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 Annals of Mathematics, 121 (1985), 383-407

 On the general linear group and
 Hochschild homology

 By THOMAS G. GOODWILLIE*

 Introduction

 Our main result here is a rational computation of the homology of the
 adjoint action of the infinite general linear group of an arbitrary ring. Before
 stating the result we establish some notation and conventions.

 Rings are associative and with unit. If A is a ring then GL(A)=
 Uk?0GLk(A) is its infinite general linear group. An A-bimodule is an abelian
 group B which is both a left A-module and a right A-module and satisfies

 (alb)a2 = al(ba2) for ai eA, be B (for example B = A). If B is an A-bimod-
 ule, then M(B) = Uk?oMk(B) is the infinite additive group of matrices with
 entries in B. Conjugation defines an action (the adjoint action) of GL(A) on
 M(B). Note that an A ? Q-bimodule is just an A-bimodule which is also a

 rational vector space. If B is an A ? Q-bimodule, then HJ(A C) Q; B) denotes
 the Hochschild homology of A ? Q with coefficients in B.

 Our main result (it appears in slightly more detailed form as Theorem V.3)
 is:

 MAIN THEOREM. Let A be a ring and B an A X Q-bimodule. Then

 (1) Hn(GL(A); M(B))- Hp(GL(A)) X H (A C) Q; B).
 p+q=n

 Moreover, the projection

 Hn(GL(A); M(B)) Hn(GL(A)) C HO(A C Q; B)
 = Hn(GL(A); H0(A C Q; B))

 is induced by the trace M(B) -* B -* HO(A ? Q; B).

 This theorem is very useful for making relative rational calculations in the

 algebraic K-theory of simplicial rings. In fact, it can be interpreted as a fact

 * Partially supported by NSF Grant MCS-83-08248.
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 384 T. G. GOODWILLIE

 about "stable K-theory" in the sense of Waldhausen and Kassel:

 Ks (A; B) X Q-H*(A; B) X Q

 (see [K]). In a future paper we will use this to prove the formula

 (2) Kn(f) ? Q -HCn-1(f) ?9 Q

 when f: R -* S is a one-connected map of simplicial rings. Here Kn(f) is
 the relative algebraic K-group 7Tn - 1(fiber(B GL(R) ? -- B GL(S) +)) and
 HCn - i(f) is a suitable relative version of Connes' cyclic homology. (It seems
 likely that (2) is true more generally whenever the map of rings 0oR -q 7oS is
 suriective with nilpotent kernel.)

 Formula (2) or something resembling it has already been obtained in certain

 special cases: the case S Z ([D-H-S 1], [H-S 1], [H-S 2], [B]); the case

 S = Z[G], G a finite group ([D-H-S 2]); and the case when R -- S = OK is a
 suriective map of discrete rings with nilpotent kernel and (K the maximal order
 in a finite extension field of Q ([St]). In each instance a key role has been played

 by a result like the Main Theorem above (with A = 7ro(S)). For example, the
 special case A = Z, B = Q of our theorem, which says that the trace map

 M(Q) -* Q induces an isomorphism

 Hn(GL(Z); M(Q)) -- Hn(GL(Z); Q),
 is Lemma 2.3 of [F-H] and is used in [D-H-S 1].

 In cases where the Main Theorem is already known the proof has used

 algebraic geometry. For the general case a different method is required. Here is

 an outline of our proof.

 In order to construct a map from the left-hand side of (1) to the right-hand

 side we observe that the trace map M(B) -* HO(A ? Q; B) can be realized by a
 map of chain complexes of GL(A)-modules. In fact, consider the direct limit as

 k x-* of the standard Hochschild complex for the ring Mk(A ? Q) and
 bimodule Mk(B). On the one hand, this complex has a GL(A)-action; on the

 other hand, its homology is just H*(A ? Q; B). What's more, its GL(A)-hyper-
 homology is the right-hand side of (1) (Proposition V.2). The inclusion of M(B)

 as the 0-chains in the complex thus induces a map from the left-hand side of (1)

 to the right-hand side.

 To prove that the map is an isomorphism it is enough to consider the case in

 which B is a free bimodule F of rank one. In this case Hn(A ? Q; F) = 0 for
 n > 0, so the statement to be proved is that the trace map

 tr: M(F) -* HO(A ?9 Q; F)

 induces an isomorphism in Hn(GL(A); -). That is, we must prove

 (3) H(GL(A); V) = 0,

This content downloaded from 
�����������128.151.13.226 on Tue, 07 Nov 2023 11:38:02 +00:00����������� 

All use subject to https://about.jstor.org/terms



 THE GENERAL LINEAR GROUP 385

 where V = ker(tr). Strangely enough, we prove (3) by first proving its analogue

 in Lie algebra homology:

 (4) H(q (A C Q);V) = 0.
 The proof of (4) (= Lemma V.4 below) is an application of classical

 invariant theory in the style of ([L-Q], Proposition 6.6). It takes up most of

 Section V.

 The most unusual feature of the proof of the Main Theorem is the way in

 which (3) is deduced from (4). As intermediaries between GL(A) and g t( A ? Q)
 we use the triangular groups T?(A) C GL(A) and triangular Lie algebras

 tV(A ? Q) c gq (A ? Q). (These are defined at the beginning of ?I and ?11
 respectively.) These nilpotent groups and nilpotent Lie algebras are much more

 intimately related to each other than GL(A) and g t(A ? Q) are.
 Now on the group side we consider Volodin's space

 X(A) = UBTg(A) C BGL(A).
 a

 There is a fibration up to homotopy

 X(A) -* BGL(A) -- BGL(A) ;

 so by a Serre spectral sequence (3) will follow from

 (3') H(X(A); V) = 0.
 On the Lie algebra side we define a chain complex X *(A ? Q; V) (for

 any q g(A ? Q)-module V) which is a "Lie analogue" of X(A), or rather
 of the chains on X(A) with coefficients in V. Namely in the Koszul complex

 C*(qg(A ? Q); V), let X*(A ? Q; V) be the subomplex generated by
 the Koszul complexes C*(t?(A ? Q); V). We show (Theorem 11.3) that
 H( g L(A ? Q); V) is related to H(X *(A ? Q; V)) by a spectral sequence analo-
 gous to the Serre spectral sequence which relates H(GL( A); V) to H( X( A); V).

 Using this we show that (4) implies

 (4') HX*(A ? Q; V) = 0.

 Finally, (3') and (4') are equivalent; in fact, by methods of rational

 homotopy theory HJ(X(A); V)- HX*(A ? Q; V) for any rational vector
 space V on which both GL(A) and g L(A ? Q) act, provided the two actions are
 "the same" on triangular matrices (Proposition 111.5).

 I. Volodin's Space X( A)

 Let A be an associative ring with identity.

 A partial ordering a of the natural numbers N is supported in a set J C N if

 i < j = (i, j) E J X J; we write supp(a) C J. Every a which we consider will

This content downloaded from 
�����������128.151.13.226 on Tue, 07 Nov 2023 11:38:02 +00:00����������� 

All use subject to https://about.jstor.org/terms



 386 T. G. GOODWILLIE

 have finite support, i.e. supp(a) C J for some finite set J C N. The ordering a
 determines the triangular subgroup

 TG(A) = (uE GL(A)IU, = Iij unless i < j).

 Note that Tg(A) C GLJ(A) if supp(a) C { 1, . . ,n} = n.
 For any (discrete) group G let BG be its classifying space constructed in

 the standard simplicial manner (the realization of the nerve of the one-object
 category with morphisms G). Thus for each ordering a we have BTG(A) C
 B GL(A).

 Definition I.1. The space X(A) is the subcomplex

 X(A) = UBTG(A) c BGL(A)
 a

 The following result is proved in [Su].

 PROPOSITION 1.2(a). X(A) is connected, 7r1X(A) is isomorphic to the
 Steinberg group St(A), and the inclusion X(A) -- B GL(A) induces the usual
 homomorphism

 St(A) -- GL(A)

 with cokernel K1(A) and kernel K2(A).

 (b) X(A) is acyclic, i.e., H*X(A) = 0.

 (c) X(A) is simple, i.e., 7rlX(A) acts trivially on TrkX(A) for k > 1.

 From 1.2 it follows that there is a pushout diagram

 X(A) c BGL(A)

 n n

 X(A) +c B GL(A) +

 which is homotopy-cartesian and in which X(A) + is contractible. This implies
 the equivalence of Volodin K-theory and Quillen K-theory ([Va]): The fiber

 product V(A) = X(A) X BGL(A)E GL(A) is homotopy-equivalent to SB GL(A) +.
 It also implies that X(A) is homotopy-equivalent to the homotopy fiber of
 BGL(A) -- BGL(A)+, and hence:

 PROPOSITION 1.3. Any GL(A)-module V (viewed as a locally trivial coeffi-
 cient system on B GL(A)) determines an abelian action of GL(A) on
 H *(X(A); V) and a spectral sequence

 E q = Hp(GL(A); Hq(X(A); V)) =* Hp+q(GL(A);V).
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 THE GENERAL LINEAR GROUP 387

 We will also need a variant XS(A) which depends on the choice of a finite

 set S C N x N. Call an ordering a orthogonal to S and write a I S if i < j

 (i, j) S.

 Definition 1.4. XS(A) = UaIsBTG(A) c X(A).

 PROPOSITION 1.5. For any finite set S C N x N the inclusion XS( A) -- X(A)
 is a homotopy equivalence.

 Proof of 1.5. Let S c N x N be finite. For n >> 0 we have S C n x n.
 Write

 Xn(A) = X(A) n BGLn(A)= U BTG(A),
 supp( a) C n

 Xs(A) = Xs(A) n BGLn(A)= U BT?(A).
 supp( a) C n

 aI S

 It will be enough if the inclusion (Xn(A), Xs(A)) -- (X2n(A), Xsn(A)) is null-
 homotopic as a map of pairs.

 Any element U e G of a group determines a homotopy from the identity

 map BG -* BG to the map B Inn(U) induced by the inner automorphism
 Inn(U): G -* G. (To see this, view G as a category with one object; U provides
 a natural transformation from the identity functor to the functor Inn(U).) Taking

 G = GL2I(A) and U = either ( I 1) or ( - I ?I)' we see that the associated

 homotopy carries Xn(A) into X2n(A) and Xs(A) into Xsn(A) for all time.
 Indeed, for any a with supp(a) C n there exists T D U with supp(T) C 2n such
 that U e TT(A); and if a I S then we can choose T I S as well. It follows that

 for U=(0 fl(- 1f(0 1) ( 0 the map BInnU: BGL2n(A)

 B GL2 n(A) is homotopic to the identity by a homotopy which when re-
 stricted to Xn(A) (respectively Xs(A)) takes place in X2n(A) (respectively
 X2n(A)). But BInnUtakes Xn(A) into XLn(A). L

 II. A Lie analogue of Volodin's construction

 We will state here and prove in Section IV an analogue of Proposition 1.3 for
 Lie algebra homology (Theorem 11.3 below). Thus we are concerned with a
 gL (A)-module V and its homology groups H*(g L(A); V). Our ultimate goal in
 Section V is only a rational homology computation (we can do no better because
 of the method used in ?111 below) and therefore we may as well restrict ourselves
 here to the case in which A and V are rational vector spaces. This saves some
 trouble in getting the definition of H *( gL (A); V) right and also makes it possible
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 388 T. G. GOODWILLIE

 to take shortcuts by appealing to the results of Section III. (It may well be,
 however, that with a suitable definition, Theorem 11.3, like Proposition 1.3, is true
 over Z.")

 Note. In our main result (Theorem V.3) the ring A is not assumed to be a
 Q-algebra. Rather, in the proof of V.3 we at one point apply 1.3 to A and at
 another point apply 11.3 to A X Q.

 Recall the definition of Lie algebra homology. If g is a Lie algebra over Q.
 then a (right) g-module is a rational vector space V equipped with a q-action, i.e.,
 a linear map

 V X g V

 v X u [v5u]

 satisfying

 [V, [U1,U2]] = [[V, 1], u2] - [[VU2]XU1].

 This is the same as a Lie algebra antihomomorphism

 g End(V)

 It is also the same as a right (associative unital) action of the universal enveloping
 algebra Ug. Similar remarks apply to left actions. We sometimes write [u, v]
 = - [v, u] (thus implicitly changing a right action into a left action). The Lie
 algebra homology of the right g-module V is

 H*(g;V) = Torug(V, Q),

 where Q has the trivial left action [, ] 0. The standard chain complex for
 computing H*( g; V) is the Koszul complex C*( q; V). This has as its n-th chain
 group

 C(g; V) = V C) At ,

 and if we write (vull ... jun) for v X (u, A ... Aun, then the boundary is
 given by

 (11. 1)

 d(vull ... Iun) = (- )+1([vui]u ... lui I ... iun)

 + E ( 1 (Al [uiujjlull .. I * Iu .. * u * I ... | Un)
 1<i<j<n

 (The Koszul complex is based on a certain standard free resolution for Q as left
 Uq-module.)
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 THE GENERAL LINEAR GROUP 389

 Now if A = A ? Q is a ring, then gq(A) denotes the Lie algebra of all
 N x N matrices over A with only finitely many nonzero entries. For each finitely

 supported partial ordering a of N define the triangular Lie algebra

 t (A) = {u e gq(A)luij = Ounless i < j}.

 If V is a g ( (A)-module then by analogy with Definition 1.1 we make:

 Definition 11.2. X*(A; V) is the chain complex

 EC*(tu(A);V) C C*(gq(A);V).
 a

 Our main result concerning X *(A; V) is the following analogue of Proposi-

 tion 1.3.

 THEOREM II.3. Let A = A ? Q be a ring. Any gq (A)-module V determines
 an abelian action of g 11(A) on HqX *(A; V) and a spectral sequence

 Ep q =:Hp(gq(A);HqX*(A;V)) =* Hplq(gq(A);V).

 Proof Deferred until Section IV.

 Remark 11.4. " Abelian" means that the action factors through the

 abelianized Lie algebra g q(A)/[ g q(A), g q(A)]. It is easy to prove the "additive
 Whitehead Lemma": The commutator subalgebra [qg [(A), gq (A)] is equal to its
 own commutator subalgebra and is generated (as a Lie algebra) by matrices with

 a single, non-diagonal, entry different from zero. It consists of all matrices whose

 traces are in the additive subgroup [A, A] C A generated by commutators.

 III. Rational equivalence of the Volodin construction and its

 Lie analogue

 Let A be a ring.

 Our aim here is to show (Proposition 111.5 below) that if a rational vector

 space V has both a GL(A)-action and a g 11(A ? Q)-action and if the two actions
 are compatible in a certain obvious sense (Definition 111.3 below), then

 Hn(X(A);V) -HnX*(A ? Q;V).
 The key idea is that for any a (finitely supported ordering of N) the group

 algebra QT?(A) and the universal enveloping algebra UtO(A ? Q) become
 isomorphic after completion with respect to powers of the augmentation ideal.

 This yields isomorphisms

 Hn (Tg(A); V) -Hn (t(A 0 Q); V)
 for each a. Considering all a at once and working on the chain level, it is then

 not hard to obtain the stated conclusion.
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 390 T. G. GOODWILLIE

 Definition 111.1. An action e: G -* Aut(V) of a group on a vector space is
 nilpotent if for some m ? 0, for all Ui,..., Um E G we have

 m

 Hl (19(Ui) - I) = .
 i=l

 Definition 111.2. An action 0: q End(V) of a Lie algebra on a vector
 space is nilpotent if for some m> 02 for all u1,... ., um, we have

 m

 rHO(ui) = 0.
 i=l

 Definition 111.3. A (GL, g t)-module for a ring A is a rational vector space V
 with a GL(A)-action E) and a gq (A X Q)-action 0 such that the following
 conditions hold for every ordering a:

 (i) e restricted to T ?( A) is a nilpotent action;

 (ii) 0 restricted to t ?( A X Q) is a nilpotent action;

 (iii) For every U e T?(A) we have Olog(U X 1) = log )(U).

 Remark 111.4. In (iii) the two "logarithms" are both defined by the series

 logX = E (- W)'I'(X - 1)W/j
 i?1

 This makes sense because in each case the series is really a finite sum: If

 U E T?(A) then on the one hand U-I and U 1 -l e t?(A ? Q) are
 nilpotent matrices, while on the other hand by (i), E)(U) - I is a nilpotent

 endomorphism of V. (Thus some condition such as (i) is necessary if (iii) is to

 make sense. Also, as will become clear shortly, (i) and (iii) imply (ii) while on the

 other hand (ii) and an "exponential" reformulation of (iii) imply (i).)

 PROPOSITION III.5. If V is a (GL, g I)-module for A, then HJ(X(A); V)
 HnX*(A ?9 Q;V).

 Proof. This will occupy almost all of Section III. It relies on Quillen's

 equivalences of categories between Malcev groups, complete Hopf algebras over

 Q, and Malcev Lie algebras over Q. For relevant definitions and proofs see [Q],

 Appendix A.

 For any nilpotent group G let g(G) = 9QG. This is a nilpotent Lie
 algebra. If G is finitely generated then g(G) is finite-dimensional. In general

 q(G) can be identified with the direct limit of g(F) as F runs through all finitely
 generated subgroups of G. The next lemma identifies g(T?(A)) with t?(A X Q).

 LEMMA 111.6. QTa(A) and Ut?(A X Q) are isomorphic complete Hopf

 algebras.
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 THE GENERAL LINEAR GROUP 391

 Proof We first claim that the natural group homomorphism k: T"(A)

 T0(A X Q) induces an isomorphism QT0(A) QT?(A X Q). It is enough ([Q],
 p. 275, Theorem 3.3) if 4 induces an isomorphism of Malcev completions, since

 the Malcev completion of a group G is the group VQG of "grouplike elements"

 in QG. In fact, T?(A X Q) is the Malcev completion both of T?(A) and of itself.

 To see this it suffices (by [Q], p. 278, Corollary 3.8) to verify that T0(A) is

 nilpotent, T?(A X Q) is nilpotent and uniquely divisible, every element of

 ker(o) has finite order, and every element of T0(A ? Q) has some positive
 power in the image of 4. We leave these verifications to the reader.

 For the rest of the proof of the lemma we may suppose A = A X Q. Thus

 T?(A) is a (discrete) Malcev group which we identify with the group WQT?(A)

 of grouplike elements in QT?(A) and t?(A) is a (discrete) Malcev Lie algebra

 which we identify with the Lie algebra 9?UtC(A) of primitive elements in
 Ut?(A).

 To prove that QT?(A) -Ut?(A) it will suffice to give an isomorphism

 WQT?(A) -Ut- (A) of topological groups. But there are homeomorphisms (of

 discrete spaces)
 loglo

 iQT0((A) =-T?(A) (A t?(A) = ? Ut ?((A) log VUN (A)
 ([Q], p. 270, Proposition 2.6). Moreover they both impose the same group
 structure on t0(A), namely the one defined by the Baker-Campbell-Hausdorff

 formula. LI

 LEMMA III.7. Let R be either QG where G is a finitely generated nilpotent

 group, or Ug where g is a finite-dimensional nilpotent Lie algebra over Q. Let I

 be the kernel of the augmentation R -- G and let R be the I-adic completion of
 R. Then

 (i) R is a (left and right) Noetherian ring.

 (ii) (Artin-Rees property) If M D N are finitely generated R- modules then

 the 1-adic topology of N coincides with the relative topology for the 1-adic

 topology of M.

 (iii) The I-adic completion functor from finitely generated R-modules to

 R-modules is exact.

 (iv) I-adic completion of finitely generated R-modules is the same as tensor

 product with li over R.
 (v) R is a flat R-module.

 (vi) For any left R-module V the natural map Tor (Q, V) -> Tor (Q, V) is
 an isomorphism.

 Proof. For (i) the hypothesis is stronger than it needs to be. We prove (i)

 when R = QG, G a polycyclic group. By induction it is enough to show that
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 392 T. G. GOODWILLIE

 R = QG is Noetherian if G is an extension of a cyclic group C by a group H

 such that the ring S = QH is Noetherian. We can also assume C infinite: If it is

 not, then form the fiber product of G -* C <-- Z and use the fact that a ring
 admitting a surjection from a Noetherian ring is Noetherian.

 Thus R is a twisted Laurent extension of S:

 Rl= GSX ,
 ncZ

 Xs = a(s)X for all s E S,

 for some automorphism a of S. The twisted polynomial ring

 R+= ffD SX n c R
 n?O

 is Noetherian if S is, which we get by generalizing the usual proof in the

 commutative case ([A-M], p. 81). Since every one-sided ideal in R is generated

 by its intersection with R+ it follows that R is Noetherian.

 The conclusion (i) is well-known when R = Uq for any finite-dimensional
 Lie algebra q ([Bo], p. 18, Prop. 6).

 In general if I is a two-sided ideal in any Noetherian ring then in order to

 conclude (ii) it is enough to know that I has a generating set (x1,.. ., x,) such
 that for all i = 1, I..., r the image of xi in the quotient ring R/(x1, ... , xi - 1) is
 central ([N-G], 2.7-2.8). This condition clearly holds in the cases considered here.

 By a standard argument ([A-M]) (iii) and (iv) follow from (i) and (ii). Of

 course (v) follows from (iii) and (iv).

 For (vi) use a free R-resolution F * of V. By (v), F * is also a flat

 R-resolution of V. Thus since Tor can be computed using flat resolutions, it will

 be enough if Q ? RFn -* Q ( h Fn is an isomorphism for all n, i.e., if Q ? Rl
 Q Oh R is an isomorphism. But this follows by application of (iv) to the
 R-module Q. ?

 Now let V be a (GL, q 1)-module for A. For each a this means that (i) the
 QT?(A)-module V is discrete (in the topology of the augmentation ideal), (ii) the

 Ut?(A ? Q)-module V is discrete, and (iii) the two resulting actions of QT?(A)
 Ut "(A ? Q) on V are equal. Fix a and let lim denote direct limit over all

 finitely generated subgroups G of T?(A). We have

 H*(TU(A); V) = TorQ T(A)(Q,V)
 -lim TorQ(Q, V)

 -lim Tor QG(Q, V) (by 111.7)

 = lim Tor()(QTVG )

 = lim Tor (G)(Q, V) (by 111.7)

 = Tor U(TU(A))(QV)

 = H (ta(A 0 Q); V) (by 111. 6).
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 THE GENERAL LINEAR GROUP 393

 It is not hard to see that this chain of isomorphisms comes from a finite

 sequence of chain complexes starting with C*(Ta(A); V) and ending with

 C*(t?(A ? Q);V), each with a quasi-isomorphism (QI) to or from the next.
 Moreover, it is easily arranged for the chain complexes all to be functorial in a

 and the QI's natural.

 All that remains to prove 111.5 is to piece this all together somehow as a

 varies. Let X?* be any one of the chain complexes referred to above and let

 X': X?* -* XT (a C Ti) be the maps which make it a functor. Define the
 "homotopy colimit" holimX?* to be the total complex of the following double

 a

 complex (X **, d, d2):

 Xp q = @ Xq??s*7@PO, ) for p ? 0, q ? 0, where X(7o .p) = Go
 Go .. Ccap

 p

 dix= E (- 1) 'dX Xp1lq for x E Xp q, where
 i=O

 (XE ? X(Go. p) 0<i<P
 d q for x C X (CO, up)

 X~'xEXq7'.%P, i= 0 )

 d2x =dx E Xao1 X? ?o. Cp) c X 1 2 q-1 ~q-1 p_-

 forxEX o0=X(o, 'ap)CX

 It is clear that holim takes QI's which are natural in a to QI's, since a map of

 double complexes which in each column is a QI induces a QI of total complexes.

 Thus

 HnholimC*(T`(A);V) -HnholimC*(t`(A 0 Q);V).
 a a

 It remains to prove that

 HnholimC*(Ta(A); V) HnC*(X(A); V),
 a

 H.holimC*(t`(A 0 Q);V) = HnX*(A 0 Q;V)
 a

 (that is, that these two holim's are quasi-isomorphic to the corresponding lim's).

 One argument covers both cases. Let C? = C*(T ?(A); V) (respectively

 C t a( A 0 Q); V)). The complexes C are all contained in the larger complex

 C*(GL(A); V) (respectively C*(g (A); V)) and the subcomplex > CaC which
 they generate is C*(X(A);V) (respectively X*(A 0 Q;V)). Also C I n CT =

 Define a chain map a: holim Ca* ZaC*C by making it zero on Cp q if
 a

 p > 0 and setting a(x) = x (= ZCqa for x Cq?0 C Co q* We will prove that a is
 a QI.
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 394 T. G. GOODWILLIE

 The proof is inductive. Let I be any nonempty finite set of orderings such

 that

 (111.8) G c T G I = a G I.

 We can express holim Ca, and EZC?* as unions

 U holim C, U E C.
 I cr1 I acrC

 Since homology commutes with filtered colimits of chain complexes, it suffices to

 prove:

 CLAIM 111.9. For each I (satisfying (111.8), a defines a QI: holim C?

 acI
 o~~~~~~~~~~~~~~~~~~~~~~~~~~ E IU

 Proof of Claim. Use induction on card(I). If I can be written I = U U K

 where J and K are strictly smaller sets satisfying 111.8, then L = J n K also
 satisfies 111.8. The chain complexes E Ca and >EKC a have sum >2EiC*

 and intersection L LC*, and likewise with "holim " instead of "E". This yields

 two Mayer-Vietoris sequences and a map between them, so that the 5-lemma and

 the inductive hypothesis complete the argument.

 Otherwise I has a final object T, i.e. I = {Ca C I} for some T. In this case
 the chain map

 holim Ca* C = CT
 acT OCT

 has an obvious right inverse which is easily seen to be a chain homotopy inverse.

 This completes the proof of 111.5.

 COROLLARY 111.10. If V is an abelian q t(A 0 Q)-module, then

 HnX*(A ? Q;V) V. n>O

 Proof Give V the trivial GL(A)-action; this makes it a (GL, q 1)-module.
 The result now follows from 111.5 and I.2.b. D

 In analogy with Definition 1.4 we make:

 Definition 111.11. If S C N X N is finite and A = A 0 Q then

 Xs (A; V) = E C*(tg(A; V)) c X*(A; V).
 alS

 COROLLARY 111.12. If V is a (GL, q 1)-module for A then the inclusion
 Xs (A 0 Q; V) ->X *(A 0 Q; V) is a quasi-isomorphism.
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 THE GENERAL LINEAR GROUP 395

 Proof Repeat the proof of 111.5 using only those a for which a I S. This
 yields the left-hand isomorphism in the commutative diagram

 H* XS(A C) Q; V) H*HX(A 0 Q; V)

 H*(XS(A); V) H*(X(A); V).
 The lower arrow is an isomorphism by 1.5. c

 IV. Proof of Theorem 11.3

 As in Section II we now assume A = A 0 Q.

 It will be convenient to have some special notation and terminology. An

 edge is a pair (i, j) c N x N. If E = (i, j) is an edge and a E A is a ring
 element, then Ea denotes the matrix whose (i, j) entry is a and whose other

 entries are all zero. A sequence (of length n ? 0) is a finite sequence of edges

 g = (.1 .. . , E5) Ek = (ik, Ik). The sequence E is a path (or a path from il to jn)
 if n ? land j, = i2, j2 = i3 ..., in-1 = in . Itis a loop if in addition jn = il. A
 sequence (Eli... , En ) contains any sequence of the form (Ek,, wok ) where
 {k1,. ..., k i C { ... . n }. A sequence is good if it contains no loop.

 Of course in the Koszul complex C*(g 1(A); V) the chain group

 Cn( 1 ( A); V) is generated by the elements ( v I Ela 1 1... I Ena ) where (El, ... ., En)
 is any sequence, v E V, and a k E A. The reader may check that the subgroup

 Xn(A; V) is generated by only those (vEjajI ... I Enan) for which (.15 ... ., 'n) is
 good. The plan is to filter the complex C*( g 11(A); V) according to "how bad"
 such sequences are.

 Definition IV.l(a). The badness /3(e) of a sequence E = (E e1 ... , En ) is the
 number of k (1 < k < n) such that Ek belongs to some loop contained in e.

 (b) FpCn = FpCn(g t(A); V) is the subgroup of Cn(g [(A); V) generated by
 all (vjajI .e.. I Enan) such that 8(c1,... , En) < P.

 For example /3(g) = 0 if and only if E is good, and 83(f) = 1 if and only if
 exactly one Ek belongs to a loop contained in E (whence Ek must be a diagonal
 pair (i, i)). At the other extreme a loop of length n has badness n. The sequence

 E = ((I, 2), (1, 2), (2, 3), (2, 5), (4, 6), (4, 7), (5, 1), (6, 6), (6, 7))

 of length 9 has badness 5 because the loops which it contains are
 ((1, 2), (2, 5), (5, 1)) and its cyclic permutations and (6, 6), and these involve the

 edges E1, C2, C45 C7, and E8.
 The definition implies that

 FpCn C Fp + Cn X FnCn = Cn( g I (A); V), FoCn = Xn(A; V), and F1 -Cn = 0.
 Also, the Koszul differential 11.1 preserves the filtration; that is,

 dFp Cn C FpCn- 1
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 396 T. G. GOODWILLIE

 (This follows from the statement: Any sequence of length n - 1 which is
 obtained from a sequence E of length n by either (1) deleting an edge or
 (2) replacing two edges (i, j) and (j, k) by a single edge (i, k) must have

 badness < 1l(4).)
 The spectral sequence of the theorem will be the one associated to the

 filtered chain complex { FpC*}. We must analyze E0, E', and E2 of this spectral
 sequence.

 We can write

 (IV.2) Cn(g[(A); V)= (DVO A~neA

 where E = (Ec,...X En ) runs through a system of representatives for the action of
 the symmetric group n on (N x N)n and Mn A is the quotient of A?n obtained
 by "partial antisymmetrization" using only the subgroup of n which fixes e.
 Explicitly the inclusion of the "E" summand in IV.2 is given by

 v {al ? ... *a-} '-4 (vjEjajj ... IOnan)
 ({ } denotes the class in An'A of an element of Aln.) In terms of the identifica-
 tion IV.2 we have

 FpCn = e V? AnA
 'fQ) < P

 and
 Epq = FpCp+q/Fp-lCp+q

 = D 0 v A)lPe+qA.
 '8Q) = P

 If c = ( E,.n. , cn) is any sequence, let c' be the sequence obtained from g by
 deleting each Ek which does not belong to any loop contained in E. Clearly
 B3(c') = /(c) = length of c'. In the last expression for E? q choose the representa-
 tive E such that c' is a final segment of E. Then we obtain

 E q = eV 0 q,,A e APA.
 f3(' )=P XfAC "')=P

 Here E' = (Ec,..., cp) runs through a system of representatives for orbits of the

 action of 2 p on (N X N)P with 13(c') = p, while for fixed c' the sequence
 = (EC'',... c') runs through a system of representatives for the action
 of 2 q on only those elements of (N x N)q such that the sequence
 (c, ' = (c 151 1 _' an_" ) .. . . . .q' . , ., ') has /3(c", ') = p. Explicitly for each ' and c"
 V? Aq,,A ?9 AlPA is included into Epq by

 va 0 ... Oa" * (9a' '} ? 9 { a? *a,} (vlEiaiI. I E' a'
 For a fixed sequence c' of length p with 13(g') = p let us examine the

 condition on a sequence c" of length q: 3( c", g') = p. It says that c" should
 contain no loops and that if T = {(i1, j)5 ... * (ii, ir)) is a set of edges (r > 0)
 such that c' contains paths from jl to i25 j2 to i3,..., and jr to i1. then for
 some edge (ik, ik) E T. c" should fail to contain any path from ik to ik. This
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 THE GENERAL LINEAR GROUP 397

 may be restated by giving some finite list { Sj(c')} of finite sets Sj(g') C N X N
 and requiring that e" be good and that for some v, for all (i, j) E Sj(g'), c" not
 contain any path from i to j. Namely for each way of choosing one edge from
 each set T let the set of chosen edges be one of the sets S_(c'). Thus, recalling
 Definition 111.11, we have

 v? ) A lkq,,(A) Xs^(E')(A;V) C Xq(A;V).
 3(?", ? ) =p i

 Hence we can write

 (IV.3) E?q = { }EXsr(E)(A;V) 9 AP(A).

 Moreover the differential doq: E?q E- is given in terms of (IV.3) by
 d ? q(X ? y) = dx 0 y

 where d is the differential in X *(A; V). Indeed taking x = (v Jc'a 'I ...I qta
 and y = {c'a 0 ... ? ' a' } and computing

 d(vllc'ai'I ... Icq'a'II'IEaI ... la,

 by (11.1) one finds five kinds of terms, involving respectively [v, i4'a"], [v, c'ajl,
 [k'a"', c'a "], [cka'k', c'af], and [,ca', c'a']. Terms of the second, fourth and fifth
 kinds involve sequences with badness < p and so do not appear in Ep? q- 1' The

 remaining terms add up to (a representative for the element of E? q-1 corre-
 sponding to) dx 0 y.

 We next use the following result, which was already proved (Corollary

 111.16) in the case when V is a (GL, q I)-module.

 LEMMA IV.4. For any finite set S C N X N the inclusion Xs (A; V) C
 X*(A; V) induces an isomorphism in homology.

 Proof Deferred to the end of Section IV.

 Note. In proving the main result V.3 we will only use 11.3 in the case of a

 (GL, g I )-module. Thus for the purpose of proving V.3 we may consider Lemma
 IV.4 to be proved.

 The lemma implies the following more general statement:

 LEMMA IV.5. For any finite collection { S,, } of finite sets S, c N x N the
 inclusion

 EXs (A;V) C X*(A;V)

 induces an isomorphism in homology.
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 398 T. G. GOODWILLIE

 Proof of IV.5. We use induction on the number of S 's. Choose one vo

 There is a short exact sequence of complexes

 v Vo PvAvo vi

 because

 Xs~ofl ZXS*V ?Xs~oflXs~v ZXsousv.
 vJ vo vJ vo vJ vo

 (Use the fact that each Xs* is a direct sum of some of the summands in IV.2.)
 The resulting long exact sequence, with the inductive hypothesis, finishes the

 proof. D

 Using IV.3 and Lemma IV.5 we have

 (IV.6) E q= HqX(A;V)9 ED APA.
 fl(f') = P

 Before identifying the differential d q we must define the action of q 1(A)
 on HqX(A; V) which is mentioned in 11.3. Each u E q 1(A) determines an
 endomorphism XA of the Koszul complex C*( q 1(A); V):

 n

 Xu(VIUII .. Un) = (IV, UIU11 . IUn) + ?(VIU11 I [U08] U ..ln)'
 i=1

 The induced map on homology is zero because XA = dMu + Mud, where
 Mti(VIU1I. *U) = (VIUIU11 ... IUn).

 The chain map X does not preserve the subcomplex X *(A; V), but it

 nearly does so. In fact, XA carries Xs (A; V) into X*(A; V) for any finite set

 S C N x N which contains all pairs (j, i) such that uij 0 O. Call the restricted
 map Xu: Xs(A; V) -- X*(A, V). It induces a map XO and hence a map XU:

 HqX*(A; V) - HqX*(A; V)

 q /

 by IV.4

 HqXs (A; V)

 It is clear that X U is independent of the choice of S and satisfies X [uv] = [XV5 xu],
 i.e. gives a right action of gt(A) on H*X(A; V). To see that the action is abelian

 it suffices (Remark 11.4) to check that Au = 0 when u = ea. c = (i, j), i * j. To
 do so, note that in this case the nullhomotopy Lu takes Xs(A; V) into Xn+1(A; V).

 We use the following definition in writing down d p, q*

This content downloaded from 
�����������128.151.13.226 on Tue, 07 Nov 2023 11:38:02 +00:00����������� 

All use subject to https://about.jstor.org/terms



 THE GENERAL LINEAR GROUP 399

 Definition IV.7. For an abelian action of gl (A) on a Q-vector space Y,
 C*(g 1(A); Y) is the quotient complex

 C+-( tgl(A);Y) = FnCn(gl(A);Y)/FnlCn(gl(A);Y)

 of C*(g 1(A); Y).

 We leave it for the reader to check that the differential in C *( g l(A); Y) is
 well-defined in this quotient. (The hypothesis that the action is abelian is
 necessary.)

 Note that by IV.6 we may identify Ep q with Cp+(g 1(A); HqX(A; V)).

 CLAIM IV.9. The map (- 1)qdpq: Ep q -IE q is the same as the
 differential in C*( g l(A); HqX(A; V)).

 Proof Note that Cp((g 1(A); HqX(A; V)) is generated by images of ele-
 ments z = (iiw5u'j ... I u') E Cp(g (A); HqX(A; V)) where u' = (,0a'),

 B ... ., c') = p, and iw E HqX(A; V) has a representative cycle
 w E Xs(E')(A; V). Write

 W = *(vlul .. Iuq
 a sum of several terms. We have to compute the Koszul differential of

 = .(v.u'* Iuq;'u' *I- IU..
 By 11.1 we have

 dz= , , (- 1)k ([v, Uk Ilul **I I~k lup)
 k=1

 + I E - ll (VI][U,'U, * *I .. IU **Ip
 + E3 E3 (- 1) (Vl [8k U'l I* I UI |' I P)

 1 < k < I <! q

 + E E (1) vl[k5 1l|U k" I.. MlI .. I P)
 1<k<q 1<I< p

 + I ( )q k (ql V[U,,U U]|U11 ... IUk U U
 1?k~~~~~~q 1?1?k p. l . .

 1 <k<lp

 The first and third terms sum to zero because w is a cycle. Rewriting the
 remaining terms yields

 p

 (-l~~~~~qdz~U =W I ( llA, lul I ... lI.. 1up
 1=1

 + E (- 1)k 1(wl [ut, uliui| IU'k I . U. | I .. )
 1<k<l<p
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 400 T. G. GOODWILLIE

 in C, 1(g (A); HqX(A; V)) and in particular in the quotient
 Cp+ 1(g I(A); HqX(A; V)) as asserted. C1

 From IV.9 we conclude

 (IV. 10) E 2 = H C+ ( g l (A); H X(A; V)).

 To obtain the conclusion of the theorem we now only need:

 LEMMA IV.11. For any abelian g 1(A)-module Y the quotient map

 C*( g (A); Y) -C+( g 1((A); Y) induces an isomorphism in homology.

 Proof Use IV. 10, taking V = Y. The homology map in question is the

 left-hand arrow in a commutative triangle

 H (g [(A); Y) -*E20 = H C+ (g (A); HoX*(A; Y))

 HnC+(g[(A); Y)

 where the upper arrow is an edge homomorphism and the right-hand arrow is

 induced by Y = XO(A;Y) -* HoX*(A;Y). But since Y is an abelian gl(A)-
 module Corollary 111.10 applies and shows that these other two arrows are

 isomorphisms. E]

 Proof of Lemma IV.4. We show that Hn(X*/XS*) = 0, assuming this for
 smaller n and all S. Note that the proof that IV.4 = IV.5 did not "lose" any
 dimensions; that is, by induction we may assume that in the situation of IV.5,

 HP(X*/EXX) = 0 for p < n.
 The proof of IV.4 has much in common with the proof of 11.3. We start by

 filtering X*/XS*. If E = (E1, ... I, En) is good then let the S-badness /3S(g) be the
 number of k (1 < k < n) such that for some (i, j) E S the sequence E contains
 some path from i to j involving 13k*

 Definition IV.12. F SX is the subgroup of Xn = X (A; V) generated by all

 (vl|clall 1jnan) with /3(c, ...., In) = 0 and /3S(1, ... n) < p.
 Much as before, we have FsXn C FPs+XN, FnXn = Xn FsX =Xs

 dFsX c FSX_. Consider the spectral sequence associated to the filtered

 complex { F sX /F X*}. Note that Epq = 0 if p < 0 or q < 0. We must show
 that Epq = Ofor p + q = n.

 Arguing as in the proof of 11.3 we obtain an expression

 (IV.13) E? = e (SXs} ? AP(A),
 #(El) = 0
 fiS(E/)=p

 with dp q = d ? 1. When q < n - 1 the inductive hypothesis implies
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 THE GENERAL LINEAR GROUP 401

 where we have written Zs(A) for

 E APE,(A).
 fi(f')=O
 AiS(E) =P

 Note that Zs (A) can be viewed as a chain complex, a quotient complex of

 X*(A; Q)/Xs (A; Q). (We have Zs(A) _ FnsXn(A; Q)/F, S-X,(A; Q).)

 CLAIM IV.15. For q < n - 1 the differential dp q is given (in terms of
 IV.14) by (-1)qdp = 1 ? d, where d is the differential in Zs(A).

 Proof. This follows from the same computation that proved IV.9. E

 We now have

 (IV.16) E q= HqX*(A;V) ? H Zs (A), q <n- 1.

 But H Zs (A) = 0, because this same spectral sequence in the case V = Q must
 on the one hand satisfy IV. 14 and IV. 16 for all q (by Corollary 111.12) and on the
 other hand must have E? = 0 (again by 111.12). Thus (returning to the case of

 general V) we have E2q = 0; hence Epq0, = O. for q < n-1.
 It remains to prove that E01 -= 0, i.e. that every n-dimensional cycle in

 F1SX */FoSX * is a boundary in X */FoSX *. This can in fact be done directly for all
 n, without using induction. Any cycle in FSX /FoXn is by IV.13 a sum of cycles
 each represented by an element (wJea) E Xn such that E = (i, j), i # j, a E A,
 and w E EX X,,v1 is a cycle. For any such E, a, and w, choose 1 N having
 nothing to do with E, w, or any S.. The element

 (wl(i, l)al(l, j)1) E Xn+1
 has boundary

 (dwj(i, l)aj(l, j)1) +(- 1) n(w1 (i j)a) + terms in FoSX.
 Since dw = 0, (w Jea) is a boundary in X */X S. E

 V. The homology of the adjoint action

 Let A be a ring (associative, with unit). Recall ([C-E], p. 175) that if A is
 torsion-free as an additive group and B is an A-bimodule then the following
 chain complex C*(A; B) computes the Hochschild homology groups H*(A; B):

 (V.1) Cn(A; B) = B A A, n > 0;

 d(b (9 al 29 ... Oan) = bal 29 a2 29 ... nan
 n-1

 + -)'b (9 a, (9 ... (&ajaj+j ( ... an

 +( I)n anb (2) a, 2) ... 8an-l
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 402 T. G. GOODWILLIE

 Hochschild homology is Morita-invariant; that is, the homology groups remain

 the same if A and B are replaced respectively by the k x k matrix ring Mk(A)

 and the bimodule Mk(B). In fact, B -* Mk(B) is an equivalence of categories
 from A-bimodules to Mk(A)-bimodules, under which the two abelian-group-val-

 ued functors HO(A; -) and HO(Mk(A); -) correspond, which implies the same
 for their derived functors Hn( A;-) and Hn( Mk( A); -). Moreover the "inclu-
 sion"

 C*(A; B) C*(Mk(A); Mk(B))

 given by viewing an element of A or B as a 1 X 1 matrix is in fact a

 quasi-isomorphism. By a direct limit argument the same is true "when k = x":

 if M(A) is the (non-unital) ring UkMk(A) then the complex C*(M(A); M(B))

 (defined by V.1) has the same homology as the subcomplex C*(A; B).

 Now let A be any associative ring with unit and let B be an A ? Q-bimodule.

 We want to compute the homology groups H*(GL(A); M(B)), where GL(A)

 acts on M(B) by conjugation. We will do this by comparing M(B) with the

 chain complex C*(M(A ? Q); M(B)), which we abbreviate C*(B).
 The complex C*(B) has an action of GL(A ? Q) and hence of GL(A); the

 matrix U E GL(A ? Q) acts on M(B) ? M(A ? Q)?n by

 N (9 Ml (9 ..(mn "U- 'NU (9 U- lMlU (& .. U- lMnU.
 Whenever a group G acts on a chain complex K * the bar construction gives a

 double complex C *(G; K*), whose (total) homology we will call the hyperho-

 mology H n(G; K *). Of course if K * is concentrated in dimension zero then
 Hn(G; K*) = Hn(G; KO).

 PROPOSITION V.2.

 Hn(GL(A); C*(B)) e Hp(GL(A)) ? Hq(A ? Q; B).
 p+q=n

 Proof: In general an action of G on K * determines an action of G on

 Hq(K *) and a spectral sequence

 Epq = Hp(G; Hq(K*)) Hp+q(G; K*).

 In the case at hand HqK* = Hq(A ? Q; B) and we must prove that

 (i) G acts trivially on HqK *;

 (ii) E2 = E??;

 (iii) HJ(G; K*) splits as GEpDq nE ?q.
 If G acts trivially on K* then (i)-(iii) always hold. In our case the subgroup

 GLk(A) C GL(A) acts trivially on the subcomplex C*(M,(A ? Q); M,(B)) C

 C*(B), where

 Mk(-) = {M e M(-)OMi1 = Oif i < k orj < k}.
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 THE GENERAL LINEAR GROUP 403

 Therefore (i)-(iii) hold for GLk(A) acting on this subcomplex. But the subcom-

 plex has the same homology as all of C*(B) by Morita invariance; so a
 comparison argument proves (i)-(iii) for GLk(A) acting on C*(B). Now as
 k -> x a direct limit argument completes the proof. E

 Here is our main result.

 THEOREM V.3. Let A be a ring and B an A ? Q-bimodule. The inclusion

 M(B) = Co(M(A ? Q); M(B)) -* C*(M(A ? Q); M(B))

 induces an isomorphism

 Hn(GL A ); M( B))-Hn(GL( A); C*( M(A 0 Q); M( B))) .

 Therefore

 Hn(GL(A); M(B)) e Hp(GL(A)) (? Hq(A ?9 Q; B).
 p+q=n

 Moreover the projection

 Hn(GL(A); M(B)) Hn(GL(A)) ? HO(A ? Q; B)

 =Hn(GL(A); HO(A ? Q; B))

 is induced by the trace

 M(B) -* B -* B/[B, A 0 Q] = HO(A ?9 Q; B).

 Proof. It suffices to prove the first statei ient. The second then follows from
 V.2 and the third is clear.

 We first reduce to the case of a free bimodule. This is easy: Any bimodule B

 admits a surjection F -* B from a free bimodule. Let R be the kernel. Each
 Cn(M(A ? Q); M(-)) is an exact functor, so a five-lemma argument applies; if
 the conclusion holds for F and holds through dimension n - 1 for R, then it
 holds through dimension n for B.

 It is sufficient to consider the free bimodule of rank one FA = A (? Q ? A.
 In this case we have

 HO(A ? Q; FA) A ?Q.

 Hn(A ? Q;FA) 0, n > 0.

 Therefore the problem is to show that the trace

 tr: M(FA)-* A Q

 induces an isomorphism in H*(GL(A); -) or equivalently that

 H*(GL(A); ker(tr)) = 0. By Proposition 1.3 it will be enough if
 H*(X(A); ker(tr)) = 0.
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 404 T. G. GOODWILLIE

 At this point we observe that all these GL(A)-modules are (GL, q t)-mod-
 ules. In fact, for an arbitrary A ? Q-bimodule B the whole complex C *(B) has a
 q t(A ? Q)-action given by

 [N ? Ml X * **Mn u] = (Nu-uN) 2 Ml 2 * * Mn
 n

 + ENO Ml *O .. (Mi u- umi)e * .. Mn
 i=l

 and it is easy to check that for each n, Cn(B) satisfies the conditions of Definition
 111.3. Moreover any trivial GL(A)-module becomes a (GL, q I)-module when
 given the trivial q t(A ? Q)-action. Thus tr is a map of (GL, q I)-modules and its
 kernel is a (GL, q I)-module. Theorem V.3 will follow from:

 LEMMA V.4. If A = A X Q is a ring and tr: M(A X A) -* A is the trace
 then H*( q t (A); ker(tr)) = 0.

 Proof that V.4 implies the theorem. Consider the spectral sequence of 11.3,
 with V = ker(tr). By V.4 we have E? = 0. Assuming for the moment that the

 action of q t(A) on HqX *(A; ker(tr)) is trivial, we have

 Ep2q HP(qt(A);Q)?HqX*(A;ker(tr)),

 so that E? ? = 0 E2 = 0. But this implies HqX*(A; ker(tr)) = 0, which with
 111.5 gives what we want.

 To see that the action is trivial note that any cycle in Xq(A; ker(tr)) is
 "supported" on a finite subset of N. Any element of q t(A) which is "supported"
 on a disjoint set must act trivially on the cycle and hence on its class. But the

 action of qt(A) on HqX*(A;ker(tr)) is abelian, and modulo [ q(A), qt(A)] the
 "support" of an element of q t(A) can be shifted off any finite subset of N (in
 fact onto any one-element set-see Remark 11.4). E

 Proof of V.4. To begin let B be any A-bimodule. The Koszul complex
 C t(A); M(B)) has a q t(A)-action and in particular a q t(Q)-action. As in
 [L-Q, ?6] we can replace the complex by its complex of q t(Q)-coinvariants

 C*( q t( A); M(B)) g(Q) without changing its homology. We omit the details.

 CLAIM V.5. C *(q(A); M(B)) g,(Q) is isomorphic as a complex to the tensor
 product

 C*(A;B) ? C*(g (A);Q)

 Proof of claim. We analyze the coinvariants as in [L-Q]. Classical invariant
 theory gives the following description of (q I(Q)?I) 1(Q). Let ?T be any permuta-
 tion of { 1, . . , n }. Define a linear map q t(Q)? -* Q by

 U **... ?un O HTrace(uiou(.) **ai - (o))
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 THE GENERAL LINEAR GROUP 405

 where i runs through a system of representatives for the orbits of ?T acting on

 { 1,... , n } and a i is the cardinality of the orbit of i. (The choice of representa-
 tives is immaterial because Trace(uv - vu) = 0.) These functionals form a basis

 for the space of all functionals that factor through the coinvariants, and so they

 give an isomorphism from (q (Q)?f)g1(Q) to a rational vector space of dimen-
 sion n!

 Applying this to qI(A)"- qI(Q)0' ? A?n we obtain as in [L-Q],

 ( [(A) XnfXQ- (Q) nltQ An

 - An; eD A?~
 'iT E

 and antisymmetrizing, we have

 Cn(q[(A);Q)g,(Q)- =_ An (A)T

 where ?T now ranges over a system of representatives for the conjugacy classes of

 E, and An(A) is the partial antisymmetrization of A? with respect to the

 centralizer of 7r. Explicitly, for any ST E En the projection of Cn( q I( A); Q) to
 AT(A) is given by

 (l1jU ... IUn) *) trace(ui ? ?7(i) .. . . .2 UaiL- 1(i))

 where the "trace" of a tensor product of matrices is defined by

 trace(u ?. ?un )= u 2i ?...? Uni A? n

 The same approach applied to C*( lq (A); M( B)) yields

 (M(B) ? qI(A)"") 1(Q) e B ?9 A?n;
 g() T eAut {0..,n}

 and after antisymmetrizing with respect to

 En = Aut 1, .. * * n } C Aut{O, .. ., n }

 we have

 Cn(qt( A); M(B)),Q1(Q) e B ?9 An A

 where ?T ranges over a system of representatives for the conjugation action of En
 on Aut{O,.. ., n } and An antisymmetrizes with respect to the centralizer of ?T in

 Aut({0,.. ., n }). We may as well choose each ?T in such a way that the orbit of 0

 looks like O -*--* 2 p --*O for some p 2 0. Then the expression
 becomes

 Cn(qf(A); M(B)),(Q) _ (B <9 A"P) (2) @ Av(A)
 O<p<n V/
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 406 T. G. GOODWILLIE

 where ?T' ranges through representatives for conjugacy classes in Aut(p +

 1, ... , n) )- 2np. In other terms,

 Cn ( gI(A); M(B)),, (Q)=- ED CP(A; B) 29 CQg I (A); Q) gIl)
 p+q=n

 This is the isomorphism which Claim V.5 refers to. We still have to show that it is
 a chain map.

 The inverse isomorphism is given by

 Cp(A; B) X9 Qq gI(A); Q) g (Q) Cp +q(q I(A); M(B)),, (Q)

 (b ? a, ? .. ?ap) o{(1lu1l IUq)} f {(?0bleelall . japlUlj ... Iuq)}
 where the edges 13k = (Ok 1k) are chosen to form a "non-self-intersecting loop"
 disjoint from the "support" of the matrices uk; i e, j0 = il. jl = i2, .., ip = io
 are distinct natural numbers such that the corresponding rows and columns of
 the matrices Uk are all zero. (It is straightforward to check that this is well-

 defined and is a right inverse, hence an inverse, to the isomorphism.) Moreover,
 this inverse is easily seen to be a chain map. This proves the claim. E

 The claim implies the Lie analogue of Theorem V.3. That is,

 Hn( g t(A); M(B)) e Hp(A; B) ?9 Hq( q t(A); Q).
 p+q=n

 Moreover the projection

 Hn( g I(A); M(B)) HO(A; B) 02 Hn( gI (A); Q)

 -Hn(g t(A); Ho(A; B))

 is clearly induced by the trace M(B) -* HO(A; B). Now specializing to the case
 B = FA we have that this projection is an isomorphism, which proves Lemma
 V.4. E

 HARVARD UNIVERSITY, CAMBRIDGE, MASS.
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