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Abstract

Let G be a closed subgroup of the semi-direct product of the nth Morava stabilizer group S, with the Galois
group of the field extension [ ,./F,. We construct a “homotopy fixed point spectrum” E"® whose homotopy
fixed point spectral sequence involves the continuous cohomology of G. These spectra have the expected
functorial properties and agree with the Hopkins-Miller fixed point spectra when G is finite.
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1. Introduction

If a (discrete) group G acts on a spectrum Z, one can form the homotopy fixed point spectrum,
often denoted Z"“. It is given by the G fixed points of the function spectrum F(EG, Z), where EG is
a contractible free G-space. There is then, for each spectrum X, a conditionally convergent spectral
sequence

HYG,Z*X) = [X,Z"T",

obtained from the usual filtration of the bar construction for £G. This spectral sequence is called
the homotopy fixed point spectral sequence. Of course, the construction of such a homotopy fixed
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point spectrum requires that the group act in an appropriate point-set category and not just up to
homotopy.

However, there are situations in stable homotopy theory where group actions only exist in the
stable category; that is, up to homotopy. In fact, the most important group action in the whole
chromatic approach to stable homotopy theory—the action of the extended Morava stabilizer group
G, on the p-local Landweber exact spectrum E, (see [22,5], and Section 1 for a resumé)—arises
in this way. Yet the situation in the case of this action is not hopeless. Indeed, H.R. Miller and the
second author have proved that E, is an A, ring spectrum and that the space of A,, ring maps
from E, to itself has weakly contractible path components. Furthermore, the set of path components
of this space is in bijective correspondence with the set of homotopy classes of ring spectrum maps
from E, to itself (see [27] for an account of this theory.) Since G, acts on E, by maps of ring
spectra, it follows that the action can be taken to be one of 4., maps, and although this action is still
only an action up to homotopy, it is an honest action up to “all higher 4., homotopies.” Standard
techniques then allow one to replace E, by an equivalent spectrum on which G, acts on the nose.
Hence, if G is a (finite) subgroup of G,, there is an 4., homotopy fixed point spectrum E"C. These
spectra have already had a number of interesting applications in stable homotopy theory (see e.g.,
[23]). Subsequently, P.G. Goerss and Hopkins [12—15] extended the machinery of Hopkins-Miller
to the E., setting, and thus EC is an E, ring spectrum.

Unfortunately, this is still not an entirely satisfactory state of affairs. G, is a profinite group, so
one might hope to define, for G a closed subgroup of G,, a “continuous homotopy fixed point
spectrum” denoted—abusively—by E”"Y whose “homotopy fixed point spectral sequence” starts with
the continuous cohomology of G. (This is why we restricted to finite subgroups in the previous
paragraph.) Indeed, it is the continuous cohomology of G, that is important in stable homotopy
theory—by Morava’s change of rings theorem, the K(n).-local E,-Adams spectral sequence (see
Appendix A) for m,Lg,S has the form

HX(Gpy Eps) = miLi(n)S°. (1.1)

Here K(n) denotes the n™ Morava K-theory, and Lk(ny denotes K(n).-localization. The spectral
sequence (1.1) thus suggests that Lg(,)S° should be the G, homotopy fixed point spectrum of E, in
this continuous sense.

The case n =1 provides further evidence for the existence of continuous homotopy fixed point
spectra. Here we have that £ is the p-completion of the spectrum corepresenting complex K-theory
and that G, = Z;;, the group of multiplicative units in the p-adic integers. The element a in 77
corresponds to the Adams operation 1/“. Now the component Q7°E; of the Oth space of E; containing
the base point is just the p-completion of BU, and, according to Quillen [24], this space is equivalent
to the p-completion of BGL(FF,)* for any prime / not equal to p. (As usual, BGL(R)" is the
connected space representing the algebraic K-theory of the ring R, and F,; is the algebraic closure
of the field with / elements.) Under this equivalence, the automorphism of BGL(F;)" induced by
the frobenius automorphism of [, corresponds to the Adams operation ' on BU ». More generally,
the profinite group 7 = Gal(F,/F,) acts on BGL(F,)*; if G = Gal(F,/k) is any closed subgroup of
Z, then

m(BGL(k)*) = [m(BGL(F,)*)]°
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for all i > 1 [24; Corollary to Theorem §]. Since
H:(G,mBGL(F1)*) =0

for all i and all s > 0—again by the computations of Quillen—this suggests that BGL(k)" should
be regarded as the continuous homotopy G fixed point spectrum of BGL(F,)*.

In this paper, we construct spectra E"® for G a closed subgroup of G,, having the desired prop-
erties of continuous homotopy fixed point spectra. Our construction proceeds in two steps. First we
construct £"Y for U an open—and hence closed—subgroup of G,, then we construct £/¢ as an
appropriate homotopy colimit of the E"V’s, for G C U.

We need to introduce a little more notation in order to state our main results. Let R+ denote
the category whose objects are continuous finite left G,-sets together with the left G,-set G The
morphisms are continuous G,-equivariant maps, and we denote by r,: G, — G, the map given by
right multiplication by g € G,. Let & denote the category of commutative S°-algebras in the category
of S%-modules of May et al. [11]. (A comparison of this category with the category of Z-spectra
for & the linear isometries operad—and hence of the category of E., ring spectra—is carried out
in [11, I1.4].) Finally, since the natural number n will be fixed throughout this paper, we write L
for the functor L. Here then is our first main result.

Theorem 1. There is a functor F: (Rgn )PP — & with the following properties.

(1) F(S) is K(n).-local for each object S in RJG“”.
(ii) F(G,) =E, and ¥(ry):E, — E, is the action of g€ G, on E,.
(iit) There is a natural isomorphism

. L(F(S) A E,) =~ Map(S,Map (G, E,.. )"

of completed n.L(E,\E, )=Map (G, E,« )-comodules, where the action of G, on Map (G, E,x),
the set of continuous functions from G, to E,., is given by

9/ )g)=r(g""'9)

for g,9' € G, and [ € Map (G, E,..). In particular, F(x) ~ LS°.
(iv) Define E'"Y =F(G,/U), U an open subgroup of G,, and let Z be any CW -spectrum. There is
a natural strongly convergent spectral sequence

H!(UE,Z) = (E,Y)'Z

which agrees with the spectral sequence obtained by mapping Z into a K(n).-local E,-Adams
resolution of E'Y.

Remark 1.2. In what follows—and in the proof of Theorem 1—the necessity of working in a precise
point-set category of structured ring spectra will become apparent. However, many of our results,
such as (iii) and (iv) of Theorem 1, are statements occurring in the stable category. We shall
therefore refer to objects as “S°-module spectra” or “commutative S°-algebras” when we wish to
emphasize that we need to work at the point-set level and as “CW-spectra” or “ring spectra” when
our work takes place in the stable category. Furthermore, [X, Y] will always denote the group of
maps of degree —i between X and Y in the stable category.
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Despite our precautions, there are still some ambiguities. For example, suppose X and Y are
commutative S°-algebras, but we wish to understand the stable homotopy type of X AY. Then X A Y
might denote the object which is the CW-approximation to the actual point-set level smash product
of X and Y. Or, X A Y might denote the derived smash product; that is, the smash product of
CW-approximations to X and Y. However, if X and Y are cofibrant objects in the closed model
category structure on &—called g-cofibrant in [11]—then these two recipes give the same stable
object (see [11, VII, 6]). Since there is a functor & — & sending an object to a weakly equivalent
g-cofibrant one—in fact, a cell commutative S°-algebra in the sense of [11]—we may as well assume
that F(S), for example, is always g-cofibrant and thus eliminate this ambiguity. We will often use
this device of functorially approximating by a cell object, even if we do not always mention it.

Remark 1.3. Let [,=(p,v1,...,0,—1) C E,~, and, if Z is any CW-spectrum, let {Z,} be the directed
system of finite CW-subspectra. Then

n—n

E‘Z = Egr}k E‘Z,)I'E*Z,
is a profinite continuous G,-module and we define
HX(UEZ)= (l_1rnk HXU,EZ,JI'E*Z,).
In general, if G is a p-analytic profinite group and M is a profinite continuous Z,[[G]]-module,

then lim H} (G, M,) is independent of the presentation M = lim M,. In fact, it is for example the

cohomology of the usual cochain complex whose j-cochains are Map,(G/, M) (cf. Proof of Lemma
4.21). We therefore use this as our definition of H(G,M); see also [31] for a more general treatment
of this object.

For the next step, let
G=U200202--2U0,2 - (1.4)

be a sequence of normal open subgroups of G, with (), U; = {e}. For example, using the notation
at the beginning of Section 1 and the description of §, in [7, 2.21], we may take U; = V; > Gal,
where V; is the group of power series er”zobjxpl with b; =0 for 0 < j <iand bp=1if i > 0.

Definition 1.5. Fix a sequence {U;} as above. For G a closed subgroup of G,, define

E" = [ holimg E"V9),

where holims denotes the homotopy colimit taken in the topological model category &.

—

Remark 1.6. More precisely, one should functorially replace holingﬁ(U"G) by a weakly equivalent

cell commutative S°-algebra before applying L. Then the construction £ becomes functorial in &
(see [11, VIII, 2]).

We will prove the following result in Section 6.
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Theorem 2. The construction E' has the following properties:

(1) n*ﬁ(EffGAEn) is naturally isomorphic to Map (G, E,~)¢ as completed Map (G, E,~ )-comodules,
where G acts on Map (G, E,-) as in Theorem 1(iii).

(ii) Let Z be any CW-spectrum. The spectral sequence obtained by mapping Z into a K(n)s-local
E,-Adams resolution of E" is strongly convergent to (E'°)*Z and has E,-term naturally
isomorphic to H(G,E;Z).

Remark 1.7. (i) Using the first part of this theorem, it’s easy to see that E"C is canonically inde-
pendent (up to weak equivalence in &) of the choice of sequence {U;}.

(i) Since G is a closed subgroup of a p-analytic profinite group, it is itself p-analytic (see [9,
10.7]), and therefore H}(G,E;Z) is defined as in Remark 1.3.

Now by Theorem 1, there are commutative diagrams

E:zl(UiG) = F(Gn/uG) F(Gn) =E,

EYY = F(G,/U,G)

and

ENU9) = F(G,/UiG)—F(G,) = E,
F(ry) lg

F(Gn) =E,

for i < j and g € G, where the unlabeled arrows are induced by the evident projections. There is thus
a canonical map E'¢ — EC, the G-fixed points of E,. Let us denote by E/'C the ordinary homotopy
fixed point spectrum for the action of G on E,. Composing the above map with the canonical map
ES — E"Y ([4, XI, 3.5]) yields a map E"® — E"%. The next result will be proved in Section 6.

Theorem 3. Let G be a finite subgroup of G,. Then:

(i) The map E"° — E"© described above is a weak equivalence.
(ii) Let Z be any CW-spectrum. The homotopy fixed point spectral sequence

HX(G.E,Z) = (E} °)'Z = (E,)'Z
is naturally isomorphic to the spectral sequence of Theorem 2(ii).

We also have a result on iterated homotopy fixed point spectra. Indeed, if K is a closed and U
is a normal open subgroup of G,, then the opposite of the group W(K)= N(K)/K acts on G,/UK
via xUK — xhUK for x € G,, h€ N(K). This yields an action of W (K) on EM'Y0)and hence, upon
passing to the homotopy colimit, on EX. In particular, if F is a finite subgroup of W(K), we may
form (E"€ )" in the usual way. We can now state our next result.
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Theorem 4. Suppose G is a closed subgroup of G,, K is a closed normal subgroup of G, and
F = G/K is finite. Then E"° is naturally equivalent to (E"™ '

Another sort of consistency result is given by examining the case n = 1. Since the Galois action
on BGL(F,)" corresponds to the action of G; = Z; on E;, where once again / is a prime different
from p, we would expect a relationship between the continuous homotopy fixed points of BGL(IF;)*
and the continuous homotopy fixed point spectra of E. This is indeed the case.

Let R be a commutative ring, and let KR be the algebraic K-theory spectrum of R (so that
Q®KR ~ 7 x BGL(R)"). Quillen’s results deloop (see [20, VIII]); hence (K[F,) p 1s equivalent to
the connective cover of Ey, and the action of ¢t € 7 on (K [?,) p» corresponds to the action of /' € Z;
on E;. Now choose s dividing p — 1 such that /* = I mod(p), and define a continuous group
monomorphism Z, — Z by sending a€ Z, to /**. (The number s is needed to guarantee that /**
makes sense for all a€ Z,.) If G is a non-trivial closed subgroup of Z,, then G = p/Z, for some
J = 0. Let us also write G for the corresponding closed subgroup in Z7. We then have the following
result.

Theorem 5. With the notation as above, E' ~ Lx)K(k), where k is the field of invariants of the
action of sp’Z7 C 7 on F,.

Our final result, which will be proven as an application of the machinery developed here, was
originally due to the second author and H.R. Miller, who suggested that this is the place where it
should logically appear.

Theorem 6 (Hopkins-Miller). Suppose c:G, — Z, is a continuous homomorphism, and let c also
denote the composition G,~ 2, — E,-. Then c € H(G,,E,) survives to 7. LS°.

Let us indicate our strategy for constructing E"Y. We will construct a cosimplicial & spectrum
corresponding to the K(n).-local E,-Adams resolution of E"Y; then we will define E*V to be Tot
of this cosimplicial spectrum. To do this, we need only determine the (expected) homotopy type of
ﬁ(E,’jU A E,) together with the comodule structure map

L(E"Y NE,)=L(E" NS° NE,) — L(E"™ NE, NE,).
Now we might expect a spectral sequence
H*(U,n,L(E, NE,)) = n.L(E"Y AE,),

since there is such a spectral sequence if U is replaced by a finite subgroup of G, (see Theorem
5.3). But n.L(E, N\ E,) = Map_(G,,E,- ), and the action of U is given as in Theorem 1(iii) (see
Section 2). Since Map (G,,E,-) is U-acyclic (cf. proof of Lemma 4.20), we should have

T L(E"Y A E,) =Map (G,, E,-)Y.
The comodule structure map is also determined. But, as E,--modules,

Map (G, Ey- )U = anzl Ey-,
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where m is the cardinality of G,/U. We are thus led to take X, o = [[, E, as a model for
1:(E,’1’U N E,). We can also define the corresponding comodule structure map X, v — L(Xg,/u NEy).
(Note that this map is not—except in a few very special cases—the product of the maps E,=
L(S° A E,) — L(E, A E,).) With this construction, we obtain a cosimplicial object, but only in
the stable category. However, the technology of Hopkins-Miller as expanded by Goerss-Hopkins is
again available to allow us to conclude that the requisite diagrams in fact commute up to all higher
homotopies in &. The original cosimplicial object can now be replaced by an equivalent cosimplicial
object in &, and Tot can be formed.

The contents of this paper are as follows. In Section 2, we recall the relevant parts of Morava’s
theory, and in Section 3, we discuss the formation of homotopy inverse limits for certain diagrams
commutative up to all higher homotopies. We construct the cosimplicial Adams resolution in Section
4 and identify the resultant spectral sequence as having the form of a (continuous) homotopy fixed
point spectral sequence. In Section 5 we compute 7,L(F(S) A E,); this allows us to identify the
preceding spectral sequence as a K(n).-local E,-Adams spectral sequence and completes the proof of
Theorem 1. We prove Theorems 2 and 3 in Section 6, Theorem 4 in Section 7, and, finally, Theorems
5 and 6 in Section 8. An appendix summarizes the properties of K(n).-localizations and K(n).-local
E,-Adams spectral sequences that we need. In particular, we prove the strong convergence of these
spectral sequences.

2. Resumé of Morava’s theory

Let p be a fixed prime, let n > 1, and let E, denote the spectrum with coefficient ring E,- =
WFE pul[u1,. .. us—1]][u,u~"] obtained via the Landweber exact functor theorem for BP. WF ,» denotes
the ring of Witt vectors with coefficients in the field F,» of p" elements, and the map BP, 5 E,.—
which also provides E, with the structure of BP-algebra in the stable category—is given by

.
wu' 7P i<n,

J— u .
r(v;)) =< u'~? i=n,
0 i>n.

Now let S, denote the nth Morava stabilizer group; i.e., the automorphism group of the height »
Honda formal group law I', over [F,.. Let Gal = Gal(F,»/F,), and let G,=S,><Gal. The Lubin-Tate
theory of lifts of formal group laws provides an action of S, on E,- (see for example [7]), and Gal
acts on E,- via its action on WF,. If H is a subgroup of Gal, let us write £ for the Landweber
exact spectrum with coefficient ring W(F)[[u1,...,u,—1]1[u,u~"], where F%, is the subfield of F
fixed by the automorphism group H.

We first identify the completed Hopf algebroid 7,L(E, A E,) with the split completed Hopf alge-
broid (£,-,Map (G,,Z p)®ZpEn*); this piece of Morava’s theory is crucial to all of our subsequent
work. We start by observing that Map, (S,, W )54 is a completed Hopf algebra over Z »; the
diagonal map is given by

Map, (S, WF ;) — Map, (S, x S,, WF )& Map,(S,,, WF ) &Map (S, W )5,
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where the first map is induced by the multiplication on S, and the second is an isomorphism by [5,
AlL3]. There is also a map

e ESY — Map (S, WF )Gal®zp ESMZ Map, (S, E,- )°

which is given by 5;(x)(¢9) = g~ 'x for x € EG¥ and g € S,. With these structure maps, we obtain a

split completed Hopf algebroid (E,Sial,MapC(S,,, WE )Gal®Zpng‘l). A main result of Morava’s theory
is the following identification.

Theorem 2.1. (ESY, n, L(EG™ A ES)) is isomorphic to (ESM,Map (S, WF )&z ESM) as com-
pleted Hopf algebroids.

Proof. We showed in [5, Section 4] that (ES, Map_(S,, W ,»)S@ESY) is isomorphic to a com-
pleted Hopf algebroid denoted (ES*, ESY &, US@y ESY). But we observed in [6, 3.4] that this

Hopf algebroid is isomorphic to (ES¥, ES4 & zp BP,BP&gp, ESY), where the completed tensor prod-
uct here denotes 7,-adic completion. Since 7m,L(ES* A ES?) is the I,-adic completion of ES3EGa —
ES @pp. BP.BP ®pp, ES (see [16]), the proof is complete. [

To derive the structure of the completed Hopf algebroid m,L(E, A E,) from Theorem 2.1, we first
observe that
i L(Ey NEFY) =, LEF NEF™) @7, WE
= Map, (S, £, )™ @z, WE
= Map (S, E,-),
where the last equality follows by [5, 5.4]. Then
mL(E, NE,) =1 L(E, NES™) @7, WF

= Mapc(Sn, En* ) ®Zp WIFp"é) Mapc(G)’laEn* ),

where

wW(f @w)(s,0)=w- (a7 (f(5)))

for f € Map(S,,Ey-), we WF i, s€S,, and 6 € Gal. Now consider the split completed Hopf alge-
broid (E,-,Map.(G,,Z,)®7,E,-); once again 1, : E,- — Map,(G,, E,~) is given by n,(x)(¢9) =g 'x
for x € E,~ and g € G,. Observe that this is not a Hopf algebroid over WT ., since n; and np are
different when restricted to WF,. Upon chasing down the identifications, the next result follows

from Theorem 2.1.

Proposition 2.2. (E,-, n.L(E,AE,)) is isomorphic to (E,-, Map (G, Zp)®zp E,-) as completed Hopf
algebroids.

This isomorphism is used to define the action of G, on E,. Indeed, recall that if M is a completed
left Map_(G,, E,- )-comodule, then M is a G,-module with the action given by

g(m) =y(m)(g~"),
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where
Y : M — Map (G, Ey- )Op,. M=Map (G, M)

is the comodule structure map. In particular, if X is a finite CW-spectrum, E,-X is naturally a
G,-module, and the pairing E,-X ®g,. E,+Y — E«(X NY) is G,-equivariant, where the left side is
given the diagonal action. Since E,. is profinite in each degree, it follows that there exists, in the
stable category, a unique action of G, on E, by ring spectrum maps inducing the above action on
EX.

With this action, it is immediate that the isomorphism of Proposition 2.2 is given by sending
xenL(E, NE,) to h, € Map (G,, E,- ), where h.(g) is given by the composition

S5 LE, NEN YL [(E, A E,)SE, (2.3)

(An identification of this sort first appears in the literature in [30].) Here suspensions have been
omitted from the notation and u is the ring spectrum multiplication map. Moreover, it is easy to
check using (2.3) that the action of G, on the left factor of n,L(E, A E,) corresponds to the action
of G, on Map_(G,, E,-) described in Theorem 1. For later purposes, we will also need to know the
formula for the action of G, on the right factor of m,L(E, A E,). If we write ¢®x for this action of
g€ G, on x € m,L(E, NE,), then it is again easy to see using (2.3) that g®x corresponds to the map
sending ¢’ € G, to gh(g'g) EE,-.

Remark 2.4. In [5], we used Theorem 2.1 to define a natural WFT ,-linear action of S, on E,-X.
There is also the evident action of Gal on E,-X =W, @z, EnG*alX , and these actions piece together
to give a natural action of G, on E,-X, whence an action of G, on E, in the stable category. This
action is the same as the action defined above.

The identifications of Proposition 2.2 and (2.3) can be generalized to iterated smash products of
E, and beyond. Indeed, if X is a finite spectrum,
T L(EVT) ANX) = EpE,@p,. Ev-Ey@p,. -+ O, Ey-E,Dg,. Eyp X,
where E,- acts on the right of each factor E,-E, and on the left of the factor E,-X. But
EyEnGp,. -~ O En- By = Map (G Z,) @7, Ex)S,. - Op,. (Map(Go Z,) ©7, Ey)
=Map.(G,,Z,)®z, - - Dz, Map (G, Z ,)R7, Ep-
= Mapc(@,En* ),
and thus
EyE, @5, - Q. Ey-Ey@g,. Ex- X =Map (G, E, )&, Ep- X
=Map (G}, E;-X).

This isomorphism sends xEn*]:(E,SjH) ANX) to hy GMapC(G{;,En*X), where A.(g1,...,9;) is given
by the composition

L(gy ' N+Ngj  NEJAX)
—

S5 L(EUHD A X) LEVT A XY SO E, A X (2.5)
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More generally, if Z is any spectrum, there is a natural transformation

o [ZL(ESO) — Map,(G)E}Z) (2.6)

such that 7;(x)(g1,...,9;) is the composite
o BT A AT A o

225 BRGNS ppGny s g 2.7)
(To show that 7; does in fact have its image in MapC(G{;,E,,*Z ), it suffices, by the definition of the
topology on E,-Z, to show that this is the case when Z is finite. But when Z is finite, 7; is just
the isomorphism described in (2.5) with X the Spanier-Whitehead dual of Z.) Since Map (G, ?) is
exact on the category of profinite groups (see [29, I, Theorem 3]), it follows that 7; is a natural
transformation of cohomology theories satisfying the product axiom. But 7; is an isomorphism with
Z =S therefore 7; is an isomorphism for any CW-spectrum Z.

3. Homotopy inverse limits

Let & denote the homotopy category of commutative S°-algebras. That is, two maps f,g: X — Y
in & are homotopic if f and ¢ lie in the same path component of £(X,Y), the topological space
of S%-algebra maps between X and Y. Alternatively, & is a tensored category (over the category
of unbased topological spaces), and f and g are homotopic if there exists a map h: X ® [ — ¥
restricting to f* and g on the ends of the cylinder (see [11, VIL, 2]).

Now let J be a small category and suppose X :J — hé& is a functor. In some cases, X can
be replaced by a homotopy equivalent strict diagram, and then its homotopy inverse limit can be
formed.

Definition 3.1. Let X :J — A& be as above. X is said to be an hy-diagram if for each o:j; — j»
in J, &(Xj1,Xj2)xs the path component of &(Xj;,Xj,) containing Xu, is weakly contractible.

The main result of this section is due to Dwyer, Kan, and Smith [10]. We feel that the reader
will appreciate an account of the proof.

Theorem 3.2. Let X :J — h& be an hoo-diagram. Then there exists a functor X:J — & and a
natural transformation X — X in hé& such that X(j) — X(j) is a weak equivalence for each
jEObJ.

The proof makes use of a modification of the cosimplicial replacement of a diagram (cf. [4, XI,
5]). We first recall some notation.

If Z is an unbased topological space and Y is a commutative S°-algebra, let F(Z,Y) denote the
cotensor product of Z and Y in &; its underlying S°-module is just the function S°-module of maps
from X*°Z, to Y ([11, VII, 2]). We shall also use the notation F(, ) to denote function spectra in
the stable category.

With Z as above, let I'Z denote the geometric realization of the singular simplicial set of Z.
This is of course a functorial cofibrant replacement of Z; it also has the property that I'V x I'W is
naturally homeomorphic to I'(¥ x W) and that this homeomorphism commutes with the projections
onto I'V and I'W. Hence a pairing V' x W — Z induces a pairing I'V x I'W — I'Z.
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Construction 3.3. Let X :J — hé be an h.-diagram. Define a cosimplicial commutative S°-algebra
[T, X by

0 .
HhX = HjeJ)(]a
HZX = l_IJ,1 F(FgXOC,)(jo),
where J, is the set of diagrams
P2 PR & R . Op .
Crjos—Jis=J2 < = Jn—1"Jn
in J, and
I'éXo = F(?(le,on)Xm X X Féa()(jn;)(jnfl)Xa,,-
If 0 <i<n+1, the coface d' is defined via the commutative diagram

HZX dl HZ+1X
Ty T (3.4)

F(FEXY, Xjo)— F(I'éXo, Xjo )

where 7, denotes the projection onto the factor indexed by
ol i a e s

o' denotes the diagram
Jo g i i S i e g,

and
(Do) S 15 os frr1) =G 1o fi i1 fi1)

for (f1,..., fur1)€'EXa. Here f;f;;1 denotes the image of (f;, fi11) under the map
I'é(Xji, Xji—1) X I'6(Xjir1,Xji) — T'E(Xji1, Xji—1)

induced by the composition pairing
EXji, Xji—1) X 6(Xjir1,X]i) = E(Xjiv1, Xji-1)

If i =0, d° is defined as in (3.4), although now o is the diagram

NEjo =

and d%: F(I'éXo',Xj1) — F(I'6X,,Xjo) is defined by
(d3) (S 155 f1) = 1S 25 i),

where f also denotes the image of f| € I'€§(Xj,Xjy) in &(Xj1,Xjo)-
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Finally, if i =n + 1, o/ is the diagram
JoEjt e a1 i
and

@ DS 1o ) =91 Sn)-

As for the codegeneracies, s' is defined via the commutative diagram

2 st 1
X X
lnm/ lnz (3.5)
F(TEXo!, Xjo)—> F(I'6 X0, Xjo)

where o is the diagram
Lo . 0 . . o .odd L %iv1 . Ontl
Jom S Ja e i i i S
and
(S;g)(fl’-":fn-ﬁ-l):g(fls‘-’afiaidafi+ls"'sfn+l)-
Here id denotes the image of * = I'(x) in I'§(X;,X;,) under the evident map.
Recall that a cosimplicial S°-module Y is fibrant if the map s: V"' — M"Y,
MY ={0(%..,y)EY x - x Y5’y =Y YV O0<i<j<n},

given by s(y) = (s°(»),...,s"(y)) is a g-fibration—that is, a fibration in the Quillen closed model
sense—for all n > — 1. (Properly speaking, M"Y should be defined as an equalizer; however we
will continue to use this shorthand when to do otherwise would result in more confusion.)

Lemma 3.6. Let X be an hoo-diagram. Then H,’: X is fibrant.

Proof. Consider first the map s: H}l X ->MT[; X = HZ X. The composition
1y 5. 770 . :
[LX=TI1X = HJ'XJ — Xj
is given by
ILX =11, , FAEX Xjo)xa Kjo) — F(IEX, X )ias X ) — X,

where the last map is evaluation at id € I'§(Xj,Xj). Since id is a vertex of I'€(Xj,Xj), it follows
that this last map is a g-fibration and hence so is s.

Now suppose n > 1. Let J,f, ; be the subset of J, consisting of those n-tuples of maps with jo =/
and oy = id, and set

k
Dn,jX = HO’EJ,:LJ I'&Xu.
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Then let

DX = | DX

1<k<n
and observe that the map s: [[} X — M" ' [[; X restricts to an isomorphism
[T, F(D, X X))=M"'TT; X.
But the inclusion
DX — 11, T'éXa

is the inclusion of a summand, where J, ; is the subset of J, consisting of those n-tuples with j,=j.
s is therefore a g-fibration in this case as well. [

Recall that, given a fibrant cosimplicial S-module Y, TotY = F(A[ * ],Y), the S°-module of
(unpointed) cosimplicial maps from A[ x ] to Y. Here A[ % ] is the cosimplicial space which in
dimension 7 is the standard n-simplex A[n] with the usual coface and codegeneracy maps. Let
SkeA[ = ] be the cosimplicial space which in dimension n is the s-skeleton of A[n], and define
Tot, ¥ = F(SksA[ * ],Y). The map Tot; ¥ — Tot; Y is a fibration with fiber F(A[;j + 11/4[j + 11,
Y/ Nkersy N -+ Nkers;). By mapping a CW-spectrum Z into the tower {Tot; ¥}, we obtain a
spectral sequence

Ey' =m'([Z,Y]) = [Z,Tot YI'"* (cf. [4,X.6]). (3.7)

This spectral sequence is strongly convergent in the sense of [4, IX.5.4] provided lim' ES' = 0 for
—j

all s and ¢.
In particular, if X is an A,-diagram, we obtain a spectral sequence

ES = lim*([Z,X]') = (Z, TotTT; X]™. (3.8)

This is proved as in [4, XI.7.1], using the fact that "X, is contractible for all a.
With these constructions in hand, we can now prove the main result of this section.

Proof of Theorem 3.2. If ; is an object of J, let J \ j be the category whose objects are morphisms
j — j' in J and whose morphisms are the evident commutative diagrams. The evident functor
i J\j — J provides us with an A-diagram WX over J \j and hence a functor X :J — & defined

by X(j)=Tot [T} #jX.
Now define the map X () — X(Jj) to be the composition

Tot[T; w;X — F (A0LTT) 0 ) = IT) x5 X5, (3.9)



14 E.S. Devinatz, M.J. Hopkins/| Topology 43 (2004) 1-47

where p is the projection onto the factor indexed by the object ji j. To prove that

X)X

X(H)—Hx(7")
commutes whenever f:j — j/, we must prove that
X()—=X({)
tXf (3.10)
X

commutes, where the diagonal map is the projection onto HZ w; X followed by the projection onto
the factor indexed by f:j — j’. First observe that the two compositions

oo o) PG 1wy PLoyy o
)= F(A0LILwx) | 3 F (40T X)) X0

are homotopic, where the last map is the projection onto the factor indexed by f :( ji—d> J)—( jL J).
But these compositions are the same as

- d° .
X(j) = F (4101 11X ) S TL X X (),
Now use the definitions of d° and d' to check that these maps give the commutative diagram (3.10).
By (3.8), there is a spectral sequence
ES' = 1151\1]5 o WX = T X ().

But j — j is an initial object of J \ j; therefore

P 0 s >0,
m° X =
N mXj s=0.

Thus 7,X(j)=m.X(/), and an unraveling of the identifications shows that the map in (3.9) induces
the identity on m,. [

4. Construction of the functor F

We begin by stating the following extensions of the Hopkins-Miller theory due to Goerss and
Hopkins. These are the results needed to show that, for SeObRa, the cosimplicial object Cg
we will construct in the stable category lifts to an /..-diagram, and hence, by Theorem 3.2, to a
cosimplicial object in &. Then F(S) is defined to be Tot Cs.

Theorem 4.1 (Goerss and Hopkins [13]). Let E and F be g-cofibrant commutative S°-algebras with
E Landweber exact. Suppose that m.E is concentrated in even dimensions with an invertible element
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in degree 2. Suppose in addition that noE is m-adically complete for some ideal m, that Ey/m is
an algebra of characteristic p, and that the relative frobenius for the homomorphism Ey/m —
EoF/mEWF is an isomorphism. Then each path component of &(F,E) is weakly contractible, and
the Kronecker pairing

no&(F,E) — HomE*—alg(E*F, Ey)
is a bijection.
Remark 4.2. Recall that if 4 is a commutative [ ,-algebra, the frobenius homomorphism ¢, :4 — 4
is defined by ¢4(x)=x?. If f:4 — B is a homomorphism of commutative [ ,-algebras, the relative

frobenius is defined to be the map given by the dotted arrow in the following diagram, where the
square is a push-out in the category of commutative [,-algebras:

Remark 4.3. The condition that £ be Landweber exact can be weakened. Indeed, £ need only satisfy
a condition of the sort required by Adams [1, III, 13.3] in his construction of universal coefficient
spectral sequences. For example, Property 1.1 of [6] suffices. In particular, any Landweber exact
spectrum satisfies this property [6, 1.3].

Theorem 4.4 (Goerss and Hopkins [13]). Let H be a subgroup of Gal. Then EY has a unique
structure of commutative S°-algebra descending to its ordinary ring spectrum structure.

Remark 4.5. E is in fact the H homotopy fixed point spectrum of E,, so our notation is only
slightly abusive.

In order to construct Cs, we need to apply Theorem 4.1 to spectra of the form L(X A (E,)¥),
where X is a finite product of £,’s. The next result enables us to do this.

Proposition 4.6. Let E = L(X /\E,(lj)) and let F = L(Y /\E,(,k)), where X and Y are (non-empty)
products of finitely many copies of E, and j,k = 0. Then the pair F,E satisfies the conditions of
Theorem 4.1; moreover, the function

nog(F’E) - Homalg(F*aE*)
sending a map F — E to the induced map on homotopy groups is one-to-one.
Proof. First observe that £ and F are commutative S°-algebras—the key point here is that localiza-
tion with respect to a homology theory preserves such objects (see [11, VIII]). An easy reduction

also shows that it suffices to consider the case where X = E, and Y = E,. By Morava’s theory,
E. =Map.(G,E,) and the action of E, on the right factor of £ induces “right multiplication” of
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E,- on MapC(G{;,En*). It therefore follows that £ (resp. F') is Landweber exact for an appropriate
map BP — E (resp. BP — F') and hence, by the Landweber exact functor theorem, E.F is a flat
F.-module. In addition, E, is complete with respect to the ideal m = Map (G, 1,), where we also
write I, = (p,uy,...,uy—1) C (E,)o. Now

T.L(F A E) = Map (G, E,-)

and, just as before, L(F AE) is Landweber exact. Since F.E is flat over E\, it also follows that FAE
is Landweber exact. Thus, if M(p“,v},... v 1) is a finite CW-spectrum whose Brown-Peterson

’nl
lnl
’nl

homology is BP./(p",.. ), we have that

F.E[F.E - (p",.. vy D) =m(FANEANM(pP",.. vy 1))

[ n 1 ° n 1
S L(F NE)AM(p®,....007}))
= mL(F NE)/mL(F NE)-(p",...,0"")).
Therefore
F.E/F\E -1, =n,L(F NE)/n,L(F NE) -1,
= Map, (G}, Fpolu,u™']).

Clearly the frobenius is an isomorphism on Ej/m, and, from the above equality, it is also an iso-
morphism on EgF/mEyF. This implies that the relative frobenius for Ey/m — EgF/mEyF is an
isomorphism.

Finally, to prove that my&'(F,E) — Hom,e(Fy, Ey) is one-to-one, it suffices to prove that the
function

Homg, _ag(EF, Ex) — Homyg(F, Ex)
given by precomposition with the map
F,=1.(S°ANF)— n,(EANF)=E,F
is one-to-one. But this follows easily from the commutative diagram

HomE*—alg(E*Fa E*) Homalg(F*, E*)

Hom(E*®O)—alg(E*F ®QE.® @)

Homg, gq)—alg(Ex ® Fir @ Q, E, ® Q)=——=Hom,,(F. ® Q,E, ® Q),

and the fact that the vertical maps are monomorphisms since any Landweber exact spectrum is
torsion free. [

It will also be convenient to know that, for £ and F as above, the canonical map from 7my&'(F,E)
to the set of ring spectrum maps from F to E in the stable category is a bijection. The next result
enables us to conclude this.



E.S. Devinatz, M.J. Hopkins/| Topology 43 (2004) 1-47 17

Lemma 4.7. Let E be as in Proposition 4.6, and let F be a Landweber exact commutative ring
spectrum. Then

(i) E.FY) = EF @, E.F @, --- ®p, ELF for any j > 1.

j times

(i1) The Kronecker pairing
[FY),E]* — Homg, (E.FY,E,)

is an isomorphism for all j > 1.

Proof. Since £ and F are Landweber exact, E,F is a flat £,-module. This immediately implies (i).
As for (ii), begin by observing that | AF, is Landweber exact if F; and F, are. Hence FV) satisfies
the hypotheses of the lemma, so we may assume j = 1 without loss of generality.

There is a universal coefficient spectral sequence

Exty*(E.F,E,) = E*F

(see Remark 4.3); it thus suffices to show that Extfg* (ELF,E,)=0 for all i > 0. We do this by an
argument similar to that in [27, 15.6]. Indeed, E.F =E, ®g,. E,«F and E,-F is flat over E,-; hence

Exty(E.F,E.) = Exty" (E,-F, E,).

We thus need only show that ExtéEn)o((E,,)oF,Eo) =0 for all i > 0, where now E zi(Ef,j+l)) for
some j > 0. Let m be as in the proof of Proposition 3.6, and write (£,)oF =M. Then again by flat
base change

Ext(g, (M, Eo/m) = Extg ,(M/I,M, Eo/m).
This last group is trivial for i > 0 since F,» is a field. Similarly,
Ext(y ), (M, m'/m™) =0

for i > 0; now use the fact that Eozlirrtl Eq/m' to conclude that ExtéEn)O(M, Ey)=0 whenever i > 0. [

Now let A be the category whose objects are the nonnegative integers—a typical object will be
denoted [n]—and whose morphisms from [x] to [m] are the monotone nondecreasing functions from
{0,1,...,n} to {0,1,...,m}. Recall the definition of Rgﬂ from the Introduction. We will construct
an hoo-diagram

C:(RE )™ x A — hé
such that, for each S € ObR{ ,
Cs=C(S, ):A— h&

is a cosimplicial K(n).-local E,-Adams resolution for the not yet constructed spectrum F(S). As
described in the Introduction (for the case S=G,/U), we seek a K(n)4-local commutative S°-algebra
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and right £,-module spectrum Xs together with an &-map d : X5 — ﬁ(XS A E,) such that
n.Xs = Mapg, (S, Map (G, E,-)) (4.8)
as right E,--modules, such that
. L(Xs N E,) & 1, XsQp . n.L(E, A E,)
= Mapg, (S, Map (G, E,+ ))&k, Map (G, Ey-)
= Mapg, (S,Map (G, X Gy, E,-)) (4.9)

and such that m.d corresponds to the map induced by the group multiplication G, X G, — G,.

Proposition 4.10. There exists an hoo-diagram X:(R( )PP — hé and a natural transformation

d:X — L(XA\E,) satisfying the above requirements. Moreover, this construction has the following
properties:

(i) All maps are maps of right E,-module spectra, where E, acts on the right factor of L(X \E,).
(i1) If' S is finite, X = X(S) is a product of a finite number of copies of E,.
(iii) Xg, = L(E, N E,) and if ry: G, — G, is right multiplication by g € G,, X(ry) =L(g NE,).
(iv) d(G,) is given by the composition

L(E, NE,)=L(E, NS° NE,) — L(E, N E, N\ E,).

Proof. If S is finite, then S is a finite disjoint union of sets of the form G,/U for various open
subgroups U of G,. We thus need only define X, u; Xs can be defined as an appropriate finite
product of the Xg, i;’s. Define X¢, v = HGH/U E,; ie., Xg, v is a finite product of copies of E,, one
for each clement of G,/U. Eqgs. (4.8) and (4.9) are certainly satisfied. As for the map d(G,/U),
observe that stable E,-module maps Xg, v — LA(XGH/U A E,) are in bijective correspondence with
E,~-module maps n.X¢, v — n*i(XGn Ju/NE,). Furthermore, by the results of Goerss-Hopkins together
with Lemma 4.7, any stable ring map Xg, v — i(XGn/U A E,) lifts to an & map, unique up to &
homotopy. Hence d(G,/U) can be chosen to induce the requisite map on homotopy groups.

If /:8 — 8 is a G,-map with S, finite, then there exists a unique map Xf: X5, — X5 of
E,-module spectra inducing the map

f* . Ma’pG”(S25Mapc(GnaEn*)) - MapGn(Sl:Mapc(GnaEn* ))

on stable homotopy groups. As before, X /" has a representative in & and is unique up to & homotopy.
Finally, the naturality of 7, X and m.d implies, by Proposition 4.6, that X is a functor and d is a
natural transformation. It also follows from 4.6 that X is an /..-diagram. [J

Construction 4.11. Let n:S° — E, be the unit map, let u:E, A E, — E, be the multiplication map,
and, for each S € Ob Rgﬂ, let 5: X5 A E, — Xg be the module structure map. Define an /.,-diagram
C:(RG )PP X A — hé
by
C(S.[j]) = Cf = LXs NEY).
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The coface and codegeneracy maps are given by
d*(S) = L(d(S) NEV)Y: ¢} — L,
d'(S)=L(Xs NES™D A AENTTDY: L — T, 1<i<j+1
s%8)=L(s NED)Y: I — ¢,
s'(S)=L(Xs ANESD AunEVDY: M - ¢l 1<i<]
That C is in fact a functor follows from Proposition 4.6; this proposition along with the Goerss-

Hopkins results also implies that C is an /..-diagram. Hence by Theorem 2.2, we may lift C to a
diagram in &. From now on, when we refer to C, we actually mean this lift of C.

Definition 4.12. The functor F: (Rgn )PP — & of Theorem 1 is defined by F(S)=Tot(][* Cs), where,

as before, []* Cs is the cosimplicial replacement of the (cosimplicial) diagram Cs. Since each Cé
is K(n)-local, so is F(S).

By (3.8), there is a spectral sequence
1inAlS [Z,Cs) = [Z,F(S)]'™* (4.13)
for any CW-spectrum Z. We next claim that

lim* 2, C5)' = w'[Z.C5]., (4.14)

where the last term denotes the sth cohomology group of the cosimplicial abelian group [Z, Cs]'.
This result is of course well-known; however we provide a quick proof for the convenience of the
reader.

Proposition 4.15. Let Ab® be the category of cosimplicial abelian groups. Then the &-functors
lim* , : 4b* — gr.Ab and n*:Ab* — gr.Ab are naturally equivalent, where gr.Ab denotes the
category of nonnegatively graded abelian groups.

Proof. Since lim? , and 7° are naturally equivalent, it suffices to prove that n* is effaceable. We
begin this proof by making a few recollections. The forgetful functor U :4b* — gr,Ab has a right

adjoint V—if D is an object of gr.4b, set

(VD)[n]= I D",
[n]—[m]
where the product is taken over all morphisms [n#] — [m] in A. It thus follows that if D,, is injective
for each m, then VD is injective in Ab*. Now let C be a cosimplicial abelian group, and consider
the monomorphism C — VUC. We will show that 7/(VUC) =0 for all i > 0. Indeed, first observe
that VD =[], V(D(n)), where

" m=n,

D(n)" = .
0 otherwise.
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It then suffices to show that 7/(V(UC(n))) = 0 for all n and all i > 0. But V(UC(n)) is just
the simplicial cochain complex of the standard n-simplex with coefficients in C”. Therefore its
cohomology is trivial in positive degrees. [J

In general, if J is a small category and 4 is a J-diagram of abelian groups, then lim; ; 4 may be
computed as the cohomology of the cochain complex of the cosimplicial group [[* 4, the cosimplicial
replacement of 4 (see [4, X1, 6.2]). Thus the d-functors n*C and n*([[* C) are naturally equivalent
on the category of cosimplicial abelian groups. The next result is proved in Appendix B; it will be
needed to prove Proposition A.5.

Proposition 4.16. Ler C be a cosimplicial abelian group. There is a natural map T(C):C — [[*C
of cochain complexes which induces an isomorphism on ©*. Moreover, T can be chosen so that
the composition

COT(_C>) Hj C/ L co
sends x to d°---d% for any x € C°, j, = 0.

We can use spectral sequence (4.13) to verify Theorem 1(ii). This will follow easily from the
next result.

Proposition 4.17. Consider the maps E, — L(E, NE,) and ¥(G,) — L(E, NE,) given by the maps
E, = E, A S " [(E, NE,)

and
F(G,)=Tot[[" Cg, — [1' Ca, — Cg, = L(Es N Ey)

respectively. Let Z be any CW-spectrum. Then there is a unique bijection E;Z — ¥(G,)*Z such
that the diagram

E‘Z

F(G,)"Z

/

L(E, NE,)*Z

commautes.

Proof. The map E, — L(E, A E,) is an augmentation of the cosimplicial object Cg, in the stable
category. Furthermore, C¢; is chain contractible to E, in the stable category (cf. proof of Lemma
5.4); hence n*[Z, C§, ' = E,Z concentrated in degree 0. The desired result now follows from (4.13),
(4.14), and an unraveling of the identifications. [

Proof of Theorem 1(ii). The preceding proposition provides us with a canonical weak equivalence
E, — F(G,). It also implies that the map is G,-equivariant and is a map of ring spectra (in the
stable category). By Lemma 4.7 and Theorem 4.1 this weak equivalence lifts to an & map. [
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Finally, we show that, for S = G, /U, the spectral sequence (4.13) has the form of a homotopy
fixed point spectral sequence. The proof requires some preparation.

Definition 4.18. Let M be an inverse limit of discrete G,-modules, and let H be a closed subgroup
of G,. Define a cochain complex Dj,(M) by
Dj,(M) = (Map (G} M)

with differential o :DJ},(M) — D/ (M) given by
J
5£(90:91s- -2 g1) =D _ (=1 f(Gos--erGisrse--2 1)
i=0

+ (=Yg f (9097 9i970).

Warning 4.19. The action of H on Mapc(G{f],M ) is as elsewhere in this paper; that is, if
f €Map (G, M) and he H, then (hf)(go.--..g+1) = f(h7'go. g1, gpa).

Lemma 4.20. The o-functor H*(Dj,(?)) is equivalent to H}(H,?) on the abelian category of dis-
crete G,-modules.

Proof. Since H(D},(M)) = M*", it suffices to prove that H*Dj,(?) is effaceable. To this end, let

N be a discrete G,-module, and consider Map .(G,,N). Map.(G,,N) is a discrete G,-module, and

there is a G,-equivariant monomorphism N — Map,(G,,N) defined by n + h,, where h,(g)=g 'n.

Now
D};(Map,(Gy, N)) = (Map (G} % G, N))Y,
and there is a contracting homotopy
q:Dj"'(Map.(G,,N)) — Dj;(Map(G,,N))
given by
(qf)(g()a’gj’t) = (_1)j+1f(g0ta"'7gjlata 1)5
proving that H'(D};(Map.(G,,N)))=0 for all i >0. I

We will identify the cochain complex [Z,C¢ /U]t with D},(E.Z). We must thus understand the
cohomology of Dj,(?) for profinite modules.

Lemma 4.21. Let H be a closed subgroup of G, and let M be a profinite discrete G,-module, say
M =1lim M,, where o ranges over a directed set I. Then
—0

Dj(M) s=0

s>0
(i) H*Dj;(M) = lim H*D};(M,) = lim H}(H,M,).
—o 0o

(i) im® D},(M,) =
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Proof. We have

lim* D},(M,) = =* [* D};(M),

where M is the /-diagram o — M, and IT D;J(M) is the cosimplicial replacement of the /-diagram
D}, (M). Now

[1° Dj;(M) =Dy, (IT*M),

and since each M, is finite, [[? M is profinite. Moreover,

Dj, : profinite G,-modules — Ab

is exact; this again follows from the existence of a continuous (set-theoretic) cross-section of an
epimorphism of profinite groups ([29, I, Theorem 3]). Therefore

lim* D},(M,) =D}, (='[[* M)

= j, (tim* ) = {g}’MM) i (())

by the vanishing of lim°®, s > 0, for directed systems of profinite groups.
g ot im g

As for the second part, consider the double cochain complex [[* Dj,(M). This yields two spectral
sequences

lim* H{(H,M,) = H*"" (I[" D;;(M)) ,

—o

H (nmf D,*{(Ma)> = H ([T Dj(M))..

—o

By (i), the second spectral sequence collapses to give

H* ([T Dj(M)) = H*(Dj(M)).
On the other hand, H is a closed subgroup of a p-analytic profinite group and is therefore itself a
p-analytic group (see [9, 10.7]). Hence H contains an open normal subgroup U which is a Poincaré
pro- p-group ([19]; see also [28] for a summary). This implies that H!(H,M,) is finite for each o
and so lim® H!(H,M,) =0 for all s > 0. The first spectral sequence then collapses to give

—0

H* (IT" Djy(M)) = lim H (H, M,).

This completes the proof. [
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Lemma 4.22. There is a canonical isomorphism [Z, C¢, /U]’ ~ D} E!Z of cochain complexes, where
ExZ is topologized as in Remark 1.3.

Proof. The quotient map G, — G,/U induces a map Cg, ,, — Cg, and hence a map
[Z,CG, 0] — [Z,C,) (4.23)

of cochain complexes. Now X, = L(E, A E,) (Proposition 4.10); therefore, the map 7; of (2.6)
provides an isomorphism

[Z,Cg, ) — Map (G}, E,Z) = D} \(E,Z).

Moreover, this map is easily seen to be a cochain map and is G,-equivariant, if the action of g € G,
on Cj is given by

LX(rg))NE, N NE)=L(gNE, NE,--- NEy,).
Since right multiplication by g € U is trivial on G,/U, the map in (4.23) is actually a map
[Z,C5, 0] — (Z.C5, 1) = (D} (E,2))Y = Dy(E,Z) (4.24)

of cochain complexes. Both [?, Cé”/U]* and D’('/(E;‘(?)) = Map_(G,/U x Gﬁ,E;‘(?)) are cohomology
theories satisfying the product axiom; it thus suffices to prove that the map in (4.24) is an isomor-
phism when Z = S°. But, by (4.8) and the fact that Xg, v 1s a finite product of E,’s (Prop. 4.10),
we have that

Tk Cé,z/U = TC*XG,,/U ®En* Mapc(G{;’ En*)
= MapC(Gn/U, E,-) QE, - Mapc(G{;,E,,* ).
We also have
TC*C]G,, = TE*XGn ®En* Mapc(G}{pEn*)
=Map (G, E,+ )k, Map (G}, E,-)

and the map 7. Xg, v — m.Xg, corresponds to the homomorphism Map (G,/U, E,- ) — Map (G,, E,-)
induced by the quotient map G, — G,/U. From this it is clear that

o~ .
7 Cou— (1 C5,)"

completing the proof.
Finally, we obtain our desired result.

Proposition 4.25. Let S=G,/U. The spectral sequence (4.13) has E,-term canonically isomorphic
to H}(U,E'Z). O

This is the spectral sequence of Theorem 1(iv). It is strongly convergent because H:(U,E.Z) is
a profinite group for each s, 7, and therefore lim'/E>' =0. [
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5. The Morava module of E"V

In this section we complete the proof of Theorem 1. The key step is the identification of L(F(S)A
E,) with Xs—this not only immediately implies Theorem 1(iii) but enables us to identify the spectral
sequence (4.13) with the K(n).-local E,-Adams spectral sequence converging to [Z, F(S)]*. If S is
finite, Cs = [[, Cg,/u; for a finite number of open subgroups U;; thus we may assume from the
beginning that S = G,/U. (If S = G,, Theorem 1(iii) is a consequence of 1(ii).)

The techniques involved in our computation of L(F(S) A E,) will be applied in other contexts in
Sections 6 and 7; we therefore proceed in a little more generality.

Notation 5.1. Write C:J — & for any of the following diagrams:

(1) J=A and C = Cg,)y for U an open subgroup of G,.
(i) J =G for G a finite subgroup of G,, and C:G — & is the diagram given by the action of G
on E,.
(iii) J =F, where F and K are as in Theorem 4 of the Introduction, and C:F — & is the diagram
given by the action of F on (the left factor of) L(E" A EY +1)), j=0.

Given a diagram C:J — &, there is a diagram L(C A E,):J — & defined by
L(C NEN() = L(C()) NEy).
L(C NE)(f)=L(C(f) NEy)
for j an object and f a morphism in J. There is also a canonical map
L[(Tot[T" C) AE,] — Tot(IT" L(C A E,)). (5.2)
We will prove the following result.
Theorem 5.3. If C is one of the diagrams in Notation 5.1, then the map (5.2) is a weak equivalence.

Before proving this theorem, we determine its consequence for C = Cg, . The left side of (5.2)
is L(E"Y A E,). To identify the right side, we examine the spectral sequence E}*(Z,C) obtained
by mapping a CW-spectrum Z into the tower of fibrations {Tot,([[* L(C A E,))}.

Lemma 54. Let C = Cg,)y. Then

) A 0 s >0,
"ESN(Z,C)=n'[Z,L(C* NE,)] =
[Z,XG”/U]r S = 0

In particular, the map
Tot(I[* L(C AE,)) = TI°L(C AE,)

— L(C° ANE,)
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~ Ii(XGn/U NE,)
= X6,u
is a weak equivalence.

Proof. By Proposition 4.15, "E(Z,C) = n°[Z,L(C* N E,)]'. Now let XG, v be the constant cosim-
plicial spectrum with Xén w=X6,u- There are cosimplicial—in the stable category—maps X; ,, —
L(CAE,)) and L(C NE,) — Xg,,/u given on O-simplices by d : Xg, v — L(Xg,)u N E,) (see Proposi-
tion 4.10) and s: L(Xg,v N E,) — Xg,ju, respectively. Furthermore, these maps are chain homotopy
equivalences; use the chain homotopy

h:L(C' NE,) — L(C""' ANE,)

defined by & = (—1Y X,/ A (E,)Y™D A . This then implies that n*[Z,L(C* A E,)]" is as claimed.
The weak homotopy equivalence Tot(]]* L(C AN E,)) — Xg,)u is obtained by tracking down the
identifications. [J

Corollary 5.5. There is a natural weak equivalence LA(EZZU/\EH)L Xg,u of commutative S°-algebras
and right E,-module spectra such that the diagram

L(E"Y \E,) . Xe,u

L(EM A S° A Ey) d

L(VAE,)

L(E"Y NE, NE,) L(X, /v ANEy)

is homotopy commutative. In particular, Theorem 1(iii) holds.

We now turn to the proof of Theorem 5.3. Let E**(Z,C) denote the spectral sequence obtained
by mapping a CW-spectrum Z into the tower

-+ — L (Totey1 ([T*C) AE,) — L (Toty (IT°C) AE,) — -+
we have
'EYN(Z,C) = [Z,L(F{(C) NE)I™, (5.6)

where F(C) is the fiber of Tot([[* C) — Tot,—([[" C). There is a canonical stable map from the
(unraveled exact couple of the) tower {L(Tot,(J[[*C) A E,)} to {Toty(J[* L(C A E,))}; on fibers
this map is the canonical map

L(F{(C) NE,) — Fy(L(C NE,)). (5.7)
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Lemma 5.8. Let 'E>*(S°,C) — "E>*(S% C) be the map of spectral sequences described above. If
C is one of the diagrams in 5.1, then this map is an isomorphism.

Proof. If C is a diagram of the form 5.1(ii) or 5.1(iii) then the map (5.7) is an equivalence and
hence the desired result follows immediately.

Now let C = Cg,)y and examine 'ES"*(S°,C). By (4.14), H*([Z,F.(C)]"™*) = n*[Z,C*]' for any
CW-spectrum Z, and therefore Lemma 5.4 implies that

Hsnf**(F*(C)/\En/\M(PiOa s ;," ) =m'n(C*NE, /\M(Plo, ey Z 1))
| mXG, o AM(P",. oY) s =0,
0 s #£ 0.

In particular, these cohomology groups are all finite. Here M ( p"",v"l‘, c U, 1) is as in the beginning
of Section 4; the multi-index 7 = (iy,...,i,—1) varies over a cofinal sequence as in [6, Section 4], so
that
iY:holi]m(YAM(pfO, oY)
for any E(n).-local spectrum Y.
We claim that
T holi]m(Fk(C) NE, NM(p",.. ! )= hmn*(Fk(C) NE, NM(p“,.. pir! ));

7)11 ’nl

that is
1in111 T(Fe(C) A E, AM(pP, ..., 07" 1)) = 0. (5.9)
Assuming this, it follows from the vanishing of lirl;ll H*m o (Fo(CYNE, AM(p°,..., ’n 1)) that
Hsnt,*i(F*(C)AE,,):nn}H“‘n,,*(F*(C)AE,, AM(p®,...,v"))

TE[XG"/U S = 0
o s #0.

Furthermore, one checks easily that the map ‘E;'(S°,C) — "ES'(S° C) is the identity under this
identification and the identification of Lemma 5.4. _
We now verify the claim. F;(C) is equivalent to a product of C’Gn w's and is therefore Landweber
exact. Hence n.(F;(C)AE,) is a flat E,--module, so
T(F (C)NE, AM(p",...,0) - ) = (Fi(C) ANE)/(P", ... ; -

In particular, the inverse system {m.(Fy(C)AE, AM(p",..., ;” 1))} is Mittag-Leffler and therefore
5.9 holds. This completes the proof. [
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Corollary 5.10. If C is one of the diagrams in Notation 5.1, then
holi/mf (Toty (IT" C) A E,) = Tot([T*L(C A E,)).

Proof. If C is a diagram of the form 5.1(ii) or 5.1(iii), the result follows from the fact that the map
(5.7) is an equivalence and hence the towers {L(Toty([]* C) AE,)} and {Tot,([]* L(C AE,))} are
equivalent.

If C=Cg,u, the result follows from Lemma 5.8 together with the fact that both spectral sequences
are strongly convergent in the sense of [4, IX, 54]. O

The proof of Theorem 5.3 will now be completed by showing that
L [(Tot]T" C) A E,] Sholim L (Tot (IT"C) AE,) -

We separate off the following key ingredient.
Let

=Y =Y - =Yy — %

be a tower of fibrations of S°-modules, so that the canonical map lil’Ikl Y, — holikm Y, is a weak

equivalence. Define Y* to be the fiber of lim ¥; — Y;; there is then an inverse system of fibrations
1

Yk+1 —)1{1_T} Yl—> Yk+1

Yk lim¥; Yy -

According to [4, X1, 5.5], the map

holim (nm Y,-) — holim Y,

—k

is a fibration with fiber holim Y*. But the commutative diagram

—k
holi;cn(lim Y) —>holi£n Y

~ ~

lim(lim ¥;) lim Y

shows that this map is a weak equivalence, and thus holim Y* is stably trivial. In certain cases, we

—k

can say a good deal more.
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Lemma 5.11. Let {Y;} be as above, and let E*(Z) denote the spectral sequence obtained by
mapping the CW-spectrum Z into this tower. Suppose that there exist natural numbers ry and s
such that E;*(Z)=0 for all spectra Z whenever s > so. Then given k, there exists q such that the
map Y4 — Yk is stably trivial.

Proof. Let F be the fiber of Yy — Y;_;. There is a diagram

Yk

Yk+1 Yk+2
F,

Fi k2

of exact triangles; let £*(Z) denote the spectral sequence obtained by mapping Z into this diagram.

This spectral sequence is isomorphic to the spectral sequence obtained by mapping Z into the tower

{Yi}i=«. Hence, (E;*(Z) =0 for s > max{ry — 2,50 — k — 1}. Since holim Y’ ~ x, (E}*(Z) is
1

conditionally convergent (in the sense of [2]) to [Z Y*]*, and thus the horizontal vanishing line
implies that

im([Z, Y1 — [Z,YF]")
im([Z, Y +11" — [Z, YF]")

WESS(Z)

and that {im([Z, Y***1* — [Z,Y*]*)}s>0 is a complete Hausdorff filtration of [Z, Y*]*. It then follows
that im([Z, Y¥1* — [Z,Y¥]*) = 0 for s > max{ry — 2,50 — k — 1}. But Z is arbitrary; therefore
Y*+s — Y* is trivial for these values of s, completing the proof. [

Lemma 5.12. Let {Y,} satisfy the hypotheses of Lemma 5.11. Then, if W and F are any spectra,
there is an equivalence

Lr [(holikm Yk> A W} = holim Le(¥i A ).

Remark 5.13. The above map is of course chosen so that composition with the projection onto
Lr(Yy N W) yields the canonical map

Ly [(h(ﬂikm Yk> A W} (Y AW

We will show that lirgcl1 [Z,Lp(Yy AN W)]" =0 for any spectrum Z, so the equivalence of the lemma

is uniquely determined.
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Proof. We have diagrams (in the stable category)
Lp(Y*! AW)—=Lg((holim Y;) A W) —=Lp(Yin A W)
H (5.14)
Lp(Y* AW)—Lp((holim Y) A W) ——Lp(Y A W)

of fiber sequences. By the previous lemma,
holikmLF(Y" AW) >

from this should follow the desired result. However, we prefer to avoid trying to argue that “the
homotopy inverse limit of the fibers is the fiber of the homotopy limits”, and instead proceed less
generally. Indeed, a diagram chase using (5.14) together with the previous lemma shows that the
system {[Z,Lr(Y; A W)]*} is Mittag-Leffler for any Z and therefore lingl [Z,Le(Yx AW)H]*=0. A

similar argument also shows that
[Z,LF(<holim Y,) A W)} Slim [Z,Lr(Y A WY
This completes the proof. [

Proof of Theorem 5.3. Start with cases (i) and (ii) of Notation 5.1. By virtue of the preceding work,
we need only show that

L [(Tot[T" C) AE,] AX=holim L (Toty ([T" C) AE,) A X (5.15)

for some p-local finite spectrum X Bousfield equivalent to S(Op). Nilpotence technology [8, 4.1] tells
us that this is the same as requiring X to have torsion free Z,)-homology.

We will prove (5.15) by finding a torsion free X such that E;"*(Z A DX,C) has a horizontal
vanishing line independent of Z, where E>*(Z A DX, C) denotes the spectral sequence obtained by
mapping Z A DX into {Tot; []* C}. But

ES'(Z NDX,C)=H:(K,E\(Z A DX))
for K some closed subgroup of G,. (K =U in case (i), and K = G in case (ii).) Moreover,
H!(K,E'(Z NDX))=1limH> (K, E,-X ®g,. E,«DZy,),
—o

where Z =holim Z, is a presentation of Z as a direct limit of finite CW-spectra.
—a

Now Hopkins and Ravenel have shown that there exists a finite spectrum X with free Z(,-
homology—in fact, X can be taken to be S° if p— 14n and a summand of an iterated smash product
of a finite complex projective space if p—1|n—such that H>*(K, E,-X/I,E,~X )=0 for s bigger than
some s¢. (This is proved for K =G, in [26, 8.3.5-7]; from this follows the result for K closed in G,.
Or, one can observe that the proof for G, applies to closed subgroups as well.) An easy induction
then shows that H>*(K, E,-X ) and hence H*(K, E,~X/I,,E,-X) vanish for s > sy and m < n, where
L, = (p,v1,...,0u—1). Finally, proceed by induction on a Landweber filtration of E,-DZ, to prove
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that H>*(K, E»X ®g,. E,~DZ,) =0 for s > s9. (Note that the cross-section theorem [29, I, Theorem
3] allows us to conclude that H}(K,?) takes short exact sequences of profinite K-modules to long
exact sequences.)

This vanishing line allows us to apply Lemma 5.12 to the tower {(Tot; [[* C) A X} to complete
the proof of (5.15).

As for case iii, we prove that £;""(Z,C) has a horizontal vanishing line independent of Z. Indeed,

Ey'(Z,C)=H*(F,[Z,L(E!* NEYTDY)
= H*(F,Map (G/*',E' Z)%)

by Proposition 6.3 and (6.5).
Now if M is any discrete G,-module, there is a spectral sequence

H*(F,H}(K,Map (G, M))) = H(G,Map (G'™",M)).

But MapC(G,Jfl,M) = MapC(Gn,Mapc(@,M)) is both K and G-acyclic (see proof of Lemma 4.20);
this implies that Mapc(G,’fl,M )€ is F-acyclic.
If M is profinite, say M = lim M,, then there is a spectral sequence
—o

lim' F°~(F,Map,(GJ*', M,)*) = H’(F,Map,(G}"', M)¥).
—o
But

H*(F,Map (G, M, )*) = (Map (G}, M, )* )
= Mapc(G£+1 ’M“ )G
concentrated in degree 0, and by Lemma 4.21(i), lim’ Mapc(G{;H,Mx )9=0 for i > 0. Thus Ey'(Z,C)=
0 for s > 0, and the proof concludes as before. [
We conclude this section by proving Theorem 1(iv).

Proposition 5.16. Let U be an open subgroup of G,, and let S=G,/U. The spectral sequence (4.13)
is naturally isomorphic to the K(n).-local E,-Adams spectral sequence converging to [Z, E"V]*.

Proof. Consider the cosimplicial S°-module Cg, ;. By Corollary 5.5,
CL oy~ LENY NEYHD)

and thus by Remark A.9
¥ = BNV Y ST T

is a K(n).-local E,-resolution of E"Y where 6 = > (—1)'d’. The desired result now follows from
Proposition A.5. O
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6. Homotopy fixed point spectra for closed subgroups of G,

We begin by recalling the construction of the homotopy direct limit in & for the case of a direct
sequence of commutative S’-algebras.

Definition 6.1. Let

fo g Iy g Ty T g

be a direct sequence of commutative S°-algebras. Then holimg 4; = limg A j» wWhere

—i —J
/Ij =4 ®1HfoAl ®1Hf1 T H.fpz Ajs ®1Hf,»,1 4

is a j-fold mapping cylinder in &. That is, all limits (including tensor products) are to be taken
in &.

The next result is crucial in the homotopical analysis of E"C.

Lemma 6.2. Let A03>A1!>A2 — -+ be a sequence of cellular algebra maps between cell commu-
tative S°-algebras. Then there is a natural weak equivalence hohmgA ~ hohmA of spectra, where

holim denotes the ordinary homotopy colimit of {4;} regarded as a sequence of spectra.

—i

Proof. Let A ; be as in the previous definition. The evident map A ; — A; is a homotopy equivalence
in ¢ and hence in the category of spectra. Moreover, A ; is a relative cell commutative S°-algebra
under A;_; for each j > 1. This implies that 4;_; — A4, is a cofibration of underlying spectra [11,
VII, 4.14]. Thus, by [11, VII, 3.10], it follows that

holimyg 4; = holimy A4 j=1lim A ; =~ holim A ; =~ holim 4;. O
i —j —J —J —j

We can now identify the K(n).-local E,-homology of E"® and thus prove Theorem 2(i).
Proposition 6.3. n*i(E,’]GAEn):MapC(Gn,En* ¢ as completed right n,L(E,\E,)-comodule algebras.

Proof. Just compute:

h(U;G)

T NEy AM(pP, o)) = lim (BT N E, AM (PP, o))
:li—{l}Mapc(GmEn*/(piO’ Tt 27 1l )Uj

:Mapc(GmEn*/(piO, © :ln 11))G

lrtl

.,v,_) is discrete. The desired result follows easily. [

since E,-/(p",..
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It is now also a simple matter to identify E® with the usual homotopy fixed point spectrum when
G is finite. As in the Introduction, we denote this spectrum by E/'C.

Proposition 6.4. Let G be a finite subgroup of G,. The map E'"S — E"¢ described in the Intro-
duction is a weak equivalence.
Proof. Since EY and Eﬂ/G are both K(n).-local, it suffices to prove that the map
n.L(E" NE,) — nL(E"% NE,)
is an isomorphism. But we have a commutative diagram

E,° Ey°,
E,

and by the preceding proposition, 7,L(E"° AE,) injects into m,L(E,AE,) with image Map (G, E,)°.
On the other hand, Theorem 5.3 implies that LA(E;”G A E)=[L(E, N E)N]YC, where G acts on the
left factor E,. But m,L(E, AE,)= Map (G,,E,-) is G-acyclic (see proof of Lemma 4.20); therefore
n*LA(E,’j'G A E,) =Map(G,,E,-)° as well. This completes the proof. [J

Now let G be a closed subgroup of G, and form a K(n).-local E,-Adams resolution of E" as
in Remark A.9; that is, set

Cl o = L(EIT N (E)TD).
As in the proof of Lemma 4.22, there is a natural transformation
[Z,C¢, 61" — DE{ENZ (6.5)

of cochain complexes; the proof of Proposition 6.3 generalizes to show that this map is an equiva-
lence when Z=S°. But both [?, Cé;n /G]* and DE?(?) are cohomology theories satisfying the product
axiom and hence the map in (6.5) is an isomorphism for all Z. Theorem 2(ii) is thus a consequence
of Lemmas 4.20 and 4.21.

Proposition 6.6. Let G be a closed subgroup of G,. The K(n).-local E,-Adams spectral sequence
converging to [Z,E"°1* is strongly convergent and has E,-term naturally isomorphic to H*(G,E*Z).

Proof. The only part which has not been proved above is the strong convergence. But this follows
from Proposition A.3. [

We can also prove a “covariant” version of Proposition 6.6, although the next result is probably
not the most general result which can be achieved in this direction. Recall that £(n) denotes the
Landweber exact spectrum with coefficient ring E(n). = Z(p[v1, ..., 00, ']

Proposition 6.7. Let X be a CW-spectrum such that, for each E(n)-module spectrum M, there
exists a k with I*"M,X =0. Then the K(n)«-local E,-Adams spectral sequence converging to m.L(X A
E"SY has E,-term naturally isomorphic to HY(G,EX).
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Remark 6.8. The hypotheses imply that £,-X is a discrete G,-module, so H(G, E,-X ) makes good
sense.

The proof of this proposition requires a little preparation. Let L, denote the E(n).-localization
functor. There is a cofiber sequence

> "M,S° - L,8°— L, S° (6.9)
(see [25, Section 5]) and

M50 = Ln<hon[mz—mM(pfo,ugl,.. ot ) (6.10)

0 ¥n—1

n—1
=3 2i(p 1),
r=0

where I = (iy,iy,...,i,—1) ranges over a cofinal sequence of multi-indices [6, Section 4].

Lemma 6.11. Let X satisfy the hypotheses of Proposition 6.7, and let M be an E(n)-module
spectrum. Then

(i) M ANX is K(n)s-local
(i) MAXANZ"M,S*SMAXNL,S" ~MANX.

Proof. (i) M is an E(n)-module spectrum and is therefore £(n).-local. Since E(n) is smashing ([26,
7.5.6]), M A X is E(n).-local. Hence
LM ANX)=F(27"M,S°, M N X),
and we must show that
MAX =F(L,S" M NX) — F(Z"M,S°, M A X)
is an equivalence; i.e.
(M AX)L,S"S (M AX)(Z7"M,S°).
But X~"M,S° — L,S° is the composite of the maps L,0;, 0 <i < n— 1, in the cofibration sequences
NiS® = LiNiS" = MiS” — Nij1 8" EN;S°,

where NyS® = S°; thus we need only show that (M A X)*M;S° =0 for 0 <i < n — 1. Consider the
universal coefficient spectral sequence converging to (M A X)*M;S® whose E,-term is

Extg . (U7 'E(n)«/(p™, ..., 05°)), ML X ) = Exten). (E(n)«M;S°, M.X).
Since there exists & with Uf.‘M*X =0, it follows that
Exte(, (v 'E(n)/(p™,...,v7°),M,.X) =0,

completing the proof.
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(i1) This follows from 6.9 and the fact that, since £(n — 1) is smashing, we have
Lyt SOYAMAX ~ L, (M ANX) > . O
Proof of Proposition 6.7. By Lemma 6.11, we have
LX NE)° NEYT))~X NEI® NEJHD
~X AX"M,S° N E"S A EUTD
n—1

~holim X, A Z"M(p",...,v;" ) NEMC NEYTY

~ holim £(X, A XM (p*,....ti}) A EL A EGD),

n—1

where n; =n; + n, and the homotopy colimit varies over the finite CW-subspectra X, of X and the
sequence of generalized V(n — 1)’s of (6.10). But, by Proposition 6.6,

H*mL(X NE° A (E)* D) =lim H*m, L(X, A X7 IM(p°, ..., o)) ANERS A (E,) ™)

*0 ¥n—1

=lim H*(G, (E,)(X, A Z7"M(p",...,0"}))

*0 ¥n—1
=H(G,(E)(X A X7"M,S"))
=H!(G,(E,)X).

This completes the proof. [

Finally, if G is a finite subgroup of G,, we identify the homotopy fixed point spectral sequence
converging to [Z,E,},"G]* with the K(n).-local E,-Adams spectral sequence. Let us first introduce
some notation.

If G acts on (the commutative S°-algebra) X, write [[; X for the cosimplicial replacement of the
G-diagram defined by the action of G on X. Also write Fy(G,X) for the fiber of Tot,([]; X) —
Tot,—1([[; X). The next result proves Theorem 3(ii).

Proposition 6.12. The sequence
# = E)'9 = Fo(G,E,) = FI(G,E,) — -
is a K(n)«-local E,-Adams resolution of E".

Proof. First observe that F(G,E,) is a product of E,’s and is therefore E,-injective. We thus need
only show that

0 — [ZL(E"C NE)] — [ZL(Fo(G,E,) NE,)] — - - - (6.13)
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is exact for all CW-spectra Z. Since G is finite, the cochain complex L(F.(G,E,)AE,) is equivalent
to F.(G,L(E, N E,)). Hence

H'[Z,L(F.(G,E,) NE,)] = H(G,[Z,L(E, N E})])
=H'(G,Map, (G, E;Z))

Map (G, EXZ)¢ i=0
{0 i>0
by the proof of Lemma 4.20. But by Proposition 6.3,

[Z.L(E}'® NE,)]* =Map(G,, E;Z)°.

Tracking down the identifications completes the proof that sequence (6.13) is exact. [

7. Proof of Theorem 4

Let G be a closed subgroup of G,, K a closed normal subgroup of G, and suppose F = G/K is
finite. Then the canonical map E'¢ — E"X factors through (E'8)F', the F fixed points of E"X. The
next result proves Theorem 4.

Proposition 7.1. The composition E'"° — (EM™)f' — (E"Y'F is a weak equivalence.

Proof. Let F also denote the category with one object * whose automorphism group is F, and
consider the functor Y:A X F — & with

Y([j1.%) = LB NEJTD).
F acts on E"X and Y maps morphisms in A as in Remark A.9. Write ¥/ = Y([/], *). Since

n o

EM E>ho1iAm Y/

by Corollary A.8, we have that
(EMAE 2, holim holim Y/
R holiAm(Yj)hF.
)hF

Of course, there is a canonical augmentation (E* )" — (Y*)*" and hence an augmentation E"¢ —

(EMNE — (Y)Y, We claim that
x« = EN9 — (YO - 7yt —
is a K(n)s-local E,-Adams resolution of E"“. Assuming this, it follows from Corollary A.8 that

EMZ holiAm(Yf s
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and hence that
E,05 (B
To prove the claim, we must show that
0 = [ZL(E," NED] = [ZL(Y)Y" NE)] — [Z LX) NE)] = -
is exact for any CW-spectrum Z. (Since (Y")* is an E,-module spectrum it is K(n)s-local E,-
injective.) Begin by recalling Theorem 5.3 which asserts that
LYY NE)S LY NE)]T
for all i > 0. But
[Z,L(Y' N E,)]" = Map (G, E; Z)*
by (6.5), and since Map (G2, E*Z)X is F-acyclic (see proof of Theorem 5.3), it follows that
[Z,L((Y')'" NE)T =Map, (G, E;Z)°
=Map,(G;"',Map (G,, E;Z))°
= D(Map.(G. E}Z)).
This is in fact an isomorphism of cochain complexes, so

o Map,(G,,E'Z)° i=0,
H([Z, LYY NE)]') =
i>0.
Since
[Z,L(E}° NE,)I' =Map,(G,,ELZ)°,

the claim is proved. O

8. Two applications

We begin with the proof of Theorem 6. Let ¢: G, — Z, be a surjective continuous homomorphism,
and consider the exact sequence of groups
0—>K—G,>Z,—0.

Then Z, acts—at least regarded as a discrete group—by S°-algebra maps on E"®. We have the
following result.

Proposition 8.1. Let t be the topological generator 1 of Z,. Then there is a fiber sequence (in the
stable category)

LS8 KIS ghK 2, 5150

where n:S° — E"™ denotes the unit map.
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Proof. Let X be the fiber of id — ¢. Since ¢ is an S°-algebra map, the unit # factors to give a
commutative diagram

We claim that #/ is a K(n)s-equivalence, and thus LS~ X. To prove this, it suffices to show that
. L(q' NE,):Ey — 1 L(X NE,)
is an isomorphism. There is a commutative diagram
T K Gd—0)y 2 rmpx
n.L(E'™® A E,)~—*n,L(EX \E,)
4 14
Map,(Gy, By ¥ “=%Map,(Gy, Ere ),

where 7,(f)(g) = f(t"'g) for f €Map.(G,,E,)* and g€ G,. (Here ¢ also denotes any element of
G, whose image under ¢ is € Z,.) Since

Map (G, E,)* =Map.(G,/K,E,+) =Map.(Z ,, E,-),
a standard argument shows that id — 1, is surjective and hence

(X N E,)=ker(id — 1,).
But ker(id — t,) just consists of the constant maps from Z, to E,-; this implies that n.L(y NE,) is
an isomorphism, completing the proof. [J

The next result implies Theorem 6.

Proposition 8.2. Let 0 be as in Proposition 8.1. Then the composition don:S° — ZiSO is detected
by +c € H!(S,,E,-)% in the K(n)s-local E,-Adams spectral sequence.

Remark 8.3. Let G be a profinite group and M a discrete G-module, and consider the short exact
sequence

0 — M-5Map,(G, M) — Map(G,M)/M — 0,

1

where i(m)(g) =g~ 'm. Then the coboundary map provides an epimorphism

(Map (G, M)/M)¢ = H*(G,Map (G, M)/M) — H(G,M).

If M is a trivial G-module, this map is an isomorphism; moreover, (Map.(G,M)/M)° is just the
group of continuous group homomorphisms from G to M. This gives a canonical identification of
H!(G,M) with this group of homomorphisms. In particular, the homomorphism ¢: G, — Z, defines
an element of llHn} HNG,,Z/(p’)) = H (G, Z,) and hence an element of H!(G,,E,-).
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Proof of Proposition 8.2. Write / = L(0 o), and consider the cofiber sequence
s SO L PO L ()R LSO s (8.4)

By Proposition A.10, f is detected by (1)e H(G,,E,~), where & is the coboundary map
H{(G,,E,;-) — H-C’“(Gn,En*) for the short exact sequence

0— ES*SEC(f)SES -0
of G,-modules, and 1€ H%(G,,E,-) is just the unit in (E,-)% = Z,. Now the sequence (8.4) is
self-dual; that is, applying the function spectrum functor F(?,LS?) yields the same sequence. Hence
f is detected by +0'(1) € H(G,,E,-), where ¢ denotes the coboundary map for the short exact
sequence

0 — EAS"SENC(F)BBENS® — 0.
(By EMAX, we here mean 7, L(X AE,).)

In addition, we have a diagram

L' —C(f)—E=Ts0

of cofibration sequences; this yields the commutative diagram

0 ENS° ENC(S) E).S° 0
l -
0—>E\S®—>Map,(Gy, Eye )< =% Map,(Gy, Epe )< —0 (8.5)
Map (Zp, E,+) Map (Zp,E,-)

This diagram is a diagram of G,-modules; the action of G, on Map.(Z,,E,-) is given by

(gh)(s) = g(h(s + c(9)))

for g€ G,, he Map(Z,,E,-) and s € Z,. This follows by naturality from the discussion preceding
Remark 2.4. There is also a commutative diagram
0—>E,» —>Map(Z,, E, ) =% Map (Z p, Ey+) —>0

T T T (8.6)
0—>Z,—>Map(Z,,Z,)“=Map(Z,,Z,) —>0

of G,-modules. Then &'(1) is the image of —0"(1)€ H(G,,Z,) in H!(G,E,-), where ¢" is the
coboundary map associated to the bottom exact sequence and 1 € Map.(Z,,Z,) is the constant map
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with value 1. Finally, use the diagram

0—>Z,—>Map(Z,, zl,)ﬂ)Mapc(lz,,, Z,)—0

” Map,(c,id) |
\
0—2Z,—Map (G, Z,) —Map(Gy, £,)/Z,—0

and Remark 8.3 to complete the proof. [
We next turn to the proof of Theorem 5.

Lemma 8.7. Let G be as in the statement of Theorem 5; that is, G is the closed subgroup of 7
generated by 7. Then ENY s the fiber of id — I E; — E.

Proof. Let I denote this fiber. Since the composition
o aspl
EM — gL E
is trivial, there is a commutative diagram

F——FE

|

EM
To show that £/ F, it suffices to show that

. L(E" A E\)—=—>n,I(F AE))

2 (8.8)
Map (2} /G, E1+)

But there is a commutative diagram
s -
. L(E AE) S T, AE)
14 14
Mapc(Z;,El*)L‘LMapc(Zl’j,El*),
where here ( f)(u) = f(lf”’/u) for f€Map.(Z,E ) and u€ Z3;. Clearly
ker(id — 1) = Map(Z,, /G, E1-);

the map in (8.8) is therefore an isomorphism provided that id — 7 is surjective. But this follows
without difficulty from the facts that G ~ Z, and Z;/G is finite. O

The next result is well known.

Lemma 8.9. Let f:X — Y be a map in the stable category such that w; f is an isomorphism for
all i sufficiently large. Then L) f : LxyX — Lgq)Y is an equivalence.
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Proof. Let M(p’) denote the mod ( p/) Moore spectrum, with v; self-map v. Then
FAVIIM(P)): X AvTIM(p)) — Y AvTIM(p))

is an equivalence, since m;(f A M(p’)) is an isomorphism for all i sufficiently large. But, if Z is
any spectrum,

LiZNM(p))=Li(ZNM(p)=ZNLiM(p')=Z N 'M(p))
by the telescope conjecture for n =1 (see [26, 7.5.5]), and
LgyX =holim LiX A M(p)).
—J

Hence Lk(1)f is an equivalence as desired. [

Proof of Theorem 5. Since K(k) is fixed by Gal(F,/k)=Z/s r 7, there is a commutative diagram
K(k)—>F=Eh"

Ll

K(F)—E

But Quillen showed [24, Theorem 7] that
BGL(k)" = Q3°K (k) — QF°F

is an equivalence; hence
n[K(k)i n,E{’G

for all i > 1. The result now follows from Lemma 8.9. O
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Appendix A. The K(n).-local E,-Adams spectral sequence

We begin with some generalities on the Adams-type spectral sequences that we will be considering.

Let £ be a commutative ring spectrum (in the stable category), and let F' be any spectrum. Then
one can construct the £-Adams spectral sequence in the F,-local category. In more detail, we follow
Miller [21] and define an injective class (see [18]) in this category by declaring an F-local spectrum
X to be E-injective if it is a retract of Lg(Y A E) for some spectrum Y. A sequence X' — X — X"
is then E-exact if [X',I] « [X,I] < [X",I] is exact for every E-injective /. Given X, one may
construct an E-exact sequence

« =X =101 — ... (A.1)
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such that /¢ is E-injective for all s. One may then construct a diagram

X =X'~—x'~——x?
NN AN (A2)
g I

of exact triangles; observe that the map

Le(JAE):Lp(X' NE) — Lp(I' NE)

is a split monomorphism. Conversely, a diagram of exact triangles as in (A.2) with each Lp(j AE)
split monic yields an E-exact sequence (A.1). Such a diagram (with each I/ E-injective) is called
an F,-local E-Adams resolution of X and is functorial up to chain homotopy.

By mapping a spectrum Z into an F.-local E-Adams resolution of X, we obtain a spectral se-
quence, called the F,-local E-Adams spectral sequence. The work of Bousfield [3] comes into play in
dealing with the convergence question. We define the F,-local E-nilpotent spectra to be the smallest
class & of (F.-local) spectra such that

(i) LFE €%,
(i) Lp(N ANX)€ % whenever N €%,
(iii) ¥ 1is closed under retracts and cofibrations.

If X is Fy-local E-nilpotent, then the proof of [3, Theorem 6.10] applies to show that the F,-local
E-Adams spectral sequence converges conditionally and strongly to [Z, X]* for Z any CW-spectrum.
We now specialize to the case £ =FE, and F = K(n). Here we have the following result.

Proposition A.3. If X is K(n).-local, then X is K(n).-local E,-nilpotent.

Proof. Consider the Landweber exact spectrum £E’(n) with coefficient ring E'(n), =
Z ... sun—1][u,u~"]. Since E’(n) is equivalent to a wedge of suspensions of E(n) and S° is
E(n)-prenilpotent ([17, Theorem 5.3]), it follows that S° is E'(n)-prenilpotent. But X is E’(n),-local;
therefore X is E'(n)-nilpotent. Since LE'(n) is a retract of E,, X is also K(n).-local E,-nilpotent. [

We now examine some further properties of the K(n).-local E,-Adams spectral sequence which
have been used in the text.

Let X be K(n).-local, and let C be a cosimplicial S’-module with an augmentation X — C such
that

$ =X = S s10N S 520 L

is a K(n)4-local E,-resolution of X. (The suspensions appear so that each map 6 = > (—1)'d’ has
degree —1.) Consider also the diagram

hoErAn C = Tot! Tot? Tot!
(A.4)

F F,
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of exact triangles, where Tot' is the fiber of Tot [[*C — Tot; []* C and F; is the fiber of Tot,(][[* C)—
Tot;_(J]* C) as in Section 5. Since F; is the product of various C’’s, it is K(n).-local E,-injective.
Therefore, the canonical map #:X — holiAm C extends to a diagram

* X CO [ Z_]CI_(S)E_ZC
*—> holim C F, F, F

of augmented cochain complexes in the stable category, unique up to chain homotopy. This diagram
is induced by a map of exact triangles and hence defines a map of spectral sequences.

Proposition A.5. With the notation as above, {h'} induces an isomorphism ©*[Z,C*] — H*[Z,F.]
for any spectrum Z. Hence the spectral sequence obtained by mapping Z into diagram (A.4) is

isomorphic to a K(n)-local E,-Adams spectral sequence.

Proof. The cochain complex
0— [ZsFO]t — [Z,Fvl]tJrl — |:Z,F‘2:|tJr2 e

is the normalized cochain complex of the cosimplicial abelian group [[* [Z,C]'. There is then a
natural cochain equivalence between these two complexes. Hence by Proposition 4.16, there is a
cochain map, natural in Z, from [Z,C*] to [Z,F,] inducing an isomorphism on cohomology. This
map is then induced by a cochain map {¢'} from C* to F,. It now suffices to show that

X — "

[h tg" (A.6)

holirAn C—F,

commutes, for this implies that {g'} is chain homotopic to {4’} and thus induces the same map on
cohomology.
To prove the commutativity of (A.6), we need only show that

hogn C——s 0
|| g (A7)

holiIAn C——F,
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commutes, where the top map is the canonical map
holim C = Tot(I[" C) — Toty (I[" C) =, ¢/ — C".
Now Fo=1]] ; C’, and by Proposition 4.16, the composition
L], ¢ —
is given by (do)*. To prove the commutativity of (A.7), we must therefore prove that
Tot(I[*C) — [I"C =],/ — C”
is homotopic to
Tot([]*C) — [1°C =], ¢/ — "™ ¢
for each jy. But this follows by a standard argument (cf. proof of Theorem 3.2). O

Corollary A.8. The map h:X — holiAm C is a weak equivalence.

Proof. By the discussion preceding Lemma 5.11, holim Tot’ ~ *. Moreover, the spectral sequence

E**(S°, C) obtained by applying m.(?) to (A.4) is isomorphic to the K(n).-local E,-Adams spectral
sequence converging strongly to 7, X. It therefore follows that E**(S°, C) is strongly convergent and
that m,/ is an isomorphism. [J

Remark A.9. Given a K(n),-local So-module X there is a canonical choice of cosimplicial resolution
C as above. Namely, define C/ = L(X /\E,(/H))A with the coface and codegeneracy maps defined as
in Construction 4.11, where Xs is replaced by L(X A E,).

We conclude with a “geometric boundary theorem” which was used in Section 8.

Proposition A.10. Let G be a closed subgroup of G,, and let
iz x Lyl

be a cofibration sequence with E*0=0. Suppose x € [X, E'] is detected by ue H*(G,E'X) in the
K(n).-local E,-Adams spectral sequence. Then xod is detected by d(u) € H"'(G,E'Z) up to higher
filtration, where 6 denotes the coboundary map in HY(G,?) associated to the short exact sequence

0—-E,Z—E)Y—EX—D0.

Remark A.11. The functor Df(?) of Definition 4.18 is exact on the category of profinite G,-modules
(see the proof of Lemma 4.21), so that the coboundary map J of the proposition can be defined.

Proof of A.10. Let C be the cosimplicial resolution of E"Y of A.9, and write

= wo L w! L w? :
NA NN

—lcl 2—2c2

i

hG
En
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for the associated diagram of exact triangles. Recall also from Lemma 4.22 that [?, C*]’ is naturally
isomorphic to DE(EL(?)).
Now x lifts to a map x:X — W* such that the composition

pENEER e

is a representative of u in Dy(E,;X ). The composition jox o 0 is trivial since E,0 = 0. We may
therefore construct a diagram

f g Z‘
|

<~— -~

=l
N|

Laws I y—sos k& ZV;H]

Y
Ws+1

of cofibration sequences. It now follows easily that joz € [Z, Ct']* = DTI(E*Z) is a representative
of d(u). But j o Z represents x o 0 up to higher filtration as well, completing the proof. [

Appendix B. Proof of Proposition 4.16
The proof of this proposition requires some preparation.

Definition B.1. If £ > 0, let D; be the cosimplicial abelian group with

D} =
[k]—[n]

the sum ranging over all morphisms [k] — [#] in A. Let 1 € D denote the element 1 in the summand
corresponding to the identity [k] — [£].

D; has a convenient universal property: If C is a cosimplicial abelian group and x € C*, there
exists a unique map t, :D; — C of cosimplicial abelian groups with 7,(2) =x. We can also put the
Dy’s together.

Definition B.2. Let D} be the simplicial cosimplicial abelian group whose cosimplicial group of
k-simplices is Dj. If [m] — [k] is a morphism in A, the map D] — Dj, is defined by sending the

summand indexed by [k] — [n] to the summand indexed by [m] — [k] — [r] via the identity.

Lemma B.3. There exists a sequence of maps Ty : Di — [[" D} of cosimplicial abelian groups such
that:

(1) The composition
Dy 1, D4 Dy

sends 19 to d°---d%q for all j, = 0.
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(i1) The diagram

D, —>—D;
lTk+l lTk
* * Ll * *
[T Deni— 11 Dk
commutes for all k >0, where D} and [[* D} are here regarded as chain complexes of

cosimplicial abelian groups and 0 denotes their respective boundary maps.

Proof. We construct 7; by induction on k. There is a unique cosimplicial map 7 satisfying (i). To
construct 7,1, it suffices to prove that 7;(0u 1) is a boundary in the chain complex H“l D}; we
may then define Ty, 1(2y1) = ¢, where dc = Ty (2%11).

We claim that H; (]1 kel D¥)=0 for all i > 0. Indeed, for fixed i, H;(D}) is a cosimplicial group
and H; (HkJrl D) =T]""" H(D?). But the chain complex D/, is just the simplicial chain complex of
the standard j—simplex therefore

, {z i=0,
H(Dj) =

0 otherwise.

Since 0= T;—1(001;41) = 0Ti(01r41) by the inductive hypothesis, it now follows that Tj(du. 1) is
a boundary if £ > 0. If £ =0, use the fact that the maps

DY Dy D,

are augmentation preserving to conclude that 77(d7) is a boundary as well. This completes the
induction and the proof. [

Proof of Proposition 4.16. For x € C*, define T(C)x to be the image of 1 under the maps
ka H D*H "'XH C.

Since 0:Dj,; — Di maps y4; to Zl “o(=1)d"y, it follows that 745 = 1, 0 0. By B.3(ii), we then
have that 7(C)(dx) is given by the image of #, under the composition

0 T Ty
Dl]ii{ Dk+1 k Hk+1 D*H Hk+1 C.

But ([T 7.) o T} is a cosimplicial map; therefore

k1
((IT" ) © Tk 0 0) (1) = ((IT ) © Tx) (Z( 1yd", >

k+1

=Y d ((IT"t) o Ti) (u)

i=0
=0T (C)(x).
Thus 7(C) is a cochain map.
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Now it is also clear from the definition of T that 7T° is as required and hence that T is an
isomorphism on n°. This implies that 7 is an isomorphism on 7*, completing the proof. [I
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