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Lecture 1

Higher algebra: The basic difference between algebra and higher algebra is that
the role of sets in the former are replaced by anima in the latter. Properties
in the former tend to become structure in the latter, e.g. equality becomes
a path/homotopy between two things, which needs to be specified. The free
commutative monoid is N and (the free E∞-monoid is) Fin', respectively. The
free commutative group on one generator is Z and S, respectively. Moreover, the
stable∞-categories D(Z) and D(S) ' Sp have “Postnikov” t-structures and the
heart in both is the abelian category of abelian groups, but D(S) is much better.
Sometimes we can descend E∞-algebras in D(Z) to E∞-algebras in D(S). For
example, for the ring of Witt vectors W (k) over a perfect field of characteristic
p > 0, there exists SW (k) such that SW (k)⊗SZ 'W (k) with compatible Frobenii.
There also exists SW (k)[z] such that SW (k)[z] ⊗S Z ' W (k)[z] with compatible
Frobenii. This follows from [6, Theorem 5.2.5].

Given k → R in AlgE∞(Sp), we can form

THH(R/k) ' R⊗kS
1

,

where more generally we can replace S1 by any anima.

Remark. This has an action of the circle group.

How do we understand the homotopy groups of this? Nonequivariantly, we can
write the circle as S1 = ∆1 ∪∂∆1 ∆1. Since the functor R⊗k(−) is a left adjoint,
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and hence, preserves colimits, we have

THH(R/k) ' R⊗k∆1

⊗
R⊗k∂∆1 R⊗k∆1

' R⊗R⊗kR R

We work in a world, where everything is derived, so we do not write ⊗L.

Example. For Z→ Fp, we have

THH(Fp/Z) ' Fp ⊗Fp⊗ZFp Fp

Recall that Fp ' ΛZ{x} where |x| = 1, dx = p. Hence Fp ⊗Z Fp ' ΛFp
{x}. As a

ΛFp
{x}-module, we have Fp ' ΛFp

{x}〈u〉 divided power algebra, where |u| = 2

and d(u[i]) = u[i−1]x. (We write u[i] = γi(y) for the ith divided power of u.)
Therefore, we have

THH(Fp/Z) ' Fp〈u〉 |u| = 2

Exercise. Calculate THH∗(R/R[z]), where R/Z and |z| = 0, z 7→ 0.

Theorem (Bökstedt periodicity).

THH∗(Fp) := THH∗(Fp/S) = Fp[u], |u| = 2.

Philosophically, the denominators n! in THH∗(Fp/Z) appear because we have
identified the n! ways of counting to n to the same entity. In THH∗(Fp/S), we
have not, so the denominators disappear!

Recall that if OK is a complete discrete valuation ring of mixed characteristic
(0, p) with perfect residue field k = OK/mK , then

W (k) OK

k k

∃!

(1)

We now consider the map

W (k)[z]
θ
� OK

z 7→ πK

where pOK = meKK . The kernel of θ is generated by an Eisenstein polynomial
EK(z).1 In [3], it is proved that the base-change map

THH(OK/S)→ THH(OK/SW (k))

is a p-completion. The induced map on π1(−) is the base-change map

Ω1
OK/Z → Ω1

OK/W (k),

1 It will be important later to normalize EK(z) to have constant term equal to p.
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which is a surjection onto a W (k)-module of finite length with kernel a K-vector
space of (uncountable) dimension [K : Q].

Will understand THH(OK/SW (k)), which is complicated, via descent along

THH(OK/SW (k))→ THH(OK/SW (k)[z]),

where we view OK an SW (k)[z]-algebra via z 7→ πK .

Now let’s look at the square

SW (k)[z] SW (k)

OK k

z 7→0

z 7→πK
(2)

which is a pushout in AlgE∞(Sp).

Remark. We view Eilenberg–MacLane construction as a forgetful functor from
Z-modules to S-modules, so, as usual with forgetful functors, we won’t write it.

Exercise. Argue that

THH(OK/SW (k)[z])⊗OK
k ' THH(OK/SW (k)[z])⊗SW (k)[z] SW (k)

' THH(OK ⊗SW (k)[z] SW (k)/SW (k))

' THH(k/SW (k)).

The second equivalence is an exercise in the definition of THH.

The exercise together with Bökstedt periodicity show that the πK-Bockstein
spectral sequence

E1
i,j = πi+j(gr−iπK

THH(OK/SW (k)[z]))⇒ THHi+j(OK/SW (k)[z])

collapses, and that
THH∗(OK/SW (k)[z]) = OK [u]

with |u| = 2. Indeed, the E1-term is concentrated in even total degrees.

Let T be the circle group and Cp ⊂ T the subgroup of prime order p. Nikolaus
and Scholze [8] define a p-cyclotomic spectrum to be a pair (X,ϕ) of a spectrum
with T-action X and a map of spectra with T action

X
ϕ−−→ XtCp .

Here, on the right-hand side, T acts via the pth root T→ T/Cp. The map ϕ is
called the cyclotomic Frobenius.
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We wish to construct a p-cyclotomic structure on THH(R/k). So we follow the
construction by Nikolaus and Scholze from [8, Section 4] in the case k = S, which
we recall. The inclusion {1} → T induces a map of E∞-algebras in spectra

R ' R⊗{1} −→ THH(R/S) ' R⊗T

which is initial among maps of E∞-algebras in spectra from R to the underlying
E∞-algebra in spectra of an E∞-algebra in spectra with T-action. Similarly, the
inclusion {1} → Cp induces a map of E∞-algebras in spectra

R ' R⊗{1} −→ R⊗Cp

which is initial among maps of E∞-algebras in spectra from R to the underlying
E∞-algebra in spectra of an E∞-algebra in spectra with Cp-action. The universal
property of the latter map gives a unique2 map

R⊗Cp −→ THH(R/S)

of E∞-algebras in spectra with Cp-action, which, in turn, induces a map

(R⊗Cp)tCp −→ THH(R/S)tCp

of E∞-algebras in spectra. Precomposing this map by the Tate diagonal3

R
∆R−−−→ (R⊗Cp)tCp ,

we get a map of E∞-algebras in spectra

R −→ THH(R/S)tCp .

The target has a residual T/Cp-action, which we may consider a T-action via the
isomorphism T → T/Cp given by the pth root. So by the universal property of
the map R→ THH(R/S), there is a unique commutative diagram E∞-algebras
in spectra with T-action

R THH(R/S)

(R⊗p)
tCp THH(R/S)tCp

∆R ∃! ϕ

and the map ϕ is the cyclotomic Frobenius on THH(R/S).

We wish to repeat this construction for a general base E∞-ring k. So we consider

2 By “unique,” we mean “unique, up to contractible ambiguity.”
3 Morally, this map takes a to a⊗· · ·⊗a, but it only exists in higher algebra; not in algebra.
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the following diagram:

k R ' R⊗k{1} THH(R/k) ' R⊗kT

(k⊗Cp)tCp (R⊗Cp)tCp

ktCp (R⊗kCp)tCp THH(R/k)tCp

∆k ∆R

∃ϕ ?

The terms and maps in the top and bottom rows have canonical E∞-k-algebra
structures, but the terms and map in the middle row do not. In particular, the
Nikolaus–Scholze Frobenius, which is defined to be the composition4

k
ϕ−−→ ktCp

of the left-hand vertical maps, is not k-linear. But it is a map of E∞-algebras in
spectra, so if we consider the bottom row as a sequence of E∞-k-algebras via this
map, then the outer square (which lacks an edge) is a diagram of E∞-k-algebras.
However, to invoke the universal property of the upper horizontal map in this
square, we also need the Nikolaus–Scholze Frobenius to be T-equivariant with
respect to the trivial action on the domain and the residual T ' T/Cp-action
on the target. Here is a more precise statement.

Proposition. Let k be an E∞-algebra in spectra, and let ϕ : k → ktCp be the
Nikolaus–Scholze Frobenius. A diagram in AlgE∞(Sp) of the form

(ktCp)hT/Cp

k ktCp

fgtϕ̃

ϕ

(3)

defines a structure of E∞-k-algebra in p-cyclotomic spectra on THH(R/k), for
all E∞-k-algebras R.

We stress that the resulting cyclotomic Frobenius

THH(R/k)
ϕ−−→ THH(R/k)tCp

is linear with respect to the Nikolaus–Scholze Frobenius ϕ : k → ktCp ; it is not
k-linear with respect to the canonical k-algebra structure on THH(R/k)tCp .

Exercise. Show that a lift ϕ̃ exists if k = SW (k) or k = SW (k)[z], but not if k = Z.

Hint: The Tate-orbit lemma shows that ktT → (ktCp)h(T/Cp) is a p-completion.

4 For instance, if k = Fp, then this map is the total Steenrod power operation.
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Lecture 2

We wish to understand the p-cyclotomic spectrum THH(OK/SW ), and we will
do so, following Liu–Wang [5], by descent along the map

k = THH(OK/SW )
f−−→ R = THH(OK/SW [z])

of E∞-algebras in p-cyclotomic spectra.

How does descent work?

Let f : k → R be a map of E∞-algebras in spectra. We let ∆ be the category of
non-empty finite ordinals and order-preserving maps and consider the functor

∆→ AlgE∞(Modk),

[n] 7→ R⊗k[n]

where [n] = {0, 1, . . . , n}, and the map

k −→ lim
∆
R⊗k[−] ' lim

n
lim
∆≤n

R⊗k[−]. (4)

induced by f : k → R. The description of the right-hand side as the limit of a
“tower” gives rise to a “descent” spectral sequence5

E1
i,j = πj(R

⊗k[−i]) =⇒ πi+j(lim
∆
R⊗k[−])

with d1 : E1
i,j → E1

i−1,j given by the alternating sum of the coface maps.

Let I be the fiber of f : k → R. It is a k-module, and for all n ≥ 0, there is a
fiber sequence of k-modules

I⊗k[n] −→ k −→ lim
∆≤n

R⊗k[−];

for a proof of this, see [7, Proposition 2.14]. Now, if πi(I) = 0 for i ≤ 0, then
πi(I

⊗k[n]) = 0 for i ≤ n, so in this case, the descent spectral sequence converges
strongly to π∗(k). In particular, the map (4) is an equivalence.

The E2-term is given by the cohomotopy groups

E2
i,j = π−i(πj(R

⊗k[−])).

To understand this, we let

A = π∗(R
⊗k[0]) B = π∗(R

⊗k[1])
d0

d1

and make the following assumptions:

5 If k = S, then this is the R-based Adams spectral sequence.
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(a) The maps d0, d1 : A→ B are flat.

(b) The graded rings A and B are concentrated in even degrees.

Assumption (a) implies that the maps pi : [1] → [n], where 1 ≤ i ≤ n, defined
by pi(0) = i− 1 and pi(1) = i induce an isomorphism

B ⊗A · · · ⊗A B π∗(R
⊗k[n])

that to b1 ⊗ · · · ⊗ bn assigns p1(b1) · · · pn(bn). So we get a cocategory object

B ⊗A B B A
ψ d0

d1

in the symmetric monoidal category of graded-commutative graded rings, and if
we also include the automorphism χ : B → B induced by the unique non-identity
bijection of [1] = {0, 1}, then we get a cogroupoid object. Assumption (b) implies
that A and B are commutative rings with a grading, so we can apply Spec and
obtain a groupoid object in schemes with Gm-action, 6

Spec(B)×Spec(A) Spec(B) Spec(B) Spec(A),◦
d0

d1

where the inverse “χ” is omitted. This determines a stack with Gm-action X̃, or
equivalently, a stack X = [X̃/Gm] together with a line bundle OX(1), namely,
the line bundle determined by the Gm-torsor X̃ → X. We write OX(m) for its
m-fold tensor product.

Exercise. Show that the morphism of stacks

Spec(A) X̃
f

is faithfully flat, and conclude that it is affine.

The E2-term of the descent spectral sequence is now canonically identified with
the cohomology of the stack with Gm-action X̃ with coefficients in its structure
sheaf, or equivalently, with the cohomology of the stack X with coefficients in
the tensor powers of the line bundle ω. So it takes the form

E2
i,j = H−i(X̃,OX̃)j = H−i(X,OX(j/2)) =⇒ πi+j(k)

with dr : Eri,j → Eri−r,j+r−1, since we use homological Serre grading.

(Aside: In Adams grading, we instead have

E2
n,s = Hs(X,OX(n+s/2)) =⇒ πn(k)

6 A grading of A is a ring homomorphism A→ A⊗Z Z[t±1].
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with dr : Ern,s → Ern−1,r+s, and in motivic grading, we have

E2
i,j = Hj−i(X,OX(j)) =⇒ πi+j(k)

with dr : Eri,j → Eri−r,j+r−1.)

The sheaf cohomology groups are given by

Hs(X̃,OX̃) = ExtsOX̃
(OX̃ ,OX̃) = Hs HomOX̃

(OX̃ , I
·),

where OX̃ → I · is a resolution by injective graded OX̃ -modules. However, since

the morphism f : Spec(A)→ X̃ is affine, the direct image functor

ModA ModOX̃

f∗

is exact, and therefore, we may instead use a resolution OX̃ → J · by graded
OX̃ -modules in its essential image.

We will now use the descent spectral sequence for

k = THH(OK/SW ) R = THH(OK/SW [z])
f

to calculate the homotopy groups of k. (Later, we will do the more difficult
calculation, where THH is replaced by TP.) The fiber of f has trivial homotopy
groups in degrees ≤ 0, so the descent spectral sequence converges strongly. In
the first lecture, we proved that

A = π∗(R) = THH∗(OK/SW [z0]) = OK [u]

with |u| = 2, and in the next lecture, we will prove that

B = π∗(R⊗k R) = THH∗(OK/SW [z0, z1]) = A〈t〉

with |t| = 2. Here we consider B as an A-algebra via ηL = d1 : A→ B. We will
also show that the OK-algebra map ηR = d0 : A→ B is given by

d0(u) = u+ E′K(πK)t,

and that the cocomposition ψ : B → B ⊗A B is given by

ψ(t) = 1⊗ t+ t⊗ 1.

Granting this, we find:

Proposition. In this situation, the nontrivial stack cohomology groups are

H0(X,OX(0)) ' OK

H1(X,OX(n)) ' OK/nE
′
K(πK), n > 0.
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Proof. We sketch the proof, but it is a good exercise to work this out in detail.
Equivalently, we wish to show that

H0(X̃,OX̃)0 ' OK

H1(X̃,OX̃)2n ' OK/nE
′
K(πK), n > 0.

To this end, we use the resolution

OX̃ f∗f
∗OX̃ f∗f

∗OX̃ ,
η D

where D is the adjunct of the A-linear map

f∗f∗f
∗OX̃ f∗OX̃

B A

D̃

(5)

that to t[i] assigns 1, if i = 1, and 0, otherwise. To prove that this sequence is
indeed a resolution, one first identifies

QCoh(X̃,OX̃) ' Mod(A,B),

where the right-hand side is the category of A-modules with descent data with
respect to the cogroupoid (A,B), and explicitly works out the adjunction

Mod(A,B) ModA .
f∗

f∗

Having done so, one can calculate D as a map of A-modules with descent data
to see that the sequence is a resolution. Finally, using this adjunction, one
calculates that the cohomology groups are as stated.

This gives a new proof of the following result. Krause and Nikolaus [3] have
recently given a slightly different but equally leisurely proof thereof.

Corollary (Lindenstrauss–Madsen [4]). There are isomorphisms

THHj(OK/SW ) '

{
OK if j = 0,

OK/nE
′
K(πK) if j = 2n− 1 with n > 0,

and the remaining groups are zero. The isomorphisms depend on the choice of
uniformizer πK ∈ OK .

Proof. The descent spectral sequence

E2
i,j = H−i(X,OX(j/2)) =⇒ THHi+j(OK/SW )

converges strongly and collapses, since, according to the proposition, all nonzero
terms are concentrated on the lines i = 0 and i = −1.
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We finally recall the Nikolaus–Scholze definition of topological cyclic homology
from [8, Section II]. Recall from the first lecture that if k → R is a map of
E∞-algebras in spectra, then we have the E∞-k-algebra with T-action

THH(R/k) = R⊗kS
1

.

We showed that a lift of the Nikolaus–Scholze Frobenius on k to a structure
of E∞-algebra in p-cyclotomic spectra makes THH(R/k) an E∞-k-algebra in
p-cyclotomic spectra. We write

TC−(R/k) TP(R/k)

THH(R/k)hT THH(R/k)tT

can

can

(6)

and refer to the homotopy fixed points spectrum and the Tate spectrum as the
negative topological cyclic homology of R/k and the periodic topological cyclic
homology of R/k, respectively. Assuming that THH(R/k) is p-complete, the
cyclotomic Frobenius induces a different map between these two spectra, which
is defined to be the composition

THH(R/k)hT (THH(R/k)tCp)hT/Cp THH(R/k)tT

TC−(R/k) TP(R/k)

ϕhT ∼

ϕ

(7)

of the map of homotopy fixed points induced by the cyclotomic Frobenius and
the (p-adic) equivalence given by the Tate-orbit lemma [8, Lemma I.2.1]. We also
write ϕ for the composite map and refer to it as the Frobenius map. Finally,
the topological cyclic homology of R/k is defined to be the equalizer

TC(R/k) TC−(R/k) TP(R/k)
ϕ

can

of these two maps.

Lecture 3

Recall that k = THH(OK/SW ) and R = THH(OK/SW [z]). We wish to prove
that the structure of the cogroupoid in graded rings

A = π∗(R) = THH∗(OK/SW [z0])

B = π∗(R⊗k R) = THH∗(OK/SW [z0, z1])

is as stated in Lecture 2.7 So we let u := d1u ∈ B and begin by evaluating
the associated graded gr·u(B) of B for the u-adic filtration. We would like to

7 In fact, we will not see this until Lecture 4.
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understand the cofiber of u⊗ id : R⊗k R→ R⊗k R. This is the same as

cofib(R
u−→ R)⊗R ' THH(OK/OK)⊗THH(OK/SW ) THH(OK/SW [z])

' OK ⊗THH(OK/SW ) THH(OK/SW [z])

' THH(OK/OK [z0]),

and by an earlier exercise, THH∗(OK/OK [z0]) = OK〈t〉 with deg(t) = 2. Now
we run the u-Bockstein spectral sequence. Since everything sits in even total
degree, all differentials are zero, so we conclude that

gr·u(B) = A〈t〉.

We will prove below that the generator t can be chosen so that this is true before
taking associated graded for the u-adic filtration.

In the last lecture, we used descent along

k = THH(OK/SW ) R = THH(OK/SW [z])
f

(8)

to calculate the homotopy groups of the domain, assuming that the structure of
the cogroupoid (A,B) is as stated in the last lecture. Recall that since the fiber
I of f : k → R is 1-connective, the canonical map

k lim∆R⊗k[−]

is an equivalence. Now, this is a map of (E∞-k-algebras in) cyclotomic spectra,
and hence, also the induced map of Tate spectra

ktT (lim∆R⊗k[−])tT (9)

is an equivalence. In order to use descent to understand the homotopy groups
of the domain, we also need to know that the canonical map

(lim∆R⊗k[−])tT lim∆(R⊗k[−])tT (10)

is an equivalence.

Exercise. Show that given f : k → R in AlgE∞(SpBT) with 1-connective fiber,
the map (10) is an equivalence. (Hint: Use the fiber sequence

XhT[1] XhT XtTNm can

together with the fact that ∆≤n finite.)

We wish to show that the cosimplicial graded W -algebra

[n] 7→ π∗((R
⊗k[n])tT) = TP∗(OK/SW [z0, . . . , zn])
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is the (co)nerve of a cogroupoid and to understand its structure. In general, for
X is a spectrum with T-action, we have the Tate spectral sequence

E2
∗,∗ = π∗(X)[v±1] =⇒ π∗(X

tT).

In the case X = R, we have

π∗(X) = π∗(R) = THH∗(OK/SW [z0]) = OK [u]

with deg(u) = 2, so the Tate spectral sequence collapses, since the E2-term is
located in even total degrees. The Tate spectral sequence defines a descending
filtration of TP∗(OK/SW [z0]) that we call the Nygaard filtration. (Here we will
not count the odd rows and columns, which are all zero.) It is a complete and
separated filtration. We have

griN (TP0(OK/SW [z0])) = THH2i(OK/SW [z0]),

so we may view the filtered ring TP0(OK/SW [z0]) as a deformation of the graded
ring THH∗(OK/SW [z0]). The following exercise shows that TP0(OK/SW [z0]) is
an integral domain.

Exercise. If a ring A has a separated descending filtration such that gr·(A) is
an integral domain, then A is an integral domain.

The composition of the canonical map W [z0] = π0(SW [z0])→ π0(RtT) and the
edge homomorphism π0(RtT) → π0R = OK is equal to the unique W -algebra
map W [z0]→ OK that maps z0 7→ πK . Since this map annihilates the Eisenstein
polynomial EK(z0) ∈W [z0], we conclude that

EK(z0) ∈ N≥1 TP0(OK/SW [z0])

has Nygaard filtration at least 1.

Claim. The canonical map

N≥1TP0(OK/SW [z0])→ gr1
N TP0(OK/SW [z0]) = THH2(OK/SW [z0])

takes EK(z0) to an OK-module generator of the target.

This is a calculation in Hochschild homology, which we omit. We now define

u ∈ THH2(OK/SW [z0])

to be the image of EK(z0) by this map and conclude from

gr·N TP0(OK/SW [z0]) = THH∗(OK/SW [z0]) = OK [u]

and from the Nygaard filtration being complete and separated that

TP0(OK/SW [z0]) = W [z0]∧(EK(z0)) = W [[z0]].
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Here the right-hand equality holds, since EK(z0) is Eisenstein.

We have a map of spectral sequences

E2 = π∗(X)[v±1] π∗(X
tT)

E2 = π∗(X)[v] π∗(X
hT)

=⇒

can

and conclude from the above that

TC−∗ (OK/SW [z0]) = π∗(R
hT) = W [[z0]][u, v]/(uv − EK(z0))

TP∗(OK/SW [z0]) = π∗(R
tT) = W [[z0]][v±1]

and that

TC−∗ (OK/SW [z0]) TP∗(OK/SW [z0])can

is the unique W [z0]-algebra homomorphism such that

can(u) = u = EK(z0)v−1

can(v) = v.

The Frobenius map

TC−∗ (OK/SW [z0]) TP∗(OK/SW [z0])
ϕ

is not a W [z0]-algebra homomorphism. Instead, it is a ring homomorphism that
is linear with respect to the Frobenius on W [z0]. It is given by

ϕ(u) = v−1

ϕ(v) = ϕ(EK(z0)) · v.

We note that the Frobenius does NOT preserve the Nygaard filtration.

Remark. It is easy to see that ϕ(u) = unit · v−1. To see that u and v can be
chosen such that the unit is 1, we must normalize EK(z) such that EK(0) = p
and use that there is a T-equivariant map

Z Zp ' K(Fp)∧p THH(k/SS [z0])

compatible with the Frobenius. Here the T-action and the Frobenius are both
(necessarily) trivial on Z.

We now consider
R⊗k R = THH(OK/SW [z0, z1]),

where SW [z0, z1]→ OK maps z0, z1 7→ πK . We have calculated that

gr·u π∗(R⊗k R) = OK [u]〈t〉
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with deg(u) = deg(t) = 2. This shows that TP0(OK/SW [z0, z1]) is an integral
domain. (Apply exercise twice.) Moreover, it is complete and separated with
respect to the Nygaard filtration. The following observation is key.

Lemma. Suppose that x ∈ TC−0 (OK/SW [z0, z1]) has Nygaard filtration ≥ n.
Then ϕ(x) is divisible by ϕ(EK(z0))n.

Proof. We write x = vny with v = d1(v) for some y and calculate

ϕ(x) = ϕ(vny) = ϕ(v)nϕ(y) = ϕ(EK(z0))nvnϕ(y).

This proves the lemma

We apply the lemma to z1 − z0. Since θ(z1 − z0) = πK − πK = 0, we have

z1 − z0 ∈ N≥1 TC−0 (OK/SW [z0, z1]).

Therefore, there exists an element h ∈ TP0(OK/SW [z0, z1]) such that

ϕ(z1 − z0) = ϕ(EK(z0))h,

and since TP0(OK/SW [z0, z1]) is an integral domain, this element h is unique.

The Frobenius ϕ : W [z0, z1] → W [z0, z1] is a Frobenius lift in the sense that
there exists an element δ(x) ∈W [z0, z1] such that

ϕ(x) = xp + pδ(x).

Moreover, since p is a non-zero-divisor in W [z0, z1], the element δ(x) is uniquely
determined by x, and the map δ : W [z0, z1]→W [z0, z1] is an example of a δ-ring
structure. The map δ is neither additive nor multiplicative, but rather satisfies
the axioms necessary to make ϕ a ring homomorphism. In p-torsion free rings,
a Frobenius lift ϕ and a δ-ring structure determine each other uniquely, but in
rings with p-torsion, a δ-ring structure is the better notion.

The free δ-ring over W [z0, z1] on a generator T is the ring

W [z0, z1]{T} = W [z0, z1][T, δ(T ), δ(δ(T )), . . . ]

with the Frobenius ϕ that extends the Frobenius ϕ on W [z0, z1] and maps

ϕ(δn(T )) = δn(T )p + pδn+1(T ).

The ring TP0(OK/SW [z0, z1]) is p-torsion free, but it is not clear that the map

TP0(OK/SW [z0, z1]) = TC−0 (OK/SW [z0, z1]) TP0(OK/SW [z0, z1])
ϕ

is a Frobenius lift. That this nevertheless is the case is a consequence of the
following more precise result.
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Theorem (Liu–Wang [5]). There is a (unique) map of W [z0, z1]-algebras

W [z0, z1]{T} TP0(OK/SW [z0, z1])
f

that is compatible with ϕ and maps T to

h = ϕ(z1 − z0)/ϕ(EK(z0)).

Moreover, the image of f is dense with respect to the topology given by the ideals

Jn =
∑
i+j=n p

iN≥j TP0(OK/SW [z0, z1]) ⊂ TP0(OK/SW [z0, z1]).

The “J-topology” determined by the ideals Jn has the advantage (compared
to the one determined by the Nygaard filtration) that the Frobenius map ϕ is
continuous with respect to this topology. We will not (need to) determine the
kernel of the map f in the theorem. However, the element

ϕ(z1 − z0)− ϕ(EK(z0)) · T

lies is this kernel, and hence, so does its image by δn for all n ≥ 0.

Proof. (Sketch) The proof that the map f exists is a consequence of the following
very clever definition/calculation: Liu and Wang set

f (0) = z1 − z0

and show, by induction on m ≥ 0, that the elements

f (m+1) =
(f (m))p − EK(z0)p

m+1

(−δ)m(h)

p

exist (meaning that the division by p is possible) and satisfy

f (m) ∈ N≥p
m

TP0(OK/SW [z0, z1]).

To prove that its image is dense in the stated topology, it suffices to show that
it is dense in the topology determined by the Nygaard filtration. To this end,
we define u, t ∈ THH2(OK/SW [z0, z1]) to be the images by the map

gr1
N TP0(OK/SW [z0, z1]) THH2(OK/SW [z0, z1])

of EK(z0)) and z1 − z0, respectively, and show that the map

gr·EK(z0) TP0(OK/SW [z0, z1]) gr·u THH∗(OK/SW [z0, z1])

is an isomorphism. Now, we have identified the target ring with OK [u]〈t〉, and,
by the definition of f (m), we have

image of f (m+1) =
1

(p− 1)!
· (image of f (m))[p].

So, up to a (known) unit, the image of f (m) is equal to t[p
m], which shows that

the map in question is an isomorphism.
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Lecture 4

Last time, we proved that

gr·u THH∗(OK/SW [z0, z1]) = OK [u]〈t〉

with u and t defined to be the images of EK(z0) and z1 − z0 by the map

N≥1 TP0(OK/SW [z0, z1]) THH2(OK/SW [z0, z1]),

respectively. Let us now prove that this is true before taking associated graded
with respect to the u-filtration. To this end, we use the theorem from last time
that the Frobenius ϕ makes TP0(OK/SW [z0, z1]) a δ-ring.

Lemma. For all m ≥ 1,

δm(h) ∈ N≥1 TP0(OK/SW [z0, z1]).

Proof. We consider the commutative diagram

TP0(OK/SW [z0, z1]) THH0(OK/SW [z0, z1])

TP0(OK/SW [z0]) THH0(OK/SW [z0])

θ

s0 s0

θ

and wish to show that the top horizontal map annihilates δm(h). Here, we recall,

h = ϕ(z1 − z0)/ϕ(EK(z0)).

Now, the right-hand vertical map s0 is an isomorphism (the common ring is
isomorphic to OK), so we may instead show that the left-hand vertical map s0

annihilates δm(h). This is true for m = 0, since s0 is a ring homomorphism,
which maps both z0 and z1 to z0, and therefore, it is true for all m ≥ 0, since
s0 is compatible with ϕ, and therefore, is a map of δ-rings.

Corollary. There is a Zp-algebra map

Zp〈x〉 → THH∗(OK/SW [z0, z1])

that to x assigns t.

Proof. The lemma shows that, in

gr· TP0(OK/SW [z0, z1]) = THH∗(OK/SW [z0, z1]),

we have

class of f (m+1) = class of
(f (m))p

p
= class of

1

(p− 1)!
· (f (m))[p].
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Since (p− 1)! is a unit in Zp, we conclude that the element

t = class of f (0)

admits divided powers.

Corollary. As graded OK-algebras,

THH∗(OK/SW [z0, z1]) OK [u]〈t〉

THH∗(OK/SW [z0]) OK [u],

d1d0 d1d0

where d1(u) = u and d0(u) = u+ E′K(πK) · t.

Proof. The top identity follows from the previous corollary and from the fact,
which we proved earlier, that it holds after taking associated graded with respect
to the u-adic filtration. So only the formula for d0(u) needs proof. We have

d0(u) = class of EK(z1)

= class of EK(z0) +
EK(z1)− EK(z0)

z1 − z0
· (z1 − z0)

= u+ E′K(πK) · t

as desired.

Remark. Note that we used TP0 to understand THH∗!

This completes the calculation of THH(OK/SW ) that we started in Lecture 2.

We now wish to understand the descent spectral sequence8

E1
i,j(TP) = TPj(OK/SW [z0, ..., z−i]) =⇒ TPi+j(OK/SW ).

The Nygaard filtration gives a filtration of the cochain complexes

C·(j/2) := (TPj(OK/SW [z]⊗SW [−]), d =
∑

(−1)sds), (11)

and the (purely algebraic) spectral sequence associated with these filtered cochain
complexes takes the form

E1 = E2(THH)[v±1] =⇒ E2(TP)

We saw earlier that E2
i,j(THH) = 0, unless i = 0 or i = −1, so we conclude:

Corollary. The groups E2
i,j(TP) vanish, unless i = 0 or i = −1.

8 More precisely, this spectral sequence is obtained by applying (−)tT to the cosimplicial
cyclotomic spectrum that gives rise to the THH descent spectral sequence.
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Hence, the calculation of TP∗(OK/SW ) is now reduced to the purely algebraic
problem of calculating the cohomology

E2
i,j(TP) = H−i(X,OX(j/2))

of the stack9 X = [X̃/Gm], where

Spec(TP∗(OK/SW [z0, z1])) Spec(TP∗(OK/SW [z0]))

Spec(TP∗(OK/SW [z0])) X̃.

d1

d0 f

f

That doesn’t mean it’s easy. In fact, this problem is too difficult (currently), so
we reduce modulo p. At the end of the day, we wish to show that

TC(OK/SW ) L1 TC(OK/SW )

is n-truncated for some small n (such as n = 1), and this is equivalent to showing
that the multiplication by v1 ∈ π2p−3(SW ) map

TCj(OK/SW ,Z/p) TCj+2(p−1)(OK/SW ,Z/p)
v1

is an isomorphism for j ≥ n. So we consider (11) with Z/p-coefficients. We can
do this one j at a time, and we will only consider j = 0 here. (For j 6= 0, we must
understand the Breuil–Kisin twist.) The algebraic spectral sequence becomes

E1 = E2(THH) =⇒ E2(TP0).

Before reducing modulo p, THH looks quite reasonable. However, reduction
modulo p does not interact well with the Nygaard filtration. But we are helped
by the fact that we are doing algebra, as opposed to higher algebra: We define
a refined Nygaard filtration by

Ñ≥dek+r TP0 = zr0N
≥d TP0,

where d ≥ 0 and 0 ≤ r < ek, and consider the algebraic spectral sequence
obtained from this refined filtration of C·(0)/p instead.

Exercise (Addendum to earlier exercise). Show that if e = eK > 1, then

E1 = H∗(gr·
Ñ
C·(0)) = k[z0]⊗k Λk{t}

with z0 ∈ E1,−1
1 and t ∈ Ee,1−e1 .

9 We expect that X is the prismatization of Spf(OK).
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Differentials go dr : Ei,jr → E
i+r,j−(r−1)
r , so

dp−1(z0)
.
= t

is the first possible non-zero differential. (Here we write “
.
=” to indicate equality

up to a unit.) But, modulo p, E′K(πK)
.
= πe−1

K , so

d(z0) = d0(z0)− d1(z0) = u− E′K(πK) · t− u .
= πe−1

K · t,

which shows that this differential is nonzero. We find that

Ee = k[zp0 ]⊗k Λk{zp−1
0 t},

and E(p+1)e−1 = Ee for degree reasons. The next possible nonzero differential is

d(p+1)e−1(zp0)
.
= zpe0 zp−1

0 t.

To prove that this is indeed nonzero, Liu–Wang prove the congruence

d(zp0) = zp1 − z
p
0 ≡ z

pe
0 · z

p−1
0 (z1 − z0) mod (Ñ≥2pe, p),

up to an explicit unit. So we calculate that

E(p+1)e = k[zp
2

0 ]⊗k Λ{zpe−p
2−1

0 t} ⊕ k{zpi0 · z
p−1
0 t | 0 ≤ i < e},

where k{· · · } indicates the k-vector space spanned by (· · · ) and not the free δ-
ring. Proceeding in this manner, Liu–Wang determine the differential structure
of the algebraic spectral sequences defined by the refined Nygaard filtration
completely. We note the similarity with [2, Theorem 5.5.1].

Theorem (Liu–Wang [5]). Assuming that p is odd and that eK > 1 (or that
p = 2 and eK > 2), the nonzero differentials in the spectral sequence

E1 = k[z0]⊗k Λk{t} · v−a =⇒ H ·(C ·(a))

are multiplicatively generated from

d pv+1−1
p−1 e−1

(zr0v
−a)

.
= z

pe pv−1
p−1 +r−1

0 tv−a,

where v = vp(r − pe
p−1a)

The calculation of TC− is similar, and for TC, we consider the bicomplex

Tot(E1(TC−)
ϕ−can−−−−→ E1(TP)) = E1(TC)

with the total filtration obtained from the refined Nygaard filtrations of E1(TC−)
and E1(TP). We have normalized EK(z) such that EK(0) = p, so we have

EK(z) ≡ α · ze
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modulo p, where α is a unit in W that depends on the structure of field K.
The unit α enters into the calculation of ϕ, and hence, E2(TC). For example,
if K contains the pth roots of unity, then Lubin–Tate theory shows that K
contains a (p − 1)th root of α. More precisely, a choice of a primitive pth root
of unity ζ determines a (p − 1)th root of α; see [2, Lemma 5.2.1]. In this case,
the calculation shows that

TC(OK/SW ) L1 TC(OK/SW )

is 1-truncated. In general, the degree of the extension K(µp)/K divides p−1, and
hence, is a unit modulo p. So one concludes that the map above is 1-truncated
for all K, at least if p is odd. This, in turn, implies that

K(K,Zp) L1K(K,Zp)

is (−1)-truncated. Finally, Thomason’s hyperdescent theorem makes it possible
to understand the right-hand side in terms of Iwasawa theory. This is explained
well in the paper [1] by Dwyer–Mitchell.
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