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PERFECT EVEN MODULES AND THE EVEN FILTRATION

PIOTR PSTRĄGOWSKI

Abstract. Inspired by the work of Hahn-Raksit-Wilson, we introduce a variant of the even
filtration which is naturally defined on E1-rings and their modules. We show that our variant
satisfies flat descent and so agrees with the Hahn-Raksit-Wilson filtration on ring spectra of
arithmetic interest, showing that various “motivic” filtrations are in fact invariants of the E1-
structure alone. We prove that our filtration can be calculated via appropriate resolutions in
modules and apply it to the study of even cohomology of connective E1-rings, proving vanish-
ing above the Milnor line, base-change formulas, and explicitly calculating cohomology in low
weights.
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1. Introduction

In [HRW22], Hahn-Raksit-Wilson introduced the even filtration attached to a commutative
algebra in spectra. They show that when applied to ring spectra of arithmetic interest, such as the
sphere or THH of commutative rings, their construction recovers various important filtrations, such
as the Bhatt-Morrow-Scholze filtration of [BMS19], implying that these filtrations are invariants of
the E∞-ring structure alone. The Bhatt-Morrow-Scholze filtration can be used to define prismatic
and syntomic cohomology of commutative rings, and the even filtration allows one to extend this
construction to the context of E∞-ring spectra. This provides strong evidence towards the long-
standing conjecture of Rognes on the existence of a motivic filtration on algebraic K-theory of
commutative ring spectra [Rog14].

In this paper, we introduce a variant of the even filtration which informally measures the
complexity of the ∞-category of perfect complexes with even cells. The filtration we construct,
which one could call the perfect even filtration, has the following properties:

(1) it is naturally defined on E1-ring spectra and their modules, rather than only in E∞-case,
(2) it satisfies flat descent, and as a consequence agrees with the even filtration in the examples

considered in [HRW22], showing in particular that various motivic filtrations are invariants
of the E1-ring structure alone,

(3) in the examples where they disagree, for example on free E∞-algebras, the perfect even
filtration gives more reasonable answers than the even filtration,

(4) the perfect even filtration has an essentially linear definition and so can be efficiently
computed by resolutions of modules,

(5) the perfect even cohomology groups have excellent formal properties, especially in the case
of connective E1-rings: they vanish above the Milnor line, satisfy a base-change formula
in a neighbourhood of it, and in low weights can be calculated explicitly.

Our construction of the perfect even filtration is of categorical nature: we work with the ∞-
category of modules, together with its notion of evenness, rather than the ring itself. This has the
advantage that it naturally lends itself to generalization into other contexts, such as equivariant
or motivic homotopy theory. We briefly discuss the possible generalizations at the end of the
introduction.

Note that for THH(R) to have an E1-ring structure and hence have an induced perfect even
filtration, R needs to be only an E2-ring. Thus, the main construction of this paper suggests the
existence of a good theory of prismatic cohomology in the context of E2-ring spectra, a topic we
will pursue in the sequel to the current work written jointly with Raksit [PR23].

Terminology. The above few paragraphs are the only part of the paper where we use the term
perfect even filtration. This is an apt name, but for brevity in the main body of the text we refer
to the filtration introduced in the current work simply as the even filtration. To distinguish it from
the one introduced by Hahn-Raksit-Wilson, we will refer to the latter as the E∞-even filtration.

We now discuss our results in more detail. Let R be an E1-algebra in spectra. We say that a
left R-module A is perfect even if it belongs to the smallest subcategory

Perf(R)ev ⊆ Perf(R)

containing R and closed under even (de)suspensions, retracts and extensions. We say that a map
of perfect even R-modules is an even epimorphism if its fibre is again perfect even. Declaring
even epimorphisms as coverings endows Perf(R)ev with a Grothendieck topology. An R-module
M determines through the Yoneda embedding an additive spectral sheaf

Y (M) ∈ ShvΣ(Perf(R)ev, Sp)

given by the formula Y (M)(A) := Map
ModR

(A,M), the mapping spectrum.
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Definition 1.1. The even filtration on M is the filtered spectrum given by

filnev(M) := ΓPerf(R)ev (R, τ≥2nY (M)),

where τ≥2n denotes the connective cover in sheaves of spectra.

Our first result shows that this filtration is compatible with the ring structure.

Theorem 1.2 (3.15). Let R be an E1-ring. Then, the even filtration fil∗ev(R) has a canonical lift
to an E1-algebra in filtered spectra and the R-module even filtration canonically lifts to a functor

(1.1) fil∗ev/R : ModR(Sp)→Modfil∗ev(R)(FilSp).

If R is an En-ring for n ≥ 2, then fil∗ev(R) can be canonically refined to a filtered En-algebra and
(1.1) can be canonically refined to a lax En−1-monoidal functor.

We in fact show something slightly stronger, namely that fil∗ev(R) is an E1-algebra over fil∗ev(S
0),

the even filtered sphere. As we discuss below, the latter can be identified with the Adams-Novikov
filtration of the sphere, so that fil∗ev(R) has a canonical lift to an algebra in synthetic spectra or,
after p-completion, in the category of C-motivic spectra [GIKR21, Pst22].

We show that the even filtration is always given by the Whitehead tower M 7→ τ≥2∗M if either
the ring R or the module M has homotopy concentrated in even degree. In particular, it follows
that when restricted to E∞-rings, there is a canonical comparison natural transformation

fil∗ev(−)→ fil∗
E∞-ev(−)

into the Hahn-Raksit-Wilson E∞-even filtration. As the main method of calculating the E∞-even
filtration is via flat descent, to establish that the comparison map is an equivalence for a large
class of rings we first prove descent for the even filtration of Definition 1.1.

We say that an R-module M is even flat if it can be written as a filtered colimit of perfect
evens; these modules can be characterized in several different ways, see Proposition 4.12, and so
can be effectively detected. If R is an E2-ring1, then we say that an E1-R-algebra is faithfully
even flat if both S and cofib(R → S) are even flat as R-modules. This definition is motivated
by a classical observation that a monomorphism of classical commutative rings is faithfully flat if
both the target and the cokernel are flat. In Proposition 6.19, we show that in the E∞-context,
our notion of faithfully even flat is equivalent to that of Hahn-Raksit-Wilson for connective rings,
and strictly stronger in general.

Theorem 1.3 (6.24). Let R be an E2-ring and let S be faithfully even flat an E1-R-algebra. Then
for any R-module M the canonical map

fil∗ev/R(M)→ lim
←−

fil∗ev/S⊗R•(S⊗R• ⊗R M)

is an equivalence of filtered spectra after completion.

Since the E∞-even filtration also satisfies flat descent, we deduce the following.

Theorem 1.4 (7.3). Let R be an E∞-ring which admits a faithfully even flat map R → S into
an E∞-ring with π∗S even. Then the comparison functor

fil∗ev(R)→ fil∗
E∞-ev(R)

is an equivalence of filtered spectra after completion.

Note that the even filtration considered in this paper is always exhaustive in the sense that
lim
−→

fil∗ev(R) ≃ R, but it is not always complete. Thus, even in cases where the two filtrations

agree up to completion, fil∗ev(R) can be considered as a naturally occuring “decompletion” of the
Hahn-Raksit-Wilson filtration.

1In the main body of the text we prove descent for maps of E1-rings, see Theorem 6.23, but we stick to algebras
in the introduction for simplicity.
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The comparison of Theorem 1.3 covers most of examples considered in [HRW22]. In particular,
it applies to S0,HH(R/k),THH(R) and THH(R)∧p , where by results of Hahn-Raksit-Wilson one
recovers, respectively, the Adams-Novikov filtration, the Hochschild-Kostant-Rosenberg filtration,
the Bhatt-Lurie filtration and the filtration of Bhatt-Morrow-Scholze. However, we warn the
reader that it does not apply to the the motivic filtrations on TC,TC− and TP, as here an
appropriate definition of the E∞-even filtration requires one to take the S1-action into account.
We believe that a suitable S1-equivariant variant of Definition 1.1 would recover these remaining
motivic filtrations, but we do not consider this problem here.

The even filtration and the E∞-even filtration do not agree in general. In Example 7.6, due
to Robert Burklund, we give an instructive instance of this phenomena for a connective E∞-ring.
However, one could argue that when they disagree, it is the even filtration of Definition 1.1 which
gives more reasonable answers: in Burklund’s example, we are able to determine the structure of
the even filtration completely, but the nature of the E∞-even filtration seems somewhat difficult.

Outside of the connective context, the situation is even more striking: in Warning 7.7, we
describe a periodic E∞-ring whose E∞-even filtration is identically zero, but whose even filtration
is exhaustive, complete and easy to calculate. This simplicity comes down to the fact that even
if one starts with an E∞-ring R, it is much easier to produce E1-R-algebras rather than E∞-R-
algebras, which allows one to apply Theorem 1.3.

We now describe how one can calculate the even filtration in practice. Since the even filtration
is defined in terms of Postnikov towers in sheaves, it is controlled by sheaf cohomology. For any
half-integer q, we write

FM (q) := π2qY (M)

for the sheaf of homotopy groups and call it the even sheaf of weight q. We say that M is
homologically even if these sheaves vanish for q ∈ Z + 1/2. For example, all perfect even modules
are homologically even, in particular R itself.

Definition 1.5. The even cohomology of R with coefficients in M is given by sheaf cohomology

Hp,q
ev := Hp

Perf(R)ev
(R,FM (q)).

Note that if M is homologically even2, then the associated graded object of the even filtration
can be described in terms of even cohomology in the sense that

π2q−pgr
q
ev(M) ≃ Hp,q

ev (R,M).

The even filtration thus induces a spectral sequence of signature

Hp,q
ev (R,M)⇒ π2q−p(M),

which we call the even spectral sequence.
As any form of sheaf cohomology, even cohomology can be efficiently computed using injective

resolutions inside the category of sheaves of abelian groups. To do so, one needs access to injective
sheaves, a bountiful source of which are R-modules themselves. This means that even cohomology
(and hence the even filtration) can be efficiently computed through resolutions in the ∞-category
of R-modules, as we now explain.

Let M be homologically even. By iteratively attaching even cells in R-modules along each odd
degree homotopy class we construct a map M → E0 into a module with even homotopy groups
with the property that the cofibre C0 := cofib(M → E0) is homologically even. We can then

2The assumption that M is homologically even can be removed, but to get the most elegant results in this
case it is preferable to introduce a refinement of the even filtration into a filtration indexed by half-integers, see
Remark 2.26. We mainly work in the homologically even case as it covers all of the examples we are after, since R

itself is homologically even.
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attach even cells to C0 to obtain a map C0 → E1 with π∗E1 even and C2 := cofib(C0 → E1)
homologically even. Proceeding inductively in this form we produce a diagram of R-modules

(1.2)

E0 E1 E2 . . .

M C0 C1 C2

whose top row is a chain complex in the homotopy category. The following shows that this diagram
encodes the even cohomology of M .

Theorem 1.6 (5.3). If M is homologically even and (1.2) a diagram as described above, then
there is a canonical isomorphism

Hp,q
ev (R,M) ≃ Hp(π2qE•),

between the (p, q)-th even cohomology of M and the cohomology of the cochain complex

π2qE0 → π2qE1 → π2qE2 → . . .

computed in the p-th spot.

We also prove a more refined version of Theorem 1.6 which gives a description of the even
filtration itself as a décalage of an appropriate cosimplicial resolution through modules with even
homotopy, see Proposition 5.6 and Remark 5.8.

We show that Theorem 1.6 gives an effective way of calculating even cohomology, particularly in
the connective case. To see this, note that if both R and M are connective, then in the construction
of E0 of (1.2) one needs to use only positive-dimensional cells. Iterating this construction thus
leads to a raising connectivity of the diagram, giving a vanishing line.

Theorem 1.7 (8.1, 8.2, 8.3). Let R be a connective E1-ring and M a connective, homologically
even R-module. Then the even cohomology groups of M vanish above the Milnor line; that is, we
have

Hp,q
ev (R,M) = 0

for p > q. In particular, the even filtration fil∗ev/R(M) is complete and the even spectral sequence

Hp,q
ev (R,M)⇒ π2q−pM

is strongly convergent.

Strikingly, in low weights we are able to calculate the even cohomology groups explicitly with
virtually no assumptions on the ring R.

Theorem 1.8 (8.5, 8.6). Let R be a connective E1-ring and M a connective, homologically even
R-module. Then there are canonical isomorphisms

(1) H0,0
ev (R,M) ≃ π0M ,

(2) H0,1
ev (R,M) ≃ coker(π1R⊗Z π1M → π2M),

(3) H1,1
ev (R,M) ≃ π1M ,

(4) H2,2
ev (R,M) ≃ im(π1R⊗Z π1M → π2M).

Before stating our last main result, we mention that the various notions of evenness one can
attach to an R-module introduced in this article (perfect even, even flat, homologically even, as
well as the classical notion of having homotopy groups concentrated in even degrees) interact
with each other in interesting ways, and §4 is devoted to the study of their relationships. For an
example of the kind of result we prove, we show that if E is a right R-module with π∗E even and
M is homologically even, then

π∗(E ⊗R M)
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is concentrated in even degree if at least one of E or M is even flat, see Proposition 4.12 and
Theorem 4.14. Moreover, these kind of tensor properties characterize these classes with respect
to each other, giving more evidence that our notion of even flatness is the right one.

These results are important in showing how even cohomology behaves under either extension
or restriction of scalars attached to a map of E1-rings, which we do in detail in §6.1. As an
application of these methods, we prove the following base-change result which describes behaviour
of even cohomology in a neighbourhood of the Milnor line p = q.

Theorem 1.9 (8.7). Let f : R→ S be a map of connective E1-rings such that S is homologically
even as a right R-module and let M be an even flat R-module. Then the base-change of the
canonical comparison map

π0S ⊗π0R Hp,q
ev (R,M)→ Hp,q

ev (S, S ⊗R M)

is a surjection for p ≥ q − 1.

As mentioned at the beginning of the introduction, a tantalizing prospect of having an E1-even
filtration is that it allows one to define a “motivic” filtration on THH(R) and its variants as soon
as R is an E2-ring. This would be important in applications, since many chromatically important
spectra (such as the Brown-Peterson spectrum or its truncated variants) cannot be made E∞, but
can often be made E2 [Sen17, Law18, HW22].

As one piece of evidence that the even filtration introduced in the present work is the right
way to define prismatic cohomology of E2-ring spectra, we observe in Example 6.25 that the
descent filtration associated to THH(BP〈n〉)→ THH(BP〈n〉/MU), used by Hahn-Wilson in their
proof of Lichtenbaum-Quillen conjectures for BP〈n〉 [HW22], coincides with the even filtration
fil∗ev(THH(BP〈n〉)). In particular, it is canonically attached to BP〈n〉 as a E2-ring spectrum and
does not depend on the structure of an MU-algebra. To keep this article focused and at manageable
length, we do not pursue the idea of prismatic cohomology of E2-ring spectra in the current work
and instead will pick it up in upcoming joint work with Raksit [PR23].

With a nod towards future applications, observe that the only input needed to define the even
filtration of Definition 2.19 is the ∞-category of modules, together with the notion of a perfect
even. This suggests a natural generalization of our construction to filtrations defined in other
contexts, using an appropriate notion of “evenness”. For example:

(1) In equivariant homotopy theory, the role of the Postnikov filtration of a spectrum is
played by the equivariant slice filtration [Dug05, Hil12]. As the generating objects for the
slice filtration are essentially representation spheres, this suggests that in C2-equivariant
homotopy theory, the role of perfect even R-modules should be played by modules built
out of ΣnσR, where σ is the regular representation of C2.

(2) As shown by Hahn-Raksit-Wilson, the even filtration relative to the∞-category of spectra
is essentially the Adams-Novikov filtration relating stable homotopy theory to formal
groups. The work of Bachmann-Kong-Wang-Xu on the Chow-Novikov t-structure shows
that similar phenomena are visible in the stable motivic category SH(k) if as generating
objects one takes the suspension spectra of smooth projective varieties [BKWX22]. This
suggests that the right notion of a “perfect even” in the motivic world should perhaps be
that of a motive of a smooth projective variety.

Ideas related to the second observation above will be used in upcoming joint work with Haine to
construct spectral refinements of the weight filtration on cohomology of algebraic varieties [HP23a].
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2. The even filtration

This section is devoted to the construction of the even filtration and its most basic properties.

Notation 2.1. Throughout, R denotes an E1-algebra in spectra. By an R-module we mean a
left module in spectra.

2.1. Perfect even modules

Definition 2.2. We say that an R-module A is perfect even if it belongs to the smallest subcat-
egory

Perf(R)ev ⊆ModR(Sp)

which contains Σ2kR for k ∈ Z and is closed under extensions and retracts.

Warning 2.3. Beware that Perf(R)ev is additive and admits even (de)suspensions, but it is
usually not a stable ∞-category.

Notation 2.4. If the ring R is understood, we write Perfev := Perf(R)ev.

Definition 2.5. We say that a map f : A→ B of perfect even R-modules is an even epimorphism
if its fibre in R-modules is also perfect even. A family of maps {fi : Ai → B} of perfect even
modules is covering if it consists of a single even epimorphism.

Note that even epimorphisms are closed under pullback, so that coverings define a Grothendieck
topology. As a consequence of the fact that covering families are singleton, we have the following
elegant characterization of additive sheaves.

Theorem 2.6. If A is an additive, presentable ∞-category, then the following holds:

(1) an A-valued presheaf X : Perfopev → A is additive and a sheaf with respect to the even
epimorphism topology if and only if for every even epimorphism f : A→ B, the sequence

X(B)→ X(A)→ X(fib(f))

is fibre,
(2) the sheafication functor on A-valued presheaves preserves additive presheaves so that its

restriction
L : PΣ(Perfev,A)→ ShvΣ(Perfev,A)

to additive presheaves is an exact localization.

Proof. This is [Pst22, Theorem 2.8] and [Pst22, Proposition 2.5]. �

We will be mainly interested in the situation where the additive ∞-category is given either by
abelian groups or spectra. The two are closely related:

Corollary 2.7. The∞-category of additive sheaves of spectra admits a unique t-structure in which
X : Perf(R)opev → Sp is coconnective if and only if X(A) ∈ Sp≤0 for all perfect even A. Moreover:

(1) the sheafication functor

L : PΣ(Perf(R)ev, Sp)→ ShvΣ(Perf(R)ev, Sp)

is both left and right t-exact,

3100 Nassau St, Princeton, NJ 08542
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(2) taking homotopy groups induces a canonical equivalence

ShvΣ(Perf(R)ev , Sp)
♥ ≃ ShvΣ(Perf(R)ev ,Ab)

between the heart and the category of additive sheaves of abelian groups and
(3) the t-structure on ShvΣ(PerfR, ev; Sp) is compatible with filtered colimits; that is, cocon-

nective sheaves are closed under filtered colimits.

Proof. The first property follows from (2) of Theorem 2.6. The second is a consequence of the
first and the description PΣ(Perfev, Sp)

♥ ≃ PΣ(Perfev,Ab). The third property follows from part
(1) of Theorem 2.6, since fibre sequences are stable under filtered colimits. �

2.2. Even sheaves and homology of perfect evens

The spectral Yoneda embedding associated to an R-module M is a presheaf

Y (M) : Perf(R)opev → Sp

of spectra given by the formula

Y (M)(A) := Map(A,M),

where the mapping spectrum is calculated in ModR. As a consequence of Theorem 2.6, this is
in fact a sheaf with respect to the even epimorphism topology. Of particular importance are its
sheaves of homotopy groups, so that we give them a dedicated name:

Definition 2.8. The even sheaf associated to M is given by

FM := π0Y (M)

It is an additive sheaf of abelian groups on perfect even R-modules. More generally, for any
q ∈ 1/2Z, the even sheaf of weight q is given by

FM (q) := π2qY (M).

Remark 2.9. Our grading convention in terms of half-integer Serre twists is inspired by algebraic
geometry, and it is compatible with the one employed in joint work with Hesselholt on geometry
of graded-commutative rings [HP22a, HP23b].

In more detail, in various cohomology theories of algebraic geometry, a single twist Z(1) usually
denotes the reduced cohomology of P1. Since the latter is topologically a 2-sphere, it follows that
weight should be in correspondence with twice the topological dimension.

Remark 2.10. Concretely, FM := L([−,M ]) is given by as the sheafication of the presheaf of
abelian groups given by

A 7→ π0Map
ModR

(A,M).

We have a canonical isomorphism

FM (−1/2) ≃ FΣM ,

so that the even sheaves of non-zero weight can be identified with sheaves associated to (de)suspensions
of M .

Proposition 2.11. The even sheaf functor

F− : ModR → ShvΣ(Perfev;Ab)

is homological; that is, if M1 →M2 →M3 is a cofibre sequence of R-modules, then

FM1 → FM2 → FM3

is exact in the middle as a sequence of sheaves of abelian groups.

Proof. This is clear from Remark 2.10, since sheafication is exact. �
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Remark 2.12. Note that by extending M1 → M2 → M3 using (de)suspensions, we see that
associated to a cofibre sequence we in fact have a long exact sequence of the form

. . .→ FM2(1/2)→ FM3(1/2)→ FM1 → FM2 → FM3 → FM1(−1/2)→ FM2(−1/2)→ . . . ,

where we use the isomorphism of Remark 2.10.

Construction 2.13 (Local grading of the sheaf ∞-category). The double suspension functor
on Perf(R)ev induces via precomposition a t-exact autoequivalence of the ∞-category of sheaves
which we denote by

(−)(1) : ShvΣ(Perfev(R), Sp)→ ShvΣ(Perfev(R), Sp).

For n ∈ Z, we denote the n-fold composite of this functor with itself by (−)(n). Explicitly, for
any sheaf X and any A ∈ Perfev(R) we have

(X(n))(A) := X(Σ2nA).

Remark 2.14. Our notation concerning the local grading is compatible with that of Definition 2.8
in the sense that if M is an R-module then

FM (k/2)(n) ≃ FM (k/2 + n).

We will be mainly interested in the even filtration in case of the following class of modules.

Definition 2.15. We say that an R-module M is homologically even if FM (q) = 0 for any
half-weight q ∈ 1/2 + Z.

Remark 2.16. By Remark 2.14, M is homologically even if and only if FM (−1/2) = 0.

Lemma 2.17. Let A be a perfect even R-module. Then A is homologically even. In particular,
R is homologically even as a module over itself.

Proof. By Remark 2.16, it is enough to show the vanishing of FA(−1/2), which we can identify
with the sheafication of the presheaf

(B ∈ Perfev) 7→ (π0MapModR
(B,ΣA) ∈ Ab).

Thus, we have to show that every homotopy class of maps B → ΣA is locally zero in the even
epimorphism topology. However, we have a cofibre sequence

A→ F → B → ΣA

and F → B is the required even epimorphism. �

We also verify that the notion of an even epimorphism introduced in Definition 2.5 is the one
detected by even sheaves.

Lemma 2.18. A map B → A of perfect even R-modules is an even epimorphism (that is, has a
perfect even fibre) if and only if FB → FA is an epimorphism in ShvΣ(Perfev,Ab).

Proof. If B → A is an even epimorphism, then by definition it is a singleton covering family in
the even epimorphism topology. It follows that the induced map of sheaves is an epimorphism.

Conversely, suppose that FB → FA is an epimorphism of sheaves. It follows that there exists
a commutative diagram of perfect even spectra

C

A B

p

q

s
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with p an even epimorphism. We can extend p and q to a larger diagram

D D

F A×B C C

F A B

p

q

q′

where both lower rows and two right columns are cofibre sequences of R-modules. Since p is is
assumed to be an even epimorphism, D is perfect even and hence so is A×B C as an extension.
The map s in the original triangle provides a splitting of q′ and we deduce that F is a retract of
A×B C and hence it is also perfect even, which is what we wanted to show. �

2.3. The even filtration and even cohomology

If M is an R-module, we have a canonical identification of spectra

ΓPerfev (R, Y (M)) := Y (M)(R) ≃ MapModR
(R,M) ≃M.

As the left hand side is given by sections of a sheaf of spectra, it has a canonical filtration induced
by the t-structure.

Definition 2.19. Let R be an E1-ring and M be an R-module. The even filtration of M is given
by the filtered spectrum

filnev(M) := ΓPerfev(R)(R, τ≥2nY (M)),

where the connective cover is calculated in the sheaf ∞-category.

Remark 2.20. The use of connective covers in Definition 2.19 is similar to the construction of the
Bhatt-Morrow-Scholze filtration on THH and its variants through the use of the quasisyntomic
site [BMS19]. The difference is that in the present case the site Perf(R)ev used to define the
filtration depends on the ring itself; on the other hand, it is somewhat linear in nature.

We record that the even filtration is exhaustive and commutes with filtered colimits.

Proposition 2.21. The canonical maps

πk fil
n
ev(M)→ πkM

induced by τ≥2nY (M)→ Y (M) are an isomorphism for k ≥ 2n and injective for k = 2n− 1. In
particular

lim
−→

filnev M ≃M.

Proof. Since sheafication is right t-exact, the cofibre of τ≥2nY (M)→ Y (M) in sheaves is (2n−1)-
coconnective. As coconnectivity in sheaves is detected levelwise, the claim follows. �

Lemma 2.22. Let M ≃ lim
−→

Mα be a filtered colimit of R-modules. Then fil∗ev(M) ≃ lim
−→

fil∗ev(Mα).

Proof. This is immediate from property (3) in Corollary 2.7. �

As the even filtration is induced by the Postnikov filtration in sheaves, its associated graded
object can be described in terms of sheaf cohomology, for which we introduce dedicated notation.

Definition 2.23. If M is an R-module, the even cohomology of R with coefficients in M is given
by sheaf cohomology

Hp,q
ev (R,M) := Hs

Perfev (R,FM (q)) ≃ ExtpPerfev(FR,FM (q)).

If the ring R is understood, we write

Hp,q
ev (M) := Hp,q

ev (R,M).
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Remark 2.24 (Even cohomology and the even filtration). Let M be a homologically even R-
module, so that FM (k/2) = 0 for all odd k. In this case, the Whitehead tower of Y (M) of the
form

. . . τ≥2n+2Y (M) τ≥2nY (M) τ≥2n−2Y (M) . . .

Σ2n+2FM (n+ 1) Σ2nFM (n) Σ2n−2FM (n− 1)

has associated graded given by (de)suspensions of the even sheaves of Definition 2.8, considered
as objects of the heart ShvΣ(Perfev, Sp)

♥ ≃ ShvΣ(Perfev,Ab).
Passing to sections over R, we deduce that for any n, t ∈ Z we have a canonical isomorphism

πt gr
n
ev M ≃ H2n−t

ev (R,FM (n)) ≃ H2n−t,n
ev (R,M).

between the homotopy groups of the associated graded and even cohomology. This can be rewritten
in a more pleasant form as

Hp,q
ev (R,M) ≃ π2q−p gr

q
ev(M).

Definition 2.25. If M is homologically even, we call the spectral sequence associated to the even
filtration of M the even spectral sequence. It is of signature

Ep,q
2 := Hp,q

ev (R,M)⇒ π2q−p(M).

with differentials of bidegree |dr| = (2r − 1, r − 1).

Remark 2.26 (Integer and half-integer grading). In principle, it is possible to consider the even
filtration as half-integer graded; that is, it makes sense to talk of

filnev := ΓPerfev(R)(R, τ≥2nY (M))

for n ∈ 1/2Z. In practice, we are mainly interested in the even filtration for homologically even
M . In this case, which includes R itself by Lemma 2.17, we have

filnev(M) ≃ filn−
1/2

ev (M)

for all n ∈ Z, so that it is more convenient to consider the even filtration as only integer-graded.
Our choice of notation is dictated by compatibility with the even filtration of Hahn-Raksit-Wilson
[HRW22] and subsequently, the various motivic filtrations.

That being said, the convention of Definition 2.19 is really most appropriate only when M is
homologically even. In the general case, it is preferable to work with the half-integer graded even
filtration, whose associated graded is always given by the even cohomology groups (which now
might be non-zero in half-integer weight).

Similar tension exists in the classical case of MU-homology, since the category of even graded
MU∗MU-comodules has a beautiful geometric interpretation as the category of quasi-coherent
sheaves on the moduli stack of formal groups. However, the language of quasi-coherent sheaves
is less convenient when talking about spectra whose MU-homology is not concentrated in even
degrees, as one then needs to keep track of a pair of sheaves as in [Lur10, Lecture 11].

2.4. Example: Modules with even homotopy groups

In case of modules with even homotopy, even cohomology takes a particularly simple form.

Lemma 2.27. Let E be an R-module and suppose that π∗E is concentrated in even degree. Then

(1) E is homologically even,
(2) we have filnevE ≃ τ≥2nE for all n ∈ Z.



PERFECT EVEN MODULES AND THE EVEN FILTRATION 12

Proof. Since π∗E is concentrated in even degree, so is the R-linear cohomology group

E∗
R(A) ≃ π−∗MapModR

(A,E)

for any perfect even A. Since the half-weight even sheaves are defined as the sheafication of the
presheaf of odd homotopy groups, which vanish, we deduce that they are all zero, proving (1).

For (2), observe that since all three groups are concentrated in even degree, long exact sequence
of cohomology shows that if

A→ B → C

is a cofibre sequence of perfect evens, then

0→ E∗
R(C)→ E∗

R(B)→ E∗
R(A)→ 0

is short exact. It follows from the criterion of Theorem 2.6 that the presheaf of spectra on Perfev
defined by

A 7→ τ≥2n(Γ(A,E)) ≃ τ≥2n(Map(A,E))

is a sheaf and thus

filnev E := Γ(R, τ≥2nY (E)) ≃ τ≥2n(Γ(R, Y (E))) ≃ τ≥2n(Map(R,E)) ≃ τ≥2nE,

as claimed. �

Corollary 2.28. If E is an R-module with π∗E even, then its even cohomology groups are given
by

H0,q
ev (R,E) ≃ π2qE

in cohomological degree zero and vanish otherwise.

Proof. This follows from Lemma 2.27 and Remark 2.24. �

2.5. Example: Rings with even homotopy groups

In the previous section, we have seen that the even filtration of an R-module E such that π∗E
is even coincides with the Postnikov filtration. We now verify that this conclusion can be extended
to all R-modules assuming that the ring itself satisfies this condition.

Lemma 2.29. Let R be a E1-ring such that π∗R is even. Then every cofibre sequence

A→ B → C

of perfect even R-modules splits.

Proof. Since the condition of having even homotopy groups is stable under retracts, extensions
and even (de)suspensions, we deduce that π∗M is even for any perfect even M . Applying the
same reasoning to π∗Map

ModR
(N,M), we deduce that all odd degree maps between perfect even

R-modules are null-homotopic. In particular, this applies to the boundary map C → ΣA, so that
the cofibre sequence splits. �

Corollary 2.30. Let R be a E1-ring such that π∗R is even. Then, every additive presheaf
X : Perf(R)opev → X is a sheaf with respect to the even epimorphism topology. In particular,
connective covers of additive sheaves are calculated levelwise.

Proof. The first part is immediate from Lemma 2.29 and the characterization of additive sheaves
given in Theorem 2.6. The second follows from the fact that additive presheaves are closed under
taking levelwise connective covers. �

Proposition 2.31. Let R be a E1-ring such that π∗R is even. Then for every R-module M we
have

filnev(M) ≃ τ≥2nM.
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Proof. This follows from Corollary 2.30, since

Γ(R, τ≥2nY (M)) ≃ τ≥2n(Map
ModR

(R,M)) ≃ τ≥2nM.

�

3. Multiplicative properties of the even filtration

In this section we establish that the even filtration of an En-ring can be canonically promoted
to an En-algebra in filtered spectra. Our analysis requires some study of the monoidal properties
of the ∞-categories of additive sheaves introduced in §2.

The ∞-category ShvΣ(Perf(R)ev, Sp) has a canonical set of compact generators as a stable,
presentable ∞-category. These are not given by the image of perfect evens under the spectral
Yoneda embedding, but rather their connective covers, for which we introduce dedicated notation:

Notation 3.1. If M ∈ModR(Sp), we write

νR(M) := τ≥0Y (R) ∈ ShvΣ(Perf(R)ev, Sp).

Remark 3.2. Note that if A ∈ Perf(R)ev , then the Yoneda lemma yields an equivalence

Map(ν(A), X) ≃ ΓPerfev (A,X)

for any X ∈ ShvΣ(Perf(R)ev, Sp), where the left hand side is the internal mapping spectrum. In
particular, ν(A) generate the ∞-category of additive sheaves under colimits and desuspensions.

3.1. Monoidal structure on additive sheaves

Construction 3.3. If R is an En-ring, them the ∞-category Perf(R) has a canonical En−1-
monoidal structure given by the R-linear tensor product. Since the tensor products preserves
colimits in each variable separately and R⊗R R ≃ R, the subcategory

Perf(R)ev ⊆ Perf(R)

is closed under the tensor product and hence inherits a unique En−1-monoidal structure. This
monoidal structure is compatible with the Grothendieck topology of even epimorphisms, so that
we have an induced monoidal structure on the∞-category ShvΣ(Perf(R)ev, Sp) of additive sheaves
given by Day convolution. It is uniquely determined by the properties that:

(1) the tensor product of sheaves preserves colimits separately in each variable,
(2) the connective Yoneda embedding νR(−) = τ≥0Y (−) : Perf(R)ev → ShvΣ(Perf(R)ev , Sp)

is strongly En−1-monoidal.

Definition 3.4. If R is an En-ring, we refer to the En−1-monoidal structure of Construction 3.3
as the canonical monoidal structure.

We record that the canonical monoidal structure is compatible with that of R-modules in the
following sense:

Proposition 3.5. If R is an En-ring, then the functor

νR(−) : ModR(Sp)→ ShvΣ(Perf(R)ev, Sp)

admits a canonical lax En−1-monoidal structure extending the strongly En−1-monoidal structure
of its restriction to Perf(R)ev.

Proof. Since the image of νR is contained in connective sheaves, which are closed under the tensor
product, it is enough to work with the connective part ShvΣ(Perfev, Sp)≥0. The universal property
of the canonical monoidal structure yields a unique strongly En−1-monoidal functor

ShvΣ(Perfev, Sp)≥0 →ModR(Sp)
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with the property that νR(A) 7→ A for any A ∈ Perf(R)ev. By construction, the functor νR can
be identified with its right adjoint, and hence it inherits a canonical lax En−1-monoidal structure
as an adjoint of an En−1-monoidal functor. �

3.2. Synthetic spectra and even filtration of the sphere

Introduced in [Pst22], the ∞-category of synthetic spectra is an ∞-categorical deformation
which categorifies the Adams spectral sequence. We have the following relationship between
sheaves on finite even spectra and synthetic spectra based on complex bordism MU.

Proposition 3.6. There exists a canonical symmetric monoidal equivalence

SynevMU ≃ ShvΣ(Perf(S
0)ev, Sp)

between additive sheaves on finite even spectra and even MU-based synthetic spectra, uniquely
determined by

(ν(P ) ∈ SynevMU) 7→ (νS0(P ) ∈ ShvΣ(Perf(S
0)ev, Sp))

when P ∈ Perf(S0)ev, the left hand side is the synthetic analogue of [Pst22, Definition 4.3] and
the right hand side is as in Notation 3.1.

Proof. By definition, even synthetic spectra are additive sheaves on the site SpfpeMU of finite spectra
with even, projective MU∗-homology, where the topology is given by MU∗-epimorphisms [Pst22,
Definition 5.10]. We claim that we in fact have an equivalence of ∞-sites

Perf(S0)ev ≃ SpfpeMU.

This comes down to the following two easy observations:

(1) a finite spectrum is perfect even if and only if it has even, projective MU∗-homology,
(2) a map between finite spectra with even, projective MU∗-homology is a MU∗-epimorphism

if and only if its fibre also has even, projective MU∗-homology.

One can verify that the equivalence of sheaf ∞-categories induced by this equivalence of sites has
the above property; it is the unique one since synthetic spectra of the form ν(P ) generate SynevMU

under colimits and desuspensions. �

By a result of Gheorge-Isaksen-Krause-Ricka [GIKR22], MU-synthetic spectra can be identified
with modules in filtered spectra. Keeping in mind Proposition 3.6, we present their construction
in terms of additive sheaves on perfect evens.

Definition 3.7. We define a functor

Γ∗ : ShvΣ(Perf(S
0)ev, Sp)→ Fil(Sp)

by the formula
Γn(X) := Σ2n(Γ(S2n, X)),

where the connecting maps

Γn+1(X) = Σ2n+2(Γ(S2n+2, X))→ Σ2n(Γ(S2n, X)) = Γn(X)

are adjoint to the the canonical colimit-to-limit comparison map induced by the identification

Σ2(S2n) ≃ S2n+2.

Remark 3.8. Let S be a spectrum, Y (S) := Map
Sp(−, S) the associated spectral presheaf, and

νS0(S) := τ≥0Y (S) its connective cover, where we’re using Notation 3.1. Then

filnev(S) := Γ(S0, τ≥2nY (S)) ≃ Σ2nΓ(S2n, νS0(S)) ≃ Γn(νS0(S)),

so that
Γ∗ ◦ νS0(−) ≃ fil∗ev(−)

as functors Sp→ FilSp. In particular, the image under Γ∗(−) of monoidal unit νS0(S0) of additive
sheaves is given by the even filtered sphere.
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The functor Γ∗(−) can be given a canonical lax symmetric monoidal structure, so that it lifts
to a functor valued in modules over the image of the unit, which by Remark 3.8 is the even filtered
sphere. The work of Gheorghe-Isaksen-Krause-Ricka then yields the following:

Proposition 3.9 ([GIKR22, 6.13]). The functor Γ∗ of Definition 3.7 lifts to a a symmetric
monoidal equivalence

ShvΣ(Perf(S
0)ev , Sp) ≃Modfil∗ev(S0)(FilSp)

between additive sheaves on perfect even spectra and modules over the filtered even sphere.

Remark 3.10. The identification of even MU-synthetic spectra with modules in filtered even
spectra is somewhat formal. Instead, the difficult part of [GIKR22] corresponds to the identifica-
tion of the even filtration on the sphere with the Adams-Novikov filtration. This was independently
proven for the E∞-even filtration by Hahn-Raksit-Wilson [HRW22, Theorem 1.1.5] and we prove
it in the same way for the variant of the even filtration studied here in Corollary 7.4.

3.3. Monoidality of the even filtration

Construction 3.11. We will construct an action of the ∞-category of modules over the even
filtered sphere on the ∞-category of additive sheaves on perfect even R-modules.

Since the ∞-category of R-modules is stable and presentable, it carries a canonical action of
the ∞-category of spectra, given on objects by

((M,S) ∈ModR(Sp)× Sp) 7→ (M ⊗S0 S ∈ModR(Sp)).

This action restricts to an action

Perf(R)ev × Perf(S)ev → Perf(R)ev

of perfect even spectra on perfect even R-modules. The restricted action preserves cofibre se-
quences in each variable and so induces an action

⊗ : ShvΣ(Perf(R)ev, Sp)× ShvΣ(Perf(S
0)ev, Sp)→ ShvΣ(Perf(R)ev, Sp)

uniquely determined by the properties that

(1) it preserves colimits separately in each variable and
(2) νR(M) ⊗ νS0(A) ≃ νR(P ⊗S0 A) whenever M ∈ Perf(R)ev and A ∈ Perf(S0)ev , where

we’re using Notation 3.1.

The first property implies that this action presents its target as a module over

ShvΣ(Perf(S
0)ev , Sp) ≃Modfil∗ev(S0)(FilSp)

in the ∞-category PrL of presentable ∞-categories and cocontinuous functors of [Lur, §4.8].

Remark 3.12. As any tensoring induced by a module structure in PrL, the tensor structure of
Construction 3.11 is closed. That is, for any A,B ∈ ShvΣ(Perf(R)ev, Sp), there exists an internal
mapping object

Map∗(A,B) ∈Modfil∗ev(S0)(FilSp)

which is uniquely specified by the property of representing the functor

(M ∈Modfil∗ev(S0)) 7→ (mapShvΣ(Perf(R)ev ,Sp)(A⊗M,B) ∈ S),

where − ⊗− denotes the action. In the case of A = B, the internal mapping object Map∗(A,A)
inherits a canonical structure of an E1-monoid in modules over the filtered sphere.

The closed tensor structure of Construction 3.11 can be used to define an R-module analogue
of the Γ∗ functor studied in §3.2.
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Definition 3.13. The functor Γ∗
R : ShvΣ(Perf(R)ev, Sp))→Modfil∗ev(S0)(FilSp) is given by

Γ∗
R(X) := Map∗(νR(R), X),

where Map∗ is the internal mapping object of Remark 3.12 and νR(R) is the connective Yoneda
embedding of the unit.

Proposition 3.14. For any M ∈ModR(Sp), there’s a canonical equivalence of filtered spectra

Γ∗
R(νR(M)) ≃ fil∗ev/R(M).

Proof. For brevity, we denote the free filtered fil∗ev(S
0)-module generated in filtration n ∈ Z by

Fn. By direct inspection, under the equivalence of Proposition 3.9, Fn corresponds to the additive
sheaf Σ−2nνS0(S2n). It follows that

Γn
R(M) ≃ MapModfil∗ev(S0)

(Fn,Map∗(νR(R), νR(M))) ≃ Map(νR(R)⊗ Σ−2nνS0(S2n), νR(M)),

where the right hand side is the internal mapping spectrum in additive sheaves. Using the defining
property of the tensor product we can rewrite this further as

Map(νR(R)⊗ Σ−2nνS0(S2n), νR(M)) ≃ Map(Σ−2nνR(Σ
2nR), νR(M)) ≃ Σ2n(Γ(Σ2nR, νR(M))),

where the last equivalence is the Yoneda lemma, and

Σ2n(Γ(Σ2nR, νR(M))) ≃ Σ2n(Γ(Σ2nR, τ≥0YR(M))) ≃ Γ(R, τ≥2nYR(M)) ≃ filnev/R(M),

as needed. �

Theorem 3.15. For any E1-ring R, the even filtration fil∗ev(R) has a canonical lift to a filtered
fil∗ev(S

0)-E1-algebra. Moreover, the R-module even filtration functor canonically lifts to

(3.1) fil∗ev/R : ModR(Sp)→Modfil∗ev(R)(FilSp).

If R is an En-ring for n ≥ 2, then fil∗ev(R) can be canonically refined to a filtered fil∗ev(S
0)-En-

algebra and (3.1) can be canonically refined to a lax En−1-monoidal functor.

Proof. By Proposition 3.14, the claim is equivalent to saying that the internal mapping object
Map∗(νR(R), νR(R)) of Remark 3.12 can be promoted to an E1-monoid and that Map∗(νR(R),−)
takes values in left modules. Both statements are clear.

Now suppose that R is an En-ring for n ≥ 2. As R is an En-S0-algebra in spectra, Perf(R)ev is a
Perf(S0)ev-En−1-algebra in∞-categories. It follows that Construction 3.11 induces on ShvΣ(Perf(R)ev , Sp)

a structure of a Modfil∗ev(S0)(FilSp)-En−1-algebra in PrL. Since νR(R) is the monoidal unit of an
En−1-algebra, the internal mapping spectrum Map∗(νR(R), νR(R)) can be canonically promoted
to an En-algebra and the functor

Map∗(νR(R),−) : ShvΣ(Perf(R)ev , Sp)→Modfil∗ev(R)(FilSp)

to a lax En−1-monoidal functor. Since νR(−) can also be made lax symmetric monoidal by
Proposition 3.5, the second claim follows. �

Remark 3.16. By an argument using compact generators, it is not difficult to see that the functor

Map∗(νR(R),−) : ShvΣ(Perf(R)ev , Sp)→Modfil∗ev(R)(FilSp)

is an equivalence of∞-categories. In other words, the∞-category of additives sheaves is essentially
encoded by the even filtration of R. We will not need this result, so we leave the proof to an
interested reader.

4. Calculus of evenness

This section is devoted to the study of the various notions of evenness one can attach to an
R-module, as well as their relationships.
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4.1. Even flat modules

In this subsection, we introduce the notion of an even flat R-module, which informally is a
module “flat from the point of view of modules with even homotopy groups”. We will make the
latter characterization precise in Proposition 4.12.

Proposition 4.1. The following two conditions are equivalent for an R-module M :

(1) it can be written M ≃ lim
−→

Mα as a filtered colimit of perfect evens,

(2) any map P →M from a perfect R-module into M factors through a perfect even.

Proof. Since perfect R-modules are compact as objects of ModR, certainly (1 → 2), and we only
have to prove the converse. We can write M

M ≃ lim
−→

P∈Perf(R)−/M

P

as a colimit of perfect R-modules indexed by the overcategory Perf(R)/M . We claim that if M
satisfies the condition (2), then the inclusion

Perf(R)ev−/M → Perf(R)−/M

is cofinal, which will finish the argument. By Quillen’s Theorem A [Lur09, 4.1.3.1], we have to
check that for any map f : P →M from a perfect R-module, the under-over-category

Perf(R)evP/−/M ,

whose objects are commutative triangles

(4.1)

P A

M

f

with A perfect even, is weakly contractible. We will show that it is filtered, which implies weak
contractibility. Suppose that

p : K → Perf(R)evP/−/M

is a finite diagram. As Perf(R) admits finite colimits, p admits a colimit C in the larger∞-category
Perf(R)P/−/M , where the middle module as in (4.1) is perfect, but not necessarily even. Since the
map C → M factors through a finite even C′ by assumption, declaring p̃(⊲) := C′ provides the
necessary extension of p to a diagram p̃ : K⊲ → Perf(R)evA/−/M . �

Definition 4.2. We say that an R-module M is even flat if it satisfies the equivalent conditions
of Proposition 4.1.

We record that the class of even flats has good closure properties.

Proposition 4.3. The full subcategory Mode♭R ⊆ ModR spanned by even flat modules is closed
under extensions, retracts and filtered colimits.

Proof. The property (2) of Proposition 4.1 is clearly closed under retracts and filtered colimits.
We will verify that it is also closed under extensions. Suppose we have a cofibre sequence

M ′ →M →M ′′

of R-modules such that M ′ and M ′′ are even flat. Let P →M be a map from a perfect; we have
to show that it factors through a perfect even. Using that M ′′ is even flat, we can factor the
composite P →M ′′ through a perfect even A′′, obtaining a diagram

fib(P → A′′) P A′′

M ′ M M ′′
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where both rows are cofibre and where A′′ is perfect even. Using that M ′ is even flat, we can
factor the map fib(P → A′′) → M ′ through a perfect even A′. Finally, let A be defined by a
pushout diagram

fib(P → A′′) P

A′ A

,

so that the universal property of the pushout gives a factorization P → A→M . As by construc-
tion we have a cofibre sequence

A′ → A→ A′′,

A is perfect even, as needed. �

Remark 4.4. As perfect even modules are generated under retracts and extensions by Σ2nR for
n ∈ Z, as a consequence of Proposition 4.3 the subcategory Mode♭R ⊆ ModR of even flats can
be characterized as the smallest subcategory containing Σ2nR and closed under filtered colimits,
retracts and extensions.

4.2. Homotopy even envelopes

As modules with even homotopy groups have a particularly simple even filtration by Lemma 2.27,
a useful way to prove results about the even filtration of an arbitrary R-module is to map it into
a module with even homotopy groups. In this section, we study the following particularly well-
behaved way to do so:

Definition 4.5. Let M be an R-module. We say that a map M → E is a π∗-even envelope if

(1) the cofibre cofib(M → E) is even flat,
(2) π∗E is a concentrated in even degrees,
(3) every map M → F into an R-module such that π∗F is even can be completed to a

commutative diagram

M

E F

.

Remark 4.6. Note that the condition (3) of Definition 4.5 is equivalent to saying that for any
π∗-even F , the relative R-linear cohomology groups

F ∗
R(E,M) ≃ F ∗

R(cofib(M → E)) ≃ π−∗MapModR
(cofib(M → E), F )

are concentrated in even degrees.

Remark 4.7. If M → E is π∗-even envelope, then the map FM → FE is a monomorphism.
Indeed, we have an exact sequence

Fcofib(M→N)(1/2)→ FM → FN .

where the left hand side vanishes, since the cofibre is even flat.

Remark 4.8. Since even flat (resp. homologically flat) R-modules are closed under extensions,
if M → E is a π∗-even envelope and M is even flat (resp. homologically flat), then so is E.

Proposition 4.9 (Existence of homotopy even envelopes). Let M be an R-module. Then there
exists a π∗-even envelope M → E. Moreover, if R and M are connective, then there exists an
envelope such that E is also connective and π0M ≃ π0E.
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Proof. We will use the small object argument to construct E. Consider the set of homotopy classes
of maps

ΣkR→M

where k is odd. Taking a direct sum of all such maps, we obtain a cofibre sequence
⊕

ΣkαR→M →M ′.

We now inductively declare M0 := M and Mn+1 := (Mn)
′ as above. We claim that E := lim

−→
Mn

has the required properties.
We first verify that E is an π∗-even envelope. For property (1), since

cofib(M → E) ≃ lim
−→

cofib(M →Mn)

and even flat modules are stable under filtered colimits, it is enough to show that each of cofib(M →
Mn) is even flat. We argue by induction. For n = 0, this cofibre vanishes and so is even flat. For
n > 0 we have a cofibre sequence

cofib(M →Mn)→ cofib(M →Mn1)→
⊕

Σkα+1R.

As the right hand side term is a direct sum of perfect evens and even flat modules are closed under
extensions by Proposition 4.3, we deduce that the middle term is also even flat.

For property (2), observe that since any map ΣkR → E where k is odd factors through some
Mn, it vanishes in Mn+1 and hence in E. Thus, π∗E is even as needed.

We move on to property (3). Using Remark 4.6, it is enough to show that if π∗F is even, then
the relative R-linear cohomology groups F ∗

R(E,M) are concentrated in even degrees. Since

cofib(M → E) ≃ lim
−→

cofib(M →Mn),

we have a Milnor exact sequence

0→ R1 lim
←−

F ∗−1
R (Mn,M)→ F ∗

R(E,M)→ lim
←−

F ∗
R(Mn,M)→ 0.

Since the left hand side term vanishes on Mittag-Leffler sequences, vanishing in odd degrees will
follow if we can show that

(1) F k
R(Mn,M) vanishes for k odd and

(2) F k
R(Mn+1,M)→ F k

R(Mn,M) is an epimorphism for k even.

Both follow at once (in the first case, by induction) from the long exact sequence

. . .→ F ∗
R(Mn+1,M)→ F ∗

R(Mn,M)→ F ∗
R(

⊕
Rkα)→ F ∗+1

R (Mn+1,M)→ F ∗+1
R (Mn,M)→ . . . ,

since

F ∗
R(

⊕
Rkα) ≃

∏
F ∗
R(R

kα) ≃
∏

π∗−kα(F )

vanishes in even degrees by assumption as all kα are odd.
Finally, suppose that R and M are connective. Then in the inductive construction above it is

enough to consider homotopy clases of maps ΣkR → M such that k is odd and positive. If the
above inductive construction is performed with this restriction, the result will be connective with
π0M ≃ π0E. �

Of particular importance is the π∗-even envelope of R itself, which generates envelopes of any
perfect even in the following sense:

Proposition 4.10. Let R→ E and A→ E be π∗-even envelopes, where A is perfect even. Then,
E′ belongs to the subcategory generated by E under direct sums, even (de)suspensions and retracts.
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Proof. Let f :
⊕

ΣkαR → E′ be a π∗-surjective map from a direct sum of even (de)suspensions
of R which exists by the assumption that π∗(E

′) is even. By assumption, we can extend this map
to a commutative diagram

⊕
ΣkαR

⊕
ΣkαE E′p

f .

We claim that the map p admits a section, which will imply that E′ is a retract of
⊕

ΣkαE,
proving the result. This happens precisely when the map E′ → C vanishes, where

C := cofib(
⊕

ΣkαE → E′).

Since f is π∗-surjective on homotopy groups, so is p, and thus π∗C is concentrated in odd degree.
Since A is perfect even,

(
⊕

ΣkαE)∗R(A)→ E∗
R(A)

is surjective and thus the structure map A→ E′ lifts to a map into
⊕

ΣkαE, so that the composite
A→ E′ → C vanishes. Thus, we have a factorization

E′ → cofib(A→ E′)→ C.

The second map vanishes by Remark 4.6 since π∗C is odd, proving the result. �

Corollary 4.11 (Weak uniqueness of the π∗-even envelope of the unit). Any two π∗-even envelopes
R→ E and R→ E′ generate the same subcategory of ModR under direct sums, retracts and even
(de)suspensions. This subcategory contains π∗-even envelopes of any perfect even.

As a corollary of the construction of π∗-even envelopes, we have the following characterization
of even flat modules in terms of tensor products:

Proposition 4.12 (Lazard’s Theorem). The following are equivalent for an R-module M :

(1) M is even flat in the sense of Definition 4.2 or
(2) for any right R-module E such that π∗E is even, π∗(E ⊗R M) is even.

Moreover, if R is connective, then it is enough to verify the second condition when E is also
connective.

Proof. (1 ⇒ 2) Since the subcategory of those R-modules M such that π∗(E ⊗R M) is even is
closed under retracts, filtered colimits and contains Σ2kR, it necessarily contains all even flat
modules.

(2 ⇒ 1) By Proposition 4.1, it is enough to show that every map P → M from a perfect R-
module factors through a perfect even. By dualizing, we can identify the given map with a map
of spectra S0 → P∨ ⊗R M .

Let P∨ → E be a map such that its suspension is a π∗-even envelope of right R-modules, so that
the fibre F := fib(P → E) is even flat and π∗E is concentrated in odd degrees. By assumption,
π∗(E⊗RM) is also concentrated in odd degrees, so that the composite S0 → E⊗RM vanishes. It
follows that we have a lift S0 → F ⊗RM which since F is even flat factors through S0 → A⊗RM ,
where A is a perfect even right R-module. After dualizing, this provides the needed factorization

P → A→M.

If R is connective, then the homotopy groups of P as above are bounded from below, so that
by a sufficiently large even suspension we can assume that P is connective. In this case, E can
also chosen to be connective by Proposition 4.9. �
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Remark 4.13. Observe that any cofibre sequence E → F → G of π∗-even right R-modules is
necessarily short exact on homotopy; that is,

0→ π∗E → π∗F → π∗G→ 0

is exact. By Proposition 4.12, the same is true for

0→ π∗(E ⊗R M)→ π∗(F ⊗R M)→ π∗(G⊗R M)→ 0,

when M is even flat since again everything is even. It is in this sense that an even flat module
behaves in a “flat” manner, but only from the perspective of modules with even homotopy groups.

4.3. Homologically even modules

Recall that we say that an R-module M is homologically even if FM (1/2+k) for all k ∈ Z. The
goal of this section is to characterize these modules in a variety of different ways.

Theorem 4.14. For an R-module M , the following conditions are equivalent:

(1) M is homologically even,
(2) every map A → ΣM from a perfect even spectrum into suspension of M factors through

A→ ΣB, where B is perfect even,
(3) for any even flat, π∗-even right R-module E, π∗(E ⊗R M) is even,
(4) if A→ E is π∗-even envelope of a perfect even right R-module, then π∗(E⊗R M) is even.
(5) if R→ E is π∗-even envelope of the unit in right R-modules, then π∗(E ⊗R M) is even.

Proof. (1⇔ 2) The homotopy class of A→ ΣM determines an element of π0Map(A,ΣM). Since
FM (1/2) is defined as the sheafication of the presheaf

π0Map(−,ΣM) : Perf(R)opev → Ab,

it vanishes if for every such element there exists an even epimorphism f : B → A such that the
composite

B → A→ ΣM

is zero. This happens precisely when the second map factors through Σ(fib(f)), which is a sus-
pension of a perfect even as needed.

(2⇒ 3) Suppose we have a homotopy class of maps Sk → E⊗RM with k odd. Since E is even
flat, it is a filtered colimit of perfect evens, so that the map factors through Sk → A⊗R M , where
A is a perfect even right R-module. This is determined by a map ΣkA∨ →M from the dual. As
A∨ is perfect even and k is odd, by assumption this map factors as

ΣkA∨ → B →M,

where B is perfect even. By dualizing again, we obtain a commutative diagram

Sk A∨ ⊗R B A∨ ⊗R M

E ⊗R B E ⊗R M

Since B is perfect even, the spectrum π∗(E⊗RB) is concentrated in even degree by Proposition 4.12.
We deduce that the given map vanishes in πk(E ⊗R M), too.

(3⇒ 4) and (4⇒ 5) are clear. (5⇒ 4) follows immediately from Proposition 4.10.
(4 ⇒ 2). Let ΣkA → M be a map from an odd suspension of a perfect even spectrum, which

we can identify with a map of spectra Sk → A∨ ⊗R M . Let A∨ → E be a π∗-even envelope in
right R-modules which exists by Proposition 4.9 and which we can complete to a cofibre sequence.

A∨ → E → C
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By assumption, π∗(E⊗RM) is even, so that the map Sk → A∨⊗RM lifts to Sk → (Σ−1C)⊗RM .
As C is even flat, we obtain a factorization

Sk → Σ−1B ⊗R M

where B is perfect even. Dualizing, this gives a factorization of ΣkA → M through the perfect
even Σk+1B, which is what we wanted to show. �

Remark 4.15. Note that it follows from characterizations (2) of Theorem 4.14 and Proposition 4.1
that any even flat module is homologically even. Alternatively, we can also observe that F−(−1/2)
commutes with filtered colimits and vanishes on perfect evens by Lemma 2.17.

Warning 4.16. Beware that the implication of Remark 4.15 cannot be reversed in general: that
is, not every homologically even R-module is even flat. For a specific example, by Proposition 4.18
below, Z/p is homologically even as a Z-module in spectra, but it is not even flat.

Remark 4.17. Note that parts (2) of Proposition 4.12 and part (3) of Theorem 4.14 can be
combined in the following elegant manner: the homotopy groups π∗(E⊗RM) of a tensor product
of a π∗-even right R-module E and a homologically even left R-module M are concentrated in
even degree if at least one of the two is even flat. This mimics the classical observation that for
Tor1

Z
(A,B) to vanish it is enough for one of the A or B to be a flat as an abelian group.

4.4. Evenness over connective and homotopy even rings

In this section, we describe the various notions of evenness over rings which are connective or
have homotopy groups concentrated in even degrees.

Proposition 4.18. Let R be an E1-ring such that π∗R is concentrated in even degrees. Then an
R-module M

(1) is even flat if and only if π∗M is a flat π∗R-module concentrated in even degrees,
(2) is homologically even if and only if π∗M is concentrated in even degrees.

Proof. In both cases, the forward implication is clear. We begin with backwards implication for
(1), so suppose that π∗M is flat and concentrated in even degrees. By Proposition 4.12, it is
enough to show that for every right R-module E with homotopy in even degrees, the same is true
for π∗(E⊗RM). However, by [Lur, 7.2.1.19] we have a conditionally convergent Künneth spectral
sequence

Tor∗,∗π∗R
(π∗E, π∗M)⇒ π∗(E ⊗R M).

Observe that the left hand side is concentrated in Tor-degree zero as π∗M is flat. As it is concen-
trated in even internal degree by assumption, we deduce that the same is true for the right hand
side, which is what we wanted to show.

The backwards implication for (2) is identical, using characterization (3) of Theorem 4.14. �

Theorem 4.19. Let R be a connective E1-ring and let us write R≤0 := π0R, considered as an
E1-algebra in spectra. Then the following are equivalent for an R-module M :

(1) M is even flat,
(2) R≤0 ⊗R M is even flat as a R≤0-module,
(3) π∗(R≤0 ⊗R M) is a flat π0R-module, concentrated in even degrees.

Proof. Observe that (1 ⇒ 2) is clear, since even flat modules are closed under base-change, and
(2⇔ 3) follows from Proposition 4.18. Thus, we only have to show (2⇒ 1).

Suppose that R≤0 ⊗R M is even flat as a R≤0-module. By Proposition 4.12, it is enough to
verify that for every connective R-module E with homotopy in even degrees, π∗(E ⊗R M) is also
concentrated in even degrees. As the truncation map E → τ≤2nE induces an isomorphism

π∗(E ⊗R M)→ π∗(E ⊗R M)
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in degrees ∗ ≤ 2n, we can assume that E is also bounded from above. In this case, it admits a
finite filtration whose subquotients are even suspensions objects of N ∈Mod♥R ≃Mod♥R≤0

. In this

case, we can write

N ⊗R M ≃ N ⊗R≤0
⊗(R≤0 ⊗R M)

and as the right hand side has even homotopy groups by assumption, so does the left hand side.
By a filtration argument we deduce that the same is true for π∗(E ⊗R M). �

Warning 4.20. Beware that the criterion of Theorem 4.19 does not apply to homological even
modules; in fact, the base-change along R→ R≤0 need not even preserve homological evens. For
a specific counterexample, let k be a field and k[x] a free E1-algebra on a variable in degree two,
so that π∗(k[x]) is a polynomial ring. Then

k ≃ cofib(x : Σ2k[x]→ k[x])

is homologically even as a k[x]-module as a consequence of Proposition 4.18, but k⊗k[x]k ≃ k⊕Σ3k
is not homologically even over k.

5. Homological resolutions

In this section, we describe how even cohomology of an R-module M can be calculated by
resolving it through R-modules with even homotopy groups.

Remark 5.1 (Adams resolutions). The various constructions described in this section are stan-
dard in homotopy theory; essentially, we study a particular class of Adams resolutions with respect
to the homological functor F− : ModR(Sp)→ ShvΣ(Perfev,Ab). For more background on Adams
resolutions, see [Ada95, §III.15] or [PP21, §2.2]. Since our aim is for the paper to be accessible to
a possibly large audience, we do not assume any knowledge of Adams resolutions or the associated
Adams spectral sequence.

Observe that if M1 → M2 → M3 is a cofibre sequence of homologically even R-modules, then
the long exact sequence of even sheaves shows that

0→ FM1(q)→ FM2(q)→ FM2(q)→ 0

is short exact for any q ∈ Z. Applying H∗
ev(R,−) we obtain a long exact sequence of even

cohomology

. . .→ Hp−1,q
ev (R,M1)→ Hp,q

ev (R,M1)→ Hp,q
ev (R,M2)→ Hp,q

ev (R,M3)→ Hp+1,q
ev (R,M1)→ . . . .

Since even cohomology of π∗-even modules is particularly simple by Corollary 2.28, it follows that
to compute cohomology with coefficients in an R-module M , one can map it into a π∗-even module,
which can be done in a particularly nice way as studied in §4.2. One elementary way to exploit
this idea was described in the introduction, and we do so again here:

Construction 5.2. Let M be homologically even. Choose a π∗-envelope M → E0, which can
be done by Proposition 4.9, and set C0 := cofib(M → E0). Inductively letting Ci → Ei+1 be a
π∗-even envelope and setting Ci+1 := cofib(Ci → Ei) leads to a diagram of R-modules

(5.1)

E0 E1 E2 . . .

M C0 C1 C2

where in the upper row the composite of any two maps is null.

Proposition 5.3. If M is homologically even and (5.1) is a diagram as in Construction 5.2, then
there is a canonical isomorphism

Hp,q
ev (R,M) ≃ Hp(π2qE•),
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between the (p, q)-th even cohomology of M and the cohomology of the cochain complex

π2qE0 → π2qE1 → π2qE2 → . . .

computed in the p-th spot.

Proof. By construction, all of these R-modules are homologically even, so that for each q ∈ Z and
i ≥ −1 we have a long exact sequence

. . .→ Hp−1,q
ev (R,Ci+1)→ Hp,q

ev (R,Ci)→ Hp,q
ev (R,Ei)→ Hp,q

ev (R,Ci+1)→ . . . .

where C−1 := M . Splicing these together leads to an exact couple and hence a spectral sequence

H∗,q
ev (E•)⇒ H∗,q

ev (M).

By Corollary 2.28, the first page is concentrated in cohomological degree zero, where we have
H0,q

ev (E•) ≃ π2qE•. It follows that the spectral sequence collapses on the second page, inducing
the needed isomorphism. �

While Proposition 5.3 gives an effective way of calculating even cohomology, it is often conve-
nient to have a more refined version of Construction 5.2, based on cosimplicial objects. This has
the advantage that it gives a limit description of the even filtration itself, rather than just the
calculation of the even cohomology.

Definition 5.4. We say that an augmented semicosimplicial object X : ∆s,+ → ModR is a ho-
mological resolution if for every q ∈ 1/2Z, the induced Moore cochain complex

0→ FX−1(q)→ FX0(q)→ FX1(q)→ . . .

is exact as a complex in the abelian category ShvΣ(Perfev,Ab).

Remark 5.5. Let A be a Grothendieck abelian category, and suppose that we have an augmented
semicosimplicial diagram C : ∆s,+ → A. Then the following two conditions are equivalent:

(1) the associated Moore cochain complex 0→ C−1 → C0 → C1 → . . . is exact,
(2) the composite i ◦ C : ∆s,+ → D(A), where i is the inclusion of the heart of the derived
∞-category, is a limit diagram.

It follows that a diagram X : ∆s,+ → ModR is a homological resolution if and only if for each
weight q

FX−1(q) ≃ lim
←−
FXm(q)

in the derived ∞-category of additive sheaves, where the limit is taken over [m] ∈ ∆s.

The usefulness of homological resolutions comes down to the following simple observation:

Proposition 5.6. Let X : ∆s,+ → ModR be a homological resolution. Then we have an equiva-
lence of graded spectra

gr∗ev(X−1) ≃ lim
←−

gr∗ev(Xm),

where the limit is taken over [m] ∈ ∆s. Thus, the canonical map of filtered spectra

fil∗ev(X−1)→ lim
←−

(fil∗ev(Xm))

is an equivalence after completion.

Proof. Using Remark 2.24, for any homologically even M we have an identification

grnev(M) ≃ MapD(ShvΣ(Perfev ,Ab))(FR,Σ
2nFM (n))

Thus, the statement is immediate from Remark 5.5. For an arbitrary M , we instead have a fibre
sequence of spectra

Map(FR,Σ
2n+1FM (n+ 1/2))→ grnev(M)→ Map(FR,Σ

2nFM (n))

and the result follows in the same way. �
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As in the context of Proposition 5.3, homological resolutions are most useful when they consists
of modules with only even homotopy groups.

Theorem 5.7. Any homologically even R-module M can be completed to a homological resolution
X : ∆s,+ →ModR with X−1 = M and π∗Xm even for m ≥ 0.

Proof. We recall that augmented semicosimplicial objects can be constructed inductively, by choos-
ing appropriate maps out of matching objects, see [Lur09, A.2.9.15, A2.9.16].

We define X−1 := M , so that the 0-th matching object is given by M0X ≃ X−1 ≃ M . By
Proposition 4.9, there exists a π∗-even envelope

M0X → E0

and we set X0 := E0. This extends X to a diagram indexed by ∆s,+,≤0, so that the matching object
M1X is well-defined. We then let X1 be a π∗-even envelope of M1X , extending our diagram to
∆s,+,≤1. Proceeding inductively in this manner, we obtain an augmented semicosimplicial object
which by construction has π∗Xm even for m ≥ 0. We will show that it is a homological resolution.

We first argue by induction that MmX is homologically even for all m ≥ 0. The base-case
is clear, since M0X ≃ M , so suppose that we know that each of MkX is homologically even for
k < m. As by construction, the map MkX → Xk has homologically even cofibre, this will also
show that for in this range Xk is homologically even and FMkX → FXk

is a monomorphism.
The long exact sequence of homology shows that homologically even modules are closed under

pushouts along F−-monomorphisms, and that on this subcategory the association M 7→ FM

commutes with such pushouts. It follows from [Pst22, A.2: Proposition 5 and Remark 4] and the
inductive step that MmX is homologically even and FMmX ≃Mm(FX) is a monomorphism. The
first conclusions ends the induction.

Since the cofibre of MmX → Xm is homologically even, the second conclusion from the previous
paragraph shows that

Mm(FX) ≃ FMmX → FXm

is a monomorphism for all m ≥ 0. If follows that if I is an injective cogenerator of ShvΣ(Perfev;Ab),
then Hom(FX , I) defines a hypercover in D≥0(Z) and hence its Moore complex is exact. We deduce
that the Moore complex of FX itself is exact. Since the integral weight twists can be obtained
from F− using Remark 2.14 and the half-weight twists vanish, we deduce the exactness of the
Moore complex of FX(q) for all q. �

Remark 5.8. Suppose that M is homologically even, so that by Theorem 5.7 we can complete
it to a homological resolution X : ∆s,+ → ModR such that π∗Xm is even for all m ≥ 0. Then by
a combination of Proposition 5.6 and Lemma 2.27 we see that the canonical map

fil∗ev M → lim
←−

τ≥2nXm

is an equivalence after completion. Here, the right hand side is Deligne’s décalage of the cosim-
plicial spectrum X , see [Del71].

6. Base-change and descent

Suppose that R is an E2-ring and S is an E1 −R-algebra, so that we have an associated cobar
diagram of E1-rings

R S S ⊗R S . . . ,

where each coboundary map is induced by the unit R → S, see [MNN17, Construction 2.7]. In
this context, it is natural to ask if the even filtration associated to R can be recovered from the
even filtration of E1-rings S⊗Rn, perhaps up to some form of completion.

Warning 6.1. We will think of the cobar diagram as an augmented semicosimplicial diagram
∆s,+ → Alg

E1
(Sp). While it can be naturally extended to a cosimplicial diagram, the coboundary

maps do not respect multiplication and so the resulting extension is only a diagram of spectra.
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As the notion of homological resolution of Definition 5.4 gives us some natural conditions under
which a semicosimplicial diagram of R-modules induces a limit on even filtrations, the main
problem to tackle is how the even filtration of S⊗Rn considered as a module over itself differs from
the one where we consider it as a module over R.

6.1. Evenness and extension/restriction of scalars

Associated to a morphism f : R→ S of E1-rings we have an adjunction

S ⊗R − ⊣ RS.R : ModR ⇄ ModS ,

where RS.R denotes the forgetful functor, and it is natural to ask how these two functors relate to
the various notions introduced in the present work.

Lemma 6.2. The functor S ⊗R− : ModR →ModS preserves perfect even and even flat modules.

Proof. This is clear, since S ⊗R R ≃ S and both classes are defined as closure of the unit under
certain kinds of colimits. �

Remark 6.3. Note that we had seen in Warning 4.20 that the extension of scalars does not in
general preserve homologically even modules.

To get further properties, we need to make some assumptions on the map. Compatibility with
the even filtration can be thought of as a form of exactness, so as motivation, let us analyze the
classical situation, when f : S → R is a map of classical rings. In this case we have an induced
extension/restriction of scalars adjunction between the categories of modules in abelian groups

Tor0R(S,−) ⊣ RS,R : ModR(Ab) ⇄ ModS(Ab),

where we write Tor0R(S,−) to emphasize that here we mean the classical rather than derived tensor
product. In this case

(1) the restriction of scalars RS,R is always exact, as (co)limits in either R or S-modules can
be both calculated in abelian groups,

(2) the extension of scalars Tor0R(S,−) is exact precisely when S is flat as a right R-module.

In the context of E1-rings, the behaviour of extension of scalars is somewhat similar to the
one above. However, the situation with the forgetful functor is more subtle, as the even filtration
varies with the ring. In particular, whether something is “exact with respect to the even filtration”
depends on more than the underlying spectra. Instead, the behaviour of the forgetful functor
depends on the structure of S as a left R-module. Thus, to get the best of both worlds we are
forced to think of S as both a left and right R-module.

Definition 6.4. We say that a map f : R→ S of E1-rings is

(1) left even flat if S is even flat as a left R-module,
(2) right even flat if S is even flat as a right R-module,
(3) left homologically even if S is homologically even as a left R-module.
(4) left homologically even if S is homologically even as a right R-module.

Remark 6.5. If R is E2 and f : R → S can be promoted to a unit map of an E1-R-algebra
structure, then f is left even flat if and only if it is right even flat, and similarly for homological
evenness. In particular, this happens whenever f can be promoted to a map of E2-rings.

Lemma 6.6. Let f : R→ S be a map of E1-rings. Then the forgetful functor ModS →ModR

(1) preserves even flat modules if f is left even flat and
(2) preserves homologically even modules if f is left homologically even.
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Proof. The first part is clear, since the forgetful functor sends the unit S to an even flat module
by assumption, and even flat modules are defined as a closure of the unit under various colimits
which commute with the forgetful functor.

For the second, by Theorem 4.14 it is enough to show that if N is a homologically even S-
module and E is a π∗-even, even flat right R-module, then π∗(E ⊗R N) is concentrated in even
degrees. We can rewrite this tensor product as

E ⊗R N ≃ (E ⊗R S)⊗S N.

Note that E ⊗R S is even flat as a right S-module by Lemma 6.2 and π∗(E ⊗R S) is concentrated
in even degrees by Proposition 4.12 and the assumption that S is homologically even as a left
R-module. Thus, π∗((E ⊗R S)⊗S N) is even, as needed. �

Lemma 6.7. Let f : R → S be right even flat. Then S ⊗R − : ModR → ModS preserves homo-
logically even modules.

Proof. Let M be a homologically even R-module. By Theorem 4.14, to show that S ⊗R M is
homologically even, it is enough to verify that if F is a π∗-even, even flat right S-module, then
π∗(F ⊗S S ⊗R M) is concentrated in even degrees. We have

F ⊗S S ⊗R M ≃ F ⊗R M

and the right hand side has homotopy groups concentrated in even degrees since F is even flat as
a right R-module by (the right module variant of) Lemma 6.6. �

We will also need the following variant for bimodules:

Lemma 6.8. Let B be an R-bimodule which is homologically even as a left R-module and even
flat as a right R-module. Then the functor

B ⊗R − : ModR →ModR

Proof. This is a combination of the arguments of Lemma 6.6 and Lemma 6.7. �

Warning 6.9. Beware that if f : R → S is merely right homologically even rather than even
flat, then S ⊗R − : ModR → ModS need not preserve homologically even modules. For a specific
counterexample, consider the unit map η : S0 → Z/p.

As MU admits an even cell structure and has even homotopy groups, the unit S0 → MU is
easily seen to be a π∗-even envelope in spectra and from Theorem 4.14 we deduce that a spectrum
M is homologically even if and only if MU∗M is concentrated in even degrees. Since

MU∗(Z/p) ≃ Z/p[b1, b2, . . .]

is a polynomial algebra concentrated in even degrees, we see that Z/p is homologically even as a
spectrum. However, the base-change Z/p ⊗S0 Z/p is not homologically even as a Z/p-module as
a consequence of Proposition 4.18, since the dual Steenrod algebra

A∗ ≃ π∗(Z/p⊗S0 Z/p)

is not concentrated in even degrees.

Notation 6.10. Since we are interested in comparing even filtrations relative to different rings,
we will sometimes write

fil∗ev/R(M) := fil∗ev(M)

to emphasize that to calculate this even filtration we consider M as an R-module.

We record that there is a canonical map comparing even filtrations over different rings.
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Construction 6.11. Let f : R → S be a map of E1-rings and let N be an S-module. We will
construct a canonical map of filtered spectra

fil∗ev,R(N)→ fil∗ev,S(N),

which after passing to homotopy groups of the associated graded object induces a map

Hp,q
ev (R,N)→ Hp,q

ev (S,N)

of even cohomology groups.
By Lemma 6.2, extensions of scalars restricts to a functor

S ⊗R − : Perf(R)ev → Perf(R)ev

This functor preserves cofibre sequences, so that it is a morphism of sites with respect to the even
epimorphism Grothendieck topology. It follows that we have an induced adjunction

f∗ ⊣ f∗ : ShvΣ(Perf(R)ev, Sp) ⇄ ShvΣ(Perf(S)ev, Sp),

where f∗ is the left Kan extension and f∗ is given by precomposition. Since the latter preserves
levelwise coconnective sheaves, it is right t-exact.

Let us write YS(N) for the representable presheaf of spectra on Perf(S)ev and analogously
YR(N) for the presheaf on Perf(R)ev. Since

Γ(A, f∗YS(N)) ≃ Γ(S ⊗R A, YS(N)) ≃ MapModS
(S ⊗R A,N) ≃MapModR

(A,N) ≃ Γ(A, YR(N))

we have a functorial equivalence
f∗YS(N) ≃ YR(N).

Consider the cofibre sequence

f∗(τ≥2nYS(N))→ f∗(YS(N))→ f∗(τ≤2n−1YS(N)).

Since the last term is 2n− 1-coconnective as f∗ is right t-exact, the canonical map

τ≥2n(YR(N)) ≃ τ≥2n(f∗YS(N))→ f∗YS(N)

lifts uniquely to a morphism

τ≥2n(YR(N))→ f∗(τ≥2nYS(N)).

Passing to sections over R ∈ Perf(R)ev gives the required morphism of filtered spectra.

Construction 6.12. Suppose that f : R → S is a map of E1-rings and that M is an R-module.
Then we can consider the composite

fil∗ev/R(M)→ fil∗ev/R(S ⊗R M)→ fil∗ev/S(S ⊗R M),

where the first map is induced by the unit map M → S ⊗R M of R-modules and the second is
that of Construction 6.11. Passing to homotopy groups of the associated graded, this yields a
canonical base-change map

Hp,q
ev (R,M)→ Hp,q

ev (S, S ⊗R M)

in even cohomology.

Remark 6.13. Observe that after passing to colimits the comparison map

(6.1) lim
−→

fil∗ev,R(N)→ lim
−→

fil∗ev,S(N)

of Construction 6.11 can be identified with the identity N → N . It follows that it is an equiv-
alence if and only if it is an equivalence between associated graded; that is, when it induces an
isomorphism

H∗,∗
ev (R,N) ≃ H∗,∗

ev (S,N)

between even cohomology groups. Indeed, if the latter holds, then the cofibre of the comparison
map is a filtered spectrum whose associated graded object vanishes (hence it is a constant filtered
spectrum) and whose colimit is zero.
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Lemma 6.14. Let f : R→ S be an left homologically even map of E1-rings. Then

S ⊗R − : Perf(R)ev → Perf(S)ev

has the covering lifting property with respect to the Grothendieck topologies of even epimorphisms.

Proof. We have to show that any pair of A ∈ Perf(R)ev and an even epimorphism q : M → S⊗RA
in Perf(S)ev can be completed to a commutative diagram

M

S ⊗R B S ⊗R A

q

S⊗Rp

,

where p is an even epimorphism of perfect even R-modules.
Since the fibre fib(q) is homologically even as an R-module by Lemma 6.6, long exact sequence of

homology shows that the map FM → FS⊗RA is an epimorphism of sheaves on ShvΣ(Perf(R)ev,Ab).
It follows that that there exists an even epimorphism p : B → A of perfect even R-modules which
can be completed to a commutative diagram

B M

A S ⊗R A

p

The induced map S ⊗R p : S ⊗R B → S ⊗R A factors through M , as needed. �

Theorem 6.15. Let f : R→ S be a homologically even map of E1-rings. Then for any S-module
N the canonical comparison map

fil∗ev,R(N)→ fil∗ev,S(N)

of Construction 6.11 is an equivalence. In particular,

H∗,∗
ev (R,N) ≃ H∗,∗

ev (S,N).

Proof. Since S⊗R : Perf(R)ev → Perf(S)ev has the covering lifting property by Lemma 6.14, the
precomposition functor

f∗ : ShvΣ(Perf(S)ev, Sp)→ ShvΣ(Perf(R)ev , Sp)

is left t-exact by [Pst22, Remark 2.23]. It follows that the canonical map

τ≥2nYR(N)→ f∗(τ≥2nYS(N))

used in Construction 6.11 is an equivalence. �

6.2. Faithfully flat descent

In Theorem 6.15, we had shown that if f : R → S is a homologically even map of E1-rings,
then for any S-module its even filtration over S agrees with the one relative to R. This shows
that information can be moved “up” along a map of rings; that is, what happens over S is already
determined by R.

More commonly, we instead want to move information “down”; that is, to deduce results about
R-modules from their base-change S⊗R−. As Grothendieck’s theory of descent shows, this usually
requires some variant of faithful flatness. As we discussed in §6.1, in the context of even filtration
this requires some control over S as both a left and right R-module.

Definition 6.16. We say that a map f : R→ S of E1-rings is (left) faithfully even flat if both S
and cofib(f) are even flat as right R-modules and homologically even as left R-modules.
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Remark 6.17. The motivation for Definition 6.16 is given by the following classical observation:
a monomorphism R →֒ S of (discrete) commutative rings is faithfully flat if and only if both S
and coker(R→ S) are flat as R-modules, see [HP22b, Addendum 3.9].

Remark 6.18. Note that there is an obvious “opposite” notion of a right faithfully even flat
morphism, which would be relevant in the context of working with right R-modules.

Note that our definition of faithfully even flat is distinct from the notion of “evenly faithfully
flat” given by Hahn-Raksit-Wilson in the context of E∞-rings [HRW22, 2.2.13]. In this paper, by
faithfully even flat we will always mean the notion introduced in Definition 6.16. The following
shows that they agree on connective E∞-rings:

Proposition 6.19. A map R → S of E∞-rings which is faithfully even flat in the sense of
Definition 6.16 is also evenly faithfully flat in the sense of Hahn-Raksit-Wilson; that is, for every
map R → E into a π∗-even E∞-ring, the base-change E ⊗R S is also π∗-even and the map
π∗(E) → π∗(E ⊗R S) of classical commutative rings is faithfully flat. If R is connective, the
converse holds as well.

Proof. Since by Proposition 4.12 a tensor product of an even flat module and a π∗-even module
is π∗-even, if f : R→ S is faithfully even flat then the sequence

0→ π∗(E)→ π∗(E ⊗R S)→ π∗(E ⊗R cofib(f))→ 0

is short exact and concentrated in even degrees. As the middle and right terms are flat over π∗E
by Proposition 4.18, we deduce that the first map is a faithfully flat map of classical rings. It
follows that f is evenly faithfully flat in the sense of Hahn-Raksit-Wilson.

Conversely, suppose that R is connective and that f is evenly faithfully flat in the sense of
Hahn-Raksit-Wilson. Let us write R≤0 ≃ π0R for the 0-truncation. By assumption, the first map
in the the sequence

0→ π∗(R≤0)→ π∗(R≤0 ⊗R S)→ π∗(R≤0 ⊗R cofib(f))→ 0

is faithfully flat, hence injective. It follows from that the sequence is short exact, concentrated in
even degrees, and that the third term is also flat as π∗(R≤0) ≃ π0R-module. It follows from a
combination of Proposition 4.18 and Theorem 4.19 that S and cofib(f) are even flat as R-modules,
which is what we wanted to show. �

Warning 6.20. For non-connective E∞-rings, a map which is evenly faithfully flat in the sense
of [HRW22] need not be faithfully even flat in the sense of Definition 6.16, see Remark 7.8.

Lemma 6.21. Let f : R→ S be a left faithfully even flat map of E1-rings. If M is an R-module,
then for any weight q the sequence

0→ FM (q)→ FS⊗RM (q)→ Fcofib(f)⊗RM (q)→ 0

of abelian sheaves on Perf(R)ev is short exact.

Proof. Assume first that M is homologically even or a suspension of one. In this case, so are
S ⊗R M and cofib(f)⊗R M by Lemma 6.8. It follows that the above sequence is short exact.

In the case of general M , since FM (q) ≃ FΣ−2qM , it is enough to do the case when q = 0. We
want to prove that the boundary map

Fcofib(f)⊗RM → FM (−1/2)

is zero. By taking an appropriately large direct sum of perfect evens, we can find a map N →M
of R-modules where N is perfect even and FN → FM is a surjection. It follows that the cofibre
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C is a suspension of a homological even and that FM (−1/2)→ FC(−1/2) is a monomorphism. We
thus have a commutative diagram

Fcofib(f)⊗RM FM (−1/2)

Fcofib(f)⊗RC FC(−1/2)

The bottom horizontal arrow is zero by the first paragraph. Since the right vertical arrow is a
monomorphism by construction, we deduce that the top horizontal arrow is also zero, as needed.

�

Corollary 6.22. Let f : R→ S be a left faithfully even flat. Then a map M →M ′ of R-modules
is a F−-monomorphism if and only if S ⊗R M → S ⊗R M ′ is.

Proof. A map is an F−-monomorpism if and only if its cofibre is homologically even, so the forward
direction follows from Lemma 6.8. For the converse, consider the commutative diagram

FM FM ′

FS⊗RM FS⊗RM ′

where both vertical arrows are monomorphisms by Lemma 6.21. �

If f : R → S is a map of E1-rings, then the extension-restriction of scalars adjunction induces
a monad on R-modules which we also denote by S ⊗R −. It follows that every R-module M
determines an augmented cosimplicial diagram

S⊗R• ⊗R M : ∆s,+ →ModR

of the form

M S ⊗R M S ⊗R S ⊗R M . . .

which we call the cobar resolution. In good cases, this is a limit diagram, giving a way to
understand M through its base-change. The associated spectral sequence

π∗(S
⊗R• ⊗R M)⇒ π∗(M)

is called the Adams spectral sequence associated to f , or the descent spectral sequence.

Theorem 6.23 (Faithfully flat descent). Let f : R → S be an left faithfully even flat map of
E1-rings and let M be an R-module. Then the canonical map

gr∗ev/R(M)→ gr∗ev/R(S
⊗R• ⊗R M)

induced by the cobar resolution is an equivalence of graded spectra. Thus,

fil∗ev/R(M)→ lim
←−

fil∗ev/R(S
⊗R• ⊗R M)

induced by the cobar resolution is an equivalence of filtered spectra after completion.

Proof. By Proposition 5.6, it is enough to verify that S⊗R•⊗RM : ∆s,+ →ModR is a homological
resolution; that is, that the Moore cochain complex

(6.2) 0→ FM (q)→ FS⊗RM (q)→ FS⊗RS⊗RM (q)→ . . .

is exact for any q. By replacing M by a suitable (de)suspension we can assume that q = 0. To
avoid multiple tensor products in notation, it will be convenient to write C := S⊗R•⊗RM for the
cobar resolution.
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Let us instead consider the Moore cochain complex associated to the tensored up cobar resolu-
tion S ⊗R C, of the form

(6.3) 0→ FS⊗RC−1 → FS⊗RC0 → FS⊗RC1 → . . .

By [Lur, 4.7.2.7], the tensored cobar resolution is split as an augmented cosimplicial object.
It follows from [Lur, 4.7.2.4] it is an absolute limit; in particular, that it forms a limit in
D(ShvΣ(Perf(R)ev ,Ab)) after applying F−. Thus, by Remark 5.5, (6.3) is exact.

Let us go back to (6.2), the Moore complex of the cobar resolution itself, which we have to
show is exact. Exactness in degree zero is to verify that the map FC−1 → FC0 is injective. This
follows from Corollary 6.22, as FS⊗RC−1 → FS⊗RC0 is a monomorphism since (6.3) is exact. We
deduce that

Fcofib(C−1→C0) ≃ coker(FC−1 → FC0),

so to check exactness of (6.2) in degree one, it is enough to verify that the induced map

Fcofib(C−1→C0) → FC1

is a monomorphism. This again follows from Corollary 6.22 and the exactness of (6.3). Proceeding
inductively, we see that (6.2) is exact, as needed. �

Note that in Theorem 6.23, all of the even filtrations considered are relative to R. This is
necessary, since for a general map of E1-rings, the tensor products S ⊗R . . .⊗R S do not have a
natural ring structure if they involve more than one factor. Thus, if we want to consider a variant
of faithfully flat descent where the ring varies, we need to assume more structure on our map.

Theorem 6.24. Let R be an E2-ring and let S be an E1-R-algebra whose unit map is faithfully
even flat as map of E1-rings. Then for any R-module M the canonical map

fil∗ev/R(M)→ lim
←−

fil∗ev/S⊗R•(S⊗R• ⊗R M)

is an equivalence of filtered spectra after completion. In particular, this is true for

fil∗ev/R(R)→ lim
←−

fil∗ev/S⊗R•(S⊗R•)

Proof. Note that since S is an E1-R-algebra, the left and right R-module structures can be iden-
tified. It follows that it is even flat as both a left and right R-module.

Keeping in mind Theorem 6.23, we just have to show that for any m ≥ 0 the canonical com-
parison map

fil∗ev/R(S
⊗Rm ⊗R M)→ fil∗ev/S⊗Rm(S⊗Rm ⊗R M)

is an equivalence. By Theorem 6.15, we just have to show that S⊗Rm is homologically even which
is clear since it is a tensor product of even flat R-modules. �

Example 6.25. Let BP〈n〉 be the truncated Brown-Peterson spectrum with

π∗(BP〈n〉) ≃ Z(p)[v1, . . . , vn],

which can be made into an E3-MU-algebra by the work of Hahn-Wilson [HW22, Theorem A].
By the main results of [HW22], the algebraic K-theory spectrum K(BP〈n〉) is of height n + 1
and satisfies an analogue of Lichtenbaum-Quillen conjectures. A key step in the proof of this
remarkable theorem is the analysis of THH(BP〈n〉) via descent along the map

THH(BP〈n〉)→ THH(BP〈n〉/MU)

into the relative topological Hochschild homology. As observed in [HRW22, Example 4.2.3, 4.2.4],
the resulting descent filtration can be identified with the E∞-even filtration

fil∗
E∞-ev/THH(MU)(THH(BP〈n〉))

relative to THH(MU). We claim that this filtration is in fact the even filtration

fil∗ev(THH(BP〈n〉))
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and so is an invariant of the ring spectrum THH(BP〈n〉) itself, providing evidence that our filtra-
tion is the right way to obtain a good theory of motivic cohomology of E2-ring spectra. To see
this, we need the following two facts observed in [HRW22, Example 4.2.4]:

(1) THH(MU) → MU is faithfully even flat (by Proposition 6.19) and hence so is its base-
change THH(BP〈n〉)→ THH(BP〈n〉/MU)

(2) π∗ THH(BP〈n〉/MU) is even.

The result then follows from Theorem 6.24.

7. Comparison with the E∞-even filtration

In this section, we compare the even filtration studied in the current work with the even
filtration of E∞-rings introduced by Hahn-Raksit-Wilson [HRW22]. To avoid confusion, we refer
to the latter as the E∞-even filtration.

We first recall the definition of the E∞-even filtration; for details, see [HRW22, §2]. Let Mod
denote the ∞-category of pairs (A,M), where A ∈ CAlg(Sp) and M ∈ ModA(Sp); we write
Modev ⊆Mod for the full subcategory spanned by those pairs such that π∗A is even.

Definition 7.1. The E∞-even filtration

fil∗
E∞-ev/−(−) : Mod→ FilSp

is the right Kan extension of the functor U∗ : Modev → FilSp given by

Un(A,M) := τ≥2nM.

along the inclusion Modev →֒Mod.

Concretely, if (A,M) ∈Mod, then the E∞-even filtration is given by the limit

filn
E∞-ev/A(M) ≃ lim

←−
τ≥2n(B ⊗A M),

taken over all E∞-ring maps A→ B with π∗B even.

Construction 7.2. The even filtration of Definition 2.19 is more generally defined on pairs of an
E1-algebra and a module, but by restriction defines a functor on the ∞-category Mod. We will
describe a canonical natural transformation

(7.1) fil∗ev/−(−)→ fil∗
E∞-ev/−(−)

of functors Mod→ FilSp.
Since the right hand side of (7.1) is defined as a right Kan extension, to construct the needed

natural transformation it is enough to define it on the subcategory Modev. We claim that on this
subcategory, the two filtrations are canonically equivalent, providing the needed natural transfor-
mation. Indeed, if π∗A is even, then both filtrations are given by by

(A,M) 7→ τ≥2∗M,

by definition in the case of the E∞-even filtration and by Proposition 2.31 in the case of the even
filtration of Definition 2.19.

Theorem 7.3. Let R be an E∞-ring which admits a faithfully even flat map R→ S in the sense
of Definition 6.16 into a π∗-even E∞-ring S. Then for any R-module M the canonical comparison
map

fil∗ev/R(M)→ fil∗
E∞-ev/R(M)

exhibits the target as a completion of the source. In particular, it is an equivalence after completion.
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Proof. The E∞-even filtration is always complete [HRW22, Remark 2.1.6], so it is enough to show
that the canonical map is an equivalence after passing to the associated graded objects. As both
filtrations satisfy faithfully even flat descent, the even filtration by Theorem 6.24 and the E∞-even
filtration by a combination of Proposition 6.19 and [HRW22, Corollary 2.2.14], the comparison
map can be identified with

lim
←−

gr∗
ev/S⊗R [m](S

⊗R[m] ⊗R M)→ lim
←−

gr∗
E∞-ev/S⊗R [m](S

⊗R[m] ⊗R M),

where the limit is taken over [m] ∈ ∆. Thus, we can reduce to the case when π∗R is even, in
which case the two filtration agree as observed in Construction 7.2. �

In [HRW22, §5], Hahn-Raksit-Wilson show that the E∞-even filtration of various rings recovers
various classically studied and important filtrations, implying that they are in fact a functorial
invariant of the E∞-ring itself. In particular, they show that this is true for:

(1) the sphere, for which the E∞-even filtration is the Adams-Novikov filtration,
(2) HH(R/k), where k → R is a quasi-lci map of commutative rings, where one recovers the

Hochschild-Kostant-Roserberg filtration,
(3) THH(R)∧p , where R is a p-quasisyntomic, p-complete commutative ring, where one recovers

the Bhatt-Morrow-Scholze filtration of [BMS19],
(4) THH(R) for R a quasisyntomic ring, where one recovers the Bhatt-Lurie filtration of

[BL22]

Together with their work, our comparison result of Theorem 7.3 shows that these filtrations are
in fact invariants of the E1-ring structure of each of their rings.

Corollary 7.4. In each of the above four examples, the respective filtration coincides with the
even filtration of Definition 2.19.

Proof. The relevant comparison results with the E∞-filtration are all proven in [HRW22] using eff
descent. By Theorem 7.3, it is enough to verify that each of the maps appearing in the proof is
in fact faithfully even flat in the sense of Definition 6.16. This follows from Proposition 6.19 since
all of the relevant E∞-rings are connective. �

Remark 7.5. In [HRW22], Hahn-Raksit-Wilson also prove comparison results with motivic filtra-
tions on TC−(−), TC(−) and TP(−). However, in these cases their definition of an appropriate
E∞-even filtration is different from the one we recalled in Definition 7.1, as one has to take the S1-
action into account. We expect that after appropriate modifications are made to Definition 2.19,
the comparison can be extended to cover TC−(−), TC(−) and TP(−).

Beware that for a general E∞-ring, the E∞-even and even filtrations can disagree. We learned
the following instructive example from Robert Burklund:

Example 7.6. Let R := F2 ⊗ Σ∞
+ Ω∞S1 be the free F2-E∞-algebra on a class x ∈ π1R. The

homotopy groups of R can be described in terms of Dyer-Lashof operations, namely

π∗R ≃ F2[Q
Jx]

forms a polynomial ring in generators

QIx := Qj1Qj2 . . . Qjpx

satisfying ji ≤ 2ji+1 and j1 − j2 − . . .− jp > |x| = 1, see [Law20, Example 1.5.10].
Observe that any E∞-ring map R → S into a ring with π∗S even necessarily sends x to zero,

from which it follows that it factors as

R→ F2 → S
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so that all elements of positive degree are in the kernel of the induced map on homotopy. It follows
that if y ∈ π2nR is an element of positive even degree, then it maps to zero in

grn
E∞-ev(R) := lim

←−
R→S

π2nS.

On the other hand, the structure of the even filtration of Definition 2.19 is more straightforward;
in particular, all polynomial generators in π2nR are detected in grnev(R).

To see this, we will show the following more general statement: Let A be an E2-F2-algebra such
that π∗A ≃ F2[xi, yj ] is a polynomial algebra in odd degree variables xi and even degree variables
yj . Then

(7.2) H∗,∗
ev (A) ≃ F2[x̃i, ỹj ]

with x̃i ∈ H
1,|xi|+1/2
ev (A) and ỹj ∈ H

0,|yj |/2
ev (A) are detecting the corresponding elements of π∗A. In

particular, the even spectral sequence of A collapses.
From now on, let us not distinguish in notation between even and odd degree generators and

denote the totality of both by (zi)i∈I , with the index set I implicitly well-ordered. Observe that
any finite subset A ⊆ I determines a map of E1-F2-algebras

⊗

F2,i∈A

F2[zi]→
⊗

F2

A→ A

from the tensor product of free E1-F2-algebras, where the second map is the multiplication of A,
which is E1 as A is E2. We deduce that as an E1-ring, A can be written as

(7.3) A ≃ lim
−→
A⊆I

(
⊗

i∈A

F2[zi]),

a filtered colimit of finite tensor products. By Proposition 5.3, the even filtration of an E1-ring
can be calculated by constructing an appropriate chain complex of modules

E0 → E1 → . . . ,

where each Ei has even homotopy groups (among other properties, see Construction 5.2), and
taking cohomology of π∗E•. By (7.3), the resolution of A can be obtained as a filtered colimit of
tensor products of resolutions of F2[zi]. Note that here we use that we’re working over F2, as this
guarantees that a tensor product of modules with even homotopy groups also has even homotopy
groups. We deduce that we have a Künneth-style isomorphism

H∗,∗
ev (A) ≃ lim

−→
A⊆I

(
⊗

i∈A

H∗,∗
ev (F2[zi]))

which reduces us to the case of a free E1-algebra on a single generator. If the generator z is of
even degree, then the even cohomology is as claimed in (7.2) by Corollary 2.28. If z is of odd
degree, then we have a resolution of the form

k Σak Σ2ak . . .

k[z] Σak[z] Σ2ak[z] Σ3ak[z]

,

where a = |z| + 1. Each of the diagonal arrows is surjective on homotopy groups, from which
we deduce that the horizontal arrows are zero after passing to homotopy. We deduce that
H∗,∗

ev (F2[z]) ≃ F2[z̃] with |z̃| = (1, a/2), as claimed in (7.2).

Warning 7.7. The following variation on the Example 7.6 shows that the even and E∞-even
filtrations can diverge even more drastically once we leave the world of connective E∞-rings.

Let R be as in Example 7.6, so that π∗R ≃ F2[Q
jx] is a polynomial algebra and let e ∈ π2nR

be an even degree polynomial generator; for example, we can take Q3x ∈ π4R. As a localization,
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R[e−1] acquires a canonical E∞-ring structure with π∗(R[e−1]) ≃ (π∗R)[e−1]. Observe that any
map f : R → S into an even E∞-ring sends x to zero, so that also f(e) = 0. We deduce that the
only map R[e−1]→ S from the localization to an even E∞-ring is the zero map and consequently

fil∗
E∞-ev(R[e−1]) = 0.

On the other hand, an analysis analogous to the one given in Example 7.6 shows that the the even
filtration is complete and

H∗,∗
ev (R[e−1]) ≃ F2[ẽj , ṽj ][ẽ

−1],

where ẽ is the Hurewicz image of e.

Remark 7.8. Observe that the zero map R[e−1]→ 0 from the E∞-ring appearing in Warning 7.7
is evenly faithfully flat in the sense of Hahn-Raksit-Wilson [HRW22, 2.2.13], but it is not faithfully
even flat in the sense of Definition 6.16.

8. Even cohomology of connective rings

In this section we study even cohomology of connective rings.

8.1. Vanishing above the Milnor line

We first show that even cohomology of connective rings vanishes above the “Milnor line” p = q.

Theorem 8.1. Let R be connective and let M be connective, homologically even. Then

(1) H0,0
ev (R,M) ≃ π0M ,

(2) Hp,q
ev (R,M) = 0 for p > q.

Proof. We recall from Proposition 5.3 a recipe for calculating the even cohomology of M . Using
Construction 5.2, we can find a diagram

(8.1)

E0 E1 E2 . . .

C−1 C0 C1 C2

with the properties that C−1 = M and that each Ci → Ei → Ci+1 is a cofibre sequence with the
first map a π∗-even envelope. We then have a canonical isomorphism

(8.2) Hp,q
ev (M) ≃ Hp(π2qE•).

By Proposition 4.9, a π∗-even envelope of a connective R-module can be chosen so that the
cofibre is 2-connective. Since M is connective, it follows that we can choose a diagram (8.1) with
the property that Ei is (2i)-connective for each i ≥ 0. For such a diagram, both parts follow from
(8.2), as the groups π2qEp vanish for p > q and we have an isomorphism π0M ≃ π0E0. �

Theorem 8.2 (Completness of the even filtration). Let R be connective and let M be connective,
homologically even.Then

(1) filnev(M) ≃M for n < 0 and
(2) the even filtration fil∗ev(M) is complete; that is, lim

←−
fil∗ev(M) ≃ 0.

Proof. We start with the first part. Recall from Remark 2.24 that the associated graded object
of the even filtration satisfies

πt gr
n
ev M ≃ H−2n−t,n

ev (R,M).

By Theorem 8.1, the even cohomology of M vanishes in negative weight, so that the maps

fil0ev(M)→ fil−1
ev (M)→ fil−2

ev (M)→ . . .

are all equivalences. As their colimit is equivalent to M by Proposition 2.21, we deduce that
filnev(M) ≃M for all n < 0.
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We now show that lim
←−

filnev(M) is (−2)-connective. Using the Milnor exact sequence associated

to an inverse limit, it is enough to show that filnev(M) is (−1)-connective for each n > 0. We’ve
already seen that this is true when n = 0, and we’ll prove it for positive n via induction.

The identification between even cohomology and homotopy groups of the associated graded
object together with Theorem 8.1 show that for each n ≥ 0, grnev(M) is 0-connective (in fact,
n-connective, but we will not need it). Since we have a cofibre sequence

Σ−1 grnev(M)→ filn+1
ev (M)→ filnev(M),

the (−1)-connectivity of filn+1
ev follows from that of filn, ending the inductive argument. This

shows that lim
←−

filnev(M) is (−2)-connective, as claimed.

We will now inductively show that for any k ∈ Z, lim
←−

filnev(M) is k-connective. The case k = −2
was proved above, so we assume that k ≥ −1. Using Proposition 4.9, we can find a cofibre
sequence

M → E → C

where both E and C are also homologically flat, π∗E is even and C is 2-connective. This yields a
cofibre sequence

lim
←−

fil∗ev(M)→ lim
←−

fil∗ev(E)→ lim
←−

fil∗ev(C)

The middle term vanishes by Lemma 2.27, giving an equivalence

(8.3) lim
←−

fil∗ev(M) ≃ Σ−1(lim
←−

fil∗ev(C)) ≃ Σ(lim
←−

fil∗ev(Σ
−2C))

where we use that

filnev(Σ
−2C) ≃ Σ−2 filn+1(C)

which follows immediately from the definition. As Σ−2C is connective, the right hand side of (8.3)
is k-connective by the inductive assumption. We deduce that the same is true for the left hand
side. It follows that lim

←−
filnev(M) is k-connective for all k ∈ Z and thus must vanish, proving the

second part. �

Corollary 8.3. If R is connective and M is homologically even, connective, then the even spectral
sequence

Hp,q
ev (R,M)⇒ π2q−p(M)

converges completely.

Proof. Since the even spectral sequence of Definition 2.25 is the spectral sequence associated to
the filtered spectrum fil∗ev(M), conditional convergence in the sense of Boardman follows from
completeness of the even filtration, which we’ve shown in Theorem 8.2.

As the differentials are of bidegree |dr| = (2r − 1, r − 1), the vanishing line of Theorem 8.1
implies that the group of elements in any given bidegree can receive and support only finitely
many differentials, complete convergence follows. �

Remark 8.4 (The case of the E∞-even filtration). The Hahn-Raksit-Wilson filtration attached
to an E∞-ring R is always complete by construction, and the question of whether the associated
spectral sequence converges to π∗R instead depends on whether the filtration is exhaustive; that
is, whether lim

−→
fil∗

E∞-ev(R) ≃ R. This was shown to be the case if R is connective by Achim Krause

and Robert Burklund, giving an analogue of Theorem 8.2 also in this context4.

4Proviate communication with Achim Krause and Robert Burklund.
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8.2. Cohomology in low weights

In Theorem 8.1, we have shown that the weight zero even cohomology of a connective R-module
is concentrated in cohomological degree zero, where H0,0

ev (M) ≃ π0M . In this section, we give a
calculation of groups in weight one and deduce a calculation of H2,2

ev (M).

Proposition 8.5. Let R be connective and M homologically even and connective. Then

(1) H0,1
ev (M) ≃ coker(π1R⊗Z π1M → π2M),

(2) H1,1
ev (M) ≃ π1M .

Proof. Each homotopy class m ∈ π1M determines a map ΣR → M . We will consider the direct
sum ⊕

m∈π1M

ΣR→M

of all of these maps and the corresponding cofibre sequence

M → E → C,

where C ≃ Σ2R is the suspension of the direct sum above. This is a homologically even R-modules,
so that we have a short exact sequence

0→ FM → FE → FC → 0.

This induces a long exact sequence of even cohomology

(8.4) 0→ H0,1
ev (M)→ H0,1

ev (E)→ H0,1
ev (C)→ H1,1

ev (M)→ H1,1
ev (E)→ 0

Since E and C are 2-connective, from Theorem 8.1 we know that H1,1
ev (E) = 0, H0,1

ev (E) ≃ π2E
and H0,1

ev (C) ≃ π2C. Taking this into account, (8.4) becomes

0→ H0,1
ev (M)→ π2E → π2C → H1,1

ev (M)→ 0.

Since C ≃
⊕

Σ2R and

. . .→ π3C → π2M → π2E → π2C → π1M → 0

is exact we deduce that

H0,1
ev (M) ≃ ker(π2E → π2C) ≃ coker(

⊕
π1R→ π2M) ≃ coker(π1R⊗Z π1M → π2M).

This shows the first needed isomorphism. Similarly, we have

H1,1
ev (M) ≃ coker(π2E → π2C) ≃ π1M.

�

Corollary 8.6. Let R be connective and M homologically even, connective. Then

H2,2
ev (M) ≃ im(π1R⊗Z π1M → π2M).

Proof. By Corollary 8.3, in the case at hand the even spectral sequence

Hp,q
ev (M)⇒ π2q−p(M)

converges completely. As the differentials are of bidegree (2r − 1, r − 1), the vanishing line of
Theorem 8.1 implies that elements in weights q ≤ 2 can neither receive or support differentials. It
follows that we have a short exact sequence

0→ H2,2
ev (M)→ π2(M)→ H0,1

ev (M)→ 0,

and the identification of the last group in Proposition 8.5 yields the needed result. �
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8.3. Base-change around the Milnor line

As we have seen in Theorem 8.1, if M is a homologically even, connective module over a
connective E1-ring R, then grnev(M) is always n-connective, with lowest homotopy group given

πn grnev(M) ≃ Hn,n
ev (R,M).

Since the n-th homotopy group detects effective epimorphisms in the ∞-category of n-connective
spectra, the Milnor line group Hn,n

ev (R,M) plays a large role in the study of connective modules.
In this section, we prove the following result about how the even cohomology groups vary in a
neighbourhood of the Milnor line:

Theorem 8.7. Let f : R → S be a right homologically even map of connective E1-rings and let
M be an even flat R-module. Then the base-change of the canonical comparison map

π0S ⊗π0R Hp,q
ev (R,M)→ Hp,q

ev (S, S ⊗R M)

is a surjection for p ≥ q − 1.

Proof. We will show this by induction on weight. The case of q = 0 follows from Theorem 8.1.
Let us assume that q > 0 and let M → E be a π∗-even envelope, which by Proposition 4.9 we

can choose so that the cofibre C is 2-connective. Since both M and C are even flat, so is E. Since
S is homologically even as a right R-module, it follows from Theorem 4.14 that π∗(S ⊗R E) is
even. In particular, S ⊗R E is homologically even as an S-module. Consider the map of cofibre
sequences

M E C

S ⊗R M S ⊗R M S ⊗R C

.

This induces a map of long exact sequences

Hp,q
ev (R,E) Hp,q

ev (R,C) Hp+1,q
ev (R,M) Hp+1,q

ev (R,E)

Hp,q
ev (S, S ⊗R E) Hp,q

ev (S, S ⊗R C) Hp+1,q
ev (S, S ⊗R M) Hp+1,q

ev (S, S ⊗R E)

,

where the vertical maps are the base-change maps of Construction 6.12. As p ≥ q − 1 ≥ 0, the
two groups in the right-most column vanish by Corollary 2.28. Thus, in the square

Hp,q
ev (R,C) Hp+1,q

ev (R,M)

Hp,q
ev (S, S ⊗R C) Hp+1,q

ev (S, S ⊗R M)

the two horizontal maps are surjective. As a base-change of an epimorphism is an epimorphism,
the same is true in

π0S ⊗π0R Hp,q
ev (R,C) π0S ⊗π0R Hp+1,q

ev (R,M)

Hp,q
ev (S, S ⊗R C) Hp+1,q

ev (S, S ⊗R M)

Since Hp,q
ev (R,C) ≃ Hp,q

ev (R,Σ−2C) and Σ−2C is connective, the left vertical map is surjective by
the inductive assumption. It follows that so is the right vertical map, ending the argument. �
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