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ON THE BOUSFIELD CLASSES OF H∞-RING SPECTRA

JEREMY HAHN

Abstract. We prove that any K(n)-acyclic, H∞-ring spectrum is K(n+1)-acyclic, affirming an
old conjecture of Mark Hovey.
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Throughout this paper, all spectra will be p-local for a fixed prime p.

1. Introduction

A bedrock result of chromatic homotopy theory is that any K(n)-acyclic, finite spectrum is
K(n− 1)-acyclic. Our goal here is to prove that H∞-ring spectra enjoy the opposite phenomenon:

Theorem 1.1. Suppose R is a K(n)-acyclic, H∞-ring spectrum. Then R is K(n+ 1)-acyclic.

Corollary 1.1.1. Suppose R is a complex-orientable, H∞-ring spectrum that kills a finite complex.
Then R has the Bousfield class of E(n) for some n.

These results settle ‘Miscellaneous Problem 2’ from Mark Hovey’s 1999 list of unsolved problems
in algebraic topology [Hov99].

We will prove Theorem 1.1 for n > 0. The theorem is already known when n = 0, where it is a
consequence of an old conjecture due to J.P. May:

May Nilpotence Conjecture [MNN15, Theorem 2.1]. If R is an H∞-ring spectrum, and
R⊗Q ≃ 0, then R is K(n)-acyclic for all n > 0.

The first written proof of May’s conjecture is due to Mathew, Naumann, and Noel [MNN15],
and these authors found spectacular applications in joint work with Clausen [NN16].

Let E denote the height n + 1 Morava E-theory with π0E ∼= Zp[[u1, u2, ..., un]]. Standard tech-
niques, which we review in Section 2, reduce Theorem 1.1 to the following Theorem 1.2:

Theorem 1.2. Suppose R is a K(n+1)-local, H∞-E-algebra such that, in π0R, some power of un

is in the ideal (p, u1, ..., un−1). Then 1 is in the ideal (p, u1, ..., un−1).
1
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2 JEREMY HAHN

Our proof of Theorem 1.2 is by infinite descent: we use power operations to show that, if some
power of un lies in (p, u1, ..., un−1), then so must some lower power. This is analogous to the
technique featured in [MNN15].

Acknowledgments. I heartily thank Akhil Mathew for introducing me to this problem and point-
ing out its appearance on Mark Hovey’s webpage. Thanks are due to Eric Peterson, Peter May,
Denis Nardin, and my advisor Mike Hopkins for helpful conversations. The author was supported
by the NSF Graduate Fellowship under Grant DGE-1144152.

2. Useful reductions

In this section we reduce Theorem 1.1 to Theorem 1.2. Since the May Nilpotence Conjecture is
proved [MNN15], we need only prove Theorem 1.1 when n > 0.

Fix such an integer n > 0 for the remainder of the paper. Recall that, for us, E denotes a height
n+1 variant of Morava E-theory with π0E ∼= Zp[[u1, u2, ..., un]]. For more details on E, see Section
3.

Lemma 2.1. Suppose R is a spectrum. Then R is K(n+ 1)-acyclic if and only if R∧E is.

Proof. This is Proposition 3.4 of [HS99]. The argument is that K(n + 1) is a field spectrum, and
so K(n+ 1)∧E splits as a wedge of suspensions of K(n+1). It follows that K(n+1)∧E ∧R is a
wedge of suspensions of K(n+ 1)∧R. �

By an H∞-E-algebra we simply mean an H∞-ring spectrum R equipped with a map of H∞-rings
E → R. A small piece of this structure is a ring map π0(E) → π0(R), which allows us to speak of
u1, u2, ..., un ∈ π0(R).

Lemma 2.2. Suppose R is a K(n)-acyclic, H∞-E-algebra. Then, in π0(R), some power of un is
in the ideal (p, u1, ..., un−1).

Proof. Let S/I denote a type n Moore spectrum S/(pi0 , vi11 , ..., v
in−1

n−1 ), as in [HS99, §4]. The spec-
trum X = R∧S/I is K(n)-acyclic by assumption, but also K(j)-acyclic for j < n. Since R is
Ln+1-local, X is Ln+1-local, but LnX ≃ 0. By [HS99, 7.10], Lf

nX ≃ 0. Also by [HS99, 7.10],

Lf
n(R∧S/I) ≃ R∧T (S/I),

where T (S/I) is the telescope of a vn-self map on S/I.
On π0, the map R∧S/I → R∧ T (S/I) inverts un. Since the image of this map is null, it follows

that some power of un is 0 in π0(R∧S/I).
To finish the proof, I will show that any element in the kernel of π0R → π0(R∧S/I) is a member

of the ideal (p, u1, ..., un−1). Indeed, we can decompose this map as a composition

π0(R) → π0(R∧S/pi0) → π0

(
R∧S/(pi0 , vi11 )

)
→ · · · → π0(R∧S/I).

The kernel of the map that kills vikk consists of elements that are multiples of uik
k , and the result

follows. �

For the moment assume Theorem 1.2, which the rest of the paper is devoted to proving. We will
deduce Theorem 1.1 from this assumption.

Proof of Theorem 1.1. If R is any K(n)-acyclic, H∞-ring spectrum, then R∧E will be a K(n)-
acyclic, H∞-E-algebra. By Lemma 2.2, some power of un is in the ideal (p, u1, ..., un−1) ⊆

π0(R∧E). The same fact must be true in π0LK(n+1)(R∧E). By Theorem 1.2, 1 is in the ideal
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(p, u1, ..., un−1) ⊆ π0(LK(n+1)(R∧E)). It follows that, upon smashing LK(n+1)(R∧E) with any
type (n+1)-Moore spectrumM , one obtains 0. In particular, LK(n+1)(R∧E) is acyclic with respect
to the telescope of M , and hence K(n+1)-acyclic. This implies that R∧E is K(n+1)-acyclic. By
Lemma 2.1, R is itself K(n+ 1)-acyclic. �

Corollary 1.1.1. Let R be a complex-orientable, H∞-ring spectrum that kills a finite complex.
Then R has the Bousfield class of E(n) for some n.

Proof. This follows immediately from [Hov95, 1.11], which states that R has the Bousfield class of
some wedge of Morava K-theories. �

3. Power operations for H∞-E-algebras

Recall that, given any height n+1 formal groupG0 over Spec(Fp), there is a universal deformation
GE defined over SpfZp[[u1, u2, ..., un]]. By work of Goerss and Hopkins [GH04, GH05], there is an
associated E∞-ring spectrum E, a height n+1 Morava E-theory. The coefficient ring E0 = π0E ∼=
Zp[[u1, u2, ..., un]].

Let BCp denote the classifying space of the cyclic group with p-elements. As noted in [HKR00,
§5],

E0(BCp) ∼= E0[[a]]/[p](a).

There is a stable transfer map Σ∞

+ BCp → Σ∞

+ Be ≃ S. This yields a map E0 → E0(BCp), the image
of which generates an ideal tr ⊂ E0(BCp). A simple calculation with a Gysin sequence [HKR00,

6.15] shows that tr =
(

[p](a)
a

)
.

The total power operation is a ring homomorphism

P : E0 → E0(BCp)/ tr .

In [AHS04, §3], the power operation is described in terms of the moduli problem associated to
the ring

D = E0(BCp)/tr ∼= E0[[a]]/

(
[p](a)

a

)
.

To summarize their work, the E0-algebra morphism E0 → D specifies a formal group Gsource over
Spf(D). There is an isogeny of formal groups Gsource → Gtarget over Spf(D), and this latter formal
group is specified by the ring homomorphism P : E0 → D. The interested reader may consult
[AHS04] or [Str97] to learn more.

Now, suppose that x is an element of E∨

0 (BCp) = π0(LK(n+1)E ∧Σ∞

+ BCp). For each element

α ∈ E0(BCp), we obtain a diagram

E ∧Σ∞

+ BCp E ∧E

S LK(n+1)(E ∧Σ∞

+ BCp) E,

1∧α

m

x

giving an element in E0. Assembling this construction over all α gives an E0-module map

φx : E0(BCp) → E0,

which is the cap product with the class x.
In the case that the transfer ideal is in the kernel of φx, we obtain an additive operation

φ̃x : E0
P
→ E0(BCp)/ tr

φx
→ E0.
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Suppose now that R is a homotopy commutative E-algebra, with associated homomorphisms
ι : E0 → π0R and τ : E0(BCp) → R0(BCp). If α ∈ E0(BCp) is such that τ(α) = 0, then in the
diagram

E ∧Σ∞

+ BCp E ∧E E ∧R

LK(n+1)(E ∧Σ∞

+ BCp) E R,

1∧α

m

1∧ ι

ι

the composite E ∧Σ∞

+ BCp → R is null. If R is furthermore K(n+ 1)-local, the map

LK(n+1)(E ∧Σ∞

+ BCp) −→ R

must also be null. When R is a K(n+ 1)-local, H∞-E-algebra, there is a commutative diagram of
ring homomorphisms

π0R R0(BCp)/ tr

π0E E0(BCp)/ tr .
P

ι

The combined structure ensures that, if ι(β) = 0 for some β ∈ E0, then ι(φ̃x(β)) = 0 as well.

4. An explicit formula for a reduced power operation

Here we remark that, with careful choice of coordinate, one can explicitly describe the total power
operation P (modulo certain ideals). We follow [Str97, §15] to select a height n + 1 formal group
law over Fp and a coordinate on the resultant GE . The multiplication on GE is then presented by
a formal group law F (x, y) ∈ E0[[x, y]] with properties outlined in the following proposition:

Proposition 4.1. [Str97, 15.6] For any integer m > 0, let Cpm denote the polynomial in Z[x, y]
defined by

Cpm(x, y) =
xpm

+ yp
m

− (x+ y)p
m

p
.

Then,

(1) For any 0 < k ≤ n,

F (x, y) ≡ x+ y + ukCpk(x, y) modulo (u1, u2, ..., uk−1) + (x, y)p
k+1.

(2) F (x, y) ≡ x+ y + Cpn+1(x, y) modulo (u1, u2, ..., un) + (x, y)p
n+1+1.

Corollary 4.1.1. For any integer i, we use [i]F (x) to denote the i-series of x. For i ≥ 0, 1 ≤ k ≤ n,

let γi,k denote i−ip
k

p
. Then,

[i]F (x) ≡ ix+ ukγi,kx
pk

modulo (p, u1, u2, ..., uk−1, x
pk+1).

In particular, [p]F (x) ≡ ukx
pk

. Furthermore,

[i]F (x) ≡ ix+ γi,kx
pn+1

modulo (p, u1, u2, ..., un, x
pn+1+1),

and so, modulo this ideal, [p]F (x) ≡ xpn+1

.
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Proof. See also [Rez98, 5.7]. This is a simple induction on i, the statement being true when i = 0.
For larger i, setting un+1 = 1,

[i]F (x) = F ([i− 1]F (x), x)

≡ [i− 1]F (x) + x+ ukCpk(x, [i− 1]F (x))

≡ (i− 1)x+ ukγi−1,kx
pk

+ x+ ukCpk(x, (i − 1)x+ ukγi−1,kx
pk

)

≡ (i− 1)x+ ukγi−1,kx
pk

+ x+ xpk

uk

(
(i− 1)p

k

+ 1− ip
k

p

)

= ix+ ukx
pk

(
pγi−1,k + (i− 1)p

k

+ 1− ip
k

p

)

= ix+ ukx
pk

(
(i − 1)− (i− 1)p

k

+ (i − 1)p
k

+ 1− ip
k

p

)

= ix+ ukx
pk

(
i− ip

k

p

)

= ix+ ukγi,kx
pk

,

as desired. �

Recall that the total power operation is a ring map

P : E0 → D ∼= E0[[a]]/([p](a)/a).

The ring homomorphism P classifies a formal group law F ′ on D. The natural E0-algebra map
E0 → D classifies a second formal group law on D, which, by abuse of notation, we denote F .

Lemma 4.2. There is an equality of elements in D[[x]],

p−1∏

k=0

([p]F (x)−F [k]Fa) = [p]F ′

(
p−1∏

k=0

(x−F [k]Fa)

)

Proof. In the language of Section 3, we have a diagram of formal groups over Spf(D)

Gsource Gtarget

Gsource Gtarget

p p

Applying global sections, we obtain a commuting diagram of E0-algebra homomorphisms

D[[y]] D[[x]]

D[[y]] D[[x]]

y 7→ [p]F (y) x 7→ [p]F ′ (x)

By [Str97, 7.13], both horizontal arrows send y to
∏p−1

k=0(x−F [k]Fa). �
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Remark 4.3. As elements of D,

p−1∏

i=1

([−i]Fa) =

p−1∏

i=1

([i]F a).

We denote their common value by Ψ.

Proposition 4.4. For 0 < k ≤ n,

P (uk)Ψ
pk

≡ −ukΨ modulo (p, P (u1), P (u2), ..., P (uk−1), u1, u2, ..., uk−1).

Proof. Corollary 4.1.1 implies both of the following equations:

[p]F ′(x) ≡ P (uk)x
pk

modulo (p, P (u1), ..., P (uk−1), x
pk+1), and

[p]F (x) ≡ ukx
pk

modulo (p, u1, ..., uk−1, x
pk+1).

In particular, both of the equations hold modulo (p, u1, ..., uk−1, P (u1), ..., P (uk−1), x
pk+1), which

is also where we perform the following calculations:

[p]F ′

(
p−1∏

i=0

(x−F [i]Fa)

)
= [p]F ′

(
x ·

p−1∏

i=1

(x−F [i]Fa)

)pk

≡ P (uk)x
pk

(
p−1∏

i=1

−F [i]Fa

)pk

≡ P (uk)x
pk

Ψpk

.

On the other hand,

p−1∏

i=0

([p]F (x) −F [i]Fa) ≡

p−1∏

i=0

(ukx
pk

−F [i]Fa)

≡ ukx
pk

p−1∏

i=1

(ukx
pk

−F [i]Fa)

≡ ukx
pk

p−1∏

i=1

(−F [i]Fa)

≡ ukx
pk

Ψ

The result follows by Lemma 4.2. �

In the remainder of this section, we attempt to reduce the complexity of the total power operation
P : E0 → D by modding out both the domain and codomain by (p, u1, u2, ..., un−1). It is not possible
to do this directly because P is not an E0-algebra map, and indeed we will need to mod out more
of the codomain than just (p, u1, ..., un−1).

Proposition 4.5. In the ring E0[[a]]/(p, u1, u2, ..., un−1) ∼= Fp[[un, a]], the element [p]F (a) is a
product

[p]F (a) = Uap
n

g(a),

where
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(1) U is a unit in Fp[[un, a]],
(2) g(a) is a monic polynomial in (Fp[[un]]) [a] of degree pn+1 − pn,

(3) g(a) ≡ ap
n+1

−pn

modulo un, and
(4) The constant term of g(a) is divisible by un but not u2

n.

Proof. By Corollary 4.1.1, [p]F (a) ≡ una
pn

modulo ap
n+1. This means that we may factor

[p]F (a) = ap
n

(un + aq(a))

for some power series q(a) ∈ Fp[[un, a]]. Corollary 4.1.1 also states that [p]F (a) ≡ ap
n+1

modulo

(un, a
pn+1+1), and so the Weierstrass preparation theorem [HKR00, 5.1] implies

un + aq(a) = Ug(a)

for some unit U and some monic polynomial g(a) of degree ap
n+1

−pn

. Modding out both sides by
a, we learn that the constant term of g(a) is a unit times un. Modding out both sides by un, we

arrive at an equation Ug(a) = ap
n+1

−pn

+O(ap
n+1

−pn+1), where the right-hand-side has no terms

of degree less than pn+1 − pn. By looking at each coefficient of g(a) in turn, starting with the

constant coefficient, we learn that g(a) = ap
n+1

−pn

. �

Corollary 4.5.1. The polynomial g(a) is irreducible, and Fp[[un]][a]/g(a) is a DVR valued by

powers of its maximal ideal m = (a). The element un is in m
pn+1

−pn

but no higher power of m.
The element Ψ is not 0 inside Fp[[un]][a]/g(a).

Proof. The ring Fp[[un]][a] is a UFD, and so Eisenstein’s criterion applies to show that g(a) is
irreducible. It follows that the quotient Fp[[un]][a]/g(a) is a local domain. When we further mod

out by a, we get Fp[[un]]/g(a) ∼= Fp, since g(a) is a unit times un. Thus, Fp[[un]][a]/g(a) is a DVR
with maximal ideal generated by a. We have that

un = (some unit)ap
n+1

−pn

+ (terms of strictly higher valuation than un),

and so un must have valuation pn+1 − pn.
To see that Ψ is not zero, recall that

Ψ =

p−1∏

k=1

[k]F (a),

and so can only be 0 if one of its factors is 0. However, for each 1 ≤ k < p, [k]F (a) = ka+ ... has
valuation 1. �

By Proposition 4.5, we may compose with a quotient homomorphism to obtain a reduced power
operation

N : E0
P
→ D → Fp[[un]][a]/g(a).

Proposition 4.6. For 1 ≤ i ≤ n− 1, N(ui) = 0. Also, N(p) = 0.

Proof. Since N is a ring homomorphism, N(p) = p. That N(p) = 0 follows, since p = 0 in
Fp[[un]][a]/g(a). The rest we prove by induction on i, assuming that N(u1), ..., N(ui−1) are all
zero. Since

P (ui)Ψ
pi

≡ uiΨ modulo (p, P (u1), P (u2), ..., P (ui−1), u1, u2, ..., ui−1),

we may conclude that

N(ui)Ψ
pi

= 0.
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By Corollary 4.5.1, N(ui) = 0. �

Corollary 4.6.1. The ring homomorphism N : E0 → Fp[[un]][a]/g(a) factors through a ring
homomorphism

N : E0/(p, u1, u2, ..., un−1) ∼= Fp[[un]] → Fp[[un]][a]/g(a)

Proposition 4.7. N(un)Ψ
pn

−1 = un

Proof. We have that

P (un)Ψ
pn

≡ unΨ modulo (p, P (u1), P (u2), ..., P (un−1), u1, u2, ..., un−1).

The result follows from Corollary 4.5.1. �

5. A proof of Theorem 1.2

In the previous section, we learned that the total power operation P : E0 → D induces a ring
homomorphism N : Fp[[un]] → Fp[[un]][a]/g(a) such that N(un)Ψ

pn
−1 = un.

By Corollary 4.5.1, the ring Fp[[un]][a]/g(a) is a valuation ring. We define the weight wt(f) of
f ∈ Fp[[un]][a]/g(a) such that wt(un) = 1 and wt(a) = 1

pn+1−pn . In other words, wt(f) is just a

rescaling of the natural valuation of f by powers of the maximal ideal m = (a). We also use wt(f)
to refer to the un-valuation of any f ∈ Fp[[un]].

Proposition 5.1. wt(Ψ) = p−1
pn+1−pn .

Proof. We have that [i]F (a) = ia + O(a2), and so for 0 < i < p this has weight 1
pn+1−pn . By

definition, Ψ is the product of all of these elements and the result follows. �

Proposition 5.2. N(un) has weight p−1
pn+1−pn

Proof. We have that

1 = wt(un) = wt(N(un)Ψ
pn

−1) = wt(N(un)) +
(pn − 1)(p− 1)

pn+1 − pn
,

so

wt(N(un)) =
pn+1 − pn − (pn − 1)(p− 1)

pn+1 − pn
=

p− 1

pn+1 − pn
.

�

Corollary 5.2.1. For any non-zero power series z ∈ Fp[[un]] of weight at least 1, the weight of

N(z) is less than the weight of z.

Proof. This follows from the facts that wt(ut
n) = twt(un) and wt(f1 + f2) = wt(f1) + wt(f2)

whenever wt(f1) 6= wt(f2). �

Recall from the end of Section 3 that, for every element x ∈ E∨

0 (BCp) = π0LK(n+1)(E ∧Σ∞

+ BCp),

there is an E0-module homomorphism φx : E0(BCp) → E0. We can tensor over E0 with the module
E0/(p, u1, u2, ..., up−1) to obtain a module homomorphism

φx : Fp[[un, a]]/([p](a)) → Fp[[un]].

Proposition 5.3. For any non-zero z in Fp[[un]] of weight at least 1, there exists an x ∈ E∨

0 (BCp)
such that:

• The E0-module map φx : Fp[[un, a]]/([p](a)) → Fp[[un]] kills g(a).
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• The resultant additive operation

Fp[[un]]
N
→ Fp[[un]][a]/g(a)

φx
→ Fp[[un]]

sends z to a power series of strictly smaller weight.

Proof. The operation x 7→ φx gives a map E∨

0 (BCp) → HomE0−modules(E
0(BCp), E). By, e.g.

[Str98, §3], this map is in fact bijective. Now, N(z) ∈ Fp[[un]][a]/g(a), has a unique representative
polynomial f(a) ∈ Fp[[un]][a] of degree < pn+1−pn. By Corollary 5.2.1, there is some i < pn+1−pn

such that the coefficient of ai in f (an element q ∈ Fp[[un]]) has weight less than wt(z). I claim that
there is a choice of x which will induce an additive operation sending z to q, finishing the proof.
Indeed, Proposition 4.5 implies that there is a unique x ∈ HomE0−modules(E

0(BCp), E) sending ai

to 1, sending all other aj for 0 ≤ j < pn+1 − pn to 0, and killing g(a), ag(a), a2g(a), · · · . �

Theorem 1.2. Suppose R is a K(n+1)-local, H∞-E-algebra such that, in π0R, some power of un

is in the ideal (p, u1, ..., un−1). Then 1 is in the ideal (p, u1, ..., un−1).

Proof. The natural E0-algebra morphism ι : E0 → π0R yields an E0-algebra morphism

ι : Fp[[un]] → π0R/(p, u1, u2, ..., un−1).

By assumption, there is some non-zero z ∈ Fp[[un]] that is sent to 0 by ι. Choose such a z of
minimal weight ≥ 1. The previous proposition provides an additive operation E0 → E0 that sends
z to a power series ẑ of smaller weight. As explained at the end of Section 3, the H∞-structure
ensures ι(ẑ) = 0. By the minimality of wt(z), it must be that wt(ẑ) = 0, so ẑ is just a unit in
Fp. �
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