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oco-categories as certain presheaves of spaces satisfying ana-
logues of the “Segal condition” for Rezk’s Segal spaces. Lastly,
we present some applications of our theory, most notably the
identification of associative algebras in V as a coreflective sub-
category of pointed V-enriched oco-categories as well as a proof
of a strong version of the Baez—Dolan stabilization hypothesis.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Over the past decade, taking the higher-categorical nature of various mathematical
structures seriously has turned out to be a very fruitful idea in several areas of math-
ematics. In particular, the theory of co-categories (or more precisely (oo, 1)-categories)
has found many applications in algebraic topology and in other fields. However, despite
the large amount of work that has been carried out on the foundations of co-category
theory, above all by Joyal and Lurie, the theory is in many ways still in its infancy, and
the analogues of many concepts from ordinary category theory remain to be explored.
In this paper we begin to study the natural analogue in the co-categorical context of one
such concept, namely that of enriched categories.

Enriched categories in the usual sense are ubiquitous in modern mathematics: the
morphisms between objects in naturally occurring categories often have more structure
than just that of a set. However, there are a number of important situations where the
classical theory of enriched categories has turned out to be insufficient in ways that lead
us towards considering the higher-categorical version of enrichment. In algebraic topol-
ogy, for example, the categories that arise typically have a space of morphisms between
any two objects, but it is usually only the (weak) homotopy types of these spaces that
matter. Naively, we might guess that this means we should consider these categories as
enriched in the homotopy category of spaces, but this turns out to lose information that
is important for most applications. We are therefore forced to consider the homotopy
theory of categories enriched in topological spaces (or any other model for the homotopy
theory of spaces, such as simplicial sets), with respect to the appropriate notion of weak
equivalences, which takes us outside the usual theory of enriched categories. It is possible
to consider this homotopy theory in the context of Quillen’s model categories (as was
originally done by Bergner [8] for simplicial categories), but the resulting model struc-
tures are in some ways not very well-behaved, essentially because these “strictly enriched”
categories are in a sense too rigid. This makes it hard to understand the correct homo-
topy types of the spaces of functors between them, and also makes homotopy-invariant
constructions (such as homotopy limits and colimits) problematic to set up.

An additional problem is that many naturally occurring composition laws between
spaces are not strictly associative, but only associative up to coherent homotopy. This
makes them difficult to model as simplicial or topological categories. It is therefore
often more convenient to work with a notion of “category enriched in spaces” where
composition of morphisms is only associative up to coherent homotopy. This is the idea
behind the theory of oco-categories. Roughly speaking, the notion of co-category is a
generalization of the notion of category where in addition to objects and morphisms we
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also have homotopies between morphisms, homotopies between homotopies, and so on,
and composition is only associative up to a coherent choice of higher homotopies. There
are several ways to make this idea precise, such as Segal categories, complete Segal spaces,
and quasicategories. It turns out that working with oco-categories also avoids the other
problems with simplicial or topological categories mentioned above, such as the difficulty
of constructing functor categories.

A similar situation arises in other areas of mathematics, such as algebraic geometry
or representation theory, where there are many examples of derived categories. These
have traditionally been thought of as additive categories, which is to say categories en-
riched in abelian groups, equipped with the additional data of a triangulation. Recently,
however, it has been understood that derived categories, or more generally triangu-
lated categories, are not rich enough for many applications — the extra structure of
the triangulation must be replaced by the more refined and intrinsic notion of a dif-
ferential graded structure, i.e. an enrichment in chain complexes. The correct notion of
an equivalence between these dg-categories does not require a dg-functor to be given
by isomorphisms on chain complexes of maps, however — instead, the functor need
only induce quasi-isomorphisms. On the other hand, it is again not enough to consider
these categories as simply enriched in the homotopy category of chain complexes (i.e.
the derived category of abelian groups): just as a differential graded algebra (or more
generally an A..-algebra) is a much richer and more subtle object than a homotopy-
associative multiplication on a chain complex, the composition in a dg-category contains
far more information than an enrichment in the homotopy category of chain com-
plexes.

Homotopy-coherent compositions also occur in this context — a key example here
is the Fukaya categories of symplectic geometry. These can often be described using
A -categories, but unfortunately the theory of A..-categories is not as well-behaved as
a replacement for that of dg-categories as co-categories are as a replacement for simplicial
categories.

A third example of this type is spectral categories (or categories enriched in spectra),
of which there are many interesting examples in algebraic topology. These are much more
general than dg-categories, and tend to arise in examples where the mapping spectra can
only be extracted up to homotopy. To emphasize the subtleties of the situation, the very
existence of a symmetric monoidal model for the homotopy theory of spectra (under the
smash product) was only fairly recently resolved, after being an open question for several
decades. Moreover, in this context no notion of homotopy-coherent enrichment has so far
been proposed; this is a problem, for example because many important functors that are
known to preserve A..-structures, such as algebraic K-theory or topological Hochschild
homology, cannot be realized as lax monoidal functors to a model category of spectra.

Now, just as spaces are the higher-categorical analogue of sets, spectra are the higher
categorical analogue of abelian groups or chain complexes, and the sophisticated nature
of these objects means that we require a more conceptual and less ad hoc approach to
the homotopy theory of spectral categories than what is often sufficient in the theory
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of dg-categories. One way to do this is to set up model category structures on enriched
categories — it is possible to treat the homotopy theory of dg-categories [40], spectral
categories [41], or even categories enriched in other sufficiently nice monoidal model
categories [25,7,39,32] in this way. However, the resulting model categories suffer from
the same problems as that of simplicial categories. In the case of dg-categories, for
example, the correct spaces of dg-functors have only recently been explicitly described
by Toén [43], using a fairly complex construction; there are earlier constructions of
functor categories between A..-categories [29], but these are also problematic.

In this paper we propose a different approach, namely to set up a general the-
ory of weak or homotopy-coherent enrichment. Specifically, we will define and study
oo-categories enriched in monoidal co-categories, which are oco-categories equipped with
a tensor product that is associative and unital up to coherent homotopy. This the-
ory encompasses, for example, analogues of spectral categories and dg-categories where
composition is only associative up to coherent homotopy. For the former we consider
oo-categories enriched in the oo-category of spectra, while for the latter we enrich in the
derived oco-category of abelian groups, in the sense of [28, §1.3.2], i.e. the co-category ob-
tained by inverting the quasi-isomorphisms between chain complexes of abelian groups.
The resulting homotopy theories of enriched co-categories are much better behaved than
those of strictly enriched categories — for example, we have naturally defined enriched
oo-categories of functors between enriched oco-categories. Moreover, the resulting homo-
topy theories are equivalent to those of ordinary enriched categories, as is proved in [19].
Thus, our theory gives a more flexible approach to the homotopy theory of dg-categories
and spectral categories, which we expect will make many construction in these settings
easier to carry out.

The idea of “weak” enrichment is also implicit in the concept of higher category
theory itself: an n-category should have k-morphisms between (k — 1)-morphisms for
k=1,...,n, so there is an (n — 1)-category of maps between any two objects. As is well
known, however, to obtain a good notion of n-category for n > 2 it is not sufficient to
just consider n-categories as strictly enriched in (n — 1)-categories, as in most naturally
occurring examples composition is only associative up to invertible higher morphisms.
We can avoid this issue by instead applying our oo-categorical theory of enrichment:
iterating the enrichment procedure starting with the category of sets gives an induc-
tively defined notion of fully weak n-category. Starting instead with spaces we obtain
a theory of (oo, n)-categories, and we can also similarly define (weak) (n, k)-categories,
which are n-categories where the -morphisms are all invertible for ¢ > k. Moreover, the
resulting homotopy theories are equivalent to those of existing models for n-categories
and (0o, n)-categories (as is also proved in [19]).

Thanks to the foundational work of Lurie, we are able to set up our theory of en-
richment entirely within the context of co-categories (rather than working with model
categories, say). Apart from greater generality, working in this setting gives a theory
with many good properties, including the following:
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(a) Weak (or homotopy-coherent) enrichment is the only natural notion of enrich-
ment which is possible in this language, which allows us to define our enriched
oo-categories in the obvious way as “many-object associative algebras” in a given
monoidal co-category. (In other words, the co-categorical analogue of “strictly en-
riched” categories automatically results in the appropriate “weakly enriched” theory.)

(b) It is both easy and natural to consider enriched categories with spaces of objects
rather than just sets of objects, which turns out to make the resulting homotopy
theory both nicer and simpler to set up, analogously to the way in which (complete)
Segal spaces are better behaved than Segal categories.

(¢) We automatically get very good naturality properties, some of which would have
been difficult even to formulate in a model-categorical framework — for example,
our oco-categories are natural with respect to functors between monoidal co-categories
that are lax monoidal in the appropriate co-categorical sense. This means that we can
easily apply functors such as group completion, algebraic K-theory, and topological
Hochschild homology (which are lax monoidal as functors of co-categories, but do
not arise from lax monoidal functors between model categories) to construct spectral
oo-categories.

(d) We obtain the correct co-categories of enriched functors between enriched oco-cate-
gories simply as the internal Hom objects right adjoint to the natural tensor product
of enriched oco-categories. From the point of view of the model-categorical approach
to enrichment this is in some sense the most subtle and useful feature — subtle
because the homotopically correct internal Hom must be invariant under enriched
equivalences (the primary defect of simplicial categories as a model for co-categories)
and useful because the existence of these functor co-categories makes constructions
in, and the further development of, enriched higher category theory possible.

(e) Beyond just constructing a homotopy theory, our theory gives a good setting in
which to develop co-categorical analogues of many concepts from enriched category
theory, as we hope to demonstrate in future work.

In addition to setting up the homotopy theory of enriched oco-categories, we also con-
struct several non-trivial examples: We show that Lurie’s stable oo-categories from [28,
§1.1] are all enriched in the co-category of spectra, and that the R-linear co-categories of
[27, §6] are enriched in the co-category of R-modules, where R is an Eo-ring spectrum.
Moreover, we prove that every closed monoidal co-category is enriched in itself. This
gives us, for example, the natural n-category of functors between any two n-categories,
generalizing the familiar fact that the category of categories is enriched over itself.

We also discuss a number of simple applications of the theory. As mentioned above,
we provide a reasonable definition of the oco-category of weak (n,m)-categories for any
n and m, which has the advantage of not relying on families of diagrams parametriz-
ing coherence conditions and which agrees with those of Barwick, Bergner, Rezk, Joyal,
and others. In this context we give a proof of “Baez—Dolan stabilization” for (weak)
n-categories (generalizing that of Lurie for (n,1)-categories). This is the idea that, for
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m > n+ 2, an m-tuply monoidal weak n-category is precisely an (n + 2)-tuply monoidal
weak n-category (for example, putting two compatible monoidal structures on a cat-
egory makes it a braided monoidal category, while three or more monoidal structures
makes it symmetric monoidal). We also show that (for m < oo and m > k # o0) an
E,.-monoidal (m, k)-category is the same thing as an (m-+mn, k+n)-category with a single
(distinguished) object and a single j-morphism for j =1,...,n — 1.

The theory we set up in this article is the first completely general theory of weak en-
richment. Weak enrichment in Cartesian monoidal model categories has previously been
defined as Segal enriched categories as studied by Pellissier [33], Lurie [26], and Simp-
son [38] (generalizing Bergner’s model structure on Segal categories [9]). It is important
to note that many of the interesting examples of enriched categories are cases (such as
abelian groups, chain complexes, and spectra) in which the monoidal structure is not
Cartesian; so, while more complicated to describe, allowing for non-Cartesian enrichment
is necessary to support the standard examples of interest.

In the non-Cartesian case, there is a theory of A,.-categories, which gives a notion
of weak enrichment in chain complexes, and more recently Bacard [1,2] has set up a
model-categorical theory of weak enrichment in a class of symmetric monoidal model
categories that can be applied to many interesting examples. A definition of enriched
oo-categories different from ours has also been given by Lurie [28, Definition 4.2.1.28],
but he does not develop this theory beyond defining the objects. We will see in §7 that
in many cases we can extract an enriched oo-category in our sense from one of Lurie’s,
and we hope to be able to extend this construction to a comparison between our theory
and Lurie’s in the future.

1.1. Overview

In §2 we introduce our definition of enriched oco-categories in terms of (generalized)
non-symmetric oo-operads, and motivate it by explaining how it relates to ordinary
enriched categories.

In §3 we briefly describe the non-symmetric version of Lurie’s theory of (generalized)
oc-operads, and prove some (straightforward, for the most part) extensions of Lurie’s
results. The most technical results, particularly those building towards the construction
of colimits of algebras, have been relegated to Appendix A.

The theory of co-operads lets us define, for a monoidal co-category V, an co-category
Alg... (V) of V-enriched co-categories; this is our object of study in §4. The main result
is that if the oo-category V is presentable and its tensor product preserves colimits in
each variable, then this oco-category is also presentable. We also compare this model of
enriched oo-categories to a certain oco-category of presheaves that satisfy analogues of
the Segal condition for Segal spaces.

In §5 we construct the correct oco-category of enriched oo-categories by inverting the
fully faithful and essentially surjective functors in Alg,,, (V). Here we prove the main the-
orem of this article: we can obtain this localization as the full subcategory of Alg.,. (V)
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spanned by the complete V—oo-categories — those V—oo-categories € such that the un-
derlying space of objects in C is equivalent to the classifying space of equivalences in C.
We also prove that the resulting co-category has the expected naturality properties.

In §6 we describe some simple applications of our construction: First we set up a theory
of (n, k)-categories and prove the “homotopy hypothesis” in this setting. We then prove
that enriching in an (n, 1)-category gives an (n+ 1, 1)-category of enriched oo-categories;
from this the Baez—Dolan stabilization hypothesis for k-tuply monoidal n-categories fol-
lows easily if we define n-categories to be (0o, n)-categories enriched in sets. We also show
that E,-algebras in an E,-monoidal co-category V embed fully faithfully into pointed
V-enriched (0o, n)-categories. This last result has a number of interesting corollaries,
such as a description of E,-monoidal co-categories as (0o, n + 1)-categories with a single
object and a single j-morphism for j < n, and a simple construction of endomorphism
algebras.

In §7 we construct an important class of examples of enriched oco-categories: If an
oo-category € is right-tensored over a monoidal oo-category V in such a way that the
tensor product C' ® (-) has a right adjoint F/(C,—) € V for all C € C, we show that
C is enriched in V with the maps from C to D given by F(C,D). There are several
interesting special cases: a closed monoidal oco-category is enriched in itself, and all
stable co-categories are enriched in the oo-category of spectra. We prove this result by
considering Lurie’s definition of enriched co-categories and observing that we can extract
an enriched oco-category in our sense by means of Lurie’s construction of an co-category
of “enriched strings”.

Finally, in Appendix A we prove some more technical results about non-symmetric
oo-operads.

1.2. Notation and terminology

In this article we will work throughout in the setting of (0o, 1)-categories, by which we
mean (heuristically) higher categories in which the n-morphisms are invertible for n > 1.
Specifically, we will make use of the theory of quasicategories, as, due to the work of Joyal
and Lurie, it is currently by far the most highly developed theory of (oo, 1)-categories.
Following Lurie we will refer to these objects as oo-categories, however. We generally
recycle the notation and terminology used by Lurie in [25,28]; here are some exceptions
and reminders:

o A is the simplicial indexing category, with objects the non-empty finite totally or-
dered sets [n] := {0,1,...,n} and morphisms order-preserving functions between
them.

o T'°P ig the category of pointed finite sets (so, by our convention, I is the opposite of
the category of pointed finite sets).

o Generic categories are generally denoted by single capital bold-face letters (A, B, C)
and generic oo-categories by single caligraphic letters (A, B, €). Specific categories
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and oo-categories both get names in the normal text font: thus the category of small
V-categories is denoted CatV and the oo-category of small V-oco-categories is denoted
Cat)..
Seta is the category of simplicial sets, i.e. the category Fun(A°P, Set) of set-valued
presheaves on A.

8 is the oo-category of spaces; this can be defined as the coherent nerve N Sety of
the full simplicial subcategory Set of Seta spanned by the Kan complexes.

We say a class of morphisms in an oo-category satisfies the 2-out-of-3 property if
given morphisms f:x — y and g: y — z, if any two out of f, g, go f are in the class,
so is the third.

If € is an oo-category and A and B are objects of €, then we write Mape (A, B)
(or just Map(A, B) if the oco-category € is obvious from the context) for the space
of maps from A to B in C. In the context of quasicategories there are a number of
explicit models for these mapping spaces as simplicial sets (cf. [25, §1.2.2], [12]), but
for our purposes it suffices to think of Mape(A, B) as an object of the co-category
of spaces. Constructions of such a “mapping space functor” Mape: C°? x € — 8 can
be found in [25, §5.1.3] and [28, §5.2.1].

To distinguish the oo-categories of non-symmetric oo-operads and their algebras
from their symmetric counterparts we use a superscript “ns” for the non-symmetric
versions and a superscript “X” for the symmetric versions. Thus the oco-category
of non-symmetric oo-operads is denoted Opd?> and the oco-category of symmetric
oo-operads Opdgo. However, we take the non-symmetric versions to be the default
ones in this paper and thus often do not include the superscript — for example, if
O and P are non-symmetric co-operads we will generally denote the co-category of
O-algebras in P by Algy(P).

We make use of the elegant theory of Grothendieck universes to allow us to define
(0o-)categories without being limited by set-theoretical size issues; specifically, we fix
three nested universes, and refer to sets contained in them as small, large, and very
large. When € is an co-category of small objects of a certain type, we generally refer
to the corresponding oo-category of large objects as a without explicitly defining
this object. For example, Cat is the (large) co-category of small co-categories, and
(/33?500 is the (very large) oo-category of large oco-categories.

If C is an oo-category, we write (C for the interior or underlying space of C, i.e. the
largest subspace of € that is a Kan complex.

We write LFib(C) for the oco-category of left fibrations over € (for example obtained
from the covariant model structure on (Seta),e). Similarly, we write Cart(€) and
CoCart(C) for the oco-categories of Cartesian and coCartesian fibrations to €, re-
spectively, i.e. the oo-categories associated to the Cartesian and coCartesan model
structures on (Set}) e.

We denote by Pres,, the oco-category of presentable oo-categories and colimit-

preserving functors.
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o If f:€C — D is left adjoint to a functor g: D — €, we will refer to the adjunction as
fg.

o If K is a simplicial set we write K< := A% K and K> := K x A°, where * is the join
operation. If € is an oco-category, we can interpret €Y and C” as the oo-categories
obtained by freely adjoining an initial object and a final object to C, respectively. We
denote the “cone points” coming from A in K< and K> by —oco and oo, respectively.

e A simplicial set K is sifted if it is non-empty and the diagonal map K — K x K is
cofinal; see [25, §5.5.8] for alternative characterizations. The key point is that sifted
colimits are generated by filtered colimits and colimits of simplicial objects, and small
colimits are generated by sifted colimits and finite coproducts.

Warning 1.2.1. As far as possible we argue using the “high-level” language of
oo-categories, without referring to their specific implementation as quasicategories.
Following this philosophy we have generally not distinguished notationally between cat-
egories and their nerves, since categories are a special kind of co-category. However, we
do indicate the nerve (using N) when we think of the nerve of a category as being a
specific simplicial set; by the same principle we always indicate the nerves of simplicial
categories. This should hopefully not cause any confusion.
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2. From enriched categories to enriched oco-categories

The goal of this section is to introduce our definition of enriched co-categories, and to
motivate it by explaining how it relates to ordinary enriched categories. In the process,
we also give an expository introduction to (non-symmetric) oo-operads.
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2.1. Multicategories and enrichment

Recall the usual definition of an enriched category: if V is a monoidal category, a
V-enriched category (or V-category) C consists of:

e a set ob C of objects,

o for all pairs X,Y € ob C an object C(X,Y) in V,
 composition maps C(X,Y) ® C(Y, Z) — C(X, Z),
o units idx: I — C(X, X).

The composition must be associative (this involves the associator isomorphism for V)
and unital. When formulated in this way, it is not obvious how this notion ought to be
generalized in the setting of oco-categories. We should therefore look for an alternative,
more conceptual, way of defining enriched categories — this is provided by the theory
of multicategories.

A multicategory is, roughly speaking, a category where a morphism has a list of
objects as its source. More precisely, a multicategory (or non-symmetric coloured operad)
M consists of

e a set ob M of objects,

o for objects Xy,...,X,,Y (where n can be 0) a set M(X1,...,X,;Y) of “multimor-
phisms” from (Xi,...,X,) to Y,

o an identity multimorphism idx: (X) — X for all objects X,

e an associative and unital composition law, in the sense that we can compose multi-

morphisms

(Zl,...,Zil)—>Y1, ey (Zin,1+17-~~7Zin)_>Yn
with a multimorphism (Y3,...,Y,) — X to get a composite multimorphism
(Z1,...,Z;,) — X.

A multicategory with a single object is precisely a non-symmetric operad.!

If M and N are multicategories, a multifunctor F: M — N assigns an object F(X)
in N to each object X of M, and to each multimorphism (X;,...,X,) = Y in M a
multimorphism

(F(X1),...,F(X,)) = F(Y)

in N such that this assignment is compatible with units and composition. We can view
a monoidal category V as a multicategory by defining

L Note that later we will refer to the co-categorical version of (non-symmetric) coloured operads as just
(non-symmetric) co-operads, for consistency with the terminology used by Lurie [28] and Barwick [5].
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V(X1,. . X YV)=V(X,® @ Xp,Y).

An algebra for a multicategory M in a monoidal category V is then just a multifunctor
from M to V viewed as a multicategory.

Given a set S, there is a simple multicategory Og such that Og-algebras in a monoidal
category V are precisely V-categories with set of objects S: the set of objects of Og is
S x S, and the multimorphism sets are defined by

¥, if Vi=X;, i=0,...,n,

OS((XO7Y1)7 (X17 }/2)7 ey (anla Yn)7 (Y07Xn)) = { @ otherwise

Thus an Og-algebra C in V assigns an object C(X,Y) to each pair (X,Y) of elements
of S, with a unit I — C(X, X) from the unique map () — (X, X), and a composition
map C(X,Y)® C(Y, Z) — C(X, Z) from the unique multimorphism ((X,Y), (Y, Z)) —
(X, Z). Looking at triples of pairs we see that this composition is associative, and it
is also clearly unital, so C is a V-category. If C and D are V-categories, with sets of
objects S and T, respectively, then from this perspective a V-functor C — D consists
of a function f:S — T and a multicategorical natural transformation from C to f*D
of multifunctors Og — V, where f*D denotes the composite of D with the obvious
multifunctor Og — O induced by f: this natural transformation precisely assigns to
each pair X,Y € S a morphism C(X,Y) — D(f(X), f(Y)) compatible with units and
composition.

Remark 2.1.1. This definition of enriched categories via multicategories is certainly clas-
sical, and it is not clear to us who first introduced it. In more recent work it can be seen,
for example, as a starting point for Leinster’s theory of enrichment in fc-multicategories
and more general classes of multicategories associated to Cartesian monads [23].

This construction suggests that we can use an oco-categorical version of multicat-
egories to define enriched oco-categories. In the next subsection we will describe such
an oo-categorical theory of multicategories, namely a non-symmetric version of Lurie’s
oo-operads; this includes as a special case a notion of monoidal co-category, and if V is
a monoidal co-category we will see that we can define a V-enriched oco-category with set
of objects S as an Og-algebra in V.

2.2. oo-Operads

To generalize multicategories to the co-categorical setting it is possible to use sim-
plicial multicategories, i.e. multicategories enriched in simplicial sets. However, these
suffer from the same technical problems as simplicial categories considered as a model
for oo-categories (most notably, it is difficult to compute the correct space of simpli-
cial multifunctors between simplicial multicategories in this rigid setting). Just as for
oo-categories, it is better to use a model where composition is only associative up to
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coherent homotopy. We will now introduce one such definition, namely a non-symmetric
variant of Lurie’s co-operads.?

Before we state the definition, it is helpful to consider an alternative definition of
ordinary multicategories:

Definition 2.2.1. If M is a multicategory, then the category of operators M® of M has
objects lists (X1,...,X,) of objects X; € M, n=0,1,..., and a morphism

(Xl,...,Xn) — (Yl,...,Ym)
is given by a morphism ¢: [m] — [n] in A and for each j = 1,...,m a multimorphism

(Xo-1+1 XoGi-1)+2: - Xo() = Y
in M. There is an obvious projection M® — AP, sending (X1,...,X,) to [n].

Remark 2.2.2. This is the non-symmetric version of the category of operators of a sym-
metric operad introduced by May and Thomason [30].

We can characterize those categories over A°P that are equivalent to categories of op-
erators of multicategories; to state this characterization it is convenient to first introduce
some notation:

Definition 2.2.3. We say that a morphism ¢: [n] — [m] in A is inert if it is the inclusion
of a sub-interval of [m], i.e. if ¢(i) = ¢#(0) + i for i = 0,...,n. We denote the inert
morphism [1] — [n] given by the inclusions {i — 1,i} < [n] by p; for i =1,...,n.

Definition 2.2.4. Let Cat?nxlotp denote the subcategory of Cat/aor defined as follows: The
objects of Cat?‘glfp are functors m: C — A°P such that the following conditions hold:

(i) For every inert morphism ¢:[n] — [m] in A° and every X € Cp,) there exists a
m-coCartesian morphism X — ¢ X over ¢.
(ii) For every [n] € A°P the functor

Xn
C[n] — C[l]
induced by the coCartesian arrows over the inert maps p; (i = 1,...,n) is an
equivalence of categories.
(iii) For every morphism ¢:[n] — [m] in A°? and Y € Cy,,), composition with coCarte-
sian morphisms Y — Y; over the inert morphisms p; gives an isomorphism

2 An alternative approach to co-operads is the theory of dendroidal sets introduced by Moerdijk and
Weiss [31], which we will not discuss here.
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Hom¢(X,Y) = [ [ Homgi**(X,Y7),
i

where Hom%(X ,Y) denotes the subset of Homeg(X,Y) of morphisms that map to
¢ in A°P,

The morphisms of Cat‘/“glfp from C — A° to D — A°P are the functors C — D over
A°P that preserve the coCartesian morphisms over inert morphisms in A°P.

Proposition 2.2.5. The functor (-)® from multicategories to categories over A°P gives

an equivalence between the category of multicategories and Cat];“xlotp.

Proof. It is easy to see that the category of operators of a multicategory M satisfies
conditions (i)—(iii):

(i) The coCartesian map from (X7, ..., X,,) over an inert map ¢: [m] — [n] in A is the
projection (X1,...,X) = (Xg@),- -+, Xg(n)) determined by the identity maps of
the X;’s.

(ii) Clearly M‘[%L] is equivalent to (M‘[Xl’]

(iii) This is immediate from the definition of the morphisms in M®.

)*™ via these projections.

Moreover, any functor of multicategories F: M — N induces a functor M® — N® that
preserves coCartesian arrows over inert maps: this simply says that (Xi,...,X,,) is sent
to (F(X1),...,F(X,)). Thus the functor (—)® does indeed factor through Catl/nglotp.

Conversely, if ¢: M® — N® is a functor over A°P that preserves these coCartesian
morphisms, then condition (iii) implies that ¢ is completely determined by the maps
M(X1,...,X;Y) = N(o(X7),...,0(X,);6(Y)), and so comes from a functor of mul-
ticategories. This shows that (-)%® is fully faithful.

It remains to show that the functor is essentially surjective. Suppose m: C — A°P is

an object of Cat‘flglotp. Then we can define a multicategory M, as follows:

o The objects of M are the objects of Cyy.

By condition (ii) we can think of the objects of Cy,; as lists (X1,..., X,,) where the
X;’s are objects of C;). We define the multimorphism set My (X1, ..., X,;Y) to be
Hom¢ (X1, ..., Xy),Y) where a,, denotes the map [1] — [n] that sends 0 to 0 and
1 to n.

e The identity idx € Mz (X; X) is just the identity map of X in Cpy.

e To define the composition

My(X1,..., Xn; Y1) X o X Mo (X i1y -5 X3 Yo) X Mz (Y1, ... Y0 Z)
= M (X1,..., Xn; Z2)

observe that by (iii) we can describe the source as
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Homg (X1, .., Xny), (Y1, ..., Yi)) x Hom&F ((Y1,...,Y3), Z),

where f: [k] — [nk] sends 0 to 0 and 4 to n; for i > 0. Thus composition in C gives
the desired composition in M.

e To see that the composition is associative and unital, we apply the equivalences from
(iii) similarly, and use the associativity and unitality of composition in C.

It is then easy to check that the category of operators M is equivalent to C over A°P.
Thus the functor (—)® is essentially surjective, which completes the proof. O

We can thus equivalently define a multicategory to be a functor C — A°P satisfying
(i)—(ili). Using the theory developed in [25], these conditions moreover have obvious
oo-categorical analogues, which leads us to the following definition:

Definition 2.2.6. A non-symmetric co-operad is an inner fibration m: O — A°P such that:

i) For every inert morphism ¢: [n| — [m] in A°P and every X € Oy, there exists a
(n]
m-coCartesian morphism X — ¢ X over ¢.
(ii) For every [n| € A°P the functor

O = (Opy) ™"

induced by the coCartesian arrows over the inert maps p; (i = 1,...,n) is an
equivalence of co-categories.

(iii) For every morphism ¢:[n] — [m] in A°? and Y € Oy, composition with coCarte-
sian morphisms Y — Y; over the inert morphisms p; gives an equivalence

Map§ (X, V) = [ [ Mapf*®(X, ),

where Map‘fJ (X,Y) denotes the subspace of Mapy(X,Y’) of morphisms that map
to ¢ in A°P.

Remark 2.2.7. This is a special case of Barwick’s notion of an co-operad over an operator
category [5], namely the case where the operator category is the category of finite ordered
sets.

Remark 2.2.8. Being an inner fibration is a technical condition that does not have an
analogue for ordinary categories; among other things it implies that the simplicial set O
must be an co-category. Every functor of oo-categories can be replaced by an equivalent
one that is an inner fibration.

Remark 2.2.9. The proof of Proposition 2.2.5 indicates how to interpret a non-symmetric
oo-operad O — A°P as a multicategory “weakly enriched in spaces”:
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o By condition (ii), the objects of O can be identified with lists (Xy,...,X,) where
the X;’s are objects of Opy) (which we think of as the underlying co-category of the
multicategory)

e By condition (iii), the spaces of maps in O are determined by the mapping spaces of
the form

Mapg" ((Xl, o Xn), Y),

which we think of as the space of multimorphisms in O from (X1,...,X,) to Y.
o The composition of these multimorphisms is determined using condition (iii) by
ordinary composition of morphisms in O, as in the proof of Proposition 2.2.5.

Since our definition takes place in the context of oco-categories, which already encode
the notion of coherently homotopy-associative composition of morphisms, this means
that the composition of multimorphisms in O is also coherently homotopy-associative,
as expected.

Definition 2.2.10. If O and P are non-symmetric oo-operads, a morphism of non-
symmetric co-operads from O to P is a commutative diagram

0 ¢ P

N S

A°P

such that ¢ carries coCartesian morphisms in O that map to inert morphisms in A°P
to coCartesian morphisms in P. We will also refer to a morphism of non-symmetric
oo-operads O — P as an O-algebra in P.

Remark 2.2.11. One advantage of working with oo-operads over simplicial or topological
multicategories is that they can be described as the fibrant objects in a model category
where every object is cofibrant. This means that we can work with simple objects like the
associative operad rather than having to use a cofibrant replacement, i.e. an A,,-operad:
the oco-category of algebras for the associative operad in a non-symmetric oo-operad is
always equivalent to the co-category of A,,-algebras.

We now want to define monoidal oo-categories as a special class of non-symmetric
oo-operads. The appropriate definition is suggested by the following observation:
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Lemma 2.2.12.

(i) An object m: C — A°P in Cat?ﬁlﬁp is equivalent to the category of operators of the
multicategory associated to a monoidal category if and only if w is a Grothendieck
opfibration.

(ii) A morphism ¢:C — D between two such objects corresponds to a lax monoidal
functor between the associated monoidal categories.

(iii) Under this correspondence the (strong) monoidal functors give precisely the mor-
phisms that preserve all coCartesian morphisms.

Proof. Let M be the multicategory corresponding to m: C — AP, and write Mg = Cyy;
for its underlying category. The existence of coCartesian morphisms for «,:[1] — [n]
implies that there is a functor ®,,: C[Xl]" ~ Cyp,) — Cpyj such that M(Xy,..., X,;;Y) =
My(®n(X1,...,Xp),Y). But writing «,, as a composite of elementary face maps in
A in various ways, we get canonical equivalences between ®,, and the various ways of
successively applying ®; to adjacent elements. Moreover, the coCartesian morphism over
the degeneracy [1] — [0] in A gives a map * ~ Cgy — Cpyj, which amounts to a unit
I € M. This implies that if we define X @Y := ®4(X,Y) then ® is a monoidal structure
on My such that M is the multicategory associated to this monoidal category. This
proves (i). (ii) is then clear, since lax monoidal functors clearly correspond to functors
between the associated multicategories, and (iii) follows since a functor preserves all
coCartesian arrows precisely if we have natural isomorphisms F(X)® F(Y) & F(XQY)
and F(I)=1. O

In the oco-categorical case we therefore make the following definitions:

Definition 2.2.13. A monoidal co-category is a non-symmetric co-operad V® — A°P that
is also a coCartesian fibration. We will generally denote the fibre V(ﬁ] by V; by abuse of
notation we will allow ourselves to say “let V be a monoidal co-category” as shorthand
for “let V® — A°P be a monoidal co-category”.

Definition 2.2.14. If V® and W® are monoidal co-categories, we will refer to a morphism
of non-symmetric oo-operads from V% to W® as a laz monoidal functor. A monoidal
functor from V& to W® is a commutative diagram

¢ wWe

N

A°P

V@

such that ¢ preserves all coCartesian morphisms.
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Remark 2.2.15. For a coCartesian fibration 7: € — A°P, condition (iii) in the definition of
non-symmetric co-operads follows from condition (ii), since the coCartesian morphisms
in € allow us to identify the space of maps over ¢:[n] — [m] in A°P with a space of
maps in €p,), which decomposes as a product due to condition (ii). This means that,
under the equivalence between coCartesian fibrations over A°P and functors A°P —
Catso, monoidal co-categories precisely correspond to simplicial co-categories Co that
satisfy the Segal condition: the map €, — C;™ induced by the maps p;: [n] — [1] in
A°P are equivalences. The idea that simplicial objects satisfying this condition give a
model for A.-algebras goes back to Segal (as an unpublished variant of the definition
of E.-algebras using I'-spaces in [36]) — thus we can interpret monoidal co-categories
as Ax.-algebras (or just associative algebras, since we are working in the “fully weak”
context of co-categories) in Cate.

Remark 2.2.16. A monoidal oo-category V® corresponds to the data of a homotopy-
coherently associative tensor product on V. To see this, let us unpack the data we get
from a monoidal oco-category, interpreted as a simplical oo-category V, satisfying the
Segal condition:

o The map di: [2] — [1] gives a tensor product ®: V*2 ~Vy — V.

o The map sp: [0] — [1] gives a unit * ~ Vo — V.

e The map az:[3] — [1] gives a map ®3:V*3 ~ V3 — V. The two factorizations
a3 = dy ody = dy o dy give 2-simplices in Caty, that can be interpreted as natural
equivalences between ®3(A4, B, C') and the composites (A ® B) ® C and A ® (B ®
(), respectively. Composing these gives the expected natural associator equivalence
(AB)@(C~A® (B®C(C).

o Similarly, the different ways of decomposing a4:[4] — [1] as a composite of 3 face
maps gives 3-simplices in Caty, that determine homotopies between the different
ways of using the associator to pass between different 4-fold tensor products.

¢ In general, the different ways of decomposing «,, as a composite of n — 1 face maps
gives (n — 1)-simplices in Cato, that determine the coherence data for n-fold tensor
products.

If M is an ordinary multicategory, then it is clear that (the nerve of) its category of
operators M® is a non-symmetric oo-operad — by abuse of notation we will also refer
to this non-symmetric co-operad as M in contexts where this does not cause confusion.
We can then define enriched oo-categories as follows:

Definition 2.2.17. If S is a set and V€ is a monoidal co-category, a V-enriched oo-category
(or V-oo-category) with set of objects S is an Og-algebra in V, i.e. a morphism of
non-symmetric co-operads O? — V& If € and D are V-oo-categories with sets of objects
S and T, respectively, then a V-functor from € to D consists of a function f: S — T
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and a natural transformation n: € — f*D of functors O? — V®, where f*D denotes the
composite of D with the functor Of — O% induced by f.

Example 2.2.18. For a one-element set, O, is just the associative operad, and O% is

A°P. Thus one-object V—oo-categories are precisely oco-categorical associative algebras,

i.e

. A-algebras, just as we would expect.

Remark 2.2.19. We saw at the end of §2.1 that Og-algebras in a monoidal category

A%

correspond to V-enriched categories with S as their set of objects. Similarly, an

Og-algebra € in a monoidal co-category V corresponds to the data we would expect to

have in an enriched oco-category. Speaking somewhat informally, to make the underlying

ideas clearer, we have for example the following data:

in

The object (X,Y) in OF is sent to an object €(X,Y) € V.

The morphism ((X,Y),(Y,Z)) — (X,Z) in Of is sent to a morphism

pxy.z: C(X,Y),(Y,Z)) — €C(X,Z) in V®. Since C preserves coCartesian mor-

phisms over inert maps in AP, under the equivalence \7% ~ V*2 the object

C((X,Y), (Y, Z)) is equivalent to (C(X,Y),C(Y,Z)), and so using the coCartesian

morphism over the map dy:[2] — [1], we can interpret this as a composition mor-

phism C(X,Y)®C(Y,Z) — C(X, Z).

Similarly, the morphism () — (X, X) is sent to a morphism we may interpret as a

map I — C(X, X) where [ is the unit of the tensor product on V.

The morphism ((X,Y),(Y,2),(Z,W)) — (X,W) in O% factors as

(X, Y),(Y,2),(Z,WV)) = (X,2),(Z,W)) = (X,W) and also as ((X,Y), (Y, 2),

(Z, W) = (X,Y),(Y,W)) — (X,W). Pushing the associated data in V& into V

using the coCartesian morphisms, this gives:

— an object ®3(C(X,Y),C(Y, Z),C(Z, W)) with equivalences e to C(X,Y)®(C(Y, Z)
® C(Z,W)) and B to (C(X,Y)® (C(Y,Z2)) @ C(Z,W)

— a morphism pxyv,zw:®3(C(X,Y),C(Y, 2),C(Z,W)) = C(X,W)

— homotopies between uxy zw o o~ ! and ux,y,w © (id ® py,zw) and between
px,y,zw o B~ and px zw o (ux,yv,z ®id).

The latter two homotopies can then be composed to get a homotopy between px,y,wo

(id@py,zw) and px,zw o (1x v,z ®id), which is the first homotopy-coherence data

for the associativity of the composition operation.

Similarly, the data derived from the different decompositions of ((X,Y), (Y, Z2),

(Z,W),(W,V)) — (X,V) as composites of “face maps” gives the coherence data

for 3-fold compositions, and so forth.

If O and P are non-symmetric oo-operads, we get an co-category Alg, (P) of O-algebras
P by taking the full subcategory spanned by the morphisms of non-symmetric

oo-operads in the oo-category Funaor (O, P) of functors over A°P. By abuse of notation,
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if O is a non-symmetric co-operad and V¥ is a monoidal oco-category we will usually
write Algq (V) instead of Algy(V®).

In §3.2 we will construct an co-category Opdy> of non-symmetric co-operads and see
that the co-category Algq(P) is functorial in O and P. This allows us to construct a
Cartesian fibration

Alg(P) — OpdZ:

whose fibre at O is Algq(P). Pulling this back along the functor Set — Opds; that
sends a set S to O? we get an oo-category Alg.,,(P) with a projection to Set. If V is a
monoidal oo-category, the objects of Alg,,.(V) are clearly V-enriched oo-categories and
the morphisms are precisely V-functors.

A V-functor € — D is given by a function f:.S — T of sets of objects and a morphism
7: € — f*D of Og-algebras. This morphism is an equivalence in Alg_,, (V) if and only if
f is a bijection of sets and 7 is an equivalence of Og-algebras (i.e. the morphism is fully
faithful). This is obviously not the correct notion of equivalence for V-oo-categories —
we want the equivalences to be the morphisms that are fully faithful and essentially sur-
jective (in the usual sense that every object of D is equivalent to an object in the image
of f; we will define this precisely below in §5.3 after discussing equivalences in enriched
oo-categories in §5.2). We therefore want to invert these morphisms. In the co-categorical
setting it is always possible to formally invert any collection of morphisms, but to un-
derstand the resulting localized oo-category we need it to be an accessible localization.
This is the co-categorical analogue of left Bousfield localization of model categories, and
means that we can find the localized oco-category as the full subcategory of local objects
inside the original oo-category. However, this is easily seen to be impossible using our
current definition of enriched oco-categories: For example, if we enrich in the monoidal
category of sets with the Cartesian product, then Alg,,.(Set) is just the ordinary category
of small categories and functors. But if we invert the fully faithful and essentially surjec-
tive functors we get the (2, 1)-category of categories, functors, and natural equivalences,
which obviously cannot be a full subcategory of an ordinary category.

To avoid this problem we need another definition of enriched oco-categories for which
this localization is well-behaved. It will turn out that we get a much nicer oco-category
of enriched co-categories if we allow them to have spaces of objects rather than just sets
— this is also aligned with the philosophy of higher category theory, whereby spaces
should be thought of as the co-categorical analogue of sets in ordinary category theory.
One way to do this would be to define simplicial multicategories Og where S is now
a simplicial groupoid, and then work with the associated oo-operads. We will, in fact,
define such simplicial multicategories and briefly make use of them below in §4.2, but it
turns out that there is an easier and more natural way to carry out this generalization:
We will base our theory of enriched oo-categories on the oco-categorical version of a
slightly different approach to enriched categories, using virtual double categories instead
of multicategories, which we describe in the next subsection.
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2.3. Virtual double categories and enrichment

Virtual double categories® are a common generalization of double categories and mul-
ticategories. Roughly speaking, a virtual double category has objects and vertical and
horizontal morphisms between them, but in addition to a collection of “squares” there
are cells with a list of vertical arrows as source; we refer the reader to [11] or [24] for an
explicit definition along this point of view.

Here, we will instead consider virtual double categories from the category of operators
perspective: they are exactly what we get if we allow the fibre Oy at [0] in a category
of operators to be non-trivial, and require Oy, to be the n-fold iterated fibre product

Op) X0+ X0y Opj-

[0]

To state the precise definition we first introduce some notation:

Definition 2.3.1. Let AP

int

inert morphisms in A°. We write G2 for the full subcategory of A{" spanned by the

denote the subcategory of A°P where the morphisms are the

objects [0] and [1], and 9[%]/ for the category (A7) X acr G2 of inert morphisms from
[n] to [1] and [0].

Definition 2.3.2. A virtual double category is a functor m: M — A°P such that:

i) For every inert morphism ¢: [m] — [n] in A°P and every X € My, there exists a
[n]
m-coCartesian morphism X — ¢ X over ¢.
(ii) For every [n] € A°P the functor

M[n] — lim M[l] ~ M[l] XM[O

Lo X M

]

induced by the coCartesian arrows over the inert maps in 9[%] / is an equivalence of
categories.

(iii) For every morphism ¢: [n] — [m] in A°? and Y € M}, composition with coCarte-
sian morphisms ¥ — Y, over the inert morphisms c:[m] — [i] in S[en |, gives an
isomorphism

Hom$, (X,Y) = elgg Hom$y? (X, Ya),
ACIm)/

where Homﬁ/l(X ,Y) denotes the subset of Homp (X, Y') of morphisms that map to
¢ in A°P,

3 Also known as fc-multicategories; note that, for consistency with Lurie’s terminology, we will refer to
their co-categorical generalization as generalized non-symmetric co-operads.
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Remark 2.3.3. A virtual double category M — A°P corresponds to a double category
precisely when this functor is a Grothendieck opfibration.

Definition 2.3.4. If M — A°P and N — A°P are virtual double categories, a functor of
virtual double categories from M to N is a functor F: M — N over A°P that preserves
coCartesian morphisms over inert morphisms in A°P.

Given a set S, we can define a double category with set of objects S where the
vertical morphisms are trivial, and there is a unique horizontal morphism between any
two elements of S. In terms of categories of operators, this corresponds to the category
A whose objects are non-empty sequences (X, ..., X,) of elements X; € S, with a
unique morphism

(X055 Xn) = (Xg00),- -+ Xg(m))

for each ¢:[m] — [n] in A. If V is a monoidal category and V¢ is its category of
operators, a functor of virtual double categories C: AY — V& is a functor over A°P such
that C(Xo,...,Xn) = (C(Xo, X1),...,C(Xn-1,X,)). This is precisely a V-category
with set of objects S: for each X € S the unique map X — (X, X) gives an identity I —
C(X, X), and for objects X,Y, Z € S the map (X,Y, Z) — (X, Z) over d;: [2] — [1] gives
a composition map C(X,Y)® C(Y, Z) — C(X, Z), which is associative because the two
composite maps (X,Y, Z, W) —» (X, Y, W) = (X, W) and (X,Y,Z,W) - (X, Z,W) —
(X, W) are equal.

A functor between V-categories C and D with sets of objects S and T, respectively,
can then be described as a function f:S — T together with a natural transformation
C — f*D of functors AY — V@ where f*D denotes the composite of D with the
functor A%”: AS” — A7 induced by f: this natural transformation precisely gives maps
C(X,Y) —» D(f(X), f(Y)) compatible with units and composition.

Remark 2.3.5. Using the virtual double categories A% to define enrichment gives the
right notion also when considering enrichment in more general settings, such as enrich-
ment in double categories or in general virtual double categories (cf. [23]).

2.4. Generalized co-operads

It is now clear how to generalize the notion of virtual double category to the
oo-categorical setting, analogously to our definition of non-symmetric co-operads above:

Definition 2.4.1. A generalized non-symmetric co-operad is an inner fibration 7m: M —
A°P such that:

(i) For every inert morphism ¢:[n] — [m] in A°P and every X € My, there exists a
m-coCartesian morphism X — ¢ X over ¢.
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(ii) For every [n] € A°P the functor

M[n] — lim M[l] ~ M[l] XM " XM

M
- li1€9A,, .

[0]

induced by the coCartesian arrows over the inert maps in 9[%] / is an equivalence of
oo-categories.

(iii) For every morphism ¢: [n] — [m] in A°P and Y € M}, composition with coCarte-
sian morphisms Y — Y, over the inert morphisms a:[m] — [i] in 9[%1] / gives an
equivalence

Map§(X,Y) = lim  Map3c” (X, Ya),
*EImy/

where Map?ﬁ,[ (X,Y) denotes the subspace of Mapy(X,Y") of morphisms that map
to ¢ in A°P.

Definition 2.4.2. If M and N are generalized non-symmetric co-operads, a morphism of
generalized non-symmetric co-operads from M to N is a commutative diagram

M ¢ N
AP

such that ¢ carries coCartesian morphisms in M that map to inert morphisms in A°P

to coCartesian morphisms in N. We will also refer to a morphism of generalized non-
symmetric oo-operads M — N as an M-algebra in N.

Definition 2.4.3. A double co-category is a generalized non-symmetric oo-operad M —
A°P that is also a coCartesian fibration.

Remark 2.4.4. Again, as in Remark 2.2.15, for a coCartesian fibration condition (iii) in
the definition of a generalized non-symmetric co-operad is implied by condition (ii). Thus,
under the equivalence between coCartesian fibrations to A°P and functors A°? — Cat.,
double co-categories correspond to simplicial co-categories C,o satisfying the “Rezk—Segal
condition”:

(‘fn —>€1 Xey Xey 61
is an equivalence. In general simplicial objects in an oo-category X with finite limits

satisfying this condition can be thought of as internal categories in X — in particular,
taking X to be the co-category of spaces these are precisely the Segal spaces introduced
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by Rezk [34] as a model for co-categories. This justifies the term double oco-category,
since double categories are precisely internal categories in Cat.

We can now introduce a generalization of the virtual double categories AY: If S € § is
a space, there is a functor A°P — § that sends [n] to S+, face maps to projections to
the corresponding factors, and degeneracies to the corresponding diagonal maps; a more
precise definition will be given in §4.1. It is easy to see that this simplicial space satisfies
the Rezk-Segal condition, so if we let A — A°P be a left fibration corresponding to
this functor then this is a double oco-category by Remark 2.4.4. When S is a set this
obviously agrees with the previous definition.

Using this we can state our improved definition of enriched oco-categories:

Definition 2.4.5. Let S € § be a space and let V be a monoidal co-category. A V-enriched
oo-category (or V-oo-category) with space of objects S is a A -algebra in V.

Example 2.4.6. Any associative algebra object in V can be regarded as a V—oo-category
with a contractible space of objects. In particular, the unit I of the tensor product in V
has a unique associative algebra structure (by Proposition 3.1.18) so we can regard I as
a V—oo-category with a single object whose endomorphisms are given by 1.

Remark 2.4.7. We will define the generalized non-symmetric co-operads A more care-
fully below in §4.1. It will sometimes be useful, for example to distinguish our definition
from other possible definitions of enriched co-categories, to refer to a A% -algebra in V
as a categorical algebra in 'V with space of objects S.

Remark 2.4.8. This definition clearly does not require V to be a monoidal co-category
— we can define oo-categories enriched in any generalized non-symmetric oo-operad as
AP-algebras. This gives an oo-categorical version of Leinster’s notion of enrichment
in an fc-multicategory [23]. However, as there are technical obstacles in the theory of
oo-operads to extending most of our results beyond the case of monoidal co-categories,
we will not consider this generalization here.

Definition 2.4.9. Suppose V is a monoidal co-category, and € and D are V—oo-categories
with spaces of objects S and T, respectively. A V-functor from € to D consists of a
morphism of spaces f:S — T and a natural transformation ¢ — f*D, where f*D
denotes the composite of D with the morphism A%": A — AZ” induced by f.

If M and N are generalized non-symmetric co-operads we get an co-category Alg,(N)
of M-algebras in N by taking the full subcategory of the oco-category Funaer (M, N)
of functors over A°P that is spanned by the morphisms of generalized non-symmetric
oo-operads. Just as for co-operads, we will construct (in §3.2) an co-category Opd5> "
of generalized non-symmetric co-operads, and the co-categories Algy(N) are functorial

in M and N. As before, we then get a Cartesian fibration Alg(N) — Opd5>#" whose
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fibre at M is Algy(N). We can pull this back along the functor § — Opd5>#®" that
sends S € 8 to A to get an oo-category Alg.,(N). If V is a monoidal co-category, the
objects of Alg,,.(V) are V—oo-categories and the morphisms are V-functors.

Remark 2.4.10. We refer to the oo-category Alg.,.(V) (which we will construct more
carefully below in §4.3) as the oco-category of categorical algebras in 'V, reserving the
name oo-category of V—oo-categories for the localization of this at the fully faithful and
essentially surjective functors.

We will prove in §5.3 that inverting the fully faithful and essentially surjective functors
in the oo-category Alg..,(V) as we have just defined it gives the same oco-category as
inverting them in the version considered above where we only allowed sets of objects.
Now, however, we can find the localized oo-category as a full subcategory of Alg.,. (V).
The local objects turn out to be the complete V—oo-categories, which are those whose
space of objects is equivalent to their classifying space of equivalences, in a sense we
will make precise below in §5.2. If we write Cat), for the full subcategory of Alg,,, (V)
spanned by these complete V-oco-categories, the main result of this article is the following:

Theorem 2.4.11. Let V be a monoidal co-category. The inclusion

Cat) — Alg,,.(V)

has a left adjoint, and this exhibits Cat). as the localization of Alg., (V) with respect to
the fully faithful and essentially surjective functors.

2.5. Enriched categories as presheaves

As discussed above, our main construction of the co-category Cat& of co-categories
enriched in V will be as a localization of Alg.,(V), an oco-category of algebras for a
family of (generalized) oo-operads. Although useful for many purposes — for example,
it is easy to relate Alg.,. (V) to model categories of strictly enriched categories (cf. [19])
— when working with a presentable co-category it can also often be useful to have a
construction of it as an explicit localization of an oco-category of presheaves on a small
oo-category of generators. In much the same way as Caty, itself embeds into P(A) as
the full subcategory of complete Segal spaces, one might imagine that CatzO embeds into
presheaves on a V-enriched version of A whose objects classify “composable strings of
morphisms” in a V-enriched oo-category C.

In fact, this V-enriched version of A nearly comes to us for free from our monoidal
oo-category p: V¥ — A°P. The functor p is a coCartesian fibration, and so arises as
the unstraightening of a functor A°? — Cat,, which satisfies the usual Segal condition.
But we may also unstraighten p to a Cartesian fibration ¢:V — A — this is our
desired V-enriched version of A. Roughly speaking, the objects of V¢ are ordered tuples
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(V1,..., V) of objects of V, which we can interpret as the free V-enriched oo-category
on the V-enriched graph

OV—1>1V—2>2—>~--—>n—1V—">n,

which we denote A(V1+-V=) The free V-oo-category on this graph has composition de-
termined by the monoidal structure on V, so for example the maps from ¢ — 1 to j in
AWV1Vn) are given by V; @ Vi1 ® - V.

A V-enriched oco-category C then determines a presheaf

Mapg,y (— €): (V)™ — 8

by sending A(Vo:-Vn) to the space of V-enriched functors from A(Vo:-Vn) to @. This
construction induces a functor

Cat), — P(VY).

We will rigorously construct this in §4.5 and show that it is fully faithful, from which
it follows almost immediately that Cat” is an accessible localization of P(VY). More-
over, the essential image of this embedding can be identified with the “complete Segal
spaces” in a sense entirely analogous to that of Rezk [34], and the categorical algebras
Alg,,. (V) embed in P(V) as analogues of the Segal spaces. We use this ambient presheaf
oo-category in §5.6 to prove a crucial technical result about the “completion” functor
Alg_.. (V) — Cat)..

3. Non-symmetric co-operads

In this section we give the definitions and results we need about (generalized) non-
symmetric oo-operads. These are a special case of Barwick’s co-operads over an operator
category [5], and are also studied by Lurie in [28, §4.7.1] (though in a somewhat ad hoc
manner).

For the most part the theory of non-symmetric oo-operads is completely analogous
to Lurie’s theory of (symmetric) oo-operads developed in [28], with the category I'°P
of pointed finite sets replaced by the category A°P. In order to keep this article to a
reasonable length we only give references to the corresponding results in [28] when the
proofs are essentially the same.

3.1. Basic definitions revisited
In this subsection we restate, in a slightly more technical form, the basic definitions

of (generalized) non-symmetric co-operads — see §2 for some motivation for these defi-
nitions. We begin by describing a factorization system on the category A°P.
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Definition 3.1.1. Let A be the usual simplicial indexing category. A morphism f: [n] —
[m] in A is dnert if it is the inclusion of a sub-interval of [m], i.e. f(i) = f(0) + ¢ for
all 4, and active if it preserves the extremal elements, i.e. f(0) = 0 and f(n) = m. We
say a morphism in A°P is active or inert if it is so when considered as a morphism
in A, and write AjY and AR for the subcategories of A° with active and inert
morphisms, respectively. We write p;: [n] — [1] for the inert map in A°P corresponding
to the inclusion {i — 1,i} < [n].

Lemma 3.1.2. The active and inert morphisms form a factorization system on A°P.
Proof. This is a special case of [5, Lemma 8.3]; it is also easy to check by hand. O
Definition 3.1.3. A non-symmetric co-operad is an inner fibration 7: O — A°P such that:

(i) For each inert map ¢:[n] — [m] in A°" and every X € O such that 7(X) = [n],
there exists a m-coCartesian edge X — ¢ X over ¢.
(ii) For every [n] in A°P, the functor

O — [ [ O
=1

induced by the inert maps p;: [n] — [1] in A°P is an equivalence.
(iii) Given C' € O, and a coCartesian map C' — C; over each inert map p;: [n] — [1],
the object C' is a 7-limit of the C;’s.

Remark 3.1.4. It is immediate from the definition of relative limits in [25, §4.3.1] that
Definition 3.1.3 is equivalent to Definition 2.2.6: Recall that a diagram p: K< — O is a
m-limit if and only if the natural map

A O/ﬁ — O/p XAt;frp AC/)p

g

is a categorical equivalence, where p := p|x. But the projections O /5 — O and O, X Ao
Tp

AP

/7P
induced map on fibres over any o € O is an equivalence. Since K< has an initial object,

— O are both right fibrations, so the map A is an equivalence if and only if the

we may identify O /; with O/, where 2 = p(—o0) and A(/ijs with A(/)}[)n] where [n] = 7(z).
If [m] = 7(0) then the induced map on fibres is therefore

Mapg (0, ) = Map aop ([m], [7]) Xlimyex Map gop (Im],mp(k)) Ling Mapg (0, p(k)).

This is an equivalence if and only if the commutative square
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Mapy (0, ) ————— limex Map (0, p(k))

J |

Map pop ([m], [n]) —— limge x Map pop ([m], mp(k))
is Cartesian, i.e. if and only if for every map ¢: [m] — [n] the map on fibres over ¢
Map% (0,2) — 1111?( Mapg(w’“)w(o,p(k))
€

is an equivalence, where 1, is the unique map —oo — k in K<. Applying this to the
coCartesian projections ¢ — ¢; for some ¢ € Oy,), we get that ¢ is a 7-limit of the ¢;’s if
and only if for every o € Op,;,) and every map ¢: [m] — [n] in A°P, the map

Map‘é(o, c) — H Mapgi¢(o, i)

i=1

is an equivalence, which was the condition used in Definition 2.2.6. Similarly, Defini-
tion 3.1.13 below is equivalent to Definition 2.4.1.

Remark 3.1.5. We will see below in §3.7 that there is a natural map ¢: A°? — I'°P such
that if O — I'°P is a (generalized) symmetric oo-operad, in the sense of [28], then the
pullback ¢*@ — A°P along c is a (generalized) non-symmetric oo-operad. Moreover, if
O is a symmetric monoidal co-category then ¢*O is a monoidal oco-category. We will
occasionally refer to the pullback ¢*O also as O. For example, if € is an co-category with
finite products we will denote the monoidal co-category pulled back from the Cartesian
symmetric monoidal structure €* — I'°P? by €* too.

A useful way of constructing non-symmetric co-operads is taking the nerve of the
category of operators associated to a simplicial multicategory:

Definition 3.1.6. A simplicial multicategory O consists of a set ob O of objects and sim-
plicial sets O(X1,...,X,;Y) of multimorphisms for all X;,...,X,,,Y € obO, together
with composition maps

O(X{,...., X} ;Y1) x - x O(X{,..., Xk ; Vi) x OV, ...,Y); Z)

ny? N ?

- O(X{,....X} ;2),
as well as identity maps, satisfying the usual associativity law for multicategories. A sim-
plicial multicategory O is fibrant if all the simplicial sets O((X1,...,X,),Y) are Kan
complexes.
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Definition 3.1.7. Let O be a simplicial multicategory. Define O® to be the simplicial cat-
egory with objects finite lists (X1,...,X,) (n =0,1,...) of objects of O and morphisms
given by

m

O®((Xla-~'7X7L)a(Y17"'7Ym)) = H HO(X¢(1—1)+17aX¢(’L)7YZ)7

¢:[m]—[n] i=1

with composition defined using composition in O. The simplicial category O® has an
obvious projection to A°P.

Lemma 3.1.8. Suppose O is a fibrant simplicial multicategory. Then the projection
NO® — A°P is a non-symmetric co-operad.

Proof. As [28, Proposition 2.1.1.27]. O

Remark 3.1.9. A non-symmetric variant of the work of Cisinski and Moerdijk [10] should
give a model category structure on simplicial multicategories whose fibrant objects are
the fibrant simplicial multicategories. The resulting homotopy theory of simplicial mul-
ticategories is (partially) known to be equivalent to that of oo-operads, at least in the
symmetric case, but currently the only known relation is via the homotopy theory of
dendroidal sets: Cisinski and Moerdijk [10] construct a Quillen equivalence between
simplicial symmetric multicategories and dendroidal sets, and Heuts, Hinich, and Mo-
erdijk [20] construct a zig-zag of Quillen equivalences between dendroidal sets and
symmetric co-operads (but unfortunately their comparison is currently restricted to the
special case of oo-operads without nullary operations). No doubt a version of dendroidal
sets defined using planar trees would lead to a similar comparison between simplicial
multicategories and non-symmetric co-operads.

Definition 3.1.10. A monoidal co-category is a non-symmetric oc-operad V€ — A°P that
is also a coCartesian fibration.

Remark 3.1.11. We will see below in §3.7 that this is equivalent to Lurie’s definition of
monoidal co-categories in [28].

Example 3.1.12. Suppose V¥ is a monoidal co-category. Then d;:[2] — [1] induces a
functor dy 11V xV ~ \7[%] — V — a tensor product on V. Similarly so: [0] — [1] gives a
functor sg1: % ~ \7%] — V which picks out a unit object Iy := sg1* in V.

Definition 3.1.13. A generalized non-symmetric co-operad is an inner fibration m: M —
A°P such that:

(i) For each inert map ¢:[n] — [m] in A°P and every X € M such that n(X) = [n],
there exists a m-coCartesian edge X — ¢ X over ¢.
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(ii) For every [n] in A°P, the map
My = My Xty =+ Xovg Mpyy
induced by the inert maps [n] — [1],[0] is an equivalence.
(iii) Given C' € My, and a coCartesian map C' — C,, over each inert map « in 9[%]/ (i.e.

each inert map from [n] to [1] and [0]), the object C is a m-limit of the Cy’s.

Definition 3.1.14. A double co-category is a generalized non-symmetric oo-operad that is
also a coCartesian fibration.

Definition 3.1.15. Let m: M — A°P be a (generalized) non-symmetric co-operad. We say
that a morphism f in M is dnert if it is coCartesian and 7(f) is an inert morphism in

A°P. We say that f is active if w(f) is an active morphism in A°P.

Lemma 3.1.16. The active and inert morphisms form a factorization system on any
generalized non-symmetric co-operad.

Proof. This is a special case of [28, Proposition 2.1.2.5]. O

Definition 3.1.17. A morphism of (generalized) non-symmetric oco-operads is a commu-
tative diagram

such that ¢ carries inert morphisms in M to inert morphisms in N. We will also refer to
a morphism of (generalized) non-symmetric co-operads M — N as an M-algebra in N;
we write Alg,(N) for the full subcategory of the oo-category Funaer (M, N) of functors
over A°P gpanned by the morphisms of (generalized) non-symmetric co-operads.

Proposition 3.1.18. Suppose V is a monoidal co-category. Then Algaop (V) has an initial
object Iy: A°P — V€ which is the unique associative algebra structure on the unit object
I\; Of V.

Proof. As [28, Corollary 3.2.1.9]. O
Definition 3.1.19. A map of (generalized) non-symmetric co-operads is a fibration of (gen-

eralized) non-symmetric co-operads if it is also a categorical fibration and a coCartesian
fibration of (generalized) non-symmetric co-operads if it is also a coCartesian fibration.
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Definition 3.1.20. We will also refer to a map of non-symmetric oco-operads between
monoidal co-categories as a lax monoidal functor. A monoidal functor is a lax monoidal
functor that preserves all coCartesian arrows. If V and W are monoidal oco-categories,
we denote the full subcategory of Funaer (V®, W®) spanned by the monoidal functors by
Fun® (V®, W®). We also use the same notation for the analogous co-category of functors
between double co-categories that preserve all coCartesian morphisms.

It will be useful to know that monoidal co-categories are well-behaved with respect
to certain localizations:

Definition 3.1.21. Let V be a monoidal co-category and suppose W is a full subcategory
of V such that the inclusion i:W < 'V has a left adjoint L:V — W. We say that
the localization L is monoidal if the tensor product of two L-equivalences is again an
L-equivalence.

Proposition 3.1.22. Let V be a monoidal co-category and suppose L:V — W is a monoidal
localization with fully faithful right adjoint i:' W — V. Write W® for the full subcategory
of objects X of V¥ such that pi)X € W fori=1,....n (if X € V[QZ]). Then

(i) The inclusion i®: W® — V€ has a left adjoint L?:V® — W€ over A°P.
(ii) The projection W — A°P ezhibits W® as a monoidal co-category.
(iii) The inclusion i® is a lax monoidal functor and L® is a monoidal functor.

Proof. As [28, Proposition 2.2.1.9]. O

Definition 3.1.23. Suppose V is a monoidal co-category. If K is a simplicial set, we say
that V is compatible with K-indexed colimits if

(1) the oo-category V has K-indexed colimits (hence so does \7% ~ [V and ¢, preserves
them for any inert map @),
(2) for all (active) maps ¢: [n] — [m] in A°P, the map

¢,:Hv2v§] — Ve

[m]
i=1
preserves K-indexed colimits separately in each variable.

Recall that the co-category Press, of presentable co-categories and colimit-preserving
functors has a symmetric monoidal structure, constructed by Lurie in [28, §4.8.1]. The
tensor product has the universal property that a colimit-preserving functor CQ D — &
corresponds to a functor € x D — & that preserves colimits separately in each variable.
The unit for this tensor product is the oo-category 8 of spaces.
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Definition 3.1.24. Let Mon." be the oo-category Algaos(Press) of associative algebra
objects in Pres,, equipped with the tensor product of presentable oco-categories. Thus
Mong’f is the oo-category of monoidal co-categories €® compatible with small colimits
such that € is presentable, with 1-morphisms monoidal functors that preserve colimits.

We will refer to the objects of Monif as presentably monoidal co-categories.

Remark 3.1.25. By Proposition 3.1.18 the oco-category Monf:cf has an initial object given
by the unique presentably monoidal structure on the unit 8, which is clearly the Cartesian
monoidal structure.

3.2. The oco-category of co-operads

Our goal in this subsection is to construct oco-categories and (0o, 2)-categories of (gen-
eralized) non-symmetric co-operads. For this we make use of Lurie’s theory of categorical
patterns from [28, §B].

A number of important objects in higher category theory can be regarded as forming
(non-full) subcategories of slice categories of the co-category Caty, of co-categories — in
particular, we have seen above that this is the case for (non-symmetric) oo-operads and
monoidal co-categories, which form subcategories of (Cat)/acr. The theory of categor-
ical patterns provides a machine for generating model structures describing oo-categories
of this kind. Specifically, these are model structures on the slice category of marked sim-
plicial sets over some fixed marked simplicial set — the marking, which is a collection of
1-simplices in a simplicial set, allows us to easily consider subcategories of slice categories
where some type of map must be preserved (the inert maps in the case of co-operads,
and the coCartesian maps in the case of monoidal co-categories). Although we could
construct the desired oco-categories of oo-operads or monoidal co-categories directly as
subcategories of (Catwo)/acr, having the model structure around makes it easy to see
that these co-categories have all colimits, and indeed are presentable, and also allows us
to construct certain functors as Quillen adjunctions.

Definition 3.2.1. A categorical pattern 3 = (C, S, {ps}) consists of

e an oo-category C,

o a marking of C, i.e. a collection S of 1-simplices in € that includes all the degenerate
ones,

o a collection of diagrams of co-categories p,: K — C such that p, takes every edge
in K7 to a marked edge of C.

Remark 3.2.2. Lurie’s definition of a categorical pattern in [28, §B| is more general
than this: in particular, he includes the data of a scaling of the simplicial set C, i.e. a
collection T of 2-simplices in € that includes all the degenerate ones. In all the examples
we consider, however, the scaling consists of all 2-simplices of the simplicial set C. We
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restrict ourselves to this special case as it gives a clearer description of the PB-fibrant

objects, and also simplifies the notation.

From a categorical pattern, Lurie constructs a model category that encodes the

oo-category of B-fibrant objects, in the following sense:

Definition 3.2.3. Suppose P = (C, S, {pa}) is a categorical pattern. A map of simplicial
sets Y — € is P-fibrant if the following criteria are satisfied:

The underlying map 7Y — € is an inner fibration. (In particular, ¥ is an
oo-category.)

Y has all m-coCartesian edges over the morphisms in S.

For every a, the coCartesian fibration 7,:Y xe K — K3, obtained by pulling back
m along pq, is classified by a limit diagram KJ — Cate.

For every «, the composite of any coCartesian section s: K — Y xe KJ of m, with
the projection Y xe¢ KJ — Y is a 7-limit diagram.

Examples 3.2.4.

(i)

(iii)

Let Ops be the categorical pattern
(Aopa IHSa {p[n] K[?q,] — Aop})a

where I,,s is the set of inert morphisms and Kj,) is the set of inert morphisms
[n] — [1] in A°P. Tt is immediate from Definition 3.1.3 that a map ¥ — A°P ig
ys-fibrant precisely if it is a non-symmetric co-operad.

Let 91 denote the categorical pattern

(AOP, NATP, {p[n]: Kﬁl] — AOP}).

Then a map Y — A°P is M-fibrant precisely if Y — A°P is a monoidal co-category.
Let 98" be the categorical pattern

(AP, Ls, {(2) ) — AP).

It is immediate from Definition 3.1.13 that a map ¥ — A°P is O&"-fibrant if and
only if Y — A°P is a generalized non-symmetric co-operad.
Let ® denote the categorical pattern

(AOP,NA(EP’ {(gA)Fn]/ - Aop})'

Then a map Y — A°P is ®-fibrant if and only if Y — A°P is a double co-category.
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Theorem 3.2.5. (Lurie, [28, Theorem B.0.20].) Let g = (C,S,{pa}) be a categorical
pattern, and let C denote the marked simplicial set (C,S). There is a left proper combi-

natorial simplicial model structure on the category (SetX)/@ such that:

(1) The cofibrations are the morphisms whose underlying maps of simplicial sets are
monomorphisms. In particular, all objects are cofibrant.

(2) An object (X,T) — C is fibrant if and only if X — C is P-fibrant and T is precisely
the collection of coCartesian morphisms over the morphisms in S.

We denote the category (SetX)/é equipped with this model structure by (Setz)m.
Applying this in the case B = O,5, we get:

Corollary 3.2.6. There is a left proper combinatorial simplicial model structure on
(SetX)/(aor,1,.) such that

(1) The cofibrations are the morphisms whose underlying maps of simplicial sets are
monomorphisms. In particular, all objects are cofibrant.

(2) An object (X, T) — A°P is fibrant if and only if X — A°P is a non-symmetric
oco-operad and T is precisely the collection of inert morphisms of X.

We call this the non-symmetric co-operad model structure.

Definition 3.2.7. The oco-category OpdL: of non-symmetric co-operads is the oo-category

associated to the simplicial model category (SetZ)g i.e. the coherent nerve of the

simplicial category of fibrant objects. Thus the objects of Opd.> can be identified with
non-symmetric oo-operads. Moreover, since the maps between these in (Setz)gns are
precisely the maps that preserve inert morphisms, it is also easy to see that the space
of maps from O to P in Opdy: is equivalent the subspace of Mapaop(O,P) given by
the components corresponding to inert-morphism-preserving maps, as expected. This

justifies calling OpdL> the co-category of non-symmetric co-operads.

Remark 3.2.8. This oco-category of non-symmetric oo-operads is a special case of the
oo-categories of oco-operads over an operator category constructed by Barwick in [5,
Theorem 8.15]. By [5, Proposition 8.17] a morphism O — P in (Set}{)o,. between non-
symmetric oo-operads marked by their inert morphisms is a weak equivalence if and
only if the underlying morphism O — P is an equivalence of co-categories, as we would
expect.

Definition 3.2.9. Similarly, applying Theorem 3.2.5 to the categorical patterns 9t, D8
and D gives simplicial model categories (Set{ )on, (Set{)pzen, and (Set} ) whose fibrant

ns ?

objects are, respectively, monoidal co-categories, generalized non-symmetric oo-operads,
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8% and Dbl for the oco-categories

and double co-categories. We write Mony,, Opdys
associated to these simplicial model categories, and refer to them as the oco-categories of

monoidal co-categories, generalized non-symmetric co-operads, and double co-categories.

Definition 3.2.10. The morphisms in Mon,, are the (strong) monoidal functors between
monoidal co-categories. We write Monlfgx for the oo-category of monoidal co-categories
and lax monoidal functors, i.e. the full subcategory of Opd.: spanned by the monoidal
oo-categories.

Examples 3.2.11. Several other co-categories we will encounter can be constructed using
model categories coming from categorical patterns:

o If € is an oo-category, let PP be the categorical pattern (€, Cy, (). Then (&,7T) —
C* is Prart_fibrant if and only if m: & — € is a coCartesian fibration, and 7 is the
set of m-coCartesian edges in €. The model category (SetZ)fpceocm is the coCartesian
model structure on (Setz)/eu. Thus the associated oo-category is the oco-category
CoCart(C) of coCartesian fibrations over €, which is equivalent to Fun(€, Cate,).

o If Cis an oo-category, let B¢’ be the categorical pattern (€, tCq,0). Then (€,T) — €
is P -fibrant if and only if € is an co-category, the map m:& — € is a categorical
fibration, and T is the set of equivalences in €. (This follows from the description of
categorical fibrations to oo-categories in [25, Corollary 2.4.6.5].) The model category
(SetZ)m%q is the over-category model structure on (Set} ) seq from the model structure
on Setz The associated oo-category is thus the over-category (Catso) /e

e If C is an oo-category and D is a subcategory of C, let &B%‘f%‘“t be the categorical
pattern (€,Dy,0). Then (€,T) — (C,Dy) is PEF  -fibrant if and only if € is an
oo-category, the map m: € — C is an inner fibration, € has all m-coCartesian edges
over morphisms in D, and T consists precisely of these coCartesian edges. The model
category (SetX)m?%m gives an oo-category of functors € — € that have coCartesian
morphisms over the morphisms in D; we write CoCart(C, D) for this co-category.

Remark 3.2.12. For any categorical pattern 93, the model category (Set} )y is enriched
in the model category of marked simplicial sets — this follows from [28, Remark B.2.5]
(taking B’ to be the trivial categorical pattern on A°). Passing to the subcategories
of fibrant objects we therefore get fibrant marked simplicial categories of (generalized)
non-symmetric oo-operads. Marked simplicial categories are one model for the theory
of (00, 2)-categories, so we get (00, 2)-categories OPDL: and OPDL>#®" with underly-
ing oo-categories Opdi: and Opdi>®®". If M and N are (generalized) non-symmetric
oc-operads, we can identify the co-category Alg,(N) with the co-category of maps from
M to N in the fibrant marked simplicial category OPDL> 8",

Proposition 3.2.13. The identity is a left (marked simplicially enriched) Quillen functor
(Set ) ogen — (SetX)o

ns °
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Proof. As [28, Corollary 2.3.2.6]. O

Corollary 3.2.14. The inclusion Opd., — Opds2®" has a left adjoint Lgen: Opdo®™ —
Opd?%:.

3.8. Filtered colimits of co-operads

Colimits of (generalized) non-symmetric oo-operads are in general difficult to describe
explicitly. However, we will now show that filtered colimits can be computed in Caty:

Theorem 3.3.1. The forgetful functors OpdL:, Opdir®™ — Cato, detect filtered colimits.
For this we need some preliminary technical results:

Proposition 3.3.2. Let p:J — (Cats) s be a filtered diagram, and let f:B — B’ be a
morphism in B such that for each a € J the functor p(a): Co, — B has p(a)-coCartesian
morphisms C — fiC over f for each C € (C4)p, and the functors p(¢) preserve these
for all morphisms ¢:a« — B in J. Then:

(i) The colimit € — B of p also has coCartesian morphisms over f.
(ii) The functors C, — C preserve these coCartesian morphisms for all o € J.
(iii) A functor C — D over B preserves coCartesian morphisms over f if and only if all
the composites C,, — C — D do so.

Proof. For a € J, let r, denote the canonical functor €, — €. Suppose X € Cp;
then there exists a € J and X’ € (Cy)p such that X =~ ry 1 X'. Let f: X' = fiX' bea
coCartesian morphism over f; we wish to prove that r, f is coCartesian in C. To see
this we must show that for all Y € €4 the commutative square

Mape (1o 1 /X', Y) —— Mape(X,Y)

|

MapB (B/v A) E— Map% (B7 A)

is a pullback diagram. Changing « if necessary, we may without loss of generality assume
thereisa Y’ € €, such that r, Y’ ~ Y. Since filtered colimits commute with finite limits
in spaces, and the mapping space Mape(X,Y) is the fibre of the projection

Fun(A', €) ~ colim Fun(A', €,) — colim €, x €, ~ € x C

(o34

at (X,Y), it is easy to see that we can describe Mape(X,Y) as the filtered colimit

. gg}iﬁlgja/ Mape, (9 X', ¢1Y"),
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and the commutative square as the colimit square

: / ! : / /
. gglggja/ Mape, (1 fiX',nY') —— N gghﬁlgja/ Mape, (6 X', ¢ Y”)

| |

li M B A li M B, A).
o S, Mopn (B ) > collm,  Maps(5,4)

Each of the squares in this colimit are pullback squares since by assumption ¢ f is
coCartesian in Cg for all ¢: a — 5. Hence, since filtered colimits in § commute with finite
limits, it follows that the colimit square is also a pullback. Thus 7, f is coCartesian in
C, as required. This proves claims (i) and (ii), and (iii) is then clear from this description
of the coCartesian morphisms in €. O

Corollary 3.3.3. The forgetful functor CoCart(C) — (Cato) /e detects filtered colimits.

Proof. We can describe CoCart(C) as the subcategory of (Cat) /¢ whose objects are the
coCartesian fibrations and whose morphisms are the functors that preserve coCartesian
morphisms. This is clear if we consider the functor of fibrant simplicial categories induced
by the functor from the coCartesian model structure on (Setz) /e to the over-category
model structure on (Set}) set that forgets the markings that do not map to equivalences
in €. The result then follows from Proposition 3.3.2. O

Corollary 3.3.4. Let C be an co-category and D a subcategory of C. The forgetful functor
CoCart(C, D) — (Catwo) /e detects filtered colimits.

Proof. The co-category CoCart(C,D) can be identified with the full subcategory of the
pullback CoCart(D) X (Catoo) (Catoo) /e spanned by those maps € — € that have co-
Cartesian arrows over the morphisms in D — this is clear from the definition of the
mapping spaces in the fibrant simplicial categories associated to the corresponding model
categories. The result therefore follows from Proposition 3.3.2. O

Lemma 3.3.5. Suppose F:C = D : U is an adjunction. Then:

(i) If the right adjoint U preserves k-filtered colimits, then F preserves k-compact ob-
jects.

(i) If in addition C is k-accessible, then U preserves k-filtered colimits if and only if F
preserves Kk-compact objects.

Proof. For the first claim, suppose X € C is a k-compact object and p: K — D is a
k-filtered diagram. Then we have
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Mapq, (F(X), colim p) ~ Mape (X, G(colim p)) ~ Mape (X, colim G o p)
~ colim Mape (X, G o p) = colim Map, (F(X),p).
Thus Map, (F(X), ) preserves k-filtered colimits, i.e. F(X) is k-compact. For the second
claim, suppose F' preserves k-compact objects, and p: K — D is a k-filtered diagram; we

wish to prove that the natural map colim G o p — G(colim p) is an equivalence. Since C
is k-accessible, to prove this it suffices to show that the induced map

Mape (X, colim G o p) — Mape (X, G(colim p))

is an equivalence for all k-compact objects X € C. But when X is k-compact, we have
equivalences

Mape (X, G(colim p)) ~ Mapy, (F(X), colim p) =~ colim Map, (F(X),p)
~ colim Mape (X, G o p) ~ Mape (X, colim G o p),
so this is true. O
Lemma 3.3.6. Let C be an oco-category and let C' be an object of C. Then the forgetful
functor F:C;c — € reflects colimits, i.e. a diagram p: K> — €, is a colimit diagram if
the composite Fop: K — € is a colimit diagram. Moreover, if C has finite products, then

F creates colimits, i.e. p is a colimit diagram if and only if F o p is a colimit diagram.

Proof. Write C’ for p(co) and p for p|k. For any map f: D — C we have a commutative
square

lim Mape(p(x), D) B Map@(c/a D)

T |

henll( Map@ (p(l’), C) — Map@ (Clv C) :

If Fopis a colimit diagram in € then the horizontal morphisms in this square are both

equivalences, hence so are all induced maps on fibres. But for any object ¢g: X — C in
€/c the space Map@/C (X, D) is the pullback

Mape ., (X,D) —— Mape(X, D)

J |

{9} ———— Mape(X, C),

and so since limits commute one map on fibres is
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. !
lim Mape , (p(z), D) = Mape,,(C", D).

Thus this is an equivalence for all D — C'if F op is a colimit diagram in €, which shows
that p is a colimit diagram in €,¢ if F'op is a colimit diagram.
Conversely, suppose p is a colimit diagram, so that

ileﬂil{ Mape . (p(z), D) — Mape ., (C", D)

is an equivalence for all D — C. If C has finite products, then for any ¥ — C in C,¢
and any X € C we have a natural equivalence

Mape, . (Y, X x C) ~ Mape(Y, X)

where X x C — (' is the product projection. Thus, taking D to be X x C' we get by
naturality an equivalence

. ~ !
thHIl(Mape(p(z)yX) HMapC(C 7X)a
and thus F op is a colimit diagram in €. O

Proposition 3.3.7. Suppose C is a k-accessible co-category with finite products such that
the Cartesian product preserves k-filtered colimits separately in each variable. Then an
object X — C'is k-compact in C,c if and only if X is a k-compact object of C.

Proof. The forgetful functor 7:C,c — € creates colimits by Lemma 3.3.6 and admits
a right adjoint 7*: € — €, given by sending X € € to the projection X x C' — C. By
assumption the composite 77", which sends X to X x C, preserves x-filtered colimits,
hence so does r*. By Lemma 3.3.5 the left adjoint r, preserves k-compact objects. Thus
it X — Cis k-compact in €,¢, then X is x-compact in C.

Conversely, suppose X — C'is an object of €,¢ such that X is k-compact in €, and
p: K — €/¢ is a k-filtered diagram in €C,c. We then have a diagram

colim Mape (X, 7 0 p) —— Mape(X, colimry o p)

| |

colim Mape (X, C) ——— Mape (X, C)

where the horizontal maps are equivalences. Since k-filtered colimits commute with
k-small limits in 8, hence in particular finite limits, we have a pullback diagram
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colim Mape/c (X,p) — colim Mape (X, p)

| |

colim x —————— colim Mape (X, C)

where the obvious map colim x — x is an equivalence. Thus the canonical map

colim MaLpe/c (X,p) — Mape/c (X, colim p)

can be identified with the pullback along the inclusion {X — C} — Mape(X,C) of
an equivalence and so is itself an equivalence. Hence X — C is indeed k-compact in
G/c. 0O

Corollary 3.3.8. Suppose C is a k-accessible co-category with finite limits, such that the
Cartesian product preserves k-filtered colimits separately in each variable. Then for ev-
ery morphism f:C — D in € the pullback functor f*:C/p — C,c preserves k-filtered
colimits.

Proof. The functor f* is right adjoint to the functor fi: €, — €,p given by composition
with f. By Proposition 3.3.7 the functor f, preserves k-compact objects, and so by
Lemma 3.3.5 the right adjoint f* preserves s-filtered colimits. O

Proof of Theorem 3.3.1. We consider first the case of the forgetful functor Opd.. —
Catoo. For any categorical pattern B = (X, S, {pa}), it follows from the proof of [28,
Theorem B.0.20] that the model category (Setf)y is a left Bousfield localization of
the model category (SetZ)m_, where B~ be the categorical pattern (X,.5,0). Thus the
oo-category Opdy: is a localization of CoCart(A°P, A?R), and by Corollary 3.3.4 the

forgetful functor CoCart(A°, ApR) — (Catog)/acr detects filtered colimits. It follows

int
that the colimit of a filtered diagram of oo-operads is the localization of the colimit of

op
int

the corresponding diagram in CoCart(A°P, Al), and this colimit can be computed in
(Cato)/ace or equivalently in Cate,, by Lemma 3.3.6. Thus, to show that the forgetful
functor from OpdLS to Cats, preserves filtered colimits it suffices to show that the colimit
in (Catoo)/acr of such a diagram is also an oo-operad.

Let p:J — OpdZi, a — O, be a filtered diagram, and let O be the colimit in Cate
of the diagram obtained by composing with the forgetful functor. By Proposition 3.3.2
the induced map O — A°P has coCartesian arrows over inert morphisms in A°P, so it
suffices to prove that the two other conditions for being an co-operad are satisfied.

Since pullbacks in Cat, preserve filtered colimits by Corollary 3.3.8, and these com-
mute with finite limits in Cat.,, we have a commutative diagram
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O[n] —— colim,, O(X’[n]

J J

(O[l])xn S COlima(an[l])X"

where all but the left vertical map are known to be equivalences, hence this is also an
equivalence.

Now suppose Y is an object of O, and 7;: Y — Y; are coCartesian arrows over the
inert maps p;: [n] — [1] in A°P. We must show that for every X € Op,, and every map
¢:[m] — [n] in AP, the morphism

Map§ (X, V) = [ [ Map§?(X,V;)

is an equivalence. We can choose a € J and objects X, and Y, in O, that map to X
and Y; coCartesian morphisms Y, — p; 1Y, over p; will then map to n;. As in the proof
of Proposition 3.3.2, since O is a filtered colimit in Cat., we get a diagram

Map$ (X,Y) [ Mapt? (X, v5)

|

; @ ; pi¢
oo SOlim, - Mapp, (V1 Xa, 9r¥a) —— ] colim,  Mapg(1Xa, ¥1piYa)

i
where the vertical maps are equivalences. But since filtered colimits commute with finite
limits in 8, the bottom horizontal map is also an equivalence, as Og is an oo-operad for
all 8. It follows that the top horizontal map is also an equivalence, which completes the
proof that O is an co-operad.

The proof for OpdZ>&" is similar — the only difference is the we replace the finite
products with limits over the categories 9[%} / which are also finite. O

3.4. Trivial co-operads

In this subsection we will associate to any non-symmetric oo-operad O a trivial
oo-operad Oy with a map Oy — O, such that for any oo-operad P the oco-category
Algg, .. (P) of Ogiy-algebras in P is equivalent to the functor oo-category Fun(Opy, Ppy));
an analogous result also holds for generalized non-symmetric oo-operads.

Definition 3.4.1. Let M be a generalized non-symmetric co-operad. Define the generalized
non-symmetric oo-operad My,iy by the pullback diagram
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™
j\'/[triv — M

|

AP 5 AOP

int

This is the trivial generalized non-symmetric co-operad over M.
Definition 3.4.2. Let OV denote the categorical pattern

(A9p N(A?r?t)p {(9A>[<]n]/ - Aop})'

int»

Remark 3.4.3. An object (X,S) of (Set}),as naor),) is OY-fibrant if X — A}

is a coCartesian fibration, S is the set of coCartesian edges, and the Segal morphisms

Xin) = X[1] XX = XX (o) X[1] are equivalences.

]

Under the equivalence between coCartesian fibrations and functors the oco-category
associated to the model category (SetX)Dg‘rsiv corresponds to the full subcategory of
Fun(AY,, Cats) spanned by the functors that are right Kan extensions along the in-

clusion v: & — AP

int- Thus we have proved the following:

Lemma 3.4.4. The co-category associated to the model category (Setz)ggv s equivalent
to Fun(G4, Cat).

The obvious map of categorical patterns OV — 98 then induces an adjoint pair
of functors

Vi Fun(SA,Catoo) = Opdi>&™: ™.

Since composition with the inclusion ALY — A°P takes OUIV-fibrant objects to
Ogen_fibrant objects, the left adjoint 7 sends a functor & — Cats, to its right Kan
extension to Al — Cat, then to the composite & — AL — A°P where & — AL is
the associated coCartesian fibration. In particular, if M is a generalized non-symmetric
oo-operad, then My, is 1y*M, and the natural map My, — M is the adjunction
morphism.

Taking the (oo, 2)-categories associated to the categorical patterns into account, we

get the following:

Proposition 3.4.5. Let F' gA Cateo be a functor, and F — G2 the associated co-
Cartesian fibration. If M is a generalized non-symmetric co-operad let Mo, denote the
pullback of M along & — A°P. Then there is a natural equivalence between Alng(M)
and the full subcategory Fun‘gfa”(?, Msiob) of Funga (F, Mgion) spanned by functors
that preserve coCartesian arrows. In particular, if O is a non-symmetric co-operad, then
Alg,, p(0) ~ Fun(F([1]), Op).
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3.5. Monoid and category objects

We will now observe that if V is an oo-category with finite products and M is a
(generalized) non-symmetric oo-operad, then the M-algebras in the Cartesian monoidal
oo-category V* are equivalent to a certain class of functors M — V, namely the

M-monoids.

Definition 3.5.1. Suppose M is a generalized non-symmetric oo-operad and V an
oo-category with finite products. An M-monoid object in V is a functor F: M — V
such that its restriction F|y,,,, is a right Kan extension of Fly,, along the inclusion
Mpy = Miiy. Write Mony(V) for the full subcategory of Fun(M, V) spanned by the
M-monoid objects.

Definition 3.5.2. Suppose M is a generalized non-symmetric oco-operad and V is an
oo-category with finite limits. An M-category object in V is a functor F: M — V
such that its restriction F|y,,,, is a right Kan extension of Fly,,, along the inclu-
sion Mgior, > Miriv. Write Catyg(V) for the full subcategory of Fun(M, V) spanned by
the M-category objects. When M is A°P we refer to A°P-category objects as just category
objects.

Proposition 3.5.3. Suppose V is an co-category with finite products, and consider V as
a monoidal co-category via the pullback of the Cartesian symmetric monoidal structure.
Then for any generalized non-symmetric oco-operad M we have Algy(V) ~ Mony (V).

Proof. As [28, Proposition 2.4.2.5]. O

Proposition 3.5.4. We have equivalences Mon,, =~ Monaor(Cats,) and Dbly, =
Catacr (Cateo).

Proof. We can identify Mon,, with the full subcategory of the co-category of coCarte-
sian fibrations over A°P spanned by the monoidal co-categories. Under the equivalence
between coCartesian fibrations over A°P and functors A°? — Cat, these correspond
precisely to those functors satisfying the condition for a monoid object. Similarly, the
double oco-categories correspond to the category objects. O

3.6. The algebra fibration

In this subsection we define, given a non-symmetric co-operad O, a Cartesian fibration
Alg(0) — Opdy: with fibre Alg,(O) at P € Opdss — the objects of Alg(O) are thus
pairs (P, A) where P is a non-symmetric co-operad and A is a P-algebra in 0. We then
study the oco-category Alg(V) in the special case when V is a monoidal co-category and
consider its behaviour as we vary the monoidal co-category V.
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Definition 3.6.1. Let O be a non-symmetric co-operad. Recall that (Setz)ogpns is a marked

simplicial model category, so we have a functor
(SetZ);pns — Setz

represented by O. This restricts to a functor between the fibrant objects in these marked
simplicial model categories; forgetting from the marked simplicial enrichment down to
enrichment in simplicial sets (by forgetting the unmarked 1-simplices) and taking nerves
we get a functor

(Opd2)*” — Cato;
this sends a non-symmetric co-operad P to Alg,»(0). We define
Alg(0) — OpdZ::
to be a Cartesian fibration corresponding to this functor.

Remark 3.6.2. We could also construct Alg(O) as a full subcategory of the source of a
Cartesian fibration associated to the functor (Cats)/acr — Cato, that sends € — AP
to Funaer (G, O).

Remark 3.6.3. Let V be an oo-category with finite products. Then we can similarly
define a fibration Mon(V) — Opds: with fibre Mong (V) at O. The proof of [28, Propo-
sition 2.4.1.7] implies that the equivalence Algy (V) ~ Mong(V) is natural in O, which
gives an equivalence Alg(V) == Mon(V) when V is considered as a monoidal co-category
via the Cartesian product.

Definition 3.6.4. For O a non-symmetric co-operad, let
Algtriv(o) — Opdrolz

be the pullback of Alg(O) along the functor 117* from Opdy: to itself that sends P to
Piriv. The natural maps 75: Py — P then induce a functor

7*: Alg(0) — Alg,.;, (0).

Remark 3.6.5. The natural equivalence Algy, . (V) =~ Fun(®P[y,V) of Proposition 3.4.5
implies that there is a pullback diagram

Algyiy (V) —— Iy

| ]

Opdl} —— Catoo,
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where the lower horizontal map sends an oo-operad O to O, and the right vertical
map is a Cartesian fibration associated to the functor Catll — Cat that sends € to
Fun(C, V).

Lemma 3.6.6. Suppose V is a monoidal co-category compatible with small colimits. Then
the projection Alg(V) — Opd%: is both Cartesian and coCartesian.

Proof. By [25, Corollary 5.2.2.5] it suffices to prove that for each map f:O — P in
Opdz: the map f*: Algy’ (V) — Algy’ (V) has a left adjoint. This is precisely the content
of Theorem A.4.6. O

Lemma 3.6.7. Suppose V is a monoidal co-category compatible with small colimits. Then
the functor T has a left adjoint

: Algtriv(v) — Alg(V)

relative to Opdgs.

Proof. By [28, Proposition 7.3.2.6] it suffices to prove that 7* admits fibrewise left ad-
joints, which we showed in Theorem A.4.6, and that 7* preserves Cartesian arrows,
which is clear since it is the functor associated to a natural transformation between the
corresponding functors to Caty,. O

Lemma 3.6.8. The functor Alg(V):(Opdyl)°® — Cates takes colimits in Opdy} to
limits.

Proof. For any categorical pattern 3, the product

Set x(Sety )y, — (SetA)y

is a left Quillen bifunctor by [28, Remark B.2.5]. Thus the induced functor of co-categories
preserves colimits in each variable. In particular, the product

Catoo x Opdy: — Opdys

preserves colimits in each variable. Now Alg(~) is defined as a right adjoint to this, so
for any co-category C we have

MapCatoo (G, Algcolima Oq (ﬂ))) = MapOpdgg (e X Cogm O(M ?)

~ Mapopgns (colim(€ x Oq), P)

=~ lim Mapgpqns (€ X Oq, P)
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~ lim Mapcy,_ (C, Algg_ (P))

~ Mapc,:_ (€,1lim Algy_(P)).
Thus Alg.qjim 0, (P) ~lim, Algy (P). O

Proposition 3.6.9. Suppose V is a monoidal co-category compatible with small colimits.
Then Alg(V) admits small colimits.

Proof. By Lemma 3.6.6, the fibration m: Alg(V) — Opdy is coCartesian. Moreover, its
fibres have all colimits by Corollary A.5.7 and the functors f; induced by morphisms
f in Opdy: preserve colimits, being left adjoints. Thus 7 satisfies the conditions of [15,
Lemma 9.8]. O

Proposition 3.6.10. Let V and W be monoidal co-categories compatible with small col-
imits. Suppose F:V® — W® is a monoidal functor such that Fp:V — W preserves
colimits. Then Fy: Alg(V) — Alg(W) preserves colimits.

Proof. Since V and W are compatible with small colimits, the projections
Alg(V), Alg(W) — Opdg

are coCartesian fibrations. Thus a diagram in Alg(W) is a colimit diagram if and only if
it is a relative colimit diagram whose projection to Opdy: is a colimit diagram.

It therefore suffices to prove that F, preserves coCartesian arrows and preserves
colimits fibrewise. The former follows from Lemma A.4.7, and the latter from Proposi-
tion A.5.10. O

Proposition 3.6.11. Suppose V is a presentably monoidal co-category. Then the co-category
Alg(V) is presentable and the projection Alg(V) — Opdsy is an accessible functor.

Proof. This follows from [15, Theorem 9.3] together with Theorem A.4.6, Corol-
lary A.5.7, and Lemma 3.6.8. O

Next we observe that the co-category Alg(0O) is functorial in O:

Definition 3.6.12. Since the model category (SetX)D is enriched in marked simplicial

ns

sets, the enriched Yoneda functor

9: (Seth) g x (Seth)s — Set}

induces a functor of co-categories (Opda: )P x Opds: — Cateo sending (O, P) to Algy (P).
Let Alg,, — Opdy: x(Opdil)°P be a Cartesian fibration corresponding to this functor.
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The fibre of Alg., at O in the second component is Alg(O). The composite Alg,, —
(OpdZl)°P with projection to the second factor is then a Cartesian fibration corresponding
to a functor Opdy: — Cateo that sends O to Alg(O). Thus we see that Alg(0) is functorial
in O.

Definition 3.6.13. Let Alg — OpdL: be a coCartesian fibration corresponding to the
functor O — Alg(0O).

Next we show that the algebra fibration is compatible with products of non-symmetric
oo-operads:

Proposition 3.6.14. Alg(-) is lax monoidal with respect to the Cartesian product of non-
symmetric co-operads.

Proof. The Cartesian product on (SetZ) o,. gives a symmetric monoidal structure on
(SetX)a x(SetX)o,, by taking products in both variables. The functor § is lax monoidal
with respect to this, and so induces an ((Opdz:)°P x Opd?:)*-monoid in Cats. From this
we get a Cartesian fibration Alg)s — (((Opdis)°P x OpdiS)*)°P. Projecting to the second
factor gives a Cartesian fibration that corresponds to a monoid (Opdyis)* — Caty,, and
so a lax monoidal functor (Opds)* — Cat,. This shows that Alg(-) is a lax monoidal
functor. O

This construction gives an “external product”
X: Alg(0) x Alg(P) — Alg(O x aee P).

Our next result is that for algebras in monoidal co-categories compatible with colimits
this preserves colimits in each variable; this requires a preliminary observation:

Lemma 3.6.15. Suppose V and W are monoidal co-categories compatible with small col-
imits. Then the external product X preserves free algebras, i.e. givem non-symmetric
oo-operads O and P, algebras A € Algy (V) and B € Algy (W), and morphisms of non-
symmetric co-operads f:O — Q and g: P — R, we have AR @B ~ (f x g)i(AK B) in
Algoy popm(V X W).

Proof. This follows from Lemma A.2.3. O

Proposition 3.6.16. Suppose V and W are monoidal co-categories compatible with small
colimits, and let O and P be non-symmetric co-operads and A € Algqy (V) an O-algebra.
Then

AR (): Algyp(W) = Algoy yopp(V X W)

preserves colimits.
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Proof. First we consider the case of trivial non-symmetric co-operads. Suppose A’ is an
Otriv-algebra. Then

Al & - Althriv (W) — Algotriv X pop Piriv (V X W)
clearly preserves colimits, since it is equivalent to the functor
Al|om X = Fun(fP, W) — Fun((f)[l] X ?[1],\7 X W)

Since we have 75,1y (AX B) ~ 75 AR 7, B and 73, detects sifted colimits by Corol-
lary A.5.4, it follows that A X — preserves sifted colimits for any A.

Next we consider the case where A is a free algebra 7y A" for some Oyy-algebra A’
in V. By Lemma 3.6.15 we have

TVJA/ X TW,!B/ ~ T\;XW’!(A/ X B/)7

so the functor Ty ;A X — preserves colimits of free algebras. Thus it must preserve all
colimits, by monadicity (Corollary A.5.6).

Finally, suppose A, is a free resolution of A, and o — B, is any diagram. Then since
X preserves sifted colimits we have

AXcolim B, ~ |As| X colim B, ~ |Aq K colim B,,|.
From the case of free algebras we then get that this is equivalent to
| colim(Ae X B,)| ~ colim |Ae X B, |.

But since X preserves sifted colimits in each variable, this is colim(|As| X B,) =~
colim(AX B,). O

Remark 3.6.17. The Cartesian product of non-symmetric co-operads does not in general
preserve colimits, so it is not possible for the external product, considered as a functor
AR (-): Alg(W) — Alg(V x W) to preserve colimits.

Finally, we observe that the algebra fibration is well-behaved with respect to adjunc-
tions and monoidal localizations:

Proposition 3.6.18. Suppose V and W are presentably monoidal oco-categories and
F:V® — W® s a monoidal functor such that the underlying functor Fj:V — W pre-
serves colimits. Let g:'W — 'V be a right adjoint of Fjo). Then there exists a lax monoidal
functor G:W® — V€ egtending g such that we have an adjunction

F, : Alg(V) 2 Alg(W) : G,

over Opdy:.
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Proof. This is immediate from (the dual of) [28, Proposition 7.3.2.6] as its hypotheses
are satisfied by Lemma A.4.7 and Proposition A.5.11. O

Corollary 3.6.19. Suppose V is a presentably monoidal co-category and L:V — W is an
accessible monoidal localization with fully faithful right adjoint i: W < V. Then we have
an adjunction

L? : Alg(V) = Alg(W) : ¥
over Opdss. Moreover, i2 is fully faithful.
Proof. This follows from combining Proposition 3.6.18 and Lemma A.5.12. O
3.7. Non-symmetric and symmetric co-operads

In this subsection we briefly discuss the relation between non-symmetric and symmet-
ric co-operads and their algebras. We will use the terminology and notation of [28] for
(symmetric) oo-operads, except that we use superscript ¥’s to distinguish the symmetric
case from the non-symmetric case discussed so far.

Definition 3.7.1. Let ¢: AP — I'°P be the functor defined as in [28, Construction 4.1.2.5]
(this is the same as the functor introduced by Segal in [36]). This takes inert morphisms
in A°P to inert morphisms in I'°P and moreover induces a morphism of categorical
patterns from 9,5 to the analogous categorical pattern Oy for symmetric co-operads.
Thus ¢ induces adjoint functors

¢ - Opd™ = OpdZ : c¢*.

Moreover, since the induced Quillen functors are enriched in marked simplicial sets, we
get equivalences

Algy (c*P) =~ Alggo(f]?),
where O is a non-symmetric co-operad and P is a symmetric co-operad.

Remark 3.7.2. This Quillen adjunction is a special case of the Quillen adjunction induced
by a morphism of operator categories defined in [5, Proposition 8.18].

Proposition 3.7.3.

(i) The symmetric co-operad ¢y A°P is equivalent to the symmetric co-operad Bq ~ Ass

of [28, Definition 4.1.1.5].
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(i) The oco-category Mony, of monoidal co-categories is equivalent to the oo-category
Moni;]El of E1-monoidal co-categories.

(iii) The oo-category MonZ:™" of R, -monoidal (or n-tuply monoidal) co-categories
is equivalent to the co-category Alg%ﬂﬂ(Monm) of E,_1-algebras in monoidal
oo-categories.

Proof.

(i) This follows from [28, Proposition 4.1.2.15].
(ii) We have an equivalence

Mons, >~ Monaos (Cateo) = Algpop (Cateo) = AlgCE!Aop(Catoo)

~ Mon%1 (Cato) ~ MonZ ™t .
(iii) Since E,, ~ E,_; ® E;, using the equivalences from (ii) we get an equivalence
Alg%n_l(Monoo) ~ Alg%ﬂ_1 (Alg%1 (Catoo)) ~ Alg%n(Catoo) ~ MonZ:En | O

Remark 3.7.4. In fact, though we do not need it here, the functor ¢; induces an equivalence
Opd?: ~ (Opdfo)/ﬂ;l — this is [28, Proposition 4.7.1.1].

Remark 3.7.5. By Proposition 3.7.3, the oco-category Monf;l)r of presentably monoidal
oo-categories is equivalent to the oo-category Algp (Press) of Ej-algebras in Pres..
Using [28, Proposition 3.2.4.3] we therefore see that the tensor product on Pres,, induces
a symmetric monoidal structure on Monl;f. The unit for this tensor product is given by
the unique presentably monoidal structure on the unit 8§, namely the Cartesian monoidal

structure.

On the oo-operads corresponding to ordinary multicategories, the functor ¢ corre-
sponds to the usual symmetrization, i.e. it adds free actions by the symmetric groups:

Definition 3.7.6. Let M be a multicategory. The symmetrization Sym(M) is the sym-
metric multicategory with objects those of M, and multimorphism sets

Sym(M)(Xlaan7Y): H M(Xo(l)w"vXa(n);Y);
oEY,

composition in Sym(M) is defined using the usual maps ¥,, X X, = X, 4,. The units
in ,, give an obvious map pu: M® — Sym(M)®.

Proposition 3.7.7. Let M be a multicategory. The map p: M® — Sym(M)® over TP is
an approzimation of symmetric oo-operads (cf. [28, Definition 2.3.3.6]).
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Proof. This follows by a variant of the argument in the proof of [28, Proposi-
tion 4.1.2.10]. O

Corollary 3.7.8. The map M® — Sym(M)® induces an equivalence of symmetric
oo-operads

aM® = Sym(M)®.
In particular, if O is any symmetric co-operad we have a natural equivalence

4. Categorical algebras

Our main goal in this section is to define the co-category Alg,... (V) of categorical alge-
bras in a monoidal co-category V and prove that this has various good properties. First,
in §4.1, we carefully define the double co-categories AY for S a space, and make some
observations about the functor S +— A. Next, in §4.2, we identify the non-symmetric
oo-operad associated to A as one arising from a certain simplicial multicategory; this
allows us to prove a crucial property of the double co-categories AY’. We are then ready,
in §4.3, to use the algebra fibration from §3.6 to construct the oco-categories Alg,,. (V)
and study these; in particular, we will prove that Alg.,(V) is a lax monoidal functor of
V, and that it is presentable if V is presentable and equipped with a colimit-preserving
monoidal product. In §4.4 we then prove that categorical algebras in spaces are equiva-
lent to Segal spaces, which will prove useful in the next section as it allows us to reduce
several proofs to the known case of Segal spaces. Finally, in §4.5 we show that categori-
cal algebras are equivalent to an alternative model for enriched oco-categories as certain
presheaves.

4.1. The double co-categories AY

We begin with an abstract definition of double co-categories Ag", where € is any
oo-category:

Definition 4.1.1. Let ¢ denote the inclusion {[0]} < A°P. Taking right Kan extensions
along i gives a functor i,: Cats,, — Fun(A°P, Cats). If € is an oo-category, we write
AP — A°P for a coCartesian fibration corresponding to the functor i,C.

Remark 4.1.2. If C is an oo-category, then i,€C is the simplicial oco-category with nth
space CX"t1 face maps given by the appropriate projections, and degeneracies by the
appropriate diagonal maps.
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Lemma 4.1.3. Let C be an co-category. The coCartesian fibration AY — A°P is a double
0o-category.

Proof. It is clear that i,C is a category object, hence Ag’ is a double co-category by
Proposition 3.5.4. O

Remark 4.1.4. We can also give a more explicit description of the simplicial sets A(ép , as
follows: Consider the forgetful functor A — Set that sends [n] to the set {0,...,n}, and
let P — A°P be an associated Grothendieck fibration. Then define Ee — A°P to be the
simplicial set satisfying the universal property

HOonp (K, E@) = HOIH(P X Aop K, (?)

The map Ee — A°P is a coCartesian fibration by [25, Proposition 3.2.2.13], and the cor-
responding functor is that sending [n] to Fun(Py,, €) = €+ by [15, Proposition 7.3].
Thus the fibration Ee — A°P is the same as the coCartesian fibration A — A°P.

Remark 4.1.5. The functor
A((),p): Cato, — Opdi> e

is a right adjoint to the functor Opdi>®" — Cats that sends a generalized non-
symmetric co-operad M to its fibre Mg at [0]: it is a composite of the right Kan extension
functor i,: Catso — Dbls, which is right adjoint to the fibre-at-[0] functor, and the inclu-
sion Dbl — Opdi>®®" | right adjoint to the monoidal envelope functor, which preserves
fibres at [0] (cf. §A.1).

Remark 4.1.6. It follows from Remark 4.1.5 that the functor A?E): Cateo — Opdi®® is
fully faithful, since using the adjunction we have

Map(AQ, AY) =~ Map((A%p)[O],D) ~ Map(€, D).

Proposition 4.1.7. The functor A?E): Catoo — Opdi> e preserves filtered colimits.

Proof. Suppose we have a filtered diagram of oco-categories p:J — Cato, with colimit
€. Since A¢’ is a generalized non-symmetric co-operad, by Theorem 3.3.1 it suffices to
show that A¢" is the colimit of AZEL) in Cats,. Now this composite functor

AP
Catoe ——5 OpdZ¥&® 5 Caty,
factors as

Catoo LN Fun(A°P, Caty,) = CoCart(A°P) L5 Cate,
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where CoCart(A°P) is the co-category of coCartesian fibrations over A°P and the right-
most functor ¢ is the forgetful functor that sends a fibration & — A°P to the co-category
€. The functor ¢ preserves filtered colimits by Corollary 3.3.4, so it suffices to prove that
i, preserves them. Colimits in functor categories are computed pointwise, so to see this
it suffices to show that for each [n] the composite functor Cato, — Cats induced by
composing with evaluation at [n] preserves filtered colimits. This functor sends D to the
product D*("+1) "and so preserves filtered (and even sifted) colimits by [25, Proposi-
tion 5.5.8.6], since the Cartesian product of co-categories preserves colimits separately
in each variable. O

4.2. The cc-operad associated to A

By Corollary 3.2.14 there is a universal non-symmetric co-operad Lgen Ay receiving
a map from the double co-category A . In this subsection we describe a concrete model
for Leen A as the co-operad associated to a simplicial multicategory. We will use this
below in §5.3 to see that our theory of enriched co-categories is equivalent to the definition
sketched in §2.2, and it will also allow us to conclude that the functor that sends S to
Lgen AY preserves products.

Remark 4.2.1. Although it is obvious that the functor A?_p) preserves products, since it’s
a right adjoint by Remark 4.1.5, it is not clear that the localization functor

Lgen: Opd5>®®" — Opd?]

preserves products — in fact, this may well be false in general.

First we define simplicial categories D(€) that model AR, when € is a simplicial
category:

Definition 4.2.2. Given a simplicial category €, the simplicial category D(€) has objects
finite sequences (cy, . .., cy,) of objects of C; morphisms are given by

D(e)((CO7...,Cn),(d07...,dm)) = H HG(C¢(1),d2)7
¢: [m]—[n] i=0

with the obvious composition maps induced by those in C.
Proposition 4.2.3. Suppose C is a fibrant simplicial category. Then:

(i) The projection ND(C) — NA°P is a coCartesian fibration.

(i) The fibre ND(C)jo) is equivalent to NC.
(iii) There is a natural map ND(C) — A, and this preserves coCartesian edges.
(iv) This map is an equivalence of oco-categories.
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Proof.

(i)

(iii)

It is clear that D(C) — A°P is a fibration in the model structure on simplicial
categories; since N is a right Quillen functor, it follows that ND(C) — NA®P is
a categorical fibration. It therefore suffices to check that ND(C) has coCartesian
morphisms. Given an object C' = (cy,...,c,) in D(C) and a map ¢: [m] — [n] in A,
let ¢ denote the obvious map C' = C’ = (cy(0); - - - » Cp(m)) in D(C). We apply the
criterion of [25, Proposition 2.4.1.10] to see that ¢ is coCartesian in ND(C); thus
we need to show that for every X € D(C) over [k] € A°P the commutative diagram

D(E)(¢", X) ———— D(C)(C, X)

J |

Homaor ([m], [k]) —— Homaer ([1], [k])

is a homotopy Cartesian square of simplicial sets. Since the simplicial category C is
fibrant, so is D(C), hence the vertical maps are Kan fibrations. It therefore suffices
to show that the induced maps on fibres are weak equivalences, which is clear from
the definition of D(C).

We have a pullback diagram of simplicial categories

C—— D(©)

|

{[0]} —— A°P.

Since the simplicial nerve is a right adjoint, it follows that N@ is the fibre of the map
of simplicial sets ND(€) — A°P at [0]. Since this map is a coCartesian fibration, by
[25, Corollary 3.3.1.4] N@ is also the homotopy fibre in the Joyal model structure.
By definition AR, corresponds to the right Kan extension i,NC of NC along the
inclusion #: {[0]} < A°P. The functor i, is right adjoint to the fibre-at-[0] functor
i*, and from (ii) we know that i*ND(€) ~ NC. The adjunction ¢* i, then gives the
required map D(€) — A, (which preserves coCartesian edges since by definition
i, lands in the oco-category of coCartesian fibrations and coCartesian-morphism-
preserving functors).

By [25, Corollary 2.4.4.4] it suffices to show that for each [n] in A°P the induced
map on fibres

(ND(©)) m] (ARe) [n]

is a categorical equivalence. As in (ii) we can identify the fibre (ND(€))p,; with
NE*™ via the Segal maps, so by naturality we have a commutative diagram
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(ND(C)) ) — (AT )

| |

NeXn — 5 Nex™,

where all but the top horizontal map are known to be categorical equivalences.
Hence this must also be a categorical equivalence, by the 2-out-of-3 property. O

Definition 4.2.4. Let C be a simplicial category. The simplicial multicategory O¢ has
objects ob € x ob € and multimorphism spaces defined by

OC((x()»yl), ) (xn—l, yn)a (y()?xn))
= e(y(]va) X e(ylvml) X X e(ynflvxnfl) X G(il/n,ffn)

Composition is defined in the obvious way, using composition in €. Write O? for the
associated simplicial category of operators over A°P.

If € is a fibrant simplicial category then Q¢ is a fibrant simplicial multicategory in the
sense of Definition 3.1.6, and so NO? is a non-symmetric co-operad by Lemma 3.1.8.

Remark 4.2.5. If S is a set (regarded as a category with no non-identity morphisms),
then the multicategory Og is clearly the same as Og as defined in §2.1.

The simplicial multicategory Oe is only a model for AY}, when NC is a space, but is
easier to define than the version that works more generally. Indeed there is not even a
natural map from D(C) to O%’ in general; however, we can construct one if we restrict
ourselves to simplicial groupoids.

A simplicial category can be viewed as a simplicial object in categories whose simplicial
set of objects is constant, so by analogy we take a simplicial groupoid to be a simplicial
object in groupoids with constant set of objects. There is a model structure on simplicial
groupoids, due to Dwyer and Kan [14, Theorem 2.5], where the weak equivalences are
the usual Dwyer-Kan equivalences of simplicial categories, restricted to groupoids. The
simplicial nerve functor restricts to a right Quillen equivalence from this to the usual
model structure on simplicial sets by [14, Theorem 3.3]. In particular, it follows that
every space is modelled by a fibrant object in simplicial groupoids, which is a simplicial
groupoid whose mapping spaces are Kan complexes.

Since a simplicial category can be viewed as a simplicial object in categories with
constant set of objects, a simplicial groupoid G can also be regarded as a simplicial
category with an involution i: § — G°P such that i°P o ¢ = idg, which sends a morphism
to its inverse. Using this we can construct a functor D(G) — Og:

Definition 4.2.6. Suppose § is a simplicial groupoid. Let ®: Dg — 0(98 be the functor that
sends an object (cg,...,c,) of D(G) to ((co,c1),(c1,¢2),...,(Cn-1,¢n)) and is given on
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morphisms by applying i on the first factor and inserting identities into the factors that
are missing in D(9) in the obvious way.

Theorem 4.2.7. Let G be a fibrant simplicial groupoid. Then the map
. ®
N®:ND(G) — NOg
exhibits NO? as the operadic localization Lgey ND(G) of ND(S).
Proof. By Corollary A.6.9 it suffices to show that for all (x,y) € § x G the induced map

g: (Ng(g)act)/(x,y) - (N(Og)act)/(w:y)

is cofinal. We will prove that g is a categorical equivalence; to see this we show that g is
essentially surjective and induces equivalences on mapping spaces.

We first observe that g is essentially surjective: an active morphism to (z,y) in O%? is
determined by an object T = ((to, $1), (t1,$2), - -, (tn—1, Sn)) and morphisms a: z — to,
B1:81 = t1, -y Bno1:Sn—1 = tn_1, V: Sp — ¥ in G. Such a morphism is in the image of
g if and only if the 8;’s are all identities. Since G is by assumption a simplicial groupoid
all morphisms in G are equivalences, and so the morphism

((tO; sl)a (sla 52)3 e (snfla Sn)) — ((th 81), (tla 52)7 ey (tnfla Sn))

given by (id, id, 81,id, B2, . .., id) is an equivalence from an object in the image of g to T.
It remains to show that g is fully faithful. Given objects Z = (2¢,...,2,) and Z' =

(z4s .-y 2,) in D(G) we must show that for each active map ¢: [m] — [n] in A°P the
map
Map{, (2,2') = Map], (9(2),9(2")
ND(S)/ @ 1 (NOF) /() ’

is an equivalence, where the superscripts denote the fibres over ¢ in A°P. Let « be the
unique active map [1] — [n] in A; then we can identify this as a map of homotopy fibres
from the commutative square

D(5)*(2,2") ——— D(9)*(Z, (v,y))

| |

(05)(9(2),9(2")) — (05)*(9(2), (=, y)),

where the superscripts again denote the fibres of these spaces over maps in A°P. To see
that our map of homotopy fibres is an equivalence it suffices to show that this diagram
is homotopy Cartesian.
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We have equivalences

D(g)¢(z7 Z,) = H 9(Z¢>(i)7 22)7
=0

D(g)a(zv (xay)) ~ 9('20733) X 9(Zn7y)a
(0§)?(9(2),9(2")) ~ 520, 2p0)) X S(Ze(0) 415 Z6(0)+1) X+ X G(2p(1)~1, Zp(1)—1)
X G(2p(1), 21) X G(215 2p(1)) X+ X G(2g(m)» 2 )
(O(gg)a(g(z% (%l/)) = 9(33720) X 9(21721) X X S(anlyznfl) X 9(Zn7y)'

Under these equivalences our commutative square is the product of the squares

3 %

L

S(2j,2;) — G(zj, 25)
for 7 not in the image of ¢,

9(Z07Z6) X 9(ZH7Z;IL) —_— 9(2’0,1’) X S(Znay)

(i,id)l l(i,id)

S(20, 20) X G(zn, 20,) — S(z,20) X G(2n,y),

and

S(zg(i 21) *

(id, i)l J

S(2pi)» %) % G(2i, 2e()) — G(2s(i), 2p(i))

for i = 1,...,m — 1. The squares of the first kind are clearly homotopy Cartesian, the
second square is homotopy Cartesian since the maps induced by the involution ¢ are
equivalences, and the squares of the third kind are homotopy Cartesian since G is a
simplicial groupoid. O

Corollary 4.2.8. Let X be a space and X a fibrant simplicial groupoid such that the Kan
complex NX is equivalent to X. Then the composite map

AP ~ ND(X) — NOZ

induces an equivalence of non-symmetric co-operads Lgen A -~ NO%.
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Corollary 4.2.9. The functor Lgen(A?E)): 8 — OpdyL> preserves products.

Proof. Given spaces X and Y, there exist fibrant simplicial groupoids X and Y such that
NX ~ X and NY ~ Y. Then by Corollary 4.2.8 we have a commutative diagram

op op op
LgenAXXy — LgenAX X Aop LgenAy

| |

NOZ .y —— N(OF xa0r 0F)

where the vertical maps are equivalences. It is clear from the definition that Oxxy ~ Ox X
Oy, so the natural map O%x‘é — O% X Aop O? is a weak equivalence of fibrant simplicial
categories. By the 2-out-of-3 property the top horizontal map in the commutative square
is therefore an equivalence of co-categories. O

4.8. The oco-category of categorical algebras

We are now ready to define and study the co-categories Alg,, (V) of categorical alge-
bras:

Definition 4.3.1. Suppose V is a monoidal oo-category. The oco-category Alg...(V) is
defined by the pullback square

Algcat (V) — Alg(\?)

.

ns

S 0P,

where the right vertical map is the algebra fibration from §3.6 and the lower horizontal

map sends a space S to the non-symmetric co-operad Lgen A associated to the gen-

eralized non-symmetric co-operad AY’. The objects of Alg, (V) are thus categorical

algebras in V and its 1-morphisms are V-functors as defined in §2.4. We will refer to
Alg... (V) as the co-category of categorical algebras.

Remark 4.3.2. Since V is a monoidal co-category, and so in particular a non-symmetric
oo-operad, we could equivalently have defined Alg,,, (V) using the analogue of the algebra

fibration over the base Opdi>*®", since there is natural equivalence Alg, Ao (V) ==
Algacr (V) for every space S.

Pulling back the fibration of trivial algebras in the same way, we get the functor that
forms the free V—oo-category on a graph:
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Definition 4.3.3. Let V be a monoidal oo-category. The oo-category Graph, (V) of
V-graphs is defined by the pullback

Graphoo (V) B— Algtriv (V)

| J

ns .
S LAY, Opdss

Thus the fibre of Graph (V) at X € 8 is Fun(X x X,V). By Remark 3.6.5 we also get
a pullback square

Graph (V) —— Fy

L]

§ ————8,

where A is the diagonal functor that sends S to S x S, and Fy — § is the Cartesian
fibration associated to the functor 8°P — Cats, sending S to Fun(S, V).

Remark 4.3.4. The pullback of the left adjoint 7y of 7* gives a functor
F:Graph_ (V) — Alg.,.(V)
left adjoint to the forgetful functor U: Alg.,, (V) — Graph (V).

Proposition 4.3.5. Suppose V is a presentably monoidal co-category, i.e. the oo-category
V is presentable and the tensor product on 'V preserves small colimits separately in each
variable. Then Alg, (V) is a presentable co-category.

Remark 4.3.6. Proposition 4.3.5 can be seen as an oo-categorical version of a theorem of
Kelly and Lack [22, Theorem 4.5]. The fact that this 1-categorical result is comparatively
recent, whereas the co-categorical variant is one of the first steps in our setup, underscores
the importance of presentability in the co-categorical context.

We first observe that Alg.,, (V) has colimits:

Lemma 4.3.7. Suppose V is a monoidal co-category compatible with small colimits (i.e.
the tensor product on V preserves colimits separately in each variable). Then Alg,,. (V)
has all small colimits.

Proof. By Lemma 3.6.6, the fibration m: Alg(V) — OpdL: is both Cartesian and co-
Cartesian, hence the same is true of its pullback p: Alg (V) — 8. Moreover, the fibres
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Alg AP (V) have all colimits by Corollary A.5.7 and the functors f; induced by mor-
phisms f in 8 preserve colimits, being left adjoints. Thus p satisfies the conditions of [15,
Lemma 9.8], which implies that Alg.,,(V) has small colimits. O

Proof of Proposition 4.3.5. The co-category Alg,,.(V) has colimits by Lemma 4.3.7, so
it remains to prove that it is accessible. But in the pullback square

Algcat (V) — Alg(V)

L

§—— Opd™.
Lgen AP

&)
the right vertical morphism is an accessible functor between accessible co-categories by
Proposition 3.6.11. Moreover, by Proposition 4.1.7 the bottom horizontal morphism pre-
serves filtered colimits (since Lgey is a left adjoint and so preserves all colimits), and thus
is in particular also an accessible functor. It then follows from [25, Proposition 5.4.6.6]
that Alg (V) is also an accessible co-category. O

Our next goal is to prove that the oo-category Alg.,,(V) is a lax monoidal functor in
V, with respect to the Cartesian product of monoidal co-categories and the Cartesian
product of oco-categories. Knowing this will allow us to conclude, for example, that if
V is a symmetric monoidal oco-category then there is an induced symmetric monoidal
structure on Alg ., (V). We first observe that Alg.,,(V) is indeed functorial in V:

Definition 4.3.8. As in §3.6, let Alg., — Opd.> x((j;;izz)oP be a Cartesian fibration
classifying the functor Alg (). Then we define Alg,; ., by the pullback square

Algcat,co - Algco

| J

——— lax —— N
8 x (Mon; )P —— Opdz: X(Opd;)Op,

where the bottom horizontal functor is the product of the functor A?E) and the opposite
—— 1

of the inclusion of the full subcategory of large monoidal oco-categories into Opd .

Lemma 4.3.9. Alg_, (V) is functorial in V with respect to lax monoidal functors.

—— lax
Proof. The composite Alg,; ., — (Mon,, )°? is a Cartesian fibration classifying a func-
tor V¥ — Alg (V). O
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Remark 4.3.10. If V is an ordinary monoidal category, we can identify the usual cat-
egory of V-enriched categories with the full subcategory of Alg.,,(V) spanned by the
V-enriched oco-categories with sets of objects. In particular, taking V to be the cate-
gory Set of sets, with the Cartesian product as monoidal structure, we can identify the
usual category Cat of categories with a full subcategory of Alg.,,(Set). Since the in-
clusion Set — § preserves products, this allows us to consider ordinary categories as
8—oo-categories.

Proposition 4.3.11. Alg_..(-) s laz monoidal with respect to the Cartesian product of
monoidal co-categories.

Proof. The functor LgenA‘()E) is monoidal with respect to the Cartesian products of
spaces and non-symmetric oo-operads, by Corollary 4.2.9. The result therefore follows
by the same proof as that of Proposition 3.6.14. O

Corollary 4.3.12. Let O be a symmetric co-operad and suppose V is an O @ Ei-monoidal
oo-category. Then Alg.,.(V) is an O-monoidal co-category.

Proof. It follows from Proposition 4.3.11 that for any symmetric co-operad O, the func-
tor Alg.,.(-) takes an O-algebra in Mone, to an O-algebra in Cate. The inclusion

l\Zo\nOO — I\Z()\nix clearly preserves Cartesian products, and by Proposition 3.7.3 we can
identify Mon., with the oo-category Alg%l(aa\too) of Eq-monoidal co-categories. By [28,
Remark 2.4.2.6] a large O ® E;-monoidal oco-category is the same thing as an O-algebra
in Alg%1 (@m), and so the functor Alg.,,(—) indeed takes O ® E;-monoidal co-categories
to O-monoidal oco-categories. O

Corollary 4.3.13.

(i) Suppose V is an E,-monoidal co-category. Then Alg...(V) is an E,_1-monoidal
oo-category.

(i) Suppose V is a symmetric monoidal co-category. Then Alg.,.(V) is a symmetric
monoidal co-category.

Proof. This follows from combining Corollary 4.3.12 with [28, Theorem 5.1.2.2]. O

Our next goal is to show that the functor Alg .. (-), when restricted to presentably
monoidal co-categories, is lax monoidal with respect to the tensor product of presentable
oo-categories. We first observe that restricting in this way does indeed give a functor to
presentable oco-categories:

Proposition 4.3.14. The restriction of Alg.,.(-) to the co-category Mongor of presentably
monoidal co-categories factors through the subcategory Pres,, of Cats, of presentable
oco-categories and colimit-preserving functors.
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Proof. If V is presentably monoidal, then Alg,,, (V) is presentable by Proposition 4.3.5.
Moreover, it follows by the same proof as that of Proposition 3.6.10 that a monoidal func-

tor F:V® — W such that Fj1j preserves colimits induces a colimit-preserving functor
Algcat (V) - Algcat (W) |

Next we see that when restricted to categorical algebras, the external product X of
§3.6 preserves colimits in each variable:

Proposition 4.3.15. Let V be a monoidal co-category, and suppose that C is a categorical
algebra in V. Then CX — Alg (W) — Alg...(V x W) preserves colimits.

Proof. Since the Cartesian product of spaces preserves colimits in each variable, it suffices
to prove that CX (—) preserves colimits fibrewise and preserves coCartesian arrows. This
follows from Lemma 3.6.15 and Proposition 3.6.16. O

Corollary 4.3.16. The functor Alg..,(-): Mongor — Presoo @s lax monoidal with respect to
the tensor product of presentable co-categories.

Proof. We have constructed a lax monoidal functor
—— 1 — X
Alg .. (-): (1\/[011;:;()X — Cat,.
By Proposition 4.3.15 and Proposition 4.3.14, the composite

lax

(Mon®")® — (Mon.. ) — Cat.

o0

factors through Pres® as defined in [28, Notation 4.8.1.2]. O

Corollary 4.3.17. If V is presentably monoidal, then Alg,_,.(V) is tensored over Alg.,.(8),
and the tensoring operation

Algcat (S) X Algcat (V> - Algcat (V)
preserves colimits separately in each variable.

Proof. By Remark 3.7.5, the unit of the tensor product of presentably monoidal
oo-categories is 8%, and so this is a commutative algebra object in the oco-category
Monl! by [28, Corollary 3.2.1.9]. Any presentably monoidal oo-category V€ is more-
over canonically a module over this commutative algebra object. Since Alg.,,(-) is lax
monoidal with respect to ®, it follows that the co-category Alg..,(V) is a module over
the presentably symmetric monoidal oo-category Alg.,.(8) in Press. In other words, the
oo-category Alg...(V) is tensored over Alg...(8) and the tensoring operation preserves
colimits separately in each variable. 0O
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Definition 4.3.18. If V is a presentably monoidal co-category, € is a V—oo-category, and
X is an S—oo-category, then we denote their tensor by € ® X. For fixed X the functor
C — C® X preserves colimits, and hence has a right adjoint — i.e. Alg.,(V) is also
cotensored over Alg,, (8); we denote the cotensor of € and X by €X. If D is another
V—oo-category we thus have a canonical equivalence

Map(@, Gx) ~ Map(D ® X, C).
The oco-category of categorical algebras is well-behaved with respect to adjunctions:
Lemma 4.3.19. Suppose V and W are presentably monoidal co-categories and F: V€ —
W s a monoidal functor such that the underlying functor f:V — W preserves colimits.

Let g:W — V be a right adjoint of f, and let G:W® — V€ be the lax monoidal structure
on g given by Proposition A.5.11. Then the functors

F* : Algcat(v> = Algcat(w) : G*
are adjoint.
Proof. Let C be a V-oo-category with space of objects S, and let D be a W—oo-category

with space of objects T. We must show that the natural map Map(C,G.D) —
Map(F,.C, D) is an equivalence. We have a commutative triangle of spaces

Map(C, G.D) Map(F.C, D)

\/

Map(X,Y)

so it suffices to show that we have an equivalence on the fibres over each ¢: X — Y. But
we can identify the map on this fibre with

MapAlgA%p (€, G.¢™D) — MapAlgA%p ow) (Fx€, 0" D),

which is an equivalence since F, and G, are adjoint functors on A -algebras by Propo-
sition A.5.11. O

Example 4.3.20. Suppose V is a presentably monoidal co-category. Then there is a unique

colimit-preserving functor ¢:8 — V that sends * to Iy. This has right adjoint u:V — 8
given by Map, (I, —). Using the monoidal structure on Mongor we get a monoidal functor

id op I ~
T:8% ~ 8% X pop AP JSXAPIY L X o op VO — 8% @ V& oy VO
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extending ¢. By Proposition A.5.11 there is a lax monoidal functor U: V¥ — 8* extending
u such that for any non-symmetric oco-operad O we have an adjunction

T, : Algy(8) = Algy(V) : U..
Then by Lemma 4.3.19 we have an adjunction
T* : Algcat(s) = Algcat(v) : U*

Unravelling the definitions, it is clear that we can identify the functor T, with the
operation of tensoring with the unit Iy € Alg (V).

Our final goal in this subsection is to show that Alg.,, (V) behaves very nicely with
respect to monoidal localizations of V. First we must introduce some notation:

Definition 4.3.21. Let V be a presentably monoidal oco-category. The functor
Fun({0,1} x {0,1},V) =V

given by evaluation at (0,1) clearly has a left adjoint given by sending V' € V to the
functor {0,1} x {0,1} — V that takes (0,1) to V and the other elements to §). Let X:V —
AlgAc{)gql} (V) denote the composite of this with the free algebra functor n: Fun({0, 1} x
{0,1},V) — AlgA?f)’,l} (V). Thus for any categorical algebra € in V with space of objects
{0,1} we have

Mapasgop (0 (2V: €) = Mapy (V, €00, 1).

We also write ¥ for the functor V — Alg.,, (V) obtained by composing this with the
inclusion of the fibre at {0, 1}. Thus for any V—oo-category € with space of objects S the
fibre of

Map(XV,€) — Map({0,1},5) ~ S x S
at (X,Y) is Mapy(V,C(X,Y)).

Proposition 4.3.22. Let V be a presentably monoidal co-category and suppose L:V —
W is a monoidal accessible localization with fully faithful right adjoint i: W — V. Let
i®:W® < VO gnd LO: VO — W® be as in Proposition 3.1.22. Suppose L exhibits W as
the localization of V with respect to a set of morphisms S. Then there is an adjunction

L? : Algcat(v) = Algcat(w) : i®

*

which exhibits Alg .. (W) as the localization of Alg.,.(V) with respect to £(S). Moreover,
if V is at least Eo-momnoidal then this localization is again monoidal.
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Proof. It follows from Lemma A.5.12 that the lax monoidal structure on i provided by
Proposition A.5.11 is given by i®, so by Lemma 4.3.19 we indeed have an adjunction
L® 442,

To see that this is a localization we must show that i€ is fully faithful. To prove
this it suffices to show that for every categorical algebra € € Alg.,, (V) with space of
objects X the counit L&i®C — C is an equivalence in AlgAg(p (V). By Lemma A.5.5 this
is equivalent to the induced morphism of underlying graphs being an equivalence, i.e. to
LiC(C, D) — C(C, D) being an equivalence in V for all C, D € C. But this is true since i
is fully faithful.

Next we must show that C € Alg.,, (V) lies in Alg (W) if and only if it is local with
respect to the morphisms in 3(S). Consider a map f: A — B in V. Then the induced
map

Mapyj,  (v)(EB,C) = Mapy, (v (24, C)

is an equivalence in 8 if and only if it induces an equivalence on the fibres over all points
of Mapg(S°, X). Using the universal property of 3 we conclude that it is an equivalence
if and only if for all objects C, D € € the induced map

Mapy (B, €(C, D)) — Mapy (4, C(C, D)

is an equivalence. Thus C is local with respect to the maps in X(.5) if and only if all the
mapping objects C(C, D) are local with respect to the maps in .S, i.e. if and only if these
all lie in W. Thus Alg,,, (W) is indeed the localization of Alg,,, (V) with respect to 3(S5).

Finally, it is clear from the construction of the monoidal structure on Alg (V) that
the localization will again be monoidal when this exists. O

4.4. Categorical algebras in spaces

In this subsection we will prove that the co-category Alg,,,(8) of categorical algebras
in spaces is equivalent to the co-category Seg. of Segal spaces. These are an alternative
definition of (0o, 1)-categories introduced by Rezk [34]. We begin by briefly reviewing

the definition in the co-categorical context:

Definition 4.4.1. Suppose € is an co-category with finite limits. A category object in C is
a simplicial object F': A°® — C such that for each n the map

Fn—>F1 XFO"'XFOFI

induced by the inclusions {i,i+ 1} < [n] and {i} < [n] is an equivalence. A Segal space
is a category object in the oo-category 8 of spaces.
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Let §,, denote the simplicial space obtained from the simplicial set A™ by composing
with the inclusion Set < 8. A simplicial space is then a Segal space if and only if it is
local with respect to the map

seg,,: 0p, — 01 s, - - - L5, 07.

Definition 4.4.2. Let Seg(8) denote the full subcategory of Fun(A°P,8) spanned by the
Segal spaces; this is the localization of Fun(A®°P,§) with respect to the maps seg,.

The key result for the comparison is the following:

Proposition 4.4.3. Let S be a space, and let m: AL — AP be the usual projection. Let
m:Fun(AY, 8) — Fun(A°P,8) be the functor given by left Kan extension along w. Then
a functor F: A — 8 is a A -monoid if and only if mF is a Segal space.

Proof. Tt is clear that mF([0]) is equivalent to S. We must thus show that the Segal
morphism

mF([n]) » mF((1]) xg - xg mP([1]) = (mF)ef

is an equivalence if and only if F'is a AJ’-monoid. Since 7 is a coCartesian fibration, we
have an equivalence m F([n]) =~ colimgc gxnr1) F(§). It thus suffices to show that (7rgF)[S§]g
is also a colimit of this diagram if and only if F' is a A’-monoid. There is a natural
transformation (S*(*+1)> — Fun(A!,8) that sends £ € S*(**D to F(£) — ¢ and oo
to (mF)[S:]g — §*(D): gince § is an co-topos, by [25, Theorem 6.1.3.9] the colimit is
(mF )[S;]g if and only if this natural transformation is Cartesian. Since S*("*+1) is a space,
this is equivalent to the square

being a pullback for all £, so we are reduced to showing that the fibre of (mF)[S;f]g —
S*(+1) at ¢ is F(€) if and only if F is a A -monoid. Since limits commute, if ¢ is
(so,-..,Sn) this fibre is the iterated fibre product

(ME[1]) (50,51) X (mFO) gy " X(mFO)) e,y (TME[]) (50 150)-

But using [25, Theorem 6.1.3.9] again it is clear that the natural maps F(z,y) —
(mF[1])(z,y) and * ~ F(x) — (m ), are equivalences for all z,y € S. Thus the map
F(&) — (7rgF)[S7f]g5 is equivalent to the natural map
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F(&) = F(s0,81) X =+ X F(8p-1,8n).

By definition this is an equivalence for all £ € A if and only if F' is a A% -monoid,
which completes the proof. O

Corollary 4.4.4. Let S be a space, and let m: AY — A°P denote the canonical projection.
By [15, Corollary 8.6] the functor

m:Fun(AP,8) — Fun(A,8) ;s

given by left Kan extension is an equivalence. Under this equivalence, the full subcate-
gory Monacp (8) of ALY -monoids corresponds to the full subcategory of Fun(A°P,8) ;. s
spanned by the Segal spaces Yo such that Yy ~ S and the map Yo — .S is given by the
adjunction unit Yo — 1,1"Ye >~ 1,S.

Proof. It is clear that m takes Monacr (8) into the full subcategory of Fun(A°P,8); g
spanned by simplicial spaces Y, with Yy ~ S and the map Y, — 1,5 given by the
adjunction unit Y, — i,i"Y =~ ¢,.S. The result therefore follows by Proposition 4.4.3. O

Corollary 4.4.5. Let S be a space, and let m: AY — A°P denote the canonical projection.
The functor m:Fun(AY,8) — Fun(A°P,8) given by left Kan extension along © gives
an equivalence of the full subcategory Monasp (8) of AYP-monoids with the subcategory
(Sego.)s of Segal spaces with Oth space S and morphisms that are the identity on the Oth
space.

Lemma 4.4.6. Let & and B be co-categories and p: E — B an inner fibration. Suppose

(1) & has finite limits and p preserves these,
(2) p has a right adjoint r: B — & such that por ~ids.

Then p is a Cartesian fibration.

Proof. Given x € € and a morphism f:b — p(x), we must show there exists a Cartesian
arrow in & lying over f with target x. Define f:y — x by the pullback diagram

Y T
| ]
') — rp(a).

i
_

Since p preserves pullbacks, the morphism p(f) is equivalent to f. Moreover, for any
z € € we have a pullback diagram
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Mape (z,y) ——— Mapg (2, z)

| J

Mapg (z,7(b)) —— Mapg (2, rp(2)).
Under the adjunction this corresponds to the commutative diagram

Mape (2,y) ———— Mapg (2, 7)

| |

Mapa (p(2), b) —— Mape (p(2), p(z))
induced by the functor p. But then f is Cartesian by [25, Proposition 2.4.4.3]. O

Theorem 4.4.7. There is an equivalence Alg.,.(8) == Seg., given by sending a
AP -algebra € to the left Kan extension mC€' of the composite

AP L5 8% 8

along m: AY — A°P, where the second map (which sends (Si,...,Sn) € S[fl] to S1 x
- X Sy ) comes from a Cartesian structure in the sense of [28, Definition 2.4.1.1].

Proof. If V is an oo-category with finite products, pulling back the monoid fibration
Mon(V) — Opd:: of Remark 3.6.3 along A‘()E) gives a Cartesian fibration Mongat (V)
with an equivalence

Alg... (V) == Monc, (V)

over 8. Taking left Kan extensions along the projections AY — A°P for all S € 8§ we
get (using Proposition 4.4.3) a commutative square

Mon,+ (8 % Seg.
\ A |

By Lemma 4.4.6 it is clear that ev(g): Seg,, — 8 is a Cartesian fibration, and the functor
® preserves Cartesian morphisms by [25, Theorem 6.1.3.9]. It thus suffices to prove that
for each S € 8 the functor on fibres Monaor(8) — (Segy)s is an equivalence, which is
the content of Corollary 4.4.5. O
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4.5. A presheaf model for categorical algebras

In this subsection we will give an alternative characterization of the oco-category
Alg,..(V) (for V a presentably monoidal co-category) as a localization of an oo-category
of presheaves. We thank Jeremy Hahn for suggesting this model; similar models have also
been considered in unpublished work of Charles Rezk in the setting of model categories.
Throughout this subsection we assume that V is a presentably monoidal co-category.

Definition 4.5.1. Let V¥ — A be a Cartesian fibration corresponding to the same functor
as the coCartesian fibration V¥ — A°P. A presheaf ¢: (V)P — 8 is a Segal presheaf if
it satisfies the following conditions:

(1) The functor V°P ~ (Vé)([)ﬁ — 8/4()x2, induced by the Cartesian morphisms over the
face maps [0] — [1] in A, takes colimit diagrams in V to limit diagrams in 8 /4()x2.
(2) For every object X € VY, lying over [n] € A, the diagram

(X) —— ¢(d}, X)

]

p(a (X)) —— ¢0),
where a: [1] — [n] is the map sending 0 to n — 1 and 1 to n, is a pullback square.
Write P(V,)5 for the full subcategory of P(VY) spanned by the Segal presheaves.
Remark 4.5.2. If ¢: (V)°? — 8 is a Segal presheaf, then for every n the functor
(Vxn)OP ~ (Vé)?::] — 8/¢()x(7l+1),

induced by the Cartesian morphisms over the inclusions [0] < [n], takes colimits in V*™
to limits in 8/¢()><(n+1).

Since filtered co-categories are contractible, it is easy to see that a filtered diagram in
S /p()xn+1) 18 a limit diagram if and only if the diagram in S obtained by composing with
the forgetful functor 8,4 xm+1 — 8 is a limit diagram. Thus if ¢ is a Segal presheaf
the functors (V*")°P o (V) — § all take filtered colimits in V*" to limits in 8. If
V is a k-presentable oco-category we may therefore regard a Segal presheaf on V as a
presheaf on the full subcategory (V)" spanned by the objects that lie in the image of
(VE)*™ in (V) ) = V™ for all n. Moreover, a presheaf ¢: (V)™°P — 8 corresponds to
a Segal presheaf if and only if it is local with respect to a set of maps in P((V)"), hence
P(VY)5¢8 is an accessible localization of P((V)").

We now prove that Segal presheaves give an alternative model for categorical algebras:
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Theorem 4.5.3. There is an equivalence between P(V4)58 and Alg,,, (V).

Proof. Given a Cartesian fibration of oco-categories p: € — B, let €% be the pushout
B leyxqoy € % Al and let j: B — &% be the obvious inclusion. By [15, §8], the func-
tor j*: P(E%) — P(B) is a Cartesian fibration corresponding to the functor P(B) ~
RFib(B) — Cat, that sends a right fibration Y — B to Fungor (Y°P, P35 (€)), where
Pp(€) — B°P is the coCartesian fibration corresponding to the functor B°P — Cateo
that sends b € B°P to P(&;,). Let 6:8 — LFib(A°P) ~ P(A) denote the functor that
sends X to A — A°P. Write Q for the pullback

Then by [15, Corollary 8.7] the functor ¢ is the Cartesian fibration corresponding to the
functor that sends X € 8 to Funaer (AY,Pa(Vy)).

Let Q; be the full subcategory of Q spanned by presheaves ¢: ((V%)4)°? — 8 whose
restrictions to (V)°P are Segal presheaves and for which the restriction ¢|(yxai: A —
8 is an equivalence. Then the restriction functor P((V)4) — P(V) gives an equivalence
between Q; and T(Vé)seg — this is clear, since for every space X the composite

(Vg)P — A 2, g

is the final Segal presheaf that sends () to X.

We can identify V¥ with the full subcategory of Pa (V) spanned fibrewise by the rep-
resentable presheaves. Let Qs denote the full subcategory of Q spanned by the presheaves
that correspond to categorical algebras in 'V, i.e. that under the identification above cor-
respond to functors AY — Pa (V) that land in the full subcategory V® and preserve
inert morphisms. Then we can identify the co-category Qo with Alg,,.. (V).

It remains to observe that the full subcategories Q; and Qs have the same objects. It
is clear that a presheaf ¢: (V%)A " — 8 whose restriction to {()} x A! is an equivalence
corresponds to a functor F: A — V& if and only if for every [n] the functor (V*™)°P ~
(VQV@)EIL)] — 8 4()x(n+1) takes colimits in V*™ to limits in 8 /() x (n+1). Moreover, the functor
F preserves inert morphisms if and only if for every object T € AY, the morphism
F(T) — F(auT) is coCartesian, where a: [1] — [n] is the morphism in A that sends 0 to
n — 1 and 1 to n, or equivalently, under the identification \7% ~ VX" the objects F(T)
and (F(d, T), F(aiT)) are equivalent. In terms of ¢, this condition, for all T € ¢()*(*+1)
is precisely the condition that the diagram
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P(X) —— ¢(d; X)

L

p(a* (X)) —— ()

is a pullback square for all X € (Vé)[n]. Thus ¢ is a Segal presheaf if and only if F'is a
categorical algebra. O

5. The oo-category of enriched oo-categories

Our goal in this section is to prove our main result: we can always localize the
oo-category of categorical algebras at the fully faithful and essentially surjective func-
tors by restricting to the full subcategory of complete objects. Along the way, we will
introduce analogues of a number of familiar concepts from ordinary enriched category
theory in our setting.

In §5.1 we define objects, morphisms, and equivalences in enriched oco-categories. Then
in §5.2 we study the classifying space of equivalences in an enriched oco-category; the
complete enriched oo-categories are those whose classifying spaces of equivalences are
equivalent to their underlying spaces of objects. Next we study three types of equivalences
of V—oo-categories: in §5.3 we define fully faithful and essentially surjective functors, in
§5.4 local equivalences (those in the saturated class of a certain map) and finally in §5.5
categorical equivalences (those with an inverse up to natural equivalence). In §5.6 we
prove that for oco-categories enriched in a presentably monoidal co-category the fully
faithful and essentially surjective functors are the same as the local equivalences, hence
the full subcategory of complete objects gives the localization; we can extend this result
to co-categories enriched in a general large monoidal co-category by embedding this in a
presentable oo-category in a larger universe. Finally in §5.7 we prove that the localized
oo-category inherits the functoriality properties of Alg.,, (V).

5.1. Some basic concepts

In this subsection we define the basic notions of objects, morphisms, and equivalences
in an enriched oco-category, an observe that these have the expected properties. We first
consider objects:

Definition 5.1.1. Suppose V is a monoidal co-category. The unit of V defines an (essen-
tially unique) associative algebra object Iy: A°P — V€ by Proposition 3.1.18. We write
[0]v (or sometimes Iy or EY depending on context) for this associative algebra regarded
as an enriched oco-category. We view this as the trivial V—oo-category with one object,
and so we refer to a map [0]y — C as an object of the V—oo-category C.
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This definition justifies calling the mapping space Map,y,  (vy([0]v,C) the space of
objects in C. However, if € is a ASP-algebra in V then we also think of X as being the
space of objects of €. Luckily, it is easy to see that the two concepts agree:

Lemma 5.1.2. Let C: ASY — V¥ be a V-—oo-category. Then the map
Map g, (v) ([0]v, €) = Mapg (+, X) ~ X
induced by the Cartesian fibration Alg (V) — 8 is an equivalence.

Proof. Tt suffices to check that the fibres of this map are contractible. By [25, Proposi-
tion 2.4.4.2] the fibre at a point p: ¥ — X is

MaPAlngp(v) (Iv,p"C),
which is contractible since the unit Iy is the initial associative algebra object of V. O
Next, we consider morphisms in an enriched co-category:

Definition 5.1.3. Write [1] for the category corresponding to the ordered set {0, 1}, re-
garded as an 8—oo-category by Remark 4.3.10. Suppose V is a presentably monoidal
oo-category; then Alg.., (V) is tensored over Alg.,.(8) by Corollary 4.3.17. We write [1]y
for the V—oo-category [1] ® Iy. A morphism in a V—oo-category € is a map [1]y — C.

Lemma 5.1.4. Suppose V is a presentably monoidal co-category and C is a V—oo-category.
The two objects 0 and 1 of [1]y induce two maps ig,i1: [0y — [1]v; composing with these
gives for any V—-oo-category C a map of spaces

X2

Mapaig_ (v) (1], €) — Mapyig (v ([0]v,€)

The fibre Map([1]v,C)x,y of this map Map([1]v,C) at points X,Y € Map([0]y,C) is
equivalent to Map(I,C(X,Y)).

Proof. Let U:V® — 8* be the lax monoidal functor defined in Example 4.3.20. We then
have

Map([l]v, G)X7y ~ Map([l], U*G)X7y.

Since [1]g is the free 8—oo-category on the 8-graph having a single edge from 0 to 1,
using the adjunction between 8—oo-categories and 8-graphs from Remark 4.3.4 we see
that this is given by U,C(X,Y) =~ Map(Ilv,C(X,Y)). O

Remark 5.1.5. This means that a morphism in € from X to Y is the same thing as a map
I — C(X,Y). This definition, of course, makes sense for any monoidal co-category V.
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We now define equivalences in enriched oco-categories, and prove that these satisfy
some of the expected properties. We will define an equivalence in a V—oo-category C to
be a functor E' — @ where E' is the generic V-oo-category with two objects and an
equivalence between them. More precisely, E' is a special case of a more general notion
of a trivial enriched oco-category, which we now define:

Definition 5.1.6. For any space S, the trivial V-oo-category Eg with objects S is given
by the composite

I
AP 5 AP Lry pe

We will generally drop the V from the notation and just write Es when the monoidal
oo-category in question is obvious from the context. The V—oo-categories Fg are functo-
rial in S. We abbreviate E™ := Eyq, . ,}; restricting to order-preserving maps between
the sets {0,...,n} (n =0,1,...) we then have a cosimplicial V—oo-category E°.

Remark 5.1.7. When S is a set, Eg is the enriched co-category associated to the trivial
category with objects S and a unique morphism A — B for any pair of objects A, B € S.
This is also known as the coarse category with objects S, to distinguish it from the
“discrete” trivial category with objects S (which has only identity morphisms).

We think of E™ as the generic V—-oo-category with n + 1 equivalent objects, so a
map E™ — € for some V-oo-category C is a choice of n + 1 equivalent objects of C. In
particular, we have:

Definition 5.1.8. Suppose € is a V-co-category. An equivalence in € is a V-functor E' — C.

Remark 5.1.9. We will see below, in Proposition 5.1.15, that this is equivalent to other
reasonable definitions of an equivalence in a V-oo-category.

Definition 5.1.10. Let
T:8=V%.U
be the adjoint functors described in Example 4.3.20, which induce an adjunction
T : Algy,(8) = Al (V) : U,

by Lemma 4.3.19. If € is a V-oo-category, we refer to U, C as the underlying 8—co-category
of €. By Theorem 4.4.7 we can identify U,.C with a Segal space.

We now make the very useful observation that the equivalences in a V-oco-category C
only depend on the underlying Segal space U.,C:
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Proposition 5.1.11. Let V be a presentably monoidal co-category. Then for any space S
there is a natural equivalence

Mapay, (v)(E§,C) ~ Mapyy, (s)(ES, U.C).
This follows from the following lemma:

Lemma 5.1.12.

(i) LetV be a monoidal co-category. By Proposition 4.5.11, the co-category Alg... (V) is
tensored over Alg,., (%), since the unique monoidal structure on the trivial one-object
oo-category * is the unit for the Cartesian product of monoidal co-categories. There
is a natural equivalence between the V—oo-category E;Z and the tensor K5 ® Iy.

(ii) Let V be a presentably monoidal oo-category; then the oo-category Alg,,. (V) is ten-
sored over Alg.,.(8) by Corollary 4.5.17. In this case there is a natural equivalence
between Eg and the tensor Eg ® Iy.

Proof. We first prove (i). Considering the construction of the external product in Alg,
we see that Eg ® Iy is given by

Egv X Aop Ivl A%p X Aop AP — AP X Aop V® ~ V®,

We can factor this as

E% X popid id x I
ZSs2A%E . A°P X pop AP 14 XAy o AOP X Aop \7®,

Agp X Aop A°P
which is clearly the same as E;Z
Now in the situation of (ii), part (i) then gives an equivalence

ES@ly~ (E5@Is) @Iy ~Ey@ (Is @ Iy) ~ ES @ Iy ~ EY,
since it is easy to see that the tensorings with Alg, . (x) and Alg,,(8) are compatible. O

Proof of Proposition 5.1.11. By Lemma 5.1.12, the V—oo-category E3 is naturally equiv-
alent to T, ES. We now complete the proof by recalling that the functor 7 is left adjoint
toU,. O

Definition 5.1.13. We write 1€ := Mapy,_ (v (E', C) for the space of equivalences in a
V-oo-category €. More generally, we write ¢,,C for the mapping space Map,,  (v)(E"™,C)
— we can think of this as the space of n composable equivalences in €, together with
all the coherence data for the compositions. These spaces form a simplicial space 14C —
here the face maps can be thought of as composing equivalences, and the degeneracy
maps as inserting identity maps.
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Remark 5.1.14. By Proposition 5.1.11 there is a natural equivalence 1,C ~ 14U, €. This
will allow us to reduce many of our arguments below to the case of spaces, where we can
make use of results of Rezk from [34].

In particular, we will now use this to prove that our definition of equivalence agrees
with a number of other reasonable definitions:

Proposition 5.1.15. Suppose V is a monoidal co-category and € is a V—oo-category. Let
X, Y be objects of C and a:Iy — C(X,Y) a morphism in C. Then the following are
equivalent:

(i) a is an equivalence, i.e. it extends to a functor E' — C.
(ii) For all Z € 14C, the composite map in V®

C(Y,2) = (Iv,e(Y,2)) — (€(X,Y),C(Y,Z)) — C(X, Z)

given by composing with « is an equivalence.
(iti) For all Z € 10C, the composite map in V¥

C(Z,X)— (G(Z,X),IV) — (G(Z,X),(?(X, Y)) — C(X,Y)

given by composing with « is an equivalence.
(iv) « has an inverse, i.e. a map I — C(Y, X) such that the composites

I (1,1) 220 (e(X,Y), €Y, X)) = €(X, X),

I— (1,1) 225 (e, X), 6(X,Y)) = C(Y,Y)
are homotopic to the identity maps of X and Y, respectively.

Proof. We first show that (i) is equivalent to (ii). Suppose (i) holds, and let &: E' — €
be an equivalence extending a. Composing with the inverse equivalence from Y to X
gives an inverse to composition with «, since the composite map is composing with the
composite X — Y — X, which is the identity.

Now suppose (ii) holds. Without loss of generality, we may assume that V is pre-
sentably monoidal (by embedding in a presentably monoidal co-category of presheaves
in a larger universe, if necessary). Then a map E\l, — € is adjoint to a map Eé — U,C
where U:V — 8 is again as in Example 4.3.20. If (ii) holds for a then the analogous con-
dition also holds for « considered as a morphism in U,C. It thus suffices to show that (ii)
implies (i) in the case where V is 8. We again use the equivalence between §—oo-categories
and Segal spaces of Theorem 4.4.7; the map « is clearly a “homotopy equivalence” in
the sense of [34, §5.5], and so extends to a map from E! by [34, Theorem 6.2].
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The proof that (i) is equivalent to (iii) is similar, so it remains to prove that (i) is
equivalent to (iv). Since equivalences are detected in U,C, this is immediate from [34,
Theorem 6.2]. O

The inclusion [1]y — E* of the map from 0 to 1 induces a map ¢;€ — Map([1]y, €).
The two inclusions of E® ~ [0]y into [1]y and E' then give a commutative triangle

11C Map([1]y, C)

N 7

Loe X Loe.

We end this section by showing that on fibres, this map is an inclusion of components:

Definition 5.1.16. Suppose C is a V—oo-category and X,Y are objects of C. We let
Map(Iv, C(X,Y))eq be the subspace of Map(Iy,C(X,Y)) consisting of the components
in the image of ¢;Cx y under the induced map on fibres in the diagram above.

Proposition 5.1.17. Suppose 'V is a presentably monoidal oco-category, C is a V-oo-category,
and X,Y are objects of C. Then the map (11C)x,y — Map(Iv,C(X,Y))eq is an equiva-
lence.

Proof. By Proposition 5.1.11 it again suffices to prove this for 8—oco-categories. Using
the identification of 8—oco-categories with Segal spaces of Theorem 4.4.7, this therefore
follows from the corresponding statement in that setting. The latter is a consequence of
[34, Theorem 6.2], since if € is a Segal space with objects X, Y, a point of C(X,Y) is a
“homotopy equivalence” in the sense of [34, §5.5] if and only if it extends to a map from
E{, by [34, Proposition 11.1]. O

5.2. The classifying space of equivalences

In this section we define the classifying space of equivalences in an enriched
oo-category, and use this to define complete enriched co-categories. We then prove that
the simplicial space of equivalences is always a groupoid object, which allows us to give
a simpler description of the completeness condition.

Definition 5.2.1. Let C be a V—oo-category. The classifying space of equivalences 1C of C
is the geometric realization |teC| of the simplicial space toC := Map(E*®, C).

We regard € as the “correct” space of objects of €, and by analogy with Rezk’s notion
of complete Segal space we say that an enriched co-category is complete if its underlying
space is the correct one:
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Definition 5.2.2. A V—oo-category C is complete if the natural map (€ — (€ is an
equivalence.

Our next goal is to prove that the simplicial space (C is always a groupoid object;
we prove this by showing that the cosimplicial object E® satisfies the dual condition of
being a cogroupoid object:

Definition 5.2.3. A cosimplicial object X: A — C in an oco-category C is a cogroupoid
object if for every partition [n] = SU S’ such that SN S’ consists of a single element, the
diagram

X(SnS) —— X(S)

Ll

X(8") ——— X([n))
is a pushout square.

Lemma 5.2.4. If X: A — C is a cogroupoid object in an oo-category C, then for every
object Y € C the simplicial space Mape(X,Y) is a groupoid object in spaces.

Theorem 5.2.5. If V is a presentably monoidal co-category then the cosimplicial object
E* is a cogroupoid object.

Proof. We will show that EV Up v, vty — EN*1 is an equivalence; by induction
this will imply that E*® is a cogroupoid object, as the ordering of the objects is arbitrary.
Since V is presentably monoidal, by Proposition 5.1.11 it suffices to prove this when V
is S.

Under the equivalence Alg..,(8) = Seg,, of Theorem 4.4.7 the 8—co-category Eg
clearly corresponds to the Segal space i,S. If S is a set it follows that in the model
category structure on bisimplicial sets modelling Segal spaces, Eg corresponds to 7*NJg
where Jg is the ordinary category with objects S and a unique morphism between any
pair of objects, and m: A°P x A°P? — A°P is the projection onto the first factor.

Define G := NIy, .. n}. By [34, Remark 10.2], for 0 < < n the map 7*A} — 7*A"
is a Segal equivalence, so (since 7* is a left adjoint and thus preserves colimits) it suffices
to prove that Gy g, G(n ~n+1} <= GN+1 is an inner anodyne morphism of simplicial
sets. To prove this we consider a series of nested filtrations of the simplices of Gy 41.
First we must introduce some notation:

An n-simplex o of Gn11 can be described by a list ag---a, of elements a; €
{0,...,N + 1}; it is non-degenerate if a; # a;+1 for all i. If o is a non-degenerate
simplex, let B(o) be the number of times the sequence jumps between {0,..., N} and
{N,N +1}.
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Also let 7(0) be the position of the first N + 1 where the sequence jumps from
{N,N+1} to {0,...,N}; if there is no such jump let 7(c) = oo and let /(o) denote the
position of the first jump from {0,..., N} to {N, N + 1}. Then we make the following
definitions:

o If t # 00, let S%! be the set of non-degenerate n-simplices ¢ in Gy, such that
B(o) =b,7(c) =t,and a;41 # N. Let S>> be the set of non-degenerate n-simplices
in Gy41 such that f(o) =1, 7(0) = o0, 7/(0) = t, and a;—1 # N.

o If t # 00, let T%! be the set of non-degenerate (n + 1)-simplices o in G such
that B(c) = b, 7(0) = t and a;41 = N. Let T1°>! be the set of non-degenerate
(n + 1)-simplices o in Gy41 such that f(o) = 1, 7(0) = o0, 7'(0) = t + 1, and
a; = N.

Define a filtration

Gy Uy, Ginne1y = F0 CF1 S C G

by letting F,, be the subspace of G 1 whose non-degenerate simplices are those of Fy
together with all the non-degenerate i-simplices for i < n and the (n+1)-simplices in T2
and T,;°>* for all b,t. Then Gy 11 = U, Fn, 50 to prove that Gy Mg,y Gy ni1) —
GpN+1 is inner anodyne it suffices to prove that the inclusions &F,_; — &, are inner
anodyne.

Next define a filtration

\rfn,1 = \(:FO

nCIL S CTT=T,
by setting F2 to be the subspace of F,, containing F,_; together with the simplices
in S4t and T for all i < b together with S1°%% and T} for all t. To prove that
the inclusions ¥F,_1 — F, are inner anodyne it suffices to prove that the inclusions
Fb=1 <5 F° are all inner anodyne.

Finally define a filtration

gy =gt En e C a0 =T,

by setting F* to be the subspace of F° containing F2~! together with the simplices
in S and T%7 (as well as S1°®J and T1°%J if b = 1) for all j > t. To prove that
the inclusions F2=! < F° are inner anodyne it suffices to show that the inclusions
Fbt=1 s 35t are all inner anodyne.

Now observe that (for b > 1) if ¢ € T>! then d;o € S%! and d;o € Fot~! for i # t,
and o is uniquely determined by d;o. Thus we get a pushout diagram
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n+1 n+1
]_[UETW AT —— ]_[UETk,t A

| J

b,t—1 b,t
k) % k)
‘{}rn an

where we always have 0 < ¢ < n+ 1. Thus the bottom horizontal map is inner anodyne.
The proof is similar when b = 1, expect that we must also consider the simplices in
Slioost “so we conclude that Gn Uy, Gin,n+1y = Gnya is indeed inner anodyne. O

Remark 5.2.6. We can generalize this to the case of an arbitrary large monoidal
oo-category V as follows: by [28, Remark 4.8.1.8] there exists a presentably monoidal
structure on the (very large) presentable co-category JA’(V) of presheaves of large spaces
on V, such that the Yoneda embedding V — f/]\’(\?) is a monoidal functor. This induces a
fully faithful embedding

Algcat (V) — XEcat (ﬁ('\?)) 5

moreover, if X a small space then E;(V) is clearly the image of Ey( Thus if a diagram of
EY’s is a colimit diagram in Algcat(ﬂA’(V)) it must also be a colimit diagram in Alg (V)
— in particular EY, is a cogroupoid object in Alg_, (V).

Corollary 5.2.7. The simplicial space 1€ is a groupoid object in spaces for all V-oo-cate-
gories C.

Lemma 5.2.8. Suppose X, is a category object in an oco-category C. Then the following
are equivalent:

(i) The functor X, is constant.
(ii) The map so: Xo — X1 is an equivalence.

Proof. Tt is obvious that (i) implies (ii). To show that (ii) implies (i) first observe that if
so: Xo — X7 is an equivalence, then by the 2-out-of-3 property dy, d;: X1 — X are also
equivalences. Since X, is a category object we have pullback diagrams

do
X, — X1

L]

Xl E— Xo,

and so the face maps dy: X,, = X,,_1 are equivalences for all i and n. Combining this
with the simplicial identities we see inductively that all face maps and degeneracies are
equivalences. O
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Lemma 5.2.9. Suppose U, is a groupoid object in §. The following are equivalent:

(i) The map Uy — |Us| is an equivalence.
(i) The map so: Uy — Uy is an equivalence.
(iii) The simplicial object U, is constant, i.e. for every map ¢:[n] — [m] in A°P the
induced map t,C — 1, C is an equivalence.

Proof. We first show that (i) implies (ii): Since 8 is an co-topos, the groupoid object U,
is effective, i.e. it is equivalent to the Cech nerve of the map Uy — |U,|. Thus we have a
pullback diagram

do
U, —— Uy

[

U() E— |l].‘7

so the maps dy, dy are equivalences. From the 2-out-of-3 property it follows that sg is also
an equivalence. It follows from Lemma 5.2.8 that (ii) implies (iii). Finally (iii) implies
(i) since the simplicial set A°P is weakly contractible. O

We can now give a simpler characterization of the completeness condition for
V—oo-categories:

Corollary 5.2.10. Let C be a V—oo-category. The following are equivalent:
(i) C is complete.
(it) The natural map so: o€ — 1€ is an equivalence.
(iii) The simplicial space 14C is constant (i.e. for every map ¢:[n] — [m] in A°P the

induced map 1,C — 1,C is an equivalence).

Proof. Apply Lemma 5.2.9 to the groupoid object t,C. O
5.8. Fully faithful and essentially surjective functors

In this subsection we introduce analogues of fully faithful and essentially surjective
functors in the context of enriched oco-categories, and show that these have the expected
properties.

Definition 5.3.1. Let V be a monoidal co-category. A V-functor F: C — D is fully faithful
if the maps C(X,Y) — D(FX, FY) are equivalences in V for all XY in ¢,C.
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Lemma 5.3.2. A V-functor F:C — D is fully faithful if and only if it is a Cartesian
morphism in Alg.,, (V) with respect to the projection Alg. (V) — 8.

Proof. If f:.S — 14D is a map of spaces, then a Cartesian morphism over f with target
D has source f*D =Do A;p ; in particular a Cartesian morphism induces equivalences
f*D(x,y) = D(f(x), f(y)) for all x,y € X.

Conversely, suppose F: € — D gives an equivalence on all mapping spaces. The functor
F factors as

e £ (1wF)*D £ D,

where F" is Cartesian. The morphism F’ induces an equivalence on underlying spaces

and is given by equivalences C(X,Y) — D(F(X),F(Y)) for all X,Y € (C. By

Lemma A.5.5 it follows that F” is an equivalence in Algaer (V) and so in Alg,(V).
e

In particular F’ is a Cartesian morphism and hence so is the composite F ~ F""o F'. 0O

Definition 5.3.3. A functor F: € — D is essentially surjective if for every point X € 1D
there exists an equivalence E! — D from X to a point in the image of toF.

Lemma 5.3.4. A functor F: C — D is essentially surjective if and only if the induced map
woLF: moLtC — woLD is surjective.

Proof. Since 14D is a groupoid object, the set mytD is the quotient of myeeD where
we identify two components of (oD if there exists a point of (1D, i.e. an equivalence
E' — D, connecting them. Thus F: € — D is essentially surjective if and only if mgeF is
surjective. O

Lemma 5.3.5. Suppose F:C — D is a fully faithful functor of V-oo-categories. Then for
every X, Y € C the induced map (11C)x,y — (1D)rx ry s an equivalence.

Proof. By Proposition 5.1.17, we can identify the map (:1C)x,y — (¢t1D)rx, ry with the
map

Map(I, C(X, Y))eq — Map (I, D(FX, FY))eq
induced by F. Since F' is fully faithful the map C(X,Y) — D(FX, FY) is an equivalence
in 'V, hence Map(I,C(X,Y)) — Map(I, D(FX, FY)) is an equivalence in 8. To complete
the proof it therefore suffices to show that Map(I, C(X,Y))eq — Map(I, D(FX,FY))eq
is surjective on components — i.e. if a: I — D(FX, FY) is an equivalence then it is the
image of an equivalence 5: I — C(X,Y). We know that « is the image of some map f3,
so it suffices to show that such a 8 must be an equivalence. By Proposition 5.1.15 the
map f is an equivalence if and only if for every Z € ((C the map C(Z,X) — C(Z,Y)
induced by composition with  is an equivalence. Consider the diagram
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C(Z,X) —— D(FZ,FX)

| J

C(Z,Y) —— D(FZ,FY),

where the vertical maps are given by composition with 8 and «, respectively. Since F’
is fully faithful and « is an equivalence, all morphisms in this diagram except the left
vertical map are known to be equivalences. By the 2-out-of-3 property this must also be
an equivalence for all Z, so 3 is indeed an equivalence. O

Proposition 5.3.6. If a V-functor F:C — D is fully faithful and essentially surjective,
then the induced map tF:1C — D is an equivalence.

Proof. The simplicial spaces 1,C and 14D are groupoid objects by Corollary 5.2.7, and

since F is essentially surjective the map ¢F is surjective on 7y by Lemma 5.3.4. By [26,
Remark 1.2.17] it therefore suffices to show that the diagram

11— uD

| J

1€ X g€ —— LoD X LoD

is a pullback square. To prove this we must show that for all X, Y € € the map on fibres
is an equivalence, which we proved in Lemma 5.3.5. 0O

Corollary 5.3.7. A fully faithful V-functor F is essentially surjective if and only if LF is
an equivalence.

Corollary 5.3.8. A fully faithful and essentially surjective functor between complete
V-oo-categories is an equivalence in Alg.,. (V).

Proof. This follows by combining Proposition 5.3.6 and Lemma A.5.5. O

Proposition 5.3.9. Fully faithful and essentially surjective V-functors satisfy the 2-out-
of-3 property.

Proof. Suppose we have V-functors F: € — D and G: D — &. There are three cases to
consider:

(1) Suppose F and G are fully faithful and essentially surjective. It is obvious that Go F'
is fully faithful. Since moeF' and motG are surjective, so is their composite moe(G o F),
thus G o F is also essentially surjective.
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(2) Suppose G and G o F are fully faithful and essentially surjective. Then F is also
Cartesian, i.e. fully faithful, by [25, Proposition 2.4.1.7]. By Proposition 5.3.6 the
maps (G and ¢(G o F') are equivalences, hence so is ¢F', thus F' is also essentially
surjective.

(3) Suppose F' and GoF are fully faithful and essentially surjective. By Proposition 5.3.6
the maps ¢F' and +(G o F') are equivalences, hence so is ¢G, and thus G is essentially
surjective. To see that G is fully faithful, we must show that for any X,Y in (¢G the
map D(X,Y) — E(GX,GY) is an equivalence. But since F' is essentially surjective
there exist objects X', Y’ in o€ and equivalences FX' ~ X, FY' ~ Y in D. Then

we have a commutative diagram

D(FX',FY') —— &(GFX',GFY")

| |

D(X,Y) — E(GX,GY),

where the vertical maps are given by composition with the chosen equivalences and
so are equivalences in V by Proposition 5.1.15. The top horizontal map is also an
equivalence, since in the commutative triangle

e(X",Y") e(GFX' ,GFY)

~,

D(FX', FY')

the other two maps are equivalences. Thus by the 2-out-of-3 property the bottom
horizontal map D(X,Y) — E(GX,GY) is also an equivalence, and so G is also fully
faithful. O

Remark 5.3.10. Under the equivalence Alg.,(S) == Seg,, of Theorem 4.4.7, the fully
faithful and essentially surjective functors correspond to the Dwyer—Kan equivalences in
the sense of [34, §7.4].

The “correct” oo-category of V—oo-categories is obtained by inverting the fully faithful
and essentially surjective morphisms in Alg.,.(V). We will now show that doing this
produces the same oo-category as inverting the fully faithful and essentially surjective
functors in the subcategory of Alg.,.(V) where we only have sets of objects. First, we
will briefly review the general notion of localization of co-categories and prove a basic
fact about these (generalizing [13, Corollary 3.6]):

Definition 5.3.11. The inclusion 8§ < Cat, has left and right adjoints. The right adjoint,
1: Catyo — 8, sends an oco-category C to its maximal Kan complex, i.e. its subcategory of
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equivalences. The left adjoint x: Cat,, — 8 sends an co-category € to a Kan complex xC
such that € — k€ is a weak equivalence in the usual model structure on simplicial sets.

Definition 5.3.12. Suppose C is an oo-category and W is a subcategory of C that contains
all the equivalences. The localization C[W~1] of € with respect to W is the co-category
with the universal property that for any oco-category &, a functor €[W=1] — € is the
same thing as a functor ¢ — & that sends morphisms in W to equivalences in €. More
precisely, we have for every € a pullback square

Map(C[W~1], &) —— Map(W, &)

| J

Map(@, &) ———— Map(W, €).

Remark 5.3.13. It follows that, in the situation above, the oo-category C[W~!] is given
by the pushout square in Cat

W ——— kW

|

e —— w1

Lemma 5.3.14. Suppose C and D are oo-categories and We C € and Wp C D are
subcategories containing all the equivalences. Let C(Wg'] and D[Wy'] be localizations
with respect to We and Wy . Suppose

is an adjunction such that

(1) F(We) € Wy,

(2) G(Wp) € We,

(3) the unit morphism nc: C — GFC is in We for oll C € C,

(4) the counit morphism yp: FGD — D is in W for all D € D.

Then F and G induce an equivalence C[Wg'] ~ D[W5'].
Proof. Let kWe and kWop be Kan complexes that are fibrant replacements for We and

Wop in the usual model structure on simplicial sets. Then the oco-categories G[ng] and
D[W3'] can be described as the homotopy pushouts
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We ——— kWe Wp — kWop
c—— CW.'], D —— DWW

in the Joyal model structure. Then from (1) and (2) it is clear that the functors F' and
G induce functors F”: C(W5'] — D[W,'] and G': D[W5'] — €[Wg'], and the natural
transformations 7 and « induce natural transformations n’:id — G'F’ and v': F'G’ — id.
The objects of €[W5'] and D[W5'] can be taken to be the same as those of € and
D, so by (3) and (4) the morphisms 7/ and 7/, are equivalences for all ¢ € C[W,']
and d € D[W5']. Thus 7’ and 7' are natural equivalences and F’ and G’ are hence
equivalences of co-categories. O

Lemma 5.3.15. Suppose W is an oco-category and w: & — kKW is a Cartesian fibration.
Let 7': & — W denote the pullback of © along the canonical map n:'W — kW. Then &
is the localization of &' with respect to W X .y (€, i.e. the morphisms in & that map to
equivalences in E.

Proof. Let F': kWP — Cato be a functor classified by w. Then 7’ is classified by the
composite functor 7°P o F: WP — Cateo. By [25, Corollary 4.1.2.6], the functor n°P is
cofinal, hence by [25, Proposition 4.1.1.8] the functors F' and n°P o F' have the same
colimit. But by [25, Corollary 3.3.4.3], the colimit of F' is the localization of & with
respect to the m-Cartesian morphisms, and the colimit of n°P o F' is the localization of
&’ with respect to the n'-Cartesian morphisms. But since kKW is a Kan complex, the
m-Cartesian morphisms in € are precisely the equivalences, hence it follows that &€ is
the localization of &’ with respect to the 7’-Cartesian morphisms. But the 7’-Cartesian
morphisms in & are precisely the morphisms that map to equivalences in &, by [25,
Remark 2.4.1.12]. O

Proposition 5.3.16. Let C be an oo-category and W a subcategory of C containing the
equivalences. Suppose we have a pushout square in Cato,

W —— kW

|

e —— €W,

and a Cartesian fibration 7: & — C[W™1]. Write 7': & — € for the pullback of m along
€ — C[W™1L]. Then the map & — & exhibits & as the localization of & with respect to
W Xepw-1) L€, i.e. the morphisms in &’ that map to equivalences in & and to W under
the projection to C.



660 D. Gepner, R. Haugseng / Advances in Mathematics 279 (2015) 575-716

Proof. Since 7 is a Cartesian fibration it follows from [25, Corollary 2.4.4.5] that the
given pushout square pulls back along 7 to a pushout square

W Xe[w-1) & — kW Xew-1] S

| |

& E.

It therefore suffices to show that we have a pushout square

W Xe[w-1] & —— kW Xe[w-1] &

J J

W X@[W—l] E — kKW Xe[w—l] 8,
which follows from Lemma 5.3.15. O

Theorem 5.3.17. Suppose V is a monoidal co-category. Define Alg,,.(V)set by the pullback

Algcat (V)SCt % Algcat (V)

| |

Set ————$§

where the bottom horizontal map is the obvious inclusion. Then the functor i induces an
equivalence

Alg o (V)set [FFES™'] = Alg, (V)[FFES™']
after inverting the fully faithful and essentially surjective functors.

Proof. Considering § as the oo-category associated to the usual model structure on
simplicial sets, we get a functor j: Seta — 8 that exhibits 8 as the localization of Seta
with respect to the weak equivalences. Let Alg.,.(V)a be the co-category defined by the
pullback square

’

Algyy(V)a —— Algy (V)

J |

Seta — 8.
J



D. Gepner, R. Haugseng / Advances in Mathematics 279 (2015) 575-716 661

Then Alg.,(V)set is the pullback of Alg.,,(V)a along the inclusion Set — Seta of the
constant simplicial sets. This has a right adjoint (—)o: Seta — Set that sends a simplicial
set to its set of 0-simplices. The inclusion

i’ Algcat (V)Sct — Algcat (V)A

therefore has a right adjoint

St Algcat (V)A — Algcat (V)SEt

that sends an object (X € Seta, C € Alg_,.(V)) to the pullback of € along the morphism
Xg — X — 19C. It is clear that ¢/ preserves fully faithful and essentially surjective
functors, as does s by the 2-out-of-3 property. Moreover, si ~ id and the counit is(C) — C
is fully faithful and essentially surjective for all €. It then follows from Lemma 5.3.14
that ' induces an equivalence

Alg . (V)set [FFES™'] = Alg,,,(V)a [FFES™]

after inverting the fully faithful and essentially surjective functors. Moreover, by Propo-
sition 5.3.16 the co-category Alg.,.(V) is the localization of Alg.,,(V)a with respect to
the morphisms that induce weak equivalences in Seta and project to equivalences in
Alg (V). These are obviously among the fully faithful and essentially surjective func-
tors, and so 7' induces an equivalence

Alg,,(V)a[FFES™'] == Alg,,.(V)[FFES™'].
Composing these two equivalences gives the result. O

Remark 5.3.18. Combining this result with Corollary 4.2.8 it follows that the local-
ized oo-category Alg,,,(V)[FFES™!] is equivalent to the preliminary definition of an
oo-category of V—oo-categories we discussed in §2.2, using the oo-operads associated to
the multicategories Og with S a set.

5.4. Local equivalences

In this subsection we consider the strongly saturated class of maps generated by
s%: E' — E°; we call these the local equivalences. We assume throughout that V is
a presentably monoidal co-category, so that Alg_,.(V) is a presentable co-category by
Proposition 4.3.5.

Definition 5.4.1. The local equivalences in Alg., (V) are the elements of the strongly
saturated class of morphisms generated by the map s%: E* — EO,
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Proposition 5.4.2. The following are equivalent, for a V—-oo-category C:

(i) C is complete.
(ii) € is local with respect to E* — E°, i.e. the map Map(E°,C) — Map(E*, €) is an
equivalence.
(iii) For every local equivalence A — B, the induced map

Map(B, C) — Map(A, @)
is an equivalence.

Proof. (i) is equivalent to (ii) by Corollary 5.2.10, and (ii) is equivalent to (iii) by [25,
Proposition 5.5.4.15(4)]. O

Definition 5.4.3. Write Cat”. for the full subcategory of Alg,,, (V) spanned by the com-
plete V—oo-categories.

Proposition 5.4.4. The inclusion CatY. — Alg_..(V) has a left adjoint, which exhibits
Cat)

oo GS the localization of Alg,,. (V) with respect to the local equivalences.

Proof. The oo-category Alg,, (V) is presentable by Proposition 4.3.5, and the local equiv-
alences are generated by a set of maps. The existence of the left adjoint therefore follows
from [25, Proposition 5.5.4.15(4)] and Proposition 5.4.2. O

Corollary 5.4.5. The co-category Cat& 1s presentable.

Proof. This follows from [25, Proposition 5.5.4.15(3)]. O
Theorem 5.4.6. Cat®_ is equivalent to Cat.

Proof. Under the equivalence Alg.,.(8) = Seg., of Theorem 4.4.7, the subcategory
Cat®

o corresponds to the subcategory of complete Segal spaces. It is proved in [21] that

this is equivalent to Cats,. O
Lemma 5.4.7. The map id ® s°: E' ® E' — E' ® E° ~ E! is a local equivalence.

Proof. Using Proposition 5.1.11 it suffices to prove this when V is 8. We can then identify
F' @ E' with E101}>{0.1} ~ B3. ynder this identification the map F' @ E' — E! is
induced by the map from {0,1,2,3} to {0,1} that sends 0,1 to 0 and 2,3 to 1. Under
the equivalence E3 ~ E{0:1} g E{12} Uy E{23} implied by Theorem 5.2.5 this
corresponds to

sPUidus®: B g, E' g B — E° 1 go E' 1o E°,

which is clearly in the strongly saturated class generated by s°. O
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Lemma 5.4.8. If C is a complete V—oo-category, then the V—oo-category CE' s also com-
plete.

Proof. We need to show that the natural map LOGEl — 1 CE" is an equivalence. Using
the adjunction between cotensoring and tensoring we can identify this with the map
Map(E!, €) — Map(E! @ E', @) induced by composition with id @ s°. This map is an
equivalence since € is complete and id ® s° is a local equivalence by Lemma 5.4.7. O

5.5. Categorical equivalences

In this subsection we study categorical equivalences between enriched oco-categories,
which are functors with an inverse up to natural equivalence. Our main result is that cat-
egorical equivalences are always local equivalences as well as fully faithful and essentially
surjective. We begin by defining natural equivalences between V-functors:

Definition 5.5.1. Suppose A and B are V—oo-categories and F, G: A — B are V-functors.
A natural equivalence from F to G is a functor H: A® B! — B such that Ho(id®d!) ~ F
and H o (id ® d°) ~ G. We say that F and G are naturally equivalent if there exists a
natural equivalence from F' to G.

Definition 5.5.2. A functor F: A — B is a categorical equivalence if there exists a functor
G:B — A and natural equivalences ¢ from F o G to ids and ¢ from G o F to idg4.
Such a functor G is called a pseudo-inverse of F'; we refer to (F, G, ¢,1) as a categorical
equivalence datum.

Proposition 5.5.3. Categorical equivalences are fully faithful and essentially surjective.

Proof. Suppose F:C — D is a categorical equivalence, and let (F, G, ¢,v) be a cate-
gorical equivalence datum. For each object X in ¢¢D the natural equivalence v supplies
an equivalence between X and FG(X), which is in the image of F, so F' is essentially
surjective.

To prove that F' is fully faithful, we must show that, given XY in €, the map
a:C(X,Y) = D(FX,FY) induced by F is an equivalence in V.

The natural equivalence ¢ supplies an equivalence

B:C(GFX,GFY) = C(X,Y)

and a commutative diagram

C(X,Y) C(GFX,GFY)

C(X,Y).
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The top map is the composite
C(X,Y) % D(FX,FY) 1 C(GFX,GFY),

where  is the map induced by G, and so we see that foyoa ~id.
From F o ¢ we likewise get an equivalence

e D(FGFX,FGFY) — D(FX,FY)

and a commutative diagram

D(FX,FY) D(FGFX,FGFY)

D(FX,FY),
where the top map is the composite
D(FX,FY) 25 C(GFX,GFY) 25 D(FGFX,FGFY),

and so € 0§ oy =~ id. Moreover, we have a commutative square

C(GFX,GFY) — ' D(FGFX,FGFY)
g |
e(X.Y) —— D(FX,FY),

thus we get a0 oy~ €0d oy ~id. This shows that 8o~ is an inverse of «, and so «
is an equivalence in V. Thus F' is fully faithful. 0O

Corollary 5.5.4. A categorical equivalence between complete V-oo-categories is an equiv-
alence.

Proof. Combine Proposition 5.5.3 and Corollary 5.3.8. O

Our next goal is to prove that categorical equivalences are local equivalences; this will
require some preliminary results:

Proposition 5.5.5. Categorical equivalences satisfy the 2-out-of-3 property.

Proof. Suppose we have functors F: € — D and F’:D — &. There are three cases to
consider:
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(1) Suppose (F,G,¢,v) and (F',G’, ¢',1’) are categorical equivalence data. Then G o
¢' o (F ®1d) is a natural equivalence from GG'F'F to GF. Combining this with ¢
gives a map

(€® E") legm (C® E') — C.

But tensoring with € preserves colimits, and E' IIgo E' ~ E? by Theorem 5.2.5,
so we get a map C® E? — €. Composing with id ® d":C® E' — C® E? we get a
natural equivalence from GG'F’F to the identity. Using the same argument we can
also combine F’ o ¢ o (G’ ®id) and ¢’ to get a natural equivalence from F'FGG' to
the identity. Thus F'F is a categorical equivalence with pseudo-inverse GG’.

(2) Suppose (F,G,¢,v) and (F'F,H,«a,[3) are categorical equivalence data. We will
show that F'H is a pseudo-inverse of F’. Since 8 is a natural equivalence from
F'(FH) to id it remains to construct a natural equivalence from FHF' to id. Let
1 denote 9 o (id ® E,), where 0:{0,1} — {0,1} is the map that interchanges 0
and 1 (thus 1 is 1 considered as a natural equivalence from id to F'G). Combining
FHF' o4, Foaogand 1 we get a map

DQE~DQF' Ilp DRQE'Ilp DQE' - D

and composing with D ® Eyg 33 = D ® E3 we get the required natural equivalence.

(3) Suppose (F',G’,¢',4") and (F'F, H,«, B) are categorical equivalence data. We will
show that HF" is a pseudo-inverse of F. Since « is a natural equivalence from HF'F
to id it remains to construct a natural equivalence from FHE’ to id. Let ¢’ denote
¢ o (id ® E,); combining ¢’ o FHF', G’ o fo F’ and ¢/ we get a map

DRE>~De® E'llp DR E' Il DR EY — D,
and composing with D@ Eyg 3y — DRE? we get the required natural equivalence. O

For the rest of this subsection we will for convenience assume that V is a presentably
monoidal co-category.

Corollary 5.5.6. Suppose f:S — T is a map of sets. Then Ey: Eg — Er is a categorical
equivalence.

Proof. By Proposition 5.1.11 it suffices to prove this in 8. First suppose f is surjective;
let g: T — S be a section of f. We claim that F, is a pseudo-inverse to Ey. We have
EfoE; ~ Epoy ~ id, so it suffices to construct a natural equivalence Eg X El ~
Esy{01} — Es from Eyof to the identity. This is given by Ej where h: S x {0,1} — S
sends (s,0) to gf(s) and (s,1) to s.

By the dual argument the result holds if f is injective. By Proposition 5.5.5 we can
therefore conclude that it holds for a general f. O
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Lemma 5.5.7. Suppose F: A — B is a categorical equivalence of 8—oo-categories. Then
for any V-oo-category C the induced map CF:C® — CA is a categorical equivalence.

Proof. A natural equivalence A ® E' — A induces a natural equivalence
eleEt —»et

by taking the adjoint of the induced map G4 — CARE! ~ (GA)EI. O
Lemma 5.5.8. If C is a complete V—oo-category, then the natural map

e’:e~ el - e
is an equivalence.
Proof. The map s°: E! — EY is a categorical equivalence by Corollary 5.5.6, so it follows
by Lemma 5.5.7 that C — CE' is also a categorical equivalence. But CE ig complete by

Lemma 5.4.8, and a categorical equivalence between complete objects is an equivalence
by Corollary 5.5.4. O

Proposition 5.5.9. For any V-oo-category C, the map id® s:C® E' - CRE°~Cisa
local equivalence.

Proof. We must show that for any complete V—oo-category D the map
Map(€, D) — Map(@ ® E1, D)

is an equivalence. Using the adjunction between tensoring and cotensoring with E!, we
see that this map is equivalent to the map

Map(€, D) — Map(@, DEl)
given by composing with Ds":D — DE' This is an equivalence by Lemma 5.5.8. O

Corollary 5.5.10. Suppose D is a complete V-o0o-category; then for any V-oo-category C

we have
| Map(C @ E°, D)| ~ Map(C, D).

Proof. The simplicial space Map(C® E*, D) is a groupoid object in spaces, since E*® is a
cogroupoid object by Theorem 5.2.5 and tensoring preserves colimits. By Lemma 5.2.9
it therefore suffices to show that Map(€ ® E°, D) — Map(€ ® E*, D) is an equivalence,
which holds by Proposition 5.5.9. O
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Remark 5.5.11. The left-hand side here is what we would expect the mapping space
to be in the oco-category underlying an (oo, 2)-category of V—oo-categories, functors,
and natural transformations. This shows that the mapping spaces between complete
V—oo-categories are the correct ones.

Lemma 5.5.12. Suppose D is a complete V-oo-category. Then for any V-oo-category C
the two maps

(id®d®)", (id®d")": Map(C® E', D) — Map(€, D)
are homotopic.
Proof. Clearly (id®s?)*o(id®d")*: Map(C, D) — Map(€, D) is homotopic to the identity
for i = 0,1. But by Proposition 5.5.9, the map (id ® s°) is a local equivalence, hence
(id ® s°)* is an equivalence since D is complete. Composing with its inverse we get that
(id® d°)* ~ (id ® d")*,
as required. O

Theorem 5.5.13. Categorical equivalences are local equivalences.

Proof. Suppose F:C — D is a categorical equivalence and (F, G, ¢,v) is a categorical
equivalence datum. If € is a complete V—oo-category we must show that the map

F*:Map(C, &) — Map(D, &)

given by composition with F' is an equivalence of spaces. By Lemma 5.5.12 we have
equivalences

G*'F* ~¢*o (id®d1)* ~
F*G* ~y*o (id®d")"

“o(id®d’)" ~id,
Yo (id®d”)" ~id.

12

Thus G* is an inverse of F'*, and so F'* is indeed an equivalence. O
5.6. Completion

We will now construct an explicit completion functor, analogous to Rezk’s completion
functor for Segal spaces in [34, §14], when V is a presentably monoidal co-category.
Using this we can then show that the local equivalences are precisely the fully faithful
and essentially surjective functors.

Definition 5.6.1. If C is a V—oo-category, let € denote the geometric realization \(?E' |
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Theorem 5.6.2. SupposeV is a presentably monoidal co-category and C is a V—oo-category.
The natural map C — € is both a local equivalence and fully faithful and essentially sur-
jective. Moreover, the V—oco-category C is complete.

Proof. The functors E™ — E™ induced by the maps [n] — [m] in A are categorical
equivalences by Corollary 5.5.6, so the induced functors ¥ — @F" are also categorical
equivalences by Lemma 5.5.7. These functors are therefore all fully faithful and essen-
tially surjective by Proposition 5.5.3, and local equivalences by Theorem 5.5.13. Local
equivalences are by definition closed under colimits, so it follows that the map € — Cis
a local equivalence.

Since (g preserves colimits, the map 1oC — Loé ~ 1€ is surjective on 7, and so the
functor € — C is essentially surjective. To see that this functor is also fully faithful,
we consider the model for categorical algebras as Segal presheaves from §4.5. If V is
k-presentable, then the colimit € in Alg . (V) = P(VY)5€ can be described as a local-
ization of the colimit F of the diagram F,: A°P — P((V)*F) corresponding to €Z°. The
colimit F can be computed objectwise, and in fact is already local: Given X € (V),
we know that for every ¢: [m] — [n] in A°P the diagram

Fo(X) — F,(X)

| |

Fm()x(k+1) Fnox(k-H)

is a pullback square. Since 8 is an oo-topos, by [25, Theorem 6.1.3.9] it follows that the
square

Fo(X) ——— F(X)

| J

FO()x(k-i-l) ﬁ()x(k-&-l)

is also a pullback square. From this we conclude that F is also a Segal presheaf, since
the map F(X) — F()**+1) ~ |F,()]**+1 has the same fibres as Fy(X) — Fy()**+D
and Fy() — F() is surjective on mo. Using the equivalence between Segal presheaves and
categorical algebras of Theorem 4.5.3 we conclude that ¢ — Cis fully faithful, as the
object @(x,y) is determined by the fibre of F(A) — F()*2 ~ (1€)*2 at (z,y) for all
AeWV.

It remains to prove that Cis complete, i.e. that the map Loé — Llé is an equivalence.
We have a commutative diagram
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|L()€E. | —_— Lo/é

|

|L1€E. | E— Llé,

where the top horizontal morphism is an equivalence since ¢y preserves colimits. The left
vertical map is also an equivalence: We have equivalences 1;C*" ~ Map(E' @ E", C) ~
LRGEI, o |t1 @E'\ ~ LGEI, and under this equivalence the left vertical map corresponds
to that induced by the natural map € — C’El; we know that this is fully faithful and
essentially surjective, and so induces an equivalence on ¢ by Proposition 5.3.6. In order
to show that C is complete, it thus suffices to show that the bottom horizontal map
|11CE° | — 11C is an equivalence.
Consider the commutative diagram

|L1@E.‘ _— Ll/é

|

‘LOGE.|X2 LoéX2,

with the vertical maps coming from the maps d°,d': E° — E'. Here the bottom hori-
zontal map is an equivalence, so to prove that the top horizontal map is an equivalence
it suffices to prove that this is a pullback square. Since € — Cis essentially surjective,
to see this we need only show that for all (X,Y) € 1o€*? the induced map on fibres
|L1(‘3E. l(x,v) = Llé(xy) is an equivalence.

Since €F" — @F" is fully faithful and essentially surjective for all [n] — [m] in A°P,
the map (@F" — @F" is an equivalence by Proposition 5.3.6. Therefore, as the groupoid
objects 14CF" and 1,CF" are effective, the diagram

m n
1 CE" ————— eF

J |

(LOGEM)XQ (LOGE")XZ

is a pullback square. In other words, the natural transformation ;CF" — (10@F")*2
is Cartesian. Applying [25, Theorem 6.1.3.9] again, we see that the extended natural
transformation of functors (A°P)> — 8§ that includes the colimits is also Cartesian. Thus
we have a pullback square
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L1€ EEE— |L1@E.|

|

L()e><2 EE— ‘Ler.|X2.

In particular, for (X,Y) € 10€*? the induced map on fibres 1Cix,y)y = |L1€E. l(x,v) is an
equivalence. Since € — Cis fully faithful and essentially surjective, the map ¢;C(x y) —
Ll/é( x,v) is also an equivalence by Lemma 5.3.5. By the 2-out-of-3 property it then follows
that |¢1 GE.|(X7y) — Ll/é(X7y) is an equivalence too. This completes the proof that Cis
complete. O

Corollary 5.6.3. Suppose V is a presentably monoidal co-category. The following are
equivalent, for a functor F:C — D of V—oo-categories:

(i) F is a local equivalence.
(i) F is fully faithful and essentially surjective.

Proof. By Theorem 5.6.2 we have a commutative diagram

F
—

Q)
S P

~
F

where the vertical maps are both local equivalences and fully faithful and essentially
surjective, and € and D are complete.

Since local equivalences form a strongly saturated class of morphisms it follows from
the 2-out-of-3 property that F'is a local equlvalence if and only if Fis alocal equivalence,
i.e. if and only if Fis an equivalence, since € and D are complete.

Fully faithful and essentially surjective functors also satisfy the 2-out-of-3 property,
by Proposition 5.3.9, so F' is fully faithful and essentially surjective if and only if Fis.
But by Corollary 5.3.8 the functor Fis fully faithful and essentially surjective if and
only if it is an equivalence, since € and D are complete. Thus F' is a local equivalence if
and only if it is fully faithful and essentially surjective. O

Corollary 5.6.4. Suppose V is a presentably monoidal co-category. The co-category Catgo
is the localization of Alg,,. (V) with respect to the fully faithful and essentially surjective
functors.

Remark 5.6.5. We might expect that the fully faithful and essentially surjective functors
also coincide with the categorical equivalences, but this turns out not to be the case when
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we allow spaces of objects. To see this, first observe that if F: A — B is a categorical
equivalence, then for every V—oo-category € the map

F.:|Map(C® E°®, A)| —» |Map(C® E*®,B)]

is surjective on my: suppose G: B — A is a pseudo-inverse of F', then given a functor
¢: € — B the natural equivalence from F' o G to id gives a natural equivalence from
FoGo¢ to ¢, so up to natural equivalence ¢ is in the image of F,. Now if B —
B is a categorical equivalence where B is complete, then by Corollary 5.5.10 we have
| Map(C® E°, @)\ ~ Map(C, @), and since Map(C ® E*, B) is a groupoid object the map
Map(C,B) — |Map(C ® E*,B)| is surjective on mp. Thus Map(C, B) — Map(@,@) is
surjective on .

Now suppose (B is discrete and ¢B is not; then there clearly exists for some n > 0
a map from the n-sphere S™ — B that does not factor through (gB. But we have
a V-oo-category S™ ® E° such that Map(S™ ® E°,B) ~ Map(S™,1oB) — so if B —
B were a categorical equivalence then Map(S™,10B) — Map(S™,tB) would have to
be surjective on 7y, a contradiction. Completion maps B — B therefore cannot be
categorical equivalences in general.

We now deduce our main result for a general large monoidal oco-category V from the
presentable case, by embedding in a larger universe:

Theorem 5.6.6. Let V be a large monoidal oco-category. The inclusion of the full sub-
category of complete V-oo-categories Cat), < Alg...(V) has a left adjoint that exhibits
Cat”

o0

as the localization of Alg.,,(V) with respect to the fully faithful and essentially
surjective functors.

Proof. Let ﬁ(\?) be the oo-category of presheaves of large spaces on V. By [28, Proposi-
tion 4.8.1.10] there exists a monoidal structure on T(\?) such that the Yoneda embedding
J:V = (P(V) is a monoidal functor. Let Algcat(fP(V)) be the (very large) oo-category of
large categorical algebras in fP(V); this is a presentable co-category, and writing (/Jz;cjo(v)
for its subcategory of complete ?(V)foo—categories we know from Corollary 5.6.4 that
the inclusion

QSV) — Kl\gcat (/3\)(\7))

~ e 10%
has a left adjoint L that exhibits Catoo( ) as the localization with respect to the fully
faithful and essentially surjective functors.
If € is in the essential image of the fully faithful inclusion

Algcat (V) — ‘Kl\gcat ({]\)(’\7)),
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then the natural map ¢ — LC is fully faithful and essentially surjective. But then
LOEG ~ G, so LQEG is an (essentially) small space, and the mapping objects in L€ are in
the essential image of V in P(V). Thus L€ is in the essential image of Alg .. (V), and so
the functor L restricts to a functor L: Alg,, (V) — Cat), since Cat). is equivalent to the

——P(V
full subcategory of Catoo( ) spanned by objects in the essential image of Alg (V). O
5.7. Properties of the localized co-category

In this subsection we observe that the localized oco-category Cat& inherits the natu-
rality properties of Alg,,, (V). We first show that Cat. is functorial in V:

Proposition 5.7.1. Let

lax

Alg .. — Mon

oo

be a coCartesian fibration corresponding to the functor Alg.,.(-). Define Enr to be the
full subcategory of Alg.,, whose objects are the complete enriched co-categories. Then
the restricted projection

lax

Enr., — Mon

oo

is a coCartesian fibration, and the inclusion Enro, — Alg.., admits a left adjoint over
—— lax

Mon,, .

This follows from a general result about fibrewise localizations of coCartesian fibra-
tions that we prove first:

Lemma 5.7.2. Suppose & — Al is a coCartesian fibration, and &' is a full subcategory of
& such that the inclusion &) — &1 admits a left adjoint L: &1 — &'. Then the restriction
& — Al is also a coCartesian fibration.

Proof. We must show that for each « € £, there exists a coCartesian arrow with source x
over 0 — 1in A'. Suppose ¢: x — y is such a coCartesian arrow in &, and let y — Ly be
the unit of the adjunction. Then the composite x 2, y — Ly is a coCartesian arrow in &':
by [25, Proposition 2.4.4.3] it suffices to show that for all z € €] the map Mapg, (Ly, 2) —
Mapg/ (z, z) is an equivalence, which is clear since Mapg, (Ly, z) ~ Map; (y, ) as z € €],
Mapeg. (x, z) =~ Mapg (x, 2) as & is a full subcategory of €, and z — y is a coCartesian
morphism in €. O

Lemma 5.7.3. Let & — B be a locally coCartesian fibration and €° a full subcategory of
& such that for each b € B the induced map on fibres €Y — &, admits a left adjoint
Ly: & — &Y. Assume these localization functors are compatible in the sense that the
following condition is satisfied:
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() Suppose f:b — b is a morphism in B and e is an object of &,. Let e — €' and
Lye — €” be locally coCartesian arrows lying over f, and let Ly e’ — Lye” be the

unique morphism such that the diagram

e e Ly e

]

Lye —— e/ —— Lye€”

commutes. Then the morphism Lye' — Lye” is an equivalence.
Then

(i) the composite map E° — B is also a locally coCartesian fibration,
(ii) the inclusion €Y < & admits a left adjoint L: & — E° relative to B.

Proof. (i) is immediate from the previous lemma, and then (ii) follows from [28, Proposi-
tion 7.3.2.11] — condition (2) of this result is satisfied since, in the notation of condition
(%), a locally coCartesian arrow in ° over f with source Lye is given by the composite
Lye — e — Lye’. O

Proposition 5.7.4. Let & — B be a coCartesian fibration and E° a full subcategory of €.
Suppose that for each b € B the induced map on fibres ) < &, admits a left adjoint
Ly: &, — &Y and that the functors ¢i: &, — Ep corresponding to morphisms ¢:b — b in
B preserve the fibrewise local equivalences. Then

(i) the composite map E° — B is a coCartesian fibration,
(ii) the inclusion E° < & admits a left adjoint L:& — €Y over B, and L preserves
coCartesian arrows.

Proof. Lemma 5.7.3 implies (ii) and also that £&° — & — B is a locally coCartesian
fibration, since for a coCartesian fibration condition (x) says precisely that fibrewise local
equivalences are preserved by the functors ¢;. By [25, Proposition 2.4.2.8] it remains to
show that locally coCartesian morphisms are closed under composition. Suppose f:b — b’
and g: b’ — b” are morphisms in B, and that e € £J. Let e — ¢’ be a coCartesian arrow in
& over f,and let ¢/ — e} and Ly e’ — €} be coCartesian arrows in € over g. Then a locally
coCartesian arrow over f in £° is given by e — ¢/ — L€’ and a locally coCartesian
arrow over g is given by Ly e’ — e — Ly-e}. We have a commutative diagram
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e e ef Lyrelf

N

Lye —— e —— Lyrel

Here the composite along the top row is a locally coCartesian arrow for ¢gf, and the
composite along the bottom is the composite of locally coCartesian arrows for g and
f. By condition (%) of Lemma 5.7.3, the rightmost vertical morphism is an equivalence,
hence the composite map e — Lyrej is locally coCartesian. O

Lemma 5.7.5. Suppose ¢: V® — W€ is a lax monoidal functor. Then the induced functor
¢*: Algcat (V) - Algcat (W)
preserves fully faithful and essentially surjective morphisms.

Proof. It is obvious from the definitions that ¢, preserves fully faithful functors. To
see that it preserves essentially surjective ones we note that if two points of ((C are
equivalent as objects of C then they are also equivalent as objects of ¢,C, since the map
Iy — ¢(Iy) induces a functor EY, = ¢.Es. O

Proof of Proposition 5.7.1. The result follows by combining Proposition 5.7.4 and
Lemma 5.7.5. O

Corollary 5.7.6. Catf0 is functorial in 'V with respect to lax monoidal functors of monoidal
00-categories.

1
Proof. The coCartesian fibration Enr,, — Mon:OX of Proposition 5.7.1 classifies a functor

— 1
Mon:;X — Catoo that sends a monoidal co-category V to Cat”. 0O

Lemma 5.7.7. Suppose V and W are monoidal co-categories compatible with small col-
imits, and F:C® — D® is a monoidal functor such that Fj):V — W preserves colimits.
Then the induced functor F,:CatY, — Cat)¥ preserves colimits.

Proof. This functor F is the composite
Alg
Cat?, < Alg. (V) 2 Alg,,, (W) 225 Cat?,
where Lyy is the completion functor for W and we write F*A 18 for the functor on Alg ..

induced by composition with F' for clarity. By Lemma 5.7.5 the functor FMe preserves
local equivalences, so FMerye and FA8C are locally equivalent for all €; it follows that
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Ly o FMeo Ly ~ Lywo FMe. If a — €, is a diagram in Cat” then its colimit is
Ly(colim €,) where this colimit is computed in Alg.,, (V). Thus we have

F,(colim €,) =~ Ly F# Ly (colim €,) =~ Ly F'8(colim C,,)
~ colim Ly F28(@,) ~ colim F,C,. O

Proposition 5.7.8. The restriction of the functor Cat(og) to Mongor factors through Pres.
Proof. This follows from Lemma 5.7.7 and Corollary 5.4.5. O

Proposition 5.7.9. Suppose V and W are monoidal oco-categories and let A be a com-
plete V-oo-category and B a complete W-oo-category. Then A K B is a complete
V x W—oo-category.

This follows from the following observation:

Lemma 5.7.10. Suppose V and W are monoidal co-categories and let A be a V—-oco-category
and B a W-oo-category. Then te(A X B) is naturally equivalent to teA X teB, and

(A X B) is naturally equivalent to tA x B,

Proof. The “external product” X is clearly the Cartesian product in the oo-category
Alg..., and so it is easy to see that for any V x W-oo-category € we have

Map(C, A K B) ~ Map(m,+C, A) x Map(ms,.C, B),
where m; and w2 denote the projections from V x W to V and ‘W, respectively. Moreover,
7; S ~ E% for all S (since m; obviously preserves the unit of the monoidal structure).
Thus

Le(AKR B) > 14 A X 14B.

Since colimits of simplicial objects commute with products it follows that ¢(A X B) ~
A X B, O

Proof of Proposition 5.7.9. By Lemma 5.7.10 we have a natural map
tp(ARB) ~ 1gA X 1gB = tA X 1B ~ (AKX B).
This is an equivalence if A and B are complete, i.e. A K B is indeed also complete. O

Corollary 5.7.11. Catg) is a lax monoidal functor with respect to the Cartesian product
of monoidal co-categories.
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Proof. By Proposition 5.7.9 the complete enriched oo-categories are closed under the
exterior product in Alg.,,, and so the definition of the lax monoidal structure on the
functor Alg,,,(-) implies that the restriction to Cat( ) is also lax monoidal. 0

Corollary 5.7.12. Let O be a symmetric co-operad, and suppose V is an O ® E1-monoidal
oco-category. Then Catfo is an O-monoidal oo-category. In particular, if V is an
E,, -monoidal co-category then Cath 1s Ep_1-monoidal, and if V is symmetric monoidal
then so is Cat_,.

Proof. This follows by the same proof as that of Corollaries 4.3.12 and 4.3.13. O

Remark 5.7.13. If V is an E,-monoidal co-category, we can therefore iterate the enrich-
ment functor k times for £k < n to obtain oco-categories Catyoqk) of (00, k)-categories
enriched in V.

Proposition 5.7.14. Suppose V is an Eg-monoidal oo-category. Then the localization
L:Alg,,. (V) — CatY is monoidal.

Proof. We must show that if f: € — €’ and g: D — D’ are fully faithful and essentially
surjective functors in Alg.,,(V), then their tensor product f ® ¢:C® D — €' ® D’ is also
fully faithful and essentially surjective. By definition, the tensor product € ® € is given
by p«(CXC’), where p is the tensor product functor V x V — V, which is monoidal since
V is Eo-monoidal.

By Lemma 5.7.5 it therefore suffices to check that the external product f X g is
fully faithful and essentially surjective in Alg_,,(V x V). It is obvious that f X g is fully
faithful, and it is essentially surjective since ¢(f K g) is naturally equivalent to ¢f X tg
by Lemma 5.7.10. O

Combining this with Proposition 3.1.22, we get:

Corollary 5.7.15. Suppose V is an Es-monoidal oco-category. Then the localization
L:Alg,,. (V) = CatY is a monoidal functor.

Proposition 5.7.16. When restricted to Mon.!, the functor Catg) is lax monoidal with
respect to the tensor product of presentable co-categories.

Proof. This follows from Corollary 4.3.16, since by Proposition 5.7.9 the complete en-
riched co-categories are closed under the exterior product. O

Proposition 5.7.17. Suppose V and W are presentably monoidal oco-categories and
F:V® — W® s a monoidal functor such that the underlying functor f:V — W pre-
serves colimits. Let g:W — V be a right adjoint of f, and let G:W® — V® be the lax
monoidal structure on g given by Proposition A.5.11. Then:
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(i) The functor G.: Alg...,(W) — Alg.,. (V) preserves complete objects.
(i) The functors

LwF, : Cat), = Cat? : G,
are adjoint.

Proof. Since F' is monoidal and f preserves colimits, it is clear that for any 8—co-category
C we have F,(Iy ® C) ~ Iy ® C. Hence for any W—oo-category D we have natural
equivalences

Mapajg,,,(w) (E" D) = Mapay,, w) (FeE", D) = Mapyyg, (v)(E", G« D),

and so in particular (G, D ~ D and G, D is complete if D is. This proves (i).
To prove (ii), observe that using Lemma 4.3.19 we have natural equivalences

Mapcaew (LwEFiC, D) =2 Mapyy,_ (w) (Fx€, D) = Mapyy,  (v)(€, G+D)
~ MapCat& (G, LvG*@). O

Proposition 5.7.18. Let V be a presentably monoidal co-category and suppose L:V —
W is a monoidal accessible localization with fully faithful right adjoint i: W — V. Let
i®:WE VO gnd LO: VO — W® be as in Proposition 3.1.22. Suppose L exhibits W as
the localization of V with respect to a set of morphisms S. Then the resulting adjunction

L2 : Cat? = Cat) :i®

exhibits Cat)Y as the localization of Cat), with respect to ¥(S). Moreover, if V is at least
Es-monoidal then this localization is again monoidal.

Proof. The adjunction exists by combining Lemma A.5.12 and Proposition 5.7.17. The
functor % is fully faithful since the functor on categorical algebras induced by ¢® is fully
faithful by Proposition 4.3.22 and preserves complete objects by Proposition 5.7.17(i).
Thus this adjunction is a localization. The remaining statements follow by the same
argument as in the proof of Proposition 4.3.22. 0O

6. Some applications

In this section we describe some simple applications of our machinery: In §6.1 we use
iterated enrichment to define oo-categories of n-groupoids and (n, k)-categories for all n
and 0 < k£ < n and prove the “homotopy hypothesis” in this context. Then in §6.2 we
show that enriching in a monoidal (n,1)-category gives an (n + 1,1)-category, and use
this to prove the Baez—Dolan stabilization hypothesis for k-tuply monoidal n-categories,
and finally in §6.3 we prove that for any monoidal co-category V there is a fully faithful
embedding of associative algebras in V into pointed V—oo-categories.
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6.1. (n,k)-categories as enriched oo-categories

In this subsection we explain how to define (n, k)-categories in the context of enriched
oo-categories, and deduce some simple results that describe the resulting homotopy the-
ories as localizations, including a version of the “homotopy hypothesis”.

We begin by inductively defining n-groupoids and (n, k)-categories:

Definition 6.1.1. Assuming we have already defined Cat(, 1), let Gpd, < Cat(, 1) be
the full subcategory of objects local with respect to the obvious map [1] — E°; we refer
to the objects of Gpd,, as n-groupoids. Then we define the oo-category Cat(, k) of
(n+k, k)-categories to be the co-category Cat?oz?,:) of (00, k)-categories enriched in Gpd,,.
To start off the induction we define 0-groupoids to be sets, i.e. we define Gpd, := Set.
We also extend the notation by setting Cat, o) := Gpd,,.

Remark 6.1.2. Since the objects of Cat, 1) are already local with respect to E' - E°
we can equivalently define Gpd,, as the full subcategory of objects local with respect to
either of the inclusions [1] — E'. Thus an (n,1)-category is an n-groupoid precisely if
all of its 1-morphisms are equivalences.

Remark 6.1.3. Observe that the oo-category Cat(, ,) is defined by iterated enrichment

starting with sets: Cat, ) = Cat(s(fg’n). For n < oo we will refer to (n,n)-categories
as n-categories and write Cat,, := Cat(, ). The comparison results in [19] imply
that this oco-category of n-categories is equivalent to Tamsamani’s homotopy theory

of n-categories [42].

Remark 6.1.4. As observed by Bartels and Dolan (cf. [4]), the definition can also be
extended to allow n = —2 and n = —1: We can take Cat(_31) = Gpd_, := *; then
Cat(_1,1) consists of the empty category and EY. These are both —I-groupoids, so
Gpd_; =~ Cat(_y,). Next it is easy to identify Cat(g ;) with partially ordered sets, so
Gpd, consists of partially ordered sets where all morphisms are isomorphisms. These
are equivalent to partially ordered sets with only identity morphisms, i.e. just sets, so
Gpd, =~ Set as before.

For n = co we define (0o, k)-categories by starting with spaces instead:
Definition 6.1.5. Let Cat( o) := 8, and Cat( 1) := Cat(sw’k).

We now wish to identify Cat, ) as a localization of Cat( ), starting from the
following trivial observation:
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Lemma 6.1.6.

(i) Set — 8 is the full subcategory of objects local with respect to the maps S™ — * for
n > 0.
(ii) 8 — Catoo is the full subcategory of objects local with respect to the map [1] — E°.

Proof. (i) is obvious, and (ii) is easy to prove if we take complete Segal spaces as our
model for co-categories — a Segal space is local with respect to [1] — EY if and only if
it is constant. O

Combining this with Proposition 5.7.18 we immediately get the following:
Proposition 6.1.7.

(i) The inclusion Cat(,py < Catypq1) induced by the inclusion Gpd, ;, —
Cat(,—p,1) exhibits Cat, ) as the localization with respect to YF[1] — SFEC.

(i) The inclusion Cate, )y — Catn,y, k <1 < n, exhibits Cat, ) as the localization
with respect to X¢[1] — SE° i =k, k+1,...,1— 1.

(iii) The inclusion Cat o k) —+ Cat(so pt1) induced by the inclusion 8§ — Caty, exhibits
Cat(oo,n) as the localization with respect to $*[1] — SFEC.

(iv) The inclusion Cat (oo k) — Cat(oon) for k < n exhibits Cat o ) as the localization
with respect to X¢[1] — LE°, i =k, k+1,...,n— 1.

(v) The inclusion Cat,, — Cat(og ) induced by the inclusion Set — 8 exhibits Cat,, as
the localization of Cat o ) with respect to ¥ Sk — Y% for k> 0.

Theorem 6.1.8. The composite functor Cat, ) — Cat, — Cat(s,n) factors through
Cat(oo k), and the resulting inclusion Cat, py — Cat(so,k) evhibits Cat(, ) as the local-
ization with respect to X*S7 — Xk« for j >n — k.

For the proof we need the following observation:

Lemma 6.1.9. Let k: Cato, — 8 denote the left adjoint to the inclusion 8 — Cats,. Then
if X is a space, the space kXX is the (unreduced) suspension of X.

Proof. We take complete Segal spaces as our model for co-categories; then the inclusion
of 8§ corresponds to the inclusion of constant simplicial spaces and k corresponds to
geometric realization. Let A, denote the subcategory of A where the morphisms are the
surjective morphisms of simplicial sets. Let S(X): AS? — § be the semisimplicial space
with S(X)o = {0,1}, S(X); = X with d1(X) = 0 and do(X) = 1, and S(X),, = 0 for
n > 1. If j denotes the inclusion A% — A°P then it is easy to see that the left Kan
extension j1.5(X) is a (complete) Segal space. Moreover, using the adjunction jj = j* it
is clear that j1.5(X) satisfies the universal property of ¥X. Thus kXX is the colimit of
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the functor j1S(X), i.e. the left Kan extension ¢j15(X) along ¢: A°®? — %. But this is
equivalent to (¢j)15(X), which is the colimit of the semisimplicial space S(X). Using
the standard model-categorical approach to homotopy colimits we can describe this as
the quotient of A x X where we identify {0} x X and {1} x X with points, which is
precisely the unreduced suspension of the space X. O

Proof of Theorem 6.1.8. From Proposition 6.1.7 we see that Cat(,, ) is the localization of
Cat(so,n) with respect to X[1] — B, i = k,k+1,...,n—1 and £"S7 — X"« for j > 0.
On the other hand, Cat (o ) is the localization of Cat () With respect to just the first
class of maps, so the inclusion Cat, r) <> Cat( ) certainly factors through Cat . 1)-
To prove the result it therefore suffices to show that the image of 3”57 — X% under the
localization Cat (o ) — Cat(so,k) is Ykgitn—k _ $1k4 This follows by induction from
the case k = 0, which is a special case of Lemma 6.1.9. O

In the case k = 0, this gives a version of the “homotopy hypothesis” in our setting:

Corollary 6.1.10 (Homotopy hypothesis). There is an inclusion Gpd,, — 8 that exhibits
Gpd,, as the localization of 8 with respect to the maps S7 — *, j > n. In other words,
the oo-category Gpd,, of n-groupoids is equivalent to the co-category 8™ of n-types, i.e.

spaces whose homotopy groups vanish in degrees > n.
6.2. Enriching in (n,1)-categories and Baez—Dolan stabilization

In this subsection we prove that enriching in an (n,1)-category V gives an (n +
1,1)-category of V—oo-categories. We begin by recalling the appropriate definition of
an (n, 1)-category in the context of co-categories:

Definition 6.2.1. An co-category € is an (n, 1)-category if the mapping spaces Mape (X, Y)
are (n — 1)-types for all X,Y € C, i.e. m; Mape(X,Y) = 0 for & > n. In other words,
there are no non-trivial k-morphisms in € for k£ > n.

Remark 6.2.2. Using the equivalence Catio ~ Caty, of Theorem 5.4.6 and the case k = 1
of Theorem 6.1.8 we can identify (n,1)-categories in this sense with those defined in the
previous subsection.

Remark 6.2.3. Suppose V is a monoidal co-category such that V is an (n, 1)-category.
Then clearly V¥ is also an (n, 1)-category. The phrase monoidal (n,1)-category is thus
unambiguous.

Proposition 6.2.4. Suppose V is a monoidal (n,1)-category and C is a V-oo-category.
Then the space (C is an n-type.

Proof. Let s:m(10€) — o€ be a section of the projection 1€ — meoC. Then the
Cartesian morphism s*C — C is fully faithful and essentially surjective, and so induces
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an equivalence ¢(s*C) — € by Proposition 5.3.6. Without loss of generality we may
therefore assume that the space ¢(C is discrete.

The simplicial space 1€ is a groupoid object by Corollary 5.2.7. By [25, Corol-
lary 6.1.3.20] this groupoid object is effective, and so we have a pullback diagram

Lle —_— Loe

L]

o€ — 1LC.
If X is a point of (€, we get a pullback diagram

Llc{x} —_— Loe

|

{X} — G,

where ¢1C(x) is the fibre of 1€ — (o€ at X. Since the map 1oC — (C is surjective on
components, by considering the long exact sequence of homotopy groups associated to
this fibre sequence we see that (C is an n-type provided the spaces ¢1Cx} are (n—1)-types
for all X € ,C.

The space ¢1Cx} is a union of components of ¢1€, so it suffices to show that +;€
is an (n — 1)-type. Since ¢oC is discrete, i.e. a O-type, by [25, Lemma 5.5.6.14] this is
equivalent to proving that the fibres of the map ¢;€ — 1oC x o€ are (n — 1)-types. But
by Proposition 5.1.17 we can identify the fibre 1,Cx y at (X,Y) € 10€*? with the space
Map(I, C(X,Y))eq that is the union of the components of Map(Z, C(X,Y")) corresponding
to equivalences. Since V is by assumption an n-category, the space Map(I,C(X,Y)) is
necessarily an (n — 1)-type, hence so is Map([,C(X,Y))eq. O

Theorem 6.2.5. Suppose V is a monoidal (n,1)-category. Then Cat) is an (n +
1,1)-category.

Proof. We need to show that if € and D are complete V—oo-categories then the space

1\/IapCa‘cgo (ev D) = MapAlgcat(V) (67 D)

is an n-type. By Proposition 6.2.4, the space tgD ~ D is an n-type, hence the space
Mapg(t0C, toD) is as well. It follows from [25, Lemma 5.5.6.14] that, in order to prove
that Map, (v)(C, D) is an n-type, it suffices to show that the fibres of the map

Map e (v)(€, D) = Mapg (o€, LoD)

induced by the projection Alg (V) — 8 are n-types.
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Since the projection Alg, (V) — 8 is a Cartesian fibration, by [25, Proposition 2.4.4.2]
we can identify the fibre of this map at f::1oC — oD with

Mapmngpe (€, f*D).
Lo
This space is the fibre of
Map pop (A7 x AY,VE) = Map pcp (A, VF) x Map pon (A}, VE)

at (€, f*D). Since n-types are closed under all limits by [25, Proposition 5.5.6.5],
it suffices to show that the spaces Mapaon (A7, V¥) and Mapaes (A% x Al VE)
are n-types. Now these spaces are fibres of Map(A7Y,V®) — Map(A°,V¥) and
Map(AJF, x A, V) — Map(A°P,V¥), so by the same argument it’s enough to show
that these mapping spaces are n-types. But V® is by assumption an (n, 1)-category, so
this holds by [25, Proposition 2.3.4.18]. O

Corollary 6.2.6. The oco-category Cat,, of n-categories is an (n + 1,1)-category. More
generally, the co-category Cat(, ) of (n, k)-categories is an (n + 1, 1)-category.

Proof. Since Set is obviously a monoidal (1, 1)-category, applying Theorem 6.2.5 induc-
tively we see that Cat,, is an (n + 1,1)-category. Similarly, if we know that Gpd,, is an
(n + 1,1)-category it follows by induction that Cat(,xx) is an (n + k + 1,1)-category.
In particular Cat(,1,1) is an (n + 2, 1)-category, and so its full subcategory Gpd,, ,; of
(n + 1)-groupoids is also an (n + 2, 1)-category. Since Gpd, = Set is a (1, 1)-category we
see by induction that Cat(, y is an (n + 1,1)-category for all (n,k). O

It follows that if V is a symmetric monoidal (n, 1)-category, then Eg-algebras in Cat)
are equivalent to E..-algebras for k sufficiently large:

Corollary 6.2.7. Let 'V be a symmetric monoidal (n,1)-category. Then
(i) the map Ei — I'°P induces an equivalence
Algy (Cat))) = Algro, (Cat),)

fork>n+1,
(ii) the stabilization map i:Ex — Ep11 (defined in [28, §5.1.1]) induces an equivalence

i Alg[%k+1 (Catfo) — Alg%k (Catgo)

fork>n+1.
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Proof. (i) is immediate from [28, Corollary 5.1.1.7], and (ii) follows by the 2-out-of-3
property. O

We end this subsection by observing that when V is the monoidal co-category of
n-categories, this yields the Baez—Dolan stabilization hypothesis, by the same proof as
Lurie’s version for (n, 1)-categories [25, Example 5.1.2.3]:

Definition 6.2.8. A k-tuply monoidal n-category is an Eg-algebra in Cat,,, i.e. an Ej-
monoidal n-category.

Corollary 6.2.9 (Baez—Dolan stabilization hypothesis). The stabilization map i:Ey, —
Ex+1 induces an equivalence

i*: Algg, ., (Cat,) — Algg, (Caty,)
for k>n+2, i.e. k-tuply monoidal n-categories stabilize at k = n + 2.
Proof. Apply Corollary 6.2.7 to Cat,,. O

Remark 6.2.10. The Baez—Dolan stabilization hypothesis was originally stated by Baez
and Dolan in [3]. A version of it was proved by Simpson [37], who showed that for k& > n+2
a k-tuply monoidal n-category can be “delooped” to a (k+1)-tuply monoidal n-category;
the oco-categorical version above extends this by showing that this construction gives an
equivalence of co-categories.

6.3. En-algebras as enriched (0o, n)-categories

In ordinary enriched category theory, it is obvious that associative algebra objects in a
monoidal category V are equivalent to V-categories with a single object. Similarly, if V is
a monoidal oo-category, we can identify the co-category Alga.p (V) of associative algebra
objects with the full subcategory of Alg,,,(V) spanned by V—-oo-categories whose space
of objects is a point. In this subsection we will prove that after localizing with respect
to the fully faithful and essentially surjective V-functors we still get a fully faithful
functor from Alg.p (V) provided we consider pointed V—-oco-categories. It then follows by
induction that, if V is at least E,-monoidal, the same is true for the natural map from
E,.-algebras to pointed enriched (oo, n)-categories.

Definition 6.3.1. Let V be a monoidal co-category. By Proposition 3.1.18, the unit object
of V is the initial object in the co-category Alg . (V) of associative algebra objects. The
inclusion j: Algaop (V) < Alg., (V) therefore factors through Alg.,;(V)go,. Composing
this with the localization functor we get a functor B: Algaop (V) — (CatZO)EO/.
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Theorem 6.3.2. Let V be a monoidal co-category. Then:

(i) The functor B: Algpop (V) — (Cat&)EO/ is fully faithful.
(i) If V is Eo-monoidal, then B is a monoidal functor.
(#i) B admits a right adjoint Q: (Cat&)EO/ — Algaon (V).
(iv) If V is presentably Eo-monoidal, then Q is a lax monoidal functor.

For the proof of (iii) we first make some simple observations:

Lemma 6.3.3. Let m:& — B be a Cartesian fibration. For any B € B, the functor
& — &gy =& X5 Bp, admits a right adjoint.

Proof. First suppose B is an initial object of B. Then there is an obvious map B! — B
that sends —oco to B and is the identity when restricted to B. Let n": & — B be the
pullback of 7 along this map; then 7’ is a Cartesian fibration. Since the obvious projection
B9 — (A% = Al is clearly a Cartesian fibration, the composite functor & — A' is also
a Cartesian fibration. But this is clearly also the coCartesian fibration associated to the
inclusion € — &, hence this functor does indeed have a right adjoint.

For the general case we reduce to the case already proved by pulling back along the
forgetful functor Bg, — B. O

Lemma 6.3.4. Suppose given an adjunction

and suppose D € D is an object such that the counit map FGD — D is an equivalence.
Then the induced functor Dp, — Cqp, admits a left adjoint, given by Cop, — Dpap) =~
Dpy.

Proof. The (dual of) the argument in the proof of [25, Lemma 5.2.5.2] applies under our
assumptions without assuming any colimits exist in D. O

Proof of Theorem 6.3.2. To prove (i), let R and S be two A°P-algebras in V. We have
a fibre sequence

Map(gary ) o, (BR, BS) = Mapc,y (BR, BS) = Mapcy,y, (E°, BS).

Since BS is the completion Lyj(S) of S regarded as a V-oo-category, we have equiva-
lences

MapCatXO (BRa BS) = MapAlgCat(V) (](R)a BS)

and
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Mapcaey, (B, BS) = Map g, (v) (B”, BS).

The projection ¢o: Alg,,, (V) — 8 gives a commutative diagram

Map,yg , (v)(§(R), BS) —— Mapypy,_ (v)(E%, BS)

| J

Mapg (%, 10BS) ————  Mapg (*, 1o BS
8 8

where the right vertical map is an equivalence by Lemma 5.1.2 and the bottom horizontal
map is the identity, since E® — j(R) is the identity on 1. Thus we can identify the fibre
of the top horizontal map at the functor E° — BS corresponding to a point p: * — 1o BS
with the corresponding fibre of the left vertical map, which is Mapy, .., (v) (R,p*BS)
by [25, Proposition 2.4.4.2].

Take p to be the underlying map of spaces of the completion functor j(S) — B.S; since
this is fully faithful the induced map j(S) — p*BS is an equivalence, and in particular

MapAlgAup (V) (Ra S) - Ma’pAlgAup (V) (Ra p*BS) .

Thus the map Mapy, . (v) (R, S5) — Map(Cath)EO/(BR,BS) is also an equivalence,
which completes the proof of (i).

We now prove (ii). It is clear from the definition of the monoidal structures that the
functor Algaos (V) — Alg.,;(V)go, is monoidal. Since it follows from Corollary 5.7.15
that the localization Alg., (V)go, — (Cat)) go , is monoidal (by regarding the overcat-
egories as oco-categories of Eg-algebras, for example), it follows that B is monoidal.

To prove (iii), we first observe that the adjunction Alg,,,(V) = Cat), descends to
an adjunction Alg (V) go, = (CatXO)Eo/ by Lemma 6.3.4. It therefore suffices to show
that the functor j: Algaes (V) — Alg..;(V)go, admits a right adjoint. To see this we
first show that the obvious functor Alg...(V)go, — Alg..;(V) xs 8. is an equivalence. It
is clear that this functor is essentially surjective, so it suffices to show that for €, D in
Alg .. (V) o, the induced map

MapEO/(ea D) — Map(e7 @) XMap(LO(‘Z,LOD) Map*/(boe, ’/Og)

is an equivalence. Consider the following commutative diagram:
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MapEO (e, D)

Map(€, D)

Map, /(t0C, toD) —— Map(4oC, toD)

* ——— > Map(x, oD).

Here the bottom square is clearly a pullback square, and the outer rectangle is a pullback

square because of the natural equivalence Map(E°, D) —~ Map(*,10D). Thus the top

square is also a pullback square. (iii) therefore follows by applying Lemma 6.3.3.
Finally, (iv) now follows from Proposition A.5.11. O

Remark 6.3.5. A pointed V—oo-category C is in the essential image of the functor B if
and only if +C is connected, since then the functor p*€ — € induced by the chosen point
p :* = 1pC is fully faithful and essentially surjective, and p*C is a A°P-algebra. In other
words, A°P-algebras in V are equivalent to pointed V—oo-categories with a single object
up to homotopy.

Definition 6.3.6. Let V be an Eo-monoidal co-category. A monoidal V—oo-category is a
A°P_algebra in Cat)..

Corollary 6.3.7. Let V be an Eg-monoidal oo-category. Then monoidal V—-oco-categories
are equivalent to pointed V—(oo, 2)-categories with a single object (up to homotopy).

Proof. By definition V- (oo, 2)-categories are oo-categories enriched in Cat) , so this

follows from Remark 6.3.5. O

Remark 6.3.8. In particular, taking V to be Gpd,,, we see that monoidal (n, k)-categories
are equivalent to pointed (n + 1,k + 1)-categories with a single object. Taking V to be
8, this remains true for n = co.

Definition 6.3.9. If C is a V—oo-category and X is an object of C, we write QxC €
Alg pop (V) for the value of the functor  on the corresponding map E® — €. This is the
endomorphism algebra of X.

By applying Theorem 6.3.2 inductively we can generalize it to the E,,-monoidal setting:

Definition 6.3.10. By Proposition 3.7.3 monoidal oco-categories are equivalent to
[E1-monoidal co-categories, and A°P-algebras in a monoidal co-category are equivalent
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to Ej-algebras in the associated E;-monoidal oco-category. Since E, ® E,;; ~ E, 4, for
all n,m, by Theorem 6.3.2(ii) we get maps

Alg%ﬂ (V) ~ Alg%W1 (Alg%1 (V)) — Alg%ﬂi1 ((CatXO)EO/).
We can identify (CatXO)EO/ with Alg%0 (Cat)), so

Algs , ((Catl) ) = Algy, _, (AlgZ, (Catl.))

EO/)
~ Alg§'L71®]EO (Catzo)

~ Algy  (Catl.).
Thus we have maps
Algy (V) — Algg_ (Catl) — -+ = Algg (Caty, ,, 1)) = (Catdy n)) po P

Applying Theorem 6.3.2 (and the symmetric counterparts of some of the results we
used in its proof) inductively, we get the following:

Corollary 6.3.11. Suppose V is an E,-monoidal co-category.
(i) The functor

B": Algg (V) = (Cat{y ) o ;
is fully faithful.

(ii) If V is Eyy1-monoidal, then B™ is a monoidal functor.

(ii) If'V is presentably E,-monoidal, then B™ admits a right adjoint Q™: (Catym7n))E0/ —
Algs (V).

(iv) IfV is presentably B, 4+1-monoidal, then Q™ is a lax monoidal functor.

Definition 6.3.12. Let V be an E,,;-monoidal co-category; then Catgo is E,,-monoidal
by Corollary 5.7.12. An E,-monoidal V-oo-category is an E,-algebra in Cat&.

Corollary 6.3.13. Let V be an E, 1-monoidal co-category. Then E, -monoidal V-oo-cat-
egories are equivalent to pointed V—(co,n + 1)-categories with a single object and only
identity j-morphisms for =1, ..., n—1.

Remark 6.3.14. In particular, taking V to be Gpd,,, we see that E,,-monoidal (n, k)-cate-
gories are equivalent to pointed (n 4+ m, k + m)-categories with a single object and only
identity j-morphisms for j = 1,...,m—1. Taking V to be 8, this remains true for n = co.
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Definition 6.3.15. If C is a V—(oco,n)-category and X is an object of €, we write Q%€
for Q™ applied to the corresponding map E° — €. This is the endomorphism E,, -algebra
of X.

Remark 6.3.16. If C is a V—(oo, n)-category and X is an object of €, the underlying object
in V of the E,,-algebra Q% € is the endomorphisms of the (n —1)-fold identity map of the
identity map of ... of the identity map of X.

7. Enriching oco-categories tensored over a monoidal co-category

Suppose V is a monoidal category and C is an ordinary category that is right-tensored
over V, i.e. there is a functor

)®():CxV—=C,

compatible with the tensor product of V. If for every C € C the functor C' ® (-) has
a right adjoint F(C,—): C — V, then it is easy to see that we can enrich C in V, with
the morphism object from C to D given by F(C, D) € V. In particular, if the monoidal
category V is left-closed, then it is enriched in itself. Our goal in this section is to prove
the analogous statement in the context of enriched oco-categories, which will allow us to
construct a number of interesting examples of these.

To prove this we will consider a variant of Lurie’s definition of enriched oco-categories
from [28, §4.2.1]. After introducing the natural generalized non-symmetric co-operads
that parametrize modules in §7.1 (and proving that the resulting co-categories of modules
are equivalent to those of [28]), we review Lurie’s definition in §7.2. It is easy to see that
an oo-category right-tensored over a monoidal co-category with adjoints as above defines
an enriched oo-category in this sense; by applying Lurie’s construction of enriched strings
from [28, §4.7.2], which we review in §7.3, we can quite easily extract a categorical algebra
from this in §7.4.

7.1. Modules

Definition 7.1.1. Write BM for the category of simplices Simp(A!) of the simplicial set
A'. The objects of BM can be described as sequences of integers (ig,...,i;) where
0 <ip <--- < <1, and there is a unique morphism (io, ..., ix) = (ig(0); - -»ig(m))
for every map ¢: [m] — [k] in A. The obvious projection BM — A°P exhibits BM as a
double oco-category. If M is a generalized non-symmetric co-operad, a bimodule in M is
a BM-algebra in M. We write Bimod(M) for the co-category Algpy (M) of bimodules
in M.

Definition 7.1.2. The obvious inclusions i, j: A‘Eg}, A‘E‘l’} — BM are maps of generalized
oo-operads. We say a bimodule M in a generalized non-symmetric oco-operad M is an
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"M —j* M -bimodule. If A and B are associative algebras in a generalized non-symmetric
oo-operad M, we write Bimod 4, (M) for the fibre of the projection (i*, j*): Bimod(M) —
Algpop (M) x Algaop (M) at (A, B), i.e. the co-category of A—B-bimodules.

Definition 7.1.3. Let LM denote the full subcategory of BM spanned by the objects of
the form (0,...,0,1) and (0,...,0). The restricted projection LM — A°P exhibits LM
as a double oco-category. A left module in a generalized non-symmetric co-operad M is
an LM-algebra in M. We write LMod (M) for the oco-category Algy (M) of left modules
in M.

Definition 7.1.4. Let RM denote the full subcategory of BM spanned by the objects of
the form (0,1...,1) and (1,...,1). The restricted projection RM — A°P exhibits RM as
a double oco-category. A right module in a generalized non-symmetric co-operad M is an
RM-algebra in M. We write RMod(M) for the oco-category Algr,; (M) of right modules
in M.

Definition 7.1.5. The obvious inclusions i: Ac{)g} — LM and j: AC{)?} — RM are maps of
generalized non-symmetric co-operads. If M:LM — M is a left module in a generalized
non-symmetric oco-operad M, we say M is a left i* M -module. Similarly, if M is a right
module in M we say that it is a right j* M -module. If A is an associative algebra in M,
we write LMod 4 (M) and RMod 4(M) for the fibres of the projections i*: LMod(M) —
Alg pop (M) and j*: RMod(M) — Alga.p (M) at A, respectively.

It is easy to describe the oco-operad localizations of the generalized non-symmetric
oo-operads BM, LM, and RM in terms of multicategories:

Definition 7.1.6. Let BM be the multicategory with objects [, m and v and multimor-
phisms

BM(l,...,[mt,...,t;m) = x*
BM(L,..., ;) =«
BM(x,...,t;t) = *
(where there can be zero I’s and t’s in the lists), with all other multimorphism sets empty.

We then define LM to be the full submulticategory of BM with objects [ and m and
RM to be the full submulticategory with objects v and m.

Proposition 7.1.7. There are obvious maps BM — BM®, LM — LM®, and RM —
RM®. These induce equivalences of non-symmetric co-operads Lgen BM — BM?®,
Lgen LM = LM® and Lgen RM = RM®.

Proof. It is easy to see that these maps satisfy the criterion of Corollary A.6.9. O
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Corollary 7.1.8. Let O be a non-symmetric oo-operad. Then there are natural equivalences
Bimod(0) ~ Alggp(0), LMod(0) ~ Algy 1 (0) and RMod(0) ~ Alggn(O).

Remark 7.1.9. The symmetric co-operads used in [28] to define bimodules, left modules,
and right modules clearly arise from the symmetrizations of the multicategories BM, LM
and RM, respectively. By Proposition 3.7.7 it therefore follows that the co-categories of
modules defined here are equivalent to those defined in [28].

7.2. Lurie’s enriched co-categories

In this section we describe a variant of Lurie’s definition of enriched oco-categories in
[28, §4.2.1].

Definition 7.2.1. A weakly enriched oo-category is a fibration of generalized non-
symmetric oo-operads ¢: M — RM such that the fibres M) and M) are contractible.
We write M& for the non-symmetric co-operad j*M — A°P and My, for the fibre Mo,1)
and say that ¢ exhibits My, as weakly enriched in M.

Example 7.2.2. Let O be any non-symmetric oco-operad. The pullback 7*O — RM along
the projection m: RM — A°P exhibits O(;; as weakly enriched in O.

Example 7.2.3. Let ¢: M — RM be a weakly enriched oo-category such that ¢ is also a
coCartesian fibration. Then we say that g exhibits M, as right-tensored over M., which
is a monoidal co-category. Clearly, an oco-category C is right-tensored over a monoidal
oo-category V if and only if there exists an RM-algebra F:RM — Cat’, such that

F(0,1) ~ € and j*F is an associative algebra corresponding to V®.

Definition 7.2.4. Let ¢: M — RM be a weakly enriched oco-category. Given Cy,...,C), €
M, and M, N € M,,, we write

Mapy (M X (C1,...,Ch), N)
for Mapﬁ[((M, Cy,...,Ch), N), where ¢: [n + 1] — [1] is the unique active map.
Definition 7.2.5. A pseudo-enriched co-category is a weakly enriched oco-category ¢: M —
RM such that M¥ is a monoidal oo-category, and for all Cy,...,C, € M, (n =0,1,...)
and M, N € M,,, the canonical map

MapMm(Mﬁ (Cq ®~-®C’n),N) %MapMm(Mﬁ(Cl,...,CnLN)

is an equivalence.



D. Gepner, R. Haugseng / Advances in Mathematics 279 (2015) 575-716 691

Remark 7.2.6. Taking n = 0 in this definition, we see that in a pseudo-enriched
oo-category M we have

Mapy, (M R I, N) =~ Mapy,_ (M, N).

Example 7.2.7. The pullback 70 — RM exhibits O} as pseudo-enriched in O if and
only if O is a monoidal co-category.

Example 7.2.8. If a weakly enriched co-category q: M — RM is a coCartesian fibration,
then it is clearly pseudo-enriched.

Definition 7.2.9. Let M — RM be a pseudo-enriched oco-category. Suppose M and N are
objects of My,; a morphism object for M, N is an object F(M,N) € M, together with
amap o € Mapy (M X F(M,N), N) such that for every C' € M, composition with a
induces an equivalence

Mapy,, (C, F(M,N)) = Mapy, (M R C,N).

We say that M — RM is a Lurie-enriched oo-category if there exists a morphism object
in M, for all M, N € M.

Remark 7.2.10. From Remark 7.2.6 we see that in a Lurie-enriched oco-category M there
is a natural equivalence

Mapy,, (L F(M, N)) = Mapy, (M, N).

Example 7.2.11. A monoidal co-category V is left-closed if and only if for every C' € 'V the
functor C'® (—): V — V has a right adjoint. If V is a monoidal co-category, the pullback
m*V® exhibits V as Lurie-enriched in V if and only if V is left-closed.

Example 7.2.12. More generally, suppose the co-category € is right-tensored over the
monoidal co-category V. The associated coCartesian weakly enriched oo-category ¢: M —
RM is Lurie-enriched if and only if for every M € €, the right-tensoring functor M ®
(=):'V — € has a right adjoint F'(M,-) (so that Mapy(V, F(M,N)) ~ Mape (M ®V, N)).

Remark 7.2.13. We use right modules rather than the left modules used in [28, §4.2.1] so
that the composition maps of morphism objects are compatible with those for categorical
algebras: If M is a Lurie-enriched oco-category in our sense, then for a triple A, B,C of
objects in M, we get a composition map F(A, B) ® F(B,C) — F(A,C), whereas [28,
Definition 4.2.1.28] gives composition maps F(B,C) ® F(A, B) — F(A,C). This is why
we get Lurie-enriched oo-categories from left-closed monoidal co-categories rather than
right-closed ones as in [28, Example 4.2.1.32].
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Definition 7.2.14. Let Enrp,, be the full subcategory of (Opdi>®®"), g spanned by
the Lurie-enriched oco-categories. Pullback along the inclusion A°® — RM induces a
projection Enrp,, — Mony.; we write Enlrfur for the fibre at V€ € Mon,,. This is the
oo-category of Lurie-V-enriched oco-categories.

We expect that the co-category Enry,. is equivalent to the co-category Cat) of
complete categorical algebras in V defined above, but we will not attempt to prove this
here.

7.8. Enriched strings

We now describe the analogue for our variant definition of Lurie’s construction of an
oo-category of enriched strings in [28, §4.7.2].

Definition 7.3.1. Let Po denote the full subcategory of Fun([1], A) spanned by the in-
ert morphisms. In other words, an object of Po is an inert morphism «:[i] — [n], or
equivalently an object [n] € A together with a subinterval {j,j 4+ 1,...,5 + i} C [n].
A morphism from « to 8:[j] — [m] is a commutative diagram

Note that, since o and S are inert, a morphism 1 factoring ¢ o a through ( is uniquely
determined, if it exists. The inclusions g, 41: [0] < [1] taking the unique object of [0] to
0, 1, respectively, induce functors ®, ©:Po — A. We write Po’ for the full subcategory
of Po spanned by the (necessarily inert) morphisms [0] — [n].

Definition 7.3.2. We define a map x: A°®? — RM by sending [n] to the object (0,1,...,1)
over [n+ 1] and ¢: [m] — [n] to the coCartesian map over [0] x ¢: [m + 1] — [n+ 1]. Thus
the composite A°? — RM — A°P is given by [0] * —.

Definition 7.3.3. Suppose M — RM is a weakly enriched oco-category. Define simplicial

sets Str M and StrM over A°P by the universal properties

Hom aop (K, Str M) ~ Hompgp (K X acr Po, M),
HOonp (K, Str M) ~ HOHIRM (K X Aop (PO/)Op, M),

where the map Po°® — RM is given by the composite

Po®P 25 A% X5 RM.
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Lemma 7.3.4. The oo-category Str M is equivalent to Aﬁm.
Proof. This is immediate from Remark 4.1.4. O

Definition 7.3.5. Let Poy,) denote the fibre of ©: Po — A at [n], i.e. the full subcategory of
A /) spanned by inert morphisms. A morphism in Poy,; is thus a commutative diagram

where a and /8 are inert — if such a morphism exists then the morphism ¢ is clearly
uniquely determined by « and S, and must also be inert. We can thus equivalently
describe Poy,) as the category associated to the partially ordered set of subintervals of
[n]. We write @, for ®[p,,,-

Definition 7.3.6. The unique map [0] — [~1] in AT induces a natural transformation
[0] % (=) = [—1]* (-) = id of functors A°P — A°P; this is given by dy: [n] — [n— 1] for all
n =1,.... Since dy is inert, we can define a natural transformation y: A! x A°® — RM by
taking the coCartesian lift of this starting at x. Thus Xy, is given by do: (0,1,...,1) —
(1,...,1).

Definition 7.3.7. Let ¢: M — RM be a weakly enriched oco-category. An enriched n-string
in M is a functor o: PO([)TE)] — M such that:
(1) The composite g o o is

op

[
Po?® —"L, AP X, RM.

[n]

[i] ———— [j
N

is a morphism in Pop,; such that a(0) = 3(0) (or equivalently ¢(0) = 0), then o(¢)
is inert. (Notice that if ¢:[n] — [m] is an inert map in A°P, then [0] x ¢ is inert if
and only if ¢(0) = 0, so these are precisely the maps ¢ so that o(¢) lies over an inert
map in A°P.)
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(3) Let 0 — o’ be a coCartesian lift of >_<|A1><POE’:]. Then for any morphism ¢ in Poy,,
the morphism o’(¢) is inert in M&.

Remark 7.3.8. An enriched 0O-string is a map * ~ Po([)(ﬁ — M over the map * — RM
sending * to (0, 1), i.e. just an object of My,. An enriched 1-string corresponds to a map
(M,C) — N over di:(0,1,1) — (0,1); if M is a Lurie-enriched co-category then this is
equivalent to a map C' — F(M,N). In general, an enriched n-string corresponds to a
sequence of maps

(M07017...,Cn) — (Ml,CQ,...,Cn) — s = (Mn,l,C’n) — Mn,

together with coherence data, where each map is the identity on the components after
the first two. If M is a Lurie-enriched oo-category, then this is equivalent to a sequence
of maps

Cl—>F(M0,M1), CQ—>F(M17M2), C’n—)F(Mn,th)

Definition 7.3.9. The fibre of Str M®" at [n] is clearly Fungm (PO‘[D:;] , M). We write Str M
for the full subcategory of Str M®" spanned by the enriched n-strings for all n.

Proposition 7.3.10. Let g: M — RM be a weakly enriched co-category. Then:

(i) The projection p: Str M®™ — A°P is a categorical fibration.

(ii) For every X € StrM®" and every inert morphism a: p(X) — [n] in A°P there exists
a p-coCartesian morphism X — oy X over a.

(iii) Let a: X — Y be a morphism in Str M such that p(@):[m] — [n] is an inert
morphism. Then & is p-coCartesian if and only if for all ¢:[k] — [n] in Po‘[)f;] the
induced map X(ao ¢) = Y (9) is an equivalence.

(iv) Suppose q is a coCartesian fibration. Then so is p, and a morphism @:X — Y
in Str M over a:[m] — [n] in A°P is p-coCartesian if and only if for every
¢:[k] = [n] in Po([);’] the induced map X (a0 ¢) = Y (¢) is g-coCartesian.

Proof. As [28, Proposition 4.7.2.23]. 0O

Proposition 7.3.11. Let g: M — RM be a weakly enriched co-category. Then the projection
p: StrMe® — A°P satisfies the Segal condition, i.e. for each [n], the map

Str ME?] — Str Mfﬁ X Str Mg X Str Men Str M?ﬁ

is an equivalence.

Proof. As [28, Proposition 4.7.2.13]. O
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Proposition 7.3.12. Let ¢: M — A°P be a weakly enriched co-category. Then:

(i) The projection r: Str M — ASY is a categorical fibration.

(ii) Given X € StrM™ and an inert morphism c:r(X) — Y in AJ}, there exists an
r-coCartesian morphism X — ayn X over a.

(iii) Suppose X € StrM™, . r(X) — Y is a morphism in A3}, and a: [m] — [n] is the
underlying morphism in A°P. Then a morphism a: X — 'Y over « is r-coCartesian
if and only if @ induces an equivalence X (oo ¢) — Y (¢) for all ¢:[k] — [n] in
POE%,

(i) Suppose q is a coCartesian fibration, and let vy denote the projection Ag)\f[’ — A°P,
Given X € StrM® and an ro-coCartesian morphism a:r(X) — Y in ASY, there
exists an r-coCartesian morphism a: X — X in StrM™ over a. Moreover, if
X € StrM and c:r(X) — Y in A} is ro-coCartesian over ag:[m] — [n] in
A°P | then a morphism X — Y in Str M®™ over « is r-coCartesian if and only if
the induced map X (a0 ¢) — Y (¢) in M is g-coCartesian for all ¢ € POE];].

Proof. As [28, Lemma 4.7.2.27]. O

Definition 7.3.13. Define Str Me™* — A°P by
HOmADp (K, Str Men,+) = HOHlRM (Al x K X Aop POOp7 M),

where the map A! x Po®® — RM is the composite of id x ®°P: Al x Po’® — Al x A°P
with the natural transformation x.

Definition 7.3.14. Suppose ¢: M — RM is a weakly enriched oo-category. Let StrMe®+

denote the full subcategory of Str Me™+ — A°P spanned by objects F: Al x POFTE)] M

such that F'|¢o xPo’, is an enriched n-string and Fis a g-left Kan extension of F'| gy X PO

Lemma 7.3.15. The projection Str M+ — Str M®® is a trivial fibration.

Proof. Immediate from [25, Proposition 4.3.2.15]. O

Definition 7.3.16. Let i: A°® — A! x Po° be the functor that sends [n] to (1,id: [n] —
[n]). Then composition with 4 induces a functor Str M™* — M® over A°P.

Lemma 7.3.17. Let ¢ M — RM be a weakly enriched oo-category. The functor
Str Mt — ME preserves inert morphisms.

Proof. This is obvious from the definitions and Proposition 7.3.10. O
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7.4. Extracting a categorical algebra

In this subsection we will extract a categorical algebra from a coCartesian Lurie-
enriched oco-category, and consider some examples of enriched co-categories that arise in
this way.

Definition 7.4.1. Suppose ¢: M — RM is a weakly enriched oo-category. Let Str M be
defined by the pullback

Str M{" ——— StrMe?

|

A, — A,
Lemma 7.4.2. Suppose ¢: M — RM is a coCartesian weakly enriched co-category. Then
the projection Str M — AP is a coCartesian fibration.

Proof. This follows immediately from Proposition 7.3.12 since the projection m: A7 —
AP is a left fibration, so all morphisms in A%y are m-coCartesian. O

Remark 7.4.3. We expect that Lemma 7.4.2 is also true for pseudo-enriched oco-categories
that are not coCartesian fibrations, but since this is not needed for the examples we are
interested in we will not consider this generalization here.

Definition 7.4.4. Suppose ¢: M — RM is a Lurie-enriched oo-category. Let Str Mcy be
the full subcategory of Str M" spanned by enriched n-strings o: Po‘[)f;] — M such that
fort=1,...,n, the map

o({i,i+1} = [n]) =~ (M;,C;) = M1 ~o({i+ 1} <= [n])
exhibits C; as the morphism object F(M;, M;1).

Proposition 7.4.5. Suppose ¢: M — RM is a coCartesian Lurie-enriched oco-category.
Then the projection Str Mg — AN is a trivial fibration.

Proof. The universal property of the morphism object F(M, N) implies that the uni-
versal map (M, F(M,N)) — N is the final object in the fibre of Str M — A3} over
(M, N). The Segal condition (Proposition 7.3.11) implies that Str Mg is precisely the
full subcategory of StrM$™ spanned by the objects that are final in their fibre. It there-
fore follows by [25, Proposition 2.4.4.9(1)] that the projection Str Mgy — AYY is a trivial
fibration. O
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Definition 7.4.6. Suppose ¢: M — RM is a Lurie-enriched oco-category. Let Str Jvtgg=+ be
defined by the pullback square

Str Mgt —— Str Mt

| ]

Str Meq — Str M.

Theorem 7.4.7. Suppose ¢: M — RM 1is a coCartesian Lurie-enriched oco-category. The
composite

Mo AT = Str M <= Str Mt — M2
s a categorical algebra in M.

Proof. It follows from Lemma 7.3.17 that this map preserves inert morphisms, so it is a
categorical algebra. 0O

Remark 7.4.8. We expect that, as suggested by Remark 7.2.10, in the situation above the
underlying co-category of My, is equivalent to My,. This would imply that the categorical
algebra M, is in fact complete. We will not prove this here, however, as this requires
developing more of the theory of Lurie-enriched co-categories than is appropriate here.

Using Example 7.2.12 we can restate this as:

Corollary 7.4.9. Suppose V is a monoidal co-category and € is an oco-category that is
right-tensored overV so that the tensor product C®(-) has a right adjoint F(C,-):C — V
for all C € C. Then C is enriched in V; more precisely, there is a categorical algebra
C: AL — V¥ such that €(C, D) ~ F(C, D).

This construction allows us to construct several interesting examples of enriched
oo-categories:

Corollary 7.4.10. Suppose V is a left-closed monoidal co-category. Then 'V is enriched in
itself: more precisely, there exists a categorical algebra V: A% — V® such that V(V, W)
in 'V is the internal hom from V to W.

Example 7.4.11. Suppose V is a presentably Es-monoidal oo-category; then Catzo is
a presentably monoidal co-category, and so is in particular right-closed. Thus there
exists a V—(o0o, 2)-category Cat) of V-oo-categories. More generally, if V is presentably
Ex-monoidal (or presentably symmetric monoidal), there exists a V—(oco, n + 1)-category
Cat?

(o0,n)

of V—(o0, n)-categories for all n < k. For example, taking V to be 8 there is
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an (oo, n + 1)-category @f‘wn) of (00, n)-categories, and taking V to be Set there is an

(n + 1)-category Cat,, of n-categories.

Remark 7.4.12. Several homotopy theories that can easily be constructed as spectral
presheaves Fun®P (A°P_Sp), where A is a small spectral category, can (conjecturally) be
identified with more familiar homotopy theories:

(i) Suppose G is a finite group, and let BE denote the Burnside (2,1)-category of G;
this has objects finite G-sets, 1-morphisms spans of finite G-sets, and 2-morphisms
isomorphisms of spans. We can regard this as a category enriched in symmet-
ric monoidal groupoids, via the coproduct, and hence as an oo-category enriched
in F.-spaces. Group completion of FE,.-spaces is a lax monoidal functor from
E..-spaces to (connective) spectra, so applying this to the mapping spaces in BY
gives a spectral oo-category Bf. The presheaf spectral co-category FunSp(Bf’Op, Sp)
is the spectral co-category of genuine G-spectra — a version of this comparison has
recently been proved by Guillou and May [17,16,18] using enriched model categories.
(It has also been observed by Barwick that (as group-completion is a left adjoint) it
is not necessary to group-complete the mapping spaces in B to describe G-spectra;
this is the basis for the co-categorical description of G-spectra in [6].)

(ii) Let B denote the global Burnside (2,1)-category of finite groups. This has objects
finite groups, l-morphisms from G to H are finite free H-sets equipped with a
compatible G-action, and 2-morphisms are isomorphisms of these. This can also be
regarded as enriched in symmetric monoidal groupoids via coproducts, and by group-
completing we obtain a spectral co-category B . The presheaf spectral co-category
FunSp(Bip ,Sp) is the spectral oo-category of global equivariant spectra for finite
groups, as studied by Schwede [35].

Corollary 7.4.13. Suppose V is a presentably monoidal co-category, and C is a right
V-module in Pres,, (with respect to the tensor product of presentable co-categories).
Then C is enriched in V.

Example 7.4.14. By [28, Proposition 4.8.2.18], presentable stable co-categories are pre-
cisely Sp-modules in Pres.,, hence presentable stable co-categories are enriched in
spectra. But any stable co-category is a full subcategory of its Ind-completion, hence
it follows that all stable co-categories are enriched in spectra.

Example 7.4.15. In [27, §6], Lurie defines R-linear co-categories for an Eo-ring spectrum
R to be left LModg-modules in Press,. If we instead consider right LMod g-modules we
get oo-categories enriched in left R-modules from R-linear co-categories. Moreover, if R
is at least Ez-monoidal (so that LModp is at least Eo-monoidal), then these two notions

coincide.
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Appendix A. Technicalities on oco-operads

In this appendix we collect the more technical results we need about non-symmetric
oo-operads.

A.1. Monoidal envelopes

In this subsection we describe the non-symmetric version of Lurie’s monoidal envelope
of an oco-operad O, which gives a monoidal structure on the oco-category O, of active
morphisms in O that we will make use of below to define operadic colimits.

Definition A.1.1. Let Act(A°P) be the full subcategory of Fun(A®, A°P) spanned by the
active morphisms. If M is a generalized non-symmetric co-operad, we define Env(M) to
be the fibre product

M X Fun({0},a00) Act(AP).

Proposition A.1.2. The map Env(M) — A°P induced by evaluation at 1 in Al is a double
0o-category.

Proof. As [28, Proposition 2.2.4.4]. O

Proposition A.1.3. Suppose N is a double oco-category and M is a generalized non-
symmetric co-operad. The inclusion M — Env(M) induces an equivalence

Fun® (Env(M), N) — Algy,(N).
Proof. As [28, Proposition 2.2.4.9]. O

Corollary A.1.4. Suppose O is a non-symmetric co-operad. Then Env(0Q) is a monoidal
oo-category, and if C® is a monoidal co-category then

Fun® (Env(0), €®) ~ Alg, (C).

Proof. The only object of A that admits an active map from [0] is [0], hence for
any generalized non-symmetric oo-operad M we have Env(M)jy) ~ Mjo. In particular
Env(0)jg) ~ * for a non-symmetric oo-operad O, so the result follows from Proposi-
tion A.1.2 and Proposition A.1.3. O

Definition A.1.5. If O is a non-symmetric oo-operad, the monoidal co-category Env(0)
is called the monoidal envelope of O. This gives a monoidal structure on the subcategory
Oact of O determined by the active morphisms. We denote this tensor product on O,
by &.
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A.2. Operadic colimits

We wish to prove that, under reasonable hypotheses, if V is a monoidal co-category
and f:O — P is a morphism of non-symmetric co-operads then the functor

[T Algy (V) — Algy (V)

given by composition with f has a left adjoint. This depends on an existence theorem for
operadic left Kan extensions, which makes use of the concept of operadic colimits that
we introduce in this subsection.

Definition A.2.1. Suppose q: O — A°P is a non-symmetric oco-operad. Given a diagram
p: K — Ou we write (9[1] e = 0p) %0 (Oact)p/- A diagram p: K» — Oact is a weak
operadic colimit diagram if the induced map : (‘)?ﬁfﬁ ;= O?ﬁfp / is a categorical equiva-
lence.

A diagram p: K* — O, is an operadic colimit diagram if the composite functors

KD — Oact & Oact

K — Oact ~—°—>X€B7 Oact
are weak operadic colimit diagrams for all X € O.
Remark A.2.2. By [25, Proposition 2.1.2.1], the map v in the definition of weak operadic
colimits is always a left fibration, hence it is a categorical equivalence if and only if it is

a trivial Kan fibration.

Lemma A.2.3. Suppose O and P are non-symmetric co-operads, and p: K — O, and
G: L> — P,y are weak operadic colimit diagrams. Then the composite

77‘(K X Aop lz)b—)I(l> X Aop L* =0 XAODT

is also a weak operadic colimit diagram. Moreover, if p and G are operadic colimit dia-
grams, So s T.

Proof. Let 7 := 7|k x nop- Then we must show that the map (Opy) x 9’[1]),,/ (Opy x
T[l])a“ is a categorical equivalence. We have a commutative dlagram

(Opy x Pyt

(p.a)/ (Opy x Py’

\/

(Opy x Ppay)ast
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We clearly have an equivalence (Op; x T[l])?;fq) = O?f]fp /X T"[ilc]fq /> and so the top
horizontal map is the product of the equivalences O?ﬁfp ;= O‘E‘fﬁp , and T?ﬁfq ;= T[“f]t o/
and hence is an equivalence. By the 2-out-of-3 property it therefore suffices to show that
the left diagonal map in the diagram is an equivalence. But this is true because the
inclusion (K x L)* < K" x L* is right anodyne. (By [25, Proposition 4.1.2.1] it suffices
to prove this inclusion is cofinal, and the criterion of “Theorem A”, [25, Theorem 4.1.3.1],
clearly holds in this case.) It is then clear from the definition of the monoidal structure

on (O X acp P)act that if p and g are operadic colimits, then so is 7. O

Proposition A.2.4. Let O be a non-symmetric co-operad, and suppose given finitely many
operadic colimit diagrams p;: K} — Oact, 1 = 0,...,n. Let K :=[], K;, and let p be the
composite

K* = [ K7 = [ Oact ~ Env(0)j) = Oace.

3 (2

Then p is an operadic colimit diagram.
Proof. As [28, Proposition 3.1.1.8]. O

Lemma A.2.5. Suppose K is a sifted simplicial set, and 'V is a monoidal co-category that
1s compatible with K -indexed colimits. Then ¢: Vfi] — fon] preserves K -indexed colimits
for all ¢ in A°P.

Proof. As [28, Lemma 3.2.3.7]. O

®

[m]

Proposition A.2.6. Let V be a monoidal co-category, and let p: K® — V2 | be a diagram.

Then p is a weak operadic colimit diagram if and only if the composite
K> —Vve sV
[m]
is a colimit diagram, where r is the unique active map [m] — [1].
Proof. This follows as in the proof of [28, Proposition 3.1.1.7]. O

Corollary A.2.7. Let V be a monoidal co-category, and let p: K® — V%n] be a diagram.
Then p is an operadic colimit diagram if and only if for every object Y € V€ the com-
posites

K" —ve —SLve e

K> — Vg X8 ve

m] —V

are colimit diagrams in V, Y lies over [n] in A°P and r is the unique active map
[n 4+ m] — [1].



702 D. Gepner, R. Haugseng / Advances in Mathematics 279 (2015) 575-716

Proposition A.2.8. Let ¢: O — A°P be a non-symmetric co-operad, and suppose given a
map h: A x K¥ — Oue; write b := E|{i}xK>, 1=20,1. Suppose that

a) For every vertex x of K, the restriction h|a1x sy is a g-coCartesian edge of O.
{=}
(b) The composite map

Al x {oo} = Al x K» Ly 9 L5 A°P
is am equivalence in A°P.

Then hg is a weak operadic colimit diagram if and only if hy is a weak operadic colimit
diagram. Moreover, if O is a monoidal co-category, then hg is an operadic colimit diagram
if and only if hy is an operadic colimit diagram.

Proof. As [28, Proposition 3.1.1.15]. O

Corollary A.2.9. Let V and W be monoidal co-categories compatible with small colimits,
and suppose F: V€ — W® is a monoidal functor such that Fj1;:V — W preserves colimits.
Then composition with F preserves operadic colimit diagrams.

Proof. Suppose p: K> — V¥ is an operadic colimit diagram. We wish to show that the
composite map K> — W is also an operadic colimit diagram. By Proposition A.2.8 we
may assume that p lands in a fibre V%n]. We now apply Corollary A.2.7 to conclude that
it suffices to show that the composites

—QY W®

> ® ®
K —>V[m]—>W (ntm

[m]

| W

K> = Ve —WE ZEswe W,
where r is the unique active map [n + m] — [1], are colimit diagrams, for all [n] and all
Y € V([zi]. Observe that the functors r(—® YY) and m(Y @ —) are equivalently given by
w(ri(=)@er(Y)) and p(r)(Y)@r/(-)), where r': [m] — [1], r": [n] — [1] and p: [2] — [1]
are the unique active maps between these objects. Since py preserves colimits in each
variable in both V® and W®, it suffices to show that
K> — W®

[m

W
is a colimit diagram. But we have a commutative diagram

Ve, WE,

l l

VTW

so this is true since K* — Vﬁn] — V is a colimit diagram and F[;) preserves colimits. O
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Proposition A.2.10. Let ¢:V€ — A°P be a monoidal co-category compatible with
K -indexed colimits for some simplicial set K. Suppose given a diagram p: K> — VZ,
that sends the cone point oo to an object in V. Let §: K> — V€ be a coCartesian lift of
D along the active maps to [1]. Then p is an operadic colimit diagram if and only if g is
a colimit diagram. In particular, given a diagram p: K — Vf’ct there exists an operadic

colimit diagram p: K®> — V. extending p that sends co to an object of V.

Proof. As [28, Proposition 3.1.1.20]. O

A.3. Operadic Kan extensions

We now discuss operadic Kan extensions in the non-symmetric case. Here we work
in slightly more generality than for the corresponding results in [28] — the proof of
Lurie’s existence theorem can also be used to construct operadic Kan extensions along
a restricted class of morphisms of generalized non-symmetric oco-operads.

Definition A.3.1. Let C be an oo-category. A C-family of (generalized) non-symmetric
oco-operads is a categorical fibration m: O — A°P x € such that:

(i) For C € €, X € O¢, and « an inert morphism in A°P from the image of X, there
exists a coCartesian morphism X — Y over a in O¢.

(ii) For X € Oc with image [n] € A% let px: K, — O be a coCartesian lift of
Pn): Kn) — AP (or consider a lift of SFS] s A°P for a generalized non-symmetric
oo-operad). Then px is a 7-limit diagram.

(iii) For each C' € €, the induced map O¢c — A°P is a (generalized) non-symmetric
oo-operad.

A Al-family will also be referred to as a correspondence of (generalized) non-symmetric
oo-operads.

Definition A.3.2. We say a correspondence M — A°P x Al of generalized non-symmetric
oco-operads is constant over [0] if the restriction Mg — Al is a coCartesian fibration
whose associated functor A' — Cat,, is an equivalence.

Definition A.3.3. Let M — A° x A! be a correspondence from a generalized non-
symmetric oo-operad A to a generalized non-symmetric oo-operad B that is constant
over [0] and such that Ajo) and Bjg; are Kan complexes, let O be a non-symmetric
oo-operad, and let F: M — O be a map of generalized non-symmetric co-operads. The
map F is an operadic left Kan extension of F = F|4 if for every B € B(y) the composite
map

((Mact)/B Xwv ./Cl)[> — (M/B)D - M L) O

is an operadic colimit diagram.
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Theorem A.3.4.

(i) Suppose given a A'-family of generalized non-symmetric oo-operads M — A°P x Al
constant over [0] and such that My ; is a Kan complex fori = 0,1, a non-symmetric
oco-operad O and a commutative diagram of gemeralized non-symmetric oo-operad
family maps

M xas {0} —— 0

| ]

M —— A%,

Then there exists an operadic left Kan extension f of f if and only if for every B
in M xa1 {1}, the diagram

(Mact) /B Xa1 {0} = M xa1 {0} AN
can be extended to an operadic colimit diagram lifting
(Mace)/ X a1 {0})7 — M — A°P.
(ii) Suppose given a A™-family of generalized non-symmetric co-operads M — A°P x A™
with n > 1 such that all sub-A'-families are constant over [0] and the fibres Moy,

are all Kan complezes, a non-symmetric co-operad O, and a commutative diagram
of generalized non-symmetric co-operad family maps

MxMAg#O

L]

M——— AP

such that the restriction of f to M xan ALY} is an operadic left Kan extension of
JInsangoy- Then there exists a morphism f:M — O extending f.

Proof. As [28, Theorem 3.1.2.3]. O
A.4. Free algebras

Let V be a monoidal co-category compatible with small colimits and let f: A — B be
a functor of generalized non-symmetric co-operads that is an equivalence over [0] and

such that A and Bl are Kan complexes. Using the existence theorem for operadic left
Kan extensions, we can now construct an adjoint to the functor
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[T Algg(V) — Alg, (V)
given by composition with f. This is given by forming free algebras:

Definition A.4.1. Let A and B be generalized non-symmetric oco-operads, let O be a
non-symmetric oo-operad, and let f: A — B be a map of generalized non-symmetric
oc-operads that is an equivalence over [0] and such that A and By are Kan complexes.
Suppose A € Alg,(0), B € Algz(0), and ¢: A — f*B is a map of A-algebras in O. For
b e By, let (Aact) /b := A X8 (Bact) /p- Then A and B induce maps «, 3: (Aact) /p — Oact
and ¢ determines a natural transformation 7:« — f. The map S clearly extends to
G- (Aact) /b = (Oact)/B(p)- Since the projection

(Oact>/B(b) = Oact XASLZ (AZ&)/["]

(where b lies over [n] € A°P) is a right fibration, we can lift 7 to an essentially unique
map 7: @ — B (over A°). We say that ¢ exhibits B as a free B-algebra generated by A
if for every b € B[y) the map @ determines an operadic g-colimit diagram (.Aact)';b — 0.
Remark A.4.2. The map ¢: A — f*B above determines a map
H: (A X Al)HAX{l} B — 0 x AL
Choose a factorization of H as
H: (A x AN Iy B 5 2% 0 x Al

where H' is a categorical equivalence and M is an oo-category. The composite map
M — A° x Al exhibits M as a correspondence of non-symmetric oo-operads. Then the
map ¢ exhibits B as a free B-algebra generated by A if and only if H” is an operadic

left Kan extension.

Proposition A.4.3. Suppose ¢: A — f*B exhibits B as a free B-algebra in O generated
by A. Then for every B’ € Algy(0) composition with ¢ induces a homotopy equivalence

Map(B, B") — Map(A, f*B’).
Proof. As [28, Proposition 3.1.3.2]. O

Proposition A.4.4. Suppose A € Alg 4(0). Then there exists a free B-algebra B generated
by A if and only if for every b € By) the induced map

(Aact)/b — Aact A_> 9]
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can be extended to an operadic colimit diagram lying over

(Aact)ljb — Bact — Aop

act*
Proof. As [28, Proposition 3.1.3.3]. O

Corollary A.4.5. Let O be a non-symmetric co-operad, and suppose f: A — B is a map
of generalized non-symmetric co-operads that is an equivalence over [0] and such that
Ay and By are Kan compleres. The functor f*:Algs(0) — Alg,(0) admits a left
adjoint fi, provided that for every A-algebra A in O and every b € B, the diagram

(Aact)/b — ‘Aact A—> 0
can be extended to an operadic colimit diagram lying over

(‘Aact)?b — Bact — Aop

act*
Proof. As [28, Corollary 3.1.3.4]. O
Combining this with Proposition A.2.10, we get:

Theorem A.4.6. Suppose V is a monoidal co-category compatible with k-small colimits
for some uncountable reqular cardinal k, and f: A — B is a map of generalized non-
symmetric co-operads that is an equivalence over [0] and such that Ay and Bjo are Kan
complexes, with A and B essentially k-small. Then the functor f*: Algy (V) — Alg 4 (V)
admits a left adjoint f.

Lemma A.4.7. Suppose V and W are monoidal co-categories which are compatible with
small colimits, and let F:V® — W® be a monoidal functor such that F:V — W
preserves colimits. Then for every generalized non-symmetric co-operad M the induced
functor

Fu: Alg(V) = Algy (W)

preserves free algebras, i.e. for all maps of generalized non-symmetric co-operads f: N —
M that are equivalences over [0] and such that Mg and Nyg are Kan complexes, the
natural map fiFy — Fyfi (adjoint to Fy — Fy f*fi ~ [*F. fi) is an equivalence.

Proof. This follows immediately from Corollary A.2.9. 0O
We can also give a more explicit description of the left adjoint 7y¢1, where M is

a generalized non-symmetric oo-operad such that My is a Kan complex. Recall that
by Proposition 3.4.5 if O is a non-symmetric co-operad then we have Algy (0) ~
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Fun(Mjj, Opg7). We can therefore regard 7, as a functor
Fun(JV[[l], Om) — AlgM(O).

Definition A.4.8. For [n] € A° and X € My, let P}, be the full subcategory of
Miriv Xt M/ x of morphisms ¥ — X over the active map [n] — [1].

Suppose V is a monoidal oo-category and F:M[;; — V is a functor. Let F be the
associated Myiv-algebra in V. We have a canonical map h: (PJ)‘QE n X Al — M, a natural
transformation from fP%n — Miriv = M to the constant functor at X. Since V¥ — A°P
is coCartesian, from F o h we get a coCartesian natural transformation A from a functor
g: ﬂ’g‘?}n — V to the constant functor at F'(X). We let P}, y(F') denote a colimit of g, if
it exists.

Proposition A.4.9. Suppose V is a monoidal co-category compatible with k-small colim-
its, and M is a r-small generalized non-symmetric oo-operad such that My is a Kan
complex. Suppose moreover that A is an M-algebra in V and F:M[y) — V is a functor.
Then a map F — (mv)*A is adjoint to an equivalence T F == A if and only if for
every X € My the maps Py x (F) — A(X) exhibit A(X) as a coproduct

[T Prex®) —AX)
[n]eAcp

Proof. As [28, Proposition 3.1.3.13]. O
A.5. Colimits of algebras in monoidal co-categories

In this subsection we show that colimits exist in the oo-categories Algy (V) for all
small non-symmetric oco-operads O when V is a monoidal oco-category compatible with
small colimits. We first consider the case of sifted colimits:

Lemma A.5.1. Suppose K is a sifted simplicial set and 'V is a monoidal co-category that
is compatible with K-indexed colimits. Then for every ¢: [n] — [m] in A°P the associated
functor ¢r: V%’I] — V%’n] preserves K -indezed colimits.

Proof. As [28, Lemma 3.2.3.7]. O

Lemma A.5.2. Suppose p: X — S is a coCartesian fibration, and let 7: K* — Fun(Al, X)
be a colimit diagram such that for every i € K the edge 7(i,0) — 7(i, 1) is coCartesian.
Then the edge 7(c0,0) — 7(00,1) is also coCartesian.

Proof. Since colimits in functor categories are pointwise, we must show that for all x € X
the diagram
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Map y (colim; 7(4, 1), ) ———— Map x (colim; 7(4, 0), x)

| J

Mapg(colim; p7(i, 1), p(z)) —— Mapg(colim; p7(, 0), p(z))
is Cartesian, which is clear since limits commute. O

To describe sifted colimits of algebras, we need the following result, which is due to
Jacob Lurie — we thank him for explaining the proof to us.

Theorem A.5.3. Let K be a weakly contractible simplicial set. Suppose p: X — S is a
coCartesian fibration such that for all s € S the fibre X, admits K-indezed colimits, and
for all edges f:s — t in S the functor fi: Xy — Xy preserves K-indexed colimits. Then
for any map g:T — S,

(i) the oo-category Fung(T, X) admits K -indexed colimits,
(it) a map K* — Fung(T,X) is a colimit diagram if and only if for all t € T the
composite

KD — FunS(T, X) — Xg(t)

is a colimit diagram,

(iii) if E is a set of edges of T, the full subcategory of Fung(T, X) spanned by functors
that take the edges in E to coCartesian edges of X is closed under K-indexed
colimits in Fung (T, X).

Proof. The co-category Fung (T, X) is a fibre of the functor p,: Fun(7T, X) — Fun(T, S)
induced by composition with p. The functor p. is a coCartesian fibration by [25,
Proposition 3.1.2.1]. Since the functors fi preserve K-indexed colimits, by [25, Propo-
sition 4.3.1.10] a diagram g: K> — Fung(7, X) is a colimit diagram if and only if the
composite §': K* — Fung (T, X) — Fun(7T, X) is a p.-colimit diagram. By [25, Corol-
lary 4.3.1.11], K-indexed p,-colimits exist in Fun(T, X), which proves (i).

Moreover, a diagram in Fun(T, X) is a colimit diagram if and only if it is a p.-colimit
diagram and its image in Fun(7,S) is a colimit diagram. Since ¢’ lands in one of the
fibres of p., the projection to Fun(7,S) is constant, which means it is a colimit as K is
weakly contractible. Thus ¢’ is a p-colimit diagram if and only if it is a colimit diagram
in Fun(T, X). By [25, Corollary 5.1.2.3] this means that ¢’ is a colimit diagram if and
only if for all t € T the induced maps K* — X are colimit diagrams. A diagram in X
is a colimit if and only if it is a p-colimit and the projection to S is a colimit. Since K
is weakly contractible, applying [25, Proposition 4.3.1.10] we see that this is true if and
only if the induced map K” — X is a colimit diagram in X. This proves (ii).

Suppose e:t — t' is an edge of T and ¢: K — Fung(T, X) is a diagram such that
for all vertices k € K the functor ¢(k):T — X takes e to a p-coCartesian edge of X.
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Let g: K* — Fung(T, X) be a colimit diagram extending g. To prove (iii) we must show
that the functor g(co) also takes e to a coCartesian edge of X. From our description
of colimits in Fung (7T, X) it follows that this is equivalent to showing that coCartesian
edges of X are closed under colimits, which is true by Lemma A.5.2. 0O

Corollary A.5.4. Suppose K is a sifted simplicial set and 'V is a monoidal co-category that
is compatible with K -indexed colimits. Then for any generalized non-symmetric co-operad
p: M — A°P, we have:

(i) The co-category Funaoee (M, V®) admits K -indexed colimits.
(i) A map K> — Funaee (M, V?) is a colimit diagram if and only if for every X € M
the induced diagram K® — Vﬁx) is a colimit diagram.
(iii) The full subcategory Algy (V) of Funaer (M, V®) is stable under K -indexed colimits.
(iv) A map K* — Funaoee (M, V®) is a colimit diagram if and only if, for every X €
Mp, the induced diagram K* — 'V is a colimit diagram.
(v) The restriction functor Algy¢(V) — Fun(M;y}, V) detects K-indexed colimits.

Proof. Sifted simplicial sets are weakly contractible by [25, Proposition 5.5.8.7] so (i)—(iii)
follow from Theorem A.5.3 (which is implicit in the proof of [28, Proposition 3.2.3.1]).
Then (iv) and (v) follow as in the proof of [28, Proposition 3.2.3.1]. O

We now use this to show that the adjunction 7, 4 7y is monadic; we first check
that 75, is conservative:

Lemma A.5.5. Suppose V is a monoidal oco-category and M is a generalized non-
symmetric co-operad. Then the forgetful functor

Tae: Algy (V) — Algy, . (V) ~ Fun(Mp, V)
is conservative.

Proof. The oco-category Alg,(V) is a full subcategory of Funaoes (M, V®). Therefore a
map of algebras f: A — B is an equivalence in Alg,("V) if and only if it is an equivalence
in Funaor (M, V®). Applying Theorem A.5.3 to A%-indexed colimits, we see that a mor-
phism f: A — B is an equivalence in Funaer (M, V®) if and only if fx: A(X) — B(X)
is an equivalence in V® for all X € M. Thus equivalences are detected after restricting
to Mtriv- O

Corollary A.5.6. Suppose V is a monoidal co-category compatible with small colimits,
and M is a generalized non-symmetric co-operad such that My is a Kan complex. Then
the adjunction

(Tv0)r: Algay,,,, (V) = Algy (V): ()"

18 monadic.
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Proof. We showed that the functor 75 is conservative in Lemma A.5.5, and that it
preserves sifted colimits in Corollary A.5.4. The adjunction (7n)1 - 75 is therefore
monadic by [25, Corollary 5.5.2.9]. O

Corollary A.5.7. Suppose V is a monoidal co-category compatible with small colimits and
M is a generalized non-symmetric oo-operad such that Mg is a Kan complex. Then
Algy (V) has all small colimits. Moreover, if V is presentable, so is Algy(V).

This is an immediate consequence of the following general facts about monadic ad-
junctions:

Lemma A.5.8. Suppose F:C =D : U is a monadic adjunction such that C has all small
colimits, D has sifted colimits, and U preserves sifted colimits. Then D has all small
colimits.

Proof. Since D by assumption has all sifted colimits, it suffices to prove that D has
finite coproducts. Since C has coproducts and F' preserves colimits, the co-category D
has coproducts for objects in the essential image of F'.

Let A', ..., A" be a finite collection of objects in D. By [28, Proposition 4.7.4.14],
there exist simplicial objects A% in D such that each A% is in the essential image of F' and
|A%| ~ A%, Since coproducts of elements in the essential image of F' exist, we can form a
simplicial diagram []; A}. By [25, Lemma 5.5.2.3], the geometric realization |[[; A%| is
a coproduct of the A%’s. O

Proposition A.5.9. Suppose F:C = D : U is a monadic adjunction such that C is
k-presentable, D has small colimits, and the right adjoint U preserves k-filtered colimits.
Then D is k-presentable.

Proof. Since € is x-presentable, every object of € is a colimit of k-compact objects.
Since U preserves k-filtered colimits, F' preserves k-compact objects by Lemma 3.3.5.
Therefore every object in the essential image of F' is a colimit of k-compact objects. But
by [28, Proposition 4.7.4.14], every object of D is a colimit of objects in the essential
image of F', so every object of D is a colimit of k-compact objects. Since by assumption
D has all small colimits, this implies that D is x-presentable. 0O

Proof of Corollary A.5.7. Apply Lemma A.5.8 and Proposition A.5.9 to the monadic
adjunction T 413, O

Proposition A.5.10. Let M be a generalized non-symmetric oo-operad such that Mg is a
Kan complex, and let V and W be monoidal co-categories compatible with small colimits.
Suppose F:V® — W® s a monoidal functor such that Fi13:V — W preserves colimits.
Then the induced functor
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Fu: Algy (V) = Algy (W)
preserves colimits.

Proof. Write F"V for the induced functor Algye, (V) — Algy,, . (W). Under the equiv-
alences Algy, . (V) ~ Fun(My}, V) and Algyy, . (W) ~ Fun(M[;), W) this corresponds to
composition with Fj;), and so preserves colimits. Clearly 73, Fy ~ Firivrs.. Since 73 de-
tects sifted colimits, it follows that F, preserves sifted colimits. To prove that it preserves
all colimits, it thus remains to prove it preserves finite coproducts.

Since F' is a monoidal functor, by Lemma A.4.7 the functor F preserves free algebras,
ie Fumy, ~ TM’!F:TiV. Therefore F, preserves colimits of free algebras. Let A and B be
objects of Alg,(V) and let A, and B, be free resolutions of A and B. Then we have
natural equivalences

F. (ATl B) ~ F,(|As 11 B,|) ~ |F,(As 11 B,)| ~ |F,.(AJ) 1 F,.(B,)|
~ |F,(As)| T |F(Ba)| = F.(|As]) T Fi(|Ba|) = F.(A) T Fi(B),

so F, does indeed preserve coproducts. O

Proposition A.5.11. Suppose V and W are presentably monoidal oco-categories and
F:V® — W® s a monoidal functor such that the underlying functor F;:V — W pre-
serves colimits. Let g:'W — 'V be a right adjoint of Fo). Then there exists a lax monoidal
functor G:W® — V€ extending g such that for any small non-symmetric co-operad O
we have an adjunction

Proof. By Proposition A.5.10 the functor F: Algq (V) — Algq (W) is colimit-preserving,
and by Corollary A.5.7 these co-categories of O-algebras are presentable. It follows by
[25, Corollary 5.5.2.9] that F has a right adjoint

Ro: Algy (W) — Algy (V).

Moreover, since F, is natural in O so is Ry, by [25, Corollary 5.2.2.5]. Taking the un-
derlying spaces of the oo-categories of algebras, we see that R induces a natural
transformation p: Map(—, W®) — Map(—, V®) of functors (Opdss)°? — 8. The full sub-
category W® of W® spanned by objects coming from the full subcategory W& C ‘W
spanned by k-compact objects is a small non-symmetric co-operad. Applying Ryye to
the inclusion W® — W® gives compatible maps G*: W® — V. Combining these gives
G:W® — V9, Since every map O — W where O is a small non-symmetric co-operad
factors through W® for some &, we see that p is given by composition with G. More-
over, the functor Ry must also be given by composition with G, since Algy (W) is the
oo-category associated to the simplicial space Map(Q ® A®, W®).
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It remains to show that G is indeed a lax monoidal extension of g. This follows from
taking O to be the trivial non-symmetric co-operad AjY: then Alg A% (V) ~ V and

Algaer (W) =~ W, and under these identifications F corresponds to Fj;) and G to the
functor G[yj. Thus g and Gy are both right adjoint to F' and so must be equivalent. O

In the case of monoidal localizations we can explicitly identify this lax monoidal
structure on the right adjoint:

Lemma A.5.12. Suppose O is a small non-symmetric co-operad, V is a monoidal
oo-category and L:V — W is a monoidal localization with fully faithful right adjoint
i: W — V. Then the monoidal functor L® and the lax monoidal inclusion i®: W€ «— V&
of Proposition 3.1.22 induce an adjunction

LY : Algy(V) = Algy(W) = if.
Moreover, i% is fully faithful.
Proof. Since L?® is left adjoint to i®, it is easy to see that we get an adjunction
L2 : Funaer (0,V®) 2 Funaes (0, W) 1 i%.

But this clearly restricts to an adjunction between the full subcategories Algq (V) and
Alg (W), as required.

To prove that i€ is fully faithful, it suffices to show that for every O-algebra A in
W the counit L&i®A — A is an equivalence. By Lemma A.5.5 we need only show that
the induced natural transformation of functors Oy — W is an equivalence, i.e. that for
every X € Oy the map LiA(X) — A(X) is an equivalence in W, which is true since i is
fully faithful. O

A.6. Approximations of co-operads

In this subsection we use Lurie’s theory of approximations to give a criterion for a
map M — O to exhibit a non-symmetric oo-operad O as the operadic localization Lgen M
of a generalized non-symmetric co-operad M.

Definition A.6.1. Suppose M is a generalized non-symmetric oo-operad, O is a non-
symmetric oo-operad, and f:M — O is a fibration of generalized non-symmetric
oc-operads. Then f is an approzimation if for all C € M and a: X — f(C) active
in O there exists an f-Cartesian morphism &: X — C lifting o, and a weak approzima-
tion if given C € M and a: X — f(C) an arbitrary morphism in O, the full subcategory
of

Myc X050, Ox//1(0)



D. Gepner, R. Haugseng / Advances in Mathematics 279 (2015) 575-716 713

corresponding to pairs (8:C' — C,v: X — f(C")) with ~ inert is weakly contractible.
More generally, a map f:M — O is a (weak) approximation if it factors as a composition

LA, VU SN

where f’ is an equivalence of generalized non-symmetric co-operads and f” is a categor-
ical fibration that is a (weak) approximation.

Proposition A.6.2. An approximation is a weak approximation.

Proof. As [28, Lemma 2.3.3.10]. O

Proposition A.6.3. A fibration of generalized non-symmetric co-operads f: M — O, where
O is a non-symmetric co-operad, is a weak approzimation if and only if for every object
C € M and every active morphism a: X — f(C) in O, the co-category M c X0, ;) { X}
is weakly contractible.

Proof. As [28, Proposition 2.3.3.11]. O

Proposition A.6.4. Let f: M — O be a fibration of generalized non-symmetric co-operads,
where O is a non-symmetric oo-operad. If Oy is a Kan complex, then f is a weak
approximation if and only if f is an approximation.

Proof. As [28, Corollary 2.3.3.17]. O

Theorem A.6.5. Suppose f: M — O is a weak approximation such that fj1): My;; — Opy
is a categorical equivalence. Then for any non-symmetric co-operad P, the induced map

[T Algo (P) = Algy (P)
s an equivalence.
Proof. As [28, Theorem 2.3.3.23]. O

Corollary A.6.6. Suppose f: M — O is a weak approzimation such that fj) is a categorical
equivalence. Then the induced map of non-symmetric oco-operads LgenM — O is an
equivalence.

Proposition A.6.7. Suppose f:O — P is a map of non-symmetric co-operads, and Py is
a Kan complex. The commutative diagram
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*

f
Algy(8) —— Algy(8)

* *
T.’PJ/ l"'o

Fun(?,8) 7 Fun(0, 8)
&

induces a natural transformation o: 7o o f[*1] — [T oty If o induces an equivalence
ToffyA == [*Tp 1A where A is the constant functor P — 8 with value *, then f is an
approximation.

Proof. As [28, Proposition 2.3.4.8]. O

Corollary A.6.8. Let O be a non-symmetric oco-operad such that Oy is a Kan complex, and
let f:M — O be a map of generalized non-symmetric oo-operads such that fj: My —
Opy s an equivalence. Write A for the constant functor My =~ O — 8 with value *.
If the natural map 1A — f*101A is an equivalence, then f exhibits O as the operadic
localization of M.

Proof. Applying Proposition A.6.7 to the induced map f’: LgenM — O, we see that this
map is an approximation and induces an equivalence LgenM[1) — Of1). By Theorem A.6.5,
it follows that f’ is an equivalence. O

Corollary A.6.9. Let O be a non-symmetric oco-operad such that Oy is a Kan complez, and
J:M — O be a map of generalized non-symmetric oo-operads such that f1): My — Opy
is an equivalence and Mg is a Kan complex. If the induced map (Mact) /2 — (Qact) /2 15
cofinal for all x € My = Op, then f exhibits O as the operadic localization of M.

Proof. By Corollary A.6.8 it suffices to show that the natural map of M-algebras
™A = f*To,1A is an equivalence. Since 75 detects equivalences by Lemma A.5.5, to
see this it suffices to show that for all z € M[;; the map of spaces (Tt 1 4)(x) — (70,14)(x)
is an equivalence. Since Mg is a Kan complex, we can describe 1A using the results
of §A.3. We thus see that this map can be identified with the map

colim x — colim *
(Mact)/z (oact)/z

of colimits induced by (Mact) /2 — (Oact) /- If this map is cofinal, then the induced map
on colimits is an equivalence. 0O

Remark A.6.10. The same argument shows that for any presentably monoidal co-cate-
gory V the natural map 7 F' — f*70,1F is an equivalence for any functor F: M;; — V.
It follows that 7y and 7o, are given by the same monad on Fun(M;;},V), hence the
oo-categories of algebras Alg,((V) and Algy (V) must be equivalent, since they are both
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oo-categories of algebras for this monad. An alternative proof of Corollary A.6.9 (not
using the notion of approximation) should be possible by embedding any small non-
symmetric oc-operad P in a presentably monoidal oco-category P and showing that

~ ~

Algy(P) and Algy (P) are the same subcategory of Alg,(P) ~ Algy(P).
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