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Gauss sums and the p-adic I'-function

By BENEDICT H. GROSS and NEAL KOBLITZ

Introduction

Let » be an odd prime. Many authors have considered p-adic analogs
of the classical gamma function [7], [15], [16]. The simplest construction,
due to Morita, is to define for z¢ Z,,

T,(2) = lim,..(—= )" 1 <;cn 7 »
(p,5)=1
where m approaches z through positive integers. This gives a continuous
function I',: Z, — Z; which satisfies the functional equation:

—TI',(z) if zeopZ,
—2l () if zeZ}.

Morita [15] shows that I',(2) is analytic on pZ, and gives a uniform analytic
function on the set {zcC,:|z| <|p|}, where C, is the completion of the
algebraic closure of Q,. It is not analytic on the closed unit disc, or else
the functional equation I' (2 + 1) = —T",(2) would hold on all of Z,.

In this paper, we investigate the values of I',(z) at rational arguments.
Let N be a positive integer prime to p, and let » be an integer between 0
and N. InSection 1 we show how the value I',(»/N) is related to a Gauss sum
whose multiplicative character is the »**-power of the standard power residue
symbol on Q(¢¢ty). The proof, which uses Stickleberger’s theorem and a
result of Katz [11] on the p-adic cohomology of the Fermat curve 2" +y"=1,
is given in Section 2. As corollaries, we prove that I',(»/N) is algebraic
when p =1 (mod N), and derive a multiplication formula for the function
T',(z). InSection 4, we give a new proof of some of Deligne’s recent results
[5], [6] on Kummer extensions of Q(zy) whose Galois character may be
identified with a Hecke character defined by Jacobi sums. These extensions
are-generated by products of values of the classical I'-function at rational
arguments, and our method yields a striking formula relating I'(z) to its
p-adic analog. We also show how the classical and p-adic I'-functions are
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related via the Chowla-Selberg formula, which gives the periods of elliptic
curves with complex multiplication.

Acknowledgments. We wish to express our appreciation to P. Deligne,
B. Dwork, and N. Katz for many helpful comments.

1. Gauss sums and the p-adic I'-function

Let N be a positive integer, and let K = Q(2¢y) be the cyclotomic field
of N* roots of unity. Let P be a prime of K which does not divide 2N, with
N? = q = p’, and let ¢ be the map from N roots of unity in the residue
field k5 to the N™ roots of unity in K which is the inverse to reduction
mod .

Fix a non-trivial additive character

1.1) V:F,—p,.
For any a € (1/N)Z/Z — {0}, define the Gauss sum (note the minus signs) [17]:
(1.2) g(a, P, ¥oTr) = =) t(x " )W(Trx)

where the sum is taken over xz € k5 and the trace is from ks to F,. Then
g(a, P, ¥ o Tr) is a non-zero element of the field L = K(y,); it depends on the
choice of ¥, but, as this character will be fixed throughout, we shall write
it simply as g(a, P).

If a =3 m(a)d, is an element of the free abelian group with basis
(1/N)Z/Z — {0}, we may define the generalized Gauss sum:

(1.3) 9(a, ?) = [19(a, Py .
For we (Z/NZ)* let a = Y, m(a)d,,. Then one has
(1.4) 9(a?, P) = g(a, 9P) ,

as the additive character defining g(a, ) comes from a character of the
prime field.

Let B be the unique prime over @ in L, and let Lg be the completion

of L at $. Our aim in this section is to express g(a, ) in Lg in terms of
Morita’s p-adic gamma function. The field L  contains the (p—1)-st roots of
—p; if { = ¥(1) let 7 be the unique (p — 1)-st root satisfying
(1.5) = —1 mod({ —1)3.
Then 7 gives a uniformizing element in L ; which is completely determined
by the choice of additive character w. Furthermore, by (1.4) we see that
9(a, P) lies in the subfield Q,(7) = Q,(¢,) of L.

Recall that the function I',: Z, — Z, is defined by

(1.6) () = lim,,_, (-1)" Ho<j<mj ’

(p,5)=1
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where m approaches z through positive integers. If a is any element of
(1/N)Z/Z, let {a) be the unique rational number with 0 < (a) <1and a = {a)
mod Z. We shall prove:

THEOREM 1.7.
9, @) = T VLW LI ((pia)) in Ly .
Note that the exponent of 7 is an integer.
This theorem yields the algebraicity of certain I',-values:
COROLLARY 1.8. If p = 1 (mod N) then T,(#/N) € Q(fty, ¥ —D).

Indeed, for 0 < #/N < 1 this follows directly from Theorem 1.7. Since
I',(z + 1)/T',(z) is always rational when z is rational, the corollary holds in
general.

Theorem 1.7 is easily generalized to the Gauss sums g(a, ). For a =
> m(a)d,, define
1.9 n(a) = 3 m(a)lay ,
(1.10) T,(a) = TIT,({a))™= .
Then we obtain:

COROLLARY 1.11.

- . N
g(a, P) = @ ="« TI7T (@) in Ly .

In the special case when n(a) € Z, the Gauss sum g(a, &) is independent
of the choice of additive character ¥ and lies in K = Q(¢ty). These Jacobi
sums were studied by Weil in connection with the zeta-functions of Fermat
hypersurfaces; as a function of P, g(a, -) gives a Hecke character of type
A, for K with values in K [14], [2]. This character has algebraic part

@ = Eue(zlh’zwn(a(u))o;‘l .
If we consider g(a, ?) in the completion K, then by (1.4) g(a, P) lies in the
subfield Q,. As a special case of Corollary 1.11 we have:

THEOREM 1.12. If n(a) e Z then

g(a, P) = (—py=" "I I/IT@*) in K, .

Note that both sides are now independent of ¥.

Finally, suppose a satisfies the condition:

(1.13) n(a'™) is an integer which is independent of u € (Z/NZ)* .
The Hecke character

(1.14) Xa(P) = g9(a, PYN(P)™"®
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is then of finite order.
COROLLARY 1.15. If a satisfies (1.13) then
(@) = (=1 TILT, @) .
This implies, in particular, that the product of gamma values on the
right is a root of unity in K*.
2. The proof of Theorem 1.7

We begin with a proof of Theorem 1.12: the corresponding result for
Jacobi sums. Here are two important examples:

(2.1) a=0,y+0y_,y With 0<r<N.
Then
9(a, P) = q(—1)r*=v/,
(2.2) a =20,y +0yy — 0,y With 0<r,s<N,r+s#N.
Then

gla, P) = —Ek,,—m,u tamre (L — @)

The latter Jacobi sum arises as an eigenvalue of Frobenius on the Fermat
curve z¥ + y¥ =1 over Q(¢y). As any a with n(a) € Z is a Z-linear combi-
nation of the elements in examples (2.1) and (2.2), it is sufficient to prove
Theorem 1.12 in these special cases (Lemmas 2.5 and 2.6).

LEMMA 2.3. IfzeZ,then T (2)T,(1 — z) = (—1), where 2 is the unique
integer with 0 < 2 < p and Z = z (mod p).

Proof. Write z =3~ a,p" with 0 <a, < p and let m, =Y. a,p"
Then

L,@r,A — 2) = lim, o ((=D)™ ILcn, D™ T pviiom 9)

(p,5)=1 (p,5)=1

= lim,...(— 1)t 5<mi 9 I, g
124

= (=1 (lim, .. T, 9) = (1)
24
by Wilson’s Theorem.
LEMMA 2.4. Assume 0 < r/N <1 and write
(f —1)(IN) =25 + 20 + 2,0° + +++ + 2, 0! with 0 < 2z; <D .
Then
S~
(Pp7rIN) =D — 275 .
Proof. This is clear for 5 = 0. For 7 > 0 write
pr/N = b; + {pr/N) with b,€Z .
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Then one has the formula
bj =2r-j + PRrjy + 200 + D2,
Consequently
{(p'r/N) = —b; = —2;_;(mod p)
which gives the lemma.
LEMMA 2.5. If a=é.,y+0y_. 5, the formula for g(a, P) in (1.12) is true.
Proof. We know g(a, P) = q(—1)"* /¥, Asn(a'®) =1 for ue (Z/NZ)*:
(—p= e TTI2T,(a?”) = g(— 1)/ TI/T.<p?r/N)YT (1 — {pr/N))
— (I( 1)f+2f_0<zﬂr/ V> by (2'3).
= q(—l)f+21=0“’ -3 by (2.4).
= g(—1)%-17 .
As Y77 z;=(¢ — 1)r/N (mod p — 1), this gives the required identity.
LEMMA 2.6. Ifa=20,,y + 0,5 — 0(rr0r/n, the formula for gla, P) in (1.12)
18 true.
Proof. We must show
L,(<o'r/N))T,({p’s/N))
L,({p'(r + 8)/N)
where ¢; = (pr/N) + {(p’s/N)> — {p'(r + 8)/N) is either 0 or 1. Set t =
1+ e)N—1r—s.
By a comparison of the action of Frobenius on the erystalline cohomology
of the Fermat curve z2% + y¥ = 1 over ko with its action on the eigendif-
ferential

’

9(a, ) = TI;2(—p)i

o,, = xr iy ‘Iiv-'i — xr—x(l _ xN)(kN)/N dx

in the de Rham cohomology of the curve over the Witt vectors W(ky), Katz
([11], [12]) obtained the formula
( (PHNY — 1 )
vk + (p<{p’r/N) — {p’*'r/N))
( (ptIN) —1 )
k

(2'7) g(a9 g)) = ]f-;(l,limk—'fwjrll\l)

We want to interpret the limits on the right side of (2.7) as products of
p-adic I'-values.
Let h and & be positive even integers with
= —t/N  (modp"),
k= —»/N (mod?p®),
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with a and b large. Let [x] be the greatest integer less than or equal to «.
Since

ph + [pt/N]= —(pt/N)  (modp"*),

pk + [pr/N]= —{pr/N)  (modp""),
we see the j = 0 term in (2.7) is approximated by
(p(h + k) + [pt/N] + [pr/N])! /(b + k)! p***
(ph + [pt/ND)! (pk + [pr/N])! | k! D"E! p*
If ¢, = 0, then [pt/N] + [pr/N] < p, and this ratio approaches

(— 1)t/ X1t I(1 — (pr/N) — (pt/N)) )
I(1 — {pr/N))Ty(1 — (pt/N))

Using Lemma 2.3 and the functional equation for I',(z), we see this is equal
to
(2.9)

(2.8) (—1)wr/]

L,({or/ND)E,((ps/ND)/TH({p(r + 5)/N)) if e, =0

_ 1
(& = 0) = o/ = <pt/N>)Fp(<fm‘/N>)Fp(<pS/N>)/Fp(<p(r ffS)/N>)1
ife=1.

If ¢, = 1, then we find that the 7 = 0 term in (2.7) is equal to
(2.10)

ife, =0

—p(1 — /N — t/N) ' pr
((1 ~(pr/Ny — <pt/N>)Fp<<w>>Fp(<pS/N )T ol + -sf)/N>) 1
e =1.

Now repeat the argument for each term in the product of (2.7), replacing
r/N by {pr/N), ete. Multiplying these results for j = 0,1, ---, f — 1 and
noting the telescoping of the 1 — »/N — s/N terms, we obtain the lemma,
and hence Theorem 1.12.
We can obtain Theorem 1.7 from Theorem 1.12 as follows. For any
a€(1/N)Z/Z — {0} let @ = (p© — 1)0,. Theorem 1.12 then gives
g(a, @) = gla, Py’ = (—p) =i« [[I2iT (@)
— (TC(P*UZ(PLUHI‘p<pja>)pf~1 .
Therefore the quantities g(a, ?) and z#-0=@io IIT.<{p'a) differ by a (p* —1)-st
root of unity. As they both lie in Q,(7) = Q,(¢,), they must differ by a
(p — 1)-st root of unity. To show they are equal, we shall prove that they
are congruent (mod 7).
Write (p/ —1){a) =2, + 20+ -+ + 2,07 with 02, <p as in

g —p(1 — r/N — t/N)T,({pr/N))T,({ps/N))T,({p(r + s)N)

(&, = 1)
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(2.4).
Lemma 2.11. 1) (p — 1)}/ (piay = 37 2,
2) g(a, Pym~*i = y e Z*.
3) u =TI/, T,({p’a)) (mod p).
Proof. 1) is immediate from the formula (j > 1):
(pia) = 2y e e i T e o T R o T .
(" — 1)
Thus u = g(a, P)7~**i is a product of I',-values times a (p — 1)-st root of
unity, by our preceding remarks. Hence u is a p-adic unit.

3) is essentially the content of Stickleberger’s famous theorem on Gauss
sums [17], [14]. This states that

9(a, 9) = <—7frz]—'> (mod 7*5*1)

j=1%7-

which gives
w= (I 2D" (modp).
On the other hand, since <p/171> = p — 2,_,; by (2.4), we have
T,((pia)) = (p — 25_; — L) (—1)P~2r—i
= (2, (mod p) .
Therefore
u = [T/ TH((pia)) (mod p)
as claimed.
This completes the proof of Theorem 1.7.

3. A multiplication formula for I',(2)

Let p be an odd prime, and ¢ = p’. Let @ be the Teichmiiller character
on Z;, and let m be a positive integer prime to p.

THEOREM 3.1. Assume 0 <z <1 and (¢ — 1DaxcZ.
D) Ifa=3d, +d,, — 20, then [I/_,T(a”") = (—1)a i,
2) If a = Bx/m + 5(z+1)/m + b + 3(:+mél)/m - 5: - 81/m - 52/m -t am—l/m
then
Jf._:;l_‘,,(a“’j’) = @w(m' " V7)

Proof. Part 1) is a restatement of Lemma 2.5 for x = »/(g — 1), as
Ip(1/2) = (—1)#*nre,

To prove 2), let N be the common denominator of the terms (x + h)/m
forh =0,1, ---, m — 1. Let g be the order of p (mod N). Since n(a”) =0
for all we (Z/NZ)*, Corollary 1.16 implies that Hj;;F,,(a“”") is a root of
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unity. But
@) = (TLZ @)
as a”” = a. Hence J]/_,T',(a"*”) must also be a root of unity; as it lies in
Z} we are reduced to a proof of the congruence:
(3.2) IT0,a?) = me s (mod p) .
Writing (¢ — )& = 2, + 2,p + -+ + 2z,,p’ " as in (2.4), we have >_/_z,=
(@ — Dz (mod p — 1), so
m'e7 = TI7_ m* = [[/_;m*7~i  (mod p) .
Therefore (3.2) follows from the congruence
T (a) = m*s (mod p) .

The proof of this congruence is elementary, and we omit it.

Notes: 1) A more general multiplication formula has been obtained by
Dwork [1], [11]. His proof uses the functional equation of I',(z).

2) If we translate Theorem 3.1 into the language of Gauss sums, using
Theorem 1.12, we obtain a result due to Hasse and Davenport [3]:

;n;;g(d;)l; h’ g)>
(3.3) — = g(a, P) - t(m ™) .
o ?)
Where a is an element in (1/N)Z/Z — {0} with {a) = the x of Theorem 3.1,
t is the Teichmiiller map (see beginning of §1), and & is a prime dividing »
in Q(ty)-

3) Lang [14] has suggested interpreting the Hasse-Davenport theorem
as a distribution relation for Gauss sums; one can also state this relation
using T',(z).

Let (Q/Z), = 1.,,,Qi/Z, and define the function

?: (Q/Z), — vZ,

by setting
P(a) = log, [T/_,T,((p'a)) ,

where f is the least integer such that (p© — 1)a = 0 (mod Z). Then by (3.1)
the function ¢ satisfies the relations

(3.4) p(—a) = —p(a) ,

(8.5) ;’”;01@(&;; h) = @(a) for all m prime to p ;

(3.6) P(pa) = p(a) .



GAUSS SUMS AND THE p-ADIC I'-FUNCTION 577

Thus @ is an odd distribution on (Q/Z), with values in the group pZ,; in
fact, it is the universal odd distribution satisfying (8.6) with values in this
(torsion-free) group [13]. Note that the values of o are all p-adic logarithms
of algebraic numbers.

4. Relation to the classical I'-function
In this section we shall fix N and consider those a in the free abelian
group on (1/N)Z/Z — {0} which satisfy condition (1.18): n(a) is an integer
which is independent of u € (Z/NZ)*. These elements form a subgroup A4;
for any a € A we define

(4.1) Q = L@
(2me)™@

When a € A4, the Hecke character y, defined in (1.14) is trivial on the connected
component of the group of idele classes of K, so may be viewed as a character
of Gal(Q/K). (We normalize the isomorphism of class field theory to take a
uniformizing parameter to a geometric Frobenius.)

THEOREM 4.2 (Deligne [5]). If ac A then Q, is algebraic and

0Q, = %(0)-Q, for any oecGal(Q/K).

Deligne’s proof involves the Hodge theory of Fermat hypersurfaces.
Our methods give this result on a large subgroup of A. Namely, if m is a
positive integer dividing N, write N = mk and let = »/k. Then
(4'3) a = Bz/m + 5w+1/m + -0 + 5:+(m*1)/m - 52: - 51/””’: - 82/'/!1. - 5m41/m
is an element of A with n(a) = 0. Let B be the subgroup generated by all
these “basic relations”, along with those of the form

(4.4) a=90,+9,,
with x = /N and n(a) = 1.

THEOREM 4.5. If a € B then 0Q, = %,(0)Q, for all ¢ € Gal(Q/K).

Note. Kubert [13] has shown that the quotient group A/B is killed by
2. Therefore Theorem 4.5 gives Deligne’s full result “up to sign”.

Proof. Let w = |u(K*)|, so w = l.e.m.(2, N). First we show that
Qre K*. It is enough to check this on basic relations. For a of type (4.3)
we have

Q, =m=,
For a of type (4°4) we have
Tiz
Qa - e
e2,‘.zz 1

In both cases Q¥ e K*.
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Now let a be an element of B and ¢ a prime not dividing N in K. If
F'y is a geometric Frobenius at 9 we must prove

(4.6) Fole —5.9).
Q,
Since both sides are roots of unity in K* it is enough to check this (mod &).
Furthermore we may restrict to primes 9 of degree 1 in K, as such F,
are dense in the Galois group. But then
L — o (mod9)

and, by Corollary 1.15,

Y(P) = (=)@ T (a) .
It is now an easy matter to check (4.6) for basic relations a of type (4.3) and
(4.4) using Theorem 3.1. Since both sides of (4.6) are multiplicative in a,
we obtain the theorem for all a in B.

In the proof of Theorem 4.5 we used only (mod p) information. The
following result however employs the full p-adic theory.

THEOREM 4.6. Let P be a prime of K with N9 = p, let Frob (9) be a
geometric Frobenius at @ in Gal(Q/K), and let iy be the inclusion of K into

K. If ac A then

Indeed, this is merely a combination of Theorem 4.2 and Corollary 1.15.
Deligne interprets this theorem in terms of periods of Hodge classes of type
(n(a), n(a)) on products of Fermat hypersurfaces. We can obtain a similar
theorem for the periods of one-forms on certain abelian varieties with
complex multiplication by an abelian field; here we give the result for elliptic
curves.

Let k be an imaginary quadratic field of diseriminant — N; let & be the
class number of %, w the number of roots of unity, and e the quadratic
Dirichlet character (mod N) associated to this extension. Define the element

4.7 a= %}:smqaa )

Then n(a) + n(a"") = wp(N)/4 and, by Dirichlet’s class-number formula:
n(a"") — n(a) = h. Therefore n(a) is half-integral; by genera theory n(a)
is integral whenever N is not a power of 2.

Let E be an elliptic curve with complex multiplication by the integers



GAUSS SUMS AND THE p-ADIC I'-FUNCTION 579

of k; suppose E is defined over H, the Hilbert classfield of k. If w is a
differential of the first kind on E and v is an infinite place of H. , let

Swv in  H*/k*

be the integral of @ around any 1-cycle in the rational homology of E,(H,).
If v, is a complex place of %, put

4.8) Pervw(E)znvlvawv in ke k.

Modulo %* this period depends only on E, and not on the differential or
cycles chosen. An application of the Chowla-Selberg formula, as stated in
[10], gives
_ I'a)

(4.9) Per, (E) ~5. iy
where ~g. means that the ratio is an algebraic number. To determine this
algebraic number up to an element of k* we shall use the p-adic gamma-
function and the zeta-function of the curve.

In fact, the L-function of E can be expressed as the product of abelian
L-series (see, e.g., [9]):

L(H\(E), s) = L(x, s)L(Z, s) ,

where J is an algebraic Hecke character of H with values in k. If qis a
prime of H where E has good reduction, we can normalize so that (x(@) =
m as ideals in k. If vy is a finite place of k& over which E has good
reduction, we can imitate (4.8) by defining

(4.10) Per, (E) = 2(9) = 1,0 2@ -

By so restricting x to k, we obtain a Hecke character which was related to
a Jacobi sum on Q(zy) by Weil [17], [18]. If NP = p we can use this expres-
sion and Theorem 1.7 to show

(4.11) Per, (B) ~, T,(a) in K,

where ~, means the ratio is a root of unity. Since Per, g,(E ) = X(P) generates
the principal ideal ()" = (@), we can take the p-adic logarithm of (4.11) to
obtain the identity

(4.12) Eo<a<‘vs(a)logpfp(a/N)zilogp& in K,,.

This evaluates the derivative at zero of the p-adic L-series with character
¢ [8], much as the Chowla-Selberg formula interprets the derivative of the
classical Dirichlet L-function [2].

But the relationship between (4.9) and (4.11) is more than formal: the
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root of unity in (4.11) controls the algebraic number in (4.9) via Kummer
theory. Here is the simplest case.

THEOREM 4.13. Let E be an elliptic curve with complex multiplication
by the integers of k which is defined over H, the Hilbert classfield of k.
Assume the discriminant — N of k is prime, and let P be a prime of k with
NP = p, p ¥ N. Assume E has good reduction at all places q of H dividing
P. Then

< Per, (E) >“""“‘” -t _ ( Per,,(E) >i?r
I'(a)/(27i)" Lp(a@)/(—1)"

Proof. Assume, for simplicity, that N >3 so w = 2. Let j be the
modular invariant of E. There is a canonical curve E(N) over H with this
j-invariant. In fact, E(IN) can be defined over the subfield Q(j) and is
characterized by the properties [9]:

1) E(N) is isogenous over H to its conjugates by Gal(H/Q).

2) E(N) has good reduction at all primes ¢ of H not dividing N.
If w is a differential on E(N) with associated discriminant ideal A = (—N?3),
one can derive the formula,

@.14) 1L..J,, 70| = (22) e e,

directly from the identity of Chowla and Selberg [2]. From this identity
and an analysis of E(N) at the real infinite place of Q(j), one shows that [9]

Per, (E(N)) ~.I(a)/(2mi)*® .
To establish the theorem for E = E(IN) we must show that
(4.15) Per,,(E(N)) = T (@)/(—1)*® in Fk,
for all primes & of degree 1 not dividing N.
Choose a triple (7, s, t) with 0 < 7,8, t < N,r +s +t =N and () +

€(s) + &(t) = 1 (this is always possible). Then the character y of E(N), when
restricted to ideals @ of k, is given by the formula

g(ar/N + 33/1\7 - 3(r+s)/N! g)) = X(9)>Ngm(a) .

Indeed, the quotient character g/y:N"® would be a quadratic Galois
character of k, as it has trivial infinite part. Furthermore, it is ramified
only at (V' —N), so must be trivial by classfield theory. Theorem (1.12) and
(1.4) now give an expression for g in the completion k4, which in turn yields
(4.15).

Since E and E(N) have the same j-invariant, they become isomorphic
over some quadratic extension H(V @). One then finds

1

in p(k*) .

E(H,)
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Per, (E) ~uV B—L@
(2mi)™@

with 8 = Ny (). On the other hand, restricting the Hecke characters to
k, we find

Xz = Xewn Vs

where v, is the quadratic Galois character associated to the extension
k(V/B). Theorem 4.13 thus reduces to the identity:

(VBN = (@) in (k") .
The case N = 3 is similar, but 4 may have values in 6 roots of unity.

PrINCETON UNIVERSITY, PRINCETON, N.J.
HARVARD UNIVERSITY, CAMBRIDGE, MASS.
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