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Abstract. We give a conceptual clarification of Milnor’s theorem, which tells
us the Hopf algebra structure of the stable co-operations H.H in the odd primary
ordinary cohomology. Directly connecting H.H with the quasi-strict automorphism
group of some 1-dimensional additive formal group law and modular invariants, we
give a new proof of this theorem of Milnor.

1. Introduction.

Suppose that p is an odd prime, and that H is the mod p Eilenberg-MacLane
spectrum. Let #* be the free associative graded algebra generated by the symbols
B, P, P?2 ... Let S* be the quotient algebra of .#* modulo the Adem relations. The
Cartan formula gives a coalgebra structure of S*. Therefore S* is a Hopf algebra, and
it is called the Steenrod algebra. As usual, we regard 3, P!, P?,... as elements in the
stable operations H*H. Then it is well known that S* is isomorphic to H*H as a Hopf
algebra. Milnor [7] showed that S,, the dual Hopf algebra of S*, is isomorphic to the
Hopf algebra E(m9,71,...) ® Fp[é1,&a, ... ] whose coproduct is given by

Tn'_)Tn®1+Z£Z_i®Tia gn'_)Zé-Z_Z@gl

i=0 =0

This induces the Hopf algebra structure of the stable co-operations H, H.

Our aim is to reinforce and clarify this theorem of Milnor by introducing the quasi-
strict automorphism group of a 1-dimensional additive formal group law and modular
invariants. Our argument consists of two steps.

In the first step, we consider two functors Op(—) and AUTF, (ga)(—) on the cate-
gory of non-negative graded commutative algebras over F,. The functor Op(—) assigns
Op(R.), the set of all multiplicative operations

H*(=) — H*(-) @ R.

which satisfy certain properties, to each R,, a non-negatively graded commutative algebra
over F,. The functor AUTF, (g,)(—) assigns AUTFE, (9a)(R.), the set of all quasi-strict
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automorphisms of the 1-dimensional additive formal group law over the ring of dual
numbers R,[e]/(e?) to each R,. Then Op(—) and AUTF, (gq)(—) are represented by
the graded algebras H.H and A, = E(To, 71, ...) ® Fp[&1, e, ..., respectively. In other
words, we have natural isomorphisms

X:Op(—) — Homp, ag(H.H,—), T :Hompg, ug(A., —) — AUTE (ga)(—).
Moreover we can define a natural transformation
F:O0p(-)— AUTFp(ga)(—)

which directly connects H,H with the quasi-strict automorphism group of a 1-
dimensional additive formal group law. These induce the following commutative dia-
gram:

>
-~
IR
1R
-~
N

Homp, aig(H H, —) —> Homp, g (A, —). (1.1)
Here N =T~ 'o Fo\A~!. In particular, we obtain the crucial homomorphism of algebras
N(idH*H) . A* — H*H.

The composite of two quasi-strict automorphisms is also a quasi-strict one. This means
that AUTF, (g4)(—) is a functor to the category of groups, which induces the Hopf algebra
structure of A,.. Then we see N(idg, r) is a Hopf algebra homomorphism.

In the second step, we show that N(idg, ) is an isomorphism by the usage of a
multiplicative operation

Sp i H' (=) — H*(—) ® D[n].,

where Din]. = E(7[n]o, ..., T[nln=1) @ Fp[&[n]1,...,&[n],]. The definition of S, depends
heavily upon Mui’s work on cohomology operations derived from modular invariants.
Once such a multiplicative operation S,, is defined, we immediately obtain the following
commutative diagram from (1.1):

N(@d
A*%H*H

\ iA(S”)
T~ oF(S,)

Din)..

Here T~1 o F(S,,) is shown to be an isomorphism in some low range of homological
degree, which becomes arbitrarily large as we choose sufficiently large n. This implies
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that N(idg, i) is injective. Furthermore by the old work of Cartan [2], [3], the Poincaré
series of A, and that of H,H are the same. Therefore N (idg, i) is an isomorphism. This
leads us to the Hopf algebra structure of H,H, for we can easily obtain the Hopf algebra
structure of A,.

In [6], we showed a similar result in the mod 2 case, which tells us the Hopf algebra
structure of the stable co-operations HZ/2,HZ /2 in the mod 2 ordinary cohomology
by using the strict automorphism group of a 1-dimensional additive formal group law
and modular invariants. The approach in this paper is similar to the one we used in
[6]. However there is a difference. The strict automorphism group of the 1-dimensional
additive formal group law over R, plays an important role in [6], whereas the quasi-strict
one over R,[e]/(€?) does it in this paper. The usage of the strict one over R, in this paper
determine the polynomial part F},[&,&s,...] of H,H only.

This paper is divided into five sections and an appendix. In Section 2, we introduce
the notion of multiplicative operations. We define a multiplicative operation ¢ with
good properties, which induces the natural isomorphism A. In Section 3, we recall the
definition of reduced power operations [10] and Mui’s results [8], [9], and introduce the
multiplicative operation S, by using these results. In Section 4, we study AUTE, (ga)(—)
and obtain the natural isomorphism 7. In Section 5, we define the natural transforma-
tion I which relates AUTE, (ga)(—) with Op(—), and then we show the main theorem
(Theorem 5.2). In Appendix A, we define higher dimensional graded formal group laws
and homomorphisms. Especially we study a certain 2-dimensional graded additive for-
mal group law G, and the quasi-strict automorphism group of GG,. Then we prove the
main theorem by the usage of the quasi-strict automorphism group of G, instead of
AUTF, (92)(-).

Throughout this paper, we use the following notations. Suppose that X and Y are
spaces, and that p is an odd prime. We denote the mod p cohomology by H*(—). Let
€1,...,e, be the standard basis of (Z/p)™. Let

€1,...,€n € Hl(B(Z/p)n) = Hom((Z/p)",Z/p)

be the dual of eq,...,e,. Put z; = (B¢;, where (3 is the Bockstein homomorphism. Then
we have

H*(B(Z/p)") = E(€1,...,€n) @ Fplx1,...,2p].

Any graded Fp-algebra R, is supposed to be non-negatively graded and commutative,
that is to say, R, = 0 for n < 0, and a - b= (—1)de8edesbp . g,

We set degree as follows. For an element z in H"(X), we define the degree of z
by degx = n. For a graded Fj-algebra R, and r € R,,, we define the degree of r by
degr = —m. Therefore x @ r € H*(X) ® R, is of degree n —m.

The author is grateful to the referee for making many useful suggestions. In the
first manuscript of this paper, we proved the main theorem by using a 2-dimensional
graded additive formal group law. The referee suggested to the author replacing it with
the ordinary 1-dimensional additive formal group law in the context of the ring of dual
numbers. Almost all contents in Section 4 are given by the referee. This simplifies the
proof of the main theorem. The author is grateful to Professor Minoru Itoh, Dr. Kazuhiko



314 M. INOUE

Yamaki and Dr. Takeshi Abe for pointing out many problematic English expressions and
for giving lectures on English.

2. Multiplicative operations.
We now define multiplicative operations in a way similar to Definition 2.1 in [6].

DEFINITION 2.1.  Let R, be a graded Fj-algebra. Consider the graded module
whose degree k-part is [, -, H*""(X) ® R,. By abuse of notation, we denote it by
H*(X) ® R.. A natural operation v : H*(X) — H*(X) ® R, which preserves degree is
said to be multiplicative if v satisfies the following conditions:

(i) The following diagram is commutative:

H*(X)® H*(Y) H*(X xY)

’Y®’Yi 2
H*(X)® R, 1@u®1 H (X)® H(Y) (x)®m
_—

- 5 H*(X xY R..
® H*(Y) ® R, ® R, ®R, K x¥)e

Here x is the cross product, m is the multiplication on R,, and p is defined by
plz,y) = (=1)""(y,x) for x € R, and y € H"(Y').
(i) v(u) =u® 1 when u is a generator of H'(S?).

Let H*(—) be the reduced mod p cohomology, and ~ a multiplicative operation.
Then ~ induces the reduced operation 4 : H*(X) — H*(X) ® R., which satisfies the
following commutative diagram:

A ~

H*(X)® H*(Y) H*(X AY)

"Y®’Yi 7

H*(X)® R, ol H*(X)®@ H*(Y)  (wem  ~
_— _—

. H*(XAY)® R,.
® H*(Y)® R, ® R. ® R, (XA )®R(21)

Here A is the smash product.

LEMMA 2.2 (See [6, Lemma 2.2]).  Suppose that v is a multiplicative operation.
Then 7 is stable. That is, the following diagram is commutative:

H"(X) ———>— H"(XX)

l ¥

[H*(X) @ R 2 [H*(2X) @ R,

2}

Here o is the suspension isomorphism.
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PROOF. By the commutative diagram (2.1), we have the following commutative
diagram:

H*(S") @ H*(X)

H*(S* A X)
a@wl g
H*(S') @ R. 1opet  HY(SY)YQH* (X)  rem

~ H*(S'A X) ® R..
® H*"(X) ® R. ® R. ® R, ( )

For any element z in H*(X), we have

Ho(@) = Funz) = (A@m)o (18 u®1) o ((u) ®¥(x))
— (ham)o(lepe )(uelei() =uri@) =(0o1)o5().

This means that 4 is a stable operation. 0

Let H be the mod p Eilenberg-MacLane spectrum. We want to introduce a mul-
tiplicative operation ¢ : H*(X) — H*(X) ® H.H with good properties. We define a
map

Y HY(X)={X" H} - {XT HANH}*

by ¥(f) = iAf € {SOA X+ HAH}Y, where i : S° — H is the unit map. Let
m : HANH — H be the multiplication on H. The map « : H*(X)®@H.H — {X*T, HAH}*
induced by H A (H A H) ™AL H A H is an isomorphism since H, H is finite dimensional
for each n. (See [6, Lemma 2.3].) We set

Y=r"tog: H(X)— H*(X)® H.H. (2.2)

We see that v is a multiplicative operation by the same proof as [6, Lemma 2.4].

In the remainder of this section, we study properties of ¥. From now on, we assume
that any graded algebra R. over F), is of finite type, that is, Iz, is finite dimensional for
each n. Since R, is of finite type, H*(X) ® R, satisfies the wedge axiom

H*(VXo) @ R, = [[ H*(Xa) @ R..

Therefore H*(X) ® R, is a cohomology theory, and we write HR, for the spectrum
representing it. The cohomology H*( ) ® R, has the products

H(X)®R.H*(Y)® R, — H* (X xXY) ® R,
(r@reyer — (—1)deg7"degy(:v Xy)r-r,
H (X))o (H*(Y)® R,) — H* (X xY)® R. (zRy@r— (zxy)r).
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These imply that H R, is a commutative ring spectrum and an H-module spectrum.
By Adams [1, III, 13.5], we have the isomorphism

\: (HR.)"H — Hom}, (H.H, R,).
Here this map is defined by A\(x) = (HAH " HANHR, HR,) for x € {H,HR.}*,
where 7 : H A HR, — HR, is the H-module map. It is easily seen that the following
diagram is commutative:

H*(x)LH*(X)@H*H

\ il@k(’y)

H*(X) ® R,. (2.3)

Let Op(R.) be the set of all multiplicative operations over R,.. Given a graded
algebra homomorphism R, — R, and v € Op(Ry),

(1®r)oy: H'(X) 5 H(X)® R. *5 H*(X)® R,

is a multiplicative operation over R'.. Therefore Op(—) is a covariant functor from the
category of graded algebras to the category of sets. From Lemma 2.2, 7 is a stable coho-
mology operation. In conclusion, we can regard v as an element in (HR,)°H, and hence
we have Op(R.) C (HR,)°H. We denote the restriction Op(R.) — Homp, (H.H, R.)
of A by the same symbol A\. Then we have the following theorem. Since the proof is the
same as that of [6, Theorem 2.5], we omit it.

THEOREM 2.3. There is a one-to-one correspondence
A : Op(R.) — Homp,.aig(H.H, R.).

Here X is natural in R, and satisfies the commutativity of the diagram (2.3). Especially
A(Y) is the identity map of H.H.

3. Steenrod’s reduced power operations.

Let I be a finite ordered set. We denote by Sym(7) and Alt(I) the symmetric group
and the alternating group of I, respectively. Let J be a finite ordered set, G a subgroup
of Alt(I), and H a subgroup of Alt(J). Let G [ H = G x [[ H, the wreath product of
G and H. Then we have

GxHCG[HCAI{ x J), (3.1)

where the first inclusion is given by the diagonal H — [[; H.
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Consider the vector space E™ = Ey X --- X E,, where E; = Z/p. Let Xpn and Apn
be the symmetric group Sym(E™) and the alternating group Alt(E™) on the point set
E™, respectively. The vector space E™ acts on itself: g € E™ sends h € E™ to g + h.
Thereby we can regard E™ as a permutation group on E™. This implies the inclusion
E" C Yyn. We define a Sylow p-subgroup Xpn ,, of Xn by Ypn , = Ey [--- [ E,. Using
(3.1) repeatedly, we have

Apn D Xpn , DBy x - x E, = E".

We recall reduced power operations in [10]. Let G be a subgroup of Alt(I), where
I is an ordered set of m elements. Given a space X and X; = X for any i € I, we put
X! =Tl,e; Xi and Eq(X) = EG xg X'. Steenrod defined the power operation

Ps : HY(X) — H™(Eg(X)).
Let dg : BG x X — Eg(X) be the diagonal map. Then we see
diPe : HY(X) - H™(BG x X).

Let G’ be a subgroup of G. The inclusion ig,g : G' — G induces BG' — BG and
Eq¢/(X) — Eg(X), which are denoted by the same symbol i¢ ¢/. It is known in [10,
VII] that i oPe = Por. Moreover de and ig g are continuous. Hence we have the
following equalities for E™ C Xpn , C Apn:

i e Pay =%, peds, . Ps. =diP,: HI(X) — H"(BE" x X). (3.2)

Here d,, = dg» and P,, = Pgn.
d} P, has the following fundamental properties.

LEMMA 3.1. Put h= (p—1)/2. Then we have

(i) diP,=djPid;_;P,_1.
(i) df P, (uv) = (=1)"""d@* P, (u) - d} P,(v), where ¢ = degu and r = degv.

Put GL, = GL,(F,), SL, = {w € GL,|detw = 1} and ﬁn = {w €
GL,|(detw)" = 1}. Consider the graded algebras

Fylr1,....2z,], Eler,....6,) Q@ Fylzq, ..., 2]

with dege; = 1 and dega; = 2. Here E( ) is an exterior algebra over F,. Any subgroup
K of GL,, operates naturally on them. Let
Flr1,...,20)%, (Bler,...,en) @ Fylay,...,x,))%

be the subalgebras of the K-invariants. Recall the K-invariants for the case of K = GL,,
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SL, or SL, from Dickson [4] and Mui [8], [9]. These are needed to describe d P, (u)
for u € H*(X), which leads us to the definition of a multiplicative operation .S,,.

Put [e1,...,e,] = det(xfej) for any sequence of non-negative integers (e, ..., e,). In
particular, weset L, s = [0,...,5,...,n]for0 < s <n, and L,, = L,, ,. By the definition,
we have deg L,, s = 2(p" ™ — p*)/(p — 1) and deg L,, = 2(p" — 1)/(p — 1). According
to [4], [8, 1.4.15, 1.4.16] and [9, 2.1], L, s/L,, is an element in F,[x1,...,z,], and it is
denoted by @, s. Note that @, , = 1. By the definition, we see deg @, s = 2(p" — p*).
From Dickson [4], we have

Fp[xla ce amn]SLn = Fp[LnaQn,la . -,Qn,n—l]-

Let (ai;) be a matrix of type (n,n) over a graded algebra. Then the determinant
det(ai;) is defined as follows:

det(a;;) = Z SEN(0)A15(1)A20(2) ** * Ano(n)-

oceX,
We set
€1 €n
1 €1 €n
ke ..., en] = —det
[ s Ck+1 ) TJ k' lejek+1 . mglek#»l )
pen pe"
T Ly,
for any sequence of non-negative integers (exy1,...,€,). For 0 <s; <--- < s <n—1,
we put

Mysy,..sp = [k;0,...,81,...,8k,...,n—1].

Then we obtain deg My, 5, .5, = k+2(p" —1)/(p —1) = 2(p°* + --- 4+ p°*). Here are
results of Mui.

THEOREM 3.2 ([8, 1.4.8]). We have the direct sum decomposition

(E(El, . .,Gn) ® Fp[’I17 cee 7$n])SLn

= Fp[Ln,Qn,lv"'in,nfl] 2] @ Fp[Ln;Qn,l,uan,nfl} 'Mn,sl,---,sk

0<s1< <5, <n—1

as an Fp[Ly,Qn1,- .., Qnn_1]-module. The multiplicative structure is given by the rela-
tions

Mg,s =0, Mn7sl to Mmsk = (*1)k(k71)/2Mn781-,--~78k Lf;l



Odd primary Steenrod algebra, additive formal group laws 319

for0<sy <---<sp<n-—1.
From [9, Lemma 2.1] and this theorem, we obtain the following corollary.

COROLLARY 3.3 ([9, 2.5]). We have the direct sum decomposition

(E(Gl, .. .,En) ® Fp[l’l, s axn])SLn

= Fp[znaQn,la“'aQn,nfl} D @ Fp[iann,lw‘-aQn,nfl] 'Mn,sl,-u,sk

0<s1< - <sp,<n—1
as an Fp[f/n, Qni,--sQnn—1]-module. Here L, = L and Mn,sl,...,sk =M, o L1
Then deg L, =p™ — 1 and deg M, 5,5, =k —1+p" —2(p°* +--- + ).

As in [8], we put V, =[]

relations

aiez/p(alxl + -+ ag_17K_1 + zr). Then we obtain the

L,=WV3--- Vna Qn,s = anl,svyf_l + Qﬁflysfl'
PROPOSITION 3.4 ([9, 2.6]). Suppose Uy = Mk’k,lLZj. Then we have
k 5

Vg1 = (—1)k Z(_l)SQk,stJrl’

s=0
k-1 .
Upy1 = (=1)* (Lkek-H + Z(—l)SHMk,sxiH),
5=0

where deg Vi41 = 2p* and deg U1 = p*.

We identify H*(BE™) with the above algebra E(e1,...,€,) @ Fplz1,...,2,). Using
the invariants, we describe the images of

P50 g H(BSyn ) — H*(BE"), iy go: H*(BAy) — H*(BE")

as follows.

THEOREM 3.5 ([8, IT Theorem 5.2], [9, Theorem 3.10]).
g =E(UL,....U) @ FyVi,..., V).
In the proof of [9, Theorem 3.10], it is shown that
ok _ -k * n 5“2171,
Imiy , gn =Imiy , g N[H(BE")]"".

From [9, Lemma 3.11] and Corollary 3.3, we see
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Imi; , g N[H (BE")¥" = E(My,0,..., My pn1) ® Fp[Lp, Quis- -, Quin1).

Therefore we have the following theorem.

THEOREM 3.6 ([9, Theorem 3.10]).

Imi;‘men == E(Mn,07 ey Mn;ﬂ—l) ® Fp[i’ny Qn,h .. aQnm—l}-
Since we have dj P, =@ gady , Pa,. from the equality (3.2), we obtain
Imd:lpn C (E(Mn,m ) Mn,n—l) b2 Fp[ina lev ey an—l]) ® H*(X)

Hence the following is well defined.

DEFINITION 3.7 ([9, Definition 4.1]). For every v € H1(X), we write

d:LPn(u> = Z Mn;51 T Mn,ski’:zo 21,1 e Q;ilgil ® @S;R(U’)’

where the summation runs over all sequences S = (s1,...,5;) with 0 < s1 < -+ < s <
n — 1 and all sequences of non-negative integers R = (9, ...,7,—1). This formula defines
the maps

Ds.p : HI(X) — HP 97198 (X)),

where |S, R| = kp"™ + ro(p™ — 1) + 2(2;:11 ri(p" —pl) — SoF p%).

Mui proved the following lemma about Zs k.

LEMMA 3.8 ([9, Lemma 4.2]). Ifq—k—rq is not even or q < k+ro+2(ri+---+
Tn—1), then s r(u) = 0.

Let us introduce a multiplicative operation S,,. We set u(q) = (h!)?(—1)hata=1/2,
and

Il = E(Mp0, -, My 1) @ Fy[Ly, Qni, s Qnn1l.
Then we define an operation S, : H*(X) — I'[n]. ® H*(X) by
x— p(degz) "L, 824" P, (x).
Since deg L, 487 = —(deg ) (p"—1) and deg d}, P, (z) = (deg x)-p", we see Sn preserves
degree. Put 7[n); = (=1)""'M,,;/L, for 0 < i < n —1, and £[n); = (-1)'Q,.i/L2

for 1 < ¢ < n. Denote by D[n], the subalgebra generated by 7[nlo,...,7[n],—1 and
&[nl1, ..., &[n]n in I'[n].. Then we can easily see
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Din]. = E(7[n]o, ..., T[n]p=1) @ F,[&[n]1,...,&[n]n].

Here deg7(n]; = —(2p" — 1) and degé[n]; = —2(p' — 1), i.e., T[n]; € D[n]syi_1 and
§[nl: € D[n]api—1). By Lemma 3.8, we have the following lemma.

LEMMA 3.9. Im(S,) C D[n]. ® H*(X).

We denote by S, the composite operation

H*(X) %% Dln], @ H*(X) % H*(X) ® Dln.,

where 1 is the interchange map 3 a; ® b; +— > (—1)de8aidegbip, @ g,
LEMMA 3.10. The cohomology operation S, is multiplicative.

PrROOF. For u € HY(X) and v € H"(X), we have

Sn(uv) = p(q +r) "Ly, U0 d; Py (o)
= plq +7) "Ly D (1) d5 Py (u) - d P (v)
= S, (u) - Sp(v).
Here the second equality follows from Lemma 3.1, and the third is obvious since p(g+r) =
w(q) - pu(r) - (—=1)h9". Therefore S,, satisfies the condition (i) in Definition 2.1.

It remains to prove that S, satisfies the condition (ii) in Definition 2.1. Let u be a
generator of H1(S!). Since

Py () = p() (o @ w) = p()(Lr © ),
we have S, (u) =u® 1. O
For H*(BEj4+1) = E(€xt+1) @ Fp[Ti+1], we consider

di Py : H*(BEjy1) — H*(B(Ey X --- x E}) x BEpy,) = H*(BE*).

Then the following theorem is known in Mui [8].

THEOREM 3.11 ([8], [9, Theorem 3.8], [11, Proposition 1.1(iii)]). =~ We have
di Pi(exr1) = (=) Upsr,  diPr(zps1) = Vit

This implies the following corollary. It is used in the proof of Theorem 5.2.
COROLLARY 3.12. For e € HY(BZ/p) and v € H*(BZ/p), we have

n—1

Sple) =e®1+ prs ®7[nls, Sp(z)=z&1 —|—pr5 ® &[n]s.
s=0 s=1
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PrROOF. By Lemma 3.4 and Theorem 3.11, we obtain

Su(e) = p(1) "Ly, dy, Pre)

= (W) "L Y (=h)" (1) <1in ® e+ i(—l)SHMM ® xp‘“>
s=0

=1®e+ Z s@aP.

This induces S,(€) =e® 1+ > 0 Oscp ® 7[n]s.
We see

Therefore by Lemma 3.4 and Theorem 3.11, we have

n

Su(@) = n(2) "L Pa(e) = (—1) L2 (-1)" 3 (<1) Qe Zg le®ar,

s=0

where £[n]o = 1. In consequence, we have S, (z) =x® 1+ Y1 oP" ® &[n]s. O

4. Some 1-dimensional additive formal group law.

Let g, be the 1-dimensional additive formal group law. For each graded algebra
R., we consider the graded algebra R.[e]/(¢?), the ring of dual numbers of R,. Here
dege = 1.

DEFINITION 4.1.  We set degz = 2. A power series f(z) = Y o, (em; + n;)x’ in
R.[€]/(e2)[[z]] is called a quasi-strict automorphism of g, over R.[e]/(€?) if it satisfies the
following three conditions:

() flz+y)=f2)+f(y)
(i) ni=1
(111) m; € Ro;—1 and n; € Ro;j_s.

REMARK. The condition (iii) is equivalent to degem;z’ = degn;z* = 2 for any i.

The condition (i) in this definition implies m; = 0 and n; = 0 for ¢ # p®, and thereby
we can express a quasi-strict automorphism f(z) as

o0

k
Z Eak+bk s ag €R2pk_1, bk €R2pk_2, b():l
k=0
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We write AUTF, (g4)(R.) for the set of all quasi-strict automorphisms over R,[e]/(€?).
Then AUTFE,(ga)(—) is a functor from the category of graded algebras over F), to the
category of sets. We put A, = E(7,71,...) ® F,[&1,&2,...], where 7; € Ay, and
& € Agpi_o. We have a natural isomorphism of sets

oo

T : Homp, aig(As, Ry) — AUTE, (ga)(R.), Z (eh(7x) + h(&x))z?,  (4.1)

where & = 1. We define a product of AUTF, (gq)(R.) by the composition (g - f)(z) =
f(g(x)). Then AUTE,(ga)(Rx) is a group, and therefore AUTF,(g.)(—) is a functor to
the category of groups. Furthermore Homp,_a14(A«, —) is also a functor to the category
of groups via (4.1), and this induces the coproduct A : A, — A, ® A.. Given a couple
of elements in AUTF, (g, )(R+):

Zea + 052, aj,b; € Re, by =1;
=0

g(z) = Z(eak +bg)aP, af,bi € R., by=1,
k=0

we obtain the product

) k

:Z (ea; + b;)x :Z (eay +bY) (Z(ea9+b;)x”])
i=0 -0 =0

= Z €a k + b// (
k=0

'M8 ]

(e +)" ")

Jj=0
oo oo oo
1 / / J " " ipF pitk
= (eay + by E eaj—l—bj)mp + E (eay +by) E b a?f
j=0 k=1 j=0

= Z (e (a - Zb’z kak) + Zb’f kb”)

Therefore the coproduct A is given by

i — Kk — i — k —
AF) =701+ & 0m A& =) &, 0.
k=0 k=0

Therefore we have the following theorem.

THEOREM 4.2.  Let A, be the Hopf algebra E(7o,71,...) @ Fp[&1,&a,...] whose
coproduct is given by

Ar) =r01+> & on, A& =Y &, 0&.
k=0

k=0
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Then T is a natural isomorphism of groups.

5. A relation between H,H and AUTF,(ga)-

The product a : BZ/p x BZ/p — BZ/p induces the coproduct map
a*: H'(BZ/p) =2 E(¢) ® Fylx] — H"(BZ/p x BZ [p) = E(e1, €2) @ Fplz1, z2],

and we see that a*(€) = €; + €2 and a*(x) = z1 4+ 22. Consider a multiplicative operation
v:H*(X)— H*(X)® R.. If X = BZ/p, we get the following isomorphisms

H*(BZ[p) ® R. = E(¢) ® R.[[2]] 2 R.[e]/(e)[[x]]-
For v(e) € [H*(BZ/p) ® R.]" and (x) € [H*(BZ /p) ® R.]?, we define an element f., ()

in R.[e]/(¢*)[[2]] as f,(z) = ev(e) +(x).

LEMMA 5.1.  f,(z) is a quasi-strict automorphism of g, over R.[e]/(e?). In other
words, f.(x) is an element in AUTE (g.)(Rx).

PROOF.  Since a multiplicative operation 7 preserves degree, f,(x) satisfies the
condition (iii) in Definition 4.1.
From the commutative diagram

H*(BZ/p) ® H*(BZ[p) —~~ H*(BZ/p) ® R. ® H*(BZ/p) & R.
Xl l((x)@m)o(l@u@l)
H*(BZ/px BZ|p) —— > H*(BZ/p x BZ/p) ® R,,

we have

Vet +e) =A(ex 1+1xe)
() @m) o (1®u®1)(v(e) ® (1) +7(1) ®7(e) = 1(er) + Y(ea),
W +a2) = (@ x 1+1x )

(<) @m) o (1® p® 1)(3() ® (1) +7(1) ®7(x)) = 7(x1) + 7(z2).

It follows from the above equalities that f,(x1 + x2) = fy(z1) + fy(z2), and thereby
fy(x) satisfies the condition (i) in Definition 4.1.

It remains to show that f,(z) satisfies the condition (ii) in Definition 4.1. Since
f+(x) satisfies the conditions (i) and (iii) in Definition 4.1, we obtain the form

o0
Z eay + b )a? ar € Rgpk,l, b € RQPk,Q.
k=0
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It is enough to prove by = 1. Let z be the element in H?(BS?') which satisfies j*(z) =
for the inclusion j : BZ/p — BS!. Then we see that H*(BS!) & F,[z], and that j*
. . . . . o0 k .
is injective. Moreover we can write y(z) as v(z) = >_,_,cx2? . From the commutative
diagram

H*(BS') —— H*(BS') ® R,

H*(BZ/p) —= H*(BZ/p) ® R.,

we have
> k ok -k
D e’ = (5 ®1) 0y(2) = y04%(2) = v(x).
k=0

By the definition of f,(z) and the preceding equality, we see that by = 1 is equivalent to
Co = 1.

Let [ : S — BS! be the inclusion, and u the element in H?(S?) which satisfies
I*(z) = u. By Definition 2.1 (ii) and Lemma 2.2, we have v(u) = u ® 1. From the
commutative diagram

H?(BS') —— [H*(BS') ® R,]?

H?(S?) —— [H*(5%) @ R.J%,

we obtain
u@co=1"@1)oxy(2) =vol*(z) =y(u) =u® 1.

Hence ¢y = 1. This completes the proof of the lemma. O

By this lemma, we can define a natural transformation F' : Op(—) — AUTE, (g4)(—)
by F(v) = fy(x). We consider the following commutative diagram:

Op(-) L~ AUTF, (g2)(-)
Alﬁ ETT
HOHle_alg(H*H, —) LHOIHFP_alg(A*,—). (51)

Here N =T 'oFoA™!. We write x for T"'oF(y) € Homp, aig(As, R.). We obtain two
algebra homomorphisms xy : A, — H.H and xg, : A« — D[n], from the multiplicative
operations ¢ : H*(X) — H*(X)® H,H in (2.2) and S,, : H*(X) — H*(X) ® D[n], in
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Lemma 3.10, respectively. From Theorem 2.3, we see N(idy,g) = Xy, where idy, g is
the identity map of H,H. Since N is a natural transformation, we have

N(l):N(lOidH*H):lON(idH*H):ZOXw

for any graded algebra homomorphism ! : H,H — R,. From the commutative diagram
(5.1) and the above equality, we see

Xs, =T 710 F(Sy) = N o X(Sp) = N(X(Sn)) = A(Sn) © Xy,

i.e., the following diagram is commutative:

A, g.H
n lwn)
D[n].. (5.2)

The map H A SO A H """ B A H A H induces the coproduct map

§:HH={S" HANH}, — {S>  HNHANH}, ~ H,H® H.H.

Then H.H is a Hopf algebra and H*(X) is an H,H-comodule with ¢ : H*(X) —
H*(X)® H.H.
The following is the main theorem.

THEOREM 5.2. x4 = N(idy,n) : A« — H.H is a Hopf algebra isomorphism.

Proor. By Corollary 3.12, we have

n—1 n n

fs,(x) = eSp(e) + Sp(x) = Z er[n]ix”j + (:17 + Zf[n]zxpl> = Z(GT[n]l + f[n}i)xpi,

i=0 j=1 =0
where {[n]o = 1 and 7[n],, = 0. From the definition of xg, and T, we see

xs,(7i) =7[n)i (0<i<n—-1), xs,(7i)=0
xs, (&) =¢&[nli (1 <i<n), xs, (&) =0

In consequence, xg, : HiH — D|n], is an isomorphism for x < 2p™ — 2, which becomes
arbitrarily large. This and the commutative diagram (5.2) imply X, is injective. Cartan
[3] showed that the Poincaré series of H,H is equal to

ﬁ 142" 1
_ $2pi—2
LT
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The Poincaré series of A, and that of H,H are the same, and hence xy is bijective.
We need to show that x, is a Hopf algebra homomorphism. Since v is an H,H-
comodule map, we have

(p@1)op=(1®8)orp: H(X) — H*(X)® H.H® H,H.

It is not difficult to see that x, is a Hopf algebra homomorphism. (See [6, Theorem 4.1]
for details.) O

Appendix A. Higher dimensional graded formal group laws.

We recall higher dimensional commutative formal group laws in Hazewinkel [5]. For
convenience, we abbreviate commutative formal group laws to formal group laws.

DEFINITION A.1.  An n-dimensional formal group law over a ring A is an n-
tuple of power series F(X,Y) = (F(1)(X,Y),...,F(n)(X,Y)) in 2n indeterminates
Xi,..., XY, ..., Y, such that

() FG)X,Y)=X;+Y; mod (X1,...,Xn,Y1,....Y)2, i=1,....,n;
(i) FO)(FO)(X,Y),Z2)=F)(X, F()(Y,2)), i=1,....n
(iii) F(0)(X,Y)=F@)(Y,X), i=1,....n.

DEFINITION A.2. Let F(X,Y) be an n-dimensional formal group law over a ring
A and G(X',Y’) an m-dimensional formal group law over A. A homomorphism over A,
F(X,Y) - G(X',Y’') is an m-tuple of formal power series a(X) in n indeterminates
X1,..., X, such that a(X) =0 mod (Xy,...,X,) and o(F(X,Y)) = G(a(X), a(Y)).

We introduce higher dimensional graded formal group laws over a graded F,-algebra
and homomorphisms between them.

DEFINITION A.3. Suppose that «; is odd for 0 <4 < s, and that «; is even for
s+ 1 < j < n. Let X; and Y; be indeterminates of degree a;. Then an n-tuple of
elements F(X,Y) = (F(1)(X,Y),...,F(n)(X,Y)) in

E(X1,.... X Y1, Y) @ Rul[Xesr, o, Xoi Yag, . Y]

is called an n-dimensional graded formal group law over a graded F,-algebra R, if it
satisfies the following conditions:
(i) F(i) is a homogeneous formal power series of degree oy, i.e., degt; n X'YT = a; if
F(i) = S trp XY where X1 = X o Xk yI' =y v and t; € R,
for I = (ky,...,kn) and I' = (K}, ..., k});
(i) FE)(X,Y)=X;+Y; mod (X1,...,Xn,V1,...,Y)%
(i) FO)(F@)(X,Y), Z) = F()(X, F()(Y, Z);
(iv) F(i)(X,Y) = F()(Y, X).

In particular, we define a graded formal group law G,(X,Y) by G,(:)(X,Y) = X, + Y},
which is called a graded additive formal group law.
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DEFINITION A.4. Suppose that «; is odd for 1 < i < s, and that «; is even
for s +1 < 4 < n. Suppose that §; is odd for 1 < j < ¢, and that §; is even for
s’ +1 < 7 < m. Given indeterminates X;,Y; and X;,Yj’ such that deg X; = degV; = «;
and deg XJ’» = deg Yj’ = 0;, let F(X,Y) be an n-dimensional graded formal group law
with X;,Y; over a graded Fp-algebra R,, and G(X',Y”) an m-dimensional graded formal
group law with X7, Y/ over R.. Then a homomorphism f(X) : F(X,Y) — G(X",Y’) is
an m-tuple of elements f(X) = (f(1)(X),..., f(m)(X)) in

E(X1,...,Xs)® Ru[[Xst1,---, Xn]]

which satisfies the following conditions:

(i) f(i)(X) is a homogeneous formal power series of degree 3;, i.e., degt; X = 3; if
F(i) =Y t; X!, where X! = Xfl oo Xk and t; € R, for I = (ky, -+, kp);

(i) f(X)=0 mod (Xy,...,X,);

(iif) f(F(X,Y)) = G(f(X), f(Y)).

A homomorphism f(X) : F — G is called an isomorphism if there exists a homo-
morphism ¢g(X’) : G — F such that f(g(X’)) = X’ and ¢g(f(X)) = X. Let J(f) be the

matrix

Gm1 **° Gmn

where f(i)(X) = an X1 + -+ ain X, mod (X1,...,X,)% Note that J(f) is a matrix
over a graded algebra. We can easily see that f(X) is an isomorphism if and only if J(f)
is invertible. Suppose that J(f) is an upper triangular matrix with all diagonal entries
1, i.e.

Then we see that J(f) is invertible, and f(X) is called a quasi-strict isomorphism.

We now consider a 2-dimensional graded additive formal group law G, (€1, 21; €2, 2)
with dege; = 1 and degx; = 2. Write Autp, (Go)(R«) for the set of all quasi-strict auto-
morphisms of G4 (€1, 21; €2, 22) over a graded Fj-algebra R,. Obviously Autg, (G,)(—) is
a functor from the category of graded algebras to the category of sets. By the definition of
quasi-strict automorphisms, an element f(X) = (f(1)(e, z), f(2)(€,x)) in Autp, (Ga)(Rx)
satisfies the following conditions:

fW)(e,z), f(2)(e,x) € E(e) @ R, [[x]]; (A1)
dege =1, degx =2, deg f(1) =1, deg f(2) =2; (A.2)
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f(W)(er + e2, 21 +2) = f(1)(e1,71) + f(1)(e2, 22); (A.3)
f@2)(e1 +e2, 21 +22) = f(2)(e1,21) + f(2)(e2, 22); (A.4)
f(D)(e,2) = e+ aor, f(2)(e,x) =2 mod (e, 7). (A.5)

We express a quasi-strict automorphism f(X) = (f(1)(¢, x), f(2)(¢,x)) as
Z em; + m Z en; + n
=0 =1

where mg = 1, m6 =0, n’1 =1, m; € Ry, m; € Ro;i 1, n; € Ro;q, and 77,2 € Roj_o.
From the conditions (A.3) and (A.4), we see

[M]8

((61 + Eg)mi —+ m;)(ml + xZ)i — Z (elmi + m;)le + Z (egmi + mi)xé,
=0 =0

<.

((61 + Eg)ni + ’I’L;)(l‘l + ,7;2)i — Z (Elni + n;)xll + Z (62ni + n;)xé
1 =1 =1

i
If i > 1, then

(€1 + &) (1 + 1) = ezl + e2xh + €17h + e2x} + 4,
where A is a polynomial. This implies m; = n; = 0 for i > 1. If i = p®, then (z1 +x2)" =
#% +a, and if ¢ # p®, then (1 +x2)" = 2" +y’ +xyB, where B is a non-zero polynomial.

Therefore we have m; = 0 and n; = 0 for ¢ # p®. These show that the conditions
(A.1)—(A.5) are equivalent to

f(D)(e, ) = €+ apx + ara® + -+ + apz? +---

f2)(e,z) = T4 bya? 44 b 4

where a; € Rypi_q and b; € Rypi_o. We put A, = E(79,71,...)® Fp[él,ég, ...], where
T € A2pi_1 and éi € 12121,1'_2. Define a natural map

T : Home_alg(A*, R*) — AUtFp (Ga)(R*)

by

b F(X) = (JA) (6, 0), f(2)(e,2) = ( + > h(E)e Zh(é)w”i)'
=0 i=1

Obviously 7' is an isomorphism of sets. A product of Aut F,(Ga)(R.) is defined by the
composition (f - ¢)(X) = g(f(X)), i.e.,
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(f-9)(X) = ((f - 9)()(X), (f - 9)(2)(X))
= (G (F)(e2), F@)(e2)), 92 (F1) e, 2), F(2)(e,2))).
We see that Autg (G,)(R.) is a group, and therefore Autp, (G4)(—) is a functor to the
category of groups. Then there exists a unique coproduct A : A, — A, ® A, such that

T is a group isomorphism. We express a couple of elements f(X) = (f(1)(X), f(2)(X))
and g(X) = (9(1)(X), 9(2)(X)) in Autp, (Ga)(R.) as

X)ze—l—Za;mpj, f(2)(X):Zb;mpj, by = 1;
iz =0
s k s k
X)ze—i—Zagmp , g(2)(X):Zngp , b =1.
k=0 k=0

Then we can describe the product (f - g)(X) as

k

(f-9) —e+Zamp —(e+Zaxp)+iag<§:b;xpj>p

j=0 k=0 7=0

= +Z<a +Zb/z kak) ,

i

(F-9)@)(X) =3 bt = ib(fjm) -y (sz )

1=0 k=0 7=0 1=0 k=0
These imply that
~ : Ak A A i Ak ~
Ay =#n01+> & @n, A&) =) &, 0&.
k=0 k=0

Therefore we have the following theorem.

THEOREM A.5. Let A, be the Hopf algebra E(70,71,...) ® Fp[él,ég, ...] whose
coproduct is given by

A(n)—n@HZf e ® T, Zf " ® &

Then T is a natural isomorphism of groups.

We can prove the main theorem by the usage of Autp, (G.)(—) instead of
AUTE,(g9a)(—) as follows. Let v : H*(X) — H*(X) ® R, be a multiplicative opera-
tion. For X = BZ/p, we have
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y: H*(BZ/p) = E(e) ® Fyls] — H*(BZ/p) & R. = E(€) & R.[[z]),

We define f(X) = (f,(1)(e,2), f(2)(e;2)) by f,(1)(e,x) = 7(€) and f,(2)(e,x) = 7(x).
We can prove that f,(X) is a quasi-strict automorphism of G, over R, in a way similar to
the proof of Lemma 5.1. Let F': Op(—) — Autp,(G,)(—) be the natural transformation

which sends v to fV(X ). As in Section 5, we have the following commutative diagram:

Op(—) —— T+ Autp, (Ga)(—)

e

Homp, ag(H. H, —) —~> Homp, a1 (A, —). (A.6)
Here N=T"1oF o\l We put

where idgy, g is the identity map of H,H. In a way similar to the proof of Theorem 5.2,
we can show the following theorem.

THEOREM A.6. Xy is a Hopf algebra isomorphism.

Now we have the three natural operations Op(—), Autp, (G,)(—) and
AUTF,(ga)(—). The Hopf algebras H.H, A, and A, represent them, respectively. We
want to investigate relations among them. First we construct a natural transformation

W : Autp, (Ga)(—) — AUTF, (94)(—);
and see relations among Op(—), Autg, (Ga)(~) and AUTE, (ga)(—). Given an element
f(X) = (F()(X), F(2)(X))
in Autp (Ga)(R.), we put W(f(X)) = ef(1)(X) + £(2)(X). Tt is well defined since

ef(1)(X) + f(2)(X) is an element in AUTFE, (ga)(R+). Moreover W is an isomorphism.
By the definition of F' in Section 5, the following diagram is commutative:

AUTF (ga

P

Autpp (Ga)( (A.7)



332

M. INOUE

Next we study relations among H, H, A, and A,. Consider the Hopf algebra isomorphism
W': A, — A, given by 7; — 7; and & — &;. Then the following diagram is commutative:

Autg, (Ga)(—) AUTF, (9a)(-)

aE :TT

1%

Home_alg(A*, —) E— Home—alg<A*a _)~ (AS)

From the commutative diagrams (5.1), (A.6), (A.7) and (A.8), we obtain a commutative
diagram of isomorphisms

(1]
(2]
(3]
(4]
[5]
(6]

[7]
(8]

[9]
[10]

(11]

\/

12

References

J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Math., Univ. of
Chicago Press, Chicago, Ill.-London, 1974, pp.x+373.

H. Cartan, Sur les groupes d’Eilenberg-MacLane H(II,n). I. Méthode des constructions, Proc.
Natl. Acad. Sci. USA, 40 (1954), 467-471.

H. Cartan, Sur les groupes d’Eilenberg-MacLane. II, Proc. Natl. Acad. Sci. USA, 40 (1954),
704-707.

L. E. Dickson, A fundamental system of invariants of the general modular linear group with a
solution of the form problem, Trans. Amer. Math. Soc., 12 (1911), 75-98.

M. Hazewinkel, Formal groups and applications, Pure and Appl. Math., 78, Academic Press, Inc.
[Harcourt Brace Jovanovich, Publishers|, New York-London, 1978, pp. xxii+573.

M. Inoue, The Steenrod algebra and the automorphism group of additive formal group law, J.
Math. Kyoto Univ., 45 (2005), No. 1, 39-55.

J. Milnor, The Steenrod algebra and its dual, Ann. of Math., 67 (1958), 150-171.

H. Mui, Modular invariant theory and the cohomology algebras of symmetric spaces, J. Fac. Sci.
Univ. Tokyo, 22 (1975), 319-369.

H. Mui, Cohomology operations derived from modular invariants, Math. Z., 193 (1986), 151-163.
N. E. Steenrod and D. B. A. Epstein, Cohomology Operations, Ann. of Math. Stud., No. 50,
Princeton Univ. Press, 1962.

N. Sum, Steenrod operations on the modular invariants, Kodai Math. J., 17 (1994), no. 3, 585—
595.

Masateru INOUE

Department of Mathematics
Graduate School of Science

Kyoto University

Kyoto 606-8502

Japan

E-mail: masateru@kusm.kyoto-u.ac.jp



