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Abstract

Let G be a closed subgroup of the semi-direct product of the nth Morava stabilizer group Sn with the Galois
group of the �eld extension Fpn=Fp. We construct a “homotopy �xed point spectrum” EhG

n whose homotopy
�xed point spectral sequence involves the continuous cohomology of G. These spectra have the expected
functorial properties and agree with the Hopkins-Miller �xed point spectra when G is �nite.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

If a (discrete) group G acts on a spectrum Z , one can form the homotopy �xed point spectrum,
often denoted ZhG. It is given by the G �xed points of the function spectrum F(EG; Z), where EG is
a contractible free G-space. There is then, for each spectrum X , a conditionally convergent spectral
sequence

H ∗(G; Z∗X )⇒ [X; ZhG]∗;

obtained from the usual �ltration of the bar construction for EG. This spectral sequence is called
the homotopy �xed point spectral sequence. Of course, the construction of such a homotopy �xed
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point spectrum requires that the group act in an appropriate point-set category and not just up to
homotopy.

However, there are situations in stable homotopy theory where group actions only exist in the
stable category; that is, up to homotopy. In fact, the most important group action in the whole
chromatic approach to stable homotopy theory—the action of the extended Morava stabilizer group
Gn on the p-local Landweber exact spectrum En (see [22,5], and Section 1 for a resumIe)—arises
in this way. Yet the situation in the case of this action is not hopeless. Indeed, H.R. Miller and the
second author have proved that En is an A∞ ring spectrum and that the space of A∞ ring maps
from En to itself has weakly contractible path components. Furthermore, the set of path components
of this space is in bijective correspondence with the set of homotopy classes of ring spectrum maps
from En to itself (see [27] for an account of this theory.) Since Gn acts on En by maps of ring
spectra, it follows that the action can be taken to be one of A∞ maps, and although this action is still
only an action up to homotopy, it is an honest action up to “all higher A∞ homotopies.” Standard
techniques then allow one to replace En by an equivalent spectrum on which Gn acts on the nose.
Hence, if G is a (�nite) subgroup of Gn, there is an A∞ homotopy �xed point spectrum EhG

n . These
spectra have already had a number of interesting applications in stable homotopy theory (see e.g.,
[23]). Subsequently, P.G. Goerss and Hopkins [12–15] extended the machinery of Hopkins-Miller
to the E∞ setting, and thus EhG

n is an E∞ ring spectrum.
Unfortunately, this is still not an entirely satisfactory state of aLairs. Gn is a pro�nite group, so

one might hope to de�ne, for G a closed subgroup of Gn, a “continuous homotopy �xed point
spectrum” denoted—abusively—by EhG

n whose “homotopy �xed point spectral sequence” starts with
the continuous cohomology of G. (This is why we restricted to �nite subgroups in the previous
paragraph.) Indeed, it is the continuous cohomology of Gn that is important in stable homotopy
theory—by Morava’s change of rings theorem, the K(n)∗-local En-Adams spectral sequence (see
Appendix A) for �∗LK(n)S0 has the form

H ∗c (Gn; En∗)⇒ �∗LK(n)S0: (1.1)

Here K(n) denotes the nth Morava K-theory, and LK(n) denotes K(n)∗-localization. The spectral
sequence (1.1) thus suggests that LK(n)S0 should be the Gn homotopy �xed point spectrum of En in
this continuous sense.

The case n = 1 provides further evidence for the existence of continuous homotopy �xed point
spectra. Here we have that E1 is the p-completion of the spectrum corepresenting complex K-theory
and that G1 = Z×p , the group of multiplicative units in the p-adic integers. The element a in Z×p
corresponds to the Adams operation  a. Now the component �∞0 E1 of the 0th space of E1 containing
the base point is just the p-completion of BU , and, according to Quillen [24], this space is equivalent
to the p-completion of BGL( PFl)+ for any prime l not equal to p. (As usual, BGL(R)+ is the
connected space representing the algebraic K-theory of the ring R, and PFl is the algebraic closure
of the �eld with l elements.) Under this equivalence, the automorphism of BGL( PFl)+ induced by
the frobenius automorphism of PFl corresponds to the Adams operation  l on BUp. More generally,
the pro�nite group Ẑ = Gal( PFl=Fl) acts on BGL( PFl)+; if G = Gal( PFl=k) is any closed subgroup of
Ẑ, then

�i(BGL(k)+) = [�i(BGL( PFl)+)]G
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for all i¿ 1 [24; Corollary to Theorem 8]. Since

Hs
c (G; �iBGL( PFl)+) = 0

for all i and all s¿ 0—again by the computations of Quillen—this suggests that BGL(k)+ should
be regarded as the continuous homotopy G �xed point spectrum of BGL( PFl)+.

In this paper, we construct spectra EhG
n for G a closed subgroup of Gn, having the desired prop-

erties of continuous homotopy �xed point spectra. Our construction proceeds in two steps. First we
construct EhU

n for U an open—and hence closed—subgroup of Gn, then we construct EhG
n as an

appropriate homotopy colimit of the EhU
n ’s, for G ⊂ U .

We need to introduce a little more notation in order to state our main results. Let R+
Gn

denote
the category whose objects are continuous �nite left Gn-sets together with the left Gn-set Gn. The
morphisms are continuous Gn-equivariant maps, and we denote by rg :Gn → Gn the map given by
right multiplication by g∈Gn. Let E denote the category of commutative S0-algebras in the category
of S0-modules of May et al. [11]. (A comparison of this category with the category of L-spectra
for L the linear isometries operad—and hence of the category of E∞ ring spectra—is carried out
in [11, II.4].) Finally, since the natural number n will be �xed throughout this paper, we write L̂
for the functor LK(n). Here then is our �rst main result.

Theorem 1. There is a functor F : (R+
Gn
)opp → E with the following properties.

(i) F(S) is K(n)∗-local for each object S in R+
Gn
.

(ii) F(Gn) = En and F(rg) :En → En is the action of g∈Gn on En.
(iii) There is a natural isomorphism

�∗L̂(F(S) ∧ En) ≈ Map(S;Mapc(Gn; En∗))Gn

of completed �∗L̂(En∧En)=Mapc(Gn; En∗)-comodules, where the action of Gn on Mapc(Gn; En∗),
the set of continuous functions from Gn to En∗, is given by

(gf)(g′) = f(g−1g′)

for g; g′ ∈Gn and f∈Mapc(Gn; En∗). In particular, F(∗) � L̂S0.
(iv) De7ne EhU

n =F(Gn=U ), U an open subgroup of Gn, and let Z be any CW -spectrum. There is
a natural strongly convergent spectral sequence

H ∗c (U; E∗n Z)⇒ (EhU
n )∗Z

which agrees with the spectral sequence obtained by mapping Z into a K(n)∗-local En-Adams
resolution of EhU

n .

Remark 1.2. In what follows—and in the proof of Theorem 1—the necessity of working in a precise
point-set category of structured ring spectra will become apparent. However, many of our results,
such as (iii) and (iv) of Theorem 1, are statements occurring in the stable category. We shall
therefore refer to objects as “S0-module spectra” or “commutative S0-algebras” when we wish to
emphasize that we need to work at the point-set level and as “CW-spectra” or “ring spectra” when
our work takes place in the stable category. Furthermore, [X; Y ]i will always denote the group of
maps of degree −i between X and Y in the stable category.
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Despite our precautions, there are still some ambiguities. For example, suppose X and Y are
commutative S0-algebras, but we wish to understand the stable homotopy type of X ∧Y . Then X ∧Y
might denote the object which is the CW-approximation to the actual point-set level smash product
of X and Y . Or, X ∧ Y might denote the derived smash product; that is, the smash product of
CW-approximations to X and Y . However, if X and Y are co�brant objects in the closed model
category structure on E—called q-co�brant in [11]—then these two recipes give the same stable
object (see [11, VII, 6]). Since there is a functor E→ E sending an object to a weakly equivalent
q-co�brant one—in fact, a cell commutative S0-algebra in the sense of [11]—we may as well assume
that F(S), for example, is always q-co�brant and thus eliminate this ambiguity. We will often use
this device of functorially approximating by a cell object, even if we do not always mention it.

Remark 1.3. Let In=(p; v1; : : : ; vn−1) ⊂ En∗ , and, if Z is any CW-spectrum, let {Z'} be the directed
system of �nite CW-subspectra. Then

E∗n Z = lim
←';k

E∗n Z'=I kn E
∗
n Z'

is a pro�nite continuous Gn-module and we de�ne

H ∗c (U; E∗n Z) = lim
←';k

H ∗c (U; E∗n Z'=I kn E
∗
n Z'):

In general, if G is a p-analytic pro�nite group and M is a pro�nite continuous Zp[[G]]-module,
then lim←'

H ∗c (G;M') is independent of the presentation M = lim←'
M'. In fact, it is for example the

cohomology of the usual cochain complex whose j-cochains are Mapc(G
j;M) (cf. Proof of Lemma

4.21). We therefore use this as our de�nition of H ∗c (G;M); see also [31] for a more general treatment
of this object.

For the next step, let

Gn = U0 ) U1 ) U2 ) · · ·) Ui ) · · · (1.4)

be a sequence of normal open subgroups of Gn with
⋂

i Ui = {e}. For example, using the notation
at the beginning of Section 1 and the description of Sn in [7, 2.21], we may take Ui = Vi o Gal,
where Vi is the group of power series ,-n

j¿0bjxp
j
with bj = 0 for 0¡j¡i and b0 = 1 if i¿ 0.

De�nition 1.5. Fix a sequence {Ui} as above. For G a closed subgroup of Gn, de�ne

EhG
n = L̂ holimE→i

Eh(UiG)
n ;

where holimE→
denotes the homotopy colimit taken in the topological model category E.

Remark 1.6. More precisely, one should functorially replace holimE→i
Eh(UiG)

n by a weakly equivalent

cell commutative S0-algebra before applying L̂. Then the construction EhG
n becomes functorial in E

(see [11, VIII, 2]).

We will prove the following result in Section 6.
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Theorem 2. The construction EhG
n has the following properties:

(i) �∗L̂(EhG
n ∧En) is naturally isomorphic to Mapc(Gn; En∗)G as completed Mapc(Gn; En∗)-comodules,

where G acts on Mapc(Gn; En∗) as in Theorem 1(iii).
(ii) Let Z be any CW-spectrum. The spectral sequence obtained by mapping Z into a K(n)∗-local

En-Adams resolution of EhG
n is strongly convergent to (EhG

n )∗Z and has E2-term naturally
isomorphic to H ∗c (G; E∗n Z).

Remark 1.7. (i) Using the �rst part of this theorem, it’s easy to see that EhG
n is canonically inde-

pendent (up to weak equivalence in E) of the choice of sequence {Ui}.
(ii) Since G is a closed subgroup of a p-analytic pro�nite group, it is itself p-analytic (see [9,

10.7]), and therefore H ∗c (G; E∗n Z) is de�ned as in Remark 1.3.

Now by Theorem 1, there are commutative diagrams

and

for i6 j and g∈G, where the unlabeled arrows are induced by the evident projections. There is thus
a canonical map EhG

n → EG
n , the G-�xed points of En. Let us denote by Eh′G

n the ordinary homotopy
�xed point spectrum for the action of G on En. Composing the above map with the canonical map
EG

n → Eh′G
n ([4, XI, 3.5]) yields a map EhG

n → Eh′G
n . The next result will be proved in Section 6.

Theorem 3. Let G be a 7nite subgroup of Gn. Then:

(i) The map EhG
n → Eh′G

n described above is a weak equivalence.
(ii) Let Z be any CW-spectrum. The homotopy 7xed point spectral sequence

H ∗(G; E∗n Z)⇒ (Eh′G
n )∗Z = (EhG

n )∗Z

is naturally isomorphic to the spectral sequence of Theorem 2(ii).

We also have a result on iterated homotopy �xed point spectra. Indeed, if K is a closed and U
is a normal open subgroup of Gn, then the opposite of the group W (K) = N (K)=K acts on Gn=UK
via xUK 
→ xhUK for x∈Gn, h∈N (K). This yields an action of W (K) on Eh(UK)

n , and hence, upon
passing to the homotopy colimit, on EhK

n . In particular, if F is a �nite subgroup of W (K), we may
form (EhK

n )hF in the usual way. We can now state our next result.
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Theorem 4. Suppose G is a closed subgroup of Gn, K is a closed normal subgroup of G, and
F ≡ G=K is 7nite. Then EhG

n is naturally equivalent to (EhK
n )hF .

Another sort of consistency result is given by examining the case n= 1. Since the Galois action
on BGL( PFl)+ corresponds to the action of G1 = Z×p on E1, where once again l is a prime diLerent
from p, we would expect a relationship between the continuous homotopy �xed points of BGL( PFl)+
and the continuous homotopy �xed point spectra of E1. This is indeed the case.

Let R be a commutative ring, and let KR be the algebraic K-theory spectrum of R (so that
�∞KR � Z × BGL(R)+). Quillen’s results deloop (see [20, VIII]); hence (K PFl)p is equivalent to
the connective cover of E1, and the action of t ∈ Ẑ on (K PFl)p corresponds to the action of lt ∈Z×p
on E1. Now choose s dividing p − 1 such that ls ≡ 1mod (p), and de�ne a continuous group
monomorphism Zp → Z×p by sending a∈Zp to lsa. (The number s is needed to guarantee that lsa

makes sense for all a∈Zp.) If G is a non-trivial closed subgroup of Zp, then G = pjZp for some
j¿ 0. Let us also write G for the corresponding closed subgroup in Z×p . We then have the following
result.

Theorem 5. With the notation as above, EhG
1 � LK(1)K(k), where k is the 7eld of invariants of the

action of spjẐ ⊂ Ẑ on PFl.

Our �nal result, which will be proven as an application of the machinery developed here, was
originally due to the second author and H.R. Miller, who suggested that this is the place where it
should logically appear.

Theorem 6 (Hopkins-Miller). Suppose c :Gn → Zp is a continuous homomorphism, and let c also
denote the composition Gn

c→Zp → En∗ . Then c∈H 1
c (Gn; En∗) survives to �∗L̂S0.

Let us indicate our strategy for constructing EhU
n . We will construct a cosimplicial E spectrum

corresponding to the K(n)∗-local En-Adams resolution of EhU
n ; then we will de�ne EhU

n to be Tot
of this cosimplicial spectrum. To do this, we need only determine the (expected) homotopy type of
L̂(EhU

n ∧ En) together with the comodule structure map

L̂(EhU
n ∧ En) = L̂(EhU

n ∧ S0 ∧ En)→ L̂(EhU
n ∧ En ∧ En):

Now we might expect a spectral sequence

H ∗c (U; �∗L̂(En ∧ En))⇒ �∗L̂(EhU
n ∧ En);

since there is such a spectral sequence if U is replaced by a �nite subgroup of Gn (see Theorem
5.3). But �∗L̂(En ∧ En) = Mapc(Gn; En∗), and the action of U is given as in Theorem 1(iii) (see
Section 2). Since Mapc(Gn; En∗) is U -acyclic (cf. proof of Lemma 4.20), we should have

�∗L̂(EhU
n ∧ En) =Mapc(Gn; En∗)U :

The comodule structure map is also determined. But, as En∗-modules,

Mapc(Gn; En∗)U =
∏m

i=1 En∗ ;
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where m is the cardinality of Gn=U . We are thus led to take XGn=U =
∏m

i=1 En as a model for
L̂(EhU

n ∧En). We can also de�ne the corresponding comodule structure map XGn=U → L̂(XGn=U ∧En).
(Note that this map is not—except in a few very special cases—the product of the maps En=
L̂(S0 ∧ En) → L̂(En ∧ En).) With this construction, we obtain a cosimplicial object, but only in
the stable category. However, the technology of Hopkins-Miller as expanded by Goerss-Hopkins is
again available to allow us to conclude that the requisite diagrams in fact commute up to all higher
homotopies in E. The original cosimplicial object can now be replaced by an equivalent cosimplicial
object in E, and Tot can be formed.

The contents of this paper are as follows. In Section 2, we recall the relevant parts of Morava’s
theory, and in Section 3, we discuss the formation of homotopy inverse limits for certain diagrams
commutative up to all higher homotopies. We construct the cosimplicial Adams resolution in Section
4 and identify the resultant spectral sequence as having the form of a (continuous) homotopy �xed
point spectral sequence. In Section 5 we compute �∗L̂(F(S) ∧ En); this allows us to identify the
preceding spectral sequence as a K(n)∗-local En-Adams spectral sequence and completes the proof of
Theorem 1. We prove Theorems 2 and 3 in Section 6, Theorem 4 in Section 7, and, �nally, Theorems
5 and 6 in Section 8. An appendix summarizes the properties of K(n)∗-localizations and K(n)∗-local
En-Adams spectral sequences that we need. In particular, we prove the strong convergence of these
spectral sequences.

2. Resum�e of Morava’s theory

Let p be a �xed prime, let n¿ 1, and let En denote the spectrum with coeUcient ring En∗ =
WFpn[[u1; : : : ; un−1]][u; u−1] obtained via the Landweber exact functor theorem for BP. WFpn denotes
the ring of Witt vectors with coeUcients in the �eld Fpn of pn elements, and the map BP∗

r→En∗—
which also provides En with the structure of BP-algebra in the stable category—is given by

r(vi) =




uiu1−pi
i¡n;

u1−pn
i = n;

0 i¿n:

Now let Sn denote the nth Morava stabilizer group; i.e., the automorphism group of the height n
Honda formal group law -n over Fpn . Let Gal ≡ Gal(Fpn=Fp), and let Gn=SnoGal. The Lubin-Tate
theory of lifts of formal group laws provides an action of Sn on En∗ (see for example [7]), and Gal
acts on En∗ via its action on WFpn . If H is a subgroup of Gal, let us write EH

n for the Landweber
exact spectrum with coeUcient ring W (FHpn)[[u1; : : : ; un−1]][u; u−1], where FHpn is the sub�eld of Fpn

�xed by the automorphism group H .
We �rst identify the completed Hopf algebroid �∗L̂(En ∧ En) with the split completed Hopf alge-

broid (En∗ ;Mapc(Gn;Zp)⊗̂ZpEn∗); this piece of Morava’s theory is crucial to all of our subsequent
work. We start by observing that Mapc(Sn;WFpn)Gal is a completed Hopf algebra over Zp; the
diagonal map is given by

Mapc(Sn;WFpn)Gal → Mapc(Sn × Sn;WFpn)Gal ≈←Mapc(Sn;WFpn)Gal⊗̂Mapc(Sn;WFpn)Gal;
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where the �rst map is induced by the multiplication on Sn and the second is an isomorphism by [5,
AII.3]. There is also a map

6L :EGal
n∗ → Mapc(Sn;WFpn)Gal⊗̂Zp E

Gal
n∗
≈→Mapc(Sn; En∗)Gal

which is given by 6L(x)(g) = g−1x for x∈EGal
n∗ and g∈ Sn. With these structure maps, we obtain a

split completed Hopf algebroid (EGal
n∗ ;Mapc(Sn;WFpn)Gal⊗̂ZpE

Gal
n∗ ). A main result of Morava’s theory

is the following identi�cation.

Theorem 2.1. (EGal
n∗ ; �∗L̂(EGal

n ∧ EGal
n )) is isomorphic to (EGal

n∗ ;Mapc(Sn;WFpn)Gal⊗̂ZpE
Gal
n∗ ) as com-

pleted Hopf algebroids.

Proof. We showed in [5, Section 4] that (EGal
n∗ ;Mapc(Sn;WFpn)Gal⊗̂EGal

n∗ ) is isomorphic to a com-
pleted Hopf algebroid denoted (EGal

n∗ ; EGal
n∗ ⊗̂U US⊗̂U EGal

n∗ ). But we observed in [6, 3.4] that this
Hopf algebroid is isomorphic to (EGal

n∗ ; EGal
n∗ ⊗̂BP∗ BP∗BP⊗̂BP∗E

Gal
n∗ ), where the completed tensor prod-

uct here denotes In-adic completion. Since �∗L̂(EGal
n ∧ EGal

n ) is the In-adic completion of EGal
n∗ EGal

n =
EGal

n∗ ⊗BP∗ BP∗BP ⊗BP∗ EGal
n∗ (see [16]), the proof is complete.

To derive the structure of the completed Hopf algebroid �∗L̂(En ∧En) from Theorem 2.1, we �rst
observe that

�∗L̂(En ∧ EGal
n ) = �∗L̂(EGal

n ∧ EGal
n )⊗Zp WFpn

=Mapc(Sn; En∗)Gal ⊗Zp WFpn

=Mapc(Sn; En∗);

where the last equality follows by [5, 5.4]. Then

�∗L̂(En ∧ En) = �∗L̂(En ∧ EGal
n )⊗Zp WFpn

=Mapc(Sn; En∗)⊗Zp WFpn
7→≈ Mapc(Gn; En∗);

where

7(f ⊗ w)(s; 9) = w · (9−1(f(s)))
for f∈Mapc(Sn; En∗), w∈WFpn , s∈ Sn, and 9∈Gal. Now consider the split completed Hopf alge-
broid (En∗ ;Mapc(Gn;Zp)⊗̂ZpEn∗); once again 6L :En∗ → Mapc(Gn; En∗) is given by 6L(x)(g) = g−1x
for x∈En∗ and g∈Gn. Observe that this is not a Hopf algebroid over WFpn , since 6L and 6R are
diLerent when restricted to WFpn . Upon chasing down the identi�cations, the next result follows
from Theorem 2.1.

Proposition 2.2. (En∗ ; �∗L̂(En∧En)) is isomorphic to (En∗ ;Mapc(Gn;Zp)⊗̂Zp En∗) as completed Hopf
algebroids.

This isomorphism is used to de�ne the action of Gn on En. Indeed, recall that if M is a completed
left Mapc(Gn; En∗)-comodule, then M is a Gn-module with the action given by

g(m) =  (m)(g−1);
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where

 :M → Mapc(Gn; En∗)⊗̂En∗ M ≈→Mapc(Gn;M)

is the comodule structure map. In particular, if X is a �nite CW-spectrum, En∗X is naturally a
Gn-module, and the pairing En∗X ⊗En∗ En∗Y → En∗(X ∧ Y ) is Gn-equivariant, where the left side is
given the diagonal action. Since En∗ is pro�nite in each degree, it follows that there exists, in the
stable category, a unique action of Gn on En by ring spectrum maps inducing the above action on
En∗X .
With this action, it is immediate that the isomorphism of Proposition 2.2 is given by sending

x∈ �∗L̂(En ∧ En) to hx ∈Mapc(Gn; En∗), where hx(g) is given by the composition

S x→ L̂(En ∧ En)
L̂(g−1∧En)→ L̂(En ∧ En)

:→En: (2.3)

(An identi�cation of this sort �rst appears in the literature in [30].) Here suspensions have been
omitted from the notation and : is the ring spectrum multiplication map. Moreover, it is easy to
check using (2.3) that the action of Gn on the left factor of �∗L̂(En ∧ En) corresponds to the action
of Gn on Mapc(Gn; En∗) described in Theorem 1. For later purposes, we will also need to know the
formula for the action of Gn on the right factor of �∗L̂(En ∧ En). If we write gRx for this action of
g∈Gn on x∈ �∗L̂(En ∧En), then it is again easy to see using (2.3) that gRx corresponds to the map
sending g′ ∈Gn to ghx(g′g)∈En∗ .

Remark 2.4. In [5], we used Theorem 2.1 to de�ne a natural WFpn-linear action of Sn on En∗X .
There is also the evident action of Gal on En∗X =WFpn ⊗Zp E

Gal
n∗ X , and these actions piece together

to give a natural action of Gn on En∗X , whence an action of Gn on En in the stable category. This
action is the same as the action de�ned above.

The identi�cations of Proposition 2.2 and (2.3) can be generalized to iterated smash products of
En and beyond. Indeed, if X is a �nite spectrum,

�∗L̂(E( j+1)
n ∧ X ) = En∗En⊗̂En∗ En∗En⊗̂En∗ · · · ⊗̂En∗ En∗En⊗̂En∗ En∗X;

where En∗ acts on the right of each factor En∗En and on the left of the factor En∗X . But

En∗En⊗̂En∗ · · · ⊗̂En∗En∗En = (Mapc(Gn;Zp)⊗Zp En∗)⊗̂En∗ · · · ⊗̂En∗ (Mapc(Gn;Zp)⊗Zp En∗)

=Mapc(Gn;Zp)⊗̂Zp · · · ⊗̂Zp Mapc(Gn;Zp)⊗̂Zp En∗

=Mapc(G
j
n; En∗);

and thus

En∗En⊗̂En∗ · · · ⊗̂En∗En∗En⊗̂En∗En∗X =Mapc(G
j
n; En∗)⊗̂En∗En∗X

=Mapc(G
j
n; En∗X ):

This isomorphism sends x∈ �∗L̂(E
( j+1)
n ∧ X ) to hx ∈Mapc(G

j
n; En∗X ), where hx(g1; : : : ; gj) is given

by the composition

S x→ L̂(E( j+1)
n ∧ X )

L̂(g−1
1 ∧···∧g−1

j ∧En∧X )→ L̂(E( j+1)
n ∧ X )

L̂(:∧X )→ En ∧ X: (2.5)
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More generally, if Z is any spectrum, there is a natural transformation

7j : [Z; L̂(E( j+1)
n )]∗ → Mapc(G

j
n; E
∗
n Z) (2.6)

such that 7j(x)(g1; : : : ; gj) is the composite

Z x→ L̂(E( j+1)
n )

L̂(g−1
1 ∧···∧g−1

j ∧En)→ L̂(E( j+1)
n )

:→En: (2.7)

(To show that 7j does in fact have its image in Mapc(G
j
n; En∗Z), it suUces, by the de�nition of the

topology on En∗Z , to show that this is the case when Z is �nite. But when Z is �nite, 7j is just
the isomorphism described in (2.5) with X the Spanier-Whitehead dual of Z .) Since Mapc(G

j
n; ?) is

exact on the category of pro�nite groups (see [29, I, Theorem 3]), it follows that 7j is a natural
transformation of cohomology theories satisfying the product axiom. But 7j is an isomorphism with
Z = S0; therefore 7j is an isomorphism for any CW-spectrum Z .

3. Homotopy inverse limits

Let hE denote the homotopy category of commutative S0-algebras. That is, two maps f; g :X → Y
in E are homotopic if f and g lie in the same path component of E(X; Y ), the topological space
of S0-algebra maps between X and Y . Alternatively, E is a tensored category (over the category
of unbased topological spaces), and f and g are homotopic if there exists a map h :X ⊗ I → Y
restricting to f and g on the ends of the cylinder (see [11, VII, 2]).
Now let J be a small category and suppose X : J → hE is a functor. In some cases, X can

be replaced by a homotopy equivalent strict diagram, and then its homotopy inverse limit can be
formed.

De�nition 3.1. Let X : J → hE be as above. X is said to be an h∞-diagram if for each ' : j1 → j2
in J , E(Xj1; Xj2)X', the path component of E(Xj1; Xj2) containing X', is weakly contractible.

The main result of this section is due to Dwyer, Kan, and Smith [10]. We feel that the reader
will appreciate an account of the proof.

Theorem 3.2. Let X : J → hE be an h∞-diagram. Then there exists a functor PX : J → E and a
natural transformation PX → X in hE such that PX (j) → X (j) is a weak equivalence for each
j∈Ob J .

The proof makes use of a modi�cation of the cosimplicial replacement of a diagram (cf. [4, XI,
5]). We �rst recall some notation.

If Z is an unbased topological space and Y is a commutative S0-algebra, let F(Z; Y ) denote the
cotensor product of Z and Y in E; its underlying S0-module is just the function S0-module of maps
from ,∞Z+ to Y ([11, VII, 2]). We shall also use the notation F( ; ) to denote function spectra in
the stable category.

With Z as above, let -Z denote the geometric realization of the singular simplicial set of Z .
This is of course a functorial co�brant replacement of Z ; it also has the property that -V × -W is
naturally homeomorphic to -(V ×W ) and that this homeomorphism commutes with the projections
onto -V and -W . Hence a pairing V ×W → Z induces a pairing -V × -W → -Z .
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Construction 3.3. Let X : J → hE be an h∞-diagram. De�ne a cosimplicial commutative S0-algebra∏∗
h X by∏0

h X =
∏

j∈J Xj;∏n
h X =

∏
Jn F(-EX'; Xj0);

where Jn is the set of diagrams

' : j0
'1← j1

'2← j2 ← · · · ← jn−1
'n← jn

in J , and

-EX'= -E(Xj1; Xj0)X'1 × · · · × -E(Xjn; Xjn−1)X'n :

If 0¡i¡n+ 1, the coface di is de�ned via the commutative diagram

(3.4)

where �' denotes the projection onto the factor indexed by

' : j0
'1← j1

'2← j2 ← · · · ← jn
'n+1← jn+1;

'′ denotes the diagram

j0
'1← j1 ← · · · ← ji−1

'i'i+1← ji+1
'i+2← ji+2 ← · · · ← jn

'n+1← jn+1;

and

(di
'g)(f1; : : : ; fn+1) = g(f1; : : : ; fifi+1; : : : ; fn+1)

for (f1; : : : ; fn+1)∈-EX'. Here fifi+1 denotes the image of (fi; fi+1) under the map

-E(Xji; Xji−1)× -E(Xji+1; Xji)→ -E(Xji+1; Xji−1)

induced by the composition pairing

E(Xji; Xji−1)× E(Xji+1; Xji)→ E(Xji+1; Xji−1):

If i = 0, d0 is de�ned as in (3.4), although now '′ is the diagram

j1
'2← j2 ← · · · 'n+1← jn+1;

and d0
' :F(-EX'

′; Xj1)→ F(-EX'; Xj0) is de�ned by

(d0
'g)(f1; : : : ; fn+1) = f1(g(f2; : : : ; fn+1));

where f1 also denotes the image of f1 ∈-E(Xj1; Xj0) in E(Xj1; Xj0).
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Finally, if i = n+ 1, '′ is the diagram

j0
'1← j1 ← · · · ← jn−1

'n← jn

and

(dn+1
' g)(f1; : : : ; fn+1) = g(f1; : : : ; fn):

As for the codegeneracies, si is de�ned via the commutative diagram

(3.5)

where '′ is the diagram

j0
'1← j1

'2← j2 ← · · · ← ji−1
'i← ji

id← ji
'i+1← ji+1 ← · · · 'n+1← jn+1

and

(si'g)(f1; : : : ; fn+1) = g(f1; : : : ; fi; id; fi+1; : : : ; fn+1):

Here id denotes the image of ∗= -(∗) in -E(Xji ; Xji) under the evident map.

Recall that a cosimplicial S0-module Y is 7brant if the map s :Y n+1 → MnY ,

MnY ≡ {(y0; : : : ; yn)∈Y n × · · · × Y n : siyj = sj−1yi ∀ 06 i¡ j6 n};
given by s(y) = (s0(y); : : : ; sn(y)) is a q-�bration—that is, a �bration in the Quillen closed model
sense—for all n¿ − 1. (Properly speaking, MnY should be de�ned as an equalizer; however we
will continue to use this shorthand when to do otherwise would result in more confusion.)

Lemma 3.6. Let X be an h∞-diagram. Then
∏∗

h X is 7brant.

Proof. Consider �rst the map s :
∏1

h X → M 0 ∏∗
h X =

∏0
h X . The composition∏1

h X
s→∏0

h X =
∏

j Xj → Xj

is given by∏1
h X =

∏
j0

'← j1
F(-E(Xj1; Xj0)X'; Xj0)→ F(-E(Xj; Xj)id; Xj)→ Xj;

where the last map is evaluation at id∈-E(Xj; Xj). Since id is a vertex of -E(Xj; Xj), it follows
that this last map is a q-�bration and hence so is s.

Now suppose n¿ 1. Let J k
n; j be the subset of Jn consisting of those n-tuples of maps with j0 = j

and 'k = id, and set

Dk
n;jX =

∐
'∈J k

n; j
-EX':
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Then let

Dn;jX =
⋃

16k6n

Dk
n; jX;

and observe that the map s :
∏n

h X → Mn−1 ∏∗
h X restricts to an isomorphism

∏
j F(Dn;jX; Xj)

≈→Mn−1∏∗
h X:

But the inclusion

Dn;jX →
∐

Jn; j -EX'

is the inclusion of a summand, where Jn; j is the subset of Jn consisting of those n-tuples with j0 = j.
s is therefore a q-�bration in this case as well.

Recall that, given a �brant cosimplicial S0-module Y , Tot Y = F(?[ ∗ ]; Y ), the S0-module of
(unpointed) cosimplicial maps from ?[ ∗ ] to Y . Here ?[ ∗ ] is the cosimplicial space which in
dimension n is the standard n-simplex ?[n] with the usual coface and codegeneracy maps. Let
Sks?[ ∗ ] be the cosimplicial space which in dimension n is the s-skeleton of ?[n], and de�ne
Tots Y = F(Sks?[ ∗ ]; Y ). The map Totj+1 Y → Totj Y is a �bration with �ber F(?[j + 1]=?̇[j + 1],
Y j+1 ∩ ker s0 ∩ · · · ∩ ker sj). By mapping a CW-spectrum Z into the tower {Totj Y}, we obtain a
spectral sequence

Es; t
2 = �s([Z; Y ]t)⇒ [Z;Tot Y ]t+s (cf : [4;X:6]): (3.7)

This spectral sequence is strongly convergent in the sense of [4, IX.5.4] provided lim←j

1 Es; t
r = 0 for

all s and t.
In particular, if X is an h∞-diagram, we obtain a spectral sequence

Es; t
2 = lim←J

s([Z; X ]t)⇒ [
Z;Tot

∏∗
h X

]t+s : (3.8)

This is proved as in [4, XI.7.1], using the fact that -EX' is contractible for all '.
With these constructions in hand, we can now prove the main result of this section.

Proof of Theorem 3.2. If j is an object of J , let J \ j be the category whose objects are morphisms
j → j′ in J and whose morphisms are the evident commutative diagrams. The evident functor
:j : J \ j → J provides us with an h∞-diagram :∗j X over J \ j and hence a functor PX : J → E de�ned
by PX (j) = Tot

∏∗
h :∗j X .

Now de�ne the map PX (j)→ X (j) to be the composition

Tot
∏∗

h :∗j X → F
(
?[0];

∏0
h :∗j X

)
=
∏0

h :∗j X
p→Xj; (3.9)
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where p is the projection onto the factor indexed by the object j id→ j. To prove that

commutes whenever f : j → j′, we must prove that

(3.10)

commutes, where the diagonal map is the projection onto
∏0

h :∗j X followed by the projection onto
the factor indexed by f : j → j′. First observe that the two compositions

PX (j)→ F
(
?[1];

∏1
h :
∗
j X

) F(d0 ; id)
�

F(d1 ; id)
F
(
?[0];

∏1
h :
∗
j X

)
pf→X (j′)

are homotopic, where the last map is the projection onto the factor indexed by f : (j id→ j)→ (j
f→ j′).

But these compositions are the same as

PX (j)→ F
(
?[0];

∏0
h :
∗
j X

) d0

�
d1

∏1
h :
∗
j X

pf→X (j′):

Now use the de�nitions of d0 and d1 to check that these maps give the commutative diagram (3.10).
By (3.8), there is a spectral sequence

Es; t
2 = lim

←J\j
s �−t :∗j X ⇒ �−t−s PX (j):

But j → j is an initial object of J \ j; therefore

lim
←J\j

s �t:∗j X =

{
0 s¿ 0;

�tXj s= 0:

Thus �∗ PX (j)=�∗X (j), and an unraveling of the identi�cations shows that the map in (3.9) induces
the identity on �∗.

4. Construction of the functor F

We begin by stating the following extensions of the Hopkins-Miller theory due to Goerss and
Hopkins. These are the results needed to show that, for S ∈ObR+

Gn
, the cosimplicial object CS

we will construct in the stable category lifts to an h∞-diagram, and hence, by Theorem 3.2, to a
cosimplicial object in E. Then F(S) is de�ned to be TotCS .

Theorem 4.1 (Goerss and Hopkins [13]). Let E and F be q-co7brant commutative S0-algebras with
E Landweber exact. Suppose that �∗E is concentrated in even dimensions with an invertible element
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in degree 2. Suppose in addition that �0E is m-adically complete for some ideal m, that E0=m is
an algebra of characteristic p, and that the relative frobenius for the homomorphism E0=m →
E0F=mE0F is an isomorphism. Then each path component of E(F; E) is weakly contractible, and
the Kronecker pairing

�0E(F; E)→ HomE∗-alg(E∗F; E∗)

is a bijection.

Remark 4.2. Recall that if A is a commutative Fp-algebra, the frobenius homomorphism @A :A→ A
is de�ned by @A(x)= xp. If f :A→ B is a homomorphism of commutative Fp-algebras, the relative
frobenius is de�ned to be the map given by the dotted arrow in the following diagram, where the
square is a push-out in the category of commutative Fp-algebras:

Remark 4.3. The condition that E be Landweber exact can be weakened. Indeed, E need only satisfy
a condition of the sort required by Adams [1, III, 13.3] in his construction of universal coeUcient
spectral sequences. For example, Property 1.1 of [6] suUces. In particular, any Landweber exact
spectrum satis�es this property [6, 1.3].

Theorem 4.4 (Goerss and Hopkins [13]): Let H be a subgroup of Gal. Then EH
n has a unique

structure of commutative S0-algebra descending to its ordinary ring spectrum structure.

Remark 4.5. EH
n is in fact the H homotopy �xed point spectrum of En, so our notation is only

slightly abusive.

In order to construct CS , we need to apply Theorem 4.1 to spectra of the form L̂(X ∧ (En)(j)),
where X is a �nite product of En’s. The next result enables us to do this.

Proposition 4.6. Let E = L̂(X ∧ E( j)
n ) and let F = L̂(Y ∧ E(k)

n ), where X and Y are (non-empty)
products of 7nitely many copies of En and j; k¿ 0. Then the pair F; E satis7es the conditions of
Theorem 4.1; moreover, the function

�0E(F; E)→ Homalg(F∗; E∗)

sending a map F → E to the induced map on homotopy groups is one-to-one.

Proof. First observe that E and F are commutative S0-algebras—the key point here is that localiza-
tion with respect to a homology theory preserves such objects (see [11, VIII]). An easy reduction
also shows that it suUces to consider the case where X = En and Y = En. By Morava’s theory,
E∗ =Mapc(G

j
n; En∗) and the action of En on the right factor of E induces “right multiplication” of
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En∗ on Mapc(G
j
n; En∗). It therefore follows that E (resp. F) is Landweber exact for an appropriate

map BP → E (resp. BP → F) and hence, by the Landweber exact functor theorem, E∗F is a Yat
F∗-module. In addition, E0 is complete with respect to the ideal m =Mapc(G

j
n; In), where we also

write In = (p; u1; : : : ; un−1) ⊂ (En)0. Now

�∗L̂(F ∧ E) =Mapc(G
j+k+1
n ; En∗)

and, just as before, L̂(F∧E) is Landweber exact. Since F∗E is Yat over E∗, it also follows that F∧E
is Landweber exact. Thus, if M (pi0 ; vi11 ; : : : ; v

in−1
n−1) is a �nite CW-spectrum whose Brown-Peterson

homology is BP∗=(pi0 ; : : : ; vin−1
n−1), we have that

F∗E=F∗E · (pi0 ; : : : ; vin−1
n−1) = �∗(F ∧ E ∧M (pi0 ; : : : ; vin−1

n−1))

≈→ �∗(L̂(F ∧ E) ∧M (pi0 ; : : : ; vin−1
n−1))

= �∗L̂(F ∧ E)=�∗L̂(F ∧ E) · (pi0 ; : : : ; vin−1
n−1):

Therefore

F∗E=F∗E · In = �∗L̂(F ∧ E)=�∗L̂(F ∧ E) · In
=Mapc(G

j+k+1
n ; Fpn[u; u−1]):

Clearly the frobenius is an isomorphism on E0=m, and, from the above equality, it is also an iso-
morphism on E0F=mE0F . This implies that the relative frobenius for E0=m → E0F=mE0F is an
isomorphism.

Finally, to prove that �0E(F; E) → Homalg(F∗; E∗) is one-to-one, it suUces to prove that the
function

HomE∗−alg(E∗F; E∗)→ Homalg(F∗; E∗)

given by precomposition with the map

F∗ = �∗(S0 ∧ F)→ �∗(E ∧ F) = E∗F

is one-to-one. But this follows easily from the commutative diagram

and the fact that the vertical maps are monomorphisms since any Landweber exact spectrum is
torsion free.

It will also be convenient to know that, for E and F as above, the canonical map from �0E(F; E)
to the set of ring spectrum maps from F to E in the stable category is a bijection. The next result
enables us to conclude this.
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Lemma 4.7. Let E be as in Proposition 4.6, and let F be a Landweber exact commutative ring
spectrum. Then

(i) E∗F (j) = E∗F ⊗E∗ E∗F ⊗E∗ · · · ⊗E∗ E∗F︸ ︷︷ ︸
j times

for any j¿ 1.

(ii) The Kronecker pairing

[F (j); E]∗ → HomE∗(E∗F
(j); E∗)

is an isomorphism for all j¿ 1.

Proof. Since E and F are Landweber exact, E∗F is a Yat E∗-module. This immediately implies (i).
As for (ii), begin by observing that F1∧F2 is Landweber exact if F1 and F2 are. Hence F (j) satis�es
the hypotheses of the lemma, so we may assume j = 1 without loss of generality.
There is a universal coeUcient spectral sequence

Ext∗∗E∗(E∗F; E∗)⇒ E∗F

(see Remark 4.3); it thus suUces to show that ExtiE∗(E∗F; E∗) = 0 for all i¿ 0. We do this by an
argument similar to that in [27, 15.6]. Indeed, E∗F =E∗⊗En∗ En∗F and En∗F is Yat over En∗ ; hence

Ext∗∗E∗(E∗F; E∗) = Ext∗∗En∗ (En∗F; E∗):

We thus need only show that Exti(En)0((En)0F; E0) = 0 for all i¿ 0, where now E = L̂(E( j+1)
n ) for

some j¿ 0. Let m be as in the proof of Proposition 3.6, and write (En)0F =M . Then again by Yat
base change

Exti(En)0(M;E0=m) = ExtiFpn (M=InM; E0=m):

This last group is trivial for i¿ 0 since Fpn is a �eld. Similarly,

Exti(En)0(M;mt =mt+1) = 0

for i¿ 0; now use the fact that E0=lim← t
E0=mt to conclude that Exti(En)0(M;E0)=0 whenever i¿ 0.

Now let + be the category whose objects are the nonnegative integers—a typical object will be
denoted [n]—and whose morphisms from [n] to [m] are the monotone nondecreasing functions from
{0; 1; : : : ; n} to {0; 1; : : : ; m}. Recall the de�nition of R+

Gn
from the Introduction. We will construct

an h∞-diagram

C : (R+
Gn
)opp × +→ hE

such that, for each S ∈ObR+
Gn
,

CS = C(S; ) :+→ hE

is a cosimplicial K(n)∗-local En-Adams resolution for the not yet constructed spectrum F(S). As
described in the Introduction (for the case S=Gn=U ), we seek a K(n)∗-local commutative S0-algebra
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and right En-module spectrum XS together with an E-map d :XS → L̂(XS ∧ En) such that

�∗XS =MapGn
(S;Mapc(Gn; En∗)) (4.8)

as right En∗-modules, such that

�∗L̂(XS ∧ En)
≈← �∗XS⊗̂En∗ �∗L̂(En ∧ En)

= MapGn
(S;Mapc(Gn; En∗))⊗̂En∗ Mapc(Gn; En∗)

= MapGn
(S;Mapc(Gn × Gn; En∗)) (4.9)

and such that �∗d corresponds to the map induced by the group multiplication Gn × Gn → Gn.

Proposition 4.10. There exists an h∞-diagram X : (R+
Gn
)opp → hE and a natural transformation

d :X→ L̂(X∧En) satisfying the above requirements. Moreover, this construction has the following
properties:

(i) All maps are maps of right En-module spectra, where En acts on the right factor of L̂(X∧En).
(ii) If S is 7nite, X ≡ X(S) is a product of a 7nite number of copies of En.
(iii) XGn = L̂(En ∧ En) and if rg :Gn → Gn is right multiplication by g∈Gn, X(rg) = L̂(g ∧ En).
(iv) d(Gn) is given by the composition

L̂(En ∧ En) = L̂(En ∧ S0 ∧ En)→ L̂(En ∧ En ∧ En):

Proof. If S is �nite, then S is a �nite disjoint union of sets of the form Gn=U for various open
subgroups U of Gn. We thus need only de�ne XGn=U ; XS can be de�ned as an appropriate �nite
product of the XGn=U ’s. De�ne XGn=U =

∏
Gn=U En; i.e., XGn=U is a �nite product of copies of En, one

for each element of Gn=U . Eqs. (4.8) and (4.9) are certainly satis�ed. As for the map d(Gn=U ),
observe that stable En-module maps XGn=U → L̂(XGn=U ∧ En) are in bijective correspondence with
En∗-module maps �∗XGn=U → �∗L̂(XGn=U∧En). Furthermore, by the results of Goerss-Hopkins together
with Lemma 4.7, any stable ring map XGn=U → L̂(XGn=U ∧ En) lifts to an E map, unique up to E
homotopy. Hence d(Gn=U ) can be chosen to induce the requisite map on homotopy groups.

If f : S1 → S2 is a Gn-map with S2 �nite, then there exists a unique map Xf :XS2 → XS1 of
En-module spectra inducing the map

f∗ : MapGn
(S2;Mapc(Gn; En∗))→ MapGn

(S1;Mapc(Gn; En∗))

on stable homotopy groups. As before, Xf has a representative in E and is unique up to E homotopy.
Finally, the naturality of �∗X and �∗d implies, by Proposition 4.6, that X is a functor and d is a

natural transformation. It also follows from 4.6 that X is an h∞-diagram.

Construction 4.11. Let 6 : S0 → En be the unit map, let : :En ∧ En → En be the multiplication map,
and, for each S ∈ObR+

Gn
, let s :XS ∧ En → XS be the module structure map. De�ne an h∞-diagram

C : (R+
Gn
)opp × +→ hE

by

C(S; [j]) ≡ Cj
S = L̂(XS ∧ E( j)

n ):
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The coface and codegeneracy maps are given by

d0(S) = L̂(d(S) ∧ E( j)
n ) :Cj

S → Cj+1
S ;

di(S) = L̂(XS ∧ E(i−1)
n ∧ 6 ∧ (En)(j−i+1)) :Cj

S → Cj+1
S ; 16 i6 j + 1

s0(S) = L̂(s ∧ E( j)
n ) :Cj+1

S → Cj
S ;

si(S) = L̂(XS ∧ E(i−1)
n ∧ : ∧ E( j−1)

n ) :Cj+1
S → Cj

S ; 16 i6 j:

That C is in fact a functor follows from Proposition 4.6; this proposition along with the Goerss-
Hopkins results also implies that C is an h∞-diagram. Hence by Theorem 2.2, we may lift C to a
diagram in E. From now on, when we refer to C, we actually mean this lift of C.

De�nition 4.12. The functor F : (R+
Gn
)opp → E of Theorem 1 is de�ned by F(S)=Tot(

∏∗ CS), where,
as before,

∏∗ CS is the cosimplicial replacement of the (cosimplicial) diagram CS . Since each Cj
S

is K(n)∗-local, so is F(S).

By (3.8), there is a spectral sequence

lim
←+

s [Z; CS]t ⇒ [Z;F(S)]t+s (4.13)

for any CW-spectrum Z . We next claim that

lim
←+

s [Z; CS]t = �s[Z; C∗S ]
t ; (4.14)

where the last term denotes the sth cohomology group of the cosimplicial abelian group [Z; CS]t .
This result is of course well-known; however we provide a quick proof for the convenience of the
reader.

Proposition 4.15. Let Ab+ be the category of cosimplicial abelian groups. Then the A-functors
lim∗←+ :Ab

+ → gr+Ab and �∗ :Ab+ → gr+Ab are naturally equivalent, where gr+Ab denotes the
category of nonnegatively graded abelian groups.

Proof. Since lim0
←+ and �0 are naturally equivalent, it suUces to prove that �s is eLaceable. We

begin this proof by making a few recollections. The forgetful functor U :Ab+ → gr+Ab has a right
adjoint V—if D is an object of gr+Ab, set

(VD)[n] =
∏

[n]→[m]
Dm;

where the product is taken over all morphisms [n]→ [m] in +. It thus follows that if Dm is injective
for each m, then VD is injective in Ab+. Now let C be a cosimplicial abelian group, and consider
the monomorphism C → VUC. We will show that �i(VUC) = 0 for all i¿ 0. Indeed, �rst observe
that VD =

∏
nV (D(n)), where

D(n)m =

{
Dn m= n;

0 otherwise:
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It then suUces to show that �i(V (UC(n))) = 0 for all n and all i¿ 0. But V (UC(n)) is just
the simplicial cochain complex of the standard n-simplex with coeUcients in Cn. Therefore its
cohomology is trivial in positive degrees.

In general, if J is a small category and A is a J -diagram of abelian groups, then lim∗←J A may be
computed as the cohomology of the cochain complex of the cosimplicial group

∏∗ A, the cosimplicial
replacement of A (see [4, XI, 6.2]). Thus the A-functors �∗C and �∗(

∏∗ C) are naturally equivalent
on the category of cosimplicial abelian groups. The next result is proved in Appendix B; it will be
needed to prove Proposition A.5.

Proposition 4.16. Let C be a cosimplicial abelian group. There is a natural map T (C) :C →∏∗ C
of cochain complexes which induces an isomorphism on �∗. Moreover, T can be chosen so that
the composition

C0T (C)→ ∏
j C

j �→Cj0

sends x to d0 · · ·d0x for any x∈C0, j0¿ 0.

We can use spectral sequence (4.13) to verify Theorem 1(ii). This will follow easily from the
next result.

Proposition 4.17. Consider the maps En → L̂(En ∧ En) and F(Gn)→ L̂(En ∧ En) given by the maps

En = En ∧ S0En∧6→ L̂(En ∧ En)

and

F(Gn) = Tot
∏∗ CGn →

∏0 CGn → C0
Gn

= L̂(En ∧ En)

respectively. Let Z be any CW-spectrum. Then there is a unique bijection E∗n Z → F(Gn)∗Z such
that the diagram

commutes.

Proof. The map En → L̂(En ∧ En) is an augmentation of the cosimplicial object C∗Gn
in the stable

category. Furthermore, C∗Gn
is chain contractible to En in the stable category (cf. proof of Lemma

5.4); hence �∗[Z; C∗Gn
]t =Et

nZ concentrated in degree 0. The desired result now follows from (4.13),
(4.14), and an unraveling of the identi�cations.

Proof of Theorem 1(ii). The preceding proposition provides us with a canonical weak equivalence
En → F(Gn). It also implies that the map is Gn-equivariant and is a map of ring spectra (in the
stable category). By Lemma 4.7 and Theorem 4.1 this weak equivalence lifts to an E map.
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Finally, we show that, for S = Gn=U , the spectral sequence (4.13) has the form of a homotopy
�xed point spectral sequence. The proof requires some preparation.

De�nition 4.18. Let M be an inverse limit of discrete Gn-modules, and let H be a closed subgroup
of Gn. De�ne a cochain complex D∗H (M) by

Dj
H (M) = (Mapc(G

j+1
n ;M))H

with diLerential A :Dj
H (M)→ Dj+1

H (M) given by

Af(g0; g1; : : : ; gj+1) =
j∑

i=0

(−1)if(g0; : : : ; ĝi+1; : : : ; gj+1)

+ (−1)j+1g−1j+1f(g0g
−1
j+1; : : : ; gjg−1j+1):

Warning 4.19. The action of H on Mapc(G
j+1
n ;M) is as elsewhere in this paper; that is, if

f∈Mapc(G
j+1
n ;M) and h∈H , then (hf)(g0; : : : ; gj+1) = f(h−1g0; g1; : : : ; gj+1).

Lemma 4.20. The A-functor H ∗(D∗H (?)) is equivalent to H ∗c (H; ?) on the abelian category of dis-
crete Gn-modules.

Proof. Since H 0(D∗H (M)) = MH , it suUces to prove that H ∗D∗H (?) is eLaceable. To this end, let
N be a discrete Gn-module, and consider Mapc(Gn; N ). Mapc(Gn; N ) is a discrete Gn-module, and
there is a Gn-equivariant monomorphism N → Mapc(Gn; N ) de�ned by n 
→ hn, where hn(g)=g−1n.
Now

Dj
H (Mapc(Gn; N )) = (Mapc(G

j+1
n × Gn; N ))H ;

and there is a contracting homotopy

q :D∗+1
H (Mapc(Gn; N ))→ D∗H (Mapc(Gn; N ))

given by

(qf)(g0; : : : ; gj; t) = (−1)j+1f(g0t; : : : ; gjt; t; 1);

proving that Hi(D∗H (Mapc(Gn; N ))) = 0 for all i¿ 0.

We will identify the cochain complex [Z; C∗Gn=U ]
t with D∗U (Et

nZ). We must thus understand the
cohomology of D∗H (?) for pro�nite modules.

Lemma 4.21. Let H be a closed subgroup of Gn and let M be a pro7nite discrete Gn-module, say
M = lim←'

M', where ' ranges over a directed set I . Then

(i) lim←'

s Dj
H (M') =

{
Dj

H (M) s= 0

0 s¿ 0
(ii) H ∗D∗H (M) = lim←'

H ∗D∗H (M') = lim←'
H ∗c (H;M').
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Proof. We have

lim←'

s Dj
H (M') = �s ∏∗ Dj

H (M);

where M is the I -diagram ' 
→ M' and
∏∗ Dj

H (M) is the cosimplicial replacement of the I -diagram
Dj

H (M). Now

∏∗Dj
H (M) = Dj

H

(∏∗M)
;

and since each M' is �nite,
∏q M is pro�nite. Moreover,

Dj
H : pro�nite Gn-modules→ Ab

is exact; this again follows from the existence of a continuous (set-theoretic) cross-section of an
epimorphism of pro�nite groups ([29, I, Theorem 3]). Therefore

lim←'

s Dj
H (M') =Dj

H

(
�s∏∗M)

=Dj
H

(
lim←'

s M'

)
=

{
Dj

H (M) s= 0

0 s¿ 0

by the vanishing of lim←'

s, s¿ 0, for directed systems of pro�nite groups.

As for the second part, consider the double cochain complex
∏∗ D∗H (M). This yields two spectral

sequences

lim←'

s H t
c(H;M')⇒ Hs+t (∏∗D∗H (M)

)
;

H s
(
lim←'

t D∗H (M')
)
⇒ Hs+t (∏∗D∗H (M)

)
:

By (i), the second spectral sequence collapses to give

H ∗
(∏∗D∗H (M)

)
= H ∗(D∗H (M)):

On the other hand, H is a closed subgroup of a p-analytic pro�nite group and is therefore itself a
p-analytic group (see [9, 10.7]). Hence H contains an open normal subgroup U which is a PoincarIe
pro-p-group ([19]; see also [28] for a summary). This implies that Ht

c(H;M') is �nite for each '
and so lim←'

s H t
c(H;M') = 0 for all s¿ 0. The �rst spectral sequence then collapses to give

H ∗
(∏∗D∗H (M)

)
= lim←'

H ∗c (H;M'):

This completes the proof.
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Lemma 4.22. There is a canonical isomorphism [Z; C∗Gn=U ]
t ≈ D∗UEt

nZ of cochain complexes, where
E∗n Z is topologized as in Remark 1.3.

Proof. The quotient map Gn → Gn=U induces a map C∗Gn=U → C∗Gn
and hence a map

[Z; C∗Gn=U ]
t → [Z; C∗Gn

]t (4.23)

of cochain complexes. Now XGn = L̂(En ∧ En) (Proposition 4.10); therefore, the map 7j of (2.6)
provides an isomorphism

[Z; Cj
Gn
]t → Mapc(G

j+1
n ; Et

nZ) = Dj
{e}(E

t
nZ):

Moreover, this map is easily seen to be a cochain map and is Gn-equivariant, if the action of g∈Gn

on Cj
Gn

is given by

L̂(X(rg) ∧ En ∧ · · · ∧ En) = L̂(g ∧ En ∧ En · · · ∧ En):

Since right multiplication by g∈U is trivial on Gn=U , the map in (4.23) is actually a map

[Z; C∗Gn=U ]
t → ([Z; C∗Gn

]t)U ≈ (D∗{e}(E
t
nZ))

U = D∗U (E
t
nZ) (4.24)

of cochain complexes. Both [?; Cj
Gn=U ]

∗ and Dj
U (E

∗
n (?)) = Mapc(Gn=U × Gj

n; E∗n (?)) are cohomology
theories satisfying the product axiom; it thus suUces to prove that the map in (4.24) is an isomor-
phism when Z = S0. But, by (4.8) and the fact that XGn=U is a �nite product of En’s (Prop. 4.10),
we have that

�∗C
j
Gn=U = �∗XGn=U ⊗En∗ Mapc(G

j
n; En∗)

=Mapc(Gn=U; En∗)⊗En∗ Mapc(G
j
n; En∗):

We also have

�∗C
j
Gn

= �∗XGn⊗̂En∗ Mapc(G
j
n; En∗)

=Mapc(Gn; En∗)⊗̂En∗ Mapc(G
j
n; En∗)

and the map �∗XGn=U → �∗XGn corresponds to the homomorphism Mapc(Gn=U; En∗)→ Mapc(Gn; En∗)
induced by the quotient map Gn → Gn=U . From this it is clear that

�∗C
j
Gn=U

≈→(�∗C
j
Gn
)U ;

completing the proof.

Finally, we obtain our desired result.

Proposition 4.25. Let S =Gn=U . The spectral sequence (4.13) has E2-term canonically isomorphic
to Hs

c (U; Et
nZ).

This is the spectral sequence of TheorZem 1(iv). It is strongly convergent because Hs
c (U; Et

nZ) is
a pro�nite group for each s, t, and therefore lim←r

1=Es; t
r = 0.
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5. The Morava module of EhUn

In this section we complete the proof of Theorem 1. The key step is the identi�cation of L̂(F(S)∧
En) with XS—this not only immediately implies Theorem 1(iii) but enables us to identify the spectral
sequence (4.13) with the K(n)∗-local En-Adams spectral sequence converging to [Z;F(S)]∗. If S is
�nite, CS =

∏
i CGn=Ui for a �nite number of open subgroups Ui; thus we may assume from the

beginning that S = Gn=U . (If S = Gn, Theorem 1(iii) is a consequence of 1(ii).)
The techniques involved in our computation of L̂(F(S) ∧ En) will be applied in other contexts in

Sections 6 and 7; we therefore proceed in a little more generality.

Notation 5.1. Write C : J → E for any of the following diagrams:

(i) J = + and C = CGn=U for U an open subgroup of Gn.
(ii) J = G for G a �nite subgroup of Gn, and C :G → E is the diagram given by the action of G

on En.
(iii) J =F , where F and K are as in Theorem 4 of the Introduction, and C :F → E is the diagram

given by the action of F on (the left factor of) L̂(EhK
n ∧ E( j+1)

n ), j¿ 0.

Given a diagram C : J → E, there is a diagram L̂(C ∧ En) : J → E de�ned by

L̂(C ∧ En)(j) = L̂(C(j) ∧ En);

L̂(C ∧ En)(f) = L̂(C(f) ∧ En)

for j an object and f a morphism in J . There is also a canonical map

L̂
[(
Tot

∏∗ C) ∧ En
]→ Tot

(∏∗ L̂(C ∧ En)
)
: (5.2)

We will prove the following result.

Theorem 5.3. If C is one of the diagrams in Notation 5.1, then the map (5.2) is a weak equivalence.

Before proving this theorem, we determine its consequence for C = CGn=U . The left side of (5.2)
is L̂(EhU

n ∧ En). To identify the right side, we examine the spectral sequence IIE∗;∗r (Z; C) obtained
by mapping a CW-spectrum Z into the tower of �brations {Totk(

∏∗ L̂(C ∧ En))}.

Lemma 5.4. Let C = CGn=U . Then

IIEs; t
2 (Z; C) = �s[Z; L̂(C∗ ∧ En)]t =

{
0 s¿ 0;

[Z; XGn=U ]
t s= 0:

In particular, the map

Tot
(∏∗ L̂(C ∧ En)

)→∏0 L̂(C ∧ En)

→ L̂(C0 ∧ En)



E.S. Devinatz, M.J. Hopkins / Topology 43 (2004) 1–47 25

� L̂(XGn=U ∧ En)

s→XGn=U

is a weak equivalence.

Proof. By Proposition 4.15, IIEs; t
2 (Z; C) = �s[Z; L̂(C∗ ∧ En)]t . Now let X ∗Gn=U be the constant cosim-

plicial spectrum with X j
Gn=U = XGn=U . There are cosimplicial—in the stable category—maps X ∗Gn=U →

L̂(C ∧ En) and L̂(C ∧ En)→ X ∗Gn=U given on 0-simplices by d :XGn=U → L̂(XGn=U ∧ En) (see Proposi-
tion 4.10) and s : L̂(XGn=U ∧ En)→ XGn=U , respectively. Furthermore, these maps are chain homotopy
equivalences; use the chain homotopy

h : L̂(Cj ∧ En)→ L̂(Cj−1 ∧ En)

de�ned by h = (−1)jXGn=U ∧ (En)(j−1) ∧ :. This then implies that �∗[Z; L̂(C∗ ∧ En)]t is as claimed.
The weak homotopy equivalence Tot(

∏∗ L̂(C ∧ En)) → XGn=U is obtained by tracking down the
identi�cations.

Corollary 5.5. There is a natural weak equivalence L̂(EhU
n ∧En)

C→XGn=U of commutative S0-algebras
and right En-module spectra such that the diagram

is homotopy commutative. In particular, Theorem 1(iii) holds.

We now turn to the proof of Theorem 5.3. Let IE∗;∗r (Z; C) denote the spectral sequence obtained
by mapping a CW-spectrum Z into the tower

· · · → L̂
(
Totk+1

(∏∗C) ∧ En
)→ L̂

(
Totk

(∏∗C) ∧ En
)→ · · · ;

we have

IEs; t
1 (Z; C) = [Z; L̂(Fs(C) ∧ En)]t+s; (5.6)

where Fs(C) is the �ber of Tots(
∏∗ C)→ Tots−1(

∏∗ C). There is a canonical stable map from the
(unraveled exact couple of the) tower {L̂(Totk(

∏∗ C) ∧ En)} to {Totk(
∏∗ L̂(C ∧ En))}; on �bers

this map is the canonical map

L̂(Fs(C) ∧ En)→ Fs(L̂(C ∧ En)): (5.7)
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Lemma 5.8. Let IE∗;∗2 (S0; C)→ IIE∗;∗2 (S0; C) be the map of spectral sequences described above. If
C is one of the diagrams in 5.1, then this map is an isomorphism.

Proof. If C is a diagram of the form 5.1(ii) or 5.1(iii) then the map (5.7) is an equivalence and
hence the desired result follows immediately.

Now let C = CGn=U and examine IE∗;∗2 (S0; C). By (4.14), H ∗([Z; F∗(C)]t+∗) = �∗[Z; C∗]t for any
CW-spectrum Z , and therefore Lemma 5.4 implies that

Hs�t−∗(F∗(C) ∧ En ∧M (pi0 ; : : : ; vin−1
n−1)) = �s�t(C∗ ∧ En ∧M (pi0 ; : : : ; vin−1

n−1))

=

{
�t(XGn=U ∧M (pi0 ; : : : ; vin−1

n−1)) s= 0;

0 s �= 0:

In particular, these cohomology groups are all �nite. Here M (pi0 ; vi11 ; : : : ; v
in−1
n−1) is as in the beginning

of Section 4; the multi-index I =(i0; : : : ; in−1) varies over a co�nal sequence as in [6, Section 4], so
that

L̂Y = holim
←I

(Y ∧M (pi0 ; : : : ; vin−1
n−1))

for any E(n)∗-local spectrum Y .
We claim that

�∗ holim←I
(Fk(C) ∧ En ∧M (pi0 ; : : : ; vin−1

n−1)) = lim←I
�∗(Fk(C) ∧ En ∧M (pi0 ; : : : ; vin−1

n−1));

that is

lim←I

1 �∗(Fk(C) ∧ En ∧M (pi0 ; : : : ; vin−1
n−1)) = 0: (5.9)

Assuming this, it follows from the vanishing of lim←I

1 H ∗�t−∗(F∗(C) ∧ En ∧M (pi0 ; : : : ; vin−1
n−1)) that

Hs�t−∗L̂(F∗(C) ∧ En) = lim←I
H s�t−∗(F∗(C) ∧ En ∧M (pi0 ; : : : ; vin−1

n−1))

=

{
�tXGn=U s= 0

0 s �= 0:

Furthermore, one checks easily that the map IEs; t
2 (S0; C) → IIEs; t

2 (S0; C) is the identity under this
identi�cation and the identi�cation of Lemma 5.4.
We now verify the claim. Fk(C) is equivalent to a product of Cj

Gn=U ’s and is therefore Landweber
exact. Hence �∗(Fk(C) ∧ En) is a Yat En∗-module, so

�∗(Fk(C) ∧ En ∧M (pi0 ; : : : ; vin−1
n−1)) = �∗(Fk(C) ∧ En)=(pi0 ; : : : ; vin−1

n−1):

In particular, the inverse system {�∗(Fk(C)∧ En ∧M (pi0 ; : : : ; vin−1
n−1))} is Mittag-Le[er and therefore

5.9 holds. This completes the proof.
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Corollary 5.10. If C is one of the diagrams in Notation 5.1, then

holim
←k

L̂
(
Totk

(∏∗ C) ∧ En
) �→Tot

(∏∗ L̂(C ∧ En)
)
:

Proof. If C is a diagram of the form 5.1(ii) or 5.1(iii), the result follows from the fact that the map
(5.7) is an equivalence and hence the towers {L̂(Totk(

∏∗ C)∧ En)} and {Totk(
∏∗ L̂(C ∧ En))} are

equivalent.
If C=CGn=U , the result follows from Lemma 5.8 together with the fact that both spectral sequences

are strongly convergent in the sense of [4, IX, 5.4].

The proof of Theorem 5.3 will now be completed by showing that

L̂
[(
Tot

∏∗ C) ∧ En
] �→holim

←k
L̂
(
Totk

(∏∗C) ∧ En
)
:

We separate oL the following key ingredient.
Let

· · · → Yk → Yk−1 → · · · → Y0 → ∗

be a tower of �brations of S0-modules, so that the canonical map lim
←k

Yk → holim
←k

Yk is a weak

equivalence. De�ne Y k to be the �ber of lim←i
Yi → Yk ; there is then an inverse system of �brations

According to [4, XI, 5.5], the map

holim
←k

(
lim←i

Yi

)
→ holim

←k
Yk

is a �bration with �ber holim
←k

Y k . But the commutative diagram

shows that this map is a weak equivalence, and thus holim
←k

Y k is stably trivial. In certain cases, we

can say a good deal more.
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Lemma 5.11. Let {Yk} be as above, and let E∗;∗r (Z) denote the spectral sequence obtained by
mapping the CW-spectrum Z into this tower. Suppose that there exist natural numbers r0 and s0
such that Es;∗

r0 (Z)= 0 for all spectra Z whenever s¿ s0. Then given k, there exists q such that the
map Y k+q → Y k is stably trivial.

Proof. Let Fs be the �ber of Ys → Ys−1. There is a diagram

of exact triangles; let kE∗∗r (Z) denote the spectral sequence obtained by mapping Z into this diagram.
This spectral sequence is isomorphic to the spectral sequence obtained by mapping Z into the tower
{Yi}i¿k . Hence, kEs;∗

r0 (Z) = 0 for s¿max{r0 − 2; s0 − k − 1}. Since holim←i
Y i � ∗, kE∗∗r (Z) is

conditionally convergent (in the sense of [2]) to [Z; Y k]∗, and thus the horizontal vanishing line
implies that

im([Z; Y k+s]∗ → [Z; Y k]∗)
im([Z; Y k+s+1]∗ → [Z; Y k]∗)

= kEs;∗
∞ (Z)

and that {im([Z; Y k+s]∗ → [Z; Y k]∗)}s¿0 is a complete HausdorL �ltration of [Z; Y k]∗. It then follows
that im([Z; Y k+s]∗ → [Z; Y k]∗) = 0 for s¿max{r0 − 2; s0 − k − 1}. But Z is arbitrary; therefore
Y k+s → Y k is trivial for these values of s, completing the proof.

Lemma 5.12. Let {Yk} satisfy the hypotheses of Lemma 5.11. Then, if W and F are any spectra,
there is an equivalence

LF

[(
holim
←k

Yk

)
∧W

] �→ holim
←k

LF(Yk ∧W ):

Remark 5.13. The above map is of course chosen so that composition with the projection onto
LF(Yk ∧W ) yields the canonical map

LF

[(
holim
←k

Yk

)
∧W

]
→ LF(Yk ∧W ):

We will show that lim
←k

1 [Z; LF(Yk ∧W )]∗ = 0 for any spectrum Z , so the equivalence of the lemma

is uniquely determined.
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Proof. We have diagrams (in the stable category)

(5.14)

of �ber sequences. By the previous lemma,

holim
←k

LF(Y k ∧W ) � ∗;
from this should follow the desired result. However, we prefer to avoid trying to argue that “the
homotopy inverse limit of the �bers is the �ber of the homotopy limits”, and instead proceed less
generally. Indeed, a diagram chase using (5.14) together with the previous lemma shows that the
system {[Z; LF(Yk ∧ W )]∗} is Mittag-Le[er for any Z and therefore lim

←k

1 [Z; LF(Yk ∧ W )]∗ = 0. A

similar argument also shows that[
Z; LF

((
holim←i

Yi

)
∧W

)]∗ ≈→ lim
←k

[Z; LF(Yk ∧W )]∗:

This completes the proof.

Proof of Theorem 5.3. Start with cases (i) and (ii) of Notation 5.1. By virtue of the preceding work,
we need only show that

L̂
[(
Tot

∏∗ C) ∧ En
] ∧ X �→ holim

←k
L̂
(
Totk

(∏∗ C) ∧ En
) ∧ X (5.15)

for some p-local �nite spectrum X Bous�eld equivalent to S0
(p). Nilpotence technology [8, 4.1] tells

us that this is the same as requiring X to have torsion free Z(p)-homology.
We will prove (5.15) by �nding a torsion free X such that E∗;∗2 (Z ∧ DX; C) has a horizontal

vanishing line independent of Z , where E∗;∗r (Z ∧ DX; C) denotes the spectral sequence obtained by
mapping Z ∧ DX into {Totk

∏∗ C}. But
Es; t
2 (Z ∧ DX; C) = Hs

c (K; Et
n(Z ∧ DX ))

for K some closed subgroup of Gn. (K = U in case (i), and K = G in case (ii).) Moreover,

Hs
c (K; Et

n(Z ∧ DX )) = lim←'
H s;−t

c (K; En∗X ⊗En∗ En∗DZ');

where Z = holim←'
Z' is a presentation of Z as a direct limit of �nite CW-spectra.

Now Hopkins and Ravenel have shown that there exists a �nite spectrum X with free Z(p)-
homology—in fact, X can be taken to be S0 if p−1An and a summand of an iterated smash product
of a �nite complex projective space if p−1 | n—such that Hs;∗

c (K; En∗X=InEn∗X )=0 for s bigger than
some s0. (This is proved for K=Gn in [26, 8.3.5–7]; from this follows the result for K closed in Gn.
Or, one can observe that the proof for Gn applies to closed subgroups as well.) An easy induction
then shows that Hs;∗

c (K; En∗X ) and hence Hs;∗
c (K; En∗X=ImEn∗X ) vanish for s¿ s0 and m6 n, where

Im = (p; v1; : : : ; vm−1). Finally, proceed by induction on a Landweber �ltration of En∗DZ' to prove
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that Hs;∗
c (K; En∗X ⊗En∗ En∗DZ') = 0 for s¿ s0. (Note that the cross-section theorem [29, I, Theorem

3] allows us to conclude that H ∗c (K; ?) takes short exact sequences of pro�nite K-modules to long
exact sequences.)

This vanishing line allows us to apply Lemma 5.12 to the tower {(Totk
∏∗ C) ∧ X } to complete

the proof of (5.15).
As for case iii, we prove that E∗;∗2 (Z; C) has a horizontal vanishing line independent of Z . Indeed,

Es; t
2 (Z; C) =Hs(F; [Z; L̂(EhK

n ∧ E( j+1)
n ]t)

=Hs(F;Mapc(G
j+1
n ; Et

nZ)
K)

by Proposition 6.3 and (6.5).
Now if M is any discrete Gn-module, there is a spectral sequence

H ∗(F;H ∗c (K;Mapc(G
j+1
n ;M)))⇒ H ∗c (G;Mapc(G

j+1
n ;M)):

But Mapc(G
j+1
n ;M) =Mapc(Gn;Mapc(G

j
n;M)) is both K and G-acyclic (see proof of Lemma 4.20);

this implies that Mapc(G
j+1
n ;M)K is F-acyclic.

If M is pro�nite, say M = lim←'
M', then there is a spectral sequence

lim←'

i H s−i(F;Mapc(G
j+1
n ;M')K)⇒ Hs(F;Mapc(G

j+1
n ;M)K):

But

H ∗(F;Mapc(G
j+1
n ;M')K) = (Mapc(G

j+1
n ;M')K)F

=Mapc(G
j+1
n ;M')G

concentrated in degree 0, and by Lemma 4.21(i), lim←'

i Mapc(G
j+1
n ;M')G=0 for i¿ 0. Thus Es; t

2 (Z; C)=

0 for s¿ 0, and the proof concludes as before.

We conclude this section by proving Theorem 1(iv).

Proposition 5.16. Let U be an open subgroup of Gn, and let S=Gn=U . The spectral sequence (4.13)
is naturally isomorphic to the K(n)∗-local En-Adams spectral sequence converging to [Z; EhU

n ]∗.

Proof. Consider the cosimplicial S0-module CGn=U . By Corollary 5.5,

Cj
Gn=U � L̂(EhU

n ∧ E( j+1)
n )

and thus by Remark A.9

∗ → EhU
n → C0

Gn=U
A→,−1C1

Gn=U
A→,−2C2

Gn=U → · · ·

is a K(n)∗-local En-resolution of EhU
n , where A =

∑
(−1)idi. The desired result now follows from

Proposition A.5.
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6. Homotopy �xed point spectra for closed subgroups of Gn

We begin by recalling the construction of the homotopy direct limit in E for the case of a direct
sequence of commutative S0-algebras.

De�nition 6.1. Let

A0
f0→A1

f1→A2
f2→· · · fi−1→ Ai

fi→· · ·

be a direct sequence of commutative S0-algebras. Then holimE→i
Ai = limE→j

PAj, where

PAj = A0 ⊗ I
∐

f0
A1 ⊗ I

∐
f1
· · ·∐fj−2

Aj−1 ⊗ I
∐

fj−1
Aj

is a j-fold mapping cylinder in E. That is, all limits (including tensor products) are to be taken
in E.

The next result is crucial in the homotopical analysis of EhG
n .

Lemma 6.2. Let A0
f0→A1

f1→A2 → · · · be a sequence of cellular algebra maps between cell commu-
tative S0-algebras. Then there is a natural weak equivalence holimE→i

Ai � holim→i
Ai of spectra, where

holim→i
denotes the ordinary homotopy colimit of {Ai} regarded as a sequence of spectra.

Proof. Let PAj be as in the previous de�nition. The evident map PAj → Aj is a homotopy equivalence
in E and hence in the category of spectra. Moreover, PAj is a relative cell commutative S0-algebra
under PAj−1 for each j¿ 1. This implies that PAj−1 → PAj is a co�bration of underlying spectra [11,
VII, 4.14]. Thus, by [11, VII, 3.10], it follows that

holimE→i
Ai = holimE→j

PAj = lim→j
PAj � holim→j

PAj � holim→j
Aj:

We can now identify the K(n)∗-local En-homology of EhG
n and thus prove Theorem 2(i).

Proposition 6.3. �∗L̂(EhG
n ∧En)=Mapc(Gn; En∗)G as completed right �∗L̂(En∧En)-comodule algebras.

Proof. Just compute:

�∗(EhG
n ∧ En ∧M (pi0 ; : : : ; vin−1

n−1)) = lim→j
�∗(E

h(UjG)
n ∧ En ∧M (pi0 ; : : : ; vin−1

n−1))

= lim→j
Mapc(Gn; En∗=(pi0 ; : : : ; vin−1

n−1))
UjG

=Mapc(Gn; En∗=(pi0 ; : : : ; vin−1
n−1))

G;

since En∗=(pi0 ; : : : ; vin−1
n−1) is discrete. The desired result follows easily.



32 E.S. Devinatz, M.J. Hopkins / Topology 43 (2004) 1–47

It is now also a simple matter to identify EhG
n with the usual homotopy �xed point spectrum when

G is �nite. As in the Introduction, we denote this spectrum by Eh′G
n .

Proposition 6.4. Let G be a 7nite subgroup of Gn. The map EhG
n → Eh′G

n described in the Intro-
duction is a weak equivalence.

Proof. Since EhG
n and Eh′G

n are both K(n)∗-local, it suUces to prove that the map

�∗L̂(EhG
n ∧ En)→ �∗L̂(Eh′G

n ∧ En)

is an isomorphism. But we have a commutative diagram

and by the preceding proposition, �∗L̂(EhG
n ∧En) injects into �∗L̂(En∧En) with image Mapc(Gn; En∗)G.

On the other hand, Theorem 5.3 implies that L̂(Eh′G
n ∧ En)

�→ [L̂(En ∧ En)]h
′G, where G acts on the

left factor En. But �∗L̂(En ∧ En) =Mapc(Gn; En∗) is G-acyclic (see proof of Lemma 4.20); therefore
�∗L̂(Eh′G

n ∧ En) =Mapc(Gn; En∗)G as well. This completes the proof.

Now let G be a closed subgroup of Gn and form a K(n)∗-local En-Adams resolution of EhG
n as

in Remark A.9; that is, set

Cj
Gn=G = L̂(EhG

n ∧ (En)(j+1)):

As in the proof of Lemma 4.22, there is a natural transformation

[Z; C∗Gn=G]
t → D∗GE

t
nZ (6.5)

of cochain complexes; the proof of Proposition 6.3 generalizes to show that this map is an equiva-
lence when Z=S0. But both [?; Cj

Gn=G]
∗ and Dj

GE
∗
n (?) are cohomology theories satisfying the product

axiom and hence the map in (6.5) is an isomorphism for all Z . Theorem 2(ii) is thus a consequence
of Lemmas 4.20 and 4.21.

Proposition 6.6. Let G be a closed subgroup of Gn. The K(n)∗-local En-Adams spectral sequence
converging to [Z; EhG

n ]∗ is strongly convergent and has E2-term naturally isomorphic to H ∗c (G; E∗n Z).

Proof. The only part which has not been proved above is the strong convergence. But this follows
from Proposition A.3.

We can also prove a “covariant” version of Proposition 6.6, although the next result is probably
not the most general result which can be achieved in this direction. Recall that E(n) denotes the
Landweber exact spectrum with coeUcient ring E(n)∗ = Z(p)[v1; : : : ; vn; v−1n ].

Proposition 6.7. Let X be a CW-spectrum such that, for each E(n)-module spectrum M , there
exists a k with I knM∗X=0. Then the K(n)∗-local En-Adams spectral sequence converging to �∗L̂(X ∧
EhG

n ) has E2-term naturally isomorphic to H ∗c (G; En∗X ).
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Remark 6.8. The hypotheses imply that En∗X is a discrete Gn-module, so H ∗c (G; En∗X ) makes good
sense.

The proof of this proposition requires a little preparation. Let Ln denote the E(n)∗-localization
functor. There is a co�ber sequence

,−nMnS0 → LnS0 → Ln−1S0 (6.9)

(see [25, Section 5]) and

MnS0 = Ln

(
holim
→I

,−nIM (pi0 ; vi11 ; : : : ; v
in−1
n−1)

)
; (6.10)

nI =
n−1∑
r=0

2ir(p− 1);

where I = (i0; i1; : : : ; in−1) ranges over a co�nal sequence of multi-indices [6, Section 4].

Lemma 6.11. Let X satisfy the hypotheses of Proposition 6.7, and let M be an E(n)-module
spectrum. Then

(i) M ∧ X is K(n)∗-local
(ii) M ∧ X ∧ ,−nMnS0 �→M ∧ X ∧ LnS0 � M ∧ X .

Proof. (i) M is an E(n)-module spectrum and is therefore E(n)∗-local. Since E(n) is smashing ([26,
7.5.6]), M ∧ X is E(n)∗-local. Hence

L̂(M ∧ X ) = F(,−nMnS0; M ∧ X );

and we must show that

M ∧ X = F(LnS0; M ∧ X )→ F(,−nMnS0; M ∧ X )

is an equivalence; i.e.

(M ∧ X )∗LnS0 �→ (M ∧ X )∗(,−nMnS0):

But ,−nMnS0 → LnS0 is the composite of the maps Ln@i, 06 i6 n−1, in the co�bration sequences

NiS0 → LiNiS0 ≡ MiS0 → Ni+1S0 @i→,NiS0;

where N0S0 = S0; thus we need only show that (M ∧ X )∗MiS0 = 0 for 06 i6 n− 1. Consider the
universal coeUcient spectral sequence converging to (M ∧ X )∗MiS0 whose E2-term is

ExtE(n)∗(v
−1
i E(n)∗=(p∞; : : : ; v∞i−1); M∗X ) = ExtE(n)∗(E(n)∗MiS0; M∗X ):

Since there exists k with vki M∗X = 0, it follows that

ExtE(n)∗(v
−1
i E(n)∗=(p∞; : : : ; v∞i−1); M∗X ) = 0;

completing the proof.
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(ii) This follows from 6.9 and the fact that, since E(n− 1) is smashing, we have

(Ln−1S0) ∧M ∧ X � Ln−1(M ∧ X ) � ∗:

Proof of Proposition 6.7. By Lemma 6.11, we have

L̂(X ∧ EhG
n ∧ E( j+1)

n )�X ∧ EhG
n ∧ E( j+1)

n

�X ∧ ,−nMnS0 ∧ EhG
n ∧ E( j+1)

n

� holim→ X' ∧ ,−n′IM (pi0 ; : : : ; vin−1
n−1) ∧ EhG

n ∧ E( j+1)
n

� holim→ L̂(X' ∧ ,−n′IM (pi0 ; : : : ; vin−1
n−1) ∧ EhG

n ∧ E( j+1)
n );

where n′I = nI + n, and the homotopy colimit varies over the �nite CW-subspectra X' of X and the
sequence of generalized V (n− 1)’s of (6.10). But, by Proposition 6.6,

H ∗�tL̂(X ∧ EhG
n ∧ (En)(∗+1)) = lim→ H ∗�tL̂(X' ∧ ,−n′IM (pi0 ; : : : ; vin−1

n−1) ∧ EhG
n ∧ (En)(∗+1))

= lim→ H ∗c (G; (En)t(X' ∧ ,−n′IM (pi0 ; : : : ; vin−1
n−1)))

=H ∗c (G; (En)t(X ∧ ,−nMnS0))

=H ∗c (G; (En)tX ):

This completes the proof.

Finally, if G is a �nite subgroup of Gn, we identify the homotopy �xed point spectral sequence
converging to [Z; Eh′G

n ]∗ with the K(n)∗-local En-Adams spectral sequence. Let us �rst introduce
some notation.

If G acts on (the commutative S0-algebra) X , write
∏∗

G X for the cosimplicial replacement of the
G-diagram de�ned by the action of G on X . Also write Fs(G; X ) for the �ber of Tots(

∏∗
G X ) →

Tots−1(
∏∗

G X ). The next result proves Theorem 3(ii).

Proposition 6.12. The sequence

∗ → Eh′G
n → F0(G; En)→ F1(G; En)→ · · ·

is a K(n)∗-local En-Adams resolution of Eh′G
n .

Proof. First observe that Fs(G; En) is a product of En’s and is therefore En-injective. We thus need
only show that

0→ [Z; L̂(Eh′G
n ∧ En)]→ [Z; L̂(F0(G; En) ∧ En)]→ · · · (6.13)
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is exact for all CW-spectra Z . Since G is �nite, the cochain complex L̂(F∗(G; En)∧En) is equivalent
to F∗(G; L̂(En ∧ En)). Hence

Hi[Z; L̂(F∗(G; En) ∧ En)] =Hi(G; [Z; L̂(En ∧ En)])

=Hi(G;Mapc(Gn; E∗n Z))

=

{
Mapc(Gn; E∗n Z)

G i = 0

0 i¿ 0

by the proof of Lemma 4.20. But by Proposition 6.3,

[Z; L̂(Eh′G
n ∧ En)]∗ =Mapc(Gn; E∗n Z)

G:

Tracking down the identi�cations completes the proof that sequence (6.13) is exact.

7. Proof of Theorem 4

Let G be a closed subgroup of Gn, K a closed normal subgroup of G, and suppose F = G=K is
�nite. Then the canonical map EhG

n → EhK
n factors through (EhK

n )F , the F �xed points of EhK
n . The

next result proves Theorem 4.

Proposition 7.1. The composition EhG
n → (EhK

n )F → (EhK
n )hF is a weak equivalence.

Proof. Let F also denote the category with one object ∗ whose automorphism group is F , and
consider the functor Y :+× F → E with

Y([j]; ∗) = L̂(EhK
n ∧ E( j+1)

n ):

F acts on EhK
n , and Y maps morphisms in + as in Remark A.9. Write Y j ≡ Y([j]; ∗). Since

EhK
n
�→holim
←+

Y j

by Corollary A.8, we have that

(EhK
n )hF ∼→ holim

←F
holim
←+

Y j

≈ holim
←+

(Y j)hF :

Of course, there is a canonical augmentation (EhK
n )hF → (Y 0)hF and hence an augmentation EhG

n →
(EhK

n )hF → (Y 0)hF . We claim that

∗ → EhG
n → (Y 0)hF → ,−1(Y 1)hF → · · ·

is a K(n)∗-local En-Adams resolution of EhG
n . Assuming this, it follows from Corollary A.8 that

EhG
n
∼→ holim

←+
(Y j)hF
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and hence that

EhG
n
∼→ (EhK

n )hF :

To prove the claim, we must show that

0→ [Z; L̂(EhG
n ∧ En)]→ [Z; L̂((Y 0)hF ∧ En)]→ [Z; L̂((Y 1)hF ∧ En)]→ · · ·

is exact for any CW-spectrum Z . (Since (Y i)hF is an En-module spectrum it is K(n)∗-local En-
injective.) Begin by recalling Theorem 5.3 which asserts that

L̂((Y i)hF ∧ En)
∼→ [L̂(Y i ∧ En)]hF

for all i¿ 0. But

[Z; L̂(Y i ∧ En)]∗ =Mapc(G
i+2
n ; E∗n Z)

K

by (6.5), and since Mapc(G
i+2
n ; E∗n Z)K is F-acyclic (see proof of Theorem 5.3), it follows that

[Z; L̂((Y i)hF ∧ En)]∗=Mapc(G
i+2
n ; E∗n Z)

G

=Mapc(G
i+1
n ;Mapc(Gn; E∗n Z))

G

=Di
G(Mapc(Gn; E∗n Z)):

This is in fact an isomorphism of cochain complexes, so

Hi([Z; L̂((Y ∗)hF ∧ En)]t) =

{
Mapc(Gn; Et

nZ)
G i = 0;

0 i¿ 0:

Since

[Z; L̂(EhG
n ∧ En)]t =Mapc(Gn; Et

nZ)
G;

the claim is proved.

8. Two applications

We begin with the proof of Theorem 6. Let c :Gn → Zp be a surjective continuous homomorphism,
and consider the exact sequence of groups

0→ K → Gn
c→Zp → 0:

Then Zp acts—at least regarded as a discrete group—by S0-algebra maps on EhK . We have the
following result.

Proposition 8.1. Let t be the topological generator 1 of Zp. Then there is a 7ber sequence (in the
stable category)

L̂S0 L̂6→EhK
n

id−t→ EhK
n

@→,L̂S0

where 6 : S0 → EhK
n denotes the unit map.
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Proof. Let X be the �ber of id − t. Since t is an S0-algebra map, the unit 6 factors to give a
commutative diagram

We claim that 6′ is a K(n)∗-equivalence, and thus L̂S0 ∼→X . To prove this, it suUces to show that

�∗L̂(6′ ∧ En) :En∗ → �∗L̂(X ∧ En)

is an isomorphism. There is a commutative diagram

where 7t(f)(g) = f(t−1g) for f∈Mapc(Gn; En∗)K and g∈Gn. (Here t also denotes any element of
Gn whose image under c is t ∈Zp.) Since

Mapc(Gn; En∗)K =Mapc(Gn=K; En∗) =Mapc(Zp; En∗);

a standard argument shows that id− 7t is surjective and hence

�∗L̂(X ∧ En) = ker(id− 7t):

But ker(id− 7t) just consists of the constant maps from Zp to En∗ ; this implies that �∗L̂(6′ ∧En) is
an isomorphism, completing the proof.

The next result implies Theorem 6.

Proposition 8.2. Let @ be as in Proposition 8.1. Then the composition @◦6 : S0 →∑
L̂S0 is detected

by ±c∈H 1
c (Sn; En∗)Gal in the K(n)∗-local En-Adams spectral sequence.

Remark 8.3. Let G be a pro�nite group and M a discrete G-module, and consider the short exact
sequence

0→ M i→Mapc(G;M)→ Mapc(G;M)=M → 0;

where i(m)(g) = g−1m. Then the coboundary map provides an epimorphism

(Mapc(G;M)=M)G = H 0
c (G;Mapc(G;M)=M)→ H 1

c (G;M):

If M is a trivial G-module, this map is an isomorphism; moreover, (Mapc(G;M)=M)G is just the
group of continuous group homomorphisms from G to M . This gives a canonical identi�cation of
H 1

c (G;M) with this group of homomorphisms. In particular, the homomorphism c :Gn → Zp de�nes
an element of lim←j

H 1
c (Gn;Z=(pj)) = H 1

c (Gn;Zp) and hence an element of H 1
c (Gn; En∗).
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Proof of Proposition 8.2. Write f = L̂(@ ◦ 6), and consider the co�ber sequence

· · · → ,−1L̂S0 f→ L̂S0 i→C(f)
p→ L̂S0 → · · · : (8.4)

By Proposition A.10, f is detected by A(1)∈H 1
c (Gn; En∗), where A is the coboundary map

Hj
c (Gn; En∗)→ Hj+1

c (Gn; En∗) for the short exact sequence

0→ E∗n S
0p∗
→E∗nC(f)

i∗→E∗n S
0 → 0

of Gn-modules, and 1∈H 0(Gn; En∗) is just the unit in (En∗)Gn = Zp. Now the sequence (8.4) is
self-dual; that is, applying the function spectrum functor F(?; L̂S0) yields the same sequence. Hence
f is detected by ±A′(1)∈H 1

c (Gn; En∗), where A′ denotes the coboundary map for the short exact
sequence

0→ E∧n∗S
0 i∗→E∧n∗C(f)

p∗→E∧n∗S
0 → 0:

(By E∧n∗X , we here mean �∗L̂(X ∧ En).)
In addition, we have a diagram

of co�bration sequences; this yields the commutative diagram

(8.5)

This diagram is a diagram of Gn-modules; the action of Gn on Mapc(Zp; En∗) is given by

(gh)(s) = g(h(s+ c(g)))

for g∈Gn, h∈Mapc(Zp; En∗) and s∈Zp. This follows by naturality from the discussion preceding
Remark 2.4. There is also a commutative diagram

(8.6)

of Gn-modules. Then A′(1) is the image of −A′′(1)∈H 1
c (Gn;Zp) in H 1

c (G; En∗), where A′′ is the
coboundary map associated to the bottom exact sequence and 1∈Mapc(Zp;Zp) is the constant map



E.S. Devinatz, M.J. Hopkins / Topology 43 (2004) 1–47 39

with value 1. Finally, use the diagram

and Remark 8.3 to complete the proof.

We next turn to the proof of Theorem 5.

Lemma 8.7. Let G be as in the statement of Theorem 5; that is, G is the closed subgroup of Z×p
generated by lsp

j
. Then EhG

1 is the 7ber of id − lsp
j
:E1 → E1.

Proof. Let F denote this �ber. Since the composition

EhG
1 → E1

id−lsp
j

→ E1

is trivial, there is a commutative diagram

To show that EhG
1
�→F , it suUces to show that

(8.8)

But there is a commutative diagram

where here 7(f)(u) = f(l−spj
u) for f∈Mapc(Z×p ; E1∗) and u∈Z×p . Clearly

ker(id − 7) =Mapc(Z×p =G; E1∗);

the map in (8.8) is therefore an isomorphism provided that id − 7 is surjective. But this follows
without diUculty from the facts that G ≈ Zp and Z×p =G is �nite.

The next result is well known.

Lemma 8.9. Let f :X → Y be a map in the stable category such that �if is an isomorphism for
all i su>ciently large. Then LK(1)f :LK(1)X → LK(1)Y is an equivalence.
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Proof. Let M (pj) denote the mod (pj) Moore spectrum, with v1 self-map C. Then

f ∧ C−1M (pj) :X ∧ C−1M (pj)→ Y ∧ C−1M (pj)

is an equivalence, since �i(f ∧ M (pj)) is an isomorphism for all i suUciently large. But, if Z is
any spectrum,

L1Z ∧M (pj) = L1(Z ∧M (pj)) = Z ∧ L1M (pj) = Z ∧ C−1M (pj)

by the telescope conjecture for n= 1 (see [26, 7.5.5]), and

LK(1)X = holim←j
L1X ∧M (pj):

Hence LK(1)f is an equivalence as desired.

Proof of Theorem 5. Since K(k) is �xed by Gal( PFl=k) = Ẑ=spjẐ, there is a commutative diagram

But Quillen showed [24, Theorem 7] that

BGL(k)+ = �∞0 K(k)→ �∞0 F

is an equivalence; hence

�iK(k) ≈→ �iEhG
1

for all i¿ 1. The result now follows from Lemma 8.9.
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Appendix A. The K (n)∗-local En-Adams spectral sequence

We begin with some generalities on the Adams-type spectral sequences that we will be considering.
Let E be a commutative ring spectrum (in the stable category), and let F be any spectrum. Then

one can construct the E-Adams spectral sequence in the F∗-local category. In more detail, we follow
Miller [21] and de�ne an injective class (see [18]) in this category by declaring an F∗-local spectrum
X to be E-injective if it is a retract of LF(Y ∧E) for some spectrum Y . A sequence X ′ → X → X ′′
is then E-exact if [X ′; I ] ← [X; I ] ← [X ′′; I ] is exact for every E-injective I . Given X , one may
construct an E-exact sequence

∗ → X → I 0 → I 1 → · · · (A.1)
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such that I s is E-injective for all s. One may then construct a diagram

(A.2)

of exact triangles; observe that the map

LF(j ∧ E) :LF(X i ∧ E)→ LF(I i ∧ E)

is a split monomorphism. Conversely, a diagram of exact triangles as in (A.2) with each LF(j ∧ E)
split monic yields an E-exact sequence (A.1). Such a diagram (with each I j E-injective) is called
an F∗-local E-Adams resolution of X and is functorial up to chain homotopy.
By mapping a spectrum Z into an F∗-local E-Adams resolution of X , we obtain a spectral se-

quence, called the F∗-local E-Adams spectral sequence. The work of Bous�eld [3] comes into play in
dealing with the convergence question. We de�ne the F∗-local E-nilpotent spectra to be the smallest
class C of (F∗-local) spectra such that

(i) LFE ∈C,
(ii) LF(N ∧ X )∈C whenever N ∈C,
(iii) C is closed under retracts and co�brations.

If X is F∗-local E-nilpotent, then the proof of [3, Theorem 6.10] applies to show that the F∗-local
E-Adams spectral sequence converges conditionally and strongly to [Z; X ]∗ for Z any CW-spectrum.
We now specialize to the case E = En and F = K(n). Here we have the following result.

Proposition A.3. If X is K(n)∗-local, then X is K(n)∗-local En-nilpotent.

Proof. Consider the Landweber exact spectrum E′(n) with coeUcient ring E′(n)∗ =
Z(p)[u1; : : : ; un−1][u; u−1]. Since E′(n) is equivalent to a wedge of suspensions of E(n) and S0 is
E(n)-prenilpotent ([17, Theorem 5.3]), it follows that S0 is E′(n)-prenilpotent. But X is E′(n)∗-local;
therefore X is E′(n)-nilpotent. Since L̂E′(n) is a retract of En, X is also K(n)∗-local En-nilpotent.

We now examine some further properties of the K(n)∗-local En-Adams spectral sequence which
have been used in the text.

Let X be K(n)∗-local, and let C be a cosimplicial S0-module with an augmentation X → C such
that

∗ → X → C0 A→,−1C1 A→,−2C2 → · · ·
is a K(n)∗-local En-resolution of X . (The suspensions appear so that each map A =

∑
(−1)idi has

degree −1.) Consider also the diagram

(A.4)
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of exact triangles, where Toti is the �ber of Tot
∏∗C→Toti

∏∗ C and Fi is the �ber of Toti(
∏∗C)→

Toti−1(
∏∗ C) as in Section 5. Since Fi is the product of various Cj’s, it is K(n)∗-local En-injective.

Therefore, the canonical map h :X → holim
←+

C extends to a diagram

of augmented cochain complexes in the stable category, unique up to chain homotopy. This diagram
is induced by a map of exact triangles and hence de�nes a map of spectral sequences.

Proposition A.5. With the notation as above, {hi} induces an isomorphism �∗[Z; C∗]→ H ∗[Z; F∗]
for any spectrum Z . Hence the spectral sequence obtained by mapping Z into diagram (A.4) is
isomorphic to a K(n)∗-local En-Adams spectral sequence.

Proof. The cochain complex

0→ [Z; F0]t → [Z; F1]t+1 → [Z; F2]t+2 → · · ·

is the normalized cochain complex of the cosimplicial abelian group
∏∗ [Z; C]t . There is then a

natural cochain equivalence between these two complexes. Hence by Proposition 4.16, there is a
cochain map, natural in Z , from [Z; C∗] to [Z; F∗] inducing an isomorphism on cohomology. This
map is then induced by a cochain map {gi} from C∗ to F∗. It now suUces to show that

(A.6)

commutes, for this implies that {gi} is chain homotopic to {hi} and thus induces the same map on
cohomology.

To prove the commutativity of (A.6), we need only show that

(A.7)
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commutes, where the top map is the canonical map

holim
←+

C = Tot
(∏∗ C)→ Tot0

(∏∗ C)=∏
j Cj → C0:

Now F0 =
∏

j C
j, and by Proposition 4.16, the composition

C0 g0→∏
j C

j → Cj0

is given by (d0)j0 . To prove the commutativity of (A.7), we must therefore prove that

Tot
(∏∗ C)→∏0 C =

∏
j C

j → Cj0

is homotopic to

Tot
(∏∗ C)→∏0 C =

∏
j C

j → C0(d0)j0→ Cj0

for each j0. But this follows by a standard argument (cf. proof of Theorem 3.2).

Corollary A.8. The map h :X → holim
←+

C is a weak equivalence.

Proof. By the discussion preceding Lemma 5.11, holim←i
Toti � ∗. Moreover, the spectral sequence

E∗∗r (S0; C) obtained by applying �∗(?) to (A.4) is isomorphic to the K(n)∗-local En-Adams spectral
sequence converging strongly to �∗X . It therefore follows that E∗∗r (S0; C) is strongly convergent and
that �∗h is an isomorphism.

Remark A.9. Given a K(n)∗-local S0-module X there is a canonical choice of cosimplicial resolution
C as above. Namely, de�ne Cj = L̂(X ∧ E( j+1)

n ) with the coface and codegeneracy maps de�ned as
in Construction 4.11, where XS is replaced by L̂(X ∧ En).

We conclude with a “geometric boundary theorem” which was used in Section 8.

Proposition A.10. Let G be a closed subgroup of Gn, and let

· · · → ,−1Z @→X
f→Y

g→Z → · · ·
be a co7bration sequence with E∗n @= 0. Suppose x∈ [X; EhG

n ] is detected by u∈H ∗c (G; Et
nX ) in the

K(n)∗-local En-Adams spectral sequence. Then x◦@ is detected by A(u)∈Hs+1
c (G; Et

nZ) up to higher
7ltration, where A denotes the coboundary map in H ∗c (G; ?) associated to the short exact sequence

0→ E∗n Z → E∗n Y → E∗nX → 0:

Remark A.11. The functor D∗G(?) of De�nition 4.18 is exact on the category of pro�nite Gn-modules
(see the proof of Lemma 4.21), so that the coboundary map A of the proposition can be de�ned.

Proof of A.10. Let C be the cosimplicial resolution of EhG
n of A.9, and write
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for the associated diagram of exact triangles. Recall also from Lemma 4.22 that [?; C∗]t is naturally
isomorphic to D∗G(Et

n(?)).
Now x lifts to a map Px :X → Ws such that the composition

X Px→Ws j→,−sCs

is a representative of u in Ds
G(E

∗
nX ). The composition j ◦ Px ◦ @ is trivial since E∗n @ = 0. We may

therefore construct a diagram

of co�bration sequences. It now follows easily that j ◦ Pz ∈ [Z; Cs+1]∗=Ds+1(E∗n Z) is a representative
of A(u). But j ◦ Pz represents x ◦ @ up to higher �ltration as well, completing the proof.

Appendix B. Proof of Proposition 4.16

The proof of this proposition requires some preparation.

De�nition B.1. If k¿ 0, let D∗k be the cosimplicial abelian group with

Dn
k = ⊕

[k]→[n]
Z;

the sum ranging over all morphisms [k]→ [n] in +. Let –k ∈Dk
k denote the element 1 in the summand

corresponding to the identity [k]→ [k].

D∗k has a convenient universal property: If C is a cosimplicial abelian group and x∈Ck , there
exists a unique map 7x :D∗k → C of cosimplicial abelian groups with 7x(–k)= x. We can also put the
D∗k ’s together.

De�nition B.2. Let D∗∗ be the simplicial cosimplicial abelian group whose cosimplicial group of
k-simplices is D∗k . If [m] → [k] is a morphism in +, the map D∗k → D∗m is de�ned by sending the
summand indexed by [k]→ [n] to the summand indexed by [m]→ [k]→ [n] via the identity.

Lemma B.3. There exists a sequence of maps Tk :D∗k →
∏∗ D∗k of cosimplicial abelian groups such

that:

(i) The composition

D0
0
T0→∏

j D
j
0

�→Dj0
0

sends –0 to d0 · · ·d0–0 for all j0¿ 0.
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(ii) The diagram

commutes for all k¿ 0, where D∗∗ and
∏∗ D∗∗ are here regarded as chain complexes of

cosimplicial abelian groups and @ denotes their respective boundary maps.

Proof. We construct Tk by induction on k. There is a unique cosimplicial map T0 satisfying (i). To
construct Tk+1, it suUces to prove that Tk(@–k+1) is a boundary in the chain complex

∏k+1 D∗∗; we
may then de�ne Tk+1(–k+1) = c, where @c = Tk(–k+1).

We claim that Hi(
∏k+1 D∗∗) = 0 for all i¿ 0. Indeed, for �xed i, Hi(D∗∗) is a cosimplicial group

and Hi(
∏k+1 D∗∗)=

∏k+1 Hi(D∗∗). But the chain complex Dj
∗ is just the simplicial chain complex of

the standard j-simplex; therefore

Hi(Dj
∗) =

{
Z i = 0;

0 otherwise:

Since 0 = Tk−1(@@–k+1) = @Tk(@–k+1) by the inductive hypothesis, it now follows that Tk(@–k+1) is
a boundary if k ¿ 0. If k = 0, use the fact that the maps

Dj
0
Tj
0→∏j D∗0

�→Di
0

are augmentation preserving to conclude that T1(@–1) is a boundary as well. This completes the
induction and the proof.

Proof of Proposition 4.16. For x∈Ck , de�ne T (C)x to be the image of –k under the maps

Dk
k
Tk→∏k D∗k

∏∗ 7x→ ∏k C:

Since @ :D∗k+1 → D∗k maps –k+1 to
∑k+1

i=0 (−1)idi–k , it follows that 7Ax = 7x ◦ @. By B.3(ii), we then
have that T (C)(Ax) is given by the image of –k+1 under the composition

Dk+1
k+1

@→Dk+1
k

Tk→∏k+1 D∗k
∏∗ 7x→ ∏k+1 C:

But (
∏∗ 7x) ◦ Tk is a cosimplicial map; therefore

((∏∗7x) ◦ Tk ◦ @
)
(–k+1) =

((∏∗7x) ◦ Tk
)( k+1∑

i=0

(−1)idi–k

)

=
k+1∑
i=0

di ((∏∗7x) ◦ Tk
)
(–k)

= AT (C)(x):

Thus T (C) is a cochain map.
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Now it is also clear from the de�nition of T that T 0 is as required and hence that T is an
isomorphism on �0. This implies that T is an isomorphism on �∗, completing the proof.
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