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Abstract

We develop a framework for displaying the stable homotopy theory of the sphere, at least after
localization at the second Morava K-theory K(2). At the prime 3, we write the spectrum LK(2)S

0 as the
inverse limit of a tower of �brations with four layers. The successive �bers are of the form EhF2 where F
is a �nite subgroup of the Morava stabilizer group and E2 is the second Morava or Lubin-Tate homology
theory. We give explicit calculation of the homotopy groups of these �bers. The case n = 2 at p = 3
represents the edge of our current knowledge: n = 1 is classical and at n = 2, the prime 3 is the largest
prime where the Morava stabilizer group has a p-torsion subgroup, so that the homotopy theory is not
entirely algebraic.

The problem of understanding the homotopy groups of spheres has been central to algebraic topology
ever since the �eld emerged as a distinct area of mathematics. A period of calculation beginning with Serre's
computation of the cohomology of Eilenberg-MacLane spaces and the advent of the Adams spectral sequence
culminated, in the late 1970s, with the work of Miller, Ravenel, and Wilson on periodic phenomena in the
homotopy groups of spheres and Ravenel's nilpotence conjectures. The solutions to most of these conjectures
by Devinatz, Hopkins, and Smith in the middle 1980s established the primacy of the \chromatic" point of
view and there followed a period in which the community absorbed these results and extended the qualitative
picture of stable homotopy theory. Computations passed from center stage, to some extent, although there
has been steady work in the wings { most notably by Shimomura and his coworkers, and Ravenel, and more
lately by Hopkins and his coauthors in their work on topological modular forms. The amount of interest
generated by this last work suggests that we may be entering a period of renewed focus on computations.

In a nutshell, the chromatic point of view is based on the observation that much of the structure of stable
homotopy theory is controlled by the algebraic geometry of formal groups. The underlying geometric object

�The �rst author and fourth authors were partially supported by the National Science Foundation (USA). The authors would
like to thank (in alphabetical order) MPI at Bonn, Northwestern University, the Research in Pairs Program at Oberwolfach,
the University of Heidelberg and Universit�e Louis Pasteur at Strasbourg, for providing them with the opportunity to work
together.
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is the moduli stack of formal groups. Much of what can be proved and conjectured about stable homotopy
theory arises from the study of this stack, its strati�cations, and the theory of its quasi-coherent sheaves.
See for example, the table in section 2 of [12].

The output we need from this geometry consists of two distinct pieces of data. First, the chromatic
convergence theorem of [21], x8.6 says the following. Fix a prime p and let E(n)�, n � 0 be the Johnson-
Wilson homology theories and let Ln be localization with respect to E(n)�. Then there are natural maps
LnX ! Ln�1X for all spectra X , and if X is a p-local �nite spectrum, then the natural map

X�! holimLnX

is a weak equivalence.
Second, the maps LnX ! Ln�1X �t into a good �ber square. Let K(n)� denote the nth Morava

K-theory. Then there is a natural commutative diagram

(0.1) LnX //

��

LK(n)X

��
Ln�1X // Ln�1LK(n)X

which for any spectrum X is a homotopy pull-back square. It is somewhat diÆcult to �nd this result in the
literature; it is implicit in [14].

Thus, if X is a p-local �nite spectrum, the basic building blocks for the homotopy type of X are the
Morava K-theory localizations LK(n)X .

Both the chromatic convergence theorem and the �ber square of (0.1) can be viewed as analogues of
phenomena familiar in algebraic geometry. For example, the �bre square can be thought of as an analogue
of a Mayer-Vietoris situation for a formal neighborhood of a closed subscheme and its open complement (see
[1]). The chromatic convergence theorem can be thought of as a result which determines what happens on a
variety X with a nested sequence of closed sub-schemes Xn of codimension n by what happens on the open
subvarieties Un = X �Xn (See [6] xIV.3, for example.) This analogy can be made precise using the moduli
stack of p-typical formal group laws for X and, for Xn, the substack which classi�es formal groups of height
at least n. Again see [12]; also, see [19] for more details.

In this paper, we will write (for p = 3) the K(2)-local stable sphere as a very small homotopy inverse
limit of spectra with computable and computed homotopy groups. Specifying a Morava K-theory always
means �xing a prime p and a formal group law of height n; we unapologetically focus on the case p = 3 and
n = 2 because this is at the edge of our current knowledge. The homotopy type and homotopy groups for
LK(1)S

0 are well understood at all primes and are intimately connected with the J-homomorphism { indeed,
this calculation was one of the highlights of the computational period of the 1960s. If n = 2 and p > 3, the
Adams-Novikov spectral sequence (of which more is said below) calculating ��LK(2)S

0 collapses and cannot
have extensions; hence, the problem becomes algebraic, although not easy. Compare [26].

It should be noticed immediately that for n = 2 and p = 3 there has been a great deal of calculations of
the homotopy groups of LK(2)S

0 and closely related spectra, most notably by Shimomura and his coauthors.
(See, for example, [23], [24] and [25].) One aim of this paper is to provide a conceptual framework for
organizing those results and produce further advances.

The K(n)-local category of spectra is governed by a homology theory built from the Lubin-Tate (or
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Morava theory) En. This is a commutative ring spectrum with coeÆcient ring

(En)� =W (Fpn )[[u1; : : : ; un�1]][u
�1]

with the power series ring over the Witt vectors in degree 0 and the degree of u equal to �2. The ring

(En)0 =W (Fpn )[[u1; : : : ; un�1]]

is a complete local ring with residue �eld Fpn . It is one of the rings constructed by Lubin and Tate in their
study of deformations for formal group laws over �elds of characteristic p. See [17].

As the notation indicates, En is closely related to the Johnson-Wilson spectrum E(n) mentioned above.
The homology theory (En)� is a complex oriented theory and the formal group law over (En)� is a

universal deformation of the Honda formal group law �n of height n over the �eld Fpn with pn elements.
(Other choices of formal group laws of height n are possible, but all yield essentially the same results. The
choice of �n is only made to be explicit; it is the usual formal group law associated by homotopy theorists to
Morava K-theory.) Lubin-Tate theory implies that the graded ring (En)� supports an action by the group

G n = Aut(�n)oGal(Fpn =Fp ):

The group Aut(�n) of automorphisms of the formal group law �n is also known as the Morava stabilizer
group and will be denoted by Sn. The Hopkins-Miller theorem (see [22]) says, among other things, that we
can lift this action to an action on the spectrum En itself. There is an Adams-Novikov spectral sequence

Es;t
2 := Hs(Sn; (En)t)

Gal(Fpn=Fp) =) �t�sLK(n)S
0:

(See [8] for a basic description.) The group G n is a pro�nite group and it acts continuously on (En)�.
The cohomology here is continuous cohomology. We note that by [5] LK(n)S

0 can be identi�ed with the

homotopy �xed point spectrum EhGn
n and the Adams-Novikov spectral sequence can be interpreted as a

homotopy �xed point spectral sequence.
The qualitative behaviour of this spectral sequence depends very much on qualitative cohomological

properties of the group Sn, in particular on its cohomological dimension. This in turn depends very much
on n and p.

If p� 1 does not divide n (for example, if n < p� 1) then the p-Sylow subgroup of Sn is of cohomological
dimension n2. Furthermore, if n2 < 2(p�1)�1 (for example, if n = 2 and p > 3) then this spectral sequence
is sparse enough so that there can be no di�erentials or extensions.

However, if p� 1 divides n, then the cohomological dimension of Sn is in�nite and the Adams-Novikov
spectral sequence has a more complicated behaviour. The reason for in�nite cohomological dimension is the
existence of elements of order p in Sn. However, in this case at least the virtual cohomological dimension
remains �nite, in other words there are �nite index subgroups with �nite cohomological dimension. In terms
of resolutions of the trivial module Zp, this means that while there are no projective resolutions of the
trivial Sn-module Zp of �nite length, one might still hope that there exist \resolutions" of Zp of �nite length
in which the individual modules are direct sums of modules which are permutation modules of the form
Zp[[G 2=F ]] where F is a �nite subgroup of G n . Note that in the case of a discrete group which acts properly
and cellularly on a �nite dimensional contractible space X such a \resolution" is provided by the cellular
complex of X .

This phenomenon is already visible for n = 1 in which case G 1 = S1 can be identi�ed with Z�p , the units
in the p-adic integers. Thus G 1

�= Zp� Cp�1 if p is odd while G 1
�= Z2� C2 if p = 2. In both cases there is

a short exact sequence
0! Zp[[G 1=F ]]! Zp[[G 1=F ]]! Zp! 0
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of continuous G 1 -modules (where F is the maximal �nite subgroup of G 1 ). If p is odd this sequence is a
projective resolution of the trivial module while for p = 2 it is only a resolution by permutation modules.
These resolutions are the algebraic analogues of the �brations (see [8])

(0.2) LK(1)S
0 ' EhG1

1 ! EhF
1 ! EhF

1 :

We note that p-adic complex K-theory KZp is in fact a model for E1, the homotopy �xed points EhC2

1 can

be identi�ed with 2-adic real K-theory KOZ2 if p = 2 and E
hCp�1

1 is the Adams summand of KZp if p is
odd, so that the �bration of (0.2) indeed agrees with that of [8].

In this paper we produce a resolution of the trivial module Zp by (direct summands of) permutation
modules in the case n = 2 and p = 3 and we use it to build LK(2)S

0 as the top of a �nite tower of �brations

where the �bers are (suspensions of) spectra of the form EhF
2 where F � G 2 is a �nite subgroup.

In fact, if n = 2 and p = 3, only two subgroups appear. The �rst is a subgroup G24 � G 2 ; this is a
�nite subgroup of order 24 containing a normal cyclic subgroup C3 with quotient G24=C3 isomorphic to the
quaternion group Q8 of order 8. The other group is the semidihedral group SD16 of order 16. The two
spectra we will see, then, are EhG24

2 and EhSD16

2 .
The discussion of these and related subgroups of G 2 occurs in section 1 (see 1.1 and 1.2). The homotopy

groups of these spectra are known. We will review the calculation in section 3.
Our main result can be stated as follows (see Theorem 5.4 and Theorem 5.5).

0.1 Theorem. There is a sequence of maps between spectra

LK(2)S
0 ! EhG24

2 ! �8EhSD16

2 _ EhG24

2 ! �8EhSD16

2 _ �40EhSD16

2 ! �40EhSD16

2 _ �48EhG24

2 ! �48EhG24

2

with the property that the composite of any two successive maps is zero and all possible Toda brackets are
zero modulo indeterminacy.

Because the Toda brackets vanish, this \resolution" can be re�ned to a tower of spectra with LK(2)S
0

at the top. The precise result is given in Theorem 5.6. There are many curious features of this resolution,
of which we note here only two. First, this is not an Adams resolution for E2, as the spectra E

hF
2 are not

E2-injective, at least if 3 divides the order of F . Second, there is a certain super�cial duality to the resolution
which should somehow be explained by the fact that Sn is a virtual Poincar�e duality group, but we do not
know how to make this thought precise.

As mentioned above, this result can be used to organize the already existing and very complicated
calculations of Shimomura ([24], [25]) and it also suggests an independent approach to these calculations.
Other applications would be to the study of Hopkins's Picard group (see [8]) of K(2)-local invertible spectra.

Our method is by brute force. The hard work is really in section 4, where we use the calculations of [13] in
an essential way to produce the short resolution of the trivial G 2 -module Z3 by (summands of) permutation
modules over the form Z3[[G 2=F ]] where F is �nite (see Theorem 4.1 and Corollary 4.2). In section 2, we
calculate the homotopy type of the function spectra F (EhH1 ; EhH2) if H1 is a closed and H2 a �nite subgroup
of G n ; this will allow us to construct the required maps between these spectra and to make the Toda bracket
calculations. Here the work of [5] is crucial. These calculations also explain the role of the suspension by 48
which is really a homotopy theoretic phenomenon while the other suspensions can be explained in terms of
the algebraic resolution constructed in section 4.
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1 Lubin-Tate Theory and the Morava stabilizer group

The purpose of this section is to give a summary of what we will need about deformations of formal group
laws over perfect �elds. The primary point of this section is to establish notation and to run through some
of the standard algebra needed to come to terms with the K(n)-local stable homotopy category.

Fix a perfect �eld k of characteristic p and a formal group law � over k. A deformation of � to a complete
local ring A (with maximal ideal m) is a pair (G; i) where G is a formal group law over A, i : k ! A=m
is a morphism of �elds and one requires i�� = ��G, where � : A ! A=m is the quotient map. Two such
deformations (G; i) and (H; j) are ?-isomorphic if there is an isomorphism f : G! H of formal group laws
which reduces to the identity modulo m. Write Def�(A) for the set of ?-isomorphism classes of deformations
of � over A.

A common abuse of notation is to write G for the deformation (G; i); i is to be understood from the
context.

Now suppose the height of � is �nite. Then the theorem of Lubin and Tate [17] says that the functor
A 7! Def�(A) is representable. Indeed let

(1.1) E(�; k) =W (k)[[u1; � � � ; un�1]]

where W (k) denotes the Witt vectors on k and n is the height of �. This is a complete local ring with
maximal ideal m = (p; u1; � � � ; un�1) and there is a canonical isomorphism q : k �= E(�; k)=m. Then Lubin
and Tate prove there is a deformation (G; q) of � over E(�; k) so that the natural map

(1.2) Homc(E(�; k); A)! Def�(A)

sending a continuous map f : E(�; k)! A to (f�G; �fq) (where �f is the map on residue �elds induced by f)
is an isomorphism. Continuous maps here are very simple: they are the local maps; that is, we need only
require that f(m) be contained in the maximal ideal of A. Furthermore, if two deformations are ?-isomorphic,
then the ?-isomorphism between them is unique.

We'd like to now turn the assignment (�; k) 7! E(�; k) into a functor. For this we introduce the category
FGLn of height n formal group laws over perfect �elds. The objects are pairs (�; k) where � is of height n.
A morphism

(f; j) : (�1; k1)! (�2; k2)

is a homomorphism of �elds j : k1 ! k2 and an isomorphism of formal group laws f : j��1 ! �2.
Let (f; j) be such a morphism and let G1 and G2 be the �xed universal deformations over E(�1; k) and

E(�2; k) respectively. If ef 2 E(�2; k2)[[x]] is any lift of f 2 k2[[x]], then we can de�ne a formal group law

H over E(�2; k2) by requiring that ef : H ! G2 is an isomorphism. Then the pair (H; j) is a deformation of
�1, hence we get a homomorphism E(�1; k1)! E(�2; k2) classifying the ?-isomorphism class of H { which,

one easily checks, is independent of the lift ef . Thus if Ringsc is the category of complete local rings and
local homomorphisms, we get a functor

E(�; �) : FGLn �! Ringsc:

In particular, note that any morphism in FGLn from a pair (�; k) to itself is an isomorphism. The automor-
phism group of (�; k) in FGLn is the \big" Morava stabilizer group of the formal group law; it contains the
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subgroup of elements (f; idk). This formal group law and hence also its automorphism group is determined
up to isomorphism by the height of � if k is separably closed.

Speci�cally, let � be the Honda formal group law over Fpn ; thus the p-series of � is

[p](x) = xp
n

:

From this formula it immediately follows that any automorphism f : � ! � over any �nite extension �eld
of Fpn actually has coeÆcients in Fpn ; thus we obtain no new isomorphisms by making such extensions. Let
Sn be the group of automorphisms of this � over Fpn ; this is the classical Morava stabilizer group. If we let
G n be the group of automorphisms of (�; Fpn ) in FGLn (the big Morava stabilizer group of �), then one
easily sees that

G n
�= SnoGal(Fpn =Fp )

Of course, G n acts on E(�; Fpn ). Also, we note that the Honda formal group law is de�ned over Fp , although
it won't get its full group of automorphisms until changing base to Fpn .

Next we put in the gradings. This requires a paragraph of introduction. For any commutative ring R,
the morphism R[[x]]! R of rings sending x to 0 makes R into an R[[x]]-module. Let DerR(R[[x]]; R) denote
the R-module of continuous R-derivations; that is, continuous R-module homomorphisms

@ : R[[x]] �! R

so that
@(f(x)g(x)) = @(f(x))g(0) + f(0)@(g(x)):

If @ is any derivation, write @(x) = u; then, if f(x) =
P
aix

i,

@(f(x)) = a1@(x) = a1u:

Thus @ is determined by u, and we write @ = @u. We then have that DerR(R[[x]]; R) is a free R-module
of rank one, generated by any derivation @u so that u is a unit in R. In the language of schemes, @u is a
generator for the tangent space at 0 of the formal scheme A 1

R over Spec(R).
Now consider pairs (F; u) where F is a formal group law over R and u is a unit in R. Thus F de�nes a

smooth one dimensional commutative formal group scheme over Spec(R) and @u is a chosen generator for
the tangent space at 0. A morphism of pairs

f : (F; u) �! (G; v)

is an isomorphism of formal group laws f : F ! G so that

u = f 0(0)v:

Note that if f(x) 2 R[[x]] is a homomorphism of formal group laws from F to G, and @ is a derivation at 0,
then (f�@)(x) = f 0(0)@(x). In the context of deformations, we may require that f be a ?-isomorphism.

This suggests the following de�nition: let � be a formal group law of height n over a perfect �eld k of
characteristic p, and let A be a complete local ring. De�ne Def�(A)� to be equivalence classes of pairs (G; u)
where G is a deformation of � to A and u is a unit in A. The equivalence relation is given by ?-isomorphisms
transforming the unit as in the last paragraph. We now have that there is a natural isomorphism

Homc(E(�; k)[u
�1]; A) �= Def�(A)�:
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We impose a grading by giving an action of the multiplicative group scheme Gm on the scheme Def�(�)�
(on the right) and thus on E(�; k)[u�1] (on the left): if v 2 A� is a unit and (G; u) represents an equivalence
class in Def�(A)� de�ne an new element in Def�(A)� by (G; v

�1u). In the induced grading on E(�; k)[u�1],
one has E(�; k) in degree 0 and u in degree �2.

This grading is essentially forced by topological considerations. See the remarks before Theorem 20 of
[28] for an explanation. In particular, it is explained there why u is in degree �2 rather than 2.

The rest of the section will be devoted to what we need about the Morava stabilizer group. The group Sn
is the group of units in the endomorphism ring On of the Honda formal group law of height n. The ring On

can be described as follows (See [13] or [20]). One adjoins a non-commuting element S to the Witt vectors
W =W (Fpn ) subject to the conditions that

Sa = �(a)S and Sn = p

where a 2 W and � : W ! W is the Frobenius. (In terms of power series, S corresponds to the endomorphism
of the formal group law given by f(x) = xp.) This algebra On is a free W -module of rank n with generators
1; S; : : : Sn�1 and is equipped with a valuation � extending the standard valuation of W ; since we assume
that �(p) = 1, we have �(S) = 1=n. De�ne a �ltration on Sn by

FkSn = fx 2 Sn j �(x� 1) � kg:

Note that k is a fraction of the form a=n with a = 0; 1; 2; : : :. We have

F0Sn=F1=nSn �= F
�
pn ;

Fa=nSn=F(a+1)=nSn
�= Fpn ; a � 1

and
Sn

�= lim
a
Sn=Fa=nSn:

If we de�ne Sn = F1=nSn, then Sn is the p-Sylow subgroup of the pro�nite group Sn. Note that the

Teichm�uller elements F�pn � W � � O�n de�ne a splitting of the projection Sn ! F
�
pn and, hence, Sn is the

semi-direct product of F�pn and the p-Sylow subgroup.
The action of the Galois group Gal(Fpn =Fp ) on On is the obvious one: the Galois group is generated by

the Frobenius � and

�(a0 + a1S + � � �+ an�1S
n�1) = �(a0) + �(a1)S + � � �+ �(an�1)S

n�1:

We are, in this paper, concerned mostly with the case n = 2 and p = 3. In this case, every element of S2
can be written as a sum

a+ bS; a; b 2W (F9 ) = W

with a 6� 0 mod 3. The elements of S2 are of the form a+ bS with a � 1 mod 3.
The following subgroups of S2 will be of particular interest to us. The �rst two are choices of maximal

�nite subgroups. 1 The last one (see 1.3) is a closed subgroup which is, in some sense, complementary to
the center.

1The �rst author would like to thank Haynes Miller for several lengthy and informative discussions about �nite subgroups
of the Morava stabilizer group.
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1.1. Choose a pimitive eighth root of unity ! 2 F9 . We will write ! for the corresponding element in W

and S2. The element

s = �
1

2
(1 + !S)

is of order 3; furthermore,
!2s!6 = s2:

Hence the elements s and !2 generate a subgroup of order 12 in S2 which we label G12. As a group, it is
abstractly isomorphic to the unique non-trivial semi-direct product of cyclic groups

C3 o C4

Any other subgroup of order 12 in S2 is conjugate to G12. In the sequel, when discussing various represen-
tations, we will write the element !2 2 G12 as t.

We note that the subgroup G12 � S2 is a normal subgroup of a subgroup G24 of the larger group G 2 .
Indeed, there is a diagram of short exact sequences of groups

1 // G12
//

�

��

G24
//

�

��

Gal(F9=F3 ) //

=

��

1

1 // S2 // G 2
// Gal(F9=F3 ) // 1:

Since the action of the Galois group on S2 does not preserve any choice of G12, this is not transparent. In
fact, while the lower sequence is split the upper sequence is not. More concretely we let

 = !� 2 S2oGal(F9=F3 ) = G 2

where ! is our chosen 8th root of unity and � is the generator of the Galois group. Then if s and t are the
elements of order 3 and 4 in G12 chosen above, we easily calculate that  s = s , t =  t3 and  2 = t2.
Thus the subgroup of G 2 generated by G12 and  has order 24, as required. Note that the 2-Sylow subgroup
of G24 is the quaternion group Q8 of order 8 generated by t and  and that indeed

1 // G12
// G24

// Gal(F9=F3 ) // 1

is not split.

1.2. The second subgroup is the subgroup SD16 generated by ! and �. This is the semidirect product

F
�
9 oZ=2 :

and is also known as the semidihedral group of order 16.

1.3. For the third subgroup, note that the evident right action of Sn on On de�nes a group homomorphism
Sn! GLn(W ). The determinant homomorphism Sn! W � extends to a homomorphism

G n ! W
�
oGal(Fpn =Fp )

For example, if n = 2, this map sends (a+ bS; �e), e 2 f0; 1g, to

(a�(a) � pb�(b); �e)

8



where � is the Frobenius. It is simple to check (for all n) that the image of this homomorphism lands in

Z
�
p �Gal(Fpn =Fp ) � W

�
oGal(Fpn =Fp ) :

If we identify the quotient of Z�p by its subgroup Cp�1 of elements of �nite order with Zp, we get a \reduced
determinant" homomorphism

G n ! Zp :

Let G 1
n be the kernel of this map and S1n resp. S

1
n be the kernel of its restriction to Sn resp. Sn. In particular,

any �nite subgroup of G n is a subgroup of G 1
n . One also easily checks that the center of G n is Z�p � W � � Sn

and that the composite
Z
�
p ! G n ! Z

�
p

sends a to an. Thus, if p doesn't divide n, we have

G n
�= Zp� G

1
n :

2 The K(n)-local category and the Lubin-Tate theories En

The purpose of this section is to collect together the information we need about the K(n)-local category and
the role of the functor (En)�(�) in governing this category. But attention! { (En)�X is not the homology of
X de�ned by the spectrum En, but a completion thereof: see De�nition 2.1 below.

Most of the information in this section is collected from [3], [4], and [15].
Fix a prime p and let K(n), 1 � n < 1, denote the n-th Morava K-theory spectrum. Then K(n)� �=

Fp [vn] where the degree of vn is 2(pn � 1). This is a complex oriented theory and the formal group law over
K(n)� is of height n. As is customary, we specify that the formal group law over K(n)� is the graded variant
of the Honda formal group law; thus, the p-series is

[p](x) = vnx
pn :

Following Hovey and Strickland, we will write Kn for the category of K(n)-local spectra. We will write
LK(n) for the localization functor from spectra to Kn.

Next let Kn be the extension of K(n) with (Kn)� �= Fpn [u
�1] with the degree of u = �2. The inclusion

K(n)� � (Kn)� sends vn to u�(p
n�1). There is a natural isomorphism of homology theories

(Kn)� 
K(n)� K(n)�X
�=
�!(Kn)�X

and K(n)� ! (Kn)� is a faithfully at extension; thus the two theories have the same local categories and
weakly equivalent localization functors.

If we write F for the graded formal group law over K(n)� we can extend F to a formal group law over
(Kn)� and de�ne a formal group law � over Fpn = (Kn)0 by

x+� y = �(x; y) = u�1F (ux; uy) = u�1(ux+F uy):

Then F is chosen so that � is the Honda formal group law.
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We note that { as in [4] { there is a choice of the universal deformation G of � such that the p-series of
the associated graded formal group law G0 over E(�; Fpn )[u

�1] satis�es

[p](x) = v0x+G0
v1x

p +G0
v2x

p2 +G0
� � �

with v0 = p and

vk =

8<
:

u1�p
k

uk 0 < k < n;
u1�p

n

k = n;
0 k > n:

This shows that the functor X 7! (En)� 
BP� BP�X (where (En)� is considered a BP�-module via the
evident ring homomorphism) is a homology theory which is represented by a spectrum En with coeÆcients

��(En) �= E(�; Fpn )[u
�1] �= W [[u1 ; : : : ; un�1]][u

�1] :

The inclusion of the subring E(n)� = Z(p)[v1 : : : ; vn�1; v
�1
n ] into (En)� is again faithfully at; thus, these

two theories have the same local categories. We write Ln for the category of E(n)-local spectra and Ln for
the localization functor from spectra to Ln.

The reader will have noticed that we have avoided using the expression (En)�X ; we now explain what
we mean by this. The K(n)-local category Kn has internal smash products and (arbitrary) wedges given by

X ^Kn
Y = LK(n)(X ^ Y )

and _
Kn

X� = LK(n)(
_
X�) :

In making such de�nitions, we assume we are working in some suitable model category of spectra, and
that we are taking the smash product between co�brant spectra; that is, we are working with derived smash
product. The issues here are troublesome, but well understood, and we will not dwell on these points. See
[9] or [7]. If we work in our suitable categories of spectra the functor Y 7! X ^Kn

Y has a right adjoint
Z 7! F (X;Z).

We de�ne a version of (En)�(�) intrinsic to Kn as follows.

2.1 De�nition. Let X be a spectrum. Then we de�ne (En)�X by the equation

(En)�X = ��LK(n)(En ^X):

We remark immediately that (En)�(�) is not a homology theory in the usual sense; for example, it will
not send arbitrary wedges to sums of abelian groups. However, it is tractable, as we now explain. First note
that En itself is K(n)-local; indeed, Lemma 5.2 of [15] demonstrates that En is a �nite wedge of spectra of
the form LK(n)E(n). Therefore if X is a �nite CW spectrum, then En ^X is already in Kn, so

(2.1) (En)�X = ��(En ^X):

10



Let I = (i0; : : : ; in�1) be a sequence of positive integers and let

m
I = (pi0 ; ui11 ; : : : ; u

in�1

n�1 ) � m � (En)�

where m = (p; u1; : : : ; un�1) is the maximal ideal in E�. These form a system of ideals in (En)� and produce
a �ltered diagram of rings f(En)�=m

Ig; furthermore

(En)� = lim
I
(En)�=m

I :

There is a co�nal diagram f(En)�=m
Jg which can be realized as a diagram of spectra in the following sense:

using nilpotence technology, one can produce a diagram of �nite spectra fMJg and an isomorphism

f(En)�MJg �= f(En)�=m
Jg

as diagrams. See x4 of [15]. Here (En)�MJ = ��En ^MJ = ��LK(n)(En ^MJ). The importance of this
diagram is that (see [15], Proposition 7.10) for each spectrum X

(2.2) LK(n)X ' holimJMJ ^ LnX:

This has the following consequence, immediate from De�nition 2.1: there is a short exact sequence

0! lim 1(En)k+1(X ^MJ)! (En)kX ! lim(En)k(X ^MJ)! 0:

This suggests (En)�X is closely related to some completion of ��(En ^X) and this is nearly the case. The
details are spelled out in x8 of [15], but we won't need the full generality there. In fact, all of the spectra we
consider here will satisfy the hypotheses of Proposition 2.2 below.

IfM is an (En)�-module, letM
^
m
denote the completion ofM with respect to the maximal ideal of (En)�.

A module of the form
(
M
�

�k�(En)�)
^
m

will be called pro-free.

2.2 Proposition. If X is a spectrum so that K(n)�X is concentrated in even degrees, then

(En)�X �= ��(En ^X)^
m

and (En)�X is pro-free as an (En)�-module.

See Proposition 8.4 of [15].

As with anything like a at homology theory, the object (En)�X is a comodule over some sort of Hopf
algebroid of co-operations; it is our next project to describe this structure. In particular, this brings us to
the role of the Morava stabilizer group. We begin by identifying (En)�En.

Let G n be the (big) Morava stabilizer group of �, the Honda formal group law of height n over Fpn . For
the purposes of this paper, a Morava module is a complete (En)�-module M equipped with a continuous
G n -action subject to the following compatibility condition: if g 2 G n , a 2 (En)� and x 2M , then

(2.3) g(ax) = g(a)g(x) :

11



For example, if X is any spectrum with K(n)�X concentrated in even degrees, then (En)�X is a complete
(En)�-module (by Proposition 2.2) and the action G n on En de�nes a continuous action of G n on (En)�X .
This is a prototypical Morava module.

Now let M be a Morava module and let

Homc(G n ;M)

be the abelian group of continuous maps from G n to M where the topology on M is de�ned via the ideal
m. Then

(2.4) Homc(G n ;M) �= lim icolimkmap(G n=Uk;M=miM)

where Uk runs over any system of open subgroups of G n with
T
k Uk = feg. To give Homc(G n ;M) a structure

of an (En)�-module let � : G n !M be continuous and a 2 (En)�. The we de�ne a� by the formula

(2.5) (a�)(x) = a�(x) :

There also is a continuous action of G n on Homc(G n ;M): if g 2 G n and � : G n ! M is continuous, then
one de�nes g� : G n !M by the formula

(2.6) (g�)(x) = g�(g�1x) :

With this action, and the action of (En)� de�ned in (2.5), the formula of (2.3) holds. BecauseM is complete
(2.4) shows that Homc(G n ;M) is complete.

2.3 Remark. With the Morava module structure de�ned by Equations 2.5 and 2.6, the functor M !
Homc(G n ;M) has the following universal property. If N and M are Morava modules and f : N ! M is
morphism of continuous (En)� modules, then there is an induced morphism

N �! Homc(G n ;M)

� 7! ��

with ��(x) = xf(x�1�). This yields a natural isomorphism

Hom(En)�(N;M) = Hom(En)�En
(N;Homc(G n ;M))

where from continous (En)� module homomorphisms to morphisms of Morava modules.
There is a di�erent, but isomorphic natural Morava module structure on Homc(G n ;�) so that this

functor becomes a true right adjoint of the forget functor from Morava modules to continuous (En)�-modules.
However, we will not need this module structure at any point and we supress it to avoid confusion.

For example, if X is a spectrum such that (En)�X is (En)�-complete, the G n -action on (En)�X is encoded
by the map

(En)�X ! Homc(G n ; (En)�X)

adjoint (in the sense of the previous remark) to the identity.

12



The next result says that this is essentially all the stucture that (En)�X supports. For any spectrum X ,
G n acts on

(En)�(En ^X) = ��LK(n)(En ^ En ^X)

by operating in the left factor of En. The multiplication En^En ! En de�nes a morphism of (En)�-modules

(En)�(En ^X)! (En)�X

and by composing we obtain a map

� : (En)�(En ^X)! Homc(G n ; (En)�(En ^X))! Homc(G n ; (En)�X) :

If (En)�X is complete, this is a morphism of Morava modules.
We now record:

2.4 Proposition. For any cellular spectrum X with (Kn)�X concentrated in even degrees the morphism

� : (En)�(En ^X)! Homc(G n ; (En)�X)

is an isomorphism of Morava modules.

Proof. See [5] and [28] for the case X = S0. The general case follows in the usual manner. First, it's true
for �nite spectra by a �ve lemma argument. For this one needs to know that the functor

M 7! Homc(G n ;M)

is exact on �nitely generated (En)�-complete modules. This follows from (2.4). Then one argues the general
case, by noting �rst that by taking colimits over �nite cellular subspectra

� : (En)�(En ^MJ ^X)! Homc(G n ; (En)�(MJ ^X))

is an isomorphism for any J and any X . Note that En ^MJ ^X is K(n)-local for any X ; therefore, LK(n)

commutes with the homotopy colimits in question. Finally the hypothesis on X implies

(En)�(En ^X) �= lim(En)�(En ^MJ ^X):

and thus we can conclude the result by taking limits with respect to J .

We next turn to the results of Devinatz and Hopkins ([5]) on homotopy �xed point spectra. Let OGn be
the orbit category of G n . Thus an object in OGn is an orbit G n=H where H is a closed subgroup and the
morphisms are continuous G n -maps. Then Devinatz and Hopkins have de�ned a functor

Oop
Gn
! K

sending G n=H to a K(n)-local spectrum EhH
n . If H is �nite, then EhH

n is the usual homotopy �xed point
spectrum de�ned by the action of H � G n . By the results of [5], the morphism � of Proposition 2.4 restricts
to an isomorphism (for any closed H)

(2.7) (En)�E
hH
n

�=
�!Homc(G n=H; (En)�):
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We would now like to write down a result about the function spectra F ((En)
hH ; En). First, some notation.

If E is a spectrum and X = limiXi is an inverse limit of a sequence of �nite sets Xi then de�ne

E[[X ]] = holimiE ^ (Xi)+:

2.5 Proposition. Let H be a closed subgroup of G n . Then there is a natural weak equivalence

En[[G n=H ]]
' // F ((En)hH ; En):

Proof. First let U be an open subgroup of G n . Functoriality of the homotopy �xed point spectra construction
of [5] gives us a map EhU

n ^ G n=U+ ! En where as usual G n=U+ denotes G n=U with a disjoint base point
added. Together with the product on En we obtain a map

(2.8) En ^ E
hU
n ^ G n=U+ ! En ^ En ! En

whose adjoint induces an equivalence

(2.9) LK(n)(En ^ E
hU
n )!

Y
Gn=U

En

realizing the isomorphism of (2.7) above. Note that this is a map of En-module spectra. Let FEn
(�; En) be

the function spectra in the category of left En-module spectra. (See [9] for details.) If we apply FEn
(�; En)

to the equivalence of (2.9) we obtain an equivalence of En-module spectra

FEn
(
Y
Gn=U

E;E)! FEn
(En ^ E

hU
n ; En):

This equivalence can then be written as

(2.10) En ^ (G n=U)+ ! F (EhU
n ; En);

furthermore, an easy calculation shows that this map is adjoint to the map of (2.8).
More generally, let H be any closed subgroup of G n . Then there exists a decreasing sequence Ui of open

subgroups Ui with H =
T
i Ui and by [5] we have

EhH
n ' LK(n)hocolimiE

hUi
n :

Thus, the equivalence of (2.10) and passing to the limit we obtain the desired equivalence.

Now note that if X is a pro�nite set with continuous H-action and if E is an H-spectrum then E[[X ]] is
an H-spectrum via the diagonal action. It is this action which is used in the following result.

2.6 Proposition. 1.) Let H1 be a closed subgroup and H2 a �nite subgroup of G n . Then there is a natural
equivalence

En[[G n=H1]]
hH2

' // F (EhH1

n ; EhH2

n ) :
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2.) If H1 is also an open subgroup then there is a natural decomposition

En[[G n=H1]]
hH2 '

Y
H2nGn=H1

EhHx

n

where Hx = H2 \ xH1x
�1 is the isotropy subgroup of the coset xH1 and H2nG n=H1 is the (�nite) set of

double cosets.
3.) If H1 is a closed subgroup and H1 =

T
i Ui for a decreasing sequence of open subgroups Ui then

F (EhH1

n ; EhH2

n ) ' holimiEn[[G n=Ui]]
hH2 ' holimi

Y
H2nGn=Ui

EhHx;i

n

where Hx;i = H2 \ xUix
�1 is, as before, the isotropy subgroup of the coset xUi.

2

Proof. The �rst statement follows from Proposition 2.5 by passing to homotopy �xed point spectra with
respect to H2 and the second statement is then an immediate consequence of the �rst. For the third
statement we write G n=H1 = limi G n=Ui and pass to the homotopy inverse limit.

We will be interested in the En-Hurewicz homomorphism

�0F (E
hH1

n ; EhH2

n )! Hom(En)�En
((En)�E

hH1

n ; (En)�E
hH2

n )

where Hom(En)�En
denotes morphisms in the category of Morava modules. Let

(En)�[[G n ]] = lim
i
(En)�[G n=Ui]

denote the completed group ring and give this the structure of a Morava module by letting G n act diagonally.

2.7 Proposition. Let H1 and H2 be closed subgroups of G n and suppose that H2 is �nite. Then there is an
isomorphism �

(En)�[[G n=H1]]
�H2

�=
�!Hom(En)�En

((En)�E
hH1

n ; (En)�E
hH2

n )

such that the following diagram commutes

��En[[G n=H1]]
hH2 //

�=

��

�
(En)�[[G n=H1]]

�H2

�=

��
��F (E

hH1

n ; EhH2

n ) // Hom(En)�En
((En)�E

hH1

n ; (En)�E
hH2

n )

where the top horizontal map is the edge homomorphism in the homotopy �xed point spectral sequence, the
left hand vertical map is induced by the equivalence of Proposition 2.6 and the bottom horizontal map is the
En-Hurewicz homomorphism.

2We are grateful to P. Symonds for pointing out that the naive generalization of the second statement does not hold for a
general closed subgroup.
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Proof. First we assume that H2 is the trivial subgroup and H1 is open, so that G n=H1 is �nite. Then there
is an isomorphism

(En)�[[G n=H1]]! Hom(En)�(Hom
c(G n=H1; (En)�)); (En)�)

which is the unique linear map which send a coset to evaluation at that coset. Applying Remark 2.3 we
obtain an isomorphism of Morava modules

(En)�[[G n=H1]]! Hom(En)�(Hom
c(G n=H1; (En)�));Hom

c(G n ; (En)�)):

This isomorphism can be extended to a general closed subgroup H1 by writing H1 as the intersection of a
nested sequence of open subgroups (as in the proof of Proposition 2.5) and taking limits. Then we use the
isomorphisms of (2.7) to identify (En)�E

hHi
n with Homc(G n=Hi; (En)�). This de�nes the isomorphism we

need, and it is straightforward to see that the diagram commutes. To end the proof, note that the case of a
general �nite subgroup H2 follows by passing to H2-invariants.

3 The homotopy groups of EhF
2 at p = 3

To construct our tower we are going to need some information about ��E
hF
2 for various �nite subgroups of

the stabilizer group G 2 . Much of what we say here can be recovered from various places in the literature (for
example, [11], [18], or [10]) and the point of view and proofs expressed are certainly those of Mike Hopkins.
What we add here to the discussion in [10] is that we pay careful attention to the Galois group. In particular
we treat the case of the �nite group G24.

Recall that we are working at the prime 3. We will write E for E2, so that we may write E� for (E2)�.
In Remark 1.1 we de�ned a subgroup

G24 � G 2 = S2oGal(F9=F3 )

generated by elements s, t and  of orders 3, 4 and 4 respectively. The cyclic subgroup C3 generated by s
is normal, and the subgroup Q8 generated by t and  is the quaternion group of order 8.

The �rst results are algebraic in nature; they give a nice presentation of E� as a G24-algebra. First we
de�ne an action of G24 on W =W (F9 ) by the formulas:

(3.1) s(a) = a t(a) = !2a  (a) = !�(a)

where � is the Frobenius. Note the action factors through G24=C3
�= Q8. Restricted to the subgroup

G12 = S2 \ G24 this action is W -linear, but over G24 it is simply linear over Z3. Let � denote the resulting
G24-representation and �0 its restriction to Q8.

This representation is a module over a twisted version of the group ring W [G24 ]. The projection

G24 �! Gal(F9=F3 )

de�nes an action3 of G24 on W and we use this action to twist the multiplication in W [G24 ]. We should
really write W � [G24] for this twisted group ring, but we forebear, so as to not clutter notation. Note that
W [Q8 ] has a similar twisting, but W [G12 ] is the ordinary group ring.

3This action is di�erent from that of the representation de�ned by the formulas of 3.1.
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De�ne a G24-module � by the short exact sequence

(3.2) 0! �! W [G24 ]
W[Q8 ] �
0 ! �! 0

where the �rst map takes a generator e of � to

(1 + s+ s2)e 2 W [G24 ]
W[Q8 ] �
0:

3.1 Lemma. There is a morphism of G24-modules

� �! E�2

so that the induced map
F9 
W �! E0=(3; u

2
1)
E0

E�2

is an isomorphism. Furthermore, this isomorphism sends the generator e of � to an invertible element in
E�.

Proof. We need to know a bit about the action of G 2 on E�. The relevant formulas have been worked out
by Devinatz and Hopkins. Let m � E0 be the maximal ideal and a + bS 2 S2. Then Proposition 3.3 and
Lemma 4.9 of [4] together imply that, modulo m2E�2

(a+ bS)u � au+ �(b)uu1(3.3)

(a+ bS)uu1 � 3bu+ �(a)uu1 :(3.4)

In some cases we can be more speci�c. For example, if � 2 F
�
9 � W (F9 )

� � G 2 , then the induced map of
rings

�� : E� ! E�

is the W -algebra map de�ned by the formulas

(3.5) ��(u) = �u and ��(uu1) = �3uu1 :

Finally, since the Honda formal group is de�ned over F3 the action of the Frobenius on E� = W (F9 )[[u1]][u
�1]

is simply extended from the action on W (F9 ). Thus we have

(3.6)  (a) = !��(a)

for all a 2 E2.
The formulas (3.3) up to (3.6) imply that E0=(3; u

2
1)
E0

E�2 is isomorphic to F9 
W � as a G24-module
and, further, that we can choose as a generator the residue class of u. In [10] (following [18], who learned it
from Hopkins) we found a class y 2 E�2 so that

(3.7) y � !u mod (3; u1) :

and so that
(1 + s+ s2)y = 0

This element might not yet have the correct invariance property with respect to  ; to correct this, we average
and set

x =
1

2
(y+!�2t�(y)+!

�4(t2)�(y)+!
�6(t3)�(y)+!

�1 �(y)+!
�7( t)�(y)+!

�5( t2)�(y)+!
�3( t3)�(y)):
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We can now send the generator of � to x. Note also that the formulas (3.3) up to (3.6) imply that

x �
1

2
(!u+ !3u) modulo (3; u21) :

We now make a construction. The morphism of G24-modules constructed in this last lemma de�nes a
morphism of W -algebras

S(�) = SW (�) �! E�

sending the generator e of � to an invertible element in E2. The symmetric algebra is over W and the map
is a map of W -algebras. The group G24 acts through Z3-algebra maps, and the subgroup G12 acts through
W -algebra maps. If a 2 W is a multiple of the unit, then  (a) = �(a).

Let

(3.8) N =
Y

g2G12

ge 2 S(�);

then N is invariant by G12 and  (N) = �N so that the get a morphism of graded G24-algebras

S(�)[N�1] �! E�

(where the grading on the source is determined by putting � in degree �2). Inverting N inverts e, but in
an invariant manner. This map is not yet an isomorphism, but it is an inclusion onto a dense subring. The
following result is elementary (cf. Proposition 2 of [10]):

3.2 Lemma. Let I = S(�)[N�1]\m. Then completion at the ideal I de�nes an isomorphism of G24-algebras

S(�)[N�1]^I
�= E�:

Thus the input for the calculation of the E2-term H�(G24; E�) of the homotopy �xed point spectral
sequence associated to EhG24

2 will be discrete. Indeed, let A = S(�)[N�1]. Then the essential calculation is
that of H�(G24; A). For this we begin with the following. For any �nite group G and any G module M , let

trG = tr :M �!MG = H0(G;M)

be the transfer: tr(x) =
P

g2G gx. In the following result, an element listed as being in bidegree (s; t) is in
Hs(G;At).

If e 2 � is the generator, de�ne d 2 A to be the multiplicative norm with respect to the cyclic group C3

generated by s: d = s2(e)s(e)e. By construction d is invariant with respect to C3.

3.3 Lemma. Let C3 � G12 be the normal subgroup of order three. Then there is an exact sequence

A
tr
�!H�(C3; A)! F9 [a; b; d

�1]=(a2)! 0

where a has bidegree (1;�2), b has bidegree (2; 0) and d has bidegree (0;�6). Furthermore the action of t
and  is described by the formulas

t(a) = �!2a t(b) = �b t(d) = !6d

and
 (a) = !a  (b) = b  (d) = !3d :
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Proof. This is the same argument as in Lemma 3 of [10], although here we keep track of the Frobenius.
Let F be the G24-module W [G24 ]
W[Q8 ]�

0; thus Equation 3.2 gives a short exact sequence of G24-modules

(3.9) 0! S(F )
 �! S(F )! S(�)! 0 :

In the �rst term, we set the degree of � to be �2 in order to make this an exact sequence of graded modules.
We use the resulting long exact sequence for computations. We may choose W -generators of F labelled x1,
x2, and x3 so that if s is the chosen element of order 3 in G24, then s(x1) = x2 and s(x2) = x3. Furthermore,
we can choose x1 so that it maps to the generator e of � and is invariant under the action of the Frobenius.
Then we have

S(F ) = W [x1 ; x2; x3]

with the xi in degree �2. Under the action of C3 the orbit of a monomial in W [x1 ; x2; x3] has three elements
unless that monomial is a power of �3 = x1x2x3 { which, of course, maps to d. Thus, we have a short exact
sequence

S(F )
tr
�!H�(C3; S(F ))! F9 [b; d]! 0

where b has bidegree (2; 0) and d has bidegree (0;�6). Here b 2 H2(C3;Z3) � H2(C3;W ) is a generator and
W � S(F ) is the submodule generated by the algebra unit. Note that the action of t is described by

t(d) = !6d and t(b) = �b :

The last is because the element t acts non-trivially on the subgroup C3 � G24 and hence on H2(C3;W ).
Similary, since the action of the Frobenius on d is trivial and  acts trivially on C3, we have

 (d) = !3d and  (b) = b :

The short exact sequence (3.9) and the fact that H1(C3; S(F )) = 0 now imply that there is an exact sequence

S(�)
tr
�!H�(C3; S(�))! F9 [a; b; d]=(a

2)! 0 :

The element a maps to
b 2 H2(C3; S0(F )
 �) = H2(C3; �)

under the boundary map (which is an isomorphism)

H1(C3; �) = H1(C3; S1(�))! H2(C3; �);

thus a has bidegree (1;�2) and the actions of t and  are twisted by �:

t(a) = �!2a = !6a and  (a) = !a :

We next write down the invariants EhF
� for the various �nite subgroups F of G24. To do this, we work

up from the symmetric algebra S(�), and we use the presentation of the symmetric algebra as given in the
exact sequence (3.8). Recall that we have written S(F ) = W [x1 ; x2; x3] where the normal subgroup of order
three in G24 cyclically permutes the xi. This action by the cyclic group extends in an obvious way to an
action of the symmetric group �3 on three letters; thus we have an inclusion of algebras

W [�1 ; �2; �3] = W [x1 ; x2; x3]
�3 � S(F )C3 :
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There is at least one other obvious element invariant under the action of C3: set

(3.10) � = x21x2 + x22x3 + x23x1 � x22x1 � x21x3 � x23x2 :

This might be called the \anti-symmetrization" (with respect to �3) of x
2
1x2.

3.4 Lemma. There is an isomorphism

W [�1 ; �2; �3; �]=(�
2 � f) �= S(F )C3

where f is determined by the relation

�2 = �27�23 � 4�32 � 4�3�
3
1 + 18�1�2�3 + �21�

2
2 :

Furthermore, the actions of t and  are given by

t(�1) = !2�1 t(�2) = ��2 t(�3) = !6�3 t(�) = !2�

and
 (�1) = !�1  (�2) = !2�2  (�3) = !3�3  (�) = !3� :

Proof. Except for the action of  , this is Lemma 4 of [10]. The action of  is straightforward

This immediately leads to the following result.

3.5 Proposition. There is an isomorphism

W [�2 ; �3; �]=(�
2 � g) �= S(�)C3

where g is determined by the relation
�2 = �27�23 � 4�32

with the actions of t and  as given above in Lemma 3.4. Under this isomorphism �3 maps to d.

Proof. This follows immediately from Lemma 3.4, the short exact sequence (3.9), and the fact (see the proof
of Lemma 3.3) that H1(C3; S(F )) = 0. Together these imply that

S(�)C3 �= S(F )C3=(�1) :

The next step is to invert the element N of (3.8). This element is the image of �43 ; thus, we are e�ectively
inverting the element d = �3 2 S(�)

C3 . We begin with the observation that if we divide

�2 = �27�23 � 4�32

by �63 we obtain the relation

(
�

�33
)2 + 4(

�2
�23

)3 = �
27

�43
:

Thus if we set

(3.11) c4 = �
!2�2
�23

; c6 =
!3�

2�33
; � = �

!6

4�43
=

!2

4�43

20



then we get the expected relation 4

c26 � c34 = 27� :

Furthermore, c4, c6, and � are all invariant under the action of the entire group G24. (Indeed, the powers
of ! are introduced so that this happens.)

To describe the group cohomology, we de�ne elements

� =
!a

d
2 H1(C3; (S(�)[N

�1])4)

and

� =
!3b

d2
2 H2(C3; (S(�)[N

�1])12)

These elements are �xed by t and  and, for degree reasons, acted on trivially by c4 and c6. The following
is now easy.

3.6 Proposition. 1.) The inclusion

Z3[c4; c6;�
�1]=(c26 � c34 = 27�)! S(�)[N�1]G24

is an isomorphism of algebras over the twisted group ring W [G24 ].
2.) There is an exact sequence

S(�)[N�1]
tr
�!H�(G24; S(�)[N

�1])! F3 [�; �;�
�1]=(�2)! 0

and c4 and c6 act trivially on � and �.

Then a completion argument, as in Theorem 6 of [10] or [18] implies the next result.

3.7 Theorem. 1.) There is an isomorphism of algebras

(E�)
G24 �= Z3[[c

3
4�

�1]][c4; c6;�
�1]=(c26 � c34 = 27�) :

2.) There is an exact sequence

E�
tr
�!H�(G24; E�)! F3 [�; �;�

�1]=(�2)! 0

and c4 and c6 act trivially on � and �.

3.8 Remark. The same kind of reasoning can be used to obtain the group cohomologies H�(F;E�) for
other �nite subgroups of G 2 . First de�ne an element

Æ = ��13 2 S(�)[N�1] :

Then � = (!2=4)Æ4; thus �� has a square root:

(��)1=2 =
!3

2
Æ2 :

4This is the relation appearing in theory of modular forms [2], except here 2 is invertible so we can replace 1728 by 27. There
is some discussion of the connection in [11]. The relation could be arrived at more naturally by choosing, as our basic formal
group law, one arising from the theory of elliptic curves, rather than the Honda formal group law.
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The elements t and  of G24 act on Æ by the formulas

t(Æ) = !2Æ and  (Æ) = !5Æ :

The element (��)1=2 is invariant under the action of t2 and  (whereas the evident square root of � is not
�xed by  ).

Let C12 be the cyclic subgroup of order 12 in G24 generated by s and  . This subgroup has a cyclic
subgroup C6 of order 6 generated by s and t2 =  2. We have

(E�)
C3 �= W [[c34�

�1]][c4; c6; Æ
�1]=(c26 � c34 = 27�)

(E�)
C12 �= Z3[[c

3
4�

�1]][c4; c6; (��)
�1=2]=(c26 � c34 = 27�)

(E�)
C6 �= W 
Z3 (E�)

C12

(E�)
G12 �= W [[c34�

�1]][c4; c6;�
�1]=(c26 � c34 = 27�) �= W 
Z3 (E�)

G24 :

Furthermore, for all these groups, the analogue of Theorem 3.7.2 holds. For example, there are exact
sequences

E�
tr
�!H�(C3; E�)! F9 [�; �; Æ

�1]=(�2)! 0

E�
tr
�!H�(C12; E�)! F3 [�; �; (��)

�1=2]=(�2)! 0

E�
tr
�!H�(C6; E�)! F9 [�; �; (��)

�1=2]=(�2)! 0

E�
tr
�!H�(G12; E�)! F9 [�; �; (��)

�1=2]=(�2)! 0

and c4 and c6 act trivially on � and �.

These results allow one to competely write down the various homotopy �xed point spectral sequences for
computing ��E

hF for the various �nite groups in question. The di�erentials in the spectral sequence follow
from Toda's classical results and the following easy observation: every element in the image of the transfer
is a permanent cycle. We record:

3.9 Lemma. In the spectral sequence

H�(G24; E�) =) ��E
hG24

the only non-trivial di�erentials are d5 and d9. They are determined by

d5(�) = a1��
2 and d9(��

2) = a2�
5

where a1 and a2 are units in F3 .

Proof. These are a consequence of Toda's famous di�erential (see [29]) and nilpotence. See Proposition 7 of
[10] or, again, [18]. There it is done for G12 rather than G24, but because G12 is of index 2 in G24 and we
are working at the prime 3, this is suÆcient.

22



The lemma immediately calculates the di�erentials in the other spectral sequences; for example, if one
wants homotopy �xed points with respect to the C3-action, we have, up to units,

d5(Æ) = Æ�3��2 and d9(�Æ
2) = Æ�6�5:

It is also worth pointing out that the d5-di�erential in Lemma 3.9 and some standard Toda bracket ma-
nipulation (see the proof of Theorem 8 in [10]) implies the relation (��)� = ��3 which holds in �27(E

hG24).
The above discussion is summarized in the following main homotopy theoretic result of this section.

3.10 Theorem. In the spectral sequence

H�(C3; E�) =) ��E
hC3

we have an inclusion of subrings

E0;�
1

�= W [[c34�
�1]][c4; c6; c4Æ

�1; c6Æ
�1; 3Æ�1; Æ�3]=(c34 � c26 = 27�) � E0;�

2 :

In positive �ltration E1 is additively generated by the elements �, Æ�, ��, Æ��, �j , 1 � j � 4 and all
multiples of these elements by Æ�3. These elements are of order 3 and are annihilated by c4, c6, c4Æ

�1, c6Æ
�1

and 3Æ�1. Furthermore the following multiplicative relation holds in �30(E
hC3): Æ3(Æ�)� = a1!

6�3.

For the case of the cyclic group C6 of order 6 generated by s and t2, one note that t2(Æ) = �Æ and
the spectral sequence can now be read o� Theorem 3.10. This also determines the case of C12, the group
generated by s and  . We leave the details to the reader but state the result in the case of G24.

3.11 Theorem. In the spectral sequence

H�(G24; E�) =) ��E
hG24

we have an inclusion of subrings

E0;�
1

�= Z3[[c
3
4�

�1]][c4; c6; c4�
�1; c6�

�1; 3��1;��3]=(c34 � c26 = 27�) � E0;�
2 :

In positive �ltration E1 is additively generated by the elements �, ��, ��, ���, �j , 1 � j � 4 and all
multiples of these elements by ��3. These elements are of order 3 and are annihilated by c4, c6, c4�

�1,
c6�

�1 and 3��1. Furthermore (��)� = ��3 in �30(E
hG24).

3.12 Remark. 1.) Note that EhC3 is periodic of period 18 and that Æ3 detects a periodicity class. The
spectra EhC6 and EhC12 are periodic with period 36 and (��)3=2 detects the periodicity generator. Finally
EhG12 and EhG24 are periodic with period 72 and �3 detects the periodicity generator.

2.) By contrast, the Morava module E�E
hG24 is of period 24. To see this, note that the isomorphism of

(2.7) supplies an isomorphism of Morava modules

E�E
hG24 �= Homc(G 2=G24; E�)

with G 2 acting diagonally on the right hand side. Then G24-invariance of � implies that there is a well
de�ned automorphism of Morava modules given by ' 7! (g 7! '(g)g�(�)).

23



3.) If F has order prime to 3, then ��(E
hF ) = (E�)

F is easy to calculate. For example, using (3.5) and
(3.6) we obtain

��(E
hSD16) = Z3[v1][v

�1
2 ]b � E�

with v1 = u1u
�2 and v2 = u�8 and completion is with respect to the ideal generated by (v41v

�1
2 ). Similarly

��(E
hQ8) = Z3[v1][!

2u�4]b � E�

where completion is with respect to the ideal (v21!
2u4). Note that EhSD16 is periodic of order 16 and EhQ8

is periodic of order 8.

We �nish this section by listing exactly the computational results we will use in building the tower in
section 5.

3.13 Corollary. 1.) Let F � G 2 be any �nite subgroup. Then the edge homomorphism

�0E
hF �! (E0)

F

is an isomorphism of algebras.
2.) Let F � G 2 be any �nite subgroup. Then

�24E
hF �! (E24)

F

is an injection.

Proof. If F has order prime to 3, both of these statements are clear. If 3 divides the order of F , then the
3-Sylow subgoup of F is conjugate to C3; hence ��E

hF is a retract of ��E
hC3 and the result follows from

Theorem 3.10.

3.14 Corollary. Let F � G 2 be a �nite subgroup. If the order of F is prime to 3, then

�1E
hF = 0 :

For all �nite subgroups F ,
�25E

hF = 0 :

Proof. Again apply Theorem 3.10.

3.15 Corollary. Let F � G 2 be any �nite subgroup containing the central element !4 = �1. Then

�26E
hF = 0 :

Proof. Equation 3.5 implies that (E�)
F will be concentrated in degrees congruent to 0 mod 4. Combining

this observation with Theorem 3.10 proves the result.
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4 The algebraic resolution

Let G be a pro�nite group. Then its p-adic group ring Zp[[G]] is de�ned as limU;nZp=(p
n)[G=U ] where U

runs through all open subgroups of G. Then Zp[[G]] is a complete ring and we will only consider continuous
modules over such rings.

In this section we will construct our resolution of the trivial Z3[[G 2 ]]-module Z3. In 1.3 we wrote down
a splitting of the group G 2 as G 1

2 � Z3 and this splitting allows us to focus on constructing a resolution of
Z3 as a Z3[[G

1
2 ]]-module.

Recall that we have selected a maximal �nite subgroup G24 � G 1
2 ; it is generated by an element s of

order three, t = !2, and  = !� where ! is a primitive eighth root of unity and � is the Frobenius. As
before C3 denotes the normal subgroup of order 3 in G24 generated by s, Q8 denotes the subgroup of G24 of
order 8 generated by t and  and SD16 the subgroup of G 1

2 generated by ! and  .
The group Q8 is a subgroup of SD16 of index 2. Let � be the sign representation (over Z3) of SD16=Q8;

we regard � as representation of SD16 using the quotient map. (Note that this is not the same � as in
section 3!) In this section, the induced Z3[[G

1
2 ]]-module

(4.1) � "
G
1

2

SD16

def
= Z3[[G

1
2 ]]
Z3[SD16] �

will play an important role. If � is the trivial representation of SD16, there is an isomorphism of SD16=Q8-
modules

(4.2) Z3[SD16=Q8] �= �� � :

Thus, we have that � "
G
1

2

SD16
is a direct summand of the induced module Z3[[G

1
2=Q8]] = Z3[[G

1
2 ]]
Z3[Q8] Z3.

The following is the main algebraic result of the paper. It will require the entire section to prove.

4.1 Theorem. There is an exact sequence of Z3[[G
1
2 ]]-modules

0! Z3[[G
1
2=G24]]! � "

G
1

2

SD16
! � "

G
1

2

SD16
! Z3[[G

1
2=G24]]! Z3! 0 :

Some salient features of this \resolution" (we will use this word even though not all of the modules are
projective) are that each module is a summand of a permutation module Z3[[G

1
2=F ]] for a �nite subgroup F

and that each module is free over K, where K � G 1
2 is a subgroup so that we can decompose the 3-Sylow

subgroup S1
2 of G 2 as K o C3. Important features of K include that it is a torsion-free 3-adic Poincar�e

duality group of dimension 3. (See before Lemma 4.10 for more on K.)
Since G 2

�= G 1
2 �Z3, we may tensor the resolution of Theorem 4.1 with the standard resolution for Z3 to

get the following as an immediate corollary,

4.2 Corollary. There is an exact sequence of Z3[[G 2 ]]-modules

0! Z3[[G 2=G24]]! Z3[[G 2=G24]]� � "G2SD16
! � "G2SD16

� � "G2SD16

! � "G2SD16
�Z3[[G 2=G24]]! Z3[[G 2=G24]]! Z3! 0 :

As input for our calculation we will use H�(S1
2 ) := H�(S1

2 ; F3 ) = Ext�
Z3[[S12 ]]

(Z3; F3 ), as calculated by the

second author in [13]. This is an e�ective starting point because of the following lemma and the fact that

(4.3) Extq
Z3[[S12 ]]

(M; F3 ) �= TorZ3[[S
1

2
]]

q (F3 ;M)�
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for any pro�nite continuous Z3[[S
1
2 ]]-module M . Here (�)� means Fp -linear dual.

A pro�nite group G is called �nitely generated if there is a �nite set of elements X � G so that the
subgroup generated by X is dense. This is true of all the groups in this paper. If G is a p-pro�nite group
and I � Zp[[G]] is the kernel of the augmentation Zp[[G]]! Fp , then

Zp[[G]] �= lim
n
Zp[[G]]=I

n:

A Zp[[G]]-module M will be called complete if it is I-adically complete, i.e. if M �= limnM=InM .

4.3 Lemma. Let G be a �nitely generated p-pro�nite group and f : M ! N a morphism of complete
Zp[[G]]-modules. If

Fp 
 f : Fp 
Zp[[G]]M ! Fp 
Zp[[G]] N

is surjective, then f is surjective. If

Tor(Fp ; f) : Tor
Zp[[G]]
q (Fp ;M)! TorZp[[G]]

q (Fp ; N)

is an isomorphism for q = 0 and onto for q = 1, then f is an isomorphism.

Proof. This is an avatar of Nakayama's Lemma. To see this, suppose K is some complete Zp[[G]]-module so
that Fp 
Zp[[G]] K = 0. Then an inductive argument shows

Zp[[G]]=I
n 
Zp[[G]] K = 0

for all n; hence K = 0. This is the form of Nakayama's lemma we need.
The result is then proved using the long exact sequence of Tor groups: the weaker hypothesis implies

that the cokernel of f is trivial; the stronger hypothesis then implies that the kernel of f is trivial.

We next turn to the details about H�(S1
2 ; F3 ) from [13]. (See Theorem 4.3 of that paper.) We will omit

the coeÆcients F3 in order to simplify our notation. The key point here is that the cohomology of the group
S1
2 is detected on the centralizers of the cyclic subgroups of order 3. There are two conjugacy classes of such

subgroups of order 3 in S1
2 ; namely, C3 and !C3!

�1. The element s = s1 is our chosen generator for C3;
thus we choose as our generator for !C3!

�1 the element s2 = !s!�1. The Frobenius � also conjugates C3

to !C3!
�1 and a short calculation shows that

(4.4) �s1�
�1 = �s��1 = s22 :

The centralizer C(C3) in S1
2 is isomorphic to C3 � Z3, !� commutes with C(C3) and conjugation by !2

sends x 2 C(C3) to its inverse x�1 (see [10]). In particular, for every x 2 C(C3) we have

(4.5) !x!�1 = �x�1��1 2 C(!C3!
�1) :

Note that C(!C3!
�1) = !C(C3)!

�1. Write E(X) for the exterior algebra on a set X . Then

H�(C(C3)) �= F3 [y1]
E(x1; a1)

and
H�(C(!C3!

�1)) �= F3 [y2]
E(x2; a2) :

We know that C4 (which is generated by !2) acts on

H�(C(C3)) �= F3 [y1]
E(x1; a1)
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sending all three generators to their negative. This action extends to an action of SD16 on the product

H�(C(C3))�H�(C(!C3!
�1))

as follows. By (4.4) and (4.5) the action of the generators ! and � of SD16 is given by

(4.6) !�(x1) = x2; !�(y1) = y2; !�(a1) = a2; ��(x1) = �x2; ��(y1) = �y2; ��(a1) = �a2:

(4.7) !�(x2) = �x1; !�(y2) = �y1; !�(a2) = �a1; ��(x2) = �x1; ��(y2) = �y1; ��(a2) = �a1 :

4.4 Theorem. [13]1.) The inclusions !iC(C3)!
�i ! S1

2 , i = 0; 1 induce an SD16-equivariant homomor-
phism

H�(S1
2)!

2Y
i=1

F3 [yi]
E(xi; ai)

which is an injection onto the subalgebra generated by x1, x2, y1, y2, x1a1 � x2a2, y1a1 and y2a2.
2.) In particular, H�(S1

2) is free as a module over F3 [y1 + y2] on generators 1, x1, x2, y1, x1a1 � x2a2,
y1a1, y2a2, and y1x1a1.

We will produce the resolution of Theorem 4.1 from this data and by splicing together the short exact
sequences of Lemma 4.5, 4.6, and 4.7 below. Most of the work will be spent in identifying the last module;
this is done in Theorem 4.9.

In the following computations, we will write

Ext(M) = Ext�
Z3[[S12 ]]

(M; F3 ) :

This graded vector space is a module over

H�(S1
2) = Ext�

Z3[[S12 ]]
(Z3; F3 ) = Ext(Z3) ;

and, hence is also a module over the sub-polynomial algebra of H�(S1
2) generated by y1+y2. IfM is actually

a continuous Z3[[G
1
2 ]]-module, then Ext(M) has an action by SD16

�= G 1
2=S

1
2 which extends the action by

H�(S1
2) in the obvious way: if � 2 SD16, a 2 H

�(S1
2 ) and x 2 Ext(M), then

�(ax) = �(a)�(x) :

We can write this another way. Let's de�ne Ext(Z3)� F3 [SD16] to be the algebra constructed by taking

Ext(Z3)
 F3 [SD16]

with twisted product
(a
 �)(b
 �) = a�(b)
 �� :

The above remarks imply that if M is a Z3[[G
1
2 ]]-module, then Ext(M) is an Ext(Z3)� F3 [SD16]-module.

This structure behaves well with respect to long exact sequences. If

0!M1 !M2 !M3 ! 0

is a short exact sequence of Z3[[G
1
2 ]]-modules we get a long exact sequence in Ext which is a long exact

sequence of Ext(Z3)� F3 [SD16]-modules. As a matter of notation, if x 2 Ext(Z3) we will write x 2 Ext(M)
if x is the image of x under some unambiguous and injective sequence of boundary homomorphisms of long
exact sequences.
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4.5 Lemma. There is a short exact sequence of Z3[[G
1
2 ]]-modules

0! N1 ! Z3[[G
1
2=G24]]

�
�!Z3! 0

where the map � is the augmentation. If we write z for x1a1�x2a2 2 H
2(S2

1) then Ext(N1) is a module over
F3 [y1+ y2] on generators e, z, y1a1, y2a2, and y1x1a1 of degrees 0, 1, 2, 2, and 3 respectively. The last four
generators are free and (y1 + y2)e = 0. The action of SD16 is determined by the action on Ext(Z3) and the
facts that

!�(e) = �e = ��(e) :

Proof. As a Z3[[S
1
2 ]]-module, there is an isomorphism

Z3[[G
1
2=G24]] �= Z3[[S

1
2=C3]]�Z3[[S

1
2=!C3!

�1]]:

Hence, by the Shapiro Lemma there is an isomorphism

Ext(Z3[[G
1
2=G24]]) �= H�(C3; F3 )�H�(!C3!

�1; F3 )

and the map Ext(Z3) ! Ext(Z3[[G
1
2=G24]]) corresponds via this isomorphism to the restriction map. The

result now follows from Theorem 4.4.

Recall that � is the rank one (over Z3) representation of SD16 obtained by pulling back the sign repre-
sentation along the quotient map " : SD16 ! SD16=Q8

�= Z=2.

4.6 Lemma. There is a short exact sequence of Z3[[G
1
2 ]]-modules

0! N2 ! � "
G
1

2

SD16
! N1 ! 0 :

The cohomology module Ext(N2) is a freely generated module over F3 [y1 + y2] on generators z, y1a1, y2a2,
and y1x1a1 of degrees 0, 1, 1, and 2 respectively. The action of ! is determined by the action on Ext(Z3).

Proof. By the previous result the SD16-module F3 
Z3[[S12 ]] N1 is one dimensional over F3 generated by the
dual (with respect to (4.3)) of the class of e and the action is given by the sign representation along ". Lift
e to an element d 2 N1. Then SD16 may not act correctly on d, but we can average d to obtain an element
c on which SD16 acts correctly and which reduces to the same element in F3 
Z3[[S12 ]] N1; indeed,

c =
1

16

X
�2SD16

"(�)�1��(d) :

This de�nes the morphism

� "
G
1

2

SD16
! N1 :

Lemma 4.3 now implies that this map is surjective and we obtain the exact sequence we need. For the
calculation of Ext(N2) note that we have an isomorphism of S1

2 -modules

� "
G
1

2

SD16

�= Z3[[S
1
2 ]] :

The result now follows from the previous lemma and the long exact sequence.
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4.7 Lemma. There is a short exact sequence of Z3[[G
1
2 ]]-modules

0! N3 ! � "
G
1

2

SD16
! N2 ! 0

where Ext(N3) is a free module over F3 [y1 + y2] on generators y1a1, y2a2, y1x1a1, and y2x2a2 of degree 0,
0, 1 and 1 respectively. In fact, the iterated boundary homomorphisms

Ext�(N3)! Ext�+3(Z3) = H�+3(S1
2 ; F3 )

de�ne an injection onto an Ext(Z3)� F3 [SD16]-submodule isomorphic to Ext(Z3[[G
1
2=G24]]).

Proof. The SD16-module F3 
Z3[[S12 ]] N2 is F3 
Z3 � generated by the class dual to �z. As in the proof the
last lemma, we can now form a surjective map

� "
G
1

2

SD16
! N2 ;

and this map de�nes N3. The calculation of Ext(N3) follows from the long exact sequence.

To make use of this last result we prove a lemma.

4.8 Lemma. Let A = Ext(Z3)� F3 [SD16] and M = Ext(Z3[[G
1
2=G24]]), regarded as an A-module. Then

M is a simple A-module; in fact,
EndA(M) �= F3 :

Proof. Let e1 and e2 in
Ext(Z3[[G

1
2=G24]]) �= H�(C3; F3 )�H�(!C3!

�1; F3 )

be the evident two generators in degree 0. If f :M !M is any A-module endomorphism, we may write

f(e1) = ae1 + be2

where a; b 2 F3 . Then (using the notation of Theorem 4.4) we have

0 = f(y2e1) = by2e2:

Since y2e2 6= 0, we have b = 0. Also, since !�(e1) = e2, we have f(e2) = ae2: Finally, since every homogeneous
element of M is of the from x1y

i
1e1 + x2y

i
2e2, we have f = aidM .

This means that in order to prove the following result, we need only produce a map f : N3 ! Z3[[G
1
2=G24]]

of G 1
2 -modules which induces a non-zero map on Ext groups.

4.9 Theorem. There is an isomorphism of Z3[[G
1
2 ]]-modules

N3
�=
�!Z3[[G

1
2=G24]] :

This requires a certain amount of preliminaries, and some further lemmas. We are looking for a diagram
(see diagram (4.12) below) which will build and detect the desired map.

The �rst ingredient of our calculation is a spectral sequence. Let us write

0! C3 ! C2 ! C1 ! C0 ! Z3! 0
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for the resolution obtained by splicing together the short exact sequences of Lemma 4.5, 4.6, and 4.7:

0! N3 ! � "
G
1

2

SD16
! � "

G
1

2

SD16
! Z3[[G

1
2=G24]]! Z3! 0 :

By extending the resolution C� ! Z3 to a bicomplex of projective Z3[[G
1
2 ]]-modules, we get, for any Z3[[G

1
2 ]]-

module M and any closed subgroup H � G 1
2 , a �rst quadrant cohomology spectral sequence

(4.8) Ep;q
1 = Extp

Z3[[H]](Cq ;M) =) Hp+q(H;M) :

In particular, because E0;q
1 = 0 for q > 3, there is an edge homomorphism

(4.9) HomZ3[[H]](N3;M) = HomZ3[[H]](C3;M)! H3(H;M) :

Dually, there are homology spectral sequences

(4.10) E1
p;q = TorZ3[[H]]

p (M;Cq) =) Hp+q(H;M)

with an edge homomorphism

(4.11) H3(H;M)!M 
Z3[[H]] N3 :

That said, we remark that the important ingredient here is that G 1
2 contains a subgroup K which is

a Poincar�e duality group of dimension three and which has good cohomological properties. The reader is
referred to [27] for a modern discussion of a duality theory in the cohomology of pro�nite groups.

To de�ne K, we use the �ltration on the 3-Sylow subgroup S1
2 = F1=2S

1
2 of G 1

2 described in the �rst
section. There is a projection

S1
2 ! F1=2S

1
2=F1S

1
2
�= F9 :

We follow this by the map F9 ! F9=F3 �= C3 to de�ne a group homorphism S1
2 ! C3; then, we de�ne

K � S1
2 to be the kernel. The chosen subgroup C3 � S1

2 of order 3 provides a splitting of S1
2 ! C3; hence

S1
2 can be written as a semi-direct product K oC3. Note that every element of order three in S

1
2 maps to a

non-zero element in C3 so that K is torsion free.
From [13], we know a good deal about K, some of which is recorded in the following lemma. Let

j : K ! S1
2 denote the inclusion.

4.10 Lemma. The group K is a 3-adic Poincar�e duality group of dimension 3, and if [K] 2 H3(K;Z3) is
a choice of fundamental class, then

j�[K] 2 H3(S
1
2 ;Z3)

is a non-zero SD16-invariant generator of in�nite order. Furthermore, under the edge homomorphism (4.11),
the element j�[K] maps to a non-zero SD16-invariant element in F3 
Z3[[S12 ]] N3.

Proof. The fact that K is a Poincar�e duality group is discussed in [13]; this discussion is an implementation
of the theory of Lazard [16]. We must now address the statements about j�[K]. For this, we �rst compute
with cohomology, and we use the results and notation of Theorem 4.4.

It is known (see Proposition 4.3 and 4.4 of [13]), that the Lyndon-Serre-Hochschild spectral sequence

Hp(C3; H
q(K; F3 )) =) Hp+q(S1

2 ; F3 )
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collapses and that H0(C3; H
q(K; F3 )) is one dimensional for 0 � q � 3; in particular, j� : H3(S1

2 ; F3 ) !
H3(K; F3 ) is onto. Since the composites

H1(C3; F3 )! H1(S1
2 ; F3 )! H1(wiC3w

�i; F3 )

of the ination with the restriction maps are isomorphisms for i = 1; 2, the image of the generator of
H1(C3; F3 ) is some linear combination ax1 + bx2 with both a 6= 0 and b 6= 0. This implies that j�(xiyi) = 0
for i = 1; 2; for example

aj�(x1y1) = j�(y1(ax1 + bx2)) = 0:

But since j� : H3(S1
2 ; F3 ) ! H3(K; F3 ) is onto and H3(S1

2 ; F3 ) is generated by xiyi and aiyi for i = 1; 2 it
is impossible that j�(aiyi) is trivial for both i = 1; 2. Because K is a Poincar�e duality group of dimension 3
we also know that the Bockstein � : H2(K; F3 )! H3(K; F3 ) is zero; hence

j�(a1y1 � a2y2) = j�(�(x1a1 � x2a2)) = 0

and therefore
j�(a1y1) = j�(a2y2) 6= 0 :

This shows that H3(S1
2 ; F3 ) ! H3(K; F3 ) is onto and factors through the SD16-coinvariants, or dually

H3(K; F3 ) ! H3(S
1
2 ; F3 ) is an injection and lands in the SD16-invariants. Furthermore, H3(K; F3 ) even

maps to the kernel of the Bockstein � : H3(S
1
2 ; F3 )! H2(S

1
2 ; F3 ) and the induced map

H3(K; F3 )!
Ker � : H3(S

1
2 ; F3 )! H2(S

1
2 ; F3 )

Im� : H4(S1
2 ; F3 )! H3(S1

2 ; F3 )
�= H3(S

1
2 ;Z3)
Z3 F3

is an isomorphism, yielding that j�[K] is a generator of in�nite order.
To prove the statement on the edge homomorphism we proceed as follows. Consider the spectral sequence

of (4.10):
Torp

Z3[[K]](F3 ; Cq) =) Hp+q(K; F3 ):

We know that C0 = Z3[[G
1
2=G24]] is a free Z3[[K]]-module of rank 2 and C1 = C2 = � "

G
1

2

SD16
are free

Z3[[K]]-modules of rank 3. Since the cohomological dimension of K is 3 we see that N3 is projective as a
Z3[[K]]-module and because the Euler characteristic of K is zero, we obtain

Torq
Z3[[K]](F3 ; N3) �=

�
F3 � F3 ; q = 0
0; q > 0 :

Thus we can use Lemma 4.3 to say that N3 is a free Z3[[K]]-module of rank 2. Since

F3 
Z3[[K]] N3 ! F3 
Z3[[S12 ]] N3

is a surjective morphism of vector spaces of the same dimension (see Lemma 4.7), it must be an isomorphism.
Furthermore,

H3(K; F3 ) �! F3 
Z3[[K]] N3

is an injection. The result now follows from the diagram

H3(K; F3 ) //

j�

��

F3 
Z3[[K]] N3

�=

��
H3(S

1
2 ; F3 )

// F3 
Z3[[S12 ]] N3
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We will use cap products with the elements [K] and j�[K] to construct a commutative diagram for
detecting maps N3 ! Z3[[G

1
2=G24]]. In the form we use the cap product, it has a particularly simple

expression. Let G be a pro�nite group and M a continuous Zp[[G]]-module. If a 2 Hn(G;M) and x 2
Hn(G;Zp) we may de�ne a\x 2 H0(G;M) as follows: choose a projective resolution Q� ! Zp and represent
a and x by a cocycle � : Qn !M and a cycle y 2 Zp
Zp[[G]] Qn respectively. Then � descends to a map

� : Zp
Zp[[G]] Qn �! Zp
Zp[[G]]M

and a \ x is represented by �(y). It is a simple matter to check that this is well-de�ned; in particular, if
y = @z is a boundary, then �(y) = 0 because � is a cocycle. The usual naturality statements apply, which
we record in a lemma. Note that part (2) is a special case of part (1) (with K = G).

4.11 Lemma. 1.) If ' : K ! G is a continuous homomorphism of pro�nite groups, and x 2 Hn(K;Zp)
and a 2 Hn(G;M), then

'�('
�a \ x) = a \ ' � (x):

2.) Suppose K � G is the inclusion of a normal subgroup and M is a G-module. Then G=K acts on
H�(K;M) and H�(K;Zp) and for g 2 G=K, a 2 Hn(K;M), and x 2 H�(K;Zp)

g�(g
�a \ x) = a \ g�(x):

Here is our main diagram. Let i : K ! G 1
2 be the inclusion.

(4.12) HomZ3[[G12 ]]
(N3;Z3[[G

1
2=G24]])

edge //

��

H3(G 1
2 ;Z3[[G

1
2=G24]])

\i�[K]

��
HomZ3[SD16](Z3
Z3[[S12 ]] N3;Z3
Z3[[S12 ]] Z3[[G

1
2=G24]])

ev //

��

H0(G
1
2 ;Z3[[G

1
2=G24]])

��
HomZ3[SD16](F3 
Z3[[S12 ]] N3; F3 
Z3[[S12 ]] F3 [[G

1
2=G24]])

ev // H0(G
1
2 ; F3 [[G

1
2=G24]])

We now annotate this diagram. The maps labelled ev are de�ned by evaluating a homomorphism at the
image of j�[K] under the edge homomorphism

H3(S
1
2 ;Z3)! Z3
Z3[[S12 ]] N3

resp.
H3(S

1
2 ;Z3)! Z3
Z3[[S12 ]] N3 ! F3 
Z3[[S12 ]] N3

of (4.11). By Lemma 4.10, this is an SD16-invariant element and hence we get an element in

(Z3
Z3[[S12 ]] Z3[[G
1
2=G24]])

SD16 :

We now take the image of that element under the projection map from the invariants to the coinvariants
(which in our case is an isomorphism because the order of SD16 is prime to 3)

(Z3
Z3[[S12 ]] Z3[[G
1
2=G24]])

SD16
�=
�!H0(G

1
2 ;Z3[[G

1
2=G24]]) :
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Similar remarks apply to F3 -coeÆcients.
The diagram commutes, by the de�nition of cap product. Theorem 4.9 now follows from the �nal two

Lemmas 4.12 and 4.13 below; in fact, once we have proved these lemmas, diagram (4.12) will then show that
we can choose a morphism of continuous G 1

2 -modules

f : N3 �! Z3[[G
1
2=G24]]

so that
F3 
 f : F3 
Z3[[S12 ]] N3 �! F3 
Z3[[S12 ]] Z3[[G

1
2=G24]]

is non-zero. Then Lemmas 4.7, 4.8 and 4.3 imply that f is an isomorphism.

4.12 Lemma. The homomorphism

\i�[K] : H3(G 1
2 ;Z3[[G

1
2=G24]])! H0(G

1
2 ;Z3[[G

1
2=G24]])

is an isomorphism.

Proof. Recall that we have denoted the inclusion K ! S1
2 by j. We begin by demonstrating that

\j�[K] : H3(S1
2 ;Z3[[G

1
2=G24]])! H0(S

1
2 ;Z3[[G

1
2=G24]])

is an isomorphism. Since the action of C3 on H3(K;Z3) �= Z3 is necessarily trivial we see that [K] is
C3-invariant and Lemma 4.11 supplies a commutative diagram

H3(S1
2 ;Z3[[G

1
2=G24]])

j� //

\j�[K]

��

H3(K;Z3[[G
1
2=G24]])

C3

\[K]

��
H0(S

1
2 ;Z3[[G

1
2=G24]]) H0(K;Z3[[G

1
2=G24]])

C3

j�oo

The morphism \[K] is an isomorphism by Poincar�e duality. As Z3[[S
1
2 ]]-modules, we have

Z3[[G
1
2=G24]] �= Z3[[S

1
2=C3]]�Z3[[S

1
2=!C3!

�1]]

on generators eG24 and !G24 in G
1
2=G24; hence, as K-modules

Z3[[G
1
2=G24]] �= Z3[[K]]�Z3[[K]]

which shows that j induces an isomorphism on H0(�;Z3[[G
1
2=G24]]). We claim that C3 acts trivially on

H0 and thus j� is an isomorphism. In fact, it is clear that the C3-action �xes the coset eG24; furthermore
!C3!

�1 is another complement to K in S1
2 and therefore

C3!C3 � KC3!C3 = S1
2!C3 = K!C3!

�1!C3 � K!C3 ;

and hence the class of !C3 in H0 is also �xed.
In addition, since Hq(K;Z3[[G

1
2=G24]]) = 0 if q 6= 3, the Lyndon-Serre-Hochschild spectral sequence

shows that j� is an isomorphism.
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To �nish the proof, we continue in the same manner. Let r : S1
2 ! G 1

2 be the inclusion, so that
i = rj : K ! G 1

2 . By Lemma 4.10 j�[K] is SD16-invariant and then 4.11 supplies once more a commutative
diagram

H3(G 1
2 ;Z3[[G

1
2=G24]])

r� //

\i�[K]

��

H3(S1
2 ;Z3[[G

1
2=G24]])

SD16

\j�[K]

��
H0(G

1
2 ;Z3[[G

1
2=G24]]) H0(S

1
2 ;Z3[[G

1
2=G24]])

SD16 :
r�oo

We have just shown that \j�[K] is an isomorphism. The map r� sends invariants to coinvariants and,
since the order of SD16 is prime to 3, is an isomorphism. Again, because the order of SD16 is prime to 3
the spectral sequence of the extension S1

2 ! G 1
2 ! SD16 collapses at E2 and therefore the map r� is an

isomorphism. This completes the proof.

4.13 Lemma. The edge homomorphism

HomG1
2
(N3;Z3[[G

1
2=G24]])! H3(G 1

2 ;Z3[[G
1
2=G24]])

is surjective.

Proof. We examine the spectral sequence of (4.7):

Ep;q
1

�= Extp
Z3[[G12 ]]

(Cq ;Z3[[G
1
2=G24]]) =) Hp+q(G 1

2 ;Z3[[G
1
2=G24]])

We need only show that
Extp

Z3[[G12 ]]
(Cq ;Z3[[G

1
2=G24]]) = 0

for p+ q = 3 and q < 3. If q = 1 or 2, then Cq = � "
G
1

2

SD16
. Now � "

G
1

2

SD16
is projective as a Z3[[G

1
2 ]]-module

and therefore Extp
Z3[[G12 ]]

(Cq ;Z3[[G
1
2=G24]]) is trivial for p > 0.

If q = 0, then C0 = Z3[[G
1
2=G24]] and by the Shapiro lemma we get an isomorphism

Ext3
G1
2

(C0;Z3[[G
1
2=G24]]) = H3(G24;Z3[[G

1
2=G24]]) �= H3(C3;Z3[[G

1
2=G24]])

Q8 :

The pro�nite C3-set G
1
2=G24 is an inverse limit of �nite C3-sets Xi and thus we get an exact sequence

0! lim
i

1H2(C3;Z3[Xi])! H3(C3;Z3[[G
1
2=C3]])! lim

i
H3(C3;Z3[Xi])! 0 :

Now each Xi is made of a �nite number of C3-orbits. The contribution of each orbit to H3(C3;�) is trivial
and to H2(C3;�) it is either trivial or Z=3. Therefore limi is clearly trivial and lim1

i is trivial because the
Mittag-Le�er condition is satis�ed.
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5 The tower

In this section we write down the �ve stage tower whose homotopy inverse limit is LK(2)S
0 = EhG2

2 and the

four stage tower whose homotopy inverse limit is E
hG1

2

2 . As before we will write E = E2 and we recall that
we have �xed the prime 3.

To state our results, we will need a new spectrum. Let � be the representation of the subgroup SD16 � G 2

that appeared in (4.1) and let e� be an idempotent in the group ring Z3[SD16] that picks up �. The action
of SD16 on E gives us a spectrum E� which is the telescope associated to this idempotent: E� := e�E.

Then we have an isomorphism of Morava modules

E�E
� �= HomZ3[SD16](�;E�E))

�= HomZ3[SD16](�;Hom
c(G 2 ; E�))

�= HomZ3[[G2 ]](� "
G2

SD16
;Homc(G 2 ; E�)) �= Homc

Z3
(� "G2SD16

; E�) :

We recall that Homc(G 2 ; E�) is a Morava module via the diagonal G 2 -action, and a Z3[SD16]-module via the
translation action on G 2 . The group Homc

Z3
(�;�) is the group of all homomorphisms which are continuous

with respect to the obvious p-adic topologies.
It is clear from (4.2) that E� is a direct summand of EhQ8

2 and a module spectrum over EhSD16

2 . In
fact, it is easy to check that the homotopy of E� is free of rank 1 as a ��(E

hSD16)-module on a generator
!2u4 2 �8(E

hQ8) � ��(E): this generator detemines a map of module spectra from �8EhSD16 to E� which
is an equivalence. From now on we will use this equivalence to replace E� by �8EhSD16 . We note that E�

is periodic with period 16.

5.1 Lemma. There is an exact sequence of Morava modules

0! E� ! E�E
hG24 ! E��

8EhSD16 �E�E
hG24 !E��

8EhSD16 �E��
40EhSD16

! E��
40EhSD16 �E��

48EhG24 ! E��
48EhG24 ! 0 :

Proof. Take the exact sequence of continuous G 2 -modules of Corollary 4.2 and apply Homc
Z3
(�; E�). Then

use the isomorphism E��
8EhSD16 = Homc

Zp
(� "G2SD16

; E�) above and the isomorphisms

E�E
hF �= Homc(G 2=F;E�)

supplied by (2.7) to get an exact sequence of Morava modules

0! E� ! E�E
hG24 ! E��

8EhSD16 �E�E
hG24 !E��

8EhSD16 �E��
8EhSD16

!E��
8EhSD16 �E�E

hG24 ! E�E
hG24 ! 0 :

Finally, we use that �8EhSD16 ' �40EhSD16 because EhSD16 is periodic of period 16 and E�E
hG24 �=

E��
48EhG24 as Morava modules (see Remark 3.12.2).

5.2 Remark. In the previous lemma, replacing �8EhSD16 by �40EhSD16 is merely aesthetic: it empha-
sizes some sort of duality. However, EhG24 and �48EhG24 are di�erent spectra, even though E�E

hG24 �=
E��

48EhG24 . This substitution is essential to the solution to the Toda bracket problem which arises in
Theorem 5.5.

In the same way, one can immediately prove
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5.3 Lemma. There is an exact sequence of Morava modules

0! E�E
hG1

2 ! E�E
hG24 ! E��

8EhSD16 ! E��
40EhSD16 ! E��

48EhG24 ! 0 :

5.4 Theorem. The exact sequence of Morava modules

0! E� ! E�E
hG24 ! E��

8EhSD16 �E�E
hG24 !E��

8EhSD16 �E��
40EhSD16

! E��
40EhSD16 �E��

48EhG24 ! E��
48EhG24 ! 0

can be realized in the homotopy category of K(2)-local spectra by a sequence of maps

LK(2)S
0 ! EhG24 ! �8EhSD16 _ EhG24 ! �8EhSD16 _ �40EhSD16 ! �40EhSD16 _ �48EhG24 ! �48EhG24

so that the composite of any two successive maps is null homotopic.

Proof. The map LK(2)S
0 ! EhG24 is the unit map of the ring spectrum EhG24 . To produce the other maps

and to show that the successive composites are null homotopic, we use the diagram of Proposition 2.7. It is
enough to show that the En-Hurewicz homomorphism

�0F (X;Y )! HomE�E(E�X;E�Y )

is onto when X and Y belong to the set f�8EhSD16 ; EhG24g. (Notice that the other suspensions cancel out
nicely, since EhSD16 is 16-periodic.) Since �8EhSD16 is a retract of EhQ8 , it is suÆcient to show that

�0F (E
hK1 ; EhK2)! HomE�E(E�E

hK1 ; E�E
hK2)

is onto for K1 and K2 in the set fQ8; G24g. Using Proposition 2.6 and the short exact lim-lim1 sequence for
the homotopy groups of holim we see that it is enough to note that (E1)

K = 0 and

�0E
hK ! (E0)

K

is surjective whenever K � K2 \ xK1x
�1. The �rst part is trivial and for the second part we can appeal to

Corollary 3.13.
To show that the successive compositions are zero, we proceed similarly, again using Proposition 2.7, but

now we have to show that various Hurewicz maps are injective. In this case, the suspensions do not cancel
out, and we must show

�0F (E
hK1 ;�48kEhK2)! HomE�E(E�E

hK1 ; E��
48kEhK2)

is injective for k = 0 and 1, at least for K1 of the form G 2 , G24, or Q8 and K2 of the form G24 or Q8. Since
all the spectra involved in Proposition 2.6 are 72-periodic, the lim-lim1 sequence for the homotopy groups
of holim shows one more that it is suÆcient to note that E24k+1 is trivial, that �24k+1(E

hK) is �nite and

(5.1) �24kE
hK ! (E24k)

K

is injective for k = 0 and 1 and K � K2 \ xK1x
�1.

Again the �rst part is trivial while the other parts follow from Theorem 3.10 and Corollary 3.13. Note
that for k = 1 the map in (5.1) need not be an isomorphism.

The following result will let us build the tower.
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5.5 Theorem. In the sequence of spectra

LK(2)S
0 ! EhG24 ! �8EhSD16 _ EhG24 ! �8EhSD16 _ �40EhSD16 ! �40EhSD16 _ �48EhG24 ! �48EhG24

all the possible Toda brackets are zero modulo their indeterminacy.

Proof. There are three possible three-fold Toda brackets, two possible four-fold Toda bracket and one possible
�ve-fold Toda bracket. All but the last lie in zero groups.

Because �8EhSD16 is a summand of EhQ8 , the three possible three-fold Toda brackets lie in

�1F (E
hG2 ; EhQ8 _ �32EhQ8); �1F (E

hG24 ;�32EhQ8 _ �48EhG24); �1F (E
hQ8 _EhG24 ;�48EhG24)

which are all zero by Proposition 2.6, Corollary 3.14 and Corollary 3.15. The most interesting calculation is
the middle of these three and the most interesting part of that calculation is

�1F (E
hG24 ;�48EhG24) �= �25(holimi

Y
G24nGn=Ui)

EhHx) :

This is zero by Corollary 3.14 and Corollary 3.15 (note that the element �1 = !4 2 G24 is in the center of
G 2 and it is in Hx for every x); however, notice that without the suspension by 48 this group is non-zero.

The two possible four-fold Toda brackets lie in

�2F (E
hG2 ;�32EhQ8 _ �48EhG24) and �2F (E

hG24 ;�48EhG24)

We claim these are also zero groups. All of the calculations here present some interest. For example, consider

�2F (E
hG24 ;�48EhG24) �= �26(holimi

Y
G24nGn=Ui)

EhHx) :

where Hx = xUix
�1 \G24. Since the element �1 = !4 2 G24 is in the center of G 2 , it is in Hx for every x

and the result follows from Corollary 3.15 and the observation that �27(E
hKx) is �nite.

Finally, the �ve-fold Toda bracket lies in

�3F (E
hG2 ;�48EhG24) �= �27E

hG24 �= Z=3 :

Thus, we do not have the zero group; however, we claim that the map EhG2 ! EhG24 at the beginning of
our sequence supplies a surjective homomorphism

��F (E
hG24 ;�48EhG24)! ��F (E

hG2 ;�48EhG24) :

This implies that the indeterminancy of the �ve-fold Toda bracket is the whole group, completing the proof.
To prove this claim, note the EhG2 ! EhG24 is the inclusion of the homotopy �xed points by a larger

subgroup into a smaller one. Thus Proposition 2.6 yields a diagram

F (EhG24 ; EhG24) //

'

��

F (EG2 ; EhG24)

'

��
E[[G 2=G24]]

hG24 // E[[G 2=G 2 ]]
hG24

' // EhG24

and the contribution of the coset eG24 in E[[G 2=G24]]
hG24 shows that the horizontal map is a split surjection

of spectra.
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The following result is now an immediate consequence of Theorems 5.4 and 5.5:

5.6 Theorem. There is a tower of �brations in the K(n)-local category

LK(2)S
0 // X3

// X2
// X1

// EhG24

�44EhG24

OO

�45EhG24 _ �37EhSD16

OO

�6EhSD16 _ �38EhSD16

OO

�7EhSD16 _ ��1EhG24

OO

Using Lemma 5.3 and the very same program, we may produce the following result. The only di�erence
will be that the Toda brackets will all lie in zero groups.

5.7 Theorem. There is a tower of �brations in the K(n)-local category

EhG1
2

// Y2 // Y1 // EhG24

�45EhG24

OO

�38EhSD16

OO

�7EhSD16

OO
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