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1. Introduction

The local Jacquet-Langlands correspondence gives a bijection between super-
cuspidal representations of the general linear group GL(h) of a local field K and
irreducible representations of the multiplicative group of the central division alge-
bra of invariant 1/h. By the local Langlands conjecture these should also be in
bijection with the irreducible h-dimensional representations of the Weil-group WK .
H. Carayol conjectured two ways to realize these correspondences, namely via the
cohomology of either coverings of Drinfeld’s symmetric space, or of the universal
deformation of the one dimensional formal group of height h (see [3]). A result
along these lines has been shown by Harris and Taylor ([13]), while the author has
proven by much more elementary means that the first model incorporates at least
the Jacquet-Langlands correspondence ([7]). The purpose of the present paper is
to relate the two models via a geometric construction. Namely the corresponding
maximal covers (infinite level-structures) become isomorphic as rigid spaces.

A rough idea of what is going one can be given by the associated period-maps.
These map the Tate-module into the tensorproduct of crystalline cohomology and
Fontaine’s ring of periods Acrys. In our case the Tate-module is always trivialised
(infinite level-structure), and the crystalline cohomology is (up to torsion) constant.
For the one-dimensional formal OK-modules H the period map sends Tπ(H) = Oh

K

to its crystalline homology W which admits an action by the integers OB of the
division-algebra of invariant 1/h. For the Drinfeld symmetric space one classifies
formal OB-modules of dimension h, and the period-map sends OB into Wh and
is OB-linear. Obviously these types of maps correspond one to one, where the
Tate-module Tπ(H) changes sides from étale to crystalline and is replaced by its
dual.

One defect of the present paper is that we reduce formal OK-modules to formal
groups. It would be more satisfactory to develop an analogue of the classical theory
of finite flat group-schemes and p-divisible groups for OK-modules. For example
the multiplicative group should be replaced by a Lubin-Tate formal group, Cartier-
duality by maps into Lubin-Tate, divided powers by π-divided powers ([11]), Acrys

by an analogue which is naturally an algebra over OK , etc.. This also should take
care of positive characteristics. Unfortunately such a theory does not exist, or at
least is not known to me, and everything is reduced prosaically to Qp. (In the
meanwhile such a theory has been constructed.)

Some of the work was done when I visited the Institure for Advanced Study
around Easter 2001, so I thank the Institute for its very generous hospitality. It
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gives me special pleasure to dedicate this work to A.N.Parshin because I profited
enormously from his work on diophantine geometry.

This paper has been accepted for publication by the St. Petersburg Mathemat-
ical Society.

2. Preliminaries

Throughout the paper K denotes a finite extension of the p-adic numbers Qp,
that is a non archimedean local field of characteristic zero. Also B denotes the
division-algebra of invariant 1/h over K, h an integer. The integers in K or B are
denoted by OK , respectively OB . A formal group G of dimension d over a p-adically
complete (commutative) ring A is given by a formal group law on the powerseries
A[[T1, ...Td]]. It is of finite height h if multiplication by p induces a finite map of
degree ph on A[[T1, ...Td]]. In this case there exists a universal vectorextension

0 → F → EG → G → 0,

with F an additive formal group of dimension h−d. Furthermore EG is crystalline,
that is if I ⊂ A is a PD-ideal then up to canonical isomorphism EG depends only on
the reduction of Gmodulo I. Also maps (of formal groups) defined modulo I extend
canonically to universal vectorextensions (see [15]). For example we can apply this
to I = p ·A with its canonical PD-structure. Thus if A admits a Frobenius-lift the
Frobenius on G modulo p extends to a semilinear endomorphism of EG. Also all
this extends to p-divisible groups. We call the Lie-algebra of EG M1(G) (crystalline
homology).
If V is a complete discrete valuation ring of mixed characteristic, with perfect
residue field k, we can form the ring Acrys (see [10]). It has a PD-ideal, a Frobenius-
lift, and an action of Gal(V̄ /V ). If G denotes a p-divisible group over V its universal
vectorextension depends up to isogeny only on the fibre of G over k. Thus if G0

denotes any lift of G ⊗V k over the Witt-vectors V0 = W (k), then M1(G)[1/p] =
M1(G0) ⊗V0

V [1/p], and this admits a semilinear Frobenius automorphism (the
inverse of the map induced by Frobenius on EG0). Furthermore if Tp(G) denotes
the Tate-module of G any ρ ∈ Tp(G) defines over V̄ a homomorphism from Qp/Zp

into G, which lifts over Acrys(V ) to a map of universal vectorextensions, thus to a
map from Qp into EG(Acrys(V )). Also the induced map on Lie-algebras defines an
element of the Lie-algebra of EG, so finally a canonical period-map (as in [8])

Tp(G) → M1(G0)⊗Acrys(V )[1/p].

This period map respects the Galois-action and the image is invariant under Frobe-
nius and lies in the first stage of the product filtration. If we apply this to the
multiplicative group (with the canonical generator of M1(Gm)) we obtain as image
of a generator of Zp(1) a canonical element t ∈ F 1(Acrys(V )), well defined up to
multiplication by the units Z∗

p. For general G we consider the determinant of the
period-map. For this we choose generators of the determinants of Tp(G) and of
M1(G0), which are well-determined up to units in Z∗

p, respectively V ∗
0 . Then the

determinant lies in F d(Acrys(V ).

Lemma 1. The determinant lies in V ∗
0 · td.

Proof: We may assume that k is algebraically closed. As the Galois-action on
the determinant of Tp(G) is via the d-th power of the cyclotomic character (see
[16]) the determinant must be a K0-multiple of td (see [10]). We have to show that
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the factor is a unit. Also choosing a generator of the determinant of M1(G0) which
is a Frobenius-eigenvector with eigenvalue p−d we get that the factor is Frobenius-
invariant, that is it lies in Qp. (We could have derived this directly from [10] without
using the Galois-action, but this result is more delicate).

This assertion is compatible with isogenies and extensions, and also with Cartier-
duality (the composition of the period map for G with the adjoint of that for Gdual

is th). This already implies that the factor is nonzero. Also by a deformation
argument we may assume that G = G0: There exists a formal group G over V [[T ]]
with fibre G0 at T = 0 and fibre G at T = π, for a uniformiser π of V . Adjoining
the squareroot of π and scaling T by it we may assume that G is constant modulo π.
Then the theory of Acrys works over V [[T ]] (see [8], although we only need a rather
elementary case of the general theory essentially covered in [6]). Thus a period of
G in F d(Acrys(V [[T ]])). Using the Galois-action we see that modulo F d+1 it is a
multiple of td, with the factor in V [[T ]][1/p]. Mapping to the localisation of V [[T ]]
in π ·V [[T ]] gives that the factor lies in Qp, and by pushout coincides with that for
G0, respectively G.

So it suffices to consider G0, which can be an arbitrary lift of its special fibre. Us-
ing extensions and isogenies we may assume that G0 is a formal group of dimension
d and height h, with d and h coprime and 0 < d < h. We also may assume that G0

admits as endomorphisms the ring R of integers in the unramified extension Qph of
degree h of Qp. It then follows that Tp(G) is a free R-module of rank one, and that
Gal(V̄ /V ) acts on it via a character χG : Gal(V̄ /V ) → R∗. It is known that χG is
the product of d conjugates of the Lubin-Tate character χ : Gal(V̄ /V ) → R∗. The
conjugations are via i-th powers of Frobenius, where 0 ≤ i < d ranges over those
numbers for which the corresponding eigenspace of R on Lie(G0) does not vanish.

Furthermore Tp(G0) ⊗ R is the direct sum of eigenspaces under R (acting via
endomorphims of G0). We index them by integers i, 0 ≤ i < h, such that R acts on
i-space via the i-th power of Frobenius. Similarly we have such a decomposition for
M1(G0). Now the period-map is integral (no need to invert p), and as it respects
endomorphisms it acts (after choice of generators) on the i-space by an element
xi ∈ Acrys(V ). This element lies in F 1(Acrys(V )) if the corresponding basis-element
of M1(G0) does not lie the Lie-algebra of the vectorpart F of EG0, which happens
for d indices i. Furthermore the xi are eigenvectors for Gal(V̄ /V ), with character
the i-th Frobenius conjugate of χG. Finally xi (and thus also yi) divides t because

the period-map has an inverse up to t. The leading term of xi in grFj (Acrys(V )) ∼= ˆ̄V
(j = 0, 1) has a certain valuation vi ∈ Q (valuations are normalised such that p has
valuation 1). Modulo elements of valuation > vi the Galois-group acts on elements
of valuation vi via a tame character with values in k∗. This character is equal to
the reduction of the Lubin-Tate character if and only if

vi ≡ p−jh/(ph − 1)mod(Z)

for some integer j ≥ 0 (For grF0 there is an easy relation between valuations and
tame Galois-actions on leading terms. To check for grF1 one can use that the result
is correct for the valuation of t, that is for valuation 1/(p−1), and that it is anyway
correct up to a constant shift). For the i-th Frobenius transform one has to multiply
the right hand side by pi.

Now let us first study the case d = 1, that is Lubin-Tate groups. It then follows
that the valuation vi of xi satisfies either vi > 1 or 0 < vi ≤ pi/(ph−1) (0 ≤ i < h).
The first alternative cannot hold because xi divides t which has valuation 1/(p−1).
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Also the product of the xi is a Galois-eigenvector for the cyclotomic character and
thus a K∗

0 -multiple of t. Checking valuations one finds that the factor is a unit, and
that each xi has valuation vi = pi/(ph−1). Especially the determinant of the period
map is the product of the xi and thus up to a unit equal to t, as claimed. Also one
checks that for each collection of d < h indices i the product of the corresponding
xi has leading term with valuation < 1, thus must generate the corresponding
Galois-eigenspace (which is a free cyclic module over V0).

Now for general d < h the corresponding elements xi must be integral multiples
of the product of d ”Lubin-Tate-xi’s”. Thus their product is an integral multiple of
td. But this product is the determinant of the period-map, and applying the same
procedure to the dual (d replaced by h− d) we obtain that the factor is a unit.

Remark: The result also applies to formal groups of finite height over ˆ̄V , the
p-adic completion of the integral closure of V in an algebraic closure K̄. Namely
these can be obtained by pushout from a formal group over V [[T ]] (use [14] to check
that modulo each power of p the formal group is defined over V̄ ) and the previous
deformation-argument applies.

3. valuations of torsion-points

We fix a local field K which is a finite extension of Qp and denote by V = OK

its ring of integers. p-adic valuations are normalised such that a uniformiser π of
OK has valuation 1. The order of the residue-field of V is denoted by q.

In this section we consider formal OK-modules H of dimension 1 and height h,

as in [11], over the completion ˆ̄V . In a suitable coordinate T multiplication by π is
described by a polynomial

fH(T ) = πT +

h−1∑
i=1

aiT
qi + T qh ,

where the coefficients ai ∈ ˆ̄V are non-units. They parametrise the (suitably defined)
isomorphism-class of H. We say that H satisfies condition (∗) if ai has valuation
v(ai) ≥ 1 − i/h. It is shown in [11], Cor.23.26, that any H is isogeneous to one
satisfying (∗).

The torsion-points in H form a module isomorphic to (K/OK)h. The valuation
of such a torsion-point is defined as that of the value of T at that point. The
valuations of the π-torsion can be read of from the Newton polygon of fH :

Namely in the (x, y)-plane form the convex hull of all points lying above the
points (qi, v(ai)), 0 ≤ i ≤ h (a0 = π, ah = 1). Then its lower boundary consists of
h lines connecting (qi−1, ui−1) to (qi, ui). If vi = (ui−1−ui/(q

i− qi−1) denotes the
slopes of these lines then H[π] has an Fq-basis xi such that for a linear combination
x =

∑
H ri · xi (ri ∈ Fq) the valuation of x is equal to the minimal vi for which

ri ̸= 0. Furthermore the vi are non-increasing.
Now assume that H satisfies (∗). We want to determine for which isogenies

f : H → H ′ the target H ′ satisfies (∗) as well. We may assume that the isogeny
f does not factor over multiplication by π, that is it does not annihilate all π-
torsionpoints.

Lemma 2. H ′ satisfies (∗) if and only if H ′ is the quotient of H under the sub-
module generated by x1, ..., xi, for some i for which ui = 1− i/h, and for a suitable
choice of xi (There is some ambiguity of several xi have the same valuation).
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Proof: First assume that f is of the form above. It is known that for a point x of
H the valuation of f(x) is equal to the sum of the valuations v(x−H y), for y ranging
over the elements of ker(f) (”−H” means difference in H). We apply this to either
x a non-trivial combination of xj with j > i, or to an x with π ·H x a non trivial
combination of xj with j ≤ i. The images of these points generate the π-torsion in
H ′. From the Newton-polygon one checks that for j ≤ i our element has valuation
vi/q

h, and it follows in all cases that the valuation of x−H y (y ∈ Ker(f)) is equal
to v(x). Thus under f the valuation of x is multiplied by the order of f , that is
by qi. It follows that if we define x′

j = f(xj+i) for j ≤ h − i, and x′
j for j > h − i

as the image of an x with π ·H x = xj+i−h, then the H ′-valuation of xj is either
qi · vj+i (j ≤ h − i) or qi−h · vj+i−h (for j > h − i). As v1 ≤ qh−1 · vh it follows
that the sequence of these valuations is non-increasing, with a break at h− i, and
that the valuation of any linear combination of the x′

j is equal to the infimum of
the v′j for which the coefficient is nonzero. One then can read of the parameters
u′
j = uj+i − ui respectively u′

j = uj+i−h + 1 − ui. As ui = 1 − i/n it follows that
H ′ satisfies (∗).

Conversely assume that this is the case. We can find a basis ρi for the Tate-
module Tπ(H) such that the xi are the π-division-points defined by ρi, and such that
the kernel of f is generated by the corresponding πni -division points, for integers
ni ≥ 0 not all strictly positive. That is Tπ(H

′) has basis π−ni · ρi.
If n denotes the maximum of the ni, choose elements yi with πn ·H yi = xi

for those i for which ni = n. Let r be the number of these, and denote them
by i1 < i2 < ... < ir. Any linear combination of the yi not annihilated by πn

has valuation ≤ vi0/q
nh. As elements y ∈ Ker(f) have valuation ≥ vh/q

(n−1)h it
follows that under f the valuations of these elements multiply by the degree, that
is by q

∑
ni .

Now the image is a subgroup of the π-torsion of H ′, of rank r. It contains (q−1)
elements of valuation vi1/q

∑
(n−ni), (q2 − q) elements of valuation vi2/q

∑
(n−ni),

etc.. The sum of these is equal to

(

r∑
j=1

(qj − qj−1)vij )/q
∑

(n−ni)

≤ (

r∑
j=1

(qj − qj−1)vj)/q
∑

(n−ni)

≤ (

r∑
j=1

(qj − qj−1)vj)/q
h−r

≤ (1− ur)/q
n−r.

On the other hand as H ′ satisfies (∗) as well the sum must be ≥ r/(hqh−r). Thus
ur = 1 − r/h, n = 1, and vij = vj . Changing the basis xi (it is not quite unique)
gives the result.

Remark: The equality ui = 1 − i/h only happens of (q, ui) is a proper vertex
of the Newton polygon, that is a change in slopes occurs at that stage. Also this
happens if and only if the π-adic valuation of ai is 1− i/h.

Next we define a valuation (or a π-adic norm) on Tπ(H)dual. Namely consider
the universal OK-vectorextension EKH, as in [11]. The previous universal vec-
torextension maps to it, and it is the biggest quotient such that OK acts on the
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Lie-algebra via its natural homomorphism into ˆ̄V (The Lie-algebra M1(G) of the

usual universal vectorextension is a projective ˆ̄V ⊗ OK-module). An element ρ of
Tπ(H) is given by a sequence xn = π ·H xn+1 of torsion-elements. Lift them to

EKH and multiply by πn. The result is modulo πn ·FK( ˆ̄V ) independant of choices,

and the limit defines a lift Tπ(H) → EKH( ˆ̄V ) (Which is also the lift given by the
crystalline nature of universal vector-extensions). In fact this construction even
defines a lift on the vectorspace Tπ(H)[1/π].

The Tate-module Tπ(H) maps into the vectorpart FK , and by duality we get

F dual
K ( ˆ̄K) → Tπ(H)dual ⊗OK

ˆ̄K. The quotient is one dimensional and induces the
norm on Tπ(H)dual (that Tπ(H)dual injects into it will be seen below). Another
way: Lift H to an H over Acrys(V ). The first crystalline homology M1(H) is
independant of the choice involved. Consider the period-map

Tπ(H) → M1(H).

Further divide by M1(H) ⊗ F 1(Acrys(V )) and map to the maximal quotient of

M1(H) on which OK acts via its embedding into ˆ̄V . The resulting map takes

values in FK( ˆ̄V ) and is the same as before.
It follows by duality that the one-dimensional quotient has the following de-

scription: Consider the dual (p-divisible or formal group) Hdual. It has height
h · [K : Qp] and dimension one less than that. It admits an action of OK but is
not an OK-module since the action on the Lie-algebra is not correct. Its universal
vector-extension has a one-dimensional vectorpart dual to the Lie-algebra of H,
on which OK acts by multiplication. The previous construction applied to Hdual

defines a map

Tp(H
dual) = Tp(H)dual(1) → Lie(H)dual( ˆ̄V )

which (up to a factor) is our quotient-map. That it is injective follows from

Lemma 3. Suppose that modulo p H is isogeneous to H0 of order pn, that is there
exist morphisms in both directions with composition multiplication by pn. Then
the induced p-adic valuation on Tp(H

dual) differs from the standard-valuation by a
function taking values between 0 and n+ 1.

Proof: Consider an indivisible element ρ ∈ Tp(H
dual) and suppose its image

in Lie(H)dual( ˆ̄V ) is divisible by pn+1. This means that the corresponding pn+1-
torsionpoint x of Hdual lifts to a pn+1-torsion-point in EHdual. By the crystalline
nature of the universal vectorextension the isogeny modulo p between H and H0

lifts to an isogeny over ˆ̄V between universal vectorextensions, again of order pn.
Thus EHdual

0 must contain a nontrivial torsion-point of exact order p. As we have
a Lubin-Tate group all such torsion-points are conjugate under automorphisms, so
the period-map for Hdual

0 vanishes modulo p. On the other hand we have already
studied the periods of such formal groups, and know that the period divides t with
the quotient a non-unit. Thus the period has p-valuation < 1 and is not divisible
by p.

Remark: This argument partially extends to families, using the methods from [6]:
Suppose G is a formal group over a p-adically complete ring R which is a V -algebra
and has toroidal singularities over V (for example is smooth, or has semistable
reduction, see [9]). If R̄ denotes its normalisation in the maximale étale cover of
R[1/p] then R̄ is almost flat over R, that is all higher Tor’s are annihilated by any
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positive power of p (see [9] for details). Also the relative (logarithmic) differentials
ΩR̄/R are almost isomorphic to a direct sum of copies of R̄[1/p]/R, with one direct

summand isomorphic to ΩV̄ /V ⊗V̄ R̄. Finally the logarithmic derivatives of roots
of unity define an isomorphism

V̄ [1/p]/η−1 · V̄ ∼= ΩV̄ /V ,

for a certain η ∈ V (whose valuation is related to the discriminant of V ). It then
follows from lemma 2 in [6] that the Hodge-tate period map has an inverse up to η

(first an almost inverse, but an almost integral element of ˆ̄R[1/p] is integral). Thus

the submodule of Lie(G)dual ⊗ ˆ̄R generated by the image of Tp(G
dual) contains

anything divisible by η. Especially over the field it spans the first stage of the
Hodge-filtration.

4. Two Moduli-spaces

V.G.Drinfeld has studied two different moduli-spaces. One of these is his famous
symmetric space, namely the complement of all K-rational hyperplanes in Ph−1

K . It
has an integral model X (a formal scheme locally of finite type over the maximal
unramified extension of OK) which is the Deligne-scheme: Its R-points (R an ar-
tinian local OK-algebra on which p is nilpotent) associated to any lattice Λ ⊂ Kh

a quotient line Λ ⊗ R ↠ LΛ, invariant under homotheties. Furthermore inclusions
of Λ’s should induce maps on the quotient, and for any nontrivial ρ ∈ Kh there
exists a Λ such that the intersection of Λ and the line spanned by ρ generates LΛ.
X classifies formal groupes G of dimension h with multiplication by OB , equipped
with a quasiisogeny modulo p (isogeny up to inverting a power of π) of degree 1 to
a fixed G0, and such that the integers of the unramified extension of degree h of K
act via the regular representation on the Lie-algebra of G (special OB-module in
[4]). Choose a uniformiser Π of OB with Πh = π and such that Π normalises the
integers of the unramified extension of degree h of K which are contained in B.

Also there exists finite coverings Xn → X where Xn classifies G’s (as before)
together with a generator of its Πn-division points. Here a section g ∈ G is such a
generator if Πn−1 · g is a generator of the Π-division points, which means that it
lies in a certain closed subscheme which is functorial, and which in characteristic
zero coincides with the complement of the zero-section in G[Π]. All in all we
obtain a proobject in the category of formal schemes, with flat transition-maps.
We denote by X∞ its projective limit in the category of π-adic formal schemes,
that is the projective limit of the topological spaces, endowed with the completion
of the inductive limit of sheaves of rings. It admits an action by the subgroup of
GL(h,K) × B∗ × WK consisting of elements where the sum of π-adic valuations
of determinants vanishes (on WK any Frobenius has valuation 1). The action is
by changing the quasi-isogeny by isogenies (GL(h,K)), elements of B∗ (where one
also has to conjugate the OB-action on G), and by composing it with powers of
the Frobenius-isogeny on G0. It is shown in [17] 5.48 that the period map into
projective space defined by Drinfeld coincides with the crystalline period map.

Similarly in [11] we have the universal deformation-space of the formal OK-
module of dimension 1 and height h. Rigid-analytically it corresponds to the open
unit disk. It specifying Drinfeld-basis of πn-torsion points one obtain a flat cover
which represented by a regular complete local ring of dimension h. The coordinates
of the universal division-points give regular parameters (see [13]). In the limit we
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obtain an infinite covering with group GL(n,OK). On it the bigger group GL(n,K)
acts: The scalar π acts trivially. Suppose we are given H with a compatible system
of Drinfeld-basis for its division-points, and a g ∈ GL(h,K). Multiply g by a
power of π to make it integral, and choose n sufficiently big such that g divides
πn. The linear combinations of the g-transforms of the Drinfeld-basis of H[πn]
generate a flat subgroup whose underlying scheme is the divisor which is the sum
of all linear combinations. Dividing by this subgroup gives a new H with Drinfeld
level-structures. Over the closed point the induced isogeny is isomorphic to a power
of Π (Π is a uniformiser of OB , and the exponent is the valuation of det(g)), so the
special fibre of the quotient is again isomorphic to the fixed H0.

More generally we can find a model over the maximal unramified extension of
OK , with an action of the familiar subgroup of GL(h,K) × B∗ ×WK of elements
with sums of valuations 0. Here the first factor acts via the inverse adjoint of
the previous, the second and third by quasi-isogenies on H0 (the inverse adjoint is
needed because the first factor now acts on H instead of H0).

We now construct formal p-adic schemes mapping to these, corresponding to an
affinoid covering of the projective system of open unit disks. One such domain is the
following: Consider the closed unit disk classifying H’s for which the coefficients ai
of the polynomial fH have valuation ≥ 1− i/h. If we adjoin an h’th root of π it has
a smooth formal model, namely the formal affine space in coordinates ai/π

1−i/h.
There is also a natural model over OK , whose affine ring is the intersection with
K[[a1, ..., ah−1]], but it is not smooth (only toroidal), and our affine space is the
normalisation of its base-extension. Over these models we have the universal formal
group H (where fH(T ) has coefficients ai), and a GL(h,OK)-covering defined by
Drinfeld level structures. This covering is first a pro-object in the category of p-adic
formal schemes but we may form its projective limit as a p-adic formal scheme. It
is affine with algebra the π-adic completion of the union of the algebras classifying
πn-levelstructures.

Next form a disjoint union of these indexed by GL(h,K)/πZ · GL(h,OK), and
glue them along open subschemes, according to the following rules (dictated by
lemma 2):

Everything should by GL(h,K)-equivariant, so it is enough to specify how the
copy parametrised by g = 1 is glued (and this has to be GL(h,OK) equivariant).

So for this copy consider the open formal subscheme defined by ai/π
1−i/h in-

vertible. Over it divide H by the flat subgroup consisting of π-torsion-points of
valuation ≥ i/(h · (qi − 1)). It has order qi and is defined by the vanishing of a
suitable factor of fH . The result H ′ lies again in our fundamental region, that is
a′j/π

1−j/h is integral (and invertible for j = h− i). Also Zariski-locally H ′ admits
a Drinfeld level structure, by composing the one on H with a suitable matrix g
which is a product of an element of GL(h,OK) and the inverse of diag(π, π ..., 1, 1)
(i π’s). Glue our open subscheme to the corresponding open in the copy defined by
g.

The result of this glueing is a π-adic formal scheme Y∞. Over it we have a
one-dimensional formal O-module H, together with a quasiisogeny modulo π, of
degree 0. If one wants to use pro-objects the result is somehow difficult to describe.
It is someting like an increasing union of proobjects in the category of formal π-
adic schemes. It is easier to form the quotient under a compact open subgroup
M ⊂ GL(h,K), which is a π-adic formal scheme YM over OK , locally of finite
type. The YM form a projective system, with an action of GL(h,K)/πZ. Also
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on everything acts the subgroup of GL(h,K) × B∗ × WK of elements of ”unit-
determinant”.

Finally the rigidanalytic space defined by Y∞ maps via the ai to the open poly-
disk. If we restrict to the preimage of a closed polydisk, say defined by the condition
that all ai have valuation ≥ ϵ > 0, then the proof of corollary 23.26 in [11] shows
that the H involved are isogeneous to an H ′ satisfying (∗) such that the degree of
the isogeny is bounded in terms of ϵ (First bound the valuations of π-torsionpoints
away from 0). Thus the preimage lies in a finite union of transforms of the funda-
mental region. Hence Y∞ defines a model for the infinite rigid covering of the open
unit disk defined by an infinite levelstructure on H.

Finally there exists another ”period-mapping”, as in [11], section 23: Rigid-

analytically it maps H to the point in P̃ = Ph−1 which classifies the Hodge-filtration
of Lie(EH0) defined by H. After adjoining an h-th root of π P̃ has a model with
homogeneous coordinates bi/π

1−i/h. The bi are (as the ai) eigenvectors for the
units of the unramified extension of degree h of K considered as subgroup of B∗.
The uniformiser Π acts by cyclically permuting the bi/π

1−i/h (bh = b0), see [11],
equ. 22.9. On the fundamental domain (ai valuation ≤ 1−i/h) the period mapping

is of the form bi = ai+higherorder. It extends to a regular map Y∞ → P̃ which is
equivariant under the subgroup of elements with unit determinant in GL(h,K)×B∗,

(where the first factor acts trivially on P̃ ).
We remark that these construction have been done over the ring V obtained by

adjoining to OK an h’th root of π. However as the constructions are independant
from the choice of such a root we get natural singular models over OK . Fortunately
we do not need these: It suffices that our models satisfy a ”weak descent-condition”,
namely that over the normalisation of V ⊗OK

V the two pullbacks become isomor-
phic, the isomorphism satisfying transitivity etc.. This ”weak descent” will be
sufficient for our applications to vanishing cycles.

5. Relation

We prove that after suitable blowups the two infinite covers X∞ and Y∞ become
isomorphic. We shall construct such an isomorphism over the maximally unramified
extension of the extension of OK defined by adjoining an h’th root of π, and it will
satisfy the ”weak descent condition” as before, that is nothing really depends on
the choice of that root.

We first describe this correspondence on the level of ˆ̄V -points where the blowups
do not show up. We denote by H0 a lift of the O-module of dimension 1 and height
h, say the one defined by ai = 0. Modulo π it has multiplication by OB , where Π
acts as Frobenius. The universal vectorextension EH0 is up to isogeny independant
of the lift. Also over k there exists a special OB-module G0 and an isogeny from Hh

0

into it, of degree qh(h−1)/2. Namely one can choose for G0 the product of h copies
of H0, with the isogeny on the i-th factor given by Πi−1, and the corresponding
conjugation of the OB-action. Thus the Drinfeld halfspace describes OB-modules
G with a quasiisogeny module π Hh

0 → G of degree q−h(h−1)/2.

Now assume given such a G defined over ˆ̄V , together with a compatible system
of generators of its Πn-division-points. Then EG is isogeneous to EHh

0 , and the

division-points define injections of B into the ˆ̄V -points of EG and EHh
0 . The

logarithm of 1 ∈ B defines an element x = (x1, ..., xh) ∈ M1(H0)
h ⊗ ˆ̄V [1/p]. Its B-

span is a B-stable subvectorspace of codimension h, thus induced from a subspace
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FG ⊂ ˆ̄V [1/π]h of codimension 1 which is the classifying point associated to G in

the Drinfeld symmetric space. By duality x defines a map ˆ̄V [1/π]h → M1(H0) ⊗
ˆ̄V [1/π] whose image FH has codimension 1. It defines a point in P̃ and thus an

object H ”up to isogeny”. First choose one such H̃ such that modulo π there
exists an isogeny H0 → H̃, and such that under the lift EH0 → EH̃ the elements

x1, ..., xh ∈ M1(H0) ⊗ ˆ̄V [1/π] map to the integral elements in the vector-part of

Lie(EH̃) (multiply the isogeny by a high power of π). Then x defines a map

Oh
K → Tπ(H̃) whose degree can be computed using Lemma 1:
Namely OB · x is the Tate-module of G, and the period-map for G has determi-

nant th. Up to a factor q−h(h−1)/2 this is the determinant of the map from OB into
Lie(EH0)⊗Ah

crys[1/p], which in turn is qh(h−1)/2 times the h-th power of the deter-
minant of the OK-submodule generated by x1, ..., xh in Lie(EH0)⊗Acrys(V )[1/p]
(see below). Thus this has (up to units) determinant t, and the map above on

Tate-modules has degree equal to that of the isogeny (modulo π) H0 → H̃. It

follows that there is an H over ˆ̄V with an isogeny H → H̃ such that x1, ..., xh is a
basis of Tπ(H) and such that H has special fibre H0. Furthermore the xi define a
Drinfeld level-structure on H.

We have used implicitely that the degree of an isogeny can be read of from
Tate-modules (which live in the general fibre) as well as from the crystalline homol-

ogy (which depends only on the fibre in the residue-field of ˆ̄V ). For the remaining
assertion above about determinants of OB-stable lattices replace OK by a finite un-
ramified extension which splits B and OB by the h×h-matrices over that extension
(this leads to the factor qh(h−1)/2). Then all modules over this matrixring are just
sums of h copies of a module over the base, and everything becomes elementary.

Conversely given an H with Drinfeld level-structure, that is a basis x1, ..., xh of
its Tate-module, lift them to Lie(EH0) and consider the B-submodule generated
by x = (x1, ..., xh) in Lie(EH0)

h. It is induced from a subspace FG which lies in
the Drinfeld halfspace (use lemma 3) and corresponds to a G. Also x determines
a level-structre up to a power of Π, and comparing determinants shows that this
power is 0. Finally it is clear that these correspondences are inverse to each other.

The relevant object is x ∈ Lie(EH0)
h ⊗ ˆ̄V [1/π] which determines all the rest.

To see that this bijection on ˆ̄V -points comes from an isomorphism of formal
schemes consider the following blow-ups: Over Y∞ the universal period Tπ(H) → F
defines Tπ(H)dual → Lie(H)dual. Zariski-locally we have that for any indivisible
ρ ∈ Tπ(H)dual its image divides a fixed π-power πn: Namely it suffices to check
that over the open affine where H satisfies (∗). There H is modulo p isogeneous
to a fixed H0, of degree bounded by pn, and then lemma 3 implies the assertion

for all ˆ̄V -points. If UN+1 then denotes the affine classifying H satisfying (∗) and a
level πN+1-structure, the image of ρ modulo πN+1 is defined over UN+1. Lifting it
to a regular section f of Lie(H)dual over UN+1 we get from rigid analysis that this
section does not vanish on the generic fibre (a rigid space) and thus must divide
a power of π. Then πN/f is integral over OUN+1

. As the image of ρ coincides

with f modulo πN+1 it follows that in the extension of OU∞ generated by the
normalisation of OUN+1

the image is of the for u · f with u ≡ 1mod(π). Thus u is a

unit, so the image of ρ divides πN+1 in this extension. Multiplying with an other
π-power which sends the normalisation of OUN+1

into OUN+1
we get the assertion.

Now Ỹ∞ is obtained from Y∞ by blowing up the ideal generated by the image of



A RELATION BETWEEN TWO MODULI SPACES STUDIED BY V.G. DRINFELD 11

Λ, for any lattice Λ ⊂ Kh. We claim that it suffices to blow up only finitely many
ideals and that they are already defined over Yn: Namely we need only consider
Λ’s up to homothety, so we may assume that they lie in Tπ(H)dual = Oh

K and that
they contain an indivisible ρ as above. But then two Λ’s generate the same ideal if
they coincide modulo πn, thus the finiteness of the number of ideals. Also all ideals
contain πn and are modulo that generated by elements in OYn

.

For the definition of the appropiate modification X̃∞ we note that over X∞ the
universal torsion-point defines a period-map OB → Lie(G)dual which after inverting

π define a map into P̃ , and this becomes regular after blow-up of a suitable ideal.
By the remark after lemma 3 on sees that the ideal is defined at a finite level.

Finally from Ỹ∞ we have a regular map into Drinfeld’s model X0, thus an OB-
module G over it. EG is quasiisogeneous to EHh

0 and EHh, and the lifts of the
universal division-points define a map K → EG and thus a B-linear OB → EG →
G. Over each ˆ̄V -point this defines a level-structure, so a level structure in general,
and thus a map from Ỹ∞ to X∞. This map factors over X̃∞ because Ỹ∞ maps to
P̃ , that is the relevant ideals are already invertible in it.

Conversely starting with X̃∞ it maps to P̃ . Thus over the preimage of any
standard affine in P̃ we obtain by [11], Cor.23.15 a H̃, and a map Kh → EH̃ → H̃.

Its kernel Tπ(H̃) is an OK-lattice which is Zariski-locally constant, and contained

in π−n · Oh
K with index qnh for sufficiently big n, as can be checked on ˆ̄V -points.

Choosing a basis for Tπ(H̃) defines a Drinfeld-levelstructure and thus a map into

Y∞, which lifts into Ỹ∞ because the blowups necessary to map into X0 are trivial
here. Transforming with a suitable element of GL(h,K) with determinant a unit
we obtain the desired H with infinite level-structure (Oh

K
∼= Tπ(H)). This gives the

inverse X̃∞ → Ỹ∞. It is clear that it is compatible with the action of the subgroup
of GL(h,K)×B∗ ×WK of elements with ”unit-determinant”.

6. Consequences for nearby cycles

For an integer r prime to p it is explained in [1] how to define the sheaves of

vanishing cycles RiΨη(Z/(r)) on the special fibres of X̃n and Ỹn. These coincide
with the vanishing cycles defined by any algebraic model. The inductive limit
defines vanishing cycles also on the special fibers of X̃∞ and Ỹ∞, and these are
isomorphic (using [1], Th. 7.1). Furthermore by [2], Cor.2.5 the cohomology with
compact support RΓc(Yn,s, RΨη(Z/(r))) coincides with the local cohomology with
support in the closed point RΓx(RΨη(Z/(r))), for any algebraic OK-scheme whose
formal completion in the point x equals the formal scheme which represents defor-
mations H of H0 together with a Drinfeld level-πn-structure (This formal scheme
is represented by a regular complete local ring). Especially these are finite.

Passing to the limit we obtain the cohomology with compact support of the
vanishing cycles on X∞, X̃∞, Y∞, and Ỹ∞. They admit continuous actions of the
subgroup of ”elements of determinant a unit” of GL(h,K) × B∗ × WK , and the
submodule stabilised by any open compact subgroup in GL(h,K) is finite. It is
more convenient to consider the induced representation of GL(h,K) × B∗ × WK

modulo the subgroup generated by (π, 1, 1), as in [7].
Finally for l-adic cohomology we form the projective limit of cohomologies mod

ls, and in it the elements stabilised by an open compact subgroup in GL(h,K)
which is a pro-p-group. We get the same result if we first form the projective limit
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at some finite level (that is form the l-adic cohomology of some Yn which is finite
over Zl as seen above, not for general reasons), and then the direct limit over all
levels. Finally inverting l gives Ql-adic cohomology.

It is shown in [13] that the result realises the Jacquet-Langlands correspondence
as well as the local Langlands-conjecture: Namely a given supercuspidal represen-
tation σ of GL(h,K) occurs with finite multiplicity and the alternating sum of
the multiplicities is (−1)h−1 · h. Furthermore in the Grothendieck-group of rep-
resentations the eigenspace for the dual representation σdual is equivalent to the
tensorproduct of the associated (local Jacquet-Langlands) representation JL(σ) of
B∗, and the h-dimensional representation of WK predicted by the local Langlands-
correspondence. Our main result now implies that similar assertions hold as well
for the cohomology of (the coverings of) the Drinfeld upper halfspace (no more
duality because the two actions of GL(h,K) differ by the outer automorphism tg−1

which sends σ to its dual, as can be checked on traces using that tg is conjugate to
g).

Remark: Without too much effort one can improve a little bit on [13], namely
one shows that the σ-eigenspace occurs only in cohomology in degree h − 1. For
the Drinfeld symmetric space this has been done by M.Harris in [12], for the other
space it is at least known to the authors of [13]. One possible argument goes as
follows:

[13] constructs a Shimura-variety (of dimension h − 1) whose completion at a
closed point is the deformation-space for H0. For our purpose we fix suitable level-
structures away from π and denote by Shn the quotient associated to a Drinfeld
level-πn-structure. It classifies abelian varieties A with certain endomorphisms
and polarisations, and their local deformations are classified by a certain one-
dimensional π-divisible direct summand H ⊂ A[π∞] (the latter is essentially the
sum of H and its dual). The special fibers S̄hn have stratifications according to

the rank of the maximal étale quotient of H. Let ¯Shn
i
denote the locally closed

reduced subscheme where this rank is h − i. It has pure codimension i, and our

deformation-spaces for H0 arise as formal completions at points in ¯Shn
h−1

. For
simplicity we denote by Sh the pro-scheme given by the projective system Shn. It
admits an action of GL(h,K).

Over the formal completion of Shn along ¯Shn
i
the π-divisible group H becomes

an extension

Hinf → H → Het,

with Hinf formal of dimension 1 and height i, and Het étale of height h−i. There is

an open and closed subscheme ¯Shn
i,0 ⊆ ¯Shn

i
classifying level-structures for which

the first i generators lie in Hinf .

For the projective system we obtain similarly S̄h
i
and S̄h

i,0
. They are stable

under GL(h,K) respectively Pi(K), where P ⊂ GL(h,K) denotes the parabolic

stabilising a subspace of dimension i. In fact the formal completion along S̄h
i
is

the formal GL(h,K)-scheme induced (or better produced) from the formal Pi(K)-

scheme ”completion along ¯Shi,0”. It follows that the cohomology of S̄h
i
with values

in the vanishing cycles of S̄h is induced from the Pi(K)-representation on the co-

homology of ¯SH
i.0
. If we show that the unipotent radical Ni(K) of Pi(K) acts

trivially on any irreducible subquotient in this cohomology the induced representa-
tion has (for i > 0) no supercuspidal subspace.
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So suppose given an u ∈ Ni(K). It has some denominator πm, and induces maps
Shn+m → Shn. We first show that it acts trivially (that is the same way as u = 0)

on closed points of S̄h
i,0
n+m), and then also trivially on stalks of vanishing cycles.

An R-point of the formal completion of Shn+m along S̄h
i,0
n+m is given by an

abelian variety A over R, with certain additional data which include a π-divisible
extension

Hinf → H → Het,

and πn+m-division points e1, ..., ei ∈ Hinf , fi+1, ..., fh ∈ H which form Drinfeld-

basis for Hinf and Het, respectively. u maps πm · fj to elements f̃j which are
the sum of πm · fj and a linear combination of the e’s. The u-image is defined by

dividing H by the submodule (of order qmh generated by the πm · ej and f̃j . As
usual the scheme structure is that of the divisor which is the sum of all points. Also
the level-structure on the quotient is defined by the images of ej and π−m · f̃j (these
are welldefined modulo the previous). Of course all this translates into welldefined
operations on the level of abelian varieties.

Now over any algebraically field k of characteristic p all ei = 0, and u operates
trivially on k-points. For the action on stalks of vanishing cycles it depends by
[2], Th.3.1 only on the formal completion along the relevant point. This formal
completion describes deformations of H as above, and can be analysed as follows:

The formal π-divisible module Hinf with πn+m-levelstructure is parametrised
by a local ring of relative dimension i− 1, as before. The extension above is given
by chosing h − i sections f̃j ∈ Hinf , and then H is the quotient of Hinf × Kh−i

under the OK-submodule generated by πn · (f̃j , 1). Finally the images fj of (f̃j , 1)
define the levelstructure.

It follows that the formal completion is formally smooth over the moduli-space
classifying Hinf with its levelstructure. Thus the vanishing cycles are induced from
this, and as u respects the projection it acts trivially on them.

Now coming back to the Shimura-variety we see that the cohomology with com-

pact support of S̄h− S̄h
h−1

has no supercuspidal subquotient, and by duality the
same holds for the cohomology without support. Thus for a given supercuspidal
σ the σ component in the cohomology of Sh (that is the cohomology of S̄h with
values in the vanising cycles) coincides with the σ-component in either the restric-

tion of the vanishing cycles to S̄h
h−1

or in the cohomology with support in that
subscheme. From the first description we know that it occurs only in cohomological
degrees ≤ h − 1, from the second in degrees ≥ h − 1 (by duality). Combining we
get the result.

Thus in the cohomology ofX∞ or Y∞ supercuspidal representations occur only in
the middle degree h− 1. The corresponding space is the product of the associated
representation JL(σdual) or JL(σ) and an h-dimensional representation of WK .
The hard content of [13] is that this representation realises the local Langlands-
conjecture.
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