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1. INTRODUCTION

Amitsur [1] gave a complete classification of the finite groups that can
occur as subgroups of finite dimensional division algebras. He also com-
puted the finite subgroups of the real quaternions. In this paper, we look
at groups inside division algebras over local fields of characteristic zero.
We adopt the following conventions:

(1) A local field, F, will refer to a complete local field of characteris-
tic zero with finite residue field.

(2) A division algebra over F will refer to a division algebra, finite
dimensional over F.

(3) A central division algebra over F will be a division algebra over F
with center equal to F.

(4) If a/be Q is reduced, ie., 0 <a <b and (a,b) =1, then
D(F, a/ b) will denote the central division algebra over F, a local field,
with Hasse invariant a/ b mod Z.

(5) If (r, m) = 1 then o(r|m) will denote the multiplicative order of r
mod m.

(6) {K,o,uy or {K/F,o,u) will denote the cyclic algebra, where
Gal (K/ F) = (o is cyclic of order n and ¢” =u € F.

Our purpose is to describe the finite subgroups of D(F,a/ b)*. This
calculation falls naturally into two cases depending on whether the residue
characteristic of F is 2 or an odd prime, p. An important class of groups
that arises is the metacyclic groups of the form

G, ,={A,B: A" = 1,BAB~' = A", B" = A",
where n = o(rlm) and t = m/ (r — 1, m). These are analyzed in Section

4. 1t turns out that the subgroups of D(F, a/ b)* depend only on F and b.
Our main results are as follows.
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Tueorem 1.1. If F is a local field with odd residue characteristic, p,
then all the nonabelian, finite subgroups of division algebras over F are
isomorphic to G, , for some m and r. The group G,, , embeds in a division

r

algebra over F if and only if the following conditions hold:

(1) m=p*f where a = 1, ¢ isprime top and (r — 1,m) =¢.
(2) olrlm)I[F({,, {,): F(&,)),
(3) g — 1ir - 1,
@ (g-1Dys¢,0(rim)) = 1.
Here q is the order of the residue field of F({,). In particular, G, ,

embeds in D(F,a/ b)* if and only if, in addition to (1) through (4), the
following holds:

(5) b =[F(¢,): Fls where s is prime to o(r|m).
Proof. By Proposition 2.6, Theorem 6.8, and Corollary 6.9 below. g
Remark. If F/ @p is unramified then we may replace (2) and (5) by

2) olrim)lp — 1.

(5) b = of pl';i@nu/w( p*)s where (s, o(rlm)) = 1,
and g = plF Q"0 4 is the Euler function. See Corollary 6.10.

THeorREM 1.2.  Let F be a local field with odd residue characteristic, p.
The unit group, D(F,a/ b)*, contains nonabelian, finite subgroups if and
only if the extension F({,))/F is ramified and b has the form b =
p"[F({,): Flk for some k prime to p. For such a field, F, and exponent, b,
we define:

(1) ep =e(F({,)/ F),
(2) B(F) = Max{B:{,s € F({,)},
(3) ¥ = y(F, @) is the relative degree, f(F({,.)/ @p).

For B(F) < a < B(F) + n, we have y(F,a + 1) = y(F, a)p*“F*® where
e(F,a)is 0 or 1. We set e(F,B(F) + n) = 0. The isomorphism classes of
nonabelian, maximal, finite subgroups of D(F,a/b)* are in one to one
correspondence with the integers, «, such that B(F) < a < B(F) + n and

e(F, a) = 0. This correspondence associates to each a a metacyclic group,
G, ,.» where
(4) m, =p“(pk7 prrBF e D
and r, is a unit modulo m , satisfying the conditions:
(5) r, =1 mod m,/ p°,
(6) o(r,lp®) = e.
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The isomorphism class of G,, , is independent of the choice of r, subject
to (5) and (6).

Proof. Theorems 6.12 and 6.17 below.
A special case of this gives the following:

THeOREM 1.3.  If p is odd then D((ﬁD’,, a/ b)* has noncyclic subgroups if
and only if b =p"(p — Dk, for some k prime to p. There are n + 1
isomorphism classes of nonabelian, maximal, finite subgroups. These are
represented by the metacyclic groups, G where

’"ll' rlr

MD1l<a<n+1,

(2) ma — p(x(pk[)"*']-a _ l),
3) r,=1mod m_/p°,

4) olr lpy=p~ 1.
Proof. Corollary 6.18 below. g
At 2 the main results are as follows.
Tueorem 14. If F is a local field with residue characteristic 2 then
D(F,a/ b)* has nonabelian, finite subgroups if and only if [F:Q,] and
b/ 2 =k are odd integers. In this case there is one isomorphism class of

maximal, nonabelian, finite subgroups, namely T X Z / g% — 1 where T is
the binary tetrahedral group and q is the cardinality of the residue field of F.

Proof. Theorem 7.7 below.
Again, taking F = (ﬁDZ we get:

(;()R()I,I,ARY 1.5. The noncyclic, maximal, finite subgroups of
D(Q,, a/ b)*, where b = 2k and k is odd, are isomorphic to T X 7/ 2% — 1.

Proof. Corollary 7.8 below. g

These results and Theorem 4.12 allow us to find a characterization of
the local fields that satisfy Herstein’s conjecture. A field, F, satisfies
Herstein’s conjecture if every central division algebra over F contains no
nonabelian, finite subgroups of odd order.

Treorem 1.6, If F is a local field with odd residue characteristic, p,
then F satisfies Herstein’s conjecture if and only if the ramification index,
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e(F(§,)/ F), is a power of 2. If the residue characteristic is 2 then F always
satisfies Herstein’s conjecture.

Proof. Theorem 6.19 and Proposition 7.9 below. g
We extend a result by Fein and Schacher [5] to conclude:

THeoreM 1.7. If F has residue characteristic a Fermat prime then F
satisfies the Herstein conjecture. For p odd, Q, satisfies the Herstein conjec-
ture if and only if p is a Fermat prime.

Proof. Corollary 6.20 and 6.21 below. g

This investigation was undertaken so as to understand the finite
subgroups of D(tf,Dp, 1/ n)*. These are of interest in homotopy theory for
the following reason: complex cobordism gives rise to a host of cohomol-
ogy theories which measure different aspects of homotopy theory. Among
the best studied of these is the Johnson-Wilson-Morava theory E(n),
with coefficient ring

E(n). = Ziplvy o] lod = 2(p" = 1),

It turns out that a certain completion of this theory has better properties;
its homotopy is precisely the coordinate ring of the Lubin-Tate moduli
space for deformations of formal groups of height n,

E, = WLyt ][],

Here W, is the ring of Witt vectors of F,.. This cohomology theory has the
property that the group of automorphisms of the formal group of height »
over [F,. acts by operations on it, in a way compatible with a certain Galois
action.

A recent theorem of M. Hopkins and H. Miller shows that this action
can be “rigidified,” so that one may form homotopy fixed point sets with
respect to closed subgroups. In case n = 1, one has a subgroup of order 2;
E, is essentially p-adic K-theory, and the homotopy fixed point subspec-
trum isp-adic real K-theory. One now has a wide extension of ‘real
K-theory.”

The automorphism group in question is precisely the group of units in
the maximal order of the division algebra D(Q,,, 1/ n). Finite subgroups of
this each give rise to “real” versions of higher K-theory.
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2. Finite Grours IN D(F,a/ b).

We define some groups as follows.

Derinition 210 (1) G, , ={A,B: A" =1,B" = A, BAB™' = 4")
where r is a residue class mod m, (m,r)=1,n = o(r|lm) and ¢ =
m/(r—1,m).

(T =<(P,Q,R: P =1,P>= Q2 POP~' = Q~', RPR! =
Q,RQ R~ ' = PQ, R® = 1). T is the binary tetrahedral group.

(3) O is the binary octahedral group.

(4) I is the binary icosahedral group.

The following result is a weak version of Amitsur’s theorem [1, Thm. 7].

THEOREM 2.2. If G is a finite subgroup of a division ring then G is one
of the following types:

(1) A metacyclic group, G, ,,
(2) A product T X G, ,,
(3) Oor I

A central part of Amitsur’s classification is the analysis of the following
algebras:

DerFniTiON 2.3, Let ¢: G — D* be an embedding of a finite group, G,
into a division algebra with center F. If K is a subfield of F then we
define

K¢G = { Y z,0(8): 2, EK}.

raie

K¢G is a K-algebra and there is a unique K algebra map from the
group ring, K[G], to K¢G that extends ¢.

K[G]-f»mc.

Amitsur proves the following ([1], Lemma’s 4, 12, 13, and 14):

THeoREM 2.4. If ¢: G — D* is an embedding of a finite group in a
division algebra then:

(1) If G is cyclic, then Q¢G is a cyclotomic extension of Q.

Q) If G=G,,,, then Q@G is isomorphic to the cyclic algebra
(¢, 0,88 where a({,)=¢, and t =m/(m,r — 1) via A — ¢,
B —o,.
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1-1

(3) If G = T, then Q¢T is isomorphic to the quaternion algebra ( S

via the identification P —i{,Q —j, R — — (A +i+j+ k)/2.

@) 1fG = 0, then 060 = (30 ,)

(5) If G = I, then Q¢1 = (q;(‘J‘g)])

ProposiTioN 2.5. Let D(F,a/ b) and D(F,c/d) be central division
algebras over a local field F. D(F,c/d) embeds as an F-subalgebra of
D(F,a/b)if and only if

(1) b = df where (d, f) = 1,
(2) c =af! mod d.

Proof. 1f D(F,c/d) € D(F,a/ b) then, by the double centralizer the-
orem [8], D(F,a/b) = D(F,c/d) @ C(D(F,c/d)) and so the expo-

nents of D(F,c/d) and C(D(F,c/ (f )) are relatively prime which proves
. C(D(F,c/d)) = D(F,g/f) for some g and f. Now, a/b=c/d +
g/ f mod Z implies ¢ = af ' mod 4.

Conversely, if (1) and (2) hold, let g = ad ! mod f. a = ¢f + gd mod
df, as (d,f)=1. This gives a/b=c/d +g/f mod Z and hence
D(F,c/d)c D(F,a/b). g

Now we wish to consider which of the groups T, O and I of Theorem
2.2 can appear as subgroups of D(F,a/b)*. If $:G — D(F,a/b) is an
embedding then there is an algebra surjection

F Q@ Q¢G—F¢G.
Q

F¢G is a division algebra.

Case 1. 1f G =T then F ® Q¢G = (', ') by Theorem 2.4. Thus,
Q

F
F® Q¢G = M,(F) if p is odd or if p =2 and [F:Q,] is even. It is a
o
division algebra otherwise, with invariant 1/2 mod Z. It follows that T
embeds in D(F,a/b)* if and only if p =2, [F:Q,] is odd and b = 2f
for f odd.

Case2. If G = O or G =1 then G contains a subgroup isomorphic to
the binary tetrahedral group T and so, by the case above, if G embeds in
D(F,a/b)* it follows that p = 2. D(F,a/ b) would also contain a divi-
sion algebra quotient of

09 oty | o & at |
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These algebras are MZ(@)z(ﬂ_)) and M,(Q,(v5)), respectively, and so, in
fact, O and [ do not embed in D(F, a/ b)*. In short, V2 & Q, so

R -1 -1 n -1-1
% ® (@(ﬁ))”z?@(”)ﬁ)(@(m)

=67 8 (o))
(&5) = M(2,(v7)).

il

Similarly,

VS e 0,500, ® ( &\/%)1) = M,(Q,(V5)).

Q

These considerations give the following:

Prorosimion 2.6.  If a finite group, G, embeds in D(F,a/ b)*, then G is
of one of the following types:

(1) Meracyclic, G, ,,
(2) A product, T X G

m,r°

Case (2) occurs if and only if p = 2, [F : Q,] is odd and b = 2f where f is
odd.

DermiTion 2.7. Given m and r prime to m we define D/, to be the
cyclic algebra,

le;'r = <F(€nl)’o"{)ln>3
where a(¢,) = ), and t = m/(r — 1, m).

zk = Z(DE ).

m.r

Note. Df is only defined if o, gives a well defined automorphism of

m,r

¢D . L
F(,). If G, , — , where D is a division algebra over F, then F¢G,, ,
= D! and so:

m,r

ProposiTioN 2.8. G, , embeds in a division algebra over F if and only if
D/ . is defined and is a division algebra.

D} . will be a division algebra if and only if its degree equals its

exponent. The degree of D) , is o(r|m). The calculation of the exponent
is a rather more subtle matter which is solved in Yamada’s book [10].
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3. CoNnyuGacy

We consider embeddings ¢: G — D* of a finite group, GG into the units
of a central division algebra over F. Two such embeddings, ¢ and ¢, are
“conjugate” if there is an F-algebra automorphism, u, of D such that the
following diagram commutes.

D*
>
G fn
PN
D*
By the Noether-Skolem Theorem this amounts to the existence of d € D*
such that ¢(g) = dy(g)d~! for all g € G.

DeriniTioN 3.1, If ¢: G < D* then we define a representation of G,
over F, as follows. R(¢) = F$G and for g € G let z, € F,

gx ), z,8(8) = X z,0(88).

geG geC

ProposiTioON 3.2. If ¢ and & are conjugate, via p € Aut. D, then
w: R(Y) — R(P) is an FIGl-module isomorphism.

Proof. u(g+yg) = u(Plge")) = ¢lgg) =g+ dg’ = g * u(yg’).
1

Lemma 33, If u: FyG — FoG is F-linear and pyr = ¢ then p is an
F-algebra homomorphism if and only if it is an FIGl-module homomor-
phism.

Proof.

w is an F[G)-module map <> u(g¢g’) =g+ u(yg'),
< u(ygyg') = 6(g)d(g’),
< p(yg - yg') = n(ve) - u(yg),
<> u is a ring map.
Certainly (1) = 1 and so the result follows. g

Lemma 3.4, If u: FG — FoG is an F[G)-module isomorphism then,
composing with right multiplication by u(1)™' we get an algebra isomor-
phism, j(x) = p(x)u(1)™", such that iy = ¢.
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Proof. Let fi(x) = u(x)u(1)~'. We want to show that i = ¢ then
the result would follow from Lemma 3.3, as 4 is certainly a G-module
map.

a(yg) =ha(gx1) =g*a(l) =g=*1=d(g).

ProrposiTioN 3.5. Two embeddings ¢, y: G — D* are conjugate if and
only if the FIG) modules R($) and R(y) are isomorphic.

Proof. By Proposition 3.2, Lemma 3.4 and the Noether—Skolem
Theorem. g

4. MeracycLic GROUPS

A group is metacyclic if it is an extension of a cyclic group by a cyclic

group. That is, there is an exact sequence
0—272Z/m ->G—=272/n—0.

Such groups are determined by the following theorem of Holder [11].

THeEOREM 4.1. The metacyclic groups are exactly the groups

(A,B: A" =1,BAB™' = A",B" = A"),

where 0 < n,m, m|r” — 1 and m|t(r — 1). g

DeriNrtion 4.2.. G(m,r,n,t) = {A,B: A" =1,BAB ' = A", B" =
A"), where n, m, r and t satisfy the conditions of Theorem 4.1.

ProposiTiON 4.3.  If ¢ |n then G(m,r’,n/¢,t) embeds in G(m, r,n,t).

Proof. Consider the subgroup (A4, B‘) c<{A,B)=G(m,r,n,t).
There is a sequence

0—>2Z/m—>{A,B*> —>12/(n/f)— 0

as B? has order n/¢ modulo {A). B/AB™" = A"  and (B?)"/¢/ = B" = A'
s0{A,B’) =G(m,r,n/t,1). g

The following is a result of Beyl [2] and [3].
ProposiTioN 4.4, If ¢ =|H*(G(m, r,n,t),C*)|, then

G(m,r,n,ty=G(m,r,n, {m/ (r —1,m)).

Proof. Onmitted. g
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Prorosition 4.5. If (v,n) =1 then G(m, r,n,t) = G(m, r", n,vt).

Proof. (v,n) =1 so (A, B*) ={A,B). BPAB™* = A" and (B*)" =
B'" = A" s0 (A,B") = G(m, r",n,vt). 1
ProposiTioN 4.6. G(m, r,n,ty = (A™"" D) is cyclic of order

m/(m,r —1). If n =o(rlm), then Z(G(m, r,n,t)) = (A™/~Lm™% has
order (r — 1, m).

Proof. let G =G(m,r,n,t). [B,Al=A""' so A”7' € G". Now,
(A1 = (A7~ This is a normal subgroup with abelian quotient
and the first statement follows. The condition n = o(r{m) ensures that
Z(G) c {A). Now, A' € Z(G) if and only if A" = A", or m|i{r — 1), or
(m/ (r — 1, m))|i. The second claim follows. g

DeriNiTiON 4.7, The groups G,, , can be described as follows:

G, ,=G(m,r,o(rim),m/ (r — 1,m)).

Remark. If G =G, ,, then m =|G'||Z(G)|, so m is an invariant of
the isomorphism class of G,, ,.
Proposition 4.8. |HXG, ..C¥)| = 1.

m,r?

Proof. By Curtis and Reiner [4, Example p. 301],

m r*—1y(m,r—1)

2 *) = =
H(G,, ,,C*) =7/ f where f ((r—l,m)’ Py -

Now, m{r” — 1 so

r—1
(r—1,m)

m
(r—1,m)

(rmTh 4+ 1),

But, m/(r — 1, m) and (r — 1)/ (r — 1, m) are relatively prime, thus,

r" -1

r—1

m
(r—-1,m)

andso f=1. g

ProposiTION 4.9.  If n = o(rlm) and (v, n)

=1then G, , =G, .. In
other words, if {r) ={s) c(Z/m)* then G,, , =G, ..

r
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Proof.
G,

n,r

= G(m,r,o(rlm),m/ (r - 1, m))
= G(m,r", o(r’lm),vm/ (r = 1, m)) (Proposition 4.5)
=G(m,r",o(r"lm),m/ (r" — 1,m)) (Proposition 4.4)
=G, .

|

Prorosition 4.10.  If a metacyclic group, G = G(m, r,n,t), embeds in
the unit group of a division algebra, D, then, if v = o(rlm) we have
G=G where r' is the residue mod mn/ v such that

mn v, r
’

r'= r mod m
=1mod n(r~1,m)/v.

If v=mn,then G =G, ,. Giscyclicif and only if r = 1 mod m.

Proof. Let G = G(m, r,n,t) then, as T, O and I are not metacyclic
(Theorem 7.2), it follows that G = G,;, ; for some 1 and 7 and thus, by
Proposition 4.8, |H*(G;C*)| = 1. By Proposition 44, G = G(m,r, n,
m/(r—1,m)) = (A, B) where A" =1, B" =A™/~ and BAB™' =
A’. Now, by Proposition 4.3, we have H = (A4,B") = G(m,r",n/ v,
m/ (r — 1,m)) € G. H is abelian, hence cyclic, so H = Z/ (mn/ v). H is
normal in G and hence we have an isomorphism, G = G(mn/ v, r', v, t"),
for some r' and ¢'. The class of r' mod mn/ v is determined by the
automorphism of H induced by conjugating by B. This is given by
BAB~' = A" and BB"B~' = B* and hence r’ is determined by the congru-
ences,

r'=r mod m
I mod o(B*) =n(r—1,m)/v.

o(r'lmn/v) = v and so, by Proposition 44, G = G,,, ,, .. The last two
statements of the proposition are evident. g

Prorosimion 4.11. If G, , is a subgroup of the units of a division
algebra, D, and (|\o(r|m) then G, ,. embeds in G,, ,.

Proof.
G,.,=G(m,r,o(rlm),m/(m,r ~ 1))
- G(m, rf, o(r"lm), m/(m,r - 1)) ( Proposition 4.3)
=G, . (Proposition 4.10)
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THeEoREM 4.12.  If G, , embeds in the unit group of a division algebra,
D, then the subgroups of G, , are the groups of the form, G,, ., . ¢

m,r

where:
(1) ¢im.
(2) n = o(rim), sin and v = o(r*1£).
m " =1 m
3) (— . ) .
£ rr=1)1(r—1,m)

Girven ¢ and s satisfying the above, r(s, £) is determined by:
(4) r(s, /) =r* mod ¢.
n(r*—1,¢)

sSv

(5) r(s, ¢) = 1 mod
This group is cyclic if and only if r* = 1 mod ¢.

Proof. 1f, H< G,, , then H = (4™/", A'B*) for some /, i and s such
that ¢lm, sln and H 0O {(A) = (A™/). Now, (A'B")/* =

A" =h/rt=htmr=tm o in H ny {A) and so,

Sfrt =1 m
i + )
r"'—l) (r—1,m)

giving (3). We have H = G(¢,r*,n/s,t) for some ¢t and, by 4.10, we
conclude that H = G,,, ., .+, Where r(s, £) satisfies (4) and (5). If, on
the other hand, # and s satisfy (1), (2) and (3). By (3),

m

/

m

rt =1 m
— i +
14 r“—l) (r—1,m)

for some i. Then let H = {(A™/ ¢ AB*>. HN (A) = (A™/*) and so
H=G(/,r',n/s, 1) for some t and, by 410, H = G, ;5. 150y B

Remark. 4.10-4.12 hold for division algebras with any center, not
exclusively local fields.

5. PRELIMINARIES

THEOREM 5.1. If D = (L/K,o,{> is a cyclic division algebra over a
local field, K, and { is a root of unity in K then L/ K is totally ramified.
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Proof. Let K C E C L where E is the maximal unramified extension
of Kin L. Gal (L/K)=(o)=Z/n and Gal{E/K)=(a)=2Z/m
where ml = n;

a"’(a(r") = (a"m . a'i) o™
for all « € L and so
Cp(K(o™))=E-1+E-0+ - +E-g" !
=E(oc™) - 1+E(c™) 0o+ - +E(c™) o™ !
=(E(c™)/K(ac™),0,0™)
(o™) = " = { s0 o™ is a root of unity. We want to show E(c™)/ K(¢™)
is unramified as then C,(K(o™)) splits as a matrix algebra which is
impossible unless m = 1 so L/ K is totally ramified. Let f be the relative
degree, f(K(oc™)/K). Now, m and f are relatively prime, otherwise
E N K(o™) would contain a non-trivial cyclotomic extension of K which is

impossible as K(o™) N E = K. Let Q be the maximal unramified exten-
sion of K in K(o™). We have the following diagram:

E —— EQ — E(o™)
EOUR T
K— Q —— K(a™)

where the integers m, f and e denote the degrees of the extensions. For
the corresponding residue fields

Iqu —_—> [qum —> qj'm

! ! !

b,y 0y

As (f,m)=1, Fymn=Fy Fm= Q- -ECEQ but, as [EQ:K]= fm,
EQ/ K is unramified. It follows that £EQ/ Q is unramified of degree m
and K(o™)/ Q is totally ramified soE(c"™)/ K(¢™) is unramified. This
finishes the proof. g

Prorosition 5.2.  If G is a finite subgroup of the unit group, D*, where
D is a division algebra with center F then

(1) CAZ(FG)) = FG @ Cy(G).
Z(FG)
If G is a maximal, finite subgroup, then:

(2) C(Z(FG)) = FG.
(3) C,(FG) = Z(FG).
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Proof. Let Z = Z(FG) and D’ = C(Z). Certainly, FG c Cp(Z) and
these two algebras have the same center, Z. By the Double Centralizer
Theorem,

D'=FG ® C,(FG),
Z

but Cp(FG) = CH(G). If G is maximal then C,(G) = Z, otherwise we
could find a finite subgroup, H, of C,(G)*, that is not contained in Z. G
would then be properly contained in the finite group G ® H. This finishes
the proof. g

CoroLLARY 5.3. If G ¢ D(F, a/ b)* is a maximal subgroup, then

(1) 10V ;(FG) = [Z(FG): Fla/ b + Z.
(2) Degy 6 FG) = b/[Z(FG): F).

Proof. By Proposition 5.2, part (2). g

CorOLLARY 5.4. If G < D(F,a/ b)* is a maximal, finite subgroup and
G = G, , is nonabelian, then:

(1 plm,
@ {F(,):Fl=b,
3) ulF(,) =<,

Proof. 1f m is prime to p then FG = (F({,), o,, L},) splits completely,
as F(¢,)/ F is unramified and so ¢, is a norm. This cannot occur, unless
G is cyclic, but it is not. This proves (1). Let Z = Z(FG). [F({,)): F) =
[F({,):Z)Z:F] = Deg(FGIZ:F]=b, by Corollary 5.3. This proves
(2). The final claim follows from the containment G C {u(F(A)), B,
where A and B are the generators of G = G, , as per Definition 2.1, part
(1. s

6. Opp RESIDUE CHARACTERISTIC

ProposiTion 6.1. If G, , and G, . are metacyclic groups that embed
in division algebras over F, a local field with odd residue characteristic, p,
then then following are equivalent:

(1) Gm.r = Gm',r"
(2) m=m"and {r) = {r") <(Z/m)*,
G m=mand |G, |=1G, |
Proof. Proposition 4.9 proves that (2) implies (1). By the remark after
Definition 4.7, we see that (1) implies (3). It remains to show that (3)
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implies (2). Let m = m’ = p®¢, where ¢ is prime to p. Applying Theorem
5.1 to thecyclic algebras FG,, |, and FG,, ,, we see that r = r’ = 1 mod
£. If we write (Z/m)* =(Z/p*)* X (Z/¢)*, then {(r) and (r') are
contained in the first factor. This is cyclic, for p odd, and so (3) implies

[{r>l = [{r')| which, in turn, implies (2). g

ProrosiTiON 6.2.  Let F be a local field with odd residue characteristic,
p. Let G € D(F,a/ b)* be a nonabelian subgroup with G = (A, B: A" =
I,BAB™' =A",B"=A") =G, ,, where n =o0(rlm), t =m/(r — 1,m)
and m = p“f with ¢ prime to p.

() nllF(¢,, 8,0 : F(E))

2 az=land (r —1,m)=/¢.

(3 ZGH=2/¢.

4) G' = Z/p“ is a p-Sylow subgroup of G.

(5) (A> = Z(G).G' is a characteristic subgroup of G.

6y G — G is an isomorphism on {B).

(7) G = G(p,r, £n,0)is a semidirect product.

8) FG = (F(A)/ Z,B, A") is a cyclic division algebra of degree n,
where Z = Z(FG) is the fixed field of A —» A’. F(A) = Z({) = Z({,.)
and F(A)/ Z is totally ramified.

Proof. By Theorem 5.1, we have r = 1 mod ¢ and so, nl[F(¢,): F({)].
G is nonabelian, so n # 1, and thus « = 1. By Yamada [10, Th. 4.7],
nlp — 1 but

[F(&): FUAD] = [F(L) : F(L S [ F(Lr 80) s F(L)],

where the former factor is a power of p. It follows that n|[F(¢,,¢,): F(¢,)],
proving (1). Thus, {, & F. Apply this to the algebra FG to get {, & Z(FG)
and so, |Z(G)] is prime to p. Proposition 4.6 then gives (2), (3), (4) and (5).
By (2), t = p™ and thus {B) has order #n which is prime to p. This gives
(6). We have a short exact sequence, G’ — G — G“°. The corresponding
presentation of G is (7). To show (8) all we need to check is that
F(A) = Z({,), but plm and so Z c Z({,) € F(A). [F(A4):Z({,)] is a
power of p and, as nlp — 1, by (1), we have Z({,) = F(A4). g

ProprosiTiON 6.3.  Let F be a local field with odd residue characteristic,
p, and let K/ F be a totally ramified, cyclic extension of degree e dividing
p — 1. Let u'(F) be the group of p' roots of unity in F. Let N = Ny ;.. The
canonical map

W(F)/W(F)" — F*/N(K*)

is an isomorphism.
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Proof. For a local field, L, let U" denote the group of units in L,
congruent to 1 modulo the prime. Let A be a uniformizing parameter in
K. Then K* = (1) X p(F)x US" and F* = (N(A)) X w(F) x U,
where N is the norm from K to F. N maps {A) to (N(A)), p'(F) to itself
and U to ULV, thus u'(F)/ N(u/'(F)) injects into F*/ N(K*). As u'(F)
C F, the restriction of N to u'(F) maps x to x°. Now, e|lp — 1 and
|lwW(F) =|F| -1, so e|l|w(F) and thus u'(F)/ u'(F) is isomorphic to
Z/e. By Class Field Theory [7], so is F*/ N(K*), and thus the result
follows. g

THeorReM 6.4, Let F be a local field with odd residue characteristic, p,
such that the residue field of F is F,. Assume that F({,) = F({,.) and
F({,)/ F is totally ramified of degree e with Galois generator, o,, that
satisfies 0,({,«) = .. Denote the group of p*’th roots of unity in F({,) by
W, and, for fig — 1, the group of ¢’th roots of unity in F by p,. Let
G={x,y:x? =1,y =1,yxy" ' =x"). For every X € ppe — {1} and
¥ € w, there is a surjection of F algebras,

FIG1 250 (F(L,) ) Fr o, 7,

taking x = X and y = o,. The F algebra isomorphism type of the cyclic
algebra is determined by the residue of y in p,_/ w5 . The representations
of FIG] induced by &(X,y) and $(x,,¥,) are isomorphic if and only if
y=y, and ¥ and X, are conjugate over F. There are N =(p* — 1)/ ¢
distinct conjugacy classes of ¥ € w,. — {1} over F. Let X, X,,..., Xy be
representatives of these classes. There is an isomorphism of F-algebras,

FIG) = I T1 (F(5,)/ F.0,.5) | x Flz/¢e].

Ve,

The projection maps to the cyclic algebra factors are the maps ¢(x,,y) for
i=1,2,...,Nandy € u,. The map to the final factor, a product of fields,
is induced by the quotient map G — 7./ e.

Proof. The existence of the maps, ¢(x, y), is immediate. The state-
ment concerning the isomorphism type of the cyclic algebras follows from
Theorem 6.3. The representations induced by ¢(%, 3) and &(x,,y,) are
isomorphic if and only if there is a map of F algebras, 8, such that
0d(x, ¥) = #(X,, ¥,). This corresponds to the condition that ¥ be conju-
gate to ¥, and y = §,. As F({,.) = F({,) has degree e over F, it follows
that every element of . — {1} has e conjugates which gives the equation
N = (p® — 1)/ e. We know that the maps ¢(x,, y), fori = 1,2,..., N and
¥ € u,, correspond to distinct simple factors of the group ring, F[G]. To
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prove the isomorphism, we only need to show that the dimension of the
right hand side is large enough. This follows from the equation, NZe? +
fe=p°fe=I|Gl ¢

In fact, we will not be concerned with all the factors of the semisimple
decomposition in the theorem above, but only with those such that
¢(x;, ) maps G injectively into a division algebra.

CoroLLARY 6.5. With the assumptions of Theorem 6.4, a factor,
(F(L p), o,, ¥, in the decomposition of F{G] is a division algebra if and only
if the residue of y has order e in w,,_,/ u,_ . Such factors exist if and only if
Mp— g1/ pf;_l is surjective, i.e., ((q — 1)/ ¢,e) = 1. If they exist, there
are N¢p(e)/ e of them, where ¢ is the Euler function. As F-algebras they
are the ¢(e) central division algebras over F with degree equal to e. Each
one appears N¢/ e times.

Proof. Immediate from Proposition 6.3 and Theorem 6.4. g

COROLLARY 6.6. With the assumptions of Theorem 6.4, $(X, y) is injec-
tive on G if and only if X and y are generators of u,. and w,, respectively.

Proof. |d(%, yXG) = (X, 0,01 = KX>IKy)le. n

CorOLLARY 6.7. Let the assumptions of Theorem 6.4 hold and let
(g —1)/¢,e) = 1. If Cis a central division algebra, over F, of degree e
then there are F-algebra maps, ¢,: FIG] — C for i=1,...,M = N{/ e,
and a subgroup, H, of C*, such that

M) ¢(G)CH, fori=12,...., M,
(2) H=G,
(3) The representations of G induced by the ¢; are exactly the irre-

ducible representations of F[G] with endomorphism algebras isomorphic
to C.

Proof. By Corollary 6.5, we see that C corresponds to a choice of
generator of u,_,/p%_,. We may pick a generator, y, of u, so that
C=(F({,)/F,0, ). Let H= (u,e,0,), then certainly (2) holds. The
projections corresponding to the representations described in (3) are the
maps (X, y(y)°), where i = 1,2,...,N, y' € p,_, and (') € p,. In
fact, this implies that y' € u,. Suppose z is a generator of u,_;, then
y' = z9, for some a, and (§)° € u, implies that z°°“ =1 so g — 1|ael
and, as ((q — 1)/¢,e) =1, (g — 1)¢)|a. Thus, y' = z* has exponent /.
There is an algebra isomorphism, 8(y’), that takes

(F({,)/F,o, () = (F({,)/F.0,, 9.
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which fixes {, and takes o, to o,¥'". The maps ¢, ¢,, ..., ¢, are the maps
of the form #(¥)¢(%,, ¥(¥)°). Note, the image of G under this map is
(X;,0,¥'), which is contained in H, as ¥, € u . and §' € u, is a power of
y and hence of o,. g

Remark. ¢,:G — H will be an isomorphism if and only if ¢(%,,y(3')°)
is injective on G. Using Corollary 6.6, we see that this happens ¢(m)/
ed(e) times, where ¢ is the Euler function.

THEOREM 6.8. Let F be a local field with odd residue characteristic, p.
Let G = G, , be a nonabelian group. G embeds in a division algebra over F
if and only if the following conditions are satisfied:

(1) m=p*f wherea > 1, ¢ isprimetopand (r — 1,m)="/¢,
(2) o(rim)I[F(&,,¢8,): (LD
3) g - 1lr -1,
4) (g -1/t o(rim)) = 1.
where q is the order of the residue field of F({,,).

Proof. Proposition 6.2 gives (1) and (2). (3} is the statement that
F(A)/ Z is totally ramified, in the notation of Proposition 6 part (8).
Consequently (1), (2), and (3) are necessary conditions. Now, suppose (1),
(2) and (3) hold. There is a map 6:Gal(F({,,)/ F({,) — (Z/m)* =
(Z/¢) X (Z/p®)* given by 8(o,) =s mod m if o({,) =5 Im(8) ¢
(Z/ p*)* which is cyclic and so has a unique subgroup of order
[F(,,): F(£,)), consisting of those s mod p® with o(slp®)I[F(,,): F({,)]
and thus, by (1) and (2), o, € Gal(F({,,)/ F({,)). Now, let Z be the fixed
field of o, in F({,). By 3), F({,,)/ Z is totally ramified. Also, Z ¢ Z({,)
C F(,) and [F({,): Z]} = o(rlm) divides p — 1, by (2), while
[F(£,):Z({,)] is a power of p, thus, Z({,) = F({,). It follows that Z
satisfies the conditions on the coefficient field of Theorem 6.4. Part (1) and
the proof of Proposition 6.2, part (7) show that G = G(p*%, r, fo(rim),0)
is the group of Theorem 6.4. Now, G embeds in a division algebra over F
if and only if it embeds in a division algebra over Z. By Corollary 6.5 and
Corollary 6.6, this occurs if and only if (4) holds. g

CoroOLLARY 6.9. If F is a local field with odd residue characteristic, p,
and G = G, , is nonabelian, then G embeds in D(F, a/ b)* if and only if

m,r

(1) through (4) of Theorem 6.8 hold and, in addition,
(3) b =1{F(,,): Fls for some integer, s, prime to e = o{r|m).
If @ is an embedding of G in D(F, a/ b)*, then

F$G =D(Z,as™"'/e) and Cpp ,,p(¢G) = D(Z,ae™'/s),
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where s~ denotes the inverse of s mod e and e~ denotes the inverse of e
mod s.

Proof. Let Z be the fixed field of o, in F({,,). Given (1)-(4), Z[G] has
¢(e) distinct division algebras as simple factors, namely D(Z, ¢/ e) where
¢ is prime to e. G embeds in D(F,a/ b)* if and only if one of these is a
subalgebra of D(F,a/b). We know that G embeds in the D(Z,c/ e) by
Corollaries 6.5 and 6.6. The condition Z € D(F,a/b) is equivalent to
b =1[Z:F]s' for some integer, s'. Then, Inv,(C; . ,5(Z)) = a/s" mod
Z and so, by Proposition 2.5, D(Z,c¢/e) < D(F,a/b) if and only if
s' = es where s is prime to e and c =as~ ! mod e, ic., b =e[Z:Fls =
[F(£,): Fls. All that remains is to calculate Inv,(Cp;, ,,(®G)) but this
follows from Proposition 5.2 which gives us the identity,

" ot Inv,(Cpsoa,p(¢G)) mod Z.

The above two results give criteria, involving F, m, and r, to determine
when a given metacyclic group, G embeds in a division algebra over F.

m,r?

If F/A@p is unramified these conditions simplify further, in particular, for
F=0Q,.

CoroLLARY 6.10. Let F/ @p be an unramified extension. Let G = G

m.r

be nonabelian. G embeds in D(F,a/b)* if and only if the following
conditions are satisfied:

(1) m =p*¢ where « > 1, ¢ is prime top and (r — 1,m) =/¢,

(2) o(rlm)lp — 1,

3)qg-1lr-1,

@) (g -1/t 0(rim)) =1,

(5) b = o pFG|2 yp( p*)s, where (s, o(rlm)) = 1.

g = ptf : Gletrt’ SO nd ¢ is the Euler function.

Proof. For any a we have:

A

@n(gp") - F(gp") - F(gl'v gp")
! ! l

~

Q —F F(¢,)

7]

Now, F/ @p and F(¢,)/ F are unramified and @,,({,,u)/ @,, is totally
ramified. It follows that the horizontal extensions are unramified and the
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vertical ones are totally ramified, also @p =Fn @,,({l,u) and F = F({,.)
N F(,). [F(,):F) =1t where t = Minf{s': ¢plF:%)" — 1} ie.,
[F(Z,): F1= o(pt":9)|¢). From the diagram we also have [F({,.): F] =
[F({, ¢pa): F(EPl = ¢(p*). Thus, [F(¢,,{,): F({))=p — 1, hence (2),
and [F((,): F({)) = ¢(p®), giving [F(L,): F1 = o(p!F D) p™),
hence (5). Finally, g = pt*(¢: Gl=plF s QplotpT5he)

ProrosiTiON 6.11.  If F is a local field with odd residue characteristic, p,
and G = G,, , is nonabelian then any two subgroups of D(F, a / b)* that are
isomorphic to G are conjugate

Proof. Let ¢ and ¢ be embeddings of G in D(F,a/ b)*. From the
proof of Corollary 6.9 we see that F¢G = FYG = D(Z,as™ "/ e), where
b=I[F(,): Fls, e = olrlm) and (s, ¢) = 1. By the Noether-Skolem The-
orem, we may assume that F¢G = FG = C. By Corollary 6.7, there are
maps ¢, d,,..., ¢, of G — C* with ¢(G) C H for some subgroup H
of C*, isomorphic to G and the representations R(¢) and R(¢) (Defini-
tion 3.1) are among the representations R(¢,), R($,), ..., R(d,,). By
Proposition 3.5, ¢G and G are conjugate to H. g

Remark. From the remark after Corollary 6.7 we see that, although
isomorphic subgroups are conjugate, there are ¢(m)/ ed(e) nonconjugate
embeddings of such a G.

The preceding results enable us to determine when a particular group
embeds in a particular division algebra. Next we look at determining which
division algebras contain nonabelian groups. In view of Corollary 5.4 we
show:

TueoreM 6.12.  For a p-adic field, F, and a positive integer, b, the
integers, m, that satisfy:
(19 [F(£,): F1 = b,
(2 pim,
(3 pu(FD) =L,

are those of the form,
m = ”I(F, b,a) =pa(pkypn+ﬁ(ﬂ—n _ 1)’

where B(F), n, k, y and « are defined by the following:
(1) B(F) = Max{B:{,s € F({,)},
(2) b =p"[F({,): Flk where (k, p) =1,
(3) B(F) <a < B(F) +n,
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(4) vy = y(F, a) is the relative degree, f(F({,«)/ @p),
(5) F( )/ F({,) is totally ramified or a = B(F) + n.
Proof. Suppose m satisfies (1'), (2) and (3'). Let m = p*¢ where
(¢, p) = 1. We have the following diagram:
F F({,) > F(4)0)

q"’:‘Dp(gp) _‘_>F(§p) n Qp({p") - Q(gp“)

Now, Gal(@,,({,,a)/ @p({p)) = 7/p* ' and the intermediate field exten-
sions are

Qn({p) < Qp(gpz) C - C Qll(gp"") < ‘ﬁDp(gp")'

(2'), (3 and (1) imply that & > B(F) so, F({,) N Q({,«) = Q,({, ) and
s0 [F({,a): F1 = p* PP F({,): F]. The residue field F({,«) is F,,. Also,
F({,)/ F({,.) is unramified and so [F(¢,) : Fp)=1[F(,) : F(,)
giving F({,,) = Fwseqmn By (3, £ =IF({,)| — 10, as

vb _ yp"[F({p):F]k
[F(g,<):F]  p=PP[F(L,): F]
= ykp" B

we get m = m(F, b, a). Also y[F({,):F,]1 = ykp" PP~ and (k, p) = 1
so a <n + B(F). Suppose that &« < n + B(F). The formula [F({,.): F]
= p* PENF(,): F] implies that [F({,.1): F({,.)] = p so this extension
is either unramified or totally ramified. Suppose it were unramified, then
we have F({,«r)p = F({,e,{,) where (¢,p) =1 and [, = F (). As
a < B(F) +n, p divides [F({,): F({,)] = kp" PP~ so0 F,» € F({,,)
and so ¢, € F({,,) thus F({,.~)p C F({,,) which contradicts (3'). Thus we
conclude that, if & < B(F) + n, then F({,.+1)/ F({,.) is totally ramified.
This completes the proof that m has the form described.

Conversely, let m = m(F, b, a) where a, n, B(F), k and vy are as in the
statement of the theorem. By definition B(F) > 1 so a > 1 and so plm
proving (2').

Now, B(F) and vy are defined in such a way that

[F(40): F] = p= O F(3,): F]
F(5) = F .
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We have the following diagram:

F(Z,)

Q,(¢,) F({e)
ﬁp({{) n F(gp")

A

@P
[F(£): F(4,e)] = [@,08) 1 Q,(8,) N F(L,0)]
= [@,):4,]/7
= kpﬂh@(F)—a,
and so
[F(40): F] = [F(4) : F(&po)][F(45e) : F]
= kp”*ﬁ(")“’.p“‘ﬁ(“[F({p) . F]
= p"[F(g,): Flk
=b.

This proves (1'). In the diagram above, the extension Q L)/ @p is
unramified and F({,«)/ Q AL N F(L,) is totally ramified, as IF({,q)l — 1
divides /. It follows that F <&,/ Q ({ ,) is totally ramified and thus

F(gm) = @p(gg) = ‘prkpMﬂ(F)w.

We conclude that the p’ parts of {{,,) and u(F(¢,,)) coincide. To prove
(3) all we need to show is that {,««1 is not in F({,,). If it were, we would
have F({,«) € F({,a+1) € F({,) which would imply that F({,«+1)/ F({,.)
were unramified, contrary to the assumption of the theorem, unless

= B(F) + n. In this case we would, however, have
[F({pes1): FLNIF(,): F(E,0] so plkp" PP~ and so plk. This is
also a contradiction. g
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Remark. The condition that F({,.-1)/ F({,) is totally ramified can be
characterized in terms of the function y = y(F a) = f(F({, u)/@ ). It
satisfies

Y(F,a + 1) = y(F,a)p<",

where €(F,a) =0 or 1. e(F,a) =0 if and only if F({,..1)/ F({,.) is
totally ramified. y(F, a) = f(F({,.)/ @,,(gp )) which divides [F:Q,] and
so y(F, a) is constant for large a. Now

y(F.a) | [F:0,] A
Y(F.B(F))|f(F/Q,) =elF/0,).

thus, if e(F/ @ ) is prime to p, every a such that B(F) <a < B(F) + n
gives m(F, b, a) satisfying the conditions of Theorem 6.12. In particular,
this holds for F = Q,,.

Prorosttion 6.13.  If m = m(F, b, @), as above, then there is a unique
subfield K such that F N K N F((,) and K is minimal subject to the
conditions:

(1) F(,)/ K is totally ramified,
) [F(,): Kllp - 1.

The extension F({,,)/ K is cyclic of degree e, where ¢, is the ramification
index, e(F({,)/ F).

Proof. Now, m = p*(p° — 1). Write ¢ =p¢ — 1. If F({,)/ K is totally
ramified then {, € K. F({,) = F(¢,,{,+) so Gal(F({,,,)/ F({,)) maps in-
jectively by restriction to Gal(Q AL, «)/@ ) which is isomorphic to 7/

p® (p — 1). This has a unique subgroup of exponent p — 1 which is
cycllc of order p — 1. It follows that Gal(F({,)/ F({,)) has a unique
maximal subgroup of order dividing p — 1. The fixed field of this group is
K. [F({,): K]is the p' part of [F({,,): F(Z,)L.

It remains to prove that [F({,): K] =e,. We let F = Fprs F(L,) = By,

F(Lye)= Fyor 50 y = mpm and F(L;) = Fyromostren-a. 1t follows that
[F(¢,.80): F(L,)] = mhkpPtren=e

and, as [F({,): F] = pe,, we get
[F(§,,,€,) : F] = pepmhpPPrrn—a,

Now, [F({,): F] = pmkp?* "~ and thus [F({,,{,): F({,)] = e;. From
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the diagram

F({p) ————— F({,, ) ———— F(£,)

QiI)p _———)F({() N Qp(gp") —_ F(gp’ gf) N ©P(§P") - @I)(gﬂu)

we see that [F({,,): {,]is a power of p and so, indeed, e, is the p' part of
[F(,): F(Z))L

DerniTion 6.14.  Let m = m(F, b, ) satisty the conditions of 6.12, let
€ (Z/ m)* be such that g, ({,,) = {;» is a generator of Gal(F({,,)/ K)

"1 m

where K is the field described in Proposition 6.13. Define G, =G, .

Note. By Proposition 4.9, G, is independent of the choice of genera-
tor, r,,.

Note. 1f a, 1s an integer such that the residue of a, mod p generates
(Z/p)* then a ' represents an element of order p — 1 in (Z/p*)* and
SO a” /e represents an element of order e,.. We may take r,, to be
the solutlon of the congruences

\
I

m

1 mod (p””wwm - 1)

a1 _ >
r, =al’ 7Y% mod p-.

m

CoroLLARY 6.15. G, is abelian if and only if F({,)/ F is unramified.
Proof. Let m = m(F, b, a) as in 6.1.

G, iscyclic & e, =1 & F({,)/F is unramified.

ProprosITION 6.16.  If a satisfies the conditions of Theorem 6.12 then G,
embeds in D(F, a/ b)*.

Proof. Let m =m(F,b,a) = p“(p° — 1). Let Z be the fixed field of
o, in F(Z,). Then F({,,)/ Z is totally ramified of degree e,.. By Proposi-

[ m

tion 6.3, we have an i1somorphism,

,'Lp‘~l/(l"Lp‘—l)CF_)Z*/N(F(é’m)*)'
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Now, [F(¢,,): F] = b so F({,,)is a subfield of D(F, a/ b) and we consider
D' = CpiusplD).

Inv,D'=a[Z:F]/b modZ,

but then Deg(D") = [F({,,): Z]. It follows that F(¢,,) is a strictly maximal
subfield of D’, so D’ can be written as a cyclic algebra {(F({,,), o, , n). By
the isomorphism above we know that we can chose 7 to be a root of unity.
With this choice we consider the group ({m,a,m). This is metacyclic of
the form G(m,r,,, o(r,Im),t). By Theorem 4.10, this is isomorphic to

s T
Gm.rm = Gu' .

Remark. Alternatively we could simply observe that conditions (1)-(5)
of Theorem 6.8 and Corollary 6.9 hold.

THEOREM 6.17. D(F, a/ b)* contains nonabelian finite subgroups if and
only if F(¢,)/ F is ramified and [F({,): F1b. If e is the ramification index
of F({,)/ F then the isomorphism classes of the maximal such subgroups are
exactly represented by the groups, G, of Definition 6.3. These have order

G, = p=(p7*"*" " = 1),
where k,n, B(F),y and a are as per Theorem 6.12. The number of such
groups is

1 + Log,e( F({,nr )/ F(4,))-

Proof. Let D = D(F,a/b). If F({,)/ F is ramified then e; > 1 so the
groups G, are nonabelian, by Corollary 6.15, and, by Proposition 6.16,
there is a subgroup, G,, in D*, if [F({,): Flib. Conversely, suppose
G = G, ,- is a finite, nonabelian, metacyclic subgroup of D*, then, by
Proposition 6.2, plm’' and so [F(§p): F)|b. G is contained in a maximal,
finite, metacyclic subgroup, H = G, ,. By Corollary 5.4 and Theorem
6.12, we have m = m_, for some a. By Yamada, [10, Th. 4.7, o(rlmDlp — 1.
By Theorem 5.1, Proposition 6.13, and Definition 6.14, we get {r) < {r, >
c (Z/ m)*. 1t follows that o(r|m)|e, and so e, > 1 and thus F({p)/F is
ramified. This proves the first claim of the theorem.

Suppose we show that every nonabelian, finite subgroup of D* is
contained in a larger subgroup that is isomorphic to G, for some a, then
we are done, as no G, embeds in G, unless a = a'. If it did we would
have m(b, F, a)lm(b, F, a’) and then, by (1) and (3') of Theorem 6.12,
a = a'. We have seen above that any finite subgroup, G, is contained in a
maximal, metacyclic subgroup, H, and that H = G,, s, where m =m_,
r =r, and sle;. By Proposition 6.16, we have G, € D* and this has a
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subgroup, K, isomorphic to H, by Proposition 4.11. However, H and K
are isomorphic and so, by Proposition 6.11, are conjugate in D*. It then
follows by maximality of H that H = G, and we are done. g

CoroLLARY 6.18. If p is odd then D(Qp, a/ b)* has noncyclic subgroups
if and only if b = p"(p — Dk for (k, p) = 1. The isomorphism classes of
maximal, noncyclic subgroups are represented by the groups G, where

m(F,b,a) =p*(p*"""""" - 1),

IGol = po(p*7" "= 1)(p - 1)

n+li-a

fora=1,2,---n+ 1.

Proof. This is an immediate consequence of Theorem 6.17 and the
remark preceding 6.13 given that, for F = Q,, B(F) =1, [F({,): F] =
p—lande.=p—1 g

Now we look for subgroups of odd order in G,. In fact, using Proposi-
tion 6.2, it is not difficult to see that any G,, , € D(F, a/ b)* has a unique
largest odd order subgroup. This is nonabelian if and only if o(r|m) is not
a power of 2. In the notation of 6.2, we let /= 29¢' and n = 2°n', where
¢’ and n' are odd. Then B has order 2°**/'n’ and, if C = B?""", then
H = (A%, C) is a normal subgroup with odd order, |H| = p*¢’n’, such
that the quotient has order 2°*°. It follows that H contains all subgrgups
off G, , of odd order. H is abelian if and only if 1 = [C, A7] = AT,
That is, if p*|r2*”" = 1, or, if o(r[p®)[2°**, Now, r=1 mod ¢ so
olr|p®) = o(rlm) = n. It follows that H is abelian if and only of o(rlm) is
a power of 2.

We will say that Herstein’s conjecture holds for a field F if every central
division algebra, D, over F has the property that all its subgroups of odd
order are cyclic.

THEOREM 6.19. If F is a local field with odd residue characteristic, p,
then Herstein’s conjecture holds for F if and only if the ramification index,
e(F(¢,)/ F), is a power of 2.

Proof.  This follows from the remarks above and 6.17. g

In their paper, Fein and Schacher [5] prove the following which follows
from the above.

CoroLLARY 6.20. If p is a Fermat prime then the Herstein conjecture
holds for any p-adic field F.

Proof. eg|lp — 1 which is a power of 2. g
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In fact, we get:

CoroLLARY 6.21.  Herstein’s conjecture holds for Q »» P odd, if and only
if p is a Fermat prime.

Proof. eq, =P — J |

ProrosITION 6.22.  If F is a local field with odd residue characteristic, p,
and p is a Fermat prime, i.e., p = 2> + 1 for some n, then 22"*" divides
the order of any nonabelian subgroup of D(F,a/ b)*.

Proof. Let G = G,, , be such a subgroup. Then, by Theorem 6.8,
olrlm)lp — 1,80 o(rim)iseven. (g — 1) /¢, 0(rim)) = 1lso(qg — D /€ is
odd and, as ¢ — 1 = (22" + 1)” — 1 for some 7y, we have 2%"|¢g — 1 and
thus 22|/ giving 22" %' |Gl. g

This result is sharp in the sense that:

Prorosimion 6.23. If p = 22"+ | is a Fermat prime, then there is a
nonabelian subgroup, G, of order p22° Y that embeds in a central division
algebra over Q.

Proof. Let m =p2°" and let r be the solution, mod m, to the
congruences r = 1 mod 22" and r = —1 mod p. Let b = 2%s, where s is
odd. It is easy to check that G, | satisfies the conditions of Corollary 6.10

and so embeds in D(@,,, a/ b)*, for any a prime to b.

Theorem 6.17 and Theorem 4.12 enable us to write down all the finite
subgroups of a specified division algebra and Theorem 6.1 enables us to
determine when two such groups are isomorphic.

Examere. Using Corollary 6.18 and Theorem 4.12 we may show, for
example, that, if a is prime to 6, then the isomorphism classes of
nonabelian subgroups of D((;, a/ 36)* are:

(1) G, ,4w_, where 24|/ and 433" - 1).
(2) G, ,30_, where 24)¢ and ¢]3°(3% - 1).
(3 G/’.n.ztm where 24|¢ and /|3%(3° - 1).

Two such groups are isomorphic exactly when they have the same order.

ExampLE.  Amitsur [1] proves that the smallest noncyclic group of odd
order to embed in a division algebra has order 63 and is unique up to
isomorphism. This group occurs in the simplest possible case. The smallest
odd prime that is not a Fermat prime is 7. The index of any division
algebra over (I, that contains a noncyclic subgroup is at least 6, (Corollary
6.18). D(Q,,1/6) contains a maximal subgroup isomorphic to G, .
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Taking /=21 and s = 2 in Theorem 4.12, we see that G, , € G, 1o
G,, , is the desired group of order 63.

7. MaximaL SuBGRoups IN THE CASE p = 2

Finally, we consider the case p = 2. Let F be a local ficld with residue
characteristic equal to 2. In addition to the metacyclic groups, we need to
consider the products of binary tetrahedral and metacyclic groups as
described in Proposition 2.6. First, we consider which groups G = T X
G, , can embed in a division algebra, D, over F. Certainly |G,, .| must be
prime 2 and 3, otherwise, as |T| =233, we get Z, X Z, or 7, X Z,
embedded in a division algebra. This is impossible. Since |G, ,|=
m.o(rlm), m must be odd. Suppose ¢: T X G, , = D*. We have
0,6G,, , = (@,(,),0,,{.,) which splits, if m is odd. This cannot be,
unless r =1 modm, so G, ,= Z/m. We must also have D = D(F,

m.r

a/ 2k), where k and [F: @2] are odd (by Case 1 after Proposition 2.5);

D=D(F,a/2k) =D(F,1/2) @ C,(T)
F

and 7/ m embeds in the second factor which has index k. It follows that
[F({,): Fllk and so [F({,):Q,] is odd. If, on the other hand, m and
[F(Z,):Q,] are odd, then

-1-1

F( gm)

is a division algebra and the group (i,j,—(1 +i+j+k)/2,{,) is
isomorphic to T X Z/ m. This lets us state:

Tueorem 7.1. If p=2 then T X G,
over F if and only if:
(l) Gm,r = Z/m!
(2) m is odd,
(3) [F(Z,):Q,] is odd.

Proof. This follows from the remarks above. g

embeds in a division algebra

r

PropositioN 7.2. T is not metacyclic and hence T X Z/ m does not
embed in a metacyclic group.

Proof. If T were metacyclic it would have a cyclic commutator sub-
group, by Proposition 4.6. With P, Q and R as per Definition 2.1 part (2),
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we have, [R,Q]1=P,[R, P]1 = QP3 s0 (Q,P) c T'and so T’ is not even
abelian. g

Thueorem 7.3. If [F :@2] is odd and b = 2k where k is odd, then the
maximal subgroups of D(F,a/ b)* that contain a binary tetrahedral group
are isomorphic to T X Z/ q* — 1 where the residue field of F is F,e

Proof. A maximal group of this type can be written as G = T ® {{,,)
where ({,,> =Z/m is a maximal cyclic subgroup of Cpp, 5 (T).
D(F,a/b) = FT ® Cp , ,»(T) and so the latter factor has exponent, k.
[0,(2):0,] = 2and [F:Q,]is odd so ¢, & F and [F({,), F] = 2 which is
prime to k and thus {, & Cpp , 5 T). Now, 2|m as —1 € Q, and <¢,)
is maximal. It follows that m has the form m = 2n where n is odd. As
Cper.a\(T) has exponent, k, the maximal value of n is ¢ — 1. Thus
G=T®Z/2g* - 1). But, if H and K are subgroups of F algebras A
and B, then H ® . Kc A4 ®.B is a subgroup and we have an exact
sequence

0 >N—->HXK—->HQ@K—D0,
2

where N={(f,f ):feHnNnFand ff'€eKnNF}. Now, TNF ={+1}
and so we have

00— {(1.),(-1,-1)}>TxZ/2-(¢"-1)—
T®Z/2 (q“—1)—0.
By counting, G=T X Z/q*— 1. g

ProrosiTion 7.4. Let G € D(F,a/ b)* be nonabelian and G
then

(1) m =2°¢ where aa > 2 and ¢ is odd,

Q) G=Q,XZ/¥¢, where Q, is the generalized quaternion group of
order 21,

Proof. 1If m is odd or 2 mod 4, then F({,)/ F is unramified and so FG
splits. This would imply that G is abelian. Consequently, a > 2. By
Theorem 5.1, #|r — 1 and thus, by Proposition 4.6, G has a central, cyclic
subgroup, H, of order ¢. By Yamada [10, Thm. 5.15], Deg (FG) = 2, and
so |G| = 2**'¢. G is then a product of H and its 2-Sylow subgroup. By [1,
Th. 2 part (2B)], we get (2). g

I
Q

CoroLLaRY 7.5. D(F,a/b)* contains nonabelian finite subgroups if
and only if [F:Q,]is odd and b = 2k, where k is odd.
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Proof. By Proposition 7.4 and the observation that Q, C T, we see that
D(F,a/ b)* contains nonabelian finite subgroups if and only if it contains
Q,, or equivalently, {F({,)/ F,o_,, —1). This is a division algebra if and
only if [F,Q,] is odd, and embeds in D(F, a/ b)* if and only if b = 2k,
for K odd. g

CoroLLARY 7.6. If Q is a subgroup of D(F,a/ b)* then a = 2.

Proof. Let Z = Z(FQ,). Now, Q, = Gy« _, and so FQ, = (F({;)/
Z,o_,, — 1), but then, by Corollary 7.5, [Z:Q,] is odd and so e(F({,.)/
@,) = 2 mod 4. However, e(Q,({5.)/ Q,) = 27" giving a = 2.

[ |

We know, however, that Q, ¢ {(F({,),o_,, —1) is contained in a binary
tetrahedral group and so we get:

Tueorem 7.7. D(F,a/ b)* contains nonabelian finite subgroups if and
only if [F: @2] is odd and b = 2k, where k is odd. The maximal such groups
are isomorphic to T X Z/q* — 1 where q is the cardinality of the residue
field of F. Any two such groups are conjugate.

Proof.  All that remains is to show the final statement. This follows by
the Noether—Skolem Theorem and the fact that for any 7 € D(F,a/ b)*

there is an isomorphism SN S FT identifying <i,j, —(1 +i +j +
F

k)/ 2) with T, Theorem 2.4 part (3). The cyclic factor comes from a choice
of a maximal odd root of unity in the centralizer of T. All such cyclic
groups are conjugate. g

CoroLLARY 7.8. D(Q,, a/ b)* has nonabelian, finite subgroups if and
only if b/2 =k is odd. The maximal such groups are isomorphic to
Tx Z/2%-1.

Proof. Immediate. g

Finally we observe:
ProrosiTion 7.9.  Herstein’s conjecture holds for all 2-adic fields, F.

Proof. This follows from Corollary 7.6 and the observation that the
groups T X Z/ q* — 1 have no noncyclic subgroups of odd order. g
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