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Introduction

One goal of spectral algebraic geometry is to unify common techniques from algebraic geome-
try and homotopy theory. An example of this is a deep theorem of Lurie which constructs the
universal elliptic cohomology theory, originally constructed using chromatic homotopy theory,
using the derived moduli stack of elliptic curves. This article discusses, proves, and applies
Lurie’s theorem (ThlA)—a vast generalisation of the above statement for the moduli stack of
elliptic curves to the moduli stack of p-divisible groups. Lurie’s theorem unifies many algebro-
geometry constructions in stable homotopy theory, such as topological K-theory, topological
modular and automorphic forms, Lubin—Tate theories, and various endomorphisms of these
theories. The goal of this article is to address a proof of Lurie’s theorem (currently not avail-
able in the literature) and to advertise its utility with a handful of applications. To motivate
the statement of Lurie’s theorem, let us recall Quillen’s theorem and the birth of elliptic co-
homology.

Let E*(—) be a multiplicative cohomology theory, so the underlying spectrum E' is a ho-
motopy commutative ring spectrum. If E*(—) has a theory of Chern classes, meaning E has
a complex orientation ([Ada74, §2]), then the formal spectrum E°CP® has the structure of
a formal group. Quillen’s theorem is the remarkable fact that the cohomology theory MU of
complex cobordism carries the universal complex orientation and the universal formal group
lives over m, MU. This passage, from algebraic topology to arithmetic geometry has proven
extremely useful in the homotopy theory, especially in providing global structure for the stable
homotopy category; see [BB20].

The original constructions of elliptic cohomology theories were done in reverse. Given an
elliptic curve X over a ring R, its associated formal group X is an algebro-geometric construc-
tion ([Sil86, §IV]) resembling the Lie algebra of X. If X is nicely behaved, one can apply the
Landweber exact functor theorem (LEFT) to obtain an elliptic cohomology theory E*(—) with
a complex orientation MU — FE such that its associated formal group can be identified with X
through an isomorphism E%(x) ~ R; see [Lan88]. A ring spectrum E that can be constructed
using the LEFT is said to be Landweber exact.

Such elliptic cohomology theories connect stable homotopy theory to arithmetic and alge-
braic geometry, provide examples of spectra of chromatic height 2, and also possess connections
to physics, differential geometry, and the theory of genera. However, these theories also have
their defects. For example, given an elliptic curve X over a scheme S, one might hope to apply
the LEFT to the restriction of X to an open affine cover of S, and glue together the associated
elliptic cohomology theories to obtain a cohomology theory “over the scheme S”. This idea is
not possible using the LEFT, as this theorem only produces a cohomology theory represented
by an object in the stable homotopy category, and neither the category of cohomology theo-
ries nor the stable homotopy category have enough limits or colimits for gluing. This suggests
that to adapt these algebro-geometric ideas to elliptic cohomology theories one needs to work
with an enhanced version of the stable homotopy category. One suitable enhancement is the
oo-category of spectra Sp and the associated co-category of commutative algebras CAlg, whose



objects are known as Eg -rings.

A major achievement in homotopy theory is a theorem of Goerss—Hopkins—Miller ([Goel0l
Th.1.2]) which produces a functor of oo-categories &P from a category of elliptic curves to
the oo-category of Eq-rings. This functor does have the ability to glue together elliptic co-
homology theories as Eq-rings now, in other words, P is a sheaf. For example, one can
glue together all elliptic cohomology theories to obtain the universal theory TMF of topological
modular forms; see [Beh20, §6].

In [SURQ9], Lurie sketches an alternative construction of ¢*P from the structure sheaf
of a derived moduli stack of oriented elliptic curves, Mgy, and recently this construction was
carried out in detail; see [EC2], §7]. This alternative construction uses different methods to
those of Goerss—Hopkins—Miller, and also suggests a vast generalisation from elliptic curves to
arbitrary p-divisible groups. The following is often referred to as Lurie’s theorem, which first
appeared without proof in [BL10, Th.8.1.4]; see ThIL.6] for a more precise statement.

Theorem A. Fixz a prime p and an integer n = 1. There is a sheaf of Ex-rings ﬁ]gojlfp from
a category of p-divisible groups of height n such that its value on a p-divisible group G over a
ring R is an Ex-ring £ with the following properties:

1. € has a complex orientation and is Landweber exact.
2. There is an isomorphism of rings mo€ ~ R.

3. The homotopy groups w.&E vanishes for all odd integers and otherwise morE is the k-fold
tensor product of a line bundle on R.

4. There is an isomorphism between the formal group of the p-divisible group G and the
formal group of £.
The sheaves ﬁ}go,ﬁp are constructed using spectral algebraic geometry analogous to Lurie’s
construction of &P, Interest in this theorem stems from its applications, all originally due to
Lurie [EC2|] or Behrens-Lawson [BL10], which we discuss in §5l

e The cohomology theory of p-complete complex K -theory KU, can be recovered by apply-

ing ﬁ]t;% to the multiplicative p-divisible group pp~ over the p-adic integers Z,; see §5.11
In fact, this reproduces KU, as an Eq-ring, and a variation also produces p-complete
real K-theory KO,,.

e All of the Lubin-Tate cohomology theories associated to a perfect field £ and a formal
group G of exact height n can be recovered from ﬁgﬂ& ; see §0.21 The functorality of
this construction with respect to automorphisms of formal groups recovers the action of
the extended Morava stabiliser group on such Ey-rings, as studied in [GH04].

e An elliptic curve F is an abelian variety of dimension 1 and its collection of p-power
torsion produces a p-divisible group E[p*] of height two. Applying ﬁlgo,ﬁp to the moduli
2



stack of elliptic curves produces the p-completion of the Goerss—Hopkins—Miller functor
0"P and also the p-completion of the universal elliptic cohomology theory TMF,,; see

§5.3l

e A more in-depth study of dimension g abelian varieties with PEL structure yields coho-
mology theories called topological automorphic forms due to Behrens-Lawson; see §5.41
The only known construction of these theories requires Th[AL

e Finally, the cohomology theories from Th.[A] come with functorality predicted by the
LEFT; the sections of the sheaves ﬁg’%’% have an action of the underlying p-divisible
groups. Using this idea, we construct stable Adams operations (§6.5]) and show these
agree with the classical Adams operations for complex K-theory.

Outline

The proof of Lurie’s theorem found here is broadly based on Lurie’s construction of TMF
in [EC2| §7]. In short, we want to define our sheaves using the instructive formula orr, =

BT,
D*Q, 051w ; our actual precise definition looks slightly different. In §2] we define ©, in §3| we
define 2 and O%», and in § we use this definition to prove Th[Al For some discussion on

the technical background used in this proof, see the Conventions section below. The reader is
also invited to the Leitfaden of the proof of Lurie’s theorem; see §I.21 In a little more detail,
this paper is divided up into the following five sections (plus an appendix).

(§I) We begin by introducing a precise statement of Lurie’s theorem and its supporting cast.
This is followed by a Leitfaden for the proof, which gives a synopsis of the following three
subsections.

(§2) Here we focus on building some foundations for the phrase formally étale in spectral
algebraic geometry; a manifestation of the deformation theory of Lurie ([SAGL §17-18)).
These techniques are then used to lift classical to spectral p-divisible groups; see Th2.341

(§3) Next, we explore the orientation theory for p-divisible groups a la [EC2l §4]. Using this
we define a sheaf OF, which takes a p-divisible group over a p-complete Eo-ring and
produces its orientation classifier; see DI3.13] and Pr[3.15

(§4) Finally, we define the sheaf ﬁ]goTpp by first applying the process of §2| followed by the sheaf
O%re of S8l We are left to prove this sheaf satisfies the conditions of Th[A]l and the

arguments here follow those by Lurie in [EC2, §7.3].

(§5) In this last section, we construct a variety of well-known E.-rings as well as some
operations and actions thereof.

(§A) In this appendix, we summarise some technical facts about formal spectral Deligne—
Mumford stacks are used elsewhere in this article.
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Conventions

Now, and forever, fix a prime p.

Higher categories and higher algebra

We will make free and extensive use of the language of co-categories, higher algebra, and
spectral algebraic geometry, following [HTT09], [HA], [SAG], and especially the conventions
listed in [EC2]. In particular:

e For an oo-category C and two objects X and Y of C, we will write Map,(X,Y") for the
mapping space and Home(X,Y') if C happens to be the nerve of a 1-category.

e Commutative rings and abelian groups will be treated as discrete Eq-rings and spec-
tra. Moreover, the smash product of spectra will be written as ®, even if the spectra
involved are discrete (this does not mean the output will be discrete). The same goes
for completions, and in this case the oo-categorical completions will be written as (—)7

following [SAGI §7].

e All module categories Modpg refer to the stable co-category of R-modules, where R is
an Eo-ring. In particular, if R is a discrete commutative ring, then Modgr will be the
stable oco-category of R-module spectra, and not the abelian 1-category of R-modules.
The same holds for co-categories of quasi-coherent sheaves.

e Following [EC2| (and contrary to [SAG] and [ECI]), we will write Spec R for the non-
connective spectral Deligne—-Mumford stack associated to an Eq-ring R.

Moreover, all n-categories are (n, 1)-categories, for n = 1,2, co.

Sites and sheaves

Lurie’s theorem concerns sheaves between co-categories. The co-categories which we want to
consider as sites are not necessarily (essentially) small, so we a priori do need to be careful



about potential size issues. However, we are interested in constructing particular functors and
proving they are sheaves, so we only really need to step into a large universal to quantify our
definition of a sheaf.

Definition 0.1. Given oo-category 7 with a Grothendieck topology 7 ([HTT09, Df.6.2.2.1])
and an co-category C then a functor F': TP — C is a C-valued T-sheaf on T if for all T-sieves
7'/0 < T)x, the composite

(T%07)” = ()™ =77 B

is a limit diagram inside C.

A hypercover is a generalisation of a cover in a Grothendieck site. In general, our sheaves,
including the sheaf occurring in the statement of Thl[Al will be hypersheaves. Following [SAG]
§A], this variation on a sheaf comes with a more concrete description.

Definition 0.2 ([SAG] Df.A.5.7.1]). Let A, | denote the 1-category whose objects are linearly
ordered sets of the form [n] = {0 <1 < --- < n} for n = —1, and whose morphisms are strictly
increasing functions. We will omit the + when considering the full co-subcategory with n = 0.
If T is an oo-category, we will refer to a functor X, : A?fﬂr — T as an augmented semisimplicial
object of T. When T admits finite limits, then for each n = 0, we can associate to an augmented
semisimplicial object X, the nth matching object and its associated matching map
X, — lim X; = M,(X,)
[i]—[n]

where the limit above is taken over all injective maps [i] < [n] such that i < n. Given a
collection of morphisms S inside 7, we call an augmented semisimplicial object X, is an S-
hypercover (for X_1 = X) if all the natural matching maps belongs to .S, for every n > 0. Given
a Grothendieck topology 7 on 7T, then a presheaf of spectra F on T is called a 7T-hypersheaf
if for all 7-hypercovers X, — X, the natural map

F(X) — lim F(X.)

is an equivalence of spectra. Some useful general references for the prefix hyper in the homotopy
theory of sheaves are [CM21], [DHI04], and [SAG] §A-D].

Our favourite examples will be when 7 is the co-category A", Aff, C4,, or C4, and S is
either fpqc or étale covers. When we discuss these concepts with respect to Eq-rings, we will
implicitly be talking about their opposite categories.

Given T and 7 from Df[0.2] then for each 7-covering family {C; — C} in C one can
associate a Cech nerve C, which is a 7-hypercover of C. It is then clear that 7-hypersheaves
are T-sheaves. It is also obvious that if S € S’ then S’-hypersheaves are S-hypersheaves. We
find the following diagram of implications useful, and they will often be used implicitly:

fpqc hypersheaf =——= fpqc sheaf

| !

étale hypersheaf ——> étale sheaf



Let us now state two useful lemmata regarding hypersheaves.

Lemma 0.3. Let T be an c0-category with a Grothendieck topology T and let F': TP — €aty s
be a T-sheaf such that the composite

G: TP L @aty, s — Cato

is also a T-sheaf, where the second functor is the canonical projection. Then the functor H
defined by the composite

TOp i Cgatoo/s E) Cgatoo
is a T-sheaf. If F' and G are T-hypersheaves, then H is a T-hypersheaf.

More informally, applying a Grothendieck construction to a sheaf is a sheaf.

Proof. Write [[,Cq — C for a 7-cover of an object C' in 7. We then note the following
composite of natural equivalences is equivalent to the natural map H(C) — lim H(C,):

H(C)=Un(F(0): G(C) — 8) = Un(lim F(C,): imG(Cy) — S)

= lim Un(F(Cy): G(Cy) — S) = lim H(C,)

The first equivalence comes from the fact that F' and G are both 7-sheaves second equivalence
from the fact that Un is a right adjoint. The proof for 7-hypersheaves is the same, with
T-covers replaced with 7-hypercovers. ]

Lemma 0.4 ([SAG| Cor.D.6.3.4 & Th.D.6.3.5]). The identity functor CAlg — CAlg is a
hypercomplete CAlg-valued sheaf (with respect to the fpgc topology). In particular, for any
Ey-ring R and any fpqc hypercover R® of R, the natural map

R —1limR*
s an equivalence.

Notice that if R — R® is an fpqc hypercover of an E,-ring R, then there are natural
equivalences
T>0R = Tsolim R®* = lim 759 R® (0.5)

from the above lemma and as 7> commutes with limits as a right adjoint.

Topological rings and formal stacks

With experience, one knows that the study of deformation theory comes hand-in-hand with
the study of rings with a topology and the associated algebraic geometry. We will follow the
definition of an adic E-ring from [EC2, Df.0.0.11], except we will only consider the connective
case.



Definition 0.6. An adic ring A is a discrete ring with a topology defined by an [-adic
topology for some finitely generated ideal of definition I € A. Morphisms between adic rings
are continuous ring homomorphisms, defining an oo-subcategory CAlng of CAlg”. An adic
Eq-ring is a connective Eo-ring A such that mgA is an adic ring. We define the oo-category
of adic Ey-rings as the following fibre product:

CAlg® = CAlg™ x CAlg),
CAlg®”

An adic Ey-ring A is said to be complete if it is complete with respect to an ideal of definition
I; see [SAG] Df.7.3.1.1 & Th.7.3.4.1]. An E-ring R is local if moR is a local ring, and we call
an adic Eo-ring R local if the topology on myR is defined by the maximal ideal of mgR. We
give CAlng and CAlgs; the usual Grothendieck topologies (fpqc, étale, etc.) via the forgetful
functors to CAlg® and CAlg®™, respectively.

The geometric definition of a formal (spectral) Deligne-Mumford stack follows.

Definition 0.7. Let Spf: CAlgigy — ooTop?Effé be the functor described in [SAG] Con.8.1.1.10
& Pr.8.1.2.1]. A spectrally ringed oo-topos X is said to be an affine formal spectral Deligne—
Mumford stack if it lies in the essential image of Spf. A formal spectral Deligne—Mumford
stack is a spectrally ringed co-topos with a cover by affine formal spectral Deligne-Mumford
stacks; see [SAG] Df.8.1.3.1]. Let fSpDM denote the full co-subcategory of ooTopl&‘ilg spanned
by formal spectral Deligne-Mumford stacks. Similarly, one can define a 2-category fDM of
classical formal Deligne-Mumford stacks (Df[A.6) where we further assume all such objects
are locally Noetherian.

Definition 0.8. Let X = (X, Ox) be a formal spectral Deligne-Mumford stack. We call an
object U inside X affine if the locally spectrally ringed oo-topos (X7, Ox[v) is equivalent to
Spf A for some adic Eg-ring A. We will also say that X is locally Noetherian if for every affine
object U of X, the Ey-ring 0x(U) is Noetherian in the sense of [HA| Df.7.2.4.30].

Note that Spf B is locally Noetherian if and only if B itself is a Noetherian E-ring; see
[SAG] Pr.8.4.2.2].

Notation 0.9 (Fixed adic Eo-ring A). Let A denote some fixed complete local Noetherian
adic Eg-ring with perfect residue field of characteristic p. Write Ay for mgA, my for the
maximal ideal of Ay, and k4 for the residue field.

The reader should keep in her mind the initial case of the p-complete sphere A = S,, with
associated Ap the p-adic integers Z,. Other choices include the spherical Witt vectors of a
perfect field of characteristic p; see [EC2] §5.1].

Functor of points

The classical moduli stack Mng is neither a Deligne-Mumford nor an Artin stack. This
necessitates our use of a functorial point of view, for both classical and spectral (formal)
algebraic geometry.



Notation 0.10. Write Aff = CAlg®°® to which we will add super/subscripts such as (—)",
(—)ad, and (—)? as they apply to CAlg.

When working in P(Aff¥) or P(Aff"), we will abuse notation and not distinguish between
the objects representing functors and the functors themselves. This is justified by the following
commutative diagram of fully faithful functors of co-categories:

AfFY & > Aff"
\ v (C)\ cn
(a) AEad,loc.N ’ Aﬁad
l (0.11)
DMIOC.N > SpDM
(b) &
DM {SpDM —— P(AfF™)

The loc.N subscript denotes those full co-subcategories spanned by Noetherian or locally
Noetherian objects; see D08 The definitions and fully faithfulness of the functors above
are explained in Cor[A.10] except the functors (a)-(d), which can be justified as follows:

(a) is fully faithful as this holds without the locally Noetherian hypotheses; see [SAG
Rmk.1.2.3.6] and restrict to the underlying 2-category.

(b) is fully faithful by using part (d) below and Pr[A9 Indeed, if G o F and G are fully
faithful, then so if F'.

(c) is fully faithful by making a connective version of [SAGL Rmk.1.4.7.1]; this is justified by
[SAG] Cor.1.4.5.3].

(d) is fully faithful as both SpDM and fSpDM being defined as full oco-subcategories of
ooToplé’Zlg and the fact that spectral Deligne-Mumford stacks are examples of formal
spectral Deligne-Mumford stacks by [SAGL p. 628].

Similarly, we will consider most of classical algebraic geometry as living in the 2-category
Fun(CAlg®,S<1) which we then embed inside the co-category P(AffY) using the inclusion
S<1 — 8, which preserves limits.

Warning 0.12 (Quasi-coherent sheaves on formal spectral Deligne-Mumford stacks). When
we consider quasi-coherent sheaves on a formal spectral Deligne-Mumford stack X, then what
we write as QCoh(X) is what Lurie would write as QCoh(hy), in other words, we consider
the co-categories of quasi-coherent sheaves of formal spectral Deligne-Mumford stacks through
their functors of points. By [SAGL Cor.8.3.4.6], we see that these two notations are equivalent
as long as one restricts to almost connective quasi-coherent sheaves on both sides. As all of our
quasi-coherent sheaves of interest will be cotangent complexes, which are almost connective
by definition ([SAGL Df.17.2.4.2]), this distinction does not matter to us.



Cotangent complexes

Given a natural transformation X — Y between functors in P(Aff") which admits a cotangent
complex ([SAG] Df.17.2.4.2]), we will write this cotangent complex as Ly and consider it as
an object of QCoh(X); see [SAG] §6.2]. A few specific cases can be made more explicit

1. If X — Y is a morphism of spectral Deligne-Mumford stacks and X — Y is the associ-
ated transformation of functors in P(Aff*"), then Ly y is equivalent to Ly,y under the
equivalence of categories QCoh(X) ~ QCoh(X) by [SAG, Cor.17.2.5.4]. If X = Spec B
and Y = Spec A, then we have further identifications of Ly, with Lp/4 under the
equivalence of oo-categories QCoh(Spec A) ~ Mod 4; see [SAG, Lm.17.1.2.5].

2. If X is a formal spectral Deligne-Mumford stack, and X is the associated functor in
P(Aff"), then Lx is equivalent to L%, the completed cotangent complex of [SAG]
Df.17.1.2.8], under the equivalence of categories ©x: QCoh(X)*® = QCoh(X)™" of
[SAG| Cor.8.3.4.6], where the superscript acn indicates full oo-subcategories of almost
connective objects. If X = Spf A for an adic Eq-ring A, then Lgpra ~ (La); (under
the equivalence of co-categories QCoh(Spf A) ~ Modgpl7 where [ is a finitely generated

ideal of definition for the topology on myA4; see [SAG, Ex.17.1.2.9].

3. If f: X — %) is a morphisms of formal Deligne-Mumford stacks and F': X — Y is
the associated morphism of functors in P(Aff"), then the cofibre L% 19 of the natu-
ral map f*Ly — Lx is naturally equivalent to Ly, under the equivalence of cat-

egories Ox: QCoh(X)*™ = QCoh(X)2"; see [SAG, Df.17.1.2.8] for a definition of
Ly/y. Indeed, the naturality of ©x in X ([SAGL Con.8.3.4.1]) yields an equivalence
Oxo f* ~ [* 0Oy of functors. Our desired identification then follows from the existence

of the (co)fibre sequences
f[fLy — Lx — Lyyy  F*Ly — Lx — Lxy,

the absolute case (2), and the fact that QCoh(X)*" and QCoh(X) are stable under
(co)fibre sequences; see [SAGL Cor.8.2.4.13 & Pr.6.2.3.4], respectively.

Due to the equivalences above, we will drop the completion symbol from our notation for the
cotangent complex between formal spectral Deligne-Mumford stacks. The following standard
properties of the cotangent complex of functors will be used without explicit reference:

e For a map of connective Ey-rings A — B, we have a natural equivalence in Mod,p

~ 1 .
moLp/a = /oA’

see [HA| Pr.7.4.3.9].

'Thank you to an anonymous referee for vastly simplifying example 3 for us.
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e For composable transformations of functors X — Y — Z in P(Aff®"), where each
functor (or each transformation) has a cotangent complex, we obtain a canonical (co)fibre
sequence in QCoh(X)

Lyz|« = Lxjz = Lx)v;

see [SAG| Pr.17.2.5.2].

e If we have transformations X — Y « Y’ of functors inside P(Aff"), where Lx Jy exists,
then Ly, y//ys exists and is naturally equivalent to mf Lx y; see [SAG, Rmk.17.2.4.6].

Warning 0.13 (Topological vs algebraic cotangent complexes). The cotangent complexes con-
sidered in this article are not the same as those developed by André and Quillen; see [Stal,
08P5]. In particular, for an ordinary commutative ring R considered as a discrete Eq-ring,
then Lp is what some call the topological cotangent complex. For more discussion, see [SAG|

§25.3].

Deformation theory

We will be using ideas from classical deformation theory as well as Lurie’s spectral deformation
theory, so we take a moment here to clarify our definitions. What we discuss below is mostly
taken from [EC2, §3].

Definition 0.14. Let Gg be a p-divisible group over a commutative ring Ry and write CAlggcllO !

for the co-subcategory of CAlgy spanned by complete connective adic Eq-rings. Define a

functor Defg, : CAlgS(fl — & by the formula

Defg,(A) = colim BT?(A) X HomcRing (Ro, m0A/I)
I BT? (w0 A/I)

where the colimits is indexed over all finitely generated ideals of definition I for mgA. A priori an
oo-category, but [EC2, Lm.3.1.10] states this is an co-groupoid. Let (R, G) be a deformatz’o
of Gg. We say G is the universal spectral deformation of Gg with spectral deformation ring
A if for every B in CAlgS&J 1, the natural map

Mape,,cpi(4, B) = Defa, (B)

is an equivalence. If R is discrete, we say G is the universal classical deformation of Gy with
classical deformation ring A if for every discrete B in CAIgS&’ 1, the natural map

Mape,,cpi(4, B) = Defa, (B)

is an equivalence. If such universal spectral (or classical) deformations (R, G) exist, they are
evidently uniquely determined by the pair (Rp, Go).

2Recall from [ECZ, Df.3.1.4], a deformation of Gy is an adic Eo-ring A, a finitely generated ideal of definition
I of moA, a ring homomorphism Ry — moA/I, and an isomorphism of p-divisible groups (Go)rya/r =~ Gryayz-
In other words, an object of Defg,(4).
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The above definition agrees with that in [EC2, Df.3.1.11] in the cases that the A above
is connective. Indeed, in this case, if B is a nonconnective complete adic E,-ring, the fact
connective cover is a right adjoint and BT?(B) = BTP(7>¢B) by definition, we obtain the
following;:

MapcAlgad (R, B) >~ MapcAlgad (R, T)OB) >~ DefGO (TZOB) ~ DefGO (B)

The following will help us identify many classical deformation rings.

Remark 0.15. If a spectral deformation ring R exists for a pair (Ry, Gg), then a classical
deformation ring also does, and it can be taken to be mgR. Indeed, if B is a discrete object
of CAlng1 as in Df[0.14] then the fact the truncation functor is a left adjoint on connective
objects yields the equivalences

Defg,(B) ~ MapCAlng{’l (R,B) ~ MapCAlng{’l (moR, B)

showing that moR is the classical deformation ring of (R, Go).

1 The statement of Lurie’s theorem

The titular theorem promises the existence of a sheaf ﬁ rp O SOME site over the classical mod-
uli stack of p-divisible groups satisfying certain propertles The idea behind the construction
of ﬁ}go,ﬁp is to construct morphisms of stacks

Q
or
My S M, &MY,

set Oprn = D* QO
above do not quite exist in our set-up, but the above formula for o" Tpp is instructive. In
this section, we state a precise version of Lurie’s theorem and give a more detailed outline
of the proof; in §2 we construct © (short for deformation) using spectral deformation theory
disguised as the adjective formally étale; in §8 we construct € (short for orientation) using
the orientation theory of Lurie; and in §4 we define ﬁt T and check it satisfies the conditions

of Lurie’s theorem.

and check this possesses the desired properties. The maps of stacks

1.1 The precise statement

First, let us recall the definition of a p-divisible group over an Ey-ring; see [EC2, Df.2.0.2] for
this definition, and [ECI] §6] or [EC3| §2] for a wider discussion.

Definition 1.1. Let R be a connective Ey-ring. A p-divisible (Barsotti-Tate) group over a
connective Eq,-ring R is a functor G: CAlgf' — Mody' with the following properties:

1. For every connective Eq-R-algebra B, the Z-module G(B)[1/p] vanishes.
2. For every finite abelian p-group M, the functor
CAlgy' =S B+ Mapyq, (M, G(B))

is corepresented by a finite flat E- R-algebra.
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3. The map p: G — G is locally surjective with respect to the finite flat topology.

A p-divisible group over a general Ey-ring R, is a p-divisible group over its connective cover.
The oo-category BTP(R) of p-divisible groups over an Eq-ring R is the full co-subcategory
of Fun(CAlg%loR,Mod%n) spanned by p-divisible groups. Let Mprr be the moduli stack of
p-divisible groups, which is the functor inside P(Aff") defined on objects by sending R to the
oo-groupoid core BT?(R)™; see [EC2, Df.3.2.1]. We say a p-divisible group G has height n if
the Eo-R-algebra corepresenting the functor

CAlgg —S B~ Mapy.q,(Z/pZ,G(B))

is finite of rank p”; see [ECI) §6.5]. Using this notion of height, we can further define a
subfunctor Mpye for all n > 1 consisting of all p-divisible groups of height n.

The reader is invited to check for herself that the definition above agrees with that of
[Tat67, §2] when R is discrete.

Remark 1.2 (Height is an open condition). We claim Mpgp» — Mprr is an open embedding.
Lurie’s definition of a commutative finite flat group scheme over Spec R (JECI], Df.6.1.1]) states
that G(Z/pZ) ~ Spec B is affine and mgR — myB realises moB as a projective myA-module
of finite rank equal to p”. By [Stal 00NX], this rank is locally (with respect to the Zariski
topology on |Spec R| = |SpecmyR|) constant. In particular, if R is a local connective Eq-
ring then the commutative finite flat group scheme G(Z/pZ) has a well-defined height and we
obtain the formula:

SpecR ht(G) =n

SpeCR X MBT% ~ { & ht(G-) £n

BTP

Definition 1.3. Let X be a formal spectral Deligne-Mumford stack. A p-divisible group over
X is a natural transformation G: X — Mgppr in P(Aff"). We say G has height n if this
map factors through Mpr. By [EC2, Pr.3.2.2(4)], this is equivalent to a coherent family of
p-divisible groups Gp, on Spec(B;)}., where the collection {Spf B; — X}; form an affine étale
cover of X and J; is an ideal of definition for B;.

Our main object of study is the spectral moduli stack Mpyr, although we are also inter-
ested in its relationship to the underlying classical moduli stack.

Notation 1.4. For a functor M: CAlg®™ — S, write MY for its restriction along CAlg” —
CAlg™. This commutes with finite products:

(X xYV)” S5 XY xyY

Given an adic Eg-ring B, write M\B for the product M\B = M x Spf B in P(Aff*"). The hat
indicates a base-change over Spf, rather than Spec.

We can now define the sites upon which we will soon define our sheaves of Eg-rings.
Adjectives used below that have not yet been defined will be discussed after Thl[I.6l
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Definition 1.5. Recall the conventions of Nt.[0L9] so fix a complete local Noetherian adic
E-ring A with perfect residue field of characteristic p. Let

Ca, S P(AfEY) e,
ns0

Q
BT, Ao
a locally Noetherian chﬂ formal Deligne-Mumford stack with perfect residue fieldd] at all

closed points, the cotangent complexﬁ L is almost perfeci@ inside QCoh(X)), and Gy
A

denote the full co-subcategory spanned by those objects Gg: X — M where Xg is

xO/M\BTZ;L )
is formally étale in P(AffY). Similarly, let
Ca S P(AfE")

/MBTI;L,A

denote the full co-subcategory spanned by those objects G: X — M\BT’,’L 4 where X is a locally
Noetherian qcgs formal spectral Deligne-Mumford stack with perfect residue fields at all closed
points, and G is formally étale in P(Aff"). We will endow C4, and C4 with both the fpqc
and étale topologies through the forgetful map to P(Aff@) and P(Aff°"), respectively.

A simplified criterion for an object X — M\ETP 4, o lie in C4, is discussed in Pr[I.8 The

precise version of Lurie’s theorem (Th[A]) can now be stated.

Theorem 1.6 (Lurie’s theorem). Given an adic Eq-ring A as in NtID9, there is an étale
hypersheaf of Eo-rings ﬁlgo,llfp on Ca, such that for a formal affine Go: Spf By — .Mng in
Ca, the Eg-ring ﬁgoTpp (Go) = & has the following properties:

1. &£ is complex periodicm and Landweber exactﬁ

2. There is a natural equivalence of rings mo€ ~ By and & is complete with respect to an
ideal of definition for By. In particular, £ is ma-complete, hence also p-complete.

3 A locally Noetherian and quasi-compact scheme is called a Noetherian scheme. We choose to keep these
two adjectives separate though, as they play different roles in this article.

4As our fixed A is assumed to be p-complete, all these residue fields are necessarily of characteristic p.

®This relative cotangent complex exists as one does for Xo and ./(/I\BTg“A—a consequence of [SAG Pr.17.2.5.1]
and [EC2| Pr.3.2.2], respectively.

SParaphrasing [SAG] §6.2.5], recall that a quasi-coherent sheaf F on a functor X : CAlg®™ — S is almost
perfect if for all connective Eo-rings R and all morphisms of presheaves n: Spec R — X, the R-module n*F is
almost perfect; see [HAl Df.7.2.4.10 & Pr.7.2.4.17] for the latter definition and a simple criterion for Noetherian
E-rings.

"Recall from [EC2] §4.1], that an Ex-ring A is called complez periodic if A is complez orientable and weakly
2-periodic. An object E of Spg, is said to be complex orientable if the map given map e: S — E admits a
factorisation e: B

S~¥%5? ~ v72CP! - ¥ 72CP” 5 E;
see [Ada74] §II] or [EC2] §4.1.1]. An Ey-ring A is weakly 2-periodic if £2A is a locally free A-module of rank
1, or equivalently, that m2 A is a locally free moA-module of rank 1 and the natural map m2A Qrya 724 — mA
is an equivalence. Notice this is a condition, not data.

8 A formal group G over a ring R is Landweber exact if the defining map from Spec R to the moduli stack of
formal groups is flat. A complex periodic Ex-ring is Landweber exact if its associated Quillen formal group is.
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3. The groups mi € vanish for all odd integers k. Otherwise, there are natural equivalences
of Bo-modules mopE ~ w%’; where w%’; is the dualising lineﬁ of the identity componen
Gg of Go.

4. There is a natural equivalence of formal groups Gy ~ @g“ over By where the former is
the identity component of Go and the latter is the classical Quillen formal grou of €.

We have included a few more details than in the original statement ([BL10, Th.8.1.4]) by
incorporating some work of Behrens—Lawson involving Landweber exactness.

For transparency, let us explain the adjectives in the definition of C4 and Cg4,.

(Locally Noetherian) We assume our formal Deligne-Mumford stacks are locally Noethe-
rian (Df[0.8)) because completions of general rings in the classical world and derived world do
not agree; see [SAGlL Warn.8.1.0.4]. Moreover, even in the world of spectral algebraic geometry
such objects are better behaved ([SAG], §8.4]), such as the existence of truncations; see Pr[Al

(Qcgs) This acronym stands for quasi-compact and quasi-separated; see Df.JAT3l When
a scheme X is qcgs, then it has a Zariski cover SpecA — X (qc) and the fibre product
P = Spec A x x Spec A is also a Zariski cover Spec B — P (qs). Eventually, we will define an
étale (hyper) sheaf D%HTg on the affine objects of C4, and to extend this to a formal Deligne—
Mumford stack X inside C4, one will use the adjective qcqgs; see Rmk.[B.14l One could write
this article again, with the word separated replacing the word quasi-separated and deleting all
occurrences of the prefix hyper, although the extra generality of hypersheaves can be useful in
practice.

(Formal geometry) One reason we work with formal spectral Deligne-Mumford stacks
(§Al and [SAG] §8]) is related to topological modular forms. In this case, one must appeal to
the classical Serre-Tate theorem where one works with schemes where p is locally nilpotent,
ie, over SpfZ,; see Ex[2.7l Another, somewhat disjoint reason is for deformation theoretic
purposes. As stated in [EC2, Rmk.3.2.7]:

“The central idea in the proof of Theorem 3.1.15 (of [EC2]) is (...) to guarantee the
representability of Mpte in a formal neighborhood of any sufficiently nice R-valued point.”

“Recall from [EC2] §4.2.5], the dualising line of a formal group G over a commutative ring R is the R-linear
dual of its Lie algebra Lie(é)A This Lie algebra of a formal group can be defined in multiple ways, but we will
define it as the tangent space of G over R at the unit section Ug — R; see [Zin84] for a discussion about Lie
algebras associated to formal groups or here for an English translation.

YRecall from [EC2, Th.2.0.8], for each p-divisible group G over a p-complete Ex-ring R there is a unique
formal group G° over R such that on connective Eq-7>0R-algebras A which are truncated and p-nilpotent we
can describe G°(A) as the fibre of G(A) — G(A™) induced by the quotient by the nilradical; see [Tat67} (2.2)]
for a classical reference.

HRecall from [EC2, Con.4.1.13], that a complex periodic Ex-ring A comes with an associated Quillen
formal group CA}% over A. The classical Quillen formal group éf” is the image of é% under the functor
FGroup(A) — FGroup(moA), or equivalently as the formal spectrum Spf A°CP®. Notice the above definition
is independent of the choice of complex orientation for A—that would yield a chosen coordinate for our formal
group, ie, a formal group law; see [Goe08l, §2].
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As our moduli stack of interest is MpT», we embrace formal spectral algebraic geometry.

(Closed points have perfect residue fields) A crucial step in showing our definition of
ﬁgofg satisfies the conditions of ThI[.flis to reduce ourselves to the closed points of the affine
objects of Cy,, essentially reducing us to the Lubin-Tate theories of [EC2] §5]. It will then be
important that these residue fields are perfect (they will already be of characteristic p as we

are working over Spf Z,) to apply some of our formal arguments; see Pr[242]

(Formally étale over M\BTQ) Again, one inspiration for ThII.6]is the classical Serre-Tate

theorem, which posits that M\gll Z, is formally étale over M\g . The phrase formally étale

T8.Zyp
is used in this article to control and package our deformation theory; see §21

(Cotangent complex conditions in C4,) These conditions are finiteness hypotheses, how-
ever, they are necessary to apply a deep existence criterion of Lurie (Th[2:39]).

Let us now discuss a simple criterion for checking if an object lies in Cy4,,.

Definition 1.7. A morphism f: Xy — Spf Ay of classical formal Deligne-Mumford stacks is
locally of finite presentation if for all étale morphisms Spf By — Xg, the induced morphisms
of rings Ag — By are of finite presentation. By the usual arguments, it suffices to check this
on a fixed collection of étale morphisms Spf By — Xy which cover Xy. We say f is of finite
presentation if f is locally of finite presentation and quasi-compact (Df[A.13]).

Proposition 1.8. Let A be as in NtI0.9 and Gg: Xy — M\ng,AO be a p-divisible group
defined on a formal Deligne-Mumford stack Xo of finite presentation over Spt Ag such that the

associated map into Mng Ay is formally étale. Then Gq lies in Ca,.

These simplified hypotheses are practical, but they do not apply to one of our favourite
examples, Lubin—Tate theory, as power series rings R[z] are simply never of finite presentation
over R.

Proof. First we note that Xy is locally Noetherian, qcqs, and has all residue fields corre-
sponding to closed points perfect of characteristic p as the morphism Xy — Spf Ag is of finite
presentation It remains to show that the cotangent complex in question,

L= L%o/ﬂBTg,A

is almost perfect. To see this, we consider the composition in P(Af")

:{0 & M\BT’,’L,A & SpfA

2Indeed, for locally Noetherian one can use [Stal, [00FN], for qcqs one can use [GW10, §D], and the residue
fields are perfect as finite field extensions of perfect fields are perfect by [Stal 05DU].
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which induces the following (co)fibre sequence in QCoh(Xy):

*
GOLM\BT%’L,A/SpfA - L%O/SpfA - L
Abbreviating the above to G§L1 — Lo — L, we first focus on G{L;. As a quasi-coherent sheaf
on a formal spectral Deligne-Mumford stack X, to see G{§L; is almost perfect, it suffices to
see that n*G{ L is almost perfect inside QCoh(X) for every morphism 7: X — Xy where X is
a spectral Deligne-Mumford stack; see [SAG, Th.8.3.5.2]. Using the base-change equivalence
_ Py ~ *
I = LMBT%A/SpfA =M LMy
is almost perfect. By [SAG] Cor.8.3.5.3], it suffices to
check the affine case of X = Spec R, where R is a connective Ey-ring. Note p is nilpotent in
moR as Spec R maps into Spf A, and p € m4 by assumption; see Nt[.9l Our conclusion that L)
is almost perfect in Modp then follows from [EC2, Pr.3.2.5]. Therefore, G§L; is almost perfect.

it suffices to show L} = n*G§miLm,

Focusing on Ly now, we consider the composition Xy — Spf Ay — Spf A and the induced
(co)fibre sequence of quasi-coherent sheaves over X:

LspfAO/spfA|3€0 — Ly,/spta = L2 = Lx,/spt 4, (1.9)

By Pr[AI2 we see Lgps 4, /spf A 18 almost perfect in QCoh(Spf Ap), and pullbacks preserve
almost perfectness ([SAGl Cor.8.4.1.6]), hence the first term of (L) is almost perfect. To
see the third term of (LL9]) is almost perfect, we may work locally and replace Xy with Spf By
where By is a complete discrete adic ring. In this case we use the assumption that Ag — By is
of finite presentation, which implies L4, is almost perfect in Modp,; see [HAL Th.7.4.3.18].
By [SAGI Pr.7.3.5.7], Lp,/a, is complete with respect to an ideal of definition J for Bp, and
it follows the Bg-module

AN
Lpyjay = (Lpy/a,) 7 = Lspt By/spf 4

is almost perfect. Therefore Lo is almost perfect, so L itself is almost perfect. O

1.2 Leitfaden of the proof of Th[I.6l
Our proof moves in three distinct, but connected, stages.

(I) First, we move from classical algebraic geometry (in P(Aff¥)) to spectral algebraic ge-
ometry (in P(Aff")) using deformation theory, presented here through the adjective
formally étale. Given an object Gg: Xg — .Mng Ao inside C4,, we consider the object

X inside the following Cartesian diagram in P(Aff"):

Mgy 4 —L w2, G
BT, A 7<0/V'BT? A
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The functor 72, P(Aff “) — P(AfF") above is induced by precomposition with 7<q: CAlg™ —
CAlg”, and the maps X(R) — 720X (R) = X(moR) are induced by the truncation map

R — moR. The assumption that Go was formally étale in P(Aff¥) implies that X is
what Lurie calls the de Rham space of the map Xy — M\BT’,’L 4 and that G is formally
étale; see Pr[2.35l Most of the adjectives defining C4, then allow us to employ a power-

ful representability theorem of Lurie (Th[2Z39), which identifies X as a formal spectral
Deligne-Mumford stack, which we denote as X. Some analysis shows G: X — M\BT’,’L A

lies in C4 and that the functor

D:Cay — Ca, (X0,Go) — (X,G)
is an equivalence of co-categories (Th[2.34)).

(IT) Next, we apply the orientation theory of p-divisible groups devised by Lurie in [EC2].
This yields a moduli stack of oriented p-divisible groups M1» and a map of presheaves
on p-complete E-rings

Q: M%TT;;L — MEIF}Z;
see DI[3.6l The bulk of this section is formalising a global form of the constructions of
[EC2| §4] and constructing the pushforward presheaf along 2 of the structure sheaf of
M3Pre, which when restricted to C4 becomes the functor D%er : Czp — CAlg. It will
follow rather formally that applying D%‘"Tﬁ to an affine object of C4 yields the orientation
classifier construction of Lurie; see [EC2| §4.3.3].

(ITI) Finally, we set ﬁlgo,llfp to be the composition of D followed by D%.,. In other words,
we first send (Xp, Gop) to (X,G) using ©, and then take the orientation classifier of
the identity component of G; see Df A1l To check this definition of ﬁgoTpp satisfies the
properties described in ThII 6, we use descent ideas of Lurie.

The following three sections carry out these three steps given above.

2 Formally étale natural transformations

At the heart of spectral algebraic geometry is deformation theory—Lurie ([SAG, p.1385]) even
goes as far as to state the heuristic principle:

{spectral algebraic geometry} = {classical algebraic geometry} + {deformation theory}

The adjective formally étale will help us navigate between the two worlds of classical and
spectral algebraic geometry using Lurie’s spectral deformation theory. More concretely, given
a (nice enough) formally étale morphism Xy — M, where X is a classical formal stack, there is
a universal spectral deformation of X, say X, such that Xy can be viewed as the Oth truncation
of X. This process allows us to lift objects in classical algebraic geometry to spectral algebraic
geometry without changing the underlying classical object; see Th[Z34l
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2.1 On presheaves of discrete rings

Let us first consider formally étale maps between presheaves of discrete rings.

Definition 2.1. A natural transformation f: X — Y of functors in P(Aff%) is said to be
formally étale if, for all surjective maps of rings R — R whose kernel is square-zero, also called
square-zero extensions of R, the following natural diagram of spaces is Cartesian:

Y(R) — Y(R)

Moreover, we say that f is formally unramified if the fibres of the map

are either empty or contractible.

Let us state some classical, useful, and also formal properties of formally étale morphisms;
the reader may enjoy verifying them herself.

Proposition 2.2. Formally étale morphisms in P(Aff@) are closed under composition. If

XLy 5% 7 are composable morphisms in P(Aff@) such that g is formally unramified and
gf is formally étale, then g is formally étale. Formally étale (resp. unramified) morphisms
are closed under base-change.

Let us now relate Df2.T] to the definitions found in classical algebraic geometry.

Definition 2.3. A map f: X — Y between functors in P(Aff@) is affine if every ring R, and
every R-point 1 € Y (R), the fibre product Spec R xy X is represented by an affine scheme.

Note that maps between (functors represented by) affines in P(Aff¥) are always affine, as
the Yoneda embedding AffY — P(AffY) preserves limits.

Proposition 2.4. Let f: X — Y be a natural transformation of functors in P(Aff@). Then f
is formally étale if and only if for every ring R, every square-zero extension of rings R — R,
and every commutative diagram of the form

SpecR —— X

| lf (2.5)

Specff — Y

the mapping space
MapP(Aff”)R//y (Spec R, X)
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is contractible[S Moreover, if f is affine, then f is formally étale if and only if for every ring
A, and every A-point n € Y (A) such that the fibre product Spec A xy X is equivalent to an
affine scheme Spec B, the natural projection map A — B is formally étale as a map of M’ngs

Proof. Given a ring R, a square-zero extension R — R, and a commutative diagram (2.5]),
consider the following diagram of spaces:

MapR//Y(§7X) — Map/Y(é7X) — Map,y (R, X)

l | |

Mapp/(R, X) ——— Map(R, X) ——— Map(R, X)

l | |

Mappg/(R,Y) —— Map(R,Y) ——— Map(R,Y)

By definition, the rows and columns are fibre sequences we have abbreviated the categories
above to express only the over/under categories, and we suppressed the functor Spec. By the
Yoneda lemma, the bottom-right square is naturally equivalent to (Z3]), hence f is formally
étale if and only if this bottom right square is Cartesian. In turn, this is equivalent to the
space in the top-left corner being contractible.

For the “moreover” statement, suppose that f is affine. If f is formally étale, then Pr[2.2]
states that the map Spec B — Spec A is formally étale by base-change. Conversely, suppose
we are given a diagram of the form (2.35]), then by assumption the fibre product Spec RxxY ~
Spec B is affine and Spec B — Spec Ris formally étale, giving us the following diagram:

Spec R i\

SpecB —— X
L
Specﬁ — Y
One then observes the following sequence of natural equivalences of spaces

MapR//ﬁ(é,B) ~ MapR/(E,B) X s {ldé}
MapR/(R,R)

~ MapR/(}NE,X) X MapR/(ﬁ, R) x  Aidg} ~ MapR//y(}NR,X)

MapR/(Rvy) MapR/(RvR)

131e, “there exists a unique lift Specﬁ — X for (23).”

Y For the definition of a formally étale map of rings simply apply DfEZT]to the transformation (co)representing
this map of rings, or see [Stal [02HF].

5The fibres in this diagram have been taken with respect to the maps from (2.3).
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where we have used the same abbreviations from earlier in the proof. The first apce above is
contractible as Spec B — Spec R is formally étale, hence f is formally étale as the last space
is contractible. O

Let us list some instances of formally étale morphisms found in algebraic geometry.

Ezample 2.6 (Formally étale morphisms of schemes). In the setting of classical algebraic ge-
ometry, we usually take the existence of a unique map Specﬁ — X (under Spec R and over
Y') as the definition of a formally étale maps of rings (or schemes); see Pr[2Z4l An object in
P(Aft Q?) represented by a scheme factors through Fun(CAlg@7 Set), as mapping spaces between
classical schemes are discrete, and we see Pr[2.4] precisely matches [Stal 02HG].

Ezample 2.7 (Classical Serre-Tate theorem). The classical Serre-Tate theorem (see [CS15]
p.854] for the original source, or [ECI] Th.7.0.1] for statement of the spectral version) states
that if R — R is a square-zero extension of commutative rings and p is nilpotent within them,
then the diagram of 1-groupoids

~

AVary(R)™ —— AVary(R)~
| J[poo] (2.8)
BT} (R)* — BT} (R)>

@
BT,

sending an abelian variety X to its associated p-divisible group X[p™] ([Tat67) §2]) is formally
étale after base-change over SpfZ,. This base-change is crucial, as there only exists a map
Spec R — Spf Z,, is when p is nilpotent inside R, as the continuous map of rings Z,, — R must
send {p'};>0 to a convergent sequence in R, where R is equipped with the discrete topology.
If we fail to make this base-change, then (2.8) may not be Cartesian [19

is Cartesian. This implies the morphism of classical moduli stacks [p®]: Mg\/arg - M

Ezample 2.9 (Classical Lubin—Tate theorem). Another classical example of a formally étale
map in P(Aff¥) comes from Lubin-Tate theory. The original source for this is [LT66] with
respect to formal groups, but we will follow [EC2l §3] as our intended application is for p-
divisible groups; see [EC2, Ex.3.0.5] for a statement of the dictionary between deformations
of formal and p-divisible groups. Let Gg be a p-divisible groups of height 0 < n < o over a

1ndeed, consider the elliptic curve E over F3 defined by the equation y? = 2 + 22 + z + 1. The 2*-torsion
subgroups of E are, by [KMS85l Th.2.3.1], equivalent to the constant group schemes (Z/2’“Z)2 over F3, hence
the associated 2-divisible group E[2%] is equivalent to the constant 2-divisible group (Qz/Z2)? over F3. Define
two deformations E1 and E2 of E over the dual numbers Fs[e] (augmented by the morphism ¢ ~— 0), by the
formulae

By =2+’ +a+1+e Er:yi=2+2+z+1-c
Once more, by [KMS85, Th.2.3.1], we calculate E1[2%°] and E2[2%] to both be the constant 2-divisible group
(Q2/Z2)? over F3[e], and hence these 2-divisible groups also base-change to E[2] over F3. As a final observa-
tion, note that F; and F» are not equivalent as elliptic curves over F3[e], as one can calculate their j-invariants
([STIS6, §ITL.1)):
J(E1) =e—1#¢€e+1=j(E2)

Hence [2%]: Mg, — M}ZTP is not formally étale over Spec Z.
2
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perfect field x of characteristic p. Then there exists a universal classical deformation G of Gy
over the classical deformation ring RG ; see [EC2, Df.3.1.4] or the proof of Pr2.T0l

This formally implies that the map into MY defining G is formally étale. In fact, we

BTE,
generalise the Lubin—Tate case above using [EC2| §3] to formally obtain:

Proposition 2.10. Let Ry be a discrete F-algebra such that Lr is an almost perfect R-
modul. and GO s a nonstatlonary@ p-divisible group over Ry of height n. Then the map
Spf Rg, — MBTp induced by the universal classical deformation of Go is formally étale.

Conversely, if G: Spr 'MBTP Ao is formally étale for a complete Noetherian discrete ring

R and Aq from NtI09, then for every maximal ideal m S R such that the residue field R/m = k
is perfect, then Gpy is the universal classical deformation of G.

Proof. The existence of such an Rg, follows by taking my of the spectral deformation ring;
the spectral deformation ring exists by [EC2, Th.3.4.1] and then we apply Rmk.[0.I5 Let
R — R/J be the quotient map where R is discrete and J is a square-zero ideal. First, we wish
to show the following commutative diagram of spaces is Cartesian:

(Spt Rao)(R) ——— (M, )(R)

lz lr (2.11)

(Spf Ray)(R/T) —— (M) (R/J)
Following [EC2| Df.3.1.4], for an adic E,-ring A the co-category Defg,(A) is defined as

Defg,(A) = colim | BTP(A X Hom K, moA/I

() = colim (BT(A) |  Homyo (s, 0/ 1)

where the colimit is indexed over the filtered system of finitely generated ideals of definition
I € mpA. By [EC2, Lm.3.1.10], if A is complete, then Defg,(A) is a space, which in particular
holds if A is a discrete ring equipped with the discrete topology. As Rg, is the universal
deformation of Gy one obtains for any such A an equivalence of (discrete) spaces

= = i 1z

Hochlng(RGm A) — Defg,(A) Iecl\(?illlor&) <BT (A) BTP>(<A/I) Homg .0 (Ro, A/I)> (2.12)
where the colimit is taken over all finitely generated nilpotent ideals I inside A; see [EC2
Th.3.1.15]. By assumption, the cotangent complex Lg, is almost perfect in Modpg,, and [EC2]
Pr.3.4.3] then implies that the natural map

Defe(4) = colim Fay

17See [EC2] Pr.3.3.7 & Th.3.5.1] for many equivalent conditions to Lr being almost perfect.

'8Recall the definition of a nonstationary p-divisible group Go from [EC2] Df.3.0.8], or the equivalent con-
dition for Go over a discrete Noetherian F,-algebra Ro whose Frobenius is finite, that the cotangent complex
Lspec R/mprp induced by the defining morphism of Gg is 1-connective; see [EC2, Rmk.3.4.4 & Th.3.5.1]. In
particular, by [EC2, Ex.3.0.10], all p-divisible groups over F,-algebras Ry whose Frobenius is surjective are
nonstationary.
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is an equivalence, where now the colimit is indexed over all nilpotent ideals I = A and Fjy  is
the fibre product of (Z12]). Given a fixed nilpotent ideal J < A, denote by Nil ;(A) the poset of
nilpotent ideals of A which contain .J. We obtain a natural inclusion functor Nil ;(A) — Nil(A),
which is cofinal, as any nilpotent ideal I lies within the nilpotent ideal I+ J. Hence the natural
map
colim Fp 1 = colim Far
IeNil; (A) IeNil(A)

is an equivalence. The map [ of (217 is then equivalent to

colim Fp
IeNil;(R)

)

]L> colim FR/JI/J
IeNil;(R) ’

where we used the fact that ideals in R/.J correspond to ideals in R containing J. If (Spf Rg,)(R/J)
is empty, then so is (Spf Rg, ) (R) and we are done. Otherwise, choose some z in (Spf Rg,)(R/J)
and consider the fibre of [ over x. As filtered colimits of spaces commute with finite limits we
calculate this fibre as follows:

~ coli ER
fib, (1) ~ IECI\(I)ill%]r(I}Q) fiba (FR’I Frisay J)

To simplify this further, we contemplate the following diagram in % atq:

BT?(R) x Hom(Ry,R/I) —— BT?(R/J) x Hom(Ry, R/I) —— Hom(Rg, R/I)

BT?(R/I) BT?(R/I) J
BTP(R) ! » BT?(R/J) BT?(R/I)

The right square and outer rectangle above are Cartesian by definition, so the left square is
also Cartesian. This means the natural map fib(g) — fib(f) is an equivalence in @aty,, hence
our fibre of [ becomes

fib,(1) = | colim (ﬁbb(m(BTP(R) ER BTp(R/J))) ~ fibyy) (BTP(R) 4 BTp(R/J)) .
€N1l y

This shows the fibre of f lies in the essential image of S — @ aty, as fib, (1) is. As ris f~ we

obtain a natural equivalence fib(l) ~ fib(r). As the fibres of [ and r are naturally equivalent,

we see that (2.I1]) is Cartesian, so the composition

Spf RGO i MBT%,ZP i MBTZ i MBTP

is formally étale. To see the first map in the composition above is formally étale, we use that
the last map is open (Rmk.[[2]) and hence formally étale, the second last map is the base-
change of the formally unramified map Spf Z, — SpecZ, and the cancellation statement from

Pr22

Let us omit a proof of the converse statement; the E,-version is Pr[2.42] and the proofs in
both cases are analogous. O
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2.2  On presheaves of connective E -rings

We are now in the position to make a spectral definition. See [HA| §7.4] for definition of the
definition of (trivial) square-zero extension of Ey-rings, and and [SAG] §17.2] for the definition
of (infinitesimally) cohesive and nilcomplete functors in P(Aff") and the definition of Ly y-.

Definition 2.13. Let f: X — Y be a natural transformation of functors in P(Aff*"). For an
integer 0 < n < 00, we say f is n-formally étale if for all square-zero extensions of connective
n-truncated E,-rings R — R the natural diagram of spaces

Y(R) — Y(R)
is Cartesian. We abbreviate co-formally étale to formally étale.

Remark 2.14. If f is n-formally étale, then f is also m-formally étale for all 0 < m < n < o0.
In particular, for any 0 < n < o0, if f is n-formally étale then XV — YV is formally étale
inside P(AffY).

A converse statement also holds.

Remark 2.15. Write 7%,: P(AY) — P(AF™) for the functor induced by the truncation
CAlg™ — CAlg”. If X — Y is formally étale in P(AffY), then it follows that 70X — T<0Y
is (00-) formally étale inside P(Aff"). Indeed, for each square-zero extension of connective
E-rings R — R we want to show the the diagram of spaces

X(moR) —— X (moR)

! !

Y (moR) —— Y (moR)

is Cartesian. If we can show the map p: WO}NE — moR is a square-zero extension of classical
rings, so we are done by our hypotheses. The (co)fibre sequence

M —>R—>R

of connective R-modules shows that p is surjective. Moreover, we see the kernel of p is not
moM, but the image of the map moM — 770]?5. This does not worry us, as the multiplication
map M ®p M — M is nullhomotopic by [HAL Pr.7.4.1.14], hence the image of moM in WO}NE
squares to zero, and we see p is a square-zero extension of rings.

Remark 2.16. If X — 9) is a formally étale morphism of (locally Noetherian) classical formal
Deligne-Mumford stacks inside P(Aff¥), then the corresponding morphism inside P(Af") is
O-formally étale. This follows by the fully faithfulness of fDM — fSpDM; see Pr[A.9
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Remark 2.17. Our definition of formally étale deviates from Lurie’s definition of étale mor-
phisms ([HA| Df.7.5.0.4]) as there is no flatness assumption. However, even in P(Aff%) a
formally étale morphism of discrete rings need not be ﬂat This means there is no inherent
descent theory for formally étale morphisms. For more in this direction, the reader is advised
to make her way to Rmk[2.25]

The basic properties of Pr[2Z2 also hold in P(Af").

Proposition 2.18. Let 0 < n < o and X Ly % 7 e composable morphisms in P(AfF™M)
where g is n-formally étale. Then f is n-formally étale if and only if h is n-formally étale.
Moreover, n-formally étale morphisms are closed under base-change.

We would now like alternative ways to test if a map X — Y is formally étale in P(AfF").
Although Lurie does not directly discuss the adjective formally étale in [SAGL §17], many of
the techniques below follow his ideas.

Proposition 2.19. Let X — Y be a natural transformation of functors in P(Aff™) and
0<n<oo.

1. The map X — Y is n-formally étale for finite n if and only if X — Y is 0-formally
étale and for every connective n-truncated Eqy-ring R the natural diagram of spaces

X(R) —— X(mR)

| !

Y(R) —— Y (mR)
is Cartesian. If X — 'Y is nilcomplete, then the n = oo0-case also holds.

2. If X — Y is infinitesimally cohesive, then X — Y s formally étale if and only if for
all trivial square-zero extensions of connective truncated Eq-rings R — R the natural
diagram of spaces

X(R) —— X(R)

1s Cartesian.

YFor example, the map of discrete rings C [t%lg € Q,q > 0] — C sending ¢t — 0 is formally étale but not
flat. Indeed, one can always lift square-zero extensions of rings uniquely, as we have all square roots of ¢ in the
above ring, hence it is formally étale. To see this map is not flat, we can tensor it with the exact sequence

0 — (t) = C[t"] — C[t"]/(t) — O,
which yields the clearly not exact sequence

0-C—->C—->C-—0.
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3. If X =Y s infinilesimally cohesive and admits a connective cotangent compler Ly y,

then X —'Y s formally étale if and only if Lx )y vanishes.

If X — Y is infinitesimally cohesive, nilcomplete, and Lx y exists and is connective, then

X —
tain discrete objects (R, 7, M) of Mod

Y is n-formally étale if certain Ext-groups Ext's (n* Ly s M ) vanish in a range, for cer-
a la the deformation theory of [III71]. There is also a

cn?

sharpening of part 4 above which deals with an n-connective cotangent complex Ly v, which
we note for the readers benefit is not equivalent to X — Y being n-formally étale. These
ideas will not be used here though.

Thank you to an anonymous referee for correcting a previous version of (2) above.

Proof. Write f for the transformation X — Y in question.

1.

Suppose f is n-formally étale for a finite n > 0, then f is 0-formally étale by Rmk[2.T4l
Given a connective n-truncated Eq-ring R, then for any 0 < m < n we can consider the
following diagram:

X(rem+1R) —— X(t<mR) —— X(moR)

l l l (2.20)

Y(T<m+1R) —_— Y(Tng) —_— Y(’]TOR)

Above, the left square is always Cartesian by virtue of f being n-formally étale as
T<m+1R — T<mR is a square-zero extension of Ey-rings by [HAl Cor.7.1.4.28]. To show
the outer rectangle Cartesian we use induction. The base case of m = 0 is tautological.
For m > 1, the right square is Cartesian by our inductive hypotheses, hence the whole
rectangle is Cartesian. Conversely, if the second condition of part 1 holds, we consider
a square-zero extension of n-truncated connective Ey-rings R — R and the following
natural diagram of spaces:

X(R) X(moR)
\ \
X(R) J y X (moR)
Y(R) » Y (moR)
\ \
Y(R) » Y (moR)

The back and front faces are Cartesian by the second condition of part 1, and the
rightmost face is Cartesian as the second condition of part 1 also assumes f is O-formally
étale. Hence by a base-change argument, we see the leftmost square is Cartesian, and we

26



are done. For the n = oo-case, suppose X — Y is nilcomplete, meaning that for every
connective Eg-ring R, the diagram of spaces

X(R) —— lim X (7<, R)

| |

Y(R) — lim Y (7<nR)

is Cartesian. Combining this diagram with the finite case above yields the desired con-
clusion.

2. If f is formally étale, then logic implies the second condition holds. Conversely, let
e: R — R be a square-zero extension of a connective Ey-ring R by a connective R-
module M and a derivation d: Lr — $M. By definition ([HAL Df.7.4.1.6]) R is defined
by the Cartesian diagram of connective Ey-rings

R—° R

| lﬁ

R-—"s ROyXM

where the bottom-horizontal map is induced by the zero map Lrp — XM and the right-
vertical map is induced by the derivation d. This Cartesian diagram of connective Eg,-
rings then induces the following natural diagram of spaces:

X(E) all s X(R) ;
~ g
X(R) X(R®OSM) —— X(R)
(2.21)
Y(R) Y(R) "
. ~
Y(R) Y . Y(ROEM) — 5 Y(R)

The left cube is Cartesian from our assumption that f is infinitesimally cohesive. By
assumption the rightmost square is Cartesian, and the only rectangle in the diagram
is also Cartesian as the composition R — R@® XM — R is equivalent to the identity,
hence the left square in that same rectangle (the front face of the cube) is Cartesian. By
a base-change argumen@ we see that the desired back square of the cube (containing
X(e) and Y(e)) is also Cartesian, and we are done.

20This base-change argument is simple, but let us outline the argument. Write I for the poset of nonempty
subsets of {1,2, 3}, ordered by inclusion, and use this poset to index the cube in ([Z21]) by setting Fo = X (R),

F1 = X(R) (in the top-right), Fo» = X(R) (in the centre), F3 = Y(R), etc. As the whole cube is Cartesian we
have Fy ~ lim 1,e1 F7, and as the front face is also Cartesian we have F» ~ lim (Fi2 — Fia23 < Fa3). These two

27



3. Our proof outline here is essentially that of [SAG| Prs.17.3.9.3-4]. On the one hand,
by [SAG], Pr.6.2.5.2(1)] and [SAGl Df.6.2.5.3], we see that for some fixed integer m, an
object F of QCoh(X) is m-connective if and only if for all connective Ey-rings R and
transformations n: Spec R — X, the object n*F is m-connective inside QCoh(Spec R) ~
Modpg. Furthemore, if F is connective and m > 0, the object n*F is m-connective if and
only if the mapping space

Mapyoqen (7" F, N) >~ Mapygoqen (T<mn ™ F, N)

is contractible, for all connective (m —1)-truncated R-modules NV, by the Yoneda lemma.
On the other hand, the object Ly, in QCoh(X) exists if and only if the functor
F: Modgf1 — &, given on objects by

F(R,n, M) = fib (X(R@M) — X(R) o Y(R@M)) (2.22)

is locally almost representable, meaning that we have a (locally almost; see [SAG]
Df.17.2.3.1]) natural equivalence for all triples (R,n, M) in Mod§

F(R,n, M) ~ Mapyjoq, (1" Lxy, M)

where R is a connective E,-ring, n: Spec R — X a map in P(Aff"), and M a connective
R-module. If Ly /y vanishes, then we immediately see F (R,n, M) is contractible for all
triples (R,n, M), which by part 3 implies X — Y is formally étale, courtesy of the
definition (222)) of F. Conversely, if X — Y is formally étale, then F(R,n, M) is
contractible for all triples (R, n, M), hence the mapping space

MapModR(n*LX/Ya M) = F(R’ m, M)
is contractible for all triples (R,n, M) and Ly vanishes. O

There are many examples of formally étale maps in spectral algebraic geometry.

Note that all formal spectral Deligne-Mumford stacks are cohesive, nilcomplete, and
absolute cotangent complexes always exist, which follows by copying the proof of [SAG]
Cor.17.3.8.5] (the same statement for SpDM), as all of the references made there also ap-
ply to fSpDM.

Example 2.23 (Etale morphisms of connective Ey-rings). Let A — B be an étale morphism of
connective Eq-rings, then by [HAl Cor.7.5.4.5] we know Lp,4 vanishes, hence A — B is also
a formally étale morphism of Ey-rings by Pr[2.191

facts, together with [MV15l Ex.5.3.8] give us the following natural chain of equivalences of spaces

Fy ~ }rim]FI” ~ lim (F> — G123 < G13) ~ G13,
0€E

where G123 = lim (Fi2 — Fiaz < Fa3) ~ F> and G13 = lim (F1 — Fi3 < F3). This shows the back face of the
cube (indexed by @, {1}, {3}, and {1, 3}, is Cartesian.
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Example 2.24 (Relatively perfect discrete Fp-algebras). Another classic example, which will
not show up explicitly in this note but is at the heart of much of the work done in [EC2], is that
a flat relatively perfect map of discrete commutative F,-algebras has a vanishing cotangent
complex ([EC2, Lm.5.2.8]), and hence is formally étale.

Remark 2.25. In Rmk.2.T7, we noted that formally étale morphisms of connective Eq-rings
were not necessarily flat. However, [EC2| Pr.3.5.5] states that morphisms of (not necessarily
connective) Noetherian Eq-rings with vanishing cotangent complex are flat. Combining this
with Pr2.19] we see formally étale morphisms of connective Noetherian Eq-rings are flat. It
also follows (as in classical algebraic geometry, see [Stal [02HM]) that formally étale morphisms
of almost finite presentation between connective Noetherian E.-rings are étale.

The functor Mprr is cohesive, nilcomplete, and admits a cotangent complex by [EC2|
Pr.3.2.2]. It follows that Mpy» (as well as all base-changes Mprr 4) also satisfy these prop-
erties as Mpgpe — Mpr is open (RmkI[L2).

Ezample 2.26 (Spectral Serre-Tate theorem). It follows from the spectral Serre-Tate theorem
([ECT) Th.7.0.1]) and Pr219 that the map [p*]: Mavar,,s, = Mprz g, is formally étale.
g7

Ezample 2.27 (Spectral Lubin—Tate theory). For a nonstationary (I8]) p-divisible group Gg
over a discrete ring Ry where p is nilpotent and whose absolute cotangent complex L, is almost
perfect, Lurie uses his de Rham space formalism to construct a map G: Spf R — Mpr ([EC2,
Th.3.4.1]) which is formally étale by [SAG Cor.18.2.1.11(2)] and Pr2I9l The p-divisible group
G is the universal spectral deformation of Gy and R its spectral deformation ring; see DfI0.14]

Ezample 2.28 (Formal spectral completions). Let X be a spectral Deligne-Mumford stack and
K < |X]| be a cocompact closed subset, then the natural map from the formal completion of X
along K ([SAG| Df.8.1.6.1]) X3 — X is formally étale by [SAG) Ex.17.1.2.10] and Pr2.19

Ezample 2.29 (Spectral de Rham space). Given a morphism X — Y of functors in P(Aff"),
one can associate a de Rham space (X/Y )qr inside P(Aff"), whose value on a connective
E-ring is

(X/Y)ar(R) = collim (Y(R) Y(F?R/I) X(T('()R/I))

where the colimit is taken over all nilpotent ideals I < myR, which we note is a discrete filtered
system; see [SAG| §18.2.1]. By [SAG] Cor.18.2.1.11(2)], the natural map (X/Y)qg — Y is
nilcomplete, infinitesimally cohesive, and admits a vanishing cotangent complex, so by Pr[Z.19]
it is formally étale.

This last example will help us study the moduli stack Mppr.

2.3 Applied to the moduli stack of p-divisible groups

Let us now apply the theory of formally étale natural transformations to the functor M\BTQ
and the categories C4, and C4 of Df[I.5l

Notation 2.30. Write ¢: CAlgY — CAlg™ for the inclusion (a right adjoint, inducing a
left adjoint (—)¥ on presheaf categories), and 7<g for the truncation functor (a left adjoint,
inducing a right adjoint 7%, on presheaf categories) CAlg™ — CAlg”. Also write 7« for the
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composition (—)¥ o 7<q (this should seldom cause confusion). For each functor M in P(Aff")
there is a natural unit M — 7Z;M induced by the truncation R — moR of a connective
E-ring R. One can also check the functor 72, M is the right Kan extension of M along ¢.

Warning 2.31. In §[Al we introduce the truncation of a locally Noetherian formal spectral
Deligne-Mumford stack 7<oX a la Lurie [SAG. §1.4.6] and we note that this is not equivalent
to 72, X.

For mostly formal reasons, we obtain a functor C4 — Ca,.

Proposition 2.32. The functor (—)%: Cy — P(Aff@)/ﬂo factors through Ca4,.

BTY 49

Our proof of the above proposition relies on §Al

Proof. By definition, a object X of C4 is qcgs and so has an affine étale hypercover iUy — X ;
see Pr[A 17l The formal spectral Deligne-Mumford stack 7<oX = X then lies in the essential
image of fDM — fSpDM and hence can be considered as a classical spectral Deligne-Mumford
stack. Moreover, X% and %0@ are naturally equivalent by Cor.[AL5l As each affine formal
spectral Deligne-Mumford stack &L, is Noetherian, X¥ = ¥ has an affine étale hypercover by
UY — x¥ = X inside fDM. By Pr[A 17 we see X is qcgs. From Cor[A5] we also see that X
is represented by 7<oX inside P(Affo), so Xy and X have the same closed points. As il(? isa
Noetherian affine classical formal Deligne-Mumford stack, we also see Xy is locally Noetherian.

It also follows from Rmk[2.T4 that Xy — /(/l\ng 4, 1s formally étale inside P(AfEY). To see the

cotangent complex L of the map Xy — M\BTﬁ 4 is almost perfect inside QCoh(Xp), consider
the following composition of maps in P(Aff")

T<0X ~ Xg = X — Mgpre 4

from which we obtain a (co)fibre sequence in QCoh(Xy) of the form:

L%/./(/I\BT%’A X - L - L%o/%

By part 3 of Pr2.19] the first term in the above (co)fibre sequence vanishes, and our desired
conclusion follows as Ly, /x is almost perfect by PrlA.12l O

To see (—)V is an equivalence, we will construct an explicit inverse.

Definition 2.33. Define a functor ®: C4, — P(Affcn)//a , by sending an object Go: Xo —
BTE, A

M\ETZ,AO of Cy4, to the de Rham space of [SAG] §18.2.1] (and Ex[2.20)):

D(Go) = (xo/ﬂBTg,A>dR

The notation ® is supposed to conjure the word “deformation”.

Theorem 2.34. The functor © factors through C4, preserves affine objects and étale hyper-
covers, and is an inverse to (—)7.
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This equivalence of co-categories fits into the general paradigm of spectral algebraic geometry—

a well-behaved site over a classical moduli stack should be equivalent to the same site over
the associated spectral moduli stack; see the example of the moduli stack of elliptic curves in
[ECIl Rmk.2.4.2] and [EC2, §7], or the affine case in [HAl Th.7.5.0.6].

To prove Th.2Z34 we will use the interaction of the de Rham space technology of Lurie
([SAGL §18.2.1]) with formally étale morphisms, and a representability theorem also due to
Lurie.

Proposition 2.35. Recall NtIZ.9. Let X be a formal spectral Deligne—Mumford stack and
X — Mprye 4 be a 0-formally étale map whose associated cotangent complex is almost perfect.
Then the following natural diagram of functors in P(Af")

(%/M\BTZ,A)dR — 5 X

iGdR l (2.36)

d £ 17
MBTI:L,A E— TgoMBTz,A

s Cartesian, the natural map X — (:{/M\BTﬁ A)dr induces an equivalence when evaluated on
discrete Eq-1ings, and Ggr is formally étale.

The above proposition and its proof generalise to a wider class of functors in P(Aff") of
which we could not find a neater formulation than our leading example—we leave the reader
to exploit the general example as she wishes.

Proof of Pri2.33. Recall the value of the de Rham space (X /Y )qr on a connective E-ring R
from (2.37)

(X/Y )ar(R) = colim <Y(R) v X(WOR/I)> (2.37)

where colimit is taken over all nilpotent ideals of T R. Define a functor (X/Y)z: CAlg™ — S
by the same formula as (2.37) above but index the colimit over finitely generated nilpotent
ideals of mpR. One readily obtains a map of functors

(X/Y)ar = (X/Y)ar

and we claim this map is an equivalence for X = X and Y = M\BTﬁ 4 In our hypotheses.
Indeed, one can copy the proof of [EC2| Pr.3.4.3] mutatis mutandis, exchanging only Ry for
X; the crucial step comes at the end and uses the almost perfect assumption on our cotangent
complex. Writing F'r; for the fibre product within the colimit of ([Z37) where X = X and

Y = Mgre 4, we place Fr s into the following commutative diagram of spaces:

FR,[ —_—> %(ﬂ'oR) E— %(W()R/I)

\L lfﬂ'oR lfﬂ'oR/I

M\BTﬁ,A(R) E— MBTZ,A(W0R> E— M\BTfL,A(ﬂ-OR/I)
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The outer rectangle is Cartesian by definition and we claim that the right square is also
Cartesian. Indeed, this follows as [ is finitely generated and hence is nilpotent of finite degree
n for some integer n = 2, and our 0-formally étale hypotheses can be sequentially applied to
the composition of square-zero extensions:

R—R/I" - R/I" ! - ... - R/I*> > R/I

This implies that the left square above is Cartesian, so the R-points of the de Rham space in
question naturally take the form

colim Mg 4(R) x  X(moR) | ~ Mg A(R) x  X(mR)

MBT’,’L,A(”OR) MBT%’L,A(”OR)

as the diagram indexing our colimit is filtered. This implies that (230]) is Cartesian. For the
second statement, we use the facts that (2.30)) is Cartesian and d induces equivalences when
evaluated on discrete rings to see that u induces an equivalence when evaluated on discrete
rings. Noting that the maps

(:{/M\BTQ,A)dR e 7'20% — X

induce equivalences on discrete rings, we see the natural map X — (X/Mpgrr 4)qr induces an

equivalence on discrete rings. Finally, to see (X/ M\BTZ, A)dR — M\BTﬁ 4 1s formally étale we
refer to Ex[2.29] or alternatively to the Cartesian diagram (2.36]), Rmk2.15] and Pr2.18 O

The proof of the above theorem exposes us to something quite useful.

Remark 2.38 (D produces universal spectral deformations). Recall that associated to a classical
p-divisible group Gg: Spf By — M\]Q;Tp Ay’ such as those in C4,, then we can ask if there
exists a universal spectral deformation of Gy and its associated spectral deformation ring; see
Df[0.I4l It follows from the proof of Pr.2.35] above, that if Gg lies in C4,, then the formal
spectrum Spf of the spectral deformation ring of Gg is equivalent to the de Rham space
(Go: Spf By — M\BTQ A)dr- By ThIZ34] we see that this de Rham space is represented by a
formal spectral Deligne-Mumford stack Spf B. This means that ®(Gy) is represented by the
universal spectral deformation of Gg. This is even true in a nonaffine sense, but we will not
need to venture further in that direction.

The following representability theorem of Lurie is crucial.

Theorem 2.39 ([SAGl Th.18.2.3.1)). Let f: X — M be a map of functors in P(Aff") such
that X is a formal spectral Deligne—Mumford stack, M is nilcomplete, infinitesimally cohesive,
admits a cotangent complex, and is an étale sheaf, and Ly \q is 1-connective and almost perfect.
Then (X/M)qr 1is represented by a formal thickeninof X.

21Recall from [SAGL Df.18.2.2.1], a morphism f: X — 9) of formal spectral Deligne-Mumford stacks is called
a formal thickening if the induced map on reductions X™% — 9™ is an equivalence ([SAG] §8.1.4]) and the
map f is representable by closed immersions which are locally almost of finite presentation.
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Importantly, we can apply this theorem to Cg4,,.

Remark 2.40. By definition the cotangent complex L = L corresponding to an object

Xo/ ﬂBT%,A
inside C4, is almost connective, meaning ¥"L is connective for some positive integer n; see
[SAG] Var.8.2.5.7 & Rmk.8.2.5.9]. However, we claim that L is actually 1-connective. Indeed,
by [SAG] Cor.8.2.5.5] we may check this étale locally on Xy, so let us replace Xy with Spf By
for some complete Noetherian discrete adic ring By. In particular, L is now an almost perfect
J-complete By-module, where J is an ideal of definition for By. As L is almost perfect, the
fibrewise connectivity criterion of [SAG| Cor.2.7.4.3] states that it suffices to check Lj is 1-
connective for every maximal ideal m < By which contains J. Moreover, considering the
maps
Spf(By);n — Spf By — Spec By

m

the composition is formally étale (as discussed for P(Aff") by ExZ28 and hence in P(Aff¥) by
Rmk[2.T4)), and the latter map is unramified, so by Pr2Z.21 we see the first map is formally étale.
We may then assume By is a complete local Noetherian ring. The morphism G: Spf By —
M\ETP Ao is formally étale, so by the converse statement in Pr.2.10, we see that By is the
classical deformation ring of G, where x is the residue field of By, which is necessarily perfect
of characteristic p by assumption. For such a pair (G, ), there exists a spectral deformation
ring B by [EC2, Th.3.1.15], as « is perfect and G, is nonstationary by [EC2l, Ex.3.0.10], which
implies moB ~ By by Rmk[0.I5l This means the map Spf By — M\BTﬁ A in P(AfF") factors
as

Spf By — Spf B — Mpr 4 (2.41)

where the first map is induced by the truncation. Associated to the above composition is the
following (co)fibre sequence of complete By-modules:

L — L

- Gy
Sof Bo Spt Bo/Mpgrp 4 Spf Bo/ Spf B

Spf B/M\BTZ;L,A
The first object vanishes as Spf B is the de Rham space for the composite ([2.41]) and such
objects always vanish; see Ex.[2.201 We then see the middle cotangent complex above is 1-
connected and almost perfect as this holds for Lgps g,/ spt g by PriA.12

Proof of Th{2.3j First, let us check ® factors through C4. Using Th[Z.39 and Rmk[2.40) we
see D(Gy) is represented by a formal thickening X of Xg; see [SAGI §18.2.2] or (ZI]). To see X
satisfies the conditions of DI[I.5], we note the following:

e X is locally Noetherian, as it is a formal thickening of the locally Noetherian Xg; see

[SAG] Cor.18.2.4.4].

e X is qcgs as a formal thickening of a qcgs formal spectral Deligne-Mumford stack is qcgs;
see Pr[A.19

e X has perfect residue fields at closed points as this is true for Xy and Xg = 7<oX has the
same residue fields as X.
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e G is formally étale, as L vanishes, either by Ex[2.29 or Pr[2.35

36/'M\BTQ,A

Notlce that by [SAGL Cor.18.2.3.3], if X ~ Spf By is affine, then the image of any G¢: Spf By —
MBTp )O
(— )OBD is equivalent to the identity as Gy — ©(Gy) induces an equivalence on discrete rings
by Pr2.35l For the other composition, part 1 of Pri2.19] states that the following diagram of
spaces is Cartesian for every connective Eq-ring R:

in C4, under ® is also affine. To see © is inverse to (—)", notice the composite

R) — 5 X(mR)

x|
Je l

Mprr A(R) —— Mgpre 4(moR)

By Pr2ZI9, we then see the natural map ®((G)%) — G is an equivalence in C4. Finally, to
see ® preserves étale hypercovers, we first note this may be checked étale locally, so take an
étale hypercover Spf C; — Spf By in C4, and write Spf C'* — Spf B for its image under ©.
From the above, we know that Spf C'* — Spf B is an étale hypercover on zeroth truncations,
so it suffices to see each map B — C" is étale as morphism of Eq-rings. Two applications of
Pr 235 show the commutative diagram in P(Aff")

2). s X > MBTﬂ,A

L] l

* 0 * Y
200 — TE0X0 — TEgMpTE 4

consists of Cartesian squares, hence Spf C"™ — Spf B is formally étale by Rmk[2.TH and base-
change Pr2.I8 It follows from Rmk[225] that B — C™ is étale as a map of Ex-rings, hence
also as a map of adic Eo-rings. O

Finally, let us solidify some of the connections between formally étale morphisms and
universal deformations. The following is analogous to Pr[2.I0] and our proof follows that of
[EC2| Pr.7.4.2] (we will even copy some of Lurie’s notation).

Proposition 2.42. Recall Nt[0.9 Let G: Spf B — M\BTﬁ,A be formally étale map where B is
a complete adic Noetherian Eq-ring with ideal of definition J. Fiz a mazimal ideal m € mgB
containing J such that moB/m is perfect of characteristic p. Then the p-divisible group Gpgy
is the universal spectral deformation of G, (in the sense of [EC2, Df.3.1.11]), where k is the
residue field of By.

Proof. As k is perfect of characteristic p, combining [EC2, Ex.3.0.10] with [EC2, Th.3.1.15]
one obtains the spectral deformation ring Rg\ = B"™ with a universal p-divisible group G"".
By definition Gp; is a deformation over G ([EC2| Df.3.0.3]), so from the universality of
(B'™,G"™) we obtain a canonical continuous morphism of adic E-rings B™ <% BA = B
inducing the identity on the common residue field k. By [EC2, Th.3.1.15], we see B" belongs
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to the full co-subcategory C of (CAlg,y),. spanned by complete local Noetherian adic Ec.-
rings whose augmentation to x exhibits x as its residue field. To see « is an equivalence in
this co-category, consider an arbitrary object C of C and the induced map

~ *
Map(5al, (B, ) = MapS3l, (B, C).

By writing C' as the limit of its truncations we are reduced to the case where C' is truncated,
and by writing mgC' as a limit of Artinian subrings of moC we are further reduced to the case
when 7C' is Artinian In this situation, when have a finite sequence of maps

C=Cp—->Cph1—--—>C,—->Cy=k

where each map is a square-zero extension by an almost perfect connective module. Hence, it
would suffice to show that for every C' — k in C, and every square-zero extension C' — C of C
by an almost perfect connective C-module, with C' also in C, the natural diagram of spaces

Mapgyl, (B, C) —— Mapigl, (B™,C)

l l (2.43)

Map{at, (B, C) —— Mapia, (B™,C)

is Cartesian, the C' = k case being tautological. As B is the m-completion of By, then for any
D in C (which in particular is complete with respect to the kernel of its augmentation D — k)
the map

MapiShly (B, D) = Mapily, (Bn, D)

induced by By — B , is an equivalence. Moreover, for any D inside C we have the following
natural identifications:

Map(SRl,, (B™. D) > _fib (Map(SRi, (B™, D) — Mapihy, (B™, x))

Bun_ .

~ fib ((SpfB")(D) — (Spf B")(k)) =~ fib (Defg, (D) — Defg, (x))

~ Defg,.(D,(D — k)) ~BTE2(D) x {G}
BT (x)
The first equivalence is a categorical fact about over/under categories, the second is the iden-
tification of the R-valued points of Spf B"™ ([SAG, Lm.8.1.2.2]), the third is from universal
property of spectral deformation rings ([EC2, Th.3.1.15]), and the fourth and fifth can be
taken as two alternative definitions of Defg, (D, (D — k)) ([EC2, Df.3.0.3 & Rmk.3.1.6]).
These natural equivalences show (2.43)) is equivalent to the upper-left square in the following

22Qur conventions demand that local adic Ec-rings have their topology determined by the maximal ideal.
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natural diagram of spaces:

MapgRl, | (Bm,C) —— BTH(C)  x  {G.} —— BT(C)™

l BTY, (k)
Map@™ (B O BT?(C G BT?(C)> (2.44)
apEatg,, (Bm; ) —— BT ( )BT;f( ){ x} — BTL(O)

~

{Gr} ———— BT}(x)

The bottom-right square and right rectangle are both Cartesian by definition, so the upper-
right square is Cartesian. It now suffices to see the upper rectangle is Cartesian, so we consider
the following natural diagram of spaces:

~

(Spf B)(C) (Spf Ba)(C)
BT?(C)> J BT%(C)*
(Spf Buw) (k) (Spf Bu) (k)

\* \*

The top square is Cartesian as Spf B — M\BTfL,A (and hence Spf By, — M\BT’,’“A) is formally
étale, and the bottom square is trivially Cartesian. Taking the fibres of the vertical morphisms
(at the given map By, — k) we obtain the upper rectangle of (2.44]), whence this upper rectangle
is also Cartesian and we are done. U

3 Orientations of p-divisible groups

The study of orientations of p-divisible (and formal) groups over Eq-rings is the focus of
[EC2]. Using Lurie’s work, we construct a “derived stack” classifying oriented p-divisible
groups, M%YTQ, defined on (not necessarily connective) p-complete E-rings. The technical
complications of this section stem from our movement between presheaves on connective and

general Eq-rings.

Let us suggest that the reader keeps a copy of [EC2] in her vicinity when reading this
section.

36



3.1 The sheaf of oriented p-divisible groups

Recall the concept of an orientations of a formal grou over an E-ring, as detailed in [EC2],
§1.6 & 4.3).

Definition 3.1. Let R be an E-ring and G be a formal group over R. A preorientation of G
is an element e of QQ(QOOG)(T>OR) Altnertaively, assuming now that R is complex periodic
(@), then an orientation of Gisa morphism of formal groups GQ — G over R, where GI% is
the Quillen formal group of R; see ([Il). Such a preorientation e: GQ — G is an orientation
if it is an equivalence of formal groups over R; see [EC2l Pr.4.3.23]. Denote by OrDat(G) the
component of QQ(QOOG)(TzoR) consisting of orientations—by definition this is empty if R is
not complex periodic. An orientation of a p-divisible group G over a p-complete E-ring is
an orientation of G°, its identity component (I0).

Recall that each time we associate to a functor F': C — %aty, (resp.C — S) a coCartesian
(resp. left) fibration SC F — C, or visa versa, we are using the straightening—unstraightening
adjunction of [HTT09, Th.3.2.0.1]—the oo-categorical Grothedieck construction.

Definition 3.2. 1. Let M}, : CAlg — S be the composite of 7>9: CAlg — CAlg®™ and

Mprr; see [EC2, Var.2.0.6]. Define a functor MBTP : CAlg — S analogously.

2. Denote by CAlg? the full co-subcategory of CAlg consisting of p-complete Eq-rings, and

write Aff? for (CAlg?)°P. Let M}y, : CAlg? — S be the composition of M}, with the

inclusion CAlg? — CAlg. Define a functor BTp : CAlgP — S analogously.

3. Let R be a p-complete Ey-ring. Write OrBT?(R) — BTP(R)™ for the left fibration
associated to the following functor (JEC2, Rmk.4.3.4]):

BT?(R)™ - S G — OrDat(G°) = OrDat(QG)
Define OrBT? (R) analogously.

We restrict to p-complete Eq-rings above as we will often use [EC2, Th.2.0.8] to associate
to a p-divisible group G its identity component G°. This is not strictly necessary, as demon-
strated by [EC3| §2], however, we only care about the p-complete case to prove ThL.Gl

Our goal here is to define a moduli functor Mg, : CAlg? — S sending R to OrBT?(R)=,
a sort of iterated Grothendieck construction. To do this honestly in the language of co-
categories, we will construct the associated left fibration; the reader is invited to skip the
following technical construction for now, and only return if she is unconvinced by our heuristics.

Recall from [EC2, Df1.6.1 & Var.1.6.2], a that a formal group over an Eg-ring R is a functor
G: CAlgC" — ModZz' whose post-composition with ModZ' — S is a formal hyperplane over 7>oR in the
sense of [EC2 Df.1.5.10]. The latter can be identified as the essential image in P(Aff7] g) of certain cospectra
of smooth coalgebras; see [EC2| §1.5].
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Construction 3.3. Let CAlg? be the full co-subcategory of CAlg? spanned by those p-
complete complex periodic Eo-rings. Using [EC2, Rmk.1.6.4], define the functor Mpgroup(—)

FGroup(—)
—_—

CAlgt, S R — FGroup(R)™

sending a p-complete E-ring to the oo-groupoid core of its associated co-category of formal
groups ([EC2| Df.1.6.1]), and write F': Mpgroup — CAlgE, for the associated left fibration. The
functor F' has a section Q@ which sends a p-complete complex periodic Eo-ring R to its Quillen
formal group (A}% ([EC2, Con.4.1.13]); which is functorial as taking the R-homology and then
cospectrum are functorial. Let Morrgroup be the comma co-category (QF | id MFGmup), in
other words, there is a Cartesian diagram inside % atq,

Al
MOrFGroup —_— (MFGroup)

l l(s,t) (3.4)

(QF xid)oA
MFGroup MFGroup X MFGroup

where Al is the 1-simplex, A is the diagonal map, and (s, t) sends an arrow in MgGroup to its
source and target. More informally, an object of Mo,FGroup is @ complex periodic p-complete

E,-ring R, a formal group G over R, and a equivalence é% ~ G of formal groups over R.
By [EC2, Pr.4.3.23], such a equivalence of formal groups over R is precisely the data of an
orientation of G, hence the name OrFGroup. The functor

MOrFGroup - MFGI‘OUpa <R7 éa 6) — (Ra é) (35)
is a left fibration with associated functor
MEGroup = S (R, @) — OrDat(é).

Indeed, this assignment is a functor by [EC2, Rmk.4.3.10] and the above identification comes
by contemplating the fibre product of categories

{(Ra é)} X MOrFGroup = MapMFGroup(R)(é%7 é) =~ OrDat(é),

MFGroup

where the second equivalence again comes from [EC2, Pr.4.3.23]. Now, write G: M, —
CAlg?, for the left fibration associated to the following composition:

inc. MBS ~
pre(—): CAlgt, —> CAlg? B S R — BTP(R)~

The natural assignment sending a p-divisible group G over a p-complete E-ring R to its iden-
tity component induces a functor (—)°: M{E» — Mrpcroup between categories over CAlgE .
Define an co-category Mo,gr by the following Cartesian diagram of co-categories:

MOrBTT’ ? MOrFGroup

| !

(7 [e]
CBOTP ” MFGroup
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As [B3) is a left fibration, then ./\/lOrBTp — Mg is also a left fibration by base-change.
Similarly, we define the co-category BTp, which comes with a natural map BTp — MPr»

associated to the inclusion BT (R)~ — BTP(R)=. Finally, define a left fibration Mg,grr —
Brr by the Cartesian diagram in €ate:

MOrBTfL 7 MOrBTP

| |

co [¢e)
gy~ Mpr

In total, we have a left fibration
MorpTr — Mp1r — CAlgg,

and unravelling the construction above, one can calculate the functor associated to this com-
position:

CAlgtl, — S R — OrBT?(R)
Simarily, we have Mg, grr — CAlgh, and its associated functor.

Definition 3.6. Given a morphism A — B in CAlg?, then if A is complex periodic, we see B
is also complex periodic; see [EC2, Rmk.4.1.3]. Define a functor M%p,: CAlg? — S first on
CAlg?, as the functor associated to the composition of left fibrations

MOrBTp - MCBOTP - CAlgIc)o

defined in Con.33] and then as the empty space on objects in CAlgP who are not complex
periodic. More informally, M, is the assignment:

R {OrBTp(R): if R is complex periodic

1] if R is not complex periodic

Define MY » by the Cartesian square in P(Aff?)

or or

[ Jo
un un
B, VIBTP

where right  is the functor naturally induced by Con[3.3]

The notation {2 is reminiscent of the word “orientation”. sAt present, we have constructed

a presheaf MBTP’ and a routine check shows this functor is a sheaf.

Proposition 3.7. Let R be an Ey-ring and n a positive integer. Then the functors
Tp, MEE BT MBTP, %rTgi CAlgp )

are all fpge (hence also étale) hypersheaves.
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As a first step, let us state a slight generalisation of [EC2, Pr.3.2.2(5)]; the proof is exactly
as Lurie outlines in ¢bid but with fpqc hypercovers replacing fpqc covers.

Lemma 3.8. The functors Mprr, Mpre : CAlg™ — S are fpge hypersheaves.

Proof of Theorem [3.7. To see MJT» in P(Aff?) is an fpgc hypersheaf, it suffices to see MB7»
in P(Aff) is an fpqc hypersheaf as the inclusion CAlg? — CAlg sends fpqc hypercovers to fpqc
hypercovers. To see M37p is an fpqc hypersheaf, take an E-ring R and an fpqc hypercover
R — R*. From Lm0, (05]), and Lm[B38 we see that the natural maps

2w (R) = Mpre(150R) —> Mpre(lim (759R)®) — lim Mprr ((750R)*) = lim M¥w (R®)

are all equivalences. Hence Mp%p, and also MJt», are fpqec hypersheaves. It follows that
EHT,;L is also an fpqc hypersheaf as it is an open subfunctor of M{t,»; see Remark
By Lm[0.3] it suffices to see that the functor MJ%,: CAlg? — S is an fpqc hypersheaf,
and that the functor F' defined on objects by

(3.9)

P(R)>
F: CAlgP — (Caty))s, R~ ( BT?(R) S )

G — OrDat(G°)

is an fpqc hypersheaf; to define this functor honestly, one can use the standard techniques as
done in Con33l We have just seen this for M}, so it suffices to see that ([B.9)) is an fpqc hy-
persheaf. Again, write R — R* for an fpqc hypercover of R in CAlgP. As BT?(—): CAlg™ —» S
is an fpqc hypersheaf (LmB.8]), we obtain the following natural equivalence from the definition
of OrDat(lim R*):

BT?(lim R*)> — S ~ ([ limBT?(R*)> — S
( G — orDat(G°)>_’< G. — OrDat((limG.)°)> (3.10)

Above, we have written G, for the base-change of G over R®. Using the characterising property
of the identity component (as seen in [EC2, Th.2.0.8]), we take some A € £ (using the notation
of [EC2, Th.2.0.8] and (I0))) and obtain the following sequence of natural equivalences where
all fibres are taken over the identity element:

(lim G,)°(A) = fib(lim (G.)(A) — lim (G,)(A™)) ~ lim fib(G4(A) — G.(A™%))
= lim (G2(A)) <= (lim G2)(A)

The first equivalence comes from the fact that fibres commutes with small limits and the
second equivalence from the fact that limits in functor co-categories are computed levelwise.
From this we see that (3I0) is naturally equivalent to

<1imBTP(R°)= - S )

G. — OrDat(lim (G°).) (3.11)

where (G°), is the base-change of G° over R*®. For a fixed pointed formal hyperplane X over
an Eq-ring R, the functor

CAlgr — S, A — OrDat(X4)
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is representable by [EC2|, Pr.4.3.13], hence it commutes with small limits. In particular, this
implies that the expression (B.11]) is naturally equivalent to

IimBT?(R*)~ — S . .
< G. — lim OrDat(G9) ) = lim F(R)
Combining everything, we obtain our desired natural equivalence F(R) = lim F(R*). The
corresponding statement for BTp follows as it is a fibre product of fpqc hypersheaves. [

3.2 Orientation classifiers

It is our goal now to try and understand universal orientations and their relation to M.
We would like to formally construct a functor OF ™ which we think of as €,
this construction by first restricting ourselves to afﬁnes.

BTY "

BTp We perform

Definition 3.12. Recall Nt[0.9 Write CZ% (resp. C4T) for the full oo-subcategory of C4, (reps.
C4) spanned by affine objects.

We will now define a CAlg-valued presheaf Dan on C as a composite of certain functors,
which we describe now.

Definition 3.13. Write Aff/M,m for the co-subcategory of P(Affp)/Mun , spanned by affines.

BTP Tn

1. Define a functor a: Ca — AffY by sending an objec G: Spf B} — M\BTp A

/Mun

first to the composite with the canomcal maps MBTP A — Mpre, then from Spf B} —

Mpre toits algebmzsatzon. G#&: Spec By — Mprr which naturally lives in P(Affcn’p)
as my, and hence J, contains p, and then we apply 7%,: P(AffP") — P(AffP).

2. Define a functor I'(24(—)): (Affl/)Mun )°P — CAlg by pullback along : MY = M

followed by the global sections functor (Aff7 Mo,

BT%
)Op — CAlg?, which is just a forgetful

functor.

Let DBTP : (C4)°? — CAlg be the composition of a followed by I'(Q4(—)), which is an étale
hypersheaf as a sends étale hypercovers to étale hypercovers by construction, and MJ5, and

Mgr» are étale hypersheaves by Pr. Bl We also define DBTP' C¥ — CAlg by right Kan

extensmn along the inclusion (Caﬂ)‘)p COp. As a right Kan extensions preserve limits, we
see DOTp is an étale hypersheaf.

24Recall that the formal spectrum Spf B is equivalent to Spf B} where J is a finitely generated ideal of
definition for B; see [SAG, Rmk.8.1.2.4].

Z5Recall from [ECZ, Th.3.2.2(4)], the map Mpr»(Spec B) — Mprs (Spf B) is an equivalence of spaces if B
is complete with respect to its ideal of definition. We call any G*&: Spec B — Mapr» the algebraisation of the
corresponding G: Spf B — Mptr. This also implies the natural map Mpgyr (Spec B) — Mgrr (Spf B) is an
equivalence for B which are complete with respect to their ideal of definition, and we likewise use the phrase
algebraisation.
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Remark 3.14. The right Kan extension defining 9., on C4 can be made more explicit.
Indeed, by assumption, each object X in C4 is qcgs, so by Pr[AI7 we have an étale hyper
cover 2, — X such that each ),, = Spf B,, is affine. The fact that O}, is an étale hypersheaf
(as this is true étale locally on affines) then gives us a formula for BI? (%):

or ¥} ~ i Daff 0 aff 1

prz (X) ~ lim (O%1e (Spf B”) = Ogrw (SpfB™) = -

By Pr3.18 below, the terms in the above limit take a known form.

The above is a formal construction of an étale hypersheaf D% : C — CAlg, however,
we would like to be able to calculate with this functor as well.

Proposition 3.15. Given a p-complete Ey-ring R and an associated p-divisible group G of
height n, then there is a natural equivalence of p-complete Eq-rings

(Q4(G)) ~ Do
where the latter is the p-completion of Oge, the orientation classiﬁe@ for G°.

Proof. From the definition of I'(€2,(—)), it suffices to show that the following natural square
of presheaves of p-complete Eq,-rings is Cartesian

SpecODgo —— MZ

l l” (3.16)

G
Spec R —— Mg
Fix a p-complete E,-ring A and evaluating the above diagram at A. If there are no maps of
p-complete Eq-rings R — A, then the two left-most spaces are empty and we are done, so
let us then fix a map ¥: R — A. We then note the following chain of natural equivalences
between the fibres of the vertical morphisms from left to right:

Spec Do (A) ~ Mapcaig(Dae, A) ~ OrDat(G3) ~ {1} Munx " B2 (4)
BTH

The first equivalence follows as p-completion is a left adjoint, the second from [EC2, Pr.4.3.13],
and the third from the construction of €2; see Con[3:3l As these equivalences are natural in A,
this shows (B.10]) is Cartesian. O

Now that we can calculate D%er when restricted to affines, we are close to definition ﬁgofp
and proving Th[L.6l

26Recall from [EC2, §4.3.3], for a formal group G over an Ex-ring R, the orientation classifier of G is the

corepresenting R-algebra for the functor CAlg, — S A OrDat(éA).
2"We are abusing notation here and writing Spec for the Yoneda embedding Aff? — P(AffF).
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4 The sheaf O 1 and a proof of Th[L@

The definition of & e mirrors Lurie’s definition of ¢*°P ([EC2, §7.3]) and the proof that this
definition satisfies Thm also follows Lurie’s proof.

Definition 4.1. Fix an adic E-ring A as in Nt.[0.9 Let ﬁ]gojlfp be the étale hypersheaf on
C4, defined by the composition

or

O
cP 25, oop 2T, CAlg (4.2)

or in other words, first one calculates the universal spectral deformation of Gg: Xy — /(/l\@Tp Ay

giving D(Gyo) = G (Rmk[Z3R), then the identity component G° of G, and O};r, (Go) is then
the p-completion orientation classifier of G°; we will see in the proof of Th. E[ii] below that
this p-completion is unnecessary. It follows from Th2.34] and DfBI3] that ﬁto ™ is an étale
hypersheaf.

With our sheaf in hand, we can prove Lurie’s theorem; the following follows the outline of

the proof of [EC2, Th.7.0.1].

Proof of ThIL.B. We have an étale hypersheaf &™°F "1 on Cy, from Df[LT]l It remains to show
that when restricted to objects Gg: Spf By — MBTP Ao

complete with respect to its ideal of definition J, the Eoo ring £ = ﬁ}go,ﬁp (Go) has the expected

properties 1-4 of ThI.6l As mentioned in DfZT] &, Tp can equivalently be described as ap-
plying the functor ® followed by BTp Under ©, the’ object Gy is sent to the affine object

G: SpfB — M\BTZ,A of Cjﬁ such that mgB ~ By and Gy, is equivalent to Gy over Spf By;
see Df233l By PrBI5 and ([£2]), we see £ is the p-completion of the orientation classifier of
the identity component G° of G, denoted by Dgo. First we will argue that the Eq-ring Ogo
satisfies the desired properties 1-3, and then for £.

in caff ‘o> where we may assume By is

Firstly, note that as Oge is an orientation classifier, [EC2, Pr.4.3.23] states that Oge is
complex periodic (we will discuss Landweber exactness at the very end). It follows that &£ is

complex periodic as it receives an Eg-ring homomorphism Oge — £ from a complex oriented
one; see [EC2, Rmk.4.1.10].

To see conditions 2 and 3 (except for the identification of mor&), it suffices to show the
formal group G° is balance over B. Indeed, as we have proven condition 1 of Th[I.6] which
states that X?9Oqeo is a locally free of rank 1 so each mopOge is a line bundle over moOgo. If
G° is balanced over B, then each 7m0 o is complete with respect to the ideal of definition J
of mpOqe ~ By, s0 Dgo itself is J-complete, hence also my4-complete and p-complete. This
would also imply that & ~ Dgo. To show G° is balanced over B, we use [EC2, Rmk.6.4.2]

28Recall from [EC2, §6.4.1], that a formal group G over a connective Eo-ring R is balanced if the unit map
R — Og induces an equivalence on 7o and the homotopy groups of Og are concentrated in even degree.
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(twice) to reduce ourselves to showing that G%. is balanced over By, for every maximal ideal
m € mgB ~ By; these ideals contain J as By is J-complete. By Pr[Z42, we see Gp, is the
universal spectral deformation of G, where & is the residue field of BY, and a powerful state-
ment of Lurie [EC2, Th.6.4.6] then implies the identity component GOBQ, of Gp, is balanced.
Hence Ogeo ~ & satisfies conditions 2 and 3 (except for the identification of 7o E).

For condition 4, [EC2, Pr.4.3.23| states that the canonical orientation of the p-divisible
group G over £ supplies us with an equivalence (A}? = G° between the Quillen formal group
of £ and the identity component of G. In particular, this implies the classical Quillen formal
group é?o is isomorphic to the formal group G after an extension of scalars along the unit
map By ~ mgB — €. As G° is a balanced formal group over B, this unit map is an isomor-
phism, giving us property 4.

To round off condition 3 and calculate mo,E, we note this follows from the facts that £ is
weakly 2-periodic, the p-divisible group G over £ comes equipped with a canonical orientation
and hence a chosen equivalence of locally free £-modules of rank 1 3: wg — X 72&, and the
equivalence of Bp-modules mowg =~ wg,:

)®k‘ ~ Bk

o€ = (m€)®F ~ (mowg Go

Finally, to finish condition 1 and the Landweber exactness of £, we appeal directly to
Behrens—Lawson’s arguments in [BL10, Lm.8.1.6 & Cor.8.1.7], as they are checking the same
conditions on a sheaf with the same properties as ours above. O

Remark 4.3. Let us close this section by stating that there have, of course, been other iterations
of Lurie’s theorem; see [BL10, Th.8.1.4] and [Beh20, §6.7]. The statements made there are
certainly not aesthetically identical¥ to our Th.L8 however, we believe that the section to
follow, detailing applications of Lurie’s theorem, justifies that all available statements of Lurie’s
theorem apply to the same set of examples. In particular, as we can construct Lubin—Tate
theories, TMF, and TAF, all using ThII.6l, we do not find any reason to compare all available
statements in too much detail—neither would we know how to.

5 Applications of Lurie’s theorem

To advertise Lurie’s theorem to a wider audience and lay (known) groundwork for future
applications, let us now discuss how the titular theorem of this article can be used. A vast
majority of the applications below can be found in either [BL10], [EC2], or [Beh20, §6.7], in
some form.

Phrases such as “(locally) fibrant in the Jardine model structure” can be translated to “étale hypersheaf”,
and compatibility with checking fibres are universal deformation spaces and the adjective “formally étale” is
explained in [Beh20, Rmk.6.7.5]; see Pr2.10] for a similar iteration of that idea.
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5.1 Complex topological K-theory

As our first application of ThILL6, we would like to prove that one of the simplest p-divisible
groups gives us an example of an E-ring near and dear to stable homotopy theory: complex
topological K-theory. To define the Ey-ring KU, we will follow the construction of [EC2]
§6.5], which we will repeat here for the reader’s convenience. Then we will discuss some
specific classes in KU-cohomology.

Construction 5.1. Denote by Vectg the l-category of finite-dimensional complex vector
spaces and complex linear isomorphisms. Considering this as a topologically enriched cat-
egory with a symmetric monoidal structure given by the direct sum of vector bundles, the
(topological) coherent nerve N(Vectg) is a Kan complex with an Eg-structure. The inclusion

H BU(n) — N(Vectg)

n=0

classified on each summand BU(n) by the universal n-dimensional complex vector bundle, is
an equivalence of spaces and the Eq-structure restricts to one on the domain. The group com-
pletion of this E-space is the zeroth space of a connective spectrum ku, connective complex
topological K -theory, and the natural group completion map can be identified with the map

¢ [ [BU(n) = N(Vectg) — Q% ku =~ Z x BU

n=0

sending each BU(n) component to {n} x BU via the canonical inclusion, which represents the
universal complex vector bundle &, over BU(n). There is also a multiplicative Eq-structure
on N(Vectg) given by the tensor product of vector bundles, which also gives the connective
spectrum ku the structure of a connective Eq-ring; see [GGN15, Ex.5.3(ii)]. The map & is
also a morphism of E-spaces with respect to this multiplicative Eo-structure. By identifying
CP® ~ BU(1) as a summand of N(Vectg ), then CP® inherits the multiplicative Eq,-structure,
as the tensor product of line bundles are line bundles. As ¢ restricted to CP® lands in the
identity component of Q% ku, that is {1} x BU, we obtain a map of Ey-spaces CP* —
GL; (ku). Under the adjunctio

X¥: CMon < CAlg: GL;

we obtain a morphism of E-rings p: XPCP* — ku. Furthermore, the based inclusion
t: 82 ~ CP? —» CP® post-composed with the unit n: CP® — Q®X®CP® followed by Q%
of the inclusion into the first summand j: ¥°CP* — Y*CP* @ S ~ XTCP¥ gives us
an element § inside mXPCP*. The image of S under the map p is also called § € maku,

30Recall the (%, GL1)-adjunction (see [ABG™14, §2] for a modern reference) is the composite of two
adjunctions:
27
CMon®™® 25 CMon = CAlg
ér, Q®
The superscript (—)&® denotes those Eg-spaces whose 7o is a group. The functor GL;: CMon — CMon®®
sends an Ex-space X to the subspace GL;1 X spanned by those path components of X with inverses in moX.
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which one can identify with the element [v;] — 1 inside ﬁlO(CPl), where 7, is the tautological
line bundle over CP'; a consequence of Pr52l We define the Eq-ring of periodic complex
topological K -theory as the localisation KU = ku[3~!]; see [EC2, Pr.4.3.17] for a discussion
about localising line bundles over Eq,-rings, and [HA| §7.2.3] for the Eq-ring case.

Proposition 5.2. The composition
cp* L g@necp” £, grnrop® 228 0%k

~0
represents the class [£1] — 1 in ku (CP%), where & is the universal line bundle over CP®.

Let us recall that for a spectrum F and a based space X, one defines the unreduced and
reduced E cohomology groups of X as the abelian groups:

E°(X) =m0 Mapg, (57X, E) ~ mo Mapg (X, Q7 E)

E%(X) = mo Mapg, (5% X, E) ~ 7o Mapg, (X, Q°E)

Let us also state a lemma we will use regarding the (X%, GL;)-adjunction; we only state it to
keep track of base points.

Lemma 5.3. If R is an Eqo-ring, then the composite
GL(R) — GLy(R), 5 Q*SPGLy (R) 5 QR

is homotopic to the inclusion GL1(R) — Q®R, where e: X GL{(R) — R is the counit of the
(X9, GL;)-adjunction.

Note that the unit and the counit appearing in the lemma above do not come from the
same adjunction.

Proof. The (X%, GL;)-adjunction is a composite of the adjunctions

inc. Eof
CMon®? =2 CMon 2 CAlg
GL; Q©
so the counit e: X GL;(R) — R factors as the composite X GL;(R) — XTQ*R — R where
the first map is induced by the defining inclusion GL1(R) — Q® R and the second is the counit
of the (X7, Q%)-adjunction. This implies the diagram of spaces

GL;(R) —— GLy(R)y —— Q*YPGL(R)

! | |~

O*R —— (Q®R), — QPSPQPR — Q%R

commutes, where the vertical maps are all induced by the defining inclusion. Similarly, the
first two maps in the bottom composition compose to the unit of the (X5, 2*)-adjunction on
Q% R, and by the triangle identity for this adjunction, the bottom horizontal composite is the
identity. This is what we wanted to prove. O
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Proof of Pri5.2. Consider the natural commutative diagram of spaces

CP¥ —— CP?Y — X Q®YPCP”

Q%p
5‘BU<1)l ElBU(1>+l QE?S\BU(l)l \

GL; (ku) — GLj(ku)y —— Q®SPGL (ku) 2% Q% ku

where € is the counit of the (X%, GL1)-adjunction. By Lm[5.3] the bottom horizontal composite
is the inclusion GLj(ku) — Q®ku. This implies the composition CP* — Q% ku above
corresponds to the morphism {|gy): CP* — Q% ku which lands in {1} x BU defining the
universal line bundle &; over CP®. As this morphism represents [¢1] in ku’(CP%), it follows
by the (X%, Q*)-adjunction that p also represents the element [£;]. Our desired composite is
then represented by the image of p under the map

~0
j*: ku’(CP®) — ku (CP®).

To identify j* we write down the split (co)fibre sequence of spectra

PCP* L NPCP* ~ X°CP* @S L §

where ¢ is induced by the unique map of pointed spaces CPY — 59 which is surjective on
mo. We can calculate ¢*: kuo(*) — ku CP® it induces a map of rings on ku’-cohomology,
and kuo(*) ~ 7, so ¢* is the unique map. More explicitly, ¢* sends an integer n to the n-
dimensional virtual vector bundle on ku® CP*. One can also calculate that the splitting i of
¢ induces a map i*: ku’ CP® — Z sending a virtual vector bundle to its dimension. Indeed,
this can be seen geometrically, as a class z: CP* — Z x BU is sent to the composition
¥ — CP® — Z x BU which only remembers which Z-component the original x landed in, ie,
its virtual dimension. We can then identify the map p* induced by the splitting p of j with
the inclusion of the kernel of i*, ie, the inclusion of those virtual vector bundles over CP®
with dimension 0. We rather formally see that j* can then be identified by the formula:

j¥(x) = x — ¢*i*(z) = © — dim(z)

Back to the question at hand, we wish to calculate j*(p). Using the above yields our desired
conclusion:

7*(p) = j*([&]) = [&] -1 O
The consequence of the above is that we obtain the usual complex orientation on KU.
Remark 5.4. The map j: X°CP* — XPCP® defines a class

j € (E2CP%)°(CP®).
Let us also write j € go(CPOO) for the image of the above element under the localisation map:
YPCP® - SPCP*[p 7! =&
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A complex orientation zg can be defined as z¢ = % € £2(CP™) as we have 1*(zg) = B-7! = 1.
It follows that the image of x¢ inside KU under the map

plB71]: € = 2PCP B! - ku[f'] = KU

is a complex orientation zky of KU, as complex orientations are sent to complex orientations
by morphisms of Ey-rings; see [EC2, Rmk.4.1.3]. This complex orientation on KU is also the
orientation we were all expecting, as by Pr[5.2] we obtain the equalities

20 = pa(e) = [“T‘l e K0'(CP®)

where & is the universal line bundle over CP®.

With this geometric definition and discussion of KU, let us define an algebraic object to
compare it to.

Definition 5.5. Let M;?oo denote the multiplicative p-divisible group over SpecZ, whose R-
valued points (for a discrete ring R) are defined as:

u]?n(R) ={zeR|2" =1}
This lifts to a p-divisible group pp» over SpecS by [EC2, Pr.2.2.11].

Proposition 5.6. The object u;)w over Spf Z,, is an object of Cz, (for n =1), and there is a
natural equivalence of Eg-rings

Opyro (te) ~ KUp.

One can view this proposition as a special case of the Lubin—Tate example Pr[5.12, but
a more direct comparison to the geometric discussion above is also possible using Lurie’s
machinery from [EC2| §6.5]. Our argument below is a combination of [EC2, §3-4 & 6.5].

Proof. The fact that ,u;?oo lies in Cz, follows immediately from Pr.[L§ and Pr2T0 Alterna-
tively, one can view this as a special case of Pri5.12]

We now follow the argument of Lurie from [EC2]. First, notice the natural equivalence
’D(u;?oo/Spf Z,) ~ (pp=/SpfS,). Indeed, [EC2, Cor.3.1.19] states that the universal spectral

deformation of u;?oo over Zj, is o over S, which is identified with ”D(ufw /Spf Z,,) via Rmk[Z38]

By [EC2, Pr.2.2.12], we see that the identity component of pi,» over SpfS,, is precisely the
multiplicative formal group ém over Spf S,,. It remains to compute our desired Eq-ring then
takes the form of the orientation classifier £ of ém over S,. By the p-completion of [EC2|
Pr.4.3.25], the preorientation classifier of ém over S, is EfCP;O. Taking a p-completion in
Con[5.T], we obtain a map of Ey-rings p,: XY CP}° — ku,,. Similarly, by [EC2, Cor.4.3.27], the
localisation ¥ CP}’ [871], where B € maXPCP® is the Bott element of Con[5.1] (we copied the
definition from [EC2, §6.5]), is the orientation classifier £ we are after. Again, from Con[5.1]
this naturally admits a map of E-rings p,[37!]: € — KU,. We claim this map p,[37!] is an
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equivalence.

Now we follow [EC2, §6.5]. As pp=/S, is the universal spectral deformation of both

Mfw/Spf Z, and Mfw/Spec F, (Pri2.42), it follows from [EC2, Th.6.4.6] that G, is balanced
([28) over S,. This and the complex periodicity of € yield an isomorphism of graded rings

Z,[64] 5 mé

defined by the invertible element 5 € mo&€. The p-completion of the classical Bott periodicity
theorem then states the composite Z,[3%*] — 7.KU, through p,[37!] is an equivalence, hence
pp[B71] is an equivalence. O

There is a standard trick to obtain the integral Eo-ring KU from ﬁgiﬁp (Mfoo) by purely
1

algebraic methods.

Remark 5.7. Consider the symmetric monoidal Schwede—-Shipley equivalence of co-categories
Modpr ~ D(R) (5.8)

where R is a discrete commutative ring; see [SS03] or [HAL Th.7.1.2.13]. Replacing R with
Q, we note that the E,-Q-algebra kuq, the rationalisation of ku, has homotopy groups
e kuq ~ Q[f], for |B| = 2. Define a map of Q-cdgas Aq[z2] — kuq from the free Q-cdga
on one element in degree 2 to kuq, defined by the element 8. This is easily seen to be a
equivalence of Q-cdgas, and moreover, one obtains an equivalence upon localisations at xo

Aq[z3'] = kug[B~'] ~ KUq

where KUq is the rationalisation of KU. Carrying out the same construction in CAlg, we
obtain a morphism A[x%l] — KU, of Ex-rings from the free E,-ring on a single invertible
generator in degree two to KU, defined by 3 € maKU,,. Taking the product of these morphisms
over all primes p and rationalising gives a morphism in CAlgq

0: Aqlz3'] — (H KUp>
p Q

where we note that (A[z3'])q is naturally equivalent to Aq[z3']. One then obtains KU from

the following Hasse Cartesian square of Eq,-rings:

KU —— [[,KU,

| |

Aqlz3'] —— (I1,KUp)q

where the two products are taken over all prime numbers p; see [Bauld].

The Eg-ring KO can also be obtained through these means. The following is a carbon
copy of Conl5]] replacing C with R.
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Construction 5.9. Denote by Vecty the topological category of finite-dimensional real vector
spaces and real linear isomorphisms. This category has two symmetric monoidal structures
given by the direct sum and tensor product of vector bundles, the (topological) coherent nerve
N(Vectyr) is a commutative monoid object in the oo-category of E.-spaces. Moreover, the
functor

c: Vectg — Vectg Ve—VERC

is symmetric monoidal with respect to both monoidal structures, hence we obtain a morphism
of commutative monoid objects in Eq-spaces:

c: N(Vectr) — N(Vectg)

The group completion (with respect to the direct sum Eq-structure) of N(Vectg ) is the zeroth
space of the connective Eg-ring ko, connective real topological K -theory, and c¢ induces a
morphism ko — ku of Eg-rings. There is an element fr inside mgko, represented by an
element which maps to the element 3% inside 7g ku; see [Ada74, §III] for example. We define
the Eq-ring of periodic real K-theory as the localisation KO = ko[ﬂr_{l], and we notice this
induces a morphism ¢: KO — KU. By [HS14], the map ¢ can be identified with the Eq-
inclusion of the Cy-fixed points of KU through the Cs-action given by complex conjugation of
vector bundles.

Definition 5.10. Let BC5 be the quotient stack Spf Z,/Cs with respect to the trivial action
on SpfZ,. This formal spectral Deligne-Mumford stack has a cover SpfZ, — BC, given
by the canonical quotient map. By [LNI14 A.3-4], this is the base-change over SpfZ, of the
moduli stack of forms of the multiplicative group scheme G,,. The reason for the quotient by
(s is to remove the automorphism on Gy, given by inversion. Moreover, the multiplicative
p-divisible group p]?oo lives over 2BC, so we obtain a map BCy — MgT‘f,ZP'

Proposition 5.11. The map BCy — M\ETP 5 lives inCgz,. Moreover, the map ﬁ}go,?p(Spf z, —
1P 1

BCy) is homotopic (as maps of spectra) to the p-completion of the map ¢: KO — KU.
The proof below uses some results about stable Adams operations which we discuss in §5.51

Proof. As SpfZ, — BC; is a finite étale cover and the composite SpfZ, — M\ETP 5 lies
14P
in Ca,, then so does BCsy. It suffices now to show that ﬁ}goqlfp(’BCg) = £ is the inclusion of
1
the Cy-fixed points of KU, with respect to the complex conjugation action on KU,. We can

rewrite £ using the fact that ﬁ]gojlfp is an étale sheaf:
1

£ ~ lim (ﬁg;i,l, (tty/ St Zp) = ﬁg’;f (tty00/ SPf Zyp o5, ot Z,) = )

As SpfZ, — BC, is a Cy-torsor by construction and using Pr[5.6] we can rewrite the above

limit as
lim (KUP =[[xU,=> J] KUp--->

Co CoyxCo
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which is simply the homotopy fixed points KU’;C?. We are only left to check that this Cs-
action on KU, is homotopic as maps of spectra to that given by complex conjugation. By the
construction of BCy, we see that SpfZ, — BC, is the quotient by the inversion action on
the multiplicative group scheme Gy, hence & — KU, is the inclusion of the the C>-homotopy
fixed point of KU, with action given by [—1]*. As we will discuss in Pr[5.30], this is homotopic
to the action of spectra ¢!, and following arguments of ibid we see this is determined as a
map of spectra by what is does on line bundles on KU,-cohomology of finite spaces We
now refer to [MS74], p.168], which states that complex conjugate of a complex line bundle L
is isomorphic to the dual of a complex line bundle L, the latter also being given by =1 (L).
This finishes the proof. U

5.2 Lubin—Tate and Barsotti—Tate theories

The above example of ﬁ}go,ﬁp (u;?oo) ~ KU, can be extended to arbitrary heights. The following
1

is a combination of [EC2, §5-6]. Recall the Lubin—Tate deformation theory of Ex[2.9l

Proposition 5.12. Let (A}O be a formal group of exact height n over a perfect field x and
Go for a p-divisible group over k whose identity component is equivalent to Go; see [EC2,
Pr.4.4.22]. Write G for the classical universal deformation of Gg, which is a p-divisible group

over the discrete ring RX' . The object G: Spf RXI' — MY p lies in Cz . Moreover, there
Go Go BTx,Zp P
is an equivalence of Ex-rings ﬁlgo,llfp (G) ~ E,, where E,, = E(Gy) is the Lubin—Tate Eq,-ring

of Go (also known as Morava E-theory); see [EC2, §5].
This will follow from a more general family of p-divisible groups in Cz,.

Proposition 5.13. Let Ry be a discrete Noetherian F,-algebra such that the Frobenius endo-
morphism on Rq is finite and Go be a nonstationary (I8) p-divisible group of height n over
Ry. Write R for the universal spectral deformation adic Eq-ring of Go from [EC2, Th.3.4.1]
and assume the residue fields of moR are perfect of characteristic p. Then the morphism
G: SpfmoR — M\gT%,Zp defined by the base-change of the universal spectral deformation of Gg
along R — moR lies in Ca,. Moreover, there is a natural equivalence of Eo-rings ©(G) ~ R.

The Eq-rings produced by applying ﬁ}go,ﬁp to the p-divisible groups G occurring in Pr5.13]

seem interesting enough to name.

Definition 5.14. Let Ry, Gy, and G be as in Pr5.13. We call ﬁ]gojlfp((}) the Barsotti—Tate

E.;-ring associated to (Ry, Go).

Proof of Pri513. Let us first see G lies in C4, by checking the conditions of Df[LH It is
shown in Pr.2.J0] that the morphism G is formally étale. As Ry is Noetherian, then [EC2
Th.3.4.1(6)] tells us that R and hence also moR are Noetherian as well. Consider the maps in
P(AFM)

Spf moR — Spf R — Mprr 4

31Recall from [[A] Nt.1.4.2.5], that the co-category of finite spaces is the full co-subcategory of S generated
by the termal object under finite colimits.
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and the associated (co)fibre sequence of complete myR-modules:

L

Spf R/ Mpyyp 4 = Ly TR/ Mygp 4 Lspt xR/ Spt R

Spf moR
By construction ([EC2, Pr.3.4.3]), R corepresents the de Rham space of the map Spec Ry —
Mgptr, or equivalently, the de Rham space of Spec Ry — Mpy» 1z, as Ro is an Fj-algebra
and Gy is of height n. Identifying R as representing this de Rham space and using Ex[2.29]
we see that LSPfR//QBTg,A SpfﬂOR/M\BTg,A
is almost perfect; see Prl[A.12l Rmk[238] identifies R with D(G). O

vanishes. Hence L is almost perfect as Lgpt xR/ Spf R

Proof of PrifI8. The fact that G lies in Cgz, follows from Pri5I3l The fact that Opn, (G) is
equivalent to E,, follows as the universal spectral deformation of Gy is given by ©(G) (PrEI3)
and the orientation classifier of ®(G) is E,, ([EC2, Cor.6.0.6]). O

. top
From the functorality of ﬁBTﬁ

(k, @0) on the Eyx-ring E,. In other words, E, obtains an action of the extended Morava
stabiliser group; see [EC2, §5] and [GHO4, §7]. It is not clear from these techniques that these
account for all Eg-endomorphisms of E,; this requires a dash of chromatic homotopy theory
as done in [EC2, §5].

we obtain an action of the automorphism group of the pair

5.3 Topological modular forms

Another exciting application of Th[L6lis to construct the Eg-ring TMF of periodic topological
modular forms. Of course, this also uses the ideas of Lurie from [EC2] and [SUR09], but

reinterpreting TMF,, as a section of ﬁlgo,llfp yields additional endomorphisms to those previously
2

known. In particular, by §5.5] TMF,, will obtain stable Adams operations, and we also outline
how TMF,, obtains stable Hecke operators.

Proposition 5.15. The map [p™]: ﬂgﬂ z, ~ M\ng 5 lies inside Cg,,.
) 2:4p

Proof. Using Pr[l.8 we only need to show that the map [p®] above is formally étale inside
P(Aff@) and that MEH z, is finitely presented over Spf Z,. The former follows from Ex[2.T}

a consequence of the classical Serre-Tate theorem. The latter follows from [OIs16, Th.13.1.2],
which states that .Mgu is locally of finite presentation over SpecZ, the fact that the adjective

“locally of finite presentation” is stable under base-change, and the fact that M\gll z, is qcgs.
Indeed, to see M\gll z, is qc, we recall that it is also well known that after inverting an integer

n that there is a surjective étale map Mi(n) — ./\/lg11 x Spec Z[%] from the moduli stack of
elliptic curves with exact level n structure, and for n = 4 the Deligne-Mumford stacks M (n)

are affine, hence /\71%1 z, has a finite affine étale cover for all primes p; see [KMS85, Th.3.7.1].
Moreover, the iterated fibre products of this cover are affine too, as .Mgu is separated over
Spec Z; see [Ols16, Th.13.1.2] again. Hence we obtain a finite affine étale hypercover of ./\/lgll Z,"

By PrlAT7T we see M\gn z, 18 dcas. O
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As promised in the introduction, we should relate ﬁlgo,llfp to a more classical object:
2

Definition 5.16. Let 0P denote the Goerss-Hopkins—Miller sheaf of E,-rings on the étale

site DM%\A@ of ./\/lgn; see [EC2, Th.7.0.1] or |GoelO, Th.1.2] for a version over the compacti-
Ell

fication of .Mgu.
We also have functors DM ., — fDM¢, defined by base-change along the canonical
/MEH /MEll,Zp
map SpfZ, — SpecZ and fDM’;jQ@ — Cz, by post-composition along the map [p™] of
Ell,Z
Pr5I5 ’

Theorem 5.17. The following diagram of co-categoties commutes up to homotopy:

T E—

i Lo

op
<fDMétA ) —— (Cz,)™ —2 CAlg

v
/MEn,zp
In particular, there is an equivalence of B -rings:

top A9 MY =~
ﬁBTg <[POO]- MEILZp - MBTQZP) ~ TME,

The following proof is essentially that of [EC2, Th.7.0.1] which proves an integral statement.

Proof. As done in the proof of [EC2l, Th.7.0.1], we will conclude the proof by checking that for

each affine object Ey: Spec By — My, of DM?EMEH, the Eq-ring € = ﬁ]gojlfﬁ (E[p*]) satisfies

the following conditions:
1. & is weakly 2-periodic ().
2. The homotopy groups 7€ vanish in odd degrees, so in particular £ is complex orientable.

é ) isomorphism of rings (Bo), =~ mof.

3. There is a natural (in affines in DM
/MEll

4. There is a natural (in affines in DM‘?t v ) isomorphism of formal groups f]( Bo)p = (A}gQO
Ell
over Spf(Bo), -

Once one applies [EC2|, Pr.7.4.1] to identify E~ E[p™]°, these conditions above are precisely
the properties of ﬁ]goTpg by ThIL6 hence they hold. The étale sheaf of Eo-rings ¢*°P (followed
by p-completion) is determined up to homotopy by the four conditions above, the desired
diagram of co-categories commutes up to homotopy; for a statement about the connectedness
of the moduli space of such sheaves, see [EC2, Rmk.7.0.2] or [Goel0, Th.1.2] and the two
paragraphs that follow. A proof of the connectedness of this moduli space, including the

p-complete case used above, can be found in [Dav21b]. O
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As done in [Beh20l, §6], we can use the collection of all p-complete Eq-rings and a little
rational information to construct integral TMF, similar to Rmk[5.7]

Remark 5.18. We have an étale hypersheaf of E,-rings on the small étale site over ./\/lg11
defined by the following composition:

ét op i ét P [1p*]
(DM/MEII) » <fDM/ME11Z ) 1;[ (C

top

[ [ cAlg — CAlg
p

This sheaf comes with a canonical map into its rationalisation which we will use shortly. To
construct ﬁtOp algebraically, recall the symmetric monoidal equivalence of co-categories (0.8]).

Define an etale hypersheaf of E,-rings ﬁ P first one affines by sending Ey: Spec By — ./\/lgll
in DM% o to the forma]. rational Cdga

/ Ell

0 else

®k —
K%W%nz{w%®q "o

Extend this to the small étale site over Mgll by right Kan extension (ie, taking affine étale
covers and using the sheaf condition). Let us now construct a morphism

ﬁmanﬂ@$ 1),

first on affines Fy: Spec By — M]Qa)u as the morphism

given by the rationalisation, of the product over all primes of the map from wE to its p-
completion. Extend this to a morphism of sheaves on the whole small étale site by Kan
extension. One can then recover %P itself as the pullback in the following Cartesian square
of sheaves on the étale site of ./\/lgnz

BTY

J |

05> —— (11,72 (G4 o Ip w]))Q

ﬁtop Hp ﬂ_i (ﬁtop [pOO])

32The rationalisation of ¢*°P is formal by construction if we use that of [Behl4], however, as discussed in
[Mei21] Pr.4.8 & Cor.4.9] the formality of the rationalisation of such a sheaf on such a Deligne-Mumford stack
is inevitable.
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Taking global sections, one obtains the Cartesian square of Eq-rings

TMF ——— [, TMF,

| !

T™Fq — (I1, TMF,,)Q

where everything in sight has been constructed using ﬁ];,llfp or a dash of rational information.

Let us also mention a few variations on TMF that one can obtain from &P,

Definition 5.19. There exist moduli functors CAlg” — S denoted as M for each congruence
subgroup I' < SL9(Z). Of particular interest are I' = I'(n), I'1(n), and T'g(n), which yield
moduli stacks M(n), Mj(n), and My(n) for each n > 1. These are defined in [KMS85| §3],
and they sit in a commutative diagram in P(Aff™")

M(n) —— Mi(n) —— My(n)

\l/

MeEgn

where all the transformations above are some kind of forgetful functor. Moreover, by [KMS85|
Th.3.7.1], we see that when working over Spec Z[%], all of the morphisms above are finite
étale. Using these maps one then defines the Ey-rings TMF(T') = 0P (Mr) called periodic
topological modular forms with level structure. These Eg-rings are naturally EOO—TMF[%]—
algebras for I' = I'(n), I'1(n), or T'y(n).

Once again, the functorality of these constructions ensures us that the natural GLo(Z/nZ)-
action on M(n) over Mg, Z[1] yields a natural equivalence of Eq,-rings

TMF[2] 2 TMF (n)"GLe(2/n2),
n

this is explained and explored in more detail in [MMI5] §7]. We have another use for these
moduli stacks. Let us further explain My(n); from now on, we assume a little familiarity with
elliptic curves, from [Sil86] or [KMS5, §2], for example.

Construction 5.20. The moduli stack of elliptic curves has R-valued points Mgy (R) given
by the space of elliptic curves over R and equivalences between them. The moduli stack Mg(n)
has R-valued points Mg(n)(R) given by the space of elliptic curves E over R with a choice of
cyclic subgroup H < E of order n. As we will only study My(n) over Z[%] a cyclic subgroup
H < FE of order n is a subgroup H < FE of order n, hence it is necessarily finite étale over
R, and we demand that for any (or every) geometric point Speck — Spec R, H, is a cyclic
group of order n. There is a canonial map 7: My(n) — MEII,Z[ 1] given by forgetting the level

structure. There is also a quotient map q: Mo(n) — Mg, Z[1] defined on R-valued points by
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sending a pair (E, H) to the elliptic curve E/H. It is explained on [Beh06) p.12] why ¢ is étale,
and this fact essentially comes down to decomposing ¢ into a composition of étale maps of
stacks. By construction there is an isomorphism ¢*& ~ &y(n)/H of elliptic curves over My(n),
where & is the universal elliptic curve over My 717 and (K < &(n)) is the universal pair

1
over My(n). h

Using this quotient map ¢ (which is induced by a quotient map of elliptic curves, rather
than literally being a quotient map of stacks), we can construct spectral lifts of classical
Hecke operators. Recall from [Mei22, Pr.2.13] that the morphism of Eq,-rings 7*: TMF[%] —
TMFy(n) witness the target as a compact object of ModTMF[ 1y In particular, this implies

the existence of a transfer map defined by the compsite

try: TMFo(n) — F(TMFo(n), TMFo(n)) <= F(TMFy(n), TMF) @ TMFy(n) — TMF

the middle map being an equivalence coming from the compactness above, and where F
indicates TMF[2]-linear internal hom, and we have implicitly inverted n.

Definition 5.21 (Stable Hecke operators on TMF,). Write Q: &(n) — &(n)/H for the
quotient homomorphism. For a prim ¢ different to the ambient prime p, we define the £th
stable Hecke operator Ty on TMF,, as the composition

o>, (E[p™], MEn,z,) T oo (Eo(n)/H[p™], Mo(0)z,)

BTY BTY
:J/Q *

—~ lt’,rﬂ. o —~
Opr, (Eo(n)[p™], Mo(0)z,) ——— OfP,(E[p™], MEnz,)
2 2

where we have implicitly used Th/5.I7 Put more plainly, this stable Hecke operator is given
by the composition

q* Q* 7 tir
Ty: TMF, L5 TMFY(n), 2> TMF,(n), ——> TMF,

where the supscript (—)? reminds us that particular section has been defined using ¢ rather
than the projection .

A key part of the above construction is the fact that @) induces an isomorphism on associ-
ated p-divisible groups, hence Q* exists; this is not clear if we only consider %P as a sheaf
over MEg;. The above construction can also be refined to one on TMF[%] using Rmk[5.18]

33We restrict ourselves to the stable Hecke operators T, for a prime £ as the general definition requires a
construction with more elaborate moduli stacks; we want to consider moduli stacks with level structure without
the restriction to cyclic subgroups. However, inspired by [Bak98], we can also inductively define T 11 for r > 1

by the formula:
1
Tyrit = Ty Ty = 9" Ty

The formula for general positive integers follows by setting Ty.n = Tr'Th for coprime m and n.
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One can show that the above Hecke operators agree with those defined classically onrings
of modular forms upon taking rational homotopy groups, but this will take us too far afield.

These Hecke operators have already been outlined in [BL10) §11.2] and when working with
6 inverted, such operations were originally defined and studied by Baker; see [Bak98] and
[Bak90]. The above stable Hecke operators can be refined in three significant ways: first, one
can hope to intrinsically define T,, with a moduli stack, rather than using T,; second, one
can hope to define stable Hecke operators on the connective tmf and dualisable Tmf versions
of TMF; third, the functorality might be improved from a construction for each T,, individu-
ally, to a single construction of all Hecke operators T,, at once, encoding higher coherences of
transfers and the like. These refinements have been undertaken by the author and will appear
in [Dav22].

Another prominent use the maps Q* o ¢*: TMF, — TMF(({), appear in the work of
Behrens constructing his Q(¢) spectra, which form resolutions of the K (2)-local sphere; see

[Beh6).

5.4 Topological automorphic forms

The first examples of new cohomology theories constructed with Th[L.6] come from Behrens—
Lawson [BL10]. The main idea is that the Serre-Tate theorem, which was vital in our construc-
tion of TMF), from ﬁ]goTpg, actually applies to the moduli stack of dimension g abelian varieties
for any g > 1; the g = 1 case recovers the moduli stack of elliptic curves. A new problem now
arises: we need our p-divisible groups to be of dimension 1, and then and only then can they
have an orientation. To obtain a 1-dimensional p-divisible group from an abelian variety A of
dimension g > 2, one needs more structure on A to split its associated p-divisible group into
one of dimension 1 and another of dimension g — 1 (which we forget about). This comes in the
form ofpolarisations, endomorphisms, and level structure, leading us PEL-Shimura varieties;
for a full introduction to the subject and the intended application to stable homotopy theory,
see [BL10]. What appears below is simply a restatement of [BL10] and [Beh20].

Notation 5.22. Fixed an integer n > 1.
e Let F be a quadratic imaginary extension of Q, such that p splits as uw.
e Let OF be the ring of integers of F.

e Let V be an F-vector space of dimension n equipped with a Q-valued nondegenerate
Hermitian alternating form of signature (1,n — 1).

e Let L be an Op-lattice in V' such that the alternating form above takes integer values
on L and makes L, self-dual.

Definition 5.23. Write Xy, for the formal Deligne-Mumford stack over SpfZ, (of [BL10]
Th.6.6.2] with K? = K{) where a point in Xy, ,(S) for a locally Noetherian formal scheme S
over SpfZ,, is a triple (4,4, ) where:
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e A is an abelian scheme over S of dimension n.

e \: A — AV is a polarisation (principle at p), with Rosati involuation  on End(A),).

e i: Op ) — End(A)(, is an inclusion of rings satisfying i(z) = i(z)".

(»

These triples have to satisfy two conditions assuring they are locally modelled by V and L;
see [Beh20), §6.7].

In the situation above, the splitting p = wu induces a splitting of p-divisible groups
Alp”] ~ Alu”] @ A[u”]

and our assumption on (4,14, \) ensure that A[u®] is a 1-dimensional p-divisible group. This
yields a morphism of stacks [u®]: Xy — ./\/lng . Which sends (4, A, 7) to A[u®].
n,&~p
Proposition 5.24. Given V and L as in NtI5. 23, then the morphism [u™]: Xy 1, — /(/l\ng 7
ny,&p
is an object of Cz,.

Proof. Pr[LE reduces us to show that [u®] is formally étale inside P(Aff") and that Xy f,
is of finite presentation over SpfZ,. The first statement, that [u™] is formally étale, follows
straight from the definitions of a formally étale morphism and [BLIO0L Th.7.3.1], which itself is
a consequence the classical Serre-Tate theorem and an analysis of Xy ;. We now use [BL10]
Cor.7.3.3] to see Xy is of locally finite presentation over SpfZ,, so it suffices to show now
that Xy, is qcgs. To do this, we first use [BL10, Th.6.6.2], which states that Xy, 7, has an étale
cover by a quasi-projective scheme. As a quasi-projective formal scheme X is separated and
qc, we see X itself has a Zariski cover by an affine formal scheme Spf B, meaning &y, 7, has an
étale cover by Spf B. By PrIA.17] this implies Xy z, is qcgs. O

We can now define the spectra of topological automorphic forms as done in [BL10, §8.3].

Proposition 5.25. Let V and L be as in Nt[5.2Zd Define the Eq-ring of topological auto-
morphic forms

TAFVL = ﬁ]g')ll?fl <XV,L &.L M\gTﬁ,Zg))

As with topological modular forms (Df5.19]), we can also define variants of TAFy ;, which
incorporate level structures. Such extra structure can then be used to define restriction maps,
transfers, and Hecke operators on TAFy 1; see [BL10, §11].

5.5 Stable Adams operations

The next example exploits the intrinsic functorality of the sheaf ﬁg’%.

Definition 5.26. Let k = (k1,ka,...) be a p-adic integer and G be a p-divisible group over
an arbitrary scheme (or stack) S. Write [k]: G — G for the endomorphism of G given on
p"-torsion by the k;,-fold multiplication [k,]: G,, — G,,. These assemble to an endomorphism
of G as the sequence (k1, ko, ...) represents a p-adic integer and the closed immersions G,, —
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G, 11 witness the equality G, = Gp41[p"]. If k is a unit inside Z, then each [k,] is an

isomorphism of finite flat groups schemes on S, hence [k] is an automorphism of G. If G
Q

defines a morphism S — Mg, ,

inside C4, and k € Z;, then write

[k]*: ﬁ}tgoqgg(G) - ﬁ}tgoqgg(G)
for the induced endomorphism of Eq-rings. These are the (p-adic) stable Adams operations

ﬁ]gojlfp (G); we will justify this name shortly.

Many properties expected of Adams operations are formal.
Proposition 5.27. Let [, k be two units in Z,, G be an object of Ca,, and write & = ﬁga?p (GQ).
Then ' is homotopic to the identity map on the Ey-ring £, and the maps of B -rings 'y*
and V¢ on € are homotopic.

The homotopy H between !'¢F and 1** above are coherent in the following sense: if
j is another p-adic unit, then the homotopy between t7!y)* and ¢7* factors through H.
This follows straight from the fact that ﬁgoTpp : Cf:) — CAlg is first and foremost a functor of
oo-categories, and the calculations [[][k] = [Ik] hold up to equality in Cy,.
Proof. As these facts hold for [k] in C4, and ﬁgoTpp is a functor, we obtain the result. O

*

Using the information we already have at hand, we can calculate [k]* on the homotopy

groups of the E-rings ﬁgoTpp (G) over affine objects of C4,.

Proposition 5.28. Let k be a unit in Z, and G be a p-divisible group defining an affine object
in Ca,. Then for each integer n, we have the following equality of morphisms of Z,-modules:

[K]* = k" 7200110 (G) = 20Ot (G)

Proof. Using ThIIL6l we see that ma, ﬁg’%’% (G) is naturally isomorphic to the line bundle w(®;"
over ﬁgﬂ& (G) = B. It then suffices to calculate the n =1 case. As wg is the dualising line
for the identity component G° of G, we see the B-module wg is naturally equivalent to the
dual of the Lie algebra Lie(G°) (@), so it now suffices to calculate [k]* on this Lie algebra.
This is quite elementary, but let us recall some details. The question can be answered by
localising at each minimal ideal m of B containing its ideal of definition J, and over By, the
1-dimensional formal group G° has coordinate ¢ and an associated formal group law G—the
choice of coordinates forms a line bundle over By, and line bundles over local rings are trivial;
see [Goe08 §2]. Assume B is local then. If k is an integer, can write [k] on B[t], the global
sections of G° using the coordinate ¢, as the composite

[k]: B[t] 2> B[ty,...,tx] & B[t] (5.29)

where the first map is the comultiplication on B[t] induced by G and the second is the
completed multiplication map. As cx(t) = t; + -+ + ¢ modulo higher degree terms, then
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[k](t) = kt modulo higher degree terms. Finally, the Lie algebra Lie(G°) can be written as a
Zariski tangent space:

Lie(G®) ~ Homyea, (tB[t]/(tB[t])% B)

It is now clear that [k]*: Lie(G°) — Lie(G®) is simply multiplication by k if k is an integer.
For a general p-adic unit k, we approximate k by integers using its p-adic expansion, and our
conclusion then follows in this more general case by taking the limit. O

The following justifies why we call the operations [k]* stable Adams operations.

Proposition 5.30. For integers k not divisible by p, the map of Eq-rings [k]*: KU, — KU,
is homotopic to classical stable Adams operation ¥*; see [Ati67, §3.2].

Using a slight variant of Rmk.[5.7] one can construct maps of Eg-rings [n]*: KU[1] —
KU[2] for every integer n. It is well-known ([Ada74} §I1.13]) that to construct a stable Adams
operation ¥Y" as a map of spectra, one must invert n. The same goes for stable Adams
operations 9" : TMF[ ] — TMF[%]; these operations, as well as stable Adams operations on
the connective tmf and dualisable Tmf variants, which have been further explored in [Dav21a).

Proof. By restricting ourselves to the case of an integer k not divisible by p, we have assured
that [k]: ugw — ugw is an automorphism of p-divisible groups.

Let us write & = ﬁ]gojlfp( »). We claim that [k]* can be calculated on the universal line
bundle over CP® using just the algebraic geometry of ém. By (the proof of) Pr.5.6 the
map pp[ﬁ_l]: & — KU, is an equivalence of Ey-rings, and Rmk.[5.4] states this equivalence
sends the canonical complex orientation x¢ of £ to the usual complex orientation xky of KU,,.
We obtain orienations (now in the sense of Df3]) es and exy of the formal multiplicative
group ém over £ and KU, respectively, ([EC2, Ex.4.3.22]) such that p(eg) = exy. As these
orientations of G determine morphisms from the associated Quillen formal group to G
([EC2, Pr.4.3.23]) and p(eg) = eku, we obtain the commutative diagram of equivalences of
formal groups over Z, courtesy of [EC2| Pr.4.3.23]:

* /\

\/

m

—~ Qo
Ggu,

Focusing on KU, now, let us rewrite the above diagram of equivalences of formal groups over
Spf Z,,:
Spf KU)(CP®) => Spf Z,[t] = Gy, (5.31)

We know exactly how [k] acts by taking k-fold multiplication, which on the multiplicative
formal group is an operation represented by the map of rings:

[K]: Zo[t] <> Zo[tr, ... ta] 2> Zo[t],  te (t4+1)F -1
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Recall from (5.29) that the first map is the k-fold iteration of the comultiplicatio7 and the
second map is the completed multiplication map. As the map (B5.31]) induces a map of adic
rings sending t to Sxky, we then obtain the same formulae for [k]* in KUg(CPOO):

[k]* (Brku) = (Brxu + 1)k -1

As Bzky € KUS(CPOO) is represented by [£1] — 1 one obtains:

[K]*([&]) = [K]*(Baxu + 1) = [K]* (Brku) + 1 = (Brxu + 1) =1+ 1 = [¢7]

It follows that for any finite space [BI]) X and any complex line bundle £ over X with corre-
sponding map g: X — CP®, the inherent naturality of [k]* gives us the formula:

[K]*([£]) = [k]*(lg*&]) = g*([k]*(€1) = g*[€1])" = [L®F]

It follows from [Ati67) Pr.3.2.1(3)] that the operations [k]* on KU?)(X) are the Adams opera-
tions ¢* as maps of cohomology theories.

To lift this statement from one about cohomology theories to one about the spectra that
represent them, we now show there are no phantom maps of spectra KU, — KU,, as this is
the only obstacle to the fully faithfulness of the functor

hSp — CohomTh E— E*(—)

where CohomTh denotes the 1-category cohomology theories on finite spaces; see [HS99), §2
& Cor.2.15] and [CHTI0, Lec.17]. As KU, represents an even periodic Landweber exact
cohomology theory, it follows there exists no phantom endomorphisms of KUp; see [CHT10),
Cor.7, Lec.17]. O

Remark 5.32. There is a Cs-action on the sections of ﬁ]gojlfp

on p-divisible groups, ie, coming from ¢ ~!. Any Cs-action on an E,-ring £ can be used to
upgrade £ to a genuinely commutative Cy-ring spectrum (the kind with norms); see [HM17,
Th.2.4]. When p = 2, this has interesting results, for example, the Co-structure on sections
of ﬁg&{% can be used to obtain a Cs-equivariant refinement of part 1 of ThILLGt the complex

coming from the inversion action

orientability and Landweber exactness of affine sections of ﬁ]gojlfﬁ can be upgraded to Real
orientability and Real Landweber exactness a la [HM17) §3]. This essentially follows from the
reqular homotopy fized point spectral sequences of [Mei22], the descent theory developed by
Lurie in [EC2, §6], and the analogous result of Hahn—Shi [HS20] for Lubin-Tate spectra.

Remark 5.33. Let p be an odd prime. Using the Teichmiiller character, a map of groups
F) — Z;, which sends d to the limit of the Cauchy sequence {dP" },=0, one obtains an action

34The comultiplication on the ring Z,[t] representing the multiplicative formal group is given by

Z,[t] = Zp[z, ], t+loaoy+z+y+1l=(x+1)(y+1).

61



of F ~ Cp_; on any sections of ﬁg’%’% . In particular, for any G in C4, (it need not be just an
affine object), then the Ey-ring £ = ﬁgoTpp (G) has an Ey-F-action, and the homotopy fixed

points EFp split off a summand of £ using the idempotent map:

1
j Z wdlgg’g

b deF, CZy

In particular, if £ = KU, as in §5.1l this summand is the periodic Adams summand.

A Appendix on formal spectral Deligne-Mumford stacks

Throughout this article we have used basic properties of formal spectral Deligne-Mumford
stacks that are not explicitly contained in [SAG] (at least not obviously to the author), so we
have arranged this appendix to prove these statements. Every single statement below is an
extension of a proof in [SAG| and the author claims no originality for the ideas below.

Truncations

We would like to show that for locally Noetherian formal spectral Deligne-Mumford stacks,
there is a well-defined truncation functor. The following is a generalisation of [SAGI Pr.1.4.6.3]
to formal spectral Deligne-Mumford stacks; we will even use the same proof and notation.

Proposition A.1. Let X = (X, O%) be a locally Noetherian formal spectral Deligne—Mumford
stack. For each n = 0, the object T<,X = (X,7<,O%) is a locally Noetherian formal spectral
sHen

Deligne—Mumford stack. Moreover, for every (), Oy) inside ooTopCAlg, if Oy is connective
and n-truncated, then the canonical map T<,X — X induces an equivalence

MapooTopigfl‘; (Y, 0y), 7<nX) — MapooTop%kaé (Y, 0y), X).

Proof. The first half of the proof of [SAG| Pr.1.4.6.3] applies mutatis mutandis. That is, by
copying that proof we see that for every strictly Henselian spectrally ringed oo-topos (Y, 0y)
which is connective and n-truncated, the canonical map

MapooTopsé}}fl‘é ((y7 ﬁy)7 Ténx) - Mapoo’TopSCI}flré ((ya ﬁy)v %) (AQ)

is an equivalence of spaces. Hence, we are left to show that 7<,X = (X,7<,0%) is a
locally Noetherian formal spectral Deligne-Mumford stack. By [SAGL Prs.8.1.3.3 & 8.4.2.7],
being a formal spectral Deligne-Mumford stack and being locally Noetherian are local con-
ditions, hence we may assume X = Spf A for a complete Noetherian adic E.-ring A. Set
B = 1<, A, equipped with the same topology as A induced by I < myA using the isomorphism
moA ~ myB. Here we need to show Spf B is connective, n-truncated, and construct an equiv-
alence with 7<,X.

By [SAG, Pr.8.1.1.13], we see Spf B = (Xspt g, Ospf B) is connective. For n-truncatedness,
one can argue as follows: for affine objects U of Xgp¢ p we have Ogpe g(U) ~ Cf for some étale
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B-algebra C'. As C is an étale E-B-algebra, then it is almost of finite presentation, and as B
is Noetherian (as a truncation of the Noetherian E-ring A), then the spectral Hilbert basis
theorem ([HA| Pr.7.2.4.31]) implies that C is also Noetherian. It then follows from [SAG]
Cor.7.3.6.9] that the natural map of E,-A-algebras C' — C} is flat. As the composition

B~ C —Cf ~ Oy 5(U)

is flat, we see Ospe g(U) is n-truncated as B is so. The oo-topos Xgpe g is generated by affine
objects under small colimits ([SAG] Pr.8.1.3.7]) and the structure sheaf Ogp p: XS&B — CAlg
preserves limits, so it follows that Ogps p(X) is n-truncated for all X € Agpt g, hence Spf B is
n-truncated; see [SAG, Rmk.1.3.2.6]. By (A.2)), the natural map Spf B — Spf A = X factors
as:

Spf B S 17X = (X, 7enO%) — (X, 0%) = X

Using [SAG, Rmk.8.1.1.9], we see the map of underlying co-topoi induced by ¢: A — 7<,A = B
is an equivalence,

Shv¥ p; ~ Shvish 2% Shvfl ~ Shvét
where we used the notation of [SAG] Nt.8.1.1.8]. Under this map, the structure sheaf of Spf B
is sent to the functor

¢+ Ospt g CAlgS — CAlg™ D — (D®j B)} ~ (t<nD)}. (A.3)

The equivalence above comes from the facts that A — D is étale and a degenerate Tor-spectral
sequence calculation; see [HAL Pr.7.2.1.19]. To see ¢ is an equivalence, it therefore suffices to
see that (A.3) is equivalent to 7<,Ogpr 4. This is slight variation on an argument made above.
As D is étale over the Noetherian E-ring A, then the spectral Hilbert basis theorem implies
that D is also Noetherian. It follows straight from the definition that the Eg-ring 7<, D is
Noetherian, so the natural completion map of E-A-algebras

T<nD — (7<n D)}

is flat. This implies that (7<, D)7 is n-truncated. As 7<,(D;) is I-complete by [SAG]
Cor.7.3.4.3], there is a natural equivalence of E,-A-algebras:

(T<n D)1 = 7<n(Dr)
Hence ¢ is an equivalence of spectrally ringed co-topoi. U
The following is a formal generalisation of [SAG], Cor.1.4.6.4]:

Corollary A.4. For each integer n = 0, write fSpDMi’g.N for the full co-subcategory of
fSpDM, . x spanned by those n-truncated locally Noetherian formal spectral Deligne—Mumford
stacks. The inclusion fSpDMfO’ZN — fSpDM, . ny has a right adjoint, given on objects by

X =(X,0x) = 17<nX = (X, 7<n Ox).
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Proof. This follows straight from the universal property of Pr[A-Tland the observation and trun-
cations of locally Noetherian formal spectral Deligne-Mumford stacks remain locally Noethe-
rian. U

Corollary A.5. Let X be a locally Noetherian formal spectral Deligne—Mumford stack. Then
for any integer n = 0 the truncation 7<,X and X represent the same functor on n-truncated
E-rings.

Proof. Follows straight from Pr[A.dl as Spec R is a connective n-truncated spectrally ringed
oo-topos when R is a connective n-truncated Eq-ring; see [SAG, Ex.1.4.6.2]. O

The fully faithful embedding fDM — fSpDM

To formalise the relationship between the classical and spectral worlds of formal algebraic
geometry, we need a functor fDM — fSpDM. Let us begin by defining these categories.

Definition A.6. Let A be a discrete adic Noetherian ring with finitely generated ideal of
definition I € A, cutting out a closed subset V' < | Spec A|.

1. Define the topos Shvgcelt(CAlgit) is the full co-subcategory of Shvggt(CAlgit) spanned by
those étale sheaves F such that if the space V' x|gpec 4| | Spec B| is empty, then F(B) is
a point.

2. One has a sheaf of discrete rings Ospeca on Shviy, (CAlg%) as in [SAGL Df.1.2.3.1],
which we complete at I to obtain a sheaf &. This sheaf factors through Shvad, (CAlg%)
as O(B) ~ B} vanishes if whenever the image of I generates the unit ideal of B.

Define the ringed topos Spf A = (Shvggt(CAlgit), ﬁ/’\), the formal spectrum of A, leaving the
dependency on the specific topology on A implicit. A locally Noetherian formal Deligne—
Mumford stack is a ringed topos X = (X, O%) such that X has a cover U, such that each
ringed topos X, is equivalent (in the 2-category of ringed topoi of [SAG] Df.1.2.1.1]) to Spf A,

loc

for some discrete adic Noetherian ring A,. Write fDM for the full 2-category of 1’7'0pC a1

spanned by locally Noetherian formal Deligne-Mumford stacks.

The oo-category of formal spectral Deligne-Mumford stacks fSpDM can be defined simi-
larly; see Df[0.7 or [SAGL Df.8.1.3.1].

As in [SAG! §8], when dealing with classical formal Deligne-Mumford stacks, we restrict
ourselves to the locally Noetherian case by definition, as opposed to the spectral case, when
we only add this assumption when we need it. As mentioned in [SAGL Warn.8.1.0.4], this is
due to the incompatibility between completions in the classical and derived worlds.

Remark A.7. If an adic discrete ring A has a nilpotent ideal of definition, then Spf B is
naturally equivalent to Spec B by definition. In this way, we can see (Noetherian) affine
Deligne-Mumford stacks as affine formal Deligne-Mumford stacks. It then also immediately
follows from the definitions that DM;,. N is a full 2-subcategory of fDM.

The following is [SAG| Rmk.1.4.1.5].
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Construction A.8. There is a fully faithful embedding of oco-categories from classical ringed
topoi to spectrally ringed co-topoi

1T0pcp1e = ©T0PcAL: (X,0x) — (Shv(X), 0).

In other words, it associates to a classical Grothedieck topos X" the associated oo-topos Shv(X)
(this is done using [HTT09, Pr.6.4.5.7]) and by [SAGL Rmk.1.3.5.6] we obtain a connective
O-truncated structure sheaf on Shv(X), denoted as &. In fact, the essential image of the above
embedding is spanned by the spectrally ringed co-topoi (X, Ox) where X is 1-localic and Ox
is connective and 0-truncated.

By definition [HTT09, Df.6.4.5.8], we see the co-topoi Shv(X) produced by Con[A.§ are
1-localic. By [SAG, Rmk.1.4.8.3], the fully faithful embedding of Con.[A.8 restricts to the
full-faithful embedding DM — SpDM. Let us show that the same holds for formal Deligne—
Mumford stacks.

Proposition A.9. The functor of Conl[A.8, when restricted to fDM factors through fSpDM.
Moreover, the essential image of this fully faithful functor fDM — fSpDM consists of those
locally Noetherian formal spectral Deligne—Mumford stacks X = (X, Ox) for which the co-topos
X is 1-localic ([HTT0Y, Df.6.4.5.8]) and the structure sheaf Ox is O-truncated.

Proof. The fully faithful functor of Con[A.8 descends to a fully faithful functor between (not
full) oo-subcategories of local topoi:

17'oplé’zlg@ — OoTopgzlg
Indeed, we say 2" = (X, 04) in 0T 0pcy), is local if w90 5 is local on XY ([SAG] Df.1.4.2.1]),
and given Zo = (Ao, Op) in 1T0pgay,e. then the ringed topos (Shv(X)?, mp0) is naturally
equivalent to 2y by [HTT09, Pr.6.4.5.7]. Local morphisms between local spectrally ringed
oo-topoi are morphisms of spectrally ringed oo-topoi whose underlying morphism of ringed

topoi is local.

Let Xy = (Xp, Op) be a classical formal Deligne-Mumford stack, and write X = (X, &) for
the image of Xy under ConlA.8 so X = Shv(A}). By [SAGL Pr.8.1.3.3], the property of being
a formal spectral Deligne-Mumford stack is a local one, so it suffices to show that there exists
a cover U, of X such that each Xy, is in fSpDM. Consider a formal affine cover of Xy in
1T ope Alg®> SO & collection of U, inside Xy such that [[U, — 1x, is an effective epimorphism
and (Xo),y, is equivalent in 17 op Alg® O Spf A,. Considering U, as a discrete object V of
X (as in [HTTO09, Pr.6.4.5.7]), then [SAGL Lm.1.4.7.7(2)] states that Xy, is 1-localic, as X' is
1-localic and V is O-truncated in X'. One then notes the following natural equivalences:

Xy = Shv((X)y)7) ~ Shv((Xp)/v,) ~ Shv(Shvis, (CAlgS, ) < Shv*!(CAlg],)

The first equivalence holds as &)y is 1-localic, the second by identifying X as the underlying
discrete objects of X (and then [HTT09, Rmk.7.2.2.17]), the third from the choice of U, as an
affine object of Xy, and the forth from the fact that affine formal spectral Deligne-Mumford
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stacks are 1-localic; see [SAG, Rmk.8.1.1.9]. Furthermore, as ¢ was defined as the sheaf of
connective O-truncated Eq-rings on X associated to the commutative ring object 0y on Xy, we
claim that by [SAG], Rmk.1.3.5.6] the spectrally ringed co-topos X7, is equivalent to Spf A,.
To see this, one notes that &(Spf B) = B} for some étale morphism Spf B — Spf A, in
Xy € X, and one also has a natural equivalence Ogps 4, (Spf B) ~ B by [SAG] Con.8.1.1.10].
The “moreover” statement follows by [SAGL Rmk.1.4.1.5]. O

Combining the functor of points approach with the above, we obtain the following:

Corollary A.10. The following diagram of co-categories and fully faithful functors commutes:

AEIQ(?)C.N — Aﬁgd,loc.N —>— DM

| Js Je

Affr — L Affen 9, fSpDM s P(AFD)

Warning A.11. One might want to place P(AHQ) in the top-right corner of the diagram
above, however, we do not see a functor P(Aff¥) — P(AfFf™) such that the diagram above
commutes. Indeed, the right Kan extension mentioned in Nt.230 doesn’t commute with the
other constructions above by inspection and a left Kan extension would not necessarily preserve
sheaves. The existence of the functors ¢, d, and e above, are all due to nontrivial theorems
of Lurie, and the lack of a similar functor P(Aff¥) — P(Aff) indicates one reason why we
restrict our attention to (formal) Deligne-Mumford stacks.

Proof of Cor[A.10. The funtors a, b, f, and g are all the inclusions of full co-subcategories, ¢
and d are the inclusions of co-subcategories as shown by Lurie ([HAL Pr.7.1.3.18]), e is Con[A 8]
and h is the functor of points functor. The diagram commutes as ¢ and d are restrictions of e.
To see why each functor is fully faithful, we have:

e By definition, we see that a, b, f, and g are fully faithful.
e By [HAl Pr.7.1.3.18], we see ¢ and hence d are fully faithful.
e Pr[A 9 shows e is fully faithful.

e The fact that h is fully faithful is the content of [SAGL Th.8.1.5.1]. O

Finiteness and compactness in fSpDM

Next, let us discuss finiteness and compactness conditions in fSpDM.

Proposition A.12. Let X be a locally Noetherian formal spectral Deligne—Mumford stack.
Then for any n = 0 the natural map T7<pX — X admits an (n + 1)-connective and almost
perfect cotangent complex.

66



Proof. These are local conditions, so we may take X = Spf A for a complete Noetherian adic
E,-ring A with finitely generated ideal of definition I < myA. By the Hilbert basis theorem
for connective Ey-rings ([HA, Pr.7.2.4.31]) we see 7<,A is almost finitely presented as an
E..-A-algebra and the cofibre of map A — 7<, A is (n + 1)-connective. By [HAl Cor.7.4.3.2]
and [HAl Th.7.4.3.18], we then see L = L,_ 44 is (n + 1)-connective and almost perfect
inside Mod,_, 4. It follows from [SAG, Pr.7.3.5.7] that L is in fact I-complete, hence we have
a natural equivalence L1 >~ Lgpr,_, a/spf 4 by [SAG| Df.17.1.2.8], and we are done. U

Definition A.13. A formal spectral Deligne-Mumford stack X = (X, O%) is quasi-compact
(qe) if the underlying co-topos X' is quasi-compact, ie, every cover of X’ has a finite subcover;
see [SAGL Df.A.2.0.12]. A morphism of formal spectral Deligne-Mumford stacks

frX=(X,02) > Y = (Y, O)

is gc if for any qc object U of ), the pullback f*(U) is qc in X', meaning Xf«y; is qc. A morphism
of formal spectral Deligne-Mumford stacks is called quasi-separated (qs) if the diagonal map
A:Y > xxQ is qc. We say X is gs if X — SpecS is gs.

It is a purely formal exercise that qc (and gs) maps are stable under base-change; a fact
we will use without further reference.

Proposition A.14. Let A be an adic Eq-ring. Then Spf A is qc.

Proof. By [SAG, Rmk.8.1.1.9], we see the underlying co-topos of Spf A is equivalent to Shvf;tOA/I
where [ is a finitely generated ideal of definition for the topology on mgA. As this is the same
underlying co-topos of Spec(mgA/I), it follows from [SAGL Pr.2.3.1.2] that Spf A is qc. O

The following is a formal generalisation of a special case of [SAG, Pr.2.3.2.1].

Proposition A.15. Let X = (X, O%) be a formal spectral Deligne—Mumford stack. Then the
following are equivalent.

1. X is gs.
2. For all qc objects U,V of X, the product U x V in X is qc.
3. For all affine objects U,V of X, the product U x V is qc.

Proof. 1t is clear that 1 implies 2 as U x V = A*(U,V) inside X x X, and 2 also implies 1 as
the quasi-compact objects of X x X" are all of the form (U,V) for U and V quasi-compact in
X. Pr[A.14] shows that 2 implies 3. Conversely, for two arbitrary qc objects U and V' of X,
using the fact they are qc, there exists two effective epimorphisms U’ — U and V' — V where

U’ and V' are affine. It then follows that U x V is qc as there is an effective epimorphism
U xV'— U x V from a qc object of X. O

Corollary A.16. Let A be an adic Eo-ring. Then Spf A is qcgs.
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Proof. By Pr[A14l we see Spf A is qc, and by Pr[AT5l it suffices to see that for all affine
objects U = Spf B and V' = Spf C inside Xgpf 4, that the product U x V' in Xgpp 4 is qe. This
product can be recognised as the fibre product ([SAGL Lm.8.1.7.3])

A

Spf B x Spr:Spf<B®C’>
Spf A A

pf I
where I is an ideal of definition for the topology on mgA, which is qc by PrlA. 15 O

The following statement is why we care about the adjectives of Df[A T3]

Proposition A.17. Let X be a formal spectral Deligne—Mumford stack. Then X is qcqs if
and only if there exists an étale hypercover U, of X such that each A, is an affine formal
spectral Deligne—Mumford stack for every n = 0. In particular, the same holds for classical
Deligne—Mumford stacks.

Proof. First, let us assume X is qcgs and write X = (X, O%) and set {_; = X. As a formal
spectral Deligne-Mumford stack, there exists a collection of affine objects U, in X such that
[, Ua cover X, and as X is qc, this collection can be taken to be finite. As Xy, ~ Spf A,
for some adic Eqy-ring A,, we see the fact that | [ U, covers X is equivalent to the statement
that

Spf Ag = Spf (H Aa> ~ [ [SpfAq — %

is an étale surjection, where we have used the finiteness of the above (co)product. Set
o = SpfAg and Uy — Mo(Us™!) ~ 4 ;| = X to be the étale surjection above. The rest
of the proof can be summarised informally by inductively calculating M, (4$"~1) which must
be affine as they are defined by taking finites limits over mostly affine formal spectral Deligne—
Mumford stacks, and using that affines are qcqs (Cor[A.16) we find 4,1 by taking an affine
étale cover of M, (Us""1). To formalise this outline, we will need to play around with these
matching objects more carefully, but the rest of this half of the proof is essentially index chasing.

Inductively, let us assume the following three hypotheses:

1. Suppose we have the nth stage of an étale hypercover {5" such that i, ~ SpfA4,, is
affine for each 0 < m < n.

2. Suppose that for every 0 < m < n, M,,, (U™~ 1) is affine. The base case that Ly ~ Spf A
is affine holds by construction.

For every 1 < k < m < n, write L(ffz_k for the functor defined by precomposition with the
shift functor defined on objects by

AjT*k — AST, [i] — [i + K],

and on morphisms by sending ¢: [i] — [j] to ¢': [i +k] — [j+ k] which sends a+k — ¢(a)+k
for a = 0 and —1 — —1. The third hypothesis is then:
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<m—k

3. Suppose that for every 1 < k < m < n, My,_p1(U ) is affine. This condition is

o+k
vacuous in the base-case.
We claim that there is a natural equivalence
M = M, 1 (U$") = _lim L[f" ~ L, x M, ( iffl) (A.18)
[i]—[n+1] My (Usm™1)

which occurs in fSpDM, as by using [SAG] Pr.8.1.7.1] the co-category fSpDM has finite limits.
To see this (AIS])) is an equivalence, recall that our diagram 1-category above is the poset of
proper subsets of [n + 1]. Using notation from [MV15, §5.1], we see the opposite of this poset
is precisely the 1-category Py(n + 2) of nonempty subsets S of {1,...,n + 2}. This yields the

equivalence:

M~ lim Us"
SePy(nt2) MISIHL

Using the cubical limit manipulations of [MV15, Lm.5.3.6], we obtain the natural equivalence

of (AI8):
~ . <n ~ <n-—1
M =~ Se%:)r(rrlzw)ﬂ"_'s‘“ =4 Mn(i;;"_l) Math)

Note that the map i, — M, (Us""1) is an étale cover by our first inductive hypothesis and
the natural map

Mn(uffl_l) - Mn(u.gn_l)

is an étale cover by base-change. Indeed, this latter condition follows as i, 1 — 4, is an étale
cover for each m, and M, (—) is a finite limit diagram of such covers. We also note that M is
qcqgs, which follows from ([AIS]), our inductive assumptions 1-3, and Cor[AT6l This guarantees
the existence of an étale cover 4, 11 — M, 1(U5") with 4,1 an affine formal spectral Deligne—
Mumford stack, from which we obtain our first inductive conclusion for (n + 1). We also saw
M = M, 1 (Us") is qcgs, so we also have our second inductive conclusion for (n + 1). For the
last one, we consider M (k) = M,_p 4285 1=k the only case left to consider; the others fall
under part 3 of the the previous inductive step. We claim that M (k) is affine. To see this, use

an index shift of (A.18]) to obtain:

M (k) =~ Sy k42 x My (US55 F)

_ ot+k+1
Mn7k+1(‘u.$rk k)

The left and bottom objects in the fibre product above are affine by our inductive hypothe-
ses 1 and 2, respectively, so it suffices to show the right object in the above fibre product is
affine. This can be done by applying (A.I8) again, noting the left and bottom objects are
affine by inductive hypotheses 1 and 2 again and again considering the right factor. Applying
this process (n — k)-many times, we are left with My (U1, 5) ~ U1, which is affine by our
construction above.

Conversely, assume that X has an étale hypercover i, — X where each i, is affine, which
we write as U, — 1 when considered as objects in X. Given an arbitrary cover {Vg}qer of X,
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so an effective epimorphism [ [ V,, — 1, then we can consider the Cartesian square inside X’ of
the form:
W — Uy

L]

[ Vo — 1

All of the maps above are effective epimorphisms either by assumption or as the class of such
maps is stable under pullback; see [HTT09, Pr.6.2.3.15]. Products commute with colimits in
an oo-topos as colimits in co-topoi are universal hence we have a natural equivalence in
W ~ [[; Wy in X, where W, = V,, x Uy. As Uy is quasi-compact (as an affine object of X’;
see Pr[A.T4)), we can choose a finite subset of I, say Iy, such that | | 1o Wa = Up is an effective
epimorphism. We then consider the commutative diagram inside the co-topos X'

]—[10 Wa —_— U()

L

[ Vo —— 1

The top and right maps are effective epimorphisms by assumption, and the bottom map is an
effective epimorphism by [HTT09, Cor.6.2.3.12(2)], hence X is qc. To see X is gs, we look at
the Cartesian diagram of formal spectral Deligne-Mumford stacks:

Ay,
ilo E— ﬂo XL[{)

| |

X By

As U, — X is an étale hypercover, the map Uy x Uy — X x X is an effective epimorphism.
As g is the oo-topos of an affine formal Deligne-Mumford stack, then by Cor[A.T6] we see
is gs and the map Ay is qc. It follows from [SAGL Cor.A.2.1.5] that Ay is qc; in dbid, a qc
morphism is called relatively 0-coherent. Hence, X', and therefore X, is gs. U

Let us now show the formal thickenings of [SAG §18.2.2] preserve the adjective qcgs.

Proposition A.19. Let Xy be a qcgs formal spectral Deligne—Mumford stack and Xg — X a
formal thickening. Then X is qcqgs.

Proof. The adjective qcqs depends only on the underlying co-topoi, so it suffices to show if
that Xy — X is an equivalence of oo-topoi. To see this, consider the reduction of a formal
spectral Deligne-Mumford stack of [SAG, Pr.8.1.4.4]. From this one obtains the following

35We say that colimits in a presentable co-category C are wniversal if pullbacks commute with all small
colimits; see [HTT09, Df.6.1.1.2]. This holds in an oo-topos due to the oo-categorical version of Giraud’s
axioms; see [HTT09, Th.6.1.0.6].
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commutative diagram of formal spectral Deligne—-Mumford stacks:

d
xred 5 %

L]

xred x

We know the natural map from the reduction of a formal spectral Deligne-Mumford stack X
back into X is an equivalence of underlying co-topoi (by [SAG] Pr.8.1.4.4]), and the underlying
oo-topoi of the reduction of a formal thickening is also an equivalence (by [SAG| Pr.18.2.2.6]).
Hence the horizontal and the left vertical maps are equivalences of underlying co-topoi, hence
the right vertical map is as well. O
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