqq – ExtiRpH

G
˚ pXq, Rq

for any i ě 0. This implies that

depthRL
H˚LpX

Kq “ minti : ExtrankL´iRL
pH˚LpX

Kq, RLq ‰ 0u

“ minti : HrankL´ipAB˚LpX
Kqq ‰ 0u

by combining also the equivariant Poincaré duality isomorphism HG
˚ pXq – H˚GpXq.

Therefore, depthRL
H˚LpX

Kq ě minpj, rankLq if and only if HipAB˚LpX
Kqq “

0 for all i ą maxprankL´ j, 0q. �

We finish this section with the following result (compare with [16, Prop.3.3]).

Proposition 2.4. If H˚GpXq is a j-th syzygy over R then so is H˚LpX
Kq over RL

for any subgroup K Ď G and complementary subgroup L Ď G. Furthermore, L can
be canonically identified with the quotient G{K.

Proof. Let K Ď G, Y “ XK and L be a complementary subgroup to K. We will
show that the condition of Lemma 2.2 holds for H˚LpY q. Let K 1 Ď L and choose
a complementary subgroup L1 Ď L of K 1 in L. Notice that K0 – K ˆ K 1 is a
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complementary subgroup of L1 in G, and we have that Y K
1

“ pXKqK
1

“ XK0 .
Applying then Lemma 2.2 to the subgroup K0 Ď G, we get that

depthRL,L1
H˚L1pY

K1q “ depthRL1
H˚L1pX

K0q ě minpj, rankL1q

showing that H˚LpY q is a j-th syzygy over RL again by Lemma 2.2. �

3. Remark on manifolds with corners

In this section we review the notion of manifolds with corners that generalizes
the concept of manifolds and manifolds with boundary in the classical setting. They
were firstly developed in [9] and [12] in differential geometry and have been used in
transformation groups on smooth manifolds [17], cobordism [18] and toric topology
[8].

Recall that a topological manifold of dimension n is locally modeled by Rn, a
manifold with boundary is modeled by the half space r0,8s¸Rn´1 and a manifold
with corners with be modeled by the intersection of (zero or more) half spaces in
Rn as we state in the following definition.

Definition 3.1. Let M be a paracompact Hausdorff space and m ě n ě 0 be
integers. We say that M is an m-manifold with n-corners if M has an atlas
tpUi, ϕiqu where ϕi : Ui Ñ Vi is a homeomorphism of Ui onto an open subset Vi
or Rm,n :“ r0,8qn ˆ Rm´n, and the map ϕi ˝ ϕ

´1
j : ϕjpUi X Ujq Ñ ϕipUi X Ujq is

the restriction of a diffeomorphism between open sets in Rm for all i, j.

Even though we provide a general definition, in this document we will only
discuss compact spaces for simplicity. Examples of manifolds with corners include
manifolds, manifolds with boundary and convex simple polytopes. More interesting
examples of spaces that are manifolds with corners are given by the following figures:
the teardrop and the eye-shaped space.

Figure 1. Examples of manifold with corners: Teardrop and Eye-
shaped figure

For any m-manifolds with n-corners M , the boundary BM becomes a pm´ 1q-
manifold with pn´ 1q-corners. Moreover, we can filter M in the following way. For
any z “ px, yq P Rm,n, let cz be the number of zero coordinates of x in r0,8qn. If
M is an m-manifold with n-corners, then cx is well-defined for any x PM . We say
that F is a facet of M if F is the closure of a connected component of the subspace
M1 “ tx PM : cx “ 1u. Notice that F is an pm´ 1q-dimensional submanifold with
boundary of BM and

Ť

F facet F “ BM . Moreover, any finite intersection of facets
Şk
i“1 Fi is either empty, or a disjoint union of submanifold of M of codimension k.

Analogously, a face of M of codimension k is defined as the closure of a connected
component of the subspace Mk “ tx PM : cx “ ku.
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Remark 3.2. Any manifold with corners become a filtered space by setting Xi “
Ť

kďiMn´i, so Xi consists of all faces of codimension at least n´ i. In particular,
X0 “Mn and Xn “M .

For example, a face of Rm,n “ r0,8qnˆRm´n of codimension k is the subspace
AI “ tpx, yq P Rm,n : xi “ 0 for i R Iu for some I Ď t1, . . . , nu, |I| “ k.

Definition 3.3. Let M be a manfold with corners. We say that M is a nice
manifold with corners if for any face P of M there are exactly k-facets F1,Ď, Fk
such that P is a connected component of the intersection

Şk
i“1 Fi.

For example, in the spaces from Figure 3, we have that the teardrop is a 2-
manifold with 2-corners that is not nice but the eye-shaped figure it is a nice
2-manifolds with 2-corners. For our interests, we will focus on nice manifolds with
corners as they generalize the notion of simple polytopes in toric topology as they
will show up as the orbit space of locally standard actions as discussed in the
following section.

4. The quotient criterion for locally standard 2-torus actions

In this section we discuss locally standard 2-torus actions on manifolds as their
quotients will be nice manifolds with corners and then we will prove the quotient
criterion for these particular actions analogously to [16] for locally standard torus
actions. Recall that we are considering cohomology with coefficients over a field k
of characteristic two and we will omit it in our notation.

We start by reviewing the standard action on Rm. Let G be a 2 torus of rank
n with n ď m. The standard action of G on Rm is defined as follows: Identifying
Z{2Z “ t˘1u, we have a canonical action of G on Rm given by

pg1, . . . , gnq ¨ px1, . . . , xn, xn`1, . . . , xmq “ pg1x1, . . . , gnxn, xn`1, . . . , xmq

and thus the quotient space Rm{G – Rm,n “ r0,8qn ˆ Rm´n is a manifold with
corners. This leads to the following definition.

Definition 4.1. Let G be a 2-torus of rank n and X be a G-manifold of dimension
m with m ě n. A G-standard chart pU,ϕq of x P X is a G-invariant open neigh-
bourhood U of x in X and a G-equivariant homeomorphism ϕ : U Ñ V on some
G-invariant open set V Ď Rm (with the standard action defined above). We say
that X is a locally standard G-manifold (or that the G-action is locally standard)
if X has an atlas tpUi, ϕiqu consisting of standard charts such that the change of
coordinates ϕi ˝ϕ

´1
j : ϕjpUiXUjq Ñ ϕipUiXUjq is a G-equivariant diffeomorphism

for all i, j.

Under these assumptions, one can check that the quotient space M “ X{G
becomes an m-manifold with n-corners. Let π : X Ñ X{G denote the quotient
map. For any subspace A Ď X{G we write π´1pAq “ XA; however, we will identify
XG with its image in X{G.

Let P be a face of M . Notice that all points in X lying over the interior of
P have a common isotropy group GP Ď G. We denote by G˚P “ G{GP which
is isomorphic to a complementary 2-torus of GP in G. Also, we write rankP “

rankG˚P . Observe that XP “ π´1pP q is a connected component of XGP and the

set XP zBP “ XP zXBP is the open subset of XP where G˚P acts freely. This implies
that
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(4.1) HG˚P
pXP , XBP q – H˚pP, BP q.

For two faces P, Q of X{G we write P Ď1 Q if P Ď Q and rankQ “ rankP `1.
If F Ď1 X{G, then XF is a closed submanifold of X of codimension 1 and we
denote by NF its normal bundle. For any face P Ď F , consider EF.P the vector
bundle over XP zBP obtained as the pullback of NF under the inclusion of XP zBP

on XF . Under the inclusion pXP , XBP q Ñ pEF,P , E
0
F,P q, the equivariant Thom

class of EF,P induces a class in the equivariant cohomology eF,P P H
1
GpX

P , XBP q.
Finally, we denote by tF,P P H

˚pBGpq the restriction of eF,P under the inclusion
ppt,Hq Ñ pXP , XBP q. Notice that tF,P is the equivariant Euler class of the Gp-
equivariant line bundle over a point which corresponds to the generator ofH˚pBGP q
in H1pBGP q.

Remark 4.2. For any face P of X{G, consider the k-algebra RP “ H˚pBGP q.
Then P is a connected component of the intersection

Ş

PĎFĎ1X{G
F and thus XP

is a connected component of the intersection
Ş

PĎFĎ1X{G
XF . Moreover, for any

point x P XP zBP , there is an isomorphism GP –
ś

PĎFĎ1X{G
GF by looking to a

standard chart of x in X. This implies that tF,P is a basis for the vector space
H1pBGP q which extends to an isomorphism of algebras

RP – krtF,P : P Ď F Ď1 X{Gs

If P Ď Q, GQ Ď GP and we have a canonical map ρPQ : RP Ñ RQ. It follows
from the naturality of the Euler class and the above remark that ρPQptF,P q “
tF,Q if Q Ď F and 0 otherwise. Now we will proceed to prove the following lemma.

Proposition 4.3. Let P be a face in X{T .

(i) The composition

φP : H˚pP, BP q
–
ÝÑ H˚

G˚P
pXP , XBP q Ñ H˚GpX

P , XBP q

induces a map ψP : H˚pP, BP q b RP Ñ H˚GpX
P , XBP q which is an isomor-

phism of graded vector spaces.
(ii) If P Ď1 Q the following diagram

H˚pP, BP q bRP H˚GpX
P , XBP q

H˚`1pQ, BQq bRQ H˚`1
G pXQ, XBQq

δbρPQ

ψP

δ

ψQ

is commutative where δ is the connecting homomorphism arisen from the co-
homology long exact sequence of the triple pQ, BQ, BQzpP zBP qq.

Proof. To prove the first claim, notice that the map

φP : H˚pP, BP q
–
ÝÑ H˚

G˚P
pXP , XBP q Ñ H˚GpX

P , XBP q

is the composite of the isomorphism (4.1) and the map in equivariant cohomology
induced by the canonical projection G Ñ G˚P “ G{GP . Suppose that F1, . . . , Fk
are the facets containing P . Using (i), we can define a map

ψP : H˚pP, BP q bRP Ñ H˚GpX
P , XBP q
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by setting ψP pα b tm1

F1,P
¨ ¨ ¨ tmk

Fk,P
q “ φP pαqe

m1

F1,P
¨ ¨ ¨ emk

Fk,P
. On the other hand, we

have an isomorphism of algebras

ρ : H˚GpX
P , XBP q Ñ RP bHG˚P

pXP , XBP q Ñ H˚pP, BP q bRP

by choosing a splitting of G “ GP ˆG
˚
P . In particular, for eF,P P H

1pXP , XBP q, we
have that ρpeF,P q P H

0pP, BP qbpRP q1‘H
1pP, BP qbpRP q0 – pRP q1‘H

1pP, BP q.
As tF,P is the restriction of eF,P to RP we have then that ρpeF,P q “ tF,P ` aF for
some aF P H

1pP, BP q. Using this computation we get that for α P H˚pP, BP q it
holds that

ρ ˝ ψP pαb t
m1

F1,P
¨ ¨ ¨ tmk

Fk,P
q “ ρpφP pαqe

m1

F1,P
¨ ¨ ¨ emk

Fk,P
q

“ pαb 1qρpeF1,P q
m1 ¨ ¨ ¨ ρpeFk,P q

mk

“ pαb 1qp1b tF1,P ` aF1
b 1qm1 ¨ ¨ ¨ p1b tFk,P ` 1b aFk

qmk

“ αb ptm1

F1,P
¨ ¨ ¨ tmk

Fk,P
q ` S

where S consists of sum of terms in H˚pP, BP q b H˚pRP q whose elements in the
second factor are of degree lower than m1 ` ¨ ¨ ¨ `mk; therefore, we obtained that
ρ ˝ ψP is bijective and so is ψP .

Finally, to prove (iii), we need to check that δψP pαbt
m1

F1,P
¨ ¨ ¨ tmk

Fk,P
q “ ψQpδpαqb

ρPQpt
m1

F1,P
b tmk

Fk,P
qq. As the maps φP , φQ arise from natural constructions, they

commute with δ. Furthermore, since ρPQptF,P q is either tF,Q if Q Ď F or zero
otherwise, we only need to prove that δpβeF,P q is either δpβqeF,Q if Q Ď F or zero
otherwise. Recall that δ arises from the connecting homomorphism δ : H˚pP, BP q –
H˚pBQ, BQzpP zBP qq Ñ H˚pQ, BQq which induces the map

δ : H˚GpX
P , XBP q – H˚GpX

BQ, XBQzpP zBQqq Ñ H˚`1
G pXQ, XBQq.

In the case P Ď Q, by the Thom isomorphism theorem we have isomorphisms
H˚´1
G pXP zBP q – H˚GpX

P , XBP q and H˚´1
G pXQzBQq – H˚GpX

Q, XBQq induced by
the multiplication by eF,P and eF,Q respectively. As both eF,P and eF,Q are re-
strictions of the equivariant Euler class of the normal bundle NF , we have that
δpβeF,P q “ δpβqeF,Q. In the second case, we have that eF,P is then the restric-
tion of the Euler class of the normal bundle of XP in XQ as P Ď1 Q. By the
Thom-Gysin exact sequence we have that δ vanishes precisely in the multiples of
eF,P . �

For a face P of X{G, the filtration by its faces leads to an spectral sequence
with E1-term given by

Ep,q1 “
à

QĎP
rankQ“i

Hp`qpQ, BQq ñ H˚pP q

the columns of this spectral sequence give rise to a complex that will be denoted
by BipP q. This complex will be related to the Atiyah-Bredon sequence discussed
at the beginning of this section and it will provide a criterion to the syzygies in G-
equivariant cohomology as it is shown in the following theorem which is analogous
to [16, Thm.1.3] for the torus case.

Theorem 4.4. Let X be a G-manifold with a locally standard action of a 2-torus
G. Then H˚GpXq is a j-th syzygy over H˚pBG;kq if and only if for any face P
of the manifold with corners M “ X{G we have that HipB˚pP qq “ 0 for any
i ą maxprankP ´ j, 0q
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Proof. Let Q be a face of X{G. We define the element tQ “
ś

QĎFĎ1X{G
tF,Q P

RQ. These elements induce an isomorphism of vector spaces RQ –
À

QĎP RP tP .
On the other hand, by Proposition 4.3 there is an isomorphism of vector spaces
H˚pQ, BQqbRQ Ñ H˚GpX

Q, XBQq compatible with the differentials. We have then
an isomorphism

(4.2)
à

Q:rankQ“i

H˚pQ, BQq bRQ –
à

Q:rankQ“i

H˚GpX
Q, XBQq.

Noticing that the i-th equivariant skeleton of X is given by Xi “
ď

P
rankP“i

XP “

ď

P
rankP“i`1

XBP , we see that the last term of (4.2) is the i-th term of the Atiyah-

Bredon sequence ABiGpXq and so there is an isomorphism (with an appropriate
degree shift)

à

Q
rankQ“i

à

P
QĎP

H˚pQ, BQq bRP tP –
à

PĎX{G

BipP q bRP tP – ABiGpXq

compatible with the differentials. Therefore, HipAB˚GpXqq “
À

PĎX{GH
ipB˚pP qqb

RP tP .

From Proposistion 2.3, we have that H˚GpXq is a j-th syzygy if and only if
HipABG˚P

pXP qq “ 0 for all faces P and i ą maxprankP ´ j, 0q. The isomorphism

above shows that this condition is equivalent to the vanishing of HipB˚pP qq for all
P and i ą maxprankP ´ j, 0q. �

We will use this criterion to construct syzygies in G-equivariant cohomology for
2-torus actions. The dimension of a manifold with a locally standard action of a
2-torus is constrained to the rank of the torus. In fact, if G “ pZ{2Zqr and X is a
G-manifold with a locally standard action of G and XG ‰ H, then dimX ě r. In
fact, if the action is locally standard, then XG is a submanifold of codimension at
least r and there can not be any fixed points if dimX ă r.

Example 4.5. If X is a manifold with a locally standard action of Z{2Z, then the
orbit space M “ X{G is a manifold with boundary. Conversely, any manifold with
boundary can be realized as the orbit space of the manifold X “ pM \Mq{BM
with the involution induced by the map M \M Ñ M \M that swaps factors.
The action is locally standard on X as it can be seen as the reflection along the
hyperplane where BM lies and so XG “ BM .

Theorem 4.4 translates in this case on the statement that X is G-equivariantly
formal if and only if the map H˚pBMq Ñ H˚`1pM, BMq is surjective, or equiv-
alently, the map H˚pMq Ñ H˚pBMq induced by the inclusion is injective. For
example, if M “ S1 ˆ r0, 1s is a cylinder, then the map H˚pMq Ñ H˚pBMq is
injective and so the manifold X is G-equivariantly formal. Then X is homeomor-
phic to the torus S1 ˆ S1 and the involution is given by the axis reflection on one
S1-factor.

On the other hand, M does not need to be orientable; for example, if M is
the Mobius strip, then M can be realized as the orbit space of a Klein bottle X.
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Moreover, the map induced in cohomology by the inclusion BM Ñ M is the zero
map and thus Theorem 4.4 implies that H˚GpXq is not equivariantly formal.

Let G “ Z{2ZˆZ{2Z and let M be a nice manifold with corners locally diffeo-
morphic to Rnˆr0,8q2. Then the face lattice of M consists of facets F (of rank 1)
and faces P of rank 0. Suppose that X is a pn`2q-manifold with a locally standard
action of G. From Theorem 4.4 we have the following cases.

‚ H˚GpXq is a 2-nd syzygy (or equivariantly formal) if and only if for any
facet F the map H˚pBF q Ñ H˚`1pF, BF q is surjective and the sequence
À

P H
˚pP q Ñ

À

F H
˚`1pF, BF q Ñ H˚`2pM, BMq Ñ 0 is exact at the

second and third position.
‚ H˚GpXq is a 1-st syzygy if and only if for any facet F the map H˚pBF q Ñ
H˚`1pF, BF q is surjective and the sequence

À

P H
˚pP q Ñ

À

F H
˚`1pF, BF q Ñ

H˚`2pM, BMq Ñ 0 is exact only at the third position. If the latter holds,
the sequence is exact also at the second position.

Example 4.6. Let M be the 1-simplex tpx1, x2q P R2, x1 ` x2 ď 1, x1, x2 ě 0u.

The manifold X “ X̃{ „ can be taken as the real projective space RP 2 as shown
in the following figure.

Since M and its faces are contractible it is easy to check that the G-equivariant
cohomology of X is a free module by looking at the complex B˚pP q described
above. Similarly, the action of G on X can be represented as the reflection along
the main diagonals on the square. Therefore, XG consists of 3 points and thus
bpXq “ bpXGq “ 3 confirming the result obtained from the quotient criterion.

To construct a space whose equivariant cohomology is torsion-free but not free,
we need to consider an action of a 2-torus of rank at least 3. Following [14, Lemma
7.1], let us start with the following manifold with corners

M “ tpu, zq P pr0,8s ˆ R2q3 : |zi|
2 ` |ui|

2 “ 1, u1 ` u2 ` u3 “ 0u

and i “ 1, 2, 3, where R` denotes the non-negative real numbers. Then M is
a smooth manifold with corners locally diffeomorphic to r0,8q3 ˆ R. The pro-
jection M Ñ pR2q3 of the first component induces a homeomorphism between
M and the subspace of pR2q3 consisting of these triples pu1, u2, u2q such that
maxt|u1|, |u2|, |u3|u ď 1 and u1 ` u2 ` u3 “ 0. The latter space describes the
configuration of triangles (including degenerate triangle) in R2 with sides of length
at most 1. Therefore, M is homeomorphic to the intersection of a 6-dimensional ball
with a linear subspace of codimension 2 and thus M is topologically a 4-dimensional

ball. In particular, BM – S3 and H˚pM, BMq – rH˚pS4q. Now we will look at the
face decomposition of M .
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‚ M has exactly one face P of rank zero. Namely, it is given by those elements
pu, zq PM such that zi “ 0, and then ui P S

1 for all i. Since one of the u1s
entries depends on the other two, P can be identified with the manifold

P “ tpu1, u2, u3q P pS
1q3 : u1 ` u2 ` u3 “ 0u “ tpx, yq P S1 ˆ S1 : |x´ y| “ 1u

P then is the configuration space of equilateral triangles in R2 with one
vertex in the origin and two over the circle. Each of these configurations
is determined by a rotation of any of the pairs p1, eiπ{3q or p1, e´iπ{3q. In
particular, this implies that P – S1 \ S1. Thus we have that H0pP q –
H1pP q “ k‘ k and it is zero in any other degree.

‚ M has three faces of rank 1. Namely, Q12, Q13 and Q23 where Qij consists
of the pairs pu, zq P M such that zi “ zj “ 0. We identify Qij with the
manifold with boundary

Q “ tpx, yq P S1 ˆ S1 : |x´ y| ď 1u

In terms of configuration spaces, this consists of isosceles triangles with
one vertex in the origin, two over the circle and whose base is of length at
most 1 (Here we allow the degenerate triangle). We can show that there is
a homeomorphism Q – S1ˆI given by a rotation of the pairs p1, eitπ{3q P Q
where ´1 ď t ď 1. Computing the relative cohomology H˚pQ,P q of the
cylinder relative to the boundary we see that H1pQ,P q – H2pQ,P q – k
and it is zero in other degrees.

‚ M has three facets (of rank 2). Namely, F1, F2, F3 where Fi consists of the
pairs pu, zq P M such that zi “ 0. We identify Fi with the manifold with
corners

F “ tpx, yq P S1 ˆD2 : |x´ y| ď 1u

This space describes the configuration of triangles with one side of length
1, and two of length at most 1. Each of these configurations is determined
by a rotation of the pairs p1, seitπ{3q P F where 0 ď s ď 1 and ´1 ď t ď 1.
Then F is homeomorphic to S1ˆ I ˆ I – S1ˆD2. Looking at the relative
cohomology H˚pF, BF q of the solid torus with respect to its boundary (the
torus) we find that H2pF, BF q – H3pF, BF q – k and it is zero in other
degrees.

The face lattice of M is then

P

Q12 Q13 Q23

F1 F2 F3

M
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Consider the manifold

X “ tpz, uq P pRˆ R2q3 : |zi|
2 ` |ui|

2 “ 1, u1 ` u2 ` u3 “ 0u

with the locally standard action of G on X given by multiplication on the variables
zi. Then X is G-locally standard manifold and X{G – M . We will see that the
G-equivariant cohomology of X is a first syzygy but not a second syzygy using
Theorem 4.4. It is a first syzygy as the maps

H˚pP q Ñ H˚`1pQ,P q

H˚pQj , P q ‘H
˚pQk, P q Ñ H˚`1pFi, BFiq,

3
à

i“1

H˚pFi, BFiq Ñ H˚`1pM, BMq

are surjective as it can be seen by using the explicit computation of these groups
mentioned above. On the other hand, H˚GpXq is not a second syzygy as the sequence

3
à

j“1

H˚pQj , BQjq Ñ
3

à

i“1

H˚`1pFi, BFiq Ñ H˚`2pM, BMq Ñ 0

is not exact at the second position; that is, H2pB˚pMqq ‰ 0. In fact, the complex
B˚pMq takes the form

k3 Ñ k3 Ñ 0 Ñ 0

when ˚ “ 1. The map k3 Ñ k3 is given by pa, b, cq “ pa` b, a` c, b` cq which is of
rank 2 and then H2pB˚pMqq ‰ 0.

We constructed a 4-dimensional manifold X with an action of G “ pZ{2Zq3 such
that the equivariant cohomology H˚GpXq is torsion-free but not free as H˚pBGq-
module. The manifold X realizes the smallest possible dimension where a manifold
with a locally standard action of a 2-torus G whose equivariant cohomology is
torsion-free but not free exists. As we previously discussed, if rankG ď 2 then being
free is equivalent to being torsion-free in equivariant cohomology, so the minimal
example should occur when rankG “ 3. On the other hand, if the dimension of a
manifold is the same as the rank of the torus, its G-equivariant cohomology is free
if and only if it is torsion-free [16, §7.2]; therefore, we must have that dimX ą 3.

The generalization of this space is discussed in [20] which is the real version
of the big Polygon spaces introduced in [14]. These spaces allow us to construct
syzygies of higher order in equivariant cohomology for 2-torus actions [20] and also
for torus actions with a compatible involution [10].
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