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Abstract

In this note we will study the formal completion of the Jacobian of a certain class of curves
over p-adic rings. These curves generalize the Legendre family of elliptic curves. As an imme-
diate application, we will describe the representation which is crucial for calculating the initial
term of the spectral sequence, converging to the homotopy groups of the higher real K-theories
EOn. c© 2000 Elsevier Science B.V. All rights reserved.

MSC: 55; 14

1. Introduction

Let p be a �xed prime number. Let En be Lubin and Tate’s [7] ring represent-
ing deformations to complete local W(Fpn)-algebras of a standard formal group of the
Morava K(n) theory, see, for example, [10]. Then there is a 2-periodic ring spectrum
En such that �oddEn=0 and �0En ∼=En. Lubin and Tate show in [7, 3.4] that the Morava
stabilizer group Sn acts on En. We call this representation the Lubin–Tate representa-
tion. Recently, Hopkins and Miller show that this action is induced by an action of Sn

on the spectrum En. Let Gn denote a maximal �nite subgroup of the Morava stabilizer
group Sn. Hopkins and Miller de�ne EOn to be the homotopy �xed point spectrum of
the action of Gn on En. There is a spectral sequence which abuts to �∗EOn with E2
term H∗(Gn; En)Gal. EO2 agrees with the usual elliptic cohomology when 2 is inverted
[9].
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In this paper we will study a formal group which can be used to construct EOn

for n=p − 1, and describe explicitly the Lubin–Tate representation of Gn. In [8]
Manin proved that every formal group of �nite height de�ned over a �eld of �nite
characteristic is a summand in the formal completion of the Jacobian of a certain
curve. It was suggested to the authors by Mike Hopkins that a universal lift of a
formal group of height n over Fp should come as a summand in the formal completion
of the Jacobian of a certain curve with p marked points. There is an action of Gp−1 on
such a curve, which can be expressed in terms of permutations of the marked points.
This leads to a precise description of the Lubin–Tate action of Gp−1 on the ring Ep−1.
This representation was also studied using di�erent techniques in [1, 6, 9].

2. Overview of the Honda theory

We recall brie
y the Honda classi�cation of formal group laws from [4]. If K is a
ring or a �eld we denote by K[[x]]0n=K[[x1; : : : ; xm]]0n the set of n-dimensional vectors
over the ring of series over K with constant term equal to zero.
Let K be a discrete valuation �eld. Denote by v, p and vp the ring of integers of K ,

the maximal ideal of v, and the completion of v with respect to p, respectively. We
assume that the residue class �eld is of characteristic p¿0. Suppose also that there is
an endomorphism � of K and a power q of p such that a�= aqmod p for any a∈ v.
Introduce a variable T such that Ta= a�T for any a∈ v, and de�ne the twisted power
series ring Mn(vp)[[T ]]� as the ring of series Mn(vp)[[T ]] in which T and Mn(vp)
commute according to this rule. De�ne an action of this twisted power series ring on
the vector space of n-dimensional vectors over the ring K[[x1; : : : ; xm]] by

(u ∗ f)(x)=
∞∑
�=0

C�f��
(xq

�
);

where u=��C�T�, f∈K[[x]]0n.
We say that an element u∈Mn(vp)[[T ]]� is special for f∈K[[x]]0n if u∼= �Inmod

degree 1 and (u ∗ f)(x)≡ 0mod p, where � is a uniformizer for p and In is the
n× n identity matrix. Let F be an n-dimensional abelian formal group law over v

and f=(f1; : : : ; fn) denote its logarithm. An element u∈Mn(vp)[[T ]]� is said to be
special for F if it is a special element for f. We say in this case that F is of type u.
Call elements u1; u2 ∈Mn(vp)[[T ]]�, equivalent if u1 = vu2, where v∈Mn(vp)[[T ]]� is
a unit.
The following theorem is proved in [4].

Theorem 2.1. Suppose that K is a discrete totally unrami�ed valuation �eld (in ad-
dition to the conditions stated above); then the strict isomorphism classes of for-
mal group laws over v correspond bijectively to the equivalence classes of elements
u∈Mn(vp)[[T ]]� of the form u∼= �Inmod degree 1.
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We intend to study the formal completion of the Jacobian of a certain class of
curves. Let us state the connection, established in [5], between the formal completion
of the Jacobian of a curve and the space of holomorphic di�erentials on it. Let � be a
curve of genus n¿0 over K . Denote by J the Jacobian of �, and by � the canonical
map �→ J . Let !1; : : : ; !n be a basis of holomorphic di�erentials on �, each de�ned
over K . Choose a local parameter z ∈K(�) at some point P, and denote by !i(z)
the expansion of !i at P. There are  i(z)∈K[[z]], 1≤ i≤ n, such that  i(0)= 0 and
!i(z)= d i(z). Let y=(y1; : : : ; yn)⊂K(J ) be a system of local parameters at the origin
of J and let �1; : : : ; �n be the invariant di�erentials on J such that

�i ◦�=!i (1≤ i≤ n):

Denote by �i(y) the expansion of �i at the origin. There are �i(y)∈K[[y]], 1≤ i≤ n,
such that �i(0)= 0 and �i(y)= d�i(y). The vector �(y)= (�i(y)) is the logarithm of
the formal group law F of J , associated to the system of local parameters y. Let S1
be the set of primes at which �, �, J , z, or y has a bad reduction, and S0 be the set
of rami�ed primes of K .

Proposition 2.2 (Honda [3, Theorem 1]). There is a �nite set S of primes of K sat-
isfying the following conditions:
• S contains S0 ∪ S1.
• If p 6∈ S and u∈Mn(vp)[[T ]]� is a special element for  (z)= ( i(z)); then u is also
a special element for the vector (�i(y)); so that F is of type u as a formal group
law over vp.

Let A be a ring of characteristic zero that is also a Z(p)-algebra, and K =A⊗Q.
Suppose there is a ring endomorphism � :K →K , such that �(a)= apmodpA for all
a∈A.

Lemma 2.3. Let A be a ring as above.
(i) There is a special element for every formal group law over A.
(ii) If there is a special element u for a series f∈K[[x]]0n; f≡ xmod degree 2;

then the formal group law f−1(f(x) + f(y)) is a formal group law over A.
(iii) The strict isomorphism classes of formal group laws over A correspond bijec-

tively to the equivalence classes of elements u∈Mn(A)[[T ]]� of the form u≡ �Inmod
degree one.

Proof. (i) It is proved in [2] that every formal group F over A has a logarithm de�ned
by a functional equation, and Eq. (20.3.11) of [2] shows that it is equivalent to the
existence of a special element for F .
(ii) The direct check shows that the proofs of the Lemmas 2.3 and 2.4, and

Theorem 2 from [5] go without a change when K and A are as above.
(iii) The proof of the Proposition 2.6 from [5] goes through without change as well.

Note that for a given special element u the formal group law, F , associated to it is
de�ned by the logarithm f=(p=u) ∗ (i).
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3. Motivating example: points on elliptic curves and the Lubin–Tate representation

In this section we assume that p=3. We will use the properties of the Legendre
curve to describe the Lubin–Tate representation of G2, a maximal �nite subgroup of S2.
The general strategy here will be to work with lifts of elliptic curves to the appropriate
moduli space rather than with lifts of formal groups.
In order to describe the action of G2 on the moduli space of deformations, we

need to choose a speci�c deformation of a formal group of height two. Consider the
following elliptic curve �C:

y2 = x3 − x: (3.1)

The formal completion of this elliptic curve is a formal group of height two, therefore
the group of its automorphisms over a suitable extension of F3 is isomorphic to S2.
We will present a convenient model for the moduli space of lifts of �C to Artinian
rings.
The Legendre curve is a plane curve de�ned by the equation

y2 = x(x − 1)(x − �)

over the ring �E=Z[ 12 ; �]. Denote this curve by C and rewrite its equation as

y2 = x(x − 1)(x − u1 + 1): (3.2)

Complete �E with respect to the ideal (3; �+ 1) and denote the resulting ring E.

Lemma 3.1. The pair (E; FC); where FC denotes the formal completion of C; is a
universal deformation of the formal completion of �C.

Proof. Choose z= x=y as a local parameter at in�nity. As a simple computation shows
the formal completion of C is a series in two variables

F(z1; z2)= z1 + z2 + u1(z21z2 + z1z22)mod (z1; z2)
4:

According to [7] this is a universal deformation.

The pair (E; FC) is the model of the Lubin–Tate lift we will use.
Now we are ready to describe the Lubin–Tate representation of G2.

Lemma 3.2. G2 is isomorphic to the group of automorphisms of the elliptic curve �C
over the �eld F9 via the functor of the formal completion.

Proof. G2 is known to be isomorphic to Z=3�Z=4. The group of automorphisms of
�C over the �eld F9 is given by the substitutions

s1: x= x′ + 1; y=y′;
s2: x= − x′; y= − iy′;
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where i4 = 1. This group is isomorphic to Z=3�Z=4. The functor of formal completion
provides a monomorphism AutF9 ( �C)→S2.

Proposition 3.3. There are six automorphisms of the complete local W (F9)-algebra
W (F9)⊗̂E which preserve the isomorphism class of the curve C.

Proof. This is a standard fact in elliptic curve theory, (cf. [12, p. 54]). In particular, if
one adds to the moduli space E a forth root of unity i, then it admits six automorphisms
which preserve the isomorphism class of C. Because this example illustrates our later
work (see Section 6), we will outline the proof. We have three marked points on our
curve with x coordinates {0; 1; �}. Any automorphism g of the moduli space takes the
triple {0; 1; �} to an unordered triple {0; 1; g(�)}. Let

x′=w2x + r; y′=w3y

be an algebraic transformation from C to g∗C. It, in its turn, takes the triple {0; 1; �}
to an unordered triple {r; w2 + r; w2� + r}. There are six way to match these two
unordered triples, which produce the following values for �:{

�; 1− �;
1
�
;
�− 1
�

;
1

1− �
;

�
�− 1

}
:

All we need now is to replace � with u1 − 1 and take into account the fact that g
�xes elements of the base ring W (F9). Here are possible values for g(u1):{

u1; 3− u1;
u1

u1 − 1 ;
2u1 − 3
u1 − 1 ;

u1 − 3
u1 − 2 ;

2u1 − 3
u1 − 2

}
:

Remark 3.4. By de�nition, g(u)= u=w. The appropriate values of w are easy to cal-
culate. For the substitutions of Proposition 3.3 they are√

−1
�
;

√
1
�
:

Remark 3.5. The fact that we found only six automorphisms of the moduli space E
means that the center of the group Z=3�Z=4 acts trivially on it. It always happens
this way as is proved in [6].

Remark 3.6. We can handle the Lubin–Tate representation of G2 for p=2 in a similar
fashion.

4. The generalized Legendre family

Fix a prime number p from now on. Then any maximal �nite subgroup of Sp−1,
Gp−1, is isomorphic to Zp�Z=(p− 1)2 [3]. The important points in the example with
the Legendre curve C are:
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(i) C is a 2-cover of the projective line with three marked points on it. The reduction
of this curve mod the ideal (�+1) has G2 as a subgroup of its group of automorphisms
by Proposition 3.3.
(ii) The formal completion of the Jacobian of C is a universal Lubin–Tate lift of a

formal group of height two.
We would like to realize universal Lubin–Tate lifts of formal groups of other heights

in a similar “algebraic” fashion. In particular, we would like to obtain them as sum-
mands in the formal completion of the Jacobian of curves. The work of Manin [8]
suggests considering curves of the form

ypa−1 = xp − x;

de�ned over Fp. He showed in [8] that, at least up to isogeny, the formal completion
of the Jacobians of such a curve contains a one-dimensional summand, whose height
divides a(p− 1). Here we will study the case when a=1.
Denote by E the ring Zp[[u1; : : : ; up−2]].

De�nition 4.1. Let the generalized Legendre curve C be the plane curve over E de�ned
by the following equation:

yp−1 = xp + u1xp−1 + · · ·+ up−2x2 +

(
−1−

p−2∑
i=1

ui

)
x: (4.1)

Denote −1−∑p−2
i=1 ui by b.

If we factor out the ideal I =(p; u1; : : : ; up−2), then the reduction of the curve C
will be a curve �C over Fp de�ned by the equation

yp−1 = xp − x:

The roots of the right-hand side are 0; 1; 2; : : : ; p− 1modp.
Hensel’s lemma implies the following lemma.

Lemma 4.2. All the roots of the polynomial in the right-hand side of (4.1) are in E;
so the curve C may be de�ned by the following equation:

yp−1 = x(x − 1)(x − e1) · · · (x − ep−2);

where ei= i + 1mod I .

As we see from the above remark C is a p− 1 covering of the projective line with
p marked points on it. Over the ring Fpp−1 the group of automorphisms of �C contains
Gp−1. Indeed, Z=p and Z=(p− 1)2 act on the curve �C via a substitutions:

x= x′ + 1; y=y′; x= �p−1x′; y= �py′; (4.2)

where �(p−1)
2
= 1.
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Proposition 4.3. The curves C and �C are non-singular curves of genus m=
(p− 1)(p− 2)=2. The di�erentials

!i; j =
xi dx
y j ; 0≤ i≤ j − 1≤p− 3

form a basis of the space of holomorphic di�erentials.

Proof. Direct computation shows that the curves C and �C are non-singular. To calcu-
late the genus note that

div(x)= (p− 1)(0)− (p− 1)(∞);
div(y)= (0) + (1) + (e1) + · · ·+ (ep−2)− p(∞);
div(dx)= (p− 2)(0) + (p− 2)(1) + (p− 2)(e1) + · · ·+ (p− 2)(ep−2)− p(∞):

So the above di�erentials are indeed holomorphic. A standard argument shows that
these form a basis for the space of holomorphic di�erentials. The Riemann–Roch the-
orem implies that the genus is as indicated in the proposition.

Corollary 4.4. The order of the zero at in�nity of !i; j is equal to p( j−1)−(p−1)i.
If we choose z= x=y as a local parameter at in�nity than the expansion of !i; j is a
power series

∑
k≥0 gkznk dz where gk is in E; and nk ≡ j − 1modp− 1.

Proof. Introduce the following coordinates z= x=y and w=1=y. In these coordinates
the equation of the curve is

w= zp + u1zp−1w + · · ·+ up−2z2wp−2 + bz wp−1: (4.3)

Out of this equation we immediately get that

w= zp
∑
k≥0

akzmk ; y= z−p
∑
k≥0

bkz lk ;

x= z1−p
∑
k≥0

bkz lk ; dx= z−p
∑
k≥0

ckz lk ;

where mk; lk ≡ 0modp− 1. This implies the statement of the corollary.

5. The splitting of the formal completion of the Jacobian

The ring E is of the type described in Lemma 2.3. Indeed, we can de�ne the required
endomorphism � of E⊗Z(p)Q by the formulas:

�(ui)= up
i ; �(a)= a; a∈Qp:
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Therefore, the formal group law associated to a choice of coordinates on J (C) is
determined by the equivalence class of special elements for its logarithm. We will
study the properties of this class of special elements.
Denote by  i; j(z) the formal anti-derivative of the formal expansion of !i; j around

in�nity, and by  the vector with the coordinates  i; j(z), ordered in such a way that
(i; j)¿(i1; j1) if j¿j1. Recall that m=(p − 1)(p − 2)=2 is the number of entries in
the vector  .

Theorem 5.1. (i) De�ne the formal group law F of J (C) in terms of the coordinates
on J (C) determined by  . Then this is a formal group law over E; therefore; there
is a special element for F ; which is also a special element for the vector  .
(ii) If u∈Mm(E)[[T ]]� is a special element for the vector  ; then it is also a special

element for F ; so that F is of type u as a formal group over E.

Proof. (i) We need to prove that the Jacobian is smooth at the origin. This follows
from the general theory of reduction of algebraic varieties [11]. In our case the state-
ment follows from the fact that the curve Cp is non-singular and its reduction is
non-singular. In the terminology of [11] it means that the objects we deal with are
I -simple.
It follows from Lemma 2.3 that there is a special element for F . Pulling the log-

arithm of F back using the canonical embedding C→ J (C), we see that it is also a
special element for  .
(ii) We will show that the following version of Lemma 1 from [5] holds in our

setting. Then the proof of part (ii) will follow exactly as the proof of Proposition 2.2
of [5].

Lemma 5.2. Let  be as above. If u; v∈Mm(E)[[T ]]� are special elements for  , then
there is a unit in Mm(E)[[T ]]� such that v= tu.

Proof. Suppose

u=pIm +
∞∑
k=1

CkT k ; v=pIm +
∞∑
k=1

DkTk ;

Ck ; Dk ∈Mm(E). We will show that if Ck =Dk; 0≤ k ≤ l − 1 with some l≥ 1, then
Cl=Dlmodp. We have

∞∑
k=l

(Ck − Dk) � k
(zp

k
)≡ 0modp:

It follows from Corollary 4.6 by direct computation that all the entries of Cl −Dl are
divisible by p. Put now

tl= Im − 1
p
(Cl − Dl)T l;
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tl is a unit in Mm(E)[[T ]]� and tlu= vmod degree l+1. In this way we can �nd units
t1; : : : ; tl successively for each l¿0, so that tl : : : t1u= vmod degree l+ 1. The limit of
tl : : : t1 clearly satis�es the requirement of our lemma.

Theorem 5.3. The isomorphism class of F over E contains a formal group law, which
splits into p− 2 summands of dimensions 1; 2; : : : ; p− 2; respectively. The reduction
of the one-dimensional summand mod I has the height p− 1.

Proof. According to Theorem 5.1(ii), we need to study special elements for the vector  .
To prove the theorem we will show that there is a special element for  which is made
out of diagonal blocks of dimensions 1; 2; : : : ; p − 2. Let u=pIm +

∑∞
k=1 CkT k be a

special element for  , which exists according to 5.1. Recall that the order of zero at
in�nity of !i; j, reduced modp−1, is equal to j−1. Expanding !i; j = xi dx=y j around
in�nity into a power series and integrating the result, we see from Corollary 4.4 that
 i; j is a formal series in powers of z congruent to jmodp− 1; 1≤ j≤p− 2. At this
point it is convenient to introduce the following notation. If � is any column vector
with m entries and 1≤ i≤p−2, let �(i) be the column vector with i entries such that

�=




�(1)
�(2)
...

�(p− 2)


 :

With this notation each entry of  (i) is a power series in z with exponents congruent
to i modulo p− 1.
Similarly, if C is an m×m matrix, then for 1≤ i; j≤p− 2 let C(i; j) be the i× j

matrix such that

C =




C(1; 1) : : : C(1; p− 2)
...

...
...

C(p− 2; 1) : : : C(p− 2; p− 2)


 :

Then

Ck (i)�
k
(i)=

p−2∑
j=1

Ck(i; j) (j)�
k
:

The summand Ck(i; j) (j)�
k
has as its entries power series in z with exponents con-

gruent to j modulo p− 1.
Now consider an entry r(z) of (u ∗  )(i). It is easy to see that r(z) can be written

as a sum of power series

r(z)=
p−2∑
j=1

rj(z);
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such that
(i) the exponent occurring in rj(z) are congruent to j modulo p− 1.
(ii) rj(z) depends only on the block matrix Ck(i; j), and is zero if Ck(i; j)= 0.
Indeed rj is just the appropriate entry of∑

k

Ck(i; j) �k
(j)(zp

k
):

This implies that the element u′=pIm +
∑∞

k = 1 C
′
kT

k , where each C′
k is a block

matrix

Ck(1; 1) 0 : : :
0 Ck(2; 2) : : :
: : : : : : : : :
: : : 0 Ck(p− 2; p− 2)




is a special element for the vector  .
Consider now the vector f(x)= (p=u′) ∗ i(x), where x is a vector of variables

(x1; : : : xm), and i(x)= x. The Lemma 2.3 implies that the formal group law H (x; y)=
f−1(f(x)+f(y)) is de�ned over E, and, by construction, is a sum of p−2 summands
of dimensions 1; : : : ; p− 2. Theorem 5.1 guarantees that it is isomorphic to F .
According to [8, p. 74, Theorem 4.2], the reduction of F mod I contains a one-

dimensional summand of the height p − 1. Since the maximal dimension of an in-
decomposable summand of the reduction of F is less or equal to p − 2, using
[8, (4.7), p. 71] we see that the height of the reduction of the one-dimensional sum-
mand must be p− 1.

Now we present a certain deformation of a formal group of height p − 1 over Fp.
Later we will prove that this is a universal deformation in the sense of Lubin–Tate [7].

Corollary 5.4. Denote by FC the one-dimensional formal group law with the logarithm
 0;1(z). This is a formal group law over E; and the height of the reduction of FC mod
the ideal I is p− 1.

Proof. We have proved above that the vector  (z)= ( i; j(z)) has a special element
u=pIm +

∑∞
k=1 CkTk , such that for all k; Ck is a block diagonal matrix with the

blocks of dimensions 1; : : : ; p−2. By de�nition of the ∗-product it means that  0;1 has
a special element. It is made out of the blocks C1k of Ck of the size one by one. In
other words, it is given by the formula u=p+

∑∞
k = 1 C

1
k T

k . The Honda theory [4] and
Remark 2.3 imply that the formal group law FC(x; y)=  −1

0;1 ( 0;1(x)+ 0;1(y)) is de�ned
over E. Moreover, the very same series u is a special element for the one-dimensional
summand of the formal group law H (x; y), de�ned above. Therefore, according to the
Honda theory, these two one-dimensional formal group laws are isomorphic over E.
Thus, the height of the reduction mod I of FC is p− 1.
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6. A useful representation of Gp−1

From now on logF denotes the logarithm of a formal group F . Denote by E1 the ring
W (Fpp−1 )[[u1; : : : ; up−2]]. In this section we will describe a certain action of Gp−1 on
the ring E1. The result of the next section will imply that this action is the Lubin–Tate
action. In order to obtain the formulas for this representation of Gp−1 we will use the
generalized Legendre curve C in the same way we used the Legendre curve in section
three.
Let F be a formal group law of dimension one over the ring E1. Denote by �F the

reduction of F mod I =(p; u1; : : : ; up−2), and suppose that it has the height greater than
or equal to one. Let G be a subgroup of the group of automorphisms of �F over Fpp−1 .
Recall, that we can view G as a subgroup of the group of power series over Fpp−1

which are invertible under composition.
Denote g−1F(g(x); g(y)) by g−1(F).

De�nition 6.1. We say that F has the Lubin–Tate property with respect to G if for
any �g∈G, there is a unique lift g of �g to the ring E1[[x]], and an unique automorphism
�g of E1 as a complete local W (Fpp−1 )-algebra, such that

g−1(F)= �∗g (F(x; y)):

This lets us de�ne an action of G on the ring E1 as follows. For �g∈G, de�ne a
W (Fpp−1 )-linear ring automorphism of E1 by the formula:

�g(ui)= �g(ui):

We call this representation of G, the representation de�ned by F .

Remark 6.2. For purposes in homotopy theory we need to consider formal groups
over the ring E1[u−1; u]. If a formal group F de�nes a representation of G on E1 as in
De�nition 6.1, then we can extend it to an action of G on E1[u−1; u] by the formula

�g(u)= g′(0)u:

Remark 6.3. A formal group law F has the Lubin–Tate property if and only if for all
�g∈G there is a unique lift g of �g to the ring E1[[x]], and an unique automorphism �g

of E1 as a complete local W (Fpp−1 )-algebra, such that

�∗g (logF)=
logF ◦ g
g′(0)

:

Let C be a plane curve over the ring A, given by the equation C(x; y)= 0, � is a ring
homomorphism of A, and f is a transformation of A2 given by a pair of polynomial
functions f(x; y)= (f1(x; y); f2(x; y)). We denote by �∗(C) the inverse image of C
under �, and by f(C) the curve, de�ned by the equation C(f1(x; y); f2(x; y))= 0.
Set e0 = 1 and ep−1 = 0 and denote by [m] the reduction of the integer mmodp.

With this notation we have ei ≡ [i + 1]mod I , 0≤ i≤p− 1.
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Recall that the group Gp−1 is isomorphic to Zp�Z=(p−1)2. The last can be viewed
as a group of automorphisms over Fpp−1 of the curve �C, de�ned in section 4. Choose
i from the set {1; : : : ; p− 1}. One can see directly that the substitution �a of order p

x1 = x + i; y1 =y

and �b of order (p− 1)2

x1 = �p−1x; y1 = �py;

where �(p−1)
2
= 1, generate this group. A general form of a transformation a of C,

which reduces mod I to the automorphism �a of �C is

x1 = vp−1i x + ri; y1 = vpi y;

where ri ≡ i and vi ≡ 1mod I , and a general form of a transformation b of C, which
reduces mod I to an automorphism of �C of order (p− 1)2 is

x1 = vp−1x; y1 = vpy;

where vi ≡ 1, ri ≡ i, v≡ �mod I . We can always assume that �p−1 = k−1 were k is a
generator of F×p .

Proposition 6.4. For every �g∈Gp−1 there is a W (Fpp−1 )-linear automorphisms �g of
the ring E; and a transformation g of the curve C; such that

�∗g (Cp)= g−1(Cp):

Proof. Since Gp−1 is generated by �a and �b, we will look for automorphisms �a and
�b of the ring E1, and transformations a and b of the form described above, such that

�∗a (C)= a−1(C); �∗b (C)= b−1(C):

It is enough to look at the images of the marked points

(0; 0); (1; 0); (e1; 0); : : : ; (ep−2; 0)

of C under �a, �b and a, b. If we match the images of these points in the following
way:

0= vp−1i e[−1−i] + ri; 1= vp−1e[k−1];

1= vp−1i e[−i] + ri; �b(ej)= vp−1e[( j+1)k−1];

�a(ej)= vp−1i e[ j−i] + ri

1≤ j≤p − 2, we can solve the resulting equations for �a and �b. From the way we
solved these equations it is clear that the solution is unique. In terms of the roots
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e1; : : : ; ep−2 these automorphisms are given by the formulas:

�a(ej)=
e[ j−i] − e[−i−1]
e[−i] − e[−1−i]

; �b(ej)=
e[( j+1)i−1]
e[k−1]

;

�a(u)= (e[−i] − e[−1−i])1=(p−1)u �b(u)= (e[k−1])1=(p−1)u:

Remark 6.5. The series (1 + x)1=(p−1) exists in Zp[[x]].

Corollary 6.6. The formal group law FC has the Lubin–Tate property with respect
to Gp−1.

Proof. Let �g∈Gp−1 and its lift, obtained in Proposition 6.4, be represented by the
following substitution:

x1 = vp−1x + r; y1 = vpy:

Expanding this transformation we obtain a series g(z1), such that z= g(z1).
Recall that the series !0;1 is the expansion with respect to the parameter z= x=y of

the di�erential dx=y on the curve Cp. Denote by !g the expansion with respect to the
parameter z1 = x1=y1 of the di�erential dx1=y1 on the curve g(Cp). Then

dx
y
=
d(v1−p(x1 + r))

v−py1
= v

dx1
y1

:

Expanding both sides with respect to the parameter z1, we obtain that

v−1(g)′(z1)!0;1(g(z1))=!g(z1):

On the one hand, Proposition 6.4 implies that �∗gdx=y=dx1=y1, therefore, after ex-
panding both sides into series we obtain

�∗g!0;1(z1)=!g(z1):

To �nish the proof we need to formally integrate both the identities for !g(z1), and
note that v=(g)′(0).

Corollary 6.7. Let F be a formal group law and 
 :FC →F be a strict isomorphism
of formal group laws, both de�ned over E1; then F has the Lubin–Tate property with
respect to Gp−1. The representation of Gp−1 de�ned by F coincides with the one
de�ned by FC .

Proof. Let �g∈G, then there are g and �g, described above, such that g−1(FC)= �∗gFC .
Then we have (
 ◦ g ◦ �∗g (
−1))−1F = �∗gF Since 
 was a strict isomorphism, we have
(�∗g (
)g(


−1))′(0)= (g−1)′(0).
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7. On the properties of the one-dimensional summand

Since our base ring E is a Z(p)-algebra, FC is strictly isomorphic over E to a
p-typical formal group law, which we denote by GC . We also denote by �GC ( �FC)
the reductions of GC (FC) modulo the ideal I , and by G0C (F0C) the reductions of
GC (FC) modulo the ideal I0 = (u1; : : : ; up−2). So �GC and �FC are formal group laws
de�ned over Fp, and G0C and F0C are formal group laws de�ned over Zp.

Remark 7.1. According to Eq. (16.4.14) of [2] logGC
is obtained from logFC by cross-

ing out the terms mizi with i 6=pk . Moreover, if �(z)∈E[[z]] is the strict isomorphism
between GC and FC , then logGC

(z)= logFC (�(z)).

The purpose of this section is to prove the theorem.

Theorem 7.2. The formal group law GC is a universal Lubin–Tate lift of a formal
group of height p− 1 over Fp.

The proof will follow directly from the next two propositions.

Proposition 7.3. There is an automorphism �g of �GC(x; y) of order p; de�ned over
Fp; such that �g(z)= z + zpmod degreep+ 1.

Proof. The formal group laws GC and FC are strictly isomorphic over E by construc-
tion, therefore �GC and �FC are isomorphic over Fp. We claim that there is an isomor-
phism between �GC and �FC , such that as a series in z it is equal to zmod degreep+1.
Note that logG0C (z)= logF0C (�

0(z)), where �0(z) is the reduction of �(z)mod I0. The

logarithm of F0C is the formal integral of the following di�erential form:

!=
(1− p) dz

1 + (p− 1) zwp−2 ; (7.1)

where the series w(z) obeys the following functional equation:

w= zp − zwp−1:

This functional equation implies that w is a series in powers of z congruent to p
modulo (p− 1)2 and, therefore, !=!(z) dz is the di�erential form such that !(z) is
a series in powers of z congruent to zero modulo (p − 1)2. From this we conclude
that the series logF0C and logG0C are congruent to zmod degreep + 1. Therefore, �0(z)
is congruent to zmod degreep+1. Its reduction modp gives an isomorphism between
�GC and �FC with the stated above properties.
�FC has an automorphism of order p, such that as a series, it is congruent to

zmod degreep+1. Take, for example, a1 from Proposition 6.4, expand it into a series
with respect to a local parameter x=y and reduce the resulting series mod I . This proves
the proposition.
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Proposition 7.4.

logGC
= z +

p−2∑
i=1

ti
p
uizp

i
(7.2)

ti ∈Z×
p ;mod I 20 and mod degree pp−1. This implies that GC is a universal deformation

of the formal group law �GC .

Proof. Recall that the logarithm of GC is obtained in the following way: choosing a
local parameter z as in Corollary 4.4 we obtain the following formula for the expansion
of the di�erential !=dx=y on the curve Cp. If !=!(z) dz, then

!(z)=
(1− p)

1−
(

p−2∑
i=1

iuizp−iwi−1 + (p− 1)bzwp−2
) ; (7.3)

where w satis�es the following functional equation:

w= zp +
p−2∑
i=1

uizp−iwi + bzwp−1: (7.4)

Integrate !(z) and cross out the terms mizi with i not equal to a power of p.
We claim that (7.2) holds for some ti ∈Qp;mod I 20 . This follows from the following

facts:
(a) In the series w(z) and !(z), reduced mod I0, the powers of z are congruent to

p and zeromod (p− 1)2, respectively.
(b) In the series w(z) the coe�cient of zk is equal to uimod degree two if and only

if k =p− i + pi or zeromod (p− 1)2.
(c) In the series !(z) the coe�cient of zk is equal to uimod degree two if and only

if k is congruent to pi − i or zeromod (p− 1)2.
(d) pi−1 =pi − pmod (p− 1)2, 1≤ i≤p− 1.
The proof is direct and uses (7.3) and (7.4).
Now we will prove that ti ∈Z×

p . Examining the above formula for the expansion of
the di�erential dx=y, we easily see that t1 ∈Z×

p . Suppose we have proved the propo-
sition for j¡i. Since FC is isomorphic to GC , the Corollary 6.7 implies that GC has
the Lubin–Tate property with respect to Gp−1. In particular, there is a lift g of �g from
Proposition 7.3, such that

�∗g (GC)= g(GC):

For logGC
we get the identity

�∗g (logGC
)(z)=

logGC
(g(z))

g′(0)

and taking into account that g(z)= z + zpmod degreep+ 1, we see that

�∗g (tiui)= tiui + ti−1ui−1;
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mod I 20 , and modp; u1; : : : ; ui−2, and ti−1 ∈Z×
p . On the other hand, the formulas in

Proposition 6.4 tell that

�∗g (ui)= ui + ci−1ui−1

ci−1 ∈Z×
p ;modp; u1; : : : ; ui−2, and I 20 . This implies that ti must be a unit in Zp.

Proposition 1:1 from [7] implies now that GC is a universal deformation of �GC .

The following corollary shows that the formulas from Proposition 6.4 can be used
for calculations with the cohomology theories represented by the spectra EOp−1.

Corollary 7.5. The representation of Gp−1 de�ned by FC is the Lubin–Tate repre-
sentation.
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