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 0.1. The Theorem. This paper is concerned with the algebraic K-theory and
 cyclic homology of simplicial rings. It relies heavily on two earlier papers [GI]
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 348 THOMAS G. GOODWILLIE

 and [G2]. The main result is the following:

 MAIN THEOREM. Suppose f: R -4 S is a homomorphism of simplicial rings

 such that the induced ring homomorphism 7TOR -4 7S is a surjection with
 nilpotent kernel. Then rationally the relative algebraic K-theory is the same as

 the relative cyclic homology:

 Kn(f) ? Q = HCn-1(f) ? Q.
 A simplicial ring is a simplicial object in the category of (associative) rings

 (with 1). The K-theory K*R of a simplicial ring is defined as in [WI]. The

 relative K-groups K*(f) are defined so as to fit into an exact sequence

 ... -4K*R -4K*S 4K*f -4K*-,R -... .
 The cyclic homology HC*R of a simplicial ring is defined by a straightforward

 generalization of one of the usual definitions for ordinary (discrete) rings. The

 relative groups HC*f are defined so as to fit into an exact sequence

 ... -HC*R -HC*S -HC*f -HC*1R- ....
 From a philosophical viewpoint the theorem may be compared with the

 result of Loday and Quillen [L-Q] and Tsygan [T] which asserts that, just as

 K*(R) ? Q is the primitive part of the Hopf algebra H*(GL(R);Q),
 HC*-l(R) ? Q is the primitive part of the Hopf algebra H*(lt(R ? Q);Q).
 From a practical viewpoint the theorem may be viewed as a computation in

 K-theory, since in general algebraic K-theory is much harder to compute than

 cyclic homology.

 Even for those interested in rings (as opposed to simplicial rings) the

 theorem has some content, since any ring can be viewed as a constant simplicial

 ring. The theorem provides a rational computation of the relative K-theory

 associated with any nilpotent ideal.

 Perhaps more interesting is the application to Waldhausen's algebraic

 K-theory of topological spaces (and hence to pseudoisotopy theory). For the

 simplicial group ring ZG of a simplicial group G, both algebraic K-theory and
 cyclic homology have geometric interpretations in terms of the classifying space

 X = BG. On the one hand K*ZG is rationally isomorphic to * A(X) ? Q (see
 [W2], Corollary 2.3.8. and Theorem 2.2.1). On the other hand HC*ZG is
 isomorphic to the homology of the space

 A (X) x E SO(2)
 SO(2)

 where A(X) (the "free loop space" of X) is the space of all continuous maps

 S1 X and the group SO(2) acts on A X in the obvious way (see [G1], Theorem
 V.1.1. or [Bu5], Theorem A). This leads to the corollary below. One proves it first

This content downloaded from 128.151.13.228 on Wed, 26 Apr 2023 18:35:43 UTC
All use subject to https://about.jstor.org/terms



 RELATIVE ALGEBRAIC K-THEORY 349

 in the case when X -4 Y is the map BG -4 BH induced by a 1-connected
 homomorphism G H of simplicial groups; then more generally for any 2-
 connected map X Y of path-connected pointed spaces, using the natural weak
 equivalence between such a space and the classifying space of its Kan loop

 group, and finally in the general case by noting that both A( X) and
 H *( A(X) X SO(2) E S0(2)) are additive with respect to disjoint union.

 COROLLARY. If X -4 Y is any 2-connected map of spaces, then

 7r*(A(X) A(Y)) ? Q

 H*1(A(X) X ES0(2) -1 A(Y) X ESO(2);Q).
 SO(2) SO(2)

 0.2. History. For discrete rings it seems that Soule [So] had the first result

 of this kind. He computed the rational relative K-theory of the map 9dk[E] -9
 where Ok is the ring of integers in a finite extension field k of Q and

 Ok[l = (9k[x]/(x2) is the ring of dual numbers.
 For simplicial rings and applications to A(X) the story begins with work of

 Dwyer, Hsiang, and Staffeldt [D-H-Stl]. They considered the problem of com-
 puting the "reduced" rational Waldhausen K-theory 7T * - A(X) ? Q-
 7T*(A(X) -- A(*)) ? Q of a 1-connected space X, and succeeded in re-
 ducing this to an algebraic problem. They also had similar success with

 7T*(A(X) -) A(K(7r, 1))) ? Q, when 7T = 7T1X was a finite group [D-H-St2].
 Hsiang and Staffeldt [H-Stl][H-St2] then solved the algebraic problem for many
 1-connected spaces. Burghelea [Bul], [Bu2], [Bu3] also had some overlapping
 results at about the same time.

 Meanwhile some (unpublished) work of mine on relative pseudoisotopy
 theory, in which the subject was approached directly and not through A(X) or
 any kind of K-theory, indicated that 7T *( A( X) - A( Y)) ? Q should be accessi-
 ble to computation for any 2-connected map of spaces X -4 Y, with no
 restriction on the fundamental group 7rTX = 7T1Y.

 The subject received new impetus when Connes' cyclic homology appeared
 on the scene. It was clear to a number of people that this was a powerful new
 tool which should prove useful in organizing one's computations. Staffeldt [Stl],
 generalizing the result of Soule, proved that

 K*(R -k)? Q = HC*-L(R 9K) ? Q

 when R is a ring, I C R a nilpotent ideal, and Ok R/I the ring of integers in
 a number field. (More precisely he obtained a natural isomorphism of associated
 graded objects.) Burghelea [Bu4], [Bu5] proved the special case of our Main

 Theorem which is required for applications to r*XA(X) ? Q of 1-connected
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 350 THOMAS G. GOODWILLIE

 spaces X, namely the case of (certain) maps R -* Z where R is a simplicial ring
 with 7roR _ Z. At about the same time Staffeldt [St2] independently proved a
 closely related theorem: If X is 1-connected then 7T* A(X) ? Q is dual to
 HC*(.Yf) where ., is a minimal model (or any model) for the rational homotopy
 type of X.

 All of these relative K-theory computations applied only to certain special
 kinds of homomorphisms R -* S of rings or simplicial rings. In particular S. or
 its component ring 7T* S, was never allowed to be very different from Z; it was
 always either a ring of algebraic integers or the group ring of a finite group. The
 reason for this restriction was that one needed to calculate the homology of the
 group GL(S) with coefficients in various representations, especially the adjoint
 representation V = M(I ? Q) associated with an S-bimodule I, in terms of
 homology with constant coefficients. To do so one appealed to work of Borel
 which strongly used the arithmetic nature of S.

 In our Main Theorem the restrictions on S are completely removed.
 Accordingly the most important new ingredient here is a new and more general
 method for computing H*(GL(S); V). The method was introduced in [G2],
 where it was applied to adjoint representations only. In Section IV.3 of the
 present paper it is extended to tensor products and exterior powers of adjoint
 representations. (This more general case was not included in the paper [G2]
 because when that was being written we did not think we would need it here;
 see Remark 2 in 0.4 below.)

 0.3. The Proof. Here is an outline of the proof of the Main Theorem.
 In order to relate K * to HC*-1 we introduce another series of groups

 HC-. While HC*(R) is defined as the homology of the "positive half" of a
 certain 2-periodic double chain complex and HP*(R) ("periodic homology,"
 denoted HCI7(R) in [GI]) is the homology of the entire double complex,
 HC- (R) is the homology of the negative half. The homology of the "axis" where

 the two halves meet is the Hochschild homology H*(R). These four kinds of
 homology groups fit together in a diagram (with exact rows)

 /3

 HC*-* HCH -* HP* -* HC *

 (0.3.1) jT

 B I S

 HC*-l -4 H* -4 HC* -* HC* 2

 Since HC- is neither periodic (like HP*) nor bounded below (like H* and
 HC*), it is in some ways the least appealing of these four homology functors.
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 RELATIVE ALGEBRAIC K-THEORY 351

 Nevertheless it has its uses. In fact it comes equipped with natural maps

 K*(R) - HC- (R) HC J1(R)

 and similarly in the relative case with "f" instead of "R". We tensor with Q in
 the following sense:

 K*(f) ? Q-HC- (f Q)4 HC*_1(f C Q)

 (it is important to write "?Q" outside the bracket on the left and inside the
 bracket in the center; on the right side it may be written inside or outside). Then
 assuming that f satisfies the hypothesis of the Main Theorem we prove that
 aQ( f) and 13Q( f) are isomorphisms.

 In the case of 13Q(f) this is relatively easy, given [GI]. The map /3 is part of
 the upper exact sequence in 0.3.1., so that an equivalent assertion is that
 HP *(f) = 0 when f is a map of simplicial Q-algebras satisfying the hypothesis
 of the Main Theorem. This follows easily from the results of [GI].

 The case of aQ(f) is more involved. First a must be defined. We define a
 in Section II so as to make the diagram commute

 HC-

 K* - .H*

 where 7T is as in 0.3.1 and X is Dennis' trace map from K-theory to Hochschild
 homology [I]. The construction of a uses the method of acyclic models. (See,
 however, Remark 1 in 0.4 below.)

 Having defined aQ(f), we prove that it is an isomorphism (assuming the
 hypothesis). The first step is to reduce (rather easily) to the special case of a
 quotient map R -* R/I of simplicial rings with 12 = 0. The second is to reduce
 further to the case of a split surjection of discrete rings R -4 R/I = S where
 12 = 0 and I is a free S-bimodule. This step uses a lemma (proved in I.2) to the
 effect that the relative K-theory of a square-zero simplicial ideal can be com-
 puted "dimensionwise". These two reductions are carried out in Section III.

 Finally in Section IV we compute relative rational K-theory in this very
 special case and check that aQ(f) is an isomorphism. The computation uses the
 fact that (in this case) the rational homology of fiber (BGL(R)+ -4 BGL(S)+) is
 the same as the GL(S)-coinvariant part of the rational homology of
 fiber (BGL(R) -* BGL(S)). This in turn uses the computation of

This content downloaded from 128.151.13.228 on Wed, 26 Apr 2023 18:35:43 UTC
All use subject to https://about.jstor.org/terms



 352 THOMAS G. GOODWILLIE

 0.4. Miscellaneous Remarks. (1) Hood and Jones ([J], [HJ]) have also

 defined a map from K * to HC-, by refining a construction of Connes and

 Karoubi [Kar]. They prove that is is multiplicative with respect to a product

 structure which they define on HC. It can be shown that their map (they call it

 a Chem character) coincides with our a; in effect, they have written down a

 natural chain map a(G) satisfying our Lemma II.3.2 below.

 (2) The Main Theorem, or even the main result of [G2], can be used to

 compute rational stable K-theory (see [Kas] for the definition). One obtains

 Ks (R; I) X Q - H*(R; I) X Q

 for any ring R and bimodule I. (Here H*(;) is Hochschild homology with

 coefficients.) On the other hand it is relatively easy to show (by the computation

 in IV.2. below) that "stable cyclic homology" (with the evident definition) is

 rationally given by the same formula:

 HCs*-1(R; I) ? Q H*(R; I) ? Q.

 There was an earlier plan for proving the Main Theorem. The idea was to use

 the "calculus of functors" to obtain the theorem from the fact that rational

 K-theory and rational cyclic homology have the same stabilization (or rather

 from the fact that there are maps

 K*( ) 0 Q -+HC- (O$Q) +-HC*-,(oQ)

 inducing isomorphisms of stabilizations). This plan was abandoned because it

 apparently required the stronger hypothesis: f is a 1-connected map of simplicial
 rings.

 (3) I am very grateful to Paul Selick for pointing out a significant error in a
 preprint of [G2]. (I forgot to thank him in print at the time.)

 I. Preliminaries

 I.1. Simplicial Tools. We begin by recalling or proving some facts concern-

 ing simplicial and multisimplicial sets, simplicial spaces, and simplicial and

 multisimplicial objects in various algebraic categories, namely rings, groups,

 monoids, abelian groups and modules or bimodules over a fixed ring. By the
 homotopy groups of such an object we mean the homotopy groups of the

 realization of the underlying pointed (multi) simplicial set. A map of, say,

 simplicial rings is called k-connected if the map of realizations is k-connected,

 i.e. if it induces a surjection in vi for i < k and an injection in gi for i < k for all
 basepoints. An oc-connected map is called an equivalence.
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 RELATIVE ALGEBRAIC K-THEORY 353

 I. 1.1. Simplicial Abelian Groups. A simplicial abelian group A =

 { AP Ip 2 0} gives rise to two chain complexes, the non-normalized complex
 Ch(A) given by

 Chp(A) = AP,
 p

 da = E (- 1)1dia, a e ChP(A)
 i=O

 and the normalized complex N(A). The latter can be viewed either as the
 quotient of Ch(A) by the subcomplex generated by degenerate simplices, or as
 the subcomplex

 p

 Np(A) = nfker(d i: Ap AP-J.
 i=1

 The subcomplex is a direct summand and has the same homology as Ch(A). The
 functor N is an equivalence of categories from simplicial abelian groups to chain
 complexes. (See [DP], 3.6.) The homology groups of Ch(A) or of N(A) are
 naturally isomorphic to the homotopy groups of A. (See [L], VII.5.2.)

 I.1.2. Multisimplicial Objects. If a simplicial object in a category W is a
 contravariant functor from A to W then an r-multisimplicial object is a con-
 travariant functor from the product of r copies of A to W. It may be described as
 a collection of objects

 PI, , Pr p pj - 0

 and morphisms

 s:X.Pi, Pr Pi 1 ? Pj r P r (0 < i p1j

 s!: X pliiPr XP1X I j }P < j < r, 0 < i < p;

 satisfying certain identities. Associated with a multisimplicial object X is its
 diagonal simplicial object Diag(X), the composition with the diagonal inclusion
 of A into the product A X ... X A. A basic fact about multisimplicial sets is that
 several kinds of "realization" are naturally homeomorphic, including the realiza-

 tion of the diagonal. (See [Q], p. 94, lemma, for a precise statement and proof in
 the bisimplicial case.)

 Observe that any permutation 4 of 1, . . ., r } gives a way of making the
 r-multisimplicial object X into a new object of the same kind

 VP {X0.p= {X~pp.pp The new o c h Pr) (t( Ps), n s tPr)l

 The new object has the same diagonal as the old.
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 354 THOMAS G. GOODWILLIE

 I.1.3. Simplicial Spaces. We will need the following fact. Suppose X -4 Y
 is a map of simplicial spaces and Y is pointed. We can take homotopy fibers and
 then realize, or we can realize and then take the homotopy fiber. There is an
 evident map of spaces

 || {fiber (Xp 4Yp ) } |fiber(I IX 1 - 11 Yl I),
 where is the realization as in [Se]. The fact is that this is an equivalence if all
 the spaces Xp and Yp are 0-connected. This follows from [B-F], Theorem B.4,
 p. 121.

 A related but easier statement is that if a map X -* Y of simplicial spaces is

 such that each Xp Yp is an equivalence then the map of realizations
 II X 11 11 YII is an equivalence. ([Se], Prop. A. 1.).

 Both of these statements have obvious analogues involving bisimplicial sets
 instead of simplicial spaces.

 I.1.4. Multisimplicial Abelian Groups. An r-multisimplicial abelian group
 A determines a multigraded chain complex Ch(A) in an obvious way; the chain
 groups are

 Ch.(A)= f AP pI
 -i = 1Pj= nr

 and the boundary of a E API P is
 r Pi

 da = , (- i) , (-j1)1dria with p(j) = Pj.
 j=1 i=O k<j

 In view of the result stated in 1.1.1 it is not surprising that Ch(A) has the same

 homology as Ch(Diag(A)). In fact a natural quasi-isomorphism from Ch(A) to
 Ch(Diag(A)) is given by a sort of "shuffle" formula. (For details in the case
 r = 2 see [D-P], p. 217.) Also, for any ) C Er the diagram of chain complexes

 shuffle

 Ch(A) Ch(Diag(A))

 shuffle i1
 Ch(AO) Ch(Diag(AO))

 commutes, where the left-hand arrow sends

 A ,(P ) * f.(Pr) C Ch.p;(A)

 to

 A. c Ch (A()
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 RELATIVE ALGEBRAIC K-THEORY 355

 by the sign (- 1)PJPk, the sum being taken over all j and k such that j < k and

 0(j) > 0(k).

 1.1.5. Simplicial Rings and Chain Rings. Let R be a simplicial ring. In

 particular R is a simplicial abelian group and so gives rise to a chain complex

 Ch(R) as in 1.1.1. Write R X R for the simplicial abelian group { Rp X R }) and
 R1X1 R for the bisimplicial abelian group { R, ? Rq }. With the convention that
 a tensor product of chain complexes (X, d) and (Y, d) has boundary map

 d(x (? y) = dx (? y + (- i)Px (? dy, x E Xp y E Yq,

 we have maps of chain complexes

 shuffle

 Ch(R) ? Ch(R) = Ch(RF[]R) ICh(Diag(R[Xj]R))

 = Ch(R ? R) -- Ch(R),

 the last map being induced by the multiplication in R. This multiplication in

 Ch(R) is associative and has a unit 1 E Cho(R); we say that Ch(R) is a chain
 ring (or a chain algebra over Z). The homology of the underlying chain complex
 of a chain ring is always a graded ring. In the case at hand we have

 HnCh(R) gn(R) by 1.1.1.

 1.1.6. Free Resolutions. The following discussion applies equally to any of

 the algebraic categories mentioned at the beginning of 1.1; we use rings as an

 example.

 The forgetful functor G from rings to sets has a left adjoint F. Call a ring

 "free" if it is isomorphic to F(S) for some set S. Call a simplicial ring R = { Rp })

 "free" if (i) each ring Rp is free and (ii) bases for the R can be chosen in such a

 way that every degeneracy map Rp -- RP+1 carries the basis into the basis.
 To any simplicial ring R one can functorially associate a free simplicial ring

 (R and a natural equivalence (R -- R. This can be done either by "attaching
 cells" (as in the proof of the lemma below) or as follows.

 Given any ring R, form the augmented simplicial ring.

 R *- FGR (FG)2R +- (FG)3R...

 with face maps defined by the adjunction FG -> 1 and degeneracies defined by

 the adjunction 1 -- GF. View this as a map from a simplicial ring OR =
 { ( FG) P + 'R } to the (constant) simplicial ring R. It is an equivalence (that is, the
 underlying map of simplicial sets is an equivalence) because after applying the
 functor G to the augmented simplicial object above one has an "extra degener-
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 356 THOMAS G. GOODWILLIE

 acy." More generally if R = { Kq } is a simplicial ring then the procedure above
 yields a bisimplicial ring { (FG) P +?R q } with an equivalence to the bisimplicial
 ring { Rq }. Passing to diagonals yields an equivalence of simplicial rings (R =
 {(FG)P +'R} -- R, with (DR free.

 1.1.7. A Lemma. Recall that a CW-complex, or a simplicial set, is called
 "k-reduced" if its (k - 1) skeleton is a point. Of course k-reduced implies
 (k - 1)-connected, and conversely it is usually possible to replace a (k - 1)-
 connected object by an equivalent k-reduced object. We will need to be able to
 do this for simplicial ideals in the following sense.

 LEMMA. Suppose I C R is a (k - 1)-connected simplicial ideal in a simpli-
 cial ring. Then there exist a simplicial ring S, a k-reduced ideal J C S, and a map

 (S, J) -- (R, I) of simplicial ring-ideal pairs such that both S -- R and J -> I
 are equivalences.

 Proof (This is just like the proof of IV.2.3 in [G1], except that there we had
 chain rings instead of simplicial rings and k was zero.) We will inductively prove
 a sequence of statements

 A(- 1), B(O), A(O), B(1), A(1),.

 A( n): There exist a simplicial ring-ideal pair (S(n), J(n)) with J(n) k-reduced
 and a map (S(n), J(n)) -- (R, I) such that the maps J(n) -- I and
 S(n)/J(n) -- R/I are both n-connected (and hence the map S(n) -> R is
 n-connected as well).

 B(n): There exist a simplicial ring-ideal pair (S'(n), J'(n) -> (R, I) with J'(n)
 k-reduced such that S'(n) -- R is n-connected and J'(n) -- I is (n - 1)-
 connected (and hence S'(n)/J'(n) -- R/I is n-connected).

 First observe that for A( - 1) we can take (S( - 1), J( - 1)) = (Z, 0).
 Now assume A(n - 1). Make S'(n) by "attaching n-cells" to S(n-1) to kill

 the relative homotopy group vn(S(n - 1) -- R). That is, for each relative
 homotopy class pick a representative diagram of simplicial sets

 dAn GS(n - 1)

 II!
 A n GR

 (this is possible because simplicial abelian groups are fibrant simplicial sets), and
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 RELATIVE ALGEBRAIC K-THEORY 357

 put these all together to make a diagram of simplicial sets

 HdA n GS(n - 1)

 1 1
 HJL An GR

 This corresponds to a diagram of simplicial rings

 F(Hdln) --S(n - 1)

 1~ 1
 F(H An) -->R

 Let S'(n) be the pushout in this square. It comes with a map to R. The map is
 n-connected, as one sees by examining the sequence of homotopy groups

 *Tn(S(n - 1) -- S'(n)) g n(S(n - 1) -- R) -- 7tn(S'(n) -- R)...

 using the hypothesis A(n - 1), and noting that S'(n) contains S(n - 1) and has

 the same (n - 1)-skeleton as S(n - 1) and that a is surjective. Let J'(n) C S'(n)
 be the smallest simplicial ideal which contains J(n - 1). Then J'(n) is mapped

 into I. Since J'(n) has the same (n - 1)-skeleton as J(n - 1) another exact
 sequence argument shows that J'(n) -* I is (n - 1)-connected. Clearly J'(n) is
 k-reduced if J( n - 1) was.

 Next assume B(n). If n < k then take (S(n), J(n)) = (S'(n), J'(n))
 and check A(n); the n-connectedness of J(n) -> I is automatic because both I
 and J(n) are (k - 1)-connected and hence n-connected. If n 2 k then attach
 n-cells as before, except this time attach them to S'(n) using representatives for

 n(j'(n) 1- I). Call the pushout S(n) and let J(n) be the simplicial
 ideal generated by J'(n) and the attached cells. Then we have a map

 (S(n), J(n)) -- (R, I). The induced map S(n)/J(n) -R /I is n-connected
 because S(n)/J(n) = S'(n)/J'(n). By an exact sequence argument using J'(n) J( n)
 one sees that J(n) I is n-connected.

 Finally take S and J to be the increasing unions U nS(n) and U n1J(n). LI

 1.1.8. Simplicial Groups and Monoids. If G is a simplicial group, or more

 generally a simplicial monoid, then BG is the diagonal of the bisimplicial set
 which results from applying the standard nerve construction to G in each

 simplicial dimension. The basic fact that I G I is equivalent to 2 1 BG I for a
 simplicial group G fails for general monoids. However, it holds if G is a
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 group-like simplicial monoid, i.e. if the monoid 'io(G) is a group. (This follows
 for example from [B-F], Theorem B.4, by consideration of a diagram

 Gq EpGq =Gq

 * ~*BpGq =GP

 of bisimplicial sets.)

 Using this fact we can functorially construct a simplicial group equivalent to
 a given grouplike simplicial monoid, as follows. Let (DG be the free resolution of

 the simplicial monoid G as in 1.1.6., so that there is an equivalence of simplicial
 monoids

 G +-DG.

 Let (KDG) be the simplicial group obtained from 1G by adjoining inverses. If G
 is grouplike then the natural map

 'G -- (FG)
 is also an equivalence. In fact, for this it suffices to prove that

 B(DG -- B((G)

 is an equivalence, and this follows from the simple fact that if F is a free
 (discrete) monoid then BF -- B(F) is an equivalence.

 1.2. Algebraic K-theory of Simplicial Rings.

 Let MJ(R) be the "ring of n X n matrices" over the simplicial ring R,
 i.e. the simplicial ring defined by applying the functor Mn (from rings to rings) in
 every simplicial dimension. Considered as a simplicial set it is the product of n2
 copies of R. Its graded ring of homotopy groups is

 V*Mn(R) = Mn(V * R).

 In particular Mn preserves equivalences: If a map R -- S of simplicial rings is an

 equivalence then so is the induced map MnR -- MnS. Let M(R) be UnMn(R),
 a simplicial ring-without-i.

 Following Waldhausen [WI], define the "space of matrices invertible up to
 homotopy" GL(R). Namely, define the simplicial monoid GLn(R) by the pull-
 back diagram

 1 1.
 GLn(r0R) > Mn(n0R)
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 and let GL(R) be the increasing union U ,GL(K(R). Notice that 'noGL(R)=
 GL('n,,R), while for i > 0, CiGL(R) = M(niR). In particular the functor GL
 preserves equivalences.

 The simplicial monoid GL(R) is grouplike, so the classifying space BGL(R)

 is a delooping of it (I.1.8). The K-groups of R are defined as the homotopy

 groups of the plus construction vi BGL(R) '.
 It is convenient to make BGL(R) ', and not just its homotopy groups,

 functorial in R. One way to do this is to use Volodin's construction of K-theory.
 Thus for each partial ordering a of the set { 1,..., n }, introduce the simplicial

 group of " triangular" matrices T0(R) C GLn(R) C GL(R);

 T"(R), = Ta(R,) =X ( GLn(R,)IXi = 8ij unless i < j.
 Let X(R) = U0BT0(R) C BGL(R). One sees that X(R) is connected and that

 7r1X(R) = limvriBTa(R) = limvroTa(R) = limTa( n.0R)

 = 77T1X(7T0oR) = St(no RK),

 the Steinberg group of 'vmR. In particular the image of 'n1X(R) in Vr1BGL(R) =

 GL(7,,R) is the commutator subgroup E(TOR). According to [Su] each X(Rp) is
 acyclic, and it follows easily that X(R) is acyclic. Therefore the quotient map

 BGL(R) -- BGL(R)/X(R) is a plus construction. Furthermore the square

 X(R) BGL(R)

 .11
 * -*BGL(R)/X(R)

 is homotopy-cartesian.

 Definition. For any simplicial ring R, K(R) is the pointed simplicial set

 BGL(R)/X(R). For i ? 1, Ki(R) is the abelian group nTi K(R). For any map
 f: R -> S of simplicial rings and for i ? 2, Ki(f) is the abelian group

 Ti( K(R) -- K(S)) = iri _1(fiber(K(R) -- K(S))).

 Remarks. (1) K1(R) = (voGL(R))ab = K1(voKR).
 (2) The fact that K(R) has a natural H-space structure ([W2], Theorem

 2.3.2.) insures that K2(f) is abelian.
 (3) There is an evident long exact sequence

 *- K2(S) -- K2(f KJ() -- K1(S)
 for any f: R -- S.

 (4) In general, of course, the map K1(R) -- K1(S) is not surjective. One can
 extend the exact sequence to the right if necessary, setting Ki(R) = Ki(voR) for
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 i < 0, but that need not concern us here because we will only consider Ki(f) in
 cases where f induces a surjection iro(R) -- O(S) with nilpotent kernel, and
 hence a surjection K1(R) -- K1(S).

 1.2. 1. LEMMA. Iff: R -- S is a k-connected map of simplicial rings, k > 1,
 then the map K(R) -- K(S) is (k + 1)-connected. In particular the functor K
 preserves equivalences.

 Proof. [WI], Prop. 1.1. 0

 In general it is not true in any sense that the K-theory of a simplicial ring R
 is determined by the K-theory of the discrete rings RK. However, in certain
 relative cases there is a true statement of this kind (Lemma 1.2.2. below). Before
 stating and proving it we will show that K(R) can in any case be compared with

 something which is built out of the K(Rp)'s.
 Let R be a simplicial ring. For each p ? 0 let RAP be the following

 simplicial ring. As a simplicial set it is defined by the universal property

 Map(X, RAP) = Map(AP x X, R)

 (in particular its q-simplices are the simplicial maps AP x A" -* R). The ring
 structure is the obvious one. As p varies, the simplicial rings RnP constitute a

 bisimplicial ring. There is a map R -- RAP of simplicial rings (induced by
 AP- point) and as p varies this gives a map

 {R} # {RAP}

 of bisimplicial rings, where the first one is "constant in the p-direction."
 Reversing the roles of the two simplicial directions and using the evident

 isomorphism (RAP )q _ (R~q)p one obtains another map of bisimplicial rings

 {Rp} -- {RAP}

 where this time the first is "constant in the q-direction." We thus have for each

 p -a diagram of simplicial rings (and taking all p at once a diagram of bisimplicial
 rings)

 R p* RAP +R.
 Notice that the arrow on the right is an equivalence for each p. The arrow on the

 left does not have this property, but at least it is an equivalence of bisimplicial
 rings, since it differs from the right-hand arrow only by interchanging the
 simplicial directions.

 Now apply the functor K to obtain

 K(Rp) -- K(RAP) *- K(R)

This content downloaded from 128.151.13.228 on Wed, 26 Apr 2023 18:35:43 UTC
All use subject to https://about.jstor.org/terms



 RELATIVE ALGEBRAIC K-THEORY 361

 a diagram of simplicial sets for each p, and in all a diagram of bisimplicial sets.
 The arrow on the right becomes an equivalence after realization (since this is so
 even with p fixed), but this is usually false for the other arrow.

 The lemma that we need is concerned with the following relative situation.
 Let R -- S be a map of simplicial rings. It determines maps of simplicial spaces,
 given in dimension p by

 fiber(IK(R,)l - IK(S,)I) fiber(jK(R,"P)j --> K(S,"P)j)

 fiber(IK(R)l --> K(S)J).
 (Here "fiber" denotes homotopy fiber.) Of course the arrow on the right is an
 equivalence for each p.

 1.2.2. LEMMA. If R -> S is a surjection of simplicial rings whose kernel I
 satisfies 12 = 0, then the map of simplicial spaces

 {fiber(IK(Rp)I -- IK(Sp)I) }-, {fiber(IK(RAP)I -- IK(SAP)I)}

 is an equivalence (i.e. is an equivalence after realization).

 Proof By 1.1.3 it will suffice if the square of bisimplicial sets

 K(Rp) K(RAP)

 I1 I
 K(Sp) K(SAP)

 is homotopy-cartesian, i.e., becomes homotopy-cartesian after (total) realization.
 Using the equivalence S2IK( )I - fiber(IX( )I -- IBGL( )I) and invoking 1.1.3.
 again, we see that it will suffice if both of the squares

 X(Rp) X(RAP)

 (1.2.3)

 x(SP) X(SAP),

 BCL(1Rp) -BCL(I AP)
 (1.2.4) 1 1

 B-L(SP) BCL(SAP)
 are homotopy Cartesian.
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 Actually in 1.2.3. the horizontal maps are equivalences. This follows from
 the fact that the map of bisimplicial rings { R, } { Rn" } is an equivalence, and
 from two properties of the functor

 X: Simplicial rings -- Simplicial sets;

 namely, X preserves equivalences and is defined dimensionwise (i.e. one applies

 X to a simplicial ring R by first applying it to the discrete rings RIp and then
 diagonalizing the resulting bisimplicial set).

 1.2.4 requires a little more effort, since BGL is not defined dimensionwise.
 (Incidentally B GL, which is defined dimensionwise, does not preserve equiv-
 alences.) Consider the diagram of bisimplicial sets

 M(Ip) M(IAP)

 (1.2.5) GL(RP)) G RP)

 G(Sp ) GL(S11P).

 Here as in 1.2.4 the symbols "A^" on the left are superfluous. The map M( )
 GL( ) sends X to 1 + X.

 The left side of 1.2.5 is a fibration sequence. In fact its diagonal is a short
 exact sequence of simplicial groups and hence a Kan fibration. (This uses that
 p2 = 0.)

 The right side is also a fibration sequence, for a similar reason: For each n
 the diagonal of

 Mn(IlP) GLn(RAP) -- GLn(SAP)

 is a Kan fibration because it is obtained by restricting the short exact sequence

 Mn(IAP) -> MJ(R1P) -- MJ(SAP)

 (of additive groups) to the subset GLn(SAP) C Mn(S "). (This again uses that
 12 = 0.) Also, the top horizontal arrow in 1.2.5 is an equivalence.

 Apply the functor B to the diagram of grouplike bisimplicial monoids 1.2.5.
 The resulting diagram still is a map of fibration sequences and an equivalence on

 fibers. It follows that its lower square 1.2.4 is homotopy-cartesian. O
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 1.3. Cyclic Homology of Simplicial Rings.

 The purpose of this section is to establish some notation and to adapt some
 results of [GC] concerning chain rings to simplicial rings.

 A ring R and a bimodule B determine a simplicial abelian group (the
 "cyclic bar construction"), which we will denote by Cyc(R; B); namely,

 Cyc (R; B) = B ? R?ng

 (br, O ... O rn i = 0
 di(b $ r 0 * rn)={ b r **.*. riri+1 0 * * * rn 0 < i < n

 trnb 0 r, 0 ... S rn- Ii = n

 si(b $ r 0...? rn) =b 0 r . . Ori? 1 ? r+, ? . rn.

 In the important special case when the bimodule is the ring itself the
 simplicial abelian group Cyc(R; R) acquires a little extra structure, namely an
 action of Z/n + 1 on Cyc (R, R) for all n > 0 and becomes a cyclic abelian
 group, which we will denote Z(R) as in [GC], Section 11.1. The action of a

 generator tn+ 1 E Z/n + 1 is given by

 tn+1(ro ? r ? ... ? rn) = rn ? ro 0 ? rn -

 With any cyclic abelian group X (in particular Z(R)) we will associate four
 kinds of homology groups, called H*(X), HC*(X), HP*(X), and HC- (X). The
 first two of these are just as in [GC], Section II.2. Thus H*(X) is 'r* of the
 underlying simplicial abelian group of X, and in particular when X = Z(R) it is
 the Hochschild homology H*(R; R), while HC*(X) is cyclic homology. The
 groups HP *(X) are the periodic homology groups which were called HC P"(X)
 in [GC]. The groups HC- (X) are new. In order to give a uniform description of
 all four families of groups let us adopt the following notation.

 As in [G1], II.2, define the 2-periodic double chain complex B**(X). Thus
 the chain groups are

 Bp,(Xq P +x>q p>-<

 where X = Xn/degeneracies. The "vertical" boundary is given in Bp q(X) =
 Xq-p by

 q-p

 b= E (- 1)di
 i=O

 so that each "column" BP, *(X) is a (shifted) copy of the normalized chain
 complex associated with the underlying simplicial abelian group of X. Thus in
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 particular when X = Z(R) we have

 Bp *(X) N* -,Cyc(R; R),
 HqBp, *(X) = Hq p(R; R).

 The "horizontal" differential B is given in Bp q(X) = X. (n = q - p) by
 n+1

 B = tn+2sn E ((_ 1) ntn-+) .
 k=1

 Now for - ox < a < /3 < + ox let T*'1:(X) be the chain complex obtained
 from the double complex B **(X) by using only the columns numbered a
 through /P. Thus

 T0"'(X) Bp np(X).
 Of <P< ,lR

 Note that when a =- cc this is an infinite product, not an infinite sum. Then
 we have

 Hn(X) = T?*(X),

 HCn(X) = HnT? + 0(X),

 HPn(X) = H T* ? + ()

 HCn- (X) = H T- CC ?(X).

 In addition to the relations among these groups which were written down in
 [GI] there are some new ones involving HC. For example there is a diagram of
 chain complexes with exact rows

 O T- *T (X) T-* +'(X) T1? + (X) ' 0

 47 1 11
 O T ?0(X) T* T1+?00(X) T* +00(X) O.

 In view of the isomorphism T 1? + '(X) TO_ +00(X) this gives rise to a map of
 long exact sequences

 HC ( - HC* (X) H-* P(X) -*( HC 2(X) * * .

 (I.3.1) j

 HC 1(X) -*( HC(X) HC * HC2(X) * *

 where the lower sequence is the fundamental "Connes-Gysin sequence" (II.2.2
 of [GI]).
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 When X = ZR and the ring R is flat over Z, we write HC* R instead of
 HC * ZR and likewise for the other functors.

 Recall ([L-Q], Prop. 1.2.) that when X is a cyclic vector space over Q there
 is another complex with homology HC*(X), namely the one used in Connes'

 original definition. This is a quotient complex of the non-normalized chain

 complex of the underlying simplicial vector space. Denoting it by CA(X), we
 have

 Cn"(X) = coker(Xn (

 In this case the map I of I.3.1 can be viewed as being induced by the quotient
 map of chain complexes.

 If R is a simplicial ring (flat over Z) then, applying the functor Z in very
 simplicial dimension, we obtain a simplicial cyclic abelian group ZR. View it as a

 cyclic simplicial abelian group and apply the functor Ch to make a cyclic chain

 complex Ch(ZR). Now given a cyclic chain complex X (with no nonzero chains

 in negative dimensions) we can define "Hochschild," cyclic, and periodic

 homology groups as in [GI], Section III, and also HC- -groups. This means

 forming a triple complex for each choice of - o < ?a < /3 < + oc (with axes
 labelled by p, q, and r (say): a < p < /3, q ? p, and r ? 0). Call the total
 complex of this triple complex T*' (X) as before; again, in forming the total

 complex we use products rather than sums when a = - ooX. Then define H*,
 HC*, HP *, and HC-* as before. (The use of products rather than sums insures
 that

 T-* 0"(X) = limT a(X),
 a

 so that there is, for example, an exact sequence

 0 -* limlHC*+1+2n(X) HP*(X) -* lim0HC*+2n(X) -* O0
 4-

 n n

 as in [GI], I.3.) All the familiar relations, in particular I.3.1, still hold. When this
 construction is applied to Ch(ZR), R a simplicial ring, we call the resulting

 groups H*(R), HC*(R), HP*(R), and HC-(R). Note that H*(R) can be
 identified with 7T * of the bisimplicial abelian group { Cyc P(R q; R q) . It is easy to
 extend these constructions to the relative case by using algebraic mapping

 cylinders as in [GC], p. 200. Thus for example if f: R -* S is a map of simplicial
 rings there are groups HC*(f) (or HC*(R -* S)) which fit into a long exact
 sequence

 (1.3.2.) HC*(R) -* HC*(S) -* HC*(f) HC J1(R)
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 It is easy to check that the notation is consistent with identification of a ring
 with the "discrete" (i.e. constant) simplicial ring that it determines. It should
 also be noted that the various homology groups defined here for a simplicial ring
 R are really the same as those which were defined for the underlying chain ring
 Ch(R) in [GI]. The point is that for each n 2 0 there is a "shuffle" quasi-isomor-
 phism

 Ch(Rl)(n+ 1) -* Ch(R1i(n +))

 as in I.1.4, and these fit together to give a map of cyclic chain complexes

 Z(Ch(R)) -* Ch(Z(R)).

 This is an equivalence in the sense of [GI], Def. III.2.6, and so induces
 isomorphisms of H. and HC. (by [GI], Prop. III.2.7), HP* (by the limo - liml
 sequence), and HC- (by I.3.1).

 In view of this last observation the main results of [GC] imply a statement
 about simplicial rings:

 I.3.3. LEMMA. If f: R -* S is a map of simplicial Q-algebras such
 that the ring homomorphism (TO(R) --* O(S) is a surjection with nilpotent
 kernel, then f induces an isomorphism HP*(R) -* HP*(S) and the map
 /3f ): HC* 1(f) HC- (f) is an isomorphism.

 Proof For the first statement it is enough to obtain the corresponding
 conclusion for each of the other three sides of the square

 R -*S

 ,go(R) --*,o(S).

 In the case of the lower horizontal arrow this follows from [GC], Theorem II.5.1.
 Each vertical arrow is one-connected, and so induces a one-connected map of
 chain algebras. Then Theorem IV.2.6 of [Gl], together with the lim? - liml exact
 sequence relating HP* to HC*, shows that the relative HP* vanishes.

 The second conclusion is equivalent to the first, since they are both
 equivalent to the vanishing of HP *( f). o

 Here are two simple results which will be needed below. We have already
 seen their K-theoretic analogues.

 I.3.4. LEMMA. Iff: R -* S is a k-connected map of simplicial rings, both
 flat over Z, then H*(f) and HC*(f) vanish for * < k.
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 Proof It is enough to do the case of H*(f), in view of the spectral
 sequence ([GI], III.2.3). Each tensor power of f

 f 0(n+ 1): R0(n + 1) -) S 8 (n + 1)

 is k-connected by the Kinneth formula (we have used flatness here), and this
 easily implies the result, for example by using a spectral sequence

 Elq = 7q(Zp(R) -* ZP(S)) =- Hp+q(R -* S).

 I.3.5. LEMMA. Iff: 1R -* S is an equivalence of simplicial rings flat over Z
 then the groups H*(f), HC*(f), HP (f), and HC- (f) all vanish.

 Proof Use the preceding lemma (or III.2.9 of [GI]) for H* and HC,. The
 exact sequences III.3.2 of [GI] and I.3.1 of the present paper then extend the
 result to HP * and HC-, respectively.

 Incidentally Lemma I.3.5 is false without the flatness hypothesis. If one has
 to deal with rings or simplicial rings which have torsion in their additive groups,
 the best approach is to make a functorial free resolution (DR (as in I.1.6) and

 define H*(R) = H*((DR), etc. Then I.3.5 implies that in the flat case this
 coincides with the old definition (up to a natural isomorphism), and it is clear
 that I.3.4 and I.3.5 are now true in general.

 I.3.6. LEMMA. If Hochschild homology vanishes in dimensions > k then
 the homology of T* , vanishes in dimensions > k + 2/3.

 Proof The conclusion holds for a 0= /3 by hypothesis, and for a = /3
 because T* a- T 0' a. It holds for - oc < a </3 < + oc by induction on
 /B - a, using the short exact sequences

 0 T*a - * T -* -* 0.

 It holds for - oo = a </, < + oc because of the exact sequence

 0 -* limlH1T 3 --* H T -* limOH T" - * 0.
 Y Y

 Finally we recall the Morita-invariance of Hochschild homology. (See for
 example [G2], p. 402). This says that for k 2 1 the matrix ring MkR has the
 same Hochschild homology as the ring R. More precisely the "trace" map of
 cyclic abelian groups ZMkR -* ZR given by

 (I.3.7) ZpMkR ZpR

 rO 2) .. * *Orp Ero(io, il) ? ... *rp(ip, io)

 induces an isomorphism in Hochschild homology. This immediately extends to
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 simplicial rings (the map of bisimplicial sets

 Cycp(MkRq; MkRq) -* Cycp(lRq; Rq)

 gives an equivalence for each p, so is itself an equivalence). Also, the same trace
 map induces isomorphisms in HC., HP., and HC- by the usual spectral
 sequence and exact sequence arguments.

 II. A map from K-theory to cyclic homology

 Our goal here is to define for any simplicial ring R a natural map
 a(R)

 Kj(R) HCi- (R)

 which together with the map

 H~~j fl/(R) J~ (R ) *HCi- ( R)

 of I.3.1 will yield the isomorphism

 Ki(f) ? Q = HCI-1(f) ? Q

 of the Main Theorem. More precisely if f: R -* S satisfies the hypothesis of the
 Main Theorem then each of two maps

 aQ(f) /Q (f)

 will be an isomorphism. Here IQ(f) is the map

 /3(f? Q) HCi-.(f) ? Q = HCi-1(f ? Q) - HCI- (f ? Q),

 that is, the relative version of /B for the homomorphism of simplicial rings
 f ? Q: R ? Q -* S ? Q; it is an isomorphism by I.3.3. Likewise aQ(f) is the
 composition

 Ki(f) ? Q' Ki(f ? Q) ? Q

 a(f? Q) ? Q
 HCi (f ? Q) ? Q

 HC7- (f ? Q),

 where a(f ? Q) is a relative version of a and the first map is induced by the
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 diagram of simplicial rings

 R oR (9 Q

 Af If 0Q

 S-S S Q.

 In this section we will define a. In Sections III and IV we will carry out the
 proof that aQ(f), or equivalently the composite 13Q(f)-' aQ(f), is an isomor-
 phism assuming the hypothesis of the Main Theorem.

 The map a will be defined so as to make the diagram commute

 HC7-

 Ki oHi

 where 7T is as in I.3.1 and X is Dennis' trace map ([I]) from K-theory to
 Hochschild homology suitably generalized from discrete rings to simplicial rings.
 (Incidentally in using a we will hardly need to know anything about it except
 that it makes that diagram commute.) We therefore first recall the definition of X

 for discrete rings, then extend it to simplicial rings, then obtain the lifting a.

 II.1. The Dennis Trace for Discrete Rings.

 For any (discrete) group G there is a natural injection from the simplicial

 abelian group ZBG (i.e. the free abelian group generated by the simplicial set
 BG) to the cyclic bar construction Cyc(ZG; ZG) of the group ring ZG. On the

 standard basis for ZBpG, namely BPG = GP, it is given by

 (gi .. ~ p) -* (gl'... gy') ( g, ? ... (9gp
 Applying the functor Ch and the natural quotient map Ch N one gets a
 natural chain map

 t(G)

 C*BG = Ch*(ZBG)- N*Cyc(ZG; ZG) = To ?ZG

 from the (non-normalized) chains on BG to the (normalized) Hochschild chains
 of ZG.

 For any (discrete) ring define a chain map

 To 'ZGLnR T* R
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 by combining the evident ring homomorphism

 ZGL,(R) = ZGL1Mn(R) -* Mn(R)

 with the trace T?*0MJ(R) -* T?*R of I.3.8. Because we are using normalized
 chains the map e is compatible with the standard inclusions GLnR -* GLn+lR
 and so yields a chain map

 T'?0ZGL(R) TO T R.

 The map of homology groups induced by e o t(GL(R)), composed with the
 Hurewicz map

 KiR = 7TK(1) -* HK(R) - HiB GL(R)
 is by definition the Dennis trace map

 T

 KiR --* H ill,1

 at least if R is flat as a Z-module.

 II.2. The Dennis Trace for Simplicial Rings.

 If R is a simplicial ring then the construction above runs into some difficulty
 because GL(R) is not a simplicial group. We will get around this by systemati-
 cally replacing grouplike simplicial monoids by simplicial groups as in I.1.8.

 For any simplicial ring R which is flat over Z let TO, OR be the " Hochschild
 double complex" { T' 0,R }. Likewise for any simplicial monoid G let C * BG be
 the double complex { Cp BGq }. If G happens to be a simplicial group then there
 is a map of double complexes

 t(G) , 0
 C* BG- T' *ALG_

 consisting of the maps t(Gq) of 11.1.

 Now let R be a simplicial ring (flat over Z) and write G for GL(R).
 Consider the diagram of double complexes

 C*BG < -C*BDG >C.B(DG)
 t(<DG)

 T? ?ZG -T?*iZDG -*T?*Z(KG).

 Here c: Tp,?'ZGL(R)q Tp,?'Rq is defined as in II.1. The horizontal maps are
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 induced by the simplicial monoid maps

 G <-(G -*((?G)
 of I.1.8; they are quasi-isomorphisms because the monoid maps are equivalences.

 In homology this yields a map

 HiBGL(R) -- HiR

 and so as in the discrete case a map

 KiR -* HiR

 which will again be called T or the Dennis trace.

 In the special case of a discrete ring R (still flat over Z) the X defined here
 coincides with the one defined in II.1. To see this observe that a natural dotted
 arrow exists in

 GEG

 G < ........ ((?G)

 if G happens to be a simplicial group, in particular a discrete group, in particular
 GL( R). The commutative diagram

 C* B(G

 C*BG C C*B(G)

 t(G)I T G {tKDG)

 To 'ZG To T Z(KDG)

 then proves the assertion.

 For the sake of completeness the definition of X should be extended to the

 non-flat case (even though it is only really needed here for Q-algebras). Of course

 one proceeds as in the definition of Hochschild homology (discussion following
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 I.3.5), using a functorial free resolution (DR --* R and the isomorphisms

 KiR = Ki(DR5
 1.2.1

 HiR -- HiDR.
 def

 II.3. The Lifting of T to HCZ- .

 II.3.1. THEOREM. For any simplicial ring R there is a natural map a
 making the diagram commute

 HC7- (R)
 a /

 Ki(R) --- Hi(R)

 (Here ST is as in I.3.1.)

 Proof. The map X was constructed using the natural chain map t(G).
 Construct a in the same way, but substituting for t(G) the map a(G) provided
 by the following lemma.

 II.3.2. LEMMA. For any group G there is a natural chain map a(G) making
 the diagram commute

 T-0 '0ZG
 a(G 1

 C*BG t() T??ZG.

 In fact a(G) is unique up to natural chain homotopy.

 Proof This uses the method of acyclic models. For each p 2 0 the abelian
 group CpBG has a basis which may be naturally identified with the set GP, or

 equivalently with the set of all homomorphisms Fp -* G from the free group Fp

 on letters g1, . . . gP to G. Therefore natural homomorphisms CpBG Tp-* T? 0ZG
 correspond to elements of Tp-? ?0ZFp. Suppose natural maps ai(G), 0 < i < p,
 have already been chosen, satisfying Ta i= ti and da a= a i-l. To define ap we
 have to choose an element x E Tp-? ?0ZFp (which will be apg for g =
 (gl,... gp) E CpBFp) satisfying 7Tx = tPg and ax = ap-jag. Since 7T is surjec-
 tive there exists y such that 7Ty = tPg. Since 7Tap-1ag = atpg by induction, the
 chain ay - a,,1ag is a cycle in the chain complex ker('n) = T*c -'ZFp. If it
 is a boundary in ker('n), say az, then we can set x = y - z. Thus the existence
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 statement in the lemma will follow if T7'- ZF, has zero homology in
 dimension p - 1 for all p 2 0. Likewise the uniqueness will follow if the same is

 true in dimension p. In fact we will prove H T- 'ZFp = 0 for i 2 p-i,
 which in a certain sense proves that a(G) is unique up to a "contractible

 choice."

 By I.3.7 it will be enough if HiZFp = 0 for i > p. But for any (discrete, or
 even simplicial) group G the Hochschild homology of ZG is the homology of the

 free loop space Map (S1, IBGI) (see [GI], pp. 209-211). For discrete G the free

 loop space is homotopy equivalent to a disjoint union of spaces IBF for certain

 subgroups F c G, namely the centralizers of representatives for conjugacy

 classes of G. When G = Fp these are subgroups of a free group, so are
 themselves free, so that the homology vanishes in dimensions > 1. When p = 0

 it vanishes in dimensions > 0. 0

 II.3.3. Addendum. Maps T and a can also be constructed in the relative

 case: If f: R -* S is a map of simplicial rings then there are natural maps

 HCi- (f)

 Ki( f) Hi (f)

 making the squares commute (up to sign) in ..Ki(S) Ki(f) Ki-1(R) *
 ..Hi(S) Hi(f) Hi-1(R)

 and similarly for T.

 Proof This is just a routine use of algebraic mapping cones and homotopy

 fibers. One needs the relative Hurewicz homomorphism and commutativity of

 Ti K(S) - i (K(R) K(S)) - i-*K(R)

 HiK(S) Hi (Kl(R) K(S)) Hi- H1K(R).

 XVe omit the details.
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 Now we define aQ(f) as indicated at the beginning of Section II. To prove

 the Main Theorem stated in the introduction it remains to prove:

 11.3.4. THEOREM. If f: R -* S is a map of simplicial rings such that

 -TOR -TOS is a surjection with nilpotent kernel then

 aQ(f): Ki(f) ? Q - HC (f ? Q)

 is an isomorphism.

 III. Reduction to a special case

 In this section we will use the existence and naturality of the map aQ(f) to
 minimize the work which goes into proving Theorem II.3.4. It turns out to be

 enough to prove the theorem under these special conditions: (i) f: R -> R/I = S
 is a split surjection of discrete rings, (ii) 12 = 0, and (iii) as an S-bimodule, I is
 free. In Section IV we will handle the special case.

 111.1. Reduction to the Square-Zero Case.

 It is easy to see that for any diagram

 T

 of simplicial rings in which all three maps satisfy the hypothesis of 11.3.4 the

 conclusion of II.3.4 must hold for any one of the three maps if it holds for both of

 the other two. (The proof is a five-lemma argument using the commutativity in

 Addendum 11.3.3 and the surjectivity of K1(R) K->1( S).)

 III. 1. 1. LEMMA. If Theorem II.3.4 holds for every surjection (of simplicial

 rings) with square-zero kernel then it holds in general.

 Proof Assume that the theorem holds for surjections R -- R/I with 12 = 0.
 then it also holds for surjections with In = 0, for any n ? 2. This follows by
 induction on n by applying the principle above to the diagram

 R R/In
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 Now let f: R -- S be any map satisfying the hypothesis of II.3.4. Consider
 the diagram of simplicial rings

 R S

 7ToR ' S

 and use the same principle again; to obtain the conclusion of IA.3.4 for f it is

 enough to do so for the other three maps in the square. The lower arrow is a

 surjection with nilpotent kernel, so we have only to consider the vertical maps.
 Each of these is a surjection with connected kernel.

 Therefore consider the case of a simplicial ring R with a connected ideal

 I C R and f: R -- S = R/I the quotient map. We will show that

 aQ(f): Kj(f) ? Q - HCI (f ? Q)
 is an isomorphism by using a downward induction on the connectivity k of the

 ideal I.

 For k ? max(j - 2,0) both Kj(f) and HC7-(f?$ Q) are zero by I.2.1,
 I.3.3, and I.3.4. Now let k > 0, assume I is k-connected, and suppose that aQ(g)
 is known to be an isomorphism in dimension j whenever g is a surjection with
 (k + 1)-connected kernel. We want to show that aQ(f) is an isomorphism in

 dimension j.
 By I.1.7 and the fact that K-theory and cyclic homology both respect

 equivalences (I.2.1 and I.3.5) we can assume that I is not just k-connected but

 (k + 1)-reduced. Now consider the diagram

 R , R/I2

 R/I

 By assumption aQ(h) is an isomorphism in all dimensions, so that we will be

 done if ker(g) is (k + 1)-connected. The next result shows that it is.

 III. 1.2. LEMMA. If the simplicial ideal I is r-reduced for sorme r ? 1 then 12
 is r-connected.

 Proof Consider the short exact sequence of simplicial abelian groups

 0 -- ker(m) _I ? I 1 0

 where m is multiplication. Since I is r-reduced the same is true of ker(m). In

 particular ker(m) is (r - 1)-connected. Thus 12 will be r-connected if I ? I is
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 r-connected. In fact I ? I is (2r - 1)-connected. To see this, view it as the
 diagonal of the bisimplicial abelian group { I ? I}, . The realization of the
 diagonal is homeomorphic to the bisimplicial realization. The latter is a 2r-
 reduced CW complex because Ip ? Iq = 0 if p < r or q < r.

 This concludes the proof of III.1.1. C]

 III.2. A Further Reduction.

 We have seen that it is enough to prove Theorem II.3.4 for extensions of
 simplicial rings by square-zero simplicial ideals.

 f
 III.2.1. LEMMA. Theorem II.3.4 is true for all extensions I -- R -_ S of

 simplicial rings by square-zero ideals, provided it is true in the special case when
 R and S are discrete, the extension is split (i.e. f has a right inverse), and I is a
 free S-bimodule.

 The key to III.2.1 is the following.

 f
 III.2.2. LEMMA. Let I -- R - S be an extension of simplicial rings with

 12 = 0. If for each of the surjections fp: Rp - Sp of discrete rings the map
 aQ(fp) is an isomorphism then aQ(f) is an isomorphism.

 f
 Proof that III.2.2 implies III.2.1. Let I -- R -_ S be an extension of

 simplicial rings with 12 = 0.

 In proving that aQ( f ) is an isomorphism we may assume that S is free. In
 fact, make a free resolution (S -- S (I.1.6) and form the fiber product

 g

 {fI
 R S.

 Since the vertical maps are equivalences aQ( f) will be an isomorphism if aQ(g)
 is. (Note that ker(g) _ ker(f) = I still has square zero.)

 Now assume S is free. By III.2.2 it will be enough if for each fp: Rp Sp
 (p ? 0) aQ( fp) is an isomorphism. But each fp is a split surjection of discrete
 rings with square-zero kernel. (The splitting exists because each Sp is a free ring.)
 Therefore we may assume that R and S are discrete and that the extension is
 split.

 Any ideal I C R is an R-bimodule. If 12 = 0 then I is an (R/I)-bimodule.
 If in addition I -4 R -4 S is a split extension then it is isomorphic to the
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 extension

 I I X S -S

 where I x S has the ring structure

 (i1, S1) + (i2, S2) = (i1 + i2, S1 + S2),

 (i1, S)(i2, S2) = (i0s2 + s1i2, sMs2).

 In fact this construction obviously gives an equivalence of categories between
 S-bimodules and split extensions of S by square-zero ideals (where morphisms in
 the latter category are required to preserve the splitting).

 Now to finish proving III.2.1. use the fact (I.1.6.) that any S-bimodule I has

 a free resolution 'DI = { ODPI }. Apply III.2.2. again, this time to the extension of
 simplicial rings

 {fopI} - (OpI ) X - {S}. C]

 Proof of III.2.2. The main point here is that the relative K-theory associated
 with a square-zero simplicial ideal "can be computed dimensionwise" (Lemma
 I.2.2.).

 Since K-groups are defined as homotopy groups of certain spaces while
 HC- -groups are defined as homology groups of certain chain complexes, it will
 be convenient to interpret the latter as homotopy groups. By I.1.1 the homology
 groups of any chain complex can be so interpreted, provided the complex is zero
 in negative dimensions. Our complex T*' ? is not. Presumably one could get
 around this by constructing a spectrum which is a functor of R and whose
 homotopy groups are HC- (R). We will take an easier route, replacing the chain
 complex by another one which is zero in negative dimensions and which is as
 good as the original complex for purposes of the relative calculation being made
 here.

 III.2.3. Definition. If T* is any chain complex then T* is the subcomplex

 defined by Tn = Tn for n > 0, Tn = 0 for n < 0, To = ker(d: To -T1).
 Thus HnT* = HnT* for n. ? 0, HnT* = 0 for n < 0. In the case at hand

 we claim that the diagram

 00?? ?(R 2> Q) >-*? T-x?(R 0 Q)

 I I
 00??0(S 0 Q) >-*r ?-0(S 0 Q)

 induces an isomorphism from H (T-*'(R ? Q) T-*? t? (S ? Q)) to
 HCn- (f ? Q). In fact the cokernel of the upper map in the square has n-th
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 homology

 HCn- (R Q) = HP,(R? Q), n < O
 0, n O 0

 by I.3.1, since HC, = 0 for n < 0; by I.3.3 this maps isomorphically to the
 homology of the lower cokernel, and this proves the claim.

 Now, part of the construction of the map a was what might be called a
 ""weak chain map"

 Ch*ZBGL(R) wT- (R),
 that is, a diagram of actual chain maps

 Ch*ZBGL(R)= C*BGL(R)

 <- C*B4iGL(R)

 C*B(KGL(R))

 T- Z(TDGL(R))

 T-*T?oZ(DGL(R)

 T-*???ZGL(R)

 T- ?(R)

 in which every left-pointing arrow is a quasi-isomorphism. Note that w factors
 through the subcomplex T-'0(R) C T-' (R), or more precisely w is obtained
 by composing a weak map

 Ch*ZBGL(R) (R)

 and the inclusion of the subcomplex.
 Consider the diagram of simplicial abelian groups

 ZK(R) ZBCL(R)

 - N-NZBGL(R)

 N'ChZBGL(R)

 N- T-? ?,(R)-= F(R).
 def
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 Here the first map is induced by the quotient map of simplicial sets BCL(R)
 K(R); it is an equivalence because the map of simplicial sets is a homology
 isomorphism. The functor N- 1 is an inverse (up to isomorphism) of the
 equivalence of categories N. (I.1.1) The last map (actually only a weak map) is
 induced by i. This diagram, combined with the "Hurewicz map" (of simplicial
 sets)

 K(R) -- ZK(R)

 gives a map of homotopy groups

 Ki(R) = 7TiK(R) - 7TiF(R) = Hit* (R)
 Its composition with the map induced by inclusion

 H T-* ?(R) -- HjT; 0(R) = HC- (R)
 is, by definition, a.

 The same is true in the relative setting: For f: 1- S there is a weak map
 of pairs of simplicial sets

 (K(R) -- K(S)) (F(R) F(S))

 inducing a map from Ki(f) to Hj(T-*'00(R) -- T*???(S)) which, combined
 with the inclusion, yields the map a(f). By the claim following Definition
 III.2.3, the map aQ(f) can be identified with the map of rational relative
 homotopy groups induced by the (weak) map of pairs

 (K(R) -- K(S)) -- (F(R ? Q) -- F(S ? Q)).

 Now recall Lemma I.2.2 and the discussion preceding it. We have a diagram
 of simplicial spaces given in dimension p by

 fiber(K(Rp) -- K(Sp)) -- fiber(IK(RIP)I -- IK(SAP)I)

 <- fiber(IK(R)l -- IK(S)I).
 By I.2.2 both of the maps in this diagram become equivalences after realization.
 There is also an analogous diagram with F in place of K, and it is easy to see
 that it again becomes a diagram of equivalences after realization. (In fact each of
 the maps in the diagram

 F(Rp) -*F(RAP) --F(R)
 is an equivalence after realization, by a spectral sequence argument.)

 By the hypothesis of III.2.2 we know that

 fiber(IK(RP)I -- IK(Sp)I) -& fiber(IF(RP)I -- IF(Sp)I)

 is a rational homotopy equivalence for each p. It follows that it yields a rational
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 equivalence after realization with respect to p. Therefore the same is true for the
 map of (constant) simplicial spaces

 fiber(IK(R)l -- IK(S)I) - fiber(IF(R)l -- IF(S)I).

 This proves III.2.2.

 IV. Calculation in the special case

 We will calculate both K *( f) ? Q and HC* - 1(f) ? Q under the assump-
 f

 tion that I -- R - S is a split extension of discrete rings with 12 = 0 and I is a
 free S-bimodule. They turn out to be isomorphic; more precisely the map
 aQ(f) -1 o /Q(f) is an isomorphism between them. This will complete the proof
 of Theorem II.3.4.

 IV. 1. The Bimodules D(p).

 Let S be any (discrete) ring. If B1,..., Br are (S ? Q)-bimodules then
 B1 ? ... ?Br can be made into an (S ? Q) ?rbimodule in various ways. In
 particular if p E -r is any permutation then let D(p; B1,... Br) be
 B1 ? ... ?Br with the bimodule structure

 (S1 ? ... ?Sr)(X? ... ?&Xr) = S1X1 ? *. ?SrXr, Si , S x e B,,

 (X1 ? ... ?X r)(Sl ... (?Sr) = X1Sp(1) ?... ? XrSp(r), Si e S. xi E Bi.

 Denote the Hochschild homology H*((S ? Q)?r; D(p; B1,..., Br)) by
 W*(p; B1 ,..., Br).

 We will be particularly interested in Wo(p; B1,..., Br); this is the quotient
 of B1 ? ... ?Br by the relations

 (IV.1.1)

 x?1 ? xis 9 . xr , xi (9 Sx P 9 Xr 1 < i < r.

 Denote the class of x1 ? ... ?X in Wo(p; B1,..., Br) by [X1,..., Xr]p.
 Notice the effect of conjugation: a permutation X E Er gives rise to an

 isomorphism of ring-bimodule pairs

 (IV. 1.2)

 ((S ?& Q),,r D(p;,B, . . . , Br)) ((S Q)? D(A 1'p; Bx(1)5..., BX(r)))

 S1 ? ?Sr SX(l) ? * ?SX(r) 5

 X1 X r X X(l) ?* X X(r)
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 This in turn gives an isomorphism

 (IV. 1.3) W*(p; B1 ,. .., Br) W*(A'PX; BX *.* BX(r))

 which in WO is given by

 [X15 ... * Xr] p [XX(1)5 5 X X(r)] \- 1pX

 Notice also what happens when r = s + t and p belongs to the standard

 copy of ES X Et in Er. If p corresponds to (a, T) E ES x Et. write p = U U T.
 Then D(a U T; B1,..., Bs+t) is isomorphic to the tensor product (over Q) of
 the (S ? Q)?s-bimodule D(a; B1,..., Bs) and the (S ? Q)?t-bimodule
 D(T; Bs + 1, . ., B. B )+ . This implies that

 WJ(U U T; B1 ... * Bs+t) $ f Wp(a; B1, .. ., BS) ? Wq(T; Bs+ * *... * Bt).
 p+q=n

 In particular when n = 0 we have

 (IV. 1.4)

 WO(u U T; B1,..., BS+t)_ Wo(u; B1,..., BS) ? WO(T; Bs+15 Bs+t),

 [X1 * .. * Xs+t] anr [X, .. * X s], a 9 [Xs+l5 .. * Xs+t] TV.

 The special case B1 = = Br = B is particularly important. In this case
 we abbreviate

 D(p; B) = D(p; B,.. ., B),

 W*(p; B) = W*(p; B...., B)
 By IV.1.3, the centralizer of p in Er' which we will denote by C(p), acts on
 W*(p; B). Let W*(p; B) be the antisymmetrization of W*(p; B) with respect
 to this action. Write [x1,..., xrr] p for the image of [X1, ..., Xr]p E WO(p; B) in
 WO(p; B).

 We will find in IV.2 that for a split extension I -* R -* S with 12 = 0 the
 relative rational cyclic homology is given by

 (IV.1.5) HC*(f) (? Q iD W*-r(Pr; I ? Q)
 r>1

 where Pr E Er is the basic transitive permutation 1 4 2 r 4 1. Note
 that in the special case when I is a free S-bimodule, so that D(Pr; I ? Q) is a
 free (S ? Q)?r-bimodule, IV.1.5 simply says that

 HCn(f) ? Q= WO(pn; I ? Q)

 In IV.4, we will find that in this special case the same formula is valid for
 K-theory:

 (IV.1.6) Kn+1(f) ? Q= WO(pn; I ? Q)
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 IV.2. A Cyclic Homology Calculation.

 We want to prove IV.1.5 for every split extension of discrete rings I

 R -_ S with 12 = 0. Since HC*(- ?Q) = HC*(-) ? Q we may replace R, S,
 and I by R ? Q, S ? Q, and I ? Q. Thus we have to compute HC*(f) when

 I -- R -_ S is a split extension of discrete Q-algebras with 12 = 0.
 The splitting of f implies that

 HC*(R) = HC*(S) e HC*+l(f).

 In fact more is true. View R as a graded ring with groR = S, grjR = I,
 grjR = 0 for j > 2. This puts a grading on each tensor power of R, and in fact
 makes the cyclic vector space ZR a cyclic graded vector space. In particular
 each cyclic homology group is graded

 HC*R= D grrHC*R
 r>O

 with gr0HC* R = HC* S. The conclusion IV.1.5 will follow from

 (IV.2.1) grrHC*-1R W*-r(Pr; I), r > 0,

 To prove IV.2.1, fix r > 0 and consider the cyclic vector space gr ZR. In
 dimension n it consists of all those terms in R (n+l) = (S e I)?(n+1) which
 have exactly r copies of I, i.e. the direct sum of all the tensor products

 S fno ? I C) S11nlL ... (I . & S1n,

 where no,..., nr are natural numbers such that r + Eni = n + 1.
 We next introduce a sort of "r-fold cover" V = V(I,..., I) of gr ZR; this

 will be a cyclic vector space with an action of the group Z/rZ such that grrZR is
 isomorphic (as cyclic vector space) to the space of coinvariants for the action. To

 define V we need to label the "r copies of I" in grrZR. Thus for the moment let
 I ,. . ., Ir be any S-bimodules and consider for each n > 0 the vector space

 (IV.2.2) Vn(II,..., Ir) = 3S1fno ?) I. ? S?ln ? ... ?j C) Sfnr

 where the direct sum is over all {ni 01?0 < i < r} such that r + Eni = n + 1
 and all cyclic permutations (j1, ... jr) of (1,..., r). These constitute a cyclic
 vector space V(I1,..., Ir) in an evident way, the structure maps being defined
 essentially by the same rules used in defining ZR([G1], p. 189). (More precisely
 V( I1,. . ., Ir) can be viewed as a subobject of the cyclic vector space ZA where

 A is the split extension of S by the bimodule E Id.)
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 There is an obvious isomorphism of cyclic vector spaces V(I1,..., ir) -

 V(12,..., Ir) I,); in the special case V = V(I,..., I) this is an automorphism of
 period r. The space of coinvariants for the resulting (Z/rZ)-action is clearly

 isomorphic to grrZR.

 We now compute HC*V(I1,..., Ir). Let Vn'( I) c VVP . Ir) be
 the subspace obtained by allowing only those terms in IV.2.2. which have no = 0
 and (Qj1,.., jr) = (1,..., r). Thus V' c V is not a cyclic subobject, but it Is a
 simplicial subobject. In fact it is clear that V is the free cyclic vector space

 generated by the simplicial vector space V'. It follows easily that the non-normal-
 ized chain complex Ch*(V') is isomorphic to the complex CA(V), and in

 particular has homology HC*(V).
 On the other hand Ch*(V') is related to a multisimplicial object. Let

 Y/'( p) = 'K( p; I,..., Ir) be the r-multisimplicial vector space

 Ynl, ., n,(P) . ..) S?& ? ?Ir ? SX

 with face and degeneracy maps di and s! (1 < j < r) given by

 dI(x(1) ? s(1, 1) ? ... ?s(1, n1) ? x(2) ? s(2, 1) ? ... ?s(r, nr))

 ( x(1) ?.. * x(j)s(j, 1) ? * * s(r, nr) if i = 0

 = x(1) ? *vs( j, i)s(j, i + 1) ?9 * v?s(r, nr) if O < i < nf

 x(l) ... ?s(j, n,)x(p(j)) ? ... ?s(r, nr) if i = nf;

 s(x(l) ? s(1, 1) ? ... ?*s(r, nM))

 =X(1) s(1,1) ?*.. s(j,i) ? 1 ? s(j,i + 1)? s(rnr).

 Consider the total chain complex Ch*y "(pr) as in I.1.4. It has the same chain
 groups as Ch*(V') except for a dimension shift: both Ch.( Y"(Pr)) and
 Chn+r -(V') are equal to

 (E n1 nrt Pr )

 In fact the following is an isomorphism of chain complexes

 (IV.2.3)

 Ch*(Y/(Pr)) Ch*+r-l(V )5

 x =(- 1)x , v = V(fli, *f r)= p ni, X EY jn. ,
 j even

 Notice also that the simplicial vector space Diag(Y (pr)) can be identified
 with the cyclic bar construction Cyc(SOr; D(pr; IP,..., Ir)).
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 Putting the last few observations together we obtain for any I11,, Ir an
 isomorphism

 (IV.2.4) HC*-,(V) _H*-,Ch(V/)
 H*-rCh(r(Pr))

 -H* _rCh(Diag(Y-( Pr )))

 W*_r(Pr; I1, .,Ir)

 Now consider the effect of a cyclic permutation of 1D..., Ir on IV.2.4.

 IV.2.5. CLAIM. The following diagram commutes up to the sign (- _)r, 1:

 HC*- iV(Ii,..., Ir) HC* - V(Ir, ID * *Ir- 1)

 IV.2.4 11 IV 2.4 11

 W*_r(Pr; 11, Ir) _W*_r(Pr; Ir, 1,* Ir-1).
 IV. 1.3.

 Proof of Claim. The cyclic objects V(11, ..., Ir) and V(Ir, I, I, -ri) may
 be considered identical. The simplicial objects V1'(I.... , Ir) and
 V'(Ir, ID,..., Ir_ 1) are not even isomorphic, but their chain complexes are: The
 diagram

 Cn+r..V(Ii ,.** Ir) = Cn+r-lV(Ir,-. **Ir-1)

 III III

 Chn+r-.V'(1 ** Ir) Chn+r-iV'(Ir .... Ir- 1)

 commutes if the lower isomorphism is given by

 (IV.2.6) x(l) ? s(1, 1) ? ... ?s(r, nr)

 *-* (- 1)(nr+l)(l+n+r)x(r) ? s(1, r) ? * ?s(r -1, nr-1).

 The multisimplicial objects satisfy

 (IV.2.7) '<(Pr;1 l I... 5 Ir) Pr-= lf(Pr; Ir 5 .., Ir~l
 in the notation of 1. 1.2; the resulting chain isomorphism between

 Ch*V(pr; I,...., Ir) and Ch*'(pr; Ir ..*., Ir-1) (see 1.1.4) is given in

 Y"(Pr; I11...,I r)n.nr by

 (IV.2.8) x(1) ? ... ?s(r, nr) nr(n-nrX(r) s(r - 1, nr- _)
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 Comparing various formulas one now finds that the diagram

 Chn+riV'(Il ... v r) = Chn+r- 1V(Ir, , Ir- 1)
 IV.2.6.

 IV.2.3. 1 IV. 2.3. 1

 Chny'(Pr; Ill ...> r) = Ch n)'(Pr; Ir , Ir - )
 IV.2.8.

 commutes up to the sign (- ) +l . (One checks that modulo 2

 (nr + 1)(n + r + 1) + v(n,, nl, . . , ''nr-1) + P(nl,.., nr) + nr(n -r) r +1.

 The simplicial objects Diag Y(Pr; 11,..., I ) and Diag Y'<(Pr; Ir,. Ir,-)
 are isomorphic because of IV.2.7, and the rest of the proof of the claim is now
 clear.

 In the case I1 = = Ir = I, IV.2.5 says that the isomorphism IV.2.4 is
 equivariant with respect to Z/rZ, provided the sign (- )r+i1 is inserted in the
 action on W. Now IV.2.1 follows by passing to coinvariants.

 We will need an explicit formula on the chain level for the isomorphism

 Wo(pr; I) grrHCr-1(R).

 It is easy to see that, up to sign, the correct formula is

 [1 l * * *' xr] Pr {-4 X1 (9 .. *9 *XrJ

 Here xi e I c RI x1 ? ? * * (&Xr E ZrilRXi ?9 ... * Xr is its image in CrX 1(R)
 (a cycle) and { } denotes homology class in HrilC'(R) = HCril(R). In
 particular the map B in the Connes-Gysin sequence takes this to the Hochschild
 homology class

 (IV.2.9) ( )(r+l)jl X j ... OExjil E- grrHr(R)
 j=0

 (see [L-Q], Prop. 1.11).

 IV.3. Homology of Tensor Products of Adjoint Representations.

 Let S be a ring. If B1,..., Br are (S ? Q)-bimodules then the group GL(S)
 acts by conjugation on each of the Q-vector spaces M(B1) and so acts diagonally
 on the tensor product

 Tr = Tr(Bi,..., Br)= 0 M(Bj).

 We will compute the homology of GL(S) with coefficients in Tr; it turns out to
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 be given by

 H*(GL(S); Tr) = H*(GL(S);Q) ? ED? * W(p),
 P E 2r

 where the W*(p) = W*(p; B1,..., Br) are the Hochschild homology groups
 introduced in IV.1. By specializing to the case B1 = = Br = B and taking
 antisymmetric parts we will obtain a calculation of H*(GL(S); A rM(B)) and use
 it (in IV.4) to make the K-theory calculation IV.1.6.

 We assume familiarity with [G2], where the special case r = 1 was treated.
 For each p E Er let W*(p) be the chain complex

 limCh*Cyc(Mk((S ? Q)r); MkD(p; B1 ..., Br)),
 k

 a direct limit of non-normalized Hochschild complexes of matrix rings as in [G2],
 p. 402. By Morita invariance (see Section I.3), W*(p) can be identified with the
 homology of W*(p). On the other hand the group GL(S) acts, through
 GL(S ? Q), on the chain complex W*(p). (The group GL(S ? Q) maps diago-
 nally into GL(S ? Q)r. This group maps into GL((S ? Q)?r) because the r
 different ring maps S ? Q -_ (S ? Q)?r have commuting images. The group
 GL((S Q) ?r) acts on the chain group

 i',jp) = M(D(p)) ? M((S ? Q)?r) ? ?M((S ? Q)?r)
 by conjugating in each factor.) The map

 T= M(Bj) --+ M Bj WOfp)

 given by matrix multiplication is GL(S)-equivariant. Using all p E Er at once we
 get an equivariant map from Tr to the group of 0-chains in the complex
 fED *(p). This in turn induces a map

 (IV.3.1) Hn(GL(S); Tr) (-3 Hn(GL(S); W*(p))
 p

 into hyperhomology.

 IV.3.2. THEOREM. For any ring S and any (S ? Q)-bimodules B1,..., Br
 the map IV.3.1 is an isomorphism. Moreover

 Hn(GL(S); W*(p))- ED Hp(GL(S); Q) 0 Wq(p).
 p+q=n

 Proof For the second statement the proof is exactly as in the special case
 r = 1 ([G2], Prop.V.2). We omit the details.

 For the first statement the proof is only slightly more complicated than it
 was in the case r = 1 ([G2], Theorem V.3). We proceed in several steps.

 Step 1. (Reduce to the free case.) Resolving by free bimodules if necessary,
 we may assume that each B1 is free. In this case each D(p) is a free

This content downloaded from 128.151.13.228 on Wed, 26 Apr 2023 18:35:43 UTC
All use subject to https://about.jstor.org/terms



 RELATIVE ALGEBRAIC K-THEORY 387

 (S ? Q) ?rbimodule, so the Hochschild homology Wq(p) vanishes for q > 0.

 View WO(p) as a chain complex (with zero chain groups except in dimension
 zero) equipped with (trivial) GL(S)-action. We then have an equivariant quasi-
 isomorphism

 W*(p) -- WO(p).
 Since this induces an isomorphism on hyperhomology, the desired conclusion can

 be restated as follows: The composed map

 tr: Tr- - ED (p)- WO G o(p)
 P P

 induces an isomorphism in H*(GL(S); -). Notice that tr is a sort of trace; we
 have

 tr(X1 C) ... = E E [X1(01, i2), .., Xr,(r, i1)] p
 PCE , {ij)}

 Step 2. (Replace BGL(S) by the subcomplex X(S).) According to Proposi-
 tion 1.3 of [G2], it is enough if tr induces an isomorphism

 H*(X(S); Tr) e H*(X(S); WO(p)).
 p

 Step 3. (Replace groups by Lie algebras.) Each vector space upon which we

 have made GL(S) act has an analogous action of the Lie algebra g l(S ? Q). For
 example the action on Tr is given by

 r

 [Xi ? .? Xr, U] 3EX ? .. * (X jU UXj) ? .. * Xr,
 j=l

 Ue gl(S oQ), Xi E=M(Bj),
 while the action on WO(p) is trivial. The map tr is a map of (GL, g I)-modules
 ([G2], Def. III.3). Thus by [G2], Prop.III.5 it is enough if tr induces isomor-
 phisms

 HnX*(S ? Q; Tr) D HnX*(S ? Q; WO(p)).
 p

 Here X* is the Lie analogue of Volodin's construction defined in [G]. We recall
 the definition. If A is a Q-algebra and V is a module for the Lie algebra

 gL(A) = U qtn(A) of matrices then X*(A; V) is defined to be the chain
 subcomplex of the Koszul complex C*(gl(A); V) generated by the Koszul
 complexes C*(t?(A); V), where t?(A) ranges over all "triangular" Lie algebras

 in q I(A). From now on we may as well assume S = S ? Q.

 Step 4. (Pass to the full general linear Lie algebra.) It is enough if tr induces
 isomorphisms

 (IV.3.3) Hn(gt(S); Tr) - Hn( gt(S); WO(p)) .
 p
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 To see this we must generalize Theorem II.3 of [G2]. Recall the statement:

 For any Q-algebra A and q t(A)-module V, there is a spectral sequence with

 Ep q = Hp(g(A); HqX*(A; V)) == Hp~q(qt(A); V),

 for a certain abelian action of q t(A) on HqX*(A; V). We claim that the same
 conclusion holds even when V is a chain complex of q t( A)-modules { V, }. In this
 case the (hyper)homology H *( q t(A); V) is defined to be the homology of the
 double complex Cj(gt(A); V,), while X*(A; V) is the double complex X (A; V,).
 The proof is a routine modification of the proof in [G2], Section IV: Define an

 increasing filtration Fp of Cj(qt(A); Vq) with Fo = Xj(qt(A); Vq), and use the
 spectral sequence associated with this filtration.

 Apply this result with A = S, and with V equal to the 2-term chain complex

 Tr D WO(p). It yields a spectral sequence with
 p

 Ep ,q = Hp( q(S); HqX*(S; T r - Xo(p)))
 P

 Hp+q 9 '(S); T r (D Wo (P)

 The relevant action of g L(S) on HqX *(S; Tr --* e Wo(p)) is trivial, for the same
 reason as in the case r = 1 ([G2], p. 404). Thus E2 is a tensor product and in the
 usual way the vanishing of E?? implies the vanishing of E2.

 Step 5. (Pass to the complex of coinvariants.) The Koszul complex

 C*(gL(S); Tr) has an action of the Lie algebra gL(S) and hence an action of
 c L(Q). We can take coinvariants either on the chain level or on the level of
 homology, and there are obvious maps

 Hj q I(S); Tr) Hj(gL(S); T rtQ)

 Hn(C*( g (S); T r ) t(Q))-

 Both of these are isomorphisms, exactly as in the case r = 1. (This statement is

 valid for any Q-algebra $ and any S-bimodules B1,..., Br, not necessarily free.)
 Since details were not given in [G2] we give them here.

 That the first map is an isomorphism-i.e., that g L(Q) acts trivially on

 H *( g L(S); Tr ) -is true for general reasons; a Lie algebra g always acts trivially

 on H*(g; V) for any g-module V. (See for example [G2], p. 398.)
 The proof that the second map is an isomorphism relies on a semisimplicity

 (or "complete reducibility") argument. We will actually prove the analogous

 statement with qtn(Q) instead of gt(Q); this suffices by taking a direct limit
 with respect to n. From general facts about semisimple modules it follows that if

 a Lie algebra g acts on a chain complex C* in such a way that each chain group
 Cn is a semisimple g-module (= completely reducible representation) then the
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 natural map

 (HnC*)g Hn(C*g)

 is an isomorphism. Apply this with g = gin(Q) and C* = C*(gt(Q); Tr). As a
 q t(Q)-representation Cn = Tr 0 An q(S) is a quotient of

 Tr 0 qt(S)' = ( on B1) ? Sf 0 q(Q)rn

 the tensor product of a trivial representation and several copies of the adjoint
 representation. Since semisimplicity is inherited by quotients and (infinite) direct

 sums, we have only to show that every tensor power of q t(Q) is semisimple as a

 g t ,(Q)-representation. Let V be the standard n-dimensional representation of
 q L n(Q). As a g t n(Q)-representation

 gI(Q) _ (V V?G trivial) ? (V* e3 trivial).

 Therefore we have only to show that V? a ? V*@ b is semisimple for every

 a ? 0 and b ? O. Note that the identity matrix in q tn(Q) acts via the scalar
 a - b; thus every B t ,(Q)-subrepresentation is a g~ t (Q)-subrepresentation. But
 any finite-dimensional representation of n L (Q) is semisimple. ([Bo], 1.6.2,
 Theorem 2).

 Step 6. (Analyze the complex of coinvariants.) For any Q-algebra S and
 S-bimodules B1,..., Br we will obtain an isomorphism of chain complexes

 (IV.3.4) C*(gl(S);Tr),l(Q) G Ch*Y(p) 0 C*(qt(S);Q)O1(Q)
 P E= Yr

 where *(p) = *(p; B1,.. ., Br) is the multisimplicial vector space encountered
 in IV.2. This will imply an isomorphism in homology

 (IV.3.5) H*(g L(S); Tr) = W*(p) 0 H*(g L(S); Q)

 and in particular in the special case when each B1 is free it will imply IV.3.3,
 thus finishing the proof of Theorem IV.3.2.

 As preparation for analyzing the g t(Q)-coinvariants of Cn(g t(S); Tr) =
 Tr 0 AngL(S), consider

 Tr 1 gl(S)?n = M(B1) ? 0M(Br) 0 M(S) 0 ... oM(S)

 Its space of g t(Q)-coinvariants is

 ( Bi 0.*. Br S?

 the projection to the X factor being given by

 (IV.3.6) X1 o ... OXr? n EX1(i, X(i1)) ? ... OXr+n( r+n, X(jr+n)).
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 (This follows from the description of (q t(Q)?')g1(Q) given in [G2], pp. 404-405,
 with r + n replacing n. That in turn follows from the fact that the same

 description holds for (91k(Q)?'f)9k(Q) when k ? n. This description of
 coinvariants follows by semisimplicity from Weyl's description of the g tk(Q)-

 invariants of g tk(Q) I n, as quoted in [L-Q], p. 584.)

 The space of q t(Q)-coinvariants for Cn( q t(S); Tr) is obtained from this by
 antisymmetrizing with respect to the action of En = Aut{ r + 1,..., r + n} C

 Er+n? It can be written

 CnWfl(S); Tr)g,I(Q) = ffl ... X eB X Anx(S),
 x~~~~~~~~

 where X runs through a system of representatives for the orbits of the conjuga-

 tion action of E on Er? and An (S) denotes the antisymmetrization of S?n

 with respect to the largest subgroup of En which centralizes X.
 Any X E Er+n determines integers { pj ? 011 < j < r } and a permutation

 p G Er as follows: pj + 1 is the least positive integer k such that Xk(j) E
 1. .., r}, and p(j) = XP+ 1(j). These { pj} and p depend only on the E,-orbit
 of X. Set p = Xpj and q = n - p. We can arrange for the chosen representative
 X of each orbit to act like

 (IV.3.7) j >r + I+ E Pk >r +2 + 1Pk i O+ E Pk "PQ)
 k<j k<j k<j

 for all j E {1,..., r}. In particular X then belongs to the subgroup r? p X Eq
 C Er+n' Write X = /L U a, M E r+p' Eq. Then M is determined by the
 orbit of X, in fact by (p1, . . ., Pr)' but t is determined only up to conjugation (in

 Eq)* Also, the orbit of X is determined by p, p1, and the conjugacy class of A.
 This leads to new expressions for the coinvariants:

 r

 (IV.3.8) Cn( I (S); Tr),t(Q) = ( B0 X SP Aq(S)
 P E r =1

 p+q=n
 zpj =P

 - e ?(Bj S?')? 1 Aq(S)

 ( - p) pl**, Pr 3 Aq(S)

 - D Ch ,(p) & Cq('It(S);Q)9t(Q).
 P E Yr r )

 p+q=n

 (Here ( runs through representatives for conjugacy classes in Eq and Aq(S) is
 the antisymmetrization of SI q by the centralizer of t in Eq.) This is the desired
 isomorphism IV.3.4, but at the moment it is only an isomorphism of graded
 vector spaces.
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 To prove that it is a chain isomorphism we will in effect write down its

 inverse and prove that that is a chain map. Choose any n, p, p, q, and { p1 } as

 above and consider any element

 x ? {y} E Chpy"(p) ? Cq( g(S); Q)gt(Q),

 where

 X = Xi ? Sii? 1 S * pI 1 X2 ? S2,1 i*?SrPr

 E(P)P1, ,.Pr C ChPY(p)

 xi E B1, 1 < j <r,

 Si, E= S. 1 < j < r, 1 < i < pj,

 y = (ilyil IYq) e Cq(gt(S);Q)5 Yk E a(S), 1 < k < q.
 (As in [G2] we use the notation (vIu1I ... un) for the element

 V ? (ul A ... Aun) E V ? Anq = Cjq; V)

 of the Koszul complex, when a Lie algebra q acts on a vector space V.)

 We will write down an element z E Cn( q t(S); Tr) and show that under the
 given isomorphism IV.3.8, { z } corresponds to x ? { y } and d { z } corresponds
 to d(x ? {y}).

 Choose r + p distinct natural numbers {l1j l < j < r, 0 < i < p1}, such

 that none of them is a number 1 such that any matrix Yk has a nonzero l-th row

 or column. Define ordered pairs cj i of natural numbers by

 = (iji, I 0?i+1) O < i < p1

 where I1p,+ = 1pMj0

 If c = (P, v) is an ordered pair of natural numbers and x is an element of an

 abelian group, let us write E(,c, x) for the matrix having x as the entry in the

 M-th row and v-th column and all other entries zero. Write

 Xj = E(cj10, xj) E M(Bj), 1 < j < r,

 Sj i=E(Eji, sj )je gL(S), < j < r, 1 < i <pi.
 Set

 = ( 9 Xj1S1,11S1,21 *.. ISr pr'YI *- iYq) C(t(S); Tr).

 We now check that the coinvariant class { z } corresponds to x ? { y } under
 IV.3.8. This means computing traces. Consider the element

 ( X)(? ( ( Sj,) ( Yk) Ec ( j

 which maps to z under antisymmetrization. For each X E Er+n apply the map
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 IV.3.6. The result (an element of ( ? jBj) ? S?In) will be zero except in cases
 where X belongs to Er+p X Eq and satisfies IV.3.7, because of the way in which
 the numbers 1i, were chosen. In these cases it will be

 ( ?8) j ?( 9 S j i (9 Y,(i " i?(k))z

 where X = [ U 4 and the sum is over all (i,..., iq) G N". Upon antisymmetriz-
 ing and using the identification IV.3.8 this becomes x ?9 y }.

 Finally we check that d ( z } corresponds to d( x ? { y }). By definition these

 are respectively ( dz } and dx ? { y } + ( - 1) P ? { dy }I. First notice that the
 following matrix products all vanish, by the choice of the numbers i i:

 XjYk, YkXj,

 Sj, iYk, Yksj, i

 SiS i Sj1 except when j' = j and i' = i + 1,

 Xi Si, i, except when j' = j and i' = 1,

 Si, iXil except when j = p( j) and i = pi.
 In view of this the formula for the Koszul differential ([G2], p. 388) boils down to

 (IV.3.9)

 dz= E (- 1)P(j)
 ?i1

 xi(X1 ... (9Xsl19... ?&XrS11 ISj,1I . Isr,pjIY1I ... IYq)

 _E (- IP(j)+Pj-l
 p1 ? 1

 X (x1 .. ? SjpjXp(j) ? ?XrIS1,l I. Sj,pjl ISr pIY1I. IYq)

 + E E (- 1)(P()+i)+(P(j)+i+l)
 j 1<i<pj

 X (x9 .. ?&XrISjiSjji+iIS,11 .Si il S+ * * ISr p lYll IYq)

 + E (_ 1)(P+k)+(p+k')
 k<k'

 X xi(X1 .. * Xrl [ Yk, YklS1,11 .. I Sr, p, I.. Y11..l y IY .. lYkd .. Yqv

 where we have written p(j) for 1< j,< jpj* The fourth term here can be
 rewritten

 ( )P Z (- ) ( XjS11 .. ISr,p, [Yk, Yk IIYL1 IYkI .Yd. I Yqk'
 k<k' i
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 its class corresponds to (- 1) P ? { dy } by the same reasoning which showed
 that { z } corresponds to x ? { y }. The third term is the same as

 E E (_ I)Plj)+
 j 1<i<pj

 X (X1 Xxrl Sl 1 1 ... I Sji, Sj, iSj,i+| .I ... I Sr, prlYll . .. lYq)'

 Noting that S1 i j, i? = E(( 1i, ij i+2) Si iSi i+1) and using the same reasoning
 a third time, we see that the class of this element corresponds to

 E E (- l)P(j)+'(dijx) X ty).
 1<j<r O<i<p,

 (Here di' is a face map of t(p).) Similarly, since

 X iSil= E((lj, l 52), xisj 1)
 and

 SX = E((l. , iPj ) 1

 the first and second terms of IV.3.9 become respectively

 1) (- P(j)(d ix) 0 (y
 Pj?1

 and

 I) (-1) j di dpx y}
 1?j~~~~~~~rP

 ?1

 Thus the total of the first three terms is

 ( E ( - 1) P( j) 'd ix ) f y }=dx X 9 y}
 1<j<r O<i<p,

 (We appear to be missing the term containing do for each j such that p1 = 0,
 but these terms vanish anyway.)

 This completes the proof of the isomorphism IV.3.5. One checks easily that
 the projection

 H.(g (S); Tr) -f l Wo(p) ?9 Hn(9 (S);Q)

 is the same as the map IV.3.3 induced by tr, so that in particular when the B1
 are free bimodules IV.3.3 is an isomorphism. [l

 IV.3.10. COROLLARY. If S is a ring and B1,..., Br are free (S ? Q)-
 bimodules then the GL(S)-module Tr = M(B1) ? ... ? M(Br) has the property
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 that the natural surjection T- TEL(S) to the coinvariants induces an isomor-
 phism

 H*(GL(S); T r) -* H*(GL(S); TGLS))

 Proof. It will suffice if tr in the commutative diagram

 Tr -. TGL(S)
 tr

 tr

 $ WO(p)
 P E E r

 is an isomorphism. Consider this as a diagram of GL(S)-modules, where only Tr

 has a nontrivial action. The fact that tr induces a surjection on HO(GL(S); -)
 implies that tr is itself surjective, and hence that tr is surjective. The fact that tr

 induces an injection on HO(GL(S); -) and a surjection on H1(GL(S); -) now
 implies the vanishing of HO(GL(S);ker(tr)), and hence the vanishing of its
 quotient HO(GL( S); ker(tr)) = ker(tr). E

 IV.3.11. COROLLARY. If S is a ring and B is a free (S ? Q)-bimodule, then

 the GL(S)-module AXM(B) has the property that the natural surjection

 ArM( B) -( (ArM(B))GL(S) induces an isomorphism on H*(GL(S); -).

 Proof Apply IV.3.10 with B1 = * = Br = B. Passing to Er-coinvariants

 commutes with taking GL(S)-homology since the E r-action and the GL(S)-action
 commute (and since we are working with Q-vector spaces). E

 IV.4. A K-theory Calculation.

 f
 Let I -- R S be as in the introduction to Section IV. Consider the

 diagram of spaces

 F1 F

 1 12

 (IV.4.1) B GL(R) K(RI)

 BGL(S) K(S)

 where the lower vertical maps are induced by f and the Fi are the homotopy
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 fibers. We will use the rational homology of F1 to compute the rational relative

 K-groups 7T*(F2) ? Q.

 Let H*( ) denote rational homology. In the Serre rational homology spec-

 tral sequence for K(R) -* K(S) the E2 term is a tensor product; the action of
 71K(S) = GL(S)ab on H*(F2) is trivial because K(R) -, K(S) is an H-space
 map. The corresponding action of 71B GL(S) = GL(S) on H*(F1) is highly
 nontrivial. In fact F1 is a K(T, 1) with X = ker(GL(IR) -* GL(S)) _ M(I) an
 abelian group (this uses the fact that I2 = 0). Thus H1(Fl) A_ AM(I ? Q), with
 the action of GL(S) being given by the adjoint action of GL(S) on M(I ? Q).

 The fact that the two lower horizontal arrows in IV.4.1 are plus construc-

 tions implies that there is a spectral sequence with

 E2 = Hi(B GL(S); Hj(Fl -* F2)) (IV.4.2) i~~~,) 3
 Et0j= O.

 If the action of GL(S) on H1(Fl -, F2) were trivial (which it is not) we could
 conclude that E2 is a tensor product and hence that E2 vanishes and that

 Hj(Fl -* F2) vanishes (which it does not). Instead we introduce the coinvariant
 homology Hj(F1)GL(s) and the maps

 Hj(FJ) Hj(F2)

 Hj( F1 )GL(S)

 (Here Oj is induced by IV.4.1, 4j is the quotient map, and Oj makes the triangle
 commute; such a Oj exists because GL(S) acts trivially on Hj(F2).)

 IV.4.3. LEMMA. pj is an isomorphism for all j.

 Proof. The key fact here is Corollary IV.3.11; it says that the map ?
 induces an isomorphism of H*(GL(S); -).

 Assume that for some j, 4, is not an isomorphism. Choose the smallest j
 such that either cj fails to surject or Pj-1 fails to inject. Since GL(S) is acting
 trivially on both Hj(FL)c6s) and Hj(F2), this is also the smallest j such that for

 some i ? 0 either Hi(GL(S); H/(FL)GL(s)) -* Hi(GL(S); Hj(F2)) fails to surject
 or the corresponding map for j - 1 fails to inject; and moreover this failure
 occurs already when i = 0. By IV.3.11, the subscript GL(S) can be omitted in

 this last statement. Thus in the spectral sequence IV.4.2 the group EO j is
 nontrivial and j is the least integer such that any E 2 is nontrivial. This implies
 that E 00 = E 2 0 , O a contradiction.
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 We have now computed the rational homology of F2 as a graded vector
 space:

 HnF2 (HnFlF)L(S) - M(I ? Q)GL(S).

 We need to compute the coalgebra structure as well, in order to find the

 primitive part. Of course the surjection 4: H*F1 -* H*F2 is a coalgebra map
 since it is induced by a map of spaces; this is what will allow us to make the
 computation.

 Let A* (resp. A *) be the free graded (resp. free commutative graded)
 Q-algebra generated by a copy of M(I ? Q) in dimension one. This is a Hopf
 algebra in a unique way, namely with comultiplication A given by

 Ax=x?1?+Ix forxeAl(resp.Aj).
 The group GL(S) acts on M(I ? Q), hence on both of the Hopf algebras. When
 a group acts on a coalgebra the coinvariants form a coalgebra. We get a diagram
 of coalgebras and coalgebra maps

 A * )AX* _H* F

 (A*)GL(S) G(A*)L(S) - H*F2

 (Note: 4 is not an algebra map, and (A*)GL(S) is not even being given an algebra
 structure.)

 We next determine the structure of the coalgebra (A*)GLS). By the proof of
 Corollary IV.3.10 we can write

 (IV.4.4) (An )GL(S) = 3 WO(V; I ? Q).

 To determine the comultiplication, consider any element Htn U1E e A, E e A1.
 We have

 = H(Ei ? 1 + 1 ? Ei)

 P n

 = = sgn(p) (H EP(9), H1 Ep()
 P+q=n a= 1 /3=p+ /

 p

 where p runs through all (p, q)-shuffles in In. In particular suppose that for
 some v E- n and x1,. ..., xn E I ? Q we take Ei to be E((i,.v(i)), xi), using the
 notation of IV.3. Then the element {HEj } E (An)GL(S) corresponds to
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 [x1,..., xn], E WO(v) under the isomorphism IV.4.4. Now let us see what the
 element {Hf = LEp(X) } corresponds to under

 (A P)CLs= ED$ o (A)GL(S) 7T W0 I

 The answer is zero unless the set p { 1 ..., p } is preserved by v, in which case

 it is

 [P ...l) * Xp(p) G rE Wof X )

 where g E I P is defined by 7T(a) = p-lvp(a), 1 < a < p. Likewise
 {H=PE+ p(O)} = 0 unless p { p + 1, .. ., n } is preserved by v, in which case it
 corresponds to

 IXp(p +1) 5 .. * Xp(n)] G E Wo(5)

 where ( E Eq is defined by ((f3 - p) = p-1vp(3) - p, p + 1 < B < n.
 In other words if we identify (An)GL(S) with ED P WO(v) according to

 IV.4.4, then the comultiplication is given by

 (IV.4.5) A [ x, .. * * Xn] P

 E sgn(p)[xp(1),..*, Xp(p)] ? [ xp(p+1),. Xp(n)]
 p+q=n

 PIP 'Ve 2xq

 where p runs through all (p, q)-shuffles such that p- 1vp belongs to p x 2 q5
 and where g and ( are such that p-1vp = 7 U (.

 Now we pass from (A *)GL(S) to (A *)GL(S)* Antisymmetrizing IV.4.4, we can
 write

 (IV.4.6) (Afn)GL(S) = f o()

 where v ranges over representatives for conjugacy classes in E n. However, we
 prefer not to choose actual representatives, but rather make the convention that

 all the WO(v) are contained in (An )GL(S) with
 (IV.4.7) W( p-Lv) = W(v)

 xp(l), ...* Xp(n)I P-`p = sgn(p)[X1, ...* Xnj P

 Now from IV.4.5 we can read off a formula for the comultiplication in (A *)GL(S):

 (IV.4.8) A [x15 .. , xn] P

 - E sgn(p) [xP(1), .. xP(P) W0 ? xp(p+1)5 . Xp(n)I t
 p+q=n

 p -1VP E Ep X Eq
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 just as before. The set of all p E In such that p- lp E 2 p x Iq is a union of
 right cosets of Ep x Eq, and each coset is represented by a unique (p, q)-shuffle.
 Note that by the convention just established (IV.4.7), equation IV.4.8 remains
 valid even if we use some other set of coset representatives instead of the
 shuffles.

 IV.4.9. CLAIM. The primitive part of (An)GL(S) is the summand WO(pn) in
 IV.4.6.

 Proof Consider, for any v E I no T E G Ipa and t E I q' the composition

 Wo(v) >- (A)L(S) ((A*)GL(S) ? (A*)GL(S))n * WO(IT) ?9 W0().

 Clearly by IV.4.8 if v is not conjugate to 7r U ( in En then the composition is
 zero. If v is conjugate to 7T U t then we will show that the composition is
 injective. This easily implies the claim.

 We may assume v = X U A. Write

 W0(19 U A) = WO( 7r) X Wo(t )5

 using IV.1.4. The centralizer G = C(m U A) acts on WO(7T U ). Insert a sign in
 the action, so that the space of coinvariants is Wo(,r U A). For the subgroup
 H = C(X) x C(f) C G the space of coinvariants may be identified with

 W0(7X) ? Wa( ). In these terms the map

 WO(7T u -). WO(70 X WOMf

 under investigation is the "transfer"

 W0(09 U OG - W0(0 U OH.

 That is, it takes the element represented by

 [X15 ... * * Xnb~ G WO(7T U )

 to the element represented by the sum

 Z sgn(p) [ xP(1) ..., Xp(n)I UE WO( T U )
 p

 where p runs through coset representatives for G/H. Indeed by IV.4.8, it takes
 it to the sum

 E, sgn( p) [xPM I ... ., xP(P)] xr 2[P(p +l), .. * *,Xp( n)]
 p

 where p runs through any system of representatives for those cosets of Ep x E q
 in - I such that p vp has the form 7T' U (' with r' conjugate to ST in I and
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 (' conjugate to ( in I q. In particular we may choose each p such that T' = X
 and (' = (, and in this case p runs through representatives for G/H.

 The transfer is injective by a well-known principle: The composition with

 the quotient map

 W0(7T U G - W0(n U H - W0(n U 0G
 is an isomorphism, namely multiplication by the index (G: H). E

 This completes the K-theory computation IV.1.6, since

 Kr+l(f) ? Q = gr+1(K(R) -* K(S)) ? Q
 = 7Tr(F2) ? Q

 Prim H*(F2)

 _ Primr(A* GLcs))

 WO(Pr; I ? Q).

 To finish the proof of Theorem II.3.4. we still have to check that the upper

 portion of the diagram

 WO(pn; Io Q)

 Kn+1(f)? -4 H- 1(f?Q)- HCn(f ? Q)

 {7T B

 Hn+l(f? Q)

 commutes, perhaps up to a sign depending on n. Fortunately we can im-

 mediately bypass the groups HC- and use the outer diamond-shaped diagram
 instead, thanks to the following fact.

 IV.4.10. CLAIM. The map ?T: HCn-+?(f ? Q) -* Hn+1(f ? Q) is injective
 for all n.

 Proof. This is equivalent to saying that B: HCn( f ? Q) -* Hn + A( f ? Q) is
 injective, or equivalently that S: HCn+2(f ? Q) -* HCn(f ? Q) is zero. The
 latter is true because f ? Q is the projection from a graded Q-algebra to its
 degree zero part ([GI], p. 197 proof of Claim 1). 0

 Of course we can also replace Hn +(f ? Q) by Hn(R 1 Q), into which it
 injects. The composition

 WO(pn; I ? Q) HCn(f ? Q) Hn+1(f ? Q) >-> Hn(R ? Q)
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 has already been computed, in IV.2.9. We have to compute the composition

 WO(pn; I ?& Q) Kn+I(f) ? Q Hn+1(f ?9 Q) >-* Hn(R ? Q).

 To do so we use the diagram

 WO(pn; I ? Q) -Kn +(f) ? Q Kn(R) ? Q

 11 11

 Primf(( A*)GL(S)) -Tn( F2) ? Q 'TnK(R) ? Q

 I 1 1.
 (A )GL(S) Hn(F2) HnK(R)

 A n - Hn( F1) -* H n B GL(R) Hn(IR ? Q).

 Let x e 1, 1 < i < n. We want to chase the element [x1,..., xjnj around the
 top and right edges of the diagram above. Instead we chase it around the left
 and lower edges. Chasing it to the lower left corner we obtain the element

 e1.. en EA

 where ei E1 A1 = M(I ? Q) is the matrix

 E((i, i + 1), xi), I < i < n,

 E((n.1),Xn)5 i =n.

 Recall that F1 is (equivalent to) BM(I). Using the standard chain complex
 C*BiB for the classifying space of a group, we then get the class of the cycle

 1: sgn(p)(e,(I),.. *, e(n)) E- CnBM(I).
 P r 'n

 Applying the group homomorphism e 1 + e from M(I) to GL(R) we then
 get the cycle

 E sgn(p)(I + e(1),.., 1 + ep(n)) e CnB GL(R).
 P E= Y n

 Next apply the map t(GL(R)) of 11.1 to get the cycle
 n

 E sgn(p) - ei) ? (1 + e .(1)) + ep(n))

 eTn2'(ZGL(R)).

 (Recall that eie1 = 0 since I2 = 0.) Since we are using the normalized Hochschild
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 complex this can be written

 n

 Esgn(p) 1 - ei1) ? elp
 p i=l

 The class of this cycle in Hn(R 11 Q) is in fact in grnHn(R 1 Q), since by IV.2.1
 we have

 HCnG_(1R Q) = groHCn-1(R ? Q) e grnHCn-1(R ? Q).
 Therefore we may use the n-th graded part of the cycle:

 E sgn(p)1 ? .ep(j) ep(n).

 Apply the trace map e of II.1. There are contributions only from those p which

 are powers of pn:
 n-1

 E (_ l)j(n?L)l ? Xj+1 X* X?
 j=O

 This agrees with IV.2.9.

 HARVARD UNIVERSrrY, CAMBRIDGE, MASS.
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