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1. Introduction

In this paper, we consider the Brown representability theorem for triangulated categories which
are closed under coproducts of arbitrary size. We prove that every triangulated category which is,
in a certain strong sense, generated by one of its objects and which is exhausted by an ascending
sequence, indexed by all ordinal numbers, of small subcategories satisfying reasonable conditions,
satis"es the Brown representability theorem. In particular, the unbounded derived category of
a Grothendieck category and some of its full subcategories satisfy the Brown representability
theorem.
There appear to be applications of these results to the truncation functors used in the construc-

tion of the Harder}Goresky}MacPherson-weighted cohomology [7] and also to the construction
of f r for various Grothendieck}Verdier-style duality results.
The most natural way to prove the Brown representability for these triangulated categories

would seem to be to extend the iterated attaching of cells used in the topological case by
a trans"nite induction procedure similar to the one used in some proofs of the existence of
su$ciently many injective objects of Grothendieck categories. A general representability theorem
based on this procedure is [8, Theorem 1.3]. An application of this result would require the
existence of G-privileged (in the sense of [8]) weak colimits over su$ciently large regular cardinal
numbers. It seems that this assumption is rarely satis"ed for homotopy categories because of the
following obstacles:

� If � is a higher cardinal number, it can often be shown that homotopy colimits over � have the
property of beingG-privileged. This easily implies thatG-privileged weak colimits of diagrams in
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the homotopy category which lift to the category of models must be isomorphic to the
corresponding homotopy colimits. However, these homotopy colimits may fail to be weak
colimits for the following reason. In general in the case of triangulated categories one expects
a spectral sequence

E���
�

"lim
���

�Hom�
D(X�,>)NHom���D (hocolim

���
X�,>). (1)

The homotopy colimit should be expected to be a weak colimit only if the lim�-terms in its
E

�
-term vanish if p'1. This, however, fails to be the case unless the co"nality of � is � (cf. [11,

Corollary 36.9]).
� A di$culty in literally satisfying the assumptions of Heller's theorem (but not necessarily in
applying the idea of its proof ) could also be caused by the possible existence of diagrams in the
homotopy category which do not lift to the model categories. This will never happen for
�-diagrams, but it could well be the case for certain �

�
-diagrams. For such diagrams, construct-

ing a G-privileged weak colimit would be even more complicated.

For these reasons, there is no straightforward way of applying Heller's result to triangulated
categories like the derived category of a Grothendieck category.
The proof of the Brown representability theorem given in this paper avoids the procedure of

attaching cells in favour of a di!erent method which "rst proves the existence of a solution set for
the representation problem. In the case of the unbounded derived category of a Grothendieck
category, Keller has pointed out that one can also use the Gabriel}Popescu theorem to reduce the
assertion to the case of the unbounded derived category of the category of modules over a ring (cf.
Remark 2.3). However, this method does not seem to apply to subcategories of unbounded derived
categories (like the subcategory ofD(O

�
) consisting of all complexes of O

�
-modules on a prescheme

with quasi-coherent cohomology) or to homotopy categories of sheaves of spectra.
Neeman [13] has proved a Brown representability theorem which does apply in such a situation.

The relation of his theorem to our theorem is not clear. The main advantage of his theorem is that it
is based on a much more careful categorical analysis of the representability problem and is also
able to prove a representability theorem for covariant functors in certain cases. Our approach,
however, is short and direct.
The author is indebted to B. Keller, A. Neeman and R. Thomason for helpful discussions. In

particular, this article was motivated by [12].

2. The main representability theorem

Let D be a triangulated category which has coproducts of arbitrary size.

De5nition 2.1. A subset GLOb(D) strongly generates D if there is a cardinal number � such that
D is the smallest full triangulated subcategory of D which is closed under coproducts of size )�
and contains arbitrary coproducts of the form Z���B�, with all B� belonging to G.
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De5nition 2.2. Let G be a subset of the class of objects of a D. Let M(G) be the class of all regular
in"nite cardinal numbers � such that there exists a full triangulated subcategory C(�) ofD which is
closed under coproducts of size(�, contains a small subcategory to which it is equivalent and has
the property that for all A3G and all X3C(�), we have card(HomD(A,X))(�.

Remark 2.3. It should be pointed out that this de"nition has an equivalent reformulation in which
M(G) is the class of all ordinal numbers � such that there exists a subset S of Ob(D) such that the
classC(�) of all objects isomorphic to an element of S has the property mentioned above. Therefore,
the von Neumann}Bernays}GoK del Axioms guarantee the existence of the class M(G).

Theorem 2.4. Let D be a triangulated category which has coproducts of arbitrary size. Assume that
D is strongly generated by a subset G of its class of objects such that M(G) is a proper class (i.e.,
unbounded by any cardinal number). Then D satisxes the Brown representability theorem.

The proof of this theorem depends on the following construction: Let D �
P Ab be a con-

travariant cohomological functor which maps coproducts to products. Let CLD be a full
triangulated subcategory. We denote by C

�
the following category:

� Objects of C
�
are pairs (B, f ), where B3Ob(C) and f3F(B).

� Morphisms from (B, f ) to (BI , fI ) are morphisms B �
P BI in D such that F(�) fI"f.

Let us assume that C possesses a set of representatives for the isomorphism classes of objects. We
denote by FI

�
the functor de"ned by

FI
�
(X)"colim

�������I �

HomD(X,B), (2)

where CI
�
is a full small equivalent subcategory of C

�
. Obviously, (1) depends on the choice of

CI
�
only up to canonical isomorphism, which justi"es the notation FI

�
. There is a natural

transformation

FI
�

(�
P F (3)

which, for (B, f )3Ob(C
�
), maps the image of �3HomD(X,B) in the colimit (1) to F(�) f3F(X).

We now outline the proof of Theorem 2.4. For a cardinal �3M(G), let C(�) be a subcategory of
Dwith the properties described in De"nition 2.2. In the "rst subsection of this section we will prove
that F

���� is a cohomological functor which maps coproducts of size (� to products. There-
fore, the full subcategory D� of all X for which FI

����(X[i])
(����
P F(X[i]) is an isomorphism for all

integers i is a full triangulated subcategory of D, and is stable under coproducts of size(�. In the
second subsection, we will prove that D� contains arbitrary coproducts of objects B� with the
property that card(F(B�[i]))(� and card(HomD(B�,X))(� for all �, i, and objects X of C(�).
From this and from De"nition 2.1, it follows that �

���� is a natural isomorphism for su$ciently
large �3M(G). But then a set of representatives for the objects of C(�) is a solution set for the
problem of representing F, and this will imply that F is representable.
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2.1. Cohomological properties of FI
�

Our proof of the fact that FI
�
is cohomological and maps certain coproducts to products depends

on some general facts about directed categories.

De5nition 2.5. Let � be a regular in"nite cardinal number. A category E is �-directed if it satis"es
the following condition:

� For every family of less than � objects of E, (X�)���� , �� (�, there exist an object > of E and

morphisms X�
(�

P > for �3�� .

� For two objects X,> of E and every family (��)���� of less than � morphisms from X to >, there

exists a morphism > �
P Z such that ���"��� for �,�3�� .

Remark 2.6. Obviously, �-directedness is the same as directedness in the sense of [1, De"nition
I.(8.1)]. This condition has been called `�-ko"ltrierenda in [5, Section 5].

Proposition 2.7. Assume that E is a small category which is �-directed for some inxnite regular

cardinal �. Then the functor Ab	�����
	

&� Ab is exact and commutes with products of size (�.

The proof is not given because it is straightforward and essentially contained in [5, Satz 5.2] and
[1, Proposition I.(8.2)]. Now we return to our consideration of the triangulated category D, the
cohomological functor F, and the full triangulated subcategory C. Let � be in"nite.

Lemma 2.8. Assume that D has coproducts of size (�, that F maps such coproducts to products, and
that C is closed under coproducts of size (�. Then C

�
is �-directed.

Proof. Indeed, if X�"(B�, f�3F(B�)), �3�� (� are objects of C
�
, then all X� have morphisms to

X"(B, f ), where B"Z�
�� B� and f"(f�)�
�� 3����F(B�)�F(B).
If X"(B, f ) ��

P>"(BI , fI ) are morphisms in C
�
for �3�� (�, then let

Z
�
�
��

B
�����������
�
��

&&&&&� BI �
P BM Z

�
�
��
B[1]

be a distinguished triangle. Since all �� are morphisms in C
�
, and F maps the coproduct to the

corresponding product, we have F(��)( fI )"0. Since F is cohomological, there is fM3F(BM ) with

F(�)( fM )"fI . Then > �
P Z"(BM , fM ) is a morphism in C

�
such that ��� is independent of �. �

Remark 2.9. Obviously, the conditions thatD and C are triangulated and that F is cohomological
can be replaced by the condition that D has weak coequalizers, that every pair of morphisms in
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C has a weak coequalizer in D which belongs to C, and that F maps weak coequalizers to weak
equalizers.

Corollary 2.10. Under the assumptions of this proposition, FI
�

is a cohomological functor which maps
coproducts of size (� to products.

Proof. Indeed, we have seen that the category over which the colimit is taken in (1) is �-directed.
Since the functor whose direct limit is the right-hand side of (1) is cohomological and maps
coproducts in its "rst variable X to products, the assertion follows from Proposition 2.7. �

2.2. Some properties of �
�

Now we assume that D has arbitrary coproducts, and that F is a cohomological functor which
maps coproducts to products. Let � be a regular in"nite cardinal.

Lemma 2.11. Let C be a full triangulated subcategory of D which is closed under coproducts of size
(�. Let G be a subset of the class of objects of C such that card(G)(�, let � be an arbitrary cardinal
number, and let (A�)��� be a family of elements of G, and let B"Z���A�.

� Assume that card(F(A))(� for all A3G. Then FI
�
(B) (�

P F(B) is surjective.

� Assume that for every X3Ob(C) and every A3G, we have card(HomD(A,X))(�. Then

FI
�
(B) (�

P F(B)

is injective.

Proof. For the "rst point, let f3F(B). Let ( f�)��� be the image of f by the canonical isomorphism
F(B)�����F(A�). Let BI "Z����������

A3C, and let fI3F(BI ) be the element whose image under the
canonical isomorphism F(BI )��

����������
F(A) is (�)

����������
. Then (BI , fI ) is an object of C

�
. Let

A�

�

P B and let A����
��

P BI be the inclusion of the �th summand and of the summand belonging to
A and �. By the properties of the coproduct, there is a unique morphism B

�
P BI with 	i�"j

�����
.

Then F(	) fI"f. This proves that f is in the image of �
�
.

For the second point, we "rst claim if (X, f ) is an object of C
�
with f"0, then for every>3ObD

the canonical morphism

HomD(>,X)P colim
��I � �I ����

HomD(>,XI )"F
�
(>)

vanishes. This follows readily from the fact that (X, f ) 	
P (0,0) is a morphism in C

�
.

Now let X3C, f3F(X) and B �
P X be such that F(	) f"0. We have to prove that the image of

	 in F
�
(B) is zero. Let i� be the same as before, and let 	�"	i�. Then F(	�) f"0. By our assumption
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about card(HomD(A,X)) for A3G, the set Z
�
of morphisms 	 from A to X such that F(	) f"0 has

cardinality(�. We putXI "Z
��������

A and denote the embedding of the summand belonging to

A and 	 by j
���. There is a unique morphism XI

�

P X with �j
���"	, and (XI , 0)

�

P (X, f ) is

a morphism in C
�
. There is a unique morphism B �

P XI with 
i�"j
�����
. Then �
"	. Therefore,

the images of B �
P X at (X,f) and of B �

P XI at (XI ,0) in F
�
(B) agree. But the latter of these two

images is zero, as we have seen a few moments ago. This proves the second point. �

Corollary 2.12. Let G be the same as in Theorem 2.4. We assume that �3M(G) is so large that
card(F(A[i]))(� for all i3� and all A3G. We also assume that D coincides with its smallest full
triangulated subcategory which is closed under coproducts of size (� and contains arbitrary
coproducts of elements of G. Then for any subcategory C of D with the properties described in
Dexnition 2, �

�
is a natural isomorphism.

Proof. LetDI -D be the full subcategory of allX such that F
�
(X[i]) (�

P F(X[i]) is an isomorphism
for all i3�. It follows from Lemma 2.8 and our assumptions that DI contains arbitrary coproducts
of copies of G, and from Corollary 1.1.1 that it is a full triangulated subcategory which is closed
under coproducts of size (�. We conclude DI "D. �

2.3. End of the proof of Theorem 2.4

Lemma 2.13. Let D be a triangulated category which has arbitrary coproducts, and let D �
P Ab be

a contravariant cohomological functor which maps coproducts to products. Assume that there is a small

subcategory C of D such that the canonical morphism F
�

(�
P F is a natural isomorphism. Then F is

representable.

Since by our assumptions there are always cardinal numbers satisfying the assumptions of
Corollary 2.12, this lemma completes the proof of Theorem 2.4.

Proof. The assumptions of the lemma imply that the functor F has a solution set. By [8, Theorem
1.4] it is hyporepresentable. By an observation of BoK kstedt and Neeman [2, Proposition 3.2], every
idempotent inD splits. But this implies that F is representable. One can also use these facts to apply
[4, 1.834]. �

The proof of Theorem 2.4 is now complete.

Remark 2.14. Despite Remark 2.9, there is no obvious way to state an analogue of our Theorem 2.4
in the situation which Heller is considering. It would be absolutely necessary to have some
replacement for the notion of a full triangulated subcategory.
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3. Application to Grothendieck categories

This section is devoted to the proof of the following theorem:

Theorem 3.1. The unbounded derived category of a Grothendieck category exists and satisxes the
Brown representability theorem.

To prove the theorem, letA be a Grothendieck category and let G be a generator ofA. Let us
de"ne the size of an object X of A by

size(X)"card(HomA (G,X))

and the size of a cochain complex as the supremum of the sizes of its individual terms. Let the
subscript)� onA, orK(A) denote the full subcategories of objects of size)�. Let D(A)

�� be
the full subcategory of all cochain complexes which are quasi-isomorphic to a cochain complex of
size )�.
The existence of the derived category follows from the existence of su$ciently manyK-injective

complexes for Grothendieck categories. This has in principle been proved, but not explicitly stated,
by Spaltenstein [15, 4.6]. It will also be necessary to control the size ofK-injective resolutions. The
following proposition allows us to do this.

Proposition 3.2. For every object X of K(A), there exist an injective and K-injective> of K(A) and
a monomorphism XP> which is a quasi-isomorphism. Moreover, there is an inxnite cardinal number
�
�
such that for every cardinal number � with ���"� the size of> can be chosen to be )� if the size of

X is )�.

Since A is an AB5 category, coproducts are exact. It follows from this and the calculus of
fractions that coproducts in D(A) exist and coincide with usual coproducts of cochain complexes.
The Brown representability theorem for D(A) follows from Theorem 2.4, Proposition 3.2 and

the following assertions:

Proposition 3.3. D(A) coincides with its smallest full triangulated subcategory which contains
coproducts of arbitrarily many copies of G and is closed under countable coproducts. In particular, it is
strongly generated by G.

Proposition 3.4. There exists a cardinal number �
�

such that for every cardinal number � with ���"�
the following assertions hold:

� D(A)
�� is closed under coproducts of size �.

� cardHom
D�A�
(G,X))� if X3D(A)

��.

It is easy to see that the class of � which satisfy the assumptions of Proposition 3.2 is unbounded.
For instance, ��� satis"es these assumptions for every cardinal number �. Therefore, Propositions
3.3 and 3.4 prove that D(A) satis"es the assumptions of Theorem 2.4. Moreover, the following is
true:
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Proposition 3.5. Let ELD(A) be a full triangulated subcategory which is closed under arbitrary
coproducts in D(A) and is strongly generated by a subset of its class of objects. Then the Brown
representability theorem holds for E.

Proof. Let us "rst mention that, since Hom maps coproducts in its "rst argument to products, the
following fact holds:

Let � and � be cardinals such that ��"�, and letX3ObD(A). Then the class of all>3ObD(A)
with cardHom
D�A�

(>,X)(� for all i is a full triangulated subcategory which is closed under
coproducts of size )�.

Now, let E be strongly generated by a subset M of its class of objects. There exists a cardinal
number �

�
*�

�
such that M is contained in the smallest full triangulated subcategory of D(A)

which contains G and is closed under coproducts of size )�
�
. It follows from the above

observation and from Proposition 3.4 that for every � with ���"� we have cardHom
(X,>)(�
for all i and for X3M and >3D(A)


�. It follows that E satis"es the assumptions of Theorem
2.4. �

We now give the remaining proofs of the above propositions. The proof of Proposition 3.3 is
easy: Let

��
D(A) be the smallest full triangulated subcategory stable under countable coproducts

and containing coproducts of arbitrarily many copies of G. Since G is a generator, every object of
A has a left resolution by objects which are coproducts of copies of G. Therefore,

��
D(A) contains

arbitrary complexes concentrated in dimension zero. Since it is a triangulated subcategory, it
contains arbitrary bounded complexes. Since it is stable under countable coproducts, it is closed
under forming the union of an ascending sequence of subcomplexes since such a union is easily
identi"ed with a homotopy colimit in the sense of [2]. But every complex is a union of an ascending
sequence of bounded subcomplexes. The proposition follows. The proof of the crucial Proposition
1 is longer and is best given in a separate subsection. Finally, Proposition 3 follows from
Proposition 1 and (using the above-mentioned fact that the functor from cochain complexes over
A to D(A) commutes with coproducts) Lemma 3.7 below.

Remark 3.6. B. Keller has pointed out to me that the Brown representability theorem forD(A) can
also be derived from the Gabriel}Popescu theorem and the Brown representability theorem for the
unbounded derived category of modules over a ring, which follows from the main abstract result of
[12] (cf. [9, Theorem 5.2]). Indeed, the Gabriel}Popescu theorem identi"esD(A) with a quotient of
the unbounded derived category of modules over a ring, and this quotient inherits the Brown
representability theorem.

3.1. Existence of suzciently many K-injective complexes

We "rst need some properties of the function size. It is clear that the class of objects of size)� is
closed under subobjects and extensions, but there is no reason why it should be closed under
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�Let I"�

���

�k
	�
�
, totally ordered by (k, �)((l, �) if and only if k'l or k"l and �'�. The constant �/2�-

Diagram is an object X of the category of I-diagrams of Abelian groups for which �
�
"�
 is singular.

quotients. It will be necessary to show that there are su$ciently many � for which it is also closed
under quotients. Let

G�"Z
�

G.

For an arbitrary objectX ofA, let �
�
be the smallest in"nite cardinal number such that there is no

strictly increasing sequence (X�)���� of subobjects of X. Let N
�
be the smallest regular cardinal

number which is *�
�
.� We have

�
�
) size(X),

since for every strictly increasing sequence (X�LX)��� and every �3	 there is a morphism GPX
which factors overX���

, but not overX�. Also, it is easy to see that for every ordinal number �with
cf(�)*�

�
(which by the regularity of cf(�) is equivalent to cf(�)*N

�
) every ascending sequence

(X�)��� terminates.

Lemma 3.7. Assume that ���"� and that every quotient of G
��

has size )�. Then the class of objects
of size )� is stable under quotients, under coproducts and under colimits over ordinal numbers )�.

Proof. The third of these stability assertions follows from the other two. The stability under
coproducts of size � follows from the following facts:

� Every morphism of G into a coproduct of size � factors over a sub-coproduct of size)N
�
. This

easily follows from [14, Theorem 2.8.6], cf. Lemma 3.9 below.
� There are at most ���"� subsets of � of cardinality )N

�
.

� Since ���"�, every product of N
�
objects of size )� has size)�. By AB5, the coproduct of

these objects is a subobject of the product, hence it also has size )�.

To prove the stability under quotients, it su$ces to show that every quotient of G� has size)�.
For every object is the quotient ofZ

��������
G, and the size of the coproduct is)� if size(X))�.

If Q is a quotient of G� and ifM is a subset of �, let Q
�
be the image ofZ���G-G� in Q. It is

easy to see (Lemma 3.9) that every morphism of G into Q factors over Q
�
for some M with

card(M))N
�
. By our assumptions on �, there are only � of such subsets, and for each of them the

size of Q
�
, and hence the cardinality of the set of morphism GPQ which factor over Q

�
, is)�.

This implies that there are at most � morphisms from G to Q. �

Corollary 3.8. If � satisxes the assumptions of the lemma, if X �
P> is an epimorphism, and if

size(>))� then there exists a subobject XI -X with size(XI ))� and p(XI )">.

Proof. Since G is a generator, X is generated by the morphisms from G to X (in the sense that it
coincides with the smallest subobject containing all their images), hence > is generated by the
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morphisms from G to > which lift to X. Since there are at most � such morphisms, there is
a morphism G�

�
P X such that pf is an epimorphism. The imageXI of f has the required properties.

Its size is )� because it is a quotient of G�. �

The following fact was used in the proof of Lemma 3.7:

Lemma 3.9. Let Z
���

X
�

�
P> be an epimorphism. Then for every morphism GI �

P> with GI -G
there exists a subset N-M of cardinality (N

�
such that f factors over the image of Z

���
X

�
in >.

Proof. We proceed by trans"nite induction on the cardinality of M, starting with the trivial case
where this cardinality is (N

�
. Assume that the assertion has been proved for morphisms from

GI to the quotient of a coproduct of less than card(M) objects. We may assumeM"card(M)"	.
For �3	, let >� be the image ofZ���X� in >. If 
"cf(	)*N

�
, then the sequence ( f��(>�))��� of

subobjects of GI stabilizes, and by AB5 (cf. [14, Theorem 2.8.6]) we have

G"f����
���
>��"�

���
f��(>�),

hence there exists �3	 such that f factors over >�. If however 
(N
�
, let (��)��� be a co"nal

sequence in 	. Applying the induction assumption with GI replaced by its subobject f��(>��), we see
that there is a subsetN�-	 of cardinality(N

�
such that the intersection of >�� and the image of

f is contained by the image in > of Z����
X�.

Let N"����N�, and let >I be the image of Z���X� in >. This subobject contains the
intersection of the image of f with>�� for every �3
, and by an application of AB5 this implies that
f factors over >I . On the other hand, card(N)(N

�
by the regularity of N

�
. �

Proposition 3.10. If �
	

is the smallest cardinal number which satisxes the assumptions of Lemma 3.7,
then every non-zero acyclic cochain complex CH over A has a non-zero acyclic subcomplex
CI H consisting of objects of size )�

	
.

If in addition CH is a quotient of a (not necessarily acyclic) cochain complex DH, then DH has
a subcomplex DI H of size )�

	
such that CI H is the image of DI H in CH.

Proof. Let C
O0. Let CI 
 be a non-vanishing subobject of C
 of size)�
	
. Let CI 
��"d(CI 
), and let

CI �"0 for j'i#1.
As usual, let Z�-C� be the kernel of d. Assume that j)i and that a subobject CI �-C� of size

)�
	
has already been de"ned. Let ZI �"Z��CI �. Then let CI ��� be a subobject of size )� of

C��� such that dCI ���"ZI �. Such a subobject can be found by an application of Corollary 1 to the
morphism d��CI �PZI �, which is an epimorphism since CH is acyclic.
The subcomplex CI H-CH has the desired properties. The second part follows by "rst construct-

ing subobjects �
 of size )�
	
of D
 which epimorphically project onto CI 
, and then put

DI 
"�
#d(�
��). �
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Recall that an object > has the right lifting property with respect to a monomorphism A �
P B if

every morphismAP> extends to B. It is easy to see and probably well-known (see for instance [3,
Proposition 1.3.3]) that a complex is aK-injective complex of injective objects ofA if and only if it
has the right lifting property with respect to every monomorphismwith acyclic cokernel. Let us call
such a complex strictly injective.

Corollary 3.11. Let �
	

have the property described in Corollary 3.8. Assume that a complex IH has the
right lifting property with respect to every monomorphism XH

�
P>H such that > is of size )�

	
and

such that coker(j) is acyclic. Then IH has the right lifting property with respect to every monomorphism
with acyclic cokernel. In particular, it is strictly injective.

Proof. Let XH
�

P>H be an arbitrary monomorphism with acyclic cokernel, and let XH
�

P IH be
a morphism. SinceA is AB5, by Zorn's lemma there is a maximal extension fI of f to a subcomplex
XI H of >H such that >H/XI H is acyclic. We claim that XI H">H. Otherwise, there are a non-zero
acyclic subcomplex CH->H/XI H and a subcomplex DH->H which projects onto CH such that
CH and DH have size )�

	
. Then we can apply our assumption about IH to the monomorphism

DH�XI HPDH (whose cokernel is�CH) and the restriction of fI to its source.We obtain an extension

XI H#DH
�
K

P> of fI . Since

>H/(XI H#DH)� (>H/XI H)/CH

is acyclic, this contradicts the maximality of fI . This contradiction proves XI H">H. Therefore,
f extends to >H.

Lemma 3.12. We have

cardHom(X,>)) size(>)���	���.

Proof. Since

card(Hom(G�,>))"size(>)�,

this follows from the fact that X is a quotient of G
���	���

. �

Proof of Proposition 3.2. Let �
�
be the maximum of �

	
and the cardinality of a set of representa-

tives

X�

�

P >�, �3�
�

for the isomorphism classes of monomorphisms X 

P> such that size(>))�

	
and such that

coker(i) is acyclic.
Let A have size )�, where ���"�. By trans"nite induction, we de"ne an inductive system

(A�)��� of cochain complexes of size )� and with transition morphisms which are monomor-
phisms and quasi-isomorphisms as follows: A

	
"A. If X� has been de"ned, let A���

be de"ned by
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attaching a copy of >�/X� along each morphism X�PA� which does not extend to >�. There are
only �

�
values for �, and for each given � there are by Lemma 3.7 at most �morphismsX�PA�. It

follows from these facts, Lemma 3.7 and the stability of size under extensions that A���
also has

size )�.
If � is a limit ordinal and if A� has been de"ned for �(�, we put A�"colim�
�A�. By Lemma

3.7, this object also has size )�. By the exactness of "ltered colimits, the transition morphisms
A�PA� are quasi-isomorphisms for �(�.

Let X�
�

P A� be a morphism. Since ���"�
�
, the co"nality of � is *�

��
since

�
��

) size(X�))�
	
)�

�
(cf. [10, Lemma I.10.40.]). Therefore, by an application of AB5 in the

same way as in the end of the proof of Theorem 1.10 in [6, p. 137], there exists �3� such that
� factors over A�. By our construction, � has an extension to a morphism >�PA���

-A�. By
Corollary 3.11, A� is strictly injective. �

4. Application to torsion classes in Grothendieck categories

LetA be a Grothendieck category and letTLA be a full subcategory which is also an AB3
category and has the property that the inclusion functor TPA is exact and commutes with
arbitrary coproducts. Assume also that every subobject (inA) of an object ofT belongs toT. Let
DT(A) be the full subcategory of all complexes whose cohomology objects belong to T. This
subcategory is stable under the shift functors [k], and becomes a triangulated category using the
class of all triangles formed by objects of DT(A) which are distinguished in D(A). It is easy to see
that such aT automatically is the class of torsion objects in a torsion theory in the sense of [14,
Section 4.7].

Theorem 4.1. Under these assumptions, DT(A) satisxes the Brown representability theorem. This
implies that DT(A)PD(A) has a right adjoint.

For the following considerations we "x a generator G of A. The size of objects of A with
respect to G will be the same as in the last section, and the size of objects of T will be their size
in A.
It is easy to see thatDT(A) is stable under coproducts inD(A). Therefore, it has coproducts and

the formulation of the theorem makes sense. By Proposition 3.5, it su$ces to prove that DT(A) is
strongly generated by a subset of its class of objects. This is established by the following
proposition:

Proposition 4.2. Let � be the same as in Corollary 3.8. Then DT(A) is strongly generated by
DT(A)��"DT(A)�D(A)

��.

Lemma 4.3. Let � be the same as above. If CH is a cochain complex over A and if HI 	LH	(CH) is
a subobject of size )�, then CH has a subcomplex CI H of size )� such that HH(CI H)PHH(CH) is
injective and such that the image of H	(CI H)PH	(CH) is HI 	.
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Proof. Let CI 
"0 for i'0, and let CI 	LZ	 be any subobject of size )� which epimorphically
maps onto HI 	. If subobjects CI �LC� of size)� forming a partial complex have been de"ned for
j'i, let BI 
�� be the kernel ofZ
���CI 
��PH
�� and letCI 
LC
 be any subobject of size)� such

that CI 
 �
P C
�� factors over an epimorphism CI 
PBI 
��. �

We are now able to prove Proposition 4.2 in two steps.
Step 1: Let CH be a cochain complex overA with cohomology inT which is acyclic in positive

dimensions. Then there exists a complexXH which is a coproduct of objects ofDT(A)��, such that
X
 vanishes if i'0, and a morphism XHPCH which induces an epimorphism on cohomology.
This is easily derived from the lemma.
Step 2: Let DI -DT(A) be the smallest full triangulated subcategory which contains arbitrary

coproducts of objects of DT(A)�� and is stable under countable coproducts. Then DI "DT(A).
LetC be an arbitrary complex with cohomology inT. LetC

	
"C[1]. By an iterated application

of Step 1 and use of a cone construction, one constructs a sequence

C
	


	
P C

�

�

P 2

���
P C

�

�

P C
���


���
P 2,

in which i
�
de"nes the zero morphism on cohomology andX

�
"coker(i

�
) belongs to DI . Let CI

�
PC

be the homotopy "bre of C
	
PC

�
. Then the CI

�
form an ascending sequence, and

CI
���
/CI

�
�X

�
[!1]. Since CI

	
vanishes, this implies CI

�
3DI by induction on k. Therefore, the

countable colimit (which is a homotopy colimit in the sense of [2]) colim
�
CI

�
belongs to DI . But this

colimit is quasi-isomorphic to C since colim
�
C

�
is easily seen to be acyclic.

The proof of Proposition 4.2 and of the theorem is complete. �
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