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t-STRUCTURES ARE NORMAL TORSION THEORIES

DOMENICO FIORENZA† AND FOSCO LOREGIÀN‡

Abstract. We characterize t-structures in stable ∞-categories as suitable quasi-
categorical factorization systems. More precisely we show that a t-structure t on
a stable ∞-category C is equivalent to a normal torsion theory F on C, i.e. to a
factorization system F = (E, M) where both classes satisfy the 3-for-2 cancellation
property, and a certain compatibility with pullbacks/pushouts.

1. Introduction.

The present paper aims to turn the widespread suggested connection between (tor-
sion theories of a) reflective factorization systems in category theory and t-structures in
algebraic geometry and stable homotopy theory into a precise theorem, showing how the
link between these two notions exists as a genuine isomorphism (Thm. 4.14) in the
framework of stable ∞-categories.

The language used throughout the paper draws equally from (higher) category theory
and homological algebra; because of its twofold nature, the ideal reader of this note is
acquainted with the basic theory of both (orthogonal) factorization systems, here treated
in their ∞-categorical counterparts presented in [Joy04] and [Lur09], and t-structures in
triangulated categories, for which the main references will be the classical text [BBD82]
and section 1.2 of Lurie’s Higher Algebra, [Lur11].

There is, of course, a vast literature exploring separately the classical notions of t-
structure, torsion theory and factorization system, and yet a precise statement of (the
1-categorical counterpart of) our Thm. 4.14 seems to have eluded even comprehensive
treatments like [BR07] and [CHK85, RT07]. Somehow mysteriously, [RT07, §4] seems to
ignore the triangulated world, even if its authors point out clearly (see [RT07, Remark
4.11.(2)]) that

It [our definition of torsion theory, auth.] applies, for example, to a
triangulated category C. Such a category has only weak kernels and
weak cokernels and our definition precisely corresponds to torsion the-
ories considered there as pairs F and T of colocalizing and localizing
subcategories (see [HPS97]).

Even more mysteriously, [BR07, p. 17] explicitly says that

Torsion pairs in triangulated categories are used in the literature mainly
in the form of t-structures.

and yet it avoids, in a certain sense, to offer a more primitive characterization for t-
structures than the one given ibi, Thm 2.13. So, the starting point of this work can be
summarized in the following question:
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To which extent is it possible to prove the claim firmly suggested by the
existing literature that “t-structures are normal torsion theories”?

Far from thinking that the authors of [RT07, CHK85] has simply been blind to such a
suggestive hypothesis, the authors believe that, since the main result of the paper relies
so heavily on properties only available in the stable world, there are not only conceptual,
but also practical and computational reasons to adopt the setting of stable ∞-categories
as a natural subsitute to the “triangulated world”, and sheds a light on results otherwise
unattainable or obscure.
Organization of the paper. Sections 2 and 3 contain introductory material about ∞-
categorical factorization systems, stable ∞-categories and t-structures; even if a couple
of results are of independent interest, they mainly serve to fix the notations we adopt
in the following two sections. Section 4 is the heart of the paper, where we prove the
promised characterization. The final section serves to introduce the reader to the stable
∞-categorical version of a few classical results in the theory of t-structures; a detailed
discussion of Exercises 1 and 2 appears as the central result of [FL15].
A glance to the existing literature. There seem to be no (or better to say, too many) com-
prehensive references for the theory of factorization systems, since every author seems
to rebuild the basic theory from scratch each time they prove a new result. Neverthe-
less, having to choose once and for all a reference for the interested reader, we couldn’t
help but mention the seminal paper by Freyd and Kelly [FK72], the refined notion of
“algebraic” factorization system proposed in Garner’s [Gar09], and Emily Riehl’s thesis
[Rie11], whose first and second chapters, albeit being mainly interested in weak factor-
ization systems, constitute the best-approximation to a complete compendium about the
basic theory, and finally the short, elementary note [Rie08].

Moreover, we must mention the paper [CHK85] by Cassidy, Hébert, and Kelly, which
together with [RT07] and the first section of [BR07] constitute our main references for
the connections between factorization systems and torsion theories in (pointed additive)
categories. In particular, we point the interested reader to [CHK85] for a crystal-clear
treatment of what we called “fundamental connection” in our Section 2.1 and several
adaptations of this notion in various particular contexts (pointed, well-complete and
additive categories above all), and to [BR07] for making clear that t-structures can be
regarded as the triangulated counterpart of torsion theories in abelian categories.
Notation and conventions. Categories (and higher categories) are denoted as boldface
letters C, D etc. Functors between categories are always denoted as capital Latin letters
like F, G, H, K etc.; the category of functors C→ D is denoted as Fun(C, D), D

C, [C, D]
and suchlike; morphisms in Fun(C, D) (i.e. natural transformations) are written in Greek
alphabet. The simplex category ∆∆∆ is the topologist’s delta, having objects nonempty finite
ordinals ∆[n] := {0 < 1 · · · < n} regarded as categories in the obvious way. We adopt
[Lur09] as a reference for the language of quasicategories and simplicial sets; in particular,
we treat “quasicategory” and “∞-category” as synonyms.

2. Quasicategorical factorization systems.

[. . . ] καὶ στήσει τὰ μὲν πρόβατα ἐκ δεξιω̂ν αὐτου̂ τὰ δὲ ἐρ́ιφια ἐξ
εὐωνύμων.

Matthew 25:33

Recall that a marked simplicial set X ([Lur09, Def. 3.1.0.1]) consists of a pair (X,S),
where X is a simplicial set, and S ⊆ X1 is a class of distinguished 1-simplices on X,
which contains every degenerate 1-simplex.
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The class of all marked simplicial sets is a category sSet
ς in the obvious way, where a

simplicial map f : (X,SX)→ (Y,SY ) respects the markings in the sense that fSX ⊆ SY ;
the obvious forgetful functor

U : sSet
ς → sSet

admits both a right adjoint X 7→ X♯ = (X, X1) and a left adjoint X 7→ X♭ = (X, s0(X0)),
given by choosing the maximal and minimal markings, respectively (mnemonic trick:
right adjoint is sharp, left adjoint is flat).

Notation 2.1. A marked quasicategory simply consists of a marked simplicial set which,
in addition, is a quasicategory. From now on, we will consider only marked quasicate-
gories.

Definition 2.2. Let f, g be two edges in a quasicategory C. We will say that f is left
orthogonal to g (or equivalently -in fact, dually- that g is right orthogonal to f) if in any
commutative square ∆[1] ×∆[1]→ C like the following,

//

f

��

g

��//

a

??

the space of liftings a rendering the two triangles (homotopy) commutative is contractible1.

Remark 2.3. This is Definition [Lur09, 5.2.8.1]; compare also the older [JM09, Def.
3.1].

Remark 2.4. “Being orthogonal” defines a binary relation between edges in a marked
quasicategory denoted f ⊥ g.

Definition 2.5. Let (C,S) be a marked quasicategory; we define

S⊥ = {f : ∆[1]→ C | s ⊥ f, ∀s ∈ S}

⊥S = {f : ∆[1]→ C | f ⊥ s, ∀s ∈ S}.

Definition 2.6 (Category of markings). If C is a quasicategory we can define an obvious
posetal category Mrk(C) whose objects are different markings of C and whose arrows
are given by inclusions. The maximal and the minimal markings are, respectively, the
terminal and initial object of Mrk(C); this category can also be characterized as the fiber
over C of the forgetful functor U : sSet

ς → sSet.

The correspondence ⊥(−) ⊣ (−)⊥ forms a Galois connection in the category of mark-
ings of X; the maximal and minimal markings are sent one into the other under these
correspondences.

Definition 2.7. A pair of markings (E ,M) in a quasicategory C is said to be a (qua-

sicategorical) prefactorization when E = ⊥M and M = E⊥. In the following we will
denote a prefactorization on C as F = (E ,M). The collection of all prefactorizations on
a given quasicategory C forms a posetal class, which we will call pf(C), with respect to
the order F = (E ,M) � F

′ = (E ′,M′) iff M⊂M′ (or equivalently, E ′ ⊂ E).

Remark 2.8. It is evident (as an easy consequence of adjunction identities) that any
marking S ∈ Mrk(C) induces two canonical prefactorization on C, obtained sending
S to (⊥S , (⊥S)⊥) and (⊥(S⊥),S⊥). These two prefactorizations are denoted S⊥ e ⊥S,
respectively.

1By requiring that the space of liftings α is only nonempty one obtains the notion of weak orthog-
onality. In the following discussion we will only cope with the stronger request.
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Definition 2.9. If a prefactorization F on C is such that there exists a marking S ∈
Mrk(C) such that F = S⊥ (resp., F = ⊥S) then F is said to be right (resp., left) generated
by S .

Remark 2.10. Since the orthogonal of a class S is uniquely determined, a prefactoriza-
tion is characterized by any of the two markings E ,M; the class of all prefactorizations
F = (E ,M) on a quasicategory X = C is a complete lattice whose greatest and smallest
elements are respectively

(X♯)⊥ = (s0(X0), X1) and ⊥(X♯) = (X1, s0(X0)).

Definition 2.11 (F-crumbled morphisms). Given a prefactorization F ∈ pf(C) we say
that an arrow f : X → Y is F-crumbled, (or (E ,M)-crumbled for F = (E ,M)) when
there exists a (necessarily unique) factorization for f as a composition m ◦ e, with e ∈ E ,
m ∈ M; let σF be the class of all F-crumbled morphisms, and define

pfS(C) = {F | σF ⊃ S} ⊂ pf(C).

Definition 2.12. A prefactorization system F = (E ,M) in pf(C) is said to be a factor-
ization system on C if σF = Mor(C); factorization systems, identified with pfMor(C)(C),
form a sublattice fs(C) ≤ pf(C).

This last definition (factorizations “crumble everything”, i.e. split every arrow in two)
justifies the form of a more intuitive presentation for a (quasicategorical) factorization
system on C, modeled on the classical, 1-categorical definition:

Definition 2.13 (Quasicategorical Factorization System). Let C be a quasicategory; a
factorization system (fs for short) F on C consists of a pair of markings E ,M∈Mrk(C)
such that

(1) For every morphism h : X → Z in C we can find a factorization X
e
−→ Y

m
−→ Z,

where e ∈ E and m ∈M; an evocative notation for this condition is C =M◦ E ;
(2) E = ⊥M and M = E⊥.

Remark 2.14. The collection of all factorization systems on a quasicategory C form a
posetal category fs(C) with respect to the relation induced by pf(C).

Remark 2.15. In presence of condition (1) of Definition 2.12, the second condition may
be replaced by

(2a) E ⊥M (namely E ⊂ ⊥M and M⊂ E⊥);

(2b) E and M are closed under isomorphisms in C
∆[1].

(this is precisely [Lur09, Def. 5.2.8.8]).

Remark 2.16. Condition (2) of the previous Definition (or the equivalent pair of con-
ditions (2a), (2b)) entails that each of the two classes (E ,M) in a factorization system
on C uniquely determines the other (compare the analogous statement about prefactor-
izations): this means that the obvious functor fs(C)→ Mrk(C) : (E ,M) 7→ E is in fact a
(monotone) bijection of posetal classes. This is [Lur09, Remark 5.2.8.12].

Definition 2.17 (Closure operators associated to markings). Let C be a quasicategory.
A marking J ∈ Mrk(C) is called

W.) wide if it contains all the isomorphisms and it is closed under composition;

A wide marking J (in a quasicategory C which admits in each case the co/limits needed
to state the definition) is called
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P.) presaturated if is closed under co-base change, i.e. whenever we are given arrows
j ∈ J , and h such that we can form the pushout

h
//

j

�� R
j′

��//

then the arrow j′ is in J ;
Q.) almost saturated if it is presaturated and closed under retracts (in the category

C
∆[1]), i.e. whenever we are given a diagram like

i
//

u

��

r
//

v

��

u

��

i′
//

r′
//

where ri = idA and r′i′ = idC , if v lies in J , then the same is true for u;
C.) cellular if it is presaturated and closed under transfinite composition, namely

whenever we have a cocontinuous functor F : α → J defined from any limit
ordinal α admits a composite in J , i.e. the canonical arrow

F (0) // F (α) = lim
−→i<α

F (i)

lies in J ;
S.) saturated if it is almost saturated and cellular.

All these conditions induce suitable closure operators, encoded as suitable (idempotent)
monads on Mrk(C), defined for any property P among {W, P, Q, C, S} as

(−)P : Mrk(C)→ Mrk(C) : S 7→ SP =
⋂

U⊇S

{

U ∈Mrk(C) | U has property P
}

The cellularization (−)C and the saturation (−)S of a marking J on C are of particular
interest (especially in homotopical algebra).

Notation 2.18. A little more generality is gained supposing that the cardinality of the
coproducts or the transfinite compositions in C is bounded by some (regular) cardinal α.
In this case we speak of α-saturated or α-cellular classes, and define the closure operators
of α-cellularization and α-saturation, etc.

The following Proposition is a standard result in the theory of factorization sys-
tems, which we will implicitly and explicitly need all along the paper; a proof for the
1-categorical version of the statement can be found in any of the provided references
about factorization systems.

Proposition 2.19. Let (C,S) be a marking of the cocomplete quasicategory C; then the

marking ⊥S of C is a saturated class. In particular, the left class of a weak factorization
system in a cocomplete quasicategory is saturated.

Completely dual definitions give rise to co-P -classes2 again, suitable monads acting
as co-P -closure operators are defined on Mrk(C), giving the dual of Proposition 2.19.

Proposition 2.20. Let (C,S) be a marking of the cocomplete quasicategory C; then
the marking S⊥ of C is a co-saturated class. In particular, the right class of a weak
factorization system in a complete category is co-saturated.

2Obviously, wideness and closure under retracts are auto-dual properties.
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Proposition 2.21. Let C be a quasicategory and F = (E ,M) ∈ fs(C); then E ∩ M
equals the class of all equivalences in C.

Proof. Again, the proof in the 1-categorical case can be found in any reference about
factorization systems. The idea is extremely simple: if g ∈ E ∩M then it is orthogonal
to itself, and the lifting problem

g

��

g

��

gives a unique homotopy-inverse for g. �

Definition 2.22. Let S ∈ Mrk(C); then, for each 2-simplex in C representing a compos-
able pair of arrows, whose edges are labeled f, g, and fg we say that

• S is l32 if f, fg ∈ S imply g ∈ S ;
• S is r32 if fg, g ∈ S imply f ∈ S .

A marking S which is closed under composition and both l32 and r32 is said to satisfy
the 3-for-2 property, or a 3-for-2 class.

Proposition 2.23. Given a fs (E ,M) in the quasicategory C, then

(i) If the quasicategory C has K-colimits, for K a given simplicial set, then the full

subcategory of C
∆[1] spanned by E has K-colimits; dually, if the quasicategory

C has K-limits, then the full subcategory of C
∆[1] spanned by M has K-limits;

(ii) The class E is r32, and the class M is l32 (see Def. 2.22).

Proof. Point (i) is [Lur09, Prop. 5.2.8.6]; point (ii) is easy to prove for 1-categories, and
then the translation to the ∞-categorical setting is straightforward3. �

It is a remarkable, and rather useful result, that each of the properties (i) and (ii) of
the above Proposition characterizes factorizations among weak factorizations: see [RT07,
Prop. 2.3] for more details.

Remark 2.24. There is an equivalent presentation of the theory of factorization systems,
neatly exposed in [KT93] and polished by R. Garner in his [Gar09], whose existence
ultimately relies on the fact that the category ∆[1] carries the structure of a universal
comonoid (∆[1], m, e) (see also [ML98, §VII.5]) as an object of Cat.

We will need this characterization in section 4, in the proof of Theorem 4.14.

2.1. The fundamental connection. Let now C be a quasicategory with terminal object
1, and let Ter be the class of the terminal morphisms {tX : X → 1 | X ∈ C}. Let also
Rex(C) be the poset of reflective subcategories (B, R) of C (where R : C → B is the
reflection functor, left adjoint to the inclusion).

We now want to reproduce the construction at the beginning of [CHK85], where the
authors build a correspondence between pfTer(C) (notations as in Definition 2.11) and
Rex(C).

Proposition 2.25. There exists a(n antitone) Galois connection Φ ⊣ Ψ between the
posets Rex(C) and pfTer(C), where Ψ sends F = (E ,M) to the subcategoryM/1 = {B ∈
C | (B → 1) ∈ M}, and Φ is defined sending (B, R) ∈ Rex(C) to the prefactorization
right generated (see Definition 2.9) by hom(B).

3This translation process being often straightforward, we choose to refer to 1-categorical sources to
prove most of the result involving ∞-categorical factorization systems.
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Remark 2.26. The action of the functor R : C→M/1 is induced on objects by a choice

of F-factorizations of terminal morphisms: X
e
−→ RX

m
−→ 1. On arrows it is obtained from

a choice of solutions to lifting problems

A
ef

//

��

RB

m

��
RA

Rf

<<②②②②②②②②

m
// 1.

Remark 2.27. The unit idRex(C) ⇒ ΨΦ of this adjunction is an isomorphism.
The comonad ΦΨ ⇒ idpfTer(C) is much more interesting, as it acts like an interior

operator on the poset pfTer(C), sending F to a new prefactorization F̊ = (E̊ ,M̊) which is

by construction reflective, i.e. satisfies F̊ = F (whereas in general we have only a proper
inclusion).

What we said so far entails that

Proposition 2.28. The adjunction Φ ⊣ Ψ restricts to an equivalence (a bijection be-
tween posets) between the reflective prefactorizations in F ∈ pfTer(C) and the poset
Rex(C).

Proposition 2.29. F ∈ pfTer(C) is reflective if and only if E is a 3-for-2 class (see
Definition 2.22), or equivalently (since each E-class of a factorization system is r32) if
and only if E has the half of the 3-for-2 property it lacks.

Proof. It is an immediate consequence of [CHK85, Thm. 2.3], where it is stated that

g ∈ E̊ iff fg ∈ E for a suitable f ∈ E . �

We can also state completely dual results about coreflective subcategories, linked to
(pre)factorization systems factoring at least initial arrows in C via the correspondence
F 7→ ∅/E = {Y ∈ C | (∅ → Y ) ∈ E}; the coreflection of C along ∅/E is given by a

functor S defined by a choice of F-factorization ∅
e
−→ SX

m
−→ X.

Remark 2.30. We can also define coreflective factorization systems, and prove that
F is coreflective iff M is r32, and bireflective factorization systems as those which are
reflective and coreflective at the same time.

2.2. Semiexact and simple factorization systems. A fairly general theory stems
from the above construction, and several peculiar classes of factorization systems become
of interest, aside from (co)reflective ones:

Definition 2.31. A semi-left-exact factorization system on a finitely complete C consists
of a reflective F = (E ,M) ∈ fs(C) such that the left class E is closed under pulling back
by M arrows; more explicitly, in the pullback

//

e′

��

J
e∈E

��
m∈M

//

the arrow e′ lies in E .

Equivalent conditions for F to be semi-left-exact are given in [CHK85, Thm. 4.3].
There is a dual definition of a semi-right-exact factorization system. We call semiexact
a factorization system which is both left and right exact.
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Definition 2.32. A left simple factorization system on C consists of F ∈ fs(C) whose
factorization action on arrows of C goes as follows: if we denote by R the reflection
(having unit η) C→M/1 associated to F via the functor Ψ, then the F-factorization of
f : X → Y can be obtained as X → RX ×RY Y → Y in the diagram

X

%%❑
❑❑

❑❑
❑❑

❑❑
❑ ηX

$$

f

''

RX ×RY Y

J

//

��

RX

Rf

��

Y
ηY

// RY

obtained from the naturality square for f .

Remark 2.33. Every semi-left-exact factorization system is left simple, as proved in
[CHK85, Thm. 4.3]. In the 1-categorical setting, the converse doesn’t hold in general (see
[CHK85, Example 4.4]), whereas our Prop. 4.12 shows that in the stable ∞-categorical
world the two notions coincide.

Remark 2.34. There is an analogous notion of right simple factorization system: semi-
right-exact factorization systems are right simple.

An useful result follows from the semi-exactness of a factorization system F whose
both classes are 3-for-2: these are called torsion theories in [RT07] (see our Def. 4.1 for
an extensive discussion).

Proposition 2.35. Let F be a torsion theory whose reflection is R and whose coreflection
is S: then we have that

SY ∐SX X ∼= RX ×RY Y

for any f : X → Y .

Proof. The claim holds simply because left semiexactness gives the F-factorization of
f : X → Y as X → RX×RY Y → Y , and right semiexactness gives X → SY ∐SX X → Y .

But there is a more explicit argument which makes explicit use of the orthogonality
and 3-for-2 property: consider the diagram

SX

R

σX
//

Sf

��

X
ηX

&&
++❲❲❲

❲❲❲❲
❲❲❲❲

❲

f

""❊
❊❊

❊❊
❊❊

❊❊
❊❊

❊❊
❊

��

P

J

//

��

RX

Rf

��

SY

σY

22

// Q

++❱❱
❱❱❱

❱❱❱
❱❱❱

❱

Y
ηY

// RY

where η is the unit of the reflection R, and σ is the counit of the coreflection S. Now

the arrow
[

X
↓
Q

]

is in E , and the arrow
[

P
↓
Y

]

is in M, as a consequence of stability under

cobase and base change (see Prop. 2.19); this entails that there is a unique w : Q → P
making the central square commute. Now, semiexactness entails that X → P → Y and
X → Q → Y are both F-factorizations of f : X → Y , and since both classes E ,M are
3-for-2, we can now conclude that w : Q→ P lies in E ∩M, and hence is an equivalence
(see Prop. 2.21). �
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3. Stable ∞-categories.

O
tra escuela declara [. . . ] que nuestra vida es apenas

el recuerdo o reflejo crepuscular, y sin duda falseado y
mutilado, de un proceso irrecuperable.

J. L. Borges, Tlön, Uqbar, Orbis Tertius

Our aim in this section is to specialize the above definitions to the case of a stable
∞-category in the sense of Lurie’s [Lur11], in order to present the main result of this
note:

Theorem 3.1. t-structures in the sense of [Lur11, Def. 1.2.1.4] correspond to normal
factorization systems in the stable ∞-category C, as in Definition 4.6.

Given our particular interest, we will now recall those features of theory of stable
∞-categories which will be relevant to this note. An extensive treatment can be found
in [Lur11].

3.1. Triangulated higher categories. Pathological examples aside (see [MSS07], from
which the following distinction is taken verbatim), there are essentially two procedures
to build “nice” triangulated categories:

• In Algebra they often arise as the stable category of a Frobenius category ([Hel68,
4.4], [GM96, IV.3 Exercise 8]).
• In algebraic topology they usually appear as a full triangulated subcategory of

the homotopy category of a Quillen stable model category [Hov99, 7.1].

The [closure under equivalence of] these two classes contain respectively the so-called
algebraic and topological triangulated categories described in [Schw10]. Classical trian-
gulated categories can also be seen as Spanier-Whitehead stabilizations of the homotopy
category Ho(M) of a pointed model category M (see [Del04] thesis for an exhaustive
treatment of this construction).

Because of this remark, analyzed also in [Hov99, Ch. 7], stable model categories can
be thought of as counterparts to triangulated categories in the higher-categorical world.

Several different models for higher-dimensional analogues of triangulated categories
arose as a reaction to different needs in abstract Homological Algebra (where the paradig-
matic example of such an object is the derived categories of chain complexes of modules
on a ring), algebraic geometry (where one is led to study derived categories of coherent
sheaves on spaces) or in a fairly non-additive setting as algebraic topology (where the
main example of such a structure is the homotopy category of spectra); there’s no doubt
that allowing a certain play among different models may be more successful in describing
a particular phenomenon (or a wider range of phenomena), whereas being forced to a
particular one may turn out to be insufficient.

Now, a “principle of equivalence” in higher category theory tells us that there must
be an equivalent formulation (or better, presentation) of triangulated ∞-categories in
terms of quasicategory theory, such that when a quasicategory C enjoys a property which
[Lur11] calls “stability”, then

• its homotopy category Ho(C) is triangulated structure in the classical sense;
• the axioms characterizing a triangulated structure are “easily verified and well-

motivated consequences of evident universal arguments” (see [Lur11, Remark
1.1.2.16]) living in C;
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• classical derived categories arising in Homological Algebra can be regarded as
homotopy categories of stable ∞-categories functorially associated to an abelian
A (see [Lur11, §1.3.1]).

Building this theory is precisely the aim of [Lur11, Ch. 1.1]. We now want to give a
rapid account of its main lines.

We invite the reader to take [Lur11] as a permanent reference for this section, hoping
to convince those already acquainted with the theory of triangulated categories that they
are already able to manipulate the entire theory of stable∞-categories even if they don’t
know.

3.2. Stable quasicategories. Let ∆[1]×∆[1] be the category

(0, 0) //

��

(0, 1)

��

(1, 0) // (1, 1)

and denote it as � for short. It is obvious that Map(�, C) consists of commutative
squares in C. This said we can give the following

Definition 3.2 ((Co)cartesian square). A diagram F : �→ C in a (finitely bicomplete)
quasicategory is said to be cocartesian (resp., cartesian) if the square

F (0, 0) //

��

F (0, 1)

��

F (1, 0) // F (1, 1)

is a homotopy pushout (resp., a homotopy pullback)

Definition 3.3 (Stable quasicategory). A quasicategory C is called stable if

(1) it has any finite (homotopy) limit and colimit;
(2) A square F : �→ C is cartesian if and only if it is cocartesian.

Notation 3.4. Squares which are both pullback and pushout are called pulation squares
or bicartesian squares (see [AHS90, Def. 11.32]) in the literature. We choose to call
them pullout squares and we refer to axiom 2 above as the pullout axiom: in such terms,
a stable quasicategory is a finitely bicomplete quasicategory satisfying the pullout axiom.

Most of the arguments in the following discussion are a consequence of a fundamental
remark:

Remark 3.5. The pullout axiom implies that the class P of pullout squares in a category
C satisfies a 3-for-2 property: in fact, it is a classical result (see [AHS90, Prop. 11.10]
and its dual) that pullback squares have r32 property and dually, pushout squares have
l32 property (these are called pasting laws for pullback and pushout squares) in the sense

of our Definition 2.22 when regarded as morphisms in the category C
∆[1].

Notation 3.6. It is a common practice to denote diagrammatically a (co)cartesian
square “enhancing” the corner where the universal object sits (this well-established con-
vention has been used freely in the previous sections): as a “graphical” representation of
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the auto-duality of the pullout axiom, we choose to denote a pullout square enhancing
both corners:

N

//

�� ��//

Remark 3.7 (The pullout axiom induces an enrichment.). What we called the pullout
axiom in Definition 3.3 is an extremely strong assumption4 which, taken alone, charac-
terizes almost completely the structure of a stable ∞-category.

For instance, by invoking basically only the pullout axiom, one can prove that a stable
quasicategory C

• has a zero object, i.e. there exists an arrow 1 → ∅ (which is forced to be an
isomorphism);

• C has biproducts, i.e. X × Y ≃ X ∐ Y for any two X, Y ∈ C, naturally in both
X and Y .

(the interested reader can take this statement as a little challenge to test the power of
the pullout axioms, and their understanding of the theory so far).

3.3. Loops and suspensions. The suspension ΣX of an object X in a finitely co-
complete, pointed quasicategory C is defined as the (homotopy) colimit of the diagram
0 ← X → 0; dually, the looping ΩX of an object X in such a C is defined as the
(homotopy) limit of 0→ X ← 0.

This notation is natural if one thinks to the category of pointed spaces, where this
operation amounts to the well-known reduced suspension of X, Σ: X 7→ X∧S1; evaluating
a square F : �→ C at its right-bottom vertex gives an endofunctor Σ: C→ C, and where
the looping Ω is the right adjoint of Σ. We depict the objects ΣX, ΩX as vertices of the
diagrams

X //

�� R

0

��

ΩX

J

//

��

0

��

0 // ΣX 0 // X

The pullout axiom defining a stable quasicategory implies that these two correspon-
dences (which in general are adjoint functors between quasicategories: see [Lur11, Remark
1.1.2.8]) are a pair of mutually inverse equivalences ([Gro10, Prop. 5.8]).

Notation 3.8. In a stable setting, we will often denote the image of X under the
suspension Σ as X[1], and by extension X[n] will denote, for any n ≥ 2 the object ΣnX
(obviously, X[0] := X). Dually, X[−n] := ΩnX for any n ≥ 1.

This notation is in line with the long tradition to denote X[1] the shift of an object
X in a triangulated category; distinguished triangles, often denoted as

X → Y → Z → X[1]

(or X → Y → Z →+ for short) in the triangulated world, are called (again distinguished
triangles or) fiber sequences in the stable world (see [Lur11, Def. 1.1.2.11]) and depicted

4So strong that it becomes trivial in low dimensions: it’s easy to see that a 1-category C where a
square is a pullback if and only if it is a pushout is forced to be the terminal category 1.
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as pullout squares

X

N

//

��

Y

N

//

��

0

��

0 // Z // W

(again, this terminology is clear having in mind the topological example of the category
of spectra) The pullout axiom now entails that W ∼= X[1].

The definitions given so far amount to a process of enhancement of the classical theory
of triangulated category: one of the most unsatisfactory features of the classical theory
(at least, for a category theorist. . . ) is that the well-known localization procedures used
to build them destroy even simple limits and colimits. One of the advantages of the
theory exposed so far is that instead, now we are working at a prior stage, where these
limits still exist (Definition 3.3, axiom 1) and are extremely peculiar (Definition 3.3,
axiom 2)5.

3.4. t-structures. We can now address the main aim of our work, the investigation of
t-structures in stable∞-categories. Our reference for the classical theory in triangulated
categories are the book [KS94] and the classical [BBD82]; the ∞-categorical analogue of
the theory has been defined by Lurie in [Lur11, §1.2.1]. We now merely recall a couple of
definitions for the ease of the reader: from [Lur11, Def. 1.2.1.1 and 1.2.1.4] one obtains

Definition 3.9. Let C be a stable quasicategory. A t-structure on C consists of a pair
t = (C≥0, C<0) of full sub-quasicategories satisfying the following properties:

(i) orthogonality: C(X, Y ) is a contractible simplicial set for each X ∈ C≥0, Y ∈
C<0;

(ii) Setting C≥1 = C≥0[1] and C<−1 = C<0[−1] one has C≥1 ⊆ C≥0 and C<−1 ⊆
C<0;

(iii) Any object X ∈ C fits into a (homotopy) fiber sequence X≥0 → X → X<0, with
X≥0 in C≥0 and X<0 in C<0.

Remark 3.10. The assignments X 7→ X≥0 and X 7→ X<0 define two functors τ≥0 and
τ<0 which are, respectively, a right adjoint to the inclusion functor C≥0 →֒ C and a left
adjoint to the inclusion functor C<0 →֒ C. In other words, C≥0, C<0 ⊆ C are respectively
a coreflective and a reflective subcategory of C: see [Lur11, 1.2.1.5-8] this in particular
implies that

• The full subcategories C≥n = C≥[n], are coreflective via a coreflection τ≥n; dually
C<n = C<0[n] are reflective via a reflection τ<n,

• C<n is stable under all limits which exist in C, and colimits are computed by
applying the reflector τ<n to the colimit computed in C; dually, C≥n is stable
under all colimits, and limits are C-limits coreflected via τ≥n; in particular τ<n

maps a pullout in C to a pushout in C<n while τ≥n maps a pullout in C to a
pullback in C≥n.

5Albeit seldom spelled out explicitly, we can trace in this remark a fundamental tenet of the theory
exposed in [Lur11]:

In the same way every shadow comes from an object, produced once the sun sheds
a light on it, every “non-pathological” triangulated category is the 1-dimensional
shadow (i.e. the homotopy category) of an higher-dimensional object.

No effort is made here to hide that this fruitful metaphor is borrowed from [Car10], even if with a
different meaning and in a different context.
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Notation 3.11. An important notational remark: the subcategory that we here denote
C<0 is the subcategory which would be denoted C≤0[−1] in [Lur11].

Remark 3.12. It’s easy to see that Definition 3.9 is modeled on the classical definition
of a t-structure ([KS94], [BBD82]). In fact a t-structure t on C, following [Lur11], can
also be characterized as a t-structure (in the classical sense) on the homotopy category
of C ([Lur11, Def. 1.2.1.4]), once C≥0, C<0 are identified with the subcategories of
the homotopy category of C spanned by those objects which belong to the (classical)
t-structure t on the homotopy category.

Remark 3.13. �The notation C≥1 for C≥0[1] is powerful but potentially misleading:
namely one is lead to figure C≥0 a the seminfinite interval [0, +∞) in the real line and
C≥1 as the seminfinite interval [1, +∞). This is indeed a very useful analogy (see Remark
5.2) but one should always keep in mind that as a particular case of the inclusion condition
C≥1 ⊆ C≥0 also the extreme case C≥1 = C≥0 is possible, in blatant contradiction of the
real line semintervals mental picture.

Remark 3.14. The collection ts(C) of all t-structures on C has a natural posetal struc-
ture by t 4 t′ if C<0 ⊆ C

′
<0. The ordered group Z acts on ts(C) with the generator

+1 mapping a t-structure t = (C≥0, C<0) to the t-structure t[1] = (C≥1, C<1). Since
t 4 t[1] one sees that ts(C) is naturally a Z-poset. It is therefore meaningful to consider
families of t-structures on C indexed by a Z-poset J , i.e., Z-equivariant morphisms of
posets J → ts(C). In particular, for J = R one recovers Bridgeland’s notion of slicing
[Bri07], see [GKR04]. A more detailed discussion of slicings in stable ∞-categories will
hopefully appear elsewhere.

Remark 3.15. Alternatively ([Lur11, Prop. 1.2.1.16]) a t-structure t on C is completely
determined by a t-localization L, i.e. by a reflection functor L satisfying one of the
following equivalent properties:

• The class of L-local morphisms6 is generated (as a quasisaturated marking) by
a family of initial arrows {0→ X};

• The class of L-local morphisms is generated (as a quasisaturated marking) by
the class of initial arrows {0→ X | LX ≃ 0};

• The essential image LC ⊂ C is an extension-closed class.

The t-structure t(L) determined by the t-localization L : C → C is given by the pair of
subcategories

C≥0(L) := {A | LA ≃ 0}, C<0(L) := {B | LB ≃ B}.

It is no surprise that the obvious example of t-localization is the truncation τ<0 : C →
C<0 associated with a t-structure (C≥0, C<0), and that one has C≥0(τ<0) = C≥0 and
C<0(τ<0) = C<0.

This connection is precisely what motivated us to exploit the theory of factorization
systems to give an alternative description of the data contained in a t-structure: the
synergy between orthogonality encoded in property (i) of Definition 3.9 and reflectivity
of the subcategories generated by t, suggest to translate in the language of (stable) ∞-
categories the content of [RT07] and [CHK85], on whose backbone we build the rest of
the paper

6An arrow f in C is called L-local if it is inverted by L; it’s easy to see that L-local objects form a
quasisaturated class in the sense of [Lur11, Def. 1.2.1.14].



14 DOMENICO FIORENZA† AND FOSCO LOREGIÀN‡

4. t-structures are factorization systems.

A
caso un arquetipo no revelado aún a los hombres, un

objeto eterno (para usar la nomenclatura de Whitehead),
esté ingresando paulatinamente en el mundo; su primera
manifestación fue el palacio; la segunda el poema. Quien los
hubiera comparado habría visto que eran esencialmente
iguales.

J. L. Borges, El sueño de Coleridge

This is the gist of the paper, where we provide a detailed proof of the result previewed
on page 9: the following section is entirely devoted to a complete, exhaustive proof that
normal factorization systems correspond to t-structures on a stable quasicategory. We
begin introducing the former notion.

4.1. Normal torsion theories. Following (and slightly adapting) [RT07, §4] we give
the following definition. From now on C will denote a stable∞-category, with zero object
0.

Definition 4.1 (Torsion theory, torsion classes). A torsion theory in C consists of a
factorization system F = (E ,M) (see Remark 2.30), where both classes are 3-for-2 (in
the sense of Definition 2.22). We define T = 0/E and F =M/0 (see Prop. 2.25) to be
respectively the torsion and torsion-free classes associated to the torsion theory.

Remark 4.2. In view of Prop. 2.29 and its dual, the torsion and torsion-free classes of
a torsion theory F ∈ fs(C) are respectively a coreflective and reflective subcategory of C.

If we F-factor the terminal and initial morphisms of any object X ∈ C, we obtain the
the reflection R : C→M/0 and coreflection S : C→ 0/E , and a “complex”

(⋆) SX // X // RX

(in the sense of pointed categories), i.e., a homotopy commutative diagram

SX //

��

X

��

0 // RX

as it is immediately seen by the orthogonality condition.

Lemma 4.3. Let (C,F) be a ∞-category endowed with a torsion theory. Then the
following conditions are equivalent:

(1) A ∈ T = 0/E ;
(2) C(A, X) is contractible for each X ∈ F =M/0;
(3) RA = 0.

In particular, one has RSX = 0 for every X ∈ C.

Proof. We adapt to the stable ∞-categorical setting the proof found in [RT07], which
states a directly analogous result.

(i) ⇒ (ii). If A ∈ T, the space of solutions of the lifting problem

0 //

��

B

��
A // 0

must be contractible for any B ∈ F, and yet it coincides with the whole C(A, B).
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(ii) ⇒ (iii). Factoring A → 0 as A
ρA−−→ RA → 0 we get that ρA = 0A; but now the

diagram

A //

uA
��

RA

uRA

��

0

��

RA
uRA

//

����������

����������
0

commutes if we call uA : A→ 0, vA : 0→ A the terminal and initial natural transforma-
tions respectively. Hence,

vRAuAvAuRA = vRAuRA = 1RA

from which we deduce that the identity of RA is homotopic to the zero ma, so that
RA ∼= 0. The fact that (iii) implies (i) is evident, and this concludes the proof. �

There is, obviously, a dual result, stated as

Lemma 4.4. In the same notations as Definition 4.1, M = S−1(Eqv) if and only if M
is a 3-for-2 class in the sense of Definition 2.22. In this case,

F = {A ∈ C | SA ∼= 0}

coincides with the collection of all Y ∈ C such that C(A, Y ) is contractible for each
A ∈ T.

Remark 4.5. Given the closure properties of the classes E ,M, we can define natural
functors F : C → F and T : C → T by taking suitable pullbacks and pushouts. Namely,
we define F X as the homotopy pullback

F X
J

//

��

SX

��

0 // X

and T X as the homotopy pushout

X //

�� R

0

��

RX // T X

This construction is so natural it may show up in unexpected situations: for instance,
[Schr13, Def. 3.9.12] shows how the coefficient object ♭dRA for de Rham cohomology with
coefficients in an abelian group A can be realized as the homotopy fiber of the coreflection
♭A→ A; this allows for defining de Rham cohomology in an arbitrary cohesive ∞-topos.

In what follows we will be mainly concerned with the “other way” to take fibers and
cofibers, i.e., in the fiber KX of the reflection X → RX and in the cofiber QX of the
coreflection SX → X. When this procedure is well-behaved, we obtain the key notion of
normality of a torsion theory, which we introduce below.

As previewed at the end of our section 2, a fairly general theory stems from the funda-
mental connection established in [CHK85], and several specializations of a factorization
system on C capture different kinds of reflective subcategories of C under this construc-
tion. We are particularly interested in the properties of the class of those factorization
systems called normal in [CHK85] and [RT07]. These can be defined intuitively as the
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torsion theories F = (E ,M) such that the diagram induced in (⋆) is an “exact sequence”,
i.e., such that the diagram

SX

N

//

��

X

��

0 // RX

is a pullout. This seems to shed a light on [CHK85, Remark 7.8] and [RT07, Remark
4.11], where the non-existence of a non-artificial example of a non-normal torsion theory
is conjectured. However this characterization is not immediate, and it admits a certain
number of equivalent reformulations (see Prop 4.11).

Definition 4.6. We call left normal a torsion theory F = (E ,M) on C such that the
fiber KX → 0 of a reflection morphism X → RX lies in E , as in the diagram

KX
J

//

��

X

��

0 // RX

In other words, the E-morphisms arising as components of the unit η : 1⇒ R are stable
under pullback along the initial M-morphism 0→ RX.

Remark 4.7. This last sentence deserves a deeper analysis: by the very definition of
RX it is clear that RX → 0 lies in M; but more is true (and this seemingly innocuous
result is a key step of most of the proofs we are going to present): since M enjoys the
3-for-2 property, and it contains all isomorphisms of C, it follows immediately that an
initial arrow 0 → A lies in M if and only if the terminal arrow A → 0 on the same
object lies in M. The same reasoning applied to E gives a rather peculiar “specularity”
property for both classes E ,M:

Lemma 4.8 (Sator Lemma). In a pointed quasicategory C, an initial arrow 0→ A lies
in a class E or M of a bireflective (see Remark 2.30) factorization system F if and only
if the terminal arrow A→ 0 lies in the same class.7

Notation 4.9. This allows a certain play for a little abuse of notation, in that we can
say that an object A of C lies in a 3-for-2 class K if its initial or terminal arrow lies in
K: in this sense, a left normal factorization system is an F such that the fiber KX of
X → RX lies in E , for every X in C.

Equivalent conditions for F to be left normal are given in [RT07, Thm. 4.10] and
[CHK85, 7.3].

Remark 4.10. There is, obviously, a notion of right normal factorization system: it is
an F such that the cofiber QX of SX → X lies inM, for every X in C. In the following
we call simply normal, or two-sided normal a factorization system F ∈ fs(C) which is
both left and right normal.

7The so-called Sator square, first found in the ruins of Pompeii, consists of the 5 × 5 matrix

s a t o r
a r e p o
t e n e t
o p e r a
r o t a s

where the letters are arranged in such a way that the same phrase (“sator arepo tenet opera rotas”,
approximately “Arepo, the farmer, drives carefully the plough”) appears when it is read top-to-bottom,
bottom-to-top, left-to-right, and right-to-left.
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Rather surprisingly, due to the self-dual setting we are working in, we are able to
prove that

in a stable∞-category the three notions of simple, semiexact and normal
torsion theory collapse to be three equivalent conditions.

More precisely we have

Proposition 4.11. For every object X, consider the following diagram in C, where every
square is a pullout.

SX ⊕RX[−1]

N

//

m′′

��

SX

N

//

σX

��

0

��

KX

N

//

��

X

N

//

ρX

��

QX

e′′

��

0 // RX // SX[1] ⊕RX

Then the following conditions are equivalent for a bireflective factorization system F =
(E ,M) on C:

(1) F is left normal;
(2) F is right normal;
(3) F is normal;
(4) RX ≃ QX;
(5) SX = KX;
(6) SX → X → RX is a fiber sequence.

Proof. We start by proving that the first three conditions are equivalent. If we assume

left normality, then the arrow
[ QX

↓

SX[1]⊕RX

]

lies in E , since it results as a pushout of an

arrow in E . So we can consider

QX
e′

//

e′′

��

RQX

m′

��
SX[1] ⊕RX

e
// RX = R(SX[1] ⊕RX)

∼

66♠♠♠♠♠♠♠♠♠♠♠♠♠

m
// 0

F-factoring the morphisms involved: R(SX[1]⊕RX) = RRX = RX since RS = 0. Thus

RQX ∼= RX, which entails
[

0
↓

QX

]

∈M, which entails right normality. A dual proof gives

that (2)⇒ (1), thus right normality equals left normality and hence two-sided normality.
Now it is obvious that (6) is equivalent to (4) and (5) together; the non-trivial part of
the proof consists of the implications (1)⇒ (4), and dually (2)⇒ (5).

Once noticed this, start with the diagram

SX
m

//

��

X

e

��

{{✇✇
✇✇
✇

QX

##

0
m

//

;;①①①①①①
RX
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and consider the canonical arrow QX → RX obtained by universal property: the arrow
[

0
↓

RX

]

lies in M (this is a general fact); left normality now entails that
[

0
↓

QX

]

∈ M, so

that
[

QX
↓

RX

]

lies in M too by reflectivity.

A similar argument shows that since both
[

X
↓

QX

]

,
[

X
↓

RX

]

lie in E ,
[

QX
↓

RX

]

lies in E too by

reflectivity. This entails that
[

QX
↓

RX

]

is an equivalence. Conversely, if we start supposing

that QX ∼= RX, then we have (left) normality. This concludes the proof, since in the
end we are left with the equality (4) ⇐⇒ (5). �

As previewed before, the three notions of simplicity, semiexactness and normality
collapse in a single notion in the stable setting:

Proposition 4.12. A torsion theory F is left normal if and only it is semi-left-exact in
the sense of [CHK85, 4.3.i], namely if and only if in the pullout square

E

N

//

e′

��

X

ρX ∈E

��

Q
m

// RX

the arrow e′ lies in E . Dually, a factorization system F is right normal if and only it is
semi-right-exact in the sense of (the dual of) [CHK85, 4.3.i].

Proof. Consider the diagram

KX

N

//

��

E

N

//

e′

��

X

e

��

0 // Q
m

// RX

where the arrow Q → RX belongs to M. On the one side it is obvious that if F is
semi-left-exact, then it is normal (just pull back two times e along M-arrows). On the
other hand, the converse implication relies on the pullout axiom: if F is normal, then

KX lies in E ; but now since the left square is a pullout, the arrow
[

E
↓
Q

]

belongs to E too,

giving semi-left-exactness. �

Remark 4.13. The three notions coincide since “classically” we have

slex→ simple→ normal,

whereas in our setting the chain of implication proceeds one step further and closes the
circle:

slex→ simple→ normal
⋆
−→ slex.

This gives a pleasant consequence:

In a stable ∞-category the F-factorization of f : A→ B with respect to
a normal torsion theory is always

A→ RA×RB B → B,

or equivalently (see Prop. 2.35)

A→ SB ∐SA A→ B.
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We now would like to exploit the theory laid down so far to prove the fundamental
result of this work, namely a characterization of t-structures as normal torsion theories.

Theorem 4.14. Let C be a stable ∞-category. There is a bijective correspondence
(in fact, an antitone equivalence of posets) between the class of normal torsion theories
F = (E ,M) on C (in the sense of Definition 4.6) and the class of t-structures on C (in
the sense of Definition 3.9).

The proof of this result will occupy the rest of the section: to simplify the discussion
we will deduce it as a consequence of a number of separate statements.

We first establish the two correspondences between factorization systems and t-structures
on C. We are obviously led to exploit the fundamental connection (see §2.1): given
a normal, bireflective factorization system F = (E ,M) on C we define the two classes
(C≥0(F), C<0(F)) of the t-structure t(F) to be the torsion and torsion-free classes (0/E ,M/0)
associated to F, in the sense of Definition 4.1. On the other hand, given a t-structure
t = (C≥0, C<0) in the sense of Definition 3.9, we have to define classes F(t) = (E(t),M(t))
which form a factorization system. We set:

E(t) = {f ∈ C
∆[1] such that τ<0(f) is an equivalence};

M(t) = {f ∈ C
∆[1] such that τ≥0(f) is an equivalence}.

Proposition 4.15. The pair t(F) is a t-structure on C in the sense of Definition 3.9.

Proof. The orthogonality request is immediate by definition of the two classes. As for
the closure under positive/negative shifts, (A → B) ∈ E entails that (A[1] → B[1]) ∈ E
since left classes in factorization systems are closed under (homotopy) colimits in the
arrow category (see Prop. 2.23) and in particular under the homotopy pushout defining
the shift A 7→ A[1] on C. This justifies the chain of implications

X ∈ C≥0(F) ⇐⇒
[

0
↓
X

]

∈ E =⇒
[ 0

↓

X[1]

]

∈ E ⇐⇒ X[1] ∈ C≥0(F).

The case of C<0 is completely dual: since M admits any limit,
[

X
↓
0

]

∈ M implies that
[

X[−1]
↓
0

]

∈ M, so that C<0(F)[−1] ⊂ C<0(F).

To see that any object X ∈ C fits into a fiber sequence X≥0 → X → X<0, with X≥0 in
C≥0(F) and X<0 in C<0(F), it suffices to F-factor the terminal morphism of X obtaining
a diagram like

X
e

// RX
m

// 0

and then to take the fiber of e,

KX //

��

N

X

��

0 // RX

Set X≥0 = KX and X<0 = RX. Then X<0 ∈ C<0(F) by construction and X≥0 ∈ C≥0(F)
by normality. �

In order to prove that the pair of markings F(t) is a factorization system on the stable
∞-category C, we use the data of the t-structure to produce a functorial factorization of
morphisms. To do this, recall that by Definition 3.9.(iii) every object X ∈ C fits into
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a fiber sequence (a “distinguished triangle”) X≥0 → X → X<0 → X≥0[1]. So, given
f : X → Y we can build the diagram8

(⋆⋆) X≥0 //

τ≥0(f)

��

X

��

//

ef

��

X<0 // X≥0[1]

τ≥0(f)[1]

��

Y≥0 // C

N

//

mf

��

X<0 //

τ<0(f)

��

Y≥0[1]

Y≥0 // Y // Y<0 // Y≥0[1]

where the decorated square is a pullout (so C ∼= X<0 ×Y<0
Y , a characterization which,

alone, should be reminiscent of simplicity for the would-be factorization of f : cleaning
up the above diagram a bit we can recognize precisely the same diagram of Definition
2.32, up to the identifications τ<0 = R and τ≥0 = S), and hence the dotted arrows
are determined by the obvious universal property. Note that all the three rows in the
above diagram are fiber sequences. Mapping f to the pair (ef , mf ) is a factorization

functor F : C
∆[1] → C (a tedious but easy check) in the sense of [KT93] (see also our

§2.24). Next, we invoke a rather easy but subtle result contained in [KT93], which in a
nutshell says that a factorization system on a category C is determined by a functorial
factorization F such that mef

, emf
are invertible. Functors satisfying this property are

called Eilenberg-Moore factorization functors in [KT93].9 Namely, if one defines

EF = {h ∈ C
∆[1] | mh is invertible}

and

MF = {h ∈ C
∆[1] | eh is invertible},

then (EF ,MF ) is a factorization system as soon as ef ∈ EF and mf ∈ MF for any
morphism f in C.

Remark 4.16. Before we go on with the proof notice that by the very definition of the
factorization functor F associated with a t-structure above, we have that MF coincides
with the class of arrows f such that the naturality square of f with respect to the
“truncation” functor τ<0 of the t-structure is cartesian: we denote this marking of C as
Cart(τ<0) adopting the same notation as [RT07, §4].

The following lemma is the t-structure counterpart of Proposition 2.35.

Lemma 4.17. The homotopy commutative sub-diagram

X≥0 //

τ≥0(f)

��

X

ef

��

Y≥0 // C

in the diagram (⋆⋆) is a pullout.

8We thank Eric Wofsey for having suggested us to consider this diagram [Wof].
9These are not the weakest assumptions to ensure that F(F ) = (EF , MF ) ∈ fs(C): see the final

remark in [KT93] and [JT99, 1.3].
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Proof. Consider the diagram

X≥0 //

τ≥0(f)

��

X

ef

��

Y≥0 //

��

C

N

��

mf
// Y

��

0 // X<0
τ<0(f)

// Y<0

where all the squares are homotopy commutative and apply twice the 2-for-3 law for
pullouts. �

Lemma 4.18. Let F : f 7→ (ef , mf ) be the factorization functor associated with a
t-structure by the diagram (⋆⋆). Then τ<0(ef ) and τ≥0(mf ) are equivalences.

Proof. Since τ<0τ≥0 = 0, by applying τ<0 to the pullout diagram in C given by lemma
4.17, we get the pushout diagram

0

R

//

��

X<0

τ<0(ef )

��

0 // C<0

in C<0 which tells us that τ<0(ef ) is an equivalence. The proof that τ≥0(mf ) is a
equivalence is perfectly dual and is obtained by applying τ≥0 to the marked pullout
diagram in (⋆⋆). �

It is now rather obvious that showing that

EF = τ −1
<0 (Eqv); MF = τ −1

≥0 (Eqv)

will imply that F is an Eilenberg-Moore factorization functor. Once proved this, it is
obvious that the preimage of a 3-for-2 class along a functor is again a 3-for-class in C,
and this entails that both classes in F(t) are 3-for-2. We are now ready to prove

Proposition 4.19. The pair of markings F(t) is a factorization system on the quasicat-
egory C, in the sense of Definition 2.12.

Proof. By the very definition of the factorization procedure, and invoking the pullout
axiom, we can deduce that the arrow f lies in EF if and only if it is inverted by τ<0; this
entails that EF = τ −1

<0 (Eqv). So it remains to show that MF = τ −1
≥0 (Eqv). We have

already remarked thatMF = Cart(τ<0), so we are reduced to showing that τ −1
≥0 (Eqv) =

Cart(τ<0). But again, this is easy because on the one side, if f ∈ Cart(τ<0) then the
square

//

τ≥0(f)

��

N τ≥0τ<0(f)

��//

is a pullout since τ≥0
preserves pullouts, and yet τ≥0τ<0(f) is the identity of the zero

object. So τ≥0(f) must be an equivalence. On the other hand, the stable ∞-categorical
analogue of the triangulated 5-lemma (see [Nee01, Prop. 1.1.20]), applied to the diagram
(⋆⋆) shows that if τ≥0(f) is an equivalence then ef is an equivalence and so C ∼= X, i.e.,
f ∈ Cart(τ<0). �
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Remark 4.20. As a side remark, we notice that a completely dual proof would have
arisen using C = Y≥0 ∐X≥0

X (see Lemma 4.17) and then showing first that F(t) is the

factorization system (Cocart(τ≥0), τ −1
≥0 (Eqv)) and then Cocart(τ≥0) = τ −1

<0 (Eqv).

To check that F(t) is normal, it only remains to verify that any of the equivalent
conditions for normality given in Proposition 4.11 holds, which is immediate. This
concludes the proof that there is a correspondence between normal torsion theories and t-
structures: it remains to show that this correspondence is bijective, i.e., that the following
proposition holds.

Proposition 4.21. In the notations above, we have F(t(F)) = F and t(F(t)) = t.

Proof. On the one side, consider the factorization system F(t(F)) = (τ −1
<0 (Eqv), τ −1

≥0 (Eqv)),
where the functor τ<0 is defined starting from the F-factorization of each X → 0, as in the

fundamental connection of §2.1: X
e
−→ X<0

m
−→ 0. Recall (Remark 2.26) that the action

of τ<0 : C→M/0 on arrows is obtained from a choice of solutions to lifting problems

A
e′f

//

e

��

τ<0B

m′

��
τ<0A

τ<0(f)

;;✈✈✈✈✈✈✈✈✈

m
// 0.

It is now evident that τ −1
<0 (Eqv) = E . Indeed:

• If f ∈ τ −1
<0 (Eqv), then in the above square e′f = τ<0(f) e, which is in E since

E contains equivalences and is closed for composition. But e′ lies in E , so that
f ∈ E by the 3-for-2 property of E ;

• If f ∈ E , then e′f is in E and so in the same square we read two lifting problems
with unique solutions, which implies that τ<0(f) is invertible.

On the other side, we have to compare the t-structures t = (C≥0, C<0) and t(F(t)). We

have X ∈ C≥0(F(t)) if and only if
[

0
↓
X

]

∈ E(t). Since E(t) = τ −1
<0 (Eqv), we see that

X ∈ C≥0(F(t)) if and only if X<0
∼= 0. But it is a direct consequence of Lemma 4.3 that

X<0 ∼= 0 if and only if X ∈ C≥0. Dually, one proves that C<0(F(t)) = C<0. �

5. Selected exercises.

Q
uinto exercicio es meditación del Infierno.

.

Í. L. de Loyola, Exercicios espirituales

The factorization systems point of view can be usefully employed to prove the stable
∞-categorical version of a few classical results on t-structures in triangulated categories,
which appear to be missing a detailed discussion in [Lur11]. Here we propose these results
in the form of exercises on which the reader can test the familiarity they have gained
with the constructions presented in the main body of this note. A detailed discussion
appears in [FL15].

Exercise 5.1 (The heart of a t-structure is abelian). The heart of a t-structure t =
(C≥0, C<0) on a stable∞-category C is the full subcategory of C given by the intersection

C
♥ = C[0,1) = C≥0∩C<1. Prove that C

♥ is an abelian∞-category and so in particular its
homotopy category is an abelian category (this was first proved in [BBD82, Thm. 1.3.6]
for triangulated categories, and is quoted without proof in [Lur11, Remark 1.2.1.12]).
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Hint: Define the kernel of a morphism f : X → Y in C
♥ as ker(f) = (fib(f))≥0 and the

cokernel of f as coker(f) = (cofib(f))<1.

Remark 5.2. There is a rather evocative pictorial representation of the heart of a
t-structure, manifestly inspired by [Bri07]: if we depict C<0 and C≥0 as contiguous half-
planes, like in the following picture,

X

Y
C≥0C<0

X[1]

Y [−1]

ZZ[−1]

shift

then the action of the shift is precisely an horizontal shift, and the closure properties
of the two classes C≥0, C<0 under positive and negative shifts are a direct consequence
of their shape. With these notations, an object Z is in the heart of t if it lies in the
“shadowed region”, i.e. if it lies in C≥0, but Z[−1] lies in C<0.

Exercise 5.3 (Postnikov towers). Let (C, t) be a stable ∞-category endowed with a
t-structure. A morphism f : X → Y in C is said to be bounded with respect to t if there
exist integers a < b such that fib(f) ∈ C[a,b) = C≥a ∩ C<b. Prove that, if f is bounded
then there exist a factorization of f

X ≃ Z0
f0−→ Z1

f1−→ Z2
f2−→ · · ·

fb−a−1

−−−−−→ Zb−a ≃ Y

with fib(fk) ∈ C
♥[a + k]. This factorization is called the Postnikov tower of f and, for f

an initial morphism this is [BBD82, Prop. 1.3.13] or [Bri07, Lemma 3.2].

Hint: Use a shift to reduce to the case a = 0 and then use induction on b− a.

Exercise 5.4 (t-structures from Postnikov towers). Prove that the following converse of
the result stated in Exercise 5.3 holds. Let H be an abelian ∞-subcategory of the stable
∞-category C. If for any morphism f in C there exist integers a < b and a functorial
factorization of f

X ≃ Z0
f0−→ Z1

f1−→ Z2
f2−→ · · ·

fb−a−1

−−−−−→ Zb−a ≃ Y

with fib(fk) ∈ H[a + k], then there exists a t-structure t on C with C
♥ = H and such

that every morphism in C is t-bounded. This is [Bri07, Lemma 3.2]

Hint: Use the factorization f 7→ (f0, f1, . . . , fb−a−1) of an initial morphisms 0 → Y to
decide which objects Y should belong to the subcategory C≥0, and the factorization of
terminal morphisms X → 0 to decide which objects X should belong to the subcategory
C<0.

Finally, we propose an exercise related to the notion of slicing in a stable ∞-category.

Exercise 5.5. Recall from Remark 3.14 that a slicing on a stable ∞-category C is a
collection (C≥t, C<t)t∈R of t-structures with:

• C<t1
⊆ C<t2

if t1 ≤ t2;
• C<t+1 = C<t[1], for any t ∈ R.
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For any ǫ ∈ R with 0 < ǫ < 1, let C[0,ǫ) = C≥0 ∩ C<ǫ. Does C[0,ǫ) have kernels and
cokernels? Is C[0,ǫ) an abelian ∞-category?

Hint: See [Bri07, Section 4].
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