A NOTE ON THE DIVISIBILITY OF THE WHITEHEAD SQUARE

HARUO MINAMI

Abstract

We show that if we suppose $n \geq 4$ and $\pi_{2 n-1}^{S}$ has no 2 -torsion, then the Whitehead squares of the identity maps of $S^{2 n+1}$ and $S^{4 n+3}$ are divisible by 2 . By applying the result of G . Wang and Z . Xu on π_{61}^{S}, we find that the Kervaire invariant one elements in dimensions 62 and 126 exist.

1. Introduction

Let $\left[\iota_{n}, \iota_{n}\right] \in \pi_{2 n-1}\left(S^{n}\right)$ denote the Whitehead square of $\iota_{n} \in \pi_{n}\left(S^{n}\right)$ where ι_{n} is the homotopy class of the identity map of S^{n}. For n odd $\neq 1,3,7$, it is well known that $\left[\iota_{n}, \iota_{n}\right]$ generates a subgroup of order 2 [2]. Furthermore, when n is not of the form $2^{r}-1$, this subgroup splits off as a direct summand [3]. Let $n_{k}=2^{k}-1$ and write w_{k} for $\left[\iota_{2 n_{k}+1}, \iota_{2 n_{k}+1}\right] \in \pi_{4 n_{k}+1}\left(S^{2 n_{k}+1}\right)$. In this note we consider the divisibility of w_{k} by 2 . But, since $w_{1}=0$ and $w_{2}=0[7]$, we assume here that $k \geq 3$. The main result is then the following

Theorem. Suppose $\pi_{2 n_{k}-1}^{S}$ has no 2-torsion. Then w_{k} and w_{k+1} are divisible by 2.
From [7] and [8] we know that ${ }_{2} \pi_{13}^{S}=0$ and ${ }_{2} \pi_{61}^{S}=0$ where the subscript 2 represents the 2-primary part. By applying these two results to the theorem we obtain

Corollary. w_{3}, w_{4}, w_{5} and w_{6} are divisible by 2.
Because the Kervaire invariant one element $\theta_{k} \in \pi_{2 n_{k}}^{S}$ exists if and only if $w_{k} \in$ $2 \pi_{4 n_{k}+1}\left(S^{2 n_{k}+1}\right)$ [1], this corollary together with the fact that $w_{1}=0$ and $w_{2}=0$ shows that there exist $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}$ and θ_{6}. This settles the problem of determining whether or not there exists θ_{6} which has been perhaps left unsolved. Based on the result of [4] that θ_{k} does not exist for $k \geq 7$, it can be therefore concluded that the only θ_{k} which exist are these six ones.

In order to prove the theorem we use an expression for w_{k} by means of the characteristic map of a principal bundle over a sphere. Let $T_{n+1}: S^{n-1} \rightarrow S O(n)$ denote the characteristic map of the canonical principal $S O(n)$-bundle $S O(n+1) \rightarrow S^{n}$ and let J be the J-homomorphism $\pi_{n-1}(S O(n)) \rightarrow \pi_{2 n-1}\left(S^{n}\right)$. Then from [5, p. 521] we know that, when n is odd $\geq 9,\left[\iota_{n}, \iota_{n}\right]$ can be written $\left[\iota_{n}, \iota_{n}\right]=J\left(\left[T_{n+1}\right]\right)$, so that

$$
w_{k}=J\left(\left[T_{n_{k}+2}\right]\right) \quad(k \geq 3)
$$

(the bracket [] denotes the homotopy class).

[^0]Let \mathbb{R}^{n} be euclidean space: $x=\left(x_{1}, \cdots, x_{n}\right)$. Let $S^{n-1} \subset \mathbb{R}^{n}$ be the unit sphere with base point $x_{0}=(0, \cdots, 0,1)$. According to [6], T_{n+1} is then given by

$$
T_{n+1}(x)=\left(\delta_{i j}-2 x_{i} x_{j}\right)\left(\begin{array}{cc}
I_{n-1} & 0 \\
0 & -1
\end{array}\right) \quad(1 \leq i, j \leq n)
$$

where I_{n-1} is the identity matrix of dimension $n-1$. Then obviously $T_{n+1}\left(\pm x_{0}\right)=I_{n}$. Let $\Sigma^{n}=\mathbb{R}^{n} \cup\{\infty\}$ be the one-point compactification of \mathbb{R}^{n} with ∞ as base-point. Applying the Hopf construction to T_{n+1} we obtain a map

$$
\tau_{n}: \Sigma^{n} \wedge S^{n-1} \rightarrow \Sigma^{n}
$$

By virtue of $T_{n+1}\left(\pm x_{0}\right)=I_{n}$ it follows that

$$
\tau_{n} \mid \Sigma^{n} \wedge S^{0} \simeq c_{\infty}
$$

where $S^{0}=\left\{x_{0},-x_{0}\right\}$ and c_{∞} denotes the constant map at ∞. Since $\left(\Sigma^{n}, \infty\right) \simeq\left(S^{n}, x_{0}\right)$, ii is clear that $\left[\tau_{n}\right]=J\left(\left[T_{n+1}\right]\right) \in \pi_{2 n-1}\left(S^{n}\right)$ and so $w_{k}=\left[\tau_{n_{k}+1}\right]$ for $k \geq 3$.

For $1 \leq s \leq n-1$, if we set $x^{\prime}=\left(x_{1}, \cdots, x_{s}\right)$ and $x^{\prime \prime}=\left(x_{s+1}, \cdots, x_{n}\right)$, then the map $\left(x^{\prime}, x^{\prime \prime}\right) \rightarrow\left(-x^{\prime}, x^{\prime \prime}\right)$ of \mathbb{R}^{n} defines involutions on Σ^{n} and S^{n-1}, denoted by $\bar{a}_{s, n-s}$ and $a_{s, n-s}$, respectively. Let $I_{s, n-s}=\left(-I_{s}\right) \times I_{n-s}$ be the diagonal matrix whose first s diagonal elements equal to -1 and the remaining $n-s$ diagonal elements equal to 1 . Then we find that

$$
T_{n+1}\left(a_{s, n-s}(x)\right)=I_{s, n-s} T_{n+1}(x) I_{s, n-s} \quad\left(x \in S^{n-1}\right) .
$$

This gives $\tau_{n}\left(\bar{a}_{s, n-s}(v) \wedge a_{s, n-s}(x)\right)=\bar{a}_{s, n-s}\left(\tau_{n}(v \wedge x)\right)$ where $v \in \Sigma^{n}, x \in S^{n-1}$, i.e.

$$
\tau_{n} \circ\left(\bar{a}_{s, n-s} \wedge a_{s, n-s}\right)=\bar{a}_{s, n-s} \circ \tau_{n} \quad(0 \leq s \leq n-1) .
$$

If s can be written as $s=2 j+r(j, r \geq 0)$, then considering the above formula with $I_{s, n-s} T_{n+1}(x) I_{s, n-s}$ replaced by

$$
\left(-I_{r} \times \nu(t) \times I_{n-s}\right) T_{n+1}(x)\left(-I_{r} \times \nu(t)^{-1} \times I_{n-s}\right)
$$

where $\nu(t)$ is a path in $S O(2 j)$ from $-I_{2 j}$ to $I_{2 j}$, we obtain

$$
\tau_{n} \circ\left(\bar{a}_{r, n-r} \wedge a_{s, n-s}\right) \simeq \bar{a}_{r, n-r} \circ \tau_{n} \quad(0 \leq s \leq n-1) .
$$

This is a homotopy relative to $\Sigma^{n} \wedge S^{0}$, so that it maintains the relation $\tau_{n} \mid \Sigma^{n} \wedge S^{0} \simeq c_{\infty}$. In particular, when s is even, it becomes a homotopy

$$
\tau_{n} \circ\left(1 \wedge a_{s, n-s}\right) \simeq \tau_{n} \quad(0 \leq s \leq n-1)
$$

where 1 denotes the identity map of Σ^{n}. This exhibits a certain symmetry property of τ_{n} about x_{n}-axis. In the case when s is odd, considering its suspension $S \tau_{n}$ instead of τ_{n} we have

$$
S \tau_{n} \circ\left(1 \wedge a_{s, n-s}\right) \simeq S \tau_{n} \quad(0 \leq s \leq n-1)
$$

where 1 is the identity map of Σ^{n+1} (here Σ^{n+1} is identified with the suspension $S \Sigma^{n}$ of Σ^{n} in the usual way).

For $1 \leq s \leq n-1$, let $\mathbb{R}^{n-s} \subset \mathbb{R}^{n}$ be the subspace defined by $x_{1}=\cdots=x_{s}=0$ and let (Σ^{n-s}, S^{n-s-1}) be the pair defined for it above. Then according to the definition of τ_{n} we see that the restriction of τ_{n} to $\Sigma^{n} \wedge S^{n-s-1}$ can be written as the composition

$$
\Sigma^{n} \wedge S^{n-s-1} \xrightarrow{p \wedge 1} \Sigma^{n-s} \wedge S^{n-s-1} \xrightarrow{\tau_{n-s}} \Sigma^{n-s} \xrightarrow{i} \Sigma^{n}
$$

where p and i denote the maps induced by the canonical projection of \mathbb{R}^{n} onto \mathbb{R}^{n-s} and inclusion of \mathbb{R}^{n-s} into \mathbb{R}^{n}, respectively and 1 denotes the identity map of S^{n-s-1}. This means that the restriction of τ_{n} to $\Sigma^{n} \wedge S^{n-s-1}$ coincides with the s-fold suspension of τ_{n-s}, i.e. $\tau_{n} \mid \Sigma^{n} \wedge S^{n-s-1}=S^{s} \tau_{n-s}$. But, by abuse of notation, we use the notation $\tau_{n} \mid \Sigma^{n} \wedge S^{n-s-1}$ to denote the composite of the first two maps, i.e. we write

$$
\tau_{n} \mid \Sigma^{n} \wedge S^{n-s-1}=\tau_{n-s} \circ(p \wedge 1)
$$

Given $f, g: \Sigma^{n} \wedge S^{n-1} \rightarrow \Sigma^{n}$, the sum $f+g$ is given by the composition

$$
\Sigma^{n} \wedge S^{n-1} \xrightarrow{\Delta}\left(\Sigma^{n} \wedge S^{n-1}\right) \vee\left(\Sigma^{n} \wedge S^{n-1}\right) \xrightarrow{f \vee g} \Sigma^{n} \vee \Sigma^{n} \xrightarrow{\mu} \Sigma^{n}
$$

where Δ is the inclusion induced by the diagonal map of S^{n-1} or Σ^{n} as necessary and μ the folding map.

Let $D_{ \pm}^{n-1}=S^{n-1} \cap\left\{x \mid \pm x_{1} \geq 0\right\}$. Then $S^{n-1}=D_{+}^{n-1} \cup D_{-}^{n-1}$ and $S^{n-2}=D_{+}^{n-1} \cap D_{-}^{n-1}$. Put $S_{ \pm}^{n-1}=D_{ \pm}^{n-1} / S^{n-2}$. Then S^{n-1} / S^{n-2} becomes homeomorphic to $S_{+}^{n-1} \vee S_{-}^{n-1}$. Denote by $\pi: \Sigma^{n} \wedge S^{n-1} \rightarrow\left(\Sigma^{n} \wedge S_{+}^{n-1}\right) \vee\left(\Sigma^{n} \wedge S_{-}^{n-1}\right)$ the composition of the quotient map $\Sigma^{n} \wedge S^{n-1} \rightarrow \Sigma^{n} \wedge S^{n-1} / \Sigma^{n} \wedge S^{n-2}$ and the homeomorphism to $\left(\Sigma^{n} \wedge S_{+}^{n-1}\right) \vee\left(\Sigma^{n} \wedge S_{-}^{n-1}\right)$. Let $\pi_{ \pm}: S^{n-1} \rightarrow S_{ \pm}^{n-1}$ denote the collapsing maps. We use also the same symbols $\pi_{ \pm}$to denote the m-fold suspension $S^{m} \pi_{ \pm}(m \geq n)$.

The proof of the theorem proceeds in four steps. First, we consider the decomposition of $S \tau_{n}$ into two homotopic maps.

Lemma 1. Suppose $S \tau_{n} \mid \Sigma^{n+1} \wedge S^{n-2} \simeq c_{\infty}$ where S^{n-2} denotes the equator of S^{n-1} defined by $x_{1}=0$. Then there exist maps $f_{ \pm}: \Sigma^{n+1} \wedge S_{ \pm}^{n-1} \rightarrow \Sigma^{n+1}$ such that $S \tau_{n} \simeq f_{+} \circ S \pi_{+}-f_{-} \circ S \pi_{-}, f_{-} \circ S \pi_{-} \simeq-f_{+} \circ S \pi_{+}$, so that $S \tau_{n} \simeq 2 f_{+} \circ S \pi_{+}$.

Proof. Because of the assumption, $S \tau_{n}: \Sigma^{n+1} \wedge S^{n-1} \rightarrow \Sigma^{n+1}$ can be factorized through the quotient $\Sigma^{n+1} \wedge S^{n-1} / \Sigma^{n+1} \wedge S^{n-2}$ into the composition

$$
\Sigma^{n+1} \wedge S^{n-1} \xrightarrow{S \pi}\left(\Sigma^{n+1} \wedge S_{+}^{n-1}\right) \vee\left(\Sigma^{n+1} \wedge S_{-}^{n-1}\right) \xrightarrow{f_{+} \vee f_{-}} \Sigma^{n+1} \vee \Sigma^{n+1} \xrightarrow{\mu} \Sigma^{n+1}
$$

where $f_{ \pm}: \Sigma^{n+1} \wedge S_{ \pm}^{n-1} \rightarrow \Sigma^{n+1}$. This shows due to the definition of the sum of maps that

$$
S \tau_{n} \simeq f_{+} \circ \pi_{+}-f_{-} \circ \pi_{-}
$$

Consider the homeomorphism $1 \wedge a_{1, n-1}$ of $\Sigma^{n+1} \wedge S^{n-1}$ onto itself given above. Then, since its restriction to $\Sigma^{n+1} \wedge S^{n-2}$ is the identity map, it induces homeomorphisms $\left(1 \wedge a_{1, n-1}\right)_{ \pm}: \Sigma^{n+1} \wedge S_{ \pm}^{n-1} \rightarrow \Sigma^{n+1} \wedge S_{\mp}^{n-1}$ (the double signs as usual are to be taken in the same order). Using the formula $S \tau_{n} \circ\left(1 \wedge a_{1, n-1}\right) \simeq S \tau_{n}$ we can see that $f_{ \pm}$satisfy

$$
f_{-} \simeq f_{+} \circ\left(1 \wedge a_{1, n-1}\right)_{-}
$$

so that $f_{-} \circ \pi_{-} \simeq f_{+} \circ\left(1 \wedge a_{1, n-1}\right)_{-} \circ \pi_{-}$. Since clearly $\left(1 \wedge a_{1, n-1}\right)_{-} \circ \pi_{-} \simeq \pi_{+} \circ$ $\left(1 \wedge a_{1, n-1}\right)$ and $\pi_{+} \circ\left(1 \wedge a_{1, n-1}\right) \simeq-\pi_{+}$, we have $\left(1 \wedge a_{1, n-1}\right)_{-} \circ \pi_{-} \simeq-\pi_{+}$and so $f_{+} \circ\left(1 \wedge a_{1, n-1}\right)_{-} \circ \pi_{-} \simeq-f_{+} \circ \pi_{+}$. Substituting the relation obtained above in this formula we get $f_{-} \circ \pi_{-} \simeq-f_{+} \circ \pi_{+}$, which completes the proof.

2. Decompositions of $\tau_{2 n+1}$ and $\tau_{2 n+2}$

From now, let $n=n_{k} / 2$ and assume that the assumption of the theorem is fulfilled, i.e., ${ }_{2} \pi_{2 n-1}^{S}=0$. Also we work modulo odd torsion since we consider the 2 -primary homotopy decomposition of maps.

From the fact that the suspension homomorphism $E: \pi_{4 n-1}\left(S^{2 n}\right) \rightarrow \pi_{4 n}\left(S^{2 n+1}\right)$ of the $E H P$ sequence is a surjection with kernel \mathbb{Z}, generated by $\left[\iota_{2 n}, \iota_{2 n}\right]$, we see that it induces an isomorphism ${ }_{2} \pi_{4 n-2}\left(S^{2 n}\right) \cong{ }_{2} \pi_{2 n-1}^{S}$ between their 2-primary parts. Hence from the assumption above we have

$$
\begin{equation*}
{ }_{2} \pi_{4 n-1}\left(S^{2 n}\right)=0 . \tag{*}
\end{equation*}
$$

In the above, when we write \mathbb{R}^{n} as \mathbb{R}_{α}^{n} by attaching a suffix α, to denote its associated spaces and maps given above we use here the notations $\Sigma_{\alpha}^{n}, S_{\alpha}^{n-1},\left(D_{\alpha}^{n-1}\right)_{ \pm},\left(S_{\alpha}^{n-1}\right)_{ \pm}$, $\left(\tau_{n}\right)_{\alpha},\left(\pi_{\alpha}\right)_{ \pm}$with adding the suffix α.

Lemma 2. Under the assumption of Theorem, there exist maps $g_{ \pm}: \Sigma^{2 n+q} \wedge S_{ \pm}^{2 n+q-1} \rightarrow$ $\Sigma^{2 n+q}$ for $q=1,2$ such that $\tau_{2 n+q} \simeq g_{+} \circ \pi_{+}-g_{-} \circ \pi_{-}, g_{-} \circ \pi_{-} \simeq-g_{+} \circ \pi_{+}$, so that $\tau_{2 n+q} \simeq 2 g_{+} \circ \pi_{+}$.

Proof of Case $q=1$. We first consider the suspension $S \tau_{2 n}: \Sigma^{2 n+1} \wedge S^{2 n-1} \rightarrow \Sigma^{2 n+1}$ of $\tau_{2 n}$. Then $S \tau_{2 n} \mid \Sigma^{2 n+1} \wedge S^{2 n-2}$ represents a map from $\Sigma^{2 n} \wedge S^{2 n-1}$ to $\Sigma^{2 n}$, so by (*) we have

$$
\begin{equation*}
S \tau_{2 n} \mid \Sigma^{2 n+1} \wedge S^{2 n-2} \simeq c_{\infty} \tag{1}
\end{equation*}
$$

This shows that the null homotopy condition of Lemma 1 with n replaced by $2 n$ is satisfied and therefore we see that there exists a decomposition of $S \tau_{2 n}$ such that

$$
\begin{equation*}
S \tau_{2 n} \simeq f_{+} \circ \pi_{+}-f_{-} \circ \pi_{-}, \quad f_{-} \circ \pi_{-} \simeq-f_{+} \circ \pi_{+} \tag{2}
\end{equation*}
$$

where $f_{ \pm}: \Sigma^{2 n+1} \wedge S_{ \pm}^{2 n-1} \rightarrow \Sigma^{2 n+1}$.
Using polar coordinates for the first two variables x_{1}, x_{2} we express $x \in \mathbb{R}^{2 n+1}$ as

$$
x_{t}=\left(r \cos t, r \sin t, x_{3}, \cdots, x_{2 n+1}\right) \quad(0 \leq t<\pi, r \in \mathbb{R}) .
$$

For any fixed t, let $\mathbb{R}_{t}^{2 n} \subset \mathbb{R}^{2 n+1}$ denote the $2 n$-dimensional subspace generated by the x_{t}. Regard $\mathbb{R}^{2 n}$ as $\mathbb{R}_{t}^{2 n}$ with $t=0$ and put

$$
M(t)=\left(\begin{array}{ccc}
\cos t & -\sin t & 0 \\
\sin t & \cos t & 0 \\
0 & 0 & I_{2 n-1}
\end{array}\right)
$$

Then the map $x \rightarrow x M(t)^{T}$ gives a linear isomorphism $\mathbb{R}^{2 n} \rightarrow \mathbb{R}_{t}^{2 n}$ (the subscript T denotes the transpose). This induces homeomorphisms $\bar{e}_{t}: \Sigma^{2 n+1} \rightarrow S \Sigma_{t}^{2 n}, e_{t}: S^{2 n-1} \rightarrow$ $S_{t}^{2 n-1}$ and $e_{t \pm}: S_{ \pm}^{2 n-1} \rightarrow\left(S_{t}^{2 n-1}\right)_{ \pm}$. Here $\left(S_{t}^{2 n-1}\right)_{ \pm}=\left(D_{t}^{2 n-1}\right)_{ \pm} / S^{2 n-2}$ where $\left(D_{t}^{2 n-1}\right)_{ \pm}=$ $S_{t}^{2 n-1} \cap\left\{x_{t} \mid \pm r \geq 0\right\}$ and $S^{2 n-2}$ is the unit sphere in $\mathbb{R}^{2 n-1} \subset \mathbb{R}_{t}^{2 n}$ defined by $r=0$. Then clearly $\pi_{t \pm} \circ\left(\bar{e}_{t} \wedge e_{t}\right)=\left(\bar{e}_{t} \wedge e_{t \pm}\right) \circ \pi_{ \pm}$. Let $\left(\tau_{2 n}\right)_{t}=\tau_{2 n+1} \mid \Sigma_{t}^{2 n} \wedge S_{t}^{2 n-1}$ and $f_{t \pm}: S \Sigma_{t}^{2 n} \wedge\left(S_{t}^{2 n-1}\right)_{ \pm} \rightarrow S \Sigma_{t}^{2 n}$ be the maps defined by the formula $f_{t \pm} \circ\left(\bar{e}_{t} \wedge e_{t \pm}\right)=\bar{e}_{t} \circ f_{ \pm}$ where $f_{ \pm}$are as in (2). Then we have

$$
S\left(\tau_{2 n}\right)_{t} \circ\left(\bar{e}_{t} \wedge e_{t}\right)=\bar{e}_{t} \circ S \tau_{2 n}, \quad\left(f_{t \pm} \circ \pi_{t \pm}\right) \circ\left(\bar{e}_{t} \wedge e_{t \pm}\right)=\bar{e}_{t} \circ\left(f_{ \pm} \circ \pi_{ \pm}\right)
$$

respectively. Substituting $S \tau_{2 n}$ and $f_{ \pm} \circ \pi_{ \pm}$derived from these equalities by composing \bar{e}_{t}^{-1} in (2) we get

$$
\begin{equation*}
S\left(\tau_{2 n}\right)_{t} \simeq f_{t+} \circ \pi_{t+}-f_{t-} \circ \pi_{t-}, \quad f_{t-} \circ \pi_{t-} \simeq-f_{t_{+}} \circ \pi_{t+} \quad(0 \leq t<\pi) \tag{3}
\end{equation*}
$$

Similarly, through $S\left(\tau_{2 n}\right)_{t} \circ\left(\bar{e}_{t} \wedge e_{t}\right)=\bar{e}_{t} \circ S \tau_{2 n}$, the formula (1) can be rewritten as

$$
S\left(\tau_{2 n}\right)_{t} \mid S \Sigma_{t}^{2 n} \wedge S^{2 n-2} \simeq c_{\infty}
$$

Also we inherit $S\left(\tau_{2 n}\right)_{t} \circ\left(1 \wedge a_{1,2 n-1}\right) \simeq S\left(\tau_{2 n}\right)_{t}$ from $S \tau_{2 n} \circ\left(1 \wedge a_{1,2 n-1}\right) \simeq S \tau_{2 n}$. Considering (3) together with these two formulas we can determine the behavior of maps $f_{t \pm}$ when, for any fixed t, rotating along the region of t by π degrees.

According to the definition of the sum of maps we have a homotopy

$$
f_{t+\pi_{+}} \circ \pi_{t+\pi_{+}} \simeq-f_{t+} \circ \pi_{t+}
$$

On the other hand, according to the definition of f_{t-}, we have

$$
f_{t+\pi_{+}} \circ \pi_{t+\pi_{+}} \simeq-f_{t-} \circ \pi_{t-}
$$

so that it follows that

$$
f_{t+} \circ \pi_{t+} \simeq f_{t-} \circ \pi_{t-}
$$

By applying this to the former formula of (3) we get $S\left(\tau_{2 n}\right)_{t} \mid S \Sigma_{t}^{2 n} \wedge S_{t}^{2 n-1} \simeq c_{\infty}$. So identifying $S \Sigma_{t}^{2 n}$ with $\Sigma^{2 n+1}$ in the usual way we obtain

$$
\begin{equation*}
\tau_{2 n+1} \mid \Sigma^{2 n+1} \wedge S_{t}^{2 n-1} \simeq c_{\infty} \quad(0 \leq t<\pi) \tag{4}
\end{equation*}
$$

Take $t=\pi / 2$. Then $S^{2 n} / S_{t}^{2 n-1} \approx S_{+}^{2 n} \vee S_{-}^{2 n}$ where $S_{ \pm}^{2 n}=S^{2 n} \cap\left\{x_{t} \mid \pm x_{1} \geq 0\right\}$. Thereby the null homotopy of (4), as in the case of $S \tau_{2 n}$, yields a factorization of $\tau_{2 n+1}$ into the composition

$$
\Sigma^{2 n+1} \wedge S^{2 n} \xrightarrow{\pi}\left(\Sigma^{2 n+1} \wedge S_{+}^{2 n}\right) \vee\left(\Sigma^{2 n+1} \wedge S_{-}^{2 n}\right) \xrightarrow{g_{+} \vee g_{-}} \Sigma^{2 n+1} \vee \Sigma^{2 n+1} \xrightarrow{\mu} \Sigma^{2 n+1}
$$

so that a decomposition $\tau_{2 n+1} \simeq g_{+} \circ \pi_{+}-g_{-} \circ \pi_{-}$where $g_{ \pm}: \Sigma^{2 n+1} \wedge S_{ \pm}^{2 n} \rightarrow \Sigma^{2 n+1}$. But in fact, $g_{ \pm}$can be obtained by unifying $f_{t \pm}$ according to the former formula of (3) under the null homotopy of (4), respectively, and therefore we have $g_{-} \circ \pi_{-} \simeq-g_{+} \circ \pi_{+}$from the latter of (3).

Proof of Case $q=2$. In order to use the results in the proof of the case $q=1$, we adopt spherical polar coordinate representation for the first three variables x_{1}, x_{2}, x_{3} and express $x \in \mathbb{R}^{2 n+2}$ as

$$
x_{\theta t}=\left(r \cos \theta, r \sin \theta \cos t, r \sin \theta \sin t, x_{4}, \cdots, x_{2 n+2}\right) \quad(0 \leq \theta \leq \pi, 0 \leq t<\pi, r \in \mathbb{R}) .
$$

For a fixed $0<\theta<\pi$, let $\mathbb{R}_{\theta}^{2 n+1} \subset \mathbb{R}^{2 n+2}$ denote the $(2 n+1)$-dimensional subspace generated by the $x_{\theta t}$. In addition, fix t, then these elements define the $2 n$-dimensional subspace $\mathbb{R}_{\theta t}^{2 n} \subset \mathbb{R}_{\theta}^{2 n+1}$. For any fixed t, let $\mathbb{R}_{t}^{2 n} \subset \mathbb{R}^{2 n+2}$ denote the subspace generated by the $x_{\theta t}$ with $\theta=\pi / 2$ and put

$$
M(\theta t)=\left(\begin{array}{cccc}
\sin \theta & \cos \theta \cos t & \cos \theta \sin t & 0 \\
-\cos \theta \cos t & \sin \theta & 0 & 0 \\
-\cos \theta \sin t & 0 & \sin \theta & 0 \\
0 & 0 & 0 & I_{2 n-1}
\end{array}\right) \quad(0<\theta<\pi)
$$

Then the map $x \rightarrow x M(\theta t)^{T}$ gives a linear isomorphism $\mathbb{R}_{t}^{2 n} \rightarrow \mathbb{R}_{\theta t}^{2 n}$. Denote by $\bar{e}_{\theta t}: S \Sigma_{t}^{2 n} \rightarrow S \Sigma_{\theta t}^{2 n}, e_{\theta t}: S_{t}^{2 n-1} \rightarrow S_{\theta t}^{2 n-1}$ and $\left(b_{\theta t}\right)_{ \pm}:\left(S_{t}^{2 n-1}\right)_{ \pm} \rightarrow\left(S_{\theta t}^{2 n-1}\right)_{ \pm}$the homeomorphisms induced by this isomorphism. Here $\left(S_{\theta t}^{2 n-1}\right)_{ \pm}=\left(D_{\theta t}^{2 n-1}\right)_{ \pm} / S_{\theta t}^{2 n-2}$ where $\left(D_{\theta t}^{2 n-1}\right)_{ \pm}=S_{\theta t}^{2 n-1} \cap\left\{x_{\theta t} \mid \pm r \geq 0\right\}$ and $S_{\theta t}^{2 n-2}=S_{\theta t}^{2 n-1} \cap\left\{x_{\theta t} \mid r=0\right\}$. Then putting $\left(\tau_{2 n}\right)_{\theta t}=\tau_{2 n+2} \mid \Sigma_{\theta t}^{2 n} \wedge S_{\theta t}^{2 n-1}$ we have

$$
S\left(\tau_{2 n}\right)_{\theta t} \circ\left(\bar{e}_{\theta t} \wedge e_{\theta t}\right)=\bar{e}_{\theta t} \circ S\left(\tau_{2 n}\right)_{t} .
$$

We also have

$$
\left(\left(f_{\theta t}\right)_{ \pm} \circ\left(\pi_{\theta t}\right)_{ \pm}\right) \circ\left(\bar{b}_{\theta t} \wedge b_{\theta t}\right)=\bar{b}_{\theta t} \circ\left(f_{t \pm} \circ \pi_{t \pm}\right)
$$

where $\left(f_{\theta t}\right)_{ \pm}: S \Sigma_{\theta t}^{2 n} \wedge\left(S_{\theta t}^{2 n-1}\right)_{ \pm} \rightarrow S \Sigma_{\theta t}^{2 n}$ denote the maps defined by the formula $\left(f_{\theta t}\right)_{ \pm} \circ$ $\left(\bar{e}_{\theta t} \wedge\left(e_{\theta t}\right)_{ \pm}\right)=\bar{e}_{\theta t} \circ f_{t \pm}$. Substituting $S\left(\tau_{2 n}\right)_{t}$ and $f_{t \pm} \circ \pi_{t \pm}$ derived from these equalities by composing $\bar{b}_{\theta t}^{-1}$ in (3) we obtain
(5) $S\left(\tau_{2 n}\right)_{\theta t} \simeq\left(f_{\theta t}\right)_{+} \circ\left(\pi_{\theta t}\right)_{+}-\left(f_{\theta t}\right)_{-} \circ\left(\pi_{\theta t}\right)_{-}, \quad\left(f_{\theta t}\right)_{+} \circ\left(\pi_{\theta t}\right)_{+} \simeq-\left(f_{\theta t}\right)_{-} . \circ\left(\pi_{\theta t}\right)_{-}$
where $0<\theta<\pi$.
Similarly, inheriting (4) through $S\left(\tau_{2 n}\right)_{\theta t} \circ\left(\bar{e}_{\theta t} \wedge e_{\theta t}\right)=\bar{e}_{\theta t} \circ S\left(\tau_{2 n}\right)_{t}$ we have

$$
S\left(\tau_{2 n}\right)_{\theta t} \mid \Sigma_{\theta}^{2 n+1} \wedge S_{\theta t}^{2 n-1} \simeq c_{\infty} \quad(0<\theta<\pi)
$$

We look at (4) from another angle. Replacing formally the domain $\Sigma^{2 n+1} \wedge S_{t}^{2 n-1}$ of the null homotopy of $S\left(\tau_{2 n}\right)_{t}$ given there by $\Sigma^{2 n+1} \wedge S^{2 n-1}$ where $S^{2 n-1}=S^{2 n+1} \cap\left\{x_{\theta t} \mid \theta=\right.$ $0\}$, we have a null homotopy of $S\left(\tau_{2 n}\right)_{\theta t}$ over $\Sigma^{2 n+1} \wedge S^{2 n-1}$. Combining this with the null homotopy obtained above we can form a homotopy

$$
\begin{equation*}
\tau_{2 n+2} \mid \Sigma^{2 n+2} \wedge S^{2 n} \simeq c_{\infty} \tag{6}
\end{equation*}
$$

where $S^{2 n}=S^{2 n+1} \cap\left\{x_{\theta t} \mid t=\pi / 2\right\}$. In the case here, differently from the case $q=1$, imposing the coordinate condition $\pm x_{1} \geq 0$ on x_{2}, we let $D_{ \pm}^{2 n+1}=S^{2 n+1} \cap\left\{x_{\theta t} \mid \pm x_{2} \geq 0\right\}$ and put $S_{ \pm}^{2 n+1}=D_{ \pm}^{2 n+1} / S^{2 n}$. Then according to the former formula of (5) under the null homotopy of (6), in the same way as in the case of $\tau_{2 n+1}$ we obtain a decomposition $\tau_{2 n+2} \simeq g_{+} \circ \pi_{+}-g_{-} \circ \pi_{-}$of $\tau_{2 n+2}$ where $g_{ \pm}: \Sigma^{2 n+2} \wedge S_{ \pm}^{2 n+1} \rightarrow \Sigma^{2 n+2}$. Then $g_{+} \circ \pi_{+} \simeq$ $-g_{-} \circ \pi_{-}$follows from the latter formula of (5) as in the case of $q=1$ above. This completes the proof of the lemma.

3. Proof of Theorem

The theorem follows immediately from Lemma 2 , Case $q=1$, and the following
Lemma 3. Under the assumption of Theorem, there exist maps $g_{ \pm}: \Sigma^{4 n+3} \wedge S_{ \pm}^{4 n+2} \rightarrow$ $\Sigma^{4 n+3}$ such that $\tau_{4 n+3} \simeq g_{+} \circ \pi_{+}-g_{-} \circ \pi_{-}, g_{+} \circ \pi_{+} \simeq-g_{-} \circ \pi_{-}$, so that $\tau_{4 n+3} \simeq 2 g_{+} \circ \pi_{+}$.

Proof. Put $m=2 n+1$ and let $\phi=\left(\phi_{1}, \cdots, \phi_{m}\right)$ where $0 \leq \phi_{i}<\pi(1 \leq i \leq m)$. We express $x \in \mathbb{R}^{2 m+1}$ as

$$
x_{\phi}=\left(x_{1} \cos \phi_{1}, \cdots, x_{m} \cos \phi_{m}, x_{1} \sin \phi_{1}, \cdots, x_{m} \sin \phi_{m}, x_{2 m+1}\right)
$$

where $x_{1}, \cdots, x_{m}, x_{2 m+1} \in \mathbb{R}$. For a fixed ϕ, let $\mathbb{R}_{\phi}^{m+1} \subset \mathbb{R}^{2 m+1}$ be the ($m+1$)-dimensional subspace generated by the x_{ϕ}. Let

$$
c(\phi)=\operatorname{diag}\left(\cos \phi_{1}, \cos \phi_{2}, \cdots, \cos \phi_{m}\right), \quad s(\phi)=\operatorname{diag}\left(\sin \phi_{1}, \sin \phi_{2}, \cdots, \sin \phi_{m}\right)
$$

be the diagonal matrices whose (i, i)-entries are $\cos \phi_{i}$ and $\sin \phi_{i}$, respectively, and set

$$
M(\phi)=\left(\begin{array}{ccc}
c(\phi) & -s(\phi) & 0 \\
s(\phi) & c(\phi) & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

We regard \mathbb{R}_{ϕ}^{m+1} with $\phi=(0, \cdots, 0)$ as \mathbb{R}^{m+1}, so $x_{\phi}=\left(x_{1}, \cdots, x_{m}, 0, \cdots, 0, x_{2 m+1}\right) \in$ \mathbb{R}_{ϕ}^{m+1} can be taken to be equal to $x=\left(x_{1}, \cdots, x_{m}, x_{2 m+1}\right) \in \mathbb{R}^{m+1}$. Here the first three variables x_{1}, x_{2}, x_{3} are supposed to have the same expression in polar form as those of $x_{\theta t}$ above. Then, for any fixed ϕ, the map $x \rightarrow x M(\phi)^{T}$ defines a linear isomorphism $\mathbb{R}^{m+1} \rightarrow \mathbb{R}_{\phi}^{m+1}$. Let $\bar{e}_{\phi}: \Sigma^{m+1} \rightarrow \Sigma_{\phi}^{m+1}$ and $e_{\phi}: S^{m} \rightarrow S_{\phi}^{m}$ denote the homeomorphisms induced by this isomorphism. If we put $\left(\tau_{m+1}\right)_{\phi}=\tau_{2 m+1} \mid \Sigma_{\phi}^{m+1} \wedge S_{\phi}^{m}$, then we have

$$
\left(\tau_{m+1}\right)_{\phi} \circ\left(\bar{e}_{\phi} \wedge e_{\phi}\right)=\bar{e}_{\phi} \circ \tau_{m+1} .
$$

Similarly as in the case $q=2$ above, taking $\left(D_{\phi}^{m}\right)_{ \pm}=S_{\phi}^{m} \cap\left\{x_{\phi} \mid \pm x_{2} \geq 0\right\}$ and $S_{\phi}^{m-1}=S_{\phi}^{m} \cap\left\{x_{\phi} \mid x_{2}=0\right\}$ we put $\left(S_{\phi}^{m}\right)_{ \pm}=\left(D_{\phi}^{m}\right)_{ \pm} / S_{\phi}^{m-1}$. Let $e_{\phi_{ \pm}}: S_{ \pm}^{m} \rightarrow\left(S_{\phi}^{m}\right)_{ \pm}$be the homeomorphisms induced by e_{ϕ} and we define the maps $f_{\phi_{ \pm}}: \Sigma_{\phi}^{m+1} \wedge\left(S_{\phi}^{m}\right)_{ \pm} \rightarrow \Sigma_{\phi}^{m+1}$ by the formula $f_{\phi_{ \pm}} \circ\left(\bar{e}_{\phi} \wedge e_{\phi_{ \pm}}\right)=\bar{e}_{\phi} \circ g_{ \pm}$where $g_{ \pm}: \Sigma^{m+1} \wedge S_{ \pm}^{m} \rightarrow \Sigma^{m+1}$ are as the maps occurring in the decomposition of τ_{m+1} above. Then clearly

$$
\left(f_{\phi_{ \pm}} \circ \pi_{\phi_{ \pm}}\right) \circ\left(\bar{e}_{\phi} \wedge e_{\phi_{ \pm}}\right)=\bar{e}_{\phi} \circ\left(g_{ \pm} \circ \pi_{ \pm}\right) .
$$

Substituting τ_{m+1} and $g_{ \pm} \circ \pi_{ \pm}$derived from the above two equalities by composing \bar{e}_{ϕ}^{-1} in the decomposition formula of τ_{m+1} obtained in Lemma ??, Case $q=2$, we have

$$
\begin{equation*}
\left(\tau_{m+1}\right)_{\phi} \simeq f_{\phi_{+}} \circ \pi_{\phi_{+}}-f_{\phi_{-}} \circ \pi_{\phi_{-}}, \quad f_{\phi_{+}} \circ \pi_{\phi_{+}} \simeq-f_{\phi_{-}} \circ \pi_{\phi_{-}} . \tag{7}
\end{equation*}
$$

In addition, in a similar way we have the null homotopy

$$
\begin{equation*}
\left(\tau_{m+1}\right)_{\phi} \mid \Sigma^{2 m+1} \wedge S_{\phi}^{m-1} \simeq c_{\infty} \tag{8}
\end{equation*}
$$

which inherits the null homotopy of $\tau_{m+1} \mid \Sigma^{m+1} \wedge S^{m-1}$ used for proving the case $q=2$ above through the equality relating $\left(\tau_{m+1}\right)_{\phi}$ and τ_{m+1} given above. By using a similar argument to the case $q=1$, i.e. to the proof of $\tau_{m} \mid \Sigma^{m} \wedge S_{t}^{m-2} \simeq c_{\infty}$, together with (7) and (8) we can determine the behavior of $f_{\phi_{ \pm}}$in rotating along the regions of ϕ_{i} by π degrees.

Consider the composite $\alpha=a_{m, 1} \circ a_{1, m} \circ a_{2, m-1}: S^{m} \rightarrow S^{m}$ which maps x_{i} to itself if $i=$ $2, m+1$ and to $-x_{i}$ otherwise where $a_{s, m-s}$ are as above and $x=\left(x_{1}, x_{2}, \cdots, x_{m}, x_{2 m+1}\right) \in$ S^{m}. If we write α_{ϕ} for $e_{\phi} \circ \alpha \circ e_{\phi}^{-1}$, then we have

$$
\left(\tau_{m+1}\right)_{\phi} \circ\left(1 \wedge \alpha_{\phi}\right) \simeq\left(\tau_{m+1}\right)_{\phi}
$$

where 1 denotes the identity on Σ_{ϕ}^{m+1}. Since a number of x_{i} whose sign is converted by α in reverse is $m-1=2 n$ and so is even, this implies that the null homotopy (8) of $\tau_{2 m+1}$ over $\Sigma^{2 m+1} \wedge S_{\phi}^{m-1}$ can be extended over the subspace of $\Sigma^{2 m+1} \wedge S^{2 m}$ consisting of the elements of $\Sigma^{2 m+1} \wedge S_{\phi}^{m-1}$ when $\phi_{1}, \phi_{3}, \cdots, \phi_{m}$ vary over the full range and only the second variable ϕ_{2} remains fixed.

Under this null homotopy, rotating ϕ_{2} by π we have

$$
\left(\tau_{m+1}\right)_{\left(\phi_{1}, \phi_{2}+\pi, \phi_{3}, \cdots, \phi_{m}\right)} \simeq-\left(\tau_{m+1}\right)_{\phi} .
$$

If we take $\phi_{2}=0$ and set $S^{2 m-1}=S^{2 m} \cap\left\{x_{\phi} \mid \phi_{2}=0\right\}$, then considering this null homotopy together with the extension of (8) obtained above we get a homotopy

$$
\tau_{2 m+1} \mid \Sigma^{2 m+1} \wedge S^{2 m-1} \simeq c_{\infty}
$$

Let $S_{ \pm}^{2 m}=D_{ \pm}^{2 m} / S^{2 m-1}$ where $D_{ \pm}^{2 m}=S^{2 m} \cap\left\{x_{\phi} \mid \pm x_{2} \geq 0\right\}$. Then, as in the cases $q=1,2$ above, considering (7) under the null homotopy now obtained we see that $f_{\pi \pm}$ $(0 \leq \phi<\pi)$ can be integrated into the maps $g_{ \pm}: \Sigma^{2 m+1} \wedge S_{ \pm}^{2 m} \rightarrow \Sigma^{2 m+1}$, respectively, and therefore the desired decomposition formula can be satisfied. This completes the proof of the lemma.

References

[1] M.G. Barratt, J.D.S. Jones, M.E. Mahowald, The Kervaire invariant problem, Contemp. Math. AMS 19 (1983) 9-23.
[2] F.R. Cohen, A course in some aspects of classical homotopy theory, Springer, Lecture Notes in Mathematics 1286, 1987.
[3] M. Gilmore, Some Whitehead Products on Odd Spheres, Proc. Amer. Math. Soc. 20 (1969) 375-377.
[4] M. A. Hill, M. J. Hopkins, D. C. Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. 184 (2016) 1-262.
[5] K. Morisugi, J. Mukai, Lifting to mod 2 Moore spaces, J. Math. Soc. Japan 52 (2000) 515-533.
[6] N. E. Steenrod, The Topology of Fibre Bundles, Princeton University Press, 1951.
[7] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies 49, 1962.
[8] G. Wang, Z. Xu, The triviality of the 61-stem in the stable homotopy groups of spheres, Ann. of Math. 186 (2017) 501-580.
H. Minami: Professor Emeritus, Nara University of Education

Email address: hminami@camel.plala.or.jp

[^0]: 2010 Mathematics Subject Classification. 55Q15, 55Q50.

