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ON THE FORMAL STRUCTURE OF THE JACOBIAN VARIETY
OF THE FERMAT CURVE OVER A P-ADIC INTEGER RING (*)

TAIRA HONDA

Let I'y be the algebraic curve o +y¥=1 (N = 3) and J, its
J z?cobian variety, defined over a field K. When K is a finite ﬁellrl F,
with ¢ elements such that N|g—1, the zeta function of e whicli
is essentially the same thing as that of J,,, was calculated by Dm;enport-
Hasse [1] and written in terms of so-called Jacobi sums. Later Ma-
nin [9] showed how the formal structure of an abelian variety over F,
is determined by the prime ideal decomposition of the eigenvalues o%
its ¢-th power endomorphism. According to his result the formal
structure of J (up to isogeny over the algebraic closure of F,) is also
described by using the classical formula on the prime ideal decom-
position of a Jacobi sum.

When K is the rational numbers Q, a formal group F,, obtained
by formalization of group law of J,, has p-integral coefficients for
almost all primes p. The purpose of this article is to study this group
as a formal group over Z,, the ring of p-adic integers, and to show
how its structure is determined by the coefficients of the differentials
of the first kind on /7.

- In 1, we yield a general theorem on the formal structure of a Jaco-
bian variety over a finite algebraic number field K. Let I" be a com-
plete non-singular curve, J its Jacobian, A: I'->J a canonical map, all
defined over K. Let F be the formal group obtained by expansion into
Power series of the group law of J relative to some system' of local
pargmeters at the origin. For a prime p of K, let D, denote the com-
pletion o-f integers of K at p. In [6] we showed how a formal group
over 0p 18 determined by some type of matrix (called special) with
fantnes in the ring of non-commutative power series over Dy, When p
18 unramified in K/Q. Now we claim that for almost all p, a special

o . . s
(*) I risulbati conseguiti in questo lavoro sono stati esposti nella conferenza
tenute il 22 maggio 1972.
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matrix, which kills mod p a (fixed) base of integrals of the first kind
on I', determines the structure of F as a formal group over 0y. Thus
our problem is transferred from J to I'.

In 3 we determine a special matrix which kills modp the well
known base of integrals of the first kind on I, for every p¥N. Tt
turns out that it is of special and fairely simple form. For it we must
study congruence properties of binomial type numbers on the base
of Dwork’s congruence ([4]). This study is done in 2.

Considering the reduction mod p of our principal result we get a
refinement of Manin’s theorem for the Jacobian Jy. Further it results
that the p-adic limit of the ratio of certain binomial coefficients coin-
cides with some Jacobi sum. About this N. Katz recently proved a
more precise theorem which had been conjectured by the author in [7].

1. Formalization of the Jacobian variety over a number field.

Let K be a finite algebraic number field and o the ring of integers
in K. For a prime ideal p of o we denote by K, and o, the completions
of K and o at p. We often write p instead of po, if there is no fear
of confusion. Let I' be a complete non-singular algebraic curve, J its
Jacobian, and A: I'->J a canonical map, all defined over K. The
formalization of J with respect to some system of local parameters
at the origin is a formal group over o, for all but a finite number of
primes p of K. In this section we show that for these primes p the
study of this formal group over o, is reduced to that of «integrals
of the first kind » on I

We uge the notations, definitions and results of Honda [6]. Let K’
be a valuation field satisfying the assumption (F) of [6, § 2], 0’ the ring
of integers in K’, and p' the maximal ideal of o’. Let o and ¢ be as
in (F). Denote by 2,(p') the full matrix ring M. (o,[[T1])-

LeMMA 1: Let # be an indeterminate and f= 4(f1, ..., 2) an n-tuple
of power series over K';

film) = i allg*  (1<i=mn).

K=oy

Assume that the following assumptions are satisfied:
(@) The o) are units of o' (1=i=n).

b)) 1= <o <o << qoty.

(6) af’ e’ for 1=i=n, 0= dn.
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Then, if w and v are special elements of U, (p') such that
uxf=v%xf=0 modyp,

v 18 left associate with u, namely there is a wnit t of W, (p') such that
v = tu.

PROOF: Write
(1.1) w=nl,+3 €1, v=nl,+3 DT,
=1 y=1

whert? 7 is a (fixed) prime of o’ and C,, D,e M, (v'). We will show
that if C,= D, for 0=v=<u—1 with some p =1, then

(1.2) C,=D, mody'.

By (b) it follows from our assumption
>(C,—D,)f" 2y =0 modyp’
y=y ’

that

(1.3) (0, — D,) (@) =0 mod p’, mod deg («, +1) .

Let ¢,; be the (i, j)-entry of €, —D,. Then it follows from (1.3)

gt

€10y, =0
(mot @
(1.4) Cirlny F Cuatte =0 mod p’
(1ot @ot (gt
ci‘la‘xﬂ + c".zao‘n + s _I_ Gi.ﬂaan = 0 .

From (a), (¢) and (1.4) we get easily

c.;€p’  for 1<i, j<wn.
This proves (1.2).
Now put
(1.5) t,=I,—(C,—D)T, -n .

18
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Then ¢, is a unit of A,(p') and

(1.6) L,u=0v moddegu 1.
In this way we can find units t,,...,t, successively for each 1> 0
80 that ‘ ‘

t...tbw=v moddeg(i-+1)

and #;...t; converges as A->oco. The limit ¢ of # ...¢, clearly sat-
isfies the requirement of our lemma.

Returning to the curve I" over K, let n be the genus of I" and
agsume 7 >0. Let P be the K-rational point of I" such that A(P)
is the origin of J. Furthermore let N1y -+vy n D€ @ base of differentials
of the first kind on I, each defined over K. Then z e K(I') being
a local parameter at P, there are ¥ (x) e K[[»]] (1<4i<m) such that
P(0)=0 and 7,= d¥.(x). Let y = (41, ..., y.) (C K(J)) be a system
of local parameters at the origin of J and let o, ..., w, be the invariant
differentials on J such that

wiod=y, (@A=i<n).

Then we can write
n

w;= z%’i(?/l, ceey Yn) QY5

j=1

with ¢,,€ K[[y,...,¥,]]. Since the w, are closed as invariant differentials,
they are also exact in K[[y]]. Hence there are @,(y) eK[[yl](1=i<n)
such that

D,0)=0 and w;,=dd,(y).

Now Iet 8, be the (finite) set of primes of K at which at least one of the
above algebro-geometric objects has bad reduction. Let F be the for-
malization of J at the origin relative to the parameters y. F is also
obtained from the invariant differentials d®;(y), 1<i<n (cf. [6, §11).
It p¢8,, then F is a formal group over 0,. Let 8, be the set of ra-
mified primes of K. If p¢S,, we can apply the result of [6, § 31
to the group F over 0y With ¢ =p and o = the Frobenius substitu-
tion of K,. Thus [6, Theorem 4] shows that the transformer of F is
killed mod p by some special element of 2, (p) = M,((0p),[[T]]) if
pPES,US,.

THEOREM 1: There is a finite set 8 of primes of K satisfying the fol-
lowing conditions:

(a) 8 contains S, U 8,.
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(b)Y If p¢8 and w is a special element of W.(p) which kills
(z) mod p, then w also kills the transformer of F mod p, so that F is
of type w as a formal group over Dy

Proor: Since the y,.. are functions in K(I'), there is an n-tuple
& =14, ..., &) of algebraic functions in K[[«]] such that y o A = & o .
Then o = d®(y) implies # = d(@(&(m))), namely

(1.7) D=,
Let A be the invertible matrix in M (K) such that
D(y) =Ay moddeg?2.

By replacing the local parameters y by Ay if necessary, we may assume
A =1,, namely that @(y) is the transformer of F. By (1.7), &u(@) e v, [ [#]]
for p¢8;. Take p¢ S, U S; and let v be a special element of A (p)
which kills @ mod p. Then it follows from [6, Lemma 2.3] that

vV =% (DPoé)=(vxP)o&=0 modp.

So we have only to prove the following assertion: « For almost all P
two special elements of WA, (p), which. kill ¥ mod p, are left associate with
each other ».

Let € be an invertible matrix in Mn(op). If CuC-1 is left associate
with CvC-', namely there is a unit teU,(p) with CuCt=1-CvC™,
then u = C~*tCv and C~%C is also a unit, which implies that u is left
agsociate with ». Hence we may replace =", ..., 1) by On with
CeGL,(K), since such C is a unimodular matrix in M (0p) for almost
all p. Thus we may assume

(1.8) Pio)=Sale® (1=izn),

K=oty

l=a<...<o, a’+0.

Now we can apply Lemma 1 to f =¥ with p'= 0, and ¢ = p. It ig
trivial that (a), (b), (¢) of Lemma 1 are satisfied for almost all p. This
proves the above assertion and completes the proof of our theoren.

2. Congruences on binomial type numbers.

In order to apply Theorem 1 to the Fermat curve, we musb study
congruence properties of the coefficients of differentials of the first
kind on it. QOur results in this section extend the results of [8, Section 1]
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to all primes not dividing ¥. Katz also obtained congruences of the
same nature by an alternative method. Our treatment of the case of
primes p with p < ¥, p ¥ N was suggested by his method,

Let & be a positive rational number integral at p. Put for each
non-negative integer u

1 for‘u:O
COs u)=1] pa
@5 ) S0 +9) for u>0,
y=0

and A(9; u) = C(d; p)/u!. We define &' to be the unique rational
number, integral at p, such that p?' — & is an integer in [0, p —11.
For each real x put
(@) = 0 ifz<0
R B it 0.

LEMMA 2: If aypu,m, s are non-negative ordinary integers, 0 < a <p,
then

(2.1) A(D; mzis+1 iﬁ‘?_‘f‘ a) _ Aﬂl{? + a)( mp* )9(a+19—p19')
' A@ s mpr+p) T AW p) &'+
mod * peit,

(¢« mod*# » denotes the multiplicative congruence.) Moreover
(2.2)  ord, A(%; up + A ) = (1 + ord, (u + ) ola + & — pdy.

ProoOF: This is an immediate consequence of Dwork [4, Lemma 1].

Let N =3 be an ordinary integer and p a prime number not di-
viding N. For a rational number 7, Whose denominator is prime to N ;
we denote by (r), the least (strictly) positive integer such that
r=(r)y mod N. Let 4, j be integers such that 1<i< N and
1=j=<N—1, and put (p~Y)y =141, (p~*j)y=7,. Then there are non-
negative integers s, ¢ such that pi=1+ Ns, pj,=j+ Nt. Put
I=pj—j +1{—piy=N(t—s).

LEMMA 8: If m=1, v=1 are ordinary integers and i 7§, then

(2.3)  [mp* + i —§)/(i — j)Jev-0

= [(mp*-1 L ¢,— J1)[(#3— §,) por—ed  poqx P
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Furthermore

(24)  e(f—1) ord (mp* + i — j)

= {o(hi— ) — o(I)}(1 + ord (mp™= 4 4,— j,)) .

Proor: We divide the proof into geveral cases.
(@) ¢ >3, 4> j,.
We first note that i > g, implies 8=t and hence J =0, namely
o(I)=0. Consequently
ed) = e(i—1) = g(j,— i) =0
and our assertions are trivial.
(b)) i<j, 1y > .

II'l t}.Jis case o(I) = p(j, —i;) = 0, and we have only to prove
ord (j — ) = O._ In. fz,.wt (=i, —1F) <0 implies 0 3£ 7 — N(t—s),
Consequently if pli—1, then plt—s and I|= Np, which is 2 con-
tradiction, -

(€) © >4, i< q,.

In this case o(j—i) =0 and o(I) = e(ji—4) =1, from which follow
our assertions trivially.
(@) i<j, i,<{, and ol)=1.

' Sil}ce o(j — 1) = o(j,— i) =1, it suffices to show ord (t—j)=0. If
pli—j, then pII#0 and |I |=pN, a contradiction.

(€) ¢<j, 4, <j, and o(I) = 0.

Since j; > 4, implies = s and o(I) = 0 implies t < 8, wWe get s=1¢.
Consequently P(i—7) =14 —j and mp” 41— j = p(mp*-1 + %, —4,). This
completes the proof of our lemma,

. .I‘T‘OW put 4 =i/N. Then ¢ — ©/N. For a natural number 4 not
divisible by N define

(2.5) D05 ) = A(B; (1 — )] W) (u — )/ + 9)ei~

Where j = ().
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TEMMA 4: Let m, 1 be natural numbers such that m =1 mod N and
NJtm. Then, for v=1

(2.6)  b(@O; mp)[b(@; Ip) = b mp)[b(H'; [pPY) mod* p’.

Proor: Put (mp’)y=7], (mp’~Y)y=j;. Clearly we may assume
= (m)y. Since

"—j m—1 ,  Wp'—i 12—
2.7) ”lp—N—?:—N—p s EEF A

and 0< (j,p—j)/N <p, it follows from Lemma 2

(2.8) A@®; (mp” — §)N)A@D'; (mp*~* — j2)[N)
= A(#; Ip* — §)|N)JA(S'; ("~ — §)/N)
XmpP= 4y — ) (" i — )80 mod "

On the other hand we get by Lemma 3

mp” - /L'__?' eti—i) - mpv—l -+ /’:1 — j_l)e(h"iz)
eo (i) =l
% i i’“ —jf )Qmmodx p .
mp"~t =t —h

Now (2.6) is an immediate consequence of (2.8), (2.9) and the defi-

nition of b(d; u).
LeMMA 5: With the same notations as in Lemma 4
(2.10) ord [b(&; mp*)[b('; mp*)] = g(jr— ix) -
Procr: Since

. s -
mrN j _mp N_71p+th ,

we get by (2.2)

(2.11)  ord [A(9; mp” — J)IN)A@ ;5 (mp™t— i /N)]
= (1 + ord (mp'~t — ji - i1)) o(I) -
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Regarding

b(d; mp*) = A(9; (mp* — j)/N)((mp* —j + §)J)eu- |

our lemma follows from (2.11) and (2.4).

3. Formalization of the Jacobian of the Fermat curve.

Let N =3 be a natural number and let I, be the Fermat curve
@ +y¥ =1, Jy its Jacobian variety and A,: I'y— J ~» & canonical map,
all defined over Q. It is well known that the genus » of Iy is given by

n=(N—1)N —2)2
and the space of differentials of the first kind-on Iy is spanned by

(3.1) w(i, )= &y ~ide = 21 (1 — o¥) =¥ dgp

@SiSN—1,1=<j<i—1).

Using the notation of the previous section we can write

(3.2) o, 1) = 3 A v)a do

y=0

with ¢ = i/N. Put

3.3) ftvi5 ) = [li, ) = 5 403 ity + ).

These are integrals of the first kind on I'y. Let F, be the formal-
ization of J, relative to some local parameters at the origin. By Theo-
rem 1 there is a finite set S of prime numbers such that for p &8
the special element of 9l,(p), killing Hii, j; 2)|2 =1 < N —1,
1=j<¢—1) modp, determines the structure of F, regarded as a
formal group over Z,. In this section we study such a special element
for every p t .

For y>0 put

(3.4) a(i, Ny + 1) = A@; »)
a(i,v) =0 if v21modXN.
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Then we have

- O

(3.5) 10, §3 @) = X ali, »—j + 1)y

ve=73
Fix a prime number p not dividing N. Put M = {({, )l <i=N -1,
1<j=N—-1,i%#j} and My={(},j)2<i=N—1,1<j<i—1}. Fora
while fix (4, j) € M,; define (i(x), j(«)) to be the element of M congruent
to (tp~% jp~*) mod N and put
B = inf {a=1|(i(w), j(«)) € Mo} -

Then 1 <B=<d where d denotes the order of p modN.
Now we have

(3.6)  a(i, mp®—j + 1) = A(i/N; (mp® — §)|[N) = b(i[N; mp®)
for m =j mod N, since p(j —¢) = 0. By Lemma 4

a(iy jp* — j -+ 1)ja(i(B), j*F —i(B) +1)
has a limit £(¢, §) in Z, as v — oo.

LEMMA 6: ord£(s,j)=pf—1
and

(3.7) pi(s, 15 @) = E(&, ) p~ ¢ f(i(B), §(B); »**) modp .
Proor: It follows from Lemma 5 that

ord £(i, j) = ord a(, jp® — § + 1)[a(i(B), ip*P — j(B) +1)
= ord b(i/N; jp*)[b(i(B)/NV; jp™~F)

ﬂ .
= 2 o(j(e) —i(w))
Ge=1
=pf—1.
Now (3.7) is equivalent with the following (3.8) and (3.9):

p BT =i 1)

(3.8) e =0 modp
for ptm, a<<§B.
(3.9) p a’(liﬁ mpzx - j + 1) - E(li/, j)p_(ﬁ_,l) a('[(ﬁ), mpa_ﬁ - ?(ﬂ) _{___) mOdP

mp* mp;‘ﬁ
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for p ¥ m, «=f. By Lemma 5 we have for a<f
ord a(t, mp*—j -+ 1) = ord b(¢/N; mp*)

= S oxd b(i(y — 1)/N'; mp—++1)Jb(i(y) [ N'; mp*)

y=1

&

= Y o(ity) —i(y))

which proves (3.8). Further it follows from Lemma 4 that for
1=y=Sasdy

b(i(y —1)[N; mp=—+1) _ b(i(y —1)[N; jpa—r+1)
b(i(y) [N ; mp—7) b(i(y)/N; jpv=)

[

mod* pa—r+1,

Consequently we get for = p

bEN;mp=) B[N jp*) mod* gt

b(UB)N; mp==?)  b(i(B)[N; jp*~7)

namely

(310) _Mbmpe—it1) el jpr—j+1)
a(i(B), mp*—J(B) +1)  ali(B), jpb—i(p) + 1)

mod* pa-f+

Since ord £(¢, j) = f# —1, (3.10) implies
a(t, mp* —j 4 1) = (4, 7)“’(7((3)5 mp*? —j(B) + 1) mod p*,

which is equivalent with (3.9). This completes our proof.

Now write the elements of the set {0<a= d|(i(a), j(x)) € My} in
order of magnitude: f, < f;<...<f,. Then f,=0,8,=8, f,=4d and
r=d. Put for 1SI<r ’

a(i(Bi-a), §(Bi1) P* — j(ﬂl—l)il)

w58 a(i(B), J(Bpe-per i — (B + 1) — S D D)

Then &(i, §) = &(4, §, 1) and (3, §, )€ Z,. It follows from Lemma 6
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ord &(4, 4, 1) =8, — fi-y — 1, and

(3.11) pf(i(lgl—1)7 J(Bi-1); x)
= &(4, j, Z)p_ﬁ‘+ﬂ1_l+1f(i(ﬂl)7 7(/31)7 m”ﬂ‘_ﬂ"l) mod p

for 1=l<r. Let I,, be the matrix of order » whose (I, m)-entry is
equal to 1 and other entries are all zero. Define the special element
u(i, j) of A, (p) and the r-tuple D(4,§; ) of power series by

r

wu(t, ) = pl, — Z &(i, 7, l)p‘ﬂ”ﬂ"’“ Thbia T 0y (L= 1L,.)
(3.12) 1=1

D(iy j; @) = t(f('é(lgo)y §(Bo); @)y «ees F(E(Brm1); H(Br-s); w)) .
Then?' regarding (i(ﬂ0)7 ?(/30)) = ("’(ﬁr); 7(,3r)) = (iz 7)7 (3.11) implies

THEOREM 2: u(i, )% D({,j;2)=0 modyp.

Define the equivalence relation in the set M, so that (i, j,) ~ (45, §,)
if and only if there is o.=0 satisfying (4,p% 5,p%) = (is, j,) mod N,
and write M, as the union of the resulting equivalence classes:

M,= th Mo(s) .

s=1
For 1<s<h take (4, §) from Mo(s), and put
Wy = (1, j), Do) = D4, j; @)
§o=T1£&0, 4, 1) = lim a(i, jp* — j 4 1)/a(i, jp**> —j + 1).
1=1. v

Then &, is independent of the choice of (4, j). Further u, and @,(x)

are uniquely determined by M,(s) up to cyclic permutation of

(Bos By -5 fr—1). By Theorem 1 and Theorem 2 we get

THEOREM 3: There is a finite set 8 of prime numbers containing
all prime divisors of N and satisfying the followings: Let p¢ S and let
FY be the formal group over Z, obtained from the special element
U(L=8=h). Then Fy is the direct product of h factors F® (1<s=<h)
regarded as a formal group over Z,.

It is plausible that we may take 8 = {p; pyN}.
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THEOREM 4: Let notations be as in Theorem 3. If p &S, the re-

. duction of Iy mod p-is isogenous to the Dieudonné group G, .. over the

algebraic closure of F,. (For the group G, , see [2] or [9].)

Proor: For any p-integral object U we denote by U* the reduction
of U mod p. Regarded as a matrix over Z,((T)), which is a principal
ideal domain, u, has the elementary divisors (1,...,1, det u,), because
the &(¢, §, I)p~Prfriil are units of Z,. Now

(3.13) - detw, = pr— &, p-a-—na

and £,p=@ is a unit of Z,. Since FP* corresponds to the Dieudonné
module 2 (p)/(det w.)Ay(p) (I3]), it is isogenous to &, ,., over the al-
gebraic closure of F, [3, Lemma 5]. This completes the proof.

It is well known that the endomorphism ring of a formal group
over a field of characteristic P has natural structure of Z,-algebra.
For £eZ, we denote by [£] the image of £ under the natural injection
of Z, into End F*. By [6, 5.5] it follows from (3.13) that the p-th
power endomorphism of F§™ satisfies the equation

(3.14) [pr]—[p @ m]Xe=0.

Put p®=q and denote by I/, the g-th power endomorphism of F®*,

‘Then (3.14) implies

- [&]=1q].

Hence there is n,€Z, such that [#,] =17, and consequently

(3.15) wb=q.
Let
(3.16) pX)=0

be the characteristic equation of the g-th power endomorphism of Jj.
Then the g-th power endomorphism of F, satisfies (3.16) too. Hence I7,
Is a root of (3.16), so is =,. Consequently £, is also a root of (3.16)
as is well known. In view of the well known result of Davenport-
Hasse [1] we have proved: For all but a finite number of p the
&, (L= s=<h) are Jacobi sums made from characters, of order N, of the
multiplicative group of F,. In [7] the author conjectured more pre-
cisely that for every Py N, 1=<=s=<h and (4, j)e My(s) we have

(3.17) Es=wm(x™, 1°)
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where

(x4 = — 2 xie) 11 —a)

acF,

and y denotes the N-th power residue symbol. This conjecture was
proved by Katz by the method of p-adic analysis.

Now it is not difficult to show that (3.17) is reduced to the case
=1 and in this case (3.17) is equivalent with congruences

O L)y
(3.18) (1"(1)351”1%(“_1)( s )—(WI,, M, P

for all =1 where we put M,= (¢"—1)/(¢ —1). It.might be an in-
teresting problem to prove (3.18) directly, namely to give an elementary
proof of (3.17). The author checked (3.18) only for »< 2.

Testo pervenuto il 22 aprile 1972.
Bozze licenziate il 28 febbraio 1973.
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A THEOREM ON THE DE RHAM COHOMOLOGY
OF A HYPERSURFACE (%)

N1cHOLAS M. KAtz

Introduction.

The main result of this paper is that, over any base scheme, the
primitive part of the middle-dimensional relative De Rham coho-
mology of the universal family of smooth hypersurfaces of given degree
and dimension is « generated » over the (algebra generated by the)
derivations of the base (acting through the Gauss-Manin connection)
by the submodule consisting of all the clagses of highest possible Hodge
filtration. Over C, the result is entirely without interest, because in
that case it is an immediate consequence of Lefschetz’s theorem [8]
that in any Lefschetz pencil of hypersurfaces of given degree and
dimension, the monodromy representation on the primitive part of
the middle dimensional complex cohomology of a fibre is irreducible.
Indeed, by the regularity theorem [2], Lefschetz’s theorem is equiv-
alent to the fact, that over C, there is no non-zero proper submodule
of the primitive middle-dimensional cohomology of the wuniversal
family which is stable under the Gauss-Manin connection.

Over fields of characteristic p >0 however, the situation is quite
different. In that case, the « conjugate filtration » of De Rham coho-
mology is a highly non-trivial filiration by submodules which are stable
by Gauss-Manin. So the moral of the result is that, at least in the uni-
versal family, the Hodge filtration is quite transversal to the con-
jugate filtration, and is as unstable as possible under the Gauss-Manin
eonnection.

In the first section, we recall some basic facts about the Hodge
and De Rham cohomology of hypersurfaces, for which [1] is a most
convenient reference. The second section is devoted to the statement
and proof of the theorem. In a final section, we apply the result to

(*) I risultati conseguiti in questo lavoro sono stati esposti nella conferenza
tenuta il 22 maggio 1972,



