HARUO MINAMI

ABSTRACT. We show that if we suppose $n \geq 4$ and π_{2n-1}^S has no 2-torsion, then the Whitehead squares of the identity maps of S^{2n+1} and S^{4n+3} are divisible by 2. By applying the result of G. Wang and Z. Xu on π_{61}^S , we find that the Kervaire invariant one elements in dimensions 62 and 126 exist.

1. INTRODUCTION

Let $[\iota_n, \iota_n] \in \pi_{2n-1}(S^n)$ denote the Whitehead square of $\iota_n \in \pi_n(S^n)$ where ι_n is the homotopy class of the identity map of S^n . For n odd $\neq 1, 3, 7$, it is well known that $[\iota_n, \iota_n]$ generates a subgroup of order 2 [2]. Furthermore, when n is not of the form $2^r - 1$, this subgroup splits off as a direct summand [3]. Let $n_k = 2^k - 1$ and write w_k for $[\iota_{2n_k+1}, \iota_{2n_k+1}] \in \pi_{4n_k+1}(S^{2n_k+1})$. In this note we consider the divisibility of w_k by 2. But, since $w_1 = 0$ and $w_2 = 0$ [7], we assume here that $k \geq 3$. The main result is then the following

THEOREM. Suppose $\pi_{2n_k-1}^S$ has no 2-torsion. Then w_k and w_{k+1} are divisible by 2.

From [7] and [8] we know that $_2\pi_{13}^S = 0$ and $_2\pi_{61}^S = 0$ where the subscript 2 represents the 2-primary part. By applying these two results to the theorem we obtain

COROLLARY. w_3 , w_4 , w_5 and w_6 are divisible by 2.

Because the Kervaire invariant one element $\theta_k \in \pi_{2n_k}^S$ exists if and only if $w_k \in 2\pi_{4n_k+1}(S^{2n_k+1})$ [1], this corollary together with the fact that $w_1 = 0$ and $w_2 = 0$ shows that there exist $\theta_1, \theta_2, \theta_3, \theta_4, \theta_5$ and θ_6 . This settles the problem of determining whether or not there exists θ_6 which has been perhaps left unsolved. Based on the result of [4] that θ_k does not exist for $k \geq 7$, it can be therefore concluded that the only θ_k which exist are these six ones.

In order to prove the theorem we use an expression for w_k by means of the characteristic map of a principal bundle over a sphere. Let $T_{n+1}: S^{n-1} \to SO(n)$ denote the characteristic map of the canonical principal SO(n)-bundle $SO(n+1) \to S^n$ and let J be the J-homomorphism $\pi_{n-1}(SO(n)) \to \pi_{2n-1}(S^n)$. Then from [5, p. 521] we know that, when n is odd ≥ 9 , $[\iota_n, \iota_n]$ can be written $[\iota_n, \iota_n] = J([T_{n+1}])$, so that

$$w_k = J([T_{n_k+2}]) \quad (k \ge 3)$$

(the bracket [] denotes the homotopy class).

²⁰¹⁰ Mathematics Subject Classification. 55Q15, 55Q50.

Let \mathbb{R}^n be euclidean space: $x = (x_1, \dots, x_n)$. Let $S^{n-1} \subset \mathbb{R}^n$ be the unit sphere with base point $x_0 = (0, \dots, 0, 1)$. According to [6], T_{n+1} is then given by

$$T_{n+1}(x) = \begin{pmatrix} \delta_{ij} - 2x_i x_j \end{pmatrix} \begin{pmatrix} I_{n-1} & 0\\ 0 & -1 \end{pmatrix} \quad (1 \le i, j \le n)$$

where I_{n-1} is the identity matrix of dimension n-1. Then obviously $T_{n+1}(\pm x_0) = I_n$. Let $\Sigma^n = \mathbb{R}^n \cup \{\infty\}$ be the one-point compactification of \mathbb{R}^n with ∞ as base-point. Applying the Hopf construction to T_{n+1} we obtain a map

$$\tau_n: \Sigma^n \wedge S^{n-1} \to \Sigma^n.$$

By virtue of $T_{n+1}(\pm x_0) = I_n$ it follows that

$$\tau_n \mid \Sigma^n \wedge S^0 \simeq c_\infty$$

where $S^0 = \{x_0, -x_0\}$ and c_{∞} denotes the constant map at ∞ . Since $(\Sigma^n, \infty) \simeq (S^n, x_0)$, ii is clear that $[\tau_n] = J([T_{n+1}]) \in \pi_{2n-1}(S^n)$ and so $w_k = [\tau_{n_k+1}]$ for $k \ge 3$.

For $1 \leq s \leq n-1$, if we set $x' = (x_1, \dots, x_s)$ and $x'' = (x_{s+1}, \dots, x_n)$, then the map $(x', x'') \to (-x', x'')$ of \mathbb{R}^n defines involutions on Σ^n and S^{n-1} , denoted by $\bar{a}_{s,n-s}$ and $a_{s,n-s}$, respectively. Let $I_{s,n-s} = (-I_s) \times I_{n-s}$ be the diagonal matrix whose first s diagonal elements equal to -1 and the remaining n-s diagonal elements equal to 1. Then we find that

$$T_{n+1}(a_{s,n-s}(x)) = I_{s,n-s}T_{n+1}(x)I_{s,n-s} \quad (x \in S^{n-1})$$

This gives $\tau_n(\bar{a}_{s,n-s}(v) \wedge a_{s,n-s}(x)) = \bar{a}_{s,n-s}(\tau_n(v \wedge x))$ where $v \in \Sigma^n, x \in S^{n-1}$, i.e.

 $\tau_n \circ (\bar{a}_{s,n-s} \wedge a_{s,n-s}) = \bar{a}_{s,n-s} \circ \tau_n \qquad (0 \le s \le n-1).$

If s can be written as s = 2j + r $(j, r \ge 0)$, then considering the above formula with $I_{s,n-s}T_{n+1}(x)I_{s,n-s}$ replaced by

$$(-I_r \times \nu(t) \times I_{n-s})T_{n+1}(x)(-I_r \times \nu(t)^{-1} \times I_{n-s})$$

where $\nu(t)$ is a path in SO(2j) from $-I_{2j}$ to I_{2j} , we obtain

$$\tau_n \circ (\bar{a}_{r,n-r} \wedge a_{s,n-s}) \simeq \bar{a}_{r,n-r} \circ \tau_n \qquad (0 \le s \le n-1).$$

This is a homotopy relative to $\Sigma^n \wedge S^0$, so that it maintains the relation $\tau_n \mid \Sigma^n \wedge S^0 \simeq c_{\infty}$. In particular, when s is even, it becomes a homotopy

$$\tau_n \circ (1 \wedge a_{s,n-s}) \simeq \tau_n \qquad (0 \le s \le n-1)$$

where 1 denotes the identity map of Σ^n . This exhibits a certain symmetry property of τ_n about x_n -axis. In the case when s is odd, considering its suspension $S\tau_n$ instead of τ_n we have

$$S\tau_n \circ (1 \wedge a_{s,n-s}) \simeq S\tau_n \qquad (0 \le s \le n-1)$$

where 1 is the identity map of Σ^{n+1} (here Σ^{n+1} is identified with the suspension $S\Sigma^n$ of Σ^n in the usual way).

For $1 \leq s \leq n-1$, let $\mathbb{R}^{n-s} \subset \mathbb{R}^n$ be the subspace defined by $x_1 = \cdots = x_s = 0$ and let $(\Sigma^{n-s}, S^{n-s-1})$ be the pair defined for it above. Then according to the definition of τ_n we see that the restriction of τ_n to $\Sigma^n \wedge S^{n-s-1}$ can be written as the composition

$$\Sigma^n \wedge S^{n-s-1} \xrightarrow{p \wedge 1} \Sigma^{n-s} \wedge S^{n-s-1} \xrightarrow{\tau_{n-s}} \Sigma^{n-s} \xrightarrow{i} \Sigma^n$$

where p and i denote the maps induced by the canonical projection of \mathbb{R}^n onto \mathbb{R}^{n-s} and inclusion of \mathbb{R}^{n-s} into \mathbb{R}^n , respectively and 1 denotes the identity map of S^{n-s-1} . This means that the restriction of τ_n to $\Sigma^n \wedge S^{n-s-1}$ coincides with the *s*-fold suspension of τ_{n-s} , i.e. $\tau_n \mid \Sigma^n \wedge S^{n-s-1} = S^s \tau_{n-s}$. But, by abuse of notation, we use the notation $\tau_n \mid \Sigma^n \wedge S^{n-s-1}$ to denote the composite of the first two maps, i.e. we write

$$\tau_n \mid \Sigma^n \wedge S^{n-s-1} = \tau_{n-s} \circ (p \wedge 1)$$

Given $f, g: \Sigma^n \wedge S^{n-1} \to \Sigma^n$, the sum f + g is given by the composition

$$\Sigma^n \wedge S^{n-1} \xrightarrow{\Delta} (\Sigma^n \wedge S^{n-1}) \vee (\Sigma^n \wedge S^{n-1}) \xrightarrow{f \lor g} \Sigma^n \vee \Sigma^n \xrightarrow{\mu} \Sigma^n$$

where Δ is the inclusion induced by the diagonal map of S^{n-1} or Σ^n as necessary and μ the folding map.

Let $D_{\pm}^{n-1} = S^{n-1} \cap \{x \mid \pm x_1 \geq 0\}$. Then $S^{n-1} = D_{+}^{n-1} \cup D_{-}^{n-1}$ and $S^{n-2} = D_{+}^{n-1} \cap D_{-}^{n-1}$. Put $S_{\pm}^{n-1} = D_{\pm}^{n-1}/S^{n-2}$. Then S^{n-1}/S^{n-2} becomes homeomorphic to $S_{+}^{n-1} \vee S_{-}^{n-1}$. Denote by $\pi : \Sigma^n \wedge S^{n-1} \to (\Sigma^n \wedge S_{+}^{n-1}) \vee (\Sigma^n \wedge S_{-}^{n-1})$ the composition of the quotient map $\Sigma^n \wedge S^{n-1} \to \Sigma^n \wedge S^{n-1}/\Sigma^n \wedge S^{n-2}$ and the homeomorphism to $(\Sigma^n \wedge S_{+}^{n-1}) \vee (\Sigma^n \wedge S_{-}^{n-1})$. Let $\pi_{\pm} : S^{n-1} \to S_{\pm}^{n-1}$ denote the collapsing maps. We use also the same symbols π_{\pm} to denote the *m*-fold suspension $S^m \pi_{\pm} \ (m \geq n)$.

The proof of the theorem proceeds in four steps. First, we consider the decomposition of $S\tau_n$ into two homotopic maps.

LEMMA 1. Suppose $S\tau_n \mid \Sigma^{n+1} \wedge S^{n-2} \simeq c_{\infty}$ where S^{n-2} denotes the equator of S^{n-1} defined by $x_1 = 0$. Then there exist maps $f_{\pm} : \Sigma^{n+1} \wedge S_{\pm}^{n-1} \to \Sigma^{n+1}$ such that $S\tau_n \simeq f_+ \circ S\pi_+ - f_- \circ S\pi_-$, $f_- \circ S\pi_- \simeq -f_+ \circ S\pi_+$, so that $S\tau_n \simeq 2f_+ \circ S\pi_+$.

Proof. Because of the assumption, $S\tau_n : \Sigma^{n+1} \wedge S^{n-1} \to \Sigma^{n+1}$ can be factorized through the quotient $\Sigma^{n+1} \wedge S^{n-1}/\Sigma^{n+1} \wedge S^{n-2}$ into the composition

$$\Sigma^{n+1} \wedge S^{n-1} \xrightarrow{S_{\pi}} (\Sigma^{n+1} \wedge S^{n-1}_+) \vee (\Sigma^{n+1} \wedge S^{n-1}_-) \xrightarrow{f_+ \vee f_-} \Sigma^{n+1} \vee \Sigma^{n+1} \xrightarrow{\mu} \Sigma^{n+1}$$

where $f_{\pm}: \Sigma^{n+1} \wedge S_{\pm}^{n-1} \to \Sigma^{n+1}$. This shows due to the definition of the sum of maps that

$$S\tau_n \simeq f_+ \circ \pi_+ - f_- \circ \pi_-.$$

Consider the homeomorphism $1 \wedge a_{1,n-1}$ of $\Sigma^{n+1} \wedge S^{n-1}$ onto itself given above. Then, since its restriction to $\Sigma^{n+1} \wedge S^{n-2}$ is the identity map, it induces homeomorphisms $(1 \wedge a_{1,n-1})_{\pm} : \Sigma^{n+1} \wedge S^{n-1}_{\pm} \to \Sigma^{n+1} \wedge S^{n-1}_{\mp}$ (the double signs as usual are to be taken in the same order). Using the formula $S\tau_n \circ (1 \wedge a_{1,n-1}) \simeq S\tau_n$ we can see that f_{\pm} satisfy

$$f_- \simeq f_+ \circ (1 \wedge a_{1,n-1})_-,$$

so that $f_- \circ \pi_- \simeq f_+ \circ (1 \wedge a_{1,n-1})_- \circ \pi_-$. Since clearly $(1 \wedge a_{1,n-1})_- \circ \pi_- \simeq \pi_+ \circ (1 \wedge a_{1,n-1})$ and $\pi_+ \circ (1 \wedge a_{1,n-1}) \simeq -\pi_+$, we have $(1 \wedge a_{1,n-1})_- \circ \pi_- \simeq -\pi_+$ and so $f_+ \circ (1 \wedge a_{1,n-1})_- \circ \pi_- \simeq -f_+ \circ \pi_+$. Substituting the relation obtained above in this formula we get $f_- \circ \pi_- \simeq -f_+ \circ \pi_+$, which completes the proof.

HARUO MINAMI

2. Decompositions of τ_{2n+1} and τ_{2n+2}

From now, let $n = n_k/2$ and assume that the assumption of the theorem is fulfilled, i.e., $2\pi_{2n-1}^S = 0$. Also we work modulo odd torsion since we consider the 2-primary homotopy decomposition of maps.

From the fact that the suspension homomorphism $E : \pi_{4n-1}(S^{2n}) \to \pi_{4n}(S^{2n+1})$ of the *EHP* sequence is a surjection with kernel \mathbb{Z} , generated by $[\iota_{2n}, \iota_{2n}]$, we see that it induces an isomorphism $_{2}\pi_{4n-2}(S^{2n}) \cong _{2}\pi_{2n-1}^{S}$ between their 2-primary parts. Hence from the assumption above we have

(*)
$$_{2}\pi_{4n-1}(S^{2n}) = 0.$$

In the above, when we write \mathbb{R}^n as \mathbb{R}^n_{α} by attaching a suffix α , to denote its associated spaces and maps given above we use here the notations Σ^n_{α} , S^{n-1}_{α} , $(D^{n-1}_{\alpha})_{\pm}$, $(S^{n-1}_{\alpha})_{\pm}$, $(\tau_n)_{\alpha}$, $(\pi_{\alpha})_{\pm}$ with adding the suffix α .

LEMMA 2. Under the assumption of Theorem, there exist maps $g_{\pm}: \Sigma^{2n+q} \wedge S^{2n+q-1}_{\pm} \rightarrow \Sigma^{2n+q}$ for q = 1, 2 such that $\tau_{2n+q} \simeq g_{+} \circ \pi_{+} - g_{-} \circ \pi_{-}, g_{-} \circ \pi_{-} \simeq -g_{+} \circ \pi_{+}, so$ that $\tau_{2n+q} \simeq 2g_{+} \circ \pi_{+}.$

Proof of Case q=1. We first consider the suspension $S\tau_{2n}: \Sigma^{2n+1} \wedge S^{2n-1} \to \Sigma^{2n+1}$ of τ_{2n} . Then $S\tau_{2n} \mid \Sigma^{2n+1} \wedge S^{2n-2}$ represents a map from $\Sigma^{2n} \wedge S^{2n-1}$ to Σ^{2n} , so by (*) we have

(1)
$$S\tau_{2n} \mid \Sigma^{2n+1} \wedge S^{2n-2} \simeq c_{\infty}.$$

This shows that the null homotopy condition of Lemma 1 with n replaced by 2n is satisfied and therefore we see that there exists a decomposition of $S\tau_{2n}$ such that

(2)
$$S\tau_{2n} \simeq f_+ \circ \pi_+ - f_- \circ \pi_-, \quad f_- \circ \pi_- \simeq -f_+ \circ \pi_+,$$

where $f_{\pm}: \Sigma^{2n+1} \wedge S_{\pm}^{2n-1} \to \Sigma^{2n+1}$.

Using polar coordinates for the first two variables x_1, x_2 we express $x \in \mathbb{R}^{2n+1}$ as

$$x_t = (r \cos t, r \sin t, x_3, \cdots, x_{2n+1})$$
 $(0 \le t < \pi, r \in \mathbb{R}).$

For any fixed t, let $\mathbb{R}_t^{2n} \subset \mathbb{R}^{2n+1}$ denote the 2*n*-dimensional subspace generated by the x_t . Regard \mathbb{R}^{2n} as \mathbb{R}_t^{2n} with t = 0 and put

$$M(t) = \begin{pmatrix} \cos t & -\sin t & 0\\ \sin t & \cos t & 0\\ 0 & 0 & I_{2n-1} \end{pmatrix}.$$

Then the map $x \to xM(t)^T$ gives a linear isomorphism $\mathbb{R}^{2n} \to \mathbb{R}^{2n}_t$ (the subscript T denotes the transpose). This induces homeomorphisms $\bar{e}_t : \Sigma^{2n+1} \to S\Sigma^{2n}_t, e_t : S^{2n-1} \to S^{2n-1}_t$ and $e_{t\pm} : S^{2n-1}_{\pm} \to (S^{2n-1}_t)_{\pm}$. Here $(S^{2n-1}_t)_{\pm} = (D^{2n-1}_t)_{\pm}/S^{2n-2}$ where $(D^{2n-1}_t)_{\pm} = S^{2n-1}_t \cap \{x_t \mid \pm r \ge 0\}$ and S^{2n-2} is the unit sphere in $\mathbb{R}^{2n-1} \subset \mathbb{R}^{2n}_t$ defined by r = 0. Then clearly $\pi_{t\pm} \circ (\bar{e}_t \wedge e_t) = (\bar{e}_t \wedge e_{t\pm}) \circ \pi_{\pm}$. Let $(\tau_{2n})_t = \tau_{2n+1} \mid \Sigma^{2n}_t \wedge S^{2n-1}_t$ and $f_{t\pm} : S\Sigma^{2n}_t \wedge (S^{2n-1}_t)_{\pm} \to S\Sigma^{2n}_t$ be the maps defined by the formula $f_{t\pm} \circ (\bar{e}_t \wedge e_{t\pm}) = \bar{e}_t \circ f_{\pm}$ where f_{\pm} are as in (2). Then we have

$$S(\tau_{2n})_t \circ (\bar{e}_t \wedge e_t) = \bar{e}_t \circ S\tau_{2n}, \quad (f_{t\pm} \circ \pi_{t\pm}) \circ (\bar{e}_t \wedge e_{t\pm}) = \bar{e}_t \circ (f_{\pm} \circ \pi_{\pm}),$$

respectively. Substituting $S\tau_{2n}$ and $f_{\pm} \circ \pi_{\pm}$ derived from these equalities by composing \bar{e}_t^{-1} in (2) we get

(3)
$$S(\tau_{2n})_t \simeq f_{t+} \circ \pi_{t+} - f_{t-} \circ \pi_{t-}, \quad f_{t-} \circ \pi_{t-} \simeq -f_{t+} \circ \pi_{t+} \qquad (0 \le t < \pi).$$

Similarly, through $S(\tau_{2n})_t \circ (\bar{e}_t \wedge e_t) = \bar{e}_t \circ S\tau_{2n}$, the formula (1) can be rewritten as

$$S(\tau_{2n})_t \mid S\Sigma_t^{2n} \wedge S^{2n-2} \simeq c_{\infty}.$$

Also we inherit $S(\tau_{2n})_t \circ (1 \wedge a_{1,2n-1}) \simeq S(\tau_{2n})_t$ from $S\tau_{2n} \circ (1 \wedge a_{1,2n-1}) \simeq S\tau_{2n}$. Considering (3) together with these two formulas we can determine the behavior of maps $f_{t\pm}$ when, for any fixed t, rotating along the region of t by π degrees.

According to the definition of the sum of maps we have a homotopy

$$f_{t+\pi_+} \circ \pi_{t+\pi_+} \simeq -f_{t+} \circ \pi_{t+}$$

On the other hand, according to the definition of $f_{t_{-}}$, we have

$$f_{t+\pi_+} \circ \pi_{t+\pi_+} \simeq -f_{t-} \circ \pi_{t-}$$

so that it follows that

$$f_{t+} \circ \pi_{t+} \simeq f_{t-} \circ \pi_{t-}$$

By applying this to the former formula of (3) we get $S(\tau_{2n})_t \mid S\Sigma_t^{2n} \wedge S_t^{2n-1} \simeq c_{\infty}$. So identifying $S\Sigma_t^{2n}$ with Σ^{2n+1} in the usual way we obtain

(4)
$$\tau_{2n+1} \mid \Sigma^{2n+1} \wedge S_t^{2n-1} \simeq c_{\infty} \quad (0 \le t < \pi).$$

Take $t = \pi/2$. Then $S^{2n}/S^{2n-1}_t \approx S^{2n}_+ \vee S^{2n}_-$ where $S^{2n}_{\pm} = S^{2n} \cap \{x_t \mid \pm x_1 \geq 0\}$. Thereby the null homotopy of (4), as in the case of $S\tau_{2n}$, yields a factorization of τ_{2n+1} into the composition

$$\Sigma^{2n+1} \wedge S^{2n} \xrightarrow{\pi} (\Sigma^{2n+1} \wedge S^{2n}_+) \vee (\Sigma^{2n+1} \wedge S^{2n}_-) \xrightarrow{g_+ \vee g_-} \Sigma^{2n+1} \vee \Sigma^{2n+1} \xrightarrow{\mu} \Sigma^{2n+1},$$

so that a decomposition $\tau_{2n+1} \simeq g_+ \circ \pi_+ - g_- \circ \pi_-$ where $g_{\pm} : \Sigma^{2n+1} \wedge S_{\pm}^{2n} \to \Sigma^{2n+1}$. But in fact, g_{\pm} can be obtained by unifying $f_{t\pm}$ according to the former formula of (3) under the null homotopy of (4), respectively, and therefore we have $g_- \circ \pi_- \simeq -g_+ \circ \pi_+$ from the latter of (3).

Proof of Case q=2. In order to use the results in the proof of the case q = 1, we adopt spherical polar coordinate representation for the first three variables x_1, x_2, x_3 and express $x \in \mathbb{R}^{2n+2}$ as

$$x_{\theta t} = (r \cos \theta, r \sin \theta \cos t, r \sin \theta \sin t, x_4, \cdots, x_{2n+2}) \quad (0 \le \theta \le \pi, \ 0 \le t < \pi, \ r \in \mathbb{R}).$$

For a fixed $0 < \theta < \pi$, let $\mathbb{R}^{2n+1}_{\theta} \subset \mathbb{R}^{2n+2}$ denote the (2n + 1)-dimensional subspace generated by the $x_{\theta t}$. In addition, fix t, then these elements define the 2*n*-dimensional subspace $\mathbb{R}^{2n}_{\theta t} \subset \mathbb{R}^{2n+1}_{\theta}$. For any fixed t, let $\mathbb{R}^{2n}_t \subset \mathbb{R}^{2n+2}$ denote the subspace generated by the $x_{\theta t}$ with $\theta = \pi/2$ and put

$$M(\theta t) = \begin{pmatrix} \sin \theta & \cos \theta \cos t & \cos \theta \sin t & 0\\ -\cos \theta \cos t & \sin \theta & 0 & 0\\ -\cos \theta \sin t & 0 & \sin \theta & 0\\ 0 & 0 & 0 & I_{2n-1} \end{pmatrix} \quad (0 < \theta < \pi).$$

Then the map $x \to xM(\theta t)^T$ gives a linear isomorphism $\mathbb{R}_t^{2n} \to \mathbb{R}_{\theta t}^{2n}$. Denote by $\bar{e}_{\theta t} : S\Sigma_t^{2n} \to S\Sigma_{\theta t}^{2n}, e_{\theta t} : S_t^{2n-1} \to S_{\theta t}^{2n-1}$ and $(b_{\theta t})_{\pm} : (S_t^{2n-1})_{\pm} \to (S_{\theta t}^{2n-1})_{\pm}$ the home-omorphisms induced by this isomorphism. Here $(S_{\theta t}^{2n-1})_{\pm} = (D_{\theta t}^{2n-1})_{\pm}/S_{\theta t}^{2n-2}$ where $(D_{\theta t}^{2n-1})_{\pm} = S_{\theta t}^{2n-1} \cap \{x_{\theta t} \mid \pm r \ge 0\}$ and $S_{\theta t}^{2n-2} = S_{\theta t}^{2n-1} \cap \{x_{\theta t} \mid r = 0\}$. Then putting $(\tau_{2n})_{\theta t} = \tau_{2n+2} \mid \Sigma_{\theta t}^{2n} \land S_{\theta t}^{2n-1}$ we have

$$S(\tau_{2n})_{\theta t} \circ (\bar{e}_{\theta t} \wedge e_{\theta t}) = \bar{e}_{\theta t} \circ S(\tau_{2n})_t.$$

We also have

$$((f_{\theta t})_{\pm} \circ (\pi_{\theta t})_{\pm}) \circ (\bar{b}_{\theta t} \wedge b_{\theta t}) = \bar{b}_{\theta t} \circ (f_{t\pm} \circ \pi_{t\pm})$$

where $(f_{\theta t})_{\pm} : S\Sigma_{\theta t}^{2n} \wedge (S_{\theta t}^{2n-1})_{\pm} \to S\Sigma_{\theta t}^{2n}$ denote the maps defined by the formula $(f_{\theta t})_{\pm} \circ (\bar{e}_{\theta t} \wedge (e_{\theta t})_{\pm}) = \bar{e}_{\theta t} \circ f_{t\pm}$. Substituting $S(\tau_{2n})_t$ and $f_{t\pm} \circ \pi_{t\pm}$ derived from these equalities by composing $\bar{b}_{\theta t}^{-1}$ in (3) we obtain

(5)
$$S(\tau_{2n})_{\theta t} \simeq (f_{\theta t})_+ \circ (\pi_{\theta t})_+ - (f_{\theta t})_- \circ (\pi_{\theta t})_-, \quad (f_{\theta t})_+ \circ (\pi_{\theta t})_+ \simeq -(f_{\theta t})_- \circ (\pi_{\theta t})_-$$

where $0 < \theta < \pi$

where $0 < \theta < \pi$.

Similarly, inheriting (4) through $S(\tau_{2n})_{\theta t} \circ (\bar{e}_{\theta t} \wedge e_{\theta t}) = \bar{e}_{\theta t} \circ S(\tau_{2n})_t$ we have

$$S(\tau_{2n})_{\theta t} \mid \Sigma_{\theta}^{2n+1} \wedge S_{\theta t}^{2n-1} \simeq c_{\infty} \qquad (0 < \theta < \pi)$$

We look at (4) from another angle. Replacing formally the domain $\Sigma^{2n+1} \wedge S_t^{2n-1}$ of the null homotopy of $S(\tau_{2n})_t$ given there by $\Sigma^{2n+1} \wedge S^{2n-1}$ where $S^{2n-1} = S^{2n+1} \cap \{x_{\theta t} \mid \theta = 0\}$, we have a null homotopy of $S(\tau_{2n})_{\theta t}$ over $\Sigma^{2n+1} \wedge S^{2n-1}$. Combining this with the null homotopy obtained above we can form a homotopy

(6)
$$\tau_{2n+2} \mid \Sigma^{2n+2} \wedge S^{2n} \simeq c_{\infty}$$

where $S^{2n} = S^{2n+1} \cap \{x_{\theta t} \mid t = \pi/2\}$. In the case here, differently from the case q = 1, imposing the coordinate condition $\pm x_1 \geq 0$ on x_2 , we let $D_{\pm}^{2n+1} = S^{2n+1} \cap \{x_{\theta t} \mid \pm x_2 \geq 0\}$ and put $S_{\pm}^{2n+1} = D_{\pm}^{2n+1}/S^{2n}$. Then according to the former formula of (5) under the null homotopy of (6), in the same way as in the case of τ_{2n+1} we obtain a decomposition $\tau_{2n+2} \simeq g_+ \circ \pi_+ - g_- \circ \pi_-$ of τ_{2n+2} where $g_{\pm} : \Sigma^{2n+2} \wedge S_{\pm}^{2n+1} \to \Sigma^{2n+2}$. Then $g_+ \circ \pi_+ \simeq$ $-g_- \circ \pi_-$ follows from the latter formula of (5) as in the case of q = 1 above. This completes the proof of the lemma.

3. Proof of Theorem

The theorem follows immediately from Lemma 2, Case q = 1, and the following

LEMMA 3. Under the assumption of Theorem, there exist maps $g_{\pm}: \Sigma^{4n+3} \wedge S^{4n+2}_{\pm} \rightarrow \Sigma^{4n+3}$ such that $\tau_{4n+3} \simeq g_{+} \circ \pi_{+} - g_{-} \circ \pi_{-}, g_{+} \circ \pi_{+} \simeq -g_{-} \circ \pi_{-}, so that \tau_{4n+3} \simeq 2g_{+} \circ \pi_{+}.$

Proof. Put m = 2n + 1 and let $\phi = (\phi_1, \dots, \phi_m)$ where $0 \le \phi_i < \pi$ $(1 \le i \le m)$. We express $x \in \mathbb{R}^{2m+1}$ as

 $x_{\phi} = (x_1 \cos \phi_1, \cdots, x_m \cos \phi_m, x_1 \sin \phi_1, \cdots, x_m \sin \phi_m, x_{2m+1})$

where $x_1, \dots, x_m, x_{2m+1} \in \mathbb{R}$. For a fixed ϕ , let $\mathbb{R}^{m+1}_{\phi} \subset \mathbb{R}^{2m+1}$ be the (m+1)-dimensional subspace generated by the x_{ϕ} . Let

$$c(\phi) = \operatorname{diag}(\cos\phi_1, \cos\phi_2, \cdots, \cos\phi_m), \quad s(\phi) = \operatorname{diag}(\sin\phi_1, \sin\phi_2, \cdots, \sin\phi_m)$$

be the diagonal matrices whose (i, i)-entries are $\cos \phi_i$ and $\sin \phi_i$, respectively, and set

$$M(\phi) = \begin{pmatrix} c(\phi) & -s(\phi) & 0\\ s(\phi) & c(\phi) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

We regard \mathbb{R}_{ϕ}^{m+1} with $\phi = (0, \dots, 0)$ as \mathbb{R}^{m+1} , so $x_{\phi} = (x_1, \dots, x_m, 0, \dots, 0, x_{2m+1}) \in \mathbb{R}_{\phi}^{m+1}$ can be taken to be equal to $x = (x_1, \dots, x_m, x_{2m+1}) \in \mathbb{R}^{m+1}$. Here the first three variables x_1, x_2, x_3 are supposed to have the same expression in polar form as those of $x_{\theta t}$ above. Then, for any fixed ϕ , the map $x \to xM(\phi)^T$ defines a linear isomorphism $\mathbb{R}^{m+1} \to \mathbb{R}_{\phi}^{m+1}$. Let $\bar{e}_{\phi} : \Sigma^{m+1} \to \Sigma_{\phi}^{m+1}$ and $e_{\phi} : S^m \to S_{\phi}^m$ denote the homeomorphisms induced by this isomorphism. If we put $(\tau_{m+1})_{\phi} = \tau_{2m+1} \mid \Sigma_{\phi}^{m+1} \land S_{\phi}^m$, then we have

$$(\tau_{m+1})_{\phi} \circ (\bar{e}_{\phi} \wedge e_{\phi}) = \bar{e}_{\phi} \circ \tau_{m+1}.$$

Similarly as in the case q = 2 above, taking $(D_{\phi}^m)_{\pm} = S_{\phi}^m \cap \{x_{\phi} \mid \pm x_2 \geq 0\}$ and $S_{\phi}^{m-1} = S_{\phi}^m \cap \{x_{\phi} \mid x_2 = 0\}$ we put $(S_{\phi}^m)_{\pm} = (D_{\phi}^m)_{\pm}/S_{\phi}^{m-1}$. Let $e_{\phi_{\pm}} : S_{\pm}^m \to (S_{\phi}^m)_{\pm}$ be the homeomorphisms induced by e_{ϕ} and we define the maps $f_{\phi_{\pm}} : \Sigma_{\phi}^{m+1} \wedge (S_{\phi}^m)_{\pm} \to \Sigma_{\phi}^{m+1}$ by the formula $f_{\phi_{\pm}} \circ (\bar{e}_{\phi} \wedge e_{\phi_{\pm}}) = \bar{e}_{\phi} \circ g_{\pm}$ where $g_{\pm} : \Sigma^{m+1} \wedge S_{\pm}^m \to \Sigma^{m+1}$ are as the maps occurring in the decomposition of τ_{m+1} above. Then clearly

$$(f_{\phi_{\pm}} \circ \pi_{\phi_{\pm}}) \circ (\bar{e}_{\phi} \wedge e_{\phi_{\pm}}) = \bar{e}_{\phi} \circ (g_{\pm} \circ \pi_{\pm}).$$

Substituting τ_{m+1} and $g_{\pm} \circ \pi_{\pm}$ derived from the above two equalities by composing \bar{e}_{ϕ}^{-1} in the decomposition formula of τ_{m+1} obtained in Lemma ??, Case q = 2, we have

(7)
$$(\tau_{m+1})_{\phi} \simeq f_{\phi_+} \circ \pi_{\phi_+} - f_{\phi_-} \circ \pi_{\phi_-}, \quad f_{\phi_+} \circ \pi_{\phi_+} \simeq -f_{\phi_-} \circ \pi_{\phi_-}.$$

In addition, in a similar way we have the null homotopy

(8)
$$(\tau_{m+1})_{\phi} \mid \Sigma^{2m+1} \wedge S_{\phi}^{m-1} \simeq c_{\infty}$$

which inherits the null homotopy of $\tau_{m+1} \mid \Sigma^{m+1} \wedge S^{m-1}$ used for proving the case q = 2above through the equality relating $(\tau_{m+1})_{\phi}$ and τ_{m+1} given above. By using a similar argument to the case q = 1, i.e. to the proof of $\tau_m \mid \Sigma^m \wedge S_t^{m-2} \simeq c_{\infty}$, together with (7) and (8) we can determine the behavior of $f_{\phi_{\pm}}$ in rotating along the regions of ϕ_i by π degrees.

Consider the composite $\alpha = a_{m,1} \circ a_{1,m} \circ a_{2,m-1} : S^m \to S^m$ which maps x_i to itself if i = 2, m+1 and to $-x_i$ otherwise where $a_{s,m-s}$ are as above and $x = (x_1, x_2, \cdots, x_m, x_{2m+1}) \in S^m$. If we write α_{ϕ} for $e_{\phi} \circ \alpha \circ e_{\phi}^{-1}$, then we have

$$(\tau_{m+1})_{\phi} \circ (1 \wedge \alpha_{\phi}) \simeq (\tau_{m+1})_{\phi}$$

where 1 denotes the identity on Σ_{ϕ}^{m+1} . Since a number of x_i whose sign is converted by α in reverse is m-1 = 2n and so is even, this implies that the null homotopy (8) of τ_{2m+1} over $\Sigma^{2m+1} \wedge S_{\phi}^{m-1}$ can be extended over the subspace of $\Sigma^{2m+1} \wedge S^{2m}$ consisting of the elements of $\Sigma^{2m+1} \wedge S_{\phi}^{m-1}$ when $\phi_1, \phi_3, \cdots, \phi_m$ vary over the full range and only the second variable ϕ_2 remains fixed.

Under this null homotopy, rotating ϕ_2 by π we have

$$(\tau_{m+1})_{(\phi_1,\phi_2+\pi,\phi_3,\cdots,\phi_m)} \simeq -(\tau_{m+1})_{\phi}$$

If we take $\phi_2 = 0$ and set $S^{2m-1} = S^{2m} \cap \{x_{\phi} \mid \phi_2 = 0\}$, then considering this null homotopy together with the extension of (8) obtained above we get a homotopy

$$\tau_{2m+1} \mid \Sigma^{2m+1} \wedge S^{2m-1} \simeq c_{\infty}.$$

Let $S_{\pm}^{2m} = D_{\pm}^{2m}/S^{2m-1}$ where $D_{\pm}^{2m} = S^{2m} \cap \{x_{\phi} \mid \pm x_2 \geq 0\}$. Then, as in the cases q = 1, 2 above, considering (7) under the null homotopy now obtained we see that $f_{\pi\pm}$ $(0 \leq \phi < \pi)$ can be integrated into the maps $g_{\pm} : \Sigma^{2m+1} \wedge S_{\pm}^{2m} \to \Sigma^{2m+1}$, respectively, and therefore the desired decomposition formula can be satisfied. This completes the proof of the lemma.

References

- M.G. Barratt, J.D.S. Jones, M.E. Mahowald, *The Kervaire invariant problem*, Contemp. Math. AMS 19 (1983) 9–23.
- [2] F.R. Cohen, A course in some aspects of classical homotopy theory, Springer, Lecture Notes in Mathematics 1286, 1987.
- [3] M. Gilmore, Some Whitehead Products on Odd Spheres, Proc. Amer. Math. Soc. 20 (1969) 375–377.
- [4] M. A. Hill, M. J. Hopkins, D. C. Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. 184 (2016) 1–262.
- [5] K. Morisugi, J. Mukai, Lifting to mod 2 Moore spaces, J. Math. Soc. Japan 52 (2000) 515–533.
- [6] N. E. Steenrod, The Topology of Fibre Bundles, Princeton University Press, 1951.
- [7] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies 49, 1962.
- [8] G. Wang, Z. Xu, The triviality of the 61-stem in the stable homotopy groups of spheres, Ann. of Math. 186 (2017) 501-580.

H. MINAMI: PROFESSOR EMERITUS, NARA UNIVERSITY OF EDUCATION

Email address: hminami@camel.plala.or.jp