
A study in derived algebraic geometry

Volume I: Correspondences and duality

Dennis Gaitsgory

Nick Rozenblyum

2010 Mathematics Subject Classification. Primary

Contents

Preface xi

Acknowledgements xxvii

Introduction xxix

Part I. Preliminaries 1

Introduction 3
Why do we need these preliminaries? 3
1. ∞-categories and higher algebra 3
2. Basics of derived algebraic geometry 4
3. Quasi-coherent sheaves 5

Chapter 1. Some higher algebra 7
Introduction 7
1. (∞,1)-categories 16
2. Basic operations with (∞,1)-categories 26
3. Monoidal structures 34
4. Duality 45
5. Stable (∞,1)-categories 50

6. The symmetric monoidal structure on 1 -CatSt,cocmpl
cont 56

7. Compactly generated stable categories 64
8. Algebra in stable categories 70
9. Rigid monoidal categories 79
10. DG categories 86

Chapter 2. Basics of derived algebraic geometry 95
Introduction 95
1. Prestacks 99
2. Descent and stacks 110
3. (Derived) schemes 121
4. (Derived) Artin stacks 129

Chapter 3. Quasi-coherent sheaves on prestacks 141
Introduction 141
1. The category of quasi-coherent sheaves 143
2. Direct image for QCoh 151
3. The symmetric monoidal structure 157

Part II. Ind-coherent sheaves 167

vii

viii CONTENTS

Introduction 169
1. Ind-coherent sheaves vs quasi-coherent sheaves 169
2. How to construct IndCoh? 172

Chapter 4. Ind-coherent sheaves on schemes 177
Introduction 177
1. Ind-coherent sheaves on a scheme 180
2. The direct image functor 183
3. The functor of ‘usual’ inverse image 187
4. Open embeddings 193
5. Proper maps 195
6. Closed embeddings 201
7. Groupoids and descent 207

Chapter 5. Ind-coherent sheaves as a functor out of the category of
correspondences 211

Introduction 211
1. Factorizations of morphisms of DG schemes 218
2. IndCoh as a functor from the category of correspondences 222
3. The functor of !-pullback 226
4. Multiplicative structure and duality 231
5. Convolution monoidal categories and algebras 237

Chapter 6. Interaction of QCoh and IndCoh 241
Introduction 241
1. The (∞,2)-category of pairs 246
2. The functor of IndCoh, equipped with the action of QCoh 249
3. The multiplicative structure 259
4. Duality 263

Part III. Categories of correspondences 269

Introduction 271
1. Why correspondences? 271
2. The six functor formalism 273
3. Constructing functors 278
4. Extension theorems 280
5. (Symmetric) monoidal structures 281

Chapter 7. The (∞,2)-category of correspondences 285
Introduction 285
1. The 2-category of correspondences 296
2. The category of correspondences via grids 303
3. The universal property of the category of correspondences 318
4. Enlarging the class of 2-morphisms at no cost 324
5. Functors constructed by factorization 334

Chapter 8. Extension theorems for the category of correspondences 349
Introduction 349
1. Functors obtained by bivariant extension 352

CONTENTS ix

2. Limits and colimits of sequences 358
3. The core of the proof 366
4. Proof of Proposition 1.2.5: easy reduction steps 372
5. End of the proof of Proposition 1.2.5 375
6. Functors obtained by horizontal extension 379

Chapter 9. The (symmetric) monoidal structure on the category of
correspondences 385

Introduction 385
1. (Symmetric) monoidal structures: recollections 388
2. (Symmetric) monoidal structures and correspondences 392
3. Extension results in the symmetric monoidal context 398
4. Monads and associative algebras in the category of correspondences 404

Appendix. (∞,2)-categories 417

Introduction 419
1. Why do we need them? 419
2. Setting up the theory of (∞,2)-categories 421
3. The rest of the Appendix 422

Chapter 10. Basics of 2-Categories 425
Introduction 425
1. Recollections: (∞,1)-categories via complete Segal spaces 429
2. The notion of (∞,2)-category 434
3. Lax functors and the Gray product 440
4. (∞,2)-categories via squares 447
5. Essential image of the functor Sq●,● 453
6. The (∞,2)-category of (∞,2)-categories 456

Chapter 11. Straightening and Yoneda for (∞,2)-categories 461
Introduction 461
1. Straightening for (∞,2)-categories 463
2. Straightening over intervals 467
3. Locally 2-Cartesian and 2-Cartesian fibrations over Gray products 471
4. Proof of Theorem 1.1.8 478
5. The Yoneda embedding 481
A. The universal right-lax functor 485
B. Localizations on 1-morphisms 491

Chapter 12. Adjunctions in (∞,2)-categories 493
Introduction 493
1. Adjunctions 495
2. Proof of Theorem 1.2.4 502
3. Adjunction with parameters 510
4. An alternative proof 515

Bibliography 521

Index of Notations 523

x CONTENTS

Index 527

Preface

Kto �? Ne kamenwik pr�moĭ,
Ne krovel~wik, ne korabel~wik, –
Dvuruxnik �, s dvoĭnoĭ duxoĭ,
� noqi drug, � dn� zastrel~wik.
O. Mandel~xtam. Grifel~na� oda.

Who am I? Not a straightforward mason,

Not a roofer, not a shipbuilder, –

I am a double agent, with a duplicitous soul,

I am a friend of the night, a skirmisher of the day.

O. Mandelshtam. The Graphite Ode.

1. What is the object of study in this book?

The main unifying theme of the two volumes of this book is the notion of ind-
coherent sheaf, or rather, categories of such on various geometric objects. In this
section we will try to explain what ind-coherent sheaves are and why we need this
notion.

1.1. Who are we? Let us start with a disclosure: this book is not really about
algebraic geometry.

Or, rather, in writing this book, its authors do not act as real algebraic geome-
ters. This is because the latter are ultimately interested in geometric objects that
are constrained/enriched by the algebraicity requirement.

We, however, use algebraic geometry as a tool: this book is written with a view
toward applications to representation theory.

It just so happens that algebraic geometry is a very (perhaps, even the most)
convenient way to formulate representation-theoretic problems of categorical na-
ture. This is not surprising, since, after all, algebraic groups are themselves objects
of algebraic geometry.

The most basic example of how one embeds representation theory into algebraic
geometry is this: take the category Rep(G) of algebraic representations of a linear
algebraic group G. Algebraic geometry allows us to define/interpret Rep(G) as the
category of quasi-coherent sheaves on the classifying stack BG.

The advantage of this point of view is that many natural constructions asso-
ciated with the category of representations are already contained in the package
of ‘quasi-coherent sheaves on stacks’. For example, the functors of restriction and

xi

xii PREFACE

coinduction1 along a group homomorphism G′ → G are interpreted as the functors
of inverse and direct image along the map of stacks

BG′ → BG.

But what is the advantage of this point of view? Why not stick to the explicit
constructions of all the required functors within representation theory?

The reason is that ‘explicit constructions’ involve ‘explicit formulas’, and once
we move to the world of higher categories (which we inevitably will, in order to
meet the needs of modern representation theory), we will find ourselves in trouble:
constructions in higher category theory are intolerant of explicit formulas (for an
example of a construction that uses formulas see point (III) in Sect. 1.5 below).
Rather, when dealing with higher categories, there is a fairly limited package of
constructions that we are allowed to perform (see Chapter 1, Sects. 1 and 2 where
some of these constructions are listed), and algebraic geometry seems to contain a
large chunk (if not all) of this package.

1.2. A stab in the back. Jumping ahead slightly, suppose for example that we
want to interpret algebro-geometrically the category g-mod of modules over a Lie
algebra g.

The first question is: why would one want to do that? Namely, take the
universal enveloping algebra U(g) and interpret g-mod as modules over U(g). Why
should one mess with algebraic geometry if all we want is the category of modules
over an associative algebra?

But let us say that we have already accepted the fact that we want to interpret
Rep(G) as QCoh(BG). If we now want to consider restriction functor

(1.1) Rep(G)→ g-mod,

(where g is the Lie algebra of G), we will need to give an algebro-geometric inter-
pretation of g-mod as well.

If g is a usual (=classical) Lie algebra, one can consider the associated formal
group, denoted in the book exp(g), and one can show (see Volume II, Chapter 7,
Sect. 5) that the category g-mod is canonically equivalent to QCoh(B(exp(g))),
the category of quasi-coherent sheaves on the classifying stack2 of exp(g). With
this interpretation of g-mod, the functor (1.1) is simply the pullback functor along
the map

B(exp(g))→ BG,

induced by the (obvious) map exp(g)→ G.

Let us now be given a homomorphism of Lie algebras α ∶ g′ → g. The functor
of restriction g-mod → g′-mod still corresponds to the pullback functor along the
corresponding morphism

(1.2) B(exp(g′)) fαÐ→ B(exp(g)).

1What we call ‘coinduction’ is the functor right adjoint to restriction, i.e., it is the usual
representation-theoretic operation.

2One can (reasonably) get somewhat uneasy from the suggestion to consider the category of
quasi-coherent sheaves on the classifying stack of a formal group, but, in fact, this is a legitimate
operation.

1. WHAT IS THE OBJECT OF STUDY IN THIS BOOK? xiii

Note, however, that when we talk about representations of Lie algebras, the natural
functor in the opposite direction is induction, i.e., the left adjoint to restriction.
And being a left adjoint, it cannot correspond to the direct image along (1.2)
(whatever the functor of direct image is, it is the right adjoint of pullback).

This inconsistency leads to the appearance of ind-coherent sheaves.

1.3. The birth of IndCoh.

What happens is that, although we can interpret g-mod as QCoh(B(exp(g))),
a more natural interpretation is as IndCoh(B(exp(g))). The symbol ‘IndCoh’ will
of course be explained in the sequel. It just so happens that for a classical Lie
algebra, the categories QCoh(B(exp(g))) and IndCoh(B(exp(g))) are equivalent
(as QCoh(BG) is equivalent to IndCoh(BG)).

Now, the functor of restriction along the homomorphism α will be given by the
functor

(fα)! ∶ IndCoh(B(exp(g′)))→ IndCoh(B(exp(g)));
this is the !-pullback functor, which is the raison d’être for the theory of IndCoh.

However, the functor of induction g′-mod→ g-mod will be the functor of IndCoh
direct image

(1.3) (fα)IndCoh
∗ ∶ IndCoh(B(exp(g′)))→ IndCoh(B(exp(g))),

which is the left adjoint of (fα)!. This adjunction is due to the fact that the
morphism fα is, in an appropriate sense, proper.

Now, even though, as was mentioned above, for a usual Lie algebra g, the
categories

QCoh(B(exp(g))) and IndCoh(B(exp(g)))
are equivalent, the functor (fα)IndCoh

∗ of (1.3) is as different as can be from the
functor

(fα)∗ ∶ QCoh(B(exp(g′)))→ QCoh(B(exp(g)))
(the latter is quite ill-behaved).

For an analytically minded reader let us also offer the following (albeit some-
what loose) analogy: QCoh(−) behaves more like functions on a space, while
IndCoh(−) behaves more like measures on the same space.

1.4. What can we do with ind-coherent sheaves? As we saw in the example
of Lie algebras, the kind of geometric objects on which we will want to consider
IndCoh (e.g., B(exp(g))) are quite a bit more general than the usual objects on
which we consider quasi-coherent sheaves, the latter being schemes (or algebraic
stacks).

A natural class of algebro-geometric objects for which IndCoh is defined is that
of inf-schemes, introduced and studied in Volume II, Part I of the book. This
class includes all schemes, but also formal schemes, as well as classifying spaces of
formal groups, etc. In addition, if X is a scheme, its de Rham prestack3 XdR is an
inf-scheme, and ind-coherent sheaves on XdR will be the same as crystals (a.k.a.
D-modules) on X.

3The de Rham prestack of a given scheme X is obtained by ‘modding’ out X by the groupoid
of its infinitesimal symmetries, see Volume II, Chapter 4, Sect. 1.1.1 for a precise definition.

xiv PREFACE

Thus, for any inf-scheme X we have a well-defined category IndCoh(X). For
any map of inf-schemes f ∶ X ′ → X we have functors

f IndCoh
∗ ∶ IndCoh(X ′)→ IndCoh(X)

and
f ! ∶ IndCoh(X)→ IndCoh(X ′).

Moreover, if f is proper4, then the functors (f IndCoh
∗ , f !) form an adjoint pair.

Why should we be happy to have this? The reason is that this is exactly the
kind of operations one needs in geometric representation theory.

1.5. Some examples of what we can do.

(I) Take X ′ to be a scheme X and X =XdR, with f being the canonical projection
X →XdR. Then the adjoint pair

f IndCoh
∗ ∶ IndCoh(X)⇄ IndCoh(XdR) ∶ f !

identifies with the pair

indD-mod ∶ IndCoh(X)⇄ D-mod(X) ∶ indD-mod,

corresponding to forgetting and inducing the (right) D-module structure (as we
shall see shortly in Sect. 2.3, for a scheme X, the category IndCoh(X) is only
slightly different from the usual category of quasi-coherent sheaves QCoh(X)).
(II) Suppose we have a morphism of schemes g ∶ Y →X and set

YdR
f ∶=gdRÐ→ XdR.

The corresponding functors

f IndCoh
∗ ∶ IndCoh(YdR)→ IndCoh(XdR) and f ! ∶ IndCoh(XdR)→ IndCoh(YdR)

identify with the functors

g∗,Dmod ∶ Dmod(Y)→ Dmod(X) and g!
Dmod ∶ Dmod(X)→ Dmod(Y)

of D-module (a.k.a. de Rham) push-forward and pullback, respectively.

Note that while the operation of pullback of (right) D-modules corresponds to
!-pullback on the underlying O-module, the operation of D-module push-forward is
less straightforward as it involves taking fiber-wise de Rham cohomology. So, the
operation of the IndCoh direct image does something quite non-trivial in this case.

(III) Suppose we have a Lie algebra g that acts (by vector fields) on a scheme X.
In this case we can create a diagram

B(exp(g)) f1←Ð BX(exp(g)) f2Ð→XdR,

where BX(exp(g)) is an inf-scheme, which is the quotient of X by the action of g.

Then the composite functor

(f2)IndCoh
∗ ○ (f1)! ∶ IndCoh(B(exp(g)))→ IndCoh(XdR)

identifies with the localization functor

g-mod→ Dmod(X).
4Properness means the following: to every inf-scheme there corresponds its underlying re-

duced scheme, and a map between inf-schemes is proper if and only if the map of the underlying
reduced schemes is proper in the usual sense.

2. HOW DO WE DO WE CONSTRUCT THE THEORY OF IndCoh? xv

This third example should be a particularly convincing one: the localization
functor, which is usually defined by an explicit formula

M ↦DX ⊗
U(g)

M,

is given here by the general formalism.

2. How do we do we construct the theory of IndCoh?

Whatever inf-schemes are, for an individual inf-scheme X , the category IndCoh(X)
is bootstrapped from the corresponding categories for schemes by the following pro-
cedure:

(2.1) IndCoh(X) = lim
Z→X

IndCoh(Z).

Some explanations are in order.

2.1. What do we mean by limit?

(a) In formula (2.1), the symbol ‘lim’ appears. This is the limit of categories, but not
quite. If we were to literally take the limit in the category of categories, we would
obtain utter nonsense. This is a familiar phenomenon: the (literally understood)
limit of, say, triangulated categories is not well-behaved. A well-known example of
this is that the derived category of sheaves on a space cannot be recovered from the
corresponding categories on an open cover. However, this can be remedied if instead
of the triangulated categories we consider their higher categorical enhancements,
i.e., the corresponding ∞-categories.

So, what we actually mean by ‘limit’, is the limit taken in the ∞-category of
∞-categories. That is, in the preceding discussion, all our IndCoh(−) are actually
∞-categories. In our case, they have a bit more structure: they are k-linear over
a fixed ground field k; we call them DG categories, and denote the ∞-category of
such by DGCat.

Thus, ∞-categories inevitably appear in this book.

(b) The indexing (∞)-category appearing in the expression (2.1) is the (∞)-category
opposite to that of schemes Z equipped with a map Z → X to our inf-scheme X .
The transition functors are given by

(Z ′ f→ Z) ∈ Sch/X ↝ IndCoh(Z) f !

Ð→ IndCoh(Z ′).
So, in order for the expression in (2.1) to make sense we need to make the

assignment

(2.2) Z ↝ IndCoh(Z), (Z ′ f→ Z)↝ (IndCoh(Z) f !

Ð→ IndCoh(Z ′))
into a functor of ∞-categories

(2.3) IndCoh!
Sch ∶ (Sch)op → DGCat .

To that end, before we proceed any further, we need to explain what the DG
category IndCoh(Z) is for a scheme Z.

For a scheme Z, the category IndCoh(Z) will be almost the same as QCoh(Z).
The former is obtained from the latter by a renormalization procedure, whose
nature we shall now explain.

xvi PREFACE

2.2. Why renormalize? Keeping in mind the examples of Rep(G) and g-mod,
it is natural to expect that the assignment (2.2) (for schemes, and then also for
inf-schemes) should have the following properties:

(i) For every scheme Z, the DG category IndCoh(Z) should contain infinite direct
sums;

(ii) For a map Z ′ f→ Z, the functor IndCoh(Z) f !

Ð→ IndCoh(Z ′) should preserve
infinite direct sums.

This means that the functor (2.3) takes values in the subcategory of DGCat,
where we allow as objects only DG categories satisfying (i)5 and as 1-morphisms
only functors that satisfy (ii)6.

Let us first try to make this work with the usual QCoh. We refer the reader
to Chapter 3, where the DG category QCoh(X) is introduced for an arbitrary
prestack, and in particular a scheme. However, for a scheme Z, whatever the DG
category QCoh(Z) is, its homotopy category (which is a triangulated category) is
the usual (unbounded) derived category of quasi-coherent sheaves on Z.

Suppose we have a map of schemes Z ′ f→ Z. The construction of the !-pullback
functor

f ! ∶ QCoh(Z)→ QCoh(Z ′)
is quite complicated, except when f is proper. In the latter case, f !, which from
now on we will denote by f !,QCoh, is defined to be the right adjoint of

f∗ ∶ QCoh(Z ′)→ QCoh(Z).
The only problem is that the above functor f !,QCoh does not preserve infinite

direct sums. The simplest example of a morphism for which this happens is

f ∶ Spec(k)→ Spec(k[t]/t2)
(or the embedding of a singular point into any scheme).

The reason for the failure to preserve infinite direct sums is this: the left adjoint
of f !,QCoh, i.e., f∗, does not preserve compactness. Indeed, f∗ does not necessarily
send perfect complexes on Z ′ to perfect complexes on Z, unless f is of finite Tor-
dimension7.

So, our attempt with QCoh fails (ii) above.

2.3. Ind-coherent sheaves on a scheme. The nature of the renormalization
procedure that produces IndCoh(Z) out of QCoh(Z) is to force (ii) from Sect. 2.2
‘by hand’.

As we just saw, the problem with f !,QCoh was that its left adjoint f∗ did not
send the corresponding subcategories of perfect complexes to one another. However,
f∗ sends the subcategory

Coh(Z ′) ⊂ QCoh(Z ′)

5Such DG categories are called cocomplete.
6Such functors are called continuous.
7We remark that a similar phenomenon, where instead of the category QCoh(Spec(k[t]/t2)) =

k[t]/t2-mod we have the category of representations of a finite group, leads to the notion of
Tate cohomology: the trivial representation on Z is not a compact object in the category of

representations.

2. HOW DO WE DO WE CONSTRUCT THE THEORY OF IndCoh? xvii

to
Coh(Z) ⊂ QCoh(Z),

where Coh(−) denotes the subcategory of bounded complexes, whose cohomology
sheaves are coherent (as opposed to quasi-coherent).

The category IndCoh(Z) is defined as the ind-completion of Coh(Z) (see Chap-
ter 1, Sect. 7.2 for what this means). The functor f∗ gives rise to a functor
Coh(Z ′)→ Coh(Z), and ind-extending we obtain a functor

f IndCoh
∗ ∶ IndCoh(Z ′)→ IndCoh(Z).

Its right adjoint, denoted f ! ∶ IndCoh(Z) → IndCoh(Z ′) satisfies (ii) from
Sect. 2.2.

Are we done? Far from it. First, we need to define the functor

f IndCoh
∗ ∶ IndCoh(Z ′)→ IndCoh(Z)

for a morphism f that is not necessarily proper. This will not be difficult, and will
be done by appealing to t-structures, see Sect. 2.4 below.

What is much more serious is to define f ! for any f . More than that, we need
f ! not just for an individual f , but we need the data of (2.2) to be a functor of
∞-categories as in (2.3). Roughly a third of the work in this book goes into the
construction of the functor (2.3); we will comment on the nature of this work in
Sect. 2.5 and then in Sect. 3 below.

2.4. In what sense is IndCoh a ‘renormalization’ of QCoh? The tautological
embedding Coh(Z)↪ QCoh(Z) induces, by ind-extension, a functor

ΨZ ∶ IndCoh(Z)→ QCoh(Z).

The usual t-structure on the DG category Coh(Z) induces one on IndCoh(Z).
The key feature of the functor ΨZ is that it is t-exact. Moreover, for every fixed n,
the resulting functor

IndCoh(Z)≥−n → QCoh(Z)≥−n

is an equivalence8. The reason for this is that any coherent complex can be approx-
imated by a perfect one up to something in Coh(Z)<−n for any given n.

In other words, the difference between IndCoh(Z) and QCoh(Z) occurs ‘some-
where at −∞’. So, this difference can only become tangible in the finer questions
of homological algebra (such as convergence of spectral sequences).

However, we do need to address such questions adequately if we want to have a
functioning theory, and for the kind of applications we have in mind (see Sect. 1.5
above) this necessitates working with IndCoh rather than QCoh.

As an illustration of how the theory of IndCoh takes something very familiar
and unravels it to something non-trivial, consider the IndCoh direct image functor.

In the case of schemes, for a morphism f ∶ Z ′ → Z, the functor

f IndCoh
∗ ∶ IndCoh(Z ′)→ IndCoh(Z)

does ‘little new’ as compared to the usual

f∗ ∶ QCoh(Z ′)→ QCoh(Z).

8But the functor ΨZ is an equivalence on all of IndCoh(Z) if and only if Z is smooth.

xviii PREFACE

Namely, f IndCoh
∗ is the unique functor that preserves infinite direct sums and

makes the diagram

IndCoh(Z ′)≥−n ΨZ′ÐÐÐÐ→
∼

QCoh(Z ′)≥−n

f IndCoh
∗

×××Ö
×××Ö
f∗

IndCoh(Z)≥−n ΨZÐÐÐÐ→
∼

QCoh(Z)≥−n

commute for every n.

However, as was already mentioned, once we extend the formalism of IndCoh
direct image to inf-schemes, we will in particular obtain the de Rham direct image
functor. So, it is in the world of inf-schemes that IndCoh shows its full strength.

2.5. Construction of the !-pullback functor. As has been mentioned already,
a major component of work in this book is the construction of the functor

IndCoh!
Sch ∶ (Sch)op → DGCat

of (2.3).

We already know what IndCoh(Z) is for an individual scheme. We now need
to extend it to morphisms.

For a morphism f ∶ Z ′ → Z, we can factor it as

(2.4) Z ′ f1→ Z ′ f2→ Z,

where f1 is an open embedding and f2 is proper. We then define

f ! ∶ IndCoh(Z)→ IndCoh(Z ′)
to be

f !
1 ○ f !

2,

where

(i) f !
2 is the right adjoint of (f2)IndCoh

∗ ;

(ii) f !
1 is the left adjoint of (f1)IndCoh

∗ .

Of course, in order to have f ! as a well-defined functor, we need to show that
its definition is independent of the factorization of f as in (2.4). Then we will have
to show that the definition is compatible with compositions of morphisms. But this
is only the tip of the iceberg.

Since we want to have a functor between ∞-categories, we need to supply the
assignment

f ↝ f !

with a homotopy-coherent system of compatibilities for n-fold compositions of mor-
phisms, a task which appears infeasible to do ‘by hand’.

What we do instead is we prove an existence and uniqueness theorem... not
for (2.3), but rather for a more ambitious piece of structure. We refer the reader
to Chapter 5, Proposition 2.1.4 for the precise formulation. Here we will only say
that, in addition to (2.3), this structure contains the data of a functor

(2.5) IndCoh ∶ Sch→ DGCat,

2. HOW DO WE DO WE CONSTRUCT THE THEORY OF IndCoh? xix

Z ↝ IndCoh(Z), (Z ′ f→ Z)↝ (IndCoh(Z ′)
f IndCoh
∗Ð→ IndCoh(Z)),

as well as compatibility between (2.3) and (2.5).

The latter means that whenever we have a Cartesian square

(2.6)

Z ′
1

g′ÐÐÐÐ→ Z ′

f1
×××Ö

×××Ö
f

Z1
gÐÐÐÐ→ Z

there is a canonical isomorphism of functors, called base change:

(2.7) (f1)IndCoh
∗ ○ (g′)! ≃ g! ○ f IndCoh

∗ .

2.6. Enter DAG. The appearance of the Cartesian square (2.6) heralds another
piece of ‘bad news’. Namely, Z ′

1 must be the fiber product

Z1 ×
Z
Z ′.

But what category should we take this fiber product in? If we look at the
example

pt ×
A1

pt ÐÐÐÐ→ pt

×××Ö
×××Ö

pt ÐÐÐÐ→ A1,

(here pt = Spec(k), A1 = Spec(k[t])), we will see that the fiber product pt ×
A1

pt

cannot be taken to be the point-scheme, i.e., it cannot be the fiber product in the
category of usual (=classical) schemes. Rather, we need to take

pt ×
A1

pt = Spec(k ⊗
k[t]

k),

where the tensor product is understood in the derived sense, i.e.,

k ⊗
k[t]

k = k[ε], deg(ε) = −1.

This is to say that in building the theory of IndCoh, we cannot stay with
classical schemes, but rather need to enlarge our world to that of derived algebraic
geometry.

So, unless the reader has already guessed this, in all the previous discussion,
the word ‘scheme’ had to be understood as ‘derived scheme’9 (although in the main
body of the book we say just ‘scheme’, because everything is derived).

However, this is not really ‘bad news’. Since we are already forced to work
with ∞-categories, passing from classical algebraic geometry to DAG does not add
a new level of complexity. But it does add a lot of new techniques, for example in
anything that has to do with deformation theory (see Volume II, Chapter 1).

Moreover, many objects that appear in geometric representation theory nat-
urally belong to DAG (e.g., Springer fibers, moduli of local systems on a curve,
moduli of vector bundles on a surface). That is, these objects are not classical, i.e.,

9Technically, for whatever has to do with IndCoh, we need to add the adjective ‘laft’=‘locally
almost of finite type’, see Chapter 2, Sect. 3.5 for what this means.

xx PREFACE

we cannot ignore their derived structure if we want to study their scheme-theoretic
(as opposed to topological) properties. So, we would have wanted to do DAG in
any case.

Here are two particular examples:

(I) Consider the category of D-modules (resp., perverse) sheaves on the double
quotient

I/G((t))/I,
where G is a connected reductive group, G((t)) is the corresponding loop group
(considered as an ind-scheme) and I ⊂ G((t)) is the Iwahori subgroup. Then
Bezrukavnikov’s theory (see [Bez]) identifies this category with the category of
ad-equivariant ind-coherent (resp., coherent) sheaves on the Steinberg scheme (for
the Langlands dual group). But what do we mean by the Steinberg scheme? By
definition, this is the fiber product

(2.8) Ñ ×
g
Ñ ,

where Ñ is the Springer resolution of the nilpotent cone. However, in order for this
equivalence to hold, the fiber product in (2.8) needs be understood in the derived
sense.

(II) Let X be a smooth and complete curve. Let Pic(X) be the Picard stack of X,
i.e., the stack parameterizing line bundles onX. Let LocSys(X) be the stack param-
eterizing 1-dimensional local systems on X. The Fourier-Mukäı-Laumon transform
defines an equivalence

Dmod(Pic(X)) ≃ QCoh(LocSys(X)).

However, in order for this equivalence to hold, we need to understand LocSys(X)
as a derived stack.

2.7. Back to inf-schemes. The above was a somewhat lengthy detour into the
constructions of the theory of IndCoh on schemes. Now, if X is an inf-scheme, the
category IndCoh(X) is defined by the formula (2.1).

Thus, informally, an object F ∈ IndCoh(X) is a family of assignments

(Z x→ X)↝ FZ,x ∈ IndCoh(Z)

(here Z is a scheme) plus

(Z ′ f→ Z) ∈ Sch/X ↝ f !(FZ,x) ≃ FZ′,x′ ,

along with a homotopy-coherent compatibility data for compositions of morphisms.

For a map g ∶ X ′ → X , the functor

g! ∶ IndCoh(X)→ IndCoh(X ′)

is essentially built into the construction. Recall, however, that our goal is to also
have the functor

gIndCoh
∗ ∶ IndCoh(X ′)→ IndCoh(X).

3. WHAT IS ACTUALLY DONE IN THIS BOOK? xxi

The construction of the latter requires some work (which occupies most of
Volume II, Chapter 3). What we show is that there exists a unique system of such
functors such that for every commutative (but not necessarily Cartesian) diagram

Z ′ i′ÐÐÐÐ→ X ′

f
×××Ö

×××Ö
g

Z
iÐÐÐÐ→ X

with Z,Z ′ being schemes and the morphisms i, i′ proper, we have an isomorphism

gIndCoh
∗ ○ (i′)IndCoh

∗ ≃ iIndCoh
∗ ○ f IndCoh,

where iIndCoh
∗ (resp., (i′)IndCoh

∗) is the left adjoint of i! (resp., (i′)!).

Amazingly, this procedure contains the de Rham push-forward functor as a
particular case.

3. What is actually done in this book?

This book consists of two volumes. The first Volume consists of three Parts and
an Appendix and the second Volume consists of two Parts. Each Part consists of
several Chapters. The Chapters are designed so that they can be read independently
from one another (in a sense, each Chapter is structured as a separate paper with
its own introduction that explains what this particular chapter does).

Below we will describe the contents of the different Parts and Chapters from
several different perspectives: (a) goals and role in the overall project; (b) practical
implications; (c) nature of work; (d) logical dependence.

3.1. The contents of the different parts.

Volume I, Part I is called ‘preliminaries’, and it is really preliminaries.

Volume I, Part II builds the theory of IndCoh on schemes.

Volume I, Part III develops the formalism of categories of correspondences; it is
used as a ‘black box’ in the key constructions in Volume I, Part II and Volume II,
Part I: this is our tool of bootstrapping the theory of IndCoh out of a much smaller
amount of data.

Volume I, Appendix provides a sketch of the theory of (∞,2)-categories, which, in
turn, is crucially used in Volume I, Part III.
Volume II, Part I defines the notion of inf-scheme and extends the formalism of
IndCoh from schemes to inf-schemes, and in that it achieves one of the two main
goals of this book.

Volume II, Part II consists of applications of the theory of IndCoh: we consider
formal moduli problems, Lie theory and infinitesimal differential geometry; i.e.,
exactly the things one needs for geometric representation theory. Making these
constructions available is the second of our main goals.

xxii PREFACE

3.2. Which chapters should a practically minded reader be interested
in? Not all the Chapters in this book make an enticing read; some are downright
technical and tedious. Here is, however, a description of the ‘cool’ things that some
of the Chapters do:

None of the material in Volume I, Part I alters the pre-existing state of knowledge.

Volume I, Chapters 4 and 5 should not be a difficult read. They construct the
theory of IndCoh on schemes (the hard technical work is delegated to Volume I,
Chapter 7). The reader cannot avoid reading these chapters if he/she is interested
in the applications of IndCoh: one has to have an idea of what IndCoh is in order
to use it.

Volume I, Chapters 6 is routine. The only really useful thing from it is the functor

ΥZ ∶ QCoh(Z)→ IndCoh(Z),
given by tensoring an object of QCoh(Z) with the dualizing complex ωZ ∈ IndCoh(Z).
Extract this piece of information from Sects. 3.2-3.3 and move on.

Volume I, Chapter 7 introduces the formalism of correspondences. The idea of the
category of correspondences is definitely something worth knowing. We recommend
the reader to read Sect. 1 in its entirety, then understand the universal property
stated in Sect. 3, and finally get an idea about the two extension theorems, proved in
Sects. 4 and 5, respectively. These extension theorems are the mechanism by means
of which we construct IndCoh as a functor out of the category of correspondences
in Volume I, Chapter 5.

Volume I, Chapter 8 proves a rather technical extension theorem, stated in Sect.
1; we do not believe that the reader will gain much by studying its proof. This
theorem is key to the extension of IndCoh from schemes to inf-schemes in Volume
II, Chapter 3.

Volume I, Chapter 9 is routine, except for one observation, contained in Sects. 2.2-
2.3: the natural involution on the category of correspondences encodes duality. In
fact, this is how we construct Serre duality on IndCoh(Z) and Verdier duality on
Dmod(Z) where Z is a scheme (or inf-scheme), see Chapter 5, Sect. 4.2, Volume
II, Chapter 3, Sect. 6.2, and Volume II, Chapter 4, Sect. 2.2, respectively.

Volume I, Chapter 10 introduces the notion of (∞,2)-category and some basic
constructions in the theory of (∞,2)-categories. This Chapter is not very technical
(mainly because it omits most proofs) and might be of independent interest.

Volume I, Chapter 11 does a few more technical things in the theory of (∞,2)-
categories. It introduces the (∞,2)-category of (∞,2)-categories, denoted 2 -Cat.
We then discuss the straightening/unstraightening procedure in the (∞,2)-categorical
context and the (∞,2)-categorical Yoneda lemma. The statements of the results
from this Chapter may be of independent interest.

Volume I, Chapter 12 discusses the notion of adjunction in the context of (∞,2)-
categories. The main theorem in this Chapter explicitly constructs the universal
adjointable functor (and its variants), and we do believe that this is of interest
beyond the particular goals of this book.

Volume II, Chapter 1 is background on deformation theory. The reason it is in-
cluded in the book is that the notion of inf-scheme is based on deformation theory.

3. WHAT IS ACTUALLY DONE IN THIS BOOK? xxiii

However, the reader may find the material in Sects. 1-7 of this Chapter useful
without any connection to the contents of the rest of the book.

Volume II, Chapter 2 introduces inf-schemes. It is quite technical. So, the prac-
tically minded reader should just understand the definition (Sect. 3.1) and move
on.

Volume II, Chapter 3 bootstraps the theory of IndCoh from schemes to inf-schemes.
It is not too technical, and should be read (for the same reason as Volume I,
Chapters 4 and 5). The hard technical work is delegated to Volume I, Chapter 8.

Volume II, Chapter 4 explains how the theory of crystals/D-modules follows from
the theory of IndCoh on inf-schemes. Nothing in this Chapter is very exciting, but
it should not be a difficult read either.

Volume II, Chapter 5 is about formal moduli problems. It proves a pretty strong
result, namely, the equivalence of categories between formal groupoids acting on
a given prestack X (assumed to admit deformation theory) and formal moduli
problems under X .

Volume II, Chapter 6 is a digression on the general notion of Lie algebra and Koszul
duality in a symmetric monoidal DG category. It gives a nice interpretation of
the universal enveloping algebra of a Lie algebra of g as the homological Chevalley
complex of the Lie algebra obtained by looping g. The reader may find this Chapter
useful and independently interesting.

Volume II, Chapter 7 develops Lie theory in the context of inf-schemes. Namely,
it establishes an equivalence of categories between group inf-schemes (over a given
base X) and Lie algebras in IndCoh(X). One can regard this result as one of the
main applications of the theory developed hereto.

Volume II, Chapters 8 and 9 use the theory developed in the preceding Chapters
for ‘differential calculus’ in the context of DAG. We discuss Lie algebroids and
their universal envelopes, the procedure of deformation to the normal cone, etc.
For example, the notion of n-th infinitesimal neighborhood developed in Volume
II, Chapter 9 gives rise to the Hodge filtration.

3.3. The nature of the technical work. The substance of mathematical thought
in this book can be roughly split into three modes of cerebral activity: (a) making
constructions; (b) overcoming difficulties of homotopy-theoretic nature; (c) dealing
with issues of convergence.

Mode (a) is hard to categorize or describe in general terms. This is what one
calls ‘the fun part’.

Mode (b) is something much better defined: there are certain constructions that
are obvious or easy for ordinary categories (e.g., define categories or functors by an
explicit procedure), but require some ingenuity in the setting of higher categories.
For many readers that would be the least fun part: after all it is clear that the thing
should work, the only question is how to make it work without spending another
100 pages.

Mode (c) can be characterized as follows. In low-tech terms it consists of
showing that certain spectral sequences converge. In a language better adapted for
our needs, it consists of proving that in some given situation we can swap a limit

xxiv PREFACE

and a colimit (the very idea of IndCoh was born from this mode of thinking). One
can say that mode (c) is a sort of analysis within algebra. Some people find it fun.

Here is where the different Chapters stand from the point of view of the above
classification:

Volume I, Chapter 1 is (b) and a little of (c).

Volume I, Chapter 2 is (a) and a little of (c).

Volume I, Chapter 3 is (c).

Volume I, Chapter 4 is (a) and (c).

Volume I, Chapter 5 is (a).

Volume I, Chapter 6 is (b).

Volume I, Chapters 7-9 are (b).

Volume I, Chapters 10-12 are (b).

Volume II, Chapter 1 is (a) and a little of (c).

Volume II, Chapter 2 is (a) and a little of (c).

Volume II, Chapter 3 is (a).

Volume II, Chapter 4 is (a).

Volume II, Chapter 5 is (a).

Volume II, Chapter 6 is (c) and a little of (b).

Volume II, Chapter 7 is (c) and a little of (a).

Volume II, Chapters 8 and 9 are (a).

3.4. Logical dependence of chapters. This book is structured so that Volume
I prepares the ground and Volume II reaps the fruit. However, below is a scheme of
the logical dependence of chapters, where we allow a 5% skip margin (by which we
mean that the reader skips certain things10 and comes back to them when needed).

3.4.1. Volume I, Chapter 1 reviews ∞-categories and higher algebra. Read it only
if you have no prior knowledge of these subjects. In the latter case, here is what
you will need in order to understand the constructions in the main body of the
book:

Read Sects. 1-2 to get an idea of how to operate with ∞-categories (this is a
basis for everything else in the book).

Read Sects. 5-7 for a summary of stable ∞-categories: this is what our QCoh(−)
and IndCoh(−) are; forget on the first pass about the additional structure of k-linear
DG category (the latter is discussed in Sect. 10).

Read Sects. 3-4 for a summary of monoidal structures and duality in the context
of higher category theory. You will need it for this discussion of Serre duality and
for Volume I, Chapter 6.

Sects. 8-9 are about algebra in (symmetric) monoidal stable ∞-categories. You
will need it for Volume II, Part II of the book.

10These are things that can be taken on faith without compromising the overall understanding
of the material.

3. WHAT IS ACTUALLY DONE IN THIS BOOK? xxv

Volume I, Chapter 2 introduces DAG proper. If you have not seen any of it
before, read Sect. 1 for the (shockingly general, yet useful) notion of prestack. Every
category of geometric objects we will encounter in this book (e.g., (derived) schemes,
Artin stacks, inf-schemes, etc.) will be a full subcategory of the ∞-category of
prestacks. Proceed to Sect. 3.1 for the definition of derived schemes. Skip all the
rest.

Volume I, Chapter 3 introduces QCoh on prestacks. Even though the main
focus of this book is the theory of ind-coherent sheaves, the latter theory takes a
significant input and interacts with that of quasi-coherent sheaves. If you have not
seen this before, read Sect. 1 and then Sects. 3.1-3.2.

3.4.2. In Volume I, Chapter 4 we develop the elementary aspects of the theory of
IndCoh on schemes: we define the DG category IndCoh(Z) for an individual scheme
Z, construct the IndCoh direct image functor, and also the !-pullback functor for
proper morphisms. This Chapter uses the material from Volume I, Part I mentioned
above. You will need the material from this chapter in order to proceed with the
reading of the book.

Volume I, Chapter 5 builds on Volume 1, Chapter 4, and accomplishes (mod-
ulo the material delegated to Volume I, Chapter 7) one of the main goals of this
book. We construct IndCoh as a functor out of the category of correspondences. In
particular, we construct the functor (2.3). The material from this Chapter is also
needed for the rest of the book.

In Volume I, Chapter 6 we study the interaction between IndCoh and QCoh.
For an individual scheme Z we have an action of QCoh(Z) (viewed as a monoidal
category) on IndCoh(Z). We study how this action interacts with the formalism of
correspondences from Volume I, Chapter 5, and in particular with the operation of
!-pullback. The material in this Chapter uses the formalism of monoidal categories
and modules over them from Volume I, Chapter 1, as well as the material from
Volume I, Chapter 5. Skipping Volume I, Chapter 6 will not impede your under-
standing of the rest of the book, so it might be a good idea to do so on the first
pass.

3.4.3. Volume I, Part II develops the theory of categories of correspondences. It
plays a service role for Volume I, Chapter 6 and Volume II, Chapter 3, and relies
on the theory of (∞,2)-categories, developed in Volume I, Appendix.

3.4.4. Volume I, Appendix develops the theory of (∞,2)-categories. It plays a
service role for Volume I, Part III.

Volume I, Chapters 11 and 12 rely on Volume I, Chapter 10, but can be read
independently of one another.

3.4.5. Volume II, Chapter 1 introduces deformation theory. It is needed for the
definition of inf-schemes and, therefore, for proofs of any results about inf-schemes
(that is, for Volume II, Chapter 2). We will also need it for the discussion of formal
moduli problems in Volume II, Chapter 5. The prerequisites for Volume II, Chapter

xxvi PREFACE

1 are Volume I, Chapters 2 and 3, so it is (almost)11 independent of the material
from Volume I, Part II.

In Volume II, Chapter 2 we introduce inf-schemes and some related notions
(ind-schemes, ind-inf-schemes). The material here relies in that of Volume II, Chap-
ter 1, and will be needed in Volume II, Chapter 3.

In Volume II, Chapter 3 we construct the theory of IndCoh on inf-schemes.
The material here relies on that from Volume I, Chapter 5 and Volume II, Chapter
2 (and also a tedious general result about correspondences from Volume I, Chapter
8). Thus, Volume II, Chapter 3 achieves one of our goals, the later being making the
theory of IndCoh on inf-schemes available. The material from Volume II, Chapter
3 will (of course) be used when will apply the theory of IndCoh, in Volume II,
Chapter 4 and 7–9.

In Volume II, Chapter 4 we apply the material from Volume II, Chapter 3 in
order to develop a proper framework for crystals (=D-modules), together with the
forgetful/induction functors that related D-modules to O-modules. The material
from this Chapter will not be used later, except for the extremely useful notion of
the de Rham prestack construction X ↝ XdR.

3.4.6. In Volume II, Chapter 5 we prove a key result that says that in the category
of prestacks that admit deformation theory, the operation of taking the quotient
with respect to a formal groupoid is well-defined. The material here relies on that
from Volume II, Chapter 1 (at some point we appeal to a proposition from Volume
II, Chapter 3, but that can be avoided). So, the main result from Volume II,
Chapter 5 is independent of the discussion of IndCoh.

Volume II, Chapter 6 is about Lie algebras (or more general operad algebras)
in symmetric monoidal DG categories. It only relies on the material from Volume I,
Chapter 1, and is independent of the preceding Chapters of the book (no DAG, no
IndCoh). The material from this Chapter will be used for the subsequent Chapters
in Volume II, Part II.

3.4.7. A shortcut. As has been mentioned earlier, Volume II, Chapters 7–9 are de-
voted to applications of IndCoh to ‘differential calculus’. This ‘differential calculus’
occurs on prestacks that admit deformation theory.

If one really wants to use arbitrary such prestacks, one needs the entire machin-
ery of IndCoh provided by Volume II, Chapter 3. However, if one is content with
working with inf-schemes (which would suffice for the majority of applications),
much less machinery would suffice:

The cofinality result from Volume II, Chapter 3, Sect. 4.3 implies that we can
bypass the entire discussion of correspondences, and only use the material from
Volume I, Chapter 4, i.e., IndCoh on schemes and !-pullbacks for proper (in fact,
finite) morphisms.

3.4.8. Volume II, Chapters 7-9 form a logical succession. As input from the pre-
ceding chapters they use Volume II, Chapter 3 (resp., Volume I, Chapter 5 (see
Sect. 3.4.7 above), Volume II, Chapter 1 and Volume II, Chapters 5–6.

11Whenever we want to talk about tangent (as opposed to cotangent) spaces, we have to use
IndCoh rather than QCoh, and these parts in Volume II, Chapter 1 use the material from Volume

I, Chapter 5.

Acknowledgements

In writing this book, we owe a particular debt of gratitude to Jacob Lurie for
teaching us both the theory of higher categories and derived algebraic geometry.
Not less importantly, some of the key constructions in this book originated from
his ideas; among them is the concept of the category of correspondences.

We would like to thank V. Drinfeld, J. Francis and S. Raskin for numerous
illuminating discussions and suggestions related to this book.

We are grateful to A. Khan and S. Lysenko for pointing out multiple errors as
this book was evolving.

xxvii

Introduction

In describing the contents of Volume I we will use some terminology pertaining
to higher category theory, derived algebraic geometry and the (derived) category
of quasi-coherent sheaves. The reader is referred to the part of this book, called
Preliminaries, where the relevant notions are surveyed.

1. Ind-coherent sheaves

The goal of Volume I is to set up the machinery of ind-coherent sheaves on (de-
rived) schemes, in order to apply it in Volume II and describe algebro-geometrically
categories and functors that naturally arise in representation theory.

1.1. How do ind-coherent sheaves arise? We start the development of the
theory of ind-coherent sheaves in Chapter 4. The idea is the following:

Given a (derived) scheme X (assumed almost of finite type), the usual DG
category QCoh(X) of quasi-coherent sheaves on X can be realized as the ind-
completion of its full subcategory QCoh(X)perf of perfect objects.

The category IndCoh(X) is defined to be the ind-completion of another sub-
category of QCoh(X), namely Coh(X) that consists of objects that are cohomolog-
ically bounded (i.e., have non-zero cohomologies only in finitely many degrees) and
all of whose cohomologies are coherent as sheaves on the classical scheme underlying
X.

The first question is: why should we consider such a thing? In the next few
subsections we will try to provide an answer.

1.1.1. One motivation for the theory of ind-coherent sheaves is to have a robust
theory of Grothendieck-Serre duality. In particular, we would like to have a well
behaved exceptional inverse image functor for arbitrary maps of schemes (as well
as more general prestacks). Moreover, for the needs of representation theory, we
would like to study O-modules on algebro-geometric objects much more general
than schemes. In fact, we want to consider all prestacks (locally almost of finite
type). A particularly important class of prestacks is that of inf-schemes, a notion
that will be introduced in Volume II. The theory of ind-coherent sheaves addresses
both of these concerns.

To simplify the discussion, let X be an ind-scheme, i.e., a filtered colimit of
schemes

X = colim
i

Xi,

where the transition maps Xi

fi,jÐ→Xj are closed embeddings.

xxix

xxx INTRODUCTION

We would like to have a version of the category of O-modules on X which
is the colimit of the corresponding categories on the Xi’s, where the transition
functors are given by taking direct images with respect to the fi,j ’s. I.e., morally,
an O-module on X is a union of its submodules supported on the Xi’s.

Let us try to interpret the category of O-modules as QCoh(−) and see what
we get. If we apply the definition, we obtain

QCoh(X) ≃ lim
i

QCoh(Xi), (i→ j)↝ (QCoh(Xj)
f∗i,jÐ→ QCoh(Xi)),

i.e., our category on X is the limit of the corresponding categories on the Xi’s with
respect to pullbacks (rather than the colimit of the same categories with respect to
pushforwards).

So, the category that we seek on X is not the usual QCoh(X). Let us, however,
try something else: let us try to ‘force’ the definition as a colimit, while still using
QCoh(−) on the Xi’s as building blocks. I.e., consider the category

(1.1) colim
i

QCoh(Xi), (i→ j)↝ (QCoh(Xi)
(fi,j)∗Ð→ QCoh(Xj)).

The above gives a well-defined category, but the problem is that it may be quite
ill-behaved. Namely, one can formally rewrite the above colimit as a limit,

lim
i

QCoh(Xi), (i→ j)↝ (QCoh(Xj)
f !,QCoh
i,jÐ→ QCoh(Xi)),

where f !,QCoh
i,j is the functor right adjoint to (fi,j)∗. The problem is caused by the

potential bad behavior of the functors f !,QCoh
i,j .

1.1.2. Let us isolate the problem. Let f ∶X → Y be a closed embedding (or, more
generally, a proper map). We have the usual direct image functor

f∗ ∶ QCoh(X)→ QCoh(Y),
and it follows formally from Lurie’s Adjoint Functor Theorem that this functor
admits a right adjoint, denoted

f !,QCoh ∶ QCoh(Y)→ QCoh(X).
The trouble is, however, that the above functor f !,QCoh may be ill-behaved.

Technically, ‘ill-behaved’ means that it may fail to be continuous (i.e., preserve
colimits).

One can ask further: why is non-contuniuty a problem? The answer to this
is that the world that we would like to work in is that of DG categories that are
cocomplete, and continuous functors between them. The reason for the latter is that
in this world we have a well-defined operation of tensor product of DG categories

(1.2) C,D↝C⊗D.

I.e., this is the world in which we can really ‘do algebra’, which is exactly what
we want to do in Volume II, with a view to applications to representation theory.

In addition, it is this world in which it is most convenient to talk about duality,
which will be discussed in the sequel.

1. IND-COHERENT SHEAVES xxxi

1.1.3. Now, the obstruction to the functor f !,QCoh being continuous is that its
left adjoint, namely, f∗ does not preserve compactness, i.e., it does not necessarily
send QCoh(X)perf to QCoh(Y)perf . However, it does send Coh(X) to Coh(Y), by
virtue of properness. Therefore, the right adjoint to the corresponding functor

f IndCoh
∗ ∶ IndCoh(X)→ IndCoh(Y),

denoted

f ! ∶ IndCoh(Y)→ IndCoh(X)
is continuous.

So, replacing QCoh(−) by IndCoh(−) fixes the bug of non-continuity of f !,QCoh.

1.1.4. In particular, returning to the case of an ind-scheme X , we can define
(1.3)

IndCoh(X) ∶= colim
i

IndCoh(Xi), (i→ j)↝ (IndCoh(Xi)
(fi,j)IndCoh

∗Ð→ IndCoh(Xj)),

and thus obtain a reasonable category, which we can also write as

(1.4) lim
i

QCoh(Xi), (i→ j)↝ (IndCoh(Xj)
f !
i,jÐ→ IndCoh(Xi)),

The above category matches exactly the needs of representation theory and one
that we will use.

1.2. What does the theory of ind-coherent sheaves consist of? Let us now
take X to be a general prestack (locally almost of finite type). We would like to
define the category IndCoh(X) that reproduces the answer given above in the case
when X is an ind-scheme. However, we no longer expect that IndCoh(X) could be
written as a colimit. But we can try to approach IndCoh(X) as a limit, so that in
the case of ind-schemes, we recover (1.4).

Thus, we would like to define

(1.5) IndCoh(X) ∶= lim
Xi→X

IndCoh(Xi),

where the limit is taken over the category of all schemes (almost of finite type)
mapping to X , and where the transition functors IndCoh(Xj) → IndCoh(Xi) are
given by

(Xi

fi,j→ Xj)↝ (IndCoh(Xj)
f !
i,jÐ→ IndCoh(Xj).

But we now face a new problem: the maps fi,j are no longer closed embeddings
(or proper); they are arbitrary maps between schemes (almost of finite type). So,
we need the definition of the functor

f ! ∶ IndCoh(Y)→ IndCoh(X)

in the case of an arbitrary map X
f→ Y .

Moreover, in order for the limit (1.5) to make sense in the world of higher
categories, we need the assignment

X ↝ IndCoh(X), (X f→ Y)↝ (IndCoh(Y) f
!

→ IndCoh(X))

xxxii INTRODUCTION

be a functor from the category opposite to that of schemes almost of finite type to
that of DG categories and continuous functors:

(1.6) IndCoh!
Schaft

∶ (Schaft)op → DGCatcont .

1.2.1. The problem is that for an arbitrary map f , the functor f ! is not adjoint to
anything. However, we can factor f as a composition f1 ○ f2, where f2 is an open
embedding, and f1 is a proper morphism, and define

f ! ∶= f !
2 ○ f !

1,

where f !
1 is the right adjoint to (f1)IndCoh

∗ , and f !
2 is just restriction.

If we were to realize this idea, we would have to show that the above definition of
f ! does not depend on the factorization f as f1 ○ f2, and moreover that it upgrades
to a functor (1.6). This can be handled explicitly if our target was an ordinary
category (rather than DGCatcont), but in the world of higher categories we will
have to extract (1.6) using the (somewhat constrained) toolbox of constructions
that produce functors from already existing ones.

1.2.2. Suppose, nevertheless, that we have constructed the functor (1.6). We may
(and do) want more, however: for a schematic map between prestacks g ∶ X → Y
we want to have the direct image functor

gIndCoh
∗ ∶ IndCoh(X)→ IndCoh(Y),

determined by the requirement that for a scheme Y and a map fY ∶ Y → Y, for the
Cartesian square

X
fXÐÐÐÐ→ X

g′
×××Ö

×××Ö
g

Y
fYÐÐÐÐ→ Y,

we have an isomorphism of functors

(1.7) f !
Y ○ gIndCoh

∗ ≃ (g′)IndCoh
∗ ○ f !

X .

In order for this to happen, at the very least, we need an analogous property
for maps between schemes. I.e., we want that for a Cartesian diagram of schemes

X ′ fXÐÐÐÐ→ X

g′
×××Ö

×××Ö
g

Y ′ fYÐÐÐÐ→ Y,

there exists a canonical isomorphism of functors

(1.8) f !
Y ○ gIndCoh

∗ ≃ (g′)IndCoh
∗ ○ f !

X .

However, in order for the isomorphisms (1.8) to give rise to (1.7), the isomor-
phisms (1.8) themselves must be functorial with respect to compositions of the
maps f and g.

Such a functoriality is easy to spell out in the world of ordinary categories, but
it becomes a non-trivial problem when we are dealing with higher categories (more
precisely, when the target category, which in our case is DGCatcont, is a higher
category).

2. CORRESPONDENCES AND THE SIX FUNCTOR FORMALISM xxxiii

1.2.3. This brings us to the idea of the category of correspondences, discussed
below, and to which we devoted Part III of this volume.

In Chapter 5 we prove the existence and uniqueness of IndCoh as a functor
out of the category of correspondences. Moreover, it turns out that this extended
formalism (rather than just the functor (1.6)) is a very natural way to construct
the functor (1.6) itself.

So, the formalism of correspondences is not only needed in order to extend
IndCoh to prestacks, but a necessity for the construction of the !-pullback on
schemes.

1.3. Before we pass to the discussion of the formalism of correspondences, let us
mention the role of Chapter 6 of this volume. In that Chapter, we undertake a
systematic study of the relationship between QCoh(−) and IndCoh(−), when both
are viewed as functors

(Schaft)op → DGCatcont .

The upshot is that both have a natural symmetric monoidal structure, where
the symmetric monoidal structure on (Schaft)op is given by the Cartesian product
of schemes, and on DGCatcont by (1.2).

Moreover, there is a natural transformation between the above two functors,
denoted Υ. For an individual scheme X, the corresponding functor

ΥX ∶ QCoh(X)→ IndCoh(X),
given by tensoring the dualizing object ωX ∈ IndCoh(X) by an object of QCoh(X).

2. Correspondences and the six functor formalism

For our purposes, the main function of the category of correspondences is to
encode all of the data of Grothendieck’s six functor formalism.

Let C be an (∞,1)-category with Cartesian product, and let S be a target
(∞,1)-category. The role of the category of correspondences Corr(C) is to encode
a ‘bivarant’ functor from C to S. The example that one should keep in mind
is C = Schaft, S = DGCatcont and the functor in question is IndCoh, where we
consider both the !-pullback and *-push forward. Namely, we will see that functors
Corr(C)→ S will exactly correspond to such ‘bivariant’ functors.

The Cartesian product on the category C induces a symmetric monoidal struc-
ture on the category Corr(C). Moreover, the data of a (right-lax) symmetric
monoidal structure on a functor Φcorr ∶ Corr(C) → S, in particular induces a com-
mutative algebra structure on Φcorr(c) for every object c ∈ C. In the example
where C = Schaft, S = DGCatcont and the functor in question is IndCoh, this
gives IndCoh(X) a symmetric monoidal structure for each scheme X. Moreover,
as will be explained in Sect. 2.4, one also recovers Grothendieck-Serre duality for
IndCoh(X) from the symmetric monoidal structure on the functor from correspon-
dences.

Additionally, the (∞,2)-categorical enhancement Corr(C)2-Cat of the category
of correspondences is used to encode the various relations between the pullback
and pushforward functors as well as the tensor structure, such as the fact that
for IndCoh, the !-pullback is the right adjoint to *-pushforward for a proper map.
In this way, the (∞,2)-category of correspondences encodes the full six functor

xxxiv INTRODUCTION

formalism (the other three functors, when they exist, are adjoint to the pullback,
pushforward and tensor functors). The reader is referred to Part III, Introduction,
Sect. 2 for a general discussion of the six functor formalism and its relation to the
category of correspondences. For the time being, we will focus on the parts relevant
to IndCoh.

2.1. Why do correspondences arise? Suppose that we are given functors

Φ ∶ C→ S and Φ! ∶ Cop → S,
(not necessarily related to each other by any sort of adjunction) that agree on
objects, and for every Cartesian square

(2.1)

c′0
α0ÐÐÐÐ→ c0

β′
×××Ö

×××Ö
β

c′1
α1ÐÐÐÐ→ c1

we are given an isomorphism of maps Φ(c0)→ Φ(c′1)
Φ!(α1) ○Φ(β) ≃ Φ(β′) ○Φ!(α0).

We want to encode this data by a functor Corr(C)→ S.

2.1.1. If C is an ordinary category, it is easy to say what Corr(C) should be.
Namely, its objects are the same as those of C, but now morphisms from c0 to c1

are diagrams

(2.2)

c0,1
gÐÐÐÐ→ c0

f
×××Ö
c1,

and the compositions are given as follows: the composition of (2.2) and

c1,2 ÐÐÐÐ→ c1

×××Ö
c2,

is the diagram
c0,2 ÐÐÐÐ→ c0

×××Ö
c2,

where c0,2 = c1,2 ×
c1

c0,1.

A bivariant functor as above defines a functor out of the category Corr(C) by
setting

Φcorr(c) ∶= Φ(c) = Φ!(c)
at the level of objects, and for a morphism (2.2), the corresponding map

Φ(c0)→ Φ(c1)
is given by Φ(β) ○Φ!(α). The isomorphisms (2.1) ensure that Φcorr respects com-
positions.

2. CORRESPONDENCES AND THE SIX FUNCTOR FORMALISM xxxv

2.1.2. However, if C is a higher category, we cannot just define Corr(C) by speci-
fying the objects, morphisms and compositions. Instead, we need to invent a device
which would produce the desired (∞,1)-category from the (rather limited) list of
procedures that produce (∞,1)-categories from the existing ones. Moreover, the
(∞,1)-category Corr(C) should exactly encode what it means for the isomorphisms
(2.1) to be compatible with the compositions of vertical and horizontal morphisms.

We introduce and study such a device in Chapter 7 of this volume.

2.2. How to construct functors out of a category of correspondences?
Once the category Corr(C) is constructed, we would like to describe a mechanism
that produces functors out of it (and thereby gives rise to bi-variant functors with
all the necessary compatibilities).

2.2.1. Here is a construction, a generalization of which will be one of our basic
tools. Let us start with a functor

Φ ∶ C→ S,

where S is the (∞,1)-category 1-Cat. Suppose that for every 1-morphism c0
f→ c1

in C, the corresponding map in 1-Cat, i.e., a functor between (∞,1)-categories,

Φ(c0)→ Φ(c1),
admits a right adjoint.

Then the operation of passage to the right adjoint adjoint defines a functor

Φ! ∶ Cop → S.
Suppose now that the following condition holds: for a Cartesian diagram (2.1),

the natural transformation

Φ(β′) ○Φ!(α0)→ Φ!(α1) ○Φ(β)
that arises by adjunction from the isomorphism

Φ(α1) ○Φ(β′) ≃ Φ(β) ○Φ(α0),
is an isomorphism.

In this case we do expect that the functors (Φ,Φ!) comprise the datum of a
functor

Φcorr ∶ Corr(C)→ S.
And this turns out to indeed be the case.

Let us denote the subcategory of functors Funct(C,S) satisfying the above
properties by Funct(C,S)BC (here ‘BC’ stands either for ‘Beck-Chevalley’ or ‘base
change’). Thus, we obtain a functor

(2.3) Funct(C,S)BC → Funct(Corr(C),S), S = 1-Cat .

However, the functor (2.3) is not an equivalence, and it is not quite adequate
for our purposes, for two reasons.

2.2.2. For one thing, we would like to ‘upgrade’ (2.3) (by modifying the right-
hand side) to make it an equivalence, in order to be more robust and suitable for
applications.

But more importantly, for now, the above is just wishful thinking: we would
not even be able to construct the functor (2.3) unless we make a sharper claim.

xxxvi INTRODUCTION

2.3. The 2-categorical enhancement. To make the sought-for sharper claim,
we notice that our discussion was specific to the target (∞,1)-category being 1-Cat,
in that we used the notion of ‘adjoint’ 1-morphism.

However, this is not specific just to 1-Cat, but rather is an artifact of a richer
structure on the totality of (∞,1)-categories: namely that 1-Cat is the (∞,1)-
category underlying a canonically defined (∞,2)-category, denoted 1 -Cat.

Thus, one expects to find a construction analogous to (2.3), where S is (the
(∞,1)-category underlying) an (∞,2)-category. And such a construction is indeed
possible, and can be sharpened to an equivalence, once we understand Corr(C)
differently:

Namely, we should enhance Corr(C) itself to an (∞,2)-category, denoted Corr(C)2-Cat.

2.3.1. If C was an ordinary category, then Corr(C)2-Cat would be an ordinary
2-category, where we introduce 2-morphisms as follows:

For a morphism c0 → c1, given by (2.2), and another one, given by

c′0,1
α′ÐÐÐÐ→ c0

β′
×××Ö
c1,

the set of maps between them is that of commutative diagrams

c1.

c0c′0,1

c0,1

β

��

α
//

β′

��

α′

))
γ

��

When C is a genuine (∞,1)-category, we construct Corr(C)2-Cat using a device
that we call ‘Segal categories’.

2.3.2. Thus, in order to have an adequate theory of categories of correspondences,
one has to venture into the (so far, not so well explored) world of (∞,2)-categories.
Once we do this, we will have a naturally defined map

Funct(Corr(C)2-Cat,S)→ Funct(C,S),

whose essential image is Funct(C,S)BC, i.e., we obtain the sought-for equivalence

(2.4) Funct(C,S)BC ≃ Funct(Corr(C)2-Cat,S),

refining (2.3).

2. CORRESPONDENCES AND THE SIX FUNCTOR FORMALISM xxxvii

2.3.3. In addition to defining the (∞,1)-category Corr(C)2-Cat and also the (∞,2)-
category Corr(C)2-Cat, in Chapter 7 we prove an extension theorem, that allows
us to construct IndCoh as a functor out of the category of correspondences to
DGCatcont.

In Chapter 8 we prove two more extension theorems that allow us to extend a
functor from one category of correspondences to a larger one. These theorems will
be applied in Volume II to extending IndCoh from schemes to inf-schemes.

2.4. Correspondences and duality. The formalism of functors out of Corr(C)
is also an efficient way of encoding the idea of duality.

2.4.1. Note that the Cartesian product on C makes Corr(C) into a symmetric
monoidal category. Moreover, every object c ∈ Corr(C) is canonically self-dual.
Namely, the unit and co-unit maps are given by the diagrams

c ÐÐÐÐ→ ∗
×××Ö

c × c

and
c ÐÐÐÐ→ c × c
×××Ö
∗,

where ∗ denotes the final object of C, and c→ c × c is the diagonal map.

2.4.2. Suppose that we are given a functor

Φcorr ∶ Corr(C)→ S,

where both S and Φcorr are equipped with symmetric monoidal structures.

Then we obtain that for any c ∈ C, the corresponding object Φcorr(c) ∈ S is
canonically self-dual.

2.4.3. Applying this observation to the IndCoh functor, we will obtain that Serre
duality is a formal consequence of the existence of IndCoh as a functor out of
the category of correspondences. Namely, we obtain that for X ∈ Schaft, the DG
category IndCoh(X) is equipped with a canonical identification

(2.5) DSerre ∶ IndCoh(X) ≃ IndCoh(X)∨,

where IndCoh(X)∨ is the dual category, i.e., Functcont(IndCoh(X),Vect).

At the level of compact objects, the equivalence (2.5) gives rise to an equivalence

DSerre ∶ Coh(X)op ≃ Coh(X),

which is the usual Serre duality.

A similar reasoning leads to Verdier duality for D-modules, which will be de-
veloped in Volume II.

xxxviii INTRODUCTION

3. The appendix on (∞,2)-categories

As mentioned above, in order to establish, or even formulate, the isomorphism
(2.4), one needs to venture into the world of (∞,2)-categories.

Some of the foundations of the theory of (∞,2)-categories can be found in the
existing literature. However, the theory developed so far does quite meet our needs.
For this reason, we have decided to include an appendix consisting of Chapters 10–
12, which lays out this theory the way we would like to see it (albeit, omitting some
proofs).

3.1. Setting up the theory. We approach (∞,2)-categories by imitating the
complete Segal space approach to (∞,1)-categories.

3.1.1. Namely, we recall that the datum of an (∞,1)-category C is completely
recovered from the datum of the simplicial space Seq●(C) that sends [n] ∈ ∆ to
the space of strings of objects of C

(3.1) c0 → c1 → ...→ cn.

Thus, we obtain a functor

Seq● ∶ 1-Cat→ Spc∆op

,

which is fully faithful, and one can explicitly describe its essential image.

3.1.2. We would like to define (∞,2)-categories similarly. Namely, we wish to

define the (∞,1)-category 2-Cat as a certain full subcategory in 1-Cat∆op

. How-
ever, one immediately runs into the following dilemma: if S is an (∞,2)-category
(whatever this notion is), there are two possibilities of what the (∞,1)-category of
length n strings objects could be.

In both cases, the objects of our category are strings as in (3.1), where the
arrows are 1-morphisms. But there is a choice involved in how we define morphisms
between such objects. In one case, we ask for diagrams

(3.2) c0
//

��

c1

��z�

// ⋯ //

{�

cn−1

��

//

y�

cn

��x�
c′0 // c′1 // ⋯ // c′n−1

// c′n,

where the slanted arrows stand for 2-morphisms.

In the other case, we ask for diagrams

c0 c1

>> cn−1 cn.

>>

...
�� ��

I.e., these are the same as diagrams (3.2), but with the vertical 1-morphisms
being isomorphisms.

3. THE APPENDIX ON (∞,2)-CATEGORIES xxxix

3.1.3. What we obtain is that, whatever the (∞,1)-category 2-Cat is, it is equipped
with two functors

Seq● ∶ 2-Cat→ 1-Cat∆op

(corresponding to the second kind of 1-morphisms on n-simplices), and

Seqext
● ∶ 2-Cat→ 1-Cat∆op

,

(corresponding to the first kind of 1-morphisms on n-simplices), both of which are
supposed to be fully faithful, with an explicitly described essential image.

We take the first realization (i.e., one with Seq●) as the definition of 2-Cat,
which by [BarS] is known to be equivalent to various other notions of (∞,2)-
category that appear in the literature. We prove that the other realization (i.e.,
one with Seqext

●) has the expected properties. This done in Chapter 10 of this
volume.

In turns out that the first realization is more convenient for taking the theory
off the ground, while the second one is necessary for our treatment of adjunctions,
as described below.

3.1.4. In Chapter 11 we study some basic constructions associated with (∞,2)-
categories, namely, the straightening/unstraightening equivalence (generalizing the
familiar construction in the context of (∞,1)-categories), and the Yoneda embed-
ding.

3.2. Adjunctions. The main reason we need to develop the theory of (∞,2)-
categories is to have a theory of adjunctions, adequate for establishing the equiva-
lence (2.4).

3.2.1. Let S an (∞,2)-category. Then for a 1-morphism α ∶ s0 → s1, there is a
notion of what it means to admit a right adjoint.

If S is an ordinary category, if a right adjoint of a 1-morphism exists, it is
uniquely defined up to a canonical isomorphism. More generally, if F ∶ I → S
is a functor, and if for every arrow i0 → i1 in I, the corresponding 1-morphism
F (i0)→ F (i1) admits a right adjoint, we can canonically construct a functor

G ∶ Iop → S,

which is the same as F at the level of objects, but which at the level of morphisms
is obtained from F by replacing each F (i0) → F (i1) by its right adjoint. In this
case we will say that G is obtained from F by passing to right adjoints.

Let Funct(I,S)L be the full subcategory of Funct(I,S) consisting of those func-
tors F ∶ I → S such that for every 1-morphism i0 → i1 in I, the corresponding
1-morphism F (i0) → F (i1) admits a right adjoint. Let Funct(Iop,S)R be the cor-
responding full subcategory of Funct(Iop,S) (replace ‘right’ by ‘left’). Then the
assignment F ↦ G defines an equivalence

(3.3) Funct(I,S)L ≃ Funct(Iop,S)R.

xl INTRODUCTION

3.2.2. The same assertions – canonicity of the adjoint for an individual morphism
and the equivalence (3.3) – remain true in the context of (∞,2)-categories, but it
is a non-trivial task to formulate, and subsequently prove them.

We develop the theory of adjunctions in Chapter 12. We show that for any I
there exists an (∞,2)-category, IR, equipped with a pair of functors

I→ IR ← Iop,

such that for any target (∞,2)-category S, restrictions along the above functors
define equivalences

(3.4) Funct(I,S)R ∼← Funct(IR,S) ∼→ Funct(Iop,S)L.
Moreover, it turns out that the equivalences (3.4) are precisely suited for es-

tablishing the equivalence (2.4).

The construction of IR is based on the ‘second’ realization of 2-Cat as a full
subcategory of 1-Cat∆op

, i.e., one using the functor Seqext
● .

Part I

Preliminaries

Introduction

Why do we need these preliminaries?

0.3. None of the contents of Part I is original mathematics.

Chapter I.1 is a review of higher category theory and higher algebra, mostly
following [Lu1] and [Lu2].

Chapter I.2 is a review of the basic definitions of derived algebraic geometry (de-
rived schemes, Artin stack and general prestacks), mostly following [TV1, TV2].

Chapter I.3 is a review of the basics of quasi-coherent sheaves (there are no
deep theorems there, so one can say that it is mostly folklore).

0.4. We wish to emphasize that by no means do these chapters supply a self-
contained exposition of elements of the theory required for the rest of the book.
Our goal is rather to give the reader a concise account of the most ubiquitous
structures, in order to enable him/her to start reading the subsequent chapters.

Our hope is that once he/she gets started, he/she will gradually acquire the
ability to look up or reconstruct the necessary bits of foundational material.

1. ∞-categories and higher algebra

1.1. Let us accept the inevitable: when we talk about algebraic geometry, we
need to speak in the language of categories.

For one thing, geometric objects (such as schemes and their generalizations)
form a category. But even more importantly, the flora to be found on these geo-
metric objects (sheaves of various sorts) consists of categories: there is no way to
develop the theory of sheaves without using categories.

Since the introduction of the categorical language to the study of algebraic
geometry by Grothendieck in the 1950’s, and up until the late 2000’s, the methods
of usual (=ordinary) category theory sufficed for most purposes. People used either
the abelian category of quasi-coherent sheaves or its derived category, which is a
triangulated category.

However, there are some instances where triangulated categories are not enough.
Perhaps the main example of this is the failure of gluing: one cannot glue the de-
rived category of quasi-coherent sheaves on a scheme from just knowing it on an
open cover.

Now, the problem of inadequacy of triangulated categories becomes even more
acute in the context of derived algebraic geometry (DAG). So, having accepted the
inevitability of categories for usual algebraic geometry, we now have no choice but
accept the inevitability of ∞-categories if we want to work in DAG. This is further

3

4 INTRODUCTION

reinforced by the fact that the geometric objects themselves (derived schemes or,
more generally, prestacks) now form an ∞-category.

1.2. In Chapter 1, Sects. 1 and 2 we give a concise review of the basics of ∞-
categories.

We mostly focus on the syntax: how to use the language of ∞-categories. In
other words, the reader does not have to be familiar with a particular model for
∞-categories, be it topological categories, simplicial categories, or the model that
is now most widely used in the literature – Joyal’s quasi-categories, animated by
Lurie in [Lu0].

We introduce the key notions of Cartesian/coCartesian fibration, Yoneda, limit/colimit,
cofinality, left/right Kan extension, adjunction for functors.

1.3. In Chapter 1, Sects. 3 and 4 we give the first taste of higher algebra. We
introduce the notions of monoidal ∞-category and of associative algebra inside a
monoidal ∞-category. We also introduce the corresponding commutative notions.

We also introduce the corresponding notions of module (that is, a module cat-
egory for a given monoidal ∞-category, and the notion of module for an associative
algebra).

We then proceed to the discussion of duality. We discuss the notion of left/right
dualizability of an object in a monoidal ∞-category, and the related notion of
dualizability of left/right module over an algebra.

1.4. In Chapter 1, Sects. 5, 6, 7 we discuss the notion of stable ∞-category.

Stable ∞-categories are the higher categorical replacement of triangulated cat-
egories, i.e., this is where we really do algebra.

An operation that will play a key role in the book is that of the Lurie tensor
product of (cocomplete) stable ∞-categories, which gives the totality of the latter,

denoted, 1 -CatSt,cocmpl
cont a structure of symmetric monoidal ∞-category.

1.5. In Chapter 1, Sects. 8 and 9 we supply a framework for “really doing alge-
bra”:

We talk about (symmetric) monoidal stable ∞-categories, i.e., associative (resp.,

commutative) algebra objects in the symmetric monoidal category 1 -CatSt,cocmpl
cont .

1.6. Finally, in Chapter 1, Sect. 10 we introduce the notion of DG category, i.e.,
a differential graded category that is equipped with a linear structure over a fixed
ground field k of characteristic 0.

2. Basics of derived algebraic geometry

In Chapter 2 we begin to discuss derived algebraic geometry proper, i.e., we
introduce the ∞-category of the corresponding geometric objects.

3. QUASI-COHERENT SHEAVES 5

2.1. We start with the category of (derived)1 affine schemes over our ground field

k, denoted Schaff , which is, by definition, the category opposite to that of connective
commutative DG algebras over k.

In Chapter 2, Sect. 1 we introduce the most general class of geometric objects:
prestacks. The ∞-category of the latter is simply that of functors

(Schaff)op → Spc,

where Spc is the ∞-category of spaces (a.k.a. ∞-groupoids). I.e., a prestack is just
something that has a Grothendieck functor of points.

All other geometric objects that we will consider (schemes, Artin stacks, etc.)
will be prestacks. For example, a scheme (resp., Artin stack) will be a prestack
with certain properties (as opposed to additional pieces of structure).

In later Chapters of the book we will be interested in yet another particular
class of prestacks, namely, inf-schemes.

2.2. In Chapter 2, Sect. 2 we will introduce the descent condition with respect
to the Zariski, étale or faithully flat topology. We call prestacks that satisfy the
descent condition stacks.

We study how the descent condition interacts with the basic properties that a
prestack can possess (such as being locally of finite type).

2.3. In Chapter 2, Sect. 3 we introduce what is, arguably, the main object of
study in derived algebraic geometry: (derived) schemes.

According to what was said above, we do not introduce schemes as locally
ringed spaces. Rather, we define schemes as prestacks that satisfy a certain condi-
tion. The condition in question is that to admit an open covering by affine schemes,
and Zariski descent.

2.4. In Chapter 2, Sect. 4 we introduce the hierarchy of k-Artin stacks, k ≥ 0. We
should say that we call a k-Artin stack for a particular k may diverge from elsewhere
in the literature (for example, for us, a 0-Artin stack is a stack that is a (possibly
infinite) disjoint of affine schemes). However, the union over all k produces the
same class of objects. The advantage of our particular system of definitions is that
it makes inductive proofs of various properties of k-Artin stacks very simple.

We should also point out that from the point of view of our hierarchy of k-Artin
stacks, schemes are a red herring. They are more general than 0-Artin stacks, but
are a tiny particular case of 1-Artin stacks.

3. Quasi-coherent sheaves

In Chapter 3 we introduce what is perhaps the main object of study of cate-
gorical (derived) algebraic geometry: quasi-coherent sheaves.

1Henceforth the adjective ‘derived’ will be dropped, because everything will be derived.

6 INTRODUCTION

3.1. In Chapter 3, Sect. 1 we start with the functor

QCoh∗Schaff ∶ (Schaff)op → DGCatcont, S = Spec(A)↝ A-mod, (S′ f→ S)↝ f∗.

We apply the procedure of right Kan extension along the (Yoneda) embedding

Schaff ↪ PreStk and thus obtain a functor

QCoh∗PreStk ∶ PreStkop → DGCatcont .

Thus, for any prestack Y we have a well-defined DG category QCoh(Y) and
for a morphism f ∶ Y ′ → Y we have a pullback functor f∗ ∶ QCoh(Y)→ QCoh(Y ′).
3.2. Note, in particular, that if Z is a scheme, we obtain a category QCoh(Z).
This definition of QCoh of a scheme is equivalent to any other (reasonable) defini-
tion. However, we note that we do not approach it via first considering all sheaves
of O-modules in Zariski topology, and then passing to a subcategory. Instead, we
directly glue QCoh(Z) from affines.

A similar feature of our approach to the definition of QCoh(−) is also present
in the case of Artin stacks.

3.3. In Chapter 3, Sect. 2 we study the functor of direct image for quasi-coherent
sheaves

f∗ ∶ QCoh(Y ′)→ QCoh(Y)
for a morphism f ∶ Y ′ → Y. By definition, f∗ is the right adjoint of f∗, and it exists
for abstract reasons (the Adjoint Functor Theorem).

For a general morphism f , the functor f∗ is very badly behaved. For example, it
fails to satisfy base change. However, by imposing some additional assumptions on
f one can ensure that it is reasonable. One such assumption is that f is schematic
quasi-compact.

3.4. In Chapter 3, Sect. 3 we study the natural right lax symmetric monoidal
structure on the functor QCoh∗PreStk. Concretely, this structure amounts to (a
compatible family of) functors

QCoh(Y1)⊗QCoh(Y2)→ QCoh(Y1 ×Y2), Y1,Y2 ∈ PreStk .

We study the question of when the above functor is an equivalence.

The symmetric monoidal structure on QCoh∗PreStk induces a symmetric monoidal
structure on the category QCoh(Y) for an individual prestack Y ∈ PreStk.

We study how various properties of a prestack Y reflect in properties of QCoh(Y)
(compact generation, dualizability, rigidity).

CHAPTER 1

Some higher algebra

Introduction

This Chapter is meant to provide some background on ∞-categories and higher
algebra (the latter includes the notions of (symmetric) monoidal ∞-category, (com-
mutative) algebras in a (symmetric) monoidal ∞-category, and modules over such
algebras).

0.1. Why (∞,1)-categories? At this point in the development of mathematics
one hardly needs to make a case for ∞-categories. Nonetheless, in this subsection
we explain why they necessarily appear in this book. I.e., why we cannot remain
in the world of, say, triangulated categories (if we talk about ‘linear’ categories).

0.1.1. In fact, there are two separate (but related) reasons that force one to work
with ∞-categories, rather than triangulated ones: extrinsic and intrinsic.

The extrinsic reason has to do with the behavior of the totality of ∞/triangulated
categories, and the intrinsic reason has to do with what is going on within a given
∞/triangulated category.

We begin by discussing the extrinsic reason, which we believe is more funda-
mental.

0.1.2. The extrinsic reason has to do the with the operation of limit of a diagram
of ∞ (resp., triangulated) categories.

An example of a limit is gluing : imagine that you want to glue the ∞/triangulated
category of quasi-coherent sheaves on a scheme X from an affine cover.

Below we will explain why the above operation of gluing along an open cover
unavoidably appears in the theory that we are trying to build. However, taking
that on faith, we arrive at the necessity to work with ∞-categories: it is well-known
that triangulated categories do not glue well.

For example, given a scheme/topological space X with an action of an alge-
braic/compact group G, there is no known way to define the G-equivariant derived
category of sheaves on X while only using the derived category of sheaves as an
input: all the existing definitions appeal to constructions that take place at the
chain level.

But once we put ourselves in the context of ∞-categories, everything works
as expected. For example, given a prestack Y (i.e., an arbitrary functor from the
category of affine schemes to that of ∞-groupoids), one can define the category
Shv(Y) of sheaves on Y as the limit

lim
S,y∶S→Y

Shv(S),

7

8 1. SOME HIGHER ALGEBRA

where the limit is taken over the category of affine schemes over Y. As a tiny
particular case of this, we can take Y =X/G and recover the G-equivariant derived
category on X.

0.1.3. We now explain the intrinsic reason why one is often forced to work with
∞-categories.

It also has to do with...–suspense–...the operation of taking a limit (or colimit),
but now within our given ∞/triangulated category C.

But here, in a sense, we will not say anything new. A basic example of limit is
the operation of fiber product of objects

c1 ×
c

c2.

When working in a triangulated category, we usually want to interpret the
latter as the (shifted by [−1]) cone of the map

c1 ⊕ c2 → c,

and we arrive to the familiar problem that cones are not well-defined (or, rather,
that they do not have a functorial description).

Of course, one can say that cones exist, even though they are not canonical.
But this non-canonicity prevents one from defining more general homotopy colimits,
e.g., geometric realizations of simplicial objects, and without that, one cannot really
do algebra, of the kind that we will be doing in Volume II, Part II of this book
(operads, Lie algebras and Lie algebroids, etc.)

For example, in a monoidal triangulated category, one cannot form the tensor
product of a right module and a left module over an associative algebra.

0.2. The emergence of derived algebraic geometry and why we need
gluing. We shall first explain why derived algebraic geometry enters our game
(that is, even if, at the start, one tries to work in the world of usual schemes).

We will then see how objects of derived algebraic geometry necessitate a gluing
procedure.

0.2.1. Let us consider the pattern of base change for the derived category of quasi-
coherent sheaves. Let us be given a Cartesian diagram of (usual) schemes

X1
gXÐÐÐÐ→ X2

f1
×××Ö

×××Ö
f2

Y1
gYÐÐÐÐ→ Y2.

Then from the isomorphism of functors

(f2)∗ ○ (gX)∗ ≃ (gY)∗ ○ (f1)∗
one obtains by adjunction the natural transformation

(0.1) (gY)∗ ○ (f2)∗ → (f1)∗ ○ (gX)∗.
The base change theorem says that (0.1) is an isomorphism. The only problem

is that this theorem is false.

INTRODUCTION 9

More precisely, it is false if X1 is taken to be the fiber product Y1 ×
Y2

X2 in

the category of usual schemes: consider the case when all schemes are affine; Xi =
Spec(Ai) and Yi = Spec(Bi), and apply (0.1) to

A2 ∈ A2-mod = QCoh(X2).

We obtain the map

B1 ⊗
B2

A2 → A1,

where the tensor product is understood in the derived sense, while the right hand
side is its top (i.e., 0-th) cohomology.

To remedy this problem, we need to take A1 to be the full derived tensor
product B1 ⊗

B2

A2, so that A1 is no longer a plain commutative algebra, but what

one calls a connective commutative DG algebra. The spectrum of such a thing is,
by definition, an affine derived scheme.

0.2.2. Thus, we see that affine derived schemes are necessary if we wish to have
base change. And if we want to do algebraic geometry (i.e., consider not just affine
schemes), we need to introduce the notion of general derived scheme.

We will delay the discussion of what derived schemes actually are until Chap-
ter 2. However, whatever they are, a derived scheme X is glued from an open
cover of affine derived schemes Ui = Spec(Ai), and let us try to imagine what the
∞/triangulated category QCoh(X) of quasi-coherent sheaves on X should be.

By definition for each element of the cover we have

QCoh(Ui) = Ai-mod,

i.e., this is the category of Ai-modules. Now, whatever X is, the ∞/triangulated
category QCoh(X) should be obtained as a gluing of QCoh(Ui), i.e., as the limit
of the diagram of categories

QCoh(Ui0 ∩ ... ∩Uin), n = 0,1, ...

Thus, we run into the problem of taking the limit of a diagram of categories,
and as we said before, in order to take this limit, we should understand the above
diagram as one of ∞-categories rather than triangulated ones.

0.3. What is done in this Chapter? This Chapter (with the exception of
Sect. 9) contains no original mathematics; it is mostly a review of the foundational
works of J. Lurie, [Lu1] and [Lu2].

Thematically, it can be split into the following parts:

0.3.1. Sects. 1-2 are a review of higher category theory, i.e., the theory of (∞,1)-
categories, following [Lu1, Chapters 1-5].

In Sect. 1 we introduce the basic words of the vocabulary of (∞,1)-categories.
In Sect. 2 we discuss some of the most frequent manipulations that one performs
with (∞,1)-categories.

10 1. SOME HIGHER ALGEBRA

0.3.2. In Sects. 3-4 we review the basics of higher algebra, following [Lu2, Chapter
4].

In Sect. 3 we discuss the notions of (symmetric) monoidal (∞,1)-category, the
notion of associative/commutative algebra in a given (symmetric) monoidal (∞,1)-
category, and the notion of module over an algebra.

In Sect. 4 we discuss the pattern of duality in higher algebra.

0.3.3. In Sects. 5-7, we discuss stable (∞,1)-categories, following [Lu2, Sects.
1.1, 1.4 and 4.8] with an incursion into [Lu1, Sect. 5.4].

In Sect. 5 we introduce the notion of stable (∞,1)-category.

In Sect. 6 we discuss the operation of Lurie tensor product on cocomplete stable
(∞,1)-categories.

In Sect. 7 we discuss the notions of compactness, compact generation and ind-
completion (we do this in the context of stable categories, even though these notions
make sense more generally, see [Lu1, Sect. 5.3]).

0.3.4. In Sects. 8-10 we start discussing algebra.

In Sect. 8 we specialize the general concepts of higher algebra to the case
of stable categories. I.e., we will discuss stable (symmetric) monoidal categories,
module categories over them, duality for such, etc.

In Sect. 9 (which is the only section that contains some original mathematics)
we introduce the notion of rigid monoidal category. By a loose analogy, one can
think of rigid monoidal categories as Frobenius algebras in the world of stable
categories. These stable monoidal categories exhibit particularly strong extrinsic
finiteness properties: i.e., properties of module categories over them.

Finally, in Sect. 10 we introduce the notion of DG category. This will be the
world in which we will do algebra in the main body of this book.

0.4. What do we have to say about the theory of ∞-categories? The
theory of ∞-categories, in the form that is amenable for use by non-experts, has
been constructed by J. Lurie in [Lu1]. It is based on the model of ∞-categories as
quasi-categories (a.k.a., weak Kan simplicial sets), developed in the foundational
work of A. Joyal, [Jo].

0.4.1. The remarkable thing about this theory is that one does not really need to
know the contents of [Lu1] in order to apply it.

What Lurie’s book provides is a syntax of allowed words and sentences in the
the theory of ∞-categories, and ensures that this syntax can be realized in the
model of quasi-categories.

0.4.2. In Sect. 1 we make an attempt to summarize this syntax. However, we are
not making a mathematical assertion here: our grammar is incomplete and suffers
from circularity (e.g., we appeal to fiber products before introducing limits).

The task of actually writing down such a syntax appears to be a non-trivial
problem on its own. It seems likely, however, that in order to do that, one has to
completely disengage oneself from viewing objects of a (higher) category as a set.

INTRODUCTION 11

The latter would be desirable in any case: the simplical set underlying an ∞-
category is a phantom; indeed, we never use it for any ‘yes or no’ questions or when
we need to compute something.

0.4.3. In Sect. 2, we assume that we know how to speak the language of ∞-
categories, and we introduce some basic tools that one uses to create new ∞-
categories from existing ones, and similarly for functors.

These have to do with the operation of taking limits and colimits (within a
given ∞-category or the totality of such), and the procedure of Kan extension.

0.4.4. Our tool-kit regarding ∞-categories is far from complete.

For example, we do not define what filtered/sifted ∞-categories are.

And, quite possibly, there are multiple other pieces of terminology, common in
the theory of ∞-categories, that we use without being aware of not having intro-
duced them. Whenever this happens, the reader should go back to [Lu1], and find
the definition therein.

0.4.5. What about set theory? As is written in [Lu1, Sect. 1.2.15], one needs to
make a decision on how one treats the sizes of our categories, i.e., the distinction
between ‘large’ and ‘small’ categories.

Our policy is option (3) from loc.cit., i.e., we just ignore these issues.

One reason for this is that the mention of cardinals when stating lemmas and
theorems clutters the exposition.

Another reason is that it is very difficult to make a mistake of set-theoretic
nature, unless one makes a set-theoretic argument (which we never do).

So, we will assume that our reader will not be conflicted about cutting his/her
own hair, and live in the happy cardinal-free world.

0.5. What do we have to say about higher algebra? Nothing, in fact, beyond
what is written in [Lu2, Chapter 4]. But we need much less (e.g., we do need general
operads), so we decided to present a concise summary of things that we will actually
use.

0.5.1. We start by discussing associative and commutative structures, i.e., monoidal/symmetric
monoidal ∞-categories and associative/commutative algebras in them. In fact, it
all boils down to the notion of monoid/commutative monoid in a given ∞-category.

The remarkable thing is that it is easy to encode monoids/commutative monoids
using functors between ∞-categories. This idea originated in Segal’s foundational
work [Seg], and was implemented in the present context in [Lu2, Chapter 4].

Namely, the datum of a monoid in an ∞-category C is encoded by a functor

F ∶ ∆op →C,

that satisfies the following condition: F ([0]) = ∗, and for every n = 1,, the map

F ([n])→ Π
i=1,...,n

F ([1])

is an isomorphism, where the i-th map F ([n])→ F ([1]) corresponds to the map

[1]→ [n], 0↦ i − 1,1↦ i.

12 1. SOME HIGHER ALGEBRA

For example, the binary operation is the map

F ([2])→ F ([1])
that corresponds to the map

[1]→ [2], 0↦ 0,1↦ 2.

Similarly, the datum of a commutative monoid is encoded by a functor

F ∶ Fin∗ →C,

where Fin∗ is the category of pointed finite sets.

Once we take this point of view, the basic definitions of higher algebra roll out
quite easily. This is what is done in Sect. 3.

0.5.2. In Sect. 4 we discuss the notion of duality. It appears in several flavors: the
notion of left/right dual of an object in a monoidal ∞-category; the notion of dual
of module over an algebra; and also as the notion of adjoint functor.

It is easy to define what it means for an object to be dualizable.

However, the question of canonicity of the dual is trickier: in what sense is the
dual uniquely defined? I.e., what kind of duality datum specifies it uniquely (i.e.,
up to a contractible space of choices)?

In fact, this question can be answered precisely, but for this one needs to work
in the context of (∞,2)-categories. And we actually do this, in Chapter 12, in
the framework of discussing the notion of adjoint 1-morphism in a given (∞,2)-
category.

The upshot of loc.cit. is that the dual is canonically defined, and one can
specify (albeit not too explicitly) the data that fixes it uniquely.

0.6. Stable ∞-categories. In the main body of the book we will be doing algebra
in DG categories (over a field k of characteristic 0). There are (at least) two routes
to set this theory up.

0.6.1. One route would be to proceed directly by working with (ordinary) cate-
gories enriched over the category of complexes of vector spaces over k.

In fact, this way of approaching DG categories has been realized in [Dr]. How-
ever, one of the essential ingredients of a functioning theory is that the totality of
DG categories should itself be endowed with a structure of ∞-category (in order to
be able to take limits). But since the paper [Dr] appeared before the advent of the
language of ∞-categories, some amount of work would be needed to explain how to
organize DG categories into an ∞-category.

The situation with the operation of tensor product of DG categories is similar.
It had been developed in [FG], prior to the appearance of [Lu2]. However, this
structure had not been formulated as a symmetric monoidal ∞-category in language
that we use today.

So, instead of trying to rewrite the constructions of [Dr] and [FG] in the lan-
guage of (symmetric monoidal) ∞-categories, we decided to abandon this approach,
and access DG categories via a more robust (=automatic, tautological) approach
using the general notion of stable ∞-category and the symmetric monoidal structure
on such, developed in [Lu2].

INTRODUCTION 13

0.6.2. The definition of stable ∞-categories given in [Lu2] has the following huge
advantage: being stable is not an additional piece of structure, but a property of
an ∞-category.

As a consequence of this, we do not have to labor to express the fact that
any stable ∞-category is enriched over the ∞-category Sptr of spectra (i.e., that
mapping spaces in a stable ∞-category naturally lift to objects of Sptr): whatever
meaning we assign to this phrase, this structure is automatic from the definition
(see Sect. 0.6.5).

0.6.3. Given a stable ∞-category, one can talk about t-structures on it. We count
on the reader’s familiarity with this notion: a t-structure on a stable category is
the same as the t-structure on the associated triangulated category.

In terms of notation, given a stable ∞-category C with a t-structure, we let

C≤0 ⊂ C ⊃ C≥0

the corresponding full subcategories of connective/coconnective objects (so that
C>0 is the right orthogonal to C≤0). We let

C≤0 τ≤0←ÐC and C
τ≥0Ð→C≥0

be the corresponding right and left adjoints (i.e., the truncation functors).

We let

C♡ = C≤0 ∩C≥0

denote the heart of the t-structure; this is an abelian category.

We will also use the notation

C− = ∪
n≥0

C≤n and C+ = ∪
n≥0

C≥−n.

We will refer to C− (resp., C+) as the bounded above or eventually connective
(resp., bounded below or eventually coconnective) subcategory of C.

0.6.4. The Lurie tensor product. One of the key features of the ∞-category of stable

categories 1 -CatSt,cocmpl
cont (here we restrict objects to be cocomplete stable categories,

and morphisms to be colimit-preserving functors) is that it carries a symmetric
monoidal structure1, which we call the Lurie tensor product.

Another huge advantage of the way this theory is set up in [Lu2, Sect. 4.8] is
that the definition of this structure is automatic (=obtained by passing to appro-
priate full subcategories) from the Cartesian symmetric monoidal structure on the
∞-category 1 -Cat of all ∞-categories.

The intuitive idea behind the Lurie tensor product is this: if A and B are
associative algebras, then the tensor product of A-mod and B-mod should be (A⊗
B)-mod.

1The existence of the Lurie tensor product is yet another advantage of working with stable
∞-categories rather than triangulated ones: one cannot define the tensor product for the latter.

14 1. SOME HIGHER ALGEBRA

0.6.5. Spectra. The symmetric monoidal structure on 1 -CatSt,cocmpl
cont leads to a very

concise definition of the ∞-category Sptr of spectra. Namely, this is the unit object

in 1 -CatSt,cocmpl
cont with respect to its symmetric monoidal structure.

In particular, every (cocomplete) stable ∞-category C is automatically a mod-
ule over Sptr. Thus, for any two objects c0,c1 ∈ C, we can consider their relative
internal Hom

HomC,Sptr(c0,c1) ∈ Sptr .

This is the enrichment structure on C with respect to Sptr, mentioned earlier.

0.6.6. In Sect. 7 we study a class of cocomplete stable categories that are particu-
larly amenable to calculations: these are the compactly generated stable categories.
This material is covered by [Lu1, Sect. 5.3], and a parallel theory in the framework
of DG categories can be found in [Dr].

The main point is that a compactly generated stable category C can be obtained
as the ind-completion2 of its full subcategory Cc of compact objects. The ind-
completion procedure can be thought of as formally adjoining to Cc all filtered
colimits. However, we can also define it explicitly as the category of all exact
functors

(Cc)op → Sptr .

The advantage of compactly generated stable categories is that the data in-
volved in describing colimit-preserving functors out of them is manageable: for a
compactly generated C and an arbitrary cocomplete D we have

Functex,cont(C,D) ≃ Functex(Cc,D).

0.6.7. As in a symmetric monoidal ∞-category, given an object C ∈ 1 -CatSt,cocmpl
cont

we can ask about its dualizability.

It is a basic fact that if C is compactly generated, then it is dualizable. More-
over, its dual can be described very explicitly: it is the ind-completion of (Cc)op.

In other words, C∨ is also compactly generated and we have a canonical equiv-
alence

(0.2) (C∨)c ≃ (Cc)op.

0.6.8. Categorical meaning of Verdier duality. The equivalence (0.2) is key to the
categorical understanding of such phenomena as Verdier duality. Indeed, let X be
a scheme (of finite type), and consider the cocomplete stable ∞-category Dmod(X)
of D-modules on X.

The subcategory (Dmod(X))c consists of those objects that have finitely many
cohomologies (with respect to the usual t-structure) all of which are coherent D-
modules. Denote this subcategory by Dmod(X)coh.

The usual Verdier duality for D-modules defines a contravariant auto-equivalence

DVerdier
X ∶ (Dmod(X)coh)op ≃ Dmod(X)coh.

2Ind-completion is another operation that requires having a stable category, rather than a
triangulated one.

INTRODUCTION 15

Now, the above description of duality for compactly generated stable ∞-categories
implies that we can perceive Verdier duality as an equivalence

DVerdier
X ∶ (Dmod(X))∨ ≃ Dmod(X),

which reduces to DVerdier
X at the level of compact objects.

We also obtain a more functorial understanding of expressions such as “the
Verdier conjugate of the *-direct image is the !-direct image”. The categorical
formulation of this is the fact that for a morphism of schemes f ∶ X → Y , the
functors

fdR,∗ ∶ Dmod(X)→ Dmod(Y) and f ! ∶ Dmod(Y)→ Dmod(X)
are each other’s duals in terms of the identifications DVerdier

X and DVerdier
Y , see

Proposition 7.3.5.

0.6.9. In Sect. 8 we discuss stable monoidal ∞-categories, and algebras in them.
This consists of studying the interaction of the concepts introduced in Sect. 3 with
the Lurie tensor product.

Let us give one example. Let A be a stable monoidal ∞-category, and let M
be a stable module category over A. Let A be an algebra object in A.

On the one hand we can consider the (stable) ∞-category A-mod(M) of A-
modules in M. On the other hand, we can consider A as acting on itself on the
left, and thus consider

A-mod ∶= A-mod(A).
The action of A on itself on the right makes A-mod into a right A-module category.

Now, the claim is (this is Corollary 8.5.7) that there is a canonical equivalence

A-mod(M) ≃ A-mod⊗
A

M.

0.6.10. Rigid monoidal categories. In Sect. 9 we discuss a key technical notion of
stable rigid monoidal ∞-category.

If a stable monoidal ∞-category A is compactly generated, then being rigid is
equivalent to the combination of the following conditions:

● (i) the unit object in A is compact;
● (ii) the monoidal operation on A preserves compactness;
● (iii) every compact object of A admits a left and a right dual.

For example, the category of modules over a commutative algebra has this
property.

From the point of view of its intrinsic properties, a rigid monoidal category can
be as badly behaved as any other category. However, the ∞-category of its module
categories satisfies very strong finiteness conditions.

For example, given a rigid symmetric monoidal ∞-category A, we have:

(i) Any functor between A-module categories that is lax-compatible with A-actions,
is actually strictly compatible;

(ii) The tensor product of A-module categories is equivalent to the co-tensor prod-
uct;

16 1. SOME HIGHER ALGEBRA

(iii) An A-module category is dualizable as such if and only if it is dualizable as a
plain stable category, and the duals in both senses are isomorphic.

0.6.11. DG categories. We can now spell out our definition of DG categories:

Let Vect be the ∞-category of chain complexes of k-vector spaces. It is stable
and cocomplete, and carries a symmetric monoidal structure. We define the ∞-

category DGCatcont to be that of Vect-modules in 1 -CatSt,cocmpl
cont .

The stable monoidal category Vect is rigid (see above), and this ensures the
good behavior of DGCatcont.

1. (∞,1)-categories

In this section we make an attempt to write down a user guide to the theory
of (∞,1)-categories. In that, the present section may be regarded as a digest of
[Lu1, Chapters 1-3 and Sect. 5.2], with a view to applications (i.e., we will not
be interested in how to construct the theory of (∞,1)-categories, but, rather, what
one needs to know in order to use it).

The main difference between this section and the introductory Sect. 1 of [Lu1]
is the following. In loc.cit. it is explained how to use quasi-categories (i.e., weak
Kan simplicial sets) to capture the structures of higher category theory, the point
of departure being that Kan simplicial sets incarnate spaces.

By contrast, we take the basic concepts of (∞,1)-categories on faith, and try to
show how to use them to construct further notions. In that respect we try to stay
model independent, i.e., we try to avoid, as much as possible, referring to simplicial
sets that realize our (∞,1)-categories.

The reader familiar with [Lu1] can safely skip this section.

1.1. The basics. In most of the practical situations, when working with (∞,1)-
categories, one does not need to know what they actually are, i.e., how exactly one
defines the notion of (∞,1)-category.

What one does use is the syntax: one believes that the notion of (∞,1)-category
exists, and all one needs to know is how to use the words correctly.

Below is the summary of the few basic words of the vocabulary. However, as
was mentioned in Sect. 0.4.2, this vocabulary is flawed and incomplete. So, strictly
speaking, what follows does nothing more than introduce notation, because circu-
larity appears from the start (e.g., we talk about full subcategories and adjoints).

The reference for the material here is [Lu1, Sect. 1.2].

1.1.1. We let 1 -Cat denote the (∞,1)-category of (∞,1)-categories.

1.1.2. We let Spc denote the (∞,1)-category of spaces. We have a canonical fully
faithful embedding

Set↪ Spc,

which admits a left adjoint, denoted

S ↦ π0(S).
In particular, for any S ∈ Spc, we have a canonical map of spaces S → π0(S).
We denote by ∗ ∈ Set ⊂ Spc the point space.

1. (∞,1)-CATEGORIES 17

1.1.3. We will regard Spc as a full subcategory of 1 -Cat. In particular, we will
regard a space as an (∞,1)-category, and maps between spaces as functors between
the corresponding (∞,1)-categories.

We will refer to objects of the (∞,1)-category corresponding to a space S as
points of S.

The inclusion Spc ↪ 1 -Cat admits a right adjoint, denoted C ↦ CSpc; it is
usually referred to as ‘discarding non-invertible morphisms’.

1.1.4. For an (∞,1)-category C, and objects c0,c1 ∈ C, we denote by MapsC(c0,c1) ∈
Spc the corresponding mapping space.

1.1.5. We let 1 -Catordn denote the full subcategory of 1 -Cat formed by ordinary
categories.

This inclusion admits a left adjoint, denoted C↦Cordn. (Sometimes, Cordn is
called the homotopy category of C and denoted Ho(C).) The objects of Cordn are
the same as those of C, and we have

HomCordn(c0,c1) = π0 (MapsC(c0,c1)) .

Warning: we need to distinguish the (∞,1)-category 1 -Catordn (which is in fact a
(2,1)-category) from the ordinary category (1 -Cat)ordn = Ho(1 -Cat).
1.1.6. A map φ ∶ c0 → c1 in C (i.e., a point in MapsC(c0,c1)) is said to be an
isomorphism if the corresponding map in Cordn, i.e., the image of φ under the
projection

MapsC(c0,c1)→ π0 (MapsC(c0,c1)) = HomCordn(c0,c1),
is an isomorphism.

1.1.7. For a pair of (∞,1)-categories C and D, we denote by Funct(D,C) the
(∞,1)-category of functors D→C.

We have

Funct(∗,C) ≃ C

and

Maps1 -Cat(D,C) = (Funct(D,C))Spc.

A functor F ∶ C → D is said to be an equivalence if it is an isomorphism in
1 -Cat, i.e., if it induces an isomorphism in (1 -Cat)ordn (which implies, but is much
stronger than asking that F ordn ∶ Cordn →Dordn be an isomorphism in 1 -Catordn).

1.1.8. For a diagram of categories

C′ →C←C′′,

we can form their fiber product

C′ ×
C

C′′ ∈ 1 -Cat .

For C′ = C′′ = ∗, C = S ∈ Spc, and the maps ∗ → S ← ∗ corresponding to a
particular point s ∈ S, we will denote by Ω(S) the loop space of S with base point
s,

Ω(S) = ∗ ×
S
∗.

18 1. SOME HIGHER ALGEBRA

For (S, s) as above, the homotopy groups πi(S, s) are defined inductively by

πi(S, s) = πi−1(Ω(S)).

1.1.9. The (∞,1)-category 1 -Cat carries a canonical involutive auto-equivalence

(1.1) C↦Cop.

1.1.10. For n = 0,1, ... we let [n] denote the ordinary category 0 → 1 → ... → n.
We have [0] = ∗, this is the point-category.

We let ∆ denote the full subcategory of 1 -Catordn, spanned by the objects [n].
The category ∆ carries a canonical involutive auto-equivalence, denoted rev:

it acts as reversal on each [n], i.e.,

rev ∶ i↦ n − i.
(Note that rev acts as the identity on objects of ∆.)

1.2. Some auxiliary notions. In this subsection we introduce some terminology
and notation to be used throughout the book.

1.2.1. A functor between (∞,1)-categories F ∶ D→C is said to be fully faithful if
for for every d1,d2 ∈ D the map

MapsD(d1,d2)→MapsC(F (d1), F (d2))
is a isomorphism in Spc.

A map of spaces F ∶ S0 → S1 is said to be a monomorphism if it is fully faithful
as a functor, when S0 and S1 are regarded as (∞,1)-categories.

Concretely, F is a monomorphism if π0(F) is injective, and for every point
s0 ∈ S0, the induced map πi(S0, s0)→ πi(S1, F (s0)) is an isomorphism for all i > 0.

1.2.2. Let C be an (∞,1)-category. Then to every full subcategory C′ of Cordn

one can attach an ∞-category C′. It has the same objects as C′ and for c1,c2 ∈ C′,
we have

MapsC′(c1,c2) = MapsC(c1,c2).
We shall refer to (∞,1)-categories arising in the way as full subcategories of C.

A fully faithful functor is an equivalence onto a full subcategory.

1.2.3. A full subspace of a space S is the same as a full subcategory of S, considered
as an (∞,1)-category. Those are in bijection with subsets of π0(S).

A connected component of S is a full subspace that projects to a single point
in π0(S).
1.2.4. A functor between (∞,1)-categories F ∶ D→C is said to be 1-fully faithful
if for for every d1,d2 ∈ D the map

MapsD(d1,d2)→MapsC(F (d1), F (d2))
is a monomorphism in Spc.

If D and C are ordinary categories, a functor between them is 1-fully faithful
if and only if it induces an injection on Hom sets.

1. (∞,1)-CATEGORIES 19

1.2.5. A functor between (∞,1)-categories F ∶ D → C is said to be 1-replete
if it is 1-fully faithful, and for every d1,d2 ∈ D, the connected components of
MapsC(F (d1), F (d2)) that correspond to isomorphisms are in the image of MapsD(d1,d2).

It is not difficult to show that a functor is 1-replete if and only if it is 1-fully
faithful and DSpc →CSpc is a monomorphism.

1.2.6. Let C be an ordinary category. By a 1-full subcategory we shall mean the
category obtained by choosing a sub-class C′ of objects in C, and for every c1,c2 ∈
C′ a subset HomC′(c1,c2) ⊂ HomC(c1,c2), such that HomC′(c1,c2) contains all
isomorphisms and is closed under compositions.

Let C be an (∞,1)-category. Then to every 1-full subcategory C′ of Cordn one

can attach an (∞,1)-category C′. It has the same objects as C′. For c1,c2 ∈ C′,
we have

MapsC′(c1,c2) = MapsC(c1,c2) ×
Hom

Cordn(c1,c2)
HomC′(c1,c2).

We shall refer to (∞,1)-categories arising in the way as 1-full subcategories of C.

1.2.7. In the above situation, for any D ∈ 1 -Cat, the resulting functor

Funct(D,C′)→ Funct(D,C)
is 1-replete. I.e., if a functor D→C can be factored through C′, it can be done in
an essentially unique way.

Vice versa, if F ∶ D → C is a functor and the corresponding functor Dordn →
Cordn factors (automatically uniquely) through a functor Dordn →C′, then F gives
rise to a well-defined functor D→C′.

In the above situation, the functor D→C′ is an equivalence if and only if F is
1-replete and Dordn →C′ is an equivalence.

In particular, a 1-replete functor is an equivalence onto a uniquely defined 1-full
subcategory.

1.2.8. A functor F ∶ D → C is said to be conservative if for a morphism α ∈
MapsD(d0,d1) the fact that F (α) is an isomorphism implies that α itself is an
isomorphism.

1.3. Cartesian and coCartesian fibrations. Now that we have the basic words
of the vocabulary, we want to take the theory of (∞,1)-categories off the ground.
Here are two basic things that one would want to do:

(1) For an (∞,1)-category C, define the Yoneda functor C ×Cop → Spc.

(2) For a functor F ∶ D→C we would like to talk about its left or right adjoint.

It turns out that this is much easier said than done: the usual way of going
about this in ordinary category theory uses the construction of functors by spec-
ifying what they do on objects and morphisms, something that is not allowed in
higher category theory.

To overcome this, we will use the device of straightening/unstraightening, de-
scribed in the next subsection. In order to explain it, we will first need to introduce
the key notion of Cartesian/coCartesian fibration.

The reference for the material in this subsection is [Lu1, Sect. 2.4].

20 1. SOME HIGHER ALGEBRA

1.3.1. Cartesian arrows. Let F ∶ D → C be a functor between (∞,1)-categories.

We shall say that a morphism d0
α→ d1 in D is Cartesian over C if for every d′ ∈ D,

the map

MapsD(d′,d0)→MapsD(d′,d1) ×
MapsC(F (d′),F (d1))

MapsC(F (d′), F (d0))

is an isomorphism in Spc.

1.3.2. Cartesian fibrations. A functor F ∶ D→C is said to be a Cartesian fibration
if for every morphism c0 → c1 in C and an object d1 ∈ D equipped with an
isomorphism F (d1) ≃ c1, there exists a Cartesian morphism d0 → d1 that fits into
a commutative diagram

F (d0) ÐÐÐÐ→ F (d1)

∼
×××Ö

×××Ö
∼

c0 ÐÐÐÐ→ c1.

1.3.3. Cartesian fibrations in spaces. We shall say that a functor F ∶ D → C is a
Cartesian fibration in spaces if it is a Cartesian fibration and for every c ∈ C, the
(∞,1)-category

Dc ∶= D ×
C
{c}

is a space.

An alternative terminology for ‘Cartesian fibration in spaces’ is right fibration,
see [Lu1, Sect. 2.1].

1.3.4. CoCartesian counterparts. Inverting the arrows, one obtains the parallel no-
tions of coCartesian morphism, coCartesian fibrations and coCartesian fibrations
in spaces (a.k.a. left fibration).

1.3.5. Over- and under-categories. Given a functor F ∶ I → C consider the corre-
sponding over-category and under-category

C/F ∶= C ×
Funct(I,C)

Funct([1] × I,C) ×
Funct(I,C)

{F}

and

CF / ∶= {F} ×
Funct(I,C)

Funct([1] × I,C) ×
Funct(I,C)

C,

where the functors

Funct([1] × I,C)→ Funct(I,C),
are given by evaluation at the objects 1 and 0 in [1], respectively, and the functor

C→ Funct(I,C)
corresponds to

C ≃ Funct(∗,C)→ Funct(I,C).

For future use we mention that when I = ∗ and F is given by an object c ∈ C,
we will simply write C/c for C/F and Cc/ for C/F , respectively.

The forgetful functors

C/F →C and CF / →C

are a Cartesian and a coCartesian fibrations in spaces, respectively.

1. (∞,1)-CATEGORIES 21

1.3.6. Note that we have the following canonical isomorphism of spaces: for c0,c1 ∈
C

(1.2) Funct([1],C) ×
C×C

{c0,c1} ≃ MapsC(c0,c1),

where the left-hand side, although defined to be an (∞,1)-category, is actually a
space.

In particular, for c,c′ ∈ C, we have

(C/c)c′ ≃ MapsC(c′,c) and (Cc/)c′ ≃ MapsC(c,c′).

(we remind that the superscript c′ means taking the fiber over c′).

Taking C = 1 -Cat, from (1.2) we obtain

(1.3) Funct([1],1 -Cat) ×
1 -Cat×1 -Cat

{C0,C1} ≃ (Funct(C0,C1))Spc.

1.3.7. For future reference we introduce the following notation. For a functor
F ∶ [1]→C that sends 0↦ c0 and 1↦ c1 we we will denote by

Cc0/ /c1

the fiber product

Funct([2],C) ×
Funct([1],C)

∗,

where ∗→ Funct([1],C) corresponds to the initial functor F , and Funct([2],C)→
Funct([1],C) is given by precomposition with

[1]→ [2], 0↦ 0, 1↦ 2.

This is the (∞,1)-category, whose objects are diagrams

c0 → c→ c1,

where the composition is the map c0 → c1, specified by F .

1.4. Straightening/unstraightening. Straightening, also known as the Grothendieck
construction, is the higher-categorical counterpart to the fact that the datum of a
Cartesian (resp., coCartesian) fibration of ordinary categories D→C is equivalent
to the datum of a functor from Cop (resp., C) to the category of categories.

It is hard to overestimate the importance of this assertion in higher category
theory: it paves a way to constructing functors C→ 1 -Cat.

The reason being that it is usually easier to exhibit a functor D→C and then
check its property of being a Cartesian/coCartesian fibration, than to construct a
functor C→ 1 -Cat.

22 1. SOME HIGHER ALGEBRA

1.4.1. Fix an (∞,1)-category C. Consider the category

1 -Cat/C .

Note that its objects are pairs (D;D
F→C).

Let coCart/C (resp., 0 -coCart/C) be the full subcategory of 1 -Cat/C whose
objects are those (D, F), for which F is a coCartesian fibration (resp., coCartesian
fibration in spaces).

Let (coCart/C)strict be the 1-full subcategory of coCart/C, where we allow as
1-morphisms those functors D1 → D2 over C that send coCartesian arrows to
coCartesian arrows. We note that the inclusion

(coCart/C)strict ∩ 0 -coCart/C ↪ 0 -coCart/C

is an equivalence.

1.4.2. Straightening/unstraightening for coCartesian fibrations. The following is
the basic feature of coCartesian fibrations (see [Lu1, Sect. 3.2]):

There is a canonical equivalence between (coCart/C)strict and Funct(C,1 -Cat).

Under the above equivalence, the full subcategory

0 -coCart/C ⊂ (coCart/C)strict

corresponds to the full subcategory

Funct(C,Spc) ⊂ Funct(C,1 -Cat).

1.4.3. Explicitly, for a coCartesian fibration D→C, the value of the corresponding
functor C→ 1 -Cat on c ∈ C equals the fiber Dc of D over c.

Vice versa, given a functor

Φ ∶ C→ 1 -Cat, c↦ Φ(c), (c0
f→ c1)↦ Φ(c0)

ΦfÐ→ Φ(c1),

the objects of the corresponding coCartesian fibration D → C are pairs (c ∈ C,d ∈
Φ(c)), and morphisms

MapsD((c0,d0 ∈ Φ(c0)), (c1,d1 ∈ Φ(c1)))

are pairs consisting of f ∈ MapsC(c0,c1) and g ∈ MapsΦ(c1)(Φf(d0),d1).

1.4.4. One defines the (∞,1)-categories

0 -Cart/C ⊂ (Cart/C)strict ⊂ Cart/C ⊂ 1 -Cat/C

in a similar way.

Note that the involution (1.1) defines an equivalence 1 -Cat/C → 1 -Cat/Cop that
identifies

0 -coCart/C ≃ 0 -Cart/Cop , (coCart/C)strict ≃ (Cart/Cop)strict and coCart/C ≃ Cart/Cop .

1. (∞,1)-CATEGORIES 23

1.4.5. Straightening/unstraightening for Cartesian fibrations. From Sect. 1.4.2, and
using the involution (1.1) on 1 -Cat, one obtains:

There is a canonical equivalence between (Cart/C)strict and Funct(Cop,1 -Cat).

Under the above equivalence, the full subcategory

0 -Cart/C ⊂ (Cart/C)strict

corresponds to the full subcategory

Funct(Cop,Spc) ⊂ Funct(Cop,1 -Cat).

Explicitly, for a Cartesian fibration D → C, the value of the corresponding
functor

Cop → 1 -Cat

on c ∈ C still equals the fiber Dc of D over c.

1.5. Yoneda. In this subsection we will illustrate how one uses straightening/unstraightening
by constructing the various incarnations of the Yoneda functor.

1.5.1. For an (∞,1)-category C, consider the (∞,1)-category Funct([1],C), equipped
with the functor

(1.4) Funct([1],C)→ Funct(∗,C) × Funct(∗,C) ≃ C ×C,

given by evaluation on 0,1 ∈ [1].
We can view the above functor as a morphism in the category (Cart/C)strict

with respect to the projection on the first factor.

1.5.2. Applying straightening, the above morphism gives rise to a morphism in
the (∞,1)-category Funct(Cop,1 -Cat) from the functor

c↦Cc/

to the functor with constant value C ∈ 1 -Cat.

1.5.3. For any triple of (∞,1)-categories we have a canonical isomorphism

Funct(E,Funct(E′,D)) ≃ Funct(E ×E′,D) ≃ Funct(E′,Funct(E,D)).

In particular, taking E′ = [1] and a fixed F ∶ E → D and d ∈ D, using (1.2),
we obtain that the datum of a morphism in Funct(E,D) from F to the constant
functor with value d is equivalent to the datum of a map

E→D/d,

whose composition with the projection D/d →D, is identified with F .

1.5.4. Thus (taking E = Cop and D = 1 -Cat), we can view the datum of the
morphism in Sect. 1.5.2 as a functor from Cop to 1 -Cat/C.

It is easy to check that the latter functor factors through

0 -coCart/C ⊂ 1 -Cat/C .

1.5.5. Applying straightening again, we thus obtain a functor

Cop → Funct(C,Spc),
hence a functor

YonC ∶ Cop ×C→ Spc.

24 1. SOME HIGHER ALGEBRA

1.6. Enhanced version of straightening/unstraightening. In this subsection
we will discuss a version of the straightening/unstraightening equivalence that takes
into account functoriality in the base (∞,1)-category C.

1.6.1. Consider the (∞,1)-category Funct([1],1 -Cat). Note that its objects are
triples

D
F→C.

Let

FunctcoCart([1],1 -Cat) ⊂ Funct([1],1 -Cat)

be the full subcategory whose objects are those D
F→C that are coCartesian fibra-

tions.

Let

FunctcoCart([1],1 -Cat)strict ⊂ FunctcoCart([1],1 -Cat)
be the 1-full subcategory, where we only allow as morphisms those commutative
diagrams

D1
GDÐÐÐÐ→ D2

F1

×××Ö
×××Ö
F2

C1
GCÐÐÐÐ→ C2

for which the functor GD sends morphisms in D1 coCartesian over C1 to morphisms
in D2 coCartesian over C2.

Evaluation on 1 ∈ [1] defines a functor

(1.5) FunctcoCart([1],1 -Cat)strict → 1 -Cat .

The functor (1.5) is a Cartesian fibration.

1.6.2. An enhanced version of the straightening/unstraightening equivalence says:

The functor 1 -Catop → 1 -Cat corresponding to the Cartesian fibration (1.5) is
canonically isomorphic to the functor

C↦ Funct(C,1 -Cat).

1.6.3. Again, by applying the involution D ↦ Dop, we obtain a counterpart of
Sect. 1.6.2 for Cartesian fibrations:

The functor 1 -Catop → 1 -Cat corresponding to the Cartesian fibration

FunctCart([1],1 -Cat)strict → 1 -Cat

is canonically isomorphic to the functor

C↦ Funct(Cop,1 -Cat).

1. (∞,1)-CATEGORIES 25

1.7. Adjoint functors. In this subsection we will finally introduce the notion of
adjoint functor, following [Lu1, Sect. 5.2.1].

However, this will not be the end of the story. We will not describe the datum
of an adjunction as pair of a unit map and a co-unit map that satisfy some natural
conditions (because in the context of higher categories, there is an infinite tail of
these conditions).

We will return to the latter approach to adjunction in Sect. 4.4, and more
fundamentally in Chapter 12: it turns out that it is most naturally described in the
context of (∞,2)-categories.

1.7.1. Let F ∶ C0 → C1 be a functor. Using (1.3), we can view F as a functor
[1]→ 1 -Cat. We now apply unstraightening and regard it as a coCartesian fibration

(1.6) C̃→ [1].

We shall say that F admits a right adjoint if the above functor (1.6) is a bi-
Cartesian fibration, i.e., if it happens to be a Cartesian fibration, in addition to
being a coCartesian one.

In this case, viewing (1.6) as a Cartesian fibration and applying straightening,
we transform (1.6) into to a functor

(1.7) [1]op → 1 -Cat .

The resulting functor C1 → C0 (obtained by applying the equivalence (1.3) to
the functor (1.7)) is called the right adjoint of F , and denoted FR. By construction,
FR is uniquely determined by F .

1.7.2. Inverting the arrows, we obtain the notion of a functor G ∶ D0 → D1,
admitting a left adjoint. We denote the left adjoint of G by GL.

By construction, the data of realizing G as a right adjoint of F is equivalent to
the data of realizing F as a left adjoint of G: both are encoded by a bi-Cartesian
fibration

E→ [1].

By construction, for c0 ∈ C0 and c1 ∈ C1 we have a canonical isomorphism in
Spc

MapsC0
(c0, F

R(c1)) ≃ MapsC1
(F (c0),c1).

1.7.3. Let us be in the situation Sect. 1.7.1, but without assuming that (1.6) is bi-
Cartesian. Let C′

1 ⊂ C1 be the full subcategory consisting of those objects c1 ∈ C1,
for which there exists a Cartesian morphism

c0 → c1

in C̃, covering the morphism 0→ 1 in [1].
Let C̃′ ⊂ C̃ be the corresponding full subcategory of C̃, so that

C̃′
0 = C0 and C̃′

1 = C′
1.

The functor
C̃′ → [1]

is now a Cartesian fibration. Applying straightening, we obtain a functor F ′R ∶
C′

1 →C0.

26 1. SOME HIGHER ALGEBRA

1.7.4. We will refer to F ′R as the partially defined right adjoint of F . By con-
struction, we have a canonical isomorphism

MapsC1
(F (c0),c1) ≃ MapsC0

(c0, F
′R(c1)), c0 ∈ C0, c1 ∈ C′

1.

The original functor F admits a right adjoint if and only if C′
1 = C1.

1.7.5. Inverting the arrows, in a similar way we define the notion of partially
defined left adjoint of F .

2. Basic operations with (∞,1)-categories

In this section we will assume that we ‘know’ what (∞,1)-categories are, as
well as the basic rules of the syntax of operating with them. I.e., we know the
‘theory’, but what we need now is ‘practice’.

Here are some of the primary practical questions that one needs to address:

(Q1) How do we produce ‘new’ (∞,1)-categories?

(Q2) How do we construct functors between two given (∞,1)-categories?

Of course, there are some cheap answers: for (Q1) take a full subcategory of
an existing (∞,1)-category; for (Q2) compose two existing functors, or pass to the
adjoint of a given functor. But in this way, we will not get very far.

Here are, however, some additional powerful tools:

(A1) Start a diagram of existing ones and take its limit.

(A2) Start with a given functor, and apply the procedure of Kan extension.

These answers entail the next question: how to we calculate limits when we
need to?

This circle of ideas is the subject of the present section. The material here can
be viewed as a user guide to (some parts of) [Lu1, Chapter 4 and Sect. 5.5].

2.1. Left and right Kan extensions. Let us say that at this point we have
convinced ourselves that we should work with (∞,1)-categories. But here comes a
question: how do we ever construct functors between two given (∞,1)-categories?

The difficulty is that, unlike ordinary categories, we cannot simply specify what
a functor does on objects and morphisms: we would need to specify an infinite tail
of compatibilities for multi-fold compositions. (Rigorously, we would have to go
to the model of (∞,1)-categories given by quasi-categories, and specify a map of
the underlying simplicial sets, which, of course, no one wants to do in a practical
situation.)

Here to our rescue comes the operation Kan extension: given a functor Φ ∶ D→
E and a functor F ∶ D → C, we can (sometimes) canonically construct a functor
from C→ E.

A particular case of this operation leads to the notion of limit/colimit of a
functor D → E (we can think of such a functor as a diagram of objects in E,
parameterized by D).

By taking E to be 1 -Cat, we arrive to the notion of limit of (∞,1)-categories,
which in itself is a key tool of constructing (∞,1)-categories.

2. BASIC OPERATIONS WITH (∞,1)-CATEGORIES 27

The reference for this material is [Lu1, Sect. 4.3].

2.1.1. Let F ∶ D → C be a functor between (∞,1)-categories. For a (target)
(∞,1)-category E, consider the functor

Funct(C,E)↦ Funct(D,E),

given by restriction along F (i.e., composition with F).

Its partially defined left (resp., right) adjoint is called the functor of left (resp.,
right) Kan extension along F , and denoted LKEF (resp., RKEF).

2.1.2. If C = ∗, the corresponding left and right Kan extension functors are the
functors of colimit (resp., limit):

colim
D

∶ Funct(D,E)→ E and lim
D

∶ Funct(D,E)→ E.

We record the following piece of terminology: colimits over the category ∆op are
called geometric realizations, and limits over the category ∆ are called totalizations.

2.1.3. In general, for Φ ∶ D→ E, suppose that for every given c ∈ C, the colimit

(2.1) colim
D×

C
C/c

Φ

exists. Then LKEF (Φ) exists and (2.1) calculates its value on c.

Similarly, suppose that for every given c, the limit

(2.2) lim
D×

C
Cc/

Φ,

exists. Then RKEF (Φ) exists and (2.2) calculates its value on c.

2.1.4. Note that by transitivity,

colim
D

Φ ≃ colim
C

LKEF (Φ)

and

lim
D

Φ ≃ lim
C

RKEF (Φ).

2.1.5. To an (∞,1)-category C one attaches the space

(2.3) ∣C∣ ∶= colim
C

∗,

where ∗ is the functor C→ Spc with constant value ∗.

The assignment

C↦ ∣C∣
is the functor left adjoint to the inclusion Spc ↪ 1 -Cat. This procedure is usually
referred to as inverting all morphisms. In particular, for S ∈ Spc ⊂ 1 -Cat, we have
a canonical isomorphism in Spc

∣S ∣ ≃ S.

An (∞,1)-category C is said to be contractible if ∣C∣ is isomorphic to ∗.

28 1. SOME HIGHER ALGEBRA

2.1.6. Let C be an (∞,1)-category and let Φ ∶ C → Spc be a functor. Then it
follows from Sect. 1.4.2 that there is a canonical equivalence

colim
C

Φ ≃ ∣C̃Φ∣,

where C̃Φ →C is the coCartesian fibration corresponding to Φ.

2.1.7. Here is a typical application of the procedure of left Kan extension:

Let C be an arbitrary (∞,1)-category that contains colimits. We have:

Lemma 2.1.8. Restriction and left Kan extension along ∗ ↪ Spc define an
equivalence between the subcategory of Funct(Spc,C) consisting of colimit-preserving
functors and Funct(∗,C) ≃ C.

We note that the inverse functor in Lemma 2.1.8 is explicitly given as follows:
it sends c ∈ C to the functor Spc→C, given by

(S ∈ Spc)↦ (colim
S

cS ∈ C),

where cS denotes the constant functor S → C with value c, where S is considered
as an (∞,1)-category.

2.2. Cofinality. Many of the actual calculations that one performs in higher cat-
egory theory amount to calculating limits and colimits. How does one ever do
this?

A key tool here is the notion of cofinality that allows to replace the limit/colimit
over a given index (∞,1)-category, by the limit/colimit over another one, which is
potentially simpler.

Iterating this procedure, one eventually arrives to a limit/colimit that can be
evaluated ‘by hand’. Sometimes, at the end our limit/colimit will be given just by
evaluation (or a manageable fiber product/push-out). Sometimes, it will still be a
limit/colimit, but in the world of ordinary categories.

The reference for the material here is [Lu1, Sect. 4.1].

2.2.1. A functor F ∶ D→C is said to be cofinal if for any c ∈ C, the category

D ×
C

Cc/

is contractible.

We have:

Lemma 2.2.2. The following are equivalent:

(i) F ∶ D→C is cofinal;

(ii) For any Φ ∶ C→ E, the natural map

colim
D

Φ ○ F → colim
C

Φ

is an isomorphism, whenever either side is defined;

(ii’) Same as (ii), but we take E = Spc (in which case, the colimits are always
defined);

(ii”) Same as (ii’), but we only consider the Yoneda functors c↦MapsC(c0,c) for
c0 ∈ C;

2. BASIC OPERATIONS WITH (∞,1)-CATEGORIES 29

(iii) For any functor Φ ∶ Cop → E, the map

lim
Cop

Φ→ lim
Dop

Φ ○ F op

is an isomorphism, whenever either side is defined;

(iii’) Same as (iii), but we take E = Spc (in which case, the limits are always
defined);

(iv) For any Φ ∶ C → E and any functor Φ′ ∶ C → E that sends all morphisms to
isomorphisms, the map

MapsFunct(C,E)(Φ,Φ′)→MapsFunct(D,E)(Φ ○ F,Φ′ ○ F)
is an isomorphism.

2.2.3. For example, any functor that admits a left adjoint is cofinal. Indeed, in
this case, the category D ×

C
Cc/ admits an initial object, given by

c↦ F ○ FL(c).

2.2.4. Let D → C be a coCartesian fibration. We note that in this case for any
c ∈ C, the functor

Dc →D ×
C

C/c

is cofinal. Hence, we obtain that for Φ ∶ D → E, the value of LKEF (Φ) at c ∈ C is
canonically isomorphic to

colim
Dc

Φ.

I.e., instead of computing the colimit over the slice category, we can do so over
the fiber.

Similarly, if D → C is a Cartesian fibration, then for Φ ∶ D → E, the value of
RKEF (Φ) at c ∈ C is canonically isomorphic to

lim
Dc

Φ.

2.3. Contractible functors. The contents of this subsection can be skipped on
the first pass. It is included in order to address the following question that arises
naturally after introducing the notion of cofinality:

Let F ∶ D → C be a functor. For Φ,Φ′ ∈ Funct(C,E), consider the restriction
map

(2.4) MapsFunct(C,E)(Φ,Φ′)→MapsFunct(D,E)(Φ ○ F,Φ′ ○ F).

The condition that (2.4) be an isomorphism for any Φ and Φ′ that take all
morphisms to isomorphisms is equivalent to the map

∣D∣→ ∣C∣
being an isomorphism in Spc.

According to Lemma 2.2.2 the condition that (2.4) be an isomorphism for any
Φ′ that takes all morphisms to isomorphisms is equivalent to F being cofinal.

We will now formulate the condition that (2.4) be an isomorphism for all pairs
Φ, Φ′. I.e., that the restriction functor

Funct(C,E)→ Funct(D,E)

30 1. SOME HIGHER ALGEBRA

be fully faithful.

2.3.1. For c,c′ ∈ C and a morphism c
α→ c′, consider the (∞,1)-category FactorD(α):

((Cc/ ×
C

D) ×
D

(D ×
C

C/c′)) ×
MapsC(c,c′)

{α}.

I.e., this is the category, whose objects are

(d̃ ∈ D,c
β→ F (d̃) γ→ c′, γ ○ β ∼ α).

We shall say that F is contractible if for any c
α→ c′, the category FactorD(α)

is contractible.

2.3.2. We have:

Lemma 2.3.3. The following conditions are equivalent:

(i) F is contractible;

(i’) F op ∶ Dop →Cop is contractible;

(ii) For any E, the restriction functor

Funct(C,E)→ Funct(D,E)
is fully faithful;

(ii’) Same as (ii) but E = Spc;

(iii) The unit of the adjunction

Φ→ RKEF (Φ ○ F), Φ ∈ Funct(C,E)
is an isomorphism for any E and Φ;

(iii’) Same as (iii), but E = Spc;

(iv) The counit of the adjunction

LKEF (Φ ○ F)→ Φ, Φ ∈ Funct(C,E)
is an isomorphism for any E and Φ;

(iv’) Same as (iv), but E = Spc;

(iv”) Same as (iv’), but Φ are taken to be the Yoneda functors c↦MapsC(c0,c).

2.3.4. We also note:

Lemma 2.3.5. Let F ∶ D→C be a Cartesian or coCartesian fibration. Then it
is contractible if and only if it has contractible fibers.

2.4. The operation of ‘passing to adjoints’. Let

i↦Ci, i ∈ I

be an I-diagram of (∞,1)-categories. In this subsection we will discuss the proce-
dure of creating a new diagram, parameterized by Iop, that still sends i to Ci, but
replaces the transition functors by their adjoints.

This procedure generalizes the situation of Sect. 1.7.1: in the latter our index
category I was simply [1].

2. BASIC OPERATIONS WITH (∞,1)-CATEGORIES 31

2.4.1. Let

CI ∶ I→ 1 -Cat, i↦Ci, (i0
α→ i1)↦ (Ci0

FαÐ→Ci1)

be a functor, where I ∈ 1 -Cat. Let

(2.5) C̃→ I

be the coCartesian fibration corresponding to CI.

Assume that for every morphism (i0
α→ i1) ∈ I, the resulting functor Ci0

FαÐ→Ci1

admits a right adjoint. In this case the coCartesian fibration (2.5) is bi-Cartesian.

2.4.2. Viewing (2.5) as a Cartesian fibration, and applying straightening, we trans-
form (2.5) into a functor

CR
Iop ∶ Iop → 1 -Cat .

On this case, we shall say that CR
Iop is obtained from CI by passing to right

adjoints.

By construction, the value of CR
Iop on i ∈ I is still Ci. However, for a morphism

i0
α→ i1 in I, viewed as a morphism i1 → i0 in Iop, the corresponding functor

Ci1 →Ci0

is (Fα)R.

2.4.3. Similarly, by inverting the arrows, we talk about a functor

DL
Jop ∶ Jop → 1 -Cat

being obtained from a functor DJ ∶ J→ 1 -Cat by passing to left adjoints.

For J = Iop, the datum of realizing DJ as obtained from CI by passing to right
adjoints is equivalent to the datum of realizing CI as obtained from DJ by passing
to left adjoints: both are encoded by a bi-Cartesian fibration

E→ I.

2.5. Colimits in presentable (∞,1)-categories. As was mentioned in the in-
troduction, the primary reason for working with (∞,1)-categories is the fact that
the operation of limit of a diagram of (∞,1)-categories is well-behaved (as opposed
to one within the world of triangulated categories).

But here comes a problem: while limits are, by definition, adjusted to mapping
to them, how do we ever construct a functor out of an (∞,1)-category, defined as
a limit? However, quite an amazing thing happens: in a wide class of situations, a
limit in 1 -Cat happens to also be the colimit (taken in a slightly different category).

The pattern of how this happens will be described in this subsection.

32 1. SOME HIGHER ALGEBRA

2.5.1. We let 1 -CatPrs ⊂ 1 -Cat be the 1-full subcategory whose objects are pre-
sentable (∞,1)-categories contain colimits3, and where we allow as morphisms func-
tors that preserve colimits.

We have the following basic fact:

Lemma 2.5.2 ([Lu1], Proposition 5.5.3.13).

(a) The (∞,1)-category 1 -CatPrs contains limits and colimits.

(b) The inclusion functor
1 -CatPrs → 1 -Cat

preserves limits.

2.5.3. Here is a version of the Adjoint Functor Theorem:

Theorem 2.5.4 ([Lu1], Corollary 5.5.2.9).

(a) Any morphism in 1 -CatPrs, viewed as a functor between (∞,1)-categories, ad-
mits a right adjoint.

(b) If C and D are objects in 1 -CatPrs, and G ∶ D→C is a functor that preserves
limits4, then this functor admits a left adjoint, which is a morphism in 1 -CatPrs.

2.5.5. Let
CI ∶ I→ 1 -CatPrs

be a functor.

By the Adjoint Functor Theorem and Sect. 2.4.1, there exists a canonically
defined functor

CR
Iop ∶ Iop → 1 -Cat,

obtained from the composition

I
CIÐ→ 1 -CatPrs ↪ 1 -Cat

by passing to right adjoints.

2.5.6. Let C∗ denote the colimit of CI in 1 -CatPrs.

Let I′ be the category obtained from I by adjoining a final object ∗. The
functor CI canonically extents to a functor

CI′ ∶ I′ → 1 -CatPrs,

whose value on ∗ is C∗.

By the Adjoint Functor Theorem and Sect. 2.4.1, there exists a canonically
defined functor

CR
I′op ∶ I′op → 1 -Cat,

obtained from the composition

I′
CI′Ð→ 1 -CatPrs ↪ 1 -Cat

by passing to right adjoints, and whose restriction to Iop is the functor CR
Iop .

3Presentability is a technical condition of set-theoretic nature (see [Lu1, Sect. 5.5.]), which
is necessary for the Adjoint Functor Theorem to hold. However, following our conventions (see
Sect. 0.4.5), we will omit the adjective ‘presentable’ even when it should properly be there.

4One also needs to impose a condition of set-theoretic nature that G be accessible, see [Lu1,
Defn. 5.4.2.5] for what this means.

2. BASIC OPERATIONS WITH (∞,1)-CATEGORIES 33

Note that the category I′op is obtained from Iop by adjoining an initial object.

In particular, we obtain a canonically defined functor

(2.6) C∗ → lim
Iop

CR
Iop .

We have the following fundamental fact, which follows from [Lu1, Corollary
5.5.3.4]:

Proposition 2.5.7. The functor (2.6) is an equivalence.

The equivalence of Proposition 2.5.7 will be used all the time in this book. We
emphasize that it states the equivalence

colim
i∈I

Ci ≃ lim
i∈Iop

Ci,

where the colimit in the left-hand side is taken in 1 -CatPrs, and the limit in the
right-hand side is taken in 1 -Cat.

2.5.8. In the setting of Proposition 2.5.7, for i ∈ I, we will denote by insi the
tautological functor

Ci →C∗.

In terms of the identification

C∗ ≃ lim
Iop

CR
Iop ,

the functor insi is the left adjoint of the tautological evaluation functor

evi ∶ lim
Iop

CR
Iop →Ci.

Thus, we can restate Proposition 2.5.7 by saying that each of the functors evi
admits a left adjoint, and the resulting family of functors

(evi)L ∶ Ci → lim
Iop

CR
Iop

gives rise to an equivalence

colim
I

CI
∼Ð→ lim

Iop
CR

Iop ,

where the colimit in the left-hand side is taken in 1 -CatPrs.

2.6. Limits and adjoints. In this subsection we will discuss two general results
about the interaction of limits of (∞,1)-categories with adjunctions and with limits
within a given (∞,1)-category. We will use them in multiple places in the book.

2.6.1. Let

I→ 1 -Cat, i↦Ci

be a diagram of (∞,1)-categories. Set

C ∶= lim
i∈I

Ci.

Let

A→C, a↦ ca

be a functor, where A is some other index category. Consider the corresponding
functors

A→C
eviÐ→Ci, a↦ cai .

34 1. SOME HIGHER ALGEBRA

Suppose that for each i, the limit

lim
a∈A

cai =∶ ci ∈ Ci

exists. Assume also that for every 1-morphism i → j in I, the corresponding map
Fi,j(ci)→ cj happens to be an isomorphism.

We claim:

Lemma 2.6.2. Under the above circumstances, the limit

lim
a∈A

ca =∶ c ∈ C

exists and the natural maps evi(c)→ ci are isomorphisms.

2.6.3. Let now I be an (∞,1)-category of indices, and let be given a functor

I→ Funct([1],1 -Cat), i↦ (Di
ΦiÐ→Ci).

Assume that for every i, the corresponding functor Φi admits a right adjoint.
Assume also that for every map i→ j in I the natural transformation

FD
i,j ○ (Φi)R → (Φj)R ○ FC

i,j

is an isomorphism, where FD
i,j (resp., FC

i,j) denotes the transition functor Ci → Cj

(resp., Di →Dj).

Set

D ∶= lim
i∈I

Di and C ∶= lim
i∈I

Ci.

We claim:

Lemma 2.6.4. The resulting functor Φ ∶ D→C admits a right adjoint, and for
every i the natural transformation

evD
i ○ΦR → ΦRi ○ evC

i

is an isomorphism.

3. Monoidal structures

This section is meant to be a user guide to some aspects of Higher Algebra,
roughly Sects. 4.1-4.3, 4.5 and 4.7 of [Lu2].

We discuss the notion of monoidal (∞,1)-category; the notion of module over
a given monoidal category, the notion of associative algebra in a given monoidal
category, and the notion of module over an algebra in a given module category.

At the end of this section, we discuss monads and the Barr-Beck-Lurie theorem.

A reader who is familiar with [Lu2] can safely skip this section.

3.1. The notion of monoidal (∞,1)-category. In this subsection we introduce
the notion of monoidal (∞,1)-category. The idea is very simple: a monoidal (∞,1)-
category will be encoded by a functor from the category ∆op to 1 -Cat.

3. MONOIDAL STRUCTURES 35

3.1.1. Recall the category ∆, see Sect. 1.1.10.

We define a monoidal (∞,1)-category to be a functor

A⊗ ∶ ∆op → 1 -Cat,

subject to the following conditions:

● A⊗([0]) = ∗;
● For any n, the functor, given by the n-tuple of maps in ∆

(3.1) [1]→ [n], 0↦ i,1↦ i + 1, i = 0, ..., n − 1,

defines an equivalence

A⊗([n])→A⊗([1]) × ... ×A⊗([1]).

3.1.2. If A⊗ is a monoidal (∞,1)-category, we shall denote by A the underlying
(∞,1)-category, i.e., A⊗([1]).

Sometimes, we will abuse the notation and say that “A is a monoidal (∞,1)-
category”. Whenever we say this we will mean that A is obtained in the above way
from a functor A⊗.

3.1.3. The map

[1]→ [2], 0↦ 0,1↦ 2

defines a functor

A ×A→A.

This functor is the monoidal operation on A, corresponding to A⊗. Unless a
confusion is likely to occur, we denote the above functor by

a1,a2 ↦ a1 ⊗ a2.

The map [1] → [0] defines a functor ∗ → A; the corresponding object is the
unit of the monoidal structure 1A ∈ A.

3.1.4. We let 1 - CatMon denote the (∞,1)-category of monoidal (∞,1)-categories,
which is by definition a full subcategory in Funct(∆op,1 -Cat).

The involution (−)op of (1.1) on 1 -Cat induces one on Funct(∆op,1 -Cat), and

the latter preserves the full subcategory 1 - CatMon. At the level of underlying
(∞,1)-categories, this involution acts as A↦Aop.

In other words, the opposite of a monoidal (∞,1)-category carries a natural
monoidal structure.

Recall the involution rev on the category ∆; see Sect. 1.1.10. This involution
also induces one on Funct(∆op,1 -Cat), and the latter preserves also preserves

1 - CatMon.

This is the operation of passing to the monoidal (∞,1)-category with the re-
versed multiplication,

A↦Arev-mult.

36 1. SOME HIGHER ALGEBRA

3.1.5. An example: endo-functors. Let C be an (∞,1)-category. We claim that
the (∞,1)-category Funct(C,C) acquires a natural monoidal structure. Indeed,
we define the functor

(3.2) Funct(C,C)⊗ ∶ ∆op → 1 -Cat

as follows: it sends [n] to

Cart/[n]op ×
1 -Cat×...×1 -Cat

{C × ... ×C},

where the functor

Cart/[n]op → Cart/∗⊔...⊔∗ ≃ 1 -Cat× . . . × 1 -Cat

is given by restriction along

(∗ ⊔ . . . ⊔ ∗) = ([n]op)Spc → [n]op.

By Chapter 10, Corollary 2.4.4, we have

Cart/[1]op ×
1 -Cat×1 -Cat

{C ×C} ≃ Funct(C,C),

and the functor (3.2) is easily seen to satisfy the conditions of Sect. 3.1.1.

Remark 3.1.6. The fact that (3.2) is well-defined as a functor follows from the
enhanced straightening procedure, see Sect. 1.6.2.

3.1.7. Unstraightening defines a fully faithful embedding

1 - CatMon ↪ (coCart/∆op)strict,

denoted

A⊗ ↦A⊗,∆op

.

Its essential image is singled out by the condition in Sect. 3.1.1.

3.2. Lax functors and associative algebras. In this subsection we introduce
the notion of associative algebra in a given monoidal (∞,1)-category.

The method by which we will do it (following [Lu2, Sect. 4.2]) will exhibit the
power of the idea of unstraightening.

3.2.1. We introduce another (∞,1)-category, denoted (1 - CatMon)right-laxnon-untl
.

It will have the same objects as 1 - CatMon, and will contain the latter as a 1-full
subcategory.

The idea of the category (1 - CatMon)right-laxnon-untl
is that we now allow functors

A0 →A1 such that the diagrams

A0 ×A0 ÐÐÐÐ→ A0

×××Ö
×××Ö

A1 ×A1 ÐÐÐÐ→ A1

no longer commute, but do so up to a natural transformation.

3. MONOIDAL STRUCTURES 37

3.2.2. Namely, we let (1 - CatMon)right-laxnon-untl
be the 1-full subcategory of coCart/∆op ,

whose objects are those lying in the essential image of 1 - CatMon, and where we
allow as morphisms functors

A⊗,∆op

0 →A⊗,∆op

1

that map morphisms in A⊗,∆op

0 that are coCartesian over morphisms in ∆op of the

form (3.1) to morphisms in A⊗,∆op

1 with the same property.

Such a functor will be called a right-lax monoidal functor.

3.2.3. Passing to the opposite categories, one obtains the notion of left-lax monoidal
functor. The next assertion follows by unwinding the definitions:

Lemma 3.2.4. Let A⊗
1 and A⊗

2 be a pair of monoidal (∞,1)-categories, and let

F ∶ A1 ⇄A2 ∶ G

be a pair of adjoint functors of the underlying plain (∞,1)-categories. Then the
datum of left-lax monoidal functor on F is equivalent to the datum of right-lax
monoidal functor on G.

3.2.5. Let ∗⊗ be the point category, equipped with a natural monoidal structure,
i.e., ∗⊗([n]) = ∗ for any n.

Given a monoidal (∞,1)-category A⊗, we define the notion of associative al-
gebra in A⊗ to be a right-lax monoidal functor

A⊗,∆
op

∶ ∆op = ∗⊗,∆
op

→A⊗,∆op

.

We denote the (∞,1)-category of associative algebras in A⊗ by AssocAlg(A)
(suppressing the ⊗ superscript). We let

oblvAssoc ∶ AssocAlg(A)→A

denote the tautological forgetful functor.

Given A⊗,∆op ∈ AssocAlg(A), we denote by A its underlying object of A, i.e.,

the value of A⊗,∆op

on the object [1] ∈ ∆op.

3.2.6. Let A be an associative algebra in A. Then we obtain, tautologically, an
associative algebra Arev-mult in Arev-mult, with the same underlying object of A as
a plain (∞,1)-category.

3.3. The symmetric(!) monoidal case. In this subsection we explain the mod-
ifications necessary in order to talk about symmetric monoidal (∞,1)-categories,
and commutative algebras inside them.

3.3.1. The definitions involving monoidal categories and associative algebras in
them can be rendered into the world of symmetric monoidal (∞,1)-categories and
commutative algebras, by replacing the category ∆op by that of finite pointed sets,
denoted Fin∗. We replace the condition in Sect. 3.1.1 by the following one:

● A⊗({∗}) = ∗;

38 1. SOME HIGHER ALGEBRA

● For any finite pointed set (∗ ∈ I) and any i ∈ I − {∗}, we have the map
(∗ ∈ I) → (∗ ∈ {∗ ∪ i}) given by i ↦ i and j ↦ ∗ for j ≠ i. We require that
the induced map

A⊗(∗ ∈ I)→ Π
i∈I−{∗}

A⊗(∗ ∈ {∗ ∪ i}).

be an equivalence.

We let 1 - CatSymMon denote the (∞,1)-category of symmetric monoidal (∞,1)-
categories.

Given A ∈ 1 - CatSymMon, we let ComAlg(A) denote the (∞,1)-category of
commutative algebras in A. We let

oblvCom ∶ Com(A)→A

denote the tautological forgetful functor.

3.3.2. Note that we have a canonically defined functor

(3.3) ∆op → Fin∗ .

At the level of objects this functor sends [n] ↦ (0 ∈ {0, ..., n}). At the level of
morphisms, it sends a non-decreasing map φ ∶ [m]→ [n] to the map ψ ∶ {0, ..., n}→
{0, ...,m} defined as follows:

For i ∈ {0, ..., n} we set ψ(i) = j if there exists (an automatically unique)
j ∈ {0, ...,m} such that φ(j − 1) < i ≤ φ(j), and φ(i) = 0 otherwise.

Using the functor (3.3) we obtain that any object of commutative nature (e.g.,
symmetric monoidal (∞,1)-category or a commutative algebra in one such) gives
rise to the corresponding associative one (monoidal (∞,1)-category or associative
algebra in one such).

3.3.3. Any (∞,1)-category C that admits Cartesian products5 has a canonically
defined (symmetric) monoidal structure. Namely, we start with the functor

(3.4) (Fin∗)op → 1 -Cat,

given by
(∗ ∈ I)↦ Funct(I,C) ×

Funct({∗},C)
{∗},

where {∗}→ Funct({∗},C) is given by the functor that maps ∗ to the final object.

Now, the condition that C admits Cartesian products implies that the functor
(3.4) satisfies the assumption of Sect. 2.4.1. Hence, we obtain a well-defined functor

(3.5) Fin∗ → 1 -Cat,

obtained from (3.4) by passing to right adjoints. It is easy to see that the functor
(3.4) satisfies the assumptions of Sect. 3.3.1, thereby giving rise to a symmetric
monoidal structure on C.

In particular, we can talk about commutative (and if we regard C just as a
monoidal category, also associative) algebras in C. These objects are called com-
mutative monoids (resp., just monoids). We denote the corresponding categories
by

ComMonoid(C) and Monoid(C),

5Including the empty Cartesian product, i.e., a final object.

3. MONOIDAL STRUCTURES 39

respectively.

Dually, if C admits coproducts, it has a coCartesian symmetric monoidal struc-
ture.

3.3.4. In particular, we can consider the (∞,1)-category 1 -Cat equipped with the
Cartesian symmetric monoidal structure.

Commutative (resp., associative) algebras in 1 -Cat with respect to the Carte-
sian structure, i.e., commutative monoids (resp., just monoids) in 1 -Cat are the
same as symmetric monoidal (resp., monoidal) (∞,1)-categories, see Chapter 9,
Sect. 1.3.3.

3.3.5. Let A be a symmetric monoidal (∞,1)-category. In this case, the (∞,1)-
category AssocAlg(A) acquires a symmetric monoidal structure, compatible with
the forgetful functor AssocAlg(A)→A, see [Lu2, Proposition 3.2.4.3 and Example
3.2.4.4].

3.3.6. Furthermore, the (∞,1)-category ComAlg(A) also acquires a symmetric
monoidal structure, and this symmetric monoidal structure equals the coCartesian
symmetric monoidal structure on ComAlg(A), see [Lu2, Proposition 3.2.4.7].

In particular, every object A ∈ ComAlg(A) has a natural structure of commu-
tative algebra in ComAlg(A), and hence also in AssocAlg(A).

3.4. Module categories. In this section we extend the definition of monoidal
(∞,1)-categories to the case of modules.

3.4.1. Let ∆+ be the 1-full subcategory of 1 -Catordn, where we allow as objects
categories of the form

[n] = (0→ 1→ ...→ n), n = 0,1, ...

and
[n]+ = (0→ 1→ ...→ n→ +), n = 0,1....

As 1-morphisms we allow:

● Arbitrary functors [n]→ [m];
● Functors [n]→ [m]+, whose essential image does not contain +;
● Functors [n]+ → [m]+ that send + to +, and such that the preimage of +

is +.

3.4.2. Given a monoidal (∞,1)-category A⊗, a module for it is a datum of exten-
sion of the functor

A⊗ ∶ ∆op → 1 -Cat,

to a functor
A+,⊗ ∶ ∆+,op → 1 -Cat,

such that the following condition holds:

● For any n ≥ 0, the functor

A+,⊗([n]+)→A⊗([n]) ×A+,⊗([0]+),
given by the morphisms

[n]→ [n]+, i↦ i and [0]+ → [n]+, 0↦ n,+↦ +,
is an equivalence.

40 1. SOME HIGHER ALGEBRA

3.4.3. We will think of the (∞,1)-category

M ∶= A+,⊗([0]+)
as the (∞,1)-category underlying the module.

Note that A+,⊗([1]+) identifies with A ×M. The map

[0]+ → [1]+, 0↦ 0,+↦ +,
defines a functor

A ×M→M,

which is the functor of action of A on M.

Unless a confusion is likely to occur, we denote the above functor by

a,m↦ a⊗m.

3.4.4. We let 1 - CatMon+ denote the (∞,1)-category of pairs of a monoidal (∞,1)-
category equipped with a module, which is a full subcategory in

Funct(∆+,op,1 -Cat).

For a fixed A⊗ ∈ 1 - CatMon, we let

A-mod ∶= 1 - CatMon+ ×
1 - CatMon

{A⊗}.

This is the (∞,1)-category of (left) A-module categories.

3.4.5. Replacing A by Arev-mult we obtain the (∞,1)-category of right A-module
categories, denoted A-modr.

If C is an (∞,1)-category with a structure of A-module category, then Cop

acquires a structure of Aop-module category.

3.4.6. Let C be an (∞,1)-category. Recall that Funct(C,C) acquires a natural
monoidal structure (see Sect. 3.1.5). The same construction as in loc.cit. shows
that C is naturally a module category for Funct(C,C).

In addition, for any D, the category Funct(D,C) (resp., Funct(C,D)) is nat-
urally a left (resp., right) module over Funct(C,C).

3.5. Modules for algebras. In this subsection we will explain that, given a
monoidal (∞,1)-category A, an A-module M and A ∈ AssocAlg(A), we can talk
about A-modules in M.

The idea is the same as that giving rise to the definition of associative algebras:
we will use unstraightening.

3.5.1. Parallel to Sect. 3.2.2, we define the (∞,1)-category (1 - CatMon+)right-laxnon-untl
.

Thus, given two pairs (A1,M1), (A2,M2) we can talk about a pair of functors

FAlg ∶ A1 →A2 and Fmod ∶ M1 →M2,

where FAlg is a right-lax monoidal functor, and Fmod is right-lax compatible with
actions.

In particular, for a fixed A, and M,N ∈ A-mod we can talk about right-lax
functors M→N of A-modules.

3. MONOIDAL STRUCTURES 41

3.5.2. Passing to opposite categories, we obtain the corresponding notion of left-
lax functor. The following is not difficult to obtain from the definitions (see also
[Lu2, Corollary 7.3.2.7]):

Lemma 3.5.3. Let A be a monoidal (∞,1)-category, and let M,N ∈ A-mod.
Let

F ∶ M⇄N ∶ G
be a pair of adjoint functors as plain (∞,1)-categories. Then the structure on F of
left-lax functor of A-modules is equivalent to the structure on G of right-lax functor
of A-modules.

3.5.4. Consider the point-object

∗+,⊗ ∈ 1 - CatMon+ .

Given A+,⊗ ∈ 1 - CatMon+ with the corresponding A,M we let AssocAlg +mod(A,M)
denote the resulting category of right-lax functors

∗+,⊗ →A+,⊗.

This is, by definition, the category of pairsA ∈ AssocAlg(A) andM ∈ A-mod(M).
The fiber of the forgetful functor

(3.6) AssocAlg +mod(A,M)→ AssocAlg(A)

over a givenA ∈ AssocAlg(A) is the category ofA-modules in M, denotedA-mod(M).

3.5.5. The forgetful functor (3.6) is a Cartesian fibration via the operation of
restricting the module structure.

If M admits geometric realizations, then the functor (3.6) is also a coCartesian
fibration via the operation of inducing the module structure.

3.5.6. Note that we have a naturally defined functor

∆+ →∆, [n]↦ [n], [n]+ ↦ [n + 1].

Restriction along this functor shows that for any A⊗ ∈ 1 - CatMon, the underly-
ing (∞,1)-category A is naturally a module for A⊗.

Thus, we can talk about the category

A-mod ∶= A-mod(A)

of A-modules in A itself.

3.5.7. For example, taking A equal to 1 -Cat with the Cartesian monoidal struc-
ture, and A being an associative algebra object in 1 -Cat, i.e., a monoidal (∞,1)-
category O, the resulting (∞,1)-category

O-mod = O-mod(1 -Cat)

is the same thing as what we denoted earlier by O-mod, i.e., this is the (∞,1)-
category of O-module categories.

42 1. SOME HIGHER ALGEBRA

3.5.8. Similarly, we obtain the (∞,1)-category A-modr of right A-modules, i.e.,

A-modr ∶= Arev-mult-mod(Arev-mult).

Tensor product on the right makes A-mod into a right A-module category, and
tensor product on the left makes A-modr into a left A-module category.

3.5.9. By a pattern similar to Sect. 3.5.6, for A ∈ AssocAlg(A), the object A ∈ A
has a natural structure of an object of A-mod (resp., A-modr).

3.6. The relative inner Hom.
3.6.1. Let A be a monoidal (∞,1)-category, and let M an A-module (∞,1)-
category.

Given two objects m0,m1 ∈ M, consider the functor

Aop → Spc, a↦MapsM(a⊗m0,m1).
If this functor is representable, we will denote the representing object by

HomA(m0,m1) ∈ A.

This is the relative inner Hom.

3.6.2. In particular we can take M = A, regarded as a module over itself. In this
case, for a0,a1 ∈ A, we obtain the notion of usual inner Hom

HomA(a0,a1) ∈ A.

3.6.3. For example, let us take A = 1 -Cat, equipped with the Cartesian monoidal
structure. Then for C0,C1 ∈ 1 -Cat, the resulting object

Hom1 -Cat(C0,C1) ∈ 1 -Cat

identifies with Funct(C0,C1).
3.6.4. Let A ∈ A be an associative algebra. Following Sect. 3.5.8, we consider the
(∞,1)-category A-modr as a (left) module category over A.

Thus, for two objects M0,M1 ∈ A-modr, it makes sense to ask about the
existence of their inner Hom as an object of A. We shall denote it by

HomA,A(M0,M1).

3.6.5. Assume now that A is symmetric monoidal, and that A is a commutative
algebra in A. In this case, for M,N ∈ A-mod, the above object

HomA,A(M,N) ∈ A

naturally acquires a structure of A-module.

3.6.6. Let A be again a monoidal (∞,1)-category, and let M be an A-module
(∞,1)-category.

Let m ∈ M be an object. Suppose that the relative inner Hom object HomA(m,m) ∈
A exists.

Then HomA(m,m) has a natural structure of associative algebra in A. This
is the unique algebra structure, for which the tautological map

HomA(m,m)⊗m→m

extends to a structure of HomA(m,m)-module on m, see [Lu2, Sect. 4.7.1].

3. MONOIDAL STRUCTURES 43

3.7. Monads and Barr-Beck-Lurie.
3.7.1. Let C be an (∞,1)-category. Recall that Funct(C,C) has a natural struc-
ture of monoidal category, and C that of Funct(C,C)-module, see Sects. 3.1.5 and
3.4.6.

By definition, a monad acting on C is an associative algebra A ∈ Funct(C,C).
3.7.2. Given a monad A, we can consider the category A-mod(C). We denote by

oblvA ∶ A-mod(C)→C

the tautological forgetful functor.

The functor oblvA admits a left adjoint, denoted

indA ∶ C→ A-mod(C).
The composite functor

oblvA ○ indA ∶ C→C

identifies with the functor

c↦ A(c),
where we view A as an endo-functor of C, see [Lu2, Corollary 4.2.4.8].

3.7.3. Recall now that for any (∞,1)-category D, the (∞,1)-category Funct(D,C)
is also a module over Funct(C,C), see Sect. 3.4.6.

One can deduce from the construction that for a given G ∈ Funct(D,C), a
structure on G of A-module, i.e., that of object in

A-mod(Funct(D,C))
is equivalent to that of factoring G as

D→ A-mod(C) oblvA→ C.

3.7.4. Let G be a functor D→C. It is easy to see that if G admits a left adjoint,
then the inner Hom object

HomFunct(C,C)(G,G) ∈ Funct(C,C)

exists and identifies with G ○GL (see [Lu2, Lemma 4.7.3.1].).

Note that according to Sect. 3.6.6,

A ∶= G ○GL ∈ Funct(C,C)
acquires a structure of associative algebra.

By the above, the functor G canonically factors as

D
Genh

Ð→ A-mod(C) oblvA→ C.

Definition 3.7.5. We shall say that G is monadic if the above functor

Genh ∶ D→ A-mod(C)
is an equivalence.

44 1. SOME HIGHER ALGEBRA

3.7.6. Here is the statement of a simplified version of the Barr-Beck-Lurie theorem
(see [Lu2, Theorem 4.7.3.5] for the general statement):

Proposition 3.7.7. Suppose that in the above situation both categories C and
D contain geometric realizations. Then the functor G is monadic provided that the
following two conditions hold:

(1) G is conservative;
(2) G preserves geometric realizations.

Proof. By assumption, the functor Genh is conservative. Hence, it suffices to
show that Genh admits a left adjoint, to be denoted F enh, and that the natural
transformation

(3.7) oblvA → oblvA ○Genh ○ F enh ≃ G ○ F enh

is an isomorphism.

It is clear that the (a priori partially defined) left adjoint F enh is defined on
objects of the form indA(c) for c ∈ C, and by transitivity F enh ○ indA = GL. The
corresponding map

(3.8) oblvA ○ indA → G ○ F enh ○ indA

is the tautological isomorphism oblvA ○ indA → G ○GL.

Now, every object of A-mod(C) can be obtained as a geometric realization of
a simplicial object, whose terms are of the form indA(c) for c ∈ C. Hence, the fact
that F enh is defined on such objects implies that it is defined on all of A-mod(C).
Given that (3.8) is an isomorphism, in order to deduce the corresponding fact for
(3.7), it suffices to show that both sides in (3.7) preserve geometric realizations.

This is clear for the right-hand side in (3.7), since G preserves geometric re-
alizations. The fact that oblvA preserves geometric realizations follows from the
fact that the functor

A⊗ − ≃ G ○GL

has this property.
�

3.7.8. Here is a typical situation in which Proposition 3.7.7 applies. Let A be a
monoidal (∞,1)-category, A ∈ Assoc(A), and M ∈ A-mod. Then the forgetful
functor

oblvA ∶ A-mod(M)→M

is monadic, and the corresponding monad on M is given by

m↦ A⊗m.

Consistently with Sect. 3.7.2, we denote the corresponding left adjoint M →
A-mod(M) by indA.

4. DUALITY 45

4. Duality

In this section we will discuss the general pattern of duality. It will apply to
the notion of dualizable object in a monoidal (∞,1)-category, dualizable module
over an algebra, and also to that of adjoint functor.

The material in this section can be viewed as a user guide to (some parts) of
[Lu2, Sects. 4.4 and 4.6].

4.1. Dualizability. In this subsection we introduce the notion of dualizability of
an object in a monoidal (∞,1)-category.

4.1.1. Let A be a monoidal (∞,1)-category. We shall say that an object a ∈ A is
right-dualizable if it is so as an object of Aordn.

I.e., a admits a right dual if there exists an object a∨,R ∈ A equipped with
1-morphisms

a⊗ a∨,R
co-unitÐ→ 1A and 1A

unitÐ→ a∨,R ⊗ a,

such that the composition

(4.1) a
id⊗unitÐ→ a⊗ a∨,R ⊗ a

co-unit⊗ idÐ→ a

projects to the identity element in π0(MapsA(a,a)), and the composition

(4.2) a∨,R
unit⊗ idÐ→ a∨,R ⊗ a⊗ a∨,R

id⊗ co-unitÐ→ a∨,R

projects to the identity element in π0(MapsA(a∨,R,a∨,R)).

Similarly, one defines the notion of being left-dualizable.

If A is symmetric monoidal, then there is no difference between being right or
left dualizable.

4.1.2. Let us be given a ∈ A that admits a right dual. Consider the corresponding
data

(4.3) (a∨,R,a⊗ a∨,R
co-unitÐ→ 1A).

We obtain that for any a′ ∈ A, the composite map

MapsA(a′,a∨,R)→MapsA(a⊗ a′,a⊗ a∨,R) co-unitÐ→ MapsA(a⊗ a′,1A).

is an isomorphism.

From here, we obtain that the data of (4.3) is uniquely defined.

Similarly, the data of

(4.4) (a∨,R,1A
unitÐ→ a∨,R ⊗ a)

is uniquely defined.

Furthermore, we can fix both (4.3) and (4.4) uniquely by choosing a path
between (4.1) with ida or a path between (4.2) with ida∨,R .

46 1. SOME HIGHER ALGEBRA

4.1.3. A convenient framework for viewing the notions of right or left dual is that
of adjunction of 1-morphisms in an (∞,2)-category, developed in Chapter 12: the
datum of a monoidal (∞,1)-category is equivalent to that of an (∞,2)-category
with a single object.

In particular, it follows from Chapter 12, Sect. 1, that given an object a ∈ A
that admits a right dual there exists a canonically defined a∨,R, equipped with the
data of (4.3) and (4.4), as well as paths connecting (4.1) with ida and (4.2) with
ida∨,R . These data are fixed uniquely by requiring that they satisfy a certain infinite
set of compatibility conditions, specified in loc.cit.

Thus, we can talk about the right dual of an object a ∈ A.

A similar discussion applies to the word ‘right’ replaced by ‘left’. By construc-
tion, the datum of making a′ the right dual of a is equivalent to the datum of
making a the left dual of a′.

4.1.4. Let Aright-dualizable (resp., Aleft-dualizable) denote the full subcategory spanned
by right (resp., left) dualizable objects. Applying Chapter 12, Corollary 1.3.6 we
obtain that dualization defines an equivalence of monoidal (∞,1)-categories

(Aright-dualizable)op ≃ (Aleft-dualizable)rev-mult.

For a morphism φ ∶ a1 → a2 we denote by φ∨,R (resp., φ∨,L) the corresponding

morphism a∨,R2 → a∨,R1 (resp., a∨,L2 → a∨,L1).

If A is symmetric monoidal we denote

Aright-dualizable =∶ Adualizable ∶= Aleft-dualizable.

For a morphism φ ∶ a1 → a2 we let φ∨ ∶ a∨2 → a∨1 denote its dual.

4.1.5. Consider A as a module over itself, and for two objects a1,a2 ∈ A recall the
notation

HomA(a1,a2) ∈ A

(see Sect. 3.6.1). I.e., this is an object of A (if it exists) such that

MapsA(a′,HomA(a1,a2)) ≃ MapsA(a′ ⊗ a1,a2).

Assume that a1 ∈ A is left dualizable. Then it is easy to see that HomA(a1,a2)
exists and we have a canonical isomorphism

HomA(a1,a2) ∶= a2 ⊗ a∨,L1 .

Lemma 4.1.6. Let A be a monoidal (∞,1)-category.

(a) Suppose that the functor MapsA(1A,−) is conservative. Then if a ∈ A is right
dualizable, then the functor a′ ↦ a′ ⊗ a commutes with limits.

(b) Let I be an index category, and suppose that the functor ⊗ ∶ A×A→A preserves
colimits in each variable indexed by I. Assume also that the functor MapsA(1A,−)
preserves colimits indexed by I. Then for any a ∈ A that is left or right dualizable,
the functor MapsA(a,−) preserves colimits indexed by I.

4. DUALITY 47

Proof. For (a), we rewrite the functor a′ ↦ a′ ⊗ a as a′ ↦ HomA(a∨,R,a′),
so it is sufficient to show that the latter functor preserves limits. Since the functor
MapsA(1A,−) commutes with limits and is conservative (by assumption), it is
enough to show that the functor

a′ ↦MapsA(1A, (HomA(a∨,R,a′)))
preserves limits. However, the latter functor is isomorphic to MapsA(a∨,R,a′).

For (b) we give a proof when a is left-dualizable. Indeed, the functor

a′ ↦MapsA(a,a′)
is the composition of the functor

a′ ↦ HomA(a,a′) ≃ a′ ⊗ aL,

followed by the functor MapsA(1A,−).
�

4.1.7. Let A be an associative algebra in A, and a ∈ A an A-module, which is
left-dualizable as a plain object of A.

In this case, the left dual a∨,L of a acquires a natural structure of right A-
module.

The corresponding action map a∨,L ⊗A→ a∨,L is explicitly given by

a∨,L ⊗A
id

a∨,L ⊗ idA ⊗unit
Ð→ a∨,L ⊗A⊗ a⊗ a∨,L → a∨,L ⊗ a⊗ a∨,L

co-unit⊗ id
a∨,LÐ→ a∨,L,

where the middle arrow is given by the action map A⊗ a→ a.

More generally, for any A-module a and a′ ∈ A for which HomA(a,a′) ∈ A
exists, the object HomA(a,a′) is naturally a right A-module.

4.2. Tensor products of modules. In this subsection we will make a digression
and discuss the operation of tensor product of modules over an associative (resp.,
commutative) algebra.

4.2.1. Assume now that A contains geometric realizations that distribute over the
monoidal operation in A. We claim that in this case there exists a canonically
defined functor

A-modr ×A-mod→A, N ,M↦ N ⊗
A
M,

see [Lu2, Sect. 4.4].

Indeed, it is uniquely defined by the following conditions:

● It preserves geometric realizations in each variable;

● It is a functor of A-bimodule categories;

● It sends

(A ×A ∈ A-modr ×A-mod)↦ (A ∈ A),
in a way compatible with the homomorphisms

A×Arev-mult → HomA×Arev-mult(A×A,A×A) and A×Arev-mult → HomA×Arev-mult(A,A).

48 1. SOME HIGHER ALGEBRA

4.2.2. Let now A be a symmetric monoidal (∞,1)-category. In this case, the
(∞,1)-category

AssocAlg +mod(A) ∶= AssocAlg +mod(A,A)
has a natural symmetric monoidal structure, so that the forgetful functor

(4.5) AssocAlg +mod(A)→ AssocAlg(A)
is symmetric monoidal, see [Lu2, Proposition 3.2.4.3].

4.2.3. Assume now that A contains geometric realizations that distribute over the
monoidal operation in A. In this case (4.5) is a coCartesian fibration.

4.2.4. Let now A be a commutative algebra in A, viewed as a commutative algebra
object in AssocAlg(A), see Sect. 3.3.6.

Combining with the above, we obtain that the (∞,1)-category A-mod acquires
a canonically defined symmetric monoidal structure (thought of as given by tensor
product over A), see [Lu2, Theorem 4.5.2.1].

4.3. Duality for modules over an algebra. In this subsection we will discuss
the notion of duality between left and right modules over a given associative algebra.

4.3.1. Let A be a monoidal (∞,1)-category, and A an associative algebra in A.
Let N and M be a right and left A-modules in A. A duality datum between N
and M is a pair of morphisms

unit ∶ 1A → N ⊗
A
M

and
co-unit ∶M⊗N → A,

the latter being a map of A⊗Arev-mult-modules, such that the composition

M id⊗unitÐ→ M⊗ (N ⊗
A
M) ≃ (M⊗N)⊗

A
M co-unit⊗ idÐ→ A⊗

A
M ≃M

projects to the identity element in π0(MapsA(M,M)), and the composition

N unit⊗ idÐ→ (N ⊗
A
M)⊗N ≃ N ⊗

A
(M⊗N) id⊗ co-unitÐ→ N ⊗

A
A ≃ N

projects to the identity element in π0(MapsA(N ,N)).
Thus, it makes sense to talk about dualizable left or right A-modules.

The discussion in Sect. 4.1.2 regarding the canonicity of the dual and the duality
data applies mutatis mutandis to the present setting.

4.3.2. Consider A-modr as a A-module category. Let M and N be a pair of
objects of A-modr. Assume that M is dualizable, and let M∨ ∈ A-mod denote its
dual. In this case, it is easy to see that the object

HomA,A(M,N) ∈ A

exists and identifies canonically with N ⊗
A
M∨.

In particular, we obtain that in the situation of Lemma 4.1.6(a), the functor

N ↦ N ⊗
A
M∨

preserves I-limits.

4. DUALITY 49

4.3.3. Assume now that A is symmetric monoidal and A is commutative. Recall
that in this case, the (∞,1)-category A-mod itself carries a symmetric monoidal
structure.

In this case, the duality datum betweenM and N in the sense of Sect. 4.3.1 is
equivalent to the duality datum between them as objects of A-mod as a symmetric
monoidal (∞,1)-category.

Furthermore, in this case, if M is dualizable, the isomorphism

HomA,A(M,N) ≃ N ⊗
A
M∨

upgrades to one in the category A-mod.

4.4. Adjoint functors, revisited. We will now make a digression and discuss
the point of view on the notion of adjoint functor parallel to that of the dual
object. (This is, of course, more than an analogy: the two are part of the same
paradigm–the notion of adjunction for 1-morphisms in an (∞,2)-category.)

The reference for the material here is [Lu1, Sect. 5.2].

4.4.1. Let

F ∶ C0 ⇄C1 ∶ G

be a pair of functors between (∞,1)-categories.

An adjunction datum between F and G is the datum of natural transformations

(4.6) unit ∶ IdC0 → G ○ F and co-unit ∶ F ○G→ IdC1 ,

such that the composition

(4.7) F
id ○unitÐ→ F ○G ○ F co-unit ○ idÐ→ F

maps to the identity element in π0(MapsFunct(C0,C1)(F,F)), and the composition

(4.8) G
unit ○ idÐ→ G ○ F ○G id ○ co-unitÐ→ F

maps to the identity element in π0(MapsFunct(C1,C0)(G,G)).

4.4.2. Given F (resp., G) that can be complemented to an adjunction datum, the
discussion in Sect. 4.1.2 applies as to the canonicity of the data of (G,unit, co-unit)
(resp., (F,unit, co-unit)).

4.4.3. Suppose that F and G are mutually adjoint in the sense of Sect. 1.7.1. Then
F and G can be canonically equipped with the adjunction datum; moreover there
exists a canonical choice for a path between (4.7) (resp., (4.8)) and the identity
endomorphism of F (resp., G).

Vice versa, a functor F (resp., G) that can be complemented to an adjunction
datum admits a right (resp., left) adjoint in the sense of Sect. 1.7.1.

50 1. SOME HIGHER ALGEBRA

5. Stable (∞,1)-categories

In this section we study the notion of stable (∞,1)-category. This is the ∞-
categorical enhancement of the notion of triangulated category.

The main point of difference between these two notions is that stable categories
are much better behaved when it comes to such operations as taking the limit of a
diagram of categories.

Related to this is the fact that given a pair of stable categories, we can form
their tensor product, discussed in the next section.

5.1. The notion of stable category. In this subsection we define the notion of
stable (∞,1)-category.

In a way parallel to abelian categories, the additive structure carried by (∞,1)-
categories is in fact not an additional piece of structure, but rather a property of
an (∞,1)-category.

The material here follows [Lu2, Sect. 1.1].

5.1.1. Let C be an (∞,1)-category. We say that C is stable if:

● It contains fiber products and push-outs6;

● The map from the initial object to the final object is an isomorphism; we
will henceforth denote it by 0;

● A diagram
c0 ÐÐÐÐ→ c1

×××Ö
×××Ö

c2 ÐÐÐÐ→ c3

is a pullback square if and only if it is a push-out square.

Clearly, C is stable if and only if Cop is.

5.1.2. Let C be a stable category. For c ∈ C we will use the short-hand notation
c[−1] and c[1] for

Ω(c) ∶= 0 ×
c

0 and Σ(c) ∶= 0 ⊔
c

0,

respectively. It follows from the axioms that the functors [1] and [−1], which are
a priori are mutually adjoint, are actually mutually inverse.

Consider the homotopy category Ho(C) of C, i.e., in our notation Cordn. Then
Cordn has a structure of triangulated category: its distinguished triangles are images
of fiber sequences

c1 → c2 → c3,

i.e.,

c1 ≃ 0 ×
c3

c2.

The map c3[−1]→ c1 comes from the tautological map

0 ⊔
c3

0→ c1 ≃ 0 ×
c3

c2.

6Including the empty ones, i.e., a final and and an initial objects.

5. STABLE (∞,1)-CATEGORIES 51

5.1.3. A functor between stable categories is said to be exact if it preserves pull-
backs (equivalently, push-outs)7.

We let 1 -CatSt denote the 1-full subcategory of 1 -Cat, whose objects are stable
categories and whose morphisms are exact functors.

It is clear that the inclusion functor

1 -CatSt → 1 -Cat

preserves limits.

5.1.4. For a pair of stable categories C and D, let

Functex(C,D)
denote the full subcategory of Funct(C,D) spanned by exact functors. We have

(Functex(C,D))Spc = Maps1 -CatSt(C,D).

The (∞,1)-category Functex(C,D) is itself stable.

5.1.5. We shall say that a stable category is cocomplete8 if it contains filtered colim-
its. This condition is equivalent to the (seemingly stronger) condition of containing
arbitrary colimits, and also to the (seemingly weaker) condition of containing direct
sums.

We let 1 -CatSt,cocmpl ⊂ 1 -CatSt be the full subcategory of 1 -CatSt spanned by
cocomplete stable categories.

5.1.6. Let C and D be a pair of cocomplete stable categories, and let F ∶ D → C
be an exact functor.

We shall say that F is continuous if it preserves filtered colimits. This condition
is equivalent to the (seemingly stronger) condition of preserving arbitrary colimits,
and also to the (seemingly weaker) condition of preserving direct sums.

We let
1 -CatSt,cocmpl

cont ⊂ 1 -CatSt,cocmpl

denote the 1-full subcategory where we restrict morphisms to continuous functors.

5.1.7. Let C and D be a pair of stable categories. Consider the stable category
Functex(C,D). If D is cocomplete, then Functex(C,D) is also cocomplete (this
follows from the definition of cocompleteness via direct sums).

Assume now that C and D are cocomplete. We let

Functex,cont(C,D) ⊂ Functex(C,D)
be the full subcategory spanned by continuous functors. We have

(Functex,cont(C,D))Spc = Maps1 -CatSt,cocmpl
cont

(C,D).

The (∞,1)-category Functex,cont(C,D) is stable and cocomplete. The inclusion

Functex,cont(C,D)↪ Functex(C,D)
is continuous.

7Including the empty one, i.e. the 0 object.
8When talking about cocomplete categories we will always assume that they are presentable.

52 1. SOME HIGHER ALGEBRA

5.1.8. Let C be any (∞,1)-category that contains coproducts. We equip C with
the coCartesian symmetric monoidal structure. Then the forgetful functor

ComAlg(C)
oblvComAlgÐ→ C

is an equivalence, see [Lu2, Corollary 2.4.3.10]. (Informally, every object c ∈ C has
a uniquely defined structure of commutative algebra, given by c ⊔ c→ c).

Let now C be stable. In this case, the coCartesian symmetric monoidal struc-
ture coincides with the Cartesian one. Hence, we obtain that the forgetful functor

(5.1) ComMonoid(C) oblvComMonoidÐ→ C

is an equivalence, where the notation ComMonoid(−) is as in Sect. 3.3.3.

Let ComGrp(C) ⊂ ComMonoid(C) be the full subcategory of group-like ob-
jects9. The following assertion is immediate (it happens at the level of the under-
lying triangulated category):

Lemma 5.1.9. For a stable category C, the inclusion ComGrp(C)↪ ComMonoid(C)
is an equivalence.

5.1.10. Let now F be a functor C → D, where C is stable and D is an (∞,1)-
category with Cartesian products. Assume that F preserves finite products. We
obtain that F canonically factors as

C→ ComGrp(D)
oblvComGrpÐ→ D,

where oblvComGrp denotes the tautological forgetful functor.

5.2. The 2-categorical structure. In the later chapters in this book (specifi-
cally, for the formalism of IndCoh as a functor out of the category of correspon-
dences), we will need to consider the (∞,2)-categorical enhancement of the totality
of stable categories.

We refer the reader to Chapter 10, Sect. 2, where the notion of (∞,2)-category
is introduced, along with the corresponding terminology.

This subsection could (and, probably, should) be skipped on the first pass.

5.2.1. The structure of (∞,1)-category on 1 -Cat naturally upgrades to a structure
of (∞,2)-category, denoted 1 -Cat, see Chapter 10, Sect. 2.4.

We let 1 -CatSt be the 1-full subcategory of 1 -Cat, where we restrict objects
to stable categories, and 1-morphisms to exact functors.

We let
1 -CatSt,cocmpl ⊂ 1 -CatSt

be the full subcategory where we restrict objects to be cocomplete stable categories.

Let
1 -CatSt,cocmpl

cont ⊂ 1 -CatSt,cocmpl

be the 1-full subcategory, where we restrict 1-morphisms to exact functors that are
continuous.

9A (commutative) monoid in an (∞,1)-category is said to be group-like, if it is is such in the
corresponding ordinary category.

5. STABLE (∞,1)-CATEGORIES 53

5.2.2. Explicitly, the (∞,2)-category 1 -Cat is defined in Chapter 10, Sect. 2.4
as follows:

The simplicial (∞,1)-category Seq●(1 -Cat) is defined so that each Seqn(1 -Cat)
is the 1-full subcategory of Cart/[n]op , where we restrict 1-morphisms to those func-
tors between (∞,1)-categories over [n]op that induce an equivalence on the fiber
over each i ∈ [n]op.

Then

Seqn(1 -CatSt,cocmpl
cont) ⊂ Seqn(1 -CatSt,cocmpl) ⊂ Seqn(1 -CatSt)

are the full subcategories of Seqn(1 -Cat) defined by the following conditions:

We take those (∞,1)-categories C equipped with a Cartesian fibration over
[n]op for which:

● In all three cases, we require that for every i = 0, ..., n, the (∞,1)-category

Ci be stable, and in the case of 1 -CatSt,cocmpl and 1 -CatSt,cocmpl
cont that

it be cocomplete;

● In all three cases, we require that for every i = 1, ..., n the corresponding

functor Ci−1 → Ci be exact, and in the case of 1 -CatSt,cocmpl
cont that it be

continuous.

5.2.3. By construction, we have:

Maps1 -CatSt,cocmpl
cont

(D,C) = Functex,cont(D,C), C,D ∈ 1 -CatSt,cocmpl
cont

and
Maps1 -CatSt,(D,C) = Functex(D,C), C,D ∈ 1 -CatSt .

5.3. Some residual 2-categorical features. The (∞,2)-categories introduced
in Sect. 5.2.1 allow to assign an intrinsic meaning to the notion of adjunction of
(various classes of) functors between (various classes of) stable categories.

We will exploit this in the present subsection.

We note, however, that, unlike Sect. 5.2, the constructions here are not esoteric,
but are of direct practical import (e.g., the notion of exact monad).

5.3.1. According to Chapter 12, Sect. 1, it makes sense to ask whether a 1-

morphism F ∶ C→D in 1 -CatSt (resp., 1 -CatSt,cocmpl, 1 -CatSt,cocmpl
cont) admits a

right adjoint 1-morphism within the corresponding (∞,2)-category.

The following results from Theorem 2.5.4(a):

Lemma 5.3.2. Let F ∶ C→D be a morphism in 1 -CatSt,cocmpl
cont .

(a) The right adjoint of F always exists as a 1-morphism in 1 -CatSt,cocmpl.

(b) The right adjoint from (a), when viewed as a functor between plain (∞,1)-
categories, is the right adjoint FR of F , when the latter is viewed also as a functor
between plain (∞,1)-categories.

(c) The right adjoint of F exists in 1 -CatSt,cocmpl
cont if and only if FR preserves

filtered colimits (equivalently, all colimits or direct sums).

(d) If a 1-morphism in 1 -CatSt,cocmpl admits a left adjoint (as a plain functor),

then this left adjoint is automatically a 1-morphism in 1 -CatSt,cocmpl
cont .

54 1. SOME HIGHER ALGEBRA

5.3.3. In particular, to any functor

CI ∶ I→ 1 -CatSt,cocmpl
cont

one can associate a functor

CR
Iop ∶ Iop → 1 -CatSt,cocmpl,

obtained by passing to right adjoints.

The following is a formal consequence of Lemma 2.5.2 and Proposition 2.5.7:

Corollary 5.3.4.

(a) The (∞,1)-category 1 -CatSt,cocmpl
cont contains limits and colimits, and the functor

1 -CatSt,cocmpl
cont → 1 -CatSt,cocmpl

preserves limits.

(b) Let CI ∶ I → 1 -CatSt,cocmpl
cont be a functor and let C∗ denote its colimit in

1 -CatSt,cocmpl
cont . Let CR

Iop ∶ Iop → 1 -CatSt,cocmpl be the functor obtained from CI

by passing to right adjoints. Then the resulting map in 1 -CatSt,cocmpl

C∗ → lim
Iop

CR
Iop

is an isomorphism.

5.3.5. Given C ∈ 1 -CatSt,cocmpl
cont we can consider the monoidal (∞,1)-category

(5.2) Maps1 -CatSt,cocmpl
cont

(C,C),

which is equipped with an action on

Maps1 -CatSt,cocmpl
cont

(D,C),

for any D ∈ 1 -CatSt,cocmpl
cont , see Chapter 9, Sect. 4.1.1 where the general paradigm

is explained.

In particular, we can talk about the (∞,1)-category of exact continuous monads
acting on C, which are by definition associative algebra objects in the monoidal
(∞,1)-category (5.2).

5.3.6. Given a monad A, we can consider the (∞,1)-category

A-mod(C)
in the sense of Sect. 3.7.2.

The category A-mod(C) is itself an object of 1 -CatSt,cocmpl
cont and the adjoint

pair

indA ∶ C⇄ A-mod(C) ∶ oblvA

takes place in 1 -CatSt,cocmpl
cont .

For a 1-morphism G ∈ Maps1 -CatSt,cocmpl
cont

(D,C) the datum of action of A on G

is equivalent to that of factoring G as

oblvA ○Genh, Genh ∈ Maps1 -CatSt,cocmpl
cont

(D,A-mod(C)).

5. STABLE (∞,1)-CATEGORIES 55

5.3.7. Let G ∶ D → C be as above, and assume that it admits a left adjoint GL

as a plain functor. Recall (see Lemma 5.3.2) that GL is then automatically a

1-morphism in 1 -CatSt,cocmpl
cont . Consider the corresponding monad

A ∶= G ○GL,

see Sect. 3.7.4, so that G gives rise to a 1-morphism in 1 -CatSt,cocmpl
cont :

Genh ∶ D→ A-mod(C).

The following is an immediate consequence of Proposition 3.7.7:

Corollary 5.3.8. Suppose that G does not send non-zero objects to zero. Then
Genh is an equivalence.

5.4. Generation.
5.4.1. Let C be an object of 1 -CatSt,cocmpl. A collection of objects {cα} is said to
generate if

MapsC(cα[−i],c) = ∗, ∀α, ∀i = 0,1, ... ⇒ c = 0,

where [−i] denotes the shift functor on C, i.e., the i-fold loop functor Ωi.

5.4.2. The following is tautological:

Lemma 5.4.3. Let D be a (not necessarily stable) (∞,1)-category, and let F ∶
D → C be a functor that admits a right adjoint, and whose essential image is
preserved by the loop functor. Then the essential image of F generates C if and
only if its right adjoint FR is conservative.

5.4.4. We have the following basic statement:

Proposition 5.4.5. A collection {cα} of objects generates C if and only if C
does not properly contain a cocomplete stable subcategory that contains all cα.

Proof. Let C′ be the smallest cocomplete stable full subcategory of C that
contains the objects of the form cα. The inclusion ι ∶ C′ ↪ C admits an (a priori
non-continuous) right adjoint, denoted ιR. Set C′′ ∶= ker(ιR).

The inclusion

C
↩C′′

admits a left adjoint L, given by

c↦ coFib(ι ○ ιR(c)→ c).

By definition,

c ∈ C′′⇔ c ∈ (C′)⊥⇔MapsC(cα[−i],c) = 0, ∀α, ∀i = 0,1,

Now it is clear that the inclusion ι is an equivalence if and only if L is zero if
and only if C′′ = 0.

�

56 1. SOME HIGHER ALGEBRA

5.4.6. Finally, we have:

Proposition 5.4.7. Let F ∶ D→C be a continuous functor. Then its essential
image generates the target (i.e., C) if and only if for any continuous functor G ∶
C→C′ with G ○ F = 0 we have G = 0.

Proof. We first prove the ‘only if’ direction. Assume that the essential image
of F generates C, and let G ∶ C→C′ be such that F ○G = 0. Since G is continuous
it admits a (possibly discontinuous) right adjoint GR, and it suffices to show that
GR = 0. Since FR is conservative, it suffices to show that FR ○GR = 0. However,
the latter identifies with (G ○ F)R, which vanishes by assumption.

We now prove the ‘if’ direction. Let C′ ⊂ C be the full subcategory, generated
by the essential image of F (i.e., the smallest stable cocomplete subcategory of
C that contains the essential image of F). Let (C′′, ı,) be as in the proof of
Proposition 5.4.5.

Being a left adjoint, L preserves colimits. Hence, the fact that C is cocomplete
implies that C′′ is cocomplete (and L is continuous).

Now, by the construction of C′, the composition F ○ L is zero. Hence, L = 0,
i.e., ı is an equivalence.

�

6. The symmetric monoidal structure on 1 -CatSt,cocmpl
cont

In this section we will discuss some of the key features of the (∞,1)-category

1 -CatSt,cocmpl
cont : the symmetric monoidal structure, given by tensor product of stable

categories, which we call the Lurie tensor product, and the notion of dualizable
stable category.

In the process we will encounter the most basic stable category–that of spectra.

This section can be regarded as a user guide to [Lu2, 1.4 and 4.8].

6.1. The Lurie tensor product. In this subsection we introduce the Lurie tensor
product.

It is quite remarkable that one does not have to work very hard in order to
characterize it uniquely: for a pair of stable categories C1 and C2 and a third one
D, the space of exact continuous functors

C1 ⊗C2 →D

is a full subspace in

Maps1 -Cat(C1 ×C2,D)

that consists of functors that are exact and continuous in each variable.

I.e., one does not need to introduce any additional pieces of structure, but
rather impose conditions.

6. THE SYMMETRIC MONOIDAL STRUCTURE ON 1 -CatSt,cocmpl
cont 57

6.1.1. Consider the coCartesian fibration

1 -Cat×,Fin∗ → Fin∗,

corresponding to the Cartesian symmetric monoidal structure on 1 -Cat.

We let

(1 -CatSt,cocmpl
cont)⊗,Fin∗ ⊂ 1 -Cat×,Fin∗

be the 1-full subcategory, where:

● We restrict objects to those

(I,∗), (i ∈ I − {∗})↦ (Ci ∈ 1 -Cat),

where each Ci is stable and cocomplete;

● We restrict morphisms to those

φ ∶ (I,∗)→ (J,∗), (j ∈ J − {∗})↦ (Π
i∈φ−1(j)

Ci

Fj→ Cj),

where each Fj is exact and continuous in each variable.

Theorem 6.1.2. The composite functor (1 -CatSt,cocmpl
cont)⊗,Fin∗ → Fin∗ is a co-

Cartesian fibration, that lies in the essential image of the fully faithful functor

1 - CatSymMon → (coCart/Fin∗)strict.

This theorem is a combination of [Lu2, Propositions 4.8.1.3, 4.8.1.14 and
4.8.1.18].

6.1.3. It follows from Theorem 6.1.2 that the (∞,1)-category 1 -CatSt,cocmpl
cont of

stable categories acquires a symmetric monoidal structure. We will refer to it as
the Lurie symmetric monoidal structure.

The corresponding monoidal operation, denoted

(Ci, i ∈ I)↦ ⊗
i∈I

Ci

is the Lurie tensor product.

6.1.4. By construction, for D ∈ 1 -CatSt,cocmpl
cont the space of exact continuous func-

tors

⊗
i∈I

Ci →D

is the full subspace in the space of functors

Π
i∈I

Ci →D

that are exact and continuous in each variable.

It follows from the above description and Proposition 2.5.7 that the monoidal
operation:

{Ci}↦ ⊗
i∈I

Ci

preserves colimits (taken in 1 -CatSt,cocmpl
cont) in each variable.

58 1. SOME HIGHER ALGEBRA

Remark 6.1.5. A remarkable aspect of this theory is that Theorem 6.1.2 is
not very hard. The existence of the tensor product ⊗

i∈I
Ci follows from the Adjoint

Functor Theorem. The fact tat the canonical functor

C1 ⊗ (C2 ⊗C3)→C1 ⊗C2 ⊗C3

follows by interpreting exact continuous functors

C1 ⊗ (C2 ⊗C3)→D

as exact continuous functors

C2 ⊗C3 → Functex,cont(C1,D).

6.1.6. By construction, we have a tautological functor

(6.1) Π
i∈I

Ci → ⊗
i∈I

Ci,

which is exact and continuous in each variable.

For ci ∈ Ci, we let
⊠
i
ci ∈ ⊗

i∈I
Ci

denote the image of the object (×
i
ci) ∈ Π

i∈I
Ci under the functor (6.1).

6.1.7. Note that for C,D ∈ 1 -CatSt,cocmpl
cont the object

Functex,cont(D,C) ∈ 1 -CatSt,cocmpl
cont

(see Sect. 5.1.7) identifies with the inner Hom object

Hom1 -CatSt,cocmpl
cont

(D,C).

I.e., for E ∈ 1 -CatSt,cocmpl
cont we have a canonical isomorphism

Maps1 -CatSt,cocmpl
cont

(E⊗D,C) ≃ Maps1 -CatSt,cocmpl
cont

(E,Functex,cont(D,C)).

6.1.8. The symmetric monoidal structure on 1 -CatSt,cocmpl
cont . For future use, we

note that the structure of symmetric monoidal (∞,1)-category on 1 -CatSt,cocmpl
cont

canonically extends to that of symmetric monoidal (∞,2)-category on the 2-categorical

enhancement of 1 -CatSt,cocmpl
cont , i.e., 1 -CatSt,cocmpl

cont (see Chapter 9, Sect. 1.4 for
the notion of symmetric monoidal structure on an (∞,2)-category).

Indeed, we start with the 2-coCartesian fibration 1 -Cat⊗,Fin∗ → Fin∗ that
defines the Cartesian symmetric monoidal structure on 1 -Cat.

Note that

(1 -Cat⊗,Fin∗)1 -Cat ≃ 1 -Cat⊗,Fin∗ .

We let

(1 -CatSt,cocmpl
cont)

⊗,Fin∗

be the 1-full subcategory of 1 -Cat⊗,Fin∗ that corresponds to

(1 -CatSt,cocmpl
cont)

⊗,Fin∗
⊂ 1 -Cat⊗,Fin∗ .

One checks that the composite functor

(1 -CatSt,cocmpl
cont)

⊗,Fin∗
→ 1 -Cat⊗,Fin∗ → Fin∗

6. THE SYMMETRIC MONOIDAL STRUCTURE ON 1 -CatSt,cocmpl
cont 59

is a 2-coCartesian fibration, and as such defines a symmetric monoidal structure on

the (∞,2)-category 1 -CatSt,cocmpl
cont .

6.2. The (∞,1)-category of spectra. The symmetric monoidal structure on

1 -CatSt,cocmpl
cont leads to a concise definition of the (∞,1)-category of spectra, along

with (some of) its key features.

6.2.1. The (∞,1)-category Sptr of spectra can be defined as the unit object in the

symmetric monoidal (∞,1)-category 1 -CatSt,cocmpl
cont .

Let 1Sptr denote the unit object in Sptr. This is the sphere spectrum.

6.2.2. Recall the setting of Lemma 2.1.8. We obtain that the object 1Sptr ∈ Sptr
gives rise to a functor

Spc→ Sptr .

We denote this functor by Σ∞.

6.2.3. The functor Σ∞ has the following universal property (see [Lu2, Corollary
1.4.4.5]):

Lemma 6.2.4. For C ∈ 1 -CatSt,cocmpl
cont , restriction and left Kan extension along

Σ∞ define an equivalence between Functex,cont(Sptr,C) and the full subcategory of
Funct(Spc,C) consisting of colimit-preserving functors.

The above lemma expresses the universal property of the category Sptr as the
stabilization of Spc.

6.2.5. Combining Lemmas 6.2.4 and 2.1.8 we obtain:

Corollary 6.2.6. For C ∈ 1 -CatSt,cocmpl
cont , restriction and left Kan extension

along

{1Sptr}↪ Sptr

define an equivalence

Functex,cont(Sptr,C) ≃ C.

6.2.7. The functor Σ∞ admits a right adjoint, denoted Ω∞. By Sect. 5.1.10, the
functor Ω∞ canonically factors via a functor

(6.2) Sptr→ ComGrp(Spc),
followed by the forgetful functor

ComGrp(Spc)
oblvComGrpÐ→ Spc.

The functor Ω∞ preserves filtered colimits.

6.2.8. The stable category Sptr has a t-structure, uniquely determined by the
condition that an object S ∈ Sptr is strictly coconnective, i.e., belongs to Sptr>0, if
and only if Ω∞(S) = ∗; see [Lu2, Proposition 1.4.3.6].

The t-structure on Sptr is both left and right complete. This means that for
S ∈ Sptr the canonical maps

S ↦ lim
n
τ≥−n(S) and colim

n
τ≤n(S)→ S

are isomorphisms.

60 1. SOME HIGHER ALGEBRA

6.2.9. The restriction of the functor (6.2) to the full subcategory of connective
spectra

Sptr≤0 ⊂ Sptr

defines an equivalence

(6.3) Sptr≤0 → ComGrp(Spc);

see [Lu2, Theorem 5.2.6.10] (this statement goes back to [May] and [BoV]).

6.2.10. Let C be an object of 1 -CatSt,cocmpl
cont . Since Sptr is the unit object in the

symmetric monoidal category 1 -CatSt,cocmpl
cont , our C has a canonical structure of

Sptr-module category.

For c0,c1 ∈ C, consider the corresponding relative inner Hom object

HomSptr(c0,c1) ∈ Sptr

see Sect. 3.6.1.

We will also use the notation

MapsC(c0,c1) ∶= HomSptr(c0,c1) ∈ Sptr .

I.e., for S ∈ Sptr we have

MapsSptr(S,MapsC(c0,c1)) ≃ MapsC(S ⊗ c0,c1).

By adjunction, we have

MapsC(c0,c1) ≃ Ω∞(MapsC(c0,c1)).

6.3. Duality of stable categories. Since 1 -CatSt,cocmpl
cont has a symmetric monoidal

structure, we can talk about dualizable objects in it, see Sect. 4.1.1. Thus, we arrive
at the notion of dualizable cocomplete stable category. In the same vein, we can talk

about the datum of duality between two objects of 1 -CatSt,cocmpl
cont .

These notions turn out to be immensely useful in practice.

6.3.1. By definition, a duality datum between C and D is the datum of a morphism

ε ∶ C⊗D→ Sptr and µ ∶ Sptr→D⊗C,

such that the composition

C
IdC ⊗µÐ→ C⊗D⊗C

ε⊗IdCÐ→ C

is isomorphic to IdC, and the composition

D
µ⊗IdDÐ→ D⊗C⊗D

IdC ⊗εÐ→ D

is isomorphic to IdD.

6. THE SYMMETRIC MONOIDAL STRUCTURE ON 1 -CatSt,cocmpl
cont 61

6.3.2. Let C and D be dualizable objects in 1 -CatSt,cocmpl
cont , and let C∨ and D∨

denote their respective duals.

For a continuous functor F ∶ C → D, we denote by F ∨ ∶ D∨ → C∨ the dual
functor (see Sect. 4.1.4). Explicitly, F ∨ is given as the composition

D∨ µC⊗IdD∨Ð→ C∨ ⊗C⊗D∨ IdC∨ ⊗F⊗IdD∨Ð→ C∨ ⊗D⊗D∨ IdC∨ ⊗εDÐ→ C∨.

By Sect. 4.1.5 and Sect. 6.1.7, we have the canonical isomorphisms

Functex,cont(C,D) ≃ C∨ ⊗D ≃ Functex,cont(D∨,C∨).

6.3.3. Let us again be in the situation of Sect. 5.3.3. Assume that all the objects
Ci are dualizable, and that the right adjoints of the transition functors Ci → Cj

are continuous.

By applying the dualization functor (see Sect. 4.1.4), from

CI ∶ I→ 1 -CatSt,cocmpl
cont ,

we obtain another functor, denoted

C∨
Iop ∶ Iop → 1 -CatSt,cocmpl

cont , i↦C∨
i .

We claim:

Proposition 6.3.4. Under the above circumstances, the object C∗ is dualizable,
and the dual of the colimit diagram

colim
I

CI →C∗

is a limit diagram, i.e., the map

(C∗)∨ → lim
Iop

C∨
Iop

is an equivalence.

The rest of this subsection is devoted to the proof of this proposition.

6.3.5. We will construct the duality datum between colim
I

CI and lim
Iop

C∨
Iop .

The functor

ε ∶ (colim
I

CI)⊗ (lim
Iop

C∨
Iop)→ Sptr

is given as follows:

Since

(colim
i∈I

Ci)⊗ (lim
j∈Iop

C∨
j) ≃ colim

i∈I
(Ci ⊗ (lim

j∈Iop
C∨
j)) ,

the datum of ε is equivalent to a compatible family of functors

Ci ⊗ (lim
j∈Iop

C∨
j)→ Sptr, i ∈ I.

The latter are given by

Ci ⊗ (lim
j∈Iop

C∨
j)

IdCi
⊗ eviÐ→ Ci ⊗C∨

i

εCi→ Sptr,

where evi denotes the evaluation functor lim
j∈Iop

C∨
j →C∨

i .

62 1. SOME HIGHER ALGEBRA

6.3.6. Let us now construct the functor

µ ∶ Sptr→ (lim
Iop

C∨
Iop)⊗ (colim

I
CI) .

For this we note that the functor C∨
Iop is obtained by passing to right adjoints

from a functor I→ 1 -CatSt,cocmpl
cont , which in turn is given by passing to right adjoints

in CI, and then passing to the duals.

Hence, by Corollary 5.3.4, the limit lim
Iop

C∨
Iop can be rewritten as a colimit.

Hence, for any D ∈ 1 -CatSt,cocmpl
cont the natural map

D⊗ (lim
j∈Iop

C∨
j)→ lim

j∈Iop
(D⊗C∨

j)

is an equivalence.

Hence,

(lim
j∈Iop

C∨
j)⊗ (colim

i∈I
Ci) ≃ lim

j∈Iop
(C∨

j ⊗ (colim
i∈I

Ci)) .

Therefore, the datum of µ amounts to a compatible family of functors

Sptr→C∨
j ⊗ (colim

i∈I
Ci) , j ∈ I.

The latter are given by

Sptr
µCjÐ→C∨

j ⊗Cj

IdCj
⊗ insj
Ð→ C∨

j ⊗ (colim
i∈I

Ci) ,

where insj denotes the insertion functor Cj → colim
i∈I

Ci.

6.3.7. The fact that the functors ε and µ constructed above satisfy the adjunction
identities is a straightforward verification.

6.4. Generation of tensor products.
6.4.1. Let C1 and C2 be objects of 1 -CatSt,cocmpl, and consider their tensor prod-
uct

C1 ⊗C2.

We have the following basic fact:

Proposition 6.4.2. Let Fi ∶ Di → Ci, i = 1,2 be continuous functors, such
that their respective essential images generate the target. The essential image of
the tautological functor

⊗ ∶ C1 ×C2 →C1 ⊗C2, c1 × c2 ↦ c1 ⊠ c2

generates the target.

Proof. Let C′ be the smallest cocomplete stable full subcategory of C ∶=
C1 ⊗C2 that contains the objects of the form c1 ⊠ c2. Recall the notations in the
proof of Proposition 5.4.5.

Being a left adjoint, L preserves colimits. Hence, the fact that C is cocomplete
implies that C′′ is cocomplete.

6. THE SYMMETRIC MONOIDAL STRUCTURE ON 1 -CatSt,cocmpl
cont 63

We need to show that C′′ = 0, which is equivalent to the functor L being zero.
By the universal property of C1 ⊗C2, the latter is equivalent to the fact that the
composition

C1 ×C2 →C1 ⊗C2 = C
LÐ→C′′

maps to the zero object of C′′.

However, the latter composition factors as

C1 ×C2 →C′ ι↪C
LÐ→C′′,

while L ○ ι is tautologically 0.
�

In addition, we have:

Proposition 6.4.3. Let Fi ∶ Di →Ci, i = 1,2 be continuous functors, such that
their respective essential images generate the target. Then the same is true for

F1 ⊗ F2 ∶ D1 ⊗D2 →C1 ⊗C2.

Proof. By Proposition 5.4.7, it is enough to show that for a continuous functor

G ∶ C1 ⊗C2 →C′,

if the composition G ○ (F1 ⊗ F2) is zero, then G = 0. Thus, we have to show that
for a fixed c1 ∈ C1, the functor

G(c1 ⊗ −) ∶ C2 →C′

is zero. By Proposition 5.4.7, it suffices to show that G(c1 ⊗ F2(d2)) = 0 for any
d2 ∈ D2. I.e., it suffices to show that the functor

G(− ⊗ F2(d2)) ∶ C1 →C′

is zero (for a fixed d2 ∈ D2).

Applying Proposition 5.4.7 again, we obtain that it suffices to show thatG(F1(d1)⊗
F2(d2)) is zero for any d1 ∈ D1. However, the latter is just the assumption that
G ○ (F1 ⊗ F2) = 0.

�

6.4.4. Consider the following situation: let Ci, i = 1,2 be objects of 1 -CatSt,cocmpl
cont ,

and let
Ai ∈ AssocAlg(Functex,cont(Ci,Ci))

be a monad acting on C.

Consider the monad

A1 ⊗A2 ∈ AssocAlg(Functex,cont(C1 ⊗C2,C1 ⊗C2)).
The tautological action of Ai on oblvAi ∈ Functex,cont(Ai-mod(Ci),Ci) in-

duces an action of A1 ⊗A2 on

oblvA1⊗oblvA2 ∈ Functex,cont(A1-mod(C1)⊗A2-mod(C2),A1-mod(C1)⊗A2-mod(C2)).

Hence, by Sect. 5.3.6, the functor oblvA1 ⊗ oblvA2 upgrades to a functor

(6.4) A1-mod(C1)⊗A2-mod(C2)→ (A1 ⊗A2)-mod(C1 ⊗C2).
We claim:

64 1. SOME HIGHER ALGEBRA

Lemma 6.4.5. The functor (6.4) is an equivalence.

Proof. The left adjoint of oblvA1 ⊗ oblvA2 is provided by

indA1 ⊗ indA2 ,

and hence, the canonical map from A1⊗A2 to the monad on C1⊗C2, corresponding
to oblvA1 ⊗ oblvA2 , is an isomorphism.

Hence, by Corollary 5.3.8, it suffices to show that the functor oblvA1 ⊗oblvA2

is conservative. By Lemma 5.4.3, this is equivalent to the fact that the essential
image of

indA1 ⊗ indA2

generates the target. This is true for each indAi (since oblvAi are conservative),
and hence the required assertion follows from Proposition 6.4.2.

�

7. Compactly generated stable categories

Among all stable categories one singles out a class of those that are particularly
manageable: these are the compactly generated stable categories.

One favorable property of compactly generated stable categories is that they
are dualizable with a very explicit description of the dual.

Another is that the tensor product of two compactly generated categories can
also be described rather explicitly.

The material in Sects. 7.1 and 7.2 is based on [Lu1, Sect. 5.3].

7.1. Compactness. The notion of compactness is key for doing computations in a
given stable category: we usually can calculate the mapping spaces out of compact
objects.

For a related reason, compactly generated stable categories are those that we
know how to calculate functors from.

7.1.1. Let C be an object of 1 -CatSt,cocmpl. An object c ∈ C is said to be compact
if the functor

MapsC(c,−) ∶ C→ Spc

preserves filtered colimits.

Equivalently, c is compact if the functor

MapsC(c,−) ∶ C→ Sptr

preserves filtered colimits (equivalently, all colimits or direct sums).

We let Cc ⊂ C denote the full subcategory spanned by compact objects. We
have Cc ∈ 1 -CatSt.

7.1.2. We give the following definition:

Definition 7.1.3. An object C ∈ 1 -CatSt,cocmpl is said to be compactly gener-
ated of it admits a set of compact generators.

7. COMPACTLY GENERATED STABLE CATEGORIES 65

7.1.4. Let F ∶ C → D be a morphism in 1 -CatSt,cocmpl
cont , and assume that C is

compactly generated.

In this case one can give an easy criterion for when the right adjoint FR of
F , which is a priori a morphism in 1 -CatSt,cocmpl (see Lemma 5.3.2), is in fact a

morphism in 1 -CatSt,cocmpl
cont .

Namely, we have the following (almost immediate) assertion:

Lemma 7.1.5. Under the above circumstance, FR is continuous if and only if
F sends Cc to Dc.

7.2. The operation of ind-completion. In the previous subsection we attached
to a cocomplete stable category C its full subcategory consisting of compact objects.

In this subsection we will discuss the inverse procedure: starting from a non-
cocomplete stable category C0 we will be able to canonically produce a cocomplete
one by ‘adding all filtered colimits’. This is the operation of ind-completion.

7.2.1. Let C0 be an object of 1 -CatSt. Consider the following (∞,1)-categories:

(1) The full subcategory of Funct(C0,Spc) that consists of functors that pre-
serve fiber products.

(2) The full subcategory of Funct(C0,ComGrp(Spc)) that consists of functors
that preserve fiber products.

(3) The full subcategory of Funct(C0,Sptr) that consists of functors that
preserve fiber products, i.e., Functex(C0,Sptr).

The functors

Sptr
τ≤0Ð→ Sptr≤0 ≃ ComGrp(Spc)

oblvComGrpÐ→ Spc

define functors (3) ⇒ (2) ⇒ (1).

We have (see [Lu2, Corollary 1.4.2.23]):

Lemma 7.2.2. The above functors (3) ⇒ (2) ⇒ (1) are equivalences.

7.2.3. For C0 ∈ 1 -CatSt, we define the (∞,1)-categpry

Ind(C0) ∶= Functex((C0)op,Sptr).

According to Sect. 5.1.7, Ind(C0) is stable and cocomplete. Yoneda defines a
fully faithful functor

(7.1) C0 → Ind(C0).

We have (see [Lu1, 5.3.5] and [Lu2, Remark 1.4.2.9])

Lemma 7.2.4.

(1) The essential image of (7.1) is contained in Ind(C0)c.
(1’) The essential image of (7.1) generates Ind(C0). Moreover, any object of
Ind(C0) can be written as a filtered colimit of objects from C0.

(1”) Any compact object in Ind(C0) is a direct summand of one in the essential
image of (7.1).

(2) For C ∈ 1 -CatSt,cocmpl, restriction along (7.1) defines an equivalence

Functex,cont(Ind(C0),C)→ Functex(C0,C).

66 1. SOME HIGHER ALGEBRA

(3) Let C be an object of 1 -CatSt,cocmpl, and let C0 ⊂ Cc be a full subcategory that
generates C. Then the functor Ind(C0)→C, arising from (2), is an equivalence.

(3’) For a compactly generated C ∈ 1 -CatSt,cocmpl, the functor Ind(Cc) → C is an
equivalence.

7.2.5. Note that point (2) in Lemma 7.2.4 says that the assignment

(7.2) C0 ↦ Ind(C0)

provides a functor 1 -CatSt → 1 -CatSt,cocmpl
cont , left adjoint to the inclusion

1 -CatSt,cocmpl
cont ↪ 1 -CatSt .

7.2.6. Let us return to the setting of Sect. 5.3.3. Assume that each of the cate-
gories Ci is compactly generated, and that each of the functors Ci →Cj preserves
compactness.

In this case, the functor CI ∶ I→ 1 -CatSt,cocmpl
cont gives rise to a functor

Cc
I ∶ I→ 1 -CatSt, i↦Cc

i .

We have a tautological exact functor

colim
I

Cc
I →C∗,

where the colimit in the left-hand side is taken in 1 -CatSt. Using Lemma 7.2.4(2),

we obtain a morphism in 1 -CatSt,cocmpl
cont

(7.3) Ind(colim
I

Cc
I)→C∗.

Since the functor (7.2) is a left adjoint, it preserves colimits. Hence, combining
with Lemma 7.2.4(3’), we obtain:

Corollary 7.2.7.

(a) The functor (7.3) is an equivalence.

(b) The category C∗ is compactly generated by the essential images of the functors

Cc
i →Ci

insiÐ→C∗.

Remark 7.2.8. Note that in the present situation, the assertion of Corol-
lary 5.3.4 becomes particularly obvious. Namely, we have

C∗ ≃ Ind(colim
i∈I

Cc
i) = Functex ((colim

i∈I
Cc
i) op,Sptr) ≃

≃ Functex (colim
i∈I

(Cc
i)op,Sptr) ≃ lim

i∈Iop
Functex ((Cc

i)op,Sptr) ≃

≃ lim
i∈Iop

Ind(Cc
i) ≃ lim

i∈Iop
Ci.

7. COMPACTLY GENERATED STABLE CATEGORIES 67

7.3. The dual of a compactly generated category. One of the key features
of compactly generated stable categories is that they are dualizable in the sense of
the Lurie symmetric monoidal structure. Moreover, the dual can be described very
explicitly:

(Ind(C0))∨ ≃ Ind((C0)∨).
As was mentioned in the introduction, the latter equivalence provides a frame-

work for such phenomena as Verdier duality: rather than talking about a con-
travariant self-equivalence (on a small category of compact objects), we talk about
the datum of self-duality on the entire category.

7.3.1. Let C ∈ 1 -CatSt,cocmpl be of the form Ind(C0) for some C0 ∈ 1 -CatSt.
In particular, C is compactly generated, and any compactly generated object of
1 -CatSt,cocmpl is of this form.

The assignment
(c,c′ ∈ C0)↦MapsC(c,c′)

defines a functor
(C0)op × (C0)→ Sptr,

which is exact in each variable.

Applying left Kan extension along

(C0)op × (C0)↪ Ind((C0)op) × Ind(C0),
we obtain a functor

Ind((C0)op) × Ind(C0)→ Sptr,

which is exact and continuous in each variable. Hence, it gives rise to a functor

(7.4) Ind((C0)op)⊗ Ind(C0)→ Sptr .

Proposition 7.3.2. The functor (7.4) provides the co-unit map of an adjunc-
tion data, thereby identifying Ind(C0) and Ind((C0)op) as each other’s duals.

The proof given below essentially copies [Lu2, Proposition 4.8.1.16].

Proof. We have

Functex,cont(Ind(C0),Sptr) ≃ Functex(C0,Sptr) ≃ Ind((C0)op).
Hence, it suffices to show that for D ∈ 1 -CatSt,cocmpl, the tautological functor

Ind((C0)op)⊗D→ Functex,cont(Ind(C0),D)
is an equivalence.

Thus, we need to show that for E ∈ 1 -CatSt,cocmpl, the space of continuous
functors

Functex,cont(Ind(C0),D)→ E,

which is is the same as the space of continuous functors

Functex(C0,D)→ E,

maps isomorphically to the space of continuous functors

Ind((C0)op)⊗D→ E,

while the latter identifies with the space of exact functors

(C0)op → Functex,cont(D,E).

68 1. SOME HIGHER ALGEBRA

We will use the following observation:

Lemma 7.3.3. For F1,F2 ∈ 1 -CatSt,cocmpl, the passage to the right adjoint
functor and the opposite category defines an equivalence

Functex,cont(F1,F2)→ Functex,cont((F2)op, (F1)op).

Applying the lemma, we rewrite

Maps1 -CatSt,cocmpl
cont

(Functex(C0,D),E) ≃ Maps1 -CatSt,cocmpl
cont

(Eop, (Functex(C0,D))op) ≃
≃ Maps1 -CatSt,cocmpl

cont
(Eop,Functex((C0)op,Dop)) ≃

≃ Maps1 -CatSt,cocmpl ((C0)op,Functex,cont(Eop,Dop)) ≃
≃ Maps1 -CatSt,cocmpl ((C0)op,Functex,cont(D,E)) ,

as required.
�

7.3.4. Let F0 ∶ C0 →D0 be an exact functor between stable categories. Set

C ∶= Ind(C0), D ∶= Ind(D0).
Let F ∶ C → D be the left Kan extension along C0 → C of the composite

functor

C0
F0→ D0 →D.

We can also think about F as being obtained from F0 by applying the functor

Ind ∶ 1 -CatSt → 1 -CatSt,cocmpl
cont .

Note that according to Proposition 7.3.2, we have a canonical identification

C∨ ≃ Ind((C0)op) and D∨ ≃ Ind((D0)op).
Consider the functor

(F0)op ∶ (C0)op → (D0)op,

and let

F fake-op ∶ C∨ →D∨

denote its ind-extension.

Proposition 7.3.5. The functor F fake-op is the dual of the right adjoint FR of
F . I.e.,

F fake-op ≃ (FR)∨.

Remark 7.3.6. The functor F fake-op is in no sense the opposite of F ; the latter
would be a (not necessarily continuous) functor

Cop →Dop.

However, the two agree on the full subcategory

Cop ⊃ (C0)op ⊂ C∨,

which they both map to

Dop ⊃ (D0)op ⊂ D∨.

7. COMPACTLY GENERATED STABLE CATEGORIES 69

Proof. We need to show that the functor

(7.5) C∨ ×D→C∨ ⊗D
F fake-op⊗IdDÐ→ D∨ ⊗D

εDÐ→ Sptr

identifies with

(7.6) C∨ ×D→C∨ ⊗D
IdC∨ ⊗FRÐ→ C∨ ⊗C

εCÐ→ Sptr .

Both functors are left Kan extensions from their respective restrictions to

(C0)op ×D0 ⊂ Ind((C0)op) × Ind(D0) ≃ C∨ ×D,

and are uniuquely recovered from their respective compositions with Ω∞ ∶ SptrÐ→
Spc.

The functor (C0)op ×D0 → Spc obtained from (7.5) is

(C0)op ×D0

(F0)op×IdD0Ð→ (D0)op ×D0

YonD0Ð→ Spc,

which we can further rewrite as

(C0)op ×D0 →Cop ×D
F op×IdDÐ→ Dop ×D

YonDÐ→ Spc,

where the first arrow is obtained from the embeddings C0 →C and D0 →D.

The functor (C0)op ×D0 → Spc, obtained from (7.6), is

(C0)op × D0 → Cop × D → Funct(C,Spc) × D → Funct(C,Spc) × C → Spc,

where the first arrow is obtained from the embeddings C0 → C and D0 → D,
respectively, the second arrow is obtained from the Yoneda embedding for C, the
third arrow from FR, and the last arrow is evaluation.

Thus, it suffices to see that the functors

Cop ×D
F op×IdDÐ→ Dop ×D

YonDÐ→ Spc

and

Cop ×D→ Funct(C,Spc) ×D
IdFunct(C,Spc) ×FRÐ→ Funct(C,Spc) ×C→ Spc,

are canonically identified. However, the latter fact expresses the adjunction between
F and FR.

�

7.4. Compact generation of tensor products. In this subsection we will dis-
cuss a variant of Proposition 6.4.2 in the compactly generated case. This turns out
to be a more explicit statement, which will tell us ‘what the tensor product actually
looks like’.

7.4.1. Let us be given a pair of compactly generated stable categories C and D.
We claim:

Proposition 7.4.2.

(a) The tensor product C⊗D is compactly generated by objects of the form c0 ⊠d0

with c0 ∈ Cc and d0 ∈ Dc.

(b) For c0,d0 as above, and c ∈ C, d ∈ D, we have a canonical isomorphism

MapsC(c0,c)⊗MapsD(d0,d) ≃MapsC⊗D(c0 ⊠ d0,c ⊠ d).
The rest of this subsection is devoted to the proof of this proposition.

70 1. SOME HIGHER ALGEBRA

7.4.3. To prove the proposition we will give an alternative description of the tensor
product C⊗D.

Set

C = Ind(C0) and D = Ind(D0).

Note that we have a canonically defined functor

(7.7) C⊗D→ Functex,cont(C∨ ⊗D∨,Sptr)→ Funct((C0)op × (D0)op,Sptr),
defined so that the corresponding functor

C ×D→ Funct((C0)op × (D0)op,Sptr)
is given by

(c,d)↦ ((c0,d0)↦MapsC(c0,c)⊗MapsD(d0,d)) .

7.4.4. By construction, the essential image of (7.7) is contained in the full subcat-
egory

Functbi-ex((C0)op × (D0)op,Sptr) ⊂ Funct((C0)op × (D0)op,Sptr)
that consists of functors that are exact in each variable.

Denote the resulting functor

(7.8) C⊗D→ Functbi-ex((C0)op × (D0)op,Sptr)
by hC,D.

7.4.5. We claim that the functor hC,D is an equivalence. Indeed, this follows from
the interpretation of (7.8) as the composition

C⊗D ≃ Functex,cont(C∨,D) ≃ Functex((C0)op,D) ≃
≃ Functex((C0)op,Functex((D0)op,Sptr)) ≃ Functbi-ex((C0)op × (D0)op,Sptr).

7.4.6. Now, an analog of Yoneda’s lemma for hC,D says that for c0 ∈ C0 and d0 ∈
D0, and any F ∈ Functbi-ex((C0)op×(D0)op,Sptr) we have a canonical isomorphism

MapsFunctbi-ex((C0)op×(D0)op,Sptr) (hC,D(c0 ⊠ d0), F) ≃ F (c0 × d0).

This implies that the objects

hC,D(c0 ⊠ d0) ∈ Functbi-ex((C0)op × (D0)op,Sptr)
are compact, generate Functbi-ex((C0)op × (D0)op,Sptr), and

MapsFunctbi-ex((C0)op×(D0)op,Sptr) (hC,D(c0 ⊠ d0), hC,D(c ⊠ d)) ≃
≃MapsC(c0,c)⊗MapsD(d0,d).

8. Algebra in stable categories

In this section we apply the theory developed above to study stable monoidal

categories, which are by definition associative algebra objects in 1 -CatSt,cocmpl
cont .

Our particular points of interest are how the behavior of modules over stable
monoidal categories interacts with such notions as the Lurie tensor product, duality
and compactness.

8. ALGEBRA IN STABLE CATEGORIES 71

8.1. Modules over a stable monoidal category. We consider the symmetric

monoidal category 1 -CatSt,cocmpl
cont . Our interest in this and the next few sections

are associative and commutative algebra objects A in 1 -CatSt,cocmpl
cont . We will refer

to them as stable monoidal (resp., symmetric monoidal) categories.

In this subsection we summarize and adapt some pieces of notation introduced
earlier to the present context.

8.1.1. Note that the 1-fully faithful embedding 1 -CatSt,cocmpl
cont → 1 -Cat induces

1-fully faithful embeddings

AssocAlg(1 -CatSt,cocmpl
cont)→ 1 -CatMon and ComAlg(1 -CatSt,cocmpl

cont)→ 1 -CatSymMon,

respectively.

I.e., a monoidal (resp., symmetric monoidal) cocomplete stable category is a
particular case of a monoidal (symmetric monoidal) (∞,1)-category.

So, we can talk about right-lax functors between monoidal (resp., symmetric
monoidal) cocomplete stable categories.

In particular, given A, we can talk about associative (resp., commutative)
algebras in A.

8.1.2. Given A, following Sect. 3.4.4, we can consider the corresponding (∞,1)-
category of A-modules in 1 -CatSt,cocmpl

cont , i.e., A-mod(1 -CatSt,cocmpl
cont), for which we

will also use the notation

A-modSt,cocmpl
cont .

Note that A-modSt,cocmpl
cont is a 1-full subcategory in A-mod, the latter being

the (∞,1)-category of module categories over A, when the latter is considered as
a plain monoidal (∞,1)-category.

Namely, an object M ∈ A-mod belongs to A-modSt,cocmpl
cont if and only if M is

a cocomplete stable category, and the action functor

A ×M→M

is exact and continuous in each variable.

A morphism F ∶ M0 →M1 in A-mod belongs to A-modSt,cocmpl
cont if and only

if, when viewed as a plain functor, F is exact and continuous.

8.1.3. We have a pair of adjoint functors

indA ∶ 1 -CatSt,cocmpl
cont ⇄A-modSt,cocmpl

cont ∶ oblvA,

and the corresponding monad on 1 -CatSt,cocmpl
cont is given by tensor product with A.

The functor oblvA preserves limits (being a right adjoint), and also colimits
(because A⊗ − does).

8.1.4. Let F ∶ M → N be a morphism in A-modSt,cocmpl
cont , and suppose that F ,

when viewed as a plain functor between (∞,1)-categories, admits a right adjoint,
FR.

Then, according to Lemma 3.5.3, FR has a natural structure of right-lax functor
between A-module categories.

72 1. SOME HIGHER ALGEBRA

8.1.5. According to Sect. 3.5.1, given A ∈ AssocAlg(1 -CatSt,cocmpl
cont), M ∈ A-modSt,cocmpl

cont

and A ∈ AssocAlg(A), we can consider the (∞,1)-category

A-mod(M).

8.2. Inner Hom and tensor products.

8.2.1. According to Sect. 3.6, for a given A ∈ AssocAlg(1 -CatSt,cocmpl
cont) and a pair

of objects M,N ∈ A-modSt,cocmpl
cont , we can consider their relative inner Hom

Hom1 -CatSt,cocmpl
cont ,A(M,N) ∈ 1 -CatSt,cocmpl

cont .

We will use the notation

FunctA(M,N) ∶= Hom1 -CatSt,cocmpl
cont ,A(M,N) ∈ 1 -CatSt,cocmpl

cont .

We have:

(FunctA(M,N))Spc ≃ MapsA-modSt,cocmpl
cont

(M,N).

8.2.2. By Corollary 6.2.6, evaluation at 1A defines an equivalence of stable cate-
gories.

FunctA(A,M) ≃ M.

8.2.3. According to Sect. 3.6.6, in the case N = M, the object FunctA(M,M)
has a natural structure of associative algebra, i.e., a structure of stable monoidal
category.

8.2.4. According to Sect. 3.6.5, if A is a stable symmetric monoidal category,

then for M,N ∈ A-modSt,cocmpl
cont as above, the object FunctA(M,N) has a natural

structure of A-module in 1 -CatSt,cocmpl
cont , i.e., lifts to A-modSt,cocmpl

cont .

8.2.5. According to Sect. 4.2.1, for a given A ∈ AssocAlg(1 -CatSt,cocmpl
cont), we have

a well-defined functor

Arev-mult-modSt,cocmpl
cont ×A-modSt,cocmpl

cont → 1 -CatSt,cocmpl
cont , N,M↦N⊗

A
M.

Lemma 8.2.6. For M and N as above, the image of the tautological functor of
stable categories

N⊗M→N⊗
A

M

generates the target.

Proof. The object N ⊗
A

M can be calculated as the geometric realization of

a simplicial object of 1 -CatSt,cocmpl
cont with terms given by N⊗A⊗n ⊗M (see [Lu2,

Theorem 4.4.2.8]). By Corollary 5.3.4, this geometric realization can be rewritten

as a totalization (taken in 1 -CatSt,cocmpl) of the corresponding co-simplcial object.
By Lemma 5.4.3, we need to show that the functor of evaluation on 0-simplices

N⊗
A

M→N⊗M

is conservative. However, this follows from the fact that every object in ∆ admits
a morphism from [0]. �

8. ALGEBRA IN STABLE CATEGORIES 73

8.2.7. According to Sect. 4.2.4, if A is an object of ComAlg(1 -CatSt,cocmpl
cont), then

the operation of tensor product of modules extends to a structure of symmetric

monoidal (∞,1)-category on A-modSt,cocmpl
cont .

8.2.8. According to Sect. 4.3.1, given a right A-module M and a left A-module
N, we can talk about the data of duality between them.

According to Sect. 4.3.3, if A is symmetric monoidal, a datum of duality be-
tween M and N in the above sense is equivalent to that in the sense of objects of

A-modSt,cocmpl
cont as a symmetric monoidal (∞,1)-category.

8.3. The 2-categorical structure. The material in this subsection is an exten-
sion of that in Sect. 5.2; it will be needed in later Chapters in the book.

8.3.1. Let A be a stable monoidal category. We claim that the structure of (∞,1)-
category on A-modSt,cocmpl

cont can be naturally upgraded to that of (∞,2)-category,
to be denoted

(A-modSt,cocmpl
cont)

2 -Cat
.

Namely, we define the corresponding simplicial (∞,1)-category

Seq● ((A-modSt,cocmpl
cont)

2 -Cat
)

as follows.

We let Seqn ((A-modSt,cocmpl
cont)

2 -Cat
) be the full (∞,1)-category in

A-mod ×
1 -Cat

Seqn(1 -Cat) ⊂ A-mod ×
1 -Cat

Cart/[n]op ,

singled out by the following conditions:

We take those (∞,1)-categories C, equipped with an action of A (regarded as
a monoidal (∞,1)-category), and a Cartesian fibration C→ [n]op for which:

● We require that for every i = 0, ..., n, the (∞,1)-category Ci be stable and
cocomplete;

● For every i = 1, ..., n the corresponding functor Ci−1 → Ci be exact and
continuous;

● For every i, the action morphism A ×Ci → Ci be exact and continuous
in each variable;

● The action functor A×C→C should be a morphism in (Cart/[n]op)strict.

8.3.2. One checks that the object

Seq● ((A-modSt,cocmpl
cont)

2 -Cat
) ∈ 1 -Cat∆op

defined above indeed lies in the essential image of the functor

Seq● ∶ 2 -Cat→ 1 -Cat∆op

and thus defines an object

(A-modSt,cocmpl
cont)

2 -Cat
∈ 2 -Cat,

whose underlying (∞,1)-category is A-modSt,cocmpl
cont .

74 1. SOME HIGHER ALGEBRA

8.3.3. By construction, for M,N ∈ A-modSt,cocmpl
cont , we have

Maps
(A-modSt,cocmpl

cont)
2 -Cat(M,N) = FunctA(M,N).

8.3.4. Finally, we note that by repeating Sects. 4.2.4 and 4.2.2, we obtain that if A

is a stable symmetric monoidal category, then the (∞,2)-category (A-modSt,cocmpl
cont)

2 -Cat

acquires a natural symmetric monoidal structure.

8.4. Some residual 2-categorical features. The material in this subsection is
an extension of that in Sect. 5.3.

8.4.1. Let F ∶ M → N be a morphism in A-modSt,cocmpl
cont , and suppose that F ,

when viewed as a plain functor between (∞,1)-categories, admits a right adjoint,
FR. According to Sect. 8.1.4, the functor FR has a natural structure of right-lax
functor between A-module categories.

It follows from the definitions that FR is a strict functor between A-module

categories if and only if F , when viewed as a 1-morphism in (A-modSt,cocmpl
cont)

2 -Cat
,

admits a right adjoint.

8.4.2. Limits and colimits. Let I be an index category, and let

CI ∶ I→A-modSt,cocmpl
cont .

Denote

C∗ ∶= colim
I

CI ∈ A-modSt,cocmpl
cont .

Assume that for every arrow i→ j in I, the corresponding 1-morphism Ci →Cj

admits a right adjoint. Then, the procedure of passage to right adjoints (see Chapter
12, Corollary 1.3.4) gives rise to a functor

CR
Iop ∶ Iop →A-modSt,cocmpl

cont .

The following results from Proposition 2.5.7:

Corollary 8.4.3. The canonically defined morphism

C∗ → lim
Iop

CIop

is an equivalence, where the above limit is taken in A-modSt,cocmpl
cont .

8.4.4. Let C be an object of A-modSt,cocmpl
cont . Then in the way parallel to Sect. 5.3.5,

we can consider the monoidal (∞,1)-category

(8.1) MapsA-modSt,cocmpl
cont

(C,C),

which is equipped with an action on

MapsA-modSt,cocmpl
cont

(D,C),

for any D ∈ 1 -CatSt,cocmpl
cont .

In particular, we can talk about the (∞,1)-category of A-linear monads acting
on C, which are by definition associative algebra objects in the monoidal (∞,1)-
category (8.1).

8. ALGEBRA IN STABLE CATEGORIES 75

Given an A-linear monad B, we can consider the (∞,1)-category

B-mod(C)

in the sense of Sect. 3.7.2.

The category B-mod(C) is itself an object of A-modSt,cocmpl
cont and the adjoint

pair

indB ∶ C⇄ B-mod(C) ∶ oblvB

takes place in A-modSt,cocmpl
cont .

For a 1-morphism G ∈ MapsA-modSt,cocmpl
cont

(D,C) the datum of action of B on

G is equivalent to that of factoring G as

oblvB ○Genh, Genh ∈ MapsA-modSt,cocmpl
cont

(D,B-mod(C)).

Let G ∶ D → C be as above, and assume that it admits a left adjoint GL.
The functor GL acquires a natural left-lax functor between A-module categories.
Assume, however, that this left-lax structure is strict. Then

B ∶= G ○GL

acquires a natural structure of A-linear monad. The functor G gives rise to a

1-morphism in A-modSt,cocmpl
cont

Genh ∶ D→ B-mod(C).

8.5. Modules over an algebra. In this subsection we will start combining the
general features of modules over algebras with the specifics of dealing with cocom-
plete stable categories.

8.5.1. Let A be an object of AssocAlg(1 -CatSt,cocmpl
cont). Fix also M ∈ A-modSt,cocmpl

cont

and A ∈ AssocAlg(A).

Consider the category A-mod(M). Recall that we have a pair of adjoint func-
tors

indA ∶ M⇄ A-mod(M) ∶ oblvA,

where oblvA is monadic, and the corresponding monad on M is given by

m↦ A⊗m.

8.5.2. Suppose that we have two such triples (A1,M1,A1) and (A2,M2,A2). By

Sect. 4.2.4, we can regard A1 ⊗A2 as an object of AssocAlg(1 -CatSt,cocmpl
cont), and

A1 ⊠A2 ∈ A1 ⊗A2

has a natural structure of object in Assoc(A1 ⊗A2).

Furthermore, M1⊗M2 has a natural structure of object of (A1⊗A2)-modSt,cocmpl
cont .

76 1. SOME HIGHER ALGEBRA

8.5.3. Suppose that in the above situation, the A1-module structure on M1 (resp.,
A2-module structure on M2) has been extended to a structure of module over
A1 ⊗Arev-mult (resp., A2 ⊗A), where A is yet another monoidal stable category.

In this case, we can form M1 ⊗
A

M2, which is a module over A1 ⊗ A2. In

addition, A1-mod(M1) (resp., A2-mod(M2)) is a right (resp., left) module over A,
so we can form

A1-mod(M1)⊗
A
A2-mod(M2).

We have a canonically defined functor

A1-mod(M1)⊗
A
A2-mod(M2)→M1 ⊗

A
M2,

on which A1 ⊠A2 acts as a monad. Hence, we obtain a functor

(8.2) A1-mod(M1)⊗
A
A2-mod(M2)→ (A1 ⊠A2)-mod(M1 ⊗

A
M2).

Proposition 8.5.4. The functor (8.2) is an equivalence.

Proof. Follows in the same way as Lemma 6.4.5 from Corollary 5.3.8. �

Here are some particular cases of Proposition 8.5.4.

8.5.5. First, let us take A = Sptr. In this case, Proposition 8.5.4 says that the
functor

A1-mod(M1)⊗A2-mod(M2)→ (A1 ⊠A2)-mod(M1 ⊗M2)

is an equivalence. Note this is also a corollary of Lemma 6.4.5.

8.5.6. Let us now take A1 = A, A1 =∶ A and M1 = A with its natural structure of

A-bimodule. Take A2 = Sptr, A2 = 1Sptr and M2 =∶ M ∈ A-modSt,cocmpl
cont . Thus,

from Proposition 8.5.4 we obtain:

Corollary 8.5.7. The functor

A-mod⊗
A

M→ A-mod(M)

is an equivalence.

8.5.8. Let now take (A1,A1,M2) = (A,A,A) as above, and let

(A2,A2,M) = (Amult-rev,Amult-rev,Amult-rev).

We obtain:

Corollary 8.5.9. The functor

A-mod⊗
A
A-modr → (A ⊠Amult-rev)-mod(A)

is an equivalence.

8. ALGEBRA IN STABLE CATEGORIES 77

8.5.10. Let A be a stable symmetric monoidal category. Recall the Cartesian
fibration

AssocAlg +mod(A)→ AssocAlg(A),

of (4.5), and the corresponding functor

(8.3) (AssocAlg(A))op → 1 -Cat, A↦ A-mod.

It follows from Proposition 8.5.4 that (8.3) upgrades to a symmetric monoidal
functor

(AssocAlg(A))op →A-modSt,cocmpl
cont .

8.6. Duality for module categories.

8.6.1. Consider A as an associative algebra object in the monoidal category 1 -CatSt,cocmpl
cont .

Hence, it makes sense to talk about duality between left and right A-modules, see
Sect. 4.3.1.

8.6.2. From Corollary 8.5.9 we will now deduce:

Corollary 8.6.3. The left A-module category A-modr is naturally dual to the
right A-module category A-mod.

Proof. We will construct explicitly the duality datum. The functor

co-unit ∶ A-modr(A)⊗A-mod(A)→A

corresponds to the functor of tensor product

A-modr(A) ×A-mod(A)→A

of Sect. 4.2.1.

The functor

unit ∶ Sptr→ A-mod(A)⊗
A
A-modr(A)

is constructed as follows. Under the identification

A-mod(A)⊗
A
A-modr(A) ≃ (A ⊠Amult-rev)-mod(A)

of Corollary 8.5.9, it corresponds to the object

A ∈ (A ⊠Amult-rev)-mod(A).

�

Corollary 8.6.4. For M ∈ A-mod there is a canonical equivalence

FunctA(A-modr,M) ≃ A-mod(M).

8.7. Compact generation of tensor products.

78 1. SOME HIGHER ALGEBRA

8.7.1. Let A be a monoidal stable category, and let M and N be a left and a right
A-modules, respectively.

Assume that the monoidal operation A ⊗ A → A admits a continuous right
adjoint, and that so do the action functors A⊗M→M and N⊗A→N.

We will prove:

Proposition 8.7.2. Under the above circumstances, the right adjoint to the
tautological functor

N⊗M→N⊗
A

M

is continuous.

Proof. The category N⊗
A

M is given as the geometric realization of the sim-

plicial category
i↦N⊗A⊗i ⊗M.

Hence, applying Corollary 5.3.4, it is enough to show that the functor

∆op → 1 -CatSt,cocmpl
cont , [n]↦N⊗A⊗n ⊗M

has the property that it sends every morphism in ∆op to a 1-morphism in 1 -CatSt,cocmpl
cont

that admits a continuous right adjoint. However, this follows from the assumption
on the monoidal operation on A and the action functors.

�

8.7.3. Combining with Lemma 8.2.6 and Proposition 7.4.2, we obtain:

Corollary 8.7.4. Assume that A, M1, M2 are compactly generated, and that
the functors

A⊗A→A, A⊗M→M, N⊗A→N

preserve compact objects. Then the functor

N⊗M→N⊗
A

M

sends compact objects to compact ones. In particular, N⊗
A

M is compactly generated.

8.8. Compactness and relative compactness.

8.8.1. Let A be a stable monoidal category, and let M be an object of A-modSt,cocmpl
cont .

For an object m ∈ M consider the functor

(8.4) M→A, m′ ↦ HomA(m,m′).
Definition 8.8.2. We shall say that m is compact relative to A if the functor

(8.4) preserves filtered colimits (equivalently, all colimits or direct sums).

8.8.3. The following is immediate:

Lemma 8.8.4.

(a) Suppose that A is compactly generated, and that the action functor A×M→M
sends Ac ×Mc to Mc. Then every compact object in M is compact relative to A.

(b) Suppose that 1A ∈ A is compact. Then every object in M that is compact
relative to A is compact.

9. RIGID MONOIDAL CATEGORIES 79

8.8.5. Let us now take M = A. It is clear that if a ∈ A is left-dualizable (see
Sect. 4.1.1 for what this means), then it is compact relative to A: indeed

HomA(a,a′) ≃ a′ ⊗ a∨,L,

while the monoidal operation on A distributes over colimits.

We have the following partial converse to this statement:

Lemma 8.8.6. Suppose that A is generated by left-dualizable objects. Then
every object of A that is compact relative to A is left-dualizable.

Proof. To show that an object a ∈ A is left-dualizable, it suffices to show that
for any a′ ∈ A, the natural map

(8.5) a′ ⊗HomA(a,1A)→ HomA(a,a′)

is an isomorphism.

Let a ∈ A be compact relative to A. By assumption, both sides in (8.5) preserve
colimits in a′. Hence, it suffices to show that (8.5) is an isomorphism for a′ taken
from a generating collection of objects of A. We take this collection to be that
left-dualizable obejcts. However, (8.5) is an isomorphism for any a, provided that
a′ is left-dualizable.

�

9. Rigid monoidal categories

This section contains, what probably is, the only piece of original mathematics
in this chapter–the notion of rigid monoidal category. These are stable monoidal
categories with particularly strong finiteness properties.

9.1. The notion of rigid monoidal category.
9.1.1. Let A be a stable monoidal category. Let multA denote the tensor product
functor A⊗A→A.

Definition 9.1.2. We shall say that A is rigid if the following conditions hold:

● The object 1A ∈ A is compact;

● The right adjoint of multA, denoted (multA)R, is continuous;

● The functor (multA)R ∶ A→A⊗A is a functor of A-bimodule categories
(a priori it is only a right-lax functor);

A tautological example of a rigid stable monoidal category is A = Sptr.

9.1.3. An example. Let A be a commutative algebra object in the stable symmetric
monoidal category Sptr. Then the stable (symmetric) monoidal category A-mod is
rigid.

More generally, let A be a rigid symmetric monoidal category, and let A be a
commutative algebra in A. Then the stable (symmetric) monoidal category A-mod
is rigid.

80 1. SOME HIGHER ALGEBRA

9.1.4. Here is the link to the more familiar definition of rigidity:

Lemma 9.1.5. Suppose that A is compactly generated. Then A is rigid if and
only if the following conditions hold:

● The object 1A is compact;

● The functor multA sends Ac ×Ac to Ac;

● Every compact object in A admits both a left and a right dual.

Proof. First, the fact that A, and hence A⊗A, is compactly generated implies
that multA preserves compactness if and only if (multA)R is continuous.

Assume that every compact object in A admits a left dual. We claim that in
this case, every right-lax functor between A-module categories F ∶ M→N is strict.
Indeed, it suffices to show that for every m ∈ M and a ∈ Ac, the map

a⊗ F (m)→ F (a⊗m)
is an isomorphism. However, the above map admits an explicit inverse, given by

F (a⊗m)→ a⊗ a∨,L ⊗ F (a⊗m)→ a⊗ F (a∨,L ⊗ a⊗m)→ a⊗ F (m).

Suppose, vice versa, that A is rigid. Let us show that every object a ∈ Ac

admits a left dual. For that end, it suffices to show that the functor

a′ ↦ a′ ⊗ a, A→A

admits a right adjoint, and this right adjoint is a strict (as opposed to right-lax)
functor between left A-modules. However, the right adjoint in question is given by

A
(multA)RÐ→ A⊗A

Id⊗MapsA(a,−)
Ð→ A⊗ Sptr ≃ A.

The situation with right duals is similar.
�

9.1.6. As a corollary, we obtain:

Corollary 9.1.7. Let A be rigid and compactly generated. Then an object of
A is compact if and only if it is left-dualizable and if and only if it is right-dualizable.

9.2. Basic properties of rigid monoidal categories. A fundamental property
of a rigid monoidal category (and one that entails the multiple properties of its
modules) is that it is canonically self-dual when viewed as a plain stable category.

Moreover, this self-duality interacts in a very explicit way with many operations
(such as the monoidal operation on A or monoidal functors between rigid monoidal
categories).

9.2.1. Suppose that A is rigid. In this case, it is easy to see that the data of

ε ∶ A⊗A
multAÐ→ A

MapsA(1A,−)Ð→ Sptr

and

µ ∶ Sptr
1AÐ→A

(multA)RÐ→ A⊗A

define an isomorphism
A→A∨,R = A∨.

We denote the above isomorphism by φA.

9. RIGID MONOIDAL CATEGORIES 81

9.2.2. An example. Consider again the example from Sect. 9.1.3. The co-unit of
the above self-duality data on A-mod is given by

A-mod⊗A-mod
⊗Ð→ A-mod

MapsA(1A,−)Ð→ Sptr .

9.2.3. Let us regard A as a bimodule over itself. Then, according to Sect. 4.1.7,
A∨ also acquires a structure of A-bimodule. It is easy to see that the isomorphism

φA ∶ A→A∨

is compatible with the left A-module structure.

Lemma 9.2.4. Suppose that A is compactly generated. Then the equivalence
(Ac)op →Ac, induced by φA, identifies with a↦ a∨,R.

Proof. We need to construct a functorial isomorphism

MapsA(φA(a),a′) ≃ MapsA(a∨,R,a′), a′ ∈ A.

By definition,

MapsA(φA(a),a′) = ε(a′ ⊠ a) ≃ MapsA(1A,a
′ ⊗ a),

while MapsA(a∨,R,a′) also identifies with MapsA(1A,a
′ ⊗ a), as required.

�

9.2.5. The following is obtained by diagram chase:

Lemma 9.2.6. Let A be a rigid monoidal (∞,1)-category. Then:

(a) The following diagram commutes:

A∨ (multA)∨ÐÐÐÐÐ→ A∨ ⊗A∨

φA

Õ×××
Õ×××
φA⊗φA

A
(multA)RÐÐÐÐÐ→ A⊗A

commutes.

(b) Let F ∶ A1 →A2 be a monoidal functor between rigid monoidal (∞,1)-categories.
Then its right adjoint FR is continuous and the following diagram commutes:

A∨
2

F∨

ÐÐÐÐ→ A∨
1

φA2

Õ×××
Õ×××
φA1

A2
FRÐÐÐÐ→ A1.

9.2.7. It is clear that A is rigid if and only if Arev-mult is. Reversing the multipli-
cation on A we obtain another identification A→A∨, denoted φArev-mult .

We have φArev-mult = φA ○ ϕA, where ϕA is an automorphism of A.

It is easy to see, however, that ϕA is naturally an automorphism10 of A as a
monoidal (∞,1)-category.

If A is symmetric monoidal, then ϕA is canonically isomorphic to the identity
functor.

10We are grateful to J. Lurie for pointing this out to us.

82 1. SOME HIGHER ALGEBRA

Unwinding the definitions, we obtain:

Lemma 9.2.8. Suppose that A is compactly generated. Then ϕA is induced by
the automorphism

a↦ (a∨,L)∨,L

of Ac.

9.3. Modules over rigid categories. It turns out that modules over rigid monoidal
categories exhibit some very special features:

● For a A-module M, the action map actA,M ∶ A ⊗ M → M admits a
continuous right adjoint, and this right adjoint identifies with the dual of
actA,M with respect to the self-duality on A;

● Any right-lax (or left-lax) functor between A-module categories is strict ;

● The tensor product of modules over A is isomorphic to the co-tensor
product;

● An A-module is dualizable if and only if it is such as a plain stable cat-
egory, and the stable category underlying the dual of an A-module M
identifies with the dual of M as a plain stable category.

9.3.1. Throughout this subsection we let A be a rigid monoidal category. Let M
be an A-module. Let

actA,M ∶ A⊗M→M

denote the action functor.

Lemma 9.3.2. The action functor actA,M admits a continuous right adjoint,
which is given by the composition

(9.1) M ≃ Sptr⊗M
µ⊗IdMÐ→ A⊗A⊗M

IdA ⊗actA,MÐ→ A⊗M.

Proof. We construct the adjunction data as follows. The composition

M
(9.1)Ð→ A⊗M

actA,MÐ→ M

identifies with

M ≃ Sptr⊗M
1A⊗IdMÐ→ A⊗M

(multA)R⊗IdMÐ→ A⊗A⊗M
multA ⊗ IdMÐ→ A⊗M

actA,MÐ→ M,

which, by virtue of the (multA, (multA)R)-adjunction, admits a canonically defined
map to

M ≃ Sptr⊗M
1A⊗IdMÐ→ A⊗M

actA,MÐ→ M,

the latter being the identity map on M.

The composition

A⊗M
actA,MÐ→ M

(9.1)Ð→ A⊗M

identifies with

A⊗M ≃ Sptr⊗A⊗M
1A⊗IdA ⊗ IdMÐ→ A⊗A⊗M

(multA)R⊗IdA ⊗ IdMÐ→

→A⊗A⊗A⊗M
IdA ⊗multA ⊗ IdMÐ→ A⊗A⊗M

IdA ⊗actA,MÐ→ A⊗M,

9. RIGID MONOIDAL CATEGORIES 83

and the latter, in turn identifies with

A⊗M
(multA)R⊗IdMÐ→ A⊗A⊗M

IdA ⊗actA,MÐ→ A⊗M,

which by adjunction receives a map from

A⊗M ≃ A⊗ Sptr⊗M
IdA ⊗1A⊗IdMÐ→ A⊗A⊗M

IdA ⊗actA,MÐ→ A⊗M,

while the latter is the identity functor on A⊗M.
�

Combining with Proposition 8.7.2, we obtain:

Corollary 9.3.3. For a left A-module M and a right A-module N, the right
adjoint to the tautological functor

N⊗M→N⊗
A

M

is continuous.

Combining with Lemma 8.8.4, we obtain:

Corollary 9.3.4. Let M be an A-module category. Then an object m ∈ M is
compact relative to A if and only if it is compact.

9.3.5. We also claim:

Lemma 9.3.6. Any right-lax or (left-lax) functor between A-module categories
is strict.

Remark 9.3.7. Note that if A is compactly generated, the assertion of Lemma 9.3.6
has been established in the course of the proof of Lemma 9.1.5.

Proof. Let F ∶ M → N be a right-lax functor between A-module categories.
We need to show that the (given) natural transformation from

(9.2) A⊗M
IdA ⊗FÐ→ A⊗N

actA,NÐ→ N

to

(9.3) A⊗M
actA,NÐ→ M

FÐ→N

is an isomorphism. We will construct an explicit inverse natural transformation.

We consider two more functors A⊗M→N. One is

(9.4)

A⊗M
1A⊗IdA ⊗ IdMÐ→ A⊗A⊗M

(multA)R⊗IdA ⊗ IdMÐ→ A⊗A⊗A⊗M
IdA ⊗ IdA ⊗actA,MÐ→

→A⊗A⊗M
IdA ⊗ IdA ⊗FÐ→ A⊗A⊗N

IdA ⊗actA,NÐ→ A⊗N
actA,NÐ→ N.

The other is

(9.5)

A⊗M
1A⊗IdA ⊗ IdMÐ→ A⊗A⊗M

(multA)R⊗IdA ⊗ IdMÐ→ A⊗A⊗A⊗M
IdA ⊗ IdA ⊗actA,MÐ→

→A⊗A⊗M
IdA ⊗actA,MÐ→ A⊗M

IdA ⊗FÐ→ A⊗N
actA,NÐ→ N.

The unit of the (multA,multA
R)-adjunction gives rise to a natural transfor-

mation from (9.3) to (9.4). The right-lax structure on F gives rise to a natural

84 1. SOME HIGHER ALGEBRA

transformation from (9.4) to (9.5). Finally, the co-unit of the (multA,multA
R)-

adjunction gives rise to a natural transformation from (9.5) to (9.2). Combining,
we obtain the desired natural transformation from (9.3) to (9.2).

The case of a left-lax functor is treated similarly.
�

9.4. Duality for modules over rigid categories–the commutative case. In
this subsection we will show that the theory of duality for modules over a rigid
category is particularly transparent.

9.4.1. Recall (see Sect. 4.1.7) that if A is a stable monoidal category, and M is a
left (resp., right) A-module, and M is dualizable as a plain stable category, then
M∨ is naturally a right (resp., left) A-module.

More generally, if M is a left (resp., right) A-module, and C is a stable category,
then Functex,cont(M,C) is naturally a right (resp., left) A-module.

9.4.2. For the duration of this subsection we let A be a rigid symmetric monoidal
category, so that there is no distinction between left and right modules.

Recall that in this case, the automorphism ϕA of A is canonically the identity
map. So, A∨ identifies with A as an A-bimodule.

9.4.3. We claim:

Proposition 9.4.4. Let M be an A-module. Then M is dualizable as an A-
module if and only if M is dualizable as a plain stable category. In this case, the
dual of M as a A-module identifies canonically with M∨ with its natural A-module
structure.

Proof. Let first A be any stable monoidal category such that the underlying
stable category is dualizable. We consider A∨ equipped with a natural structure of
bimodule over A, see Sect. 9.4.1.

Note that if M is an A-module and C ∈ 1 -CatSt,cocmpl
cont , we have

(9.6) FunctA(M,C⊗A∨) ≃ Functex,cont(M,C),
as right A-modules.

Assume that M is dualizable as a left A-module. In this case, from (9.6) we

obtain that for any C,D ∈ 1 -CatSt,cocmpl
cont , the functor

D⊗ Functex,cont(M,C)→D⊗ Functex,cont(M,D⊗C)
is an equivalence. Hence, M is dualizable as a plain stable category.

Let us now restore the assumption that A be rigid. The dual of M as a A-
module is given by FunctA(M,A). Using the equivalence A ≃ A∨ and (9.6), we
obtain the stated description of the dual of M.

It remains to show that if M is dualizable as a plain stable category, then it is
dualizable as an A-module. For that it suffices to show that the functor

N↦ FunctA(M,N), A-modSt,cocmpl
cont → 1 -CatSt,cocmpl

cont

preserves sifted colimits and the operation of tensoring up by an object of 1 -CatSt,cocmpl
cont .

9. RIGID MONOIDAL CATEGORIES 85

We note that FunctA(M,N) is given as the totalization of the co-simplicial
category with terms

M∨ ⊗ (A∨)⊗n ⊗N.

Now, by Lemma 9.3.2, the transition maps in this cosimplicial category are
continuous functors, and hence, by Corollary 5.3.4, the above totalization can be
rewritten as a geometric realization. This implies the required assertion.

�

9.4.5. Digression: the co-tensor product.

Let O be an associative algebra in a symmetric monoidal category O. Note that in
this case we can regard Orev-mult also as an associative algebra in O. Furthermore,
the category of O-bimodules in O identifies with

(O ⊗Orev-mult)-mod.

Let M and N be a left and a right O-modules in O, respectively. We regard
M⊗N as a (O ⊗Orev-mult)-module in O.

We let

M
O
⊗N ∈ O

denote the object

HomO,O⊗Orev-mult(O,M⊗N),
provided that the latter exists.

9.4.6. Applying this to O = 1 -CatSt,cocmpl
cont and

O = A ∈ AssocAlg(1 -CatSt,cocmpl
cont),

we obtain the notion of co-tensor product of A-module categories.

9.4.7. We claim:

Proposition 9.4.8. Suppose that A is rigid. Then for A-modules M and N,

we have a canonical isomorphism in 1 -CatSt,cocmpl
cont

M
A
⊗N ≃ N⊗

A
M.

Proof. First we note that the assumption that A is rigid implies that A ⊗
Arev-mult is also rigid. Consider A as a module over A ⊗Arev-mult. From Propo-
sition 9.4.4, it follows that the dual of A as a module over A⊗Arev-mult identifies
with A.

Hence,

M
A
⊗N ∶= FunctA⊗Arev-mult(A,M⊗N) ≃ A ⊗

A⊗Arev-mult
(M⊗N) ≃ N⊗

A
M,

as required.
�

86 1. SOME HIGHER ALGEBRA

9.5. Duality for modules over rigid categories–the general case. In this
subsection we will explain the (minor) modifications needed to generalize the results
from Sect. 9.4 to the case when A is just a rigid monoidal category (i.e., not
necessarily symmetric monoidal).

These modifications will amount to a twist by the automorphism ϕA of A.

9.5.1. In what follows, for a right A-module N, we denote by Nϕ the A-module,
with the same underlying category, but where the action of A is obtained by pre-
composing with the inverse of the automorphism ϕA of A.

9.5.2. Then we have the following variant of Proposition 9.4.4 (with the same
proof):

Proposition 9.5.3. Let M be a left A-module. Then M is dualizable as a left
A-module if and only if M is dualizable as a plain stable category. In this case, the
dual of M as a right A-module identifies canonically with (M∨)ϕ.

As a corollary we obtain:

Corollary 9.5.4. Let M (resp., N) be a dualizable left (resp., right) A-

module. Then N⊗
A

M ∈ 1 -CatSt,cocmpl
cont is dualizable, and its dual is given by

(M∨)ϕ ⊗
A

N∨.

Proof. Follows from the fact that for any stable monoidal category A, if M
is a dualizable left A-module with dual L, and N is a right module, dualizable as a
plain stable category, then the tensor product N⊗

A
M is dualizable with dual given

by
L⊗

A
N∨.

�

9.5.5. We will now consider the co-tensor product of modules over A. We have
the following variant of Proposition 9.4.8, with the same proof:

Proposition 9.5.6. Suppose that A is rigid. Then for a left A-module M and

a right A-module N, we have a canonical isomorphism in 1 -CatSt,cocmpl
cont

M
A
⊗N ≃ Nϕ ⊗

A
M.

10. DG categories

10.1. The (∞,1)-category of vector spaces.
10.1.1. Throughout this book we will be working over a ground field k of char-
acteristic 0. To k we can attach the (∞,1)-category Vect of complexes of vector
spaces over k.

This is the derived ∞-category attached to the abelian category of vector spaces,
in the sense of [Lu2, Sect. 1.3.2].

This (∞,1)-category is endowed with a t-structure, and the corresponding
abelian category Vect♡ is the usual abelian category of vector spaces over k.

The (∞,1)-category Vect is stable and cocomplete.

10. DG CATEGORIES 87

Remark 10.1.2. Starting from an abelian category with enough projectives A,
the definition in [Lu2, Sect. 1.3.2.7] produces the ‘bounded above’ derived (∞,1)-
category D−(A). In the case of A = Vect♡, one recovers the entire Vect as the right
completion of Vect− with respect to its t-structure. I.e., Vect is the unique stable
category equipped with a t-structure such that its bounded above part is Vect− and
for any V ∈ Vect, the tautological map

colim
n

τ≤n(V)→ V

is an isomorphism.

The construction of the derived (∞,1)-category D−(A) given in [Lu2, Sect.
1.3.2.7] appeals to an explicit procedure called ‘the differential graded nerve’. We
have no desire to reproduce it here because this construction appeals to a particular
model of (∞,1)-category (namely, quasi-categories): the explicit knowledge of what
it is does not usually add any information of practical import. What is important
to know is that the homotopy category of D−(A), i.e., (D−(A))ordn, is the usual
triangulated bounded above derived category of A.

The good news, however, is that the derived (∞,1)-category D−(A) can be
characterized by a universal property, see [Lu2, Theorem 1.3.3.2] or the less heavy
looking [Lu2, Proposition 1.3.3.7].

10.1.3. We let
Vectf.d. ⊂ Vect,

denote the full subcategory of finite complexes of finite-dimensional vector spaces
over k.

The corresponding abelian category (Vectf.d.)♡ is that of usual finite-dimensional
vector spaces over k.

We have
Vectf.d. = Vectc,

and Vect is compactly generated by Vectf.d..

10.1.4. The fact of crucial importance is that the stable category Vect carries a
symmetric monoidal structure uniquely characterized by the following conditions
([Lu2, Theorems 4.5.2.1 and 7.1.2.13]):

● It is compatible with the (usual) symmetric monoidal structure on Vect♡ ⊂
Vect.

● The monoidal operation Vect×Vect → Vect preserves colimits in each
variable.

The second of the above conditions means that Vect is a commutative algebra

object in 1 -CatSt,cocmpl
cont .

10.1.5. The symmetric monoidal structure on Vect induces one on its full subcat-
egory Vectf.d..

Every object in the symmetric monoidal category Vectf.d. is dualizable. Hence,
by Sect. 4.1.4, the functor of dualization defines an equivalence

(Vectf.d.)op → Vectf.d. .

From Lemma 9.1.5 we obtain:

88 1. SOME HIGHER ALGEBRA

Corollary 10.1.6. The stable symmetric monoidal (∞,1)-category Vect is
rigid.

10.2. The Dold-Kan functor(s).
10.2.1. Since Sptr is the unit object in the symmetric monoidal (∞,1)-category

1 -CatSt,cocmpl
cont , we have a canonically defined symmetric monoidal functor

(10.1) Sptr→ Vect .

This functor admits a right adjoint, denoted

Vect
Dold-KanSptr

Ð→ Sptr .

The functor Dold-KanSptr is continuous (e.g., by Lemma 9.2.6(b)).

10.2.2. The functor Dold-KanSptr has the following additional property: it is t-
exact (i.e., compatible with the t-structures).

In particular, Dold-KanSptr restricts to a functor

Vect≤0 Dold-KanComGrp

Ð→ ComGrp(Spc),

where we recall that ComGrp(Spc) identifies with Sptr≤0.

10.2.3. The composition

Vect≤0 Dold-KanComGrp

Ð→ ComGrp(Spc)
oblvComGrpÐ→ Spc,

or, which is the same

Ω∞ ○Dold-KanSptr,

is the usual Dold-Kan functor

Vect≤0 Dold-KanÐ→ Spc.

The functor Dold-Kan preserves filtered colimits and all limits. In addition,
Dold-Kan commutes with sifted colimits (because the forgetful functor oblvComGrp

does, see Volume II, Chapter 6, Sect. 1.1.3).

For V ∈ Vect≤0 we have

πi(Dold-Kan(V)) =H−i(V), i = 0,1, ...

10.2.4. By construction, the functor Dold-Kan is the right adjoint to the compo-
sition

(10.2) Spc
Σ∞

Ð→ Sptr
(10.1)Ð→ Vect .

In terms of the equivalence of Lemma 2.1.8, the above functor (10.2) corre-
sponds to the object k ∈ Vect, and can be thought of as the functor of chains with
coefficients in k.

S ↦ C●(S, k).

10. DG CATEGORIES 89

10.3. The notion of DG category. In the rest of this chapter we will develop the
theory of modules (in 1 -CatSt) over the (symmetric) monoidal categories Vectf.d.

and Vect.

However, the entire discussion is equally applicable, when we replace the pair
Vectf.d. ⊂ Vect by

(Ac ⊂ A),
where A is a rigid symmetric monoidal category that satisfies the equivalent con-
ditions of Lemma 9.1.5.

10.3.1. We let DGCatnon-cocmpl denote the full subcategory in the (∞,1)-category

Vectf.d. -mod = Vectf.d. -mod(1 -Cat)

(see Sect. 3.5.7 for the notation), consisting of those Vectf.d.-modules C, for which:

● C is stable;
● The action functor Vectf.d. ×C→C is exact in both variables.

10.3.2. The identification (Vectf.d.)op ≃ Vectf.d. induces an involution

C↦Cop

on DGCatnon-cocmpl.

10.3.3. We let DGCatcont denote the (∞,1)-category

Vect -modSt,cocmpl
cont ∶= Vect -mod(1 -CatSt,cocmpl

cont).

By unwinding the definitions, we obtain:

Lemma 10.3.4.

(a) The functor

DGCatcont → DGCatnon-cocmpl,

given by restriction of action along Vectf.d. ↪ Vect is 1-replete, i.e., is an equiva-
lence on a 1-full subcategory.

(b) An object of DGCatnon-cocmpl lies in the essential image of the functor from (a)
if and only if the underlying stable category is cocomplete.

(c) A morphism in DGCatnon-cocmpl between objects in the essential image of DGCatcont

comes from a morphism in DGCatcont if and only if the underlying functor between
the corresponding stable categories is continuous.

The (∞,1)-category DGCatcont will be the principal actor in this book.

We introduce one more notion: we let DGCat ⊂ DGCatnon-cocmpl be the full sub-
category equal to the essential image of the functor DGCatcont → DGCatnon-cocmpl.

Thus, DGCatcont is a 1-full subcategory of DGCat with the same class of objects
(i.e., cocomplete DG categories), but in the latter we allow non-continuous functors.

90 1. SOME HIGHER ALGEBRA

10.3.5. Let C,D be two objects of DGCatnon-cocmpl. By Sect. 3.6.5, we can asso-
ciate to them an object

Hom1 -Cat,Vectf.d.(D,C) ∈ Vectf.d. -mod(1 -Cat).

It is easy to see, however, that Hom1 -Cat,Vectf.d.(D,C) belongs to the full sub-
category

DGCatnon-cocmpl ⊂ Vectf.d. -mod(1 -Cat).

We will use the notation:

Functk(D,C) ∶= Hom1 -Cat,Vectf.d.(D,C).

This is the DG category of exact k-linear functors from D to C. We have

(Functk(D,C))Spc = MapsDGCatnon-cocmpl(D,C).

Note that if C is cocomplete, then so is Functk(D,C), i.e., in this case it is an
object of DGCat.

10.3.6. Let now C,D be two objects of DGCatcont. By Sect. 8.2.1, we can consider
the object

Hom1 -CatSt,cocmpl
cont ,Vect(D,C) =∶ FunctVect(D,C) ∈ DGCatcont .

We will use the notation:

Functk,cont(D,C) ∶= FunctVect(D,C).

This is the DG category of continuous exact k-linear functors D to C. We have

(Functk,cont(D,C))Spc = MapsDGCatcont(D,C).

By construction, we have a map in DGCatcont:

(10.3) Functk,cont(D,C)→ Functk(D,C),
which is fully faithful at the level of the underlying (∞,1)-categories.

10.3.7. Let C be an object of DGCatnon-cocmpl. For a pair of objects c0,c1 ∈ C we
introduce the object

Mapsk,C(c0,c1) ∈ Vect

by

(10.4) MapsVect(V,Mapsk,C(c0,c1)) ≃ MapsC(V ⊗ c0,c1), V ∈ Vectf.d. .

It is easy to see that Mapsk,C(c0,c1) always exists.

10.3.8. If C ∈ DGCat, then we have a canonical isomorphism

Mapsk,C(c0,c1) ≃ HomVect(c0,c1),

i.e., the isomorphism (10.4) holds for V ∈ Vect (and not just Vectf.d.).

Finally, we note that we have

MapsC(c0,c1) ≃ Dold-KanSptr (Mapsk,C(c0,c1)) .

10. DG CATEGORIES 91

10.3.9. The 2-categorical structure. According to Sect. 8.3, the structure of (∞,1)-
category on DGCatcont can be naturally upgraded to a structure of (∞,2)-category.

We denote the resulting (∞,2)-category by DGCat2 -Cat
cont . By Sect. 8.3.3, we

have
MapsDGCat2 -Cat

cont
(D,C) ≃ Functk,cont(D,C).

We also note (see Lemma 9.3.6) that if a morphism in DGCatcont, when viewed
as plain stable categories, admits a continuous right adjoint, then the initial 1-
morphism admits a right adjoint in the (∞,2)-category DGCat2 -Cat

cont .

10.4. The symmetric monoidal structure on DG categories.
10.4.1. According to Sect. 8.2.7, the (∞,1)-category DGCatcont is equipped with
a symmetric monoidal structure. We will denote the corresponding monoidal oper-
ation by

C,D↦C ⊗
Vect

D.

For c ∈ C and d ∈ D we let denote by c⊠
k

d ∈ C ⊗
Vect

D the image of c×d ∈ C×D

under the tautological functor

C ×D→C ⊗
Vect

D.

10.4.2. In particular, given C,D ∈ DGCatcont, we can talk about the datum of
duality between them, the latter being the datum of functors

µ ∶ Vect→C ⊗
Vect

D and D ⊗
Vect

C→ Vect

such that the corresponding identities hold.

10.4.3. According to Proposition 9.4.4, a DG category C is dualizable as an object
of DGCatcont if and only if it is dualizable as a plain stable category.

Moreover, again by Proposition 9.4.4, the datum of duality between C and D
as DG categories is equivalent to the datum of duality between C and D as plain
stable categories.

10.4.4. Explicitly, if
C ⊗

Vect
D→ Vect

is the co-unit of a duality in DGCatcont, then the composition

C⊗D→C ⊗
Vect

D→ Vect
Dold-KanSptr

Ð→ Sptr

is the co-unit of a duality in 1 -CatSt,cocmpl
cont .

In fact, for any C ∈ DGCatcont, the composed functor

Functk,cont(C,Vect)→ Functex,cont(C,Vect) Dold-KanSptr

Ð→ Functex,cont(C,Sptr)
is an equivalence, see the proof of Proposition 9.4.4.

10.4.5. Finally, we mention that according to Sect. 8.3.4, the above symmetric
monoidal structure on the (∞,1)-category DGCatcont naturally upgrades to a sym-
metric monoidal structure on the (∞,2)-category

DGCat2 -Cat
cont .

92 1. SOME HIGHER ALGEBRA

10.5. Compact objects and ind-completions.
10.5.1. Let C be an object of DGCat. We note that, according to Corollary 9.3.4,
an object c ∈ C is compact if and only if it is compact relative to Vect, i.e., the
functor

Mapsk,C(c,−), C→ Vect

preserves filtered colimits (equivalently, direct sums or all colimits).

Alternatively, the equivalence of the two notions follows from the fact that the
functor

Dold-KanSptr ∶ Vect→ Sptr

is continuous and conservative.

10.5.2. The full subcategory Cc ⊂ C is preserved by the monoidal operation

Vectf.d ×C→C.

Hence, Cc naturally acquires a structure of object of DGCatnon-cocmpl.

10.5.3. Vice versa, let C0 be an object of DGCatnon-cocmpl. Consider the corre-
sponding object

Ind(C0) = Functex((C0)op,Sptr).

The action of Vectf.d. on C0 defines an action of Vectf.d. on Ind(C0) by
Sect. 4.1.7.

By Lemma 10.3.4(b), since Ind(C0) is cocomplete, we obtain that Ind(C0) is
an object of DGCat.

10.5.4. By construction, the tautological functor

C0 → Ind(C0)

is a functor of Vectf.d.-module categories.

For C ∈ DGCatcont, the equivalence

Functex,cont(Ind(C0),C)→ Functex(C0,C)

is a functor of bimodule categories over Vectf.d.. Hence, combining with Lemma 10.3.4(c),
we obtain an equivalence

(10.5) Functk,cont(Ind(C0),C) ≃ Functk(C0,C).

In other words, we obtain that the ind-completion of C0 as a plain stable
category is also the ind-completion as a DG category.

10. DG CATEGORIES 93

10.5.5. We claim that the DG category Ind(C0) can also be described as Functk((C0)op,Vect).
More precisely:

Lemma 10.5.6. The functor

Functk((C0)op,Vect)→ Functex((C0)op,Vect) Dold-KanSptr

Ð→ Functex((C0)op,Sptr) = Ind(C0)
is an equivalence.

Proof. By (10.5), we have

Functk((C0)op,Vect) ≃ Functk,cont(Ind((C0)op),Vect),
which by Sect. 10.4.3 identifies with

(Ind((C0)op))∨ ≃ Ind(C0),
as required.

�

10.5.7. It follows from Corollary 8.7.4 that if C and D are compactly generated
DG categories, then the same is true for C ⊗

Vect
D. Moreover, objects of the form

c ⊠
k

d ∈ C ⊗
Vect

D, c ∈ Cc,d ∈ Dd

are the compact generators of C ⊗
Vect

D.

In addition, the following is obtained by repeating the proof of Proposition 7.4.2:

Proposition 10.5.8. For c0,c ∈ C and d0,d ∈ D with c0,d0 compact, we have
a canonical isomorphism

Mapsk,C(c0,c)⊗
k
Mapsk,D(d0,d) ≃Mapsk,C ⊗

Vect
D(c0 ⊠

k
d0,c ⊠

k
d).

10.6. Change of notations. In the main body of the book, the only stable cat-
egories that we will ever encounter will be DG categories. For this reason we will
simplify our notations as follows:

● For C ∈ DGCatnon-cocmpl and c0,c1 ∈ C we will write MapsC(c0,c1)
instead of Mapsk,C(c0,c1) (i.e., our MapsC(−,−) is an object of Vect,

rather than Sptr; the latter is obtained by applying the functor Dold-KanSptr);

● For C,D ∈ DGCatnon-cocmpl we will write Funct(D,C) instead of Functk(D,C);
● For C,D ∈ DGCat we will write Functcont(D,C) instead of Functk,cont(D,C);
● For C,D ∈ DGCat we will write C⊗D instead of C ⊗

Vect
D;

● For C,D ∈ DGCat and c ∈ C,d ∈ D we will write c ⊠ d instead of c ⊠
k

d.

CHAPTER 2

Basics of derived algebraic geometry

Introduction

This Chapter is meant to introduce the basic objects of study in derived alge-
braic geometry that will be used in the subsequent chapters.

0.1. Why prestacks? The most general (and, perhaps, also the most important)
type of algebro-geometric object that we will introduce is the notion of prestack.

0.1.1. Arguably, there is an all-pervasive problem with how one introduces classical
algebraic geometry. Even nowadays, any introductory book on algebraic geometry
defines schemes as locally ringed spaces. The problem with this is that a locally
ringed space is a lot of structure, so the definition is quite heavy.

However, one does not have to go this way if one adopts Grothendieck’s lan-
guage of points. Namely, whatever the category of schemes is, it embeds fully
faithfully into the category of functors

(Schaff)op → Set,

where Schaff is the category of affine schemes, i.e., (Schaff)op is the category of
commutative rings.

Now, it is not difficult to characterize which functors (Schaff)op → Set corre-
spond to schemes: essentially the functor needs to have a Zariski atlas, a notion
that has an intrinsic meaning.

0.1.2. This is exactly the point of view that we will adopt in this Chapter and
throughout the book, with the difference that instead of classical (=usual=ordinary)
affine schemes we consider derived affine schemes, where, by definition, the cate-
gory of the latter is the one opposite to the category of connective commutative
DG algebras (henceforth, when we write Schaff we will mean the derived version,

and denote the category of classical affine schemes by clSchaff).

And instead of functors with values in the category Set of sets we consider the
category of functors

(0.1) (Schaff)op → Spc,

where Spc is the category of spaces (a.k.a. ∞-groupoids).

We denote the category of functors (0.1) by PreStk and call its objects prestacks.
I.e., a prestack is something that has a Grothendieck functor of points attached to
it, with no further conditions or pieces of structure.

Thus, a prestack is the most general kind of space that one can have in algebraic
geometry.

95

96 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

All other kinds of algebro-geometric objects that we will encounter will be
prestacks, that have some particular properties (as opposed to extra pieces of struc-
ture). This includes schemes (considered in Sect. 3), Artin stacks (considered in
Sect. 4), ind-schemes and inf-schemes (considered in Volume II, Chapter 2), formal
moduli problems (considered in Volume II, Chapter 5), etc.

0.1.3. However, the utility of the notion of prestack goes beyond being a gen-
eral concept that contains the other known types of algebro-geometric objects as
particular cases.

Namely, there are some algebro-geometric constructions that can be carried out
in this generality, and it turns out to be convenient to do so.

The central among these is the assignment to a prestack Y of the category
QCoh(Y) of quasi-coherent sheaves on Y, considered in the next Chapter, i.e.,
Chapter 3. In fact, there is a canonically defined functor

QCoh∗PreStk ∶ (PreStk)op → DGCatcont, Y ↦ QCoh(Y).

The definition of QCoh∗PreStk is actually automatic: it is the right Kan extension
of the functor

QCoh∗Schaff ∶ (Schaff)op → 1 -Cat

that attaches to

Spec(A) = S ∈ Schaff

the DG category

QCoh(S) ∶= A-mod

and to a map f ∶ S′ → S the pullback functor f∗ ∶ QCoh(S)→ Coh(S′).
In other words,

(0.2) QCoh(Y) = lim
(S y→Y)∈((Schaff)/Y)op

QCoh(S).

So an object F ∈ QCoh(Y) is a assignment

(S y→ Y)↝ FS,y ∈ QCoh(S),

(S′ f→ S)↝ FS′,y○f ≃ f∗(FS,y),
satisfying a homotopy compatible system of compatibilities for compositions of mor-
phisms between affine schemes.

Note that the expression in (0.2) involves taking a limit in the ∞-category
1 -Cat. Thus, in order to assign a meaning to it (equivalently, the meaning to the
expression ‘homotopy compatible system of compatibilities’) we need to input the
entire machinery of ∞-categories, developed in [Lu1]. Thus, it is fair to say that
Lurie gave us the freedom to consider quasi-coherent sheaves on prestacks.

Note that before the advent of the language of ∞-categories, the definition of
the (derived) category of quasi-coherent sheaves on even such benign objects as
algebraic stacks was quite awkward (see [LM]). Essentially, in the past, each time
one needed to construct a triangulated category, one had to start from an abelian
category, take its derived category, and then perform some manipulations on it in
order to obtained the desired one.

INTRODUCTION 97

As an application of the assignment

Y ↝ QCoh(Y)
we obtain an automatic construction of the category of D-modules/crystals (see
Volume II, Chapter 4). Namely,

D-mod(Y) ∶= QCoh(YdR),
where YdR is the de Rham prestack of Y.

0.1.4. Another example of a theory that is convenient to develop in the generality
of prestacks is deformation theory, considered in Volume II, Chapter 1. Here, too, it
is crucial that we work in the context of derived (as opposed to classical) algberaic
geometry.

0.1.5. As yet another application of the general notion of prestack is the construc-
tion of the Ran space of a given scheme, along with its category of quasi-coherent
sheaves or D-modules. We will not discuss it explicitly in this book, and refer the
reader to, e.g., [Ga2].

0.2. What do we say about prestacks? The notion of prestack is so gen-
eral that it is, of course, impossible to prove anything non-trivial about arbitrary
prestacks.

What we do in Sect. 1 is study some very formal properties of prestacks, which
will serve us in the later chapters of this book.

0.2.1. The notion of n-coconnectivity. As was said before, the category PreStk is
that of functors (Schaff)op → Spc, where

(Schaff)op ∶= ComAlg(Vect≤0).
Now, arguably, the category ComAlg(Vect≤0) is complicated, and it is natural

to try to approach it via its successive approximations, namely, the categories

ComAlg(Vect≥−n,≤0)
of connective commutative DG algebras that live in cohomological degrees ≥ −n.

We denote the corresponding full subcategory in Schaff by ≤nSchaff ; we call its
objects n-coconnective affine schemes. We can consider the corresponding category
of functors

(≤nSchaff)op → Spc

and denote it by ≤nPreStk.

The ∞-categories ≤nPreStk and ≤nStk are related by a pair of mutually adjoint
functors

(0.3) ≤nPreStk⇄ PreStk,

given by restriction and left Kan extension along the inclusion ≤nSchaff ↪ Schaff ,
respectively, with the left adjoint in (0.3) being fully faithful.

Thus, we can think of each ≤nPreStk as a full subcategory in PreStk; we referred
to its objects as n-coconnective prestacks. Informally, a functor in (0.1) is n-
coconnective if it is completely determined by its values on n-coconnective affine
schemes.

The subcategories ≤nPreStk form a sequence of approximations to PreStk.

98 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

0.2.2. Convergence. A technically convenient condition that one can impose on a
prestack is that of convergence. By definition, a functor Y in (0.1) is convergent if

for any S ∈ Schaff the map

Y(S)→ lim
n
Y(≤nS),

is an isomorphism, where ≤nS denotes the n-coconnective truncation of S.

Convergence is a necessary condition for a prestack to satisfy in order to admit
deformation theory, see Volume II, Chapter 1, Sect. 7.1.

0.2.3. Finite typeness. Consider the categories ≤nSchaff and ≤nPreStk. We shall say
that an object S ∈ ≤nSchaff (resp., Y ∈ ≤nPreStk) is of finite type (resp., locally of
finite type) if the corresponding functor (0.1) takes filtered limits of affine schemes
to colimits in Spc.

It follows tautologically that an object Y ∈ ≤nPreStk is locally of finite type if
and only if the corresponding functor (0.1) is completely determined by its values
on affine schemes of finite type.

Now, the point is that, as in the case of classical algebraic geometry, the con-
dition on an object Spec(A) = S ∈ ≤nSchaff to be of finite type is very explicit:
it is equivalent to H0(A) being finitely generated over our ground field, and each
H−i(A) (where i runs from 1 to n) being finitely generated as a module over H0(A).

Thus, objects of ≤nPreStk that are locally of finite type are precisely those that
can be expressed via affine schemes that are ‘finite dimensional’.

0.2.4. Inserting the word ‘almost’. Consider now the category PreStk.

We shall say that a prestack is locally almost of finite type if it is convergent,
and for any n, the functor ← in (0.3) produces from it an object locally of finite
type.

The class of prestacks locally almost of finite type will play a central role in
this book. Namely, it is for this class of prestacks that we will develop the theory
of ind-coherent sheaves and crystals.

0.3. What else is done in this Chapter?
0.3.1. In Sect. 2 we introduce a hierarchy of Grothendieck topologies on Schaff :
flat, ppf, étale, Zariski. Each of the above choices gives rise to a full subcategory

Stk ⊂ PreStk

consisting of objects that satisfy the corresponding descent condition. We refer to
the objects of Stk as stacks.

The primary interest in Sect. 2 is how the descent condition interacts with the
conditions of n-coconnectivity, convergence and local (almost) finite typeness.

0.3.2. In the rest of this Chapter we discuss two specific classes of stacks: schemes
and Artin stacks (the former being a particular case of the latter).

The corresponding sections are essentially a paraphrase of some parts of [TV1,
TV2] in the language of ∞-categories.

1. PRESTACKS 99

0.3.3. In Sect. 3 we introduce the full subactegory Sch ⊂ PreStk of (derived)
schemes1.

Essentially, a prestack Z is a scheme if it is a stack and admits a Zariski atlas
(i.e., a collection of affine schemes Si equipped with open embeddings Si → Y).

We will not go deep into the study of derived schemes, but content ourselves
with establishing the properties related to n-coconnectivity and finite typeness.
These can be summarized by saying that a scheme is n-coconnective (resp., of
finite type) if and only if some (equivalently, any) Zariski atlas consists of affine
schemes that are n-coconnective (resp., of finite type).

0.3.4. In Sect. 4 we introduce the hierarchy of k-Artin stacks, k = 0,1,2.... Our
definition is a variation of the notion of a k-geometric stack defined by Simpson in
[Sim] and developed in the derived context in [TV2].

For an individual k, what we call a k-Artin stack may be different from what
is accepted elsewhere in the literature (e.g., in our definition, only schemes that are
disjoint unions of affines are 0-Artin stacks; all other schemes are 1-Artin stacks).
However, the union over all k produces the same class of objects as in other defini-
tions, called Artin stacks.

The definition of k-Artin stacks proceeds by induction on k. By definition, a
k-Artin stack is an étale prestack that admits a smooth (k − 1)-representable atlas
by affine schemes.

As in the case of schemes, we will only discuss the properties of Artin stacks
related to n-coconnectivity and finite typeness, with results parallel to those men-
tioned above: an Artin stack is n-coconnective (resp., of finite type) if and only
if some (equivalently, any) smooth atlas consists of affine schemes that are n-
coconnective (resp., of finite type).

1. Prestacks

In this section we introduce the principal actors in derived algebraic geometry:
prestacks.

We will focus on the very formal aspects of the theory, such as what it means
for a prestack to be n-coconnective (for some integer n) or to be locally (almost)
of finite type.

1.1. The notion of prestack. Derived algebraic geometry is ‘born’ from connec-
tive commutative DG algebras, in the same way as classical algebraic geometry (over
a given ground field k) is born from commutative algebras. Following Grothendieck,
we will think of algebro-geometric objects as prestacks, i.e., arbitrary functors from
the ∞-category of connective commutative DG algebras to that of spaces.

1Henceforth we will drop the adjective ‘derived’.

100 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

1.1.1. Consider the stable symmetric monoidal Vect, and its full monoidal sub-
category Vect≤0. By a connective commutative DG algebra over k we shall mean
a commutative algebra object in Vect≤0. The totality of such algebras forms an
(∞,1)-category, ComAlg(Vect≤0).

Remark 1.1.2. Note that what we call a ‘connective commutative DG algebra
over k’ is really an abstract notion: we are appealing to the general notion of
commutative algebra in symmetric monoidal category from Chapter 1, Sect. 3.3.

However, one can show (see [Lu2, Proposition 7.1.4.11]) that the homotopy

category of the ∞-category ComAlg(Vect≤0) is a familiar object: it is obtained
from the category of what one classically calls ‘commutative differential graded
algebras over k concentrated in degrees ≤ 0’ by inverting quasi-isomorphisms.

1.1.3. We define the category of (derived) affine schemes over k to be

Schaff ∶= (ComAlg(Vect≤0))op.

1.1.4. By a (derived) prestack we shall mean a functor (Schaff)op → Spc. We let
PreStk denote the (∞,1)-category of prestacks, i.e.,

PreStk ∶= Funct((Schaff)op,Spc).

1.1.5. Yoneda defines a fully faithful embedding

Schaff ↪ PreStk .

For S ∈ Schaff and Y ∈ PreStk we have, tautologically,

MapsPreStk(S,Y) ≃ Y(S).

1.1.6. Let f ∶ Y1 → Y2 be a map of prestacks. We shall say that f is affine
schematic if for every S ∈ (Schaff)/Y2

, the fiber product S ×
Y2

Y1 ∈ PreStk is repre-

sentable by an affine scheme.

1.2. Coconnectivity conditions: affine schemes. Much of the analysis in de-
rived algebraic geometry proceeds by induction on how many negative cohomolog-
ical degrees we allow our DG algebras to live in. We initiate this discussion in the
present subsection.

1.2.1. For n ≥ 0, consider the full subcategory

Vect≥−n,≤0 ⊂ Vect≤0 .

This fully faithful embedding admits a left adjoint, given by the truncation
functor τ≥−n. It is clear that if V ′

1 → V ′
1 is a morphism in Vect≤0 such that

τ≥−n(V ′
1)→ τ≥−n(V ′

1) is an isomorphism, then

τ≥−n(V ′
1 ⊗ V2)→ τ≥−n(V ′

1 ⊗ V2)
is an isomorphism for any V2 ∈ Vect≤0.

This implies that the (∞,1)-category Vect≥−n,≤0 acquires a uniquely defined
symmetric monoidal structure for which the functor τ≥−n is symmetric monoidal.
It follows from the symmetric monoidal version of Chapter 1, Lemma 3.2.4 that
the embedding

(1.1) Vect≥−n,≤0 ↪ Vect≤0

1. PRESTACKS 101

has a natural right-lax symmetric monoidal structure.

1.2.2. In particular, the functor (1.1) induces a fully faithful functor

(1.2) ComAlg(Vect≥−n,≤0)→ ComAlg(Vect≤0),

whose essential image consists of those objects of ComAlg(Vect≤0) that belong to
Vect≥−n,≤0 when regarded as plain objects of Vect≤0.

The functor (1.2) admits a left adjoint

(1.3) τ≥−n ∶ ComAlg(Vect≤0)→ ComAlg(Vect≥−n,≤0)
that makes the diagram

ComAlg(Vect≤0) τ≥−nÐÐÐÐ→ ComAlg(Vect≥−n,≤0)

oblvComAlg

×××Ö
×××Ö

oblvComAlg

Vect≤0 τ≥−nÐÐÐÐ→ Vect≥−n,≤0

commute.

1.2.3. We shall say that S ∈ Schaff is n-coconnective if S = Spec(A) with A lying
in the essential image of (1.2). In other words, if H−i(A) = 0 for i > n.

We shall denote the full subcategory of Schaff spanned by n-coconnective ob-
jects by ≤nSchaff .

1.2.4. For n = 0 we recover

clSchaff ∶= ≤0Schaff ,

the category of classical affine schemes.

1.2.5. The embedding ≤nSchaff ↪ Schaff admits a right adjoint, denoted

S ↦ ≤nS,

and given at the level of commutative DG algebras by the functor (1.3).

Thus, ≤nSchaff is a colocalization of Schaff . We denote the corresponding colo-
calization functor

Schaff → ≤nSchaff ↪ Schaff

by S ↦ τ≤n(S).

Remark 1.2.6. We choose to notationally distinguish objects of ≤nSchaff and
their images in Schaff . Doing otherwise would cause notational clashes when talking
about descent conditions.

1.2.7. We will say that S ∈ Schaff is eventually coconnective if it belongs to ≤nSchaff

for some n.

We denote the full subcategory of Schaff spanned by eventually coconnective
objects by <∞Schaff .

1.3. Coconnectivity conditions: prestacks.

102 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

1.3.1. Consider the (∞,1)-category

≤nPreStk ∶= Funct((≤nSchaff)op,Spc).

Restriction defines a functor

(1.4) PreStk→ ≤nPreStk,

that we will denote by Y ↦ ≤nY.

1.3.2. The functor (1.4) admits a fully faithful left adjoint, given by the left Kan
extension

LKE≤nSchaff↪Schaff ∶ ≤nPreStk→ PreStk .

Thus, ≤nPreStk is a colocalization of PreStk. We denote the resulting colocal-
ization functor

PreStk→ ≤nPreStk→ PreStk

by Y ↦ τ≤n(Y).

Remark 1.3.3. The usage of the symbol τ≤n may diverge from other sources’
conventions: the latter use τ≤n to denote the corresponding truncation of the Post-
nikov tower, whereas we denote the latter by the symbol P≤n, see Sect. 1.8.5 below.

Tautologically, if Y is representable by an affine scheme S = Spec(A), then the
above two meanings of τ≤n coincide: the prestack τ≤n(Y) is representable by the
affine scheme τ≤n(S).
1.3.4. We shall say that Y ∈ PreStk is n-coconnective if it belongs to the essential
image of the functor LKE≤nSchaff↪Schaff .

For example, an affine scheme is n-coconnective in the sense of Sect. 1.2.3 if
and only if its image under the Yoneda functor is n-coconnective as a prestack.

We will often identify ≤nPreStk with its essential image under the above functor,
and thus think of ≤nPreStk as a full subcategory of PreStk.

1.3.5. We will say that Y ∈ PreStk is eventually coconnective if it is n-coconnective
for some n. We shall denote the full subcategory of eventually coconnective objects
of PreStk by <∞PreStk.

1.3.6. Classical prestacks. Let n = 0. We shall call objects of ≤0PreStk ‘classical’
prestacks, and use for it also the alternative notation clPreStk.

We will also denote the corresponding restriction functor Y ↦ clY, and the
corresponding colocalization functor

PreStk→ clPreStk→ PreStk

by Y ↦ τ cl(Y).
1.3.7. The right Kan extension. The restriction functor

Y ↦ ≤nY ∶ PreStk→ ≤nPreStk

admits also a right adjoint, given by right Kan extension.

This functor lacks a clear geometric meaning. However, it can be explicitly
described: by adjunction we have

(RKE≤nSchaff↪Schaff (Y)) (S) ≃ Y(τ≤n(S)).

1. PRESTACKS 103

1.4. Convergence. The idea of the notion of convergence is that if we perceive a
connective commutative DG algebra as built iteratively by adding lower and lower
cohomologies, we can ask whether the value of a given prestack on such an algebra
to be determined by its values on the above sequence of truncations.

Convergence is a necessary condition if we want to approach our prestack via
deformation theory (see Volume II, Chapter 1, Sect. 7.1).

1.4.1. Le S be an object of Schaff . Note that the assignment

n↦ τ≤n(S)
is naturally a functor

Z≥0 → (Schaff)/S .

1.4.2. Let Y be a prestack. We say that Y is convergent if for S ∈ Schaff , the map

Y(S)→ lim
n
Y(τ≤n(S))

is an isomorphism.

1.4.3. Since for every connective commutative DG algebra A, the map

A→ lim
n
τ≥−n(A)

is an isomorphism, we have:

Lemma 1.4.4. Any prestack representable by a (derived) affine scheme is con-
vergent.

Remark 1.4.5. As we shall see in the sequel, all prestacks ‘of geometric nature’,
such as (derived) schemes and Artin stacks (and also ind-schemes), are convergent.

Here is, however, an example of a non-convergent prestack: consider the prestack
that associates to an affine scheme S = Spec(A) the category (A-mod)Spc, i.e., this
is the prestack

(Schaff)op
QCoh∗

SchaffÐ→ 1 -Cat
C↦CSpc

Ð→ Spc,

where QCoh∗Schaff is as in Chapter 3, Sect. 1.1.2.

1.4.6. We have:

Proposition 1.4.7. A prestack Y is convergent if and only if, when as a functor

(Schaff)op → Spc,

it is the right Kan extension from the subcategory <∞Schaff ⊂ Schaff .

Proof. We claim that the functor of right Kan extension along
<∞Schaff ⊂ Schaff

is given by sending

Z ′ ∈ Funct((<∞Schaff)op,Spc)↦ Z ∈ Funct((Schaff)op,Spc),
with

Z(S) = lim
n
Z ′(τ≤n(S)).

Indeed, a priori, the value of Z on S is given by

lim
S′→S

Z ′(S′),

104 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

where the limit is taken over the category opposite to (<∞ Schaff)/S . Now, the
assertion follows from the fact that the functor

Z≥0 → (<∞ Schaff)/S , n↦ τ≤n(S)

is cofinal.
�

1.4.8. Let convPreStk ⊂ PreStk denote the full subcategory of convergent prestacks.
This embedding admits a left adjoint, which we call the convergent completion and
denote by

Y ↦ convY.

According to Proposition 1.4.7, we have:

convY ≃ RKE<∞Schaff↪Schaff (Y ∣<∞Schaff).

Explicitly,

convY(S) = lim
n
Y(τ≤n(S)).

1.4.9. Consider the canonical map

colim
n

τ≤n(Y)→ Y.

Tautologically, Y1 ∈ PreStk is convergent if and only if for every Y, the map

Maps(Y,Y1)→Maps(colim
n

τ≤n(Y),Y1) = lim
n

Maps(τ≤n(Y),Y1)

is an isomorphism.

Remark 1.4.10. Note that the left Kan extension functor

LKE≤nSchaff↪Schaff ∶ ≤nPreStk→ PreStk

does not map into convPreStk.

1.5. Affine schemes of finite type (the eventually coconnective case). We
will now introduce the notion of what it means for a (derived) affine scheme to
be of finite type. This generalizes the usual notion of being of finite type over a
field. As in classical algebraic geometry, finite typeness puts us in the context of
finite-dimensional geometry.

1.5.1. We say that an object S = Spec(A) ∈ <∞Schaff is of finite type if H0(A) is of
finite type over k, and each H−i(A) is finitely generated as a module over H0(A).

Let <∞Schaff
ft denote the full subcategory of <∞Schaff consisting of affine schemes

of finite type.

1. PRESTACKS 105

1.5.2. Denote by ≤nSchaff
ft the intersection <∞Schaff

ft ∩≤nSchaff .

The following theorem is proved by induction on n using deformation theory
(but we will not do it here, but see [Lu2, Proposition 7.2.5.31]):

Theorem 1.5.3.

(a) The objects of (≤nSchaff
ft)op are compact in (≤nSchaff)op.

(b) For every object S ∈ ≤nSchaff , the category opposite to (≤nSchaff
ft)S/ is filtered,

and the map

S ↦ lim
S0∈(≤nSchaff

ft)S/
S0

is an isomorphism.

Remark 1.5.4. We note that the filteredness assertion in Theorem 1.5.3(b) is

easy: it follows from the fact that the category (≤nSchaff
ft)S/ has fiber products.

1.5.5. By [Lu1, Proposition 5.3.5.11], the assertion of Theorem 1.5.3 is equivalent
to the following:

Corollary 1.5.6. We have a canonical equivalence:

≤nSchaff ≃ Pro(≤nSchaff
ft).

1.5.7. Since ≤nSchaff
ft is closed under retracts, using [Lu1, Lemma 5.4.2.4], from

Corollary 1.5.6 we obtain:

Corollary 1.5.8. The inclusion (≤nSchaff
ft)op ⊂ ((≤nSchaff)op)c of Theorem 1.5.6(a)

is an equality.

1.6. Prestacks locally of finite type (the eventually coconnective case).
In this subsection we will make precise the following idea: a prestack is locally of
finite type if and only if it is completely determined by its values on affine schemes
of finite type.

1.6.1. Let Y be an object of ≤nPreStk for some n. We say that it is locally of finite
type if it is the left Kan extension (of its own restriction) along the embedding

(≤nSchaff
ft)op ↪ (≤nSchaff)op.

We denote the resulting full subcategory of ≤nPreStk by ≤nPreStklft.

1.6.2. In other words, we can identify ≤nPreStklft with the category of functors

(≤nSchaff
ft)op → Spc,

and we have a pair of mutually adjoint functors

≤nPreStklft ⇄ ≤nPreStk,

given by restriction and left Kan extension along ≤nSchaff
ft ↪ ≤nSchaff , respectively,

where the left Kan extension functor is fully faithful.

1.6.3. Now, using [Lu1, Proposition 5.3.5.10], from Corollary 1.5.6, we obtain:

Corollary 1.6.4. An object Y ∈ ≤nPreStk belongs to ≤nPreStklft if and only
if it takes filtered limits in ≤nSchaff to colimits in Spc.

106 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

1.6.5. Combining Corollaries 1.6.4 and 1.5.8, we obtain:

Lemma 1.6.6. Let S be an object of ≤nSchaff . It belongs to ≤nSchaff
ft if and only

if the prestack that it represents belongs to ≤nPreStklft.

1.6.7. Evidently, the restriction functor ≤nPreStklft ← ≤nPreStk commutes with
limits and colimits. The functor

LKE≤nSchaff
ft ↪≤nSchaff ∶ ≤nPreStklft → ≤nPreStk,

being a left adjoint commutes with colimits.

In addition, we have the following:

Lemma 1.6.8. The functor LKE≤nSchaff
ft ↪≤nSchaff commutes with finite limits.

Proof. This follows from Corollary 1.6.4: indeed, the condition of taking
filtered limits in ≤nSchaff to colimits in Spc is preserved by the operation of taking
finite limits of prestacks.

�

1.7. The ‘locally almost of finite type’ condition. In Sect. 1.6 we introduced
the ‘locally of finite type’ condition for n-coconnective prestacks. In this subsection
we will give a definition crucial for the rest of the book: what it means for an
object of PreStk to be locally almost of finite type (=laft). This will be the class
of prestacks for which we will develop the theory of ind-coherent sheaves.

1.7.1. We say that an affine (derived) scheme S is almost of finite type if ≤nS is of
finite type for every n.

I.e., S = Spec(A) is almost of finite type if H0(A) is of finite type over k, and
each H−i(A) is finitely generated as a module over H0(A).

Let Schaff
aft denote the full subcategory of Schaff consisting of affine schemes

almost of finite type.

1.7.2. We say that Y ∈ PreStk is locally almost of finite type if the following con-
ditions hold:

(1) Y is convergent.
(2) For every n, we have ≤nY ∈ ≤nPreStklft

We denote the corresponding full subcategory by

PreStklaft ⊂ PreStk .

By Lemma 1.6.6, we have

Schaff
aft = Schaff ∩PreStklaft .

1. PRESTACKS 107

1.7.3. In particular, if Y ∈ PreStklaft, then clY is an object of clPreStk locally of
finite type, i.e., it is a classical prestack locally of finite type.

Remark 1.7.4. Note that by Remark 1.4.10, the left Kan extension functor
does not send ≤nPreStklft to PreStklaft: the resulting prestack will satisfy the second
condition, but in general, not the first one.

However, if Y ∈ PreStk is obtained as a left Kan extension functor of an object
of ≤nPreStk that belongs to ≤nPreStklft, then its convergent completion convY will
belong to PreStklaft, see Corollary 1.7.8 below.

1.7.5. We claim:

Proposition 1.7.6. Restriction along <∞Schaff
ft ↪ Schaff defines an equivalence

PreStklaft → Funct((<∞Schaff
ft)op,Spc).

The inverse functor is given by first applying the left Kan extension along

<∞Schaff
ft ↪ <∞Schaff ,

followed by the right Kan extension along

<∞Schaff ↪ Schaff .

Proof. By Proposition 1.4.7, it suffices to show that the following conditions
on a functor

<∞Schaff → Spc

are equivalent:

(i) It is a left Kan extension along <∞Schaff
ft → <∞Schaff ;

(ii) Its restriction to any ≤nSchaff is a left Kan extension along ≤nSchaff
ft → ≤nSchaff .

First, it is clear that (i) implies (ii): indeed, the diagram

Funct(<∞Schaff
ft ,Spc) LKEÐÐÐÐ→ Funct(<∞Schaff ,Spc)

×××Ö
×××Ö

Funct(≤nSchaff
ft ,Spc) LKEÐÐÐÐ→ Funct(≤nSchaff ,Spc)

is commutative.

Vice versa, let Y satisfy (ii). We need to show that for any S ∈ ≤nSchaff , the
map

(1.5) colim
S→S′

Y(S′)→ Y(S)

is an isomorphism, where the colimit is taken over the index category

((<∞Schaff
ft)S/)

op
.

However, cofinal in the above index category is the full subcategory consisting of
those S → S′, for which S′ ∈ ≤nSchaff

ft ; indeed the embedding of this full subcategory
admits a left adjoint, given by S′ ↦ τ≤n(S′).

Hence, the colimit in (1.5) can be replaced by

colim
S→S′

Y(S′)

108 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

taken over ((≤nSchaff
ft)S/)

op
. However, the latter colimit computes

LKE≤nSchaff
ft ↪≤nSchaff (≤nY).

�

1.7.7. We note:

Corollary 1.7.8. The composite functor

≤nPreStklft ↪ ≤nPreStk
LKE≤nSchaff↪SchaffÐ→ PreStk

Y↦convYÐ→ convPreStk

takes values in PreStklaft.

Proof. By Proposition 1.7.6, it suffices to show that the composition of the
functor in the corollary with the identification

convPreStk ≃ Funct(<∞Schaff ,Spc)
lands in the full subcategory spanned by functors obtained as a left Kan extension
from

<∞Schaff
ft ↪ <∞Schaff .

However, the above composition is given by left Kan extension along

≤nSchaff
ft ↪ <∞Schaff .

�

1.7.9. By combining Lemma 1.6.8 and Proposition 1.7.6, we obtain:

Corollary 1.7.10. The subcategory PreStklaft ⊂ PreStk is closed under finite
limits.

1.8. Truncatedness.
1.8.1. For k = 0,1, ..., let Spc≤k ⊂ Spc denote the full subcategory of k-truncated
spaces. I.e., it is spanned by those objects S ∈ Spc such that each connected
component S ′ of S satisfies

πl(S ′) = 0 for l > k.

For example, for k = 0, we have Spc≤0 = Set.

1.8.2. The embedding

Spc≤k ↪ Spc

admits a left adjoint.

The corresponding localization functor

Spc→ Spc≤k → Spc

will be denoted P≤k.

Remark 1.8.3. The (∞,1)-category Spc≤k is actually a (k+1,1)-category. I.e.,
the mapping spaces between objects are k-truncated.

1. PRESTACKS 109

1.8.4. For S ∈ Spc, the assignment k ↦ P≤k(S) is a functor

(Z≥0)op → Spc,

called the Postnikov tower of S.

It is a basic fact that the natural map

S → lim
k

P≤k(S)

is an isomorphism.

1.8.5. For a fixed n, and an integer k = 0,1, ... we will say that Y ∈ ≤nPreStk is
k-truncated if, as a functor

(≤nSchaff)op → Spc,

it takes values in the full subcategory of Spc≤k ⊂ Spc of k-truncated spaces.

1.8.6. For example, if Y ∈ ≤nPreStk is representable, i.e., is the Yoneda image of
S ∈ ≤nSchaff , then Y is n-truncated.

This reflects the fact that ComAlg(Vect≥−n,≤0) is an (n+ 1,1)-category, which,
in turn, formally follows from the fact that Vect≥−n,≤0 is an (n + 1,1)-category.

Remark 1.8.7. In the sequel, we will see that for any (derived) scheme, its

restriction to ≤nSchaff is n-truncated as an object of ≤nPreStk.

Similarly, for a k-Artin stack, its restriction to ≤nSchaff is (n + k)-truncated as
an object of ≤nPreStk.

1.8.8. Another example. To any object K ∈ Spc we can attach the corresponding
constant prestack K:

K(S) ∶= K, S ∈ Schaff .

If K is k-truncated, then K is k-truncated.

1.8.9. Let ≤nPreStk≤k ⊂ ≤nPreStk denote the full subcategory of k-truncated prestacks.
This embedding admits a left adjoint. The corresponding localization functor

≤nPreStk→ ≤nPreStk≤k → ≤nPreStk

will be denoted P≤k. Explicitly,

(P≤k(Y))(S) = P≤k(Y(S)), S ∈ ≤nSchaff .

The full subcategory ≤nPreStk≤k ⊂ ≤nPreStk is actually a (k + 1,1)-category.

1.8.10. When n = 0 and k = 0, the (ordinary) category clPreStk≤0 is that of

presheaves of sets on clSchaff .

When n = 0 and k = 1, we shall call objects of clPreStk≤1 ‘ordinary classical
prestacks’. I.e., clPreStk≤1 is the (2,1)-category of functors from the category of
classical affine schemes to that of ordinary groupoids.

110 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

2. Descent and stacks

The object of study in this section is the notion of stack–the result of the
interaction of the general notion of prestack with a given Grothendieck topology
(flat, ppf, étale or Zariski) on the category of affine schemes; see [TV2, Sect. 2.2.2].

Specifically, we will be interested in how the stack condition interacts with
n-coconnectivity and the finite typeness.

2.1. Flat morphisms. In this subsection we will introduce the crucial notion of
flatness for a morphism between (derived) affine schemes. Knowing what it means
to be flat, we will give the definition of what it means to be an open embedding,
étale, smooth, ppf, etc.

2.1.1. Let us recall, following [TV2], the notion of flatness for a morphism between
(derived) affine schemes:

A map Spec(B) → Spec(A) between affine schemes is said to be flat if H0(B)
is flat as a module over H0(A), plus the following equivalent conditions hold:

● The natural map

H0(B) ⊗
H0(A)

Hi(A)→Hi(B)

is an isomorphism for every i.

● For any A-module M , the natural map

H0(B) ⊗
H0(A)

Hi(M)→Hi(B ⊗
A
M)

is an isomorphism for every i.

● If an A-module N is concentrated in degree 0 then so is B ⊗
A
N .

2.1.2. Note in particular that if S′ → S is flat, then

S ∈ ≤nSchaff ⇒ S′ ∈ ≤nSchaff .

The following assertion is easily established by induction:

Lemma 2.1.3. For a map S′ → S between affine schemes, S′ is flat over S if
and only if each ≤nS′ is flat over ≤nS.

2.1.4. Let f ∶ S′ → S be a morphism of affine schemes. We shall say that it is ppf2

(resp., smooth, étale, open embedding, Zariski) if the following conditions hold:

(1) The morphism f is flat (in particular, the base-changed (derived!) affine
scheme

τ cl(S) ×
S
S′

is classical and thus identifies with τ cl(S′));
(2) The map of classical affine schemes clS′ → clS is of finite presentation (resp.,

smooth, étale, open embedding, disjoint union of open embeddings).

For future reference, we quote the following basic fact that can be proved using
deformation theory (see [TV2, Corollaries 2.2.2.9 and 2.2.2.10]):

2ppf=plat de présentation finie= flat of finite presentation

2. DESCENT AND STACKS 111

Lemma 2.1.5. For a given S ∈ Schaff , the operation of passage to the underlying
classical subscheme defines an equivalence between the full subcategory (Schaff)/S
spanned by S′

f→ S with f étale and the full subcategory of (clSchaff)/clS spanned by

S̃′
f̃Ð→ clS with f̃ étale. Furthermore, f is an open embedding (resp., Zariski) if

and only if f̃ is.

2.1.6. We say that a morphism is f ∶ S′ → S is a covering with respect to the flat
(resp., ppf, smooth, étale, Zariski) topology, if it is flat (resp., ppf, smooth, étale,
Zariski), and the induced map of classical affine schemes clS′ → clS is surjective.

Thus, the category Schaff acquires a hierarchy of Grothendieck topologies: flat,
ppf, smooth, étale and Zariski.

2.1.7. The property of a morphism to be flat (resp., ppf, smooth, étale, open
embedding, Zariski) is obviously stable under base change.

Moreover, the property of a morphism f ∶ S′ → S to be flat (resp., ppf, smooth,
étale, open embedding) it itself local with respect to any of the above topologies on
S.

In addition, the property of a morphism f ∶ S′ → S to be flat (resp., ppf,
smooth, étale, Zariski) is local with respect to the flat (resp., ppf, smooth, étale,
Zariski) topology on S′.

Remark 2.1.8. For obvious reasons, the property of a morphism to be an open
embedding is not Zariski-local on the source. And the property of a morphism to
be Zariski is not étale-local on the target.

2.1.9. Let f ∶ Y1 → Y2 be an affine schematic morphism in PreStk (see Sect. 1.1.6
for what this means).

We shall say that it is flat (resp., ppf, smooth, étale, open embedding, Zariski)

if for every S ∈ (Schaff)/Y2
, the corresponding map

S ×
Y2

Y1 → S

(of affine schemes(!)) is flat (resp., ppf, smooth, étale, open embedding, Zariski).

2.2. Digression: the Čech nerve.
2.2.1. Let Fin denote the category of finite sets.

Let C be an arbitrary ∞-category with Cartesian products. Then to an object
c ∈ C we can attach a functor

Finop →C, I ↦ cI .

In terms of the Yoneda embedding, this functor is uniquely characterized by

MapsC(c′,cI) = MapsSpc(I,MapsC(c′,c)), c′ ∈ C′.

Composing with the functor ∆→ Fin, we obtain a functor

∆op →C.

112 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

2.2.2. Let now D be an ∞-category with fiber products, and d ∈ D an object. Set

C ∶= D/d,

so that Cartesian products in C are the fiber products in D over d.

Given an object c ∈ D/d we thus obtain a functor

∆op →D/d →D.

It is called the Čech nerve of the morphism c→ d, and denoted c●/d.

2.2.3. Thus, we have c0/d = c,

c1/d = c ×
d

c.

In general, the object c●/d ∈ Funct(∆op,D) is an example of a groupoid object
of D; see [Lu1, Sect. 6.1.2] for what this means.

2.3. The descent condition. In this subsection we will impose the descent con-
dition that singles out the class of stacks among all prestacks.

This discussion here is not specific to the category Schaff . It is applicable to
any ∞-category (with fiber products) equipped with a Grothendieck topology. So,
we can view this subsection is a summary of some results from [Lu1, Sect. 6] and
[TV1].

2.3.1. Let Y be a prestack. We say that it satisfies flat (resp., ppf, smooth, étale,
Zarski) descent if whenever

f ∶ S′ → S ∈ Schaff

is a flat covering, the map

Y(S)→ Tot(Y(S′●/S))

is an isomorphism, where S′●/S is the Čech nerve of the map f .

2.3.2. In what follows we will assume that our topology is chosen to be étale.
However, the entire discussion equally applies to the other cases, i.e. flat, ppf,
smooth or Zariski.

We shall call prestacks that satisfy the above descent condition stacks, and
denote the corresponding full subcategory of PreStk by Stk.

As in the case of classical algebraic geometry, one shows that if an object of
PreStk satisfies étale descent, then it satisfies smooth descent.

2.3.3. We say that a map Y1 → Y2 in PreStk is an étale equivalence if it induces
an isomorphism

Maps(Y2,Y)→Maps(Y1,Y)

whenever Y ∈ Stk.

2. DESCENT AND STACKS 113

2.3.4. The inclusion

Stk↪ PreStk

admits a left adjoint making Stk a localization of PreStk.

Concretely, the functor PreStk → Stk is universal among functors that turn
étale equivalences into isomorphisms, see [Lu1, Sect. 6.2.1].

We will denote by L the corresponding localization (=sheafification) functor,
i.e., the composition

PreStk→ Stk→ PreStk .

Tautologically, a map Y1 → Y2 is an étale equivalence if and only if L(Y1) →
L(Y2) is an isomorphism.

2.3.5. We have the following assertion (see [Lu1, Corollary 6.2.1.6 and Proposition
6.2.2.7]3):

Lemma 2.3.6. The functor L is left exact, i.e., commutes with finite limits.

2.3.7. Let f ∶ Y1 → Y2 be a morphism in PreStk.

We say that f is an étale surjection if for every S ∈ Schaff and an object
y2 ∈ Y2(S) there exists an étale cover φ ∶ S′ → S, such that φ∗(y2) ∈ Y2(S′) belongs
to the essential image of f(S′) ∶ Y1(S′)→ Y2(S′).

The following is [Lu1, Corollary 6.2.3.5]:

Lemma 2.3.8. Let Y1 → Y2 be an étale surjection. Then the induced map

∣Y●1/Y2∣PreStk → Y2

is an étale equivalence, where Y●1/Y2 is the Čech nerve of f , and ∣ − ∣PreStk denotes
geometric realization taken in the category PreStk.

Note that the assertion of Lemma 2.3.8 can be reformulated as the statement
that if Y1 → Y2 is an étale surjection, then the map

∣L(Y●1/Y2)∣Stk ≃ ∣L(Y1)●/L(Y2)∣Stk ≃ L(∣Y●1/Y2∣PreStk)→ L(Y2)
is an isomorphism.

2.3.9. Finally, we have:

Lemma 2.3.10. For Y ∈ PreStk, the unit of the adjunction

Y → L(Y)
is an étale surjection.

2.4. Descent for affine schemes. In this subsection we state (without proof)
the standard, but crucial, fact that affine schemes are in fact stacks, and discuss
some of its corollaries.

As in the previous subsection, the results stated in this subsection here hold
also for the flat, ppf and Zariski topologies.

3For this proposition the reader should use the version of [Lu1] available on Lurie’s website
rather than the printed version.

114 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

2.4.1. We have the following basic fact (see [TV2, Lemma 2.2.2.13]):

Proposition 2.4.2.

(a) The image of the Yoneda embedding Schaff ↪ PreStk belongs to Stk.

(b) Let

Y ←ÐÐÐÐ Y ′
×××Ö

×××Ö
S

f←ÐÐÐÐ S′

be a pullback diagram in Stk with S,S′ ∈ Schaff . Assume that Y ′ also belongs to
Schaff ⊂ PreStk and the morphism f is an étale covering. Then Y ∈ Schaff .

2.4.3. As a corollary, we obtain:

Corollary 2.4.4. Let f ∶ Y1 → Y2 be an affine schematic morphism in PreStk.
Then the morphism L(Y1)→ L(Y2) is also affine schematic.

Proof. We need to show that for S ∈ Schaff and a map S → L(Y2), the fiber

product S ×
L(Y2)

L(Y1) belongs to Schaff . By Proposition 2.4.2(b), it suffices to show

that that the fiber product S′ ×
L(Y2)

L(Y1) belongs to Schaff for some étale covering

map S′ → S with S′ ∈ Schaff .

However, by Lemma 2.3.10, we can choose S′ → S so that the composition
S′ → S → L(Y2) factors as S′ → Y2 → L(Y2). Since the functor L commutes with
fiber products (by Lemma 2.3.6), we have

S′ ×
L(Y2)

L(Y1) ≃ L(S′ ×Y2

Y1).

Now, by assumption, S′ ×
Y2

Y1 ∈ Schaff , and

S′ ×
Y2

Y1 → L(S′ ×
Y2

Y1)

is an isomorphism by Proposition 2.4.2(a)
�

2.4.5. The same proof also gives:

Corollary 2.4.6. Let f ∶ Y1 → Y2 be affine flat (resp., ppf, smooth, étale,
open embedding). Then so is L(Y1)→ L(Y2).

2.5. Descent and n-coconnectivity. In this subsection we will study how the
étale descent condition interacts with the operation of restriction and left Kan
extension to the (full) subcategory ≤nSchaff ⊂ Schaff .

Again, the entire discussion is applicable when we replace the word ‘étale’ by
‘flat’, ‘ppf’ or ‘Zariski’.

2. DESCENT AND STACKS 115

2.5.1. Let us denote by ≤nStk the full subcategory of ≤nPreStk consisting of objects
that satisfy descent for étale covers S1 → S2 ∈ ≤nSchaff .

We obtain that ≤nStk is a localization of ≤nPreStk. Let ≤nL denote the corre-
sponding localization functor

≤nPreStk→ ≤nStk→ ≤nPreStk .

The analog of Lemma 2.3.6 equally applies in the present context.

2.5.2. The sheafification functor ≤nL on truncated objects can be described explic-
itly as follows (see [Lu1, Sect. 6.5.3]):

We have the following endo-functor, denoted

(2.1) Y ↦ Y+

of ≤nPreStk.

Namely, for Y ∈ ≤nPreStk, the value of Y+ on S ∈ ≤nSchaff is the colimit over
all étale covers S′ → S of Tot(Y(S′●/S)).

Now, if Y is (k − 2)-truncated for k = 2,3, ..., then the value of L(Y) on S ∈
≤nSchaff is

Y+
k

(S),

where Y+k denotes the k-th iteration of the functor (2.1).

In particular, since the colimit involved in its description is filtered, we obtain:

Lemma 2.5.3. The functor ≤nL ∶ ≤nPreStk→ ≤nPreStk sends k-truncated objects
to k-truncated ones.

2.5.4. The following results from the definitions:

Lemma 2.5.5.

(a) The restriction functor PreStk→ ≤nPreStk sends Stk to ≤nStk.

(b) The functor

LKE≤nSchaff↪Schaff ∶ ≤nPreStk→ PreStk

sends étale equivalences to étale equivalences.

2.5.6. Note now that the right Kan extension functor along ≤nSchaff ↪ Schaff :

RKE≤nSchaff↪Schaff ∶ ≤nPreStk→ PreStk

tautologically sends ≤nStk to Stk. This implies that the restriction functor Y ↦ ≤nY
sends étale equivalences to étale equivalences.

Thus, from Lemma 2.5.5 we obtain:

Corollary 2.5.7. For Y ∈ PreStk we have:

≤nL(≤nY) ≃ ≤n(L(Y)).

116 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

2.5.8. Right Kan extensions from <∞Schaff . Let Y ′ be a functor

(<∞Schaff)op → Spc,

which we can think of as a compatible family of objects Y ′n ∈ ≤nPreStk. Let

Y ∶= RKE<∞Schaff↪Schaff (Y ′) ∈ PreStk .

Lemma 2.5.9. Assume that for all n, Y ′n ∈ ≤nStk. Then Y belongs to Stk.

Proof. Follows from the description of the functor RKE<∞Schaff↪Schaff given
in the proof of Proposition 1.4.7.

�

From here we obtain:

Corollary 2.5.10. Suppose that Y ∈ PreStk belongs to Stk. Then so does
convY.

2.6. The notion of n-coconnective stack.
2.6.1. Note that the functor

LKE≤nSchaff↪Schaff ∶ ≤nPreStk→ PreStk

does not send ≤nStk to Stk. Instead, the left adjoint to the restriction functor
≤nStk← Stk is given by the composition

≤nStk↪ ≤nPreStk
LKEÐ→ PreStk

LÐ→ Stk;

we denote this composite functor by LLKE≤nSchaff↪Schaff .

2.6.2. The above left adjoint is easily seen to be fully faithful. Hence, we can
identify ≤nStk with a full subcategory of Stk. We shall denote by Lτ≤n ∶ Stk → Stk
the resulting colocalization functor

Y ↦ LLKE≤nSchaff↪Schaff (≤nY).
By definition, Lτ≤n ≃ L ○ τ≤n.

2.6.3. We shall call objects of Stk that belong to the essential image of LLKE≤nSchaff↪Schaff

n-coconnective stacks. I.e., Y ∈ Stk is n-coconnective as a stack if and only if the
adjunction map

Lτ≤n(Y)→ Y
is an isomorphism.

I.e., the functor LLKE≤nSchaff↪Schaff identifies the category ≤nStk with the full
subcategory of PreStk spanned by n-coconnective stacks.

We shall refer to objects of ≤0Stk =∶ clStk as ‘classical stacks’, and also denote
Lτ≤0 =∶ Lτ cl.

Remark 2.6.4. We emphasize again that, as subcategories PreStk, it is not
true that ≤nStk is contained in ≤nPreStk. That is to say, that a n-coconnective
stack is not necessarily n-coconnective as a prestack.

Note, however, that we do have an inclusion

Stk∩≤nPreStk ⊂ ≤nStk

as subcategories of PreStk.

2. DESCENT AND STACKS 117

2.6.5. We shall say that a stack is eventually coconnective if it is n-coconnective
for some n.

2.7. Descent and the ‘locally of finite type’ condition. In this subsection
we will study how the descent condition interacts with the condition of being of
finite type.

The entire discussion is applicable if we replace the étale topology by the ppf,
or Zariski one.

However, the flat topology (without the finite type condition) would not do:
we need finite typeness for the validity of Lemma 2.8.2.

2.7.1. Let n be a fixed integer. We can consider the étale topology on the category
≤nSchaff

ft . Thus, we obtain a localization of ≤nPreStklft that we denote ≤nNearStklft.

We shall denote by ≤nLft the corresponding localization functor
≤nPreStklft → ≤nNearStklft → ≤nPreStklft .

As in Lemma 2.5.3, we have:

Lemma 2.7.2. The functor ≤nLft ∶ ≤nPreStklft → ≤nPreStklft sends k-truncated
objects to k-truncated ones.

2.7.3. Consider the restriction functor for ≤nSchaff
ft ↪ ≤nSchaff , i.e.,

≤nPreStklft ← ≤nPreStk .

It is clear that it sends ≤nStk to ≤nNearStklft. By adjunction, the functor of left
Kan extension

LKE≤nSchaff
ft ↪≤nSchaff ∶ ≤nPreStklft → ≤nPreStk

sends étale equivalences to étale equivalences.

Moreover, we claim:

Lemma 2.7.4. The functor of right Kan extension

RKE≤nSchaff
ft ↪≤nSchaff ∶ ≤nPreStklft → ≤nPreStk

sends ≤nNearStklft to ≤nStk.

Proof. For Y ∈ ≤nPreStklft the value of RKE≤nSchaff
ft ↪≤nSchaff (Y) on S ∈ ≤nSchaff

is given as
lim
S0→S

Y(S0),

where the limit is taken over the category opposite to (≤nSchaff
ft)/S .

Let S′ → S be an étale cover. We need to show that the map from lim
S0→S

Y(S0)
to the totalization of the cosimplicial space whose (m − 1)-simplices are given by

lim
Sm0 →(S′m/S)

Y(Sm0),

is an isomorphism.

However, this follows from the fact that the functor

((≤nSchaff
ft)/S)op → ((≤nSchaff

ft)/(S′m/S))op, S0 ↦ Sm0 ∶= S0 ×
S
(S′m/S),

is cofinal. �

118 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

From Lemma 2.7.4 we obtain:

Corollary 2.7.5.

(a) The restriction functor ≤nPreStklft ← ≤nPreStk sends étale equivalences to étale
equivalences.

(b) For Y ∈ ≤nPreStk we have:
≤nL(Y)∣≤nSchaff

ft
≃ ≤nLft(Y ∣≤nSchaff

ft
).

2.7.6. Let us return to the functor

LKE≤nSchaff
ft ↪≤nSchaff ∶ ≤nPreStklft → ≤nPreStk .

It is not clear, and probably not true, that this functor sends ≤nNearStklft to
≤nStk. However, as we have learned from J. Lurie, there is the following partial
result, proved below:

Proposition 2.7.7. Suppose that an object Y ∈ ≤nPreStklft is k-truncated for
some k (see Sect. 1.8.5), and that Y ∈ ≤nNearStklft. Then the object

LKE≤nSchaff
ft ↪≤nSchaff (Y)

of ≤nPreStk belongs to ≤nStk.

2.7.8. In what follows we shall use the notation
≤nStklft ∶= ≤nStk∩≤nPreStklft .

We shall refer to objects of the subcategory ≤nStklft of ≤nStk as ‘n-coconnective
stacks locally of finite type’.

We have the inclusion
≤nStklft ⊂ ≤nNearStklft .

Thus, Proposition 2.7.7 says that the essential image of this inclusion contains all
truncated objects.

2.7.9. As a corollary of Proposition 2.7.7 and Lemma 2.7.2, we obtain:

Corollary 2.7.10. For Y ∈ ≤nPreStklft, which is truncated, the natural map

LKE≤nSchaff
ft ↪≤nSchaff (≤nLft(Y))→ ≤nL (LKE≤nSchaff

ft ↪≤nSchaff (Y))
is an isomorphism.

2.8. Proof of Proposition 2.7.7.
2.8.1. The proof will use the following assertion:

Let f ∶ S1 → S2 be an étale morphism in ≤nSchaff . Consider the category of Carte-
sian diagrams

S1 ÐÐÐÐ→ S′1

f
×××Ö

×××Ö
f ′

S2 ÐÐÐÐ→ S′2
with S′2, S

′
1 ∈ ≤nSchaff

ft , and f ′ is étale. Denote this category by fft. We have the
natural forgetful functors

(2.2) {S2 → S′2, S
′
2 ∈ ≤nSchaff

ft }← fft → {S1 → S′1, S
′
1 ∈ ≤nSchaff

ft }.

2. DESCENT AND STACKS 119

Lemma 2.8.2. Both functors opposite to those in (2.2) are cofinal.

Proof. We first show that the functor opposite to

fft → {S1 → S′1, S
′
1 ∈ ≤nSchaff

ft }
is cofinal.

Both categories in question are filtered: the above categories (before passing to
the opposite) admit fiber products. Hence, it is enough to show that for any S1 → S′′1
with S′′1 ∈ ≤nSchaff

ft , there exists an object of fft such that the map S1 → S′1 factors
as S1 → S′1 → S′′1 . For n = 0 this a standard fact in classical algebraic geometry, and
for general n, it follows by induction using deformation theory (specifically, Volume
II, Chapter 1, Proposition 5.4.2(b)).

To prove the assertion concerning

fft → {S2 → S′2, S
′
2 ∈ ≤nSchaff

ft },
we note that the corresponding fact holds for n = 0, i.e., in classical algebraic
geometry.

Consider the following diagram

fft ÐÐÐÐ→ clfft

×××Ö
×××Ö

{S2 → S′2, S
′
2 ∈ ≤nSchaff

ft } ÐÐÐÐ→ {clS2 → S′2,0, S
′
2,0 ∈ clSchaff

ft }.
By Lemma 2.1.5, this is a pullback diagram. In addition, the bottom horizontal
arrow is a Cartesian fibration. Hence, the cofinality of the functor opposite to the
right vertical arrow implies the corresponding fact for the left vertical arrow.

�

Remark 2.8.3. An assertion parallel to Lemma 2.8.2 remains valid if we replace
the word ‘étale’ by ‘ppf’, but the proof is more involved.

2.8.4. Let Y ′ be an object of ≤nNearStklft, and let Y be its left Kan extension to an
object of ≤nPreStk. Let f ∶ S1 → S2 be an étale cover. To prove Proposition 2.7.7,
we need to check that the map

(2.3) Y(S2)→ Tot(Y(S●1/S2))
is an isomorphism.

For S ∈ ≤nSchaff , the value of Y on S is calculated as

colim
S→S′

Y ′(S′),

where the colimit is taken over the category opposite to (≤nSchaff
ft)S/. Recall that

according to Theorem 1.5.3(b), the above category is filtered. This implies that if
Y ′ is k-truncated, then so is Y.

Hence, we can replace Tot in (2.3), which is a limit in Spc over the index

category ∆, by the corresponding limit, denoted Tot≤k, in the category Spc≤k, over

the index category ∆≤k of finite ordered sets of cardinality ≤ k + 1.

120 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

2.8.5. We rewrite the left-hand side in (2.3) as

colim
S2→S′2,S′2∈≤nSchaff

ft

Y ′(S′2).

Applying Lemma 2.8.2 for the → functor, we rewrite the right-hand side in
(2.3) as

Tot≤k (colim
(fft)op

Y(S′1●/S′2)) .

The category (fft)op is filtered, as it contains push-outs. Since Tot≤k is a
finite limit, we can commute the limit and the colimit in the above expression, and
therefore rewrite it as

colim
(fft)op

(Tot≤k(Y(S′1●/S′2))) .

By the descent condition for Y ′, the latter expression is isomorphic to colim
(fft)op

Y(S′2).
Applying Lemma 2.8.2 for the ← functor, we obtain that

colim
(fft)op

Y(S′2) ≃ colim
S2→S′2,S′2∈≤nSchaff

ft

Y ′(S′2),

as required.
�

2.9. Stacks locally almost of finite type.
2.9.1. Recall the full subcategory PreStklaft ⊂ PreStk. In this subsection we will
perceive it as the category

Funct ((<∞Schaff
ft)op,Spc) ,

see Proposition 1.7.6.

2.9.2. Consider the étale topology on the category <∞Schaff
ft . Thus, we obtain a

localization of PreStklaft that we denote NearStklaft.

Let us denote by Llaft the corresponding localization functor

PreStklaft → NearStklaft → PreStklaft .

2.9.3. Consider the functor

PreStk→ PreStklaft

given by restriction along

<∞Schaff
ft ↪ <∞Schaff ↪ Schaff .

It is clear that this functor sends Stk to NearStklaft. Moreover, as in Corol-
lary 2.7.5 and Corollary 2.5.7, we obtain:

Lemma 2.9.4. For Y ∈ PreStk we have:

L(Y)∣<∞Schaff
ft

≃ Llaft(Y ∣<∞Schaff
ft

).

From Proposition 2.7.7 and Lemma 2.5.9 we obtain:

3. (DERIVED) SCHEMES 121

Corollary 2.9.5. Let Y be an object of NearStklaft, thought of as an object
of PreStk via

NearStklaft ⊂ PreStklaft ⊂ PreStk

(see Proposition 1.7.6). Suppose that for each n, the restriction ≤nY of Y to ≤nSchaff
ft

is kn-truncated for some kn ∈ N. Then Y ∈ Stk.

2.9.6. In what follows, we will denote the intersection

Stk∩PreStklaft

by Stklaft. We shall refer to objects of the subcategory Stklaft ⊂ Stk as ‘stacks
locally almost of finite type’.

We have an evident inclusion

Stklaft ⊂ NearStklaft .

Corollary 2.9.5 says that the essential image of Stklaft in NearStklaft contains all
objects Y, such that for every n, the restriction ≤nY of Y to ≤nSchaff

ft is truncated.

3. (Derived) schemes

In this section we introduce the basic object of study in derived algebraic
geometry–the notion of (derived) scheme4.

We investigate some basic properties of schemes: what it means to be n-
coconnective and locally (almost) of finite type.

3.1. The definition of (derived) schemes. Our approach to the definition of
(derived) schemes (or more general algebro-geometric objects) is that they are
prestacks that have some specific properties. I.e., we never need to introduce addi-
tional pieces of structure.

In the case of (derived) schemes, the relevant properties are descent and the
existence of a Zariski atlas.

3.1.1. Recall the notion of an affine open embedding, see Sect. 2.1.9.

Following [TV2, Sect. 2.2], we say that an object Z ∈ PreStk is a scheme if:

(1) Z satisfies étale descent;

(2) The diagonal map Z → Z × Z is affine schematic, and for every T ∈
(Schaff)/Z×Z , the induced map of classical schemes cl(T ×

Z×Z
Z) → clT

is a closed embedding;

(3) There exists a collection of affine schemes Si and maps fi ∶ Si → Z (called
a Zariski atlas), such that:

● Each fi (which is affine schematic by the previous point) is an open
embedding;

● For every T ∈ (Schaff)/Z , the images of the maps cl(T ×
Z
Si) → clT

cover clT .

We shall denote the full subcategory of Stk spanned by schemes by Sch.

4In the main body of the text we drop the adjective ‘derived’: everything is derived unless
specified otherwise.

122 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

Remark 3.1.2. One can show that the étale descent condition can be replaced
by a weaker one: namely, it is sufficient to require that Z satisfy Zariski descent.
In addition, it is not difficult to see that schemes as defined above actually satisfy
flat descent.

Remark 3.1.3. Our definition gives what is usually called a separated scheme.
The non-separated case will be covered under the rubric of Artin stacks, discussed
in the next section.

3.1.4. We shall say that a scheme Z is quasi-compact if the classical scheme clZ
is. Equivalently, this means that Z admits a Zariski cover by a finite collection of
affine schemes.

3.1.5. It follows from the definition that if (Si
fi→ Z) is a Zariski atlas, then the

map

⊔
i
Si → Z

is an étale (and, in fact, Zariski) surjection.

Hence, from Lemma 2.3.8, we obtain:

Lemma 3.1.6. Let Z be a scheme. For a given Zariski atlas ⊔
i
Si → Z, we have

Z ≃ L(∣(⊔
i
Si)●/Z ∣PreStk).

3.1.7. The following results from Lemma 2.1.5:

Corollary 3.1.8.

(a) Given a Zariski morphism of affine schemes S′ → S, for T → S, the datum of
its lift to a map T → S′ is equivalent to the datum of a lift of clT → clS to a map
clT → clS′.

(b) Let Z ′ → Z be an affine Zariski map, where Z ′, Z ∈ Sch. Then for T → Z with

T ∈ Schaff , the datum of a lift of f to a map f ′ ∶ T → Z ′ is equivalent to the datum
of a lift of clf ∶ clT → clZ to a map clf ′ ∶ clT → clZ ′.

Remark 3.1.9. Both points in Corollary 3.1.8 remain valid if we replace the
word ‘Zariski’ by ‘étale’.

3.2. Construction of schemes. In this subsection we will prove an assertion
that provides a converse to Lemma 3.1.6.

3.2.1. First, we claim:

Proposition 3.2.2. Let Z be an object of Stk, equipped with a collection of
affine open embeddings Si → Z, where Si ∈ Schaff . Suppose that clZ is a classical
scheme5 and ⊔

i

clSi → clZ is its Zariski atlas. Then:

(a) Z is a scheme;

(b) The maps ⊔
i∈I
Si → Z form a Zariski atlas of Z.

5Following our conventions, when talking about classical schemes, we impose the hypothesis
that they be separated.

3. (DERIVED) SCHEMES 123

Proof. We only have to show that the diagonal map Z → Z × Z is affine
schematic. This is equivalent to showing that for any T,U ∈ (Schaff)/Z , the fiber
product T ×

Z
U is an affine scheme.

Consider the fiber products Si ×
Z
T . By assumption, these are affine schemes,

and the map

⊔
i
Si ×

Z
T → T

is a Zariski covering. Therefore, by Proposition 2.4.2(b), it suffices to show that
the fiber products

Si ×
Z
T ×
Z
U

are affine schemes. However,

Si ×
Z
T ×
Z
U ≃ (Si ×

Z
T) ×

Si
(Si ×

Z
U).

�

3.2.3. Let S● be a groupoid-object of PreStk (see [Lu1, Sect. 6.1.2] for what this
means).

Denote

Z ∶= L(∣S●∣).

We claim:

Proposition 3.2.4. Assume that S0 and S1 are of the form

S0 = ⊔
i∈I
S0
i and S1 = ⊔

j∈J
S1
j ,

where S0
i and S1

i are affine schemes, and the maps S1 ⇉ S0 are comprised of open
embeddings S1

i → S0
j . Assume, moreover, that clZ is a classical scheme and that

⊔
i

clS0
i → clZ is its Zariski atlas. Then:

(a) Z is a scheme;

(b) The maps ⊔
i∈I
S0
i → Z form a Zariski atlas of Z.

Proof. By Proposition 3.2.2, it is enough to show that each of the maps
S0
i → Z is an affine open embedding. By Corollary 2.4.4, it suffices to show that

the each of the maps

S0
i → ∣S●∣

is an affine open embedding.

Fix a map T → ∣S●∣. By definition, such a map factors as T → S0 → ∣S●∣. Hence,
we have

T ×
∣S●∣

S0
i ≃ T ×

S0
S0 ×

∣S●∣
S0
i .

Thus, it suffices to show that each of the maps S0 ×
∣S●∣

S0
i → S0 is an affine open

embedding.

We have

S0 ×
∣S●∣

S0
i ≃ (S0 ×

∣S●∣
S0) ×

S0
S0
i .

124 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

Now,
S0 ×

∣S●∣
S0 ≃ S1,

and the assertion follows from the assumption on the map S1 → S0.
�

3.2.5. Combining Proposition 3.2.4 with Lemma 2.1.5, we obtain:

Corollary 3.2.6. Let Z be a scheme. Then the operation of passage to the
underlying classical subscheme defines an equivalence between the full subcategory

Sch/Z spanned by Z ′ f→ Z with f affine Zariski and the full subcategory of clSch/clZ

spanned by Z̃ ′ f̃Ð→ clZ with f̃ affine Zariski. Furthermore, f is an open embedding
if and only if f̃ is.

Further, combining with Proposition 2.4.2(b), we obtain:

Corollary 3.2.7. In the circumstances of Corollary 3.2.6, the scheme Z ′ is
affine if and only if the classical scheme clZ ′ is affine.

And finally:

Corollary 3.2.8. A scheme Z is affine if and only if the classical scheme clZ
is affine.

3.3. Schemes and n-coconnectivity. In this subsection we study the question
of how the notion of scheme interacts with the notion of n-coconnective stack.

3.3.1. Replacing the category PreStk by ≤nPreStk in the definition of the notion
of scheme we obtain a category that we denote by ≤nSch.

For n = 0 we recover the category of classical (separated) schemes.

3.3.2. We claim:

Proposition 3.3.3. Any object of ≤nSch is n-truncated as an object of ≤nPreStk.

Proof. Let Z be an object of ≤nSch and let us be given a map f0 ∶ clT → Z,
where T ∈ ≤nSchaff . We will show that the space of maps T → Z that restrict to f0

is n-truncated.

Fix a Zariski atlas ⊔
i
Si → Z. Consider the induced Zariski cover clT ×

Z
Si of clT .

Since clT is quasi-compact, we can replace the initial index set by its finite subset,
denoted I, so that

⊔
i∈I

clT ×
Z
Si → clT

is still a cover.

By Lemma 2.1.5, there exists a canonically defined Zariski cover ⊔
i∈I
Ti = T ′ → T

such that
⊔
i∈I

clT ×
Z
Si = clT ′.

Now, the datum of a map f ∶ T → Z that restricts to f0 is equivalent to the
datum of a point of

Tot(Maps(T ′●/T,Z) ×
Maps(clT ′●/clT,Z)

{f0}∣clT ′●/clT).

3. (DERIVED) SCHEMES 125

We now claim that the above cosimplicial space is n-truncated simplex-wise.

Indeed, by Corollary 3.1.8(b), for every m ≥ 0, the corresponding space of m-
simplices is the product over the set of (m + 1)-tuples (i0, ..., im) of elements of I
of

Maps(Ti0 ×
T
... ×
T
Tim , Si0) ×

Maps(clTi0 ×
clT

... ×
clT

clTim ,Si0)
{f0}∣clTi0 ×

clT
... ×

clT

clTim
.

Now, the assertion follows from the fact that mapping spaces in ≤nSchaff are
n-truncated, by Sect. 1.8.6.

�

3.3.4. It is easy to see that the restriction functor for ≤nSchaff ↪ Schaff sends Sch
to ≤nSch (replace the original Zariski cover Si by ≤nSi).

We claim:

Proposition 3.3.5.

(a) The functor
LLKE≤nSchaff↪Schaff ∶ ≤nStk↪ Stk

sends ≤nSch to Sch.

(b) If Z is an object of ≤nSch with a Zariski atlas ⊔
i
Si → Z, then

⊔
i
Si → LLKE≤nSchaff↪Schaff (Z)

is a Zariski atlas.

Proof. Follows from Proposition 3.2.4.
�

3.3.6. We shall call a scheme ‘n-coconnective’ if it is n-coconnective as an object
of Stk.

We obtain that the functor LLKE≤nSchaff↪Schaff identifies the category ≤nSch
with that of n-coconnective schemes.

We emphasize that an n-coconnective scheme is not necessarily n-coconnective
as a prestack, but it is n-coconnective as a stack.

3.3.7. We have the following characterization of n-coconnective schemes:

Proposition 3.3.8. For Z ∈ Sch the following conditions are equivalent:

(i) Z is n-coconnective.

(ii) For every Z ′ ∈ Sch equipped with an affine open embedding Z ′ → Z, we have
Z ∈ ≤nSch.

(iii) Z admits a Zariski atlas by affine schemes belonging to ≤nSchaff .

Proof. The implication (i) ⇒ (iii) is Proposition 3.3.5(b). The implication
(ii) ⇒ (iii) is tautological. We will now show that (iii) implies both (i) and (ii).

Assume first that Z admits a Zariski atlas consisting of affine schemes in
≤nSchaff . Then we can write Z as

(3.1) L(colim
a∈A

Sa),

126 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

for some diagram of objects Sa ∈ ≤nSchaff , see Lemma 3.1.6. Concretely, the colimit
in question is the geometric realization of the Čech nerve of the given atlas.

In particular, colim
a∈A

Sa ∈ ≤nPreStk. And hence, Z ∈ ≤nStk.

For any affine open embedding Z ′ → Z, the pullback of this atlas gives a Zariski
atlas for Z ′ with a similar property. This implies that in this case Z ′ also belongs
to ≤nSch.

�

3.4. Schemes and convergence.
3.4.1. We claim:

Proposition 3.4.2. A scheme, regarded as an object of PreStk, is convergent.

Proof. Let Z be a scheme and let us be given a map f0 ∶ clT → Z, where
T ∈ Schaff . We will show that the datum of a lift of f0 to a map f ∶ T → Z is
equivalent to the datum of a compatible family of lifts fn ∶ ≤nT → Z.

Let ⊔
i
Si → Z and ⊔

i∈I
Ti = T ′ → T be as in the proof of Proposition 3.3.3.

As in loc.cit., the datum of a map f ∶ T → Z that restricts to f0 is equivalent
to the datum of a point of

Tot(Maps(T ′●/T,Z) ×
Maps(clT ′●/clT,Z)

{f0}∣clT ′●/clT).

The datum of a compatible family of maps fn is equivalent to the datum of a
point of

Tot(lim
n

Maps(≤nT ′●/≤nT,Z) ×
Maps(clT ′●/clT,Z)

{f0}∣clT ′●/clT) .

Now, we claim that the restriction map

(3.2) Maps(T ′●/T,Z) ×
Maps(clT ′●/clT,Z)

{f0}∣clT ′●/clT →

→ lim
n

Maps(≤nT ′●/≤nT,Z) ×
Maps(clT ′●/clT,Z)

{f0}∣clT ′●/clT

is an isomorphism simplex-wise.

Indeed, by Corollary 3.1.8(b), for every m ≥ 0, the spaces of m-simplices in the
two sides in (3.2) are products over the set of (m+1)-tuples (i0, ..., im) of elements
of I of

Maps(Ti0 ×
T
... ×
T
Tim , Si0) ×

Maps(clTi0 ×
clT

... ×
clT

clTim ,Si0)
{f0}∣clTi0 ×

clT
... ×

clT

clTim

and

lim
n

Maps(≤nTi0 ×
≤nT

... ×
≤nT

≤nTim , Si0) ×
Maps(clTi0 ×

clT
... ×

clT

clTim ,Si0)
{f0}∣clTi0 ×

clT
... ×

clT

clTim
,

respectively.

Now, the required isomorphism follows from the fact that each

Maps(Ti0 ×
T
... ×
T
Tim , Si0)→ lim

n
Maps(≤nTi0 ×

≤nT
... ×

≤nT

≤nTim , Si0)

is an isomorphism (the convergence of Si0 as a prestack).

3. (DERIVED) SCHEMES 127

�

3.4.3. We have the following partial converse to Proposition 3.4.2:

Proposition 3.4.4. Let Z be an object of convPreStk, such that for every n,
the corresponding object ≤nZ ∈ ≤nPreStk belongs to ≤nSch. Then Z ∈ Sch.

Proof. Let ⊔
i
S̃i → clZ be a Zariski atlas of clZ. By Corollary 3.1.8(b), for

every i we have a compatible family of open embeddings

Si,n → ≤nZ.

Set
Si = colim

n
Si,n,

where the colimit is taken in Schaff . By construction, we have Si,n = ≤nSi, and the
convergence property of Z implies that we have a well-defined map Si → Z.

We claim now that Z is a scheme with ⊔
i
Si → Z providing a Zariski atlas.

Indeed, this follows from Proposition 3.2.2.
�

3.5. Schemes locally (almost) of finite type.
3.5.1. We shall denote by ≤nSchlft and Schlaft the full subcategories of Stk, given
by

Sch∩≤nStklft and Sch∩Stklaft,

respectively.

We will denote by
≤nSchft ⊂ ≤nSchlft and Schaft ⊂ Schlaft

the full subcategories corresponding to quasi-compact schemes.

3.5.2. We have:

Proposition 3.5.3. For Z ∈ ≤nSch (resp., Z ∈ Sch) the following conditions
are equivalent:

(i) Z ∈ ≤nSchlft (resp., Z ∈ Schlaft);

(ii) For an affine open embedding Z ′ → Z with Z ′ ∈ ≤nSch (resp., Z ′ ∈ Sch), we have
Z ′ ∈ ≤nSchlft (resp., Z ′ ∈ Schlaft);

(iii) Z admits a Zariski atlas consisting of affine schemes from ≤nSchaff
ft (resp.,

Schaff
aft).

Proof. Since schemes are convergent (see Proposition 3.4.2), it suffices to
treat the case of Z ∈ ≤nSch.

Assume first that Z admits a Zariski atlas consisting of affine schemes from
≤nSchaff

ft . Write
Z ≃ ≤nL(colim

a∈A
Sa),

where Sa ∈ ≤nSchaff
ft .

Using Corollary 2.7.10, we obtain that Z lies in the image of the functor
LKE≤nSchaff

ft ↪≤nSchaff , i.e., it belongs to ≤nStklft.

128 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

Assume now that Z belongs to ≤nStklft. We will show that if we have an affine
open embedding Z ′ → Z, then Z ′ ∈ ≤nStklft.

Let T be an object of ≤nSchaff . We need to show that the map

(3.3) colim
a

Z ′(Ta)→ Z ′(T)

is an isomorphism, where a runs over the (filtered) category (≤nSchaff
ft)T /.

The map Z ′(S)→ Z(S) is a monomorphism for any S ∈ ≤nSchaff . Hence, since

colim
a

Z(Ta)→ Z(T)

is an isomorphism, we obtain that (3.3) is a monomorphism, by filteredness.

Hence, it remains to show that any map T → Z ′ can be factored as

T → Ta → Z ′,

where Ta ∈ ≤nSchaff
ft .

Consider the composite morphism

T → Z ′ → Z,

and let T → Tb → Z be its factorization with Tb ∈ ≤nSchaff
ft , which exists because Z

is locally of finite type.

Now set Ta ∶= Tb ×
Z
Z ′.

�

3.6. Properties of morphisms.
3.6.1. Let f ∶ Y1 → Y2 be a morphism in PreStk. We say that f is schematic if for
any S ∈ Schaff and S → Y2, the Cartesian product

S ×
Y2

Y1

is representable by an object of Sch.

The class of schematic maps is tautologically stable under base change. In
addition, we claim that the composition of schematic maps is schematic. This is
equivalent to the next assertion:

Proposition 3.6.2. Let Z be a scheme and let Z ′ → Z be a schematic map.
Then Z ′ is also a scheme.

Proof. It is clear that Z ′ satisfies étale descent.

Let ⊔
i
Si → Z be a Zariski atlas of Z. By assumption, each Si ×

Z
Z ′ is a scheme.

Let

⊔
j∈Ji

Tj → Si ×
Z
Z ′

be its Zariski atlas. We claim that

⊔
i
(⊔
j∈Ji

Tj)→ ⊔
i
Si ×

Z
Z ′ → Z ′

provides a Zariski atlas for Z ′.

4. (DERIVED) ARTIN STACKS 129

Indeed, this is true at the classical level. Hence, by Proposition 3.2.2, it suffices
to show that each of the maps

Tj → Si ×
Z
Z ′ → Z ′

is an affine open embedding. However, this is evident, since Tj → Si ×
Z
Z ′ is such by

construction, and Si ×
Z
Z ′ → Z ′ is such being a base change of an open embedding.

�

3.6.3. The next assertion follows from Proposition 3.4.4:

Lemma 3.6.4. Let f ∶ Y1 → Y2 be a map in convPreStk. To test the property of
f of being schematic (resp., schematic flat/ppf/smooth/étale) it is enough to do so

on affine schemes S belonging to <∞Schaff . If, moreover, Y1,Y2 ∈ PreStklaft, then
it is enough to take S ∈ <∞Schaff

ft .

3.6.5. Since the properties of a morphism in Schaff of being flat/ppf/smooth/étale/
Zariski are local in the Zariski topology of the source, they transfer to the corre-
sponding notions for morphisms in Sch:

A morphism Z ′ → Z between schemes is flat/ppf/smooth/étale/Zariski if and
only if for some (equivalently, any) Zariski atlas ⊔

i
S′i → Z ′, each of the composite

maps S′i → Z (which is now a schematic affine map of prestacks) has the corre-
sponding property.

Thus, by base change, we obtain the notion of a schematic flat/ppf/smooth/étale/
Zariski morphism in PreStk.

3.6.6. The following is obtained by reduction to the affine case:

Lemma 3.6.7. Let Z ′ f→ Z ′ g→ Z ′′ be morphisms between schemes. Assume that
f is surjective6 and flat (resp., ppf, smooth, étale, Zariski). If g ○ f is flat (resp.,
ppf, smooth, étale, Zariski), then so is g.

4. (Derived) Artin stacks

In this section we introduce the notion of k-Artin stack, k = 0,1, As in the
case of schemes, k-Artin stacks are prestacks with some particular properties (but
no additional structure).

Our definition is a variation of the definition of k-geometric stacks ot geometric
k-stacks in [TV2]. Although for an individual k, our definition will be different
from both these notions from [TV2], the union over all k produces the same class
of objects for all three classes of objects.

We also note that from the point of view of (our version of) the hierarchy of
k-Artin stacks, schemes (which are, beyond doubt, a natural object of study) are
a red herring: the category of schemes properly contains the category of 0-Artin
stacks and is properly contained in the category of 1-Artin stacks. As a related
phenomenon, we completely bypass the other important notion: that of algebraic
space.

6Surjective=surjective at the level of underlying classical schemes.

130 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

As in the previous sections, we will only be interested in only the most formal
aspects of the theory: the notions of n-coconnectivity, finite typeness and conver-
gence.

4.1. Setting up Artin stacks. For k ≥ 0, we will define a full subcategory of Stk
spanned by objects that we refer to as k-Artin stacks.

In setting up Artin stacks the choice of étale topology is no longer arbitrary.
It is made in order to make our system of definitions as simple as possible; see,
however, Remark 4.1.4 below.

4.1.1. We start with k = 0. We shall say that an object Y ∈ Stk is a 0-Artin stack
if it is of the form L(⊔

i
Si), where Si ∈ Schaff . In particular,

Stk0 -Artn ⊂ Sch .

4.1.2. To define the notion of k-Artin stack for k ≥ 1 we proceed inductively.

Along with this notion, we will define what it means for a morphism in PreStk
to be k-representable, and for a k-representable morphism what it means to be flat
(resp., ppf, smooth, étale, surjective). These notions have an obvious meaning in
the case of k = 0.

We will inductively assume the following properties:

● Any (k − 1)-Artin stack is a k-Artin stack;
● Any morphism that is (k − 1)-representable, is k-representable;
● A (k−1)-representable morphism is flat (resp., ppf, smooth, étale, surjec-

tive) if and only if it is such when viewed as a k-representable morphism;
● The class of k-representable (resp., k-representable + flat/ppf/smooth/étale/surjective)

morphisms is stable under compositions and base change.

It will follow inductively from the construction that the class of k-Artin stacks
is closed under fiber products.

4.1.3. Suppose the above notions have been defined for k′ < k.

We say that Y ∈ Stk is a k-Artin stack if the following conditions hold:

(1) The diagonal map Y → Y ×Y is (k − 1)-representable.

(2) There exists Z ∈ Stk(k−1) -Artn and a map f ∶ Z → Y (which is a (k − 1)-
representable by the previous point), which is smooth and surjective.

We shall call the pair f ∶ Z → Y a (smooth) atlas for Y. Note that we can

always choose an atlas with Z ∈ Stk0 -Artn.

Remark 4.1.4. Here we quote two fundamental results of Toën ([To, Theorem
2.1]). One says that Artin stacks as defined above actually satisfy ppf descent.
Another says that if we require ppf descent, but instead of requiring a smooth
atlas, we only require a ppf atlas, we still arrive at the same class of objects.

4. (DERIVED) ARTIN STACKS 131

4.1.5. We will say that Y ∈ Stk is an Artin stack if it is a k-Artin stack for some
k.

We let Stkk -Artn (resp., StkArtn) denote the full subcategory of Stk spanned by
k-Artin (resp., Artin) stacks.

Note that in our definition, schemes are 1-Artin stacks:

Sch ⊂ Stk1 -Artn .

4.1.6. We say that a morphism f ∶ Y1 → Y2 in PreStk is k-representable if for
every S → Y2 with S ∈ Schaff the fiber product S ×

Y2

Y1 is a k-Artin stack in the

above sense.

4.1.7. Let Y be a k-Artin stack mapping to an affine scheme S. We shall say that
this map is flat (resp., ppf, smooth, étale, surjective) if for some atlas Z → Y, the
composite map of Z → S (which is (k−1)-representable) is flat (resp., ppf, smooth,
étale, surjective). Note that Lemma 3.6.7 implies by induction that if this condition
holds for one atlas, then it holds for any other atlas.

4.1.8. We shall say that a k-representable morphism f ∶ Y1 → Y2 is flat (resp., ppf,

smooth, étale, surjective) if for every S → Y2 with S ∈ Schaff , the map

S ×
Y2

Y1 → S

is flat (resp., ppf, smooth, étale, surjective).

4.1.9. Quasi-compactness and quasi-separatedness. Let Y be a k-Artin stack. We
say that Y is quasi-compact if there exists a smooth atlas f ∶ S → Y with S ∈ Schaff .

For a k-representable morphism Y1 → Y2 in PreStk, we say that it is quasi-
compact, if its base change by an affine scheme yields a quasi-compact k-Artin
stack.

For 0 ≤ k′ ≤ k, we define the notion of k′-quasi-separatedness of a k-Artin stack
or a k-representable morphism inductively on k′.

We say that a k-Artin stack Y is 0-quasi-separated0-quasi-separated if the diag-
onal map Y → Y ×Y is quasi-compact, as a (k−1)-representable map. We say that
a k-representable map is 0-quasi-separated if its base change by an affine scheme
yields a 0-quasi-separated k-Artin stack.

For k′ > 0, we say that a k-Artin stack Y is k′-quasi-separated if the diagonal
map Y → Y ×Y is (k′−1)-quasi-separated, as a (k−1)-representable map. We shall
say that a k-representable map is k′-quasi-separated if its base change by an affine
scheme yields a k′-quasi-separated k-Artin stack.

We shall say that a k-Artin stack is quasi-separated if it is k′-quasi-separated
for all k′, 0 ≤ k′ ≤ k. We shall say that a k-representable map is quasi-separated if
its base change by an affine scheme yields a quasi-separated k-Artin stack.

4.2. Verification of the induction hypothesis.

132 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

4.2.1. Tautologically, the class of representable maps is stable under base change.
Moreover, diagram chase shows:

Lemma 4.2.2.

(a) Let a morphism f ∶ Y1 → Y2 in PreStk be k-representable. Then the diagonal
morphism Y1 → Y1 ×

Y2

Y1 is (k − 1)-representable.

(b) Any map between k-Artin stacks is k-representable.

4.2.3. We claim that the class of k-representable maps is stable under composi-
tions. This is equivalent to the following assertion:

Proposition 4.2.4. Let f ∶ Y ′ → Y be a k-representable map in PreStk where
Y is a k-Artin stack. Then so is Y ′.

Proof. Consider the diagonal Y ′ → Y ′ ×Y ′, and factor it as

Y ′ → Y ′ ×
Y
Y ′ → Y ′ ×Y ′.

Since f is k-representable we obtain that

Y ′ → Y ′ ×
Y
Y ′

is (k − 1)-representable (by Lemma 4.2.2(a)). Now, Y ′ ×
Y
Y ′ → Y ′ × Y ′ is (k − 1)-

representable, being a base change of Y → Y ×Y.

We now need to construct a smooth atlas for Y ′. Let Z → Y be a smooth atlas
for Y with Z ∈ Stk0 -Artn. By assumption, each Z ×

Y
Y ′ is a k-Artin stack. Choose a

smooth atlas Z ′ → Z ×
Y
Y ′. We claim that the composite map

Z ′ → Z ×
Y
Y ′ → Y ′

provides a smooth atlas for Y ′. Indeed, this map is smooth and surjective, being
the composition of Z ′ → Z (which is smooth and surjective by assumption) and
Z ×
Y
Y ′ → Y ′ (which is smooth and surjective, being a base change of Z → Y).

�

4.2.5. We claim that that the composition of representable flat/ppf/smooth/étale/surjective
maps is itself a flat/ppf/smooth/étale/surjective map. This is equivalent to the fol-
lowing:

Proposition 4.2.6. Let Y ′ → Y be a k-representable flat (resp., ppf. smooth,
étale, surjective) map, where Y is a k-Artin stack, equipped with a flat (resp., ppf,

smooth, étale, surjective) map to S ∈ Schaff . Then the composite map Y ′ → S is flat
(resp., ppf. smooth, étale, surjective).

Proof. The required property tautologically holds for the atlas constructed
in the proof of Proposition 4.2.4.

�

4.3. Descent properties.

4. (DERIVED) ARTIN STACKS 133

4.3.1. The following results from the definitions:

Lemma 4.3.2.

(a) If f ∶ Z → Y is an atlas of a k-Artin stack, then it is an étale surjection.

(b) If Y1 → Y2 is a k-representable morphism, which is étale and surjective, then it
is an étale surjection.

Corollary 4.3.3. Let Y be a k-Artin stack and let f ∶ Z → Y be a smooth
atlas. Then the natural map

L(∣Z●/Y ∣PreStk) ≃ ∣Z●/Y ∣Stk → Y
is an isomorphism, where the subscript Stk (resp., PreStk) indicates that the geo-
metric realization is taken in Stk (resp., PreStk).

Corollary 4.3.4. Let Y be a k-Artin stack. Then for any n, the restriction
≤nY ∈ ≤nPreStk is (n + k)-truncated.

Proof. We prove the assertion by induction. The assertion for k = 0 is a
particular case of Proposition 3.3.3. Assume now that the assertion is valid for
k′ < k.

Note that the geometric realization of a m-truncated groupoid object in Spc
is (m + 1)-truncated. Combining this with Lemma 2.5.3, we obtain that it suffices
to show that the simplicial prestack Z●/Y has the property that for every n its
restriction ≤n(Z●/Y) is (n + k − 1)-truncated.

However, each simplex of ≤n(Z●/Y) belongs to Stk(k−1) -Artn, and the assertion
follows from the induction hypothesis.

�

4.3.5. We will now prove an (amplified) converse to Corollary 4.3.3. Let Y● be a
groupoid-object of Stk (see [Lu1, Sect. 6.1.2] for what this means).

Set

Y ∶= ∣Y●∣Stk ≃ L(∣Y●∣PreStk)
be its geometric realization. We have

(4.1) Y1 ≃ Y0 ×
Y
Y0

(indeed, this tautologically holds before sheafification, and then use the fact that
the functor L preserves fiber products).

We claim:

Proposition 4.3.6.

(a) Assume that in the above situation Y1 and Y0 are k-Artin stacks, the maps
Y1 ⇉ Y0 are smooth and the map Y1 → Y0 ×Y0 is (k −1)-representable. Then Y is
a k-Artin stack.

(b) Let
Y ←ÐÐÐÐ Y ′
×××Ö

×××Ö
S

f←ÐÐÐÐ S′

134 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

be a Cartesian square in Stk with S,S′ ∈ Schaff and the morphism f being smooth
and surjective. Then if Y ′ is a k-Artin stack, the so is Y.

(c) Suppose that a morphism f ∶ Y1 → Y2 in PreStk is k-representable (resp.,
k-representable and flat/ppf/smooth/étale/surjective). Then so is the morphism
L(f) ∶ L(Y1)→ L(Y2).

Remark 4.3.7. By Remark 4.1.4, statement (b) of the above lemma can be
strengthened: one can relax the condition that the morphism f be ppf instead
of smooth. I.e., Artin stacks satisfy ppf descent, and not just smooth descent.
Statement (a) can be strengthened accordingly, by requiring that the maps Y1 ⇉ Y0

be ppf instead of smooth.

Remark 4.3.8. The above proposition allows to construct the familiar exam-
ples of algebraic stacks. For example, if G is a smooth group-scheme acting on
a scheme X, we consider Y1 ∶= G ×X as a groupoid acting on Z0 ∶= X, and the
resulting 1-Artin stack Y is what we usually refer to as X/G.

Proof of Proposition 4.3.6. We prove all three assertions by induction on
k. The base case is k = 1, which we will establish together with the induction
step. We note that statements (b) and (c) make sense for k = 0, and hold due to
Proposition 2.4.2(b) and Corollary 2.4.4, respectively.

We begin by proving point (a).

Let us show that the diagonal morphism of Y is (k−1)-representable. By point
(c) for k − 1, it suffices to show that the map

∣Y●∣PreStk → ∣Y●∣PreStk × ∣Y●∣PreStk

is (k − 1)-representable. Fix a map S → ∣Y●∣PreStk × ∣Y●∣PreStk with S ∈ Schaff . Such
a map factors through a map S → Y0 ×Y0. Hence,

S ×
∣Y●∣PreStk×∣Y●∣PreStk

∣Y●∣PreStk ≃ S ×
Y0×Y0

(Y0 ×Y0) ×
∣Y●∣PreStk×∣Y●∣PreStk

∣Y●∣PreStk ≃

≃ S ×
Y0×Y0

(Y0 ×
∣Y●∣PreStk

Y0) ≃ S ×
Y0×Y0

Y1.

A similar argument shows that the map Y0 → Y is smooth and surjective.
Hence, if Z → Y0 is a smooth atlas for Z0, then the composition Z → Y0 → Y1 is a
smooth atlas for Y.

Let us now prove point (b).

Let Y● be the Čech nerve of the map Y ′ → Y. In particular Y0 = Y ′ is a k-Artin
stack. The maps Y1 ⇉ Y0 are affine schematic and smooth, being base-changed
from S′ → S. In particular, Y1 is also a k-Artin stack. The map Y1 → Y0 × Y0 is
(k − 1)-representable since the diagonal morphism of Y ′ is (k − 1)-representable.

Since Y ′ → Y is an étale surjection, we have Y ≃ L(∣Y●∣PreStk), by Lemmas
4.3.2(b) and 2.3.8. Applying point (a) we obtain that Y is a k-Artin stack, as
desired.

Finally, let us prove point (c).

Let us be given a map S → L(Y2). We need to show that the fiber prod-
uct S ×

L(Y2)
L(Y1) is a k-Artin stack (resp., a k-Artin stack, whose map to S is

flat/ppf/smooth/étale/surjective).

4. (DERIVED) ARTIN STACKS 135

Since Y2 → L(Y2) is an étale surjection, we can find an étale covering S′ → S
so that the composition S′ → S → L(Y2) factors as S′ → Y2 → L(Y2). Consider the
Cartesian square

S ×
L(Y2)

L(Y1) ←ÐÐÐÐ S′ ×
L(Y2)

L(Y1)
×××Ö

×××Ö
S ←ÐÐÐÐ S′.

By point (b), it suffices to show that S′ ×
L(Y2)

L(Y1) is a k-Artin stack (the properties

of the map S′ ×
L(Y2)

L(Y1) → S′ imply the corresponding properties of the map

S ×
L(Y2)

L(Y1)→ S by Corollary 2.4.6.)

However, since the functor L commutes with fiber products, we have

S′ ×
L(Y2)

L(Y1) ≃ L(S′ ×Y2

Y1),

where
L(S′ ×

Y2

Y1) ≃ S′ ×Y2

Y1,

since S′ ×
Y2

Y1 is a k-Artin stack by assumption.

�

Corollary 4.3.9. Let Y be an object of Stk, and let f ∶ Z → Y be a (k − 1)-
representable, smooth and surjective morphism, where Z is a k-Artin stack. Then
Y is a k-Artin stack.

Proof. Apply Proposition 4.3.6(a) to the Čech nerve of the map Z → Y.
�

4.4. Artin stacks and n-coconnectivity.
4.4.1. Replacing the category Sch by ≤nSch in the above discussion, we arrive to
the definition of the category ≤nStkk -Artn.

It is clear that the restriction functor under ≤nSch ↪ Sch sends Stkk -Artn to
≤nStkk -Artn.

4.4.2. We claim:

Proposition 4.4.3.

(a) The functor
LLKE≤nSchaff↪Schaff ∶ ≤nStk↪ Stk

sends ≤nStkk -Artn to Stkk -Artn.

(b) If Z → Y is a smooth atlas for an object Y ∈ ≤nStkk -Artn, then
LLKE≤nSchaff↪Schaff (Z)→LLKE≤nSchaff↪Schaff (Y)

is a smooth atlas.

Proof. We will prove the proposition by induction on k, assuming its validity
for k′ < k. We note that the assertion for a given k′ implies the following:

(i) If Y1 → Y2 is a k′-representable (resp., k′-representable and flat/smooth) map
in ≤nPreStk, then the induced map in PreStk

LLKE≤nSchaff↪Schaff (Y1)→ LLKE≤nSchaff↪Schaff (Y2)

136 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

is also k′-representable (resp., k′-representable and flat/smooth).

(ii) If we have a Cartesian diagram in ≤nStkk
′ -Artn

(4.2)

Y ′1 ÐÐÐÐ→ Y1

×××Ö
×××Ö

Y ′2 ÐÐÐÐ→ Y2

with the vertical arrows flat, then the diagram

(4.3)

LLKE≤nSchaff↪Schaff (Y ′1) ÐÐÐÐ→ LLKE≤nSchaff↪Schaff (Y1)
×××Ö

×××Ö
LLKE≤nSchaff↪Schaff (Y ′2) ÐÐÐÐ→ LLKE≤nSchaff↪Schaff (Y2)

is Cartesian as well.

Let us now carry out the induction step.

Let Y be an object of ≤nStkk -Artn. By Corollary 4.3.3, for a given smooth atlas
Z → Y, we can write Y as ∣Z●∣≤nStk, where Z● is the Čech nerve of Z → Y, In

particular, Z● is a groupoid object in ≤nStk(k−1) -Artn.

By (ii) above, the simplicial object of Stk given by

LLKE≤nSchaff↪Schaff (Z●)

is a groupoid object. Moreover, by (i) above, it satisfies the assumption of Propo-
sition 4.3.6(a). Hence,

Y ′ ∶= ∣LLKE≤nSchaff↪Schaff (Z●)∣

is an object of Stkk -Artn.

Furthermore, Y ′ is n-coconnective as a stack, whose restriction to ≤nSch iden-
tifies with Y. Therefore,

Y ′ ≃ LLKE≤nSchaff↪Schaff (Y).

�

4.4.4. We shall say that an object of Stkk -Artn is n-coconnective if it is n-coconnective
as an object of Stk. From Proposition 4.4.3, we obtain:

Corollary 4.4.5. The functor LLKE≤nSchaff↪Schaff is an equivalence from
≤nStkk -Artn to the full subcategory of Stkk -Artn, spanned by n-coconnective k-Artin
stacks.

Warning: We emphasize again that being n-coconnective as a stack does not imply
being n-coconnective as a prestack.

4. (DERIVED) ARTIN STACKS 137

4.4.6. We will now characterize those k-Artin stacks that are n-coconnective:

Proposition 4.4.7. Let Y be a k-Artin stack. The following conditions are
equivalent:

(i) Y is n-coconnective.

(ii) There exists an atlas f ∶ Z → Y, where Z ∈ ≤nStk0 -Artn.

(iii) If Y ′ → Y is a k-representable flat map, then Y ′ is n-coconnective as a stack.

Proof. We argue inductively on k, assuming the validity for k′ < k.

The implication (i) ⇒ (ii) follows from Proposition 4.4.3(b).

Let us show that (ii) implies (i). By Corollary 4.3.3, it suffices to show that
the Čech nerve of the atlas Z → Y consists of (k − 1)-Artin stacks that are n-
coconnective. However, this follows from the implication (i) ⇒ (iii) for k − 1.

The implication (iii) ⇒ (ii) is tautological: the assumption in (iii) implies that
for any smooth atlas Z → Y, the scheme Z is n-coconnective.

Finally, the implication (i),(ii) ⇒ (iii) follows by retracing the construction of
the atlas in the proof of Proposition 4.2.4.

�

4.4.8. Artin stacks and convergence. We will now prove:

Proposition 4.4.9.

(a) Any k-Artin stack, viewed as an object of PreStk, is convergent.

(b) Let Y ∈ conv PreStk be such that for any n, we have ≤nY ∈ ≤nStkk -Artn. Then Y
is a k-Artin stack.

Proof. We proceed by induction on k. For k = 0, point (a) follows from Propo-
sition 3.4.2, and point (b) follows by repeating the argument of Proposition 3.4.4.

We first prove point (a), assuming the validity of both (a) and (b) for k′ < k.

Let f ∶ Z → Y be a smooth atlas Y. By Corollary 4.3.3, we have:

Y ≃ ∣Z●/Y ∣Stk.

Consider the induced map convf ∶ convZ → convY. We claim that convf is (k−1)-
representable, smooth and surjective. Indeed, for S → convY with S ∈ Schaff , for
every n, we have

≤n(S ×
convY

convZ) ≃ ≤nS ×
≤nY

≤nZ ∈ ≤nStk(k−1) -Artn .

Hence, S ×
convY

convZ is a (k−1)-Artin stack by the induction hypothesis. Moreover,

since each ≤nS ×
≤nY

≤nZ is smooth and surjective over ≤nS, by Lemma 2.1.3, we

obtain that S ×
convY

convZ is smooth and surjective over S.

In particular, by Lemma 4.3.2(b), we obtain that convZ → convY is an étale
surjection, and hence

convY ≃ ∣convZ●/convY ∣Stk.

However, we claim that the map of the cosimplicial objects

Z●/Y → convZ●/convY

138 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

is an isomorphism. Indeed, for every m, we have

convZm/convY ≃ conv(Zm/Y),
where Zm/Y is a (k−1)-Artin stack, and hence Zm/Y → conv(Zm/Y) is an isomor-
phism by the induction hypothesis.

To prove point (b) we will need to appeal to deformation theory. Choose a

smooth atlas Z0 → clY with Z0 ∈ clStk0 -Artn. Then deformation theory (see Volume
II, Chapter 1, Sect. 7.4) implies that we can we can construct a compatible system

of objects Zn ∈ ≤nStk0 -Artn equipped with smooth maps Zn → ≤nY.

Set Z ∶= colim
n

Zn, where the colimit is taken in convPreStk. By the case of k = 0,

we have Z ∈ Stk0 -Artn, and since Y is convergent we have a canonically defined map
Z → Y. Set Y● ∶= Z●/Y. By Lemma 2.5.9, we have Y ∈ Stk. Hence, the map

∣Y●∣Stk → Y
is an isomorphism.

Thus, by Proposition 4.3.6(a), it suffices to show that the map

Y1 = Z ×
Y
Z → Z ×Z

is (k−1)-representable and its composition with either of the the projections Z×Z →
Z is smooth. By the induction hypothesis and Lemma 2.1.3, it suffices to show that
the map

Zn ×
≤nY

Zn = ≤nZ ×
≤nY

≤nZ ≃ ≤n(Z ×
Y
Z)→ ≤n(Z ×Z) ≃ ≤nZ × ≤nZ = Zn ×Zn

has the corresponding properties. However, this follows from the fact that the map
Zn → ≤nY is (k − 1)-representable and smooth.

�

4.5. Artin stacks locally almost of finite type.
4.5.1. The goal of this subsection is to establish the following:

Proposition 4.5.2. Let Y be an object of Stkk -Artn (resp., ≤nStkk -Artn). The
following conditions are equivalent:

(i) Y ∈ Stklaft (resp., Y ∈ ≤nStklft);

(ii) Y admits an atlas f ∶ Z → Y with Z ∈ Stk0 -Artn
laft (resp., Z ∈ ≤nStk0 -Artn

lft);

(iii) For a k-representable ppf morphism Z → Y with Z ∈ Stk0 -Artn (resp., Z ∈
≤nStk0 -Artn), we have Z ∈ Stk0 -Artn

laft (resp., Z ∈ ≤nStk0 -Artn
lft).

(iv) For a k-representable ppf morphism Y ′ → Y, we have Y ′ ∈ Stklaft (resp., Y ′ ∈
≤nStklft)

We will call k-Artin stacks satisfying the equivalent conditions of the above
proposition ‘k-Artin stacks locally almost of finite type’.

Since we know that k-Artin stacks are convergent, it is enough to treat the case
of Y ∈ ≤nStkk -Artn.

4. (DERIVED) ARTIN STACKS 139

4.5.3. The proof of the proposition proceeds by induction, so we are assuming that
all four conditions are equivalent for k′ < k.

The implications (iii) ⇒ (ii) and (iv) ⇒ (iii) are tautological. The construction
of the atlas in Proposition 4.2.4 shows that (ii) and (iii) imply (iv).

4.5.4. Implication (ii)⇒ (i). By Corollary 4.3.3, we have

Y ≃ ≤nL(∣Z●/Y ∣≤nPreStk).

First, the implication (i) ⇒ (iv) for k − 1 implies that the terms of the Čech
nerve of the atlas Z → Y consist of objects of ≤nStklft. Hence, we can rewrite the
expression for Y as

≤nL ○ LKE≤nSchaff
ft ↪≤nSchaff (Y ∣≤nSchaff

ft
).

However, by Corollary 4.3.4, the restriction Y ∣≤nSchaff
ft

is (n + k)-truncated.

Hence, applying Proposition 2.7.7, we obtain that

≤nL ○ LKE≤nSchaff
ft ↪≤nSchaff (Y ∣≤nSchaff

ft
) ≃ LKE≤nSchaff

ft ↪≤nSchaff (Y ∣≤nSchaff
ft

)

(i.e., no sheafification is necessary).

Thus, Y, viewed as an object of ≤nPreStk, lies in the essential image of LKE≤nSchaff
ft ↪≤nSchaff ,

i.e., belongs to ≤nPreStklft.

4.5.5. Implication (i)⇒ (iii). (J.Lurie)

It is easy to see that we can assume that Z = S is an affine scheme. Let us be
given a ppf map f ∶ S → Y. We wish to show that S ∈ ≤nSchaff

ft .

Since Y ∈ ≤nPreStklft, there exists T ∈ ≤nSchaff , such that f factors as

S
hÐ→ T

gÐ→ Y.

Consider the Cartesian square:

T ×
Y
S

g′ÐÐÐÐ→ S

f ′
×××Ö

×××Ö
f

T
gÐÐÐÐ→ Y.

Since the map f is ppf, so is f ′. Let Z ′ → T×
Y
S be an atlas with Z ′ ∈ ≤nStk0 -Artn.

We obtain that Z ′ is ppf over T . Since T is of finite type, we obtain that Z ′ ∈
≤nStk0 -Artn

lft .

Since T ×
Y
S ∈ ≤nStk(k−1) -Artn, by the induction hypothesis, we obtain that

T ×
Y
S ∈ ≤nStk

(k−1) -Artn
lft ⊂ ≤nPreStklft .

Consider now the maps

S
diagÐ→ S ×

Y
S
h×idÐ→ T ×

Y
S → S,

140 2. BASICS OF DERIVED ALGEBRAIC GEOMETRY

where the last map if the projection on the second factor. The composition is the
identity map on S. Hence, S is a retract of T ×

Y
S as an object of ≤nPreStk. Since

the subcategory ≤nPreStklft ⊂ ≤nPreStk is stable under retracts, we obtain that

S ∈ ≤nPreStklft ∩≤nSchaff .

Now, the assertion that S ∈ ≤nSchaff
ft follows from Lemma 1.6.6.

CHAPTER 3

Quasi-coherent sheaves on prestacks

Introduction

0.1. What is (derived) algebraic geometry about? Arguably, the object of
study of (derived) algebraic geometry is not so much the geometric objects (i.e., the
most general of which we call prestacks, see Chapter 2), but quasi-coherent sheaves
on these geometric objects.

This Chapter is devoted to the definition and the study of the most basic
properties and structures on quasi-coherent sheaves.

0.1.1. Having at our disposal the theory of ∞-categories, the definition of the
category of quasi-coherent sheaves on a prestack is very simple.

First, if our prestack is an affine scheme S = Spec(A), then

QCoh(S) ∶= A-mod,

i.e., this is the DG category of A-modules.

For a general prestack Y, we define QCoh(Y) to be the limit of the categories
QCoh(S) over the category of pairs

(0.1) (S ∈ Schaff , y ∶ S → Y).
I.e., an object F ∈ QCoh(Y) is a of assignments for every (S, y) as above of

FS,y ∈ QCoh(S) and for every g ∶ S′ → S and y′ ∼ y ○g we are given an isomorphism

FS′,y′ ≃ g∗(FS,y).
These isomorphisms must satisfy a homotopy-coherent system of compatibilities for
compositions of morphisms between affine schemes.

We note that the above limit takes place in the ∞-category DGCatcont, so we
really need to input the entire machinery of [Lu1]. We also note that it is important
that we work with DG categories rather than triangulated categories: limits of the
latter are known to be ill-behaved.

0.1.2. Assume for a moment that Y is a (derived) scheme. Then Proposition 1.4.4
shows that in considering the above limit, it is enough to consider those

(S, y ∶ S → Y)
for which s is an open embedding. I.e., we glue the category QCoh(Y) from the
corresponding categories on its open affine subschemes.

Note that this is not how most textbooks define the category QCoh on a (de-
rived) scheme. The more usual way is to consider all sheaves of O-modules in
the Zariski topology, and then pass to the subcategory consisting of objects with
quasi-coherent cohomologies.

141

142 3. QUASI-COHERENT SHEAVES ON PRESTACKS

By contrast, our definition avoids any mention of sheaves that are non quasi-
coherent. We regard it as an advantage: in a sense non quasi-coherent sheaves do
not fully belong to algebraic geometry.

0.1.3. Generalizing from schemes to Artin stacks, we show that if Y is an Artin
stack, when considering the limit over the category of pairs (0.1), we can replace it
by its full subcategory where we require that the map y be smooth (note that since
Y is an Artin stack, it makes sense to talk about a map to it from an affine scheme
being smooth).

Moreover, we can replace the latter category by its 1-full subcategory where
when considering morphisms

(g ∶ S′ → S, y′ ≃ y ○ g),
we only allow those g that are themselves smooth.

So, when considering QCoh on an Artin stack, we do not have to consider maps
that are non-smooth.

0.1.4. Another possible approach to the definition of QCoh would have been as
the derived category of an abelian category.

Although it is true that for any prestack Y, the category QCoh(Y) carries a
canonical t-structure, the derived category of its heart is not at all equivalent to
QCoh(Y). This equivalence fails already for affine schemes that are not classical.

What one can show, however, is that when Y is a classical algebraic stack, then
the bounded below part of QCoh(Y) is equivalent to the bounded below part of
D(QCoh(Y)♡).

0.2. What is done in this Chapter beyond the definition? So far, we only
have the functor

QCoh∗PreStk ∶ PreStkop → DGCatcont

that sends a prestack Y to the category QCoh(Y) and a morphism f ∶ Y ′ → Y to
the pullback functor

f∗ ∶ QCoh(Y)→ QCoh(Y ′).
The rest of this chapter is devoted to exploring some very basic properties of

QCoh.

0.2.1. In Sect. 2, for a morphism f ∶ Y ′ → Y between prestacks we study the
functor

f∗ ∶ QCoh(Y ′)→ QCoh(Y),
right adjoint to f∗ (which exists by the Adjoint Functor Theorem since f∗ is con-
tinuous).

In general, the functor f∗ is ill-behaved. For example, it does not have the base
change property (see Proposition 2.2.2(b) for what this means). In particular, for

F ′ ∈ QCoh(Y ′), we cannot explicitly say what is the value of f∗(F ′) on S
y→ Y.

However, the situation is much better when f is schematic quasi-compact (i.e.,
the base change of f by an affine scheme yields a quasi-compact scheme). In this
case, the direct image functor does have the base change property.

1. THE CATEGORY OF QUASI-COHERENT SHEAVES 143

0.2.2. In Sect. 3 we show that the functor

QCoh∗PreStk ∶ PreStkop → DGCatcont

has a natural right-lax symmetric monoidal structure, where the symmetric monoidal
structure on PreStkop is induced by the Cartesian symmetric monoidal structure
on PreStk, and on DGCatcont, it is given by the Lurie tensor product.

Concretely, this means that for Y1,Y2 ∈ PreStk we have a canonically defined
functor

(0.2) QCoh(Y1)⊗QCoh(Y2)→ QCoh(Y1 ×Y2),

given by the external tensor product of quasi-coherent sheaves

F1,F2 ↦ F1 ⊠F2,

We give criteria for when the functor (0.2) is an equivalence. For example, a
sufficient condition is that the DG category QCoh(Y1) (or QCoh(Y2)) be dualizable.

0.2.3. The symmetric monoidal structure on the functor QCoh∗PreStk induces a
symmetric monoidal structure on QCoh(Y) for an individual Y.

We study how various conditions on QCoh(Y) (such as being dualizable, rigid
or compactly generated) interact with each other.

Finally, we study the following question: let

Y ′1 ÐÐÐÐ→ Y ′
×××Ö

×××Ö
Y1 ÐÐÐÐ→ Y

be a pullback diagram of prestacks. Under what conditions is the tautological
functor

QCoh(Y1) ⊗
QCoh(Y)

QCoh(Y ′)→ QCoh(Y ′1)

an equivalence?

1. The category of quasi-coherent sheaves

In this section we define the functor QCoh∗ that maps PreStkop to DGCatcont.
We study its basic properties: behavior with respect to n-coconnectivity and finite
typeness, descent and t-structure.

We then show that in the case of Artin stacks, QCoh agrees with the more
familiar definition of (the derived category of) quasi-coherent sheaves.

1.1. Setting up the theory of quasi-coherent sheaves. The basic input we
feed into the theory of QCoh is the fact that the assignment A↦ A-mod is a functor
from (AssocAlg(Vect))op to 1 -Cat.

144 3. QUASI-COHERENT SHEAVES ON PRESTACKS

1.1.1. Recall that according to Chapter 1, Sect. 3.5.5 we have a canonically defined
functor

(AssocAlg(Vect))op → DGCatcont, A↦ A-mod

Composing with the forgetful functors

ComAlg(Vect≤0)→ ComAlg(Vect)→ AssocAlg(Vect)

we obtain the functor

(1.1) (ComAlg(Vect≤0))op → DGCatcont .

1.1.2. We use the functor (1.1) as the initial input for QCoh.

Namely, we interpret (1.1) as a functor

(1.2) QCohSchaff ∶ Schaff → DGCatcont,

S ↝ QCoh(S), (S f→ S′)↝ (QCoh(S) f∗Ð→ QCoh(S′)).

We will now use the fact that the structure of (∞,1)-category on DGCatcont

can be canonically extended to a structure of (∞,2)-category, denoted DGCat2 -Cat
cont

(see Chapter 1, Sect. 10.3.9).

Note that for an individual morphism f ∶ S → S′ in Schaff , the functor

QCoh(S) f∗Ð→ QCoh(S′)

admits a left adjoint in DGCat2 -Cat
cont , denoted f∗.

Hence, applying Chapter 12, Corollary 1.3.4, by passing to left adjoints, from
QCohSchaff we obtain a functor

(1.3) QCoh∗Schaff ∶ (Schaff)op → DGCatcont,

S ↝ QCoh(S), (S f→ S′)↝ (QCoh(S′) f∗Ð→ QCoh(S)).

1.1.3. Finally, we define the functor

QCoh∗PreStk ∶ PreStkop → DGCatcont

to be the right Kan extension of the functor QCoh∗Schaff of (1.3) along the fully
faithful embedding

(Schaff)op ↪ PreStkop .

For an individual Y ∈ PreStk we denote the value of QCoh∗PreStk on it by
QCoh(Y). For a map f ∶ Y ′ → Y we denote the corresponding 1-morphism in
DGCatcont by

f∗ ∶ QCoh(Y ′)→ QCoh(Y).

1. THE CATEGORY OF QUASI-COHERENT SHEAVES 145

1.1.4. By definition, for an individual Y ∈ PreStk, we have

(1.4) QCoh(Y) ≃ lim
(S y→Y)

QCoh(S),

where the limit is taken over the category opposite to (Schaff)/Y .

Thus, we can think of an object F ∈ QCoh(Y) as an assignment

(S y→ Y)↝ FS,y ∈ QCoh(S),

(S′ f→ S) ∈ (Schaff)/Y ↝ (FS′,y○f ≃ f∗(FS,y)) ∈ QCoh(S′),
satisfying a homotopy-coherent system of compatibilities for compositions of mor-
phisms in (Schaff)/Y .

1.2. Basic properties of QCoh.
1.2.1. Quasi-coherent sheaves and n-coconnective prestacks. Assume that Y is n-
coconnective (see Chapter 2, Sect. 1.3.3), i.e., that when we view Y as a functor

(Schaff)op → Spc, it is a left Kan extension along the embedding

≤nSchaff ↪ Schaff .

We have:

Lemma 1.2.2. Under the above circumstances, the natural map

QCoh(Y)→ lim
(S y→Y)∈((≤nSchaff)/Y)op

QCoh(S)

is an equivalence.

Proof. Follows from (1.4), since the fact that Y is n-coconnective exactly
means that the functor

(≤nSchaff)/Y → (Schaff)/Y
is cofinal.

�

In other words, the above lemma says that if Y in n-coconnective, in the defini-
tion of quasi-coherent sheaves, it is enough to consider only those affine DG schemes
mapping to Y that are themselves n-coconnective.

In particular, if Y is a classical prestack, it is sufficient to consider only classical
affine schemes mapping to Y.

1.2.3. Quasi-coherent sheaves on stacks locally of finite type.

Let Y ∈ PreStk be n-coconnective as above, and assume, moreover, that it is locally
of finite type (see Chapter 2, Sect. 1.6). I.e., Y ∣≤nSchaff is the left Kan extension
along the embedding

≤nSchaff
ft ↪ ≤nSchaff .

Lemma 1.2.4. Under the above circumstances, the natural map

QCoh(Y)→ lim
(S y→Y)∈((≤nSchaff

ft)/Y))op
QCoh(S)

is an equivalence.

146 3. QUASI-COHERENT SHEAVES ON PRESTACKS

Proof. Follows from Lemma 1.2.2, since the fact that Y being locally of finite
type exactly means that the functor

(≤nSchaff
ft)/Y → (≤nSchaff)/Y

is cofinal.
�

I.e., for n-coconnective prestacks locally of finite type, in the definition of quasi-
coherent sheaves, it is enough to consider only those affine DG schemes mapping
to Y that are themselves n-coconnective and are of finite type.

1.2.5. Non-convergence. We note, however, that for S ∈ Schaff the functor

QCoh(S)→ lim
n

QCoh(≤nS)

is not necessarily an equivalence. The simplest counterexample is provided by
S = Spec(k[η]) with deg(η) = −2.

This means, in particular, that for Y ∈ PreStklaft we cannot express QCoh(Y)
in terms of the categories QCoh(S) with S ∈ Schaff

aft.

1.3. Descent. In this subsection we will discuss a fundamental feature of the
functor QCoh∗, namely, that it satisfies flat descent.

1.3.1. Recall what it means for a functor (Schaff)op → Spc to satisfy descent with
respect to a given topology, see Chapter 2, Sect. 2.3.1.

We note, however, that this notion make sense when we replace the target
category Spc by any ∞-category.

We observe, however, that the notion of descent when the target is some ∞-
category C is expressible in terms of descent with values in Spc:

Lemma 1.3.2. Let F ∶ (Schaff)op → C be a functor. Then it satisfies descent if
and and only if for every c ∈ C, the functor

MapsC(c,−) ○ F ∶ (Schaff)op → Spc

satisfies descent.

1.3.3. The following assertion is a version of Grothendieck’s flat descent (see [Lu5,
Proposition 2.7.14]):

Theorem 1.3.4. The composite functor

(Schaff)op
QCoh∗

SchaffÐ→ DGCatcont → 1 -Cat

satisfies descent with respect to the flat (and hence, ppf, étale, Zariski) topology.

Since the forgetful functor

DGCatcont → 1 -Cat

preserves limits (see Chapter 1, Lemma 2.5.2(b)), we obtain:

Corollary 1.3.5. The functor

QCoh∗Schaff ∶ (Schaff)op → DGCatcont

satisfies descent with respect to the flat (and hence, ppf, étale, Zariski) topology.

1. THE CATEGORY OF QUASI-COHERENT SHEAVES 147

1.3.6. Combining Corollary 1.3.5 with Chapter 2, Sect. 2.3.3, we obtain:

Corollary 1.3.7. Let f ∶ Y ′ → Y be a map in PreStk that is an equivalence
for the flat topology. Then

f∗ ∶ QCoh(Y)→ QCoh(Y ′)

is an equivalence.

From this, we obtain, tautologically:

Corollary 1.3.8. For Y ∈ PreStk, the canonical map Y → L(Y) induces an
equivalence:

QCoh(L(Y))→ QCoh(Y).

1.3.9. The last corollary has a two-fold significance:

First, to specify a stack we may often have to start from a prestack given
explicitly, and then apply the functor L. Corollary 1.3.8 implies that in order to
calculate the category QCoh of the resulting stack we can work with the initial
prestack.

Secondly, we obtain that for the purposes of QCoh, we will lose no information
if we work with the subcategory Stk rather than all of PreStk.

1.3.10. From Chapter 2, Lemma 2.3.8, we obtain:

Corollary 1.3.11. Let Y1 → Y2 be a surjection in the flat topology. Then the
natural map

QCoh(Y2)→ Tot (QCoh(Y●1/Y2))

is an equivalence.

1.3.12. Quasi-coherent sheaves on n-coconnective stacks. Recall the notion of n-
coconnective stack, see Chapter 2, Sect. 2.6.3.

Note that if Y is n-coconnective as a stack, then this does not mean that its is n-
coconnective as a prestack. However, combining Corollary 1.3.8 and Lemma 1.2.2,
we obtain:

Corollary 1.3.13. Let Y be an n-coconnective stack. Then the natural map

QCoh(Y)→ lim
(S y→Y)∈((≤nSchaff)/Y)op

QCoh(S)

is an equivalence.

1.4. Quasi-coherent sheaves on Artin stacks. The point of this subsection is
that when Y is an Artin stack, in order to recover QCoh(Y), instead of considering
all affine schemes mapping to Y, it is enough to consider only ones that are smooth
over Y.

148 3. QUASI-COHERENT SHEAVES ON PRESTACKS

1.4.1. Let Y be an k-Artin stack (see Chapter 2, Sect. 4.1). We claim that in this
case, there is a more concise expression for QCoh(Y).

Let (Schaff)/Y,sm denote the full subcategory of (Schaff)/Y consisting of those

S
y→ Y, for which y is smooth (as a (k − 1)-representable map).

Let ((Schaff)sm)/Y be the 1-full subcategory of (Schaff)/Y,sm, where we restrict
maps f ∶ S′ → S to also be smooth.

We claim:

Proposition 1.4.2.

(a) The natural map

QCoh(Y)→ lim
(S y→Y)∈((Schaff)/Y,sm)op

QCoh(S)

is an equivalence.

(b) The natural map

QCoh(Y)→ lim
(S y→Y)∈(((Schaff)sm)/Y)op

QCoh(S)

is an equivalence.

Proof. Assume by induction that both statements are true for k′ < k. The
base case of k = 0 is obvious: in this case our Y is a disjoint union of affine schemes.

We are going to construct a map

(1.5) lim
(S y→Y)∈(((Schaff)sm)/Y)op

QCoh(S)→ QCoh(Y),

inverse to the composition

QCoh(Y)→ lim
(S y→Y)∈((Schaff)/Y,sm)op

QCoh(S)→ lim
(S y→Y)∈(((Schaff)sm)/Y)op

QCoh(S).

Let f ∶ Z → Y be a smooth atlas, where Z is a (k − 1)-Artin stack. By
Corollary 1.3.11, the map

QCoh(Y)→ Tot (QCoh(Z●/Y))
is an equivalence. Thus, the datum of a map in (1.5) is equivalent to a map

(1.6) lim
(S y→Y)∈(((Schaff)sm)/Y)op

QCoh(S)→ Tot (QCoh(Z●/Y)) .

Note that the expression in the LHS of (1.6) equals the value on Y of

RKE((Schaff)sm)op→((Stkk -Artn)sm)op(QCoh∗Schaff ∣(Schaff)sm).

In the above formula, (Schaff)sm (resp., (Stkk -Artn)sm) denotes the 1-full subcate-

gory of Schaff (resp., Stkk -Artn), where we restrict 1-morphisms to be smooth maps.

The validity of point (b) for k − 1 is equivalent to the fact that the map

RKE((Schaff)sm)op→((Stk(k−1) -Artn)sm)op(QCoh∗Schaff ∣(Schaff)sm)→
→ QCoh∗Schaff ∣(Stk(k−1) -Artn)sm

is an isomorphism.

1. THE CATEGORY OF QUASI-COHERENT SHEAVES 149

Hence, by the transitivity of the operation of the right Kan extension, we can
rewrite the LHS of (1.6) as

lim
(Z′ y→Y)∈(((Stk(k−1) -Artn)sm)/Y)op

QCoh(Z ′).

Now, the required map

lim
(Z′ y→Y)∈(((Stk(k−1) -Artn)sm)/Y)op

QCoh(Z ′)→ Tot (QCoh(Z●/Y))

is given by restriction, since Z●/Y is a simplicial object in (Stk(k−1) -Artn)sm.
�

1.4.3. Assume now that Y = Z ∈ Sch. Let (Schaff)Z,open denote the full subcate-

gory of (Schaff)/Z , that consists of those z ∶ S → Z for which z is an open embedding.
Note that morphisms in this category automatically consist of open embeddings.

Then as in Proposition 1.4.2 we prove:

Proposition 1.4.4. The natural map

QCoh(Z)→ lim
(S z→Z)∈((Schaff)/Z,open)op

QCoh(S)

is an equivalence.

1.5. The t-structure. For any prestack Y, the category QCoh(Y) comes equipped
with a t-structure. When Y is an Artin stack, this t-structure is quite explicit.

1.5.1. Let Y be an arbitrary prestack. We claim that the category QCoh(Y)
carries a canonical t-structure. Namely, we declare that an object F ∈ QCoh(Y)
belongs to QCoh(Y)≤0 if for any S ∈ Schaff and S

y→ Y, the corresponding object
FS,y ∈ QCoh(S) belongs to QCoh(S)≤0.

This indeed defines a t-structure (see [Lu2, Proposition 1.2.1.16]):

Since the subcategory QCoh(Y)≤0 is stable under colimits, by the Adjoint Func-
tor Theorem, the embedding

QCoh(Y)≤0 ↪ QCoh(Y)

admits a right adjoint.

For a general prestack there is not much that one can say about this t-structure.

1.5.2. An example. Let Y be an affine scheme Spec(A). We have QCoh(Y) =
A-mod, while

(A-mod)♡ ≃ (H0(A)-mod)♡,

so heart of the t-structure depends in this case only on the underlying classical
affine scheme.

150 3. QUASI-COHERENT SHEAVES ON PRESTACKS

1.5.3. Assume now that Y is a k-Artin stack. In this case one can give an explicit
description of the t-structure on QCoh(Y) in terms of an atlas:

Proposition 1.5.4.

(a) Let Y be a k-Artin stack and let fi ∶ Si → Y be a smooth atlas, where Si ∈ Schaff .
Then an object F ∈ QCoh(Y) belongs to QCoh(Y)≤0 (resp., QCoh(Y)>0) if and
only if each f∗i (F) belongs to QCoh(Si)≤0 (resp., QCoh(Si)>0).

(b) Let π ∶ Y1 → Y2 be a flat map between k-Artin stacks. Then the functor

π∗ ∶ QCoh(Y2)→ QCoh(Y1)
is t-exact.

Remark 1.5.5. Since for an atlas fi ∶ Si → Y and Z = ⊔
i
Si, the functor

QCoh(Y)→ Tot(QCoh(Z●/Y)
is an equivalence, we obtain that point (a) is a particular case of point (b).

Proof. We will argue by induction, assuming that both statements are true
for k′ < k. Let us first prove point (a). It is enough to show that the functor f∗ is
compatible with the truncation functors.

Denote as above Z = ⊔
i
Si. Let F be an object of QCoh(Y), and let

F ∣Z●/Y ∈ QCoh(Z●/Y)
be the corresponding object. We claim that

i↦ τ≤0(F ∣Z●/Y) and i↦ τ>0(F ∣Z●/Y)
both belong to QCoh(Z●/Y). This follows by the induction hypothesis from the
fact that the face maps in the simplicial stack Z●/Y are flat.

It is clear that the object F ′ ∈ QCoh(Y) that corresponds to τ≤0(F ∣Z●/Y)
belongs to QCoh(Y)≤0.

We claim now that the object F ′′ ∈ QCoh(Y) that corresponds to τ>0(F ∣Z●/Y)
belongs to QCoh(Y)>0. Indeed, for F ′′′ ∈ QCoh(Y)≤0, we have

HomQCoh(Y)(F ′′′,F ′) ≃ Tot (HomQCoh(Z●/Y)(F ′′′∣Z●/Y , τ
>0(F ∣Z●/Y))) ,

and the right-hand side vanishes, since F ′′′∣Z●/Y ∈ QCoh(Z●/Y)≤0.

Let us now prove point (b). By point (a), we can assume that Y1 is an affine
scheme T (replace the initial Y1 by its atlas). So, we are dealing with a flat map
π from an affine scheme T to a k-Artin stack Y = Y2. Let fi ∶ Si → Y be an atlas
with Si ∈ Schaff . Consider the Cartesian square:

T ×
Y
Si

π′ÐÐÐÐ→ Si

f ′i

×××Ö
×××Ö
fi

T
πÐÐÐÐ→ Y.

Again, by point (a), it is sufficient to show that the functor

f ′∗ ○ π∗ ∶ QCoh(Y)→ QCoh(T ×
Y
Si)

2. DIRECT IMAGE FOR QCoh 151

is exact. However, f ′i
∗ ○ π∗ ≃ π′∗ ○ f∗i , and f∗i is t-exact by point (a), and π′∗ is

t-exact by the induction hypothesis.
�

1.5.6. Proposition 1.5.4 has the following corollary:

Corollary 1.5.7. Let Y be an Artin stack.

(a) The t-stucture on QCoh(Y) is compatible with filtered colimits, i.e., the trun-
cation functors on QCoh(Y) are compatible with filtered colimits (or, equivalently,
the subcategory QCoh(Y)>0 is closed under filtered colimits).

(b) The t-structure on QCoh(Y) is left-complete and right-complete , i.e., for
F ∈ QCoh(Y), the natural maps

F → lim
n∈N

τ≥−n(F)

colim
n∈N

τ≤n(F)→ F

are isomorphisms, where τ denotes the truncation functor.

Proof. Follows from Proposition 1.4.2(b) and the fact that both assertions
are true for affine schemes, using the following lemma:

Lemma 1.5.8. Let

I → DGCatcont, i↦Ci

be a diagram of DG categories and continuous functors. Assume that each Ci is
endowed with a t-structure, and all of the transition functors Fi,j ∶ Ci → Cj are
t-exact. Set C = lim

i∈I
Ci. Then:

(a) The category C acquires a unique t-structure such that the evaluation functors
evi ∶ C→Ci are t-exact;

(b) If the t-structure on each Ci is compatible with filtered colimits, then so is the
one on C.

(c) If the t-structure on each Ci is right-complete, then so is the one on C.

(d) If the t-structure on each Ci is left-complete, then so is the one on C.

�

Proof of Lemma 1.5.8. Only the last point is potentially non-obvious (be-
cause the transition functors Fi,j ∶ Ci → Ci are not assumed to preserve limits).
However, it follows from Chapter 1, Lemma 2.6.2.

�

2. Direct image for QCoh

So far we only know how the form the pullback of quasi-coherent sheaves for a
map between prestacks. However, in order to have a richer theory, we should also
develop the operation of direct image.

In general, the functor of direct image is quite ill-behaved. But there are
exceptions: notably, when our morphism is schematic and quasi-compact. Or when
one deals with Artin stacks and restricts oneself to the eventually coconnective
(=bounded below) subcategory.

152 3. QUASI-COHERENT SHEAVES ON PRESTACKS

2.1. The functor of direct image. Recall that the functor QCoh∗ for affine
schemes was obtained by passing to left adjoints from QCohSchaff , the latter being
functorial with respect to the operation of direct image.

For prestacks we apply an inverse procedure: to get QCohPreStk we pass to
right adjoints in QCoh∗PreStk.

2.1.1. Let f ∶ Y1 → Y2 be a morphism in PreStk, and consider the corresponding
functor

f∗ ∶ QCoh(Y2)→ QCoh(Y1).

Applying Lurie’s Adjoint Functor Theorem (see Chapter 1, Theorem 2.5.4), we
obtain that the above functor f∗ admits a discontinuous right adjoint, denoted

f∗ ∶ QCoh(Y1)→ QCoh(Y2).

Remark 2.1.2. In fact, using Chapter 12, Corollary 1.3.4, we obtain that the
assignment

Y ↝ QCoh(Y), (Y1
f→ Y2)↝ (QCoh(Y1)

f∗Ð→ QCoh(Y2)) ∈ DGCat

extends to a functor

QCoh ∶ PreStk→ DGCat,

whose restriction to Schaff ⊂ PreStk is the composition of the functor QCohSchaff of
(1.2) with the forgetful functor DGCatcont → DGCat.

2.1.3. Let

(2.1)

Y ′1
g′ÐÐÐÐ→ Y1

f ′
×××Ö

f
×××Ö

Y ′2
gÐÐÐÐ→ Y2

be a Cartesian square in PreStk. By adjunction, we obtain a natural transformation,
known as the base change morphism

(2.2) g∗ ○ f∗ → f ′∗ ○ g′∗.

However, in general, (2.2) is not an isomorphism.

The simplest counter-example is provided by Y2 = pt, Y ′2 = A1 and Y1 be a
countable disjoint union of copies of pt.

Remark 2.1.4. The failure of the isomorphism (2.2) says that in general, the

functor f∗ is difficult to calculate. Concretely, for F ∈ QCoh(Y1) and (S y→ Y2) ∈
(Schaff)/Y2

we do not have an explicit expression for (f∗(F))S,y ∈ QCoh(S).

2.2. Direct image for schematic morphisms.

2. DIRECT IMAGE FOR QCoh 153

2.2.1. Above we saw that the direct image functor for a general morphism between
prestacks does not have good properties. However, the situation improves consid-
erably if we consider the class of schematic quasi-compact morphisms, see Chapter
2, Sect. 3.6.1 and 4.1.9 for what this means:

Proposition 2.2.2. Let f ∶ Y1 → Y2 be a morphism of prestacks. Assume that
f is schematic and quasi-compact.

(a) The functor f∗ is continuous.

(b) The base change property is satisfied, i.e., for any diagram (2.1), the map (2.2)
is an isomorphism.

Proof. Note that in order to prove point (b), it is enough to consider the case
when

Y ′2 = Z2 ∈ Schaff ⊂ Schqc,

where the super-script “qc” means quasi-compact. In this case Y ′1 =∶ Z1 is also an
object of Schqc, by Chapter 2, Proposition 3.6.2.

Note that from the transitivity of the procedure of right Kan extension, for a
prestack Y, the map

QCoh(Y)→ lim
(Z→Y)∈((Schqc)/Y)op

QCoh(Z)

is an equivalence.

Note also that the functor

(Z2 → Y2) ∈ Schqc)/Y2
↝ Z2 ×

Y2

Y1 ∈ Schqc)/Y1

is cofinal. Indeed, it admits a left adjoint given by

(Z1 → Y1)↦ (Z1 → Y1 → Y2).
Hence, the functor

QCoh(Y1)→ lim
(Z2→Y2)∈((Schqc)/Y)op

QCoh(Z2 ×
Y2

Y1)

is an equivalence.

Hence, applying Chapter 1, Lemma 2.6.2 and 2.6.4, we obtain that it suffices
to prove that the functor f∗ is continuous for a morphism between quasi-compact
schemes

W
f→ Z

and that the natural transformation (2.2) is an isomorphism when all the prestacks
involved are quasi-compact schemes

W ′ g′ÐÐÐÐ→ W

f ′
×××Ö

f
×××Ö

Z ′ gÐÐÐÐ→ Z

Applying Chapter 1, Lemma 2.6.2 and 2.6.4 again, and using the fact that the
functor QCoh∗ satisfies Zariski descent, we can assume that Z and Z ′ are affine.
We will prove the assertion by induction on the number of affines by which we can
cover W .

154 3. QUASI-COHERENT SHEAVES ON PRESTACKS

The base of the induction thus is when W (and hence also W ′) is affine. In
this case, the functor f∗ is the same functor as in (1.2), and hence is continuous.
To check the isomorphism (2.2), it is enough to do so in the generator of QCoh(Z),
i.e., on OZ , and this is a tautology.

Let now W = U1 ∪U2; denote U1,2 ∶= U1 ×
W
U2. Denote

f1 ∶= f ∣U1 , f2 ∶= f ∣U2 , f1,2 ∶= f ∣U1,2 .

By the induction hypothesis, we can assume that the assertion of the proposi-
tion holds for the morphisms f1, f2, f1,2. However, it is easy to see that the functor
f∗ can be explicitly described as

F ↦ (f1)∗(F ∣U1) ×
(f1,2)∗(F ∣U1,2

)
(f2)∗(F ∣U2),

and this implies the required assertion for f∗.
�

Remark 2.2.3. The following strengthening of Proposition 2.2.2 is established
in [DrGa1, Corollary 1.4.5]:

Instead of requiring that f ∶ Y1 → Y2 be schematic quasi-compact, it suffices to
ask that the base change of f be an affine scheme yields a QCA algebraic stack, see
[DrGa1, Definition 1.1.8] for what this means.

2.2.4. Let us denote by PreStksch,qc the 1-subcategory of PreStk where we restrict
1-morphisms to be schematic and quasi-compact.

Consider the functor

QCoh∗PreStksch,qc-qs
∶ QCoh∗PreStk ∣PreStksch,qc-qs

∶ (PreStksch,qc)op → DGCatcont .

Combining Proposition 2.2.2(a) and Chapter 12, Corollary 1.3.4 for the target

(∞,2)-category DGCat2 -Cat
cont , we obtain that by passing to right adjoints we can

obtain from the functor QCoh∗PreStksch,qc-qs
a canonically defined functor

QCohPreStksch,qc-qs
∶ PreStksch,qc → DGCatcont .

By construction, the restriction of QCohPreStksch,qc-qs
to Schaff is the functor

QCohSchaff of (1.2).

2.3. Direct image for a map between Artin stacks. Let f ∶ Y1 → Y2 be a
map between Artin stacks. In general, the functor f∗ ∶ QCoh(Y1)→ QCoh(Y2) will
still be discontinuous. But the situation improves if one restricts one’s attention to
the bounded below subcategory.

2. DIRECT IMAGE FOR QCoh 155

2.3.1. Let f ∶ Y1 → Y2 be a map between Artin stacks. Assume that π is quasi-
compact and quasi-separated (see Chapter 2, Sect. 4.1.9 for what this means).

We have:

Proposition 2.3.2.

(a) The restriction f∗∣QCoh(Y1)≥0 maps to QCoh(Y2)≥0, and commutes with filtered
colimits.

(b) Let

Y ′1
g′ÐÐÐÐ→ Y1

f ′
×××Ö

×××Ö
f

Y ′2
gÐÐÐÐ→ Y2

be a Cartesian square, where the morphism g is flat. Then the diagram of functors

QCoh(Y ′1)+
g′∗←ÐÐÐÐ QCoh(Y1)+

f ′∗

×××Ö
×××Ö
f∗

QCoh(Y ′2)+
g∗←ÐÐÐÐ QCoh(Y2)+

is commutative.

Proof. Let f be k-representable. We argue by induction on k, assuming that
the assertion is true for k′ < k. We will prove point (a); point (b) is proved similarly.

The base of the induction (i.e., the case of k = 0) follows from Proposition 2.2.2(a).

Let
Z → Y1

be a smooth (or even flat) atlas with Z ∈ Sch. Let f i denote the composition

Zi/Y1 → Y1
f→ Y2.

By Corollary 1.3.11, for F ∈ QCoh(Y1), we have:

f∗(F) ≃ Tot (f●∗(F ∣Z●/Y1
)) .

Note that each fi is (k − 1)-representable, quasi-compact and quasi-separated.

By the induction hypothesis, for F ∈ QCoh(Y1)≥0, each term of the co-simplicial
object

(2.3) i↦ f i∗(F ∣Zi/Y1
)

is in QCoh(Y2)≥0. Hence, so is Tot (f●∗(F ∣Z●/Y1
)).

Recall that the t-structure on QCoh(Y2) is right-complete (see Corollary 1.5.7(b)).
Hence, in order to show that that f∗∣QCoh(Y1)≥0 commutes with filtered colimits, it
is enough to do so for its composition with the truncation functor

τ≤m ∶ QCoh(Y2)→ QCoh(Y2)≤m

for every m ≥ 0.

Note, however, that since the terms of f●∗(F ∣Z●/Y1
) belong to QCoh(Y2)≥0, we

have
τ≤m (Tot (f●∗(F ∣Z●/Y1

))) ≃ τ≤m (Tot≤m (f●∗(F ∣Z●/Y1
))) ,

156 3. QUASI-COHERENT SHEAVES ON PRESTACKS

where Tot≤m denotes the limit over the subcategory ∆≤m ⊂ ∆.

Now, Tot≤m is a finite limit, and hence it preserves filtered colimits.
�

2.4. Classical algebraic stacks. In this subsection for Y a classical algebraic
stack, we relate the category QCoh(Y) to some (potentially) more familiar notion.

2.4.1. According to [Lu2, Sect. 1.3.3], for any cocomplete stable ∞-category C,
equipped with a left and right complete t-structure, there is a canonically defined
functor

D(C♡)→C,

where D(−) denotes the derived stable ∞-category, attached to a given abelian
category, see [Lu2, Sect. 1.3.2]. In general, this functor is very far from being an
equivalence.

In particular, for any Artin stack Y we obtain a canonical t-exact functor

D(QCoh(Y)♡)→ QCoh(Y).

2.4.2. Assume now that Y is a quasi-compact and quasi-separated algebraic stack
(i.e., a 1-Artin stack), and assume that it is classical (see Chapter 2, Sect. 4.4.4)
for what this means.

Proposition 2.4.3. Under the above circumstances, the functor D(QCoh(Y)♡)+ →
QCoh(Y)+ is an equivalence.

Remark 2.4.4. The above proposition implies that, under the specified as-
sumptions, the category QCoh(Y) identifies with the left-completion ofD(QCoh(Y)♡).
We do not know what are the general conditions that guarantee that D(QCoh(Y)♡)
itself is left-complete. For example, this is true for quasi-compact schemes. It is
also easy to see that this is true for algebraic stacks of the form Z/G, where Z is a
quasi-projective DG scheme and G an algebraic group acting linearly on Z (recall
that we are working over a field of characteristic 0).

Proof of Proposition 2.4.3. The proof will follow from the following gen-
eral lemma:

Lemma 2.4.5. Let C be a DG category equipped with a t-structure compatible
with filtered colimits, and which is right-complete. Assume that for every object c ∈
C♡ there exists an injection c→ c0, where c0 ∈ C♡ is such that HomC(c′,c0[n]) = 0
for n > 0 and all c′ ∈ C♡. Then the natural functor

D(C♡)+ →C+

is an equivalence.

We apply this lemma to C = QCoh(Y). Let f ∶ S → Y be a map, where S is
a classical affine scheme. Since the diagonal morphism of Y is affine, the map f
itself is affine. Hence, by Proposition 1.5.4(a), if FS ∈ QCoh(S)♡, then f∗(FS) ∈
QCoh(Y)♡. Moreover, by Proposition 1.5.4(b), if f is flat and FS ∈ QCoh(S)♡ is
injective, we have

HomQCoh(Y)(F ′, f∗(FS)[n]) = 0, ∀F ′ ∈ QCoh(Y)♡, ∀n > 0.

3. THE SYMMETRIC MONOIDAL STRUCTURE 157

If F is an object of QCoh(Y)♡, let f ∶ S → Y be a flat atlas with S ∈ Schaff . Since
Y was assumed classical, S is classical as well. Choose an injective f∗(F) ↪ FS ,
and F embed into f∗(FS).

�

Remark 2.4.6. The same proof shows that (the homotopy category of)D(QCoh(Y)♡)+
identifies with the eventually coconnective part of the quasi-coherent derived cate-
gory of Y as defined in [LM].

3. The symmetric monoidal structure

In this section we will study the symmetric monoidal structure on QCoh∗ as
a functor, and the symmetric monoidal structure on QCoh(Y) as a category for a
given prestack Y.

3.1. The symmetric monoidal structure on QCoh as a functor. In this
subsection we return to the setting of Sect. 1.1. We will show that the functor
QCoh∗PreStk has a natural right-lax symmetric monoidal structure.

3.1.1. First, according to Chapter 1, Sect. 8.5.10, the functor

A↦ A-mod, (AssocAlg(Vect))op → DGCatcont

has a natural symmetric monoidal structure, where AssocAlg(Vect) is viewed as
a symmetric monoidal category via the operation of tensor product of algebras,
and DGCatcont is viewed as a symmetric monoidal category via the Lurie tensor
product.

Composing with the forgetful functors

ComAlg(Vect≤0)→ ComAlg(Vect)→ AssocAlg(Vect),

we obtain that the functor

(3.1) (ComAlg(Vect≤0))op → DGCatcont, A↦ A-mod

has a natural symmetric monoidal structure. Note that according to Chapter 1,
Sect. 3.6.6, the symmetric monoidal structure on (ComAlg(Vect≤0))op is Cartesian.

3.1.2. Thus, we obtain that the functor

QCohSchaff ∶ Schaff → DGCatcont

has a naturally defined symmetric monoidal structure, where Schaff is endowed with
the Cartesian symmetric monoidal structure.

Applying Chapter 9, Sect. 3.1 (in the simplest case of vert = horiz = adm = all,
co -adm = isom) we obtain that the functor

QCoh∗Schaff ∶ (Schaff)op → DGCatcont

also acquires a symmetric monoidal structure, where the symmetric monoidal struc-
ture on (Schaff)op is induced by the Cartesian symmetric monoidal structure on

Schaff .

158 3. QUASI-COHERENT SHEAVES ON PRESTACKS

3.1.3. Finally, applying Chapter 9, Sect. 3.2 (in the simplest case of vert = adm =
isom) we obtain that the functor

QCoh∗PreStk ∶ PreStkop → DGCatcont

acquires a right-lax symmetric monoidal structure, where the symmetric monoidal
structure on (Schaff)op is induced by the Cartesian symmetric monoidal structure
on PreStk.

3.1.4. In concrete terms, the meaning of the above construction is that for Y1,Y2 ∈
PreStk we have a canonically defined functor

(3.2) QCoh(Y1)⊗QCoh(Y2)→ QCoh(Y1 ×Y2),
denoted

F1,F2 ↦ F1 ⊠F2.

By construction, the functor (3.2) is an equivalence if Y1,Y2 ∈ Schaff .

3.1.5. The functor (3.2) can be explicitly described as follows.

(3.3) QCoh(Y1)⊗QCoh(Y2) ≃
⎛
⎜⎜
⎝

lim
←Ð

S1

y1→Y1

QCoh(S1)
⎞
⎟⎟
⎠
⊗

⎛
⎜⎜
⎝

lim
←Ð

S2

y2→Y2

QCoh(S2)
⎞
⎟⎟
⎠
,

whereas
QCoh(Y1 ×Y2) ≃ lim

←Ð
S
y→Y1×Y2

QCoh(S).

However, the functor

(Schaff)/Y1
× (Schaff)/Y2

→ (Schaff)/Y , S1, S2 ↦ S1 × S2

is cofinal, so we can rewrite

(3.4) QCoh(Y1 ×Y2) ≃ lim
S1

y1→Y1,S2

y2→Y2

QCoh(S1)⊗QCoh(S2).

Now, the map (3.2) is the tautological map from (3.3) to (3.4) (swapping the
limit with the tensor product).

3.1.6. We claim:

Proposition 3.1.7. Assume that Y1 is such that the category QCoh(Y1),
viewed as an object of DGCatcont, is dualizable. Then for any Y2, the functor
(3.2) is an equivalence.

Proof. We need to show that the map from (3.3) to (3.4) is an isomorphism.
We can write it as a composition

QCoh(Y1)⊗
⎛
⎝

lim
S2

y2→Y2

QCoh(S2)
⎞
⎠
→ lim

S2

y2→Y2

QCoh(Y1)⊗QCoh(S2) ≃

≃ lim
S2

y2→Y2

⎛
⎝
⎛
⎝

lim
S1

y1→Y1

QCoh(S1)
⎞
⎠
⊗QCoh(S2)

⎞
⎠
→

→ lim
S2

y2→Y2

⎛
⎝

lim
S1

y1→Y1

(QCoh(S1)⊗QCoh(S2))
⎞
⎠
.

3. THE SYMMETRIC MONOIDAL STRUCTURE 159

The first arrow is an isomorphism since tensoring with a dualizable category
commutes with limits (see Chapter 1, Sect. 4.3.2). The third arrow is an isomor-
phism for the same reason, as QCoh(S) for an affine scheme S is dualizable.

�

3.2. The symmetric monoidal structure on QCoh of a prestack. In this
subsection we will use the right-lax symmetric monoidal structure on the functor
QCoh∗PreStk to construct a symmetric monoidal structure on each QCoh(Y) for
Y ∈ PreStk.

3.2.1. Being right-lax symmetric monoidal, the functor QCoh∗PreStk sends commu-
tative algebra objects in PreStkop to commutative algebra objects on DGCatcont.

However, since the symmetric monoidal structure on PreStkop is coCartesian,
the forgetful functor

ComAlg(PreStkop)→ PreStkop

is an equivalence (see [Lu2, Corollary 2.4.3.10]).

We obtain that the functor QCoh∗PreStk naturally lifts to a functor

PreStkop → ComAlg(DGCatcont) =∶ DGCatSymMon
cont .

3.2.2. In other words, for any Y ∈ PreStk, the DG category QCoh(Y) acquires a
canonical symmetric monoidal structure, explicitly given by

F1,F2 ↦ F1 ⊗F2 ∶= (diagY)∗(F1 ⊠F2).

Furthermore, for a morphism f ∶ Y ′ → Y in PreStk, the functor

f∗ ∶ QCoh(Y)→ QCoh(Y ′)

is naturally symmetric monoidal.

3.2.3. Consider again the direct image functor

f∗ ∶ QCoh(Y ′)→ QCoh(Y).

Being a right adjoint to a symmetric monoidal functor, the functor f∗ is right-
lax symmetric monoidal (this is the commutative version of Chapter 1, Lemma
3.2.4).

In particular, for F ∈ QCoh(Y), F ′ ∈ QCoh(F ′), we have a canonically defined
map

(3.5) F ⊗ f∗(F ′)→ f∗(f∗(F)⊗F ′)),

called the projection formula map.

In general, the map (3.5) is not an isomorphism. However, as in Proposi-
tion 2.2.2, one shows:

Lemma 3.2.4. Assume that f is schematic quasi-compact. Then the map (3.5)
is an isomorphism.

160 3. QUASI-COHERENT SHEAVES ON PRESTACKS

3.2.5. Let f ∶ Y ′ → Y be again a map between prestacks. Since the functor f∗
is right-lax (symmetric) monoidal, it maps algebras in QCoh(Y ′) to algebras in
QCoh(Y).

In particular, the object

f∗(OY ′) = A ∈ QCoh(Y)

has a natural structure of commutative algebra.

Moreover, by Chapter 1, Sect. 3.7.3, the functor f∗ naturally factors as

QCoh(Y ′)→ A-mod(QCoh(Y)) oblvAÐ→ QCoh(Y).

In general, the above functor

(3.6) QCoh(Y ′)→ A-mod(QCoh(Y))

is not an equivalence.

3.2.6. Let

Y ′1 ÐÐÐÐ→ Y1

f ′
×××Ö

f
×××Ö

Y ′2
gÐÐÐÐ→ Y2

be a Cartesian square of prestacks.

Note that we have a canonical map:

(3.7) QCoh(Y1) ⊗
QCoh(Y2)

QCoh(Y ′2)→ QCoh(Y ′1).

In general, the functor (3.7) is not an equivalence. Here is a counter-example:

Take Y1 = Y2 = pt, and Y = pt /A, where A is an abelian variety. Then Y1×YY2 ≃
A, while

QCoh(pt /A) ≃H-mod,

where H = (Γ(A,OA))∨ is an algebra with respect to convolution, and is isomorphic
to Sym(H1(X,OA)∨[1]). So

Vect ⊗
H-mod

Vect ≃ Sym(H1(X,OA)∨[2])-mod.

3.3. The quasi-affine case.
3.3.1. We shall say that an object X ∈ Sch is quasi-affine if it quasi-compact and
admits an open embedding into an affine scheme.

We shall say that a morphism f ∶ Y ′ → Y in PreStk is quasi-affine if its base
change by an affine scheme yields a quasi-affine scheme.

3. THE SYMMETRIC MONOIDAL STRUCTURE 161

3.3.2. We claim:

Proposition 3.3.3. Let f ∶ Y ′ → Y be quasi-affine. Then the functor (3.6) is
an equivalence.

Proof. Let first f be arbitrary. We note that we have a canonical homomor-
phism of monads acting on QCoh(Y).

A⊗ −→ f∗ ○ f∗.

Assume now that f is schematic and quasi-compact. In this case, by Lemma 3.2.4,
the above map of monads is an isomorphism. Hence, in order to prove the propo-
sition, it remains to show that the functor f∗ satisfies the hypothesis of the Barr-
Beck-Lurie theorem, see Chapter 1, Proposition 3.7.7.

Now, since f was assumed schematic quasi-compact, the functor f∗ commutes
with all colimits, by Proposition 2.2.2(a). Thus, it remains to show that f∗ is
conservative. By Proposition 2.2.2(b), the latter assertion reduces to the case when

Y ∈ Schaff .

Thus, it remains to show that the functor of global sections on QCoh of a
quasi-affine scheme X is conservative. Let j ∶X ↪ S be an open embedding, where
S ∈ Schaff . Since the functor of global sections over S is conservative, it remains to
show that the functor j∗ is fully faithful.

However, we claim that j∗ admits a left inverse, namely, j∗. Indeed, this follows
from Proposition 2.2.2(b) for the Cartesian square

X
idÐÐÐÐ→ X

id
×××Ö

×××Ö
j

X
jÐÐÐÐ→ S.

�

3.3.4. Here is another favorable feature of quasi-affine maps:

Proposition 3.3.5. Assume in the situation of Sect. 3.2.6, the map f (and
hence f ′) is quasi-affine. Then then map (3.7) is an equivalence.

Proof. By Proposition 3.3.3

QCoh(Y ′1) ≃ f ′∗(OY ′1)-mod(QCoh(Y ′2)).

Now, again by Proposition 3.3.3 and Chapter 1, Corollary 8.5.7,

QCoh(Y1) ⊗
QCoh(Y2)

QCoh(Y ′2) ≃ f∗(OY1)-mod(QCoh(Y2)) ⊗
QCoh(Y2)

QCoh(Y ′2) ≃

≃ g∗(f∗(OY1))-mod(QCoh(Y ′2)).

Finally, by Proposition 2.2.2(2),

f ′∗(OY ′1) ≃ g
∗(f∗(OY1))

as algebras in QCoh(Y ′2).
�

162 3. QUASI-COHERENT SHEAVES ON PRESTACKS

3.4. When is QCoh rigid?
3.4.1. Recall the notion of rigid stable monoidal category, Chapter 1, Sect. 9.1.

The following assertion provides a partial converse to Proposition 3.1.7:

Proposition 3.4.2. Let Y be a prestack, such that the diagonal map diagY is
schematic and quasi-compact, and such that the object OY ∈ QCoh(Y) is compact.
Then the following conditions are equivalent:

● (i) The functor QCoh(Y)⊗QCoh(Y ′)→ QCoh(Y ×Y ′) is an equivalence
for any Y ′.

● (ii) The functor QCoh(Y)⊗QCoh(Y)→ QCoh(Y ×Y) is an equivalence.

● (iii) The category Y is rigid as a stable monoidal category.

● (iv) The category QCoh(Y) is dualizable.

Proof. The implicatios (i) ⇒ (ii) is tautological, and the implication (iii) ⇒
(iv) follows froom Chapter 1, Sect. 9.2.1.

The implication (iv) ⇒ (i) is the content of Proposition 3.1.7. It remains to
show (ii) ⇒ (iii).

Given (ii), we can identify the map mult∗QCoh(Y) (we are using the notation of

Chapter 1, Sect. 9.1.1) with

(diagY)∗ ∶ QCoh(Y ×Y)→ QCoh(Y).

The fact that it satisfies the assumptions of loc. cit. follows from Proposition 2.2.2(b).
�

3.4.3. Let f ∶ Y1 → Y2 be a map between prestacks, such that both QCoh(Y1) and
QCoh(Y2) are rigid. From Chapter 1, Lemma 9.2.6(2) we obtain:

Lemma 3.4.4. The functor f∗ ∶ QCoh(Y1) → QCoh(Y2) is continuous, and
under the identifications

QCoh(Yi)∨ ≃ QCoh(Yi),
we have f∗ ≃ (f∗)∨.

3.5. Passable prestacks.
3.5.1. We shall say that a prestack Y is passable if

(1) The diagonal morphism of Y is quasi-affine;

(2) OY ∈ QCoh(Y) is compact;

(3) The category QCoh(Y) is dualizable.

For example, any stack which is perfect (see Sect. 3.7.1) below is passable. In
particular, any quasi-compact scheme is passable when viewed as a prestack.

By Proposition 3.4.2, we obtain that if Y is passable, then QCoh(Y) is rigid as
a monoidal category.

3. THE SYMMETRIC MONOIDAL STRUCTURE 163

3.5.2. We are going to show that passable prestacks are adapted to having the
map in (3.7) an equivalence:

Let Y be a passable prestack. Let Y1 and Y2 be prestacks mapping to Y.

Proposition 3.5.3. If under the above circumstances QCoh(Y1) is dualizable
as a category, the natural functor

QCoh(Y1) ⊗
QCoh(Y)

QCoh(Y2)→ QCoh(Y1 ×Y Y2)

is an equivalence.

Proof. By Chapter 1, Propositions 9.4.4 and Sect. 4.3.2, the rigidity of
QCoh(Y) and the fact that QCoh(Y1) is dualizable imply that the operation

C↦ QCoh(Y1) ⊗
QCoh(Y)

C

preserves limits.

This allows to replace Y2 by S ∈ Schaff . But then the map S → Y is quasi-
compact and quasi-affine, and we find ourselves in the situation of Proposition 3.3.5.

�

3.6. The perfect subcategory.
3.6.1. Recall the notion of dualizable object in a symmetric monoidal category,
see Chapter 1, Sect. 4.1.

For a prestack Y, we let

QCoh(Y)perf ⊂ QCoh(Y)
denote the full subcategory consisting of dualizable objects.

For a map f ∶ Y ′ → Y, the functor f∗ ∶ QCoh(Y) → QCoh(Y ′) clearly sends
QCoh(Y)perf to QCoh(Y ′)perf .

Thus, we obtain a well-defined functor

(3.8) Y ↦ QCoh(Y)perf , PreStkop → 1 -Cat .

3.6.2. We have the following basic assertion:

Lemma 3.6.3. Let
I → 1 -CatMon, i↦Ai

be a functor, and denote A ∶= lim
i

Ai. Then an object a ∈ A is left dualizable if and

only if evi(a) ∈ Ai is dualizable for every i.

As a corollary we obtain:

Corollary 3.6.4.

(a) An object F ∈ QCoh(Y) is perfect if and only if for every (S y→ Y) ∈ (Schaff)/Y ,
the corresponding FS,y ∈ QCoh(S) is perfect.

(b) The functor (3.8) maps isomorphically to the right Kan extension to its restric-

tion to Schaff .

Moreover, combing with Theorem 1.3.4, we obtain:

Corollary 3.6.5. The restriction of the functor (3.8) to Schaff satisfies flat
descent.

164 3. QUASI-COHERENT SHEAVES ON PRESTACKS

3.6.6. Perfectness and compactness. Let S be an affine DG scheme. We recall the
following (this is a particular case of Chapter 1, Corollary 9.1.7):

Lemma 3.6.7. For M ∈ QCoh(S) the following conditions are equivalent:

(i) M is compact;

(ii) M is dualizable as an object of the symmetric monoidal category QCoh(S).

We now claim:

Proposition 3.6.8.

(1) Suppose that the diagonal morphism of Y is schematic and quasi-compact. Then
any compact object of QCoh(Y) is perfect.

(2) Suppose that OY ∈ QCoh(Y) is compact. Then any perfect object of QCoh(Y)
is compact.

Proof. Point (2) follows from Chapter 1, Lemma 8.8.4: dualizability implies
compactness in any symmetric monoidal stable category in which the unit is com-
pact.

To prove point (1), taking into account Lemma 3.6.7, we have to show that the
functor F ↦ f∗(F) for f ∶ S → Y with S affine, sends compact objects to compact
ones. However, this is true, since the right adjoint of f∗, i.e., the functor f∗ is
continuous, by Proposition 2.2.2(a).

�

3.6.9. Finally, we note:

Proposition 3.6.10. The functor

S ↦ QCoh(S)perf , (Schaff)op → 1 -Cat

is convergent.

Proof. By definition, we need to show that for S ∈ Schaff , the family of func-
tors

F ↦ F ∣≤nS ,
given by restriction, defines an equivalence

QCoh(S)perf → lim
n

QCoh(≤nS)perf .

However, we claim that more is true: namely, the functor

QCoh(S)− → lim
n

QCoh(≤nS)−

is an equivalence1. Indeed, its inverse is given by sending a compatible family
Fn ∈ QCoh(≤nS)− to

lim
n

(in)∗(Fn),

where in denotes the tautological map ≤nS → S.
�

3.7. Perfect prestacks.

1Note, however, that the corresponding fact is false for all of QCoh.

3. THE SYMMETRIC MONOIDAL STRUCTURE 165

3.7.1. Following [BFN], we shall say that a prestack Y is perfect if

(1) The diagonal morphism of Y is affine;

(2) The functor Ind(QCoh(Y)perf)→ QCoh(Y) is an equivalence.

3.7.2. By Proposition 3.6.8, the above conditions can be reformulated as follows:

(1) The diagonal morphism of Y is affine,

(2) OY ∈ QCoh(Y) is compact,

(3) QCoh(Y) is compactly generated.

3.7.3. Since every compactly generated category is dualizable, we obtain that every
perfect stack is passable, see Sect. 3.5.1 for what this means.

3.7.4. Examples. In [BFN], following the arguments of [TT] and [Ne], it is shown
that any quasi-compact scheme, considered as a prestack, is perfect.

Moreover, in [BFN] it is shown that if Y is of the form X/G, where G is an
algebraic group and X is a scheme endowed with a G-equivariant ample line bundle,
then Y is perfect (under our assumption that the ground field k is of char. 0).

Part II

Ind-coherent sheaves

Introduction

1. Ind-coherent sheaves vs quasi-coherent sheaves

One of the primary goals of this book is to construct the theory of ind-coherent
sheaves as a theory of O-modules on prestacks that exists alongside the theory of
quasi-coherent sheaves.

We shall now try to explain what we mean by a ‘theory’, and highlight the
formal features that the two theories have in common and those that set them
apart.

1.1. For us QCoh is ultimately a functor

QCoh∗PreStk ∶ (PreStk)op → DGCatcont .

I.e., it is a functorial assignment

(X ∈ PreStk)↝ (QCoh(X) ∈ DGCatcont) and (X f→ Y)↝ (f∗ ∶ QCoh(Y)→ QCoh(X)).

Moreover, the functor QCoh∗PreStk has a natural right-lax symmetric monoidal
structure, where PreStk is a symmetric monoidal category with respect to the
Cartesian product, and DGCatcont is symmetric monoidal category with respect to
the ⊗ tensor product of DG categories.

NB: Here it is of crucial importance that we work with DGCatcont (and not DGCat):
the operation of tensor product of DG categories is only functorial with respect to
continuous (i.e., colimit preserving) functors.

Thus, for X ,Y ∈ PreStk, we have a well-defined functor

(1.1) QCoh(X)⊗QCoh(Y)→ QCoh(X ×Y), F ,G ↦ F ⊠ G.

1.2. The functor (1.1) is an equivalence if X and Y are schemes (in fact, it is an
equivalence of just one of them is a scheme).

The functor QCoh∗PreStk has the following features:

(i) If X f→ Y is a schematic and quasi-compact morphism between prestacks, the
above functor f∗ admits a continuous right adjoint

f∗ ∶ QCoh(X)→ QCoh(Y).
Moreover, if

X ′ gXÐÐÐÐ→ X

f ′
×××Ö

×××Ö
f

Y ′ gYÐÐÐÐ→ Y
169

170 INTRODUCTION

is a Cartesian diagram of prestacks with vertical maps being schematic, the natural
transformation of functors

g∗Y ○ f∗ → f ′∗ ○ g∗X , QCoh(X)⇉ QCoh(Y ′)
that arises by adjunction from the isomorphism of functors

(f ′)∗ ○ g∗Y ≃ g∗X ○ f∗,
is an isomorphism.

(ii) If X =X ∈ Sch, then the functor

QCoh(X)⊗QCoh(X) ≃ QCoh(X ×X)
∆∗
X→ QCoh(X) Γ(X,−)Ð→ Vect

defines the counit of a duality, thereby giving rise to an equivalence

Dnaive
X ∶ QCoh(X)∨ → QCoh(X).

In the above formula Γ(X,−) is the functor (pX)∗ ∶ QCoh(X) → QCoh(pt) =
Vect, where pX is the tautological projection X → pt.

1.3. Here is what the theory of IndCoh will do. First and foremost it will be a
functor

IndCoh!
PreStklaft

∶ (PreStklaft)op → DGCatcont .

I.e., it is a functorial assignment

(X ∈ PreStklaft)↝ (IndCoh(X) ∈ DGCatcont) and (X f→ Y)↝ (f ! ∶ IndCoh(Y)→ IndCoh(X)).

As in the case of QCoh, the functor IndCoh!
PreStklaft

has a natural right-lax
symmetric monoidal structure.

If we work over the ground field of characteristic 0 (which is our assumption
throughout), then the corresponding functor

(1.2) IndCoh(X)⊗ IndCoh(Y)→ IndCoh(X ×Y), F ,G ↦ F ⊠ G.
is an equivalence if either X or Y is a scheme.

Already here, there is one piece of difference from the case of QCoh: the functor
(1.2) is guaranteed to be an equivalence on a far larger class of algebro-geometric
objects. Namely, it suffices to require that X (or Y) be an inf-scheme. We refer the
reader to Volume II, Chapter 2 where it is explained what inf-schemes are. Here
we will just say that this is a class of prestacks that includes formal schemes and
de Rham prestacks of schemes, and is closed under fiber products.

1.4. Here are some features of the functor IndCoh!
PreStklaft

:

(i) If X f→ Y is a schematic (more generally, inf-schematic) morphism between
prestacks, we have a well-defined continuous functor

f IndCoh
∗ ∶ IndCoh(X)→ IndCoh(Y),

and if if
X ′ gXÐÐÐÐ→ X

f ′
×××Ö

×××Ö
f

Y ′ gYÐÐÐÐ→ Y

1. IND-COHERENT SHEAVES VS QUASI-COHERENT SHEAVES 171

is a Cartesian diagram of laft prestacks with vertical maps being schematic (more
generally, inf-schematic), then we are given an isomorphism of functors

(1.3) g!
Y ○ f IndCoh

∗ → (f ′)IndCoh
∗ ○ g!

X , QCoh(X)⇉ QCoh(Y ′).

However, unlike the case of QCoh, for a general f , the functor f IndCoh
∗ is not

the adjoint of f ! on either side. In particular, the isomorphism (1.3) does not come
by adjunction from some a priori defined map. So, (1.3) is really an additional
piece of data.

That said, if f is an open embedding, it is stipulated that f IndCoh
∗ should be the

right adjoint of f !, and in this case, the map → in (1.3) should come by adjunction
from the isomorphism

(f ′)! ○ g!
Y ≃ g!

X ○ f !.

Also, it is stipulated that if f is proper, then f IndCoh
∗ should be the left adjoint

of f !, and in this case, the map ← in (1.3) should come by adjunction from the
isomorphism

(f ′)! ○ g!
Y ≃ g!

X ○ f !.

(ii) If X =X ∈ Sch (more generally, X can be an inf-scheme), then the functor

IndCoh(X)⊗ IndCoh(X) ≃ IndCoh(X ×X)
∆!
X→ IndCoh(X) ΓIndCoh(X,−)Ð→ Vect

defines the counit of a duality, thereby giving rise to an equivalence

DSerre
X ∶ IndCoh(X)∨ → IndCoh(X).

In the above formula ΓIndCoh(X,−) is the functor

(pX)IndCoh
∗ ∶ IndCoh(X)→ IndCoh(pt) = Vect,

where pX is the tautological projection X → pt.

1.5. To summarise, we can say that the category IndCoh(X) and the functor
f IndCoh
∗ is guaranteed to be better behaved on a larger class of objects and mor-

phisms (than QCoh and f∗).

But the nature of the relationship between pullbacks and push-forwards for
IndCoh is quite different from that of QCoh.

Finally, we should say that there will exist a natural transformation

QCoh∗PreStk ∣PreStklaft
=∶ QCoh∗PreStklaft

ΥPreStklaftÐ→ IndCoh!
PreStklaft

as (symmetric monoidal) functors

(PreStklaft)op → DGCatcont .

The corresponding functor

ΥX ∶ QCoh(X)→ IndCoh(X)
will, of course, not be an equivalence in general. However:

(a) If X = X ∈ Schaft, then ΥX is an equivalence if and only if X is a smooth
classical scheme.

(b) If X =XdR, for X ∈ Schaft , the functor ΥXdR
is always an equivalence.

172 INTRODUCTION

2. How to construct IndCoh?

One should say that it is quite a long way to construct IndCoh having the
above pieces of structure: it will take us all of Part II and Volume II, Part I of the
book to do so. Here we will outline the strategy of how this is done.

2.1. In Chapter 4 we begin by constructing the category IndCoh(X) for an indi-
vidual object X ∈ Schaft.

We start with the usual category QCoh(X) and consider its (non-cocomplete)
subcategory Coh(X) ⊂ QCoh(X) consisting of bounded complexes with coherent
cohomologies. We let IndCoh(X) to be the ind-completion of of Coh(X).

We obtain that IndCoh(X) is a compactly generated category, equipped with
a t-structure and a tautologically defined t-exact functor

ΨX ∶ IndCoh(X)→ QCoh(X)

that induces an equivalence on the eventually coconnective subcategories, i.e., the
corresponding functors

IndCoh(X)≥−n → QCoh(X)≥−n

are equivalences for any n.

Thus, IndCoh(X) begins life as a ‘small modification’ of QCoh(X)–the two
categories only differ at −∞. But once we construct IndCoh as a full-fledged theory,
it will be quite different from QCoh, as was explained in Sect. 1 above.

2.2. Having defined the category IndCoh(X) for an individual object X ∈ Schaft

we proceed to defining the *-push forward functor

f IndCoh
∗ ∶ IndCoh(X)→ IndCoh(Y)

for a morphism f ∶X → Y between schemes.

The functor f IndCoh
∗ is essentially inherited from QCoh: it is uniquely deter-

mined by the requirement that it should be left t-exact and make the diagram

IndCoh(X) ΨXÐÐÐÐ→ QCoh(X)

f IndCoh
∗

×××Ö
×××Ö
f∗

IndCoh(Y) ΨYÐÐÐÐ→ QCoh(Y)
commute.

Furthermore, we show that the assigment

X ↝ IndCoh(X), (X f→ Y)↝ f IndCoh
∗

naturally extends to a functor

(2.1) IndCohSchaft
∶ Schaft → DGCatcont .

2. HOW TO CONSTRUCT INDCOH? 173

2.3. Our subsequent task is to construct the !-pullback functors for IndCoh,
equipped with base change isomorphisms (1.3) against *-push forwards.

When a map X
f→ Y is proper, we define f ! to be the right adjoint of f IndCoh

∗ ,
and when it is an open embedding, we define f ! to be the left adjoint of f IndCoh

∗ .

In each of these cases, base change against *-push forwards is a property and not
an additional piece of structure, because the corresponding map in one direction1

comes by adjunction from a tautological isomorphism.

For a general f , we decompose it as a composition

(2.2) f = f1 ○ f2

with f1 an open embedding and f2 a proper map, and we wish to define f ! to be
f !

2 ○ f !
1. The challenge is to show that definition is canonically independent of the

decomposition (2.2), and that it is functorial with respect to compositions of maps.

Furthermore, we need to show that f ! thus defined is equipped with base change
isomorphisms (1.3), and that these isomorphisms are compatible with compositions
etc. However, before proving these compatibilities, we need to formulate them
in the ∞-categorical level, and this brings us to the paradigm of the category of
correspondences.

2.4. In Chapter 5 we introduce, following a suggestion of J. Lurie, an (∞,2)-
category, denoted Corr(Schaft)proper.

Its objects are X ∈ Schaft. The (∞,1)-category of morphisms between X0 and
X1 has as objects diagrams

X0,1
gÐÐÐÐ→ X0

f
×××Ö
X1.

and as morphisms (i.e., 2-morphisms in Corr(Schaft)proper) diagrams

X1,

X0Xt
0,1

Xs
0,1

gt

��

ft
//

gs

��

fs

))

h

��

where h is proper and the superscripts ‘s’ and ‘t’ stand for ‘source’ and ‘target’,
respectively.

This (∞,2)-category is equipped with 1-fully faithful functors

(2.3) Schaft → Corr(Schaft)proper ← (Schaft)op.

1But the direction of the map is different for proper maps and open embeddings.

174 INTRODUCTION

2.5. We refer the reader to the introduction to Chapter 5, where it is explained
that a proper way to encode IndCoh equipped with both functorialities (!-pullback
and *-pushforward) is a functor

(2.4) IndCohCorr(Schaft)proper ∶ Corr(Schaft)proper → DGCatcont,

whose restriction to Schaft (under the functor → in (2.3)) is the functor

IndCohSchaft
∶ Schaft → DGCatcont

of (2.1), and whose restriction to (Schaft)op (under the functor ← in (2.3)) is the
functor

IndCoh!
Schaft

∶ (Schaft)op → DGCatcont,

encoding the !-pullback.

Thus, in order to construct the theory of IndCoh on schemes, we need to extend
the functor (2.1) to a functor (2.4). We prove in Chapter 5, Theorem 2.1.4 that
such an extension exists and is unique.

2.6. Having thus constructed the theory of IndCoh on schemes, we need to extend
it to prestacks, so that is satisfies (i) from Sect. 1.4.

This is done by the procedure of right Kan extension on the suitable categories
of correspondences.

The extension from schemes to inf-schemes (resp., allowing inf-schematic maps
between prestacks instead of schematic ones) requires quite a bit more work, and
will be the subject of Volume II, Part I of the book.

2.7. Finally, we show that the functor IndCohCorr(Schaft)proper has a natural sym-
metric monoidal structure.

From here we formally deduce the Serre duality structure on IndCoh(X) for
X ∈ Schaft, mentioned in (ii) from Sect. 1.4.

2.8. By the construction of IndCoh(X) for a scheme X, it carries an action of
the (symmetric) monoidal category QCoh(X).

In Chapter 6 we formulate and prove how this structure is compatible with the
functor IndCohCorr(Schaft)proper of (2.4).

One consequence of this compatibility is the canonically defined natural trans-
formation

ΥSchaft
∶ QCoh∗Schaft

→ IndCoh!
Schaft

that right-Kan-extends to the natural transformation

ΥPreStklaft
∶ QCoh∗PreStklaft

→ IndCoh!
PreStklaft

mentioned in Sect. 1.5.

NB: for a scheme X we have a pair of functors

IndCoh(X) ΨX→ QCoh(X) and QCoh(X) ΥX→ IndCoh(X).
We will show that these functors are mutually dual, where we identify

QCoh(X)∨ ≃ QCoh(X) and IndCoh(X)∨ ≃ IndCoh(X)
via the functors Dnaive

X and DSerre
X , respectively.

2. HOW TO CONSTRUCT INDCOH? 175

We note also that whereas the functor

ΥX ∶ QCoh(X)→ IndCoh(X)
is defined for any prestack X , the functor ΨX is not ; the latter is really a feature
of schemes (or, more generally, Artin stacks). So, the functor ΨX that was so
necessary for the initial stages of the development of IndCoh in a sense loses its
significance further along the development of the theory.

CHAPTER 4

Ind-coherent sheaves on schemes

Introduction

In this Chapter we initiate the study of ind-coherent sheaves, which is the main
subject of this book. Here we will define and study the category IndCoh(X) for X
being a scheme (assumed almost of finite type), and its basic functorality properties
for maps of schemes.

In subsequent Chapters will be extend the definition IndCoh to a much wider
class of algebro-geometric objects, namely, prestacks locally almost of finite type.
The latter will allow us to create a paradigm that contains both D-modules and
O-modules.

0.1. Why IndCoh? The basic question is: why bother with IndCoh? I.e., why is
the usual QCoh not good enough?

0.1.1. There are multiple reasons for why one would like to have the theory of
IndCoh. Here are two mutually related reasons that can be spelled out already for
schemes.

(i) For a proper morphism f ∶ X → Y between schemes, the functor of !-pullback,
right adjoint to the *-direct image, is not necessarily continuous when viewed as a
functor

QCoh(Y)→ QCoh(X).
But it is continuous, when viewed as a functor IndCoh(Y) → IndCoh(X). Since
for various reasons, explained elsewhere in the book, we wanted to stay within the
world of cocomplete categories and continuous functors, the above phenomenon
was, for us, the main reason to introduce and study IndCoh.

(ii) Many categories that naturally arise in geometric representation theory are
IndCoh(X) (for some scheme X), and not QCoh(X). A remarkable set of examples
of this are the categories appearing on the spectral side of the geometric Langlands
theory (see, e.g., [Bezr] ot [AG]). A baby example of this would be the Koszul
duality that says that the category A-mod for

A = k[ξ], deg(ξ) = 2

is equivalent to IndCoh(X), where X = pt ×
A1

pt. This is while QCoh(X) is the

subcategory of A-mod consisting of objects on which the generator ξ acts locally
nilpotently.

0.1.2. We should emphasize, however, that one should not be tempted to think
that IndCoh is a ‘better object’ than QCoh. In fact, both categories are needed
and they interact in interesting ways, see Chapter 6.

177

178 4. IND-COHERENT SHEAVES ON SCHEMES

0.1.3. We would also like to mention that the category IndCoh(X) has appeared
significantly before the present book (and its predecessor [Ga1]). Namely, if X is
classical, it was introduced in the work of H. Krause [Kr], and it was subsequently
studied by him and his collaborators.

Specifically, in loc.cit., IndCoh(X) appeared as the category of injective com-
plexes on X.

0.1.4. In this chapter we start from (i) mentioned above, and develop the theory
of IndCoh for schemes so that the !-pullback for a proper morphism is continuous.

In Chapter 5, Sect. 2.1 we will expand the functoriality of IndCoh by showing
that it admits !-pullbacks for arbitrary (i.e., not necessarily proper) morphisms, and
that these !-pullbacks satisfy base change against *-push forwards. The difficulty
here is that base change is not a property but an extra piece of structure, and
one needs to introduce a new categorical device, the category of correspondences to
account for it1.

0.1.5. Having defined !-pullbacks for arbitrary morphisms, we will be able to define
IndCoh(X), where X is now an object of PreStklaft, see Chapter 5, Sect. 3.4. We
should emphasize that, whereas in the case of schemes IndCoh can be thought of
as a small modification of QCoh, for general prestacks the two categories are very
different. The former is functorial with respect to the !-pullback, and the latter is
functorial with respect to the *-pullback.

For a map f ∶ X → Y between prestacks we will have the !-pullback functor

f ! ∶ IndCoh(Y)→ IndCoh(X).
However, for a general f there is no conceivable way to define the *-push forward
functor from IndCoh(X) to IndCoh(Y) so that it satisfies base change against the
!-pullback.

That said, in Volume II, Part I of the book we will single a class of morphsisms,
called inf-schematic, for which the push-forward functor f IndCoh

∗ is defined and has
the desired base change property.

This will allow to extend the formalism of IndCoh as a functor out of the cate-
gory of correspondences from schemes to inf-schemes (these are algebro-geometric
objects that include formal schemes as well as de Rham prestacks of schemes). In
this way we will obtain a convenient formalism that allows to treat D-modules and
O-modules within the same framework.

0.2. What is done in this chapter?
0.2.1. In Sect. 1 we introduce IndCoh(X) for a scheme X. We show that it is
endowed with a t-structure and a t-exact functor

ΨX ∶ IndCoh(X)→ QCoh(X),
which induces an equivalence on the eventually coconnective subcategories, i.e., the
induced functor IndCoh(X)+ → QCoh(X)+ is an equivalence.

Thus, IndCoh(X) is only different from QCoh ‘at −∞’. So, one can say that
the whole point here is convergence, i.e., convergence of spectral sequences.

1The idea of the category of correspondences was suggested to us by J. Lurie.

INTRODUCTION 179

0.2.2. In Sect. 2 we introduce the direct image functor

f IndCoh
∗ ∶ IndCoh(X)→ IndCoh(Y)

for a morphism f ∶X → Y between schemes.

This functor is ‘inherited’ from QCoh via the equivalence Ψ ∶ IndCoh(−)+ →
QCoh(−)+.

We then extend the assignment

X ↝ IndCoh(X), f ↝ f IndCoh
∗

to a functor
Sch→ DGCatcont .

0.2.3. In Sect. 3 we study the functor of (the usual) *-pullback

f IndCoh,∗ ∶ IndCoh(Y)→ IndCoh(X)
for a morphism f ∶ X → Y . This functor is supposed to be the left adjoint of
f IndCoh
∗ .

However, there is a caveat: the functor f IndCoh,∗ is only defined for morphisms
f that are of finite Tor amplitude. A functor that is defined for all morphisms is
introduced in Sect. 5: this is the !-pullback.

It is fair to say that QCoh is well-adapted to the *-pullback and IndCoh is
well-adapted to the !-pullback. (But if f is of finite Tor amplitude, both functors
exist and are continuous for both categories.)

0.2.4. In Sect. 4 we study the behavior of IndCoh under open embeddings. In
particular, we show that it satisfies Zariski descent.

0.2.5. Beyond the definition of IndCoh, Sect. 5 is the central in this chapter. In
this section we show that if f ∶ X → Y is a proper morphism, then the functor
f IndCoh
∗ admits a continuous right adjoint, denoted

f ! ∶ IndCoh(Y)→ IndCoh(X).

We show that the !-pullback (so far only defined for proper maps) satisfies base
change against the *-push forward (unlike the general base change, this instance of
base change is a property and not an extra piece of structure).

Finally, we establish the following crucial piece of compatibility that will even-
tually imply that the !-pullback is defined for all maps. Let

X ′ gXÐÐÐÐ→ X

f ′
×××Ö

×××Ö
f

Y ′ gYÐÐÐÐ→ Y

be a Cartesian diagram, where the vertical arrows are proper and the horizontal
ones are open embeddings.

In this case, we have a canonically defined natural transformation

gIndCoh,∗
X ○ f ! → f ′! ○ gIndCoh,∗

Y .

We show that this natural transformation is an isomorphism.

180 4. IND-COHERENT SHEAVES ON SCHEMES

0.2.6. In Sect. 6 we study several additional properties of the assignment

X ↝ IndCoh(X).

We show:

(i) For a closed subscheme Y ⊂ X, the subcategory IndCohY (X) of IndCoh(X)
consisting of objects that vanish when restricted to X − Y , is compactly generated
by CohY (X).

(ii) If f ∶ X → Y is a proper and point-wise surjective map, then the functor
f ! ∶ IndCoh(Y)→ IndCoh(X) is conservative.

(iii) For two schemes X1 and X2, the external tensor product functor

IndCoh(X1)⊗ IndCoh(X2)→ IndCoh(X1 ×X2)

is an equivalence.

(iv) The assignment X ↝ IndCoh(X) is convergent in the sense of Chapter 2, Sect.
1.4, i.e., the functor

IndCoh(X)→ lim
n

IndCoh(≤nX)

is an equivalence, where ≤nX denotes the n-coconnective truncation of X. Note
that the corresponding assertion is false for QCoh.

0.2.7. Finally, in Sect. 7 we establish the proper descent for IndCoh: if X → Y is
a proper map, which is surjective at the level of k-points, then the functor

IndCoh(Y)→ Tot(IndCoh(X●))

is an equivalence, where X● is the simplicial scheme equal to the Čech nerve of
X → Y . In Chapter 5 we will strengthen this, and show that IndCoh satisfies
h-descent (and in particular, ppf descent).

1. Ind-coherent sheaves on a scheme

In this section we introduce the category IndCoh(X) and study its basic prop-
erties. The material here repeats [Ga1, Sect. 1].

1.1. Definition of the category. In this subsection we define IndCoh(X) and the
functors that connect it to the usual category QCoh(X) of quasi-coherent sheaves.

1.1.1. For X ∈ Schaft we consider the category QCoh(X) and its full (but not
cocomplete) subcategory Coh(X), consisting of bounded complexes with coherent
cohomologies.

We define the category IndCoh(X) by

IndCoh(X) ∶= Ind(Coh(X)).

1. IND-COHERENT SHEAVES ON A SCHEME 181

1.1.2. By construction, we have a naturally defined functor

ΨX ∶ IndCoh(X)→ QCoh(X)
obtained by ind-extension of the tautological inlcusion Coh(X)↪ QCoh(X).

We have:

Lemma 1.1.3. Assume that X is a smooth classical scheme. Then ΨX is an
equivalence.

Proof. It is known by [TT] (see also [Ne]) that for X classical, QCoh(X) ≃
Ind(QCoh(X)perf). Now, for X a regular classical scheme, we have

QCoh(X)perf = Coh(X),
as subcategories of QCoh(X). �

Remark 1.1.4. It is shown in [Ga1, Proposition 1.5.4] that the assertion of
the above lemma is in fact ‘if and only if’.

1.1.5. We give the following definition:

Definition 1.1.6. We shall say that X ∈ Schaft is eventually coconnective if
the structure sheaf OX belongs to Coh(X).

I.e., X is eventually coconnective if, Zariski locally, the structure sheaf had
non-zero cohomologies in finitely many degrees.

We have:

Lemma 1.1.7. If X is eventually coconnective, the functor ΨX admits a left
adjoint, to be denoted ΞX , and this left adjoint is fully faithful.

Proof. If X is eventually coconnective, we have

QCoh(X)perf ⊂ Coh(X),
and, using the fact that QCoh(X) ≃ Ind(QCoh(X)perf), the functor ΞX is obtained
as the ind-extension of the above embedding.

The composition ΨX ○ΞX is the ind-extension of the functor

QCoh(X)perf ↪ Coh(X)↪ QCoh(X),
and it is manifest that its map to IdQCoh(X) is an isomorphism. �

Remark 1.1.8. In [Ga1, Proposition 1.5.2] it is shown that ΨX admits a left
adjoint if and only if X is eventually coconnective.

1.2. t-structure. Some of the most basic operations on the IndCoh category (such
as the functor of direct image studied in the next section) are inherited from those
on QCoh using the t-structures on both categories. The crucial fact is that the
eventually coconnective (a.k.a., bounded below) parts of the two categories are
equivalent.

The goal of this subsection is to define the t-structure on IndCoh(X) and
establish its basic properties.

182 4. IND-COHERENT SHEAVES ON SCHEMES

1.2.1. We claim:

Proposition 1.2.2. The category IndCoh(X) carries a unique t-structure that
satisfies

IndCoh(X)≤0 = {F ∈ IndCoh(X) ∣ΨX(F) ∈ QCoh(X)≤0}.
Moreover:

(a) The functor ΨX is t-exact.

(b) This t-structure is compatible with filtered colimits (i.e., the subcategory IndCoh(X)≥0

is closed under filtered colimits).

(c) The induced functor

ΨX ∶ IndCoh(X)≥n → QCoh(X)≥n

is an equivalence for any n.

As a corollary we obtain:

Corollary 1.2.3. The functor ΨX defines an equivalence IndCoh(X)+ →
QCoh(X)+.

Proof of Proposition 1.2.2. It is clear that the condition of the proposi-
tion determines the t-structure uniquely. To establish its properties we will use the
following general assertion:

Lemma 1.2.4. Let C0 be a (non-cocomplete) DG category, endowed with a t-
structure. Then C ∶= Ind(C0) carries a unique t-structure, which is compatible
with filtered colimits, and for which the tautological inclusion C0 ↪ C is t-exact.
Moreover:

(1) The subcategory C≤0 (resp., C≥0) is compactly generated under filtered colimits
by C≤0

0 (resp., C≥0
0).

(2) Let D be another DG category endowed with a t-structure which is compatible
with filtered colimits, and let F ∶ C → D a continuous functor. Then F is t-exact
(resp., left t-exact, right t-exact) if and only if F ∣C0 is.

We apply Lemma 1.2.4(1) to C0 = Coh(X) and obtain a (a priori different)
t-structure on IndCoh(X), which satisfies point (b) of the proposition. It also
satisfies point (a) of the proposition, by Lemma 1.2.4(2) applied to D = QCoh(X)
and F = ΨX .

To show that this t-structure coincides with the one introduced earlier, it suf-
fices to show that ΨX is conservative when restricted to IndCoh(X)≥0. Hence, it
remains to show that the t-structure, given by Lemma 1.2.4, satisfies points (c) of
the proposition.

To prove point (c), it is sufficient to consider the case of n = 0. Using Lemma 1.2.4(1),
the required assertion follows from the next statement:

Lemma 1.2.5. The category QCoh(X)≥0 is compactly generated under filtered
colimits by Coh(X)≥0.

�

2. THE DIRECT IMAGE FUNCTOR 183

1.2.6. Note that Proposition 1.2.2 implies that, as long as the functor ΨX is not
an equivalence (i.e., X is not a classical smooth scheme), the category IndCoh(X)
is not left-complete in its t-structure. The latter means that for F ∈ IndCoh(X),
the canonical arrow

F → lim
n
τ≥−n(F)

is not necessarily an isomorphism.

Furthermore, we see that for any X, the functor ΨX realizes QCoh(X) as the
left completion of IndCoh(X).

1.2.7. From Proposition 1.2.2 we also obtain the following:

Corollary 1.2.8. The inclusion Coh(X) ⊂ IndCoh(X)c is an equality.

Proof. Since the category Coh(X) compactly generates IndCoh(X), the cat-
egory IndCoh(X)c is the Karoubi-completion of Coh(X). I.e., every object F ∈
IndCoh(X)c can be realized as a direct summand of an object F ′ ∈ Coh(X). In
particular, F ∈ IndCoh(X)+.

The object ΨX(F) is a direct summand of ΨX(F ′). Hence, ΨX(F), regarded
as an object of QCoh(X), belongs to Coh(X). Let us denote this object of Coh(X)
by F̃ .

Thus, we can regard F and F̃ as objects of IndCoh(X)+ such that

ΨX(F) ≃ ΨX(F̃).

Applying Proposition 1.2.2(c), we obtain that F ≃ F̃ as objects of IndCoh(X).
�

1.2.9. The monoidal action of QCoh. We claim:

Proposition 1.2.10. There exists a uniquely defined monoidal action of QCoh(X),
viewed as a monoidal category, on IndCoh(X), such that the functor ΨX is com-
patible with the QCoh(X)-actions.

Proof. The action in question is obtained by ind-extension of the action of
the non-cocomplete monoidal category QCoh(X)perf on Coh(X).

To prove uniqueness, by Corollaries 1.2.3 and 1.2.8, it suffices to show that,
given an action of QCoh(X) on IndCoh(X), the objects of QCoh(X)perf ⊂ QCoh(X)
map compact objects of IndCoh(X) to compact ones. However, this follows from
the fact that objects in QCoh(X)perf are dualizable in the monoidal category
QCoh(X).

�

2. The direct image functor

The assignment

X ↝ IndCoh(X)
is ‘very functorial’. However, all of this functoriality is born from a single cource:
the operation of direct image, defined in this section.

184 4. IND-COHERENT SHEAVES ON SCHEMES

2.1. Direct image for an individual morphism. In this subsection we perform
the first step in developing the formalism of direct image for IndCoh: we define the
corresponding functor for one given morphism between schemes.

2.1.1. Let f ∶X → Y be a morphism in Schaft. We claim:

Proposition 2.1.2. There exists a uniquely defined functor

f IndCoh
∗ ∶ IndCoh(X)→ IndCoh(Y)

that is left t-exact and makes the diagram

IndCoh(X) ΨXÐÐÐÐ→ QCoh(X)

f IndCoh
∗

×××Ö
×××Ö
f∗

IndCoh(Y) ΨYÐÐÐÐ→ QCoh(Y)
commute.

Proof. By continuity, the functor f IndCoh
∗ is the ind-extension of its retstric-

tion to

Coh(X) ⊂ IndCoh(X).
The commutative diagram in the proposition implies that

ΨY ○ f IndCoh
∗ ∣Coh(X) = f∗∣Coh(X),

as functors Coh(X) → QCoh(Y). Furthermore, f IndCoh
∗ ∣Coh(X) is a functor that

takes values in QCoh(Y)+.

Note that ΨY ∣QCoh(Y)+ is invertible by Proposition 1.2.2(c). Hence, f IndCoh
∗ ∣Coh(X)

is recovered as

(ΨY ∣QCoh(Y)+)−1 ○ (f∗∣Coh(X)).
�

2.1.3. Recall (see Chapter 3, Sects. 3.5.1 and 3.7.4) that for X ∈ Schaft, the
monoidal category QCoh(X) is rigid (see Chapter 1, Sect. 9.1 for what this means).
Hence, by Chapter 1, Lemma 9.3.6, for a morphism f ∶X → Y , the functor

f∗ ∶ QCoh(X)→ QCoh(Y)
has a canonical structure of morphism in QCoh(Y)-mod, where QCoh(Y) acts on
QCoh(X) via f∗.

As in Proposition 2.1.2 and Proposition 1.2.10, one shows:

Proposition 2.1.4. For a morphism f ∶X → Y , the functor

f IndCoh
∗ ∶ IndCoh(X)→ IndCoh(Y)

has a unique structure of 1-morphism in QCoh(Y)-mod which makes the square

IndCoh(X) ΨXÐÐÐÐ→ QCoh(X)

f IndCoh
∗

×××Ö
×××Ö
f∗

IndCoh(Y) ΨYÐÐÐÐ→ QCoh(Y)
commute in QCoh(Y)-mod.

2. THE DIRECT IMAGE FUNCTOR 185

2.2. Upgrading to a functor. We now claim that the assigment

X ↝ IndCoh(X), f ↝ f IndCoh
∗

upgrades to a functor

(2.1) Schaft → DGCatcont,

to be denoted IndCohSchaft
.

Such an extension is not altogether automatic because we live in the world of
higher categories. But constructing it will not be very difficult.

2.2.1. First, we consider the functor

QCoh∗Schaft
∶ (Schaft)op → DGCatcont,

obtained by restriction from the functor

QCoh∗PreStk ∶ PreStkop → DGCatcont

og Chapter 3, Sect. 1.1.3.

Applying Chapter 1, Sect. 8.4.2, we obtain a functor

QCohSchaft
∶ Schaft → DGCatcont,

obtained from QCoh∗Schaft
by passage to right adjoints.

2.2.2. Now, we claim:

Proposition 2.2.3. There exists a uniquely defined functor

IndCohSchaft
∶ Schaft → DGCatcont,

equipped with a natural transformation

ΨSchaft
∶ IndCohSchaft

→ QCohSchaft
,

which at the level of objects and 1-morphisms is given by the assignment

X ↝ IndCoh(X), f ↝ f IndCoh
∗ .

The rest of this subsection is devoted to the proof of this proposition.

2.2.4. Consider the following (∞,1)-categories:

DGCatcont
+ and DGCattcont ∶

The category DGCatcont
+ consists of non-cocomplete DG categories C, endowed

with a t-structure, such that C = C+. We also require that C≥0 contains filtered
colimits and that the embedding C≥0 ↪ C commutes with filtered colimits. As
1-morphisms we take those exact functors F ∶ C1 → C2 that are left t-exact up
to a finite shift, and such that F ∣C≥0

1
commutes with filtered colimits. The higher

categorical structure is uniquely determined by the requirement that the forgetful
functor

DGCatcont
+ → DGCat

be 1-fully faithful (see Chapter 1, Sect. 1.2.4 for what this means).

The category DGCattcont consists of cocomplete DG categories C, endowed with
a t-structure, such that C≥0 is closed under filtered colimits, and such that C is
compactly generated by objects from C+. As 1-morphisms we allow those exact
functors F ∶ C1 → C2 that are continuous and left t-exact up to a finite shift. The

186 4. IND-COHERENT SHEAVES ON SCHEMES

higher categorical structure is uniquely determined by the requirement that the
forgetful functor

DGCattcont → DGCatcont

be 1-fully faithful.

We have a naturally defined functor

(2.2) DGCattcont → DGCatcont
+ , C↦C+.

Lemma 2.2.5. The functor (2.2) is 1-fully faihful.

2.2.6. We will use the following general assertion. Let T ∶ D′ →D be a functor be-
tween (∞,1)-categories, which is 1-fully faithful. Let I be another (∞,1)-category,
and let

(2.3) i↝ F ′(i),
be an assignment, such that the assignment

i↦ T ○ F ′(i)
has been extended to a functor F ∶ I→D.

Lemma 2.2.7. Suppose that for every α ∈ MapsI(i1, i2), the point F (α) ∈
MapsD(F (i1), F (i2)) lies in the connected component corresponding to the image
of

MapsD′(F ′(i1), F ′(i2))→MapsD(F (i1), F (i2)).
Then there exists a unique extension of (2.3) to a functor F ′ ∶ I→D equipped with
an isomorphism T ○ F ′ ≃ F .

Let now F ′
1 and F ′

2 be two assignments as in (2.3), satisfying the assumption
of Lemma 2.2.7. Let us be given an assignment

(2.4) i↝ ψ′i ∈ MapsD′(F ′
1(i), F ′

2(i)).

Lemma 2.2.8. Suppose that the assignment

i↝ T (ψ′i) ∈ MapsD(F1(i), F2(i))
has been extended to a natural transformation ψ ∶ F1 → F2. Then there exists a
unique extension of (2.4) to a natural transformation ψ ∶ F ′

1 → F ′
2 equipped with an

isomorphism T ○ ψ′ ≃ ψ.

2.2.9. We are now ready to prove Proposition 2.2.3:

Step 1. We start with the functor

QCohSchaft
∶ Schaft → DGCatcont,

and consider

I = Schaft, D = DGCatcont, D′ ∶= DGCattcont, F = QCohSchaft
,

and the assignment

(X ∈ Schaft)↝ (QCoh(X) ∈ DGCattcont).
Apping Lemma 2.2.7, we obtain a functor

(2.5) QCohtSchaft
∶ Schaft → DGCattcont .

3. THE FUNCTOR OF ‘USUAL’ INVERSE IMAGE 187

Step 2. Note that Proposition 2.1.2 defines a functor

IndCohtSchaft
∶ Schaft → DGCattcont,

and the natural transformation

Ψt
Schaft

∶ IndCohtSchaft
→ QCohtSchaft

at the level of objects and 1-morphisms.

Since the functor DGCattcont → DGCatcont is 1-fully faithful, by Lemmas 2.2.7
and 2.2.8, the existence and uniqueness of the pair (IndCohSchaft

,ΨSchaft
) with a

fixed behavior on objects and 1-morphisms, is equivalent to that of (IndCohtSchaft
,Ψt

Schaft
).

Step 3. By Lemma 2.2.5, combined with Lemmas 2.2.7 and 2.2.8, we obtain that the
existence and uniqueness of the pair (IndCohtSchaft

,Ψt
Schaft

), with a fixed behavior
on objects and 1-morphisms is equivalent to the existence and uniqueness of the
pair

(IndCoh+Schaft
,Ψ+

Schaft
),

obtained by composing with the functor (2.2).

The latter, however, is given by

IndCoh+Schaft
∶= QCoh+Schaft

and Ψ+
Schaft

∶= Id .

�

3. The functor of ‘usual’ inverse image

We now construct another piece of functoriality in the assignmentX ↝ IndCoh(X),
namely, the functor of *-pullback.

Unlike the case of QCoh, its role in the theory is rather limited–a ‘more im-
portant’ functor is that of !-pullback. However, the *-pullback is a necessary step
in the construction of the !-pullback, which is why we discuss it.

3.1. Inverse image with respect to eventually coconnective morphisms.
Unlike the case of QCoh, the functor of *-pullback on IndCoh is not defined for all
maps of schemes, but only for eventually coconnective ones. In this subsection we
give the corresponding construction.

3.1.1. Let f ∶X → Y be a morphism in Schaft.

Definition 3.1.2. We shall say that f is eventually coconnective if the functor

f∗ ∶ QCoh(Y)→ QCoh(X)
sends Coh(Y) ⊂ QCoh(Y) to QCoh(X)+.

It is easy to see that if f is eventually coconnective, then it sends Coh(Y) to
Coh(X): indeed, for any morphism f , the functor f∗ sends objects of QCoh(Y)−
with coherent cohomologies to objects with a similar property on X.

In addition, we have the following fact, established in [Ga1, Lemma 3.4.2]:

Lemma 3.1.3. The following conditions are equivalent:

(a) f is eventually coconnective;

(b) f is of finite Tor amplitude, i.e., is left t-exact up to a finite cohomological shift.

188 4. IND-COHERENT SHEAVES ON SCHEMES

Corollary 3.1.4. The class of eventually coconnective morphisms is stable
under base change.

3.1.5. Let f ∶X → Y be eventually coconnective. Ind-extending the functor

f∗ ∶ Coh(Y)→ Coh(X)

we obtain a functor

f IndCoh,∗ ∶ IndCoh(Y)→ IndCoh(X),

which makes the diagram

IndCoh(X) ΨXÐÐÐÐ→ QCoh(X)

f IndCoh,∗
Õ×××

Õ×××
f∗

IndCoh(Y) ΨYÐÐÐÐ→ QCoh(Y)

commute.

We have:

Proposition 3.1.6. The functor f IndCoh,∗ is a left adjoint to f IndCoh
∗ .

Proof. It is sufficient to construct a functorial isomorphism

(3.1) MapsIndCoh(X)(f IndCoh,∗(FY),FX) ≃ MapsIndCoh(Y)(FY , f IndCoh
∗ (FX))

for FY ∈ Coh(Y) and FX ∈ Coh(X). However, by construction, the left-hand side
in (3.1) is

MapsCoh(X)(f∗(FY),FX)) ≃ MapsQCoh(X)(f∗(FY),FX)),

while the right-hand side maps isomorphically by the functor ΨY to

MapsQCoh(Y)(FY , f∗(FX)).

Now, (3.1) follows from the (f∗, f∗)-adjunction on QCoh.
�

Remark 3.1.7. It is shown in [Ga1], that the functor f IndCoh
∗ admits a left

adjoint if and only if the morphism f is eventually coconnective.

3.1.8. Note that by Chapter 1, Lemma 9.3.6, the functor f IndCoh,∗ carries a canon-
ical structure of morphism in QCoh(Y)-mod. It is easy to see that this is the same
structure as obtained by ind-extending the structure of compatibility with the ac-
tion of QCoh(Y)perf on

f∗ ∶ Coh(Y)→ Coh(X).

3. THE FUNCTOR OF ‘USUAL’ INVERSE IMAGE 189

3.1.9. Let (Schaft)event-coconn ⊂ Schaft be the 1-full subcategory, where we restrict
1-morphisms to maps that are eventually coconnective.

By Chapter 1, Sect. 8.4.2, combining Propositions 2.2.3 and 3.1.6, we obtain:

Corollary 3.1.10. The assignment

X ↝ IndCoh(X), f ↝ f IndCoh,∗

canonically extends to a functor, to be denoted IndCoh∗(Schaft)event-coconn ,

((Schaft)event-coconn)op → DGCatcont,

obtained from

IndCohSchaft
∣(Schaft)event-coconn

by adjunction.

3.2. Base change for eventually coconnective morphisms. An important
property of the *-pullback (and one which is crucial for the construction of the
!-pullback) is base change. It closely mimics the corresponding phenomenon for
QCoh.

3.2.1. Let

X1
gXÐÐÐÐ→ X2

f1
×××Ö

×××Ö
f2

Y1
gYÐÐÐÐ→ Y2

be a Cartesian diagram in Schaft.

Suppose that f2 is eventually coconnective. By Corollary 3.1.4, the morphism
f1 is also eventually coconnective. Then the isomorphism of functors

(gY)IndCoh
∗ ○ (f1)IndCoh

∗ ≃ (f2)IndCoh
∗ ○ (gX)IndCoh

∗

gives rise to a natural transformation.

(3.2) (f2)IndCoh,∗ ○ (gY)IndCoh
∗ → (gX)IndCoh

∗ ○ (f1)IndCoh,∗.

Proposition 3.2.2. The map (3.2) is an isomorphism.

Proof. It is enough to show that

(3.3) (f2)IndCoh,∗ ○ (gY)IndCoh
∗ (F)→ (gX)IndCoh

∗ ○ (f1)IndCoh,∗(F)
is an isomorphism for F ∈ Coh(Y1).

In this case both sides of (3.3) belong to IndCoh(X2)+. By Proposition 1.2.2,
it is therefore sufficient to show that the map

(3.4) ΨX2 ○ (f2)IndCoh,∗ ○ (gY)IndCoh
∗ → ΨX2 ○ (gX)IndCoh

∗ ○ (f1)IndCoh,∗

is an isomorphism.

We have:

ΨX2 ○ (f2)IndCoh,∗ ○ (gY)IndCoh
∗ ≃ (f2)∗ ○ΨY2 ○ (gY)IndCoh

∗ ≃ (f2)∗ ○ (gY)∗ ○ΨY1

and

ΨX2 ○ (gX)IndCoh
∗ ○ (f1)IndCoh,∗ ≃ (gX)∗ ○ΨX1 ○ (f1)IndCoh,∗ ≃ (gX)∗ ○ (f1)∗ ○ΨY1 .

190 4. IND-COHERENT SHEAVES ON SCHEMES

Now, it follows from the construction of the (f IndCoh,∗, f IndCoh
∗)-adjunction,

that the map in (3.4) corresponds to the map

(f2)∗ ○ (gY)∗ ○ΨY1 → (gX)∗ ○ (f1)∗ ○ΨY1 ,

obtained from the (f∗, f∗)-adjunction.

Hence, (3.4) is an isomorphism by base change for QCoh.
�

3.3. Tensoring up. In this section we study the following question: given a map
f ∶ X → Y , how closely can we approximate IndCoh(X) from knowing IndCoh(Y)
and the QCoh categories on both schemes.

In the process we will come across several convergence-type assertions, that are
of significant technical importance: some maps that are isomorphisms in QCoh are
much less obviously so in the IndCoh context.

3.3.1. Let f ∶ X → Y be an eventually coconnective map. Regarding the functor
f IndCoh,∗ as a map in QCoh(Y)-mod, we obtain a functor

(3.5) (IdQCoh(X)⊗f IndCoh,∗) ∶ QCoh(X) ⊗
QCoh(Y)

IndCoh(Y)→ IndCoh(X).

We claim:

Proposition 3.3.2. The functor (3.5) is fully faithful.

Remark 3.3.3. It is shown in [Ga1, Proposition 4.4.9] that the functor (3.5)
is an equivalence when f is smooth. In Proposition 4.1.6, we will prove this in the
case when f is an open embedding.

3.3.4. Note that for a diagram of (∞,1)-categories

C

D1 D2

F1

__

F2

??
T //

if the functors F1 and F2 admit right adjoints, we have a natural transformation of
the resulting endo-functors of C:

FR1 ○ F1 → FR2 ○ F2.

Furthermore, if T is fully faithful, then the above natural transformation is an
isomorphism.

From here we obtain that the functor (IdQCoh(X)⊗f IndCoh,∗) gives rise to a
map of endo-functors of IndCoh(Y):
(3.6) (f∗(OX)⊗ −) ≃ ((f∗ ○ f∗)⊗ IdIndCoh(Y))→ f IndCoh

∗ ○ f IndCoh,∗,

where f∗(OX)⊗− denotes the functor of action of f∗(OX) ∈ QCoh(Y) on IndCoh(Y).
Thus, from Proposition 3.3.2 we obtain:

Corollary 3.3.5. The map (3.6) is an isomorphism.

3. THE FUNCTOR OF ‘USUAL’ INVERSE IMAGE 191

3.3.6. The rest of the subsection is devoted to the proof of Proposition 3.3.2. We
note that the left-hand side in (3.5) is compactly generated by objects of the form

EX ⊗FY ∈ QCoh(X) ⊗
QCoh(Y)

IndCoh(Y),

where EX ∈ QCoh(X)perf and FY ∈ Coh(Y). Moreover, the functor (IdQCoh(X)⊗f IndCoh,∗)
sends these objects to compact objects in IndCoh(X).

Hence, it is enough to show that for E1
X ,E2

X and F1
Y ,F2

Y as above, the map

(3.7) MapsQCoh(X) ⊗
QCoh(Y)

IndCoh(Y)(E1
X ⊗F1

Y ,E2
X ⊗F2

Y)→

→MapsIndCoh(X)(E1
X ⊗ f IndCoh,∗(F1),E2

X ⊗ f IndCoh,∗(F2))

is an isomorphism, where in the right-hand side ⊗ denotes the action of QCoh on
IndCoh.

We can rewrite the map in (3.7) as

(3.8) MapsQCoh(X) ⊗
QCoh(Y)

IndCoh(Y)(OX ⊗F1
Y ,EX ⊗F2

Y)→

→MapsIndCoh(X)(OX ⊗ f IndCoh,∗(F1),EX ⊗ f IndCoh,∗(F2)),

where EX ≃ E2
X ⊗ (E1

X)∨.

Furthermore, we rewrite the map in (3.8) as

MapsIndCoh(Y)(F1
Y , f∗(E)⊗F2

Y)→MapsIndCoh(Y)(F1
Y , f

IndCoh
∗ (E⊗f IndCoh,∗(F2

Y))).

I.e., we are reduced to showing that the following version of the projection
formula:

Proposition 3.3.7. For an eventally coconnective map, the natural transfor-
mation between the functors

QCoh(X) × IndCoh(Y)⇉ IndCoh(Y),

that sends EX ∈ QCoh(X) and FY ∈ IndCoh(Y) to the map

(3.9) f∗(EX)⊗FY → f IndCoh
∗ (EX ⊗ f IndCoh,∗(FY)),

is an isomorphism.

Remark 3.3.8. Note that there is another kind of projection formula, that
encodes the compatibility of f IndCoh

∗ with the monoidal action of QCoh(Y), and
which holds tautologically for any morphism f , see Proposition 2.1.4:

For EY ∈ QCoh(Y) and FX ∈ IndCoh(X) we have:

f IndCoh
∗ (f∗(EY)⊗FX) ≃ EY ⊗ f IndCoh

∗ (FX).

192 4. IND-COHERENT SHEAVES ON SCHEMES

3.3.9. Proof of Proposition 3.3.7. It is enough to prove the isomorphism (3.9) holds
for EX ∈ QCoh(X)perf and FY ∈ Coh(Y).

We also note that the map (3.9) becomes an isomorphism after applying the
functor ΨY , by the usual projection formula for QCoh. For EX ∈ QCoh(X)perf and
FY ∈ Coh(Y) we have

f IndCoh
∗ (EX ⊗ f IndCoh,∗(FY)) ∈ IndCoh(Y)+.

Hence, by Proposition 1.2.2, it suffices to show that in this case

f∗(EX)⊗FY ∈ IndCoh(Y)+.
We note that the object f∗(EX) ∈ QCoh(Y)b is of bounded Tor dimension. The

required fact follows from the next general observation:

Lemma 3.3.10. For X ∈ Schaft and E ∈ QCoh(X)b, whose Tor dimension is
bounded on the left by an integer n, the functor

E ⊗ − ∶ IndCoh(X)→ IndCoh(X)
has a cohomological amplitude bounded on the left by n.

�

3.3.11. Proof of Lemma 3.3.10. We need to show that the functor E ⊗ − sends
IndCoh(X)≥0 to IndCoh(X)≥−n. By Lemma 1.2.4(1), it is sufficient to show that
this functor sends Coh(X)≥0 to IndCoh(X)≥−n. By cohomological devissage, the
latter is equivalent to sending Coh(X)♡ to IndCoh(X)≥−n.

Let i denote the closed embedding clX =∶X ′ →X. The functor iIndCoh
∗ induces

an equivalence Coh(X ′)♡ → Coh(X)♡. So, it is enough to show that for F ′ ∈
Coh(X ′)♡, we have

E ⊗ iIndCoh
∗ (F ′) ∈ IndCoh(X)≥−n.

We have:
E ⊗ iIndCoh

∗ (F ′) ≃ iIndCoh
∗ (i∗(E)⊗F ′).

Note that the functor iIndCoh
∗ is t-exact (since i∗ is), and i∗(E) has Tor dimension

bounded by the same integer n.

This reduces the assertion of the lemma to the case whenX is classical. Further,
by Proposition 4.2.4 (which will be proved independently later), the statement is
Zariski local, so we can assume that X is affine.

In the latter case, the assumption on E implies that it can be represented by
a complex of flat OX -modules that lives in the cohomological degrees ≥ −n. This
reduces the assertion further to the case when E is a flat OX -module in degree 0.
In this case we claim that the functor

E ⊗ − ∶ IndCoh(X)→ IndCoh(X)
is t-exact.

The latter follows from Lazard’s lemma: such an E is a filtered colimit of locally
free OX -modules E ′, while for each such E ′, the functor E ′ ⊗ − ∶ IndCoh(X) →
IndCoh(X) is by definition the ind-extension of the functor

E ′ ⊗ − ∶ Coh(X)→ Coh(X),
and the latter is t-exact.

4. OPEN EMBEDDINGS 193

�

4. Open embeddings

The behavior of direct and inverse image functors for open embeddings is,
obviously, an important piece of information about IndCoh.

4.1. Restriction to an open. In this subsection we show that the behavior of
IndCoh with respect to open embeddings is ‘exactly the same’ as that of QCoh.

4.1.1. Let now j ∶
○
X ↪X be an open embedding. We claim:

Proposition 4.1.2. The functor jIndCoh
∗ ∶ IndCoh(

○
X) → IndCoh(X) is fully

faithful.

Proof. We need to show that the co-unit of the adjunction

jIndCoh,∗ ○ jIndCoh
∗ → Id

IndCoh(
○
X)

is an isomorphism.

Since the functors in question are continuous, it is enough to check that

jIndCoh,∗ ○ jIndCoh
∗ (F)→ F

is an isomorphism for F ∈ Coh(X). However, in this case both jIndCoh,∗○jIndCoh
∗ (F)

and F belong to IndCoh(X)+, so by Proposition 1.2.2, it is sufficient to check that

Ψ ○
X
○ jIndCoh,∗ ○ jIndCoh

∗ → Ψ ○
X

is an isomorphism.

However,

Ψ ○
X
○ jIndCoh,∗ ○ jIndCoh

∗ ≃ jIndCoh,∗ ○ΨX ○ jIndCoh
∗ ≃ jIndCoh,∗ ○ jIndCoh

∗ ○Ψ ○
X
,

and it follows from the construction of the (f IndCoh,∗, f IndCoh
∗)-adjunction that the

resulting map

jIndCoh,∗ ○ jIndCoh
∗ ○Ψ ○

X
→ Ψ ○

X

comes from the co-unit of the (j∗, j∗)-adjunction. Therefore, it is an isomorphism,
as

j∗ ○ j∗ → IdQCoh(X)
is an isomorphism.

�

4.1.3. The next assertion follows immediately from Lemma 1.2.4:

Lemma 4.1.4. For an open embedding j, the functor jIndCoh,∗ is t-exact.

4.1.5. Finally, let us recall the functor (3.5). We claim:

Proposition 4.1.6. Assume that f is an open embedding. Then the functor
(3.5) is an equivalence.

Proof. We already know that the functor in question is fully faithful. Hence,
it remains to show that its essential image generates the target category. But this
follows from Proposition 4.1.2. �

194 4. IND-COHERENT SHEAVES ON SCHEMES

4.2. Zariski descent. In this subsection we will show that IndCoh can be glued
locally from a Zariski cover, in a way completely parallel to QCoh.

4.2.1. Let now f ∶ U → X be a Zariski cover, i.e., U is the disjoint union of open
subschemes of X, whose union is all of X. Let U● be the Čech nerve of f . The
functors of (IndCoh,∗)-pullback define a cosimplicial category

IndCoh(U●),
which is augmented by IndCoh(X).

We claim:

Proposition 4.2.2. The functor

IndCoh(X)→ Tot(IndCoh(U●))
is an equivalence.

Proof. The usual argument reduces the assertion of the proposition to the
following. Let X = U1 ∪U2; U12 = U1 ∩U2. Let

U1
j1↪X, U2

j2↪X, U12
j12↪ X, U12

j12,1↪ U1, U12

j12,2↪ U2

denote the corresponding open embeddings.

We need to show that the functor

IndCoh(X)→ IndCoh(U1) ×
IndCoh(U12)

IndCoh(U1)

that sends F ∈ IndCoh(X) to the datum of

{jIndCoh,∗
1 (F1), jIndCoh,∗

2 (F2), jIndCoh,∗
12,1 (jIndCoh,∗

1 (F)) ≃ jIndCoh,∗
12 (F) ≃ jIndCoh,∗

12,2 (jIndCoh,∗
2 (F))}

is an equivalence.

We construct a right adjoint functor

IndCoh(U1) ×
IndCoh(U12)

IndCoh(U1)→ IndCoh(X)

by sending

{F1 ∈ IndCoh(U1),F2 ∈ IndCoh(U2),F12 ∈ IndCoh(U12), jIndCoh,∗
12,1 (F1) ≃ F12 ≃ jIndCoh,∗

12,2 (F2)}
to

ker(((j1)IndCoh
∗ (F1)⊕ (j2)IndCoh

∗ (F1))→ (j12)IndCoh
∗ (F12)),

where the maps (ji)IndCoh
∗ (Fi)→ (j12)IndCoh

∗ (F12) are

(ji)IndCoh
∗ (Fi)→ (ji)IndCoh

∗ ○ (j12,i)IndCoh
∗ ○ (j12,i)IndCoh,∗(Fi) =

= (j12)IndCoh
∗ ○ (j12,i)IndCoh,∗(Fi) ≃ (j12)IndCoh

∗ (F12).

It is strightforward to see from Propositions 4.1.2 and 3.2.2 that the composition

IndCoh(U1) ×
IndCoh(U12)

IndCoh(U1)→ IndCoh(X)→ IndCoh(U1) ×
IndCoh(U12)

IndCoh(U1)

is canonically isomorphic to the identity functor.

To prove that the composition

IndCoh(X)→ IndCoh(U1) ×
IndCoh(U12)

IndCoh(U1)→ IndCoh(X)

5. PROPER MAPS 195

is also isomorphic to the identity functor, it is sufficient to show that for F ∈
IndCoh(X), the canonical map from it to

(4.1) ker(((j1)IndCoh
∗ ○ (j1)IndCoh,∗(F)⊕ (j2)IndCoh

∗ ○ (j2)IndCoh,∗(F))→

→ (j12)IndCoh
∗ ○ jIndCoh,∗

12 (F))

is an isomorphism.

Since all functors in question are continuous, it is sufficient to do so for F ∈
Coh(X). In this case, both sides of (4.1) belong to IndCoh(X)+. So, it is enough to
prove that the map in question becomes an isomorphism after applying the functor
ΨX . However, in this case we are dealing with the map

ΨX(F)→ ker(((j1)∗ ○ (j1)∗(ΨX(F))⊕ (j2)∗ ○ (j2)∗(ΨX(F)))→ (j12)∗○j∗12(ΨX(F))),

which is known to be an isomorphism.
�

4.2.3. We also have

Proposition 4.2.4. Let f ∶ U → X be a Zariski cover. Then F ∈ IndCoh(X)
belongs to IndCoh(X)≤0 (resp., IndCoh(X)≥0) if and only if f IndCoh,∗(F) does.

Proof. The ‘only if’ direction for both statetements follows from Lemma 4.1.4.

For the ‘if’ direction, assuming that f∗(F) ∈ IndCoh(X)≤0, it is sufficient to
show that ΨX(F) ∈ QCoh(X)≤0, and the assertion follows from the corresponding
assertion for QCoh.

If f IndCoh,∗(F) ∈ IndCoh(X)≥0, the assertion follows from the construction of
the inverse functor

Tot(IndCoh(U●))→ IndCoh(X).
�

5. Proper maps

If until now the theory of IndCoh has run in parallel to (and was inherited from
that of) QCoh, in this section we will come across to the main point of difference
between the two: the functor of !-pullback, studied in this section.

5.1. The !-pullback. In this subsection we introduce the functor of !-pullback for
proper maps. Its extension for arbitrary maps between schemes is the subject of
Chapter 5, Sect. 3.

5.1.1. Let f ∶X → Y be a map in Schaft. We recall the following definition:

Definition 5.1.2. The map f is said to be proper (resp., closed embedding) if
the corresponding map clX → clY has this property.

196 4. IND-COHERENT SHEAVES ON SCHEMES

5.1.3. Let f ∶X → Y be a proper map. We claim:

Lemma 5.1.4. The functor

f IndCoh
∗ ∶ IndCoh(X)→ IndCoh(Y)

sends Coh(X) ⊂ IndCoh(X) to Coh(Y) ⊂ IndCoh(Y).

Proof. By the construction of f IndCoh
∗ , it is sufficient to show that the functor

f∗ ∶ QCoh(X)→ QCoh(Y)
Coh(X) ⊂ QCoh(X) to Coh(Y) ⊂ QCoh(Y).

First, we note that the assertion holds when f is a closed embedding.

In general, by the devissage with respect to the t-structure, it is sufficient to
show that for F ∈ Coh(X)♡, we have

f∗(F) ∈ Coh(Y).

Let i denote the canonical closed embedding clX ↪ X. The functor i∗ is an
equivalence Coh(clX)♡ → Coh(X)♡. Hence, F = i∗(F ′) for F ′ ∈ Coh(clX). This
reduces the assertion to the case when X is classical.

We factor the map f ∶ X → Y as X → clY
i↪ Y . Since i is a closed embedding,

we have reduced the assertion to the case when Y is classical as well. In the latter
case, the assertion is well-known.

�

5.1.5. The above lemma implies that the functor f IndCoh
∗ sends IndCoh(X)c to

IndCoh(Y)c.
Hence, f IndCoh

∗ admits a continuous right adjoint, to be denoted

f ! ∶ IndCoh(X)→ IndCoh(Y).

Remark 5.1.6. The continuity of the functor f ! is the raison d’etre of the
category IndCoh, and its main difference from QCoh.

5.1.7. By Chapter 1, Lemma 9.3.6, we obtain that the functor f ! has a natural
structure of 1-morphism in QCoh(Y)-mod.

5.1.8. Note that the functor f IndCoh
∗ is right t-exact, up to a finite shift. Hence,

the functor f ! is left t-exact up to a finite shift. In particular, f ! maps IndCoh(Y)+
to IndCoh(X)+.

Let fQCoh,! denote the not necessarily continuous right adjoint to f∗. It also
has the property that it maps QCoh(Y)+ to QCoh(X)+.

Lemma 5.1.9. The diagram

IndCoh(X)+ f !

←ÐÐÐÐ IndCoh(Y)+

ΨX
×××Ö

×××Ö
ΨY

QCoh(X)+ fQCoh,!

←ÐÐÐÐ QCoh(Y)+

5. PROPER MAPS 197

obtained by passing to right adjoints along the horizontal arrows in

IndCoh(X)+
f IndCoh
∗ÐÐÐÐ→ IndCoh(Y)+

ΨX
×××Ö

×××Ö
ΨY

QCoh(X)+ f∗ÐÐÐÐ→ QCoh(Y)+,

commutes.

Proof. Follows from the fact that the vertical arrows are equivalences, by
Proposition 1.2.2. �

Remark 5.1.10. It is not in general true that the diagram

IndCoh(X) f !

←ÐÐÐÐ IndCoh(Y)

ΨX
×××Ö

×××Ö
ΨY

QCoh(X) fQCoh,!

←ÐÐÐÐ QCoh(Y)

obtained by passing to right adjoints along the horizontal arrows in

IndCoh(X)
f IndCoh
∗ÐÐÐÐ→ IndCoh(Y)

ΨX
×××Ö

×××Ö
ΨY

QCoh(X) f∗ÐÐÐÐ→ QCoh(Y),

commutes.

For example, take X = pt = Spec(k), Y = Spec(k[t]/t2) and 0 ≠ F ∈ IndCoh(Y)
be in the kernel of the functor ΨY . Then ΨX ○ f !(F) ≠ 0. Indeed, ΨX is an
equivalence, and f ! is conservative, see Corollary 6.1.5.

5.1.11. Let (Schaft)proper be a 1-full subcategory of Schaft when we restrict 1-
morphisms to be proper maps. By Chapter 1, Sect. 8.4.2, we obtain:

Corollary 5.1.12. There exists a canonically defined functor

IndCoh!
(Schaft)proper

∶ ((Schaft)proper)op → DGCatcont,

obtained from

IndCoh(Schaft)proper
∶= IndCoh(Schaft)∣((Schaft)proper)op

by passing to right adjoints.

5.2. Base change for proper maps. A crucial property of the !-pullback is base
change against the *-direct image. We establish it in this subsection.

198 4. IND-COHERENT SHEAVES ON SCHEMES

5.2.1. Let

X1
gXÐÐÐÐ→ X2

f1
×××Ö

×××Ö
f2

Y1
gYÐÐÐÐ→ Y2

be a Cartesian diagram in Schaft, with the vertical maps being proper.

The isomorphism of functors

(f2)IndCoh
∗ ○ (gX)IndCoh

∗ ≃ (gY)IndCoh
∗ ○ (f1)IndCoh

∗

gives rise to a natural transformation:

(5.1) (gX)IndCoh
∗ ○ f !

1 → f !
2 ○ (gY)IndCoh

∗ .

We will prove:

Proposition 5.2.2. The map (5.1) is an isomorphism.

Proof. Since all functors involved are continuous, it is enough to show that
the map

(gX)IndCoh
∗ ○ f !

1(F)→ f !
2 ○ (gY)IndCoh

∗ (F)
is an isomorphism for F ∈ Coh(Y1). Hence, it is enough to show that (5.1) is an
isomorphism when restricted to IndCoh(Y1)+.

By Lemma 5.1.9 and Proposition 1.2.2, this reduces the assertion to showing
that the natural transformation

(5.2) (gX)∗ ○ fQCoh,!
1 → fQCoh,!

2 ○ (gY)∗
is an isomorphism for the functors

QCoh(X1)+
(gX)∗ÐÐÐÐ→ QCoh(X2)+

fQCoh,!
1

Õ×××
Õ×××
fQCoh,!
2

QCoh(Y1)+
(gY)∗ÐÐÐÐ→ QCoh(Y2)+,

where the natural transformation comes from the commutative diagram

QCoh(X1)+
(gX)∗ÐÐÐÐ→ QCoh(X2)+

(f1)∗
×××Ö

×××Ö
(f2)∗

QCoh(Y1)+
(gY)∗ÐÐÐÐ→ QCoh(Y2)+

by passing to right adjoint along the vertical arrows.

We consider the commutative diagram

QCoh(X1)
(gX)∗ÐÐÐÐ→ QCoh(X2)

(f1)∗
×××Ö

×××Ö
(f2)∗

QCoh(Y1)
(gY)∗ÐÐÐÐ→ QCoh(Y2),

5. PROPER MAPS 199

and the the diagram

QCoh(X1)
(gX)∗ÐÐÐÐ→ QCoh(X2)

fQCoh,!
1

Õ×××
Õ×××
fQCoh,!
2

QCoh(Y1)
(gY)∗ÐÐÐÐ→ QCoh(Y2),

obtained by passing to right adjoints along the vertical arrows. (Note, however,
that the functors involved are no longer continuous).

We claim that the resulting natural transformation

(5.3) (gX)∗ ○ fQCoh,!
1 → fQCoh,!

2 ○ (gY)∗
between the functors

QCoh(Y1)⇉ QCoh(X2)
is an isomorphism. This would imply that (5.2) is an isomorphism by restricting
to the eventually coconnective subcategory.

To prove that (5.3) is an isomorphism, we note that this map is obtained by
passing to right adjoints in the natural transformation

(5.4) (gY)∗ ○ (f2)∗ → (f1)∗ ○ (gX)∗

as functors

QCoh(X2)⇉ QCoh(Y1)
in the commutative diagram

QCoh(X1)
(gX)∗←ÐÐÐÐ QCoh(X2)

(f1)∗
×××Ö

×××Ö
(f2)∗

QCoh(Y1)
(gY)∗←ÐÐÐÐ QCoh(Y2).

Now, (5.4) is an isomorphism by the usual base change for QCoh. Hence, (5.3)
is an isomorphism as well.

�

5.3. Pullback compatibilty. The !-pullback for arbitrary maps between schemes
will be defined in such a way that it is the !-pullback for proper morphisms, and
the *-pullback for open embeddings.

Hence, if we want that !-pullback to be well-defined, a certain compatibility
must take place, when we decompose a morphism in two different ways as a com-
position of a proper morphism and an open embedding. A basic case of such
compatibility is established in this subsection.

5.3.1. Let

X1
gXÐÐÐÐ→ X2

f1
×××Ö

×××Ö
f2

Y1
gYÐÐÐÐ→ Y2

be a Cartesian diagram in Schaft, with the vertical maps being proper, and hori-
zontal maps being eventually coconnective.

200 4. IND-COHERENT SHEAVES ON SCHEMES

We start with the base change isomorphism

(f1)IndCoh
∗ ○ gIndCoh,∗

X ≃ gIndCoh,∗
Y ○ (f2)IndCoh

∗

of Proposition 3.2.2, and by the (f IndCoh
∗ , f !)-adjunction obtain a map

(5.5) gIndCoh,∗
X ○ f !

2 → f !
1 ○ gIndCoh,∗

Y .

Remark 5.3.2. Note that one can get another map

(5.6) gIndCoh,∗
X ○ f !

2 → f !
1 ○ gIndCoh,∗

Y ,

namely, via the (gIndCoh,∗, gIndCoh
∗)-adjunction from the isomorphism

f !
2 ○ (gY)IndCoh

∗ ≃ (gX)IndCoh
∗ ○ f !

1

of Proposition 5.2.2. A diagram chase shows that the map (5.6) is canonically the
same as (5.5).

5.3.3. We are going to prove:

Proposition 5.3.4. Suppose that gY (and hence gX) are open embeddings.
Then the map (5.5) is an isomorphism.

Remark 5.3.5. It is shown in [Ga1, Proposition 7.1.6] that the map (5.5) is
an isomorphism for any eventually coconnective gY .

Proof. By Proposition 4.1.2, it suffices to show that the induced map

(gX)IndCoh
∗ ○ gIndCoh,∗

X ○ f !
2 → (gX)IndCoh

∗ ○ f !
1 ○ gIndCoh,∗

Y

is an isomorphism.

Using Proposition 5.2.2, we have

(gX)IndCoh
∗ ○ f !

1 ○ gIndCoh,∗
Y ≃ f !

2 ○ (gY)IndCoh
∗ ○ gIndCoh,∗

Y .

Hence, we need to show that the map

(5.7) (gX)IndCoh
∗ ○ gIndCoh,∗

X ○ f !
2 → f !

2 ○ (gY)IndCoh
∗ ○ gIndCoh,∗

Y

is an isomorphism.

By Corollary 3.3.2, for F ∈ IndCoh(Y2), we have canonical isomorphisms

(gX)IndCoh
∗ ○ gIndCoh,∗

X ○ f !
2(F) ≃ (gX)∗(OX1)⊗ f !

2(F)

and

(gY)IndCoh
∗ ○ gIndCoh,∗

Y (F) ≃ (gY)∗(OY1)⊗F ,
where ⊗ denotes the action of QCoh on IndCoh.

By the compatibilty of the action of QCoh with the !-pullback, we have

f !
2 ○ (gY)IndCoh

∗ ○ gIndCoh,∗
Y (F) ≃ f∗2 ((gY)∗(OY1))⊗ f !

2(F) ≃ (gX)∗(OX1)⊗ f !
2(F).

Now, diagram chase shows that, under the above identifications, the map (5.7)
is the identify map endomorphism of (gX)∗(OX1)⊗ f !

2(F).
�

6. CLOSED EMBEDDINGS 201

6. Closed embeddings

The behavior of IndCoh with respect to closed embedding is ‘better’ than that
of QCoh. The main point of difference is that the direct image functor under
a closed embedding for IndCoh preserves compactness, which is not the case for
QCoh.

6.1. Category with support. In this subsection we study the full subcategory of
IndCoh(X) corresponding with objects ‘with support’ on a given closed subscheme.

6.1.1. Let X be an object of Schaft, and let i ∶ Z →X be a closed embedding. Let
j ∶ U →X be the complementary open.

We let IndCoh(X)Z denote the full subcategory of IndCoh(X) equal to

ker(jIndCoh,∗ ∶ IndCoh(X)→ IndCoh(U)).

Note that the embedding

IndCoh(X)Z ↪ IndCoh(Z)

admits a right adjoint given by sending F to

ker(F → jIndCoh
∗ ○ jIndCoh,∗(F)),

which by Corollary 3.3.5 is the same as

ker(OX → j∗(OU))⊗F .

6.1.2. We claim:

Proposition 6.1.3.

(a) The subcategory IndCoh(X)Z ⊂ IndCoh(X) is compatible with the t-structure
(i.e., is preserved by the truncation functors).

(b) The subcategory IndCoh(X)Z ⊂ IndCoh(X) is generated by the essential image
of the functor iIndCoh

∗ ∶ IndCoh(Z)→ IndCoh(X).

(c) The functor i! ∶ IndCoh(X) → IndCoh(Z) is conservative, when restricted to
IndCoh(X)Z .

(d) The category IndCoh(X)Z identifies with the ind-completion of

Coh(X)Z ∶= ker(j∗ ∶ Coh(X)→ Coh(U)).

Proof. Point (a) follows from the fact that the functor jIndCoh,∗ is t-exact.

Let us prove point (b). The category IndCoh(X) is generated by IndCoh(X)+.
The description of the right adjoint to IndCoh(X)Z ↪ IndCoh(Z) implies that the
same is true for IndCoh(X)Z .

For every F ∈ IndCoh(X)+, the map

colim
n

τ≤n(F)→ F ,

is an isomorphism, by Proposition 1.2.2 and because the corresponding fact is true
in QCoh+.

202 4. IND-COHERENT SHEAVES ON SCHEMES

Hence, by point (a), every F ∈ IndCoh(X)+Z is a colimit of cohomologically
bounded objects from IndCoh(X)Z . This implies that IndCoh(X)Z is generated
by

IndCoh(X)♡Z = Coh(X)♡Z .

Now, it is easy to see that every object F ∈ Coh(X)♡Z has a filtration

F = ∪
n
Fn

with Fn/Fn−1 ∈ i∗(Coh(Z)♡). This proves point (b).

Point (c) follows from point (b) by adjunction.

To prove point (d), it suffices to note that the objects from Coh(X)Z are
compact in IndCoh(X)Z (because they are compact in IndCoh(X)) and that they
generate IndCoh(X)Z , by point (b).

�

6.1.4. In what follows we will use the following terminology: for a (derived) scheme
X, we will denote by redX the classical reduced scheme, underlying reduced scheme
of the classical scheme clX.

We shall say that a map of (derived) schemes f ∶X ′ →X is a nil-isomorphism,
i.e., a map such that redX ′ → redX is an isomorphism.

As a corollary of Proposition 6.1.3 we obtain:

Corollary 6.1.5. Let f ∶X ′ →X be a nil-isomorphism, i.e., a map such that
redX ′ → redX is an isomorphism. Then the functor f ! is conservative. Equivalently,
the essential image of IndCoh(X ′) under f IndCoh

∗ generates IndCoh(X).

Proof. We can assume that X ′ = redX, so f is also a closed embedding. In
this case the assertion of the corollary follows from Proposition 6.1.3(b). �

6.2. A conservativeness result for proper maps. The main result established
in this subsection, Proposition 6.2.2, is of technical significance.

6.2.1. We shall now use Proposition 6.1.3 to prove the following:

Proposition 6.2.2. Let f ∶ X → Y be a proper map, which is surjective at
the level of geometric points. Then the functor f ! ∶ IndCoh(Y) → IndCoh(X) is
conservative.

The rest of this subsection is devoted to the proof of the proposition.

6.2.3. By Corollary 6.1.5 we can assume that both X and Y are classical and
reduced. We argue by Noetherian induction, assuming that the statement is true
for all proper closed subschemes of Y . We need to show that the essential image of
IndCoh(X) under f IndCoh

∗ generates IndCoh(Y).
By Proposition 6.1.3(a), it is sufficient to show that Y contains an open sub-

scheme
○
Y ⊂ Y such that for

○
X ∶= f−1(

○
Y), the essential image of IndCoh(

○
X) under

(f ∣ ○
X
)IndCoh
∗ generates IndCoh(

○
Y).

Since Y is classical and reduced, it contains a non-empty open smooth sub-

scheme, which we take to be
○
Y . By Lemma 1.1.3 and Lemma 1.1.7, we are reduced

to showing the following:

6. CLOSED EMBEDDINGS 203

Lemma 6.2.4. Let f ∶ X → Y be a proper surjective morphism of classical
schemes with Y smooth. Then the essential image of QCoh(X) under f∗ generates
QCoh(Y).

�

Proof of Lemma 6.2.4. Let C ⊂ QCoh(Y) be the full subcategory generated
by the essential image of QCoh(X) under f∗. Note that C is a monoidal ideal, since
the functor f∗ respects the action of QCoh(Y). Consider E ∶= f∗(OX) ∈ C. This is
an object of QCoh(Y), whose fiber at every geometric point of Y is non-zero.

However, it is easy to see that for any Noetherian classical scheme Y and
E ∈ C ⊂ QCoh(Y) with the above properties, we have

C = QCoh(Y).
�

6.3. Products. It is known that for a pair of quasi-compact schemes X1 and X2,
tensor product defines an equivalence of DG categories

QCoh(X1)⊗QCoh(X2)→ QCoh(X1 ×X2).
In this subsection we will establish a similar assertion for IndCoh. This is

not altogether tautological; for example the validity of this fact replies on the
assumption that the ground field k be perfect.

6.3.1. Let X1 and X2 be two objects of Schaft. We claim:

Lemma 6.3.2. There exists a uniquely defined functor

(6.1) ⊠ ∶ IndCoh(X1)⊗ IndCoh(X2)→ IndCoh(X1 ×X2)
that preserves compactness and makes the diagram

IndCoh(X1)⊗ IndCoh(X2)
⊠ÐÐÐÐ→ IndCoh(X1 ×X2)

ΨX1
×ΨX2

×××Ö
×××Ö

ΨX1×X2

QCoh(X1)⊗QCoh(X2)
⊠ÐÐÐÐ→ QCoh(X1 ×X2)

commute.

Proof. The anticlock-wise composition sends the compact generators of the
category

IndCoh(X1)⊗ IndCoh(X2)
(i.e., objects of the form F1 ⊗F2 for Fi ∈ Coh(Xi)) to QCoh(X1 ×X2)+. Hence, it
sends all of (IndCoh(X1)⊗ IndCoh(X2))c to QCoh(X1 ×X2)+.

The sought-for functor is the ind-extension of

(IndCoh(X1)⊗ IndCoh(X2))c → QCoh(X1 ×X2)+
ΨX1×X2≃ IndCoh(X1 ×X2)+.

This functor preserves compactness since the objects

F1 ⊠F2 ∈ QCoh(X1 ×X2)+, Fi ∈ Coh(Xi)
belong to Coh(X1 ×X2).

�

204 4. IND-COHERENT SHEAVES ON SCHEMES

6.3.3. We now claim:

Proposition 6.3.4.

(a) The functor (6.1) is fully faithful.

(b) If the ground field k is perfect, then (6.1) is an equivalence.

Proof. Since the functor (6.1) preserves compactness, for point (a) it is suffi-
cient to show that for F ′i ,F ′′i ∈ Coh(Xi), i = 1,2, the map

MapsIndCoh(X1)⊗IndCoh(X2)(F
′
1⊗F ′2,F ′′1 ⊗F ′′2)→MapsIndCoh(X1×X2)(F

′
1⊠F ′2,F ′′1 ⊠F ′′2)

is an isomorphism.

We have a commutative diagram

MapsIndCoh(X1)⊗IndCoh(X2)(F
′
1 ⊗F ′2,F ′′1 ⊗F ′′2) ÐÐÐÐ→ MapsIndCoh(X1×X2)(F

′
1 ⊠F ′2,F ′′1 ⊠F ′′2)

∼
Õ×××

MapsCoh(X1)(F
′
1,F ′′1)⊗MapsCoh(X2)(F

′
2,F ′′2)

×××Ö
∼

∼
×××Ö

MapsQCoh(X1)(F
′
1,F ′′1)⊗MapsQCoh(X2)(F

′
2,F ′′2) ÐÐÐÐ→ MapsQCoh(X1×X2)(F

′
1 ⊠F ′2,F ′′1 ⊠F ′′2).

Hence, it remains to show that

MapsQCoh(X1)(F
′
1,F ′′1)⊗MapsQCoh(X2)(F

′
2,F ′′2)→MapsQCoh(X1×X2)(F

′
1⊠F ′2,F ′′1 ⊠F ′′2)

is an isomorphism. This is not immediate since the objects F ′i ∈ QCoh(Si) are not
compact. To circumvent this, we proceed as follows.

It is enough to show that

τ≤n (MapsQCoh(X1)(F
′
1,F ′′1)⊗MapsQCoh(X2)(F

′
2,F ′′2))→

→ τ≤n (MapsQCoh(X1×X2)(F
′
1 ⊠F ′2,F ′′1 ⊠F ′′2))

is an isomorphism for any fixed n.

Choose α1 ∶ F̃ ′1 → F ′1 (resp., α2 ∶ F̃ ′2 → F ′2) with F̃ ′1 (resp., F̃ ′2) in QCoh(X1)perf

(resp., QCoh(X2)perf), such that

Cone(α1) ∈ QCoh(X1)≤−N and Cone(α2) ∈ QCoh(X2)≤−N

for N ≫ 0.

By choosing N large enough, we can ensure that

τ≤m (MapsQCoh(Si)(F
′
i ,F ′′i))→ τ≤m (MapsQCoh(Si)(F̃

′
i ,F ′′i))

is an isomorphism for a given integer m. This implies that for N ≫ 0 and our fixed
n, the maps

τ≤n (MapsQCoh(X1)(F
′
1,F ′′1)⊗MapsQCoh(X2)(F

′
2,F ′′2))→

→ τ≤n (MapsQCoh(X1)(F̃
′
1,F ′′1)⊗MapsQCoh(X2)(F̃

′
2,F ′′2))

and

τ≤n (MapsQCoh(X1×X2)(F
′
1 ⊠F ′2,F ′′1 ⊠F ′′2))→ τ≤n (MapsQCoh(X1×X2)(F̃

′
1 ⊠ F̃ ′2,F ′′1 ⊠F ′′2))

are isomorphisms.

6. CLOSED EMBEDDINGS 205

Hence, it is enough to show that

MapsQCoh(X1)(F̃
′
1,F ′′1)⊗MapsQCoh(X2)(F̃

′
2,F ′′2)→MapsQCoh(X1×X2)(F̃

′
1⊠F̃ ′2,F ′′1 ⊠F ′′2)

is an isomorphism. But this follows from the fact that the fuctor

(6.2) QCoh(X1) ⊠QCoh(X2)→ QCoh(X1 ×X2)
is an equivalence.

This finishes the proof of point (a).

To prove point (b), we have to show that the essential image of the functor
(6.1) generates IndCoh(X1 ×X2). By Corollary 6.1.5 we can assume that both X1

and X2 are classical and reduced.

We argue by Noetherian induction, assuming that the statement is true for all
proper closed subschemes X ′

i ⊂Xi.

By Proposition 6.1.3(b), it is sufficient to show that X1 and X2 contain non-

empty open subschemes
○
Xi ⊂ Xi, for which the statement of the proposition is

true.

Since Xi are classical and reduced, we can take
○
Xi to be a non-empty open

smooth subscheme of Xi. Note that the assumption that k be perfect implies that
○
X1 ×

○
X2 is also smooth. Now, the assertion follows from Lemma 1.1.3 and the fact

that (6.2) is an equivalence.
�

6.3.5. Upgrading to a functor. Consider the category Schaft as endowed with a sym-
metric monoidal structure given by Cartesian product. We consider the category
DGCatcont also as a symmetric monoidal ∞-category with respect to the operation
of tensor product.

First we recall that the functor

QCoh∗Schaft
∶ (Schaft)op → DGCatcont

has a natural symmetric monoidal structure.

Indeed, this follows from Chapter 3, Sect. 3.1.3 and Proposition 3.1.7.

6.3.6. Passing to adjoints, by Chapter 9, Sect. 3.1.3, we obtain that the functor

QCohSchaft
∶ Schaft → DGCatcont

also has a natural symmetric monoidal structure.

Now, as in Proposition 2.2.3 one shows:

Proposition 6.3.7. There exists a unique symmetric monoidal structure on
the functor

IndCohSchaft
∶ Schaft → DGCatcont

and the natural transformation ΨSchaft
that at the level of objects is given by Lemma 6.3.2.

6.4. Convergence. In this subsection we will establish another crucial property
of IndCoh that distinguishes it from QCoh. Namely, we will show that for a given
scheme, its category IndCoh can be recovered from IndCoh on the n-coconnective
truncations of this scheme.

206 4. IND-COHERENT SHEAVES ON SCHEMES

6.4.1. Let X be an object of Schaft. For each n let in denote the closed embedding
≤nX →X, and for n1 ≤ n2, let in1,n2 denote the closed embedding

≤n1X → ≤n2X.

By Chapter 1, Proposition 2.5.7, we have a canonical equivalence

colim
n

IndCoh(≤nX) ≃ lim
n

IndCoh(≤nX),

where in the left-hand side the transition functors are (in1,n2)IndCoh
∗ , and in the

right-hand side (in1,n2)!.

The functors i!n define a functor

(6.3) IndCoh(X)→ lim
n

IndCoh(≤nX),

whose left adjoint

(6.4) colim
n

IndCoh(≤nX)→ IndCoh(X)

is given by the compatible family of functors (in)IndCoh
∗ .

6.4.2. We are going to establish the following property of the category IndCoh:

Proposition 6.4.3. The functors (6.3) and (6.4) are mutually inverse equiv-
alences.

Proof. First, we note that Corollary 6.1.5 shows that the functor (6.3) is
conservative. It is clear that the functor (6.4) sends compact objects to compact
ones.

Hence, it remains to prove the following: for

F1,F2 ∈ Coh(≤0X)♡ ≃ Coh(X)♡

and k ∈ N, the map

colim
n

MapsCoh(≤nX)(F1,F2[k])→MapsCoh(X)(F1,F2[k])

is an isomorphism.

We will prove more generally the following:

Lemma 6.4.4. For

F1 ∈ (QCoh(≤nX))≤0, F2 ∈ (QCoh(≤nX))≥−k,

the map

(6.5) MapsQCoh(≤nX)(F1,F2)→MapsQCoh(X)((in)∗(F1), (in)∗(F2))

is an isomorphism for n ≥ k.

�

7. GROUPOIDS AND DESCENT 207

6.4.5. Proof of Lemma 6.4.4. We rewrite the right-hand side as

MapsQCoh(≤nX)((in)∗ ○ (in)∗(F1),F2),
and we claim that

Cone((in)∗ ○ (in)∗(F1)→ F1) ∈ (QCoh(≤nX))≤−n−1,

which is equivalent to

Cone((in)∗ ○ (in)∗ ○ (in)∗(F1)→ (in)∗(F1)) ∈ QCoh(X)≤−n−1,

and further equivalent to

Cone((in)∗(F1)→ (in)∗ ○ (in)∗ ○ (in)∗(F1)) ∈ QCoh(X)≤−n.

In fact, we claim that for F ∈ QCoh(X)≤0,

Cone(F → (in)∗ ○ (in)∗(F)) ∈ QCoh(X)≤−n.
Indeed,

Cone(F → (in)∗ ○ (in)∗(F))) ≃ Cone(OX → (in)∗(O≤nX))⊗F ,
and the assertion follows.

�

7. Groupoids and descent

In this section we will show that the category IndCoh satisfies descent with
respect to proper surjective maps. We will later strengthen this to show that
IndCoh satisfies h-descent.

7.1. The Beck-Chevalley condition. The Beck-Chevalley condition gives a suf-
ficient condition for when the totalization of a given co-simplicial category can be
described as co-modules over a co-monad acting on the category of 0-simplices.

7.1.1. Let us recall the following general framework.

Let C● be a co-simplicial ∞-category. Consider the corresponding category
C●+1, and the co-simplicial functor

C●+1 ←C● ∶ s●.
Note that the co-simplicial category C●+1 is augmented and split by C0. Hence,

we have a canonical equivalence

C0 ≃ Tot(C●+1),
so that the composed functor

C0 ≃ Tot(C●+1) Tot(s●)←Ð Tot(C●)
identifies with ev0

C● .

Furthermore, the functor

C0 ≃ Tot(C●+1)
ev0

C●+1Ð→ C1

identifies with ps, where ps, pt are the two functors

C0 ⇉C1.

208 4. IND-COHERENT SHEAVES ON SCHEMES

7.1.2. Recall the following definition:

Definition 7.1.3. We shall say that C● satisfies the Beck-Chevalley condition
if for each n the functor

Cn+1 ←Cn ∶ sn

admits a left adjoint (to be denoted by tn), and for every map [m]→ [n] in ∆, the
diagram

Cn+1 tnÐÐÐÐ→ Cn

Õ×××
Õ×××

Cm+1 tmÐÐÐÐ→ Cm,
that a priori commutes up to a natural transformation, actually commutes.

We have:

Lemma 7.1.4. Suppose that C● satisfies the Beck-Chevalley condition. Then:

(a) The functor
C0 ← Tot(C●) ∶ ev0

C

admits a left adjoint.

(b) The monad

ev0
C ○(ev0

C)L,
viewed as an endo-functor of C0, identifies with (pt)L ○ ps, where (pt)L is the left
adjoint of pt.

(c) The adjoint pair

(ev0
C●)L ∶ C0 ⇄ Tot(C●) ∶ ev0

C●

is monadic.

Proof. The Beck-Chevalley condition implies that the simplex-wise left ad-
joints tn form a co-simplicial functor

t● ∶ C●+1 ←C●.

In particular, we obtain a pair of adjoint functors

Tot(t●) ∶ Tot(C●+1)⇄ Tot(C●) ∶ Tot(s●),
that commute with evaluation on n-simplicies for every n.

Note also that s0 ≃ pt and so t0 ≃ (pt)L. Now, the required assertion concering

ev0
C● ○(ev0

C●)L

follows from the commutative diagram

C1 t0ÐÐÐÐ→ C0

ev0
C●+1

Õ×××
Õ×××

ev0
C●

C0 ≃ Tot(C●+1) Tot(t●)ÐÐÐÐ→ Tot(C●).
Finally, it is easy to see that the functor ev0

C● is conservative and commutes
with ev0

C● -split geometric realizations. Hence, it satisfies the conditions of the
Barr-Beck-Lurie theorem, and therefore is monadic.

�

7. GROUPOIDS AND DESCENT 209

7.2. Proper descent. We will now prove proper descent for IndCoh.

7.2.1. LetX● be a groupoid simplicial object in Schaft (see [Lu1], Definition 6.1.2.7
for the notion of groupoid in the context of ∞-categories).

Denote by

(7.1) ps, pt ∶X1 ⇉X0

the corresponding maps. Let us assume that the map ps (and hence also pt) is
proper.

We form a co-simplicial category IndCoh(X●)! using the !-pullback functors,
and consider its totalization Tot(IndCoh(X●)!). Consider the functor of evaluation
on 0-simplices:

ev0 ∶ Tot(IndCoh(X●))→ IndCoh(X0).
Proposition 7.2.2.

(a) Then functor ev0 admits a left adjoint. The resulting monad on IndCoh(X0),
viewed as an endo-functor, is canonically isomorpic to (pt)IndCoh

∗ ○ (ps)!. The ad-
joint pair

IndCoh(X0)⇄ Tot(IndCoh(X●)!)
is monadic.

(b) Suppose that X● is the Čech nerve of a map f ∶ X0 → Y , where f proper.
Assume also that f is surjective at the level of geometric points. Then the resulting
map

IndCoh(Y)→ Tot(IndCoh(X●)!)
is an equivalence.

Remark 7.2.3. Note that the fact that ev0 admits a left adjoint follows from
Chapter 1, Proposition 2.5.7.

Indeed, the maps in IndCoh(X●)! admit left adjoints, and we can interpret
Tot(IndCoh(X●)!) as the geometric realization of the corresponding simplicial cat-
egory IndCoh(X●), with the left adjoint to ev0 being the corresponding tautological
functor

IndCoh(X0)→ ∣IndCoh(X●)∣.

7.2.4. Proof of Proposition 7.2.2(a). By Lemma 7.1.4 we need to show that the co-
simplicial category IndCoh(X●+1)! satisfies the Beck-Chevalley condition. However,
this follows immediately from Proposition 5.2.2.

�

7.2.5. Proof of Proposition 7.2.2(b). Consider the adjoint pair

f IndCoh
∗ ∶ IndCoh(X0)⇄ IndCoh(Y) ∶ f !.

By Proposition 6.2.2, the functor f ! is conservative, and continuous. Hence,
the above pair is monadic.

The composition

IndCoh(Y)→ Tot(IndCoh(X●))→ IndCoh(X0)
identifies with the functor f !. Hence, it remains to show that the map of the
corresponding monads

ev0 ○(ev0)L → f ! ○ f IndCoh
∗

210 4. IND-COHERENT SHEAVES ON SCHEMES

induces an isomorphism at the level of the underlying endo-functors of IndCoh(X0).
By Proposition 7.2.2(a), the left-hand side identifies with

(pt)IndCoh
∗ ○ p!

s.

Furthermore, it follows from the construction that the resulting map

(pt)IndCoh
∗ ○ p!

s → f ! ○ f IndCoh
∗

is the base change morphism of Proposition 5.2.2 for the Cartesian diagram

X1 psÐÐÐÐ→ X0

pt
×××Ö

×××Ö
f

X0 fÐÐÐÐ→ Y.
Hence, the required isomorphism follows from Proposition 5.2.2.

�

CHAPTER 5

Ind-coherent sheaves as a functor out of the
category of correspondences

Introduction

0.1. The !-pullback and base change.
0.1.1. In Chapter 4 we constructed the functor
(0.1)

IndCohSchaft
∶ Schaft → DGCatcont, X ↝ IndCoh(X), (X f→ Y)↝ f IndCoh

∗ .

In addition, we constructed the functors

(0.2) IndCoh!
(Schaft)proper

∶ ((Schaft)proper)op → DGCatcont,

X ↝ IndCoh(X), (X f→ Y)↝ f !

and

(0.3) IndCoh∗(Schaft)open
∶ ((Schaft)open)op → DGCatcont,

X ↝ IndCoh(X), (X f→ Y)↝ f IndCoh,∗,

where (0.2) is obtained from (0.1) by passing to right adjoints along proper maps,
and (0.3) is obtained from (0.1) by passing to left adjoints along open embeddings.

The goal of the present chapter is to combine the above functors to a single
piece of structure.

0.1.2. It is easy to phrase (but not to prove!) what it means to combine the
functors (0.2) and (0.3): we will have a single functor

(0.4)

IndCoh!
Schaft

∶ (Schaft)op → DGCatcont, X ↝ IndCoh(X), (X f→ Y) ↝ f !.

It is trickier to say what kind of structure encodes both (0.1) and (0.4). The
idea that we want to express is that these two functors are compatible via base
change. I.e., for a Cartesian diagram in Sch

(0.5)

X ′ gXÐÐÐÐ→ X

f ′
×××Ö

×××Ö
f

Y ′ gYÐÐÐÐ→ Y

we want to be given an isomorphism of functors

(0.6) g!
Y ○ f IndCoh

∗ ≃ (f ′)IndCoh
∗ ○ g!

X .

211

212 5. IndCoh AS A FUNCTOR OUT OF CORRESPONDENCES

The problem is that for a general diagram (0.5), there is no adjunction that
gives rise to a map in (0.6) in either direction. Namely, if gY is proper, the natural
map points ←, and when gY is an open embedding, the natural map points →.

So, in general, the isomorphism (0.6) is really an additional piece of data, and
once we want to say that these isomorphisms are compatible with the compositions
of f ’s a and g’s, we need to specify what we mean by that, i.e., what a homotopy-
compatible system of isomorphisms means in this case.

0.1.3. Here enters the idea of the category of correspondences, suggested to us by
J. Lurie, and developed in Chapter 7. This is the category, denoted Corr(Schaft),
whose objects are X ∈ Schaft, and whose 1-morphisms are diagrams

(0.7)

X0,1
gÐÐÐÐ→ X0

f
×××Ö
X1.

Compositions of 1-morphisms are given by fiber products: the composition of
(0.7) with the 1-morphism

X1,2 ÐÐÐÐ→ X1

×××Ö
X2

is given by the diagram

X0,2 ÐÐÐÐ→ X0

×××Ö
X2,

where X0,2 ∶=X1,2 ×
X1

X0,1. We refer the reader to Chapter 7, where it is explained

how to define Corr(Schaft) as an ∞-category.

0.1.4. The main goal of this chapter is to define IndCoh as a functor

(0.8) IndCohCorr(Schaft) ∶ Corr(Schaft)→ DGCatcont

that, at the level of objects sends X ↝ IndCoh(X), and at the level of 1-morphisms
sends the diagram (0.7) to f IndCoh

∗ ○ g!.

The functor in (0.8) will encode the initial functor (0.1) by restricting to the
1-full subcategory of Corr(Schaft), where we only allow 1-morphisms (0.7) with α
being an isomorphism (this subcategory is tautologically equivalent to Schaft).

The functor in (0.8) will encode the initial functor (0.4) by restricting to the
1-full subcategory of Corr(Schaft), where we only allow 1-morphisms (0.7) with β
being an isomorphism (this subcategory is tautologically equivalent to (Schaft)op).

INTRODUCTION 213

0.1.5. In order to construct the functor IndCohCorr(Schaft) we will apply the ma-
chinery developed in Chapter 7. It turns out that the data of IndCohCorr(Schaft) is
uniquely recovered from the data of the functor IndCohSchaft

of (0.1).

However, there is one caveat: in order for the uniqueness statement mentioned
above to hold, and in order to perform the construction of IndCohCorr(Schaft) , one
needs to work not with (∞,1)-category Corr(Schaft), but with the (∞,2)-category
Corr(Schaft)proper.

The latter (∞,2)-category is one where we allow non-invertible 2-morphisms
of the following kind: a 2-morphism from the 1-morphism (0.7) to the 1-morphism

X ′
0,1

g′ÐÐÐÐ→ X ′
0

f ′
×××Ö
X ′

1

is a commutative diagram

(0.9)

X1,

X0X ′
0,1

X0,1

g′

��

f ′
//

g

��

f

))

h

��

where h is proper.

What we will actually construct is the functor

(0.10) IndCohCorr(Schaft)proper ∶ Corr(Schaft)proper → DGCat2 -Cat
cont .

The additional piece of data that is contained in IndCohCorr(Schaft)proper as com-

pared to IndCohCorr(Schaft) is that of adjunction between f ! and f IndCoh
∗ for a proper

morphism f .

0.2. The !-pullback and IndCoh on prestacks. Having constructed the functor

IndCohCorr(Schaft)proper ∶ Corr(Schaft)proper → DGCatcont,

we restrict it to (Schaft)op ⊂ Corr(Schaft)proper and obtain the functor

IndCoh!
Schaft

∶ (Schaft)op → DGCatcont

of (0.4).

Remark 0.2.1. My emphasize that even if one is only interested in the functor
(0.4), one has to employ the machinery of (∞,2)-categories of correspondences in
order to construct it.

214 5. IndCoh AS A FUNCTOR OUT OF CORRESPONDENCES

0.2.2. Starting with the functor IndCoh!
Schaft

, we will right-Kan-extend it to a
functor

IndCoh!
PreStkaft

∶ (PreStkaft)op → DGCatcont .

I.e., we now have a well-defined category IndCoh(X) for X ∈ PreStkaft.

0.2.3. The assignment

X ↝ IndCoh(X)
provides a theory of O-modules on prestacks, that exists alongside of QCoh; the
former is functorial with respect to the !-pullback, while the assignment

X ↝ QCoh(X)

is functorial with respect to the *-pullback.

In Chapter 6, Sect. 3.3 we will see that the categories QCoh(X) and QCoh(X)
are related by a functor

(0.11) ΥX ∶ QCoh(X)→ IndCoh(X), F ↦ F ⊗ ωX ,

where ωX ∈ IndCoh(X) is the dualizing object, and ⊗ is the action of QCoh(X) on
IndCoh(X), defined in Chapter 6, Sect. 3.3.

However, in general, the functor ΥX is far from being an equivalence.

Remark 0.2.4. Recall that when X =X is a scheme, we have a different functor
relating IndCoh(X) and QCoh(X), namely

ΨX ∶ IndCoh(X)→ QCoh(X)

(this functor was instrumental of getting the theory of IndCoh off the ground; we
used it in order to defined the *-push forward functors for IndCoh).

In Chapter 6, Sect. 4.4 we will see that the functors

ΨX ∶ IndCoh(X)→ QCoh(X) and ΥX ∶ IndCoh(X)→ QCoh(X)

are naturally duals of one another.

However, for a general prestack X , only the functor ΥX makes sense; the functor
ΨX is a feature of schemes (or, more generally, Artin stacks).

0.2.5. Here is a typical manifestation of the usefulness of the category IndCoh(X)
for a prestack X .

Let us take X to be an ind-scheme. In this case, IndCoh(X) is compactly
generated by the direct images of Coh(X) for closed subschemes X → X .

This is while it is not clear (and probably not true) that QCoh(X) is compactly
generated.

Note, however, that in [GaRo1, Theorem 10.1.1] it is proved that if X is a
formally smooth, ind-scheme then the functor ΥX of (0.11) is an equivalence.

INTRODUCTION 215

0.2.6. Let us now take X = XdR, where X ∈ Schaft. It is shown in [GaRo2,
Proposition 2.4.4] that in this case the functor

ΥXdR
∶ QCoh(XdR)→ IndCoh(XdR)

is an equivalence.

We can view

QCoh(XdR) =∶ D-mod(X) ∶= IndCoh(XdR)

as the two incarnations of the category of D-modules on X: as ‘left D-modules’ and
as ‘right D-modules’. Correspondingly, we have the two forgetful functors

D-mod(X) = QCoh(XdR)→ QCoh(X) and D-mod(X) = IndCoh(XdR)→ IndCoh(X),

corresponding to the *- and !-pullback, respectively, with respect to the map X →
XdR.

In [GaRo2, Sects. 2-4] is it shown that the above ‘right’ forgetful functor
D-mod(X) → IndCoh(X) has much better properties than the the ‘left’ forgetful
functor D-mod(X)→ IndCoh(X).

This is closely related to the fact that the category IndCoh(X∧) is better
behaved (see Sect. 0.2.5 above) than the category QCoh(X∧), where X∧ is the
ind-scheme

X∧ ∶=X ×
XdR

X,

i.e., the formal completion of X in X ×X.

0.3. What is done in this chapter?
0.3.1. In Sect. 1 we collect some geometric preliminaries needed for the proof of
the main theorem (Theorem 2.1.4) in Sect. 2.

Namely, we show that the operation of the closure of the image of a morphism
is well-behaved in the context of derived algebraic geometry. Specifically, for a

morphism X
f→ Y , its closure is the initial object in the category of factorizations

of f as

X →X ′ f
′

→ Y,

where f ′ is a closed embedding (i.e., the corresponding map of classical schemes
clX ′ → clY is a closed embedding).

The main result of this section is Proposition 1.3.2, which establishes the tran-
sitivity property of the operation of closure of the image of a morphism. Namely,
it says that for a composition of morphisms

X
f→ Y

g→ Z,

if Y ′ denotes the closure of the image of f , and g′ ∶= g∣Y ′ , then the canonical map
from the closure of the image of g ○ f maps isomorphically to the closure of the
image of g′.

216 5. IndCoh AS A FUNCTOR OUT OF CORRESPONDENCES

0.3.2. The central section of this Chapter is Sect. 2, where we construct the functor

IndCohCorr(Schaft)proper

of (0.10), starting from the functor IndCohSchaft
of (0.1). This is done by applying

Chapter 7, Theorem 5.2.4.

In order to apply this theorem, we need to check one condition of geometric
nature. Namely, we need to show that for a given morphism between schemes

X
f→ Y , the category of its factorizations as

X
j→ Z

g→ Y

with j an open embedding and g is proper, is contractible.

We prove the required contractibility assertion by appealing to the classical
Nagata theorem, and using Proposition 1.3.2, about the operation of closure of the
image of a morphism, mentioned above.

0.3.3. In Sect. 3 we study the functor

IndCoh!
Schaft

∶ (Schaft)op → DGCatcont

of (0.4) that is obtained from IndCohCorr(Schaft)proper by restriction to the 1-full
subcategory

(Schaft)op → Corr(Schaft)proper,

see Sect. 0.1.4.

The main point of this section is that, having the functor IndCoh!
Schaft

at our
disposal, we can extend it to a functor

IndCoh!
PreStklaft

∶ (PreStklaft)op → DGCatcont .

The latter extension procedure is simply the right Kan extension along the
embedding

(Schaft)op ↪ (PreStklaft)op.

In other words, for a prestack Y, an object F ∈ IndCoh(Y) is a compatible
family of objects

FX,y ∈ IndCoh(X), (X y→ Y) ∈ Sch/Y ,

where the compatibility is understood in the sense of the !-pullback functor.

Furthermore, we can canonically extend the functor IndCohCorr(Schaft)proper to
a functor

Corr(PreStklaft)sch & proper
sch-qc;all → DGCat2 -Cat

cont ,

where Corr(PreStklaft)sch & proper
sch-qc;all is an (∞,2)-category, whose objects are X ∈ PreStklaft,

1-morphisms are diagrams

(0.12)

X0,1
gÐÐÐÐ→ X0

f
×××Ö
X1,

INTRODUCTION 217

with g arbitrary and f schematic quasi-compact, and 2-morphisms are diagrams

X1,

X0X ′
0,1

X0,1

g′

��

f ′
//

g

��

f

))

h

��

with h schematic and proper.

0.3.4. In Sect. 4 we show that the functor IndCohCorr(Schaft)proper of (0.10) has a
natural symmetric monoidal structure, where Corr(Schaft)proper acquires a struc-
ture of symmetric monoidal (∞,2)-category from the operation of Cartesian prod-
uct on Schaft.

We show that the symmetric monoidal structure on IndCohCorr(Schaft) gives rise
to the Serre duality equivalence

(0.13) DSerre
X ∶ IndCoh(X)∨ ≃ IndCoh(X), X ∈ Schaft .

At the level of the subcategories of compact objects,

Coh(X) ≃ IndCoh(X)c,

the functor Coh(X)op → Coh(X), corresponding to DSerre
X , is the usual (contravari-

ant) Serre duality auto-equivalence

DSerre
X ∶ Coh(X)op ≃ Coh(X).

Under the equivalence (0.10), for a morphism X
f→ Y , the functor f ! identifies

with the dual of the functor f IndCoh
∗ .

0.3.5. In Sect. 5 we apply the theory developed in the preceding sections show
that if

R

X X

pt

��
ps

��

is a groupoid-object in PreStklaft, where the maps ps and pt are schematic, then
the category IndCoh(R) has a natural monoidal structure, and as such it acts on
IndCoh(X).

We show, moreover, that if ps and pt are proper, then the dualizing object

ωR ∈ IndCoh(R)

acquires a natural structure of associative algebra in IndCoh(R).

218 5. IndCoh AS A FUNCTOR OUT OF CORRESPONDENCES

1. Factorizations of morphisms of DG schemes

In this section we will study what happens to the notion of the closure of the
image of a morphism between schemes in derived algebraic geometry. The upshot
is that there is essentially ‘nothing new’ as compared to the classical case.

1.1. Colimits of closed embeddings. In this subsection we will show that col-
imits exist and are well-behaved in the category of closed subschemes of a given
ambient scheme.

1.1.1. Recall that a map X → Y in Sch is called a closed embedding if the map
clX → clY

is a closed embedding of classical schemes.

1.1.2. Let f ∶X → Y be a morphism in Sch. We let

SchX/, closed in Y

denote the full subcategory of SchX/ /Y consisting of diagrams

X →X ′ f
′

→ Y,

where the map f ′ is a closed embedding.

We claim:

Proposition 1.1.3.

(a) The category SchX/, closed in Y has finite colimits (including the initial object).

(b) The formation of colimits commutes with Zariski localization on Y .

Proof.

Step 1. Assume first that Y is affine, Y = Spec(A). Let

(1.1) i↝ (X →X ′
i

f ′i→ Y),
be a finite diagram in SchX/, closed in Y .

Set B ∶= Γ(X,OX). This is a (not necessarily connective) commutative k-
algebra. Set also X ′

i = Spec(B′
i). Consider the corresponding diagram

(1.2) i↝ (A→ B′
i → B)

in ComAlgA/ /B .

Set
(B̃′ → B) ∶= lim

i
(B′

i → B),

where the limit taken in ComAlg/B . Note that we have a canonical map A → B̃′,
and

(A→ B̃′ → B) ∈ ComAlgA/ /B
maps isomorphically to the limit of (1.2) taken in, ComAlgA/ /B .

Set
B′ ∶= τ≤0(B̃′) ×

H0(B̃′)
Im (H0(A)→H0(B̃′)) ,

where the fiber product is taken in the category of connective commutative algebras
(i.e., it is τ≤0 of the fiber product taken in the category of all commutative algebras).

1. FACTORIZATIONS OF MORPHISMS OF DG SCHEMES 219

We still have the canonical maps

A→ B′ → B,

and it is easy to see that for X ′ ∶= Spec(B′), the object

(X →X ′ → Y) ∈ SchX/, closed in Y

is the colimit of (1.1).

Step 2. To treat the general case it it suffices to show that the formation of colimits
in the affine case commutes with Zariski localization. I.e., we need to show that

if Y is affine,
○
Y ⊂ Y is a basic open, then for

○
X ∶= f−1(

○
Y),

○
X ′
i ∶= (φ′i)−1(

○
Y),

○
X ′ ∶= (f ′)−1(

○
Y), then the map

colim
i

○
X ′
i →

○
X ′,

is an isomorphism, where the colimit is taken in Sch ○
X/, closed

○
Y

.

However, the required isomorphism follows from the description of the colimit
in Step 1.

�

1.1.4. We note the following property of colimits in the situation of Proposi-
tion 1.1.3.

Let g ∶ Y → Ỹ be a closed embedding. Set

(X →X ′ → Y) = colim
i

(X →X ′
i → Y) and (X → X̃ ′ → Ỹ) = colim

i
(X →X ′

i → Ỹ),

where the colimits are taken in SchX/, closed in Y and SchX/, closed Ỹ , respectively.

Consider the composition

X →X ′ → Y → Ỹ ,

and the corresponding object

(X →X ′ → Ỹ) ∈ SchX/, closed Ỹ .

It is endowed with a compatible family of maps

(X →X ′
i → Ỹ)→ (X →X ′ → Ỹ).

Hence, by the universal property of (X → X̃ ′ → Ỹ), we obtain a canonically
defined map

(1.3) X̃ ′ →X ′.

We claim:

Lemma 1.1.5. The map (1.3) is an isomorphism.

Proof. We construct the inverse map as follows. We note that by the universal
property of (X → X̃ ′ → Ỹ), we have a canonical map

(X → X̃ ′ → Ỹ)→ (X → Y → Ỹ).
This produces a compatible family of maps

(X →X ′
i → Y)→ (X → X̃ ′ → Y),

220 5. IndCoh AS A FUNCTOR OUT OF CORRESPONDENCES

and hence the desired map

X ′ → X̃ ′.

�

1.1.6. In the situation of Proposition 1.1.3 let us consider the case of X = ∅.
We shall denote the resulting category by Schclosed in Y . Thus, Proposition 1.1.3
guarantees the existence and compatibility with Zariski localization of finite colimits
in Schclosed in Y .

Explicitly, if Y = Spec(A) is affine and

i↝ Y ′
i ⊂ Y

is a diagram of closed subschemes, Y ′
i = Spec(A′

i), then

colim
i

Y ′
i = Y ′,

where

Y ′ = Spec(A′), A′ ∶= τ≤0(Ã′) ×
H0(Ã′)

Im (H0(A)→H0(Ã′)) , Ã′ ∶= lim
i
A′
i.

1.2. The closure. In this subsection we will define the notion of closure of the
image of a morphism of schemes.

1.2.1. In what follows, in the situation of Proposition 1.1.3, we shall refer to the
initial object in the category SchX/, closed in Y as the closure of X and Y , and denote

it by f(X).
Explicitly, if Y = Spec(A) is affine, we have:

(1.4)

f(X) = Spec(A′), A′ = τ≤0(Γ(X,OX)) ×
H0(Γ(X,OX))

Im (H0(A)→H0(Γ(X,OX))) .

A particular case of Lemma 1.1.5 says:

Corollary 1.2.2. If f ∶ X → Y is a closed embedding, then X → f(X) is an
isomorphism.

1.2.3. The following property of the operation of taking the closure will be used
in the sequel. Let us be in the situation of Proposition 1.1.3,

X =X1 ∪X2,

where Xi ⊂X are open and set X12 =X1 ∩X2. Denote fi ∶= f ∣Xi .
We have a canonical map

(1.5) f1(X1) ⊔
f12(X12)

f2(X2)→ f(X),

where the colimit is taken in Schclosed in Y .

Lemma 1.2.4. The map (1.5) is an isomorphism.

Proof. Follows by reducing to the case when Y is affine, and in the latter case
by (1.4).

�

1. FACTORIZATIONS OF MORPHISMS OF DG SCHEMES 221

1.2.5. We give the following definition:

Definition 1.2.6. A map f ∶ X → Y is said to be a locally closed embedding

if Y contains an open
○
Y ⊂ Y , such that f defines a closed embedding X →

○
Y .

We have:

Lemma 1.2.7. Suppose that f is a locally closed embedding. Then f defines an

open embedding of X into f(X).

Proof. Follows by combining Corollary 1.2.2 and Proposition 1.1.3(b). �

1.3. Transitivity of closure. The basic fact established in this subsection, Propo-
sition 1.3.2, will be of crucial technical importance for the proof of Theorem 2.1.4.

1.3.1. Consider a diagram

X
f→ Y

g→ Z.

Set Y ′ ∶= f(X) and g′ ∶= g∣Y ′ . By the universal property of closure, we have a
canonical map

(1.6) g ○ f(X)→ g′(Y ′).

We claim:

Proposition 1.3.2. The map (1.6) is an isomorphism.

The rest of this subsection is devoted to the proof of this proposition.

1.3.3. Step 1. As in the proof of Proposition 1.1.3, the assertion reduces to the case
when Z = Spec(A) is affine. Assume first that Y is affine as well, Y = Spec(B).
Then we have the following descriptions of the two sides in (1.6).

Set C ∶= Γ(X,OX). We have Y ′ ∶= Spec(B′), where

B′ = τ≤0(C) ×
H0(C)

Im (H0(B)→H0(C)) ,

where here and below the fiber product is taken in the category of connective
commutative algebras.

Furthermore, g ○ f(X) = Spec(A′), where

A′ = τ≤0(C) ×
H0(C)

Im (H0(A)→H0(C)) .

Finally, g′(Y ′) = Spec(A′′), where

A′′ = B′ ×
H0(B′)

Im (H0(A)→H0(B′)) .

Note that

H0(B′) = Im (H0(B)→H0(C)) and Im (H0(A)→H0(B′)) = Im(H0(A)→H0(C)).

222 5. IndCoh AS A FUNCTOR OUT OF CORRESPONDENCES

The map (1.6) corresponds to the homomorphism

A′′ = B′ ×
H0(B′)

Im(H0(A)→H0(B′)) =

= (τ≤0(C) ×
H0(C)

Im(H0(B)→H0(C))) ×
Im(H0(B)→H0(C))

Im(H0(A)→H0(C)) ≃

≃ τ≤0(C) ×
H0(C)

Im(H0(A)→H0(C)) ≃ A′,

which is an isomorphism, as required.

1.3.4. Step 2. Let Y be arbitrary. Choose an open affine cover Y = ∪
i
Yi and set

Xi = f−1(Yi). Then the assertion of the proposition follows from Step 1 using
Lemma 1.2.4.

�

2. IndCoh as a functor from the category of correspondences

This section realizes one of the main goal of our book, namely, the construction
of IndCoh as a functor out of the category of correspondences.

It will turn out that IndCoh, equipped with the operation of direct image, and
left and right adjoints, corresponding to open embeddings and proper morphisms,
respectively will uniquely extend to the sought-for formalism of correspondences.

2.1. The category of correspondences. In this subsection we introduce the
category of correspondences on schemes and state our main theorem.

2.1.1. We consider the category Schaft equipped with the following classes of mor-
phisms:

vert = all, horiz = all, adm = proper,

and consider the corresponding category

Corr(Schaft)proper
all;all ,

see Chapter 7, Sect. 1.

Our goal in this section is to extend the functor

IndCohSchaft
∶ Schaft → DGCatcont

of Chapter 4, Sect. 2.2 to a functor

IndCohCorr(Schaft)proper
all;all

∶ Corr(Schaft)proper
all;all → DGCat2 -Cat

cont .

We shall do so in several stages.

2. IndCoh AS A FUNCTOR FROM THE CATEGORY OF CORRESPONDENCES 223

2.1.2. We start with the functor

IndCohSchaft
∶ Schaft → DGCatcont

and consider the class of morphisms

open ⊂ all .

By Chapter 4, Proposition 3.2.2, the functor IndCohSchaft
, viewed as a functor

Schaft → (DGCat2 -Cat
cont)2 -op

,

satisfies the left Beck-Chevalley condition with respect to the class1 open ⊂ all.

Applying Chapter 7, Theorem 3.2.2(a), we extend IndCohSchaft
to a functor

IndCohCorr(Schaft)open
all;open

∶ Corr(Schaft)open
all;open → (DGCat2 -Cat

cont)2 -op
.

We restrict the latter functor to

Corr(Schaft)all;open ⊂ Corr(Schaft)open
all;open,

and denote the resulting functor by IndCohCorr(Schaft)all;open
, viewed as a functor

Corr(Schaft)all;open → DGCatcont .

We note that due to the uniqueness assertion in Chapter 7, Theorem 4.1.3, the
restriction procedure

IndCohCorr(Schaft)open
all;open

↝ IndCohCorr(Schaft)all;open

loses no information. I.e., the datum of the functor IndCohCorr(Schaft)all;open
is equiv-

alent to that of IndCohCorr(Schaft)open
all;open

.

2.1.3. The main result of this section reads:

Theorem 2.1.4. There exists a unque extension of the functor IndCohCorr(Schaft)all;open

to a functor

IndCohCorr(Schaft)proper
all;all

∶ Corr(Schaft)proper
all;all → DGCat2 -Cat

cont .

We will deduce this theorem from Chapter 7, Theorem 5.2.4. We refer the
reader to Chapter 7, Sects. 5.1 and 5.2 where the notations involved in this theorem
are introduced.

1We note that the left Beck-Chevalley condition is intrinsic to the target (∞,2)-category, in

our case (DGCat2 -Cat
cont)

2 -op
.

224 5. IndCoh AS A FUNCTOR OUT OF CORRESPONDENCES

2.1.5. Proof of Theorem 2.1.4. We start with the following three classes of mor-
phisms

vert = all, horiz = all, co -adm = open, adm = proper .

We note that the class open ∩ proper is that of embeddings of a connected
component. This implies that the condition of Chapter 7, Sect. 5.1.2 holds.

The fact that

IndCohCorr(Schaft)all;open
∣Schaft

= IndCohSchaft
∣Schaft

satisfies the left Beck-Chevalley condition with respect to the class of proper maps
is the content of Chapter 4, Proposition 5.2.1.

Finally, the fact that the condition of Chapter 7, Sect. 5.2.2 holds is the content
of Chapter 4, Proposition 5.3.4.

Hence, in order to deduce Theorem 2.1.4 from Chapter 7, Theorem 5.2.4, it
remains to verify that the factorization condition of Chapter 7, Sect. 5.1.3. I.e. we
need to prove the following:

Proposition 2.1.6. For a morphism f ∶X → Y in Schaft, the category Factor(f)
of factorizations of f as

(2.1) X
j→ Z

g→ Y,

where j is an open embedding, and g is proper, is contractible.

�

2.2. Proof of Proposition 2.1.6. Modulo the classical Nagata theorem, the
proof will be a simple manipulation with the notion of closure, developed in the
previous section.

2.2.1. Step 1. Recall the notation redX for X ∈ Sch, see Chapter 4, Sect. 6.1.4.

First we show that Factor(f) is non-empty. By Nagata’s theorem, we can factor
the morphism

redX → redY

as
redX → Zred → redY,

where redX → Zred is an open embedding and Zred → redY is proper.

We define an object of Factor(f) by setting

Z ∶=X ⊔
redX

Zred,

where we use Volume II, Chapter 1, Corollary 1.3.5(a) for the existence and the
properties of push-out in this situation.

2. IndCoh AS A FUNCTOR FROM THE CATEGORY OF CORRESPONDENCES 225

2.2.2. Step 2. Let Factor(f)dense ⊂ Factor(f) be the full subcategory consisting of
those objects

X
j→ Z

g→ Y,

for which the map

j(X)→ Z

is an isomorphism.

We claim that the tautological embedding

Factor(f)dense ↪ Factor(f)
admits a right adjoint, which sends a given object (2.1) to

X → j(X)→ Y.

Indeed, the fact that the map X → j(X) is an open embedding follows from
Proposition 1.1.3(b). The fact that the above operation indeed produces a right
adoint follows from Proposition 1.3.2.

Hence, it suffices to show that the category Factor(f)dense is contractible. Since
it is non-empty (by Step 1), it suffices to show that it contains products.

2.2.3. Step 3. Given two objects

(X → Z1 → Y) and (X → Z2 → Y)
of Factor(f)dense consider

W ∶= Z1 ×
Y
Z2,

and let h denote the resulting map X →W .

Set Z ∶= h(X). We claim that the map X → Z is an open embedding. Indeed,

consider the open subscheme of
○
W ⊂W equal to X ×

Y
X. By Proposition 1.1.3(b),

○
Z ∶= Z ∩

○
W

is the closure of the map

∆X/Y ∶X →X ×
Y
X.

However, X →∆X/Y (X) is an isomorphism by Corollary 1.2.2.

2.2.4. Step 4. Finally, we claim that the resulting object

X → Z → Y

is the product of X → Z1 → Y and X → Z2 → Y in Factor(f)dense.

Indeed, let

X → Z ′ → Y

be another object of Factor(f)dense, endowed with maps to X → Z1 → Y and to
X → Z2 → Y . Let i denote the resulting morphism

Z ′ → Z1 ×
Y
Z2 =W.

We have a canonical map in Factor(f)

(X → Z ′ → Y)→ (X → i(Z ′)→ Y).

226 5. IndCoh AS A FUNCTOR OUT OF CORRESPONDENCES

However, from Proposition 1.3.2 we obtain that the natural map

Z → i(Z ′)

is an isomorphism. This gives rise to the desired map

(X → Z ′ → Y)→ (X → Z → Y).

�

3. The functor of !-pullback

Having defined IndCoh as a functor out of the category of correspondences, re-
stricting to ‘horizontal morphisms’, we in particular obtain the functor of !-pullback,
which is now defined on all morphisms.

In this section we study the basic properties of this functor.

3.1. Definition of the functor. In this subsection we summarize the basic prop-
erties of the !-pullback that follow formally from Theorem 2.1.4.

3.1.1. We let IndCoh!
Schaft

denote the restriction of the functor IndCohCorr(Schaft)proper
all;all

to

(Schaft)op → Corr(Schaft)proper
all;all .

In particular, for a morphism f ∶ X → Y , we let f ! ∶ IndCoh(Y) → IndCoh(X)
the resulting morphism.

The functor IndCoh!
Schaft

is essentially defined by the following two properties:

● The restriction IndCoh!
Schaft

∣((Schaft)proper)op identifies with IndCoh!
(Schaft)proper

.

● The restriction IndCoh!
Schaft

∣((Schaft)open)op identifies with IndCoh∗(Schaft)open
.

In the above formula,

IndCoh∗(Schaft)open
∶= IndCoh∗(Schaft)event-coconn ∣((Schaft)open)op ,

see Chapter 4, Corollary 3.1.10, where the functor

IndCoh∗(Schaft)event-coconn ∶ ((Schaft)event-coconn)op → DGCatcont

is introduced.

3.1.2. In what follows we shall denote by ωX ∈ IndCoh(X) the canonical object
equal to

p!
X(k),

where pX ∶X → pt.

3. THE FUNCTOR OF !-PULLBACK 227

3.1.3. Base change. Let

X1
gXÐÐÐÐ→ X2

f1
×××Ö

×××Ö
f2

Y1
gYÐÐÐÐ→ Y2

be a Cartesian diagram in Schaft. As the main corollary of Theorem 2.1.4 we obtain:

Corollary 3.1.4. There exists a canonical isomorphism of functors

(3.1) g!
Y ○ (f2)IndCoh

∗ ≃ (f1)IndCoh
∗ ○ g!

X ,

compatible with compositions of vertical and horizontal morphisms in the natural
sense. Furthermore:

(a) Suppose that gY (and hence gX) is proper. Then the morphism ← in (3.1) arises
from the (gIndCoh

∗ , g!)-adjunction from the isomorphism

(f2)IndCoh
∗ ○ (gX)IndCoh

∗ ≃ (gY)IndCoh
∗ ○ (f1)IndCoh

∗ .

(b) Suppose that f2 (and hence f1) is proper. Then the morphism ← in (3.1) arises
from the (f IndCoh

∗ , f !)-adjunction from the isomorphism

f !
1 ○ g!

Y ≃ g!
X ○ f !

2.

(c) Suppose that gY (and hence gX) is an open embedding. Then the morphism →
in (3.1) arises from the (g!, gIndCoh

∗)-adjunction from the isomorphism

(f2)IndCoh
∗ ○ (gX)IndCoh

∗ ≃ (gY)IndCoh
∗ ○ (f1)IndCoh

∗ .

(d) Suppose that f2 (and hence f1) is an open embedding. Then the morphism →
in (3.1) arises from the (f !, f IndCoh

∗)-adjunction from the isomorphism

f !
1 ○ g!

Y ≃ g!
X ○ f !

2.

Remark 3.1.5. The real content of Theorem 2.1.4 is that there exists a uniquely
defined family of functors f !, that satisfies the properties listed in Corollary 3.1.4
and those of Sect. 3.1.1.

3.2. Some properties.
3.2.1. Let IndCoh!

Schaff
aft

denote the restriction

IndCoh!
Schaft

∣(Schaff
aft)op .

We claim:

Lemma 3.2.2. The functor

IndCoh!
Schaft

→ RKE(Schaff
aft)op→(Schaft)op(IndCoh!

Schaff
aft

)→ IndCoh!
Schaft

is an isomorphism.

Proof. Follows from the fact that IndCoh!
Schaft

satisfies Zariski descent (Chap-
ter 4, Proposition 4.2.2), combined with the fact that affine schemes form a basis
for the Zariski topology:

For a given X ∈ Schaft, we need to show that the functor

(3.2) IndCoh(X)→ lim
S→X

IndCoh(S)

228 5. IndCoh AS A FUNCTOR OUT OF CORRESPONDENCES

is an equivalence, where the limit is taken over the index category ((Schaff
aft)/X)op.

Choose a Zariski cover U → X with U ∈ Schaff
aft, and let U● be its Čech nerve.

We extend (3.2) to a string of functors

IndCoh(X)→ lim
S→X

IndCoh(S)→ Tot(IndCoh(U●))→ lim
S→X

(Tot(IndCoh(S ×
X
U●)) .

Now, Zariski descent for IndCoh implies that the two composites

IndCoh(X)→ lim
S→X

IndCoh(S)→ Tot(IndCoh(U●))

and

lim
S→X

IndCoh(S)→ Tot(IndCoh(U●))→ lim
S→X

(Tot(IndCoh(S ×
X
U●))

are both equivalences.
�

3.2.3. Convergence. Let

IndCoh!
<∞Schft

and IndCoh!
<∞Schaff

ft

denote the restrictions of IndCoh!
Schaft

to the corresponding subcategories.

We claim:

Lemma 3.2.4. The functors

IndCoh!
Schaft

→ RKE(<∞Schft)op→(Schaft)op(IndCoh!
<∞Schft

)
and

IndCoh!
Schaff

aft
→ RKE(<∞Schaff

ft)op→(Schaff
aft)op(IndCoh!

<∞Schaff
aft

)
are isomorphisms.

Proof. Both statements are equivalent to the assertion that for X ∈ Schaft,
the functor

IndCoh(X)→ lim
n

IndCoh(≤nX)
is an equivalence.

The latter assertion is the content of Chapter 4, Proposition 6.4.3.
�

3.3. h-descent. We will now use proper descent for IndCoh to show that it in
fact has h-descent.

3.3.1. Let C be a category with Cartesian products, and let α be an isomorphism
class of 1-morphisms, closed under base change.

We define the Grothendieck topology generated by α to be the minimal Grothendieck
topology that contains all morphisms from α and has the following “2-out-of-3”
property:

If X
f→ Y

g→ Z are maps in C such that f and g ○ f are coverings, then so is g.

The following is well-known:

Lemma 3.3.2. Let F be a presheaf on C that satisfies descent with respect to
morphisms from the class α. Then F is a sheaf with respect to the Grothendieck
topology generated by α.

3. THE FUNCTOR OF !-PULLBACK 229

3.3.3. We recall that the h-topology on Schaft is the one generated by the class of
proper surjective maps and Zariski covers.

From Lemma 3.3.2, combined with Chapter 4, Propositions 4.2.2 and 7.2.2 we
obtain:

Corollary 3.3.4. The functor

IndCoh!
Schaft

∶ (Schaft)op → DGCatop

satisfies h-descent.

3.3.5. We have:

Lemma 3.3.6. Any ppf covering is an h-covering.

Proof. Let f ∶X → Y be an ppf covering. Consider the Cartesian square
clY ×

Y
X ÐÐÐÐ→ X

×××Ö
×××Ö

clY ÐÐÐÐ→ Y.

It suffices to show that clY ×
Y
X → clY is an h-covering. By flatness, clY ×

Y
X is

classical. Hence, we are reduced to an assertion at the classical level, in which case
it is well-known.

�

Hence, combining, we obtain:

Corollary 3.3.7. The functor

IndCoh!
Schaft

∶ (Schaft)op → DGCatop

satisfies ppf-descent.

3.4. Extension to prestacks. The functor of !-pullback for arbitrary morphisms
of schemes allows to define the category IndCoh on arbitrary prestacks (locally
almost of finite type).

3.4.1. We consider the category PreStklaft and define the functor

IndCoh!
PreStklaft

∶ (PreStklaft)op → DGCatcont

as the right Kan extension of IndCoh!
Schaff

aft
along the Yoneda functor

(Schaff
aft)op ↪ (PreStklaft)op.

According to Lemmas 3.2.2 and 3.2.4, we can equivalently define IndCoh!
PreStklaft

as the right Kan extension of

IndCoh!
Schaft

, IndCoh!
<∞Schft

or IndCoh!
<∞Schaff

ft

from the corresponding subcategories.

For X ∈ PreStklaft we let IndCoh(X) denote the value of IndCoh!
PreStklaft

on it.
For a morphism f ∶ X1 → X2 we let

f ! ∶ IndCoh(X2)→ IndCoh(X1)
denote the corresponding functor.

230 5. IndCoh AS A FUNCTOR OUT OF CORRESPONDENCES

For X ∈ PreStklaft, we let ωX ∈ IndCoh(X) denote the canonical object equal
to p!

X (k), where pX ∶ X → pt.

3.4.2. We now consider the category

Corr(PreStklaft)sch & proper
sch-qc;all ,

where

sch and sch & proper

signify the classes of schematic and quasi-compact (resp., schematic and proper)
morphisms between prestacks.

We claim:

Theorem 3.4.3. There exists a uniquely defined functor

IndCohCorr(PreStklaft)sch&proper
sch-qc;all

∶ Corr(PreStklaft)sch & proper
sch-qc;all → DGCat2 -Cat

cont ,

equipped with isomorphisms

IndCohCorr(PreStklaft)sch&proper
sch-qc;all

∣(PreStklaft)op ≃ IndCoh!
PreStklaft

and

IndCohCorr(PreStklaft)sch&proper
sch-qc;all

∣(Schaft)proper
corr:all;all

≃ IndCoh(Schaft)proper
corr:all;all

,

where the latter two isomorphisms are compatible in a natural sense.

Proof. Follows from Chapter 8, Theorem 6.1.5.
�

3.4.4. The actual content of Theorem 3.4.3 can be summarized as follows:

First, for any schematic quasi-compact morphism f ∶ X → Y we have a well-
defined functor

f IndCoh
∗ ∶ IndCoh(X)→ IndCoh(Y).

Furthermore, if f ∶ X → Y is schematic and proper, the functor f IndCoh
∗ is the left

adjoint of f !.

When Y is a scheme (and hence X is one as well), the above functor f IndCoh
∗ is

the usual f IndCoh
∗ defined in this case, and similarly for the (f IndCoh

∗ , f !)-adjunction.

Second, let

(3.3)

X1
gXÐÐÐÐ→ X2

f1
×××Ö

×××Ö
f2

Y1
gYÐÐÐÐ→ Y2

be a Cartesian diagram in PreStklaft, where the vertical maps are schematic. Then
we have a canonical isomorphism of functors

(3.4) g!
Y ○ (f2)IndCoh

∗ ≃ (f1)IndCoh
∗ ○ g!

X ,

compatible with compositions. Furthermore, if the vertical (resp., horizontal) mor-
phisms are proper (resp., schematic and proper), the map ← in (3.4) comes by
adjunction in a way similar to Corollary 3.1.4(a) (resp., Corollary 3.1.4(b)).

4. MULTIPLICATIVE STRUCTURE AND DUALITY 231

3.4.5. In Volume II, Chapter 3, Proposition 5.3.6, we will show that for a morphism
f ∶ X → Y, which is an open embedding, the functor f IndCoh

∗ is the right adjoint of
f !.

Furthermore, if in the Cartesian diagram (3.3) the vertical (resp., horizontal)
morphisms are open embeddings, the map → in (3.4) comes by adjunction in a way
similar to Corollary 3.1.4(c) (resp., Corollary 3.1.4(d)).

3.4.6. For future use, we note that the statement and proof of Chapter 4, Propo-
sition 7.2.2 remains valid for groupoid objects in (PreStklaft)sch & proper.

4. Multiplicative structure and duality

In this section we will show that the functor IndCoh, when viewed as a functor
out of the category of correspondences, and equipped with a natural symmetric
monoidal structure, encodes Serre duality.

4.1. IndCoh as a symmetric monoidal functor. In this subsection we show
that the functor IndCoh possesses a natural symmetric monoidal structure.

4.1.1. We recall that by Chapter 4, Proposition 6.3.6, the functor

IndCohSchaft
∶ Schaft → DGCatcont

carries a natural symmetric monoidal structure.

Applying Chapter 9, Proposition 3.1.5, we obtain:

Theorem 4.1.2. The functor

IndCohCorr(Schaft)proper
all;all

∶ Corr(Schaft)proper
all;all → DGCat2 -Cat

cont

carries a canonical symmetric monoidal structure that extends one on IndCohSchaft
.

In particular, we obtain that the functors

IndCohCorr(Schaft)all;all ∶ Corr(Schaft)all;all → DGCatcont

and
IndCoh!

Schaft
∶ (Schaft)op → DGCatcont

both carry natural symmetric monoidal structures.

4.1.3. Note that the symmetric monoidal structure on IndCoh!
Schaft

automatically

upgrades the functor IndCoh!
Schaft

to a functor

(4.1) (Schaft)op → DGCatSymMon
cont ,

due to the fact that the identity functor on (Schaft)op naturally lifts to a functor

(Schaft)op → ComAlg ((Schaft)op)
via the diagonal map.

Explicitly, the monoidal operation on IndCoh(X) is given by

IndCoh(X)⊗ IndCoh(X) ⊠→ IndCoh(X ×X)
∆!
XÐ→ IndCoh(X).

We shall denote the above monoidal operation by
!
⊗:

F1,F2 ∈ IndCoh(X)↦ F1

!
⊗F2 ∈ IndCoh(X).

232 5. IndCoh AS A FUNCTOR OUT OF CORRESPONDENCES

The unit for this symmetric monoidal structure is given by ωX ∈ IndCoh(X).
4.1.4. Applying the functor of right Kan extension along

(Schaft)op → (PreStklaft)op

of the functor (4.1), we obtain that the functor

(4.2) IndCoh!
PreStklaft

∶ (PreStklaft)op → DGCatcont

naturally upgrades to a functor

(4.3) (PreStklaft)op → DGCatSymMon
cont .

The functor (4.3) is tautologically right-lax symmetric monoidal with respect
to the coCartesian symmetric monoidal structures on the source and the target.
Since the forgetful functor

DGCatSymMon
cont → DGCatcont

is symmetric monoidal when viewed with respect to the coCartesian symmetric
monoidal structures on the source and the Lurie tensor product on the target (see

Chapter 1, Sect. 3.3.6), we obtain that the functor IndCoh!
PreStklaft

of (4.2) acquires
a natural right-lax symmetric monoidal structure.

4.1.5. The above right-lax symmetric monoidal structure on IndCoh!
PreStklaft

can
be enhanced:

Indeed, applying Chapter 9, Proposition 3.2.4, we obtain that the functor

IndCohCorr(PreStklaft)sch&proper
sch-qc;all

∶ Corr(PreStklaft)sch & proper
sch-qc;all → DGCat2 -Cat

cont

carries a canonical right-lax symmetric monoidal structure.

4.2. Duality. In this subsection we will formally deduce Serre duality for schemes
from the symmetric monoidal structure on IndCoh.

4.2.1. Let O be a symmetric monoidal category, and let Odualizable ⊂ O be the full
subcategory spanned by dualizable objects. This subcategory carries a canonical
symmetric monoidal anti-involution

(Odualizable)op dualizationÐ→ Odualizable,

given by the passage to the dual object, see Chapter 1, Sect. 4.1.4:

o↦ o∨.

Note that that if
F ∶ O1 →O2

is a symmetric monoidal functor between symmetric monoidal categories, then it
maps

Odualizable
1 →Odualizable

2 ,

and the following diagram commutes

(Odualizable
1)op F op

ÐÐÐÐ→ (Odualizable
2)op

dualization
×××Ö

×××Ö
dualization

Odualizable
1

FÐÐÐÐ→ Odualizable
2 .

4. MULTIPLICATIVE STRUCTURE AND DUALITY 233

4.2.2. Recall now that by Chapter 9, Sect. 2.2 the category Corr(Schaft)all;all

carries a canonical anti-involution $, which is the identity on objects, and at the
level of 1-morphisms is maps a 1-morphism

X12
fÐÐÐÐ→ X1

g
×××Ö
X2

to

X12
gÐÐÐÐ→ X2

f
×××Ö
X1.

Moreover, by Chapter 9, Proposition 2.3.4, we have:

Theorem 4.2.3. The inclusion

(Corr(Schaft)all;all)dualizable ⊂ Corr(Schaft)all;all

is an isomorphism. The anti-involution $ identifies canonically with the dualization
functor

((Corr(Schaft)all;all)dualizable)
op
→ (Corr(Schaft)all;all)dualizable

.

4.2.4. Combining Theorem 4.2.3 with Theorem 4.1.2 we obtain:

Theorem 4.2.5. We have the following commutative diagram of functors

(Corr(Schaft)all;all)op
(IndCohCorr(Schaft)all;all)

op

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ (DGCatdualizable
cont)op

$
×××Ö

×××Ö
dualization

Corr(Schaft)all;all

IndCohCorr(Schaft)all;allÐÐÐÐÐÐÐÐÐÐÐÐÐ→ DGCatdualizable
cont .

4.2.6. Let us explain the concrete meaning of this theorem. It says that for X ∈
Schaft there is a canonical equivalence

DSerre
X ∶ IndCoh(X)∨ ≃ IndCoh(X),

and for a map f ∶X → Y an isomorphism

(f !)∨ ≃ f IndCoh
∗ ,

where (f !)∨ is viewed as a functor

IndCoh(X)
(DSerre

X)−1
Ð→ IndCoh(X)∨ (f !)∨Ð→ IndCoh(Y)∨

DSerre
YÐ→ IndCoh(Y).

234 5. IndCoh AS A FUNCTOR OUT OF CORRESPONDENCES

4.2.7. Let us write down explicitly the unit and co-unit for the identification
DSerre
X :

The co-unit, denoted εX is given by

IndCoh(X)⊗IndCoh(X) ⊠≃ IndCoh(X×X)
∆!
XÐ→ IndCoh(X)

(pX)IndCoh
∗Ð→ IndCoh(pt) = Vect,

where pX ∶X → pt.

The unit, denoted µX is given by

Vect = IndCoh(pt)
p!XÐ→ IndCoh(X)

(∆X)IndCoh
∗Ð→ IndCoh(X×X) ⊠≃ IndCoh(X)⊗IndCoh(X).

Remark 4.2.8. One does not need to rely on Theorems 4.2.3 and 4.1.2 in order
to show that the maps µX and εX , defined above, give rise to an identification

IndCoh(X)∨ ≃ IndCoh(X).
Indeed, the fact that the composition

IndCoh(X)
IdIndCoh(X) ⊗µXÐ→ IndCoh(X)⊗IndCoh(X)⊗IndCoh(X)

εX⊗IdIndCoh(X)Ð→ IndCoh(X)
is isomorphic to the identity functor follows by base change from the diagram

X
∆XÐÐÐÐ→ X ×X idX ×pXÐÐÐÐ→ X

∆X

×××Ö
×××Ö

idX ×∆X

X ×X ∆X×idXÐÐÐÐÐ→ X ×X ×X

pX×idX
×××Ö
X,

and similarly for the other composition. A similar diagram chase implies the iso-
morphism

(f !)∨ ≃ f IndCoh
∗ .

Remark 4.2.9. Let us also note that one does not need the (difficult) Theo-
rem 2.1.4 either in order to construct the pairing εX :

Indeed, both functors involved in εX , namely, ∆!
X and (pX)IndCoh

∗ are ‘elemen-
tary’.

If one believes that the functor εX defined in the above way is the co-unit of a
duality (which is a property, and not an extra structure), then one can recover the
object ωX ∈ IndCoh(X). Namely,

ωX ∶= (pX × idX)IndCoh
∗ (µX(k)).

4.2.10. Relation to the usual Serre duality. By passage to compact objects, the
equivalence

DSerre
X ∶ IndCoh(X)∨ ≃ IndCoh(X)

gives rise to an equivalence

DSerre
X ∶ (Coh(X))op ≃ Coh(X).

It is shown in [Ga1, Proposition 8.3.5] that DSerre
X is the usual Serre duality

anti-equivalence of Coh(X), given by internal Hom into ωX .

4. MULTIPLICATIVE STRUCTURE AND DUALITY 235

4.3. An alternative construction of the !-pullback. In this subsection we
show how one can avoid using the formalism of correspondences if one only wants
to construct the functor

IndCoh!
Schaft

∶ (Schaft)op → DGCatcont .

4.3.1. Note that even without having the formalism of the !-pullback, we know
that for X ∈ Schaft, the functor

εX ∶ IndCoh(X)⊗ IndCoh(X)→ Vect,

defined as

IndCoh(X)⊗ IndCoh(X) ∼→ IndCoh(X ⊠X)
∆!
XÐ→ IndCoh(X)

(pX)IndCoh
∗Ð→ Vect

gives2 rise to the co-unit of an adjunction.

Indeed, the corresponding unit of the adjunction µX can be defined as follows.

Choose an open embedding X
j↪X, where X is proper and set

ω̃X ∶= jIndCoh,∗ ○ (pX)!(k).

Then one readily checks that the object

(∆X)IndCoh
∗ (ω̃X) ≃ IndCoh(X ⊠X) ≃ IndCoh(X)⊗ IndCoh(X),

viewed as a functor Vect → IndCoh(X) ⊗ IndCoh(X) provides the unit of the
adjunction.

4.3.2. Thus, if we start with the functor
(4.4)

IndCohSchaft
∶ Schaft → DGCatcont, X ↦ IndCoh(X), (X f→ Y)↦ f IndCoh

∗ ,

we obtain that it takes values in the full subcategory

(DGCatcont)dualizable ⊂ DGCatcont .

Applying the dualization functor

((DGCatcont)dualizable)op → (DGCatcont)dualizable,

from (4.4), we obtain the desired functor

(4.5) IndCoh!
Schaft

∶ (Schaft)op → DGCatcont, X ↦ IndCoh(X), (X f→ Y)↦ f !.

In other words, for a morphism f ∶X → Y , the functor

f ! ∶ IndCoh(Y)→ IndCoh(X)

is defined as the dual of f IndCoh
∗ under the self-dualities given by εX and εY , re-

spectively.

2Here we use the assumption that our schemes are assumed separated, so the morphism ∆X

is a closed embedding, and thus ∆!
X is a priori defined as the right adjoint of (∆X)IndCoh

∗ .

236 5. IndCoh AS A FUNCTOR OUT OF CORRESPONDENCES

4.3.3. Let ωX ∈ IndCoh(X) denote the object (pX)!(k). Unwinding the definitions
we obtain that ωX identifies with

(pX × id)IndCoh
∗ ○ µX(k).

One can also give an explicit construction of the functor

f ! ∶ IndCoh(Y)→ IndCoh(X)

for a morphism f ∶X → Y . Namely,

f !(F) ≃ (Graphf)!(ωX ⊠F),

where Graphf ∶ X → X × Y is a closed embedding because Y is separated, and so

(Graphf)! is defined as the right adjoint of (Graphf)IndCoh
∗ .

4.3.4. Since (4.4) is symmetric monoidal, the functor (4.5) also acquires a natural
symmetric monoidal structure.

As in Sect. 4.1.3, the symmetric monoidal structure on IndCoh!
Schaft

makes

IndCoh(X) into a symmetric monoidal category under the operation of
!
⊗-tensor

product. By construction, ωX ∈ IndCoh(X) is the unit of this symmetric monoidal
structure.

Note, however, that the construction of the non-unital symmetric monoidal
structure on IndCoh(X) only uses the !-pullback functor for diagonal morphisms,
which are closed embeddings.

Thus, the object ωX ∈ IndCoh(X) can be uniquely characterized as being the
unit in the above non-unital symmetric monoidal category3.

Remark 4.3.5. The idea that the isomorphism

ωX ≃ ωX
!
⊗ ωX

characterizes ωX uniquely is borrowed from [YZ, Theorem 5.11 and Proposition
6.1].

4.3.6. Finally, let us see that for f ∶ X → Y , the functor f ! ∶ IndCoh(Y) →
IndCoh(Y) constructed above identifies with the functor that we had initially de-
noted by f !, i.e., the right adjoint of f IndCoh

∗ . To distinguish the two, let us keep
the notation f ! for the latter functor.

We need to construct an identification between (f !)∨ and f IndCoh
∗ . Unwinding

the definitions, the functor

(f !)∨ ∶ IndCoh(X)→ IndCoh(Y)

is given by

F ↦ (idY ×pX)IndCoh
∗ ○ (idY ×∆X)! ○ (idY ×f × idX)(µY (k) ⊠F).

3The essential uniqueness of a unit is established in [Lu2, Corollary 5.4.4.7].

5. CONVOLUTION MONOIDAL CATEGORIES AND ALGEBRAS 237

I.e., this is pull-push of µY (k) ⊠ F ∈ IndCoh(Y × Y ×X) along the clockwise
circuit of the following diagram

Y × Y ×X
idY ×Graphf←ÐÐÐÐÐÐÐ Y ×X

idY ×pY ×f
×××Ö

×××Ö
idY ×pX

Y × Y ∆Y←ÐÐÐÐ Y,

in which the horizontal arrows are closed embeddings.

Applying base change, we replace the above functor by push-pull along the
counterclockwise circuit, and we obtain

(∆Y)! ○ (idY ×pY × f)IndCoh
∗ (µY (k) ⊠F) ≃

≃ (∆Y)! ((idY ×pY)IndCoh
∗ (µY (k)) ⊠ f IndCoh

∗ (F)) ≃ (∆Y)!(ωY ⊠f !(F)) ≃ f IndCoh
∗ (F),

as required.

5. Convolution monoidal categories and algebras

In this section4 we will apply the the formalism of IndCoh as a functor out
of the category of correspondences to carry out the following construction and its
generalizations:

Let R ⇉ X be a Segal object in the category of schemes (see below for what
this means). Then the category IndCoh(R) has a natural monoidal structure, and
ωR ∈ IndCoh(R) defines a monad acting on IndCoh(X).

5.1. Convolution algebras. In this subsection we will show that monoid-objects
give rise to convolution algebras.

5.1.1. Let R● be a Segal object in PreStklaft acting on a given X ∈ PreStklaft.

I.e., R● is a simplicial object in PreStklaft, equipped with an identification
R0 = X , and such that for any n ≥ 2, the map

Rn →R1 ×
X
... ×
X
R1,

given by the product of the maps

[1]→ [n], 0↦ i,1↦ i + 1, i = 0, ..., n − 1,

is an isomorphism.

Remark 5.1.2. An alternative terminology for such R● is category-object. In-
deed, the above condition is equivalent to requiring that for any Y ∈ PreStklaft, the
simplicial space

Maps(Y,R●)
be a Segal space. Note we do not require it to be a complete Segal space.

4The contents of this section were suggested to us by S. Raskin.

238 5. IndCoh AS A FUNCTOR OUT OF CORRESPONDENCES

5.1.3. In what follows we will denote R =R1. We will informally think of a Segal
object R● as the prestack R, equipped with the source and target maps

ps, pt ∶R⇉ X ,

and the multiplication map

mult ∶R ×
t,X ,s

R→R.

For the duration of this subsection we will assume:

● The target map pt ∶R⇉ X is schematic;
● The multiplication map mult ∶R ×

t,X ,s
R→R is proper.

5.1.4. Applying Chapter 9, Proposition 4.1.4 and Variant 4.1.6, we obtain that
R● defines a monad MR, acting on X , i.e., an associative algebra object in the
monoidal (∞,1)-category

MapsCorr(PreStklaft)sch;all(X ,X).

Concretely, the 1-morphism X → X , corresponding to MR is given by the
diagram

R psÐÐÐÐ→ X

pt
×××Ö
X ,

and the multiplication on MR is given by the diagram

(5.1)

X .

XR

R ×
X
R

��

//

��

))��

5.1.5. Applying the functor

IndCohCorr(PreStklaft)sch&proper
sch-qc;all

∶ Corr(PreStklaft)sch & proper
sch-qc;all → DGCat2 -Cat

cont ,

we obtain that to MR there corresponds a monad IndCoh(MR) acting on IndCoh(X).

It follows from the definitions that as an endo-functor of IndCoh(X), the monad
IndCoh(MR) is given by

(pt)IndCoh
∗ ○ (ps)!.

I.e., the above construction formalizes the idea of a pull-push monad, corre-
sponding to a Segal object R●.

5. CONVOLUTION MONOIDAL CATEGORIES AND ALGEBRAS 239

5.1.6. Assume now that R● is a groupoid object of PreStklaft, equal to the Čech
nerve of a proper schematic map g ∶ X → Y.

In this case, it follows from Chapter 9, Sect. 4.3.4 and Variant 4.3.5 that the
monad MR is canonically isomorphic to one corresponding to the composite of g

(viewed as a 1-morphism in the (∞,2)-category Corr(PreStklaft)sch & proper
sch-qc;all) with

its right adjoint.

5.1.7. Assume now that R● is a groupoid object of PreStklaft, with the maps
ps, pt ∶R→ X being proper.

In then according to Sect. 3.4.6, the endo-functor (pt)IndCoh
∗ ○ (ps)! acquires an

(a priori different) structure of monad.

We claim, however that the above two ways of introducing a structure of monad
on the endo-functor (pt)IndCoh

∗ ○(ps)! coincide. Indeed, this follows from Sect. 5.1.6,
applied to

Y ∶= ∣R●∣.

5.2. Convolution monoidal categories. In this subsection we will show that
IndCoh of a Segal object in PreStklaft carries a natural monoidal structure.

5.2.1. Let R● be a Segal object in PreStklaft acting on X . We impose the following
conditions:

The maps pt ∶R→ X and mult ∶R ×
t,X ,s

R→R are both schematic.

5.2.2. By Chapter 9, Theorem 4.4.2 and Variant 4.4.7, the object R acquires a
natural structure of algebra in the (symmetric) monoidal category

Corr(PreStklaft)sch;all.

Moreover, according to Chapter 9, Sect. 4.5.2 and Variant 4.5.5, the object

X ∈ Corr(PreStklaft)sch;all

is naturally a module for R.

Applying the right-lax (symmetric) monoidal functor

IndCohCorr(PreStklaft)sch;all ∶ Corr(PreStklaft)sch;all → DGCatcont,

we obtain that the DG category IndCoh(R) acquires a structure of monoidal DG
category (i.e., a structure of associative algebra in DGCatcont), and IndCoh(X)
acquires a structure of IndCoh(R)-module.

Unwinding the definitions, we obtain that the binary operation on IndCoh(R)
is given by the convolution product, i.e., pull-push along the diagram

R ×
X
R ÐÐÐÐ→ R ×R

×××Ö
R,

240 5. IndCoh AS A FUNCTOR OUT OF CORRESPONDENCES

and the action of IndCoh(R) on IndCoh(X) is given by pull-push along the diagram

R ps×idÐÐÐÐ→ X ×R

pt
×××Ö
X .

5.2.3. Consider a particular case when X =X ∈ Schaft, and Xn =X×(n+1). So

R =X ×X.

We obtain that IndCoh(X × X) acquires a structure of monoidal category,
equipped with an action on IndCoh(X).

I.e., we obtain a monoidal functor

(5.2) IndCoh(X ×X)→ Functcont(IndCoh(X), IndCoh(X)).
By construction, as a functor of plain categories, (5.2) identifies with

IndCoh(X×X) ≃ IndCoh(X)⊗IndCoh(X)
(DSerre

X)−1⊗Id
Ð→ IndCoh(X)∨⊗IndCoh(X) ≃

≃ Functcont(IndCoh(X), IndCoh(X)).
In particular, the functor (5.2) is an equivalence of monoidal categories.

5.3. The case of QCoh. In this subsection we will explain the variant of the
constructions in this subsection for QCoh instead of IndCoh.

5.3.1. First, starting from the functor

Sch
QCohSchÐ→ DGCatcont → DGCat2 -Cat

cont ,

and using the usual base change property for QCoh, we apply Chapter 7, Theorem
3.2.2(a) and we obtain a functor

QCohCorr(Sch)all
all;all

∶ Corr(Sch)all
all;all → (DGCat2 -Cat

cont)2 -op.

Moreover, by Chapter 9, Proposition 3.1.5, the above functor carries a natural
(symmetric) monoidal structure.

5.3.2. Further, applying Chapter 8, Theorem 6.1.5, from the functor QCohCorr(Sch)all
all;all

constructed above, we obtain the functor

QCohCorr(PreStk)sch
sch;all

∶ Corr(PreStk)sch
sch;all → (DGCat2 -Cat

cont)2 -op.

By Chapter 9, Proposition 3.2.4, the latter functor carries a right-lax (symmet-
ric) monoidal structure.

5.3.3. Hence, the above discussion of convolution categories and algebras applies
almost verbatim, when we replace IndCoh by QCoh, with the only difference that
in whatever applies to 2-categorical phenomena, the direction of 2-morphisms gets
reversed.

In particular, the geometric constructions that gave rise to algebras in the
monoidal categories IndCoh(R) will produce co-algebras in the monoidal categories
QCoh(R).

CHAPTER 6

Interaction of QCoh and IndCoh

Introduction

One of the first things one notices about the category IndCoh(X) (for a scheme
X) is that it is equipped with an action of the (symmetric) monoidal category
QCoh(X), see Chapter 4, Sect. 1.2.9.

In this chapter we will study how (or, rather, in what sense) this action extends,
when we want to consider IndCoh as a functor out of the category of correspon-
dences.

We should say that the contents of this chapter are rather technical (and are
largely included for completeness), and thus can be skipped on the first pass.

0.1. Why does this chapter exist?
0.1.1. The first question to ask is, indeed, why bother? The true answer is that if
we really care about IndCoh as a functor out of category of correspondences and
about the action of QCoh(X) on IndCoh(X), then we must understand how they
interact.

However, in addition to that, the material of this chapter will have some prac-
tical consequences.

0.1.2. We recall that, say, for an individual scheme X, both categories QCoh(X)
and IndCoh(X) have a canonical symmetric monoidal structure. We will show that
the action of QCoh(X) on IndCoh(X) comes from a symmetric monoidal functor

ΥX ∶ QCoh(X)→ IndCoh(X),
which as a plain functor looks like

F ↦ F ⊗ ωX .
The functoriality properties established in this chapter will allow us to extend the
assignment X ↝ ΥX from schemes to prestacks.

0.1.3. We will see that the functor dual to ΥX with respect to the Serre auto-
duality of IndCoh(X) and the naive auto-duality of QCoh(X), is the natural trans-
formation

ΨX ∶ IndCoh(X)→ QCoh(X),
again in a way functorial with respect to X.

0.2. The action of QCoh(X) on IndCoh(X) and correspondences. Let us
explain how we encode the action of QCoh(X) on IndCoh(X) in the framework of
the (∞,2)-categories of correspondences.

241

242 6. INTERACTION OF QCoh AND IndCoh

0.2.1. Recall that in Chapter 5 we extended the assignment X ↝ IndCoh(X) into
a functor

IndCohCorr(Schaft)proper
all;all

∶ Corr(Schaft)proper
all;all → DGCat2 -Cat

cont .

We now consider the assignment

X ↝ (QCoh(X), IndCoh(X)),
where we regard QCoh(X) as a monoidal DG category (i.e., an algebra object in
DGCatcont), and IndCoh(X) as a QCoh(X)-module category, i.e., an object of
QCoh(X)-mod.

We want to extend this assignment to a functor out of Corr(Schaft)proper
all;all . The

challenge is to identify the target (∞,2)-category, so that it will account for the
pieces of structure that we need, also one for which such a construction will be
possible.

0.2.2. The sought-for (∞,2)-category, denoted DGCatMon+Mod,ext
cont , is introduced

in Sect. 1. As expected, its objects are pairs (O,C), where O is a monoidal DG
category and C is a module O-category.

But 1-morphisms are less obvious. We refer the reader to Sect. 1.1 for the
definition. It is designed so that there is a natural forgetful functor

(0.1) DGCatMon+Mod,ext
cont → DGCat2 -Cat

cont

that at the level of objects sends (O,C) to C.

Here is how the desired functor

(0.2) (QCoh, IndCoh)Corr(Schaft)proper
all;all

∶ Corr(Schaft)proper
all;all → DGCatMon+Mod,ext

cont

is constructed1.

0.2.3. Consider the (∞,1)-category DGCatMonop +Mod
cont , whose objects are pairs

(O,C), but where the space of morphisms from (O1,C1) to (O2,C2) is that of
pairs

(FO ∶ O2 →O1, FC ∶ C1 →C2),
where FO is a monoidal functor (note the direction of the arrow), and FC is a map
of O2-module categories.

As our initial input we start with the functor

(0.3) (QCoh∗, IndCoh∗)Schaft
∶ Schaft → DGCatMonop +Mod

cont

that sends a scheme X to (QCoh(X), IndCoh(X)) and a morphism X
f→ Y to the

pair (f∗, f IndCoh
∗).

0.2.4. Next, from the definition of DGCatMon+Mod,ext
cont it follows that there exists

a canonically defined functor

DGCatMonop +Mod
cont → DGCatMon+Mod,ext

cont .

Precomposing with (0.3) we obtain a functor

(0.4) (QCoh, IndCoh)Schaft
∶ Schaft → DGCatMon+Mod,ext

cont .

Now, to get from (0.4) to (0.2) we repeat the procedure of Chapter 5, Sect. 2.1.

1This essentially mimics the construction of IndCohCorr(Schaft)
proper
all;all

in Chapter 5, Sect. 2.1.

INTRODUCTION 243

0.3. The natural transformation Υ. We shall now explain how the existence
of the functor (QCoh, IndCoh)Corr(Schaft)proper

all;all
in (0.2) leads to the natural trans-

formation from Sect. 0.1.1.

0.3.1. First, we note that (QCoh, IndCoh)Corr(Schaft)proper
all;all

comes equipped with

a canonically defined symmetric monoidal structure, where Corr(Schaft)proper
all;all ac-

quires a symmetric monoidal structure from the operation of Cartesian product

on Schaft, and the symmetric monoidal structure on DGCatMon+Mod,ext
cont is given by

component-wise tensor product.

0.3.2. Let DGCatMon+Mod
cont denote the (∞,1)-category, whose objects are pairs

(O,C), but where the space of morphisms from (O1,C1) to (O2,C2) is that of
pairs

(FO ∶ O1 →O2, FC ∶ C1 →C2),
where FO is a monoidal functor and FC is a map of O1-module categories. (Note

that the difference between DGCatMon+Mod
cont and DGCatMonop +Mod

cont is in the direc-
tion of the arrow FO.)

From the definition of DGCatMon+Mod,ext
cont it follows that there exists a canoni-

cally defined (symmetric monoidal) functor

DGCatMon+Mod
cont → DGCatMon+Mod,ext

cont .

0.3.3. Restricting (QCoh, IndCoh)Corr(Schaft)proper
all;all

to (Schaft)op ⊂ Corr(Schaft)proper
all;all

we obtain a functor

(Schaft)op → DGCatMon+Mod,ext
cont ,

and one shows that it factors through a canonically defined (symmetric monoidal)
functor

(0.5) (QCoh∗, IndCoh!)Schaft
∶ (Schaft)op → DGCatMon+Mod

cont .

Since every object in Schaft has a canonical structure of co-commutative co-
algebra (via the diagonal map), the functor (0.5) gives rise to a functor

(0.6) (Schaft)op → ComAlg(DGCatMon+Mod
cont).

0.3.4. We note that the category ComAlg(DGCatMon+Mod
cont) identifies with that of

triples

(O,O′, α ∶ O→O′),
where O and O′ are symmetric monoidal categories, and α is a symmetric monoidal
functor.

Hence, the data of the functor (0.6) is equivalent to that of a natural transfor-
mation

(0.7) Υ ∶ QCoh∗Schaft
→ IndCoh!

Schaft
,

where QCoh∗Schaft
and IndCoh!

Schaft
are viewed as functors

(Schaft)op → ComAlg(DGCatcont) = DGCatSymMon
cont .

244 6. INTERACTION OF QCoh AND IndCoh

0.3.5. For an individual scheme X we thus obtain a functor

ΥX ∶ QCoh(X)→ IndCoh(X),
which is obtained by the action of QCoh(X) on the monoidal unit in IndCoh(X),
i.e., ωX ∈ IndCoh(X).

For a morphism X
f→ Y , we have the following commutative diagram

QCoh(X) ΥXÐÐÐÐ→ IndCoh(X)

f∗
Õ×××

Õ×××
f !

QCoh(Y) ΥYÐÐÐÐ→ IndCoh(Y).
The above observation allows to extend the assignment X ↝ ΥX from schemes

to prestacks. I.e., for every Y ∈ PreStk we also have a canonically defined (symmet-
ric monoidal) functor

ΥY ∶ QCoh(Y)→ IndCoh(Y).

0.4. Relationship with Ψ. Let us finally explain the relationship between the
functors

ΥX ∶ QCoh(X)→ IndCoh(X) and ΨX ∶ IndCoh(X)→ QCoh(X).

Remark 0.4.1. Recall that the functor ΨX played a fundamental role in the
initial steps of setting up the theory of ind-coherent sheaves. Specifically, it was
used in the definition of the direct image functor

X
f→ Y ↝ IndCoh(X)

f IndCoh
∗Ð→ IndCoh(Y).

However, Ψ is really a feature of schemes. In particular, it does not have an
intrinsic meaning for prestacks.

0.4.2. Recall the categories DGCatMon+Mod
cont and DGCatMonop +Mod

cont , and note that
they contain full subcategories

(DGCatMon+Mod
cont)dualizable ⊂ DGCatMon+Mod

cont

and
(DGCatMonop +Mod

cont)dualizable ⊂ DGCatMonop +Mod
cont ,

respectively that consist of pairs (O,C) where C is dualizable as a plain DG cate-
gory.

The operation of dualization (O,C)↦ (O,C∨) defines an equivalence

(0.8) ((DGCatMonop +Mod
cont)dualizable)op → (DGCatMon+Mod

cont)dualizable.

0.4.3. Recall (see Chapter 5, Sect. 4.2) that Serre duality for IndCoh was a formal
consequence of the existence of the functor IndCohCorr(Schaft)proper

all;all
, equipped with

its symmetric monoidal structure.

In the same way, we use the functor (QCoh, IndCoh)Corr(Schaft)proper
all;all

, equipped

with its symmetric monoidal structure, to show that the composition of the functor
(QCoh∗, IndCoh∗)Schaft

of (0.3) with (0.8) identifies with the functor (QCoh∗, IndCoh!)Schaft

of (0.5).

INTRODUCTION 245

0.4.4. Next, by construction, the functor (QCoh∗, IndCoh∗)Schaft
comes equipped

with the natural transformation

(Id,Ψ)Schaft
∶ (QCoh∗, IndCoh∗)Schaft

→ (QCoh∗,QCoh∗)Schaft

as functors Schaft → DGCatMon+Mod
cont . Applying (0.8), we obtain a natural transfor-

mation

(0.9) (Id,Ψ∨)Schaft
∶ (QCoh∗,QCoh∗)Schaft

→ (QCoh∗, IndCoh!)Schaft

as functors (Schaft)op → DGCatMonop +Mod
cont .

0.4.5. What we show is that that the above natural transformation (0.9) is canon-
ically isomorphic to the natural transformation

(0.10) (Id,Υ)Schaft
∶ (QCoh∗,QCoh∗)Schaft

→ (QCoh∗, IndCoh!)Schaft
,

the latter being part of the data of the functor (0.7).

0.4.6. For an individual scheme X this means that the functors

ΨX ∶ IndCoh(X)→ QCoh(X) and ΥX ∶ QCoh(X)→ IndCoh(X)

are canonically duals of each other.

Here IndCoh(X) is identified with its own dual via the Serre duality functor
DSerre
X (see Chapter 5, Sect. 4.2.6). The category QCoh(X) is identified with its

own dual via the “naive” duality functor

Dnaive
X ∶ QCoh(X)∨ ≃ QCoh(X),

whose evaluation map QCoh(X)⊗QCoh(X)→ Vect is

QCoh(X)⊗QCoh(X) ⊗→ QCoh(X) Γ(X,−)Ð→ Vect .

0.5. What is done in this chapter?

0.5.1. In Sect. 1 we define the (∞,2)-category DGCatMon+Mod,ext
cont that will be the

recipient of the functor

(0.11) (QCoh, IndCoh)Corr(Schaft)proper
all;all

∶ Corr(Schaft)proper
all;all → DGCatMon+Mod,ext

cont .

In doing so we allow ourselves a certain sloppiness: we say what the space

of objects of DGCatMon+Mod,ext
cont is, and what is the (∞,1)-category of morphisms

between any two objects.

We leave it to the reader to complete this to an actual definition of a (∞,2)-
category (as those are defined in Chapter 10, Sect. 2.1).

0.5.2. In Sect. 2 we carry out the construction of the functor (0.11) along the lines
indicated in Sect. 0.2.

0.5.3. In Sect. 3 we discuss the symmetric monoidal structure on the functor (0.11),
and how it gives rise to the natural transformation Υ, as described in Sect. 0.3.

246 6. INTERACTION OF QCoh AND IndCoh

0.5.4. In Sect. 4 we discuss the self-duality feature of the assignment

X ↝ QCoh(X) ∈ DGCatMon
cont , IndCoh(X) ∈ QCoh(X)-mod,

and the relationship between the natural transformations

ΥX ∶ QCoh(X)→ IndCoh(X)
and

ΨX ∶ IndCoh(X)→ QCoh(X).

1. The (∞,2)-category of pairs

In this section we introduce a general framework that encodes the (∞,2)-
category of pairs (O,C), where O us a monoidal DG category, and C is an O-
module category.

This (∞,2)-category will be the recipient of the functor from the (∞,2)-
category of correspondences that assigns to a schemeX the pair (QCoh(X), IndCoh(X).

The reason that we need this rather involved (∞,2)-category instead of the
more easily defined underlying 1-category is that (∞,2)-category are necessary for
the construction of the assignment

X ↝ (QCoh(X), IndCoh(X)
as a functor, see Chapter 5, Sect. 2.1.

1.1. The category DGCatMon+Mod,ext
cont . In this subsection we introduce our two

category of pairs.

1.1.1. We introduce the (∞,2)-category DGCatMon+Mod,ext
cont as follows. Its objects

are pairs (O,C), where O ∈ DGCatMon
cont , and C ∈ O-mod.

Given two objects (O1,C1) and (O2,C2) of DGCatMon+Mod,ext
cont , the objects of

the (∞,1)-category of 1-morphisms (O1,C1)→ (O2,C2) are the data of:

● An (O2,O1)-bimodule category M;

● A map F ∶ M ⊗
O1

C1 →C2 in O2-mod;

● A distinguished object 1M ∈ M.

1.1.2. Given two objects (Ms, F s,1Ms) and (Mt, F t,1Mt) as above, the space of
2-morphisms

(Ms, F s,1Ms)→ (Mt, F t,1Mt)
is that of the following data:

● A map of bimodules Φ ∶ Mt →Ms (note the direction of the arrow!);

● A natural transformation of maps of O2-bimodules

T ∶ F s ○ (Φ⊗ IdC1)⇒ F t;

● A map in Ms as a plain DG category

ψ ∶ 1Ms → Φ(1Mt).

1. THE (∞,2)-CATEGORY OF PAIRS 247

1.1.3. Compositions of 1-morphisms are defined naturally: for

(M1,2, F1,2,1M1,2) ∶ (O1,C1)→ (O2,C2)

and

(M2,3, F2,3,1M2,3) ∶ (O2,C2)→ (O3,C3),

their composition is defined by means of

M1,3 ∶= M2,3 ⊗
O2

M1,2,

the data of F1,3 equal to the composition

M2,3 ⊗
O2

M1,2 ⊗
O1

C1

F1,2Ð→M2,3 ⊗
O2

C2

F2,3Ð→C3,

and the data of 1M1,3 being

1M2,3 ⊗ 1M1,2 ∈ M2,3 ⊗
O2

M1,2.

Compositions of 2-morphisms are also defined naturally.

The higher-categorical structure on DGCatMon+Mod,ext
cont is defined in a standard

fashion.

1.2. Some forgetful functors. In this subsection we discuss two (obvious) for-

getful functors from DGCatMon+Mod,ext
cont to some more familiar 2-categories.

1.2.1. First, we observe that DGCatMon+Mod,ext
cont comes equipped with a forgetful

functor to DGCat2 -Cat
cont .

At the level of objects we send (O,C) to C. At the level of 1-morphisms, given

(M, F,1M) ∶ (O1,C1)→ (O2,C2)

we define the corresponding functor between plain DG categories F ∶ C1 → C2 as
the composition

C1

1M⊗IdC1Ð→ M ⊗
O1

C1
FÐ→C2.

Given a 2-morphism

(Φ, T,ψ) ∶ (Ms, F s,1Ms)→ (Mt, F t,1Mt),

the corresponding natural transformation F
s → F

t
is the composition

F
s ∶= F s ○(1Ms ⊗ IdC1)

ψ⇒ F s ○(Φ⊗ IdC1)○(1Mt ⊗ IdC1)
T⇒ F t ○(1Mt ⊗ IdC1) = F

t
.

248 6. INTERACTION OF QCoh AND IndCoh

1.2.2. Let DGCatMon,ext denote the (∞,2)-category, where:

● The objects are O ∈ DGCatMon
cont ;

● Given O1,O2 ∈ DGCatMon
cont , the objects of (∞,1)-category of 1-morphisms

from O1 to O2 are (O2,O1)-bimodule categories;

● For a pair of 1-morphims from O1 to O2, given by bimodule categories
Ms and Mt respectively, the space of 2-morphisms from Ms to Mt is that
of maps of bimodules Mt →Ms (note the direction of the arrow)2.

We have a naturally defined forgetful functor

DGCatMon+Mod,ext
cont → DGCatMon,ext

that sends (O,C) to O.

1.3. Two 2-full subcategories. In this subsection we single out two 1-subcategories

of the (∞,2)-category DGCatMon+Mod,ext
cont that we will ultimately be interested in.

1.3.1. Let DGCatMon+Mod
cont be the (∞,1)-category, where

● The objects are the same as those of DGCatMon+Mod,ext
cont ;

● 1-morphisms between (O1,C1)→ (O2,C2) are pairs (RO,RC), where

– RO ∶ O1 →O2 is a 1-morphism in DGCatMon
cont ;

– RC ∶ C1 →C2 is a map of O1-module categories.

1.3.2. We claim that there is a canonically defined 1-fully faithful functor 3

DGCatMon+Mod
cont → (DGCatMon+Mod,ext

cont)1 -Cat.

Indeed, the functor in question is the identity on objects. At the level of 1-
morphisms its essential image corresponds to those pairs (M,1M), for which the
functor

O2 →M,

defined by 1M, is an equivalence.

1.3.3. Let DGCatMonop +Mod
cont be the (∞,1)-category, where

● The objects are the same as those of DGCatMon+Mod,ext
cont ;

● 1-morphisms between (O1,C1)→ (O2,C2) are pairs (RO,RC), where
– RO ∶ O2 → O1 (note the direction of the arrow!) is a 1-morphism in

DGCatMon
cont ;

– RC ∶ C1 →C2 is a map of O2-module categories.

1.3.4. We claim that there is a canonically defined 2-fully faithful functor

DGCatMonop +Mod
cont → (DGCatMon+Mod,ext

cont)1 -Cat.

Indeed, the functor in question is the identity on objects. At the level of 1-
morphisms its essential image corresponds to those pairs (M,1M), for which the
functor

O1 →M,

defined by 1M, is an equivalence.

2We emphasize that the latter is considered as a space and not as an (∞,1)-category.
3We remind that a functor between (∞,2)-categories is said to be 1-fully faithful if it defines

a fully faithful functor on (∞,1)-categories of 1-morphisms.

2. THE FUNCTOR OF IndCoh, EQUIPPED WITH THE ACTION OF QCoh 249

2. The functor of IndCoh, equipped with the action of QCoh

In this section we will construct the assignment

X ↝ (QCoh(X), IndCoh(X))

as a functor from IndCohCorr(Schaft)proper
all;all

to the (∞,2)-category DGCatMon+Mod,ext
cont

defined in the previous section.

2.1. The goal. In this subsection we explain the idea behind the assignment

X ↝ (QCoh(X), IndCoh(X)).

2.1.1. In Chapter 5, Sect. 2, we constructed the functor

IndCohCorr(Schaft)proper
all;all

∶ Corr(Schaft)proper
all;all → DGCat2 -Cat

cont .

In this section we will extend this functor to a functor

(QCoh, IndCoh)Corr(Schaft)proper
all;all

∶ Corr(Schaft)proper
all;all → DGCatMon+Mod,ext

cont .

The original functor IndCohCorr(Schaft)proper
all;all

is recovered from (QCoh, IndCoh)Corr(Schaft)proper
all;all

by composing with the forgetful functor of Sect. 1.2.1.

2.1.2. The meaning of the functor (QCoh, IndCoh)Corr(Schaft)proper
all;all

is that it ‘re-

members’ the category IndCoh(−) together with the action og QCoh(−).

Namely, we recall that for X ∈ Schaft, the category IndCoh(X) is naturally a
module over the monoidal category QCoh(X), see Chapter 4, Sect. 1.2.9.

Now, the functor (QCoh, IndCoh)Corr(Schaft)proper
all;all

encodes the fact that for f ∶
X → Y , the functors

f ! ∶ IndCoh(Y)→ IndCoh(X) and f IndCoh
∗ ∶ IndCoh(X)→ IndCoh(Y)

each has a natural structure of morphim in QCoh(Y)-mod, where QCoh(Y) acts
on IndCoh(X) via the monoidal functor f∗ ∶ QCoh(Y)→ QCoh(X).

Moreover, if f is proper, the (f IndCoh
∗ , f !)-adjunction also upgrades to one in

the (∞,2)-category QCoh(Y)-mod2 -Cat.

2.2. The input. As in the case of IndCoh, the only input for the construction
of the functor (QCoh, IndCoh)Corr(Schaft)proper

all;all
is the ability to take direct images.

However, this time we need to do it for IndCoh and QCoh simultaneously, in a
compatible way.

In this subsection we construct the required direct image procedure.

250 6. INTERACTION OF QCoh AND IndCoh

2.2.1. Recall the categories DGCatMon+Mod
cont and DGCatMonop +Mod

cont .

Let

(DGCatMon+Mod
cont)adjtble ⊂ DGCatMon+Mod

cont

and

(DGCatMonop +Mod
cont)adjtble ⊂ DGCatMonop +Mod

cont

be 1-full subcategories, where we restrict 1-morphisms to those pairs (RO,RC),
where we require that RC admit a right (resp., left) adjoint in the (∞,2)-category

of O1-mod2 -Cat (resp., O2-mod2 -Cat).

The operation of passing to the right/left adjoint (see Chapter 12, Corollary
1.3.4) defines an equivalence

(2.1) ((DGCatMon+Mod
cont)adjtble)

op ≃ (DGCatMonop +Mod
cont)adjtble.

2.2.2. Note that we have a tautologically defined functor of (∞,1)-categories

(2.2) DGCatMon
cont → DGCatMon+Mod

cont , O↦ (O,O).

We start with the functor QCoh∗Schaft
, considered as a functor

(Schaft)op → DGCatMon
cont ,

and consider its composition with (2.2). We obtain a functor

(2.3) (QCoh∗,QCoh∗)Schaft
∶ (Schaft)op → DGCatMon+Mod

cont .

2.2.3. It is easy to see that the functor (2.3) factors (automatically, canonically)
via the subcategory

(DGCatMon+Mod
cont)adjtble ⊂ DGCatMon+Mod

cont .

Thus, we obtain a functor

(2.4) (Schaft)op → (DGCatMon+Mod
cont)adjtble.

Composing (2.5) with the equivalence (2.1) we obtain a functor

(2.5) Schaft → (DGCatMonop +Mod
cont)adjtble.

We follow (2.5) by the forgetful functor

(DGCatMonop +Mod
cont)adjtble ⊂ DGCatMonop +Mod

cont

and obtain a functor

(2.6) (QCoh∗,QCoh∗)Schaft
∶ Schaft → DGCatMonop +Mod

cont .

Explicitly, the functor (2.6) sends X ∈ Schaft to the pair (QCoh(X),QCoh(X)),
and a morphism f ∶X → Y to the pair

f∗ ∶ QCoh(Y)→ QCoh(X), f∗ ∶ QCoh(X)→ QCoh(Y).

2. THE FUNCTOR OF IndCoh, EQUIPPED WITH THE ACTION OF QCoh 251

2.2.4. Recall that for an individual object X ∈ Schaft, the DG category IndCoh(X)
carries a canonical action of the monoidal category QCoh(X), see Chapter 4, Sect.
1.2.9.

By construction, the functor

ΨX ∶ IndCoh(X)→ QCoh(X)
carries a unique structure of map of QCoh(X)-module categories.

Furthermore, the following results from the construction in Chapter 4, Propo-
sition 2.2.1:

Lemma 2.2.5. For a map f ∶X → Y , the functor

f IndCoh
∗ ∶ IndCoh(X)→ IndCoh(Y)

can be equipped with a unique structure of map of QCoh(Y)-module categories, in
such a way that

IndCoh(X) ΨXÐÐÐÐ→ QCoh(X)

f IndCoh
∗

×××Ö
×××Ö
f∗

IndCoh(Y) ΨYÐÐÐÐ→ QCoh(Y)
is a commutative diagram in QCoh(Y)-mod.

From here we obtain:

Corollary 2.2.6. There exists a uniquely defined functor

(QCoh∗, IndCoh∗)Schaft
∶ Schaft → DGCatMonop +Mod

cont ,

equipped with a natural transformation

(Id,Ψ)Schaft
∶ (QCoh∗, IndCoh∗)Schaft

⇒ (QCoh∗,QCoh∗)Schaft
,

such that

● The composition of (QCoh∗, IndCoh∗)Schaft
and (Id,Ψ)Schaft

with the for-
getful functor

DGCatMonop +Mod
cont → (DGCatMon

cont)op

is the identity on QCoh∗Schaft
;

● At the level of objects and 1-morphisms, (Id,Ψ)Schaft
is given by the struc-

ture specified in Lemma 2.2.5.

● The composition of (QCoh∗, IndCoh∗)Schaft
and (Id,Ψ)Schaft

with the for-
getful functor

DGCatMonop +Mod
cont → DGCatcont

is the pair (IndCohSchaft
,ΨSchaft

) of Chapter 4, Proposition 2.2.3.

2.3. The construction. In this subsection we will finally construct the sought-for
functor (QCoh, IndCoh)Corr(Schaft)proper

all;all
. The method will be analogous to that by

which we constructed the functor IndCohCorr(Schaft)proper
all;all

in Chapter 5, Sect. 2.1.

252 6. INTERACTION OF QCoh AND IndCoh

2.3.1. As in the case of IndCohCorr(Schaft)proper
all;all

, the point of departure for the

sought-for functor (QCoh, IndCoh)Corr(Schaft)proper
all;all

is a functor

(2.7) (QCoh, IndCoh)Schaft
∶ Schaft → DGCatMon+Mod,ext

cont .

To construct the functor (2.7) we proceed as follows. We start with the functor

(2.8) (QCoh∗, IndCoh∗)Schaft
∶ Schaft → DGCatMonop +Mod

cont ,

of Corollary 2.2.6, and compose it with the functor of Sect. 1.3.4 to obtain the
desired functor (QCoh, IndCoh)Schaft

in (2.7).

2.3.2. We shall now extend the functor (2.7) to a functor

(2.9) (QCoh, IndCoh)Corr(Schaft)all;open
∶ Corr(Schaft)all;open → DGCatMon+Mod,ext

cont .

As in Chapter 5, Sect. 2.1.2, in order to do so, it suffices to prove:

Proposition 2.3.3. The functor (QCoh, IndCoh)Schaft
, viewed as a functor

Schaft → (DGCatMon+Mod,ext
cont)

2 -op
,

satisfies the left Beck-Chevalley condition with respect to open embeddings.

This proposition will be proved in Sect. 2.4. We proceed with the construction
of the functor (QCoh, IndCoh)Corr(Schaft)proper

all;all
.

2.3.4. We will now show that the functor (2.9) admits a unique extension to a
functor

(2.10) (QCoh, IndCoh)Corr(Schaft)proper
all;all

∶ Corr(Schaft)proper
all;all → DGCatMon+Mod,ext

cont .

As in Chapter 5, Sect. 2.1.5, we need to verify the following two statements.
One is the next proposition, proved in Sect. 2.5:

Proposition 2.3.5. The functor (QCoh, IndCoh)Schaft
satisfies the left Beck-

Chevalley condition with respect to the class of proper maps.

Another is that the condition of Chapter 7, Sect. 5.2.2 is satisfied. This will
be proved in Sect. 2.6.

2.4. Open adjunction. In this subsection we will prove Proposition 2.3.3.

2.4.1. Recall that the value of (QCoh, IndCoh)Schaft
onX ∈ Schaft is (QCoh(X), IndCoh(X)),

where QCoh(X) acts on IndCoh(X) as in Chapter 4, Sect. 1.1.5.

For a morphism f ∶X → Y , the 1-morphism

(2.11) (QCoh(X), IndCoh(X))→ (QCoh(Y), IndCoh(Y)) ∈ DGCatMon+Mod,ext
cont .

is given by the pair (M, F,1M), where

●
M ∶= QCoh(X),

regarded as an QCoh(X)-module tautologically and as a QCoh(Y)-module
via the functor f∗ ∶ QCoh(Y)→ QCoh(X).

●
F ∶ IndCoh(X) ≃ QCoh(X) ⊗

QCoh(X)
IndCoh(X)→ IndCoh(Y)

is the functor f IndCoh
∗ ;

2. THE FUNCTOR OF IndCoh, EQUIPPED WITH THE ACTION OF QCoh 253

● 1M = OX .

2.4.2. Let f be an open embedding. We need to show that in this case the corre-
sponding 1-morphism (2.11) admits a left adjoint, and that the corresponding base
change property holds.

We construct the left adjoint

(QCoh(Y), IndCoh(Y))→ (QCoh(X), IndCoh(X)) ∈ DGCatMon+Mod,ext
cont

as follows. It is given by the pair (N,G,1N), where

●
N ∶= QCoh(X),

regarded as an QCoh(X)-module tautologically and as a QCoh(Y)-module
via the functor f∗ ∶ QCoh(Y)→ QCoh(X).

●
G ∶ QCoh(X) ⊗

QCoh(Y)
IndCoh(Y)→ IndCoh(X)

is obtained by tensoring up from the functor f IndCoh,∗ ∶ QCoh(Y) →
QCoh(Y);

● 1N = OX .

Let us construct the adjunction data.

2.4.3. The composition

(M, F,1M) ○ (N,G,1N) ∶
(QCoh(Y), IndCoh(Y))→ (QCoh(X), IndCoh(X))→ (QCoh(Y), IndCoh(Y))

is given by:

● The (QCoh(Y),QCoh(Y))-bimodule QCoh(X);
● The functor

QCoh(X) ⊗
QCoh(Y)

IndCoh(Y)→ IndCoh(Y),

which under the identification

IndCoh(X) ≃ QCoh(X) ⊗
QCoh(Y)

IndCoh(Y)

of Chapter 4, Proposition 4.1.6 goes over to

f IndCoh
∗ ∶ IndCoh(X)→ IndCoh(Y);

● The object OX ∈ QCoh(X).

The unit of the adjunction is a 2-morphism (Φ, T,ψ)
Id(QCoh(Y),IndCoh(Y)) → (M, F,1M) ○ (N,G,1N),

where

● Φ is the functor f∗ ∶ QCoh(X)→ QCoh(Y);
● T is the identity natural transformation on f IndCoh

∗ ;
● ψ is the canonical map from OX to f∗(OY).

254 6. INTERACTION OF QCoh AND IndCoh

2.4.4. The composition

(N,G,1N) ○ (M, F,1M) ∶
(QCoh(X), IndCoh(X))→ (QCoh(Y), IndCoh(Y))→ (QCoh(X), IndCoh(X))

is given by:

● The bimodule QCoh(X) ⊗
QCoh(Y)

QCoh(X) ≃ QCoh(X);

● The identity functor on IndCoh(X);
● The object OX ∈ QCoh(X).

The co-unit for the adjunction is a 2-morphism (Φ, T,ψ)
(N,G,1N) ○ (M, F,1M)→ Id(QCoh(X),IndCoh(X)),

where

● Φ is the identity functor;
● T is the identity functor;
● ψ is the identity map.

The fact that the unit and co-unit specified above indeed satisfy the adjunction
axioms is a straightforward verification.

2.4.5. We will now verify the base change property for the open adjunction. Let

U1
j1ÐÐÐÐ→ X1

fU
×××Ö

×××Ö
fX

U2
j2ÐÐÐÐ→ X2

be a Cartesian diagram in Schaft, in which the horizontal arrows are open. Consider

the commutative diagram of 1-morphisms in DGCatMon+Mod,ext
cont

(QCoh(U1), IndCoh(U1)) ÐÐÐÐ→ (QCoh(X1), IndCoh(X1))
×××Ö

×××Ö
(QCoh(U2), IndCoh(U2)) ÐÐÐÐ→ (QCoh(X2), IndCoh(X2)).

By passing to left adjoints along the horizontal arrows, we obtain a diagram
that commutes up to a 2-morphism as indicated:

(2.12) (QCoh(U1), IndCoh(U1)) (QCoh(X1), IndCoh(X1))

(QCoh(U2), IndCoh(U2)) (QCoh(X2), IndCoh(X2)).

oo

��
oo

��

ai

We need to show that the 2-morphism in question is an isomorphism.

For the clockwise circuit in (2.12), the corresponding (QCoh(X1),QCoh(U2))-
bimodule is QCoh(U1), equipped with the distinuished object OU1 ∈ QCoh(U1).

2. THE FUNCTOR OF IndCoh, EQUIPPED WITH THE ACTION OF QCoh 255

For the anti-clockwise circuit, the corresponding (QCoh(X1),QCoh(U2))-bimodule
is

QCoh(U2) ⊗
QCoh(X2)

QCoh(X1),

equippped with the distinguished object OU2 ⊠
X2

OX1 .

The datum Φ of the 2-morphism in (2.12) is the canonical equivalence

QCoh(U1) ≃ QCoh(U2) ⊗
QCoh(X2)

QCoh(X1),

and the datum ψ is the identity map on QCoh(U1).
Under the above identification

QCoh(U2) ⊗
QCoh(X2)

QCoh(X1) ≃ QCoh(U1),

the datum of T of the 2-morphism in (2.12) is the identity map on the functor

(fU)IndCoh
∗ ∶ IndCoh(U1) ≃ QCoh(U1) ⊗

QCoh(X1)
IndCoh(X1)→ IndCoh(U2).

2.5. Proper adjunction. In this subsection we will prove Proposition 2.3.5.

2.5.1. Let now f be proper. We need to show that in this case the corresponding
1-morphism (2.11) admits a right adjoint.

We construct the right adjoint

(QCoh(Y), IndCoh(Y))→ (QCoh(X), IndCoh(X)) ∈ DGCatMon+Mod,ext
cont

as follows. It is given by the pair (N,G,1N), where

● N ∶= QCoh(X);
● The functor

G ∶ QCoh(X) ⊗
QCoh(Y)

IndCoh(Y)→ IndCoh(X)

is obtained by tensoring up from the functor f ! ∶ IndCoh(Y)→ IndCoh(X)
(here we are using Chapter 4, Sect. 5.1.7).

● The object 1N is OX ∈ QCoh(X).
Let us construct the adjunction data.

2.5.2. The composition

(M, F,1M) ○ (N,G,1N) ∶
(QCoh(Y), IndCoh(Y))→ (QCoh(X), IndCoh(X))→ (QCoh(Y), IndCoh(Y))

is given by:

● The (QCoh(Y),QCoh(Y))-bimodule QCoh(X);
● The functor QCoh(X) ⊗

QCoh(Y)
IndCoh(Y)→ IndCoh(Y) is

(E ,F)↦ f IndCoh
∗ (E ⊗ f !(F));

● The object OX ∈ QCoh(X).
The co-unit of the adjunction is a 2-morphism (Φ, T,ψ)

(M, F,1M) ○ (N,G,1N)→ Id(QCoh(Y),IndCoh(Y)),

where

256 6. INTERACTION OF QCoh AND IndCoh

● Φ is the functor f∗;
● T is the natural transformation between f IndCoh

∗ ○f ! and IdIndCoh(Y) equal

to the co-unit of the (f IndCoh
∗ , f !)-adjunction

● ψ is the natural isomorphism.

2.5.3. The composition

(N,G,1N) ○ (M, F,1M) ∶
(QCoh(X), IndCoh(X))→ (QCoh(Y), IndCoh(Y))→ (QCoh(X), IndCoh(X))

is given by:

● The (QCoh(X),QCoh(X))-bimodule QCoh(X) ⊗
QCoh(Y)

QCoh(X) ≃ QCoh(X×
Y

X);
● The functor QCoh(X ×

Y
X) ⊗

QCoh(X)
IndCoh(X)→ IndCoh(X) is

(E ,F)↦ (p2)IndCoh
∗ (E ⊗ p!

1(F));

● The object OX×
Y
X ∈ QCoh(X ×

Y
X);

The unit of the adjunction is a 2-morphism (Φ, T,ψ)

Id(QCoh(X),IndCoh(X)) → (N,G,1N) ○ (M, F,1M),

where

● Φ is the functor ∆∗
X/Y , where ∆X/Y is the diagonal map

X →X ×
Y
X;

● T is the natural transformation ∆∗
X/Y (E) ⊗ F → (p2)IndCoh

∗ (E ⊗ p!
1(F))

equal to

∆∗
X/Y (E)⊗F ≃ (p2)IndCoh

∗ ○ (∆X/Y)IndCoh
∗ (∆∗

X/Y (E)⊗F) ≃
≃ (p2)IndCoh

∗ (E ⊗ (∆X/Y)IndCoh
∗ (F)) ≃ (p2)IndCoh

∗ (E ⊗ (∆X/Y)IndCoh
∗ ○∆!

X/Y ○ p!
1(F))→

→ (p2)IndCoh
∗ (E ⊗ p!

1(F)) ,

where the last arrow coves from the co-unit for the ((∆X/Y)IndCoh
∗ ,∆!

X/Y)-
adjunction.

● ψ is the natural isomorphism.

Again, the fact that the unit and co-unit specified above indeed satisfy the
adjunction axioms is a straightforward verification.

2.5.4. We will now verify the base change property for the proper adjunction. Let

Y1
g1ÐÐÐÐ→ X1

fY
×××Ö

×××Ö
fX

Y2
g2ÐÐÐÐ→ X2

2. THE FUNCTOR OF IndCoh, EQUIPPED WITH THE ACTION OF QCoh 257

be a Cartesian diagram in Schaft, in which the vertical arrows are proper. Consider

the commutative diagram of 1-morphisms in DGCatMon+Mod,ext
cont

(QCoh(Y1), IndCoh(Y1)) ÐÐÐÐ→ (QCoh(X1), IndCoh(X1))
×××Ö

×××Ö
(QCoh(Y2), IndCoh(Y2)) ÐÐÐÐ→ (QCoh(X2), IndCoh(X2)).

By passing to right adjoints along the vertical arrows, we obtain a diagram that
commutes up to a 2-morphism as indicated:

(2.13) (QCoh(Y1), IndCoh(Y1)) (QCoh(X1), IndCoh(X1))

(QCoh(Y2), IndCoh(Y2)) (QCoh(X2), IndCoh(X2)).

//
OO

//

OO

!)

We need to show that the 2-morphism in question is an isomorphism.

For the clockwise circuit in (2.13), the corresponding (QCoh(X1),QCoh(Y2))-
module is by definition QCoh(Y1), equipped with the distinguished object OY1 ∈
QCoh(Y1).

For the anti-clockwise circuit in (2.13), the corresponding (QCoh(X1),QCoh(Y2))-
module is

QCoh(X1) ⊗
QCoh(X2)

QCoh(Y2),

equipped with the distinguished object OX1 ⊠
X1

OY2 .

The datum of Φ of the 2-morphism in (2.13) is the canonical functor

QCoh(X1) ⊗
QCoh(X2)

QCoh(Y2)→ QCoh(Y1),

which is known to be an equivalence (see, e.g., Chapter 3, Proposition 3.5.3). Under
this identification, the datum of ψ of the 2-morphism in (2.13) is the identity
isomorphism on OY1 .

It remains to show that the natural transformation T is an isomorphism.

For a triple

E1 ∈ QCoh(X1), E2 ∈ QCoh(Y2), F ∈ IndCoh(Y2)
and the corresponding object

(E1 ⊗ E2)⊗F ∈ (QCoh(X1) ⊗
QCoh(X2)

QCoh(Y2)) ⊗
QCoh(Y2)

IndCoh(Y2),

the functor F t sends it to

E1 ⊗ (f !
X ○ (g2)IndCoh

∗ (E2 ⊗F)) ,
and the functor F s ○ (Φ⊗ IdC1) sends it to

(g1)IndCoh
∗ ((g∗1(E1)⊗ f∗Y (E2))⊗ f !

Y (F)) .

258 6. INTERACTION OF QCoh AND IndCoh

Under the above identifications, the natutal transformation T acts as follows:

(g1)IndCoh
∗ ((g∗1(E1)⊗ f∗Y (E2))⊗ f !

Y (F)) ≃ (g1)IndCoh
∗ ((g∗1(E1)⊗ f !

Y (E2 ⊗F)) ≃
≃ E1 ⊗ (g1)IndCoh

∗ (f !
Y (E2 ⊗F)) ≃ E1 ⊗ f !

X ((g2)IndCoh
∗ (E2 ⊗F)) ,

which is an isomorphism, as required.

2.6. Verification of compatibility. In this subsection we will show that the
condition of Chapter 7, Sect. 5.2.2 is satisfied for the functor (QCoh, IndCoh)Schaft

.

2.6.1. Let

U1
j1ÐÐÐÐ→ X1

fU
×××Ö

×××Ö
fX

U2
j2ÐÐÐÐ→ X2

be a Cartesian diagram in Schaft, with the vertical arrows being proper and the
horizontal arrows being open.

According to Chapter 7, Sect. 5.2.2, from the base change isomorphism of
Sect. 2.4.5, we obtain a 2-morphism

(2.14) (QCoh(U1), IndCoh(U1)) (QCoh(X1), IndCoh(X1))

(QCoh(U2), IndCoh(U2)) (QCoh(X2), IndCoh(X2)).

oo
OO

oo

OO

u}

We need to show that this morphism is an isomorphism.

2.6.2. By the description of the left and right adjoint functors in Sects. 2.4 and
2.5, the (QCoh(U1),QCoh(X2))-bimodule corresponding to both circuits in the
diagram (2.14) is the category QCoh(U1), equipped with the distinguished object
OU1 ∈ QCoh(U1).

Under this identification, the data of Φ and γ in the 2-morphism in (2.14) are
the identity maps. Hence, it remains to show that the natural transformation T is
an isomorphism.

2.6.3. The natural transformation T is a 2-morphism in QCoh(U1)-mod2 -Cat be-
tween two functors

QCoh(U1) ⊗
QCoh(X2)

IndCoh(X2)⇉ IndCoh(U1).

Such functors and natural transformations are in bijection with those in QCoh(X2)-mod2 -Cat

IndCoh(X2)⇉ IndCoh(U1).

3. THE MULTIPLICATIVE STRUCTURE 259

Now, the assertion follows from the fact that in the diagram

IndCoh(U1) IndCoh(X1)

IndCoh(U2) IndCoh(X2)

oo jIndCoh,∗
1

OO

f !
U

oo
jIndCoh,∗
2

OO

f !
X

u}

the 2-morphism is an isomorphism (which is Chapter 4, Proposition 5.3.4).

3. The multiplicative structure

In this section we will further amplify the functor

(QCoh, IndCoh)Corr(Schaft)proper
all;all

∶ Corr(Schaft)proper
all;all → DGCatMon+Mod,ext

cont .

Namely, we will show that it has a natural symmetric monoidal structure.

This will imply certain expected properties of IndCoh, regarded as equipped
with an action of QCoh.

3.1. Upgrading to a symmetric monoidal functor. In this subsection we
state the existence of (QCoh, IndCoh)Corr(Schaft)proper

all;all
as a symmetric monoidal func-

tor.

3.1.1. Recall that the (∞,2)-category Corr(Schaft)proper
all;all carries a natural symmet-

ric monoidal functor, which at the level of objects is given by Cartesian product.

Note that the (∞,2)-category DGCatMon+Mod,ext
cont also carries a symmetric monoidal

structure, given by term-wise tensor product.

3.1.2. As in Chapter 5, Theorem 4.1.2, we have:

Theorem 3.1.3. The functor

(QCoh, IndCoh)Corr(Schaft)proper
all;all

∶ Corr(Schaft)proper
all;all → DGCatMon+Mod,ext

cont

carries a canonical symmetric monoidal structure.

3.2. Consequences for the !-pullback. In this subsection we will show that the
action of QCoh on IndCoh comes from a symmetric monoidal functor

QCoh(−)→ IndCoh(−),

whose formation is compatible with pullbacks (the *-pullback for QCoh and the
!-pullback for IndCoh).

260 6. INTERACTION OF QCoh AND IndCoh

3.2.1. Let us restrict the functor (QCoh, IndCoh)Corr(Schaft)proper
all;all

to

(Schaft)op ⊂ Corr(Schaft)proper
all;all .

We obtain a functor

(3.1) (Schaft)op → DGCatMon+Mod,ext
cont .

However, the explicit description of the !-pullback functors in Sects. 2.4 and
2.5 imply that the functor (3.1) factors (automatically canonically) through the
1-fullly faithful functor

DGCatMon+Mod
cont → DGCatMon+Mod,ext

cont .

We denote the resulting functor

(Schaft)op → DGCatMon+Mod
cont

by (QCoh∗, IndCoh!)Schaft
.

Remark 3.2.2. The meaning of the functor (QCoh∗, IndCoh!)Schaft
is that it

encodes that for a map f ∶ X → Y , the functor f ! ∶ IndCoh(Y) → IndCoh(X)
has a natural structure of map of QCoh(Y)-module categories. By contrast with
(QCoh, IndCoh)Corr(Schaft)proper

all;all
, we discard the information pertaining to the func-

tor f IndCoh
∗ .

3.2.3. Taking into account Theorem 3.1.3, we obtain that the functor (QCoh∗, IndCoh!)Schaft

has a natural symmetric monoidal structure with respect to the symmetric monoidal
structure on (Schaft)op, induced by the Cartesian product on Schaft and the sym-

metric monoidal structure on DGCatMon+Mod
cont , given by term-wise tensor product.

Recall now (see Chapter 5, Sect. 4.1.3) that any symmetric monoidal functor
from (Schaft)op with values in a symmetric monoidal category naturally upgrades
to a functor from (Schaft)op with values in the category of commutative algebras
in that symmetric monoidal category.

In particular, we obtain that the functor (QCoh∗, IndCoh!)Schaft
naturally ex-

tends to a functor

(3.2) (Schaft)op → ComAlg (DGCatMon+Mod
cont) .

The composition of the functor (3.2) with the forgetful functor

ComAlg (DGCatMon+Mod
cont)→ ComAlg (DGCatcont) = DGCatSymMon

cont

is the functor of Chapter 5, Formula (4.1).

3.2.4. Note that the category ComAlg (DGCatMon+Mod
cont) can be identified with the

category

Funct([1],DGCatSymMon
cont),

i.e., the category of triples
(O,O′, α ∶ O→O′),

where O and O′ are symmetric monoidal categories, and α is a symmetric monoidal
functor.

Hence, the content of the functor (3.2) is that the assignment

X ↝ (QCoh(X), IndCoh(X))

3. THE MULTIPLICATIVE STRUCTURE 261

is the functor from the category (opposite to that) of schemes to the category of
pairs of symmetric monoidal DG categories, where:

● QCoh(X) is a symmetric monoidal DG category via the usual ∗-tensor
product operation;

● IndCoh(X) is a symmetric monoidal DG category via the usual !-tensor
product operation (see Chapter 5, Sect. 4.1.3)

● The symmetric monoidal functor QCoh(X)→ IndCoh(X) is given by the
action of QCoh(X) on the unit object in IndCoh(X), when IndCoh(X)
is regarded as a QCoh(X)-module category.

3.2.5. As a consequence, we obtain a natural transformation between the functors

(QCoh∗,QCoh∗)Schaft
⇒ (QCoh∗, IndCoh!)Schaft

, (Schaft)op → DGCatMon+Mod
cont .

In particular, we obtain a natural transformation between the functors

QCoh∗Schaft
⇒ IndCoh!

Schaft
, (Schaft)op → DGCatcont .

We denote the latter transformation by ΥSchaft
and the former by

(Id,Υ)Schaft
.

For an individual scheme X, we will denote the corresponding fonctor

QCoh(X)→ IndCoh(X)
by ΥX .

By construction, this functor is given by

E ↦ E ⊗ ωX , E ∈ QCoh(X),
where ⊗ is the action of QCoh(X) on IndCohX , and ωX is the dualizing object
of IndCoh(X) (the !-pullback of k under X → pt, or equivalently, the unit for the
!-symmetric monoidal structure on IndCoh(X)).

3.3. Extension to prestacks. We will now use the theory developed above, to
show that for a prestack X , the category IndCoh(X) acquires a natural action of
the monoidal category QCoh(X).
3.3.1. We consider again the functor

(QCoh∗, IndCoh!)Schaft
∶ (Schaft)op → ComAlg (DGCatMon+Mod

cont)
of (3.2) and apply the right Kan extension along

(Schaft)op → (PreStklaft)op.

Denote the resulting functor by

(Q̃Coh
∗
, IndCoh!)Schaft

∶ (PreStklaft)op → ComAlg (DGCatMon+Mod
cont) .

The value of this funcor on a given prestack Y is (Q̃Coh(Y), IndCoh(Y)), where

Q̃Coh
∗ ∶ (PreStklaft)op → DGCatSymMon

cont

is right Kan extension of QCoh∗Schaft
along (Schaft)op → (PreStklaft)op, i.e.,

Q̃Coh(Y) ∶= lim
X∈((Schaft)/Y)op

QCoh(X).

262 6. INTERACTION OF QCoh AND IndCoh

Remark 3.3.2. The difference between Q̃Coh(Y) and QCoh(Y) is that in the
latter we take the limit of QCoh(X) over all schemes X mapping to Y, and in the
former only X ∈ Schaft. Under some (mild) conditions on Y, the restriction functor

QCoh(Y) → Q̃Coh(Y) is an equivalence. For example, this happens if Y admits
deformation theory, see Volume II, Chapter 1, Theorem 9.1.4.

3.3.3. Note that there is a canonically defined natural transformation of functors

QCohPreStklaft
⇒ Q̃CohPreStklaft

, (PreStklaft)op → DGCatSymMon
cont .

Composing with the functor (Q̃Coh
∗
, IndCoh!)PreStklaft

, we obtain a functor

(QCoh∗, IndCoh!)PreStklaft
∶ (PreStklaft)op → ComAlg (DGCatMon+Mod

cont) .
The value of the latter functor on Y ∈ PreStklaft is now

(QCoh(Y), IndCoh(Y)).

3.3.4. The content of the functor (QCoh∗, IndCoh!)PreStklaft
is the natural trans-

formation
ΥPreStklaft

∶ QCoh∗PreStklaft
⇒ IndCoh!

PreStklaft
,

as functors
PreStklaft ⇉ DGCatSymMon

cont .

For an individual Y ∈ PreStklaft we shall denote the resulting functor

QCoh(Y)→ IndCoh(Y)
by ΥY .

3.3.5. Applying the forgetful functor ComAlg (DGCatMon+Mod
cont)→ DGCatMon+Mod

cont ,

we can view (QCoh∗, IndCoh!)PreStklaft
as a functor

(PreStklaft)op → DGCatMon+Mod
cont .

I.e., for Y ∈ PreStklaft, the DG category IndCoh(Y) acquires a structure of
QCoh(Y)-module, functorially with respect to the !-pullback on IndCoh and *-
pullback on QCoh.

The functor ΥY is given by the monoidal action of QCoh(Y) on the object
ωY ∈ IndCoh(Y).
3.3.6. The following assertion is often useful:

Lemma 3.3.7. For any Y ∈ PreStklaft, the functor

ΥY ∶ QCoh(Y)perf → IndCoh(Y)
is fully faithful and the essential image consists of objects dualizable with respect to

the
!
⊗ symmetric monoidal structure.

Proof. Since both functors QCoh(−)perf and IndCoh(−) are convergent (by
Chapter 3, Proposition 3.6.10 and Chapter 4, Proposition 6.4.3, respectively), the

assertion reduces to the case when Z = S ∈ <∞Schaff
ft .

In this case, the functor ΥS is fully faithful on all of QCoh(S).
Let F ∈ IndCoh(S) be a dualizable object. Since the unit object ωS ∈ IndCoh(S)

is compact, we obtain that F is compact, i.e., it belongs to Coh(S).

4. DUALITY 263

Consider E ∶= DSerre
S (F) ∈ Coh(S). It suffices to show that E ∈ QCoh(S)perf ⊂

Coh(S). For that it suffices to show that all the *-fibers of E are finite-dimensional.

But the *-fibers of E are the duals of the !-fibers of F , and the latter are
finite-dimensional by the dualizability hypothesis: indeed, taking the !-fiber is a

symmetric monoidal functor from (IndCoh(Z),
!
⊗) to Vect.

�

4. Duality

In this section we will study the interaction of the Serre duality on IndCoh with
the naive (i.e., usual) duality on QCoh.

4.1. Duality on the category DGCatMon+Mod,ext
cont . In this subsection we will ex-

plicitly describe dualizable objects in the symmetric monoidal category DGCatMon+Mod,ext
cont ,

and how the duality involution on dualizable objects looks like.

4.1.1. Let (O,C) be an object of DGCatMon+Mod,ext
cont .

The forgetful symmetric monoidal functor

DGCatMon+Mod,ext
cont → DGCatcont

implies that if (O,C) is dualizable with respect to the symmetric monoidal struc-

ture on DGCatMon+Mod,ext
cont , then C is dualizable as a plain DG category.

4.1.2. Vice versa, we claim that if C is dualizable as a DG category, then (O,C)
is dualizable in DGCatMon+Mod,ext

cont , with the dual being (Orev-mult,C∨), where
Orev-mult is the monoidal category, obtained from O by reveresing the multipli-
cation.

Namely, the unit

(Vect,Vect)→ (O,C)⊗ (Orev-mult,C∨) = (O⊗Orev-mult,C⊗C∨)

is given by the data (M, F,1M), where:

● M = O, regarded as a O⊗Orev-mult-module category;
● F is the functor of O→C⊗C∨, given by the action of O on C;
● 1M is the unit object of O.

The co-unit

(Orev-mult ⊗O,C∨ ⊗C) = (Orev-mult,C∨)⊗ (O,C)→ (Vect,Vect)

is given by the data (M, F,1M), where:

● M = O, regarded as a right Orev-mult ⊗O-module category;
● F is the functor

O ⊗
Orev-mult⊗O

(C∨ ⊗C) ≃ C∨ ⊗
O

C→ Vect,

where the last arrow is the canonical pairing;
● 1M is the unit object of O.

264 6. INTERACTION OF QCoh AND IndCoh

4.1.3. Let
(DGCatMon+Mod

cont)dualizable ⊂ DGCatMon+Mod
cont

and
(DGCatMonop +Mod

cont)dualizable ⊂ DGCatMonop +Mod
cont

be the full subcategories corresponding to the pairs (O,C) in which C is dualizable
as a plain DG category.

Note that we have a canonically defined functor

(4.1) ((DGCatMon+Mod
cont)dualizable)op → (DGCatMonop +Mod

cont)dualizable,

(O,C)↦ (Orev-mult,C∨).

By Sect. 4.1.2, the functors

DGCatMon+Mod
cont → DGCatMon+Mod,ext

cont ← DGCatMonop +Mod
cont

send the subcategories

(DGCatMon+Mod
cont)dualizable and (DGCatMonop +Mod

cont)dualizable

to (DGCatMon+Mod,ext
cont)dualizable.

Moreover the construction of Sect. 4.1.2 can be upgraded to the following state-
ment:

Lemma 4.1.4. The following square

((DGCatMon+Mod
cont)dualizable)op ÐÐÐÐ→ ((DGCatMon+Mod,ext

cont)dualizable)
op

(4.1)
×××Ö

×××Ö
dualization in DGCatMon+Mod,ext

cont

(DGCatMonop +Mod
cont)dualizable ÐÐÐÐ→ (DGCatMon+Mod,ext

cont)dualizable

canonically commutes.

4.2. The linearity structure on Serre duality. In this subsection we study
how Serre duality on IndCoh is compatible with the action of QCoh.

4.2.1. Consider again the symmetric monoidal functor

(QCoh, IndCoh)Corr(Schaft)proper
all;all

∶ Corr(Schaft)proper
all;all → DGCatMon+Mod,ext

cont

of Theorem 3.1.3. Consider its restriction

(QCoh, IndCoh)Corr(Schaft)all;all ∶ Corr(Schaft)all;all → DGCatMon+Mod,ext
cont .

As in Chapter 5, Theorem 4.2.3, we obtain:

Corollary 4.2.2. The following diagram of functors canonically commutes:

(Corr(Schaft)all;all)op
((QCoh,IndCoh)Corr(Schaft)all;all)

op

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ ((DGCatMon+Mod,ext
cont)dualizable)

op

$
×××Ö

×××Ö
dualization in DGCatMon+Mod,ext

cont

Corr(Schaft)all;all

(QCoh,IndCoh)Corr(Schaft)all;allÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ (DGCatMon+Mod,ext
cont)dualizable,

where $ is as Chapter 5, Sect. 4.2.2.

4. DUALITY 265

4.2.3. Combining Corollary 4.2.2 with Lemma 4.1.4, we obtain:

Corollary 4.2.4. The following diagram canonically commutes

Schaft

(QCoh∗,IndCoh∗)SchaftÐÐÐÐÐÐÐÐÐÐÐÐÐ→ (DGCatMonop +Mod
cont)dualizable

Id
×××Ö

×××Ö
(4.1)

Schaft

((QCoh∗,IndCoh!)Schaft
)op

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ ((DGCatMon+Mod
cont)dualizable)op

.

The content of Corollary 4.2.4 is that for an individual X ∈ Schaft, the Serre
duality equivalence

DSerre
X ∶ IndCoh(X)∨ ≃ IndCoh(X)

is compatible with the action of QCoh(X).

Furthermore, for a morphism f ∶X → Y , the identification

f ! ≃ (f IndCoh
∗)∨

is also compatible with the action of QCoh(Y).

4.3. Digression: QCoh as a functor out of the category of correspon-
dences. The contents of this subsection are more or less tautological: they encode
that the operation of direct image on QCoh is compatible with the action of QCoh
on itself by tensor products.

4.3.1. The goal of this subsection is to prove the following analog of Corollary 4.2.4
for the pair of functors (QCoh∗,QCoh∗)Schaft

and (QCoh∗,QCoh∗)Schaft
of (2.3)

and (2.6), respectively:

Proposition 4.3.2. The following diagram canonically commutes

Schaft

(QCoh∗,QCoh∗)SchaftÐÐÐÐÐÐÐÐÐÐÐÐ→ (DGCatMonop +Mod
cont)dualizable

Id
×××Ö

×××Ö
(4.1)

Schaft

((QCoh∗,QCoh∗)Schaft
)op

ÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ ((DGCatMon+Mod
cont)dualizable)op

.

The content of Proposition 4.3.2 is that for an individual X ∈ Schaft, there is a
canonical duality equivalence

(4.2) Dnaive
X ∶ QCoh(X)∨ ≃ QCoh(X),

which is compatible with the action of QCoh(X).

Furthermore, for a morphism f ∶X → Y , we have an identification

f∗ ≃ (f∗)∨,

which is also compatible with the action of QCoh(Y).

266 6. INTERACTION OF QCoh AND IndCoh

4.3.3. It will follow from the construction below that the duality (4.2) is that given
by the unit

Vect
k→OXÐ→ QCoh(X) (∆X)∗Ð→ QCoh(X ×X) ≃ QCoh(X)⊗QCoh(X),

and the co-unit

QCoh(X)⊗QCoh(X) ≃ QCoh(X ×X)
∆∗
XÐ→ QCoh(X) Γ(X,−)Ð→ k.

Equivalently, the duality (4.2) is induced by the anti-self equivalence of

QCoh(X)c ≃ QCoh(X)perf ,

given by

E ↦ E∨ ∶= HomOX (E ,OX).

4.3.4. As in the case of Corollary 4.2.4, in order to prove Proposition 4.3.2, it is
sufficient to construct a symmetric monoidal functor

(4.3) (QCoh,QCoh)Corr(Schaft)all;all ∶ Corr(Schaft)all;all → DGCatMon+Mod,ext
cont .

We will obtain (QCoh,QCoh)Corr(Schaft)all;all by restriction from a symmetric
monoidal functor

(4.4) (QCoh,QCoh)Corr(Schaft)allall;all
∶ Corr(Schaft)all

all;all → (DGCatMon+Mod,ext
cont)2 -op.

4.3.5. To construct (4.4), we start with the functor

(QCoh∗,QCoh∗)Schaft
∶ (Schaft)op → DGCatMon+Mod

cont ,

of (2.3) and follow it by the functor

DGCatMon+Mod
cont → DGCatMon+Mod,ext

cont

of Sect. 1.3.4.

We obtain a functor

(4.5) (Schaft)op → DGCatMon+Mod,ext
cont .

4.3.6. We now claim that the functor (4.5), viewed as a functor

(Schaft)op → (DGCatMon+Mod,ext
cont)2 -op

satisfies the right Beck-Chevalley condition.

This is proved in the same was as in Sect. 2.4.

Now, applying Chapter 7, Theorem 3.2.2(b), we obtain that the functor (4.5)
uniquely gives rise to the sought-for functor (4.4).

4.4. Compatibility with the functor Ψ. In this subsection we will use the
theory developed above to show that the dual of the functor Υ identifies with the
functor Ψ of Chapter 4, Sect. 1.1.2.

4. DUALITY 267

4.4.1. Recall (see Corollary 2.2.6) that the functor

(QCoh∗, IndCoh∗)Schaft
∶ Schaft → DGCatMonop +Mod

cont

was constructed in such a way that it was equipped with a natural transformation

(Id,Ψ)Schaft
∶ (QCoh∗, IndCoh∗)Schaft

⇒ (QCoh∗,QCoh∗)Schaft
.

Applying the functor (4.1), and taking into account Corollary 4.2.4 and Propo-
sition 4.3.2, from the natural transformation (Id,Ψ)Schaft

, we obtain a natural trans-
formation

(Id,Ψ∨)Schaft
∶ (QCoh∗,QCoh∗)Schaft

→ (QCoh∗, IndCoh!)Schaft

as functors
(Schaft)op → DGCatMon+Mod

cont .

For an individual X ∈ Schaft, we let the resulting functor

QCoh(X)→ IndCoh(X)
be denoted by Ψ∨

X .

4.4.2. The goal of this subsection is to prove the following:

Theorem 4.4.3. There is a canonical isomomorphism of natural transforma-
tions

(Id,Ψ∨)Schaft
≃ (Id,Υ)Schaft

,

where (Id,Υ)Schaft
is as in Sect. 3.2.5.

The content of this theorem is that for an individual X ∈ Schaft, with respect
to the identifications

DSerre
X ∶ IndCoh(X)∨ ≃ IndCoh(X) and Dnaive

X ∶ QCoh(X)∨ ≃ QCoh(X),
the dual of the functor

ΨX ∶ IndCoh(X)→ QCoh(X)
is the functor

ΥX ∶ QCoh(X)→ IndCoh(X), E ↦ E ⊗ ωX .
Furthermore, these identifications of functors are compatible with respect to

maps f ∶X → Y .

4.4.4. Proof of Theorem 4.4.3. Since the functor (QCoh∗,QCoh∗)Schaft
corresponds

to the ‘free module on one generator’, a datum of a natural transformation out of
it to some other functor

F ∶ (Schaft)op → DGCatMon+Mod
cont ,

whose composition with DGCatMon+Mod
cont → DGCatMon

cont is the functor QCoh∗Schaft
, is

equivalent to the datum of a 1-morphism

(QCoh∗,QCoh∗)Schaft
(pt)→ F(pt).

I.e., in order to prove the theorem, it is sufficient to perform the identification

Ψ∨
X ≃ ΥX

for X = pt. However, the latter is evident.
�

Part III

Categories of correspondences

Introduction

1. Why correspondences?

This part introduces one of the two main innovations in this book–the (∞,2)-
category of correspondences as a way to encode bi-variant functors and the six
functor formalism. This idea was suggested to us by J. Lurie.

1.1. Let us start with a category C (with finite limits), equipped with two classes
of morphisms vert and horiz (both closed under composition). The category of
correspondences is designed to perform the following function.

Suppose we want to encode a bi-variant functor Φ from C to some target

(∞,1)-category S. I.e., to c ∈ C we assign Φ(c) ∈ S, and to a 1-morphism c1
γ→ c2

in C, we assign a 1-morphism

Φ(γ) ∶ Φ(c1)→ Φ(c2) if γ ∈ vert
and a 1-morphism

Φ!(γ) ∶ Φ(c2)→ Φ(c1) if γ ∈ horiz,
equipped with the following pieces of structure:

(1) Compatibility of both Φ(−) and Φ!(−) with compositions of 1-morphisms
in C;

(2) For a Cartesian square

c0,1
α0ÐÐÐÐ→ c0,0

β1

×××Ö
×××Ö
β0

c1,1
α1ÐÐÐÐ→ c1,0

with vertical arrows in vert and horizontal arrows in horiz, we are sup-
posed to be given an identification (called base change isomorhism)

Φ(β1) ○Φ!(α0) ≃ Φ!(α1) ○Φ(β0).
The above pieces of data must satisfy a homotopy-coherent system of compati-

bilities. The partial list consists of the following:

● The data making Φ into a functor Cvert → S, and the data making Φ! into
a functor (Choriz)op → S.

● The compatibility of base-change isomorphisms with compositions;

However, the above is really only the beginning of an infinite tail of compati-
bilities, as it always happens in higher category theory.

271

272 INTRODUCTION

So, if we want a workable theory, we need to find a convenient way to package
this information, preferably in terms of one of the existing packages, such as the
notion of functor between two given (∞,1)-categories.

The category Corr(C)vert;horiz allows us to do just that. Namely, we show
(Chapter 7, Theorem 2.1.3) that the datum of a functor as above is equivalent to
the datum of a functor

Corr(C)vert;horiz → S.

1.2. The idea of Corr(C)vert;horiz is very simple. Its objects are the same as
objects of C. But its 1-morphisms are diagrams

(1.1)

c0,1 ÐÐÐÐ→ c0

×××Ö
c1

with the vertical arrow in vert and the horizontal arrow in horiz.

The composition of the 1-morphism (1.1) with a 1-morphism

c1,2 ÐÐÐÐ→ c1

×××Ö
c2

is the 1-morphism
c1,2 ×

c1

c0,1 ÐÐÐÐ→ c0

×××Ö
c2.

What may be a little less obvious is to how to give the definition of Corr(C)vert;horiz
in the ∞-context (and without appealing to a particular model of (∞,1)-categories,
i.e., we do not want to talk about simplicial sets).

The definition of Corr(C)vert;horiz is the subject of Chapter 7, Sect. 1. In fact,
the construction is not difficult and quite natural: it is formulated in terms of the
interpretation of (∞,1)-categories as complete Segal spaces.

1.3. At this point let us comment on the relationship between our approach and
(our interpretation of) [LZ1, LZ2].

Consider the following bi-simplicial space Grid●,●(C): its space Gridm,n(C)
of [m] × [n]-simplicies are m × n-grids of objects of C, in which every square is
Cartesian, all vertical arrows are in vert and all horizontal arrow are in horiz.

Then Chapter 7, Theorem 2.1.3 says that the datum of a functor

Corr(C)vert;horiz → S

is equivalent to that of a map of bi-simplicial spaces

Grid●,●(C)→Maps([●] × [●],S).

The authors of [LZ1, LZ2] construct their datum in terms of the latter map
of bi-simplicial spaces.

2. THE SIX FUNCTOR FORMALISM 273

2. The six functor formalism

Let us now explain how the (∞,2)-category of correspondences encodes the six
functor formalism.

2.1. The setup. The general setup for the six functor formalism is the following.
Suppose that we have a category C of ‘geometric objects’, e.g., the category of
topological spaces, schemes, prestacks, etc. To each object X ∈ C, we associate a
category

X ↝ Sh(X) ∈ DGCatcont,

of ‘sheaves on X’, e.g., IndCoh(X) or Dmod(X). This assignment comes with the
following additional data, in particular making it natural in X ∈ C:

(1) (functoriality) For every map f ∶X → Y ∈ C, there are two pairs of adjoint
functors

f! ∶ Sh(X)⇄ Sh(Y) ∶ f !, and f∗ ∶ Sh(Y)⇄ Sh(X) ∶ f∗
which are natural in f , i.e. each of them is given by a functor C →
DGCatcont (or Cop → DGCatcont). These are four of the six functors in
the six functor formalism.

Note the data of an adjoint pair is uniquely determined by one of the
functors. In the case of IndCoh and D-modules, we only have the right
adjoint functors f ! and f∗ exist in general. For this reason, we will de-
scribe the formalism in terms of these functors without explicit reference
to their adjoints.

(2) (proper adjunction) Given f ∶ X → Y ∈ C, there is a natural transforma-
tion

f! → f∗,

which is natural in f and is an isomorphism when f is proper.

Equivalently, there is a natural transformation

id→ f ! ○ f∗,
which is the unit of an adjunction when f is proper.

(3) (open adjunction) If f ∶ X → Y ∈ C is an open immersion, there is a
natural isomorphism

f ! ○ f∗ ≃ id,

which is the counit of an adjunction. In particular, in this case, we have
an isomorphism

f ! ≃ f∗.
(4) (proper base change) For a Cartesian square

X ′ g′ÐÐÐÐ→ X

f ′
×××Ö

×××Ö
f

Y ′ gÐÐÐÐ→ Y
in C, there is a natural base change isomorphism

f ′∗ ○ g′
! ≃ g! ○ f∗.

274 INTRODUCTION

In the case that f is proper (resp. open), this isomorphism is given by the
natural transformation arising from proper (resp. open) adjunction above.

(5) (duality) For each X ∈ C, the DG category Sh(X) is self-dual; see Chap-
ter 5, Sect. 4.6 for an explanation of how this recovers the usual Verdier
or Serre duality on sheaves. Moreover, for each morphism f ∶X → Y ∈ C,
the functors f ! and f! are dual to f∗ and f∗, respectively.

(6) (tensor structure) For each X,Y ∈ C we have a functor

⊠ ∶ Sh(X)⊗ Sh(Y)→ Sh(X × Y),
natural in X and Y .

Moreover, ∗-pullback along the diagonal X → X ×X defines a closed
symmetric monoidal structure on Sh(X) for every X ∈ C, i.e., each Sh(X)
comes with a tensor product ⊗ and an inner hom HomSh(X) functor –
these are the remaining two of the six functors. Furthermore, for every
map f ∶X → Y ∈ C, the functor

f∗ ∶ Sh(Y)→ Sh(X)
is equipped with a symmetric monoidal structure.

In the case of IndCoh and D-modules, the functor ⊠ above is an
isomorphism in the case of (ind-inf-)schemes X and Y . However, we only
have the !-pullback functor and so we can only define the dual !-tensor

structure
!
⊗ on Sh(X) given by !-pullback along the diagonal. In this

case, the functor
f ! ∶ Sh(Y)→ Sh(X)

is equipped with a symmetric monoidal structure with respect to the
!
⊗

tensor product.

(7) (projection formula) Let f ∶ X → Y be a morphism in C. Since f∗ is a
tensor functor by the above, we have that Sh(X) is a module category
over the tensor category Sh(Y). We further require that the functor f! be
equipped with the structure of a functor of module categories over Sh(Y).
In particular, from this we obtain the familiar natural isomorphisms:

f!(M ⊗ f∗(N)) ≃ f!(M)⊗N,
Hom(f!(M),N) ≃ f∗(Hom(M,f !(N))), and

f !(Hom(M,N)) ≃ Hom(f∗(M), f !(N)),
for M ∈ Sh(X) and N ∈ Sh(Y).

In the case of IndCoh and D-modules, where we have the dual tensor

product
!
⊗, we require that the functor f∗ be equipped with the structure

of a functor of module categories over Sh(Y) with respect to the
!
⊗ tensor

product. In particular, we obtain the projection formula

f∗(M
!
⊗ f !(N)) ≃ f∗(M)

!
⊗N,

dual to the one above.

2. THE SIX FUNCTOR FORMALISM 275

2.2. As explained in Sect. 1, the data of functoriality and proper base change
above is equivalent to the data of a functor of (∞,1)-categories

Sh ∶ Corr(C)all;all → DGCatcont;

namely, an object X ∈ Corr(C)all;all maps to Sh(X) and a morphism

Z
f //

g

��

X

Y

maps to g∗ ○ f ! ∶ Sh(X)→ Sh(Y).
The idea is that we can enlarge Corr(C)all;all to a symmetric monoidal (∞,2)-

category Corr(C)proper
all;all so that all of the above data will be encoded by a symmetric

monoidal functor of (∞,2)-categories

(2.1) Sh ∶ Corr(C)proper
all;all → DGCat2-Cat

cont .

Suppose that we are in the situation of Sect. 1.1, and in addition to vert and
horiz, we are given a third class of 1-morphisms

adm ⊂ vert ∩ horiz.
We define the (∞,2)-category

Corr(C)admvert;horiz

so that its underlying (∞,1)-category is the (∞,1)-category Corr(C)vert;horiz dis-
cussed above, but we now allow non-invertible 2-morphisms. Namely, a 2-morphism
from the 1-morphism (1.1) to the 1-morphism

c′0,1 ÐÐÐÐ→ c0

×××Ö
c1

is a commutative diagram

c1

c0c′0,1

c0,1

��

//

��

))
γ

��

with γ ∈ adm.

If C has a Cartesian symmetric monoidal structure that preserves each of the
subcategories adm, vert and horiz, then it induces a symmetric monoidal structure

276 INTRODUCTION

on the (∞,2)-category Corr(C)admvert;horiz. In particular, in the situation of Sect. 2.1,

we obtain that the (∞,2)-category

Corr(C)proper
all;all

has a canonical symmetric monoidal structure such that the functor

C→ Corr(C)proper
all;all

given by “vertical morphisms” is symmetric monoidal with respect to the Cartesian
symmetric monoidal structure on C.

2.3. We will now explain how to recover all of the data in Sect. 2.1 from the
data of the functor (2.1). We have already seen how functoriality and proper base
change is encoded as a functor out of correspondences.

Proper adjunction.

Let f ∶ X → Y ∈ C. In this case, we have that the functor f∗ ○ f ! ∶ Sh(Y) → Sh(Y)
is the image under Sh of the morphism

X //

��

Y

Y

in Corr(C)all;all. Similarly, f ! ○ f∗ ∶ Sh(X) → Sh(X) is given by the image of the
composite

X ×
Y
X //

��

X

��

X

X // Y

X

If the diagonal morphism X → X ×
Y
X is proper (as is the case with a separated

morphism of schemes), we obtain the desired natural transformation

id→ f ! ○ f∗.
Furthermore, if the map f ∶X → Y is proper, we also obtain a natural transforma-
tion f∗ ○ f ! → id and it is easy to see that the two natural transformations give the
unit and counit of an adjunction.

2.3.1. Open adjunction. Similarly, if f ∶ X → Y is an open embedding, we have
that

X ×
Y
X ≃X

and therefore we obtain the desired isomorphism

f ! ○ f∗ ≃ id .

The assertion that this isomorphism gives a counit of an adjunction is an additional
condition.

Duality.

2. THE SIX FUNCTOR FORMALISM 277

A key feature of the symmetric monoidal category Corr(C)proper
all;all is that every object

X is self-dual. In particular, it is easy to see that the morphisms

X //

∆
��

∗

X ×X

and X
∆ //

��

X ×X

∗

give the unit and counit maps, respectively. Applying the symmetric monoidal
functor Sh, we obtain that the DG category Sh(X) is self-dual.

Moreover, it is straightforward to check that given a map f ∶ X → Y ∈ C, the
morphisms

X
f // Y

X

and X

f

��

X

Y

are dual in Corr(C)proper
all;all . Hence the functors f ! and f∗ are dual to each other.

Tensor structure.

The symmetric monoidal structure on the functor Sh gives a natural isomorphism

⊠ ∶ Sh(X)⊗ Sh(Y) ∼→ Sh(X × Y);

in the case that Sh is only right-lax symmetric monoidal, we would only have a
functor.

Moreover, by construction of the symmetric monoidal structure on Corr(C)proper
all;all ,

we have that the functor

Cop → Corr(C)proper
all;all

given by ‘horizontal morphisms’ is symmetric monoidal, where the symmetric monoidal
structure on Cop is given by coproduct. In particular, every object X ∈ Cop has
a canonical structure of a commutative algebra with multiplication given by the
opposite of the diagonal map

(X →X ×X)op

(see Chapter 1, Sect. 5.1.8). Thus, Sh(X) carries a symmetric monoidal structure
!
⊗ given by !-restriction along the diagonal ∆ ∶X →X ×X.

Projection formula.

Suppose that we have an object Y ∈ C. By the above, we have that Y has a
canonical structure of a commutative algebra object in Corr(C)proper

all;all . Furthermore,

if f ∶ X → Y is a morphism in Y , we have that X has a canonical structure of a
module over Y . It is straightforward to see that in this case the morphism

X

f

��

X

Y

278 INTRODUCTION

has the structure of a morphism of Y -modules in Corr(C)proper
all;all . In particular,

applying the symmetric monoidal functor Sh, we obtain that the functor

f∗ ∶ Sh(X)→ Sh(Y)
has the structure of a functor of Sh(Y)-modules, as desired.

3. Constructing functors

Having constructed the categories Corr(C)vert;horiz and Corr(C)admvert;horiz, our
next problem is how to construct functors

Corr(C)vert;horiz → 1 -Cat .

In our main application, C = Schaft, S = 1 -Cat, and Φ is supposed to send a
scheme X to the category IndCoh(X). We take vert and horiz to be all morphisms
in Schaft.

3.1. It turns out, however, that in order to construct functors out of Corr(C)vert;horiz,
it is convenient (and necessary, if one wants to retain canonicity) to enlarge it to
an (∞,2)-category Corr(C)admvert;horiz.

Suppose that S is an (∞,2)-category. A functor

Φ ∶ Corr(C)admvert;horiz → S

encodes the following data (in addition to that of its restriction to Corr(C)vert;horiz):

For a 1-morphism (c γ→ c′) ∈ adm, the 1-morphism

Φ!(γ) ∶ Φ(c′)→ Φ(c)
in S identifies with the right adjoint of

Φ(γ) ∶ Φ(c)→ Φ(c′).
We recall that the notion of adjoint morphisms makes sense in an arbitrary (∞,2)-
category.

3.2. The above 2-categorical enhancement plays a crucial role for the following
reason.

Suppose that horiz ⊂ vert, and consider the (∞,2)-category Corr(C)horizvert;horiz.
We have a tautological functor

Cvert ≃ Corr(C)vert;isom → Corr(C)vert;horiz → Corr(C)horizvert;horiz.

Then the basic result (Chapter 7, Theorem 3.2.2) is that for any target S,
restriction along the above functor identifies the space of functors

Corr(C)horizvert;horiz → S
with the full subspace of functors

Cvert → S,
consisting of those functions for which for every α ∈ horiz, the corresponding 1-
morphism Φ(α) in S admits a right adjoint, and the Beck-Chevalley conditions are
satisfied (see Chapter 7, Sect. 3.1 for what this means).

The above theorem is the initial input for any functor out of any category of
correspondences considered in this book.

3. CONSTRUCTING FUNCTORS 279

3.3. For example, let us take C = Schaft with vert = all and horiz = proper. Then
starting from IndCoh, viewed as a functor

(3.1) Schaft → DGCatcont,

(with respect to the operation of direct image), we canonically extend it to a functor

Corr(Schaft)proper
all;proper → DGCat2 -Cat

cont .

Similarly, taking horiz = open, and inverting the direction of 2-morphisms, we
canonically extend (3.1) to a functor

Corr(Schaft)open
all;open → (DGCat2 -Cat

cont)2 -op.

3.4. In Chapter 7 we prove two fundamental theorems that allow to (uniquely)
extend functors defined on one category of correspondences to a larger one. Rather
than giving the abstract formulation, we will consider the example of C = Schaft.

Together, these theorems allow to start with IndCoh, viewed as a functor as in
(3.1), and extend it to a functor

Corr(Schaft)proper
all;all → DGCat2 -Cat

cont .

3.5. The first of these theorems, Chapter 7, Theorem 4.1.3, allows to treat the
following situation:

Let us be given a functor

Φ ∶ Corr(Schaft)closed
all;all → S,

and we want to extend to a functor

Corr(Schaft)proper
all;all → S.

I.e., the initial functor was only defined on 2-morphisms given by closed em-
beddings, and we want to extend it to 2-morphisms given by proper maps.

The assertion of Chapter 7, Theorem 4.1.3 is that if such an extension exists,
it is unique, and one can give explicit conditions for the existence.

The idea here is that for a separated map f ∶ S → S′, the diagram

S

SS ×
S′
S

S′

S

�� f //

f

��

//

��

))
��

provides a 2-morphism

id→ Φ!(f) ○Φ(f),
which will be the unit of an adjunction if f is proper.

280 INTRODUCTION

3.6. The second theorem, Chapter 7, Theorem 5.2.4, is designed to treat the
following situation. Let us be given a functor

(3.2) Φ ∶ Corr(Schaft)all;open → S
(see Sect. 3.3 for the example that we have in mind) and we want to extend to a
functor

(3.3) Corr(Schaft)proper
all;all → S.

Again, the claim is that if such an extension exists, it is unique, and one can
give explicit conditions for the existence.

The idea here is the following: as a first step we restrict Φ to

Schaft ≃ Corr(Schaft)all;isom ⊂ Corr(Schaft)all;open,

and then extend it to Corr(Schaft)proper
all;proper, using Chapter 7, Theorem 4.1.3 (see

Sect. 3.3 for the example we have in mind).

Thus, we now have Φ!(f) defined separately for f open and proper. One now
uses Nagata’s theorem that any morphism can be factored into a composition of
an open morphism, followed by a proper one.

The bulk of the proof consists of showing how the existence of such factoriza-
tions leads to the existence and uniqueness of the functor (3.3).

We emphasize that in this theorem the 2-categorical structure on the category
of correspondences is essential. I.e., even if we are only interested in the functor

Φ! ∶ (Schaft)op → S,
we need to pass by 2-categories in order to obtain it from the initial functor (3.2).

4. Extension theorems

The Chapter V.2 contains two results (Theorems 1.1.9 and 6.1.5) that allow to
(uniquely) extend a given functor

Φ ∶ Corr(C)admvert;horiz → S
to a functor

Ψ ∶ Corr(D)admvert;horiz → S,
along the functor Corr(C)admvert;horiz → Corr(D)admvert;horiz, corresponding to a functor

between (∞,1)-categories C→D.

4.1. Let us explain the typical situation that Chapter 8, Theorem 1.1.9 is applied
to. We start with IndCoh, viewed as a functor

Corr(Schaft)nil-closed
all;all → DGCatcont,

and we want to (canonically) extend it to a functor1

Corr(infSchlaft)nil-closed
all;all → DGCatcont .

We do not really know what is the general 2-categorical paradigm in which
such an extension fits (it has features of both the left and right Kan extension).

1Here we really have to work with the class of nil-closed morphisms rather than proper ones,
because Chapter 8, Theorem 1.1.9 only applies in this situation. The further extension to proper

morphisms is obtained by the procedure described in Sect. 3.5.

5. (SYMMETRIC) MONOIDAL STRUCTURES 281

Again, the 2-categorical structure on the category of correspondences here is
essential.

4.2. Let us now explain what Chapter 8, Theorem 6.1.5 says. We start with the
functor

(4.1) Corr(Schaft)proper
all;all → S,

and we wish to (canonically) extend it to a functor

(4.2) Corr(PreStklaft)sch & proper
sch;all → S.

Here the subscript sch stands for the class of schematic maps, and the super-
script sch & proper stands for the class of schematic and proper maps.

The required extension is the 2-categorical right Kan extension. However, the
particular properties of the functor

Corr(Schaft)proper
all;all → Corr(PreStklaft)sch & proper

sch;all

make this extension procedure very manageable.

Namely, it turns out that the restriction of (4.2) along

Corr(PreStklaft)sch;all → Corr(PreStklaft)sch & proper
sch;all

equals the right Kan extension along the functor of (∞,1)-categories

Corr(Schaft)all;all → Corr(PreStklaft)sch;all

of the restriction of (4.1) along

Corr(Schaft)all;all → Corr(Schaft)proper
all;all .

I.e., the above 2-categorical right Kan extension is essentially 1-categorical.

Moreover, the further restriction of (4.2) along

(PreStklaft)op ≃ Corr(PreStklaft)isom;all → Corr(PreStklaft)sch;all

equals the right Kan extension along

(Schaft)op → (PreStklaft)op

of the further restriction of (4.1) along

(Schaft)op ≃ Corr(Schaft)isom;all → Corr(Schaft)all;all.

I.e., this extension procedure ‘does the right thing’ on objects and pullbacks.

A similar discussion applies when we replace Corr(Schaft)proper
all;all by Corr(infSchaft)proper

all;all

and Corr(PreStklaft)sch & proper
sch;all by Corr(PreStklaft)infsch & proper

infsch;all .

5. (Symmetric) monoidal structures

In Chapter 9 we study the symmetric monoidal structure that arises on the
(∞,2)-category Corr(C)admvert;horiz, induced by the Cartesian symmetric monoidal

structure on C. But in fact, our primary focus will be on the (∞,1)-category
Corr(C)vert;horiz.

The essence of Chapter 9 is the following two observations. Assume for simplic-
ity that vert = horiz = all, and consider the (∞,1)-category Corr(C) = Corr(C)all;all.

282 INTRODUCTION

5.1. The first observation is the following. We note that the category Corr(C)
carries a canonical anti-involution, given by swapping the roles of vertical and
horizontal arrows.

We show that this involution canonically identifies with the dualization functor
on Corr(C) for the symmetric monoidal structure on the latter.

As a corollary, we obtain that whenever

Φ ∶ Corr(C)→O

is a symmetric monoidal functor, where O is a target symmetric monoidal category,
for every c ∈ C, the corresponding object Φ(c) ∈ O is canonically self-dual.

This fact is responsible for the Serre duality on IndCoh on schemes: apply the
above observation to the functor

IndCohCorr(Schaft)all;all ∶ Corr(Schaft)all;all → DGCatcont .

5.2. The second observation has to do with the construction of convolution cate-
gories.

Let c● be a Segal object of C. I.e., this is a simplicial object such that for every
n ≥ 2, the map

c1 ×
c0
... ×

c0
c1,

given by the product of the maps

[1]→ [n], 0↦ i,1↦ i + 1, i = 0, ..., n − 1,

is an isomorphism2.

We show that c1, regarded as as object of Corr(C), carries a canonical struc-
ture of associative algebra, (with respect to the symmetric monoidal structure on
Corr(C)). For example, the binary operation on c1 is given by the diagram

c2 ÐÐÐÐ→ c1 × c1

×××Ö
c1,

in which the vertical map is given by the active map [1] → [2], and the horizontal
map is given by the product of the two inert maps [1]→ [2].

As a corollary, we obtain that whenever we are given a monoidal functor

Φ ∶ Corr(C)→O,

where O is a monoidal category, the object Φ(c1) ∈ O acquires a structure of
associative algebra.

In particular, taking C = Schaft, O = DGCatcont, and Φ to be the functor
IndCoh, we obtain that for a Segal object X● in the category of schemes, the

2An alternative terminology is category object.

5. (SYMMETRIC) MONOIDAL STRUCTURES 283

category IndCoh(X1) is endowed with a monoidal structure, given by convolution.
I.e., it is given by pull-push along the diagram

X1 ×
X0

X1 ÐÐÐÐ→ X1 ×X1

×××Ö
X1.

CHAPTER 7

The (∞,2)-category of correspondences

Introduction

This chapter contains one of the two main innovations in this book: functors
out of the (∞,2)-category of correspondences (the other one being the notion of
inf-scheme).

The idea of the (∞,2)–category of correspondences, as a way to encode bi-
variant functors that satisfy base change, was explained to us by J. Lurie. So,
in a sense we realize his suggestion, even though our approach to the definition
of the (∞,2)-category of correspondences is different from what he had originally
envisaged1.

0.1. Why do we need it?
0.1.1. Suppose we have an (∞,1)-category C, and let S be a target (∞,1)-
category.

We want to express, in a functorial way, what it means to have a bi-variant
assignment

c ∈ C ↝ Φ(c) ∈ S

that satisfies base change.

In other words, we want to have a functor

Φ ∶ C→ S

and also a functor

Φ! ∶ Cop → S

that interact as follows:

(1) At the level of objects, for any c ∈ C we are given an isomorphism Φ(c) ≃
Φ!(c).

(2) Whenever we have a Cartesian square

(0.1)

c0,1
α0ÐÐÐÐ→ c0,0

β1

×××Ö
×××Ö
β0

c1,1
α1ÐÐÐÐ→ c1,0,

we want to be given a base change isomorphism

(0.2) Φ(β1) ○Φ!(α0) ≃ Φ!(α1) ○Φ(β0).

1Lurie’s idea was to construct it combinatorially in terms simplicial sets starting from quasi-
categories, whereas our approach is independent of a particular model for (∞,1)-categories.

285

286 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

We emphasize that, in general, for a morphism γ ∶ c → c′ in C and S = 1 -Cat,
the 1-morphisms

Φ(γ) ∶ Φ(c)→ Φ(c′) and Φ!(γ) ∶ Φ(c′)→ Φ(c)

are not adjoint on either side; therefore, in (0.2) there is no a priori defined map in
either direction.

An example to keep in mind is when C = Schaft and S = 1 -Cat, and we take

Φ(S) = IndCoh(S) with the morphism (S1
f→ S2) being sent to

f IndCoh
∗ ∶ IndCoh(S1)→ IndCoh(S2) and f ! ∶ IndCoh(S2)→ IndCoh(S1),

respectively.

0.1.2. A challenge is to even express what it means for the data (1) and (2) above
to be functorial. Let us give a typical example of why one would want that.

Say, we want to extend the functor

IndCoh ∶ Schaft → 1 -Cat

to a functor

IndCoh ∶ (PreStklaft)sch → 1 -Cat,

where (PreStklaft)sch is the 1-full subcategory of PreStklaft, where we restrict mor-
phisms to maps that are schematic.

In other words, we want to assign to a schematic map Y1
f→ Y2 between

prestacks a functor

f IndCoh
∗ ∶ IndCoh(Y1)→ IndCoh(Y2),

and we want this assignment to be functorial in the ∞-categorical sense.

By definition, for Y ∈ PreStklaft, we have

IndCoh(Y) ∶= lim
Y ∈(Schaft)/Y

IndCoh(Y),

where for a map Y ′ g→ Y ′′ over Y, the corresponding functor IndCoh(Y2) →
IndCoh(Y1) is g!.

For each Y1 → Y1, set Y2 ∶= Y1 ×Y2

Y1, which is a scheme since f was assumed to

be schematic, and let f̃ denote the resulting map Y1 → Y2.

The sought-for functor f IndCoh
∗ is given by the compatible family of functors

f̃ IndCoh
∗ ∶ IndCoh(Y1)→ IndCoh(Y2),

where the compatibility is exactly encoded by the base change isomorphisms.

We will carry out this construction in detail in Chapter 8, Sect. 6.

INTRODUCTION 287

0.1.3. Of course, if S is an ordinary category, one can express the required com-
patibility conditions on the data (1) and (2) in Sect. 0.1.1 by hand: one specifies
the natural transformations (0.2) for each Cartesian square (0.1) requiring that for
a Cartesian diagram

c0,2

α′0ÐÐÐÐ→ c0,1

α′′0ÐÐÐÐ→ c0,0

β2

×××Ö
β1

×××Ö
×××Ö
β0

c1,2

α′1ÐÐÐÐ→ c1,1

α′′1ÐÐÐÐ→ c1,0,

the resulting two natural isomorphisms

Φ(β2) ○Φ!(α′0) ○Φ!(α′′0)⇉ Φ!(α′1) ○Φ!(α′′1) ○Φ(β0)

coincide, and similarly for every Cartesian diagram

c0,1
α0ÐÐÐÐ→ c0,0

β′1

×××Ö
×××Ö
β′0

c1,1
α1ÐÐÐÐ→ c1,0

β′′1

×××Ö
×××Ö
β′′0

c2,1
α2ÐÐÐÐ→ c2,0.

But if S is an ∞-category, the word ‘coincides’ must be replaced by ‘a specified
homotopy’, and thus we need to specify the data of infinitely many homotopies for
(m × n)-diagrams for every m and n.

0.1.4. That said, a way to formulate the above data at the level of ∞-categories
readily presents itself. Here is one possibility: we specify a map between bi-

simplicial spaces (i.e., a map in the category Spc∆op×∆op

) between the following
two objects:

The source is the object of Spc∆op×∆op

that assigns to ([m], [n]) ∈ ∆op ×∆op

the full subspace in Maps([m] × [n],C) that consists of Cartesian diagrams.

The target is the object of Spc∆op×∆op

that assigns to ([m], [n]) ∈ ∆op ×∆op

simply Maps([m] × [n],S).

This is a valid formulation, and we will prove (see Theorem 2.1.3) that it is
equivalent to the one we will ‘officially’ take. Its disadvantage is that a datum of a

map in Spc∆op×∆op

does not look like a datum of a functor between ∞-categories
(however, Theorem 2.1.3, mentioned above, says that it is actually equivalent to
one).

0.1.5. Here is an alternative approach, which is the one we will adopt in this book
as the definition. Namely, we will introduce an (∞,1)-category that we will denote
Corr(C), and our datum will be simply a functor from Corr(C) to S.

In order to define Corr(C), recall following Chapter 10, Sect. 1.2, that the
datum of an (∞,1)-category D is equivalent to one of the complete Segal space

Seq●(D) ∈ Spc∆op

, Seqn(D) = Maps([n],D).

288 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

For the desired (∞,1)-category Corr(C), we take the corresponding object

Seq●(Corr(C)) to be the complete Segal space, denoted Grid≥dgnl
● (C), defined as

follows. We let Grid≥dgnl
n (C) be the space of functors

([n] × [n]op)≥dgnl →C

for which every inner square is Cartesian.

Here ([n] × [n]op)≥dgnl is the ordinary category, equal to the full subcategory
of [n] × [n]op spanned by the objects {i},{j} with i ≤ j.

Note that Corr(C) receives a pair of functors

C→ Corr(C)←Cop

corresponding to the projections

[n]← ([n] × [n]op)≥dgnl → [n]op,

respectively.

0.1.6. Thus, for example, the space of objects of Corr(C) equals that of C. The
space of 1-morphisms in Corr(C) is that of diagrams

(0.3)

c0,1 ÐÐÐÐ→ c0,0

×××Ö
c1,1.

The space of two-fold compositions is that of diagrams

c0,2 ÐÐÐÐ→ c0,1 ÐÐÐÐ→ c0,0

×××Ö
×××Ö

c1,2 ÐÐÐÐ→ c1,1

×××Ö
c2,2,

in which the square
c0,2 ÐÐÐÐ→ c0,1

×××Ö
×××Ö

c1,2 ÐÐÐÐ→ c1,1

is Cartesian.

0.1.7. If the target S is an ordinary category, it is an easy exercise to see that the
datum of a functor

Corr(C)→ S

is equivalent to that of a bi-simplicial map as in Sect. 0.1.4.

If S is a general (∞,1)-category such an equivalence is the content of (a par-
ticular case of) Theorem 2.1.3, mentioned above.

0.2. The actual reason we need it.

INTRODUCTION 289

0.2.1. The above was meant to explain why we need something like the category of
correspondences if we want to have a bi-variant functor with base change. However,
we were led to consider the category Corr(C) for a different reason.

Namely, we simply wanted to define IndCoh! as a functor

(0.4) (Schaft)op → 1 -Cat

that assigns to S ∈ IndCoh the category IndCoh(S) and to a morphism S1
f→ S2

the functor

f ! ∶ IndCoh(S2)→ IndCoh(S1).

The problem, known since at least Hartshorne’s ‘Residues and duality’, is that
for an arbitrary morphism f , the functor f ! is not adjoint to anything.

Namely, when f is proper, f ! is the right adjoint to f IndCoh
∗ , and when f is an

open embedding, f ! is the left adjoint to f IndCoh
∗ . In general, one decomposes f as

a composition f1 ○ f2 with f2 an open embedding and f1 proper, and defines

f ! ∶= ((f2)IndCoh
∗)L ○ ((f1)IndCoh

∗)R.

0.2.2. This gives a valid definition of f ! for a single morphism f , and it is not
difficult to show that it is independent of the decomposition of f as f1○f2. However,
to make this construction functorial (i.e., to have IndCoh as a functor as in (0.4))
becomes a challenge.

For example, let us see what happens with a simple composition f ′ ○ f ′′. We
write

f ′ = f ′1 ○ f ′2 and f ′′ = f ′′1 ○ f ′′2 .
Then to show that

(f ′ ○ f ′′)! ≃ (f ′′)! ○ (f ′)!

we will need to show that

(f ′′1)! ○ (f ′2)! ≃ g! ○ h!,

where f ′2 ○ f ′′1 = h ○ g with g an open embedding and h proper (while f ′′1 was proper
and f ′2 was open, so we need to perform a swap).

One can imagine that this becomes quite combinatorially involved in the ∞-
categorical setting, where one needs to consider n-fold compositions for any n.

0.2.3. Now, it turns out that the notion of a functor out of the category of corre-
spondences provides a convenient framework to deal with the above issues.

However, there is a caveat: the (∞,1)-category Corr(C) as defined above is not
sufficient. We need to enlarge it to an (∞,2)-category by allowing non-invertible
2-morphisms.

This is not surprising: in the construction of f ! we appeal to the notion of
adjoint functor, and the latter is a 2-categorical notion; i.e., it is intrinsic not to
the (∞,1)-category 1 -Cat, but to the (∞,2)-category 1 -Cat.

290 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

0.2.4. Given a class of 1-morphisms in C, denoted adm, satisfying some reasonable
conditions (see Sect. 1.1.1), we will attach to it an (∞,2)-category Corr(C)adm,
such that the underlying (∞,1)-category is Corr(C) as was defined above.

In the example of C = Schaft, we take adm to be the class of proper morphisms.

Let us explain the idea of Corr(C)adm. As was said above, 1-morphisms in
Corr(C)adm are diagrams (0.3). Given such a 1-morphism and another 1-morphism
between the same two objects

c′0,1 ÐÐÐÐ→ c0

×××Ö
c1,

a 2-morphism from the former to the latter is a commutative diagram

c1

c0c′0,1

c0,1

��

//

��

))
γ

��

with γ ∈ adm.

0.2.5. In order to spell out this definition in the ∞-categorical world, we use the
approach to (∞,2)-categories explained in Chapter 10, Sect. 2. Namely, we will
think of a datum of an (∞,2)-category T in terms of the corresponding object

Seq●(T) ∈ 1 -Cat∆op

.

For the desired (∞,2)-category Corr(C)adm, we take the corresponding object

of 1 -Cat∆op

to be the simplicial (∞,1)-category ′′Grid≥dgnl
● (C)adm, defined as

follows.

For any n, the space underlying ′′Grid≥dgnl
n (C)adm equals Grid≥dgnl

n (C) (as it

should be, since we want (Corr(C)adm)1 -Cat = Corr(C)). Now, ′′Grid≥dgnl
n (C)adm

is defined as a 1-full subcategory in

Funct(([n] × [n]op)≥dgnl,C),

where as 1-morphisms we allow natural transformations c→ c′ such that for every
i, j, the corresponding map

ci,j → c′i,j

belongs to the class adm and is an isomorphism for i = j.

INTRODUCTION 291

0.2.6. Here is the theorem that one can prove regarding the functor IndCoh (this
is the combination of Theorems 3.2.2, 4.1.3 and 5.2.4), see Sect. 0.3.7:

Theorem 0.2.7. There exists a uniquely defined functor

(0.5) IndCohproper
all;all ∶ Corr(Schaft)proper → 1 -Cat

whose restriction along

Schaft → Corr(Schaft)→ Corr(Schaft)proper

is identified with the functor

IndCoh ∶ Schaft → 1 -Cat .

The sought-for functor

IndCoh! ∶ (Schaft)op → 1 -Cat

is obtained from the functor IndCohproper
all;all of (0.5) by restriction along

(Schaft)op → Corr(Schaft)→ Corr(Schaft)proper.

0.3. What is done in this chapter?
0.3.1. In Sect. 1 we define the (∞,2)-category of correspondences.

The setting here is slightly more general than the one described in Sects. 0.1
and 0.2 (and this generalization is necessary for what we will develop in subsequent
sections). Namely, in addition to adm we choose two more classes of morphisms in
C, denoted vert and horiz, respectively, so that adm ⊂ vert ∩ horiz.

We restrict the class of one 1-morphisms in Corr(C)adm by only allowing dia-
grams

c0,1
αÐÐÐÐ→ c0

×××Ö
β

c1

where α ∈ horiz and β ∈ vert.
We denote the resulting (∞,2)-category by Corr(C)admvert,horiz. It is endowed

with a pair of functors

Cvert → Corr(C)admvert,horiz ← (Choriz)op.

We describe explicitly the simplicial categories
′′Grid≥dgnl

● (C)admvert,horiz = Seq●(Corr(C)admvert,horiz),
′Grid≥dgnl

● (C)admvert,horiz = SeqPair
● (Corr(C)admvert,horiz,Cadm)

and
Grid≥dgnl

● (C)admvert,horiz = SeqPair
● (Corr(C)admvert,horiz,Cvert).

For every [n] ∈ ∆, each of these categories is a 1-full subcategory inside

Funct(([n] × [n]op)≥dgnl,C).

All three have the same underlying space, denoted Grid≥dgnl
n (C)admvert,horiz. Its

objects are half-grids of objects of C, where each internal square is Cartesian, all
vertical arrows belong to vert and all horizontal arrows belong to horiz.

292 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

0.3.2. To specify a functor

(0.6) Corr(C)admvert,horiz → S,

where S is another (∞,2)-category is equivalent to specifying a map of bi-simplicial
spaces in any of the following versions:

Seq●(′′Grid≥dgnl
● (C)admvert,horiz)→ Sq●,●(S),

Seq●(′Grid≥dgnl
● (C)admvert,horiz)→ Sq●,●(S)

or

Seq●(Grid≥dgnl
● (C)admvert,horiz)→ Sq●,●(S).

In Sect. 2 we give two additional formulations of what it takes to specify a
functor as in (0.6). These formulations are used in the proofs of the various results
establishing the existence and uniqueness of a functor out of a given category of
correspondences with specified properties, discussed in the subsequent sections.

The first of these two formulations is given in terms of maps of bi-simplicial
spaces

defGrid●,●(C)admvert;horiz → Sq●,●(S).
The main difference between defGridm,n(C)admvert;horiz and the space Grid≥dgnl

n (C)admvert,horiz

is that objects of defGridm,n(C)admvert;horiz are functors

[m] × [n]op →C.

I.e., here we are dealing with full (m × n)-grids rather than half-grids. This is
in the spirit of the initial idea in Sect. 0.1.4 of how to functorially account for base
change.

The second description involves a bi-simplicial category, denoted Grid●,●(C)admvert;horiz;
we refer the reader to Sect. 2.2 for the precise statement.

0.3.3. We now ask the following question: how does one ever construct a functor
out of a given category of correspondences Corr(C)admvert,horiz?

In Sect. 3 we state and prove Theorem 3.2.2 that gives an answer to this question
(and, quite probably, any functor out of a category of correspondences ultimately
comes down to the paradigm described in this theorem).

Namely, suppose we have a category C, with horiz a class of 1-morphisms (with
some reasonable properties) as well as a a functor

Φ ∶ C→ S,

where S is some (∞,2)-category. Assume that this functor has the following prop-

erty2: for every arrow c
α→ c′ in horiz, the 1-morphism

Φ(c) Φ(α)→ Φ(c′)
admits a right adjoint. Moreover, assume that these right adjoints satisfy a base
change property against the 1-morphisms

Φ(d) Φ(β)→ Φ(d′), (d β→ d′) ∈ C.

2We emphasize that this is a property and not an additional piece of data.

INTRODUCTION 293

Consider the (∞,2)-category Corr(C)horizall,horiz. The statement of Theorem 3.2.2
is that there exists a uniquely defined functor

Φhorizall,horiz ∶ Corr(C)horizall,horiz → S,

whose composition with C → Corr(C)horizall,horiz is identified with the initial functor
Φ.

For example, if we start with the functor

IndCoh ∶ Schaft → 1 -Cat,

the above theorem allows us to (uniquely) extend it to a functor

IndCohproper
all,proper ∶ Corr(Schaft)proper

all,proper → 1 -Cat

and to a functor

IndCohopen
all,open ∶ Corr(Schaft)open

all,open → (1 -Cat)2 -op.

0.3.4. In Sect. 4 we prove Theorem 4.1.3, which is the first out of the two basic
theorems of this chapter3 that say that starting from a functor from a given (∞,2)-
category of correspondences, there is a canonical way to extend it to a larger one.

Let adm′ ⊃ adm be a larger class of morphisms, satisfying the following as-
sumption: for any γ ∶ c→ c′ from adm′, the diagonal morphism

c→ c ×
c′

c

belongs to adm.

In this case, Theorem 4.1.3 says that restriction under Corr(C)admvert,horiz →
Corr(C)adm′

vert,horiz defines a fully faithful embedding from the space of functors

Corr(C)adm
′

vert,horiz → S
to that of functors

Corr(C)admvert,horiz → S.
Moreover, we give an explicit description of the essential image of this fully

faithful embedding.

0.3.5. Here are some typical applications of Theorem 4.1.3:

(i) Take C = Schaft with adm′ = open, and let adm = isom, so that

Corr(Schaft)isom
all,all = Corr(Schaft)all,all = Corr(Schaft)

is the (∞,1)-category of correspondences from Sect. 0.1.5. We obtain that the
datum of the functor

IndCohopen
all,all ∶ Corr(Schaft)open

all,all → (1 -Cat)2 -op

is equivalent to that of its restriction under Corr(Schaft)→ Corr(Schaft)open
all,all,

IndCohall,all ∶ Corr(Schaft)all,all → 1 -Cat .

(i’) Same as above, but we consider the pair

Corr(Schaft)all,open ∶= Corr(Schaft)isom
all,open ⊂ Corr(Schaft)open

all,open

3A few more theorems of this kind will be given in Chapter 8.

294 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

and the functor

IndCohopen
all,open ∶ Corr(Schaft)open

all,open → (1 -Cat)2 -op.

(ii) Take C = Schaft with adm′ = proper, and let adm = closed be the class of closed
embeddings. Then Theorem 4.1.3 implies that the datum of a functor

IndCohproper
all,all ∶ Corr(Schaft)proper

all,all → 1 -Cat,

can be uniquely recovered from its restriction under Corr(Schaft)closed
all,all → Corr(Schaft)proper

all,all ,

IndCohclosed
all,all ∶ Corr(Schaft)closed

all,all → 1 -Cat.

(ii’) The same applies to the case when C = clSch and the functor in question is

Dmodproper
all,all ∶ Corr(clSchaft)proper

all,all → 1 -Cat.

(iii) We take C = clSch with adm′ = closed, while adm = isom, so that

Corr(clSch)isom
all,all = Corr(clSch)all,all = Corr(clSch)

is the (∞,1)-category of correspondences. We start with a functor

Dmodclosed
all,all ∶ Corr(clSch)closed

all,all → 1 -Cat,

and we conclude that it can be uniquely recovered from its restriction under the
functor Corr(clSch)all,all → Corr(clSch)closed

all,all ,

Dmodall,all ∶ Corr(clSch)all,all → 1 -Cat .

Note that combining with (ii’) and (iii), we obtain that the datum of the functor

Dmodproper
all,all ∶ Corr(clSch)proper

all,all → 1 -Cat

can be uniquely recovered from its restriction under Corr(clSch)all,all → Corr(Schaft)proper
all,all ,

Dmodall,all ∶ Corr(clSch)all,all → 1 -Cat .

Remark 0.3.6. The point is that in (iii) we take fiber products in the category
clSch, and in this category, for a closed embedding S → S′, the map

S → S ×
S′
S

is an isomorphism (which is of course completely false in Sch). On the other hand,
if we tried to consider IndCoh out of the category clSch, it would fail to satisfy base
change.

INTRODUCTION 295

0.3.7. In Sect. 5 we prove the second of the two extension results, Theorem 5.2.4.
It is this theorem that allows us to construct the functor

IndCohproper
all,all ∶ Corr(Schaft)proper

all,all → 1 -Cat,

starting from just

IndCoh ∶ Schaft → 1 -Cat .

In this theorem, we start with four classes of morphisms vert, horiz, as well as
adm and co -adm with some reasonable assumptions. The example one should keep
in mind is when C = Schaft with vert = horiz = all, adm = proper and co -adm =
open.

We start with a functor

(0.7) Φvert,co -adm ∶ Corr(C)vert,co -adm → S1 -Cat,

and we wish to extend it to a functor

(0.8) Φadmvert,horiz ∶ Corr(C)admvert,horiz → S.

Theorem 5.2.4 says that under a certain assumption on horiz, adm and co -adm,
restriction along Corr(C)admvert,horiz → Corr(C)vert,co -adm defines a fully faithful map

from the space of functors (0.8) to the space of functors (0.7), whose essential image
is explicitly described.

The assumption on our classes of morphisms is that for a given 1-morphism

c0
α→ c1, the category of its factorizations as

c0
ε→ c0

γ→ c1, ε ∈ co -adm, γ ∈ adm
is contractible.

In our main application, we start with the functor

IndCohopen
all,open ∶ Corr(Schaft)open

all,open → (1 -Cat)2 -op

(which is uniquely constructed starting from IndCoh ∶ Schaft → 1 -Cat, see Sect. 0.3.3);
we restrict it to a functor

IndCohall,open ∶ Corr(Schaft)all,open → 1 -Cat

(this restriction does not lose information, see Example (i’) in Sect. 0.3.5 above);
and finally apply Theorem 5.2.4 to extend IndCohall,open to the desired functor

IndCohproper
all,all ∶ Corr(Schaft)proper

all,all → 1 -Cat.

0.3.8. We should remark that if one is only interested in constructing the functor

IndCoh! ∶ (Schaft)op → 1 -Cat,

then one can make do with a vastly simplified version of Theorem 5.2.4.

Namely, starting from the functor (0.7) we can first restrict it to Corr(C)adm,co -adm,
and then apply Theorem 4.1.3 to obtain a functor

Corr(C)adm∩co -adm
adm,co -adm → S.

Then a much simplified version of Steps B and C of the proof will produce from
the latter functor the desired functor

Φ! ∶ (Choriz)op → S.

296 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

We note, however, that both steps of the procedure just described lose infor-
mation; whereas the one in Theorem 5.2.4 does not.

1. The 2-category of correspondences

In this section, given an (∞,1)-category C with three distinguished classes
of 1-morphisms vert, horiz and adm, we will construct the corresponding (∞,2)-
category of correspondences Corr(C)admvert;horiz.

1.1. The set-up. In this subsection we will list the requirements on the classes
of morphisms vert, horiz and adm, and explain what the desired (∞,2)-category
Corr(C)admvert;horiz is when C is an ordinary category. In this case, Corr(C)admvert;horiz

will be an ordinary 2-category, which can specified by saying what are its objects,
1-morphisms and 2-morphisms.

1.1.1. Let C be an (∞,1)-category. Let vert, horiz be two classes of 1-morphisms
in C, and adm ⊂ vert ∩ horiz a third class, such that:

(1) The identity maps of objects of C belong to all three classes;

(2) If a 1-morphism belongs to a given class, then so do all isomorphic 1-
morphisms;

(3) All three classes are closed under compositions.

(4) Given a morphism α1 ∶ c1,1 → c1,0 in horiz and a morphism β0 ∶ c0,0 → c1,0

vert, the Cartesian square

(1.1)

c0,1
α0ÐÐÐÐ→ c0,0

β1

×××Ö
×××Ö
β0

c1,1
α1ÐÐÐÐ→ c1,0

exists, and α0 ∈ horiz and β1 ∈ vert. Moreover, if α1 (resp., β0) belongs
to adm, then so does α0 ∈ horiz (resp., β1 ∈ vert).

(5) The class adm satisfies the ‘2 out of 3’ property: if

c1
α→ c2

β→ c3

are maps with β and β ○ α in adm, then α is also in adm.

For example, if C contains fiber products for all morphisms, we can take vert =
horiz = adm to be the class of all 1-morphisms.

We let

Cvert, Choriz and Cadm

denote the corresponding 1-full subcategories of C.

1. THE 2-CATEGORY OF CORRESPONDENCES 297

1.1.2. Note the following consequences of the above conditions.

First, we claim that if c → c′ is a 1-morphism that belongs to adm, then so
does the diagonal morphism c→ c ×

c′
c.

Second, the above observation implies that for a diagram

c1

��
c2

//

��

c3

��

c′1

��
c′2 // c′3

with the slanted maps in adm, vertical arrows in vert and horizontal arrows in
horiz, the resulting map

c1 ×
c3

c2 → c′1 ×
c′3

c′2

is in adm.

1.1.3. We wish to define a (∞,2)-category, denoted Corr(C)admvert;horiz. We want
its objects be the same as objects of C.

For c0,c1 ∈ Corr(C), we want the (∞,1)-category

MapsCorr(C)adm
vert;horiz

(c0,c1)

to have as objects correspondences

(1.2)

c0,1
αÐÐÐÐ→ c0

×××Ö
β

c1

where α ∈ horiz and β ∈ vert.

For a pair of correspondences (c0,1, α, β) and (c′0,1, α′, β′), we want the space
of maps between them to be that of commutative diagrams

(1.3)

c1

c0c′0,1

c0,1

β

��

α
//

β′

��

α′

))
γ

��

with γ ∈ adm.

298 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

Composition of 1-morphisms should be given by forming Cartesian products:

c0,2 ÐÐÐÐ→ c0,1 ÐÐÐÐ→ c0

×××Ö
×××Ö

c1,2 ÐÐÐÐ→ c1

×××Ö
c2.

1.1.4. It is easy to check that when C is an ordinary category, the above construc-
tion indeed gives rise to an (ordinary) 2-category.

To give the actual definition in the ∞-categorical framework, we shall use the
formalism of Chapter 10, Sect. 2.1

1.2. The Segal category of correspondences. In this subsection we will carry
out the construction of the sought-for category Corr(C)admvert;horiz.

The construction will be very intuitive: when we think of the datum of an
(∞,2)-category in terms of its image under the functor

Seq● ∶ 2 -Cat→ 1 -Cat∆op

,

it is quite clear what the simplicial (∞,1)-category corresponding to Corr(C)admvert;horiz

should be. Namely, for each n, the corresponding (∞,1)-category, denoted ′′Grid≥dgnl
n (C)admvert;horiz,

is one whose objects are half-grids of size n of objects of C, in which every square
is Cartesian.

This category ′′Grid≥dgnl
n (C)admvert;horiz of half-grids is easy to make sense of in

the ∞-categorical setting, because it is obtained from a category of functors from
a (very simple) ordinary category to C.

1.2.1. Let (C, vert, horiz, adm) be as in Sect. 1.1.1. We will now define the desired
object

′′Grid≥dgnl
● (C)admvert;horiz ∈ 1 -Cat∆op

.

Consider the following co-simplicial object of 1 -Cat, which in fact takes values
in ordinary categories. For each n = 0,1,2, ... we consider the full subcategory

([n] × [n]op)≥dgnl ⊂ [n] × [n]op,

spanned by objects (i, j) with i ≤ j.

Consider the (∞,1)-category

Maps (([n] × [n]op)≥dgnl,C) .

1. THE 2-CATEGORY OF CORRESPONDENCES 299

I.e., this is the category of commutative diagrams c

(1.4)

c0,n ÐÐÐÐ→ c0,n−1 ÐÐÐÐ→ ... ÐÐÐÐ→ c0,1 ÐÐÐÐ→ c0,0

×××Ö
×××Ö

×××Ö
c1,n ÐÐÐÐ→ c1,n−1 ÐÐÐÐ→ ... ÐÐÐÐ→ c1,1

×××Ö
×××Ö

×××Ö
... ÐÐÐÐ→ ... ÐÐÐÐ→ ...
×××Ö

×××Ö
cn−1,n ÐÐÐÐ→ cn−1,n−1

×××Ö
cn,n.

1.2.2. For n = 0,1,2, ... we define an (∞,1)-category ′′Grid≥dgnl
n (C)admvert;horiz to be

the following 1-full subcategory of Maps (([n] × [n]op)≥dgnl,C).

The objects of ′′Grid≥dgnl
n (C)admvert;horiz consist of those diagrams (1.4) that:

(1) All the vertical maps belong to vert;

(2) All the horizontal maps belong to horiz;

(3) All squares are Cartesian.

We restrict 1-morphisms to those maps c → c′ between diagrams (1.4), for
which the corresponding map

ci,j → c′i,j
belongs to adm for all 0 ≤ i ≤ j ≤ n and is an isomorphism when i = j.
1.2.3. It is clear that for a map [m]→ [n] in ∆, the restriction functor

Maps (([n] × [n]op)≥dgnl,C)→Maps (([m] × [m]op)≥dgnl,C)
sends

′′Grid≥dgnl
n (C)admvert;horiz → ′′Grid≥dgnl

m (C)admvert;horiz.

Hence, we obtain a well-defined object

′′Grid≥dgnl
● (C)admvert;horiz ∈ 1 -Cat∆op

.

Proposition 1.2.4. The object ′′Grid≥dgnl
● (C)admvert;horiz ∈ 1 -Cat∆op

lies in the
essential image of the functor Seq●.

Proof. The fact that 0-simplices of ′′Grid≥dgnl
● (C)admvert;horiz are a space follows

from the definition. The fact that ′′Grid≥dgnl
● (C)admvert;horiz is a Segal category is also

clear. Thus, we only have to check that every invertible 1-simplex is degenerate.

A 1-simplex in ′′Grid≥dgnl
● (C)admvert;horiz is given by a diagram

d ÐÐÐÐ→ c0

×××Ö
c1,

300 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

and the fact that it is invertible means that this diagram can be completed to a
diagram

d′ ÐÐÐÐ→ c1 ÐÐÐÐ→ d′
βÐÐÐÐ→ c1

×××Ö
×××Ö

×××Ö
α

c0 ÐÐÐÐ→ d ÐÐÐÐ→ c0

×××Ö
×××Ö

d′
βÐÐÐÐ→ c1

×××Ö
α

c0,

with all the squares being Cartesian, and both composite maps c0 → c0 (resp.,
c1 → c1) are the identity maps. However, this implies that all the arrows in this
diagram are isomorphisms.

�

1.2.5. We define the (∞,2)-category

Corr(C)admvert;horiz ∈ 2 -Cat,

to be such that

Seq●(Corr(C)admvert;horiz) = ′′Grid≥dgnl
● (C)admvert;horiz.

The (∞,2)-category Corr(C)admvert;horiz can thus be recovered as

Corr(C)admvert;horiz ≃ L(′′Grid≥dgnl
● (C)admvert;horiz),

see Chapter 10, Sect. 4.4.1 where the functor L is introduced.

Note that we have a canonical identification

(Corr(C)admvert;horiz)1 -op ≃ Corr(C)admhoriz;vert.

1.3. Changing the class of 2-morphisms. In this subsection we show that if
we replace the class adm (which gives rise to 2-morphisms) by a smaller one, things
work as they should.

In particular, we will see that the (∞,2)-category Corr(C)admvert;horiz contains

Cvert and Cop
horiz as 1-full subcategories.

1.3.1. Let us now be given two classes adm′ and adm as in Sect. 1.1.1 with adm′ ⊂
adm. On the one hand, we can consider the (∞,2)-category Corr(C)adm′

vert;horiz. On
the other hand, we can consider the 2-full subcategory

Corr(C)adm
′⊂adm

vert;horiz ⊂ Corr(C)admvert;horiz,

obtained by leaving by keeping objects and 1-morphisms the same, but restricting
2-morphisms to those diagrams (1.3), where γ ∈ adm′.

The tautological functor

Corr(C)adm
′

vert;horiz → Corr(C)admvert;horiz

1. THE 2-CATEGORY OF CORRESPONDENCES 301

factors through a canonical functor

(1.5) Corr(C)adm
′

vert;horiz → Corr(C)adm
′⊂adm

vert;horiz .

The following is tautological:

Lemma 1.3.2. The functor (1.5) is an equivalence.

1.3.3. Let us consider a particular case of the above construction when adm = isom,
i.e., is the class of all isomorphisms.

In this case, ′′Grid≥dgnl
● (C)isom

vert;horiz belongs to Spc∆op

. Therefore, Corr(C)isom
vert;horiz

is an (∞,1)-category. We shall denote it simply by Corr(C)vert;horiz.

By Lemma 1.3.2, for any adm, we have

(Corr(C)admvert;horiz)1 -Cat ≃ Corr(C)vert;horiz.

1.3.4. Let us now take both classes horiz and adm to be isom. In this case the
corresponding (∞,1)-category

Corr(C)vert;isom = Corr(C)isom
vert;isom

is canonically equivalent to Cvert. Indeed, it is easy to see that for every n, the corre-
sponding category ′′Grid≥dgnl

n (C)isom
vert;isom is canonically equivalent to Maps([n],Cvert)Spc.

Similarly, the (∞,1)-category

Corr(C)isom;horiz = Corr(C)isom
isom,vert

is canonically equivalent to (Choriz)op.

In particular, we obtain the functors:

Cvert ≃ Corr(C)isom
vert;isom → Corr(C)admvert;horiz

and

(Choriz)op ≃ Corr(C)isom
isom,vert → Corr(C)admvert;horiz.

1.4. Distinguishing a class of 1-morphisms. Recall from Chapter 10, Sect.
4.3.7 that in addition to the functor

Seq● ∶ 2 -Cat→ 1 -Cat∆op

there is also a functor SeqPair
● that takes as an input an (∞,2)-category and a class

of its 1-morphisms.

In this subsection we will describe the result applying SeqPair
● to Corr(C)admvert;horiz,

with respect to the following two 1-full subcategories

Cadm ⊂ Cvert ⊂ (Corr(C)admvert;horiz)1 -Cat.

As a result we will see two versions of the simplicial (∞,1)-category ′′Grid≥dgnl
n (C)admvert;horiz,

denoted ′Grid≥dgnl
n (C)admvert;horiz and Grid≥dgnl

n (C)admvert;horiz, respectively.

Both these versions are useful in the applications.

302 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

1.4.1. For a natural number n, we define the (∞,1)-categories

Grid≥dgnl
n (C)admvert;horiz and ′Grid≥dgnl

n (C)admvert;horiz

to be 1-full subcategories Maps (([n] × [n]op)≥dgnl,C) having the same objects as

the category ′′Grid≥dgnl
n (C)admvert;horiz, but a larger class of 1-morphisms:

For Grid≥dgnl
● (C)admvert;horiz we allow those maps c→ c′ between diagrams (1.4),

such that the corresponding maps

ci,j → c′i,j

belong to vert for all 0 ≤ i ≤ j ≤ n, and such that for every 0 ≤ j −1 < j ≤ n, the map

ci,j → c′i,j ×
c′i,j−1

ci,j−1

belongs to adm (i.e., the defect of the corresponding square to be Cartesian is a
1-morphism from adm).

For ′Grid≥dgnl
● (C)admvert;horiz we allow those maps c→ c′ between diagrams (1.4),

such that the corresponding maps

ci,j → c′i,j

belong to adm for all 0 ≤ i ≤ j ≤ n.

Denote also

Grid≥dgnl
n (C)admvert;horiz ∶= Grid≥dgnl

n (C)isom
vert;horiz ≃ (Grid≥dgnl

n (C)admvert;horiz)Spc ≃
≃ (′Grid≥dgnl

n (C)admvert;horiz)Spc ≃ (′′Grid≥dgnl
n (C)admvert;horiz)Spc.

1.4.2. As in the case of ′′Grid≥dgnl
n (C)admvert;horiz, the restriction functor

Maps (([n] × [n]op)≥dgnl,C)→Maps (([m] × [m]op)≥dgnl,C)
sends

Grid≥dgnl
n (C)admvert;horiz →Grid≥dgnl

m (C)admvert;horiz

and
′Grid≥dgnl

n (C)admvert;horiz → ′Grid≥dgnl
m (C)admvert;horiz

Thus, we obtain well-defined objects

Grid≥dgnl
● (C)admvert;horiz and ′Grid≥dgnl

● (C)admvert;horiz

in 1 -Cat∆op

.

Similarly, we obtain an object

Grid≥dgnl(C)admvert;horiz ∈ Spc∆op

.

The following results from the definitions:

Lemma 1.4.3. The objects

′Grid≥dgnl
● (C)admvert;horiz and Grid≥dgnl

● (C)admvert;horiz

of 1 -Cat∆op

are both Segal categories.

2. THE CATEGORY OF CORRESPONDENCES VIA GRIDS 303

1.4.4. We now claim:

Proposition 1.4.5. We have:

(a) Grid≥dgnl
● (C)admvert;horiz = SeqPair

● (Corr(C)admvert;horiz,Cvert).

(b) ′Grid≥dgnl
● (C)admvert;horiz = SeqPair

● (Corr(C)admvert;horiz,Cadm).

Proof. We will give the proof for Grid≥dgnl
● (C)admvert;horiz; the case of ′Grid≥dgnl

● (C)admvert;horiz

is similar.

First, we claim that Grid≥dgnl
● (C)admvert;horiz lies in the essential image of the

functor SeqPair
● , i.e., that it is a half-symmetric Segal category. We can check this

at the level of ordinary Segal categories. Thus, we can replace

Grid≥dgnl
n (C)admvert;horiz by (Grid≥dgnl

n (C)admvert;horiz)ordn,

while
(Grid≥dgnl

n (C)admvert;horiz)ordn ≃ Grid≥dgnl
n (Cordn)admvert;horiz.

Now, for Cordn, its is easy to see that ′Grid≥dgnl
● (Cordn)admvert;horiz is equivalent

to
SeqPair

● (Corr(Cordn)admvert;horiz, (Cordn)adm).

Since
′′Grid≥dgnl

● (C)admvert;horiz ≃ r(Grid≥dgnl
● (C)admvert;horiz),

we conclude that

Grid≥dgnl
● (C)admvert;horiz = SeqPair

● (Corr(C)admvert;horiz,D),
where D is a 1-full subcategory of (Corr(C)admvert;horiz)1 -Cat, with the same class of
objects.

It remains to show that D = Cvert. However, this also follows from the corre-
sponding fact for the underlying ordinary categories.

�

Corollary 1.4.6. We have canonical identifications

Lext(Grid≥dgnl
● (C)admvert;horiz) ≃ Corr(C)admvert;horiz,

and
Lext(′Grid≥dgnl

● (C)admvert;horiz) ≃ Corr(C)admvert;horiz,

where Lext is as in Chapter 10, Sect. 4.4.1.

2. The category of correspondences via grids

According to the previous section, for an (∞,2)-category S the data of a functor

(2.1) Corr(C)admvert;horiz → S
amounts to any of the following:

(i) A map of bi-simplicial spaces Seq●(′′Grid≥dgnl
● (C)admvert;horiz)→ Sq●,●(S);

(ii) A map of bi-simplicial spaces Seq●(′Grid≥dgnl
● (C)admvert;horiz)→ Sq●,●(S);

(iii) A map of bi-simplicial spaces Seq●(Grid≥dgnl
● (C)admvert;horiz)→ Sq●,●(S).

In this section we will give yet two more interpretations of what it takes to
define a functor (2.1).

304 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

One (given by Theorem 2.1.3) will still have the form of maps of from a certain
bi-simplicial space to Sq●,●(S), but the flavor of this new bi-simplicial space will be
different: instead of half-grids we will have m × n-grids of objects of C. The other
one (given by Theorem 2.2.7) involves three-dimensional grids.

We should say right away that the contents of this section are pure combi-
natorics, i.e., manipulating diagrams. The reader may do well by absorbing the
statements of the two main results, Theorems 2.1.3 and 2.2.7, and skipping the
proofs on the first pass.

2.1. The bi-simplicial space of grids with defect. In this subsection we will
introduce the bi-simplicial space of grids with defect and state Theorem 2.1.3.

2.1.1. Consider the following object

defGrid●,●(C)admvert;horiz ∈ Spc∆op×∆op

.

Namely, the space defGridm,n(C)admvert;horiz is the full subspace in

Maps([m] × [n]op,C)

that consists of objects c with the following properties:

(1) For any 0 ≤ i < i + 1 ≤m, the map ci,j → ci+1,j belongs to vert;
(2) For any 0 ≤ j − 1 < j ≤ n, the map ci,j → ci,j−1 belongs to horiz;
(3) For any 0 ≤ i < i + 1 ≤m and 0 ≤ j − 1 < j ≤ n in the commutative square

(2.2)

ci,j ÐÐÐÐ→ ci,j−1

×××Ö
×××Ö

ci+1,j ÐÐÐÐ→ ci+1,j−1,

its defect of Cartesianness, i.e., the map

ci,j → ci+1,j ×
ci+1,j−1

ci,j−1,

belongs to adm.

So, the objects of defGridm,n(C)admvert;horiz are grids of objects of C of height
m and width n, with vertical arrows in vert, horizontal arrows in horiz, and the
defect of Cartesianness of each square in adm.

2.1.2. There exists a canonical map in Spc∆op×∆op

(2.3) defGrid●,●(C)admvert;horiz → Sq●,●(Corr(C)admvert;horiz),

explained in Sect. 2.3.

We will prove:

Theorem 2.1.3. For S ∈ 2 -Cat, the map (2.3) defines an isomorphism be-
tween the space of functors Maps(Corr(C)admvert;horiz,S) and the subspace of maps in

Spc∆op×∆op

defGrid●,●(C)admvert;horiz → Sq●,●(S)
with the following property:

2. THE CATEGORY OF CORRESPONDENCES VIA GRIDS 305

For every object in c ∈ defGrid1,1(C)admvert;horiz, for which the diagram

(2.4)

c0,1 ÐÐÐÐ→ c0,0

×××Ö
×××Ö

c1,1 ÐÐÐÐ→ c1,0

is Cartesian, the corresponding object

(2.5) s0,1 s0,0

s1,1 s1,0

oo

�� ��
oo

�#

in Sq1,1(S) should represent an invertible 2-morphism.

Remark 2.1.4. When S is an ordinary category, the statement of Theorem 2.1.3
is easy to verify directly (and we recommend to anyone who wants to study its proof
to do this exercise).

In general, the intuition behind Theorem 2.1.3 should also be rather clear: both
sides describe the data of a pair of functors

Cvert → S and (Choriz)op → S
and an assignment to a every commutative square (2.4) in C (with vertical arrows
in vert, horizontal arrows in horiz and the defect of Cartesianness in adm) of a
datum of a natural transformation (2.5) in S, such that if (2.4) is Cartesian, then
the natural transformation in (2.5) is an isomorphism.

2.2. The bi-simplicial category of grids. In this subsection we will formulate
Theorem 2.2.7 which gives yet another description of what it takes to define a
functor out of the (∞,2)-category Corr(C)admvert;horiz.

This description uses bi-simplicial (∞,1)-categories (rather than spaces), and
as a result also tri-simplicial spaces.

Having to deal with tri-simplicial spaces may appear as a grueling task, but
unfortunately it seems that one has no choice: we will need Theorem 2.2.7 in order
to prove Theorem 4.1.3, which is one of the key results of this chapter4.

2.2.1. We consider the following object of 1 -Cat∆op×∆op

, denoted Grid●,●(C)admvert;horiz.

For m,n = 0,1, ... we let

Gridm,n(C)admvert;horiz

be the 1-full subcategory of

Maps([m] × [n]op,C),
where we restrict objects to diagrams c satisfying:

(1) For every 0 ≤ i < i + 1 ≤m, the map ci,j → ci+1,j belongs to vert;
(2) For every 0 ≤ j − 1 < j ≤ n, the map ci,j → ci,j−1 belongs to horiz;

4As a dubious comfort to the reader, let us point out that the proof of Theorem 4.1.3 uses
quadri-simplicial spaces, so tri-simplicial ones are not yet the worst.

306 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

(3) For every 0 ≤ i < i + 1 ≤m and 0 ≤ j − 1 < j ≤ n, the square

ci,j ÐÐÐÐ→ ci,j−1

×××Ö
×××Ö

ci+1,j ÐÐÐÐ→ ci+1,j−1,

is Cartesian.

We restrict 1-morphisms to those maps of diagrams c→ c′ such that for every
0 ≤ i ≤m and 0 ≤ j ≤ n, the map

ci,j → c′i,j

belongs to vert, and for every 0 ≤ i ≤ m and 0 ≤ j − 1 < j ≤ n, the defect of
Cartesianness of the square

ci,j ÐÐÐÐ→ ci,j−1

×××Ö
×××Ö

c′i,j ÐÐÐÐ→ c′i,j−1

belongs to adm.

Remark 2.2.2. Note that we impose no condition on the defect of the com-
mutative diagrams

ci,j ÐÐÐÐ→ ci+1,j

×××Ö
×××Ö

c′i,j ÐÐÐÐ→ c′i+1,j .

2.2.3. Consider also the following object of 1 -Cat∆op×∆op

, denoted ′Grid●,●(C)admvert;horiz.

For m,n = 0,1, ... we let

′Gridm,n(C)admvert;horiz

be the 1-full subcategory of Gridm,n(C)admvert;horiz, which has the same objects, but

where we restrict 1-morphisms to those maps of diagrams c→ c′ such that for every
0 ≤ i ≤m and 0 ≤ j ≤ n, the map ci,j → c′i,j is in adm.

Denote also

Grid●,●(C)admvert;horiz ∈ Spc∆op×∆op

,

where

Gridm,n(C)admvert;horiz ∶= (Gridm,n(C)admvert;horiz)Spc.

Remark 2.2.4. The difference between Gridm,n(C)admvert;horiz (resp., ′Gridm,n(C)admvert;horiz)

and defGridm,n(C)admvert;horiz is that the former has fewer objects, but we allow non-
invertible morphisms.

2. THE CATEGORY OF CORRESPONDENCES VIA GRIDS 307

2.2.5. Applying the functor Seq● ∶ 1 -Cat→ Spc∆op

term-wise to

Grid●,●(C)admvert;horiz and ′Grid●,●(C)admvert;horiz

we obtain objects

Seq●(Grid●,●(C)admvert;horiz) and Seq●(′Grid●,●(C)admvert;horiz)

in Spc∆op×∆op×∆op

, so that the corresponding spaces of (l,m,n)-simplices are

Seql(Gridm,n(C)admvert;horiz) and Seql(′Gridm,n(C)admvert;horiz),

respectively.

2.2.6. Recall now (see Chapter 10, Sect. 4.6.1) that to an (∞,2)-category S we
can canonically attach an object

Cu●,●,●(S) ∈ Spc∆op×∆op×∆op

.

There are canonically defined maps

(2.6) Seq●(Grid●,●(C)admvert;horiz)→ Cu●,●,●(Corr(C)admvert;horiz),

(2.7) Seq●(′Grid●,●(C)admvert;horiz)→ Cu●,●,●(Corr(C)admvert;horiz),

explained in Sect. 2.4 below.

We will prove:

Theorem 2.2.7.

(a) For an (∞,2)-category S, the map (2.6) induces an isomorphism from

Maps(Corr(C)admvert;horiz,S)

to the subspace of maps in Spc∆op×∆op×∆op

Maps(Seq●(Grid●,●(C)admvert;horiz),Cu●,●,●(S)),

consisting of those maps, for which for every (0,1,1)-simplex in Seq●(Grid●,●(C)admvert;horiz),

the corresponding (0,1,1)-simplex in Cu●,●,●(S), thought of as a (1,1)-simplex in
Sq●,●(S), represents an invertible 2-morphism in S.

(b) Ditto for ′Grid●,●(C)admvert;horiz instead of Grid●,●(C)admvert;horiz.

Remark 2.2.8. The content of Remark 2.1.4 applies also to Theorem 2.2.7: it
is rather clear why this kind of statement should be true (convince yourself for S
ordinary).

2.3. Construction of the map-I. In this subsection we will construct the map
(2.3).

The reader who prefers to take Theorem 2.1.3 on faith, may choose to skip
this subsection (or better tinker with the relevant objects and invent what the map
(2.3) should be).

308 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

2.3.1. The map (2.3) is constructed as a composition of a map

(2.8) defGrid●,●(C)admvert;horiz → Seq●(Grid≥dgnl
● (C)admvert;horiz),

followed by the map

Seq●(Grid≥dgnl
● (C)admvert;horiz) ≃ SqPair

●,● (Corr(C)admvert;horiz,Cvert)→ Sq●,●(Corr(C)admvert;horiz),
where the first arrow is the isomorphism of Proposition 1.4.5(a).

2.3.2. In its turn, the map (2.8) is constructed as follows. For every n, let

Maps([n]op,C)admvert;horiz

be the 1-full subcategory of Maps([n]op,C), where we restrict objects to those
n-strings c, for which for every 0 ≤ j − 1 < j ≤ n, the corresponding map cj → cj−1

belongs to horiz, and where we restrict 1-morphisms to those maps c → c′ that
satisfy:

(1) For every 0 ≤ j ≤ n, the map cj → c′j belongs to vert;
(2) For every 0 ≤ j − 1 < j ≤ n, the defect of Cartesianness of the square

cj ÐÐÐÐ→ cj−1

×××Ö
×××Ö

c′j ÐÐÐÐ→ c′j−1

belongs to adm.

It is easy to see that

defGrid●,n(C)admvert;horiz ≃ Seq●(Maps([n]op,C)admvert;horiz),
as simplicial spaces.

2.3.3. Now, the sought-for map (2.8) comes from a canonically defined functor

(2.9) Maps([n]op,C)admvert;horiz →Grid≥dgnl
n (C)admvert;horiz.

In fact, the above functor is a fully faithful embedding, whose image consists
of those half-grids, in which the vertical maps are isomorphisms.

2.3.4. In what follows, we will use the following notation. Let I and J be (∞,1)-
categories. Let

Maps(I × Jop,C)admvert;horiz ⊂ Maps(I × Jop,C)
be the subspace consisting of those functors such that:

(1) for every morphism (i0 → i1) ∈ I and every object j ∈ J, the image of the
morphism (i0, j)→ (i1, j) lies in vert;

(2) for every object i ∈ I and every morphism (j0 → j1) ∈ J, the image of the
morphism (i, j0)→ (i, j1) lies in horiz; and

(3) for every pair of morphisms (i0 → i1) ∈ I and (j0 → j1) ∈ J, the defect of
Cartesianness of the resulting diagram in C

(2.10)

ci0,j1 ÐÐÐÐ→ ci0,j0
×××Ö

×××Ö
ci1,j1 ÐÐÐÐ→ ci1,j0

lies in adm.

2. THE CATEGORY OF CORRESPONDENCES VIA GRIDS 309

2.3.5. We claim that the datum of a map of bi-simplicial spaces

(2.11) defGrid●,●(C)admvert;horiz → Sq●,●(S)
gives rise to a map

(2.12) Maps(I × Jop,C)admvert;horiz →Maps(I⊛ J,S)
that behaves functorially in I and J.

In the above formula, ⊛ is the Gray tensor product, see Chapter 10, Sect. 3.2.

Moreover, if the map (2.11) satisfies the additional condition of Theorem 2.1.3,
then the map (2.12) has the property that it sends every square (2.10) that is
Cartesian to a diagram in S representing an invertible 2-morphism.

Indeed, each side in (2.12) is the limit over the index category

([m]→ I) × ([n]→ J)
of terms equal to

defGridm,n(C)admvert;horiz and Sqm,n(S),
respectively.

2.4. Construction of the map-II. In this subsection we will carry out the con-
struction of the map (2.6). The case of (2.7) is similar.

The reader who prefers to take Theorem 2.2.7 on faith may choose to skip this
subsection.

2.4.1. Recall (see Chapter 10, Proposition 3.2.9) that for an (∞,2)-category S and
n, there exists a canonical monomorphism of bi-simplicial spaces

(2.13) Sq●,●(Seqext
n (S))→ Cu●,●,n(S),

where Seqext
n (S) ∈ 1 -Cat is regarded as an (∞,2)-category. Explicitly,

Sql,m(Seqext
n (S)) = Maps(([l]×[m])⊛[n],S) and Cu●,●,n(S) = Maps([l]⊛[m]⊛[n],S),

and the map (2.13) comes from

[l]⊛ [m]⊛ [n] ≃ ([l]⊛ [m])⊛ [n]→ ([l] × [m])⊛ [n].

2.4.2. Recall the category

Maps([n]op,C)admvert;horiz

(see Sect. 2.3.2).

The functor (2.6) will be defined as the composition of a map

(2.14) Seq●(Grid●,n(C)admvert;horiz)→ Sq●,●(Maps([n]op,C)admvert;horiz)
(where Maps([n]op,C) ∈ 1 -Cat is regarded as an (∞,2)-category), followed by

Sq●,●(Maps([n]op,C)admvert;horiz)→ Sq●,●(Grid≥dgnl
n (C)admvert;horiz)

Proposition 1.4.5≃
≃ Sq●,●(SeqPair

n (Corr(C)admvert;horiz,Cvert))→ Sq●,●(Seqext
n (Corr(C)admvert;horiz))→

→ Cu●,●,n(Corr(C)admvert;horiz),
where the first arrow is induced by the functor (2.9) and the last arrow from (2.13).

310 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

2.4.3. To define (2.14), let us write both sides out explicitly. The space of (l,m)-
simplices in the right-hand side is the full subspace of

Maps([l] × [m] × [n]op,C),

consisting of diagrams c satisfying the following conditions:

(1) For every i, j and k the map ci,j,k → ci,j,k−1 belongs to horiz;
(2) For every i, j and k the map ci,j,k → ci,j+1,k belongs to vert;
(3) For every i, j and k the map ci,j,k → ci+1,j,k belongs to vert;
(4) For every i, j and k, the defect of Cartesianness of the diagram

ci,j,k ÐÐÐÐ→ ci,j,k−1

×××Ö
×××Ö

ci+1,j,k ÐÐÐÐ→ ci+1,j,k−1

belongs to adm.
(5) For every i, j and k, the defect of Cartesianness of the diagram

ci,j,k ÐÐÐÐ→ ci,j,k−1

×××Ö
×××Ö

ci,j+1,k ÐÐÐÐ→ ci,j+1,k−1

belongs to adm.

Now, the left-hand side in (2.14) is the subspace of the space of diagrams as
above, where we strengthen condition (5) as follows:

We require that the square

ci,j,k ÐÐÐÐ→ ci,j,k−1

×××Ö
×××Ö

ci,j+1,k ÐÐÐÐ→ ci,j+1,k−1

be Cartesian.

2.4.4. One can view the resulting map

Maps(Corr(C)admvert;horiz,S)→Maps(Seq●(Grid●,●(C)admvert;horiz),Cu●,●,●(S))

in Theorem 2.2.7 (which we have just defined by completing the construction of
(2.6)) also as follows.

It is the composition of the map

Maps(Corr(C)admvert;horiz,S)→Maps(defGrid●,●(C)admvert;horiz,Sq●,●(S))

in Theorem 2.1.3, followed by a map

(2.15) MapsSpc∆op×∆op (defGrid●,●(C)admvert;horiz,Sq●,●(S))→
→MapsSpc∆op×∆op×∆op (Seq●(Grid●,●(C)admvert;horiz),Cu●,●,●(S)),

constructed as follows.

2. THE CATEGORY OF CORRESPONDENCES VIA GRIDS 311

2.4.5. Given a map

(2.16) defGrid●,●(C)admvert;horiz → Sq●,●(S),
we need to construct maps

(2.17) Seql(Gridm,n(C)admvert;horiz)→ Cul,m,n(S)

that depend functorially on [l], [m], [n] ∈ ∆op ×∆op ×∆op.

By Sect. 2.3.5, a map in (2.16) gives rise to a map

Maps(([l] × [m]) × [n]op,C)admvert;horiz →Maps(([l] × [m])⊛ [n]),S),
while

Seql(Gridm,n(C)admvert;horiz) ⊂ Maps(([l] × [m]) × [n]op,C)admvert;horiz

and

Maps(([l] × [m])⊛ [n]),S) ⊂ Cul,m,n(S).

Now, we obtain the desired map in (2.17) as the composite:

Seql(Gridm,n(C)admvert;horiz)→Maps(([l] × [m]) × [n]op,C)admvert;horiz →
→Maps(([l] × [m])⊛ [n]),S)→ Cul,m,n(S).

2.5. Proof of Theorems 2.1.3 and 2.2.7: initial remarks. We shall only
consider point (a) of Theorem 2.2.7, point (b) being similar.

The proof will consist of constructing the inverse maps. Its key idea (which is
completely straightforward once you understand what should map where) is given
in Sect. 2.5.4.

2.5.1. It it is easy to see that the essential image of the map in Theorem 2.1.3
belongs to

Maps0(defGrid●,●(C)admvert;horiz,Sq●,●(S)) ⊂ MapsSpc∆op×∆op (defGrid●,●(C)admvert;horiz,Sq●,●(S)),

where Maps0(defGrid●,●(C)admvert;horiz,Sq●,●(S)) is the subspace, singled out by the
condition in Theorem 2.1.3.

Furthermore, the map in Theorem 2.2.7 is the composition of the above map

Maps(Corr(C)admvert;horiz,S)→Maps0(defGrid●,●(C)admvert;horiz,Sq●,●(S))
and a map

(2.18) Maps0(defGrid●,●(C)admvert;horiz,Sq●,●(S))→
→Maps0(Seq●(Grid●,●(C)admvert;horiz),Cu●,●,●(S)),

where

Maps0(Seq●(Grid●,●(C)admvert;horiz),Cu●,●,●(S)) ⊂
⊂ MapsSpc∆op×∆op×∆op (Seq●(Grid●,●(C)admvert;horiz),Cu●,●,●(S))

is the subspace singled out by the condition in Theorem 2.2.7, and the map (2.18)
is induced by (2.15).

312 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

2.5.2. We will construct a map

(2.19) Maps0(Seq●(Grid●,●(C)admvert;horiz),Cu●,●,●(S))→
→MapsSpc∆op×∆op (Grid≥dgnl

● (C)admvert;horiz,Seqext
● (S)),

where

MapsSpc∆op×∆op (Grid≥dgnl
● (C)admvert;horiz,Seqext

● (S)) ≃ Maps(Corr(C)admvert;horiz,S)

by Corollary 1.4.6.

It will be a tedious but straightforward verification that each of the three com-
positions

Maps(Corr(C)admvert;horiz,S)→Maps(Corr(C)admvert;horiz,S),

Maps0(defGrid●,●(C)admvert;horiz,Sq●,●(S))→Maps0(defGrid●,●(C)admvert;horiz,Sq●,●(S))
and

Maps0(Seq●(Grid●,●(C)admvert;horiz),Cu●,●,●(S))→
→Maps0(Seq●(Grid●,●(C)admvert;horiz),Cu●,●,●(S))

is canonically isomorphic to the identity map. We will leave this verification to the
reader.

2.5.3. Note that the left-hand side in (2.19) is a subspace in the space of maps of
tri-simplicial spaces, from Seq●(Grid●,●(C)admvert;horiz) to Maps([●]⊛ ([●] × [●]),S),
where the latter assigns to i, j, k the space

Maps([i]⊛ ([j] × [k]),S).

By definition, the right-hand side in (2.19) is the space of maps of bi-simplicial

spaces, from Seq●(Grid≥dgnl
● (C)admvert;horiz) to Maps([●] ⊛ [●],S), where the latter

assigns to m,n the space

Maps([m]⊛ [n],S).
Note that the diagonal map [n] → ([n] × [n])≥dgnl defines a map of bi-simplicial
spaces

Maps([●]⊛ ([●] =× [●])≥dgnl,S)→Maps([●]⊛ [●],S),
where the former bi-simplicial space assigns to m,n the space

Maps([m]⊛ ([n] × [n])≥dgnl,S).

We will construct a map

(2.20)

MapsSpc∆op×∆op×∆op (Seq●(Grid●,●(C)admvert;horiz),Maps([●]⊛ ([●] × [●]),S))→

→MapsSpc∆op×∆op (Seq●(Grid≥dgnl
● (C)admvert;horiz),Maps([●]⊛([●] =×[●])≥dgnl,S)).

2. THE CATEGORY OF CORRESPONDENCES VIA GRIDS 313

Then, by composing from (2.20) we obtain a map

Maps0(Seq●(Grid●,●(C)admvert;horiz),Cu●,●,●(S))↪

→MapsSpc∆op×∆op×∆op (Seq●(Grid●,●(C)admvert;horiz),Maps([●]⊛ ([●]× [●]),S)) (2.20)→

→MapsSpc∆op×∆op (Seq●(Grid≥dgnl
● (C)admvert;horiz),Maps([●]⊛([●] =× [●])≥dgnl,S))→

→MapsSpc∆op×∆op (Seq●(Grid≥dgnl
● (C)admvert;horiz),Maps([●]⊛ [●],S)) =

= MapsSpc∆op×∆op (Grid≥dgnl
● (C)admvert;horiz,Seqext

● (S)).

giving rise to the desired map (2.19).

2.5.4. The key idea. Let us explain where the map (2.20) will come from. For
simplicity, let us consider the corresponding map

(2.21) MapsSpc∆op×∆op (Grid●,●(C)admvert;horiz,Maps([●] × [●],S))→

→MapsSpc∆op (Grid≥dgnl
● (C)admvert;horiz,Maps(([●] =× [●])≥dgnl,S)),

where we recall that

Gridm,n(C)admvert;horiz ∶= (Gridm,n(C)admvert;horiz)Spc

and

Grid≥dgnl
n (C)admvert;horiz ∶= (Grid≥dgnl

n (C)admvert;horiz)Spc.

The idea behind the existence of the map (2.21) is the following motto ‘if we
know how to map grids of objects in C to diagrams on S, then we can extend this
to half-grids’.

We will turn this motto into an actual construction in the next few subsections.

2.6. Digression: clusters. By a cluster we mean a category that ‘looks like’
[m] × [n] or ([n] × [n])≥dgnl. This class of categories will come handy for the
construction of the map (2.20).

2.6.1. Let Q be an (∞,1)-category, equipped with a pair of 1-full subcategories
Qvert and Qhoriz. To it we associate a bi-simplicial space Sq●,●(Qvert,horiz) as
follows.

For every m,n, the space Sqm,n(Qvert,horiz) is a subspace of Sqm,n(Q) consist-
ing of objects such that for every [1]× [0]→ [m]× [n] (resp., [0]× [1]→ [m]× [n])
the resulting object of Sq0,1(Q) (resp., Sq1,0(Q)) belongs to vert (resp., horiz).

For any (∞,1)-category D we have a tautologically defined map

(2.22) Maps(Q,D)→Maps(Sq●,●(Qvert,horiz),Sq●,●(D))

The map (2.22) does not have to be an isomorphism in general. Note, however,
that if (2.22) is an isomorphism for any D, then the triple (Q,Qvert,Qhoriz) is
uniquely determined by the bi-simplicial space Sq●,●(Qvert,horiz).

Below we will describe a class of triples (Q,Qvert,Qhoriz) for which (2.22) is
an isomorphism.

314 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

2.6.2. Let Q be a convex subset of {0, ...,m} × {0, ..., n} for some m and n. To
such Q we attach a triple (Q,Qvert,Qhoriz) by letting Q be the full subcategory
of [m] × [n] spanned by Q, and Qvert (resp., Qhoriz) be given by vertical (resp.,
horizontal) arrows (where we are thinking of the first coordinate as the vertical
direction, and the second coordinate as the horizontal diction).

By a cluster we shall mean a triple (Q,Qvert,Qhoriz) which is equivalent to
one coming from a convex subset Q ⊂ {0, ...,m} × {0, ..., n} as above.

In Sect. 2.8 we will prove:

Proposition 2.6.3. If (Q,Qvert,Qhoriz) is a cluster, then the map (2.22) is
an isomorphism for any D.

2.6.4. For a bi-simplicial space B, let Bhoriz-op be the bi-simplicial space obtained
by applying the involution rev ∶ ∆→∆ along the second copy of ∆op in ∆op×∆op.

Note that if (Q,Qvert,Qhoriz) is a cluster, there exists a canonically defined
cluster

(Q,Qvert,Qhoriz)horiz-op,

characterized by the property that

Sq●,●((Q,Qvert,Qhoriz)horiz-op) = (Sq●,●(Q,Qvert,Qhoriz))horiz-op.

We let Q(n) denote the cluster given by the subset

({0, ...n} × {0, ..., n})≥dgnl ⊂ {0, ...n} × {0, ..., n}.
Note that the underlying category is ([n] × [n])≥dgnl.

Consider the cluster Q(n)horiz-op. Note that its underlying category is ([n] ×
[n]op)≥dgnl.

2.7. Proof of Theorems 2.1.3 and 2.2.7: continuation. We recall that we
need to construct the map (2.20). The idea is that we can construct something a
lot more general: namely, a map from the left-hand side in (2.20) to

MapsSpc∆op (Seq●(Qhoriz-op(C)admvert;horiz),Maps([●]⊛Q,S))

for any cluster Q (see below for the notation Qhoriz-op(C)admvert;horiz).

Such a map is more or less tautological, modulo Proposition 2.6.3.

2.7.1. Let Q be a cluster with the underlying category Q and the attached bi-
simplicial space Sq●,●(Qvert,horiz). We will also consider the cluster Qhoriz-op and

the corresponding category, denoted Qhoriz-op.

Analogous to the definition of the category

Grid≥dgnl
n (C)admvert;horiz,

we have the category Qhoriz-op(C)admvert;horiz, which is a 1-full subcategory in Maps(Qhoriz-op,C).
We will construct maps

(2.23)

MapsSpc∆op×∆op×∆op (Seq●(Grid●,●(C)admvert;horiz),Maps([●]⊛ ([●] × [●]),S))→
→Maps(Seqm(Qhoriz-op(C)admvert;horiz),Maps([m]⊛Q,S)),

2. THE CATEGORY OF CORRESPONDENCES VIA GRIDS 315

functorial in Q and [m] ∈ ∆op. By taking Q = Q(n), we will obtain the desired
map (2.20).

2.7.2. Consider the tri-simplicial space

Seq●([m]) ⊠ Sq●,●(Qvert,horiz),

where ⊠ denotes the product operation

Spc∆op

× Spc∆op×∆op

→ Spc∆op×∆op×∆op

.

We have a naturally defined map from the space

MapsSpc∆op×∆op×∆op (Seq●(Grid●,●(C)admvert;horiz),Maps([●]⊛ ([●] × [●]),S))

to the space of maps

(2.24)

MapsSpc∆op×∆op×∆op (Seq●([m])⊠Sq●,●(Qvert,horiz),Seq●(Grid●,●(C)admvert;horiz))→
MapsSpc∆op×∆op×∆op (Seq●([m]) ⊠ Sq●,●(Qvert,horiz),Maps([●]⊛ ([●] × [●]),S)).

We will how that the left-hand side in (2.24) identifies canonically with

Seqm(Qhoriz-op(C)admvert;horiz)

and the right-hand side with

Maps([m]⊛Q,S),

as required.

2.7.3. We shall first analyze the right-hand side in (2.24). We have:

MapsSpc∆op×∆op×∆op (Seq●([m]) ⊠ Sq●,●(Qvert,horiz),Maps([●]⊛ ([●] × [●]),S)) ≃
≃ MapsSpc∆op×∆op (Sq●,●(Qvert,horiz),Maps([m]⊛ ([●] × [●]),S)) ≃

≃ MapsSpc∆op×∆op (Sq●,●(Qvert,horiz),Maps([●] × [●],Funct([m],S)lef-lax) ≃
≃ MapsSpc∆op×∆op (Sq●,●(Qvert,horiz),Sq●,●(Funct([m],S)left-lax)),

which, using Proposition 2.6.3, we identify with

Maps(Q,Sq●,●(Funct([m],S)left-lax)) ≃ Maps([m]⊛Q,S),

as required.

In the above formula, the notation Funct(−,−)left-lax is stands for the (∞,2)-
category, whose objects are functors, but whose 1-morphisms are left-lax natural
transformations, see Chapter 10, Sect. 3.2.7.

316 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

2.7.4. Let us now analyze the left-hand side in (2.24). We have:

MapsSpc∆op×∆op×∆op (Seq●([m])⊠Sq●,●(Qvert,horiz),Seq●(Grid●,●(C)admvert;horiz)) ≃
≃ MapsSpc∆op×∆op (Sq●,●(Qvert,horiz),Seqm(Grid●,●(C)admvert;horiz)).

Note that the latter expression is a subspace in

MapsSpc∆op×∆op (Sq●,●(Qvert,horiz),Maps([m] × ([●] × [●]op),C)) ≃
≃ MapsSpc∆op×∆op (Sq●,●(Qvert,horiz),Maps([●] × [●]op,Maps([m],C))) ≃

≃ MapsSpc∆op×∆op (Sq●,●(Qvert,horiz)horiz-op,Maps([●] × [●],Maps([m],C))) ≃
≃ Maps(Sq●,●(Qvert,horiz)horiz-op,Sq●,●(Maps([m],C))),

which, using Proposition 2.6.3, we identify

Maps(Qhoriz-op,Maps([m],C)) ≃ Maps([m] ×Qhoriz-op,C).

Similarly, Seqm(Qhoriz-op(C)admvert;horiz) is a subspace in

Maps([m] ×Qhoriz-op,C).

Now, under the identification obtained in this way, we have:

MapsSpc∆op×∆op (Sq●,●(Qvert,horiz),Maps([m]×([●]×[●]op),C)) ≃ Maps([m]×Qhoriz-op,C),

the subspaces

MapsSpc∆op×∆op (Sq●,●(Qvert,horiz),Seqm(Grid●,●(C)admvert;horiz)) ⊂
MapsSpc∆op×∆op (Sq●,●(Qvert,horiz),Maps([m] × ([●] × [●]op),C))

and

Seqm(Qhoriz-op(C)admvert;horiz) ⊂ Maps([m] ×Qhoriz-op,C)

correspond to one another, as required.

2.8. Double Segal spaces and the proof of Proposition 2.6.3. The idea of
the proof is that any cluster can be assembled from pieces for which the assertion
is manifestly true.

2.8.1. By a double Segal space we shall mean a bi-simplicial space B such that for
every fixed m (resp., n), the simplicial space Bm,● (resp., B●,n) is a Segal space.

By Chapter 10, Sect. 4.1.7, the essential image of the functor

Sq●,● ∶ 2 -Cat→ Spc∆op×∆op

is a double Segal space.

2. THE CATEGORY OF CORRESPONDENCES VIA GRIDS 317

2.8.2. Let Q be a cluster, realized as a convex subset of some {0, ...,m}×{0, ..., n}.
For a horizontal line

m1 × {0, ..., n} ⊂ {0, ...,m} × {0, ..., n}
let Q≤m1 , Q≥m1 and Q=m1 be the parts of Q that lie below, above or on that line,
respectively.

Consider the corresponding bi-simplicial spaces

Sq●,●(Q≤m1

vert,horiz) Sq●,●(Q≥m1

vert,horiz), Sq●,●(Q=m1

vert,horiz) and Sq●,●(Qvert,horiz)

and the categories

Q≤m1 , Q≥m1 , Q=m1 and Q.

We have the natural maps

(2.25) Sq●,●(Q≤m1

vert,horiz) ⊔
Sq●,●(Q

≤m1
vert,horiz

)
Sq●,●(Q≤m1

vert,horiz)→ Sq●,●(Qvert,horiz)

and

(2.26) Q≤m1 ⊔
Q=m1

Q≥m1 →Q

We will prove:

Lemma 2.8.3.

(a) The map

Maps(Sq●,●(Qvert,horiz),B)→
→Maps(Sq●,●(Q≤m1

vert,horiz),B) ×
Maps(Sq●,●(Q

=m1
vert,horiz

),B)
Maps(Sq●,●(Q≥m1

vert,horiz),B),

induced by (2.25), is an isomorphism whenever B is a double Segal space.

(b) The map (2.26) is an isomorphism in 1 -Cat.

2.8.4. Let us show how this lemma implies Proposition 2.6.3.

First, by symmetry, we have an analog of Lemma 2.8.3 when instead of horizon-
tal lines we consider vertical ones. This reduces the verification of Proposition 2.6.3
to the following four cases: (i) Q = {0}×{0}, (ii) Q = {0,1}×{0}, (iii) Q = {0}×{0,1}
and (iv) Q = {0,1} × {0,1}.

In each of these cases, the assertion of Proposition 2.6.3 is manifest.

2.8.5. Proof of Lemma 2.8.3. We will prove point (a) of the lemma; point (b) is
similar but simpler.

We have

Sq●,●(Qvert,horiz) = colim
[i]→[m],[j]→[n],Im([i]×[j])⊂Q

Seq●([i]) ⊠ Seq●([j]).

Cofinal in the above index category is the full subcategory, denoted E, that consists
of those maps for which one of the following three scenarios happens:

(1) The image of {0, ..., i} in {0, ...,m} is <m1;
(2) The image of {0, ..., i} in {0, ...,m} is >m1;
(3) The element m1 ∈ {0, ...,m} has a unique preimage in {0, ..., i}.

318 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

For an object

([i]→ [m], [j]→ [n], Im([i] × [j]) ⊂ Q) =∶ e ∈ E
consider the fiber product

Be ∶= (Sq●,●(Q≤m1

vert,horiz) ⊔
Sq●,●(Q

=m1
vert,horiz

)
Sq●,●(Q≥m1

vert,horiz)) ×
Sq●,●(Qvert,horiz)

(Seq●([i])⊠Seq●([j])),

taken in the category Spc∆op×∆op

.

We have:

Sq●,●(Qvert,horiz) ≃ colim
e∈E

Seq●([i]) ⊠ Seq●([j]),

and since fiber products in Spc∆op×∆op

commute with colimits, we also have

Sq●,●(Q≤m1

vert,horiz) ⊔
Sq●,●(Q

=m1
vert,horiz

)
Sq●,●(Q≥m1

vert,horiz) ≃ colim
e∈E

Be.

It remains to show that for every e ∈ E and a double Segal space B, the map

Be → Seq●([i]) ⊠ Seq●([j])
induces an isomorphism

(2.27) Bi,j = Maps(Seq●([i]) ⊠ Seq●([j]),B)→Maps(Be,B).
However, this follows from the fact that Be has the form

(1) Seq●([i]) ⊠ Seq●([j]);
(2) Seq●([i]) ⊠ Seq●([j]);
(3) (Seq●([i1])⊠Seq●([j])) ⊔

Seq●([0])⊠Seq●([j])
(Seq●([i2]))⊠Seq●([j])) for [i1] ⊔

[0]
[i2] ≃ [i]

in each of the three scenarios above. In the first two cases, the map (2.27) is an
isomorphism for any bi-simplicial category B. In the third case, it follows from the
definition of double Segal spaces:

Bi,j → Bi1,j ×
B0,j

Bi2,j

is an isomorphism.
�

3. The universal property of the category of correspondences

One of the main themes of this book is the construction of functors out of given
(∞,2)-category of correspondences. How does one construct such a functor?

In turns out that there is one case, where a datum of a functor

Corr(C)admvert;horiz → S

is equivalent to a datum of a functor Φ ∶ Cvert → (S)1 -Cat, having a particular
property.

We emphasize that this a property, and not an additional piece of data. More-
over, this property essentially occurs at the level of the underlying ordinary 2-
categories. It is called the left Beck-Chevalley condition, and it says that for every
1-morphism α in Choriz, the corresponding 1-morphism Φ(α) in S admits a right
adjoint, and that these right adjoints satisfy base change against Φ(β) for β ∈ Cvert.

3. THE UNIVERSAL PROPERTY OF THE CATEGORY OF CORRESPONDENCES 319

All other instances of a functor out of a (∞,2)-category of correspondences,
considered in this book, will be obtained from this case, by various extension pro-
cedures, considered in the subsequent sections in this chapter and the next.

3.1. The Beck-Chevalley conditions. In this subsection we will give the defi-
nition of the left and right Beck-Chevalley conditions.

3.1.1. Assume that in the context of Sect. 1.1.1, we have horiz ⊂ vert, and adm =
horiz. Let S be an (∞,2)-category, and let

Φ ∶ Cvert → S

be a functor.

Definition 3.1.2. We shall say that Φ satisfies the left Beck-Chevalley condi-
tion with respect to horiz, if for every 1-morphism α ∶ c → c′ with α ∈ horiz, the
corresponding 1-morphism

Φ(α) ∶ Φ(c)→ Φ(c′)
admits a right adjoint, to be denoted Φ!(α), such that for every Cartesian diagram

(3.1)

c0,1
α0ÐÐÐÐ→ c0,0

β1

×××Ö
×××Ö
β0

c1,1
α1ÐÐÐÐ→ c1,0

with α0, α1 ∈ horiz and β0, β1 ∈ vert, the 2-morphism

Φ(β1) ○Φ!(α0)→ Φ!(α1) ○Φ(β0),

arising by adjunction from the isomorphism

Φ(α1) ○Φ(β1) ≃ Φ(β0) ○Φ(α0),

is an isomorphism.

In particular, from the existence of the right adjoints Φ!(α), we obtain a well-
defined functor

Φ! ∶ (Choriz)op → S,

see Chapter 12, Sect. 1.3.

Remark 3.1.3. Note that a functor Φ ∶ Cvert → S satisfies the (left) Beck-
Chevalley condition if and only if its composition with S → Sordn does. So, the
Beck-Chevalley condition is something that can be checked at the level of ordinary
2-categories.

3.1.4. Let us now assume that vert ⊂ horiz and adm = vert. Let S be a 2-category,
and let

Φ! ∶ (Choriz)op → S

be a functor.

320 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

Definition 3.1.5. We shall say that Φ! satisfies the right Beck-Chevalley con-
dition with respect to vert, if for every 1-morphism β ∶ c → c′ with β ∈ vert, the
corresponding 1-morphism

Φ!(β) ∶ Φ!(c′)→ Φ!(c)
admits a left adjoint, to be denoted Φ(β), such that for every Cartesian diagram

(3.2)

c0,1
α0ÐÐÐÐ→ c0,0

β1

×××Ö
×××Ö
β0

c1,1
α1ÐÐÐÐ→ c1,0

with α0, α1 ∈ horiz and β0, β1 ∈ vert, the 2-morphism

(3.3) Φ(β1) ○Φ!(α0)→ Φ!(α1) ○Φ(β0),
arising by adjunction from the isomorphism

Φ!(α0) ○Φ!(β0) ≃ Φ!(β1) ○Φ!(α1),
is an isomorphism.

In particular, if Φ! satisfies the right Beck-Chevalley condition with respect to
vert, we obtain a well-defined functor

Φ ∶ Cvert → S,

see Chapter 12, Sect. 1.3.

3.2. Statement of the universal property. In this subsection we state the
main result of this section: it describes functors out of a (∞,2)-category of corre-
spondences in terms of a 1-categorical datum.

3.2.1. The goal of this section is to prove the following theorem:

Theorem 3.2.2.

(a) Suppose that horiz ⊂ vert and adm = horiz satisfies condition (5) from Sect. 1.1.1.
Then restriction along Cvert → Corr(C)horizvert;horiz defines an equivalence between the
space of functors

Φhorizvert;horiz ∶ Corr(C)horizvert;horiz → S
and the subspace of functors

Φ ∶ Cvert → S
that satisfy the left Beck-Chevalley condition with respect to horiz. For Φhorizvert;horiz

as above, the resulting functor Φ! ∶= Φhorizvert;horiz ∣(Choriz)op is obtained from Φ∣Choriz

by passing to right adjoints.

(b) Suppose that vert ⊂ horiz and adm = vert satisfies condition (5) from Sect. 1.1.1.
Then restriction along (Choriz)op → Corr(C)vertvert;horiz defines an equivalence be-
tween the space of functors

Φvertvert;horiz ∶ Corr(C)vertvert;horiz → S

and the subspace of functors

Φ! ∶ (Choriz)op → S

3. THE UNIVERSAL PROPERTY OF THE CATEGORY OF CORRESPONDENCES 321

that satisfy the right Beck-Chevalley condition with respect to vert. For Φvertvert;horiz

as above, the resulting functor Φ ∶= Φvertvert;horiz ∣Cvert is obtained from Φ!∣(Cvert)op by
passing to left adjoints.

The rest of this section is devoted to the proof of Theorem 3.2.2. By symmetry,
it suffices to treat case (b) of the theorem.

3.2.3. We will first establish the easy direction. Namely, we will start with a
functor

Φvertvert;horiz ∶ Corr(C)vertvert;horiz → S,
and we will show that its restriction

Φ! ∶= Φvertvert;horiz ∣(Choriz)op ∶ (Choriz)op → S

satisfies the left Beck-Chevalley condition and that Φ ∶= Φvertvert;horiz ∣Cvert
is obtained

from Φ!∣(Cvert)op by passing to left adjoints.

Remark 3.2.4. We note, however, that this step is logically unnecessary: in
Sect. 3.3 we will be able to establish the desired isomorphism directly.

3.2.5. Note that according to Remark 3.1.3, we can assume that S is an ordinary
2-category. Since

(Corr(C)vertvert;horiz)ordn ≃ Corr(Cordn)vertvert;horiz,

we can assume that C is an ordinary 1-category. Hence, we can use a hands-on
description of the 2-category Corr(C)vertvert;horiz given in Sect. 1.1.3.

Furthermore, it suffices to consider the universal case, namely when S = Corr(C)vertvert;horiz

and Φ! is the tautological inclusion

(Choriz)op → Corr(C)vertvert;horiz.

3.2.6. Given β ∶ c→ c′ in vert, we need to show that the corresponding 1-morphism
c′ → c in Corr(C)vertvert;horiz, i.e.,

(3.4)

c
βÐÐÐÐ→ c′

idc

×××Ö
c,

admits a left adjoint. We claim that the left adjoint in question is given by the
diagram

(3.5)

c
idcÐÐÐÐ→ c

β
×××Ö
c′.

Let us construct the corresponding unit and co-unit of the adjunction.

The composition (3.4)○(3.5) is given by the diagram

c ×
c′

c ÐÐÐÐ→ c

×××Ö
c

322 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

The unit of the adjunction is given by the diagram:

c.

cc ×
c′

c

c

��

//

idc

��

idc

))
��

The composition (3.5)○(3.4) is given by the diagram

c
βÐÐÐÐ→ c′

β
×××Ö
c′.

The co-unit of the adjunction is given by the diagram:

c′.

c′c′

c

idc′

��

idc′
//

β

��

β

))
β

��

The fact that unit and co-unit maps thus constructed satisfy the adjunction
identities is a straightforward verification.

3.3. Construction of a functor out of the category of correspondences.
In this subsection we will prove Theorem 3.2.2.

If S is an ordinary 2-category, the description of the adjoints given in Sect. 3.2.6
above gives an elementary proof.

However, to give a proof in the ∞-categorical setting, we need a more explicit
description of the notion of adjoint functor. Such a description is furnished by
Chapter 12, Theorem 1.2.4.

3.3.1. Let Φ! ∶ (Choriz)op → S be a functor, such that for every 1-morphism β ∶
c→ c′ with β ∈ vert, the corresponding 1-morphism

Φ!(β) ∶ Φ!(c′)→ Φ!(c)

admits a left adjoint.

3. THE UNIVERSAL PROPERTY OF THE CATEGORY OF CORRESPONDENCES 323

According to Chapter 12, Theorem 1.2.4, the datum of such Φ! is equivalent to
the datum of a map of bi-simplicial spaces

SqPair
●,● ((Choriz)op, (Cvert)op)vert-op → Sq●,●(S).

By construction, for a commutative square

(3.6)

c0,1
α0ÐÐÐÐ→ c0,0

β1

×××Ö
×××Ö
β0

c1,1
α1ÐÐÐÐ→ c1,0,

the resulting 2-morphism

Φ(β1) ○Φ!(α0)→ Φ!(α1) ○Φ(β0)

is obtained by adjunction from the tautological isomorphism

Φ!(α0) ○Φ!(β0) ≃ Φ!(β1) ○Φ!(α1).

3.3.2. According to Theorem 2.1.3, the datum of a functor Φvertvert;horiz ∶ Corr(C)vertvert;horiz →
S is equivalent to the datum of a map of bi-simplicial spaces

defGrid●,●(C)vertvert;horiz → Sq●,●(S)

such that for every object in c ∈ defGrid1,1(C)vertvert;horiz corresponding to a diagram

(3.6) that is Cartesian, the 2-morphism in the corresponding object in Sq1,1(S) is
an isomorphism.

3.3.3. Note, however, that we have a natural monomorphism of bi-simplicial spaces

(3.7) defGrid●,●(C)vertvert;horiz → SqPair
●,● ((Choriz)op, (Cvert)op)vert-op

Therefore, the assertion of Theorem 3.2.2(b) manifestly follows from:

Proposition 3.3.4. The map (3.7) is an isomorphism of bi-simplicial spaces.

Proof. We need to show that for any commutative diagram in C

x1
//

��

x2

��
y1

// y2

with vertical maps in vert and horizontal maps in horiz, the corresponding map

x1 → x2 ×
y2
y1

lies in vert. However, this map is given by the composite

x1 → x2 ×
y2
x1 → x2 ×

y2
y1

where the first map is a base change of x2 → x2 ×
y2
x2 and the second is a base change

of x1 → y1, both of which lie in vert, by assumption. �

324 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

4. Enlarging the class of 2-morphisms at no cost

In this section we will prove the first of the two results of the type that given
a functor from one (∞,2)-category of correspondences, we can canonically extend
it to a functor from another (∞,2)-category of correspondences that has a larger
class of 2-morphisms.

4.1. The setting. In this subsection we explain the setting for the main result of
this section, Theorem 4.1.3.

4.1.1. Let (C, vert, horiz, adm) be as in Sect. 1.1.1. Let (C, vert, horiz, adm′) be
another such data with

adm ⊂ adm′.

We shall also assume that the following condition holds:

For a 1-morphism

γ′ ∶ c→ c′

with γ ∈ adm′, the diagonal map

c→ c ×
c′

c

belongs to adm.

4.1.2. Let Φadmvert;horiz be a functor

Φadmvert;horiz ∶ Corr(C)admvert;horiz → S.

For a morphism γ ∶ c0 → c1 in adm′, consider the commutative (but not neces-
sarily) Cartesian) square

c
idÐÐÐÐ→ c

id
×××Ö

×××Ö
γ

c
γÐÐÐÐ→ c′

which gives rise to a (not necessarily invertible) 2-morphism

id→ Φ!(γ) ○Φ(γ).
We impose the condition that the above 2-morphism define the unit of an

adjunction.

Under the above circumstances, we claim:

Theorem 4.1.3. The functor Φadmvert;horiz admits a unique extension to a functor

Φadm
′

vert;horiz ∶ Corr(C)adm
′

vert;horiz → S.

The rest of this section is devoted to the proof of this theorem.

Remark 4.1.4. The proof of Theorem 4.1.3 is essentially combinatorics, i.e.,
playing with various diagrams. The reader may find it useful to first prove Theo-
rem 4.1.3 in the case when S is an ordinary 2-category; in this case, this is simple
exercise.

4. ENLARGING THE CLASS OF 2-MORPHISMS AT NO COST 325

4.1.5. Starting from Φadmvert;horiz, we shall construct the data of the functor Φadm
′

vert;horiz

as a map of tri-simplicial spaces

(4.1) Seq●(′Grid●,●(C)adm
′

vert;horiz)→ Cu●,●,●(S),

satisfying the additional condition of Theorem 2.2.7. I.e., we need to construct a
map

(4.2) Seql(′Gridm,n(C)adm
′

vert;horiz)→Maps([l]⊛ [m]⊛ [n],S),

functorial in

[l] × [m] × [n] ∈ ∆op ×∆op ×∆op.

The fact that this extension is uniquely defined will follow from the construc-
tion.

4.2. Idea of the construction.
4.2.1. As was said above, starting from the data of Φadmvert;horiz, we need to construct

the map (4.2). The problem that we will have to confront already occurs when l = 1,
m = 0 and n = 1. I.e., given a square

c0
1

α0ÐÐÐÐ→ c0
0

γ1
×××Ö

×××Ö
γ0

c1
1

α1ÐÐÐÐ→ c1
0

and α0, α1 ∈ horiz and γ0, γ1 ∈ adm′, whose defect of Cartesianness belongs to
adm′, we want to construct a diagram

(4.3) Φ(c0
1) Φ(c0

0)

Φ(c1
1) Φ(c1

0)

oo Φ!(α0)

Φ(γ1)

��

Φ(γ0)

��
oo

Φ!(α1)

�#

The problem is that the data of Φadmvert;horiz does not produce such diagrams:
according to Theorem 2.1.3, we can a priori only construct such diagrams for squares
in which the defect of Cartesianness belongs to adm.

326 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

4.2.2. The trick is the following. Consider the 3-dimensional diagram

(4.4) c0,0
1 ∶= c0

1 c0,0
0 ∶= c0

0

c1,0
1 ∶= c0

1 c1,0
0 ∶= c0

0

c0,1
1 ∶= c0

0 ×
c1
0

c1
1 c0,1

0 ∶= c0
0

c1,1
1 ∶= c1

1 c1,1
0 ∶= c1

0

//

//
�� ��

//

//
�� ��

�� ��

�� ��

We will construct the diagram (4.3) by first constructing the diagram

(4.5)

Φ(c0,0
1) Φ(c0,0

0)

Φ(c1,0
1) Φ(c1,0

0)

Φ(c0,1
1) Φ(c0,1

0)

Φ(c1,1
1) Φ(c1,1

0)

oo Φ!

oo
Φ!

Φ

��

Φ

��

oo Φ!

oo Φ!

Φ

��

Φ

��

Φ

yy Φyy

Φ

yy Φyy

(with appropriate 2-morphisms), and then restricting to the diagonal

Φ(c0,0
1) ←ÐÐÐÐ Φ(c0,0

0)
×××Ö

×××Ö
Φ(c1,1

1) ←ÐÐÐÐ Φ(c1,1
0).

4. ENLARGING THE CLASS OF 2-MORPHISMS AT NO COST 327

4.2.3. We will obtain the diagram (4.5) from the diagram

(4.6)

Φ(c0,0
1) Φ(c0,0

0)

Φ(c1,0
1) Φ(c1,0

0)

Φ(c0,1
1) Φ(c0,1

0)

Φ(c1,1
1) Φ(c1,1

0)

oo Φ!

oo
Φ!

Φ

��

Φ

��

oo Φ!

oo Φ!

Φ

��

Φ

��

99
Φ!

99
Φ!

99
Φ!

99

Φ!

by passing to right adjoints along the slanted arrows.

4.2.4. Now, the point is that the data of the latter diagram, i.e., diagram (4.6), is
contained in the datum of Φadmvert;horiz in its guise as a map of bi-simplicial spaces

(4.7) defGrid●,●(C)admvert;horiz → Sq●,●(S).

Namely, let us recall from Sect. 2.3.5, that the data of a map (4.7) assigns to a
functor I × Jop → C (that sends arrows along I to vert, arrows along Jop to horiz
and where defect of Cartesianness of squares belongs to adm) a functor

I⊛ J→ S.

We take I = [1] and J = [1] × [1], and we take the functor

I × Jop →C

to be given by the diagram (4.4), where I corresponds to the first upper index

(i.e., the “k” in ck,lj). In other words, I is the direction depicted as vertical in the

diagram (4.4).

The key observation is that that the condition on adm ⊂ adm′ from Sect. 4.1.1
implies that the defect of the Cartesianness of the relevant squares in (4.4) (i.e.,
the squares where one side is vertical), does belong to adm.

The resulting functor

[1]⊛ ([1] × [1])→ S

exactly produces the desired diagram (4.6).

4.3. Proof of Theorem 4.1.3, the key construction. In this subsection we
will formally implement the idea explained above.

The map (4.2) will be constructed as a composition of several maps.

328 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

4.3.1. Recall the notation

Maps(I × Jop,C)admvert;horiz ⊂ Maps(I × Jop,C)

from Sect. 2.3.4.

As a first step in constructing the map (4.2), we will produce a functor

(4.8) Seql(′Gridm,n(C)adm
′

vert;horiz)→Maps(([l]×[m])×([n]×[l]op)op,C)admvert;horiz.

The functor (4.8) is given by the following explicit procedure. To an object of

the space Seql(′Gridm,n(C)adm′

vert;horiz), given by

cl
′

m′,n′ , 0 ≤ l′ ≤ l, 0 ≤m′ ≤m, 0 ≤ n′ ≤ n

we assign a map

(4.9) [l] × [m] × [n]op × [l]→C

that sends

(k′,m′, n′, l′)↦ ck
′,l′

m′,n′ ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ck
′

m′,0 ×
cl
′
m,0

cl
′

m,n′ for k′ ≤ l′;

ck
′

m′,0 ×
ck

′
m,0

cl
′

m,n′ for k′ ≥ l′.

It is easy to see that the map (4.9) thus constructed above has the following
properties:

(1) For fixed k′, l′, each square

ck
′,l′

m′,n′ ÐÐÐÐ→ ck
′,l′

m′,n′−1

×××Ö
×××Ö

ck
′,l′

m′+1,n′ ÐÐÐÐ→ ck
′,l′

m′+1,n′−1

is Cartesian.
(2) For fixed n′ and k′, the square

ck
′,l′

m′,n′ ÐÐÐÐ→ ck
′,l′

m′+1,n′

×××Ö
×××Ö

ck
′,l′+1
m′,n′ ÐÐÐÐ→ ck

′,l′+1
m′+1,n′

is Cartesian.
(3) For fixed m′ and l′, the square

ck
′,l′

m′,n′ ÐÐÐÐ→ ck
′,l′

m′,n′−1

×××Ö
×××Ö

ck
′+1,l′

m′,n′ ÐÐÐÐ→ ck
′+1,l′

m′,n′−1

is Cartesian.

4. ENLARGING THE CLASS OF 2-MORPHISMS AT NO COST 329

(4) For fixed m′ and n′, the defect of Cartesianness of the square

ck
′,l′

m′,n′ ÐÐÐÐ→ ck
′,l′+1
m′,n′

×××Ö
×××Ö

ck
′+1,l′

m′,n′ ÐÐÐÐ→ ck
′+1,l′+1
m′,n′

belongs to adm.

(5) For fixed k′,m′, n′, the map ck
′,l′

m′,n′ → ck
′,l′+1
m′,n′ belongs to adm′.

(6) For fixed l′,m′, n′, the map ck
′,l′

m′,n′ → ck+1′,l′

m′,n′ belongs to adm′.

In particular, we obtain that the map (4.9) indeed belongs to

Maps(([l] × [m]) × ([n] × [l]op)op,C)admvert;horiz.

Remark 4.3.2. For an object c ∈ Seql(′Gridm,n(C)adm′

vert;horiz), given by

[l] × [m] × [n]op →C,

the corresponding map (4.9) is uniquely characterized by properties (2) and (3)
above and the following.

(1) The composite map with the diagonal

[l] × [m] × [n]op → [l] × [m] × [n]op × [l]→C

is isomorphic to c;
(2) For k′ ≤ l′ and for all m′, the map

ck
′

m′,0 ≃ ck
′,k′

m′,0 → ck
′,l′

m′,0

is an isomorphism;
(3) For l′ ≤ k′ and for all n′, the map

cl
′

m,n′ ≃ cl
′,l′

m,n′ → ck
′,l′

m,n′

is an isomorphism.

4.3.3. By Theorem 2.1.3 and Sect. 2.3.5, the functor Φadmvert;horiz gives rise to a map

(4.10)

Maps(([l]×[m])×([n]×[l]op)op,C)admvert;horiz →Maps(([l]×[m])⊛([n]×[l]op),S).
Let

Maps0(([l]×[m])×([n]×[l]op)op,C)admvert;horiz ⊂ Maps(([l]×[m])×([n]×[l]op)op,C)admvert;horiz

be the subspace consisting of maps satisfying properties (1) and (3) in Sect. 4.3.1.

Then the map (4.10) has the property that the image of the composition

Maps0(([l]×[m])×([n]×[l]op)op,C)admvert;horiz →Maps(([l]×[m])×([n]×[l]op)op,C)admvert;horiz

→Maps(([l] × [m])⊛ ([n] × [l]op),S)→Maps(([l] × [m])⊛ [n]⊛ [l]op,S)
belongs to

Maps(([l] × [m] × [n])⊛ [l]op,S) ⊂ Maps(([l] × [m])⊛ [n]⊛ [l]op,S).
I.e., we have a well-defined map
(4.11)

Maps0(([l]× [m])× ([n]× [l]op)op,C)admvert;horiz →Maps(([l]× [m]× [n])⊛ [l]op,S).

330 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

Composing with (4.8), we obtain a map

(4.12)

Seql(′Gridm,n(C)adm
′

vert;horiz)→Maps0(([l]× [m])× ([n]× [l]op)op,C)admvert;horiz →
→Maps(([l] × [m] × [n])⊛ [l]op,S).

4.3.4. Let

Maps0(([l] × [m] × [n])⊛ [l]op,S) ⊂ Maps(([l] × [m] × [n])⊛ [l]op,S)
be the subspace of maps that for every fixed k′,m′, n′, the resulting 1-morphism

sk
′,l′+1
m′,n′ → sk

′,l′

m′,n′

admits a left adjoint for every 0 ≤ l′ < l′ + 1 ≤ l.
We shall now use the fact that for a map γ in C that belongs to adm′, the

1-morphsim Φ!(γ) in S admits a left adjoint (see the assumption on Φadmvert;horiz in

Sect. 4.1.2).

Using property (5) in Sect. 4.3.1, this implies that the image of the map (4.12)

belongs to Maps0(([l] × [m] × [n])⊛ [l]op,S).
By Chapter 12, Corollary 3.1.7, we have a canonically defined map

(4.13) Maps0(([l] × [m] × [n])⊛ [l]op,S)→Maps([l]⊛ ([l] × [m] × [n]),S),
giving by passing to left adjoints along the [l]op-direction.

Thus, composing (4.12) and (4.13), we obtain a map

(4.14) Seql(′Gridm,n(C)adm
′

vert;horiz)→Maps([l]⊛ ([l] × [m] × [n]),S).

4.3.5. Consider the composition of (4.14) with the embedding

Maps([l]⊛ ([l] × [m] × [n]),S)→Maps([l]⊛ ([l] × [m])⊛ [n],S).

We thus obtain a map

(4.15) Seql(′Gridm,n(C)adm
′

vert;horiz)→Maps([l]⊛ ([l] × [m])⊛ [n],S).
We claim that its image belongs to the subspace

Maps(([l] × [l] × [m])⊛ [n],S) ⊂ Maps([l]⊛ ([l] × [m])⊛ [n],S).

This follows from properties (2) and (4) in Sect. 4.3.1, and the next lemma:

Lemma 4.3.6. Let
c0

αÐÐÐÐ→ c1

γ0
×××Ö

×××Ö
γ1

c′0
α′ÐÐÐÐ→ c′1

be a commutative diagram in C with γ0, γ1 ∈ adm′ and α,α′ ∈ horiz, and whose
defect of Cartesianness belongs to adm. Then the 2-morphism

(Φ!(γ0))L ○Φ!(α)→ Φ!(α′) ○ (Φ!(γ1))L,
arising by adjunction from the isomorphism

Φ!(α) ○Φ!(γ1) ≃ Φ!(γ0) ○Φ!(α)

4. ENLARGING THE CLASS OF 2-MORPHISMS AT NO COST 331

identifies with the 2-morphism

Φ(γ0) ○Φ!(α)→ Φ!(α′) ○Φ!(γ1),

obtained from the functor Φadmvert;horiz.

Proof. Follows from the assumption in Sect. 4.1.2 by diagram chase. �

Remark 4.3.7. It is easy to see the the conclusion of Lemma 4.3.6 is in fact
equivalent to the assumption in Sect. 4.1.2.

4.3.8. Thus, we obtain a map

(4.16) Seql(′Gridm,n(C)adm
′

vert;horiz)→Maps(([l] × [l] × [m])⊛ [n],S).

Finally, using the diagonal map

[l]→ [l] × [l],

we obtain a map

(4.17) Seql(′Gridm,n(C)adm
′

vert;horiz)→Maps(([l] × [m])⊛ [n],S).

The composition of (4.17) with the embedding

Maps(([l] × [m])⊛ [n],S)↪Maps([l]⊛ [m]⊛ [n],S)

is a map

(4.18) Seql(′Gridm,n(C)adm
′

vert;horiz)→Maps([l]⊛ [m]⊛ [n],S).

This is the desired map of (4.2).

By constriction, its image belongs to

Maps([l]⊛ ([m] × [n]),S) ⊂ Maps([l]⊛ [m]⊛ [n],S).

4.4. Verification of the tri-simplicial functoriality. In order to be more ex-
plicit, we will describe the situation for an individual map in ∆ ×∆ ×∆

(4.19) [l1]→ [l2], [m1]→ [m2], [n1]→ [n2].

4.4.1. Let c2 be an object of Seql2(
′Gridm2,n2(C)adm2

vert;horiz). We let c1 denote

the object of Seql1(
′Gridm1,n1(C)adm′

vert;horiz), obtained from c2 by restricting along

(4.19).

Let s2 be the point of Maps([l2]⊛ [m2]⊛ [n2],S) corresponding to c2 via the
map (4.2). Let s1 be the point of Maps([l1]⊛ [m1]⊛ [n1],S) corresponding to c1

via the map (4.2).

Let s̃1 be the point of Maps([l1]⊛[m1]⊛[n1],S) obtained from s2 by restricting
along (4.19).

We need to establish a canonical isomorphism

(4.20) s1 ≃ s̃1.

332 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

4.4.2. Let c2 denote the object of

Maps0(([l2] × [m2]) × ([n2] × [l2]op)op,C)admvert;horiz

obtained from c2 by the map (4.8), see Sect. 4.3.3 for the notation Maps0(−,C)admvert;horiz.

Let c1 denote the object of

Maps0(([l1] × [m1]) × ([n1] × [l1]op)op,C)admvert;horiz

obtained from c1 by the map (4.8).

Let c̃1 denote the object of

Maps0(([l1] × [m1]) × ([n1] × [l1]op)op,C)admvert;horiz

obtained from c2 by restricting along (4.19).

Let s2 be the object of

Maps(([l2] × [l2])⊛ [m2]⊛ [n2],S),
obtained from c2 via the map (4.11) and passing to left adjoints along the last
variable.

Let s1 and s̃1 be the objects of

Maps(([l1] × [l1])⊛ [m1]⊛ [n1],S),
obtained from c1 and c̃1, respectively, by the same procedure.

We shall now construct a natural transformation

(4.21) s ∈ Maps([1] × (([l1] × [l1])⊛ [m1]⊛ [n1]),S),
whose restriction to {0} ∈ [1] and {1} ∈ [1] identifies with s1 and s̃1, respectively.

Remark 4.4.3. Note, however, that this natural transformation will not be an
isomorphism.

4.4.4. We note that there is a canonically defined map

c1 → c̃1,

which can be regarded as an object c of

Maps([1] × ([l1] × [m1]) × ([n1] × [l1]op)op,C),
and that this object in fact belongs to

Maps0(([1] × [l1] × [m1]) × ([n1] × [l1]op)op,C)admvert;horiz.

Consider the object of

Maps(([1] × [l1] × [m1])⊛ ([n1] × [l1]op),S)
attached to c by means of the functor Φadmvert;horiz.

The image of the above object under

Maps(([1]×[l1]×[m1])⊛([n1]×[l1]op),S)→Maps(([1]×[l1]×[m1])⊛[n1]⊛[l1]op,S)
belongs

Maps(([1]×[l1]×[m1]×[n1])⊛[l1]op,S) ⊂ Maps(([1]×[l1]×[m1])⊛[n1]⊛[l1]op,S),

4. ENLARGING THE CLASS OF 2-MORPHISMS AT NO COST 333

and furthermore to

Maps0(([1]×[l1]×[m1]×[n1])⊛[l1]op,S) ⊂ Maps(([1]×[l1]×[m1]×[n1])⊛[l1]op,S)

(see Sect. 4.3.4 for the notation Maps0(−,S)).

4.4.5. Passing to left adjoints along the last variable, we obtain an object of

Maps([l1]⊛ ([1] × [l1] × [m1] × [n1]),S).

The image of the latter object under

Maps([l1]⊛ ([1]× [l1]× [m1]× [n1]),S)→Maps([l1]⊛ ([1]× [l1]× [m1])⊛ [n1],S)

belongs to

Maps(([l1]× [1]× [l1]× [m1])⊛ [n1],S) ⊂ Maps([l1]⊛ ([1]× [l1]× [m1])⊛ [n1],S).

Further, the image of the latter object under

Maps(([l1]×[1]×[l1]×[m1])⊛[n1],S) = Maps(([1]×[l1]×[l1]×[m1])⊛[n1],S)→
→Maps([1]⊛ ([l1] × [l1] × [m1])⊛ [n1],S)

belongs to

Maps([1]×(([l1]× [l1]× [m1])⊛ [n1]),S) ⊂ Maps([1]⊛([l1]× [l1]× [m1])⊛ [n1],S).

Let us map

Maps([1]×(([l1]×[l1]×[m1])⊛[n1]),S)→Maps([1]×(([l1]×[l1])⊛[m1]⊛[n1]),S),

and denote the resulting object of

Maps([1] × (([l1] × [l1])⊛ [m1]⊛ [n1]),S)

by s. respectively.

This s is the desired natural transformation in (4.21).

4.4.6. Restricting s under [l1]→ [l1] × [l1], we obtain an object of

Maps([1] × ([l1]⊛ [m1]⊛ [n1]),S),

denoted s.

By construction, the restrictions of s to {0} ∈ [1] and {1} ∈ [1] identify with s1

and s̃1, respectively.

This provides the natural transformation from s1 to s̃1. However, we claim that
this natural transformation is an isomorphism, thereby providing the isomorphism
in (4.20).

Indeed, this follows from the fact that the object c, regarded as a natural
transformation from c1 to c̃1, viewed as functors

[l1] × [m1] × [n1]op × [l1]→C,

becomes an isomorphism when restricted to the diagonal copy of [l1]×[m1]×[n1]op.

334 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

5. Functors constructed by factorization

In the section we will describe the second result that allows to start from a
functor out of an (∞,2)-category of correspondences and (canonically) extend it to
a larger (∞,2)-category of correspondences.

This setting arises in practice when we want to construct the !-pullback as a
functor

(5.1) (Schaft)op → DGCatcont,

starting from the functor

Schaft → DGCatcont, X ↝ IndCoh(X), (X f→ Y)↝ f IndCoh
∗ .

The idea is that f ! should be the right adjoint of f IndCoh
∗ if f is proper and

the left adjoint of f IndCoh
∗ if f is an open embedding. For a general f we want

to decompose it as f1 ○ f2, where f2 is an open embedding and f1 is proper. The
challenge is to establish the independence of f ! of such a factorization in a functorial
way (i.e., in the context of ∞-categories).

It appears, however, that even if the original problem of defining functor (5.1)
does not involve the 2-category of correspondences, the construction does necessar-
ily use one (in particular, at a crucial stage we will invoke the already established
Theorem 4.1.3).

5.1. Set-up for the source. In this subsection we will describe what categories
of correspondences are involved in the extension procedure that is that goal of this
section.

5.1.1. We start with a datum of an (∞,1)-category C equipped with three classes
of 1-morphisms (vert, horiz, adm) as in Sect. 1.1.1.

We fix yet one more class co -adm ⊂ horiz, such that the triple (vert, co -adm, isom)
also satisfies the conditions of Sect. 1.1.1.

We shall assume that horiz and co -adm also satisfy the ‘2 out of 3’ property.
I.e., for a pair of composable morphisms β1, β2, if both β1 and β1 ○ β2 belong to
horiz (resp., co -adm), then so does β2.

5.1.2. We now impose the following additional condition on the pair (co -adm,adm).
Namely, we require that for a Cartesian diagram

(5.2)

c ×
c′

c
δ1ÐÐÐÐ→ c

δ2
×××Ö

×××Ö
δ

c
δÐÐÐÐ→ c′

with δ ∈ adm∩ co -adm, the maps δ1 and δ2 both be isomorphisms. In other words,
we require that the diagram

c
idÐÐÐÐ→ c

id
×××Ö

×××Ö
δ

c
δÐÐÐÐ→ c′

5. FUNCTORS CONSTRUCTED BY FACTORIZATION 335

be Cartesian. Equivalently, we require that every map δ ∈ adm ∩ co -adm be a
monomorphism.

5.1.3. The example to keep in mind is that of C = Schaft, with vert = horiz being
all morphisms, adm being proper morphisms and co -adm being open embeddings.

In this case, the class adm ∩ co -adm consists of embeddings of unions of con-
nected components.

5.1.4. We now impose the following crucial condition on the relationship between
the classes adm, co -adm and horiz.

For a 1-morphism α ∶ c0 → c1 in horiz, consider the (∞,1)-category Factor(α),
whose objects are

c0
εÐ→ c0

γÐ→ c1,

where ε ∈ co -adm and γ ∈ adm, and whose morphisms are commutative diagrams

c0

c′0

c′′0

c1.

ε′
77

ε′′ ''

β

��

γ′

''

γ′′

77

Note that by the ‘2-out-of 3’ property, the morphism β automatically belongs to
adm.

We impose the condition that for any α ∶ c0 → c1 in horiz, the category
Factor(α) be contractible.

5.2. Set-up for the functor. In this subsection we will describe what kind of
functors out of our categories of correspondences we will consider, and formulate
Theorem 5.2.4.

5.2.1. Let S be an (∞,2)-category. We start with functors

Φadmvert;adm ∶ Corr(C)admvert;adm → S

and

Φisom
vert;co -adm ∶ Corr(C)isom

vert;co -adm → S
together with an identification of the corresponding functors

Φadmvert;adm∣Cvert ≃ Φisom
vert;co -adm∣Cvert .

Denote

Φ ∶= Φadmvert;adm∣Cvert .

Note that by Theorem 3.2.2, the functor Φadmvert;adm is uniquely reconstructed
from that of Φ, and it exists if and only if Φ satisfies the left Beck-Chevalley
condition with respect to adm ⊂ vert. So, the above data is uniquely recovered
from that of Φisom

vert;co -adm.

In what follows, we shall denote by Φ∗
co -adm the restriction

Φvert;co -adm∣(Cco -adm)op ,

336 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

and by Φ!
adm the restriction

Φadmvert;adm∣(Cadm)op .

5.2.2. We now impose the following additional condition on Φisom
vert;co -adm:

Let

(5.3)

c0,1
ε0ÐÐÐÐ→ c0,0

γ1
×××Ö

×××Ö
γ0

c1,1
ε1ÐÐÐÐ→ c1,0

be a Cartesian diagram with εi ∈ co -adm and γi ∈ adm. Consider the 2-morphism

(5.4) Φ∗
co -adm(ε0) ○Φ!

adm(γ0)→ Φ!
adm(γ1) ○Φ∗

co -adm(ε1)
arising by adjunction from the isomorphism

Φ(γ1) ○Φ∗
co -adm(ε0) ≃ Φ∗

co -adm(ε1) ○Φ(γ0),
the latter being a part of the data of Φisom

vert;co -adm.

We need that (5.4) be an isomorphism for all Cartesian diagrams as above.

5.2.3. We claim:

Theorem 5.2.4. Restriction along

Corr(C)isom
vert;co -adm → Corr(C)admvert;horiz

defines an isomorphism between the space of functors

Φadmvert;horiz ∶ Corr(C)admvert;horiz → S
and that of functors

Φisom
vert;co -adm ∶ Corr(C)isom

vert;co -adm → S,
for which

Φ ∶= Φisom
vert;co -adm∣Cvert

satisfies the left Beck-Chevalley condition with respect to adm ⊂ vert, and such that
the condition from Sect. 5.2.2 holds.

5.3. Proof of Theorem 5.2.4, initial remarks. In this subsection we will ex-
plain the strategy of the proof of Theorem 5.2.4.

5.3.1. First, we shall carry out the easy direction. Namely, we will show that if
we start with a functor

Φadmvert;horiz ∶ Corr(C)admvert;horiz → S,
then the functor

Φisom
vert;co -adm ∶ Corr(C)isom

vert;co -adm → S,
obtained by restriction, satisfies left Beck-Chevalley condition with respect to adm ⊂
vert, and such that the condition from Sect. 5.2.2 holds.

First, the fact that Φ satisfies the left Beck-Chevalley condition with respect
to adm ⊂ vert follows from (the easy direction of) Theorem 3.2.2.

For Φadmvert;horiz as above, let Φ! denote the restriction

Φadmvert;horiz ∣(Choriz)op .

5. FUNCTORS CONSTRUCTED BY FACTORIZATION 337

By assumption,

Φ!∣(Cco -adm)op ≃ Φ∗
co -adm and Φ!∣(Cadm)op ≃ Φ!

adm.

Furthermore, for a Cartesian diagram (5.3), the (iso)morphism

Φ(γ1) ○Φ!(ε0)→ Φ!(ε1) ○Φ(γ0),
is one arising by adjunction from the isomorphism

Φ!(ε0) ○Φ!(γ0) ≃ Φ!(γ0 ○ ε0) ≃ Φ!(ε1 ○ γ1) ≃ Φ!(γ1) ○Φ!(ε1).
In particular, the latter equals the 2-morphism (5.4), which is therefore also an
isomorphism.

5.3.2. We are now going to tackle the difficult direction in Theorem 5.2.4. By
Theorem 2.1.3, the datum of a functor Φadmvert;horiz is equivalent to that of a map of
bi-simplicial spaces

(5.5) defGrid●,●(C)admvert;horiz → Sq●,●(S),
satisfying the additional condition from Theorem 2.1.3.

Given Φisom
vert;co -adm, we shall produce (5.5) in three steps:

Step A. We first extend the initial functor

Φisom
vert;co -adm ∶ Corr(C)isom

vert;co -adm → S

to a functor

(5.6) Φadm∩co -adm
vert;co -adm ∶ Corr(C)adm∩co -adm

vert;co -adm → S.

The existence and uniqueness of the functor Φadm∩co -adm
vert;co -adm in (5.6) follows im-

mediately from the assumptions of Theorem 5.2.4 and Theorem 4.1.3.

Step B. We will introduce a bi-simplicial category Factor●,●(C), equipped with a
bi-simplicial functor

(5.7) Factor●,●(C)→ defGrid●,●(C)admvert;horiz.

We will use Φadm∩co -adm
vert;co -adm to construct a bi-simplicial functor ΦFactor●,●

(5.8) ΦFactorm,n ∶ Factorm,n(C)→ Sqm,n(S).
Step C. Finally, we shall use the ‘contractibility of the space of factorizations’
condition from Sect. 5.1.4, to show that each of the functors

(5.9) Factorm,n(C)→ defGridm,n(C)admvert;horiz

has contractible fibers5. This will imply that the bi-simplicial functor ΦFactor●,●

uniquely factors through the sought-for bi-simplicial map (5.5) via the projection
(5.7).

5.4. Step B: introduction.

5In particular, ∣Factorm,n(C)∣ ≃ defGridm,n(C)admvert;horiz , where the notation ∣ − ∣ is as in

Chapter 1, Sect. 2.1.5.

338 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

5.4.1. We define the category Factorm,n(C) as a 1-full subcategory of

Maps ([m] × ([n]op × [n]op)≥dgnl,C) ,
as follows.

At the level of objects we take those diagrams c that satisfy:

(1) The maps ci,j,k → ci+1,j,k belong to vert;
(2) The maps ci,j,k → ci,j−1,k belong to co -adm;
(3) The maps ci,j,k → ci,j,k−1 belong to adm;
(4) The defect of Cartesianness of the squares

ci,j,k ÐÐÐÐ→ ci,j−1,k

×××Ö
×××Ö

ci+1,j,k ÐÐÐÐ→ ci+1,j−1,k

belongs to adm ∩ co -adm.

As 1-morphisms we allow those maps between diagrams c → c′ for which the
maps

ci,j,k → c′i,j,k
belong to adm and are isomorphisms for j = k.

5.4.2. For example, when m = 1 and n = 2, objects of Factorm,n(C) are the
diagrams

(5.10) c1,2,2

c1,1,2

c1,1,1 c1,0,0

c1,0,1

c1,0,2

c0,2,2

c0,1,2

c0,1,1 c0,0,0

c0,0,1

c1,0,2

??

��

??

��
??

��

??

��

��

��

��

??

��
??

��

��

��

��

with the long slanted arrows in vert, northeast pointing arrows in co -adm, and
southeast pointing arrows in adm.

5.4.3. The functor

Factorm,n(C)→Gridm,n(C)admvert;horiz

is obtained from the diagonal embedding

[n]op → [n]op × [n]op.

5.4.4. In order to perform Step B we need to construct the functor

ΦFactorm,n ∶ Factorm,n(C)→ Sqm,n(S),
functorially in ([n], [m]) ∈ ∆op ×∆op.

5. FUNCTORS CONSTRUCTED BY FACTORIZATION 339

5.4.5. Let explain the idea of this construction for m = 2 and n = 1. Namely, to a
diagram as in (5.10) we want to attach a diagram

(5.11) s0,2,2 s0,1,1 s0,0,0

s1,2,2 s1,1,1 s1,0,0

oo

oo

oo

oo
�� �� ���# �#

We will do it in several steps. First, starting from (5.10) we will use the functor
Φadm∩co -adm
vert;co -adm to produce a diagram

(5.12) s1,2,2

s1,1,2

s1,1,1 s1,0,0,

s1,0,1

s1,0,2

s0,2,2

s0,1,2

s0,1,1 s0,0,0.

s0,0,1

s0,0,2

�� ��

�� ��

�� ��

�� ��

��

��

��

�� ��

�� ��

��

��

��

(here the squares are not necessarily commutative, but have 2-morphisms along
appropriate faces), where along the long slanted arrows we take the 1-morphisms
Φ, along the southwest pointing arrows we take the 1-morphisms Φ∗

co -adm, and
along the southeast pointing arrows we take the 1-morphisms Φ.

From the diagram (5.12), by taking right adjoints along the southeast pointing
arrows, we obtain the diagram

(5.13) s1,2,2

s1,1,2

s1,1,1 s1,0,0.

s1,0,1

s1,0,2

s0,2,2

s0,1,2

s0,1,1, s0,0,0

s0,0,1

s0,0,2

��

__
��

__

��

__

��

__
��

__

��

__

��

��

�� ��

��

��

Finally, the desired diagram (5.11) is obtained from the diagram (5.13) by
passing to the diagonal (by letting the 2nd and the 3rd indices be equal).

340 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

5.5. Step B: preparations. In order to prepare for Step B, we need to perform
a certain manipulation with the functor Φadm∩co -adm

vert;co -adm constructed in Step A.

5.5.1. Let us explain what we want to construct.

Let us be given a functor

c ∶ [l]op × [m] × [n]op →C,

such that:

(1) For every l′,m′, the map cl′,m′,n′ → cl′,m′,n′−1 belongs to co -adm;
(2) For every l′, n′, the map cl′,m′,n′ → cl′,m′+1,n′ belongs to vert;
(3) For every m′, n′, the map cl′,m′,n′ → cl′−1,m′,n′ belongs to adm;
(4) For every n′, the square

cl′,m′,n′ ÐÐÐÐ→ cl′−1,m′,n′

×××Ö
×××Ö

cl′,m′+1,n′ ÐÐÐÐ→ cl′−1,m′+1,n′

is Cartesian;
(5) For every m′, the defect of Cartesianness of the square

cl′,m′,n′ ÐÐÐÐ→ cl′−1,m′,n′

×××Ö
×××Ö

cl′,m′,n′−1 ÐÐÐÐ→ cl′−1,m′,n′−1

belongs to adm ∩ co -adm;
(6) For every l′, the defect of Cartesianness of the square

cl′,m′,n′ ÐÐÐÐ→ cl′,m′,n′−1

×××Ö
×××Ö

cl′,m′+1,n′ ÐÐÐÐ→ cl′,m′+1,n′−1

belongs to adm ∩ co -adm.

We claim that to any such c we can attach a functor

s ∶ [m]⊛ [n]⊛ [l]→ S,

such that:

(1) For every l′,m′, n′, we have sm′,n′,l′ = Φ(cl′,m′,n′);
(2) For every l′,m′, the 1-morphism sm′,n′−1,l′ → sm′,n′,l′ is obtained by ap-

plying Φ∗
co -adm to the arrow cl′,m′,n′ → cl′,m′,n′−1;

(3) For every m′, n′, the morphism sm′,n′,l′−1 → sm′,n′,l′ is obtained by apply-

ing Φ!
adm to the arrow cl′,m′,n′ → cl′−1,m′,n′ ;

(4) For every l′, n′, the morphism sm′,n′,l′ → sm′+1,n′,l′ is obtained by applying
Φ to the arrow cl′,m′,n′ → cl′,m′+1,n′ ;

5. FUNCTORS CONSTRUCTED BY FACTORIZATION 341

(5) For every m′, the 2-morphism in the diagram

sm′,n′,l′ sm′,n′−1,l′

sm′,n′,l′−1 sm′,n′−1,l′−1

oo
OO OO

oo
v~

is an isomorphism.

We now explain how this is done.

5.5.2. First, by Theorem 2.1.3 and Sect. 2.3.5, the functor Φadm∩co -adm
vert;co -adm gives rise

to a map in Spc∆op×∆op×∆op

(5.14)

Maps(([l]op × [m]) × [n]op,C)adm∩co -adm
vert;co -adm →Maps(([l]op × [m])⊛ [n],S)→

→Maps([l]op ⊛ [m]⊛ [n],S).

Let

Mapsadm(([l]op×[m])×[n]op,C)adm∩co -adm
vert;co -adm ⊂ Maps(([l]op×[m])×[n]op,C)adm∩co -adm

vert;co -adm

be the subspace consisting of those diagrams such that for every fixed 0 ≤ m′ ≤ m
and 0 ≤ n′ ≤ n, the map

cl′,m′,n′ → cl′−1,m′,n′

belongs to adm, for 0 ≤ l′ − 1 < l′ ≤ l.

5.5.3. By the assumption on Φ, the image of Mapsadm(([l]op×[m])×[n]op,C)adm∩co -adm
vert;co -adm

under the map (5.14) belongs to the subspace

Maps0([l]op ⊛ [m]⊛ [n],S) ⊂ Maps([l]op ⊛ [m]⊛ [n],S),

consisting of functors such that for every fixed 0 ≤ m′ ≤ m and 0 ≤ n′ ≤ n, the
1-morphism

sl′,m′,n′ → sl′−1,m′,n′

admits a right adjoint, for 0 ≤ l′ − 1 < l′ ≤ l.

By Chapter 12, Corollary 3.1.7, we have a canonically defined map

Maps0([l]op ⊛ [m]⊛ [n],S)→Maps([m]⊛ [n]⊛ [l],S).

Thus, we obtain a map in Spc∆op×∆op×∆op

(5.15) Mapsadm(([l]op × [m]) × [n]op,C)adm∩co -adm
vert;co -adm →Maps([m]⊛ [n]⊛ [l],S),

functorial in [l], [m], [n] ∈ Spc∆op×∆op×∆op

.

We claim:

Proposition 5.5.4. The image of the map (5.15) belongs to Maps([m]⊛([n]×
[l]),S).

342 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

Proof. The statement of the proposition is equivalent to the following one:
let

c0
εÐÐÐÐ→ c1

γ0
×××Ö

×××Ö
γ1

c′0
ε′ÐÐÐÐ→ c′1,

be a commutative diagram with the vertical maps belong to adm and the horizontal
ones to co -adm (in which case, its defect of Cartesianness automatically belongs
to adm ∩ co -adm, see Lemma 5.6.2 below). Consider the 2-morphism

(5.16) Φ∗
co -adm(ε) ○Φ!

adm(γ1)→ Φ!
adm(γ0) ○Φ∗

co -adm(ε′)

arising by adjunction from the map

Φ(γ0) ○Φ∗
co -adm(ε)→ Φ∗

co -adm(ε′) ○Φ(γ1),

the latter being part of the data supplied by Φadm∩co -adm
vert;co -adm . Then the claim is that

the 2-morphism (5.16) is an isomorphism.

The above statement can be split into two cases. One is when the above
diagram is Cartesian, in which case, the assertion coincides with the assumption
on Φisom

vert;co -adm from Sect. 5.2.2.

The second case is when we are dealing with the diagram of the form

(5.17)

c
idÐÐÐÐ→ c

id
×××Ö

×××Ö
δ

c
δÐÐÐÐ→ c′,

where δ ∈ adm ∩ co -adm. But such a diagram is automatically Cartesian by the
condition of Sect. 5.1.2.

�

Remark 5.5.5. Note that from diagram (5.17) it follows that for δ ∈ adm ∩
co -adm we have a canonical isomorphism

(5.18) Φ!
adm(δ) ≃ Φ∗

co -adm(δ),

characterized uniquely by the property that the isomorphism

id ≃ Φ∗
co -adm(δ) ○Φ(δ)

defines the unit of an adjunction.

5.6. Step B: the construction. We will now turn the idea described in Sect. 5.4.5
into a formal construction. I.e., we will define the functor

ΦFactor●,● ∶ Factor●,●(C)→ Sq●,●(S).

This will combine the construction from Sect. 5.5 and the manipulation that
was employed in the proof of Theorem 2.1.3, namely, we will use clusters.

5. FUNCTORS CONSTRUCTED BY FACTORIZATION 343

5.6.1. Let defGridvert(C)adm∩co -adm
co -adm,adm denote the following bi-simplicial (∞,1)-

category. For each m,n, the (∞,1)-category defGridvertm,n(C)adm∩co -adm
co -adm,adm is a 1-full

subcategory in

Maps([m]op × [n]op,C).

Its objects are commutative diagrams c that satisfy:

(1) For every i, the map ci,j → ci,j−1 belongs to adm.
(2) For every j, the map ci,j → ci−1,j belongs to co -adm.

As 1-morphisms we allow those maps between diagrams c→ c′ that satisfy:

(1) For every i and j, the map ci,j → c′i,j belongs to vert.
(2) For a fixed j, the defect of Cartesianness of the square

ci,j ÐÐÐÐ→ ci−1,j

×××Ö
×××Ö

c′i,j ÐÐÐÐ→ c′i−1,j

belongs to adm ∩ co -adm.

We note:

Lemma 5.6.2. For a commutative square

c0 ÐÐÐÐ→ c1

×××Ö
×××Ö

c′0 ÐÐÐÐ→ c′1,

in which the vertical maps belong to adm and the horizontal to vert or horiz (resp.,
the horizontal ones to co -adm and vertical ones to vert), its defect of Cartesianness
belongs to adm (resp., co -adm).

Proof. Follows from the ‘2 out of 3’ property of the classes co -adm and
adm. �

Hence, we obtain that there is canonical isomorphism

Seql(defGridvertm,n(C)adm∩co -adm
co -adm,adm) ≃ Mapsadm(([n]op × [l]) × [m]op,C)adm∩co -adm

vert;co -adm ,

see Sect. 5.5.2 for the notation Mapsadm(−,−)adm∩co -adm
vert;co -adm .

Therefore, from Proposition 5.5.4, we obtain a map

(5.19) Seql(defGridvertm,n(C)adm∩co -adm
co -adm,adm)→Maps([l]⊛ ([m] × [n]),S),

functorial in [l], [m], [n] ∈ Spc∆op×∆op×∆op

.

344 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

5.6.3. Let Q be a cluster, see Sect. 2.6.2 for what this means. Let Q be the
category underlying Q.

We define the (∞,1)-category

defQvert(C)adm∩co -adm
co -adm,adm

analogously to defGridvertm,n(C)adm∩co -adm
co -adm,adm , so that we recover the latter when

Q = ({0, ...,m} × {0, ..., n})op.

As in Sect. 2.7, the map (5.19), gives maps

(5.20) Seql(defQvert(C)adm∩co -adm
co -adm,adm)→Maps([l]⊛Qop,S),

functorial in [l] ∈ ∆op and the cluster Q.

In other words, we obtain canonically defined functors

(5.21) defQvert(C)adm∩co -adm
co -adm,adm → Funct(Qop,S)right-lax

that depend functorially on Q.

5.6.4. Taking Q = (({0, ..., n} × {0, ..., n})≥dgnl)op, from (5.21) we obtain a map

defGridvertn,n (C)adm∩co -adm
co -adm,adm → Funct(([n] × [n])≥dgnl,S)right-lax,

and composing with the diagonal embedding [n] → ([n] × [n])≥dgnl, we obtain a
map

(5.22) defGridvertn,n (C)adm∩co -adm
co -adm,adm → Funct([n],S)right-lax.

Note that we have a tautologically defined functor

Seql(Factorm,n(C))→Maps([l] × [m],defGridvertn,n (C)adm∩co -adm
co -adm,adm).

Composing with (5.22), we obtain a functor

Seql(Factorm,n(C))→Maps([l] × [m],Funct([n],S)right-lax) =
= Maps(([l]×[m])⊛[n],S)→Maps([l]⊛[m]⊛[n],S) = Seql(Funct([m]⊛[n],S)right-lax),
i.e., a functor

(5.23) Factorm,n(C)→ Funct([m]⊛ [n],S)right-lax.

We claim:

Lemma 5.6.5. The functor (5.23) sends every arrow in Factorm,n(C) to an
isomorphism in Funct([m]⊛ [n],S)right-lax.

Proof. Follows from the condition that for a map of objects in Factorm,n(C),
i.e., a natural transformation between functors

[m] × ([n]op × [n]op)≥dgnl →C,

the induced natural transformation of the functors

[m] × [n]op → [m] × ([n]op × [n]op)≥dgnl →C

is an isomorphism. �

5. FUNCTORS CONSTRUCTED BY FACTORIZATION 345

5.6.6. The above lemma implies that the functor (5.23) factors though

(Funct([m]⊛ [n],S)right-lax)Spc ≃ Maps([m]⊛ [n],S) =∶ Sqm,n(S).
The resulting functor

Factorm,n(C)→ Sqm,n(S)

is the sought-for functor ΦFactorm,n of (5.8).

5.7. Step C.
5.7.1. Let us first explain the idea of the proof when m = 0 and n = 1. In this case,
the category Factor0,1(C) has as objects diagrams

c1,1

c0,1

c0,0.

ε
?? γ

��

and morphisms are given by diagrams

c1,1

c0,1

c0,0

c′1,1

c′0,1

c′0,0,

ε
?? γ

��

ε′ ?? γ′

��

β0,0

��

β0,1

��
β1,1

��

where β0,0 and β1,1 are isomorphisms and β0,1 ∈ adm.

The category defGrid0,1(C)admvert,horiz is space of arrows c0
α→ c1. Hence, we see

that the fiber of the functor

Factor0,1(C)→ defGrid0,1(C)admvert,horiz

over a given (c0
α→ c1) ∈ defGrid0,1(C)admvert,horiz is the category Factor(α) from

Sect. 5.1.4.

Hence, the contractibility of the fiber follows from the assumption in Sect. 5.1.4.
The proof in the general case will be a rather straightforward combinatorial game.

5.7.2. The proof of Step C will proceed by induction on m. We shall perform the
induction step, because the base of the induction (i.e., the case of m = 0) is similar,
but simpler. So, we assume that the assertion is valid for m − 1, and we will now
pass to the case of m.

Consider the map

defGridm,n(C)admvert,horiz → defGridm−1,n(C)admvert,horiz,

given by restriction along

[m − 1] × [n]→ [m] × [n],
where [m − 1]→ [m] is given by i↦ i + 1.

346 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

Note that the resulting map

Factorm,n(C)→ defGridm,n(C)admvert,horiz ×
defGridm−1,n(C)adm

vert,horiz

Factorm−1,n(C)

is a co-Cartesian fibration. Hence, by induction, it suffices to show that it has
contractible fibers.

Fix an object of

d ∈ defGridm,n(C)admvert,horiz ×
defGridm−1,n(C)adm

vert,horiz

Factorm−1,n(C),

and we will analyze the fiber of Factorm,n(C) over this object, denote this fiber by

C.

5.7.3. Denote by c the object of Maps([n]op,C) obtained from d by restriction
along

{1} × [n]op → [m] × [n]op.

Denote by c′ the object of Maps(([n]op × [n]op)≥dgnl,C), obtained from d by re-
striction along

{0} × ([n]op × [n]op)≥dgnl → [m − 1] × ([n]op × [n]op)≥dgnl.

Denote by c′ the object of Maps([n]op,C) obtained from c′ be further restriction
along

[n]op → ([n]op × [n]op)≥dgnl.

Note that the data of d gives a map

(5.24) c→ c′.

The category C is a 1-full subcategory in the category of functors, denoted c,

([n]op × [n]op)≥dgnl →C,

equipped with an identification of their restriction along [n]op → ([n]op×[n]op)≥dgnl

with c, and with a natural transformation to c′, compatible with the identification
c′∣[n]op ≃ c′ via the natural transformation (5.24).

The category C is obtained by imposing the following conditions. At the level
of objects we require:

(1) All maps ci,j → ci−1,j belong to co -adm;
(2) All maps ci,j−1 → ci,j−1 belong to adm;
(3) All maps ci,j → c′i,j belong to vert;
(4) The defect of Cartesianness of the squares

ci,j ÐÐÐÐ→ ci−1,j

×××Ö
×××Ö

c′i,j ÐÐÐÐ→ c′i−1,j

belongs to adm ∩ co -adm.

At the level of morphisms we allow maps c→ c̃ such that for all i, j, the map

ci,j → c̃i,j

belongs to adm.

5. FUNCTORS CONSTRUCTED BY FACTORIZATION 347

5.7.4. For 0 ≤ n′ ≤ n let C≤n′ denote the following variant of C: instead of consid-
ering functors from ([n]op × [n]op)≥dgnl to C, we consider functors defined on the
full subcategory

([n]op × [n]op)≥dgnl,≤dgnl+n′ ⊂ ([n]op × [n]op)≥dgnl,

spanned by (i, j) with j ≤ i + n′.
For example, for n′ = n, we have C≤n = C, and for n′ = 0, we have C≤n = {∗}.

Restriction defines functors C≤n′ → C≤n′−1. We will prove by induction that

the categories C≤n′ are contractible. We will use the following lemma:

Lemma 5.7.5. Let F ∶ D1 →D2 be a functor between (∞,1)-categories. Assume
that:

(a) For every d2 ∈ D2, the category D1 ×
D2

{d2} is contractible;

(b) For every d1 ∈ D1 and a morphism β ∶ d′2 → F (d1), the category of

(d′1 ∈ D1, α ∶ d′1 → d1, F (α) ≃ β)
is contractible.

Then F induces an isomorphism between homotopy types.

5.7.6. We will show that the functors

C≤n′ →C≤n′−1

satisfy the conditions of Lemma 5.7.5. We will check condition (a), condition (b)
being similar.

5.7.7. Fix an object c≤n
′−1 ∈ C≤n′−1. The fiber of C≤n′ is the product of the

following categories, denoted Ci, over the index 0 ≤ i ≤ n − n′ − 1:

For each i, the category Ci is that of factorizations of the morphism

ci+1,i+n′ → ci,i+n′−1

(which is part of the data of c≤n
′−1) as

ci+1,i+n′
ε→ ci,i+n′

γ→ ci,i+n′−1,

equipped with a datum of commutative diagram

ci+1,i+n′ ÐÐÐÐ→ ci,i+n′ ÐÐÐÐ→ ci,i+n′−1

×××Ö
β
×××Ö

×××Ö
c′i+1,i+n′ ÐÐÐÐ→ c′i,i+n′ ÐÐÐÐ→ c′i,i+n′−1

such that

(1) ε ∈ co -adm;
(2) γ ∈ adm;
(3) β ∈ vert;
(4) The datum of commutation of the outer square

ci+1,i+n′ ÐÐÐÐ→ ci,i+n′−1

×××Ö
×××Ö

c′i+1,i+n′ ÐÐÐÐ→ c′i,i+n′−1

348 7. THE (∞,2)-CATEGORY OF CORRESPONDENCES

is that coming from c≤n−1;
(5) The defect of Cartesianness of the left square

ci+1,i+n′ ÐÐÐÐ→ ci,i+n′
×××Ö

β
×××Ö

c′i+1,i+n′ ÐÐÐÐ→ c′i,i+n′

belongs to adm ∩ co -adm.

We claim that each of the category Ci is contractible.

5.7.8. Denote
c̃i,i+n′ ∶= c′i,i+n′ ×

c′
i,i+n′−1

ci,i+n′−1.

Then Ci is the category Factor(α) of factorizations of the map

α ∶ ci+1,i+n′ → c̃i,i+n′

as
ci+1,i+n′ → ci,i+n′ → c̃i,i+n′

with the map ci+1,i+n′ → ci,i+n′ being in co -adm and ci,i+n′ → c̃i,i+n′ being in adm.

We note, however, that the morphisms ci+1,i+n′ → ci,i+n′−1 and c′i,i+n′ → c′i,i+n′−1

both belong to horiz. Hence, so does the morphism α, by the ‘2 out of 3’ property.

Hence, the category Factor(α) is contractible by the assumption in Sect. 5.1.4.

CHAPTER 8

Extension theorems for the category of
correspondences

Introduction

This Chapter should be regarded as a complement to Chapter 7. Here we prove
two more extension theorems that allow, starting from a functor

Φadmvert;horiz ∶ Corr(C)admvert;horiz → S,

and a functor F ∶ C→D, to canonically produce a functor

Ψadm
vert;horiz ∶ Corr(D)admvert;horiz → S.

The nature of the extensions in this chapter will be very different from that in
Chapter 7, Theorems 4.1.3 and 5.2.4: in loc. cit. we enlarged our 2-category of
correspondences by allowing more 1-morphisms and 2-morphisms. In the present
section, we will enlarge the class of objects.

0.1. The bivariant extension procedure. The first of our two extension results,
Theorem 1.1.9, is a general framework designed to treat the following situation. We
start with the functor

IndCohCorr(Schaft)nil-closedall;all
∶ Corr(Schaft)nil-closed

all;all → DGCatcont

and we want to extend it to a functor

IndCohCorr(indinfSchaft)nil-closed
all;all

∶ Corr(indinfSchaft)nil-closed
all;all → DGCatcont .

0.1.1. Here is how this extension is supposed to behave.

Let us first restrict our attention to the 1-full subcategories

Schaft ⊂ Corr(Schaft)nil-closed
all;all and indinfSchaft ⊂ Corr(indinfSchaft)nil-closed

all;all ,

and the fully faithful embedding

(0.1) Schaft → indinfSchaft .

We want the restriction IndCohindinfSchaft
of IndCohCorr(indinfSchaft)nil-closedall;all

to

indinfSchaft to be given by left Kan extension of

IndCohCorr(Schaft)nil-closedall;all
∣Schaft

∶= IndCohSchaft

along (0.1).

349

350 8. EXTENSION THEOREMS FOR THE CATEGORY OF CORRESPONDENCES

0.1.2. Consider now the 1-full subcategories

(Schaft)op ⊂ Corr(Schaft)nil-closed
all;all and (indinfSchaft)op ⊂ Corr(indinfSchaft)nil-closed

all;all ,

and the fully faithful embedding

(0.2) (Schaft)op → (indinfSchaft)op.

We want the restriction IndCoh!
indinfSchaft

of IndCohCorr(indinfSchaft)nil-closedall;all
to

(indinfSchaft)op to be given by right Kan extension of

IndCohCorr(Schaft)nil-closedall;all
∣(Schaft)op =∶ IndCoh!

Schaft

along (0.2).

0.1.3. So, we see that our extension behaves as a left Kan extension along vertical
directions and as a right Kan extension along the horizontal directions. But these
two patterns of behavior are closely linked via the 2-categorical structure.

Namely, the left Kan extension behavior along the vertical direction and the
right Kan extension behavior along the vertical direction, once restricted to 1-full
subcategories corresponding to nil-closed maps, are formal consequences of each
other (this is obtained by combining Volume II, Chapter 3, Corollay 4.2.3 and
Theorem 4.3.2 and Chapter 7, Theorem 3.2.2 and Proposition 2.2.7 below).

The idea is that there are ‘enough’ of nil-closed maps to fix the behavior of our
extension on all objects and morphisms.

0.1.4. The 2-categorical features are essential in the proof of Theorem 1.1.9. Namely,
we perceive the datum of a functor

IndCohCorr(indinfSchaft)nil-closed
all;all

∶ Corr(indinfSchaft)nil-closed
all;all → DGCatcont

as that of simplicial functor between (∞,1)-categories

′Grid≥dgnl
● (indinfSchaft)nil-closed

all;all → Seqext
● (S).

The corresponding functors

′Grid≥dgnl
n (indinfSchaft)nil-closed

all;all → Seqext
n (S)

are obtained as left Kan extensions of the corresponding functors

′Grid≥dgnl
n (Schaft)nil-closed

all;all → Seqext
n (S).

That is to say, here we use in an essential way the fact that ′Grid≥dgnl
n (indinfSchaft)nil-closed

all;all

is a category, and not just a space: we approximate diagrams d ∈ Gridn(indinfSchaft)nil-closed
all;all

by diagrams c ∈ Gridn(indinfSchaft)nil-closed
all;all , where the maps c→ d are required to

be term-wise nil-closed.

So, it would be impossible to prove an analog of Theorem 1.1.9, if instead of
the (∞,2)-categories

Corr(Schaft)nil-closed
all;all and Corr(indinfSchaft)nil-closed

all;all

we used the underlying (∞,1)-categories

Corr(Schaft)all;all and Corr(indinfSchaft)all;all.

INTRODUCTION 351

0.1.5. The bulk of the proof of Theorem 1.1.9 is concentrated in Proposition 1.2.5
that guarantees that the left Kan extension extensions of

′Grid≥dgnl
n (Schaft)nil-closed

all;all → Seqext
n (S)

along
′Grid≥dgnl

n (Schaft)nil-closed
all;all → ′Grid≥dgnl

n (indinfSchaft)nil-closed
all;all

‘does the right thing’, i.e., produces the expected strings of 1-morphisms.

In the process of proving Proposition 1.2.5 we will need to make a digression and
study the behavior of colimits in the categories Seqext

n (S), and how these colimits
behave with respect to restriction functors

Seqext
n (S)→ Seqext

m (S),
corresponding to maps [m]→ [n] in the category ∆.

0.2. The horizontal extension procedure. Our second extension result, The-
orem 6.1.5 is a general framework designed to treat the following situation. We
start with the functor

IndCohCorr(Schaft)proper
all;all

∶ Corr(Schaft)proper
all;all → DGCatcont,

and we want to extend it to a functor

IndCohCorr(PreStklaft)sch & proper
sch;all

∶ Corr(PreStklaft)proper
sch;all → DGCatcont .

0.2.1. The above extension procedure is an instance of the 2-categorical right Kan
extension. We do not develop the general theory of right Kan extensions for (∞,2)-
categories in this book.

What saves the day here is the fact that the present situation has a feature
that makes it particularly simple:

Whatever that right Kan

RKECorr(Schaft)proper
all;all

→Corr(PreStklaft)sch & proper
sch;all

(IndCohCorr(Schaft)proper
all;all

)

is, its restriction to the underlying (∞,1)-categories is given by the usual (i.e.,
1-categorical) right Kan extension, i.e., the canonical map

RKECorr(Schaft)proper
all;all

→Corr(PreStklaft)sch & proper
sch;all

(IndCohCorr(Schaft)proper
all;all

)∣Corr(PreStklaft)all;all →

→ RKECorr(Schaft)all;all→Corr(PreStklaft)sch;all(IndCohCorr(Schaft)all;all)
is an isomorphism.

0.2.2. A general statement of when a functor F ∶ T1 → T2 between (∞,2)-
categories has the property that for any Φ ∶ T1 → S, the map

RKEF (Φ)∣T1 -Cat
2

→ RKEF ∣T1 -Cat
1

(Φ∣T1 -Cat
1

)

is an isomorphism, is given in Lemma 6.3.3.

The idea of the condition of this lemma says that for any t1 ∈ T1 and t2 ∈ T2,
the morphisms in the category

MapsT2
(t2, F (t1))

‘come’ from 2-morphisms in T1.

352 8. EXTENSION THEOREMS FOR THE CATEGORY OF CORRESPONDENCES

This guarantees that the 1-categorical right Kan extension

RKEF ∣T1 -Cat
1

(Φ∣T1 -Cat
1

) ∶ T1 -Cat
2 → S

can be canonically extended to 2-morphisms using the data of Φ itself.

1. Functors obtained by bivariant extension

In this section we will describe one of the two extension results of this chapter
that allows to extend a functor from a given (∞,2)-category of correspondences to
a larger one.

A typical situation in which the procedure described in this section will be
applied is when we want to extend IndCoh as a functor out of the category of cor-
respondences of schemes to that of ind-inf-schemes. I.e., we start with the functor

IndCohCorr(Schaft)nil-closedall;all
∶ Corr(Schaft)nil-closed

all;all → DGCatcont

and we want to extend it to a functor

IndCohCorr(indinfSchaft)nil-closed
all;all

∶ Corr(indinfSchaft)nil-closed
all;all → DGCatcont .

1.1. Set-up for the bivariant extension. In this subsection we will describe
the context of our extension procedure and state the main result of this section,
Theorem 1.1.9.

1.1.1. Let (C, vert, horiz, adm) be as in Chapter 7, Sect. 1.1.1. We will also
assume that all three classes vert, horiz and adm satisfy the ‘2 out of 3’ property.

Suppose we have a functor

Φadmvert;horiz ∶ Corr(C)admvert;horiz → S,

where S ∈ 2 -Cat.

Denote

Φ ∶= Φadmvert;horiz ∣Cvert and Φ! ∶= Φadmvert;horiz ∣(Choriz)op ;

Φadm ∶= Φ∣Cadm
≃ Φadmvert;horiz ∣Cadm

and

Φ!
adm ∶= Φ!∣(Cadm)op ≃ Φadmvert;horiz ∣(Cadm)op .

For an object c ∈ C we will simply write Φ(c) for Φadmvert;horiz(c).

In our main application we will take S to be DGCatcat and C = Schaft with
vert = horiz = all and adm = nil-closed. We take Φadmvert;horiz to be the functor

IndCohCorr(Schaft)nil-closed
all;all

∶ Corr(Schaft)nil-closed
all;all → DGCatcont .

1. FUNCTORS OBTAINED BY BIVARIANT EXTENSION 353

1.1.2. Let (D, vert, horiz, adm) be another datum as above, and assume that D
admits all fiber products. Let F ∶ C → D be a functor that preserves the corre-
sponding classes of 1-morphisms, i.e., that it gives rise to well-defined functors

Fvert ∶ Cvert →Dvert, Fhoriz ∶ Choriz →Dhoriz and Fadm ∶ Cadm →Dadm,

and that each of the above functors (including F itself) is fully faithful.

We will assume that F takes Cartesian squares as in Chapter 7, Diagram (1.1)
to Cartesian squares. Hence, F induces a functor

F admvert;horiz ∶ Corr(C)admvert;horiz → Corr(D)admvert;horiz.

1.1.3. We will also assume that for every d ∈ D there exists c ∈ C equipped with
a map c→ d that belongs to adm.

1.1.4. The goal of this section is to extend the functor Φadmvert;horiz to a functor

Ψadm
vert;horiz ∶ Corr(D)admvert;horiz → S,

under certain conditions on the (∞,2)-category S (see Sect. 1.1.5) and on the
functor Φadmvert;horiz (see Sect. 1.1.6).

1.1.5. Conditions on the target 2-category. Let S be a target (∞,2)-category. We
will impose the following conditions on S:

(1) For any s′, s′′ ∈ S, the category MapsS(s′, s′′) is presentable;
(2) For any s′, s′′ ∈ S, the category MapsS(s′, s′′) is pointed, i.e., the map

from the initial object to the final object is an isomorphism;

(3) For any s′, s′′ ∈ S, and a fixed s̃′
α→ s′ (resp., s′′

β→ s̃′′), the functors

MapsS(s′, s′′)
−○αÐ→MapsS(s̃′, s′′) and MapsS(s′, s′′)

β○−Ð→MapsS(s′, s̃′′)
preserve colimits;

(4) S1 -Cat is presentable;
(5) S1 -Cat is pointed;

(6) For s ∈ S there exist objects [1] ⊗ s and s[1] equipped with functorial
identifications

Maps([1]⊗s, s′) ≃ Maps([1],MapsS(s, s′)) and Maps(s′, s[1]) ≃ Maps([1],MapsS(s′, s)),
respectively.

These conditions are satisfied, e.g., if S is 1 -CatSt,cocmpl
cont ot DGCatcont.

1.1.6. Conditions on the functor Φadmvert;horiz. Denote

Ψadm ∶= LKEFadm(Φadm), Ψ!
adm ∶= RKEF op

adm
(Φ!

adm),

Ψvert ∶= LKEFvert(Φvert), Ψ!
horiz ∶= RKEF op

horiz
(Φ!

horiz).

We impose the following conditions on the interaction of Φadmvert;horiz and F :

(1) The functor Ψvert satisfies the left Beck-Chevalley condition with respect
to adm ⊂ vert.

(2) The canonical map Ψadm → Ψvert∣Dadm
is an isomorphism.

(3) The functor Ψ! satisfies the right Beck-Chevalley condition with respect
to adm ⊂ horiz.

354 8. EXTENSION THEOREMS FOR THE CATEGORY OF CORRESPONDENCES

(4) The canonical map Ψ!
horiz ∣(Dadm)op → Ψ!

adm is an isomorphism.

1.1.7. Finally, we impose one more technical condition:

(∗) For every morphism d′ → d in D, the map

colim
c∈(Dadm)/d ×

Dadm

Cadm

Ψadm(d′ ×
d

c)→ Ψadm(d′)

is an isomorphism.

1.1.8. The main result of the present section is the following:

Theorem 1.1.9. Under the above circumstances there exists a uniquely defined
functor

Ψadm
vert;horiz ∶ Corr(D)admvert;horiz → S,

equipped with an identification,

Φadmvert;horiz ≃ Ψadm
vert;horiz ○ F admvert;horiz,

such that the induced natural transformation

LKEFadm(Φadm)→ Ψadm
vert;horiz ∣Dadm

is an isomorphism.

In addition, the functor Ψadm
vert;horiz has the following properties:

● The induced natural transformation

LKEFvert(Φ)→ Ψadm
vert;horiz ∣Dvert

is an isomorphism;
● The induced natural transformation

Ψadm
vert;horiz ∣(Dhoriz)op → RKE(Fhoriz)op(Φ

!)
is an isomorphism.

Note that we can reformulate the uniqueness part of Theorem 1.1.9 as follows:

Corollary 1.1.10. Let

Ψ̃adm
vert;horiz ∶ Corr(D)admvert;horiz → S

be a functor such that the following maps are isomorphisms:

(i) LKEFvert(Ψ̃adm
vert;horiz ○ Fvert∣Cvert)→ Ψ̃adm

vert;horiz ∣Dvert ;

(ii) Ψadm
vert;horiz ∣Dop

horiz
→ LKEF op

horiz
(Ψ̃adm

vert;horiz ○ F
op
horiz ∣Cop

horiz
);

(iii) LKEFadm(Ψ̃adm
vert;horiz ○ Fadm∣Cadm

)→ Ψ̃adm
vert;horiz ∣Dadm

(iv) The map

colim
c∈(Dadm)/d ×

Dadm

Cadm

Ψ̃adm(d′ ×
d

c)→ Ψ̃adm(d′)

for every morphism d′ → d in D.

Then the functor Φadmvert;horiz ∶= Ψ̃adm
vert;horiz ○F admvert;horiz satisfies the assumptions

of Theorem 1.1.9, and Ψ̃adm
vert;horiz identifies canonically with the extension given by

that theorem.

1. FUNCTORS OBTAINED BY BIVARIANT EXTENSION 355

1.2. Construction of the functor. The rest of this section and the following
four sections are devoted to the proof of Theorem 1.1.9.

We will construct Ψadm
vert;horiz as a simplicial functor

Ψ● ∶ ′Grid≥dgnl
● (D)admvert;horiz → Seqext

● (S).

1.2.1. The functor F ∶ C→D gives rise to a simplicial functor

Fn ∶ ′Grid≥dgnl
n (C)admvert;horiz → ′Grid≥dgnl

n (D)admvert;horiz,

which is fully faithful for each n.

We define the functor

Ψn ∶ ′Grid≥dgnl
n (D)admvert;horiz → Seqext

n (S),
by

Ψn ∶= LKEFn(Φn),
where

Φ● ∶ ′Grid≥dgnl
● (C)admvert;horiz → Seqext

● (S),
is the simplicial functor corresponding to Φadmvert;horiz. (It will follow from Corol-

lary 2.3.5 that this left Kan extension exists.)

1.2.2. Consider the following set up. Let I be an index category, and let FI ∶
CI → DI be a map between co-Cartesian fibrations over I that takes co-Cartesian
arrows to co-Cartesian ones. Let SI be another co-Cartesian fibration over I, and let
ΦI ∶ CI → SI be a functor over I that also takes co-Cartesian arrows to co-Cartesian
arrows.

For each arrow r ∶ i→ j in I there are canonical natural transformations

(1.1) LKEFi(Φj ○ rC)→ LKEFj(Φj) ○ rD
and

(1.2) LKEFi(rS ○Φi)→ rS ○ LKEFi(Φi)
as functors Di → Sj , while

Fj ○ rC ≃ rD ○ Fi and rS ○Φi ≃ Φj ○ rC,
where

rC ∶ Ci →Cj , rD ∶ Di →Dj , rS ∶ Si → Sj

denote the corresponding functors.

We have:

Lemma 1.2.3. Assume that the maps (1.1) and (1.2) are isomorphisms. Then
relative left Kan extension defines a functor ΨI ∶ DI → SI, which has the property
that it sends co-Cartesian arrows to co-Cartesian ones. Furthermore, for every
i ∈ I, the natural map

LKEFi(Φi)→ ΨI∣Ci

is an isomorphism.

356 8. EXTENSION THEOREMS FOR THE CATEGORY OF CORRESPONDENCES

1.2.4. We will apply Lemma 1.2.3 to

I ∶= ∆op, FI ∶= F●, SI ∶= Seqext
● (S), ΦI ∶= Φ●.

For a map r ∶ [m] → [n] in ∆, let r∗S (resp., r∗C, r∗D) denotes the functor

Seqext
n (S)→ Seqext

m (S) (resp., ′Grid≥dgnl
n (C)admvert;horiz → ′Grid≥dgnl

m (C)admvert;horiz and

similarly for D).

Consider the resulting functors

(1.3) LKEFn(Φm ○ r∗C)→ LKEFm(Φm) ○ r∗D.
and

(1.4) LKEFn(r∗S ○Φn)→ r∗S ○ LKEFn(Φn).

The bulk of the proof of Theorem 1.1.9 will amount to the proof of the next
proposition:

Proposition 1.2.5.

(a) The maps (1.3) are isomorphisms.

(b) The maps (1.4) are isomorphisms.

1.3. Proof of Theorem 1.1.9, existence. In this subsection we will assume
Proposition 1.2.5 and will deduce the existence part of Theorem 1.1.9. The unique-
ness assertion will be proved in Sect. 3.2.

1.3.1. First, assuming Proposition 1.2.5, and using Lemma 1.2.3, we obtain that
that the functors

Ψn ∶= LKEFn(Φn)
give rise to a simplicial functor

Ψ● ∶ ′Grid≥dgnl
● (D)admvert;horiz → Seqext

● (S).

By the (Lext,Seqext)-adjunction, from Ψ● we obtain a functor

Lext(′Grid≥dgnl
● (D)admvert;horiz)→ S,

and finally, using Chapter 7, Corollary 1.4.6, the sought-for functor

Ψadm
vert;horiz ∶ Corr(D)admvert;horiz → S.

1.3.2. The composite

′Grid≥dgnl
● (C)admvert;horiz → ′Grid≥dgnl

● (D)admvert;horiz

Ψ●Ð→ Seqext
● (S)

identifies with Φ●. This gives an identification

Φadmvert;horiz ≃ Ψadm
vert;horiz ○ F admvert;horiz.

Denote

Ψ ∶= Ψadm
vert;horiz ∣Dvert and Ψ! ∶= Ψadm

vert;horiz ∣(Dhoriz)op ;

Ψadm ∶= Ψ∣Dadm
≃ Ψadm

vert;horiz ∣Dadm

and
Ψ!
adm ∶= Ψ!∣(Dadm)op ≃ Ψadm

vert;horiz ∣(Dadm)op .

For an object d ∈ D we shall simply write Ψ(d) for Ψadm
vert;horiz(d).

1. FUNCTORS OBTAINED BY BIVARIANT EXTENSION 357

1.3.3. Let us now show that that the induced natural transformation

(1.5) LKEFadm(Φadm)→ Ψadm

is an isomorphism.

It suffices to show that this natural transformation is an isomorphism on ob-
jects. I.e., we have to show that for d ∈ D, the map

colim
γ∶c→d,γ∈adm

Φ(c)→ Ψ(d)

is an isomorphism, where the above map is given by a compatible family of maps

(1.6) Φ(c) ∼→ Ψ(c) Ψ(γ)→ Ψ(d).

By the definition of the functor Ψn for n = 0, we have a tautological isomorphism

(1.7) colim
γ∶c→d,γ∈adm

Φ(c) = Ψ0(d) = Ψ(d).

Now, by the definition of Ψn for n = 1, the compatible family of maps

Φ(c)→ Ψ(d)
that comprise (1.6) identifies with that in (1.7).

1.3.4. Let us show that the natural transformation

LKEFvert(Φ)→ Ψ

is an isomorphism.

Again, it is enough to do so at the level of objects. Consider the commutative
diagram

LKEFadm(Φadm) ÐÐÐÐ→ Ψadm

×××Ö
×××Ö
=

LKEFvert(Φ)∣Dadm
ÐÐÐÐ→ Ψ∣Dadm

.

The top horizontal arrow in this diagram is an isomorphism by Sect. 1.3.3 above.
The left vertical arrow is an isomorphism by the second condition in Sect. 1.1.6.
This implies that the bottom horizontal arrow is an isomorphism, as desired.

1.3.5. Let us now show that the natural transformation

Ψ! → RKE(Fhoriz)op(Φ
!)

is an isomorphism.

As in Sect. 1.3.4, it suffices to show that the natural transformation

Ψ!
adm → RKE(Fadm)op(Φ!

adm)
is an isomorphism.

Since the functor Ψ!
adm is obtained from Ψadm by passing to right adjoints (by

Chapter 7, Theorem 3.2.2), we need to show that for d ∈ D the map

Ψ(d)→ lim
γ∶c→d,γ∈adm

Φ(c),

comprised of functors

Ψ(d)→ Φ(c),

358 8. EXTENSION THEOREMS FOR THE CATEGORY OF CORRESPONDENCES

right adjoint to those in (1.7), is an isomorphism. However, this follows from
Proposition 2.2.5 below.

2. Limits and colimits of sequences

In this section we prepare for the proof of Proposition 1.2.5 by making a di-
gression on the behavior of limits and colimits in categories of the form Seqext

n (S),
where S is an (∞,2)-category as in Sect. 1.1.5.

2.1. Limits and colimits of presentable categories. In this subsection we
recall the behavior of limits and colimits in the (∞,1)-category, whose objects are
presentable categories, and whose 1-morphisms are colimit-preserving functors.

2.1.1. Recall from Chapter 1, Sect. 2.5 that 1 -CatPrs denotes the 1-full subcat-
egory of 1 -Cat, whose objects are presentable (∞,1)-categories, and whose mor-
phisms are continuous (i.e., colimit-preserving) functors. Recall that the embedding

1 -CatPrs ↪ 1 -Cat

commutes with limits, see Chapter 1, Lemma 2.5.2(b).

Let us recall the setting of Chapter 1, Proposition 2.5.7, which we will exten-
sively use. Let

(2.1) I→ 1 -CatPrs, i↦Ci

be a functor, and consider the object

C′ ∶= colim
i∈I

Ci ∈ 1 -CatPrs .

For an index i, let insi denote the tautological functor

Ci →C′.

Assume now that for every arrow i→ j in I, the corresponding functor Ci →Cj

admits a continuous right adjoint. Consider the resulting functor

Iop → 1 -CatPrs, i↦Ci,

obtained from (2.1) by passing to right adjoints. Consider the object

C′′ ∶= lim
i∈Iop

Ci ∈ 1 -CatPrs .

For an index i, let evi denote the tautological functor

C′′ →Ci.

Then Chapter 1, Proposition 2.5.7 says that each of the functors evi admits a
left adjoint, and that the resulting functor

(2.2) C′ →C′′, (evi)L ∶ Ci →C′′

is an equivalence. In other words, we have an equivalence C′ ≃ C′′, under which,
the adjoint pair

insi ∶ Ci ⇄C′ ∶ (insi)R

identifies with

(evi)L ∶ Ci ⇄C′′ ∶ evi .

As a formal consequence, we obtain:

2. LIMITS AND COLIMITS OF SEQUENCES 359

Corollary 2.1.2.

(a) The natural transformation

colim
i∈I

insi ○(insi)R → IdC′

is an isomorphism, where the colimit is taken in either the category Maps1 -CatPrs
(C′,C′)

or Maps1 -Cat(C′,C′).

(b) The functor C′′ →C′, given by

colim
i∈I

insi ○ evi

provides an inverse to the functor C′ → C′′ from (2.2), where the colimit is taken
in either the category Maps1 -CatPrs

(C′′,C′) or Maps1 -Cat(C′′,C′).

(c) For D ∈ 1 -CatPrs, the natural map

colim
i∈I

Functcont(D,Ci)→ Functcont(D,C′)

is an isomorphism, where the colimit is taken in the category 1 -CatPrs.

Proof. Let us prove point (a). It suffices to show that the natural transfor-
mation

colim
i∈I

(evi)L ○ evi → IdC′′

is an equivalence. I.e., we have to show that for c, c̃ ∈ C′′, given by compatible
systems of objects ci, c̃i ∈ Ci, respectively, the map

MapsC′′(c, c̃)→ lim
i∈I

MapsC′′((evi)L ○ evi(c), c̃)

is an isomorphism. We rewrite the right-hand side as

lim
i∈I

MapsCi
((evi(c), evi(c̃)),

and now the assertion becomes manifest.

Point (b) follows formally from (a). Point (c) follows formally from (b) and the
commutative diagram

colim
i∈I

Functcont(D,Ci) ÐÐÐÐ→ Functcont(D,C′)

∼
Õ×××

Õ×××
∼

lim
i∈Iop

Functcont(D,Ci)
∼ÐÐÐÐ→ Functcont(D,C′′).

�

2.2. Limits and colimits in S1 -Cat. Let

1 -CatPrs ⊂ 1 -Cat

be the 1-full subcategory, corresponding to 1 -CatPrs ⊂ 1 -Cat. We can view the
equivalence (2.2) as a result about functors I→ 1 -CatPrs.

In this subsection we will generalize the equivalence (2.2) by replacing 1 -CatPrs

by a more general (∞,2)-category S.

360 8. EXTENSION THEOREMS FOR THE CATEGORY OF CORRESPONDENCES

2.2.1. Limits of mapping categories. Let S be an (∞,2)-category satisfying assump-
tions (1), (3), (4) and (6) of Sect. 1.1.5.

Lemma 2.2.2.

(a) For I ∈ 1 -Cat and a functor I → S, i ↦ si with s ∶= colim
i∈I

si, for any s′ ∈ S, the

resulting map
MapsS(s, s′)→ lim

i∈Iop
MapsS(si, s′)

is an isomorphism in 1 -CatPrs.

(b) For I ∈ ∞ -Cat and a functor I → S, i ↦ si with s ∶= lim
i∈I

si, for any s′ ∈ S, the

resulting map
MapsS(s′, s)→ lim

i∈I
MapsS(s′, si)

is an isomorphism in 1 -CatPrs.

Remark 2.2.3. By definition, the maps in the lemma a priori induce isomor-
phisms of the underlying spaces.

Proof. Follows from the above remark by replacing s′ by the objects s′[1] and
[1]⊗ s′, respectively.

�

2.2.4. Let

(2.3) I→ S, i↦ si

be a functor, and assume that for every arrow i→ j, the corresponding 1-morphism
si → sj admits a right adjoint. Consider the functor

Iop → S, i↦ si,

obtained from (2.3) by passing to right adjoints.

Denote
s′ ∶= colim

i∈I
si and s′′ ∶= lim

i∈Iop
si

and let
insi ∶ si → s′ and evi ∶ s′′ → si

denote the corresponding 1-morphisms.

We are going to prove:

Proposition 2.2.5.

(a) Each of the 1-morphisms evi admits a left adjoint. The 1-morphism s′ → s′′,
given by the compatible family

(evi)L ∶ si → s′′,

is an isomorphism. Under this identification, the functors (evi)L correspond to
insi, and the functors evi correspond to the the right adjoints (insi)R of insi.

(b) The map

colim
i∈I

insi ○(insi)R → ids′

is an isomorphism, where the colimit is taken in MapsS(s′, s′).

(c) The inverse 1-morphism to one in point (a) is given by

colim
i∈I

insi ○ evi,

2. LIMITS AND COLIMITS OF SEQUENCES 361

where the colimit is taken in MapsS(s′′, s′).

(d) For any t ∈ S, the natural functor

colim
i∈I

MapsS(t, si)→MapsS(t, s′)

is an equivalence, where the colimit is taken in 1 -CatPrs.

Proof. To show that the 1-morphism evj admits a left adjoint, it is enough
to show that for any t ∈ S, the induced morphism

MapsS(t, s′′)→MapsS(t, sj)
admits a left adjoint and that for a 1-morphism t0 → t1, the diagram

MapsS(t1, s′′) ←ÐÐÐÐ MapsS(t1, sj)
×××Ö

×××Ö
MapsS(t0, s′′) ←ÐÐÐÐ MapsS(t0, sj)

obtained by passing to left adjoints along the horizontal arrows in the commutative
diagram

MapsS(t1, s′′) ÐÐÐÐ→ MapsS(t1, sj)
×××Ö

×××Ö
MapsS(t0, s′′) ÐÐÐÐ→ MapsS(t0, sj),

that a priori commutes up to a natural transformation, actually commutes.

By Lemma 2.2.2, we have

MapsS(t, s′′) ≃ lim
i∈Iop

MapsS(t, si),

and now the assertion follows from the equivalence (2.2).

We will now show that the composite

s′ → s′′ → s′,

where the first arrow is the map point (a) and the second arrow is the map in point
(c), is isomorphic to ids′ . We need to show that for every j ∈ I, the composition

(2.4) sj
insjÐ→ s′ → s′′ → s′

is canonically isomorphic to insj , in a way functorial in j.

Note now that for any t ∈ S we have a commutative diagram

(2.5)

MapsS(t, s′) ÐÐÐÐ→ MapsS(t, s′′) ÐÐÐÐ→ MapsS(t, s′)
Õ×××

Õ×××
Õ×××

colim
i∈I

MapsS(t, si) ÐÐÐÐ→ lim
i∈Iop

MapsS(t, si) ÐÐÐÐ→ colim
i∈I

MapsS(t, si),

where the colimits in the bottom row are taken in 1 -CatPrs. Now, Corollary 2.1.2(b)
asserts that the bottom composition is canonically isomorphic to the identity on
colim
i∈I

MapsS(t, si).

Applying this to t = sj and the tautological map

sj → colim
i∈I

MapsS(sj , si),

362 8. EXTENSION THEOREMS FOR THE CATEGORY OF CORRESPONDENCES

we obtain that the composition (2.4) is indeed isomorphic to insj .

Thus, we obtain that the composite s′ → s′′ → s′ is indeed isomorphic to the
identity map. In particular, the composite in the top row of (2.5) is also isomorphic
to the identity map. Now, since the middle vertical map in (2.5) is an isomorphism
(by Lemma 2.2.2(b)), we obtain that the left vertical map is an isomorphism as
well.

This proves point (d) of the proposition. Now, since all maps in the bottom
row of (2.5) are isomorphisms, we obtain that the same is true for the top row.
This proves point (a) of the proposition.

Point (c) has been established already. Point (b) follows formally from point
(c).

�

2.2.6. As an application of Proposition 2.2.5, we shall now prove the following.
Let

F ∶ C→D

be a functor between (∞,1)-categories. Let

Φ ∶ C→ S
be a functor, and set Ψ ∶= LKEF (Φ).

Assume that for every arrow c1 → c2 in C, the resulting 1-morphism Φ(c1) →
Φ(c2) admits a right adjoint. Let Φ! ∶ Cop → S be the functor, obtained from Φ by
passing to right adjoints.

We claim:

Proposition 2.2.7. Under the above circumstances, the functor Ψ! ∶= RKEF op(Φ!)
is obtained from Ψ by passing to right adjoints.

Proof. Let us first show that for any arrow d1 → d2 in D, the 1-morphism

Ψ(d1)→ Ψ(d2)
admits a right adjoint.

We have:

Ψ(d1) = colim
c1,F (c1)→d1

Φ(c1) and Ψ(d2) = colim
c2,F (c2)→d2

Φ(c2),

and the 1-morphism Ψ(d1)→ Ψ(d2) is obtained from the map of index categories

(c1, F (c1)→ d1)↦ (c1, F (c1)→ d1 → d2).
The right adjoint in question is given, in terms of the isomorphism of Proposi-

tion 2.2.5(a) by
lim

c2,F (c2)→d2

Φ(c2)→ lim
c1,F (c1)→d1

Φ(c1).

Let Ψ! denote the functor obtained from Ψ by passing to right adjoints. Let us
construct a natural transformation

(2.6) Ψ! → RKEF op(Φ!),
which by definition amounts to a natural transformation

Ψ! ○ F op → Φ!.

2. LIMITS AND COLIMITS OF SEQUENCES 363

This natural transformation is obtained by passing to right adjoints in the
canonical natural transformation

Φ→ Ψ ○ F.
Let us now show that the natural transformation (2.6) is an isomorphism. It

is enough to check this at the level of objects. We have

Ψ!(d) = colim
c,F (c)→d

Ψ(c) and RKEF op(Φ!)(d) = lim
c,F (c)→d

Φ(c).

By unwinding the definitions, we obtain that the resulting map

colim
c,F (c)→d

Ψ(c)→ lim
c,F (c)→d

Φ(c)

is the map of Proposition 2.2.5(a).
�

2.3. Colimits in Seqext
n (S). In this subsection we will record results pertaining

to the behavior of colimits in the category Seqext
n (S): these are Propositions 2.3.2,

2.3.4 and Corollary 2.3.7.

2.3.1. Colimits of strings. We begin with the following observation:

Proposition 2.3.2. For a morphism r ∶ [0,m]→ [0, n] in ∆, the functor

r∗S ∶ Seqext
n (S)→ Seqext

m (S)
commutes with colimits in the following cases:

(a) m = 0.

(b) m = 1 and r sends 0↦ i and 1↦ i + 1 for 0 ≤ i < n.

(c) For r inert; i.e. of the form i↦ k + i for some 0 ≤ k ≤ n −m.

(d) r is a surjection.

Proof. We claim that in each of the above cases, the functor r∗S admits a right
adjoint. Clearly, (a) and (b) are particular cases of (c).

The right adjoint in question sends a string

s0 → s1 → ...→ sm−1 → sm

to

∗→ ...→ ∗→ s0 → s1 → ...→ sm−1 → sm → ∗→ ...→ ∗,
where ∗ denotes the initial/final object of S. Here we are using the fact that for
s′, s′′ ∈ S, the map

Maps(s′,∗) ×Maps(∗, s′′)→Maps(s′, s′′)
sends the unique object in Maps(s′,∗)×Maps(∗, s′′) to the initial/final object in
Maps(s′, s′′).

For r surjective, by transitivity, it suffices to consider the case when r collapses
the interval {i − 1} → {i} in [n] to {i − 1} ∈ [n − 1]. In this case, the right adjoint
in question sends

s0 → ...→ si−2 → si−1 → si → si+1 → ...→ sn

to

s0 → ...→ si−2 → s′i−1 → si+1 → ...→ sn,

364 8. EXTENSION THEOREMS FOR THE CATEGORY OF CORRESPONDENCES

where

s′i−1 = si−1 ×
si

(si)[1],

where (si)[1] → si corresponds to the map [0]→ [1] given by 0↦ 0.
�

2.3.3. Colimits of 1-morphisms. We shall now describe explicitly how to compute
colimits in Seqext

1 (S). Let I be an (∞,1)-category, and let

i↦ si ∶= (s0
i

βi→ s1
i)

be a functor I→ Seqext
1 (S).

Let us denote

(2.7) s0 ≃ colim
i∈I

s0
i and s1 ≃ colim

i∈I
s1
i .

Let ins0
i and ins1

i denote the canonical 1-morphisms

s0
i → s0 and s1

i → s1,

respectively.

Note that by Proposition 2.3.2(b), if the colimit

colim
i∈I

si ∈ Seqext
1 (S)

exists, the 0-th (resp., 1-st) component of the corresponding object identifies with
s0 (resp., s1).

Assume now that for every 1-morphism i → j in I, the 1-morphism s0
i → s0

j

admits a right adjoint. In this case, the 1-morphism ins0
i also admits a right adjoint,

which we denote by (ins0
i)R.

Proposition 2.3.4. Under the above circumstances, the colimit s ∶= colim
i∈I

si ∈
Seqext

1 (S) exists. The resulting 1-morphism

s0 → s1

identifies canonically with

β ∶= colim
i∈I

ins1
i ○βi ○ (ins0

i)R ∈ MapsS(s0, s1).

Proof. Let

s′0
β′→ s′1

be an object in Seqext
1 (S). We need to show that a compatible system of data

(2.8) s0
i s1

i

s′0 s′1

βi //

α0
i

��

α1
i

��

β′
//

hi

{�

2. LIMITS AND COLIMITS OF SEQUENCES 365

is equivalent to that of

(2.9) s0 s1

s′0 s′1

β //

α0

��

α1

��

β′
//

h

{�

The 1-morphisms α0 and α1 are uniquely recovered from the compatible families
α0
i and α1

i respectively, by (2.7).

Since compositions of 1-morphisms commute with colimits, by the construction
of β, the data of h is equivalent to that of a compatible system of 2-morphisms

α1
i ○ βi ○ (ins0

i)R ≃ α1 ○ ins1
i ○βi ○ (ins0

i)R → β′ ○ α0,

which by adjunction is equivalent to

α1
i ○ βi → β′ ○ α0 ○ ins0

i ≃ β′ ○ α0
i ,

as desired.
�

Combing with Proposition 2.3.2(b), we obtain:

Corollary 2.3.5. Let i ↦ si be a functor I → Seqext
n (S), such that for every

k ∈ {0, ..., n − 1}, and every 1-morphism i → j in I, the corresponding 1-morphism
ski → skj admits a right adjoint. Then the colimit

s ∶= colim
i∈I

si ∈ Seqext
n (S)

exists.

2.3.6. The product situation. Let s

(2.10) s0 → s1 → ...→ sn

be an object of Seqext
n (S).

Let us be given, for each k = 0, ..., n an index category Ik and a colimit diagram

colim
ik∈Ik

sik → sk,

such that each of the 1-morphisms insik ∶ sik → sk and αik,i′k ∶ sik → si′
k

(for

(ik → i′k) ∈ Ik) admits a right adjoint.

Set I ∶= I0 × ... × In. We define an I-diagram i ↦ si in Seqext
n (S) by setting for

i = (i0, ..., ik)

ski = sik , sik−1
insik−1Ð→ sk−1 → sk

(insik)
R

Ð→ sik .

By construction, the above I-family si is equipped with a map to the object s

of (2.10).

From Propositions 2.3.4 and 2.3.2(b), we obtain:

366 8. EXTENSION THEOREMS FOR THE CATEGORY OF CORRESPONDENCES

Corollary 2.3.7. Assume that each of the index categories Ik is contractible.
Then:

(a) The map

colim
i∈I

si → s

is an isomorphism.

(b) For any r ∶ [m]→ [n], the map

r∗S(colim
i∈I

si)→ colim
i∈I

(r∗S(si)).

is an isomorphism.

3. The core of the proof

3.1. Calculation of LKEF1(Φ1). Recall the notation

Ψ ∶= LKEFvert(Φ) ∶ Dvert → S

and

Ψ! ∶= RKE(Fhoriz)op(Φ
!) ∶ (Dhoriz)op → S.

Note that we can identify the values of Ψ and Ψ! on objects of D by Proposi-
tion 2.2.7 and the conditions (2) and (4) in Sect. 1.1.6, i.e., that

LKEFadm(Φ∣Cadm
) ≃ Ψ∣Dadm

and

Ψ!∣(Dadm)op ≃ RKE(Fadm)op(Φ!∣(Cadm)op).

Let an object d ∈ Seqext
1 (Corr(D)admvert;horiz) be given by a diagram

(3.1)

d0,1
αdÐÐÐÐ→ d0,0

βd

×××Ö
d1,1.

The goal of this subsection is to construct a canonical identification of LKEF1(Ψ1)(d1),
which is a 1-morphism

Ψ(d0,0)→ Ψ(d1,1),
with Ψ(βd) ○Ψ!(αd).
3.1.1. The 1-morphism

LKEFn(r∗S ○Φn)(d)
is the colimit in Seqext

1 (S) over

(γ ∶ c→ d) ∈ (′Grid≥dgnl
1 (C)admvert;horiz)/d

of

Φ(βc) ○Φ!(αc),
for the morphisms

c0,1
αcÐÐÐÐ→ c0,0

βc

×××Ö
c1,1.

3. THE CORE OF THE PROOF 367

We calculate this colimit using Lemma 2.3.4, and we obtain

colim
γ∶c→d

Ψadm(γ1,1) ○ (Φ(βc) ○Φ!(αc)) ○ (Ψadm(γ0,0))R,

which can be rewritten as

(3.2) colim
γ∶c→d

Ψ(γ1,1) ○Ψ(βc) ○Ψ!(αc) ○Ψ!(γ0,0).

3.1.2. Consider the following diagram:

c1,1 d0,1 c0,0

d1,1 d0,0

c1,1 ×
d1,1

d0,1 d0,1 ×
d0,0

c0,0

c1,1 ×
d1,1

d0,1 ×
d0,0

c0,0

c0,1

γ1,1

��
βd

��

αd

��

γ0,0

��

β′d

�� �� ��

α′d

��

β′′d

��

α′′d

��

βc ×
γ0,1

αc

��

We rewrite the expression in (3.2) as the colimit over

{γ ∶ c→ d} ∈ (Grid≥dgnl
1 (C)admvert;horiz)/d

of

(3.3) Ψ(γ1,1)○Ψ(β′d)○Ψ(β′′d)○Ψ(βc ×
γ0,1

αc)○Ψ!(βc ×
γ0,1

αc)○Ψ!(α′′d)○Ψ!(α′d)○Ψ!(γ0,0).

3.1.3. The forgetful functor

(Grid≥dgnl
1 (C)admvert;horiz)/d → (Cadm)/d0,0

× (Cadm)/d1,1

is a co-Cartesian fibration. For a fixed object

γ0,0 ∶ c0,0 → d0,0 and γ1,1 ∶ c1,1 → d1,1,

the fiber of (Grid≥dgnl
1 (C)admvert;horiz)/d over it is canonically equivalent to

(Cadm)/c1,1 ×
d1,1

d0,1 ×
d0,0

c0,0
.

Hence, by Proposition 2.2.5(b), the colimit of the expressions (3.3) over the
above fiber is canonically isomorphic to

Ψ(γ1,1) ○Ψ(β′d) ○Ψ(β′′d) ○Ψ!(α′′d) ○Ψ!(α′d) ○Ψ!(γ0,0).

368 8. EXTENSION THEOREMS FOR THE CATEGORY OF CORRESPONDENCES

3.1.4. Applying the Beck-Chevalley isomorphisms (i.e., Conditions (1) and (3)
from Sect. 1.1.6), we rewrite the latter expression as

(3.4) Ψ(γ1,1) ○Ψ!(γ1,1) ○Ψ(βd) ○Ψ!(αd) ○Ψ(γ0,0) ○Ψ!(γ0,0).

We obtain that the colimit over c ∈ (Grid≥dgnl
1 (C)admvert;horiz)/d is isomorphic to

the colimit over

(c0,0 × c1,1) ∈ (Cadm)/d0,0
× (Cadm)/d1,1

of the expressions (3.4). Applying Proposition 2.2.5(b) again, we obtain that the
latter is canonically isomorphic to

Ψ(βd) ○Ψ!(αd),
as asserted.

3.2. Proof of uniqueness in Theorem 1.1.9. In this subsection we will con-
tinue to assume Proposition 1.2.5 and will deduce the uniqueness assertion in The-
orem 1.1.9.

3.2.1. Let

Ψ̃adm
vert;horiz ∶ Corr(D)admvert;horiz → S

be a functor.

Denote

Ψ̃ ∶= Ψ̃adm
vert;horiz ∣Dvert , Ψ̃! ∶= Ψ̃adm

vert;horiz ∣(Dhoriz)op .

Let us be given a natural transformation

(3.5) Φadmvert;horiz → Ψ̃adm
vert;horiz ○ F admvert;horiz.

Let Ψ̃● denote the functor of simplicial categories

′Grid≥dgnl
● (D)admvert;horiz

Ψ●Ð→ Seqext
● (S),

corresponding to Ψ̃.

By the construction of Ψadm
vert;horiz, we obtain a natural transformation between

simplicial functors

Ψ● → Ψ̃●,

as functors from the simplicial category ′Grid≥dgnl
● (D)admvert;horiz to the simplicial

category Seqext
● (S).

3.2.2. Restricting along

′′Grid≥dgnl
● (D)admvert;horiz ↪ ′Grid≥dgnl

● (D)admvert;horiz,

we obtain a natural transformation between simplicial functors

(3.6) Ψ●∣′′Grid≥dgnl
● (D)adm

vert;horiz
→ Ψ̃●∣′′Grid≥dgnl

● (D)adm
vert;horiz

,

as functors from the simplicial category

′′Grid≥dgnl
● (D)admvert;horiz ≃ Seq●(Corr(D)admvert;horiz)

to the simplicial category Seqext
● (S), while both functors take values in

Seq●(S) ⊂ Seqext
● (S).

3. THE CORE OF THE PROOF 369

3.2.3. Suppose now that (3.5) is an isomorphism, and that the natural transfor-
mation

(3.7) LKEFadm(Φadm)→ Ψ̃adm
vert;horiz ∣Dadm

,

induced by (3.5), is also an isomorphism.

We will show that in this case, the natural transformation (3.6) is an isomor-
phism. By the Segal condition, it suffices to do so on 0-simplices and 1-simplices.

For 0-simplices, this is just the fact that the map (3.7) is an isomorphism. For
1-simplices, we need to show that for a 1-morphism f ∶ d→ d′ in Corr(D)admvert;horiz

the 2-morphism in

(3.8) Ψ(d) Ψ(d′)

Ψ̃(d) Ψ̃(d′)

//

∼

��

∼

��
//

h

{�

is an isomorphism. It is enough to consider separately the cases when f ∶ d→ d′ is
vertical or horizontal.

3.2.4. Note that the natural transformation (3.5) gives rise to a natural transfor-
mation

Φ→ Ψ̃ ○ Fvert,
and hence to

(3.9) Ψ ∶= LKEFvert(Φ)→ Ψ̃.

Restricting to Dadm we obtain the commutative diagram

(3.10)

LKEFadm(Φadm) idÐÐÐÐ→ LKEFadm(Φadm)
×××Ö

×××Ö
Ψ∣Dadm

ÐÐÐÐ→ Ψ̃∣Dadm
.

Parenthetically, note that the vertical arrows in (3.10) are isomorphisms. Hence,

Ψ∣Dadm
→ Ψ̃∣Dadm

is an isomorphism. Therefore, (3.9) is also an isomorphism, be-
cause it is such on objects.

3.2.5. We claim that for f ∶ d→ d′ being a vertical morphism d
β→ d′, the diagram

(3.8) represents the natural transformation (3.9) evaluated on β.

Indeed, it follows from the calculation of Ψ1 in Sect. 3.1 that Ψ1(β) can be
written as a colimit of the category

c
βcÐÐÐÐ→ c′

γ
×××Ö

×××Ö
γ′

d
βÐÐÐÐ→ d′

370 8. EXTENSION THEOREMS FOR THE CATEGORY OF CORRESPONDENCES

of the objects (Φ(c) Φ(βc)Ð→ Φ(c′)) ∈ Seqext
1 (S). Thus, to show that (3.8) is repre-

sented by

Ψ(d) Ψ(β)ÐÐÐÐ→ Ψ(d′)
×××Ö

×××Ö
Ψ̃(d) Ψ̃(β)ÐÐÐÐ→ Ψ̃(d′),

we need to construct a compatible of diagrams

Φ(c) Φ(βc)ÐÐÐÐ→ Φ(c′)

Ψ(γ)
×××Ö

×××Ö
Ψ(γ′)

Ψ(d) Ψ(β)ÐÐÐÐ→ Ψ(d′)
×××Ö

×××Ö
Ψ̃(d) Ψ̃(β)ÐÐÐÐ→ Ψ̃(d′),

in which the outer squares are identified with

Φ(c) ÐÐÐÐ→ Φ(c′)

Ψ̃(γ)
×××Ö

×××Ö
Ψ̃(γ′)

Ψ̃(d) Ψ̃(β)ÐÐÐÐ→ Ψ̃(d′).

However, this is given by the diagram (3.10).

3.2.6. As in Sect. 3.2.4, from the isomorphism (3.5), we obtain a natural trans-
formation

Ψ̃! ○ (Fhoriz)op → Φ!,

and hence a natural transformation

(3.11) Ψ̃! → Ψ!,

which is also an isomorphism by the same logic.

We claim that for a 1-morphism f ∶ d → d′ in Corr(D)admvert;horiz, given by a

horizontal morphism α ∶ d′ → d, the diagram (3.8) represents the inverse of the
natural transformation (3.11) evaluated on α.

Indeed, using the calculation of Ψ1 in Sect. 3.1, we obtain Ψ1(f) can be written
as a colimit of the category

c
αc←ÐÐÐÐ c′

γ
×××Ö

×××Ö
γ′

d
α←ÐÐÐÐ d′

of the objects (Φ(c) Φ!(αc)Ð→ Φ(c′)) ∈ Seqext
1 (S).

3. THE CORE OF THE PROOF 371

Thus, to show that (3.8) is represented by

Ψ(d) Ψ!(α)ÐÐÐÐ→ Ψ(d′)

∼
×××Ö

×××Ö
∼

Ψ̃(d) Ψ̃!(α)ÐÐÐÐ→ Ψ̃(d′),
we need to construct a compatible family of diagrams

Φ(c) Φ(c′)

Ψ̃(d) Ψ̃(d′)

Ψ(d) Ψ(d′)

Φ!(αc) //

Ψ̃(γ)

��

Ψ̃(γ′)

��

Ψ̃!(α)
//ow

∼

��

∼

��

Ψ!(α)
//

where the outer square is

Φ(c) Φ(c′)

Ψ(d). Ψ(d′)

Φ!(αc) //

Ψ(γ)

��

Ψ(γ′)

��

Ψ!(α)
//ow

Now, the required family of diagrams is obtained by passing to left adjoints along
the γ-arrows in the family of commutative diagrams

Φ(c) Φ(c′)

Ψ̃(d) Ψ̃(d′)

Ψ(d) Ψ(d′)

Ψ̃!(α) //

∼

��

∼

��Ψ!(α) //

Φ!(αc)
//

Ψ!(γ)

��

Ψ!(γ′)

��

372 8. EXTENSION THEOREMS FOR THE CATEGORY OF CORRESPONDENCES

4. Proof of Proposition 1.2.5: easy reduction steps

4.1. Reductions for Proposition 1.2.5(a).
4.1.1. We claim that the map (1.3) is an isomorphism if r is of the form i↦ i + k
for 0 ≤ k ≤ n −m (in particular, it is an isomorphism for m = 0).

In fact, we claim that in this case, the map

LKEFn(G ○ r∗C)→ LKEFm(G) ○ r∗D
is an isomorphism for any functor G out of ′Grid≥dgnl

m (C)admvert;horiz.

Note that if the latter statement holds for r ∶ [m]→ [n] and q ∶ [l]→ [m], then
it holds for the composition r ○ q ∶ [l]→ [n]. This reduces the assertion to the case
of r being a map [n − 1]→ [n], which is either i↦ i or i↦ i + 1.

Fix an object dn ∈ ′Grid≥dgnl
n (D)admvert;horiz. We need to show that the map

colim
cn,Fn(cn)→dn

G(r∗C(cn))→ colim
cm,Fm(cm)→r∗

D
(dn)

G(cm)

is an isomorphism.

We will show that in each of the above cases, the functor of index categories,
i.e.,

(4.1) {cn, Fn(cn)→ dn}→ {cm, Fm(cm)→ r∗D(dn)}, cn ↦ r∗C(cn)

is cofinal. By symmetry, it is sufficient to consider the case of r being the map
i↦ i.

The functor (4.1) is (obviously) a co-Cartesian fibration. Hence, it is enough
to show that it has contractible fibers.

For a given

cn−1 → r∗D(d),
the fiber over it is the category of diagrams

{cn,n → dn,n,cn−1,n → cn−1,n−1 ×
dn−1,n−1

dn−1,n ×
dn,n

cn,n},

where both maps are in adm.

This category is a co-Cartesian fibration over the category of

{cn,n → dn,n}.

We claim that this category is contractible. Indeed, this follows from Lemma 4.1.2
below.

So, it is enough to show that each fiber of this co-Cartesian fibration , i.e.,

{cn−1,n → cn−1,n−1 ×
dn−1,n−1

dn−1,n ×
dn,n

cn,n}

is contractible. However, this also follows from Lemma 4.1.2.

Lemma 4.1.2. For a given d ∈ D, the category Cadm ×
Dadm

(Dadm)/d is con-

tractible.

4. PROOF OF PROPOSITION 1.2.5: EASY REDUCTION STEPS 373

Proof. We claim that Cadm ×
Dadm

(Dadm)/d is in fact cofiltered (i.e., its oppo-

site category is filtered).

Indeed, the category (Dadm)/d has products, and therefore is cofiltered. Note
now that every object of (Dadm)/d admits a map from an object in Cadm ×

Dadm

(Dadm)/d, by Sect. 1.1.3.

Now, we have the following general assertion: let E′ → E be a fully faithful
embedding with E filtered. Assume that every object of E admits a morphism to
an object of E′. Then E′ is also filtered (and its embedding into E is cofinal).

�

4.1.3. We will now show that it is enough to prove that (1.3) is an isomorphism
for m = 1. Indeed, in order to show that

LKEFn(Φm ○ r∗C)→ LKEFm(Φm) ○ r∗D

is an isomorphism, it is enough to show that the induced natural transformation

q∗S ○ LKEFn(Φm ○ r∗C)→ q∗S ○ LKEFm(Φm) ○ r∗D

is an isomorphism for every m ≥ 1 and q ∶ [1]→ [m] of the form

0↦ i, 1↦ i + 1.

We have a commutative diagram

q∗S ○ LKEFn(Φm ○ r∗C) ÐÐÐÐ→ q∗S ○ LKEFm(Φm) ○ r∗D
Õ×××

Õ×××
LKEFn(q∗S ○Φm ○ r∗C) ÐÐÐÐ→ LKEFm(q∗S ○Φm) ○ r∗D

≃
×××Ö

×××Ö
≃

LKEFn(Φ1 ○ q∗C ○ r∗C) LKEFm(Φ1 ○ q∗C) ○ r∗D
=
×××Ö

×××Ö
LKEFn(Φ1 ○ (r ○ q)∗C) LKEFm(Φ1) ○ q∗D ○ r∗D

id
×××Ö

×××Ö
=

LKEFn(Φ1 ○ (r ○ q)∗C) ÐÐÐÐ→ LKEF1(Φ1) ○ (r ○ q)∗D.

By assumption, the bottom horizontal arrow is an isomorphism. The second-
from-the-bottom right vertical arrow is an isomorphism by Sect. 4.1.1. The upper
left and upper right vertical arrows are isomorphisms by Proposition 2.3.2(b).

Hence, the top horizontal arrow is also an isomorphism, as required.

374 8. EXTENSION THEOREMS FOR THE CATEGORY OF CORRESPONDENCES

4.1.4. We will now show that it is enough to show that the map (1.3) is an iso-
morphism for r ∶ [1]→ [n] of the form 0↦ 0 and 1↦ n.

Indeed, given a map r ∶ [1] → [n] decompose it as p ○ q, where q ∶ [1] → [m] is
of the form 0↦ 0 and 1↦m and p is of the form i↦ i + k for 0 ≤ k ≤ n −m.

We have a commutative diagram

LKEFn(Φ1 ○ (p ○ q)∗C) ÐÐÐÐ→ LKEF1(Φ1) ○ (p ○ q)∗D
=
×××Ö

×××Ö
=

LKEFn(Φ1 ○ q∗C ○ p∗C) LKEF1(Φ1) ○ q∗D ○ p∗D
×××Ö

×××Ö
id

LKEFm(Φ1 ○ q∗C) ○ p∗D ÐÐÐÐ→ LKEF1(Φ1) ○ q∗D ○ p∗D.
By assumption, the bottom horizontal map is an isomorphism. The lower left

vertical is an isomorphism by Sect. 4.1.1. This implies that the top horizontal map
is an isomorphism, as required.

4.1.5. To summarize, in order to prove Proposition 1.2.5(a) it remains to consider
the following two cases:

(I) r is the map [1]→ [n] given by 0↦ 0 and 1↦ n with n > 1.

(II) r is the degeneracy map [1]→ [0].

4.2. Reductions for Proposition 1.2.5(b).
4.2.1. First, we note that the map (1.4) is an isomorphism for m = 0, by Proposi-
tion 2.3.2(a).

4.2.2. We will show that it is sufficient it is sufficient to prove that the map (1.4)
is an isomorphism for m = 1.

Indeed, in order to show that (1.4) is an isomorphism, it is sufficient to show
that the induced natural transformation

q∗S ○ LKEFn(r∗S ○Φn)→ q∗S ○ r∗S ○ LKEFn(Φn)
is an isomorphism, for every m ≥ 1 and q ∶ [1]→ [m] of the form

0↦ i, 1↦ i + 1.

We have a commutative diagram

q∗S ○ LKEFn(r∗S ○Φn) // q∗S ○ r∗S ○ LKEFn(Φn)

=

��

LKEFn(q∗S ○ r∗S ○Φn)

=
��

OO

LKEFn((r ○ q)∗S ○Φn) // (r ○ q)∗S ○ LKEFn(Φn),

where the upper left vertical arrow is an isomorphism by Proposition 2.3.2(b).

This establishes the announced reduction step.

5. END OF THE PROOF OF PROPOSITION 1.2.5 375

4.2.3. We will now further reduce the verification of the fact that (1.4) is an
isomorphism to the case when r ∶ [1]→ [n] sends 0↦ 0 and 1↦ n.

Given a map r ∶ [1]→ [n] we can factor it as

[1] p→ [m] q→ [n],
where q is of the form i↦ i + k for 0 ≤ k ≤ n −m, and p sends 0↦ 0 and 1↦m.

We claim that if the map

LKEFn(p∗S ○Φm)→ p∗S ○ LKEFn(Φm)
is an isomorphism, then so is the map

LKEFn(r∗S ○Φm)→ r∗S ○ LKEFn(Φm).

Indeed, we have a commutative diagram

LKEFn(r∗S ○Φn) ÐÐÐÐ→ r∗S ○ LKEFn(Φn)

=
Õ×××

Õ×××
=

LKEFn(p∗S ○ q∗S ○Φn) p∗S ○ q∗S ○ LKEFn(Φn)

∼
Õ×××

Õ×××
LKEFn(p∗S ○Φm ○ q∗C) ÐÐÐÐ→ p∗S ○ LKEFn(q∗S ○Φn)

×××Ö
×××Ö
∼

LKEFm(p∗S ○Φm) ○ q∗D p∗S ○ LKEFn(Φm ○ q∗C)

id
×××Ö

×××Ö
LKEFm(p∗S ○Φm) ○ q∗D ÐÐÐÐ→ p∗S ○ LKEFm(Φm) ○ q∗D

By assumption, the bottom horizontal map is an isomorphism, and we wish to
deduce that so is the top horizontal map. We claim that all the vertical maps are
isomorphisms.

The second-from-the-bottom left vertical map and the lower right vertical map
are isomorphisms by Sect. 4.1.1. The second-from-the-top right vertical map is an
isomorphism by Proposition 2.3.2(c).

5. End of the proof of Proposition 1.2.5

5.1. Proof of Proposition 1.2.5(b); the main case. We need to show that
the map

(5.1) LKEFn(r∗S ○Φn)→ r∗S ○ LKEFn(Φn)
is an isomorphism for r being the map [1]→ [n], 0↦ 0 and 1↦ n.

Fix an object dn ∈ ′Grid≥dgnl
n (D)admvert;horiz. We need to show that the map

(5.2) colim
cn

r∗S ○Φn(cn)→ r∗S(colim
cn

Φn(cn))

is an isomorphism, where cn runs over the category

(′Grid≥dgnl
n (C)admvert;horiz)/dn .

376 8. EXTENSION THEOREMS FOR THE CATEGORY OF CORRESPONDENCES

5.1.1. We first calculate the colimit

(5.3) colim
cn

Φn(cn) ∈ Seqn(S),

which is a string

Ψ(d0,0)→ Ψ(d1,1)→ ...→ Ψ(dn,n).

We claim that (5.3) is given by

(5.4) Ψ(di−1,i−1)
Ψ(βi−1,i)○Ψ!(αi,i−1)Ð→ Ψ(di,i)

i = 1, ..., n.

For i = 1, ..., n, let q denote the map [1] → [n], given by 0 ↦ i − 1, 1 ↦ i. We
will identify

q∗S(colim
cn

Φn(cn))

with (5.4).

Note that by Proposition 2.3.2(b), we have

(5.5) q∗S(colim
cn

Φn(cn)) ≃ colim
cn

q∗S ○Φn(cn).

For i = 1, ..., n, let din be the object of ′Grid≥dgnl
1 (D)admvert;horiz given by

di−1,i ÐÐÐÐ→ di−1,i−1

×××Ö
di,i.

We have a natural restriction functor

(5.6) r∗C ∶ (′Grid≥dgnl
n (C)admvert;horiz)/dn → (′Grid≥dgnl

1 (C)admvert;horiz)/din .

The functor

r∗S ○Φn ∶ (′Grid≥dgnl
n (C)admvert;horiz)/dn → Seq1(S)

identifies with Φ1 ○ r∗C.

Now, it is easy to see that the functor (5.6) is a co-Cartesian fibration. More-
over, it follows from Lemma 4.1.2 that its fibers are contractible. Hence, the functor
(5.6) is cofinal.

Therefore, the colimit in (5.5) identifies with

colim
c1

Φ1(c1),

where c1 runs over the category (′Grid≥dgnl
1 (C)admvert;horiz)/din .

Now, the fact that the latter colimit identifies with (5.4) is the calculation
carried out in Sect. 3.1.

5. END OF THE PROOF OF PROPOSITION 1.2.5 377

5.1.2. Consider the index category in (5.2), i.e., (′Grid≥dgnl
n (C)admvert;horiz)/dn . It

is a co-Cartesian fibration over

γ ∶= (c0,0

γ0,0Ð→ d0,0), ..., (cn,n
γn,nÐ→ dn,n).

Hence, the map in (5.2) can be written as a composite of

(5.7) colim
γ

colim
cn

r∗S ○Φn(cn)→ colim
γ

r∗S(colim
cn

Φn(cn))

and

(5.8) colim
γ

r∗S(colim
cn

Φn(cn))→ r∗S(colim
γ

colim
cn

Φn(cn)),

where now cn runs over the fiber category

((′Grid≥dgnl
n (C)admvert;horiz)/dn)γ .

We will show that each of the maps (5.7) and (5.8) is an isomorphism.

5.1.3. We start with the following observation:

For a given γ, let d′n be the object of ′Grid≥dgnl
n (D)admvert;horiz with

d′i,i = ci,i and d′i,i+1 = ci+1,i+1 ×
di+1,i+1

di,i+1 ×
di,i

ci,i;

the other coordinates of d′ are uniquely determined by the condition that the inner
squares should be Cartesian.

Consider the category (′Grid≥dgnl
n (C)admvert;horiz)/d′n . Note, however, that cofi-

nal in this category is the full subcategory consisting of c′n → d′n with c′i,i = ci,i for
i = 0, ..., n. And note that this subcategory identifies tautologically with the fiber
category ((′Grid≥dgnl

n (C)admvert;horiz)/dn)γ appearing in the colimits (5.7) and (5.8).

Hence, we need to show that the maps

(5.9) colim
γ

colim
cn

r∗S ○Φn(cn)→ colim
γ

r∗S(colim
cn

Φn(cn))

and

(5.10) colim
γ

r∗S(colim
cn

Φn(c′n))→ r∗S(colim
γ

colim
cn

Φn(c′n)),

are isomorphisms, where c′n runs over the category (′Grid≥dgnl
n (C)admvert;horiz)/d′n .

5.1.4. We begin by showing that the map (5.10) is an isomorphism.

According to Sect. 5.1.1, the colimit colim
cn

Φn(cn)), which is a string

Ψ(c0,0)→ Ψ(c1,1)→ ...→ Ψ(cn,n),
is given by

(5.11) Ψ(d′i−1,i−1)
Ψ(β′i−1,i)○Ψ

!(α′i,i−1)Ð→ Ψ(d′i,i).
Now, as in Sect. 3.1.4, by the Beck-Chevalley conditions, for each i = 1, ..., n,

the composition Ψ(β′i−1,i) ○Ψ!(α′i,i−1) identifies with

Ψ!(γi) ○Ψ(βi−1,i) ○Ψ!(αi,i−1) ○Ψ(γi−1).

378 8. EXTENSION THEOREMS FOR THE CATEGORY OF CORRESPONDENCES

Hence, the fact that (5.10) is an isomorphism follows from Corollary 2.3.7(b).
Here, the corresponding categories

(ci,i
γi,i→ di,i) = (Cadm)/di,i

are contractible by Lemma 4.1.2.

5.1.5. We will now show that the map (5.9) is an isomorphism. In fact, we claim
that the map

(5.12) colim
cn

r∗S ○Φn(cn)→ r∗S(colim
cn

Φn(cn))

is already an isomorphism.

Note, however, that the map (5.12) is the map (5.2) for dn replaced by d′n.
I.e., we have reduced the original problem to the case when di,i ∈ C.

We note that in this case the category (′Grid≥dgnl
n (C)admvert;horiz)/dn identifies

with the product

(Cadm)/d0,1
× ... × (Cadm)/di−1,i × × (Cadm)/dn−1,n .

For every c ∈ (′Grid≥dgnl
n (C)admvert;horiz)/dn , the object r∗S ○ Φn(cn), which is a

map

Ψ(d0,0)→ Ψ(dn,n)

equals the composite

(Ψ(βn−1,n)○Ψ(γn−1,n)○Ψ!(γn−1,n)○Ψ!(αn,n−1))○...○(Ψ(β0,1)○Ψ(γ0,1)○Ψ!(γ0,1)○Ψ!(α1,0)).

Hence, as in Sect. 3.1.3, the left-hand side in (5.12) identifies with

(5.13) (Ψ(βn−1,n) ○Ψ!(αn,n−1)) ○ ... ○ (Ψ(β0,1) ○Ψ!(α1,0)).

Now, according to Sect. 5.1.1, the right-hand side in (5.12) also identifies with
(5.13). By unwinding the constructions, it is easy to see that the map in (5.12)
corresponds to the identity endomorphism on (5.13) in terms of the above identifi-
cations.

5.2. Proof of Proposition 1.2.5(a): the degeneracy map. To finish the proof
of Proposition 1.2.5(a), we need to treat the cases specified in Sect. 4.1.5. In this
subsection we will consider the degeneracy map [1]→ [0].

5.2.1. Fix an object d ∈ D = ′Grid≥dgnl
0 (C)admvert;horiz. We need to show that the

map

colim
c,γ∶c→d

Φ1(r∗C(c))→ colim
c1,c1→r∗D(d)

Φ1(c1)

is an isomorphism.

6. FUNCTORS OBTAINED BY HORIZONTAL EXTENSION 379

5.2.2. We compose the above map with the isomorphism

colim
c1,c1→r∗D(d)

Φ1(c1) ≃ idΨ(d)

of Sect. 3.1.

So, we need to show that the map

colim
c,γ∶c→d

Φ1(r∗C(c)) ≃ colim
c,γ∶c→d

idΦ(c) → idΨ(d)

is an isomorphism.

However, this follows from Proposition 2.3.4.

5.3. Proof of Proposition 1.2.5(a): the main case. The case we now need to
consider is that of r being the map [1]→ [n], n > 1, with 0↦ 0 and 1↦ n.

5.3.1. Fix an object dn ∈ ′Grid≥dgnl
n (D)admvert;horiz. We need to show that the map

(5.14) colim
cn,Fn(cn)→dn

Φ1(r∗C(cn))→ colim
c1,F1(c1)→r∗D(dn)

Φ1(c1)

is an isomorphism.

Consider the maps

αn,0 ∶ dn,0 → d0,0 and β0,n ∶ dn,0 → dn,n.

By Sect. 3.1, the right-hand side in (5.14), which is a 1-morphism Ψ(d0,0) →
Ψ(dn,n), identifies with

Ψ(β0,n) ○Ψ!(αn,0).

By Proposition 2.3.4, the left-hand side in (5.14) identifies with

colim
cn,Fn(cn)→dn

Ψ(β0,n) ○Ψ(γn,0) ○Ψ!(γn,0) ○Ψ!(αn,0).

5.3.2. Thus, it suffices to show that the map

colim
cn,Fn(cn)→dn

Ψ(γn,0) ○Ψ!(γn,0)→ idΨ(dn,0)

is an isomorphism.

However, this follows by induction from Condition (∗) in Sect. 1.1.6.

6. Functors obtained by horizontal extension

In this section we prove the second extension result in this chapter. A typical
situation that it applies to is when we start with the functor

IndCohCorr(Schaft)proper
all;all

∶ Corr(Schaft)proper
all;all → DGCatcont,

and we want to extend it to a functor

IndCohCorr(PreStklaft)sch & proper
sch;all

∶ Corr(PreStklaft)sch & proper
sch;all → DGCatcont .

6.1. Set up for the horizontal extension. In this subsection we formulate the
main result of this section, Theorem 6.1.5.

380 8. EXTENSION THEOREMS FOR THE CATEGORY OF CORRESPONDENCES

6.1.1. Let (C, vert, horiz, adm) and (D, vert, horiz, adm) both be as in Chapter
7, Sect. 1.1.1, and let F ∶ C → D be a functor that preserves the corresponding
classes of 1-morphisms, i.e., that it gives rise to well-defined functors

Fvert ∶ Cvert →Dvert, Fhoriz ∶ Choriz →Dhoriz and Fadm ∶ Cadm →Dadm.

Furthermore, suppose that F takes Cartesian squares in Chapter 7, Diagram
(1.1) to Cartesian squares. Hence, F induces a functor

F admvert;horiz ∶ Corr(C)admvert;horiz → Corr(D)admvert;horiz.

6.1.2. Now, suppose we have a functor

Φadmvert;horiz ∶ Corr(C)admvert;horiz → S,

where S is a (∞,2)-category, and let

Φ! ∶= Φadmvert;horiz ∣(Choriz)op ∶ (Choriz)op → S1-Cat.

Our interest in this section the right Kan extension of Φadmvert;horiz under F admvert;horiz.

By definition, such a right Kan extension is a functor (if it exists)

Ψadm
vert;horiz ∶ Corr(D)admvert;horiz → S,

universal with respect to the property of being endowed with a natural transfor-
mation

Ψadm
vert;horiz ○ F admvert;horiz → Φadmvert;horiz.

6.1.3. We make the following assumptions on S:

● The (∞,1)-category S1 -Cat admits limits;
● For every s ∈ S there exists and object [1]⊗s ∈ S equipped with a functorial

identification

Maps([1]⊗ s, s′) ≃ Maps([1],MapsS(s, s′)).
respectively.

Note that in this case the conclusion of Lemma 2.2.2(b) is applicable to S.

6.1.4. We do not intend to develop the general theory of right Kan extensions in
the 2-categorical context. However, we will prove the following result:

Theorem 6.1.5. Assume that for any c ∈ C the functor F induces an equiva-
lence

(Cvert)/c → (Dvert)/F (c).

Then the right Kan extension

RKEFadm
vert;horiz

(Φadmvert;horiz) ∶ Corr(D)admvert;horiz → S

exists and the natural maps

(6.1) RKEFadm
vert;horiz

(Φadmvert;horiz)∣Corr(D)vert;horiz → RKEFvert;horiz(Φvert;horiz)

and

(6.2) RKEFvert;horiz(Φvert;horiz)∣(Dhoriz)op → RKE(Fhoriz)op(Φ
!)

are isomorphisms.

The rest of this section is devoted to the proof of Theorem 6.1.5.

6. FUNCTORS OBTAINED BY HORIZONTAL EXTENSION 381

6.2. Proof of Theorem 6.1.5: the easy case. As a warm-up, we shall first
prove the easy case of Theorem 6.1.5, namely, when adm = isom. In this case, the
assertion of the theorem amounts to the isomorphism (6.2).

6.2.1. Fix an object d ∈ D. We need to show that the map

lim
c∈(Corr(C)vert;horiz)d/

Φ(c)→ lim
c∈((Choriz)/d)op

Φ(c)

is an isomorphism.

We claim that the functor of index categories, i.e.,

(Choriz)/d → ((Corr(C)vert;horiz)d/)op

is cofinal.

6.2.2. We claim that the above functor admits a left adjoint. Note that the objects
of the category (Corr(C)vert;horiz)d/ are diagrams

d̃
αÐÐÐÐ→ d

β
×××Ö

F (c)
with c ∈ C, α ∈ horiz and β ∈ vert.

However, the condition of the theorem implies that the vertical arrow

d̃
β→ F (c)

is of the form

F (c̃)→ F (c)

for a canonically defined c̃
β′→ c in C. So, the above diagram has the form

F (c̃) αÐÐÐÐ→ d

F (β′)
×××Ö

F (c).

The left adjoint in question sends such a diagram to

F (c̃)→ d.

6.3. Proof of Theorem 6.1.5: the principle. We do not intend to tackle the
general theory of right Kan extensions in (∞,2)-categories. However, it turns out
that under the condition of the theorem, the 2-categorical right Kan extension
amounts to the 1-categorical one.

6.3.1. We consider the following general paradigm. Let

F ∶ T1 → T2

be a functor between (∞,2)-categories, and let

Φ ∶ T1 → S

be another functor, where S satisfies the assumptions of Sect. 6.1.3.

382 8. EXTENSION THEOREMS FOR THE CATEGORY OF CORRESPONDENCES

6.3.2. We now make the following assumption on the functor F . For t2 ∈ T2 let I
denote the index category, whose objects are pairs

(t′1 ∈ T1, g ∶ t2 → F (t′1)),

and whose morphisms are commutative diagrams (i.e., we only allow invertible 2-
morphisms).

For an object t1 ∈ T1, we have an Iop-diagram of categories

(t′1 ∈ T1, g ∶ t2 → F (t′1))↦MapsT1
(t′1, t1).

We have a naturally defined functor

(6.3) colim
(t′1,g)∈Iop

MapsT1
(t′1, t1)→MapsT2

(t2, F (t1)), (t′1
f→ t1)↦ F (f) ○ g,

where the colmit is taken in 1 -Cat.

We claim:

Lemma 6.3.3. Suppose that the functor (6.3) is an equivalence. Then

RKEF (Φ) ∶ T2 → S

exists and the canonical map

RKEF (Φ)∣T1 -Cat
2

→ RKEF ∣T1 -Cat
1

(Φ∣T1 -Cat
1

)

is an isomorphism.

Remark 6.3.4. Intuitively, the lemma says that 2-functoriality of

RKEF ∣T1 -Cat
1

(Φ∣T1 -Cat
1

) ∶ T1 -Cat
2 → S1 -Cat

is already built in, because 2-morphisms between arrows

t2 → F (t1)

all come from 2-morphisms in T1, and thus are encoded by the 2-functoriality of Φ.

6.4. Proof of Theorem 6.1.5: the general case. We will prove that (6.1) by
applying Lemma 6.3.3 to our functor

F admvert;horiz ∶ Corr(C)admvert;horiz → Corr(D)admvert;horiz.

6.4.1. Fix an object d ∈ D and c ∈ C. Consider the corresponding category I. First
we note that as in Sect. 6.2, cofinal in Iop is its full subcategory I′op, consisting of
horizontal morphisms F (c′)→D.

6. FUNCTORS OBTAINED BY HORIZONTAL EXTENSION 383

6.4.2. Thus, we need to show that the functor

colim
c′,F (c′)→d

MapsCorr(C)adm
vert;horiz

(c′,c)→MapsCorr(C)adm
vert;horiz

(d, F (c))

is an equivalence.

However, we claim that the above functor admits an explicit inverse: it sends

d′ ÐÐÐÐ→ d

βd

×××Ö
F (c)

to the object (F (c′)→ d) ∈ I′ and

c′ ÐÐÐÐ→ c′

βc

×××Ö
c,

where d′ = F (c′), βD = F (βc). �

CHAPTER 9

The (symmetric) monoidal structure on the
category of correspondences

Introduction

0.1. Why do we want it? The goal of this chapter is to provide a general frame-
work for theorems along the lines that the functor

(0.1) IndCohCorr(Schaft) ∶ Corr(Schaft)→ DGCatcont

is symmetric monoidal.

Why do we care about this? There are at least two applications for having such
a formalism.

0.1.1. The first application is the following. We show that a symmetric monoidal
structure on (0.1) encodes the duality on IndCoh; in this case, Serre self-duality of
IndCoh(X) for X ∈ Schaft.

Namely, let C be an arbitrary category closed under finite products, and let

Φ ∶ Corr(C)→O

be a functor, where O be a symmetric monoidal category.

In Sect. 2.1.4 we show that the symmetric monoidal structure on C, given
by Cartesian products, gives rise to a symmetric monoidal structure on Corr(C).
Assume now that the functor Φ is endowed with a symmetric monoidal structure.

It then follows from Proposition 2.3.4 that for every c ∈ C, the object Φ(c) ∈ O
is canonically self-dual, so that the duality datum is provided by applying Φ to the
1-morphisms

c ÐÐÐÐ→ c × c
×××Ö
∗

and
c ÐÐÐÐ→ ∗
×××Ö

c × c.

In particular, for map c1
f→ c2 in C, the maps

Φ(c1)⇄ Φ(c2)
385

386 9. THE (SYMMETRIC) MONOIDAL STRUCTURE ON CORRESPONDENCES

in O, given by the diagrams

c1
idÐÐÐÐ→ c1

f
×××Ö
c2

and

c1
fÐÐÐÐ→ c2

id
×××Ö
c1

are the duals of each other.

Going back to the example of

C = Schaft, O = DGCatcont and Φ = IndCohCorr(Schaft),

the resulting identification

IndCoh(X)∨ ≃ IndCoh(X)

is the ind-extension of the Serre duality anti-equivalence Coh(X)op → Coh(X).

0.1.2. Another application is the following. We show that a monoidal structure
on (0.1) encodes the formation of convolution categories.

Let C be a category that admits finite limits. Let c ∈ C be an object, and let
c● ∈ C∆op

be a Segal object 1 acting on c. I.e., we have an identification c0 = c and
we require that for any n ≥ 2, the map

c1 ×
c
... ×

c
c1,

given by the product of the maps

[1]→ [n], 0↦ i,1↦ i + 1, i = 0, ..., n − 1,

be an isomorphism.

In Theorem 4.4.2 we show that c1, regarded as an object of Corr(C), has a
natural structure of associative algebra (with respect to the (symmetric) monoidal
structure on Corr(C)), where the binary operation on c1 is given by the diagram

c2 ÐÐÐÐ→ c1 × c1

×××Ö
c1,

in which the vertical map is given by the active map [1] → [2], and the horizontal
map is given by the product of the two inert maps [1]→ [2].

In particular, taking C = Schaft and applying the (symmetric) monoidal functor

IndCohCorr(Schaft) ∶ Corr(Schaft)→ DGCatcont,

1Alternative terminology: category-object.

INTRODUCTION 387

we obtain that for a Segal object X● in the category of schemes, the category
IndCoh(X1) is endowed with a monoidal structure, given by convolution. I.e., it is
given by pull-push along the diagram

X1 ×
X0

X1 ÐÐÐÐ→ X1 ×X1

×××Ö
X1.

0.2. What is done in this Chapter?
0.2.1. In Sect. 1 we make a general review, following [Lu2], of ‘what it means to
be (symmetric) monoidal’.

First, we define the notion of (commutative) monoid in an ∞-category.

As a result we obtain the notions of (symmetric) monoidal (∞,1)-category and
(∞,2)-category.

We also review the notions of right-lax and left-lax (symmetric) monoidal
functors between (symmetric) monoidal (∞,1)-categories and (∞,2)-categories.
The latter leads to the notion of (commutative) algebra object in a (symmetric)
monoidal (∞,1)-category.

0.2.2. In Sect. 2, we show that if an (∞,1)-category C has a (symmetric) monoidal
structure, and vert, horiz, adm are three classes of objects, preserved by the monoidal
operation, then the (∞,2)-category Corr(C)admvert;horiz acquires a (symmetric) monoidal
structure.

In the applications, we will take C endowed with the Cartesian symmetric
monoidal structure.

In Sect. 2.2 we show that the (∞,1)-category

Corr(C) ∶= Corr(C)isom
all;all

is endowed with a canonical anti-involution, given by swapping the roles of the
vertical and horizontal arrows.

We prove that this anti-involution is canonically isomorphic to the dualization
functor, when Corr(C) is considered as a symmetric monoidal category.

0.2.3. In Sect. 3 we show that the extension results of Chapter 7, Sects. 4 and 5
and Chapter 8 carry through to the (symmetric) monoidal world.

0.2.4. In Sect. 4 we give the following two constructions, starting from a Segal
object c● in an (∞,1)-category C, acting on c = c0 ∈ C.

In the first construction (which does not appeal to the symmetric monoidal
structure on the category of correspondences), we show that a Segal object as
above defines an algebra object in the monoidal category

MapsCorr(C)adm
vert;horiz

(c,c)

of endomorphisms of c in the (∞,2)-category Corr(C)admvert;horiz.

In the second construction (which does talk about the symmetric monoidal
structure on the category of correspondences), we show that the object c1 has a
natural structure of associative algebra in Corr(C)vert;horiz.

388 9. THE (SYMMETRIC) MONOIDAL STRUCTURE ON CORRESPONDENCES

1. (Symmetric) monoidal structures: recollections

In this section we review, mostly following [Lu2], and partly repeating the ma-
terial of Chapter 1, Sect. 3, the notions of (commutative) monoid (in a given (∞,1)-
category), (symmetric) monoidal (∞,1)-category, and (symmetric) monoidal (∞,2)-
category.

For a usual category C, a monoid in it is an object c ∈ C equipped with a product
operation c × c → c and a unit map ∗ → c that satisfy the usual axioms (in fact,
three altogether).

The main feature in the ∞-setting is that if we were to imitate this definition
when C is an (∞,1)-category, in addition to the above binary operation we will
need to supply a whole tail of higher operations (e.g., a homotopy between the two
tertiary operations c×3 ⇉ c), and axioms on the compatibilities between them. The
problem is that this becomes too unwieldy to work with.

The main idea is that when defining monoids, instead of specifying just one
object c, we specify the entire datum of its products and maps between them. Such
a data is encoded by just one functor ∆op → C, where the original c is the value of
our functor on [1] ∈ ∆op. This functor must satisfy some obvious condition (that
expresses the fact that its value on [n] ∈ ∆op is the the product of n copies of c).
This description was first formulated in [Seg].

The above approach to the definition creates a very convenient framework for
working with monoids (and the related notions of monoidal categories, algebras in
them, etc.). It also allows for an immediate generalization in the world of (∞,2)-
categories.

1.1. Monoids and commutative monoids. In this subsection we recall the
notions of monoid and commutative monoid in the setting of (∞,1)-categories.

1.1.1. Let C be an (∞,1)-category with finite products (including the empty finite
product, i.e., a final object). One can then talk about monoids in C. By definition,

they form a full subcategory, denoted Monoid(C), in C∆op

, consisting of objects
R●, such that R0 = ∗C , and such that for any n ≥ 2, the map

(1.1) Rn →R1 × ... ×R1,

given by the product of the maps

[1]→ [n], 0↦ i,1↦ i + 1, i = 0, ..., n − 1,

is an isomorphism.

1.1.2. Similarly, one can talk about commutative monoids, denoted ComMonoid(C)
in C. Instead of ∆op we use the category Fin∗ of pointed finite sets. The condition
now is that R{∗} = ∗C and for every (∗ ∈ I) ∈ Fin∗ the map

(1.2) RI → Π
i∈I−{∗}

R(∗∈{∗⊔i})

is an isomorphism.

1. (SYMMETRIC) MONOIDAL STRUCTURES: RECOLLECTIONS 389

1.1.3. Recall that we have a canonically defined functor ∆op → Fin∗, see Chapter
1, Sect. 3.3.2.

Pre-composing, we obtain the forgetful functor

ComMonoid(C)→Monoid(C).

In what follows we will focus on the symmetric monoidal case, while the
monoidal case can be treated similarly.

1.2. Symmetric monoidal categories. In this subsection we recall the notion
of symmetric monoidal (∞,1)-category, see Chapter 1, Sect. 3.3, from a slightly
different perspective.

1.2.1. Applying Sect. 1.1 to C = 1 -Cat, we obtain the notion of symmetric monoidal
category. Unstraightening associates to a symmetric monoidal category a co-Caretsian
fibration

(1.3) C⊗,Fin∗ → Fin∗

and also a Cartesian fibration

(1.4) C⊗,Finop
∗ → Finop

∗ .

The data of a symmetric monoidal category is equivalent to either (1.3) and

(1.4) satisfying the condition that C{∗} = ∗ and for every (∗ ∈ I) ∈ Fin∗ the corre-
sponding functor

(1.5) CI → Π
i∈I−{∗}

C(∗∈{∗⊔i})

is an equivalence.

1.2.2. By a symmetric monoidal functor we shall mean a 1-morphism in the cat-
egory

ComMonoid(1 -Cat).

Equivalently, this is a functor over Fin∗

(1.6) C⊗,Fin∗
1 → C⊗,Fin∗

2

that sends coCartesian arrows to coCartesian arrows, and still equivalently, a func-
tor over (Fin∗)op

(1.7) C⊗,Finop
∗

1 → C⊗,Finop
∗

2

that sends Cartesian arrows to Cartesian arrows.

1.2.3. We shall say that a map (∗ ∈ I)→ (∗ ∈ J) is inert (resp., idle) if any element
in J − {∗} has exactly (resp. at most) one preimage.

By a right-lax symmetric monoidal functor between C1 and C2 we shall mean
a functor as in (1.6) that is only required to send coCartesian arrows that lie over
idle maps in Fin∗ to coCartesian arrows.

By a non-unital right-lax symmetric monoidal functor between C1 and C2 we
shall mean a functor as in (1.6) that is only required to send coCartesian arrows
that lie over inert maps in Fin∗ to coCartesian arrows.

Similarly, we obtain that notions of left-lax and non-unital left-lax symmetric
monoidal functors: use (1.7) instead of (1.6) and ‘Cartesian’ instead of ‘coCarte-
sian’.

390 9. THE (SYMMETRIC) MONOIDAL STRUCTURE ON CORRESPONDENCES

1.2.4. By a commutative algebra in a symmetric monoidal category C we shall
mean a non-unital right-lax symmetric monoidal functor ∗→ C.

We let ComAlg(C) denote the category of commutative algebras in C. (Note
that these are the unital commutative algebras!)

By construction, a right-lax monoidal functor C1 → C2 induces a functor

ComAlg(C1)→ ComAlg(C2).

1.3. The Cartesian symmetric monoidal structure. Let C be again an (∞,1)-
category with finite products.

It is then intuitively clear that the operation of Cartesian product defines on C a
symmetric monoidal structure, called the Cartesian symmetric monoidal structure.
We will formalize this in the present subsection, following [Lu2, Sect. 2.4.1].

1.3.1. We start with the functor

(1.8) Finop
∗ → 1 -Cat, (∗ ∈ I)↦ CI−{∗},

see Chapter 1, Sect. 3.3.3.

Straightening defines a Cartesian fibration

(1.9) C×,Fin∗ → Fin∗ .

However, the condition that C admits finite products implies that (1.9) is also
a coCartesian fibration, thereby giving rise to the datum as in (1.3).

It is clear that the functors in (1.5) are equivalences. Hence, (1.9) corresponds
to a canonically defined symmetric monoidal structure on C. This is the Cartesian
symmetric monoidal structure.

1.3.2. Note that any functor C1 → C2 gives rise to a functor over Fin∗

C×,Fin∗
1 → C×,Fin∗

2

and thus defines a left-lax functor from C1 to C2, when both are considered as
equipped with the Cartesian symmetric monoidal structure.

This functor is (strictly) symmetric monoidal if and only if the initial functor
C1 → C2 commutes with finite products.

1.3.3. Note now that on the one hand, we have the notion of commutative monoid
in C, and on the other hand, we have the notion of commutative algebra in C,
considered as a symmetric monoidal category.

However, that these two notions coincide, i.e., the categories ComMonoid(C)
and ComAlg(C) are canonically equivalent, see [Lu2, Proposition 2.4.2.5].

Let us see explicitly the functor

ComAlg(C)→ ComMonoid(C).
Indeed, the operation of assigning to (∗ ∈ I) ∈ Fin∗, the functor of Cartesian

product along I − {∗}
CI−{∗} → C

defines a functor
C×,Fin∗ → C × Fin∗

over Fin∗.

1. (SYMMETRIC) MONOIDAL STRUCTURES: RECOLLECTIONS 391

Given a section Fin∗ → C×,Fin∗ , we thus obtain a functor Fin∗ → C. It is easy to
see that the requirement on the above section to be right-lax symmetric monoidal
implies that the resulting object of CFin∗ is a commutative monoid.

1.4. Symmetric monoidal (∞,2)-categories. In this subsection we introduce
symmetric monoidal (∞,2)-categories. We refer the reader to Chapter 10 for our
conventions regarding (∞,2)-categories.

1.4.1. The (∞,1)-category 2 -Cat has finite products. Hence, we can talk about
commutative monoids in 2 -Cat (or, equivalently, according to Sect. 1.3.3 above,
about commutative algebras in 2 -Cat with respect to the Cartesian symmetric
monoidal structure).

Thus, we obtain the notion of symmetric monoidal (∞,2)-category.

1.4.2. Applying the 2-categorical unstraigtening (see Chapter 11, Theorem 2.1.8),
we can encode the datum of a symmetric monoidal (∞,2)-category S by a 2-
coCartesian fibration

(1.10) S⊗,Fin∗ → Fin∗,

or equivalently a 2-Cartesian fibration

(1.11) S⊗,Finop
∗ → Finop

∗ .

As in the case of (∞,1)-categories, the datum of a symmetric monoidal (∞,2)-
category is equivalent to that of (1.10) (or (1.11)) such that the corresponding
functors

SI → Π
i∈I−{∗}

S(∗∈{∗⊔i})

are equivalences.

1.4.3. As in the case of (∞,1)-categories, this leads to the notion of (resp., non-
unital) right-lax symmetric monoidal functor S1 → S2 between symmetric monoidal
(∞,2)-categories S1 and S2: this is a functor

S⊗,Fin∗
1 → S⊗,Fin∗

2

satisfying the same condition for idle (resp., inert) arrows in Fin∗.

1.4.4. Applying the above for S1 = ∗ and S2 = S, we obtain the notion of commu-
tative algebra object in S.

Note, however, that since ∗ is a 1-category, commutative algebras in S (and ho-
momorphisms between them) are the same as the corresponding notions for S1 -Cat.

1.4.5. The feature of the 2-categorical situation is that, given right-lax (resp.,
non-unital) symmetric monoidal functors

Φ′,Φ′′ ∶ S1 → S2,

in addition to usual natural transformations between them equipped with a sym-
metric monoidal structure, one can talk about natural transformations between
them equipped with a right-lax (resp., left-lax) symmetric monoidal structure.

By definition those are right-lax (resp., left-lax) natural transformations (see
Chapter 10, Sect. 3.2.7 for what this means) between the corresponding functors

Φ′⊗,Fin∗ ,Φ′′⊗,Fin∗ ∶ S⊗,Fin∗
1 ⇉ S⊗,Fin∗

2 ,

that are strict over idle arrows in Fin∗.

392 9. THE (SYMMETRIC) MONOIDAL STRUCTURE ON CORRESPONDENCES

One can also talk about natural transformations between them equipped with
a non-unital right-lax (resp., left-lax) symmetric monoidal structure: replace the
word ‘idle’ by ‘inert’ in the above definition.

Thus, given a symmetric monoidal (∞,2)-category S, we obtain the notion of
right-lax (resp., left-lax) homomorphism

s′ → s′′

between two commutative algebra objects in S.

Similarly, we obtain the notion of non-unital right-lax (resp., left-lax) homo-
morphism.

1.4.6. As in the case of 1 -Cat, if an (∞,2)-category S has finite products, it
acquires the Cartesian symmetric monoidal structure.

By Sects. 1.4.4 and 1.3.3, commutative algebra objects in S in the Cartesian
symmetric monoidal structure are the same as commutative monads in S1 -Cat.

1.4.7. Let us take S = 1 -Cat. By Sect. 1.4.6, we obtain that 1 -Cat is a symmet-
ric monoidal (∞,2)-category. Commutative algebra objects in it are the same as
symmetric monoidal categories.

By unwinding the definitions, we obtain that given two symmetric monoidal cat-
egories C1,C2, regarded as commutative algebra objects in 1 -Cat, right-lax (resp.,
left-lax) homomorphisms between them are the same as right-lax (resp., left-lax)
symmetric monoidal functors

C1 → C2
as defined in Sect. 1.2.3. Indeed, both identify with right-lax (resp., left-lax) natural
transformations between functors

Fin∗ → 1 -Cat.

2. (Symmetric) monoidal structures and correspondences

Recall that in Chapter 7, Sect. 1 we associated to an (∞,1)-category equipped
with three classes of morphisms vert, horiz, adm (satisfying some natural condi-
tions) an (∞,2)-category Corr(C)admvert;horiz.

The first observation in that a Cartesian symmetric monoidal structure on C
induces a symmetric monoidal structure on Corr(C)admvert;horiz.

We will now show that for the (∞,1)-category

Corr(C) = Corr(C)isom
all;all,

the operation of dualization with respect to its symmetric monoidal structure (in-
duced by the Cartesian symmetric monoidal structure on C) can be interpreted as
the anti-involution that swaps the roles of vertical and horizontal arrows.

2. (SYMMETRIC) MONOIDAL STRUCTURES AND CORRESPONDENCES 393

2.1. The (symmetric) monoidal structure on the functor Corr.

Let C be an (∞,1)-category, equipped with three classes of morphisms vert, horiz, adm
as in Chapter 7, Sect. 1.1, so that we can form the (∞,2)-category Corr(C)admvert;horiz.

Assume that C has finite products, and each of the above classes of morphisms
is preserved by finite products.

In this subsection we show (which is completely tautological) that the (∞,2)-
category Corr(C)admvert;horiz acquires a symmetric monoidal structure.

2.1.1. Let Trpl be the (∞,1)-category whose objects are given by (∞,1)-categories
C together with three classes of 1-morphisms vert, horiz and adm as in Chapter 7,
Sect. 1.1.

A 1-morphism (C1, vert1, horiz1, adm1) → (C2, vert2, horiz2, adm2) is a func-
tor from C1 to C2 that preserves each of the three classes of 1-morphisms as well
as the Cartesian squares from Chapter 7, Sect. 1.1.

We endow Trpl with the Cartesian symmetric monoidal structure.

2.1.2. The assignment

(2.1) (C, vert, horiz, adm)↦ ′′Grid≥dgnl(C)admvert;horiz

is clearly a functor

Trpl→ 1 -Cat∆op

,

whose essential image belongs to the essnetial image of the functor Seq●.

Hence, we obtain that the assignment

(C, vert, horiz, adm)↦ Corr(C)admvert;horiz

is a functor

(2.2) Corr ∶ Trpl→ 2 -Cat .

By Sect. 1.3.2, the above functor Corr carries a left-lax symmetric monoidal
structure. However, it is easy to see that this left-lax symmetric structure is actually
strict, e.g., because this is the case for the functors (2.1) and Seq●.

Thus, we obtain that (2.2) has a natural symmetric monoidal structure.

2.1.3. Let (C, vert, horiz, adm) be an object of Trpl, and let C be endowed with
a symmetric monoidal structure. Assume that each of the classes of the morphisms
vert, horiz, and adm is preserved by the tensor product functor

C ×C→C.

Since the forgetful functor

Trpl→ 1 -Cat

that remembers the underlying category C is 1-fully faithful, by Chapter 4, Lemma
2.2.7, the symmetric monoidal structure on C ∈ 1 -Cat gives rise to a symmetric
monoidal structure on (C, vert, horiz, adm) ∈ Trpl.

Hence, we obtain that

Corr(C)admvert;horiz ∈ 2 -Cat

acquires a structure of symmetric monoidal (∞,2)-category.

394 9. THE (SYMMETRIC) MONOIDAL STRUCTURE ON CORRESPONDENCES

2.1.4. In our main application, we will work with the Cartesian symmetric monoidal
structure on C.

Thus, in this case we assume that the classes of 1-morphisms (vert, horiz, adm)
are preserved by finite products, and we obtain that

Corr(C)admvert;horiz ∈ 2 -Cat

acquires a structure of symmetric monoidal (∞,2)-category.

In the sequel, unless explicitly stated otherwise, when discussing a symmetric
monoidal structure on the Corr(C)admvert;horiz, we shall mean the one, coming from
the Cartesian symmetric monoidal structure on C.

2.2. The canonical anti-involution on the category of correspondences.
In this subsection we show that the (∞,1)-category Corr(C) carries a canonical
anti-involution, given swapping the roles of vertical and horizontal arrows.

We will also show that this anti-involution is canonically isomorphic to the du-
alization functor on Corr(C), when the latter is regarded as a symmetric monoidal
(∞,1)-category.

2.2.1. Let us take adm = isom, so that Corr(C)admvert;horiz = Corr(C)vert;horiz is an

(∞,1)-category.

Let us also take vert = horiz = all. Note that in this case,

Corr(C) ∶= Corr(C)all,all

carries a canonical anti-involution, denoted $.

At the level of objects $ acts as identity. At the level of 1-morphisms it sends

c1,0
α0ÐÐÐÐ→ c0

α1

×××Ö
c1

to
c1,0

α1ÐÐÐÐ→ c1

α0

×××Ö
c0.

2.2.2. The formal definition is as follows. To define $, we need to construct an
involutive identification

(2.3) Seq●(Corr(C)) ≃ Seq●(Corr(C)) ○ (rev)op,

where
rev ∶ ∆→∆

is the reversal involution on ∆, see Chapter 1, Sect. 1.1.9.

By definition,
Seq●(Corr(C)) = Grid≥dgnl

● (C),
and (2.3) comes from the involutive identification

(2.4) ([●] × [●])≥dgnl ≃ ([●] × [●])≥dgnl ○ rev,

as functors ∆→ 1 -Catordn, given by reflecting half-grids over the NW-SE diagonal.

2. (SYMMETRIC) MONOIDAL STRUCTURES AND CORRESPONDENCES 395

I.e., for every [n] ∈ ∆, the corresponding involution on

([n] × [n])≥dgnl

is (i, j)↦ (n − j, n − i).

2.2.3. Suppose now that the (∞,1)-category C, in addition, admits finite prod-
ucts.

In this case, by Sect. 2.1.4, the Cartesian symmetric monoidal structure on C
induces a symmetric monoidal structure on Corr(C). The unit for this symmetric
monoidal structure is the final object ∗ ∈ C, viewed as an object of Corr(C). (Note,
however, that ∗ is not the final object in Corr(C).)

Unwinding the definitions, we see that in this case, $ has a natural structure
of symmetric monoidal functor.

2.3. Relationship to the dualization functor. In this subsection we will show
that the anti-involution $, defined above, is the dualization functor on Corr(C),
when the latter is regarded as a symmetric monoidal category.

2.3.1. Recall that if a symmetric monoidal category O is such that every object
o ∈ O is dualizable, there is a canonical anti-involution

(2.5) O
∼→Oop

that takes o ∈ O to its monoidal dual o∨, see Chapter 1, Sect. 4.1.4.

This dualization functor is characterized by an isomorphism

(2.6) Maps(o,o′) ∼→Maps(1O,o
∨ ⊗ o′)

as functors Oop ×O→ Spc, see Chapter 1, Sect. 4.1.2.

2.3.2. We take O ∶= Corr(C), where the latter is regarded as a symmetric monoidal
category by the procedure of Sect. 2.1.4.

Let us observe that every object c ∈ Corr(C) is dualizable and in fact self-dual.
The duality data is supplied by the 1-morphisms in Corr(C):

(2.7)

c //

��

∗

c × c

and

c //

��

c × c

∗

2.3.3. We will prove:

Proposition 2.3.4. The anti-involution

$ ∶ Corr(C)→ Corr(C)op

is canonically isomorphic to the dualization functor.

396 9. THE (SYMMETRIC) MONOIDAL STRUCTURE ON CORRESPONDENCES

2.3.5. Variant. Let (C, vert, horiz, adm) be an object of Trpl as in Sect. 2.1.4, with
adm = isom and vert = horiz. Then the involution $ restricts to an involution on
Corr(C)vert,horiz.

Assume now that for every c ∈ C, the diagonal map c→ c×c and the tautologi-
cal maps c→ ∗ belong to vert = horiz. In this case every object of Corr(C)vert,horiz
is dualizable, and the assertion of Proposition 2.3.4 holds verbatim (indeed, replace
the original C by Cvert = Choriz).

2.4. A digression: the twisted arrows category.
2.4.1. For an integer n let twn denote the (ordinary) category

−n→ ...→ −1→ −0→ 0→ 1→ ...→ n.

We have the natural functors

[n]op → twn ← [n].

The assignment n↝ twn is naturally a functor

tw● ∶ ∆→ 1 -Catordn ⊂ 1 -Cat,

equipped with the natural transformations

[●]op → tw● ← [●].

2.4.2. For a (∞,1)-category D, set

Twn(D) ∶= Maps1 -Cat(twn,D).

Thus, Tw●(D) is an object of

Funct(∆op,Spc) = Spc∆op

,

which is easily seen to be a complete Segal space, equipped with the maps

(2.8) Seq●(Dop)← Tw●(D)→ Seq●(D).

2.4.3. We define the twisted arrow category of D, denoted Tw(D) so that

Seq●(Tw(D)) = Tw●(D).

The maps (2.8) give rise to a functor

(2.9) Tw(D)→Dop ×D.

It is not difficult to see (see [Lu6, Proposition 4.2.5]) that the functor (2.9) is
a co-Cartesian fibration, which is the unstraightening of the Yoneda functor

Dop ×D→ Spc.

2.5. Proof of Proposition 2.3.4.

2. (SYMMETRIC) MONOIDAL STRUCTURES AND CORRESPONDENCES 397

2.5.1. We will prove Proposition 2.3.4 by exhibiting a canonical isomorphism be-
tween the functors

Corr(C)op ×Corr(C)→ Spc

given by

(2.10) MapsCorr(C)(−,−) and MapsCorr(C)(∗,$(−)⊗ −),
respectively.

Unstraightening, we need to construct an isomorphism between the coCartesian
fibrations in spaces that correspond to the two functors in (2.10).

2.5.2. By Sect. 2.4, the functor MapsCorr(C)(−,−) corresponds to the coCartesian
fibration

Tw(Corr(C))→ (Corr(C))op ×Corr(C).

The functor

MapsCorr(C)(∗,−) ∶ Corr(C)→ Spc

is given by the coCartesian fibration Corr(C)∗/.
Thus, in order to construct an isomorphism between the functors (2.10) we

need to construct a functor

(2.11) Tw(Corr(C))→ Corr(C)∗/
that fits into a pullback diagram

(2.12)

Tw(Corr(C)) ÐÐÐÐ→ Corr(C)∗/
×××Ö

×××Ö
(Corr(C))op ×Corr(C) mult ○($×Id)ÐÐÐÐÐÐÐ→ Corr(C)

where mult ∶ Corr(C) ×Corr(C)→ Corr(C) is the functor of tensor product.

2.5.3. We have

Seqn(Corr(C)∗/) ≃ Grid≥dgnl
n+1 (C) ×

C
∗,

where Grid≥dgnl
n+1 (C)→C is evaluation on the object

(0,0) ∈ ([n + 1] × [n + 1])≥dgnl.

The sought-for maps

Seqn(Tw(Corr(C)))→ Seqn(Corr(C)∗/)
are defined as follows.

An object

c ∈ Maps((twn × twn)≥dgnl,C)
gets sent to

c′ ∈ Maps(([n + 1] × [n + 1])≥dgnl,C),
given by the formula:

c′i,j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∗ if i = j = 0

c−(j−1),j−1 if i = 0, j ≥ 1

ci−1,j−1 × c−(j−1),−(1−i) if i ≥ 1.

398 9. THE (SYMMETRIC) MONOIDAL STRUCTURE ON CORRESPONDENCES

In other words, we fold the half-grid over the NW-SE diagonal. For example,
for n = 0, this map sends a diagram

c0,−0 ÐÐÐÐ→ c−0,−0

×××Ö
c0,0

to

c0,−0 ÐÐÐÐ→ ∗
×××Ö

c0,0 × c−0,−0

and for n = 1 a diagram

c−1,1 ÐÐÐÐ→ c−1,0 ÐÐÐÐ→ c−1,−0 ÐÐÐÐ→ c−1,−1

×××Ö
×××Ö

×××Ö
c−0,1 ÐÐÐÐ→ c−0,0 ÐÐÐÐ→ c−0,−0

×××Ö
×××Ö

c0,1 ÐÐÐÐ→ c0,0

×××Ö
c1,1

to

c−1,1 ÐÐÐÐ→ c−0,0 ÐÐÐÐ→ ∗
×××Ö

×××Ö
c0,1 × c−1,−0 ÐÐÐÐ→ c0,0 × c−0,−0

×××Ö
c1,1 × c−1,−1.

The fact that (2.12) is a pullback diagram is an easy verification.

3. Extension results in the symmetric monoidal context

In Chapter 7, Sects. 4 and 5 and in Chapter 8 we proved several theorems
that say that a functor out of a certain (∞,2)-category of correspondences can be
uniquely extended to a functor out of another (∞,2)-category of correspondences.

In this section we will show that these extension procedures are compatible
with symmetric monoidal structures.

3. EXTENSION RESULTS IN THE SYMMETRIC MONOIDAL CONTEXT 399

3.1. ‘No cost’ and factorization extensions. In this subsection, we let C be a
symmetric monoidal category, equipped with three classes of morphisms vert, horiz, adm
as in Sect. 2.1.32.

We will study how the extension paradigm in Chapter 7, Sects. 4 and 5 interacts
with the symmetric monoidal structures.

3.1.1. Recall the setting of Chapter 7, Sect. 4. I.e., we start with a C, equipped
with four classes of morphisms vert, horiz, adm,adm′, satisfying the assumptions
of Chapter 7, Sect. 4.1.1.

Let S be an (∞,2)-category and let us be given a functor

Φadm
′

vert,horiz ∶ Corr(C)adm
′

vert,horiz → S.

Assume that all four classes of morphisms are preserved by the functor of tensor
product C ×C→C, so that

Corr(C)admvert,horiz and Corr(C)adm
′

vert,horiz

acquire symmetric monoidal structures by Sect. 2.1.3.

Assume also that S is equipped with a symmetric monoidal structure. Assume
also that

Φadmvert,horiz ∶= Φadm
′

vert,horiz ∣Corr(C)adm
vert,horiz

is equipped with a symmetric monoidal structure.

We claim:

Proposition 3.1.2. The symmetric monoidal structure on Φadmvert,horiz extends

uniquely to one on Φadm
′

vert,horiz.

Proof. Indeed, Chapter 7, Theorem 4.1.3 implies that for any n, the functor

(Corr(C)admvert,horiz)×n → (Corr(C)adm
′

vert,horiz)×n

is a categorical epimorphism.

Now, our assertion follows from the next observation:

Lemma 3.1.3. Let O be a symmetric monoidal category, and let o1 → o2 be a
homomrphism between commutative algebras on O, such that for any n, the map
(o1)⊗n → (o2)⊗n is a categorical epimorphism. Then for another commutative alge-
bra o′ in O, restriction defines an isomorphism from the space of homomorphisms
o2 → o′ and the subspace of homomorphisms o1 → o′ that factor through o2 as maps
of plain objects of O.

�

2We do not need the symmetric monoidal structure on C to be Cartesian.

400 9. THE (SYMMETRIC) MONOIDAL STRUCTURE ON CORRESPONDENCES

3.1.4. The above discussion applies verbatim to the setting of Chapter 7, Sect. 5.
I.e., we start with C, equipped with four classes of morphisms vert, horiz, adm and
co -adm, satisfying the assumptions of Chapter 7, Sect. 5.1.

Let S be an (∞,2)-category and let us be given a functor

Φadmvert,horiz ∶ Corr(C)admvert,horiz → S.

Assume now that C all four classes of morphisms are preserved by the functor
of tensor product C ×C→C, so that

Corr(C)isom
vert,co -adm and Corr(C)admvert,horiz

acquire symmetric monoidal structures by Sect. 2.1.3.

Assume also that

Φisom
vert,co -adm ∶= Φadmvert,horiz ∣Corr(C)isom

vert,co -adm

is equipped with a symmetric monoidal structure.

We have (with the same proof as above):

Proposition 3.1.5. The symmetric monoidal structure on Φisom
vert,co -adm ex-

tends uniquely to one on Φadmvert,horiz.

3.2. Right Kan extensions and symmetric monoidal structures. In this
subsection we will review the notion of right Kan extension of 1-morphisms in
(∞,2)-categories, and how it interacts with symmetric monoidal structures.

As an application we will show that the extension procedure in Chapter 8, Sect.
6 is (lax!) compatible with symmetric monoidal structures.

3.2.1. Let S be an (∞,2)-category, and let α ∶ s1 → s2 be a 1-morphism in S.
Given another object s′ ∈ S, restriction defines a functor

MapsS(s2, s
′)→MapsS(s1, s

′).
The (partially defined) right adjoint functor to the above restriction functor is

called the functor of right Kan extension, and is denoted by RKEα.

3.2.2. Suppose now that S has a symmetric monoidal structure. Let s1 and s2 be
commutative algebra objects in S, and let

α ∶ s1 → s2

be a homomorphism.

Let now s′ be another commutative algebra object in S, and let

φ1 ∶ s1 → s′

be a right-lax homomorphism (see Sect. 1.4.5 for what this means).

Suppose that RKEα is defined on φ1 regarded as a plain object of MapsS(s1, s
′).

Suppose, moreover, that for every n, the canonical map from the composition

s⊗n2

⊗→ s2
RKEα(φ1)Ð→ s′

to the right Kan extension along α⊗n ∶ s⊗n1 → s⊗n2 of the composition

s⊗n1

⊗→ s1
φ1Ð→ s′

is an isomorphism (in particular, the latter right Kan extension is also defined).

3. EXTENSION RESULTS IN THE SYMMETRIC MONOIDAL CONTEXT 401

By unwinding the construction, we obtain that in this case

φ2 ∶= RKEα(φ1)
has a unique structure of right-lax homomorphism s2 → s′ so that the co-unit of
the adjunction

φ2 ○ α → φ1

has the structure of a map between right-lax homomorphisms.

3.2.3. Consider now the situation of Chapter 8, Theorem 6.1.5, where (C, vert, horiz, adm)
and (D, vert, horiz, adm) are as in Sect. 2.1.4. Assume also that the functor F takes
products to products, so that it induces a symmetric monoidal functor

F admvert,horiz ∶ Corr(C)admvert,horiz → Corr(D)admvert,horiz.

Let S be a symmetric monoidal (∞,2)-category, and assume that

Φadmvert,horiz ∶ Corr(C)admvert,horiz → S

is endowed with a right-lax symmetric monoidal structure.

We claim:

Proposition 3.2.4. Suppose that for any n and any map

c→ d1 × ... × dn

that is in horiz (here c ∈ C, di ∈ D), each of the projections c→ di is also in horiz.
Then

Ψadm
vert,horiz ∶= RKEFadm

vert,horiz
(Φadmvert,horiz) ∶ Corr(D)admvert,horiz → S

acquires a uniquely defined right-lax symmetric monoidal structure, for which the
natural transformation

Ψadm
vert,horiz ○ F admvert,horiz → Φadmvert,horiz

has the structure of a map between right-lax symmetric monoidal functors.

Proof. We need to show that the isomorphism condition from Sect. 3.2.2 is
satisfied.

By Chapter 8, Theorem 6.1.5, it is enough to check the corresponding 1-
categorical statement. Thus, we need to show that for an integer n and an n-tuple
of objects d1, ...,dn, the map

lim
c∈C,α∶c→d1×...×dn,α∈horiz

Φ(c)→ lim
ci∈C,αi∶ci→di,αi∈horiz

Φ(c1 × ... × cn)

is an isomorphism.

However, the condition of the proposition implies that the corresponding map
of index categories is cofinal.

�

3.3. Symmetric monoidal structure on the bivariant extension. In this
subsection we show that the extension procedure of Chapter 8, Sect. 1 is compatible
with symmetric monoidal structures.

402 9. THE (SYMMETRIC) MONOIDAL STRUCTURE ON CORRESPONDENCES

3.3.1. Let us now be in the setting of Chapter 8, Sect. 1, where both (C, vert, horiz, adm)
and (D, vert, horiz, adm) are as in Sect. 2.1.4. We let the functor

F ∶ C→D

be endowed with a symmetric monoidal structure.

Let the target (∞,2)-category S be equipped with a symmetric monoidal struc-
ture. Assume also that the tensor product functor

S × S→ S
is such that the underlying functor S1 -Cat×S1 -Cat → S1 -Cat commutes with colimits
in each variable.

3.3.2. Let us be given a functor

Φadmvert,horiz ∶ Corr(C)admvert,horiz → S,
satisfying the assumptions of Chapter 8, Sect. 1.1.6, and let

Ψadm
vert,horiz ∶ Corr(D)admvert,horiz → S

be its unique extension, satisfying the requirements of Chapter 8, Theorem 1.1.9.

Assume that Φadmvert,horiz is equipped with a symmetric monoidal structure. We
claim:

Proposition 3.3.3. Suppose that for any n and any map

c→ d1 × ... × dn

that is in horiz (resp., vert, adm), each of the projections c → di is also in horiz
(resp., vert, adm). Assume also that for every d ∈ D, the maps

∗→ d and d→ d × d

are in adm, and that the functor

MapsS(1S,−) ∶ S1 -Cat → Spc

is conservative. Then then functor Ψadm
vert,horiz carries a unique symmetric monoidal

structure, which induces the given one on

Φadmvert,horiz ≃ Ψadm
vert,horiz ∣Corr(C)adm

vert,horiz
.

Proof. It is enough to show that for any integer n, both circuits of the diagram

(3.1)

(Corr(D)admvert,horiz)×n
(Ψadmvert,horiz)

×n

ÐÐÐÐÐÐÐÐÐ→ S×n

product map
×××Ö

×××Ö
product map

Corr(D)admvert,horiz

Ψadmvert,horizÐÐÐÐÐÐ→ S
identify with the canonical extension, given by Chapter 8, Theorem 1.1.9, of the
functor given by the (canonically identified) two circuits of the diagram

(Corr(C)admvert,horiz)×n
(Φadmvert,horiz)

×n

ÐÐÐÐÐÐÐÐÐ→ S×n

product map
×××Ö

×××Ö
product map

Corr(C)admvert,horiz

Φadmvert,horizÐÐÐÐÐÐ→ S.

3. EXTENSION RESULTS IN THE SYMMETRIC MONOIDAL CONTEXT 403

We claim that the two circuits in (3.1) satisfy the assumptions of Chapter 8,
Corollary 1.1.10.

We first check condition (i) for the anti-clockwise circuit. We need to show that
for d1, ..,dn ∈ D, the map

colim
ci∈C,βi∶ci→di,βi∈vert

Φ(c1 × ... × cn)→ colim
c∈C,β∶c→d1×...×dn,β∈vert

Φ(c) =∶ Ψ(c1 × ... × cn)

is an isomorphism. However, this follows from the fact that the corresponding map
of index categories is cofinal. Condition (ii) for the anti-clockwise circuit follows in
the same way as condition (i).

Let us check (i) for the clockwise circuit. We need to show that for d1, ..,dn ∈ D,
the map

colim
ci∈C,βi∶ci→di,βi∈vert

Φ(c1)⊗ ...⊗Φ(cn)→⊗
i

(colim
ci∈C,βi∶ci→di,βi∈vert

Φ(ci))

is an isomorphism. However, this follows from the commutation of the tensor
product on S1 -Cat with colimits in each variable.

In particular, we obtain that the restrictions of the two circuits in (3.1) to

(Dvert)×n ⊂ (Corr(D)admvert,horiz)×n,

and further to

(Dadm)×n ⊂ (Corr(D)admvert,horiz)×n,

are canonically identified.

Conditions (iii) and (iv) for the clockwise circuit follows by the same argument
as condition (i). Hence, we obtain that they also hold for the anti-clockwise circuit,
since the two functors are identified on (Dadm)×n.

Note that this, in particular, establishes the assertion of the proposition in the
case when horiz = adm = vert. Thus, the restriction of Ψadm

vert,horiz to Corr(D)admadm,adm

has a symmetric monoidal structure. By further restricting to Corr(D)adm,adm, and
applying Proposition 2.3.4, we obtain that for every d ∈ D, the object Ψ(d) ∈ S is
dualizable.

It remains to check condition (ii) for the clockwise circuit. I.e., we need to show
that the map

⊗
i

(lim
ci∈C,αi∶ci→di,αi∈horiz

Φ!(ci))→ lim
ci∈C,αi∶ci→di,αi∈horiz

Φ!(c1)⊗ ...⊗Φ!(cn)

is an isomorphism. However, this follows as in Chapter 3, Proposition 3.1.7 from
the fact that each Φ!(ci) and each

lim
ci∈C,αi∶ci→di,αi∈horiz

Φ!(ci) ≃ Ψ!(di)

is dualizable, using Chapter 1, Lemma 4.1.6(a).
�

404 9. THE (SYMMETRIC) MONOIDAL STRUCTURE ON CORRESPONDENCES

4. Monads and associative algebras in the category of correspondences

It turns out that the category of correspondences is well adapted to the for-
malism of convolution algebras and convolution categories.

Let c● be a Segal object of C (such data are also called category-objects); see
Sect. 4.1.3 for the definition. Let ps, pt ∶ c1 → c0 = c be the source and target maps,
respectively, corresponding to the two maps [0]→ [1].

Consider the 1-morphism

c1 psÐÐÐÐ→ c

pt
×××Ö
c

as an object of the monoidal (∞,1)-category MapsCorr(C)all
all;all

(c,c).

When C is an ordinary category, it is clear that the above 1-morphism is an
associative algebra object in MapsCorr(C)all

all;all
(c,c), and that all associative algebra

objects are obtained in this way. The first result of this section, Proposition 4.1.5
shows that the same is true in the ∞-setting.

As a corollary, we obtain that if Φ is a functor from Corr(C)admvert;horiz with

values in 1 -Cat, a Segal object c● (under appropriate conditions) defines a monad
on the category Φ(c).

The second result of this section, Theorem 4.4.2 is (essentially) the following. It
says that for a Segal object c●, the object c1 ∈ Corr(C)all;all has a natural structure
of associative algebra in the (symmetric) monoidal category Corr(C)all;all.

As a consequence, we obtain that if Φ is a monoidal functor from Corr(C)all;all

to 1 -Cat, the category Φ(c1) acquires a canonical monoidal structure, given by
convolution.

4.1. Monads and Segal objects. In this subsection we will articulate the fol-
lowing idea:

The category of algebras in the monoidal category of endomorphisms of an
object c ∈ Corr(C)all

all;all is canonically equivalent to the category if Segal objects

acting on c, i.e., simplicial objects c● with c0 = c.

4.1.1. Note that if S is an (∞,2)-category and s ∈ S is an object, then the (∞,1)-
category MapsS(s, s) acquires a natural monoidal structure. Indeed, the corre-
sponding functor

∆op → 1 -Cat

is given by

Seqn(S) ×
Seq0(S)×...×Seq0(S)

{s × ... × s},

where Seqn(S)→ Seq0(S) × ... × Seq0(S) corresponds to the map

[0] ⊔ ... ⊔ [0] ≃ [n]Spc → [n].

By definition, a monad acting on s is an associative algebra in the monoidal
(∞,1)-category MapsS(s, s).

4. MONADS AND ASSOCIATIVE ALGEBRAS IN CORRESPONDENCES 405

4.1.2. Let C be an (∞,1)-category with finite limits, and take vert = horiz =
adm = all. Take S = Corr(C)all

all;all.

We will be interested in the category of monads in Corr(C)all
all;all acting on a

given c ∈ C.

4.1.3. Recall now that if C is any (∞,1)-category with finite limits, one can talk
about Segal objects3 in C, acting on a given c ∈ C. Denote this category by Seg(c).

By definition, this is a full subcategory C∆op

of simplicial objects c● equipped
with an identification c0 = c, consisting of objects for which for every n ≥ 2, the
map

cn → c1 ×
c
... ×

c
c1,

given by the product of the maps

[1]→ [n], 0↦ i,1↦ i + 1, i = 0, ..., n − 1,

is an isomorphism.

This condition can be equivalently formulated as saying that for any c′ ∈ C,
the simplicial space MapsC(c′,c●) is a Segal space (but not necessarily a complete
Segal space).

4.1.4. We will prove:

Proposition-Construction 4.1.5. There exists a canonical equivalence be-
tween Seg(c) and the category AssocAlg(MapsCorr(C)all

all;all
(c,c)).

4.1.6. Variant. Let (C, vert, horiz, adm) be an object of Trpl. Let c● be an object
of Seg(c). Suppose that:

● The ‘source’ map c1 → c0 (i.e., one corresponding to (0 ∈ [0])↦ (0 ∈ [1]))
belongs to horiz;

● The ‘target’ map c1 → c0 (i.e., one corresponding to (0 ∈ [0])↦ (1 ∈ [1]))
belongs to vert;

● The multiplication map c2 → c1 (i.e., one corresponding to the active map
[1]→ [2]) belongs to adm.

In this case, we obtain that the algebra object in MapsCorr(C)all
all;all

(c,c) corre-

sponding to c● by Proposition 4.1.5, defines an algebra object in the 1-full monoidal
subcategory

MapsCorr(C)adm
vert;horiz

(c,c) ⊂ MapsCorr(C)all
all;all

(c,c).

4.2. Proof of Proposition 4.1.5. The equivalence stated in the proposition is
completely evident when C is an ordinary category, and the reader should check it
before proceeding to the ∞-case.

The proof in the latter case will use (a little bit) of diagram manipulation.

3An alternative terminology for this is ‘category-objects’ in C, acting on c ∈ C.

406 9. THE (SYMMETRIC) MONOIDAL STRUCTURE ON CORRESPONDENCES

4.2.1. For (∞,2)-category and s ∈ S, the monoidal (∞,1)-category MapsS(s, s)
is described as follows: the corresponding functor ∆op → 1 -Cat sends [n] to

Seqn(S) ×
Seq0(S)×n+1

∗,

where the maps ∗→ Seq0(S) are given by s ∈ S.

Applying this to S = Corr(C)all
all;all and s = C, we obtain that the monoidal

category MapsCorr(C)all
all;all

(c,c) is given by the functor ∆op → 1 -Cat sends [n] to

Grid≥dgnl
n (C) ×

Cn+1
∗.

I.e., this is the category whose objects are half-grids with all squares being
Cartesian, and with the diagonal entries identified with c.

4.2.2. Thus, associative algebras in MapsCorr(C)all
all;all

(c,c) are right-lax natural

transformations

(4.1) [n]↦ (∗⇒Grid≥dgnl
n (C) ×

Cn+1
{c, ...,c}) ,

with the corresponding natural transformations being isomorphisms over inert ar-
rows in ∆op.

We will now describe the above category of natural transformations (4.1) slightly
differently.

4.2.3. Consider the functor

∆→ 1 -Catordn, [n]↦ ([n] × [n]op)≥dgnl.

Let I denote the corresponding Cartesian fibration over ∆op. Let In denote
the fiber of I over [n] ∈ ∆op, i.e., In = ([n] × [n]op)≥dgnl.

Let I′ ⊂ I be the full subcategory, such that for each n, the subcategory I′n ⊂ In
corresponds to the element (0, n) ∈ ([n] × [n]op)≥dgnl, i.e., the NW corner of the
half-grid. It is easy to see that the projection

I′ →∆op

is an equivalence.

Let I′′ ⊂ I be the full subcategory, such that for every n, the subcategory I′′n ⊂ In
corresponds to the union of the elements (i, i), i.e., the diagonal entries.

4.2.4. Then the category of natural transformations (4.1) is a full subcategory in
the category of functors

I→C,

such that:

● The restriction of the functor to I′′ is identified with the constant functor
with value c;

● For every n and every square in In, the resulting square in C is Cartesian;
● Arrows in I that are Cartesian over inert arrows in ∆op get sent to iso-

morphisms in C.

4. MONADS AND ASSOCIATIVE ALGEBRAS IN CORRESPONDENCES 407

4.2.5. We note now that restriction along I′ → I associates to a functor I → C a
simplicial object in C. Functors satisfying the assumptions of Sect. 4.2.4 are easily
seen to give rise to functors ∆op → C that satisfy the conditions of being a Segal
object.

Vice versa, starting from a functor

(4.2) ∆op ≃ I′ →C,

we apply right Kan extension along the embedding I′ → I, and thus obtain a functor
I→C.

It is easy to see that if (4.2) is a Segal object, then the resulting functor I→C
satisfies the assumptions of Sect. 4.2.4.

This defines the desired equivalence

AssocAlg(MapsCorr(C)all
all;all

(c,c))→ Seg(c).

4.3. Action on a module: first version. In this subsection we will add a few
remarks concerning the action of the monoidal category MapsCorr(C)all

all;all
(c,c) on

the categories of the form MapsCorr(C)all
all;all

(c′,c) for c′ ∈ C.

4.3.1. Let s and s′ be objects in an (∞,2)-category S. Then the category MapsS(s′, s)
is naturally a module for the monoidal category MapsS(s, s).

Applying this to S = Corr(C)all
all;all, we obtain that for c′ ∈ C, the monoidal

category MapsCorr(C)all
all;all

(c,c) acts naturally on the category

MapsCorr(C)all
all;all

(c′,c).

4.3.2. Let now c● be a monad acting on c over an object c′, i.e., is a monad in
the category C/c′ . Let γ denote the morphism c→ c′.

Then it follows from the construction that the object (c′ → c) ∈ MapsCorr(C)all
all;all

(c′,c),
corresponding to the diagram

(4.3)

c
γÐÐÐÐ→ c′

id
×××Ö
c

is a module over the algebra in MapsCorr(C)all
all;all

(c,c), corresponding to c●.

4.3.3. Note now that if s′
f→ s is a 1-morphism in an (∞,2)-category S such that

f admits a left adjoint, then the composition (f ○ fL) ∈ MapsS(s, s) has a natural
structure of algebra (this follows, e.g., from the description of the procedure of
passage to the adjoint morphism given in Chapter 12, Theorem 1.2.4). In fact, this
is a universal algebra object in MapsS(s, s) that acts on f ∈ MapsS(s′, s).

Note that the 1-morphism (4.3) admits a left adjoint given by

(4.4)

c
idÐÐÐÐ→ c

γ
×××Ö
c′.

408 9. THE (SYMMETRIC) MONOIDAL STRUCTURE ON CORRESPONDENCES

Hence, we obtain that the algebra in MapsCorr(C)all
all;all

(c,c), corresponding to

c●, admits a canonical homomorphism to the algebra corresponding to the compo-
sition of (4.3) and (4.4). This map corresponds to the morphism

c1 → c ×
c′

c,

expressing the fact that c1 acts on c over c′.

4.3.4. Let c● now be the Čech nerve of the map β ∶ c → c′. In this case we claim
that the above homomorphism of algebras is an isomorphism. Indeed, it suffices to
check this fact at the level of the underlying objects of MapsCorr(C)all

all;all
(c,c), and

the required isomorphism follows from the Cartesian diagram

c1 psÐÐÐÐ→ c

pt
×××Ö

×××Ö
γ

c
γÐÐÐÐ→ c′.

4.3.5. Variant. Retaining the assumptions of Sect. 4.1.6, assume that the map γ ∶
c→ c′ belongs to horiz, and that the target map ps ∶ c1 → c belongs to adm.

Then we obtain that the object of MapsCorr(C)adm
vert;horiz

(c′,c), given by (4.4),

is a module for the algebra in MapsCorr(C)adm
vert;horiz

(c,c), corresponding to c●.

Furthermore, if γ ∈ adm, in which case the corresponding morphism

(c′ → c) ∈ Corr(C)admvert;horiz

admits a left adjoint, the isomorphism from Sect. 4.3.4 holds at the level of algebras
in the monoidal category MapsCorr(C)adm

vert;horiz
(c,c).

4.4. From monads/Segal objects to algebras. In this subsection we formulate
the main result of this section, Theorem 4.4.2. It says that if c● is a Segal object
of C acting on c, then its first term c1 acquires a natural algebra structure in
Corr(C).

4.4.1. Let C be an (∞,1)-category with finite limits, and take vert = horiz =
adm = all. We let

Corr(C) ∶= Corr(C)isom
all;all

be endowed with a symmetric monoidal structure as in Sect. 2.1.4.

We will prove the following:

Theorem-Construction 4.4.2. There exists a canonical right-lax homomor-
phism of monoidal (∞,1)-categories

MapsCorr(C)all
all;all

(c,c)→ Corr(C).

4. MONADS AND ASSOCIATIVE ALGEBRAS IN CORRESPONDENCES 409

4.4.3. Let us explain the content of Theorem 4.4.2 when C is an ordinary category.
In this case the sought-for functor

MapsCorr(C)all
all;all

(c,c)→ Corr(C)

is explicitly defined as follows:

It sends an object of MapsCorr(C)all
all;all

(c,c), given by

c̃ ÐÐÐÐ→ c
×××Ö
c

to c̃ ∈ Corr(C). The monoidal structure is defined as follows: for a pair of objects

c̃1 ÐÐÐÐ→ c
×××Ö
c

and

c̃2 ÐÐÐÐ→ c
×××Ö
c

their tensor product in MapsCorr(C)all
all;all

(c,c) is given by

c̃1 ×
c

c̃2 ÐÐÐÐ→ c

×××Ö
c

and the corresponding 1-morphism c̃1 × c̃2 → c̃1 ×
c

c̃2 (note the direction of the

arrow!) in Corr(C) is given by the diagram

c̃1 ×
c

c̃2 ÐÐÐÐ→ c̃1 × c̃2

id
×××Ö

c̃1 ×
c

c̃2.

4.4.4. As a formal consequence of Theorem 4.4.2, combined with Proposition 4.1.5,
we obtain:

Corollary 4.4.5. For any c ∈ C, there is a canonically defined functor

Seg(c)→ AssocAlg(Corr(C)).

410 9. THE (SYMMETRIC) MONOIDAL STRUCTURE ON CORRESPONDENCES

4.4.6. We note that if c● is an object of Seg(c), the object of Corr(C), underlying
the corresponding algebra is c1, and the product map is given by the diagram

c2 ÐÐÐÐ→ c1 × c1

×××Ö
c1,

where the horizontal arrow corresponds to the two inert maps [1]→ [2].

4.4.7. Variant. Let (C, vert, horiz, isom) be an object of Trpl. Assume that vert ⊂
horiz. Let c● be an object of Seg(c). Assume that:

● The ‘source’ map c1 → c0 belongs to horiz;
● The ‘target’ map c1 → c0 belongs to vert;
● The multiplication map c2 → c1 belongs to vert.

In this case, Corollary 4.4.5 implies that to c● there corresponds a canonically
defined algebra object in Corr(C)vert;horiz.

4.5. Action on a module: second version. In this subsection we will add some
comments on how the construction in Theorem 4.4.2 interacts with an action on
modules. The upshot is that the associative algebra in Corr(C), corresponding to
a Segal object c●, acts on c0.

4.5.1. Let us return to the setting of Sect. 4.3. For a pair of objects c,c′ ∈ C
we consider the monoidal category MapsCorr(C)all

all;all
(c,c) and its module category

MapsCorr(C)all
all;all

(c′,c).

It will follow from the construction in Theorem 4.4.2 that the right-lax monoidal
functor

MapsCorr(C)all
all;all

(c,c)→ Corr(C)

extends to a right-lax map between module categories

MapsCorr(C)all
all;all

(c′,c)→ Corr(C),

which at the level of objects sends

(4.5)

c̃′ ÐÐÐÐ→ c′

×××Ö
c

to c̃′.

At the level of objects, this right-lax monoidal structure is defined as follows.
For an object of MapsCorr(C)all

all;all
(c,c), given by the diagram

c̃ ÐÐÐÐ→ c
×××Ö
c

4. MONADS AND ASSOCIATIVE ALGEBRAS IN CORRESPONDENCES 411

and the object of MapsCorr(C)all
all;all

(c′,c) given by the diagram (4.5), the corre-

sponding 1-morphism in Corr(C) is given by

c̃ ×
c

c̃′ ÐÐÐÐ→ c̃ × c̃′

id
×××Ö

c̃ ×
c

c̃′.

4.5.2. Let us take c′ = ∗, and consider the object of MapsCorr(C)all
all;all

(∗,c), given

by

(4.6)

c ÐÐÐÐ→ ∗

id
×××Ö
c.

By Sect. 4.3.2, we obtain that for any Segal object c● acting on c, the object
(4.6) is naturally a module over the corresponding algebra in MapsCorr(C)all

all;all
(c,c).

Hence, applying Sect. 4.5.1, we obtain that the corresponding algebra c1 ∈
Corr(C) acts on the object c ∈ Corr(C).

Explicitly, the corresponding action map is given by the diagram

c1 id×psÐÐÐÐ→ c1 × c

pt
×××Ö
c.

4.5.3. Note now that if an object o in the (symmetric) monoidal category O is
dualizable, there exists a universal associative algebra, denoted EndO(o) in O,
acting on o. The object of O underlying EndO(o) is o∨ ⊗ o.

Applying this to O = Corr(C) and o = c, we obtain a canonically defined
homomorphism of algebras

(4.7) c1 → EndCorr(C)(c).

Identifying c∨ ≃ c (see Proposition 2.3.4), the map in Corr(C), underlying the
above homomorphism is

(4.8) c1 ps×ptÐ→ c × c.

4.5.4. Let us now take c● to be the Čech nerve of the map c→ ∗, i.e., cn = c×(n+1).
Note that in this case we obtain that the homomorphism (4.7) is an isomorphism.
Indeed, this is so because the map of the underlying objects of Corr(C), i.e., (4.7)
is an isomorphism.

412 9. THE (SYMMETRIC) MONOIDAL STRUCTURE ON CORRESPONDENCES

4.5.5. Variant. Let us be in the situation of Sect. 4.4.7. Assume in addition that c
is such that the diagonal map c → c × c and the tautological map c → ∗ belong to
horiz.

In this case we still obtain that c ∈ Corr(C)vert;horiz is a module over c1, where
the latter is viewed as an associative algebra.

If we assume that the diagonal map c → c × c and the tautological map c → ∗
belong to vert as well, then c is dualizable in Corr(C)vert;horiz, and the isomorphism
of Sect. 4.5.4 happens at the level of associative algebras in Corr(C)vert;horiz.

4.6. Proof of Theorem 4.4.2: introduction.
4.6.1. Let

E ∶= MapsCorr(C)all
all;all

(c,c)⊗,∆
op

and F ∶= Corr(C)⊗,∆
op

be the coCartesian fibrations over ∆op corresponding to MapsCorr(C)all
all;all

(c,c) and

Corr(C), respectively.

We need to construct a functor E→ F over ∆op.

4.6.2. Recall (see Sect. 4.2.1) that E is the coCartesian fibration attached to the
functor ∆op → 1 -Cat, given by

(4.9) [n]↦Grid≥dgnl
n (C) ×

Cn+1
{c, ...,c}.

Consider another functor ∆op → 1 -Cat,

(4.10) [n]↦Grid>dgnl
n (C),

where Grid>dgnl
n is defined in the same way as as Grid≥dgnl, with the difference

that we use ([n] × [n]op)>dgnl instead of ([n] × [n]op)≥dgnl.

Restriction defines a natural transformation (4.9) ⇒ (4.10). Let

E′ →∆op

be the coCartesian fibration corresponding to the functor (4.10). We obtain a
functor

E→ E′.

4.6.3. The sought-for functor E → F will be obtained as a composition of the
above functor E→ E′ and a functor E′ → F that we will now proceed to define.

Fix an integer k and an object α ∈ Seqk(∆op). We will construct a map

(4.11) Seqk(E′) ×
Seqk(∆op)

{α}→ Seqk(F) ×
Seqk(∆op)

{α},

functorially in [k] ∈ ∆op and α.

4.7. Proof of Theorem 4.4.2: Step 1. We shall first give an explicit description
of the space

Seqk(E′) ×
Seqk(∆op)

{α}.

4. MONADS AND ASSOCIATIVE ALGEBRAS IN CORRESPONDENCES 413

4.7.1. We begin with the following general observation. Let I be an index (∞,1)-
category, and let D → Iop be a Cartesian fibration, corresponding to a functor
I → 1 -Cat. Let D′ → I be the coCartesian fibration, corresponding to the same
functor. I.e., D′ and D have the same fibers over objects of I.

Note that the space Seqk(D′) can be described as follows in terms of D.
Namely, Seqk(D′) consists of functors

([k] × [k]op)≥dgnl →D

with the property that all the vertical arrows in ([k] × [k]op)≥dgnl map to isomor-
phisms in Iop, and all the horizontal arrows map to arrows in D′ that are Cartesian
over Iop.

4.7.2. Note that assignment

(i, j)↦ ([α(j)] × [α(j)]op)>dgnl

gives a functor
([k] × [k]op)≥dgnl → 1 -Catordn .

Let Iα denote the corresponding coCartesian fibration over ([k] × [k]op)≥dgnl.

Consider the space
Maps(Iα,C).

4.7.3. It follows from Sect. 4.7.1 that the space Seqk(E′) ×
Seqk(∆op)

{α} is a full

subspace
′Maps(Iα,C) ⊂ Maps(Iα,C),

consisting of functors that satisfy the following conditions:

● For every (i, j) ∈ ([k] × [k]op)≥dgnl, the resulting functor

([α(j)] × [α(j)]op)>dgnl →C

sends squares to Cartesian squares in C.
● Every arrow in Iα, which is coCartesian over a horizontal arrow in ([k] ×

[k]op)≥dgnl, gets sent to an isomorphism in C.

4.8. Proof of Theorem 4.4.2: Step 2. We shall now describe the space

Seqk(F) ×
Seqk(∆op)

{α}.

4.8.1. Let C′ be a monoidal (∞,1)-category with finite limits, such that the
monoidal operation commutes with finite limits. Then (C′,all,all, isom) is nat-
urally an associative algebra object in Trpl.

Hence, by Sect. 2.1.2, the (∞,1)-category Corr(C′) acquires a monoidal struc-

ture. Consider the corresponding coCartesian fibration Corr(C′)⊗,∆op

over ∆op.

Let C′⊗,∆ → ∆ be the Cartesian fibration corresponding to the monoidal
structure on C′.

Then the space Seqk(Corr(C′)⊗,∆op) admits the following description. It con-
sists of functors

([k] × [k]op)≥dgnl →C′⊗,∆,

such that vertical arrows in ([k] × [k]op)≥dgnl get sent to arrows in C′⊗,∆ that
project to isomorphisms in ∆;

414 9. THE (SYMMETRIC) MONOIDAL STRUCTURE ON CORRESPONDENCES

4.8.2. We apply this to C′ = C equipped with the Cartesian monoidal structure.
We obtain that the space

(4.12) Seqk(F) ×
Seqk(∆op)

{α}

can be described as follows.

Recall the coCartesian fibration Iα → ([k] × [k]op)≥dgnl, see Sect. 4.7.2. Then
(4.12) identifies with the subspace

′′Maps(Iα,C) ⊂ Maps(Iα,C),
consisting of functors that satisfy the following condition:

● For every (i, j) ∈ ([k] × [k]op)≥dgnl, the tautological extension of the cor-
responding functor

([α(j)] × [α(j)]op)>dgnl →C

to a functor

([α(j)] × [α(j)]op)≥dgnl →C,

where we send the diagonal entries to ∗ ∈ C has the property that it sends
squares to Cartesian squares in C.

4.8.3. Let us decipher the above condition. Set n = α(j). Let the functor

(4.13) ([n] × [n]op)>dgnl →C

be given by c ∈ Grid>dgnl
n (C).

Our condition says that all the squares in c must be Cartesian (so it is the same
as the corresponding condition for ′Maps(Iα,C), see Sect. 4.7.3). In addition, we
require that for every m = 0, ..., n − 2, the map

cm,m+2 → cm+1,m+2 × cm,m+1

be an isomorphism.

Note that, the datum of a functor (4.13) as above is equivalent to that of an
object of C×n (as it should be).

4.9. Proof of Theorem 4.4.2: Step 3. We shall now complete the construction
of a map (4.11) by constructing a map

′Maps(Iα,C)→ ′′Maps(Iα,C).

4.9.1. Consider the category

Maps(Iα,C),
and the corresponding full subcategories

′Maps(Iα,C)↪Maps(Iα,C)↩ ′′Maps(Iα,C).

It is easy to see, however, that the embedding

′′Maps(Iα,C)↪Maps(Iα,C)
admits a left adjoint.

4. MONADS AND ASSOCIATIVE ALGEBRAS IN CORRESPONDENCES 415

4.9.2. Composing with this left adjoint, we obtain a functor
′Maps(Iα,C)↪Maps(Iα,C)→ ′′Maps(Iα,C).

Passing to the underlying spaces, we obtain the desired map
′Maps(Iα,C)→ ′′Maps(Iα,C).

�

Appendix. (∞, 2)-categories

Introduction

1. Why do we need them?

This part plays a service role for Part III, in which we develop the formalism
of categories of correspondences.

1.1. As was explained before, an adequate framework to encode the information
carried by the assignment

S ∈ Schaft ↝ IndCoh(S) ∈ DGCatcont

is in terms of the functor

(1.1) IndCohCorr(Schaft)proper
all,all

∶ Corr(Schaft)proper
all,all → (DGCatcont)2 -Cat.

Now, the construction of the above functor is such that even if one is ultimately
interested only in the 1-categorical data, i.e., the corresponding functor of (∞,1)-
categories

IndCohCorr(Schaft) ∶ Corr(Schaft)→ DGCatcont,

in order to produce it, one needs to construct (1.1).

So, (∞,2)-categories are necessary in order to get IndCoh off the ground.

1.2. Now, one possible approach would be to believe that there exists a reasonable
notion of (∞,2)-category (and companion notions of functor, natural transforma-
tion, etc.) and not worry about the details. For example, just imagine that a
(∞,2)-category is a (∞,1)-category enriched over the monoidal (∞,1)-category
1 -Cat. (The actual definition is indeed along these lines.)

The problem with that is that we need more than just the existence of these
notions. We will actually need to perform some pretty non-trivial operations with
them. Let us explain what these operations are.

1.3. First off, let us be given an (∞,2)-category S, equipped with a class of 1-
morphisms C (closed under compositions and containing all isomorphisms). To this

data we need to be able to associate a bi-simplicial space, denoted SqPair
●,● (S,C).

419

420 INTRODUCTION

The corresponding space of (m,n)-simplices is that of diagrams

s0,0
//

��

s0,1

��u}

// ⋯ //

x�

s0,n−1

��

//

v~

s0,n

��u}
s1,0

//

��

s1,1

��u}

// ⋯ //

w�

s1,n−1

��

//

v~

s1,n

��t|⋯ //

��

⋯

��u}

// ⋯ //

w�

⋯

��

//

v~

⋯

��t|
sm−1,0

//

��

sm−1,1

��u}

// ⋯ //

x�

sm−1,n−1

��

//

v~

sm−1,n

��u}
sm,0 // sm,1 // ⋯ // sm,n−1

// sm,n,

where the horizontal arrows are arbitrary 1-morphisms in S, and the vertical arrows
are 1-morphisms that belong to C, and each square represents a (not necessarily
invertible) 2-morphism.

Moreover, we need the assignment

(S,C)↝ SqPair
●,● (S,C),

viewed as a functor from the category 2 -CatPair of pairs (S,C) to the category

Spc∆op×∆op

of bi-simplicial spaces, to be fully faithful with essential image given
by some explicit conditions (see Chapter 10, Theorem 5.2.3 for the latter).

1.4. Secondly, for a pair of (∞,2)-categories S and T, in addition to the (∞,2)-
category Funct(S,T) of functors S→ T, we need to be able to form its two enlarge-
ments, denoted

Funct(S,T)right-lax and Funct(S,T)left-lax,

respectively, that have the same class of objects, but where we allow as 1-morphisms
right-lax (resp., left-lax) natural transformations (see Chapter 10, Sect. 3.2.7 for
the definition).

1.5. While the previous two properties of the sought-for notion of (∞,2)-category
can still be taken for granted, the next one cannot. We will need to be able to
perform the following manipulation:

For a 1-morphism in an (∞,2)-category, it makes sense to ask whether this
1-morphism admits a left or right adjoint (these are notions that take place in the
underlying ordinary 2-category). Given a functor S → T, we shall say that it is
right (resp., left) adjointable if for every 1-morphism in S, its image in T admits a
right (resp., left) adjoint.

Let

Funct(S,T)Rright-lax ⊂ Funct(S,T)right-lax

and

Funct(S,T)Lleft-lax ⊂ Funct(S,T)left-lax

be the full (∞,2)-subcategories that correspond to functors that are left (resp.,
right) adjointable.

2. SETTING UP THE THEORY OF (∞,2)-CATEGORIES 421

What we need is to have a canonical equivalence

(1.2) Funct(S,T)Rright-lax ≃ Funct(S1&2-op,T)Lleft-lax,

given by passage to adjoint 1-morphisms.

The construction of this equivalence will be the subject of Chapter 12.

1.6. That said, it is a sensible strategy to get the idea of how we approach (∞,2)-
categories by reading the rest of this introduction, and skipping the bulk of the
Appendix on the first pass.

2. Setting up the theory of (∞,2)-categories

2.1. In Chapter 10 we define what we mean by (∞,2)-categories.

The idea is to mimic the approach to (∞,1)-categories via complete Segal
spaces. And this is what one obtains if one wants to express the idea is that
an (∞,2)-category is just an (∞,1)-category, enriched over 1 -Cat: we upgrade the
spaces of morphisms to (∞,1)-categories.

2.2. So, for us the datum of an (∞,2)-category S is that of a simplicial (∞,1)-
category that we denote Seq●(S) (here “Seq” stands for sequences).

Namely, the (∞,1)-category Seq0(S) is actually a space, formed by objects of
S. I.e., it is the same as one of the underlying (∞,1)-category S1 -Cat, obtained by
discarding non-invertible 1-morphisms in S.

The (∞,1)-category Seq1(S) has as objects 1-morphisms in S. Again, these
are the same as objects of Seq1(S1 -Cat).

However, whereas the latter is a space (i.e.., we only allow homotopies between
1-morphisms in S1 -Cat), in the case of Seq1(S), we have non-invertible morphisms.

Namely, morphisms between two objects s0
α→ s1 and s0

β→ s1 are 2-morphisms
α⇒ β in S.

The higher Seqn(S) have as objects sequences

s0 → s1 → ...→ sn−1 → sn

of objects of S, and as morphisms sequences of 2-morphisms

s0 s1

>> sn−1 sn.

>>...

�� ��

2.3. Formally, we define the (∞,1)-category of (∞,2)-categories 2 -Cat to be a

full subcategory in 1 -Cat∆op

, given by explicit conditions that are analogous to the

condition on an object of Spc∆op

to be a complete Segal space.

In Chapter 10, Sect. 2.4 we introduce the main example of (∞,2)-category:
this is the (∞,2)-category of (∞,1)-categories, denoted 1 -Cat.

The (∞,2)-category 1 -Cat plays the same role vis-à-vis 2 -Cat as the (∞,1)-
category Spc vis-à-vis 1 -Cat. In particular, it is the recipient of the 2-categorical
Yoneda functor, discussed below.

422 INTRODUCTION

2.4. The above definition (∞,2)-categories is amenable to introducing the notion
of right-lax functor S⇢ T between two (∞,2)-categories S to T. The idea of right-
lax functors is that they do not strictly preserve compositions of 1-morphisms, but
only do so up to (not necessarily invertible) 2-morphisms.

By definition, right-lax functors S ⇢ T are functors (subject to a certain non-
degeneracy conditions) between the coCartesian fibrations

S∮ →∆op and T∮ →∆op

corresponding to

Seq●(S) ∶ ∆op → 1 -Cat and Seq●(T) ∶ ∆op → 1 -Cat,

respectively, see Chapter 10, Sect. 3.1.

2.5. Having defined right-lax functors, we can now define the (∞,2)-category

Funct(S,T)right-lax.

Namely, for a test (∞,2)-category X, the space of maps

X→ Funct(S,T)right-lax

is a certain full subspace in the space of right-lax functors X × S ⇢ T, see Chapter
10, Sect. 3.2.7. Namely, we take those right-lax functors that:

● For every x ∈ X the corresponding right-lax functor {x} × S→ T is strict;

● For every s ∈ S the corresponding right-lax functor X × {s}→ T is strict;

● For every x0
α→ x1 and s0

β→ s1, the 2-morphism in T, corresponding to
the composition

(x0, s0)
(α,id)Ð→ (x1, s0)

(id,β)Ð→ (x1, s1)
is invertible.

2.6. Having defined the (∞,2)-categories Funct(S,T)right-lax, we can define the
functor

(2.1) SqPair ∶ 2 -CatPair → Spc∆op×∆op

,

mentioned in Sect. 1.3.

Namely, given a pair (S,C), we let the space of (m,n)-simplices in SqPair
●,● (S,C)

be the subspace of the space of functors

[m]→ Funct([n],S)right-lax,

such that for every i ∈ [n], the corresponding functor [m]→ S factors through C.

2.7. We made the decision to leave some statements in Chapter 10 without proof.
The majority of the these have to do with the notion of Gray product. The most
important of them is the theorem that says that the functor (2.1) is fully faithful.
The missing proofs will be supplied elsewhere.

3. The rest of the Appendix

3.1. We start Chapter 11 by upgrading the structure of (∞,1)-category on the
totality of (∞,2)-categories to that of (∞,2)-category. We denote the latter by
2 -Cat, so that

(2 -Cat)1 -Cat = 2 -Cat .

3. THE REST OF THE APPENDIX 423

3.2. In Chapter 11, Sect. 2, we introduce the notions of what it means for a
functor T→ S to be a 1-Cartesian and 2-Cartesian fibration. Both of these notions
are obtained by imposing certain conditions (as opposed to additional pieces of
structure).

The main result of Chapter 11 is the straightening/unstraightening theorem.
It says that the (∞,2)-category of 2-Cartesian (resp., 1-Cartesian) fibrations over
S (with 1-morphisms being functors preserving Cartesian arrows) is equivalent to
(∞,2)-category of functors

S1 -op → 2 -Cat (resp., S1 -op → 1 -Cat).

3.3. Having at our disposal the straightening theorem, starting from the (∞,2)-
category

Funct([1],S)right-lax,

projecting to S×S (by evaluation on the two ends of [1]), we obtain the 2-categorical
Yoneda functor

S↪ Funct(S1 -op,1 -Cat)
that we prove to be a fully faithful embedding.

3.4. Having developed the basics of (∞,2)-categories, in Chapter 12 we finally ad-
dress the construction of functors obtained by passing to adjoints along 1-morphisms,
mentioned in Sect. 1.5.

The main construction of Chapter 12 is given in Sects. 2.2 and 2.3. Namely,
given an (∞,2)-category S, we explicitly describe another (∞,2)-category, denoted
SR, equipped with a functor

S→ SR,
which is universal with respect to the property of being left adjointable.

The construction of SR is given in terms of the functor Sq●,●, mentioned in

Sect. 1.3, and its left adjoint, denoted LSq.

Having this explicit description of SR allows to to establish the desired equiv-
alence (1.2).

CHAPTER 10

Basics of 2-Categories

Introduction

0.1. What are (∞,2)-categories? There are multiple definitions of (∞,2)-categories.
In this Chapter we adopt the one that mimics the approach to (∞,1)-categories
via complete Segal spaces. Let us first recall the latter.

0.1.1. Given an (∞,1)-category C, we attach to it the simplicial space, denoted
Seq●(C), whose space Seqn(C) of n-simplices is the space of n-fold compositions
in C, i.e.,

Seqn(C) = Maps1 -Cat([n],C),
where [n] is the category 0→ 1→ ...→ n.

It turns out that the functor

Seq● ∶ 1 -Cat→ Spc∆op

is fully faithful, and one can explicitly (and concisely) describe its essential image:
it consists of complete Segal spaces, see Sect. 1.2 for the definition.

0.1.2. We define (∞,2)-categories by a similar procedure: we let the datum of an
(∞,2)-category S to be a simplicial (∞,1)-category Seq●(S), subject to conditions
analogous to those that single out complete Segal spaces among simplicial spaces.

Thus, we obtain an (∞,1)-category 2 -Cat, which is a full subcategory in

Spc∆op

.

0.1.3. The idea of Seq●(S) is the following. For n = 0, the (∞,1)-category Seq0(S)
is the space of objects in S, denoted SSpc.

For n = 1, the category Seq1(S) has as objects 1-morphisms α ∶ s0 → s1. Now,
morphisms in Seq1(S) are diagrams

(0.1) s0 s1

s′0 s′1,

α //

��

α′

��
//

{�

where the vertical arrows are isomorphisms (indeed, they must be such, because
each column in the above diagram must restrict to a morphism in Seq0(S)).

Thus, Seq1(S) splits as a disjoint union according to π0(Seq0(S))×π0(Seq0(S)).
For fixed (s0, s1) ∈ Seq0(S) × Seq0(S), the category

Seq1(S) ×
Seq0(S)×Seq0(S)

{(s0, s1)}

425

426 10. BASICS OF 2-CATEGORIES

has as morphisms diagrams

s0 s1.
##
;;

��

0.1.4. We note that this approach is morally close to the ‘enriched ideology’ (al-
though we do not attempt to pursue the latter): for each s0, s1 ∈ SSpc we upgrade
the space

MapsS(s0, s1)
(which records the structure of the (∞,1)-category underlying S) to an (∞,1)-
category

MapsS(s0, s1),
the latter being Seq1(S) ×

Seq0(S)×Seq0(S)
{(s0, s1)}. I.e.,

MapsS(s0, s1) = (MapsS(s0, s1))Spc
.

0.1.5. Having defined (∞,2)-categories, we can now explain the main example of
one such: the (∞,2)-category of (∞,1)-categories, denoted 1 -Cat, so that

(1 -Cat)1 -Cat = 1 -Cat .

Here is its definition: the corresponding (∞,1)-category Seqn(1 -Cat) has as
objects Cartesian fibrations over [n]op.

Morphisms in this (∞,1)-category are functors over [n]op (that do not neces-
sarily take Cartesian edges to Cartesian edges) but ones that induce an equivalence
over each i ∈ [n].

0.2. What if did not insist that the vertical arrows be isomorphisms?
0.2.1. Having defined (∞,2)-categories, it is natural to ask the following question.
Let us attach to an (∞,2)-category S another simplicial category (denote it by
Seqext

● (S)), as follows:

We let Seqext
0 (S) be the (∞,1)-category S1 -Cat underlying S (i.e., S1 -Cat is

obtained from S by removing non-invertible 2-morphisms). Recall, by contrast,
that Seq0(S) was the space SSpc.

The category Seqext
1 (S) will still have as objects 1-morphisms s0 → s1. But mor-

phisms in Seqext
1 (S) will be diagrams (0.1), where we allow arbitrary 1-morphisms

along the vertical edges (i.e., we no longer require that these 1-morphisms be iso-
morphisms).

0.2.2. The above construction indeed defines a functor

Seqext
● ∶ 2 -Cat→ 1 -Cat∆op

,

and this functor also happens to be fully faithful (this is one of the results that are
left unproved in this book).

Thus, the (∞,1)-category 2 -Cat admits two different realizations as a full

subcategory in 1 -Cat∆op

.

INTRODUCTION 427

0.2.3. Of course, it is nice to know that the functor Seqext
● is fully faithful. But

do we actually need this in order to develop the theory?

The answer is ‘yes’, and that is mainly for the following reason: we will use the
Seqext

● realization of 2 -Cat in order to talk about adjunctions.

In more detail, for any (∞,2)-category T, it makes sense to ask whether a given
1-morphism t0 → t1 admits a left or right adjoint. Now, let

F ∶ S→ T
be a functor, such that for every 1-morphism s0

α→ s1, the corresponding 1-morphism

F (s0)
F (α)Ð→ F (s1)

admits a left (resp., right) adjoint.

Then it is natural to expect that in this case, we will be able to canonically
construct a functor

FL ∶ S1&2-op → T or FR ∶ S1&2-op → T
(here S1&2-op is the (∞,2)-category obtained from S by inverting 1- and 2-morphisms),
which is the same as F at the level of objects, and at the level of 1-morphisms re-
places each F (α) by its left (resp., right) adjoint.

Such a construction is indeed possible, and the functor Seqext
● will be the main

tool for carrying it out.

0.2.4. Finally, one can ask the following question: if Seqext
● is so good, why do we

not use that instead of Seq● in the definition of (∞,2)-categories?

The answer is that we need the Seq●-realization in order to define the notion
of lax functor between (∞,2)-categories, see Sect. 0.3.2 below.

So, to summarize, we need both realizations Seq● and Seqext
● .

0.3. What else is done in this chapter?
0.3.1. In Sect. 1 we recall the realization of 1 -Cat via complete Segal spaces, and
in Sect. 2 we introduce (∞,2)-categories according to the recipe explained above.

Skipping Sect. 3 for a second, in Sect. 4 we explain the approach to (∞,2)-
categories via the functor Seqext

● , and in Sect. 5 we describe its essential image

(rather, that of its variant SqPair
●,●).

In Sect. 6 we upgrade the (∞,1)-category 2 -Cat to an (∞,2)-category 2 -Cat.

0.3.2. Let us now return to Sect. 3. In this section we introduce the notion of
right-lax functor between (∞,2)-categories. Morally, a right-lax functor

F ∶ S⇢ T
is the same as a functor, with the difference that it only respects composition up
to a not necessarily invertible 2-morphism.

I.e., for a string

s0
α→ s1

β→ s2

in S, we are supposed to be given a 2-morphism in T
F (β) ○ F (α)→ F (β ○ α).

428 10. BASICS OF 2-CATEGORIES

0.3.3. Formally, the definition is given as follows. Let S∮ and T∮ be the coCarte-
sian fibrations over ∆op, corresponding to the functors

Seq●(S),Seq●(T) ∶ ∆op → 1 -Cat,

respectively.

A genuine (i.e., strict) functor S → T is the same as a functor S∮ → T∮ over
∆op that takes coCartesian edges to coCartesian edges.

A right-lax functor S ⇢ T is, by definition, a functor S∮ → T∮ over ∆op that
takes coCartesian edges that lie over idle arrows in ∆op to coCartesian edges (we
refer the reader to Sect. 3.1.2 where the notion of idle arrow in ∆op is defined).

0.3.4. The notion of right-lax functor allows us to introduce the notion of Gray
product of (∞,2)-categories. Given, S,T ∈ 2 -Cat, their Gray product, denoted

S⊛T

is a (∞,2)-category, equipped with a right-lax functor

S ×T⇢ S⊛T,

universal with respect to the following property:

For a pair of 1-morphisms

s0
φ→ s1 and t0

ψ→ t1,

the diagram

(s0, t0)
(id,ψ)ÐÐÐÐ→ (s0, t1)

(φ,id)
×××Ö

×××Ö
(φ,id)

(s1, t0)
(id,ψ)ÐÐÐÐ→ (s1, t1)

in S⊛T no longer commutes, but only does so up to a non-invertible 2-morphism

(s0, t0) (s0, t1)

(s1, t0) (s1, t1).

//

�� ��
//

{�

0.3.5. The Gray product produces something non-trivial even if S = I and T = J
are (∞,1)-categories. Consider the simplest example of I = J = [1]. In this case,
the (∞,2)-category

[1]⊛ [1] =∶ [1,1]
can be depicted as

● ●

● ●.

//

�� ��//{�

1. RECOLLECTIONS: (∞,1)-CATEGORIES VIA COMPLETE SEGAL SPACES 429

0.3.6. The notion of Gray product allows to introduce the notion of right-lax nat-
ural transformation between functors. In general, for S,T ∈ 2 -Cat, we introduce
the (∞,2)-category

Funct(S,T)right-lax

(of genuine functors, but where we allow right-lax natural transformations) by

Maps2 -Cat(X,Funct(S,T)right-lax) = Maps2 -Cat(X⊛ S,T).
The (∞,2)-category contains as a 1-full subcategory the usual (∞,2)-category

of functors, denoted Funct(S,T), and defined by

Maps2 -Cat(X,Funct(S,T)) = Maps2 -Cat(X × S,T).

0.3.7. For example, we have:

Seqext
n (S) = Funct([n],T)right-lax.

0.4. Status of the assertions.
0.4.1. Unfortunately, the existing literature on (∞,2)-categories does not contain
the proofs of all the statements that we need. We decided to leave some of the
statements unproved, and supply the corresponding proofs elsewhere (including
the proofs here would have altered the order of the exposition, and would have
come at the expense of clarity).

0.4.2. Here is the list of the unproved statements:

Proposition 3.2.6 says that the formation of Gray product commutes with col-
imits in each variable.

Proposition 3.2.9 asserts the associativity of the Gray product.

Theorems 4.1.3, Theorem 4.3.5, Theorem 4.6.3 and Theorem 5.2.3 are all gen-
eralizations of the assertion that the functor Seqext

● (or, rather, its variant SqPair
●,●)

is fully faithful with specified essential image.

Proposition 4.5.4 gives an explicit description of the Gray product in terms of
the functor SqPair

●,● .

It is quite possible that references for (some of) the above statements do exist,
and we would be grateful if the reader could point them out to us.

1. Recollections: (∞,1)-categories via complete Segal spaces

As a warm-up to the definition of (∞,2)-categories, in this section we will recall
the description of (∞,1)-categories as complete Segal spaces.

In the case of (∞,2)-categories, we will follow the same route, but with its
inherent complications.

1.1. The category ∆. Let us recall the following from Chapter 1:

1.1.1. For an integer n we let [n] denote the ordinary 1-category symbolically
represented as

0→ 1→ ...→ n.

430 10. BASICS OF 2-CATEGORIES

1.1.2. We let ∆ be the (ordinary) category, whose objects are [n] for n ∈ N and
whose morphisms are functors [n1]→ [n2].

By constrution, ∆ comes equipped with a fully faithful functor to 1 -Cat.

1.1.3. The category ∆ carries a canonical involution, denoted rev. It acts as
identity on objects, and on morphisms it is defined via the commutative diagrams

[n1]
rev(α)ÐÐÐÐ→ [n2]

×××Ö
×××Ö

[n1]op αÐÐÐÐ→ [n2]op,

where the vertical arrows are the canonical equivalences

[n]→ [n]op, i↦ n − i.

1.2. (Complete) Segal spaces.

1.2.1. Consider the (∞,1)-category of simplicial spaces, i.e., Spc∆op

. Let us recall
that an object

E● ∈ Spc∆op

is said to be a Segal space if the following condition is satisfied:

For any n = n1 + n2, the natural map

En → En1 ×
E0

En2 ,

is an isomorphism in Spc.

In the above formula, the maps En1 → E0 ← En2 are given by

0 ∈ [0]↦ n1 ∈ [n1] and 0 ∈ [0]↦ 0 ∈ [n2],
respectively.

1.2.2. Let s, t ∶ E1 → E0 be the “source” and “target” maps. A point α ∈ E1 is
said to be invertible if there exists a point

β ∈ E1 ×
E0×E0

(t(α), s(α)),

satisfying the following condition:

Note that from the isomorphism E2 ≃ E1 ×
E0

E1 and the “composition” map

E2 → E1, we obtain two points α ○ β and β ○ α of E1. Our condition is that both
these points be in the essential image of the degeneracy map E0 → E1.

It is easy to see that invertibility is a condition on the connected component of
E1 that a given point belongs to. Let (E1)invert ⊂ E1 be the full subspace consisting
of invertible arrows.

1.2.3. Recall that a Segal space E● is said to be complete if the above map E0 →
(E1)invert is an isomorphism in Spc.

1.3. The functor Seq●. The idea of the functor Seq● is very simple: we want to
record the datum of an ∞-category by keeping track of spaces of n-fold composi-
tions, for every n, along with its simplicial structure as we vary n.

1. RECOLLECTIONS: (∞,1)-CATEGORIES VIA COMPLETE SEGAL SPACES 431

1.3.1. We construct the functor of (∞,1)-categories

Seq● ∶ 1 -Cat→ Spc∆op

by sending C ∈ 1 -Cat to the simplicial space, whose n-simplices is the space

Maps1 -Cat([n],C)

of functors [n]→C.

1.3.2. The functor Seq● admits a left adjoint, denoted L. Tautologically, L is

the left-Kan extension along the Yoneda embedding ∆ ↪ Spc∆op

of the functor
tautological functor

∆→ 1 -Cat,

i.e., the functor that sends an ordered finite set to itself, viewed as an ordinary
category.

1.3.3. We now quote the following fundamental fact ([Rezk1, JT]):

Theorem 1.3.4. The above functor Seq● is fully faithful. Its essential image

is the full subcategory of Spc∆op

that consists of complete Segal spaces.

1.3.5. The category 1 -Cat carries a natural involution, denoted

C↦Cop.

It is uniquely characterized by the property that the the functor Seq● inter-

twines this involution with one on Spc∆op

, induced by the functor rev ∶ ∆→∆.

1.4. Properties of categories and functors in terms of Seq●. In this subsec-
tion we will show how to translate various properties of ∞-categories (such as the
property of being ordinary) or functors (such as the property of being fully faithful)
into properties of the corresponding simplicial space.

1.4.1. First, let us observe that an (∞,1)-category C is ordinary if for any c0,c1 ∈
Seq0(c), the space

Seq1(C) ×
Seq0(c)×Seq0(c)

{(c0,c1)},

is discrete.

Recall that

1-Catordn ⊂ 1 -Cat

denotes the full subcategory that consists of ordinary categories, and that the above
inclusion admits a left adjoint, denoted

C↦Cordn.

Sometimes, Cordn is called the homotopy category of C, and is denoted Ho(C).

432 10. BASICS OF 2-CATEGORIES

1.4.2. We have a fully faithful inclusion

Spc↪ 1 -Cat .

Namely, C ∈ 1 -Cat is a space if and only if Seq●(C) is degenerate, i.e., the
degeneracy map Seq0(C) → Seqn(C) is an isomorphism for every n. Note that
given the Segal condition, it is enough to check this for n = 1.

The inclusion Spc↪ 1 -Cat admits a right adjoint, given by

C↦CSpc.

We have

Seqn(CSpc) ≃ Seq0(C), ∀n.

1.4.3. It follows from the definitions that a functor between (∞,1)-categories F ∶
C→D is fully faithful if and only if the corresponding map of spaces

(1.1) Seq1(C)→ Seq1(D) ×
Seq0(D)×Seq0(D)

(Seq0(C) × Seq0(C))

is an isomorphism (in Spc).

Note that if C and D are both spaces, then F is fully faithful if and only if it is
a monomorphism, i.e., the inclusion of a union of connected components. Indeed,
the above condition is equivalent to

Seq0(C)→ Seq0(C) ×
Seq0(D)

Seq0(C)

being an isomorphism.

1.4.4. Recall that notion of a functor being 1-fully faithful, see Chapter 1, Sect.
1.2.4 (for a functor between ordinary categories ’1-fully faithful’ is what is usually
called ‘faithful’).

It is easy to see that F ∶ C → D is 1-fully faithful if and only if the map (1.1)
is a monomorphism.

1.4.5. Recall also the notion of a 1-replete functor, see Chapter 1, Sect. 1.2.5. It
is not difficult to see that this is equivalent to the condition that the functor

Seq1(C)→ Seq1(D)

should be fully faithful.

1.5. The (∞,1)-category 1 -Cat. In this subsection we will describe the object

Seq●(1 -Cat) ∈ 1 -Cat∆op

.

1. RECOLLECTIONS: (∞,1)-CATEGORIES VIA COMPLETE SEGAL SPACES 433

1.5.1. For an (∞,1)-category I, recall that

coCart/I ⊂ 1 -Cat/I

denotes the full subcategory consisting of coCartesian fibrations.

Recall that
(coCart/I)strict ⊂ coCart/I

denotes the 1-full subcategory with the same objects, but where 1-morphisms are
functors that send arrows that are coCartesian over I to arrows that are coCartesian
over I.

Recall also that we denote by

0-coCart/I ⊂ coCart/I

the full subcategory consisting of coCartesian fibrations in spaces.

The above notation carries over mutatis mutandis to the case of Cartesian
fibrations.

1.5.2. By definition,

Seq●(1 -Cat) ≃ Maps1 -Cat([●],1 -Cat).
Applying Chapter 1, Sect. 1.4.2, we obtain that

Seq●(1 -Cat) ≃ (coCart/[●])Spc.

Under this identification, the full subcategory Spc ⊂ 1 -Cat corresponds to

(0-coCart/[●])Spc ⊂ (coCart/[●])Spc.

1.6. Unstraightening.
1.6.1. The incarnation of (∞,1)-categories as complete Segal spaces gives an ex-
plicit description of the unstraightening functor

Maps1 -Cat(C,1 -Cat)→ (coCart/C)Spc.

Let us be given a functor F ∶ C → 1 -Cat. Let us describe the complete Segal
space of the corresponding coCartesian fibration C̃→C.

1.6.2. For each n consider the category

([n] × [n])≥diag,

equipped1 with the projection on the second coordinate

([n] × [n])≥diag → [n].
This is a coCartesian fibration of ordinary categories, and consider the correspond-
ing functor

ιn ∶ [n]→ 1 -Cat .

1.6.3. Now, the space Seqn(C̃) is described as follows: it is the space of pairs
consisting of a functor

[n]→C,

and a natural transformation from ιn to the composite functor

[n]→C
F→ 1 -Cat .

1This is the full subcategory of [n] × [n] consisting of objects (i, j) with i ≤ j.

434 10. BASICS OF 2-CATEGORIES

2. The notion of (∞,2)-category

In this section we give the definition of an (∞,2)-category. In doing so, we will
follow C. Barwick in approaching (∞,2)-categories via complete Segal spaces.

Namely, the datum of an (∞,2)-category will consist of an assignment for
every n of the (∞,1)-category whose objects are n-fold compositions, and whose
morphisms are strings of 2-morphisms.

2.1. Definition of the (∞,1)-category of (∞,2)-categories. In this subsection
we introduce the (∞,1)-category of (∞,2)-categories, to be denoted 2 -Cat.

2.1.1. We define 2 -Cat as a full subcategory of 1 -Cat∆op

, defined by the following
three conditions:

Condidtion 0: We require that E0 ∈ 1 -Cat be a space.

Condidtion 1: We require that for any n = n1+n2, the map (i.e., functor between
(∞,1)-categories)

En → En1 ×
E0

En2

be an isomorphism in 1 -Cat (i.e., an equivalence of (∞,1)-categories).

To formulate Condition 2 we note that given Condition 1, the ordinary category
(E1)ordn contains a 1-full subcategory ((E1)ordn)invert. We let (E1)invert to be the
corresponding 1-full subcategory of E1.

It is easy to see that the degeneracy functor E0 → E1 (automatically, uniquely)
factors as E0 → (E1)invert.

Condidtion 2. We require that the above map (i.e., a functor of (∞,1)-categories)

E0 → (E1)invert

be an isomorphism in 1 -Cat (i.e., be an equivalence of (∞,1)-categories).

Remark 2.1.2. One can show that, given Conditions 0 and 1, the (∞,1)-
category (E1)invert is actually a space. In fact, Conditions 1 and 2 imply that
(E●)Spc is a Segal space and the natural map ((E1)Spc)invert → (E1)invert is an
isomorphism (of spaces).

From here one deduces that Condition 2 can be replaced by a seemingly weaker
condition:

Condition 2’: We require that the Segal space (E●)Spc be complete.

2.1.3. We will denote the tautological fully faithful embedding

2 -Cat→ 1 -Cat∆op

by Seq●.

2.1.4. Note that the category 2 -Cat has limits, and the functor Seq● commutes
with limits. Indeed, it suffices to observe that Conditions 0, 1 and 2 above are all

stable under taking limits in 1 -Cat∆op

.

For future reference we record:

Lemma 2.1.5. The category 2 -Cat is presentable (in particular, contains col-
imits).

2. THE NOTION OF (∞,2)-CATEGORY 435

2.1.6. The category 2 -Cat carries a pair of mutually commuting involutions, de-
noted

S↦ S1-op and S↦ S2-op,

respectively.

The involution S ↦ S1-op is uniquely characterized by the property that the

functor Seq● intertwines it with the involution on 1 -Cat∆op

, induced by the invo-
lution rev ∶ ∆→∆.

The involution S ↦ S2-op is uniquely characterized by the property that the

functor Seq● intertwines it with the involution on 1 -Cat∆op

, induced by the invo-
lution

1 -Cat→ 1 -Cat, C↦Cop.

In what follows, we shall denote by

S↦ S1&2-op ≃ S2&1-op

the composition of the above two involutions.

2.2. Basic properties of (∞,2)-categories. Since (∞,2)-categories were de-
fined via simplicial (∞,1)-categories, their properties (such as being ordinary) are
expressed in such terms.

2.2.1. We have a fully faithful embedding

(2.1) 1 -Cat→ 2 -Cat

that makes the diagram

(2.2)

1 -Cat
Seq●ÐÐÐÐ→ Spc∆op

×××Ö
×××Ö

2 -Cat
Seq●ÐÐÐÐ→ 1 -Cat∆op

commute.

2.2.2. The embedding (2.1) admits a right adjoint, to be denoted

S↦ S1 -Cat.

This right adjoint can be characterized by the fact that the natural transfor-
mation in the diagram

1 -Cat
Seq●ÐÐÐÐ→ Spc∆op

S↦S1 -Cat
Õ×××

Õ×××
E●↦(E●)Spc

2 -Cat
Seq●ÐÐÐÐ→ 1 -Cat∆op

,

obtained by passing to right adjoints along the vertical arrows in (2.2), is an iso-
morphism.

We denote

SSpc ∶= (S1 -Cat)Spc.

436 10. BASICS OF 2-CATEGORIES

2.2.3. We shall say that an (∞,2)-category S is ordinary if the (∞,1)-category
Seq1(S) is ordinary.

Let 2-Catordn denote the full subcategory of 2 -Cat consisting of ordinary 2-
categories. It is easy to see that 2-Catordn identifies with the category of ordinary
(a.k.a., usual, classical) 2-categories.

Remark 2.2.4. We always work up to coherent homotopy and what we call an
ordinary 2-category is what is often called a ‘bicategory’ in the literature.

2.2.5. The embedding

2-Catordn ↪ 2 -Cat

admits a left adjoint, to be denoted

S↦ Sordn.

It is not difficult to see that this left adjoint is given by sending the corresponding

E● ∈ 1 -Cat∆op

to the ordinary simplicial category (E●)ordn.

Remark 2.2.6. Note, however, that the diagram

1 -Cat ÐÐÐÐ→ 1-Catordn

×××Ö
×××Ö

2 -Cat ÐÐÐÐ→ 2-Catordn

does not commute.

I.e., an (∞,2)-category may be ordinary, only have invertible 2-morphisms,
thus being an (∞,1)-category, but not an ordinary category.

2.2.7. In what follows we shall refer to points of Seq0(S) as objects of S. For
s′, s′′ ∈ S, we consider the category

Seq1(S) ×
Seq0(S)×Seq0(S)

{s′ × s′′}.

We shall refer to it as the category of morphisms from s′ to s′′ and denote it
by MapsS(s′, s′′).

We shall use the notation MapsS(s′, s′′) for

MapsS(s′, s′′)Spc ≃ MapsS1 -Cat(s′, s′′).

2.2.8. If s′, s′′ are objects of S, we have

MapsS2-ordn(s′, s′′) ≃ (MapsS(s′, s′′))1-ordn.

2.3. Properties of functors between (∞,2)-categories.

2. THE NOTION OF (∞,2)-CATEGORY 437

2.3.1. Let F ∶ S → T be a functor between (∞,2)-categories. We shall say that is
fully faithful if the resulting functor if (∞,1)-categories

(2.3) Seq1(S)→ Seq1(T) ×
Seq0(T)×Seq0(T)

(Seq0(S) × Seq0(S))

is an equivalence.

Equivalently, this means that for every s′, s′′ ∈ S, the functor

(2.4) MapsS(s′, s′′)→MapsT(F (s′), F (s′′))
is an equivalence.

2.3.2. We shall say that F is 1-fully faithful if the functor (2.3) is fully faithful.
Equivalently, this means the functor (2.4) is fully faithful for any s′, s′′ ∈ S.

2.3.3. We shall say that F is 1-replete if the functor

Seq1(S)→ Seq1(T)
is fully faithful.

A functor which is 1-replete is an equivalence onto what we call a 1-full subcat-
egory. For an (∞,2)-category S, its 1-full subcategories are in bijection with those
in Sordn, and also with those of S1 -Cat.

2.3.4. We shall say that a functor F is 2-fully faithful if the functor (2.3) is 1-fully
faithful (equivalently, if the functor (2.4) is 1-fully faithful for any s′, s′′ ∈ S).

2.3.5. We shall say that F is 2-replete if the functor (2.3) is 1-replete (equivalently,
if the functor (2.4) is 1-replete for any s′, s′′ ∈ S).

2.3.6. A functor which is 2-replete is an equivalence onto what we call a 2-full
subcategory.

For an (∞,2)-category S, its 2-full subcategories are in bijection with those in
Sordn. Each such is determined by a subset of π0(Seq1(S)), closed under composi-
tions.

2.4. The (∞,2)-category 1 -Cat. The main example of an (∞,2)-category is
the (∞,2)-category of (∞,1)-categories, denoted 1 -Cat. In this subsection we
define what it is.

2.4.1. We introduce the (∞,2)-category 1 -Cat as follows. We let Seqn(1 -Cat)
be the 1-full subcategory of Cart/[n]op , where we restrict 1-morphisms to functors
that induce an equivalence over each i ∈ [n].

The assignment

n↦ Seqn(1 -Cat)
clearly defines an object of 1 -Cat∆op

.

Proposition 2.4.2.

(a) The above object Seq●(1 -Cat) lies in the essential image of the functor

Seq● ∶ 2 -Cat→ 1 -Cat∆op

.

(b) The resulting object 1 -Cat ∈ 2 -Cat is equipped with a canonical identification

(1 -Cat)1 -Cat ≃ 1 -Cat .

438 10. BASICS OF 2-CATEGORIES

Proof. First, we note that by construction, the (∞,1)-category Seq0(1 -Cat)
tautologically identifies with (1 -Cat)Spc. Similarly, we have a canonical identifica-
tion

Seq●(1 -Cat) ∶= Maps([●],1 -Cat) ≃ (Cart/[●]op)Spc = (Seq●(1 -Cat))Spc,

where the second isomorphism is given by Chapter 1, Sect. 1.4.5.

It remains to show that the simplicial category Seq●(1 -Cat) satisfies the Segal
condition. Indeed, this follows from the fact that for n = n1 + n2, the functor

Cart/[n]op → Cart/[n1]op ×
1 -Cat

Cart/[n2]op

is an equivalence.
�

2.4.3. We also have:

Corollary 2.4.4. For S,T ∈ 1 -Cat, there is a canonical equivalence

Maps1 -Cat(S,T) ≃ Funct(S,T).

Proof. It suffices to show that for each [n] ∈ ∆op, there is a natural equiva-
lence

Maps([n],Funct(S,T)) ≃ Maps([n],Cart/[1]op ×
1 -Cat×1 -Cat

{(S,T)}).

Tautologically, we have

Maps([n],Funct(S,T)) ≃ MapscoCart/[n]
(S × [n],T × [n])

≃ Maps([1], coCart/[n]) ×
coCart/[n] × coCart/[n]

(S × [n],T × [n]).

By Chapter 12, Proposition 2.1.3, the latter is naturally equivalent to

Maps([n],Cart/[1]op) ×
Maps([n],1 -Cat)×Maps([n],1 -Cat)

(S,T)

≃ Maps([n],Cart/[1]op ×
1 -Cat×1 -Cat

{(S,T)}),

as desired. �

Remark 2.4.5. Suppose in the above definition of 1 -Cat, we replace Cart/[n]op
by coCart/[n]. (Note that the underlying simplicial spaces are both identified with
Maps([●],1 -Cat).)

The latter simplicial category also lies in the essential image of the functor
Seq●, and the resulting (∞,2)-category identifies with (1 -Cat)2 -op.

2.5. The (∞,2)-category of functors. So far, we have defined on the totality
of (∞,2)-categories a structure of (∞,1)-category. In particular, for S,T we have
a well-defined space

Maps2 -Cat(S,T).

We claim, however, that the above space lifts, in a natural way to an object of
2 -Cat.

2. THE NOTION OF (∞,2)-CATEGORY 439

2.5.1. We have the following basic result:

Theorem 2.5.2 ([Rezk2, BarS]). For S,T ∈ 2 -Cat, the functor

X↦Maps2 -Cat(X × S,T)
is representable.

Note that Theorem 2.5.2 is not at all tautological. By the Adjoint Functor
Theorem, it is equivalent to the following one:

Theorem 2.5.3. The functor

2 -Cat×2 -Cat→ 2 -Cat, S,T↦ S ×T

commutes with colimits in each variable.

2.5.4. In what follows we shall denote the object representing the functor in The-
orem 2.5.2 by

Funct(S,T) ∈ 2 -Cat .

Note that by definition

(Funct(S,T))Spc ≃ Maps2 -Cat(S,T).

2.6. (∞,2)-categories via bi-simplicial spaces.

2.6.1. The category 1 -Cat∆op

admits a fully faithful embedding into

(Spc∆op

)∆op

≃ Spc∆op×∆op

,

given by (Seq●)∆op

, i.e., apply the functor Seq● ∶ 1 -Cat→ Spc∆op

simplex-wise.

Hence, we obtain a fully faithful embedding

(2.5) Sq∼●,● = (Seq●)∆op

○ Seq● ∶ 2 -Cat∆op

→ Spc∆op×∆op

.

2.6.2. For a pair of integers m,n ≥ 0, consider the functor Sq∼m,n. Since this
functor commutes with limits, it is co-representable. We let [m,n]∼ ∈ 2 -Cat denote
the co-representing object.

It is easy to see that [0, n]∼ ≃ [n] and [m,0]∼ ≃ ∗. Note that Segal condition
implies that the natural maps

(2.6) [m,n1]∼ ⊔∗ [m,n2]∼ → [m,n1 + n2]∼

and

(2.7) [m1, n]∼ ⊔
[n]

[m2, n]∼ → [m1 +m2, n]∼

are isomorphisms. Pictorially, one could think of [m,n]∼ as the diagram

● ●����%% DD II77 ● ●����%%77 DD II. . .
�� ��

�� ��

�� ��

�� ��

⋮ ⋮

440 10. BASICS OF 2-CATEGORIES

2.6.3. The material in the rest of this subsection is included for the sake of com-
pleteness.

Note that we have the following explicit description of the ordinary 2-category

([m,n]∼)ordn.

Its objects are integers 0, ..., n. For 0 ≤ i, j ≤ n, the 1-category of morphisms
i→ j is described as follows:

(a) It is empty if i > j;
(b) It is {∗} if i = j;
(c) For i < j it is the poset of sequences

(fi,i+1, ..., fj−1,j) ∈ {0, ...,m}

The order relation is

(fi,i+1, ..., fj−1,j) ≤ (f ′i,i+1, ..., f
′
j−1,j) ⇔ ∀i ≤ k ≤ j − 1, fk,k+1 ≤ f ′k,k+1.

2.6.4. We have the following result:

Theorem 2.6.5 ([BarS, Lemma 12.5]). For any (m,n), the tautological functor

[m,n]∼ → ([m,n]∼)ordn

is an equivalence.

In other words, this theorem says that for every m,n the object of 2 -Cat,
co-representing the functor

S↦ Sq∼m,n(S) ≃ Seqm(Seqn(S)), 2 -Cat→ Spc

is an ordinary 2-category.

3. Lax functors and the Gray product

One of the key new features of (∞,2)-categories, as compared to (∞,1)-categories,
is the notion of right-lax (or left-lax) functor. We will introduce these notions in
the present section.

3.1. Lax functors. The idea of a lax functor is that the composition of 1-morphisms
does not have to go to the composition, but rather be connected to it by a (not
necessarily invertible) 2-morphism.

3.1.1. Let S be an (∞,2)-category, thought of as a functor ∆op → 1 -Cat. Let S∮
be the total space of the corresponding coCartesian fibration over ∆op.

By definition, a functor between a pair of (∞,2)-categories S and T is a functor

S∮ → T∮

that sends coCartesian arrows to coCartesian arrows.

3. LAX FUNCTORS AND THE GRAY PRODUCT 441

3.1.2. We give the following definitions: a map

α ∶ [m]→ [n]

is said to be:

● active if α(0) = 0 and α(m) = n.
● idle if for all 0 ≤ j ≤ n for which there exist 0 ≤ i1, i2 ≤m with α(ii) ≤ j ≤
α(i2), there exists 0 ≤ i ≤m such that α(i) = j;

● inert if for all 0 ≤ j ≤ n for which there exist 0 ≤ i1, i2 ≤m with α(ii) ≤ j ≤
α(i2), there exists a unique 0 ≤ i ≤m such that α(i) = j;

In other words, an inert map sends i↦ i + k for some 0 ≤ k ≤ n −m.

3.1.3. We define a non-unital right-lax functor from S to T to be a functor

S∮ → T∮

which takes coCartesian edges over inert morphisms of ∆ to coCartesian edges.

We define a right-lax functor from S to T to be a functor

S∮ → T∮

which takes coCartesian edges over idle morphisms of ∆ to coCartesian edges.

We define a non-unital left-lax functor (resp., left-lax functor) from S to T to
be a non-unital right-lax functor (resp., right-lax functor) from S2 -op to T2 -op.

Remark 3.1.4. At the level of ordinary 2-categories, the notion of ‘non-unital
right-lax functor’ differs from what is called a lax functor in the literature on or-
dinary 2-categories. In particular, unlike the classical notion, the notion of a non-
unital right-lax functor is invariant with respect to equivalence of 2-categories.

On the other hand, the notion of ‘right-lax functor’, at the level of ordinary 2-
categories, agrees with what is usually called a ‘normal lax functor’ in the literature
on ordinary 2-categories.

3.1.5. In what follows, given a pair of (∞,2)-categories S and T we shall symbol-
ically denote right-lax and left-lax functors from S to T by

S⇢ T,

to distinguish them from actual (i.e., strict) functors, which we denote by S→ T.

3.1.6. Let F ∶ S⇢ T be a right-lax functor. Then, for a string of objects s0
φ→ s1

ψ→
s2 in S, we are given a (not necessarily invertible) 2-morphism

(3.1) F (ψ) ○ F (φ)→ F (ψ ○ φ),

i.e., a 1-morphism in MapsT(F (s0), F (s2)).

For a left-lax functor, we have a map in the opposite direction: F (ψ ○ φ) →
F (ψ) ○ F (φ).

442 10. BASICS OF 2-CATEGORIES

3.1.7. We can introduce 1-full subcategories

2 -Cat↪ 2 -Catright-lax ↪ 2 -Catright-laxnon-untl

of the full subcategory of 1 -Cat∆op

formed by coCartesian fibrations, by imposing
increasingly weaker conditions on 1-morphisms.

Thus, for a pair of objects S,T ∈ 2 -Cat we have the well-defined spaces

Maps2 -Cat(S,T) ⊂ Maps2 -Catright-lax
(S,T) ⊂ Maps2 -Catright-laxnon-untl

(S,T).

All of the above categories contain limits, and the above embeddings commute
with limits.

3.2. The Gray tensor product. The notion of right-lax functor allows one to
introduce the notion of Gray product of (∞,2)-categories. Given (∞,2)-categories

S and T, the Gray product S⊛T has the same objects as S×T. However, for s0
φ→ s1

and t0
ψ→ t1, the diagram

(s0, t0)
(id,ψ)ÐÐÐÐ→ (s0, t1)

(φ,id)
×××Ö

×××Ö
(φ,id)

(s1, t0)
(id,ψ)ÐÐÐÐ→ (s1, t1)

will no longer commute, but will do so up to a non-invertible 2-morphism.

The formation of the Gray product will allow us to talk about right-lax natural
transformation between functors.

3.2.1. For an n-tuple of (∞,2)-categories S1,S2, ...,Sn and another (∞,2)-category
T, let

Maps2 -Cat(S1 ⊛ ...⊛ Sn,T) ⊂ Maps2 -Catright-lax(S1 × ... × Sn,T)
to be the subspace given by right-lax functors such that:

(1) For each i and an object ŝi ∈ ∏
j≠i

Sj , the composite lax functor

Si
id×ŝiÐ→ S1 × ... × Sn

F⇢ T

is a strict functor.

(2) For any morphism

f = (fi) ∶ (s1, ..., sn)→ (s′1, ..., s′n)

in S1 × ... × Sn and 1 ≤ k ≤ n − 1, the 2-morphism in T, corresponding to
splitting f as a composition (see (3.1))

(s1, ..., sk, sk+1, ..., sn)
(f1,...,fk,id,...,id)Ð→

→ (s′1, ..., s′k, sk+1, ..., sn)
(id,...,id,fk+1,...,fn)Ð→ (s′1, ..., s′k, s′k+1, ..., s

′
n),

is an isomorphism.

3. LAX FUNCTORS AND THE GRAY PRODUCT 443

3.2.2. For example, if n = 2 and F is an object of Maps2 -Cat(S1 ⊛ S2,T), for any

(s1, s2)
(f1,f2)→ (s′1, s′2)

in S1 × S2, we obtain a 2-morphism in T

F (f1, ids′2) ○ F (ids1 , f2)→ F (f1, f2) ≃ F (ids′1 , f2) ○ F (f1, ids2).

3.2.3. Since the functor Maps2 -Cat(S1 ⊛ . . . ⊛ Sn,−) commutes with limits, it is
co-represented by an (∞,2)-category, to be denoted S1 ⊛ . . . ⊛ Sn, and called the
Gray tensor product.

By definition, we have a tautological projection

S1 ⊛ ...⊛ Sn → S1 × ... × Sn,

and a canonically defined lax functor

S1 × ... × Sn ⇢ S1 ⊛ ...⊛ Sn,

such that the composition

S1 × ... × Sn ⇢ S1 ⊛ ...⊛ Sn → S1 × ... × Sn

is the identity functor.

3.2.4. Note also that by construction, we have a canonical identification

(3.2) (Sn ⊛ ...⊛ S1)2 -op ≃ (S2 -op
1 ⊛ ...⊛ S2 -op

n).

3.2.5. We have the following basic fact2

Proposition 3.2.6. The functor

2 -Cat×... × 2 -Cat→ 2 -Cat, S1, ...,Sn ↦ S1 ⊛ . . .⊛ Sn

commutes with colimits in each variable.

3.2.7. For a pair of (∞,2)-categories S and T, recall the (∞,2)-category Funct(S,T).
We introduce its enlargement Funct(S,T)right-lax (which has the same underlying
space, but more 1-morphisms) as follows:

We set

Maps2 -Cat(X,Funct(S,T)right-lax) = Maps2 -Cat(X⊛ S,T),

where the representability is insured by Proposition 3.2.6.

We call 1-morphisms in Funct(S,T)right-lax right-lax natural transformations.
By definition, given a right-lax natural transformation α ∶ F1 ⇢ F2, for an object
s ∈ S we have a 1-morphism

α(s) ∶ F1(s)→ F2(s)

2We do not prove it, and we were not able to find a reference.

444 10. BASICS OF 2-CATEGORIES

in T, and for a 1-morphism φ ∶ s→ s′, we have a 2-morphism

F1(s) F1(s′)

F2(s) F2(s′).

F1(φ) //

α(s)

��

α(s′)

��

F2(φ)
//

{�

Similarly, we introduce the (∞,2)-category Funct(S,T)left-lax.

3.2.8. For n = n1 + n2 and an n-tuple of (∞,2)-categories S1, ...,Sn consider the
right-lax functor

S1 × ... × Sn ≃ (S1 × ... × Sn1) × (Sn1+1 × ... × Sn1+n2)⇢
⇢ (S1 ⊛ ...⊛ Sn1) × (Sn1+1 ⊛ ...⊛ Sn1+n2)⇢

⇢ (S1 ⊛ ...⊛ Sn1)⊛ (Sn1+1 ⊛ ...⊛ Sn1+n2)
It follows from the definitions that the above right-lax functor gives rise to a

functor

(3.3) S1 ⊛ ...⊛ Sn1 ⊛ Sn1+1 ⊛ ...⊛ Sn1+n2 ⇢ (S1 ⊛ ...⊛ Sn1)⊛ (Sn1+1 ⊛ ...⊛ Sn1+n2).
We have the following proposition3:

Proposition 3.2.9. The functor (3.3) is an equivalence.

Remark 3.2.10. It is easy to see that Proposition 3.2.9 implies that the Carte-
sian monoidal structure on 2 -Cat induces a monoidal structure on 2 -Cat, given by
the Gray product.

3.3. Cubical 2-categories.
3.3.1. For an integer k and a k-tuple n1, ..., nk we let

[n1, ..., nk] ∈ 2 -Cat

denote the (∞,2)-category
[n1]⊛ ...⊛ [nk].

3.3.2. From Proposition 3.2.9 we obtain that for k = k1 + k2, the natural functor

[n1, ..., nk]→ [n1, ..., nk1]⊛ [nk1+1, ..., nk1+k2]
is an equivalence.

3.3.3. In addition, from Proposition 3.2.6 we obtain that for 1 ≤ i ≤ k and ni =
n′i + n′′i , the natural functor

(3.4)

[n1, ..., ni−1, n
′
i, ni+1, ..., nk] ⊔

[n1,...,ni−1,0,ni+1,...,nk]
[n1, ..., ni−1, n

′′
i , ni+1, ..., nk]→

→ [n1, ..., ni−1, ni, ni+1, ..., nk]
is an equivalence, where we note that

[n1, ..., ni−1,0, ni+1, ..., nk] ≃ [n1, ..., ni−1, ni+1, ..., nk].

3We do not prove it, and we were not able to find a reference.

3. LAX FUNCTORS AND THE GRAY PRODUCT 445

3.3.4. The following proposition is quoted for the sake of completeness4:

Proposition 3.3.5. The (∞,2)-categories [n1, ..., nk] are ordinary.

3.4. Squares. Our primary interest will be the (∞,2)-categories [m,n].
3.4.1. We consider first the case m = n = 1. It follows from the definitions that for
S ∈ 2 -Cat, the space

(3.5) Maps2 -Cat([1,1],S)
identifies canonically with the space of diagrams

s0,0 s0,1

s1,0 s1,1.

//

�� ��
//

{�

In other words,

Maps2 -Cat([1,1],S) ≃ (Sq∼0,2 ×Sq∼0,2) ×
Sq∼0,1 ×Sq∼0,1

Sq∼1,1,

where both maps Sq∼0,2 → Sq∼0,1 correspond to the unique active map [1]→ [2].

Remark 3.4.2. Using (3.4), for any m,n we can depict [m,n] by the diagram

● //

��

●

��y�

// ⋯ //

y�

●

��

//

y�

●

��y�● //

��

●

��y�

// ⋯ //

y�

●

��

//

y�

●

��y�⋯ //

��

⋯

��y�

// ⋯ //

y�

⋯

��

//

y�

⋯

��y�● //

��

●

��y�

// ⋯ //

y�

●

��

//

y�

●

��y�● // ● // ⋯ // ● // ●.

3.4.3. Recall the notation [m,n]∼, see Sect. 2.6.2.

Using the description of the space (3.5), we obtain that there is a canonical
identification

(3.6) [1,1] ⊔
[1]⊔[1]

(∗ ⊔ ∗) ≃ [1,1]∼,

where the two maps [1]→ [1,1] are

[1] ≃ [1,0]⇉ [1,1],
corresponding to the two maps [0]⇉ [1].

4We do not prove it, and we were not able to find a reference.

446 10. BASICS OF 2-CATEGORIES

Pictorially, [1,1]∼, which is

● ●,##;;��

is obtained from [1,1], which is

● ●

● ●,

//

�� ��
//{�

by collapsing the vertical edges.

3.4.4. We claim that

(3.7) [m,n] ⊔
[m]⊔...⊔[m]

(∗ ⊔ ⊔ ∗) ≃ [m,n]∼,

functorial in [m], [n] ∈ ∆.

Indeed, unwinding the definitions, to specify a map → in (3.7), we need to
specify a functorial assigment for each [i], [j] ∈ ∆ and a pair of maps

(3.8) [i]→ [m] × [n], [j]→ [m] × [n]
a point in Sq∼i,j([m,n]∼).

The sought-for point is obtained from the tautological point of Sq∼i,j([i, j]∼) by
composing with

([i], [j])→ ([m], [n]),
where the latter is obtained from (3.8) by projection.

3.4.5. It follows from the construction, that the map (3.7) canonically factors
through a map

(3.9) [m,n] ⊔
[m]⊔...⊔[m]

(∗ ⊔ ⊔ ∗)→ [m,n]∼,

functorial in [m], [n] ∈ ∆, where the n + 1 maps [m]→ [m,n] are given by

[m] ≃ [m,0]→ [m,n],
corresponding to the n + 1 maps [0]→ [n].

Proposition 3.4.6. The map (3.9) is an isomorphism.

Proof. Using (3.4) and (2.6), we obtain that it is sufficient to consider the
cases when m and n are equal to 0 or 1.

When m or n are equal to 0, there is nothing to prove. The case of m = n = 1
follows from the isomorphism (3.6).

�

3.4.7. Note that by applying Proposition 3.4.6 in the case n = 1, we obtain:

Corollary 3.4.8. For S ∈ 2 -Cat and s0, s1 ∈ S, there exists a canonical iso-
morphism

Funct([1],S)right-lax ×
S×S

{(s0, s1)} ≃ MapsS(s0, s1).

4. (∞,2)-CATEGORIES VIA SQUARES 447

4. (∞,2)-categories via squares

Recall that we originally realized 2 -Cat as a full subcategory in 1 -Cat∆op

via
the functor Seq●.

In this subsection, we will discuss a different realization of 2 -Cat as a full

subcategory in 1 -Cat∆op

, this time via the functor that we denote Seqext
● .

Recall that for an (∞,2)-category S, for n = 0, the (∞,1)-category Seq0(S)
recorded the space SSpc. For n = 1, (∞,1)-category Seq1(S) had as objects 1-
morphisms s0 → s1 and as morphisms 2-morphisms, i.e., diagrams

s0 s1.
##
;;

��

The idea of Seqext
● is the following. The (∞,1)-category Seqext

0 (S) will be
S1 -Cat. Now, for n = 1, the category Seqext

1 (S) will have as objects 1-morphisms
s0 → s1 as before, but as morphisms diagrams

s0 s1

s′0 s′1.

//

�� ��
//

{�

I.e., Seqext
1 (S) will be the (∞,1)-category Funct([1],S)right-lax.

4.1. The functor Sq●,●. Before introducing the functor Seqext
● , we introduce the

corresponding version, denoted Sq●,●, of the functor Sq∼●,●. It will have the advantage

of respecting more symmetries of the target category, i.e., Spc∆op×∆op

.

4.1.1. Consider the functor

Sq●,● ∶ 2 -Cat→ Spc∆op×∆op

,

defined by

S↦ ([m], [n]↦Maps2 -Cat([m,n],S)) .

4.1.2. This section is devoted to the discussion of the generalizations of the fol-
lowing fundamental result5:

Theorem 4.1.3. The functor Sq●,● is fully faithful.

4.1.4. Note from (3.9) and Proposition 3.4.6 we obtain a natural transformation

Sq∼●,● → Sq●,●,

such that for S ∈ 2 -Cat and any m,n, the corresponding map

(4.1) Sq∼●,●(S)→ Sq●,●(S)
is a full embedding.

Indeed, if we denote E●,● = Sq●,●(S), the essential image of (4.1) is the full
subspace of Em,n consisting of points, for which for every [1]→ [m] and [0]→ [n],

5We do not prove it, and we were not able to find a reference.

448 10. BASICS OF 2-CATEGORIES

the corresponding point in E1,0 is degenerate, i.e., lies in the essential image of
E0,0 → E1,0.

4.1.5. Let

E●,● ↦ (E●,●)reflect

denote the involution on Spc∆op×∆op

, corresponding to swapping the two factors of
∆op.

It follows from (3.2), that there is a canonical identification

Sq●,●(S2-op) ≃ (Sq●,●(S))reflect.

4.1.6. Let

E●,● ↦ (E●,●)vert-op and (E●,●)horiz-op

be the involutions on Spc∆op×∆op

induced by the involution rev along the first and
second copy of ∆op, respectively.

Let

E●,● ↦ (E●,●)vert&horiz-op

denote their composition.

It follows that we have a canonical identification

Sq●,●(S1&2-op) ≃ (Sq●,●(S))vert&horiz-op.

4.1.7. For m = 0, we have a canonical identification

Sq0,n(S) ≃ Maps2 -Cat([n],S) ≃ (Seqn(S))Spc,

and similarly for n = 0, we have

Sqm,0(S) ≃ Maps2 -Cat([m],S) ≃ (Seqm(S))Spc,

Note that (3.4) implies that for n = n1 + n2, and S ∈ 2 -Cat, the natural map

Sqm,n(S)→ Sqm,n1
(S) ×

Sqm,0(S)
Sqm,n2

(S)

is an isomorphism and for m =m1 +m2, the natural map

(4.2) Sqm,n(S)→ Sqm1,n(S) ×
Sq0,n(S)

Sqm2,n(S)

is an isomorphism.

4.2. The functor Seqext
● .

4. (∞,2)-CATEGORIES VIA SQUARES 449

4.2.1. The isomorphism (4.2) implies that for a fixed n, the functor

2 -Cat→ Spc∆op

, S↦ Sq●,n(S)
lands in the subcategory of Segal spaces. Moreover, it is easy to see that it actually
lands in the full subcategory of complete Segal spaces.

Hence, we obtain a well-defined functor, to be denoted Seqext
●

2 -Cat→ 1 -Cat∆op

so that
Sq●,● = (Seq●)∆op

○ Seqext
● .

In fact, by definition,

Seqext
● (S) ≃ Funct([●],S)right-lax.

4.2.2. From Theorem 4.1.3, combined with Theorem 1.3.4 we obtain:

Corollary 4.2.3. The functor Seqext
● is fully faithful.

4.2.4. Note that the functor Seqext
● is different from the functor Seq●. For example,

Seqext
0 (S) ≃ S1 -Cat,

whereas
Seq0(S) = SSpc.

Note that we have a natural transformation between the functors

Seq● → Seqext
● ,

and for every S ∈ 2 -Cat and n ∈ ∆, we have a replete embedding

Seqn(S)↪ Seqext
n (S).

Indeed,

Seqn(S) = Seqext
n (S) ×

S1 -Cat×...×S1 -Cat
(SSpc × ... × SSpc).

4.3. The category of pairs. As we have seen above, to S ∈ 2 -Cat, and m,n we
can assign two spaces

Sq∼m,n ⊂ Sqm,n .

In this subsection, we will see that one can produce an entire array of inter-
mediate spaces, one for each 1-full subcategory C ∈ S1 -Cat with the same space of
objects.

4.3.1. Let 2 -CatPair be the following (∞,1)-category. Its objects are pairs (S,C),
where S ∈ 2 -Cat, and C is a 1-full subcategory in S1 -Cat such that CSpc = SSpc.

For a pair of objects (S1,C1) and (S2,C2), the space of morphisms between
them consists of functors F ∶ S1 → S2, such that the induced functor C1 → S2

factors (automatically uniquely) via C2.

The ∞-categorical structure on 2 -CatPair is uniquely determined by the re-
quirement that the forgetful functor

OblvSubcat ∶ 2 -CatPair → 2 -Cat, (S,C)↦ S
should be 1-fully faithful.

450 10. BASICS OF 2-CATEGORIES

4.3.2. The above functor OblvSubcat admits a left and a right adjoints, given by

S↦ (S,SSpc) and and S↦ (S,S1 -Cat),
respectively.

4.3.3. We define the functor

SqPair
●,● ∶ 2 -CatPair → Spc∆op×∆op

as follows.

For (S,C) ∈ Pair we let SqPair
m,n(S,C) be the full subspace of Sqm,n(S), consisting

of points such that for every [1]→ [m] and [0]→ [n], the resulting point of

Sq1,0(S) ≃ (Seq1(S))Spc

belongs to

Seq1(C) ⊂ (Seq1(S))Spc.

The sought-for functor

SqPair
●,● (S,C) ∶ ∆op ×∆op → Spc

is uniquely determined by the requirement that the embeddings

SqPair
m,n(S,C)↪ Sqm,n(S)

upgrade to a natural transformation

SqPair
●,● (S,C)→ Sq●,● ○OblvSubcat .

Note that we have

SqPair
●,● (S,S1 -Cat) ≃ Sq●,●(S) and SqPair

●,● (S,SSpc) ≃ Sq∼●,●(S).

4.3.4. We have the following generalization of Theorem 4.1.36:

Theorem 4.3.5. The functor SqPair
●,● is fully faithful.

4.3.6. Note that for a given (S,C) ∈ 2 -CatPair, we have

SqPair
0,● (S,C) ≃ Sq0,●(S) ≃ Seq●(S1 -Cat),

while

SqPair
●,0 (S,C) ≃ Seq●(C).

In addition, for n = n1 + n2, the natural map

SqPair
m,n(S,C)→ SqPair

m,n1
(S,C) ×

SqPair
m,0 (S,C)

SqPair
m,n2

(S,C)

is an isomorphism and for m =m1 +m2, the natural map

(4.3) SqPair
m,n(S,C)→ SqPair

m1,n(S,C) ×
SqPair

0,n (S,C)
SqPair

m2,n(S,C)

is an isomorphism.

6We do not prove it, and we were not able to find a reference.

4. (∞,2)-CATEGORIES VIA SQUARES 451

4.3.7. As in Sect. 4.2.1, we obtain that there exists a well-defined functor

SeqPair
● ∶ 2 -CatPair → 1 -Cat∆op

so that
SqPair

●,● = (Seq●)∆op

○ SeqPair
● .

From Theorem 4.3.5, combined with Theorem 1.3.4, we obtain:

Corollary 4.3.8. The functor SeqPair
● is fully faithful.

4.4. Left adjoint functors.
4.4.1. By construction, the functor Seqext

● commutes with limits. Hence, by the
Adjoint Functor Theorem, it admits a left adjoint, to be denoted Lext.

Similarly, the functor

Seq● ∶ 2 -Cat→ 1 -Cat∆op

admits a left adjoint, to be denoted L.

It is clear that when we restrict L to the full subcategory Spc∆op

⊂ 1 -Cat∆op

,
the resulting functor lands in 1 -Cat ⊂ 2 -Cat, thereby providing the left adjoint to
the functor

Seq● ∶ 1 -Cat→ Spc∆op

.

4.4.2. We have the natural transformations of functors 2 -CatPair → 1 -Cat∆op

Seq● ○OblvSubcat→ SeqPair
● → Seqext

● ○OblvSubcat .

Composing with Lext and the co-unit of the adjunction, we obtain the natural
transformations

Lext○Seq● ○OblvSubcat→ Lext○SeqPair
● → Lext○Seqext

● ○OblvSubcat→ OblvSubcat,

where the last arrow is an isomorphism by Corollary 4.2.3.

We claim:

Proposition 4.4.3. The natural transformations

Lext○Seq● ○OblvSubcat→ Lext○SeqPair
● → Lext○Seqext

● ○OblvSubcat→ OblvSubcat

are isomorphisms.

Proof. By adjunction, we need to show that for (S,C) ∈ 2 -CatPair and T ∈
2 -Cat, the natural map

Maps2 -Cat(Seqext
● (S),Seqext

● (T))→Maps2 -Cat(SeqPair
● (S,C),Seqext

● (T)),
given by the inclusion SeqPair

● (S,C)↪ Seqext
● (S), is an isomorphism.

Note, however, that the above map fits into a commutative diagram

Maps2 -Cat(Seqext
● (S),Seqext

● (T)) ÐÐÐÐ→ Maps2 -Cat(SeqPair
● (S,C),Seqext

● (T))
Õ×××

Õ×××
Maps2 -CatPair((S,S1 -Cat), (T,T1 -Cat)) ÐÐÐÐ→ Maps2 -CatPair((S,C), (T,T1 -Cat)),
where the vertical arrows are isomorphisms by Corollary 4.3.8. Now, the bottom
horizontal arrow is an isomorphism, since the functor

T↦ (T,T1 -Cat), 2 -Cat→ 2 -CatPair

452 10. BASICS OF 2-CATEGORIES

is the right adjoint to OblvSubcat.
�

4.4.4. Let
LSq ∶ Spc∆op×∆op

→ 2 -Cat,

denote the left adjoint of the functor Sq●,●. Tautologically, we have:

LSq = Lext ○L∆op

.

From Proposition 4.4.3 we obtain:

Corollary 4.4.5. The natural transformations

LSq ○ Sq∼●,● ○OblvSubcat→ LSq ○ SqPair
●,● → LSq ○ Sq●,● ○OblvSubcat→ OblvSubcat

are isomorphisms.

4.5. The Gray product via Squares.
4.5.1. Let S and T be a pair of (∞,2)-categories. Consider the following object of

Spc∆op×∆op

(4.4) (Sq∼●,●(S2 -op))reflect × Sq∼●,●(T).
I.e., its space of m,n-simplices is

Sq∼n,m(S2 -op) × Sq∼m,n(T).

We claim that we have a canonically defined map

(4.5) LSq ((Sq∼●,●(S2 -op))reflect × Sq∼●,●(T))→ S⊛T,
functorial in S and T.

4.5.2. Indeed, the datum of a map (4.5) is equivalent to that of a map in Spc∆op×∆op

(4.6) (Sq∼●,●(S2 -op))reflect × Sq∼●,●(T)→ Sq●,●(S⊛T).
The datum of the map (4.6) (when we require functoriality in S and T) is

equivalent to that of a map of bi-cosimplicial objects in 2 -Cat

(4.7) [m,n]→ ([n,m]∼)2 -op ⊛ [m,n]∼.
The functors (4.7) are constructed as follows. Consider the composition of

(right-lax) functors

(4.8) [m] × [n] diagÐ→ [m] × [n] × [m] × [n]⇢ [m]⊛ [n]⊛ [m]⊛ [n]→
→ ([m]⊛ [n])⊛ ([m]⊛ [n]) ≃ ([n]2 -op ⊛ [m]2 -op)2 -op ⊛ ([m]⊛ [n]) ≃

≃ ([n]⊛ [m])2 -op ⊛ ([m]⊛ [n]) = ([n,m])2 -op ⊛ [m,n]→ ([n,m]∼)2 -op ⊛ [m,n]∼

Now, unwinding the construction, one checks that the composite map in (4.8)
indeed gives rise to a map (4.7) (the corresponding 2-morphisms are isomorphisms).

4.5.3. We have the following result7:

Proposition 4.5.4. The map (4.5) is an equivalence.

4.6. Cubes.

7We do not prove it, and we were not able to find a reference.

5. ESSENTIAL IMAGE OF THE FUNCTOR Sq●,● 453

4.6.1. Let k be an integer ≥ 1. The assignment

(n1, ..., nk)↦ [n1, ..., nk]

gives a functor

∆×k → 2 -Cat .

Hence, we obtain a well-defined functor

Cu ∶ 2 -Cat→ Spc(∆
op)×k

that sends S to

(n1, ..., nk)↦Maps2 -Cat([n1, ..., nk],S).

4.6.2. We have the following generalization of Theorem 4.1.38:

Theorem 4.6.3. For any k ≥ 2, the corresponding functor Cu is fully faithful.

5. Essential image of the functor Sq●,●

The goal of this section is to describe the essential image of the functors Sq●,●
and SqPair

●,● .

5.1. Invertible angles.

5.1.1. Let E●,● be an object of Spc∆op×∆op

. We shall say that E●,● is a double

category if for every n, the objects E●,n and En,● of Spc∆op

are complete Segal
spaces.

5.1.2. Let E●,● be a double category. Let (E1,1)Γ ⊂ E1,1 be the full subspace
consisting of squares in which the right vertical side and the bottom horizontal side
are degenerate. I.e., these are diagrams

(5.1)

x
αÐÐÐÐ→ y

β
×××Ö

×××Ö
id

y
idÐÐÐÐ→ y.

Let (E1,1)

Γ

⊂ E1,1 be the full subspace consisting of squares in which the left
vertical side and the top horizontal side are degenerate. I.e., these are diagrams

x
idÐÐÐÐ→ x

id
×××Ö

×××Ö
β

x
αÐÐÐÐ→ y.

8We do not prove it, and we were not able to find a reference.

454 10. BASICS OF 2-CATEGORIES

5.1.3. We define the full subspace

(E1,1)Γ,invert ⊂ (E1,1)Γ

of invertible angles as follows. A point (5.1) is invertible if the following two con-
ditions hold:

(I) There exists a point in E2,1

(5.2)

x
idÐÐÐÐ→ x

id
×××Ö

×××Ö
β′

x
αÐÐÐÐ→ y

β
×××Ö

×××Ö
id

y
idÐÐÐÐ→ y,

in which the lower square is the original (5.1), the top square is in (E1,1)

Γ

, and the
outer square is degenerate (i.e., pulled back via [1] × [1]→ [1] × [0]).
(II) There exists a point in E1,2

(5.3)

x
idÐÐÐÐ→ x

αÐÐÐÐ→ y

id
×××Ö

β
×××Ö

×××Ö
id

x
α′ÐÐÐÐ→ y

idÐÐÐÐ→ y,

in which the right square is the original (5.1), the left square is in (E1,1)

Γ

, and the
outer square is degenerate (i.e., pulled back via [1] × [1]→ [0] × [1]).
5.1.4. The following is an elementary check:

Lemma 5.1.5. The restriction maps

(E1,1)Γ,invert → E1,0 and (E1,1)Γ,invert → E0,1,

given by taking (5.1) to its left vertical side and its top horizontal side, are monomor-
phisms.

5.2. Description of the essential image. Let (S,C) be an object of 2 -CatPair,

and consider a point β ∈ SqPair
1,0 (S,C). This point represents an 1-morphism in C,

and the same point can be represented by an element in α ∈ SqPair
0,1 (S,C), completing

β to a point (5.1) in (SqPair
1,1 (S,C))Γ,invert.

It turns out that the property that one can complete a point in SqPair
1,0 (S,C)

to a point in (SqPair
1,1 (S,C))Γ,invert characterizes the essential image of 2 -CatPair in

Spc∆op×∆op

.

5.2.1. Let E●,● be again a double category. We shall say that E●,● is anti-clockwise
reversible if the map

(E1,1)Γ,invert → E1,0

from Lemma 5.1.5 is an isomorphism.

We shall say that E●,● is reversible if both maps in Lemma 5.1.5 are isomor-
phisms.

5. ESSENTIAL IMAGE OF THE FUNCTOR Sq●,● 455

5.2.2. We now give the following sharpening of Theorems 4.1.3 and 4.3.59:

Theorem 5.2.3.

(a) The essential image of the functor

Sq●,● ∶ 2 -Cat→ Spc∆op×∆op

is the full subcategory consisting of reversible double categories.

(b) The essential image of the functor

SqPair
●,● ∶ 2 -CatPair → Spc∆op×∆op

is the full subcategory consisting of anti-clockwise reversible double categories.

5.3. The (∞,2)-category 1 -Cat via squares. In Sect. 2.4 we introduced the
(∞,2)-category 1 -Cat. In this subsection we will describe its essential image under
the functor Seqext

● .

5.3.1. Consider the following object, denoted Seqext
● (1 -Cat) of 1 -Cat∆op

. Namely,

Seqext
n (1 -Cat) ∶= Cart/[n]op .

Note the difference between Seqext
n (1 -Cat) and Seqn(1 -Cat): the two have

the same objects, while the latter has fewer morphisms.

5.3.2. We claim:

Proposition 5.3.3.

(a) The object Seqext
● (1 -Cat) lies in the essential image of the functor

Seqext ∶ 2 -Cat→ 1 -Cat∆op

.

(b) The resulting object of 2 -Cat identifies canonically with 1 -Cat.

Proof. First, it is clear that simplicial category Seq●(1 -Cat) is obtained from
Seqext

● (1 -Cat) by the procedure of Sect. 4.2.4.

The fact that the simplicial category Seqext
● (1 -Cat) satisfies the Segal condi-

tion follows in the same way as in the case of Seq●(1 -Cat).
Consider the bi-simplicial space

Sq●,●(1 -Cat) ∶= Seq●(Seqext
● (1 -Cat)).

It is easy to see that it is a complete Segal space along each row and column, so it
is a double category.

By Theorem 5.2.3(a), in order to prove the proposition, we need to show that
Sq●,●(1 -Cat) is reversible.

For every n, consider the 1-full subcategory

Funct([n],1 -Cat) ≃ (Cart/[n]op)strict ⊂ Cart/[n]op ,

and the corresponding full bi-simplicial subspace

Seq●((Cart/[●]op)strict) =∶ Sq′●,●(1 -Cat) ⊂ Sq●,●(1 -Cat).
Note that

Sq′m,n(1 -Cat) ⊂ Sqm,n(1 -Cat)

9We do not prove it, and we were not able to find a reference.

456 10. BASICS OF 2-CATEGORIES

is an isomorphism when either m or n equals 0. Hence, its is enough to show that
Sq′●,●(1 -Cat) is reversible.

However, by construction, Sq′●,●(1 -Cat) identifies with Sq●,●(1 -Cat), where
1 -Cat ∈ 1 -Cat is regarded as an (∞,2)-category. In particular, it is reversible.

�

6. The (∞,2)-category of (∞,2)-categories

In this section we upgrade the structure of (∞,1)-category on the totality of
(∞,2)-categories to a structure of (∞,2)-category. I.e., we will define an (∞,2)-
category 2 -Cat equipped with an identification

(2 -Cat)1 -Cat ≃ 2 -Cat .

We will show that for S,T ∈ 2 -Cat, the (∞,1)-category Maps2 -Cat(S,T)
is canonically equivalent to (Funct(S,T))1 -Cat, where Funct(S,T) is the (∞,2)-
category of functors defined in Sect. 2.5.4.

We will also show that the (∞,2)-category 1 -Cat sits inside 2 -Cat as a full
subcategory.

Note, however, that the structure of (∞,2)-category on the totality of (∞,2)-
categories is not the end of the story: the latter must in fact form an (∞,3)-category.
However, we will not pursue this here.

6.1. The Seqext
● model for 2 -Cat.

6.1.1. We introduce the (∞,2)-category 2 -Cat to be the full subcategory in

Funct(∆op,1 -Cat),

whose objects are functors ∆op → 1 -Cat such that, when regarded as functor
∆op → 1 -Cat, they belong to

2 -Cat
Seqext

●↪ Funct(∆op,1 -Cat).

I.e., we take the (∞,1)-category 2 -Cat realized as a full subcategory of Funct(∆op,1 -Cat)
via the functor Seqext

● and extend it to an (∞,2)-category by addinng non-invertible
2-morphisms to be those given by extending the target (∞,1)-category 1 -Cat to
the (∞,2)-category 1 -Cat.

By construction, we have

(2 -Cat)1 -Cat ≃ 2 -Cat .

Remark 6.1.2. Note that in giving the above definition, it is important that
we are dealing with the functor Seqext

● , rather than Seq●.

6. THE (∞,2)-CATEGORY OF (∞,2)-CATEGORIES 457

6.1.3. By unwinding the definition, we obtain the following description of the
functor

Seqext
● (2 -Cat) ∶ ∆op → 1 -Cat .

Namely, Seqext
n (2 -Cat) is the full subcategory in

(Funct([n],Funct(∆op,1 -Cat))
right-lax

)
1 -Cat

⊂

⊂ (Funct(∆op,Funct([n],1 -Cat)right-lax))
1 -Cat

≃

≃ Funct(∆op, (Funct([n],1 -Cat)right-lax)
1 -Cat

) = Funct(∆op,Cart/[n]op),

consisting of objects E● that satisfy the following:

● As an object of (Funct(∆op,Cart/[n]op))Spc, we require that E● belong to

Maps1 -Cat(∆op × [n],1 -Cat) ≃ Maps1 -Cat(∆op,Funct([n],1 -Cat)) ≃
≃ Maps1 -Cat(∆op, (Cart/[n]op)strict) ⊂

⊂ Maps1 -Cat(∆op,Cart/[n]op) = (Funct(∆op,Cart/[n]op))Spc;

● For every i ∈ [n], we require that the resulting object E●,i ∈ Funct(∆op,1 -Cat)
lie in the essential image of the functor

Seqext
● ∶ 2 -Cat→ Funct(∆op,1 -Cat) = 1 -Cat∆op

.

6.2. Identifying the categories of maps. Let S and T be two objects of 2 -Cat.
The first test on whether the above definition of 2 -Cat is reasonable, is whether
or not the (∞,1)-category Maps2 -Cat(S,T) indeed recovers the (∞,1)-category
(Funct(S,T))1 -Cat of functors from S to T, defined in Sect. 2.5.4.

6.2.1. We claim:

Proposition-Construction 6.2.2. For S,T ∈ 2 -Cat, the (∞,1)-category
Maps2 -Cat(S,T) identifies canonically with

(Funct(S,T))1 -Cat.

The rest of this subsection is devoted to the proof of this proposition.

6.2.3. Unwinding the definition of Maps2 -Cat(S,T), and using Chapter 1, Sect.
1.4.5, we obtain that for I ∈ 1 -Cat, we have a canonical isomorphism

Maps1 -Cat(I,Maps2 -Cat(S,T)) ≃ MapsFunct(∆op,1 -Cat)(I × Seqext
● (S),Seqext

● (T)),

functorial in I.

Thus, in order to prove the proposition, we need to construct an identification

(6.1) Maps2 -Cat(I × S,T) ≃ MapsFunct(∆op,1 -Cat)(I × Seqext
● (S),Seqext

● (T)).

functorial in I.

458 10. BASICS OF 2-CATEGORIES

6.2.4. Recall the (∞,2)-category Funct(I,T)left-lax, defined so that

Maps(S′,Funct(I,T)left-lax) ∶= Maps(I⊛ S′,T).
Note that for every n we have a canonical fully faithful embedding

Maps(I,Seqext
n (T))↪ Seqext

n (Funct(I,T)left-lax).
Indeed, for every m we have

Seqm(Maps(I,Seqext
n (T))) = Maps(I × [m],Seqext

n (T)) ≃ Maps((I × [m])⊛ [n],T),
while

Seqm(Seqext
n (Funct(I,T)left-lax)) =

= Maps([m]⊛ [n],Funct(I,T)left-lax) = Maps(I⊛ ([m]⊛ [n]),T),
and the embedding in question comes from the projection

I⊛ ([m]⊛ [n]) ≃ I⊛ [m]⊛ [n] ≃ (I⊛ [m])⊛ [n]→ (I × [m])⊛ [n].

6.2.5. Thus, we obtain that the right-hand side in (6.1), interpreted as

MapsFunct(∆op,1 -Cat)(Seqext
● (S),Maps(I,Seqext

● (T))),
admits a fully faithful embedding into

MapsFunct(∆op,1 -Cat)(Seqext
● (S),Seqext

● (Funct(I,T)left-lax)) ≃
≃ Maps(S,Funct(I,T)left-lax) = Maps(I⊛ S,T).

Furthermore, it is easy to see that the essential image of the right-hand side in
(6.1) in Maps(I⊛ S,T) equals that of the fully faithful embedding

(6.2) Maps(I × S,T)↪Maps(I⊛ S,T),
thereby giving rise to the sought-for isomorphism (6.1).

6.3. Another interpretation for 1 -Cat. We will now show that 1 -Cat, as
defined in Sect. 2.4, embeds fully faithfully into 2 -Cat.

6.3.1. Let us (temporarily) denote by

1 -Cat′ ⊂ 2 -Cat

the full subcategory, defined so that (1 -Cat′)Spc, viewed as a subspace of (2 -Cat)Spc,
equals

(1 -Cat)Spc ⊂ (2 -Cat)Spc ≃ (2 -Cat)Spc.

We are going to prove:

Proposition-Construction 6.3.2. There is a canonical equivalence of (∞,2)-
categories

1 -Cat ≃ 1 -Cat′,

extending the identification

(1 -Cat)1 -Cat ≃ 1 -Cat ≃ (1 -Cat′)1 -Cat.

The rest of this subsection is devoted to the proof of this proposition.

6. THE (∞,2)-CATEGORY OF (∞,2)-CATEGORIES 459

6.3.3. We construct the functor 1 -Cat→ 1 -Cat′ in the guise of a map of simpli-
cial categories:

(6.3) Seqext
● (1 -Cat)→ Seqext

● (1 -Cat′).
We recall that

Seqext
n (1 -Cat) = Cart/[n]op

and

Seqext
n (1 -Cat′) ⊂ Funct(∆op,Cart/[n]op) ⊂ Funct(∆op,1 -Cat/[n]op).

The sought-for functor in (6.3) is given by

Cart/[n]op → Funct(∆op,1 -Cat/[n]op), (E→ [n])↦

([m]↦ Funct([m],E) ×
Funct([m],[n]op)

[n]op) ,

where [n]op → Funct([m], [n]op) is given by

[n]op = Funct({∗}, [n]op)→ Funct([m], [n]op).
It is easy to see that the image of the above map indeed lands in Seqext

n (1 -Cat′).
6.3.4. It follows from the construction that the resulting functor 1 -Cat→ 1 -Cat′

makes the diagram

(1 -Cat)1 -Cat ÐÐÐÐ→ (1 -Cat′)1 -Cat

∼
Õ×××

Õ×××
∼

1 -Cat
IdÐÐÐÐ→ 1 -Cat

commute.

Hence, it remains to show that it is fully faithful. However, it follows from the
construction that for S,T ∈ 1 -Cat, the diagram

Maps1 -Cat(S,T) ÐÐÐÐ→ Maps1 -Cat′(S,T)

Corollary 2.4.4
Õ×××
∼ ∼

Õ×××
Proposition 6.2.2

Funct(S,T) IdÐÐÐÐ→ Funct(S,T)
commutes, establishing the required fully-faithfulness.

CHAPTER 11

Straightening and Yoneda for (∞,2)-categories

Introduction

0.1. What is done in this Chapter? The goal of this Chapter is to construct
the 2-categorical Yoneda embedding

(0.1) YonS ∶ S↪ Funct(S1 -op,1 -Cat), S ∈ 2 -Cat,

which will, in turn, be needed for the proof of the Adjunction Theorem in Chapter
12.

As in the case of (∞,1)-categories, in the present 2-categorical context, a
natural approach to the construction of the functor YonS is via the straighten-
ing/unstraightening procedure.

The latter is an equivalence between the (∞,2)-category of functors S1 -op →
1 -Cat and the (∞,2)-category of 1-Cartesian fibrations over S.

0.1.1. Let us comment on the notion of 1-Cartesian fibration over a given S ∈
2 -Cat.

The space of such will be a full subspace in (2 -Cat/S)Spc, and it is singled
out by certain explicit conditions; the actual definition is given in Sect. 1.2.1. The
definition is rigged so that the datum of a 1-Cartesian fibration over S is equivalent
to that of a functor S1 -op → 1 -Cat.

As to the 2-categorical structure, there are actually two natural (∞,2)-categories

(1 -Cart/S)strict ⊂ (1 -Cart/S)2 -strict,

one being a 1-full subcategory in the other.

In Sect. 1 we state the sub-main result of this Chapter, Corollary 1.2.6, that
says that there is a canonical ‘straightening/unstraightening’ equivalence

(0.2) (1 -Cart/S)2 -strict ≃ Funct(S1 -op,1 -Cat)right-lax,

which induces an equivalence

(1 -Cart/S)strict ≃ Funct(S1 -op,1 -Cat).

0.1.2. Here is, however, a catch: the above straightening/unstraightening assertion
(i.e., the equivalence (0.2)) is too weak to be amenable to a natural proof.

Namely, the equivalence (0.2) does not contain enough functoriality (the me-
chanics of how this happens can be seen by tracing through the proof of the main
theorem of this Chapter, Theorem 1.1.8; see also Sect. 0.1.5 below).

461

462 11. STRAIGHTENING AND YONEDA FOR (∞,2)-CATEGORIES

0.1.3. To remedy this, we engage a more ambitious straightening/unstraightening
procedure.

Namely, in Sect. 1 we introduce the notion of 2-Cartesian fibration (over a given
(∞,2)-category S). Again, the space of such is a full subspace of (2 -Cat/S)Spc,
and it is singled out by certain explicit conditions specified in Sect. 1.1.1.

As in the case of 1-Cartesian fibrations, there two natural (∞,2)-categories

(2 -Cart/S)strict ⊂ (2 -Cart/S)2 -strict,

one being a 1-full subcategory in the other.

The 2-categorical straightening/unstraightening assertion, Theorem 1.1.8, which
is the main result of this Chapter, says that there exists a canonical equivalence

(0.3) (2 -Cart/S)2 -strict ≃ Funct(S1 -op,2 -Cat)right-lax,

which induces an equivalence

(2 -Cart/S)strict ≃ Funct(S1 -op,2 -Cat).

0.1.4. The proof of Theorem 1.1.8 is spread over Sects. 2-4. Let us indicate its
main steps.

In Sect. 2 we establish the particular case of the isomorphism (0.3), when S
is the interval [n]. This is done by a combinatorial procedure, which essentially
amounts to unwinding the definitions.

In Sect. 3 we realize 2-Cartesian fibrations over the Gray product S1⊛S2 as an
explicit full subspace in 2 -Cat/S1×S2 .

In Sect. 4 we use the results of the previous two sections to establish the iso-
morphism (0.3) at the level of spaces underlying the (∞,2)-categories on both sides,
in the case when S = [m]⊛ [n].

Using Chapter 10, Theorems 4.1.3 and 5.2.3 we deduce from this that the
isomorphism (0.3) holds at the level of spaces for any S ∈ 2 -Cat.

0.1.5. So, far, the same strategy would have worked if we worked with 1-Cartesian
fibrations and 1 -Cat instead of 2 -Cat as a target.

However, now, in the 2-Cartesian context, we observe that the statement that
we are trying to prove has enough functoriality, that it allows to formally deduce
the equivalence (0.3) from just knowing it at the level of the underlying spaces.

0.2. What else is done in this Chapter?
0.2.1. As was mentioned before, our actual goal is to construct the Yoneda em-
bedding (0.1) (and prove its fully faithfulness).

Having proved the 2-categorical straightening theorem in the earlier sections,
the construction of the Yoneda embedding and the proof of its properties is carried
out in Sect. 5.

1. STRAIGHTENING FOR (∞,2)-CATEGORIES 463

0.2.2. In addition, this Chapter contains two sections in the Appendix.

In Sect. A, given S ∈ 2 -Cat, we give an explicit description of the universal
non-unital right-lax functor out of S:

S ιS⇢ RLaxnon-untl(S),
so that any non-unital right-lax functor F ∶ S⇢ T is obtained as

F̃ ○ ιS,
for a canonically defined strict functor F̃ ∶ RLaxnon-untl(S)→ T.

The explicit description of RLaxnon-untl(S) is used in Sect. 3.

0.2.3. In Sect. B we discuss the condition on a functor S → T between (∞,2)-
categories to be a localization on 1-morphisms. Informally, this means that T is
obtained from S by inverting certain 2-morphisms.

This notion is used in the description of 2-Cartesian fibrations over Gray prod-
ucts, also in Sect. 3.

1. Straightening for (∞,2)-categories

In this section we define the notion of a 2-Cartesian fibration of (∞,2)-categories
and formulate the main result in this Chapter: this is the straightening theorem
that says that 2-Cartesian fibrations over a given (∞,2)-category S are equivalent
to functors S1 -op → 2 -Cat.

1.1. The notion of 2-Cartesian fibration. In this subsection we will introduce
the notion of 2-Cartesian fibration between (∞,2)-categories.

When defining it, one should basically ‘follow one’s nose’, keeping in mind that
a 2-Cartesian fibration over S should be the same as a functor S1 -op → 2 -Cat, while
adapting the definition of Cartesian fibration in the context of (∞,1)-categories.

1.1.1. Let F ∶ T → S be a functor between (∞,2)-categories. We shall say that a

1-morphism t0
α→ t1 is 2-Cartesian over S if for every t ∈ T, the functor

MapsT(t, t0)→MapsT(t, t1) ×
MapsS(F (t),F (t1))

MapsS(F (t), F (t0)),

given by composition with α, is an equivalence of (∞,1)-categories.

Definition 1.1.2. We shall say that F is a 2-Cartesian fibration if the following
conditions hold:

(1) For every t ∈ T and a 1-morphism s′
β→ F (t) there exists a 2-Cartesian

1-morphism t′
α→ t with F (α) ≃ β.

(2) For every t′, t ∈ T, the functor

Maps(t′, t)→Maps(F (t′), F (t))
is a coCartesian fibration (of (∞,1)-categories), and for any t̃′ → t′ and
t→ t̃, the corresponding functors

Maps(t′, t)→Maps(t̃′, t) and Maps(t′, t)→Maps(t′, t̃),
given by composition, send arrows that are coCartesian over Maps(F (t′), F (t))
to arrows that are coCartesian over Maps(F (t̃′), F (t)) and Maps(F (t′), F (t̃)),
respectivelly.

464 11. STRAIGHTENING AND YONEDA FOR (∞,2)-CATEGORIES

1.1.3. Let us assume that condition (1) above holds, and let us write down the
second condition in more explicit terms.

Let αS ∶ s′ → s be a 1-morphism in S, and let t be an object of T that lies over
s. Then condition (1) implies that there exists a canonically defined object t′ ∈ T
that lies over s′ and a 1 -morphism

αT ∶ t′ → t

that covers αS.

Suppose now that we are given a pair of 1-morphisms

α1
S, α

2
S ∶ s′ ⇉ s

and a 2-morphism α1
S

φSÐ→ α2
S. Then the second condition says that there exists a

1-morphism
β ∶ t1′ → t2′

and a 2-morphism

α1
T

φTÐ→ α2
T ○ β,

with the following property: for any t̃′ in the fiber of T over s′, and a pair of
morphisms

γ1 ∶ t̃′ → t1′ and γ2 ∶ t̃′ → t2′,

composition with φT defines an isomorphism from the space of 2-morphisms

β ○ γ1 → γ2

to the space of 2-morphisms
α1
T ○ γ1 → α2

T ○ γ2

covering φS.

Furthermore, the formation of β is compatible in the natural sense with com-
positions

(α1
S, α

2
S)↦ (α̃S ○ α1

S, α̃S ○ α2
S), α̃S ∶ s→ s̃

and
(α1

S, α
2
S)↦ (α1

S ○ α̃′S, α2
S ○ α̃′S), α̃′S ∶ s̃′ → s′.

1.1.4. Let 2 -Cart/S ⊂ 2 -Cat/S denote the full subcategory spanned by 2-Cartesian
fibrations.

Let (2 -Cart/S)1-strict ⊂ 2 -Cart/S be the 1-full subcategory, where we allow as
1-morphisms those functors T1 → T2 over S that send 1-morphisms in T1 that are
2-Cartesian over S to 1-morphisms in T2 that are 2-Cartesian over S.

1.1.5. Let (2 -Cart/S)2-strict ⊂ 2 -Cart/S be the 1-full subcategory, where we im-
pose the following condition on 1-morphisms:

Given F1 ∶ T1 → S and F2 ∶ T2 → S, we consider those functors G ∶ T1 → T2 over
S such that the corresponding functors

MapsT1
(t′1, t)→MapsT2

(G(t′1),G(t))
send arrows that are coCartesian over MapsS(F1(t′1), F1(t)) to arrows that are
coCartesian over

MapsS(F2 ○G(t′1), F2 ○G(t)) ≃ MapsS(F1(t′1), F1(t)).

1. STRAIGHTENING FOR (∞,2)-CATEGORIES 465

1.1.6. Let (2 -Cart/S)strict ⊂ 2 -Cart/S be the 1-full subcategory equal to

(2 -Cart/S)1-strict ∩ (2 -Cart/S)2-strict.

Denote also

2-Cart/S ∶= (2 -Cart/S)1 -Cat, (2-Cart/S)2-strict ∶= ((2 -Cart/S)2-strict)1 -Cat

and
(2-Cart/S)strict ∶= ((2 -Cart/S)strict)1 -Cat.

1.1.7. Our goal in the next few sections will be to prove:

Theorem-Construction 1.1.8.

(a) There exists a canonical equivalence

(2 -Cart/S)2 -strict ≃ Funct(S1 -op,2 -Cat)right-lax,

functorial in S.

(b) Under the equivalence of point (a), the 1-full subcategories

(2 -Cart/S)strict ⊂ (2 -Cart/S)2 -strict and Funct(S1 -op,2 -Cat) ⊂ Funct(S1 -op,2 -Cat)right-lax

correspond to one another.

1.2. The notion of 1-Cartesian fibration. According to Theorem 1.1.8, 2-
Cartesian fibrations over S correspond to functors S1 -op → 2 -Cat.

In this subsection we will define the notion of 1-Cartesian fibration. Those will
form a full subcategory among 2-Cartesian fibrations, and they will correspond to
functors S1 -op → 1 -Cat.

1.2.1. Let F ∶ T→ S be a functor between (∞,2)-categories.

Definition 1.2.2. We shall say that F is a 1-Cartesian fibration if the following
conditions hold:

(1) The induced functor

T1 -Cat → S1 -Cat

is a Cartesian fibration;

(2) For every t′, t ∈ T, the functor

MapsT(t′, t)→MapsS(F (t′), F (t))
is a coCartesian fibration in spaces.

If F ∶ T → S is a 1-Cartesian fibration, we will say that a 1-morphism in T is
Cartesian if the corresponding morphism in T1 -Cat is Cartesian over S1 -Cat.

1.2.3. Let 1 -Cart/S denote the full subcategory of 2 -Cat/S formed by 1-Cartesian
fibrations.

We let (1 -Cart/S)strict be the 1-full subcategory of 1 -Cart/S, where we restrict

morphisms to those functors T1 → T2 over S, such that send arrows in (T1)1 -Cat

Cartesian over S1 -Cat to arrows in (T2)1 -Cat with the same property.

Denote also

1-Cart/S ∶= (1 -Cart/S)1 -Cat and (1-Cart/S)strict ∶= ((1 -Cart/S)strict)1 -Cat.

466 11. STRAIGHTENING AND YONEDA FOR (∞,2)-CATEGORIES

1.2.4. We claim:

Lemma 1.2.5.

(a) For a functor F ∶ T→ S the following conditions are equivalent:

(i) F is a 1-Cartesian fibration;

(ii) F is a 2-Cartesian fibration and the fiber of F over every s ∈ S is an (∞,1)-
category.

(b) If T→ S is a 1-Cartesian fibration, then a 1-morphism in T is 2-Cartesian over
S if and only if it is Cartesian.

Hence, combining this lemma with Theorem 1.1.8 and Chapter 10, Proposition
6.3.2, we obtain:

Corollary 1.2.6.

(a) There exists a canonical equivalence

1 -Cart/S ≃ Funct(S1 -op,1 -Cat)right-lax,

functorial in S ∈ 2 -Cat.

(b) Under the equivalence of point (a), the 1-full subcategories

(1 -Cart/S)strict ⊂ 1 -Cart/S and Funct(S1 -op,1 -Cat) ⊂ Funct(S1 -op,1 -Cat)right-lax

correspond to one another.

1.2.7. Let S = S be an (∞,1)-category. We note:

Lemma 1.2.8. A functor T → S is a 1-Cartesian fibration if and only if the
following conditions hold:

● T = T ∈ 1 -Cat;
● The resulting functor T→ S is a Cartesian fibration.

I.e., we obtain that in the above case, the notion of 1-Cartesian fibration reduces
to the usual notion of 1-Cartesian fibration on (∞,1)-categries.

It will follow from the construction that the equivalence of Corollary 1.2.6(b)
in this case, i.e.,

(1 -Cart/S)strict ≃ Funct(S1 -op,1 -Cat),
induces at the level of the underlying (∞,1)-categories, i.e.,

(Cart/S)strict and Maps(S1 -op,1 -Cat),
the equivalence of Chapter 1, Sect. 1.4.5.

Remark 1.2.9. Let us take S = S = [n]op. We obtain that in this case the
equivalence of Corollary 1.2.6(a) at the level of the underlying (∞,1)-categories
amounts to the definition of the (∞,1)-category Seqext

n (1 -Cat), see Chapter 10,
Sect. 5.3.

The idea of the proof of Theorem 1.1.8 is to give a similar interpretation of
Seqext

n (2 -Cat), namely, as 2-Cartesian fibrations over [n]op. This will be furnished
by Theorem 2.0.1.

The rest of the proof of Theorem 1.1.8 will amount to bootstrapping the state-
ment for any S ∈ 2 -Cat from the case S = [n]op, and lifting the 1-categorical equiv-
alence to a 2-categorical one.

2. STRAIGHTENING OVER INTERVALS 467

1.3. Variants. In this subsection we will introduce the companion notions of 2-
coCartesian and 1-coCartesian fibrations over an (∞,2)-category.

1.3.1. We shall say that a functor between (∞,2)-categories T→ S is 2-coCartesian
(resp., 1-coCartesian) fibration if the corresponding functor T1&2-op → S1&2-op is a
2-Cartesian (resp., 1-Cartesian) fibration.

Similarly, we introduce the 1-full subcategories

(2 -coCart/S)strict ⊂ (2 -coCart/S)2-strict ⊂ 2 -coCart/S ⊂ 2 -Cat/S

and

(1 -coCart/S)strict ⊂ (1 -coCart/S)2-strict ⊂ 1 -coCart/S ⊂ 2 -Cat/S.

1.3.2. From Theorem 1.1.8 we obtain:

Corollary 1.3.3.

(a) There exists a canonical equivalence

(2 -coCart/S)2 -strict ≃ Funct(S,2 -Cat)left-lax,

functorial in S.

(b) Under the equivalence of point (a) the 1-full subcategories

(2 -coCart/S)strict ⊂ (2 -coCart/S)2 -strict and Funct(S,2 -Cat) ⊂ Funct(S,2 -Cat)left-lax

correspond to one another.

Similarly, from Corollary 1.2.6 we obtain:

Corollary 1.3.4.

(a) There exists a canonical equivalence

1 -coCart/S ≃ Funct(S,1 -Cat)left-lax,

functorial in S ∈ 2 -Cat.

(b) Under the equivalence of point (a), the 1-full subcategories

(1 -coCart/S)strict ⊂ 1 -coCart/S and Funct(S,1 -Cat) ⊂ Funct(S,1 -Cat)left-lax

correspond to one another.

1.3.5. We note that in addition to the notions of 2-Cartesian and 2-coCartesian
(resp., 1-Cartesian and 1-coCartesian) fibration, there exist two more notions, in-
duced by the involution S↦ S2 -op on 2 -Cat.

These notions correspond to functors from S1 -op and S2 -op with values in 2 -Cat
and 1 -Cat, respectively.

2. Straightening over intervals

In this section we will establish the following particular case of Theorem 1.1.8:

We will take the base S to be the interval [n], and we will identify the (∞,1)-
categories underlying the (∞,2)-categories appearing on the two sides in Theo-
rem 1.1.8.

More precisely, our goal is to prove the following:

468 11. STRAIGHTENING AND YONEDA FOR (∞,2)-CATEGORIES

Theorem-Construction 2.0.1.

(a) There exists a canonical equivalence of simplicial categories

Seqext
● (2 -Cat) ≃ (2-Cart/[●]op)2 -strict.

(b) For an individual n, under the equivalence

Seqext
n (2 -Cat) ≃ (2-Cart/[n]op)2 -strict,

the 1-full subcategories

Seqext
n (2 -Cat) ⊂ Seqext

n (2 -Cat) and (2-coCart/[n]op)strict ⊂ (2-Cart/[n]op)2 -strict

correspond to one another.

Remark 2.0.2. Note that since [n]op is a 1-category, the inclusion

(2-Cart/[n]op)2 -strict ⊂ 2-Cart/[n]op

is an equivalence.

2.1. The main construction. We now proceed to defining the functor in one
direction

2-Cart/[n]op → Seqext
n (2 -Cat).

The idea of the construction is pretty straightforward: we think of an object
of Seqext

n (2 -Cat) as a string

T0 → T1 → ...→ Tn

of (∞,2)-categories, which we encode by means of a functor

∆op → Cart/[n]op ,

see Chapter 10, Sect. 6.1.3.

The value of this functor on [m] ∈ ∆op is the category of strings ti0 → ti1 → ...→
tim in Ti, where i varies along [n]. We interpret such strings as strings in the ‘total’
(∞,2)-category over [n] that project to a single object in [n].

The total category in question is precisely the object T ∈ 2-Cart/[n]op that we
start from. We will now make turn this idea into an actual construction.

2.1.1. Given (T→ [n]op) ∈ 2-Cart/[n]op we define an object

E●,n ∈ Funct(∆op,Cart/[n]op)
as follows:

We let
Em,n ∶= Seqext

m (T) ×
Seqext

m ([n]op)
[n]op,

where [n]op → Seqext
m ([n]op) is the functor

[n]op = Funct({∗}, [n]op)→ Funct([m], [n]op) = Seqext
m ([n]op).

It is straightforward to check that Em,n, viewed as a category over [n]op, is a
Cartesian fibration, and that the object E●,n thus constructed defines an object of

Seqext
n (2 -Cat).
Furthermore, this construction is clearly functorial in T, thereby giving rise to

a functor

(2.1) 2-Cart/[n]op → Seqext
n (2 -Cat).

2. STRAIGHTENING OVER INTERVALS 469

Furthermore, it is clear that the above functor sends the 1-full subcategory

(2-Cart/[n]op)strict ⊂ 2-Cart/[n]op

to the 1-full subcategory

Seqext
n (2 -Cat) ⊂ Seqext

n (2 -Cat).

Remark 2.1.2. Note that the construction presented above is a generalization
of the construction in Chapter 10, Proposition 6.3.2. The reason that we cannot
finish the proof of Theorem 2.0.1 as easily as in the case of Chapter 10, Proposition
6.3.2 is that we do not yet know that for given S0,S1 ∈ 2 -Cat, the category

2-Cart/[1]op ×
2 -Cat×2 -Cat

{S0 × S1}

identifies with

Maps2 -Cat(S0,S1) ≃ Funct(S0,S1)1 -Cat.

2.2. Proof of Theorem 2.0.1: the inverse map. We will define a functor

(2.2) Seqext
n (2 -Cat)→ 2-Cart/[n]op

inverse to (2.1).

We now want to recover the ‘total’ (∞,2)-category T over [n], i.e., for each m,
we want to recover the corresponding category of strings

t0 → t1 → ...→ tn,

while we know the category of strings that project to a single element in [n].
We will recover all strings by a variant of the construction used in Chapter 10,

Sect. 1.6 to define the unstraightening procedure for (∞,1)-categories.

2.2.1. In order to define the functor (2.2), we will need the following combinatorial
construction. Let Tot(∆) be the coCartesian fibration over ∆ corresponding to the
tautological functor

∆→ 1 -Cat .

Note that Tot(∆) is an ordinary category, whose objects are pairs ([n] ∈ ∆, i ∈
[n]), and such that the set of morphisms ([n0], i0) → ([n1], i1) is the set of mor-
phisms φ ∶ [n0]→ [n1] such that φ(i0) = i1.

We let p ∶ Tot(∆) → ∆ the tautological projection ([n], i) ↦ [n]. We let
Tot(∆)[m] the fiber of Tot(∆) over [m] ∈ ∆; tautologically Tot(∆)[m] ≃ [m].

We note now that in addition to p, there is another canonically defined functor

q ∶ Tot(∆)→∆.

Namely, we set

q([n], i) ∶= [i], q(([n0], i0)
φ→ ([n1], i1)) = ([i0]

φ∣[i0]Ð→ [i1]).

In particular, restricting to Tot(∆)[m], we obtain the functor

q[m] ∶ [m]→∆, i↦ [i].

470 11. STRAIGHTENING AND YONEDA FOR (∞,2)-CATEGORIES

2.2.2. Going back to the desired functor (2.2), let E●,n be an object of Seqext
n (2 -Cat),

thought of as a functor

∆op → Cart/[n]op .

We can view1 the data of E●,n as an (∞,1)-category E∮ over ∆op× [n]op, such
that:

● The composition E∮ →∆op × [n]op →∆op is a coCartesian fibration;

● The composition E∮ →∆op × [n]op → [n]op is a Cartesian fibration;

● The functor E∮ →∆op × [n]op, viewed as a functor between coCartesian
fibrations over ∆op, belongs to (coCart/∆op)strict;

● The functor E∮ → ∆op × [n]op, viewed as a functor between Cartesian
fibrations over [n]op, belongs to (Cart/[n]op)strict.

2.2.3. We construct the object T ∈ 2-Cart/[n]op corresponding to E●,n as follows.
We define the category

Funct([m]op,T)right-lax

(which will be the same as Seqext
m (T), up to the involution rev) to be a certain full

subcategory in the (∞,1)-category of pairs (φ,Φ), where φ is a functor [m]→ [n],
and Φ is a lift of the functor

(φop, (rev ○q[m])op) ∶ [m]op → [n]op ×∆op

to a functor

[m]op → E∮ .

2.2.4. We single out Funct([m]op,T)right-lax by imposing the following condition
on objects.

Fix i = 1, ...,m. Consider a coCartesian lift in E∮

Φ(i)→ e′

of the 1-morphism

(rev ○q[m](i)→ rev ○q[m](i − 1)) ∈ ∆op.

Consider a Cartesian lift in E∮

e′′ → Φ(i − 1)

of the 1-morphism

(φ(i)→ φ(i − 1)) ∈ [n]op.

Note that by the last two properties of E∮ listed in Sect. 2.2.2, we have a
canonical map

e′ → e′′.

We require that this map be an isomorphism.

1See the elementary Chapter 12, Proposition 2.1.3 for a general assertion to this effect.

3. LOCALLY 2-CARTESIAN AND 2-CARTESIAN FIBRATIONS OVER GRAY PRODUCTS471

2.2.5. Clearly, the assignment

m↦ Funct([m]op,T)right-lax

extends to a functor ∆op → 1 -Cat.

We set

Seqext
● (T) ∶= Funct([●]op,T)right-lax ○ rev,

where rev is the reversal involution on ∆op.

Using Chapter 10, Theorem 5.2.3(a), we show:

Lemma 2.2.6. The simplicial category Seqext
● (T) belongs to the essential image

of the functor

Seqext
● ∶ 2 -Cat→ Funct(∆op,1 -Cat).

Let T denote the resulting object of 2 -Cat.

2.2.7. By construction, the simplicial category Seqext
● (T) maps to the simplicial

category

m↦ Funct([m], [n]op).
Hence, the (∞,2)-category T, constructed above, comes equipped with a func-

tor

T→ [n]op.

It is a straightforward verification that the above functor T → [n]op is a 2-
Cartesian fibration.

2.2.8. Thus, we have constructed a functor

Seqext
n (2 -Cat)→ 2-Cart/[n]op .

It is again a straightforward verification that this functor is inverse to (2.1).

3. Locally 2-Cartesian and 2-Cartesian fibrations over Gray products

As was mentioned before, the assertion of Theorem 1.1.8 will be deduced from
that of Theorem 2.0.1 by a certain bootstrapping procedure.

However, in order to do so, we will need to enlarge the entities that appear in
both the left-hand and the right-hand side. For the left-hand side, the corresponding
notion is that of locally 2-Cartesian fibration.

3.1. The notion of locally 2-Cartesian fibration. The idea of the notion of
locally 2-Cartesian fibration is the following: whereas 2-Cartesian fibrations over S
correspond to functors

S1 -op → 2 -Cat,

locally 2-Cartesian fibrations correspond to right-lax functors

S1 -op ⇢ 2 -Cat.

472 11. STRAIGHTENING AND YONEDA FOR (∞,2)-CATEGORIES

3.1.1. Let F ∶ T → S be a functor between (∞,2)-categories. We shall say that
a 1-morphism α in T is locally 2-Cartesian over S, if the resulting 1-morphism in
[1] ×

F (α),S
T is 2-Cartesian with respect to the projection

[1] ×
F (α),S

T→ [1].

Definition 3.1.2. We shall say that F is a locally 2-Cartesian fibration if the
following conditions hold:

(1) For every t ∈ T and a 1-morphism s′
β→ F (t) there exists a locally 2-

Cartesian 1-morphism t′
α→ t with F (α) ≃ β.

(2) Condition (2) in Definition 1.1.2 holds.

3.1.3. Note that if F ∶ T → S is a a locally 2-Cartesian fibration, then for every
1-morphism s0 → s1, the functor

[1] ×
S
T→ [1]

is a 2-Cartesian fibration. In particular, by Theorem 2.0.1 and Chapter 10, Propo-
sition 6.2.2, it gives rise to a well-defined functor

Ts1 → Ts0 .

We will refer to it as the pullback functor along the given 1-morphism.

3.1.4. The next assertion follows from the definitions:

Lemma 3.1.5.

(a) A functor F ∶ T → S is a 2-Cartesian fibration if and only it is a locally 2-
Cartesian fibration and the induced functor T1 -Cat → S1 -Cat is a Cartesian fibration
of (∞,1)-categories.

(b) If F ∶ T→ S is a 2-Cartesian fibration, then any 1-morphism in T that is locally
2-Cartesian over S is automatically 2-Cartesian.

(c) If F ∶ T→ S is a locally 2-Cartesian fibration, then a 1-morphism in T is locally
2-Cartesian over S if and only if the corresponding 1-morphism in Tordn is is locally
2-Cartesian over Sordn.

(d) If F ∶ T→ S is a locally 2-Cartesian fibration, then it is 2-Cartesian if and only
if the corresponding functor Tordn → Sordn is.

3.1.6. Let 2-Cartloc
/S denote the the full subcategory of 2 -Cat/S formed by locally

2-Cartesian fibrations in (∞,1)-categories. Let

(2-Cartloc
/S)1 -strict ⊃ (2-Cartloc

/S)strict ⊂ (2-Cartloc
/S)2 -strict

be the 1-full subcategories, defined by the same conditions as in Sects. 1.1.4-1.1.6.

3.2. Locally 2-Cartesian fibrations vs 2-Cartesian fibrations over RLaxnon-untl(S).
In this subsection we will formulate, and begin the proof of, the main assertion of
this section, Theorem 3.2.2.

3. LOCALLY 2-CARTESIAN AND 2-CARTESIAN FIBRATIONS OVER GRAY PRODUCTS473

3.2.1. Let

S⇢ RLaxnon-untl(S),
be the universal non-unital right-lax functor, see Sect. A.

We are going to prove:

Theorem-Construction 3.2.2. There exists a canonical fully faithful embed-
ding

(2-Cartloc
/S)Spc Φ↪ (2-Cart/RLaxnon-untl(S))

Spc,

functorial in S, whose essential image consists of those 2-Cartesian fibrations for
which the pullback functors along quasi-invertible arrows (see Sect. A.3) are equiv-
alences.

Remark 3.2.3. The above proposition is stated as an isomorphism of spaces.
However, it will follow from the construction that this equivalence extends to one
between the corresponding (∞,2)-categories (both 2-strict and strict versions).

Remark 3.2.4. If we assume Theorem 1.1.8, then Theorem 3.2.2 implies that
the space

(2-Cartloc
/S)Spc

is isomorphic to space of right-lax functors

S1 -op ⇢ 2 -Cat.

3.2.5. In the rest of this subsection we will construct the map in the easy direction,
i.e.,

(2-Cartloc
/S)Spc Ψ← (2-Cart/RLaxnon-untl(S))

Spc.

Consider the coCartesian fibrations

S∮ →∆op and RLaxnon-untl(S)∮ →∆op,

and the adjoint functors

ι∮S ∶ S∮ ⇄ RLaxnon-untl(S)∮ ∶ ρ∮S ,
see Sect. A.

3.2.6. Starting from a 2-Cartesian fibration T̃→ RLaxnon-untl(S), define

Ψ(T̃)∮ ∶= T̃∮ ×
RLaxnon-untl(S)∮

S∮ ,

where the functor S∮ → RLaxnon-untl(S)∮ is ι∮S .

We have:

Lemma 3.2.7.

(a) The composite functor

Ψ(T̃)∮ → S∮ →∆op

is a coCartesian fibration.

(b) The functor ∆op → 1 -Cat, corresponding to the coCartesian fibration of point
(a) lies in the essential image of the functor Seq● ∶ 2 -Cat → Funct(∆op,1 -Cat).

Denote the resulting (∞,2)-category by Ψ(T̃).

474 11. STRAIGHTENING AND YONEDA FOR (∞,2)-CATEGORIES

(c) The functor

Ψ(T̃)∮ → S∮

maps arrows that are coCartesian over ∆op to arrows that are coCartesian over
∆op.

(d) The functor Ψ(T̃)→ S arising from point (c) is a locally 2-Cartesian fibration.

3.3. Proof of Theorem 3.2.2, the inverse map. In this subsection we define
the sought-for map

(2-Cartloc
/S)Spc Φ↪ (2-Cart/RLaxnon-untl(S))

Spc.

3.3.1. Given T ∈ 2-Cartloc
/S , consider the corresponding functor

T∮ → S∮ .

We define
′Φ(T)∮ ∶= T∮ ×

S∮
RLaxnon-untl(S)∮ ,

where the functor RLaxnon-untl(S)∮ → S∮ is ρ∮S .

We will define the sought-for (∞,1)-category Φ(T)∮ is a certain full subcate-

gory of ′Φ(T)∮ .

3.3.2. Fix an object of

{γ} ×
((∆actv)[m]/)op

(RLaxnon-untl(S)∮ ×
∆op

{[m]}) ≃ Seqn(S), γ ∶ [m]→ [n],

given by

s = s0 → s1 → ...→ sn,

see Sect. A.1.3 for the notation.

The fiber of ′Φ(T)∮ over the above object of RLaxnon-untl(S)∮ is by definition

(3.1) Seqn(T) ×
Seqn(S)

{s0 → s1 → ...→ sn},

i.e., this is the category of strings

t = t0 → t1 → ...→ tn

in T that project to s.

3.3.3. The full subcategory of (3.1), corresponding to Φ(T)∮ ⊂ ′Φ(T)∮ consists of
those t, for which for every i ∈ 1, ..., n for which there exists a j ∈ 1, ...,m with

γ(j − 1) ≤ i − 1 < i ≤ γ(j),

the corresponding 1-morphism ti−1 → ti in T is locally 2-Cartesian over si−1 → si.

3. LOCALLY 2-CARTESIAN AND 2-CARTESIAN FIBRATIONS OVER GRAY PRODUCTS475

3.3.4. We claim:

Lemma 3.3.5.

(a) The composite functor

Φ(T)∮ → RLaxnon-untl(S)∮ →∆op

is a coCartesian fibration.

(b) The functor ∆op → 1 -Cat, corresponding to the coCartesian fibration of point
(a) lies in the essential image of the functor Seq● ∶ 2 -Cat → Funct(∆op,1 -Cat).
Denote the resulting (∞,2)-category by Φ(T).

(c) The functor

Φ(T)∮ → RLaxnon-untl(S)∮

maps arrows that are coCartesian over ∆op to arrows that are coCartesian over
∆op.

(d) The functor Φ(T) → RLaxnon-untl(S) arising from point (c) is a 2-Cartesian
fibration, for which the pullback functors along quasi-invertible arrows are equiva-
lences.

3.4. Proof of Theorem 3.2.2, computation of the compositions. In this
subsection we will conclude the proof of Theorem 3.2.2 by showing that the maps
Φ and Ψ constructed above are mutually inverse.

3.4.1. Since the composition ρ∮S ○ ι∮S is isomorphic to IdS∮ , we obtain immediately
that the composition

(2-Cartloc
/S)Spc Ψ→ (2-Cart/RLaxnon-untl(S))

Spc Φ→ (2-Cartloc
/S)Spc

is canonically isomorphic to the identity map.

3.4.2. Let now T̃ → RLaxnon-untl(S) be a 2-Cartesian fibration. We will now
construct a functor

T̃→ ′Φ(Ψ(T̃)).

The datum of such a functor is equivalent to that of a functor

(3.2) T̃∮ → T̃∮

that fits into the commutative diagram

(3.3)

T̃∮
(3.2)ÐÐÐÐ→ T̃∮

×××Ö
×××Ö

RLaxnon-untl(S)∮
ι∮S ○ρ

∮
SÐÐÐÐ→ RLaxnon-untl(S)∮ .

476 11. STRAIGHTENING AND YONEDA FOR (∞,2)-CATEGORIES

3.4.3. The construction of the functor (3.2) is based on the following lemma:

Lemma 3.4.4. Let F ∶ C → D be a functor between (∞,1)-categories, and let
ΓD ∶ [1] ×D → D be a functor such that ΓD∣{1}×D = IdD. Suppose that for every
c ∈ C there exists a Cartesian arrow c′ → c that covers the 1-morphism ΓD∣[1]×{F (c)}
in D. Then there exists a uniquely defined functor ΓC ∶ [1] ×C→C, such that:

● ΓC is equipped with an identification ΓC∣{1}×C = IdC;
● The diagram

(3.4)

[1] ×C
ΓCÐÐÐÐ→ C

Id[1] ×F
×××Ö

×××Ö
F

[1] ×D
ΓDÐÐÐÐ→ D

commutes
● For any c ∈ C, the 1-morphism given by ΓC∣[1]×{c} is Cartesian over D.

3.4.5. We apply the above lemma to D ∶= RLaxnon-untl(S)∮ ,

C ∶= T̃ext,∮ ×
RLaxnon-untl(S)ext,∮

RLaxnon-untl(S)ext,∮ ,

with F induced by the projection T̃→ RLaxnon-untl(S). We let ΓD be given by the
natural transformation

ι∮S ○ ρ∮S → IdRLaxnon-untl(S)∮ ,

corresponding to the (ι∮S , ρ∮S)-adjunction.

Applying Lemma 3.4.4 we obtain a functor

[1] × T̃ext,∮ ×
RLaxnon-untl(S)ext,∮

RLaxnon-untl(S)ext,∮ →

→ T̃ext,∮ ×
RLaxnon-untl(S)ext,∮

RLaxnon-untl(S)ext,∮ .

Restricting to {0} ∈ [1], and composing with

T̃∮ ↪ T̃ext,∮ ×
RLaxnon-untl(S)ext,∮

RLaxnon-untl(S)ext,∮ ,

we obtain a functor

(3.5) T̃∮ → T̃ext,∮ ×
RLaxnon-untl(S)ext,∮

RLaxnon-untl(S)ext,∮ .

Now, by unwinding the definitions, we obtain that the above functor (3.5)
factors through the 1-full subcategory

T̃∮ ⊂ T̃ext,∮ ×
RLaxnon-untl(S)ext,∮

RLaxnon-untl(S)ext,∮ .

The resulting functor

T̃∮ → T̃∮

is the desired functor (3.2).

3. LOCALLY 2-CARTESIAN AND 2-CARTESIAN FIBRATIONS OVER GRAY PRODUCTS477

3.4.6. By further unwinding the definitions, we obtain that the essential image of
the functor

T̃→ ′Φ(Ψ(T̃))
constructed above, belongs to Φ(Ψ(T̃)) ⊂ ′Φ(Ψ(T̃)).

Finally, if T̃ → RLaxnon-untl(S) is such that the pullback functors along quasi-
invertible arrows (see Sect. A.3) are equivalences, then the resulting functor

T̃→ Φ(Ψ(T̃))
is an equivalence.

�(Theorem 3.2.2)

3.5. Gray products and 2-Cartesian fibrations. In this subsection we will use
Theorem 3.2.2 to give an explicit description of 2-Cartesian fibrations over Gray
products.

3.5.1. Recall the condition on a functor between (∞,2)-categories to be a local-
ization on 1-morphisms, see Sect. B.1. The following is straightforward:

Lemma 3.5.2. Let S̃→ S be a localization on 1-morphisms. Then the map

2 -Cart/S → 2 -Cart/S̃,

defined by pullback, is fully faithful. Its essential image consists of those F ∶ T̃ → S̃
that satisfy the following condition:

For every t ∈ T̃, a pair of 1-morphisms β0, β1 ∶ s′ → F (t) and a 2-morphism

φ ∈ MapsMapsS̃(s′,F (t))(β0, β1),

if we denote by α0 ∶ t′ → t the 2-Cartesian lift of β0 and by ψ ∈ MapsMapsT̃(t′,t)(α0, α1)
the coCartesian lift of φ, if the image of φ in S is invertible, then the 1-morphism
α1 ∶ t′ → t is 2-Cartesian over β1.

3.5.3. We fix S1,S2 ∈ 2 -Cat. We shall now describe the space

(2-Cart/S1⊛S2)Spc

in a way functorial in S1 and S2. Indeed, combining Lemma 3.5.2 applied to

RLaxnon-untl(S1 × S2)→ S1 ⊛ S2,

with Proposition 3.2.2, we obtain:

Corollary 3.5.4. There exists a canonically defined fully faithful embedding

(2-Cart/S1⊛S2)Spc ↪ (2-Cartloc
/S1×S2)

Spc.

Its essential image consists of those T→ S1 × S2 that satisfy:

● For every pair of composable 1-morphisms in T, locally Cartesian over
S1 × S2, that cover two morphisms in S1 × S2 both of which project to
isomorphisms under S1 × S2 → S1, their composition is locally Cartesian
over S1 × S2.

● For every pair of composable 1-morphisms in T, locally Cartesian over
S1 × S2, that cover two morphisms in S1 × S2 both of which project to
isomorphisms under S1 × S2 → S2, their composition is locally Cartesian
over S1 × S2.

478 11. STRAIGHTENING AND YONEDA FOR (∞,2)-CATEGORIES

● For every pair of 1-morphisms (s′1
α1→ s1) ∈ S1 and (s′2

α2→ s2) ∈ S2 and

locally Cartesian 1-morphisms t′′
β→ t′ and t′

γ→ t covering (α1, ids′2) and

(ids1 , α2), respectively, the 1-morphism γ ○ β is locally Cartesian over
(α1, α2).

Corollary 3.5.5.

(a) The essential image of the (fully faithful) map

(2-Cart/S1⊛S2)Spc → (2-Cartloc
/S1×S2)

Spc ⊂ (2 -Cat/S1×S2)Spc

consists of those

T→ S1 × S2

such that:

(1) The composition T→ S1 × S2 → S1 is a 2-Cartesian fibration;
(2) The functor T→ S1×S2, viewed as a map in 2-Cart/S1 , belongs to (2-Cart/S1)strict;
(3) For every s1 ∈ S1, the resulting functor Ts1 → S2 is a 2-Cartesian fibration.
(4) For every 1-morphism s1 → s′1 in S1, the pullback functor Ts′1 → Ts1 , which

by the previous point is a 1-morphism in 2-Cart/S2 , belongs (2-Cart/S2)2 -strict.

(b) The subspace

(2-Cart/S1×S2)Spc ⊂ (2-Cart/S1⊛S2)Spc

corresponds to replacing in condition (4) the category (2-Cart/S2)2 -strict by its 1-full
subcategory

(2-Cart/S2)strict ⊂ (2-Cart/S2)2 -strict.

4. Proof of Theorem 1.1.8

4.1. Proof of Theorem 1.1.8, Step 1: identifying the underlying spaces.
In this subsection we will establish the assertion of Theorem 1.1.8 at the level of
the underlying spaces.

4.1.1. First, we notice that Theorem 2.0.1 can be reformulated as follows:

Corollary 4.1.2. There exists a canonical equivalence of bi-simplicial spaces
that send m,n to

Sqm,n(2 -Cat) and Maps([m],2-Cart/[n]op),

respectively.

4.1.3. Applying the 1-fully faithful embedding
(4.1)
Funct([m],2 -Cat) ≃ Seqext

m (2 -Cat) ≃ (2-Cart/[m]op)strict ↪ 2-Cart/[m]op ↪ 2 -Cat/[m]op

(where the second isomorphism is Theorem 2.0.1(b)), we obtain a fully faithful map

Maps([m],2 -Cat/[n]op)→ ((2 -Cat/[m]op)/[n]op×[m]op)Spc ≃ (2 -Cat/[n]op×[m]op)Spc.

Restricting to 2-Cart/[n]op ↪ 2 -Cat/[n]op , we obtain a fully faithful map

(4.2) Maps([m],2-Cart/[n]op)→ (2 -Cat/[n]op×[m]op)Spc.

4. PROOF OF THEOREM 1.1.8 479

Lemma 4.1.4. The essential image of the map (4.2) lies in

(2-Cartloc
/[n]op×[m]op)Spc ⊂ (2 -Cat/[n]op×[m]op)Spc

and coincides with the essential image of fully faithful embedding

(2-Cart/[n]op⊛[m]op)Spc ↪ (2-Cartloc
/[n]op×[m]op)Spc

of Corollary 3.5.4.

Proof. Follows from Corollary 3.5.5(a). �

4.1.5. Thus, combining Lemma 4.1.4 and Corollary 4.1.2 we obtain a canonical
identification of bi-simplicial spaces

(4.3) Sqm,n(2 -Cat) ≃ (2-Cart/[n]op⊛[m]op)Spc.

We can now establish the assertion of Theorem 1.1.8 at the level of the under-
lying spaces:

Corollary 4.1.6. For S ∈ 2 -Cat, there exists a canonical equivalence

(2-Cart/S)Spc ≃ Maps2 -Cat(S1 -op,2 -Cat),
functorial in S.

Proof. It follows from Chapter 10, Theorems 4.1.3 and 5.2.3(a) that for S ∈
2 -Cat, the restriction map

(2 -Cat/S)Spc →MapsFunct(∆op×∆op,Spc)(Sq●,●(S), (2 -Cat/[●]⊛[●])Spc)
is an isomorphism, and under this isomorphism the subspaces

(2-Cart/S)Spc ⊂ (2 -Cat/S)Spc

and

MapsFunct(∆op×∆op,Spc)(Sq●,●(S), (2-Cart/[●]⊛[●])Spc) ⊂
⊂ MapsFunct(∆op×∆op,Spc)(Sq●,●(S), (2 -Cat/[●]⊛[●])Spc)

correspond to one another.

Hence, the assertion of the corollary follows from the isomorphism (4.3) using
the canonical identification of bi-cosimplicial objects of 2 -Cat:

([m]⊛ [n])1 -op ≃ [n]op ⊛ [m]op.

�

4.2. Proof of Theorem 1.1.8, Step 2: identifying the underlying (∞,1)-
categories. In this subsection we will construct the identification of the (∞,1)-
categories underlying the two sides in Theorem 1.1.8(b).

4.2.1. We need to construct an isomorphism of simplicial spaces

Maps1 -Cat([m], (2-Cart/S)strict) ≃ Maps2 -Cat(S1 -op × [m],2 -Cat), [m] ∈ ∆.

Taking into account Corollary 4.1.6, we need to construct an isomorphism of
simplicial spaces

(4.4) Maps([m], (2-Cart/S)strict) ≃ (2-Cart/S×[m]op)Spc, [m] ∈ ∆.

480 11. STRAIGHTENING AND YONEDA FOR (∞,2)-CATEGORIES

4.2.2. Given [m] ∈ ∆, using the 1-fully faithful embedding

Funct([m],2 -Cat) ≃ Seqext
m (2 -Cat) ≃ (2-Cart/[m]op)strict ↪ 2-Cart/[m]op ↪ 2 -Cat/[m]op

of (4.1) (which, we note, uses the statement of Theorem 2.0.1), we obtain a fully
faithful map

Maps([m],2 -Cat/S)↪ ((2 -Cat/[m]op)/S×[m]op)Spc ≃ (2 -Cat/S×[m]op)Spc.

Composing with the embedding

Maps([m], (2-Cart/S)strict)↪Maps([m],2-Cart/S)↪Maps([m],2 -Cat/S),

we obtain a fully faithful map

(4.5) Maps([m], (2-Cart/S)strict)→ (2 -Cat/S×[m]op)Spc.

Lemma 4.2.3. The essential image of the map (4.5) equals

(2-Cart/S×[m]op)Spc ⊂ (2 -Cat/S×[m]op)Spc.

Proof. Follows from Corollary 3.5.5(b). �

Thus, we obtain the required identification (4.4).

4.3. Proof of Theorem 1.1.8, Step 3: end of the argument.
4.3.1. Given T ∈ 2 -Cat, we need to construct an isomorphism of spaces

Maps(T, (2 -coCart/S)2 -strict) ≃ Maps2 -Cat(T⊛ S1 -op,2 -Cat),

functorial in T and S, so that the subspaces

Maps(T, (2 -coCart/S)strict) ⊂ Maps(T, (2 -coCart/S)2 -strict)

and

Maps2 -Cat(T × S1 -op,2 -Cat) ⊂ Maps2 -Cat(T⊛ S1 -op,2 -Cat)

correspond to one another.

Taking into account Corollary 4.1.6, we need to construct an isomorphism of
spaces

(4.6) Maps(T, (2 -coCart/S)2 -strict) ≃ (2-coCart/S⊛T1 -op)Spc,

so that

Maps(T, (2 -coCart/S)strict) ⊂ Maps(T, (2 -coCart/S)2 -strict)

maps to

(2-coCart/S×T1 -op)Spc ⊂ (2-coCart/S⊛T1 -op)Spc.

5. THE YONEDA EMBEDDING 481

4.3.2. The equivalence of (∞,1)-categories

Maps2 -Cat(T,2 -Cat) ≃ (2-coCart/T1 -op)strict

established in Step 2, gives rise to a 1-fully faithful embedding

Maps2 -Cat(T,2 -Cat)↪ 2 -Cat/T1 -op .

From here, we obtain a fully faithful embedding

Maps(T,2 -Cat/S)↪ ((2 -Cat/T1 -op)/S×T1 -op)Spc = (2 -Cat/S×T1 -op)Spc.

Composing with

Maps(T, (2 -coCart/S)2 -strict) ⊂ Maps(T,2 -Cat/S),
we obtain a fully faithful map

(4.7) Maps(T, (2 -coCart/S)2 -strict)↪ (2 -Cat/S×T1 -op)Spc.

We claim:

Lemma 4.3.3.

(a) The essential image of the map (4.7) is contained in (2 -Catloc
/S×T1−op)Spc and

equals the essential image of the fully faithful embedding

(2-coCart/S⊛T1 -op)Spc ↪ (2 -Catloc
/S×T1−op)Spc

of Corollary 3.5.4.

(b) Under the resulting isomorphism

Maps(T, (2 -coCart/S)2 -strict) ≃ (2-coCart/S⊛T1 -op)Spc

the subspace

Maps(T, (2 -coCart/S)strict) ⊂ Maps(T, (2 -coCart/S)2 -strict)
maps to

(2-coCart/S×T1 -op)Spc ⊂ (2-coCart/S⊛T1 -op)Spc.

Proof. Follows from Corollary 3.5.5. �

The last lemma establishes the desired isomorphism (4.6).
�(Theorem 1.1.8)

5. The Yoneda embedding

The goal of this section is to discuss the several incarnations of what can be
called the Yoneda lemma in the context of (∞,2)-categories.

For example, we will show that to s ∈ S there corresponds a Yoneda functor

(5.1) hs ∶ S→ 1 -Cat, hs(s′) = MapsS(s, s′),

and for any S F→ 1 -Cat we have an equivalence

(5.2) MapsFunct(S,1 -Cat)(hs, F) ≃ F (s).

By letting s vary, we will construct the Yoneda embedding

Yon ∶ S↪ Funct(S1 -op,1 -Cat).

482 11. STRAIGHTENING AND YONEDA FOR (∞,2)-CATEGORIES

5.1. The right-lax slice construction. In order to construct the Yoneda func-
tors, we will use Corollary 1.3.4 in order to interpret the datum of a functor
S→ 1 -Cat as a 1-coCartesian fibration.

In this subsection we will construct the corresponding 1-coCartesian fibrations
(up to reversing the arrows).

5.1.1. Let S be an (∞,2)-category, and s ∈ S an object. We define the (∞,2)-
category S//s to be

Funct([1],S)right-lax ×
S
{s},

where the fiber product is formed using functor

Funct([1],S)right-lax → S.

given by evaluation at 1 ∈ [1].
5.1.2. Let ps ∶ S//s → S be the functor given by evaluation at 0 ∈ [1]. By definition,
the fiber of p over s′ ∈ S is an (∞,2)-category

Funct([1],S)right-lax ×
S×S

{(s′, s)},

which by Chapter 10, Corollary 3.4.8 is an (∞,1)-category, equipped with a canon-
ical identification with MapsS(s′, s).
5.1.3. We claim:

Lemma 5.1.4. The functor ps ∶ S//s → S is a 1-Cartesian fibration.

Proof. Let α ∶ s′0 → s be an object of S//s, and and let β ∶ s′1 → s′0 is a
1-morphism in S. Then it is easy to see that the commutative diagram

s′0
αÐÐÐÐ→ s

β
Õ×××

Õ×××
ids

s′1
α○βÐÐÐÐ→ s

represents a Cartesian arrow in (S//s)1 -Cat over β: indeed this is an assertion at the
level of the underlying (∞,1)-categories.

To finish the proof of the lemma, given a pair of objects

s0 = (α0 ∶ s′0 → s) and s1 = (α1 ∶ s′1 → s)
of S/s, we need to show that the functor

MapsS//s(s0, s1)→MapsS(s0, s1)
is a coCartesian fibration in spaces.

The category MapsS//s(s0, s1) has as objects pairs (β,φ), where β ∶ s′0 → s′1

and φ is a 2-morphism α0 → α1 ○β. Morphisms from (β,φ) to (β̃, φ̃) is the space of

2-morphisms ψ ∶ β → β̃, equipped with an identification φ̃ ≃ α1(ψ) ○ φ. This makes
it clear that the assignment

(β,φ)↦ β

is coCartesian fibration in spaces.
�

5. THE YONEDA EMBEDDING 483

5.1.5. Applying Corollary 1.2.6, from the 1-Cartesian fibration S//s → S we obtain
a functor

h̃s ∶ S1 -op → 1 -Cat.

The value of this functor on a given s′ ∈ S is

(S//s)s′ ≃ MapsS(s′, s).

5.2. The 2-categorical Yoneda lemma. In this subsection we will establish the
isomorphism (5.2).

5.2.1. For a pair of 1-Cartesian fibrations in (∞,1)-categories T0,T1 over S, let us
denote by

Mapsstrict
S (T0,T1) ∶= Maps(1 -Cart/S)strict(T0,T1),

where the notation (1 -Cart/S)strict is as in Sect. 1.2.3.

I.e., Mapsstrict
S (T0,T1) is the full subcategory of MapsS(T0,T1) that consists

of those functors that map 1-morphisms in T0 that are Cartesian over S to 1-
morphisms in T1 with the same property.

5.2.2. We claim:

Proposition 5.2.3. For a 1-Cartesian fibration F ∶ T→ S, evaluation at (s ids→
s) ∈ S//s defines an equivalence

Mapsstrict
S (S//s,T)→ Ts.

Proof. Let

(Funct([1],T)right-lax)Cart/S ⊂ Funct([1],T)right-lax

denote the full subcategory whose objects are 1-morphisms Cartesian over S.

Evaluation defines functors

ev0, ev1 ∶ (Funct([1],T)right-lax)Cart/S → T.

Consider the fiber product

(Funct([1],T)right-lax)Cart/S ×
ev1,T

Ts ≃ (Funct([1],T)right-lax)Cart/S ×
F○ev1,S

{s}.

It is easy to see that the functor (between (∞,2)-categories over S)

(Funct([1],T)right-lax)Cart/S ×
ev1,T

Ts → S//s ×Ts

is an equivalence.

Hence, we obtain a functor (between (∞,2)-categories over S)

S//s ×Ts → (Funct([1],T)lax)Cart/S ×
ev1,T

Ts → (Funct([1],T)lax)Cart/S ev0Ð→ T.

The latter gives rise to a functor

Ts →MapsS(S//s,T).

It is easy to see that the latter functor takes values in Mapsstrict
S (S//s,T) and

provides an inverse to one in the statement of the proposition.
�

484 11. STRAIGHTENING AND YONEDA FOR (∞,2)-CATEGORIES

5.2.4. Applying Corollary 1.2.6, from Proposition 5.2.3 we obtain:

Corollary 5.2.5. For F ∶ S1 -op → 1 -Cat, evaluation at s ∈ S defines an
equivalence

MapsFunct(S1 -op,1 -Cat)(h̃s, F) ≃ F (s).

5.3. The 2-categorical Yoneda embedding. We will now show how to turn
s ∈ S into a parameter and thus obtain the Yoneda functor

YonS ∶ S→ Funct(S1 -op,1 -Cat).

We will then show that YonS is fully faithful.

5.3.1. For S ∈ 2 -Cat, consider the (∞,2)-category

Funct([1],S)right-lax.

Evaluation on 0,1 ∈ [1] defines two functors

ev0, ev1 ∶ Funct([1],S)right-lax ⇉ S.

As in Lemma 5.1.4 one shows:

Lemma 5.3.2.

(a) The functor ev1 ∶ Funct([1],S)right-lax → S is a 2-coCartesian fibration of (∞,2)-
categories.

(b) The functor

(ev0 × ev1) ∶ Funct([1],S)right-lax → S × S

is a strict functor between 2-coCartesian fibrations over S.

5.3.3. Applying Corollary 1.3.3, from the functor ev0 × ev1 we obtain a functor

S→ 2 -Cat,

equipped with a natural transformation to the constant functor with value S.

I.e., we obtain a functor

(5.3) S→ 2 -Cat/S

5.3.4. Note, however, that by Lemma 5.1.4, the functor (5.3) takes values in the
full subcategory

1 -Cart/S ⊂ 2 -Cat/S.

Moreover, the functor (5.3) factors through the 1-full subcategory

(1 -Cart/S)strict ⊂ 1 -Cart/S.

I.e., we have a functor

(5.4) S→ (1 -Cart/S)strict.

A. THE UNIVERSAL RIGHT-LAX FUNCTOR 485

5.3.5. Applying the equivalence (1 -Cart/S)strict ≃ Funct(S1 -op,1 -Cat), from
(5.4), we obtain a functor

(5.5) YonS ∶ S→ Funct(S1 -op,1 -Cat),
or, equivalently, a functor

(5.6) S1 -op × S→ 1 -Cat.

We will refer to the functor YonS of (5.5) as the 2-categorical Yoneda functor.

5.3.6. We claim:

Proposition 5.3.7. The functor (5.5) is fully faithful.

Proof. We need to show that for s, s′ ∈ S, the functor

MapsS(s, s′)→MapsFunct(S1 -op,1 -Cat)(YonS(s),YonS(s′))
is an equivalence.

Equivalently (by virtue of Corollary 1.2.6), we need to show that the composite
functor
(5.7)

MapsS(s, s′)→MapsFunct(S1 -op,1 -Cat)(Yon(s),Yon(s′))→Mapsstrict
S (S//s,S//s′)

is an equivalence.

By construction, the above map (5.7) has the property that for any t ∈ S the
induced map

MapsS(s, s′)→Mapsstrict
S (S//s,S//s′)→

→Maps((S//s)t, (S//s′)t) ≃ Maps(MapsS(t, s),MapsS(t, s′))
is the map

MapsS(s, s′)→Maps(MapsS(t, s),MapsS(t, s′)),
given by composition of 1-morphisms.

Taking t = s and evaluating at ids, we obtain that the composition

MapsS(s, s′)→Mapsstrict
S (S//s,S//s′)→

→Maps((S//s)s, (S//s′)s)→Maps(MapsS(s, s),MapsS(s, s′))→MapsS(s, s′)
is the identity map.

Now, according to Proposition 5.2.3, the composition

Mapsstrict
S (S//s,S//s′)→Maps((S//s)s, (S//s′)s)→

→Maps(MapsS(s, s),MapsS(s, s′))→MapsS(s, s′)

is an isomorphism, implying that (5.7) is an equivalence as well.
�

A. The universal right-lax functor

A.1. The construction.

486 11. STRAIGHTENING AND YONEDA FOR (∞,2)-CATEGORIES

A.1.1. Consider the 1-fully faithful functor

2 -Cat→ 2 -Catright-laxnon-untl
,

see Chapter 10, Sect. 3.1.5.

This functor is easily seen to commute with limits. Hence, it admits a left
adjoint, to be denoted

S↦ RLaxnon-untl(S).
It turns out that this functor can be described rather explicitly, and this de-

scription is useful.

A.1.2. Recall the notation S∮ , see Chapter 10, Sect. 3.1.1.

Starting from S ∈ 2 -Cat, consider the following (∞,1)-category:

RLaxnon-untl(S)∮ ∶= S∮ ×
∆op

Actv,

where Actv is the full subcategory of Funct([1],∆op), spanned by active mor-
phisms, and Actv →∆op is the functor of evaluation at 0 ∈ [1].

Evaluation on 1 ∈ [1] defines a functor

(A.1) RLaxnon-untl(S)∮ →∆op.

A.1.3. For example,

RLaxnon-untl(S)∮ ×
∆op

{[0]} ≃ Seq0(S).

The category RLaxnon-untl(S)∮ ×
∆op

{[1]} is described as follows. It is a co-

Cartesian fibration over ∆op
actv (where ∆actv is the 1-full subcategory of ∆ where

we restrict the arrows to active morphisms). We have

{[n]} ×
∆actv

(RLaxnon-untl(S)∮ ×
∆op

{[1]}) ≃ Seqn(S).

For an active map α ∶ [m] → [n] the corresponding functor between the fibers
identifies with the functor

Seqn(S)→ Seqm(S),
induced by α.

A.1.4. The projection [1]→ [0] defines a functor ∆op → Actv, which in turn gives
rise to a functor

ι∮S ∶ S∮ → RLaxnon-untl(S)∮ ∶= S∮ ×
∆op

Actv,

compatible with projections to ∆op.

We will prove:

Theorem A.1.5.

(i) The functor RLaxnon-untl(S)∮ → ∆op of (A.1) is a coCartesian fibration, and
the resulting functor ∆op → 1 -Cat lies in the essential image of the functor Seq●;
denote the resulting (∞,2)-category by RLaxnon-untl(S).

(ii) The functor ι∮S sends coCartesian arrows over inert morphisms in ∆op to co-
Cartesian arrows. Denote the resulting lax functor S⇢ RLaxnon-untl(S) by ιS.

A. THE UNIVERSAL RIGHT-LAX FUNCTOR 487

(iii) For any T ∈ 2 -Cat, the composite map

Maps2 -Cat(RLaxnon-untl(S),T)→Maps2 -Catright-laxnon-untl
(RLaxnon-untl(S),T)→

→Maps2 -Catright-laxnon-untl
(S,T),

where the second arrow is given by precomposition with ιS, is an isomorphism.

A.1.6. Note that the functor

ι∮S ∶ S∮ → RLaxnon-untl(S)∮

admits a left adjoint; to be denoted λ∮S . This is a functor between categories over
∆op that sends coCartesian edges to coCartesian edges.

For example, the corresponding functor

RLaxnon-untl(S)∮ ×
∆op

[1]→ Seq1(S)

is given, in terms of the description in Sect. A.1.3 by the compatible family of
functors

Seqn(S)→ Seq1(S),

each corresponding to the unique active map [1]→ [n].

Hence, we obtain that the functor λ∮S corresponds to a functor

λS ∶ RLaxnon-untl(S)→ S.

We claim:

Proposition A.1.7. The functor λS ∶ RLaxnon-untl(S) → S is the counit of the
adjunction, i.e., corresponds to the identity functor on S, considered as a non-unital
right-lax functor.

Proof. We need to show that the composite lax functor

S ιS⇢ RLaxnon-untl(S)
λS→ S

identifies with the identity functor on S.

For that we need to show that the composite functor

λ∮S ○ ι∮S ∶ S∮ → S∮

is the identity functor. But this follows from the fact that the functor ι∮S is fully
faithful.

�

A.2. Proof of Theorem A.1.5.

488 11. STRAIGHTENING AND YONEDA FOR (∞,2)-CATEGORIES

A.2.1. To prove point (i) of the theorem, let us explicitly describe the functor

∆op → 1 -Cat

corresponding to the projection

RLaxnon-untl(S)∮ →∆op.

Namely, this functor sends [m] to a coCartesian fibration over ((∆actv)[m]/)op,
whose fiber over an active map γ ∶ [m]→ [n] is

{γ} ×
((∆actv)[m]/)op

(RLaxnon-untl(S)∮ ×
∆op

{[m]}) = Seqn(S),

and where for active map α ∶ [n1]→ [n2] the corresponding functor

Seqn2
(S)→ Seqn1

(S)

is induced by α.

For a map β ∶ [m1]→ [m2], the corresponding functor

(A.2) RLaxnon-untl(S)∮ ×
∆op

{[m2]}→ RLaxnon-untl(S)∮ ×
∆op

{[m1]}

is described as follows.

For an active map γ2 ∶ [m2]→ [n2], the category of factorizations of γ2 ○ β as

[m1]
γ′1→ [n′1]

α′→ [n2]

has a final object

[m1]
γ1→ [n1]

α→ [n2]

In fact, α is the injection of the sub-segment with the smallest element γ2○β(0)
and the largest element γ2 ○ β(m1).

The corresponding functor in (A.2) sends

{γ2} ×
((∆actv)[m2]/)op

(RLaxnon-untl(S)∮ ×
∆op

{[m2]})→

→ {γ1} ×
((∆actv)[m1]/)op

(RLaxnon-untl(S)∮ ×
∆op

{[m1]})

and equals the functor

Seqn2
(S)→ Seqn1

(S)

is induced by α.

The verification of Conditions (0)-(2) for being an (∞,2)-category is now

straightforward. It is equally easy to see that the functor ι∮S sends coCartesian
arrows over inert arrows in ∆ to coCartesian arrows.

A. THE UNIVERSAL RIGHT-LAX FUNCTOR 489

A.2.2. Let us now show that the map

Maps2 -Cat(RLaxnon-untl(S),T)→Maps2 -Catright-laxnon-untl
(S,T)

is an isomorphism.

Given T ∈ 2 -Cat, the operation of relative left Kan extension along ι∮S gives
rise to a fully faithful embedding of spaces

(A.3) Maps1 -Cat/∆op (S∮ ,T∮)→Maps1 -Cat/∆op (RLaxnon-untl(S)∮ ,T∮).
Let

Maps′1 -Cat/∆op (S∮ ,T∮) ⊂ Maps1 -Cat/∆op (S∮ ,T∮)
be the subspace consisting of functors that send coCartesian arrows over inert
morphisms in ∆op to coCartesian morphisms. Let

Maps′1 -Cat/∆op (RLaxnon-untl(S)∮ ,T∮) ⊂ Maps1 -Cat/∆op (RLaxnon-untl(S)∮ ,T∮)
be the subspace consisting of functors that send all coCartesian arrows to coCarte-
sian morphisms. We will show that the map (A.3) defines an isomorphism

(A.4) Maps′1 -Cat/∆op (S∮ ,T∮)→Maps′1 -Cat/∆op (RLaxnon-untl(S)∮ ,T∮).

A.2.3. Note that the functor

ι∮S ∶ S∮ → RLaxnon-untl(S)∮

admits a right adjoint, to be denoted ρ∮S . Explicitly, for every m and γ ∶ [m]→ [n],
the functor ρ∮S makes the following diagram commutative

{γ} ×
((∆actv)[m]/)op

(RLaxnon-untl(S)∮ ×
∆op

{[m]}) ÐÐÐÐ→ RLaxnon-untl(S)∮

∼
×××Ö

×××Ö
ρ∮S

Seqn(S) ÐÐÐÐ→ S∮ .

In particular, we note that ρ∮S does not respect the projections

RLaxnon-untl(S)∮ →∆op and S∮ →∆op.

We have the following general assertion:

Lemma A.2.4. Suppose we have a diagram of (∞,1)-categories

C′ ι //

��

C

��
I

such that ι is fully faithful and admits a right adjoint ρ. Then for any coCartesian
fibration D→ I, relative left Kan extension gives a fully faithful embedding

Maps1 -Cat/I
(C′,D)↪Maps1 -Cat/I

(C,D)
with the image consisting of functors F ∶ C → D over I such that for every c ∈ C,
the counit of the adjunction ι ○ ρ(c)→ c induces the arrow

F (ι ○ ρ(c))→ F (c)
in D that is coCartesian over I.

490 11. STRAIGHTENING AND YONEDA FOR (∞,2)-CATEGORIES

A.2.5. Applying this lemma, we need to show that for a functor

F ∶ RLaxnon-untl(S)∮ → T∮

the following conditions are equivalent:

(1) F takes coCartesian arrows to coCartesian arrows;

(2) F takes the arrows coming from the counit of the adjunction ι∮S ○ρ∮S → id

and also arrows of the form ι∮S (f), where f is a coCartesian arrow in S∮
lying over an inert map in ∆op, to coCartesian arrows.

We have the following general observation:

Lemma A.2.6. Let D→ I be a coCartesian fibration of (∞,1)-categories. Then
an arrow in D is coCartesian over I if and only if its image in Dordn is coCartesian
over Iordn.

This lemma allows to replace the verification of the equivalence of conditions
(1) and (2) above to the case when T (and hence also S) is an ordinary 2-category.
In this case the assertion is straightforward.

A.3. Quasi-invertible 1-morphisms.
A.3.1. Since

Seq0(RLaxnon-untl(S)) ≃ Seq0(S),
the categories S0 and RLaxnon-untl(S) have the same spaces of objects.

Note that the subcategory

(Seq1(RLaxnon-untl(S)))invert ⊂ Seq1(RLaxnon-untl(S))
identifies with

Seq0(S) ≃ {[0]} ×
∆actv

(RLaxnon-untl(S)∮ ×
∆op

{[1]}) ⊂

⊂ RLaxnon-untl(S)∮ ×
∆op

{[1]} = Seq1(RLaxnon-untl(S)).

A.3.2. We shall say that a 1-morphism is quasi-invertible if it belongs to the full

subcategory, to be denoted (Seq1(RLaxnon-untl(S)))q-invert
, and equal to

Seq0(S) ≃ (Seq1(S))invert ⊂ Seq1(S) ≃ {[1]} ×
∆actv

(RLaxnon-untl(S)∮ ×
∆op

{[1]}) ⊂

⊂ RLaxnon-untl(S)∮ ×
∆op

{[1]} = Seq1(RLaxnon-untl(S)).

Remark A.3.3. Note that we thus obtain two different fully faithful functors

Seq0(S) ≃ (Seq1(RLaxnon-untl(S)))invert ↪ Seq1(RLaxnon-untl(S))
and

Seq0(S) ≃ (Seq1(RLaxnon-untl(S)))q-invert ↪ Seq1(RLaxnon-untl(S)).
By construction, these functors are connected by a natural transformation

(from the former to the latter).

B. LOCALIZATIONS ON 1-MORPHISMS 491

A.3.4. We observe:

Lemma A.3.5. A non-unital right-lax functor S⇢ T is unital if and only if the
corresponding functor

RLaxnon-untl(S)→ T
sends quasi-invertible 1-morphisms to isomorphisms.

B. Localizations on 1-morphisms

B.1. The notion of localization on 1-morphisms.
B.1.1. Let C be an (∞,1)-category, and let C′ ⊂ C be a 1-full subcategory with
the same class of objects. (I.e., the datum of C amounts to specifying a class of
1-morphisms containing all isomorphisms and closed under compositions).

Recall that the localization of C with respect to C′ is a pair

(C, Fcan ∶ C→ C̃can),

universal with respect to functors F ∶ C → C̃ that map 1-morphisms from C′ to
isomorphisms.

B.1.2. Let F ∶ S→ T be a functor between (∞,2)-categories.

Definition B.1.3. We shall say that F is a localization on 1-morphisms if:

(1) The functor Seq0(S)→ Seq(T)0 is an isomorphism (in Spc);

(2) The functor Seq1(S)→ Seq(T)1 is a localization.

B.1.4. We claim:

Proposition B.1.5. For a functor F ∶ S→ T, the following are equivalent:

(1) F is a localization on 1-morphisms;

(2) The corresponding functor S∮ → T∮ is a localization.

Proof. Follows from the next general lemma:

Lemma B.1.6. Let C→ I and D→ I be coCartesian fibrations, and let F ∶ C→
D be a functor compatible with the projections to I such that F sends coCartesian
arrows to coCartesian arrows. Then F is a localization if and only if for every i ∈ I
the corresponding functor C ×

I
{i}→D ×

I
{i} is a localization.

�

As a corollary, we obtain:

Corollary B.1.7. Let S→ T be a localization on 1-morphisms. Then for any
X ∈ 2 -Cat, the maps

Maps2 -Cat(T,X)→Maps2 -Cat(S,X), Maps2 -Catright-lax
(T,X)→Maps2 -Catright-lax

(S,X)
and

Maps2 -Catright-laxnon-untl
(T,X)→Maps2 -Catright-laxnon-untl

(S,X)
are fully faithful.

492 11. STRAIGHTENING AND YONEDA FOR (∞,2)-CATEGORIES

B.1.8. It is easy to see that if S → T is a localization on 1-morphisms, then for
any X ∈ 2 -Cat, so is the functor

S ×X→ S ×T.
From here we obtain:

Corollary B.1.9. Let S→ T be a localization on 1-morphisms. Then for any
X ∈ 2 -Cat, the functor

Funct(T,X)→ Funct(S,X)
is fully faithful.

B.2. Description of localizations.
B.2.1. We have:

Proposition B.2.2. Let S be an (∞,2)-category. The following pieces of data
are equivalent:

(i) The datum of a functor S→ T, which is a localization on 1-morphisms.

(ii) The datum of a functor Sordn → Tordn, which is a localization on 1-morphisms.

(iii) The datum of a subset of isomorphism classes of morphisms in Seq1(S) that
contains all isomorphisms and is closed under the composition operation

π0(Seq1(S)) ×
π0(Sq(S)0)

π0(Seq1(S))→ π0(Seq1(S)).

Proof. Follows from the next general lemma:

Lemma B.2.3. Let C → I be a coCartesian fibration. Then the datum of a
localization F ∶ C → D, such that D is also a coCartesian fibration over I and F
sends coCartesian arrows to coCartesian arrows is equivalent to the datum of a
localization C ×

I
{i} → Di for each i ∈ I, such that for every 1-morphism i1 → i2 in

I the corresponding functor

C ×
I
{i1}→C ×

I
{i2}

sends the 1-morphisms that become isomorphisms on Di1 to 1-morphisms that be-
come isomorphisms on Di2 .

�

B.2.4. As a corollary we obtain:

Corollary B.2.5. For S ∈ 2 -Cat, the canonical functors

λS ∶ RLaxnon-untl(S)→ S,
RLaxnon-untl(S ×T)→ S⊛T and S⊛T→ S ×T

are localizations on 1-morphisms.

CHAPTER 12

Adjunctions in (∞,2)-categories

Introduction

0.1. What is done in this Chapter? This Chapter contains the only piece of
original mathematics pertaining to (∞,2)-categories that we develop in this book.
It has to do with pairs of functors obtained from one another by the procedure of
passage adjoints.

0.1.1. First, we note that if T is an ordinary 2-category, and t
α→ t′ is a 1-morphism,

there exists an (elementary) notion of right (resp., left) adjoint 1-morphism. For
example, if T = (1 -Cat)ordn, this is the usual notion of adjunction for functors
between (∞,1)-categories.

If T is a (∞,2)-category, we will say that a 1-morphism admits a right (resp.,
left) adjoint, if it does so when considered as a 1-morphism in Tordn.

0.1.2. Consider the following situation: let S and T be (∞,2)-categories, and let
F ∶ S→ T.

We shall say that F is right-adjointable (resp., left-adjointable) if for every 1-

morphism s
α→ s′ in S, the corresponding 1-morphism F (α) admits a right (resp.,

left) adjoint.

We let

Maps2 -Cat(S,T)R ⊂ Maps2 -Cat(S,T)

denote the full subspace spanned by left-adjointable functors (the superscript “R”
is because 1-morphisms generated by these functors are right adjoints).

Let

Maps2 -Cat(S,T)L ⊂ Maps2 -Cat(S,T)

denote the full subspace spanned by right-adjointable functors.

0.1.3. Assume for a moment that T is an ordinary 2-category. In this case, the
procedure of passage to adjoint 1-morphisms defines a canonical isomorphism

(0.1) Maps2 -Cat(S,T)R ≃ Maps2 -Cat(S1&2-op,T)L.

The main result of this Chapter (stated in Corollary 1.3.4) is that the isomor-
phism (0.1) holds for an arbitrary (∞,2)-category.

493

494 12. ADJUNCTIONS IN (∞,2)-CATEGORIES

0.1.4. Moreover, we note that the spaces Maps2 -Cat(S,T)R and Maps2 -Cat(S1&2-op,T)L
can naturally be extended to (∞,2)-categories

Funct(S,T)Rright-lax and Funct(S1&2-op,T)Lleft-lax,

where we allow right-lax (resp., left-lax) natural transformations.

We will show (see Corollary 3.1.9) that the isomorphism (0.1) extends to an
equivalence of (∞,2)-categories

Funct(S,T)Rright-lax ≃ Funct(S1&2-op,T)Lleft-lax.

0.2. How is this done? To simplify the discussion, we will focus on the construc-
tion of the isomorphism of spaces (0.1).

0.2.1. It is not difficult to see that for a given (∞,2)-category S, there exists a
universal left-adjointable functor

Funiv ∶ S→ SR.

I.e., any left-adjointable functor F ∶ S→ T uniquely factors as

G ○ Funiv, G ∶ SR → T.

Similarly, we have the universal right-adjointable functor S→ SL.

0.2.2. The isomorphism (0.1), functorial in T, is equivalent to the existence of a
canonical equivalence of (∞,2)-categories

(0.2) (S2 -op)R ≃ (S1 -op)L.

The construction of the equivalence (0.2) is based on the explicit description of
the (∞,2)-category SR (resp., SL). Such a description is given by Theorem 1.2.4
and is the key idea of this Chapter.

0.2.3. Namely, we prove that the (∞,2)-category SR is obtained by applying the
functor LSq, left adjoint to

Sq●,● ∶ 2 -Cat→ Spc∆op×∆op

,

to a particular object of Spc∆op×∆op

.

That object of Spc∆op×∆op

is the following: we consider

Sq●,●(S2-op),

and then we invert the vertical arrows, i.e., apply the involution

rev ∶ ∆op →∆op

along the first factor in ∆op ×∆op.

We note that this object does not belong to the essential image of the functor
Sq●,●, so the above procedure is doing something non-trivial.

0.2.4. By unwinding the construction, we see that the procedures for obtaining
(S2 -op)R and (S1 -op)L are exactly the same, thereby leading to the isomorphism
(0.2).

1. ADJUNCTIONS 495

1. Adjunctions

In this section we study the following situation: let S be a (∞,2)-category
equipped with a 1-full subcategory C ⊂ S1 -Cat with the same class of objects.
We will consider functors F ∶ S → T such that for every 1-morphism α in C, the
corresponding 1-morphism F (α) in T admits a left adjoint. We will state a theorem
to the effect that there exists a universal such functor

Funiv ∶ S→ SRC ,

i.e., any functor F ∶ S→ T with the above property uniquely factors as

G ○ Funiv, G ∶ SRC → T.

However more importantly, the (∞,2)-category SRC can be described explicitly.

This explicit description will allow us to show that to a functor F ∶ S→ T that
maps all 1-morphisms in S to left-adjointable 1-morphisms in T, there canonically
corresponds a functor

S1&2-op → T

obtained from F by passing to left adjoints along 1-morphisms.

1.1. Adjointable arrows and functors. In this subsection we will define what it
means for a 1-morphism in an (∞,2)-category to admit an adjoint, and the related
notion of a functor to be adjointable.

The main feature of these notions is that they do not depend on the ∞-
categorical structure, i.e., these are conditions on arrows/functors between the
underlying ordinary 2-categories.

1.1.1. Let T be an ordinary 2-category, and let t
α→ t′ be a 1-morphism. In this

case there exists the notion of right adjoint 1-morphism.

Namely, a 1-morphism t′
β→ t is said to be the right adjoint of α if we are given

2-morphisms

co-unit ∶ α ○ β → idt′ and unit ∶ idt → β ○ α

such that the compositions

α
α○unitÐ→ α ○ β ○ α co-unit ○αÐ→ α and β

unit ○βÐ→ β ○ α ○ β β○co-unitÐ→ β

are the identity 2-morphisms.

It is easy to see that if a right adjoint 1-morphism exists, it is defined up to a
unique isomorphism.

1.1.2. Replacing T by T2 -op, we obtain the notion of left adjoint 1-morphism.

It is easy to see that the data defining β as a right adjoint of α is equivalent to
the data defining α as a left adjoint of β.

496 12. ADJUNCTIONS IN (∞,2)-CATEGORIES

1.1.3. Let now T be an (∞,2)-category, and let t
α→ t′ be a 1-morphism.

Definition 1.1.4. We shall say that α admits a right (resp., left) adjoint, if it
does so in the ordinary 2-category Tordn.

Let Seq1(T)R ⊂ Seq1(T) be the full subcategory spanned by 1-morphisms that
admit a left adjoint1.

Let Seq1(T)L ⊂ Seq1(T) be the full subcategory spanned by 1-morphisms that
admit a right adjoint.

The procedure of passage to the adjoint 1-morphism defines an equivalence

(Seq1(T)R)ordn ≃ (((Seq1(T)L)ordn))op
.

Remark 1.1.5. In Corollary 3.1.9 we will see that the above equivalence of
ordinary categories in fact lifts to an equivalence of (∞,1)-categories

Seq1(T)R ≃ ((Seq1(T)L)op
.

1.1.6. Let S be an (∞,2)-category, and C ⊂ S1 -Cat be a 1-full subcategory with
the same class of objects. Let

F ∶ S→ T
be a functor, where T is another (∞,2)-category.

Definition 1.1.7. We shall say that F is right adjointable with respect to C,

if for every 1-morphism s
α→ s′ in C, the 1-morphism

F (s) F (α)Ð→ F (s′)
admits a right adjoint.

In a similar way we define the notion of functor left adjointable with respect
to C.

1.1.8. We denote by

Funct(S,T)RC

right-lax ⊂ Funct(S,T)right-lax

the full subcategory corresponding to functors that are left adjointable with respect
to C.

Let
Funct(S,T)LC

left-lax ⊂ Funct(S,T)right-lax

denote the full subcategory corresponding to functors right adjointable with respect
to C.

Let

Maps2 -Cat(S,T)RC ⊂ Maps2 -Cat(S,T) ⊃ Maps2 -Cat(S,T)LC

the be the corresponding full subspaces.

Clearly, under the isomorphism

Funct(S,T)left-lax ≃ Funct(S2 -op,T2 -op)right-lax

1The superscript “R” means the 1-morphisms in question are themselves right adjoint to
something.

1. ADJUNCTIONS 497

we have:
Funct(S,T)LC

left-lax ≃ Funct(S2 -op,T2 -op)RC

right-lax.

Consider the particular case when C is all of S1 -Cat. In this case we will simply
write

Funct(S,T)Rright-lax and Funct(S,T)Lleft-lax

and
Maps2 -Cat(S,T)R and Maps2 -Cat(S,T)L,

respectively.

1.1.9. Assume now that T is ordinary. In this case one shows that there is a
canonical equivalence of (ordinary) 2-categories

(1.1) Funct(S,T)Rright-lax ≃ Funct(S1&2-op,T)Lleft-lax,

given by passage to left adjoint 1-morphisms.

The goal of this chapter is to generalize the equivalence (1.1) to the case when
T is an (∞,2)-category. This will ultimately be achieved in Corollary 3.1.9.

1.2. The universal adjointable functor. It is fairly easy to see that, given a
pair (S,C), where S is an (∞,2)-category and C ⊂ S1 -Cat is a 1-full subcategory
with the same class of objects, there exists a unversal recipient, denoted SRC , of
functors left-adjointable with respect to C.

The point is that this (∞,2)-category SRC can be described explicitly in terms
of the adjoint functors

Sq●,● ∶ 2 -Cat⇄ Spc∆op×∆op

∶ LSq.

This description is given by Theorem 1.2.4. In fact, the (∞,2)-category SRC is
obtained from S as a combination of the following three steps:

● Starting from S, we pass to S2 -op and form the bi-simplicial groupoid
SqPair

●,● (S2 -op,C), see Chapter 10, Sect. 4.3 for the notation.

● We take SqPair
●,● (S2 -op,C) and reverse its vertical arrows. Note that the

resulting bi-simplicial groupoid will not be in the essential image of the
functor Sq●,●.

● We take (SqPair
●,● (S2 -op,C))vert-op

and apply to it the functor LSq.

The idea of this construction is that the reversed vertical arrows will supply
the data of left adjoints for 1-morphisms in C.

1.2.1. Let S be an (∞,2)-category, and C ⊂ S1 -Cat be a 1-full subcategory with
the same space of objects.

Consider the bi-simplicial category (SqPair
●,● (S2 -op,C))vert-op, where the notation

(−)vert-op is as in Chapter 10, Sect. 4.1.5, and SqPair
●,● is as in Chapter 10, Sect. 4.3.3.

We define the (∞,2)-category SRC to be

LSq((SqPair
●,● (S2 -op,C))vert-op),

where LSq is as in Chapter 10, Secr. 4.4.4.

I.e., by definition, for T ∈ 2 -Cat,

Maps2 -Cat(SRC ,T) = MapsFunct(∆op,1 -Cat)((SqPair
●,● (S2 -op,C))vert-op,Sq●,●(T).

498 12. ADJUNCTIONS IN (∞,2)-CATEGORIES

1.2.2. We claim that we have a canonically defined functor

(1.2) S→ SRC .

Namely, it is obtained via the isomorphism

S ≃ LSq ○ Sq∼●,●(S)

(of Chapter 10, Corollary 4.4.5) by applying LSq to the tautological bi-simplicial
functor

(1.3) Sq∼●,●(S) ≃ (Sq∼●,●(S2 -op))vert-op ↪ (SqPair
●,● (S2 -op,C))vert-op.

1.2.3. Recall the notation

Maps2 -Cat(S,T)RC ⊂ Maps2 -Cat(S,T),

see Sect. 1.1.8.

We will prove the following result:

Theorem 1.2.4. Restriction along (1.2) defines an isomorphism

Maps2 -Cat(SRC ,T)→Maps2 -Cat(S,T)RC .

1.3. The case C = S1 -Cat. Let us consider a particular case of Theorem 1.2.4
when C = S1 -Cat. In this case we shall simply write SR. The point is that in this
case we will have a canonical equivalence

(SR)2 -op ≃ (S1 -op)R,

which will allow to realize the passage to adjoints construction.

1.3.1. Recall that for X ∈ 2 -Cat we have

(Sq●,●(X))vert&horiz-op ≃ Sq●,●(X1&2-op),

see Chapter 10, Sect. 4.1.6.

Recall also the involution reflect on Spc∆op×∆op

, see Chapter 10, Sect. 4.1.5.
For X ∈ 2 -Cat we have

(1.4) (Sq●,●(X))reflect ≃ Sq●,●(X2-op).

Hence, for S ∈ 2 -Cat we have obtain a canonical isomorphism

(1.5)

((Sq●,● (S2 -op))vert-op)
reflect

≃ ((Sq●,● (S2 -op))reflect)
horiz-op

≃ (Sq●,●(S))
horiz-op ≃

≃ ((Sq●,●(S))
vert&horiz-op)

vert-op

≃ ((Sq●,●(S1&2 -op))vert-op
.

1. ADJUNCTIONS 499

1.3.2. Note that from (1.4) it follows that for E●,● ∈ Spc∆op×∆op

we have

(1.6) LSq ((E●,●)reflect) ≃ (LSq(E●,●))2-op.

Hence, we obtain an identification

(1.7)

(SR)2 -op = (LSq ((Sq●,● (S2 -op))vert-op))
2 -op (1.6)

≃ LSq (((Sq●,● (S2 -op))vert-op)
reflect

)
(1.5)
≃

≃ LSq (((Sq●,●(S1&2 -op))vert-op) = (S1 -op)R.

1.3.3. Combining (1.7) and (1.2), we obtain a canonically defined map

(1.8) S1 -op → (SR)2 -op

and hence a map

(1.9) S1&2-op → SR

Applying Theorem 1.2.4 we obtain:

Corollary 1.3.4. The functors

S→ SR and S1&2-op → SR

define isomorphisms

Maps2 -Cat(SR,T)→Maps2 -Cat(S,T)R

and

Maps2 -Cat(SR,T) ≃ Maps2 -Cat(((S1 -op)R)2 -op,T) ≃ Maps2 -Cat((S1 -op)R,T2 -op)→
→Maps2 -Cat(S1 -op,T2 -op)R ≃ Maps2 -Cat(S1&2-op,T)L.

In particular, we obtain a canonical identification

(1.10) Maps2 -Cat(S,T)R ≃ Maps2 -Cat(S1&2-op,T)L.
We will refer to the isomorphism of (1.10) as the procedure of passing to right

adjoints.

1.3.5. The adjoint 1-morphism. Let us specialize the above discussion further to
the case S = [1]. For T ∈ 2 -Cat, let

((Seq1(T))Spc)R ⊂ (Seq1(T))Spc ⊃ ((Seq1(T))Spc)L,
be the subspaces of 1-morphisms that admit right and left adjoints, respectively.

As a particular case of Corollary 1.3.4 we obtain:

Corollary 1.3.6. There exists a canonical isomorphism of spaces

((Seq1(T))Spc)R ≃ ((Seq1(T))Spc)L

that induces the isomorphism

π0 (((Seq1(T))Spc)R) ≃ π0 (((Seq1(T))Spc)L) ,
given by passage to the adjoint 1-morphism.

1.4. Proof of Theorem 1.2.4 for ordinary 2-categories. In this subsection
we take T to be an ordinary 2-category. In this case Theorem 1.2.4 can be proved
by explicit analysis.

500 12. ADJUNCTIONS IN (∞,2)-CATEGORIES

1.4.1. Let us first show that the image of the restriction functor

Maps2 -Cat(SRC ,T)→Maps2 -Cat(S,T)

belongs to Maps2 -Cat(S,T)RC ⊂ Maps2 -Cat(S,T).

Let F ∶ S→ T be a functor, such that the map

Sq∼●,●(S)→ Sq●,●(T)

has been extended to a map

F●,● ∶ (SqPair
●,● (S2 -op,C))vert-op → Sq●,●(T).

Let s
α→ s′ be a morphism in C, and let F (s) F (α)Ð→ F (s′) be its image in T. We

wish to show that F (α) admits a left adjoint.

Consider α as a (1,0)-simplex in SqPair
●,● (S,C). Let us now vertically invert it,

and thus consider it as a (1,0)-simplex in (SqPair
●,● (S2 -op,C))vert-op. The image of

the latter under F●,● is a (1,0)-simplex in Sq●,●(T), i.e., a 1-morphism

F (s′) β→ F (s)

(note the direction of the arrow!).

Let us show that β is the left adjoint of F (α).

1.4.2. Consider the following point in SqPair
1,1 (S2 -op,C):

(1.11) s s′

s′ s′

α //

α

��

id

��

id
//

{�

where the 2-morphism is the identity map α⇒ α.

Let us vertically invert it, and thus consider it as a (1,1)-simplex in (SqPair
●,● (S2 -op,C))vert-op.

Take the image of the latter under F●,●. We obtain a (1,1)-simplex in Sq●,●(T),
i.e., a diagram

(1.12) F (s′) F (s′)

F (s) F (s′).

id //

β

��

id

��

F (α)
//

{�

The (1,1)-simplex (1.12) represents a 2-morphism

(1.13) id→ F (α) ○ β,

which will be the unit of the adjunction (β,F (α))-adjunction.

1. ADJUNCTIONS 501

1.4.3. Consider the following point in SqPair
1,1 (S2 -op,C):

(1.14) s s

s s′

id //

id

��

α

��
α

//{�

where the 2-morphism is the identity map α⇒ α.

Let us vertically invert it, and thus consider it as a (1,1)-simplex in (SqPair
●,● (S2 -op,C))vert-op.

Take the image of the latter under F●,●. We obtain a (1,1)-simplex in Sq●,●(T),
i.e., a diagram

(1.15) F (s) F (s′)

F (s) F (s).

F (α) //

id

��

β

��

id
//

{�

The (1,1)-simplex (1.12) represents a 2-morphism

(1.16) β ○ F (α)→ id,

which will be the co-unit of the adjunction (β,F (α))-adjunction.

1.4.4. The adjunction identities for (1.16) and (1.13) follow by concatenating the
diagrams (1.11) and (1.14) first vertically, and then horizontally.

1.4.5. Let us now be given a functor F ∶ S → T such that for each arrow s
α→ s′ in

C, the corresponding 1-morphism F (α) admits a left adjoint. Let us construct the
corresponding map

F●,● ∶ (SqPair
●,● (S2 -op,C))vert-op → Sq●,●(T).

With no restriction of generality, we can assume that S is also ordinary. We
will define the map in question for (0,0), (0,1), (1,0) and (1,1) simplices, and it
will be clear that it extends to a map of bi-simplicial sets by associativity.

1.4.6. At the level of (0,0) simplices, F●,● sends a vertex

s ∈ SSpc,

thought of the space of (0,0)-simplices in (SqPair
●,● (S2 -op,C))vert-op, to

F (s) ∈ TSpc = Sq0,0(T).

1.4.7. At the level of (0,1) simplices, F●,● sends

(s0
α→ s1) ∈ (Seq1(S))Spc,

thought of the space of (0,1)-simplices in (SqPair
●,● (S2 -op,C))vert-op, to

(F (s0)
F (α)Ð→ F (s1)) ∈ (Seq1(T))Spc = Sq0,1(T).

502 12. ADJUNCTIONS IN (∞,2)-CATEGORIES

1.4.8. At the level of (1,0) simplices, F●,● sends

(s0
α→ s1) ∈ Seq1(C),

thought of the space of (1,0)-simplices in (SqPair
●,● (S2 -op,C))vert-op, to

(F (s1)
F (α)LÐ→ F (s0)) ∈ (Seq1(T))Spc = Sq1,0(T),

where F (α)L is the left adjoint of F (α).
1.4.9. At the level of (1,1) simplices, F●,● sends a point

(1.17) s0,0 s0,1

s1,0 s1,1

α0 //

β0

��

β1

��
α1

//
{�

φ

in SqPair
1,1 (S2 -op,C), thought of as a (1,1)-simplex in (SqPair

●,● (S2 -op,C))vert-op to the
element of Sq1,1(T), given by the diagram

F (s1,0) F (s1,1)

F (s0,0) F (s0,1),

F (α1)//

F (β0)L

��

F (β1)L

��

F (α0)
//

{�

ψ

where the 2-morphism

ψ ∶ F (β1)L ○ F (α1)→ F (α0) ○ F (β0)L,
is obtained from

φ ∶ F (α1) ○ F (β0)→ F (β1) ○ F (α0)
by adjunction. (Note the direction in which φ goes–this is due to the fact that

(1.17) was a (1,1)-simplex in SqPair
1,1 (S2 -op,C), i.e., we inverted the 2-morphisms in

S.)

2. Proof of Theorem 1.2.4

We will first prove Theorem 1.2.4 in the case when the target (∞,2)-category
is 1 -Cat, and then reduce to this case using the Yoneda embedding of Chapter 11,
Sect. 6.3.

The idea of the proof in the case of T = 1 -Cat is the following.

Consider the 2-category [m,n] ∶= [m] ⊛ [n]. Let C be the 1-full subcategory
in [m,n]1 -Cat, corresponding to the horizontal direction (i.e., the 2nd coordinate).
The main observation is that the corresponding space Maps2 -Cat(S,1 -Cat)RC can
be described very explicitly.

Namely, this is the space of functors

[m]→ biCart/[n]op ,

2. PROOF OF THEOREM 1.2.4 503

where biCart/I denoted the category of bi-Caretsian fibrations over a given (∞,1)-
category I, i.e.,

biCart/I = Cart/I ∩ coCart/I ⊂ 1 -Cat/I .

2.1. The swapping procedure. In this subsection we will make a (relatively
elementary) observation pertaining to (∞,1)-categories that lies in the heart of the
proof of Theorem 1.2.4 for the target T = 1 -Cat.

2.1.1. Let I and J be (∞,1)-categories. Consider the following (∞,1)-category,
denoted

Cart-coCartI,J .

This is the full subcategory of 1 -Cat/I×J, that consists of those (∞,1)-categories C
over I × J that satisfy:

● The composite functor C→ I × J→ I is a Cartesian fibration;
● The functor C → I × J, viewed as a functor between Cartesian fibra-

tions over I, sends Cartesian arrows to Cartesian arrows (i.e., belongs to
(Cart/I)strict);

● The composite functor C→ I × J→ J is a coCartesian fibration;
● The functor C→ I×J, viewed as a functor between coCartesian fibrations

over J, sends coCartesian arrows to coCartesian arrows (i.e., belongs to
(coCart/J)strict);.

2.1.2. The first two conditions define a 1-fully faithful embedding

Cart-coCartI,J ↪ Funct(Iop,1 -Cat/J),
and the second two conditions imply that it factors as

Cart-coCartI,J ↪ Funct(Iop, coCart/J).

Similarly, we have a 1-fully faithful embedding

Cart-coCartI,J ↪ Funct(J,Cart/I).

We claim:

Proposition 2.1.3. The induced maps

(Cart-coCartI,J)Spc →Maps(Iop, coCart/J)
and

(Cart-coCartI,J)Spc →Maps(J,Cart/I)
are isomorphisms.

Proof. We will prove the first isomorphism, the second being similar. The
inverse map is constructed as follows: given

Iop → 1 -Cat/J,

we tautologically construct a Cartesian fibration C → I, equipped with a functor
C→ I × J that takes Cartesian arrows to Cartesian arrows.

We need to show that if the initial map takes values in coCart/J ⊂ 1 -Cat/J, then
the resulting functor C → J is a coCartesian fibration, and the functor C → I × J,
viewed as a functor between coCartesian fibrations over J, sends coCartesian arrows
to coCartesian arrows. This is a straightforward verification.

�

504 12. ADJUNCTIONS IN (∞,2)-CATEGORIES

Corollary 2.1.4. There exists a canonical isomorphism

Maps1 -Cat(Iop, coCart/J) ≃ Maps1 -Cat(J,Cart/I).

2.2. Proof of Theorem 1.2.4 for T = 1 -Cat.

2.2.1. The datum of a functor

S→ 1 -Cat,

is equivalent to that of a functor

S2 -op → (1 -Cat)2 -op,

which by Chapter 10, Corollary 4.4.5, is equivalent to the datum of a bi-simplicial
map

SqPair
●,● (S2 -op,C)→ Sq●,●((1 -Cat)2 -op),

and finally a map

(2.1) SqPair
●,● (S2 -op,C)→ (Sq●,●(1 -Cat))reflect.

2.2.2. The datum of a functor

SRC → 1 -Cat

is equivalent to that of a bi-simplicial map

(2.2) SqPair
●,● (S2 -op,C)→ (Sq●,●(1 -Cat))vert-op.

2.2.3. Recall that the space Sqm,n(1 -Cat) is described as

Maps1 -Cat([m],Cart/[n]op).

Hence, the space of (m,n)-simplices of (Sq●,●(1 -Cat))reflect is described as

Maps1 -Cat([n],Cart/[m]op).

We claim that a functor

S→ 1 -Cat,

belongs to Maps(S,1 -Cat)RC if and only if each of the maps

SqPair
m,n(S2 -op,C))→Maps1 -Cat([n],Cart/[m]op)

takes values in

Maps1 -Cat([n],biCart/[m]op) ⊂ Maps1 -Cat([n],Cart/[m]op),

where for I ∈ 1 -Cat, we let biCartI denote the full subcategory of 1 -Cat/I equal to

Cart/I ∩ coCart/I .

Indeed, this assertion can be checked at the level of the underlying ordinary
1-categories, in which case it is a straightforward verification.

2. PROOF OF THEOREM 1.2.4 505

2.2.4. The space of (m,n)-simplices of (Sq●,●(1 -Cat))vert-op is described as

Maps1 -Cat([m]op,Cart/[n]op).

We claim that for every functor

SRC → 1 -Cat,

then each of the maps

SqPair
m,n(S2 -op,C)→Maps1 -Cat([m]op,Cart/[n]op)

Corollary 2.1.4≃ Maps1 -Cat([n], coCart/[m]op)

takes values in

Maps1 -Cat([n],biCart/[m]op) ⊂ Maps1 -Cat([n], coCart/[m]op).

Indeed, this assertion can be checked at the level of the underlying ordinary
1-categories, in which case it follows from the validity of Theorem 1.2.4 with values
in 1 -Catordn.

2.2.5. Hence, when considering the bi-simplicial maps (2.1) and (2.2) we can re-
place the bi-simplicial spaces

(Sq●,●(1 -Cat))reflect and (Sq●,●(1 -Cat))vert-op

by their common full bi-simplicial subspace

(2.3) ′(Sq●,●(1 -Cat))reflect ≃ ′(Sq●,●(1 -Cat))vert-op,

(m,n)↦Maps1 -Cat([n],biCart/[m]op).

Thus, we obtain that the datum of a bi-simplicial map in (2.1) is equivalent to
the datum of a bi-simplicial map in (2.2), thereby establishing an isomorphism

Maps2 -Cat(S,1 -Cat)RC ≃ Maps2 -Cat(SRC ,1 -Cat).

2.2.6. Finally, it follows from the construction, that the composed map

Maps2 -Cat(S,1 -Cat)RC ≃ Maps2 -Cat(SRC ,1 -Cat) (1.2)Ð→ Maps2 -Cat(S,1 -Cat)

is the tautological embedding

Maps2 -Cat(S,1 -Cat)RC ↪Maps2 -Cat(S,1 -Cat).

This shows that the map

Maps2 -Cat(SRC ,1 -Cat) (1.2)Ð→ Maps2 -Cat(S,1 -Cat)

is an isomorphism onto Maps2 -Cat(S,1 -Cat)RC , as required.

2.3. Swapping procedure: relative version. The contents of this subsection
are needed in order to generalize the contents of Sect. 2.2 to the case when instead
of the target (∞,2)-category 1 -Cat, we are dealing with

Funct(I⊛ J,1 -Cat), I,J ∈ 1 -Cat .

506 12. ADJUNCTIONS IN (∞,2)-CATEGORIES

2.3.1. For I,J ∈ 1 -Cat we let
Cart-CartI,J

be the full subcategory of 1 -Cat/I×J that consists of objects C → I × J satisfying
the following conditions:

● The composite functor C→ I × J→ I is a Cartesian fibration;
● The functor C → I × J, viewed as a functor between Cartesian fibrations

over I sends coCartesian arrows to Cartesian ones;
● For every i ∈ I, the resulting functor Ci → J is a Cartesian fibration.

Unstraightening over I defines an equivalence

Maps1 -Cat(Iop,Cart/J) ≃ (Cart-CartI,J)Spc.

2.3.2. For a triplet of (∞,1)-categories J,K,L let

Cart-Cart-CartJ,K,L

denote the full subcategory of 1 -Cat/J×K×L that consists of objects C→ J ×K ×L
satisfying the following conditions:

● When viewed as a category over K × (J ×L), it belongs to CartK,J×L;
● For every fixed l ∈ L, the category Cl is a Cartesian fibration over J ×K.

Let
(Cart-Cart-CartJ,K,L)strict ⊂ Cart-Cart-CartJ,K,L

be the following 1-full subcategory: Given two objects C,C′ ∈ Cart-Cart-CartJ,K,L,
we restrict 1-morphisms to those functors F ∶ C→C′ over J ×K ×L that:

● For every fixed j ∈ J and l ∈ L, the corresponding functor Fj,l ∶ Cj,l →C′
j,l

carries arrows Cartesian over K to arrows Cartesian over K.
● For every fixed j ∈ J and k ∈ K, the corresponding functor Fj,k ∶ Cj,k →

C′
j,k carries arrows Cartesian over L to arrows Cartesian over L.

For another category I, consider the goupoid

Maps(I, (Cart-Cart-CartJ,K,L)strict).
We shall now describe it in several different ways.

2.3.3. Let coCart-Cart-CartJ,K,L denote the full subcategory of 1 -Cat/J×K×L that
consists of objects C→ J ×K ×L satisfying the following conditions:

● The composite functor C→ J ×K ×L→ J is a coCartesian fibration;
● The functor C → J ×K × L, when viewed as a map between coCartesian

fibrations over J, sends coCartesian arrows to coCartesian ones;
● For every j ∈ J, the resulting object Cj ∈ 1 -CatK×L belongs to Cart-Cart/K×L;
● For every fixed k ∈ K and an arrow j0 → j1 in J, the resulting functor

Cj0,k →Cj1,k carries arrows Cartesian over L to arrows Cartesian over L.
● For every fixed l ∈ L and an arrow j0 → j1 in J, the resulting functor

Cj0,l →Cj1,l carries arrows Cartesian over K to arrows Cartesian over K.

Let
(coCart-Cart-CartJ,K,L)strict ⊂ coCart-Cart-CartJ,K,L

be the following 1-full subcategory: Given two objects C,C′ ∈ Cart-Cart-CartJ,K,L,
we restrict 1-morphisms to those functors F ∶ C→C′ over J ×K ×L that:

● For any fixed j ∈ J and l ∈ L, the corresponding functor Fj,l ∶ Cj,l → C′
j,l

carries arrows Cartesian over K to arrows Cartesian over K.

2. PROOF OF THEOREM 1.2.4 507

● For any fixed j ∈ J and k ∈ K the corresponding functor Fj,k ∶ Cj,k →C′
j,k

carries arrows Cartesian over L to arrows Cartesian over L.

For another category I, consider the goupoid

Maps(I, (coCart-Cart-CartJ,K,L)strict).

2.3.4. Now, we claim that as in Corollary 2.1.4 we have a canonical isomorphism:

(2.4)
Maps(J, (Cart-Cart-CartI,K,L)strict) ≃ Maps(Iop, (coCart-Cart-CartJ,K,L)strict).

This is obtained by identifying both sides with the space of the full subcategory

Cart-coCart-Cart-CartI,J,K,L ⊂ 1 -CatI×J×K×L,

consisting of C over I × J ×K ×L that satisfy:

● The composite functor C→ I × J ×K ×L→ J is a coCartesian fibration;
● The functor C→ I×J×K×L, when viewed as a map between coCartesian

fibrations over J, sends coCartesian arrows to coCartesian ones;
● For every j ∈ J, the resulting object Cj ∈ 1 -CatI×K×L belongs to Cart-Cart-Cart/I×K×L;
● For every fixed k ∈ K, i ∈ I and an arrow j0 → j1 in J, the resulting functor

Ci,j0,k →Ci,j1,k carries arrows Cartesian over L to arrows Cartesian over
L.

● For every fixed l ∈ L, i ∈ I and an arrow j0 → j1 in J, the resulting functor
Ci,j0,l →Ci,j1,l carries arrows Cartesian over K to arrows Cartesian over
K.

2.3.5. Finally, we claim that the space

Maps(I, (Cart-Cart-CartJ,K,L)strict)

can be also identified with the space of the following full subcategory

Cart-Cart-Cart-CartIop,J,K,L ⊂ 1 -CatIop×J×K×L .

Namely, for quadruplet of (∞,1)-categories I,J,K,L, we define Cart-Cart-Cart-CartI,J,K,L

to consist of those C over I × J ×K ×L that satisfy:

● When viewed as a category over (I×K)×(J×L), it belongs to Cart-CartI×K,J×L;
● For every fixed i ∈ I and l ∈ L, the resulting functor Ci,l → J × K is a

Cartesian fibration;
● For every fixed j ∈ J and k ∈ K, the resulting functor Cj,k → I × L is a

Cartesian fibration.

2.4. Adjunctions: relative version. Let us fix another pair of (∞,1)-categories
K and L. We will now explain the modifications needed to adapt the above proof
of Theorem 1.2.4 for T = 1 -Cat to the case when T = Funct(K⊛L,1 -Cat).

508 12. ADJUNCTIONS IN (∞,2)-CATEGORIES

2.4.1. First, we claim that the bi-simplicial space Sq(Funct(K ⊛ L,1 -Cat)) is
described as follows:
(2.5)

Sqm,n(Funct(K⊛L,1 -Cat)) ≃ Maps([m], (Cart-Cart-Cart[n]op,Kop,Lop)strict),

where the notation (Cart-Cart-Cart[n]op,Kop,Lop)strict is as in Sect. 2.3.2.

Assuming that, the proof in Sect. 2.2 goes through, once we substitute the
isomorphism of Corollary 2.1.4 by that of (2.4).

2.4.2. To establish (2.5), we proceed as follows. We rewrite

Sqm,n(Funct(K⊛L,1 -Cat)) = Maps(([m]⊛ [n]) × (K⊛L),1 -Cat),

and further by Chapter 11, Corollary 2.2.6 as

(1 -Cart/(([m]⊛[n])×(K⊛L))1 -op)Spc ≃ (1 -Cart/([n]op⊛[m]op)×(Lop⊛Kop))Spc.

Now, using Chapter 11, Lemmas 2.2.5 and 2.2.8 and Corollary 4.6.5, we obtain

(1 -Cart/([n]op⊛[m]op)×(Lop⊛Kop))Spc ≃ (Cart-Cart-Cart-Cart[m]op,[n]op,Kop,Lop)Spc,

and finally, using Sect. 2.3.5, we identify

(Cart-Cart-Cart-Cart[m]op,[n]op,Kop,Lop)Spc ≃ Maps([m], (Cart-Cart-Cart[n]op,Kop,Lop)strict),

as required.

2.5. Proofs of Theorem 1.2.4, the general case. The proof will amount to
deducing Theorem 1.2.4 from the particular case of T = Funct([m] ⊛ [n],1 -Cat)
using the 2-categorical Yoneda embedding.

2.5.1. For a target category T we consider its Yoneda embedding

T YonT↪ Funct(T1 -op,1 -Cat).

Consider the commutative diagram

Maps2 -Cat(SRC ,T) ÐÐÐÐ→ Maps2 -Cat(S,T)RC

×××Ö
×××Ö

Maps2 -Cat (SRC ,Funct(T1 -op,1 -Cat)) ÐÐÐÐ→ Maps2 -Cat (S,Funct(T1 -op,1 -Cat))RC
,

where the vertical arrows are fully faithful embeddings.

We claim that it is sufficient to show that the bottom arrow in the above
diagram, i.e.,
(2.6)

Maps2 -Cat (SRC ,Funct(T1 -op,1 -Cat))→Maps2 -Cat (S,Funct(T1 -op,1 -Cat))RC
,

is an isomorphism.

2. PROOF OF THEOREM 1.2.4 509

2.5.2. Indeed, if this is the case, we obtain that the functor

Maps2 -Cat(SRC ,T)→Maps2 -Cat(S,T)RC

is fully faithful, and it remains to show that it is essentially surjective.

This follows from the next general assertion:

Lemma 2.5.3. Let T1 ↪ T2 be a fully faithful functor. Then the diagram of
spaces

Maps2 -Cat(SRC ,T1) ÐÐÐÐ→ Maps2 -Cat(SRC ,T2)
×××Ö

×××Ö
Maps2 -Cat(S,T1) ÐÐÐÐ→ Maps2 -Cat(S,T2)

is a pull-back square.

Proof. Let us be given a functor SRC → T2, such that the composition

S→ SRC → T2

factors through T1 ⊂ T2. We wish to show that the initial functor also factors
through T1 ⊂ T2.

Consider the corresponding map of bi-simplicial spaces

(SqPair
●,● (S2 -op,C))vert-op → Sq●,●(T2).

We wish to show that it takes values in Sq●,●(T1) ⊂ Sq●,●(T2).
The latter is enough to check on (0,0)-simplicies, and the assertion follows from

the assumption as

Sq∼0,0(S)→ (SqPair
0,0 (S2 -op,C))vert-op

is an isomorphism.
�

2.5.4. Thus, we wish to show that for S,T ∈ 2 -Cat, the map

Maps2 -Cat (SRC ,Funct(T,1 -Cat))→Maps2 -Cat (S,Funct(T,1 -Cat))
is an isomorphism with essential image

Maps2 -Cat (S,Funct(T,1 -Cat))RC ⊂ Maps2 -Cat (S,Funct(T,1 -Cat)) .

2.5.5. For any S′ ∈ 2 -Cat, the space Maps2 -Cat (S′,Funct(T,1 -Cat)) can be de-
scribed as that of bi-simplicial functors

Sq●,●(T)→ Sq●,● (Funct(S′,1 -Cat)) .

Note that the bi-simplicial space Sq●,● (Funct(S′,1 -Cat)) identifies with

Maps2 -Cat (S′,Funct([●]⊛ [●],1 -Cat)) ,
where the bi-simplicial (∞,2)-category Funct([●] ⊛ [●],1 -Cat) attaches to m,n
the (∞,2)-category

Funct([m]⊛ [n],1 -Cat).

510 12. ADJUNCTIONS IN (∞,2)-CATEGORIES

2.5.6. Note that under the above identification

Maps2 -Cat (S,Funct(T,1 -Cat)) ≃
≃ MapsSpc∆op×∆op (Sq●,●(T),Maps2 -Cat (S,Funct([●]⊛ [●],1 -Cat))) ,

the subspace

Maps2 -Cat (S,Funct(T,1 -Cat))RC ⊂ Maps (S,Funct(T,1 -Cat))
maps to

(2.7) MapsSpc∆op×∆op (Sq●,●(T),Maps2 -Cat (S,Funct([●]⊛ [●],1 -Cat))RC) ⊂

⊂ MapsSpc∆op×∆op (Sq●,●(T),Maps2 -Cat (S,Funct([●]⊛ [●],1 -Cat))) .

Hence, we obtain that it is enough to show that the map

MapsSpc∆op×∆op (Sq●,●(T),Maps2 -Cat (SRC ,Funct([●]⊛ [●],1 -Cat)))→
→MapsSpc∆op×∆op (Sq●,●(T),Maps2 -Cat (S,Funct([●]⊛ [●],1 -Cat))))

is an isomorphism onto the subspace (2.7).

2.5.7. To prove the latter, it is sufficient to show that for every m,n, the map

Maps2 -Cat (SRC ,Funct([m]⊛ [n],1 -Cat))→Maps2 -Cat (S,Funct([m]⊛ [n],1 -Cat)))
is an isomorphism onto

Maps2 -Cat (S,Funct([m]⊛ [n],1 -Cat))RC ⊂ Maps2 -Cat (S,Funct([m]⊛ [n],1 -Cat)) .

2.5.8. However, the latter statement is the assertion of Theorem 1.2.4 for the
target category Funct([m]⊛ [n],1 -Cat), and it holds due to Sect. 2.4.

3. Adjunction with parameters

Our current goal is to lift the isomorphism of spaces

Maps2 -Cat(S,T)R ≃ Maps2 -Cat(S1&2-op,T)L,
which is part of the statement of Corollary 1.3.4 to an equivalence of (∞,2)-
categories

(3.1) Funct(S,T)Rright-lax ≃ Funct(S1&2-op,T)Lleft-lax.

3.1. The set-up for adjunction with parameters. By definition, for an (∞,2)-
category X, we have

Maps2 -Cat(X,Funct(S,T)right-lax) = Maps2 -Cat(X⊛ S,T)
and

Maps2 -Cat(X,Funct(S1&2-op,T)left-lax) = Maps2 -Cat(S1&2-op ⊛X,T).

Hence, we have the subspaces

(3.2) Maps2 -Cat(X⊛ S,T)SR ⊂ Maps2 -Cat(X⊛ S,T)
and

(3.3) Maps2 -Cat(S1&2-op ⊛X,T)SL ⊂ Maps2 -Cat(S1&2-op ⊛X,T),

3. ADJUNCTION WITH PARAMETERS 511

corresponding to

Maps2 -Cat(X,Funct(S,T)Rright-lax) ⊂ Maps2 -Cat(X,Funct(S,T)right-lax)

and

Maps2 -Cat(X,Funct(S1&2-op,T)Lleft-lax) ⊂ Maps2 -Cat(X,Funct(S1&2-op,T)left-lax),

respectively.

We will interpret the subspaces (3.2) and (3.3) via the universal adjointable
functors of Theorem 1.2.4, which will allow to construct the desired equivalence

Maps2 -Cat(X⊛ S,T)SR ≃ Maps2 -Cat(S1&2-op ⊛X,T)SL .

3.1.1. We start with a pair of (∞,2)-categories S1 and S2, and consider their Gray
product S1 ⊛ S2

We let C1 be the 1-full subcategory in (S1 ⊛ S2)1 -Cat, corresponding to 1-
morphisms of the form

(s1, s2)
(α,id)Ð→ (s′1, s2), α ∈ MapsS(s1, s

′
1).

We let C2 be the 1-full subcategory in (S1 ⊛ S2)1 -Cat, corresponding to 1-
morphisms of the form

(s1, s2)
(id,β)Ð→ (s1, s

′
2), β ∈ MapsS(s2, s

′
2).

Consider the corresponding (∞,2)-categories

(S1 ⊛ S2)RS2 ∶= (S1 ⊛ S2)RC2 and (S1 ⊛ S2,T)LS1 ∶= (S1 ⊛ S2)RC1 ,

see Sect. 1.2.1.

3.1.2. For another (∞,2)-category, let

Maps(S1 ⊛ S2,T)RS2 ∶= Maps(S1 ⊛ S2,T)RC2

and

Maps(S1 ⊛ S2,T)LS1 ∶= Maps(S1 ⊛ S2,T)LC1

denote the corresponding full subspaces, see Sect. 1.1.8.

3.1.3. Consider the bi-simplicial space

(Sq∼●,●(S1 -op
2))reflect × Sq∼●,●(S1).

Recall (see Chapter 10, Formula (4.6)), there is a canonically defined map

(3.4) (Sq∼●,●(S1 -op
2))reflect × Sq∼●,●(S1)→ Sq●,●(S1&2-op

2 ⊛ S1).

Moreover, by Chapter 10, Proposition 4.5.4, the map

(3.5) LSq ((Sq∼●,●(S1 -op
2))reflect × Sq∼●,●(S1))→ S1&2-op

2 ⊛ S1,

obtained from (3.4) by adjunction, is an isomorphism.

512 12. ADJUNCTIONS IN (∞,2)-CATEGORIES

3.1.4. We claim that there is a canonically defined map

(3.6) LSq ((Sq∼●,●(S1 -op
2))reflect × Sq∼●,●(S1))→ (S1 ⊛ S2)RS2 .

Indeed, using Chapter 10, Formula (4.6) again, we obtain a map

(Sq∼●,●(S2))reflect × Sq∼●,●(S2 -op
1)→ Sq●,●(S2 -op

2 ⊛ S2 -op
1).

However, it follows by unwinding the construction, that the essential image of
the latter map belongs to the full subspace

SqPair
●,● (S2 -op

2 ⊛ S2 -op
1 ,C2) ⊂ Sq●,●(S2 -op

2 ⊛ S2 -op
1)

thereby giving rise to a map

(3.7) (Sq∼●,●(S2))reflect × Sq∼●,●(S2 -op
1)→ SqPair

●,● (S2 -op
2 ⊛ S2 -op

1 ,C2)
Now, the sought-for map (3.6) is given by applying LSq to the composite map

(3.8)

(Sq∼●,●(S1 -op
2))reflect×Sq∼●,●(S1) ≃ ((Sq∼●,●(S2))horiz-op)reflect×(Sq∼●,●(S2 -op

1))vert-op ≃

≃ ((Sq∼●,●(S2))reflect × Sq∼●,●(S2 -op
1))vert-op (3.7)Ð→ ((SqPair

●,● (S2 -op
2 ⊛ S2 -op

1 ,C2))
vert-op ≃

≃ ((SqPair
●,● ((S1 ⊛ S2)2 -op,C2))

vert-op
.

3.1.5. We claim:

Theorem 3.1.6. The composition

Maps(S1 ⊛ S2,T)RS2 ≃ Maps((S1 ⊛ S2)RS2 ,T) (3.6)Ð→

→Maps (LSq ((Sq∼●,●(S1 -op
2))reflect × Sq∼●,●(S1)) ,T))

(3.5)
≃ Maps(S1&2-op

2 ⊛ S1,T)
is fully faithful with essential image equal to

Maps(S1&2-op
2 ⊛ S1,T)

L
S1&2-op
2 ⊂ Maps(S1&2-op

2 ⊛ S1,T).

As a corollary, we obtain:

Corollary 3.1.7. There exists a canonical isomorphism

Maps(S1 ⊛ S2,T)RS2 ≃ Maps(S1&2-op
2 ⊛ S1,T)

L
S1&2-op
2 .

3.1.8. Since the equivalence of Corollary 3.1.7 is by construction functorial in
S1 ∈ 2 -Cat, we obtain:

Corollary 3.1.9. For S,T ∈ 2 -Cat, the isomorphism of (1.10) upgrades to an
equivalence of (∞,2)-categories

Funct(S,T)Rright-lax ≃ Funct(S1&2-op,T)Lleft-lax.

3.2. Proof of Theorem 3.1.6. We will give a proof in the particular case when
the target category T is 1 -Cat. The general case is deduced by the same procedure
as one employed in Sect. 2.5.

3.2.1. First, we claim that the assertion holds for 1 -Cat replaced by 1 -Catordn,
i.e., when we consider functors from S2-op (resp., SL) with values in ordinary 2-
categories. This can be checked directly as in Sect. 1.4.

3. ADJUNCTION WITH PARAMETERS 513

3.2.2. The datum of a map

LSq ((Sq∼●,●(S1 -op
2))reflect × Sq∼●,●(S1))→ 1 -Cat

is equivalent to the datum of a map of bi-simplicial spaces

(Sq∼●,●(S1 -op
2))reflect × Sq∼●,●(S1)→ Sq●,●(1 -Cat),

or equivalently

((Sq∼●,●(S1 -op
2))reflect × Sq∼●,●(S1))

vert-op → (Sq●,●(1 -Cat))vert-op
.

3.2.3. Let us describe the subspace

MapsSpc∆op×∆op (((Sq∼●,●(S1 -op
2))reflect × Sq∼●,●(S1))

vert-op
, (Sq●,●(1 -Cat))vert-op)

L
S1&2-op
2 ⊂

⊂ MapsSpc∆op×∆op (((Sq∼●,●(S1 -op
2))reflect × Sq∼●,●(S1))

vert-op
, (Sq●,●(1 -Cat))vert-op)

that corresponds to

Maps2 -Cat(S1&2-op
2 ⊛ S1,1 -Cat)

L
S1&2-op
2 ⊂ Maps2 -Cat(S1&2-op

2 ⊛ S1,1 -Cat)
(3.5)
≃

MapsSpc∆op×∆op ((Sq∼●,●(S1 -op
2))reflect × Sq∼●,●(S1),Sq●,●(1 -Cat)) ≃

≃ MapsSpc∆op×∆op (((Sq∼●,●(S1 -op
2))reflect × Sq∼●,●(S1))

vert-op
, (Sq●,●(1 -Cat))vert-op)

Namely, we claim that

MapsSpc∆op×∆op (((Sq∼●,●(S1 -op
2))reflect × Sq∼●,●(S1))

vert-op
, (Sq●,●(1 -Cat))vert-op)

L
S1&2-op
2 =

= MapsSpc∆op×∆op (((Sq∼●,●(S1 -op
2))reflect × Sq∼●,●(S1))

vert-op
,′(Sq●,●(1 -Cat))vert-op) ,

where
′(Sq●,●(1 -Cat))vert-op ⊂ (Sq●,●(1 -Cat))vert-op

is as in (2.3).

Indeed, this assertion can be checked at the level of of ordinary categories,
where it is a straightforward verification.

3.2.4. To summarize, we obtain a canonical identification

(3.9) Maps2 -Cat(S1&2-op
2 ⊛ S1,1 -Cat)

L
S1&2-op
2 ≃

≃ MapsSpc∆op×∆op (((Sq∼●,●(S1 -op
2))reflect × Sq∼●,●(S1))

vert-op
,′(Sq●,●(1 -Cat))vert-op) .

3.2.5. According to Chapter 10, Proposition 4.5.4, the datum of a map

S1 ⊛ S2 → 1 -Cat

is equivalent to the datum of a bi-simplicial map

(Sq∼●,●(S2 -op
1))reflect × Sq∼●,●(S2)→ Sq●,●(1 -Cat),

or, equivalently,

((Sq∼●,●(S2 -op
1))reflect × Sq∼●,●(S2))

reflect → (Sq●,●(1 -Cat))reflect
.

514 12. ADJUNCTIONS IN (∞,2)-CATEGORIES

3.2.6. Let us describe the subspace

MapsSpc∆op×∆op (((Sq∼●,●(S2 -op
1))reflect × Sq∼●,●(S2))

reflect
, (Sq●,●(1 -Cat))reflect)

RS2
⊂

MapsSpc∆op×∆op (((Sq∼●,●(S2 -op
1))reflect × Sq∼●,●(S2))

reflect
, (Sq●,●(1 -Cat))reflect)

that corresponds to

Maps2 -Cat(S1 ⊛ S2,1 -Cat)RS2 ⊂ Maps2 -Cat(S1 ⊛ S2,1 -Cat).

Namely, we claim that

MapsSpc∆op×∆op (((Sq∼●,●(S2 -op
1))reflect × Sq∼●,●(S2))

reflect
, (Sq●,●(1 -Cat))reflect)

RS2
=

MapsSpc∆op×∆op (((Sq∼●,●(S2 -op
1))reflect × Sq∼●,●(S2))

reflect
, ′(Sq●,●(1 -Cat))reflect) ,

where
′(Sq●,●(1 -Cat))reflect ⊂ (Sq●,●(1 -Cat))reflect

is an in (2.3).

Indeed, this assertion can be checked at the level of of ordinary categories,
where it is a straightforward verification.

3.2.7. To summarize, we obtain a canonical identification

(3.10) Maps2 -Cat(S1 ⊛ S2,1 -Cat)RS2 ≃

≃ MapsSpc∆op×∆op (((Sq∼●,●(S2 -op
1))reflect × Sq∼●,●(S2))

reflect
, ′(Sq●,●(1 -Cat))reflect)

3.2.8. Note that we have a tautological identification:

((Sq∼●,●(S1 -op
2))reflect × Sq∼●,●(S1))

vert-op ≃ ((Sq∼●,●(S2 -op
1))reflect × Sq∼●,●(S2))

reflect
.

Hence, from the isomorphisms (3.9) and (3.10) and the isomorphism

′(Sq●,●(1 -Cat))vert-op ≃ ′(Sq●,●(1 -Cat))reflect
,

we obtain an identification

(3.11) Maps2 -Cat(S1&2-op
2 ⊛ S1,1 -Cat)

L
S1&2-op
2 ≃ Maps2 -Cat(S1 ⊛ S2,1 -Cat)RS2 .

3.2.9. Consider now the map

Maps2 -Cat(S1 ⊛ S2,1 -Cat)RS2
(1.2)Ð→ Maps2 -Cat((S1 ⊛ S2)RS2 ,1 -Cat) (3.6)Ð→

→MapsSpc∆op×∆op ((Sq∼●,●(S1 -op
2))reflect × Sq∼●,●(S1),1 -Cat))

that appears in Theorem 3.1.6.

4. AN ALTERNATIVE PROOF 515

It follows from the construction that it equals the composition

Maps2 -Cat(S1 ⊛ S2,1 -Cat)RS2
(3.10)
≃

≃ MapsSpc∆op×∆op (((Sq∼●,●(S2 -op
1))reflect × Sq∼●,●(S2))

reflect
, ′(Sq●,●(1 -Cat))reflect) =

= MapsSpc∆op×∆op (((Sq∼●,●(S2 -op
1))reflect × Sq∼●,●(S2))

reflect
, ′(Sq●,●(1 -Cat))vert-op)↪

↪MapsSpc∆op×∆op (((Sq∼●,●(S2 -op
1))reflect × Sq∼●,●(S2))

reflect
, (Sq●,●(1 -Cat))vert-op) ≃

≃ MapsSpc∆op×∆op ((((Sq∼●,●(S2 -op
1))reflect × Sq∼●,●(S2))

reflect)
vert-op

,Sq●,●(1 -Cat)) ≃

≃ MapsSpc∆op×∆op ((Sq∼●,●(S1 -op
2))reflect × Sq∼●,●(S1),Sq●,●(1 -Cat)) ,

thus implying the assertion of the theorem.

4. An alternative proof

In this section we will give an alternative proof of Theorem 1.2.4 and Corol-
lary 3.1.7.

4.1. An alternative proof of Corollary 3.1.7 for T = 1 -Cat. This proof will
make a substantial use of the unstraightening equivalence of Chapter 11, Corollary
1.2.6.

We need to show that for S1,S2 ∈ 2 -Cat there exists a canonical isomorphism

(4.1) Maps(S1 ⊛ S2,1 -Cat)RS2 ≃ Maps(S1&2-op
2 ⊛ S1,1 -Cat)

L
S1&2-op
2 .

4.1.1. For a given (∞,2)-category S, recall the full subcategory

1 -Cart/S ⊂ 2 -Cat/S,

see Chapter 11, Sect. 1.2.3.

We let 1 -biCart/S be the full subcategory of 1 -Cart/S that consists of objects
that under the equivalence

2 -Cat/S ≃ (2 -Cat/S1 -op)2 -op, T↦ T1 -op

corresponds to

1 -Cart/S1 -op ⊂ 2 -Cat/S1 -op .

We have a tautological fully faithful embedding

(4.2) 1 -biCart/S ↪ (1 -Cart/S1 -op)2 -op.

516 12. ADJUNCTIONS IN (∞,2)-CATEGORIES

4.1.2. By definition, the left-hand side in (4.1) is a full subspace in

Maps(S1 ⊛ S2,1 -Cat) ≃ Maps(S1,Funct(S2,1 -Cat)right-lax),

which we rewrite, using Chapter 11, Corollary 1.2.6, as

Maps(S1,1 -Cart/S1 -op
2

).

Now, it follows from the definitions that the full subspace in question corre-
sponds to

Maps(S1,1 -biCart/S1 -op
2

).

4.1.3. Similarly, the right-hand side in (4.1) is a full subspace in

Maps(S1&2-op
2 ⊛ S1,1 -Cat) ≃ Maps(S2 -op

1 ⊛ S1-op
2 ,1 -Cat2 -op) ≃
≃ Maps(S2 -op

1 ⊛ S1-op
2 ,1 -Cat),

where the last isomorphism comes from the identification 1 -Cat ≃ 1 -Cat2 -op given
by T↦ T1 -op.

We rewrite

Maps(S2 -op
1 ⊛ S1-op

2 ,1 -Cat) ≃ Maps(S2 -op
1 ,Funct(S1-op

2 ,1 -Cat)right-lax),

and further, using Chapter 11, Corollary 1.2.6, as

Maps(S2 -op
1 ,1 -Cart/S2) ≃ Maps(S1, (1 -Cart/S2)2 -op).

It again follows from the definitions that the right-hand side of (4.1), viewed
as a full subspace in Maps(S1, (1 -Cart/S2)2 -op) equals to

Maps(S1, (1 -biCart/S1 -op
2

)) ⊂ Maps(S1, (1 -Cart/S2)2 -op)

with respect to the fully faithful embedding (4.2).

4.1.4. Comparing the descriptions of the left-hand side and the right-hand side of
(4.1), given in Sects. 4.1.2 and 4.1.3 above, we obtain the desired isomorphism.

�

4.2. An alternative proof of Corollary 3.1.7 for a general T. We need to
show that for S1,S2,T ∈ 2 -Cat there exists a canonical isomorphism

(4.3) Maps(S1 ⊛ S2,T)RS2 ≃ Maps(S1&2-op
2 ⊛ S1,T)

L
S1&2-op
2 .

4.2.1. Note that the above isomorphism is equivalent to Corollary 3.1.9:

Funct(S,T)Rright-lax ≃ Funct(S1&2-op,T)Lleft-lax.

In particular, we recover the isomorphism of spaces

Maps2 -Cat(S,T)Rright-lax ≃ Maps2 -Cat(S1&2-op,T)Lleft-lax

of (1.10).

4. AN ALTERNATIVE PROOF 517

4.2.2. We start with the following lemma:

Lemma 4.2.3. Let T be an (∞,2)-category, and let α ∶ t0 → t1 be a 1-morphism.
Then α admits a left adjoint if and only if the following two conditions hold:

(i) For every s ∈ T, the resulting functor of (∞,1)-categories

MapsT(s, t)
α○−Ð→MapsT(s, t′)

admits a left adjoint;

(ii) The Beck-Chevalley condition is satisfied. I.e., for every 1-morphism β ∶ s0 →
s1, the corresponding natural transformation

(α ○ −)L ○ (− ○ β)→ (− ○ β) ○ (α ○ −)L,
arising by adjunction from the isomorphism

(− ○ β) ○ (α ○ −) ≃ (α ○ −) ○ (− ○ β),
is an isomorphism.

Proof. The assertion reduces to the case when T is an ordinary 2-category,
and the latter is a straightforward verification.

�

4.2.4. The Yoneda embedding for T gives rise to a fully faithful map

Maps(S1⊛S2,T)↪Maps(S1⊛S2,Funct(T1 -op,1 -Cat)) ≃ Maps((S1⊛S2)×T1 -op),1 -Cat),
which we further compose with the fully faithful embedding

Maps((S1 ⊛ S2) ×T1 -op),1 -Cat)↪Maps(S1 ⊛T1 -op ⊛ S2,1 -Cat) ≃
≃ Maps((S1 ⊛T1 -op)⊛ S2,1 -Cat).

It is easy to see that the image of

Maps(S1 ⊛ S2,T)RS2 ⊂ Maps(S1 ⊛ S2,T)
belongs to

Maps((S1 ⊛T1 -op)⊛ S2,1 -Cat)RS2 ⊂ Maps((S1 ⊛T1 -op)⊛ S2,1 -Cat).

Applying the isomorphism (4.1), we rewrite

Maps((S1 ⊛T1 -op)⊛ S2,1 -Cat)RS2

as

Maps(S1&2-op
2 ⊛ (S1 ⊛T1 -op),1 -Cat)

L
S1&2-op
2 .

4.2.5. Consider the resulting fully faithful embedding

Maps(S1⊛S2,T)RS2 ↪Maps(S1&2-op
2 ⊛(S1⊛T1 -op),1 -Cat) ≃ Maps(S1&2-op

2 ⊛S1⊛T1 -op,1 -Cat).
It follows from Lemma 4.2.3 that the essential image of the latter map belongs

to the full subspace

Maps((S1&2-op
2 ⊛ S1) ×T1 -op,1 -Cat) ⊂ Maps((S1&2-op

2 ⊛ S1)⊛T1 -op,1 -Cat) ≃
≃ Maps(S1&2-op

2 ⊛ S1 ⊛T1 -op,1 -Cat).

518 12. ADJUNCTIONS IN (∞,2)-CATEGORIES

4.2.6. Finally, it is easy to see that the essential image of the resulting fully faithful
map

Maps(S1 ⊛ S2,T)RS2 →Maps((S1&2-op
2 ⊛ S1) ×T1 -op,1 -Cat)

equals the essential image of

Maps(S1&2-op
2 ⊛ S1,T)

L
S1&2-op
2 ↪Maps(S1&2-op

2 ⊛ S1,T)↪
↪Maps(S1&2-op

2 ⊛S1,Funct(T1 -op,1 -Cat)) ≃ Maps((S1&2-op
2 ⊛S1)×T1 -op,1 -Cat),

as desired.
�

4.3. An alternative proof of Theorem 1.2.4. Suppose we have a pair (S,C)
and target (∞,2)-category T. We will establish a canonical isomorphism

(4.4) Maps2 -Cat(S,T)RC ≃ Maps2 -Cat(SRC ,T).

It will follow (see Sect. 4.3.3 below) that the map → in (4.4) is the same as the
one given by restriction along (1.2).

4.3.1. Let D ⊂ T1 -Cat be the 1-full subcategory consisting of 1-morphisms that
admit a left adjoint. We have

(4.5) Maps2 -Cat(S,T)RC ≃ Maps2 -CatPair((S,C), (T,D)).

Since the functor SqPair
●,● is fully faithful, we can rewrite the right-hand side in

(4.5) as

(4.6) MapsSpc∆op×∆op (SqPair
●,● (S,C),SqPair

●,● (T,D)).

4.3.2. It is easy to see that the full subspace

SqPair
m,n(T,D) ⊂ Sqm,n(T) = Maps2 -Cat([m,n],S) = Maps2 -Cat([m]⊛ [n],T)

identifies with

Maps2 -Cat([m]⊛ [n],T)R[m] ⊂ Maps2 -Cat([m]⊛ [n],T),

where the superscript R[m] follows the notational convention of (3.2).

Applying the isomorphism of Corollary 3.1.7, we rewrite

Maps2 -Cat([m]⊛ [n],T)R[m] ≃ Maps2 -Cat([n]op ⊛ [m],T)L[m] .

Thus, Maps2 -Cat(S,T)RC identifies with the full subspace of

(4.7) MapsSpc∆op×∆op (SqPair
●,● (S,C), ((Sq●,●(T))vert-op)reflect),

that corresponds to the bi-simplicial subspace

′((Sq●,●(T))vert-op)reflect ⊂ ((Sq●,●(T))vert-op)reflect

given by

Maps2 -Cat([n]op ⊛ [m],T)L[m] ⊂ Maps2 -Cat([n]op ⊛ [m],T).

4. AN ALTERNATIVE PROOF 519

4.3.3. Note that the expression in (4.7) identifies tautologically with

MapsSpc∆op×∆op (((SqPair
●,● (S,C))reflect)vert-op,Sq●,●(T)) ≃

≃ Maps2 -Cat(LSq(((SqPair
●,● (S,C))reflect)vert-op),T),

while the latter is
Maps2 -Cat(SRC ,T),

by the construction of SRC .

Thus, we have obtained a fully faithful embedding

(4.8) Maps2 -Cat(S,T)RC ↪Maps2 -Cat(SRC ,T).
It follows from the construction that the composite map

(4.9) Maps2 -Cat(S,T)RC ↪Maps2 -Cat(SRC ,T) (1.2)Ð→ Maps2 -Cat(S,T)
is the tautological embedding Maps2 -Cat(S,T)RC ↪Maps2 -Cat(S,T).
4.3.4. It remains to show that the essential image of (4.8) is everything. I.e., we
need to show that for any functor

SRC → T,
the corresponding map of bi-simplicial spaces

SqPair
●,● (S,C)→ ((Sq●,●(T))vert-op)reflect

has the property that its essential image belongs to
′((Sq●,●(T))vert-op)reflect ⊂ ((Sq●,●(T))vert-op)reflect.

However, the latter assertion can be checked at the level of the ordinary 2-
category underlying T. And in the latter case, the assertion follows from Sect. 1.4:

Indeed we already know that the second map in (4.9) is an isomorphism onto
Maps2 -Cat(S,T)RC ⊂ Maps2 -Cat(S,T).

�

Bibliography

[AG] D. Arinkin and D. Gaitsgory, Singular support of coherent sheaves, and the geometric Lang-

lands conjecture, Selecta Math. N.S. 21 (2015), 1–199.
[BarS] C. Barwick and C. Schommer-Pries, On the unicity of homotopy theory of higher cate-

gories, arXiv: 1112.0040.

[BB] A. Beilinson and J. Bernstein, A proof of Jantzen’s conjectures, Advances in Soviet Mathe-
matics 16, Part I (1993), 1–50.

[BD] A. Beilinson and V. Drinfeld, Quantization of Hitchin?s integrable system and Hecke eigen-

sheaves, available at http://www.math.harvard.edu/∼gaitsgde/grad 2009/.
[Bez] R. Bezrukavnikov, On two geometric realizations of the affine Hecke algebra,

arXiv:1209.0403.
[BFN] D. Benzvi, J. Francis and D. Nadler, Integral transforms and Drinfeld centers in derived

algebraic geometry, J. Amer. Math. Soc. 23 (2010), no. 4, 909–966.

[Bezr] R. Bezrukavnikov, On two geometric realizations of the affine Hecke algebra,
arXiv:1209.0403.

[BoV] J. M. Boardman and J. M. Vogt Homotopy Invariant Structures on Topological Spaces,

Lecture Notes in Mathematics 347, Springer-Verlag, Berlin and New York (1973).
[De] P. Deligne, Catégories tannakiennes, in: “The Grothendieck Festschrift”, Vol. II, 111–195,

Progr. Math. 87, Birkhäuser Boston, Boston, MA, 1990.

[Dr] V. Drinfeld, DG Quotients of DG Categories, J. Algebra 272 (2004), no. 2, 643–691.
[DrGa1] V. Drinfeld and D. Gaitsgory, On some finiteness questions for algebraic stacks, GAFA

23 (2013), 149–294.

[DrGa2] V. Drinfeld and D. Gaitsgory, Compact generation of the category of D-modules on the
stack of G-bundles on a curve, joint with V. Drinfeld, arXiv:1112.2402, Cambridge Math

Journal, 3 (2015), 19–125.
[Fra] J. Francis, The tangent complex and Hochschild cohomology of En-rings, Compos. Math.

149 (2013), no. 3, 430–480.

[FraG] J. Francis and D. Gaitsgory, Chiral Koszul duality, Selecta Math. (N.S.) 18 (2012), 27–87.
[FG] E. Frenkel and D. Gaitsgory, D-modules on the affine flag variety and representations of

affine Kac-Moody algebras, Represent. Theory 13 (2009), 470–608.

[Ga1] D. Gaitsgory, Ind-coherent sheaves, arXiv:1105.4857.
[Ga2] D. Gaitsgory, The Atiyah-Bott formula for the cohomology of the moduli space of bundles

on a curve, arXiv: 1505.02331.

[Ga3] D. Gaitsgory, Sheaves of categories and the notion of 1-affineness, Contemporary Mathe-
matics 643 (2015), 1–99.

[Ga4] Notes on Geometric Langlands, Generalities on DG categories, available at

http://www.math.harvard.edu/∼gaitsgde/GL/.
[GaRo1] D. Gaitsgory and N. Rozenblyum, DG indschemes, Contemporary Mathematics 610

(2014), 139–251.
[GaRo2] D. Gaitsgory and N. Rozenblyum, D-modules and crystals, PAMQ 10, no. 1 (2014),

57–155.

[Jo] A. Joyal, Quasi-categories and Kan complexes, (in Special volume celebrating the 70th birth-
day of Prof. Max Kelly) J. Pure Appl. Algebra 175 (2002), no. 1-3, 207–222.

[JT] A. Joyal, M. Tierney, Quasi-categories vs Segal spaces, Categories in algebra, geometry and
mathematical physics, Contemp. Math. 431, Amer. Math. Soc., Providence, RI (2007), 277–
326.

[Kr] H. Krause, The stable derived category of a Noetherian scheme, Compos. Math., 141(5)

(2005), 1128–1162.

521

522 BIBLIOGRAPHY

[LM] G. Laumon, L. Morret-Baily, Champs algébriques, Ergebnisse der Mathematik und ihrer

Grenzgebiete (3 Folge, A Series of Modern Surveys in Mathematics), 39, Springer-Verlag,

Berlin, 2000.
[May] P. May, The geometry of iterated loop spaces, Lecture Notes in Mathematics 271, Springer-

Verlag, Berlin and New York (1972).

[LZ1] Y. Liu and W. Zheng, Enhanced six operations and base change theorem for Artin stacks,
arXiv: 1211.5948.

[LZ2] Y. Liu and W. Zheng, Gluing restricted nerves of infinity categories, arXiv: 1211.5294..

[Lu1] J. Lurie, Higher Topos Theory, Annals of Mathematics Studies, 170, Princeton University
Press, Princeton, NJ, 2009.

[Lu2] J. Lurie, Higher Algebra, available at http://www.math.harvard.edu/∼lurie.

[Lu3] J. Lurie, (∞,2)-categories and Goodwillie calculus-I, available at
http://www.math.harvard.edu/∼lurie.

[Lu4] J. Lurie, DAG-VII, Spectral schemes, available at http://www.math.harvard.edu/∼lurie.
[Lu5] J. Lurie, DAG-VIII, available at http://www.math.harvard.edu/∼lurie.

[Lu6] J. Lurie, DAG-X, available at http://www.math.harvard.edu/∼lurie.

[Ne] A. Neeman, The Grothendieck duality theorem via Bousfield techniques and Brown repre-
sentability, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236.

[Rezk1] C. Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc.

353 (2001), no. 3, 973–1007.
[Rezk2] C. Rezk, A Cartesian presentation of weak n-categories, Geom. Topol. 14 (2010), no. 1,

521–571.

[Seg] G. Segal, Categories and cohomology theories, Topology 13, (1974), 293–312.
[Sim] C. Simpson, Algebraic (geometric) n-stacks, arXiv: 9609014.

[To] B. Toen, Descente fidèlement plate pour les n-champs d’Artin.

[TV1] B. Toen and G. Vezzosi, Homotopical Algebraic Geometry-I.
[TV2] B. Toen and G. Vezzosi, Homotopical Algebraic Geometry-II.

[TT] R. Thomason and T. Trobaugh, Higher algebraic K -theory of schemes and of derived
categories, The Grothendieck Festschrift, Vol. III, 247–435, Progr. Math., 88 (1990).

[YZ] A. Yekutieli and J. Zhang, Dualizing Complexes and Perverse Sheaves on Noncommutative

Ringed Schemes, Selecta Math. 12 (2006), 137–177.

Index of Notations

0 -Cart/C, 22

0 -coCart/C, 22

1 -Cart/S, 465

(2 -Cart/S)2-strict, 464

(1 -Cart/S)strict, 465

1-Cart/S, 465

(1-Cart/S)strict, 465

1 -Cat, 437

1 -biCart/S, 515

1 -coCart/S, 467

(1 -coCart/S)2-strict, 467

(1 -coCart/S)strict, 467

[1]⊗ s, 353

1Sptr, 59

1 -Cat, 16

1 -CatPrs, 32

1 - CatMon, 35

1 - CatMon+ , 40

(1 - CatMon)right-laxnon-untl
, 36

1 -Catordn, 17

1 -CatSt, 51

1 -CatSt, 52

1 -CatSt,cocmpl, 51

1 -CatSt,cocmpl, 52

1 -CatSt,cocmpl
cont , 52

1 - CatSymMon, 38

2-Cartloc
/S , 472

(2-Cartloc
/S)1 -strict, 472

(2-Cartloc
/S)2 -strict, 472

(2-Cartloc
/S)strict, 472

2 -Cart/S, 464

(2 -Cart/S)1-strict, 464

(2 -Cart/S)strict, 465

2-Cart/S, 465

(2-Cart/S)2-strict, 465

(2-Cart/S)strict, 465

2 -Cat, 434

2 -CatPair, 449

2-Catordn, 436

2 -Catright-laxnon-untl
, 441

2 -Catright-lax, 441

2 -Cat, 456

2 -coCart/S, 467

(2 -coCart/S)2-strict, 467

(2 -coCart/S)strict, 467

a∨, 46

Adualizable, 46

a∨,L, 45

Aleft-dualizable, 46

a∨,R, 45

Aright-dualizable, 46

A-mod, 40

A-modr, 40

A-modr, 42

A-mod(M), 41

AssocAlg(A), 37

AssocAlg +mod(A,M), 41

AssocAlg +mod(A), 48

biCart/I, 503

C●(S, k), 88

C+, 13

C−, 13

c ⊠
k

d, 91

c ⊠ d, 93

c ⊠ d, 58

Cc, 64

Cc0/ /c1 , 21

C≥0, 13

C♡, 13

C≤0, 13

Cop, 18

Cordn, 17

C⊗D, 93

C⊗D, 56

CSpc, 17

C/c, 20

C/F , 20

Cart/C ⊂ 1 -Cat/C, 22

(Cart/C)strict, 22

Cc/, 20

CF /, 20

coCart/C, 22

(coCart/C)strict, 22

colim
D

, 27

ComAlg(A), 38

ComGrp(C), 52

ComMonoid(C), 38

523

524 INDEX OF NOTATIONS

Corr(C)vert;horiz , 301

Corr(C)admvert;horiz , 296

Corr(PreStklaft)
sch&proper
sch-qc;all

, 230

Corr(Schaft)
proper
all;all

, 222

Cu, 453

Dnaive
X , 265

DSerre
X , 233

DSerre
X , 234

Dc, 20

defGrid●,●(C)admvert;horiz , 304

∆, 18

∆+, 39

∆≤k, 119

DGCat, 89

DGCatcont
+ , 185

DGCatcont, 89

DGCat2 -Cat
cont , 91

DGCatMon+Mod,ext
cont , 246

(DGCatMon+Mod
cont)adjtble, 250

DGCatMon,ext, 248

(DGCatMonop
+Mod

cont)adjtble ⊂

DGCatMonop
+Mod

cont , 250

DGCatnon-cocmpl, 89

DGCattcont, 185

Dold-KanSptr, 88

(E1,1)
Γ, 453

(E1,1)
Γ,invert, 454

(E1,1)

Γ

, 453

(E1)
invert, 430

(E●,●)horiz-op, 448

(E●,●)reflect, 448

(E●,●)vert&horiz-op, 448

(E●,●)vert-op, 448

f !, 196, 226

F fake-op, 68

f IndCoh,∗, 188

f IndCoh
∗ , 184

f∗, 144

fQCoh,!, 196

f∗, 144

F1 ⊠F2, 158

Factor(α), 335

Fin∗, 37

Functex(C,D), 51

Funct(D,C), 17, 93

Funct(S,T), 439

Funct(S,T)LC
left-lax

, 496

Funct(S,T)Lleft-lax, 497

Funct(S,T)left-lax, 443

Funct(S,T)RC
right-lax

, 496

Funct(S,T)Rright-lax, 497

Funct(S,T)right-lax, 443

FunctA(M,N), 72

Functcont(D,C), 93

Functex,cont(C,D), 51

Functk(D,C), 90

Functk,cont(D,C), 90

′′Grid≥dgnl
● (C)admvert;horiz , 298

′Grid≥dgnl
n (C)admvert;horiz , 302

Grid≥dgnl
n (C)admvert;horiz , 302

′Grid●,●(C)admvert;horiz , 306

Grid●,●(C)admvert;horiz , 305

Grid≥dgnl
n (C)admvert;horiz , 302

Grid●,●(C)admvert;horiz , 306

Ho(C), 17

HomA(m0,m1), 42

ι∮S , 486

(Id,Ψ)Schaft
, 251

(Id,Υ)Schaft
, 261

indA, 43

Ind(C0), 65

IndCoh(X), 180

IndCoh(X)Z , 201

IndCoh!
PreStklaft

, 229

IndCoh!
Schaff

aft

, 227

IndCoh!
Schaft

, 226

IndCoh!
<∞Schaff

ft

, 228

IndCoh!
<∞Schft

, 228

IndCohCorr(Schaft)
proper
all;all

, 222

IndCohSchaft
, 185

K, 109

L, 431

L(Y), 113

Lext, 451
≤nL, 115
≤nLft, 117

LSq, 452

λS, 487

lim
D

, 27

LKEF , 27
LLKE≤nSchaff↪Schaff , 116

[m,n]∼, 439

MR, 238

MapsC(c0,c1), 17

MapsC(c0,c1), 93

MapsC(c0,c1), 60

Maps(I × Jop,C)admvert;horiz , 308

Maps2 -Cat(S,T)L, 497

Maps2 -Cat(S,T)LC , 496

Maps2 -Cat(S,T)R, 497

Maps2 -Cat(S,T)RC , 496

Maps(S1 ⊛ S2,T)RS2 , 511

Maps(S1 ⊛ S2,T)LS1 , 511

INDEX OF NOTATIONS 525

Mapsk,C(c0,c1), 90

MapsS(s
′, s′′), 436

Mapsstrict
S (T0,T1), 483

MapsS(s
′, s′′), 436

Monoid(C), 38

M
O
⊗N , 85

[n], 18

[n]+, 39

([n] × [n]op)≥dgnl, 298

[n1, ..., nk], 444
≤nNearStklft, 117

N ⊗
A
M, 47

oblvA, 43

oblvAssoc, 37

oblvCom, 38

oblvComGrp, 52

OblvSubcat, 449

Ω∞, 59

ωX , 226
!
⊗, 231

P≤k, 109

Φ(T)∮ , 474

φ∨, 46

φ∨,L, 46

φ∨,R, 46

PreStk, 100
clPreStk, 102
convPreStk, 104

PreStklaft, 106
≤nPreStk, 102
≤nPreStk≤k, 109
≤nPreStklft, 105

PreStksch,qc, 154

Ψ(T̃)∮ , 473

ΨSchaft
, 185

ΨX , 181

q[m], 469

QCoh(Y), 144

QCoh(Y)perf , 163

(QCoh, IndCoh)Corr(Schaft)
proper
all;all

, 249

(QCoh∗, IndCoh!)PreStklaft
, 262

(QCoh∗, IndCoh∗)Schaft
, 251

QCoh∗PreStk, 144

QCoh∗PreStksch,qc-qs
, 154

(QCoh∗,QCoh∗)Schaft
, 250

QCoh∗
Schaff , 144

(Q̃Coh
∗
, IndCoh!)Schaft

, 261

QCohPreStksch,qc-qs
, 154

QCohSchaff , 144

Q̃Coh(Y), 261

Q̃Coh
∗
∶ (PreStklaft)

op, 261

rev, 18

ρ∮S , 489

RKEF , 27

RKEα, 400

RLaxnon-untl(S), 486

S⊛ T, 442

s[1], 353

S1&2-op, 435

S1 -Cat, 435

S1-op, 435

S2-op, 435

S⇢ T, 441
≤nS, 101

S∮ , 440

Sordn, 436

SRC , 497

SSpc, 435

S//s, 482

Schaff , 100

Schaff
aft, 106

clSchaff , 101
<∞Schaff

ft , 104
<∞Schaff , 101
≤nSchaff , 101

((Schaff)sm)/Y , 148

(Schaff)/Y,sm, 148

(Schaff)Z,open, 149

Schaft, 127

(Schaft)event-coconn, 189

(Schaft)proper, 197

Schlaft, 127
≤nSch, 124
≤nSchft, 127
≤nSchlft, 127

SchX/, closed in Y , 218

Seg(c), 405

(Seq1(RLaxnon-untl(S)))q-invert, 490

Seq1(T)L, 496

Seq1(T)R, 496

Seq●, 431, 434

Seqext
● , 449

SeqPair
● , 451

Σ∞, 59

Spc, 16

Spc≤k, 108

Sptr, 59

Sq●,●, 447

SqPair
●,● , 450

Sq∼●,●, 439

Stk, 112

StkArtn, 131

Stk0 -Artn, 130
clStk, 116

Stkk -Artn, 131

Stklaft, 121
≤nStk, 115
≤nStkk -Artn, 135

526 INDEX OF NOTATIONS

≤nStklft, 118

τ≥−n, 100

τcl(Y), 102
τ≥0, 13
Lτcl, 116
Lτ≤n, 116

τ≤0, 13

τ≤n(S), 101
τ≤n(Y), 102

Tot(∆), 469

Tot≤k, 119

Trpl, 393
twn, 396

Twn(D), 396

ΥPreStklaft
, 262

ΥSchaft
, 261

ΥX , 261
ΥY , 262

Vect, 86

Vect≥−n,≤0, 100
Vectf.d., 87

redX, 202
ΞX , 181

clY, 102
convY, 104
≤nY, 102

Y+, 115
YonS, 485

YonC, 23

Index

0-Artin stack, 130

0-quasi-separated, 131

1-Cartesian fibration, 465

1-coCartesian fibration, 467

1-full subcategory, 19, 437

1-fully faithful, 18, 436

1-replete, 19, 437

2 out of 3 property, 334

2-Cartesian fibration, 463

2-Cartesian morphism, 463

2-categorical Yoneda functor, 485

2-coCartesian fibration, 467

2-full subcategory, 437

2-fully faithful, 437

2-replete, 437

active, 440

adjoint functor, 25

Adjoint Functor Theorem, 32

admits a left adjoint, 496

admits a right adjoint, 496

affine schematic, 100

affine scheme, 100

almost of finite type, 106

anti-clockwise reversible, 454

Artin stack, 131

associative algebra, 37

(smooth) atlas, 130

Barr-Beck-Lurie theorem, 44

base change morphism, 152

Beck-Chevalley condition, 208

bi-Caretsian fibration, 503

bi-Cartesian fibration, 25

bivariant extension, 352

bounded above, 13

bounded below, 13

Cartesian fibration, 20

Cartesian fibration in spaces, 20

Cartesian morphism, 20

Cartesian symmetric monoidal structure,
38

category of correspondences, 296

category of morphisms, 436

category-object, 237

Čech nerve, 112

classical affine scheme, 101

classical prestack, 102
classical stacks, 116

closed embedding, 195

closure, 220
cluster, 313

co-tensor product, 85
co-unit, 45

coCartesian fibration, 20

coCartesian fibration in spaces, 20
coCartesian morphism, 20

coCartesian symmetric monoidal structure,

39
coconnective object, 13

cofinal, 28

colimit, 27
commutative algebra, 37

commutative monoid, 38

compact object, 64
compact relative to A, 78

compactly generated, 64
complete Segal space, 430

connective commutative DG algebra over k,

100
connective object, 13

conservative, 19

continuous functor, 51
contractible, 27

contractible functor, 29

convergent prestack, 103
convolution, 239

correspondence, 297

covering, 111

derived ∞-category, 86

descent, 112
DG category, 89

Dold-Kan, 88

double category, 453
double Segal space, 316

dualizable cocomplete stable category, 60

dualization, 392

equivalence, 17

étale, 110
étale equivalence, 112

étale morphism, 129

527

528 INDEX

eventually coconnective, 13, 101

eventually coconnective morphism, 187

eventually coconnective prestack, 102

eventually connective, 13

exact functor, 51

filtered ∞-category, 11

finite type, 104

flat map, 110

flat morphism, 129

full subcategory, 18

full subspace, 18

fully faithful, 18, 436

generating objects, 55

geometric realization, 27

Gray product, 442

Grothendieck construction, 21

h-topology, 229

heart of the t-structure, 13

homotopy category, 17

horizontal extension, 379

idle, 389, 440

ind-completion, 65

inducing the module structure, 41

inert, 389, 440

invertible angle, 454

isomorphism, 17

k′-quasi-separated, 131

k-Artin stack, 130

k-Artin stacks locally almost of finite type,
138

k-representable, 131

k-truncated, 109

Kan extension, 26

lax (symmetric) monoidal natural

transformation, 391

left adjoint, 25

left adjoint 1-morphism, 495

left adjointable functor, 496

left Beck-Chevalley condition, 319

left complete t-structure, 59

left dual, 45

left fibration, 20

left-dualizable, 45

left-lax functor, 441

left-lax monoidal functor, 37

limit, 27

localization on 1-morphisms, 491

locally 2-Cartesian fibration, 472

locally almost of finite type, 106

locally of finite type, 105

Lurie tensor product, 56

mapping space, 17

monad, 43

monad acting on s, 404

monadic, 43

monoid, 38

monoidal (∞,1)-category, 35

monomorphism, 18

n-coconnective, 101

n-coconnective scheme, 125

n-coconnective stack, 116

n-coconnective stacks locally of finite type,

118

n-coconnective prestack, 102

nil-isomorphism, 202

non-unital left-lax functor, 441

non-unital right-lax functor, 441

objects of an (∞,2)-category, 436

open embedding, 110

ordinary (∞,2)-category, 436

partially defined left adjoint, 26

partially defined right adjoint, 26

passable stack, 162

passage to adjoint 1-morphisms, 497

passing to left adjoints, 31

passing to right adjoints, 31

perfect prestack, 165

ppf, 110

ppf morphism, 129

prestack, 100

projection formula, 159

proper morphism, 195

quasi-affine, 160

quasi-compact, 122

quasi-compact Artin stack, 131

quasi-invertible 1-morphism, 490

quasi-separated, 131

relative inner Hom, 42

restricting the module structure, 41

reversed multiplication, 35

reversible double category, 454

right A-modules, 42

right adjoint, 25

right adjoint 1-morphism, 495

right adjointable functor, 496

right Beck-Chevalley condition, 320

right complete t-structure, 59

right dual, 45

right fibration, 20

right Kan extension, 400

right-dualizable, 45

right-lax functor, 441

right-lax monoidal functor, 37

right-lax natural transformations, 443

right-lax slice category, 482

rigid monoidal category, 79

schematic, 128

INDEX 529

schematic quasi-affine, 160

scheme, 121

Segal object, 237
Serre duality, 234

sheafification, 113

sifted ∞-category, 11
smooth, 110

smooth morphism, 129

sphere spectrum, 59
stabilization, 59

stable (∞,1)-category, 50

stable monoidal categories, 71
stable symmetric monoidal categories, 71

stack, 112
straightening, 21

surjective map of schemes, 129

symmetric monoidal (∞,2)-category, 391
symmetric monoidal (∞,1)-category, 37

t-structure, 13
tensor product of modules, 47

totalization, 27

truncation functor, 13
twisted arrow category, 396

unit, 45

unstraightening, 21

Yoneda functor, 23

Zariski morphism, 110, 129

	Preface
	1. What is the object of study in this book?
	2. How do we do we construct the theory of IndCoh?
	3. What is actually done in this book?

	Acknowledgements
	Introduction
	1. Ind-coherent sheaves
	2. Correspondences and the six functor formalism
	3. The appendix on (,2)-categories

	Part I. Preliminaries
	Introduction
	Why do we need these preliminaries?
	1. -categories and higher algebra
	2. Basics of derived algebraic geometry
	3. Quasi-coherent sheaves

	Chapter 1. Some higher algebra
	Introduction
	1. (,1)-categories
	2. Basic operations with (,1)-categories
	3. Monoidal structures
	4. Duality
	5. Stable (,1)-categories
	6. The symmetric monoidal structure on 1-CatSt,cocmplcont
	7. Compactly generated stable categories
	8. Algebra in stable categories
	9. Rigid monoidal categories
	10. DG categories

	Chapter 2. Basics of derived algebraic geometry
	Introduction
	1. Prestacks
	2. Descent and stacks
	3. (Derived) schemes
	4. (Derived) Artin stacks

	Chapter 3. Quasi-coherent sheaves on prestacks
	Introduction
	1. The category of quasi-coherent sheaves
	2. Direct image for QCoh
	3. The symmetric monoidal structure

	Part II. Ind-coherent sheaves
	Introduction
	1. Ind-coherent sheaves vs quasi-coherent sheaves
	2. How to construct IndCoh?

	Chapter 4. Ind-coherent sheaves on schemes
	Introduction
	1. Ind-coherent sheaves on a scheme
	2. The direct image functor
	3. The functor of `usual' inverse image
	4. Open embeddings
	5. Proper maps
	6. Closed embeddings
	7. Groupoids and descent

	Chapter 5. Ind-coherent sheaves as a functor out of the category of correspondences
	Introduction
	1. Factorizations of morphisms of DG schemes
	2. IndCoh as a functor from the category of correspondences
	3. The functor of !-pullback
	4. Multiplicative structure and duality
	5. Convolution monoidal categories and algebras

	Chapter 6. Interaction of QCoh and IndCoh
	Introduction
	1. The (,2)-category of pairs
	2. The functor of IndCoh, equipped with the action of QCoh
	3. The multiplicative structure
	4. Duality

	Part III. Categories of correspondences
	Introduction
	1. Why correspondences?
	2. The six functor formalism
	3. Constructing functors
	4. Extension theorems
	5. (Symmetric) monoidal structures

	Chapter 7. The (,2)-category of correspondences
	Introduction
	1. The 2-category of correspondences
	2. The category of correspondences via grids
	3. The universal property of the category of correspondences
	4. Enlarging the class of 2-morphisms at no cost
	5. Functors constructed by factorization

	Chapter 8. Extension theorems for the category of correspondences
	Introduction
	1. Functors obtained by bivariant extension
	2. Limits and colimits of sequences
	3. The core of the proof
	4. Proof of Proposition 1.2.5: easy reduction steps
	5. End of the proof of Proposition 1.2.5
	6. Functors obtained by horizontal extension

	Chapter 9. The (symmetric) monoidal structure on the category of correspondences
	Introduction
	1. (Symmetric) monoidal structures: recollections
	2. (Symmetric) monoidal structures and correspondences
	3. Extension results in the symmetric monoidal context
	4. Monads and associative algebras in the category of correspondences

	Appendix. (,2)-categories
	Introduction
	1. Why do we need them?
	2. Setting up the theory of (,2)-categories
	3. The rest of the Appendix

	Chapter 10. Basics of 2-Categories
	Introduction
	1. Recollections: (,1)-categories via complete Segal spaces
	2. The notion of (,2)-category
	3. Lax functors and the Gray product
	4. (,2)-categories via squares
	5. Essential image of the functor Sq,
	6. The (,2)-category of (,2)-categories

	Chapter 11. Straightening and Yoneda for (,2)-categories
	Introduction
	1. Straightening for (,2)-categories
	2. Straightening over intervals
	3. Locally 2-Cartesian and 2-Cartesian fibrations over Gray products
	4. Proof of Theorem 1.1.8
	5. The Yoneda embedding
	A. The universal right-lax functor
	B. Localizations on 1-morphisms

	Chapter 12. Adjunctions in (,2)-categories
	Introduction
	1. Adjunctions
	2. Proof of Theorem 1.2.4
	3. Adjunction with parameters
	4. An alternative proof

	Bibliography
	Index of Notations
	Index

