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FREENESS AND EQUIVARIANT STABLE HOMOTOPY

MICHAEL A. HILL

ABSTRACT. We introduce a notion of freeness for RO-graded equivariant gen-
eralized homology theories, considering spaces or spectra E such that the R-
homology of E splits as a wedge of the R-homology of induced virtual rep-
resentation spheres. The full subcategory of these spectra is closed under all
of the basic equivariant operations, and this greatly simplifies computation.
Many examples of spectra and homology theories are included along the way.

We refine this to a collection of spectra analogous to the pure and isotropic
spectra considered by Hill-Hopkins—Ravenel. For these spectra, the RO-
graded Bredon homology is extremely easy to compute, and if these spaces
have additional structure, then this can also be easily determined. In particu-
lar, the homology of a space with this property naturally has the structure of a
co-Tambara functor (and compatibly with any additional product structure).
We work this out in the example of BUr and coinduced versions of this.

We finish by describing a readily computable bar and twisted bar spectra
sequence, giving Bredon homology for various E« pushouts, and we apply this
to describe the homology of BBUR.

1. INTRODUCTION

Equivariant cohomology theories are often viewed as very difficult to compute.
In full generality, this is often true, as many computations which non-equivariantly
were completely in the 1950s and 1960s are still out of reach. Addtionally, the kinds
of cellular decompositions which arise most naturally geometrically are often not
adapted to easy computation, further compounding the problem. Many computa-
tions in the literature require significant amounts of hard work, even for ordinary
(Bredon) homology (see, for example, the recent papers of Dugger on equivariant
Grassmanians [4] and Hazel on Ca-surfaces [g]).

In this paper, we build on a class of spectra introduced by Ferland-Lewis [5],
focusing on a certain subcategory of spaces and spectra for which essentially all of
these problems go away. Given a commutative ring-valued equivariant cohomology
theory R, we say that a spectrum FE is R-free if the R homology of E splits as a
wedge of the R-homology of induced representation spheres. These spectra con-
tains many of the geometrically meaningful spaces and spectra. Delightfully, these
R-free spectra are closed under most of the usual operations in equivariant homo-
topy, including restriction, induction, and the symmetric monoidal product. If R is
represented by an equivariant commutative ring spectrum, then the class of R-free
spectra is also closed under the norm maps. In the classical, Bredon case, this means
that the cohomology is easy to describe with almost arbitrary coefficients, and most
excitingly, it means we can describe a full co-algebra (in fact, co-Tambara functor)
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structure on the homology of these spaces and on the cohomology of equivariant
commutative monoid objects.

After describing a host of examples, we restrict focus to a class of spectra for
which everything is described by the underlying homology. The slice filtration of
[10] gives a version of the Postnikov tower where we use various representation
spheres instead of ordinary spheres. In the nicest cases, such that those built
out of the norms of the Fujii-Landweber spectrum of Real bordism MUg, the
slice associated graded is a wedge of regular representation spheres smashed with
computationally tractible Eilenberg—Mac Lane spectra [6l, [20] (see also [15]). For
these kinds of spectra, we consider free spectra where the induced spheres are also
in regular representation dimensions. These assumptions allow us to reduce any
computational question to a question about the non-equivariant homotopy, tying
things to classically studied objects. We demonstrate the efficiency of this by giving
the full Tambara and co-Tambara functor structures on the homology of BUr and
by describing the action of the Dyer—Lashof algebra on the mod 2-homology of
BUg.

We close with applications to the bar/Rothenberg—Steenrod and Eilenberg—
Moore spectral sequences. When the spaces in question are R-free, the Fs-terms of
the usual spectral sequences have the expected form, and we use this to compute
the homology of BBUg and of the coinduced space Map®?(G, BBUg) for all finite
G. As an aside, we also mention the sign-twisted analogues of these classical spec-
tral sequences when G = (s, giving ways to compute the homology of the signed
bar construction or the cohomology of the twisted homotopy pullback and signed
loop spaces.

Throughout the paper, our emphasis is on the conceptual understanding of the
objects and on explicit examples. We include many examples of spaces and spec-
tra of interest, showing how they fit into this framework, working to demystify
equivariant computations.

2. RO-GRADED HOMOLOGY

2.1. Gradings and ring structures. Many of the spaces which arise naturally
geometrically can be built not out of representation cells but rather out of more
general cells of the form

Gy p DV),

where V is a [virtual] H-representation. Algebraic constructions like the norm
automatically build in this more general kind of RO(G)-grading, considering instead
objects graded on pairs consisting of a subgroup H and a virtual representation of
H. A more coordinate free version is given by considering Thom spectra of virtual
bundles over finite G-sets. A particular model of this is the restriction of work of
Angeltveit-Bohmann to incomplete Tambara functors or Mackey functors [IJ.

Definition 2.1 ([I2] Definition 2.7]). If T is a finite G-set and V is an equivariant
virtual bundle over T', then let M (V') be the Thom spectrum of V' and
€]
m(E)(T,V) = [M(V),E|".

Remark 2.2. If T is a transitive G-set, then a choice of point ¢ € T gives an
equivariant equivalence
T =~ G/ Stab(t),
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and restriction to ¢ gives an equivalence of categories between Stab(t)-equivariant
virtual representations and virtual equivariant vector bundles over T'.

Notation 2.3. In the case T'= G/H, so V gives a virtual H-representation Vy, let
B, (8°) = m,E(T,V).

These abelian groups assemble into a kind of Mackey functor, twisted by these
bundles. This generalizes the earlier work of Ferland-Lewis [5].

Proposition 2.4. If f: S — T is a map of finite G-sets and if V. — T is a virtual
equivariant bundle, then f induces a transfer map

m(B) (S, [*V) =5 7 (B)(T.V)
and a restriction map
7 (B) (T, V) 25 m (B)(S, F*V).

Remark 2.5. There is a slight subtlety here with the Mackey double coset formula:
there can be signs introduced which reflect the degree of the map on the underlying
representation sphere. See, for example, [I0] Lemma 7.20].

Smashing together maps gives us the usual external product.

Definition 2.6. If z € . (E)(T, V) and y € 7. (E")(S, W), then we have an external
product

zAyem(EAE)T xS,V xW)

given by the smash product of representing maps.

Since this pairing is the one arising from the pairing of homotopy classes of
functions in G-spectra, it has the usual properties.

Proposition 2.7. The external product is linear in both factors and satisfies the
Frobenius relation.

The multiplication in the RO-graded context can be a little more confusing, since
elements are attached to virtual representations for different groups. To effectively
compare them, the elements must first be restricted to a maximal common sub-
group. Again, we have many ways to represent this. Conceptually, the RO-graded
group actually remembers more information, including not only the elements but
also the various Weyl transfers. Thinking in this way, the RO-graded products will
not only record the product we would expect but also include any of the pairwise
products of restrictions to conjugate subgroups.

If T =S, then we have a canonical pullback diagram

Vew — VW

| |

T —TxT.
AT

Composing the external product with the restriction along the diagonal Ar gives
the usual product structure on the RO(T')-graded homotopy of the “restriction to
T” of a ring spectrum R.



4 MICHAEL A. HILL

At the other extreme, we if T = G/H and S = G/K, then the product can be a
little more confusing. The classes z and y are maps

G ASYESE & G ASYVELE,
H K
and smashing them together gives the map
G ASY)YA (G A SY) L EAFE.
(G+ 0 ) A (G e ) = E A
The source is naturally the Thom spectrum of a virtual bundle on
G/HxG/K=GxisG/K=~ || G/HngKg™),
H HgKeH\G/K
and the bundle over the summand associated to g is
i*ngKg*1 Ve i*ngKg*1 CZW
The corresponding map on this summand is
K -1
TesgﬁgKg,l(:zr) A res%{ﬁggKg,l(c;‘y).
Corollary 2.8. If E has a multication in the homotopy category, then the compo-
sition with the multiplication in E makes Ei(E) into an RO-graded Green functor.

In fact, there is a good G-symmetric monoidal category of R.-modules for any
equivariant commutative ring spectrum R. This has been developed in forthcoming
joint work with Angeltveit—-Bohmann. We will make use of this structure somewhat
heavily in what follows. However, the only cases in which we will consider it are
ones for which the structure is immediate from the definition of the objects, so
there should be no confusion.

2.2. R-free spectra modules.

2.2.1. Free and projective. Although our desired applications will be to ordinary
Bredon homology with various coefficients, it will be helpful to being considering
any generalized equivariant homology theory R represented by an Fq,-ring spectrum
R. Equivariantly, this is weaker than being a commutative monoid in any of the
good point-set models of spectra, but this is sufficient to have a good, symmetric
monoidal category of modules over R [3].

It greatly simplifies much of the notation (and of our discussion of a basis) to
ourselves to evaluate our homotopy Mackey functors on infinite G-sets and virtual
representations on these.

Notation 2.9. If T is a discrete G-set and V' is a virtual bundle over T', then let
where S ranges over all finite subsets of T.

Since Thom spectra of disjoint unions of spaces is the coproduct of the associated
Thom spectra, we natural have

R,(E)(T,V) =~ [M(V),R » E].
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Definition 2.10. A G-spectrum E has free R-homology or “is R-free” if there is
a G-set Ty and a virtual vector bundle Vg over T such that we have an equivalence
of R-modules
RAE~RAM(Vg).
The full subcategory of Sp“ spanned by the spectra with free R-homology will be
denoted
Spg,fr'

It has projective R-homology if R A F is a retract of an R-module of the form
R A M (V) for some virtual vector bundle V' over a G-set. The full subcategory of
Sp¢ spanned by the spectra with projective R-homology will be denoted

Spg)pr.
Remark 2.11. The use of “free” here is to bring to mind a free module. In the
homotopy category of R-modules, the R-module R A (G4 N SV') corepresents the
functor
E 7/ (E),
on the category of R-modules, and hence maps out of it correspond to certain
elements in this RO-graded Mackey functor.

Definition 2.12. If E has free R-homology, then a basis for the R-homology of
FE is an element

Te Ri(E)(TE, VE)
for a G-set Ty and a virtual bundle Vg over Ty, such that the induced map

RAZ

RAM(Vg) —>RAE
is an equivalence.

We can restate the definition of a basis using an orbit decomposition of 7. A
choice of points in each orbit for T' gives an equivariant isomorphism

7= [] G/H,
teT/G
and if we let Vg4 be the restriction of Vg to the orbit G/H;, then
R(E)T, V)= [] R, (B).
teT /G
A basis then is a collection of elements

:vt:GJrP/I\ SVet > RAFE

such that the induced map

V,t —
R A \/ Gy fl\tS B RAE
teT/G

is an equivalence. We will use both formulations.

Just as for vector spaces, a basis is a choice of additional data which aids in ex-
plicit computation. In particular, describing product structures is greatly simplified
with a basis.

It is always helpful to always keep in mind the example of Bredon homology with
coefficients in a commutative Green functor R. The Eilenberg-Mac Lane spectrum
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associated to a commutative Green functor is always F,,, so we can apply this
general formalism.

Example 1. If G = {e}, then a basis for the homology of E with coefficients
in R = R (an ordinary commutative ring) is the same as a basis for the graded

R-module Hy(E; R).

Example 2. Kronholm showed that if X is a Rep(C2)-complex (meaning a Ca-
complex formed by attaching disks in representations along their boundaries), then
X has free HFy-homology [18] (and with no summands induced up from the trivial

group).

Example 3. C. May’s decomposition theorem for the [coJhomology of a finite Co-
CW complex says that for any finite Co-complex X, we have a splitting

HF, n X ~ HF, A (\/ Cay A SV v \/S(nia)+)
where the second sum, n; = 2 and o is the sign representation [23]. Thus Cy spaces
have free HEy-homology if and only if this second sum vanishes.

Example 4. Hazel’s computation of the Bredon homology of Cs-surfaces shows that
every connected Ca-surface for which the action is not free has free HF4-homology
[8, Theorem 6.6].

Example 5. Ricka extended the Hu—Kriz computation of the dual Steenrod algebra
for By, and showed that HF, has free HF4-homology [28], [15].

Notation 2.13. Let _r stand for either “fr” or “pr”.
2.2.2. Closure under sums.

Proposition 2.14. The adjoint pair G A (-) 4 % descends to an adjoint pair
H — G .
G+ I/L\I ('): SpizR,_r <« SpR,_r . Zj;[.
A basis for one gives the other via restriction or induction.

Proof. Since these are full subcategories, and since retracts are preserved by any
functor, it suffices to show that restriction and induction preserve R-free spectra.
For restriction, we just use the restriction of the Thom spectrum. For induction, we
note that inducing up a Thom spectrum is again a Thom spectrum of the desired
form. O

Proposition 2.15. The category Spg)_r 1s a closed under arbitrary coproducts.
A basis for the wedge is the sum of the bases.

Proof. The smash product distributes over wedges, and the wedge of Thom spectra
of virtual bundles over G-sets is again a Thom spectrum of a virtual bundle over a
G-set. O

The free and projectives also work well with base-change.
Proposition 2.16. A map f: R — R’ of Ex-ring spectra induces a map
fat Sp%_T — Spg/7_r.
A basis T for E over R gives a basis f«(Z) be composing with f.

Proof. This follows from base-changing the equivalence R A E ~ R A M (Vg) along
the map R — R/. O
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2.2.3. Closure under products. The categories of frees and projectives are also
closed under the [twisted] smash products on G-spectra, being closed under the
norms which R has.

Proposition 2.17. The category Spg)_r is a symmetric monoidal subcategory of

Sp@ for the smash product.
Moreover, a basis for E and E' gives a basis for E A E' by boxing them together.

Proof. Again, it suffices to show this for free spectra. If V and V' are virtual vector
bundles on T and T respectively, then we have a natural equivalence

MWV)AMV') ~ MV x V'),

where the latter is just the Thom spectrum of product of V and V' over T x T".
The result follows from recalling that the functor R A (-) is a strong symmetric
monoidal functor from G-spectra to R-modules. O

This gives us a kind of weak Kiinneth theorem.

Theorem 2.18. If E € Spg)_r, then for any R-module M, then M AN E is a
summand of the R-module M A~ M(Vg) for some virtual vector bundle Vg, and
hence the multiplication gives a natural isomorphism

R (E)Dx, (M) = z,(E A M).

Proof. Again, it suffice to show for F' R-free. By assumption, there is a splitting of
R-modules

RAM(Vg)~RAE.

This gives an equivalence of R-modules

E/\M:(R/\E)/I%M:(R/\M(VE))QM:M(VE)/\M.

Since the smash product distributes over the wedge, the latter spectrum is a wedge
of R-modules of the form

(cN SV A M.
The result follows by the definition of the representables. O
Corollary 2.19. If E,E’ € Sp%_r, then
R.(EAE) x> R:(E)ERi(E/)'

For the norms, we recall some properties of the norm and these relatively simple
Thom spectra.
Notation 2.20. If T is an H-set and V — T is a virtual vector bundle, then let

Map” (G, V) — Map” (G, T)

be the coinduced vector bundle over Map® (G,T).

Proposition 2.21. For any virtual vector bundle V', we have

M (Map™(G,V)) ~ NFM(V).
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Proof. All of the functors considered commute with filtered colimits, so it suffices
to consider the case that T is finite. This is then the distributive law for norms,
together with the formula for T = H/H:

M(Map™ (G, V)) = 518V ~ NGSV =~ NGM(V). O
The norm is also a strong symmetric monoidal functor, and it induces a map
N§: R-Mod — N§R-Mod.
Proposition 2.22. The norm induces a functor
Ng: Spg_r — Sp%gR,_r'
Proof. 1t suffices to show this for £ having free R-homology. In this case, we simply
apply the norm to the equivalence
RAE~RAMUVEg)

for some virtual vector bundle Vg and use Proposition 217 O

If R is an Ey-ring spectrum that has an E-map
NSi% R — R,
then we have a relative norm map on R-modules given by

M~R A N§M.

G ;%
Npig R

The usual case is when R is an equivariant commutative ring spectrum (i.e. a
G-E-ring spectrum), but this has also been worked out for algebras over linear
isometries operads [3].

Proposition 2.23. Let R be an Ey-ring spectrum that has an FEo-map
NSi% R — R,
then N§ induces a functor
H G
SPi# R, PR,
The norm of a basis for E gives one for the norm.

In the Bredon case, if R has the structure of a Tambara functor [31], then Ullman
has shown that HR has the structure of a G-FEy, ring spectrum [32]. This gives us
many examples for Bredon homology. In particular, the absolute norms (i.e. the
norms from the trivial group) of an ordinary commutative ring are always Tambara
functors.

Generalizing the Cs-equivariant examples of [I1], we get that absolute norms are
free for a host of Green functors.

Example 6. Let k be a field and let R be a Green functor under N¢k. Then for
any spectrum E, N E has free HR-homology.

The more general integral story also follows.

Example 7. If E is an ordinary, non-equivariant spectrum such that Hy(E;Z) is
free, then NEE has free A-homology, and hence free Bredon homology for any M.

We also have several chromatic examples.
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Example 8. Since
MU A MU >~ MU ABU; ~ MU|[by,...],

where |b;| = 2i, the spectrum MU and the space BU have free MU-homology. This
implies that the same is true for the norms: NE MU and NfEfBU have free
NE& MU-homology.

We have identical statements for CP™ for all n < oo and the spaces BU(n).

Using the orientations given by the norm of MU, we produce a host of other
interesting examples.

Example 9. Let R be an Eo, G-spectrum that admits an Ey norm map
G -
NJi*R — R,
and assume that i¥ R can be given a commutative complez orientation. Then for any
spectrum E such that MUy E is a free MU -module, N (E) has free R-homology.

In particular, the spaces and spectra considered in Example[d have free MUg and
KUg-homology.

Example 10. If E is any finite type, bounded below spectrum with free integral
homology, then NSE has free KUg and MUg homology.

There is a norm in R-homology, specified by the norms in Mackey functors (or
equivalently in spectra), and the following holds by definition.

Corollary 2.24. If E has free i R-homology, then we have a natural isomorphism
R.(N{E) = Nfj (ifiR.(E)).

As a specific example, this gives us the equivariant homology of the topological
Singer construction [22].

Example 11. Let k = F,, let G = C}, and let F,, be the constant Green functor Fy,.
This is a Tambara functor, so for any spectrum E, we have a natural isomorphism

H(NS?(E);F,) = NE» (Hy(E;Fp)).

In particular, for p = 2, the homology of N2 HFy is free.
Unpacking this a little more, a basis is given by the monomial basis in

(Fp[ﬁl,...]cgE(To,...))

The group Cp, acts on this by permuting the factors, so associated to every monic

®p

monomial, f, there is a stabilizer subgroup Hy. This is the subgroup associated to
f- The degree of f is given by

| /]
fIl = =5=pH;,,
|Hy| "

where |f| is the ordinary, underlying degree induced by the degrees in the dual

Steenrod algebra.

These freeness results can also give us interesting information about non-free
spectra. Snaith showed that we have an equivalence of E-ring spectra

KU ~ $2CP*[B™],
where J is the map on X¥CP* induced by the inclusion CP! — CP®.



10 MICHAEL A. HILL

The norm functor commutes with filtered colimits, so this gives us an equivariant
version of Snaith’s theorem.

Theorem 2.25. For any finite group G, we have an equivalence of G-Eq-ring
spectra
NSKU ~ %% Map(G, CP)[N(8)7],
where
N(B): §2r¢ — £ Map(G, CP*®)

is induced by the norm.

Corollary 2.26. Let R be a G-Ey-ring spectrum such that CP® has free i*R-
homology. Then we have an isomorphism

R.NEKU ~ lim¥2"¢ NE (i* R, (CP™)).
In particular, this is always a flat R.-module.

Example 12. Because HA is a G-Ey-commutative ring spectrum and CP® has
free HZ-homology, we have

H,(Map(G,CP*); A) =~ N°H,(CP*;Z) =~ N&(T'(z)),
where |z| = 2. The Bott element we invert is the norm of x, and we deduce
H,NEKU ~ NEQ[zT1].
Since KUg is a NGGKU—algebm, we also deduce that HA n KU¢ is rational.

2.2.4. Duality. We also have a weak Universal Coefficients Theorem, provided our
spectrum is small.

Definition 2.27. Let E € Sp%_r, and let Vg be the associated virtual bundle such
that RA E ~ R A M(Vg). We say E is finite type if for each k < j € Z, only
finitely many orbits of T contribute to m,(R A M (Vg)) for k < £ < j.

Clearly, if the set Tg can be chosen to be finite, then it is finite type. This more
general condition is analogous to only having finitely many cells in each degree.

Theorem 2.28. If E € Sp%j is a finite complez, then D(X) is also in Sp%_r.
More generally, if E € Spg)_r is finite type, then for any R-module M, we have
a weak equivalence of R-modules

F(E,M)~ M A M(~Vg).

We have a universal coefficients isomorphism that computes the M -cohomology
of E out of the R-homology of E:

M™*(F) = Hompg, (Ri(E), Mz)'
Proof. If E is a finite complex, then
D(E)A R~ F(E,R),

and the first will follow from the second.
Since M is an R-module, we have an equivalence

F(E,M)~ Fr(R A E,M).
A basis for the R-homology of E gives an equivalence
Fr(RAE,M)~Fr(RAMVg), M),
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and this is equivalent to F’ (M (Ve),M ) Since maps out of a wedge is the product,
we first check the case of an orbit. The result is then the classical Wirthmiiller
isomorphism:

F(G, A SV M)~G,y 4 SV A M.

Finally, the finite type condition ensures that the natural map from the wedge to
the product is in fact an equivalence.

The second part follows from this by taking homotopy and observing the result
for orbits. O

A surprising final feature of the universal coefficients theorem is that we can also
describe the cohomology of the norms of R-free spectra.

Proposition 2.29. Let R be an Eq-ring spectrum that has an Eo-map
NSi% R — R.

If an H-spectrum E has free i%; R-homology with a finite basis, then the function
spectrum F(NgE, R) is equivalent to a free R-module, and the basis is the dual to
the one for NGE.

In particular, analyzing the Thom spectrum for the functional dual, we have
that for F as in the proposition, the R-cohomology of NgE can be described as
the norm of the i}, R-cohomology of F.

2.2.5. Pullbacks. Projectivity is also preserved by restricting along quotient maps
(also called “pulling back”).

Notation 2.30. If N is a normal subgroup of G and ¢: G — Q = G/N, then let
q*: Sp? — Sp©
be the inclusion of @-spectra into G-spectra.
Proposition 2.31. The functor ¢* induces a functor
q*: SpE . — SpSen -
If E € Sp? has a basis for R, then ¢*E has a basis for ¢*R.

Proof. Again, it suffices to check on the full subcategory of R-free spectra, and
since ¢* is strong symmetric monoidal, it suffices to show on the associated Thom
spectra. By construction,

¢*M(Ve) ~ M(¢*Vg),
where ¢*Vg is just Vg viewed as a G-virtual bundle. O

Remark 2.32. The fixed points functors do not preserve projective objects, as the
tom Dieck splitting shows. However, the canonical map

¢*(R°) > R
gives us a map

G
q* : SpRG,_r - SpR,_r'
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Example 13. If E is an ordinary, non-equivariant spectrum such that Hy(E;Z)
is free in each degree, then q*E has free Bredon homology for any coefficients. For
any G,

moq*HZ = A,
and the negative homotopy groups are all zero. The zeroth Postnikov section then
gives us an Eo-map

q*HZ — HA.
The result then follows from Proposition[2.31], Proposition[2.18, and Theorem [218.

Example 14. If E is an ordinary, non-equivariant spectrum such that Hy (E;F))
is free in each degree, then for any G and for any Green functor R in which p-1 =
0 € R(G/G), ¢*E has free R-homology. This is because the pullback of HF, has
o, = A/p, the initial example of such a Green functor.

In particular, for any G and for any R of this form, this applies to

E = X°K(F,,m),

the pullback of which is the suspension spectrum of the Eilenberg—Mac Lane space
for the constant coefficient system F,,.

2.3. Freeness and spaces. Our primary interest in these freeness results comes
from the connection between the [twisted] smash products in spectra and [twisted]
Cartesian products in spaces.

Proposition 2.33. If X is an H-space, then we have a natural equivalence
NESPX ~ %% Mapy (G, X).
If X and Y are G-spaces, then
YP(X xY)~XTX A XTY.
We can assemble all of our results so far into a summary theorem.

Theorem 2.34. Let X be an K-space such that X has free i, R-homology. Then
we have a natural isomorphism

NI?Rz(X) = Rﬁ(MapH(Gu X);E)7

and moreover, this is free on the basis NG, where ¥ is a basis for the homology of
X.
If X and Y are G-spaces that have R-free homology, then

Ru(X xY) = Ry (X)DIRL(Y),

with a basis given by the product of the bases.

Example 15. In general, coinduction preserves Eilenberg—Mac Lane spaces: if M
is an H-Mackey functor, then we have an equivalence

Map” (G, K (M,n)) ~ K (15.M,n).
(More generally, the G-space MapH (K(M, V)) represents the functor
X — HY (i%X; M),

so these in general are kinds of Filenberg-Mac Lane spaces.)
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When H = {e}, this allows us to determine the homology of Eilenberg-Mac Lane
space attached to any induced Mackey functor with coefficients in a NS k-algebra,
for k a field. In particular, we have

Hy (K (10"Fy n)iE, ) = NO# (Hy (K(Fy,n)iFy) ),
and the latter was determined by Cartan and Serre.

This is closely connected to some additional structure that is often difficult to ac-
cess. Equivariant spaces are canonically G-cocommutative comonoids. In addition
to the coproduct

X - X x X,

they have conorm maps

AG/H "
X —— Map(G/H, X) ~ Map™ (G, X).
In fact, the contravariant Yoneda functor gives for any X a functor
X x: Map(-, X): (Fin®)? — Top®,

and on passage to fixed points, these maps are exactly giving the usual coefficient
system of fixed points for any G-space.

Definition 2.35. If f: S — T is a map of finite G-sets, then let
Y5 Ry (Map(T, X)) — R, (Map(S, X))
be the “conorm” map associated to f. When f =Vg: SIS — S is the fold map,

we call this the “coproduct”.

In general, this is difficult to work with, since we need not have a good [twisted]
Kiinneth theorem. In the case we are considering, however, we do!

Theorem 2.36. Let R be an equivariant commutative ring spectrum, and let X be
a space that has free R-homology. Then R.(X) has a comultiplication map

Ru(X) = Ra(X) DR (X)

making it a “co-Green functor”. Moreover, we have for any map of finite G-sets
f: 8 =T a conorm map

NTR,(X) - N°R.(X)
which is a map of co-Green functors.

Proof. Since X has R-free homology, so do all of its restrictions, and hence so
do all of the spaces Map(T, X) for any finite G-set T. The comultiplication and
conorm maps then follow immediately from our earlier analysis of the homology of
the spaces involved.

That the conorm maps are maps of coGreen functors follows from naturality. [

Rephrased, a space with free R-homology gives a strong G-symmetric monoidal
functor

Set® P — R,-Mod,

where the G-symmetric monoidal structure on Set“°P is the dual to the co-Cartesian
one.
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All told, this gives R, (X) naturally the structure of a co-Tambara functor. The
exact axiomatic treatment of the norm maps is dual to that of an ordinary G-
commutative monoid [9]. Via the Universal Coeflicients theorem for R-free spaces,
this structure is exactly the structure which gives rise to the usual Tambara functor
structure on the R-cohomology of a G-space.

Remark 2.37. The usual formulation of a Tambara functor describes norm maps
n¥: R(G/H) — R(G/K). These connect, via work of Mazur and Hoyer ([L3], [14])
to G-commutative monoids in Mackey functors via canonical set maps

R(G/H) = i} R(K/H) — (N*/"i% R)(K/K).

The maps go the wrong way to be able to interpret a co-Tambara functor easily in
the more traditional way.

2.3.1. Coalgebras. There are also many examples of spectra for which we have sim-
ilar kinds of comultiplications. These are ubiquitous amongst spectra which have
free homology over themselves. This was shown and used by Hu—Kriz; it works
very generally.

Proposition 2.38 ([I5]). If R is an Ey ring spectrum such that has free R-
homology, then the pair

(Ry, Ry R)
forms a Hopf algebroid, and moreover, the R-homology of any space or spectrum is

a comodule over this.

If R is actually a G-Fy-ring spectrum, then we have the much more structure.
The R-homology of itself inherits the structure of a Tambara functor, and again,
all of the maps are maps of Tambara functors. We include one interesting example.

Proposition 2.39. If R is a Ca-Ey-ring spectrum, then H,(R;F,) is a comodule
Tambara functor over the equivariant dual Steenrod algebra: the comodule structure
map is a map of Green functors and commutes with the norms:

C
N2 H, (i Ry F) ~% NC2 A, CINS2 H (i% R; Fy)

NJ lN\jN
H.(R;Fy) — ALE H,(R;F,).

Proof. The coaction map is the map induced by the unit:
HF, A R~ HFy A S° A R — HF, A HF, A R,

and hence is a map of Cs-E-ring spectra. In particular, it commutes with all of
the structure arising from the multiplication. ([l

This means that the coaction on the spectrum N2 HFy should be completely
determined by the coaction on HIF», allowing us to analyze the homotopy groups
of this spectrum by a Hu-Kriz style Adams spectral sequence [15].
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Aside: what are G-Hopf algebras? We pause here to sketch the analogue of Hopf
algebras, explaining what structure we see. We focus on the Bredon case with
coefficients in a Tambara functor R for simplicity. The dual, cohomology statements
to the comuliplications and conorms do not need freeness; the Bredon cohomology
of a space with coefficients in a Tambara functor is always a Tambara functor. This
is because we always have a map

NTH%(X;R) — H*(Map(T, X); R),

and this gives us the canonical G-commutative monoid (i.e. Tambara) structure on
the cohomology of a G-space. In our free case, this map is an isomorphism.

Proposition 2.40. If X has free R-homology and is finite type, then we have a
natural isomorphism

NTH*(X; R) = H*(Map(T, X); R).

It is helpful to think of what the products and norms in the cohomology of X
imply for the representable functor

fx: B~ Tambg (H*(X;R),B).

In general, any representable functor like this is just set-valued. The external norm
maps are maps of Tambara functors, and the norm functor is left adjoint to the
forgetful functor

it Tambg* - Tambg*.
The Tambara structure maps then give us the usual lift:

Coeff
fx 7 l
P evg /G

Tamb ——— Set
Sy J:X

If X is a G-commutative monoid in the homotopy category, then we have added
compatibility with the twisted coproducts, since the [twisted] coproducts are nat-
ural in maps of spaces. By construction, we have a Mackey functor object in the

homotopy category of spaces.

Proposition 2.41. If X is a G-commutative monoid in the homotopy category
of spaces and if X has free R-homology and is finite type, then the functor xx
naturally lifts to a functor valued in semi-Mackey functors:

Mackey

/7\
e
Fx 7

" Coeff

s
,
,
/,/ ievg/g
,

Tamb§ ——— Set
£, J:X
We can summarize connecting this to actual spaces of maps. First recall that
if Y is a G-commutative monoid in the homotopy category of spaces, then the set

valued functor
X — [X,Y]
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naturally extends to a semi-Mackey functor valued functor.

Theorem 2.42. If Y is a G-commutative monoid in the homotopy category of
spaces, and if Y is R-free and finite type, then the R-homology functor extends to
a map of semi-Mackey functors

[X,Y] — Tambi (H*(Y;R), H*(X;R)).

Remark 2.43. Examples of Y for which this holds are CP® with the standard Cs-
structure or the spaces BUg. In all cases, we take R = Z to be the constant Mackey
functor Z. We will return to a more general version of this in work with Meier.

3. AN EVEN NICER CLASS OF SPECTRA

3.1. Homological purity. We single out a class of spectra for which computa-
tions are strikingly simple, being completely determined by the homology of the
underlying spectrum.

Definition 3.1. A regular slice sphere is a G-spectrum of the form
Gy A Sk
+ 1{} )
for some integer k. The dimension of such a regular slice sphere is k|H]|.

In [I0], a spectrum E was called “pure” if the slice associated graded of F is a
wedge of regular slice spheres smashed with Z. We build on that here.

Definition 3.2. A G-spectrum F is homologically pure if we have an equivalence
of Z-modules
ZANE~Z7n G+ASka.
(kvl>)/EIE "
A homologically pure G-spectrum F is isotropic if there are no summands with
a trivial stabilizer.

Remark 3.3. A slightly restricted form of this definition was independently given
by Pitsch—Ricka—Scherer in their analysis of conjugation spaces [25]. The choice
name and reason for the name are the same as the one here: analogy with [10].

Since the zero-slice of the zero sphere is Z, any zero-slice is a module over Z.
This shows that we could have instead used arbitrary zero-slices.

Proposition 3.4. A G-spectrum E is homologically pure if and only if for every
zero-slice M, we have an equivalence of Z-modules
HM ~ kom
MAE~HMA \/ GipS
(k,H)eIp
Notation 3.5. If we have a decomposition like that of homological purity or isotropic

homological purity only for particular Green zero slices R, then we will say that F
has [isotropic] homological purity for R.

The induced regular representations are much nicer representations than we
might have initially expected. These are closed under restrictions, conjugations,
and inductions. This gives the following.

Proposition 3.6. If E is a homologically pure H -spectrum, then
(1) G4 A E is homologically pure,
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(2) if K < H, then i3 E is homologically pure, and
(3) NSE is homologically pure.

3.1.1. Homology. The main benefit of this definition is from the defining property
of zero-slices: all restriction maps are injections, and hence statements can usually
be checked at the level of underlying homology.

Notation 3.7. Given an indexing set Zg for a homologically pure F, for each integer
n, let
o= {(k,H) eZp | k|H| = n}

Proposition 3.8. Let E be homologically pure and let M be a zero-slice. For any
subgroup K and for any integer k, we have

H,, (B;M)= @ Mx /-
(G, J)ezE ¥l
We also have
ﬂkafl(E;M) = @ @ MG'

(j,J)EIguﬂil gEK\G/J
KngJg—l={e}

In particular, all restriction maps are injections.

Proof. By assumption, HM A E is a wedge of regular slices, and hence we have

(G p S*7% HM & E] = 0[S i (HM A B)] =

@ 1%[S ik (G n P AHM) = @D 1Y[S%i%(G/ T A HM)]
(5,J)eTE ¥ (4,J)ez ¥l

The result follows by the definition of M G
For the case of a kpx — 1, the argument is identical until the last step. Here, we
have a direct sum

&) Tiz_l(kapK A (G " 57PN HM))

The double coset decomposition of G as a (K, J)-biset allows us to rewrite each
summand:

T (STEPEANG(Go NS AHM)) = B ]
d geK\G/J

G

Kquq*lE—l (S(n_m)pKﬁg‘]fl /\HM)

3

where

n=j[J:Jng 'Kg]and m = k[K : K ngJg'].
The only regular representation sphere that has a non-trivial homology in degree
—1 is the one for the trivial group in degree —1, which gives the second part. [

Corollary 3.9. If G = Cpn and E 1is homologically pure and isotropic, then the
homology groups in dimensions of the form (ipg — 1) vanish.

Definition 3.10. A homologically pure G-spectrum E is generalized isotropic
if there is no pair
(k, K) e T8 and (n, H) e 817

such that G/K x G/H contains a free summand.

This generalized isotropic condition allows us to have other ways to check ho-
mological purity.
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Theorem 3.11. Let E be a G spectrum that admits a filtration such that gr(E)
is homologically pure and generalized isotropic. Then E is homologically pure and
generalized isotropic.

Proof. The filtration on E gives a spectral sequence with E-term
T (gr(E) A HZ).

By assumption, this is a free HZ,-module, and the generators are in dimensions
kpr for (k, K) € Zy.(g). The generalized isotropic condition guarantees that these
classes are permanent cycles, since there are no possible targets for the differentials
on the generators by Proposition Thus E; = E4, and since this is a free
module, there are no possible extensions. (Il

3.1.2. Cohomology. We can make similar statements about the cohomology.

Proposition 3.12. If E is homologically pure and |Ix| < o for all n, then for
any zero slice M, we have an equivalence of HZ-modules
F ~ —kpH
(BE,HM)~HM » \/ Gy ~S
(k,H)eZg
Proof. Since zero-slices are HZ-modules, we have an equivalance of HZ-modules
F(E,HM) ~ Fyz(HZ n E,HM).
The homological purity of E gives an equivalence of HZ-modules
HZ A E ~ kou
ZAE~HZA \/ G p Sk,
(k,H)eIr
and hence we have
F ~ —kpn .
B HM) =[] [[ Gips™rAHM
n (k,H)eIy
Since Zp is finite, the inner products are the same as wedges. Since for all (k, H),
the homotopy Mackey functors of G A S—ker A HM are zero outside of a finite

range (depending only on k and H), the outer product is also equivalent to the
wedge. ([

Example 16. An theorem of Pitsch-Ricka—Schrerer shows that any conjugation
space of Hausman—Holm—Puppe [1] are “mod 2” homologically pure and isotropic
[25]. This gives a large class of examples.

3.2. Consequences in computations. The condition of homological purity gives
surprising computational control.

3.2.1. Green functor structure.

Theorem 3.13. Let E be a homologically pure spectrum, and assume that E comes
equipped with a [commutative, associative] multiplication in the homotopy category.
Then for any commutative Green functor R which is a zero-slice, the multiplication
on

H,(E;R)
is completely determined by the restrictions to

H*(Z:E,E(G))
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Proof. The homological purity of E guarantees that the homology and cohomology
are free modules over the RO-graded homology of a point. In particular, the ring
structure is completely determined by the products of basis vectors. These occur
in dimensions of the form kpy for various k and H. If x € Hy,, (E;Z) and y €
Hy,,(E;Z), then the product of 2 and y is represented by a map out of

kpm Loy
(G+I/}S )/\(G+{]\S ).
This is a wedge of spaces of the form
G+ I/} SmpK,

1

where K ranges over all subgroups of the form H n gJg~* and where

mpx =i (kpu) +ixcg(lps).
In particular, this is a wedge of regular slice spheres, again, and hence the product

takes values in a zero slice by Proposition B.85. Since all restriction maps are
injections here, the result follows. ]

Corollary 3.14. If E is a homologically pure spectrum, then the RO-graded ring
structure on the cohomology of E with coefficients in any commutative Green zero
slice is functorially determined by the underlying cohomology ring.

3.2.2. Tambara functor structure. If, moreover, E is a G-FEy-ring spectrum, then
we also have good control over norms.

Theorem 3.15. If E is a G-commutative monoid in the homotopy category and
if X is a homologically pure spectrum, then for any Tambara zero-slice R, we have
that the norms in

H:(E ; R)

are determined by the formula
NG (@)= ] k).
yeG/H

Proof. The proof is the same as for the products. Here we use that the collection of
regular representations is a sub-semi-Mackey functor of the representation ring. [

Remark 3.16. Tambara functors which are also zero-slices were independently stud-
ied by Nakaoka, who called these “MRC” Tambara functors, in his study of local-
izations of Tambara functors [24].

3.2.3. CoTambara structure. Again, all of the desired structure can be read out of
the underlying homology. The conorm maps are detected as twisted coproducts.
The proofs are identical.

Theorem 3.17. Let E be a homologically pure spectrum, and assume that E comes
equipped with a co-[commutative, associative] comultiplication in the homotopy cat-
egory. Then for any commutative Green functor R which is a zero-slice, the comul-
tiplication on

Hi(E ;)
is completely determined by

H*(Z:E,E(G))
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Theorem 3.18. If E is a G-co-commutative comonoid in the homotopy category
and if X is a homologically pure spectrum, then for any Tambara zero-slice R, we
have that the conorms in
H.(E;R)
are determined by the formula
ENG@) = (( ® 7)ot
veG/H

3.2.4. Dyer-Lashof operations. Finally, we restrict to C2. None of the arguments
here are that specific to C5; the only issue is in defining the appropriate Dyer—
Lashof operations. For groups which contain Cs, norm arguments provide analogous
classes, but we have no idea in general. We recall Wilson’s RO(Cs2)-graded stable
operations.

Theorem 3.19 ([2, §3], [33]). For each i = 0 and for each € = 0,1, we have
Dyer—Lashof operations

Q" Hy(Fy) = Hapipy—c(-Fy).
When * = ips, QP is the square.
In this case, homological purity says that the underlying structure describes
everything.
Theorem 3.20. If E is a homologically pure Cs-Eo-ring spectrum, then we have
Q" Ho(B;Ey) = Huyipy—e(E:Fy)

is determined by the restrictions i*Q"2~¢. The “odd” operations Q*~1 can only
land in cells induced from the trivial group.

Proof. This again follows immediately from the assumption of homological purity.
O

3.3. Example: the homology of BUg.

3.3.1. The ring structure. We begin with the computation of the homology of BUg
with coefficients in Z. We give a slightly different proof than that of [16] and [26],
using instead our formulae above. This line of argument was undoubtedly known
by Araki and Landweber.

Theorem 3.21. There are classes
a; € H;,,(BUr; Z)
such that the induced map on Ay -rings
Z A S°ay,az,...] - Z A BUg

is an equivalence of Ca-equivariant associative algebras, and hence the Cy-space
BUrg is homologically pure and isotropic.

Proof. Araki lifted the classical, non-equivariant description of MU, MU, showing
MUgr A MUR ~ MUR[dl, .. .],

and in particular, this is free with a basis in regular representation dimensions. The
Thom isomorphism shows

MUgr ABUg, ~ MUgr A MUg
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as Cy-Fy-rings. Since HZ is a commutative ring spectrum under MUpg, the result
follows by base-change. O

Corollary 3.22. For any finite group G which contains Cs, the coinduced G-space
Map©? (G, BUR) is homologically pure and isotropic with basis given by the norm
of the monomial basis.

Remark 3.23. The classical Schubert cell analysis works equally well here, and the
underlying argument is essential the same as that of [7].

Notation 3.24. Let
H:=q HZ.
Corollary 3.25. We have an isomorphism of RO(Cs)-graded Green functors
H,(BUg;Z) = HZ[as, ... ],
where |a;| = ipa2.
We can also deduce the norms, coproducts, and conorms.

Proposition 3.26. The norms are given by
NC2(a;) = (~1)'a2.

K3

Finally, the co-Tambara structure is lifting the usual dual polynomial structure.
Since the space BUpg is finite type, we can equivalently describe the cohomology
ring and the norms there.

Proposition 3.27 ([I6]). The cohomology ring of BUg is
Hi(BU]R;Z) > Z[El, - ]

Moreover, the inclusions of equivariant mazimal tori into the Ur(n) identify these
Chern classes with the usual symmetric functions in the Chern roots.

Proof. Only the second part requires proof, since BUg is homologically pure, isotropic,
and of finite type. The same is true for the space (CP*)*™. The induced map on
cohomology is the determined by the underlying homology, and we reduce to the
classical case. (|

Proposition 3.28. The norms of the Chern classes are also the squares:
N2 (ei) = (-1)'e.

Finally, using Theorem 320 we deduce the action of Wilson’s Dyer—Lashof op-
erations.

Theorem 3.29. The Dyer—Lashof operations Q°? on H,(BUg;F,) act as
Q" (a;) = (T

The Dyer—Lashof operations Q*2~! are identically zero.

n

)aiﬂ» mod decomposables.
—n—1

Proof. Theorem [3.20] implies that these operations are completely determined by
the underlying action. The ordinary Dyer—Lashof action on the homology of BU
was determined by Kochman [T, [19]. O

As an aside, this also gives the Dyer—Lashof action on the space BO by applying
geometric fixed points.
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Corollary 3.30 ([I7, Theorem 36]). In
H*(BO,FQ) = Fg[el, .. .],

we have for allr >0 andn > 1,

@ - (

n

)enJrT mod decomposables.
r—n-—1

4. BAR AND TWISTED BAR SPECTRAL SEQUENCES

For R-free spectra, we have readily computable equivariant versions of the clas-
sical Rothenberg—Steenrod and Eilenberg—Moore spectral sequences. For G = Cy,
we also have twisted versions of these where the group acts also on the homotopy
pullback diagram. We explain how these work here, giving an example for the bar
spectral sequence.

4.1. Bar and Rothenberg—Steenrod. Let A be an associative monoid in G-
spaces. Let X be a right A-space and let Y be a left A-space. In this case, the
derived balanced product can be computed via the bar construction:

X xY = B(X.AY),

where B(X, A,Y) is the geometric realization of the simplicial complex
k- Bi(X,A,Y) =X x A** xY,

and where as usual, the structure maps are the actions or product in A.
If A and either X or Y are R-free, then we have a bar spectral sequence com-
puting the R-homology of this.

Theorem 4.1. If A and either X orY are R-free, then we have an Adams-graded
spectral sequence
Ry (A)

—S

Ey* = Tor

(Ru(X), Bu(Y)) = Raca( X X Y).

Proof. Our assumptions guarantee that for each k, the R-homology of B (X, A,Y)
is given by
R.(Br(X,AY)) = Ri(X)ERi(A)DkERi(Y)a

and the maps are the standard resolution computing Tor. O

Remark 4.2. Lewis—Mandell give an RO(G)-graded version of the Kiinneth spectral
sequence which gives the exact same result, since our bar complex becomes the
relative smash product upon taking X%. The resulting spectral sequence is the
same [21], since it is built the same way.

Applying cohomology instead to the bar construction when X =Y = =% gives
the Rothenberg—Steenrod spectral sequence [29]. Our assumptions allow this to be
determined as well.

Theorem 4.3. If A is R-free and A is finite type, then we have a spectral sequence
Ey* = Exth. a) (R*, R*) = R**(BA).
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4.1.1. Ezample: BBUg. Since BUgr is HZ-free, we can run the bar spectral se-
quence to compute the homology of BBUg.

Proposition 4.4 ([21]). There is an Adams-style spectral sequence with
E?, = Tory’ gy (HE HE) =~ Ey, (41,...) = m,_,(HZ » BBUR),

=s,x
where §; is the element in Tor® represented by a; and has bidegree (—1,ipy).

Since all of the algebra generators are in filtration (—1), this spectral sequence

.. z .- .
collapses at Ep. This is a free Hy-module, hence there are no additive extensions.
There are, however, multiplicative extensions.

Theorem 4.5. As an RO(Cy)-graded Green functor,
H.(BBUw; Z) = H.[51, 02, - -1/7; = aoait1,
where §; is a fixed element of degree ips + 1.

Proof. The Dyer—Lashof operations commute with the homology suspension, and
since this factors through the indecomposables, our earlier analysis gives on-the-
nose identifications of the Dyer—Lashof actions.

Wilson has shown that for a class in degree (nps + 1), the square is stable and
can be written as

() = a, Qe
In particular, the squares are given by

72 = asQU Vg, = 4, [QUTVP2a, | = ag[azns1] = aoont1-

O

Remark 4.6. The geometric fixed points of this are again polynomial, and we recover
the result of Kochman [17].

Since the homology of BBUg is free, we can easily determine the homology of
the coinduced BBUg.

Theorem 4.7. For any G = Can, we have
H,(Mapg, (G, BBUR); Z) = N&, (H,(BBUg; Z)).

4.1.2. Twisted bar spectral sequence. In Cs-equivariant homotopy, we have an ad-
ditional version of the Fj-operad: the E,-operad. Algebras for this have no multi-
plication on their fixed points, but they do have a transfer map and an underlying
multiplication. A summary can be found in [IT].

If A is an E,-algebra, then we can form a kind of balanced product

A— X

| |

X —— X x X,

where C acts on the whole diagram by swapping the two copies of X. This amounts
to the data of a space X acted on by the associative monoid i*¥ A. The E,-structure
on A means that the group action gives an isomorphism ¥ A ~ ¢* A°P, and hence
the action on X also canonically gives a right action. The twisted balanced product
swaps the two factors of X and also then necessarily changes these left and right
actions.
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Definition 4.8. If A is an E,-algebra and X is an ¢} A-module, then let
B°(4;X)=B (A, Map(Caq, A), Map(Cs, X)) ,
where the action of Map(Cs, A) on A is via the E,-structure.

Perhaps the most interest case is when X is a point. In this case, the balance
product is a model for the signed classifying space.

Theorem 4.9. If A has R-free homology, then we have a spectral sequence which
Adams indexed has the form

N2 (i¥ Ry (i 4)) (

E3* = Tor™ Ry (Map(Co, X)), Re(A)) = Ry, (B°(4; X)).

If X also has R-free homology, then the action of N2 (i¥ Ry (ifA)) on
Ry (Map(Cy, X)) = N2 (i Ry (X))
is the one induced by functoriality.

4.2. Eilenberg—Moore. Following Rector, we build a geometric model of the
Eilenberg—Moore spectral sequence [27, [30]. Just as non-equivariantly, a space
X together with a map to B can be viewed as a B-comodule (and in fact, we have
much more structure equivariantly coming from the twisted diagonals). This allows
us to form the cobar cosimplicial complex as a model for the homotopy pullback.

If X - B and B <« Y are maps of G-spaces, then a model for the homotopy
pullback is given by

X Eh Y ~ coB(X,B,Y),

where coB(X, B,Y) is the totalization of the cosimplicial complex
k— X x B*F x Y,

and where the structure maps are the diagonal of B or the respective coaction
maps. If B and either X or Y are R-free and finite type, then we have a spectral
sequence computing cohomology. In general, convergence of this spectral sequence
is very delicate, just as classically. For this reason, we state the result only for
Bredon homology with coefficients in a Green functor.

Theorem 4.10. If B and either X or Y has R-free homology, then we have a
spectral sequence

B, = Tor; P8 (H*(X; R), H*(Y; R)) = H***(X x"Y;R).
B

S

4.2.1. Twisted FEilenberg—Moore. Dual to the twisted pushout, we have a twisted
homotopy pullback.

Definition 4.11. If f: X — i*B, then let X % X be the defined by the homotopy
B
pullback

X %X X —— Map(Ca, X)
B

i lMap(cz,ﬁ

B ——— Map(Cy, B).
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Explicitly, a point in the homotopy pullback is given by a triple:
((:Co,xl),b, (70,71)) € Map(Cs, X) x B x Map(Cg,B)I.

This can be viewed as a pair of paths: one from b to f(x¢) and one from gb to
gf(x1). The group action swaps the points and the paths. A fixed point is then
one for which b = gb, o = z1, and gyo = 1. Put another way, this is an equivariant
map

~v:[-1,1] — B,
where y(—1) = f(zo), and where [—1,1] < R_ is the balanced interval in the sign
representation. In other words, this is the signed version of the homotopy pullback.

Remark 4.12. If X is a point, then this gives us the space of signed loops into B.
If X = B, then the homotopy pullback gives the space of paths connecting
points in B€2 but possibly passing through B.

This pullback gives a cobar complex and hence an Eilenberg—Moore spectral
sequence via Theorem [4.10

Theorem 4.13. If B has R-free homology, and if R is a Tambara functor then we
have a spectral sequence

NE2H* (i B;R(C2))

By = Tor™: (Hi(Map(OQ, X);E),Hi(B;E)) = HAS(X g X;R).

Moreover, if X also has R-free homology, then the action on
H%(Map(Cs, X); R) = N&2H*(X; R(C))
is induced by the non-equivariant one.

We believe that these spectral sequences will be useful in computing the coho-
mology of equivariant Eilenberg-Mac Lane spaces.
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