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Abstract. We compute the RO(C4) integral homology of a point with complete
information as a Green functor, and we show that it is generated, in a slightly
generalized sense, by the Euler and orientation classes of the irreducible real
C4-representations. We have devised a computer program that automates these
computations for groups G = Cpn and we have used it to verify our results for
G = C4 in a finite range.
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1. Introduction

The computation of the RO(G)-graded (Bredon) homology of a point has been
historically a very difficult problem. Stong and Lewis completely determined it
for G = Cp, the cyclic group of prime order p, using coefficients in the Burnside
Green functor (c.f. [Lew88]). More recently, there has been renewed interested
in such computations, but now for non prime-order groups G and using con-
stant Z coefficients. The reason for this resurgence is rooted in the seminal work
[HHR16], where RO(C8)-graded homology is used to solve the Kervaire invariant
problem in all but one dimension.

The very first step in [HHR16] is obtaining partial information about the RO(C8)
integral homology of a point,

πC8
F (HZ) = HC8

F (S0; Z).
1



The vanishing of these homologies for certain virtual representations F is used
to prove the Gap Theorem. In [HHR17], they perform a similar computation
in the more tractable C4 case, obtaining more complete information for the slice
spectral sequence they consider. However, because they are interested only in the
integer-graded part of that spectral sequence, they only compute HC4

F (S0; Z) for
F = k + rρ where k, r ∈ Z and ρ is the regular C4-representation.

The computational aspects of equivariant homotopy theory have been much
less explored than their nonequivariant counterparts, and that’s partly due to the
greater complexity of the algebra involved. As we illustrate in this paper, this
complexity is reflected in the answers retrieved by the calculations and is not just
a technicality or a limitation of our approach. The methods we use to obtain the
calculations are both theoretical and computer based, and can be applied to a
greater range of equivariant computations.

In this paper, we compute HC4
F (S0; Z) for all possible F, as a Green functor.

This means that in addition to all the groups HH
k (SV ; Z) for V a real virtual

C4 representation and H a subgroup of C4, together with their restrictions and
transfers, we also compute the multiplicative structure which comes from the fact
that HZ is a C4-ring spectrum.

The group C4 has two non-trivial irreducible real representations, the 1-dimen-
sional sign representation σ and the 2-dimensional representation λ (rotation
by π/2 degrees). Therefore, we are in effect computing the Mackey functors
HC4

k (S±nσ±mλ; Z) for k, n, m ∈ Z and n, m ≥ 0. When both signs in S±nσ±mλ

are positive, we have an explicit and simple equivariant cellular decomposition
for the space Snσ+mλ and we can compute the homology using the cellular chain
complex C∗Snσ+mλ. When both signs are negative, we can appeal to Spanier
Whitehead Duality:

HC4
k (S−nσ−mλ) = H−k

C4
(Snσ+mλ)

and this is the cohomology of the cochain complex C−∗(Snσ+mλ) dual to the
chains C−∗(Snσ+mλ) we had before.

The more difficult part of the computation is when we have opposite signs,
such as HC4

k (Snσ−mλ; Z). In this case, we could in principle work with the box
product of chain complexes

C∗S
nσ � C−∗Smλ

but these complexes get intractably large for calculations by hand as n, m get
large. In place of that, we instead make use of three algebraic spectral sequences
associated to these complexes: Two Atiyah-Hirzebruch spectral sequences and a
Kunneth spectral sequence. Comparison of these three allows us to get the answer
through fairly intuitive (if lengthy) arguments. A complication is that everything
needs to be performed on the Mackey functor level: for example, the Tor terms in
the Kunneth spectral sequence are computed in the symmetric monoidal category
of Z-modules.

The main result of this paper is that πC4
F (HZ) is generated, in a generalized

sense, by the Euler and orientation classes associated to σ, λ. These classes, un-
der the operations of multiplication, division (see subsection 4.1 for the precise
meaning of ”division”), restriction and transfer, don’t quite generate the entire
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πC4
F (HZ), missing the generator of HC4

−3(S
−2λ) = Z /4. However, it turns out

that this Z /4 fits in a short exact sequence of abelian groups

0→ Z /2→ Z /4→ Z /2→ 0

where the Z /2’s are obtainable using just the Euler and orientation classes. So
if we include this group extension into our list of ”operations”, then the closure
of the Euler and orientation classes under said operations is the entire πC4

F (HZ).
To be more precise, since we are interested in the homology as a Mackey functor,
we shouldn’t adjoin a group extension but rather the Mackey functor extensions
that induce it.

At this point, we should mention earlier work by Zeng on this topic. [Zeng17]
calculates the integer coefficient RO(Cp2)-graded homology of a point for all
primes p, using the associated Tate-square diagram as opposed to the cellular
chains approach we use here. His description for the multiplicative structure is
in terms of the connecting homomorphism of certain cofiber sequences, while our
description is solely in terms of the Euler and orientation classes. Modulo this
difference, our results agree with his for the case p = 2. We hope this write-up
provides a more comprehensive analysis of this case, while also offering a de-
tailed discussion of the subtleties involved in this computation, many of which
are relevant in correctly interpreting the results of the computation (c.f. subsec-
tion 4.2).

Another novelty in our work is the computerization of this computation, not
just for G = C4 but indeed for any G = Cpn . We have devised a computer
program that automatically produces the answer for both the additive and mul-
tiplicative structures of πG

F(HZ) or more generally πG
F(HR) where R is a user

specified ring such as Fp or Q. It can also compute the Massey products present
in πG

F(HR) together with their indeterminacy. Of course the program can only
work in a finite range, i.e. it can produce the answer for SV where the dimension
of V is bounded.

Therefore, while the code can’t completely replace the proof-based work, at
the very minimum it’s a powerful verification tool. For example, it was able to
spot a few edge cases where mistakes were present in an early draft of this paper.

The other advantage is scalability: determining π
Cpn

F (HZ) by hand for n ≥ 3 is
significantly more laborious than the n = 2 case as there are more representations
to contend with. But using the computer program, we can quickly and easily

compute π
Cpn

F (HZ) in a large range and get a good grasp for what the answer
should be. Indeed, the computational data our computer generated for groups
G = C8, C16 and C32 led us to formulate a conjecture for π

C2n
F (HZ) and all n ≥ 2,

that we describe in section 5. The spectral sequence computations in [Geo21a]
were also aided by computational results derived from our program.

As for the organization of this paper, section 2 offers a brief introduction of
how our program works. The rest of the paper is completely independent of that.

Section 3 includes the 16 Mackey functors that appear in HC4
k (S±nσ±mλ) and

their notation used throughout this paper. Remarkably we can get a non-cyclic
answer for HC4

k (Snσ−mλ) but only for even n ≥ 4.
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Section 4 expounds on how the Euler and orientation classes generate πC4
F (HZ)

and how all relations can be effectively reduced to a single one, the ”Gold Rela-
tion”.

Section 5 contains our general conjecture for the multiplicative structure of
π

C2n
F (HZ) backed up by computational data for n ≤ 5.

Section 6 includes the complete determination of the Green functor πC4
F (HZ)

in the form of 8 readily usable tables.
Section 7 summarizes the theoretical framework of our computations.
The last five sections include the proofs of our results and make up the bulk

of this paper. The final one is an Appendix devoted to proving that the Gold
relation generates all other relations.

By computerizing the complicated algebra involved in these computations, we
can drastically expand the known calculations while reducing the human work
required. Currently, our computer program can do the G = Cpn case but in
the future we expect to extend this to arbitrary finite abelian groups and certain
nonabelian groups with known representation rings. The source code is pub-
licly available here, where the interested reader can not only inspect it, but also
contribute to its improvement and expansion, which we highly encourage.

Acknowledgment. We want to thank Mingcong Zeng for carefully reading an
earlier draft of this paper, helping us compare our computations with his, and
for pointing out a subtlety in a certain relation of the multiplicative structure (c.f.
end of subsection 4.2). We would also like to thank Peter May for reading several
earlier drafts of this paper.

2. The computer program

The computations in this paper rely on filtering box products such as

C∗(Snσ−mλ) = C∗(Snσ)� C∗(S−mλ)

in different ways and comparing the resulting spectral sequences (here and al-
ways, n, m are nonnegative integers). Ideally, we would be working directly with
that box product, but there are two major complications that prohibit this: Firstly,
the box product of Mackey functors is not the level-wise tensor product. Instead,
only the bottom level (corresponding to the orbit G/e) can be obtained as the ten-
sor product, while all the higher levels are obtained by transferring (our chains
consist solely of free Mackey functors). Secondly, the bottom level tensor product
itself gets arbitrarily large as we increase n, m, making it impractical to compute
with it. The extra complexity is reflected in the fact that the results for representa-
tions mλ− nσ and nσ−mλ (subsections 6.5 to 6.8) are more involved than those
for nσ + mλ and −nσ−mλ (subsections 6.1 to 6.4); after all, we need not use any
box products for the representations of the form nσ + mλ and −nσ−mλ.

While computing the box product of these chain complexes by hand is very
impractical, a computer can do it efficiently. The idea is that our chains consist
of solely free Mackey functors over Z, so every differential can be completely
described by a matrix with integer entries. The operations of transfer, restriction
and group action can all be performed algorithmically for free Mackey functors,
and their effect can be described in terms of these matrices. Similarly, the tensor
product can also be computed algorithmically, and then the box product is just
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obtained by transferring it to higher levels. At the final step, we need to take
homology and that can be achieved via a Smith Normal Form algorithm over Z.

There are a few more technicalities in this procedure that we haven’t addressed
here, but once these details are dealt with, this process allows us to algorithmi-
cally compute the additive structure of the RO(G) homology, in any given range
for our representations (for G = C4, this amounts to a given range for n, m).

For the multiplicative structure we need to be able to compute the product of
any two generators. Just like with tensor products, this can be directly performed
only on the bottom level. If the generators live in a higher level, the idea is to first
restrict them to the bottom level, multiply these restrictions, and then invert the
restriction map. This is possible because in free Mackey functors, restrictions are
injective, and our chain complexes consist exclusively of such Mackey functors.

So far we have enough information to verify the multiplicative structure as
it appears in section 6, but not automatically compute it. In other words, the
expressions of the generators in section 6 need to be known a-priori and then the
program can prove them in a user-specified range. But there is a final algorithm
that eliminates this need, and allows us to automatically write our generators
in terms of Euler and orientation classes. This ”factorization” algorithm works
by forming a multiplication table for the RO(G) homology, and then turns this
table into a colored graph, somewhat analogous to the Cayley graph of a group.
There are two colors, corresponding to multiplication and division, and traversing
this graph is equivalent to generating expressions of the generators like those
appearing in section 6.

This chains-based approach also works remarkably well with Massey prod-
ucts. And indeed, our program can compute Massey products, and their inde-
terminacy, directly from their definition. Finally, we can replace Z with other
constant Green functors such as Fp for prime p and Q.

In version 3.0 of the program, we introduced support for computing the RO(G)
graded homology of G-spaces other than the point. This extension is used in
[Geo21a] for the C4 classifying space of the group Σ2.

Since version 1.0, we have significantly improved the program’s runtime per-
formance and memory usage. This was partly achieved by using the sparse ma-
trix format to store the differentials; in this context, a matrix is sparse if the vast
majority of its entries are 0 and thus we need not waste memory storing them.
Another improvement was made by introducing a variant of algebraic Morse the-
ory (see [Lam19]) that preserves equivariance. This allows us to reduce our chain
complexes to smaller ones in the same equivariant homotopy type. With this re-
duction, we can compress box products of chain complexes anywhere between
30% to 90%, with larger chain complexes leading to better compression ratios.

All these details plus many more can be found in the documentation for our
code available here.

The reader only interested in testing our program (in the case G = C4) can
simply download the executable for their operating system available here; no
programming knowledge is required to run it.

The source code itself is written in C++ and hosted on a Github repository
to encourage participation and contribution. We have tried to make the code
modular and extensible while at the same time fully documenting both how to
use it and how it works under the hood.
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3. The Mackey functors

The data in a C4-Mackey functor M can be depicted using a Lewis diagram

M(C4/C4)

M(C4/C2)

M(C4/e)

Res4
2 Tr4

2

Res2
1

C4/C2

Tr2
1

C4

We shall refer to M(C4/C4) as the top level (or C4 level), to M(C4/C2) as the
middle level (or C2 level) and finally to M(C4/e) as the bottom level (or e level).

To improve readability, we shall stop underlining our Mackey functors. The
only potential point of confusion is Z which could either denote the trivial C4
module or the fixed point Mackey functor associated to it. Which one we mean
will usually be clear from the context, but when the distinction is important we
shall underline the Mackey functor Z.

We will also write H∗(−) in place of HC4∗ (−; Z) and HF(−) for HC4
F (−; Z);

the little and big asterisks stand for integer and RO(C4) grading respectively.

The real representation ring RO(C4) is generated by the irreducible representa-
tions σ and λ where σ = R is reflection and λ = R2 is rotation by π/2, both leav-
ing 0 fixed. So the computation of HF(S) breaks down to calculating H∗S±nσ±mλ

for the four possible sign combinations. Here and throughout this paper, n, m
will always stand for nonnegative integers.

We now display the Lewis diagrams of the Mackey functors appearing in our
computations.

For H∗Snσ+mλ we have the 5 Mackey functors:

Z =

Z

Z

Z

1 2

1 2

Z− =

0

Z

Z

1

−1

2

−1

〈Z /4〉 =

Z /4

Z /2

0

1 2

〈Z /2〉 =

Z /2

0

0

〈Z /2〉 =

0

Z /2

0
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For H∗S−nσ−mλ we have the 4 additional Mackey functors:

L =

Z

Z

Z

2 1

2 1

p∗L =

Z

Z

Z

2 1

1 2

L− =

Z /2

Z

Z

1

2

−1

1

−1

p∗L− =

Z /2

Z

Z

1

1

−1

2

−1

Here p∗ denotes the functor from C2 Mackey functors to C4 Mackey functors
induced by the quotient map p : C4 → C4/C2.

For H∗Smλ−nσ we also have the trivial extension 〈Z /2〉 ⊕ 〈Z /2〉 and the
Mackey functor

Q =

Z /2

Z /2

0

0 1

We have the nontrivial extensions

0→ 〈Z /2〉 → Q→ 〈Z /2〉 → 0

0→ Q→ 〈Z /4〉 → 〈Z /2〉 → 0

The additional Mackey functors present in H∗Snσ−mλ are the trivial extensions
Z−⊕〈Z /2〉, L⊕ 〈Z /2〉 and the 3 Mackey functors:

L] =

Z

Z

Z

1 2

2 1

Q] =

Z /2

Z /2

0

1 0

Z[
− =

0

Z

Z

2

−1

1

−1

The sharp operation ] exchanges Res4
2 and Tr4

2 in our Mackey functor, while the
flat operation [ exchanges Res2

1 and Tr2
1. For example p∗L = L[ and p∗L− = L[

−.

We have the nontrivial extensions

0→ 〈Z /2〉 → 〈Z /4〉 → Q] → 0

0→ 〈Z /2〉 → Q] → 〈Z /2〉 → 0

0→ L→ L] → 〈Z /2〉 → 0

0→ 〈Z /2〉 → L− → Z[
− → 0
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4. The generators

As a C4-Mackey functor M has three levels, a generator for M consists of
three elements a, b, c that generate the abelian groups M(C4/C4), M(C4/C2) and
M(C4/e) respectively. We shall employ the notation

a|b|c
to denote the top, middle and bottom generators in this order.

Now πF(HZ) is not just a (graded) Mackey functor, as it has a multiplica-
tive structure making it a (graded) Green functor. Multiplication is performed
levelwise and the Frobenius relation holds:

TrH
K (x ResH

K y) = TrH
K (x)y

where K ⊆ H are subgroups of C4.
In this section we shall expound on the interplay between the Mackey func-

tor and multiplicative structures, and demonstrate how every generator can be
written in terms of the Euler and orientation classes. We begin by defining these
classes in greater generality, following [HHR16].

For any real representation V of a group G we have the Euler class

aV : S0 → SV

given by the inclusion of the north and south poles 0, ∞. We shall only consider
the image of aV in homology but it’s important for some arguments to note that
aV is defined on the sphere level.

If V is orientable, namely the map G → GL(n) defining V has positive deter-
minant, then we have

HG
n (S

V ; Z) = Z

(cf [HHR16]). Choosing an orientation for V determines an orientation class uV
as the generator of the top level of this Z. Without orienting V there is a sign
ambiguity for uV .

In [HHR17] the following properties are proven in the case of G = C2n (when-
ever uV appears it is implicit that V is oriented).

• aV aW = aV+W and uV+W = uVuW
• ResG

H aV = aResG
H V and ResG

H uV = uResG
H V

• |G : Stab(V)|aV = 0 where Stab(V) is the stabilizer (isotropy subgroup) of V.
• The Gold (au) Relation: If V, W have dimension 2 and Stab(V) ≤ Stab(W),

aWuV = |Stab(W) : Stab(V)| · aVuW

In our case, the real C4 representations are spanned by 1, σ, λ and the orientable
ones are spanned by 1, 2σ, λ. Therefore we have the classes

aσ, aλ, u2σ, uλ

living in the top level of HFS. While σ is not orientable as a C4 representation,
its restriction to C2 ⊆ C4 is the trivial C2 representation so we can consider

uσ

living in the middle level. We choose orientations coherently so that

Res4
2(u2σ) = u2

σ
8



To simplify the notation, for an element a living in some level of a Mackey
functor, we shall write ā for its restriction to the level directly below. If a lives in
the top level, we can restrict ā again and then ¯̄a will be the restriction two levels
down. This notation is consistent with [HHR17].

The Euler and orientation classes generate the following Mackey functors:

aσ|0|0 〈Z /2〉
aλ|āλ|0 〈Z /4〉

u2σ|u2
σ|ū2

σ  Z

uλ|ūλ| ¯̄uλ  Z

0|uσ|ūσ  Z−

The Mackey functors themselves imply relations on these classes eg 2aσ = 0.
Moreover, since HF(S) is a Green functor we also have the Frobenius relation:

TrH
K (x ResH

K y) = TrH
K (x)y

We will refer to all these as secondary relations; the primary relations are those
not implied by the additive (Mackey functor) structure or Frobenius. The only
primary relation we have so far is the Gold relation:

a2
σuλ = 2u2σaλ

The Euler and orientation classes generate multiplicatively all of H∗(Snσ+mλ).

Before we explain how H∗(S−nσ−mλ) is generated we need to take a moment
and clarify what we mean by division:

4.1. A digression on divisibilities. Suppose we have elements x ∈ HVS and
y ∈ HWS living on the same level and that are not both 0. We will say that
y/x exists if HW−VS has a cyclic subgroup C such that multiplication by x maps
C ⊆ HW−VS isomorphically onto the cyclic subgroup 〈y〉 ⊆ HWS generated by y:

HW−VS HWS

C 〈y〉

x

x
≈

If C is unique with this property, then the preimage of y under multiplication by
x is a single element in HW−VS denoted by y/x.

For example, 1/x exists iff x is invertible, and in that case 1/x = x−1 (and we
will continue to use the x−1 notation for inverses).

However in general, y/x is less ambiguous than y−1x as the latter notation
might suggest that y−1 exists by itself and is multiplied with x. For instance,
2/u2σ exists because H−2(S−2σ)

u2σ−−→ H0(S) = Z is an isomorphism onto 2 Z ⊆ Z

in the top level. On the other hand, 1/u2σ does not exist.
Let us note here that if the subgroup C in the definition above is not unique,

then there are multiple candidates for y/x. We explain what to do in these cases,
and exactly how it comes up in the RO(C4) homology of a point, in subsection
4.2.
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Getting back to H∗(S−nσ−mλ), we will prove that u−1
σ and ¯̄u−1

λ both exist. In
fact, the following elements all exist:

2/un
2σ, 2/ūm

λ , 4/um
λ , 4/(un

2σum
λ )

Now for odd n ≥ 3 set
wn = Tr4

2(u
−n
σ )

We don’t consider w1 because Tr4
2(u
−1
σ ) = 0. Next for odd n ≥ 1 and m ≥ 1 set

xn,m = Tr4
1(ū
−n
σ ¯̄u−m

λ )

The wn, xn,m are all 2-torsion elements and we have the divisibilities:

wn/(ai
σaj

λuk
λ), xn,m/ai

σ

The first element not obtained by Euler and orientation classes through the op-
erations of multiplication, division (wherever possible), transfers and restrictions
is the generator s in the top level of H−3S−2λ = 〈Z /4〉. We have the divisibilities

s/(ui
2σaj

λuk
λ), s̄/(ui

σ āj
λūk

λ)

Thus far we have accounted for every element in H∗(Snσ+mλ) and H∗(S−nσ−mλ).

For H∗(Smλ−nσ) we have additional elements

uλ/ui
2σ, (2aλ)/(aσui

2σ)

and for H∗(Snσ−mλ) we have

(2u2σ)/uλ, (4u2σ)/ui
λ, a2

σ/aλ, a3
σ/am

λ

We also obtain the relations:

2s = w3(a3
σ/a2

λ)

aσs = Tr4
2((2uσ)/ū2

λ)

In the second equation, multiplication by aσ is the projection Z /4→ Z /2 so we
equivalently have

2s = w3(a3
σ/a2

λ)

s mod 2 = Tr4
2((2uσ)/ū2

λ)/aσ

expressing 2s and s mod 2 in terms of Euler and orientation classes. Thus s is
obtained from Euler and orientation classes through the extension

0→ Z /2→ Z /4→ Z /2→ 0

(note: the extension determines s only up to a sign; i.e. s cannot be canonically
chosen from this extension). But if we want Res4

2(s), then we need to replace this
group extension with one of Mackey functors. In fact, in this case we have two
such extensions:

0→ 〈Z /2〉 → L− → Z[
− → 0

0→ 〈Z /2〉 → Q] → 〈Z /2〉 → 0

• In the first extension, aσs|0|0 generates 〈Z /2〉 and 0|(2uσ)/ū2
λ|ūσ ¯̄u−2

λ generates
Z[
−.
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• In the second extension, 0|u3
σ s̄|0 generates 〈Z /2〉 and a3

σ/a2
λ|0|0 generates

〈Z /2〉.
From this description of the generators, we see that first short exact sequence

gives the formula for aσs (which is equivalent to the formula for s mod 2), while
the second gives

s̄ = Res4
2(a3

σ/a2
λ)/u3

σ

Applying Tr4
2 on both sides returns the formula for 2s.

In order to summarize this whole discussion more concisely, we will use a
more general notion of ”generator”. In this notion, the span of a list of elements is
not just polynomials on those generators combined with transfers and restrictions
(the Green functor span) but we will also allow any divisibilities that occur as well
as Mackey functor extensions in which the outer two Mackey functors are already
in the span. For this to be well defined we need to note which divisibilities and
extensions actually occur.

This generalized notion satisfies the following property: If we have two Green
functor maps f , g : M → N and M has a set A of generalized generators then
f = g on M iff f = g on A and f = g on a generator for any extension that occurs
(after all, these generators cannot be canonically chosen through the extensions).

The other part of this property has to do with whether or not a map f : A→ N
extends to a Green functor map f : M → N. This is of course tantamount to
f satisfying all Green functor relations. Ideally we would like to only list the
primary relations on the generalized generators A and recover all other relations
from these and the secondary ones (which result from the additive structure and
the Frobenius relations). As we explain in subsection 4.2, this might not always
be possible. In the special case of πC4

F (HZ) it does however work out so we can
legitimately call them ”primary relations”.

With this language, we can summarize this section as follows: The Green
functor πC4

F (HZ) has generalized generators aσ, u2σ, uσ, aλ, uλ in degrees F =

−σ, 2− 2σ, 1− σ,−λ, 2− 2λ respectively. These classes individually generate the
Mackey functors

aσ|0|0 〈Z /2〉
aλ|āλ|0 〈Z /4〉

u2σ|u2
σ|ū2

σ  Z

uλ|ūλ| ¯̄uλ  Z

0|uσ|ūσ  Z−

and the only primary relation is the Gold relation

a2
σuλ = 2u2σaλ

The only extension that occurs is for the generator s|s̄|0 of the 〈Z /4〉 in dimension
F = −3 + 2λ and is specified by:

s̄ = Res4
2(a3

σ/a2
λ)/u3

σ

aσs = Tr4
2((2uσ)/ū2

λ)

11



There are many divisibilities that occur and we have indicated most of them
earlier in this section; an exhaustive list is included in the next section together
with the complete determination of the additive structure.

4.2. Some technical remarks. We end this section with a few subtle points that
can arise when dealing with quotients y/x.

First, there might be multiple choices of y/x when it exists (cf subsection 4.1).
That is, there can be multiple cyclic subgroups C with C x−→ 〈y〉 an isomorphism.
In that case, we should choose y/x so that

z · (y/(xz)) = y/x

for any z such that y/(xz) exists. If there are multiple candidates for y/(xz) for
some z, we have to ensure coherency in our choices so that not only the above
equation is true, but also

w · (y/(xzw)) = y/(xz)

for any w such that y/(xzw) exists and so on.
In practice, the different candidates can be distinguished by their products

with Euler and orientation classes. For example, there may only be one candi-
date whose product with aσ is zero, i.e. a transfer; if we make that choice then
coherence is guaranteed by the Frobenius relation.

In the case of the RO(C4) homology of a point, the only cases where this
situation can arise have to do with the elements

Tr4
2 ((2un

σ)/ūm
λ ) , (a2m

σ un/2−m
2σ )/am

λ

spanning Hn−2m = Z⊕Z /2 for n− 2m ≥ 0 and m ≥ 2. Multiplication by um
λ

maps the former to 4un/2
2σ and the latter to 0, hence the two choices for (4un/2

2σ )/um
λ

are:
Tr4

2 ((2un
σ)/ūm

λ ) , Tr4
2 ((2un

σ)/ūm
λ ) + (a2m

σ un/2−m
2σ )/am

λ

The second element is not a transfer, so we pick the first:

(4un/2
2σ )/um

λ = Tr4
2 ((2un

σ)/ūm
λ )

There is another benefit to this choice: For n = 2 there is a unique candidate for
(4u2σ)/um

λ , and our general choice satisfies the nice property:

(4un/2
2σ )/um

λ = ((4u2σ)/um
λ ) · u

n/2−1
2σ

This brings us to the second subtle point: The expressions (x/z) · (y/w) and
(xy)/(zw) are not always equivalent: one can exist when the other doesn’t, and
even if both exist then they might not be equal! Case in point:

w3(a3
σ/a2

λ) 6= (w3a3
σ)/a2

λ

as the left hand side generates a Z /2, while the right is trivial owing to w3a3
σ = 0.

If x/z, y/w exist then (x/z) · (y/w) = (xy)/(zw) is equivalent to (x/z) · (y/w)
and xy generating isomorphic cyclic subgroups. In practice, the elements given
by our spectral sequences are of the form (x/z) · (y/w) and the additive structure
is known apriori, so we can readily check this equality.

12



For the generators displayed in section 6, the only instance where (x/z) · (y/w)
and (xy)/(zw) differ happens with

ui
2σ(s/(aj

λuk
λ))

for i, j, k ≥ 0 and i, k > 0. This element generates a Z /4 while ui
2σs generates a

Z /2 and thus (ui
2σs)/(aj

λuk
λ) does not equal the Z /4 generator, but is rather the

mod 2 reduction of that generator.
There’s another problem that stems from this point and it has to do with rela-

tions. We want to be able to reduce relations on x/y to equivalent relations on x.
A relation on x/y takes the form (x/y) · z = 0 ∈ HVS for some element z ∈ HFS.
If multiplication by y is an isomorphism in HVS then we can clear denominators
with y and get the equivalent relation xz = 0. If it’s not an isomorphism then
xz = 0 may not be equivalent to (x/y) · z = 0.

Here’s an example arising in ”nature”: Let’s take the generator

y = (w3aλ)/(aσu2σ)

of a Z /2. We want to establish the relation uλy = 0. First, the homology group
uλy lives in is a Z /2 (not 0), and neither uλ nor y are transfers (so we can’t
use the Frobenius relation); this means that uλy = 0 is not a secondary relation.
Second, uλy = 0 is not equivalent to (uλy)aσu2σ = 0 because multiplication by
aσu2σ is not an isomorphism for the homology group uλy lives in.

However, the homology group uλy lives in is generated by (w3a2
λ)/a3

σ, as we
can see from the tables in section 6. So while multiplication by aσu2σ is not
an isomorphism there, multiplication by a3

σ is. Thus uλy = 0 is equivalent to
a3

σuλy = 0 which is true because a3
σuλ = 0 by the Gold relation.

We employ a similar strategy when the homology group in the degree of the
product is not cyclic. Let’s take for example the relation

((2u2σ)/uλ)
2 = ((4u2

2σ)/u2
λ) + a4

σ/a2
λ

This ”exotic multiplication” was pointed out to us by Mingcong Zeng. To prove
it, write

((2u2σ)/uλ)
2 = x · (4u2

2σ)/u2
λ + y · a4

σ/a2
λ

for unknown integers x, y. To find x we can multiply by u2
λ and use the relation

uλ · (a4
σ/a2

λ) = 0

proven in the Appendix A. To find y we instead multiply with a2
λ and use

aλ · (4u2
2σ/u2

λ) = 0

which is proven by appealing to Frobenius ((4u2
2σ/u2

λ) = Tr4
2((2u4

σ)/ū2
λ)). In the

end we get x = y = 1 as desired.
This strategy fails when we have generators that are not of the form x/y. For

example the seemingly innocuous relation

s · ((2u2σ)/uλ) = 2u2σ(s/uλ)

can’t be proven by multiplying with uλ as the multiplication map can’t distin-
guish between 0 and 2u2σ(s/uλ) due to 2su2σ = 0. It’s also not the image of

13



another relation under multiplication by u2σ. Instead, we can immediately de-
duce the relation from the general simple fact of denominator exchange:

(x/z) · (y/w) = (x/w) · (y/z)

as long as x/(zw), y/(zw) exist.

It turns out that for the integral RO(C4) homology of a point, all relations can
be recovered from the Gold and the secondary relations using the ideas above.
Proving this is quite tedious, as we need to consider all unordered pairs of gen-
erators that are not transfers and compute their product in terms of the other
generators. This work is displayed in the Appendix A.

5. A conjecture for G = C2n

For G = C2n let σ denote the sign representation and λk denote the 2-dimen-
sional representation given by rotation by π/2k−1 degrees for k = 2, ..., n. Then
the Mackey functor H−3S−2λn is on each orbit

H−3S−2λn(G/C2k ) = Z /2k

for k > 0 and H−3S−2λn(G/e) = 0. Transfers are the usual inclusion maps
Z /2k ↪→ Z /2l for k ≤ l, while restrictions are the projection maps Z /2l →
Z /2k for k ≤ l.

We let sn denote a generator of Z /2n. Then we can directly compute that

snaσ = Tr2n

1 [(Res2n−1

1 uσ)(Res2n

1 uλn)
−2]

generating a Z /2.
Now note that 2sn is the transfer of the C2n−1 generator sn−1 hence by induction,

sn is generated by the Euler and orientation classes of C2k for 2 ≤ k ≤ n through
the extension

0→ Z /2n−1(2sn)→ Z /2n(sn)→ Z /2(snaσ)→ 0

Conjecture 5.1. For all G = C2n , the Euler classes, orientation classes and sn together
generate HFS under the operations of multiplication, division, transfer and restriction.

This has been verified in a finite range for n ≤ 5.
We further expect the Gold relation to generate all relations as in the preceding

section. Finally, we make no conjecture for the additive structure, as computa-
tional data suggest that it’s very complicated with no visible patterns.

14



6. The results

We compile the results of our computation of the Green functor H∗S±nσ±mλ =

HC4∗ (S±nσ±mλ; Z) where n, m ≥ 0 as always. We consider 8 separate cases based
on the signs in ±nσ ± mλ and the parity of n (this parity determines whether
the representation ±nσ±mλ is orientable or not); each case gets its own subsec-
tion containing both the additive and multiplicative structures. The 8 cases are
ordered roughly in increasing complexity, which also happens to be the order in
which we prove all these results in sections 8 through 13.

The notation for the Mackey functors and their generators has been explained
in the preceding two sections. For improved formatting we shall write x

y in place
of x/y.

6.1. H∗Snσ+mλ for even n.

H∗(Snσ+mλ) =


Z if ∗ = n + 2m
〈Z /4〉 if n ≤ ∗ < n + 2m and ∗ is even
〈Z /2〉 if 0 ≤ ∗ < n and ∗ is even

• un/2
2σ um

λ |un
σūm

λ |ūn
σ ¯̄um

λ generates Hn+2m = Z

• un/2
2σ am−i

λ ui
λ|un

σ ām−i
λ ūi

λ|0 generates Hn+2i = 〈Z /4〉 for 0 ≤ i < m

• an−2i
σ ui

2σam
λ |0|0 generates H2i = 〈Z /2〉 for 0 ≤ i ≤ n

2 − 1

6.2. H∗Snσ+mλ for odd n.

H∗(Snσ+mλ) =


Z− if ∗ = n + 2m
〈Z /2〉 if n ≤ ∗ < n + 2m and ∗ is odd
〈Z /2〉 if 0 ≤ ∗ < n + 2m and ∗ is even

• 0|un
σūm

λ |ūn
σ ¯̄um

λ generates Hn+2m = Z−

• 0|un
σ ām−i

λ ūi
λ|0 generates Hn+2i = 〈Z /2〉 for 0 ≤ i < m

• an−2i
σ ui

2σam
λ |0|0 generates H2i = 〈Z /2〉 for 0 ≤ i ≤ n

2 − 1

• aσu(n−1)/2
2σ am−i

λ ui
λ|0|0 generates Hn+2i−1 = 〈Z /2〉 for 1 ≤ i < m
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6.3. H∗S−nσ−mλ for even n. If n, m are not both 0,

H∗(S−nσ−mλ) =



L if ∗ = −n− 2m and m 6= 0
p∗L if ∗ = −n− 2m and m = 0
〈Z /4〉 if −n− 2m < ∗ < −n− 1 and ∗ is odd
〈Z /2〉 if −n− 1 ≤ ∗ < −1 and ∗ is odd and m 6= 0
〈Z /2〉 if −n + 1 ≤ ∗ < −1 and ∗ is odd and m = 0

• 4

un/2
2σ um

λ

∣∣∣ 2
un

σūm
λ

∣∣∣ 1
ūn

σ ¯̄um
λ

generates H−n−2m = L for m 6= 0

• 2

un/2
2σ

∣∣∣ 1
un

σ

∣∣∣ 1
ūn

σ
generates H−n = p∗L for m = 0

• s
un/2

2σ ai−2
λ um−i

λ

∣∣∣ s̄
un

σ āi−2
λ ūm−i

λ

∣∣∣0 generates H−n−2m+2i−3 = 〈Z /4〉 for 2 ≤ i ≤ m

• x2i+1,1

an−2i−1
σ am−1

λ

∣∣∣0∣∣∣0 generates H−2i−3 = 〈Z /2〉 for 0 ≤ i ≤ n
2 − 1, m 6= 0

• w2i+3

an−2i−3
σ

∣∣∣0∣∣∣0 generates H−2i−3 = 〈Z /2〉 for 0 ≤ i < n
2 − 1, m = 0
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6.4. H∗S−nσ−mλ for odd n.

H∗(S−nσ−mλ) =



L− if ∗ = −n− 2m and m 6= 0
p∗L− if ∗ = −n and n > 1, m = 0
Z− if ∗ = −1 and n = 1, m = 0
〈Z /2〉 if −n− 2m < ∗ < −n− 1 and ∗ is even
〈Z /2〉 if −n− 2m < ∗ < −1 and ∗ is odd

• xn,m

∣∣∣ 2
un

σūm
λ

∣∣∣ 1
ūn

σ ¯̄um
λ

generates H−n−2m = L− for m 6= 0

• wn|u−n
σ |ū−n

σ generates H−n = p∗L− for n > 1, m = 0

• 0|u−1
σ |ū−1

σ generates H−1 = Z− for n = 1, m = 0

• 0
∣∣∣ s̄
un

σ āi−2
λ ūm−i

λ

∣∣∣0 generates H−n−2m+2i−3 = 〈Z /2〉 for 2 ≤ i ≤ m

• 2s

aσu(n−1)/2
2σ ai−2

λ um−i
λ

∣∣∣0∣∣∣0 generates H−n−2m+2i−2 = 〈Z /2〉 for 2 ≤ i ≤ m

• x2i+1,1

an−2i−1
σ am−1

λ

∣∣∣0∣∣∣0 generates H−2i−3 = 〈Z /2〉 for 0 ≤ i < n−1
2 , m 6= 0

• w2i+3

an−2i−3
σ

∣∣∣0∣∣∣0 generates H−2i−3 = 〈Z /2〉 for 0 ≤ i < n−3
2 , m = 0
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6.5. H∗Smλ−nσ for even n. If n, m are both nonzero,

H∗(Smλ−nσ) =


Z if ∗ = 2m− n
〈Z /4〉 if −n + 2 ≤ ∗ < 2m− n and ∗ is even
〈Z /2〉 if −n + 1 ≤ ∗ ≤ −3 and ∗ is odd
Q if ∗ = −n

•
um

λ

un/2
2σ

∣∣∣ ūm
λ

un
σ

∣∣∣ ¯̄um
λ

ūn
σ

generates H2m−n = Z

•
ai

λum−i
λ

un/2
2σ

∣∣∣ āi
λūm−i

λ

un
σ

∣∣∣0 generates H2m−n−2i = 〈Z /4〉 for 0 < i < m

•
w2i+1am

λ

an−2i−1
σ

∣∣∣0∣∣∣0 generates H−2i−1 = 〈Z /2〉 for 1 ≤ i ≤ n
2 − 1

•
2am

λ

un/2
2σ

∣∣∣ ām
λ

un
σ

∣∣∣0 generates H−n = Q
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6.6. H∗Smλ−nσ for odd n. If m is nonzero,

H∗(Smλ−nσ) =



Z− if ∗ = 2m− n ≥ −1
〈Z /2〉 ⊕Z− if ∗ = 2m− n ≤ −3
〈Z /2〉 if −1 ≤ ∗ < 2m− n and ∗ is odd
〈Z /2〉 if 2m− n < ∗ ≤ −3 and ∗ is odd
〈Z /2〉 ⊕ 〈Z /2〉 if −n + 2 ≤ ∗ < 2m− n and ∗ is odd and ∗ ≤ −3
〈Z /2〉 if −n + 1 ≤ ∗ < 2m− n and ∗ is even
Q if ∗ = −n and n ≥ 3
〈Z /2〉 if ∗ = −1 and n = 1 and m = 1

• 0
∣∣∣u−n

σ ūm
λ

∣∣∣ū−n
σ ¯̄um

λ generates H2m−n = Z−

• 0
∣∣∣ āi

λūm−i
λ

un
σ

∣∣∣0 generates the 〈Z /2〉 in H2m−n−2i for 0 < i < m

•
w2i+1am

λ

an−2i−1
σ

∣∣∣0∣∣∣0 generates the 〈Z /2〉 in H−2i−1 for 1 ≤ i ≤ n−3
2

•
2ai

λum−i
λ

aσu(n−1)/2
2σ

∣∣∣0∣∣∣0 generates H2m−n−2i+1 = 〈Z /2〉 for 1 ≤ i ≤ m

• wnam
λ

∣∣∣u−n
σ ām

λ

∣∣∣0 generates H−n = Q for n ≥ 3

• 0
∣∣∣u−1

σ ām
λ

∣∣∣0 generates H−1 = 〈Z /2〉 for n = m = 1
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6.7. H∗Snσ−mλ for even n. If n, m are both nonzero,

H∗(Snσ−mλ) =



Q] if ∗ = n− 3 and m ≥ 2
〈Z /4〉 if n− 2m < ∗ < n− 3 and ∗ is odd
〈Z /2〉 if 0 ≤ ∗ ≤ n− 4 and ∗ is even and ∗ 6= n− 2m
L⊕ 〈Z /2〉 if ∗ = n− 2m and n− 2m ≥ 0 and m ≥ 2
L if ∗ = n− 2m and n− 2m < 0 and m ≥ 2
L] if ∗ = n− 2 and m = 1

•
un/2

2σ s
am−2

λ

∣∣∣ un
σ s̄

ām−2
λ

∣∣∣0 generates Hn−3 = Q] for m ≥ 2

• un/2
2σ ·

s
ai−2

λ um−i
λ

∣∣∣ un
σ s̄

āi−2
λ ūm−i

λ

∣∣∣0 generates Hn−2m+2i−3 = 〈Z /4〉 for 2 ≤ i < m

•
an−2i

σ ui
2σ

am
λ

∣∣∣0∣∣∣0 generates the 〈Z /2〉 in H2i for 0 ≤ i ≤ n−4
2

•
4un/2

2σ

um
λ

∣∣∣2un
σ

ūm
λ

∣∣∣ ūn
σ

¯̄um
λ

generates the L in Hn−2m for m ≥ 2

•
2un/2

2σ

uλ

∣∣∣2un
σ

ūλ

∣∣∣ ūn
σ

¯̄uλ
generates Hn−2 = L] for m = 1
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6.8. H∗Snσ−mλ for odd n. If m is nonzero,

H∗(Snσ−mλ) =



Q] if ∗ = n− 3 and n ≥ 3 and m ≥ 2
〈Z /2〉 if ∗ = −2 and n = 1 and m ≥ 2
〈Z /2〉 if n− 2m < ∗ ≤ n− 4 and ∗ is odd
〈Z /2〉 if 0 ≤ ∗ < n− 2m and ∗ is even
〈Z /2〉 ⊕ 〈Z /2〉 if n− 2m < ∗ ≤ n− 5 and ∗ is even and 0 ≤ ∗
〈Z /2〉 if n− 2m < ∗ ≤ n− 5 and ∗ is even and ∗ < 0
L− if ∗ = n− 2m and m ≥ 2
Z[
− if ∗ = n− 2 and m = 1

•
a3

σu(n−3)/2
2σ

am
λ

∣∣∣ un
σ s̄

ām−2
λ

∣∣∣0 generates Hn−3 = Q] for n ≥ 3 and m ≥ 2

• 0
∣∣∣ uσ s̄
ām−2

λ

∣∣∣0 generates H−2 = 〈Z /2〉 for n = 1 and m ≥ 2

•
aσu(n−1)/2

2σ s

ai−2
λ um−i

λ

∣∣∣0∣∣∣0 generates Hn−2m+2i−4 = 〈Z /2〉 for 2 ≤ i < m

•
an−2i

σ ui
2σ

am
λ

∣∣∣0∣∣∣0 generates the 〈Z /2〉 in H2i for 0 ≤ i < n−5
2

• 0
∣∣∣ un

σ s̄
āi−2

λ ūm−i
λ

∣∣∣0 generates the 〈Z /2〉 in Hn−2m+2i−3 for 2 ≤ i < m

•
aσu(n−1)/2

2σ s
um−2

λ

∣∣∣2un
σ

ūm
λ

∣∣∣ ūn
σ

¯̄um
λ

generates Hn−2m = L− for m ≥ 2

• 0
∣∣∣2un

σ

ūλ

∣∣∣ ūn
σ

¯̄uλ
generates Hn−2 = Z[

− for m = 1
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7. Computing the RO(G) graded homology

We explain the theoretical framework behind our computation of the RO(G)
homology of a point for a finite group G. The results here are classical, but includ-
ing them allows us to expound on the chain complexes and spectral sequences
that we’ll be using in the following sections.

First, let us recall that the shift of a G-Mackey functor M at a finite G-set T is
the Mackey functor MT specified on orbits as

MT(G/H) = M(T × G/H)

Our goal is to compute
H∗(SV ; M)

where V is a virtual representation of G; in particular SV is a spectrum, not
a space (not even necessarily a suspension spectrum). For a general finite G-
spectrum X,

H∗(X; M)

is computed using an equivariant cell decomposition of X. This is a sequence of
G-spectra Xp interpolating X0 = S and Xn = X through cofiber sequences

Xp−1 → Xp → Tp+ ∧ Sp

where the Tp are finite G-sets. Given such a decomposition, we have an Atiyah-
Hirzebruch spectral sequence of Mackey functors

E1
p,q = Hq(Tp+, M) =⇒ Hp+q(X, M)

But by the definition of equivariant homology, Hq(Tp+, M) = MTp concentrated
in degree q = 0, hence the E1 page is actually a chain complex with

Cp(X; M) = MTp

The boundary maps are induced from the geometric boundary maps

Tp+ ∧ Sp → ΣXp−1 → Σ(T(p−1)+ ∧ Sp−1)

in the following way: Smash the composite above with S−p to get a G-map Tp →
Tp−1 and then use the induced transfer map MTp → MTp−1 that is specified as:

MTp(G/H) = M(G/H × Tp)
Tr−→ M(G/H × Tp−1) = MTp−1(G/H)

This is the algebraic boundary map Cp → Cp−1.
The homology of the chain complex C∗(X; M) is H∗(X; M). We can do the

same for cohomology and get the dual cochain complex C∗(X; M) (using the
induced restriction maps Cp = MTp → Cp+1 = MTp+1 ).

So if we have an equivariant cell decomposition of X the problem of computing
H∗(X; M) is reduced to algebra. If V is an actual (as opposed to virtual) repre-
sentation, we might be able to find this decomposition of SV from the geometry
of the space, and that’s what we do in section 8. If V = −W where W is an actual
representation then we can use Spanier-Whitehead duality and be reduced to the
case already considered:

H∗(SV ; M) = H−∗(SW ; M)
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However, we can’t perform this trick if the virtual representation is V −W. In-
stead, we use that SV−W = SV ∧ S−W and smash the cell decompositions for
SV , SW together to get one for SV−W . In general, given cell decompositions

Xn−1 → Xn → Tn+ ∧ Sn

Yn−1 → Yn → T′n+ ∧ Sn

we get a cell decomposition of X ∧Y by

ho colimk+l=n Xk ∧Yl → ho colimk+l=n+1 Xk ∧Yl →
(

ä
k+l=n+1

Tk × T′l
)
+
∧ Sk+l

(this reduces to a fact in symmetric monoidal triangulated categories proven in
[May01]). Therefore,

C∗(X ∧Y; M� N) = (M� N)äk+l=∗ Tk×T′l
= ⊕k+l=∗(M� N)Tk×T′l

=

= ⊕k+l=∗MTk � NT′l
= C∗(X; M)� C∗(Y; N)

The boundary maps match up as well.

In our case, we take M = N = Z and then H∗(SV−W ; Z) is computed as the
homology of

C∗(SV ; Z)� C−∗(SW ; Z)

Unfortunately, even if the C∗SV and C−∗SW are by themselves very small and easy
to compute with (like in section 8), the box product can be extremely large very
easily. So instead of a direct computation, we use algebraic spectral sequences
converging to its homology.

In general, for any tensor product of chain complexes C ⊗ D in a sufficiently
good symmetric monoidal abelian category (like that of Mackey functors), we
have three spectral sequences converging to H∗(C ⊗ D). If we filter the double
complex underlying the tensor product either horizontally or vertically, we get
two spectral sequences with E2 terms

E2 = H∗(C; H∗D) =⇒ H∗(C⊗ D)

E2 = H∗(D; H∗C) =⇒ H∗(C⊗ D)

Using Cartan-Eilenberg resolutions we obtain a Kunneth spectral sequence

E2 = Tor∗,∗(H∗C, H∗D) =⇒ H∗(C⊗ D)

We refer the reader to [Wei94] and [Rot09] for details on their constructions but
we shall not need them.

In our case of C∗(SV)� C−∗(SW) the spectral sequences take the form

E2
p,q = Hp(SV , H−qSW) =⇒ Hp+qSV−W

Ep,q
2 = Hp(SW , H−qSV) =⇒ Hp+qSV−W

E2
p,q = Torp,q(HpSV , HqS−W) =⇒ Hp+qSV−W

These are all spectral sequences of Z-module and the final one uses the Tor in the
symmetric monoidal category of Z-modules.

Finally, we remark that our three spectral sequences can also be obtained topo-
logically. The first two are the Atiyah-Hirzebruch spectral sequences for the ho-
mology theory HV and the final one is the topological Kunneth spectral sequence.
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8. Proofs for H∗(Snσ+mλ)

The results of this section also appear in [HHR17], but we have chosen to
include them for the sake of completeness. As always, n, m ≥ 0.

We can obtain equivariant cell decompositions for Snσ+mλ as follows. View
it as the compactification of the disc D(Rn×R2m) and include the C4 subspace
Xn+2m−1 where either one of the final two coordinates is 0. The quotient space is

Snσ+mλ/Xn+2m−1 = C4+ ∧ Sn+2m

This is the wedge of four Sn+2m’s that correspond to the signs of the last two
coordinates in D(Rn×R2m), and we use (x±, y±) to represent them.

The space Xn+2m−1 includes Snσ+(m−1)λ as the C4 subspace where both the
last two coordinates are 0. The quotient is C4+ ∧ Sn+2m−1 and we use (x±, 0) and
(0, y±) to represent the four spheres.

We continue like this until we reach Snσ and we then include S(n−1)σ (last
coordinate 0) with quotient (C4/C2)+ ∧ Sn; these are two spheres represented by
x+, x−. Eventually we will reach S0 represented by ”1”.

We write ZC4 , ZC2 for the shifts of Z at the orbits C4/C4 and C4/C2; these are
also the fixed point Mackey functors of Z[C4], Z[C2] respectively.

In this notation, the chain complex for Snσ+mλ is

0→ ZC4 → ZC4 → · · · → ZC4 → ZC2 → ZC2 → · · · → ZC2 → Z→ 0

The ZC2 ’s are generated by x± while the ZC4 ’s are interchangeably generated by
(x±, y±) and (x±, 0), (0, y±).

The differentials up to dn are d1x+ = 1, d2kx+ = x+− x− and d2k+1 = x+ + x−.
The differentials from dn+1 to d2m+n depend on whether our sphere is C4-

oriented or not. If n is even (oriented),

d(x+, y+) = (x+, 0)− (0, y+)

d(x+, 0) =
4

∑ gi(x+, y+)

If n is odd (non oriented),

d(x+, y+) = (x+, 0) + (0, y+)

d(x+, 0) =
4

∑(−1)igi(x+, y+)

The differential dn+1 : ZC4 → ZC2 is d(x+, 0) = x+ + x− if n is even and
d(x+, 0) = x+ − x− if n is odd. Finally, if n = 0 the differential d1 : ZC4 → Z is
d1(x+, 0) = 1.

These differentials can be computed geometrically, or inferred from the obser-
vation that the homology of the bottom level of C∗Snσ+mλ is the nonequivariant
homology of Snσ+mλ i.e. Sn+2m, so the bottom level of C∗Snσ+mλ must be exact
apart from the highest degree.

We readily compute the homology of C∗Snσ+mλ to be as follows:
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If n is even,

H∗(Snσ+mλ) =


Z if ∗ = n + 2m
〈Z /4〉 if n ≤ ∗ < n + 2m and ∗ is even
〈Z /2〉 if 0 ≤ ∗ < n and ∗ is even

If n is odd,

H∗(Snσ+mλ) =


Z− if ∗ = n + 2m
〈Z /2〉 if n ≤ ∗ < n + 2m and ∗ is odd
〈Z /2〉 if 0 ≤ ∗ < n + 2m, ∗ is even

We now describe the multiplicative generators of H∗(Snσ+mλ). Recall from
section 4 that we have the Euler and orientation classes generating the Mackey
functors:

aσ|0|0 ∈ H0(Sσ) = 〈Z /2〉
aλ|āλ|0 ∈ H0(Sλ) = 〈Z /4〉
u2σ|u2

σ|ū2
σ ∈ H2(S2σ) = Z

uλ|ūλ| ¯̄uλ ∈ H2(Sλ) = Z

0|uσ|ūσ ∈ H1(Sσ) = Z−

and satisfying the Gold Relation:

a2
σuλ = 2aλu2σ

These classes multiplicatively generate all of H∗(Snσ+mλ) and the only primary
relation is the Gold. This claim follows easily from the following observations:
Multiplication by aσ : S0 → Sσ induces the chain map

C∗Snσ+mλ → C∗S(n+1)σ+mλ

that is ZC2

1−→ ZC2 for ∗ ≤ n, ZC4

1−→ ZC4 for n + 1 ≤ ∗ ≤ n + 2m and the
map ZC4 → ZC2 given by the canonical projection Z[C4] → Z[C4/C2] at bottom
level. For m = 0, aσ is the canonical inclusion C∗Snσ → C∗S(n+1)σ. Similarly,
multiplication by aλ induces the canonical inclusion C∗Snσ+mλ → C∗S(n+1)σ+mλ.

From these observations it follows that multiplication by aσ, aλ is an isomor-
phism in certain dimensions which is enough to prove the multiplicative genera-
tion of H∗(Snσ+mλ) by Euler and orientation classes.

9. Proofs for H∗(S−nσ−mλ)

To get H∗(S−nσ−mλ) we use Spanier-Whitehead Duality:

H∗(S−nσ−mλ) = H−∗(Snσ+mλ)

and cohomology is computed by the dual chain complex C∗(Snσ+mλ). The results:
If n is even,
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H∗(S−nσ−mλ) =



L if ∗ = −n− 2m and m 6= 0
p∗L if ∗ = −n− 2m and m = 0
〈Z /4〉 if −n− 2m < ∗ < −n− 1 and ∗ is odd
〈Z /2〉 if −n− 1 ≤ ∗ < −1 and ∗ is odd and m 6= 0
〈Z /2〉 if −n + 1 ≤ ∗ < −1 and ∗ is odd and m = 0

If n is odd,

H∗(S−nσ−mλ) =



L− if ∗ = −n− 2m < −1 and m 6= 0
p∗L− if ∗ = −n < −1 and m = 0
Z− if ∗ = −1 and n = 1 and m = 0
〈Z /2〉 if −n− 2m < ∗ < −n− 1 and ∗ is even
〈Z /2〉 if −n− 2m < ∗ < −1, ∗ is odd

We shall now find the multiplicative generators of H∗(S−nσ−mλ).
First note that uσ ∈ H2Sλ = Z{x+− x−} pairs with the generator of H−2S−λ =

Z−{x∗+} to x∗+(x+ − x−) = 1 hence it’s invertible. Similarly ¯̄uλ is invertible.
The transfers on the products of u−1

σ , ¯̄u−1
λ generate the L, L−’s since these ele-

ments do so on the bottom level (and transfers are surjective for L, L−). We can
compute these transfers through the Frobenius relations; for example,

Tr4
1(ū
−2n
σ ¯̄u−m

λ ) = 4/(un
2σum

λ )

We have:
• 4/(un

2σum
λ )|2/(u2n

σ ūm
λ )|ū−2n

σ ¯̄u−m
λ generates L for m > 0

• 2/un
2σ|u−2n

σ |ū−2n
σ generates p∗L.

For odd n ≥ 3 let

wn = Tr4
2(u
−n
σ ) = w3/u(n−3)/2

2σ

generating the top level of H−nS−nσ = p∗L−. For n = 1 this transfer is 0 so we
don’t define a w1. Next, for odd n ≥ 1 and any m ≥ 1 let

xn,m = Tr4
1(ū
−n
σ ¯̄u−m

λ ) = x1,1/(u(n−1)/2
2σ um−1

λ )

generating the top level of H−n−2mS−nσ−mλ = L−. We have
• xn,m|2/(un

σūm
λ )|ū−n

σ ¯̄u−m
λ generates L−.

• wn|u−n
σ |ū−n

σ generates p∗L−.

The wn are infinitely divisible by aσ since aσ : Snσ → S(n+1)σ is the inclusion
in chains C∗Snσ → C∗S(n+1)σ hence projection in cochains C∗S(n+1)σ → C∗Snσ

which is a quasi-isomorphism in top level for odd n.
• wn/ai

σ|0|0 generates 〈Z /2〉
The wn/ai

σ are infinitely divisible by aλ since aλ : Snσ+mλ → Snσ+(m+1)λ gives
the projection of cochain complexes C∗Snσ+(m+1)λ → C∗Snσ+mλ which is a quasi-
isomorphism in top level.

Now note that the xn,m are also infinitely aσ divisible. This is because

aσ : C∗S(n+1)σ+mλ → C∗Snσ+mλ
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is identity for ∗ ≤ n or n + 2 ≤ ∗ ≤ n + 2m, while for ∗ = n + 1 it’s the map
ZC2 → ZC4 dual to Z[C4]→ Z[C4/C2]. This is an isomorphism in top level.

The wn/(ai
σaj

λ) and xn,m/ai
σ generate the top levels of 〈Z /2〉’s, so if they occur

at the same dimensions they must be equal. Thus

x1,1/a2
σ = w3/aλ

and in general,

xn,m/ai
σ = xn,1/(ai

σum−1
λ ) = wn+2/(ai−2

σ aλum−1
λ )

for odd n and m ≥ 1 and i ≥ 2.
So the xn,1/ai

σ are infinitely aλ divisible for i ≥ 2 and odd n.

• x2i+1,1/(an−2i−1
σ am−1

λ )|0|0 generates 〈Z /2〉.
Let s ∈ H−3(S−2λ) = 〈Z /4〉 be the generator (unique up to a sign). It is

infinitely divisible by uλ: Indeed, we have the commutative diagram

H−3−2i(C4/C4) = Z /4 Z /4 = H−3(C4/C4)

H−3−2i(C4/C2) = Z /2 Z /2 = H−3(C4/C2)

ui
λ

Res4
2 Res4

2
ūi

λ

where the right column is generated by s, s̄ and the bottom horizontal map is an
isomorphism by the πC2

F (HZ) computation in [HHR17] (because C2 only has one
nontrivial irreducible real representation this computation is significantly shorter
and easier than the C4 case, but we will not reproduce it here).

The element s/ui
λ is infinitely aλ divisible (by either the C2 restriction argument

or the usual inclusion of chains argument) and s/(ai
λuj

λ) generates the top level
of a 〈Z /4〉. To get the remaining 〈Z /4〉 which appear as in the homology of
S−nσ−mλ for even n we can further multiply by u−n

σ in the middle level, which
gives s/(un/2

2σ ai
λuj

λ) as the top level generator. We conclude:

• s/(un/2
2σ ai

λuj
λ)|s̄/(un

σ āi
λūj

λ)|0 generates 〈Z /4〉 for i, j ≥ 0 and even n.

• 0|s̄/(un
σ āi

λūj
λ)|0 generates 〈Z /2〉 for i, j ≥ 0 and odd n.

10. Preparation for H∗(Smλ−nσ)

In this section and the next we will compute H∗(Smλ−nσ) for n, m ≥ 1.
Recall from section 7 that there are three algebraic spectral sequences we can

use for this computation. This section is devoted to determining the Mackey
functors in their E2 pages; we will figure out the differentials and extensions in
the next section.

We omit the multiplicative presentation of certain generators in the E2 page of
some of our spectral sequences. These generators either don’t survive the spectral
sequence, or if they do then we can figure out their multiplicative presentation in
the E∞ page by comparison with the other spectral sequences.

10.1. The Homological Spectral Sequence. The HSS is

E2
p,q = Hp(Smλ; HqS−nσ) =⇒ Hp+q(Smλ−nσ)
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We compute the E2 page (sans differentials) directly with the chain complex

C∗(Smλ; HqS−nσ) = C∗(Smλ)� Hq(S−nσ)

and get the following results. First,

H∗(Smλ; H−1S−σ) = H∗(Smλ; Z−) =


Z− if ∗ = 2m
〈Z /2〉 if 0 ≤ ∗ ≤ 2m− 2 and ∗ is even
〈Z /2〉 if 1 ≤ ∗ ≤ 2m− 1 and ∗ is odd

The multiplicative generators:

• 0|u−1
σ ūm

λ |ū−1
σ ¯̄um

λ generates Z−
• 0|u−1

σ āi
λūm−i

λ |0 generates 〈Z /2〉 for 0 < i ≤ m

Second, for even n ≥ 2,

H∗(Smλ; H−nS−nσ) = H∗(Smλ; p∗L) =


Z if ∗ = 2m
〈Z /4〉 if 2 ≤ ∗ < 2m and ∗ is even
Q if ∗ = 0

The multiplicative generators:

• um
λ /un/2

2σ |u−n
σ ūm

λ |ū−n
σ ¯̄um

λ generates Z

• (ai
λum−i

λ )/un/2
2σ |ū−n

σ āi
λūm−i

λ |0 generates 〈Z /4〉 for 0 < i < m
• (2am

λ )/un/2
2σ |u−n

σ ām
λ |0 generates Q.

Third, for odd n ≥ 3,

H∗(Smλ; H−nS−nσ) = H∗(Smλ; p∗L−) =


Z− if ∗ = 2m
〈Z /2〉 if 1 ≤ ∗ ≤ 2m− 1 and ∗ is odd
〈Z /2〉 if 2 ≤ ∗ ≤ 2m− 2 and ∗ is even
Q if ∗ = 0

The multiplicative generators:

• 0|u−n
σ ūm

λ |ū−n
σ ¯̄um

λ generates Z−
• 0|ū−n

σ āi
λūm−i

λ |0 generates 〈Z /2〉 for 0 < i < m
• wnam

λ |u−n
σ ām

λ |0 generates Q.

Finally,

H∗(Smλ; H−2i−1S−nσ) = H∗(Smλ; 〈Z /2〉) = 〈Z /2〉

concentrated in degree ∗ = 0 and generated by (w2i+1am
λ )/an−2i+1

σ for 1 ≤ i <
(n− 1)/2.
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10.2. The Cohomological Spectral Sequence. The CSS is

Ep,q
2 = H−p(S−nσ; H−qSmλ) =⇒ H−p−q(Smλ−nσ)

The Mackey functors in the E2 page are computed in a similar fashion as the HSS,
and are as follows: First, H−∗(S−nσ; H2mSmλ) = H−∗(S−nσ; Z) was computed in
the previous section. Next,

H−∗(S−nσ; HiSmλ) = H−∗(S−nσ; 〈Z /4〉) =


Q if ∗ = n ≥ 2
〈Z /2〉 if 0 ≤ ∗ < n and ∗ 6= 1
〈Z /2〉 if ∗ = n = 1

for even i is even and 0 ≤ i < 2m. The multiplicative generators:

• (2am−i
λ ui

λ)/un/2
σ |u−n

σ ām−i
λ ūi

λ|0 generates Q for even n ≥ 2

• wnam−i
λ ui

λ|u−n
σ ām−i

λ ūi
λ|0 generates Q for odd n ≥ 3.

• (w2j+1am−i
λ ui

λ)/an−2j−1
σ |0|0 generates 〈Z /2〉 in odd degrees.

• (2am−i
λ ui

λ)/an
σ|0|0 generates 〈Z /2〉 at degree 0.

• 0|u−1
σ ām−i

λ ūi
λ|0 generates 〈Z /2〉

10.3. The Kunneth Spectral Sequence. The KSS is

E2
p,q = Torp,q+1

Z (H∗Smλ−(n−1)σ, Z−) =⇒ Hp+q(Smλ−nσ)

This is the Kunneth spectral sequence for Smλ−(n−1)σ ∧ S−σ and we have used
that H∗S−σ = Z− concentrated in degree ∗ = −1. A free resolution of Z− is

0→ Z
∆−→ ZC2

∇−→ Z− → 0

We list only the nonzero Tor’s below, dropping the subscript Z from the notation:

• Tor0(〈Z /4〉, Z−) = 〈Z /2〉 and Tor1(〈Z /4〉, Z−) = 〈Z /2〉

• Tor0(〈Z /2〉, Z−) = Q

• Tor0(Q, Z−) = Q and Tor1(Q, Z−) = 〈Z /2〉

• Tor1(〈Z /2〉, Z−) = 〈Z /2〉

• Tor0(Z−, Z−) = p∗L

• Tor0(p∗L, Z−) = p∗L−

• Tor0(p∗L−, Z−) = p∗L and Tor1(p∗L−, Z−) = 〈Z /2〉

• Tor0(L, Z−) = L−

• Tor0(L−, Z−) = L and Tor1(L−, Z−) = 〈Z /2〉
Note that Tor∗(Z−,−) vanishes above ∗ = 1 by the resolution of Z−. This

means that the KSS is concentrated in the first two columns, hence always collapses
for dimensional reasons. That said, we still need the HSS to solve the extension
problems in the KSS and get the multiplicative generators. We only make a single
use of the CSS and that’s for n = 1.
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11. Proofs for H∗(Smλ−nσ)

We first compute H∗(Smλ−nσ) separately for n = 1 through n = 5 using the
spectral sequences explained in the preceding section. The KSS used to com-
pute Smλ−nσ works by feeding it the answer of the computation for n− 1, so we
perform our calculations in order of increasing n. The general n case follows
by induction, exhibiting very similar behavior to the n = 4 and n = 5 cases,
depending on the parity of n.

11.1. The case n = 1. The CSS for Smλ−σ is concentrated in the first two rows
and even columns, hence collapses with no extensions to

H∗(Smλ−σ) =


Z− if ∗ = 2m− 1
〈Z /2〉 if −1 ≤ ∗ ≤ 2m− 3 and ∗ is odd
〈Z /2〉 if 0 ≤ ∗ ≤ 2m− 2 and ∗ is even

The multiplicative generators are also obtained immediately from the CSS and
are as follows:
• 0|u−1

σ ūm
λ |ū−1

σ ¯̄um
λ generates Z−.

• 0|u−1
σ āi

λūm−i
λ |0 generates 〈Z /2〉 for 0 < i ≤ m

• (2ai
λum−i

λ )/aσ|0|0 generates 〈Z /2〉 for 0 < i ≤ m

11.2. The case n = 2. The HSS for Smλ−2σ similarly collapses with no extensions
to give:

H∗(Smλ−2σ) =


Z if ∗ = 2m− 2
〈Z /4〉 if 0 ≤ ∗ < 2m− 2 and ∗ is even
Q if ∗ = −2

The multiplicative generators:
• um

λ /u2σ|u−2
σ ūm

λ |ū−2
σ ¯̄um

λ generates Z.
• (ai

λum−i
λ )/u2σ|u−2

σ āi
λūm−i

λ |0 generates 〈Z /4〉 for 0 < i < m.
• (2am

λ )/u2σ|u−2
σ ām

λ |0 generates Q.

11.3. The case n = 3. The KSS for Smλ−2σ ∧ S−σ collapses with no extensions to
give:

H∗(Smλ−3σ) =


Z− if ∗ = 2m− 3
〈Z /2〉 if −2 ≤ ∗ < 2m− 3 and ∗ is even
〈Z /2〉 if −1 ≤ ∗ < 2m− 3 and ∗ is odd
Q if ∗ = −3

The multiplicative generators:
• 0|u−3

σ ūm
λ |ū−3

σ ¯̄um
λ generates Z−.

• (2ai
λum−i

λ )/(aσu2σ)|0|0 generates 〈Z /2〉 for 0 < i ≤ m.
• 0|u−3

σ āi
λūm−i

λ |0 generates 〈Z /2〉 for 0 < i < m
• w3am

λ |u−3
σ ām

λ |0 generates Q.
The generator of 〈Z /2〉 is not immediately obtained from the three spec-

tral sequences. Instead, our argument uses the result of the next subsection for
H∗(Smλ−4σ), the computation of which does not use the expression for the 〈Z /2〉
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generator so our reasoning is not circular. Given the computation of H∗(Smλ−4σ)
we have on top level:

H2m−4(Smλ−4σ) H2m−4(Smλ−3σ) H2m−4(Smλ−2σ)

Z um
λ /u2

2σ Z /2 Z /4(aλum−1
λ )/u2σ

aσ aσ

aσ aσ

The composite a2
σ sends the generator in Z to twice the generator in Z /4 by

the Gold Relation, hence the second map aσ must be the canonical inclusion
Z /2→ Z /4; we conclude that the middle generator is (2aλum−1

λ )/(aσu2σ).
Similarly, we can prove that the other 〈Z /2〉’s in H∗(Smλ−3σ) are generated by

(2ai
λum−i

λ )/(aσu2σ) (but now in the argument above use Z /4 in the place of Z).

11.4. The case n = 4. For Smλ−4σ the HSS has only one possibly nontrivial dif-
ferential 〈Z /4〉 → 〈Z /2〉 and whether it’s 0 or not determines whether H−3 is
〈Z /2〉 or 0. But the KSS collapses and gives H−3 = 〈Z /2〉, so the aforemen-
tioned differential has to be trivial. So now the HSS gives

H∗(Smλ−4σ) =


Z if ∗ = 2m− 4
〈Z /4〉 if −2 ≤ ∗ < 2m− 4 and ∗ is even
〈Z /2〉 if ∗ = −3
Q if ∗ = −4

• um
λ /u2

2σ|u−4
σ ūm

λ |ū−4
σ ¯̄um

λ generates Z.
• (um−i

λ ai
λ)/u2

2σ|ū−4
σ ūm−i

λ āi
λ|0 generates 〈Z /4〉 for 0 < i < m.

• (w3am
λ )/aσ|0|0 generates 〈Z /2〉.

• (2am
λ )/u2

2σ|u−4
σ ām

λ |0 generates Q.

11.5. The case n = 5. For Smλ−5σ the HSS has only one possibly nontrivial differ-
ential (for m ≥ 2) and comparison with the KSS shows that differential vanishes.
In degree −3 for m > 1 we have an extension of 〈Z /2〉 and 〈Z /2〉 in all three
spectral sequences, and the answer can be either Q or 〈Z /2〉 ⊕ 〈Z /2〉. To see
which one it is, we use the multiplicative generators: 〈Z /2〉 is generated on top
level by (w3am

λ )/a2
σ while 〈Z /2〉 is generated on middle level by u−5

σ ām−1
λ ūλ and

the question is whether we have the equality:

Tr4
2(u
−5
σ ām−1

λ ūλ)
?
= (w3am

λ )/a2
σ

The left hand side is computed by Frobenius to be w5uλam−1
λ so we ask if

w5am−1
λ uλ

?
= (w3am

λ )/a2
σ

Multiplication by a2
σ is an isomorphism hence we equivalently want to check

a2
σw5am−1

λ uλ
?
= w3am

λ

But by the Gold Relation the left hand side is 0 as 2w5 = 0, while in the right
hand side we have the generator of Z /2. This means that the extension has to be
trivial i.e. 〈Z /2〉 ⊕ 〈Z /2〉.
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For m = 1 we have an extension of 〈Z /2〉 and Z− that resolves to 〈Z /2〉⊕Z−
for the same reason. The answer is:

H∗(Smλ−5σ) =



Z− if ∗ = 2m− 5 and m ≥ 2
〈Z /2〉 if −1 ≤ ∗ < 2m− 5 and ∗ is odd
〈Z /2〉 if −4 ≤ ∗ < 2m− 5 and ∗ is even
〈Z /2〉 ⊕ 〈Z /2〉 if ∗ = −3 and m ≥ 2
〈Z /2〉 ⊕Z− if ∗ = −3 and m = 1
Q if ∗ = −5

• 0|u−5
σ ūm

λ |ū−5
σ ¯̄um

λ generates all instances of Z−.
• 0|u−5

σ ūm−i
λ āi

λ|0 generates all instances of 〈Z /2〉 for 0 < i ≤ m− 1.
• (2ai

λum−i
λ )/(aσu2

2σ)|0|0 generates 〈Z /2〉 for 0 < i ≤ m
• (w3am

λ )/a2
σ|0|0 generates the 〈Z /2〉 that appear as summands at −3.

• w5am
λ |u−5

σ ām
λ |0 generates Q at −5.

The multiplicative generator (2ai
λum−i

λ )/(aσu2
2σ) is proven just like we did with

H∗(Smλ−3σ) (i.e. we use the result for H∗(Smλ−6σ) and multiply by a2
σ).

11.6. The general case. We proceed by induction on n.
The computation of H∗(Smλ−nσ) for even n ≥ 6 is exactly like that for n = 4:

The HSS has unknown differentials that are trivial by comparison with the KSS
and there are no extension problems.

The computation of H∗(Smλ−nσ) for odd n ≥ 5 is exactly like that for n = 5:
The differentials in the HSS vanish by comparison with the KSS and we have
extension problems for 〈Z /2〉, 〈Z /2〉 and Z−, 〈Z /2〉 that both resolve to trivial
extensions for the same reason as the n = 5 case.

The results are displayed in subsections 6.5 and 6.6.

12. Preparation for H∗(Snσ−mλ)

In this section and the next we will compute H∗(Snσ−mλ) for n, m ≥ 1. As
before, there are three spectral sequences of Mackey functors we will use, and
this section is devoted to determining their E2 terms sans differentials. We omit
the multiplicative presentation for certain generators as in subsection 10.

12.1. The Homological Spectral Sequence. The HSS is

E2
p,q = Hp(Snσ; HqS−mλ) =⇒ Hp+q(Snσ−mλ)

For n ≥ 1,

H∗(Snσ; H−2m(S−mλ)) = H∗(Snσ; L) =


L] if ∗ = n: even
Z[
− if ∗ = n: odd
〈Z /2〉 if 2 ≤ ∗ < n and ∗ is even

The multiplicative generators:

• (2un/2
2σ )/um

λ |(2un
σ)/ūm

λ |ūn
σ ¯̄u−m

λ generates L].
• 0|(2un

σ)/ūm
λ |ūn

σ ¯̄u−m
λ generates Z[

−
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For 1 ≤ i ≤ m− 1,

H∗(Snσ; H−2i−1(S−mλ)) = H∗(Snσ; 〈Z /4〉) =


Q] if ∗ = n 6= 1
〈Z /2〉 if 0 ≤ ∗ < n and ∗ 6= 1
〈Z /2〉 if ∗ = n = 1

The multiplicative generators:

• (un/2
2σ s)/(am−i

λ ui−2
λ )|(un

σ s̄)/(ām−i
λ ūi−2

λ )|0 generates Q] for ∗ = n even.
• The middle level generator of Q] for ∗ = n odd is (un

σ s̄)/(ām−i
λ ūi−2

λ ).
• 0|(uσ s̄)/(ām−i

λ ūi−2
λ )|0 generates 〈Z /2〉

• (an−∗
σ u∗/2

2σ s)/(am−i
λ ui−2

λ )|0|0 generates 〈Z /2〉 for 0 ≤ ∗ < n even.

12.2. The Cohomological Spectral Sequence. The CSS is

Ep,q
2 = H−p(S−mλ; H−qSnσ) =⇒ H−p−q(Snσ−mλ)

and for odd n,

H−∗(Smλ; Hn(Snσ)) = H−∗(Smλ; Z−) =


L− if ∗ = 2m
〈Z /2〉 if 3 ≤ ∗ < 2m and ∗ is odd
〈Z /2〉 if 2 ≤ ∗ < 2m and ∗ is even

The multiplicative generators:

• Tr4
2((2un

σ)/ūm
λ )|(2un

σ)/ūm
λ |ūn

σ ¯̄u−m
λ generates L−

• 0|(un
σ s̄)/(ā∗−2

λ ūm−∗
λ )|0 generates 〈Z /2〉

Finally, H−∗(S−mλ; 〈Z /2〉) = 〈Z /2〉 concentrated in degree 0. So the homol-
ogy H−∗(S−mλ; HiSnσ) is generated by

(an−2i
σ ui

2σ)/am
λ

for 0 ≤ i < n/2.

12.3. The Kunneth Spectral Sequence. The KSS is

E2
p,q = Torp,q+2

Z (H∗Snσ−(m−1)λ, L) =⇒ Hp+q(Snσ−mλ)

This is the Kunneth spectral sequence for Snσ−(m−1)λ ∧ S−λ and we have used
that H∗S−λ = L concentrated in degree ∗ = −2. A free resolution of L is

0→ Z
∑ gix−−−→ ZC4

x 7→x−gx−−−−−→ ZC4

x 7→1−−→ L→ 0

where x ∈ Z[C4] corresponds to a generator of C4 (recall that ZC4 is the fixed
point Mackey functor on Z[C4]).

We list only the nonzero Tor’s below, dropping the subscript Z from the nota-
tion:
• Tor0(L, Z−) = L−

• Tor2(L, 〈Z /4〉) = 〈Z /4〉
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• Tor2(L, 〈Z /2〉) = 〈Z /2〉

• Tor0(L, L−) = L− and Tor1(L, L−) = 〈Z /2〉 and Tor2(L, L−) = 〈Z /2〉

• Tor2(L, 〈Z /2〉) = 〈Z /2〉

• Tor0(L, L) = L and Tor1(L, L) = 〈Z /4〉

• Tor0(L, L]) = L and Tor1(L, L]) = Q].

• Tor0(L, Z[
−) = L− and Tor1(L, Z[

−) = 〈Z /2〉.

• Tor2(L, Q]) = Q].

The existence of Tor2 terms means that the KSS can now have potentially non
vanishing differentials and more complicated extension problems. As a result the
computations in the next section are slightly more involved compared to those in
section 11.

Still, this is slightly better than the worst case scenario that is nonvanishing
Tor3: In general, for finite cyclic G the abelian category of Z-Mackey functors has
projective dimension 3 ([BSW17]).

13. Proofs for H∗(Snσ−mλ)

The computation of H∗(Snσ−mλ) depends heavily on the parity of n and we
distinguish three cases: even n, n = 1 and odd n ≥ 3.

In the even n case, we compute H∗(Snσ−mλ) for m = 1, 2, 3 separately before
we can perform induction. The case n = 1 is staightforward enough to do for all
m at once, while for odd n ≥ 3 we again compute the special cases m = 1, 2, 3
and then induct on m.

We make use of all three spectral sequences HSS, CSS and KSS and play them
off against each other.

13.1. The case of even n and m = 1. The HSS for Snσ−λ collapses with no exten-
sions (for dimensional reasons) to give

H∗(Snσ−λ) =

{
L] if ∗ = n− 2
〈Z /2〉 if 0 ≤ ∗ ≤ n− 4 and ∗ is even

The multiplicative generators for L] and 〈Z /2〉 are obtained immediately from
the HSS and CSS respectively and they are:

• (2un/2
2σ )/uλ|(2un

σ)/ūλ|ūn
σ ¯̄u−1

λ generates L].
• (an−2i

σ ui
2σ)/aλ|0|0 generates 〈Z /2〉 for 0 ≤ i < n/2− 1

Note that by the Gold relation, the mod 2 reduction of (2ui
2σ)/uλ is (a2

σui−1
2σ )/aλ.

In particular, (2u2σ)/uλ and its mod 2 reduction a2
σ/aλ exist. However as we will

see, (2u2σ)/u2
λ and aσ/aλ do not exist.

13.2. The case of even n and m = 2. The KSS for Snσ−2λ collapses giving the an-
swer with the exception of degree n− 4 for n ≥ 4. There is an extension problem
of L, 〈Z /2〉 in all three spectral sequences and there are only two possibilities for
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that extension:

0→ L→ L⊕ 〈Z /2〉 → 〈Z /2〉 → 0

0→ L→ L] → 〈Z /2〉 → 0

By the CSS, the extension is L] iff (2un/2
2σ )/u2

λ exists and its mod 2 reduction is
(a4

σun/2−2
2σ )/a2

λ. If this were true, then we would have the following commutative
diagram:

Z(un/2
2σ )

Z

(
2un/2

2σ

u2
λ

)
Z /4(un/2

2σ a2
λ)

Z /2
(

a4
σun/2−2

2σ

)

a2
λ

a2
λ

u2
λ

u2
λ

Note that in the lower part of the diagram, since a3
σuλ = 0 by the Gold Relation,

the u2
λ map is trivial. So we have

Z

Z Z /4

Z /2

mod 4

mod 2

2

0

which clearly doesn’t commute.
Therefore the extension has to be L ⊕ 〈Z /2〉, which means that (2un/2

2σ )/u2
λ

does not exist. As we remarked above, this only happens for n ≥ 4; for n = 2 we
only have an L so there is no extension and the elements (2u2σ)/u2

λ and a2
σ/a2

λ do
not exist.

In conclusion we have

H∗(Snσ−2λ) =


Q] if ∗ = n− 3
L⊕ 〈Z /2〉 if ∗ = n− 4 and n ≥ 4
L if ∗ = −2 and n = 2
〈Z /2〉 if 0 ≤ ∗ < n− 4 and ∗ is even

• un/2
2σ s|un

σ s̄|0 generates Q]

• (4un/2
2σ )/u2

λ|(2un
σ)/ū2

λ|ūn
σ ¯̄u−2

λ generates all instances of L (both as a summand
and nonsummand).
• (an−2i

σ ui
2σ)/a2

λ|0|0 generates all instances of 〈Z /2〉 for 0 ≤ i < n/2− 1

13.3. The case of even n and m = 3. The KSS for Snσ−3λ collapses with an usual
extension problem of L and 〈Z /2〉 at n − 6 and n ≥ 6. The answer is L] iff
(2un/2

2σ )/u3
λ exists, but if it did then (2un/2

2σ )/u2
λ would also exist, contradicting
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the computation of Snσ−2λ in the preceding subsection. We conclude:

H∗(Snσ−3λ) =



Q] if ∗ = n− 3
〈Z /4〉 if ∗ = n− 5
L⊕ 〈Z /2〉 if ∗ = n− 6 and n ≥ 6
L if ∗ = n− 6 and n = 2, 4
〈Z /2〉 if 0 ≤ ∗ ≤ n− 4 and ∗ is even and ∗ 6= n− 6

• (un/2
2σ s)/aλ|(un

σ s̄)/āλ|0 generates Q]

• un/2
2σ (s/uλ)|(uσ s̄)/ūλ|0 generates 〈Z /4〉

• (a2i
σ un/2−i

2σ )/a3
λ|0|0 generates all instances of 〈Z /2〉 for 2 ≤ i ≤ n/2.

• (4un/2
2σ )/u3

λ|(2un
σ)/ū3

λ|ū
n
σ ¯̄u−3

λ generates all instances of L.

13.4. The general case of even n. We proceed by induction, with the case of
H∗Snσ−mλ for m ≥ 4 being treated exactly the same as for m = 3. The answer is
given in subsection 6.7.

13.5. The case of n = 1. By comparing the HSS (collapses with one extension)
and CSS (has differentials but no extensions) we get:

H∗(Sσ−mλ) =


L− if ∗ = 1− 2m and m ≥ 2
Z[
− if ∗ = −1 and m = 1
〈Z /2〉 if −2m + 2 ≤ ∗ ≤ −2 and ∗ is even
〈Z /2〉 if −2m + 3 ≤ ∗ ≤ −3 and ∗ is odd

• (aσs)/um−2
λ |(2uσ)/ūm

λ |ūσ ¯̄u−m
λ generates L− for m ≥ 2

• 0|(2uσ)/ūλ|ūσ ¯̄u−1
λ generates Z[

− for m = 1
• 0|(uσ s̄)/(ām−i

λ ūi−2
λ )|0 generates 〈Z /2〉 for 2 ≤ i ≤ m.

• (aσs)/(am−i
λ ui−2

λ )|0|0 generates 〈Z /2〉 for 2 ≤ i < m

Therefore,

Tr4
2((2uσ)/ū2

λ) = aσs

We also note that while aσ/aλ does not exist, the element a2
σ/aλ does exist by

the n = 2 computation.

13.6. The case of odd n ≥ 3 and m = 1. The HSS for Snσ−λ collapses with no
extensions to give:

H∗(Snσ−λ) =

{
Z[
− if ∗ = n− 2
〈Z /2〉 if 0 ≤ ∗ ≤ n− 3 and ∗ is even

• (2un
σ)/ūλ|ūn

σ ¯̄u−1
λ |0 generates Z[

−.
• (an−2i

σ ui
2σ)/aλ|0|0 generates 〈Z /2〉 for 0 ≤ i ≤ (n− 3)/2
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13.7. The case of odd n ≥ 3 and m = 2. For Snσ−2λ the HSS and CSS comparison
reveals:

H∗(Snσ−2λ) =


Q] if ∗ = n− 3
L− if ∗ = n− 4
〈Z /2〉 if 0 ≤ ∗ ≤ n− 5 and ∗ is even

• (a3
σu(n−3)/2

2σ )/a2
λ|un

σ s̄|0 generates Q]

• aσu(n−1)/2
2σ s|(2un

σ)/ū2
λ|ūn

σ ¯̄u−2
λ generates L−

• (an−2i
σ ui

2σ)/a2
λ|0|0 generates 〈Z /2〉 for 0 ≤ i ≤ (n− 5)/2

So a3
σ/a2

λ exists and

s̄ = Res4
2(a3

σ/a2
λ)/u3

σ

13.8. The case of odd n ≥ 3 and m = 3. For Snσ−3λ comparison of the KSS and
HSS gives the answer with the exception of an extension problem of 〈Z /2〉 and
〈Z /2〉 for n ≥ 5. There are two possible extensions, Q] and 〈Z /2〉 ⊕ 〈Z /2〉, and
to determine which one it is, we use the multiplicative generators: The middle
level generator of 〈Z /2〉 is un

σ(s̄/ūλ) and the top level generator of 〈Z /2〉 is
(a5

σu(n−5)/2
2σ )/a3

λ so it all rests on whether or not

Res4
2(a5

σ/a3
λ)

?
= u5

σ(s̄/ūλ)

But we already know that a3
σ/a2

λ and a2
σ/aλ both exist, the latter generating the

top level of a 〈Z /2〉 thus having trivial restriction. Therefore

Res4
2(a5

σ/a3
λ) = Res4

2(a3
σ/a2

λ)Res4
2(a2

σ/aλ) = 0

can’t be the generator u5
σ(s̄/ūλ) and the extension is trivial. We conclude:

H∗(Snσ−3λ) =



Q] if ∗ = n− 3
〈Z /2〉 if ∗ = n− 4
〈Z /2〉 ⊕ 〈Z /2〉 if ∗ = n− 5 and n ≥ 5
〈Z /2〉 if ∗ = n− 5 and n = 3
L− if ∗ = n− 6
〈Z /2〉 if 0 ≤ ∗ ≤ n− 7 and ∗ is even

• (a3
σu(n−3)/2

2σ )/a3
λ|(u

n
σ s̄)/āλ|0 generates Q].

• (aσu(n−1)/2
2σ s)/aλ|0|0 generates 〈Z /2〉 at degree n− 4.

• (an−2i
σ ui

2σ)/a3
λ|0|0 generates all instances of 〈Z /2〉 for 0 ≤ i ≤ (n− 5)/2.

• 0|(un
σ s̄)/ūλ|0 generates all instances of 〈Z /2〉.

• (aσu(n−1)/2
2σ s)/uλ|(2un

σ)/ū3
λ|ū

n
σ ¯̄u−3

λ generates L−.

13.9. The general case of odd n ≥ 3. We proceed by induction, with H∗Snσ−mλ

for m ≥ 4 being treated exactly like the m = 3 case. The answer is given in
subsection 6.8.

37



Appendix A. The relations

In this appendix we prove that the secondary relations (the Frobenius relations
combined with the additive structure and the presentation of the generators given
in section 6) and the four ”extra” relations

a2
σuλ = 2u2σaλ (1)

x1,1

a2
σ

=
w3

aλ
(2)

x1,1

aλ
=

2s
aσ

(3)

x1,1

uλ
=

aσs
u2σ

(4)

can be used to generate all other relations in πC4
F (HZ). The first extra relation is

the Gold relation and the final two follow from the definition of s. The second is
actually redundant (we only use it as a convenient way to pass between x1,1 and
w3) and follows from the Gold in this way: First,

w3

a2
σ
· 2u2σ

uλ
=

x1,1

a2
σ

(5)

To see this, note that multiplication by a2
σ is an isomorphism so equivalently:

w3
2u2σ

uλ
= x1,1

This is proven by appealing to the Frobenius relation:

w3
2u2σ

uλ
= Tr4

2(u
−3
σ )

2u2σ

uλ
= Tr4

2

(
u−3

σ
2u2

σ

ūλ

)
= Tr4

2

(
u−1

σ
2

ūλ

)
= Tr4

1(ū
−1
σ ¯̄u−1

λ ) = x1,1

Next note that

aλ ·
2u2σ

uλ
= a2

σ (6)

as multiplying by uλ is an isomorphism (the map Z /2 → Z /2, a2
σ 7→ a2

σuλ =
2u2σaλ is an isomorphism). By (5) and (6),

w3 =
x1,1

a2
σ

aλ

So the map aλ is an isomorphism Z /2 → Z /2, x1,1/a2
σ 7→ w3, hence we can

write
x1,1

a2
σ

=
w3

aλ

To prove that the secondary relations and the four extra relations are enough
to generate all others, it is enough to compute the product of any two generators
a ∈ HC4

k (Snσ+mλ) and b ∈ HC4
k′ (S

n′σ+m′λ) as a linear combination of the generators
in HC4

k+k′(S
(n+n′)σ+(m+m′)λ), using only the relations above.

What follows is an exhaustive list of all these products that need to be com-
puted and the results of the computations. The proofs are rather brief; consult
subsection 4.2 for the strategy employed. To keep the length of the list reasonable,
we have made the following omissions:
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1 We omit products where one factor is a transfer, as these reduce to the C2 case
by the Frobenius relation:

Tr4
2(x)y = Tr4

2(x Res4
2 y)

2 We omit products that are trivial for degree reasons.
3 We omit products where both factors are in HkSnσ+mλ for k, n, m ≥ 0. This

part is polynomially generated by the Euler and orientation classes modulo the
Gold relation (1).

4 We omit products that can immediately be computed through the following
fact: If x/y, z/w and (xz)/(yw) all generate the homology groups they live in,
then

x
y
· z

w
=

xz
yw

Note that this applies only when we have cyclic homology in the degrees of
x/y, z/w and (xz)/(yw).
With all that said, we are ready to present the list (we only label the rela-

tions/equations that we reference later in the proofs of other relations):
• The following relations compute the product of aσ with the other generators:

aσ ·
s

ui
2σuj

λ

=
x1,1

ui−1
2σ uj+1

λ

aσ ·
s

ui
2σaj

λuk
λ

=
2s

aσui−1
2σ aj−1

λ uk+1
λ

aσ ·
x1,1

ui
2σaj

λ

=
2s

ui
2σaj−1

λ

aσ ·
ui

λ

uj
2σ

=
2aλui

λ

aσuj−1
2σ

aσ ·
2ui

2σ

uλ
=

a3
σui−1

2σ

aλ

Note: If i = 0 in the first equation or j = 0 in the 2nd-4th equations then we
get a negative exponent in a denominator. When this happens that means the
product is 0.
Proof. After clearing denominators (multiplying by the denominators in the
right hand side), all but the third equation reduce to the Gold relation. The
third instead reduces to (3). �

• The following relations compute the product of u2σ with the other generators:

u2σ ·
2s

aσai
λuj

λ

=
aσs

ai+1
λ uj−1

λ

u2σ ·
2ai

λ

aσ
= aσai−1

λ uλ (7)

Proof. Both reduce to the Gold as usual. For the second equation, multipli-
cation by aσ is an isomorphism as can be seen directly from the right hand
side. �
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• The following relations compute the product of aλ with the other generators:

aλ ·
2s

aσui
2σuj

λ

=
x1,1

ui
2σuj

λ

aλ ·
2ui

2σ

uλ
= a2

σui−1
2σ (8)

Proof. Both reduce to the Gold after clearing denominators. �

• The following relations compute the product of uλ with the other generators:

uλ ·
2s

aσui
2σaj

λ

= 0

uλ ·
w3

ai
σuj

2σ

= 0

uλ ·
ai

σ

aj
λ

= 0 , i ≥ 3

Proof. The first two relations are deduced as follows:

uλ ·
2s

aσui
2σaj

λ

= 0 · x1,1

a2
σui−1

2σ aj
λ

⇐⇒ uλaσ
2s

u2σ
= 0 ⇐= 2aσ = 0

uλ ·
w3

ai
σuj

2σ

= 0 · aλw3

ai+2
σ uj−1

2σ

⇐⇒ a2
σuλ

w3

u2σ
= 0 ⇐= Gold

For the last relation, if j ≥ 2 the homology group in the degree of the product is
0 so we may assume j = 1 and further that i = 3 (we can factor higher powers
of aσ out of the quotient). Then,

uλ ·
a3

σ

aλ
= 0 · aσu2σ ⇐⇒ a3

σuλ = 0 ⇐= Gold

�

• The remaining relations involving s are:
s

ui
2σuj

λ

· 2aλ

aσ
=

x1,1

ui
2σuj

λ

2s

aσui
2σaj

λ

· 2aλ

aσ
= 0

2s

aσui
2σaj

λuk
λ

· 2aλ

aσ
= 2 · s

ui+1
2σ aj

λuk−1
λ

Proof. The first reduces to (4) as usual. The second reduces to the relation we
just proved, while the final one reduces to (7):

2s

aσui
2σaj

λ

· 2aλ

aσ
= 0 · x1,1

aσui
2σaj

λ

⇐⇒ 2s
2aλ

aσ
= 0

2s

aσui
2σaj

λuk
λ

· 2aλ

aσ
= 2 · s

ui+1
2σ aj

λuk−1
λ

⇐⇒ 2s
aσuλ

u2σ
2aλ

aσ
= 2s ⇐= (7)

�
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• The remaining relations involving x1,1 are:

x1,1

aσui
2σaj

λ

· 2u2σ

uλ
= 2

s

ui
2σaj

λ

x1,1

ai
σuj

2σak
λ

· 2u2σ

uλ
=

x1,1

ai−2
σ uj

2σak+1
λ

Proof. For the first relation we perform a denominator exchange:

x1,1

aσui
2σaj

λ

· 2u2σ

uλ
= 2

s

ui
2σaj

λ

⇐⇒ x1,1

aσuλ
2u2σ = 2s ⇐⇒ s

u2σ
2u2σ = s

x1,1

ai
σuj

2σak
λ

· 2u2σ

uλ
=

x1,1

ai−2
σ uj

2σak+1
λ

⇐⇒ x1,1

a2
σ

aλ
2u2σ

uλ
= x1,1 ⇐= (8)

�

• The remaining relations involving w3 are:

w3

ai
σuj

2σ

· a3
σ

ak
λ

=
x1,1

ai−1
σ uj

2σak−1
λ

w3

ai
σuj

2σ

· 2u2σ

uλ
=

x1,1

ai
σuj

2σ

Proof. For the first relation we may assume i ≥ 1 (otherwise we have a transfer)
and then the equality is implied by (2). The second relation is implied by
(5). �

• The remaining relation involving uλ/u2σ is:

uλ

u2σ

a3
σ

aλ
= 0

Proof. Follows immediately from the Gold. �

• The remaining relations involving (2aλ)/aσ are:

2aλ

aσ
· 2aλ

aσ
= 2

aλuλ

u2σ

2aλ

aσ
· a3

σ

aλ
= 0

2ai
λ

aσ
·

2uj
2σ

uλ
= 0

Proof. For the first two:

2aλ

aσ
· 2aλ

aσ
= 2

aλuλ

u2σ
⇐⇒ 2aλ

aσ
· (u2σ

2aλ

aσ
) = 2aλuλ ⇐= (7)

2aλ

aσ
· a3

σ

aλ
= 0 · a2

σ ⇐= 2aλ ·
a3

σ

aλ
= 0 · a3

σ
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For the third we may assume j = 1 and then

2ai
λ

aσ
· 2u2σ

uλ
= 0 · aσai−1

λ ⇐⇒ 2ai
λ ·

2u2σ

uλ
= 0 · a2

σai−1
λ ⇐= (8)

�

• The remaining relations involving 2u2σ/uλ are:

2ui
2σ

uλ
·

2uj
2σ

uλ
=

4ui+j
2σ

u2
λ

+
a4

σui+j−2
2σ

a2
λ

ai
σ

ak
λ

·
2uj

2σ

uλ
=

ai+2
σ uj−1

2σ

ak+1
λ

Proof. We explained how to get the first relation at the end of subsection 4.2.
For the second, note that the element in the left-hand side is 2-torsion so no
torsion-free generator can appear in the right-hand side. Thus we have

ai
σ

ak
λ

·
2uj

2σ

uλ
=

ai+2
σ uj−1

2σ

ak+1
λ

⇐⇒ ai
σaλ

2uj
2σ

uλ
= ai+2

σ uj−1
2σ ⇐= (8)

�
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