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Abstract. The lambda algebra has been a useful tool both for making Ext
calculations in a limited range and for understanding Ezt on the chain level,
both stably and unstably. For odd primes, the lambda algebra is inherently
more complex and much less intuitive. This article presents a replacement for
the lambda algebra at odd primes which is smaller, simpler, yields unstable
analogs, and displays vm periodicity both stably and unstably.

1 Introduction

The object of this work is to present a differential graded algebra (dga) A at
primes p > 2 together with unstable approximations A(n). These objects are a
significant improvement over the classical A algebra [B]. The advantages are:

(1) It is considerably smaller.
(2) The relations, and consequently the deséription of a basis is simpler.

(3) There is a natural generalization to a dga Ay for m > =1 (A = A(—y))
whose homology is Ext’: (H.(V(m))), where V (m) is the Smith-Toda com-
plex.t Ay is actually smaller than &, as is its homology. This is contrary
to what happens when a standard approach is used to calculate the Ext
groups of a finite complex [B]. '

(4) The classes v, which figure prominently in the periodic approach to homo-
topy theory are clearly visible as generators in A.

Some important features of the classical lambda algebra are preserved. In particu-
lar:

1991 Mathematics Subject Classification. Primary 55Q40; Secondary 55T15.
1 Although V' (m) only exists under certain restrictions onm and p, H« (V(m)) = E(10,... ,Tm)
always exists.
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(1) There is a multiplicative epimorphic chain equivalence
CTH4) SR

where C " (4,) is the cobar construction on the dual of the Steenrod algebra.
Consequently, A can be used to calculate Massey products.

(2) There is a natural filtration by subcomplexes A(2n + 1) whose hdmology is
the appropriate unstable Ext group for §%n+1,

(3) K(m) is likewise filtered by subcomplexes A(m)(2n+1) in a way suggestive of
unstable analogs to the spectra V(m) with corresponding EHP sequences,
periodicity operators, and unstable compositions as in [G2]. (The com-
plexes described in [G2] are a generalization of results of Mahowald [M]
and Harper and Miller [HM]). '

We now state our result:

Theorem 3.2. There is a trigraded dga A °"**"* and a multiplicative epimorphic
chain equivalence: '

0 (4) — K
where C" (A.) is the cobar construction on the dual of the Steenrod algebra. Fur-

thermore A is generated by classes \; € AOVR for ke >1and v, € Aot

n 2 0 subject to the relations:

for

) Aidpi = B(=1H (DED) 0 i
(i) UnUp = UgUn ‘
(iii) AkUn = UnAg + Un_1Apqpn-1 ifn >0
(30) v(iv) /\k,’U() = ’U())\k
(v) Oy = Vp_1Apn-1 if n >0
(VI) 8’00 =0

(vi) BN =B(—1)TH (D=

Furthermore, let K(m) = A/ (V0,v1r... ) WEite Ay for the subalgebra of A
generated by the P™ and @ with & > m > —1. Then there is an epimorphic
multiplicative chain equivalence:

C" (Agmys) = Kmy.

Finally, if L is a right A(m) module (m > —1), Ext¥* (E(7o,... ,Tm)®L) is isomor-
phic with Hy(A(m) ® L) where the differential is determined by

d(l@z) =) X ®zP + (1) v, @ 2Qp.

Stably the complex A appears in Haynes Miller’s thesis [Mil] without the
algebra structure. In fact the multiplicative structure can be derived by applying
the results of [Mi2]. It does not appear explicitly in the literature, however. We
choose an alternative route which is, in some sense, more elementary: we show that
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the Milnor basis for the Steenrod algebra [Miln] is a Koszul basis and apply the
results of Priddy [P 2].

This material was developed after conversations with S. Pemmaraju [P 1] who,
without the aid of the multiplicative structure, has been making calculations in Ext
for V(1) when p = 3 for use in his thesis. Our interest in this is as a theoretical and
practical calculational tool, both stably and unstably. We believe that a systematic
use of these results, using a downward induction on m, is & considerable improve-
ment over standard methods of obtaining the Ext groups. For example, Tangora
[T) calculates the homology of A in dimensions less than 94 and the homology of
the subalgebra A’ generated by all );, in dimensions less than 242 when p = 3.

2 Koszul Resolutions

We begin by paraphrasing and summarizing the results in [P2]. Let Abea
pre-Koszul algebrs; ie., & connected augmented algebra over Z/p together with a
presentation as an algebra with generators a;, 1 € I modulo relations of the form:

zfiai + Z fjka,jak =0.

Thus A has a Z/p basis consisting of words in the a;. Filter A by minimal word
length. Then EC A, the associated graded, is generated by a; € E{ A subject to the

relations:
Z fjkajak =0.

If J = (j1,. .- +Jn) With jx € I, write as for the word aj, ;‘.ajn. Suppose that we
have choosen a Z/p basis B for EP A consisting of all words a; for J € S, where S is
a distinguished set of sequences of indices from 1. We will call the sequences J € S

and the corresponding words a; admissible. We define coefficients f (]: E) by

J

the rule:

ariy = Z f(I: §>aiaj in EOA
(1.9)€S .

and f (’:;f) by the consequent formula:

k,£ : .
akag=2f(m>am+ Z f <I; f) a;a; in A
m . (i,5)€S
We suppose that the indexing set I is countable and totally ordered. We order the
set of sequences J € S lexicographically. If J1 ={j1...5s} and Jo = {fst1,.-- 2k}
we will write J = J;J» for the sequence {j1,... ,jx}. We will now say that E°A'is
a Poincaré-Birkhoff Witt (PBW) algebra if the following criteria are met:

(1) Cutting: If J = J1Jo €S, then J; € S and J2 €5,

(2) Expansion: If Ji, J; € S and J = JiJo, then either J € S or each term of
the expansion of ay in the basis of admissible sequence, involves only ax with
K>J.

With this in mind, Priddy [P 2] shows that each PBW algebra is a Koszul
algebra (which we needn’t define) and concludes with the following result, which
we summarize and paraphrase.



96 } Brayton Gray

Theorem 2.1 [P 2]. Suppose A is a pre-Koszul aIgeBra, and E°A is a PBW algebra.

Then there is a dga K (A) called the co-Koszul complex satisfying the following
conditions:

a) There is an epimorphism of dga’s
F 04 — K (4)
where C(A*) is the cobar construction on A*.
b) ¢* induces an isomorphism in homology, and hence H*(4) & H, (K" (A4)).

¢) K'(A) is generated by classes B;e E)Aforiel corresponding to [af] in

the cobar construction. Write |8;| = 1 + deg a;. Then K" (A4) has defining
relations:

st 3 o (B 8) o
(k,5)gS
for each (4, 7) € S, where vy, = [Bu| + (|Bu] — 1) (|18,] - 1).
d) The differential in K" (A) is defined by: o
k
= 3 (e ()
(k,0)¢S

e) Suppose L is a left A module. Then H* (A; L) is the homology of the
complex X (A) ® L*, where L* has the induced right A module structure,
and the differential is determined by d) above and

5e®A) = > (-1)PIFIg; @ Aaj.

Proof Everything except the last statement can be found in [P2]. The last
statement follows since if p7, : A® L — L is the left action with dual pi  L* —
A* ® L*, then '
' pi(A) = 2(_1)|£|(I§I+I/\I)§* ® A
£eB

using the sign conventions in [P 2]. Thus the projection onto EVA, 1z}, is given by

The formula then follows from [P 2; 4.2]. O

3 Application to the Milnor basis

We now apply the above theory to some subalgebras of the Steenrod algebra.
Milnor [Miln] has described the Steenrod algebra as having generators P*, Q; for
n > 0 and k > 0 where |Qx| = 2p* — 1 and |P"| = ng subject to the following
relations:
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(i) if a<pb, PePb = (-1)(PLrt)pett
+ [%7] (_1)a+t ((p—l)(b—t)—l)Pq+b—tPt
Pl
t=1

ot
(34) (i) QrQe= —QeQxk
QuP"™ + Qrsr PV, n>pP
(iif) P"Qx = QkP™ + Qit1, n=0p"
QiP™, n<p.
We define the subalgebra A, to be the algebra generated by all P" and all
Qy, with k >m > —1. Clearly Exta,,,,.(Z/p, L) = Extq, (Z/p, E(10,- - ,Tm) ®L)
for each left A(m)- comodule L.
It is clear from (3A) that A(m) is a pre-Koszul algebra for each m > —1. Now

let I be the ordered set 2w = {1,2,... ,w,w+1,...} and define a, = P" forn <w
and ayin = @mint1. We now write any monomial in A(,) as a sum of monomials

in which:

(a) all the Qx’s occur prior to all the P™’s using (3A iii),
(3B) (b) the Q4’s are ordered in decreasing order using (3A ii),

(c) the P™’s are in standard admissible ordering using (3A1).

We will call such a monomial an admissible monomial. For a sequence {i1, .. ,in}
to be admissible, i; € I we have ik > ig41 if igy1 > w and ig > pigyr i i < w.
Let S be the set of sequences satisfying these conditions and B the basis of
admissible monomials. Then we have:

Proposition 3.1. E°A(, is a PBW algebra.

Proof Clearly if J = JiJ2 is admissible, J; and Jo are as well. Suppose now that
Jy and J, are admissible, J = J1J; and a; is not admissible. Then we can write as
as a sum of admissible monomials as described in (3B). Each move writes a term
as a sum of terms with a higher order in the lexicographic ordering. O

Consequently, we may describe the co-Koszul complex whose homology is the
sought after Ext group. As in the usual case, we obtain the opposite algebra
structure. Thus we define Ay = K (A(m))°P. This has no consequence since
H,(A(m)) is commutative.

Proof of 3.2 (see Section 1). Write v, = [@n] and A = [P*]. The relations
in (3C) then follow immediately from the corresponding relations in (3A) and 2.1¢
and d. Since Ay is a subalgebra of A, A(m), is 2 quotient co-algebra of A, and
hence A¢my is & quotient of A. The Koszul generators correspond, excepting that
v; =01in K(m) if i < m. The formula for the boundary in A¢my ® L follows from
2.1c. a

Notes

(1) The trigrading is possible since all the formulas in (3C) respect the polyno-
mial degree in the v;’s. This induces a trigrading in the corresponding Ext
groups. This trigrading is probably the same as that given by the number
of u's.
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(2) By the description in (3B), A(.,) has a basis consisting of elements of the
form f(v)Ar where f(v) is a monomial in the vm’s, n > m and ); is an
admissible monomial in A’. We could have just as well written as a basis,
all \;f(v), since by (3C)

UnAp = AgUn — /\k+pn-1 Un—~1 + )\k+pn—1+pn-—2vn_2 -

(3) It is easy to see that there is no multiplicative chain equivalence either from
A to A or from A to A, since in A, \ipo # 0 while ugAy = 0. This suggests
an interesting question. Define a partial ordering of dga’s by Ay < Ay if
there is & multiplicative chain equivalence ¥ : A; — A;. Then A < C (4,)
and A < C"(A,), but A and K are not comparable. What are the minimal
elements in the set of all M with M < 5*(A*)?

Let vy, : K(m_l) — K(’m——l) be left multiplication by the central cycle vy,.

Then there is an exact sequence:

0— X(m—l) -v—m> K(m—l) L K(m) — 0. (BE)
This induces a long exact sequence in homology, and in particular, a connecting
homomorphism & : Hy(A(m)) — Hy(A(m-1)) of tridegree (—1,1,—(2p™ — 1)).
Using this we can define the rth Bockstein 8 : Hy(A(m)) — Hy(Am)) of tride-
gree (—7,1,—r(2p™ — 1)) by B (nz) = [v;7z]. One can easily see for example
that ﬂ(Pr)(vf,: +1) = Apr+n-1. These Bocksteins are the differentials in the spectral
sequence of a filtered dga.

Theorem 3.3. There is a Bockstein spectral sequence which is a spectral sequence
of graded rings such that:

E; . = Z/p(v,) ® Hy(Am))
LU ®0) = v @ 67 ()
d:,t : E.:,t — E.:—{-r,t—rqm
EJ% is the associated graded to the filtration
P =00 Hy(R 1)) C Hogrts(Bpm—1y).

—1 where g, =2p™ -2

Proof Filter A(p—1) by F*A(m—1) = v5,A(m—1). This makes A(n,_1) into a filtered
dga. The spectral sequence is then the standard one in this. situation. O

4 An unstable filtration of Ay,

In [G 2] we gave a filtration of a dga A(m) whose homology for each m > —1
is Exta, (Z/p{70,... ,7m}). The filtration F™A(;,y = A(m)(n) generalized to the
context of V() the chain complex A(_yy(n) = A(n) whose homology is the E? term
for the unstable Adams spectral sequence converging to m.(S™). The case m =0
had been considered by Mahowald [Ma] and Harper and Miller [HM]. This filtration
provided an algebraic glimpse of unstable periodic homotopy. These constructions
used the full lambda algebra A, and it is our purpose here to show that K(m) has
a similar filtration. In particular, in case m = —1, we construct subcomplexes
A(2n + 1) C A whose homology is the appropriate Ext group for m, (52"+1).
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Let us write A’ for the subalgebra of A generated by the A; for ¢ > 0. Write
AN(2n+ 1) = A’ M A(2n -+ 1); this is spanned by all admissible Ay = ;; ... Ay, with
i1 <m. Define Hyp : N'(2n+1) — A'(2np—1) by? H,(\;) = 0if \; € A'(2n— 1)
and I is admissible, and H,(ApAr) = A if A7 € A’(2np — 1) and I is admissible.
This covers all cases and we have a short exact sequence of chain complexes:

0— A@n—1) — A@2n+1) 5 A'(2np — 1) — 0. (5A)
<By [HM; 1.6], we have
MA(2n+1) Cc AN@n—-kg+1) if n>opk (5B)

Now let PVim) = Z/plvm+1,Vm+2,...] for m > —1. This is bigraded with v; €
PV(if)p "=, For each n > 0 we define A(y,y(2n + 1) as a subspace of Ay by:

Amy(2n+1) = @Pv(jn’t) ®A’(2n +s+t+1). (5C)
It is easy to check that for each k£ > m: |

z € Amy(2n +1) iff vz € Apmy(2n — 2% +1). (5D)
Notice that when m = —1 and k = 0, this corresponds to the geometric fact, due

to Cohen, Moore, and Neisendorfer, that p- m.(S?*1) C m,(S?1).
By induction on the first degree s(A;) = length of I, and use of (5B) one can
easily see that:

Mo By (2 + 1) € Kmy(2n — kg + 1) if n > pk. (5E)

Cdmbining (5D), (5E), and induction, one can then prove:

+51,82,¢

Ky (@n+1) - Amy(2n+t+si+1) C Amy(2n+1). (5F)

This is reminiscent of unstable composition and is slightly stronger than [G 2; 6.6].
Consider z = f(v)A; € Kmy(2n+1) with f(v) € PV5 and A € A'(2n+s +
t+1). Then

8o = [07(w)] s + F(v)OAs € [0F(W)]A'(2n + s +1+1)
+ fN@n+s+t+1) CAgy(2n+1)
when n > 0 by (5D) and (5E). Hence )
Agmy(2n+1) is a subcomplex of A(m) when n > 0. (5G)
We now define ¢y, : A(m) (2n +1) — K(m+i)(2np — 1) for n > 0 by
On(Viy « - - Vi, A1) = Uyy 1 -+ - Vig+1 Hpyps (A1) (5H)

where _pf = p' + ...+ p's; ¢, has tridegree (0, —1, —ng). It is straightforward but
somewhat tedious to check that ¢,8 = —8¢,, and there is a short exact sequence®:

0— K(m) (2n — 1) — K(m>(2n + 1) &-) X(m+1)(2np - 1) — 0. (51)

2see [G 2; 3.1] where H, is called HJ,
3Compare to [G 2; 3.5]
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In case m = —1, this corresponds to the fibration sequence:
8211.——1 —_— Q282n+1 — BW,

of [G1].

Using (5D) we see that there is a short exact sequence of chain complexes:

0 — Koy (2n+20™ + 1) 2 Kippopy(2n +1) > Kemy(2n+1) — 0 (5)
which is a desuspension of (3E). In particular, we can desuspend the_Bockstein
spectral sequence in Theorem 3.3 by setting F*A(n-1)(2n + 1) = v5 Amy(2n +
2sp™ + 1). This spectral sequence has E}, = Z/p(vs,) ® Hi(Amy(2n+ 25p™ + 1))
and converges to Hy (Aim—1)(2n + 1)).

In [G2], we defined A(p)(n) for all n and it would be desireable to have a

suitable definition for Ay, (2n). Such a definition can be obtained in the form of a
pull back diagram:

Amy(2n)  — Kemy(2n+1)
, P
Kmy@np—1) — Agmyny(2np—~1) — 0 (5K)
0.

Although Amy(2n) contains A(my(2n — 1) as a subcomplex, the natural map
Amy(2n) — A(m (2n + 1) is an epimorphism. Thus A(m)(2n) sits more awk-
wardly between A (2n — 1) and A(m)(2n + 1) than in the corresponding case in
[G2], where both suspensions are monomorphisms. Nevertheless, there are EHP
sequences: :

0 — Amy(2n — 1) — A (2n) — Ay(2np—1) — 0
0 — Am(@np+2pmT-1) — KAemy(@n) — Ammy(n+1) — 0
(5L)

corresponding to [G2; 4.2].
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