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Abstract. We give an exposition of the computation of the oriented cobor-

dism ring ΩSO
∗ using the Adam’s spectral sequence. Our proof follows Pengel-

ley [15]. The unoriented and complex cobordism rings are also computed in a
similar fashion.
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Introduction

In his now famous paper [19], Thom showed that cobordism rings are isomor-
phic to stable homotopy groups of Thom spectra, and used this isomorphism to
compute certain cobordism rings. We’ll use the notation N∗ for the unoriented
cobordism ring, ΩU∗ for the complex cobordism ring, and ΩSO∗ for the oriented
cobordism ring. Then Thom’s theorem says that N∗ ∼= π∗(MO), ΩU∗

∼= π∗(MU),
and ΩSO∗

∼= π∗(MSO). Thom’s theorem is one of the main examples of a general
approach to problems in geometric topology: use classifying spaces to translate
the problem into the world of algebraic topology, and then use algebraic tools to
compute. For the majority of this paper, we will focus on the algebraic side of the
computation. If the reader is unfamiliar with Thom’s theorem, they may take it
as motivation for computing the homotopy groups of Thom spectra. We will not
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make use of any geometry, including the definition of a cobordism, until §11. For
the interested reader, proofs of Thom’s theorem can be found in [19] or [7, Ch. 25]
in the unoriented case. Definitions of the relevant cobordism theories can be found
in [18, Ch. 4].

The rings π∗(MU) and π∗(MSO) were originally computed at around the same
time spectra were being invented. The lack of a standard theory led to multiple
notations and conventions being used in the literature. The computations also use
the Adams spectral sequence, which we understand much better today than we did
at the time of the first computations. Our goal is to give a clean, direct computation
of π∗MSO, making full use of the stable world as well as spectral sequences. We
assume knowledge of these things.

In the literature, oriented cobordism is the first difficult case. Unlike complex
cobordism, oriented cobordism has torsion. This is the main source of difficulty.
We attempt to place the unoriented, complex, and oriented cases in a framework
that makes the computation of the oriented cobordism ring ΩSO∗

∼= π∗(MSO) seem
natural.

Working in the stable world and making computations with spectral sequences
often makes the geometry opaque. We will try to give geometric meaning to the
things we say, most of which will come from Wall [21]. We’ll also attempt to give
a survey of the literature, pointing out changes in notation and places where the
reader can find alternative proofs. Stong’s book [18] collects all of these facts,
but was again written around 1970, when notation was not yet standard. In [17],
Ravenel uses modern language and notation, but does not give a full treatment
of the oriented case. We’ll assume the reader is familiar with computations of
H∗BO,H∗BU, and H∗BSO, as well as with the stable Thom isomorphism and
the stable Hurewicz map. The cohomology computations can be found in [13].
The passage of the Thom isomorphism and the Hurewicz map to stable maps is
discussed in [7, Ch. 25].

The computation of π∗MSO splits into three parts: rational data, odd primary
data, and even primary data.

In §3, we investigate the rational data. This part will be quick. The main point is
that the rational stable Hurewicz map is an isomorphism, i.e. π∗X⊗Q ∼= H∗(X,Q)
for any spectrum X. In the literature, it is shown that the rational Hurewicz map
is an isomorphism in certain ranges, then passing to an isomorphism stably. This is
done in [13] making use of Serre’s Mod C theory (which requires the Serre spectral
sequence to prove), and done in [5] directly. It turns out that proving the result in
the stable world is essentialy a formality, and we reference the formal proof here.

The torsion computations require more work. In 1960, Milnor gave the first com-
putation of the odd torsion in [10]. Milnor computed the structure of H∗(MU ; Fp)
and H∗(MSO; Fp) as modules over the Steenrod algebra A and used this knowledge
to apply the Adams spectral sequence. Contrastingly, the original computation of
2-torsion (due to Wall [21], also in 1960) is done geometrically. Wall computes
the A-module structure of H∗(MSO; F2) as a corollary of the ΩSO∗ computation.
He later gave a direct proof of the module structure in [20]. An alternative proof
of the module structure is given in [16, Thm. 1]. The computations show that
H∗(MSO; F2) is the direct sum of free modules over A and A/ASq1. Around
twenty years later, Pengelley [15] computed the 2-torsion of MSO using the A∗-
comodule structure and the Adams spectral sequence. In doing so, Pengelley gives
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an explicit description of the comodule structure on generators. In contrast with [10]
and [21], Pengelley’s computations take place over the dual Steenrod algebra A∗.

Here, we attempt to give a unified computation of N∗, ΩU∗ , and ΩSO∗ . We will
work almost exclusively over the dual Steenrod algebra as this simplifies many
computations. For all three cobordism theories, we will compute the A∗-comodule
structure on homology and then use the Adams spectral sequence. The differ-
ences between the three theories can be seen in the comodule structure. Our main
theorem is

Theorem. Let p be any prime and q any odd prime. For each k ≥ 1, there exist
xk ∈ Hk(MO; F2), vk ∈ H2k(MU ; Fp), uk ∈ H4k(MSO; Fq), and yk ∈ Hk(MSO; F2)
so that as A∗-comodules,

H∗(MO; F2) ∼= A∗ ⊗ F2[xk
∣∣k ≥ 2, k 6= 2i − 1]

H∗(MU ; Fp) ∼=
(
A/(Q0)

)∨ ⊗ Fp[vk
∣∣k ≥ 1, k 6= pi − 1]

H∗(MSO; Fq) ∼=
(
A/(Q0)

)∨ ⊗ Fq[uk
∣∣2k 6= qi − 1]

H∗(MSO; F2) ∼=
(
A/ASq1)∨ ⊗ F2[yk

∣∣k 6= 2, k 6= 2i − 1]

Here (Q0) is the two-sided ideal generated by the Bockstein and the notation
S∨ denotes the Fp-dual of S. This is the essential theorem in the computation of
all three cobordism theories. The proof will occupy most of this paper. Once we’ve
proven the theorem, the rest of the computations will fall out of the Adams spectral
sequence by some general theory given in [17].

The odd primary computation is due independently to Novikov [14] and Mil-
nor [10]. The point is to show that there is no odd torsion, and this is done using
the Adams spectral sequence. Following Milnor [10] and [18], we will prove this first
for MU and then deduce the MSO case. Both Milnor and Stong make this com-
putation using the Adams spectral sequence in cohomology. We’ll instead use the
spectral sequence in homology. We do this for two reasons. First, the computation
of 2-torsion is more easily done in homology. Secondly, because H∗(MSO,F2) is
an algebra over the Steenrod algebra and we find it easier to work with an algebra
co-module than with a co-algebra module. We note that Ravenel [17] computes the
odd torsion for MU using the homology Adams spectral sequence, and we follow
his computation closely.

The 2-torsion is where the hard work comes in. Unlike the other cobordism
theories we consider here, MU and MO, oriented cobordism has both torsion and
free parts. The torsion lives in F2, so the 2-torsion case is a posteriori harder. We
hope to convince the reader that the p = 2 case is not that much harder. Like the
odd prime case, we use the Adams spectral sequence. The only new part will be
work describing how the E2 page splits into things giving 2-torsion and free things.
This step is due to Pengelley [15].

Finally, we would like to describe some alternative approaches to computing
π∗MSO. In §7, we describe how the group structure of the oriented cobordism
ring can be obtained from knowledge of the Steenrod algebra action on the module
H∗MSO. We describe these computations for MO, MU , and MSO since they
work similarly. In §11, we reincorporate some geometry. Since the 2-torsion part
seems the most mysterious, we put our focus here. We describe Wall’s generators
for the free and 2-torsion part of π∗MSO ⊗ F2. We conclude by comparing Wall’s
description in [21] of the 2-torsion with that of Pengelley in [15].
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This paper was written as part of the 2016 UChicago REU. We will assume
material covered in the Summer School at the REU. References will be given for
more advanced material.

1. Homology of classifying spaces

Here we recall the computations of polynomial bases for the homology of MO,
MU , and MSO. Let Φ be the Thom isomorphism from the homology of the
Thom spectrum to the homology of the classifying space. Let ek be the dual
of the kth power of the first Stiefel-Whitney class, wk1 ∈ H∗(BO; F2) and ak
be the dual of the kth power of the first Chern class, ck1 ∈ H∗(BU ;R). Set
rk = Φ−1(ek) ∈ Hn(MO; F2) and bk = Φ−1(ak) ∈ H2k(MU ;R).

Lemma 1.1. Let R be any commutative ring and S a commutative ring in which
2 is invertible.

H∗(MO; F2) = F2[ri
∣∣i ≥ 1]

H∗(MU ;R) = R[bi
∣∣i ≥ 1]

H∗(MSO;S) ∼= S[b2i
∣∣i ≥ 1]

where H∗(MSO;S) is viewed in H∗(MU ;S) under the map induced by complexifi-
cation.

For a proof of the MO and MU computations, see Kochman( [6, Prop. 2.4.5,
2.4.7]. We’ll prove the result for MSO.

Proof. Consider the forgetful map f : BU → BSO and the complexification map
c : BSO → BU . The composite f ◦ c : BSO → BSO is homotopy equivalent to
multiplication by 2. Hence

f∗ ◦ c∗ : H∗(MSO;S)→ H∗(MU ;S)→ H∗(MSO;S)

is multiplication by 2. Since 1/2 ∈ S, the map f∗ ◦ c∗ is invertible. Thus c∗ is
injective. Identify H∗(MSO;S) with it’s image under c∗.

Composing in the other direction,

c∗ ◦ f∗ : H∗(MU ;S)→ H∗(MSO;S)→ H∗(MU ;S)

is given by 1 + g where g is conjugation. Since g2 = 1, the homology H∗(MU ;S)
splits into two pieces: the part where g acts trivially and the part where g acts
by a sign. Then H∗(MSO;S) is isomorphic to the part of H∗(MU ;S) where g
acts trivially. Since g is a ring map, it suffices to show that g(b2i+1) 6= b2i+1

and g(b2i) = b2i for all i. Recall that bi = Φ−1(ak) where ak is the dual of
ck1 ∈ H∗(BU(1);S) = H∗(CP∞;S). Thus to understand g(bi) we need to under-
stand the action of g on H∗(BU ;S). Dually, we need to understand the action on
H∗(CP∞). By [13, Lem. 14.9], conjugation takes c1 to −c1. Thus g(bk) = (−1)kbk.
Thus

(c∗f∗)(bk) =

{
0 k odd

2bk keven

The result follows. �



THE ORIENTED COBORDISM RING 5

2. The stable Hurewicz map and rational data

Here we compute ΩU∗ ⊗Q and ΩSO∗ ⊗Q. Since ΩO∗ is a F2-vector space, ΩO∗ ⊗Q = 0.

Theorem 2.1. Let X be a spectrum. The rational stable Hurewicz map h : π∗(X)⊗Q→ H∗(X; Q)
is an isomorphism.

This is a consequence of [1, Part III; Prop. 6.6(i)] (c.f. the example on the top
of page 203).

Corollary 2.2. We have

ΩU∗ ⊗ Q ∼= Q[v2i

∣∣i ≥ 1]

ΩSO∗ ⊗ Q ∼= Q[u4i

∣∣i ≥ 1]

where the subscript denotes the degree of the generator.

Proof. Using the Hurewicz and Thom isomorphism,

ΩU∗ ⊗ Q ∼= π∗(MU)⊗ Q ∼= H∗(MU ; Q) ∼= H∗(BU ; Q) = Q[ai
∣∣i ≥ 1]

The proof for MSO is identical. �

3. Steenrod algebra structures

To compute the comodule structures of H∗(MO), H∗(MU), and H∗(MSO),
we need a good basis for the dual Steenrod algebra A∗ as well as the algebras(
A/(Q0)

)∨
and

(
A/ASq1

)∨
that appear in Theorem 4.1.

Let E(x1, x2, . . . ) denote the exterior algebra on generators x1, x2, . . . .

Theorem 3.1 (Milnor). For odd primes,

A∗ = Fp[ξ1, ξ2, . . . ]⊗ E(τ0, τ1, . . . )

for certain ξi ∈ (A∗)2pi−2 and τi ∈ (A∗)2pi−1. For p = 2,

A∗ = F2[ξ1, ξ2, . . . ]

for ξi ∈ (A∗)2i−1. The coproduct ψ : A∗ → A∗ ⊗A∗ is given on generators by

ψ(ξn) =

n∑
k=0

ξp
k

n−k ⊗ ξk

ψ(τn) = τn ⊗ 1 +

n∑
k=0

ξp
k

n−k ⊗ τk

A proof and definitions of the elements ξi and τi can be found in [6, Thm. 2.5.1]
or in Milnor’s original paper [9].

Let Q0 ∈ A be the Bockstein. Below (α) denotes the two-sided ideal generated
by α. Left-sided and right-sided ideals will be denoted Aα and αA, respectively.

Proposition 3.2. Let
(
A/(Q0)

)∨
denote the dual of A/(Q0). Then(

A/(Q0)
)∨

=

{
F2[ξ2

1 , ξ
2
2 , . . . ] p = 2

Fp[ξ1, ξ2, . . . ] p odd

For a proof, see [6, Prop. 2.5.2].
Let ζi denote the Hopf algebra conjugate of Milnor’s basis element ξi.
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Proposition 3.3. At the prime 2,(
A/ASq1

)∨ ∼= F2[ζ2
1 , ζ2, ζ3, . . . ]

Let B denote
(
A/ASq1)∨.

Proof. Consider the composition

h : A⊗ ΣF2 → A⊗A → A
where the first map sends 1 ⊗ 1 to 1 ⊗ Sq1 and the second map is multiplication.
Then coker(h) = A/ASq1. Dually, we want to compute the kernel of

h∨ : A∗
ψ−→ A∗ ⊗A∗

1⊗f−−−→ A∗ ⊗ ΣF2

where the map f : A → ΣHF2 is the linear dual of ξ1 = ζ1. We have

h∨(ζ2
1 ) = (1⊗ f)(ψ(ζ1)2) = (1⊗ f)(1⊗ ζ2

1 ) = 1⊗ 0 = 0

since ζ2
1 6= ζ1. Similarly, for any n we have

h∨(ζn) = (1⊗ f)(ψ(ζn)) = (1⊗ f)
( n∑
i=0

ζi ⊗ ζ2i

n−i

)
=

n∑
i=0

ζi ⊗ f(ζ2i

n−i)

which is nonzero if and only if 2i = 1 and n− i = 1, i.e. if and only if n = 1. Thus

F2[ζ2
1 , ζ2, ζ3, . . . ] ⊂ kerh∨ = B

A dimension count shows that this is the whole kernel. �

4. Main theorem: statement and remarks

This section contains the heart of the problem. The computations of the cobor-
dism rings in §9 and §10 will be straightforward applications of the calculations
here and the general algebraic manipulations of §8. The goal of this section is to
prove the following table of results which was stated in the introduction.

Theorem 4.1. Let p be any prime and q any odd prime. There exist xk ∈ Hk(MO; F2),
vk ∈ H2k(MU ; Fp), uk ∈ H4k(MSO; Fq), and yk ∈ Hk(MSO; F2) so that as A∗-
comodules, 

H∗(MO; F2) ∼= A∗ ⊗ F2[xk
∣∣k ≥ 2, k 6= 2i − 1]

H∗(MU ; Fp) ∼=
(
A/(Q0)

)∨ ⊗ Fp[vk
∣∣k ≥ 1, k 6= pi − 1]

H∗(MSO; Fq) ∼=
(
A/(Q0)

)∨ ⊗ Fq[uk
∣∣2k 6= qi − 1]

H∗(MSO; F2) ∼=
(
A/ASq1)∨ ⊗ F2[yk

∣∣k 6= 2, k 6= 2i − 1]

where the comodule structure will be explained in the proof.

The proof of Theorem 4.1 relies on a result of Milnor and Moore. The relevant
notation and definitions will be given below.

Theorem 4.2. Let A be a (graded commutative, connected) Hopf algebra over a
field k. Let N be a k-algebra and a left A-comodule. If there exists a surjective
k-algebra, A-comodule map f : N → A, then N ∼= A ⊗k (k2AN) as left k2AN -
modules and right A-comodules.

For the original theorem see [12, Thm. 4.7]. The version stated here is [17, Cor.
A1.1.18]. For another variation see [8, Thm. 21.2.2].
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Definition 4.3. For any right A-comodule M and left A-comodule N , the cotensor
product M2AN is defined to be the kernel

0→M2AN −→M ⊗k N
ψ⊗1−1⊗ψ−−−−−−−→M ⊗k A⊗k N

where ψ is the appropriate comodule structure map.

Remark 4.4. As motivation for Theorem 4.2, consider the dual statement.

Theorem 4.5. Let A be a (graded commutative, connected) Hopf algebra over a
field k. Let M be a k-coalgebra and a left A-module. If there exists a injective
k-algebra, A-module map f : A → M , then M ∼= A ⊗k k ⊗A M as left k ⊗A M -
comodules and right A-modules.

The conclusion that M ∼= A ⊗k k ⊗A M at first sight looks trivial. The subtle
problem here is that S⊗ST ∼= T as S-modules. So M ∼= A⊗kk⊗AM as k-modules,
but not necessarily as A-modules.

In the case M = k, we can give a more explicit description of k2AN . We have
isomorphisms k ⊗k N ∼= N and N ⊗k A ⊗k k ∼= N ⊗k A. The cotensor product
k2AN is thus the kernel of a map N → N⊗kA. Tracing through the isomorphism,
we see that

k2AN = {x ∈ N : ψ(x) = 1⊗ x}
In other words, k2AN is the set of primitive elements of N . In our applications,
M will be the homology of the spectra of interest and k = Fp. We want A to be

A =


A∗ for MO(
A/(Q0)

)∨
for MU at any prime and MSO at odd primes(

A/ASq1
)∨

for MSO at p = 2

These three cases get progressively harder. In fact, the third case is too much to
hope for, see Remark 4.8 below.

To use Theorem 4.2, we need A to be a Hopf algebra. Clearly the Steenrod

algebra is a Hopf algebra. By Propositions 3.2 and 3.3, we know that
(
A/(Q0)

)∨
and

(
A/ASq1

)∨
are algebras. We get a compatible algebra structure on A/(Q0) by

observing that (Q0) is a normal Hopf ideal and applying the following Proposition.

Proposition 4.6. Let A be a Hopf algebra. If I ⊂ A is a normal Hopf ideal, then
A/I is a Hopf algebra.

An ideal I ⊂ A is a normal Hopf ideal if it is a two-sided ideal in the kernel of
the counit so that ψ(I) ⊂ I ⊗A+A⊗ I.

Lemma 4.7. The ideal (Q0) ⊂ A is a normal Hopf ideal.

Proof. We have ψ(Q0) = Q0 ⊗ 1 + 1⊗Q0. �

For a proof of Proposition 4.6, see [8, Rmk. 4.11].

Remark 4.8. Note that ASq1 has no chance of being a normal Hopf ideal since it
is only one-sided. Although we cannot apply the above Proposition, one might still
hope that B := A/ASq1 is a Hopf algebra. Unfortunately, it is not. There is no
way to make B an algebra in a compatible way with its coalgebra structure. In
particular, this means that we cannot consider comodules over B. One might still
have a glimmer of hope that we can get around this in the case we care about. We
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could ask if the comodule map ψ : H∗(MSO; F2) → A∗ ⊗ H∗(MSO; F2) lands in
B ⊗H∗(MSO; F2). This would allow us to mimic the construction of the cotensor
product to get something we would want to call

F22BH∗(MSO; F2)

Even this is hoping for too much. On the bright side, Pengelley [15] has constructed
an explicit isomorphism between H∗(MSO; F2) and B ⊗ F2[yk

∣∣k 6= 2, k 6= 2i − 1].

We will also see that {yk : k 6= 2, k 6= 2i−1} are primitive elements modulo elements
not in B.

Theorem 4.2 also requires a surjection f : H∗(X) → A. Let U ∈ H∗(X) the
Thom class and U : A → H∗(X) the map sending a to a · U . We’ll show that the
following composition is surjective:

H∗(X)

ψ

��

f // A

A⊗H∗(X)
1⊗u // A⊗A

m

OO

Here ψ is the comodule structure map, m is multiplication, and u is the dual of the
map U .

Thus to prove Theorem 4.1, we need to do two things:

(1) Compute the image of the map f : H∗(X)→ A∗.
(2) Compute the primitive elements in homology.

Remark 4.9. It might seem strange to be working in dual land. We care about the
dual of the Thom class map. Our answers involve duals of A/(Q0) and A/ASq1.
However, working in cohomology is harder for two reasons. Firstly, cohomology is
harder since in this case it is not an algebra. Secondly, the computations of the
kernel of the Thom class map are all essentially repeating the computation of A∗
done by Milnor. We find it easier to compute A∗ once and for all and then use
Milnor’s basis to make the computations of u faster.

For the reader familiar with Eilenberg-MacLane spectra, we note the following:

Remark 4.10. The map u is induced from a map of spectra. Indeed, Let U ∈ H0(X; Fp)
be the Thom class. Then U is represented by a map U : X → HFp. Identifying
H∗(HFp,Fp) with A∗, we see that the u is dual to U . Since u comes from a map
of spectra, it is a map of A∗-comodules. This gives a commutative diagram

H∗(X)

ψ

��

u // A∗

ψ

��
A∗ ⊗H∗(X)

1⊗u // A∗ ⊗A∗

However, since ψ◦m 6= id, this does not show that our computation of f is equivalent
to the standard computation of u.

5. Proof of the main theorem

Let’s start with the computations for MO.
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Proof of Thm 4.1 for MO. We claim that f : H∗(MO; F2) → A∗ is surjective.
Recall from Lemma 1.1 that

H∗(MO; F2) ∼= F2[ri
∣∣i ≥ 1]

Claim: The comodule structure map ψ : H∗(MO; F2)→ A∗⊗H∗(MO; F2) is given
by

ψ(rk) =

{
ξi ⊗ Φ−1(1) + decomposables k = 2i − 1

1⊗ rk + decomposables otherwise

Here Φ−1 is the inverse of the Thom isomorphism. For a proof see [6, Thm.
2.6.8(a)].

Recall that we’ve defined f to be the composition

H∗(MO; F2)
f //

ψ

��

A∗

A∗ ⊗H∗(MO; F2)
1⊗u // A∗ ⊗A∗

m

OO

Note that u(Φ−1(1)) = 1 since Φ−1(1) is the Thom class. When k = 2i − 1, we
therefore have

f(rk) = m(1⊗ u)(ψ(rk))) = m(ξi ⊗ 1 + · · · ) = ξi + decomposables

Since the ξi generate A∗, the map f is surjective. The calculation of ψ(rk) also
shows that H∗(MO; F2) has a single primitive generator xk for every k 6= 2i − 1.
By Theorem 4.2,

H∗(MO; F2) ∼= A∗ ⊗ F2[xk
∣∣k 6= 2i − 1]

�

Proof of Thm 4.1 for MU . We claim that f : H∗(MU ; F2)→ A∗ has image (A/(Q0))∨.
By Lemma 1.1, we have

H∗(MU ; Fp) ∼= Fp[bi
∣∣i ≥ 1]

Claim: Let ηi = ξi if p is odd and ηi = ξ2
i if p = 2. The comodule structure map

ψ : H∗(MU ; Fp)→ A∗ ⊗H∗(MU ; Fp) is given by

ψ(bk) =

{
ηi ⊗ Φ−1(1) + decomposables k = pi − 1

1⊗ bk + decomposables otherwise

where Φ is the Thom isomorphism. For a proof, see [6, Thm. 2.6.8(b)].

Recall from Proposition 3.2, the ηi are in
(
A/(Q0)

)∨
. The claim therefore shows

that H∗(MU ; Fp) is a
(
A/(Q0)

)∨
-comodule.

When k = pi − 1, we have

f(bk) = m ◦ (1⊗ u) ◦ ψ(bk) = ηi + decomposables

Since the ηi generate
(
A/(Q0)

)∨
, the image of f contains

(
A/(Q0)

)∨
. The calcu-

lation of ψ(Φ−1(ak)) also shows that H∗(MU ; Fp) has a single primitive generator
vk for every k 6= pi − 1. By Theorem 4.2,

H∗(MU ; Fp) ∼= (A/(Q0)
)∨ ⊗ Fp[vk

∣∣k 6= pi − 1]

�
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Proof of Thm 4.1 for MSO (odd). Let q be an odd prime. We claim that f : H∗(MO; F2)→ A∗
has image (A/(Q0))∨. By Lemma 1.1,

H∗(MSO; Fq) ∼= Fq[b2i
∣∣i ≥ 1]

Recall that

ψ(bk) =

{
ηi ⊗ Φ−1(1) + decomposables k = pi − 1

1⊗ bk + decomposables otherwise

Thus H∗(MSO; Fq) is in fact a sub-
(
A/(Q0)

)∨
-comodule of H∗(MU ; Fq). We also

see that H∗(MSO; Fq) has a single primitive generator uk ∈ H2k(MSO; Fq) for
each 2k 6= pi − 1. Thus

H∗(MSO; Fq) ∼=
(
A/(Q0)

)∨ ⊗ Fq[uk
∣∣2k 6= 2i − 1]

�

Recall that we’ve defined B =
(
A/ASq1)∨.

Proof of Thm 4.1 for MSO (even). In Lemma 1.1, we described how the cohomol-
ogy of MSO sat inside the cohomology of MU . The resulting polynomial generators
allowed us to prove Theorem 4.1 in a way parallel to the proof for MU . Since the
A∗-comodule structures of the cohomology of MU and MSO diverge at the prime
2, we should not expect the generators b2i to work well here. It turns out that
we instead want generators coming from the map H∗(MSO; F2) → H∗(MO; F2)
induced by inclusion. The motivation here comes from Wall’s original computation
of the 2-torsion of ΩSO∗ in [21].

For now, take the following Lemma on faith. We explain the motivation and
give a proof in §11.

Lemma 5.1. For k = 2j−1, define zk = rk as in the proof for MO. For k 6= 2j−1,
there exists zk in the image of the Hurewicz map so that H∗(MO; F2) = F2[zk] and
H∗(MSO; F2) sits inside H∗(MSO; F2) as F2[yk] where

yk =


z2
k/2 k = 2j

zk + z1zk−1 n = 2i, i 6= 2j

zk k = 2i− 1

This is enough information for us to determine the comodule structure.

Claim: There exists yk ∈ H4k(MSO; F2) so that H∗(MSO; F2) ∼= F2[yk] and the
comodule structure map ψ : H∗(MSO; F2)→ A∗ ⊗H∗(MSO; F2) is given by

ψ(yk) =



1⊗ y2
1 k = 2

i∑
n=0

ζn ⊗ y2n

2i−n−1 k = 2i − 1

1⊗ yk + ζ1 ⊗ yk−1 k 6= 2, k 6= 2j − 1, k = 2i, i 6= 2l

1⊗ yk otherwise

In particular, ψ does not land in B⊗H∗(MSO; F2). The claim for k = 2i−1 follows
from the computation of ψ on rk and a little work with the conjugation map. For
k 6= 2i − 1, each zk is primitive. Indeed, everything in the image of the Hurewicz



THE ORIENTED COBORDISM RING 11

map is primitive. Thus ψ(yk) = 1 ⊗ yk for k odd and 6= 2i − 1. For k = 2i, i 6= 2j

we have

ψ(yk) = ψ(zk + z1zk−1)

= 1⊗ zk + ψ(z1)ψ(zk−1)

= 1⊗ zk + (1⊗ z1 + ζ1 ⊗ 1)(1⊗ zk−1)

= 1⊗ y + ζ1 ⊗ yn−1

For k = 2, we have ψ(y2) = ψ(z1)ψ(z1) = 1 ⊗ y2
1 . One can now compute ψ(y2j )

inductively.
From our description of ψ, wee see that, module elements not in B, yk is primitive

if and only if k 6= 2 and k 6= 2i−1. Define γ : H∗(MSO; F2)→ B⊗F2[yk
∣∣k 6= 2, k 6= 2i−1]

by

γ(yk) =


ζ2
1 ⊗ 1 k = 2

ζj ⊗ 1 k = 2j − 1

1⊗ yk k 6= 2, k 6= 2j − 1

Note that γ is a map between polynomial algebras with the same number of gener-
ators in each degree. Since γ takes generators to generators, it is an isomorphism.
From the description of the comodule structure on H∗(MSO; F2), we see that γ is
an isomorphism of A∗-comodules. �

6. A spectrum level interpretation

To demonstrate the power of Theorem 4.1, we’ll discuss a corollary which gives
a “geometric” description of the spectra MO,MU, and MSO, and computes the
group structure of the cobordism rings.

Ignoring explicit bases, we can restate Theorem 4.1 more concisely in cohomol-
ogy.

Theorem 6.1.
H∗(MO; F2) is a free A module

H∗(MU ; Fp) is a free A/(Q0) module for any p

H∗(MSO; Fq) is a free A/(Q0) module for odd q

H∗(MSO; F2) is a direct sum of free A modules and copies of A/ASq1

Let’s take a closer look at the result for MO. On a space level, we have
Hi(MO(n); F2) = [MO(n);K(F2, i)] for every i and n. One can define a spec-
trum HF2 with ith space K(F2, i). In fact, we can make an Eilenberg-MacLane
spectrum HG for any abelian group G. We then get a spectrum level statement
Hk(X;G) = [X,ΣkHG] for any spectrum X. We have to take care to define ho-
motopy classes of maps between spectra on the right-hand side. It turns out that
the cohomology of the spectrum HF2 is isomorphic to the Steenrod Algebra. For
details and rigorous definitions, see [7] page 185.

By Theorem 4.1, H∗(MO; F2) is a free A-module on (the dual of) the vector
space F2[xk

∣∣k 6= 2j − 1]. Let {λα} be a A-module basis for H∗(MO; F2), where λα
has degree d(α). Under the isomorphism

Hk(MO; F2) = [MO; ΣkHF2]
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each λα corresponds to a homotopy class of maps MO → Σd(α)HF2. Let

λα : MO → Σd(α)HF2

also denote a representative of this homotopy class of maps.
Together, the λα define a map Λ : MO →

∏
HF2 '

∨
HF2. By construction, Λ

induces an isomorphism on mod 2 cohomology. By consideration of the Bockstein
operators and the universal coefficient theorem, Λ induces an isomorphism on inte-
gral cohomology and homology. We can then apply the Whitehead theorem to see
that MO is homotopy equivalent to a wedge of Eilenberg-MacLane spectra.

A natural question to ask is if we can do something similar for MU and MSO.
Do there exist spectra S and T so that MU and MSO split as wedges of S and
T , respectively? Since we only have splitting in cohomology at primes, the best we
can hope for is a spectrum level splitting of MU(p) and MSO(p) of the localizations.
(For definitions spectra and of localizations of spaces, see [8] and [7, Ch. 25, §7].)

The solution for MSO at p = 2 again involves Eilenberg-MacLane spectra. The
mysterious A/ASq1 is the cohomology of HZ (with coefficients in F2). Just like
in the MO case, we get a splitting of MSO(2) into wedges of HZ(2) and HF2.
For MU and MSO at an odd prime, we need a new spectrum called the Brown-
Peterson spectrum, and denoted BP . The Brown-Peterson spectrum has coho-
mology A/(Q0) and we again get analogous splittings of MU(p) and MSO(q). For
constructions and in-depth discussion of BP see Ravenel [17], Chapter 4. The
following consequence of Theorem 6.1 summarizes these results.

Theorem 6.2. Let p be any prime and q any odd prime.
MO splits as wedges of suspensions of HF2

MU(p) splits as wedges of suspensions of BP

MSO(q) splits as wedges of suspensions of BP

MSO(2) splits as wedges of suspensions of HF2 and of HZ(2)

For a proof of the BP splittings, see [4, Thm. 1.3]. Brown and Peterson [4] also
calculated the homotopy groups of BP . In particular, π∗(BP ) has no torsion. We
can therefore read off the following results (cf. [4, Cor. 1.4]).

Corollary 6.3. The ring π∗(MU) has no torsion and the ring π∗(MSO) has no
odd torsion.

Remark 6.4. Since we know generators for the homologies as A∗-comodules, we
get more information. As in the proof of the MO case, we can write down ex-
plicit homotopy equivalences between the spectra. The homotopy equivalences
induce isomorphisms on homotopy groups. This allows us to read of the structures
of π∗(MO), π∗(MU), and π∗(MSO) from knowledge of π∗(HF2), π∗(BP ), and
π∗(HZ(2)).

Rather than give details on the construction of BP and the proof of Theorem
6.2, we compute the cobordism rings using the Adams spectral sequence.

7. Adams spectral sequence

We cite some computations of the E2 page of the Adams spectral sequence. The
results are coming word-for-word from Ravenel [17, Ch. 3], where he gives full
proofs of everything we claim here.
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Recall (cf. [17, Ch.2, §1]) that the E2 page of the Adams spectral sequence for
the prime p is

Es,t2 = Exts,tA∗
(Fp, H∗(X))

To study the E2 page of the Adams spectral sequence, we use the cobar complex.
Let Ā∗ denote the kernel of the counit.

Definition 7.1. The cobar complex for H∗(X) is the complex C∗A∗
(H∗(X)) whose

sth term is

CsA∗
=
(⊗

s

Ā∗
)
⊗H∗(X)

with coboundary operator ds : CsA∗
→ Cs+1

A∗
given by

ds(a⊗x) = 1⊗a⊗x+
s∑
i=1

(−1)i(a1⊗· · · ai−1⊗∆ai⊗ai+1 · · ·⊗as)⊗x+(−1)s+1a⊗ψx

where ∆ : A → A⊗A is the coproduct and ψ is the comodule map.

Proposition 7.2 ( [17], 3.1.2). The E2-term for the classical Adams spectral se-
quence for π∗(X) is the cohomology of C∗A∗

(H∗(X)).

Following Ravenel, we use the abbreviation Ext(H∗(X)) for the E2-term.

Lemma 7.3 ( [17], 3.1.3). Let a0 ∈ Ext1,1A∗
(Fp,Fp) be the class represented by [τ0]

for p odd and [ξ1] for p = 2.

(1) For s ≥ 0, Exts,s(H∗(S
0)) is generated by as0.

(2) If x ∈ Ext(H∗(X)) is a permanent cycle represented by α ∈ π∗(X), then
a0x is a permanent cycle represented by pα.

Recall that we’ve defined the cotensor product (4.3). We have the following
change-of-rings result:

Proposition 7.4 ( [17], A1.3.13). Let f : Γ→ Σ a surjective map of Hopf algebras
over Fp. If N is a left Σ-comodule, then

ExtΓ(Fp,Γ2ΣN) ∼= ExtΣ(Fp, N)

Lemma 7.5. Let N be a trivial A∗-comodule. Then

ExtA∗(Fp, N) ∼= ExtA∗(Fp,Fp)⊗N

Lemma 7.6 ( [17], 3.1.9). Let E be an exterior algebra over a field k on primitive
generators {x1, x2 . . . }. If char(k) 6= 2, assume each xi has odd degree. Then

ExtE(k, k) = k[g1, g2, . . . ]

where gi ∈ Ext1,|xi| is represented by [xi] in the cobar complex.

8. The easier torsion

We show that π∗(MSO) has no odd torsion. Because the computation is parallel,
we’ll also show that π∗(MU) has no torsion (odd or even). To be inclusive, we’ll
also compute torsion of π∗(MO) using the same method. We begin with the MO
case since it is the easiest and historically happened first.
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8.1. The MO case.

Theorem 8.1. We have π∗(MO) ∼= F2[xi
∣∣i 6= 2j − 1].

Proof. By Theorem 4.1, H∗(MO; F2) ∼= P ⊗ S where P = A∗ = F2[ξi
∣∣i ≥ 1] and

S = F2[xi
∣∣i 6= 2j − 1]. Using the H∗(MO; F2) A∗-comodule structure, we compute

E2 = ExtA∗(F2, H∗(MO; F2)) ∼= ExtA∗(F2,A∗ ⊗ S) ∼= S

Since S lives on the 0th line of E2, the whole spectral sequence collapses and we
get π∗(MO) ∼= S. �

8.2. The MU and MSO cases. Let

P =
(
A/(Q0)

)∨
=

{
F2[ξ2

1 , ξ
2
2 , . . . ] p = 2

Fp[ξ1, ξ2, . . . ] p odd

By Theorem 4.1, there exists vi ∈ H2i(MU ; Fp) and uk ∈ H4k(MSO; Fq) so that,

H∗(MU ; Fp) ∼= P ⊗ C = P ⊗ Fp[vi
∣∣i 6= pk − 1]

H∗(MSO); Fq) ∼= P ⊗B = P ⊗ Fp[uk
∣∣2k 6= qi − 1]

Lemma 8.2 (3.1.10). The E2 page of the Adams spectral sequence for MU at any
prime p is

ExtA∗(Fp, H∗(MU ; Fp)) ∼=

{
Fp[a1, a2, . . . ]⊗ C p = 2

Fp[a0, a1, . . . ]⊗ C p 6= 2

with ai ∈ Ext1,2p
i−1 represented by [τi] for p > 2 and by [ξi] for p = 2.

The E2 page for MSO at an odd prime q is

ExtA∗(Fq, H∗(MSO; Fq)) ∼= Fq[a0, a1, . . . ]⊗B

Proof. For ease of notation, we’ll prove this in the MSO case. The MU case is
identical, (cf. [17, Ch. 2,§3]). Let E = A∗ ⊗P Fp. Then P ⊗ E ∼= A∗ as Fp-vector
spaces and as E-comodules by the dual of Theorem 4.5. Note that

E =

{
E(ξ1, ξ2, . . . ) p = 2

E(τ0, τ1, . . . ) p 6= 2

For any let A∗-comodule algebra N , we have

A∗2EN ∼= P ⊗ E2EN ∼= P ⊗N

In particular, this is true for N = C or N = B. By Proposition 7.4, the E2 page is

ExtA∗(Fq, P ⊗B) ∼= ExtA∗(Fq,A∗2EN) ∼= ExtE(Fq, B)

Since B is a trivial A∗-comodule, Lemma 7.5,

ExtE(Fp, C) ∼= ExtE(Fp,Fp)⊗ C

By Lemma 7.6, we see that the E2 page is Fq[g1, g2, . . . ] ⊗ B where the gi are
represented by generators for E as an exterior algebra. The result follows. �

Corollary 8.3. The complex cobordism ring π∗(MU) has no torsion and the ori-
ented cobordism ring π∗(MSO) has no odd torsion.



THE ORIENTED COBORDISM RING 15

Proof. For either MU at any prime or MSO at an odd prime, the above lemmas
show that the E2 page is generated by things in total degree t−s = 2pi−1−1 = 2pi−2.
Since all generators are in even degree, the differentials must all vanish. Thus
E2 = E∞. By Lemma 7.3, all multiples of as0 are represented in π∗(MU) by multi-
ples of ps. Hence π∗(MU)⊗ Z(p) and π∗(MSO)⊗ Z(q) have no torsion. �

Corollary 8.4. The group πm(MU) is zero for m odd and free abelian for m = 2n
of rank equal to the number of partitions of n. In other words, π∗(MU) is isomor-
phic (as a group) to Fp[v̂2i

∣∣i ≥ 1].

Proof. This follows from Theorem 2.1 and the computation made in Lemma 1.1. �

One can show that π∗(MU) is actually a polynomial ring on generators v̂2i of
degree 2i for every i ≥ 1. For details on the ring structure, see the discussion
following Corollary 3.1.10 in [17].

9. The harder torsion

We compute the two-torsion of MSO using the splitting of the E2 page given
by Pengelley [15].

Recall from Theorem 4.1 that H∗(MSO; F2) ∼= L⊗ C where

L = F2[ζ2
1 , ζ2, ζ3, . . . ] =

(
A/ASq1

)∨
and C = F2[yk

∣∣k 6= 2, k 6= 2i − 1].
We would like to mimic the argument for the odd-primary case using the results

of §7. With slight modifications, this mostly works. The problem is in applying
Lemma 7.5. As we noted in Remark 4.8, the polynomial generators of yk are not
all primitive. The work of Pengelley in [15] is to separate the primitive yk.

Let β : H∗(MSO; F2)→ H∗(MSO; F2) be the homology Bockstein.

Lemma 9.1. For k 6= 2 and k 6= 2j − 1, the map β is given by

β(yk) =

{
yk−1 k = 2i, i 6= 2l

0 otherwise

Proof. By the claim following Lemma 5.1, we have

ψ(yk) =


1⊗ y1 + ζ1 ⊗ 1 k = 1

1⊗ yk + ζ1 ⊗ yk−1 k = 2i, i 6= 2l

1⊗ yk k = 2i− 1, i 6= 2l

Since yk is primitive for k odd and k 6= 2i− 1, we have βyk = 0. For k = 2i, i 6= 2l,
we have yk = zk + z1zk−1 (cf. Lemma 5.1). Since zk and zk−1 are in the image
of the Hurewicz map, they are both primitive. Thus β(zk) = β(zk−1) = 0. Since
z1 = y1 satisfies ψ(z1) = 1⊗ z1 + ζ1⊗ 1, we have β(z1) = 1. Thus for k = 2i, i 6= 2l

we have

β(yk) = β(zk + z1zk−1) = β(z1)zk−1 + z1β(zk−1) = zk−1

�

Thus the map β restricts to a map C → C, which we continue to denote by β.
Since β2 = 0, we consider homology defined by β.
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Claim 9.2. The E2 page of the Adams spectral sequence for MSO at p = 2 sits
in a split short exact sequence

0→ Imβ → E2 → P (h0)⊗H∗(C, β)→ 0

We get this by placing L⊗C into a split short exact sequence, and applying Ext
computations as in §8.

Lemma 9.3. We have a split short exact sequence of A∗-comodules

0→ A∗ ⊗ Imβ → L⊗ C → L⊗H∗(C, β)→ 0

Proof. As F2 vector spaces, we have a split short exact sequence

0→ Imβ → kerβ → H∗(C, β)→ 0

This extends to a split short exact

0→ E(ζ1)⊗ Imβ → C → H∗(C, β)→ 0

as E(ζ1)-comodules. Let E = E(ζ1). Applying A∗2E−, we get a split short exact

0→ A∗ ⊗ Imβ → A∗2EC → A∗2EH∗(C, β)→ 0

of A∗-comodules. Now A∗ ∼= L⊗ E so that A∗2EH∗(C, β) ∼= L⊗H∗(C, β). �

To obtain the splitting of the E2-page, we apply ExtA∗(F2,−) to the above exact
sequence.

Proof of Claim 9.2. Since the exact sequence in Lemma 9.3 is split, we get a split
short exact sequence

0→ ExtA∗(F2,A∗ ⊗ Imβ)→ ExtA∗(F2, L⊗ C)→ ExtA∗(F2, L⊗H∗(C, β))→ 0

0→ Imβ → ExtA∗(F2, H∗(MSO; F2))→ ExtA∗(F2, L⊗H∗(C, β))→ 0

0→ Imβ → E2 → ExtA∗(F2,L⊗H∗(C, β))→ 0

We now want to apply the results of §7 to ExtA∗(F2, L⊗H∗(C, β)). To do so, we
need an exterior algebra E so that A∗ = L⊗E. We already have an exterior algebra
in the works, namely what we have been calling E = E(ζ1). As F2-vector spaces,
A∗ = L⊗ E. By the dual of Theorem 4.5, we have A∗ = L⊗ E as E-modules.

Now

A∗2EH∗(C, β) ∼= L⊗ E2EH∗(C, β) ∼= L⊗H∗(C, β)

By Proposition 7.4,

ExtA∗(F2, L⊗H∗(C, β)) ∼= ExtE(F2,F2)⊗H∗(C, β)

Now Lemma 7.6 gives,

ExtA∗(F2, L⊗H∗(C, β) ∼= P (h0)⊗H∗(C, β))

where P (h0) is a polynomial algebra (over F2) on the single generator gi ∈ Ext1,|ζ1|
represented by [ζ1]. Since |ζ1| = 1, the generator h0 lives in E1,1

2 as claimed. �

We have proven the existence of a split exact

0→ Imβ → E2 → P (h0)→ H∗(C, β)→ 0

On the 0th line, this becomes

0→ Imβ → E0,∗
2 → H∗(C, β)→ 0
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Define

u4i =

{
y4i i = 2j

y2
2i i 6= 2j

Lemma 9.4. As algebras, H∗(C, β) ∼= F2[u4i]i≥1, and the inclusion F2[u4i]→ kerβ
gives a splitting of

0→ Imβ → E0,∗
2
∼= kerβ → H∗(C, β)→ 0

Let Q : π∗MSO → E0,∗
∞ → E0,∗

2 be projection onto the 0-line.

Theorem 9.5. There exist û4i ∈ π4iMSO, i ≥ 1 so that

π∗MSO ∼= Z[û4i]⊕ Imβ

We have Q(û4i, 0) = û4i and Q(0, b) = b for b ∈ Imβ. The product structure is
given by

(a1, b1)(a2, b2) = (a1a2, Q(a1, 0)b2 +Q(a2, 0)b1 + b1b2)

Proof. First note that all differentials vanish since the h0 towers are only in dimen-
sions 4i. Thus E2 = E∞. Now towers represent integral summands in π∗(MSO).
Since π∗MSO has no odd torsion, the 2-torsion represented by Imβ gets identified
(via Q) with the whole torsion ideal in π∗MSO. As a consequence of Theorem 2.1,
we have

π∗(MSO)/ Imβ ∼= H∗(MSO; Z)/(torsion)

as rings. By the computations made in Lemma 1.1, H∗(MSO; Z) ∼= Z[û4i] with
û4i ∈ H4i(MSO; Z). We therefore have an exact sequence

0→ Imβ → π∗(MSO)→ Z[û4i]→ 0

We claim this splits. We have a commutative diagram

0 // Imβ

��

// π∗MSO

Q

��

ρ̂ // π∗MSO/ Imβ

��

// 0

0 // Imβ // E0,∗
2

ρ // H∗(C, β) // 0

of ring maps. To get a splitting of ρ̂, we can lift any algebra map splitting ρ. But
we gave a splitting of ρ in Lemma 9.4. Thus π∗(MSO) ∼= Z[û4i]⊕ Imβ. �

10. Relation to other proofs

We have identified the torsion in π∗(MSO) with the image Imβ of the homology
Bockstein. The goal of this section is to give a more geometric description of the
2-torsion. The first description of the 2-torsion was given by Wall in [21]. Wall
describes the torsion as the image of a map ∂3 given on manifolds. This geometric
interpretation allows us to explicitly describe the manifolds in ΩSO∗ creating the
torsion. We will relate Pengelley’s generators of H∗(MSO; F2) to Wall’s generators
of N∗ and then describe how β and ∂3 relate. To complete his description of ΩSO∗ ,
Wall shows how ∂3 fits into an exact triangle

ΩSO∗
2 // ΩSO∗

r
}}

W

∂3

aa
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We will end this section by giving a second, faster, description of Wall’s exact
triangle due to Atiyah in [3]. Atiyah’s work gives a third description of torsion as the
image of a map i∗. In an attempt to prevent confusion, we denote Pengelley’s [15]
map by β, Atiyah’s [3] by i∗, and Wall’s [21], by ∂3 (this is consistent with Wall’s
notation).

We start by paying a debt owed to the reader. In the proof of Theorem 4.1 for
MSO at p = 2, we claimed the existence of a certain basis {zk} for H∗(MO; F2).
Define z2j−1 = r2j−1 as in Lemma 1.1. For zk with k 6= 2j − 1, define zk to be
the image under the Hurewicz map h of the class of the manifold Xk, where Xk

is defined as follows.1 More precisely, if T : N∗ → π∗(MO) is Thom’s map, then
zk = h(T ([Xk])). For what follows, we refer the reader to [21] for details.

Construction 10.1. For k = 2j let Xk = RPk.
For k 6= 2j , X2k will be a Dold manifold P (m,n) and X2j−1 will be a man-

ifold Wall calls Q(m,n). Let C2 act on Sm ⊂ Rm+1 by x 7→ −x and on CPn

by conjugation. Let P (m,n) be the quotient of Sm × CPn by the identification
(−x, z) ∼ (x, z̄).

Give Rm+1 coordinates (x1, . . . , xm+1). Let T : Sm → Sm be reflection across
the plane xm = 0. Let A : P (m,n)→ P (m,n) the map induced by (x, z) 7→ (Tx, z).
LetQ(m,n) be the mapping torus ofA, i.e. Q(m,n) is the quotient of P (m,n)×[0, 1]
by the identification (p, 0) ∼ (Ap, 1).

Write k = 2m−1(2n+ 1) with s 6= 0 and define

X2k = P (2r − 1, 2rs) and X2k−1 = Q(2r − 1, 2rs)

We determined the comodule structure of z2j−1 = r2j−1 in Lemma 1.1. For
details on the comodule structure of zk for k 6= 2j − 1, see [15].

(1) The manifolds Xk with k 6= 2j − 1 are polynomial generators for N∗.
(2) If m is odd and n is even, then P (m,n) is orientable and A reverses the

orientation.
(3) The map β : Q(m,n) → S1 sending β(p, s) = s is a fiber map with fiber

P (m,n).
(4) If u ∈ H1(S1,F2) is a generator, then β∗(u) = w1(Q(m,n)) is the first

Stiefel-Whitney class.2 Therefore the homotopy class

[β] ∈ [Q(m,n), S1] = H1(Q(m,n),Z)

maps to w1(Q(m,n)) under the map H1(Q(m,n),Z)→ H1(Q(m,n),F2).

Wall’s map ∂3 is a generalization of the relation Q(m,n)→ P (m,n), constructing
an oriented manifold from a manifold with integral Stiefel-Whitney class.

Wall’s Map ∂3: Define W ⊂ N∗ to be the set of classes [M ] where w1(M) comes

from an integral class. For any M ∈ N∗, let f : M → S1 represent

w1(M) ∈ H1(M ; Z) = [M,S1]

Set ∂3(M) = f−1{0}.3 We claim that ∂3(M) is always orientable so that ∂3 : W→ ΩSO∗ .
The following Lemma identifies Im ∂3 with the 2-torsion in ΩSO∗ .

1Pengelley [15] calls these Mk. The notation Xk is consistent with Wall [21].
2The proof of this claim uses the Serre spectral sequence. See the proof of Lemma 4 in [21] for

details.
3This isn’t quite true. We first need to approximate f by a smooth map.
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Lemma 10.2. An oriented manifold V n−1 can be obtained by the above construc-
tion from some Mn if and only if 2[V ] = 0 in ΩSO∗ .

This is Lemma 1 in [21]. The proof is geometric and constructive.

Remark 10.3. The (n−1)-manifold ∂3(M) is dual to w1(M) in the following sense.
Let V = ∂3(M) = f−1{0} and j : V → M be the inclusion. Let [V ] ∈ Hn−1(V ; F2

and [M ] ∈ Hn(M ; F2) be the fundamental classes. Let σM : M → BO classify the
tangent bundle of M . Then σ∗M (w1) is the Poincaré dual of j∗([V ]).

There should be some relation between the facts that

(1) we have defined z1 so that Φ(z1) is the dual of w1, and
(2) ∂3(M) is the dual of w1(M).

We now explain this relation and use it to motivate the definition of y2i = z2i+z1z2i−1

for k 6= 2l.

Claim 10.4. Let i 6= 2l. In H∗(BO; F2) we have w1 ∩ Φ(z2i) = Φ(z2i−1).

Proof. For any k, let σ∗k : Xk → BO the map classifying the tangent bundle of Xk.
For i 6= 2l, let j : X2k−1 → X2k be the inclusion and note that σ2k ◦ i = σ2k−1. By
Remark 10.3,

σ∗2i(w1) ∩ [X2i] = j∗([X2i−1])

(σ2i)∗
(
σ∗2i(w1) ∩ [X2i]

)
= (σ2i)∗

(
j∗([X2i−1])

)
w1 ∩ (σ2i)∗([X2i]) = (σ2i−1)∗([X2i−1])

Let α : N∗ → H∗(BO) by [M ]→ (σM )∗([M ]). By [18, pg. 35], the diagram

N∗
α //

T

��

H∗(BO; F2)

π∗(MO)
h // H∗(MO; F2)

Φ

OO

commutes.4 Since zk = h(T (Xk)),

w1 ∩ Φ(z2i) = w1 ∩ (σ2i)∗([X2i]) = (σ2i−1)∗([X2i−1]) = Φ(z2i−1)

�

A similar argument shows that for every a ∈ H2k−1(BO; F2), we have

〈aw1,Φ(z2k)〉 = 〈a,Φ(z2k−1)〉
where 〈−,−〉 denotes evaluation of a cohomology class on a homology class of the
same degree. Since Φ(z1) is the dual of w1,

〈aw1,Φ(y2i) = 〈aw1,Φ(z2i + Φ(z1)Φ(z2i−1))〉
= 〈a,Φ(z2k−1)〉+ 〈aw1,Φ(z1)Φ(z2i−1)

= 2〈a,Φ(z2k−1)〉
is zero. Now H∗(BSO; F2) ∼= H∗(BO; F2)/(w1) so that Φ(yn) ∈ H∗(BSO; F2).

We can now prove the following Lemma from §4 (cf. Lemma 5.1).

4The statement in [18] uses the classifying map for the normal bundle. Since we’re working
over F2, the sign differences between the classifying map of the normal bundle and that of the

tangent bundle do not matter.
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Lemma. The homology H∗(MSO; F2) sits inside H∗(MO; F2) as the polynomial
ring F2[yk].

Proof. We have just shown that for k = 2i with i 6= 2l, yk ∈ H∗(MSO; F2). For
k = 2i− 1, we have yk = zk = Φ−1(ek) coming from the Thom isomorphism. Since

H∗(MSO)
Φ //

��

H∗(BSO; F2)

��
H∗(MO)

Φ // H∗(BO; F2)

commutes, yk ∈ H∗(MSO; F2).
For k 6= 2j , we have y2k−1 = z2k−1 = h(T ([X2k−1])) where T : N∗ → π∗(MO) is

Thom’s map. SinceX2k−1 is orientable, T [X2k−1] is in the image of π∗MSO → π∗MO.
Since

π∗(MSO)
h //

��

H∗(MSO; F2)

��
π∗(MO)

h // H∗(MO; F2)

commutes, yk is in the image of H∗(MSO; F2) in H∗(MO; F2).
For k = 2j , we have yk = z2

k/2 = h(T [RPk/2])2. By [21, Lemma 7], (RPk/2)2 is

cobordant to CPk/2. Since CPk/2 is orientable, we again have yk ∈ H∗(MSO; F2).
The statement follows by a dimension count. �

Remark 10.5. Let k 6= 2j − 1. For k odd, Xk is orientable and therefore in W.
For k even, Xk is in W by construction. The algebra W is therefore generated by
{Xk}. Analogous to Lemma 9.1, the map ∂3 is given by

∂3(Xk) =

{
Xk−1 k = 2n, n 6= 2j

0 otherwise

Define f : H∗(MO; F2)→ H∗(MSO; F2) by f(z1) = 0 and for k 6= 1,

f(zk) = yk =


z2
k/2 k = 2i, i 6= 0

zk + z1zk−1 k = 2i, i 6= 2j

zk k = 2i− 1

Following around generators, we see that the following commutes:

W
T //

∂3

��

π∗(MO)
h // H∗(MO; F2)

f

��
H∗(MSO; F2)

β

��
ΩSO∗

T // π∗(MSO)
h // H∗(MSO; F2)
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Wall goes on to show that ∂3 fits into an exact triangle

ΩSO∗
2 // ΩSO∗

r
}}

W

∂3

aa

where 2 is the multiplication by 2 map and r is the forgetful map.

Atiyah’s Description: Right after Wall first computed the 2-torsion, Atiyah pro-
duced an alternative description of Wall’s exact triangle. We now discuss Atiyah’s
approach.

We start by defining MSO-cohomology. Let X be a finite CW-complex and Y
a subcomplex of X.

Definition 10.6. Define MSOk(X,Y ) = [X/Y,MSO]k.

Recall that in Section §7, we defined Eilenberg-MacLane spectra HG and noted
that for any spectrum T , we have H∗(T,G) = [T,HG]. This motivates calling
[X/Y,MSO] the MSO-cohomology of X/Y . One can formalize this by axiomatiz-
ing cohomology and defining “generalized cohomology theories.” For details, see [7].
The group [X/Y,MSO] is then the (relative) generalized cohomology theory de-
fined by the spectrum MSO. It follows that MSOk is a functor satisfying all the
properties of H∗ that we care about. In particular, MSOk is a homotopy invariant
and gives long exact sequences for cofibrations. Define MSOk(X) = MSOk(X, ∗)
and note that

MSO−k(Sm) = lim
n→∞

[ΣnΣkSm,MSO(n)] = πm+k(MSO) ∼= ΩSOm+k

The cofibration

S1 ∼= RP1 → RP2 → RP2/RP1 ∼= S2

gives a long exact sequence

· · · →MSOn(RP2,RP1)→MSOn(RP2)→MSOn(RP1)→MSOn+1(RP2,RP1)→ · · ·
Defining Wk = MSO2−k(RP2), the long exact sequence becomes

· · ·ΩSOk →Wk+1
i∗−→ ΩSOk → ΩSOk →Wk

i∗−→ ΩSOk−1 · · ·
Define W =

⊕
Wk. By [3], this notation is not contradictory. Wall’s W and

Atiyah’s W agree. Moreover, Wall’s exact triangle unwinds into the long exact
sequence just described.

Let i∗ denote the map W→ ΩSO∗ . Consider RP1 and RP2 as based spaces with
base point RP0. Unraveling all of this, i∗ : [RP2,MSO]∗ → [RP1,MSO]∗ is just
the map induced by the inclusion i : RP1 → RP2. This gives a third description of
the torsion in ΩSO∗ .

11. Consequences

We list some consequences of the structures of N∗,Ω
U
∗ , and ΩSO∗ .

Lemma 11.1. The ring ΩSO∗ has no 2k-torsion for k > 1.

This is a consequence of Proposition 6.2. For Wall’s original proof, see [21, Thm.
2].
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Proposition 11.2. Two manifolds M and N are cobordant if and only if they have
the same Stiefel-Whitney numbers. Equivalently, a manifold is a boundary if and
only if its Stiefel-Whitney numbers vanish.

For a proof, see [7, Ch. 25 §5].
We have similar results for ΩU∗ and ΩSO∗ .

Proposition 11.3. Two stably almost complex manifolds M and N are complex
cobordant if and only if they have the same Chern numbers.

For a proof, see [18, pg. 117].

Proposition 11.4. Two oriented manifolds M and N are oriented cobordant if
and only if they have the same Stiefel-Whitney and Pontrjagin numbers.

For a proof of necessity, see [13, pg. 186].5 For a proof of sufficiency, see [21, Cor.
1]. Analogous statements for other cobordism theories are collected in [18, Ch. 4].

Corollary 11.5. Let M be any manifold (not necessarily oriented). Then M ×M
is unoriented cobordant to an oriented manifold.

Proof. We have shown that N∗ is a polynomial algebra on a single generator in
each degree k 6= 2j − 1. One can produce representatives {Xk}k 6=2j−1 for such

generators where X2k = RP2k and X2k+1 (as above) is an oriented Dold manifold
for all k. Since the square of an oriented manifold is oriented, it suffices to show
that (RP2k)2 is cobordant to an oriented manifold for all k. We claim that (RP2k)2

and CP2k have the same Stiefel-Whitney and Pontrjagin numbers. By Proposition
11.4, (RP2k)2 is cobordant to CP2k. For details, see [21, Prop. 3]. �

Remark 11.6. One also has the following: IfM is any oriented manifold, thenM×M
is unoriented cobordant to a spin manifold (see [18] Ch. 4 for definitions). This was
proved by P.G. Anderson in [2]. The proof mimics Wall’s proof of Corollary 11.5
that we have just given. In [11], Milnor showed that the square of any complex
projective space CPn is (unoriented) cobordant to quaternionic projective space
HPn (a spin manifold). Anderson then constructs additional generators for ΩSO∗
and proves the conjecture on these generators.

Acknowledgments. I would like to thank my mentor, Peter May, for introducing
me to the stable world and reminding me to stay grounded in geometric meaning.
I would also like to thank May for organizing the REU, reviewing drafts of this
paper, and teaching the topology course in the allied Summer School, from which I
have learned a great deal. Thanks to Robert Bruner for answering some questions
of about the cohomology of Eilenberg-MacLane spectra and to David Pengelley for
answering questions about his paper.

References

[1] Adams, J.F. Stable homotopy and generalized homology, Chicago Lectures in Mathematics,

1974.
[2] Anderson, P.G. Cobordism Classes of Squares of Orientable Manifolds, Bull. Amer. Math.

Soc. 70 (1964), 818-819.

[3] Atiyah, Michael. Bordism and Cobordism, Proc. Camb. Phil. Soc. 70 (1961) 200-208.

5This proves the Pontrjagin number part of necessity. The necessity of the Stiefel-Whitney
numbers agreeing follows from the unoriented result, Proposition 11.2.



THE ORIENTED COBORDISM RING 23

[4] Brown, Edgar; Peterson, Franklin. A spectrum whose Zp cohomology is the algebra of reduced

pth powers, Topology, vol. 5 (1966), 149-154.

[5] Klaus, Stephan; Kreck, Matthias. A quick proof of the rational Hurewicz theorem. Mathemat-
ical Proceedings of the Cambridge Philosophical Society. (April, 2004).

[6] Kochman, S.O. Bordism, Stable Homotopy and Adams Spectral Sequences, American Math

Society, 1996.
[7] May, J.P. A Concise Course in Algebraic Topology, Chicago Lectures in Mathematics, 1999.

[8] May, J.P.; Ponto, K. More Concise, Chicago Lectures in Mathematics, 2012.

[9] Milnor, John. The Steenrod Algebra and its Dual, Annals of Math., 67 (1958), 150-171.
[10] Milnor, John. On the cobordism ring Ω∗ and a complex analogue, I, Amer. J. Math., 77

(1960), 505-521.

[11] Milnor, John. On the Stiefel-Whitney numbers of complex manifolds and of spin manifolds,
Topology, vol. 3, Pergamon Press, (1965), 223-230.

[12] Milnor, John; Moore, J.C. On the Structure of Hopf Algebras, Annals of Math., 81 (1965),
211-264.

[13] Milnor, John; Stasheff, James. Characteristic Classes. Ann. of Math. (1974), no. 76. Princeton

University Press, Princeton, N.J.; University of Tokyo Press, Tokyo.
[14] Novikov, S.P. Some problems in the topology of manifolds connected with the theory of Thorn

spaces, Soviet Math. Dokl. (1960), 717-720.

[15] Pengelley, David J. The mod 2 homology of MSO and MSU as A comodule, algebras and
the cobordism ring. J. London Math. Soc. 25, (1982), 467472.

[16] Peterson, F.P. Lectures on Cobordism Theory, Kinokuniya Book Store Co., Ltd. 1968.

[17] Ravenel, Douglas. Complex cobordism and stable homotopy groups of spheres, Pure and
Applied Mathematics, vol. 121, Academic Press Inc., Orlando, FL, 1986.

[18] Stong, R.E. Notes on cobordism theory. Princeton University Press, Princeton, N.J., 1968.
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