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1. Introduction and statement of results

In this paper we formulate and prove generalizations of a theorem of Lin [7]. Let X
be a CW complex with base point x0. Define a free involution T o n S ^ x f l A X) by
T(w, xAy) = (— w, y A X). The quadratic construction on X is the complex

S^XXA X/#°° x x0 A x0.
T T

This construction can be applied to spectra. A complete and thorough account will
appear in the work on equivariant stable homotopy theory in preparation by L. G.
Lewis, J. P. May, J. McLure and M. Steinberger. Some of the results are announced
in [8].

Let Sfp be the homotopy category of C W spectra. Let S be the suspension functor.
There is a natural transformation SD% -» D2S of functors defined on S?p. If X is a
spectrum and keZ let Pk(X) be the spectrum S~kD2 SkX. By applying S-*-1 to the
map SD2 S

kX -> Z>2 S
k+lX we get a map ak = ak(X): Pk(X) -> Pk+1(X). We study the

inverse system of spectra

Let n* and H* be the cohomology theory and homology theory defined by the 2-adic
completion of the sphere spectrum. When we apply n* and n^ to this inverse system of
spectra we get a direct system and an inverse system of abelian groups.

THEOREM A. Let X be a finite spectrum, then there are natural isomorphisms
(i) Bklimn*P_k{X) ~ n*X.

fc-«o

(ii) Invlim^P_fe(Z) ~ n^S^X.
k-+oo

When X ~ S°, this is Lin's theorem [7] (see also [1]) and this suggests the proof of
Theorem A. First show that Dir\imn*P_k(X) is a cohomology theory of X. Next
exhibit a natural transformation n*X -> Dirlim n*P_k(X), which is an isomorphism
when X = 8°. Part (i) of Theorem A follows from the Eilenberg-Steenrod uniqueness
theorem.

We issue a warning here: we do not require cohomology theories to satisfy Milnor's
wedge axiom. This accounts for the finiteness hypothesis in Theorem A. In § 6 we give
an example to show that the conclusion of part (i) of Theorem A is false when X is
infinite. A complete discussion of this result with the finiteness hypothesis removed
will be given in [11].

Our second theorem describes a particular natural isomorphism in part (i) of
Theorem A. It is, essentially, the total Steenrod operation in cohomotopy. Note that
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474 J . D. S. J O N E S AND S. A. WEGMANN
0 = <Sf(IRP™), where + means adjoin a disjoint basepoint. There is a

canonical map RP£ -» S°; map base point to base point and RP00 to the other point.
This gives a map p: P_t(*S") -» 8*. For l> 0 define yt_,: TT'X -> 7r{P_t_,(X) by

Here a*: 7r'P_t(X) -* 7rtP_t_,(X) is induced by suitable composites of maps ak(X).
If I ^ 1, yt<, is a homomorphism and it extends to a homomorphism

Pick Z ^ 1 and let F be the composite homomorphism

TT*X -> ff*P_t_,(Z) -> DirhWP_fc(X).

Here the second homomorphism is the usual homomorphism from a term in a direct
system to the limit of the system. By construction F is independent of I ^ 1.

THEOREM B. Let X be a finite spectrum; then F is an isomorphism.

There are obvious analogues of Theorems A and B with 2 replaced by an odd prime p.
The odd primary version of Lin's theorem has been proved by Gunawardena [5]. The
quadratic construction is replaced by the p-adic construction denned using the group
Z/p in place of 1/2. We comment very briefly on the ^-primary versions in § 6.

The rest of this paper is set out as follows. In § 2 we discuss the quadratic con-
struction. In §§ 3 and 4 we prove Theorems A and B. In §5 we discuss the fact that
BH*(X; F2) = Dirlim.ff*(P_fc(X); F2) is the so-called Singer construction on H*(X; F2)
[9], [2]. This observation is due to Haynes Miller. It has no logical role to play in this
paper, but it was the starting point for this piece of work. Finally § 6 contains a
counter-example and a comment on the odd primary case.

We would like to thank Frank Adams, Peter May and Haynes Miller for their interest
and helpful comments. We would also like to thank the referee for improving our
exposition. The second author would like to thank the Marshall Aid Commemoration
Commission for its financial support.

2. The quadratic construction

Let Sf be the full subcategory of Pp whose objects are the spectra SkX, where
k e Z and X is a complex. Finite spectra are in Sf so it is sufficient, for our applications,
to restrict attention to SP; it is also technically convenient. From now ori we regard Pk

as a functor S? -> S?p unless we explicitly state otherwise. Let *€ be the homotopy
category of CW complexes. We will not use any special notation to distinguish between
a complex and its suspension spectrum. We now list those properties of Pk that we
need.

(2-1) For each complex Z, there is a map

<f> = 4>(Z, X):ZA Pk{X) -> Pk(Z A X).

This map <f> defines a natural transformation of functors ? x ^ - > £ f p . Further,
<f>(S°, X) = 1 and if W and Z are complexes

</>(WAZ,X) = </>{W,ZAX)(1WA<P(Z,X)).

(2-2) There are natural maps ik = ik(X): SkX AX-> Pk(X) and rk:Pk(X) -> SkX A X
•with Tkik= 1 + (— 1 )k T, where T: X A X -> X A X is the map which switches factors.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100000864
Downloaded from https://www.cambridge.org/core. Eastman School of Music, on 19 Oct 2020 at 10:37:49, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100000864
https://www.cambridge.org/core


Limits of stable homotopy and cohomotopy groups 475

Let Zbea complex; then the following diagrams commute
1 A l t 1 A rt

S"ZAXAX n

Here &:Z->ZAZ is the diagonal map and we have identified ZAZAXAX with
ZAXAZAX.

Now suppose we are given a cofibration sequence in S?

A->X-+Y^SA.
f g h

Let Pk{X; A) be the cofibre of Pk{f).

(2-3) There is a natural cofibration sequence

SkAAY-> Pk(X; A)->Pk(Y)-+ S^A A Y.

Let Zbea complex; then the maps <f> define a map of cofibrations

S*Zf\AAY • Z/\Pk(X;A) • Z\Pk{Y) " S

The maps in the cofibration sequence are related to ik and rk as in the following commu-
tative diagrams

Pk(A) • Pk(X) • Pk{X;A) ~SPk(A)

I Sik(A)

SkAAA • SkAAX • SMAK ~Sk + lAAA

5*(1A«) S*(IA/I)

Pk(Y) * SkYAY

JS*(*A1)

Sk+iAAY

We now define the map ak(X) mentioned in the introduction to be /S~1 (̂<S1, X):

(2-4) Pk(8X) = SPk+1(X), ik{SX) = Sik+1(X), Tk(SX) = Srk+1(X).

(2-5) Let X be a complex; then the spectrum P0{X) is naturally equivalent to the
suspension spectrum of D2X.

Let Pk be the spectrum Pk{S°). By regarding u as a 1-dimensional cohomology class,
the ring F2[u, u*1] admits an action of the mod 2 Steenrod algebra A.

(2-6) (i) H*(Pk; F2) is isomorphic over A to the A-submodule of F2[it, w
1] generated by

u\ I > k.
(ii) The map ak: Pk -> Pk+1 induces the obvious inclusion in mod 2 cohomology.
(iii) H*(Pk; 1) has no odd torsion.
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476 J. D. S. JONES AND S. A. WEGMANN

We note now, for future reference, that if / is the unit interval with base point 0,
then the map <fi{I,X) defines an equivalence of SPk(X) with Pk{CX,X), where
CX = / A X is the cone on X. This equivalence, the cofibration X -> CX -> SX, (2-3)
and (2-4) give a cofibration sequence

SkX AXX Ph(X) -2 Pk+1(X)*-l'8k+1X A X.
Next, we discuss space-level analogues of these properties when k ̂  0 and X is a

complex. LetZ>2(X) be Sn x X A X/Sn
 XXOAXO and let [w; x, y] be thepointof U&X) de-

T T

terminedby [w,x A y)eSn XXA X. Let £„ be the bundled" x (Rx!x X)-+8n xXxX.
T T

Here T acts o n l x l b y permuting factors, and on U by — 1. If k ^ 1, there is a
homeomorphism Sn+k x (X x X)/Sk-1 x(XxX) with the Thorn complex of k£n. In

T T

the case where X is a point this is the classical homeomorphism of truncated projective
spaces with Thom complexes. The general proof is a straightforward modification
of this special case. Note that £n @ 1 is the bundle S B x(RxI)x(Rx X), where T acts

T

on ( R x l ) x ( i x Z) by permuting factors R x l . This gives homeomorphisms
and

we take D2
1(X) to be the base point. So if & ^ 0 and -X is a complex we can define

Pb(X) to be the complex D2(X)/D$-l(X).
Let Z be a complex; then define 0(Z,X): Z AD2X-+ D2(Z AX) by the formula

z A [M>; x,y] -> [M>; Z AX, Z Ay\ This gives the maps $: Z APk(X)-> Pk(Z AX). The
maps ik (k > 0) and rk(k > 1) are defined by the cofibration sequence

OTAI = JDftZyZtf-W -> Pfc(X) -> Pfc+1(Z) -> ^(/^(Z)/!)*-1^)) = S^X A X.
We deduce that rkik= l + ( — l)kT(kis 1) and the appropriate diagrams involving
0, i, T commute.

Let A be a sub-complex of X and Y = X/A. Since

£?AXAX = /Sfa)xZA X/S°° XX0A Xo,
there is a cofibration of spaces

S^A(AAYVYAA)^S^A(XA XIA A A) -> 5? A Y A Y.

Divide out by the involution to get cofibrations

A*Y~8%AAAYC D2(X; A) -+ D2 Y,

S"AAY~S%AAA Y/S%-I AAAY^ Pk(X;A) -> Pk+1( Y).

One may now check that the maps in this cofibration sequence are related to ik and rk

in the manner described in 2-3.
We now turn to the construction of Pk: S? -> S?p. The main point is the definition of

the quadratic construction on a spectrum, see the forthcoming work of May et al. Here
we give a brief account of one such definition. This definition has its deficiencies but
it is adequate for our present purposes.

Let Cn+1 be the real Clifford algebra of Un+1. So Sn is contained in the units of Cn+1

and we choose the base point w0 e Sn to be the unit of Cn+1. As a real vector space Cn+1

has dimension 2n+1. If weSn, define rn(w)eGL{2n+2, R) by the formula

rn(w)(u, v) = $(w(u-v) + u + v,u + v — w{u — v)),
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Limits of stable homotopy and cohomotopy groups 477

where (u,v)eCn+1®Cn+1 = R2"+s; compare ([6], §3). Note that

jrn( -w) = rn(

where / is the 2n+1 x 2n+1 unit matrix.
Let X be a complex. We get a homeomorphism

hn: Z>£(S2n+1 A l ) - > £2"+s A

hn[w,UAx,vAy] = rn(w)(u,v) A [w; x,y], u,veCn+1\Jco = <S2"+l.

For leZ define a spectrum E = DzS
lX by

where £2n+1+'X is the base point if 2n + 1 + J < 0. The maps are the composites

Two things are clear from this definition. Firstly, if F is a spectrum we can modify
this construction to define D2F; replace #2"+1+'X by F2n+i and use the map
SV+1F2n+i -> F&+,. Secondly, D2(S

lX+) is the Thorn spectrum of the bundle &(£«, e 1)
over #°° x (X x X). From the point of view of Thom spectra, it is not obvious that

T

D28
lX+ is functorial for stable maps of X+.

Using this definition of the quadratic construction on a spectrum, the verification of
(2-l)-(2>6) follows a standard pattern. Take the analogous property of D^{X) when
X is a complex and check compatibility with the maps used to define Pk. We omit the
details. Alternatively refer to [8] and the forthcoming work of May et at.

3. The proof of Theorem A

Let I be a complex. The maps $(X,8°) give maps fik = pk{X): X APk -+Pk(X)
(recall Pk = Pk(S

0)). The maps fik define a natural transformation of functors # -> SPp.
Recall ak(X): Ph(X) -> Pk+1{X) is S'^S1, X) so from (2-1) we get a map fi of inverse
systems

t t t
X A Po <- X A P_x <- X A P_2 <- ...

THEOREM 3-1. Let E* be a cohomology theory.
(a) F*(X) = Dirlim E*P_k(X) is a cohomology theory on ¥.
(b) /?*: F * (X) -> Dirlim E*(X A P_k) is an isomorphism when X is a finite complex.

Let S?o and S?p0 be the full subcategories of S? and SPp whose objects are of finite
type (i.e. finite n-skeleton for each n). If E* is a homology theory then E+ is connec-
tive if there is an integer N such that E^S0) = 0 for j < N. Note that if EeS?p0 then
the homology theory E+ represented by the 2-adic completion of E is connective and,
for e&chj, J^($°) is a compact Hausdorff topological group.

THEOREM 3-2. Let E* be a connective homology theory such that E^S0) is a compact
Hausdorff topological group for eachj.

(a) F+(X) = Invlim^P_fc(Z) is a homology theory on Sf0.
(b) fi*: Invlim E*{X A P_fc) -> F^.(X) is an isomorphism when X is a finite complex.

16 PSP 94
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478 J . D. S. J O N E S AND S. A. W E G M A N N

Proof of 3-1. The homotopy in variance of F* is obvious. The suspension isomorphism
is given on the terms of the direct system as follows:

E*P_k(X) ~ E^SP_k(X) = E^P^^SX.

Suppose A -> X ->• Y -> SA is a cofibration sequence in Sf. Take the diagram in 2-3
with Z = 8l, apply S*1, use 2-4 and apply E* to get a direct system of exact sequences

t t t
<- W{S-kA A T K EiP_k(X; A) <- WP_k{ Y) <-

t t t
<- E^S-x+iA A Y) ^EiP_k+1(X; A) <- E'P_k+1(Y) +•

t t t
Since direct limits preserve exactness we get a long exact sequence of limits. Now
A: S1 -> S1 A S1 is trivial so Dirlim Ej(S~kA A 7 ) = 0 since each homomorphism in the
system is zero. Therefore we get natural isomorphisms F>(Y) -> DirlimEiP_k{X; A).
The F* exact sequence of the cofibration A -+ X -*• Y comes from the E* exact
sequences of the cofibrations P_k(A)-> P_k(X) ->P_k(X; A) by taking limits and
using the above isomorphism. This proves 3-1 (a).

Note that Dirh"m^*(X A P_k) is a cohomology theory. Using 2-1 and 2-4,
a_k_1(8X)8fi_tl(X)=fl_k{8X);

therefore /£* commutes with the suspension isomorphisms in the two theories and is a
natural transformation of cohomology theories denned on c€. When X = 8° each fik is
the identity map so that /?* is an isomorphism. Therefore fi* is an isomorphism for each
finite complex X. This proves 3-1 (6).

To prove 3-2, copy the argument but add the fact that inverse limits are exact on the
category of compact Hausdorff topological groups. The hypotheses of 3-2 ensure we
stay in this category.

Proof of part (i) of Theorem A. From 2-5 Po(8°) = IRP+ and there is a canonical map
p: P0(S°) -> 8° such that pi0 is the identity. Composing with composites of a} we get
maps p_k: P_k -> S° (k > 0). The maps 1 A p_k give a homomorphism

p*: n*X -+ Dirlim n*X A P_fc.

When X = S° this homomorphism is an isomorphism [7,1]; Lin's theorem applies
because of 2-6. Since p* is a natural transformation of cohomology theories defined
on SPp it is an isomorphism for each finite spectrum X.

When X is a finite complex define the natural isomorphism

<D: n*X -* Dirlimn*P_k(X)

by <J> = (P*)~xp*. When X is a finite spectrum pick an integer L such that the maps
SXn ->• Xn+1 are equivalences for n ^ L. Then define 0 to be the composite

n*X s n*+LXL -> Birlimn*+LP_k(XL) ~ Dirlimn*P_k(X),

where the extreme isomorphisms are the suspension isomorphisms in the appropriate
cohomology theories.

Proof of part (ii) of Theorem A. According to Lin [7] Invlim n^P^ ^ I\, where Z£
is the 2-adic integers. Pick a compatible sequence of maps y}r_k: S~l -> P_k such that
{ijr_k}e Invlim n^P^ is non-zero modulo 2. The maps 1 A r/r_k define a natural trans-
formation i(r^:TT^S~lX ->• Invlimn*(X AP_k) of homology theories defined on Sfp.
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Limits of stable homotopy and cohomotopy groups 479

Lin shows that, when X = 8°, this transformation is an isomorphism. Now copy the
argument used for part (i).

4. The proof of Theorem B

The construction of the total power operation yt>,: rfX -> ntP_t_l(X), XeS?, is
given in the introduction. We begin with a lemma concerning the functors Pk. Let
qx and q% be the projections of X V 7 on to X and Y. Define/: Pk(X vT) -> SkX A Y to
be the composite

Pfc(Xv Y)_LL>Sk(Xv 7 ) A ( I V Y)SJ51^S"XAY.

LEMMA 4.1. The map Pk(X v Y) -> Pk(X) v Pk( Y) v SkX A Y with components P^),
Pk(q2) andf, is an equivalence.

Proof. Letjvj2 be the inclusions of X and Y in X v Y. Define g: SkX A F - > P t ( I v 7)
to be the composite

s*x A T ̂  s*(x v y) A (x v 7) - V PHX v y).
Then the map Pk(X)VPk(Y)y 8kX A 7-*Pfc(Xv 7), with components Pfc(h),Pfc(i2)
and g, is inverse to the map in Lemma 4-1.

LEMMA 4-2. .Forx,yerfX, yt0(x + y) = yt>„(*) + yt>0(y) + (S^xAy)r_t.

Proof. Let g: X -> X V X be the map with both components the identity. Then the
composite

v P_t(X) v S-»Z A X

has as its first two components the identity and its third T_{. Lemma 4-2 follows easily.

LEMMA 4-3. (a) yt>,: nlX -> ^tP_t_,(X) is a homomorphism ifl^ 1.
(6) TAe homomorphism yt ltl > 1 extends to a homomorphism yt>,: TT'X -> 7?tP_t_,(Z).

Proof, (a) Prom 2-2 and the definition of a_t, we see that r_t a_t = 0. Now use 4.2.
(6) For n^ k define Pk(X) by replacing /S00 by Sn~k throughout the definition of

Pk(X). Define yfy. tfX -> ̂ P^t-ii^) using P|f in place of Pk throughout the definition
of yti,. If X is a finite spectrum then P"t_j(X) is finite so both TT*X and wtP^t_j(X) are
finitely generated. Therefore frX and 7r'P2:t_j(X) are the 2-adic completions of the
cohomotopy groups, and yfi extends to a homomorphism of completions since it is
continuous with respect to the 2-adic topology.

For general X use the fact that n*X = Invlim n* Y, where 7 runs through the finite
subspectra of X. The spectra Pj?(7) form a cofinal subsystem of the finite subspectra
of Pfc(X), here 7 is a finite subspectrum of X, and therefore

n, F

The homomorphisms yfj are compatible as n and 7 vary and so define a homo-
morphism of inverse limits. This is the required extension.

Proof of Theorem B. Let / : X -»• S* be a map in Sf. From the definitions we find that
Yt+i, i(&f) = &Yt, i(/) a n d therefore F commutes with the suspension isomorphisms in
the two theories.

Assume X is a finite spectrum and let <i>: n*X -*• Dirlim7r'P_fc(X) be the natural
isomorphism used in the proof of part (i) of Theorem A. A straightforward check on
definitions shows that F(l) = 0(1), where len°8° is the unit. Both O and F are

l6-2
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480 J. D. S. JONES AND S. A. WEGMANN

natural and commute with suspensions. Therefore 0 and F agree for any finite
spectrum and so F is an isomorphism.

5. The relation with the. work of W. M. Singer

In this section we examine the groups F*X = DirlimH*P_k(X), where H* means
mod 2 cohomology. The results 5-1-5-3 below, when k ^ 0 and X is a complex, all
specialize to standard results about the cohomology of the quadratic construction.
They extend to the general case, for example using our explicit description of Pk(X).
Alternatively consult [8], [10] and the forthcoming work of May et al.

Let W be the usual complete resolution of S2 over F2. That is, for each keZ,
Wk = F2[22] with generator ek, and dek = efc-1 + Tek_v Here T e S2 is the non-trivial
element. If k ^ I, let W(k, I) be the resolution obtained by replacing Wt with zero if
i < k or i > I. If n ^ k write Pk(X) for the spectrum obtained by replacing $°° with
Sn~k throughout the definition of Pk(X). Let X be a spectrum, then form the co-chain
complex W*(k, I) ® H*X ® H*X with differential

8{er ®a®b) = er+1®(a®b + b®a),
where er e Horn (Wr, F2) is dual to er.

(5-1) (a) H*Pl(X) = H(W*(k,n)®H*X®H*X;8).

(6) H*Pk(X) = H( W*(k, oo) ® H*X ® H*X; 8).

(c) F*X = H{W*® H*X ® H*X; 8).

If q e Z and x e HrX define tyz e F^X to be the class of e«~r ® x ® x.

(5-2) (a) Let Bbea basis for H*X. Then a basis for F*X is

{Q«x\qeZ,xeB}.

(b) The action of A on F*X is given by the formula

If X is a complex then the map /? of inverse systems defined in §3 gives a homo-
morphism ^ . F*x_^ D i r U m H * ( X A p k ) = mX ® F2[«, «-i].

(5-3) /?*^«o; = JjSqix® uP-*, compare [4], §27.

Let M be an A -module. In [9] Singer introduces the module
RM = ¥2[u, u-1] ® M

with A -action given by
[q-i\

i>m) = E . o • I u ® S g ^ .

LEMMA 5-4. F*X ~ RH*X as A-modules.
Proof. The isomorphism is given by Qlx^-uq ® x.
Two algebraic properties of RM have analogues in terms of the inverse system of

spectra {Pk(Xj}. Singer studies the homomorphisms / : RM-> M ® F2[u, itr1], e: RM ->
S~lM defined by

f{ub ® TO) = S Sq^m ® ub-j, e(ub ®m)= Sqb+1m.
j»0
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Limits of stable homotopy and cohomotopy groups 481

Here Sqk = 0 if k < 0. Following Miller, Singer shows that F M is bounded above and
below then/ is an isomorphism.

When we identify F*X with RH*X we get fi* = / and r/r* = e, where ft is the map
of direct systems used in the proof of A (ii). The fact that / is an isomorphism when
M — H*X with X a finite spectrum follows from 3-1.

6. Final observations

First we show that the conclusion of A(i) is false when X = Po. From 2-5, P0(P0) is
the suspension spectrum ofBDf, where Dt is the dihedral group with eight elements.
Further Po A Po is the suspension spectrum of 5(2/2 x 2/2)+. We use the verification
of the Segal conjecture [2, 3, 7] to compute cohomotopy groups.

For any finite group 0 write A{G) for the completion of the Burnside ring of G at
its augmentation ideal. It is straightforward to check that

2(Z)4) = (2£)8, 1(2/2 x 2/2) = (2$)5.

From [3] and [2] we get n°(P0(P0)) = (A?, *°(POAPO) = (A? and 7r'(P0AP0) = 0 if

Now use the cohomotopy exact sequences of the cofibrations

S-"P0 A Po "> P-k(Po) -> P-k+M

to deduce that Dirlimw°P_fc(P0) = ^°P_1(P0) and from the case k = 1

rank2A7r0p_1(P0) ^ 3.

However, from [7] n°(P0) = (2£)2 so that TT°P0 cannot be isomorphic to Dirlim 7r°P_fc(P0).
Next we comment on the space level analogue of 2-3 when 2 is replaced by an odd

prime p. We use the p-adic construction

Dp(X) = <S°° x XP/S<° x xl,
ZIP ZIP

where Xp = X A ... A X with p-factors of X. Suppose i e l and write Y = X/A.
Define subspaces Wi s Xp, 0 ^ i < p by letting TF* consist of points with at least i
components in A, so

A" =WV <=, Wp~l c ... c PT<> = Xp.

N o t e t h a t Wi/Wi+1 is a w e d g e of I . I spaces e a c h of w h i c h is h o m e o m o r p h i e t o

Ai A Y*~*.

I fp — 1 ^ t > 1 the action of 2/p on TF*/ PF*+1 divides these wedge summands into

- I ? ) orbits. Therefore 8% A PFVPFi+1 is a wedge of - ( ? ) spaces each of which

is homeomorphie to $+ A Ai A yp~*. We now get p — 1 cofibrations

5? A JP'+yiFP^S? A Wi/Wi>-+S'Z A
ZIP Zip Zip

(p—1 > i > 1). When * = 1, this gives the cofibration

z/p
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If we replace the single cofibration of 2-3 with p — 1 cofibrations, the proofs of our
results with 2 replaced by an odd prime p are straightforward modifications of the
proofs given here.
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