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GALOIS EQUIVARIANCE

AND STABLE MOTIVIC HOMOTOPY THEORY

J. HELLER AND K. ORMSBY

Abstract. For a finite Galois extension of fields L/k with Galois group G,
we study a functor from the G-equivariant stable homotopy category to the
stable motivic homotopy category over k induced by the classical Galois corre-
spondence. We show that after completing at a prime and η (the motivic Hopf
map) this results in a full and faithful embedding whenever k is real closed and
L = k[i]. It is a full and faithful embedding after η-completion if a motivic
version of Serre’s finiteness theorem is valid. We produce strong necessary con-
ditions on the field extension L/k for this functor to be full and faithful. Along
the way, we produce several results on the stable C2-equivariant Betti realiza-
tion functor and prove convergence theorems for the p-primary C2-equivariant
Adams spectral sequence.

1. Introduction

The stable versions of equivariant and motivic homotopy theory play important
roles in the geometry of manifolds, algebraic cycles, and quadratic forms. Stable
equivariant homotopy theory is the study of topological spaces equipped with a
group action up to stable equivariant weak equivalence. It has recently found stun-
ning application [22] to the Kervaire problem, playing an essential role in the proof
that there are no smooth framed manifolds of Kervaire invariant one in dimensions
greater than 126. Via the work of Devinatz and Hopkins [8], stable equivariant
homotopy theory controls the chromatic decomposition of stable homotopy theory.
It is also essential to the study of topological Hochschild homology [4].

Motivic homotopy theory is a homotopy theory of schemes in which the affine line
plays the role of the unit interval. Its study was initiated by Morel and Voevodsky
[40] in work related to Rost and Voevodsky’s resolution of the Bloch-Kato conjec-
tures on Milnor K-theory and Galois cohomology [49, 52]. Its stable version plays
an essential role in the theory of motives and motivic cohomology [53]. This circle
of ideas led to the resolution of the Milnor conjecture on quadratic forms [41] and
the Quillen-Lichtenbaum conjecture, a powerful result linking algebraic K-theory
and values of Dedekind ζ-functions via a “homotopy limit problem” phrased in the
language of stable equivariant homotopy [15]. Stable motivic homotopy theory also
opens new vistas, such as the study of algebraic cobordism [48].

The purpose of this paper is to study how equivariant and motivic stable homotopy
theory are related via the classical Galois correspondence.
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A fundamental computation in stable motivic homotopy theory is the identifi-
cation of the endomorphism ring of the motivic sphere spectrum by Morel [39].
In loc. cit. Morel shows that EndSHk

(Sk) is isomorphic to the Grothendieck-Witt
group GW (k) of nondegenerate quadratic forms over a perfect field k. It is now
a classical fact, going back to Segal and tom Dieck, that the endomorphism ring
EndSHG

(SG) of the equivariant sphere spectrum in the equivariant stable homotopy
category is equal to the Burnside ring A(G) of finite G-sets.

When L/k is a finite Galois extension with Galois group G, Dress [10, Appendix
B] (see also, [3, §4]) constructs a ring homomorphism A(G) → GW (k) relating
these two fundamental invariants. In fact, the Galois correspondence can be sta-
bilized to yield a strong symmetric monoidal triangulated functor from the stable
G-equivariant homotopy category to the stable motivic homotopy category over k,

c∗L/k : SHG → SHk.

This relies on work of P. Hu [26]. When L = k, c∗L/L is simply the functor induced

by sending a simplicial set to its associated constant motivic space. When L = k is
algebraically closed of characteristic zero, Levine [34] has recently shown that c∗L/L

is a full and faithful embedding, but this is not the general case for c∗L/k. Indeed,

the Burnside ring A(G) is always torsion free while GW (k) can in general contain
torsion, which eliminates the possibility of c∗L/k inducing an isomorphism A(G) ∼=
GW (k). However, if k is a real closed field, then GW (k) and A(C2) are isomorphic
so one might still hope that Levine’s embedding theorem can be generalized to real
closed fields. Our main result, proved in Theorem 2.21 and Theorem 2.22 below,
is that this indeed is the case after (p, η)-completion. Here p is a prime and η is
the motivic Hopf map induced by the canonical projection A2 � 0 → P1. (Details
on (p, η)-completion are provided at the start of §2.) Moreover, the functor is a
full and faithful embedding after η-completion alone if πn(Sk)Q = 0 for n > 0.
The vanishing of these higher homotopy groups would be a motivic version of the
classical result of Serre on the homotopy groups of spheres and is already known
to be true when −1 is a sum of squares in the basefield.

Theorem 1.1. Let k be a real closed field and L = k[i] be its algebraic closure.
Then for any prime p the functor

c∗L/k : SHC2
→ SHk

is a full and faithful embedding after (p, η)-completion. If πn(Sk)Q = 0 for n > 0 it
is a full and faithful embedding after η-completion.

It is a consequence of [28, Theorem 1] that (2, η)-completion is the same as 2-
completion when k is real closed, so the above theorem specializes at p = 2 to say
that c∗L/k is full and faithful after 2-completion when k is real closed.

Remark 1.2. In order to deduce integral full faithfulness of c∗L/k from η-complete

full faithfulness, one would need to control the η-periodic (i.e., η-inverted) stable
homotopy categories as well. Recent work of Guillou-Isaksen and Andrews studies
the η-periodic 2-complete sphere over C from a computational perspective, but
there aren’t many techniques developed for working with purely η-periodic objects
in general.
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1.1. Computational ramifications. Our embedding result has significant impli-
cations for (Picard-graded) stable homotopy groups of spheres in the C2-equivariant
and real closed motivic settings. Recall that the representation spheres Sm+nσ are
invertible in SHC2

where Sm+nσ is the one-point compactification of m copies of
the one-dimensional real trivial representation and n copies of the real sign repre-
sentation. As such Z ⊕ Z{σ} is a subgroup of the Picard group of invertible ob-
jects in SHC2

, and it is common to consider the bigraded stable homotopy groups
πm+nσX = [Sm+nσ, X]C2

of a C2-spectrum X. When k is real closed and L = k[i],
Theorem 1.1 implies that c∗L/k : πm+nσ(SC2

)∧p,η
∼= [c∗L/kS

m+nσ, (Sk)
∧
p,η]k. We will

see that c∗L/kS
m+nσ � Sm ∧ (SL)∧n where SL is the unreduced suspension of

Spec(L). By a theorem of P. Hu [26], SL is invertible and Z⊕ Z{L} is a subgroup
of the Picard group of SHk. We emphasize that SL is not weakly equivalent to
A1 � {0} and this is not the “standard” bigrading in motivic homotopy theory.

Regardless, if we set Sm+nL = Sm ∧ (SL)∧n and make the natural definition of
πm+nL, we see that c∗L/k induces isomorphisms

πm+nσ(SC2
)∧p,η

∼=−→ πm+nL(Sk)
∧
p,η

for all m,n ∈ Z under the conditions of Theorem 1.1. It is an observation of
D. Dugger that the same result does not hold if SL is replaced by A1 � {0}.

The C2-equivariant stable stems were studied by Araki and Iriye via Toda-style
methods. In [2], they compute the groups πm+nσSC2

for m+ n ≤ 8. In particular,
they compute the groups πmSC2

for m ≤ 8, so Theorem 1.1 implies the following
corollary.

Corollary 1.3. If k is a real closed field, then πm(Sk)
∧
2 , 0 ≤ m ≤ 8, is the 2-

completion of the values displayed in the following table:

m 0 1 2 3 4 5 6 7 8

πmSk Z2 (Z/2)3 (Z/2)3
(Z/24)2

⊕Z/8
Z/2 0 (Z/2)3

(Z/240)2⊕
Z/16⊕ Z/2

(Z/2)7

In addition, in Corollary 2.24 we show that the 2-complete version of Morel’s
conjecture on π1(Sk) holds for real closed fields. The integral version of this con-
jecture says that, for a general basefield F , there is a short exact sequence

0 → KM
2 (F )/24 → π1SF → F×/(F×)2 ⊕ Z/2 → 0.

The second-named author and P. Østvær have previously verified the integral ver-
sion of Morel’s conjecture for fields of cohomological dimension less than three [42].

While these immediate applications transfer information from C2-equivariant
to motivic homotopy over a real closed field, future work should leverage motivic
homotopy to produce C2-equivariant computations. In particular, the dual motivic
Steenrod algebra is smaller than its equivariant counterpart, making Adams and
Adams-Novikov spectral sequence computations more approachable. The authors
plan to apply these tools over the field R of real numbers (with the above exotic
Picard grading) in order to extend our computational understanding of the stable
C2-equivariant homotopy category.

1.2. Galois correspondence and motivic homotopy theory. An intriguing
viewpoint on our embedding theorem is as a generalization of the classical Galois
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correspondence in the case of real closed fields. Indeed, if L/k is a finite Galois
extension with Galois group G, then the Galois correspondence is an equivalence
between the category of finite G-sets and the category of finite étale k-algebras.
Restricting to the orbit category, this correspondence gives the functor

cL/k : OrG → Sm/k

to smooth k-schemes which is explicitly given on objects by cL/k(G/H) = Spec(LH).
As recorded in Theorem 4.6, this functor can be stabilized, yielding a strong sym-
metric monoidal, triangulated functor

c∗L/k : SHG → SHk.

It is not hard to see that the unstable version of this functor induces a full and
faithful embedding from the unstable G-equivariant homotopy category to the un-
stable motivic homotopy category over k (see Lemma 4.5). Note, though, that the
stable equivariant homotopy category is formed by stabilizing with respect to rep-
resentation spheres while the motivic homotopy category is formed by stabilizing
with respect to P1. Hence there is no reason for this pleasant relationship between
the two categories to remain after stabilization, yet it does in special cases. In fact,
we can say something slightly more precise. The image of c∗L/k is always contained

in the subcategory Ek of SHk which is generated by the finite étale k-algebras.1 Our
result can thus be rephrased as an equivalence of triangulated categories between
SHC2

and Ek when k is real closed.
This translation of stable motivic homotopy over k into stable G-equivariant

homotopy for G = Gal(L/k) will not work for general finite Galois extensions L/k.
Indeed, in Theorem 3.4 we show that c∗L/k induces an isomorphism A(G) → GW (k)

if and only if either k is quadratically closed and L = k, or k is euclidean2 and
L = k[i]. This implies in particular that c∗L/k cannot be full and faithful if L/k is

not of this special form.

1.3. Outline of the proof. Our main theorem is directly inspired by M. Levine’s
theorem on full faithfulness of the constant presheaf functor [34], and our methods
are, largely, in the same spirit as his. That said, Levine’s arguments rely on the
convergence of the slice spectral sequence, a result not yet known over fields with
infinite cohomological dimension. To remedy this situation, we compare the motivic
and equivariant Adams spectral sequences.

Let k be real closed and set L = k[i] so that G = C2 is cyclic of order 2. By
a density argument, to show that c∗L/k is full and faithful after η-completion, it

suffices to show that c∗L/k induces isomorphisms

[Sn ∧X,Y ]C2

∼=−→ [Sn ∧ c∗L/k(X)∧η , c
∗
L/k(Y )∧η ]k

where X,Y take values in the set {(SC2
)∧η , C2+ ∧ (SC2

)∧η }. The key case is when k
admits a real embedding and in this case we can use the C2-equivariant Betti real-
ization. The computation is broken up into pieces: the (p, η)-completed sphere (for
any prime p) and the rationalized η-complete sphere. The computation concern-
ing the latter object relies on the conjectural motivic version of Serre’s finiteness
theorem and so the η-complete version of the embedding theorem is conditional

1Here “generated” means that Ek is the smallest localizing subcategory of SHk containing all
(suspension spectra of) finite étale k-algebras.

2A field k is euclidean if −1 is not a sum of squares in k and [k×: (k×)2] = 2.
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upon the validity of this conjecture. Of course, the full and faithful embedding of
(p, η)-completed homotopy categories holds independent of this conjecture. In the
(p, η)-complete case, we identify the C2-equivariant Betti realization of the motivic
Adams spectral sequence with the C2-equivariant Adams spectral sequence based
on the Bredon cohomology spectrum HZ/p. We establish an equivariant version of
Suslin-Voevodsky’s theorem on Suslin homology which implies that the realization
induces an isomorphism on weight zero components of the E1-pages from which we
deduce the result in this case.

1.4. Comments on realization and profinite Galois extensions. We con-
clude by making a few comments on the role of “realization” functors. M. Levine
uses the Betti realization functor ReB : SHL → SH for algebraically closed subfields
L of C to prove his full faithfulness theorem in [34]. Since ReB ◦ c∗ = id, the con-
stant presheaf functor is always faithful for any k ⊆ C. Levine’s innovation was to
compare the Betti realization of the slice spectral sequence for the motivic sphere
spectrum over an algebraically closed field with the Novikov spectral sequence in
topology. An isomorphism between the E2-terms of these spectral sequences implies
an isomorphism on stable homotopy groups of spheres which ultimately implies the
fullness result.

When k has a real embedding, then there is an associated C2-equivariant Betti
realization ReC2

B : SHk → SHC2
. As previously mentioned, we cannot use the slice

spectral sequence to prove our embedding theorem, but our arguments still rely on
using (equivariant) Betti realization to compare some spectral sequences (namely
the motivic and equivariant Adams spectral sequences). Again, faithfulness of

c∗k[i]/k is easy because ReC2

B ◦ c∗k[i]/k = id.

Suppose L = k̄ is the algebraic closure of k and G is the absolute Galois group
Gal(L/k), which is a profinite group. A natural question is whether the main
theorem of this paper extends to a full faithfulness theorem for G-equivariant stable
homotopy inside of SHk. In order to precisely state such a question, though, one
would need an appropriate notion of genuine G-spectra and G-stable homotopy
when G is profinite. Proposals for this category are contained in [16, 44], and
C. Barwick has communicated ideas on an alternate formulation to the authors.
Whichever model is chosen, one would hope that it would admit well-behaved
functors

c∗L/k : SHG → SHk and ReGB : SHk → SHG

such that ReGB ◦ c∗L/k is some form of pro-completion of the identity functor. This

would result in a pro-faithfulness theorem, at which point one could examine fullness
properties as well. The authors hope to pursue this line of inquiry in future research.

1.5. Organization of the paper. We prove our main theorem in §2 according to
the strategy outlined above. We then deduce several interesting corollaries, includ-
ing our Picard-graded homotopy comparison (Corollary 2.23), Morel’s conjecture
on π1Sk for real closed fields (Corollary 2.24), and a relative version of our theorem
comparing full faithfulness of c∗L/L and full faithfulness of c∗L/k (Corollary 2.26).

In §3, we study the effect of c∗L/k on the endomorphism ring of the sphere spec-

trum. We show that it induces an isomorphism if and only if either k is quadratically
closed and L = k, or k is euclidean and L = k[i] (Theorem 3.4); in particular this
places strong conditions on L/k necessary in order for c∗L/k to be full and faithful.
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We collect several technical constructions and results in §4. In §4.1 and §4.2
we recall some definitions and facts about different model structures we use. With
these preliminaries in order, the unstable and stable versions of c∗L/k are constructed

in §4.3. In §4.4 we record the construction of and some well-known results on
the stable C2-equivariant Betti realization functor arising from a real embedding
of fields. In §4.5 we prove basic compatibility results between c∗L/k and various

change-of-group and change-of-base functors. Finally, in §4.6 we study the effect
of stable C2-equivariant Betti realization on motivic cohomology. In particular, we
show that the Beilinson-Lichtenbaum conjectures can be rephrased for real closed
subfields of R in terms of Bredon cohomology (Theorem 4.18) and we establish an
equivariant version of a theorem of Suslin-Voevodsky for torsion effective motives
(Theorem 4.19).

1.6. Relation to other work. It is interesting to contrast the subject of this
paper with Hu, Kriz, and Ormsby’s stable equivariant motivic homotopy theory
[29]. In that setup one studies smooth schemes equipped with a G-action, G a
finite group. It should be emphasized that this group does not necessarily have
any relationship with the automorphisms of a field extension. In contrast, in the
present work we study the image of the stable Gal(L/k)-equivariant homotopy
category inside the stable nonequivariant motivic homotopy category over k. It
would be interesting to combine these notions of equivariance and geometry further
by studying (G,Gal(L/k))-homotopy inside of the G-motivic homotopy category
over k.

1.7. Notation and conventions. Throughout k is a perfect field and L/k is a
finite Galois extension with Galois group G. For a finite group G we write SHG

for the (genuine) stable equivariant homotopy category. We write Sm/k for the
category of smooth schemes of finite type over a basefield k and we write SHk for the
stable motivic homotopy category. We use the notation [−,−]G = SHG(−,−) and
[−,−]k = SHk(−,−) for morphism sets in respective stable homotopy categories.
Our indexing convention for motivic spheres is that Sa+bα := (S1)∧a∧(A1�{0})∧b.
When G = C2 we write Sσ for the sign-representation sphere and set Sa+bσ :=
(S1)∧a ∧ (Sσ)∧b. In the special case a = b = 0, we write Sk and SG for the sphere
spectra in the motivic and equivariant categories, respectively.

For the sake of typographical simplicity, we do not use any special notational
device for derived functors in §2 and §3, where we only work on the level of homo-
topy categories. In §4 we work in both model categories and associated homotopy
categories and in this section we use “derived functor notation” (i.e. LF and RF
respectively for left and right derived functor of F ).

2. Embedding theorem

Let L/k be a Galois extension of fields with Galois group G. As mentioned in
the introduction, the functor OrG → Sm/k which is defined on objects by G/H �→
Spec(LH), induces a functor c∗L/k : SHG → SHk on stable homotopy categories.

Details on this construction are given in §4.
Our embedding result concerns certain completions of the functor c∗L/k. Recall

that the (p, η)-completion X∧
p,η of a motivic spectrum is defined to be the Bousfield

localization of X at Sk/(p, η) := cofiber(Sα ∧ Sk/p → Sk/p). We have a motivic
equivalence (Sk)

∧
p,η � holim Sk/(p

n, ηn). Similarly, for a C2-spectrum Y , define



GALOIS EQUIVARIANCE AND STABLE MOTIVIC HOMOTOPY THEORY 8053

Y ∧
p,η to be the Bousfield localization of Y at the spectrum SC2

/(p, η).3 We have an
equivariant equivalence (SC2

)∧p,η = holim SC2
/(pn, ηn). Write (SHk)

∧
p,η ⊆ SHk and

(SHC2
)∧p,η ⊆ SHC2

respectively for the full subcategories of (p, η)-complete objects.
Note that these are triangulated subcategories. Write (c∗L/k)

∧
p,η := (−)∧p,η ◦ c∗L/k. In

this section we prove that if k is a real closed field and L = k[i], then

(c∗L/k)
∧
p,η : (SHC2

)∧p,η → (SHk)
∧
p,η

is a full and faithful embedding for any prime p. Additionally if πn(Sk)Q = 0 for
any n > 0 (see Conjecture 2.13), then the functor

(c∗L/k)
∧
η : (SHC2

)∧η → (SHk)
∧
η

is full and faithful without p-completion. This is proved in Theorem 2.21 and
Theorem 2.22. The main step is to show that the C2-equivariant Betti realization
induces isomorphisms

(i) ReC2

B,φ : [Sn, (Sk)
∧
p,η]k

∼=−→ [Sn, (SC2
)∧p,η]C2

, and

(ii) ReC2

B,φ : [Spec(L)+ ∧ Sn, (Sk)
∧
p,η]k

∼=−→ [C2+ ∧ Sn, (SC2
)∧p,η]C2

whenever there is a real embedding φ : k ↪→ R.

2.1. Completing at p and η. Let p be a prime. We analyze the image, under
equivariant Betti realization, of the motivic Adams spectral sequence over a real
closed subfield of R. Let HZ/p denote the mod-p motivic cohomology spectrum.
The motivic Adams spectral sequence for Sk arises as the totalization spectral
sequence of the semi-cosimplicial P1-spectrum with s-th spectrum (HZ/p)∧s and
co-face maps induced by the unit Sk → HZ/p. We use the following specialization
of a theorem of P. Hu, I. Kriz, and the second author.

Theorem 2.1 ([28, Theorem 1]). Let k be a real closed field, L = k[i], and let Y
be either Sk or Spec(L)+. The motivic Adams spectral sequence

Es,t
1 = [St ∧ Y, (HZ/p)∧s]k =⇒ [St−s ∧ Y, (Sk)

∧
p,η]k

is strongly convergent. If p = 2, then [St−s ∧ Y, (Sk)
∧
2,η]k = [St−s ∧ Y, (Sk)

∧
2 ]k.

Proof. This is the weight zero portion of the p-primary motivic Adams spectral se-
quence constructed in [28] over k (when Y = Sk) or over L (when Y = Spec(L)+).
The form of the E1-page is immediate from the totalization construction. Conver-
gence follows from [28, Theorem 1], which states that over a field k of characteristic
zero, the Adams spectral sequence for a finite cell spectrum at p converges to
(p, η)-completions. Moreover, by loc. cit. if cd2(k[i]) < ∞, then (Sk)

∧
2 → (Sk)

∧
2,η

induces an isomorphism on motivic homotopy groups. Real closed fields satisfy
cd2(k[i]) < ∞ and so we can indeed invoke [28, Theorem 1]. �

We now turn to the C2-equivariant Adams spectral sequence. This spectral
sequence has been studied for p = 2 by P. Hu and I. Kriz [27], where it is shown
that it converges to the 2-completion. For odd p, the situation is a little different.
The target of this spectral sequence is the HZ/p-nilpotent completion, which can
be different from p-completion. We briefly recall its definition and construction and
then show that it agrees with (p, η)-completion in general.

Bousfield’s construction and discussion of the nilpotent completion and its rela-
tion to the Adams spectral sequence in [5] applies as well to the equivariant setting.

3The map η : Sσ → S0 in SHC2 is the stable map induced by C2 − {0} → CP 2.
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For a concise recollection, see [14, Section 6.7] (the discussion of loc. cit. is tailored
to the motivic setting but applies to the equivariant setting with evident modifica-
tion). Let E be a C2-equivariant ring spectrum and define E to be the fiber of the
unit map SC2

→ E. For a spectrum X we define

Xs = E
∧s ∧X and Cs = cofiber(Xs+1 → X).

There are maps Xs+1 → Xs, and hence maps Cs → Cs−1 induced by E → SC2
.

The E-nilpotent completion of X is defined to be

X∧
E = holim(Cs).

Note that there are cofiber sequences X∞ → X → X∧
E, where X∞ := holimXs.

The tower {Cs} forms an E-nilpotent resolution of X, in the sense of [5, Definition
5.6]. The Tot-tower associated to the cosimplicial spectrum E∧• ∧X also forms an
E-nilpotent resolution of X. The arguments of [5, Proposition 5.8] thus show that
the homotopy limit of this Tot-tower is homotopic to X∧

E .

Set Ws := E ∧Xs = E ∧ E
∧s ∧X; then Ws = cofiber(Xs+1 → Xs). Note that

we also have that ΣWs = cofiber(Cs → Cs−1). By induction, each Cs is E-local
and hence so is X∧

E . Therefore the map α : X → X∧
E factors through the Bousfield

localization, X → LEX → X∧
E.

Lemma 2.2 ([5]). The map β : LEX → X∧
E is an equivariant weak equivalence if

and only if α∧
E : X∧

E → (X∧
E)

∧
E is an equivariant weak equivalence.

Proof. This is similar to [5, p. 273]. We have a retraction E∧X → E∧X∧
E → E∧X

obtained from X∧
E → C0 = E ∧ X together with E ∧ E → E. One finds that

X → Y is an E-equivalence if and only if X∧
E → Y ∧

E is an equivariant equivalence.
In particular, X∧

E → (LEX)∧E is an equivariant equivalence. The map β is an
equivalence if and only if it is an E-equivalence and so β is an equivalence if and
only if (LEX)∧E � X∧

E. This happens if and only if α∧
E is an equivalence. �

Proposition 2.3. Let R be a subring of Q. Suppose that E satisfies the condition
that the geometric fixed points spectrum ΦK(E), K = {e}, C2 are NK-connective
for some NK , and Hr(Φ

K(E)) is a finitely generated R-module for all r. Let X
be a C2-spectrum such that each ΦK(X) is MK-connective for some MK . Then

α∧
E : X∧

E
�−→ (X∧

E)
∧
E is an equivariant equivalence.

Proof. There are functorial cofiber sequences X∞ → X → X∧
E . The result follows

by showing that (X∞)∞ � X∞. We claim that the map

(X∞)s = E
∧s ∧ holim

n
(E

∧n ∧X) → holim
n

E
∧s+n ∧X

is an equivariant weak equivalence. There is a cofiber sequence holimi Yi →
∏

i Yi →∏
i Yi, and so it suffices to see that E

∧s∧
∏

n(E
∧n∧X) →

∏
n E

∧s+n∧X is an equi-
variant weak equivalence. It follows from [1, Theorem III.15.2] and Lemma 2.4 that
this map is a weak equivalence on geometric fixed points as well as on the underly-
ing spectrum and so it is an equivariant weak equivalence. The map (X∞)s → X∞
is thus an equivariant weak equivalence and so taking homotopy limits we have that
(X∞)∞ � X∞, as desired. �

For a C2-spectrum E, we write πC2
n (E) = [Sn, E]C2

for the n-th stable equivari-
ant homotopy group.
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Lemma 2.4. Let Yi, i ∈ N, be C2-spectra. Suppose that there is an integer N so
that the underlying spectrum of Yi is N-connective. Then ΦC2(

∏
i Yi) �

∏
i Φ

C2(Yi).

Proof. The geometric fixed points of X are equal to (ẼC2 ∧ X)C2 . We have an

equivariant equivalence ẼC2 � colimk S
kσ. Note that Skσ ∧ (

∏
Yi) �

∏
(Skσ ∧ Yi),

since Skσ is dualizable. We thus need to see that the map

(2.5) colim
k

∏
(Skσ ∧ Yi) →

∏
colim

k
(Skσ ∧ Yi)

induces an isomorphism on πC2
n for all n. Consider the cofiber sequence

C2+ ∧ Skσ ∧ Yi → Skσ ∧ Yi → S(k+1)σ ∧ Yi.

Since each Yi is N -connective, for a fixed n, there is an integer s such that
πC2
n (C2+ ∧ Skσ ∧ Yi) vanishes for all k > s. This implies that πC2

n (Skσ ∧ Yi) =
πC2
n (S(k+1)σ ∧ Yi). We thus have that (2.5) induces an isomorphism on πC2

n , as
desired. �

Recall that πn(X) denotes the Mackey functor homtopy groups. Say that a C2-
spectrum X is n-connective πk(X) = 0 for k < n. Say that a map f : X → Y is an
n-equivalence if its cofiber is n+ 1-connective. For the following lemma, note that
since η is zero on HZ, the map HZ → HZ/η is split.

Lemma 2.6. Let X be a connective C2-spectrum and p an odd prime. Then the
unit map X/(ps, ηt) → HZ ∧X/(ps, ηt) and the map X/(2s, ηt) → HZ ∧X/2s are
1-equivalences for any integer s, t ≥ 1.

Proof. There are cofiber sequences X/(p, ηt) → X/(ps, ηt) → X/(ps−1, ηt) and a
similar one for quotients by powers of η. An inductive argument shows that it
suffices to consider the case s = 1, t = 1. It suffices to consider X = SC2

, in which
case a straightforward calculation shows that SC2

/(p, η) → HZ ∧ SC2
/(p, η) and

SC2
/(2, η) → HZ ∧ SC2

/2 are 1-equivalences. �
Proposition 2.7. Let X be a connective, C2-spectrum and p a prime. Suppose that
X satisfies the condition that both multiplication by ps and by ηt are equal to zero
on X, for some integers s, t ≥ 1. Then X → X∧

HZ/p is an equivariant equivalence.

Proof. We treat the case of an odd prime explicitly, p = 2 is similar. First note that
if ps and ηt both act by zero on a spectrum Z, then Z is a summand of Z/(ps, ηt).
Note as well that the previous lemma implies that if Y is n-connective, for n ≥ 0,
then Y → HZ∧ Y is an n+ 1-equivalence. We inductively define cofiber sequences
Xi+1 → Xi → Ki by letting X0 := X and Ki := HZ ∧ Xi. We claim that Xi is
i-connective for all i. Indeed if Xi is i-connective, then Xi/(p

s, ηt) → Ki/(p
s, ηt)

is an i+ 1-equivalence. But this map contains Xi → Ki as a summand and so it is
an i+ 1-equivalence as well which implies that Xi+1 is i+ 1-connective.

Write Ci = cofiber(Xi+1 → X). The tower {Ci} is an HZ-nilpotent resolution
of X and we claim that it is in fact an HZ/p-nilpotent resolution. If N is HZ/p-
nilpotent, then colimi[Y ∧ Xi, N ]C2

= 0, where Y = S0 or C2. It remains to see
that the Ci are HZ/p-nilpotent. This is seen by induction by noting the Ki are
HZ/p-nilpotent since there is a splitting of Ki → HZ/p ∧Ki as follows. We have
HZ/pN ∧Ki = (HZ ∧Xi) ∨ (ΣHZ ∧Xi) and so a splitting of Ki → HZ/p ∧Ki is
obtained via the composition

HZ/p ∧Ki → HZ/pN ∧Ki → HZ ∧Xi = Ki.
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Since Xi is i-connective, we have that holimi Xi � ∗ and therefore X = X∧
HZ/p, as

desired. �

Proposition 2.8. Let X be a connective C2-spectrum and p a prime. Then there
is a natural equivariant equivalence X∧

HZ/p � X∧
p,η.

Proof. The map X → X∧
p,η is an SC2

/(p, η)-equivalence, and therefore an HZ/p-
equivalence. It follows thatX∧

HZ/p → (X∧
p,η)

∧
HZ/p is an equivariant weak equivalence.

On the other hand, Proposition 2.7 implies that X/(pn, ηn) → (X/(pn, ηn))∧HZ/p is
an equivariant equivalence for all n. Therefore we have that

X∧
p,η → holim

n
(X/(pn, ηn))∧HZ/p � (X∧

p,η)
∧
HZ/p. �

Lemma 2.9 ([27, Corollary 6.47]). Let X be a connective C2-spectrum. There is
a natural equivariant equivalence X∧

HZ/2 � X∧
2 .

Proof. By the previous proposition it suffices to show that i : X∧
2 → X∧

2,η is an
equivariant equivalence. The map i is an equivalence after forgetting the action, so
it suffices to show that it induces an isomorphism on πC2

n . Write F for the homotopy
fiber of i. Note that η : Sσ ∧ F → F is an equivariant equivalence. Note as well
that ρ : F → Sσ∧F is a weak equivalence, since F is nonequivariantly contractible.
We have the relation η2ρ = −2η. In particular, we find that 2 is an equivalence on
F and so F/2s � ∗ for all s. Since F is 2-complete, we have F � ∗. �

Fix an embedding φ : k ↪→ R and consider the resulting C2-equivariant Betti
realization ReC2

B,φ : SHk → SHC2
(see Section 4.4 for details). By Theorem 4.17,

the equivariant Betti realization takes the motivic cohomology spectrum HZ/p to
the Bredon cohomology spectrum HZ/p associated to the constant Mackey functor
Z/p. Since ReC2

B,φ is symmetric monoidal and takes the unit for HZ/p to the unit

for HZ/p, we see that ReC2

B,φ takes the semi-cosimplicial P1-spectrum (HZ/p)∧• to

the semi-cosimplicial C2-spectrum (HZ/p)∧•. The totalization spectral sequence
for this latter object is the C2-equivariant Adams spectral sequence, which has been
studied by P. Hu and I. Kriz [27] and the case p = 2 of the following theorem is
[27, Corollary 6.47].

Theorem 2.10. Let Y be either SC2
or C2+. The C2-equivariant Adams spectral

sequence

Es,t
1 = [St ∧ Y, (HZ/p)∧s]C2

=⇒ [St−s ∧ Y, (SC2
)∧p,η]C2

is strongly convergent. If p = 2, then (SC2
)∧2,η = (SC2

)∧2 .

Proof. The spectral sequence associated to the Tot-tower of the semi-cosimplicial
object Y ∧ (HZ/p)∧s agrees with the spectral sequence associated to the tower

{Y ∧HZ/p
∧s}. This in turn agrees with the spectral sequence with Y replaced by

Y ∧
HZ/p. This spectral sequence converges to Y ∧

HZ/p since we have that holims Y
∧
HZ/p∧

HZ/p
∧s � ∗ (as Y ∧

HZ/p � (Y ∧
HZ/p)

∧
HZ/p). Together with the identifications of

Proposition 2.8 and Lemma 2.9, this establishes the result. �

By comparing these two Adams spectral sequences, we obtain the following re-
sult.
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Proposition 2.11. Let k be real closed, set L = k[i], and let φ : k ↪→ R be an
embedding of fields. Then the induced maps

(i) ReC2

B,φ : [Sn, (Sk)
∧
p,η]k

∼=−→ [Sn, (SC2
)∧p,η]C2

, and

(ii) ReC2

B,φ : [Spec(L)+ ∧ Sn, (Sk)
∧
p,η]k

∼=−→ [C2+ ∧ Sn, (SC2
)∧p,η]C2

are isomorphisms for any n ∈ Z. For p = 2, the induced maps [Sn, (Sk)
∧
2 ]k

∼=−→
[Sn, (SC2

)∧2 ]C2
and [Spec(L)+ ∧ Sn, (Sk)

∧
2 ]k

∼=−→ [C2+ ∧ Sn, (SC2
)∧2 ]C2

are isomor-
phisms.

Proof. We have already noted that ReC2

B,φ(HZ/p)∧s � HZ/p∧s, and that we have a
map of Adams spectral sequences. The computation of the motivic Steenrod algebra
[50, 52] shows that we have a decomposition HZ/p ∧ HZ/p � ∨Σpi+qiαHZ/p for
appropriate (pi, qi) which in particular satisfy qi ≥ 0. It follows from Theorem 4.19
that the equivariant Betti realization induces an isomorphism on the weight zero
E1-page of the Adams spectral sequences. By Theorem 2.1 and Theorem 2.10, the
proposition follows. �

2.2. Rational homotopy groups. For a (motivic or equivariant) spectrum X we
write XQ for the Bousfield localization at MQ, the rational Moore spectrum. If Y
is a compact spectrum, then [Y,XQ] = [Y,X]⊗Q.

The homotopy groups of the equivariant rational sphere spectrum are rather
simple.

Proposition 2.12. The homotopy groups of the rational C2-sphere are π0(SC2
)Q =

Q⊕Q and πn(SC2
)Q = 0 for any integer n �= 0.

Proof. This follows immediately from the well-known fact (see, e.g., [20, Corollary
A.6]) that for any finite group, (SG)Q is weakly equivalent to HAQ, the Eilenberg-
MacLane spectrum associated to the rational Burnside Mackey functor. �

Conjecturally the higher homotopy groups of the sphere also vanish.

Conjecture 2.13 (Motivic Serre finiteness). Let k be a field. Then πn(Sk)Q = 0
for n > 0.

Definition 2.14. We say that a field k has motivic Serre finiteness if Conjec-
ture 2.13 holds over k.

Rationally (in fact already when 2 is inverted) there are orthogonal idempotents
ε+ = (ε − 1)/2 and ε− = (ε + 1)/2 acting on (Sk)Q, obtained from ε ∈ π0Sk.

4 We
thus obtain a rational decomposition of the sphere spectrum (Sk)Q = (Sk)

+
Q ∨ (Sk)

−
Q

in which the factors correspond respectively to inverting ε+ and ε−. It follows from
Morel’s description [38] of (Sk)

+
Q as the rational motivic cohomology spectrum HQ

(see [6, Theorem 16.2.13]) that k has motivic Serre finiteness whenever −1 is the
sum of squares in k (in which case (Sk)

−
Q vanishes). Morel [38] also conjectures

a description of (Sk)
−
Q which would imply that motivic Serre finiteness holds in

general.

4Recall that ε is the stable map induced by the permutation A1 � {0}∧A1 � {0} ∼= A1 � {0}∧
A1 � {0}.
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Proposition 2.15. Let k be a real closed field, set L = k[i], and let φ : k ↪→ R be
an embedding. Assume that k has motivic Serre finiteness. Then the maps

(i) ReC2

B,φ : [Sn, (Sk)Q]k
∼=−→ [Sn, (SC2

)Q]C2
, and

(ii) ReC2

B,φ : [Spec(L)+ ∧ Sn, (Sk)Q]k
∼=−→ [C2+ ∧ Sn, (SC2

)Q]C2

are isomorphisms for any n ∈ Z.

Proof. Since ReC2

B,φ ◦ c∗L/k = id, we know that the map of the proposition is surjec-

tive. Since GW (k) = Z ⊕ Z and GW (L) = Z for any real closed field k, it follows
that the first map is an isomorphism in degree zero. By the previous propositions,
these groups are zero in all other degrees. �

Write ε ∈ πC2
0 (S0) for the stable map induced by the permutation Sσ ∧ Sσ →

Sσ ∧Sσ. As in the motivic setting, once 2 is invertible there are idempotents ε+ =
(ε−1)/2 and ε− = (ε+1)/2 that induce a splitting SC2

[1/2] = SC2
[1/2]+∨SC2

[1/2]−.

Lemma 2.16. Let k be a field and X an object of SHk. Then (X[1/2])∧η =

(X[1/2])+. Similarly if W is a C2-spectrum, then (W [1/2])∧η = W [1/2]+.

Proof. We have that (X[1/2])∧η = (X[1/2]+)∧η ∨ (X[1/2]−)∧η . From the relation

εη = η, we find that η : Sα ∧ X[1/2]+ → X[1/2]+ is zero and hence X[1/2]+ is
η-complete. On the other hand η : Sα ∧X[1/2]− → X[1/2]− is an equivalence and
so (X[1/2]−)∧η � ∗. It follows that (X[1/2])∧η = (X[1/2])+ as desired. A similar
analysis applies in the equivariant setting. �

Corollary 2.17. Let k be a real closed field, set L = k[i], and let φ : k ↪→ R be

an embedding. If X is in SHk and satisfies the condition that ReC2

B,φ : πn(XQ) →
πn(Re

C2

B,φ(XQ)) is an isomorphism, then ReC2

B,φ : πn((XQ)
∧
η ) → πn(Re

C2

B,φ(XQ)
∧
η ) is

also an isomorphism.

Proof. The map ReC2

B,φ : πn(XQ) → πn(Re
C2

B,φ(XQ)) is a direct sum of maps

(ReC2

B,φ)
+ ⊕ (ReC2

B,φ)
− : πn(X

+
Q )⊕ πn(X

−
Q ) → πn(Re

C2

B,φ(XQ)
+)⊕ πn(Re

C2

B,φ(XQ)
−).

The result will thus follow from the previous lemma. �

2.3. Full and faithful embedding. We now assemble the previous computations
to deduce our main theorem.

Proposition 2.18. Let k be a real closed field, set L = k[i], and let φ : k ↪→ R be
an embedding. Assume that k has motivic Serre finiteness. Then

(i) ReC2

B,φ : [Sn, (Sk)
∧
η ]k

∼=−→ [Sn, (SC2
)∧η ]C2

, and

(ii) ReC2

B,φ : [Spec(L)+ ∧ Sn, (Sk)
∧
η ]k

∼=−→ [C2+ ∧ Sn, (SC2
)∧η ]C2

are isomorphisms for all n ∈ Z.

Proof. By [42, Appendix A] there is a homotopy cartesian square in SHk

Sk ��

��

∏
p(Sk)

∧
p

��

(Sk)Q ��
∏

p((Sk)
∧
p )Q
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where the products are over prime integers p. There is a similar equivariant arith-
metic fracture square in SHC2

.5 Taking the η-completion of this square yields the
homotopy cartesian square

(Sk)
∧
η

��

��

∏
p(Sk)

∧
p,η

��

[(Sk)Q]
∧
η

�� [
∏

p((Sk)
∧
p )Q]

∧
η

and similarly in SHC2
. Since XQ → (X∧

η )Q is a filtered colimit of Sk/η-equivalences,
it is itself an Sk/η-equivalence. It follows that [((Sk)

∧
p )Q]

∧
η � [((Sk)

∧
p,η)Q]

∧
η and

similarly for the C2-equivariant case. The square obtained by applying ReC2

B,φ to
the above square maps to the equivariant arithmetic fracture square. We thus
obtain a comparison diagram of associated long exact sequences. The proposition
thus follows from Proposition 2.11, Proposition 2.15, Corollary 2.17 and the five
lemma. �

We now turn our attention to (c∗L/k)
∧
η . Write ηL for the map c∗L/k(η) : S

L → S0.

Lemma 2.19. Let k be a real closed field and let L = k[i]. Then the canonical map
c∗L/k(SC2

)∧η → (Sk)
∧
ηL

is also an equivalence. The canonical map (Sk)
∧
η → (Sk)

∧
η,ηL

is an equivalence. In particular (c∗L/k)
∧
η ((SC2

)∧η ) � (Sk)
∧
η .

Proof. We show that the first equivalence holds for the 2-complete sphere and for
spectra on which 2 is invertible. A comparison of fracture squares then implies the
result. First note that c∗L/k((SC2

)∧2,η) = (Sk)
∧
2 by Lemma 2.9 and Proposition 2.8.

The map ηL induces the HZ/2-module map ηL : SL ∧ HZ/2 → HZ/2. The
group of HZ/2-module maps from SL ∧HZ/2 to HZ/2 is identified with the group
[SL,HZ/2]k = 0. Thus ηL acts by zero on any HZ/2-module and so any HZ/2-
module is ηL-complete. It follows that (Sk)

∧
HZ/2 is ηL complete which by Theorem

2.10 implies that (Sk)
∧
2 is ηL-complete. Now if 2 is invertible on X, then we

have X∧
η = X[ε−1

+ ] and c∗L/k(X)∧ηL
= c∗L/k(X)[(εL)

−1
+ ] by Lemma 2.16. Since

c∗L/k(X[ε−1
+ ]) = c∗L/k(X)[(εL)

−1
+ ], we have established the first equivalence.

For the second equivalence, we compare the applications of (−)∧η and (−)∧η,ηL

to the arithmetic fracture square. Since (Sk)
∧
p,η � (Sk)

∧
HZ/p and [SL,HZ/p]k = 0

we find that (Sk)
∧
p,η is ηL-complete. Let X be an object of SHk. By Lemma 2.16

we have (XQ)
∧
η � X+

Q and by [6, Theorem 16.2.13] we have X+
Q � X ∧ HQ. Since

[SL,HQ]k = 0, we find that (XQ)
∧
η is ηL-complete. This implies the second equiv-

alence. �
We now convert our analysis of ReC2

B,φ to c∗L/k using a limit argument which is a

modification of the one used in [34, Lemma 6.6] to the case of real closed fields.

Proposition 2.20. Let k be a real closed field and set L = k[i]. Assume that k
has motivic Serre finiteness. Then for any n ∈ Z, the maps

(i) (c∗L/k)
∧
η : [Sn, (SC2

)∧η ]C2

∼=−→ [Sn, (c∗L/k)
∧
η ((SC2

)∧η )]k, and

5The authors do not know a handy reference for this equivariant arithmetic fracture square,
but standard techniques adapt to produce it. For instance, the proof giving the motivic arithmetic
fracture square in [42, Appendix A] works almost verbatim in the equivariant setting.
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(ii) (c∗L/k)
∧
η : [C2+ ∧ Sn, (SC2

)∧η ]C2

∼=−→ [Spec(L)+ ∧ Sn, (c∗L/k)
∧
η ((SC2

)∧η )]k

are isomorphisms. For any prime p, the maps

[Sn, (SC2
)∧p,η]C2

∼=−→ [Sn, (c∗L/k)
∧
p,η((SC2

)∧p,η)]k

and

[C2+ ∧ Sn, (SC2
)∧p,η]C2

∼=−→ [Spec(L)+ ∧ Sn, (c∗L/k)
∧
p,η((SC2

)∧p,η)]k

for (p, η)-completed spheres are always isomorphisms. For p = 2, the maps

[Sn, (SC2
)∧2 ]C2

∼=−→ [Sn, (Sk)
∧
2 ]k

and

[C2+ ∧ Sn, (SC2
)∧2 ]C2

∼=−→ [Spec(L)+ ∧ Sn, (Sk)
∧
2 )]k

are isomorphisms.

Proof. If there is an embedding φ : k ⊆ R, then this is a direct consequence of
Proposition 2.11, Proposition 2.18, and Lemma 2.19 and the relation ReC2

B,φ◦c∗L/k
∼=

id. We treat the case of the η-completed spheres below, the case of (p, η)-completion
holds verbatim.

As k is real closed, L is algebraically closed. We may express L as the union⋃
α∈A Lα of algebraically closed subfields Lα ⊂ L of finite transcendence degree

over Q indexed by a well-ordered set A. Consider the fields kα = Lα ∩ k. We claim
that the kα are isomorphic to real closed subfields of R. If this is the case, then

colim
α

[Sn, (c∗Lα/kα
)∧η ((SC2

)∧η )]kα
and colim

α
[Spec(Lα)+ ∧ Sn, (c∗Lα/kα

)∧η ((SC2
)∧η )]kα

are colimits of abelian groups with constant values

[Sn, (SC2
)∧η ]C2

and [C2+ ∧ Sn, (SC2
)∧η ]C2

, respectively,

by the observation in the first paragraph. Since it is obvious that k =
⋃

α kα,
by using essentially smooth base change [24, Lemma A.7] we conclude that
these colimits are respectively isomorphic to [Sn, (c∗L/k)

∧
η ((SC2

)∧η )]k and

[Spec(L)+ ∧ Sn, (c∗L/k)
∧
η ((SC2

)∧η )]k. Thus we may now conclude that the maps

[Sn, (SC2
)∧η ]C2

→ [Sn, (c∗L/k)
∧
η ((SC2

)∧η )]k

and

[C2+ ∧ Sn, (SC2
)∧η ]C2

→ [Spec(L)+ ∧ Sn, (c∗L/k)
∧
η ((SC2

)∧η )]k

are isomorphisms for all real closed fields.
It remains to verify the claim that each kα is isomorphic to a real closed subfield

of R. Since Lα is algebraically closed and [Lα : kα] = 2, the Artin-Schreier theorem
implies that kα is real closed. Fix kα and choose a transcendence basis x1, . . . , xn

of kα over Q in which each xi is positive in kα. By sending each xi to a positive
transcendental real number, we produce an order embedding of Q(x1, . . . , xn) into
R. Since kα/Q(x1, . . . , xn) is a union of finite extensions of ordered fields, [33,
Proposition VIII.2.16] implies that there is an embedding kα ↪→ R, as desired. �

We are now ready to prove our main theorem. Recall that a localizing subcategory
E of a triangulated category T is a full triangulated subcategory, containing all
direct summands of its objects and closed under arbitrary coproducts.
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Theorem 2.21. Let k be a real closed field and let L = k[i] be its algebraic closure.
Assume that k has motivic Serre finiteness. Then

(c∗L/k)
∧
η : (SHC2

)∧η → (SHk)
∧
η

is a full and faithful embedding.

Proof. Consider the subcategory C ⊆ (SHC2
)∧η whose objects are η-complete C2-

equivariant spectra X such that (c∗L/k)
∧
η : [Sn, X]C2

→ [Sn, c∗L/k(X)∧η ]k and

(c∗L/k)
∧
η : [C2+ ∧ Sn, X]C2

→ [C2+ ∧ Sn, c∗L/k(X)∧η ]k are isomorphisms for all n.

This is a localizing subcategory and by Proposition 2.20 it contains (SC2
)∧η and we

argue below that C2+ ∧ (SC2
)∧η is in C as well. This implies that C = (SHC2

)∧η , as
this is the smallest localizing subcategory containing {(SC2

)∧η , C2+ ∧ (SC2
)∧η }.

Now we show that C2+ ∧ (SC2
)∧η is also in C. Since c∗L/k is strong symmetric

monoidal and C2+ is dualizable, [17, Proposition 3.12] implies that for any C2-
spectrum X, the natural map c∗L/k(F (C2+, X)) → F (Spec(L)+, c

∗
L/k(X)) is an iso-

morphism in SHk, where F (−,−) denotes the function spectrum in the correspond-
ing homotopy category. Now C2+ is self dual, i.e., there is an isomorphism C2+

∼=
D(C2+) in SHC2

where D(−) = F (−, SC2
) denotes the Spanier-Whitehead dual.

As with any dualizable object, there is a natural isomorphism ν : D(C2+) ∧ X ∼=
F (C2+, X). Combining these isomorphisms yields the isomorphism ω : C2+ ∧X ∼=
F (C2+, X) in SHC2

, which is a simple case of the Wirthmüller isomorphism, and
c∗L/k(ω) induces an isomorphism Spec(L)+∧c∗L/k(X)∧η

∼= F (Spec(L)+, c
∗
L/k(X)∧η ) in

SHk. This isomorphism together with Proposition 2.20 now implies that the maps

(i) (c∗L/k)
∧
η : [Sn, C2+ ∧ (SC2

)∧η ]C2
→ [Sn, Spec(L)+ ∧ c∗L/k((SC2

)∧η )
∧
η ]k, and

(ii) (c∗L/k)
∧
η : [C2+ ∧ Sn, C2+ ∧ (SC2

)∧η ]C2

→ [Spec(L)+ ∧ Sn, Spec(L)+ ∧ c∗L/k((SC2
)∧η )

∧
η ]k

are isomorphisms for any n ∈ Z.
Now, for any η-complete C2-spectrum X, let LX denote the full subcategory of

η-complete C2-spectra Y such that [Sn ∧ Y,X]C2
→ [Sn ∧ c∗L/k(Y )∧η , c

∗
L/k(X)∧η ]k is

an isomorphism for all n ∈ Z. It is clear that LX is a localizing subcategory of
SHC2

. We have seen that LX contains both (SC2
)∧η and C2+ ∧ (SC2

)∧η . Therefore
LX = (SHC2

)∧η . Since X was arbitrary, we have proved that (c∗L/k)
∧
η is full and

faithful. �

Independent of whether k has motivic Serre finiteness, the argument in the pre-
vious theorem yields the embedding theorem for the (p, η)-complete homotopy cat-
egories.

Theorem 2.22. Let k be a real closed field and let L = k[i] be its algebraic closure.
Then for any prime p

c∗L/k : (SHC2
)∧p,η → (SHk)

∧
p,η

is a full and faithful embedding. For p = 2, c∗L/k : (SHC2
)∧2 → (SHk)

∧
2 is full and

faithful.

As mentioned in the introduction, our main theorem has the following corollary
on Picard-graded stable homotopy groups.

Corollary 2.23. Suppose k is real closed and L = k[i] and let SL denote the
unreduced suspension of Spec(L). Then for all m,n ∈ Z and any (p, η)-complete
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C2-spectrum X, the functor c∗L/k induces an isomorphism of Picard-graded stable

homotopy groups

πm+nσ(X)
∼=−→ πm+nL(c

∗
L/k(X)∧η ).

If k has motivic Serre finiteness, then it is an isomorphism for any C2-spectrum
X. In particular, in this case

πm+nσ((SC2
)∧η )

∼=−→ πm+nL((Sk)
∧
η ).

We can also deduce a 2-complete version of Morel’s conjecture on π1Sk for k a
real closed field. Recall that for a general field k, Morel’s conjecture states that
there is a short exact sequence

0 → KM
2 (k)/24 → π1Sk → KM

1 (k)/2⊕ Z/2 → 0

in which the map π1Sk → KM
1 (k)/2 ⊕ Z/2 is induced by the unit map Sk → KO

to Hermitian K-theory and KM
2 (k)/24 → π1Sk takes symbols [a, b] to [a, b]ν, ν the

motivic quaternionic Hopf map.

Corollary 2.24. If k is real closed, then π1(Sk)
∧
2 sits in the short exact sequence

0 → KM
2 (k)/8 → π1(Sk)

∧
2 → KM

1 (k)/2⊕ Z/2 → 0.

Proof. By [2], we have π1SC2
= (Z/2)3 with basis ηs, [C2/e]ηs, e

2νC2
where [C2/e]

is the class of C2/e in A(C2), e is represented by the canonical map S0 → Sσ, and
νC2

is the C2-equivariant quaternionic Hopf map. By Corollary 2.23, there is an
abstract isomorphism π1(Sk)

∧
2
∼= (Z/2)3. (Recall that (2, η)-completion is the same

as 2-completion when the 2-primary cohomological dimension of k[i] is finite.) By
[42, Lemma 5.12], the map π1(Sk)

∧
2 → KM

1 (k)/2 ⊕ Z/2 is surjective, taking 〈u〉ηs
to ([u], 1) (where 〈u〉 represents the quadratic form uX2 in GW (k)). It follows
that ηs and 〈−1〉ηs are linearly independent. The C2-Betti realization of ρ2ν is
e2νC2

�= 0, and ν = 0 ∈ π1+2αKO = 0, so ρ2ν is nonzero and linearly independent
of ηs, 〈−1〉ηs. The corollary follows. �
Remark 2.25. If k is real closed, the map π1SC2

→ π1Sk is given by

ηs �→ ηs, [C2/e]ηs �→ 〈1,−1〉ηs, e2νC2
�→ ρ2ν.

Finally we note that an equivariant embedding theorem implies a nonequivariant
embedding theorem.

Corollary 2.26. Let L/k be a finite Galois extension with Galois group G. If the
functor c∗L/k : SHG → SHk is full and faithful, then the constant presheaf functor

c∗L/L : SH → SHL is full and faithful as well.

Proof. Assume that c∗L/k is full and faithful and consider the commutative diagram

[G+ ∧ Sn, X]G

∼=
��

c∗L/k

∼=
�� [c∗L/k(G+ ∧ Sn), c∗L/kX]k

∼=
��

[Sn, resX]e
c∗L/L

�� [c∗Sn, c∗resX]L,

obtained using Proposition 4.12. The vertical arrows are isomorphisms, and the
top horizontal arrow is an isomorphism by assumption. Thus the bottom horizontal
arrow is an isomorphism as well. Since every spectrum is the restriction resX of
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some G-spectrum X, we can use a density argument as in the proof of Theorem 2.21
to conclude that c∗L/L is full and faithful. �

3. The trace homomorphism and necessary conditions

for full-faithfulness

In this section, we discuss the possibility of c∗L/k being full and faithful for more

general Galois extensions L/k. As noted in the introduction, presence of torsion
in the Grothendieck-Witt group is the first obvious obstruction to an isomorphism
on π0 and therefore to c∗L/k inducing a full and faithful embedding. However, there

are many fields whose Grothendieck-Witt group is torsion free and we are able to
place strong restrictions on which fields k and L can have the property that c∗L/k

induces an isomorphism on π0.
Recall that the classical map hL/k : A(G) → GW (k) mentioned in the intro-

duction is the unique ring homomorphism with the property that G/H ∈ A(G) is
mapped to trLH/k(〈1〉). (See [3, §4] for the basic properties of hL/k.) The functor
c∗L/k : SHG → SHk also induces a map c∗L/k : A(G) → GW (k). The following is

essentially a rephrasing of M. Hoyois’ [25] computation of the motivic Euler char-
acteristic of a separable field extension.

Proposition 3.1. The maps c∗L/k : A(G) → GW (k) and hL/k are equal.

Proof. The identification A(G) ∼= EndSHG
(SG) is given by sending a finite G-set

M to its Euler characteristic χ(M) (for a recollection of Euler characteristics and
their properties see, e.g., [37]). The functor c∗L/k is strong symmetric monoidal

and so we have that c∗L/kχ(G/H) = χ(c∗L/k(G/H)) = χ(Spec(LH)) in EndSHk
(Sk).

But by [25, Theorem 7], under the identification EndSHk
(Sk) ∼= GW (k), we have

χ(Spec(LH)) = trLH/k(〈1〉). �

A field k is pythagorean if and only if sums of squares in k are squares in k. Since
A(G) is always torsion free as an abelian group, the importance of pythagorean fields
in our context is illustrated by the following lemma.

Lemma 3.2. The abelian group underlying GW (k) is torsion free if and only if
the field k is pythagorean. If k is pythagorean with finitely many orderings, then
the free rank of GW (k) is 1 + x(k) where x(k) denotes the number of orderings of
k.

Proof. This is a standard enhancement of [33, Theorem VIII.4.1 & Corollary
VIII.6.15] from the Witt ring to the Grothendieck-Witt ring case. �

We will also need the following lemma in order to analyze hL/k.

Lemma 3.3. If k is pythagorean and [k×: (k×)2] = 2n, then

n ≤ x(k) ≤ 2n−1.

Proof. This is a specialization of [33, Exercise VIII.16]. �

Recall that k is euclidean if −1 is not a sum of squares in k and [k×: (k×)2] = 2.

Theorem 3.4. The map hL/k is an isomorphism if and only if either k is quadrat-
ically closed and L = k, or k is euclidean and L = k[i].
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Proof. If L/k is of one of the prescribed forms, then it is elementary that hL/k is
an isomorphism.

If hL/k is an isomorphism, then GW (k) must be torsion free, in which case
Lemma 3.2 implies that k is pythagorean. If k is pythagorean and nonreal (i.e.,
−1 is a sum of squares in k), then k is quadratically closed and GW (k) ∼= Z. Thus
A(G) has rank 1 and therefore G = {e} and L = k.

Now assume that k is pythagorean and formally real (so −1 is not a sum of
squares in k). By the construction in [3, §4], we know that h factors through
the group completion of the monoid of k-quadratic forms q such that qL ∼= n〈1〉
for some natural number n; call this group GWZ

L(k). Since h is an isomorphism,
GWZ

L(k) = GW (k), whence 〈a〉L = 〈1〉 in GW (L) for all a ∈ k×. It follows that k
is quadratically closed in L.

Choose a basis {x1, x2, . . .} of k×/(k×)2 and let E = k(
√
x1,

√
x2, . . .). We have

just proven that E/k is a subextension of L/k, whence G surjects onto Gal(E/k).
Since G is finite, k must have finitely many square classes and Gal(E/k) ∼= Cn

2 .
Recall that the rank of A(G) is the number of conjugacy classes of subgroups of G.
We deduce that rkA(G) ≥ rkA(Cn

2 ). Just counting the subgroups of Cn
2 of order 1

or 2, we find that rkA(Cn
2 ) ≥ 2n. Since 2n > 1+2n−1 for n > 2, Lemma 3.3 implies

that n = 0 or 1. Since k is formally real, we can exclude the case n = 0, whence k
is formally real pythagorean with [k×: (k×)2] = 2, i.e., k is euclidean. In this case
GW (k) has rank 2, so L/k is a quadratic extension. Since k is quadratically closed
in L, L = k[i], concluding the proof. �

Corollary 3.5. If c∗L/k is full and faithful, then k is of the form described in

Theorem 3.4.

Remark 3.6. Algebraically closed and real closed fields are special examples of
quadratically closed and euclidean fields, but there are many other examples of

these kinds of fields. For instance, the field of real constructible numbers Q̃ ∩ R

(where Q̃ is the quadratic closure of Q) is euclidean but not real closed.
The necessary conditions which we deduced in the previous result were obtained

only by analyzing the zero-th homotopy group of the sphere spectrum. The authors
expect that torsion phenomena in the higher homotopy groups of Sk will preclude
c∗L/k from being full and faithful unless k is algebraically or real closed.

Conjecture 3.7. Let L be a field of characteristic zero. The functor c∗L/L : SH →
SHL is full and faithful if and only if L is algebraically closed.

By Levine’s theorem [34] the “if” portion of this conjecture is valid. Observe
that the validity of this conjecture together with Corollary 2.26, would imply that
cL/k : SHG → SHk is full and faithful if and only if k = L is algebraically closed or
k is real closed and L = k[i]. It is also interesting to ask what happens in positive
characteristic.

4. Comparison functors

In this section we construct and analyze the various comparison functors between
stable homotopy categories used in our arguments. To avoid potential confusion
concerning notation, we point out that a functor on homotopy categories written as
the derived functor LF (or RF ) of some functor on model categories in this section
would be written simply F in previous sections.
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4.1. Motivic model structures. Given a base scheme S, the category Spc•(S)
of based motivic spaces is the category of based simplicial presheaves on Sm/S.
There are many different options for a motivic model structure on Spc•(S). We
will use the so-called closed flasque motivic model structure introduced in [43]. We
recall the basic definitions below and refer to loc. cit. for full details. The main
advantages of this model structure for the present work are that in this model
structure all of the standard motivic spheres are cofibrant and all of the various
change-of-base functors as well as the (equivariant) Betti realizations are Quillen
functors.

The closed flasque motivic model structure is a Bousfield localization of the
global closed flasque model structure. The weak equivalences of the global closed
flasque model structure are the schemewise weak equivalences of motivic spaces.
A global closed flasque fibration is a map which has the right lifting property
with respect to the set Jgf defined below. A global closed flasque cofibration is
then defined by the appropriate lifting property. This model structure has sets of
generating cofibrations Igf and generating acyclic cofibrations Jgf as follows. Let
Z = {Zi → X} be a finite (possibly empty) collection of closed immersions in
Sm/S. Write ∪Z for the categorical union (i.e. union as presheaves) of the Zi and
write f : ∪Z → X for the induced map. Given two maps α and β write α�β for
their pushout product.

(1) The set Igf consists of all maps of the form f+� g+ where f : ∪Z → X is
as above and g : ∂Δn → Δn is a generating cofibration of simplicial sets.

(2) The set Jgf consists of all morphisms of the form f+� h+, where f : ∪Z →
X is as above and h : Λn

j → Δn is a generating acyclic cofibration.

The global closed flasque model structure is a proper, cellular, simplicial model
structure. Write Spc•(S)gf for the category of motivic spaces equipped with the
global model structure. Let

B ��

��

Y

p

��

A
i �� X

be a distinguished Nisnevich square, i.e., p is an étale map of smooth schemes, i is
an open immersion, and p−1(X � A)red → (X � A)red is an isomorphism. Write
Q = Q(i, p) for this distinguished square and write PQ for the homotopy pushout
in Spc•(S)gf of A and Y along B, and write PQ → X for the resulting map. The
motivic closed flasque model structure is the left Bousfield localization of the global
model structure at the set of maps

S = {PQ → X} ∪ {W × A1 → W}
where X, W range over all smooth S-schemes and Q ranges over all distinguished
squares.

4.2. Stable model structures. We rely on [23] as needed to equip various cate-
gories of spectra (and bispectra) with stable model structures. Recall that if C is a
left proper cellular symmetric monoidal model category whose generating cofibra-
tions have cofibrant domain and K is a cofibrant object of C, then Hovey equips
the category SptΣK(C) of symmetric K-spectra with a stable model structure and it
is again a left proper cellular symmetric monoidal model category [23]. Note that
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Spc•(S) satisfies these assumptions and moreover the motivic spheres P1 (based at
∞), A1/A1 � {0}, and Sα := A1 � {0} (based at 1) are all closed flasque cofibrant.

Let J be a closed flasque cofibrant motivic space over S. We will simply write
SptΣJ (S) := SptΣJ (Spc•(S)) for the category of motivic J-spectra. If J ′ is another

closed flasque cofibrant motivic space we write SptΣJ,J′(F ) := SptΣJ′(SptΣJ (F )) for the
category of motivic (J, J ′)-bispectra. As shown in [43] there is a monoidal Quillen

equivalence between SptΣP1(S) and Jardine’s model category of motivic symmetric
P1-spectra [31].

In [23], functoriality of the model categories of symmetric spectra is discussed
when C is fixed (e.g. changing the suspension object K in C or varying the C-
model category). We will need slightly more general functoriality, which we record
before continuing with the construction of the comparison functors of interest to
this paper.

Suppose that D is another model category satisfying the same hypothesis as C
and K ′ is a cofibrant object of D. Further suppose that we are given the following:

(1) a Quillen adjoint pair Φ : C � D : Ψ, and

(2) a natural isomorphism τ : Φ(−)⊗K ′ ∼=−→ Φ(−⊗K) such that the iterated
isomorphisms τp : Φ(X)⊗(K ′)⊗p ∼= Φ(X⊗K⊗p) are Σp-equivariant, where
the actions are the obvious ones given by permuting the respective factors
of K and K ′.

As seen in the next lemma, (Φ,Ψ) prolong to a Quillen pair (Sp(Φ), Sp(Ψ)) of
stable model categories of symmetric spectra. In this situation, we usually write Φ
and Ψ instead of Sp(Φ) and Sp(Ψ) for the prolongations.

Lemma 4.1. With notation and assumptions as above, the pair (Φ,Ψ) prolongs to
a Quillen adjoint pair on stable model structures

Sp(Φ) : SptΣK(C) � SptΣK′(D) : Sp(Ψ).

If Φ is strong symmetric monoidal, then so is Sp(Φ).

Proof. Define Sp(Φ)(D) by Sp(Φ)(D)n := Φ(Dn) with structure maps

Sp(Φ)(D)n = Φ(Dn)⊗K ′ ∼= Φ(Dn ⊗K) → Φ(Dn+1) = Sp(Φ)(D)n+1.

The equivariance assumption on τ implies that the iterations of the structure
map Sp(Φ)(D)n⊗ (K ′)⊗p → Sp(Φ)(D)n+p are Σn ×Σp-equivariant and so Φ(D) is
a symmetric K ′-spectrum. Define Sp(Φ) on morphisms in the obvious way.

Note that τ determines the natural isomorphism ρ : ΨΩK′(−)
∼=−→ ΩKΨ(−) and

the iterations ρp are Σp-equivariant. Now define Sp(Ψ)(E) by setting Sp(Ψ)(E)n :=
Ψ(En). The structure maps are defined as the adjoints of

Sp(Ψ)(E)n = Ψ(En) → Ψ(ΩK′En+1) ∼= ΩKΨ(En+1) = ΩKSp(Ψ)(E)n+1.

The equivariance of ρ implies that this is a symmetric K-spectrum. Define Sp(Ψ)
on morphisms in the obvious way.

It is straightforward to verify that Sp(Φ) and Sp(Ψ) are adjoint. The functor
Sp(Ψ) preserves level equivalences and level fibrations. This implies Sp(Φ) preserves
stable cofibrations and Sp(Ψ) preserves fibrations between fibrant objects in the
stable model structure. It follows from [11, Lemma A.2] that (Sp(Φ), Sp(Ψ)) is a
Quillen adjoint pair on the stable model structures.

It is immediate that Sp(Φ) is symmetric monoidal whenever Φ is. �
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4.3. Galois correspondence. Let L/k be a finite Galois extension with Galois
group G. Define the functor

(4.2) cL/k : OrG → Sm/k,

by cL/k(G/H) = Spec(LH) on objects and on maps as follows. First recall that

HomOrG(G/H,G/H ′) = {gH ′ | g−1Hg ⊆ H ′}.

A straightforward check shows that if gH ′ is such a coset, then the correspond-
ing field automorphism g : L → L restricts to a map of fields g : LH′ → LH

which depends only on the coset gH ′. This defines the desired map cL/k(G/H) →
cL/k(G/H ′).

The category of G-simplicial sets is equivalent to the category of presheaves of
simplicial sets on OrG: the presheaf corresponding to A is given by G/H �→ AH .
We thus obtain an adjoint pair of functors

(4.3) c∗L/k : GsSet• � Spc•(k) : (cL/k)∗.

Remark 4.4. For a G-simplicial set A, the corresponding motivic space c∗L/k(A)

isn’t in general constant but its possible values are limited to the various fixed
points AH for subgroups H ⊆ G. To see this, it suffices to consider the case of a
G-set. Every G-set is the disjoint union of orbits and we write this decomposition
as A =

∐
OrG

∐
A〈G/H〉 G/H. Then c∗L/kA is the motivic space defined by

(c∗L/kA)(X) :=
∐
OrG

∐
A〈G/H〉

Homk(X, Spec(LH)).

Note that if X is connected, then Homk(X, Spec(LH)) is either empty or is a set
with |G/H| elements and so c∗L/k(A)(X) = AH for an appropriate subgroup H ⊆ G.

Lemma 4.5. The adjoint pair c∗L/k : GsSet• � Spc•(k) : (cL/k)∗ is a Quillen

adjoint pair. Moreover, the induced map on homotopy categories Lc∗L/k : H•,G →
H•,k is full and faithful.

Proof. Note that under the identification sPre•(OrG) = GsSet•, the projective
model structure on simplicial presheaves corresponds to the usual model structure
on based G-simplicial sets. The functor (cL/k)∗ preserves global weak equivalences
and global fibrations and so this pair is a Quillen pair on the global closed flasque
model structure. It follows immediately that this is a Quillen pair on the motivic
model structure as well.

Using the description of c∗L/k in the previous remark, one sees the following

simple facts about c∗L/k(A). If A is fibrant, then c∗L/k(A)(X) is fibrant for any X

and c∗L/k(A) is A1-homotopy invariant. If U ⊆ X is a dense open subscheme, then

c∗L/k(A)(X) = c∗L/k(A)(U). It is thus easy to see that c∗L/k(A) satisfies Nisnevich

descent. Moreover, for G-simplicial sets A and B, we have an equality of simplicial
mapping spaces, HomSpc•(k)

(c∗L/k(B), c∗L/k(A)) = HomGsSet•(B,A). Now if B is

cofibrant and A is fibrant, then we have

[Sn ∧ c∗L/k(B), c∗L/k(A)]k = πnHomSpc•(k)
(c∗L/k(B), c∗L/k(A))

and [B,A]G = πnHomGsSet•(B,A) from which the second statement follows. �
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Write SG = (S1)∧G for the G-simplicial set consisting of the |G|-fold smash
product of S1 equipped with the obvious permutation action by G. Note also that
this is the simplicial representation sphere associated to the regular representation
ofG. The stable model structure on SptΣSG(G) := SptΣSG(GsSet•) obtained from [23]
agrees with that constructed in [36]. In turn, as shown in loc. cit., the associated
homotopy category is tensor triangulated equivalent to the genuine G-equivariant
homotopy category as constructed in [35].

To simplify notation below, we sometimes denote the motivic space c∗L/k(S
G) by

SG. Consider the category SptΣSG,P1(k) of motivic (c∗L/k(S
G),P1

k)-bispectra. This

is a model for the stable motivic homotopy category SHk. Indeed, by [26, Theorem
3.5] the motivic space c∗L/k(S

G) is invertible in SHk. In particular, by [23, Theorem

9.1], the suspension spectrum functor

Σ∞
SG : SptΣP1(k) → SptΣP1,SG(k)

is a left Quillen equivalence and induces a tensor triangulated equivalence on the
associated stable homotopy categories.

By Lemma 4.1, the Quillen adjoint pair (4.3) induces a Quillen pair SptΣSG(G) �
SptΣSG(k). Combined with the suspension spectrum functor, we have the composite
Quillen adjunction

SptΣSG(G) � SptΣSG(k) � SptΣSG,P1(k).

We have thus obtained the desired stabilization of c∗L/k.

Theorem 4.6. The Galois correspondence (4.2) induces an adjoint pair

Lc∗L/k : SHG � SHk : R(cL/k)∗

of triangulated stable homotopy categories. The left adjoint is strong symmetric
monoidal.

4.4. Equivariant Betti realization. An unstable C2-equivariant Betti realiza-
tion functor is constructed for the motivic homotopy category over fields admitting
a real embedding in [40]; see also [13]. It is well known that this construction stabi-
lizes to yield a C2-equivariant Betti realization functor. Following the construction
of [43] in the complex case, we record here the construction of the stable equivariant
Betti realization as a Quillen functor.

Write (−)an : Sm/R → C2Top• for the functor given by X �→ X(C)an+ , where
X(C) is equipped with the involution given by conjugation. It extends to an adjoint
pair

ReC2

B : Spc•(R) � C2Top• : SingC2

B .

The left adjoint ReC2

B is defined by the usual left Kan extension formula and the

right adjoint SingC2

B is defined by SingC2

B (K)(X) = HomC2Top•
(X(C)+,K).

Proposition 4.7. The adjoint pair ReC2

B : Spc•(R) � C2Top• : SingC2

B is a Quillen

adjoint pair. Moreover ReC2

B is strong symmetric monoidal.

Proof. First we show that this is a Quillen pair on global closed flasque model
structures. For this we check that ReC2

B sends generating closed cofibrations to
cofibrations in C2Top• and sends generating global trivial closed fibrations to trivial

cofibrations. Note that ReC2

B preserves pushout products. It thus suffices to show
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that ReC2

B (∪Z+) → ReC2

B (X+) is a cofibration for any finite collection Z = {Zi ↪→
X} of closed immersions in Sm/R.

Note that ReC2

B (∪Z) is the coequalizer of
∐

Zi(C) ×X(C) Zj(C) ⇒
∐

Zi(C) in
in C2Top•. One may equivariantly triangulate X(C) such that each Zi(C) is an
equivariant subcomplex and Zi(C) ×X(C) Zj(C) is an equivariant subcomplex for

each j; see, e.g., [30]. It follows that ReC2

B (∪Z) → X(C) is the inclusion of an
equivariant subcomplex. In particular, it is an equivariant cofibration. It follows
that ReC2

B is a left Quillen functor on the global closed flasque model structure.

Note that ReC2

B sends a distinguished Nisnevich square to an equivariant homo-

topy pushout square; see, e.g., [13]. Also ReC2

B (X × A1) → ReC2

B (X) is an equi-
variant homotopy equivalence. It follows that the adjoint pair of the proposition
induces a Quillen pair in the closed flasque motivic structure as well. �

Recall that we write Sσ for the sign-representation sphere.

Proposition 4.8. The above adjoint pair extends to a Quillen adjoint pair

ReC2

B : SptΣP1(R) � SptΣS1+σ (C2) : Sing
C2

B

on stable model categories. Moreover ReC2

B is strong symmetric monoidal.

Proof. This follows immediately from Lemma 4.1, noting that ReC2

B (P1) = S1+σ.
�

Now if k is a field and φ : k ↪→ R is a real embedding, then the associated
C2-equivariant Betti realization ReC2

B,φ is defined to be the composite

ReC2

B,φ := φ∗ ◦ ReC2

B : SHk → SHR → SHC2
.

4.5. Comparing change of group and change of base functors. It is useful
to know that the comparison functors between equivariant and motivic homotopy
theory suitably intertwine the standard change of group and change of base functors.
We fix as above a Galois extension L/k with Galois group G. Let H ⊆ G be
a subgroup and write K = LH for the corresponding fixed subfield. We denote
the corresponding map of schemes by p : Spec(K) → Spec(k). As with any map
of schemes we have an induced adjoint pair of functors of motivic spaces p∗ :
Spc•(k) � Spc•(K) : p∗. Since p is smooth, the functor p∗ has as well a left adjoint
p#, induced by the functor Sm/K → Sm/k which composes the structure map of
a K-scheme with p.

Lemma 4.9. The adjoint pairs (p#, p
∗) and (p∗, p∗) are Quillen adjoint pairs.

Proof. That p∗ is a left Quillen adjoint on the motivic closed flasque model structure
is verified in [43]. Note that p# preserves generating global closed flasque cofibra-
tions and acyclic cofibrations. This is seen by noting that if M is a simplicial set,
then we have that p#(X ∧M+) = (p#X) ∧M+ and since p# preserves colimits, it
preserves pushouts and since it also preserves closed inclusions of smooth schemes,
the claim follows. This implies that p# is a left Quillen functor on global closed
flasque model structures. The functor p# sends Nisnevich distinguished squares to
Nisnevich distinguished squares. Furthermore p#(X×KA1

K) → p#(X) is identified
with p#(X) ×k A1

k → p#(X). It follows that p# is also a left Quillen functor on
the closed flasque motivic model structure. �
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We have the commutative diagram of categories

OrH

j

��

cL/K
�� Sm/K

p#

��

OrG
cL/k

�� Sm/k,

where j sends the orbit H/H ′ to the orbit G/H ′. Under the identification
sPre•(OrG) = GsSet•, the adjoint pair (j∗, j∗) is identified with the adjoint pair

(indGH , resGH) where indGH(X) = G×H X and resGH(W ) is W with H-action given by
restricting the G-action. The above square thus induces a commutative diagram of
Quillen adjoint functors (where we omit the labels for the horizontal right adjoints
for typographical reasons)

(4.10) HsSet•

c∗L/K
��

indG
H

��

Spc•(K)

p#

��

��

GsSet•

resGH

��

c∗L/k
��
Spc•(k).

p∗

��

��

We write H•,G for the homotopy category of based G-spaces and H•,k for the
unstable motivic homotopy category.

Proposition 4.11. The diagrams of homotopy categories

H•,H
Lc∗L/K

�� H•,K

H•,G

RresGH

��

Lc∗L/k
�� H•,k

Rp∗

��
and H•,H

LindG
H

��

Lc∗L/K
�� H•,K

Lp#

��

H•,G
Lc∗L/k

�� H•,k

induced by (4.10), commute up to natural isomorphism.

Proof. The commutativity of the second diagram follows immediately from the fact
that (4.10) commutes and that the adjoint pairs there are Quillen pairs. A direct
inspection yields the equality of functors p∗c∗L/k = c∗L/KresGH . The commutativity

of the first diagram follows since p∗ and resGH are also left Quillen functors and so
Rp∗ � Lp∗ and RresGH � LresGH . �

As an H-simplicial set SG is isomorphic to the [G : H]-fold smash product of
SH . This implies that c∗L/K(SG) = c∗L/k(S

H)∧[G:H]. We set d := [G : H] and write

SdH = (SH)∧d below.

Proposition 4.12. The adjoint pairs (4.10) induce diagrams of stable homotopy
categories

SHH

Lc∗L/K
�� SHK

SHG

RresGH

��

Lc∗L/k
�� SHk

Rp∗

��
and SHH

LindG
H

��

Lc∗L/K
�� SHK

Lp#

��

SHG

Lc∗L/k
�� SHk

which commute up to natural isomorphism.
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Proof. We have a diagram of model categories and Quillen adjunctions between
them

SptΣSG(H)

indG
H

��

c∗L/K
��
SptΣSdH (K)

p#

��

��

Σ∞
P1 ��

SptΣSdH ,P1(K)

p#

��

��

SptΣSG(G)
c∗L/k

��

resGH

��

SptΣSG(k)
Σ∞

P1 ��
��

p∗

��

SptΣSG,P1(k).

p∗

��

��

This diagram is commutative and the derived functors of the left adjoints give
the functors in the diagrams. The commutativity of the second diagram follows
immediately.

For the commutativity of the first square, note that the right adjoints p∗ and
resGH are also left adjoints and the stabilization of these functors considered as a
left adjoint agrees with their stabilization as a right adjoint and these are also
left Quillen functors. It follows that Rp∗ = Lp∗ and RresGH = LresGH . The desired
commutativity thus follows from the underived equality Σ∞

P1c∗L/KresGH = p∗Σ∞
P1c∗L/k.

�

Now suppose that k is formally real and consider the embedding p : k ⊆ k[i]. A
real embedding φ : k ↪→ R induces a complex embedding ψ : k[i] ↪→ C and hence
an associated Betti realization ReB,ψ = ψ∗ReB : SHk[i] → SH.

Proposition 4.13. With the notation as above we have

RresC2

{e}LRe
C2

B,φ = LReB,ψRp
∗ and LReC2

B,φLp# = LindC2

{e}LReB,ψ.

Proof. This is a straightforward consequence of the definitions and constructions,
as in the previous proposition. �

4.6. Betti realization and motivic cohomology. We now turn our attention to
the equivariant Betti realization of the motivic cohomology spectrum. Following a
similar strategy as in [34] in the nonequivariant case, we show that the equivariant
Betti realization takes the motivic cohomology spectrum HZ to the Bredon coho-
mology spectrum HZ. We then reinterpret the Beilinson-Lichtenbaum conjectures
and establish an equivariant version of Suslin-Voevodsky’s theorem [46] on Suslin
homology.

Lemma 4.14. For any X in Sch/k, the natural map

LReC2

B,φ(Σ
∞
P1X+) → Σ∞

S1+σX(C)an+

is an isomorphism in SHC2
.

Proof. Since k admits resolution of singularities there is a proper cdh hypercover
X• → X such that each Xn is a smooth k-scheme. It follows from [51] that
|Σ∞

P1X•+| → Σ∞
P1X+ is a stable equivalence in SHk. Each Xn+ is cofibrant. It

follows that we have a natural isomorphism LReC2

B,φΣ
∞
P1X+

∼= |Σ∞
S1+σX(C)•+| in

SHC2
.

To see that |Σ∞
S1+σX(C)an•+| → Σ∞

S1+σX(C)an+ is an isomorphism in SHC2
it suf-

fices to check that this map induces an isomorphism in SH after applying the geo-
metric fixed points functors ΦC2 and Φe. Recall that in general we have that the
geometric fixed points of a suspension spectrum is given by the suspension spectrum
of the fixed points: ΦHΣ∞

SGY = Σ∞Y H . Therefore we have that the C2-geometric
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fixed points of the above map is |Σ∞X(R)an•+| → Σ∞X(R)an+ . If W → Y is a
proper cdh-cover of real varieties, then W (R)an → Y (R)an is a surjective proper
map. In particular, it is a map of universal cohomological descent [7, 5.3.5]. It
follows that H∗(|X(R)an•+|, A) → H∗(X(R)an+ , A) is an isomorphism for all abelian
groups A. In particular, |X(R)an•+| → X(R)an+ induces a stable equivalence on sus-
pension spectra. A similar analysis for the e-geometric fixed points shows that
|Σ∞X(C)an•+| → Σ∞X(C)an+ is a stable equivalence as well. �

Lemma 4.15. The natural map

LReC2

B,φ(Σ
∞
P1 Sym

N (Σm
P1Y+)) → Σ∞

S1+σ SymN (Σm
S1+σY (C)an+ )

is an isomorphism in SHC2
for any N , m and any Y in Sm/k.

Proof. The argument is identical to [34, Lemma 5.4]. The key point is that there
is a homotopy pushout square in Spc•(k) of the form

SymN (X,A) ��

��

SymN (X)

��

SymN−1(Σm
P1Y+) �� SymN (Σm

P1Y+)

where X = (P1)m × Y+ and A is the closed subscheme of points (x1, . . . , xm, y)
such that some xi = ∞. The previous lemma applied to the top two vertices and
induction on N applied to the lower left vertex yields the result. �

As in [34] we write

(Σ∞
P1X+)

tr
eff := (Sym∞ X+, Sym

∞(ΣP1X+), Sym
∞(Σ2

P1X+), . . .)

for the spectrum with the above spaces and obvious structure maps. Similarly for a
C2-space W we have the C2-spectrum (Σ∞

S1+σW+)
tr
eff := {Sym∞(Σm

S1+σW+)}m≥0,
equipped with the obvious structure maps.

Proposition 4.16. For any smooth X there is a natural isomorphism in SHC2

LReC2

B,φ(Σ
∞
P1X+)

tr
eff

∼= (Σ∞
S1+σX(C)an+ )treff .

Proof. We have the natural isomorphism colimn(Σ
∞
P1En)[n] ∼= E in SHk, whereD[n]

is the shifted spectrum given by (D[n])i = Di−n. Similarly we have the natural

isomorphism colimn(Σ
∞
S1+σFn)[n] ∼= F in SHC2

. Since LReC2

B,φ preserves homotopy
colimits and shifts, the result follows from the previous lemma. �

Theorem 4.17. Let Λ be an abelian group. There is an isomorphism in SHC2

LReC2

B,φ(HΛ) ∼= HΛ.

Proof. Since HΛ = HZ∧MΛ and HΛ = HZ∧MΛ, where MΛ is a Moore spectrum
for Λ, and LReC2

B,φ(MΛ) = MΛ, it suffices to establish the result for A = Z. The

motivic cohomology spectrum HZ is given by HZn = Ztr((P1)∧n) and equipped
with the obvious structure maps. The natural map (Sk)

tr
eff → HZ is an isomor-

phism in SHk by [34, Lemma 5.9]. It follows from [9, Proposition 3.7] that the
spectrum {ZSn(1+σ)}n≥0 is a model for HZ, i.e., it represents Bredon cohomology



GALOIS EQUIVARIANCE AND STABLE MOTIVIC HOMOTOPY THEORY 8073

with coefficients in the constant Mackey functor Z. It follows from [12, Corollary
A.7] that the natural map (SC2

)treff → {ZSn(1+σ)}n≥0 is an equivariant weak equiv-

alence. By the previous proposition, LReC2

B,φ((Sk)
tr
eff ) = (SC2

)treff and the result
follows. �

The Beilinson-Lichtenbaum conjectures assert that for any smooth variety X
over a field k, any n > 1, and q ≥ 0, the generalized cycle map

Hp+qα
M (X,Z/n) → Hp+q

ét (X,μ⊗q
n )

is an isomorphism for p ≤ 0 and an injection for p = 1. By a theorem of Suslin-
Voevodsky [47], these conjectures are equivalent to the Bloch-Kato conjectures.
In turn, these have been resolved by Voevodsky in case n = 2� and in general
by Voevodsky and Rost. Suppose now that k = R. The étale cohomology (with
finite coefficients) of the real variety X can be identified with the Borel cohomology

of X(C). On the other hand ReC2

B induces a comparison map between motivic
cohomology and Bredon cohomology and we would like to reinterpret the Beilinson-
Lichtenbaum conjectures as a statement concerning this comparison. When 2 is
invertible in the coefficient group this is straightforward. In [21] the first author and
M. Voineagu treat the case of coefficient group Z/2� by carefully comparing various
cycle maps together with a computation that Bredon and Borel cohomology agree
in the appropriate range. This reinterpretation of Voevodsky’s theorem applies
more generally to the Betti realization for an embedding of a real closed field into
R.

Theorem 4.18. Let φ : k ↪→ R be an embedding with k real closed and X a smooth
k-variety. For any n ≥ 1, and any q ≥ 0 the map

Hs+qα
M (X,Z/n) → Hs+qσ(X(C),Z/n),

induced by ReC2

B,φ, is an isomorphism for s ≤ 0 and an injection for s = 1.

Proof. Motivic cohomology forms a pretheory with transfers. Applying [45, Theo-

rem 1],6 we have that the base change φ∗ : Hs+qα
M (X,Z/n) → Hs+qα

M (XR,Z/n) is
an isomorphism so it suffices to treat the case k = R.

Suppose that 2 is invertible in Z/n and write p : Spec(C) → Spec(R) for the
canonical map. Using Proposition 4.13 we have the commutative diagram induced
by XC → X

Hs+qα
M (X,Z/n)

p∗
��

Re
C2
B

��

Hs+qα
M (XC,Z/n)

p#
��

ReB

��

Hs+qα
M (X,Z/n)

Re
C2
B

��

Hs+qσ(X(C),Z/n) �� Hs+q
sing (X(C),Z/n) �� Hs+qσ(X(C),Z/n).

The middle arrow is an isomorphism for s ≤ 0 and an injection for s = 1. The
horizontal maps are multiplication by 2, hence isomorphisms. The result thus
follows for coefficient groups in which 2 is invertible.

6This rigidity result is stated for dense subfields of a henselian valued field. Unfortunately R

can’t be equipped with a nontrivial henselian valuation. However, the proof of their result relies
only on the density lemma [45, Lemma 1] which is valid for a real closed subfield of R, with the
classical topology. This is well known; see, e.g., [32, Lemma 4] for a proof.
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It remains to treat the case Z/2�. The cycle map

Hs+qα
M (X,Z/2�) → Hs+qσ(X(C),Z/2�)

considered in [21] is induced by the map of simplicial abelian groups (for q ≥ 0)

HomR(X ×Δ•
R, Sym

∞ Pn)+

HomR(X ×Δ•
R, Sym

∞ Pn−1)+
→ HomC2Top•((X(C)×Δ•

top)+,Z(S
n(1+σ)))

obtained by sending an algebraic map of real varieties to its associated equivariant
continuous map of C2-spaces. This agrees with the map considered here. By
[21, Theorem 1.5, Proposition 5.1] it induces an isomorphism for s ≤ 0 and an
injection for s = 1. �

We finish with an equivariant version of Suslin-Voevodsky’s theorem [46] that
over an algebraically closed field Suslin homology agrees with étale homology. To set
the stage, fix a real embedding φ : k ↪→ R and consider the subcategory of motivic
spectra X such that LReC2

B,φ induces an isomorphism [Sn, X]k ∼= [Sn,LReC2

B,φ(X)]C2

for all n. This is a localizing subcategory of SHk and we show that it contains all
effective torsion motives. If the motivic slice tower were convergent we would be
able to show more generally that it contains all effective torsion motivic spectra
(i.e., the localizing subcategory generated by Σs

S1Σt
P1Σ∞

P1X/N for any s ∈ Z, t ≥ 0,
N > 1, and smooth X).

Theorem 4.19. Let k be a real closed field and φ : k ↪→ R be an embedding. Let
E be in the smallest localizing subcategory of SHk containing X+ ∧ HZ/r for any
smooth projective X and r > 1. Then for any n, the equivariant Betti realization
induces an isomorphism

ReC2

B,φ : [Sn, E]k
∼=−→ [Sn,ReC2

B,φ(E)]C2
.

Proof. It suffices to show that [Sn, X ∧ HZ/r]k → [Sn, XR(C) ∧ HZ/r]C2
is an

isomorphism for any smooth projective X. As in the previous theorem, using
[45, Theorem 1], we are reduced to the case k = R. Tracing through definitions, it
suffices to show that the map

Ztr(X)(Δ•
R)⊗Z/r=HomR(Δ

•
R, Sym

∞ X)+⊗Z/r → HomC2Top•(Δ
•
top,ZX(C))⊗Z/r

of simplicial abelian groups, obtained by sending an algebraic map of real varieties
to its associated equivariant continuous map of C2-spaces, is a homotopy equiva-
lence. Note that this last simplicial abelian group equals Sing•(ZX(C))C2 ⊗ Z/r.

That this map is a homotopy equivalence can be deduced by a variant of some
arguments of Friedlander-Walker [19] as follows. First, for a presheaf F on Sch/R,
define F (Δd

top) = colimΔd
top→W (R) F (W ) where the colimit ranges over continuous

maps and W a finite type real variety. Note that if F is the presheaf represented by
a real variety Y , then F (Δ•

top) = Sing• Y (R). Consider the presheaf of simplicial
abelian groups

G(−) := Ztr(X)(−×Δ•
R)⊗ Z/r.

Note that G(Δ•
top) and [HomC2Top•(Δ

•
top, Sym

∞ X(C))]+ ⊗ Z/r are naturally ho-
motopic. Combined with Quillen’s theorem [18, Appendix Q] on homotopy group
completions of simplicial abelian monoids and the fact that (ZX(C))C2 is the ho-
motopy group completion of (NX(C))C2 , we find that there is a natural homotopy
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equivalence of simplicial abelian groups G(Δ•
top) � Sing•(ZX(C))C2 ⊗ Z/r. It

thus suffices to show that the map G(R) → G(Δ•
top) (induced by the projections

Δd
top → ∗) is a homotopy equivalence. This is easily seen via the same argument as

in [21, Proposition 5.1]. �
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