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Abstract
We prove that T (n + 1)-localized algebraic K-theory satisfies descent for π-finite p-group

actions on stable ∞-categories of chromatic height up to n, extending a result of Clausen–
Mathew–Naumann–Noel for p-groups. Using this, we show that it sends T (n)-local Galois
extensions to T (n + 1)-local Galois extensions. Furthermore, we show that it sends cyclotomic
extensions of height n to cyclotomic extensions of height n + 1, extending a result of Bhatt–
Clausen–Mathew for n = 0. As a consequence, we deduce that K(n + 1)-localized K-theory
satisfies hyperdescent along the cyclotomic tower of any T (n)-local ring. Counterexamples to
such cyclotomic hyperdescent for T (n + 1)-localized K-theory were constructed by Burklund,
Hahn, Levy and the third author, thereby disproving the telescope conjecture.

Fine Wind, Clear Morning (Red Fuji) by Katsushika Hokusai.

∗Einstein Institute of Mathematics, Hebrew University of Jerusalem.
†Department of Mathematics, University of Copenhagen.

1

ar
X

iv
:2

30
9.

07
12

3v
1 

 [
m

at
h.

K
T

] 
 1

3 
Se

p 
20

23



Contents

1 Introduction 3
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Higher Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Cyclotomic Redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Hyperdescent and the Telescope Conjecture . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Outline of the Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Monochromatic Categories 9
2.1 Recollections of Stable Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Categorical Localization and Monochromatization . . . . . . . . . . . . . . . . . . . 11
2.3 Monochromatization and Purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Higher Semiadditivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Group Algebras 21
3.1 Multiplicativity of Assembly Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Modules over Group Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Dualizable Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Higher Descent 27
4.1 Higher Categorical Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Higher Galois Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Cyclotomic Redshift 35
5.1 Cyclotomic Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Kummer Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Cyclotomic Hyperdescent 54
6.1 Continuous Group Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Hyperdescent and Cyclotomic Completion . . . . . . . . . . . . . . . . . . . . . . . . 62

References 63

2



1 Introduction

1.1 Background

The algebraic K-theory of rings, ring spectra and, more generally, of stable ∞-categories, is a
long-studied invariant, situated at the junction of many fields of mathematics ranging from number
theory to differential topology. It is, however, notoriously difficult to compute, as among other
things it possesses fairly weak descent properties. In particular, it fails to satisfy Galois descent
even for ordinary fields. The intricate nature of algebraic K-theory stems from the fact that its
construction involves categorification – passing from a ring spectrum to its ∞-category of modules.
Thus, loosely speaking, the algebraic K-theory spectrum does not live in the same characteristic as
the original ring spectrum. The field of chromatic homotopy theory provides a precise formalization
of the notion of characteristic for spectra in the form of the chromatic height filtration. Based on
computational evidence in chromatic height 1, Ausoni–Rognes [AR02, AR08] formulated the far-
reaching redshift conjecture, out of which emerged a wider philosophy, predicting the interaction
of algebraic K-theory with chromatic height. The conjecture states roughly that the process of
categorification increases chromatic height by one. Furthermore, Ausoni and Rognes conjectured
that algebraic K-theory localized at the highest chromatic height posited by the redshift conjecture
does satisfy descent for the Galois extensions of commutative ring spectra introduced by Rognes in
[Rog08] and further studied by Mathew in [Mat16].
Recent years have seen several breakthroughs in the study of such redshift phenomena [HW22,
Yua21, ABM22, BSY22]. Of particular relevance to this paper are the results of Clausen–Mathew–
Naumann–Noel [CMNN20] and Land–Mathew–Meier–Tamme [LMMT20], establishing Galois de-
scent for chromatically localized algebraic K-theory. Recall that an idempotent complete stable
∞-category C is called Lf

n-local if all of its mapping spectra are Lf
n-local, which roughly means

that they are concentrated in chromatic heights lower or equal n.
Theorem 1.1 ([CMNN20, Theorem C and Proposition 4.1]). Let C be an Lf

n-local ∞-category
acted by a finite p-group G, then there are canonical isomorphisms

LT (n+1)K(C hG) ∼−−! LT (n+1)K(C )hG, LT (n+1)K(C )hG
∼−−! LT (n+1)K(ChG).

For example, for every Lf
n-local ring R, the ∞-category Perf(R) is Lf

n-local. Thus, combined with
Galois descent for perfect modules, this readily implies the following:
Corollary 1.2 ([CMNN20, Corollary 4.16]). Let R! S be a T (n)-local G-Galois extension where
G is a finite p-group. Then there is a canonical isomorphism

LT (n+1)K(R) ∼−−! (LT (n+1)K(S))hG.

It is known that Theorem 1.1 may fail for arbitrary finite groups G (e.g. of order prime to p), but the
question of whether Corollary 1.2 holds in this generality is still open. More generally, one can ask
to what extent chromatically localized algebraic K-theory satisfies hyperdescent for profinite Galois
extensions. Of particular interest is the case of the Lubin–Tate spectrum En, which is a profinite
Galois extension of the K(n)-local sphere with Morava stabilizer Galois group Gn. Namely, it is
natural to ask whether the functor U 7! LT (n+1)K(EhU

n ) on open subgroups U ≤ Gn corresponds
to a hypersheaf on the site of continuous finite Gn-sets. As noted in [CMNN20, Example 4.17],
even on the pro-p part of Gn, where Corollary 1.2 implies that the resulting functor is a sheaf, the
condition of being a hypersheaf is not automatically implied.
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Remark 1.3. To put this discussion in context, we note that for ordinary commutative rings
(and schemes), Galois descent is a special case of étale descent, which is a much studied subject
in algebraic K-theory. In particular, the étale sheafification of algebraic K-theory (known as étale
K-theory) is closely related to its chromatic L1-localization, as observed by Waldhausen [Wal84,
§4]. Furthermore, questions of hyperdescent for étale K-theory are of fundamental importance to
the construction of spectral sequences relating algebraic K-theory to étale cohomology. We refer
the reader to [CM21] for the state-of-the-art results in this direction.

1.2 Higher Descent

Our first main result is an extension of Theorem 1.1 in a different direction, by considering actions
of higher groups. However, as we shall explain in the next subsection, this seemingly unrelated
generalization also has implications to the above questions about Galois (hyper)descent for ordinary
(pro)finite groups. To state our results, we say that a group G in spaces is an m-finite p-group if it
is m-truncated and all of its homotopy groups are finite p-groups, and that G is a π-finite p-group
if it is an m-finite p-group for some m.

Theorem A (Higher Descent, Corollary 4.2). Let C be an Lf
n-local ∞-category acted by a π-finite

p-group G, then there are canonical isomorphisms

LT (n+1)K(C hG) ∼−−! LT (n+1)K(C )hG, LT (n+1)K(C )hG
∼−−! LT (n+1)K(ChG).

From this, we deduce the following:

Corollary 1.4 (Theorem 4.12). Let R ! S be a T (n)-local G-Galois extension where G is an
n-finite1 p-group. Then LT (n+1)K(R)! LT (n+1)K(S) is a T (n + 1)-local G-Galois extension.

Note that the first condition in Rognes’ definition of a G-Galois extension is that the source is
canonically isomorphic to the G-fixed points of the target. Thus, Corollary 1.4 is simultaneously
a generalization and a strengthening of Corollary 1.2. On the other hand, in our case the second
condition in Rognes’ definition of a G-Galois extension is superfluous, via [BCSY22, Proposition
2.27].
Theorem A is closely related to the higher semiadditivity of T (n)-local spectra (which indeed fea-
tures in its proof as explained later in the introduction). In [BMS21] the authors have constructed
and studied the universal higher semiadditive approximation of algebraic K-theory. In Corol-
lary 4.6, we deduce that for Lf

n-local ∞-categories, this higher semiadditive algebraic K-theory
coincides T (n + 1)-locally with (ordinary) algebraic K-theory.

1.3 Cyclotomic Redshift

As already mentioned above, aside from their intrinsic interest, Theorem A and Corollary 1.4 also
have applications to some particular cases of Galois descent with respect to ordinary groups. We
begin by recalling that in [BCM20], Bhatt–Clausen–Mathew studied T (1)-local K-theory, with a
focus on discrete (commutative) rings. In particular, they have shown a result which can be phrased
as follows (see also [Mit00, DM98] for closely related results):

1Recall that G is n-finite if and only if BG is (n + 1)-finite. See Remark 4.13 for a discussion of the truncatedness
assumption.
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Theorem 1.5 ([BCM20, Theorem 1.4]). Let R be a commutative ring, then there is a Z×
p -

equivariant isomorphism

LT (1)K(R[ωp∞ ]) ≃ LT (1)K(R) ⊗ KU ∧
p ∈ CAlg(SpT (1)),

where Z×
p acts on the p∞-th cyclotomic extension of R and on the p-complete complex K-theory

spectrum KU ∧
p by Galois automorphisms and the Adams operations respectively.

In [CSY21b] (later extended in [BCSY22]) a higher height analogue of cyclotomic extensions was
studied in the context of higher semiadditive ∞-categories. Let C be a presentably symmetric
monoidal stable ∞-semiadditive ∞-category of height n, and let R ∈ CAlg(C ). Then, there is
some idempotent in the group algebra R[BnCp∞ ], constructed using higher semiadditive integrals.
This idempotent splits off a direct factor called the (height n) p∞-cyclotomic extension of R, and
denoted by R[ω(n)

p∞ ]. As the name suggests, height 0 cyclotomic extensions reproduce ordinary
cyclotomic extensions.

Example 1.6. In the case C = SpK(n) and R = SK(n), the p∞-cyclotomic extension SK(n)[ω
(n)
p∞ ] is

the ring Rn studied by Westerland in [Wes17]. Namely, it is the (continuous) homotopy fixed points
of En by the kernel of det : Gn ! Z×

p , whence it is a Z×
p -Galois extension of SK(n). Therefore, the

case C = SpT (n) provides a T (n)-local lift of this Galois extension.

Specializing this example to height n = 1, we see that ST (1)[ω
(1)
p∞ ] ≃ KU ∧

p . Consequently, for
commutative rings R with p ∈ R×, Theorem 1.5 can be rephrased as a Z×

p -equivariant isomorphism

LT (1)K(R[ω(0)
p∞ ]) ≃ LT (1)K(R)[ω(1)

p∞ ].

Our second main theorem is the extension of this isomorphism to higher chromatic heights.

Theorem B (Cyclotomic Redshift, Theorem 5.11). Let R be a T (n)-local ring spectrum, then
there is a Z×

p -equivariant isomorphism

LT (n+1)K(R[ω(n)
p∞ ]) ≃ LT (n+1)K(R)[ω(n+1)

p∞ ].

Higher height roots of unity, classified by higher cyclotomic extensions, were also used in [BCSY22]
for constructing higher height analogues of the discrete Fourier transform and Kummer theory. We
show in Theorem 5.25 and Theorem 5.27 respectively, that these constructions are also suitably
intertwined by the functor LT (n+1)K.
The proof of Theorem B proceeds by applying Theorem A to G = BnCp∞ to obtain an isomorphism

LT (n+1)K(R)[Bn+1Cp∞ ] ∼−−! LT (n+1)K(R[BnCp∞ ]).

We then show that the idempotents splitting the corresponding cyclotomic extensions agree (equiv-
ariantly), implying the result. In fact, the analogue of Theorem B also holds for (and follows from)
the finite cyclotomic extensions R[ω(n)

pr ] for every integer r ≥ 0. In particular, taking r = 1 and
odd prime p, we obtain for every height n a non-trivial instance of a T (n)-local Galois extension of
order prime to p, which is mapped to a T (n + 1)-local Galois extension by LT (n+1)K.
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1.4 Hyperdescent and the Telescope Conjecture

Cyclotomic redshift (Theorem B) also has implications for hyperdescent for algebraic K-theory and
the telescope conjecture. The starting point of this discussion is the question of faithfulness of
the cyclotomic extensions over T (n)-local ring spectra. While each of the finite extensions R[ω(n)

pr ]
is faithful over such a ring spectrum R, the infinite one R[ω(n)

p∞ ] has a priori no reason to be.
In [BCSY22, §7.3], the authors constructed the universal localization of SpT (n) in which infinite
cyclotomic extensions become faithful, called the cyclotomic completion. Moreover, the cyclotomic
completion is shown to be smashing and in the case of an odd prime p given by the formula2

R∧
cyc ≃ R[ω(n)

p∞ ]hG ∈ Alg(SpT (n))

for the action of the discrete dense subgroup

G := F×
p × Z ≤ Z×

p .

Also observe that by Example 1.6, we have SK(n)[ω
(n)
p∞ ] ≃ Rn, and it follows from Devinatz–Hopkins

theory [DH04] that RhG
n ≃ SK(n) (see also [Mor23, Theorem 1.1]). Therefore, all K(n)-local spectra

are cyclotomically complete.
In the present paper, we show that cyclotomic completion is intimately related to hyperdescent.
The compatible system of finite cyclotomic extensions R[ω(n)

pr ] assembles into a sheaf on the site of
continuous finite Z×

p -sets, whose stalk is the p∞-cyclotomic extension R[ω(n)
p∞ ]. In Proposition 6.11,

we show that this sheaf is a hypersheaf if and only if R is cyclotomically complete.
Cyclotomic redshift (Theorem B) allows us to transfer questions about cyclotomic extensions be-
tween height n and height n + 1. In particular, it shows that the sheaf LT (n+1)K(R[ω(n)

pr ]) is
isomorphic to the sheaf LT (n+1)K(R)[ω(n+1)

pr ]. Using the fact that every K(n+1)-local spectrum is
cyclotomically complete, we thus obtain a non-trivial instance of hyperdescent for K(n+1)-localized
algebraic K-theory.

Theorem C (Cyclotomic Hyperdescent, Corollary 6.13). Let R be a T (n)-local ring spectrum,
then the sheaf determined by the values LK(n+1)K(R[ω(n)

pr ]) is a hypersheaf.

It is natural to ask whether the hyperdescent along the cyclotomic tower holds already on the level
of telescopic localizations, or, equivalently, whether LT (n+1)K(R) is cyclotomically complete for
every T (n)-local ring spectrum R. This touches upon the subtle distinction between the T (n)-local
and the K(n)-local categories, which is the subject of Ravenel’s long-standing telescope conjecture.
Ravenel originally conjectured that SpK(n) = SpT (n) for all heights and primes, but while it is known
to hold for n = 0, 1, it was soon suspected to be false for higher chromatic heights. Burklund, Hahn,
Levy and the third author [BHLS] constructed counterexamples to hyperdescent of the T (n + 1)-
localized K-theory of cyclotomic towers for every n ≥ 1 and every prime number. Therefore,
combined with Theorem C, disproving the telescope conjecture at height 2 and above.
For the convenience of the reader, we now give a rough sketch of the strategy of [BHLS] and its
relation to cyclotomic completion. For simplicity of the exposition, we focus on the case n = 2 and
odd prime p. In this case we take R = SK(1), and the goal is to show that the sheaf of cyclotomic

2The case p = 2 requires only a slight modification.
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extensions LT (2)K(SK(1)[ω
(1)
pr ]) is not a hypersheaf. As explained above, this is equivalent to showing

that LT (2)K(SK(1)) is not cyclotomically complete, namely, that the cyclotomic completion map

LT (2)K(SK(1)) −−! LT (2)K(SK(1))∧
cyc

is not an isomorphism. Since the p∞-cyclotomic extension of SK(1) is KU ∧
p , cyclotomic redshift

(Theorem B) provides a Z×
p -equivariant isomorphism

LT (2)K(SK(1))[ω
(2)
p∞ ] ∼−−! LT (2)K(KU ∧

p ).

Hence, the cyclotomic completion is given by

LT (2)K(SK(1))∧
cyc ≃ LT (2)K(KU ∧

p )hG.

Moreover, we have SK(1) ≃ (KU ∧
p )hG, and it is not hard to see that the cyclotomic completion map

identifies with the assembly map of G-fixed points

LT (2)K((KU ∧
p )hG) −−! LT (2)K(KU ∧

p )hG.

One can further show that the assembly map for fixed points with respect to the finite subgroup
F×

p ≤ G is an isomorphism in this case, so, writing L = (KU ∧
p )hF×

p for the non-connective p-
complete Adams summand, we can identify the cyclotomic completion map with the assembly map
for Z-fixed points (see Proposition 5.17)

LT (2)K(LhZ) −−! LT (2)K(L)hZ.

Using trace methods and the seminal computations of [AR02] of the topological cyclic homology
of the connective p-complete Adams summand ℓ, this map is shown not to be an isomorphism,
disproving the telescope conjecture. The argument for higher heights requires a more involved
variant of these ideas, replacing ℓ with certain E3-forms of BP⟨n⟩ constructed by [HW22].

1.5 Outline of the Proof

Let Catperf be the ∞-category of stable idempotent complete ∞-categories, and let CatLf
n

⊂ Catperf

denote the full subcategory of Lf
n-local ∞-categories. Theorem A can be rephrased as saying that

the functor
LT (n+1)K : CatLf

n
−−! SpT (n+1)

preserves all π-finite p-space indexed colimits and limits. Observe that if the space is discrete,
i.e. 0-finite, then this is precisely the preservation of finite products. The case of 1-finite p-spaces
is precisely Theorem 1.1. The argument then proceeds inductively on the level of truncatedness
m ≥ 2. The proof can be divided into three steps, which we now describe.

Reduction to Constant Colimits of Monochromatic ∞-Categories

A key ingredient in this reduction is the categorical analogue of monochromatization. Recall that
a spectrum X ∈ Sp is called n-monochromatic if it is Lf

n-local and Lf
n−1(X) = 0. The inclusion of

7



n-monochromatic spectra Mf
n Sp ↪! Lf

nSp admits a right adjoint Mf
n : Lf

nSp −−! Mf
n Sp, which fits

into a natural exact sequence
Mf

n (X) −−! X −−! Lf
n−1(X).

Analogously, we say that an ∞-category C ∈ Catperf is n-monochromatic if it is Lf
n-local and

Lf
n−1(C ) = 0, where Lf

n−1 : Catperf ! CatLf
n−1

is the left adjoint of the inclusion. We show
that the inclusion CatMf

n
↪! CatLf

n
of the n-monochromatic ∞-categories admits a right adjoint

Mf
n : CatLf

n
−−! CatMf

n
, which fits into a natural exact (i.e. Verdier) sequence

Mf
n (C ) −−! C −−! Lf

n−1(C ).

This construction enjoys three key properties:

(1) The functor Mf
n : CatLf

n
! CatMf

n
preserves all limits and colimits (see Corollary 2.18).

(2) For every C ∈ CatLf
n
, the inclusion Mf

n (C ) ↪! C induces a “purity isomorphism” (see Propo-
sition 2.22 and [CMNN20, Theorem C])

LT (n+1)K(Mf
n (C )) ∼−−! LT (n+1)K(C ).

(3) The ∞-category CatMf
n

is ∞-semiadditive (see Theorem 2.27).

Turning back to the proof of Theorem A, Property (1) and Property (2) together imply that it
suffices to prove that the functor restricted to n-monochromatic ∞-categories

LT (n+1)K : CatMf
n

−−! SpT (n+1)

preserves π-finite p-space indexed limits and colimits. Now, by Property (3), this functor is between
two ∞-semiadditive ∞-categories, from which we gain two things: First, the preservation of π-finite
p-space indexed colimits implies the same for limits, allowing us to consider only colimits. Second, it
suffices to consider only constant colimits concentrated in a homotopy degree m (see Proposition 2.28
and Proposition 2.29). In other words, we are reduced to showing that for any n-monochromatic
∞-category C and π-finite p-space A concentrated in homotopy degree m the assembly map

LT (n+1)K(C )[A] −−! LT (n+1)K(C [A])

is an isomorphism.

Reduction to Categories of Modules

By the Schwede–Shipley theorem [SS03], any C ∈ Catperf is a filtered colimit of ∞-categories of
the form Perf(R), where R is the endomorphisms ring spectrum of some object of C (see Propo-
sition 2.9). Since algebraic K-theory commutes with filtered colimits, we are reduced to consid-
ering only such ∞-categories. Moreover, as our C is n-monochromatic, the ring spectra R are
n-monochromatic as well. Thus, we are reduced to showing that for any n-monochromatic ring
spectrum R and π-finite p-space A concentrated in homotopy degree m the map

LT (n+1)K(R)[A] −−! LT (n+1)K(R[ΩA])

is an isomorphism.
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Proof of the Special Case

We thank Akhil Mathew for suggesting the following inductive argument. The key ingredient
facilitating the inductive step is [LMMT20, Corollary 4.31], stating that the T (n + 1)-localized
algebraic K-theory of ring spectra preserves sifted colimits when n ≥ 1. The base of the induction
is m = 1, which is provided by Theorem 1.1. For m ≥ 2, we use the bar construction to present
the space as A ≃ lim−!∆op(ΩA)•. Each of the spaces (ΩA)k is an (m − 1)-finite p-space, for which
the result already holds by the inductive hypothesis, and we finish by the preservation of sifted
colimits.

1.6 Acknowledgements

We thank Akhil Mathew for suggesting the argument for the proof of the key special case of the
main theorem described above. We also thank Dustin Clausen for useful conversations and Maxime
Ramzi for several useful comments, suggestions and references. The first and third named authors
would like to thank the Massachusetts Institute of Technology for its hospitality, in which part
of this paper were written. The first and last named authors would like to thank the University
of Copenhagen for its hospitality during and after the “Masterclass on Topological Hochschild
Homology and Zeta Values”, in which parts of this paper were written, and to Omer Carmeli for
his hospitality and for stimulating conversations. The second author is partially supported by the
Danish National Research Foundation through the Copenhagen Centre for Geometry and Topology
(DNRF151). The third author was supported by ISF1588/18, BSF 2018389 and the ERC under the
European Union’s Horizon 2020 research and innovation program (grant agreement No. 101125896).

2 Monochromatic Categories

In this section we set up the categorical framework for the higher descent results in chromatically
localized algebraic K-theory. That is, we define CatLf

n
, CatMf

n
and other related categories, and

study them by means of various characterizations, closure properties, examples, adjunctions etc. In
particular, we establish Property (1), Property (2) and Property (3) discussed above. Here and in
the rest of the paper we use the term ‘category’ to mean ‘∞-category’.

2.1 Recollections of Stable Categories

We begin by setting notation for some categories of stable categories and recalling some well known
facts about them.

Definition 2.1. We denote by Catperf ⊂ Cat the (non-full) subcategory of small, idempotent
complete stable categories and exact functors between them, endowed with the Lurie tensor product.

Definition 2.2. We denote by PrL
st,ω ⊂ PrL

st the (non-full) symmetric monoidal subcategory of
compactly generated stable categories and colimit preserving functors between them that take
compact objects to compact objects (equivalently, that have a colimit preserving right adjoint).

We recall the following from [Lura]:

9



Proposition 2.3. The inclusion PrL
st,ω ↪! PrL

st is colimit preserving. Moreover, the ind-completion
functor

Ind: Catperf −−! PrL
st

is colimit preserving and symmetric monoidal, and factors through a symmetric monoidal equiva-
lence

Ind: Catperf ⇄ PrL
st,ω : (−)ω.

Proof. The first part is [Lura, Lemma 5.3.2.9]. The second follows from [Lura, Remark 4.8.1.8],
and the third follows from [Lura, Lemma 5.3.2.11(3)].

Exact Sequences

We give a brief recollection of exact sequences in Catperf , also known as Verdier sequences. For a
comprehensive treatment we refer the reader to [CDH+20, Appendix A].
The category Catperf is pointed, with zero object the trivial category pt. Accordingly, we can talk
about null sequences in Catperf .

Definition 2.4. A null sequence
C

F−−! D
G−−! E

in Catperf is called an exact sequence if it is both a fiber and a cofiber sequence.

Remark 2.5. Note that, unlike in the case of stable categories such as Sp, it is a property of a
composable pair of morphisms in Catperf to be a null sequence: It is equivalent to the property that
the composition GF carries every object of C to a zero object of E . Accordingly, it is a property
of such a pair to be an exact sequence.

Remark 2.6. There are other equivalent characterizations of exact sequences. For example, a
sequence as in the above definition is an exact sequence if and only if F is fully faithful and G
exhibit E as a localization (or “Verdier quotient”) of D with respect to the morphisms whose
(co)fibers lie in C . This is also equivalent to F being fully faithful and the sequence being a cofiber
sequence.

Perfect Modules

One source of examples of categories in Catperf is perfect modules over ring spectra. We recall the
following construction from [Lura]:

Proposition 2.7. The construction taking a ring spectrum to the category of its left module spectra
assembles into a symmetric monoidal functor

LMod: Alg(Sp) −−! PrL
st,ω.

Proof. By [Lura, Remark 4.8.5.17], there is a symmetric monoidal functor

LMod: Alg(Sp) −−! ModSp(Ĉatall)

10



where Ĉatall is the category of cocomplete categories and colimit preserving functors. As in [Lura,
Notation 4.8.5.10], LModR is presentable, thus, LMod factors through ModSp(PrL), which by [Lura,
Proposition 4.8.2.18] is equivalent to PrL

st. By [Lura, Proposition 7.2.4.2], LModR is compactly
generated. Moreover, by [Lura, Corollary 4.2.3.7(2)], for every morphism R ! S, the extension of
scalars functor LModR ! LModS admits a right adjoint which is itself a left adjoint. Therefore,
LMod factors through the symmetric monoidal subcategory PrL

st,ω ⊂ PrL
st.

Definition 2.8. We define the symmetric monoidal functor

Perf : Alg(Sp)! Catperf

as the composition
Alg(Sp) LMod−−−−! PrL

st,ω

(−)ω

−−−! Catperf ,

which takes a ring spectrum to the category of its perfect (i.e. compact) module spectra.

We now record the following well known corollary of the Schwede–Shipley theorem [SS03].

Proposition 2.9. Every C ∈ Catperf is a filtered colimit of categories of the form Perf(R), where
R is the endomorphism spectrum of an object in C .

Proof. Let P denote the collection of thick subcategories of C generated by a single object, which is
a filtered poset with respect to inclusion. For each thick subcategory C0 ∈ P generated by an object
X ∈ C0, we have C0 ≃ Ind(C0)ω by Proposition 2.3. This implies that X ∈ Ind(C0) is a compact
generator, which by the Schwede–Shipley theorem [SS03] (see also [Lura, Theorem 7.1.2.1]) implies
that

C0 ≃ Ind(C0)ω ≃ LModω
End(X)(Sp) =: Perf(End(X)).

Since every X ∈ C belongs to the thick subcategory generated by X, we have

lim−! C0∈P C0
∼−−! C ,

and hence C is a filtered colimit of categories of the required form.

2.2 Categorical Localization and Monochromatization

Localization of Stable Categories

A symmetric monoidal localization L : Sp! LSp exhibits LSp as an idempotent algebra in PrL
st in

the sense of [Lura, Definition 4.8.2.1]. By [Lura, Proposition 4.8.2.10], it is a property of C ∈ PrL

to be a module over LSp, which is precisely that all the mapping spectra of C are in LSp (see, e.g.,
[CSY21a, Proposition 5.2.10]). We can similarly consider the analogous notion for Catperf .

Definition 2.10. Let L : Sp! LSp be a symmetric monoidal localization. We let CatL ⊂ Catperf
be the full subcategory of those categories all of whose mapping spectra are in LSp. We refer to
objects of CatL as L-local categories.

11



If L is further assumed to be smashing, it preserves compact objects and so exhibits LSp =
ModLS(Sp) as an idempotent algebra in the symmetric monoidal subcategory PrL

st,ω, which classifies
the same property. Indeed, C ∈ PrL

st,ω is a module over LSp, if and only if the map

C ⊗ Sp −−! C ⊗ LSp

is an equivalence, which is the same condition whether we view it in PrL
st or PrL

st,ω.
Applying the symmetric monoidal functor (−)ω of Proposition 2.3 to LSp ∈ PrL

st,ω, we obtain an
idempotent algebra

Perf(LS) = LSpω ∈ Catperf .

Again by [Lura, Proposition 4.8.2.10], it is a property of a category in Catperf to admit a module
structure over Perf(LS).

Proposition 2.11. Let L : Sp ! LSp be a smashing localization. For C ∈ Catperf the following
are equivalent:

(1) C ∈ CatL.

(2) C is a module over Perf(LS) in Catperf .

(3) Ind(C ) is a module over LSp in PrL
st.

Proof. We first show that (2) and (3) are equivalent. Recall from Proposition 2.3 that there is a
symmetric monoidal equivalence

Ind: Catperf ⇄ PrL
st,ω : (−)ω.

Thus, condition (2) is equivalent to Ind(C ) being an LSp-module in PrL
st,ω, which as explained

above, is the same as being an LSp-module in PrL
st, i.e. condition (3).

Assuming condition (3), all the mapping spectra in Ind(C ) are in LSp, and since C ⊂ Ind(C ) is a
full stable subcategory, the same holds for C , i.e. we get condition (1).
Finally, assuming (1), to prove (3) it suffices to show that all the mapping spectra in Ind(C ) are in
LSp. Given X, Y ∈ Ind(C ) we can write X = lim−!Xa and Y = lim−!Yb as filtered colimits of objects
in the essential image of C . We thus get

hom(X, Y ) ≃ lim −−a hom(Xa, lim−! bYb) ≃ lim −−alim−! b hom(Xa, Yb) ∈ Sp,

where the second step uses the fact that the essential image of C in Ind(C ) consists of compact
objects. Since LSp is a smashing localization, it is closed under both limits and colimits in Sp and
hence we get condition (3).

Corollary 2.12. Let L : Sp! LSp be a smashing localization. The full subcategory CatL ⊂ Catperf
is symmetric monoidal, closed under (small) limits and colimits, and the left adjoint Catperf ! CatL

to the inclusion CatL ↪! Catperf is given by tensoring with Perf(LS) and hence is canonically
symmetric monoidal.
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Proof. By Proposition 2.11, the inclusion CatL ↪! Catperf identifies with the forgetful functor
ModPerf(LS)(Catperf)! Catperf . The claims about the symmetric monoidal structure follow imme-
diately, and the claims about limits and colimits follow from [Lura, Corollary 4.2.3.3 and Corollary
4.2.3.5].

By abuse of notation, we denote by L : Catperf ! CatL also the symmetric monoidal left adjoint
constructed in Corollary 2.12. The following example is of principal interest to our study:

Example 2.13. For every n and an (implicit) prime p, we let T (n) be the telescope on some finite
spectrum of type n and define the finite chromatic localization

Lf
n : Sp −−! Lf

nSp

to be the Bousfield localization with respect to T (0) ⊕ · · · ⊕ T (n). We note that we do not work
p-locally and, in particular, we (may) choose T (0) = S[1/p]. Recall from [Mil92] that for all n ≥ 0,
the finite chromatic localizations are smashing. Hence, the full subcategory CatLf

n
⊂ Catperf of

Lf
n-local categories identifies with modules over Perf(Lf

nS).

Monochromatization of Stable Categories

Recall that a spectrum X is called n-monochromatic if it is Lf
n-local and Lf

n−1(X) = 0. The
inclusion of the full subcategory Mf

n Sp ↪! Lf
nSp of n-monochromatic spectra admits a right adjoint

Mf
n : Lf

nSp −−!Mf
n Sp,

which fits into a natural exact sequence

Mf
n (X) −−! X −−! Lf

n−1(X).

The functor Mf
n is both limit preserving, being a right adjoint, and colimit preserving, as it is

given by tensoring with Mf
n (S) and Mf

n Sp is closed under colimits in Sp. We shall now discuss a
categorical analogue of this setup.

Definition 2.14. A category C ∈ Catperf is n-monochromatic if it is Lf
n-local and Lf

n−1(C ) = 0.
We denote by CatMf

n
⊂ CatLf

n
the full subcategory of n-monochromatic categories. For every

C ∈ CatLf
n
, we denote by Mf

n (C ) ! C the fiber of the localization map C ! Lf
n−1(C ) formed in

Catperf .

Recall that the localization Perf(Lf
nS) ! Perf(Lf

n−1S) participates in an exact sequence (see for
example [LMMT20, Lemma 3.7]), and its fiber is, by construction, the monochromatization of
Perf(Lf

nS), which we can describe explicitly.

Proposition 2.15. Mf
n (Perf(Lf

nS)) is the thick subcategory generated by T (n).

Proof. First recall that by the thick subcategory theorem, the kernel Kn of the localization Perf(S)!
Perf(Lf

n−1S) is the thick subcategory generated from any finite spectrum of type n. This partici-
pates in an exact sequence

Kn −−! Perf(S) −−! Perf(Lf
n−1S).

13



By [LT19, Lemma 3.12] and Corollary 2.12, tensoring the above exact sequence with Perf(Lf
nS)

gives the exact sequence

Kn ⊗ Perf(Lf
nS) −−! Perf(Lf

nS) −−! Perf(Lf
n−1S).

We thus see that Mf
n (Perf(Lf

nS)) is generated by the Lf
n-localization of any finite spectrum of type

n, that is, any telescope T (n).

The monochromatization of a general category reduces to the above basic case using the following:

Proposition 2.16. Let C ∈ CatLf
n
. The sequence

Mf
n (C ) −−! C −−! Lf

n−1(C )

is exact in Catperf , and
Mf

n (C ) ≃ Mf
n (Perf(Lf

nS)) ⊗ C .

Proof. As mentioned above, the sequence

Mf
n (Perf(Lf

nS)) −−! Perf(Lf
nS) −−! Perf(Lf

n−1S)

is exact. By [LT19, Lemma 3.12] and Corollary 2.12 again, tensoring it with C gives an exact
sequence

Mf
n (Perf(Lf

nS)) ⊗ C −−! C −−! Lf
n−1(C ),

which also exhibits the first term as Mf
n (C ).

The notation Mf
n (C ) is justified by the following:

Proposition 2.17. Let C ∈ CatLf
n
. The category Mf

n (C ) is n-monochromatic, and the canonical
map Mf

n (C )! C exhibits it as the coreflection of C into CatMf
n

.

Proof. For the first part, observe that Lf
n−1(C ) is in particular Lf

n-local and hence Mf
n (C ), being

the fiber of Lf
n-local categories, is Lf

n-local. By Proposition 2.16, the sequence

Mf
n (C ) −−! C −−! Lf

n−1(C )

exact. Thus, by [LT19, Lemma 3.12] and Corollary 2.12 once more, tensoring it with Perf(Lf
n−1S)

gives an exact sequence

Lf
n−1(Mf

n (C )) −−! Lf
n−1(C ) ∼−−! Lf

n−1(C ),

and in particular Lf
n−1(Mf

n (C )) = 0. That is, Mf
n (C ) is n-monochromatic.

We now prove the second part. Let D be any n-monochromatic category. Applying Map(D , −) to
the exact sequence

Mf
n (C ) −−! C −−! Lf

n−1(C )

gives a fiber sequence

Map(D , Mf
n (C )) −−! Map(D , C ) −−! Map(D , Lf

n−1(C )).

14



Since Lf
n−1(D) = 0, we get

Map(D , Lf
n−1(C )) ≃ Map(Lf

n−1(D), Lf
n−1(C )) ≃ Map(0, Lf

n−1(C )) ≃ pt.

Thus, the map Map(D , Mf
n (C )) ! Map(D , C ) is an isomorphism, exhibiting Mf

n (C ) as the core-
flection of C into CatMf

n
.

Corollary 2.18. The full subcategory CatMf
n

⊂ CatLf
n

is closed under colimits and the coreflection
Mf

n : CatLf
n
! CatMf

n
preserves all (small) limits and colimits.

Proof. By Proposition 2.17, the functor Mf
n is the right adjoint to the inclusion CatMf

n
↪! CatLf

n
.

Hence, the inclusion preserves colimits and Mf
n preserves limits. By Proposition 2.16, the com-

position of the functor Mf
n with the colimit preserving fully faithful inclusion CatMf

n
↪! CatLf

n
is

given by tensoring with Mf
n (Perf(Lf

nS)) and hence preserves colimits. It follows that Mf
n preserves

colimits as well.

Proposition 2.19. For C ∈ Catperf , the following are equivalent:

(1) C belongs to CatMf
n

.

(2) F (n + 1) ⊗ X = 0 for every X ∈ C , and C is generated as a stable idempotent complete
category from objects of the form F (n) ⊗ X for X ∈ C .

(3) All the mapping spectra between objects of C are n-monochromatic.

Proof. (1) =⇒ (2): For the first condition, if C is n-monochromatic then it is in particular Lf
n-

local, and hence tensored over Perf(Lf
nS). Since Lf

n(F (n+1)) = 0, this implies that F (n+1)⊗X = 0
for all X ∈ C . For the second condition, by Proposition 2.17 and Proposition 2.16 we have

C ≃ Mf
n (C ) ≃ Mf

n (Perf(Lf
nS)) ⊗ C .

Consequently, C is generated from tensor products of the form M ⊗X for M ∈ Mf
n (Perf(Lf

nS)) and
X ∈ C . Since by Proposition 2.15, Mf

n (Perf(Lf
nS)) is the thick subcategory of Perf(Lf

nS) generated
by T (n) ≃ Lf

n(F (n)), we deduce that C is generated by the objects of the form F (n)⊗X as claimed.
(2) =⇒ (3): We wish to show that for every X, Y ∈ C , the mapping spectrum hom(X, Y ) is
n-monochromatic. First, since Y ⊗ F (n + 1) = 0 and F (n + 1) is finite, we see that

hom(X, Y ) ⊗ F (n + 1) ≃ hom(X, Y ⊗ F (n + 1)) ≃ hom(X, 0) = 0.

This implies that hom(X, Y ) is Lf
n-local. It remains to show that it is also Lf

n−1-acyclic.
For fixed X ∈ C , the objects Y ∈ C for which hom(X, Y ) is Lf

n−1-acyclic is thick. Since by
assumption C is generated from objects of the from Y ⊗ F (n), it suffices to show that hom(X, Y ⊗
F (n)) is Lf

n−1-acyclic. Since F (n) is finite, we get

hom(X, Y ⊗ F (n)) ≃ hom(X, Y ) ⊗ F (n),

which is Lf
n−1-acyclic since F (n) is.
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(3) =⇒ (1): First, since the mapping spectra of C are in Mf
n Sp ⊆ Lf

nSp, the category C is Lf
n-

local. It remains to show that it is also Lf
n−1-acyclic, namely, that Lf

n−1(C ) = 0. Since Lf
n−1(C ) is

generated by the image of the localization functor Lf
n−1 : C ! Lf

n−1(C ), it would suffice to show
that Lf

n−1(X) = 0 for every X ∈ C . For every such X, we have a fully faithful exact embedding
Perf(End(X))! C sending End(X) to X, so by the commutativity of the square

Perf(End(X)) //

��

C

��
Lf

n−1(Perf(End(X))) // Lf
n−1(C )

it would suffice to show that Lf
n−1(Perf(End(X))) = 0. Finally, by our assumption on C , the ring

spectrum End(X) is n-monochromatic. Thus, using Corollary 2.12 we get that

Lf
n−1(Perf(End(X))) ≃ Perf(Lf

n−1S) ⊗ Perf(End(X))

≃ Perf(Lf
n−1S ⊗ End(X))

≃ Perf(Lf
n−1(End(X)))

= 0.

2.3 Monochromatization and Purity

We now study the connection between categorical monochromatization and chromatically localized
algebraic K-theory, starting with some recollections of algebraic K-theory.
Definition 2.20. We let KT (n+1) : Catperf ! SpT (n+1) denote the composition

Catperf
K−−−−! Sp

LT (n+1)−−−−−! SpT (n+1),

where K is the algebraic K-theory functor.

We remind the reader that the functor K preserves filtered colimits, sends exact sequences in Catperf
to exact sequences in Sp, and admits a canonical lax symmetric monoidal structure (see for example
[BGT13, BGT14]). Since LT (n+1) is symmetric monoidal, colimit preserving and exact, KT (n+1)
inherits these properties and structure.
Recall that for R ∈ Alg(Sp), one defines

K(R) := K(Perf(R)).

Similarly, we denote
KT (n+1)(R) := KT (n+1)(Perf(R)),

which we consider as a functor Alg(Sp) ! SpT (n+1). We also recall from [CMNN20, Proposition
4.15] that if R ∈ CAlg(SpT (n)), then the inclusion Perf(R) ↪! M̂oddbl

R to dualizable T (n)-local
modules induces an isomorphism

KT (n+1)(R) ∼−−! KT (n+1)(M̂oddbl
R ).
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Remark 2.21. The argument works verbatim for R ∈ Alg(SpT (n)) (i.e., in the non-commutative
case) when one replaces the category M̂oddbl

R of dualizable T (n)-local modules by the category
L̂Modldbl

R of left dualizable left T (n)-local modules.

One of the key results of [CMNN20] and [LMMT20] is the “purity theorem”, which implies that
if C is Lf

n−1-local then KT (n+1)(C ) = 0. As an immediate consequence, we obtain the following
categorical analogue:

Proposition 2.22. Let C ∈ CatLf
n
. Then the inclusion Mf

n (C ) ↪! C induces an isomorphism

KT (n+1)(Mf
n (C )) ∼−−! KT (n+1)(C ).

Proof. By Proposition 2.16, there is an exact sequence

Mf
n (C ) −−! C −−! Lf

n−1(C ).

Since KT (n+1) preserves exact sequences, we get an exact sequence

KT (n+1)(Mf
n (C )) −−! KT (n+1)(C ) −−! KT (n+1)(Lf

n−1(C )).

Finally, by [CMNN20, Theorem C] the right term KT (n+1)(Lf
n−1(C )) vanishes and hence the left

morphism becomes an isomorphism KT (n+1)(Mf
n (C )) ∼−−! KT (n+1)(C ).

In other words, the restriction of the functor KT (n+1) : Catperf ! SpT (n+1) to the full subcategory
CatLf

n
⊆ Catperf factors through the limit and colimit preserving reflection Mf

n : CatLf
n
! CatMf

n
.

2.4 Higher Semiadditivity

One advantage of the category CatMf
n

over CatLf
n

is that it is ∞-semiadditive. To establish that,
we shall compare CatMf

n
to the category of compactly generated T (n)-local categories, where we

can exploit the natural symmetric monoidal structure.

Compactly Generated T (n)-local Categories

Recall from the discussion in the beginning of Section 2.2 that SpT (n) ∈ PrL
st is an idempotent

algebra classifying the property of having T (n)-local mapping spectra. We also recall that in this
situation, the category of modules over SpT (n) in PrL

st has a symmetric monoidal structure with a
different unit, but the same tensor product.

Definition 2.23. Let PrL
T (n) ⊂ PrL

st denote the full subcategory on those categories whose map-
ping spectra are T (n)-local, endowed with the symmetric monoidal structure of ModSpT (n)(PrL

st).
Similarly, we let PrL

T (n),ω := PrL
st,ω ∩PrL

T (n) denote the full subcategory of PrL
st,ω on those categories

whose mapping spectra are T (n)-local.

We now recall the following facts about n-monochromatization of spectra.
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Proposition 2.24 ([Bou01, Theorem 3.3]). The composition

Mf
n Sp −−! Sp −−! SpT (n) ∈ PrL

is an equivalence.

Proposition 2.25. A category C ∈ CatLf
n

is n-monochromatic if and only if Ind(C ) has T (n)-local
mapping spectra. Namely, the equivalence of Proposition 2.3 restricts to an equivalence

Ind: CatMf
n
⇄ PrL

T (n),ω : (−)ω.

Proof. For any C ∈ CatLf
n
, by Proposition 2.16, we have an exact sequence

Mf
n (C ) −−! C −−! Lf

n−1(C ).

Taking Ind, by the ∞-categorical analogue of Thomason–Neeman localization theorem [CDH+20,
A.3.11. Theorem], we get an exact sequence (of not necessarily small categories)

Ind(Mf
n (C )) −−! Ind(C ) −−! Ind(Lf

n−1(C )).

Note that in particular for C = Perf(Lf
nS), the fact that this is a fiber sequence implies that

Ind(Mf
n (Perf(Lf

nS))) ≃ Mf
n Sp.

Going back to the general case, we see that C is n-monochromatic if and only if Ind(Mf
n (C )) !

Ind(C ) is an equivalence. By Proposition 2.17 we have

Mf
n (C ) ≃ Mf

n (Perf(Lf
nS)) ⊗ C .

Using the fact that Ind is symmetric monoidal and the result for Perf(Lf
nS), we see that C is

n-monochromatic if and only if

Mf
n Sp ⊗ Ind(C ) −−! Ind(C )

is an equivalence. By tensoring the equivalence from Proposition 2.24 with Ind(C ), we get that the
composition

Mf
n Sp ⊗ Ind(C ) −−! Ind(C ) −−! SpT (n) ⊗ Ind(C ) ∈ PrL

is an equivalence. Thus, by 2-out-of-3, we see that C is n-monochromatic, if and only if Ind(C )!
SpT (n) ⊗ Ind(C ) is an equivalence. Since SpT (n) ∈ PrL is the idempotent algebra classifying the
property of having T (n)-local mapping spectra (see [CSY21a, Proposition 5.2.10]), we obtain the
result.

Proposition 2.26. PrL
T (n),ω ⊂ PrL

T (n) is a symmetric monoidal subcategory closed under all col-
imits, and in particular its symmetric monoidal structure distributes over all colimits.

Proof. To show that PrL
T (n),ω ⊂ PrL

T (n) is a symmetric monoidal subcategory, it suffices to check
that it contains the unit, and that morphisms are closed under the tensor product. Note that T (n)
is a compact generator of SpT (n) because T (n) ≃ LT (n)F (n) where F (n) is a finite type n spectrum,
which by the thick subcategory theorem is a compact generator of Lf

n−1-acyclic spectra of which
SpT (n) is a smashing localization. Thus, SpT (n) ∈ PrL

T (n),ω. For closure of morphisms under tensor
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product, recall that PrL
st,ω and PrL

T (n) have the same tensor product as PrL
st, and PrL

T (n),ω is their
intersection.
To see that PrL

T (n),ω ⊂ PrL
T (n) is closed under colimits, consider the following commutative diagram:

Catperf PrL
st,ω PrL

st

CatMf
n

PrL
T (n),ω PrL

T (n)

∼

∼

Both horizontal morphisms in the left square are equivalences by Proposition 2.3 and Proposi-
tion 2.25. Colimits in PrL

T (n) are computed as in PrL
st because it is a smashing localization, and the

same holds for PrL
st,ω by Proposition 2.3. Thus, by the commutativity of the right square, it suffices

to check that PrL
T (n),ω ⊂ PrL

st,ω is closed under colimits. This follows from the commutativity of
the left square and Corollary 2.18.

Theorem 2.27. For all n ≥ 0, the category CatMf
n

is ∞-semiadditive.

Proof. By Proposition 2.25, we have CatMf
n

≃ PrL
T (n),ω, so it suffices to prove that PrL

T (n),ω is ∞-
semiadditive. We shall prove that PrL

T (n),ω is m-semiadditive by induction on m, starting with m =
−2 where the condition is vacuous. Assume PrL

T (n),ω is (m−1)-semiadditive. By Proposition 2.26, it
is symmetric monoidal and the tensor product distributes over colimits, so by [CSY22, Proposition
2.3.4], for every m-finite space A we have a canonical ambidexterity pairing

ε : SpT (n)[A] ⊗ SpT (n)[A] −−! SpT (n) ∈ PrL
T (n),ω.

Furthermore, A is PrL
T (n),ω-ambidextrous if and only if ε is non-degenerate in the sense that it

exhibits SpT (n)[A] as self-dual. Now, again by Proposition 2.26, the inclusion PrL
T (n),ω ↪! PrL

T (n)
is colimit preserving and exhibits the source as a symmetric monoidal (non-full) subcategory of
the target, which is ∞-semiadditive by [HL13, Example 4.3.11] and [CSY21a, Remark 5.3.2]. In
particular, ε is also the canonical ambidexterity pairing in PrL

T (n), and there exists

η : SpT (n) −−! SpT (n)[A] ⊗ SpT (n)[A] ∈ PrL
T (n),

which satisfies together with ε the zigzag identities. It thus suffices to show that η belongs to
PrL

T (n),ω. Namely, that its right adjoint itself admits a further right adjoint.

The ambidexterity pairing of any algebra in PrL
T (n) is the same as in PrL itself, which under the

identification
SpT (n)[A] ⊗ SpT (n)[A] ≃ SpT (n)[A × A] ≃ SpA×A

T (n)

is given by (e.g., see [Har20, Proposition 3.17])

ε : SpA×A
T (n)

∆∗

−−! SpA
T (n)

A!−−! SpT (n)

and
η : SpT (n)

A∗

−−! SpA
T (n)

∆!−−! SpA×A
T (n) ,
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where ∆: A! A × A is the diagonal. Since A is SpT (n)-ambidextrous, the right adjoint A∗ of A∗

is isomorphic to A! and hence admits a further right adjoint (note that by induction, we already
know this for ∆∗, which is (m − 1)-finite). It follows that η belongs to PrL

T (n),ω, which completes
the inductive step and hence the proof.

Consequences of Higher Semiadditivity

To illustrate the usefulness of Theorem 2.27, we shall record the following general reductions for
proving preservation of π-finite colimits for a functor between higher semiadditive categories, which
will be used in the proof of Theorem A.

Proposition 2.28. Let F : C ! D be a functor between p-typically m-semiadditive categories.
If F preserves constant m-finite p-space indexed (co)limits, then it preserves all m-finite p-space
indexed (co)limits (i.e., it is p-typically m-semiadditive).

Proof. For m = −2 there is nothing to prove. Assume by induction that F is p-typically (m − 1)-
semiadditive. Hence, by [CSY22, Theorem 3.2.3], for every m-finite p-space A we have a commu-
tative norm diagram

FA! FA∗

A!F A∗F ,

β! β∗

NmD

NmC

∼

∼

in which the horizontal maps are isomorphisms because C and D are p-typically m-semiadditive.
It follows that β! admits a retract. On the other hand, using the wrong way adjunction A∗ ⊣ A! in
C , we have the following diagram:

A!FA∗A! A!F

FA! FA!A
∗A! FA!.

µ! ν!

β!β!≀

ν!

Hence, β! admits a section. Therefore, β! and β∗ are isomorphisms.

Proposition 2.29. Let C , D be categories admitting m-finite p-space indexed colimits, and let
F : C ! D be a functor commuting with (m−1)-finite p-space indexed colimits. Then, F commutes
with (constant) m-finite p-space indexed colimits if and only if it commutes with (constant) colimits
indexed by m-finite p-spaces concentrated in homotopy degree m.

Proof. The only if part is clear. For the other direction, let A be some m-finite p-space, and we
shall show that F commutes with A!. Let B := A≤m−1, and f : A! B be the canonical map. Since
A! ≃ B!f!, it suffices to check that F commutes with both of them. By the inductive hypothesis, F
indeed commutes with B!, thus it remains to show that it commutes with f!. This can be checked
fiber-wise on the target, namely, for any b ∈ B, we need to show that b∗f!F ! b∗Ff! ≃ Fb∗f! is an
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isomorphism. Consider the pullback:
Ab pt

A B
f

bib

The Beck–Chevalley condition guarantees that b∗f! ≃ Ab!i
∗
b . Under this isomorphism, the condition

we need to check is that Ab!i
∗
bF ! FAb!i

∗
b is an isomorphism. Since F commutes with i∗

b , it suffices
to show that it commutes with Ab!, which indeed holds since by construction Ab is m-finite and
concentrated in homotopy degree m, so this follows by the hypothesis.
The case of constant colimits follows by pre-composition with A∗.

3 Group Algebras

As explained in the introduction, at the core of our study is the map

KT (n+1)(R)[A] −−! KT (n+1)(R[ΩA])

for a ring spectrum R and a pointed connected space A. The construction of this map is the
combination of two ingredients. First, for every functor F : C ! D between categories with A-
shaped colimits and X ∈ C , we have an assembly map

F (X)[A] := lim−!AF (X) −−! F (lim−!AX) =: F (X[A]).

Second, for every ring spectrum R, the equivalence between local systems over A and representations
of the group ΩA in R-modules gives, in the realm of small stable categories, an equivalence

Perf(R[ΩA]) ≃ Perf(R)[A].

In Section 3.1 and Section 3.2 we review these standard constructions, and verify some of their
basic naturality and multiplicativity properties necessary for our applications to K-theory. Finally,
for T (n)-local commutative rings we shall also employ a variant of the above equivalence, replacing
perfect modules by dualizable T (n)-local modules, which we discuss in Section 3.3.

3.1 Multiplicativity of Assembly Maps

Given a functor F : C ! D , for every X ∈ C and A ∈ S we have a natural assembly map

F (X)[A] −−! F (X[A]).

Furthermore, if F is lax symmetric monoidal, we shall show that the assembly map is canonically
lax symmetric monoidally natural in both X and A.
First, we want to exhibit the source and target of the assembly map as symmetric monoidal functors
in both variables. Let Ĉatall be the category of cocomplete categories and colimit preserving
functors. For every C ∈ Ĉatall we can define the functor S × C ! C given by (A, X) 7! X[A] as
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a left Kan extension in the following way. Consider the functor i : C ! S × C that is constant on
the point in S and is the identity on C . The left Kan extension along i is a functor of the form

i! : Fun(C , C ) −−! Fun(S × C , C )

which gives (i!IdC )(X, A) = X[A]. Now if C ∈ CAlg(Ĉatall), then the functor i is symmetric
monoidal, by [LNP22, Proposition 3.30] or [BMS21, Proposition 3.6], the functor i! is symmetric
monoidal, with lax symmetric monoidal right adjoint i∗, with respect to the Day convolution on the
source and target. Since commutative algebras in the Day convolution are lax symmetric monoidal
functors, we get an induced adjunction

i! : Funlax(C , C ) ⇄ Funlax(C × S, C ) : i∗

lifting the adjunction on (not lax symmetric monoidal) functors. Thus, the functor

S × C −−! C , (A, X) 7! X[A]

given by i!IdC acquires a lax symmetric monoidal structure. Since the symmetric monoidal structure
of C preserves colimits in each variable, the lax symmetric monoidal structure on i!IdC is strong.
Now, let C , D ∈ CAlg(Ĉatall) and let F : C ! D be a lax symmetric monoidal functor. Denote by
F̃ the functor given by post-composition with F , and consider the following commutative square:

Funlax(C , C ) Funlax(C × S, C )

Funlax(C , D) Funlax(C × S, D)

i∗

i∗

F̃F̃

Passing to horizontal left adjoints, we obtain a Beck–Chevalley map

i!F̃ −−! F̃ i!.

Evaluating this map at IdC ∈ Funlax(C , C ), and noting that F̃ (IdC ) = F , gives a map between lax
symmetric monoidal functors

i!F −−! F ◦ i!IdC .

Unwinding the definitions, this is precisely the assembly map.

Definition 3.1. For C , D ∈ CAlg(Ĉatall) and a lax symmetric monoidal functor F : C ! D we
define the map

F (X)[A] −−! F (X[A]) ∈ D

to be the map i!F ! F ◦ i!IdC constructed above, so in particular as a lax symmetric monoidally
natural transformation.

Remark 3.2. When F is colimit preserving and strong symmetric monoidal the assembly map
defined above is an isomorphism.
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3.2 Modules over Group Algebras

We now specialize to the case where the category itself is PrL (which lives in a large version of
Ĉatall) giving us the construction C [A] symmetric monoidally naturally in C ∈ PrL and A ∈ S. If
we further assume that A is pointed connected, we have an identification of C [A] with LModΩA(C ).
We would like to make this identification symmetric monoidal as well. The argument will require
the following rigidity property of the category of pointed connected spaces:

Lemma 3.3. The identity functor is the only (symmetric monoidal) auto-equivalence of the category
S≥1, up to isomorphism.

Proof. The category
S≥1

∗ ≃ Grp(S)

is the non-abelian derived category (a.k.a animation) of the ordinary category of groups Grp(Set)
(see, e.g., [CS19, Example 5.1.6(1)]), and it is known that the latter has no non-identity auto-
equivalences (see [Fre64, p.31 example F]). By (the dual version of) [Lura, Proposition 2.4.3.8],
every functor admits a unique lax symmetric monoidal structure with respect to the Cartesian
monoidal structure on the source and the target, which implies the symmetric monoidal version of
the claim.

Proposition 3.4. There is an equivalence

LModΩA(C ) ≃ C [A] ∈ PrL,

symmetric monoidally natural in A ∈ S≥1
∗ and C ∈ PrL.

Proof. Both sides are symmetric monoidal functors

PrL × S≥1
∗ −−! PrL.

That is, morphisms in a larger version of CMon(Cat). As the source is a coproduct of PrL and
S≥1

∗ , it suffices to identify the two functors on each coordinate separately. On the PrL factor both
functors are the identity so the claim holds trivially. We are thus reduced to proving the claim for
C = S. Note that LModΩA(S) is naturally pointed by ΩA with its regular left action on itself.
Also, S[A] is pointed by the map S ! S[A] induced from the basepoint of A. Hence, both promote
to symmetric monoidal functors

S≥1
∗ −−! PrL

∗ ,

where PrL
∗ is the category of presentable categories with a chosen object (equivalently, the under

category PrL
S/). It would suffice to show they are naturally isomorphic as such.

We begin by showing that both of them are fully faithful. For LModΩ(−)(S) this follows from [Lura,
Theorem 4.8.5.11]. For S[−] we argue as follows. First, for all A, B ∈ S≥1

∗ , restriction along the
Yoneda embedding A ↪! S[A] provides an isomorphism

MapPrL
∗

(S[A], S[B]) ≃ MapĈat∗
(A, S[B])
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by the universal property of S[A] as a free co-completion of A. Now, since A is connected, every
pointed functor A ! S[B] factors uniquely through the Yoneda embedding B ↪! S[B], and hence
provides an isomorphism

MapĈat∗
(A, S[B]) ≃ MapS≥1

∗
(A, B).

It thus follows that S[−] is fully faithful as well. Furthermore, the essential images of the two
functors are the same (see, e.g., [CSY21b, Proposition 4.4]), so the composition of one with the
inverse image of the other is an auto-equivalence of S≥1

∗ , which by Lemma 3.3 must be the identity.

For C ∈ CAlg(Ĉatall) applying Alg(−) to the symmetric monoidal functor (A, X) 7! X[A] and
pre-composing with Ω: S≥1

∗ ! Mon(S) gives a symmetric monoidal functor

S≥1
∗ × Alg(C ) −−! Alg(C ), (A, R) 7! R[ΩA].

Similarly, applying CAlg(−) and pre-composing with Sp≥0 ! CMon(S) we get a symmetric
monoidal functor

Sp≥0 × CAlg(C ) −−! CAlg(C ), (M, R) 7! R[M ].

Corollary 3.5. There is an equivalence

LModR[ΩA](C ) ≃ LModR(C )[A] ∈ PrL
∗ ,

symmetric monoidally natural in A ∈ S≥1
∗ and (C , R) ∈ PrL,Alg. Similarly, there is an equivalence

ModR[M ](C ) ≃ ModR(C )[ΣM ] ∈ CAlg(PrL),

natural in M ∈ Sp≥0 and (C , R) ∈ PrL,CAlg.

Proof. By composing (the pointed version of) the equivalence of Proposition 3.4 with the symmetric
monoidal functor PrL,Alg ! PrL

∗ taking (C , R) to LModR(C ) pointed by R we obtain a symmetric
monoidal equivalence

LModΩA(LModR(C )) ≃ LModR(C )[A] ∈ PrL
∗ .

It thus remains to identify the left-hand side above with LModR[ΩA](C ). As in the proof of Propo-
sition 3.4, these are two symmetric monoidal functors

PrL,Alg × S≥1
∗ −−! PrL

∗ ,

and since the source is a coproduct in the category of symmetric monoidal categories, it suffices to
make the identification separately in each coordinate, both of which are obvious.
The second part follows by applying CAlg to the above equivalence.

Corollary 3.6. There is an equivalence

Perf(R[ΩA]) ≃ Perf(R)[A] ∈ Catperf ,

symmetric monoidally natural in A ∈ S≥1
∗ and R ∈ Alg(Sp).
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Proof. Consider the natural equivalence of functors obtained from the case C = Sp of Corollary 3.5.
Observe that by Proposition 2.3, the symmetric monoidal inclusion PrL

st,ω ↪! PrL
st is colimit pre-

serving, and by Proposition 2.7, the two functors factor through it. The result then follows by
applying the equivalence (−)ω of Proposition 2.3.

Remark 3.7. Various versions of Proposition 3.4 and its corollaries were formulated and proved in
the literature, including two different papers of the authors ([CSY21b, Proposition 4.4], [BCSY22,
Proposition 5.11]). We hope that this version, which is compatible with the cited ones, but also
includes the multiplicative naturality in all variables, will meet all our future requirements, so that
we shall not have to prove it again.

3.3 Dualizable Modules

We first recall some generalities on Beck–Chevalley maps. Let

C0 C1

D0 D1

LC

F0 F1

LD

α

be a lax commutative square of categories, and assume that LC admits a right adjoint RC with
unit uC and counit cC , and similarly for LD . Then, there is a Beck–Chevalley transformation given
by the composition

F0RC uD

==⇒ RDLDF0RC α=⇒ RDF1LC RC cC

==⇒ RDF1.

The Beck–Chevalley map is compatible with the unit maps in the sense that the following diagram
commutes

F0 RDLDF0

F0RC LC RDF1LC

uD

uC α

We now apply this in a specific context. Let C ∈ CAlg(Ĉatall). Recall that there is a group
algebra–units adjunction:

1C [−] : Sp≥0 ⇄ CAlg(C ) : (−)×.

For C , D ∈ CAlg(Ĉatall) and a lax symmetric monoidal functor F : C ! D there is a natural
assembly map

F (1C )[M ] −−! F (1C [M ])
of functors Sp≥0 ! CAlgF (1C )(D). In other words, this provides the 2-morphism depicted in the
following diagram:

Sp≥0 CAlg(C )

Sp≥0 CAlgF (1C )(D)

F

1C [−]

F (1C )[−]
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Definition 3.8. Let C , D ∈ CAlg(Ĉatall) and let F : C ! D be a lax symmetric monoidal functor.
We define the natural map

R× −−! F (R)×

of functors CAlg(C )! Sp≥0 to be the Beck–Chevalley map associated to the above lax commuta-
tive square under the group algebra–units adjunctions.

Namely, at R ∈ CAlg(C ), the resulting map R× ! F (R)× is the composition

R× ∼−−! hom(1C [S], R) −−! hom(F (1C [S]), F (R)) −−! hom(1D [S], F (R)) ∼−−! F (R)×

where the third morphism is obtained by lax unitality of F and the assembly map

1D [S] −−! F (1C )[S] −−! F (1C [S]).

Lemma 3.9. Let C , D ∈ CAlg(Ĉatall) and let F : C ! D be a lax symmetric monoidal functor.
Then the following diagram commutes naturally in M ∈ Sp≥0:

M F (1C )[M ]×

1C [M ]× F (1C [M ])×

Proof. This is the compatibility of the Beck–Chevalley map with units.

Consider now the group algebra–unit adjunction applied to the category Cat ∈ CAlg(Ĉatall):

pt[−] : Sp≥0 ⇄ CAlg(Cat) :(−)×.

Every invertible object of a symmetric monoidal category is in particular dualizable, that is, the
inclusion C dbl ↪! C induces an isomorphism (C dbl)× ∼−−! C ×. In other words, we have a commu-
tative square of categories:

CAlg(Cat) Sp≥0

CAlg(Cat) Sp≥0

(−)×

(−)dbl

(−)×

Now, for C ∈ CAlg(PrL
st), we have C dbl ∈ CAlg(Catperf), and the formation of dualizable objects

refines to a functor
(−)dbl : CAlgC (PrL

st)! CAlgC dbl(Catperf).
By restricting the (large categories version) of the commutative square above to presentable stable
categories, we obtain the following commutative square:

CAlgC (PrL
st) Sp≥0

CAlgC dbl(Catperf) Sp≥0

(−)×

(−)dbl

(−)×

Recall that the horizontal maps admit left adjoints C [−] and C dbl[−].
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Definition 3.10. For C ∈ CAlg(PrL
st) we define the natural transformation

C dbl[−] −−! C [−]dbl

between functors Sp≥0 ! CAlgC dbl(Catperf) to be the Beck–Chevalley transformation correspond-
ing to the square above.

Observe that for a colimit preserving symmetric monoidal functor F : C ! D ∈ PrL
st the assembly

map is an isomorphism
F (R)[ΩA] ∼−−! F (R[ΩA]).

Namely, the group algebra is unambiguously defined.

Proposition 3.11. Let F : C ! D ∈ CAlg(PrL
st) be a colimit preserving symmetric monoidal

functor between presentably symmetric monoidal stable categories. Then, there is a commutative
diagram

Moddbl
R (C )[ΣM ] ModR(C )[ΣM ]dbl Moddbl

R[M ](C )

Moddbl
F (R)(D)[ΣM ] ModF (R)(D)[ΣM ]dbl Moddbl

F (R)[M ](D)

∼

∼

lax symmetric monoidally natural in M ∈ Sp≥0 and R ∈ CAlg(C ).

Proof. Applying Corollary 3.5 to F : C ! D gives the commutative square in CAlg(PrL
st)

ModR(C )[ΣM ] ModR[M ](C )

ModF (R)(D)[ΣM ] ModF (R)[M ](D)

∼

∼

lax symmetric monoidally naturally in M ∈ Sp≥0 and R ∈ CAlg(C ). Taking dualizable objects,
we get the right commutative square in question. The left commutative square in question is the
naturality of the map E dbl[ΣM ]! E [ΣM ]dbl in E , applied to

ModR(C ) −−! ModF (R)(D).

4 Higher Descent

In this section we prove Theorem 4.1, our main theorem regarding higher descent for the T (n + 1)-
localized K-theory of Lf

n-local categories, and Theorem 4.12, the implication to preservation of
Galois extensions. For an outline of the proof, we refer the reader to Section 1.5.
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4.1 Higher Categorical Descent

We are finally in position to prove our main theorem.

Theorem 4.1. The functor
KT (n+1) : CatMf

n
−−! SpT (n+1)

is p-typically ∞-semiadditive. That is, it preserves π-finite p-space indexed limits and colimits.

Proof. First, by Theorem 2.27 and [CSY22, Theorem A] the categories CatMf
n

and SpT (n+1) are
both ∞-semiadditive. Therefore, by (the p-typical analogue of) [CSY21a, Corollary 3.2.4] it suffices
to show that KT (n+1) preserves π-finite p-space indexed colimits. By Proposition 2.29 it is enough
to consider constant colimits indexed by π-finite p-spaces concentrated in a fixed homotopical degree
m. Namely, we have to show that for such a space A the assembly map

KT (n+1)(C )[A] −−! KT (n+1)(C [A])

is an isomorphism.
For the case m = 0 observe that KT (n+1) is exact and in particular commutes with finite coproducts.
For m = 1, since C is in CatMf

n
, and in particular it is Lf

nS-linear, the result follows from [CMNN20,
Theorem 4.12(1)] applied to R = Lf

nS. We proceed by induction on m ≥ 2.
First, we reduce to the case where C is of the form Perf(R) for a ring spectrum R ∈ Mf

n Sp. Indeed,
by Proposition 2.9 we may write C as a filtered colimit of the form

C ≃ lim−! Perf(Ri) ∈ Catperf ,

where the ring spectra Ri are all endomorphism rings of objects of C . Since C ∈ CatMf
n

, we know
by Proposition 2.19(3) that each Ri belongs to Mf

n Sp. Since each of the categories Perf(Ri) is a
full subcategory of C , by Proposition 2.19(3) again we deduce that they all belong to CatMf

n
. Also,

recall that
KT (n+1) : Catperf −−! SpT (n+1)

preserves filtered colimits. Thus, by naturality of the assembly map, to show that

KT (n+1)(C )[A] −−! KT (n+1)(C [A]) ∈ SpT (n+1)

is an isomorphism for every C ∈ CatMf
n

it suffices to show that

KT (n+1)(Perf(R))[A] −−! KT (n+1)(Perf(R)[A]) ∈ SpT (n+1)

is an isomorphism for every n-monochromatic ring spectrum R.
Note that once m ≥ 1 and A is concentrated in homotopy degree m, it is connected, whence by
Corollary 3.6 this map assumes the form

KT (n+1)(R)[A] −−! KT (n+1)(R[ΩA]) ∈ SpT (n+1).

Moreover, when m ≥ 2 the space ΩA is also connected.
First we deal with the case where R is of height n = 0. In this case, since ΩA is a connected π-finite
space we have R[ΩA] ≃ R. Additionally, by [CSY21a, Theorem D], the constant colimits over A in
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SpT (1) do not change the object, i.e. lim−!AX ≃ X naturally in X ∈ SpT (1) (see also the discussion
under [CSY21a, Definition 2.4.1]). Hence, our assembly map identifies with the identity map of
KT (1)(R) and in particular it is an isomorphism.
From now on we assume that n ≥ 1. Using the bar construction, we can write A ≃ lim−!∆opAk where
Ak := (ΩA)k. Consider the commutative diagram:

lim−!∆opKT (n+1)(R)[Ak] lim−!∆opKT (n+1)(R[ΩAk])

KT (n+1)(lim−!∆opR[ΩAk])

KT (n+1)(R)[lim−!∆opAk] KT (n+1)(R[Ωlim−!∆opAk])

The functor S∗ ! S which forgets the pointing preserves sifted colimits by [Lura, Proposition
4.4.2.9], and the inclusion S≥1 ↪! S also preserves sifted colimits as explained in the proof of [Lura,
Proposition 1.4.3.9], thus so does the functor S≥1

∗ ! S. Therefore, there is no ambiguity as to
where the colimit in the two bottom objects are computed.
Our goal is to show that the bottom map is an isomorphism. We show that all other morphisms
are isomorphisms, which implies the result by the commutativity of the diagram. The top map is
an isomorphism by the inductive hypothesis, as Ak is an (m − 1)-finite p-space. The left map is an
isomorphism because the functor KT (n+1)(R)[−] preserves all colimits. Since n ≥ 1, by [LMMT20,
Corollary 4.31], the functor

KT (n+1) : Alg(Sp) −−! SpT (n+1)

preserves sifted colimit, showing that the upper right morphism is an isomorphism. Finally, for the
bottom right morphism, note that the forgetful functor Alg(Sp) ! Sp and the functor Ω(−) both
preserve sifted colimits (see [Lura, Proposition 3.2.3.1] and [Lura, Corollary 5.2.6.18]), and R[−]
commutes with all colimits, so that R[Ω(−)] preserves sifted colimits.

Corollary 4.2. The functor
KT (n+1) : CatLf

n
−−! SpT (n+1)

preserves π-finite p-space indexed limits and colimits.

Proof. By Proposition 2.22 we can present the functor KT (n+1) : CatLf
n
! SpT (n+1) as the compo-

sition
CatLf

n

Mf
n−−! CatMf

n

KT (n+1)−−−−−! SpT (n+1).

Now, the first functor preserves all limits and colimits by Corollary 2.18 and the second preserves
all π-finite p-space indexed limits and colimits by Theorem 4.1. Hence, the composition preserves
these limits and colimits as well.

Corollary 4.3. There is a map

KT (n+1)(R)[A] −−! KT (n+1)(R[ΩA]) ∈ SpT (n+1),

lax symmetric monoidally natural in A ∈ S≥1
∗ and R ∈ Alg(Lf

nSp). Furthermore, when A is a sifted
colimit of pointed connected π-finite p-spaces, it is an isomorphism.
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Proof. As explained in the proof of Theorem 4.1, the map is the assembly map of the lax symmetric
monoidal functor KT (n+1), together with the equivalence

Perf(R[ΩA]) ≃ Perf(R)[A]

from Corollary 3.6. By Theorem 4.1, it is an isomorphism for π-finite p-spaces. Since KT (n+1)
preserves sifted colimits of ring spectra by [LMMT20, Corollary 4.31], and R[Ω(−)] preserves sifted
colimits of pointed connected spaces, we get that the assembly map is an isomorphism for sifted
colimits of pointed connected π-finite p-spaces as well.

Remark 4.4. Combining Proposition 3.11, [CMNN20, Proposition 4.15], and the fact that for
modules in spectra perfect objects and dualizable objects coincide, for R ∈ CAlg(SpT (n)) and
M ∈ Sp≥0, the assembly map

KT (n+1)(R)[ΣM ] −−! KT (n+1)(R[M ])

from Corollary 4.3 is equivalent to the composition

KT (n+1)(M̂oddbl
R )[ΣM ] −−! KT (n+1)(M̂oddbl

R [ΣM ])

−−! KT (n+1)(M̂odR[ΣM ]dbl)
∼−−! KT (n+1)(M̂oddbl

LT (n)R[M ]).

Thus, when M is a filtered colimit of π-finite p-spectra, all three maps are isomorphisms.

Corollary 4.5. The functor

KT (n+1) : CAlg(SpT (n)) −−! CAlg(SpT (n+1))

preserves n-finite p-space indexed limits. In particular, for every R ∈ CAlg(SpT (n)) and an n-finite
p-space A there is an isomorphism

KT (n+1)(RA) ∼−−! KT (n+1)(R)A.

Proof. Let R : A ! CAlg(SpT (n)) be a diagram indexed by some space A. The assembly map is
the following composition

KT (n+1)(lim −−AR) ∼−−! KT (n+1)(M̂oddbl
lim
 −−AR)

(1)−−! KT (n+1)((lim −−AM̂odR)dbl)
∼−−! KT (n+1)(lim −−AM̂oddbl

R )
(2)−−! lim −−AKT (n+1)(M̂oddbl

R )
∼−−! lim −−AKT (n+1)(R).

By [BCSY22, Theorem 7.29], the space A is SpT (n)-affine, namely, the map denoted by (1) is an
isomorphism. By Theorem 4.1, the map denoted by (2) is an isomorphism.
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Theorem 4.1 asserts that a certain version of T (n + 1)-localized K-theory is ∞-semiadditive. In
[BMS21], the universal m-semiadditive version of algebraic K-theory was studied. This functor has
a T (n + 1)-localized version, which assigns to any stable category admitting m-finite colimits C a
T (n + 1)-local spectrum K

[m]
T (n+1)(C ).

Corollary 4.6. Let C ∈ CatLf
n

be an Lf
n-local category admitting m-finite colimits, then

K
[m]
T (n+1)(C ) ≃ KT (n+1)(C ) ∈ SpT (n+1).

In particular, for any R ∈ Alg(SpT (n)), we have

K
[m]
T (n+1)(R) ≃ KT (n+1)(R) ∈ SpT (n+1).

Proof. By [BMS21, Corollary 6.14], we need to check that the functor

Span(S(p)
m-fin) −−! SpT (n+1), A 7! KT (n+1)(C A)

satisfies the m-Segal condition. Namely, that

KT (n+1)(C A) −−! KT (n+1)(C )A

is an isomorphism for every m-finite p-space A, which holds by Theorem 4.1.
For R ∈ Alg(SpT (n)), recall from [BMS21, Remark 6.22] that K

[m]
T (n+1)(R) ≃ K

[m]
T (n+1)(L̂Modldbl

R ),
and recall that KT (n+1)(R) ≃ KT (n+1)(L̂Modldbl

R ), so this is the special case C = L̂Modldbl
R .

4.2 Higher Galois Descent

Given a symmetric monoidal category C and a weakly C -ambidextrous (pointed) connected space
BG

q−! pt with diagonal denoted by BG
∆−! BG × BG, a G-equivariant commutative algebra

R : BG! CAlg(C ) is said to be Galois if it satisfies the two conditions of [Rog08, Definition 4.1.3]
(see also [BCSY22, Definition 2.25] for the present formulation):

(1) The mate of the unit 1! q∗R =: RhG is an isomorphism.

(2) The mate of the multiplication R ⊗ R! ∆∗R =: RG is an isomorphism.

Remark 4.7. In [Rog08], Rognes develops the theory of G-Galois extensions under the assumption
that 1C [G] is dualizable in C . By [CSY21b, Corollary 2.7], this condition is implied by the weak
C -ambidexterity of BG (i.e., the C -ambidexterity of G). We also note that for C semiadditive
(e.g., stable), the space BG is weakly C -ambidextrous for all finite discrete groups G.

By applying the functor
Mod(−)(C ) : CAlg(C ) −−! CAlgC (PrL),

to R, we get a G-equivariant structure on the C -linear symmetric monoidal category ModR(C ) and
an induced symmetric monoidal functor, which we denote by a slight abuse of notation by

R ⊗ (−) : C −−! ModR(C )hG.
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It is a classical fact, commonly referred to as Galois descent, that for an ordinary finite group G and
an ordinary G-Galois extension R, this functor is an equivalence. We shall show that it is in fact
always an equivalence provided R is faithful. Similar results under somewhat different assumptions
can be found in [Mat16, Ban17, GL21]. We begin by generalizing the standard maneuver of iden-
tifying the category of “descent data for G” ModR(C )hG with that of “G-semilinear R-modules”
ModR(C BG). This is a general fact unrelated to Galois extensions.

Proposition 4.8. Let C ∈ CAlg(PrL) and let R ∈ CAlg(C )A for some space A. There is a natural
equivalence of C -linear symmetric monoidal categories

lim −−A Moda∗R(C ) ≃ ModR(C A).

Proof. First, we write C A as the limit of the constant A-shaped diagram on C in CAlg(PrL). The
cone maps exhibit for each a ∈ A the corresponding copy of C in the diagram as a commutative C A-
algebra, via the symmetric monoidal functor a∗ : C A ! C . Consequently, we have C A = lim −−AC

in CAlgC A(PrL). We claim that the tensor product in CAlgC A(PrL) commutes with space-shaped
limits. Indeed, since space-shaped limits and colimits in ModC A(PrL) coincide, they are preserved
by the tensor product [CCRY22, Example 4.26], and the forgetful CAlgC A(PrL)! ModC A(PrL) is
symmetric monoidal and preserves limits, the same holds in CAlgC A(PrL). We can thus compute,

ModR(C A) ≃ ModR(C A) ⊗C A C A ≃ ModR(C A) ⊗C A lim −−AC ≃ lim −−A

(
ModR(C A) ⊗C A C

)
.

Finally, when C is viewed as a commutative C A-algebra via the symmetric monoidal functor
a∗ : C A ! C , we have by [Lura, Theorem 4.8.5.16],

ModR(C A) ⊗C A C ≃ Moda∗R(C )

and therefore
ModR(C A) ≃ lim −−A Moda∗R(C ).

In the notation above for a G-Galois extension R, we have the following:

Lemma 4.9. Let C ∈ CAlg(PrL), let BG be a weakly C -ambidextrous pointed connected space,
and let R : BG! CAlg(C ) be a faithful G-Galois extension. For every X ∈ ModR(C BG) we have
a natural C -linear isomorphism

R ⊗ X ≃ XG ∈ C BG,

where G acts on XG by permuting the G-factors (i.e. the co-induced object) and on R ⊗ X via the
action on the X coordinate.

Proof. An R-module structure on X provides a map

∆∗(R ⊠ X) ≃ R ⊗ X −−! X ∈ C BG,

whose mate is a natural transformation in X,

fX : R ⊠ X −−! ∆∗X ∈ C BG×BG,
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Let e : pt ! BG be the basepoint. Forgetting the action of G on the R-coordinate of R ⊗ X
corresponds to applying the functor

(e × Id)∗ : C BG×BG −−! C BG.

Using the Beck–Chevalley condition for the pullback square of spaces

pt BG

BG BG × BG,∆

e

e

e×Id

we get the map

gX : (e∗R) ⊠ X ∼−−! (e × Id)∗(R ⊠ X) fX−−! (e × Id)∗∆∗X ∼−−! e∗e∗X =: XG

of functors
ModR(C BG) −−! C BG.

It remains to show that gX is an isomorphism for all X. Since e and ∆ are C -ambidextrous,
by [BCSY22, Corollary 2.34], e∗ is C BG-linear and colimit preserving, ∆∗ is C BG×BG-linear, and
colimit preserving and gX is a natural transformation of C BG-linear colimit preserving functors.
Consequently, it suffices to show that it is an isomorphism for X = R for which it follows from the
fact that fR is an isomorphism, as it is exactly the second Rognes–Galois condition.

From this we deduce descent for Galois extensions.

Proposition 4.10. Let C ∈ CAlg(PrL) and let BG be a weakly C -ambidextrous pointed con-
nected space. Every faithful G-Galois extension R : BG! CAlg(C ) induces a symmetric monoidal
equivalence

C ∼−−! ModR(C )hG.

Proof. Under the equivalence in Proposition 4.8, the functor

R ⊗ (−) : C −−! ModR(C )hG,

corresponds to the composition

C
q∗

−−! C BG R⊗(−)−−−−! ModR(C BG).

We shall show that the unit of this adjunction is an isomorphism and that the right adjoint is
conservative.
The unit map is given for every X ∈ C by the composition

uX : X −−! q∗q∗X −−! q∗(R ⊗ q∗X) =: (R ⊗ X)hG.

Since R is faithful, it suffices to show that uX becomes an isomorphism after tensoring with R. We
thus have,

e∗R ⊗ q∗(R ⊗ q∗X) ≃ q∗(q∗e∗R ⊗ (R ⊗ q∗X)) ≃ q∗(e∗e∗(R ⊗ q∗X)) ≃ e∗R ⊗ X,
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where the first step follows from the fact that tensoring with the dualizable object e∗R commutes
with q∗, the second is Lemma 4.9 and the third follows from qe = Id. We get that e∗R ⊗ u is a
natural C -linear endomorphism of the functor e∗R ⊗ −. Thus, to show that it is an isomorphism,
it suffices to show that it is an isomorphism on X = 1, but u1 is already an isomorphism by the
first Rognes–Galois condition.
To show that the right adjoint is conservative, it suffices to do so after tensoring with R. By the
same argument as before we have for every M ∈ ModR(C BG) a natural isomorphism

e∗R ⊗ q∗M ≃ q∗(q∗e∗R ⊗ M) ≃ q∗(e∗e∗M) ≃ e∗M,

and e∗ is conservative.

This Galois descent result has the following consequence for the functoriality of Galois extensions
under symmetric monoidal colimit preserving functors.

Proposition 4.11. Let F : C ! D be a morphism in CAlg(PrL) and let BG be a weakly C -
ambidextrous pointed connected space. Then, the functor F : CAlg(C )BG ! CAlg(D)BG carries
G-Galois extensions to G-Galois extensions.

Proof. Let R be a G-Galois extension in C . We wish to show that F (R) is a G-Galois extension
in D . First, since F is symmetric monoidal and colimit preserving, by [CSY22, Corollary 3.3.2]
the space BG is also weakly D-ambidextrous and by [CSY21a, Proposition 2.1.8] the functor F
commutes with G-shaped limits. As a result, the functor F takes the map

R ⊗ R −−! RG

to the map
F (R) ⊗ F (R) −−! F (R)G.

Since the former is an isomorphism by the assumption that R is G-Galois, we deduce that the latter
is also an isomorphism.
It remains to show that the unit 1D ! F (R)hG is an isomorphism. Regarding D as a C -algebra via
F , by Proposition 4.10 and the fact that the tensor product in ModC preserves BG-shaped limits
in each coordinate, we obtain a symmetric monoidal equivalence

ModF (R)(DBG) ≃ ModF (R)(C BG ⊗C D) ≃ ModR(C BG) ⊗C D ≃ C ⊗C D ≃ D .

Taking the endomorphism objects of the units from both sides we get the desired identification

F (R)hG ≃ 1D .

We turn to the main result of this section.

Theorem 4.12. Let n ≥ 0, and let G be an n-finite p-group. For every T (n)-local G-Galois
extension R! S, the induced T (n + 1)-local G-extension

KT (n+1)(R) −−! KT (n+1)(S)

is Galois.
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Proof. By Proposition 4.10, we have a canonical equivalence

ModR(SpT (n)) ∼−−! ModS(SpT (n))hG.

Passing to dualizable objects we get an equivalence

ModR(SpT (n))dbl ∼−−! (ModS(SpT (n))hG)dbl.

By [Lura, Proposition 4.6.1.11], there is a canonical equivalence

(ModS(SpT (n))hG)dbl ≃ (ModS(SpT (n))dbl)hG.

Therefore

KT (n+1)(R) ≃ KT (n+1)(ModR(SpT (n))dbl)
≃ KT (n+1)((ModS(SpT (n))dbl)hG)
≃ KT (n+1)(ModS(SpT (n))dbl)hG

≃ KT (n+1)(S)hG

where the first and last isomorphisms follow from [CMNN20, Proposition 4.15] and the third iso-
morphism follows from Theorem 4.1. This is the first Rognes–Galois condition for KT (n+1)(S)
as a G-extension of KT (n+1)(R) in SpT (n+1). Finally, by [BCSY22, Corollary 7.31], the second
Rognes–Galois condition is automatically satisfied.

Remark 4.13. By [CSY21a, Proposition 3.2.3], for any π-finite p-group G, we have canonical
equivalences

SpBG
T (n) ≃ Spτ≤n+1(BG)

T (n) ≃ SpB(τ≤nG)
T (n) .

Hence, it doesn’t add much to the discussion to consider more general π-finite p-groups G in the
above theorem. However, we warn the reader that without the n-truncatedness assumption the
claim as stated fails. Using [CSY21a, Proposition 3.2.3] once more, one easily checks that in any
height n ≥ 0, the trivial action of G = Bn+1Cp on any T (n)-local commutative ring spectrum R
exhibits it as a G-Galois extension of itself, but the same is not true for KT (n+1)(R). We also note
that if G happens to be (n − 1)-finite, the conclusion of Theorem 4.12 follows immediately from
Corollary 4.5 combined with the corresponding affineness argument as in the proof above.

5 Cyclotomic Redshift

In this section we apply the higher descent results of the previous section to establish the compat-
ibility of the chromatically localized algebraic K-theory functor with higher cyclotomic extensions
(see Theorem 5.11), the chromatic Fourier transform (see Theorem 5.25) and Kummer theory (see
Theorem 5.27). Roughly put, these constructions depend on the height parameter, and the functor
KT (n+1) intertwines the corresponding construction in height n and in height n + 1.
Since all ring spectra in this section will be T (n)-local (or T (n + 1)-local), for brevity we use the
notation R[ΩA] for the group algebra computed in the T (n)-local (or T (n+1)-local) category rather
than in spectra.
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5.1 Cyclotomic Extensions

In [CSY21b], for any R ∈ Alg(SpT (n)) the authors constructed a height n analogue of the pr-
cyclotomic extension R[ω(n)

pr ], which is a direct factor of R[BnCpr ]. In this subsection we prove
Theorem 5.11, saying that there is an isomorphism

KT (n+1)(R)[ω(n+1)
pr ] ∼−−! KT (n+1)(R[ω(n)

pr ]).

For the convenience of the reader, we now give an informal account of the argument detailed in
the rest of this subsection. First, the statement easily reduces to the case r = 1 and commutative
algebra R (in fact, to R = ST (n)). In the commutative case, the group algebra R[BnCp] decomposes
into the product of R[ω(n)

p ] and R, with the projection to the second factor given by applying R[−]
to the map BnCp ! pt. Second, the isomorphism

KT (n+1)(R)[A] ∼−−! KT (n+1)(R[ΩA])

from Corollary 4.3 shows that the projection map KT (n+1)(R)[Bn+1Cp] ! KT (n+1)(R) identifies
with the image of the projection map R[BnCp]! R under KT (n+1). Finally, by the uniqueness of
direct complements we get the required isomorphism

KT (n+1)(R)[ω(n+1)
p ] ∼−−! KT (n+1)(R[ω(n)

p ]).

Generalities on Decompositions

We begin with some general facts regarding decompositions of commutative algebras into a product.
First, we observe that each of the two factors in the decomposition determines the other.

Lemma 5.1. Let C be a symmetric monoidal stable category, and let R ∈ CAlg(C ). Assume that
we are given two decompositions

R ≃ R1 × R2, R ≃ R1 × R2

in CAlg(C ) and an isomorphism of R1 and R1 under R. Then, there is an isomorphism of R2 and
R2 under R as well, namely an isomorphism of decompositions.

Proof. Let ε1, ε2, ε1, ε2 ∈ π0R be the idempotents splitting R1, R2, R1, R2 respectively. Taking π0
to the isomorphism of R1 and R1 under R gives a commutative diagram of commutative rings:

π0R

π0R[ε−1
1 ] π0R[ε−1

1 ]∼

Since the image of 1 − ε1 in π0R[ε−1
1 ] is 0, commutativity shows that the same is true in π0R[ε−1

1 ].
Thus, we have

(1 − ε1)εn
1 = 0 ∈ π0R

for some n ≥ 1. Since ε1 is idempotent, we conclude that ε1 = ε1ε1. Symmetrically, ε1 = ε1ε1.
Thus, ε1 = ε1.
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Since ε2 = 1 − ε1 and ε2 = 1 − ε1, we get that ε2 = ε2. Thus, we get an isomorphism

R2 ≃ R[ε−1
2 ] = R[ε−1

2 ] ≃ R2

of commutative R-algebras, as required.

We next show that the datum of a decomposition of a commutative algebra R into a product is
equivalent to the datum of a map 12

C ! R.

Lemma 5.2. Let C ∈ CAlg(Ĉatall) be 0-semiadditive. There is a commutative diagram

CAlg(C )2 CAlg12
C

(C )

CAlg(C )

∼

where the left diagonal map is given by the binary product and the right diagonal map is the forgetful
functor.

Proof. As in the proof of [CSY21a, Proposition 5.1.11] we have a commutative diagram of symmetric
monoidal categories

C × C Mod1C (C ) × Mod1C (C ) Mod12
C

(C )

C

∼ ∼

where the upper-right isomorphism is by the 0-semiadditivity of C . The result then follows by
applying CAlg.

Let C ∈ Ĉatall, and let I be a category with an initial object denoted i. Consider the adjunction

i! : C ⇄ Fun(I, C ) : i∗

between evaluation at i and left Kan extension along pt i−! I. Observe that since i is initial, for
every X ∈ C we have

(i!X)(j) = lim−! i!jX = X,

namely i!X is the constant functor X : I ! C . We have the following corollary for decompositions
of commutative algebras in the functor category Fun(I, C ) with respect to the point-wise structure:

Lemma 5.3. Let I be a category with an initial object i and let C ∈ CAlg(Ĉatall) be 0-semiadditive.
Then, a decomposition of a functor F : I ! CAlg(C ) into a product is the same data as a map
12

C ! F (i) ∈ CAlg(C ). That is, the following diagram commutes

Fun(I, CAlg(C )2) Fun(I, CAlg(C ))12
C

/

Fun(I, CAlg(C ))

∼

where Fun(I, CAlg(C ))12
C

/ is the slice category of the evaluation at i ∈ I.
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Proof. Endow Fun(I, C ) with the point-wise symmetric monoidal structure, so that

Fun(I, CAlg(C )) ≃ CAlg(Fun(I, C )),

whose unit is the constant functor 1C . Thus, by Lemma 5.2, we get that

Fun(I, CAlg(C )2) ≃ CAlg12
C

(Fun(I, C ))

over Fun(I, CAlg(C )). Note that the functor i∗ is symmetric monoidal, which endows i! with
an oplax symmetric monoidal structure. By the discussion above, i! is given by the formation of
constant functor, and we see that the oplax structure is strong. Hence, the adjunction i! ⊣ i∗ lifts to
an adjunction on commutative algebras. Since 1C ≃ i!1C , by the adjunction, we get an equivalence
of slice categories

CAlg12
C

(Fun(I, C )) ≃ CAlg(Fun(I, C ))12
C

/

over Fun(I, CAlg(C )), concluding the proof.

Similarly, we have the following corollary for decompositions of commutative algebras in the functor
category Fun(I, C ) with respect to the Day convolution:

Lemma 5.4. Let I be a symmetric monoidal category whose unit 1I is initial, and let C ∈
CAlg(Ĉatall) be 0-semiadditive. Then, a decomposition of a lax symmetric monoidal functor F : I !
C into a product is the same data as a map 12

C ! F (1I) ∈ CAlg(C ). That is, the following diagram
commutes

Funlax(I, C 2) Funlax(I, C )12
C

/

Funlax(I, C )

∼

Proof. The argument is analogues to the proof of Lemma 5.3, for the Day convolution. Recall that

Funlax(I, C ) ≃ CAlg(Fun(I, C )Day).

Since 1I is assumed to be initial, we see that the unit of the Day convolution is

Map(1I , −) ⊗ 1C ≃ 1C .

Thus, by Lemma 5.2, we get that

Funlax(I, C 2) ≃ CAlg12
C

(Fun(I, C )Day)

over Funlax(I, C ). Since 1I : pt ! I is symmetric monoidal, by [LNP22, Proposition 3.30] or
[BMS21, Proposition 3.6], the adjunction (1I)! ⊣ (1I)∗ is symmetric monoidal, and hence lifts to
an adjunction on commutative algebras. By the discussion above, 1C ≃ (1I)!1C , so by adjunction,
we get an equivalence of slice categories

CAlg12
C

(Fun(I, C )Day) ≃ CAlg(Fun(I, C )Day)12
C

/

over Funlax(I, C ), which concludes the proof.
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Cyclotomic Extensions

Let C be a presentably symmetric monoidal stable ∞-semiadditive category with all objects of
semiadditive height n (e.g. SpT (n)). By [CSY21b, Proposition 4.5] (see also [CSY21b, Definition
4.7] and [BCSY22, Corollary 6.7]), the map

ΣnFp −−! 0 ∈ SpBF×
p

≥0

induces a decomposition

1C [ΣnFp] ≃ 1C × 1C [ω(n)
p ] ∈ CAlg(C )BF×

p ,

where 1C [ω(n)
p ] is called the (height n) p-th cyclotomic extension. For every M ∈ Sp≥0 equipped

with a map ΣnFp !M , the induced map

1C [ΣnFp] −−! 1C [M ] ∈ CAlg(C ),

makes 1C [M ] into a 1C [ΣnFp]-algebra.

Definition 5.5. For X ∈ C and M ∈ Sp≥0 equipped with a map ΣnFp !M , we let

X[M ]0 := X ⊗ 1C [M ] ⊗
1C [ΣnFp]

1C , X[M ]ω := X ⊗ 1C [M ] ⊗
1C [ΣnFp]

1C [ω(n)
p ]

which gives a decomposition

X[M ] ≃ X[M ]0 × X[M ]ω ∈ C .

Observe that this decomposition is natural in M ∈ (Sp≥0)ΣnFp/ and lax symmetric monoidally
natural in X ∈ C .

Example 5.6. Let R ∈ Alg(SpT (n)) and let M ∈ Sp≥1 be equipped with a map Σn+1Fp !M .

(1) Applying the above to X = KT (n+1)(R) we get a decomposition

KT (n+1)(R)[M ] ≃ KT (n+1)(R)[M ]0 × KT (n+1)(R)[M ]ω ∈ SpT (n+1).

(2) Applying the above to X = R, and looping M , we get a decomposition

R[ΩM ] ≃ R[ΩM ]0 × R[ΩM ]ω ∈ Alg(SpT (n)),

and since KT (n+1) preserves finite products, we get a decomposition

KT (n+1)(R[ΩM ]) ≃ KT (n+1)(R[ΩM ]0) × KT (n+1)(R[ΩM ]ω) ∈ SpT (n+1).

Observe that these decompositions are natural in M and lax symmetric monoidally natural in R.

Our goal is to compare the two decompositions in the above example. Recall from Corollary 4.3
that there is a map

KT (n+1)(R)[A] −−! KT (n+1)(R[ΩA]) ∈ SpT (n+1),

lax symmetric monoidally natural in A ∈ S≥1
∗ and R ∈ Alg(SpT (n)), which is an isomorphism when

A is a sifted colimit of π-finite p-spaces. By pre-composing with Ω∞ : Sp≥1 ! S≥1
∗ and passing to

objects under Σn+1Fp, we get the following:
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Definition 5.7. Using the above, we define the map

KT (n+1)(R)[M ] −−! KT (n+1)(R[ΩM ]) ∈ SpT (n+1),

natural in M ∈ (Sp≥1)Σn+1Fp/ and lax symmetric monoidally natural in R ∈ Alg(SpT (n)).

Since Ω∞ preserves filtered colimits, this map is an isomorphism when M is a filtered colimit of
π-finite p-spectra.

Proposition 5.8. The map

KT (n+1)(R)[M ] −−! KT (n+1)(R[ΩM ]) ∈ SpT (n+1)

respects the decompositions of the source and the target from Example 5.6.

Proof. We begin by reducing to the initial case, namely R = ST (n) and M = Σn+1Fp. The map in
question is a natural transformation of functors

(Sp≥1)Σn+1Fp/ −−! Funlax(Alg(SpT (n)), SpT (n+1))).

Since Σn+1Fp is the initial object of (Sp≥1)Σn+1Fp/, by Lemma 5.3, it suffices to check that the map

KT (n+1)(R)[Σn+1Fp] −−! KT (n+1)(R[ΣnFp])

of lax symmetric monoidal functors Alg(SpT (n)) ! SpT (n+1) respects the decompositions. Since
the unit ST (n) ∈ Alg(SpT (n)) is the initial object, by Lemma 5.4, it suffices to check that the map

KT (n+1)(ST (n))[Σn+1Fp] −−! KT (n+1)(ST (n)[ΣnFp]) ∈ CAlg(SpT (n+1))

respects the decompositions, which we now show.
Applying the map in question to R = ST (n) and M = 0, we get the following commutative square
in CAlg(SpT (n+1)):

KT (n+1)(ST (n))[Σn+1Fp] KT (n+1)(ST (n)[ΣnFp])

KT (n+1)(ST (n)) KT (n+1)(ST (n))

∼

∼

where both horizontal maps are isomorphisms because Σn+1Fp and 0 are π-finite p-spectra. Thus,
the two decompositions coincide by Lemma 5.1.

Remark 5.9. Recall that the spectrum Σn+1Fp is acted by the group F×
p and the splitting

1C [Σn+1Fp] ≃ 1C × 1C [ω(n+1)
p ]

is F×
p -equivariant. Now, let G be a group acting on M ∈ Sp≥1, equipped with a map G! F×

p and
a G-equivariant map Σn+1Fp ! M . Since the decompositions of Example 5.6 are natural in M ,
the induced map

KT (n+1)(R)[M ]ω −−! KT (n+1)(R[ΩM ]ω) ∈ SpT (n+1)

is canonically G-equivariant.
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We now specialize to the case of cyclotomic extensions. Let IQp/Zp
be the p-local Brown–Comenetz

spectrum, and let
I(n)

p : (Sp[0,n])op −−! Sp≥0

be the functor sending M to

I(n)
p M := homSp≥0(M, τ≥0ΣnIQp/Zp

).

Since I
(n)
p Fp ≃ ΣnFp, we get a further induced functor

I(n)
p : (Sp[0,n]

/Fp
)op −−! (Sp[0,n])ΣnFp/.

Definition 5.10. For X ∈ C and M ∈ Sp[0,n]
/Fp

we let

X[ω(n)
M ] := X[I(n)

p M ]ω ∈ C .

By [BCSY22, Remark 6.10], when M = R is a commutative algebra in Sp[0,n] augmented over Fp,
this agrees with X[ω(n)

R ] of [BCSY22, Definition 4.19].

Theorem 5.11. There is a map

KT (n+1)(R)[ω(n+1)
M ] −−! KT (n+1)(R[ω(n)

M ]) ∈ SpT (n+1),

natural in M ∈ Sp[0,n]
/Fp

and lax symmetric monoidally natural in R ∈ Alg(SpT (n)). Moreover, when
the homotopy groups of I

(n)
p M are torsion p-groups, the map is an isomorphism.

Proof. The first part follows immediately from Proposition 5.8 by pre-composing with

I(n+1)
p : (Sp[0,n]

/Fp
)op −−! (Sp≥1)Σn+1Fp/

and projecting to the (−)ω coordinates. For the second part, when the homotopy groups of I
(n)
p M

are torsion p-groups, the same is true for I
(n+1)
p M ≃ ΣI

(n)
p M , so by [BCSY22, Lemma 6.57] it is a

filtered colimit of π-finite p-spectra, concluding the proof.

Remark 5.12. By Remark 5.9, if a group G acts on M and is mapped to F×
p in a way making the

map M ! Fp equivariant, then the comparison map in Theorem 5.11 is G-equivariant.

Example 5.13. Consider the case M = Z/pr, and recall that by [BCSY22, Corollary 6.7] the
extension R[ω(n)

Z/pr ] ≃ R[ω(n)
pr ] is the higher cyclotomic extension defined in [CSY21b, Definition

4.7]. Thus, we get an isomorphism

KT (n+1)(R)[ω(n+1)
pr ] ∼−−! KT (n+1)(R[ω(n)

pr ]) ∈ SpB(Z/pr)×

T (n+1) .
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Example 5.14. For every r ∈ N, we have a natural action of Z×
p on Z/pr, and the projection maps

Z/pr+1 ↠ Z/pr are Z×
p -equivariant. By naturality, we get an isomorphism of sequential diagrams

in SpBZ×
p

T (n+1):

KT (n+1)(R)[ω(n+1)
p ] KT (n+1)(R)[ω(n+1)

p2 ] · · · KT (n+1)(R)[ω(n+1)
pr ] · · ·

KT (n+1)(R[ω(n)
p ]) KT (n+1)(R[ω(n)

p2 ]) · · · KT (n+1)(R[ω(n)
pr ]) · · ·

≀≀≀

Taking the colimit of the sequences, by [CSY21b, Definition 4.10] (see also [BCSY22, Corollary
6.18]) and the preservation of filtered colimits under KT (n+1), we get an isomorphism

KT (n+1)(R)[ω(n+1)
p∞ ] ∼−−! KT (n+1)(R[ω(n)

p∞ ]) ∈ SpBZ×
p

T (n+1).

Our next goal is to extend the last two examples from cyclotomic extensions to any intermediate
extension. Let 0 ≤ r ≤ ∞, and let G denote the Galois group of R[ω(n)

pr ] over R, that is G = (Z/pr)×

if r < ∞ and G = Z×
p if r = ∞. For any subgroup H ≤ G, the assembly map for H-fixed points

together with the (inverses of) the isomorphisms from the examples above give us a map

KT (n+1)(R[ω(n)
pr ]hH) −−! KT (n+1)(R[ω(n)

pr ])hH ≃ KT (n+1)(R)[ω(n+1)
pr ]hH ∈ SpB(G/H)

T (n)

lax symmetric monoidally natural in R ∈ Alg(SpT (n)).
We also remind the reader that Z×

p can be decomposed as

Z×
2 ≃ (Z/4)× × (1 + 4Z2), Z×

p ≃ F×
p × (1 + pZp).

In other words, Z×
p ≃ Tp × Zp where Tp is (Z/4)× for p = 2 and F×

p for odd primes.

Proposition 5.15. Let 0 ≤ r ≤ ∞, and let H be a finite subgroup of the Galois group of R[ω(n)
pr ]

over R, then the map

KT (n+1)(R[ω(n)
pr ]hH) −−! KT (n+1)(R)[ω(n+1)

pr ]hH

is an isomorphism.

Proof. We begin with the case of finite r. If r = 0 then G is trivial and there is nothing to prove,
so we assume that r ≥ 1. Denote S = R[ω(n)

pr ]. It suffices to show that the assembly map

KT (n+1)(ShH) −−! KT (n+1)(S)hH

is an isomorphism. By [CSY21b, Proposition 5.2], the cyclotomic extension ST (n+1)[ω
(n+1)
pr ] is

faithful. Thus, we can check if the above assembly map is an isomorphism after tensoring with
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it. Namely, after adding pr-th roots of unity. The resulting map is the top arrow in the following
diagram:

KT (n+1)(ShH)[ω(n+1)
pr ] KT (n+1)(S)hH [ω(n+1)

pr ]

KT (n+1)(ShH [ω(n)
pr ]) KT (n+1)(S)[ω(n+1)

pr ]hH

KT (n+1)(S[ω(n)
pr ]hH) KT (n+1)(S[ω(n)

pr ])hH

≀ ≀

≀≀

To see that the diagram commutes, note that the upper and lower triangles commute by the com-
patibility of assembly maps under composition, and the middle square commutes by the naturality
of the cyclotomic redshift map (Theorem 5.11) applied to the assembly map. The bottom left and
top right vertical maps are isomorphism since SpT (n) and SpT (n+1) are 1-semiadditive, hence their
tensor products commute with 1-finite limits in each coordinate. The top left and bottom right
vertical maps are isomorphisms again by cyclotomic redshift (Theorem 5.11). Thus, the top map
and the bottom map are isomorphisms together. By the second Rognes–Galois condition we have

S[ω(n)
pr ] ≃

∏
(Z/pr)×

S ∈ Alg(SpT (n+1))B(Z/pr)×

where the action of (Z/pr)×, hence of H, is given by freely permuting the factors. Finally, KT (n+1)
preserves finite products, so the bottom map identifies with the isomorphism

KT (n+1)(
∏

(Z/pr)×/H

S) ∼−−!
∏

(Z/pr)×/H

KT (n+1)(S).

Now assume that r = ∞. Since H is finite, it is contained in Tp. Note that for k ≥ 2 if p is
even and for k ≥ 1 if p is odd, Tp also injects to the Galois group of R[ω(n)

pk ], and the isomorphism
R[ω(n)

p∞ ] ≃ lim−!R[ω(n)
pk ] is Tp-equivariant. Since SpT (n) and SpT (n+1) are 1-semiadditive we get that

(−)hH commutes with colimits, and KT (n+1) commutes with filtered colimits, so the result follows
from the finite case.

Cyclotomic Completion

Recall that given R ∈ CAlg(SpT (n)), the infinite cyclotomic extension R[ω(n)
p∞ ] is not guaranteed

to be faithful over R. In [BCSY22], the authors introduced the cyclotomic completion functor
(−)∧

cyc : SpT (n) ! SpT (n), which is the universal localization making all infinite cyclotomic exten-
sions faithful, namely, the ST (n)[ω

(n)
p∞ ]-localization. Moreover, in [BCSY22, Proposition 6.19] the

authors gave a formula for the cyclotomic completion. Recall that Z×
p ≃ Tp × Zp. The cyclotomic

completion is given by taking fixed points with respect to the (dense) subgroup Tp × Z, i.e.,

R∧
cyc ≃ R[ω(n)

p∞ ]h(Tp×Z) ∈ Alg(SpT (n)).

By cyclotomic redshift (Theorem 5.11), we have a Z×
p -equivariant isomorphism

KT (n+1)(R)[ω(n+1)
p∞ ] ∼−−! KT (n+1)(R[ω(n)

p∞ ]).
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We thus get the following formula for the cyclotomic completion of KT (n+1)(R):

KT (n+1)(R)∧
cyc

∼−−! KT (n+1)(R[ω(n)
p∞ ])h(Tp×Z).

One can take fixed points with respect to Tp × Z in two steps, by first taking the fixed points with
respect to the finite group Tp, and then the fixed points with respect to the residual action of Z.
This leads to consider the following intermediate extensions:

Definition 5.16. For X ∈ SpT (n) we let

X[ω(n)
pr ] := X[ω(n)

pr ]hTp ∈ SpT (n).

Observe that when p = 2 we have X[ω(n)
22 ] ≃ X and X[ω(n)

2r ] carries a residual (Z/2r−2)-action,
while for odd p we have X[ω(n)

p1 ] ≃ X and X[ω(n)
pr ] carries a residual (Z/pr−1)-action. We also note

that since SpT (n) is 1-semiadditive, we have

X[ω(n)
p∞ ] = X[ω(n)

p∞ ]hTp = (lim−!X[ω(n)
pr ])hTp ∼−−! lim−!X[ω(n)

pr ]hTp = lim−!X[ω(n)
pr ] ∈ SpBZp

T (n).

Proposition 5.17. For every R ∈ Alg(SpT (n)) the map

KT (n+1)(R) −−! KT (n+1)(R[ω(n)
p∞ ])hZ

exhibits the target as the cyclotomic completion of the source. In particular, if R itself is cyclotom-
ically complete, the assembly map

KT (n+1)(R[ω(n)
p∞ ]hZ) −−! KT (n+1)(R[ω(n)

p∞ ])hZ.

exhibits the target as the cyclotomic completion of the source.

Proof. For the first part, by [BCSY22, Proposition 6.19], for any X ∈ SpT (n) the map

X ∼−−! X[ω(n)
p∞ ]h(Tp×Z) ≃ X[ω(n)

p∞ ]hZ

exhibits the target as the cyclotomic completion of X. By Proposition 5.15, we have

KT (n+1)(R)[ω(n+1)
p∞ ] ∼−−! KT (n+1)(R[ω(n)

p∞ ]) ∈ SpBZp

T (n+1).

Taking Z-fixed points and applying the above to X = KT (n+1)(R), we conclude that

KT (n+1)(R) −−! KT (n+1)(R[ω(n)
p∞ ])hZ

exhibits the target as the cyclotomic completion of the source, as required.
We move on to the second part. By the naturality of Theorem 5.11 in M and Remark 5.12, the map
from the first part is given by applying KT (n+1) to the Z-equivariant map R ! R[ω(n)

p∞ ], where R
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is endowed with the trivial action, and passing to the mate. Namely, it is the bottom composition
in the following diagram:

KT (n+1)(R) KT (n+1)(RhZ) KT (n+1)(R[ω(n)
p∞ ]hZ)

KT (n+1)(R)hZ KT (n+1)(R[ω(n)
p∞ ])hZ

The left triangle clearly commutes, and the right square commutes by the naturality of the assembly
map. Since R is cyclotomically complete we know that R ∼−−! R[ω(n)

p∞ ]hZ, so that the top composition
is an isomorphism. Therefore, by the first part, the assembly map appearing on the right exhibits
the target as the cyclotomic completion of the source.

5.2 Fourier Transform

We shall now explain the compatibility of the functor KT (n+1) with the chromatic Fourier transform
of [BCSY22]. First, we recall the construction of this Fourier transform.

Definition 5.18 ([BCSY22, Definition 3.6 and Definition 3.11]). Let C ∈ CMon(Cat) and R ∈
CAlg(Sp≥0,(p)). The space of R-pre-orientations of height n of C is defined to be

POr(n)
R (C ) := MapSp≥0

(I(n)
p R,1×

C ).

By [BCSY22, Proposition 3.10], for C ∈ CAlg(PrL) the space POr(n)
R (C ) is equivalent to the space

of natural transformations
1C [−] −−! 1

I(n)
p (−)

C

between functors Mod[0,n]
R ! CAlg(C ). We denote the natural transformation corresponding to

ω ∈ POr(n)
R (C ) by

Fω : 1C [−] −−! 1
I(n)

p (−)
C

and refer to Fω as the Fourier transform associated with ω.

The main result of this section is Theorem 5.25, which shows (under certain assumptions on ω and
M) that the image of the Fourier transform

Fω : R[M ]! RI(n)
p M

under the functor KT (n+1) : CAlg(SpT (n))! CAlg(SpT (n+1)) is a Fourier transform with respect to
a corresponding pre-orientation. Recall that the functor KT (n+1) can be written as a composition
of three functors:

CAlg(SpT (n))
M̂od(−)−−−−−! CAlgSpT (n)

(PrL) (−)dbl

−−−−! CAlg(CatLf
n
)

KT (n+1)−−−−−! CAlg(SpT (n+1)).

Thus, we are led to consider the compatibility of three different operations with the formation of
Fourier transforms:
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(1) For R ∈ CAlg(SpT (n)), we shall relate the Fourier transforms of R and of M̂odR. This
is essentially done in [BCSY22, §5] by discussing more generally the interaction of Fourier
theory with categorification, and we review and slightly expand this discussion.

(2) For C ∈ CAlgSpT (n)
(PrL), we shall relate the Fourier transforms of C and of its small sub-

category C dbl ∈ CAlg(CatLf
n
).

(3) For D ∈ CAlg(CatLf
n
), we relate the Fourier transforms of D with that of KT (n+1)(D). More

generally, we shall show that the Fourier transform is compatible with higher semiadditive
lax symmetric monoidal functors.

We now deal with each of these points, and later combine them to prove our main result, Theo-
rem 5.25.

Fourier and Categorification

For C ∈ CAlg(PrL), recall from [BCSY22, §5.2] that taking loop spaces gives a natural map

Ω: POr(n+1)
R (ModC (PrL)) −−! POr(n)

R (C ),

taking a pre-orientation ω : I
(n+1)
p R! C × to the pre-orientation given by

I(n)
p R ≃ ΩI(n+1)

p R
Ωω−−! ΩC × ≃ 1×

C .

The corresponding Fourier transforms are related by the following result:

Proposition 5.19. Let C ∈ CAlg(PrL), let R ∈ CAlg(Sp≥0,(p)) and let ω : I
(n+1)
p R ! C × be a

pre-orientation of ModC (PrL) of height n + 1. Then, we have the following commutative diagram
in CAlgC (PrL)

Mod1C [M ](C ) Mod
1

I
(n)
p M

C

(C )

C [ΣM ] C I(n+1)
p ΣM

FΩω

Fω

≀

naturally in M ∈ Mod[0,n]
R .

Proof. Taking (C -linear) endomorphisms of the units from the categorical Fourier transform

Fω : C [ΣM ]! C I(n+1)
p ΣM

gives a morphism

Fd
ω : 1C [ΩΣM ] ≃ End(1C [ΣM ])! End(1

C
I

(n+1)
p ΣM

) ≃ 1I(n)
p M .
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By [BCSY22, Proposition 5.13], this morphism fits into a commutative diagram in CAlg(SpT (n)),
natural in M :

1C [M ] 1
I(n)

p M

C

1C [ΩΣM ] 1
I(n+1)

p ΣM

C

≀

FΩω

≀

Fd
ω

Now, consider the following diagram in CAlgC (PrL):

Mod1C [M ](C ) Mod
1

I
(n)
p M

C

(C )

Mod1C [ΩΣM ](C ) Mod
1

I
(n+1)
p ΣM

C

(C )

C [ΣM ] C I(n+1)
p ΣM

FΩω

Fω

≀

≀≀

Fd
ω

The upper part is obtained by applying Mod(−)(C ) to the previous commutative diagram. The
bottom commutative square is obtained by applying the counit map of the symmetric monoidal
adjunction

LMod(−)(C ) : Alg(C ) ⇄ ModC (PrL)∗ :End(−)

to the categorical Fourier transform, and the bottom left map is an isomorphism due to Propo-
sition 3.4. Since the outer rectangle of this diagram is the diagram from the statement of the
proposition, the result follows.

Remark 5.20. In the setting of Proposition 5.19, when I
(n+1)
p ΣM is C -affine in the sense of

[BCSY22, Definition 2.15], the right map in the commutative square is also an isomorphism. Thus,
in this case we get an equivalence between the functor

Fω : C [ΣM ] −−! C I(n+1)
p ΣM

and the functor induced from
FΩω : 1C [M ] −−! 1

I(n)
p M

C

on module categories.

Passing to Dualizable Objects

Recall that for a symmetric monoidal category C , the natural inclusion i : C dbl ↪! C induces
a natural isomorphism i : (C dbl)× ∼−−! C ×. Taking maps from I

(n)
p R into this isomorphism, we

obtain a natural equivalence
POr(n)

R (C ) ≃ POr(n)
R (C dbl).
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Definition 5.21. Let C ∈ CAlg(Cat) and R ∈ CAlg(Sp≥0,(p)). For a pre-orientation ω : I
(n)
p R!

C ×, we denote by
ωdbl : I(n)

p R! (C dbl)×

the pre-orientation corresponding to ω under the above equivalence.

The Fourier transforms of ω and ωdbl are related by the following result, where the left morphism
in the commutative diagram is the one from Definition 3.10.

Proposition 5.22. Let C ∈ CAlg(PrL
st), let R ∈ CAlg(Sp≥0,(p)) and let ω : I

(n)
p R ! C × be an

R-pre-orientation. Then, the following diagram commutes naturally in M ∈ Mod[0,n]
R :

C [M ]dbl (C I(n)
p M )dbl

C dbl[M ] (C dbl)I(n)
p M

Fdbl
ω

F
ωdbl

≀

Proof. First, the target of both paths in the diagram is right Kan extended along

I(n)
p R : pt −−! Mod[0,n]

R .

Therefore, it suffices to show that the diagram commutes after evaluation at M = I
(n)
p R and post-

composing with the canonical augmentation (C dbl)Map(I(n)
p R,I(n)

p R) ! C dbl (see [BCSY22, Remark
3.12]). Namely, we have to show that the following diagram commutes:

C [I(n)
p R]dbl C dbl

C dbl[I(n)
p R] C dbl

εdbl
ω

ε
ωdbl

where εω is the augmentation of C [I(n)
p R] corresponding to ω and similarly for ωdbl. To show that

this square commutes, we can take the mates with respect to the adjunction

C dbl[−] : Sp≥0 ⇄ CAlgC dbl(Catperf) : (−)×.

By construction, the mate of the Beck–Chevalley map C dbl[I(n)
p R]! C [I(n)

p R]dbl is the map

I(n)
p R −−! C [I(n)

p R]× i−1

−−! (C [I(n)
p R]dbl)×.

where the first map is the unit of the adjunction above. Consider now the diagram

(C [I(n)
p R]dbl)× (C dbl)×

C [I(n)
p R]× C ×

I
(n)
p R (C dbl)×

εdbl
ω

i−1

εω

i−1

i

ωdbl

ω
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in Sp≥0. The outer rectangle is the mate of the above square, so we need to show that this diagram
commutes. The upper square commutes by the naturality of i. The left triangle commutes by the
definition of εω and the right triangle commutes by the definition of ωdbl.

Fourier and Lax Functors

We now provide a slight generalization of [BCSY22, Proposition 3.18]. Let F : C ! D be a lax
symmetric monoidal functor between symmetric monoidal categories. As explained in Definition 3.8,
we have a natural map F × : R× ! F (R)× for R ∈ CAlg(C ).

Definition 5.23. For an R-pre-orientation of C , we define an R-pre-orientation of ModF (1C )(D)

F (ω) : I(n)
p R

ω−−! 1×
C

F ×

−−! F (1C )×.

The Fourier transforms of ω and F (ω) are compatible in the following sense.

Proposition 5.24. Let F : C ! D be a lax symmetric monoidal functor between presentably
symmetric monoidal categories. Let n ≥ 0, let R ∈ CAlg(Sp≥0,(p)), and let ω : I

(n)
p R ! 1×

C be
an R-pre-orientation of C . Then, the following diagram in CAlgF (1C )(D) commutes naturally in
M ∈ Mod[0,n]

R

F (1C [M ]) F (1I(n)
p M

C )

F (1C )[M ] F (1C )I(n)
p M

F (Fω)

FF (ω)

Proof. We essentially repeat the proof of [BCSY22, Proposition 3.18], we give the details for the
convenience of the reader. First, note that the diagram is indeed natural in M , as the assembly
maps and Fourier transforms are natural in M . To see that it commutes, recall from [BCSY22,
Proposition 3.10] that the space of natural maps

F (1C )[−] −−! F (1C )(−)

between functors Mod[0,n]
R ! CAlgF (1C )(D) is equivalent to the space of R-pre-orientations of

ModF (1C )(D). Thus, it suffices to prove that the pre-orientations corresponding to the two maps
coincide.
By construction, the pre-orientation corresponding to FF (ω) is F (ω). The pre-orientation corre-
sponding to the other composition is the lower composition in following diagram:

1C [I(n)
p R]× (1Map(I(n)

p R,I(n)
p R)

C )× 1×
C

I
(n)
p R F (1C [I(n)

p R])× F (1Map(I(n)
p R,I(n)

p R)
C )× F (1C )×

This diagram commutes because of the naturality of the map F × : R× ! F (R)×. Again, by
construction of Fω, the composition from I

(n)
p R to 1×

C is ω, which when composed with 1×
C !

F (1C )×, gives F (ω).

49



Fourier and K-theory

We turn to prove the compatibility of the functor KT (n+1) with the Fourier transform.

Theorem 5.25. Let R ∈ CAlg(SpT (n)), let R ∈ CAlg(Sp≥0,(p)) and let ω be an R-pre-orientation
of M̂odR ∈ CAlgSpT (n)

(PrL) of height n + 1. Then, the following diagram commutes naturally in
M ∈ Mod[0,n]

R :

KT (n+1)(R[M ]) KT (n+1)(RI(n)
p M )

KT (n+1)(R)[ΣM ] KT (n+1)(R)I(n+1)
p ΣM

KT (n+1)(FΩω)

FKT (n+1)(ω)

When M is π-finite the vertical maps in this square are isomorphisms, giving an equivalence

KT (n+1)(FΩω) ≃ FKT (n+1)(ω)

of maps in CAlg(SpT (n+1)). If in addition ω is an orientation, then these maps are isomorphisms.
In particular, KT (n+1) sends R-orientations of height n to R-orientations of height n + 1.

Proof. By Proposition 5.19 applied to C = M̂odR, we have the following commutative diagram in
CAlgSpT (n)

(PrL), natural in M :

M̂odR[M ] M̂od
R

I
(n)
p M

M̂odR[ΣM ] M̂odI(n+1)
p ΣM

R

FΩω

Fω

≀

Taking dualizable objects and pasting with the commutative square from Proposition 5.22, we get
the following commutative diagram in CAlg(Catperf):

M̂oddbl
R[M ] M̂oddbl

R
I

(n)
p M

(M̂odR[ΣM ])dbl (M̂odI(n+1)
p ΣM

R )dbl

M̂oddbl
R [ΣM ] (M̂oddbl

R )I(n+1)
p ΣM

Fdbl
Ωω

Fdbl
ω

≀

F
ωdbl

≀

Applying KT (n+1) and pasting the commutative square from Proposition 5.24 for the lax symmetric
monoidal functor KT (n+1), we get the following commutative diagram in CAlg(SpT (n+1)), in which
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the outer rectangle is the required diagram:

KT (n+1)(R[M ]) KT (n+1)(RI(n)
p M )

KT (n+1)((M̂odR[ΣM ])dbl) KT (n+1)((M̂odI(n+1)
p ΣM

R )dbl)

KT (n+1)(M̂oddbl
R [ΣM ]) KT (n+1)((M̂oddbl

R )I(n+1)
p ΣM )

KT (n+1)(R)[ΣM ] KT (n+1)(R)I(n+1)
p ΣM

KT (n+1)(Fdbl
Ωω)

KT (n+1)(Fdbl
ω )

F
KT (n+1)(ωdbl)

KT (n+1)(F
ωdbl )

≀

≀

Now, when M is π-finite, the left vertical composition is an isomorphism by Corollary 4.3 (see also
Remark 4.4), and similarly the right vertical composition is an isomorphism by Corollary 4.5.
If in addition ω is an orientation, then by [BCSY22, Proposition 5.14] so is Ωω, making the top
horizontal map an isomorphism. By the commutativity of the outer square in which the vertical
maps are also isomorphisms by the above, so is the bottom map.

5.3 Kummer Theory

Let R ∈ CAlg(SpT (n)). As shown in [BCSY22, Proposition 4.32], for R ∈ CAlg(Sp≥0,(p)), an
R-orientation ω : I

(n)
p R! R× provides a natural equivalence

CAlgΩ∞M-gal(R; SpT (n)) ≃ MapSp≥0
(I(n)

p M, R×)

for π-finite M ∈ Mod[1,n]
R , referred to as the “Kummer equivalence”. Here, the left-hand side is the

space of local systems Ω∞M ! CAlgR(C ) which are Galois extensions of R (with Galois group
Ω∞Σ−1M).
Our goal is to compare the Kummer equivalences of R and KT (n+1)(R). We first relate their sources
and targets, starting with the sources. As we have shown in Theorem 4.12, the functor

KT (n+1) : CAlgR(SpT (n))! CAlgKT (n+1)(R)(SpT (n+1))

carries Galois extensions to Galois extensions for n-finite p-groups, and in particular restricts to a
natural map

KT (n+1) : CAlgΩ∞M-gal(R; SpT (n)) −−! CAlgΩ∞M-gal(KT (n+1)(R); SpT (n+1)).

We now consider the targets. As explained in Definition 3.8, since K : Catperf ! Sp≥0 is a lax
symmetric monoidal functor, there is a natural map C × ! K(C )× for C ∈ CAlg(Catperf). More-
over, the equivalence 1×

C ≃ ΩC × corresponds to a natural map Σ1×
C ! C × of connective spectra.

Composing them, we get a natural map

Σ1×
C −−! K(C )×.
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For any S ∈ CAlgR(SpT (n)), applying the above to C = M̂oddbl
S and post-composing with the map

K ! KT (n+1), we obtain a natural map

ΣS× −−! KT (n+1)(S)×.

Consider also the two adjunctions

R[−] : Sp≥0 ⇄ CAlgR(SpT (n)) : (−)×

KT (n+1)(R)[−] : Sp≥0 ⇄ CAlgKT (n+1)(R)(SpT (n+1)) : (−)×

These adjunctions are compatible via the map above in the following sense:

Lemma 5.26. Let R ∈ CAlg(SpT (n)) and let M ∈ Sp≥0. Then, the following diagram commutes
naturally in S ∈ CAlgR(SpT (n))

Map(R[M ], S) Map(KT (n+1)(R[M ]), KT (n+1)(S)) Map(KT (n+1)(R)[ΣM ], KT (n+1)(S))

Map(M, S×) Map(ΣM, ΣS×) Map(ΣM, KT (n+1)(S)×)

≀

∼

≀

where the upper right isomorphism is the one from Corollary 4.3.

Proof. Note that the functor

Map(R[M ], −) : CAlgR(SpT (n))! S

in the upper left corner of the diagram is co-represented by R[M ], so it suffices to prove the
commutativity in the special case S = R[M ], and after evaluating both of the compositions at
IdR[M ].
The value of the upper-right composite at IdR[M ] is the map

ΣM −−! KT (n+1)(R)[ΣM ]× ∼−−! KT (n+1)(R[M ])×,

while the value of the left-bottom composite is the map

ΣM −−! ΣR[M ]× −−! KT (n+1)(R[M ])×.

In light of Remark 4.4, it thus suffices to show that the following diagram commutes:

KT (n+1)(M̂oddbl
R )[ΣM ]×

ΣM (M̂oddbl
R [ΣM ])× KT (n+1)(M̂oddbl

R [ΣM ])×

ΣR[M ]× (M̂oddbl
R[M ])× KT (n+1)(M̂oddbl

R[M ])×

≀

≀
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The commutativity of the upper (triangle-shaped) square follows from Lemma 3.9. The right square
commutes by naturality of the map C × ! KT (n+1)(C )×, so we are left with the left square. Finally,
using Corollary 3.5, we embed this square as the left square in the following diagram:

ΣM (M̂oddbl
R [ΣM ])× (M̂odR[ΣM ]dbl)× (M̂odR[ΣM ])×

ΣR[M ]× (M̂oddbl
R[M ])× M̂od×

R[M ]
∼

Recall that every invertible object is dualizable, which shows that the bottom right horizontal map
is an isomorphism. Therefore, to show that the left square commutes, it suffices to show that the
outer rectangle and the right rectangle commute. The commutativity of the outer square follows
from the construction of the right map as in [BCSY22, Proposition 5.11] (see also Remark 3.7).
The middle triangle commutes since the vertical map is defined as the composition of the other two.
Finally, the right (trapezoid-shaped) square commutes because of the naturality of the embedding
C dbl ↪! C .

Recall that we have a map ΣR× ! KT (n+1)(R)×. Post-composing with this map gives a map

Map(I(n)
p M, R×) −−! Map(ΣI(n)

p M, ΣR×)
∼−−! Map(I(n+1)

p M, ΣR×)
−−! Map(I(n+1)

p M, KT (n+1)(R)×).

Also recall that for any R-orientation ω of R, Theorem 5.25 gives an R-orientation KT (n+1)(ω) of
KT (n+1)(R). We can now compare the Kummer equivalences corresponding to these orientations.
Theorem 5.27. Let R ∈ CAlg(Sp≥0,(p)), let R ∈ CAlg(SpT (n)) and let ω be an R-orientation of
R. Then, the following diagram commutes for any π-finite M ∈ Mod[1,n]

R

CAlgΩ∞M-gal(R; SpT (n)) CAlgΩ∞M-gal(KT (n+1)(R); SpT (n+1))

Map(I(n)
p M, R×) Map(I(n+1)

p M, KT (n+1)(R)×)

≀ ≀

Proof. We exhibit the required commutative square as the pasting of the following squares:

CAlgΩ∞M-gal(R; SpT (n)) CAlgΩ∞M-gal(KT (n+1)(R); SpT (n+1))

Map(RΩ∞M , R) Map(KT (n+1)(R)Ω∞M , KT (n+1)(R))

Map(R[I(n)
p M ], R) Map(KT (n+1)(R)[I(n+1)

p M ], KT (n+1)(R))

Map(I(n)
p M, R×) Map(I(n+1)

p M, KT (n+1)(R)×)

≀ ≀

≀ ≀

≀ ≀
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The bottom square is the commutative square of Lemma 5.26 applied to the ring R and connective
spectrum I

(n)
p M . The upper horizontal morphism comes from Theorem 4.12. The second and third

horizontal morphisms are obtained by applying KT (n+1) and using the isomorphisms of Corollary 4.3
and Corollary 4.5. The left upper vertical isomorphism is given by taking the limit over Ω∞M to a
Galois extension R! S, giving a map RΩ∞M ! limΩ∞M S ≃ R, and similarly for the right upper
vertical isomorphism. The upper square commutes by naturality of limits. The middle vertical
isomorphisms are the Fourier transforms, which are isomorphisms as in [BCSY22, Theorem 7.33],
and the middle square commutes because of Theorem 5.25.

6 Cyclotomic Hyperdescent

In this section we explain the intimate relationship between cyclotomic completion and hyperde-
scent, and use it to rephrase the results of the previous section in this language. These should
be compared with the general results on hyperdescent for algebraic K-theory as in [CM21]. We
refer the reader also to [Mor23] for a discussion of hypersheaves and hyperdescent in the chromatic
context.
The starting point of this section is the observation that for X ∈ SpT (n) the Z×

p -action on the
infinite cyclotomic extension X[ω(n)

p∞ ] is continuous. As a definition of continuous Z×
p -actions, we

consider sheaves on the site TZ×
p

of continuous finite Z×
p -sets (see for example [CM21, Definition

4.1]). Indeed, the intermediate cyclotomic extensions X[ω(n)
pr ] arrange into the cyclotomic sheaf

X[ω(n)
p(−) ], whose stalk is X[ω(n)

p∞ ]. In this language, cyclotomic redshift (Theorem 5.11) says that
KT (n+1) takes cyclotomic sheaves to cyclotomic sheaves (see Proposition 6.12).
The main connection between cyclotomic completion and hyperdescent is established in Proposi-
tion 6.11, showing that X is cyclotomically complete if and only if the cyclotomic sheaf X[ω(n)

p(−) ] is
a hypersheaf. As explained in [BCSY22, §7.3], by the Devinatz–Hopkins theorem [DH04], all K(n)-
local spectra are cyclotomically complete. Thus, we deduce that KK(n+1)(R[ω(n)

p(−) ]) is a hypersheaf
for any R ∈ Alg(SpT (n)), namely that K(n + 1)-local algebraic K-theory satisfies hyperdescent
along the cyclotomic tower (see Corollary 6.13).
As continuous finite Zp-sets are simpler than continuous finite Z×

p -sets, we consider the correspond-
ing restriction of the cyclotomic sheaf, whose values are the extensions R[ω(n)

pr ] of Definition 5.16.
We leverage the connection between cyclotomic completion and hyperdescent to reinterpret and
strengthen Proposition 5.17 to Theorem 6.16, stating that the map

KT (n+1)(R[ω(n)
p(−) ]) −−! KT (n+1)(R[ω(n)

p∞ ])h(p(−)Z)

exhibits the target both as the hypersheafification and as the level-wise cyclotomic completion of
the source.

6.1 Continuous Group Actions

In this subsection we study continuous group actions of profinite groups G, and in particular contin-
uous Galois extensions. To achieve this, we begin by recalling the general setup of (hyper)sheaves
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on a site, and then specialize to the site TG of continuous finite G-sets. We say that a sheaf R
of commutative algebras is a continuous G-Galois extension if its value at any finite G-set is a
faithful Galois extension. The two main results are Proposition 6.4, which is a form of Galois
descent for continuous G-Galois extensions, and Corollary 6.9, which shows that for modules over
R, hypersheafification coincides with level-wise localization at the stalk of R.

Sheaves and Hypersheaves

We begin by recalling the relevant setup of (hyper)sheaves and their formal properties. We refer the
reader to [Lura, §6.5] for a comprehensive study of sheaves and hypersheaves and to the discussion
in [HPT20, §1] for a short overview of (hyper)sheaves with coefficients.
For a site T consider the ∞-topos Shv(T ) of sheaves on T . For a presentable category C we let

Shv(T ; C ) := Shv(T ) ⊗ C ∈ PrL

denote the category of C -valued sheaves on T . This can alternatively be defined as the full
subcategory of presheaves that satisfy descent, namely the sheaf condition (see [Lurb, Remark
1.3.1.6]).
We now wish to define the full subcategory of hypersheaves. In the case of S-valued sheaves, they can
be defined intrinsically – we denote by Shvhyp(T ) ⊂ Shv(T ) the full subcategory of hypercomplete
objects, namely those sheaves that are local with respect to ∞-connected morphisms (see [Lur09,
§6.5.2]). As above, we define

Shvhyp(T ; C ) := Shvhyp(T ) ⊗ C ∈ PrL.

This can alternatively be defined as the full subcategory of presheaves that satisfy hyperdescent, the
analogue of the sheaf condition for hypercovers (this follows from [Lur09, Corollary 6.5.3.13] and the
formula for the Lurie tensor product [Lura, Proposition 4.8.1.17]). The inclusion Shvhyp(T ; C ) ⊆
Shv(T ; C ) admits a left adjoint

(−)hyp : Shv(T ; C ) −−! Shvhyp(T ; C )

called hypersheafification. We note that pushforwards of sheaves preserve hypersheaves (see for
example [Lur09, Proposition 6.5.2.13]). Observe that when C is presentably symmetric monoidal,
then the category of (hyper)sheaves is presentably symmetric monoidal as well, and the hyper-
sheafification functor is symmetric monoidal.
We shall be primarily interested in sites with a finitary Grothendieck topology in the sense of [Lurb,
Definition A.3.1.1]. One of the key properties of hypersheaves is the Deligne completeness theorem
saying that equivalences can be checked on stalks, a version of which we now recall:

Proposition 6.1. Let T be a category with pullbacks endowed with a finitary Grothendieck topology,
and let C be a compactly generated presentable category. Then Shvhyp(T ; C ) has enough points in
the sense that the collection of functors

C ⊗ f∗ : Shvhyp(T ; C )! C ,

where f∗ ranges over the points of Shvhyp(T ), is jointly conservative.
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Proof. By [Hai21, Lemma 2.12], it suffices to prove the result for C = S. By [Lurb, Proposi-
tion A.3.1.3], the ∞-topos Shv(T ) is locally coherent, whence by [Lurb, Proposition A.2.2.2] so
is Shvhyp(T ). The claim then follows from the Deligne completeness theorem [Lurb, Theorem
A.4.0.5].

By [Lur09, p. 669], hypersheafification is a geometric morphism. Thus, by composing, any point
of Shvhyp(T ) gives a point of Shv(T ). Therefore, under the assumptions of Proposition 6.1, given
a map F ! G in Shv(T ; C ) from a sheaf to a hypersheaf, to check that it exhibits G as the
hypersheafification of F it suffices to check that it is an isomorphism on all points coming from
Shvhyp(T ).

Sheaves on Continuous G-sets

We now review the setup of continuous G-actions where G is a profinite group, as developed in the
∞-categorical setting for example in [CM21, §4.1]. We denote by TG the site of continuous finite
G-sets, endowed with the Grothendieck topology generated by the jointly surjective finite families of
maps, which is finitary by construction. For a sheaf F ∈ Shv(TG; C ) and an open subgroup U ≤ G,
observe that F(G/U) has a residual NG(U)/U -action. Furthermore, there is an equivalence (see
[CM21, Construction 4.5])

Shv(TG; C ) ≃ lim−! U⊴G open C B(G/U) ∈ PrL.

In other words, the data of a sheaf F is precisely the data of F(G/U) ∈ C B(G/U) together with
coherent compatibility maps. In particular, by [Lur09, Theorem 6.3.3.1] the ∞-topos Shv(TG; S)
can be presented as a filtered limit formed in the category of ∞-topoi:

Shv(TG; S) ≃ lim −−U⊴G open SB(G/U).

By [Lur09, Remark 6.3.5.10] applied to the ∞-topos of spaces, the space of points of SB(G/U) is
B(G/U). Consequently, the space of points of Shv(TG; S) is the filtered limit lim −−B(G/U), which
is a connected space with a canonical basepoint. We denote the distinguished point of this topos
by

e∗ : S −−! Shv(TG; S).
For C ∈ PrL, the corresponding stalk functor e∗ : Shv(TG; C )! C is given by

e∗F ≃ lim−! U⊴G open F(G/U).

Since there is a canonical map BG ! lim −−B(G/U), the stalk has a canonical G-action, namely
e∗ lifts to a functor ē∗ : Shv(TG; C ) ! C BG. The right adjoint ē∗ : C BG ! Shv(TG; C ) sends
X ∈ C BG to the sheaf whose values are

(ē∗X)(G/U) = XhU ∈ C B(G/U).

Since the right adjoint to the forgetful C BG ! C is given by X 7! XG, we see that the right adjoint
of e∗ sends X ∈ C to the sheaf whose values are

e∗X(G/U) = ē∗(XG)(G/U) = (XG)hU ≃ XG/U ∈ C B(G/U).

Also note that every object of C BG is a hypersheaf since SBG is hypercomplete, and since ē∗ is a
geometric morphism it sends hypersheaves to hypersheaves (see [Lur09, Proposition 6.5.2.13]).
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Continuous Galois Extensions and Hypersheafification

We now consider Galois extensions with respect to profinite groups using the above setting.

Definition 6.2. Let G be a profinite group, let C ∈ CAlg(PrL) be semiadditive and let R ∈
CAlg(Shv(TG; C )). We say that R is a continuous G-Galois extension if for every open normal
subgroup U ⊴ G the object R(G/U) ∈ CAlg(C )B(G/U) is a faithful Galois extension.

We observe that a collection of compatible faithful Galois extensions automatically assembles into
a sheaf in the following sense:

Proposition 6.3. Let F : T op
G ! CAlg(C ) be a finite product preserving functor such that F(G/U)

is a faithful G/U -Galois extension for any open normal subgroups U ⊴G. Then F satisfies the sheaf
condition, and hence is a continuous G-Galois extension.

Proof. Since F preserves finite products, it remains to show that for every inclusion of open normal
subgroups U ⊴ U ′ ⊴ G the canonical map

F(G/U ′) −−! F(G/U)h(U ′/U) ∈ CAlg(C B(G/U ′))

is an isomorphism. This map makes the target into a commutative F(G/U ′)-algebra. Since
F(G/U ′) is a faithful Galois extension, Proposition 4.10 implies that

(−)h(G/U ′) : CAlgF(G/U ′)(C B(G/U ′)) ∼−−! CAlg(C )

is an equivalence, and in particular is conservative. Therefore, it suffices to check that

F(G/U ′)h(G/U ′) −−! (F(G/U)h(U ′/U))h(G/U ′) ≃ F(G/U)h(G/U) ∈ CAlg(C )

is an isomorphism. Indeed, by assumption F(G/U ′) and F(G/U) are G/U ′- and G/U -Galois
extensions respectively, and in particular satisfy the first Rognes–Galois condition. Namely, the
above map identifies with the identity map of the unit 1C and so, in particular, is an isomorphism.

For every continuous G-Galois extension R and X ∈ C , we have the presheaf X ⊗ R formed by
tensoring R with X level-wise. We show that it is in fact a sheaf, and generalize the Galois descent
result of Proposition 4.10 to profinite groups.

Proposition 6.4. Let G be a profinite group, let C ∈ CAlg(PrL) be semiadditive and let R be a
continuous G-Galois extension. Then, there is a symmetric monoidal equivalence

− ⊗ R : C ⇄ ModR(Shv(TG; C )) : (−)(G/G)

Proof. Recall that
Shv(TG; C ) ≃ lim−! U⊴G open C B(G/U) ∈ PrL.

By Proposition 4.10, for every open normal subgroup U ⊴G, taking homotopy fixed points induces
a symmetric monoidal equivalence

(−)h(G/U) : ModR(G/U)(C B(G/U)) ∼−−! C .
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Also, recall that Mod(−)(−) is a symmetric monoidal left adjoint functor from PrL,CAlg to CAlg(PrL)
([Lura, Theorem 4.8.5.11]) and hence commutes with colimits. Finally, we obtain the required
equivalence in CAlg(PrL):

ModR(Shv(TG; C )) ≃ ModR(lim−! U⊴G open C B(G/U))

≃ lim−! U⊴G open ModR(G/U)(C B(G/U))

≃ lim−! U⊴G open C

≃ C .

For a continuous G-Galois extension R as above, consider the stalk R := e∗R ∈ CAlg(C ). We
denote by LR : C ! LRC the Bousfield localization with respect to R. Our next goal is to show
that, under some hypothesis, the hypersheafification of a sheaf which is a module over R is given
by applying LR level-wise. For that purpose, we begin with the following lemma:

Lemma 6.5. Let G be a profinite group, let F : C ! D ∈ CAlg(PrL) with C and D semiadditive,
and let R be a continuous G-Galois extension. For any R-module sheaf M ∈ ModR(Shv(TG; C )),
the presheaf F (M) obtained by applying F level-wise is a sheaf, and F (R) is a continuous G-Galois
extension. This assembles into a functor

F : ModR(Shv(TG; C )) −−! ModF (R)(Shv(TG; D)).

Proof. Since F is a colimit preserving functor between semiadditive categories, it also preserves
finite products, so that F (R) preserves products. By Proposition 4.11, the functor F sends (finite)
Galois extensions to Galois extensions, so that F (R(G/U)) is a G/U -Galois extension for every
open normal subgroup U ⊴ G. Thus, Proposition 6.3 implies that F (R) is a continuous G-Galois
extension.
Now, since the symmetric monoidal structure on PSh(TG; C ) is compatible with the sheafification
PSh(TG; C )! Shv(TG; C ), and R is a sheaf, we get an induced localization ModR(PSh(TG; C ))!
ModR(Shv(TG; C )), and similarly for F (R) and D . Post-composition with F induces a symmetric
monoidal functor

F : PSh(TG; C ) −−! PSh(TG; D),
and in particular sends R-modules to F (R)-modules. Since F : C ! D is symmetric monoidal we
see that the outer square in the following diagram commutes:

C ModR(Shv(TG; C )) ModR(PSh(TG; C ))

D ModF (R)(Shv(TG; C )) ModF (R)(PSh(TG; D))

F

−⊗R

−⊗F (R)

F

Proposition 6.4 shows that the horizontal morphisms factor as depicted in the diagram, thus the
right vertical morphism

F : ModR(PSh(TG; C )) −−! ModF (R)(PSh(TG; D))

restricts to the full subcategories of sheaves in the source and target, giving the dashed morphism
in the diagram.
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Proposition 6.6. Let G be a profinite group of finite virtual p-cohomological dimension, and let
C ∈ CAlg(PrL

st) be p-local. Let R be a continuous G-Galois extension with stalk R := e∗R. For
every M ∈ ModR(Shv(TG; C )), the presheaf LRM is a hypersheaf and the map

M −−! LRM

exhibits the target as the hypersheafification of the source.

Proof. Since the inclusion LRC ⊆ C is limit preserving, for an LRC -valued presheaf, the (hy-
per)sheaf condition is the same whether we view it as valued in C or in LRC . Hence, in either
interpretation, we get by Lemma 6.5 that LRM is a sheaf.
We now show that LRM is a hypersheaf. We begin by reducing to M = R. By [CM21, Corollary
4.28], hypersheaves form a smashing localization of Shv(TG; Sp(p)). Consequently, the same holds
for Shv(TG; LRC ) since smashing localizations are closed under tensor products in CAlg(PrL).
Consequently, since LRM is a module over LRR, it suffices to prove that the latter is a hypersheaf.
Namely, we need to show that the map

LRR −−! (LRR)hyp

is an isomorphism.
Recall that the category of LRC -valued sheaves is LRC -linear, with the action given by tensoring
with X ∈ LRC level-wise an sheafifying, and since hypersheafification is smashing, it commutes
with this action. That is, for a sheaf F , the hypersheaf (X ⊗ F)hyp is given by sheafification of
X ⊗ Fhyp. Now, observe that both LRR and (LRR)hyp are R-modules. Thus, by Lemma 6.5,
applying

R ⊗ − : LRC −−! ModR(LRC )

level-wise sends them to sheaves (note that the tensor product in LRC is obtained by applying
LR to the tensor product in C , but R-modules are already R-local). So does applying the limit
preserving right adjoint of the above displayed functor. As a result, both presheaves R ⊗ LRR
and R ⊗ (LRR)hyp are sheaves, and the latter is isomorphic to (R ⊗ LRR)hyp. Since R ⊗ − is
conservative on R-local objects, we see that it suffices to show that

R ⊗ LRR −−! (R ⊗ LRR)hyp

is an isomorphism, namely that R ⊗ LRR is a hypersheaf. Moreover, since the map R(G/U) !
LRR(G/U) is an R-equivalence, we also get that R ⊗ R ≃ R ⊗ LRR. That is, it suffices to show
that R ⊗ R is a hypersheaf.
Recall that the second Rognes–Galois condition for S to be an H-Galois extension is that the mate
of the multiplication gives an isomorphism S ⊗ S ≃ SH , which is natural in the pair (H, S). Since
R is an R(G/U)-algebra, we get that

R ⊗ R(G/U) ≃ RG/U

naturally in open normal subgroups U ⊴G. That is, R ⊗ R ≃ e∗R ≃ ē∗RG. Recalling that ē∗ lands
in hypersheaves, we conclude that R ⊗ R is indeed a hypersheaf, concluding the proof that LRM
is a hypersheaf.
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Finally, we need to check that M ! LRM exhibits the target as the hypersheafification of the
source. Since the target is a hypersheaf, by Proposition 6.1 it suffices to check that the map is an
isomorphism on stalks, namely that e∗M ! e∗LRM is an isomorphism. Recall that e∗ is given
by the colimit of M(G/U), and hence commutes with applying LR. Finally, since e∗ is symmetric
monoidal, e∗M is a module over R := e∗R, and in particular R-local, concluding the proof.

As a sheaf F ∈ Shv(TG; C ) can be thought of as an object X = e∗F ∈ C endowed with a
“continuous action” of the profinite group G, the value F (G/U) is the “continuous U -fixed points”
of said action of G on X. We shall hence introduce a suggestive notation, which is less likely to
cause confusion now that we are done with the technical discussion above.

Notation 6.7. For X ∈ Shv(TG; C ), we shall abuse notation and denote by X also the underlying
object e∗X and for every open U ≤ G, denote by XhU the value of X at G/U ∈ TG.

Continuous Zp-actions

The case G = Zp is notably easier to analyze than the general case for two reasons. First, because
the transitive continuous finite Zp-sets are the orbits Z/pr for r ≥ 0, making (pre)sheaves simpler
to handle. Particularly, we have a sequential colimit presentation of the category of sheaves

Shv(TZp
; C ) ≃ lim−!C B(Z/pr) ∈ PrL,

i.e. the data of a sheaf is the data of local systems Xh(prZ) ∈ C B(Z/pr) together with isomorphisms
(and no further coherence data)

Xh(prZ) ∼−−! (Xh(pr+1Z))h(prZ/pr+1Z).

Second, because Zp is freely topologically generated by a single generator via the dense inclusion
Z ≤ Zp. We denote by

d∗ : Shv(TZp
; C ) ⇄ C BZ :d∗

the adjunction obtained from the adjunction ē∗ ⊣ ē∗ by further restricting and right Kan extending
along the inclusion Z ≤ Zp. We now show that, under certain hypotheses, a concrete description
of the hypersheafification can be given in terms of this adjunction.

Proposition 6.8. Let C be a compactly generated p-complete stable category. Then, for every
X ∈ Shv(TZp ; C ) the unit map

X −−! d∗d∗X

exhibits d∗d∗X as the hypersheafification of X.

Proof. As mentioned above, d∗d∗X is a hypersheaf. Therefore, by Proposition 6.1, it suffices to
show that X ! d∗d∗X induces an isomorphism on stalks, namely after applying e∗. Since e∗ is
obtained by applying d∗ and forgetting the Z-action, it suffices to check that X ! d∗d∗X induces
an isomorphism after applying d∗. By the zigzag identity and 2-out-of-3, it suffices to check that
the counit map

(d∗d∗)d∗X −−! d∗X

is an isomorphism.
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Next, we reduce to the case C = Sp∧
p . Since C is compactly generated, the functors

hom(K, −) : C −−! Sp∧
p

ranging over all K ∈ C ω are jointly conservative, and are colimit and limit preserving. Thus, they
commute with d∗, d∗ and hypersheafification, so we are reduced to the case C = Sp∧

p .
Now, we can take the cofiber of multiplication by p to reduce to the claim that the map

d∗d∗d∗(X/p) −−! d∗(X/p)

is an isomorphism for every Sp-valued sheaf X on TZp . Observe that the homotopy groups of the
spectrum

Y := d∗(X/p) ≃ lim−! r(X/p)h(prZp)

are p2-torsion and the Z-action on them is restricted from a continuous Zp-action. We will prove
that for any Y with such homotopy groups the map

lim−! rY h(prZ) ≃ d∗d∗Y −−! Y

is an isomorphism by showing that it induces an isomorphism on homotopy groups. Note that
homotopy groups commute with filtered colimits, so that lim−! rπi(Y h(prZ)) ∼−−! πi(lim−! rY h(prZ)),
and the i-th homotopy group of the source of the map above fits into a short exact sequence

0 −−! lim−! rH1(prZ; πi+1(Y )) −−! πi(lim−! rY h(prZ)) −−! lim−! rH0(prZ; πi(Y )) −−! 0

and the map πi(lim−! rY h(prZ))! πi(Y ) factors through

lim−! rH0(prZ; πi(Y )) −−! πi(Y ).

This map is an isomorphism, since the action on πi(Y ) comes from a continuous Zp-action, so that
every element is fixed by prZ for large enough r. It remains to show that

lim−! rH1(prZ; πi+1(Y )) = 0.

Since πi+1(Y ) is p2-torsion and the action comes from a continuous Zp-action, πi+1(Y ) can be
written as a filtered colimit of finite p2-torsion groups Mj with a continuous Zp-action. Since
H1(prZ; −) commutes with filtered colimits, by exchanging the order of colimits we are reduced to
showing that for every j we have

lim−! rH1(prZ; Mj) = 0.

Indeed, for large enough r, the action of prZ on Mj is trivial. Thus, for large enough r, this is the
1-st cohomology of S1 ≃ B(prZ) with coefficients in Mj . The transitions maps going from r to
r + 1 correspond to the p-fold covering map of the circle, thus induce multiplication by p on Mj .
Since M is p2-torsion, the result follows.

Combining Proposition 6.6 and Proposition 6.8, we immediately deduce the following:

Corollary 6.9. Let C ∈ CAlg(PrL
st) be compactly generated and p-complete, and let R be a con-

tinuous Zp-Galois extension with stalk e∗R ∈ CAlg(C ). For M ∈ ModR(Shv(TZp ; C )), the map

M −−! d∗d∗M

exhibits the target both as the hypersheafification and as the level-wise e∗R-localization of M .

61



6.2 Hyperdescent and Cyclotomic Completion

We begin by constructing the cyclotomic sheaf. By [CM21, Construction 4.5] and cofinality there
is an equivalence

Shv(TZ×
p

; SpT (n)) ≃ lim−! U⊴Z×
p open SpB(Z×

p /U)
T (n) ≃ lim−!SpB(Z/pr)×

T (n) ∈ PrL.

Definition 6.10. For X ∈ SpT (n) we define the cyclotomic sheaf

X[ω(n)
p(−) ] ∈ Shv(TZ×

p
; SpT (n))

to be the sheaf determined by the cyclotomic extensions X[ω(n)
pr ] and the isomorphisms

X[ω(n)
pr ] ∼−−! X[ω(n)

pr+1 ]h(Z/p).

Note that the stalk of the cyclotomic sheaf is given by

ē∗X[ω(n)
p(−) ] ≃ lim−!X[ω(n)

pr ] ≃ X[ω(n)
p∞ ] ∈ SpBZ×

p

T (n).

Proposition 6.11. The cyclotomic sheaf ST (n)[ω
(n)
p(−) ] is a continuous Z×

p -Galois extension and
there is a symmetric monoidal equivalence

SpT (n)
∼−−! ModST (n)[ω(n)

p(−) ](Shv(TZp
; SpT (n))), X 7! X[ω(n)

p(−) ]

Moreover, X ∈ SpT (n) is cyclotomically complete if and only the cyclotomic sheaf X[ω(n)
p(−) ] is

hypercomplete.

Proof. For the first part, ST (n)[ω
(n)
p(−) ] is Galois because each finite cyclotomic extension is a faithful

Galois extension by [CSY21b, Proposition 5.2], and the equivalence follows from Proposition 6.4.
For the second part, by the first part X[ω(n)

p(−) ] is a module over ST (n+1)[ω
(n+1)
p(−) ], whose stalk

is ST (n+1)[ω
(n+1)
p∞ ]. Since cyclotomic completion is ST (n+1)[ω

(n+1)
p∞ ]-localization, the result follows

from Proposition 6.6.

For R ∈ Alg(SpT (n)), consider the cyclotomic sheaf R[ω(n)
p(−) ]. By applying KT (n+1) level-wise we

get the SpT (n+1)-valued presheaf KT (n+1)(R[ω(n)
p(−) ]).

Proposition 6.12. The functor KT (n+1) sends cyclotomic sheaves to cyclotomic sheaves, that is,
there is an isomorphism

KT (n+1)(R)[ω(n+1)
p(−) ] ∼−−! KT (n+1)(R[ω(n)

p(−) ]) ∈ Shv(TZ×
p

; SpT (n+1))

Proof. We need to show that the two presheaves on TZ×
p

agree. The source is a sheaf and in
particular preserves products. Since KT (n+1) preserves products, the target preserves products as
well. Therefore, it remains to show that they agree on transitive continuous finite Z×

p -sets, which
is the content of Proposition 5.15.
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Corollary 6.13. KK(n+1)(R[ω(n)
p(−) ]) is a hypersheaf of K(n+1)-local spectra for any R ∈ Alg(SpT (n)).

Proof. By Proposition 6.12 we know that KK(n+1)(R[ω(n)
p(−) ]) is a cyclotomic sheaf. Since all K(n +

1)-local spectra are cyclotomically complete (see the discussion above [BCSY22, Question 7.36])
the result follows from Proposition 6.11.

We now push the cyclotomic sheaf to Zp, giving a sheaf whose values are the extensions from
Definition 5.16. Recall that Z×

p ≃ Tp × Zp where Tp is (Z/4)× for p = 2 and F×
p for odd primes.

Let π : Z×
p ! Zp denote the projection, and consider the functor TZp

! TZ×
p

given by restriction
along π. Restricting (pre)sheaves along this functor induces a geometric morphism denoted

π∗ : Shv(TZ×
p

; SpT (n)) −−! Shv(TZp
; SpT (n)).

Definition 6.14. For X ∈ SpT (n) we let

X[ω(n)
p(−) ] := π∗(X[ω(n)

p(−) ]) ∈ Shv(TZp ; SpT (n)).

Warning 6.15. The notation might be somewhat confusing. For odd primes, the value of X[ω(n)
p(−) ]

at the Zp-set Z/pr is X[ω(n)
pr+1 ], and for p = 2 the value at the Z2-set Z/2r is X[ω(n)

2r+2 ]. In particular
the value at the trivial Zp-set is X.

Recall that the functor
d∗ : Shv(TZp

; SpT (n+1)) −−! (SpT (n+1))BZ

is computed by a filtered colimit d∗F ≃ lim−!Fh(prZp), and thus commutes with KT (n+1). This gives
us a map

KT (n+1)(R[ω(n)
p(−) ]) −−! d∗d∗KT (n+1)(R[ω(n)

p(−) ]) ∼−−! d∗KT (n+1)(d∗R[ω(n)
p(−) ]).

Theorem 6.16. For any R ∈ Alg(SpT (n)) the map

KT (n+1)(R[ω(n)
p(−) ]) −−! d∗KT (n+1)(d∗R[ω(n)

p(−) ])

exhibits the target both as the hypersheafification and as the level-wise cyclotomic completion of
the source.

Proof. It suffices to show that

KT (n+1)(R[ω(n)
p(−) ]) −−! d∗d∗KT (n+1)(R[ω(n)

p(−) ])

exhibits the target both as the hypersheafification and as the level-wise cyclotomic completion of
the source. By Proposition 6.12 we know that KT (n+1)(R[ω(n)

p(−) ]) is module over ST (n+1)[ω
(n+1)
p(−) ],

whose stalk is ST (n+1)[ω
(n+1)
p∞ ]. By [BCSY22, Proposition 6.19], being cyclotomically complete is

also equivalent to being local with respect to ST (n+1)[ω
(n+1)
p∞ ] := ST (n+1)[ω

(n+1)
p∞ ]hTp . The claim now

follows from Corollary 6.9.
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