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Introduction

The correspondence between geometric spaces and commutative algebras is a familiar
and basic idea of algebraic geometry. The purpose of this book is to extend this
correspondence to the noncommutative case in the framework of real analysis. The
theory, called noncommutative geometry, rests on two essential points:

1. The existence of many natural spaces for which the classical set-theoretic tools
of analysis, such as measure theory, topology, calculus, and metric ideas lose their
pertinence, but which correspond very naturally to a noncommutative algebra. Such
spaces arise both in mathematics and in quantum physics and we shall discuss them
in more detail below; examples include:

a) The space of Penrose tilings

b) The space of leaves of a foliation

¢) The space of irreducible unitary representations of a discrete group
d) The phase space in quantum mechanics

e) The Brillouin zone in the quantum Hall effect

f) Space-time.

Moreover, even for classical spaces, which correspond to commutative algebras, the
new point of view will give new tools and results, for instance for the Julia sets of
iteration theory.

2. The extension of the classical tools, such as measure theory, topology, differential
calculus and Riemannian geometry, to the noncommutative situation. This extension
involves, of course, an algebraic reformulation of the above tools, but passing from the
commutative to the noncommutative case is never straightforward. On the one hand,
completely new phenomena arise in the noncommutative case, such as the existence of a
canonical time evolution for a noncommutative measure space. On the other hand, the
constraint of developing the theory in the noncommutative framework leads to a new
point of view and new tools even in the commutative case, such as cyclic cohomology
and the quantized differential calculus which, unlike the theory of distributions, is
perfectly adapted to products and gives meaning and uses expressions like [ f(Z)|dZ|
where Z is not differentiable (and p not necessarily an integer).

7



1. MEASURE THEORY (CHAPTERS I AND V) 8

Let us now discuss in more detail the extension of the classical tools of analysis to the
noncommutative case.

1. Measure theory (Chapters I and V)

It has long been known to operator algebraists that the theory of von Neumann algebras
and weights constitutes a far reaching generalization of classical measure theory. Given
a countably generated measure space X, the linear space of square-integrable (classes
of) measurable functions on X forms a Hilbert space. It is one of the great virtues of
the Lebesgue theory that every element of the latter Hilbert space is represented by
a measurable function, a fact which easily implies the Radon-Nikodym theorem, for
instance. There is, up to isomorphism, only one Hilbert space with a countable basis,
and in the above construction the original measure space is encoded by the represen-
tation (by multiplication operators) of its algebra of bounded measurable functions.
This algebra turns out to be the prototype of a commutative von Neumann algebra,
which is dual to an (essentially unique) measure space X.

In general a construction of a Hilbert space with a countable basis provides one with
specific automorphisms (unitary operators) of that space. The algebra of operators
in the Hilbert space which commute with these particular automorphisms is a von
Neumann algebra, and all von Neumann algebras are obtained in that manner. The
theory of not necessarily commutative von Neumann algebras was initiated by Murray
and von Neumann and is considerably more difficult than the commutative case.

The center of a von Neumann algebra is a commutative von Neumann algebra, and, as
such, dual to an essentially unique measure space. The general case thus decomposes
over the center as a direct integral of so-called factors, i.e. von Neumann algebras with
trivial center.

In increasing degree of complexity the factors were initially classified by Murray and
von Neumann into three types, I, II, and III.

The type I factors and more generally the type I von Neumann algebras, (i.e. direct
integrals of type I factors) are isomorphic to commutants of commutative von Neumann
algebras. Thus, up to the notion of multiplicity they correspond to classical measure
theory.

The type II factors exhibit a completely new phenomenon, that of continuous dimen-
ston. Thus, whereas a type I factor corresponds to the geometry of lines, planes, ...,
k-dimensional complex subspaces of a given Hilbert space, the subspaces that belong
to a type II factor are no longer classified by a dimension which is an integer but by
a dimension which is a positive real number and will span a continuum of values (an
interval). Moreover, crucial properties such as the equality

dim(EAF) +dim(E V F) = dim(F) + dim(F)
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remain true in this continuous geometry (EAF is the intersection of the subspaces and
E V F the closure of the linear span of E and F).

The type III factors are those which remain after the type I and type II cases have
been considered. They appear at first sight to be singular and intractable. Relying on
Tomita’s theory of modular Hilbert algebras and on the earlier work of Powers, Araki,
Woods and Krieger, I showed in my thesis that type III is subdivided into types III},
A € [0,1] and that a factor of type III,, A # 1, can be reconstructed uniquely as a
crossed product of a type II von Neumann algebra by an automorphism contracting
the trace. This result was then extended by M. Takesaki to cover the III; case as well,
using a one-parameter group of automorphisms instead of a single automorphism.

These results thus reduce the understanding of type III factors to that of type II
factors and their automorphisms, a task which was completed in the hyperfinite case
and culminates in the complete classification of hyperfinite von Neumann algebras
presented briefly in Chapter I Section 3 and in great detail in Chapter V.

The reduction from type III to type Il has some resemblance to the reduction of arbi-
trary locally compact groups to unimodular ones by a semidirect product construction.
There is one essential difference, however, which is that the range of the module, which
is a closed subgroup of R in the locally compact group case, has to be replaced for
type Il factors by an ergodic action of R*: the flow of weights of the type III fac-
tor. This flow is an invariant of the factor and can, by Krieger’s theorem (Chapter V)
be any ergodic flow, thus exhibiting an intrinsic relation between type III factors and
ergodic theory and lending support to the ideas of G. Mackey on virtual subgroups.
Indeed, in Mackey’s terminology, a virtual subgroup of R corresponds exactly to an
ergodic action of R .

Since general von Neumann algebras have such an unexpected and powerful structure
theory it is natural to look for them in more common parts of mathematics and to
start using them as tools. After some earlier work by Singer, Coburn, Douglas, and
Schaeffer, and by Shubin (whose work is the first application of type IT techniques to
the spectral theory of operators), a decisive step in this direction was taken up by M.F.
Atiyah and I. M. Singer. They showed that the type II von Neumann algebra generated
by the regular representation of a discrete group (already considered by Murray and
von Neumann) provides, thanks to the continuous dimension, the necessary tool to
measure the multiplicity of the kernel of an invariant elliptic differential operator on a
Galois covering space. Moreover, they showed that the type II index on the covering
equals the ordinary (type I) index on the quotient manifold. Atiyah then went on, with
W. Schmid, to show the power of this result in the geometric construction of discrete
series representations of semisimple Lie groups.

Motivated by this result and by the second construction of factors by Murray and von
Neumann, namely the group-measure-space construction, I then showed that a foliated
manifold gives rise in a canonical manner to a von Neumann algebra (Chapter I Section
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4). A general element of this algebra is just a random operator in the L? space of the
generic leaf of the foliation and can thus be seen as an operator-valued function on
the badly behaved leaf space X of the foliation. As in the case of covering spaces
the generic leaf is in general not compact even if the ambient manifold is compact. A
notable first difference from the case of discrete groups and covering spaces is that in
general the von Neumann algebra of a foliation is not of type II. In fact every type
can occur and, for instance, very standard foliations such as the Anosov foliation of
the unit sphere bundle of a compact Riemann surface of genus > 1 give a factor of
type III;. This allows one to illustrate by concrete geometric examples the meaning
of type I, type II, type III, ... and we shall do that as early as Section 4 of Chapter
[. Geometrically the reduction from type III to type II amounts to the replacement of
the initial noncommutative space by the total space of an RY principal bundle over it.

We shall see much later (Chapter III Section 6) the deep relation between the flow of
weights and the Godbillon-Vey class for codimension-one foliations.

The second notable difference is in the formulation of the index theorem, which, as in
Atiyah’s case, uses the type II continuous dimensions as the key tool. For foliations one
needs first to realize that the type II Radon measures, i.e. the traces on the C*-algebra
of the foliation (cf. below) correspond exactly to the holonomy invariant measures.
Such measures are characterized (cf. Chapter I Section 5) by a de Rham current, the
Ruelle-Sullivan current, and the index formula for the type II index of a longitudinal
elliptic differential operator now involves the homology class of the Ruelle -Sullivan
current. In contrast to the case of covering spaces this homology class is in general
not even rational; the continuous dimensions involved can now assume arbitrary real
values, and the index is not related to an integer-valued index.

In the case of measured foliations the continuous dimensions acquire a very clear geo-
metric meaning. First, a general projection belonging to the von Neumann algebra of
the foliation yields a random Hilbert space, i.e. a measurable bundle of Hilbert spaces
over the badly behaved space X of leaves of the foliation. Next, any such random
Hilbert space is isomorphic to one associated to a transversal as follows: the transver-
sal intersected with a generic leaf yields a countable set; the fiber over the leaf is then
the Hilbert space with basis this countable set. Finally, in the above isomorphism,
the transverse measure of the transversal is independent of any choices and gives the
continuous dimension of the original projection. One can then formulate the index the-
orem independently of von Neumann algebras, which we do in Section 5 of Chapter I.
In simple cases where the ergodic theorem applies, one recovers the transverse measure
of a transversal as the density of the corresponding discrete subset of the generic leaf,
i.e. as the limit of the number of points of this subset over increasingly large volumes.
Thus the Murray and von Neumann continuous dimensions bear the same relation to
ordinary dimensions as (continuous) densities bear to the counting of finite sets.
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FIGURE 2. A star patch in a tiling ([246])
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In order to get some intuitive idea of what the generic leaf of a foliation can be like, as
well as its space X of leaves (at this level of measure theory) one can consider the space
of Penrose tilings of the plane (or Penrose universes). After the discovery of aperiodic
tilings of the plane, the number of required tiles was gradually reduced to two.

Given the two basic tiles: the Penrose kites and darts of Figure 1, one can tile the
plane with these two tiles (with a matching condition on the colors of the vertices)
but no such tiling is periodic. Two tilings are called identical if they are carried into
each other by an isometry of the plane. Examples of non-identical tilings are given
by the star tiling of Figure 2 and the cartwheel tiling of Figure 3. The set X of all
nonidentical tilings of the plane by the above two tiles is a very strange set because of
the following:

“Every finite patch of tiles in a tiling by kites and darts does occur, and infinitely many
times, in any other tiling by the same tiles”.
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FIGURE 3. A cartwheel patch in a tiling ([246])

This means that it is impossible to decide locally with which tiling one is dealing.
Any pair of tilings, such as those of Figures 2 and 3, can be matched on arbitrarily
large patches. When analyzed with classical tools the space X appears pathological,
and the usual tools of measure theory or topology give poor results: the only natural
topology on the set X is the coarse topology with ) and X as the only open sets, and
a similar result holds in measure theory. In fact one can go even further and show
that the effective cardinality of the set X is strictly larger than the continuum (cf.
Appendix C of Chapter I). The natural first reaction to such a space X is to dismiss
it as pathological. Our thesis in this book is that X only looks pathological because
one tries to understand it with classical tools whereas, even as a set, X is inherently
of quantum mechanical nature.

What we mean by this, and we shall fully justify it in Chapters I and II, is that all
the pathological properties of X disappear if we analyse it using, instead of the usual
complex-valued functions, g-number or operator-valued functions. Equivalently one
can write (in many ways) the space X as a quotient of an ordinary well behaved space
by an equivalence relation. For instance the space Y of pairs (tiling, tile belonging to
the tiling), is well behaved and possesses an obvious equivalence relation with quotient
X. One could also use in a similar manner the group of isometries of the plane. All
these constructions yield equivalence relations, or better, groupoids or pre-equivalence
relations in the sense of Grothendieck. The noncommutative algebra is then the con-
volution algebra of the groupoid.
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It is fashionable among mathematicians to despise groupoids and to consider that only
groups have an authentic mathematical status, probably because of the pejorative suf-
fix oid. To remove this prejudice we start Chapter I with Heisenberg’s discovery of
quantum mechanics. The reader will, we hope, realise there how the experimental re-
sults of spectroscopy forced Heisenberg to replace the classical frequency group of the
system by the groupoid of quantum transitions. Imitating for this groupoid the con-
struction of a group convolution algebra, Heisenberg rediscovered matrix multiplication
and invented quantum mechanics.

In the case of the space X of Penrose tilings the noncommutative C*-algebra which
replaces the commutative C*-algebra of continuous functions on X has trivial center
and a unique trace. The corresponding factor of type II which describes X from the
measure theoretic point of view has a natural subfactor of Jones index (2 cos w/5)* (cf.
Chapter V Section 10).

Before we pass to the natural extension of topology to noncommutative spaces we
need to describe its role in noncommutative measure theory. One crucial use of the
(local) compactness of an ordinary space X is the Riesz representation theorem. It
extends the construction of the Lebesgue integral, starting from an arbitrary positive
linear form on the algebra of continuous functions over the space X. This theorem
extends as follows to the noncommutative case. First, the involutive algebras (over
C) of complex-valued functions over compact spaces are, by Gel'fand’s fundamental
result, exactly the commutative C*-algebras with unit. Moreover, this establishes a
perfect duality between the category of compact (resp. locally compact) spaces and
continuous (resp. proper and continuous) maps and the category of unital C*-algebras
and x-homomorphisms (resp. not necessarily unital).

The algebraic definition of a C*-algebra turns out to be remarkably simple and to make
no use of commutativity. One is used to introducing C*-algebras as involutive Banach
algebras for which the following equality holds:

="zl = [l=]I*
for any element x. But this hides an absolutely crucial feature by letting one believe
that, as in a Banach algebra, there is freedom in the choice of the norm. In fact if an
involutive algebra is a C*-algebra it is so for a unique norm, given for any x by

||#|| = (Spectral radius of z*z)"/?.

The general tools of functional analysis show that C*-algebras constitute the natural
framework for noncommutative Radon measure theory. Thus, for instance, the ele-
ments of a C*-algebra which are of the form x*z constitute a closed convex cone, the
cone of positive elements of the C*-algebra. Any element of the dual cone, i.e. any
positive linear form, yields by the Gel’fand-Naimark-Segal construction a Hilbert space
representation of the C*-algebra. This bridges the gap with noncommutative measure
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theory, i.e. von Neumann algebras. Indeed, the positive linear form extends by conti-
nuity to the von Neumann algebra generated in the above Hilbert space representation.
Moreover, the remarkable up-down theorem of G. Pedersen asserts that any selfadjoint
element of the von Neumann algebra is obtained by monotone limits (iterated twice)
of “continuous functions” i.e. of elements of the C*-algebra.

This construction of measures from positive linear forms on C*-algebras plays an im-
portant role in the case of foliated manifolds where, as we already mentioned, the
traces on the C*-algebra of the foliation correspond exactly to the holonomy invariant
transverse measures. It also plays a crucial role in quantum statistical mechanics in
formulating what a state of the system is in the thermodynamic limit: exactly a posi-
tive normalized linear form on the C*-algebra of observables. The equilibrium or Gibbs
states are then characterized by the Kubo-Martin-Schwinger condition as revealed by
Haag, Hugenholtz, and Winnink (cf. Chapter I Section 2). The relation between this
“KMS” condition and the modular operator of Tomita’s Hilbert algebras, discovered
by M. Takesaki and M. Winnink, remains one of the deepest points of contact between
physics and pure mathematics.

2. Topology and K-theory (Chapter II)

In the above use of C*-algebras as a tool to construct measures (in the commuta-
tive or the noncommutative case) the fine topological features of the spaces under
consideration are not relevant and do not show up. But, by Gel’fand’s theorem any
homeomorphism invariant of a compact space X is an algebraic invariant of the C*-
algebra C'(X) of continuous functions on X so that one should be able to recover it
purely algebraically.

The first invariant for which this was done is the Atiyah-Hirzebruch topological K-
theory. Indeed, the abelian group K (X) generated by stable isomorphism classes of
complex vector bundles over the compact topological space X has a very simple and
natural description in terms of the C*-algebra C(X). By a result of Serre and Swan,
it is the abelian group generated by stable isomorphism classes of finite projective
modules over C'(X), a purely algebraic notion, which moreover makes no use of the
commutativity of C'(X). The key result of topological K-theory is the periodicity
theorem of R. Bott. The original proof of Bott relied on Morse theory applied to
loop spaces of Lie groups. Thanks to the work of Atiyah and Bott, the result, once
formulated in the algebraic context, has a very simple proof and holds for any (not
necessarily commutative) Banach algebra and in particular for C*-algebras.

The second invariant which was naturally extended to the noncommutative and alge-
braic framework is K-homology, which appeared as a result of the influence of the work
of Atiyah and Singer on the index theorem for elliptic operators on a compact manifold
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and was developed by Atiyah, Kasparov, Brown, Douglas, and Fillmore. The pseudo-
differential calculus on a compact manifold, as used in the proof of the index theorem,
gives rise to a short exact sequence of C*-algebras which encodes in an algebraic way
the information given by the index map. The last term of the exact sequence is the
commutative algebra of continuous functions on the unit sphere of the cotangent space
of the manifold, and its K-theory group is the natural receptacle for the symbol of the
elliptic operator. The first term of the exact sequence is a noncommutative C*-algebra,
independent of the context: the algebra of compact operators in a Hilbert space with
a countable basis. This unique C*-algebra is called the elementary C*-algebra and is
the only separable infinite-dimensional C*-algebra which admits (up to unitary equiv-
alence) only one irreducible unitary representation. Its K-theory group is equal to the
additive group of relative integers and is the natural receptacle for indices of Fredholm
operators. The connecting map of the exact sequence of pseudodifferential calculus is
the index map of Atiyah and Singer.

In their work on extension theory, L. Brown, R. Douglas, and P. Fillmore showed how to
associate to any compact space X an abelian group classifying short exact sequences of
the above type, called extensions of C'(X) by the elementary C*-algebra. They proved
that the invariant obtained is K-homology, i.e. the homology theory associated by
duality to K-theory in the odd case. The even case of that theory was treated by M.F.
Atiyah and G. G. Kasparov.

The resulting theory was then extended to the noncommutative case, i.e. with C(X)
replaced by a noncommutative C*-algebra, thanks to the remarkable generalisation by
D. Voiculescu of the Weyl-von Neumann perturbation theorem. This allowed the proof
that classes of extensions (by the elementary C*-algebra) form a group, provided the
original C*-algebra is nuclear. The class of nuclear C*-algebras was introduced by M.
Takesaki in his work on tensor products of C*-algebras. A C*-algebra is nuclear if and
only if its associated von Neumann algebra is hyperfinite, in any unitary representation.
This class of C*-algebras covers many, though not all, interesting examples.

In the meantime considerable progress had been made by topologists concerning the
use, in surgery theory of non-simply-connected manifolds M, of algebraic invariants of
the group ring of the fundamental group. In 1965, S. Novikov conjectured the homotopy
invariance of numbers of the form (Lz,[M]) where L is the characteristic class of
the Hirzebruch signature theorem, and x a product of one-dimensional cohomology
classes. His conjecture was proved independently by Farrell-Hsiang and Kasparov
using geometric methods.

The higher signatures of manifolds M with fundamental group I' are the numbers
of the form (L ¥*(y),[M]), where y is a cohomology class on BI' and ¢ : M—BT
the classifying map. The original conjecture of Novikov is the special case I" abelian.
In 1970 Mishchenko constructed the equivariant signature of non-simply-connected
manifolds as an element of the Wall group of the group ring. He proved that this
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signature is a homotopy invariant of the manifold. Lusztig gave a new proof of the result
of Farrell-Hsiang and Kasparov based on families of elliptic operators and extended it
to the symplectic groups. Following this line, and by a crucial use of C*-algebras,
Mishchenko was able to prove the homotopy invariance of higher signatures under the
assumption that the classifying space BI' of the fundamental group I' is a compact
manifold with a Riemannian metric of non-positive curvature.

The reason why C*-algebras play a key role at this point is the following: The Wall
group of an involutive algebra (such as a group ring) classifies Hermitian quadratic
forms over that algebra, and is in general far more difficult to compute than the K-
group which classifies finite projective modules. However, as shown by Gel'fand and
Mishchenko, the two groups coincide when the involutive algebra is a C*-algebra. This
equality does not hold for general Banach involutive algebras. As the group ring of
a discrete group can be completed canonically to a C*-algebra one thus obtains the
equivariant signature of a non-simply-connected manifold as an element of the K-group
of this C*-algebra.

Mishchenko went on and used the dual theory, namely K-homology, in the guise of
Fredholm representations of the fundamental group, to obtain numerical invariants by
pairing with K-theory.

Thus the K-theory of the highly noncommutative C*-algebra of the fundamental group
played a key role in the solution of a classical problem in the theory of non-simply-
connected manifolds.

The K-theory of C*-algebras, the extension theory of Brown, Douglas, and Fillmore,
the L-theory of Atiyah, and the Fredholm representations of Mishchenko are all spe-
cial cases of the bivariant K K-theory of Kasparov. With his theory, whose main tool
is the intersection product, Kasparov proved the homotopy invariance of the exten-
sion theory and solved the Novikov conjecture for discrete subgroups of arbitrary Lie
groups. Together with the breakthrough of Pimsner and Voiculescu in the computa-
tion of K-groups of crossed products the Kasparov theory played a decisive role in the
understanding of K-groups of noncommutative C*-algebras.

In Chapter II we shall use a variant of Kasparov’s theory, the deformation theory
(Chapter II Appendix B) due to N. Higson and myself, which succeeds in defining
the intersection product in full generality for extensions. It also has the advantage of
having an easily defined product (cf. Appendix B) and of being exact in full generality.
Nevertheless we shall need K K-theory later and have gathered its main results in

Appendix A of Chapter IV.

The importance of the K-group as an invariant of noncommutative C*-algebras was
already clear from the work of Bratteli and Elliott on the classification of C*-algebras
which are inductive limits of finite-dimensional algebras. They showed that the pointed
K-group, with its natural order, is a complete invariant in the above class of algebras,



2. TOPOLOGY AND K-THEORY (CHAPTER II) 17

and Effros, Chen, and Handelman completely characterized the pointed ordered groups
thus obtained. As a simple example where this applies consider (as above) the space X
of Penrose tilings and the noncommutative C*-algebra which replaces, in this singular
example, the algebra C(X). This C*-algebra turns out to be an inductive limit of
finite-dimensional algebras and the computation of its K-group (Chapter II Section 3)
gives the abelian group Z? ordered by the half-plane determined by the golden ratio.
The space X is thus well understood as a “0-dimensional” noncommutative space.

In order to be able to apply the above tools of noncommutative topology to spaces
such as the space of leaves of a foliation we need to describe more carefully how the
topology of such spaces give rise to a noncommutative C*-algebra.

This is done in great detail in Chapter II with a lot of examples. The general principle
is, instead of taking the quotient of a space by an equivalence relation, to retain this
equivalence relation as the basic information. An important intermediate notion which
emerges is that of smooth groupoid. It plays the same role as the pre-equivalence
relations of Grothendieck. The same noncommutative space can be presented by sev-
eral equivalent smooth groupoids. The corresponding C*-algebras are then strongly
Morita equivalent in the sense of M. Rieffel and have consequently the same K-theory
invariants (cf. Chapter II Appendix A).

Even in the context of ordinary manifolds smooth groupoids are quite pertinent. To
illustrate this point we give in Chapter II Section 5 a proof of the Atiyah-Singer index
theorem. It follows directly from the construction of the tangent groupoid of an arbi-
trary manifold, a geometric construction which encodes the naive interpretation of a
tangent vector as a pair of points whose distance is comparable to a given infinitesimal
number ¢.

Smooth groupoids contain manifolds, Lie groups, and discrete groups as special cases.
The smooth groupoid which corresponds to the space of leaves of a foliation is the
holonomy groupoid or graph of the foliation, first considered by R. Thom. The smooth
groupoid which corresponds to the quotient of a manifold by a group of diffeomorphisms
is the semidirect product of the manifold by the action of the group.

Smooth groupoids are special cases of locally compact groupoids and J. Renault has
shown how to associate a C*-algebra to the latter. The advantage of smoothness,
however, is that, as in the original case of foliations, the use of 1/2-densities removes
any artificial choices in the construction.

We define the K-theory of spaces, such as the space of leaves of a foliation, as the K-
theory of the associated C*-algebra, i.e. here the convolution algebra of the holonomy
groupoid. In the special case of fibrations the leaf space is a manifold and the above
definition of its K-theory coincides with the usual one. The first role of the K-group
is as an invariant of the leaf space, unaffected by modifications of the foliation such
as leafwise surgery, which do not modify the space of leaves. Thus, for instance, for
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the Kronecker foliations dy = 6dx of the two-torus one gets back the class of § modulo
PSL(2,7Z) from the K-theory of the leaf space. But the main role of the K-group is
as a receptacle for the index of families.

Given a space X such as the leaf space of a foliation, an example of a family (Dy)sex
of elliptic operators parametrized by X is given by a longitudinal elliptic differential
operator D on the ambient manifold: it restricts to each leaf ¢ as an elliptic operator
Dy. In terms of the holonomy groupoid of the foliation this provides us with a functor
to the category of manifolds and elliptic operators. The general notion of family is
defined in these terms. It is a general principle of great relevance that the analytical
index of such families (D,),cx makes sense as an element of the K-group of the pa-
rameter space (defined as above through the associated C*-algebra). Thus the index
of a longitudinal elliptic operator now makes sense, irrespective of the existence of a
transverse measure, as an element of the K-group of the leaf space. Similarly, the
index of an invariant elliptic operator on a Galois covering of a manifold makes sense
as an element of the K-group of the C*-algebra of the covering group. Moreover, the
invariance properties, such as the homotopy invariance of the equivariant signature
(due to Mishchenko and Kasparov) or the vanishing of the Dirac index in the presence
of positive scalar curvature (due to Gromov, Lawson, and Rosenberg) do hold at the
level of the K-group.

The obvious problem then is to compute these K-groups in geometric terms for the
above spaces. Motivated by the case of foliations where closed transversals give idempo-
tents of the C*-algebra, I was led with P. Baum and G. Skandalis to the construction, in
the above generality of smooth groupoids G, of a geometrically defined group K7, (G)
and of an additive map p from this group to the K-group of the C*-algebra. So far each
new computation of K-groups confirms the validity of the general conjecture according

to which the map g is an isomorphism.

Roughly speaking, the injectivity of u is a generalized form of the Novikov higher sig-
nature conjecture, while the surjectivity of u is a general form of the Selberg principle
on the vanishing of orbital integrals of non-elliptic elements in the theory of semi-
simple Lie groups. It also has deep connections with the zero divisor conjecture of
discrete group theory. Chapter II contains a detailed account of the construction of
the geometric group, of the map p and their properties. Besides the cases of discrete
groups, quotients of manifolds by group actions, and foliations, we also treat carefully
the case of Lie groups where the conjecture, intimately related to the work of Atiyah
and Schmid, has been proved, in the semisimple case, by A. Wassermann.

The general problem of injectivity of the analytic assembly map p is an important
reason for developing the analogue of de Rham homology for the above spaces, which
is done in Chapter III.
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FiGURE 4. Curvature

3. Cyclic cohomology (Chapter III)

In 1981 I discovered cyclic cohomology and the spectral sequence relating it to Hochschild
cohomology ([100]). My original motivation came from the trace formulas of Helton-
Howe and Carey-Pincus for operators with trace-class commutators. These formulae
together with the operator theoretic definition of K-homology discussed above, lead
naturally to cyclic cohomology as the natural receptacle for the Chern character (not
the usual one but the Chern character in K-homology). Motivated by my work, J.-
L. Loday, C. Kassel and D. Quillen developed the dual theory, cyclic homology, and
related it to the homology of the Lie algebra of matrices. This result was obtained inde-
pendently by B.Tsygan who, not having access to my work, discovered cyclic homology
from a completely different motivation, that of additive K-theory.

We shall come back in Chapter IV to cyclic cohomology as the natural receptacle for
the Chern character of K-homology classes and to the quantized differential calculus.
In Chapter III we develop both the algebraic and analytic properties of cyclic coho-
mology with as motivation the construction of K -theory invariants, generalizing to
the noncommutative case the Chern-Weil theory.

It is worthwhile to consider the most elementary example of that theory, namely the
Gauss-Bonnet theorem. Thus, let YCR? be a smooth closed surface embedded in
three-space. Let us recall the notion of curvature.

Through a point P of the surface, one can draw the normal to the surface and, to
reduce dimension by 1, cut the surface by a plane containing the normal. One obtains
in this way a curve which, at the point P, has a curvature: the inverse of the radius of
the circle, with center on the normal, which best fits the curve at the point P. Clearly
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the curvature of the above curve depends upon the plane containing the normal, and
an old result of Euler asserts that there are two extreme values K; and K5 for this
curvature, attained for two perpendicular planes. Moreover, given any plane containing
the normal, and making an angle # with the plane corresponding to K7, the curvature
of its intersection with the surface is

Ky = K, cos® 0+ K, sin? 0.

The Gauss-Bonnet theorem then asserts that, provided . is oriented, the integral over
Y of the product K; K, of the principal curvatures is equal to 2w (2 — 2g), where g is
an integer depending only upon the topology of ¥, and called the genus.

One remarkable feature of this result is that the above integral has an extraordinary
property of stability. One has indeed at one’s disposal an infinite number of parameters
to modify the embedding of ¥ in R?, say by making an arbitrary small bump on the
surface. The theorem nevertheless asserts that, in doing so, one will introduce equal
amounts of positive and negative curvature (here on the top of the bump and the sides
of it, respectively).

One can of course give a rather straightforward proof of the above theorem by invoking
the concept of degree of a map in differential topology, but we claim that, once con-
sidered from the algebraic point of view, the above idea of stability has considerable
potential, as we shall now see. By the algebraic point of view I mean that we let A
be the algebra of all smooth functions on ¥, i.e. A= C*(X), and we consider on A
the following trilinear form: 7(f°, f', f*) = [ fPdf'Adf*. In more geometric terms
this trilinear form associates to every map f : ¥—R3 given by the three functions
1O, 1, f2 on ¥, the oriented volume bounded by the image. This trilinear form pos-
sesses the following compatibility, reminiscent of the properties of a trace, with the
algebra structure of A:

Dr(fL 20 =70 117 VI eA
2) T(fofL 1) = S22 (O L P = (fPF0 L %), Ve A

We can now see the remarkable stability of the integral formula of the Gauss-Bonnet
theorem as a special case of a general algebraic lemma, valid for noncommutative
algebras. It simply asserts that if A is an algebra (over R or C) and 7 a trilinear form
on A with properties 1) and 2), then for each idempotent E = E? € A the scalar
7(E, E, FE) remains constant when F is deformed among the idempotents of .A.

The proof of this statement is simple; the idea is that since the deformation of E is
isospectral (all idempotents have spectrum C{0,1}) one can find X € A with E =
[X, E] (where E is the time derivative of E) and algebraic manipulations using 1) and
2) then show that the time derivative of 7(E, E, E) is zero.
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It is quite important that this lemma does not make use of commutativity, even when
we apply it in the above case. Indeed, if we apply it to A = C°°(X) we get nothing
of interest since as ¥ is connected there are no nontrivial (i.e. different from 0 and
1) idempotents in A. We may however, use Ms(A) = A®M5(C), the algebra of 2x2
matrices with entries in .A. We need first to extend the functional 7 to Ms(.A) and this
is done canonically as follows:

F(fPeu’, flop, frou®) = r(f°, 11 ) Tr(upn' i)

where f7 € A, i/ € My(C) and Tr is the ordinary trace on M,(C). One then checks
easily that properties 1) and 2) still hold for the extended 7. (Note however, at this
point, that the original 7 did fulfill a stronger property, namely 7(f7(©), fe() fo)) =
e(o) T(f° f1, f?) for any permutation o, but that due to the cyclicity of the trace only
the property 1) survives after passing to 7.) The next step is to find an interesting
idempotent E € My(A). For this one uses the fundamental but straightforward fact:
An idempotent of My(C* (X)) is exactly a smooth map from ¥ to the Grassmannian of
idempotents of M,(C). Since the latter Grassmannian is, using selfadjoint idempotents
to simplify, exactly the two sphere S, we see that the normal map of the embedding of
¥ in R? provides us with a specific idempotent £ € My(A) to which the above stability
lemma applies.

In fact the above lemma shows that, given a trilinear form 7 with properties 1) and 2)
on an algebra A, the formula

E—T1(E,E,FE)
defines an invariant of K-theory, i.e. an additive map of Ky(.A) to the complex numbers.
This follows because any finite projective module over an algebra A is the image of
an idempotent E belonging to a matrix algebra over A. The homotopy invariance
provided by the lemma allows one to eliminate the ambiguity of the choice of E in the
stable isomorphism class of finite projective modules z € Ky(A).

The above simple algebraic manipulations extend easily to higher dimensions, where
conditions 1) and 2) have obvious analogues. The analogue of 1) in dimension n is

(S ) = (D) (0 ) Y e A
where the — sign for n odd accounts for the oddness of the cyclic permutation in that

case.

The analogue of 2) is just the vanishing of b7, where

n

br(f0, o ST = SOV (O T (=) (O )

j=0
One checks that for n = 0 this vanishing characterizes the traces on A. An (n + 1)-
linear form on an algebra A satisfying 1) and 2) is called a cyclic cocycle of dimension n.
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The above lemma and its proof easily extend to the general case: an even-dimensional
cyclic cocycle 7 gives an invariant of K-theory by the formula

E—7(E,E,...,E).

This immediately implies the construction of the usual Chern character of vector bun-
dles for manifolds. Indeed, any homology class is represented by a closed de Rham
current, i.e. by a continuous linear form C on differential forms, which vanishes on
coboundaries. One checks as above that the following formula then defines a cyclic
cocycle (of the same dimension as the current) on the algebra A of smooth functions
on the manifold:

7(f% ..., ") =(C, fOdf'N---Adf") V€ A
Up to a normalization factor the above pairing of 7 with the K-group of A gives the
usual Chern character for a vector bundle E, the scalar (Ch(E£), C).

So far we have just reformulated algebraically the Chern-Weil construction, dispensing
completely with any commutativity assumption. The remarkable fact is that the highly
noncommutative group rings, i.e. the convolution algebras CI' of discrete groups I,
possess very nontrivial cyclic cocycles associated to the ordinary group cocycles on I'.
The group cohomology H*(I',C) is the cohomology of the classifying space BI" of I,
the (unique up to homotopy) quotient of a contractible topological space on which I’
acts freely and properly. It may be described purely algebraically in terms of group
cocycles on I': Given an integer n, an n-group cocycle on I' (with complex coefficients)
is a function of n variables g; € I' which fulfills the condition

n+1

> (=1Y clgr,- .95 Givts- - Gngp1) =0

§=0
where for j = 0 one takes c¢(g2, g3, - - - , gnt1) and for j = n+1 one takes (—1)" ™ ¢(gy, ..., gn)
as the corresponding terms in the sum. Moreover, such cocycles can be normalized so
as to vanish if any of the g;’s or their product ¢ ... g, is the unit element of T.

Now the key observation is that such a normalized group cocycle uniquely defines a
corresponding cyclic cocycle of the same dimension n, on the group ring CI'. Since the
latter is obtained by linearizing I' it is enough to give the value of the cyclic cocycle
on (n + 1)-tuples (go, g1,---,gn) € [, The rule is the following:

(90,91, -+, 9n) =0 if gogr---gn #1
(90,91 -+ 9n) = (G155 9n) if Gog1---gn = 1.

Observe that the conditions on the right are invariant under cyclic permutations, since
these do not alter the conjugacy class of the product gg- - - g,.
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This formula was initially found in [102] and later extended by M. Karoubi and D.
Burghelea, who computed the cyclic cohomology of group rings (cf. Chapter III Section
2).

We have used in a crucial manner the above cyclic cocycles on group rings, in collabo-
ration with H. Moscovici, to prove the Novikov conjecture for the class of all hyperbolic
groups in the sense of Gromov (cf. Chapter III Section 5). They play, in the noncom-
mutative case, the role that de Rham currents play in the commutative case on the
Pontryagin dual of the discrete group I'.

More precisely, when I is abelian, Lusztig, in his proof of the Novikov conjecture, has
shown how to obtain it from the Atiyah-Singer index theorem for families of elliptic
operators, with parameter space X the Pontryagin dual of I'. The idea is that each
element x € X, being a character of the group I', determines a flat line bundle on
any manifold M with fundamental group I". Twisting the signature operator of the
compact oriented manifold M by such flat bundles, one obtains a family (D, ),ex of
elliptic operators, whose Atiyah-Singer index (an element of K (X)) is a homotopy
invariant of M.

Next, the Atiyah-Singer index theorem for families, as formulated in terms of the coho-
mology of X rather than K-theory, gives the homotopy invariance of Novikov’s higher
signatures. Note that it is crucial here to use the Chern character, Ch : K(X)—H*(X),
to express the index formula in cohomology. In fact, even when X is a single point,
the K-theory formulation of the Atiyah-Singer index theorem only becomes easy to
use after translation, using the Chern character, into cohomological terms.

The role of cyclic cohomology in the context of the Novikov conjecture is exactly the
same. The space X, the Pontryagin dual of I', no longer exists when I is noncommuta-
tive, but the commutative C*-algebra C'(X) is replaced by the group C*-algebra C*(I")
which makes perfectly good sense. This C*-algebra contains, as a dense subalgebra of
fairly smooth elements, the group ring CI'. The index of the above family of elliptic
operators still makes perfectly good sense and is the element of the K-group of C*(I")
given by the Mishchenko-Kasparov signature of the covering space of M. In fact it can
even be obtained as an element of the K-group of the group ring RI' of I' over the
ground ring R of infinite matrices of rapid decay.

Moreover, when paired with the above cyclic cocycle on CI' (extended to RI") associated
to a given group cocycle, the index of the signature family gives exactly the Novikov
higher signature associated to the group cohomology class of the cocycle. This follows
from a general index theorem due to Moscovici and myself (Section 4 of Chapter III)
for elliptic operators on covering spaces. With such a result it would appear at first
sight that one has proved the Novikov conjecture in full generality. The difficulty is
that the homotopy invariance of the signature index is only known at the level of the
K-group of the C*-algebra C*(I") but not for the K-group of the ring RI.
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One way to overcome this is to construct an intermediate algebra playing the role of
the algebra of smooth functions on X, which on the one hand is large enough to have
the same K-theory as C*(I') and on the other small enough so that the cyclic cocycle
still makes sense. This is achieved, by the analogue of the Harish-Chandra-Schwartz
space, for hyperbolic groups (Section 5 of Chapter III).

We shall give in Section 6 of Chapter III another striking application of cyclic coho-
mology and K-theory invariants to the Godbillon-Vey class, along the lines of earlier
work of S. Hurder. Using cyclic cohomology as a key tool, we shall show that the
Godbillon-Vey class (the simplest instance of Gel'fand-Fuchs cohomology class) of a
codimension-one foliation yields a pairing with complex values between the K-group
of the leaf space (defined as above using the C*-algebra of the foliation) and the flow
of weights mod (M) of the von Neumann algebra of the foliation.

Together with the construction of the analytic assembly map of Chapter II this result
immediately implies that if the Godbillon-Vey class of the foliation does not vanish
then the flow of weights mod(M) admits a finite invariant probability measure. In
other words the (virtual) modular spectrum is a (virtual) subgroup of finite covolume
in R? and one is in particular in the type III situation, the previous result of Hurder.

This shows that in the noncommutative framework there is a very intricate relation be-
tween differential geometry and measure theory, where the nonvanishing of differential
geometric quantities implies the type III behaviour at the measure theoretic level. In
fact, as we shall see, one can, thanks to cyclic cohomology, give the following formula
for the Godbillon-Vey class as a 2-dimensional closed current GV on the leaf space
(i.e. in our algebraic terms as a 2-dimensional cyclic cocycle on the noncommutative
algebra of the foliation)

It comes from the interplay between the transverse fundamental class [X] of the leaf
space X and the canonical time evolution o; of the von Neumann algebra of the fo-
liation. The transverse fundamental class [X] of the leaf space X is given by a one-
dimensional cyclic cocycle which corresponds to integration of transverse 1-forms. The
time evolution o; of the von Neumann algebra of the foliation is the algebraic coun-
terpart of its noncommutativity and is one of the great surprises of noncommutative
measure theory (cf. Chapter I).

Now these two pieces of data, [X] and oy, are in general slightly incompatible in that
[X] is not in general static, i.e. invariant under o;. This is not too bad, however, since
one has

d2

@ O't[X] = 0.
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It follows then, as in ordinary differential geometry, that if one contracts the closed
current

- d
X|=— oy X
X]= 2 ol
with the derivation H generating the one-parameter group o;, then one obtains a 2-
dimensional closed current. The fundamental equation is then

It gives a simple example of a general fact: that the leaf space of a foliation can have
higher cohomological dimension than the naive value, the codimension of the foliation.

Using a lot more analysis all this is extended to higher Gelfand-Fuchs cohomology, and
many geometric applications are given. They all show that provided one uses the tools
of noncommutative geometry one can indeed think of a foliated manifold as a bundle of
leaves over the noncommutative leaf space. For instance, we show that if the A-genus
of a manifold V' does not vanish, then V' does not admit a foliation with leaves of
strictly positive scalar curvature, a result which is easy for fibrations by a Fubini-type
argument and a well known result of A. Lichnerowicz.

4. The quantized calculus (Chapter IV)

The basic new idea of noncommutative differential geometry is a new calculus which
replaces the usual differential and integral calculus.

This new calculus can be succinctly described by the following dictionary. We fix
a pair (H, F), where H is an infinite-dimensional separable Hilbert space and F is a
selfadjoint operator of square 1 in H. Giving F' is the same as giving the decomposition
of ‘H as the direct sum of the two orthogonal closed subspaces

{{enr; F¢==%£}

Assuming, as we shall, that both subspaces are infinite-dimensional, we see that all
such pairs (H, F') are unitarily equivalent. The dictionary is then the following:
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CLASSICAL QUANTUM
Complex variable Operator in ‘H
Real variable Selfadjoint operator in H
Infinitesimal Compact operator in H
Infinitesimal Compact operator in H whose characteristic
of order values p, satisfy p, = O(n™%), n—oo
Differential of real
or complex variable df =[F,f]=Ff— fF
Integral of infinitesimal Dixmier trace
of order 1 Tr,(T)

Let us comment in some detail on each entry of the dictionary.

The range of a complex variable corresponds to the spectrum Spec(T') of an operator.
The holomorphic functional calculus for operators in Hilbert space gives meaning to
f(T) for any holomorphic function f defined on Spec(T") and only holomorphic func-
tions act in that generality. This reflects the need for holomorphy in the theory of
complex variables. For real variables the situation is quite different. Indeed, when the
operator T is selfadjoint, f(7') makes sense for any Borel function f on the line.

The role of infinitesimal variables is played by the compact operators 1" in H. First
K ={T € L(H) ; T compact} is a two-sided ideal in the algebra £(H) of bounded
operators in ‘H, and it is the largest nontrivial ideal. An operator T" in H is compact
iff for any € > 0 the size of T is smaller than ¢ except for a finite-dimensional subspace
of H. More precisely, one lets, for n € N,

pn(T) = Inf{||T — R|| ; R operator of rank <n}

where the rank of an operator is the dimension of its range. Then T is compact iff
i (T)—0 when n—oo. Moreover, the u,,(T") are the eigenvalues, ordered by decreasing
size, of the absolute value |T'| = (T*T)Y? of T. The rate of decay of the ju,(T) as
n—0oo is a precise measure of the size of the infinitesimal T

In particular, for each positive real a the condition

(1) = O(n™)  n—oo
(i.e. there exists C' < oo such that p,(7) < Cn~* Vn > 1) defines the infinitesimals
of order a. They form a two-sided ideal, as is easily checked using the above formula
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for 1, (T). Moreover, if Ty is of order o and Ty of order ag, then 71T, is of order
o + Q.

The differential df of a real or complex variable, usually given by the differential geo-
metric expression

df =) 0f/0x" da’

is replaced in the new calculus by the commutator

df = [F, f].
The passage from the classical formula to the above operator-theoretic one is analogous
to the quantization of the Poisson brackets { f, g} of classical mechanics as commutators
[f,g]. This is at the origin of the name “quantized calculus”. The Leibniz rule d(fg) =
(df)g + f dg still holds. The equality F? = 1 is used to show that the differential df
has vanishing anticommutator with F'.

The next key ingredient of our calculus is the analogue of integration; it is given by
the Dixmier trace. The Dixmier trace is a general tool designed to treat in a classical
manner data of quantum mechanical nature. It is given as a positive linear form Tr,
on the ideal of infinitesimals of order 1, and is a trace:

Tr,(ST) = Tr,(T'S) VT of order 1, S bounded.

In the classical differential calculus it is an important fact that one can neglect all
infinitesimals of order > 1. Similarly, the Dixmier trace does neglect (i.e. vanishes on)
any infinitesimal of order > 1, i.e.

To (1) =0 i jun(T) = o(n™)
where the little 0 means, as usual, that nu,—0 as n—oo. This vanishing allows con-

siderable simplification to occur, as in the symbolic calculus, for expressions to which
the Dixmier trace is applied.

The value of Tr,(7T') is given for 7' > 0 by a suitable limit of the bounded sequence

1/log N Z pn(T).

It is then extended by linearity to all compact operators of order 1.

In general the above sequence does not converge, so that Tr, a priori depends on a
limiting procedure w. As we shall see, however, in all the applications one can prove
the independence of Tr,(7T") on w. Such operators T' will be called measurable. For
instance, when T is a pseudodifferential operator on a manifold it is measurable and
its Dixmier trace coincides with the Manin-Wodzicki-Guillemin residue computed by
a local formula. In general the term residue(7") for the common value of Tr,(7), T
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measurable, would be appropriate since for 7" > 0 it coincides with the residue at s = 1
of the Dirichlet series ((s) = Tr(T%), s € C, Re(s) > 1.

We have now completed our description of the framework of the quantized calculus. To
use it for a given noncommutative space X we need a representation of the algebra A
of functions on X in the Hilbert space H. The compatibility of this representation with
the operator F' is simply that all operators f in H coming from 4 have infinitesimal
differential

[F. fle K Vfe A

Such a representation is called a Fredholm module, and these are the basic cycles for
the K-homology of A when A is a C*-algebra.

To see how the new calculus works and allows operations not possible in distribution
theory we shall start with a simple example. There is a unique way to quantize, in
the above sense, the calculus of functions of one real variable, i.e. for X = R, in a
translation and scale invariant manner. It is given by the representation of functions
as multiplication operators in L?*(R), while F is the Hilbert transform. Similarly, for
X = S! one lets L>°(S') act on L?(S') by multiplication, while F' is again the Hilbert
transform, given by the multiplication by the sign of n in the Fourier basis (e, )nez of
L2(SY), with e,(0) = exp(inf) VO € S'.

The first virtue of the new calculus is that df continues to make sense, as an operator
in L%(S'), for an arbitrary measurable f € L>(S'). This of course would also hold if we
were to define df using distribution theory, but the essential difference is the following.
A distribution is defined as an element of the topological dual of the locally convex
vector space of smooth functions, here C*°(S!). Thus only the linear structure on
C>(S') is used, not the algebra structure of C*>°(S'). It is consequently not surprising
that distributions are incompatible with pointwise product or absolute value. Thus
while, with f nondifferentiable, df makes sense as a distribution, we cannot make any
sense of |df| or powers |df [P as distributions on S'.

Let us give a concrete example where one would like to use such an expression for
nondifferentiable f. Let ¢ be a complex number and let J be the Julia set given by the
complex dynamical system z—z2 + ¢ = p(z). More specifically J is here the boundary
of the set B = {z € C;sup,,cy |¢"(2)| < oo}. For small values of ¢ like the one chosen
in Figure 5, the Julia set J is a Jordan curve and B is the bounded component of
its complement. Now the Riemann mapping theorem provides us with a conformal
equivalence Z of the unit disk, D = {2z € C;|z| < 1} with the inside of B, and by a
result of Carathéodory, the conformal mapping Z extends continuously to the boundary
St of D as a homeomorphism, which we still denote by Z, from S! to .J. By a known
result of D. Sullivan, the Hausdorff dimension p of the Julia set is strictly bigger than
1,1 < p < 2, and is close to 2, for instance, in the example of Figure 5. This shows



4. THE QUANTIZED CALCULUS (CHAPTER 1V) 29

.
B KW
= P % P '0 ol
=5 .. &y
€T 3 s i 2 2 2
3 T Ey
L HE ; v e
b ? \' oy “ P e ; 5
o s N ee. e
0 L i, (@4
4 v TR 5 Tl
&0 £ gt e T &
4 e aae 5
o 7 £ & 17 A
o T 5 o g o 5o
A O ' 4
S & ey
T s 7 s s el
5 FHE g A
St 5 ‘E ? s 4
aé 5 ¥ o, AE R € e a8
A Yl g kb

FIGURE 5. A Julia set

that the function Z is nowhere of bounded variation on S' and forbids a distribution
interpretation of the naive expression

[ r@jazr vrecw)

that would be the natural candidate for the Hausdorff measure on J.

We shall show that the above expression makes sense in the quantized calculus and that
it does give the Hausdorff measure on the Julia set J. The first essential fact is that as
dZ = [F, Z] is now an operator in Hilbert space one can, irrespective of the regularity
of Z, talk about |dZ|: it is the absolute value |T| = (T*T)"? of the operator T = [F, Z].
This gives meaning to any function h(|dZ|) where h is a bounded measurable function
on R, and in particular to |dZ|P. The next essential step is to give meaning to the
integral of f(Z)|dZ[P. The latter expression is an operator in L*(S'), and we shall use a
result of hard analysis due to V.V. Peller, together with the homogeneity properties of
the Julia set, to show that the operator f(Z)|dZ|P belongs to the domain of definition
of the Dixmier trace Tr,, i.e. is an infinitesimal of order 1. Moreover, if one works
modulo infinitesimals of order > 1 the rules of the usual differential calculus such as

|de(Z)]” = 1 (Z2) P |dZ]?
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are valid and show that the measure

f-Te(f(2)|dzlP) ¥f € C(J)

has the right conformal weight and is a non-zero multiple of the Hausdorff measure.
The corresponding constant governs the asymptotic expansion for the distance, in the
sup norm on S!, between the function Z and restrictions to S' of rational functions
with at most n poles outside the unit disk.

This example of quantized calculus will be explained in Section 3 of Chapter IV. The
first two sections of this chapter deal with the properties of the usual trace (Section 1)
and the Dixmier trace Tr,, (Section 2).

In Section 1 we shall use the ordinary trace to evaluate differential expressions such as
fodft...df", where f/ € A and (H, F) is a Fredholm module over A.

The dimension of such modules is measured by the size of the differentials df = [F) f]
for f € A, i.e. by the growth of the characteristic values of these operators. More
specifically, a Fredholm module (H, F) over an algebra A (commutative or not) is
called p-summable iff the operators df, f € A, all belong to the Schatten ideal L£P of
operators: T € LP iff Y u,(T)? < oo. We shall show in Section 1 that the Chern
character of a p-summable Fredholm module over an algebra A can be defined by a
trace formula (in line with earlier works of Helton-Howe and Carey-Pincus) and gives
a cyclic cocycle of dimension n for any given integer n larger than p — 1 and of the
same parity as the Fredholm module. (For a module to be even one requires that the
Hilbert space be Z/2-graded, with F' anticommuting with the grading, as required by
general K-homology definitions.) Moreover, the various cyclic cocycles thus obtained
are all images of a single one by the periodicity operator S of cyclic cohomology.
The cyclic cohomology class Ch,(H, F') thus obtained has a remarkable property of
integrality, displaying the quantum nature of our calculus. Thus, when pairing this
class Ch.(H, F), the Chern character of a Fredholm module over an algebra A, with
the K-group of A one only gets integers:

(Ch.(H, F), K(A))CZ.

This follows from a simple formula computing the value of the pairing as the index of
a Fredholm operator (Section 1).

In Section 2 we introduce the Dixmier trace and give a general formula, in terms of
the Dixmier trace, for the Hochschild class of the character Ch,(H, F') defined above.

The relevance of this class is that, although it is not the whole cohomological informa-
tion contained in the character, it is exactly the obstruction to writing the latter as
the image, by the periodicity operator S of cyclic cohomology, of a lower-dimensional
cyclic cocycle (as follows from general results of Chapter III Section 1.)
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The formula obtained for the Hochschild cocycle uses an unbounded selfadjoint opera-
tor D whose sign is equal to F' and which controls uniformly the size of the da = [F al,
a € A by the conditions

a) [D,a] bounded Vae A , B3) |D|™ of order 1.

The formula obtained gives a Hochschild n-cocycle as the Dixmier trace applied to
the product a®[D,a']... [D,a™ |D|™", where [D, a’] is the commutator of D with the
element a’ of A. The proof that this Hochschild cocycle is cohomologous, in Hochschild
cohomology, to the character of (H, D) is very involved because it relates the original
cyclic cocycle, computed in terms of the ordinary trace, to an expression involving the
logarithmic or Dixmier trace. It implies in particular that if the obstruction to lowering
the dimension does not vanish then the Dixmier trace of D™ cannot vanish and the
eigenvalues of D! cannot be o(k~1/").

At the end of Section 2 we show, using results of D. Voiculescu, that the existence
of such a D controls the size of abelian subalgebras of A, i.e. that the number of
independent commuting quantities in the algebra A is bounded above by n. This is
another justification of the depth of the relation between the degree of summability
and dimension.

While Section 3 is devoted to the quantized calculus in one real variable we show in
Section 4 that on a conformal manifold the calculus can be canonically quantized. This
is related to the work of Donaldson and Sullivan on quasiconformal 4-manifolds. We
show that the Polyakov action of two-dimensional conformal field theory is given, in
terms of the components X* of a map X : ¥—R? of a Riemann surface to d-dimensional
space, by the formula

I(X) = Tr,(nu dX* dX") , dX* = [F, X"].
The remarkable fact is that the right-hand side continues to make sense when ¥ is a
4-dimensional conformal manifold. This is due to the discovery by M. Wodzicki of the
residue of pseudodifferential operators, a unique tracial extension of the Dixmier trace.
We compute this new 4-dimensional action at the end of Section 4 and relate it to the
Paneitz Laplacian. In Section 5 we move to highly noncommutative examples coming
from group rings and return to the origin of the quantized calculus as a substitute of

differential topology in the noncommutative context. We exploit the integrality of the
Chern character Ch,(H, F).

We show the power of this method by giving an elegant proof, in the spirit of differential
topology, of the Pimsner-Voiculescu theorem solving the Kadison conjecture for the
(C*-algebras of free groups. As another remarkable application of this integrality result
we describe in detail in Section 6 of Chapter IV the work of J. Bellissard on the
quantum Hall effect. Experimental results, of von Klitzing, Pepper, and Dorda, in 1980,
showed the existence of plateaux for the transverse conductivity as a function of the
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natural parameters of the experiment. This unexpected finding gave a precise meaning
to the numerical value of the conductivity on these plateaux and yielded precision
measurements of the fine structure constant which were independent of quantum field
theory. The numbers obtained have the same unexpected stability property as the
integral occurring above in the Gauss-Bonnet theorem.

Bellissard constructed a natural cyclic 2-cocycle on the noncommutative algebra of
“functions on the Brillouin zone” and expressed the Hall conductivity as the pairing
between this cyclic 2-cocycle and an idempotent of the algebra, the spectral projection
of the Hamiltonian. This accounts for the stability part. He then went on and showed
that his 2-cocycle is in fact the Chern character of a Fredholm module, from which the
remarkable integrality of the conductivity in units e?/h does follow. In doing so he de-
fined the analogue of the Brillouin zone as a noncommutative space and the framework
to apply the above quantized calculus to this example. All this is explained in great
detail in Section 6. We also show there how the ordinary pseudodifferential calculus
adapts to the noncommutative torus, the simplest and probably the first example of a
smooth noncommutative space. We then apply it to prove an index theorem for finite
difference-differential equations on the real line.

The rest of this Chapter IV is devoted to the infinite-dimensional case, i.e. to the
construction of the Chern character for Fredholm modules which are not finitely sum-
mable. This is motivated by the following two classes of infinite-dimensional noncom-
mutative spaces: the dual spaces of non-amenable discrete groups and the phase space
in quantum field theory (cf. Section 9 of Chapter IV). The first step in order to adapt
the above tools to the infinite-dimensional case is to develop entire cyclic cohomology;,
which has the same relation to ordinary cyclic cohomology as entire functions have to
polynomials.

From the very beginning of cyclic cohomology, the possibility of defining it by means
of cocycles with finite support in the (b, B) fundamental bicomplex did suggest the
existence of infinite-dimensional cocycles, not reducible to finite-dimensional ones, by
considering cocycles with arbitrary support in the (b, B) bicomplex. However, a key
algebraic result, the vanishing of the E; term of the first spectral sequence of the
bicomplex (cf. Chapter III Section 1) shows that the cohomology of cochains with
arbitrary supports is always trivial. It is thus necessary to impose a nontrivial limitation
on the growth of the components (¢,) of a cochain with infinite support, in order to
obtain a nontrivial cohomology. This growth condition eluded me for a long time but
turned out to be dictated by the pairing with K-theory.

In Section 7 of Chapter IV we shall adapt it to arbitrary locally convex algebras,
which shows in particular that entire cyclic cohomology applies to any algebra over
C (endowing it with the fine locally convex topology). We give in that section the
equivalence between three points of view on entire cyclic cocycles, which can be viewed
as (normalized) cocycles in the (b, B) bicomplex, characters of infinite-dimensional
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cycles, or traces on the Cuntz algebra of A, i.e. the free product of A with the
group with 2 elements. The growth condition for entire cocycles then means that
they extend to a suitable completion of the universal differential algebra QA (resp.
of the Cuntz algebra), whose quasi-nilpotency is analyzed. We end this section with
the computation of the entire cyclic cohomology of the algebra of Laurent polynomials
and its relation with a remarkable deformation of the Cuntz algebra in that case (also
noticed independently by Cuntz and Quillen).

In Section 8 of Chapter IV we extend the previous finite-dimensional construction of
the Chern character in K-homology to the infinite-dimensional case. For a Fredholm
module (H, F') over an algebra A the infinite-dimensional summability condition is
now that the commutators da = [F,a] for a € A all belong to the two-sided ideal of
compact operators 7" such that p,(7), the n-th characteristic value of T', is of the order
of (logn)~1/2 when n goes to oco.

We first show that given such a Fredholm module over 4 one can find a selfadjoint un-
bounded operator D whose sign is equal to F' (i.e. D = F| D] is the polar decomposition
of D) and which satisfies the following two conditions:

1) The commutator [D,a] is bounded for any a € A
2) Tr(e %) < oo.

Such @-summable modules (H, D) over an algebra will turn out, as we shall see in
Chapter VI, to be an excellent point of departure for the metric aspect in noncommu-
tative geometry, i.e. the analogue of Riemannian geometry in our framework. This
fact is already visible in the proof of the existence of the operator D, given F. The
heuristic formula for D=2 is indeed

D% = Z(d:c“)* G (dx")
where the x# are generators of the algebra A, the g,, are the entries of a positive
matrix, and the operator dx for = € A is the quantum differential [F) z].

Such modules (H, D) will be called (f-summable) K-cycles for short. We showed
how to construct the Chern character of such a K-homology class as an entire cyclic
cocycle. Our formula for this character was quite complicated and Jaffe, Lesniewski,
and Osterwalder, motivated by supersymmetric quantum field theory, then obtained a
much simpler formula for the same cohomology class.

All this is explained in detail in Section 8, where the role of the quasinilpotent algebra
of convolution of distributions with support in R, is put into evidence.

In Section 9 we describe the two basic examples of #-summable K-cycles not reducible
to finitely summable ones. The first example combines the construction of Mishchenko
and Kasparov of Fredholm representations of discrete subgroups of semisimple Lie
groups with the twisted de Rham operator of Witten in Morse theory. We leave open
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the problem of completing the computation of the character of this K-cycle for discrete
subgroups of higher rank Lie groups. The second example is the supersymmetric Wess-
Zumino model of quantum field theory. We prove there the new unexpected result that,
even for the free theory, the K-theory of the algebra A(O) of observables localized in
an open subset O of space-time is very nontrivial, of infinite rank as an abelian group,
and pairs nontrivially with the K-homology class given by the supercharge operator @
of the theory.

We have already explained that Chapter V is a detailed account of the theory of von
Neumann algebras. In its last section we explain our joint work with J.-B. Bost,
motivated by earlier work of B. Julia, on a natural system of quantum statistical
mechanics related to the arithmetic of Z and the Riemann zeta function. We show
that our system, formulated as a C*-dynamical system, undergoes a phase transition
with spontaneous symmetry breaking with symmetry group the Galois group of the
field of roots of unity.

5. The metric aspect of noncommutative geometry

In the last chapter of this book we shall develop operator theoretic ideas about the
metric aspect of geometry and then apply these ideas to a fundamental example: space-
time.

Given a (not necessarily commutative) x-algebra A corresponding to the functions on
a “space X7, our basic data in order to develop geometry on X is simply a K-cycle
(H, D) over A in the above sense (cf. D). A first example is provided by ordinary
Riemannian geometry. Given a Riemannian manifold (K -oriented for convenience) we
let its algebra A of functions act by multiplication in the Hilbert space H of L? spinors
on X, and we let D be the Dirac operator in H. One thus obtains a K-cycle over A
which represents the fundamental class of X in K-homology. We shall give (Section 1
of Chapter VI) four simple formulas showing how to recover, from the K-cycle (H, D)
the following classical geometric notions on X:

1) The geodesic distance d on X

2) The integration against the volume form det(g,, )% dz'A ... Adz"
3) The affine space of gauge potentials

4) The Yang-Mills action functional.

The essential fact is that all these notions will continue to make sense in our general
framework, and in particular will apply nontrivially even to the case of finite spaces X.

The operator theoretic formula 1) for the geodesic distance is in essence the dual of
the usual formula in terms of the length of paths v in X. Recall that given two points
p and ¢ in a Riemannian manifold X, their geodesic distance d(p,q) is given as the
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infimum of the lengths of paths ~ from p to q. The latter length is computed by means
of an integral along 7 of the square root of g,, dx* dz”. Our formula for the same
quantity d(p, q) is different in nature in that it is a supremum (instead of an infimum)
and it invokes as a variable a function f on X instead of a path v in X. It is the
following:

d(p,q) = Sup{|f(p) = f(@)| ; fe A, D, flI <1}

The norm involved in the right-hand side is the norm of operators in Hilbert space.
Note also that the points p and ¢ of X are used to convert the element f of A into a
scalar, namely they are used, in conformity with Gelfand’s theorem, as characters of
the algebra A.

There are two important features of this formula. The first is that since it does not
invoke paths but functions it continues to be meaningful and gives a finite nonzero
result when the space X is no longer arcwise connected. Indeed, one can take a space
X with two points a # b: the algebra A of functions on X is then simply A = CHC,
the direct sum of two copies of C, and a natural K-cycle is given by the diagonal action
of A in (*(X) with operator
0 p
v- [u 0}
1

One then checks that with our formula the distance between a and b is given by ¢ = .

An equally important feature of our formula is that, since it uses functions instead
of paths, it is directly compatible with the formalism of quantum mechanics in which
particles are described by wave functions rather than by any classical path.

The next step is to recover the tools of Riemannian geometry which go beyond the mere
“metric space” attributes of such spaces such as 3) and 4). First, the volume form and
the corresponding integral are recovered by the Dixmier trace, already mentioned in
the discussion of Chapter IV. In fact the case already covered in Chapter IV of the
Hausdorff measure on Julia sets in terms of the Dixmier trace was far more difficult.
In Section 1 we shall develop the formalism of gauge theory (commutative or not, of
course) and the Yang-Mills action functional from our operator theoretic data. The
main mathematical result of Section 2 is the analogue of the basic inequality between
the second Chern number of a Hermitian vector bundle and the minimum of the Yang-
Mills functional on compatible connections on this bundle. This is proved in Section
2 using the main theorem of Chapter IV Section 2. In Section 3 we determine the
Yang-Mills connections on the noncommutative torus, a joint result of M. Rieffel and
myself, after defining the metric structure of that simple noncommutative space in
great detail. As it turns out, even though the space we start with is non commutative,
the moduli space of Yang-Mills connections is nicely behaved and finite-dimensional.

The end of the chapter (and the book) is occupied by the analysis, with the above new
geometric tool, of the structure of space-time. The idea can be simply stated as follows:
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It was originally through the Maxwell equations that, by the well-known steps due to
Lorentz, Michelson, Morley, Poincaré and Einstein, the model of Minkowski’s space-
time was elaborated. In more modern terms the Maxwell-Dirac Lagrangian accounts
perfectly for all phenomena involving only the electromagnetic interaction. However,
a century has passed since then and essential discoveries, both experimental and the-
oretical, have shown that in order to account for weak and strong forces a number of
modifications in the above Lagrangian were necessary. (See the small chronological
table below for the early development of weak forces.)

Chronological table
e 1896 H. Becquerel discovers radioactivity
e 1898 M. Curie shows that radioactivity is an intrinsically atomic property

e 1901 E. Rutherford shows the inhomogeneity of uranic rays and isolates the 3
rays (i.e. the weak interaction part)

e 1902 W. Kaufman shows that the ( rays are formed of electrons
e 1907-14 J. Chadwick shows that the spectrum of 3 rays is continuous

e 1930 W. Pauli introduces the neutrino to account for the above continuous
spectrum

e 1932 W. Heisenberg introduces the concept of isospin (in the other context of
strong forces)

e 1934 E. Fermi gives a phenomenological theory of weak interactions

e 1935 H. Yukawa introduces the idea of heavy bosons mediating short range
forces.

Among the next steps which led finally to the Glashow-Weinberg-Salam Lagrangian of
the standard model let us mention the discovery of the vector-axial form of the weak
currents, and the intermediate boson hypothesis which replaces the 4-fermion interac-
tion of the Fermi theory by a renormalizable interaction. This requires a considerable
mass for the intermediate-boson in order to get a possible unification of the weak and
electromagnetic forces using the ideas of nonabelian gauge theory of Yang and Mills.
There was a major difficulty at this point since a nonabelian pure Yang-Mills field is
necessarily massless. This difficulty was resolved by the theoretical discovery of the
Higgs mechanism, allowing for the generation, by spontaneous symmetry breaking, of
nontrivial masses for fermions and intermediate bosons. The Higgs field thus intro-
duced appears in three of the five natural terms of the Lagrangian and completely
spoils their geometric significance.

Now our idea is quite simple. We have at our disposal a more flexible notion of
geometric space in which the continuum (i.e. manifolds say) and the discrete (cf. the
two-point space example above) are treated on the same footing, and in which the
Maxwell-Dirac Lagrangian does make sense: its bosonic part is the already treated
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Yang-Mills action and the fermionic part is easy to get since we are given the Dirac
operator to start with. Thus we can keep track of the above modifications of the
Lagrangian as modifications of the geometry of space-time. In other words, we look
for a geometry in our sense, i.e. a triple (A, H, D) as above, such that the associated
Maxwell-Dirac action functional produces the standard model of electroweak and strong
interactions with all its refinements dictated by experimental results.

The result that we obtain is canonically derived from the standard model considered
as a phenomenological model. What we find is a geometric space which is neither a
continuum nor a discrete space but a mixture of both. This space is the product of
the ordinary continuum by a discrete space with only two points, which, for reasons
which will become clear later, we shall call L and R. The geometry, in our sense, of the
finite space {L, R} is given by a finite-dimensional Hilbert space representation H and
a selfadjoint operator D in H. These have direct physical meaning since the operator
D is given by the Yukawa coupling matrix which encodes the masses of the elementary
fermions as well as their mixing, i.e. the Kobayashi-Maskawa mixing parameters.
Computing the distance between the two points L and R thus gives a number of the
order of 1071%¢cm, i.e. the inverse mass of the heaviest fermion.

The naive picture that emerges is that of a double space-time, i.e. the product of
ordinary space-time by a very tiny discrete two-point space. By construction, purely
left-handed particles such as neutrinos live on the left-handed copy X while electrons
involve both X and Xp in X = X U Xi. Note that each point p of X} is extremely
close to a corresponding point p’ of Xz, and when computing the differential of a
function f on X = X U Xy we shall find that it invokes not only the ordinary
differential of f on X or on Xg but also the finite difference f(p) — f(p') of the values
of f on corresponding points of X, and Xg. It is this finite difference, occurring as
a new “transverse” component of the gauge potential, which yields the famous Higgs
fields which appear in the three non-geometric terms of the standard model Lagrangian

(cf. Chapter VI) L=Le+ Ls+ L, + Ly + Ly.

Note that there is no symmetry whatsoever between the points L and R, and in fact
the natural vector bundle used over that space has fiber C2 over L and C over R. All
this works very well for the electroweak sector of the standard model, but in order to
account for the (already essentially geometric) strong structure much more work was
necessary. It has been done in collaboration with J. Lott and is described in the last
two Sections 4 and 5. It hinges on the fundamental problem of defining correctly what
is a “manifold” in the setup of noncommutative geometry. Our proposed answer, which
is essentially dictated by the SU(2)x SU (3) structure of up-down quark iso-doublets, is
given by Poincaré duality discussed in Section 4. It fits remarkably well with the work
of Sullivan on the fundamental role of Poincaré duality in K-homology for ordinary
manifolds (cf. Section 4).
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In Section 5 we discuss the full standard model, and also account for the hypercharge
assignment of particles from a general unimodularity condition. One should under-
stand this work as pure phenomenology, at the classical level, interpreting the detailed
structure of the best phenomenological model, as the fine structure of space-time rather
than as a long list of new particles. Applications of this point of view in quantum field
theory, say as a model building device, are still ahead of us.



CHAPTER 1

Noncommutative Spaces and Measure Theory

My first goal in this chapter is to show the extent to which Heisenberg’s discovery of
matrix mechanics, or quantum mechanics, was guided by the experimental results of
spectroscopy. The resulting replacement of the phase space by a “noncommutative
space”, more precisely the replacement of the algebra of functions on the phase space
by the algebra of matrices, is one of the most important conceptual steps, on which it
is important to dwell. I will then attempt to place into evidence, thanks to quantum
statistical mechanics, the interaction between theoretical physics and pure mathematics
in the realm of operator algebras, and to show how this interaction was at the origin
of the classification of factors summarized below. Next I will show how the theory of
operator algebras replaces ordinary measure theory for the “noncommutative spaces”
that one encounters in mathematics, such as the space of leaves of a foliation. This
will first of all give a detailed illustration of the classification of factors by geometric
examples. It will also allow us to extend the Atiyah-Singer index theorem to the non-
compact leaves of a measured foliation, using the full force of the Murray and von
Neumann theory of continuous dimensions.

The content of this chapter is organized as follows:

1. Heisenberg and the noncommutative algebra of physical quantities associated to a
microscopic system.

2. Statistical state of a microscopic system and quantum statistical mechanics.
3. Modular theory and the classification of factors.

4. Geometric examples of von Neumann algebras: Measure theory of noncommutative
spaces.

5. The index theorem for measured foliations.

Appendix A. Transverse measures and averaging sequences.
Appendix B. Abstract transverse measure theory.

Appendix C. Non commutative spaces and set theory.

39
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F1cURE 1. Hydrogen Spectrum

1. Heisenberg and the Noncommutative Algebra of Physical Quantities

The classification of the simple chemical elements into Mendeleev’s periodic table is
without doubt the most striking result in chemistry in the 19th century. The theoret-
ical explanation of this classification, by Schrodinger’s equation and Pauli’s exclusion
principle, is an equivalent success of physics in the 20th century, and, more precisely,
of quantum mechanics. One can look at this theory from very diverse points of view.

With Planck, it has its origins in thermodynamics and manifests itself in the discretiza-
tion of the energy levels of oscillators. With Bohr, it is the discretization of angular
momentum. For de Broglie and Schrodinger, it is the wave nature of matter. These
diverse points of view are all corollaries of that of Heisenberg: physical quantities are
governed by noncommutative algebra. My first goal will be to show how close the latter
point of view is to experimental reality. Towards the end of the 19th century, numerous
experiments permitted determining with precision the lines of the emission spectra of
the atoms that make up the elements. One considers a Geissler tube filled with a gas
such as hydrogen. The light emitted by the tube is analyzed with a spectrometer, the
simplest being a prism, and one obtains a certain number of lines, indexed by their
wavelengths. The configuration thus obtained is the most direct source of information
on the atomic structure and constitutes, as it were, the signature of the element under
consideration. It depends only on the element considered, and characterizes it. It is
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FIGURE 2. The vertical arrows represent the transitions. They are
indexed by a pair of indices (i, 7).

thus essential to find the regularities that appear in these configurations or atomic
spectra. It is hydrogen that, in conformity with Mendeleev’s table, has the simplest
spectrum.

The numerical expression of the regularity of the lines H,, Hg, H,, ... was obtained by
Balmer in 1885 in the form
9 16 25 36
H,=-L, Hzy=—L, H = —L, Hs = —L,
5! 12 21 32

where the value of the length L is approximately 3645.6 x 10~® cm. In other words,
the wavelengths of the lines in Figure 1 are of the form

TL2

n2 —

A:

1 L, where n is an integer equal to 3, 4, 5 or 6.
Around 1890, Rydberg showed that for a complex atom the lines of the spectrum can
be classified into series, each of them being of the form

1/A = R/m? — R/n® with n and m integers, m fixed.

Here R = 4/L is Rydberg’s constant. From this experimental discovery one deduces
that, on the one hand, the frequency v = ¢/\ is a more natural parameter than
the wavelength A for indexing the lines of the spectrum and, on the other hand, the
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spectrum is a set of differences of frequencies, that is, there exists a set I of frequencies
such that the spectrum is the set of differences v;; = v; — v; of arbitrary pairs of
elements of /. This property shows that one can combine two frequencies v;; and
vji to obtain a third, v, = v4;; + vj,. This important corollary is the Ritz-Rydberg
combination principle: the spectrum is naturally endowed with a partially defined law
of composition; the sum of certain frequencies of the spectrum is again a frequency of
the spectrum (Figure 2).

Now, these experimental results could not be explained in the framework of the theoret-
ical physics of the 19th century, based as it was on Newton’s mechanics and Maxwell’s
electromagnetism. If one applies the classical conception of mechanics to the micro-
scopic level, then an atom is described mathematically by the phase space and the
Hamiltonian, and its interaction with radiation is described by Maxwell’s theory. As
we shall see, this theory predicts that the set of frequencies forms a subgroup I' of R.

Let us begin with the phase space. In the model of classical mechanics, to determine
the later trajectory of a particle it is necessary to know both its initial position and
its velocity. The initial data thus forms a set with six parameters, which are the three
coordinates of position and the three coordinates of velocity, or rather of the momentum
p = mu . If one is interested in a number n of particles, it is necessary to know the
position and momentum of each of them. One is thus dealing with a set with 6n
parameters, called the phase space of the mechanical system under consideration.

Starting with a function on this space which is called the Hamiltonian and which mea-
sures energy, classical mechanics prescribes the differential equations that determine
the trajectory from the initial data. The natural structure of the phase space is that of
a symplectic manifold X whose points are the “states” of the system. The Hamilton-
ian H is a function on X that intervenes to specify the evolution of every observable
physical quantity, that is, of every function f on X, by the equation

f={H,r},
where {,} denotes the Poisson bracket and f = df/d¢.

In the good cases such as, for example, the planetary model of the hydrogen atom, the
dynamical system obtained is totally integrable. This means that there are sufficiently
many “constants of motion” so that, on specifying them, the system is reduced to an
almost periodic motion. The description of such a system is very simple. For, on the
one hand, the algebra of observable quantities is the commutative algebra of almost
periodic series

Q(t) = Z Qny..ny exp(?wi(n, V>t) )

where the n; are integers, the 1; are positive real numbers called the fundamental
frequencies, and (n,v) = > n;v;. On the other hand, the evolution in time is given
by translation of the variable t.
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The interaction between a classical atom and the electromagnetic field is described by
Maxwell’s theory. Such an atom emits an electromagnetic wave whose radiative part
is calculated by superposing the plane waves W, , n = (ny,...,n;), with frequencies
(n,v) = > n;v;, and whose amplitude and polarization are calculated simply from the
fundamental observable that is the dipole moment. The dipole moment () has three
components ., @, and (., each of which is an observable quantity,

Q.(t) = Z Qo €Xp(27i(n, v)t),

and which give the intensity of the emitted radiation of frequency (n,v) by the equa-
tion

dE 2 4 2 2 2
T @(27"@17”» (genl” + lgynl™ + 1gznl")
where ¢ denotes the speed of light. It follows, in particular, that the set of frequencies
of the emitted radiations is an additive subgroup, I' C R , of the real numbers. Thus,

to each frequency emitted there are associated all of its integral multiples or harmonics.

In fact, spectroscopy and its numerous experimental results show that this last theo-
retical result is contradicted by experiment. The set of frequencies emitted by an atom
does not form a group, and it is false that the sum of two frequencies of the spectrum
is again one. What experiment dictates is the Ritz-Rydberg combination principle,
which permits indexing the spectral lines by the set A of all pairs (¢,7) of elements
of a set I of indices. The frequencies v;; and vy, only combine when j = £ to yield
Vie = v;; + vje. The theory of Bohr, by artificially discretizing the angular momentum
of the electron, succeeds in predicting the frequencies of the radiations emitted by the
hydrogen atom, but it is unable to predict their intensities and polarizations.

It is by a fundamental calling into question of classical mechanics that Heisenberg ar-
rived at this goal and went well beyond his predecessors. This questioning of classical
mechanics runs approximately as follows: in the classical model, the algebra of observ-
able physical quantities can be directly read from the group T' of emitted frequencies;
it is the convolution algebra of this group of frequencies. Since I' is a commutative
group, the convolution algebra is commutative. Now, in reality one is not dealing with a
group of frequencies but rather, due to the Ritz-Rydberg combination principle, with a
groupoid A = {(4,4); 4,7 € I } having the composition rule (i,7)-(j, k) = (i,k). The
convolution algebra still has meaning when one passes from a group to a groupoid, and
the convolution algebra of the groupoid A is none other than the algebra of matrices
since the convolution product may be written

(ab) (i) = Zj ai )bk

which is identical with the product rule for matrices. On replacing the commutative

convolution algebra of the group I' by the noncommutative convolution algebra of the
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groupoid A dictated by experimental results, Heisenberg replaced classical mechanics,
in which the observable quantities commute pairwise, by matriz mechanics, in which
observable quantities as important as position and momentum no longer commute.
Heisenberg’s rules of algebraic calculation were imposed on him by the experimental
results of spectroscopy. However, Heisenberg did not understand right away that the
algebra he was working with was already known to mathematicians and was called
the algebra of matrices. It was Jordan and Born who noticed this. In fact, Jordan
had remarked that the conditions which, in Heisenberg’s formalism, correspond to
the Bohr-Sommerfeld quantization rules, signified that the diagonal elements of the
matrix [p,q] were equal to —ifi. In Heisenberg’s matrix mechanics, an observable
physical quantity is given by its coefficients ¢(; ), indexed by elements (i,7) € A of
the groupoid A . The time evolution of an observable is given by the homomorphism
(i,j) € A — v; € R of A into R which associates with each spectral line its
frequency. One has

90,5 (t) = q ) exp(2miv;t) . (1)
This formula is the analogue of the classical formula

Gny.nie (t) = Gy, €xP(2i(N, V)E) .
To obtain the analogue of Hamilton’s law of evolution

dgq

— ={H

dt { ) Q} Y

one defines a particular physical quantity H that plays the role of the classical energy

and is given by its coefficients H; ;) , with

Hij=01ifi#j, Hiz = hy;, where v; —v; =1 Vi, j €1,
where h is Planck’s constant, a factor that converts frequencies into energies. One

sees that H 1is defined uniquely, up to the addition of a multiple of the identity matrix.
Moreover, the above formula (1) is equivalent to

dg  2m

dt — h
This equation is similar to the one of Hamilton that uses the Poisson brackets. It is
in fact simpler, since it only uses the product of the observables, and more precisely
the commutator [A, B] = AB — BA, which plays the role that the Poisson bracket
plays in Hamiltonian mechanics. By analogy with classical mechanics, one requires
the observables ¢ of position and p of momentum to satisty [p,q] = —ih, where
h = h/2m. The simple algebraic form of the classical energy as a function of p and
q then gives the equation of Schrodinger for determining the set {v;; ¢ € I}, or the
spectrum of H .

(Hq—qH). (2)
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The quantum system thus described is much simpler and more rigid than its classical
analogue. One thus obtains a nonnegligible payoff for abandoning the commutativity
of classical mechanics. Though less intuitive, quantum mechanics is more directly
accessible by virtue of its simplicity and its contact with spectroscopy.

In fact, the results of the theory of x-products show that a symplectic structure on a
manifold such as the phase space is none other than the indication of the existence
of a deformation with one parameter (h here) of the algebra of functions into a non-
commutative algebra. I refer the reader to the literature ([13], [37], [38], [169], [182],
[220], [368], [474], [570]) for a description of the results of this theory.

2. Statistical State of a Macroscopic System and Quantum Statistical
Mechanics

A cubic centimeter of water contains on the order of N = 3x10?? molecules of water
agitated by an incessant movement. The detailed description of the motion of each
molecule is not necessary, any more than is the precise knowledge of the microscopic
state of the system, to determine the results of macroscopic observations. In classical
statistical mechanics, a microscopic state of the system is represented by a point of the
phase space, which is of dimension 6N for N point molecules. A statistical state
is described not by a point of the phase space but by a measure p on that space,
a measure that associates with each observable f its mean value

/fdu.

For a system that is maintained at fixed temperature by means of a thermostat, the
measure g is called the Gibbs canonical ensemble; it is given by a formula that
involves the Hamiltonian H of the system and the Liouville measure that arises from
the symplectic structure of the phase space. One sets

1
— e P . Liouville measure, (3)

Z

where (3 = 1/kT, T being the absolute temperature and k the Boltzmann constant,
whose value is approximately 1.38 x 10~2% joules per degree Kelvin, and where 7 is a
normalization factor.

dp =

The thermodynamic quantities, such as the entropy or the free energy, are calculated
as functions of [ and a small number of macroscopic parameters introduced in the
formula that gives the Hamiltonian H . For a finite system, the free energy is an
analytic function of these parameters. For an infinite system, some discontinuities
appear that correspond to the phenomenon of phase transition. The rigorous proof,
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starting with the mathematical formula that specifies H, of the absence or existence
of these discontinuities is a difficult branch of mathematical analysis ([488]).

However, as we have seen, the microscopic description of matter cannot be carried out
without quantum mechanics. Let us consider, to fix our ideas, a solid having an atom
at each vertex of a crystal lattice Z3. The algebra of observable physical quantities
associated with each atom x = (x1, 29, x3) is a matrix algebra @, , and if we assume
for simplicity that these atoms are of the same nature and can only occupy a finite
number n of quantum states, then @, = M, (C) for every z. Now let A be a finite
subset of the lattice. The algebra @, of observable physical quantities for the system
formed by the atoms contained in A is given by the tensor product Qx = @), 5 Qs -

The Hamiltonian H, of this finite system is a self-adjoint matrix that is typically of
the form

HA = ZHZ‘ + )\Hint )
TEA
where the first term corresponds to the absence of interactions between distinct atoms,
and where A is a coupling constant that governs the intensity of the interaction. A
statistical state of the finite system A is given by a linear form ¢ that associates
with each observable A € Q5 its mean value ¢(A) and which has the same positivity
and normalization properties as a probability measure g, namely,

a) Positivity: p(A*A) >0 VA€ Qy;
b) Normalization: ¢(1) = 1.

If the system is maintained at fixed temperature T, the equilibrium state is given by
the quantum analogue of the above formula (3)

p(A) = % trace(e PHrA) VA € Qy, (4)

where the unique trace on the algebra ), replaces the Liouville measure.

As in classical statistical mechanics, the interesting phenomena appear when one passes
to the thermodynamic limit, that is, when A — Z3. A state of the infinite system
being given by the family (p,) of its restrictions to the finite systems indexed by A,
one obtains in this way all the families such that

a) for every A, @, is a state on @y,
b) if A; C As then the restriction of @,, to @4, is equal to @y, .

In general, the family ¢, defined above by means of exp(—BH,) does not satisfy the
condition b) and it is necessary to understand better the concept of state of an infinite
system. This is where C*-algebras make their appearance. In fact, if one takes the
inductive limit ) of the finite-dimensional C*-algebras (), , one obtains a C*-algebra
that has the following property:
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F(t + i h B)=¢(a (B)A)

F(t)=¢0(A a (B))

FIGURE 3. The KMS condition

An arbitrary state ¢ on @Q s given by a family (pp) satisfying the conditions a)
and b).

Thus, the families (p,) satisfying a) and b), that is the states of the infinite system,
are in natural bijective correspondence with the states of the C*-algebra (). Moreover,
the family (H,) uniquely determines a one-parameter group (o) of automorphisms
of the C*-algebra () by the equation

Ck«;—im = Limqus 2mi
This one-parameter group gives the time evolution of the observables of the infinite
system that are given by the elements A of @, and is calculated by passing to the
limit, starting from Heisenberg’s formula. For a finite system, maintained at tempera-
ture T, the formula (4) gives the equilibrium state in a unique manner as a function
of Hj , but in the thermodynamic limit one cannot have a simple correspondence be-
tween the Hamiltonian of the system, or, if one prefers, the group of time evolution,
and the equilibrium state of the system. Indeed, during phase transitions, distinct
states can coexist, which precludes uniqueness of the equilibrium state as a function of
the group (oy). It is impossible to give a simple formula that would define in a unique
manner the equilibrium state as a function of the one-parameter group (ay). In com-
pensation, there does exist a relation between a state ¢ on () and the one-parameter
group (oy) , that does not always uniquely specify ¢ from the knowledge of «;, but
which is the analogue of the formula (4). This relation is the Kubo-Martin-Schwinger
condition ([361], [389]) as formulated by R. Haag, N. Hugenholtz and M. Winnink
[250]:

[HA,A] .
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The function F is holomorphic in the unshaded strip and connects ¢(Aa;(B)) and
p(a(B)A).

Given T, a state ¢ on (@ , and the one-parameter group (cy) of automorphisms
of ) satisfy the KMS-condition if and only if for every pair A, B of elements of @)
there exists a function F(z) holomorphic in the strip {z € C; Im z € [0,h8] } such
that (Figure 3)

F(t) = (Aa,(B)), F(t+ih8) = p(ar(B)A) (Vt € R).

Here t is a time parameter, as is h3 = h/kT which, for T = 1° K, has value
approximately 10~ !!s.

This condition allows us to formulate mathematically, in quantum statistical mechanics,
the problem of the coexistence of distinct phases at given temperature T, that is, the
problem of the uniqueness of ¢, given (a;) and (3. We shall give, in Chapter
V Section 11, an explicit example of a phase transition with spontaneous symmetry
breaking coming from the statistical theory of prime numbers.

This same condition has played an essential role in the modular theory of operator
algebras. It has thus become an indisputable point of interaction between theoretical
physics and pure mathematics.

3. Modular Theory and the Classification of Factors

Between 1957 and 1967, a Japanese mathematician, Minoru Tomita, who was moti-
vated in particular by the harmonic analysis of nonunimodular locally compact groups,
proved a theorem of considerable importance for the theory of von Neumann algebras.
His original manuscript was very hard to decipher, and his results would have remained
unknown without the lecture notes of M. Takesaki [549], who also contributed greatly
to the theory.

Before giving the technical definition of a von Neumann algebra, it must be explained
that the theory of commutative von Neumann algebras is equivalent to Lebesgue’s
measure theory and to the spectral theorem for self-adjoint operators. The noncom-
mutative theory was elaborated at the outset by Murray and von Neumann, quantum
mechanics being one of their motivations. The theory of noncommutative von Neu-
mann algebras only achieved its maturity with the modular theory; it now constitutes
an indispensable tool in the analysis of noncommutative spaces.

A von Neumann algebra is an involutive subalgebra M of the algebra of operators on

a Hilbert space 'H that has the property of being the commutant of its commutant:
(M) =M.
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This property is equivalent to saying that M is an involutive algebra of operators
that is closed under weak limits. To see intuitively what the equality (M') = M
means, it suffices to say that it characterizes the algebras of operators on Hilbert
space that are invariant under a group of unitary operators: The commutant of any
subgroup of the unitary group of the Hilbert space is a von Neumann algebra, and
they are all of that form (given M take as a subgroup, the unitary group of M’).
In the general noncommutative case, the classical notion of probability measure is
replaced by the notion of state. A typical state on the algebra M is given by a
linear form ¢(A) = (A&, ), where £ is a vector of length 1 in the Hilbert space.
Tomita’s theory, which has as an ancestor the notion of quasi-Hilbert algebra ([172]),
consists in analyzing, given a von Neumann algebra M on the Hilbert space H and
a vector £ € H such that M¢& and M'€ are dense in H , the following unbounded
operator S':

Sxé =x"E Vo € M.
This is an operator with dense domain in H that is conjugate-linear; the results of
the theory are as follows:

1) S is closable and equal to its inverse.

2) The phase J = S|S|™! of S satisfies JMJ = M’.

3) The modulus squared A = [S]*> = S*S of S satisfies AYMA~ = M for
every t € R.

Thus, to every state ¢ on M one associates a one-parameter group (Jf ) of auto-

morphisms of M, given by of(z) = A%zA~" (Vz € M) (Vt € R), the group of
modular automorphisms of . It is precisely at this point that the interaction between
theoretical physics and pure mathematics takes place. Indeed, Takesaki and Winnink
showed simultaneously [549][586] that the connection between the state ¢ and the
one-parameter group (c%,) of Tomita’s theorem is exactly the KMS condition for
h=1.

These results, as well as the work of R. Powers [453], and of H. Araki and E. J. Woods
[12] on factors that are infinite tensor products, proved to be of considerable importance
in setting in motion the classification of factors.

The point of departure of my work on the classification of factors was the discovery of
the relation between the Araki-Woods invariants and Tomita’s theory. For this it had
to be shown that the evolution group associated with a state by that theory harbored
properties of the algebra M independent of the particular choice of the state ¢.

A von Neumann algebra is far from having just one state ¢, which has as consequence
that only the properties of of that do not depend on the choice of ¢ have real
significance for M . The crucial result that allowed me to get the classification of
factors going is the following analogue of the Radon—Nikodym theorem [89]:
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For every pair @, of states on M , there exists a canonical 1-cocycle
t—uy, Uy 41y = Ug, OF, (Ugy) Vti,to € R
with values in the unitary group of M , such that
0¥ (x) = wof (x)u VeeM, VteR.
Moreover, /—1 (du/dt),_, coincides

1) in the commutative case, with the logarithm of the Radon—-Nikodym derivative
(dy/de);
2) in the case of statistical mechanics, with the difference of the Hamiltonians

corresponding to two equilibrium states, or the relative Hamiltonian of Araki
[9].

It follows that, given a von Neumann algebra M , there exists a canonical homomor-
phism 0 of R into the group OutM = AutM/InnM (the quotient of the automor-
phism group by the normal subgroup of inner automorphisms), given by the class of
of, independently of the choice of ¢. Thus, Kerd = T(M) is an invariant of M , as
is Specd = S(M) = (), Spec A, .

Thus von Neumann algebras are dynamical objects. Such an algebra possesses a group
of automorphism classes parametrized by R. This group, which is completely canoni-
cal, is a manifestation of the noncommutativity of the algebra M . It has no counter-
part in the commutative case and attests to the originality of noncommutative measure
theory with respect to the usual theory.

Twenty years after Tomita’s theorem, and after considerable work (for more details see
Chapter V), we now have at our disposal a complete classification of all the hyperfinite
von Neumann algebras. Rather than give a definition of this class, let us simply note
that:

1) If G is a connected Lie group and 7 € RepG is a unitary representation
of G, then its commutant 7(G)’ is hyperfinite.

!/

2) If T' is an amenable discrete group and 7 € Repl", then 7(T")" is hyperfinite.

3) If a C*-algebra A is an inductive limit of finite-dimensional algebras and if
7w € RepA, then w(A)” is hyperfinite.

Moreover, the classification of hyperfinite von Neumann algebras reduces to that of the
hyperfinite factors on writing M = [ Mydu(t), where each M, is a factor, that is,
has center equal to C. Finally, the list of hyperfinite factors is as follows:

oI, M=M,(C).
o I, M = L(H), the algebra of all operators on an infinite-dimensional Hilbert
space.
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e II;, R = Cliff¢c(F), the Clifford algebra of an infinite-dimensional Euclidean
space E.

oll, Ron=R®I,.

e III, R, = the Powers factors (A € ]0,1]).

o III; Roo =Ry, @ Ry, ( VA1, Mg, A/Ay ¢ Q), the Araki-Woods factor.
o ITIy Ry , the Krieger factor associated with an ergodic flow W .

After my own work, case III; was the only one that remained to be elucidated.
U. Haagerup has since shown that all the hyperfinite factors of type III; are isomorphic.
All these results are explained in great detail in Chapter V.

4. Geometric Examples of von Neumann Algebras : Measure Theory of
Noncommutative Spaces

My aim in this section is to show by means of examples that the theory of von Neumann
algebras replaces ordinary measure theory when one has to deal with noncommutative
spaces. It will allow us to analyse such spaces even though they appear singular when
considered from the classical point of view, i.e. when investigated using measurable
real-valued functions.

We shall first briefly review the classical Lebesgue measure theory and explain in par-
ticular its intimate relation with commutative von Neumann algebras. We then give
the general construction of the von Neumann algebras of the noncommutative spaces X
which arise naturally in differential geometry, namely the spaces of leaves of foliations.
Our first use of this construction will be to illustrate the classification expounded above
by numerous geometric examples.

4.a Classical Lebesgue measure theory. H. Lebesgue was the first to succeed
in defining the integral fab f(z)dz of a bounded function of a real variable x without
imposing any serious restrictions on f. At a technical level, for the definition to make
sense it is necessary to require that the function f be measurable. However, this
measurability condition is so little restrictive that one has to use the uncountable axiom
of choice to prove the existence of nonmeasurable functions. In fact, a very instructive
debate took place in 1905 between Borel, Baire, and Lebesgue on the one hand, and
Hadamard (and Zermelo) on the other, as to the “existence” of a well ordering on
the real line (see Lebesgue’s letter in Appendix C). A result of the logician Solovay
shows that (modulo the existence of strongly inaccessible cardinals) a nonmeasurable
function cannot be constructed using only the axiom of conditional choice.
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FIGURE 4. The Lady in Blue by Gainsborough

This result on measurability still holds if the interval [a,b] is replaced by a standard
Borel space X. It shows, in particular, that among the classical structures on a set X
obtained by specifying a class of functions, f : X—R, such as continuous or smooth
functions, the measure space structure, obtained by specifying the measurable func-
tions, is the coarsest possible.

In particular, a measure space X is not modified by a transformation 7" such as the one
indicated in Figure 4, which consists in making the picture explode like a jigsaw puzzle
whose pieces are scattered. This transformation has the effect of destroying all shape;
nevertheless, a particular subset A of X does not change in measure even though it
may be scattered into several pieces.

This wealth of possible transformations of X is bound up with the existence, up to iso-
morphism, of only one interesting measure space: an interval equipped with Lebesgue
measure. Even spaces as complex in appearance as a functional space of distributions
equipped with a functional measure are in fact isomorphic to it as measure spaces.
In particular, the notion of dimension has no intrinsic meaning in measure theory.
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FI1GURE 5. The Permuted Lady in Blue

The key tools of this theory are positivity and the completeness of the Hilbert space
L*(X, pu) of square-integrable functions f, with [ |f]*dy < oo on X. A crucial result
is the Radon-Nikodym theorem, by which the derivative du/dv of one measure with
respect to another may be defined as a function on X.

The topology of compact metrizable spaces X has a remarkable compatibility with
measure theory. In fact, the finite Borel measures on X correspond exactly to the
continuous linear forms on the Banach space C(X) of continuous functions on X,
equipped with the norm ||f|| = sup,cx |f(z)|. The positive measures correspond to
the positive linear forms, i.e. the linear forms ¢ such that ¢ (ff) >0 forall f e C(X).

To go into matters more deeply, it is necessary to understand how this theory arises
naturally from the spectral analysis of selfadjoint operators in Hilbert space, and thus
becomes a special commutative case of the theory of von Neumann algebras (Chapter
5), which is itself the natural extension of linear algebra to infinite dimensions.

Thus, let H be a (separable) Hilbert space and T a bounded selfadjoint operator on
H, ie. (T¢,n) = (&Tn) Y&, € H. Then if p(u) is a polynomial of the real variable
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u, p(u) = apu™ + - - - + a,, one can define the operator p(T) as

p(T) = Zak ",
k=0

It is rather amazing that this definition of p(7") extends by continuity to all bounded
Borel functions f of a real variable u. This extension is uniquely given by the condition

()& m) — (f(T)E,m)  V&neH,
if the sequence f,, converges simply to f, i.e. f,(u)— f(u) for all w € R . There exists

then a unique measure class p on R, carried by the compact interval I = [—||T||, ||T|],
such that

(1) = o= [ Ifldu=0.

Moreover, the algebra M of operators on H of the form f(7") for some bounded Borel
function f is a von Neumann algebra, and is the von Neumann algebra generated by
T. In other words if S is a bounded operator on H which has the same symmetries as
T (i.e. which commutes with all unitary operators U, U*U = UU* = 1 on ‘H which fix
T, so UTU* = T), then there exists a bounded Borel function f with S = f(7'). This
commutative von Neumann algebra is naturally isomorphic to L*(I, i), the algebra of
classes modulo equality almost everywhere, of bounded measurable functions on the
interval [.

4.3 Foliations. We shall now describe a large class of noncommutative spaces
arising from differential geometry, see why the Lebesgue theory is not able to analyse
such spaces, and replace it by the theory of noncommutative von Neumann algebras.

The spaces X considered are spaces of manifolds which are solutions of a differential
equation, i.e. spaces of leaves of a foliation.

Let V be a smooth manifold and T'V its tangent bundle, so that for each z € V', T,V
is the tangent space of V at x. A smooth subbundle F' of T'V is called integrable ift
one of the following equivalent conditions is satisfied:

a) Every € V' is contained in a submanifold W of V' such that

T,(W)=F, Yy e W.
b) Every x € V is in the domain UCV of a submersion p : U—R? (¢ = codimF') with
F, = Ker(p.), Vy € U.
c) C®(V,F) ={X € C*(V,TV); X, € F, Vo € V} is a Lie subalgebra of the Lie al-
gebra of vector fields on V.

d) The ideal J(F') of smooth differential forms which vanish on F' is stable under
differentiation: dJCJ.
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dim F

codim F

=
7

FIGURE 6. Foliation

Any 1-dimensional subbundle F' of T'V is integrable, but for dim F' > 2 the condition
is nontrivial; for instance, if P—P?B is a principal H-bundle, with compact structure
group H, the bundle of horizontal vectors for a given connection is integrable iff this
connection is flat.

A foliation of V' is given by an integrable subbundle F of T'V. The leaves of the foliation
(V, F) are the maximal connected submanifolds L of V with T, (L) = F, Vx € L,
and the partition of V' into leaves V = |J Lo, a € A, is characterized geometrically
by its “local triviality”: every point x € V has a neighborhood U and a system of
local coordinates (:cj )j=1,...dimv, Which is called a foliation chart, so that the partition
of U into connected components of leaves, called plaques (they are the leaves of the
restriction of the foliation to the open set U), corresponds to the partition of RE™YV =
RAm F 5 ReodimE into the parallel affine subspaces RY™E xpt (cf. Figure 5).

The manifolds L which are the leaves of the foliation are defined in a fairly implicit
manner, and the simplest examples show that:

1) Even though the ambient manifold V' is compact, the leaves L can fail to be compact.
2) The space X of leaves can fail to be Hausdorff for the quotient topology.

For instance, let V' be the two-dimensional torus V = R?/Z? with the Kronecker
foliation associated to a real number 6, i.e. given by the differential equation

dy = 6dzx.

Then if  is an irrational number, the leaves L are diffeomorphic to R, while the quotient
topology on the space X of leaves is the same as the quotient topology of S = R/Z
divided by the partition into orbits of the rotation given by o € S'—%q 4 6, and is
thus the coarse topology. Thus there are no open sets in X except () and X. Similarly,
the ergodicity of the rotation Ry on S! shows that if we endow X with the quotient
measure class of the Lebesgue measure class on V' we get the following “pathological”
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F1GURE 7. Kronecker foliation dy = V2 dx

behaviour: any measurable function f : X —R is almost everywhere equal to a constant.
This implies that classical measure theory does not distinguish between X and a one-
point space, and, in particular, the LP-spaces of analysis, LP(.X), are one-dimensional,
LP(X) = C, and essentially useless.

4.7 The von Neumann algebra of a foliation. Let (V, F') be a foliated manifold.
We shall now construct a von Neumann algebra W (V, F') canonically associated to
(V, F) and depending only on the Lebesgue measure class on the space X of leaves of
the foliation. The classical point of view, L>(X), will only give the center Z(W) of
Ww.

The basic idea of the construction is that while in general we cannot find on X interest-
ing scalar-valued functions, there are always, as we shall see, plenty of operator-valued
functions on X. In other words we just replace c-numbers by g-numbers. To be more
precise, let us denote, for each leaf ¢ of (V, F), by L*(¢) the canonical Hilbert space of
square-integrable half-densities ([248]) on /.

We assume here to simplify the discussion that the set of leaves with nontrivial holo-
nomy is Lebesgue negligible. In general (cf. Chapter II) one just replaces ¢ by ¢, its
holonomy covering.

Definition 1. A random operator ¢ = (q¢)ecx is a measurable map {—q, which asso-
ciates to each leaf { € X a bounded operator q, in the Hilbert space L*({).

To define the measurability of random operators we note the following simple facts:

a) Let A : V—X be the canonical projection which to each € V assigns the unique
leaf ¢ = \(z) passing through z. Then the bundle (L?(A(x)))zer of Hilbert spaces over
V' is measurable. More specifically, consider the Borel subset of VXV, G = {(z,y) €
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VxV ; y € Ax)}. Then, modulo the irrelevant choice of a 1/2-density |dy|'/? along
the leaves, the sections (&,).cy of the bundle (L?(\(z)))zev are just scalar functions
on GG and measurability has its ordinary meaning.

b) A map ¢—q, as in Definition 1 defines by composition with A\ an endomorphism
(qx(z))zev of the bundle (L*(A(x)))zev. We shall then say that ¢ = (g¢)eex is measurable
iff the corresponding endomorphism (gx(z))zev is measurable in the usual sense, i.e. iff
for any pair of measurable sections (£,.)zev, (Mz)zev Of (L*(A()))zer the following
function on V' is Lebesgue measurable:

S V_><Q)\(x) fx ) 77:r> e C.

There are many equivalent ways of defining measurability of random operators. As we
already noted in Section «/), any natural construction of families (¢¢)scx will automat-
ically satisfy the above measurability condition.

Let us give some examples of random operators.

1) Let f be a bounded Borel function on V. Then for each leaf ¢ € X let ﬁ be the
multiplication operator

(fe &)(@) = f2) &) Vo el Ve L(0).
This defines a random operator f = (fy)scx-

2) Let X € C*°(V, F) be a real vector field on V' tangent to the leaves of the foliation.
Then let 1, = exp(tX) be the associated group of diffeomorphisms of V. (Assume for
instance that V' is compact to ensure the existence of 1;.) By construction, ¢;(z) € A(x)
for any x € V so that it defines for each ¢ a diffeomorphism of ¢. Let (U)scx be the
corresponding family of unitaries (the map ¢—L?(¢) is functorial). It is a random
operator U = (Up)pex-

Let ¢ = (q¢)eex be a random operator. The operator norm ||q|| of ¢, in L?(¢) defines a
measurable function on V' by composition with A : V—X which gives meaning to the
norm

() llg|| = Essential Supremum of ||q,| , ¢ € X.
We say that q is zero almost everywhere iff g o A is so.
The von Neumann algebra W (V| F') of a foliation is obtained as follows:

Proposition 2. The classes of bounded random operators (qi)ecx modulo equality
almost everywhere, endowed with the following algebraic rules, form a von Neumann
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algebra W(V, F):
P+a)e =petaq VeX
(rq)e =pq VX
(p*)g = (pg)* vl e X.

The norm, uniquely defined by the involutive algebra structure, is given by (x). We

have used here the possibility of defining a von Neumann algebra without a specific
representation in Hilbert space, cf. Chapter V. If one wishes to realise W (V| F') con-
cretely as operators on a Hilbert space, one can, for instance, let random operators act
by
(qg)s = q/\(s)fs VseV

in the Hilbert space H of square-integrable sections (&,)scy of the bundle A*L? of Hilbert
spaces on V. One can also use the restriction of A*L? to a sufficiently large transverse
submanifold 7" of V. The invariants of von Neumann algebras are independent of the
choice of a specific representation in Hilbert space and depend only upon the algebraic
structure.

The von Neumann algebra W (V, F') only depends upon the space X of leaves with its
Lebesgue measure class; one has

Proposition 3. Two foliations (V;, F;) with the same leaf space have isomorphic von
Neumann algebras: W(Vy, Fy) ~ W (Va, Fy).

To be more precise one has to require in Proposition 3 that dim F; > 0 and that
the assumed isomorphism V;/Fi~V3/F, be given by a bijection ¢ : Vi/F1—Vy/Fy
which preserves the Lebesgue measure class and is Borel in the sense that {(x,y) €
VixVa ;s (Ai(z)) = Xa(y)} is a Borel subset of Vi x V5, with \; : V;—V;/F; the quotient

map.

For any von Neumann algebra M, its center

ZIM)={zeM ; zy=yx Yyec M}
is a commutative von Neumann subalgebra of M.
In the above context one has the easily proved

Proposition 4. Let (V, F) be a foliated manifold; then the construction 1) of random
operators yields an isomorphism

L=(X)~Z(W(V, F))

of the algebra of bounded measurable (classes of ) functions on X = V/F with the center
of W(V, F).

In particular W (V, F') is a factor iff the foliation is ergodic.
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We shall now illustrate the type classification of von Neumann algebras by geometric
examples given by foliations. This will allow a non-algebraically minded reader to form
a mental picture of these notions.

Type I von Neumann algebras

By definition a von Neumann algebra M is of type I iff it is algebraically isomorphic to
the commutant of a commutative von Neumann algebra. Thus type I is the stable form
of the hypothesis of commutativity. We refer to Chapter V for the easy classification
of type I von Neumann algebras (with separable preduals) as direct integrals of matrix
algebras M, (C), n € {1,2,...,00}.

A simple criterion ensuring a von Neumann algebra M be of type I is that it contains
an abelian projection e with central support equal to 1. A projection e = e* = e? € M
is called abelian iff the reduced von Neumann algebra

M,={zxeM; ze=ex =z}
is commutative. The central support of e is equal to 1 iff one has ex # 0 for any

xeZ(M), x#0.

Using this criterion one easily gets that the von Neumann algebra of a foliation (V, F')
is of type I iff the leaf space X is an ordinary measure space. More precisely:

Proposition 5. Let (V| F) be a foliated manifold. Then the associated von Neumann
algebra is of type I iff one of the following equivalent conditions is satisfied.

a) The quotient map A : V—X admits a Lebesgue measurable section.

B) The space of leaves X, with its quotient structure, is, up to a null set, a standard
Borel space.

A measurable section a of A is a measurable map from V to V constant along the
leaves and such that

a(z) € Az) Ve eV.
In general, an abelian projection e € W (V| F') is given by a measurable section /—&, €

L?(¢) of the bundle (L*(€))sex such that [|&] € {0,1} V¢ € X. The formula for the
random operator e = (ey)gex is then

een=(n&& Vnel*((),VleX.

The central support of e is equal to 1 iff ||| = 1 a.e. The above type I property
rarely holds for a foliation. It does, of course, for fibrations or if all leaves are compact;
but it also holds for some foliations whose leaves are not compact, such as the Reeb
foliations (Figure 7). In this last example the map «, which assigns to each leaf ¢ the
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FiGUurE 8. Example of type I foliation

point «(¢) € ¢ where the extrinsic curvature is maximal, yields a measurable section of

A V—=X.

Type II von Neumann algebras

A finite trace 7 on an algebra is a linear form 7 such that 7(zy) = 7(yx) for any pair
x,y of elements of that algebra. Let H be an infinite-dimensional Hilbert space and
M. (C) = L(H) be the von Neumann algebra of all bounded operators on H. It is
the only factor of type I.. This factor does not possess any finite trace, but the usual
trace of operators, extended with the value +o0o to positive operators which are not in
L(H), is a positive semi-finite faithful normal trace on M, (C). We refer to Chapter
V Section 3 for the technical definitions.

By definition, a von Neumann algebra M is semi-finite iff it has a positive semi-finite
faithful normal trace. Any type I von Neumann algebra is semi-finite. Any semi-finite
von Neumann algebra M is uniquely decomposable as the direct sum M = M@ My of
a type I von Neumann algebra M and a semi-finite von Neumann algebra M with no
nonzero abelian projection. One says that My is of type II.

Let (V, F) be a foliated manifold and M = W(V, F) the associated von Neumann
algebra. We shall see now that the positive faithful semi-finite normal traces 7 on M
correspond exactly to the geometric notion of positive invariant transverse densities on
V', which we first describe.

Given a smooth manifold Y, a positive density p on Y is given by a section of the
following canonical principal bundle P on Y. At each point y € Y the fiber P, is the
space of nonzero homogeneous maps p : A T,—R%, p(Av) = |A| p(v) VA ER, Vo €
A T,, where T, = T,(Y) is the tangent space of Y at y € Y, and d is the dimension
of Y.
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FIGURE 9. z and y belong to the same leaf, U is a domain of foliation
chart containing x,y and z,y belong to the same plaque.

By construction P is a principal R -bundle over Y. The choice of a measurable density
determines a measure in the Lebesgue class, and all measures in that class are obtained
in this manner.

Let us now pass to the case of foliations (V, F'). We want to define the notion of a
density on the leaf space X. Given a leaf ¢ € X, the tangent space T;(X) can be
naively thought of as the ¢g-dimensional real vector space, where ¢ = dim V' — dim F/,
obtained as follows. For each z € V' the quotient N, = T,.(V)/F, is a good candidate
for T;(X); it remains to identify canonically the vector spaces N, and N, for z,y € /.

Let UCV be the domain of a foliation chart so that x and y belong to the same plaque
of U, i.e. to the same leaf p of the restriction of F' to U (Figure 8). The leaves
of (U, F) are the fibres of a submersion 7 : U—R? whose tangent map at z,y gives
the desired identification: N,~N,. This identification is independent of any choices
when the leaf ¢ has no holonomy and is transitive. Since we assume that the set of
leaves with nontrivial holonomy is Lebesgue negligible we thus get a well defined real
measurable bundle T'(X) over X, with fiber T;(X)~N, for any x € ¢. As above in the
case of manifolds we let P be the associated principal R’ -bundle of positive densities.
The fiber Py of P at ¢ € X is the space of nonzero homogeneous maps p : AYT;—R?
p(Av) = |A| p(v) VA €R, Vv e AT,. Here ¢ = dim 7} is the codimension of F.

We shall now see that the positive densities on X, i.e. the measurable sections p of P
on X, correspond exactly to the positive semi-finite faithful normal traces on the von
Neumann algebra W (V, F):

Proposition 6. Let (V, F) be a foliated manifold, X its leaf space.

1) Let p be a measurable section of P on X, and T = (Ty)eex be a positive random
operator. LetU = (Uy)aer be a locally finite open covering of V' by domains of foliation
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charts, and (£,)acs a smooth partition of unity associated to this covering. For each
plaque p of Uy, let Tr((£.7T)|p) be the trace of the operator &2 T, & in L*(p)CL*(¢),
where { is the leaf of p. Then the following number 7,(T) € [0, +00] is independent of
the choices of Uy, &4

W)=Y / T((&T)lp) p(p).

2) The functional 7, : MT—][0,+00] thus obtained is a positive faithful semi-finite
normal trace on M, and all such traces on M are obtained in this way.

In particular we get a simple criterion for W (V, F') to be semi-finite:

Corollary 7. W(V,F) is semi-finite iff the principal R -bundle P over X admits
some measurable section.

For 6 ¢ Q the Kronecker foliation dy = fdx of the 2-torus fulfills this condition; its
von Neumann algebra W (T?, Fp) is the unique hyperfinite factor of type Il,,, namely
Ry 1 (cf. Section 3). Similarly, any flow which is ergodic for an invariant measure in
the Lebesgue measure class gives the same hyperfinite factor of type II,,. Any product
(Vix Vs, F1 x Fy) of the above examples will also yield this factor Ry ;.

Let us now describe a type II foliation giving rise to a non-hyperfinite factor. Let
' = m(S) be the fundamental group of a compact Riemann surface S of genus > 1
and « : '=SO(N) be an orthogonal faithful representation of I'. Let V' be the total
space of the flat principal SO(N)-bundle over S associated to a. Then the horizontal
foliation of V' is a two-dimensional foliation F' whose associated von Neumann algebra
is a type I, non-hyperfinite factor.

Type III von Neumann algebras

Any von Neumann algebra M is canonically the direct sum M = M@ Mp® My of
von Neumann algebras of the respective types. A type III von Neumann algebra M
is such that the reduced algebra M., for any e = €2 = e*, e # 0 is never semi-finite.
Of course this is a negative statement, but the modular theory (cf. Section 3) yields a
fundamental invariant, the flow of weights mod(A/), which is an action of the group R*.
by automorphisms of a Lebesgue measure space, as well as the canonical continuous
decomposition of M as the crossed product of a type Il von Neumann algebra by an
action of R’ . We refer to Chapter V Section 8 for the technical definitions, but we shall
now spell out for the case of the von Neumann algebra M of a foliation (V, F') what
these invariants are. Let (V| F') be a foliated manifold. We first need to come back to
the construction of the principal R’ -bundle P over the leaf space X and interpret the
total space of P as the leaf space of a new foliation (V' F"). Let N, N, = T,(V)/F,,
be the transverse bundle of the foliation (V, F'). It is a real vector bundle, of dimension
q = codim/F’, over the manifold V. We let () be the associated principal R’ -bundle
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of positive densities. Thus the fiber of () at x € V' is the R} homogeneous space of
nonzero maps:

p: NN, —R, | p(Av) = |\ p(v) VAeR |, Vv € AIN,.

By construction, @ is a smooth principal bundle, and we denote by V"’ its total space.
The restriction of () to any leaf ¢ of the foliation has a canonical flat connection V.
This follows from the above canonical identification of the transverse spaces N,, x € /.
Since it is a local statement it does not use any holonomy hypothesis. Using the flat
connection V we define a foliation F” of V', dim F’' = dim F', as the horizontal lifts of
F. Thus for y € V' = Q sitting over x € V, the space F,CT, (V") is the horizontal lift
of F,. The flatness of V ensures the integrability of F’. One then checks that:

Proposition 8. 1) (V' F') is a foliated manifold canonically associated to (V, F).

2) The group R acts by automorphisms of the foliation (V', F").

3) With the above holonomy hypothesis the leaf space of (V', F') is the total space of
the principal R -bundle P over the leaf space X of (V, F).

In 2) the action is of course that of the R*-bundle @ = V’, we shall denote it by
(9)\))\€Rj_, 0, € Aut(V’, F’). With the above notation we now have

Proposition 9. a) The von Neumann algebra W(V', F") is always semi-finite.

b) W(V, F) is of type LI iff W(V', F') is of type II.

c) The flow of weights of W(V, F) is given by the action 6 of RY on the commutative
von Neumann algebra

L>®(P)=Z(W (V' F")).
d) The continuous decomposition of W(V, F) is given by the crossed product of W (V' F")
by the action 0 of RY..

With this result we can now illustrate the classification of Section 3 by geometric
examples.

All invariants discussed in Section 3, S(M), T(M)... are computed in terms of the
flow of weights mod(M), thus, for instance, (for factors)

S(M) = {A€R" ; 6y =id}
T(M) = Point spectrum of @ = {t € R; Ju #0, O\(u) = N'u YA e Ri}

In particular M is of type III; iff mod(M) is the constant flow. Thus an ergodic
foliation W (V, F') is of type 111, iff (V’, F’) is ergodic.

A simple example of this situation is given by the Anosov foliation F' of the unit sphere
bundle V' of a compact Riemann surface S of genus g > 1 endowed with its Riemannian
metric of constant curvature —1. Thus (cf. for instance [394]) the manifold V is
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the quotient V' = G/T" of the semisimple Lie group G = PSL(2,R) by the discrete
cocompact subgroup I' = 71(.S), and the foliation F of V' is given by the orbits of the
action by left multiplication on V' = G/T" of the subgroup BCG of upper triangular
matrices.

The von Neumann algebra M = W(V, F) of this foliation is the (unique) hyperfinite
factor of type III; : R,. One can indeed check that the associated type II foliation
(V' F') is ergodic. It has the same space of leaves as the horocycle flow given by the

action on V' = G/I' of the group of upper triangular matrices of the form [ é i ],
teR.

Let us give an example of a foliation whose associated von Neumann algebra is the
hyperfinite factor Ry of type III,, A € ]0,1[. Let G = PSL(2,R), T'CG as above, and

t

B be the subgroup of G of upper triangular matrices [ N 0 ], teR, aecR;. Let

0
V be the manifold V' = G/T'xT where T is the one-dimensional torus, T = R* /A%
The group B acts on G/T" by left translations and on T by multiplication by a. The
product action of B on V' gives a two-dimensional foliation (V, F) and

W (V, F)~R,.

The same construction with T and the action of R} on T replaced by an arbitrary
ergodic smooth flow Y yields a foliation (V, ') whose associated von Neumann algebra
is the unique hyperfinite factor algebra of type 11l with Y as flow of weights, namely
the Krieger factor Ry (cf. Chapter V). In fact the hyperfinite factors of type III,,
A € ]0, 1] and a large class of hyperfinite factors of type Il already arise from smooth
foliations of the 2-dimensional torus ([346]).

We cannot end this section without mentioning the deep relation between the Godbillon-
Vey class and the flow of weights which will be discussed in Chapter III Section 6.

5. The Index Theorem for Measured Foliations

In the previous section we used the geometric examples of noncommutative spaces
coming from the spaces of leaves of foliations to illustrate the classification of factors.
In this section we shall show how the theory of type II von Neumann algebras is used as
an essential tool in measuring the continuous dimension of the random Hilbert spaces
of L?-solutions of a leafwise elliptic differential equation. An extraordinary property
of factors of type II;, such as the hyperfinite factor R, is the complete classification of
the equivalence classes of projections e € R by a real number dim(e) € [0, 1] that can
take on any value between 0 and 1. The Grassmannian of the projections e € R thus
no longer describes the lines, planes, etc. of ordinary geometry but instead “spaces of
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dimension « € [0,1]”, in other words a continuous geometry. The force of this discovery
comes across very clearly as one reads the original texts of Murray and von Neumann
([407]). As in the usual case, one can speak of the intersection of “subspaces”; the
corresponding projection eAf is the largest projection majorized by e and f. One can
likewise speak of the subspace generated by e and f; the corresponding projection is
denoted e V f. The fundamental equation is then

dim(eAf) + dim(e V f) = dim(e) + dim(f) Ve, f.

These properties make it possible to extend the notion of continuous dimension to the
representations of a type II; factor N in Hilbert space, so to speak to N-modules, so
that these modules are classified exactly by their dimension dimy (), which can be
any real number in [0, +00] (cf. Chapter V, Section 10). We first explain in detail the
notion of transverse measure for foliations and the Ruelle-Sullivan current associated
to such a measure. We insist on this notion because it is the geometric counterpart of
the notion of a trace on a C*-algebra, and is at the heart of noncommutative measure
theory. We then discuss the special case of the leafwise de Rham complex and show how
the continuous dimensions of Murray and von Neumann allow one to define the real-
valued Betti numbers. We finally describe the index theorem which replaces, for the
noncompact leaves L of a measured foliation (V, F'), the Atiyah-Singer index theorem
for compact manifolds, and is directly along the lines of the index theorem for covering
spaces due to Atiyah [21] and Singer [523].

5.a¢ Transverse measures for foliations. To get acquainted with the notion
of transverse measure for a foliation, we shall first describe it in the simplest case:
dim F' = 1, i.e. when the leaves are one-dimensional. The foliation is then given by
an arbitrary smooth one-dimensional subbundle £’ of TV, the integrability condition
being automatically satisfied. To simplify even further, we assume that F' is oriented,
so that the complement of the zero section has two components F* and F~ = —F™,
Then using partitions of unity, one gets the existence of smooth sections of F'*, and
any two such vector fields X and X’ € C®(V, F*t) are related by X’ = ¢X where
¢ € C°(V,R%). The leaves are the orbits of the flow exptX. The flows H; = exptX
and H; = exptX’ have the same orbits and differ by a time change:

Hz(p) = HT(t,p)(p) Vit e R , b E V.

The dependence in p of this time change T'(t,p) makes it clear that a measure p on V'
which is invariant under the flow H (i.e. Hyu = u, Vt € R) is not in general invariant
under H' (take the simplest case X = 9/90 on S'). To be more precise let us first
translate the invariance H;u = p by a condition involving the vector field X rather
than the flow H; = exptX. Recall that a de Rham current C of dimension ¢ on V'
is a continuous linear form on the complex topological vector space C>(V, A?T¢) of
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smooth complex-valued differential forms on V' of degree ¢q. In particular a measure p
on V defines a 0-dimensional current by the equality (u, w) = [w dp, Yw € C=(V). All
the usual operations, the Lie derivative 0x with respect to a vector field, the boundary
d, and the contraction ix with a vector field, are extended to currents by duality, and
the equality 0y = dix + ixd remains, of course, true. Now the condition H;u = u,
vVt € R is equivalent to dxpu = 0, and since, as u is O-dimensional its boundary dy is 0,
it is equivalent to d(ixp) = 0. This condition is obviously not invariant if one changes
X into X' = ¢X, ¢ € C®(V,R%). However, if we replace X by X' = ¢X and p by
i = ¢ 1p, the current ix/p' is equal to ixu and hence is closed, so that p/ is now
invariant under H; = exp(tX’).

So, while we do not have a single measure p on V' invariant under all possible flows
defining the foliation, we can keep track of the invariant measures for each of these
flows using the 1-dimensional current ixpu = C. To reconstruct p from the current C

and the vector field X, define

(, f) = (C,w) , Yw € C(V,A'TE) , w(X) = f.
Given a 1-dimensional current C' on V and a vector field X € C*°(V, F"), the above
formula will define a positive invariant measure for H, = exptX iff C satisfies the
following conditions:

1) C' is closed, i.e. dC =0
2) C is positive in the leaf direction, i.e. if w is a smooth 1-form whose restriction to
leaves is positive then (C,w) > 0.

We could also replace condition 1) by any of the following:

1") There exists a vector field X € C*(V, F") such that exptX leaves C' invariant.
1”) Same as 1), but for all X € C>(V, FT).

In fact if C satisfies 2) then (C,w) = 0 for any w whose restriction to F' is 0, thus
ixC=0,VX € C®°(V,F"), and 0xC = dixC +ixdC = ixdC is zero iff dC' = 0.

From the above discussion we get two equivalent points of view on what the notion of
an invariant measure should be for the one-dimensional foliation F"

a) An equivalence class of pairs (X, 1), where X € C(V, F'"), v is an exp tX invariant
measure on V', and (X, ) ~ (X', /) when X' = ¢X, u = ¢’ for ¢ € C*(V,R%).

b) A one-dimensional current C, positive in the leaf direction (cf. 2) and invariant
under all, or equivalently some, flows exptX, X € C>®(V, F1).

Before we proceed to describe a) and b) for arbitrary foliations we relate them to a
third point of view c), that of holonomy invariant transverse measures. A submanifold
N of V is called a transversal if, at each p € N, T,,(V) splits as the direct sum of the
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subspaces T,(N) and F,. Thus the dimension of N is equal to the codimension of F.
Let p € N, and let U, p € U, be the domain of a foliation chart. One can choose U
small enough so that the plaques of U correspond bijectively to points of N N U, each
plaque of U meeting N in one and only one point.

Starting from a pair (X,pu) as in a), one defines on each transversal N a positive
measure as follows: the conditional measures of y (restricted to U) on the plaques, are,
since p is invariant by H; = exptX, proportional to the obvious Lebesgue measures
determined by X, so the formula A(B) = Lim, , 1/¢ u(B:), B: = U,¢(g Hi(B) makes
sense for any Borel subset B of N.

If one replaces (X, pt) by an equivalent pair (X', p’) it is obvious that A does not change,
since p' = ¢~ p while X’ = ¢X. By construction, A is invariant under any of the flows
H; = exptX, ie. A(H;B)= A(B), vVt € R, and any Borel subset B of a transversal.
In fact much more is true:

Lemma 1. Let Ny and Ny be two transversals, B; a Borel subset of N;, i = 1,2, and
¥ : Bi—Bs, a Borel bijection such that, for each x € By, ¥(x) is on the leaf of x; then
we have A(By) = A(Bs).

To prove this, note that if p; € Ny and Hy(p;) = ps € Ny for some ¢t € R, then there
exists a smooth function ¢ defined in a neighborhood of p; and such that ¢(p;) = ¢,
Hy)(p) € No. Thus there exists a sequence ¢,, of smooth functions defined on open
sets of NV; and such that

{(p.,t) € NixR ; Hy(p) € Ny} = ] Graph ¢,.

Let then (F,) be a Borel partition of B such that for p € P, one has ¢(p) = Hy,, () (p)-
It is enough to show that A (¢(P,)) = A(P,) for all n. But since on P,, 1 coincides
with p—Hg, ) (p) the result follows from the invariance of A under all flows exptY’,

Y € C(V, F7).

Thus the transverse measure A(B) depends in a certain sense only on the intersection
number of the leaves L of the foliation, with the Borel set B. For instance, if the current
C'is carried by a single closed leaf L the transverse measure A(B) only depends on the
number of points of intersection of L and B and hence is proportional to B— (BN L)#.

By a Borel transversal B to (V, F') we mean a Borel subset B of V such that BN L
1s countable for any leaf L. If there exists a Borel injection ¢ of B into a transversal
N with ¢(z) € Leaf (x) Vz € B, define A(B) as A (¢(B)) (which by Lemma 1, is
independent of the choices of N and ). Then extend A to arbitrary Borel transversals
by o-additivity, after remarking that any Borel transversal is a countable union of the
previous ones.

We thus obtain a transverse measure A for (V, F') in the following sense:
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Definition 2. A transverse measure A for the foliation (V,F) is a o-additive map
B—A(B) from Borel transversals (i.e. Borel sets in V with V N L countable for any
leaf L) to [0, +o0] such that

1) If ¢ : By— By is a Borel bijection and v(x) is on the leaf of x for any x € By, then
A(By) = A(B).

2) A(K) < oo if K is a compact subset of a smooth transversal.

We have seen that the points of view a) and b) are equivalent and how to pass from
a) to ¢). Given a transverse measure A as in Definition 2, we get for any distinguished
open set U (where U is the domain of a foliation chart), a measure py on the set of
plaques 7 of U, such that for any transversal BCU one has

A(B) = / Card (BN ) dug (7).

Put (Cy,w) = [ ([ w)duy(r), where w is a differential form on U and [ w is its
integral over the plaque 7w of U. Then on U NU’ the currents Cyy and Cy agree so that
one gets a current C' on V' which obviously satisfies the conditions b), 1), and 2). One
thus gets the equivalence between the three points of view a), b), and c¢).

Let us now pass to the general notion of transverse measure for foliations. We first state
how to modify a) and b) for arbitrary foliations (dim F' # 1). To simplify we assume
that the bundle F' is oriented. For a) we considered, in the case dim F' = 1, pairs
(X, i) up to the very simple equivalence relation saying that only X ®cee(y)u matters.
In the general case, since F' is oriented we can talk of the positive part ( /\dimF F*) of
/\dimF F', and, using partitions of unity, construct sections v of this bundle. These will
play the role of the vector field X. Given a smooth section v € C®(V, A™F F)* we
have on each leaf L of the foliation a corresponding volume element. For k = dim F, it
corresponds to the unique k-form w on L such that w(v) = 1. In the case dim F' = 1,
the measure p had to be invariant under the flow H; = exp(¢X). This occurs iff in
each domain of a foliation chart U, the conditional measures of i on the plaques of U
are proportional to the measures determined by the volume element v. Thus we shall
define the invariance of the pair (v,p) in general by this condition. So a) becomes
classes of invariant pairs (v, ) where v € C®°(V, A F )+ while (v, ) ~ (v', ') iff
v = ¢v and p = ¢p for some ¢ € C°(V,R%). The condition of invariance of
is of course local. If it is satisfied and Y € C®(V,F) is a vector field leaving the
volume element invariant, i.e. Jdy(v) = 0, then Y also leaves p invariant. Moreover,
since Lebesgue measure in R¥ is characterized by its invariance under translation, one
checks that if dyp = 0 VY € C®°(V, F) with dy(v) = 0, then (v, ) is invariant. To
see this one can choose local coordinates in U transforming v into the k-vector field
v = 0/0x'A---ND/Ox* € C°(V,AF). With the above trivialization of v it is clear
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that the current 7,1 one gets by contracting v with the O-dimensional current u is a
closed current, which is locally of the form

€)= [ ([ ) duotr

where w is a k-form with support in U, fww is its integral over a plaque 7 of U, and
Ly is the measure on the set of plaques coming from the disintegration of y restricted
to U with respect to the conditional measures associated to v.

Clearly C satisfies conditions 1) and 2) of b) and we may also check that dyC = 0,
VY € C*(V, F). Thus for b) in general we take the same object as in the case k = 1,
namely a closed current positive in the leaf direction, the condition “closed” being
equivalent to

ohC=0 VY eC®VF).
To recover p, given C' and v, one considers an arbitrary k-form w on V such that
w(v) =1 and puts (f, ) = (C, fw) Vf € C*(V). One checks in this way that a) and
b) are equivalent points of view. For c) one takes exactly the same definition as for
k = 1. Given a transverse measure A as in Definition 2 one constructs a current exactly
as for k = 1. Conversely, given a current C' satisfying b), one gets for each domain U
of a foliation chart a measure uy on the set of plaques of U, such that the restriction

of C to U is given by
= | (/ w) e ().

Thus one can define A(B) for each Borel transversal B: if B is contained in U then

A(B) = / Card (B N )dps (7).

One easily checks, as in the case of flows, that A satisfies Definition 2.

5.0 The Ruelle-Sullivan cycle and the Euler number of a measured foli-
ation. By a measured foliation we mean a foliation (V| F') equipped with a transverse
measure A. We assume that F' is oriented and we let C' be the current defining A in the
point of view b). As C'is closed, dC = 0, it defines a cycle [C] € Hi(V,R), by looking
at its de Rham homology class. The distinction here between cycles and cocycles is
only a question of orientability. If one assumes that F' is transversally oriented then
the current becomes even and it defines a cohomology class (cf. [489]).

Now let e(F) € H*(V,R) be the Euler class of the oriented bundle F on V (cf. [394]).
Using the pairing which makes H*(V,R) the dual of the finite-dimensional vector space
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FIGURE 10. Vector field on the generic leaf of a foliation.

Hi(V,R), we get a scalar x(F,A) = (e(F),[C]) € R which we shall first interpret in
two ways as the average Euler characteristic of the leaves of the measured foliation.
First recall that for an oriented compact manifold M the Euler characteristic (M) is
given by the well known theorem of H. Poincaré and H. Hopf:

X(M) =" w(X,p)

pE Zero X

where X is a smooth vector field on M with only finitely many zeros, while w(X, p) is
the local degree of X around p. Given generically, p is a nondegenerate zero, i.e. in
local coordinates, X = > a' 9/0z", the matrix da’/dx?(p) is nondegenerate and the
local degree is the sign of its determinant.

Also, choosing arbitrarily on M a Riemannian metric, one has the generalized Gauss-
Bonnet theorem which expresses the Euler characteristic as the integral over M of
a form ©Q on M, equal to the Pfaffian of (27) 'K where K is the curvature form.
These two interpretations of the Euler characteristic extend immediately to the case
of measured foliations (V, F, A).

First, if X € C*°(V, F) is a generic vector field tangent to the foliation, its set of zeros,
T ={p e V;X(p) =0}, defines a submanifold of V' which is not in general everywhere
transverse to the foliation F' but is so A-almost everywhere. Thus A-almost everywhere
the local degree w(X, p) = %1 of the restriction of X to the leaf of p is well defined, and
using the transverse measure we can thus form fpe sere x W(X,p) dA(p). This scalar is
again independent of the choice of X and equals x(F,A) = (e(F),[C]), as is easily seen
from the geometric definition of the Euler class by taking the odd cycle associated to
the zeros of a generic section.

Second, let || || be a Euclidean structure on the bundle F. Then each leaf L is equipped
with a Euclidean structure on its tangent bundle, i.e. with a Riemannian metric. So
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the curvature form of each leaf L allows us to define a form €2, of maximal degree, on
L, by taking as above the Pfaffian of (27)~! times the curvature form. Now €, is only
defined on L, but one can easily define its integral, using the transverse measure A; it

is formally
[ (o) o

(In point of view a), this integral is (1(¢), where ¢(p) = 2,(v,); in b) it is (€', C) where
(Y is any k-form on V' whose restriction to each leaf L is Q7 ; and in ¢) it is the above
integral computed using a covering by domains U; of foliation charts and a partition of
unity ¢;, the value of [ ([, ¢;Q) dA(L) being given by [ ([ ¢;€2) dA(r) where 7 varies
over the set of plaques of Uj;).

To show that the above integral is equal to y(F,A), choose a connection V for the
bundle F' on V compatible with the metric, and using its curvature form K, take
(Y = Pf(K/2mr). This gives a closed k-form on V, and by [394] p.311, the Euler
class of F is represented by €' in H*(V,R). Now the restriction of V to leaves is not
necessarily equal to the Riemannian connection. However, both are compatible with
the metric. It follows then that on each leaf L there is a canonical (k — 1)-form wy,
with Q; — Q) = dwy, where 2] is the restriction of (' to L. Since wy, is canonical, it
is the restriction to L of a (k — 1)-form w on V' and hence

/ (/ Q) AA(L) = {2 + dw, C) = (e(F), [C]).

So in fact both interpretations of x (F, A) follow from the general theory of characteristic
classes. One is, however, missing the third interpretation of the Euler number (M)
of a compact manifold

X(M) =D (—=1)'8;,

where the (3; are the Betti numbers

3 = dim (H'(M,R)) .
The first approach to defining the (3; in the foliation case is to consider the transverse
measure A as a way of defining the density of discrete subsets of the generic leaf, and
then to take f3; as the density of holes of dimension i. However the simplest examples
show that one may very well have a foliation with all leaves diffeomorphic to R? while
X(F,A) < 0, so that 8; > 0 cannot be defined in the above naive sense. Specifically,
let p be a faithful orthogonal representation of the fundamental group I' of a Riemann
surface S of genus 2. Then the corresponding principal bundle V' on S has a natural
foliation: V' is the quotient of Sx.SO(n) by the action of I', and the foliation with
leaves S x points is globally invariant under I' and hence drops down as a foliation
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on V. S is the universal covering of S. The bundle F' is the bundle of horizontal
vectors for a flat connection on V', and each fiber p~'{z} is a closed transversal which
intersects each leaf in exactly one orbit of I'. So the Haar measure of SO(n) defines
a transverse measure A. Since the transverse measure of each fiber is one it is clear
that x(F,A) = —2. Moreover, since the representation p of I' in SO(n) is faithful,
each leaf L of the foliation is equal to the covering space S, i.e. is conformal to
the unit disk in C. So each leaf is simply-connected while “By — f1 + B2”< 0. This
clearly shows that one cannot obtain (; by counting in a naive way the handles of
this surface. However, though the Poincaré disk (i.e. the unit disk of C considered
as a complex curve) is simply connected it has plenty of nonzero harmonic 1-forms.
For instance if f is a bounded holomorphic function in the disk D, then the form
w = f(z)dz is harmonic, and its L? norm [ wA * w is finite. Thus the space H'(D,C)
of square-integrable harmonic 1-forms is infinite-dimensional and 3; will be obtained
by evaluating its “density of dimension”, following the original idea of Atiyah [21], for
covering spaces.

Given a compact foliated manifold we can, in many ways, choose a Euclidean metric
| || on F. However, since V is compact, two such metrics || ||, || || always satisfy
an inequality of the form C7!| ||' < || || < C|| |I'. So for each leaf L the two
Riemannian structures defined by || || and || ||" will be well related, the identity map
from (L) to (L) being a quasi-isometry. Letting then H be the Hilbert space of
square-integrable 1-forms on L with respect to || || (resp. H’ with respect to || ||')
the above quasi-isometry determines a bounded invertible operator 7" from H to H'.
We let P (resp. P’) be the orthogonal projection of H (resp. H’) on the subspace of
harmonic 1-forms. Then P'T (resp. PT~') is a bounded operator from H'(L,C) to
HY(L',C) (resp. from H'(L',C) to H'(L,C)). These operators are inverses of each
other, since, for instance, the form PT~!'P'Tw — w is harmonic on L, is in the closure
of the range of the boundary operator, and hence is 0. (At this point, of course, one
has to know precisely the domains of the unbounded operators used; the compactness
of the ambient manifold V' shows that each leaf with its quasi-isometric structure is
complete; in particular, there is no boundary condition needed to define the Laplacian,
since its minimal and maximal domains coincide as in [21]).

From the above discussion we get that the Hilbert space H(L,C) of square integrable
harmonic j-forms on the leaf L is well defined up to a quasi-isometry. Of course this
fixes only its dimension, dim H?(L,C) € {0,1,...,+0c0}. In the above example all
leaves were equal to the Poincaré disk D so that for each L: dim H'(L,C) = +oo.
However, in this example x(F,A) = —2 was finite, which is not compatible with a
definition of ) as the constant value +oc of dim(H'(L,C)). One can easily see that
H°(L,C) =0 and H*(L,C) = 0, thus we should have 3; = 2.

Now note the quasi-isometry defined above from H7(L,C) to H'(L',C) (j = 1) is
canonical. This means that, on the space of leaves V/F of (V| F), the two “bundles”
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of Hilbert spaces are isomorphic as “bundles” and not only fiberwise. The point that
there is more information in the “bundle” than in the individual fibers is well-known.
However, it is also well-known that in classical measure theory all bundles are trivial.
If (X, p) is a Lebesgue measure space and (H,).ex, (H.)zex are two measurable fields
of Hilbert spaces (cf. [172]) with isomorphic fibers (i.e. dim H, = dim H] a.e.) then
they are isomorphic as bundles.

Since in our example dim H'(L,C) = +oo VL € V/F, one could think that this bundle
of Hilbert spaces is measurably trivial. In fact it admits no measurable cross-section
of norm one. This follows as in the examples of Section 4 Type I, using the ergodicity
of the transverse measure A.

Thus we see that the measurable bundle H'(L,C) is not trivial. It is however, iso-
morphic to a much simpler measurable bundle, which we now describe. Let B be a
Borel transversal; then to each leaf L of the foliation we associate the Hilbert space
H; = (*(L N B) with orthonormal basis (e,) canonically parametrized by the discrete
countable subset BN L of the leaf L. To define the measurable structure of this bundle,
note that its pull-back to V assigns to each x € V the space (*(L, N B) where L, is
the leaf through z, so given a section (s(x)).ey of this pull-back, we shall say that it
is measurable iff the function (x,y) € VxB—(s(x),e,) is measurable.

Lemma 3. Let B and B’ be Borel transversals. Then if the two bundles of Hilbert
spaces (Hp)pev/p with H, = (*(L N B), and (H})pev/r with Hy = (*(L N B'), are
measurably isomorphic, one has A(B) = A(B’).

Proof. Let (Up)rev/r be a measurable family of unitaries from Hy, to Hj. For each
z € B let A\, be the probability measure on B’ given by A,({y}) = [(Usw)€s €y)|*.
By construction, A, is carried by the intersection of the leaf of x with B’. From
the existence of this map z+—\,, which is obviously measurable, one concludes that
A(B) < A(B'). QE.D.

From this lemma we get an unambiguous definition of the dimension for measurable
bundles of Hilbert spaces of the form Hy = ¢*(L N B) by taking

dimy(H) = A(B).
We can now state the main result of this section. We shall assume that the set of leaves
of (V, F') with nontrivial holonomy is A-negligible. This is not always true and we shall
explain in Remark 1 how the statement has to be modified for the general case.

Theorem 4. a) For each j = 0,1,2,...,dim F', there exists a Borel transversal B,
such that the bundle (H?(L,C))pev/p of the square-integrable harmonic forms on L is
measurably isomorphic to (*(L N B;))revF-

b) The scalar B; = A(Bj) is finite, independent of the choice of B; and of the choice
of the Euclidean structure on F.
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¢) One has > (=1)/3; = x(F, A).

Of course if F' = T'V so that there is only one leaf, a Borel transversal B is a finite subset
of V and A(B) is its cardinality, so one recovers the usual relationship between Euler
characteristic and Betti numbers. Let us specialise now to two-dimensional leaves,
ie. dimF = 2. Then we get By — 01 + 2 = 1/27 [ KdA where K is the intrinsic
Gaussian curvature of the leaves. Now [, is the dimension of the measurable bundle
H; = {square-integrable harmonic 0-forms on L}. Thus, as harmonic O-forms are
constant, there are two cases:

If L is not compact, one has Hy = {0}.
If L is compact, one has H; = C.

Using the *-operation as an isomorphism of H°(L,C) with H?(L, C) one gets the same
result for H?(L,C), and hence

Corollary 5. If the set of compact leaves of (V, F') is A-negligible, then the integral
[ KdA of the intrinsic Gaussian curvature of the leaves is < 0.

Proof.

1/27T/KdA:60_61+52:—ﬁ1§0. QED

Remark 6. 1) The above theorem was proven under the hypothesis: “The set of
leaves with non-trivial holonomy is negligible”. To state it in general, one has to
replace the generic leaf L, wherever it appears, by its holonomy covering L. Thus
for instance the measurable bundle H7(L,C) is replaced by H?(L,C), and ¢*(L N B)
is replaced by ¢2(LNB), where LNB is a shorthand notation for the inverse image of
L N B in the covering space L. One has to be careful at one point, since the holonomy
group of L acts naturally on both H’(L,C) and ¢*(LNB), and the unitary equivalence
Ur : HJ(Z,C)HW(BﬁL) is supposed to commute with the action of the holonomy
group. Then with these precautions the above theorem holds in full generality. Now
unless L is compact one has H°(L,C) = 0. Thus, unless L is compact with finite
holonomy (which by the Reeb stability theorem implies that nearby leaves are also
compact) one has (5 = ; = 0. This of course strengthens the above corollary: to get
J KdA < 0 it is enough that the set of leaves isomorphic to S? be A-negligible. Of
course, one may have [ KdA > 0, as occurs for foliations with S?-leaves.

2) Using the analytical proof of the Morse inequalities for manifolds ([587]) one can
prove their analogues for foliations ([118]). The main point here is a result of Igusa
[295] which shows that given a foliation (V, F'), one can always find a smooth function
¢ € C*°(V) such that the singularities associated to the critical points of the restriction
of ¢ to the leaves are at most of degree 3. (As above, for vector fields X (x) € F, Vz € V,
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it is not possible in general to assume that the restriction of ¢ to the leaves will be a
Morse function, since this would yield a closed transversal to the foliation.)

3) If TCV is a closed transversal to a foliation F', then one can perform surgery along
the leaves at the points of TN L. This will not affect the space of leaves or the transverse
measure, but will, in general, modify the real Betti numbers ;. By using this operation
on products of Kronecker foliations (T2, Fy,), one gets examples where the real Betti
numbers f3;, ¢ = 1,...,k/2, k = dim F' have given (irrational) preassigned values.

4) The homotopy invariance of the real Betti numbers /3; has been proved by J. Heitsch
and C. Lazarov [272].

5.7 The index theorem for measured foliations. The above formula

D (=176 = x(FA)

which relates the real Betti numbers of a measured foliation to the Euler characteristic
of F' evaluated on the Ruelle-Sullivan cycle, is a special case of a general theorem which
extends to measured foliations the Atiyah-Singer index theorems for compact manifolds
[26] and for covering spaces [21] [523]. As we have already seen above, a typical feature
of the leaves of foliations is that they fail to be compact even if the ambient manifold
V' is compact. However, the continuous dimensions due to Murray and von Neumann
allow us to measure with a finite positive real number, dimy (KerD), the dimension of
the random Hilbert space (KerDp)rex of L? solutions of a leafwise elliptic differential
equation D¢ = 0. This continuous dimension vanishes iff the solution space KerDy
vanishes for A-almost all leaves.

More specifically, one starts with a pair of smooth vector bundles F;, E5 on V' together
with a differential operator D on V from sections of F; to sections of E5 such that:

1) D restricts to leaves, i.e. (D), only depends upon the restriction of £ to a neighbor-
hood of z in the leaf of z (i.e. D only uses partial differentiation in the leaf direction).

2) D is elliptic when restricted to any leaf, i.e. the principal symbol given by op(x,§) €
Hom(E) ,, By ) is invertible for any £ € F, £ # 0.

For each leaf L, let Dy, be the restriction of D to L (replace L by the holonomy covering
L if L has holonomy). Then Dy is an ordinary elliptic operator on this manifold, and
its L*-kernel {£ € L*(L, Ey); D, (¢) = 0} is formed of smooth sections of E; on L. As in
[21], one does not have problems of domains for the definition of Dy, as an unbounded
operator in L? since its minimal and maximal domains coincide. In this discussion we
fix, once and for all, a 1-density a on the leaves. This choice determines L?(L, E;),
1 = 1,2, as well as the formal adjoint D7 of Dy, which coincides with its Hilbert space
adjoint.

The principal symbol op of D gives, as in [27], an element [op] of the K-theory with
compact supports, K*(F*), of the total space F** of the real vector bundle F* over V.
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Using the Thom isomorphism in cohomology, as in [27], yields the Chern character (for
simplicity, F' is assumed oriented) Ch(op) € H*(V,Q) as an element of the rational
cohomology of the manifold V. We can now state the general result ([95]).

Theorem 7. Let (V,F) be a compact foliated manifold (1), D a longitudinal elliptic
operator on 'V, and X = V/F the space of leaves.

a) There ezists a Borel transversal B to F' such that the bundle (KerDyp)rex is mea-
surably isomorphic to ((*(L N B))rex, and the scalar A(B) is finite and independent
of the choice of B.

b) dimy (Ker(D)) — dimy (Ker(D*)) = (Ch (op) Td(F¢), [C]),

e = (=1)kEFD2 gnd k = dim F.

In this formula [C] is the Ruelle-Sullivan cycle, Td(F¢) is the Todd genus of the com-
plexified bundle F'. Using the flatness of F' in the leaf direction together with the or-
thogonality of C' to the ideal of forms vanishing on the leaves, one can replace Td(F¢)
by the Todd genus of T¢V.

Let us note that in b) the two sides of the formula are of very different natures. The
left-hand side gives global information about the leaves by measuring the dimension
of the space of global L? solutions. It obviously depends on the transverse measure
A. The right-hand side only depends upon the homology class [C] € H*(V,R) (a
finite-dimensional vector space) of the Ruelle-Sullivan cycle, on the subbundle F' of
TV which defined the foliation, and on the symbol of D which is also a local datum. In
particular, to compute the right-hand side it is not necessary to integrate the bundle
F'. This makes sense since the conditions on a current C' to have it correspond to
a transverse measure on (V, F') are meaningful without integrating the foliation (C
should be closed and positive on k-forms w whose restriction to F' is positive).

For a more thorough discussion of this theorem and several applications we refer to the
book [400] of C. Moore and C. Schochet. We shall just illustrate it by the following
simple example, which shows how the usual Riemann-Roch theorem extends to the
non-compact case.

Let (V, F') be a compact foliated manifold with two-dimensional leaves. Let us assume
that F' is oriented. Then every Euclidean structure on F' determines canonically a
complex structure on the leaves of (V) F'). This is analogous to the canonical complex
structure of an oriented Riemann surface. Next, let us assume that the foliation (V, F)
has some leaf of subexponential growth (Appendix A) and let L; be an associated
averaging sequence, assumed to be regular ([400]), and A the associated transverse
measure. Then the index theorem for measured foliations, applied to the longitudinal
0 operator with coefficients in a complex line bundle E, takes the following form ([400]):

dimy (Kerdg) — dimy (Ker(9p)*) = Lim;_,, Number of zeros of E in L;/Vol(L;)
—Lim,; _ Number of poles of E in L;/Vol(L;) + 1/2 Average Euler Characteristic

J—00

J—00
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where the zeros and poles of the line bundle F are defined using a classifying map
([400]), but take on the usual concrete meaning when E is associated to a divisor.
More explicitly, consider the case of a foliation of a 3-manifold V' by surfaces. Let
{71,...,74} be a collection of d embedded closed curves in V' which are transverse
to F, and {ny,...,nq} non-zero relative integers. These data define a complex line
bundle E' on V' whose restriction to each leaf is the complex line bundle with divisor
S % ni(y; N L). Then the above formula becomes ([400])

d
dimy (Kerdg) — dimy (Ker(dp)*) = Z niA(y:) + %(C’, e(F))

in perfect analogy with the usual Riemann-Roch theorem, with the counting of poles
and zeros replaced by the counting of their densities.

Problem. Use the above “Riemann-Roch” theorem in conjunction with the method
of construction of measures used in the proof of Szemerédi’s theorem [216] to obtain
results on noncompact manifolds of subexponential growth independent of any foliation
with transverse measure. Important results in this direction have been obtained by J.
Roe (cf. [479]).

Appendix A : Transverse Measures and Averaging Sequences

Let (V, F) be a compact foliated manifold. Let us fix a Euclidean structure || || on
the bundle F', tangent to the leaves, and endow the leaves with the corresponding
Riemannian metric. Let L be a leaf and, for x € L and r > 0, let B(x,r) be the ball
of radius r and center x in the leaf L.

Definition 1. A leaf L has non-exponential growth if
liminf 1/r log (Vol(B(z,r))) = 0.

This condition is independent of the choice of x € L and of the Euclidean structure.

For each leaf of non-exponential growth there is a sequence r;—oo for which the com-
pact subsets L; = B(x,r;) satisfy Vol(OL;)/Vol(L;)—0. Such a sequence of compact
submanifolds with boundary is called an averaging sequence ([236]).

Proposition 2. [236] Given an averaging sequence L; the following equality defines a
transverse measure C' for (V, F)

(Ciw) = Limj_)ool/Vol(Lj)/ w
L;

for any differential form w on V of degree equal to the dimension of F'.
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This construction of transverse measures is rather general, but it is not true that
all transverse measures can be obtained this way, as one can see using, for instance,
the two-dimensional foliation discussed in Section 5./3). It shows, however, that any
foliation of a compact manifold with some leaf of nonexponential growth does admit a
nontrivial transverse measure.

Appendix B : Abstract Transverse Measure Theory

Let X be a standard Borel space. Then given a standard Borel space Y and a Borel
map Y —PX with countable fibers (p~'{z} countable for any x € X), there exists a
Borel bijection 1 of ¥ on the subgraph {(z,n);0 <n < F(x)} of the integer-valued
function F defined by F(x) = card(p~'{x}) on X. In particular if (Y1, p;) and (Ya, p2)
are as above, then the two integer-valued functions Fj(x) = Card(p; '{z}) coincide iff
there exists a Borel bijection v : Y1—Y5 with py o9 = p;. Let X be a set, and Y}
and Y5 be standard Borel spaces with maps p; : Y;—X with countable fibers and such
that {(vi,y;) € YixYj;pi(vi) = pj(y;)} is Borel in Y;xYj, i,j = 1,2. Then we say that
the “functions” from X to the integers defined by (Y1, p1) and (Y3, p2) are the same iff
there exists a Borel bijection v : Y1 —Y5 with ps 0 ¢ = p;. By the above, if Vx € X,
Card (py '{z}) = Card (p; '{z}), and if the quotient Borel structure on X is standard,
then the two “functions” are the same. However, in general we obtain a more refined
notion of integer-valued function and of measure space. Let (V, F') be a foliation with
transverse measure A. We shall now define, using A, such a generalized measure on the
set X of leaves of (V| F'). Each Borel transversal B is a standard Borel space endowed
with a projection p : © € B (leaf of ) € X with countable fiber. Clearly, for any two
transversals we check the compatibility condition that in B;x Bs, the set {(b1,b2);b;
on the leaf of by} is Borel.

Definition 1. Let p be a map with countable fibers from a standard Borel space Y to
the space X of leaves. We say that p is Borel iff {(y,x);y € Y , x € leaf p(y)} is Borel
m Y xV.

Equivalently, one could say that the pair (Y, p) is compatible with the pairs associated
to Borel transversals. Given a Borel pair (Y, p) we shall define its transverse measure
A(Y, p) by observing that if (B, q) is a Borel transversal with ¢(B) = X, we can define
on BUY the equivalence relation coming from the projection to X, and then find a
Borel partition Y = | J;-, Y;, and Borel maps v, : Y;,—B with go,, = p, 1, injective.
Thus > 7 A(¢,(Y,)) is an unambiguous definition of A(Y,p).

We then obtain probably the most interesting example of the following abstract measure
theory:
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A measure space (X, B) is a set X together with a collection B of pairs (Y, p), where
Y is a standard Borel space and p a map with countable fibers from Y to X, with the
only axiom:

A pair (Y,p) belongs to B iff it is compatible with all other pairs of B (i.e. iff for any
(Z,q) in B one has {(y, 2); p(y) = q(2)} is a Borel subset in Y x 7).

A measure A on (X, B) is a map which assigns a real number, A(Y,p) € [0, +o<], to
any pair (Y, p) in B with the following axioms:

o-additivity = A (O (Ya,pn)) = > A(Ys, pn) where > (Y, p,) is the disjoint union Y
of the Y,, with the obvious projection p.

Invariance. If ¢ : Y1—Y; is a Borel bijection with py 0 9 = pq, then

A(Y1,p1) = A(Yz, p2).
Of course the measure theory obtained contains as a special case the usual measure
theory on standard Borel spaces. It is however much more suitable for spaces like the
space of leaves of a foliation, since giving a transverse measure for the foliation (V, F')
is the same as giving a measure (in the above sense) on the space of leaves, which
satisfies the following finiteness condition: A(K,p) < oo for any compact subset K of
a smooth transversal.

The role of the abstract theory of transverse measures ([95]) thus obtained is made
clear by its functorial property: if h is a Borel map of the leaf space of (Vi, F}) to the
leaf space of (V3, Fy) then h,(A) is a “measure” on V,/F, for any “measure” A on V;/F}
(V/F is the space of leaves of (V| F)).

Appendix C : Noncommutative Spaces and Set Theory

We have seen in Appendix B that it is possible to formulate what is a transverse
measure for a foliation using only the space X of its leaves, provided we take into
account in a crucial manner the following principle: one only uses measurable maps
between spaces. Thus, using this principle we saw that the notion of an integer-valued
function on X automatically becomes more refined, and leads directly to transverse
measures. In fact, the space X, viewed as a set, has, if one applies the above principle,
an effective cardinality which is strictly larger than the cardinality of the continuum.
Indeed, it is easy to construct a Borel injection of [0, 1] into X, but in the ergodic case
it is impossible to inject X into [0, 1] by a measurable map since such maps are almost
everywhere constant.

The impossibility of constructing effectively an injection of X into [0, 1] is equivalent
to the impossibility of distinguishing the elements of X from each other by means of a
denumerable family of properties P, each of which defines a measurable subset of X.
The noncommutative sets are thus characterized by the effective indiscernability of their
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elements. In connection with the above “measurability” principle, let us reproduce the
following letter of H. Lebesgue to E. Borel. (Taken from Oeuvres de Jacques Hadamard,
(© Publications CNRS, Paris, 1968. Authorized reproduction.)

“You ask me my opinion on the Note of Mr. Zermelo (Math. Ann., v. 59), on the objections
that you have made to him (Math. Ann., v. 60) and on the letter of J. Hadamard that you
communicated to me; here it is. Forgive me for being so lengthy, for I have tried to be clear.

First of all, I am in agreement with you in this: Mr. Zermelo has very ingeniously proved
that one knows how to solve Problem A:

A. Put a set M into well-ordered form,
whenever one knows how to solve Problem B:
B. Make correspond to each set M’ formed of elements of M a particular element m' of M'.

Unfortunately, Problem B is not easy to solve, it seems, except for the sets one knows how
to well-order; consequently, one does not have a general solution of Problem A.

I strongly doubt that a general solution of this problem can be given, at least if one accepts,
along with Mr. Cantor, that to define a set M is to name a property P belonging to certain
elements of a previously defined set N and characterizing, by definition, the elements of M. In
effect, with this definition, nothing is known about the elements of M other than this: they
possess all of the unknown properties of the elements of N and they are the only ones that
have the unknown property P. Nothing in this permits distinguishing between two elements
of M, still less classifying them as one would have to do in order to solve A.

This objection, made a priori to every attempt at solving A, obviously falls if one specializes
N or P; the objection falls, for example, if N is the set of numbers. All that one can hope to
do in general is to indicate problems, such as B, whose solution would imply that of A and
which are possible in certain special but frequently encountered cases. Whence the interest,
in my opinion, of Mr. Zermelo’s reasoning.

I believe that Mr. Hadamard is more faithful than you to Mr. Zermelo’s thinking, in inter-
preting that author’s Note as an attempt, not at the effective solution of A, but at proving
the existence of a solution. The question comes down to this, which is hardly new: can one
prove the existence of a mathematical entity without defining it?

This is obviously a matter of convention; however, I believe that one can build solidly only by
accepting that one can prove the existence of an entity only by defining it. From this point of
view, close to that of Kronecker and of Mr. Drach, there is no distinction to be made between

A and the problem C:
C. Can every set be well-ordered?

I would have nothing more to say if the convention I indicated were universally accepted; how-
ever, I must confess that one often uses, and that I myself have often used, the word ezistence
in other senses. For example, when one interprets a well-known argument of Mr. Cantor by
saying that there exists a nondenumerable infinity of numbers, one nevertheless does not give
the means of naming such an infinity. One merely shows, as you have said before me, that
whenever one has a denumerable infinity of numbers, one can define a number not belonging
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to this infinity. (The word define always has the meaning of naming a characteristic property
of what is defined.) An existence of this nature may be used in an argument, and in the
following way: a property is true if its denial leads to admitting that one can arrange all of
the numbers into a denumerable sequence. I believe that it can only intervene in this way.

Mr. Zermelo makes use of the existence of a correspondence between the subsets of M and
certain of their elements. You see, even if the existence of such correspondences were not
in doubt, because of the manner in which this existence had been proved, it would not be
evident that one had the right to use this existence in the way that Mr. Zermelo does.

I now come to the argument that you state as follows: “It is possible, in a particular set M/,
to choose ad libitum the distinguished element m/; it being possible to make this choice for
each of the sets M/, it is possible to make it for the set of these sets”; and from which the
existence of the correspondences appears to result.

First of all, M’ being given, is it obvious that one can choose m’? This would be obvious if
M’ existed in the nearly Kroneckerian sense I mentioned, since to say that M’ exists would
then be to affirm that one knows how to name certain of its elements. But let us extend the
meaning of the word ezists. The set T' of correspondences between the subsets M’ and the
distinguished elements m’ certainly ezists for Messrs. Hadamard and Zermelo; the latter even
represents the number of its elements by a transfinite product. Nevertheless, does one know
how to choose an element of I'? Obviously not, since this would yield a definite solution of
B for M.

It is true that I use the word choose in the sense of naming and that it would perhaps
suffice for Mr. Zermelo’s argument that to choose mean to think of. But it would still be
necessary to observe that it is not indicated which one is being thought of, and that it is
nevertheless necessary to Mr. Zermelo’s argument that one think of a definite correspondence
that is always the same. Mr. Hadamard believes, it seems to me, that it is not necessary to
prove that one can determine an element (and one only); this is, in my opinion, the source
of the differences in appreciation.

To give you a better feeling for the difficulty that I see, I remind you that in my thesis I
proved the existence (in the non-Kroneckerian sense and perhaps difficult to make precise) of
measurable sets that are not measurable B, but it remains doubtful to me that anyone can
ever name one. Under these circumstances, would I have had the right to base an argument
on this hypothesis: suppose chosen a measurable set that is not measurable B, when I doubted
that anyone could ever name one?

Thus, I already see a difficulty in this “in a definite M’, I can choose a definite m’”, since
there exist sets (the set C for example, which one could regard as a set M’ coming from a
more general set) in which it is perhaps impossible to choose an element. There is then the
difficulty that you note relative to the infinity of choices, the result of which is that, if one
wants to regard the argument of Mr. Zermelo as entirely general, it must be admitted that
one speaks of an infinity of choices, perhaps an infinity of very large power; moreover, one
gives neither the law of this infinity, nor the law of one of the choices; one does not know if
it is possible to name a law defining a set of choices having the power of the set of the M;
one does not know whether it is possible, given an M/, to name an m/’.
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In summary, when I examine closely the argument of Mr. Zermelo, as indeed with several
general arguments on sets, I find it insufficiently Kroneckerian to attribute a meaning to it
(only as an existence theorem for C, of course).

You refer to the argument: “To well-order a set, it suffices to choose an element of it, then
another, etc.” It is certain that this argument presents enormous difficulties, even greater
than, at least in appearance, that of Mr. Zermelo; and I am tempted to believe, along
with Mr. Hadamard, that there is progress in having replaced an infinity of successive and
mutually dependent choices by an infinity, unordered, of independent choices. Perhaps this is
nothing more than an illusion and the apparent simplification comes only from the fact that
one must replace an ordered infinity of choices by an unordered infinity, but of much larger
power. So that the fact that one can reduce to a single difficulty, placed at the beginning
of Mr. Zermelo’s argument, all of the difficulties of the simplistic argument that you cite,
perhaps proves simply that this single difficulty is very great. In any case, it does not seem to
me to disappear because it involves an unordered set of independent choices. For example, if
I believe in the existence of functions y(x) such that, given any x, y is never bound to by an
algebraic equation with integer coefficients, it is because I believe, along with Mr. Hadamard,
that it is possible to construct one; but, for me, it is not the immediate consequence of the
existence, given any x, of numbers y that are not bound to = by any equation with integer
coefficients.*

I am fully in agreement with Mr. Hadamard when he declares that the difficulty in speaking
of an infinity of choices without giving the law for them is equally grave whether it is a matter
of a denumerable infinity or not. When one says, as in the argument that you criticize, “it
being possible to make this choice for each of the sets M’, it is possible to make it for the
set of these sets”, one hasn’t said anything if one does not explain the terms employed. To
make a choice could be the writing or the naming of the chosen element; to make an infinity
of choices cannot be the writing or naming of the chosen elements one by one: life is too
short. Thus one has to say what it means to do it. By this is meant, in general, giving the
law that defines the chosen elements, but this law is for me, as for Mr. Hadamard, equally
indispensable whether it is a matter of a denumerable infinity or not.

Perhaps, however, I am again in agreement with you on this point, because, if I do not
establish theoretical distinctions between the two infinities, from a practical point of view
I make a great distinction between them. When I hear someone speak of a law defining a
transfinite infinity of choices, I am very suspicious, because I have never yet seen any such
laws, whereas I do know of laws defining a denumerable infinity of choices. But perhaps this
is only a matter of habit and, on reflection, I sometimes see difficulties equally grave, in my
opinion, in arguments in which only a denumerable infinity of choices occur, as in arguments

n correcting proofs, I add that in fact the argument, whereby one usually legitimizes the state-
ment A of Mr. Hadamard (p. 262), legitimizes at the same time the statement B. And, in my opinion,
it is because it legitimizes B that it legitimizes A. { Translator’s note: The footnote is Lebesgue’s.
Here A and B refer to the statements in Hadamard’s letter to Borel, reproduced on pp. 335-337 of the
previously cited Collected Works of Hadamard. Lebesgue’s letter is the third of Five letters on the
theory of sets (between Hadamard, Borel, Lebesgue and Baire), originally published together in the
“Correspondence” section of the Bulletin of the French Mathematical Society [Bull. Soc. Math. France
33 (1905), 261-273]}
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where there is a transfinity. For example, if I do not regard as established by the classical
argument that every set of power greater than the denumerable contains a set whose power is
that of the set of transfinite numbers of Mr. Cantor’s class II, I attribute no greater value to
the method by which one proves that a non-finite set contains a denumerable set. Although
I strongly doubt that one ever names a set that is neither finite nor infinite, the impossibility
of such a set does not seem to me to be proved. But I have already spoken to you of these
questions.”



CHAPTER 2

Topology and K-Theory

In this chapter we shall extend topology beyond its classical set theoretic framework in
order to understand, from the topological point of view, the following spaces which are
ill behaved as sets:

1) The space X of Penrose tilings of the plane.
2) The dual space T of a discrete group I

)
3)
)
)

4
5) The dual space G of a Lie group G.

The orbit space of a group action on a manifold.

The leaf space of a foliation.

One could base this extension of topology on the notion of topos due to Grothendieck.
Our aim, however, is to establish contact with the powerful tools of functional analysis
such as positivity and Hilbert space techniques, and with K-theory. The first general
principle at work is that to any of the above spaces X there corresponds, in a natural
manner, a C*-algebra which plays the role of the involutive algebra C'(X) of continuous
functions on X. To the non-classical nature of such spaces corresponds the noncom-
mutativity of the associated C*-algebra. When it happens that the space X is well
behaved classically then its associated C*-algebra is equivalent (in the sense of strong
Morita equivalence, cf. Appendix A) to a commutative C*-algebra C'(X).

The second general principle is that for the above spaces the K-theory of the associated
C*-algebra “C(X)” is the natural place for invariants of families of ordinary spaces
(Y,)zex parametrized by X. Thus, for instance, the signature Sign(L) of the generic
leaf of a foliated compact manifold (V, F') is a specific element

Sign(L) € K(X)

of the K-theory group of the C*-algebra of the foliation. Moreover, this element is
an invariant of leafwise homotopy equivalence. This type of result extends the result
of Mishchenko on the homotopy invariance of the I'-equivariant signature of covering
spaces ([396]) which corresponds to Example 2. There are several reasons, reviewed
in Section 1, which make the K-theory of C*-algebras both relevant and tractable. In
fact, computing the K-groups of the C*-algebra associated to one of the above spaces
(of Examples 1 to 5) amounts to classifying the stable isomorphism classes of virtual

84
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“vector bundles” over such spaces and, as such, is a natural prerequisite for using them
as geometric spaces.

The third principle at work in all the above examples is that one may construct a geo-
metric group, denoted K,(BX), easily computable by standard techniques of algebraic
topology, and a map pu, the analytic assembly map, from the geometric group to the
K-group K(X) of the C*-algebra associated to X

p K (BX)—K(X).

The general conjecture ([32]) that this map p is an isomorphism is a guiding principle
of great relevance. The notations BX and K,(BX) will be explained later, but, essen-
tially, BX stands for the homotopy type of an ordinary space which fibers over X with
contractible fibers. Thus, for instance, if (V, F') is a compact foliated manifold with
contractible leaves, then BX is homotopy equivalent to V', since V fibers over the leaf
space X with contractible fibers, the leaves of the foliation. Also, in Example 2 if " is
torsion-free then BX is the usual classifying space BT of the discrete group I'. In this
last example K, is K-homology and the map u is the assembly map of Mishchenko
and Kasparov.

The bivariant K K-theory of Kasparov [329] plays a crucial role in the construction
of the map p and in the computation of the K-theory of C*-algebras. We shall use
a variant of that theory, the E-theory or deformation theory, which is both easier to
develop (Appendix B) and more appropriate for K-theory maps, since unlike K K it is
half-exact in its two arguments. However we shall come back to K K later in Chapter
IV and use explicitly the more precise geometric significance of the K K cycles. In
this chapter we shall construct our K-theory maps from deformations of C*-algebras
(Section 6). In particular we shall get the Atiyah-Singer index theorem as a corollary
of the Thom isomorphism theorem (Section 5).

The content of this chapter, mainly based on examples, is the following:

1. C*-algebras and their K-theory.

Elementary examples of quotient spaces.

The space of Penrose tilings.

The dual space of discrete groups.

The tangent groupoid of a manifold.

Wrong way functoriality as a deformation.

The orbit space of a group action.

The leaf space of a foliation.

© 00N SOt W

. The longitudinal index theorem.
10. The analytic assembly map and Lie groups.

Appendices.
A. C* modules and strong Morita equivalence of C* algebras.
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B. E theory and deformations.
C. Crossed products of C*-algebras.

D. Penrose tilings.

1. C*-algebras and their K-theory

Given an ordinary compact or locally compact space Y, Urysohn’s lemma [486] shows
that there exist sufficiently many continuous functions f € C(Y) on Y to determine
the topology of Y uniquely. This is true for real-valued functions and a fortiori for
complex-valued ones. Thus, the topology of Y determines, and is determined by, the
algebra A = C(Y) of continuous complex-valued functions on Y, equipped with the

involution f— f* where f*(y) = f(y) (Vy € Y). (The analogous statement would be
false if R or C were replaced by a totally disconnected local field.)

Moreover, the class of involutive C-algebras A obtained in this way can be characterized
very simply: they are the commutative C*-algebras with units. General C*-algebras
have a very simple axiomatic characterization that expresses exactly what we expect
from functions of class C°. The theory of C*-algebras began in 1943 with a paper of
Gel’'fand and Naimark [218]. (See also M.H. Stone [534].)

Definition 1. A C*-algebra is a Banach algebra over C with a conjugate-linear invo-
lution x—x* such that

(zy)" =y'z" and |’z| =||z|* for z,y€A

A C*-algebra A is an involutive Banach algebra for the norm xz—||z|| uniquely de-
termined from the involutive algebra structure by considering the spectral radius of
T

||z||> = spectral radius (z*z) = sup{|A| ; ="z — X not invertible}.

For an involutive algebra A to be a C*-algebra, it is necessary and sufficient that it
admit a x-representation 7 on a Hilbert space, such that

1) 7(z)=0=z=0;
2) m(A) is norm closed.

A theorem of Gelfand, which is based on complex analysis and the structure of the
maximal ideals of A, shows that if A is a commutative C*-algebra then there exists a
compact topological space Y = Sp(A) such that A = C(Y).

Let A be a commutative C*-algebra, and suppose that A has a unit. The set SpecA
of homomorphisms x of A into C such that x(1) = 1, equipped with the topology
of pointwise convergence on A, is compact; the compact space SpecA is called the
spectrum of A.
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Theorem 2. Let A be a commutative C*-algebra with unit and let X = SpecA be its
spectrum. The Gel’fand transform

x € A—the function T(x) = x(x) (x € SpecA)

is an isomorphism of A onto the C*-algebra C(X) of continuous complex functions on

X.

Thus, the contravariant functor C, that associates to every compact space X the C*-
algebra C(X), effects an equivalence between the category of compact spaces with
continuous mappings, and the opposite of the category of commutative unital C*-
algebras with unit-preserving homomorphisms. To a continuous mapping f : X—=Y
there corresponds the homomorphism C(f) : C(Y)—C(X) that sends h € C(Y) to
ho f e C(X). In particular, two commutative C*-algebras are isomorphic if and only
if their spectra are homeomorphic.

The basis for noncommutative geometry is the possibility of adapting most of the
classical tools, such as Radon measures, K-theory, cohomology, etc., necessary for the
study of a compact space Y, to the case where the C*-algebra A = C'(Y) is replaced by
a noncommutative C*-algebra. In particular, the general theory is not limited to the
spaces X given in Examples 1) to 5) above. It is, however, important to note that to
a general C*-algebra A there corresponds a space X, namely the space of equivalence
classes of irreducible representations m of A on Hilbert space. One can still prove the
existence of sufficiently many irreducible representations of A, and when A is simple,
i.e. has no nontrivial two-sided ideals, the natural topology of the space X has the
same triviality property as that of the set X of Penrose tilings encountered below
(Section 3). Moreover, exactly as one can find any finite portion of a given tiling in
any other tiling, two irreducible representations m; and ms of A can, by means of a
unitary transformation, be made as similar to each other as one likes. This follows
from [318] and [572].

The cohomology theory for compact spaces X which is the easiest to extend to the
noncommutative case is the K-theory K(X).

The group K°(X) associated to a compact space X has a very simple description in
terms of the locally trivial, finite-dimensional complex vector bundles E over X. To
such a bundle E there corresponds an element [E] of K°(X) that depends only on the
stable isomorphism class of E, where F; and FE5 are said to be stably isomorphic if
there exists a vector bundle F' such that the direct sum E{@F is isomorphic to Eo®F.
Moreover, the classes [E] generate the group K°(X) and the relations [E1®FE,] =
[E4] + [E5] constitute a presentation of this group.

One obtains in this way a cohomology theory, topological K-theory, that is both simple
to define and to calculate, thanks to the Bott periodicity theorem (cf. below).
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More precisely, the functor K is a contravariant functor from the category of compact
topological spaces and continuous mappings to the category of Z/2-graded abelian
groups: K = K°®K'. The group K'(X) is obtained as the group mo(GLs,) of con-
nected components of the group GLo = |J,»; GL,(A), the increasing union of the
groups GL,(A) of invertible elements of the algebras M, (A) = M, (C(X)) of nxn
matrices with elements in the algebra A = C'(X). The inclusion mapping of GL,, into

g
01
property of Banach algebras A, commutative or not) that the group K*(X) = (G Lo)
is denumerable (if A is separable as a Banach space) and can be calculated by the meth-
ods of differential topology.

GL, 1 is given by g— [ 0 } . It is because GL,(A) is an open set in M,,(A) (a general

The fundamental tool of this theory is Bott’s periodicity theorem, which remains valid
for a not necessarily commutative Banach algebra A [19] [591] [324]. It can be stated
as the periodicity of period two, 7 (G Loo)~mk12(G Lo ), of the homotopy groups, but
this periodicity has as its most important corollary the existence of a short exact
sequence for the functor K, valid for every closed set Y CX:

KO(X\Y) KO(X) KO(Y)
K\(Y) K'(X) KY(X\Y)

One defines the group K ¢ for a locally compact space such as Z = X \Y as the kernel of
the restriction K'(Z)—K"({oc}), where Z = ZU{oo} is the one-point compactification
of Z.

It follows from the Bott periodicity theorem that the group K°(X) is the fundamental
group 7 (G Lo (A)), where A = C(X).

All of the features of the topology of compact spaces we have just described adapt
remarkably well to the noncommutative case, where the algebra C'(X) of continuous
complex functions on X is replaced by a not necessarily commutative C*-algebra A. As
for K-theory, the definitions of the groups K*, in the form K;(A) = mogyi11(G Lo (A)),
where k£ € N is an arbitrary integer, and the Bott periodicity theorem are unchanged.
The exact sequence (x) remains valid for every closed two-sided ideal J of A in the
form

Ko(J) Ko(A) Ko(B)
Ki(B) Ki(A) Ki(J)

where B = A/J is the C*-algebra quotient of A by J. Also, as above, if A is not unital
one defines K;(A) as the kernel of the augmentation map ¢ : K;(A)—K;(C), where A
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is obtained from A by adjoining a unit, i.e.

A={a+XN;acA, NeC}, ela+Al)=)eC.

Moreover, the description of K° in terms of vector bundles is carried out in terms of
projective modules of finite type over the algebra A. Indeed, by a theorem of Serre
and Swan [512] [546] the locally trivial finite-dimensional complex vector bundles
over a compact space X correspond canonically to the finite projective modules over
A = C(X). To the vector bundle E one associates the C'(X)-module £ = C(X, F) of
continuous sections of £. Conversely, if £ is a finite projective module over A = C'(X),
the fiber of the associated vector bundle F at a point p € X is the tensor product

E,=E®4C
where A acts on C by the character x, x(f) = f(p) Vf € C(X).

The direct sum of vector bundles corresponds to the direct sum of the associated
modules. Isomorphism and stable isomorphism thus have a meaning in general, and
for a unital C*-algebra A the group Ky(A) is the group of stable isomorphism classes
of finite projective modules over A (or, more pedantically, of formal differences of
such classes). If £ is a finite projective module over A there exists a projection (or
idempotent) ¢ = e, e € M,(A), and an isomorphism of £ with the right A-module
eA" = {(&)iz1..n; & € A, e = &}, For non-unital C*-algebras the group Kj is the
reduced group of the C*-algebra A obtained by adjoining a unit.

One important feature of the K-theory groups Ky, K; of a C*-algebra is that if A is
separable as a Banach space (which in the commutative case A = C'(X) is equivalent to
X being metrisable), then these K-groups are countable abelian groups. This feature is
shared by the K-theory of Banach algebras, but not by K-theory of general algebras.
One can for instance show that the group Kj of the convolution algebra C'°(R) of
smooth compactly supported functions on R is an abelian group with the cardinality
of the continuum cf. Section 10.

There is one crucial feature of the K-theory of C*-algebras which differs notably from
the case of general Banach algebras. It was discovered in connection with the Novikov
conjecture [397]. The point is that for C*-algebras one has a canonical isomorphism

Ko(A)~ Witt(A)
where the Witt group Witt(A) classifies the quadratic forms @) on finite projective
modules over A. More precisely, let us first recall the definition of the Witt group of

an involutive algebra A over C. Given a finite projective (right) module £ over A, a
Hermitian form @ on £ is a sesquilinear form £x&—A such that

1) Q(Ea,nb) = a*Q(£,m)b VE,n € E | Va,b e A
2) Q(n, &) = Q(&,n)" VY nek.
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To a Hermitian form @ on &£ corresponds a linear map Q of £ into £* = Hom (€, A),
given by )
(QS)(n) =Q(&,n) VEnel.

The Hermitian form is called invertible when Q is invertible. There are obvious no-
tions of isomorphism and direct sum of Hermitian forms. The Witt group Witt(A)
is the group generated by isomorphism classes [()] of invertible Hermitian forms @) on
arbitrary finite projective modules over A with the relations

@) [Q19Q2] = [Q1] + [Q2]
B) Q1+ [-Q] = 0.

When A is a C*-algebra with unit, there exists on any given finite projective module
& over A an invertible Hermitian form () satisfying the following positivity condition:

3) Q6§ =0 Vel

(cf. Chapter V for the notion of positive elements in a C*-algebra). Moreover, given &,
all the positive invertible Hermitian forms on £ are pairwise isomorphic ([397]) thus
yielding a well defined map ¢ : Ko(A)— Witt(A) such that ¢(€) is the class of (£, Q)
with @ positive. This map is actually an isomorphism ([397]); this property uses in
an essential manner the fact that the involutive Banach algebra A is a C*-algebra, and
in particular that

T=T",Te A= Spectrum(7)CR.

(In other words, if T is a selfadjoint element of A and A € C is not real then 7" — A
is invertible in A.) This property, as well as the isomorphism Ky(A)~ Witt(A) fails
for general involutive Banach algebras, but one should expect that for any involutive
Banach algebra B one has

Witt(B) = Witt(C*B)
where C* B is the enveloping C*-algebra of B, i.e. the completion of B for the seminorm
||z||o = Sup{||7(z)|| ; 7 a unitary representation of B in a Hilbert space}.

This equality was proved by J.-B. Bost for arbitrary commutative involutive Banach
algebras [59].

2. Elementary Examples of Quotient Spaces

We shall formulate the algebraic counterpart of the geometric operation of forming the
quotient of a space by an equivalence relation, and show how to handle non-Hausdorff
quotients by using noncommutative C*-algebras.

Let Y = {a, b} be a set consisting in two elements a and b, so that the algebra C(Y')
of (complex-valued) functions on Y is the commutative algebra CHC of 2x2 diagonal
matrices. There are two ways of declaring that the two points a and b of Y are identical,
i.e. of quotienting Y by the equivalence relation a ~ b.



2. ELEMENTARY EXAMPLES OF QUOTIENT SPACES 91

1) The first is to consider the subalgebra ACC(Y') of functions f on Y which take the
same values at a and b: f(a) = f(b).

2) The second is to consider the larger algebra BOC(Y') of all 2x2 matrices:

_ faa fab
/= [ Joa Soo |
The relation between the two algebras is the notion of strong Morita equivalence of
C*-algebras, due to M. Rieffel [473] (cf. Appendix A). This relation preserves many
invariants of C'*-algebras, such as K-theory and the topology of the space of irreducible

representations. Thus, in our example the pure states w, and wy, of B which come
directly from the points a and b of Y by the formula

Walf) = faa » w(f)=fw VYfEB

yield equivalent irreducible representations of B = M;(C), which corresponds to the
identification a~b in the spectrum of B. We shall now work out many examples
of the above algebraic operation of quotient, first (example «)) to give an alternate
description of existing spaces, but mainly to give precise topological meaning to non-
existent quotient spaces, for which the first method above yields a trivial result while
the second yields a nontrivial noncommutative C*-algebra.

2.a Open covers of manifolds. Let X be a compact manifold obtained by past-
ing together some open pieces U; CX of Euclidean space along their intersections U;NUj.
To obtain X from the Euclidean open set V' = [[Uj, disjoint union of the U,’s, one
must identify the pairs (z, z’) of elements of V' where the pasting takes place. To be
more precise, there is an equivalence relation R on V' generated by such pairs, and for
z,2 € V one has z ~ 2/(R) iff p(z) = p(z’), where p : V—X is the obvious surjection.
Since X is compact we shall assume that the above covering is finite.

To this description of X we associate the following C*-algebra:

Proposition 1. Let R be the graph, R = {(z,7') € VxV;z ~ 2'}, of the equivalence
relation endowed with its locally compact topology. The following algebraic operations

turn the vector space Co(R) of continuous functions vanishing at infinity on R into a
C*-algebra, C*(R), which is strongly Morita equivalent to C(X):

(f*9)(2,2")= >, o f(z2)g(<,2")
(f)(z,2) = f(#,2).
Indeed, by construction, C*(R) is identical with the C*-algebra of compact endomor-

phisms of the continuous field of Hilbert spaces (H,).ex over X with H, = (*(p~'(z))
Vr € X (cf. Appendix A).

The locally compact space R is the disjoint union of the open sets R;; = {(z,2') €
U;xUj; p(z) = p(¢') }~U; N U;. Thus a function f € Cy(R) can be viewed as a matrix
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FIGURE 1. One identifies z with 2’ using the algebra of matrices.

(fi;) of functions where each f;; belongs to Cy(U; N U;), while the algebraic rules are
just the matrix rules. Since (U;) is an open covering of X one can easily construct an
idempotent e € C*(R), e = ¢* = €2, e = (e;;) which at each point x € X gives a matrix
(€i;(z)) of rank one, thus exhibiting the strong Morita equivalence

C*(R)~C(X).

The C*-algebra C*(R) is not commutative but is strongly Morita equivalent to a com-
mutative C*-algebra. The latter algebra is uniquely determined since strong Morita
equivalence between two commutative C*-algebras is the same as isomorphism.

In trading C(X) for C*(R) we lose the commutativity, but we keep the same spectrum,
i.e. the topological space of irreducible representations (canonically isomorphic to X),
and the same topological invariants such as K-theory: K(C*(R)) = K(X). But the
main gain is that we use the topology of the quotient space X nowhere in the construc-

tion of C*(R). The crucial ingredients were the topology of R and its composition law,
(z,2")0(2',2") = (2,2").

As we shall see later, these ingredients still exist in situations where the quotient
topology of X is the coarse topology, and hence is useless.

2.3 The dual of the infinite dihedral group I' = ZxZ/2. Let us now describe
another example in which the above two algebraic operations of quotient 1) and 2) yield
obviously different (not strongly Morita equivalent) algebras. Thus, let Y = I} U I,
be the disjoint union of two copies I; and I of the interval [0,1] and on Y let R be
the equivalence relation which identifies (s,4) with (s, j) for any 4, j € {1,2} provided
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FIGURE 2. The dual of the infinite dihedral group. The points inside
the intervals are identified, but not the endpoints.

s € ]0,1[. In other words the quotient space X = Y/R is obtained by gluing the two
interiors of the intervals I; and I, but not the end points.

If we apply the operation 1) we get a subalgebra of C'(I; UIy) and since two continuous
functions f € C10,1] which agree on a dense (open) set are equal, we see that this
subalgebra is C([0, 1]). In particular it is homotopic (Appendix A Definition 10) to C
and its K-theory group is Ky = Z.

Fig-3

If we apply the operation 2) we get the C*-subalgebra of the C*-algebra M, (C([0,1])) =
My (C)®C([0,1]) given by

A= {(z(t))tep,) € M2(C([0,1])) ; 2(0) and z(1) are diagonal matrices} .

(We view a generic element x € My(C([0,1])) as a continuous map t—x(t) € My(C),
te0,1].)

Obviously, the space of irreducible representations of A is the space X = Y/R with its
non-Hausdorff topology. The K-theory of this C*-algebra A is much less trivial than
that of C|0,1]. Indeed, from the exact sequence of C*-algebras given by evaluation at
the end points

0—J—A—-C*—0
where J = My(C)®Cy(]0, 1[), one derives by using the six-term exact sequence of
K-groups (Section 1) that Ky(A) is isomorphic to Z3.

The above example shows clearly that the two operations 1) and 2) do not in general
yield equivalent results, and 2) is plainly much finer.
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FIGURE 3. Penrose tiling

3. The Space X of Penrose Tilings

I had the good fortune to attend a lecture by R. Penrose on quasiperiodic tilings of
the plane (Figure 3). Penrose has constructed such tilings using two simple tiles A and
B. The tiling T' depends on successive choices made in the course of the construction.
More precisely, to construct such a tiling one must choose a sequence (2p,)n—01,2... of
0’s and 1’s that satisfies the following coherence rule:

Zn = 1=2,.1 = 0. (1)

We use the value of z, as indicated in the construction of 7" in Appendix D. However,
it can happen that two different sequences z = (z,) and 2z’ = (z]) lead to the same
tiling; in fact,

T is identical to T'<=-3n such that z; = z; Vj > n. (2)

Thus, the space X of tilings obtained is the quotient set K /R of a compact space K
by an equivalence relation R. The compact space K, homeomorphic to the Cantor
set, is the set of sequences z = (2, )nen of 0’s and 1’s that satisfy the rule (1); it is by
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construction a closed subset of the product of an infinite number of two-element sets.
The equivalence relation R is given by

z ~ 2'<=3n such that z; = 2} Vj > n. (3)

Thus X is the quotient space K/R. It is exactly in this form that Penrose presented
his set of tilings in his exposition. If one tries to understand the space X as an ordinary
space, one sees very quickly that the classical tools do not work, and do not distinguish
X from the space consisting of a single point. For example, given two tilings T} and T5
and any finite portion P of T}, one can find exactly the same configuration P occurring
in Ty; thus no finite portion enables one to distinguish 7; from T3 ([246]). Thus any
configuration which does occur in some tiling 7', such as those of Figure 3, will occur
(and infinitely many times) in any other tiling 7”. This geometric property translates
into the triviality of the topology of X. The natural topology on X has for closed sets
FCX the closed sets of K that are saturated for R. But, every equivalence class for
R is dense in K, and it follows that the only closed sets FCX are F' = () and F = X.
Thus the topology of X is trivial and does not distinguish X from a point; it is, of
course, not Hausdorff and it contains no interesting information.

One possible attitude toward such an example would be to say that, up to fluctuations,
there is only one tiling T" of the plane and not to be disturbed by the distinction between
X and a point. However, we shall see that X is a very interesting “noncommutative”
space or “quantum” space, and that one of its topological invariants, the dimension
group, is the subgroup of R generated by Z and the golden number 1+ +/5/2. This
will show, in particular, why the density, or frequency of appearance, of a motif in the
tiling must, entirely on account of the topology of the set of all tilings, be an element
of the group Z + (1+ \/5/2) Z.

Let us now give the construction of the C*-algebra A of the space X = K /R of Penrose
tilings (see also [154]). A general element a € A is given by a matrix (a, ,/) of complex
numbers, indexed by the pairs (z, 2’) € R. The product of two elements of A is given by
the matrix product (ab), .» =Y, a, b, .». To each element = of X there corresponds
an equivalence class for R, which is a denumerable subset of K. One can therefore
associate to = the Hilbert space (2 having this denumerable set for an orthonormal
basis. Every element a of A defines an operator on ¢2 by the equation

(a(z)C)z = Zaz,z/Cz’ V(¢ € 6925

For a € A the norm ||a(x)]|| of the operator a(x) is finite and does not depend on x € X;
it is the C*-algebra norm. Of course, to get more technical, one must give a precise
definition of the class of matrices a that we are considering. Let us do it. The relation
RCK x K is the increasing union of the relations R,, = {(2,2); z; = 2} (Vj > n)}, and
as such R inherits a natural locally compact topology (not equal to its topology as
a subset of K'xK). Then A is by definition the norm closure of C.(R) in the above
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norm. One can show that every element a € A of this norm closure comes from a
matrix (a. ), (z,7') € R.

We can summarize the above construction by saying that, while the space X cannot
be described nontrivially by means of functions with values in C, there exists a very
rich class of operator-valued functions on X:

a(r) € L({2) Vx € X.
The algebraic structure of A is dictated by this point of view, because one has
(Aa + pb)(x) = Aa(x) + pb(z)

(ab)(z) = a(x)b(x)
for all a,b € A, \,p € Cand z € X.

To exhibit clearly the richness of the C*-algebra A, I will now give an equivalent
description of this C*-algebra, as an inductive limit of finite-dimensional algebras. The
Cantor set K is by construction the projective limit of the finite sets K,, where K,
is the set of sequences of n + 1 elements (2;);=01,., of 0’s and 1’s, satisfying the rule
zj = 1=z;41 = 0. There is an obvious projection K,,;— K, that consists in ‘forgetting’
the final 2z, 1. On the finite set K,,, consider the relation

R"={(z,2") € K, xK,, ; z, =2, }.

n

Every function @ = a,, on R" defines an element a of the C*-algebra A by the
equations

&Z,z/ = Q(z,..., Zn)7(Z6,---,Z§L)if (Z, Z/) cR”

a,. = 0if (z,2') ¢ R".
Moreover, the subalgebra of A obtained from the functions on R" is easily calculated:
it is the direct sum A, = M, (C)®M;, (C) of two matrix algebras, where k,, (vesp. k)
is the number of elements of K, that end with 0 (resp. with 1). Finally, the inclusion
A,— A, 41 is uniquely determined by the equalities k1 = k,+k/, and &/, +1 = kp, which
permit embedding M, ©M;, as block matrices into My, ., and by the homomorphism
(a,a’)—a into My, .

The C*-algebra A is then the inductive limit of the finite-dimensional algebras A,,, and
one can calculate its invariants for the classification of Bratteli, Elliott, Effros, Shen and
Handelman ([65], [193], [194], [191]) of these particular C*-algebras. The invariant to
be calculated, due to G. Elliott, is an ordered group, namely the group Ky(A), described
earlier, generated by the stable isomorphism classes of finite projective modules over
A. In an equivalent way, it is generated by the equivalence classes of projections, as in
the work of Murray and von Neumann on factors.

A projection e € M (A) is an element of My (A) such that e? = e and e = e*. The
projections e and f are equivalent if there exists u € M (A) such that v*u = e and
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uu* = f. In order to be able to add equivalence classes of projections, one uses the
matrices M, (A), with n arbitrary; this permits assigning a meaning to

e 0
Satyl
for two projections e, f € My (A). The ordered group (Ky(A), Ko(A)™) is obtained
canonically from the semigroup of equivalence classes of projections e € M, (A) by

the usual symmetrization operation by which one passes from the semigroup N of
nonnegative integers to the ordered group (Z,Z") of integers.

This ordered group is very easy to calculate for finite-dimensional algebras such as the
algebras A, and for the algebra A = |J A,, encountered earlier. Since A, is the direct
sum of two matrix algebras, we have

Ko(A,) =77, Ko(A))T = ZT0ZT CZaZ.

The ordered group (Ko(A), Ko(A)T) is then the inductive limit of the ordered groups
(Z@Z , ZT@ZT), the inclusion of the nth into the (n + 1)st being given by the matrix

11
10
which corresponds to the inclusion A, CA, 1 described earlier.

Since this matrix defines a bijection (a, b)—(a+b, a) of Z* onto Z?, the desired inductive
limit is the group Ko(A) = Z2. However, this bijection is not a bijection of ZT@Z"
onto ZT@®Z", and in the limit the semigroup Ky(A)" becomes Ky(A)™ = {(a,b) € Z?;
(1 + \/5/2) a+b >0}, as one sees on diagonalizing the matrix [ (1) 1
It follows that, modulo the choice of basis of Z?, i.e. modulo PSL(2,Z), the golden
number appears as a topological invariant of the space X through the C*-algebra A. In
another formulation, one shows that this C*-algebra has a unique trace 7. Thus there
exists a unique linear form 7 on A such that 7(zy) = 7(yx) for all z,y € A, and 7(1) =
1. The values of 7 on the projections form the intersection (Z + 1+ \/5/ 2 Z) NR,.
This trace 7 is positive, i.e., satisfies

7(a*a) >0 (Va € A)

and it may be calculated for a = a. . directly as the integral of the diagonal entries
of the matrix a:

~(a) = /K a(eydn(2),

where the probability measure p on K is uniquely determined by the condition 7(ab) =
7(ba) (Va,b € A). In classical measure theory, given a Radon measure p on a compact
space Y, the Hilbert space L?(Y,p) is obtained as the completion of C(Y) for the
scalar product (f,g) = [ fgdp, and L>(Y, p) is the weak closure of the algebra C'(Y)
acting by multiplication on L?(Y, p). In the case that we are interested in, the algebra
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FIGURE 4. K{(A) = {(n,m) €Z?; n1th 4 m > 0}

A replaces C(Y), the positive trace 7 replaces the Radon measure p, and the weak
closure of the action of A by left multiplication on L?*(A,T) (the completion of A for
the scalar product (a,b) = 7(a*b)) is the hyperfinite factor of type II; of Murray and
von Neumann [407], [408], [409] which we shall denote by R.

Whereas the continuous dimension of Murray and von Neumann can take on all the
positive real values for the projections of R (or of the matrix rings M,(R)) since
dim(e) = 7(e), for the projections that belong to A this dimension can only take values
in the subgroup Z + (1 +5/ 2) 7, which accounts for the role of these numbers in
measuring the densities of tiles, or of patterns of a given type in a generic Penrose
tiling, in accordance with our interpretation in Chapter I of the continuous dimensions
as densities. To summarize, we have shown in this example that the “topology” of
X is far from being trivial, that it gives rise to the C*-algebra A, which is a simple
C*-algebra, uniquely characterized as a C*-algebra (up to Morita equivalence) by the
properties

1) A is the inductive limit of finite-dimensional algebras; it is said to be approx-
imately finite (or AF).

2) (Ko(A), Ko(A)*) = (Z?, {<a, b); B 4 b > o})

Finally, we note that the C*-algebra A is exactly the one that appears in the construc-
tion by Vaughan Jones [309] of subfactors of index less than 4, for index equal to the
golden ratio (Chapter V, Section 10). This can be exploited to describe explicitly the
factor in this geometric situation.
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4. Duals of Discrete Groups and the Novikov Conjecture

We have seen in the above example of the space X of Penrose tilings how the pathologies
that a non-Hausdorff space exhibits from the set theoretic point of view disappear
when it is considered from the algebraic and noncommutative point of view. To a
conservative mathematician this example might appear as rather special, and one could
be tempted to stay away from such spaces by dealing exclusively with more central
parts of mathematics. Since every finitely presented discrete group I' appears as the
fundamental group, I' = 71 (M), of a smooth compact 4-manifold, it would hardly be
tenable to exclude discrete groups as well. As we shall see shortly, however, as soon as
a discrete group I fails to be of type I (a finitely generated discrete group I is of type I
only if it contains an abelian normal subgroup Tocl of finite index, which is of course
very rare), its dual space, i.e. the space X =T of irreducible representations of I, is
of the same nature as the space of Penrose tilings. Fortunately, as in the example of
Penrose tilings all the unpleasant properties of this space from the set theoretic point
of view disappear when we treat it from the algebraic point of view.

When the group I' is abelian, its dual space I'=Xisa compact space, the Pontryagin
dual of T", whose topology is characterized by the commutative C*-algebra C'(X) of
continuous functions on X. This C*-algebra has, thanks to the Fourier transform, an
equivalent description as the norm closure C*(I") of the group ring CI' of T' in the
regular representation of I' in ¢*(T"). More precisely, every element a = (a,)ger of
CT is a function with finite support on I', and it acts in the Hilbert space ¢*(T) as a
convolution operator:

(a%8)g= D ay & VEEL(D).
9192=9
The C*-algebra C*(I') is the norm closure of this algebra of operators. Let us now
give a simple example of a non-type-I discrete group and investigate its dual from a
set theoretic point of view. Let I' be the semidirect product of the abelian group Z?
by the group Z, acting on Z? by the powers of the automorphism a € Aut(Z?), given
11
1 2
solvable group. Let Y be the 2-torus which is the dual of the normal subgroup ZQCIL
The theory of induced representations [382] shows immediately that the dual space T’
of I contains the space Y/Z of orbits of the transformation & of Y, since each such
orbit defines an irreducible representation of I', and different orbits yield inequivalent
representations. The quotient space Y/Z is of course not Hausdorff and is of the same
nature as the space X of Penrose tilings, thus a fortiori the dual space Tof T has, if one
tries to understand it with the classical set theoretic tools, a pathological aspect. This
aspect disappears if, as we did for the space of Penrose tilings, we analyse [' by means
of the associated noncommutative algebra. Thus for instance the measure theory of

by the two-by-two matrix a = { ] By construction, I' is a finitely generated
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[ for the Plancherel measure class is described by the von Neumann algebra AT,
the weak closure of the left regular representation of ' in ¢*(T") (cf. Chapter V). This
remains true for arbitrary discrete groups. In our example A(I')” is the hyperfinite
factor R of type II;. For an arbitrary discrete group one always has a finite trace 7, the
Plancherel measure, on the von Neumann algebra A\(I')”, and moreover the following
equivalence holds:

' is amenable <= A(T")" is hyperfinite

(cf. Chapter V).

The topology of T is of course described by the convolution C*-algebra of I', but this
requires some elaboration when the group I is not amenable The point is that in this
case there is a natural closed subset F of the dual F the support of the Plancherel
measure, called the reduced dual of T', so that one has two natural convolution C*-
algebras of I', namely:

O*<P) — ucr(f)n , C:(F) — “O(fr>”.
By definition C*(T") is the completion of the group ring CI' for the norm

llal|,... = Sup{||w(a)||, 7 unitary representation of I'}.

max

It is a C*-algebra whose representations are exactly the unitary representations of I'.

The reduced dual fr of I' is the space of irreducible representations of I" which are
weakly contained in the regular representation ([173]). It is the space of irreducible
representations of the C*-algebra C*(T") which is the norm closure of CT" in ¢*(T").

To the inclusion frcf corresponds a surjection of C*-algebras
c*(I)—"Cx ().

The K-theory of the C*-algebra of a discrete group I' plays a crucial role in the work
of Mishchenko and Kasparov on the conjecture of Novikov on homotopy invariance
of the higher signatures for non-simply-connected manifolds. Let us first recall the
statement of this conjecture. Let I" be a discrete group and x € H*(BI',R) = H*(I', R)
a group cocycle; then the pair (I, z) satisfies the Novikov conjecture iff the following
number is a homotopy invariant for maps (M, V) of compact oriented manifolds M to
the classifying space BT

Sign, (M, W) = (L(M) U ¥*(z), [M]).

In other words what is asserted is that if (M’, ¥') is another pair consisting in a compact
oriented manifold M’ and a map ¥’ : M'— BT, which is homotopic to the pair (M, ¥),
then

Sign, (M, V) = Sign, (M', ¥").
As a corollary it follows that one has a homotopy invariant for compact oriented man-
ifolds M with fundamental group I'; the map V¥ is then automatically given as the
classifying map of the universal cover M of M.
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The cohomology class L(M) is the Hirzebruch L-genus which enters in the Hirzebruch
signature theorem. The latter asserts that for a 4k-manifold the signature of the inter-
section form on H?* is given by a universal polynomial Ly (pi,...,px) in the rational
Pontryagin classes of the manifold:

Sign(M) = (Li(p1, - - -, k), [M]).

The Hirzebruch formula only involves the top-dimensional component of the L-genus
but the above higher signature formula uses all its components (cf. [394]):

L(M) = ZLk(pb - Pk)

1 1
L1(p1) = -P1, L2(p1,p2) = —(7]?2 —p%), ceee

3 45
One says that a discrete group I satisfies the Novikov conjecture if the above assertion
holds for any group cocycle x € H*(I',R). The natural generalization of the signature
Sign(M) of an oriented compact 4k-manifold to the non-simply-connected situation
yields (cf. [396]) an element Signp (M), where I' = w1 (M), in the Wall group Ly (Q[I']).
This follows from the theory of algebraic Poincaré complexes due to Mishchenko [396].
Here Q[I'] is the group ring of T' with rational coefficients, and the Wall group Ly of
a ring with involution is equal to the Witt group which classifies symmetric bilinear
forms modulo the hyperbolic ones. The crucial reason for the role of the K-theory of
the C*-algebra of the group I' is the isomorphism p

Witt(A)~ Ky (A)

valid for any C*-algebra (but false for involutive Banach algebras in general), which
allows one to extract from the homotopy invariant Signp(M) € Ly (Q[I']), a homotopy
invariant belonging to a K-theory group, namely the image

p Signp (M) € Ko(C™(I)).

Simple examples, such as the case of commutative I' (c¢f.[377]) show that in such cases
the relevant information is not lost in retaining only the K-theory signature, and that
the latter, being in the topological K-theory of the Pontryagin dual I' of I' which is
a torus, is much easier to use than the L-theory signature. This point is an essential
motivation to study the K-theory of the C*-algebras of discrete groups.

In L-theory there is a natural spectrum, the L-theory spectrum and a map, called
the assembly map, a : h,(I', L)—L,(Q(T")), whose range contains all the elements
Signp (M) and whose rational injectivity implies the Novikov conjecture. Kasparov
and Mishchenko have constructed an analytic assembly map from the K-homology
K, (BT') = h,(BT',BU) (where BU is the K-theory spectrum) of the classifying space
BT of T" to the K-theory of the C*-algebra of I

K.(BD)—"K,(C*(I))
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which makes the following diagram commute:

h.(BD,L) —° L.(C(T))

| |

K(BT) " K.(C*(D))

where the horizontal arrows are the assembly maps, the left vertical arrow comes from
the natural map from the L-theory spectrum to the BU-spectrum, and the right vertical
arrow comes from the equality for C*-algebras of L-theory with K-theory.

The simplest description of the map p : K, (BT')—K.(C*(I")) is based on the existence
for every compact subset K of BI" of a canonical “Mishchenko line bundle”
kg € Ko(C(K)®C*(I"))

which is described as a finite projective C*-module over C'(K)®C*(I") by the following
proposition:

Proposition 1. Let K be a compact space, ¢ : K— BI' a continuous map and K—PK
the principal I'-bundle over K, the pull-back of ET'—BI'. Let £ be the completion of

Cc(f() for the norm |[|| = H<£,§>|\1/2, where for £, n € Cc(f() the element ({,n) of
C(K)®C*(T') is defined by

(&m = (&m),29

gel

Emy(x) = > &@m(g's) VreK.

p(&)==
Then £ is a right C*-module, finite and projective, over C(K)C*(T'), for the right
action uniquely defined by the equality

(& - (f®g)) (@) = f(p(2))E(97)
VéEe OU(K), feC(K), gel, e X.
The proof is straightforward. The local triviality of the principal I'-bundle X over

X yields in fact an explicit idempotent e € M, (C(K)®C*(I')) whose associated right
module is £.

The construction of £ is naturally compatible with the inductive system of compact
subsets of BI'. By definition the K-homology of BI" is the inductive limit

h.(BT',BU) = ,(BTABU) = r,(KABU)

where K runs through finite subcomplexes of BI'. To construct p one uses the following
formula which holds both in the Kasparov K K-theory and in E-theory:

(xx) w(z) = (2@1) ol € E(C,C*(T)) = K(C*(I"))
Vz € h(K,BU) = E(C(K),C).
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One has z®1 € E(C(K)@C*(T"),C*(T")) and £ € E(C,C(K)®C*(I")) so that u(z) €
E(C,C*(I")) = K(C*(I")).

One then has the following index theorem of Kasparov and Mishchenko ([335] [334]
1397] [399))

Theorem 2. The analytic assembly map, p : K. (BI')—K.(C*(I")) defined by (xx)

makes the diagram (x) commute.

In particular, let M be a compact oriented manifold of even dimension n and ¢ :
M— BT a continuous map. Then there is a corresponding element z € K,(BT') whose
image u(z) € K.(C*(I')) is the I'-equivariant signature of M, i.e. the image p(2’)
of the Mishchenko L-theory class 2 = Signp(M). One has z = ¢.(0(M)), where
o(M) € K.(M) is the K-homology class of the signature operator on M. What
matters here is that the Chern character of o(M), Ch.(c(M)) € H.(M,Q), is given by

Ch.(o(M)) = 2"2L(M) N [M],

where L, (M) = 272% L;(M) for all k. Thus the Novikov conjecture for a discrete group
" is equivalent to the homotopy invariance of the image ¢.(c(M)) in the rational K-
homology of BI'. Since the Mishchenko L-theory class 2/ € L,(CI') is homotopy
invariant, one gets as a corollary of Theorem 2,

Corollary 3. (loc. cit) The Novikov conjecture for T is implied by the rational injec-
tivity of the analytic assembly map

112 K.(BD)—K,(C*(T)).

This so-called strong Novikov conjecture has been proved by Mishchenko for funda-
mental groups of negatively curved compact Riemannian manifolds ([395]) and by
Kasparov for discrete subgroups of Lie groups ([333]).

Thanks to the work of Pimsner and Voiculescu [448], of Cuntz [145] for free groups,
and of Kasparov [332], Fox and Haskell [211] and Kasparov and Julg [314] for discrete
subgroups of SO(n,1) and SU(n,1), one knows for many torsion-free discrete groups
I’ that the analytic assembly map p is an isomorphism. However, there is no discrete
group I, infinite and with Kazhdan’s property 7', for which K(C(I")) or K(C*(I"))
has actually been computed. One difficulty is that due to property T the natural
homomorphism
C*()—="C;(T)

fails to be a K-theory isomorphism. Indeed, the idempotent corresponding by property
T to the trivial representation of I" defines a non-zero K-theory class [e] € Ky(C*(T"))
whose image r(e) is zero. Thus there are indeed two K-theories to compute. The
map p does not contain [e] in its range and thus cannot yield an isomorphism with
K(C*(I")). The possibility that r o 4 = p, is an isomorphism is still open, but by a
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counterexample of G. Skandalis ([527]) it cannot be proved by a K K-theory or E-
theory equivalence. When the group I' has torsion the above map p is too crude to be
expected to yield the K-theory of C*(I'). Indeed, even with I' finite, say I' = Z/27Z,
one has Ky(C*(T')) = Ko(CaC) = Z* while K¢(BTl')g = Q. We shall see later how to
modify K,(BI') and p when I' has torsion.

5. The Tangent Groupoid of a Manifold

Let M be a compact smooth manifold. The pseudodifferential calculus on M allows
one to show that an elliptic pseudodifferential operator D on M is a Fredholm operator
and hence has an index, Ind(D) € Z. The Fredholm theory then shows that this index
only depends upon the K-theory class of the symbol of D. One thus obtains ([26]) an
additive map, the analytic index map
Ind, : Ko(T*M)—Z

from the K-theory of the locally compact space T*M to Z.

In this section we shall show how the same map Ind, arises naturally from a geometric
construction, that of the tangent groupoid of the manifold M. This groupoid encodes

the deformation of T*M to a single point, using the equivalence relation on M x|0, 1]
which identifies any pairs (z,¢) and (y, ) provided £ > 0.

In the above section, as well as in Chapter I, we have met implicitly the notion of
groupoid. All our algebra structures could be written in the following form:

(axb)(7) = > aln)b(ye)

where the +’s vary in a groupoid G, i.e. in a small category with inverses, or more
explicitly:

Definition 1. A groupoid consists of a set G, a distinguished subset GO CG, two maps
r,s: G—=GO and a law of composition
o1 G¥ = {(71,72) € GXG ; 5(n1) = (1)} =G
such that
(1) s(1072) = s(12) 5 T(Me72) = 7r(N) Y(91,72) € GP
2) s(x) =r(z) =2 VrecGO
3) yes(v) =7, r(v)ey =7 Yyel
(4) (71972)073 = Y10(72073)
(5) Each v has a two-sided inverse y~', with vy~ =r(y) , v 'v = s(v).

The maps r, s are called the range and source maps.
Here are a few important examples of groupoids.
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FIGURE 5. Groupoid.

Equivalence relations.

Given an equivalence relation RC X x X on a set X, one gets a groupoid in the following
obvious way: G = R, G = diagonal of XxXCR, r(z,y) = =, s(z,y) = y for any
v=(z,y) € RCXxX and

1

(I‘,y)O(y?Z) = (.T, Z) ) (ZE,y>_ = (wa)

Groups.

Given a group I' one takes G = I', G(©) = {¢}, and the law of composition is the group
law.

Group actions. (Section 7).

Given an action X xI'=*X of a group I' on a set X, a(z,g) = xg, so that x(g192) =
(xg1)gs Yo € X, g; €T, one takes G = X xI', G = X x{e}, and

r(z,g) ==, s(z,9) =g V(z,9) € XxT

(@, 91)(y, 92) = (%, 9192) if zgr=y
(z,9)" = (vg,97") V(z,9) € XxT.
This groupoid G = X xI" is called the semi-direct product of X by I
In all the examples we have met so far, the groupoid G has a natural locally compact

topology and the fibers G* = r~'{z}, 2 € G, of the map r, are discrete. This is what
allows us to define the convolution algebra very simply by

(axb)(v) = D a(y)b(y2).

We refer to [470] [68] for the general case of locally compact groupoids. Our next
example of the tangent groupoid of a manifold will be easier to handle than the general
case; though no longer discrete, it will be smooth in the following sense:
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Definition 2. A smooth groupoid G is a groupoid together with a differentiable struc-
ture on G and GO such that the maps r and s are subimmersions, and the object
inclusion map GO —G is smooth, as is the composition map G —G.

The general notion is due to Ehresmann [187] and the specific definition here to
Pradines ([458], [459], [460], [461]) who proved that in a smooth groupoid G, all
the maps s : G*—G© are subimmersions, where G* = {y € G;r(v) = z}.

The notion of a 1/2-density on a smooth manifold allows one to define in a canonical
manner the convolution algebra of a smooth groupoid G. More specifically, given G,
we let ©21/2 be the line bundle over G whose fiber /% at v € G, r(y) =z, s(v) =y, is
the linear space of maps
P AkTw(Gm)@)/\kTv(Gy)_’C

such that p(Av) = |[A\|Y?p(v) VA € R. Here G, = {y € G;s(y) = y} and k =
dim T, (G®) = dim T, (G,) is the dimension of the fibers of the submersions r : G—G©
and s : G—G©.

Then we endow the linear space C°(G, 2'/2) of smooth compactly supported sections
of Q'/2 with the convolution product

@ b= [ almbn) Vabe CFG.Q)

where the integral on the right-hand side makes sense since it is the integral of a
1-density, namely a(7y;)b(v; '), on the manifold G, x = (7).

As two easy examples of this construction one can take:

a) The groupoid G = M xM where M is a compact manifold, r and s are the two
projections G—M = GO = {(x,2);2 € M} and the composition is (x,%)o(y,z) =
(x,2) Vz,y,z € M.

The convolution algebra is then the algebra of smoothing kernels on the manifold M.
B) A Lie group G is, in a trivial way, a groupoid with G(®) = {e}. One then gets the
convolution algebra C®(G,2/2) of smooth 1-densities on G.

Coming back to the general case, one has:

Proposition 3. Let G be a smooth groupoid, and let C>°(G,Q"?) be the convolution
algebra of smooth compactly supported 1/2-densities, with involution *, f*(v) = f(y=1).

Then for each x € G the following defines an involutive representation m, of C(G,Q?)
in the Hilbert space L*(G,):

(7, /m i) Ve, £ L(Gy).

The completion of C2°(G, Q2 for the norm || f|| = Sup, oo ||m=(f)]] is a C*-algebra,
denoted C¥(G).
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We refer to [95][470] for the proof. As in the case of discrete groups (Section 4) one
defines the C*-algebra C*(G) as the completion of the involutive algebra C>°(G, Q'/?)
for the norm

[ fllmax = sup{[[=(f)I[}
7 involutive Hilbert space representation of C°(G, Q'/?)
We let 1 : C*(G)—C*(G) be the canonical surjection. We refer to [470] for a discussion
of the corresponding notion of amenability of G.

Let us now pass to an interesting example of smooth groupoid, namely we construct
the tangent groupoid of a manifold M. Let us first describe G at the groupoid level;
we shall then describe its smooth structure.

We let G = (M xMx ]0,1])U(T'M), where T'M is the total space of the tangent bundle
of M.

We let G'CG be M x[0,1] with inclusion given by
(x,e)—=(x,z,6) € MxMx ]0,1] for x € M,e > 0.
(z,0)—x € MCTM as the 0-section, for ¢ = 0.

The range and source maps are given respectively by

r(z,y,e) = (z,e) for x€ M,e>0
r(z,X) = (z,0) for xe€ M, X €T, (M)

s(x,y,e) = (y,e) for ye M,e>0
s(x,X) = (z,0) for ye M, X €T, (M)
The composition is given by

(z,y,€)o(y, 2z,€) = (v,2,6) for e>0and z,y,z€ M
(2, X)o(x,Y) = (2, X +Y) for z€ Mand X,Y € T, (M)

Putting this in other words, the groupoid G is the union (a union of groupoids is again
a groupoid) of the product G; of the groupoid M x M of example «) by ]0, 1] (a set is a
groupoid where all the elements belong to G(®) and of the groupoid Gy = TM which
is a union of groups: the tangent spaces T, (M). This decomposition G = G; U G5 of
G as a disjoint union is true set theoretically but not at the manifold level. Indeed, we
shall now endow G with the manifold structure that it inherits from its identification
with the space obtained by blowing up the diagonal A = M CM xM in the cartesian
square M x M. More explicitly, the topology of GG is such that GG; is an open subset of

G and a sequence (T, Yn, €,) of elements of G; = M xM x 10, 1] with &,—0 converges
to a tangent vector (x, X); X € T,,(M) iff the following holds:

Tp — Yn
Tpn—=T , Yp—T , —X.
n

The tangent groupoid of M
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F1GURE 6. The tangent groupoid of M

The last equality makes sense in any local chart around x independently of any choice.
One obtains in this way a manifold with boundary, and a local chart around a boundary
point (z, X)) € TM is provided, for instance, by a choice of Riemannian metric on M
and the following map of an open set of TM x[0, 1] to G:

U(x, X, e) = (z,exp,(—eX),e) € MxMx ]0,1] , for >0
(x, X,0)= (x,X)eTM

Proposition 4. With the above structure G is a smooth groupoid.

We shall call it the tangent groupoid of the manifold M and denote it by Gj;. The
structure of the C*-algebra of this groupoid G, is given by the following immedi-
ate translation of the inclusion of G5 = TM as a closed subgroupoid of Gj;, with
complement Gj.

Proposition 5. 1) To the decomposition Gy = G1 U Gy of Gy as a union of an open

and a closed subgroupoid corresponds the exact sequence of C*-algebras
0—C*(G1)—C*(G)—°C*(G4)—0.

2) The C*-algebra C*(Gy) is isomorphic to Cy(]0,1])RK, where K is the elementary

C*-algebra (all compact operators on Hilbert space).

3) The C*-algebra C*(Gs) is isomorphic to Co(T*M), the isomorphism being given by
the Fourier transform: C*(T,M)~Co(T:M), for each x € M.

It follows from 2) that the C*-algebra C*(Gy) is contractible: it admits a pointwise
norm continuous family ) of endomorphisms, A\ € [0, 1], such that 6y = id and ¢; = 0.
(This is easy to check for Cy(]0,1]).) In particular, from the long exact sequence in
K-theory we thus get isomorphisms

0, Ki(CH(G))~ K (C*(Go)) = K'(T*M).
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On the right-hand side K*(T*M) is the K-theory with compact supports of the total
space of the cotangent bundle. We now have the following geometric reformulation of
the analytic index map Ind, of Atiyah and Singer.

Lemma6. Letp: C*(G)—K = C*(M x M) be the transpose of the inclusion M x M—G':
(x,y)—(z,y,1) Yo,y € M. Then the Atiyah-Singer analytic index is given by

Ind, = peo(0y) " : KOT*M)—Z = Ko(K).

The proof is straightforward. The map o : C*(G)—C*(G2)~Co(T*M) is the sym-
bol map of the pseudodifferential calculus for asymptotic pseudodifferential operators
([248]).

We shall end this Section by giving a proof of the index theorem, closely related to the
proof of Atiyah and Singer ([26]) but which can be adapted to many other situations.
Lemma 6 above shows that the analytic index Ind, has a simple interpretation in terms
of the tangent groupoid G,; = G. If the smooth groupoids G, GG1, and G5 involved in
this interpretation were equivalent (in the sense of the equivalence of small categories)
to ordinary spaces X; (viewed as groupoids in a trivial way, i.e. X; = X ;0)), then we
would already have a geometric interpretation of Ind,, i.e. an index formula. Now the
groupoid G; = M xM x |0, 1] is equivalent to the space |0, 1] since M x M is equivalent
to a single point. Thus the problem comes from G5 which involves the groups T, M
and is not equivalent to a space. Given any smooth groupoid G and a (smooth)
homomorphism A from G to the additive group R" one can form the following smooth
groupoid Gy:

Gn=GxRY | G\ = GO xRN

with r(y, X) = (r(y), X), s(v,X) = (s(7), X + k(7)) Vy € G, X € RV, and
(71, X1)o(v2, X2) = (Y1072, X1)

for any composable pair.

Heuristically, if G corresponds to a space X, then the homomorphism h fixes a principal
R¥-bundle over X and G}, corresponds to the total space of this principal bundle. At
the level of the associated C*-algebras one has the following:
Proposition 7. Let G be a smooth groupoid, h : G—RY a homomorphism.
1) For each character x € Ry of the group RY the following formula defines an auto-
morphism a, of C*(G):

(ax () = x(h(N)f(v) V€ CZ(G, Q).

2) The crossed product C*(G)x,Ry of C*(G) by the above action a of Ry = (RM)" is
the C*-algebra C*(G},).
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Thus we see in particular that if N is even, the Thom isomorphism for C*-algebras
(Appendix C) gives us a natural isomorphism:

Ko(CH(G)~Eo(C(Gh))-

In the case where G corresponds to a space X, the above isomorphism is of course
the usual Bott periodicity isomorphism. We shall now see that for a suitable choice of
homomorphism G—"RY where G = G}, is the tangent groupoid of M, the smooth
groupoids Gy, G1p, and Gy, will be equivalent to spaces, thus yielding a geometric
computation of Ind, and the index theorem.

Let M—'RY be an immersion of M in a Euclidean space R. Then to j corresponds
the following homomorphism h of the tangent groupoid G of M into the group R¥:

j(x) —j(y)
5
h(z, X) =j.(X) VX €T, (M)
One checks immediately that j(y1072) = j(71) + j(72) whenever (y1,7;) € G,

h(z,y,e) = >0

This homomorphism A defines a free and proper action of G, by translations, on the
contractible space RY. This follows because j is an immersion, so that j, is injective.
The smooth groupoid G, is thus equivalent to the classifying space BG, which is the
quotient of GO xRN by the equivalence relation

(x, X))~ (y, YY)t IyeG r(y)=2, s(y) =y, X =Y +h().

Since the action is free and proper the quotient makes good sense. Similar statements
hold for G; and G5. A straightforward computation yields

BG = (]0,1]xRY) U v(M)
where v(M) is the total space of the normal bundle of M in RY.

In this decomposition, BG = BG1UBG», one identifies BG, the quotient of Ggo) xRN =
M xRY by the action of Gy = TM, with the total space of v, v, = RY/T,(M). The
isomorphism a of (]0,1]xRY) with the quotient BGy of G\”xRY = (]0, 1] x M) xR
by the action of G; depends upon the choice of a base point o € M, and to simplify
the formulae we take j(zo) = 0 € RY. One then has

ale, X) = ((wo,€),X) Ve >0, X € RV,

With this notation the locally compact topology of BG is obtained by gluing |0, 1] xRY
to v(M) by the following rule:

(en, Xn)—(z,Y) for €,—0, z € MY € v,(M)
iff X,—j(x) € RY and X,, — j(z)/e,—Y in v, (M).
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Using the Euclidean structure of RY we can view v, (M) as the subspace orthogonal
to . T(M)CRY and use the following local chart around (z,Y) € v(M):

o(x,Y,e) = (5,j(x) +€Y) €10, 1]xRY for ¢ > 0.

To the decomposition of G}, as a union of the open groupoid G, and the closed
groupoid Gq, corresponds the decomposition BG = BG4 U BGa. As in Proposition 5,
BG, is properly contractible and thus we get a well-defined K-theory map

Y K°(BGy)~K(BG)—K°(RY)

which corresponds to the analytic index Ind, = p.o(0,)~! under the Thom isomor-
phisms Ko(C*(G;))~Ko(C*(Gh;)) = K°(BG;). Now, from the definition of the topol-
ogy of BG it follows that 1 is the natural excision map

K°(v(M))—K"(R")
of the normal bundle of M, viewed as an open set in RY. Moreover, the Thom isomor-
phism
K°(RM)~P7
is the Bott periodicity, while the Thom isomorphism
K(T*M)~Ky(C*(G2))~Ko(C*(Ga 1))~ K°(BGy)

is the usual Thom isomorphism 7 : K®(T*M)~K°(v(M)). Thus we have obtained the
following formula:

Ind, = Bot)or
which is the Atiyah-Singer index theorem ([26]), the right-hand side being the topo-
logical index Ind,.

We used this proof to illustrate the general principle of first reformulating, as in Lemma
6, the analytical index problems in terms of smooth groupoids and their K-theory
(through the associated C*-algebras), and then of making use of free and proper actions
of groupoids on contractible spaces to replace the groupoids involved by spaces, for
which the computations become automatically geometric.

6. Wrong-way Functoriality in K-theory as a Deformation

Let X and Y be manifolds, and f : X—Y a K-oriented smooth map. Then the Gysin
or wrong-way functoriality map
f1: K(X)—K(Y)

can be described ([136]) as an element of the Kasparov group KK (X,Y). We shall
give here the description of f! as an element of F(X,Y), i.e. as a deformation. The
construction is a minor elaboration of the construction of the tangent groupoid of
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Section 5. The advantage of this construction is that, given a smooth map: f: X—=Y,
it yields a canonical element of

E(T*X®f*TY,Y).

Thus it adapts to the equivariant and to the noncommutative cases.

6.a The index groupoid of a linear map. Let F and F be finite-dimensional
real vector spaces and L : E—F' a linear map. Then the group E acts by translations
on the space F, and we can thus form the groupoid FxpF = Ind(L) which is the
semidirect product of F' by the action of E. More specifically, with G = Ind(L) we
have: G = FxE, G = Fx{0}, and for (n,£) € FxE, r(n,&) =n, s(n,&) = n+ L(&),
while

(&)o', &) =, e+&) if n+ L&) =1"
By construction, G = Ind(L) is a smooth groupoid and is equivalent to the prod-
uct of the quotient space F/Im(L) by the group KerL. Thus, using the Fourier

transform, the C*-algebra of IndL is strongly Morita equivalent to the C*-algebra
Co((F/SL)x(KerL)*), which justifies the notation IndL.

Proposition 1. a) Let L : E—F be a linear map. Then the family Ind(¢L), € € [0, 1],
gives a canonical deformation

l/ E‘(IEI N
O L,

linear maps from E®FE' to E'®FE" gives a canonical deformation of (IndL)x (IndL’) to
Ind(L'o L).

b) Let L : E—=FE' and L' : E'—E" be linear maps. Then the family

Statement a) follows because Ind(0) = F'xoFE has Co(FxE*) as its associated C*-
algebra, while for € > 0, F'x.p F is canonically isomorphic to F'x;E = IndL.

L idg

0 L } with the smooth groupoid

To get part b) one uses the equivalence of Ind {
Ind(L' o L).

All of the above discussion goes over for families of vector spaces and linear maps,
i.e. for vector bundles E and F over a smooth base B and vector bundle maps
L : E—F. We shall still denote by IndL = |J,.pIndL, the corresponding smooth
groupoid. Proposition 1 then applies without any change, where in a) F'x E* denotes
the total space of the vector bundle F'x E*.
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6.5 Construction of f! € EF(T*M®f*I'N,N). Let M and N be smooth man-
ifolds and f : M—N a smooth map. The tangent map f, of f is a vector bundle
map

fe : TM—f*(TN)
and thus by «) it yields a smooth groupoid,

Ind(f.) = | ) Ind(f..)-

xeM

As a manifold Ind(f.) is the total space of the vector bundle TM®f*(TN) over
M, while its groupoid structure is as a union of the groupoids Ind(f..), with f., :
Ty M—TyN. We shall construct a canonical deformation of the groupoid Ind(f,) to
the product of the space N (viewed in a trivial way as a groupoid, with N = N(©)
by the trivial groupoid (equivalent to a point) M x M. Thus, let G; = Indf., G2 =
Nx(MxM)x ]0,1] and let us endow the groupoid G = G U Gy with the relevant
smooth structure. The topology of G is uniquely specified by the closedness of GGy and
the following convergence condition for sequences of elements of Gs: for £, > 0 with
en,—0, a sequence (t,, (Tn,Yn),en) of elements of Gy = Nx(MxM)x |0, 1] converges
to (x,1,§) € Gy, with v € M, 1 € Ty (N) and £ € T, (M), iff one has

Tp — yn/gn—>§ y tn — f(xn)/gn_)n

One checks that this topology is compatible with the groupoid structure of G, which
becomes a smooth groupoid with the following local diffeomorphism ¢ : G1 %[0, 1]—Gs
around any point of Gy x{0}:

p((2,1,8),€) = (expsp(en), (z, exp,(—€8), €)) € Ga

where the exponential maps are relative to arbitrary Riemannian metrics on M and

N.

Thus C*(G) gives a canonical deformation of C*(Ind( f,)) to the C*-algebra of N x (M x M),
and, combining it with the element ¢ of Proposition 1 a) and the strong Morita equiv-
alence C*(Nx(MxM)) = C(N)RK~C(N), we get a canonical element

fl e E(T*Ma&f*(TN),N).

In order to convert f! to an element of F(M,N) we need a K-orientation of f as an
element of

E(M, T*Maf*(TN)).
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6.7 K-orientations of vector bundles and maps. Let M be a compact space
and F' a real finite-dimensional vector bundle over M, with p : F'— M the corresponding
projection of the total space of the bundle to the base M.

Let n be the fiber dimension of " and define Spin“(n) as the Lie group Spin(n)xzzU(1),
the quotient of the product group by the element (—1,—1) (cf. [366] p.390). Then
a Spin® structure on the bundle F' is a reduction of its structure group GL,(R) to
Spin“(n) (cf. loc. cit, p.391 for more detail).

Definition 2. The vector bundle F is K-oriented if it is endowed with a Spin® structure.

In particular this implies a line bundle ¢ and a reduction of the structure group of
F to SO(n), i.e. an orientation and a Euclidean structure on F. The latter is in
general not invariant in the I'-equivariant case, in which case the Definition 2 has been
adapted by P. Baum (cf. [277]), replacing the group Spin®(n) by the group ML =
ML, (R)xz/,U(1), where M L,(R) is the nontrivial two-fold covering of GL;} (R). The
following proposition then still holds in the equivariant case ([277]).

Proposition 3. a)A complez vector bundle has a canonical K -orientation given by the
homomorphism SU(n)—Spin(2n).

b) The dual F* of a K-oriented bundle inherits a canonical K -orientation.

c) For any bundle F, F&F* has a canonical K -orientation.

d) Let 0= F—F'—F"—0 be an exact sequence of vector bundles. If two of these bundles
are K-oriented the third inherits a canonical K -orientation.

e) Let M—7IN be a continuous map, and F a K -oriented bundle over N. Then f*(F)
is a K-oriented bundle over M.

The group H?(M,Z) of complex line bundles on M acts transitively and freely on the
set of K-orientations of F'.

Definition 4. Let M and N be smooth manifolds, f : M—N a smooth map. Then
we define a K-orientation of f as a K-orientation of the real vector bundle F =
T*Ma&f*(TN).

As an immediate corollary of Proposition 3 one gets

Proposition 5. a) If the tangent bundles of M and N are K-oriented then any f :
M—N inherits a K-orientation.

b) The identity map 1dy; : M— M has a canonical K-orientation.
c) The composition of K-oriented maps is K -oriented.

d) A K-orientation of f : M—pt is a Spin® structure on M.
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We assume for simplicity that the fibers of F' are even-dimensional, the odd case being
treated similarly (with K instead of K°). There is a natural map c—d from K°(F)
to E(C(M),Cy(F)), which we now describe. First let p : FF—FxM be the proper
continuous map given by p(§) = (£, p(€)), and p* € Hom(Cy(F)®RC (M), Co(F)) be the
corresponding morphism of C*-algebras. Then for ¢ € K°(F) = E(C,Cy(F)), let & be
given by

G =7p"o(o®idy) € E(C(M),Co(F))

(one has o®idy € E(C(M ) o(F)®C(M)) and p* € E(Co(F)RC (M), Co(F')) so that
 is well defined).

Any given K-orientation on the bundle F' yields canonically ([26]) an element o of
K°(F) given by the spinor bundle S* @& S~ with its natural Z/2 grading, and the
morphism of p*S™ to p*S~ (over F') given by Clifford multiplication (&), £ € F.
The latter morphism is an isomorphism outside the 0-section M CF and thus defines
an element of K°(F) ([26]). Moreover, the Thom isomorphism in K-theory ([26])
then shows that the corresponding element & € E(C(M),Cy(F)) is invertible. In
particular, o is a generator of K (F') as a K (M )-module. We shall denote by o; and
s the corresponding elements of K (F) and E(C(M), Co(F)).

Remark 6. a) The above discussion of K-orientations of vector bundles and the
construction of 6 € E(Cy(M), Cy(F)) extends (cf. [136]) to the case of non-compact
manifolds. The element o, which we shall not use, is, however, no longer an element

of K(F).
b) The Todd genus Td(F") of a Spin® vector bundle is defined (cf. [36] p.136 and [366])

by the formula Td(F) = %2 A(F), where c is the first Chern class of the line bundle
¢ associated to the Spin® structure.

6.0 Wrong-way functoriality for K-oriented maps. Let M and N be smooth
manifolds and let f : M—N be a smooth map. We have constructed above (in 3)
a deformation f! € E(T*M&f*(T'N),N) canonically associated to f. Let us now
assume that f is K-oriented and let oy € E(M,T*M@f*(TN)) be the corresponding
invertible element. With a slight abuse of language we shall still denote by f! the
following element

fl=floo; € E(M,N).

We can then formulate as follows the results of Section 2 of [136]:

Theorem 7. «) The element f! € E(M,N) only depends upon the K-oriented
homotopy class of f.

B) One has (Idy)! =1 € E(M, M).
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v) For any composable smooth maps f1 : Mi—Ms, and fs : Ma— Ms one has, with the
corresponding K -orientations,

(fao fi)! = folo fil € E(My, Ms).

This result can be deduced from [136] and the natural functor from the K K-category to
the F-category (Appendix B). However, the direct proof is easier due to the canonical
construction of Section ) and we invite the reader to do it as an exercise.

As in [136], one gets the following strengthening of Bott periodicity.

Corollary 8. Let M, N be (not necessarily compact) smooth manifolds and f : M—N
a (not necessarily proper) homotopy equivalence. Then f! is invertible.

In particular f! yields natural isomorphisms, for arbitrary C*-algebras A and B, be-
tween the groups

E(A, BCy(N))~E(A, BRCy(M))

E(A®Cy(M), B)~E(A®Cy(N), B).
The Bott periodicity is the special case with M = R?" and N =pt; it also applies to
any (non-compact) contractible manifold.

Remark 9. Let f : M—N be a K-oriented map and f! the associated map from
K°(M) = Ko(Co(M)) to K°(N) = Ky(Co(N)). The compatibility of f! with the
Chern character is the equality

Ch(f!(z)) = fI(ChazTd(f))
where Td(f) is the Todd genus, defined in Remark 6 b), of the difference bundle
TM & f*(TN), defined as the ratio

Td(f) = Td(TeM)/TATMaf*(TN)).

7. The Orbit Space of a Group Action

In this section, as a preparation for the case of leaf spaces of foliations, we shall consider
spaces of the same nature as the space of Penrose tilings, namely the spaces of orbits
for an action of a discrete group I' on a manifold V. We assume that I" acts on V' by
diffeomorphisms and use the notation of a right action (z, g) € VxI'—zg € V with

2(q192) = (xg1)g2 Vg1, €T, Vo e V.

Such an action is called free if each g € I', g # 1, has no fixed point, and proper when
the map (z, g)—(z,zg) is a proper map from V xI" to VxV.

When the action of I' is free and proper the quotient space X = V/I" is Hausdorff and
is a manifold of the same dimension as V. The next proposition shows that the space
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X is equivalently described, as a topological space, by the C*-algebra crossed product
Co(V)xT' (Appendix C).

Proposition 1. [473] Let I' act freely and properly on V and let X = V/T'. Then
the C*-algebra Cy(X) is strongly Morita equivalent to the crossed product C*-algebra
C()(V)NF

It is important to mention that in this case, and for any I' amenable or not, there is no
distinction between the reduced and unreduced crossed products. Also, the equivalence
C*-bimodule £ is easy to describe; it is given by the bundle of Hilbert spaces (H;)zex
over X, whose fiber at x € X = V/T is the (*-space of the orbit x € X. This yields
the required (Co(V)xT', Cy(X)) C*-bimodule.

When the action of I' is free but not proper, for instance when V is compact and I"
infinite, the quotient space X = V/T" is no longer Hausdorff and its topology is of little
use, so also is the algebra Cy(X) of continuous functions on X. But then Proposition
1 no longer holds and the topology of the orbit space is much better encoded by the
crossed product C*-algebra Cy(V)xI". Our aim in this section is to construct K-theory
classes in this C*-algebra from geometric data. For that purpose we shall not need the
hypothesis of the freeness of the action of I". In fact, the case of I' acting on the space
V reduced to a single point, already treated in Section 4, will also guide us. We shall
assume that I' is torsion-free and treat the general case later in Section 10.

The motivation for the construction of K-theory classes, due to P. Baum and myself
([32]) is the following. While there are in general very few continuous maps f : X —W
from a noncommutative space such as V/I" to an ordinary manifold, there are always
plenty of smooth maps from ordinary manifolds W to such a space as X = V/T". Thus,
since we have at our disposal, by Section 6, the wrong-way functoriality map f! in
K-theory, we should expect to construct elements of K-theory of the form

for any smooth K-oriented map f : W—V/T" from an ordinary manifold to our space
X =V/T.

Given a smooth map p : W—V one obtains by composition with p : V—=V/I' = X a
“smooth” map to X. But, clearly, there are other natural “smooth” maps to X which
do not factor through V. Indeed, if we are given an open cover (W;);c; of W and
smooth maps p; : W;—V, such that on any non-empty intersection W; N W; one has
pop; =popj, then pop: W—V/I still makes sense. Since we do not want to assume
that the action of I on V' is free, we strengthen the equality po p; =pop; on W; N W;
by specifying a Cech 1-cocycle

Pij - VVz N W]—>F
such that
p3(@) pis(x) = pilx) Vo € Wi W,
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To the Cech 1-cocycle (W, pij) with values in I there corresponds a principal I'-bundle
W—1W
and local sections s; : WZ-HW such that
sj(x) pij(x) = si(x) Yo e W, NW,.
There exists then a unique -equivariant smooth map from W to V such that

p(si(x)) = pi(x) Vo e W

To summarize, we obtain the following notion:

Definition 2. Let I" be a discrete group acting by diffeomorphisms on a manifold V.
Then a smooth map W—V/T" from a manifold W to the orbit space, is given by a
principal I'-bundle W —2W and a I'-equivariant smooth map p : W—V..

The reason for the existence of sufficiently many such maps is that homotopy classes
of smooth maps W—V/T" correspond exactly to homotopy classes of continuous maps

W—=VxrEl' =V
where ET'—! BT is the universal principal I'-bundle over the classifying space BT of T.

First, given W—4W and p: W—V as in Definition 2, we get a ['-equivariant continuous
map

W2V x ET

where ¢ is a classifying map W—ET for the bundle W. The map (p, ) then yields a
continuous map ¢ : W—V xpET'. Second, given a continuous map v : W—V xpET,
one can pull back to W the principal I'-bundle over V xpET" given by

VXET—PV xpET.

One then has a principal I-bundle W—4W over W and a continuous I'-equivariant map
w W—VxEL. The composition of ¥ with the projection pry : VxET'—V gives us a
I'-equivariant continuous map W—PV. Since VXpET is a locally finite C'W-complex,
there is a natural notion of a smooth map W—V xpET and every continuous map from
W to VXpET can be smoothed, thus yielding smooth maps W—*V/T" in the sense of
Definition 2. Thus:

Proposition 3. Let I' be a discrete group acting by diffeomorphisms on the manifold
V', and let W be a manifold. Then homotopy classes of continuous maps W=Vr =
VXpED correspond bijectively to homotopy classes of smooth maps W—V/I in the
sense of Definition 2.

Any TI'-equivariant bundle F' on V is still I'-equivariant on V x ET", and hence drops
down to a bundle on V. This applies in particular to the tangent bundle TV of V|
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yielding a bundle 7 on V. At a formal level the geometric group K, ,(Vr) is defined
as follows:

Definition 4. K, (V) is the K-homology of the pair (BT, ST) consisting in the unit-
ball and unit-sphere bundles of T over Vr.

Since Vr = VXpET is not in general a finite simplicial complex we have to be precise
regarding the definition of K-homology for arbitrary simplicial complexes X. We take
K. (X) = K.(Y) where Y runs through compact subsets of X. In other words we
choose K-homology with compact supports in the sense of [529] Axiom 11 p. 203.

Let HI(Vr,Q) be the ordinary singular homology of the pair (B, ST) over Vi, with
coefficients in Q. Since this is also a theory with compact supports, the Chern character

Ch: K, (Vr)—H](Vr,Q)
is a rational isomorphism.

Since we are interested mainly in the case of orientation preserving diffeomorphisms,
let us assume that V' is oriented and that I' preserves this orientation. Then the bundle
T over Vpr = VX ET is still oriented, and letting U be the orientation class of 7 on Vr,
we can use the Thom isomorphism ([394] Theorem 10, p. 259)

o : H(;m(Vp, Q)—H,(Vr,Q) (n=dim7=dimV)

where ¢(z) = p.(UNz) Vz € Hyw((BT, ST,Q), and where p is the projection from Bt
to the base Vr.

Thus ¢och is a rational isomorphism:
¢o Ch : K*J(VI‘)—)H*(VF, @)

To construct the analytic assembly map p : K, - (Vr)— K, (Co(V)xI') requires a better
understanding of the K-homology of an arbitrary pair (here the pair is (BT, ST) over
Vr). This follows from:

Proposition 5. a) Let M be a Spin®-manifold with boundary, and assume that M is
compact. Then one has a Poincaré duality isomorphism

K*(M) = K, (M,0M).

b) Let (X, A) be a topological pair of simplicial complezes and let x € K, (X, A). Then
there exists a compact Spin®-manifold with boundary (M,0M), a continuous map f :

(M,0M)—(X,A) and an element y of K.(M,0M) with f.(y) = x.

The Chern character is then uniquely characterized by the properties:

1) f.Ch(y) = Ch(f.(y)).
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2) If M is a compact Spin“-manifold with boundary, and z € K,(M,0M) is the image
of y € K*(M) under Poincaré duality, one has

Ch(z) = (Ch(y) - Td(M)) N [M,OM],

where Td(M) is the characteristic class associated to the Spin® structure of M as in

[36] p.136 and [366] p.399, Td(M) = /> A(M) where ¢ is the first Chern class of the
line bundle ¢ associated to the Spin® structure.

Now let (N, F, g) be a triple where N is a compact manifold without boundary, F' €
K*(N), and ¢ is a continuous map from N to Vi = V xpET', which is K-oriented, i.e.
such that the bundle TN®g*7 is endowed with a Spin® structure. To such a triple
corresponds an element of K, (BT, ST) as follows. Let B and S be the unit-ball and
unit-sphere bundles of ¢g*7 on N. Then B is a Spin“-manifold with boundary so that
the Poincaré duality isomorphism assigns a class y € K,(B,S) to the pull-back of F’
to B. Then put [(N, F,g)] = g.(y) € K.(B,S7). For convenience any triple (N, F| g)
as above will be called a geometric cycle.

Proposition 6. a) Any element of K, (Vr) = K.(BT,ST) is of the form [(N, F, g)]
for some geometric cycle (N, F,g).
b) Let (N, F,g) be a geometric cycle , N' be a compact manifold and assume f :

N'—=N a continuous map which is K-oriented, i.e. TN'®f*TN is endowed with a
Spin® structure. Then, for any F' € K*(N') with fI(F') = F one has

(N, F',go f)] =[(N,F,g)] in K.(Bt,ST).
Here f!: K*(N')—K*(N) is the push-forward map in K-theory (cf. [36]).

Proof. a) By Proposition 5 b) there exists a compact Spin°-manifold with boundary
(M,0M), an element y of K.(M,0M), and a continuous map f : (M,0M)— (BT, ST)
with = f,(y). By transversality one may assume that the inverse image in M of the
O-section of 7 is a submanifold N of M whose normal bundle v is the restriction of
f*(7) to N. Since the boundary of M maps to ST, the manifold N is closed without
boundary. Let g be the restriction of f to N. Then g is a continuous map from N to Vr,
and the bundle TN@g*T = TN@®v has a Spin® structure. Let B be the unit-ball bundle
B—PN of the bundle v = g*r. Then, since p* : K*(N)—K*(B) is an isomorphism,
the assertion follows from Proposition 5 a).

b) Let (B,S) and (B’,S’) be the unit-ball and unit-sphere bundles of g*r and f*¢*7
over N and N', and f : (B',S")—(B,S) be the natural extension of f. One has

f 1™ (F")) = p*(F). Thus the conclusion follows since f ! is Poincaré dual to f, :
K.(B,S)—K.(B,S).

If we translate the Chern character ¢ o Ch in terms of geometric cycles we get:
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Proposition 7. Let (N, F,g) be a geometric cycle. Then
¢ o Ch[(N, F,g)] = g.(Ch(F) - TA(T'Neg*7) N [N]) € H.(Vr, Q).

Note that we assumed that 7 was oriented, so that NN is oriented since the bundle
TN@g*T is Spin®, and hence oriented.

So far we have just described the general elements of the group K, (V1) and computed
their Chern characters. We shall now construct the analytic assembly map

12 Ko (Vi) =K (Co(V)%D).

Given a geometric cycle (N, F,g), by Proposition 3 we have N the corresponding
principal T-bundle over N and § : N—V the corresponding I-equivariant K -oriented
map. By Proposition 3 we can assume that g is smooth. Then by Section 6 we get a
well-defined element §! € E(Cy(N), Co(V)), and, since the construction of g! is natural,
the corresponding deformation passes to the crossed products by I' using Proposition
2 b) of Appendix C, hence yielding

Gt € E(Co(N)xT | Co(V)xI).

As the action of T on N is free and proper, the crossed product C’O(N )x I is strongly
Morita equivalent to Cy(N/I') = Cy(N) so that we can view g!r as an element of

E(Co(N), Co(V)xT).

Now define u(N, F, g) as the image §!r(F') of the K-theory class F' € K,(Cy(N)) under
the element g!r.

Theorem 8. There exists an additive map p of K, (V) to K.(Co(V)xI') such that
for any geometric cycle (N, F,g) as above u(N, F,g) = g'r(F), where F € K,(Cy(N))
is viewed as an element of K (Co(NxT)) through the Morita equivalence, and §'r as an
element of E(Co(N)xT',Co(V)xT).

We shall now apply this theorem to give examples of crossed products A = C(V)xT,
with V' a compact manifold, where the K-theory class of the unit 1 of A is trivial. We
first need to find a geometric cycle (N, F, g) whose image u(N, F, g) is the unit of A.

Lemma 9. Let F € K.(Cy(V)), and consider the geometric cycle (V,F,p), where
p : V=V/I' is the quotient map with its tautological K -orientation. Then u(V, F,p)
is equal to j.(F), where j : Co(V)—A = Co(V)XT" is the canonical homomorphism of
Co(V) into the crossed product by I'.

The proof is straightforward ([99]).

With this we are ready to prove
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Theorem 10. Let V' be a compact oriented manifold on which I' acts by orientation
preserving diffeomorphisms. Assume that in the induced fibration over BI' with fiber
V, VxpET— BT, the fundamental class [V] of the fiber becomes 0 in H,(V xpET, Q).
Then the unit of the C*-algebra A = C(V')xI is a torsion element of Ky(A).

Proof. By Theorem 8 we know that the map u : K*(V,I')—=K,(C(V)xI') is well-
defined. Thus it is enough to find x € K*(Vr) with pu(z) = 14 and Ch(z) = 0 (since
the Chern character is a rational isomorphism (see above)). Now Lemma 9 shows that
wu(x) = 14, where z is the K-cycle (V, 1y, g) and 1y stands for the trivial line bundle on
V', g is the map from V to Vr given by g(s) = (sxty)/I" for some ty € ET, and where
the K-orientation of the bundle TV@®TV comes from its natural complex structure.
By Proposition 7 the Chern character of this K-cycle is equal to Td(7¢) g.([V]) = 0.
Thus z is a torsion element in K, (V) and also p(z) = 14 in Ky(A).

As a nice example where this theorem applies let us mention:

Corollary 11. Let I'C PSL(2,R) be a torsion-free cocompact discrete subgroup. Let T'
act on' V- = P;(R) in the obvious way. Then in the C*-algebra A = C(V)xI" the unit
14 is a torsion element of Ky(A).

Proof. Let H = {z € C;3z > 0} be the Poincaré space, and M = H/I' be the
quotient Riemann surface. Let us identify H with ET since it is a contractible space
on which I' acts freely and properly. Then, as in [394] p.313, we can identify the
induced bundle Vr = P(R)xpET = P(R)xpH over BI' = M with the unit-sphere
bundle of M, denoted by 7. It follows that the Euler class e(n) of 7 is equal to 2 — 2g
times the generator of H*(M,Z). Applying this and the Gysin sequence of the tangent
vector bundle TM, (cf. [394] p.143),

H(M,Z)—""H*(M,Z)—™ H*(n,Z)— - - -

shows that 7*([M]*) is a torsion element of H?(n,Z), where 7 : n— M is the projection
and [M]* is the generator of H%(M,Z). But 7 is an oriented manifold, and the homology
class of the fiber, [P;(R)], is Poincaré dual to 7*([M]); hence it is also a torsion element,
so that Ch(x) = 0.

Remark 12. Let X be a simplicial complex and 7 a real vector bundle over X. The
Chern character Ch : K, .(X)—H](X,Q) is a rational isomorphism. It is convenient
for computations to introduce the rational isomorphism Ch, given by:

Ch,(z) = Td(re)"' Ch(z) € H'(X,Q)  Va € K, (X).
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8. The Leaf Space of a Foliation

9.a Construction of C'(V, F). Let (V, F) be a foliated manifold of codimension
qg. Given any x € V and a small enough open set WCV containing z, the restriction
of the foliation F' to W has, as its leaf space, an open set of R?, which we shall call for
short a transverse neighborhood of z. In other words this open set W/F' is the set of
plaques around x. Now, given a leaf L of (V| F') and two points z,y € L of this leaf,
any simple path v from z to y on the leaf L uniquely determines a germ h(vy) of a
diffeomorphism from a transverse neighborhood of z to a transverse neighborhood of
y. One can obtain h(7y), for instance, by restricting the foliation F' to a neighborhood
N of v in V sufficiently small to be a transverse neighborhood of both z and y as
well as of any y(t). The germ of diffeomorphism A(y) thus obtained only depends
upon the homotopy class of v in the fundamental groupoid of the leaf L, and is called
the holonomy of the path v. The holonomy groupoid of a leaf L is the quotient of its
fundamental groupoid by the equivalence relation which identifies two paths v and +/
from x to y (both in L) iff A(y) = k(7). The holonomy covering L of a leaf is the
covering of L associated to the normal subgroup of its fundamental group 7 (L) given
by paths with trivial holonomy. The holonomy groupoid of the foliation is the union
G of the holonomy groupoids of its leaves. Given an element v of GG, we denote by
x = s(7) the origin of the path 7, by y = r(v) its end point, and r and s are called the
range and source maps.

An element v of G is thus given by two points z = s() and y = r(y) of V together
with an equivalence class of smooth paths: the ~(¢), t € [0,1] with v(0) = z and
7(1) = y, tangent to the bundle F' (i.e. with v*(t) € F, ), Vt € R) identifying v, and
72 as equivalent iff the holonomy of the path 75 - ;' at the point x is the identity.
The graph G has an obvious composition law. For v and 4 € G, the composition
~voy" makes sense if s() = (7). The groupoid G is by construction a (not necessarily
Hausdorff) manifold of dimension dimG = dimV 4 dim F' (cf. [190] for the original
construction, and also [462], [585]).

If the leaf L which contains both x and y has no holonomy (this is generic in the
topological sense of truth on a dense Gy) then the class in G of the path v(¢) depends
only on the pair (y,x). In general, if one fixes x = s(y), the map from G, = {7; s(y) =
x} to the leaf L through z, given by v € G,—y = r(7), is the holonomy covering of L.

Both maps r and s from the manifold G to V' are smooth submersions, and G is a
smooth groupoid in the sense of Definition 5.1. The map (r, s) to V xV is an immersion
whose image in V' xV is the (often singular) subset {(y,z) € VxV; y and « are on the
same leaf}. The topology of G is not in general the same as its topology as a subset of
VxV and the map G—V xV is not a proper map. By construction, the C*-algebra of
the foliation is the C*-algebra C*(G) of the smooth groupoid G constructed according
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to Proposition 5.3, but we shall describe it in detail. We shall assume for notational
convenience that the manifold G is Hausdorff, but as this fails to be the case in very
interesting examples we shall refer to [96] for the removal of this hypothesis.

The basic elements of C*(V, F') are smooth half-densities with compact supports on G,
f € C*(G,0Y%), where Q}/ ? for v € G is the one-dimensional complex vector space

QY 2®Q1}/ ? where s(7) = z, r(7) =y, and QL2 is the one-dimensional complex vector
space of maps from the exterior power A¥F,, k = dim F, to C such that

p(Av) = (NY2p(v) Yo e AFE, , YA e R.

Of course the bundle (Q;/ ey is trivial, and we could choose once and for all a
trivialization v making elements of C>°(G,Q?) into functions, but we want to have
canonical algebraic operations.

For f,g € C=(G,QY?), the convolution product f * g is given by the equality
et = [ sl
Y1o72=Y

This makes sense because for fixed v : x—y, and with v, € A*F, and vy € /\kFy,
the product f(71)g(y; ') defines a I-density on G¥ = {y; € G;r(v1) = y}, which
is smooth with compact support (it vanishes if v; ¢ support f), and hence can be
integrated over GY to give a scalar, (f * ¢g)(7) evaluated on v, ® v,. One has to check
that f * g is still smooth with compact support, which is trivial here, and remains true
in the non-Hausdorff case.

The *-operation is given by f*(y) = f(y 1), i.e. if v : x—y and v, € AFF,, v, € A*F,,
then f*() evaluated on v, ® v, is equal to f(y~!) evaluated on v, ® v,. We thus get a
x-algebra C°(G, QY/?). For each leaf L of (V, F) one has a natural representation 7y,
of this %-algebra on the L2-space of the holonomy covering L of L. Fixing a base point
z € L, one identifies L with G, = {v; s(y) = x} and defines

(e (1)E) () = / ) Ve € I2(Ga)

where ¢ is a square-integrable half-density on G,. Given 7 : z—y one has a natural
isometry of L?(G,,) onto L*(G,) which transforms the representation r, to . Applying
Proposition 5.3 we thus get

Definition 1. C*(V, F) is the C*-algebra completion of C°(G,Q2Y?) with the norm
1l = Sup,ey|m (]

If the leaf L has trivial holonomy, then the representation m,, x € L, is irreducible. In
general its commutant is generated by the action of the discrete holonomy group G%
in L?(G,). If the foliation comes from a submersion p : V—B, then its graph G is
{(z,y) € VxV;p(x) = p(y)}, which is a submanifold of V' x V', and C}(V, F') is identical
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with the algebra of the continuous field of Hilbert spaces L? (p~'{xz}), 5. Thus, unless
dim F' = 0, it is isomorphic to the tensor product of Cy(B) with the elementary C*-
algebra of compact operators. It is always strongly Morita equivalent to Co(B). If
the foliation comes from an action of a Lie group H in such a way that the graph is
identical with V' x H, then C(V, F') is identical with the reduced crossed product of
Co(V) by H (cf. Appendix C). Moreover, the construction of C*(V, F') is local in the
following sense:

Lemma 2. If V'CV is an open set and F' is the restriction of F' to V', then the graph
G’ of (V' F') is an open set in the graph G of (V, F), and the inclusion

C(G Q) CC(G. 0
extends to an isometric x-homomorphism of C*(V', F') into C*(V, F).

This lemma, which is still valid in the non-Hausdorff case ([96]), allows one to reflect
algebraically the local triviality of the foliation. Thus one can cover the manifold V' by
open sets W; such that F restricted to W; has a Hausdorff space of leaves, B; = W/ F,
and hence such that the C*-algebras C(W;, F') are strongly Morita equivalent to the
commutative C*-algebras Cy(B;). These subalgebras C*(W;, F) generate C(V, F),
but of course they fit together in a very complicated way which is related to the global
properties of the foliation.

By construction, C*(V, F) = C}(G) where the smooth groupoid G is the graph of
(V, F). Similarly, we let C*(V, F') be the maximal C*-algebra C*(G), (Proposition 5.3)
and r be the canonical surjection

r:C*(V,F)—=C:V, F).

9.5 Closed transversals and idempotents of C(V, F). Let (V, F) be a foli-
ated manifold, and NCV a compact submanifold with dim N = CodimF', everywhere
transverse to the foliation. Then the restriction F’ of F' to a small enough tubular
neighborhood V"’ of N defines on V' a fibration with compact base N. In other words,
there exists a fibration V/—P?N with fibers R¥, k = dim F', such that for any z € V
one has F, = Ker(pi),. The C*-algebra C*(V' F’) of the restriction of F' to V' is
thus strongly Morita equivalent to C'(N), and in fact isomorphic to C'(N)®K where
IC is the C*-algebra of compact operators. In particular it contains an idempotent
e=e2=¢" e=1y®f € C(N)®K, where f is a minimal projection in K. Using the
inclusion C*(V', F")CC}(V, F) given by the above Lemma 2, we thus get an idempo-
tent of C*(V, F'), which we shall now describe more concretely. The transversality of
N to the foliation ensures the existence of a neighborhood V of G in G such that

yeVVL, s(y)eN, r(y) € N=>ye GO,



8. THE LEAF SPACE OF A FOLIATION 126

where G = {(x,2);2 € V} is the set of units of G. Let then ¢ be a smooth
section on the submanifold r~*(N)CG of the bundle s*(2'/2) of half-densities, ¢ €
Ce (rH(N), s*(212)), such that

) Support §CV

B) =y V=1 VyeN.
The equahty e(y) = Zsm) s E(YHE(H) defines an idempotent
T 'y JEN

e € CX(G,QYV*)CCi(V, F)

Indeed, for each x € V the operator m,(e) in L*(G,) is the orthogonal projection on
the closed subspace of L?(G,) spanned by a set of orthogonal vectors labelled by the
countable set I = r~!(N) N G,, namely (1, )er, where

() =€(()) ¥ €G..
A more canonical way to define the (equivalence class of the) above idempotent e €
Cx(V, F) is to show that the C*-module eA, A = C}(V, F), is the same as the comple-
tion of C2° (r~!(N), s*(Q/?)) with the right action of C2*(G,Q'/?) given by convolu-
tion, for f € C=(G, QY?),

Ex D= [ Emste) e R () @)

and with the COO(G Q'/?)-valued inner product given by
= Y Yyme), Yn e CX (rH(N), ST Q) .

s(v")=s(v)
r(v)eN

The construction of this C*-module Ey over Cf(V, F') makes sense whether N is com-
pact or not, but in the former case the identity is a compact endomorphism of £y and
En = eCx(V, F) for a suitable idempotent e € C*(V, F) (the identity being of rank
one).

If N is compact and meets every leaf of (V) F'), then £y gives a strong Morita equiva-
lence between C(V, F') and the C*-algebra of compact endomorphisms of £y which, if
we assume that N is compact, is unital. This C*-algebra is the convolution C*-algebra
of the reduced groupoid Gy:

Gy ={y€G;r(y) € N,s(y) € N}.

The groupoid Gy is a manifold of dimension ¢ = CodimF', and the convolution product
in C2°(Gy) is given by

(f*g)(y Zf’h 9(72)

Y1ov2=Y
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FIGURE 7. Transversal

The C*-algebra norm on C2°(Gy) is given by the supremum of the norm ||m,(f)|| where
for each x € N = GS\?), 7, is the representation of C°(Gy) in £*(Gy..) given by

(m(HE () = > F(n)é(n) VreGn, s(v) =z

Y1072="7Y

We shall denote this C*-algebra by C; y(V, F), and compute it for a simple example.

Thus, let (V, F) be the Kronecker foliation dy = fdx of the 2-torus V = T? = R?/Z?
with natural coordinates (x,y) € R?. Here 6 € |0, 1] is an irrational number.

The graph G of this foliation is the manifold G = T?xR with range and source maps
G—T? given by
r((z,y),t) = (z+t,y+0t)
s

t)
((z,9),t) = (2,9)

and with composition given by ((x,y),t)((2',y'),t') = ((«/,y),t + t') for any pair of
composable elements.
Every closed geodesic of the flat torus T? yields a compact transversal. More precisely,
for each pair (p,q) of relatively prime integers we let N, , be the submanifold of T
given by

Npg={(ps,qs) ; s e R/Z}.
The graph G reduced by N = N, ,, i.e. Gy = {y € G;r(y) € N,s(y) € N}, is then
the manifold Gy = TxZ with range and source maps given by:

r(u,n) =u+nd , s(u,n)=u
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FI1GURE 8. The Kronecker foliation with a closed transversal T’

where 0’ € R/Z is determined uniquely by any pair (p/,¢’) of integers such that pq’ —
Pa=1,0"=p0—q/pf —q.
The C*-algebra C; (V, F) is the crossed product of C(T) by the rotation of angle ¢,

i.e. it is the irrational rotation C*-algebra ([472]) Ay, generated by two unitaries U
and V' such that:

VU = exp(2mid ) UV.

Since N = N, , meets every leaf of the foliation, it follows that C’(V, F)) is strongly
Morita equivalent to Ag for any relatively prime pair (p,q). In particular for p = 0,
g = 1 we get Ay, and, by transitivity of strong Morita equivalence, we see that if
and ¢ are on the same orbit of the action of PSL(2,Z) then Ay is strongly Morita
equivalent to Ay, this gives another proof of this result of [472]. All the results of this
section, including the construction of the finite projective C*-module £ = &, , over Ay
which achieves the strong Morita equivalence with Ay (i.e. Ag~Endy,(€)) are due to
the author of this book [98], [96] and were later extended to higher dimensional tori
by Rieffel. One first determines the manifold

Epq = {’Y €G; T(’Y) € Npg 5(’7) € N0,1}~

Let us assume that p > 0 to avoid the trivial case p = 0. One finds then that
E,, ={(0,y),t) ; t € R, py = t(q — pf) modulo 1}. It is thus the disjoint union of
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p copies of the manifold R, since the value of y € R/Z is not uniquely determined by
the equality

py = t(q — pf) modulo 1.
Working out the Ap-valued inner product on C2°(E, ,), one finds the following descrip-
tion of the C*-module &, ,.

One lets € = q/p — 0, and lets W; and W5 be unitary operators in C? = K such that
WP =Wy =1 and WiWy = exp (2miq/p) WoWi. Let V; and V5 be the operators on
C>(R) given by

(Vi€)(s) = &(s —e) , (Vag)(s) = exp(2mis)é(s) Vs € R.

Then the action of Ay on &,, is determined using the identification C*°(E,,) =
C>®(R)®K by the equalities

U = (ViegWh)€, §V = (VaeWs)l V6 € CF(E,,)
where U,V are the above generators of Ay.

The Ap-valued inner product which allows one to complete C°(E,,) and get &, is
given by the value of the components of (§,n) = > ;. ({,n),,, U"V"

<§,77>m,n = /OO (WIW (s —me),n(s)) exp(—2mins)ds.

We shall come back to these modules in later chapters.

Of course foliations can fail to have such a closed transversal N, and we shall show in
an example that even C(V, F') can fail to have any non-zero idempotent. We let I" be
a discrete cocompact subgroup of SL(2,R). Then V = SL(2,R)/T" has a natural flow
H,, the horocycle flow, defined by the action by left translations of the subgroup

{“ (” ;tER} of SL(2,R).

We let F' be the foliation of V' into orbits of the horocycle flow. First, the flow is
minimal, so, C*(V, F) is a simple C*-algebra ([213][278]). Then, letting p be the
measure on V' associated to the Haar measure of SL(2,R), we can associate to
(which is Hi-invariant for all ¢ € R) a transverse measure A for (V, F'), and hence a
trace 7 on Cx(V, F'). By simplicity of C}(V, F') this trace 7 is faithful. Thus for any
idempotent e € C*(V, F') one has

0<7(e) <oo if e#0.
Now let G, s € R, be the geodesic flow on V| defined by the action by left translation

S

of the subgroup { [ 60 698 } ;S € R}. For every s, G is an automorphism of (V) F),
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since the equality GsH;G;' = H,.-2s; shows that for y = G,(z), F, = (G5).F,. This

follows from
1 O] e 0 10 e % 0
te™ 1| | 0 e® t 1 0 e |’

Let 65 be the corresponding automorphism of C*(V, F'). For every z € C}(V, F) the
map s—0,(x) from R to C*(V, F) is norm continuous, which shows that if e is a self-
adjoint idempotent, then 6,(e) is equivalent to e for all s € R, and hence 7(0;(e)) =
7(e), Vs € R.

But though p is obviously invariant under the geodesic flow, the transverse measure A
is not invariant under G,; indeed the equality G,H;G;' = H,-2s, shows that G,(A) =
e 2A for all s € R. Thus 700, = e %7, and so 7(e) = 0 for any self-adjoint idempotent
e. So C¥(V, F) does not have any non-zero idempotent though it is simple (cf. [52]
for the first example of such a C*-algebra). We shall describe in Section 9 another
example with a unital C*-algebra.

8.7 The analytic assembly map p : K, (BG)—K(C*(V,F)). In this section
we shall show how the construction of K-theory classes for the orbit space of a group
action, discussed in Section 7, adapts to the leaf spaces of foliations. We shall thus
get a very general construction of elements of K(C*(V, F')) from geometric cycles, i.e.
K-oriented maps from compact manifolds to the leaf space. Our first task will thus be
to define carefully what we mean by a smooth map

f:W-=V/F
where W is a manifold.

Any smooth map W—*V gives, by composition with the canonical projection p :
V—V/F, a smooth map f = pop from W to V/F. But, as in the case of orbit spaces
(Section 7), a general smooth map f : W—V/F does not factorize through V', and is
given by a Cech cocycle (€;,7;;) on W with values in the graph G of (V, F). More
precisely, (£2;);er is an open cover of W and there is a collection of smooth maps
Yij - Ql N QJ—>G such that
’7ij(l')o’yjk(l‘) = %k(l') Ve e ;N Qj N Q.
Thus the smooth maps ~;; : ;—V patch together as maps poy;; from Q; to V/F.

Given such a Cech cocycle (€2, i) one constructs as follows a principal right G-bundle
over W which captures all the relevant information about the map f. Let Gy be the
manifold obtained by gluing together the open sets

O ={(z,7) € UxG ; vulx) =r(y)}
with the maps (z,v)—(x,v;i(x)oy). Then let ry and s; be the smooth maps given by
rr: Gr=W, rp(x,y) =x Y(x,7) € Q
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sp: GV, sp(x,y) =s(y) Y(z,7) € Q.
The groupoid G acts on the right on Gy; for @ € Gy and 4" € G such that sy(«) = ()
the composition ooy’ € Gy is given by

(2,7)e7 = (2,707) Y(z,7) € Q.

Given oy, s € Gy such that 7¢(ay) = ry(az) there exists a unique v’ € G such that
ay = a0y, Thus Gy is a principal right G-bundle over W in an obvious sense.

Definition 3. a) A smooth map f: W—V/F is given by its graph, which is a principal
right G-bundle Gy over W.
B) The map f is called a submersion if the map sy is a submersion: Gy—V .

As in the case of orbit spaces, the reason for the existence of sufficiently many smooth
maps f : W—V/F is that homotopy classes of such maps correspond exactly to homo-
topy classes of continuous maps:

W—BG

where BG is the classifying space of the topological groupoid GG. The space BG is only
defined up to homotopy, as the quotient of a free and proper action of G on contractible
spaces. More precisely, a right action of G on topological spaces is given by a topological
space Y, a continuous map sy : Y —G© and a continuous map Y x,G—°Y, where
Yx.G={(y,7) € YXG; sy(y) = r(y)} such that (yoy1)oy2 = yo(172) for any y € Y,
7 € G, v € G with 7(y1) = sy (y), s(y1) = r(72).

In other words the map which to each t € G(©) assigns the topological space Y; = s;l{t}
and to each v € G, v : t—t, assigns the homeomorphism y—yoy from Yy to Y,
is a contravariant functor from the small category G to the category of topological
spaces. We shall say that such an action of G on Y is free iff for any y € Y the map
v € G W yoy € Y is injective, and that it is proper iff the map (y,v)—(y, yoy) is
proper. A free and proper action of G on Y is the same thing as a principal G-bundle
on the quotient space Z = Y/G, quotient of Y by the equivalence relation

y1~y2 it Iy e G, yioy = yo.

We shall say that the action of G on Y has contractible fibers iff the fibers of sy :
Y —G© are contractible. Then exactly as for groups (and with the usual paracom-
pactness conditions) the classifying space BG is the quotient EG/G of a principal
G-bundle Y = EG with contractible fibers. It is unique up to homotopy, and it classi-
fies, when G is the graph of a foliation (V, F'), the homotopy classes of smooth maps to
V/F. In fact we have already seen in Sections 5 and 7 two other examples of classifying
spaces for smooth groupoids. In Section 5 we computed BG, where G is the tangent
groupoid of a manifold M, by using the action of G on Y = GO xRN coming from an
immersion j : M —R". In Section 7 the homotopy quotient V xpET is the classifying
space of the semidirect product G = V xI'; which is a smooth groupoid.



8. THE LEAF SPACE OF A FOLIATION 132

For the case of foliations one can, assuming that the holonomy groups GZ are torsion-
free, construct ([96]) EG as the space of measures with finite support on the leaves
of (V,F). What matters is that BG is an ordinary space which maps to V/F with
contractible fibers. More precisely any foliation (V’, F’) with the same leaf space as
(V, F) determines a principal G-bundle, and if the holonomy coverings of the leaves of
(V' F') are contractible then the total space V' is the classifying space BG.

We shall now, under the above assumption that G% is torsion-free for all z € V,
construct the geometric group K, .(BG) and the analytic assembly map ([32] [136])

K..(BG)—"K(C*(V, F)).

First, the transverse bundle 7, = T,.(V')/F, of the foliation is a G-equivariant bundle,
the action of G on 7 being given by the differential of the holonomy, hA(y). : 7,—7,
Vv : x—y. To 7 corresponds an induced real vector bundle, which we “abusively”
still denote by 7, on BG = EG/G. Thus the group K, .(BG) is well-defined, exactly
as in Definition 7.4, as the twisted K-homology, with compact supports, of the space
BG. (The twisting by 7 is defined as in 7.4 from the pair (B, S7) of the unit-ball
and unit-sphere bundles of 7.) We, moreover, have the exact analogue of Proposition
7.6: By a geometric cycle we mean a triple (W, y, g) where W is a compact manifold,
y € K*(W) a K-theory class, and g a smooth map W—V/F (Definition 3) which is
K-oriented by a choice of a Spin® structure on the real vector bundle TW &g*r.

Proposition 4. a) Any element of K..(BG) is represented by a geometric cycle
(W.y.9).

b) Let (W,y, g) be a geometric cycle and f : W' —W a K-oriented smooth map. Then
for any x € K*(W'), the following geometric cycles represent the same element of

K., (BG):
(W' z,go f) ~ (W, fli(z),9).

For any smooth K-oriented map W—"V/F one can factorize h as g o f, where f :
W—W; is K-oriented and smooth, while g : W;—V/F is a submersion in the sense of
Definition 3. ) ([96]). Thus using Proposition 4.b we see that in order to define the
analytic assembly map p : K, .(BG)—K(C*(V, F)) we just need to define u(W,y, g) =
g!(y) in the case where g : W—V/F is a smooth K -oriented submersion. Using Fy, the
pull-back by g of the foliation F', which is a foliation of W because ¢ is a submersion
(cf. [136]) one can then easily reduce the task to the construction of the wrong-way
functoriality map

pl: K*(F)—K(C*(V,F))
where F™* means the total space of the vector bundle F' on V. (We refer to [136]
for the reduction to this case, which invokes the construction of a homomorphism of
C*(W, Fw) to the C*-algebra of compact endomorphisms of a C*-module over C*(V, F'),
thus yielding an element ¢, € E(C*(W, Fw),C*(V, F)).)
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We shall construct p! € E(Cy(F*),C*(V, F)) as a deformation of the convolution C*-
algebra of the vector bundle F' to that of the smooth groupoid, G, of the foliation.
In order to do so, we just need to deform the groupoid F' (i.e. F(© = VCF is the
O-section and F' is the union of the groups F,, x € V) to the groupoid G. In fact we
just need the relevant topology on the union

G =FU(Gx ]0,1))

where both terms are groupoids, |0, 1] being, as in Section 5, viewed as a space. Here I’
is a closed subset of G', and a sequence (Y, €,), Y € G, €, > 0, of elements of Gx |0, 1]
converges to (z, X) € F,CF iff £,—0, x,, = s(7)—=2, Yn = r(W)—%, Yp — zp/en—X
and length(~,)—0. The condition length(y) < ¢ defines a basis of neighborhoods of
the diagonal G in G. In fact, using a Euclidean structure on F, we can give the local
diffeomorphism F'x[0,1]—=?G" near ((z, X),0) by

v((y,Y), ) = ((y, exp,(—€Y)),€) € Gx [0,1] for &>0

where the latter pair of points y and exp,(—¢Y’) € (Leaf of y) define the end points of
the path (t) = exp,(—¢tY), v € G.

As in Section 5 one checks that with the above structure G’ is a smooth groupoid, and
this suffices, using the associated C*-algebra, to get the required deformation

pt € E(Co(F™), C*(V, F))

where we identified C*(F') with Co(F™) using the Fourier transform. Thus, given a
smooth K-oriented submersion g : W—V/F we obtain an element g! € E(C(W),C*(V, F))
as the composition of €, o (pw)! € E(Co(Fy,), C*(V, F)) with the Thom isomorphism

B e E(C(W),Cy(Fy,)) given by the K-orientation of g. We can then state the main
result of [136] as

Theorem 5.a) Let W be a compact manifold and let g : W—V/F be a smooth K-
oriented map. Then the composition flo jl = gl € E(C(W),C*(V, F)) is independent
of the factorization of g = f o j through a K-oriented submersion f : W/—V/F.

b) The element g! only depends upon the K -oriented homotopy class of g and one has
(go h)! = gloh! for any K-oriented smooth map h : X —W.

The construction of the analytic assembly map p follows immediately from this theo-
rem.

Corollary 6. Let z € K, ,(BG) and (W, y, g) be a geometric cycle representing x. The
element g!(y) € K(C*(V, F)) only depends upon x, and p is an additive map:

1 K, (BG)—K(C*(V, F)).

By composition with the canonical surjection r : C*(V, F)—C¥(V, F') one obtains a
corresponding map p, : K, ,(BG)—K(C}(V, F)).
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Let us also note that this construction of K-theory classes of C*(V, F) contains, of
course, the construction of the classes of idempotents e € C*(V, F') associated to closed
transversals T" of (V) F'). More precisely, the composition of the inclusion T'CV with
the projection p : V—V/F yields a smooth map f : T—V/F which is by construction
étale and hence K-oriented. One then has a geometric cycle (T, 1, f), where 17 is
the class in K(T") of the trivial one-dimensional vector bundle. One checks easily that

,ur(T7 1T7 f) = [eT]'

The construction of g! for a smooth map g : W—V/F has been extended by M. Hilsum
and G. Skandalis ([277]) to smooth maps of leaf spaces, after solving the very difficult
case of the submersion V/F— pt. We shall come back to this point in Chapter III.

Remarks 7. a) We have only defined the geometric group as K, (BG) when the
holonomy groups G%, x € V, are torsion-free. As in the case of discrete groups, the
general case requires more care and will be treated in Section 10 (cf. also [35]).

b) Exactly as in Section 7, the Chern character Ch, is a rational isomorphism of
K. ;(BG) with H.(BG,Q), (if we assume to simplify that 7 is oriented, i.e. that the
foliation is transversally oriented). Thus, as in Section 7, any element z € K(C*(V, F))

of the form p(x), where z € K, .(BG) and Ch,(z) = 0, is a torsion element.

9. The Longitudinal Index Theorem for Foliations

Let (V, F') be a compact foliated manifold. Let E; and F; be smooth complex vector
bundles over V, and let D : C*(V, E;)—C>(V, Ey) be a differential operator on V/
from sections of E; to sections of Fs. Let us make the following hypotheses:

1) D restricts to leaves, i.e. (DE), depends only upon the restriction of £ to a neigh-
borhood of z in the leaf of x.

2) D is elliptic when restricted to leaves, so that, for any n € F, n # 0, the principal
symbol op(z,n) € Hom(E, ,, Fs ;) is invertible.

In any domain of a foliation chart U = T'xP the operator D appears as a fam-
ily, indexed by t € T, of elliptic operators on the plaques P;. One can then use
the local construction of a parametrix for families of elliptic operators and patch
the resulting operators by using a partition of unity in V' subordinate to a cov-
ering (U;) by domains of foliation charts. What one obtains is an inverse ) for
D modulo the algebra C®°(G,QY2) = J of the foliation (Section 8). To be more
precise let us fix for convenience a smooth nonvanishing 1-density along the leaves
and drop the (2’s from the notation. Then to D corresponds a distribution section
D € O7>(G, s* (B} )@r*(F,)) with support on G(». To the quasi-inverse Q of D corre-
sponds a section @ € C. (G, s*(E5)®r*(E})). The quasi-inverse property is then the
following
QD — 1p, € CZ(G, s*(EY)®r*(Ey))
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DQ —1g, € C(G, s"(E3)@r" (E3))
where 1, corresponds to the identity operator C*(V, E;)—C>(V, E;).

Now the algebra J = C°(G) is a two-sided ideal in the larger A, the algebra under
convolution of distributions 7" € C7°°(G) which are multipliers of C°(G), i.e. satisfy
TxfeCX(G)and fxT € CX(G), for any f € CX(G). Thus, neglecting the bundles
E; for a while, the existence of () means that D yields an invertible element of A/.J.
It is, however, not always possible to find a representative D’ € A of the same class,
i.e. D' € D+ J, which is invertible in A. The obstruction to doing so is an element of
the K-theory group Ky(J), as follows from elementary algebraic K-theory ([391]). We
shall, however, recall in detail the construction of this obstruction Ind(D) € Ky(J),
since this allows us to take the bundles E; into account and will also be useful in
Chapter III.

9.a Construction of Ind(D) € Ky(J). Let J be a non-unital algebra over C, and
define Ky(J) as the kernel of the map

Ko(J)—fg*Ko((C) = Z
where J is the algebra obtained by adjoining a unit to J, that is,
J={(a,\);a € J )& C},and e(a,\) = A V(a,\) € J.

(For a unital algebra K is the group associated to stable isomorphism classes of finite
projective modules viewed as a semigroup under direct sum.)

Let A be a unital algebra (over C) containing J as a two-sided ideal, and let j :

A—A/J = A be the quotient map. Recall that finite projective modules push forward
under morphisms of algebras.

Definition 1. Given JCA as above, a quasi-isomorphism is given by a triple (&1, s, h),
where &1 and & are finite projective modules over A and h is an isomorphism

h:j.E1—7.Es.

Any element D of A which is invertible modulo J determines the quasi-isomorphism
(A, A, j(D)). A quasi-isomorphism is called degenerate when h comes from an isomor-
phism T : £&,—&,. There is an obvious notion of direct sum of quasi-isomorphisms, and
a simple but crucial lemma ([391]) shows that the direct sum (&1, &y, h)B(E, E1, A1)
is always degenerate.

More explicitly, let D € Homy (&1, &) and @ € Homy(Es, 1) be such that j(D) = h
and j(Q) = h™!. Then the matrix

r_[D+(1-DQ)D DQ-1
B 1-QD Q
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h 0
0 ht

It follows that quasi-isomorphisms modulo degenerate ones form a group which, as we
shall see now, is canonically isomorphic to Ky(.J) independently of the choice of \A.

defines an isomorphism of £ @&, with £,BE; such that j(T) =

Let us first consider the special case A = J. Then the exact sequence 0—J—J—<C—0
has a natural section 7 : C—J, eor = id. Thus for any finite projective module & over
J the triple (&, (r o €).€,id) is a quasi-isomorphism, which we denote p(£).

Now, let A be arbitrary, and let @ be the homomorphism « : J—A, ala,\) =a+ Al
Va e J, A € C.

Proposition 2. Given JCA as above, the map c, o p is an isomorphism from Ko(J)
to the group of classes of quasi-isomorphisms modulo degenerate ones.

The proof follows from the computation ([391]) of the K-theory of the fibered product
algebra

{(a1,a2) € AXA; j(ar) = j(a2)}-
Given a quasi-isomorphism (&1, &, h) we shall let Ind(h) € Ko(J) be the associated
clement of Ky(J) (Proposition 2). For instance, if D is an element of A which is
invertible modulo J then Ind(D) is the element of Ky(J) given by [e] — [eg], where the

idempotents e, eq € M(J) are ey = [ (1) 8 } and e = TeyT~! with, as above,

[[ﬁ%l—DQﬂ)DQ—l]

1-QD Q
Thus, with Sy =1 — =1— DQ one gets
471—%(&+$) -

One has Ind(hgohy) = Ind(hy) + Ind(hs) for any pair ((&1, &, k1), (&, &5, he)) of quasi-

isomorphisms.

Let (V, F) be a compact foliated manifold and let D be, as above, a longitudinal elliptic
operator from the bundle E; to E;. Then the inclusion C*°(V)CA of multiplication
operators on V| as longitudinal differential operators of order 0 allows us to induce the
vector bundles E; to finite projective modules &; over A. The above existence of an
inverse for D modulo C2°(G) is then precisely encoded in

Proposition 3. The triple (&1,&, D) defines a quasi-isomorphism over the algebra

J = C=(G)CA.

We shall let Ind(D) € Ko(C°(G)) be the index associated to (&1, 2, D) by Proposition
2.
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9.7 Significance of the C*-algebra index. By the construction of C*(V, F') as
a completion of the algebra C'2°(G), one has a natural homomorphism

C®(G)—1C*(V, F)
and we shall denote by Ind,(D) the image j.Ind(D). In general we do not expect the
map
Js + Ko(CP(G)) = Ko(CH(V, F))
to be an isomorphism, and thus we lose information in replacing Ind(D) by Ind, (D) =
J«(Ind(D)). Tt is, however, only for the latter index that one has vanishing or homotopy
invariance results of the following type:

Proposition 4. [99]Let (V, F) be a compact foliated manifold. Assume that the real
vector bundle F is endowed with a Spin structure and a FEuclidean structure whose
leafwise scalar curvature is strictly positive. Let D be the leafwise Dirac operator.
Then D is a longitudinal elliptic operator and Ind,(D) = 0.

In other words, with F' of even dimension and oriented by its Spin structure, one lets
S% be the bundle of spinors and D : C*(V, ST)—C>(V, S7) be the partial differential
operator on V' which restricts to leaves as the leafwise Dirac operator.

The proof of the vanishing of Ind,(D) is the same as the proof of J. Rosenberg for
covering spaces (cf. [242]); using the Lichnerowicz formula for D*D and DD* one
shows that these two operators are bounded from below by a strictly positive scalar.
This shows the vanishing of Ind,(D) € Ky(C*(V,F)) because operator inequalities
imply spectral properties in C*-algebras. It is, however, not sufficient to prove the
vanishing of Ind(D) € Ky(C°(G)). As another example, let us consider the leafwise
homotopy invariance of the longitudinal signature, i.e. of Ind,(D), where D is the
longitudinal signature operator. This question is the exact analogue of the question
of the homotopy invariance of the I'-invariant signature for covering spaces, which was
proved by Mishchenko and Kasparov. One gets ([33] [279]):

Proposition 5. Let (V, F') be a compact foliated manifold with F' even-dimensional and
oriented. Let D be the leafwise signature operator. Then its analytic index Ind, (D) €
Ko(C*(V, F)) is preserved under leafwise oriented homotopy equivalences.

9.7 The longitudinal index theorem. Let V—?B be a fibration, where V' and
B are smooth compact manifolds, and let F' be the vertical foliation, so that the leaves
of (V, F) are the fibers of the fibration and the base B is the space V/F of leaves of the
foliation. Then a longitudinal elliptic operator is the same thing as a family (D,),en
of elliptic operators on the fibers in the sense of [27]. Moreover, the C*-algebra of
the foliation (V| F)) is strongly Morita equivalent to C'(B), and one has a canonical
isomorphism

K(CH(V, F))~K(C(B)) = K(B).
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Under this isomorphism our analytic index, Ind,(D) € K(C*(V, F)) is the same as the
Atiyah-Singer index for the family D = (D,),ep, Ind,(D) € K(B) (cf. [27]). In this
situation the Atiyah-Singer index theorem for families (loc. cit) gives a topological
formula for Ind, (D) as an equality

Ind,(D) = Ind,(D)

where the topological index Ind;(D) only involves the K-theory class op € K(F*) of
the principal symbol of D, and uses in its construction an auxiliary embedding of V' in
the Euclidean space RY. (cf. loc. cit).

We shall now explain the index theorem for foliations ([136]) which extends the above
result to the case of arbitrary foliations of compact manifolds and immediately implies
the index theorem for measured foliations of Chapter I.

As in the Atiyah-Singer theorem we shall use an auxiliary embeddi