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We set up a general theory of weak or homotopy-coherent en-
richment in an arbitrary monoidal ∞-category. Our theory of 
enriched ∞-categories has many desirable properties; for in-
stance, if the enriching ∞-category V is presentably symmetric 
monoidal then CatV∞ is as well. These features render the the-
ory useful even when an ∞-category of enriched ∞-categories 
comes from a model category (as is often the case in exam-
ples of interest, e.g. dg-categories, spectral categories, and 
(∞, n)-categories). This is analogous to the advantages of 
∞-categories over more rigid models such as simplicial cat-
egories — for example, the resulting ∞-categories of functors 
between enriched ∞-categories automatically have the correct 
homotopy type.
We construct the homotopy theory of V-enriched ∞-categories 
as a certain full subcategory of the ∞-category of “many-
object associative algebras” in V. The latter are defined using 
a non-symmetric version of Lurie’s ∞-operads, and we develop 
the basics of this theory, closely following Lurie’s treatment 
of symmetric ∞-operads. While we may regard these “many-
object” algebras as enriched ∞-categories, we show that it is 
precisely the full subcategory of “complete” objects (in the 
sense of Rezk, i.e. those whose spaces of objects are equiv-
alent to their spaces of equivalences) that are local with re-
spect to the class of fully faithful and essentially surjective 
functors. We also consider an alternative model of enriched 
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∞-categories as certain presheaves of spaces satisfying ana-
logues of the “Segal condition” for Rezk’s Segal spaces. Lastly, 
we present some applications of our theory, most notably the 
identification of associative algebras in V as a coreflective sub-
category of pointed V-enriched ∞-categories as well as a proof 
of a strong version of the Baez–Dolan stabilization hypothesis.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Over the past decade, taking the higher-categorical nature of various mathematical 
structures seriously has turned out to be a very fruitful idea in several areas of math-
ematics. In particular, the theory of ∞-categories (or more precisely (∞, 1)-categories) 
has found many applications in algebraic topology and in other fields. However, despite 
the large amount of work that has been carried out on the foundations of ∞-category 
theory, above all by Joyal and Lurie, the theory is in many ways still in its infancy, and 
the analogues of many concepts from ordinary category theory remain to be explored. 
In this paper we begin to study the natural analogue in the ∞-categorical context of one 
such concept, namely that of enriched categories.

Enriched categories in the usual sense are ubiquitous in modern mathematics: the 
morphisms between objects in naturally occurring categories often have more structure 
than just that of a set. However, there are a number of important situations where the 
classical theory of enriched categories has turned out to be insufficient in ways that lead 
us towards considering the higher-categorical version of enrichment. In algebraic topol-
ogy, for example, the categories that arise typically have a space of morphisms between 
any two objects, but it is usually only the (weak) homotopy types of these spaces that 
matter. Naïvely, we might guess that this means we should consider these categories as 
enriched in the homotopy category of spaces, but this turns out to lose information that 
is important for most applications. We are therefore forced to consider the homotopy 
theory of categories enriched in topological spaces (or any other model for the homotopy 
theory of spaces, such as simplicial sets), with respect to the appropriate notion of weak 
equivalences, which takes us outside the usual theory of enriched categories. It is possible 
to consider this homotopy theory in the context of Quillen’s model categories (as was 
originally done by Bergner [8] for simplicial categories), but the resulting model struc-
tures are in some ways not very well-behaved, essentially because these “strictly enriched” 
categories are in a sense too rigid. This makes it hard to understand the correct homo-
topy types of the spaces of functors between them, and also makes homotopy-invariant 
constructions (such as homotopy limits and colimits) problematic to set up.

An additional problem is that many naturally occurring composition laws between 
spaces are not strictly associative, but only associative up to coherent homotopy. This 
makes them difficult to model as simplicial or topological categories. It is therefore 
often more convenient to work with a notion of “category enriched in spaces” where 
composition of morphisms is only associative up to coherent homotopy. This is the idea 
behind the theory of ∞-categories. Roughly speaking, the notion of ∞-category is a 
generalization of the notion of category where in addition to objects and morphisms we 
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also have homotopies between morphisms, homotopies between homotopies, and so on, 
and composition is only associative up to a coherent choice of higher homotopies. There 
are several ways to make this idea precise, such as Segal categories, complete Segal spaces, 
and quasicategories. It turns out that working with ∞-categories also avoids the other 
problems with simplicial or topological categories mentioned above, such as the difficulty 
of constructing functor categories.

A similar situation arises in other areas of mathematics, such as algebraic geometry 
or representation theory, where there are many examples of derived categories. These 
have traditionally been thought of as additive categories, which is to say categories en-
riched in abelian groups, equipped with the additional data of a triangulation. Recently, 
however, it has been understood that derived categories, or more generally triangu-
lated categories, are not rich enough for many applications — the extra structure of 
the triangulation must be replaced by the more refined and intrinsic notion of a dif-
ferential graded structure, i.e. an enrichment in chain complexes. The correct notion of 
an equivalence between these dg-categories does not require a dg-functor to be given 
by isomorphisms on chain complexes of maps, however — instead, the functor need 
only induce quasi-isomorphisms. On the other hand, it is again not enough to consider 
these categories as simply enriched in the homotopy category of chain complexes (i.e. 
the derived category of abelian groups): just as a differential graded algebra (or more 
generally an A∞-algebra) is a much richer and more subtle object than a homotopy-
associative multiplication on a chain complex, the composition in a dg-category contains 
far more information than an enrichment in the homotopy category of chain com-
plexes.

Homotopy-coherent compositions also occur in this context — a key example here 
is the Fukaya categories of symplectic geometry. These can often be described using 
A∞-categories, but unfortunately the theory of A∞-categories is not as well-behaved as 
a replacement for that of dg-categories as ∞-categories are as a replacement for simplicial 
categories.

A third example of this type is spectral categories (or categories enriched in spectra), 
of which there are many interesting examples in algebraic topology. These are much more 
general than dg-categories, and tend to arise in examples where the mapping spectra can 
only be extracted up to homotopy. To emphasize the subtleties of the situation, the very 
existence of a symmetric monoidal model for the homotopy theory of spectra (under the 
smash product) was only fairly recently resolved, after being an open question for several 
decades. Moreover, in this context no notion of homotopy-coherent enrichment has so far 
been proposed; this is a problem, for example because many important functors that are 
known to preserve A∞-structures, such as algebraic K-theory or topological Hochschild 
homology, cannot be realized as lax monoidal functors to a model category of spectra.

Now, just as spaces are the higher-categorical analogue of sets, spectra are the higher 
categorical analogue of abelian groups or chain complexes, and the sophisticated nature 
of these objects means that we require a more conceptual and less ad hoc approach to 
the homotopy theory of spectral categories than what is often sufficient in the theory 
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of dg-categories. One way to do this is to set up model category structures on enriched 
categories — it is possible to treat the homotopy theory of dg-categories [40], spectral 
categories [41], or even categories enriched in other sufficiently nice monoidal model 
categories [25,7,39,32] in this way. However, the resulting model categories suffer from 
the same problems as that of simplicial categories. In the case of dg-categories, for 
example, the correct spaces of dg-functors have only recently been explicitly described 
by Toën [43], using a fairly complex construction; there are earlier constructions of 
functor categories between A∞-categories [29], but these are also problematic.

In this paper we propose a different approach, namely to set up a general the-
ory of weak or homotopy-coherent enrichment. Specifically, we will define and study 
∞-categories enriched in monoidal ∞-categories, which are ∞-categories equipped with 
a tensor product that is associative and unital up to coherent homotopy. This the-
ory encompasses, for example, analogues of spectral categories and dg-categories where 
composition is only associative up to coherent homotopy. For the former we consider 
∞-categories enriched in the ∞-category of spectra, while for the latter we enrich in the 
derived ∞-category of abelian groups, in the sense of [28, §1.3.2], i.e. the ∞-category ob-
tained by inverting the quasi-isomorphisms between chain complexes of abelian groups. 
The resulting homotopy theories of enriched ∞-categories are much better behaved than 
those of strictly enriched categories — for example, we have naturally defined enriched 
∞-categories of functors between enriched ∞-categories. Moreover, the resulting homo-
topy theories are equivalent to those of ordinary enriched categories, as is proved in [19]. 
Thus, our theory gives a more flexible approach to the homotopy theory of dg-categories 
and spectral categories, which we expect will make many construction in these settings 
easier to carry out.

The idea of “weak” enrichment is also implicit in the concept of higher category 
theory itself: an n-category should have k-morphisms between (k − 1)-morphisms for 
k = 1, . . . , n, so there is an (n − 1)-category of maps between any two objects. As is well 
known, however, to obtain a good notion of n-category for n > 2 it is not sufficient to 
just consider n-categories as strictly enriched in (n − 1)-categories, as in most naturally 
occurring examples composition is only associative up to invertible higher morphisms. 
We can avoid this issue by instead applying our ∞-categorical theory of enrichment: 
iterating the enrichment procedure starting with the category of sets gives an induc-
tively defined notion of fully weak n-category. Starting instead with spaces we obtain 
a theory of (∞, n)-categories, and we can also similarly define (weak) (n, k)-categories, 
which are n-categories where the i-morphisms are all invertible for i > k. Moreover, the 
resulting homotopy theories are equivalent to those of existing models for n-categories 
and (∞, n)-categories (as is also proved in [19]).

Thanks to the foundational work of Lurie, we are able to set up our theory of en-
richment entirely within the context of ∞-categories (rather than working with model 
categories, say). Apart from greater generality, working in this setting gives a theory 
with many good properties, including the following:
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(a) Weak (or homotopy-coherent) enrichment is the only natural notion of enrich-
ment which is possible in this language, which allows us to define our enriched 
∞-categories in the obvious way as “many-object associative algebras” in a given 
monoidal ∞-category. (In other words, the ∞-categorical analogue of “strictly en-
riched” categories automatically results in the appropriate “weakly enriched” theory.)

(b) It is both easy and natural to consider enriched categories with spaces of objects 
rather than just sets of objects, which turns out to make the resulting homotopy 
theory both nicer and simpler to set up, analogously to the way in which (complete) 
Segal spaces are better behaved than Segal categories.

(c) We automatically get very good naturality properties, some of which would have 
been difficult even to formulate in a model-categorical framework — for example, 
our ∞-categories are natural with respect to functors between monoidal ∞-categories 
that are lax monoidal in the appropriate ∞-categorical sense. This means that we can 
easily apply functors such as group completion, algebraic K-theory, and topological 
Hochschild homology (which are lax monoidal as functors of ∞-categories, but do 
not arise from lax monoidal functors between model categories) to construct spectral 
∞-categories.

(d) We obtain the correct ∞-categories of enriched functors between enriched ∞-cate-
gories simply as the internal Hom objects right adjoint to the natural tensor product 
of enriched ∞-categories. From the point of view of the model-categorical approach 
to enrichment this is in some sense the most subtle and useful feature — subtle 
because the homotopically correct internal Hom must be invariant under enriched 
equivalences (the primary defect of simplicial categories as a model for ∞-categories) 
and useful because the existence of these functor ∞-categories makes constructions 
in, and the further development of, enriched higher category theory possible.

(e) Beyond just constructing a homotopy theory, our theory gives a good setting in 
which to develop ∞-categorical analogues of many concepts from enriched category 
theory, as we hope to demonstrate in future work.

In addition to setting up the homotopy theory of enriched ∞-categories, we also con-
struct several non-trivial examples: We show that Lurie’s stable ∞-categories from [28, 
§1.1] are all enriched in the ∞-category of spectra, and that the R-linear ∞-categories of 
[27, §6] are enriched in the ∞-category of R-modules, where R is an E2-ring spectrum. 
Moreover, we prove that every closed monoidal ∞-category is enriched in itself. This 
gives us, for example, the natural n-category of functors between any two n-categories, 
generalizing the familiar fact that the category of categories is enriched over itself.

We also discuss a number of simple applications of the theory. As mentioned above, 
we provide a reasonable definition of the ∞-category of weak (n, m)-categories for any 
n and m, which has the advantage of not relying on families of diagrams parametriz-
ing coherence conditions and which agrees with those of Barwick, Bergner, Rezk, Joyal, 
and others. In this context we give a proof of “Baez–Dolan stabilization” for (weak) 
n-categories (generalizing that of Lurie for (n, 1)-categories). This is the idea that, for 
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m ≥ n + 2, an m-tuply monoidal weak n-category is precisely an (n + 2)-tuply monoidal 
weak n-category (for example, putting two compatible monoidal structures on a cat-
egory makes it a braided monoidal category, while three or more monoidal structures 
makes it symmetric monoidal). We also show that (for m ≤ ∞ and m ≥ k �= ∞) an 
En-monoidal (m, k)-category is the same thing as an (m +n, k+n)-category with a single 
(distinguished) object and a single j-morphism for j = 1, . . . , n − 1.

The theory we set up in this article is the first completely general theory of weak en-
richment. Weak enrichment in Cartesian monoidal model categories has previously been 
defined as Segal enriched categories as studied by Pellissier [33], Lurie [26], and Simp-
son [38] (generalizing Bergner’s model structure on Segal categories [9]). It is important 
to note that many of the interesting examples of enriched categories are cases (such as 
abelian groups, chain complexes, and spectra) in which the monoidal structure is not 
Cartesian; so, while more complicated to describe, allowing for non-Cartesian enrichment 
is necessary to support the standard examples of interest.

In the non-Cartesian case, there is a theory of A∞-categories, which gives a notion 
of weak enrichment in chain complexes, and more recently Bacard [1,2] has set up a 
model-categorical theory of weak enrichment in a class of symmetric monoidal model 
categories that can be applied to many interesting examples. A definition of enriched 
∞-categories different from ours has also been given by Lurie [28, Definition 4.2.1.28], 
but he does not develop this theory beyond defining the objects. We will see in §7 that 
in many cases we can extract an enriched ∞-category in our sense from one of Lurie’s, 
and we hope to be able to extend this construction to a comparison between our theory 
and Lurie’s in the future.

1.1. Overview

In §2 we introduce our definition of enriched ∞-categories in terms of (generalized) 
non-symmetric ∞-operads, and motivate it by explaining how it relates to ordinary 
enriched categories.

In §3 we briefly describe the non-symmetric version of Lurie’s theory of (generalized) 
∞-operads, and prove some (straightforward, for the most part) extensions of Lurie’s 
results. The most technical results, particularly those building towards the construction 
of colimits of algebras, have been relegated to Appendix A.

The theory of ∞-operads lets us define, for a monoidal ∞-category V, an ∞-category 
Algcat(V) of V-enriched ∞-categories; this is our object of study in §4. The main result 
is that if the ∞-category V is presentable and its tensor product preserves colimits in 
each variable, then this ∞-category is also presentable. We also compare this model of 
enriched ∞-categories to a certain ∞-category of presheaves that satisfy analogues of 
the Segal condition for Segal spaces.

In §5 we construct the correct ∞-category of enriched ∞-categories by inverting the 
fully faithful and essentially surjective functors in Algcat(V). Here we prove the main the-
orem of this article: we can obtain this localization as the full subcategory of Algcat(V)
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spanned by the complete V–∞-categories — those V–∞-categories C such that the un-
derlying space of objects in C is equivalent to the classifying space of equivalences in C. 
We also prove that the resulting ∞-category has the expected naturality properties.

In §6 we describe some simple applications of our construction: First we set up a theory 
of (n, k)-categories and prove the “homotopy hypothesis” in this setting. We then prove 
that enriching in an (n, 1)-category gives an (n +1, 1)-category of enriched ∞-categories; 
from this the Baez–Dolan stabilization hypothesis for k-tuply monoidal n-categories fol-
lows easily if we define n-categories to be (∞, n)-categories enriched in sets. We also show 
that En-algebras in an En-monoidal ∞-category V embed fully faithfully into pointed
V-enriched (∞, n)-categories. This last result has a number of interesting corollaries, 
such as a description of En-monoidal ∞-categories as (∞, n +1)-categories with a single 
object and a single j-morphism for j < n, and a simple construction of endomorphism 
algebras.

In §7 we construct an important class of examples of enriched ∞-categories: If an 
∞-category C is right-tensored over a monoidal ∞-category V in such a way that the 
tensor product C ⊗ (–) has a right adjoint F (C, –) ∈ V for all C ∈ C, we show that 
C is enriched in V with the maps from C to D given by F (C, D). There are several 
interesting special cases: a closed monoidal ∞-category is enriched in itself, and all 
stable ∞-categories are enriched in the ∞-category of spectra. We prove this result by 
considering Lurie’s definition of enriched ∞-categories and observing that we can extract 
an enriched ∞-category in our sense by means of Lurie’s construction of an ∞-category 
of “enriched strings”.

Finally, in Appendix A we prove some more technical results about non-symmetric 
∞-operads.

1.2. Notation and terminology

In this article we will work throughout in the setting of (∞, 1)-categories, by which we 
mean (heuristically) higher categories in which the n-morphisms are invertible for n > 1. 
Specifically, we will make use of the theory of quasicategories, as, due to the work of Joyal 
and Lurie, it is currently by far the most highly developed theory of (∞, 1)-categories. 
Following Lurie we will refer to these objects as ∞-categories, however. We generally 
recycle the notation and terminology used by Lurie in [25,28]; here are some exceptions 
and reminders:

• Δ is the simplicial indexing category, with objects the non-empty finite totally or-
dered sets [n] := {0, 1, . . . , n} and morphisms order-preserving functions between 
them.

• Γop is the category of pointed finite sets (so, by our convention, Γ is the opposite of 
the category of pointed finite sets).

• Generic categories are generally denoted by single capital bold-face letters (A, B, C) 
and generic ∞-categories by single caligraphic letters (A, B, C). Specific categories 
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and ∞-categories both get names in the normal text font: thus the category of small 
V-categories is denoted CatV and the ∞-category of small V–∞-categories is denoted 
CatV∞.

• SetΔ is the category of simplicial sets, i.e. the category Fun(Δop, Set) of set-valued 
presheaves on Δ.

• S is the ∞-category of spaces; this can be defined as the coherent nerve N Set◦Δ of 
the full simplicial subcategory Set◦Δ of SetΔ spanned by the Kan complexes.

• We say a class of morphisms in an ∞-category satisfies the 2-out-of-3 property if 
given morphisms f : x → y and g: y → z, if any two out of f , g, g ◦ f are in the class, 
so is the third.

• If C is an ∞-category and A and B are objects of C, then we write MapC(A, B)
(or just Map(A, B) if the ∞-category C is obvious from the context) for the space 
of maps from A to B in C. In the context of quasicategories there are a number of 
explicit models for these mapping spaces as simplicial sets (cf. [25, §1.2.2], [12]), but 
for our purposes it suffices to think of MapC(A, B) as an object of the ∞-category 
of spaces. Constructions of such a “mapping space functor” MapC: Cop × C → S can 
be found in [25, §5.1.3] and [28, §5.2.1].

• To distinguish the ∞-categories of non-symmetric ∞-operads and their algebras 
from their symmetric counterparts we use a superscript “ns” for the non-symmetric 
versions and a superscript “Σ” for the symmetric versions. Thus the ∞-category 
of non-symmetric ∞-operads is denoted Opdns

∞ and the ∞-category of symmetric 
∞-operads OpdΣ

∞. However, we take the non-symmetric versions to be the default 
ones in this paper and thus often do not include the superscript — for example, if 
O and P are non-symmetric ∞-operads we will generally denote the ∞-category of 
O-algebras in P by AlgO(P).

• We make use of the elegant theory of Grothendieck universes to allow us to define 
(∞-)categories without being limited by set-theoretical size issues; specifically, we fix 
three nested universes, and refer to sets contained in them as small, large, and very 
large. When C is an ∞-category of small objects of a certain type, we generally refer 
to the corresponding ∞-category of large objects as Ĉ, without explicitly defining 
this object. For example, Cat∞ is the (large) ∞-category of small ∞-categories, and 
Ĉat∞ is the (very large) ∞-category of large ∞-categories.

• If C is an ∞-category, we write ιC for the interior or underlying space of C, i.e. the 
largest subspace of C that is a Kan complex.

• We write LFib(C) for the ∞-category of left fibrations over C (for example obtained 
from the covariant model structure on (SetΔ)/C). Similarly, we write Cart(C) and 
CoCart(C) for the ∞-categories of Cartesian and coCartesian fibrations to C, re-
spectively, i.e. the ∞-categories associated to the Cartesian and coCartesan model 
structures on (Set+Δ)/C.

• We denote by Pres∞ the ∞-category of presentable ∞-categories and colimit-
preserving functors.
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• If f : C → D is left adjoint to a functor g: D → C, we will refer to the adjunction as 
f 
 g.

• If K is a simplicial set we write K� := Δ0 �K and K� := K �Δ0, where � is the join
operation. If C is an ∞-category, we can interpret C� and C� as the ∞-categories 
obtained by freely adjoining an initial object and a final object to C, respectively. We 
denote the “cone points” coming from Δ0 in K� and K� by −∞ and ∞, respectively.

• A simplicial set K is sifted if it is non-empty and the diagonal map K → K ×K is 
cofinal; see [25, §5.5.8] for alternative characterizations. The key point is that sifted 
colimits are generated by filtered colimits and colimits of simplicial objects, and small 
colimits are generated by sifted colimits and finite coproducts.

Warning 1.2.1. As far as possible we argue using the “high-level” language of 
∞-categories, without referring to their specific implementation as quasicategories. 
Following this philosophy we have generally not distinguished notationally between cat-
egories and their nerves, since categories are a special kind of ∞-category. However, we 
do indicate the nerve (using N) when we think of the nerve of a category as being a 
specific simplicial set; by the same principle we always indicate the nerves of simplicial 
categories. This should hopefully not cause any confusion.
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2. From enriched categories to enriched ∞-categories

The goal of this section is to introduce our definition of enriched ∞-categories, and to 
motivate it by explaining how it relates to ordinary enriched categories. In the process, 
we also give an expository introduction to (non-symmetric) ∞-operads.
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2.1. Multicategories and enrichment

Recall the usual definition of an enriched category: if V is a monoidal category, a 
V-enriched category (or V-category) C consists of:

• a set obC of objects,
• for all pairs X, Y ∈ obC an object C(X, Y ) in V,
• composition maps C(X, Y ) ⊗ C(Y, Z) → C(X, Z),
• units idX : I → C(X, X).

The composition must be associative (this involves the associator isomorphism for V) 
and unital. When formulated in this way, it is not obvious how this notion ought to be 
generalized in the setting of ∞-categories. We should therefore look for an alternative, 
more conceptual, way of defining enriched categories — this is provided by the theory 
of multicategories.

A multicategory is, roughly speaking, a category where a morphism has a list of 
objects as its source. More precisely, a multicategory (or non-symmetric coloured operad) 
M consists of

• a set obM of objects,
• for objects X1, . . . , Xn, Y (where n can be 0) a set M(X1, . . . , Xn; Y ) of “multimor-

phisms” from (X1, . . . , Xn) to Y ,
• an identity multimorphism idX : (X) → X for all objects X,
• an associative and unital composition law, in the sense that we can compose multi-

morphisms

(Z1, . . . , Zi1) → Y1, . . . , (Zin−1+1, . . . , Zin) → Yn

with a multimorphism (Y1, . . . , Yn) → X to get a composite multimorphism 
(Z1, . . . , Zin) → X.

A multicategory with a single object is precisely a non-symmetric operad.1
If M and N are multicategories, a multifunctor F : M → N assigns an object F (X)

in N to each object X of M, and to each multimorphism (X1, . . . , Xn) → Y in M a 
multimorphism

(
F (X1), . . . , F (Xn)

)
→ F (Y )

in N such that this assignment is compatible with units and composition. We can view 
a monoidal category V as a multicategory by defining

1 Note that later we will refer to the ∞-categorical version of (non-symmetric) coloured operads as just 
(non-symmetric) ∞-operads, for consistency with the terminology used by Lurie [28] and Barwick [5].
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V(X1, . . . , Xn;Y ) := V(X1 ⊗ · · · ⊗Xn, Y ).

An algebra for a multicategory M in a monoidal category V is then just a multifunctor 
from M to V viewed as a multicategory.

Given a set S, there is a simple multicategory OS such that OS-algebras in a monoidal 
category V are precisely V-categories with set of objects S: the set of objects of OS is 
S × S, and the multimorphism sets are defined by

OS

(
(X0, Y1), (X1, Y2), . . . , (Xn−1, Yn); (Y0, Xn)

)
:=

{ ∗, if Yi = Xi, i = 0, . . . , n,
∅, otherwise.

Thus an OS-algebra C in V assigns an object C(X, Y ) to each pair (X, Y ) of elements 
of S, with a unit I → C(X, X) from the unique map () → (X, X), and a composition 
map C(X, Y ) ⊗C(Y, Z) → C(X, Z) from the unique multimorphism ((X, Y ), (Y, Z)) →
(X, Z). Looking at triples of pairs we see that this composition is associative, and it 
is also clearly unital, so C is a V-category. If C and D are V-categories, with sets of 
objects S and T , respectively, then from this perspective a V-functor C → D consists 
of a function f : S → T and a multicategorical natural transformation from C to f∗D
of multifunctors OS → V, where f∗D denotes the composite of D with the obvious 
multifunctor OS → OT induced by f : this natural transformation precisely assigns to 
each pair X, Y ∈ S a morphism C(X, Y ) → D(f(X), f(Y )) compatible with units and 
composition.

Remark 2.1.1. This definition of enriched categories via multicategories is certainly clas-
sical, and it is not clear to us who first introduced it. In more recent work it can be seen, 
for example, as a starting point for Leinster’s theory of enrichment in fc-multicategories 
and more general classes of multicategories associated to Cartesian monads [23].

This construction suggests that we can use an ∞-categorical version of multicat-
egories to define enriched ∞-categories. In the next subsection we will describe such 
an ∞-categorical theory of multicategories, namely a non-symmetric version of Lurie’s 
∞-operads; this includes as a special case a notion of monoidal ∞-category, and if V is 
a monoidal ∞-category we will see that we can define a V-enriched ∞-category with set 
of objects S as an OS-algebra in V.

2.2. ∞-Operads

To generalize multicategories to the ∞-categorical setting it is possible to use sim-
plicial multicategories, i.e. multicategories enriched in simplicial sets. However, these 
suffer from the same technical problems as simplicial categories considered as a model 
for ∞-categories (most notably, it is difficult to compute the correct space of simpli-
cial multifunctors between simplicial multicategories in this rigid setting). Just as for 
∞-categories, it is better to use a model where composition is only associative up to 
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coherent homotopy. We will now introduce one such definition, namely a non-symmetric 
variant of Lurie’s ∞-operads.2

Before we state the definition, it is helpful to consider an alternative definition of 
ordinary multicategories:

Definition 2.2.1. If M is a multicategory, then the category of operators M⊗ of M has 
objects lists (X1, . . . , Xn) of objects Xi ∈ M, n = 0, 1, . . ., and a morphism

(X1, . . . , Xn) → (Y1, . . . , Ym)

is given by a morphism φ: [m] → [n] in Δ and for each j = 1, . . . , m a multimorphism

(Xφ(j−1)+1, Xφ(j−1)+2, . . . , Xφ(j)) → Yj

in M. There is an obvious projection M⊗ → Δop, sending (X1, . . . , Xn) to [n].

Remark 2.2.2. This is the non-symmetric version of the category of operators of a sym-
metric operad introduced by May and Thomason [30].

We can characterize those categories over Δop that are equivalent to categories of op-
erators of multicategories; to state this characterization it is convenient to first introduce 
some notation:

Definition 2.2.3. We say that a morphism φ: [n] → [m] in Δ is inert if it is the inclusion 
of a sub-interval of [m], i.e. if φ(i) = φ(0) + i for i = 0, . . . , n. We denote the inert 
morphism [1] → [n] given by the inclusions {i − 1, i} ↪→ [n] by ρi for i = 1, . . . , n.

Definition 2.2.4. Let Catmult
/Δop denote the subcategory of Cat/Δop defined as follows: The 

objects of Catmult
/Δop are functors π: C → Δop such that the following conditions hold:

(i) For every inert morphism φ: [n] → [m] in Δop and every X ∈ C[n] there exists a 
π-coCartesian morphism X → φ!X over φ.

(ii) For every [n] ∈ Δop the functor

C[n] → C×n
[1]

induced by the coCartesian arrows over the inert maps ρi (i = 1, . . . , n) is an 
equivalence of categories.

(iii) For every morphism φ: [n] → [m] in Δop and Y ∈ C[m], composition with coCarte-
sian morphisms Y → Yi over the inert morphisms ρi gives an isomorphism

2 An alternative approach to ∞-operads is the theory of dendroidal sets introduced by Moerdijk and 
Weiss [31], which we will not discuss here.
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Homφ
C(X,Y ) ∼−−→

∏
i

Homρi◦φ
C (X,Yi),

where Homφ
C(X, Y ) denotes the subset of HomC(X, Y ) of morphisms that map to 

φ in Δop.

The morphisms of Catmult
/Δop from C → Δop to D → Δop are the functors C → D over 

Δop that preserve the coCartesian morphisms over inert morphisms in Δop.

Proposition 2.2.5. The functor (–)⊗ from multicategories to categories over Δop gives 
an equivalence between the category of multicategories and Catmult

/Δop .

Proof. It is easy to see that the category of operators of a multicategory M satisfies 
conditions (i)–(iii):

(i) The coCartesian map from (X1, . . . , Xn) over an inert map φ: [m] → [n] in Δ is the 
projection (X1, . . . , Xn) → (Xφ(1), . . . , Xφ(n)) determined by the identity maps of 
the Xi’s.

(ii) Clearly M⊗
[n] is equivalent to (M⊗

[1])
×n via these projections.

(iii) This is immediate from the definition of the morphisms in M⊗.

Moreover, any functor of multicategories F : M → N induces a functor M⊗ → N⊗ that 
preserves coCartesian arrows over inert maps: this simply says that (X1, . . . , Xn) is sent 
to (F (X1), . . . , F (Xn)). Thus the functor (–)⊗ does indeed factor through Catmult

/Δop .
Conversely, if φ: M⊗ → N⊗ is a functor over Δop that preserves these coCartesian 

morphisms, then condition (iii) implies that φ is completely determined by the maps 
M(X1, . . . , Xn; Y ) → N(φ(X1), . . . , φ(Xn); φ(Y )), and so comes from a functor of mul-
ticategories. This shows that (–)⊗ is fully faithful.

It remains to show that the functor is essentially surjective. Suppose π: C → Δop is 
an object of Catmult

/Δop . Then we can define a multicategory Mπ as follows:

• The objects of Mπ are the objects of C[1].
• By condition (ii) we can think of the objects of C[n] as lists (X1, . . . , Xn) where the 

Xi’s are objects of C[1]. We define the multimorphism set Mπ(X1, . . . , Xn; Y ) to be 
Homαn

C ((X1, . . . , Xn), Y ) where αn denotes the map [1] → [n] that sends 0 to 0 and 
1 to n.

• The identity idX ∈ Mπ(X; X) is just the identity map of X in C[1].
• To define the composition

Mπ(X1, . . . , Xn1 ;Y1) × · · · × Mπ(Xnk−1+1, . . . , Xnk
;Yk) × Mπ(Y1, . . . Yk;Z)

→ Mπ(X1, . . . , Xnk
;Z)

observe that by (iii) we can describe the source as
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Homβ
C
(
(X1, . . . , Xnk

), (Y1, . . . , Yk)
)
× Homαk

C
(
(Y1, . . . , Yk), Z

)
,

where β: [k] → [nk] sends 0 to 0 and i to ni for i > 0. Thus composition in C gives 
the desired composition in Mπ.

• To see that the composition is associative and unital, we apply the equivalences from 
(iii) similarly, and use the associativity and unitality of composition in C.

It is then easy to check that the category of operators M⊗
π is equivalent to C over Δop. 

Thus the functor (–)⊗ is essentially surjective, which completes the proof. �
We can thus equivalently define a multicategory to be a functor C → Δop satisfying 

(i)–(iii). Using the theory developed in [25], these conditions moreover have obvious 
∞-categorical analogues, which leads us to the following definition:

Definition 2.2.6. A non-symmetric ∞-operad is an inner fibration π: O → Δop such that:

(i) For every inert morphism φ: [n] → [m] in Δop and every X ∈ O[n] there exists a 
π-coCartesian morphism X → φ!X over φ.

(ii) For every [n] ∈ Δop the functor

O[n] → (O[1])×n

induced by the coCartesian arrows over the inert maps ρi (i = 1, . . . , n) is an 
equivalence of ∞-categories.

(iii) For every morphism φ: [n] → [m] in Δop and Y ∈ O[m], composition with coCarte-
sian morphisms Y → Yi over the inert morphisms ρi gives an equivalence

Mapφ
O(X,Y ) ∼−−→

∏
i

Mapρi◦φ
O (X,Yi),

where Mapφ
O(X, Y ) denotes the subspace of MapO(X, Y ) of morphisms that map 

to φ in Δop.

Remark 2.2.7. This is a special case of Barwick’s notion of an ∞-operad over an operator 
category [5], namely the case where the operator category is the category of finite ordered 
sets.

Remark 2.2.8. Being an inner fibration is a technical condition that does not have an 
analogue for ordinary categories; among other things it implies that the simplicial set O
must be an ∞-category. Every functor of ∞-categories can be replaced by an equivalent 
one that is an inner fibration.

Remark 2.2.9. The proof of Proposition 2.2.5 indicates how to interpret a non-symmetric 
∞-operad O → Δop as a multicategory “weakly enriched in spaces”:
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• By condition (ii), the objects of O can be identified with lists (X1, . . . , Xn) where 
the Xi’s are objects of O[1] (which we think of as the underlying ∞-category of the 
multicategory)

• By condition (iii), the spaces of maps in O are determined by the mapping spaces of 
the form

Mapαn

O

(
(X1, . . . , Xn), Y

)
,

which we think of as the space of multimorphisms in O from (X1, . . . , Xn) to Y .
• The composition of these multimorphisms is determined using condition (iii) by 

ordinary composition of morphisms in O, as in the proof of Proposition 2.2.5.

Since our definition takes place in the context of ∞-categories, which already encode 
the notion of coherently homotopy-associative composition of morphisms, this means 
that the composition of multimorphisms in O is also coherently homotopy-associative, 
as expected.

Definition 2.2.10. If O and P are non-symmetric ∞-operads, a morphism of non-
symmetric ∞-operads from O to P is a commutative diagram

O
φ

P

Δop

such that φ carries coCartesian morphisms in O that map to inert morphisms in Δop

to coCartesian morphisms in P. We will also refer to a morphism of non-symmetric 
∞-operads O → P as an O-algebra in P.

Remark 2.2.11. One advantage of working with ∞-operads over simplicial or topological 
multicategories is that they can be described as the fibrant objects in a model category 
where every object is cofibrant. This means that we can work with simple objects like the 
associative operad rather than having to use a cofibrant replacement, i.e. an A∞-operad: 
the ∞-category of algebras for the associative operad in a non-symmetric ∞-operad is 
always equivalent to the ∞-category of A∞-algebras.

We now want to define monoidal ∞-categories as a special class of non-symmetric 
∞-operads. The appropriate definition is suggested by the following observation:
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Lemma 2.2.12.

(i) An object π: C → Δop in Catmult
/Δop is equivalent to the category of operators of the 

multicategory associated to a monoidal category if and only if π is a Grothendieck 
opfibration.

(ii) A morphism φ: C → D between two such objects corresponds to a lax monoidal 
functor between the associated monoidal categories.

(iii) Under this correspondence the (strong) monoidal functors give precisely the mor-
phisms that preserve all coCartesian morphisms.

Proof. Let M be the multicategory corresponding to π: C → Δop, and write M0 ∼= C[1]
for its underlying category. The existence of coCartesian morphisms for αn: [1] → [n]
implies that there is a functor ⊗n: C×n

[1] � C[n] → C[1] such that M(X1, . . . , Xn; Y ) ∼=
M0(⊗n(X1, . . . , Xn), Y ). But writing αn as a composite of elementary face maps in 
Δ in various ways, we get canonical equivalences between ⊗n and the various ways of 
successively applying ⊗2 to adjacent elements. Moreover, the coCartesian morphism over 
the degeneracy [1] → [0] in Δ gives a map ∗ � C[0] → C[1], which amounts to a unit 
I ∈ M0. This implies that if we define X⊗Y := ⊗2(X, Y ) then ⊗ is a monoidal structure 
on M0 such that M is the multicategory associated to this monoidal category. This 
proves (i). (ii) is then clear, since lax monoidal functors clearly correspond to functors 
between the associated multicategories, and (iii) follows since a functor preserves all 
coCartesian arrows precisely if we have natural isomorphisms F (X) ⊗F (Y ) ∼= F (X⊗Y )
and F (I) ∼= I. �

In the ∞-categorical case we therefore make the following definitions:

Definition 2.2.13. A monoidal ∞-category is a non-symmetric ∞-operad V⊗ → Δop that 
is also a coCartesian fibration. We will generally denote the fibre V⊗

[1] by V; by abuse of 
notation we will allow ourselves to say “let V be a monoidal ∞-category” as shorthand 
for “let V⊗ → Δop be a monoidal ∞-category”.

Definition 2.2.14. If V⊗ and W⊗ are monoidal ∞-categories, we will refer to a morphism 
of non-symmetric ∞-operads from V⊗ to W⊗ as a lax monoidal functor. A monoidal 
functor from V⊗ to W⊗ is a commutative diagram

V⊗ φ
W⊗

Δop

such that φ preserves all coCartesian morphisms.



592 D. Gepner, R. Haugseng / Advances in Mathematics 279 (2015) 575–716
Remark 2.2.15. For a coCartesian fibration π: C → Δop, condition (iii) in the definition of 
non-symmetric ∞-operads follows from condition (ii), since the coCartesian morphisms 
in C allow us to identify the space of maps over φ: [n] → [m] in Δop with a space of 
maps in C[n], which decomposes as a product due to condition (ii). This means that, 
under the equivalence between coCartesian fibrations over Δop and functors Δop →
Cat∞, monoidal ∞-categories precisely correspond to simplicial ∞-categories C• that 
satisfy the Segal condition: the map Cn → C×n

1 induced by the maps ρi: [n] → [1] in 
Δop are equivalences. The idea that simplicial objects satisfying this condition give a 
model for A∞-algebras goes back to Segal (as an unpublished variant of the definition 
of E∞-algebras using Γ-spaces in [36]) — thus we can interpret monoidal ∞-categories 
as A∞-algebras (or just associative algebras, since we are working in the “fully weak” 
context of ∞-categories) in Cat∞.

Remark 2.2.16. A monoidal ∞-category V⊗ corresponds to the data of a homotopy-
coherently associative tensor product on V. To see this, let us unpack the data we get 
from a monoidal ∞-category, interpreted as a simplical ∞-category V• satisfying the 
Segal condition:

• The map d1: [2] → [1] gives a tensor product ⊗: V×2 � V2 → V.
• The map s0: [0] → [1] gives a unit ∗ � V0 → V.
• The map α3: [3] → [1] gives a map ⊗3: V×3 � V3 → V. The two factorizations 

α3 = d1 ◦ d1 = d1 ◦ d2 give 2-simplices in Cat∞ that can be interpreted as natural 
equivalences between ⊗3(A, B, C) and the composites (A ⊗ B) ⊗ C and A ⊗ (B ⊗
C), respectively. Composing these gives the expected natural associator equivalence 
(A ⊗B) ⊗ C � A ⊗ (B ⊗ C).

• Similarly, the different ways of decomposing α4: [4] → [1] as a composite of 3 face 
maps gives 3-simplices in Cat∞ that determine homotopies between the different 
ways of using the associator to pass between different 4-fold tensor products.

• In general, the different ways of decomposing αn as a composite of n − 1 face maps 
gives (n − 1)-simplices in Cat∞ that determine the coherence data for n-fold tensor 
products.

If M is an ordinary multicategory, then it is clear that (the nerve of) its category of 
operators M⊗ is a non-symmetric ∞-operad — by abuse of notation we will also refer 
to this non-symmetric ∞-operad as M in contexts where this does not cause confusion. 
We can then define enriched ∞-categories as follows:

Definition 2.2.17. If S is a set and V⊗ is a monoidal ∞-category, a V-enriched ∞-category
(or V–∞-category) with set of objects S is an OS-algebra in V, i.e. a morphism of 
non-symmetric ∞-operads O⊗

S → V⊗. If C and D are V–∞-categories with sets of objects 
S and T , respectively, then a V-functor from C to D consists of a function f : S → T
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and a natural transformation η: C → f∗D of functors O⊗
S → V⊗, where f∗D denotes the 

composite of D with the functor O⊗
S → O⊗

T induced by f .

Example 2.2.18. For a one-element set, O∗ is just the associative operad, and O⊗
∗ is 

Δop. Thus one-object V–∞-categories are precisely ∞-categorical associative algebras, 
i.e. A∞-algebras, just as we would expect.

Remark 2.2.19. We saw at the end of §2.1 that OS-algebras in a monoidal category 
V correspond to V-enriched categories with S as their set of objects. Similarly, an 
OS-algebra C in a monoidal ∞-category V corresponds to the data we would expect to 
have in an enriched ∞-category. Speaking somewhat informally, to make the underlying 
ideas clearer, we have for example the following data:

• The object (X, Y ) in O⊗
S is sent to an object C(X, Y ) ∈ V.

• The morphism ((X, Y ), (Y, Z)) → (X, Z) in O⊗
S is sent to a morphism

μX,Y,Z : C((X, Y ), (Y, Z)) → C(X, Z) in V⊗. Since C preserves coCartesian mor-
phisms over inert maps in Δop, under the equivalence V⊗

[2] � V×2 the object 
C((X, Y ), (Y, Z)) is equivalent to (C(X, Y ), C(Y, Z)), and so using the coCartesian 
morphism over the map d1: [2] → [1], we can interpret this as a composition mor-
phism C(X, Y ) ⊗ C(Y, Z) → C(X, Z).

• Similarly, the morphism () → (X, X) is sent to a morphism we may interpret as a 
map I → C(X, X) where I is the unit of the tensor product on V.

• The morphism ((X, Y ), (Y, Z), (Z, W )) → (X, W ) in O⊗
S factors as

((X, Y ), (Y, Z), (Z, W )) → ((X, Z), (Z, W )) → (X, W ) and also as ((X, Y ), (Y, Z),
(Z, W )) → ((X, Y ), (Y, W )) → (X, W ). Pushing the associated data in V⊗ into V
using the coCartesian morphisms, this gives:
– an object ⊗3(C(X, Y ), C(Y, Z), C(Z, W )) with equivalences α to C(X, Y ) ⊗(C(Y, Z)
⊗ C(Z, W )) and β to (C(X, Y ) ⊗ (C(Y, Z)) ⊗ C(Z, W )

– a morphism μX,Y,Z,W : ⊗3(C(X, Y ), C(Y, Z), C(Z, W )) → C(X, W )
– homotopies between μX,Y,Z,W ◦ α−1 and μX,Y,W ◦ (id ⊗ μY,Z,W ) and between 

μX,Y,Z,W ◦ β−1 and μX,Z,W ◦ (μX,Y,Z ⊗ id).
The latter two homotopies can then be composed to get a homotopy between μX,Y,W ◦
(id⊗μY,Z,W ) and μX,Z,W ◦ (μX,Y,Z ⊗ id), which is the first homotopy-coherence data 
for the associativity of the composition operation.

• Similarly, the data derived from the different decompositions of ((X, Y ), (Y, Z),
(Z, W ), (W, V )) → (X, V ) as composites of “face maps” gives the coherence data 
for 3-fold compositions, and so forth.

If O and P are non-symmetric ∞-operads, we get an ∞-category AlgO(P) of O-algebras 
in P by taking the full subcategory spanned by the morphisms of non-symmetric 
∞-operads in the ∞-category FunΔop(O, P) of functors over Δop. By abuse of notation, 
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if O is a non-symmetric ∞-operad and V⊗ is a monoidal ∞-category we will usually 
write AlgO(V) instead of AlgO(V⊗).

In §3.2 we will construct an ∞-category Opdns
∞ of non-symmetric ∞-operads and see 

that the ∞-category AlgO(P) is functorial in O and P. This allows us to construct a 
Cartesian fibration

Alg(P) → Opdns
∞

whose fibre at O is AlgO(P). Pulling this back along the functor Set → Opdns
∞ that 

sends a set S to O⊗
S we get an ∞-category Algcat(P) with a projection to Set. If V is a 

monoidal ∞-category, the objects of Algcat(V) are clearly V-enriched ∞-categories and 
the morphisms are precisely V-functors.

A V-functor C → D is given by a function f : S → T of sets of objects and a morphism 
η: C → f∗D of OS-algebras. This morphism is an equivalence in Algcat(V) if and only if 
f is a bijection of sets and η is an equivalence of OS-algebras (i.e. the morphism is fully 
faithful). This is obviously not the correct notion of equivalence for V–∞-categories — 
we want the equivalences to be the morphisms that are fully faithful and essentially sur-
jective (in the usual sense that every object of D is equivalent to an object in the image 
of f ; we will define this precisely below in §5.3 after discussing equivalences in enriched 
∞-categories in §5.2). We therefore want to invert these morphisms. In the ∞-categorical 
setting it is always possible to formally invert any collection of morphisms, but to un-
derstand the resulting localized ∞-category we need it to be an accessible localization. 
This is the ∞-categorical analogue of left Bousfield localization of model categories, and 
means that we can find the localized ∞-category as the full subcategory of local objects 
inside the original ∞-category. However, this is easily seen to be impossible using our 
current definition of enriched ∞-categories: For example, if we enrich in the monoidal 
category of sets with the Cartesian product, then Algcat(Set) is just the ordinary category 
of small categories and functors. But if we invert the fully faithful and essentially surjec-
tive functors we get the (2, 1)-category of categories, functors, and natural equivalences, 
which obviously cannot be a full subcategory of an ordinary category.

To avoid this problem we need another definition of enriched ∞-categories for which 
this localization is well-behaved. It will turn out that we get a much nicer ∞-category 
of enriched ∞-categories if we allow them to have spaces of objects rather than just sets 
— this is also aligned with the philosophy of higher category theory, whereby spaces 
should be thought of as the ∞-categorical analogue of sets in ordinary category theory. 
One way to do this would be to define simplicial multicategories OS where S is now 
a simplicial groupoid, and then work with the associated ∞-operads. We will, in fact, 
define such simplicial multicategories and briefly make use of them below in §4.2, but it 
turns out that there is an easier and more natural way to carry out this generalization: 
We will base our theory of enriched ∞-categories on the ∞-categorical version of a 
slightly different approach to enriched categories, using virtual double categories instead 
of multicategories, which we describe in the next subsection.
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2.3. Virtual double categories and enrichment

Virtual double categories3 are a common generalization of double categories and mul-
ticategories. Roughly speaking, a virtual double category has objects and vertical and 
horizontal morphisms between them, but in addition to a collection of “squares” there 
are cells with a list of vertical arrows as source; we refer the reader to [11] or [24] for an 
explicit definition along this point of view.

Here, we will instead consider virtual double categories from the category of operators 
perspective: they are exactly what we get if we allow the fibre O[0] at [0] in a category 
of operators to be non-trivial, and require O[n] to be the n-fold iterated fibre product

O[1] ×O[0] · · · ×O[0] O[1].

To state the precise definition we first introduce some notation:

Definition 2.3.1. Let Δop
int denote the subcategory of Δop where the morphisms are the 

inert morphisms in Δop. We write GΔ for the full subcategory of Δop
int spanned by the 

objects [0] and [1], and GΔ
[n]/ for the category (Δop

int)[n]/×Δop GΔ of inert morphisms from 
[n] to [1] and [0].

Definition 2.3.2. A virtual double category is a functor π: M → Δop such that:

(i) For every inert morphism φ: [m] → [n] in Δop and every X ∈ M[n] there exists a 
π-coCartesian morphism X → φ!X over φ.

(ii) For every [n] ∈ Δop the functor

M[n] → lim
[n]→[i]∈GΔ

[n]/

M[i] � M[1] ×M[0] · · · ×M[0] M[1]

induced by the coCartesian arrows over the inert maps in GΔ
[n]/ is an equivalence of 

categories.
(iii) For every morphism φ: [n] → [m] in Δop and Y ∈ M[m], composition with coCarte-

sian morphisms Y → Yα over the inert morphisms α: [m] → [i] in GΔ
[m]/ gives an 

isomorphism

Homφ
M(X,Y ) ∼−−→ lim

α∈GΔ

[m]/

Homα◦φ
M (X,Yα),

where Homφ
M(X, Y ) denotes the subset of HomM(X, Y ) of morphisms that map to 

φ in Δop.

3 Also known as fc-multicategories; note that, for consistency with Lurie’s terminology, we will refer to 
their ∞-categorical generalization as generalized non-symmetric ∞-operads.
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Remark 2.3.3. A virtual double category M → Δop corresponds to a double category 
precisely when this functor is a Grothendieck opfibration.

Definition 2.3.4. If M → Δop and N → Δop are virtual double categories, a functor of 
virtual double categories from M to N is a functor F : M → N over Δop that preserves 
coCartesian morphisms over inert morphisms in Δop.

Given a set S, we can define a double category with set of objects S where the 
vertical morphisms are trivial, and there is a unique horizontal morphism between any 
two elements of S. In terms of categories of operators, this corresponds to the category 
Δop

S whose objects are non-empty sequences (X0, . . . , Xn) of elements Xi ∈ S, with a 
unique morphism

(X0, . . . , Xn) → (Xφ(0), . . . , Xφ(m))

for each φ: [m] → [n] in Δ. If V is a monoidal category and V⊗ is its category of 
operators, a functor of virtual double categories C: Δop

S → V⊗ is a functor over Δop such 
that C(X0, . . . , Xn) = (C(X0, X1), . . . , C(Xn−1, Xn)). This is precisely a V-category 
with set of objects S: for each X ∈ S the unique map X → (X, X) gives an identity I →
C(X, X), and for objects X, Y, Z ∈ S the map (X, Y, Z) → (X, Z) over d1: [2] → [1] gives 
a composition map C(X, Y ) ⊗C(Y, Z) → C(X, Z), which is associative because the two 
composite maps (X, Y, Z, W ) → (X, Y, W ) → (X, W ) and (X, Y, Z, W ) → (X, Z, W ) →
(X, W ) are equal.

A functor between V-categories C and D with sets of objects S and T , respectively, 
can then be described as a function f : S → T together with a natural transformation 
C → f∗D of functors Δop

S → V⊗, where f∗D denotes the composite of D with the 
functor Δop

f : Δop
S → Δop

T induced by f : this natural transformation precisely gives maps 
C(X, Y ) → D(f(X), f(Y )) compatible with units and composition.

Remark 2.3.5. Using the virtual double categories Δop
S to define enrichment gives the 

right notion also when considering enrichment in more general settings, such as enrich-
ment in double categories or in general virtual double categories (cf. [23]).

2.4. Generalized ∞-operads

It is now clear how to generalize the notion of virtual double category to the 
∞-categorical setting, analogously to our definition of non-symmetric ∞-operads above:

Definition 2.4.1. A generalized non-symmetric ∞-operad is an inner fibration π: M →
Δop such that:

(i) For every inert morphism φ: [n] → [m] in Δop and every X ∈ M[n] there exists a 
π-coCartesian morphism X → φ!X over φ.



D. Gepner, R. Haugseng / Advances in Mathematics 279 (2015) 575–716 597
(ii) For every [n] ∈ Δop the functor

M[n] → lim
[n]→[i]∈GΔ

[n]/

M[i] � M[1] ×M[0] · · · ×M[0] M[1]

induced by the coCartesian arrows over the inert maps in GΔ
[n]/ is an equivalence of 

∞-categories.
(iii) For every morphism φ: [n] → [m] in Δop and Y ∈ M[m], composition with coCarte-

sian morphisms Y → Yα over the inert morphisms α: [m] → [i] in GΔ
[m]/ gives an 

equivalence

Mapφ
M(X,Y ) ∼−−→ lim

α∈GΔ

[m]/

Mapα◦φ
M (X,Yα),

where Mapφ
M(X, Y ) denotes the subspace of MapM(X, Y ) of morphisms that map 

to φ in Δop.

Definition 2.4.2. If M and N are generalized non-symmetric ∞-operads, a morphism of 
generalized non-symmetric ∞-operads from M to N is a commutative diagram

M
φ

N

Δop

such that φ carries coCartesian morphisms in M that map to inert morphisms in Δop

to coCartesian morphisms in N. We will also refer to a morphism of generalized non-
symmetric ∞-operads M → N as an M-algebra in N.

Definition 2.4.3. A double ∞-category is a generalized non-symmetric ∞-operad M →
Δop that is also a coCartesian fibration.

Remark 2.4.4. Again, as in Remark 2.2.15, for a coCartesian fibration condition (iii) in 
the definition of a generalized non-symmetric ∞-operad is implied by condition (ii). Thus, 
under the equivalence between coCartesian fibrations to Δop and functors Δop → Cat∞, 
double ∞-categories correspond to simplicial ∞-categories C• satisfying the “Rezk–Segal 
condition”:

Cn → C1 ×C0 · · · ×C0 C1

is an equivalence. In general simplicial objects in an ∞-category X with finite limits 
satisfying this condition can be thought of as internal categories in X — in particular, 
taking X to be the ∞-category of spaces these are precisely the Segal spaces introduced 



598 D. Gepner, R. Haugseng / Advances in Mathematics 279 (2015) 575–716
by Rezk [34] as a model for ∞-categories. This justifies the term double ∞-category, 
since double categories are precisely internal categories in Cat.

We can now introduce a generalization of the virtual double categories Δop
S : If S ∈ S is 

a space, there is a functor Δop → S that sends [n] to S×n+1, face maps to projections to 
the corresponding factors, and degeneracies to the corresponding diagonal maps; a more 
precise definition will be given in §4.1. It is easy to see that this simplicial space satisfies
the Rezk–Segal condition, so if we let Δop

S → Δop be a left fibration corresponding to 
this functor then this is a double ∞-category by Remark 2.4.4. When S is a set this 
obviously agrees with the previous definition.

Using this we can state our improved definition of enriched ∞-categories:

Definition 2.4.5. Let S ∈ S be a space and let V be a monoidal ∞-category. A V-enriched 
∞-category (or V–∞-category) with space of objects S is a Δop

S -algebra in V.

Example 2.4.6. Any associative algebra object in V can be regarded as a V–∞-category 
with a contractible space of objects. In particular, the unit I of the tensor product in V
has a unique associative algebra structure (by Proposition 3.1.18) so we can regard I as 
a V–∞-category with a single object whose endomorphisms are given by I.

Remark 2.4.7. We will define the generalized non-symmetric ∞-operads Δop
S more care-

fully below in §4.1. It will sometimes be useful, for example to distinguish our definition 
from other possible definitions of enriched ∞-categories, to refer to a Δop

S -algebra in V
as a categorical algebra in V with space of objects S.

Remark 2.4.8. This definition clearly does not require V to be a monoidal ∞-category 
— we can define ∞-categories enriched in any generalized non-symmetric ∞-operad as 
Δop

S -algebras. This gives an ∞-categorical version of Leinster’s notion of enrichment 
in an fc-multicategory [23]. However, as there are technical obstacles in the theory of 
∞-operads to extending most of our results beyond the case of monoidal ∞-categories, 
we will not consider this generalization here.

Definition 2.4.9. Suppose V is a monoidal ∞-category, and C and D are V–∞-categories 
with spaces of objects S and T , respectively. A V-functor from C to D consists of a 
morphism of spaces f : S → T and a natural transformation C → f∗D, where f∗D

denotes the composite of D with the morphism Δop
f : Δop

S → Δop
T induced by f .

If M and N are generalized non-symmetric ∞-operads we get an ∞-category AlgM(N)
of M-algebras in N by taking the full subcategory of the ∞-category FunΔop(M, N)
of functors over Δop that is spanned by the morphisms of generalized non-symmetric 
∞-operads. Just as for ∞-operads, we will construct (in §3.2) an ∞-category Opdns,gen

∞
of generalized non-symmetric ∞-operads, and the ∞-categories AlgM(N) are functorial 
in M and N. As before, we then get a Cartesian fibration Alg(N) → Opdns,gen

∞ whose 
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fibre at M is AlgM(N). We can pull this back along the functor S → Opdns,gen
∞ that 

sends S ∈ S to Δop
S to get an ∞-category Algcat(N). If V is a monoidal ∞-category, the 

objects of Algcat(V) are V–∞-categories and the morphisms are V-functors.

Remark 2.4.10. We refer to the ∞-category Algcat(V) (which we will construct more 
carefully below in §4.3) as the ∞-category of categorical algebras in V, reserving the 
name ∞-category of V–∞-categories for the localization of this at the fully faithful and 
essentially surjective functors.

We will prove in §5.3 that inverting the fully faithful and essentially surjective functors 
in the ∞-category Algcat(V) as we have just defined it gives the same ∞-category as 
inverting them in the version considered above where we only allowed sets of objects. 
Now, however, we can find the localized ∞-category as a full subcategory of Algcat(V). 
The local objects turn out to be the complete V–∞-categories, which are those whose 
space of objects is equivalent to their classifying space of equivalences, in a sense we 
will make precise below in §5.2. If we write CatV∞ for the full subcategory of Algcat(V)
spanned by these complete V–∞-categories, the main result of this article is the following:

Theorem 2.4.11. Let V be a monoidal ∞-category. The inclusion

CatV∞ ↪→ Algcat(V)

has a left adjoint, and this exhibits CatV∞ as the localization of Algcat(V) with respect to 
the fully faithful and essentially surjective functors.

2.5. Enriched categories as presheaves

As discussed above, our main construction of the ∞-category CatV∞ of ∞-categories 
enriched in V will be as a localization of Algcat(V), an ∞-category of algebras for a 
family of (generalized) ∞-operads. Although useful for many purposes — for example, 
it is easy to relate Algcat(V) to model categories of strictly enriched categories (cf. [19]) 
— when working with a presentable ∞-category it can also often be useful to have a 
construction of it as an explicit localization of an ∞-category of presheaves on a small 
∞-category of generators. In much the same way as Cat∞ itself embeds into P(Δ) as 
the full subcategory of complete Segal spaces, one might imagine that CatV∞ embeds into 
presheaves on a V-enriched version of Δ whose objects classify “composable strings of 
morphisms” in a V-enriched ∞-category C.

In fact, this V-enriched version of Δ nearly comes to us for free from our monoidal 
∞-category p: V⊗ → Δop. The functor p is a coCartesian fibration, and so arises as 
the unstraightening of a functor Δop → Cat∞ which satisfies the usual Segal condition. 
But we may also unstraighten p to a Cartesian fibration q: V∨

⊗ → Δ — this is our 
desired V-enriched version of Δ. Roughly speaking, the objects of V∨

⊗ are ordered tuples 
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(V1, . . . , Vn) of objects of V, which we can interpret as the free V-enriched ∞-category 
on the V-enriched graph

0 V1−−→ 1 V2−−→ 2 → · · · → n− 1 Vn−−→ n,

which we denote Δ(V1,...,Vn). The free V–∞-category on this graph has composition de-
termined by the monoidal structure on V, so for example the maps from i − 1 to j in 
Δ(V1,...,Vn) are given by Vi ⊗ Vi+1 ⊗ · · · ⊗ Vj .

A V-enriched ∞-category C then determines a presheaf

MapCatV∞(–,C):
(
V∨
⊗
)op −→ S

by sending Δ(V0,...,Vn) to the space of V-enriched functors from Δ(V0,...,Vn) to C. This 
construction induces a functor

CatV∞ −→ P
(
V∨
⊗
)
.

We will rigorously construct this in §4.5 and show that it is fully faithful, from which 
it follows almost immediately that CatV∞ is an accessible localization of P(V∨

⊗). More-
over, the essential image of this embedding can be identified with the “complete Segal 
spaces” in a sense entirely analogous to that of Rezk [34], and the categorical algebras 
Algcat(V) embed in P(V∨

⊗) as analogues of the Segal spaces. We use this ambient presheaf 
∞-category in §5.6 to prove a crucial technical result about the “completion” functor 
Algcat(V) → CatV∞.

3. Non-symmetric ∞-operads

In this section we give the definitions and results we need about (generalized) non-
symmetric ∞-operads. These are a special case of Barwick’s ∞-operads over an operator 
category [5], and are also studied by Lurie in [28, §4.7.1] (though in a somewhat ad hoc
manner).

For the most part the theory of non-symmetric ∞-operads is completely analogous 
to Lurie’s theory of (symmetric) ∞-operads developed in [28], with the category Γop

of pointed finite sets replaced by the category Δop. In order to keep this article to a 
reasonable length we only give references to the corresponding results in [28] when the 
proofs are essentially the same.

3.1. Basic definitions revisited

In this subsection we restate, in a slightly more technical form, the basic definitions 
of (generalized) non-symmetric ∞-operads — see §2 for some motivation for these defi-
nitions. We begin by describing a factorization system on the category Δop.
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Definition 3.1.1. Let Δ be the usual simplicial indexing category. A morphism f : [n] →
[m] in Δ is inert if it is the inclusion of a sub-interval of [m], i.e. f(i) = f(0) + i for 
all i, and active if it preserves the extremal elements, i.e. f(0) = 0 and f(n) = m. We 
say a morphism in Δop is active or inert if it is so when considered as a morphism 
in Δ, and write Δop

act and Δop
int for the subcategories of Δop with active and inert 

morphisms, respectively. We write ρi: [n] → [1] for the inert map in Δop corresponding 
to the inclusion {i − 1, i} ↪→ [n].

Lemma 3.1.2. The active and inert morphisms form a factorization system on Δop.

Proof. This is a special case of [5, Lemma 8.3]; it is also easy to check by hand. �
Definition 3.1.3. A non-symmetric ∞-operad is an inner fibration π: O → Δop such that:

(i) For each inert map φ: [n] → [m] in Δop and every X ∈ O such that π(X) = [n], 
there exists a π-coCartesian edge X → φ!X over φ.

(ii) For every [n] in Δop, the functor

O[n] →
n∏

i=1
O[1]

induced by the inert maps ρi: [n] → [1] in Δop is an equivalence.
(iii) Given C ∈ O[n] and a coCartesian map C → Ci over each inert map ρi: [n] → [1], 

the object C is a π-limit of the Ci’s.

Remark 3.1.4. It is immediate from the definition of relative limits in [25, §4.3.1] that 
Definition 3.1.3 is equivalent to Definition 2.2.6: Recall that a diagram p̄: K� → O is a 
π-limit if and only if the natural map

λ:O/p̄ → O/p ×Δop
/πp

Δop
/πp̄

is a categorical equivalence, where p := p̄|K . But the projections O/p̄ → O and O/p×Δop
/πp

Δop
/πp̄ → O are both right fibrations, so the map λ is an equivalence if and only if the 

induced map on fibres over any o ∈ O is an equivalence. Since K� has an initial object, 
we may identify O/p̄ with O/x where x = p̄(−∞) and Δop

/πp̄ with Δop
/[n] where [n] = π(x). 

If [m] = π(o) then the induced map on fibres is therefore

MapO(o, x) → MapΔop([m], [n]) ×limk∈K Map
Δop ([m],πp(k)) lim

k∈K
MapO(o, p(k)).

This is an equivalence if and only if the commutative square
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MapO(o, x) limk∈K MapO(o, p(k))

MapΔop([m], [n]) limk∈K MapΔop([m], πp(k))

is Cartesian, i.e. if and only if for every map φ: [m] → [n] the map on fibres over φ

Mapφ
O(o, x) → lim

k∈K
Mapp̄(ψk)◦φ

O (o, p(k))

is an equivalence, where ψk is the unique map −∞ → k in K�. Applying this to the 
coCartesian projections c → ci for some c ∈ O[n], we get that c is a π-limit of the ci’s if 
and only if for every o ∈ O[m] and every map φ: [m] → [n] in Δop, the map

Mapφ
O(o, c) →

n∏
i=1

Mapρiφ
O (o, ci)

is an equivalence, which was the condition used in Definition 2.2.6. Similarly, Defini-
tion 3.1.13 below is equivalent to Definition 2.4.1.

Remark 3.1.5. We will see below in §3.7 that there is a natural map c: Δop → Γop such 
that if O → Γop is a (generalized) symmetric ∞-operad, in the sense of [28], then the 
pullback c∗O → Δop along c is a (generalized) non-symmetric ∞-operad. Moreover, if 
O is a symmetric monoidal ∞-category then c∗O is a monoidal ∞-category. We will 
occasionally refer to the pullback c∗O also as O. For example, if C is an ∞-category with 
finite products we will denote the monoidal ∞-category pulled back from the Cartesian 
symmetric monoidal structure C× → Γop by C× too.

A useful way of constructing non-symmetric ∞-operads is taking the nerve of the 
category of operators associated to a simplicial multicategory:

Definition 3.1.6. A simplicial multicategory O consists of a set obO of objects and sim-
plicial sets O(X1, . . . , Xn;Y ) of multimorphisms for all X1, . . . , Xn, Y ∈ obO, together 
with composition maps

O
(
X1

1 , . . . , X
1
n1

;Y1
)
× · · · × O

(
Xk

1 , . . . , X
k
nk

;Yk

)
× O(Y1, . . . , Yk;Z)

→ O
(
X1

1 , . . . , X
k
nk

;Z
)
,

as well as identity maps, satisfying the usual associativity law for multicategories. A sim-
plicial multicategory O is fibrant if all the simplicial sets O((X1, . . . , Xn), Y ) are Kan 
complexes.
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Definition 3.1.7. Let O be a simplicial multicategory. Define O⊗ to be the simplicial cat-
egory with objects finite lists (X1, . . . , Xn) (n = 0, 1, . . .) of objects of O and morphisms 
given by

O⊗((X1, . . . , Xn), (Y1, . . . , Ym)
)

=
∐

φ:[m]→[n]

m∏
i=1

O(Xφ(i−1)+1, . . . , Xφ(i);Yi),

with composition defined using composition in O. The simplicial category O⊗ has an 
obvious projection to Δop.

Lemma 3.1.8. Suppose O is a fibrant simplicial multicategory. Then the projection 
NO⊗ → Δop is a non-symmetric ∞-operad.

Proof. As [28, Proposition 2.1.1.27]. �
Remark 3.1.9. A non-symmetric variant of the work of Cisinski and Moerdijk [10] should 
give a model category structure on simplicial multicategories whose fibrant objects are 
the fibrant simplicial multicategories. The resulting homotopy theory of simplicial mul-
ticategories is (partially) known to be equivalent to that of ∞-operads, at least in the 
symmetric case, but currently the only known relation is via the homotopy theory of 
dendroidal sets: Cisinski and Moerdijk [10] construct a Quillen equivalence between 
simplicial symmetric multicategories and dendroidal sets, and Heuts, Hinich, and Mo-
erdijk [20] construct a zig-zag of Quillen equivalences between dendroidal sets and 
symmetric ∞-operads (but unfortunately their comparison is currently restricted to the 
special case of ∞-operads without nullary operations). No doubt a version of dendroidal 
sets defined using planar trees would lead to a similar comparison between simplicial 
multicategories and non-symmetric ∞-operads.

Definition 3.1.10. A monoidal ∞-category is a non-symmetric ∞-operad V⊗ → Δop that 
is also a coCartesian fibration.

Remark 3.1.11. We will see below in §3.7 that this is equivalent to Lurie’s definition of 
monoidal ∞-categories in [28].

Example 3.1.12. Suppose V⊗ is a monoidal ∞-category. Then d1: [2] → [1] induces a 
functor d1,!: V × V � V⊗

[2] → V — a tensor product on V. Similarly s0: [0] → [1] gives a 

functor s0,!: ∗ � V⊗
[0] → V which picks out a unit object IV := s0,!∗ in V.

Definition 3.1.13. A generalized non-symmetric ∞-operad is an inner fibration π: M →
Δop such that:

(i) For each inert map φ: [n] → [m] in Δop and every X ∈ M such that π(X) = [n], 
there exists a π-coCartesian edge X → φ!X over φ.
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(ii) For every [n] in Δop, the map

M[n] → M[1] ×M[0] · · · ×M[0] M[1]

induced by the inert maps [n] → [1], [0] is an equivalence.
(iii) Given C ∈ M[n] and a coCartesian map C → Cα over each inert map α in GΔ

[n]/ (i.e. 
each inert map from [n] to [1] and [0]), the object C is a π-limit of the Cα’s.

Definition 3.1.14. A double ∞-category is a generalized non-symmetric ∞-operad that is 
also a coCartesian fibration.

Definition 3.1.15. Let π: M → Δop be a (generalized) non-symmetric ∞-operad. We say 
that a morphism f in M is inert if it is coCartesian and π(f) is an inert morphism in 
Δop. We say that f is active if π(f) is an active morphism in Δop.

Lemma 3.1.16. The active and inert morphisms form a factorization system on any 
generalized non-symmetric ∞-operad.

Proof. This is a special case of [28, Proposition 2.1.2.5]. �
Definition 3.1.17. A morphism of (generalized) non-symmetric ∞-operads is a commu-
tative diagram

M
φ

N

Δop

such that φ carries inert morphisms in M to inert morphisms in N. We will also refer to 
a morphism of (generalized) non-symmetric ∞-operads M → N as an M-algebra in N; 
we write AlgM(N) for the full subcategory of the ∞-category FunΔop(M, N) of functors 
over Δop spanned by the morphisms of (generalized) non-symmetric ∞-operads.

Proposition 3.1.18. Suppose V is a monoidal ∞-category. Then AlgΔop(V) has an initial 
object IV: Δop → V⊗, which is the unique associative algebra structure on the unit object 
IV of V.

Proof. As [28, Corollary 3.2.1.9]. �
Definition 3.1.19. A map of (generalized) non-symmetric ∞-operads is a fibration of (gen-
eralized) non-symmetric ∞-operads if it is also a categorical fibration and a coCartesian 
fibration of (generalized) non-symmetric ∞-operads if it is also a coCartesian fibration.
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Definition 3.1.20. We will also refer to a map of non-symmetric ∞-operads between 
monoidal ∞-categories as a lax monoidal functor. A monoidal functor is a lax monoidal 
functor that preserves all coCartesian arrows. If V and W are monoidal ∞-categories, 
we denote the full subcategory of FunΔop(V⊗, W⊗) spanned by the monoidal functors by 
Fun⊗(V⊗, W⊗). We also use the same notation for the analogous ∞-category of functors 
between double ∞-categories that preserve all coCartesian morphisms.

It will be useful to know that monoidal ∞-categories are well-behaved with respect 
to certain localizations:

Definition 3.1.21. Let V be a monoidal ∞-category and suppose W is a full subcategory 
of V such that the inclusion i: W ↪→ V has a left adjoint L: V → W. We say that 
the localization L is monoidal if the tensor product of two L-equivalences is again an 
L-equivalence.

Proposition 3.1.22. Let V be a monoidal ∞-category and suppose L: V → W is a monoidal 
localization with fully faithful right adjoint i: W ↪→ V. Write W⊗ for the full subcategory 
of objects X of V⊗ such that ρi,!X ∈ W for i = 1, . . . , n (if X ∈ V⊗

[n]). Then

(i) The inclusion i⊗: W⊗ ↪→ V⊗ has a left adjoint L⊗: V⊗ → W⊗ over Δop.
(ii) The projection W⊗ → Δop exhibits W⊗ as a monoidal ∞-category.
(iii) The inclusion i⊗ is a lax monoidal functor and L⊗ is a monoidal functor.

Proof. As [28, Proposition 2.2.1.9]. �
Definition 3.1.23. Suppose V is a monoidal ∞-category. If K is a simplicial set, we say 
that V is compatible with K-indexed colimits if

(1) the ∞-category V has K-indexed colimits (hence so does V⊗
[n] �

∏
V and φ! preserves 

them for any inert map φ),
(2) for all (active) maps φ: [n] → [m] in Δop, the map

φ!:
n∏

i=1
V � V⊗

[n] → V⊗
[m]

preserves K-indexed colimits separately in each variable.

Recall that the ∞-category Pres∞ of presentable ∞-categories and colimit-preserving 
functors has a symmetric monoidal structure, constructed by Lurie in [28, §4.8.1]. The 
tensor product has the universal property that a colimit-preserving functor C ⊗D → E

corresponds to a functor C ×D → E that preserves colimits separately in each variable. 
The unit for this tensor product is the ∞-category S of spaces.
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Definition 3.1.24. Let MonPr
∞ be the ∞-category AlgΔop(Pres∞) of associative algebra 

objects in Pres∞ equipped with the tensor product of presentable ∞-categories. Thus 
MonPr

∞ is the ∞-category of monoidal ∞-categories C⊗ compatible with small colimits 
such that C is presentable, with 1-morphisms monoidal functors that preserve colimits. 
We will refer to the objects of MonPr

∞ as presentably monoidal ∞-categories.

Remark 3.1.25. By Proposition 3.1.18 the ∞-category MonPr
∞ has an initial object given 

by the unique presentably monoidal structure on the unit S, which is clearly the Cartesian 
monoidal structure.

3.2. The ∞-category of ∞-operads

Our goal in this subsection is to construct ∞-categories and (∞, 2)-categories of (gen-
eralized) non-symmetric ∞-operads. For this we make use of Lurie’s theory of categorical 
patterns from [28, §B].

A number of important objects in higher category theory can be regarded as forming 
(non-full) subcategories of slice categories of the ∞-category Cat∞ of ∞-categories — in 
particular, we have seen above that this is the case for (non-symmetric) ∞-operads and 
monoidal ∞-categories, which form subcategories of (Cat∞)/Δop . The theory of categor-
ical patterns provides a machine for generating model structures describing ∞-categories 
of this kind. Specifically, these are model structures on the slice category of marked sim-
plicial sets over some fixed marked simplicial set — the marking, which is a collection of 
1-simplices in a simplicial set, allows us to easily consider subcategories of slice categories 
where some type of map must be preserved (the inert maps in the case of ∞-operads, 
and the coCartesian maps in the case of monoidal ∞-categories). Although we could 
construct the desired ∞-categories of ∞-operads or monoidal ∞-categories directly as 
subcategories of (Cat∞)/Δop , having the model structure around makes it easy to see 
that these ∞-categories have all colimits, and indeed are presentable, and also allows us 
to construct certain functors as Quillen adjunctions.

Definition 3.2.1. A categorical pattern P = (C, S, {pα}) consists of

• an ∞-category C,
• a marking of C, i.e. a collection S of 1-simplices in C that includes all the degenerate 

ones,
• a collection of diagrams of ∞-categories pα: K�

α → C such that pα takes every edge 
in K�

α to a marked edge of C.

Remark 3.2.2. Lurie’s definition of a categorical pattern in [28, §B] is more general 
than this: in particular, he includes the data of a scaling of the simplicial set C, i.e. a 
collection T of 2-simplices in C that includes all the degenerate ones. In all the examples 
we consider, however, the scaling consists of all 2-simplices of the simplicial set C. We 
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restrict ourselves to this special case as it gives a clearer description of the P-fibrant 
objects, and also simplifies the notation.

From a categorical pattern, Lurie constructs a model category that encodes the 
∞-category of P-fibrant objects, in the following sense:

Definition 3.2.3. Suppose P = (C, S, {pα}) is a categorical pattern. A map of simplicial 
sets Y → C is P-fibrant if the following criteria are satisfied:

(1) The underlying map π: Y → C is an inner fibration. (In particular, Y is an 
∞-category.)

(2) Y has all π-coCartesian edges over the morphisms in S.
(3) For every α, the coCartesian fibration πα: Y ×CK�

α → K�
α, obtained by pulling back 

π along pα, is classified by a limit diagram K�
α → Cat∞.

(4) For every α, the composite of any coCartesian section s: K�
α → Y ×C K�

α of πα with 
the projection Y ×C K�

α → Y is a π-limit diagram.

Examples 3.2.4.

(i) Let Ons be the categorical pattern

(Δop, Ins, {p[n]:K�
[n] → Δop}),

where Ins is the set of inert morphisms and K[n] is the set of inert morphisms 
[n] → [1] in Δop. It is immediate from Definition 3.1.3 that a map Y → Δop is 
Ons-fibrant precisely if it is a non-symmetric ∞-operad.

(ii) Let M denote the categorical pattern

(Δop,NΔop
1 , {p[n]:K�

[n] → Δop}).

Then a map Y → Δop is M-fibrant precisely if Y → Δop is a monoidal ∞-category.
(iii) Let Ogen

ns be the categorical pattern

(Δop, Ins, {(GΔ)�[n]/ → Δop}).

It is immediate from Definition 3.1.13 that a map Y → Δop is Ogen
ns -fibrant if and 

only if Y → Δop is a generalized non-symmetric ∞-operad.
(iv) Let D denote the categorical pattern

(Δop,NΔop
1 , {(GΔ)�[n]/ → Δop}).

Then a map Y → Δop is D-fibrant if and only if Y → Δop is a double ∞-category.
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Theorem 3.2.5. (Lurie, [28, Theorem B.0.20].) Let P = (C, S, {pα}) be a categorical 
pattern, and let C denote the marked simplicial set (C, S). There is a left proper combi-
natorial simplicial model structure on the category (Set+Δ)/C such that:

(1) The cofibrations are the morphisms whose underlying maps of simplicial sets are 
monomorphisms. In particular, all objects are cofibrant.

(2) An object (X, T ) → C is fibrant if and only if X → C is P-fibrant and T is precisely 
the collection of coCartesian morphisms over the morphisms in S.

We denote the category (Set+Δ)/C equipped with this model structure by (Set+Δ)P.

Applying this in the case P = Ons, we get:

Corollary 3.2.6. There is a left proper combinatorial simplicial model structure on
(Set+Δ)/(Δop,Ins) such that

(1) The cofibrations are the morphisms whose underlying maps of simplicial sets are 
monomorphisms. In particular, all objects are cofibrant.

(2) An object (X, T ) → Δop is fibrant if and only if X → Δop is a non-symmetric 
∞-operad and T is precisely the collection of inert morphisms of X.

We call this the non-symmetric ∞-operad model structure.

Definition 3.2.7. The ∞-category Opdns
∞ of non-symmetric ∞-operads is the ∞-category 

associated to the simplicial model category (Set+Δ)Ons , i.e. the coherent nerve of the 
simplicial category of fibrant objects. Thus the objects of Opdns

∞ can be identified with 
non-symmetric ∞-operads. Moreover, since the maps between these in (Set+Δ)Ons are 
precisely the maps that preserve inert morphisms, it is also easy to see that the space 
of maps from O to P in Opdns

∞ is equivalent the subspace of MapΔop(O, P) given by 
the components corresponding to inert-morphism-preserving maps, as expected. This 
justifies calling Opdns

∞ the ∞-category of non-symmetric ∞-operads.

Remark 3.2.8. This ∞-category of non-symmetric ∞-operads is a special case of the 
∞-categories of ∞-operads over an operator category constructed by Barwick in [5, 
Theorem 8.15]. By [5, Proposition 8.17] a morphism O → P in (Set+Δ)Ons between non-
symmetric ∞-operads marked by their inert morphisms is a weak equivalence if and 
only if the underlying morphism O → P is an equivalence of ∞-categories, as we would 
expect.

Definition 3.2.9. Similarly, applying Theorem 3.2.5 to the categorical patterns M, Ogen
ns , 

and D gives simplicial model categories (Set+Δ)M, (Set+Δ)Ogen
ns , and (Set+Δ)D whose fibrant 

objects are, respectively, monoidal ∞-categories, generalized non-symmetric ∞-operads, 
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and double ∞-categories. We write Mon∞, Opdns,gen
∞ , and Dbl∞ for the ∞-categories 

associated to these simplicial model categories, and refer to them as the ∞-categories of 
monoidal ∞-categories, generalized non-symmetric ∞-operads, and double ∞-categories.

Definition 3.2.10. The morphisms in Mon∞ are the (strong) monoidal functors between 
monoidal ∞-categories. We write Monlax

∞ for the ∞-category of monoidal ∞-categories 
and lax monoidal functors, i.e. the full subcategory of Opdns

∞ spanned by the monoidal 
∞-categories.

Examples 3.2.11. Several other ∞-categories we will encounter can be constructed using 
model categories coming from categorical patterns:

• If C is an ∞-category, let PcoCart
C be the categorical pattern (C, C1, ∅). Then (E, T ) →

C
 is PcoCart
C -fibrant if and only if π: E → C is a coCartesian fibration, and T is the 

set of π-coCartesian edges in E. The model category (Set+Δ)PcoCart
C

is the coCartesian 
model structure on (Set+Δ)/C� . Thus the associated ∞-category is the ∞-category 
CoCart(C) of coCartesian fibrations over C, which is equivalent to Fun(C, Cat∞).

• If C is an ∞-category, let Peq
C be the categorical pattern (C, ιC1, ∅). Then (E, T ) → C�

is Peq
C -fibrant if and only if E is an ∞-category, the map π: E → C is a categorical 

fibration, and T is the set of equivalences in E. (This follows from the description of 
categorical fibrations to ∞-categories in [25, Corollary 2.4.6.5].) The model category 
(Set+Δ)Peq

C
is the over-category model structure on (Set+Δ)/C� from the model structure 

on Set+Δ. The associated ∞-category is thus the over-category (Cat∞)/C.
• If C is an ∞-category and D is a subcategory of C, let PcoCart

C,D be the categorical 
pattern (C, D1, ∅). Then (E, T ) → (C, D1) is PcoCart

C,D -fibrant if and only if E is an 
∞-category, the map π: E → C is an inner fibration, E has all π-coCartesian edges 
over morphisms in D, and T consists precisely of these coCartesian edges. The model 
category (Set+Δ)PcoCart

C,D
gives an ∞-category of functors E → C that have coCartesian 

morphisms over the morphisms in D; we write CoCart(C, D) for this ∞-category.

Remark 3.2.12. For any categorical pattern P, the model category (Set+Δ)P is enriched 
in the model category of marked simplicial sets — this follows from [28, Remark B.2.5]
(taking P′ to be the trivial categorical pattern on Δ0). Passing to the subcategories 
of fibrant objects we therefore get fibrant marked simplicial categories of (generalized) 
non-symmetric ∞-operads. Marked simplicial categories are one model for the theory 
of (∞, 2)-categories, so we get (∞, 2)-categories OPDns

∞ and OPDns,gen
∞ with underly-

ing ∞-categories Opdns
∞ and Opdns,gen

∞ . If M and N are (generalized) non-symmetric 
∞-operads, we can identify the ∞-category AlgM(N) with the ∞-category of maps from 
M to N in the fibrant marked simplicial category OPDns,gen

∞ .

Proposition 3.2.13. The identity is a left (marked simplicially enriched) Quillen functor 
(Set+Δ)Ogen

ns → (Set+Δ)Ons .
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Proof. As [28, Corollary 2.3.2.6]. �
Corollary 3.2.14. The inclusion Opdns

∞ → Opdns,gen
∞ has a left adjoint Lgen: Opdns,gen

∞ →
Opdns

∞.

3.3. Filtered colimits of ∞-operads

Colimits of (generalized) non-symmetric ∞-operads are in general difficult to describe 
explicitly. However, we will now show that filtered colimits can be computed in Cat∞:

Theorem 3.3.1. The forgetful functors Opdns
∞, Opdns,gen

∞ → Cat∞ detect filtered colimits.

For this we need some preliminary technical results:

Proposition 3.3.2. Let p: I → (Cat∞)/B be a filtered diagram, and let f : B → B′ be a 
morphism in B such that for each α ∈ I the functor p(α): Cα → B has p(α)-coCartesian 
morphisms C → f!C over f for each C ∈ (Cα)B, and the functors p(φ) preserve these 
for all morphisms φ: α → β in I. Then:

(i) The colimit C → B of p also has coCartesian morphisms over f .
(ii) The functors Cα → C preserve these coCartesian morphisms for all α ∈ I.
(iii) A functor C → D over B preserves coCartesian morphisms over f if and only if all 

the composites Cα → C → D do so.

Proof. For α ∈ I, let rα,! denote the canonical functor Cα → C. Suppose X ∈ CB ; 
then there exists α ∈ I and X ′ ∈ (Cα)B such that X � rα,!X

′. Let f̄ : X ′ → f!X
′ be a 

coCartesian morphism over f ; we wish to prove that rα,!f̄ is coCartesian in C. To see 
this we must show that for all Y ∈ CA the commutative square

MapC(rα,!f!X
′, Y ) MapC(X,Y )

MapB(B′, A) MapB(B,A)

is a pullback diagram. Changing α if necessary, we may without loss of generality assume 
there is a Y ′ ∈ Cα such that rα,!Y ′ � Y . Since filtered colimits commute with finite limits 
in spaces, and the mapping space MapC(X, Y ) is the fibre of the projection

Fun(Δ1,C) � colim
α

Fun(Δ1,Cα) → colim
α

Cα × Cα � C× C

at (X, Y ), it is easy to see that we can describe MapC(X, Y ) as the filtered colimit

colim
φ: α→β∈I

MapCβ
(φ!X

′, φ!Y
′),
α/
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and the commutative square as the colimit square

colim
φ: α→β∈Iα/

MapCβ
(φ!f!X

′, φ!Y
′) colim

φ: α→β∈Iα/

MapCβ
(φ!X

′, φ!Y
′)

colim
φ: α→β∈Iα/

MapB(B′, A) colim
φ: α→β∈Iα/

MapB(B,A).

Each of the squares in this colimit are pullback squares since by assumption φ!f̄ is 
coCartesian in Cβ for all φ: α → β. Hence, since filtered colimits in S commute with finite 
limits, it follows that the colimit square is also a pullback. Thus rα,!f̄ is coCartesian in 
C, as required. This proves claims (i) and (ii), and (iii) is then clear from this description 
of the coCartesian morphisms in C. �
Corollary 3.3.3. The forgetful functor CoCart(C) → (Cat∞)/C detects filtered colimits.

Proof. We can describe CoCart(C) as the subcategory of (Cat∞)/C whose objects are the 
coCartesian fibrations and whose morphisms are the functors that preserve coCartesian 
morphisms. This is clear if we consider the functor of fibrant simplicial categories induced 
by the functor from the coCartesian model structure on (Set+Δ)/C to the over-category 
model structure on (Set+Δ)/C� that forgets the markings that do not map to equivalences 
in C. The result then follows from Proposition 3.3.2. �
Corollary 3.3.4. Let C be an ∞-category and D a subcategory of C. The forgetful functor 
CoCart(C, D) → (Cat∞)/C detects filtered colimits.

Proof. The ∞-category CoCart(C, D) can be identified with the full subcategory of the 
pullback CoCart(D) ×(Cat∞)/D (Cat∞)/C spanned by those maps E → C that have co-
Cartesian arrows over the morphisms in D — this is clear from the definition of the 
mapping spaces in the fibrant simplicial categories associated to the corresponding model 
categories. The result therefore follows from Proposition 3.3.2. �
Lemma 3.3.5. Suppose F : C � D : U is an adjunction. Then:

(i) If the right adjoint U preserves κ-filtered colimits, then F preserves κ-compact ob-
jects.

(ii) If in addition C is κ-accessible, then U preserves κ-filtered colimits if and only if F
preserves κ-compact objects.

Proof. For the first claim, suppose X ∈ C is a κ-compact object and p: K → D is a 
κ-filtered diagram. Then we have
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MapD

(
F (X), colim p

)
� MapC

(
X,G(colim p)

)
� MapC(X, colimG ◦ p)

� colim MapC(X,G ◦ p) � colim MapD

(
F (X), p

)
.

Thus MapD(F (X), –) preserves κ-filtered colimits, i.e. F (X) is κ-compact. For the second 
claim, suppose F preserves κ-compact objects, and p: K → D is a κ-filtered diagram; we 
wish to prove that the natural map colimG ◦ p → G(colim p) is an equivalence. Since C
is κ-accessible, to prove this it suffices to show that the induced map

MapC(X, colimG ◦ p) → MapC

(
X,G(colim p)

)
is an equivalence for all κ-compact objects X ∈ C. But when X is κ-compact, we have 
equivalences

MapC

(
X,G(colim p)

)
� MapD

(
F (X), colim p

)
� colim MapD

(
F (X), p

)
� colim MapC(X,G ◦ p) � MapC(X, colimG ◦ p),

so this is true. �
Lemma 3.3.6. Let C be an ∞-category and let C be an object of C. Then the forgetful 
functor F : C/C → C reflects colimits, i.e. a diagram p̄: K� → C/C is a colimit diagram if 
the composite F ◦ p̄: K� → C is a colimit diagram. Moreover, if C has finite products, then 
F creates colimits, i.e. p̄ is a colimit diagram if and only if F ◦ p̄ is a colimit diagram.

Proof. Write C ′ for p̄(∞) and p for p̄|K . For any map f : D → C we have a commutative 
square

lim
x∈K

MapC(p(x), D) MapC(C ′, D)

lim
x∈K

MapC(p(x), C) MapC(C ′, C).

If F ◦ p̄ is a colimit diagram in C then the horizontal morphisms in this square are both 
equivalences, hence so are all induced maps on fibres. But for any object g: X → C in 
C/C the space MapC/C

(X, D) is the pullback

MapC/C
(X,D) MapC(X,D)

{g} MapC(X,C),

and so since limits commute one map on fibres is
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lim
x∈K

MapC/C

(
p(x), D

)
→ MapC/C

(C ′, D).

Thus this is an equivalence for all D → C if F ◦ p̄ is a colimit diagram in C, which shows 
that p̄ is a colimit diagram in C/C if F ◦ p̄ is a colimit diagram.

Conversely, suppose p̄ is a colimit diagram, so that

lim
x∈K

MapC/C

(
p(x), D

)
→ MapC/C

(C ′, D)

is an equivalence for all D → C. If C has finite products, then for any Y → C in C/C

and any X ∈ C we have a natural equivalence

MapC/C
(Y,X × C) � MapC(Y,X)

where X × C → C is the product projection. Thus, taking D to be X × C we get by 
naturality an equivalence

lim
x∈K

MapC

(
p(x), X

) ∼−−→ MapC(C ′, X),

and thus F ◦ p̄ is a colimit diagram in C. �
Proposition 3.3.7. Suppose C is a κ-accessible ∞-category with finite products such that 
the Cartesian product preserves κ-filtered colimits separately in each variable. Then an 
object X → C is κ-compact in C/C if and only if X is a κ-compact object of C.

Proof. The forgetful functor r!: C/C → C creates colimits by Lemma 3.3.6 and admits 
a right adjoint r∗: C → C/C given by sending X ∈ C to the projection X × C → C. By 
assumption the composite r!r∗, which sends X to X × C, preserves κ-filtered colimits, 
hence so does r∗. By Lemma 3.3.5 the left adjoint r! preserves κ-compact objects. Thus 
if X → C is κ-compact in C/C , then X is κ-compact in C.

Conversely, suppose X → C is an object of C/C such that X is κ-compact in C, and 
p: K → C/C is a κ-filtered diagram in C/C . We then have a diagram

colim MapC(X, r! ◦ p) MapC(X, colim r! ◦ p)

colim MapC(X,C) MapC(X,C)

where the horizontal maps are equivalences. Since κ-filtered colimits commute with 
κ-small limits in S, hence in particular finite limits, we have a pullback diagram
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colim MapC/C
(X, p) colim MapC(X, p)

colim ∗ colim MapC(X,C)

where the obvious map colim ∗ → ∗ is an equivalence. Thus the canonical map

colim MapC/C
(X, p) → MapC/C

(X, colim p)

can be identified with the pullback along the inclusion {X → C} → MapC(X, C) of 
an equivalence and so is itself an equivalence. Hence X → C is indeed κ-compact in 
C/C . �
Corollary 3.3.8. Suppose C is a κ-accessible ∞-category with finite limits, such that the 
Cartesian product preserves κ-filtered colimits separately in each variable. Then for ev-
ery morphism f : C → D in C the pullback functor f∗: C/D → C/C preserves κ-filtered 
colimits.

Proof. The functor f∗ is right adjoint to the functor f!: C/C → C/D given by composition 
with f . By Proposition 3.3.7 the functor f! preserves κ-compact objects, and so by 
Lemma 3.3.5 the right adjoint f∗ preserves κ-filtered colimits. �
Proof of Theorem 3.3.1. We consider first the case of the forgetful functor Opdns

∞ →
Cat∞. For any categorical pattern P = (X, S, {pα}), it follows from the proof of [28, 
Theorem B.0.20] that the model category (Set+Δ)P is a left Bousfield localization of 
the model category (Set+Δ)P− , where P− be the categorical pattern (X, S, ∅). Thus the 
∞-category Opdns

∞ is a localization of CoCart(Δop, Δop
int), and by Corollary 3.3.4 the 

forgetful functor CoCart(Δop, Δop
int) → (Cat∞)/Δop detects filtered colimits. It follows 

that the colimit of a filtered diagram of ∞-operads is the localization of the colimit of 
the corresponding diagram in CoCart(Δop, Δop

int), and this colimit can be computed in 
(Cat∞)/Δop or equivalently in Cat∞, by Lemma 3.3.6. Thus, to show that the forgetful 
functor from Opdns

∞ to Cat∞ preserves filtered colimits it suffices to show that the colimit 
in (Cat∞)/Δop of such a diagram is also an ∞-operad.

Let p: I → Opdns
∞, α �→ Oα be a filtered diagram, and let O be the colimit in Cat∞

of the diagram obtained by composing with the forgetful functor. By Proposition 3.3.2
the induced map O → Δop has coCartesian arrows over inert morphisms in Δop, so it 
suffices to prove that the two other conditions for being an ∞-operad are satisfied.

Since pullbacks in Cat∞ preserve filtered colimits by Corollary 3.3.8, and these com-
mute with finite limits in Cat∞, we have a commutative diagram



D. Gepner, R. Haugseng / Advances in Mathematics 279 (2015) 575–716 615
O[n] colimα Oα,[n]

(O[1])×n colimα(Oα,[1])×n

where all but the left vertical map are known to be equivalences, hence this is also an 
equivalence.

Now suppose Y is an object of O[n] and ηi: Y → Yi are coCartesian arrows over the 
inert maps ρi: [n] → [1] in Δop. We must show that for every X ∈ O[m] and every map 
φ: [m] → [n] in Δop, the morphism

Mapφ
O(X,Y ) →

∏
i

Mapρiφ
O (X,Yi)

is an equivalence. We can choose α ∈ I and objects Xα and Yα in Oα that map to X
and Y ; coCartesian morphisms Yα → ρi,!Yα over ρi will then map to ηi. As in the proof 
of Proposition 3.3.2, since O is a filtered colimit in Cat∞ we get a diagram

Mapφ
O(X,Y )

∏
i

Mapρiφ
O (X,Yi)

colim
ψ: α→β∈Iα/

Mapφ
Oβ

(ψ!Xα, ψ!Yα)
∏
i

colim
ψ: α→β∈Iα/

Mapρiφ
Oβ

(ψ!Xα, ψ!ρi,!Yα)

where the vertical maps are equivalences. But since filtered colimits commute with finite 
limits in S, the bottom horizontal map is also an equivalence, as Oβ is an ∞-operad for 
all β. It follows that the top horizontal map is also an equivalence, which completes the 
proof that O is an ∞-operad.

The proof for Opdns,gen
∞ is similar — the only difference is the we replace the finite 

products with limits over the categories GΔ
[n]/, which are also finite. �

3.4. Trivial ∞-operads

In this subsection we will associate to any non-symmetric ∞-operad O a trivial
∞-operad Otriv with a map Otriv → O, such that for any ∞-operad P the ∞-category 
AlgOtriv

(P) of Otriv-algebras in P is equivalent to the functor ∞-category Fun(O[1], P[1]); 
an analogous result also holds for generalized non-symmetric ∞-operads.

Definition 3.4.1. Let M be a generalized non-symmetric ∞-operad. Define the generalized 
non-symmetric ∞-operad Mtriv by the pullback diagram
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Mtriv
τM

M

Δop
int Δop

This is the trivial generalized non-symmetric ∞-operad over M.

Definition 3.4.2. Let Otriv
ns denote the categorical pattern
(
Δop

int,N
(
Δop

int
)
1, {(G

Δ)�[n]/ → Δop}
)
.

Remark 3.4.3. An object (X, S) of (Set+Δ)/(Δop
int,N(Δop

int)1) is Otriv
ns -fibrant if X → Δop

int
is a coCartesian fibration, S is the set of coCartesian edges, and the Segal morphisms 
X[n] → X[1] ×X[0] · · · ×X[0] X[1] are equivalences.

Under the equivalence between coCartesian fibrations and functors the ∞-category 
associated to the model category (Set+Δ)Otriv

ns
corresponds to the full subcategory of 

Fun(Δop
triv, Cat∞) spanned by the functors that are right Kan extensions along the in-

clusion γ: GΔ → Δop
int. Thus we have proved the following:

Lemma 3.4.4. The ∞-category associated to the model category (Set+Δ)Otriv
ns

is equivalent 
to Fun(GΔ, Cat∞).

The obvious map of categorical patterns Otriv
ns → Ogen

ns then induces an adjoint pair 
of functors

γ!: Fun(GΔ,Cat∞) � Opdns,gen
∞ : γ∗.

Since composition with the inclusion Δop
int → Δop takes Otriv

ns -fibrant objects to 
Ogen

ns -fibrant objects, the left adjoint γ! sends a functor GΔ → Cat∞ to its right Kan 
extension to Δop

int → Cat∞, then to the composite E → Δop
int → Δop, where E → Δop

int is 
the associated coCartesian fibration. In particular, if M is a generalized non-symmetric 
∞-operad, then Mtriv is γ!γ

∗M, and the natural map Mtriv → M is the adjunction 
morphism.

Taking the (∞, 2)-categories associated to the categorical patterns into account, we 
get the following:

Proposition 3.4.5. Let F : GΔ → Cat∞ be a functor, and F → GΔ the associated co-
Cartesian fibration. If M is a generalized non-symmetric ∞-operad let Mglob denote the 
pullback of M along GΔ → Δop. Then there is a natural equivalence between Algγ!F (M)
and the full subcategory FuncoCart

GΔ (F, Mglob) of FunGΔ(F, Mglob) spanned by functors 
that preserve coCartesian arrows. In particular, if O is a non-symmetric ∞-operad, then 
Algγ!F (O) � Fun(F ([1]), O[1]).
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3.5. Monoid and category objects

We will now observe that if V is an ∞-category with finite products and M is a 
(generalized) non-symmetric ∞-operad, then the M-algebras in the Cartesian monoidal 
∞-category V× are equivalent to a certain class of functors M → V, namely the 
M-monoids.

Definition 3.5.1. Suppose M is a generalized non-symmetric ∞-operad and V an 
∞-category with finite products. An M-monoid object in V is a functor F : M → V

such that its restriction F |Mtriv is a right Kan extension of F |M[1] along the inclusion 
M[1] ↪→ Mtriv. Write MonM(V) for the full subcategory of Fun(M, V) spanned by the 
M-monoid objects.

Definition 3.5.2. Suppose M is a generalized non-symmetric ∞-operad and V is an 
∞-category with finite limits. An M-category object in V is a functor F : M → V

such that its restriction F |Mtriv is a right Kan extension of F |Mglob along the inclu-
sion Mglob ↪→ Mtriv. Write CatM(V) for the full subcategory of Fun(M, V) spanned by 
the M-category objects. When M is Δop we refer to Δop-category objects as just category 
objects.

Proposition 3.5.3. Suppose V is an ∞-category with finite products, and consider V as 
a monoidal ∞-category via the pullback of the Cartesian symmetric monoidal structure. 
Then for any generalized non-symmetric ∞-operad M we have AlgM(V) � MonM(V).

Proof. As [28, Proposition 2.4.2.5]. �
Proposition 3.5.4. We have equivalences Mon∞ � MonΔop(Cat∞) and Dbl∞ �
CatΔop(Cat∞).

Proof. We can identify Mon∞ with the full subcategory of the ∞-category of coCarte-
sian fibrations over Δop spanned by the monoidal ∞-categories. Under the equivalence 
between coCartesian fibrations over Δop and functors Δop → Cat∞ these correspond 
precisely to those functors satisfying the condition for a monoid object. Similarly, the 
double ∞-categories correspond to the category objects. �
3.6. The algebra fibration

In this subsection we define, given a non-symmetric ∞-operad O, a Cartesian fibration 
Alg(O) → Opdns

∞ with fibre AlgP(O) at P ∈ Opdns
∞ — the objects of Alg(O) are thus 

pairs (P, A) where P is a non-symmetric ∞-operad and A is a P-algebra in O. We then 
study the ∞-category Alg(V) in the special case when V is a monoidal ∞-category and 
consider its behaviour as we vary the monoidal ∞-category V.
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Definition 3.6.1. Let O be a non-symmetric ∞-operad. Recall that (Set+Δ)op
Ons

is a marked 
simplicial model category, so we have a functor

(
Set+Δ

)op
Ons

→ Set+Δ

represented by O. This restricts to a functor between the fibrant objects in these marked 
simplicial model categories; forgetting from the marked simplicial enrichment down to 
enrichment in simplicial sets (by forgetting the unmarked 1-simplices) and taking nerves 
we get a functor

(
Opdns

∞
)op → Cat∞;

this sends a non-symmetric ∞-operad P to AlgP(O). We define

Alg(O) → Opdns
∞

to be a Cartesian fibration corresponding to this functor.

Remark 3.6.2. We could also construct Alg(O) as a full subcategory of the source of a 
Cartesian fibration associated to the functor (Cat∞)/Δop → Cat∞ that sends C → Δop

to FunΔop(C, O).

Remark 3.6.3. Let V be an ∞-category with finite products. Then we can similarly 
define a fibration Mon(V) → Opdns

∞ with fibre MonO(V) at O. The proof of [28, Propo-
sition 2.4.1.7] implies that the equivalence AlgO(V) � MonO(V) is natural in O, which 
gives an equivalence Alg(V) ∼−−→ Mon(V) when V is considered as a monoidal ∞-category 
via the Cartesian product.

Definition 3.6.4. For O a non-symmetric ∞-operad, let

Algtriv(O) → Opdns
∞

be the pullback of Alg(O) along the functor γ!γ
∗ from Opdns

∞ to itself that sends P to 
Ptriv. The natural maps τ∗P: Ptriv → P then induce a functor

τ∗: Alg(O) → Algtriv(O).

Remark 3.6.5. The natural equivalence AlgPtriv
(V) � Fun(P[1], V) of Proposition 3.4.5

implies that there is a pullback diagram

Algtriv(V) FV

Opdns
∞ Cat∞,
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where the lower horizontal map sends an ∞-operad O to O[1], and the right vertical 
map is a Cartesian fibration associated to the functor Catop∞ → Cat∞ that sends C to 
Fun(C, V).

Lemma 3.6.6. Suppose V is a monoidal ∞-category compatible with small colimits. Then 
the projection Alg(V) → Opdns

∞ is both Cartesian and coCartesian.

Proof. By [25, Corollary 5.2.2.5] it suffices to prove that for each map f : O → P in 
Opdns

∞ the map f∗: Algns
P (V) → Algns

O (V) has a left adjoint. This is precisely the content 
of Theorem A.4.6. �
Lemma 3.6.7. Suppose V is a monoidal ∞-category compatible with small colimits. Then 
the functor τ∗ has a left adjoint

τ!: Algtriv(V) → Alg(V)

relative to Opdns
∞.

Proof. By [28, Proposition 7.3.2.6] it suffices to prove that τ∗ admits fibrewise left ad-
joints, which we showed in Theorem A.4.6, and that τ∗ preserves Cartesian arrows, 
which is clear since it is the functor associated to a natural transformation between the 
corresponding functors to Cat∞. �
Lemma 3.6.8. The functor Alg(–)(V): (Opdns

∞)op → Cat∞ takes colimits in Opdns
∞ to 

limits.

Proof. For any categorical pattern P, the product

Set+Δ ×
(
Set+Δ

)
P
→

(
Set+Δ

)
P

is a left Quillen bifunctor by [28, Remark B.2.5]. Thus the induced functor of ∞-categories 
preserves colimits in each variable. In particular, the product

Cat∞ ×Opdns
∞ → Opdns

∞

preserves colimits in each variable. Now Alg(–)(–) is defined as a right adjoint to this, so 
for any ∞-category C we have

MapCat∞
(
C,Algcolimα Oα

(P)
)
� MapOpdns

∞
(C× colim

α
Oα,P)

� MapOpdns
∞

(
colim

α
(C× Oα),P

)
� lim

α
MapOpdns

∞
(C× Oα,P)



620 D. Gepner, R. Haugseng / Advances in Mathematics 279 (2015) 575–716
� lim
α

MapCat∞
(
C,AlgOα

(P)
)

� MapCat∞
(
C, lim

α
AlgOα

(P)
)
.

Thus Algcolim Oα
(P) � limα AlgOα

(P). �
Proposition 3.6.9. Suppose V is a monoidal ∞-category compatible with small colimits. 
Then Alg(V) admits small colimits.

Proof. By Lemma 3.6.6, the fibration π: Alg(V) → Opdns
∞ is coCartesian. Moreover, its 

fibres have all colimits by Corollary A.5.7 and the functors f! induced by morphisms 
f in Opdns

∞ preserve colimits, being left adjoints. Thus π satisfies the conditions of [15, 
Lemma 9.8]. �
Proposition 3.6.10. Let V and W be monoidal ∞-categories compatible with small col-
imits. Suppose F : V⊗ → W⊗ is a monoidal functor such that F[1]: V → W preserves 
colimits. Then F∗: Alg(V) → Alg(W) preserves colimits.

Proof. Since V and W are compatible with small colimits, the projections

Alg(V), Alg(W) → Opdns
∞

are coCartesian fibrations. Thus a diagram in Alg(W) is a colimit diagram if and only if 
it is a relative colimit diagram whose projection to Opdns

∞ is a colimit diagram.
It therefore suffices to prove that F∗ preserves coCartesian arrows and preserves 

colimits fibrewise. The former follows from Lemma A.4.7, and the latter from Proposi-
tion A.5.10. �
Proposition 3.6.11. Suppose V is a presentably monoidal ∞-category. Then the ∞-category 
Alg(V) is presentable and the projection Alg(V) → Opdns

∞ is an accessible functor.

Proof. This follows from [15, Theorem 9.3] together with Theorem A.4.6, Corol-
lary A.5.7, and Lemma 3.6.8. �

Next we observe that the ∞-category Alg(O) is functorial in O:

Definition 3.6.12. Since the model category (Set+Δ)Ons is enriched in marked simplicial 
sets, the enriched Yoneda functor

H:
(
Set+Δ

)op
Ons

×
(
Set+Δ

)
Ons

→ Set+Δ

induces a functor of ∞-categories (Opdns
∞)op×Opdns

∞ → Cat∞ sending (O, P) to AlgO(P). 
Let Algco → Opdns

∞ ×(Opdns
∞)op be a Cartesian fibration corresponding to this functor.
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The fibre of Algco at O in the second component is Alg(O). The composite Algco →
(Opdns

∞)op with projection to the second factor is then a Cartesian fibration corresponding 
to a functor Opdns

∞ → Cat∞ that sends O to Alg(O). Thus we see that Alg(O) is functorial 
in O.

Definition 3.6.13. Let Alg → Opdns
∞ be a coCartesian fibration corresponding to the 

functor O �→ Alg(O).

Next we show that the algebra fibration is compatible with products of non-symmetric 
∞-operads:

Proposition 3.6.14. Alg(–) is lax monoidal with respect to the Cartesian product of non-
symmetric ∞-operads.

Proof. The Cartesian product on (Set+Δ)Ons gives a symmetric monoidal structure on 
(Set+Δ)op

Ons
×(Set+Δ)Ons by taking products in both variables. The functor H is lax monoidal 

with respect to this, and so induces an ((Opdns
∞)op×Opdns

∞)×-monoid in Cat∞. From this 
we get a Cartesian fibration Alg×co → (((Opdns

∞)op×Opdns
∞)×)op. Projecting to the second 

factor gives a Cartesian fibration that corresponds to a monoid (Opdns
∞)× → Cat∞, and 

so a lax monoidal functor (Opdns
∞)× → Cat×∞. This shows that Alg(–) is a lax monoidal 

functor. �
This construction gives an “external product”

�: Alg(O) × Alg(P) → Alg(O×Δop P).

Our next result is that for algebras in monoidal ∞-categories compatible with colimits 
this preserves colimits in each variable; this requires a preliminary observation:

Lemma 3.6.15. Suppose V and W are monoidal ∞-categories compatible with small col-
imits. Then the external product � preserves free algebras, i.e. given non-symmetric 
∞-operads O and P, algebras A ∈ AlgO(V) and B ∈ AlgP(W), and morphisms of non-
symmetric ∞-operads f : O → Q and g: P → R, we have f!A � g!B � (f × g)!(A � B) in 
AlgQ×ΔopR(V ×W).

Proof. This follows from Lemma A.2.3. �
Proposition 3.6.16. Suppose V and W are monoidal ∞-categories compatible with small 
colimits, and let O and P be non-symmetric ∞-operads and A ∈ AlgO(V) an O-algebra. 
Then

A � (–): AlgP(W) → AlgO×ΔopP(V×W)

preserves colimits.
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Proof. First we consider the case of trivial non-symmetric ∞-operads. Suppose A′ is an 
Otriv-algebra. Then

A′ � –: AlgPtriv
(W) → AlgOtriv×ΔopPtriv

(V×W)

clearly preserves colimits, since it is equivalent to the functor

A′|O[1] × –: Fun(P,W) → Fun(O[1] × P[1],V×W).

Since we have τ∗V×W(A � B) � τ∗VA � τ∗WB and τ∗V×W detects sifted colimits by Corol-
lary A.5.4, it follows that A � – preserves sifted colimits for any A.

Next we consider the case where A is a free algebra τV,!A
′ for some Otriv-algebra A′

in V. By Lemma 3.6.15 we have

τV,!A
′ � τW,!B

′ � τV×W,!(A′ � B′),

so the functor τV,!A � – preserves colimits of free algebras. Thus it must preserve all 
colimits, by monadicity (Corollary A.5.6).

Finally, suppose A• is a free resolution of A, and α �→ Bα is any diagram. Then since 
� preserves sifted colimits we have

A � colimBα � |A•| � colimBα � |A• � colimBα|.

From the case of free algebras we then get that this is equivalent to

| colim(A• � Bα)| � colim |A• � Bα|.

But since � preserves sifted colimits in each variable, this is colim(|A•| � Bα) �
colim(A � Bα). �
Remark 3.6.17. The Cartesian product of non-symmetric ∞-operads does not in general 
preserve colimits, so it is not possible for the external product, considered as a functor 
A � (–): Alg(W) → Alg(V ×W) to preserve colimits.

Finally, we observe that the algebra fibration is well-behaved with respect to adjunc-
tions and monoidal localizations:

Proposition 3.6.18. Suppose V and W are presentably monoidal ∞-categories and 
F : V⊗ → W⊗ is a monoidal functor such that the underlying functor F[1]: V → W pre-
serves colimits. Let g: W → V be a right adjoint of F[0]. Then there exists a lax monoidal 
functor G: W⊗ → V⊗ extending g such that we have an adjunction

F∗ : Alg(V) � Alg(W) : G∗

over Opdns
∞.
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Proof. This is immediate from (the dual of) [28, Proposition 7.3.2.6] as its hypotheses 
are satisfied by Lemma A.4.7 and Proposition A.5.11. �
Corollary 3.6.19. Suppose V is a presentably monoidal ∞-category and L: V → W is an 
accessible monoidal localization with fully faithful right adjoint i: W ↪→ V. Then we have 
an adjunction

L⊗
∗ : Alg(V) � Alg(W) : i⊗∗

over Opdns
∞. Moreover, i⊗∗ is fully faithful.

Proof. This follows from combining Proposition 3.6.18 and Lemma A.5.12. �
3.7. Non-symmetric and symmetric ∞-operads

In this subsection we briefly discuss the relation between non-symmetric and symmet-
ric ∞-operads and their algebras. We will use the terminology and notation of [28] for 
(symmetric) ∞-operads, except that we use superscript Σ’s to distinguish the symmetric 
case from the non-symmetric case discussed so far.

Definition 3.7.1. Let c: Δop → Γop be the functor defined as in [28, Construction 4.1.2.5]
(this is the same as the functor introduced by Segal in [36]). This takes inert morphisms 
in Δop to inert morphisms in Γop, and moreover induces a morphism of categorical 
patterns from Ons to the analogous categorical pattern OΣ for symmetric ∞-operads. 
Thus c induces adjoint functors

c! : Opdns
∞ � OpdΣ

∞ : c∗.

Moreover, since the induced Quillen functors are enriched in marked simplicial sets, we 
get equivalences

AlgO(c∗P) � AlgΣ
c!O(P),

where O is a non-symmetric ∞-operad and P is a symmetric ∞-operad.

Remark 3.7.2. This Quillen adjunction is a special case of the Quillen adjunction induced 
by a morphism of operator categories defined in [5, Proposition 8.18].

Proposition 3.7.3.

(i) The symmetric ∞-operad c!Δop is equivalent to the symmetric ∞-operad E1 � Ass
of [28, Definition 4.1.1.3].
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(ii) The ∞-category Mon∞ of monoidal ∞-categories is equivalent to the ∞-category 
MonΣ,E1

∞ of E1-monoidal ∞-categories.
(iii) The ∞-category MonΣ,En

∞ of En-monoidal (or n-tuply monoidal) ∞-categories 
is equivalent to the ∞-category AlgΣ

En−1
(Mon∞) of En−1-algebras in monoidal 

∞-categories.

Proof.

(i) This follows from [28, Proposition 4.1.2.15].
(ii) We have an equivalence

Mon∞ � MonΔop(Cat∞) � AlgΔop(Cat∞) � AlgΣ
c!Δop(Cat∞)

� MonΣ
E1

(Cat∞) � MonΣ,E1
∞ .

(iii) Since En � En−1 ⊗ E1, using the equivalences from (ii) we get an equivalence

AlgΣ
En−1

(Mon∞) � AlgΣ
En−1

(
AlgΣ

E1
(Cat∞)

)
� AlgΣ

En
(Cat∞) � MonΣ,En

∞ . �
Remark 3.7.4. In fact, though we do not need it here, the functor c! induces an equivalence 
Opdns

∞ � (OpdΣ
∞)/E1 — this is [28, Proposition 4.7.1.1].

Remark 3.7.5. By Proposition 3.7.3, the ∞-category MonPr
∞ of presentably monoidal 

∞-categories is equivalent to the ∞-category Alg
E1

(Pres∞) of E1-algebras in Pres∞. 
Using [28, Proposition 3.2.4.3] we therefore see that the tensor product on Pres∞ induces 
a symmetric monoidal structure on MonPr

∞ . The unit for this tensor product is given by 
the unique presentably monoidal structure on the unit S, namely the Cartesian monoidal 
structure.

On the ∞-operads corresponding to ordinary multicategories, the functor c! corre-
sponds to the usual symmetrization, i.e. it adds free actions by the symmetric groups:

Definition 3.7.6. Let M be a multicategory. The symmetrization Sym(M) is the sym-
metric multicategory with objects those of M, and multimorphism sets

Sym(M)(X1, . . . , Xn;Y ) =
∐

σ∈Σn

M(Xσ(1), . . . , Xσ(n);Y );

composition in Sym(M) is defined using the usual maps Σn × Σm → Σn+m. The units 
in Σn give an obvious map μ: M⊗ → Sym(M)⊗.

Proposition 3.7.7. Let M be a multicategory. The map μ: M⊗ → Sym(M)⊗ over Γop is 
an approximation of symmetric ∞-operads (cf. [28, Definition 2.3.3.6]).
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Proof. This follows by a variant of the argument in the proof of [28, Proposi-
tion 4.1.2.10]. �
Corollary 3.7.8. The map M⊗ → Sym(M)⊗ induces an equivalence of symmetric 
∞-operads

c!M⊗ ∼−−→ Sym(M)⊗.

In particular, if O is any symmetric ∞-operad we have a natural equivalence

AlgM(c∗O) � AlgΣ
Sym(M)(O).

4. Categorical algebras

Our main goal in this section is to define the ∞-category Algcat(V) of categorical alge-
bras in a monoidal ∞-category V and prove that this has various good properties. First, 
in §4.1, we carefully define the double ∞-categories Δop

S for S a space, and make some 
observations about the functor S �→ Δop

S . Next, in §4.2, we identify the non-symmetric 
∞-operad associated to Δop

S as one arising from a certain simplicial multicategory; this 
allows us to prove a crucial property of the double ∞-categories Δop

S . We are then ready, 
in §4.3, to use the algebra fibration from §3.6 to construct the ∞-categories Algcat(V)
and study these; in particular, we will prove that Algcat(V) is a lax monoidal functor of 
V, and that it is presentable if V is presentable and equipped with a colimit-preserving 
monoidal product. In §4.4 we then prove that categorical algebras in spaces are equiva-
lent to Segal spaces, which will prove useful in the next section as it allows us to reduce 
several proofs to the known case of Segal spaces. Finally, in §4.5 we show that categori-
cal algebras are equivalent to an alternative model for enriched ∞-categories as certain 
presheaves.

4.1. The double ∞-categories Δop
S

We begin with an abstract definition of double ∞-categories Δop
C , where C is any 

∞-category:

Definition 4.1.1. Let i denote the inclusion {[0]} ↪→ Δop. Taking right Kan extensions 
along i gives a functor i∗: Cat∞ → Fun(Δop, Cat∞). If C is an ∞-category, we write 
Δop

C → Δop for a coCartesian fibration corresponding to the functor i∗C.

Remark 4.1.2. If C is an ∞-category, then i∗C is the simplicial ∞-category with nth 
space C×n+1, face maps given by the appropriate projections, and degeneracies by the 
appropriate diagonal maps.
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Lemma 4.1.3. Let C be an ∞-category. The coCartesian fibration Δop
C → Δop is a double 

∞-category.

Proof. It is clear that i∗C is a category object, hence Δop
C is a double ∞-category by 

Proposition 3.5.4. �
Remark 4.1.4. We can also give a more explicit description of the simplicial sets Δop

C , as 
follows: Consider the forgetful functor Δ → Set that sends [n] to the set {0, . . . , n}, and 
let P → Δop be an associated Grothendieck fibration. Then define EC → Δop to be the 
simplicial set satisfying the universal property

HomΔop(K,EC) ∼= Hom(P ×Δop K,C)

The map EC → Δop is a coCartesian fibration by [25, Proposition 3.2.2.13], and the cor-
responding functor is that sending [n] to Fun(P[n], C) � C×(n+1) by [15, Proposition 7.3]. 
Thus the fibration EC → Δop is the same as the coCartesian fibration Δop

C → Δop.

Remark 4.1.5. The functor

Δop
(–): Cat∞ → Opdns,gen

∞

is a right adjoint to the functor Opdns,gen
∞ → Cat∞ that sends a generalized non-

symmetric ∞-operad M to its fibre M[0] at [0]: it is a composite of the right Kan extension 
functor i∗: Cat∞ → Dbl∞, which is right adjoint to the fibre-at-[0] functor, and the inclu-
sion Dbl∞ ↪→ Opdns,gen

∞ , right adjoint to the monoidal envelope functor, which preserves 
fibres at [0] (cf. §A.1).

Remark 4.1.6. It follows from Remark 4.1.5 that the functor Δop
(–): Cat∞ → Opdns,gen

∞ is 
fully faithful, since using the adjunction we have

Map
(
Δop

C ,Δop
D

)
� Map

((
Δop

C

)
[0],D

)
� Map(C,D).

Proposition 4.1.7. The functor Δop
(–): Cat∞ → Opdns,gen

∞ preserves filtered colimits.

Proof. Suppose we have a filtered diagram of ∞-categories p: I → Cat∞ with colimit 
C. Since Δop

C is a generalized non-symmetric ∞-operad, by Theorem 3.3.1 it suffices to 
show that Δop

C is the colimit of Δop
p(–) in Cat∞. Now this composite functor

Cat∞
Δop

(–)−−−−→ Opdns,gen
∞ → Cat∞

factors as

Cat∞ i∗−−→ Fun(Δop,Cat∞) ∼−−→ CoCart(Δop) q−→ Cat∞,
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where CoCart(Δop) is the ∞-category of coCartesian fibrations over Δop and the right-
most functor q is the forgetful functor that sends a fibration E → Δop to the ∞-category 
E. The functor q preserves filtered colimits by Corollary 3.3.4, so it suffices to prove that 
i∗ preserves them. Colimits in functor categories are computed pointwise, so to see this 
it suffices to show that for each [n] the composite functor Cat∞ → Cat∞ induced by 
composing with evaluation at [n] preserves filtered colimits. This functor sends D to the 
product D×(n+1), and so preserves filtered (and even sifted) colimits by [25, Proposi-
tion 5.5.8.6], since the Cartesian product of ∞-categories preserves colimits separately 
in each variable. �
4.2. The ∞-operad associated to Δop

S

By Corollary 3.2.14 there is a universal non-symmetric ∞-operad LgenΔop
S receiving 

a map from the double ∞-category Δop
S . In this subsection we describe a concrete model 

for LgenΔop
S as the ∞-operad associated to a simplicial multicategory. We will use this 

below in §5.3 to see that our theory of enriched ∞-categories is equivalent to the definition 
sketched in §2.2, and it will also allow us to conclude that the functor that sends S to 
LgenΔop

S preserves products.

Remark 4.2.1. Although it is obvious that the functor Δop
(–) preserves products, since it’s 

a right adjoint by Remark 4.1.5, it is not clear that the localization functor

Lgen: Opdns,gen
∞ → Opdns

∞

preserves products — in fact, this may well be false in general.

First we define simplicial categories D(C) that model Δop
NC when C is a simplicial 

category:

Definition 4.2.2. Given a simplicial category C, the simplicial category D(C) has objects 
finite sequences (c0, . . . , cn) of objects of C; morphisms are given by

D(C)
(
(c0, . . . , cn), (d0, . . . , dm)

)
:=

∐
φ: [m]→[n]

m∏
i=0

C(cφ(i), di),

with the obvious composition maps induced by those in C.

Proposition 4.2.3. Suppose C is a fibrant simplicial category. Then:

(i) The projection ND(C) → NΔop is a coCartesian fibration.
(ii) The fibre ND(C)[0] is equivalent to NC.
(iii) There is a natural map ND(C) → Δop

NC, and this preserves coCartesian edges.
(iv) This map is an equivalence of ∞-categories.
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Proof.

(i) It is clear that D(C) → Δop is a fibration in the model structure on simplicial 
categories; since N is a right Quillen functor, it follows that ND(C) → NΔop is 
a categorical fibration. It therefore suffices to check that ND(C) has coCartesian 
morphisms. Given an object C = (c0, . . . , cn) in D(C) and a map φ: [m] → [n] in Δ, 
let φ denote the obvious map C → C ′ = (cφ(0), . . . , cφ(m)) in D(C). We apply the 
criterion of [25, Proposition 2.4.1.10] to see that φ is coCartesian in ND(C); thus 
we need to show that for every X ∈ D(C) over [k] ∈ Δop the commutative diagram

D(C)(C ′, X) D(C)(C,X)

HomΔop([m], [k]) HomΔop([n], [k])

is a homotopy Cartesian square of simplicial sets. Since the simplicial category C is 
fibrant, so is D(C), hence the vertical maps are Kan fibrations. It therefore suffices 
to show that the induced maps on fibres are weak equivalences, which is clear from 
the definition of D(C).

(ii) We have a pullback diagram of simplicial categories

C D(C)

{[0]} Δop.

Since the simplicial nerve is a right adjoint, it follows that NC is the fibre of the map 
of simplicial sets ND(C) → Δop at [0]. Since this map is a coCartesian fibration, by 
[25, Corollary 3.3.1.4] NC is also the homotopy fibre in the Joyal model structure.

(iii) By definition Δop
NC corresponds to the right Kan extension i∗NC of NC along the 

inclusion i: {[0]} ↪→ Δop. The functor i∗ is right adjoint to the fibre-at-[0] functor 
i∗, and from (ii) we know that i∗ND(C) � NC. The adjunction i∗ 
 i∗ then gives the 
required map D(C) → Δop

NC (which preserves coCartesian edges since by definition 
i∗ lands in the ∞-category of coCartesian fibrations and coCartesian-morphism-
preserving functors).

(iv) By [25, Corollary 2.4.4.4] it suffices to show that for each [n] in Δop the induced 
map on fibres

(
ND(C)

)
[n] →

(
Δop

NC

)
[n]

is a categorical equivalence. As in (ii) we can identify the fibre (ND(C))[n] with 
NC×n, via the Segal maps, so by naturality we have a commutative diagram
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(ND(C))[n] (Δop
NC)[n]

NC×n NC×n,

where all but the top horizontal map are known to be categorical equivalences. 
Hence this must also be a categorical equivalence, by the 2-out-of-3 property. �

Definition 4.2.4. Let C be a simplicial category. The simplicial multicategory OC has 
objects obC × obC and multimorphism spaces defined by

OC

(
(x0, y1), . . . , (xn−1, yn); (y0, xn)

)
:= C(y0, x0) × C(y1, x1) × · · · × C(yn−1, xn−1) × C(yn, xn).

Composition is defined in the obvious way, using composition in C. Write O⊗
C for the 

associated simplicial category of operators over Δop.

If C is a fibrant simplicial category then OC is a fibrant simplicial multicategory in the 
sense of Definition 3.1.6, and so NO⊗

C is a non-symmetric ∞-operad by Lemma 3.1.8.

Remark 4.2.5. If S is a set (regarded as a category with no non-identity morphisms), 
then the multicategory OS is clearly the same as OS as defined in §2.1.

The simplicial multicategory OC is only a model for Δop
NC when NC is a space, but is 

easier to define than the version that works more generally. Indeed there is not even a 
natural map from D(C) to O⊗

C in general; however, we can construct one if we restrict 
ourselves to simplicial groupoids.

A simplicial category can be viewed as a simplicial object in categories whose simplicial 
set of objects is constant, so by analogy we take a simplicial groupoid to be a simplicial 
object in groupoids with constant set of objects. There is a model structure on simplicial 
groupoids, due to Dwyer and Kan [14, Theorem 2.5], where the weak equivalences are 
the usual Dwyer–Kan equivalences of simplicial categories, restricted to groupoids. The 
simplicial nerve functor restricts to a right Quillen equivalence from this to the usual 
model structure on simplicial sets by [14, Theorem 3.3]. In particular, it follows that 
every space is modelled by a fibrant object in simplicial groupoids, which is a simplicial 
groupoid whose mapping spaces are Kan complexes.

Since a simplicial category can be viewed as a simplicial object in categories with 
constant set of objects, a simplicial groupoid G can also be regarded as a simplicial 
category with an involution i: G → Gop such that iop ◦ i = idG, which sends a morphism 
to its inverse. Using this we can construct a functor D(G) → O⊗

G :

Definition 4.2.6. Suppose G is a simplicial groupoid. Let Φ: DG → O⊗
G be the functor that 

sends an object (c0, . . . , cn) of D(G) to ((c0, c1), (c1, c2), . . . , (cn−1, cn)) and is given on 
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morphisms by applying i on the first factor and inserting identities into the factors that 
are missing in D(G) in the obvious way.

Theorem 4.2.7. Let G be a fibrant simplicial groupoid. Then the map

NΦ: ND(G) → NO⊗
G

exhibits NO⊗
G as the operadic localization LgenND(G) of ND(G).

Proof. By Corollary A.6.9 it suffices to show that for all (x, y) ∈ G ×G the induced map

g:
(
ND(G)act

)
/(x,y) →

(
N
(
O⊗

G

)
act

)
/(x,y)

is cofinal. We will prove that g is a categorical equivalence; to see this we show that g is 
essentially surjective and induces equivalences on mapping spaces.

We first observe that g is essentially surjective: an active morphism to (x, y) in O⊗
G is 

determined by an object T = ((t0, s1), (t1, s2), . . . , (tn−1, sn)) and morphisms α: x → t0, 
β1: s1 → t1, . . . , βn−1: sn−1 → tn−1, γ: sn → y in G. Such a morphism is in the image of 
g if and only if the βi’s are all identities. Since G is by assumption a simplicial groupoid 
all morphisms in G are equivalences, and so the morphism

(
(t0, s1), (s1, s2), . . . , (sn−1, sn)

)
→

(
(t0, s1), (t1, s2), . . . , (tn−1, sn)

)
given by (id, id, β1, id, β2, . . . , id) is an equivalence from an object in the image of g to T .

It remains to show that g is fully faithful. Given objects Z = (z0, . . . , zn) and Z ′ =
(z′0, . . . , z′m) in D(G) we must show that for each active map φ: [m] → [n] in Δop the 
map

Mapφ
ND(G)/(x,y)

(Z,Z ′) → Mapφ

(NO⊗
G )/(x,y)

(
g(Z), g(Z ′)

)
is an equivalence, where the superscripts denote the fibres over φ in Δop. Let α be the 
unique active map [1] → [n] in Δ; then we can identify this as a map of homotopy fibres 
from the commutative square

D(G)φ(Z,Z ′) D(G)α(Z, (x, y))

(O⊗
G )φ(g(Z), g(Z ′)) (O⊗

G )α(g(Z), (x, y)),

where the superscripts again denote the fibres of these spaces over maps in Δop. To see 
that our map of homotopy fibres is an equivalence it suffices to show that this diagram 
is homotopy Cartesian.
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We have equivalences

D(G)φ(Z,Z ′) �
m∏
i=0

G(zφ(i), z
′
i),

D(G)α
(
Z, (x, y)

)
� G(z0, x) × G(zn, y),

(O⊗
G )φ

(
g(Z), g(Z ′)

)
� G(z′0, zφ(0)) × G(zφ(0)+1, zφ(0)+1) × · · · × G(zφ(1)−1, zφ(1)−1)

× G(zφ(1), z
′
1) × G(z′1, zφ(1)) × · · · × G(zφ(m), z

′
m),

(O⊗
G )α

(
g(Z), (x, y)

)
� G(x, z0) × G(z1, z1) × · · · × G(zn−1, zn−1) × G(zn, y).

Under these equivalences our commutative square is the product of the squares

∗ ∗

G(zj , zj) G(zj , zj)

for j not in the image of φ,

G(z0, z
′
0) × G(zn, z′m)

(i, id)

G(z0, x) × G(zn, y)

(i, id)

G(z′0, z0) × G(zn, z′m) G(x, z0) × G(zn, y),

and

G(zφ(i), z
′
i)

(id, i)

∗

G(zφ(i), z
′
i) × G(z′i, zφ(i)) G(zφ(i), zφ(i))

for i = 1, . . . , m − 1. The squares of the first kind are clearly homotopy Cartesian, the 
second square is homotopy Cartesian since the maps induced by the involution i are 
equivalences, and the squares of the third kind are homotopy Cartesian since G is a 
simplicial groupoid. �
Corollary 4.2.8. Let X be a space and X a fibrant simplicial groupoid such that the Kan 
complex NX is equivalent to X. Then the composite map

Δop
X � ND(X) → NO⊗

X

induces an equivalence of non-symmetric ∞-operads LgenΔop
X

∼−−→ NO⊗
X.



632 D. Gepner, R. Haugseng / Advances in Mathematics 279 (2015) 575–716
Corollary 4.2.9. The functor Lgen(Δop
(–)): S → Opdns

∞ preserves products.

Proof. Given spaces X and Y , there exist fibrant simplicial groupoids X and Y such that 
NX � X and NY � Y . Then by Corollary 4.2.8 we have a commutative diagram

LgenΔop
X×Y LgenΔop

X ×Δop LgenΔop
Y

NO⊗
X×Y N(O⊗

X ×Δop O⊗
Y )

where the vertical maps are equivalences. It is clear from the definition that OX×Y � OX×
OY, so the natural map O⊗

X×Y → O⊗
X ×Δop O⊗

Y is a weak equivalence of fibrant simplicial 
categories. By the 2-out-of-3 property the top horizontal map in the commutative square 
is therefore an equivalence of ∞-categories. �
4.3. The ∞-category of categorical algebras

We are now ready to define and study the ∞-categories Algcat(V) of categorical alge-
bras:

Definition 4.3.1. Suppose V is a monoidal ∞-category. The ∞-category Algcat(V) is 
defined by the pullback square

Algcat(V) Alg(V)

S
LgenΔop

(–)

Opdns
∞,

where the right vertical map is the algebra fibration from §3.6 and the lower horizontal 
map sends a space S to the non-symmetric ∞-operad LgenΔop

S associated to the gen-
eralized non-symmetric ∞-operad Δop

S . The objects of Algcat(V) are thus categorical 
algebras in V and its 1-morphisms are V-functors as defined in §2.4. We will refer to 
Algcat(V) as the ∞-category of categorical algebras.

Remark 4.3.2. Since V is a monoidal ∞-category, and so in particular a non-symmetric 
∞-operad, we could equivalently have defined Algcat(V) using the analogue of the algebra 
fibration over the base Opdns,gen

∞ , since there is natural equivalence AlgLgenΔop
S

(V) ∼−−→
AlgΔop

S
(V) for every space S.

Pulling back the fibration of trivial algebras in the same way, we get the functor that 
forms the free V–∞-category on a graph:
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Definition 4.3.3. Let V be a monoidal ∞-category. The ∞-category Graph∞(V) of 
V-graphs is defined by the pullback

Graph∞(V) Algtriv(V)

S
LΔop

(–)

Opdns
∞ .

Thus the fibre of Graph∞(V) at X ∈ S is Fun(X ×X, V). By Remark 3.6.5 we also get 
a pullback square

Graph∞(V) FV

S
Δ

S,

where Δ is the diagonal functor that sends S to S × S, and FV → S is the Cartesian 
fibration associated to the functor Sop → Cat∞ sending S to Fun(S, V).

Remark 4.3.4. The pullback of the left adjoint τ! of τ∗ gives a functor

F : Graph∞(V) → Algcat(V)

left adjoint to the forgetful functor U : Algcat(V) → Graph∞(V).

Proposition 4.3.5. Suppose V is a presentably monoidal ∞-category, i.e. the ∞-category 
V is presentable and the tensor product on V preserves small colimits separately in each 
variable. Then Algcat(V) is a presentable ∞-category.

Remark 4.3.6. Proposition 4.3.5 can be seen as an ∞-categorical version of a theorem of 
Kelly and Lack [22, Theorem 4.5]. The fact that this 1-categorical result is comparatively 
recent, whereas the ∞-categorical variant is one of the first steps in our setup, underscores 
the importance of presentability in the ∞-categorical context.

We first observe that Algcat(V) has colimits:

Lemma 4.3.7. Suppose V is a monoidal ∞-category compatible with small colimits (i.e. 
the tensor product on V preserves colimits separately in each variable). Then Algcat(V)
has all small colimits.

Proof. By Lemma 3.6.6, the fibration π: Alg(V) → Opdns
∞ is both Cartesian and co-

Cartesian, hence the same is true of its pullback p: Algcat(V) → S. Moreover, the fibres 
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AlgΔop
X

(V) have all colimits by Corollary A.5.7 and the functors f! induced by mor-
phisms f in S preserve colimits, being left adjoints. Thus p satisfies the conditions of [15, 
Lemma 9.8], which implies that Algcat(V) has small colimits. �
Proof of Proposition 4.3.5. The ∞-category Algcat(V) has colimits by Lemma 4.3.7, so 
it remains to prove that it is accessible. But in the pullback square

Algcat(V) Alg(V)

S
LgenΔop

(–)

Opdns
∞ .

the right vertical morphism is an accessible functor between accessible ∞-categories by 
Proposition 3.6.11. Moreover, by Proposition 4.1.7 the bottom horizontal morphism pre-
serves filtered colimits (since Lgen is a left adjoint and so preserves all colimits), and thus 
is in particular also an accessible functor. It then follows from [25, Proposition 5.4.6.6]
that Algcat(V) is also an accessible ∞-category. �

Our next goal is to prove that the ∞-category Algcat(V) is a lax monoidal functor in 
V, with respect to the Cartesian product of monoidal ∞-categories and the Cartesian 
product of ∞-categories. Knowing this will allow us to conclude, for example, that if 
V is a symmetric monoidal ∞-category then there is an induced symmetric monoidal 
structure on Algcat(V). We first observe that Algcat(V) is indeed functorial in V:

Definition 4.3.8. As in §3.6, let Algco → Opdns
∞ ×(Ôpd

ns
∞)op be a Cartesian fibration 

classifying the functor Alg(–)(–). Then we define Algcat,co by the pullback square

Algcat,co Algco

S× (M̂on
lax
∞ )op Opdns

∞ ×(Ôpd
ns
∞)op,

where the bottom horizontal functor is the product of the functor Δop
(–) and the opposite 

of the inclusion of the full subcategory of large monoidal ∞-categories into Ôpd
ns
∞.

Lemma 4.3.9. Algcat(V) is functorial in V with respect to lax monoidal functors.

Proof. The composite Algcat,co → (M̂on
lax
∞ )op is a Cartesian fibration classifying a func-

tor V⊗ �→ Algcat(V). �



D. Gepner, R. Haugseng / Advances in Mathematics 279 (2015) 575–716 635
Remark 4.3.10. If V is an ordinary monoidal category, we can identify the usual cat-
egory of V-enriched categories with the full subcategory of Algcat(V) spanned by the 
V-enriched ∞-categories with sets of objects. In particular, taking V to be the cate-
gory Set of sets, with the Cartesian product as monoidal structure, we can identify the 
usual category Cat of categories with a full subcategory of Algcat(Set). Since the in-
clusion Set ↪→ S preserves products, this allows us to consider ordinary categories as 
S–∞-categories.

Proposition 4.3.11. Algcat(–) is lax monoidal with respect to the Cartesian product of 
monoidal ∞-categories.

Proof. The functor LgenΔop
(–) is monoidal with respect to the Cartesian products of 

spaces and non-symmetric ∞-operads, by Corollary 4.2.9. The result therefore follows 
by the same proof as that of Proposition 3.6.14. �
Corollary 4.3.12. Let O be a symmetric ∞-operad and suppose V is an O ⊗E1-monoidal 
∞-category. Then Algcat(V) is an O-monoidal ∞-category.

Proof. It follows from Proposition 4.3.11 that for any symmetric ∞-operad O, the func-
tor Algcat(–) takes an O-algebra in M̂on∞ to an O-algebra in Ĉat∞. The inclusion 

M̂on∞ → M̂on
lax
∞ clearly preserves Cartesian products, and by Proposition 3.7.3 we can 

identify M̂on∞ with the ∞-category AlgΣ
E1

(Ĉat∞) of E1-monoidal ∞-categories. By [28, 
Remark 2.4.2.6] a large O ⊗ E1-monoidal ∞-category is the same thing as an O-algebra 
in AlgΣ

E1
(Ĉat∞), and so the functor Algcat(–) indeed takes O ⊗E1-monoidal ∞-categories 

to O-monoidal ∞-categories. �
Corollary 4.3.13.

(i) Suppose V is an En-monoidal ∞-category. Then Algcat(V) is an En−1-monoidal 
∞-category.

(ii) Suppose V is a symmetric monoidal ∞-category. Then Algcat(V) is a symmetric 
monoidal ∞-category.

Proof. This follows from combining Corollary 4.3.12 with [28, Theorem 5.1.2.2]. �
Our next goal is to show that the functor Algcat(–), when restricted to presentably 

monoidal ∞-categories, is lax monoidal with respect to the tensor product of presentable 
∞-categories. We first observe that restricting in this way does indeed give a functor to 
presentable ∞-categories:

Proposition 4.3.14. The restriction of Algcat(–) to the ∞-category MonPr
∞ of presentably 

monoidal ∞-categories factors through the subcategory Pres∞ of Ĉat∞ of presentable 
∞-categories and colimit-preserving functors.
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Proof. If V is presentably monoidal, then Algcat(V) is presentable by Proposition 4.3.5. 
Moreover, it follows by the same proof as that of Proposition 3.6.10 that a monoidal func-
tor F : V⊗ → W⊗ such that F[1] preserves colimits induces a colimit-preserving functor 
Algcat(V) → Algcat(W). �

Next we see that when restricted to categorical algebras, the external product � of 
§3.6 preserves colimits in each variable:

Proposition 4.3.15. Let V be a monoidal ∞-category, and suppose that C is a categorical 
algebra in V. Then C � –: Algcat(W) → Algcat(V ×W) preserves colimits.

Proof. Since the Cartesian product of spaces preserves colimits in each variable, it suffices 
to prove that C � (–) preserves colimits fibrewise and preserves coCartesian arrows. This 
follows from Lemma 3.6.15 and Proposition 3.6.16. �
Corollary 4.3.16. The functor Algcat(–): MonPr

∞ → Pres∞ is lax monoidal with respect to 
the tensor product of presentable ∞-categories.

Proof. We have constructed a lax monoidal functor

Algcat(–): (M̂on
lax
∞ )× → Ĉat

×
∞.

By Proposition 4.3.15 and Proposition 4.3.14, the composite

(MonPr
∞)⊗ → (M̂on

lax
∞ )× → Ĉat

×
∞

factors through Pres⊗∞ as defined in [28, Notation 4.8.1.2]. �
Corollary 4.3.17. If V is presentably monoidal, then Algcat(V) is tensored over Algcat(S), 
and the tensoring operation

Algcat(S) × Algcat(V) → Algcat(V)

preserves colimits separately in each variable.

Proof. By Remark 3.7.5, the unit of the tensor product of presentably monoidal 
∞-categories is S×, and so this is a commutative algebra object in the ∞-category 
MonPr

∞ by [28, Corollary 3.2.1.9]. Any presentably monoidal ∞-category V⊗ is more-
over canonically a module over this commutative algebra object. Since Algcat(–) is lax 
monoidal with respect to ⊗, it follows that the ∞-category Algcat(V) is a module over 
the presentably symmetric monoidal ∞-category Algcat(S) in Pres∞. In other words, the 
∞-category Algcat(V) is tensored over Algcat(S) and the tensoring operation preserves 
colimits separately in each variable. �
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Definition 4.3.18. If V is a presentably monoidal ∞-category, C is a V–∞-category, and 
X is an S–∞-category, then we denote their tensor by C ⊗ X. For fixed X the functor 
C �→ C ⊗ X preserves colimits, and hence has a right adjoint — i.e. Algcat(V) is also 
cotensored over Algcat(S); we denote the cotensor of C and X by CX. If D is another 
V–∞-category we thus have a canonical equivalence

Map
(
D,CX

)
� Map(D⊗ X,C).

The ∞-category of categorical algebras is well-behaved with respect to adjunctions:

Lemma 4.3.19. Suppose V and W are presentably monoidal ∞-categories and F : V⊗ →
W⊗ is a monoidal functor such that the underlying functor f : V → W preserves colimits. 
Let g: W → V be a right adjoint of f , and let G: W⊗ → V⊗ be the lax monoidal structure 
on g given by Proposition A.5.11. Then the functors

F∗ : Algcat(V) � Algcat(W) : G∗

are adjoint.

Proof. Let C be a V–∞-category with space of objects S, and let D be a W–∞-category 
with space of objects T . We must show that the natural map Map(C, G∗D) →
Map(F∗C, D) is an equivalence. We have a commutative triangle of spaces

Map(C, G∗D) Map(F∗C,D)

Map(X,Y )

so it suffices to show that we have an equivalence on the fibres over each φ: X → Y . But 
we can identify the map on this fibre with

MapAlg
Δ

op
S

(V)(C, G∗φ
∗D) → MapAlg

Δ
op
S

(W)(F∗C, φ
∗D),

which is an equivalence since F∗ and G∗ are adjoint functors on Δop
S -algebras by Propo-

sition A.5.11. �
Example 4.3.20. Suppose V is a presentably monoidal ∞-category. Then there is a unique 
colimit-preserving functor t: S → V that sends ∗ to IV. This has right adjoint u: V → S

given by MapV(IV, –). Using the monoidal structure on MonPr
∞ we get a monoidal functor

T : S× � S× ×Δop Δop id ×ΔopIV−−−−−−−→ S× ×Δop V⊗ → S× ⊗ V⊗ ∼−−→ V⊗
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extending t. By Proposition A.5.11 there is a lax monoidal functor U : V⊗ → S× extending 
u such that for any non-symmetric ∞-operad O we have an adjunction

T∗ : AlgO(S) � AlgO(V) : U∗.

Then by Lemma 4.3.19 we have an adjunction

T∗ : Algcat(S) � Algcat(V) : U∗.

Unravelling the definitions, it is clear that we can identify the functor T∗ with the 
operation of tensoring with the unit IV ∈ Algcat(V).

Our final goal in this subsection is to show that Algcat(V) behaves very nicely with 
respect to monoidal localizations of V. First we must introduce some notation:

Definition 4.3.21. Let V be a presentably monoidal ∞-category. The functor

Fun({0, 1} × {0, 1},V) → V

given by evaluation at (0, 1) clearly has a left adjoint given by sending V ∈ V to the 
functor {0, 1} ×{0, 1} → V that takes (0, 1) to V and the other elements to ∅. Let Σ: V →
AlgΔop

{0,1}
(V) denote the composite of this with the free algebra functor τ!: Fun({0, 1} ×

{0, 1}, V) → AlgΔop
{0,1}

(V). Thus for any categorical algebra C in V with space of objects 
{0, 1} we have

MapAlg
Δ

op
{0,1}

(V)(ΣV,C) � MapV

(
V,C(0, 1)

)
.

We also write Σ for the functor V → Algcat(V) obtained by composing this with the 
inclusion of the fibre at {0, 1}. Thus for any V–∞-category C with space of objects S the 
fibre of

Map(ΣV,C) → Map({0, 1}, S) � S × S

at (X, Y ) is MapV(V, C(X, Y )).

Proposition 4.3.22. Let V be a presentably monoidal ∞-category and suppose L: V →
W is a monoidal accessible localization with fully faithful right adjoint i: W ↪→ V. Let 
i⊗: W⊗ ↪→ V⊗ and L⊗: V⊗ → W⊗ be as in Proposition 3.1.22. Suppose L exhibits W as 
the localization of V with respect to a set of morphisms S. Then there is an adjunction

L⊗
∗ : Algcat(V) � Algcat(W) : i⊗∗

which exhibits Algcat(W) as the localization of Algcat(V) with respect to Σ(S). Moreover, 
if V is at least E2-monoidal then this localization is again monoidal.
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Proof. It follows from Lemma A.5.12 that the lax monoidal structure on i provided by 
Proposition A.5.11 is given by i⊗, so by Lemma 4.3.19 we indeed have an adjunction 
L⊗
∗ 
 i⊗∗ .
To see that this is a localization we must show that i⊗∗ is fully faithful. To prove 

this it suffices to show that for every categorical algebra C ∈ Algcat(V) with space of 
objects X the counit L⊗

∗ i
⊗
∗ C → C is an equivalence in AlgΔop

X
(V). By Lemma A.5.5 this 

is equivalent to the induced morphism of underlying graphs being an equivalence, i.e. to 
LiC(C, D) → C(C, D) being an equivalence in V for all C, D ∈ C. But this is true since i
is fully faithful.

Next we must show that C ∈ Algcat(V) lies in Algcat(W) if and only if it is local with 
respect to the morphisms in Σ(S). Consider a map f : A → B in V. Then the induced 
map

MapAlgcat(V)(ΣB,C) → MapAlgcat(V)(ΣA,C)

is an equivalence in S if and only if it induces an equivalence on the fibres over all points 
of MapS(S0, X). Using the universal property of Σ we conclude that it is an equivalence 
if and only if for all objects C, D ∈ C the induced map

MapV

(
B,C(C,D)

)
→ MapV

(
A,C(C,D)

is an equivalence. Thus C is local with respect to the maps in Σ(S) if and only if all the 
mapping objects C(C, D) are local with respect to the maps in S, i.e. if and only if these 
all lie in W. Thus Algcat(W) is indeed the localization of Algcat(V) with respect to Σ(S).

Finally, it is clear from the construction of the monoidal structure on Algcat(V) that 
the localization will again be monoidal when this exists. �
4.4. Categorical algebras in spaces

In this subsection we will prove that the ∞-category Algcat(S) of categorical algebras 
in spaces is equivalent to the ∞-category Seg∞ of Segal spaces. These are an alternative 
definition of (∞, 1)-categories introduced by Rezk [34]. We begin by briefly reviewing 
the definition in the ∞-categorical context:

Definition 4.4.1. Suppose C is an ∞-category with finite limits. A category object in C is 
a simplicial object F : Δop → C such that for each n the map

Fn → F1 ×F0 · · · ×F0 F1

induced by the inclusions {i, i +1} ↪→ [n] and {i} ↪→ [n] is an equivalence. A Segal space
is a category object in the ∞-category S of spaces.
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Let δn denote the simplicial space obtained from the simplicial set Δn by composing 
with the inclusion Set ↪→ S. A simplicial space is then a Segal space if and only if it is 
local with respect to the map

segn: δn → δ1 �δ0 · · · �δ0 δ1.

Definition 4.4.2. Let Seg(S) denote the full subcategory of Fun(Δop, S) spanned by the 
Segal spaces; this is the localization of Fun(Δop, S) with respect to the maps seg∗.

The key result for the comparison is the following:

Proposition 4.4.3. Let S be a space, and let π: Δop
S → Δop be the usual projection. Let 

π!: Fun(Δop
S , S) → Fun(Δop, S) be the functor given by left Kan extension along π. Then 

a functor F : Δop
S → S is a Δop

S -monoid if and only if π!F is a Segal space.

Proof. It is clear that π!F ([0]) is equivalent to S. We must thus show that the Segal 
morphism

π!F ([n]) → π!F ([1]) ×S · · · ×S π!F ([1]) =: (π!F )Seg
[n]

is an equivalence if and only if F is a Δop
S -monoid. Since π is a coCartesian fibration, we 

have an equivalence π!F ([n]) � colimξ∈S×(n+1) F (ξ). It thus suffices to show that (π!F )Seg
[n]

is also a colimit of this diagram if and only if F is a Δop
S -monoid. There is a natural 

transformation (S×(n+1))� → Fun(Δ1, S) that sends ξ ∈ S×(n+1) to F (ξ) → ξ and ∞
to (π!F )Seg

[n] → S×(n+1); since S is an ∞-topos, by [25, Theorem 6.1.3.9] the colimit is 
(π!F )Seg

[n] if and only if this natural transformation is Cartesian. Since S×(n+1) is a space, 
this is equivalent to the square

F (ξ) (π!F )Seg
[n]

ξ S×(n+1)

being a pullback for all ξ, so we are reduced to showing that the fibre of (π!F )Seg
[n] →

S×(n+1) at ξ is F (ξ) if and only if F is a Δop
S -monoid. Since limits commute, if ξ is 

(s0, . . . , sn) this fibre is the iterated fibre product

(π!F [1])(s0,s1) ×(π!F [0])(s1) · · · ×(π!F [0])(sn−1) (π!F [1])(sn−1,sn).

But using [25, Theorem 6.1.3.9] again it is clear that the natural maps F (x, y) →
(π!F [1])(x,y) and ∗ � F (x) → (π!F )(x) are equivalences for all x, y ∈ S. Thus the map 
F (ξ) → (π!F )Seg is equivalent to the natural map
[n],ξ
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F (ξ) → F (s0, s1) × · · · × F (sn−1, sn).

By definition this is an equivalence for all ξ ∈ Δop
S if and only if F is a Δop

S -monoid, 
which completes the proof. �
Corollary 4.4.4. Let S be a space, and let π: Δop

S → Δop denote the canonical projection. 
By [15, Corollary 8.6] the functor

π!: Fun
(
Δop

S , S
)
→ Fun(Δop, S)/i∗S

given by left Kan extension is an equivalence. Under this equivalence, the full subcate-
gory MonΔop

S
(S) of Δop

S -monoids corresponds to the full subcategory of Fun(Δop, S)/i∗S
spanned by the Segal spaces Y• such that Y0 � S and the map Y• → i∗S is given by the 
adjunction unit Y• → i∗i∗Y• � i∗S.

Proof. It is clear that π! takes MonΔop
S

(S) into the full subcategory of Fun(Δop, S)/i∗S
spanned by simplicial spaces Y• with Y0 � S and the map Y• → i∗S given by the 
adjunction unit Y• → i∗i

∗Y � i∗S. The result therefore follows by Proposition 4.4.3. �
Corollary 4.4.5. Let S be a space, and let π: Δop

S → Δop denote the canonical projection. 
The functor π!: Fun(Δop

S , S) → Fun(Δop, S) given by left Kan extension along π gives 
an equivalence of the full subcategory MonΔop

S
(S) of Δop

S -monoids with the subcategory 
(Seg∞)S of Segal spaces with 0th space S and morphisms that are the identity on the 0th 
space.

Lemma 4.4.6. Let E and B be ∞-categories and p: E → B an inner fibration. Suppose

(1) E has finite limits and p preserves these,
(2) p has a right adjoint r: B → E such that p ◦ r � idB.

Then p is a Cartesian fibration.

Proof. Given x ∈ E and a morphism f : b → p(x), we must show there exists a Cartesian 
arrow in E lying over f with target x. Define f : y → x by the pullback diagram

y
f

x

r(b)
r(f)

rp(x).

Since p preserves pullbacks, the morphism p(f) is equivalent to f . Moreover, for any 
z ∈ E we have a pullback diagram
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MapE(z, y) MapE(z, x)

MapE(z, r(b)) MapE(z, rp(x)).

Under the adjunction this corresponds to the commutative diagram

MapE(z, y) MapE(z, x)

MapB(p(z), b) MapE(p(z), p(x))

induced by the functor p. But then f is Cartesian by [25, Proposition 2.4.4.3]. �
Theorem 4.4.7. There is an equivalence Algcat(S) ∼−−→ Seg∞, given by sending a 
Δop

S -algebra C to the left Kan extension π!C
′ of the composite

C′:Δop
S

C−−→ S× → S

along π: Δop
S → Δop, where the second map (which sends (S1, . . . , Sn) ∈ S×[n] to S1 ×

· · · × Sn) comes from a Cartesian structure in the sense of [28, Definition 2.4.1.1].

Proof. If V is an ∞-category with finite products, pulling back the monoid fibration 
Mon(V) → Opdns

∞ of Remark 3.6.3 along Δop
(–) gives a Cartesian fibration Moncat(V)

with an equivalence

Algcat(V) ∼−−→ Moncat(V)

over S. Taking left Kan extensions along the projections Δop
S → Δop for all S ∈ S we 

get (using Proposition 4.4.3) a commutative square

Moncat(S) Φ Seg∞

ev[0]

S.

By Lemma 4.4.6 it is clear that ev[0]: Seg∞ → S is a Cartesian fibration, and the functor 
Φ preserves Cartesian morphisms by [25, Theorem 6.1.3.9]. It thus suffices to prove that 
for each S ∈ S the functor on fibres MonΔop

S
(S) → (Seg∞)S is an equivalence, which is 

the content of Corollary 4.4.5. �
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4.5. A presheaf model for categorical algebras

In this subsection we will give an alternative characterization of the ∞-category 
Algcat(V) (for V a presentably monoidal ∞-category) as a localization of an ∞-category 
of presheaves. We thank Jeremy Hahn for suggesting this model; similar models have also 
been considered in unpublished work of Charles Rezk in the setting of model categories. 
Throughout this subsection we assume that V is a presentably monoidal ∞-category.

Definition 4.5.1. Let V∨
⊗ → Δ be a Cartesian fibration corresponding to the same functor 

as the coCartesian fibration V⊗ → Δop. A presheaf φ: (V∨
⊗)op → S is a Segal presheaf if 

it satisfies the following conditions:

(1) The functor Vop � (V∨
⊗)op[1] → S/φ()×2 , induced by the Cartesian morphisms over the 

face maps [0] → [1] in Δ, takes colimit diagrams in V to limit diagrams in S/φ()×2 .
(2) For every object X ∈ V∨

⊗, lying over [n] ∈ Δ, the diagram

φ(X) φ(d∗nX)

φ(α∗(X)) φ(),

where α: [1] → [n] is the map sending 0 to n − 1 and 1 to n, is a pullback square.

Write P(V∨
⊗)Seg for the full subcategory of P(V∨

⊗) spanned by the Segal presheaves.

Remark 4.5.2. If φ: (V∨
⊗)op → S is a Segal presheaf, then for every n the functor

(V×n)op � (V∨
⊗)op[n] → S/φ()×(n+1) ,

induced by the Cartesian morphisms over the inclusions [0] ↪→ [n], takes colimits in V×n

to limits in S/φ()×(n+1) .
Since filtered ∞-categories are contractible, it is easy to see that a filtered diagram in 

S/φ()×(n+1) is a limit diagram if and only if the diagram in S obtained by composing with 
the forgetful functor S/φ()×(n+1) → S is a limit diagram. Thus if φ is a Segal presheaf 
the functors (V×n)op � (V∨

⊗)op[n] → S all take filtered colimits in V×n to limits in S. If 
V is a κ-presentable ∞-category we may therefore regard a Segal presheaf on V as a 
presheaf on the full subcategory (V∨

⊗)κ spanned by the objects that lie in the image of 
(Vκ)×n in (V∨

⊗)[n] � V×n for all n. Moreover, a presheaf φ: (V∨
⊗)κ,op → S corresponds to 

a Segal presheaf if and only if it is local with respect to a set of maps in P((V∨
⊗)κ), hence 

P(V∨
⊗)Seg is an accessible localization of P((V∨

⊗)κ).

We now prove that Segal presheaves give an alternative model for categorical algebras:
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Theorem 4.5.3. There is an equivalence between P(V∨
⊗)Seg and Algcat(V).

Proof. Given a Cartesian fibration of ∞-categories p: E → B, let E�
B be the pushout 

B �E×{0} E × Δ1 and let j: B → E�
B be the obvious inclusion. By [15, §8], the func-

tor j∗: P(E�
B) → P(B) is a Cartesian fibration corresponding to the functor P(B) �

RFib(B) → Cat∞ that sends a right fibration Y → B to FunBop(Yop, PB(E)), where 
PB(E) → Bop is the coCartesian fibration corresponding to the functor Bop → Cat∞
that sends b ∈ Bop to P(Eb). Let δ: S → LFib(Δop) � P(Δ) denote the functor that 
sends X to Δop

X → Δop. Write Q for the pullback

Q

q

P((V∨
⊗)�Δ)

S
δ

P(Δ).

Then by [15, Corollary 8.7] the functor q is the Cartesian fibration corresponding to the 
functor that sends X ∈ S to FunΔop(Δop

X , PΔ(V∨
⊗)).

Let Q1 be the full subcategory of Q spanned by presheaves φ: ((V∨
⊗)�Δ)op → S whose 

restrictions to (V∨
⊗)op are Segal presheaves and for which the restriction φ|{()}×Δ1 : Δ1 →

S is an equivalence. Then the restriction functor P((V∨
⊗)�Δ) → P(V∨

⊗) gives an equivalence 
between Q1 and P(V∨

⊗)Seg — this is clear, since for every space X the composite

(
V∨
⊗
)op → Δop δ(X)−−−−→ S

is the final Segal presheaf that sends () to X.
We can identify V⊗ with the full subcategory of PΔ(V∨

⊗) spanned fibrewise by the rep-
resentable presheaves. Let Q2 denote the full subcategory of Q spanned by the presheaves 
that correspond to categorical algebras in V, i.e. that under the identification above cor-
respond to functors Δop

X → PΔ(V∨
⊗) that land in the full subcategory V⊗ and preserve 

inert morphisms. Then we can identify the ∞-category Q2 with Algcat(V).
It remains to observe that the full subcategories Q1 and Q2 have the same objects. It 

is clear that a presheaf φ: (V∨
⊗)�Δ

op → S whose restriction to {()} ×Δ1 is an equivalence 
corresponds to a functor F : Δop

X → V⊗ if and only if for every [n] the functor (V×n)op �
(V∨

⊗)op[n] → S/φ()×(n+1) takes colimits in V×n to limits in S/φ()×(n+1) . Moreover, the functor 
F preserves inert morphisms if and only if for every object T ∈ Δop

X , the morphism 
F (T ) → F (α!T ) is coCartesian, where α: [1] → [n] is the morphism in Δ that sends 0 to 
n − 1 and 1 to n, or equivalently, under the identification V⊗

[n] � V×n, the objects F (T )
and (F (dn,!T ), F (α!T )) are equivalent. In terms of φ, this condition, for all T ∈ φ()×(n+1)

is precisely the condition that the diagram
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φ(X) φ(d∗nX)

φ(α∗(X)) φ()

is a pullback square for all X ∈ (V∨
⊗)[n]. Thus φ is a Segal presheaf if and only if F is a 

categorical algebra. �
5. The ∞-category of enriched ∞-categories

Our goal in this section is to prove our main result: we can always localize the 
∞-category of categorical algebras at the fully faithful and essentially surjective func-
tors by restricting to the full subcategory of complete objects. Along the way, we will 
introduce analogues of a number of familiar concepts from ordinary enriched category 
theory in our setting.

In §5.1 we define objects, morphisms, and equivalences in enriched ∞-categories. Then 
in §5.2 we study the classifying space of equivalences in an enriched ∞-category; the 
complete enriched ∞-categories are those whose classifying spaces of equivalences are 
equivalent to their underlying spaces of objects. Next we study three types of equivalences 
of V–∞-categories: in §5.3 we define fully faithful and essentially surjective functors, in 
§5.4 local equivalences (those in the saturated class of a certain map) and finally in §5.5
categorical equivalences (those with an inverse up to natural equivalence). In §5.6 we 
prove that for ∞-categories enriched in a presentably monoidal ∞-category the fully 
faithful and essentially surjective functors are the same as the local equivalences, hence 
the full subcategory of complete objects gives the localization; we can extend this result 
to ∞-categories enriched in a general large monoidal ∞-category by embedding this in a 
presentable ∞-category in a larger universe. Finally in §5.7 we prove that the localized 
∞-category inherits the functoriality properties of Algcat(V).

5.1. Some basic concepts

In this subsection we define the basic notions of objects, morphisms, and equivalences 
in an enriched ∞-category, an observe that these have the expected properties. We first 
consider objects:

Definition 5.1.1. Suppose V is a monoidal ∞-category. The unit of V defines an (essen-
tially unique) associative algebra object IV: Δop → V⊗ by Proposition 3.1.18. We write 
[0]V (or sometimes IV or E0

V depending on context) for this associative algebra regarded 
as an enriched ∞-category. We view this as the trivial V–∞-category with one object, 
and so we refer to a map [0]V → C as an object of the V–∞-category C.
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This definition justifies calling the mapping space MapAlgcat(V)([0]V, C) the space of 
objects in C. However, if C is a Δop

X -algebra in V then we also think of X as being the 
space of objects of C. Luckily, it is easy to see that the two concepts agree:

Lemma 5.1.2. Let C: Δop
X → V⊗ be a V–∞-category. Then the map

MapAlgcat(V)([0]V,C) → MapS(∗, X) � X

induced by the Cartesian fibration Algcat(V) → S is an equivalence.

Proof. It suffices to check that the fibres of this map are contractible. By [25, Proposi-
tion 2.4.4.2] the fibre at a point p: ∗ → X is

MapAlg
Δop (V)(IV, p∗C),

which is contractible since the unit IV is the initial associative algebra object of V. �
Next, we consider morphisms in an enriched ∞-category:

Definition 5.1.3. Write [1] for the category corresponding to the ordered set {0, 1}, re-
garded as an S–∞-category by Remark 4.3.10. Suppose V is a presentably monoidal 
∞-category; then Algcat(V) is tensored over Algcat(S) by Corollary 4.3.17. We write [1]V
for the V–∞-category [1] ⊗ IV. A morphism in a V–∞-category C is a map [1]V → C.

Lemma 5.1.4. Suppose V is a presentably monoidal ∞-category and C is a V–∞-category. 
The two objects 0 and 1 of [1]V induce two maps i0, i1: [0]V → [1]V; composing with these 
gives for any V–∞-category C a map of spaces

MapAlgcat(V)([1]V,C) → MapAlgcat(V)([0]V,C)×2.

The fibre Map([1]V, C)X,Y of this map Map([1]V, C) at points X, Y ∈ Map([0]V, C) is 
equivalent to Map(I, C(X, Y )).

Proof. Let U : V⊗ → S× be the lax monoidal functor defined in Example 4.3.20. We then 
have

Map([1]V,C)X,Y � Map([1], U∗C)X,Y .

Since [1]S is the free S–∞-category on the S-graph having a single edge from 0 to 1, 
using the adjunction between S–∞-categories and S-graphs from Remark 4.3.4 we see 
that this is given by U∗C(X, Y ) � Map(IV, C(X, Y )). �
Remark 5.1.5. This means that a morphism in C from X to Y is the same thing as a map 
I → C(X, Y ). This definition, of course, makes sense for any monoidal ∞-category V.
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We now define equivalences in enriched ∞-categories, and prove that these satisfy 
some of the expected properties. We will define an equivalence in a V–∞-category C to 
be a functor E1 → C where E1 is the generic V–∞-category with two objects and an 
equivalence between them. More precisely, E1 is a special case of a more general notion 
of a trivial enriched ∞-category, which we now define:

Definition 5.1.6. For any space S, the trivial V–∞-category EV
S with objects S is given 

by the composite

Δop
S → Δop IV−−→ V⊗.

We will generally drop the V from the notation and just write ES when the monoidal 
∞-category in question is obvious from the context. The V–∞-categories ES are functo-
rial in S. We abbreviate En := E{0,...,n}; restricting to order-preserving maps between 
the sets {0, . . . , n} (n = 0, 1, . . .) we then have a cosimplicial V–∞-category E•.

Remark 5.1.7. When S is a set, ES is the enriched ∞-category associated to the trivial 
category with objects S and a unique morphism A → B for any pair of objects A, B ∈ S. 
This is also known as the coarse category with objects S, to distinguish it from the 
“discrete” trivial category with objects S (which has only identity morphisms).

We think of En as the generic V–∞-category with n + 1 equivalent objects, so a 
map En → C for some V–∞-category C is a choice of n + 1 equivalent objects of C. In 
particular, we have:

Definition 5.1.8. Suppose C is a V–∞-category. An equivalence in C is a V-functor E1 → C.

Remark 5.1.9. We will see below, in Proposition 5.1.15, that this is equivalent to other 
reasonable definitions of an equivalence in a V–∞-category.

Definition 5.1.10. Let

T : S× � V⊗ : U

be the adjoint functors described in Example 4.3.20, which induce an adjunction

T∗ : Algcat(S) � Algcat(V) : U∗,

by Lemma 4.3.19. If C is a V–∞-category, we refer to U∗C as the underlying S–∞-category
of C. By Theorem 4.4.7 we can identify U∗C with a Segal space.

We now make the very useful observation that the equivalences in a V–∞-category C
only depend on the underlying Segal space U∗C:
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Proposition 5.1.11. Let V be a presentably monoidal ∞-category. Then for any space S
there is a natural equivalence

MapAlgcat(V)(EV
S ,C) � MapAlgcat(S)(ES

S , U∗C).

This follows from the following lemma:

Lemma 5.1.12.

(i) Let V be a monoidal ∞-category. By Proposition 4.3.11, the ∞-category Algcat(V) is 
tensored over Algcat(∗), since the unique monoidal structure on the trivial one-object 
∞-category ∗ is the unit for the Cartesian product of monoidal ∞-categories. There 
is a natural equivalence between the V–∞-category EV

S and the tensor E∗
S ⊗ IV.

(ii) Let V be a presentably monoidal ∞-category; then the ∞-category Algcat(V) is ten-
sored over Algcat(S) by Corollary 4.3.17. In this case there is a natural equivalence 
between EV

S and the tensor ES
S ⊗ IV.

Proof. We first prove (i). Considering the construction of the external product in Alg, 
we see that E∗

S ⊗ IV is given by

E∗
S ×Δop IV:Δop

S ×Δop Δop → Δop ×Δop V⊗ � V⊗.

We can factor this as

Δop
S ×Δop Δop E∗

S×Δop id−−−−−−−→ Δop ×Δop Δop id ×ΔopIV−−−−−−−→ Δop ×Δop V⊗,

which is clearly the same as EV
S .

Now in the situation of (ii), part (i) then gives an equivalence

ES
S ⊗ IV � (E∗

S ⊗ IS) ⊗ IV � E∗
S ⊗ (IS ⊗ IV) � E∗

S ⊗ IV � EV
S ,

since it is easy to see that the tensorings with Algcat(∗) and Algcat(S) are compatible. �
Proof of Proposition 5.1.11. By Lemma 5.1.12, the V–∞-category EV

S is naturally equiv-
alent to T∗E

S
S . We now complete the proof by recalling that the functor T∗ is left adjoint 

to U∗. �
Definition 5.1.13. We write ι1C := MapAlgcat(V)(E1, C) for the space of equivalences in a 
V–∞-category C. More generally, we write ιnC for the mapping space MapAlgcat(V)(En, C)
— we can think of this as the space of n composable equivalences in C, together with 
all the coherence data for the compositions. These spaces form a simplicial space ι•C — 
here the face maps can be thought of as composing equivalences, and the degeneracy 
maps as inserting identity maps.
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Remark 5.1.14. By Proposition 5.1.11 there is a natural equivalence ι•C � ι•U∗C. This 
will allow us to reduce many of our arguments below to the case of spaces, where we can 
make use of results of Rezk from [34].

In particular, we will now use this to prove that our definition of equivalence agrees 
with a number of other reasonable definitions:

Proposition 5.1.15. Suppose V is a monoidal ∞-category and C is a V–∞-category. Let 
X, Y be objects of C and α: IV → C(X, Y ) a morphism in C. Then the following are 
equivalent:

(i) α is an equivalence, i.e. it extends to a functor E1 → C.
(ii) For all Z ∈ ι0C, the composite map in V⊗

C(Y,Z) →
(
IV,C(Y,Z)

)
→

(
C(X,Y ),C(Y,Z)

)
→ C(X,Z)

given by composing with α is an equivalence.
(iii) For all Z ∈ ι0C, the composite map in V⊗

C(Z,X) →
(
C(Z,X), IV

)
→

(
C(Z,X),C(X,Y )

)
→ C(X,Y )

given by composing with α is an equivalence.
(iv) α has an inverse, i.e. a map I → C(Y, X) such that the composites

I → (I, I) (β,α)−−−−→
(
C(X,Y ),C(Y,X)

)
→ C(X,X),

I → (I, I) (α,β)−−−−→
(
C(Y,X),C(X,Y )

)
→ C(Y, Y )

are homotopic to the identity maps of X and Y , respectively.

Proof. We first show that (i) is equivalent to (ii). Suppose (i) holds, and let α̂: E1 → C

be an equivalence extending α. Composing with the inverse equivalence from Y to X
gives an inverse to composition with α, since the composite map is composing with the 
composite X → Y → X, which is the identity.

Now suppose (ii) holds. Without loss of generality, we may assume that V is pre-
sentably monoidal (by embedding in a presentably monoidal ∞-category of presheaves 
in a larger universe, if necessary). Then a map E1

V → C is adjoint to a map E1
S → U∗C

where U : V → S is again as in Example 4.3.20. If (ii) holds for α then the analogous con-
dition also holds for α considered as a morphism in U∗C. It thus suffices to show that (ii) 
implies (i) in the case where V is S. We again use the equivalence between S–∞-categories 
and Segal spaces of Theorem 4.4.7; the map α is clearly a “homotopy equivalence” in 
the sense of [34, §5.5], and so extends to a map from E1 by [34, Theorem 6.2].
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The proof that (i) is equivalent to (iii) is similar, so it remains to prove that (i) is 
equivalent to (iv). Since equivalences are detected in U∗C, this is immediate from [34, 
Theorem 6.2]. �

The inclusion [1]V → E1 of the map from 0 to 1 induces a map ι1C → Map([1]V, C). 
The two inclusions of E0 � [0]V into [1]V and E1 then give a commutative triangle

ι1C Map([1]V,C)

ι0C× ι0C.

We end this section by showing that on fibres, this map is an inclusion of components:

Definition 5.1.16. Suppose C is a V–∞-category and X, Y are objects of C. We let 
Map(IV, C(X, Y ))eq be the subspace of Map(IV, C(X, Y )) consisting of the components 
in the image of ι1CX,Y under the induced map on fibres in the diagram above.

Proposition 5.1.17. Suppose V is a presentably monoidal ∞-category, C is a V–∞-category, 
and X, Y are objects of C. Then the map (ι1C)X,Y → Map(IV, C(X, Y ))eq is an equiva-
lence.

Proof. By Proposition 5.1.11 it again suffices to prove this for S–∞-categories. Using 
the identification of S–∞-categories with Segal spaces of Theorem 4.4.7, this therefore 
follows from the corresponding statement in that setting. The latter is a consequence of 
[34, Theorem 6.2], since if C is a Segal space with objects X, Y , a point of C(X, Y ) is a 
“homotopy equivalence” in the sense of [34, §5.5] if and only if it extends to a map from 
E1

S, by [34, Proposition 11.1]. �
5.2. The classifying space of equivalences

In this section we define the classifying space of equivalences in an enriched 
∞-category, and use this to define complete enriched ∞-categories. We then prove that 
the simplicial space of equivalences is always a groupoid object, which allows us to give 
a simpler description of the completeness condition.

Definition 5.2.1. Let C be a V–∞-category. The classifying space of equivalences ιC of C
is the geometric realization |ι•C| of the simplicial space ι•C := Map(E•, C).

We regard ιC as the “correct” space of objects of C, and by analogy with Rezk’s notion 
of complete Segal space we say that an enriched ∞-category is complete if its underlying 
space is the correct one:
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Definition 5.2.2. A V–∞-category C is complete if the natural map ι0C → ιC is an 
equivalence.

Our next goal is to prove that the simplicial space ιC is always a groupoid object; 
we prove this by showing that the cosimplicial object E• satisfies the dual condition of 
being a cogroupoid object:

Definition 5.2.3. A cosimplicial object X: Δ → C in an ∞-category C is a cogroupoid 
object if for every partition [n] = S ∪S′ such that S ∩S′ consists of a single element, the 
diagram

X(S ∩ S′) X(S)

X(S′) X([n])

is a pushout square.

Lemma 5.2.4. If X: Δ → C is a cogroupoid object in an ∞-category C, then for every 
object Y ∈ C the simplicial space MapC(X, Y ) is a groupoid object in spaces.

Theorem 5.2.5. If V is a presentably monoidal ∞-category then the cosimplicial object 
E• is a cogroupoid object.

Proof. We will show that EN �E{N} E{N,N+1} → EN+1 is an equivalence; by induction 
this will imply that E• is a cogroupoid object, as the ordering of the objects is arbitrary. 
Since V is presentably monoidal, by Proposition 5.1.11 it suffices to prove this when V
is S.

Under the equivalence Algcat(S) ∼−−→ Seg∞ of Theorem 4.4.7 the S–∞-category ES

clearly corresponds to the Segal space i∗S. If S is a set it follows that in the model 
category structure on bisimplicial sets modelling Segal spaces, ES corresponds to π∗NIS

where IS is the ordinary category with objects S and a unique morphism between any 
pair of objects, and π: Δop × Δop → Δop is the projection onto the first factor.

Define GN := NI{0,...,N}. By [34, Remark 10.2], for 0 < i < n the map π∗Λn
k → π∗Δn

is a Segal equivalence, so (since π∗ is a left adjoint and thus preserves colimits) it suffices 
to prove that GN �G{N} G{N,N+1} ↪→ GN+1 is an inner anodyne morphism of simplicial 
sets. To prove this we consider a series of nested filtrations of the simplices of GN+1. 
First we must introduce some notation:

An n-simplex σ of GN+1 can be described by a list a0 · · · an of elements ai ∈
{0, . . . , N + 1}; it is non-degenerate if ai �= ai+1 for all i. If σ is a non-degenerate 
simplex, let β(σ) be the number of times the sequence jumps between {0, . . . , N} and 
{N, N + 1}.



652 D. Gepner, R. Haugseng / Advances in Mathematics 279 (2015) 575–716
Also let τ(σ) be the position of the first N + 1 where the sequence jumps from 
{N, N +1} to {0, . . . , N}; if there is no such jump let τ(σ) = ∞ and let τ ′(σ) denote the 
position of the first jump from {0, . . . , N} to {N, N + 1}. Then we make the following 
definitions:

• If t �= ∞, let Sb,t
n be the set of non-degenerate n-simplices σ in GN+1 such that 

β(σ) = b, τ(σ) = t, and at+1 �= N . Let S1,∞,t
n be the set of non-degenerate n-simplices 

in GN+1 such that β(σ) = 1, τ(σ) = ∞, τ ′(σ) = t, and at−1 �= N .
• If t �= ∞, let T b,t

n be the set of non-degenerate (n + 1)-simplices σ in GN+1 such 
that β(σ) = b, τ(σ) = t and at+1 = N . Let T 1,∞,t

n be the set of non-degenerate 
(n + 1)-simplices σ in GN+1 such that β(σ) = 1, τ(σ) = ∞, τ ′(σ) = t + 1, and 
at = N .

Define a filtration

GN �G{N} G{N,N+1} =: F0 ⊆ F1 ⊆ · · · ⊆ GN+1

by letting Fn be the subspace of GN+1 whose non-degenerate simplices are those of F0

together with all the non-degenerate i-simplices for i ≤ n and the (n +1)-simplices in T b,t
n

and T 1,∞,t
n for all b, t. Then GN+1 =

⋃
n Fn, so to prove that GN �G{N} G{N,N+1} ↪→

GN+1 is inner anodyne it suffices to prove that the inclusions Fn−1 ↪→ Fn are inner 
anodyne.

Next define a filtration

Fn−1 =: F0
n ⊆ F1

n ⊆ · · · ⊆ Fn−1
n := Fn

by setting Fb
n to be the subspace of Fn containing Fn−1 together with the simplices 

in Si,t
n and T i,t

n for all i ≤ b together with S1,∞,t
n and T 1,∞,t

n for all t. To prove that 
the inclusions Fn−1 ↪→ Fn are inner anodyne it suffices to prove that the inclusions 
Fb−1
n ↪→ Fb

n are all inner anodyne.
Finally define a filtration

Fb−1
n =: Fb,n+1

n ⊆ Fb,n
n ⊆ · · · ⊆ Fb,0

n := Fb
n,

by setting Fb,t
n to be the subspace of Fb

n containing Fb−1
n together with the simplices 

in Sb,j
n and T b,j

n (as well as S1,∞,j
n and T 1,∞,j

n if b = 1) for all j ≥ t. To prove that 
the inclusions Fb−1

n ↪→ Fb
n are inner anodyne it suffices to show that the inclusions 

Fb,t−1
n ↪→ Fb,t

n are all inner anodyne.
Now observe that (for b > 1) if σ ∈ T b,t

n then dtσ ∈ Sb,t
n and diσ ∈ Fb,t−1

n for i �= t, 
and σ is uniquely determined by dtσ. Thus we get a pushout diagram
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∐
σ∈T b,t

n
Λn+1
t

∐
σ∈T b,t

n
Δn+1

Fb,t−1
n Fb,t

n

where we always have 0 < t < n + 1. Thus the bottom horizontal map is inner anodyne. 
The proof is similar when b = 1, expect that we must also consider the simplices in 
S1,∞,t
n , so we conclude that GN �G{N} G{N,N+1} → GN+1 is indeed inner anodyne. �

Remark 5.2.6. We can generalize this to the case of an arbitrary large monoidal 
∞-category V as follows: by [28, Remark 4.8.1.8] there exists a presentably monoidal 
structure on the (very large) presentable ∞-category P̂(V) of presheaves of large spaces 
on V, such that the Yoneda embedding V → P̂(V) is a monoidal functor. This induces a 
fully faithful embedding

Algcat(V) → Âlgcat
(
P̂(V)

)
;

moreover, if X a small space then EP̂(V)
X is clearly the image of EV

X . Thus if a diagram of 
EV

X ’s is a colimit diagram in Âlgcat(P̂(V)) it must also be a colimit diagram in Algcat(V)
— in particular E•

V is a cogroupoid object in Algcat(V).

Corollary 5.2.7. The simplicial space ι•C is a groupoid object in spaces for all V–∞-cate-
gories C.

Lemma 5.2.8. Suppose X• is a category object in an ∞-category C. Then the following 
are equivalent:

(i) The functor X• is constant.
(ii) The map s0: X0 → X1 is an equivalence.

Proof. It is obvious that (i) implies (ii). To show that (ii) implies (i) first observe that if 
s0: X0 → X1 is an equivalence, then by the 2-out-of-3 property d0, d1: X1 → X0 are also 
equivalences. Since X• is a category object we have pullback diagrams

Xn

d0
Xn−1

X1 X0,

and so the face maps d0: Xn → Xn−1 are equivalences for all i and n. Combining this 
with the simplicial identities we see inductively that all face maps and degeneracies are 
equivalences. �
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Lemma 5.2.9. Suppose U• is a groupoid object in S. The following are equivalent:

(i) The map U0 → |U•| is an equivalence.
(ii) The map s0: U0 → U1 is an equivalence.
(iii) The simplicial object U• is constant, i.e. for every map φ: [n] → [m] in Δop the 

induced map ιnC → ιmC is an equivalence.

Proof. We first show that (i) implies (ii): Since S is an ∞-topos, the groupoid object U•
is effective, i.e. it is equivalent to the Čech nerve of the map U0 → |U•|. Thus we have a 
pullback diagram

U1

d1

d0
U0

U0 |U•|,

so the maps d0, d1 are equivalences. From the 2-out-of-3 property it follows that s0 is also 
an equivalence. It follows from Lemma 5.2.8 that (ii) implies (iii). Finally (iii) implies 
(i) since the simplicial set Δop is weakly contractible. �

We can now give a simpler characterization of the completeness condition for 
V–∞-categories:

Corollary 5.2.10. Let C be a V–∞-category. The following are equivalent:

(i) C is complete.
(ii) The natural map s0: ι0C → ι1C is an equivalence.
(iii) The simplicial space ι•C is constant (i.e. for every map φ: [n] → [m] in Δop the 

induced map ιnC → ιmC is an equivalence).

Proof. Apply Lemma 5.2.9 to the groupoid object ι•C. �
5.3. Fully faithful and essentially surjective functors

In this subsection we introduce analogues of fully faithful and essentially surjective
functors in the context of enriched ∞-categories, and show that these have the expected 
properties.

Definition 5.3.1. Let V be a monoidal ∞-category. A V-functor F : C → D is fully faithful
if the maps C(X, Y ) → D(FX, FY ) are equivalences in V for all X, Y in ι0C.
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Lemma 5.3.2. A V-functor F : C → D is fully faithful if and only if it is a Cartesian 
morphism in Algcat(V) with respect to the projection Algcat(V) → S.

Proof. If f : S → ι0D is a map of spaces, then a Cartesian morphism over f with target 
D has source f∗D = D ◦ Δop

f ; in particular a Cartesian morphism induces equivalences 
f∗D(x, y) → D(f(x), f(y)) for all x, y ∈ X.

Conversely, suppose F : C → D gives an equivalence on all mapping spaces. The functor 
F factors as

C F ′−−→ (ι0F )∗D F ′′−−→ D,

where F ′′ is Cartesian. The morphism F ′ induces an equivalence on underlying spaces 
and is given by equivalences C(X, Y ) → D(F (X), F (Y )) for all X, Y ∈ ι0C. By 
Lemma A.5.5 it follows that F ′ is an equivalence in AlgΔop

ι0C
(V) and so in Algcat(V). 

In particular F ′ is a Cartesian morphism and hence so is the composite F � F ′′ ◦F ′. �
Definition 5.3.3. A functor F : C → D is essentially surjective if for every point X ∈ ι0D

there exists an equivalence E1 → D from X to a point in the image of ι0F .

Lemma 5.3.4. A functor F : C → D is essentially surjective if and only if the induced map 
π0ιF : π0ιC → π0ιD is surjective.

Proof. Since ι•D is a groupoid object, the set π0ιD is the quotient of π0ι0D where 
we identify two components of ι0D if there exists a point of ι1D, i.e. an equivalence 
E1 → D, connecting them. Thus F : C → D is essentially surjective if and only if π0ιF is 
surjective. �
Lemma 5.3.5. Suppose F : C → D is a fully faithful functor of V–∞-categories. Then for 
every X, Y ∈ C the induced map (ι1C)X,Y → (ι1D)FX,FY is an equivalence.

Proof. By Proposition 5.1.17, we can identify the map (ι1C)X,Y → (ι1D)FX,FY with the 
map

Map
(
I,C(X,Y )

)
eq → Map

(
I,D(FX,FY )

)
eq

induced by F . Since F is fully faithful the map C(X, Y ) → D(FX, FY ) is an equivalence 
in V, hence Map(I, C(X, Y )) → Map(I, D(FX, FY )) is an equivalence in S. To complete 
the proof it therefore suffices to show that Map(I, C(X, Y ))eq → Map(I, D(FX, FY ))eq
is surjective on components — i.e. if α: I → D(FX, FY ) is an equivalence then it is the 
image of an equivalence β: I → C(X, Y ). We know that α is the image of some map β, 
so it suffices to show that such a β must be an equivalence. By Proposition 5.1.15 the 
map β is an equivalence if and only if for every Z ∈ ι0C the map C(Z, X) → C(Z, Y )
induced by composition with β is an equivalence. Consider the diagram
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C(Z,X) D(FZ, FX)

C(Z, Y ) D(FZ, FY ),

where the vertical maps are given by composition with β and α, respectively. Since F
is fully faithful and α is an equivalence, all morphisms in this diagram except the left 
vertical map are known to be equivalences. By the 2-out-of-3 property this must also be 
an equivalence for all Z, so β is indeed an equivalence. �
Proposition 5.3.6. If a V-functor F : C → D is fully faithful and essentially surjective, 
then the induced map ιF : ιC → ιD is an equivalence.

Proof. The simplicial spaces ι•C and ι•D are groupoid objects by Corollary 5.2.7, and 
since F is essentially surjective the map ιF is surjective on π0 by Lemma 5.3.4. By [26, 
Remark 1.2.17] it therefore suffices to show that the diagram

ι1C ι1D

ι0C× ι0C ι0D× ι0D

is a pullback square. To prove this we must show that for all X, Y ∈ C the map on fibres 
is an equivalence, which we proved in Lemma 5.3.5. �
Corollary 5.3.7. A fully faithful V-functor F is essentially surjective if and only if ιF is 
an equivalence.

Corollary 5.3.8. A fully faithful and essentially surjective functor between complete 
V–∞-categories is an equivalence in Algcat(V).

Proof. This follows by combining Proposition 5.3.6 and Lemma A.5.5. �
Proposition 5.3.9. Fully faithful and essentially surjective V-functors satisfy the 2-out-
of-3 property.

Proof. Suppose we have V-functors F : C → D and G: D → E. There are three cases to 
consider:

(1) Suppose F and G are fully faithful and essentially surjective. It is obvious that G ◦F
is fully faithful. Since π0ιF and π0ιG are surjective, so is their composite π0ι(G ◦F ), 
thus G ◦ F is also essentially surjective.
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(2) Suppose G and G ◦ F are fully faithful and essentially surjective. Then F is also 
Cartesian, i.e. fully faithful, by [25, Proposition 2.4.1.7]. By Proposition 5.3.6 the 
maps ιG and ι(G ◦ F ) are equivalences, hence so is ιF , thus F is also essentially 
surjective.

(3) Suppose F and G ◦F are fully faithful and essentially surjective. By Proposition 5.3.6
the maps ιF and ι(G ◦F ) are equivalences, hence so is ιG, and thus G is essentially 
surjective. To see that G is fully faithful, we must show that for any X, Y in ι0G the 
map D(X, Y ) → E(GX, GY ) is an equivalence. But since F is essentially surjective 
there exist objects X ′, Y ′ in ι0C and equivalences FX ′ � X, FY ′ � Y in D. Then 
we have a commutative diagram

D(FX ′, FY ′) E(GFX ′, GFY ′)

D(X,Y ) E(GX,GY ),

where the vertical maps are given by composition with the chosen equivalences and 
so are equivalences in V by Proposition 5.1.15. The top horizontal map is also an 
equivalence, since in the commutative triangle

C(X ′, Y ′) E(GFX ′, GFY ′)

D(FX ′, FY ′)

the other two maps are equivalences. Thus by the 2-out-of-3 property the bottom 
horizontal map D(X, Y ) → E(GX, GY ) is also an equivalence, and so G is also fully 
faithful. �

Remark 5.3.10. Under the equivalence Algcat(S) ∼−−→ Seg∞ of Theorem 4.4.7, the fully 
faithful and essentially surjective functors correspond to the Dwyer–Kan equivalences in 
the sense of [34, §7.4].

The “correct” ∞-category of V–∞-categories is obtained by inverting the fully faithful 
and essentially surjective morphisms in Algcat(V). We will now show that doing this 
produces the same ∞-category as inverting the fully faithful and essentially surjective 
functors in the subcategory of Algcat(V) where we only have sets of objects. First, we 
will briefly review the general notion of localization of ∞-categories and prove a basic 
fact about these (generalizing [13, Corollary 3.6]):

Definition 5.3.11. The inclusion S ↪→ Cat∞ has left and right adjoints. The right adjoint, 
ι: Cat∞ → S, sends an ∞-category C to its maximal Kan complex, i.e. its subcategory of 
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equivalences. The left adjoint κ: Cat∞ → S sends an ∞-category C to a Kan complex κC
such that C → κC is a weak equivalence in the usual model structure on simplicial sets.

Definition 5.3.12. Suppose C is an ∞-category and W is a subcategory of C that contains 
all the equivalences. The localization C[W−1] of C with respect to W is the ∞-category 
with the universal property that for any ∞-category E, a functor C[W−1] → E is the 
same thing as a functor C → E that sends morphisms in W to equivalences in E. More 
precisely, we have for every E a pullback square

Map(C[W−1],E) Map(W, ιE)

Map(C,E) Map(W,E).

Remark 5.3.13. It follows that, in the situation above, the ∞-category C[W−1] is given 
by the pushout square in Cat∞

W κW

C C[W−1].

Lemma 5.3.14. Suppose C and D are ∞-categories and WC ⊆ C and WD ⊆ D are 
subcategories containing all the equivalences. Let C[W−1

C ] and D[W−1
D ] be localizations 

with respect to WC and WD. Suppose

F :C � D : G

is an adjunction such that

(1) F (WC) ⊆ WD,
(2) G(WD) ⊆ WC,
(3) the unit morphism ηC : C → GFC is in WC for all C ∈ C,
(4) the counit morphism γD: FGD → D is in WD for all D ∈ D.

Then F and G induce an equivalence C[W−1
C ] � D[W−1

D ].

Proof. Let κWC and κWD be Kan complexes that are fibrant replacements for WC and 
WD in the usual model structure on simplicial sets. Then the ∞-categories C[W−1

C ] and 
D[W−1

D ] can be described as the homotopy pushouts
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WC κWC

C C[W−1
C ],

WD κWD

D D[W−1
D ]

in the Joyal model structure. Then from (1) and (2) it is clear that the functors F and 
G induce functors F ′: C[W−1

C ] → D[W−1
D ] and G′: D[W−1

D ] → C[W−1
C ], and the natural 

transformations η and γ induce natural transformations η′: id → G′F ′ and γ′: F ′G′ → id. 
The objects of C[W−1

C ] and D[W−1
D ] can be taken to be the same as those of C and 

D, so by (3) and (4) the morphisms η′c and γ′
d are equivalences for all c ∈ C[W−1

C ]
and d ∈ D[W−1

D ]. Thus η′ and γ′ are natural equivalences and F ′ and G′ are hence 
equivalences of ∞-categories. �
Lemma 5.3.15. Suppose W is an ∞-category and π: E → κW is a Cartesian fibration. 
Let π′: E′ → W denote the pullback of π along the canonical map η: W → κW. Then E
is the localization of E′ with respect to W ×κW ιE, i.e. the morphisms in E′ that map to 
equivalences in E.

Proof. Let F : κWop → Cat∞ be a functor classified by π. Then π′ is classified by the 
composite functor ηop ◦ F : Wop → Cat∞. By [25, Corollary 4.1.2.6], the functor ηop is 
cofinal, hence by [25, Proposition 4.1.1.8] the functors F and ηop ◦ F have the same 
colimit. But by [25, Corollary 3.3.4.3], the colimit of F is the localization of E with 
respect to the π-Cartesian morphisms, and the colimit of ηop ◦ F is the localization of 
E′ with respect to the π′-Cartesian morphisms. But since κW is a Kan complex, the 
π-Cartesian morphisms in E are precisely the equivalences, hence it follows that E is 
the localization of E′ with respect to the π′-Cartesian morphisms. But the π′-Cartesian 
morphisms in E′ are precisely the morphisms that map to equivalences in E, by [25, 
Remark 2.4.1.12]. �
Proposition 5.3.16. Let C be an ∞-category and W a subcategory of C containing the 
equivalences. Suppose we have a pushout square in Cat∞

W κW

C C[W−1],

and a Cartesian fibration π: E → C[W−1]. Write π′: E′ → C for the pullback of π along 
C → C[W−1]. Then the map E′ → E exhibits E as the localization of E′ with respect to 
W ×C[W−1] ιE, i.e. the morphisms in E′ that map to equivalences in E and to W under 
the projection to C.
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Proof. Since π is a Cartesian fibration it follows from [25, Corollary 2.4.4.5] that the 
given pushout square pulls back along π to a pushout square

W×C[W−1] E κW×C[W−1] E

E′ E.

It therefore suffices to show that we have a pushout square

W×C[W−1] ιE κW×C[W−1] ιE

W×C[W−1] E κW×C[W−1] E,

which follows from Lemma 5.3.15. �
Theorem 5.3.17. Suppose V is a monoidal ∞-category. Define Algcat(V)Set by the pullback

Algcat(V)Set
i Algcat(V)

Set S

where the bottom horizontal map is the obvious inclusion. Then the functor i induces an 
equivalence

Algcat(V)Set
[
FFES−1] ∼−−→ Algcat(V)

[
FFES−1]

after inverting the fully faithful and essentially surjective functors.

Proof. Considering S as the ∞-category associated to the usual model structure on 
simplicial sets, we get a functor j: SetΔ → S that exhibits S as the localization of SetΔ
with respect to the weak equivalences. Let Algcat(V)Δ be the ∞-category defined by the 
pullback square

Algcat(V)Δ
j′

Algcat(V)

SetΔ
j

S.
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Then Algcat(V)Set is the pullback of Algcat(V)Δ along the inclusion Set → SetΔ of the 
constant simplicial sets. This has a right adjoint (–)0: SetΔ → Set that sends a simplicial 
set to its set of 0-simplices. The inclusion

i′: Algcat(V)Set ↪→ Algcat(V)Δ

therefore has a right adjoint

s: Algcat(V)Δ → Algcat(V)Set

that sends an object (X ∈ SetΔ, C ∈ Algcat(V)) to the pullback of C along the morphism 
X0 → X → ι0C. It is clear that i′ preserves fully faithful and essentially surjective 
functors, as does s by the 2-out-of-3 property. Moreover, si � id and the counit is(C) → C

is fully faithful and essentially surjective for all C. It then follows from Lemma 5.3.14
that i′ induces an equivalence

Algcat(V)Set
[
FFES−1] ∼−−→ Algcat(V)Δ

[
FFES−1]

after inverting the fully faithful and essentially surjective functors. Moreover, by Propo-
sition 5.3.16 the ∞-category Algcat(V) is the localization of Algcat(V)Δ with respect to 
the morphisms that induce weak equivalences in SetΔ and project to equivalences in 
Algcat(V). These are obviously among the fully faithful and essentially surjective func-
tors, and so j′ induces an equivalence

Algcat(V)Δ
[
FFES−1] ∼−−→ Algcat(V)

[
FFES−1].

Composing these two equivalences gives the result. �
Remark 5.3.18. Combining this result with Corollary 4.2.8 it follows that the local-
ized ∞-category Algcat(V)[FFES−1] is equivalent to the preliminary definition of an 
∞-category of V–∞-categories we discussed in §2.2, using the ∞-operads associated to 
the multicategories OS with S a set.

5.4. Local equivalences

In this subsection we consider the strongly saturated class of maps generated by 
s0: E1 → E0; we call these the local equivalences. We assume throughout that V is 
a presentably monoidal ∞-category, so that Algcat(V) is a presentable ∞-category by 
Proposition 4.3.5.

Definition 5.4.1. The local equivalences in Algcat(V) are the elements of the strongly 
saturated class of morphisms generated by the map s0: E1 → E0.
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Proposition 5.4.2. The following are equivalent, for a V–∞-category C:

(i) C is complete.
(ii) C is local with respect to E1 → E0, i.e. the map Map(E0, C) → Map(E1, C) is an 

equivalence.
(iii) For every local equivalence A → B, the induced map

Map(B,C) → Map(A,C)

is an equivalence.

Proof. (i) is equivalent to (ii) by Corollary 5.2.10, and (ii) is equivalent to (iii) by [25, 
Proposition 5.5.4.15(4)]. �
Definition 5.4.3. Write CatV∞ for the full subcategory of Algcat(V) spanned by the com-
plete V–∞-categories.

Proposition 5.4.4. The inclusion CatV∞ ↪→ Algcat(V) has a left adjoint, which exhibits 
CatV∞ as the localization of Algcat(V) with respect to the local equivalences.

Proof. The ∞-category Algcat(V) is presentable by Proposition 4.3.5, and the local equiv-
alences are generated by a set of maps. The existence of the left adjoint therefore follows 
from [25, Proposition 5.5.4.15(4)] and Proposition 5.4.2. �
Corollary 5.4.5. The ∞-category CatV∞ is presentable.

Proof. This follows from [25, Proposition 5.5.4.15(3)]. �
Theorem 5.4.6. CatS∞ is equivalent to Cat∞.

Proof. Under the equivalence Algcat(S) ∼−−→ Seg∞ of Theorem 4.4.7, the subcategory 
CatS∞ corresponds to the subcategory of complete Segal spaces. It is proved in [21] that 
this is equivalent to Cat∞. �
Lemma 5.4.7. The map id ⊗ s0: E1 ⊗ E1 → E1 ⊗E0 � E1 is a local equivalence.

Proof. Using Proposition 5.1.11 it suffices to prove this when V is S. We can then identify 
E1 ⊗ E1 with E{0,1}×{0,1} � E3; under this identification the map E1 ⊗ E1 → E1 is 
induced by the map from {0, 1, 2, 3} to {0, 1} that sends 0, 1 to 0 and 2, 3 to 1. Under 
the equivalence E3 � E{0,1} �E{1} E{1,2} �E{2} E{2,3} implied by Theorem 5.2.5 this 
corresponds to

s0 ∪ id∪s0:E1 �E0 E
1 �E0 E1 → E0 �E0 E1 �E0 E0,

which is clearly in the strongly saturated class generated by s0. �
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Lemma 5.4.8. If C is a complete V–∞-category, then the V–∞-category CE1 is also com-
plete.

Proof. We need to show that the natural map ι0CE1 → ι1C
E1 is an equivalence. Using 

the adjunction between cotensoring and tensoring we can identify this with the map 
Map(E1, C) → Map(E1 ⊗ E1, C) induced by composition with id ⊗ s0. This map is an 
equivalence since C is complete and id ⊗ s0 is a local equivalence by Lemma 5.4.7. �
5.5. Categorical equivalences

In this subsection we study categorical equivalences between enriched ∞-categories, 
which are functors with an inverse up to natural equivalence. Our main result is that cat-
egorical equivalences are always local equivalences as well as fully faithful and essentially 
surjective. We begin by defining natural equivalences between V-functors:

Definition 5.5.1. Suppose A and B are V–∞-categories and F, G: A → B are V-functors. 
A natural equivalence from F to G is a functor H: A ⊗E1 → B such that H◦(id⊗d1) � F

and H ◦ (id ⊗ d0) � G. We say that F and G are naturally equivalent if there exists a 
natural equivalence from F to G.

Definition 5.5.2. A functor F : A → B is a categorical equivalence if there exists a functor 
G: B → A and natural equivalences φ from F ◦ G to idB and ψ from G ◦ F to idA. 
Such a functor G is called a pseudo-inverse of F ; we refer to (F, G, φ, ψ) as a categorical 
equivalence datum.

Proposition 5.5.3. Categorical equivalences are fully faithful and essentially surjective.

Proof. Suppose F : C → D is a categorical equivalence, and let (F, G, φ, ψ) be a cate-
gorical equivalence datum. For each object X in ι0D the natural equivalence ψ supplies 
an equivalence between X and FG(X), which is in the image of F , so F is essentially 
surjective.

To prove that F is fully faithful, we must show that, given X, Y in C, the map 
α: C(X, Y ) → D(FX, FY ) induced by F is an equivalence in V.

The natural equivalence φ supplies an equivalence

β:C(GFX,GFY ) → C(X,Y )

and a commutative diagram

C(X,Y )

id

C(GFX,GFY )

β

C(X,Y ).
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The top map is the composite

C(X,Y ) α−→ D(FX,FY ) γ−→ C(GFX,GFY ),

where γ is the map induced by G, and so we see that β ◦ γ ◦ α � id.
From F ◦ φ we likewise get an equivalence

ε:D(FGFX,FGFY ) → D(FX,FY )

and a commutative diagram

D(FX,FY )

id

D(FGFX,FGFY )

ε

D(FX,FY ),

where the top map is the composite

D(FX,FY ) γ−→ C(GFX,GFY ) δ−→ D(FGFX,FGFY ),

and so ε ◦ δ ◦ γ � id. Moreover, we have a commutative square

C(GFX,GFY )

β

δ
D(FGFX,FGFY )

ε

C(X,Y )
α

D(FX,FY ),

thus we get α ◦ β ◦ γ � ε ◦ δ ◦ γ � id. This shows that β ◦ γ is an inverse of α, and so α
is an equivalence in V. Thus F is fully faithful. �
Corollary 5.5.4. A categorical equivalence between complete V–∞-categories is an equiv-
alence.

Proof. Combine Proposition 5.5.3 and Corollary 5.3.8. �
Our next goal is to prove that categorical equivalences are local equivalences; this will 

require some preliminary results:

Proposition 5.5.5. Categorical equivalences satisfy the 2-out-of-3 property.

Proof. Suppose we have functors F : C → D and F ′: D → E. There are three cases to 
consider:
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(1) Suppose (F, G, φ, ψ) and (F ′, G′, φ′, ψ′) are categorical equivalence data. Then G ◦
φ′ ◦ (F ⊗ id) is a natural equivalence from GG′F ′F to GF . Combining this with φ
gives a map

(
C⊗E1)�C⊗E0

(
C⊗ E1) → C.

But tensoring with C preserves colimits, and E1 �E0 E1 � E2 by Theorem 5.2.5, 
so we get a map C ⊗ E2 → C. Composing with id ⊗ d1: C ⊗ E1 → C ⊗ E2 we get a 
natural equivalence from GG′F ′F to the identity. Using the same argument we can 
also combine F ′ ◦ψ ◦ (G′ ⊗ id) and ψ′ to get a natural equivalence from F ′FGG′ to 
the identity. Thus F ′F is a categorical equivalence with pseudo-inverse GG′.

(2) Suppose (F, G, φ, ψ) and (F ′F, H, α, β) are categorical equivalence data. We will 
show that FH is a pseudo-inverse of F ′. Since β is a natural equivalence from 
F ′(FH) to id it remains to construct a natural equivalence from FHF ′ to id. Let 
ψ denote ψ ◦ (id ⊗ Eσ), where σ: {0, 1} → {0, 1} is the map that interchanges 0
and 1 (thus ψ is ψ considered as a natural equivalence from id to FG). Combining 
FHF ′ ◦ ψ, F ◦ α ◦ g and ψ we get a map

D⊗E3 � D⊗ E1 �D D⊗E1 �D D⊗ E1 → D

and composing with D ⊗E{0,3} → D ⊗E3 we get the required natural equivalence.
(3) Suppose (F ′, G′, φ′, ψ′) and (F ′F, H, α, β) are categorical equivalence data. We will 

show that HF ′ is a pseudo-inverse of F . Since α is a natural equivalence from HF ′F

to id it remains to construct a natural equivalence from FHF ′ to id. Let φ′ denote 
φ ◦ (id ⊗ Eσ); combining φ′ ◦ FHF ′, G′ ◦ β ◦ F ′ and φ′ we get a map

D⊗ E3 � De⊗ E1 �D D⊗ E1 �D D⊗E1 → D,

and composing with D ⊗E{0,3} → D ⊗E3 we get the required natural equivalence. �
For the rest of this subsection we will for convenience assume that V is a presentably 

monoidal ∞-category.

Corollary 5.5.6. Suppose f : S → T is a map of sets. Then Ef : ES → ET is a categorical 
equivalence.

Proof. By Proposition 5.1.11 it suffices to prove this in S. First suppose f is surjective; 
let g: T ↪→ S be a section of f . We claim that Eg is a pseudo-inverse to Ef . We have 
Ef ◦ Eg � Ef◦g � id, so it suffices to construct a natural equivalence ES × E1 �
ES×{0,1} → ES from Eg◦f to the identity. This is given by Eh where h: S × {0, 1} → S

sends (s, 0) to gf(s) and (s, 1) to s.
By the dual argument the result holds if f is injective. By Proposition 5.5.5 we can 

therefore conclude that it holds for a general f . �
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Lemma 5.5.7. Suppose F : A → B is a categorical equivalence of S–∞-categories. Then 
for any V–∞-category C the induced map CF : CB → CA is a categorical equivalence.

Proof. A natural equivalence A ⊗E1 → A induces a natural equivalence

CA ⊗ E1 → CA

by taking the adjoint of the induced map CA → CA⊗E1 � (CA)E1 . �
Lemma 5.5.8. If C is a complete V–∞-category, then the natural map

Cs0 :C � CE0 → CE1

is an equivalence.

Proof. The map s0: E1 → E0 is a categorical equivalence by Corollary 5.5.6, so it follows 
by Lemma 5.5.7 that C → CE1 is also a categorical equivalence. But CE1 is complete by 
Lemma 5.4.8, and a categorical equivalence between complete objects is an equivalence 
by Corollary 5.5.4. �
Proposition 5.5.9. For any V–∞-category C, the map id⊗ s0: C ⊗E1 → C ⊗E0 � C is a 
local equivalence.

Proof. We must show that for any complete V–∞-category D the map

Map(C,D) → Map
(
C⊗E1,D

)
is an equivalence. Using the adjunction between tensoring and cotensoring with E1, we 
see that this map is equivalent to the map

Map(C,D) → Map
(
C,DE1)

given by composing with Ds0 : D → DE1 . This is an equivalence by Lemma 5.5.8. �
Corollary 5.5.10. Suppose D is a complete V–∞-category; then for any V–∞-category C
we have

|Map(C⊗E•,D)| � Map(C,D).

Proof. The simplicial space Map(C ⊗E•, D) is a groupoid object in spaces, since E• is a 
cogroupoid object by Theorem 5.2.5 and tensoring preserves colimits. By Lemma 5.2.9
it therefore suffices to show that Map(C ⊗ E0, D) → Map(C ⊗ E1, D) is an equivalence, 
which holds by Proposition 5.5.9. �
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Remark 5.5.11. The left-hand side here is what we would expect the mapping space 
to be in the ∞-category underlying an (∞, 2)-category of V–∞-categories, functors, 
and natural transformations. This shows that the mapping spaces between complete 
V–∞-categories are the correct ones.

Lemma 5.5.12. Suppose D is a complete V–∞-category. Then for any V–∞-category C
the two maps

(
id ⊗ d0)∗, (id ⊗ d1)∗: Map

(
C⊗ E1,D

)
→ Map(C,D)

are homotopic.

Proof. Clearly (id⊗s0)∗◦(id⊗di)∗: Map(C, D) → Map(C, D) is homotopic to the identity 
for i = 0, 1. But by Proposition 5.5.9, the map (id ⊗ s0) is a local equivalence, hence 
(id⊗ s0)∗ is an equivalence since D is complete. Composing with its inverse we get that

(id ⊗ d0)∗ � (id ⊗ d1)∗,

as required. �
Theorem 5.5.13. Categorical equivalences are local equivalences.

Proof. Suppose F : C → D is a categorical equivalence and (F, G, φ, ψ) is a categorical 
equivalence datum. If E is a complete V–∞-category we must show that the map

F ∗: Map(C,E) → Map(D,E)

given by composition with F is an equivalence of spaces. By Lemma 5.5.12 we have 
equivalences

G∗F ∗ � φ∗ ◦
(
id ⊗ d1)∗ � φ∗ ◦

(
id ⊗ d0)∗ � id,

F ∗G∗ � ψ∗ ◦
(
id ⊗ d1)∗ � ψ∗ ◦

(
id ⊗ d0)∗ � id.

Thus G∗ is an inverse of F ∗, and so F ∗ is indeed an equivalence. �
5.6. Completion

We will now construct an explicit completion functor, analogous to Rezk’s completion 
functor for Segal spaces in [34, §14], when V is a presentably monoidal ∞-category. 
Using this we can then show that the local equivalences are precisely the fully faithful 
and essentially surjective functors.

Definition 5.6.1. If C is a V–∞-category, let Ĉ denote the geometric realization |CE• |.
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Theorem 5.6.2. Suppose V is a presentably monoidal ∞-category and C is a V–∞-category. 
The natural map C → Ĉ is both a local equivalence and fully faithful and essentially sur-
jective. Moreover, the V–∞-category Ĉ is complete.

Proof. The functors En → Em induced by the maps [n] → [m] in Δ are categorical 
equivalences by Corollary 5.5.6, so the induced functors CEm → CEn are also categorical 
equivalences by Lemma 5.5.7. These functors are therefore all fully faithful and essen-
tially surjective by Proposition 5.5.3, and local equivalences by Theorem 5.5.13. Local 
equivalences are by definition closed under colimits, so it follows that the map C → Ĉ is 
a local equivalence.

Since ι0 preserves colimits, the map ι0C → ι0Ĉ � ιC is surjective on π0, and so the 
functor C → Ĉ is essentially surjective. To see that this functor is also fully faithful, 
we consider the model for categorical algebras as Segal presheaves from §4.5. If V is 
κ-presentable, then the colimit Ĉ in Algcat(V) � P(V∨

⊗)Seg can be described as a local-
ization of the colimit F̂ of the diagram F•: Δop → P((V∨

⊗)κ) corresponding to CE• . The 
colimit F̂ can be computed objectwise, and in fact is already local: Given X ∈ (V∨

⊗)[k], 
we know that for every φ: [m] → [n] in Δop the diagram

Fm(X) Fn(X)

Fm()×(k+1) Fn()×(k+1)

is a pullback square. Since S is an ∞-topos, by [25, Theorem 6.1.3.9] it follows that the 
square

F0(X) F̂ (X)

F0()×(k+1) F̂ ()×(k+1)

is also a pullback square. From this we conclude that F̂ is also a Segal presheaf, since 
the map F̂ (X) → F̂ ()×(k+1) � |F•()|×(k+1) has the same fibres as F0(X) → F0()×(k+1)

and F0() → F̂ () is surjective on π0. Using the equivalence between Segal presheaves and 
categorical algebras of Theorem 4.5.3 we conclude that C → Ĉ is fully faithful, as the 
object Ĉ(x, y) is determined by the fibre of F̂ (A) → F̂ ()×2 � (ιC)×2 at (x, y) for all 
A ∈ V.

It remains to prove that Ĉ is complete, i.e. that the map ι0Ĉ → ι1Ĉ is an equivalence. 
We have a commutative diagram
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|ι0CE• | ι0Ĉ

|ι1CE• | ι1Ĉ,

where the top horizontal morphism is an equivalence since ι0 preserves colimits. The left 
vertical map is also an equivalence: We have equivalences ι1CEn � Map(E1 ⊗ En, C) �
ιnC

E1 , so |ι1CE• | � ιCE1 , and under this equivalence the left vertical map corresponds 
to that induced by the natural map C → CE1 ; we know that this is fully faithful and 
essentially surjective, and so induces an equivalence on ι by Proposition 5.3.6. In order 
to show that Ĉ is complete, it thus suffices to show that the bottom horizontal map 
|ι1CE• | → ι1Ĉ is an equivalence.

Consider the commutative diagram

|ι1CE• | ι1Ĉ

|ι0CE• |×2 ι0Ĉ
×2,

with the vertical maps coming from the maps d0, d1: E0 → E1. Here the bottom hori-
zontal map is an equivalence, so to prove that the top horizontal map is an equivalence 
it suffices to prove that this is a pullback square. Since C → Ĉ is essentially surjective, 
to see this we need only show that for all (X, Y ) ∈ ι0C

×2 the induced map on fibres 
|ι1CE• |(X,Y ) → ι1Ĉ(X,Y ) is an equivalence.

Since CEm → CEn is fully faithful and essentially surjective for all [n] → [m] in Δop, 
the map ιCEm → ιCEn is an equivalence by Proposition 5.3.6. Therefore, as the groupoid 
objects ι•CEm and ι•CEn are effective, the diagram

ι1C
Em

ι1C
En

(ι0CEm)×2 (ι0CEn)×2

is a pullback square. In other words, the natural transformation ι1CE• → (ι0CE•)×2

is Cartesian. Applying [25, Theorem 6.1.3.9] again, we see that the extended natural 
transformation of functors (Δop)� → S that includes the colimits is also Cartesian. Thus 
we have a pullback square
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ι1C |ι1CE• |

ι0C
×2 |ι0CE• |×2.

In particular, for (X, Y ) ∈ ι0C
×2 the induced map on fibres ι1C(X,Y ) → |ι1CE• |(X,Y ) is an 

equivalence. Since C → Ĉ is fully faithful and essentially surjective, the map ι1C(X,Y ) →
ι1Ĉ(X,Y ) is also an equivalence by Lemma 5.3.5. By the 2-out-of-3 property it then follows 
that |ι1CE• |(X,Y ) → ι1Ĉ(X,Y ) is an equivalence too. This completes the proof that Ĉ is 
complete. �
Corollary 5.6.3. Suppose V is a presentably monoidal ∞-category. The following are 
equivalent, for a functor F : C → D of V–∞-categories:

(i) F is a local equivalence.
(ii) F is fully faithful and essentially surjective.

Proof. By Theorem 5.6.2 we have a commutative diagram

C
F

D

Ĉ
F̂

D̂,

where the vertical maps are both local equivalences and fully faithful and essentially 
surjective, and Ĉ and D̂ are complete.

Since local equivalences form a strongly saturated class of morphisms, it follows from 
the 2-out-of-3 property that F is a local equivalence if and only if F̂ is a local equivalence, 
i.e. if and only if F̂ is an equivalence, since Ĉ and D̂ are complete.

Fully faithful and essentially surjective functors also satisfy the 2-out-of-3 property, 
by Proposition 5.3.9, so F is fully faithful and essentially surjective if and only if F̂ is. 
But by Corollary 5.3.8 the functor F̂ is fully faithful and essentially surjective if and 
only if it is an equivalence, since Ĉ and D̂ are complete. Thus F is a local equivalence if 
and only if it is fully faithful and essentially surjective. �
Corollary 5.6.4. Suppose V is a presentably monoidal ∞-category. The ∞-category CatV∞
is the localization of Algcat(V) with respect to the fully faithful and essentially surjective 
functors.

Remark 5.6.5. We might expect that the fully faithful and essentially surjective functors 
also coincide with the categorical equivalences, but this turns out not to be the case when 
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we allow spaces of objects. To see this, first observe that if F : A → B is a categorical 
equivalence, then for every V–∞-category C the map

F∗: |Map(C⊗E•,A)| → |Map(C⊗E•,B)|

is surjective on π0: suppose G: B → A is a pseudo-inverse of F , then given a functor 
φ: C → B the natural equivalence from F ◦ G to id gives a natural equivalence from 
F ◦ G ◦ φ to φ, so up to natural equivalence φ is in the image of F∗. Now if B →
B̂ is a categorical equivalence where B̂ is complete, then by Corollary 5.5.10 we have 
| Map(C ⊗E•, B̂)| � Map(C, B̂), and since Map(C ⊗E•, B) is a groupoid object the map 
Map(C, B) → | Map(C ⊗ E•, B)| is surjective on π0. Thus Map(C, B) → Map(C, B̂) is 
surjective on π0.

Now suppose ι0B is discrete and ιB is not; then there clearly exists for some n > 0
a map from the n-sphere Sn → ιB that does not factor through ι0B. But we have 
a V–∞-category Sn ⊗ E0 such that Map(Sn ⊗ E0, B) � Map(Sn, ι0B) — so if B →
B̂ were a categorical equivalence then Map(Sn, ι0B) → Map(Sn, ιB) would have to 
be surjective on π0, a contradiction. Completion maps B → B̂ therefore cannot be 
categorical equivalences in general.

We now deduce our main result for a general large monoidal ∞-category V from the 
presentable case, by embedding in a larger universe:

Theorem 5.6.6. Let V be a large monoidal ∞-category. The inclusion of the full sub-
category of complete V–∞-categories CatV∞ ↪→ Algcat(V) has a left adjoint that exhibits 
CatV∞ as the localization of Algcat(V) with respect to the fully faithful and essentially 
surjective functors.

Proof. Let P̂(V) be the ∞-category of presheaves of large spaces on V. By [28, Proposi-
tion 4.8.1.10] there exists a monoidal structure on P̂(V) such that the Yoneda embedding 
j: V → P̂(V) is a monoidal functor. Let Âlgcat(P̂(V)) be the (very large) ∞-category of 

large categorical algebras in P̂(V); this is a presentable ∞-category, and writing Ĉat
P̂(V)
∞

for its subcategory of complete P̂(V)–∞-categories we know from Corollary 5.6.4 that 
the inclusion

Ĉat
P̂(V)
∞ ↪→ Âlgcat

(
P̂(V)

)

has a left adjoint L̂ that exhibits Ĉat
P̂(V)
∞ as the localization with respect to the fully 

faithful and essentially surjective functors.
If C is in the essential image of the fully faithful inclusion

Algcat(V) ↪→ Âlgcat
(
P̂(V)

)
,
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then the natural map C → L̂C is fully faithful and essentially surjective. But then 
ι0L̂C � ιC, so ι0L̂C is an (essentially) small space, and the mapping objects in L̂C are in 
the essential image of V in P̂(V). Thus L̂C is in the essential image of Algcat(V), and so 
the functor L̂ restricts to a functor L: Algcat(V) → CatV∞, since CatV∞ is equivalent to the 

full subcategory of Ĉat
P̂(V)
∞ spanned by objects in the essential image of Algcat(V). �

5.7. Properties of the localized ∞-category

In this subsection we observe that the localized ∞-category CatV∞ inherits the natu-
rality properties of Algcat(V). We first show that CatV∞ is functorial in V:

Proposition 5.7.1. Let

Algcat → M̂on
lax
∞

be a coCartesian fibration corresponding to the functor Algcat(–). Define Enr∞ to be the 
full subcategory of Algcat whose objects are the complete enriched ∞-categories. Then 
the restricted projection

Enr∞ → M̂on
lax
∞

is a coCartesian fibration, and the inclusion Enr∞ ↪→ Algcat admits a left adjoint over 
M̂on

lax
∞ .

This follows from a general result about fibrewise localizations of coCartesian fibra-
tions that we prove first:

Lemma 5.7.2. Suppose E → Δ1 is a coCartesian fibration, and E′ is a full subcategory of 
E such that the inclusion E′

1 ↪→ E1 admits a left adjoint L: E1 → E′
1. Then the restriction 

E′ → Δ1 is also a coCartesian fibration.

Proof. We must show that for each x ∈ E′
0 there exists a coCartesian arrow with source x

over 0 → 1 in Δ1. Suppose φ: x → y is such a coCartesian arrow in E, and let y → Ly be 
the unit of the adjunction. Then the composite x φ−→ y → Ly is a coCartesian arrow in E′: 
by [25, Proposition 2.4.4.3] it suffices to show that for all z ∈ E′

1 the map MapE′(Ly, z) →
MapE′(x, z) is an equivalence, which is clear since MapE′(Ly, z) � MapE(y, z) as z ∈ E′

1, 
MapE′(x, z) � MapE(x, z) as E′ is a full subcategory of E, and x → y is a coCartesian 
morphism in E. �
Lemma 5.7.3. Let E → B be a locally coCartesian fibration and E0 a full subcategory of 
E such that for each b ∈ B the induced map on fibres E0

b ↪→ Eb admits a left adjoint 
Lb: Eb → E0

b . Assume these localization functors are compatible in the sense that the 
following condition is satisfied:
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(∗) Suppose f : b → b′ is a morphism in B and e is an object of Eb. Let e → e′ and 
Lbe → e′′ be locally coCartesian arrows lying over f , and let Lb′e

′ → Lb′e
′′ be the 

unique morphism such that the diagram

e e′ Lb′e
′

Lbe e′′ Lb′e
′′

commutes. Then the morphism Lb′e
′ → Lb′e

′′ is an equivalence.

Then

(i) the composite map E0 → B is also a locally coCartesian fibration,
(ii) the inclusion E0 ↪→ E admits a left adjoint L: E → E0 relative to B.

Proof. (i) is immediate from the previous lemma, and then (ii) follows from [28, Proposi-
tion 7.3.2.11] — condition (2) of this result is satisfied since, in the notation of condition 
(∗), a locally coCartesian arrow in E0 over f with source Lbe is given by the composite 
Lbe → e′′ → Lb′e

′′. �
Proposition 5.7.4. Let E → B be a coCartesian fibration and E0 a full subcategory of E. 
Suppose that for each b ∈ B the induced map on fibres E0

b ↪→ Eb admits a left adjoint 
Lb: Eb → E0

b and that the functors φ!: Eb → Eb′ corresponding to morphisms φ: b → b′ in 
B preserve the fibrewise local equivalences. Then

(i) the composite map E0 → B is a coCartesian fibration,
(ii) the inclusion E0 ↪→ E admits a left adjoint L: E → E0 over B, and L preserves 

coCartesian arrows.

Proof. Lemma 5.7.3 implies (ii) and also that E0 → E → B is a locally coCartesian 
fibration, since for a coCartesian fibration condition (∗) says precisely that fibrewise local 
equivalences are preserved by the functors φ!. By [25, Proposition 2.4.2.8] it remains to 
show that locally coCartesian morphisms are closed under composition. Suppose f : b → b′

and g: b′ → b′′ are morphisms in B, and that e ∈ E0
b . Let e → e′ be a coCartesian arrow in 

E over f , and let e′ → e′′1 and Lb′e
′ → e′′2 be coCartesian arrows in E over g. Then a locally 

coCartesian arrow over f in E0 is given by e → e′ → Lb′e
′ and a locally coCartesian 

arrow over g is given by Lb′e
′ → e′′2 → Lb′′e

′′
2 . We have a commutative diagram
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e e′ e′′1 Lb′′e
′′
1

Lb′e
′ e′′2 Lb′′e

′′
2

Here the composite along the top row is a locally coCartesian arrow for gf , and the 
composite along the bottom is the composite of locally coCartesian arrows for g and 
f . By condition (∗) of Lemma 5.7.3, the rightmost vertical morphism is an equivalence, 
hence the composite map e → Lb′′e

′′
2 is locally coCartesian. �

Lemma 5.7.5. Suppose φ: V⊗ → W⊗ is a lax monoidal functor. Then the induced functor

φ∗: Algcat(V) → Algcat(W)

preserves fully faithful and essentially surjective morphisms.

Proof. It is obvious from the definitions that φ∗ preserves fully faithful functors. To 
see that it preserves essentially surjective ones we note that if two points of ι0C are 
equivalent as objects of C then they are also equivalent as objects of φ∗C, since the map 
IW → φ(IV) induces a functor E1

W → φ∗E
1
V. �

Proof of Proposition 5.7.1. The result follows by combining Proposition 5.7.4 and 
Lemma 5.7.5. �
Corollary 5.7.6. CatV∞ is functorial in V with respect to lax monoidal functors of monoidal 
∞-categories.

Proof. The coCartesian fibration Enr∞ → M̂on
lax
∞ of Proposition 5.7.1 classifies a functor 

M̂on
lax
∞ → Cat∞ that sends a monoidal ∞-category V to CatV∞. �

Lemma 5.7.7. Suppose V and W are monoidal ∞-categories compatible with small col-
imits, and F : C⊗ → D⊗ is a monoidal functor such that F[1]: V → W preserves colimits. 
Then the induced functor F∗: CatV∞ → CatW∞ preserves colimits.

Proof. This functor F∗ is the composite

CatV∞ ↪→ Algcat(V) FAlg
∗−−−−→ Algcat(W) LW−−−→ CatW∞,

where LW is the completion functor for W and we write FAlg
∗ for the functor on Algcat

induced by composition with F for clarity. By Lemma 5.7.5 the functor FAlg
∗ preserves 

local equivalences, so FAlg
∗ LVC and FAlg

∗ C are locally equivalent for all C; it follows that 
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LW ◦ FAlg
∗ ◦ LV � LW ◦ FAlg

∗ . If α �→ Cα is a diagram in CatV∞ then its colimit is 
LV(colimCα) where this colimit is computed in Algcat(V). Thus we have

F∗(colimCα) � LWFAlg
∗ LV(colimCα) � LWFAlg

∗ (colimCα)

� colimLWFAlg
∗ (Cα) � colimF∗Cα. �

Proposition 5.7.8. The restriction of the functor Cat(–)
∞ to MonPr

∞ factors through Pres∞.

Proof. This follows from Lemma 5.7.7 and Corollary 5.4.5. �
Proposition 5.7.9. Suppose V and W are monoidal ∞-categories and let A be a com-
plete V–∞-category and B a complete W–∞-category. Then A � B is a complete 
V ×W–∞-category.

This follows from the following observation:

Lemma 5.7.10. Suppose V and W are monoidal ∞-categories and let A be a V–∞-category 
and B a W–∞-category. Then ι•(A � B) is naturally equivalent to ι•A × ι•B, and 
ι(A � B) is naturally equivalent to ιA × ιB,

Proof. The “external product” � is clearly the Cartesian product in the ∞-category 
Algcat, and so it is easy to see that for any V ×W–∞-category C we have

Map(C,A � B) � Map(π1,∗C,A) × Map(π2,∗C,B),

where π1 and π2 denote the projections from V ×W to V and W, respectively. Moreover, 
πi,∗E

S � ES for all S (since πi obviously preserves the unit of the monoidal structure). 
Thus

ι•(A � B) � ι•A× ι•B.

Since colimits of simplicial objects commute with products it follows that ι(A � B) �
ιA × ιB. �
Proof of Proposition 5.7.9. By Lemma 5.7.10 we have a natural map

ι0(A � B) � ι0A× ι0B → ιA× ιB � ι(A � B).

This is an equivalence if A and B are complete, i.e. A � B is indeed also complete. �
Corollary 5.7.11. Cat(–)

∞ is a lax monoidal functor with respect to the Cartesian product 
of monoidal ∞-categories.
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Proof. By Proposition 5.7.9 the complete enriched ∞-categories are closed under the 
exterior product in Algcat, and so the definition of the lax monoidal structure on the 
functor Algcat(–) implies that the restriction to Cat(–)

∞ is also lax monoidal. �
Corollary 5.7.12. Let O be a symmetric ∞-operad, and suppose V is an O ⊗E1-monoidal 
∞-category. Then CatV∞ is an O-monoidal ∞-category. In particular, if V is an 
En-monoidal ∞-category then CatV∞ is En−1-monoidal, and if V is symmetric monoidal 
then so is CatV∞.

Proof. This follows by the same proof as that of Corollaries 4.3.12 and 4.3.13. �
Remark 5.7.13. If V is an En-monoidal ∞-category, we can therefore iterate the enrich-
ment functor k times for k ≤ n to obtain ∞-categories CatV(∞,k) of (∞, k)-categories 
enriched in V.

Proposition 5.7.14. Suppose V is an E2-monoidal ∞-category. Then the localization
L: Algcat(V) → CatV∞ is monoidal.

Proof. We must show that if f : C → C′ and g: D → D′ are fully faithful and essentially 
surjective functors in Algcat(V), then their tensor product f ⊗ g: C ⊗D → C′ ⊗D′ is also 
fully faithful and essentially surjective. By definition, the tensor product C ⊗ C′ is given 
by μ∗(C �C′), where μ is the tensor product functor V ×V → V, which is monoidal since 
V is E2-monoidal.

By Lemma 5.7.5 it therefore suffices to check that the external product f � g is 
fully faithful and essentially surjective in Algcat(V × V). It is obvious that f � g is fully 
faithful, and it is essentially surjective since ι(f � g) is naturally equivalent to ιf × ιg

by Lemma 5.7.10. �
Combining this with Proposition 3.1.22, we get:

Corollary 5.7.15. Suppose V is an E2-monoidal ∞-category. Then the localization
L: Algcat(V) → CatV∞ is a monoidal functor.

Proposition 5.7.16. When restricted to MonPr
∞ , the functor Cat(–)

∞ is lax monoidal with 
respect to the tensor product of presentable ∞-categories.

Proof. This follows from Corollary 4.3.16, since by Proposition 5.7.9 the complete en-
riched ∞-categories are closed under the exterior product. �
Proposition 5.7.17. Suppose V and W are presentably monoidal ∞-categories and 
F : V⊗ → W⊗ is a monoidal functor such that the underlying functor f : V → W pre-
serves colimits. Let g: W → V be a right adjoint of f , and let G: W⊗ → V⊗ be the lax 
monoidal structure on g given by Proposition A.5.11. Then:
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(i) The functor G∗: Algcat(W) → Algcat(V) preserves complete objects.
(ii) The functors

LWF∗ : CatV∞ � CatW∞ : G∗

are adjoint.

Proof. Since F is monoidal and f preserves colimits, it is clear that for any S–∞-category 
C we have F∗(IV ⊗ C) � IW ⊗ C. Hence for any W–∞-category D we have natural 
equivalences

MapAlgcat(W)(En,D) � MapAlgcat(W)(F∗E
n,D) � MapAlgcat(V)(En, G∗D),

and so in particular ιG∗D � ιD and G∗D is complete if D is. This proves (i).
To prove (ii), observe that using Lemma 4.3.19 we have natural equivalences

MapCatW∞(LWF∗C,D) � MapAlgcat(W)(F∗C,D) � MapAlgcat(V)(C, G∗D)

� MapCatV∞(C, LVG∗D). �
Proposition 5.7.18. Let V be a presentably monoidal ∞-category and suppose L: V →
W is a monoidal accessible localization with fully faithful right adjoint i: W ↪→ V. Let 
i⊗: W⊗ ↪→ V⊗ and L⊗: V⊗ → W⊗ be as in Proposition 3.1.22. Suppose L exhibits W as 
the localization of V with respect to a set of morphisms S. Then the resulting adjunction

L⊗
∗ : CatW∞ � CatV∞ : i⊗∗

exhibits CatW∞ as the localization of CatV∞ with respect to Σ(S). Moreover, if V is at least 
E2-monoidal then this localization is again monoidal.

Proof. The adjunction exists by combining Lemma A.5.12 and Proposition 5.7.17. The 
functor i⊗∗ is fully faithful since the functor on categorical algebras induced by i⊗ is fully 
faithful by Proposition 4.3.22 and preserves complete objects by Proposition 5.7.17(i). 
Thus this adjunction is a localization. The remaining statements follow by the same 
argument as in the proof of Proposition 4.3.22. �
6. Some applications

In this section we describe some simple applications of our machinery: In §6.1 we use 
iterated enrichment to define ∞-categories of n-groupoids and (n, k)-categories for all n
and 0 ≤ k ≤ n and prove the “homotopy hypothesis” in this context. Then in §6.2 we 
show that enriching in a monoidal (n, 1)-category gives an (n + 1, 1)-category, and use 
this to prove the Baez–Dolan stabilization hypothesis for k-tuply monoidal n-categories, 
and finally in §6.3 we prove that for any monoidal ∞-category V there is a fully faithful 
embedding of associative algebras in V into pointed V–∞-categories.



678 D. Gepner, R. Haugseng / Advances in Mathematics 279 (2015) 575–716
6.1. (n, k)-categories as enriched ∞-categories

In this subsection we explain how to define (n, k)-categories in the context of enriched 
∞-categories, and deduce some simple results that describe the resulting homotopy the-
ories as localizations, including a version of the “homotopy hypothesis”.

We begin by inductively defining n-groupoids and (n, k)-categories:

Definition 6.1.1. Assuming we have already defined Cat(n,1), let Gpdn ↪→ Cat(n,1) be 
the full subcategory of objects local with respect to the obvious map [1] → E0; we refer 
to the objects of Gpdn as n-groupoids. Then we define the ∞-category Cat(n+k,k) of 
(n +k, k)-categories to be the ∞-category CatGpdn

(∞,k) of (∞, k)-categories enriched in Gpdn. 
To start off the induction we define 0-groupoids to be sets, i.e. we define Gpd0 := Set. 
We also extend the notation by setting Cat(n,0) := Gpdn.

Remark 6.1.2. Since the objects of Cat(n,1) are already local with respect to E1 → E0

we can equivalently define Gpdn as the full subcategory of objects local with respect to 
either of the inclusions [1] → E1. Thus an (n, 1)-category is an n-groupoid precisely if 
all of its 1-morphisms are equivalences.

Remark 6.1.3. Observe that the ∞-category Cat(n,n) is defined by iterated enrichment 
starting with sets: Cat(n,n) := CatSet

(∞,n). For n < ∞ we will refer to (n, n)-categories 
as n-categories and write Catn := Cat(n,n). The comparison results in [19] imply 
that this ∞-category of n-categories is equivalent to Tamsamani’s homotopy theory 
of n-categories [42].

Remark 6.1.4. As observed by Bartels and Dolan (cf. [4]), the definition can also be 
extended to allow n = −2 and n = −1: We can take Cat(−2,1) = Gpd−2 := ∗; then 
Cat(−1,1) consists of the empty category and E0. These are both −1-groupoids, so 
Gpd−1 � Cat(−1,1). Next it is easy to identify Cat(0,1) with partially ordered sets, so 
Gpd0 consists of partially ordered sets where all morphisms are isomorphisms. These 
are equivalent to partially ordered sets with only identity morphisms, i.e. just sets, so 
Gpd0 � Set as before.

For n = ∞ we define (∞, k)-categories by starting with spaces instead:

Definition 6.1.5. Let Cat(∞,0) := S, and Cat(∞,k) := CatS(∞,k).

We now wish to identify Cat(n,k) as a localization of Cat(∞,k), starting from the 
following trivial observation:
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Lemma 6.1.6.

(i) Set ↪→ S is the full subcategory of objects local with respect to the maps Sn → ∗ for 
n > 0.

(ii) S ↪→ Cat∞ is the full subcategory of objects local with respect to the map [1] → E0.

Proof. (i) is obvious, and (ii) is easy to prove if we take complete Segal spaces as our 
model for ∞-categories — a Segal space is local with respect to [1] → E0 if and only if 
it is constant. �

Combining this with Proposition 5.7.18 we immediately get the following:

Proposition 6.1.7.

(i) The inclusion Cat(n,k) ↪→ Cat(n,k+1) induced by the inclusion Gpdn−k ↪→
Cat(n−k,1) exhibits Cat(n,k) as the localization with respect to Σk[1] → ΣkE0.

(ii) The inclusion Cat(n,k) ↪→ Cat(n,l), k < l ≤ n, exhibits Cat(n,k) as the localization 
with respect to Σi[1] → ΣiE0, i = k, k + 1, . . . , l − 1.

(iii) The inclusion Cat(∞,k) ↪→ Cat(∞,k+1) induced by the inclusion S ↪→ Cat∞ exhibits 
Cat(∞,n) as the localization with respect to Σk[1] → ΣkE0.

(iv) The inclusion Cat(∞,k) ↪→ Cat(∞,n) for k < n exhibits Cat(∞,k) as the localization 
with respect to Σi[1] → ΣiE0, i = k, k + 1, . . . , n − 1.

(v) The inclusion Catn ↪→ Cat(∞,n) induced by the inclusion Set ↪→ S exhibits Catn as 
the localization of Cat(∞,n) with respect to ΣnSk → Σn∗ for k > 0.

Theorem 6.1.8. The composite functor Cat(n,k) ↪→ Catn ↪→ Cat(∞,n) factors through 
Cat(∞,k), and the resulting inclusion Cat(n,k) ↪→ Cat(∞,k) exhibits Cat(n,k) as the local-
ization with respect to ΣkSj → Σk∗ for j > n − k.

For the proof we need the following observation:

Lemma 6.1.9. Let κ: Cat∞ → S denote the left adjoint to the inclusion S ↪→ Cat∞. Then 
if X is a space, the space κΣX is the (unreduced) suspension of X.

Proof. We take complete Segal spaces as our model for ∞-categories; then the inclusion 
of S corresponds to the inclusion of constant simplicial spaces and κ corresponds to 
geometric realization. Let Δs denote the subcategory of Δ where the morphisms are the 
surjective morphisms of simplicial sets. Let S(X): Δop

s → S be the semisimplicial space 
with S(X)0 = {0, 1}, S(X)1 = X with d1(X) = 0 and d0(X) = 1, and S(X)n = ∅ for 
n > 1. If j denotes the inclusion Δop

s → Δop then it is easy to see that the left Kan 
extension j!S(X) is a (complete) Segal space. Moreover, using the adjunction j! 
 j∗ it 
is clear that j!S(X) satisfies the universal property of ΣX. Thus κΣX is the colimit of 



680 D. Gepner, R. Haugseng / Advances in Mathematics 279 (2015) 575–716
the functor j!S(X), i.e. the left Kan extension q!j!S(X) along q: Δop → ∗. But this is 
equivalent to (qj)!S(X), which is the colimit of the semisimplicial space S(X). Using 
the standard model-categorical approach to homotopy colimits we can describe this as 
the quotient of Δ1 × X where we identify {0} ×X and {1} ×X with points, which is 
precisely the unreduced suspension of the space X. �
Proof of Theorem 6.1.8. From Proposition 6.1.7 we see that Cat(n,k) is the localization of 
Cat(∞,n) with respect to Σi[1] → ΣiE0, i = k, k+1, . . . , n −1 and ΣnSj → Σn∗ for j > 0. 
On the other hand, Cat(∞,k) is the localization of Cat(∞,n) with respect to just the first 
class of maps, so the inclusion Cat(n,k) ↪→ Cat(∞,n) certainly factors through Cat(∞,k). 
To prove the result it therefore suffices to show that the image of ΣnSj → Σn∗ under the 
localization Cat(∞,n) → Cat(∞,k) is ΣkSj+n−k → Σk∗. This follows by induction from 
the case k = 0, which is a special case of Lemma 6.1.9. �

In the case k = 0, this gives a version of the “homotopy hypothesis” in our setting:

Corollary 6.1.10 (Homotopy hypothesis). There is an inclusion Gpdn ↪→ S that exhibits 
Gpdn as the localization of S with respect to the maps Sj → ∗, j > n. In other words, 
the ∞-category Gpdn of n-groupoids is equivalent to the ∞-category S≤n of n-types, i.e. 
spaces whose homotopy groups vanish in degrees > n.

6.2. Enriching in (n, 1)-categories and Baez–Dolan stabilization

In this subsection we prove that enriching in an (n, 1)-category V gives an (n +
1, 1)-category of V–∞-categories. We begin by recalling the appropriate definition of 
an (n, 1)-category in the context of ∞-categories:

Definition 6.2.1. An ∞-category C is an (n, 1)-category if the mapping spaces MapC(X, Y )
are (n − 1)-types for all X, Y ∈ C, i.e. πk MapC(X, Y ) = 0 for k ≥ n. In other words, 
there are no non-trivial k-morphisms in C for k > n.

Remark 6.2.2. Using the equivalence CatS∞ � Cat∞ of Theorem 5.4.6 and the case k = 1
of Theorem 6.1.8 we can identify (n, 1)-categories in this sense with those defined in the 
previous subsection.

Remark 6.2.3. Suppose V is a monoidal ∞-category such that V is an (n, 1)-category. 
Then clearly V⊗ is also an (n, 1)-category. The phrase monoidal (n, 1)-category is thus 
unambiguous.

Proposition 6.2.4. Suppose V is a monoidal (n, 1)-category and C is a V–∞-category. 
Then the space ιC is an n-type.

Proof. Let s: π0(ι0C) → ι0C be a section of the projection ι0C → π0ι0C. Then the 
Cartesian morphism s∗C → C is fully faithful and essentially surjective, and so induces 
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an equivalence ι(s∗C) → ιC by Proposition 5.3.6. Without loss of generality we may 
therefore assume that the space ι0C is discrete.

The simplicial space ι•C is a groupoid object by Corollary 5.2.7. By [25, Corol-
lary 6.1.3.20] this groupoid object is effective, and so we have a pullback diagram

ι1C ι0C

ι0C ιC.

If X is a point of ι0C, we get a pullback diagram

ι1C{X} ι0C

{X} ιC,

where ι1C{X} is the fibre of ι1C → ι0C at X. Since the map ι0C → ιC is surjective on 
components, by considering the long exact sequence of homotopy groups associated to 
this fibre sequence we see that ιC is an n-type provided the spaces ι1C{X} are (n −1)-types 
for all X ∈ ι0C.

The space ι1C{X} is a union of components of ι1C, so it suffices to show that ι1C
is an (n − 1)-type. Since ι0C is discrete, i.e. a 0-type, by [25, Lemma 5.5.6.14] this is 
equivalent to proving that the fibres of the map ι1C → ι0C × ι0C are (n − 1)-types. But 
by Proposition 5.1.17 we can identify the fibre ι1CX,Y at (X, Y ) ∈ ι0C

×2 with the space 
Map(I, C(X, Y ))eq that is the union of the components of Map(I, C(X, Y )) corresponding 
to equivalences. Since V is by assumption an n-category, the space Map(I, C(X, Y )) is 
necessarily an (n − 1)-type, hence so is Map(I, C(X, Y ))eq. �
Theorem 6.2.5. Suppose V is a monoidal (n, 1)-category. Then CatV∞ is an (n +
1, 1)-category.

Proof. We need to show that if C and D are complete V–∞-categories then the space

MapCatV∞(C,D) � MapAlgcat(V)(C,D)

is an n-type. By Proposition 6.2.4, the space ι0D � ιD is an n-type, hence the space 
MapS(ι0C, ι0D) is as well. It follows from [25, Lemma 5.5.6.14] that, in order to prove 
that MapAlgcat(V)(C, D) is an n-type, it suffices to show that the fibres of the map

MapAlgcat(V)(C,D) → MapS(ι0C, ι0D)

induced by the projection Algcat(V) → S are n-types.
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Since the projection Algcat(V) → S is a Cartesian fibration, by [25, Proposition 2.4.4.2]
we can identify the fibre of this map at f : ι0C → ι0D with

MapAlg
Δ

op
ι0C

(V)(C, f∗D).

This space is the fibre of

MapΔop
(
Δop

ι0C
× Δ1,V⊗) → MapΔop

(
Δop

ι0C
,V⊗)× MapΔop

(
Δop

ι0C
,V⊗)

at (C, f∗D). Since n-types are closed under all limits by [25, Proposition 5.5.6.5], 
it suffices to show that the spaces MapΔop(Δop

ι0C
, V⊗) and MapΔop(Δop

ι0C
× Δ1, V⊗)

are n-types. Now these spaces are fibres of Map(Δop
ι0C

, V⊗) → Map(Δop, V⊗) and 
Map(Δop

ι0C
× Δ1, V⊗) → Map(Δop, V⊗), so by the same argument it’s enough to show 

that these mapping spaces are n-types. But V⊗ is by assumption an (n, 1)-category, so 
this holds by [25, Proposition 2.3.4.18]. �
Corollary 6.2.6. The ∞-category Catn of n-categories is an (n + 1, 1)-category. More 
generally, the ∞-category Cat(n,k) of (n, k)-categories is an (n + 1, 1)-category.

Proof. Since Set is obviously a monoidal (1, 1)-category, applying Theorem 6.2.5 induc-
tively we see that Catn is an (n + 1, 1)-category. Similarly, if we know that Gpdn is an 
(n + 1, 1)-category it follows by induction that Cat(n+k,k) is an (n + k + 1, 1)-category. 
In particular Cat(n+1,1) is an (n + 2, 1)-category, and so its full subcategory Gpdn+1 of 
(n + 1)-groupoids is also an (n + 2, 1)-category. Since Gpd0 = Set is a (1, 1)-category we 
see by induction that Cat(n,k) is an (n + 1, 1)-category for all (n, k). �

It follows that if V is a symmetric monoidal (n, 1)-category, then Ek-algebras in CatV∞
are equivalent to E∞-algebras for k sufficiently large:

Corollary 6.2.7. Let V be a symmetric monoidal (n, 1)-category. Then

(i) the map Ek → Γop induces an equivalence

AlgΣ
Ek

(
CatV∞

) ∼−−→ AlgΣ
Γop

(
CatV∞

)
for k ≥ n + 1,

(ii) the stabilization map i: Ek → Ek+1 (defined in [28, §5.1.1]) induces an equivalence

i∗: AlgΣ
Ek+1

(
CatV∞

)
→ AlgΣ

Ek

(
CatV∞

)
for k ≥ n + 1.
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Proof. (i) is immediate from [28, Corollary 5.1.1.7], and (ii) follows by the 2-out-of-3 
property. �

We end this subsection by observing that when V is the monoidal ∞-category of 
n-categories, this yields the Baez–Dolan stabilization hypothesis, by the same proof as 
Lurie’s version for (n, 1)-categories [25, Example 5.1.2.3]:

Definition 6.2.8. A k-tuply monoidal n-category is an Ek-algebra in Catn, i.e. an Ek-
monoidal n-category.

Corollary 6.2.9 (Baez–Dolan stabilization hypothesis). The stabilization map i: Ek →
Ek+1 induces an equivalence

i∗: AlgΣ
Ek+1

(Catn) → AlgΣ
Ek

(Catn)

for k ≥ n + 2, i.e. k-tuply monoidal n-categories stabilize at k = n + 2.

Proof. Apply Corollary 6.2.7 to Catn. �
Remark 6.2.10. The Baez–Dolan stabilization hypothesis was originally stated by Baez 
and Dolan in [3]. A version of it was proved by Simpson [37], who showed that for k ≥ n +2
a k-tuply monoidal n-category can be “delooped” to a (k+1)-tuply monoidal n-category; 
the ∞-categorical version above extends this by showing that this construction gives an 
equivalence of ∞-categories.

6.3. En-algebras as enriched (∞, n)-categories

In ordinary enriched category theory, it is obvious that associative algebra objects in a 
monoidal category V are equivalent to V-categories with a single object. Similarly, if V is 
a monoidal ∞-category, we can identify the ∞-category AlgΔop(V) of associative algebra 
objects with the full subcategory of Algcat(V) spanned by V–∞-categories whose space 
of objects is a point. In this subsection we will prove that after localizing with respect 
to the fully faithful and essentially surjective V-functors we still get a fully faithful 
functor from AlgΔop(V) provided we consider pointed V–∞-categories. It then follows by 
induction that, if V is at least En-monoidal, the same is true for the natural map from 
En-algebras to pointed enriched (∞, n)-categories.

Definition 6.3.1. Let V be a monoidal ∞-category. By Proposition 3.1.18, the unit object 
of V is the initial object in the ∞-category AlgΔop(V) of associative algebra objects. The 
inclusion j: AlgΔop(V) ↪→ Algcat(V) therefore factors through Algcat(V)E0/. Composing 
this with the localization functor we get a functor B: AlgΔop(V) → (CatV∞)E0/.
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Theorem 6.3.2. Let V be a monoidal ∞-category. Then:

(i) The functor B: AlgΔop(V) → (CatV∞)E0/ is fully faithful.
(ii) If V is E2-monoidal, then B is a monoidal functor.
(iii) B admits a right adjoint Ω: (CatV∞)E0/ → AlgΔop(V).
(iv) If V is presentably E2-monoidal, then Ω is a lax monoidal functor.

For the proof of (iii) we first make some simple observations:

Lemma 6.3.3. Let π: E → B be a Cartesian fibration. For any B ∈ B, the functor 
EB → EB/ := E ×B BB/ admits a right adjoint.

Proof. First suppose B is an initial object of B. Then there is an obvious map B� → B

that sends −∞ to B and is the identity when restricted to B. Let π′: E′ → B� be the 
pullback of π along this map; then π′ is a Cartesian fibration. Since the obvious projection 
B� → (Δ0)� = Δ1 is clearly a Cartesian fibration, the composite functor E′ → Δ1 is also 
a Cartesian fibration. But this is clearly also the coCartesian fibration associated to the 
inclusion EB ↪→ E, hence this functor does indeed have a right adjoint.

For the general case we reduce to the case already proved by pulling back along the 
forgetful functor BB/ → B. �
Lemma 6.3.4. Suppose given an adjunction

F : C � D : G,

and suppose D ∈ D is an object such that the counit map FGD → D is an equivalence. 
Then the induced functor DD/ → CGD/ admits a left adjoint, given by CGD/ → DFGD/ �
DD/.

Proof. The (dual of) the argument in the proof of [25, Lemma 5.2.5.2] applies under our 
assumptions without assuming any colimits exist in D. �
Proof of Theorem 6.3.2. To prove (i), let R and S be two Δop-algebras in V. We have 
a fibre sequence

Map(CatV∞)E0/
(BR,BS) → MapCatV∞(BR,BS) → MapCatV∞

(
E0, BS

)
.

Since BS is the completion LVj(S) of S regarded as a V–∞-category, we have equiva-
lences

MapCatV∞(BR,BS) � MapAlgcat(V)
(
j(R), BS

)
and
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MapCatV∞

(
E0, BS

)
� MapAlgcat(V)

(
E0, BS

)
.

The projection ι0: Algcat(V) → S gives a commutative diagram

MapAlgcat(V)(j(R), BS) MapAlgcat(V)(E0, BS)

MapS(∗, ι0BS) MapS(∗, ι0BS)

where the right vertical map is an equivalence by Lemma 5.1.2 and the bottom horizontal 
map is the identity, since E0 → j(R) is the identity on ι0. Thus we can identify the fibre 
of the top horizontal map at the functor E0 → BS corresponding to a point p: ∗ → ι0BS

with the corresponding fibre of the left vertical map, which is MapAlg
Δop (V)(R, p∗BS)

by [25, Proposition 2.4.4.2].
Take p to be the underlying map of spaces of the completion functor j(S) → BS; since 

this is fully faithful the induced map j(S) → p∗BS is an equivalence, and in particular

MapAlg
Δop (V)(R,S) ∼−−→ MapAlg

Δop (V)(R, p∗BS).

Thus the map MapAlg
Δop (V)(R, S) → Map(CatV∞)E0/

(BR, BS) is also an equivalence, 
which completes the proof of (i).

We now prove (ii). It is clear from the definition of the monoidal structures that the 
functor AlgΔop(V) → Algcat(V)E0/ is monoidal. Since it follows from Corollary 5.7.15
that the localization Algcat(V)E0/ → (CatV∞)E0/ is monoidal (by regarding the overcat-
egories as ∞-categories of E0-algebras, for example), it follows that B is monoidal.

To prove (iii), we first observe that the adjunction Algcat(V) � CatV∞ descends to 
an adjunction Algcat(V)E0/ � (CatV∞)E0/ by Lemma 6.3.4. It therefore suffices to show 
that the functor j: AlgΔop(V) → Algcat(V)E0/ admits a right adjoint. To see this we 
first show that the obvious functor Algcat(V)E0/ → Algcat(V) ×S S∗ is an equivalence. It 
is clear that this functor is essentially surjective, so it suffices to show that for C, D in 
Algcat(V)E0/ the induced map

MapE0/(C,D) → Map(C,D) ×Map(ι0C,ι0D) Map∗/(ι0C, ι0D)

is an equivalence. Consider the following commutative diagram:
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MapE0/(C,D) Map(C,D)

Map∗/(ι0C, ι0D) Map(ι0C, ι0D)

∗ Map(∗, ι0D).

Here the bottom square is clearly a pullback square, and the outer rectangle is a pullback 
square because of the natural equivalence Map(E0, D) ∼−−→ Map(∗, ι0D). Thus the top 
square is also a pullback square. (iii) therefore follows by applying Lemma 6.3.3.

Finally, (iv) now follows from Proposition A.5.11. �
Remark 6.3.5. A pointed V–∞-category C is in the essential image of the functor B if 
and only if ιC is connected, since then the functor p∗C → C induced by the chosen point 
p : ∗ → ι0C is fully faithful and essentially surjective, and p∗C is a Δop-algebra. In other 
words, Δop-algebras in V are equivalent to pointed V–∞-categories with a single object 
up to homotopy.

Definition 6.3.6. Let V be an E2-monoidal ∞-category. A monoidal V–∞-category is a 
Δop-algebra in CatV∞.

Corollary 6.3.7. Let V be an E2-monoidal ∞-category. Then monoidal V–∞-categories 
are equivalent to pointed V–(∞, 2)-categories with a single object (up to homotopy).

Proof. By definition V–(∞, 2)-categories are ∞-categories enriched in CatV∞, so this 
follows from Remark 6.3.5. �
Remark 6.3.8. In particular, taking V to be Gpdn, we see that monoidal (n, k)-categories 
are equivalent to pointed (n + 1, k + 1)-categories with a single object. Taking V to be 
S, this remains true for n = ∞.

Definition 6.3.9. If C is a V–∞-category and X is an object of C, we write ΩXC ∈
AlgΔop(V) for the value of the functor Ω on the corresponding map E0 → C. This is the 
endomorphism algebra of X.

By applying Theorem 6.3.2 inductively we can generalize it to the En-monoidal setting:

Definition 6.3.10. By Proposition 3.7.3 monoidal ∞-categories are equivalent to
E1-monoidal ∞-categories, and Δop-algebras in a monoidal ∞-category are equivalent 
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to E1-algebras in the associated E1-monoidal ∞-category. Since En ⊗ Em � En+m for 
all n, m, by Theorem 6.3.2(ii) we get maps

AlgΣ
En

(V) � AlgΣ
En−1

(
AlgΣ

E1
(V)

)
→ AlgΣ

En−1

((
CatV∞

)
E0/

)
.

We can identify (CatV∞)E0/ with AlgΣ
E0

(CatV∞), so

AlgΣ
En−1

((
CatV∞

)
E0/

)
� AlgΣ

En−1

(
AlgΣ

E0

(
CatV∞

))
� AlgΣ

En−1⊗E0

(
CatV∞

)
� AlgΣ

En−1

(
CatV∞

)
.

Thus we have maps

AlgΣ
En

(V) → AlgΣ
En−1

(
CatV∞

)
→ · · · → AlgΣ

E1

(
CatV(∞,n−1)

)
→

(
CatV(∞,n)

)
E0/

.

Applying Theorem 6.3.2 (and the symmetric counterparts of some of the results we 
used in its proof) inductively, we get the following:

Corollary 6.3.11. Suppose V is an En-monoidal ∞-category.

(i) The functor

Bn: AlgΣ
En

(V) →
(
CatV(∞,n)

)
E0/

is fully faithful.
(ii) If V is En+1-monoidal, then Bn is a monoidal functor.
(iii) If V is presentably En-monoidal, then Bn admits a right adjoint Ωn: (CatV(∞,n))E0/ →

AlgΣ
En

(V).
(iv) If V is presentably En+1-monoidal, then Ωn is a lax monoidal functor.

Definition 6.3.12. Let V be an En+1-monoidal ∞-category; then CatV∞ is En-monoidal 
by Corollary 5.7.12. An En-monoidal V–∞-category is an En-algebra in CatV∞.

Corollary 6.3.13. Let V be an En+1-monoidal ∞-category. Then En-monoidal V–∞-cat-
egories are equivalent to pointed V–(∞, n + 1)-categories with a single object and only 
identity j-morphisms for j = 1, . . . , n − 1.

Remark 6.3.14. In particular, taking V to be Gpdn, we see that Em-monoidal (n, k)-cate-
gories are equivalent to pointed (n + m, k + m)-categories with a single object and only 
identity j-morphisms for j = 1, . . . , m −1. Taking V to be S, this remains true for n = ∞.
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Definition 6.3.15. If C is a V–(∞, n)-category and X is an object of C, we write Ωn
XC

for Ωn applied to the corresponding map E0 → C. This is the endomorphism En-algebra
of X.

Remark 6.3.16. If C is a V–(∞, n)-category and X is an object of C, the underlying object 
in V of the En-algebra Ωn

XC is the endomorphisms of the (n −1)-fold identity map of the 
identity map of . . . of the identity map of X.

7. Enriching ∞-categories tensored over a monoidal ∞-category

Suppose V is a monoidal category and C is an ordinary category that is right-tensored 
over V, i.e. there is a functor

(–) ⊗ (–):C × V → C,

compatible with the tensor product of V. If for every C ∈ C the functor C ⊗ (–) has 
a right adjoint F (C, –): C → V, then it is easy to see that we can enrich C in V, with 
the morphism object from C to D given by F (C, D) ∈ V. In particular, if the monoidal 
category V is left-closed, then it is enriched in itself. Our goal in this section is to prove 
the analogous statement in the context of enriched ∞-categories, which will allow us to 
construct a number of interesting examples of these.

To prove this we will consider a variant of Lurie’s definition of enriched ∞-categories 
from [28, §4.2.1]. After introducing the natural generalized non-symmetric ∞-operads 
that parametrize modules in §7.1 (and proving that the resulting ∞-categories of modules 
are equivalent to those of [28]), we review Lurie’s definition in §7.2. It is easy to see that 
an ∞-category right-tensored over a monoidal ∞-category with adjoints as above defines 
an enriched ∞-category in this sense; by applying Lurie’s construction of enriched strings 
from [28, §4.7.2], which we review in §7.3, we can quite easily extract a categorical algebra 
from this in §7.4.

7.1. Modules

Definition 7.1.1. Write BM for the category of simplices Simp(Δ1) of the simplicial set 
Δ1. The objects of BM can be described as sequences of integers (i0, . . . , ik) where 
0 ≤ i0 ≤ · · · ≤ ik ≤ 1, and there is a unique morphism (i0, . . . , ik) → (iφ(0), . . . , iφ(m))
for every map φ: [m] → [k] in Δ. The obvious projection BM → Δop exhibits BM as a 
double ∞-category. If M is a generalized non-symmetric ∞-operad, a bimodule in M is 
a BM-algebra in M. We write Bimod(M) for the ∞-category AlgBM(M) of bimodules 
in M.

Definition 7.1.2. The obvious inclusions i, j: Δop
{0}, Δ

op
{1} → BM are maps of generalized 

∞-operads. We say a bimodule M in a generalized non-symmetric ∞-operad M is an 
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i∗M–j∗M -bimodule. If A and B are associative algebras in a generalized non-symmetric 
∞-operad M, we write BimodA,B(M) for the fibre of the projection (i∗, j∗): Bimod(M) →
AlgΔop(M) × AlgΔop(M) at (A, B), i.e. the ∞-category of A–B-bimodules.

Definition 7.1.3. Let LM denote the full subcategory of BM spanned by the objects of 
the form (0, . . . , 0, 1) and (0, . . . , 0). The restricted projection LM → Δop exhibits LM
as a double ∞-category. A left module in a generalized non-symmetric ∞-operad M is 
an LM-algebra in M. We write LMod(M) for the ∞-category AlgLM(M) of left modules 
in M.

Definition 7.1.4. Let RM denote the full subcategory of BM spanned by the objects of 
the form (0, 1 . . . , 1) and (1, . . . , 1). The restricted projection RM → Δop exhibits RM as 
a double ∞-category. A right module in a generalized non-symmetric ∞-operad M is an 
RM-algebra in M. We write RMod(M) for the ∞-category AlgRM(M) of right modules 
in M.

Definition 7.1.5. The obvious inclusions i: Δop
{0} ↪→ LM and j: Δop

{1} ↪→ RM are maps of 
generalized non-symmetric ∞-operads. If M : LM → M is a left module in a generalized 
non-symmetric ∞-operad M, we say M is a left i∗M -module. Similarly, if M is a right 
module in M we say that it is a right j∗M -module. If A is an associative algebra in M, 
we write LModA(M) and RModA(M) for the fibres of the projections i∗: LMod(M) →
AlgΔop(M) and j∗: RMod(M) → AlgΔop(M) at A, respectively.

It is easy to describe the ∞-operad localizations of the generalized non-symmetric 
∞-operads BM, LM, and RM in terms of multicategories:

Definition 7.1.6. Let BM be the multicategory with objects l, m and r and multimor-
phisms

BM(l, . . . , l,m, r, . . . , r;m) = ∗
BM(l, . . . , l; l) = ∗
BM(r, . . . , r; r) = ∗

(where there can be zero l’s and r’s in the lists), with all other multimorphism sets empty. 
We then define LM to be the full submulticategory of BM with objects l and m and 
RM to be the full submulticategory with objects r and m.

Proposition 7.1.7. There are obvious maps BM → BM⊗, LM → LM⊗, and RM →
RM⊗. These induce equivalences of non-symmetric ∞-operads Lgen BM ∼−−→ BM⊗, 
Lgen LM ∼−−→ LM⊗ and Lgen RM ∼−−→ RM⊗.

Proof. It is easy to see that these maps satisfy the criterion of Corollary A.6.9. �
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Corollary 7.1.8. Let O be a non-symmetric ∞-operad. Then there are natural equivalences 
Bimod(O) � AlgBM(O), LMod(O) � AlgLM(O) and RMod(O) � AlgRM(O).

Remark 7.1.9. The symmetric ∞-operads used in [28] to define bimodules, left modules, 
and right modules clearly arise from the symmetrizations of the multicategories BM, LM
and RM, respectively. By Proposition 3.7.7 it therefore follows that the ∞-categories of 
modules defined here are equivalent to those defined in [28].

7.2. Lurie’s enriched ∞-categories

In this section we describe a variant of Lurie’s definition of enriched ∞-categories in 
[28, §4.2.1].

Definition 7.2.1. A weakly enriched ∞-category is a fibration of generalized non-
symmetric ∞-operads q: M → RM such that the fibres M(0) and M(1) are contractible. 
We write M⊗

r for the non-symmetric ∞-operad j∗M → Δop and Mm for the fibre M(0,1)
and say that q exhibits Mm as weakly enriched in M⊗

r .

Example 7.2.2. Let O be any non-symmetric ∞-operad. The pullback π∗O → RM along 
the projection π: RM → Δop exhibits O[1] as weakly enriched in O.

Example 7.2.3. Let q: M → RM be a weakly enriched ∞-category such that q is also a 
coCartesian fibration. Then we say that q exhibits Mm as right-tensored over Mr, which 
is a monoidal ∞-category. Clearly, an ∞-category C is right-tensored over a monoidal 
∞-category V if and only if there exists an RM-algebra F : RM → Cat×∞ such that 
F (0, 1) � C and j∗F is an associative algebra corresponding to V⊗.

Definition 7.2.4. Let q: M → RM be a weakly enriched ∞-category. Given C1, . . . , Cn ∈
Mr and M, N ∈ Mm, we write

MapMm

(
M � (C1, . . . , Cn), N

)
for Mapφ

M((M, C1, . . . , Cn), N), where φ: [n + 1] → [1] is the unique active map.

Definition 7.2.5. A pseudo-enriched ∞-category is a weakly enriched ∞-category q: M →
RM such that M⊗

r is a monoidal ∞-category, and for all C1, . . . , Cn ∈ Mr (n = 0, 1, . . .) 
and M, N ∈ Mm, the canonical map

MapMm

(
M � (C1 ⊗ · · · ⊗ Cn), N

)
→ MapMm

(
M � (C1, . . . , Cn), N

)
is an equivalence.
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Remark 7.2.6. Taking n = 0 in this definition, we see that in a pseudo-enriched 
∞-category M we have

MapMm
(M � I,N) � MapMm

(M,N).

Example 7.2.7. The pullback π∗O → RM exhibits O[1] as pseudo-enriched in O if and 
only if O is a monoidal ∞-category.

Example 7.2.8. If a weakly enriched ∞-category q: M → RM is a coCartesian fibration, 
then it is clearly pseudo-enriched.

Definition 7.2.9. Let M → RM be a pseudo-enriched ∞-category. Suppose M and N are 
objects of Mm; a morphism object for M, N is an object F (M, N) ∈ Mr together with 
a map α ∈ MapMm

(M � F (M, N), N) such that for every C ∈ Mr composition with α
induces an equivalence

MapMr

(
C,F (M,N)

)
→ MapMm

(M � C,N).

We say that M → RM is a Lurie-enriched ∞-category if there exists a morphism object 
in Mr for all M, N ∈ Mm.

Remark 7.2.10. From Remark 7.2.6 we see that in a Lurie-enriched ∞-category M there 
is a natural equivalence

MapMr

(
I, F (M,N)

) ∼−−→ MapMm
(M,N).

Example 7.2.11. A monoidal ∞-category V is left-closed if and only if for every C ∈ V the 
functor C ⊗ (–): V → V has a right adjoint. If V is a monoidal ∞-category, the pullback 
π∗V⊗ exhibits V as Lurie-enriched in V if and only if V is left-closed.

Example 7.2.12. More generally, suppose the ∞-category C is right-tensored over the 
monoidal ∞-category V. The associated coCartesian weakly enriched ∞-category q: M →
RM is Lurie-enriched if and only if for every M ∈ C, the right-tensoring functor M ⊗
(–): V → C has a right adjoint F (M, –) (so that MapV(V, F (M, N)) � MapC(M⊗V, N)).

Remark 7.2.13. We use right modules rather than the left modules used in [28, §4.2.1] so 
that the composition maps of morphism objects are compatible with those for categorical 
algebras: If M is a Lurie-enriched ∞-category in our sense, then for a triple A, B, C of 
objects in Mm we get a composition map F (A, B) ⊗ F (B, C) → F (A, C), whereas [28, 
Definition 4.2.1.28] gives composition maps F (B, C) ⊗ F (A, B) → F (A, C). This is why 
we get Lurie-enriched ∞-categories from left-closed monoidal ∞-categories rather than 
right-closed ones as in [28, Example 4.2.1.32].
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Definition 7.2.14. Let EnrLur be the full subcategory of (Opdns,gen
∞ )/ RM spanned by 

the Lurie-enriched ∞-categories. Pullback along the inclusion Δop → RM induces a 
projection EnrLur → Mon∞; we write EnrVLur for the fibre at V⊗ ∈ Mon∞. This is the 
∞-category of Lurie-V-enriched ∞-categories.

We expect that the ∞-category EnrVLur is equivalent to the ∞-category CatV∞ of 
complete categorical algebras in V defined above, but we will not attempt to prove this 
here.

7.3. Enriched strings

We now describe the analogue for our variant definition of Lurie’s construction of an 
∞-category of enriched strings in [28, §4.7.2].

Definition 7.3.1. Let Po denote the full subcategory of Fun([1], Δ) spanned by the in-
ert morphisms. In other words, an object of Po is an inert morphism α: [i] → [n], or 
equivalently an object [n] ∈ Δ together with a subinterval {j, j + 1, . . . , j + i} ⊆ [n]. 
A morphism from α to β: [j] → [m] is a commutative diagram

[i]

ψ

α [n]

φ

[j]
β

[m].

Note that, since α and β are inert, a morphism ψ factoring φ ◦ α through β is uniquely 
determined, if it exists. The inclusions i0, i1: [0] ↪→ [1] taking the unique object of [0] to 
0, 1, respectively, induce functors Φ, Θ: Po → Δ. We write Po′ for the full subcategory 
of Po spanned by the (necessarily inert) morphisms [0] → [n].

Definition 7.3.2. We define a map χ: Δop → RM by sending [n] to the object (0, 1, . . . , 1)
over [n +1] and φ: [m] → [n] to the coCartesian map over [0] �φ: [m +1] → [n +1]. Thus 
the composite Δop → RM → Δop is given by [0] � –.

Definition 7.3.3. Suppose M → RM is a weakly enriched ∞-category. Define simplicial 
sets StrMen and StrM over Δop by the universal properties

HomΔop(K,StrMen) � HomRM(K ×Δop Poop,M),

HomΔop(K,StrM) � HomRM
(
K ×Δop (Po′)op,M

)
,

where the map Poop → RM is given by the composite

Poop Φ−−→ Δop χ−→ RM .
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Lemma 7.3.4. The ∞-category StrM is equivalent to Δop
Mm

.

Proof. This is immediate from Remark 4.1.4. �
Definition 7.3.5. Let Po[n] denote the fibre of Θ: Po → Δ at [n], i.e. the full subcategory of 
Δ/[n] spanned by inert morphisms. A morphism in Po[n] is thus a commutative diagram

[i]

α

φ
[j]

β

[n]

where α and β are inert — if such a morphism exists then the morphism φ is clearly 
uniquely determined by α and β, and must also be inert. We can thus equivalently 
describe Po[n] as the category associated to the partially ordered set of subintervals of 
[n]. We write Φ[n] for Φ|Po[n] .

Definition 7.3.6. The unique map [0] → [−1] in Δop
+ induces a natural transformation 

[0] � (–) → [−1] � (–) = id of functors Δop → Δop; this is given by d0: [n] → [n −1] for all 
n = 1, . . .. Since d0 is inert, we can define a natural transformation χ: Δ1×Δop → RM by 
taking the coCartesian lift of this starting at χ. Thus χ[n] is given by d0: (0, 1, . . . , 1) →
(1, . . . , 1).

Definition 7.3.7. Let q: M → RM be a weakly enriched ∞-category. An enriched n-string
in M is a functor σ: Poop

[n] → M such that:

(1) The composite q ◦ σ is

Poop
[n]

Φop
[n]−−−→ Δop χ−→ RM .

(2) If

[i]

α

φ
[j]

β

[n]

is a morphism in Po[n] such that α(0) = β(0) (or equivalently φ(0) = 0), then σ(φ)
is inert. (Notice that if φ: [n] → [m] is an inert map in Δop, then [0] � φ is inert if 
and only if φ(0) = 0, so these are precisely the maps φ so that σ(φ) lies over an inert 
map in Δop.)
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(3) Let σ → σ′ be a coCartesian lift of χ|Δ1×Poop
[n]

. Then for any morphism φ in Po[n], 
the morphism σ′(φ) is inert in M⊗

r .

Remark 7.3.8. An enriched 0-string is a map ∗ � Poop
[0] → M over the map ∗ → RM

sending ∗ to (0, 1), i.e. just an object of Mm. An enriched 1-string corresponds to a map 
(M, C) → N over d1: (0, 1, 1) → (0, 1); if M is a Lurie-enriched ∞-category then this is 
equivalent to a map C → F (M, N). In general, an enriched n-string corresponds to a 
sequence of maps

(M0, C1, . . . , Cn) → (M1, C2, . . . , Cn) → · · · → (Mn−1, Cn) → Mn,

together with coherence data, where each map is the identity on the components after 
the first two. If M is a Lurie-enriched ∞-category, then this is equivalent to a sequence 
of maps

C1 → F (M0,M1), C2 → F (M1,M2), . . . Cn → F (Mn−1,Mn).

Definition 7.3.9. The fibre of StrMen at [n] is clearly FunRM(Poop
[n], M). We write StrMen

for the full subcategory of StrMen spanned by the enriched n-strings for all n.

Proposition 7.3.10. Let q: M → RM be a weakly enriched ∞-category. Then:

(i) The projection p: StrMen → Δop is a categorical fibration.
(ii) For every X ∈ StrMen and every inert morphism α: p(X) → [n] in Δop there exists 

a p-coCartesian morphism X → α!X over α.
(iii) Let α: X → Y be a morphism in StrMen such that p(α): [m] → [n] is an inert 

morphism. Then α is p-coCartesian if and only if for all φ: [k] → [n] in Poop
[n] the 

induced map X(α ◦ φ) → Y (φ) is an equivalence.
(iv) Suppose q is a coCartesian fibration. Then so is p, and a morphism α: X → Y

in StrMen over α: [m] → [n] in Δop is p-coCartesian if and only if for every 
φ: [k] → [n] in Poop

[n] the induced map X(α ◦ φ) → Y (φ) is q-coCartesian.

Proof. As [28, Proposition 4.7.2.23]. �
Proposition 7.3.11. Let q: M → RM be a weakly enriched ∞-category. Then the projection 
p: StrMen → Δop satisfies the Segal condition, i.e. for each [n], the map

StrMen
[n] → StrMen

[1] ×Str Men
[0]

· · · ×Str Men
[0]

StrMen
[1]

is an equivalence.

Proof. As [28, Proposition 4.7.2.13]. �
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Proposition 7.3.12. Let q: M → Δop be a weakly enriched ∞-category. Then:

(i) The projection r: StrMen → Δop
M is a categorical fibration.

(ii) Given X ∈ StrMen and an inert morphism α: r(X) → Y in Δop
M, there exists an 

r-coCartesian morphism X → α!X over α.
(iii) Suppose X ∈ StrMen, α: r(X) → Y is a morphism in Δop

M, and α0: [m] → [n] is the 
underlying morphism in Δop. Then a morphism α: X → Y over α is r-coCartesian 
if and only if α induces an equivalence X(α ◦ φ) → Y (φ) for all φ: [k] → [n] in 
Poop

[n].
(iv) Suppose q is a coCartesian fibration, and let r0 denote the projection Δop

M → Δop.
Given X ∈ StrMen and an r0-coCartesian morphism α: r(X) → Y in Δop

M, there 
exists an r-coCartesian morphism α: X → α!X in StrMen over α. Moreover, if 
X ∈ StrMen and α: r(X) → Y in Δop

M is r0-coCartesian over α0: [m] → [n] in 
Δop, then a morphism X → Y in StrMen over α is r-coCartesian if and only if 
the induced map X(α ◦ φ) → Y (φ) in M is q-coCartesian for all φ ∈ Poop

[n].

Proof. As [28, Lemma 4.7.2.27]. �
Definition 7.3.13. Define StrMen,+ → Δop by

HomΔop(K,StrMen,+) ∼= HomRM
(
Δ1 ×K ×Δop Poop,M

)
,

where the map Δ1 × Poop → RM is the composite of id×Φop: Δ1 × Poop → Δ1 × Δop

with the natural transformation χ.

Definition 7.3.14. Suppose q: M → RM is a weakly enriched ∞-category. Let StrMen,+

denote the full subcategory of StrMen,+ → Δop spanned by objects F : Δ1 ×Poop
[n] → M

such that F |{0}×Poop
[n]

is an enriched n-string and F is a q-left Kan extension of F |{0}×Poop
[n]

.

Lemma 7.3.15. The projection StrMen,+ → StrMen is a trivial fibration.

Proof. Immediate from [25, Proposition 4.3.2.15]. �
Definition 7.3.16. Let i: Δop → Δ1 × Poop be the functor that sends [n] to (1, id: [n] →
[n]). Then composition with i induces a functor StrMen,+ → M⊗

r over Δop.

Lemma 7.3.17. Let q: M → RM be a weakly enriched ∞-category. The functor 
StrMen,+ → M⊗

r preserves inert morphisms.

Proof. This is obvious from the definitions and Proposition 7.3.10. �
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7.4. Extracting a categorical algebra

In this subsection we will extract a categorical algebra from a coCartesian Lurie-
enriched ∞-category, and consider some examples of enriched ∞-categories that arise in 
this way.

Definition 7.4.1. Suppose q: M → RM is a weakly enriched ∞-category. Let StrMen
ι be 

defined by the pullback

StrMen
ι StrMen

Δop
ιMm

Δop
Mm

.

Lemma 7.4.2. Suppose q: M → RM is a coCartesian weakly enriched ∞-category. Then 
the projection StrMen

ι → Δop
ιM is a coCartesian fibration.

Proof. This follows immediately from Proposition 7.3.12 since the projection π: Δop
ιM →

Δop is a left fibration, so all morphisms in Δop
ιM are π-coCartesian. �

Remark 7.4.3. We expect that Lemma 7.4.2 is also true for pseudo-enriched ∞-categories 
that are not coCartesian fibrations, but since this is not needed for the examples we are 
interested in we will not consider this generalization here.

Definition 7.4.4. Suppose q: M → RM is a Lurie-enriched ∞-category. Let StrMen
eq be 

the full subcategory of StrMen
ι spanned by enriched n-strings σ: Poop

[n] → M such that 
for i = 1, . . . , n, the map

σ({i, i + 1} ↪→ [n]) � (Mi, Ci) → Mi+1 � σ({i + 1} ↪→ [n])

exhibits Ci as the morphism object F (Mi, Mi+1).

Proposition 7.4.5. Suppose q: M → RM is a coCartesian Lurie-enriched ∞-category. 
Then the projection StrMen

eq → Δop
ιM is a trivial fibration.

Proof. The universal property of the morphism object F (M, N) implies that the uni-
versal map (M, F (M, N)) → N is the final object in the fibre of StrMen → Δop

M over 
(M, N). The Segal condition (Proposition 7.3.11) implies that StrMen

eq is precisely the 
full subcategory of StrMen

ι spanned by the objects that are final in their fibre. It there-
fore follows by [25, Proposition 2.4.4.9(1)] that the projection StrMen

eq → Δop
ιM is a trivial 

fibration. �
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Definition 7.4.6. Suppose q: M → RM is a Lurie-enriched ∞-category. Let StrMen,+
eq be 

defined by the pullback square

StrMen,+
eq StrMen,+

StrMen
eq StrMen.

Theorem 7.4.7. Suppose q: M → RM is a coCartesian Lurie-enriched ∞-category. The 
composite

Mm:Δop
ιM

∼←−− StrMen
eq

∼←−− StrMen,+
eq → M⊗

r

is a categorical algebra in Mr.

Proof. It follows from Lemma 7.3.17 that this map preserves inert morphisms, so it is a 
categorical algebra. �
Remark 7.4.8. We expect that, as suggested by Remark 7.2.10, in the situation above the 
underlying ∞-category of Mm is equivalent to Mm. This would imply that the categorical 
algebra Mm is in fact complete. We will not prove this here, however, as this requires 
developing more of the theory of Lurie-enriched ∞-categories than is appropriate here.

Using Example 7.2.12 we can restate this as:

Corollary 7.4.9. Suppose V is a monoidal ∞-category and C is an ∞-category that is 
right-tensored over V so that the tensor product C⊗(–) has a right adjoint F (C, –): C → V

for all C ∈ C. Then C is enriched in V; more precisely, there is a categorical algebra 
C: Δop

ιC → V⊗ such that C(C, D) � F (C, D).

This construction allows us to construct several interesting examples of enriched 
∞-categories:

Corollary 7.4.10. Suppose V is a left-closed monoidal ∞-category. Then V is enriched in 
itself; more precisely, there exists a categorical algebra V: Δop

ιV → V⊗ such that V(V, W )
in V is the internal hom from V to W .

Example 7.4.11. Suppose V is a presentably E2-monoidal ∞-category; then CatV∞ is 
a presentably monoidal ∞-category, and so is in particular right-closed. Thus there 
exists a V–(∞, 2)-category CatV∞ of V–∞-categories. More generally, if V is presentably 
Ek-monoidal (or presentably symmetric monoidal), there exists a V–(∞, n + 1)-category 
CatV of V–(∞, n)-categories for all n < k. For example, taking V to be S there is 
(∞,n)
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an (∞, n + 1)-category CatS(∞,n) of (∞, n)-categories, and taking V to be Set there is an 

(n + 1)-category Catn of n-categories.

Remark 7.4.12. Several homotopy theories that can easily be constructed as spectral 
presheaves FunSp(Aop,Sp), where A is a small spectral category, can (conjecturally) be 
identified with more familiar homotopy theories:

(i) Suppose G is a finite group, and let BG denote the Burnside (2,1)-category of G; 
this has objects finite G-sets, 1-morphisms spans of finite G-sets, and 2-morphisms 
isomorphisms of spans. We can regard this as a category enriched in symmet-
ric monoidal groupoids, via the coproduct, and hence as an ∞-category enriched 
in E∞-spaces. Group completion of E∞-spaces is a lax monoidal functor from 
E∞-spaces to (connective) spectra, so applying this to the mapping spaces in BG

gives a spectral ∞-category BG
+. The presheaf spectral ∞-category FunSp(BG,op

+ ,Sp)
is the spectral ∞-category of genuine G-spectra — a version of this comparison has 
recently been proved by Guillou and May [17,16,18] using enriched model categories. 
(It has also been observed by Barwick that (as group-completion is a left adjoint) it 
is not necessary to group-complete the mapping spaces in BG to describe G-spectra; 
this is the basis for the ∞-categorical description of G-spectra in [6].)

(ii) Let B denote the global Burnside (2,1)-category of finite groups. This has objects 
finite groups, 1-morphisms from G to H are finite free H-sets equipped with a 
compatible G-action, and 2-morphisms are isomorphisms of these. This can also be 
regarded as enriched in symmetric monoidal groupoids via coproducts, and by group-
completing we obtain a spectral ∞-category B+. The presheaf spectral ∞-category 
FunSp(Bop

+ ,Sp) is the spectral ∞-category of global equivariant spectra for finite 
groups, as studied by Schwede [35].

Corollary 7.4.13. Suppose V is a presentably monoidal ∞-category, and C is a right 
V-module in Pres∞ (with respect to the tensor product of presentable ∞-categories). 
Then C is enriched in V.

Example 7.4.14. By [28, Proposition 4.8.2.18], presentable stable ∞-categories are pre-
cisely Sp-modules in Pres∞, hence presentable stable ∞-categories are enriched in 
spectra. But any stable ∞-category is a full subcategory of its Ind-completion, hence 
it follows that all stable ∞-categories are enriched in spectra.

Example 7.4.15. In [27, §6], Lurie defines R-linear ∞-categories for an E2-ring spectrum 
R to be left LModR-modules in Pres∞. If we instead consider right LModR-modules we 
get ∞-categories enriched in left R-modules from R-linear ∞-categories. Moreover, if R
is at least E3-monoidal (so that LModR is at least E2-monoidal), then these two notions 
coincide.
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Appendix A. Technicalities on ∞-operads

In this appendix we collect the more technical results we need about non-symmetric 
∞-operads.

A.1. Monoidal envelopes

In this subsection we describe the non-symmetric version of Lurie’s monoidal envelope
of an ∞-operad O, which gives a monoidal structure on the ∞-category Oact of active 
morphisms in O that we will make use of below to define operadic colimits.

Definition A.1.1. Let Act(Δop) be the full subcategory of Fun(Δ1, Δop) spanned by the 
active morphisms. If M is a generalized non-symmetric ∞-operad, we define Env(M) to 
be the fibre product

M×Fun({0},Δop) Act(Δop).

Proposition A.1.2. The map Env(M) → Δop induced by evaluation at 1 in Δ1 is a double 
∞-category.

Proof. As [28, Proposition 2.2.4.4]. �
Proposition A.1.3. Suppose N is a double ∞-category and M is a generalized non-
symmetric ∞-operad. The inclusion M → Env(M) induces an equivalence

Fun⊗(Env(M),N
)
→ AlgM(N).

Proof. As [28, Proposition 2.2.4.9]. �
Corollary A.1.4. Suppose O is a non-symmetric ∞-operad. Then Env(O) is a monoidal 
∞-category, and if C⊗ is a monoidal ∞-category then

Fun⊗(Env(O),C⊗) � AlgO(C).

Proof. The only object of Δ that admits an active map from [0] is [0], hence for 
any generalized non-symmetric ∞-operad M we have Env(M)[0] � M[0]. In particular 
Env(O)[0] � ∗ for a non-symmetric ∞-operad O, so the result follows from Proposi-
tion A.1.2 and Proposition A.1.3. �
Definition A.1.5. If O is a non-symmetric ∞-operad, the monoidal ∞-category Env(O)
is called the monoidal envelope of O. This gives a monoidal structure on the subcategory 
Oact of O determined by the active morphisms. We denote this tensor product on Oact
by ⊕.
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A.2. Operadic colimits

We wish to prove that, under reasonable hypotheses, if V is a monoidal ∞-category 
and f : O → P is a morphism of non-symmetric ∞-operads then the functor

f∗: AlgP(V) → AlgO(V)

given by composition with f has a left adjoint. This depends on an existence theorem for 
operadic left Kan extensions, which makes use of the concept of operadic colimits that 
we introduce in this subsection.

Definition A.2.1. Suppose q: O → Δop is a non-symmetric ∞-operad. Given a diagram 
p: K → Oact we write Oact

[1],p/ := O[1] ×O (Oact)p/. A diagram p: K� → Oact is a weak 
operadic colimit diagram if the induced map ψ: Oact

[1],p/ → Oact
[1],p/ is a categorical equiva-

lence.
A diagram p: K� → Oact is an operadic colimit diagram if the composite functors

K� → Oact
–⊕X−−−−→ Oact

K� → Oact
X⊕–−−−−→ Oact

are weak operadic colimit diagrams for all X ∈ O.

Remark A.2.2. By [25, Proposition 2.1.2.1], the map ψ in the definition of weak operadic 
colimits is always a left fibration, hence it is a categorical equivalence if and only if it is 
a trivial Kan fibration.

Lemma A.2.3. Suppose O and P are non-symmetric ∞-operads, and p: K� → Oact and 
q: L� → Pact are weak operadic colimit diagrams. Then the composite

r: (K ×Δop L)� → K� ×Δop L� → O×Δop P

is also a weak operadic colimit diagram. Moreover, if p and q are operadic colimit dia-
grams, so is r.

Proof. Let r := r|K×ΔopL. Then we must show that the map (O[1] × P[1])actr/ → (O[1] ×
P[1])actr/ is a categorical equivalence. We have a commutative diagram

(O[1] × P[1])act(p,q)/ (O[1] × P[1])actr/

(O[1] × P[1])actr/.
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We clearly have an equivalence (O[1] × P[1])act(p,q)/ � Oact
[1],p/ × Pact

[1],q/, and so the top 
horizontal map is the product of the equivalences Oact

[1],p/ → Oact
[1],p/ and Pact

[1],q/ → Pact
[1],q/

and hence is an equivalence. By the 2-out-of-3 property it therefore suffices to show that 
the left diagonal map in the diagram is an equivalence. But this is true because the 
inclusion (K ×L)� ↪→ K� ×L� is right anodyne. (By [25, Proposition 4.1.2.1] it suffices 
to prove this inclusion is cofinal, and the criterion of “Theorem A”, [25, Theorem 4.1.3.1], 
clearly holds in this case.) It is then clear from the definition of the monoidal structure 
on (O ×Δop P)act that if p and q are operadic colimits, then so is r. �
Proposition A.2.4. Let O be a non-symmetric ∞-operad, and suppose given finitely many 
operadic colimit diagrams pi: K�

i → Oact, i = 0, . . . , n. Let K :=
∏

i Ki, and let p be the 
composite

K� →
∏
i

K�
i →

∏
i

Oact � Env(O)[n]
⊕−−→ Oact.

Then p is an operadic colimit diagram.

Proof. As [28, Proposition 3.1.1.8]. �
Lemma A.2.5. Suppose K is a sifted simplicial set, and V is a monoidal ∞-category that 
is compatible with K-indexed colimits. Then φ!: V⊗

[n] → V⊗
[m] preserves K-indexed colimits 

for all φ in Δop.

Proof. As [28, Lemma 3.2.3.7]. �
Proposition A.2.6. Let V be a monoidal ∞-category, and let p: K� → V⊗

[m] be a diagram. 
Then p is a weak operadic colimit diagram if and only if the composite

K� → V⊗
[m]

r!−−→ V

is a colimit diagram, where r is the unique active map [m] → [1].

Proof. This follows as in the proof of [28, Proposition 3.1.1.7]. �
Corollary A.2.7. Let V be a monoidal ∞-category, and let p: K� → V⊗

[m] be a diagram. 
Then p is an operadic colimit diagram if and only if for every object Y ∈ V⊗ the com-
posites

K� → V⊗
[m]

–⊕Y−−−−→ V⊗
[n+m]

r!−−→ C

K� → V⊗
[m]

Y⊕–−−−−→ V⊗
[n+m]

r!−−→ V

are colimit diagrams in V, Y lies over [n] in Δop and r is the unique active map 
[n + m] → [1].
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Proposition A.2.8. Let q: O → Δop be a non-symmetric ∞-operad, and suppose given a 
map h: Δ1 ×K� → Oact; write hi := h|{i}×K� , i = 0, 1. Suppose that

(a) For every vertex x of K�, the restriction h|Δ1×{x} is a q-coCartesian edge of O.
(b) The composite map

Δ1 × {∞} ↪→ Δ1 ×K� h−→ O
q−→ Δop

is an equivalence in Δop.

Then h0 is a weak operadic colimit diagram if and only if h1 is a weak operadic colimit 
diagram. Moreover, if O is a monoidal ∞-category, then h0 is an operadic colimit diagram 
if and only if h1 is an operadic colimit diagram.

Proof. As [28, Proposition 3.1.1.15]. �
Corollary A.2.9. Let V and W be monoidal ∞-categories compatible with small colimits, 
and suppose F : V⊗ → W⊗ is a monoidal functor such that F[1]: V → W preserves colimits. 
Then composition with F preserves operadic colimit diagrams.

Proof. Suppose p: K� → V⊗ is an operadic colimit diagram. We wish to show that the 
composite map K� → W⊗ is also an operadic colimit diagram. By Proposition A.2.8 we 
may assume that p lands in a fibre V⊗

[m]. We now apply Corollary A.2.7 to conclude that 
it suffices to show that the composites

K� → V⊗
[m] → W⊗

[m]
–⊕Y−−−−→ W⊗

[n+m]
r!−−→ W

K� → V⊗
[m] → W⊗

[m]
Y⊕–−−−−→ W⊗

[n+m]
r!−−→ W,

where r is the unique active map [n + m] → [1], are colimit diagrams, for all [n] and all 
Y ∈ V⊗

[n]. Observe that the functors r!(– ⊕ Y ) and r!(Y ⊕ –) are equivalently given by 
μ!(r′!(–) ⊕ r′′! (Y )) and μ!(r′′! (Y ) ⊕ r′!(–)), where r′: [m] → [1], r′′: [n] → [1] and μ: [2] → [1]
are the unique active maps between these objects. Since μ! preserves colimits in each 
variable in both V⊗ and W⊗, it suffices to show that

K� → W⊗
[m]

r′!−−→ W

is a colimit diagram. But we have a commutative diagram

V⊗
[m]

r′!

F⊗
[m]

W⊗
[m]

r′!

V
F

W

so this is true since K� → V⊗ → V is a colimit diagram and F[1] preserves colimits. �
[m]
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Proposition A.2.10. Let q: V⊗ → Δop be a monoidal ∞-category compatible with 
K-indexed colimits for some simplicial set K. Suppose given a diagram p: K� → V⊗

act
that sends the cone point ∞ to an object in V. Let q: K� → V⊗ be a coCartesian lift of 
p along the active maps to [1]. Then p is an operadic colimit diagram if and only if q is 
a colimit diagram. In particular, given a diagram p: K → V⊗

act there exists an operadic 
colimit diagram p: K� → V⊗

act extending p that sends ∞ to an object of V.

Proof. As [28, Proposition 3.1.1.20]. �
A.3. Operadic Kan extensions

We now discuss operadic Kan extensions in the non-symmetric case. Here we work 
in slightly more generality than for the corresponding results in [28] — the proof of 
Lurie’s existence theorem can also be used to construct operadic Kan extensions along 
a restricted class of morphisms of generalized non-symmetric ∞-operads.

Definition A.3.1. Let C be an ∞-category. A C-family of (generalized) non-symmetric 
∞-operads is a categorical fibration π: O → Δop × C such that:

(i) For C ∈ C, X ∈ OC , and α an inert morphism in Δop from the image of X, there 
exists a coCartesian morphism X → Y over α in OC .

(ii) For X ∈ OC with image [n] ∈ Δop let pX : K�
[n] → O be a coCartesian lift of 

p[n]: K[n] → Δop (or consider a lift of Gns
[n]/ → Δop for a generalized non-symmetric 

∞-operad). Then pX is a π-limit diagram.
(iii) For each C ∈ C, the induced map OC → Δop is a (generalized) non-symmetric 

∞-operad.

A Δ1-family will also be referred to as a correspondence of (generalized) non-symmetric 
∞-operads.

Definition A.3.2. We say a correspondence M → Δop×Δ1 of generalized non-symmetric 
∞-operads is constant over [0] if the restriction M[0] → Δ1 is a coCartesian fibration 
whose associated functor Δ1 → Cat∞ is an equivalence.

Definition A.3.3. Let M → Δop × Δ1 be a correspondence from a generalized non-
symmetric ∞-operad A to a generalized non-symmetric ∞-operad B that is constant 
over [0] and such that A[0] and B[0] are Kan complexes, let O be a non-symmetric 
∞-operad, and let F : M → O be a map of generalized non-symmetric ∞-operads. The 
map F is an operadic left Kan extension of F = F |A if for every B ∈ B[1] the composite 
map

(
(Mact)/B ×M A

)� → (M/B)� → M F−−→ O

is an operadic colimit diagram.
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Theorem A.3.4.

(i) Suppose given a Δ1-family of generalized non-symmetric ∞-operads M → Δop×Δ1

constant over [0] and such that M[0],i is a Kan complex for i = 0, 1, a non-symmetric 
∞-operad O and a commutative diagram of generalized non-symmetric ∞-operad 
family maps

M×Δ1 {0}
f

O

M Δop.

Then there exists an operadic left Kan extension f of f if and only if for every B
in M ×Δ1 {1}, the diagram

(Mact)/B ×Δ1 {0} → M×Δ1 {0} f−→ O

can be extended to an operadic colimit diagram lifting

(
(Mact)/B ×Δ1 {0}

)� → M → Δop.

(ii) Suppose given a Δn-family of generalized non-symmetric ∞-operads M → Δop×Δn

with n ≥ 1 such that all sub-Δ1-families are constant over [0] and the fibres M[0],i
are all Kan complexes, a non-symmetric ∞-operad O, and a commutative diagram 
of generalized non-symmetric ∞-operad family maps

M×Δn Λn
0

f
O

M Δop

such that the restriction of f to M ×Δn Δ{0,1} is an operadic left Kan extension of 
f |M×Δn{0}. Then there exists a morphism f : M → O extending f .

Proof. As [28, Theorem 3.1.2.3]. �
A.4. Free algebras

Let V be a monoidal ∞-category compatible with small colimits and let f : A → B be 
a functor of generalized non-symmetric ∞-operads that is an equivalence over [0] and 
such that A[0] and B[0] are Kan complexes. Using the existence theorem for operadic left 
Kan extensions, we can now construct an adjoint to the functor
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f∗: AlgB(V) → AlgA(V)

given by composition with f . This is given by forming free algebras:

Definition A.4.1. Let A and B be generalized non-symmetric ∞-operads, let O be a 
non-symmetric ∞-operad, and let f : A → B be a map of generalized non-symmetric 
∞-operads that is an equivalence over [0] and such that A[0] and B[0] are Kan complexes. 
Suppose A ∈ AlgA(O), B ∈ AlgB(O), and φ: A → f∗B is a map of A-algebras in O. For 
b ∈ B[1], let (Aact)/b := A ×B (Bact)/b. Then A and B induce maps α, β: (Aact)/b → Oact
and φ determines a natural transformation η: α → β. The map β clearly extends to 
β: (Aact)/b → (Oact)/B(b). Since the projection

(Oact)/B(b) → Oact ×Δop
act

(
Δop

act
)
/[n]

(where b lies over [n] ∈ Δop) is a right fibration, we can lift η to an essentially unique 
map η:α → β (over Δop). We say that φ exhibits B as a free B-algebra generated by A
if for every b ∈ B[1] the map α determines an operadic q-colimit diagram (Aact)�/b → O.

Remark A.4.2. The map φ: A → f∗B above determines a map

H: (A× Δ1) �A×{1} B → O× Δ1.

Choose a factorization of H as

H:
(
A× Δ1)�A×{1} B

H′−−→ M H′′−−−→ O× Δ1,

where H ′ is a categorical equivalence and M is an ∞-category. The composite map 
M → Δop ×Δ1 exhibits M as a correspondence of non-symmetric ∞-operads. Then the 
map φ exhibits B as a free B-algebra generated by A if and only if H ′′ is an operadic 
left Kan extension.

Proposition A.4.3. Suppose φ: A → f∗B exhibits B as a free B-algebra in O generated 
by A. Then for every B′ ∈ AlgB(O) composition with φ induces a homotopy equivalence

Map(B,B′) → Map(A, f∗B′).

Proof. As [28, Proposition 3.1.3.2]. �
Proposition A.4.4. Suppose A ∈ AlgA(O). Then there exists a free B-algebra B generated 
by A if and only if for every b ∈ B[1] the induced map

(Aact)/b → Aact
A−−→ O
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can be extended to an operadic colimit diagram lying over

(Aact)�/b → Bact → Δop
act.

Proof. As [28, Proposition 3.1.3.3]. �
Corollary A.4.5. Let O be a non-symmetric ∞-operad, and suppose f : A → B is a map 
of generalized non-symmetric ∞-operads that is an equivalence over [0] and such that 
A[0] and B[0] are Kan complexes. The functor f∗: AlgB(O) → AlgA(O) admits a left 
adjoint f!, provided that for every A-algebra A in O and every b ∈ B∗, the diagram

(Aact)/b → Aact
A−−→ O

can be extended to an operadic colimit diagram lying over

(Aact)�/b → Bact → Δop
act.

Proof. As [28, Corollary 3.1.3.4]. �
Combining this with Proposition A.2.10, we get:

Theorem A.4.6. Suppose V is a monoidal ∞-category compatible with κ-small colimits 
for some uncountable regular cardinal κ, and f : A → B is a map of generalized non-
symmetric ∞-operads that is an equivalence over [0] and such that A[0] and B[0] are Kan 
complexes, with A and B essentially κ-small. Then the functor f∗: AlgB(V) → AlgA(V)
admits a left adjoint f!.

Lemma A.4.7. Suppose V and W are monoidal ∞-categories which are compatible with 
small colimits, and let F : V⊗ → W⊗ be a monoidal functor such that F[1]: V → W

preserves colimits. Then for every generalized non-symmetric ∞-operad M the induced 
functor

F∗: AlgM(V) → AlgM(W)

preserves free algebras, i.e. for all maps of generalized non-symmetric ∞-operads f : N →
M that are equivalences over [0] and such that M[0] and N[0] are Kan complexes, the 
natural map f!F∗ → F∗f! (adjoint to F∗ → F∗f∗f! � f∗F∗f!) is an equivalence.

Proof. This follows immediately from Corollary A.2.9. �
We can also give a more explicit description of the left adjoint τM,!, where M is 

a generalized non-symmetric ∞-operad such that M[0] is a Kan complex. Recall that 
by Proposition 3.4.5 if O is a non-symmetric ∞-operad then we have AlgM (O) �
triv
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Fun(M[1], O[1]). We can therefore regard τM,! as a functor

Fun(M[1],O[1]) → AlgM(O).

Definition A.4.8. For [n] ∈ Δop and X ∈ M[1], let PM
X,n be the full subcategory of 

Mtriv ×M M/X of morphisms Y → X over the active map [n] → [1].

Suppose V is a monoidal ∞-category and F : M[1] → V is a functor. Let F be the 
associated Mtriv-algebra in V. We have a canonical map h: PM

X,n × Δ1 → M, a natural 
transformation from PM

X,n → Mtriv ↪→ M to the constant functor at X. Since V⊗ → Δop

is coCartesian, from F ◦h we get a coCartesian natural transformation h from a functor 
g: PM

X,n → V to the constant functor at F (X). We let Pn
M,X(F ) denote a colimit of g, if 

it exists.

Proposition A.4.9. Suppose V is a monoidal ∞-category compatible with κ-small colim-
its, and M is a κ-small generalized non-symmetric ∞-operad such that M[0] is a Kan 
complex. Suppose moreover that A is an M-algebra in V and F : M[1] → V is a functor. 
Then a map F → (τM)∗A is adjoint to an equivalence τM,!F

∼−−→ A if and only if for 
every X ∈ M[1] the maps Pn

M,X(F ) → A(X) exhibit A(X) as a coproduct

∐
[n]∈Δop

Pn
M,X(F ) → A(X)

Proof. As [28, Proposition 3.1.3.13]. �
A.5. Colimits of algebras in monoidal ∞-categories

In this subsection we show that colimits exist in the ∞-categories AlgO(V) for all 
small non-symmetric ∞-operads O when V is a monoidal ∞-category compatible with 
small colimits. We first consider the case of sifted colimits:

Lemma A.5.1. Suppose K is a sifted simplicial set and V is a monoidal ∞-category that 
is compatible with K-indexed colimits. Then for every φ: [n] → [m] in Δop the associated 
functor φ!: V⊗

[n] → V⊗
[m] preserves K-indexed colimits.

Proof. As [28, Lemma 3.2.3.7]. �
Lemma A.5.2. Suppose p: X → S is a coCartesian fibration, and let r: K� → Fun(Δ1, X)
be a colimit diagram such that for every i ∈ K the edge r(i, 0) → r(i, 1) is coCartesian. 
Then the edge r(∞, 0) → r(∞, 1) is also coCartesian.

Proof. Since colimits in functor categories are pointwise, we must show that for all x ∈ X

the diagram
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MapX(colimi r(i, 1), x) MapX(colimi r(i, 0), x)

MapS(colimi pr(i, 1), p(x)) MapS(colimi pr(i, 0), p(x))

is Cartesian, which is clear since limits commute. �
To describe sifted colimits of algebras, we need the following result, which is due to 

Jacob Lurie — we thank him for explaining the proof to us.

Theorem A.5.3. Let K be a weakly contractible simplicial set. Suppose p: X → S is a 
coCartesian fibration such that for all s ∈ S the fibre Xs admits K-indexed colimits, and 
for all edges f : s → t in S the functor f!: Xs → Xt preserves K-indexed colimits. Then 
for any map g: T → S,

(i) the ∞-category FunS(T, X) admits K-indexed colimits,
(ii) a map K� → FunS(T, X) is a colimit diagram if and only if for all t ∈ T the 

composite

K� → FunS(T,X) → Xg(t)

is a colimit diagram,
(iii) if E is a set of edges of T , the full subcategory of FunS(T, X) spanned by functors 

that take the edges in E to coCartesian edges of X is closed under K-indexed 
colimits in FunS(T, X).

Proof. The ∞-category FunS(T, X) is a fibre of the functor p∗: Fun(T, X) → Fun(T, S)
induced by composition with p. The functor p∗ is a coCartesian fibration by [25, 
Proposition 3.1.2.1]. Since the functors f! preserve K-indexed colimits, by [25, Propo-
sition 4.3.1.10] a diagram q: K� → FunS(T, X) is a colimit diagram if and only if the 
composite q′: K� → FunS(T, X) → Fun(T, X) is a p∗-colimit diagram. By [25, Corol-
lary 4.3.1.11], K-indexed p∗-colimits exist in Fun(T, X), which proves (i).

Moreover, a diagram in Fun(T, X) is a colimit diagram if and only if it is a p∗-colimit 
diagram and its image in Fun(T, S) is a colimit diagram. Since q′ lands in one of the 
fibres of p∗, the projection to Fun(T, S) is constant, which means it is a colimit as K is 
weakly contractible. Thus q′ is a p∗-colimit diagram if and only if it is a colimit diagram 
in Fun(T, X). By [25, Corollary 5.1.2.3] this means that q′ is a colimit diagram if and 
only if for all t ∈ T the induced maps K� → X are colimit diagrams. A diagram in X
is a colimit if and only if it is a p-colimit and the projection to S is a colimit. Since K
is weakly contractible, applying [25, Proposition 4.3.1.10] we see that this is true if and 
only if the induced map K� → Xg(t) is a colimit diagram in Xg(t). This proves (ii).

Suppose e: t → t′ is an edge of T and q: K → FunS(T, X) is a diagram such that 
for all vertices k ∈ K the functor q(k): T → X takes e to a p-coCartesian edge of X. 
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Let q: K� → FunS(T, X) be a colimit diagram extending q. To prove (iii) we must show 
that the functor q(∞) also takes e to a coCartesian edge of X. From our description 
of colimits in FunS(T, X) it follows that this is equivalent to showing that coCartesian 
edges of X are closed under colimits, which is true by Lemma A.5.2. �
Corollary A.5.4. Suppose K is a sifted simplicial set and V is a monoidal ∞-category that 
is compatible with K-indexed colimits. Then for any generalized non-symmetric ∞-operad 
p: M → Δop, we have:

(i) The ∞-category FunΔop(M, V⊗) admits K-indexed colimits.
(ii) A map K� → FunΔop(M, V⊗) is a colimit diagram if and only if for every X ∈ M

the induced diagram K� → V⊗
p(X) is a colimit diagram.

(iii) The full subcategory AlgM(V) of FunΔop(M, V⊗) is stable under K-indexed colimits.
(iv) A map K� → FunΔop(M, V⊗) is a colimit diagram if and only if, for every X ∈

M[1], the induced diagram K� → V is a colimit diagram.
(v) The restriction functor AlgM(V) → Fun(M[1], V) detects K-indexed colimits.

Proof. Sifted simplicial sets are weakly contractible by [25, Proposition 5.5.8.7] so (i)–(iii) 
follow from Theorem A.5.3 (which is implicit in the proof of [28, Proposition 3.2.3.1]). 
Then (iv) and (v) follow as in the proof of [28, Proposition 3.2.3.1]. �

We now use this to show that the adjunction τM,! 
 τ∗M is monadic; we first check 
that τ∗M is conservative:

Lemma A.5.5. Suppose V is a monoidal ∞-category and M is a generalized non-
symmetric ∞-operad. Then the forgetful functor

τ∗M: AlgM(V) → AlgMtriv
(V) � Fun(M[1],V)

is conservative.

Proof. The ∞-category AlgM(V) is a full subcategory of FunΔop(M, V⊗). Therefore a 
map of algebras f : A → B is an equivalence in AlgM(V) if and only if it is an equivalence 
in FunΔop(M, V⊗). Applying Theorem A.5.3 to Δ0-indexed colimits, we see that a mor-
phism f : A → B is an equivalence in FunΔop(M, V⊗) if and only if fX : A(X) → B(X)
is an equivalence in V⊗ for all X ∈ M. Thus equivalences are detected after restricting 
to Mtriv. �
Corollary A.5.6. Suppose V is a monoidal ∞-category compatible with small colimits, 
and M is a generalized non-symmetric ∞-operad such that M[0] is a Kan complex. Then 
the adjunction

(τM)!: AlgMtriv
(V) � AlgM(V): (τM)∗

is monadic.
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Proof. We showed that the functor τ∗M is conservative in Lemma A.5.5, and that it 
preserves sifted colimits in Corollary A.5.4. The adjunction (τM)! 
 τ∗M is therefore 
monadic by [25, Corollary 5.5.2.9]. �
Corollary A.5.7. Suppose V is a monoidal ∞-category compatible with small colimits and 
M is a generalized non-symmetric ∞-operad such that M[0] is a Kan complex. Then 
AlgM(V) has all small colimits. Moreover, if V is presentable, so is AlgM(V).

This is an immediate consequence of the following general facts about monadic ad-
junctions:

Lemma A.5.8. Suppose F : C � D : U is a monadic adjunction such that C has all small 
colimits, D has sifted colimits, and U preserves sifted colimits. Then D has all small 
colimits.

Proof. Since D by assumption has all sifted colimits, it suffices to prove that D has 
finite coproducts. Since C has coproducts and F preserves colimits, the ∞-category D
has coproducts for objects in the essential image of F .

Let A1, . . . , An be a finite collection of objects in D. By [28, Proposition 4.7.4.14], 
there exist simplicial objects Ai

• in D such that each Ai
k is in the essential image of F and 

|Ai
•| � Ai. Since coproducts of elements in the essential image of F exist, we can form a 

simplicial diagram 
∐

i A
i
•. By [25, Lemma 5.5.2.3], the geometric realization | 

∐
i A

i
•| is 

a coproduct of the Ai’s. �
Proposition A.5.9. Suppose F : C � D : U is a monadic adjunction such that C is 
κ-presentable, D has small colimits, and the right adjoint U preserves κ-filtered colimits. 
Then D is κ-presentable.

Proof. Since C is κ-presentable, every object of C is a colimit of κ-compact objects. 
Since U preserves κ-filtered colimits, F preserves κ-compact objects by Lemma 3.3.5. 
Therefore every object in the essential image of F is a colimit of κ-compact objects. But 
by [28, Proposition 4.7.4.14], every object of D is a colimit of objects in the essential 
image of F , so every object of D is a colimit of κ-compact objects. Since by assumption 
D has all small colimits, this implies that D is κ-presentable. �
Proof of Corollary A.5.7. Apply Lemma A.5.8 and Proposition A.5.9 to the monadic 
adjunction τM,! 
 τ∗M. �
Proposition A.5.10. Let M be a generalized non-symmetric ∞-operad such that M[0] is a 
Kan complex, and let V and W be monoidal ∞-categories compatible with small colimits. 
Suppose F : V⊗ → W⊗ is a monoidal functor such that F[1]: V → W preserves colimits. 
Then the induced functor
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F∗: AlgM(V) → AlgM(W)

preserves colimits.

Proof. Write F triv
∗ for the induced functor AlgMtriv

(V) → AlgMtriv
(W). Under the equiv-

alences AlgMtriv
(V) � Fun(M[1], V) and AlgMtriv

(W) � Fun(M[1], W) this corresponds to 
composition with F[1], and so preserves colimits. Clearly τ∗MF∗ � F triv

∗ τ∗M. Since τ∗M de-
tects sifted colimits, it follows that F∗ preserves sifted colimits. To prove that it preserves 
all colimits, it thus remains to prove it preserves finite coproducts.

Since F is a monoidal functor, by Lemma A.4.7 the functor F∗ preserves free algebras, 
i.e. F∗τM,! � τM,!F

triv
∗ . Therefore F∗ preserves colimits of free algebras. Let A and B be 

objects of AlgM(V) and let A• and B• be free resolutions of A and B. Then we have 
natural equivalences

F∗(A�B) � F∗(|A• �B•|) � |F∗(A• �B•)| � |F∗(A•) � F∗(B•)|
� |F∗(A•)| � |F∗(B•)| � F∗(|A•|) � F∗(|B•|) � F∗(A) � F∗(B),

so F∗ does indeed preserve coproducts. �
Proposition A.5.11. Suppose V and W are presentably monoidal ∞-categories and 
F : V⊗ → W⊗ is a monoidal functor such that the underlying functor F[1]: V → W pre-
serves colimits. Let g: W → V be a right adjoint of F[0]. Then there exists a lax monoidal 
functor G: W⊗ → V⊗ extending g such that for any small non-symmetric ∞-operad O
we have an adjunction

F∗: AlgO(V) � AlgO(W) :G∗.

Proof. By Proposition A.5.10 the functor F∗: AlgO(V) → AlgO(W) is colimit-preserving, 
and by Corollary A.5.7 these ∞-categories of O-algebras are presentable. It follows by 
[25, Corollary 5.5.2.9] that F∗ has a right adjoint

RO: AlgO(W) → AlgO(V).

Moreover, since F∗ is natural in O so is RO, by [25, Corollary 5.2.2.5]. Taking the un-
derlying spaces of the ∞-categories of algebras, we see that R(–) induces a natural 
transformation ρ: Map(–, W⊗) → Map(–, V⊗) of functors (Opdns

∞)op → S. The full sub-
category W⊗

κ of W⊗ spanned by objects coming from the full subcategory Wκ ⊆ W

spanned by κ-compact objects is a small non-symmetric ∞-operad. Applying RW⊗
κ

to 
the inclusion W⊗

κ → W⊗ gives compatible maps Gκ: W⊗
κ → V⊗. Combining these gives 

G: W⊗ → V⊗. Since every map O → W⊗ where O is a small non-symmetric ∞-operad 
factors through W⊗

κ for some κ, we see that ρ is given by composition with G. More-
over, the functor R(–) must also be given by composition with G, since AlgO(W) is the 
∞-category associated to the simplicial space Map(O ⊗ Δ•, W⊗).
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It remains to show that G is indeed a lax monoidal extension of g. This follows from 
taking O to be the trivial non-symmetric ∞-operad Δop

int: then AlgΔop
int

(V) � V and 
AlgΔop

int
(W) � W, and under these identifications F∗ corresponds to F[1] and G∗ to the 

functor G[1]. Thus g and G[1] are both right adjoint to F and so must be equivalent. �
In the case of monoidal localizations we can explicitly identify this lax monoidal 

structure on the right adjoint:

Lemma A.5.12. Suppose O is a small non-symmetric ∞-operad, V is a monoidal 
∞-category and L: V → W is a monoidal localization with fully faithful right adjoint 
i: W ↪→ V. Then the monoidal functor L⊗ and the lax monoidal inclusion i⊗: W⊗ ↪→ V⊗

of Proposition 3.1.22 induce an adjunction

L⊗
∗ : AlgO(V) � AlgO(W) : i⊗∗ .

Moreover, i⊗∗ is fully faithful.

Proof. Since L⊗ is left adjoint to i⊗, it is easy to see that we get an adjunction

L⊗
∗ : FunΔop(O,V⊗) � FunΔop(O,W⊗) : i⊗∗ .

But this clearly restricts to an adjunction between the full subcategories AlgO(V) and 
AlgO(W), as required.

To prove that i⊗∗ is fully faithful, it suffices to show that for every O-algebra A in 
W the counit L⊗

∗ i
⊗
∗ A → A is an equivalence. By Lemma A.5.5 we need only show that 

the induced natural transformation of functors O[1] → W is an equivalence, i.e. that for 
every X ∈ O[1] the map LiA(X) → A(X) is an equivalence in W, which is true since i is 
fully faithful. �
A.6. Approximations of ∞-operads

In this subsection we use Lurie’s theory of approximations to give a criterion for a 
map M → O to exhibit a non-symmetric ∞-operad O as the operadic localization LgenM

of a generalized non-symmetric ∞-operad M.

Definition A.6.1. Suppose M is a generalized non-symmetric ∞-operad, O is a non-
symmetric ∞-operad, and f : M → O is a fibration of generalized non-symmetric 
∞-operads. Then f is an approximation if for all C ∈ M and α: X → f(C) active 
in O there exists an f -Cartesian morphism α:X → C lifting α, and a weak approxima-
tion if given C ∈ M and α: X → f(C) an arbitrary morphism in O, the full subcategory 
of

M/C ×O/f(C) OX//f(C)
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corresponding to pairs (β: C ′ → C, γ: X → f(C ′)) with γ inert is weakly contractible. 
More generally, a map f : M → O is a (weak) approximation if it factors as a composition

M
f ′
−−→ M′ f ′′

−−→ O

where f ′ is an equivalence of generalized non-symmetric ∞-operads and f ′′ is a categor-
ical fibration that is a (weak) approximation.

Proposition A.6.2. An approximation is a weak approximation.

Proof. As [28, Lemma 2.3.3.10]. �
Proposition A.6.3. A fibration of generalized non-symmetric ∞-operads f : M → O, where 
O is a non-symmetric ∞-operad, is a weak approximation if and only if for every object 
C ∈ M and every active morphism α: X → f(C) in O, the ∞-category M/C ×O/f(C) {X}
is weakly contractible.

Proof. As [28, Proposition 2.3.3.11]. �
Proposition A.6.4. Let f : M → O be a fibration of generalized non-symmetric ∞-operads, 
where O is a non-symmetric ∞-operad. If O[1] is a Kan complex, then f is a weak 
approximation if and only if f is an approximation.

Proof. As [28, Corollary 2.3.3.17]. �
Theorem A.6.5. Suppose f : M → O is a weak approximation such that f[1]: M[1] → O[1]
is a categorical equivalence. Then for any non-symmetric ∞-operad P, the induced map

f∗: AlgO(P) → AlgM(P)

is an equivalence.

Proof. As [28, Theorem 2.3.3.23]. �
Corollary A.6.6. Suppose f : M → O is a weak approximation such that f[1] is a categorical 
equivalence. Then the induced map of non-symmetric ∞-operads LgenM → O is an 
equivalence.

Proposition A.6.7. Suppose f : O → P is a map of non-symmetric ∞-operads, and P[1] is 
a Kan complex. The commutative diagram
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AlgP(S)

τ∗
P

f∗

AlgO(S)

τ∗
O

Fun(P, S)
f∗
[1]

Fun(O, S)

induces a natural transformation α: τO,! ◦ f∗
[1] → f∗ ◦ τP,!. If α induces an equivalence 

τO,!f
∗
[1]A ∼−−→ f∗τP,!A where A is the constant functor P → S with value ∗, then f is an 

approximation.

Proof. As [28, Proposition 2.3.4.8]. �
Corollary A.6.8. Let O be a non-symmetric ∞-operad such that O[1] is a Kan complex, and 
let f : M → O be a map of generalized non-symmetric ∞-operads such that f[1]: M[1] →
O[1] is an equivalence. Write A for the constant functor M[1] � O[1] → S with value ∗. 
If the natural map τM,!A → f∗τO,!A is an equivalence, then f exhibits O as the operadic 
localization of M.

Proof. Applying Proposition A.6.7 to the induced map f ′: LgenM → O, we see that this 
map is an approximation and induces an equivalence LgenM[1] → O[1]. By Theorem A.6.5, 
it follows that f ′ is an equivalence. �
Corollary A.6.9. Let O be a non-symmetric ∞-operad such that O[1] is a Kan complex, and 
f : M → O be a map of generalized non-symmetric ∞-operads such that f[1]: M[1] → O[1]
is an equivalence and M[0] is a Kan complex. If the induced map (Mact)/x → (Oact)/x is 
cofinal for all x ∈ M[1] � O[1], then f exhibits O as the operadic localization of M.

Proof. By Corollary A.6.8 it suffices to show that the natural map of M-algebras 
τM,!A → f∗τO,!A is an equivalence. Since τ∗M detects equivalences by Lemma A.5.5, to 
see this it suffices to show that for all x ∈ M[1] the map of spaces (τM,!A)(x) → (τO,!A)(x)
is an equivalence. Since M[0] is a Kan complex, we can describe τM,!A using the results 
of §A.3. We thus see that this map can be identified with the map

colim
(Mact)/x

∗ → colim
(Oact)/x

∗

of colimits induced by (Mact)/x → (Oact)/x. If this map is cofinal, then the induced map 
on colimits is an equivalence. �
Remark A.6.10. The same argument shows that for any presentably monoidal ∞-cate-
gory V the natural map τM,!F → f∗τO,!F is an equivalence for any functor F : M[1] → V. 
It follows that τM,! and τO,! are given by the same monad on Fun(M[1], V), hence the 
∞-categories of algebras AlgM(V) and AlgO(V) must be equivalent, since they are both 
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∞-categories of algebras for this monad. An alternative proof of Corollary A.6.9 (not 
using the notion of approximation) should be possible by embedding any small non-
symmetric ∞-operad P in a presentably monoidal ∞-category P̂ and showing that 
AlgM(P) and AlgO(P) are the same subcategory of AlgM(P̂) � AlgO(P̂).
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